blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
cee8539e090be64a5f7173b3a057803ae9d66c8f
055e5a9b64e53d0a87d07ce724fdb05eadc00a8e
/jmatcher/users/migrations/0019_merge_20170410_0521.py
7057179ad7b2519ed202fd18cd66ab435f2bc945
[ "MIT" ]
permissive
jamesaud/se1-group4
73e73cfe6f56a1d1f1b256f13230a28f8d272f6c
5280b13dff33e72ce717318a8dd78a06cd6effb3
refs/heads/master
2021-01-09T05:41:11.686168
2017-04-27T17:13:17
2017-04-27T17:13:17
80,780,388
1
0
null
null
null
null
UTF-8
Python
false
false
338
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2017-04-10 05:21 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('users', '0015_auto_20170409_1556'), ('users', '0018_user_short_description'), ] operations = [ ]
5670c82a43a643f5d733543fb0552927320696bb
832f86e052d90916fb0c8156825c87dc13c0443e
/imported-from-gmail/2020-01-16-fix-brackets.py
05fd311f1316bc6c204495b94f6525133aaf14b7
[]
no_license
johncornflake/dailyinterview
292615849cea62cb945ecc7039c594b6966a81f3
91bb0edb9e25255e6222279109c15ae9d203970c
refs/heads/master
2022-12-09T21:02:12.204755
2021-06-07T13:09:34
2021-06-07T13:09:34
225,059,833
0
0
null
2022-12-08T11:27:38
2019-11-30T19:24:58
Python
UTF-8
Python
false
false
611
py
Hi, here's your problem today. This problem was recently asked by Twitter: Given a string with only ( and ) , find the minimum number of characters to add or subtract to fix the string such that the brackets are balanced. Example: Input: '(()()' Output: 1 Explanation: The fixed string could either be ()() by deleting the first bracket, or (()()) by adding a bracket. These are not the only ways of fixing the string, there are many other ways by adding it in different positions! Here's some code to start with: def fix_brackets ( s ): # Fill this in. print fix_brackets ( '(()()' ) # 1
e75dd8c6b2b4b77b7eb7778f390b6182c92f1b16
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03696/s991573247.py
2a4297734905538666e9564192e9f911fa2b72ac
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
826
py
# coding: utf-8 import sys #from operator import itemgetter sysread = sys.stdin.buffer.readline read = sys.stdin.buffer.read #from heapq import heappop, heappush #from collections import defaultdict sys.setrecursionlimit(10**7) #import math #from itertools import product, accumulate, combinations, product #import bisect #import numpy as np #from copy import deepcopy #from collections import deque #from decimal import Decimal #from numba import jit INF = 1 << 50 def run(): N = int(input()) S = input() position = 0 l = 0 r = 0 for s in S: if s == '(': position += 1 else: position -= 1 if position < 0: l += abs(position) position = 0 r += position print(l * '(' + S + r * ')') if __name__ == "__main__": run()
5ff59f2a7c0c5bfe42bfba11cc687c1a6f58470f
e1d6de1fb5ce02907df8fa4d4e17e61d98e8727d
/corpora/corpus_reader.py
87865c2db4af9e8d3a0af9f33d532c0e28e798b8
[]
no_license
neuroph12/nlpy
3f3d1a8653a832d6230cb565428ee0c77ef7451d
095976d144dacf07414bf7ee42b811eaa67326c1
refs/heads/master
2020-09-16T08:24:37.381353
2016-09-10T19:24:05
2016-09-10T19:24:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
769
py
import nltk from nltk.corpus import gutenberg emma = gutenberg.words('austen-emma.txt') print(len(emma)) emma = nltk.Text(gutenberg.words('austen-emma.txt')) print(emma.concordance('surprize')) # raw = gutenberg.raw("burgess-busterbrown.txt") # print(raw[1:20]) # words # words = gutenberg.words("burgess-busterbrown.txt") # print(words[1:20]) # sents = gutenberg.sents("burgess-busterbrown.txt") # print(sents[1:20]) for fileid in gutenberg.fileids(): num_chars = len(gutenberg.raw(fileid)) num_words = len(gutenberg.words(fileid)) num_sents = len(gutenberg.sents(fileid)) num_vocab = len(set(w.lower() for w in gutenberg.words(fileid))) print(round(num_chars / num_words), round(num_words / num_sents), round(num_words / num_vocab), fileid)
672f0214711e47b569a7596461b9befa37e15306
150d9e4cee92be00251625b7f9ff231cc8306e9f
/PathSumII.py
dfcf36fff64e9e02cdc4acebd71dc0fec6b03159
[]
no_license
JerinPaulS/Python-Programs
0d3724ce277794be597104d9e8f8becb67282cb0
d0778178d89d39a93ddb9b95ca18706554eb7655
refs/heads/master
2022-05-12T02:18:12.599648
2022-04-20T18:02:15
2022-04-20T18:02:15
216,547,245
0
0
null
null
null
null
UTF-8
Python
false
false
1,641
py
''' Path Sum II Given the root of a binary tree and an integer targetSum, return all root-to-leaf paths where each path's sum equals targetSum. A leaf is a node with no children. Example 1: Input: root = [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum = 22 Output: [[5,4,11,2],[5,8,4,5]] Example 2: Input: root = [1,2,3], targetSum = 5 Output: [] Example 3: Input: root = [1,2], targetSum = 0 Output: [] Constraints: The number of nodes in the tree is in the range [0, 5000]. -1000 <= Node.val <= 1000 -1000 <= targetSum <= 1000 ''' # Definition for a binary tree node. class TreeNode(object): def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right class Solution(object): def pathSum(self, root, targetSum): """ :type root: TreeNode :type targetSum: int :rtype: List[List[int]] """ result = [] current = [] def dfs(root, target, current): if root is None: return False current.append(root.val) if root.left is None and root.right is None: if target == root.val: result.append(current) return True dfs(root.left, target - root.val, current[:]) dfs(root.right, target - root.val, current[:]) return dfs(root, targetSum, current) return result root = TreeNode(5) root.left = TreeNode(4) root.right = TreeNode(8) root.left.left = TreeNode(11) root.right.left = TreeNode(13) root.left.left.left = TreeNode(7) root.left.left.right = TreeNode(2) root.right.right = TreeNode(4) root.right.right.left = TreeNode(5) root.right.right.right = TreeNode(1) obj = Solution() print(obj.pathSum(root, 22))
da4a77a1a728a608f6a7aba60efcbd04b675bee6
3088dc21f3e5eeb31575704712a695d71772495f
/torch/distributed/fsdp/_optim_utils.py
601db958c3fe63a83b2a26dd2d61a7a842d25dbf
[ "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "BSL-1.0", "Apache-2.0", "BSD-2-Clause" ]
permissive
ezyang/pytorch
8e82444c78025ff12fa605a62a18acfc43b176b8
6fc64500d1af9ee1306c7695ab0a2ff01852ff00
refs/heads/master
2023-09-02T01:56:28.108400
2022-06-07T19:13:21
2022-06-07T19:13:21
101,798,885
3
0
NOASSERTION
2022-08-23T22:10:07
2017-08-29T19:28:39
C++
UTF-8
Python
false
false
42,568
py
import copy import functools from typing import ( Any, Dict, Iterable, Iterator, List, NamedTuple, Optional, Tuple, Union, ) import torch import torch.distributed as dist # Import the entire FSDP file to avoid circular imports import torch.distributed.fsdp.fully_sharded_data_parallel as FSDP from torch.distributed.fsdp.flatten_params_wrapper import FlatParameter class _ConsolidatedOptimState: """ This holds the consolidated optimizer state on the target rank. Positive- dimension tensor state is communicated across ranks, while zero-dimension tensor state and non-tensor state is taken directly from the target rank. PyTorch version 1.12 moved to using zero-dimension tensors for scalar values, but user implemented optimizers may still use float (i.e. a non-tensor). Thus, we support both and handle them identically. Attributes: tensor_state (Dict[str, torch.Tensor]): Mapping from positive-dimension tensor state name to the unsharded flattened tensor representing the state. zero_dim_tensor_state (Dict[str, torch.Tensor]): Mapping from zero- dimension tensor state name to its value. non_tensor_state (Dict[str, Any]): Mapping from non-tensor state name to its value. """ tensor_state: Dict[str, torch.Tensor] = {} zero_dim_tensor_state: Dict[str, torch.Tensor] = {} non_tensor_state: Dict[str, Any] = {} class _PosDimTensorInfo(NamedTuple): """ Meatadata for positive-dimension tensors used internally for :meth:`scatter_full_optim_state_dict`. Attributes: shape (torch.Size): Sharded tensor shape (which is equal to the unsharded tensor shape if the tensor is optimizer state for a non-FSDP parameter and is hence not sharded). dtype (torch.dtype): Data type of the tensor. """ shape: torch.Size dtype: torch.dtype class _OptimStateKey(NamedTuple): """ This represents an optimizer state key that may be used commonly across ranks. It is based on the unflattened parameter names rather than parameter IDs to make it indepenendent of each rank's own optimizer construction. """ unflat_param_names: Tuple[str, ...] is_flat_param: bool def _unflatten_optim_state( flat_param: FlatParameter, flat_param_state: Dict[str, Any], fsdp_module, to_save: bool, ) -> List[Dict[str, Any]]: """ Unflattens the optimizer state, consisting of the "state" part and the "param_groups" part. Unflattening the "state" part involves consolidating the state on the target rank and remapping from flattened to unflattened parameter IDs, and the "param_groups" part only involves remapping from flattened to unflattened parameter IDs. Args: flat_param (FlatParameter): The flattened parameter. flat_param_state (Dict[str, Any]): Entry for the flattened parameter in the "state" part of the optimizer state dict. fsdp_module (FullyShardedDataParallel): FSDP module that owns ``flat_param``, i.e. holds it in ``self.params``. to_save (bool): Whether to save the state on this rank. Returns: List[Dict[str, Any]]: A :class:`list` holding the entries in the "state" part of the optimizer state dict corresponding to the unflattened parameters comprising the flattened parameter ``flat_param`` if on the target rank or an empty :class:`list` otherwise. The final optimizer state dict will need to map these entries using the proper unflattened parameter IDs. """ consolidated_state = _communicate_optim_state( flat_param, flat_param_state, fsdp_module, to_save, ) unflat_param_state = _unflatten_communicated_optim_state( flat_param, consolidated_state, ) if to_save else [] return unflat_param_state def _communicate_optim_state( flat_param: FlatParameter, flat_param_state: Dict[str, Any], fsdp_module, to_save: bool, ) -> _ConsolidatedOptimState: """ Communicates the optimizer state for a flattened parameter ``flat_param`` across ranks so that the target rank holds the entire non-sharded optimizer state. If ``N`` is the number of tensor optimizer states in the optimizer state dict, then the communication complexity is 0 if ``N = 0`` and ``N + 1`` otherwise (where the plus 1 comes from all-gathering the padding per rank). Args: flat_param (FlatParameter): The flattened parameter. flat_param_state (Dict[str, Any]): The entry in the "state" part of the optimizer state dict corresponding to the flattened parameter. fsdp_module (FullyShardedDataParallel): FSDP module that owns ``flat_param``, i.e. holds it in ``self.params``. to_save (bool): Whether to save the state on this rank. Returns: ConsolidatedOptimState: Consolidated optimizer state for ``flat_param``; the state is not populated for non-target ranks. """ state = _ConsolidatedOptimState() tensor_state, zero_dim_tensor_state, non_tensor_state = \ state.tensor_state, state.zero_dim_tensor_state, state.non_tensor_state group = fsdp_module.process_group tensor_buffer = None # initialize lazily in case it is not needed for state_name, value in flat_param_state.items(): # Positive-dimension tensor state: communicate across ranks if torch.is_tensor(value) and value.dim() > 0: # If the parameter is not sharded (e.g. world size of 1), then # neither is the positive-dimension tensor state, so no need to # communicate it -- we take the target rank's value if not flat_param._is_sharded: tensor_state[state_name] = value.cpu() continue if tensor_buffer is None: # Assume that positive-dimension tensor optimizer state # has the same shape as the sharded flattened parameter buffer_size = flat_param._full_param_padded.size() # type: ignore[attr-defined] tensor_buffer = value.new_zeros(*buffer_size) dist._all_gather_base(tensor_buffer, value, group=group) if to_save: assert hasattr(flat_param, "_orig_size"), \ "Sharded flattened parameter should have `_orig_size` set" unpadded_numel = flat_param._orig_size.numel() # type: ignore[attr-defined] tensor_state[state_name] = tensor_buffer[:unpadded_numel].cpu() # Zero-dimension tensor state and non-tensor state: take this rank's # value directly elif to_save: if _is_zero_dim_tensor(value): zero_dim_tensor_state[state_name] = value.cpu() else: non_tensor_state[state_name] = value return state def _unflatten_communicated_optim_state( flat_param: FlatParameter, state: _ConsolidatedOptimState, ) -> List[Dict[str, Any]]: """ Unflattens the communicated optimizer state (given by ``tensor_state``, ``non_tensor_state``, and ``zero_dim_tensor_state``) for a single flattened parameter ``flat_param``. This should only be called on the target rank. Args: flat_param (FlatParameter): The flattened parameter. state (_ConsolidatedOptimState): Consolidated optimizer state. Returns: List[Dict[str, Any]]: A :class:`list` holding the entries in the "state" part of the optimizer state dict corresponding to the unflattened parameters comprising the flattened parameter ``flat_param``. The final optimizer state dict will need to map these entries using the proper unflattened parameter IDs. """ unflat_param_state: List[Dict[str, Any]] = [] flat_param_views: Dict[str, Iterator] = {} num_unflat_params = flat_param._num_unflattened_params tensor_state, zero_dim_tensor_state, non_tensor_state = \ state.tensor_state, state.zero_dim_tensor_state, state.non_tensor_state for _ in range(num_unflat_params): unflat_state_param = {} # Add positive-dimension tensor state: unflatten with views for state_name, flat_tensor in tensor_state.items(): views_generated = state_name in flat_param_views if not views_generated: param_views = flat_param.get_param_views(flat_tensor) flat_param_views[state_name] = param_views else: param_views = flat_param_views[state_name] unflat_state_param[state_name] = next(param_views) # Add zero-dimension tensor state: take the target rank's value for state_name, zero_dim_tensor in zero_dim_tensor_state.items(): unflat_state_param[state_name] = zero_dim_tensor # Add non-tensor state: take the target rank's value for state_name, non_tensor in non_tensor_state.items(): unflat_state_param[state_name] = non_tensor unflat_param_state.append(unflat_state_param) return unflat_param_state def _flatten_full_optim_state_dict( full_optim_state_dict: Dict[str, Any], model: torch.nn.Module, shard_state: bool, ) -> Dict[str, Any]: """ Flattens the full optimizer state dict, still keying by unflattened parameter names. If ``shard_state=True``, then FSDP-managed ``FlatParameter`` 's optimizer states are sharded, and otherwise, they are kept unsharded. Returns: Dict[str, Any]: The flattened optimizer state dict. """ full_osd = full_optim_state_dict if "state" not in full_osd or "param_groups" not in full_osd: raise ValueError( "`full_optim_state_dict` must have the keys \"state\" and " "\"param_groups\" to be a valid optimizer state dict" ) flat_param_to_fsdp_module = _get_flat_param_to_fsdp_module(model) param_to_unflat_param_names = FSDP._get_param_to_unflat_param_names(model) # Construct the "state" part flat_osd_state: Dict[_OptimStateKey, Any] = {} full_osd_state = full_osd["state"] for param, unflat_param_names in param_to_unflat_param_names.items(): if isinstance(param, FlatParameter): # flatten FSDP parameters' states assert param in flat_param_to_fsdp_module, \ "Check the `flat_param_to_fsdp_module` construction\n" \ f"param: {param}" fsdp_module = flat_param_to_fsdp_module[param] flat_state = _flatten_optim_state( full_osd_state, unflat_param_names, fsdp_module, param, shard_state, ) key = _OptimStateKey(tuple(unflat_param_names), True) flat_osd_state[key] = flat_state else: # do not flatten non-FSDP parameters' states assert len(unflat_param_names) == 1 unflat_param_name = unflat_param_names[0] if unflat_param_name not in full_osd_state: # The state dict may not have an entry for a parameter if it # was not passed into the optimizer (e.g. if it is not an # FSDP-managed parameter) continue key = _OptimStateKey(tuple(unflat_param_names), False) flat_osd_state[key] = copy.copy(full_osd_state[unflat_param_name]) # Construct the "param_groups" part -- copy as is since it will be # rekeyed later according to the target rank's `optim_input` flat_osd_param_groups = copy.deepcopy(full_osd["param_groups"]) return {"state": flat_osd_state, "param_groups": flat_osd_param_groups} def _flatten_optim_state( unflat_osd_state: Dict[str, Dict[str, Any]], unflat_param_names: List[str], fsdp_module, flat_param: FlatParameter, shard_state: bool, ) -> Dict[str, Any]: """ Flattens the optimizer state in ``full_optim_state_dict`` for a single flattened parameter ``flat_param`` in ``fsdp_module`` corresponding to the unflattened parameter names in ``unflat_param_names``. Args: unflat_osd_state (Dict[str, Dict[str, Any]]): The "state" part of the optimizer state dict corresponding to the unflattened parameters. unflat_param_names (List[str]): A :class:`list` of unflattened parameter names corresponding to the flattened parameter ``flat_param``. fsdp_module (FullyShardedDataParallel): FSDP module owning the flattened parameter. flat_param (FlatParameter): The flattened parameter. shard_state (bool): Whether to shard flattened positive-dimension tensor state; if ``False``, then the full flattened tensor is kept in the returned :class:`dict. Returns: Dict[str, Any]: A :class:`dict` mapping state names to their values for a particular flattened parameter. The sharded optimizer state dict's "state" part will map a key to this returned value. """ num_unflat_params = len(unflat_param_names) assert num_unflat_params > 0, \ "Expects at least one unflattened parameter corresponding to the " \ "flattened parameter" unflat_param_shapes = flat_param._param_shapes num_unflat_param_shapes = len(unflat_param_shapes) assert num_unflat_params == num_unflat_param_shapes, \ f"Expects {num_unflat_params} shapes but got {num_unflat_param_shapes}" # Check if these unflattened parameters have any optimizer state has_state = [ bool(unflat_param_name in unflat_osd_state) for unflat_param_name in unflat_param_names ] # If none of the unflattened parameters comprising this flattened parameter # have any state, then we do not want an entry in the optimizer state dict if not any(has_state): return {} # no need to flatten any state # There may still be some unflattened parameters with state and some # without unflat_param_states = [ unflat_osd_state[unflat_param_name] if unflat_param_name in unflat_osd_state else None for unflat_param_name in unflat_param_names ] # Check that the unflattened parameters have the same state names state_names = None for unflat_param_state in unflat_param_states: if unflat_param_state is None: continue if state_names is None: state_names = set(unflat_param_state.keys()) else: if state_names != set(unflat_param_state.keys()): raise ValueError( "Differing optimizer state names for the unflattened " f"parameters: {unflat_param_names}" ) assert state_names is not None # Flatten the state flat_state: Dict[str, Any] = {} for state_name in state_names: state_values = [ unflat_param_state[state_name] if unflat_param_state is not None else None for unflat_param_state in unflat_param_states ] non_none_state_values = [v for v in state_values if v is not None] are_pos_dim_tensors = are_zero_dim_tensors = are_non_tensors = True for v in non_none_state_values: are_pos_dim_tensors &= torch.is_tensor(v) and v.dim() > 0 are_zero_dim_tensors &= _is_zero_dim_tensor(v) are_non_tensors &= not torch.is_tensor(v) types = set(type(v) for v in non_none_state_values) if len(types) != 1 or not ( are_pos_dim_tensors or are_zero_dim_tensors or are_non_tensors ): raise ValueError( f"Differing optimizer state types for state {state_name}, " f"values {non_none_state_values}, and unflattened parameter " f"names {unflat_param_names}" ) if are_pos_dim_tensors: flat_tensor = _flatten_tensor_optim_state( state_name, state_values, unflat_param_names, unflat_param_shapes, flat_param, ) if shard_state: # Shard the flattened tensor immediately to minimize max memory # usage sharded_flat_tensor, _ = fsdp_module._get_shard(flat_tensor) flat_state[state_name] = sharded_flat_tensor else: flat_state[state_name] = flat_tensor elif are_zero_dim_tensors: flat_state[state_name] = _flatten_zero_dim_tensor_optim_state( state_name, state_values, unflat_param_names, ) else: assert are_non_tensors flat_state[state_name] = _flatten_non_tensor_optim_state( state_name, state_values, unflat_param_names, ) return flat_state def _flatten_tensor_optim_state( state_name: str, pos_dim_tensors: List[torch.Tensor], unflat_param_names: List[str], unflat_param_shapes: List[torch.Size], flat_param: FlatParameter, ) -> torch.Tensor: """ Flattens the positive-dimension tensor optimizer state given by the values ``tensors`` for the state ``state_name`` for a single flattened parameter ``flat_param`` corresponding to the unflattened parameter names ``unflat_param_names`` and unflatted parameter shapes ``unflat_param_shapes``. This flattens each unflattened parameter's tensor state into one tensor. NOTE: We use zero tensors for any unflattened parameters without state since some value is required to fill those entries. This assumes that the zero tensor is mathematically equivalent to having no state, which is true for Adam's "exp_avg" and "exp_avg_sq" but may not be true for all optimizers. Args: state_name (str): Optimizer state name. pos_dim_tensors (List[torch.Tensor]): Positive-dimension tensor optimizer state values for the unflattened parameters corresponding to the single flattened parameter. unflat_param_names (List[str]): A :class:`list` of unflattened parameter names corresponding to the single flattened parameter. unflat_param_shapes (List[torch.Size]): Unflattened parameter shapes corresponding to the single flattened parameter. flat_param (FlatParameter): The flattened parameter. Returns: torch.Tensor: A flattened tensor containing the optimizer state corresponding to ``state_name`` constructed by concatenating the unflattened parameter tensor states in ``pos_dim_tensors`` (using zero tensors for any unflattened parameters without the state). """ non_none_tensors = [t for t in pos_dim_tensors if t is not None] # Check that all are tensors with the same dtype dtypes = set(t.dtype for t in non_none_tensors) if len(dtypes) != 1: raise ValueError( "All unflattened parameters comprising a single flattened " "parameter must have positive-dimension tensor state with the " f"same dtype but got dtypes {dtypes} for state {state_name} and " f"unflattened parameter names {unflat_param_names}" ) dtype = next(iter(dtypes)) # Check that each tensor state matches its parameter's shape for tensor, shape in zip(pos_dim_tensors, unflat_param_shapes): if tensor is None and len(shape) == 0: raise ValueError( "Flattening a zero-dimension parameter is not supported" ) elif tensor is not None and tensor.shape != shape: raise ValueError( "Tensor optimizer state does not have same shape as its " f"parameter: {tensor.shape} {shape}" ) # Flatten the tensor states: we do not need to add any padding since the # flattened optimizer state tensor sharded via `_get_shard()`, which pads # the shard as needed (just like for the flattened parameter) cpu_device = torch.device("cpu") tensors = [ torch.flatten(state_value.to(cpu_device)) if state_value is not None else torch.flatten(torch.zeros( size=shape, dtype=dtype, device=cpu_device, )) for state_value, shape in zip(pos_dim_tensors, unflat_param_shapes) ] flat_tensor = torch.cat(tensors) flat_param_shape = flat_param._orig_size # type: ignore[attr-defined] assert flat_tensor.shape == flat_param_shape, \ f"tensor optim state: {flat_tensor.shape} " \ f"flattened parameter: {flat_param_shape}" return flat_tensor def _flatten_zero_dim_tensor_optim_state( state_name: str, zero_dim_tensors: List[torch.Tensor], unflat_param_names: List[str], ) -> torch.Tensor: """ Flattens the zero-dimension tensor optimizer state given by the values ``zero_dim_tensors`` for the state ``state_name`` for a single flattened parameter corresponding to the unflattened parameter names ``unflat_param_names`` by enforcing that all tensors are the same and using that common value. NOTE: The requirement that the tensors are the same across all unflattened parameters comprising the flattened parameter is needed to maintain the invariant that FSDP performs the same computation as its non-sharded equivalent. This means that none of the unflattened parameters can be missing this state since imposing a value may differ from having no value. For example, for Adam's "step", no value means maximum bias correction, while having some positive value means less bias correction. Args: state_name (str): Optimizer state name. zero_dim_tensors (List[torch.Tensor]): Zero-dimension optimizer state for the unflattened parameters corresponding to the single flattened parameter. unflat_param_names (List[str]): A :class:`list` of unflattened parameter names corresponding to the single flattened parameter. Returns: torch.Tensor: A zero-dimensional tensor giving the value of the state ``state_name`` for all unflattened parameters corresponding to the names ``unflat_param_names``. """ non_none_tensors = [t for t in zero_dim_tensors if t is not None] # Enforce that all have the same value and dtype values_set = set(t.item() if t is not None else None for t in zero_dim_tensors) dtypes = set(t.dtype if t is not None else None for t in zero_dim_tensors) if len(non_none_tensors) != len(zero_dim_tensors) or \ len(values_set) != 1 or len(dtypes) != 1: raise ValueError( "All unflattened parameters comprising a single flattened " "parameter must have scalar state with the same value and dtype " f"but got values {values_set} and dtypes {dtypes} for state " f"{state_name} and unflattened parameter names " f"{unflat_param_names}" ) value = next(iter(values_set)) dtype = next(iter(dtypes)) return torch.tensor(value, dtype=dtype, device=torch.device("cpu")) def _flatten_non_tensor_optim_state( state_name: str, non_tensors: List[Any], unflat_param_names: List[str], ) -> Any: """ Flattens the non-tensor optimizer state given by the values ``non_tensors`` for the state ``state_name`` for a single flattened parameter corresponding to the unflattened parameter names ``unflat_param_names`` by enforcing that all values are the same and using that common value. See the note in :func:`_flatten_zero_dim_tensor_optim_state`. Args: state_name (str): Optimizer state name. non_tensors (List[Any]): Non-tensor optimizer state for the unflattened parameters corresponding to the single flattened parameter. unflat_param_names (List[str]): A :class:`list` of unflattened parameter names corresponding to the single flattened parameter. Returns: Any: A non-tensor giving the value of the state ``state_name`` for all unflattened parameters corresponding to the names ``unflat_param_names``. """ non_none_non_tensors = [nt for nt in non_tensors if nt is not None] # Enforce that all have the same value (same type already checked) non_tensor_set = set(non_tensors) if len(non_none_non_tensors) != len(non_tensors) or \ len(non_tensor_set) != 1: raise ValueError( "All unflattened parameters comprising a single flattened " "parameter must have scalar state with the same value and dtype " f"but got values {non_tensor_set} for state {state_name} and " f"unflattened parameter names {unflat_param_names}" ) non_tensor = next(iter(non_tensor_set)) return non_tensor def _process_pos_dim_tensor_state( flat_optim_state_dict: Dict[str, Any], world_size: int, ) -> Dict[str, Any]: """ Processes positive-dimension tensor states in ``flat_optim_state_dict`` by replacing them with metadata. This is done so the processed optimizer state dict can be broadcast from rank 0 to all ranks without copying those tensor states, and thus, this is meant to only be called on rank 0. Args: flat_optim_state_dict (Dict[str, Any]): Flattened optimizer state dict with the positive-dimension tensor states unsharded. Returns: Dict[str, Any]: The flattened optimizer state dict with positive- dimension tensor states replaced by metadata. """ flat_osd = flat_optim_state_dict # alias no_tensor_osd: Dict[str, Any] = {"state": {}} for key, param_state in flat_osd["state"].items(): no_tensor_osd["state"][key] = {} for state_name, value in param_state.items(): is_pos_dim_tensor_state = torch.is_tensor(value) and value.dim() > 0 if not is_pos_dim_tensor_state: no_tensor_osd["state"][key][state_name] = value continue if key.is_flat_param: # FSDP parameter chunk, num_to_pad = FSDP.FullyShardedDataParallel._get_chunk( value, rank=0, world_size=world_size, ) assert len(chunk.shape) == 1, f"Chunk should be 1D but got {chunk.shape}" info = _PosDimTensorInfo(torch.Size([chunk.shape[0] + num_to_pad]), chunk.dtype) else: # non-FSDP parameter info = _PosDimTensorInfo(value.shape, value.dtype) no_tensor_osd["state"][key][state_name] = info no_tensor_osd["param_groups"] = flat_osd["param_groups"] return no_tensor_osd def _broadcast_processed_optim_state_dict( processed_optim_state_dict: Optional[Dict[str, Any]], rank: int, group, device: torch.device, ) -> Dict[str, Any]: """ Broadcasts the processed optimizer state dict from rank 0 to all ranks. Args: processed_optim_state_dict (Optional[Dict[str, Any]]): The flattened optimizer state dict with positive-dimension tensor states replaced with metadata if on rank 0; ignored otherwise. device (torch.device): Device to move zero-dimension tensors post- broadcast. Returns: Dict[str, Any]: The processed optimizer state dict. """ # Broadcast the two data structures rank 0 to all ranks obj_list = [processed_optim_state_dict] if rank == 0 \ else [None] dist.broadcast_object_list(obj_list, src=0, group=group) processed_optim_state_dict = obj_list[0] # type: ignore[assignment] assert processed_optim_state_dict is not None # Move zero-dimension tensors to `device` for param_state in processed_optim_state_dict["state"].values(): for state_name, value in param_state.items(): if _is_zero_dim_tensor(value): param_state[state_name] = value.to(device) return processed_optim_state_dict def _broadcast_pos_dim_tensor_states( processed_optim_state_dict: Dict[str, Any], flat_optim_state_dict: Optional[Dict[str, Any]], rank: int, world_size: int, group, broadcast_device: torch.device, ) -> Dict[str, Any]: """ Takes ``processed_optim_state_dict``, which has metadata in place of positive-dimension tensor states, and broadcasts those tensor states from rank 0 to all ranks. For tensor states corresponding to FSDP parameters, rank 0 shards the tensor and broadcasts shard-by-shard, and for tensor states corresponding to non-FSDP parameters, rank 0 broadcasts the full tensor. Args: processed_optim_state_dict (Dict[str, Any]): The flattened optimizer state dict with positive-dimension tensor states replaced with metadata; this should be returned by :meth:`_process_pos_dim_tensor_state` and non-empty on all ranks. flat_optim_state_dict (Optional[Dict[str, Any]]): The flattened unsharded optimizer state dict with the actual positive-dimension tensor states if on rank 0; ignored on nonzero ranks. Returns: Dict[str, Any]: The optimizer state dict with the positive-dimension tensor state correctly populated via ``broadcast()`` s from rank 0. """ assert rank != 0 or flat_optim_state_dict is not None, \ "Expects rank 0 to pass in the flattened optimizer state dict" no_tensor_osd = processed_optim_state_dict # alias flat_osd = flat_optim_state_dict # alias for key, param_state in no_tensor_osd["state"].items(): for state_name, value in param_state.items(): is_pos_dim_tensor_state = isinstance(value, _PosDimTensorInfo) if not is_pos_dim_tensor_state: continue if rank == 0: assert flat_osd is not None unsharded_tensor = flat_osd["state"][key][state_name] else: unsharded_tensor = None shape, dtype = value.shape, value.dtype if key.is_flat_param: # FSDP parameter _broadcast_sharded_pos_dim_tensor_state( unsharded_tensor, param_state, state_name, shape, dtype, broadcast_device, rank, world_size, group, ) # modify `param_state` destructively else: # non-FSDP parameter _broadcast_unsharded_pos_dim_tensor_state( unsharded_tensor, param_state, state_name, shape, dtype, broadcast_device, rank, group, ) # modify `param_state` destructively return no_tensor_osd def _broadcast_sharded_pos_dim_tensor_state( unsharded_tensor: Optional[torch.Tensor], param_state: Dict[str, Any], state_name: str, shape: torch.Size, dtype: torch.dtype, broadcast_device: torch.device, rank: int, world_size: int, group, ) -> None: """ Broadcasts positive-dimension tensor state for the state ``state_name`` corresponding to an FSDP parameter shard-by-shard, only to be saved on the relevant rank. This modifies ``param_state`` destructively. Args: unsharded_tensor (Optional[torch.Tensor]): Unsharded tensor from which to broadcast shards if on rank 0; ignored otherwise. shape (torch.Size): Shape of the sharded tensor; same on all ranks. """ get_shard: Optional[functools.partial[Tuple[torch.Tensor, int]]] = None if rank == 0: assert unsharded_tensor is not None, \ "Expects rank 0 to pass in the unsharded tensor" get_shard = functools.partial( FSDP.FullyShardedDataParallel._get_shard_functional, unsharded_tensor, ) for target_rank in range(1, world_size): if rank == 0: assert get_shard is not None sharded_tensor = get_shard(target_rank, world_size)[0].to(broadcast_device) else: sharded_tensor = torch.zeros( shape, requires_grad=False, dtype=dtype, device=broadcast_device, ) dist.broadcast(sharded_tensor, src=0, group=group) # Only keep the shard on the target rank and keep it on the broadcast # device, which is typically GPU if rank == target_rank: param_state[state_name] = sharded_tensor else: del sharded_tensor # Lastly, shard on rank 0 if rank != 0: return param_state[state_name] = get_shard(0, world_size)[0].to(broadcast_device) # type: ignore[misc] def _broadcast_unsharded_pos_dim_tensor_state( unsharded_tensor: Optional[torch.Tensor], param_state: Dict[str, Any], state_name: str, shape: torch.Size, dtype: torch.dtype, broadcast_device: torch.device, rank: int, group, ) -> None: """ Broadcasts positive-dimension tensor state for the state ``state_name`` corresponding to an unsharded non-FSDP parameter from rank 0 to all ranks. This modifies ``param_state`` destructively. Args: unsharded_tensor (Optional[torch.Tensor]): Unsharded tensor to broadcast if on rank 0; ignored otherwise. """ if rank == 0: assert unsharded_tensor is not None, \ "Expects rank 0 to pass in the unsharded tensor" assert shape == unsharded_tensor.shape, \ f"Shape mismatch: {shape} {unsharded_tensor.shape}" assert dtype == unsharded_tensor.dtype, \ f"dtype mismatch: {dtype} {unsharded_tensor.dtype}" unsharded_tensor = unsharded_tensor.to(broadcast_device) else: unsharded_tensor = torch.zeros( shape, requires_grad=False, dtype=dtype, device=broadcast_device, ) dist.broadcast(unsharded_tensor, src=0, group=group) # Keep the tensor on the broadcast device, which is typically GPU param_state[state_name] = unsharded_tensor def _rekey_sharded_optim_state_dict( sharded_osd: Dict[str, Any], model: torch.nn.Module, optim_input: Optional[Union[ List[Dict[str, Any]], Iterable[torch.nn.Parameter], ]] = None, ) -> Dict[str, Any]: """ Rekeys the optimizer state dict from unflattened parameter names to flattened parameter IDs according to the calling rank's ``optim_input``, which may be different across ranks. In particular, the unflattened parameter names are represented as :class:`_OptimStateKey` s. """ param_to_flat_param_id = _get_param_to_param_id(model, optim_input) param_to_unflat_param_names = FSDP._get_param_to_unflat_param_names(model) # All parameter keys in `param_to_flat_param_id` should be in # `param_to_unflat_param_names` -- strict inequality follows when not all # parameters are passed to the optimizer via `optim_input` assert len(param_to_flat_param_id) <= len(param_to_unflat_param_names) unflat_param_names_to_flat_param_id: Dict[Tuple[str, ...], int] = {} # for "state" unflat_param_name_to_flat_param_id: Dict[str, int] = {} # for "param_groups" for param, unflat_param_names in param_to_unflat_param_names.items(): if param not in param_to_flat_param_id: # This parameter was not passed to the optimizer via `optim_input` continue flat_param_id = param_to_flat_param_id[param] unflat_param_names_to_flat_param_id[tuple(unflat_param_names)] = flat_param_id for unflat_param_name in unflat_param_names: unflat_param_name_to_flat_param_id[unflat_param_name] = flat_param_id sharded_osd_state = sharded_osd["state"] rekeyed_osd_state = {} for key, param_state in sharded_osd_state.items(): flat_param_id = unflat_param_names_to_flat_param_id[key.unflat_param_names] rekeyed_osd_state[flat_param_id] = param_state rekeyed_osd_param_groups: List[Dict[str, Any]] = [] for unflat_param_group in sharded_osd["param_groups"]: flat_param_group = copy.deepcopy(unflat_param_group) flat_param_ids = sorted(set( unflat_param_name_to_flat_param_id[unflat_param_name] for unflat_param_name in unflat_param_group["params"] )) flat_param_group["params"] = flat_param_ids rekeyed_osd_param_groups.append(flat_param_group) return {"state": rekeyed_osd_state, "param_groups": rekeyed_osd_param_groups} def _get_flat_param_to_fsdp_module(model: torch.nn.Module): """ Constructs a mapping from FSDP flattened parameters to their owning FSDP modules and ensures that all FSDP modules are initialized. Args: model (torch.nn.model): Root module (which may or may not be a :class:`FullyShardedDataParallel` instance). Returns: Dict[FlatParameter, FullyShardedDataParallel]: Mapping from FSDP flattened parameters to their owning FSDP modules. """ flat_param_to_fsdp_module = {} for module in model.modules(): if isinstance(module, FSDP.FullyShardedDataParallel): module._lazy_init() for param in module.params: # may have none flat_param_to_fsdp_module[param] = module return flat_param_to_fsdp_module def _get_param_id_to_param( model: torch.nn.Module, optim_input: Optional[Union[ List[Dict[str, Any]], Iterable[torch.nn.Parameter], ]] = None, ) -> List[torch.nn.Parameter]: """ Constructs a mapping from parameter IDs to parameters. This may be used both for models with ``FlatParameter`` s and without. NOTE: We critically assume that, whether the optimizer input is a list of parameters or a list of parameter groups, :class:`torch.optim.Optimizer` enumerates the parameter IDs in order. In other words, for a parameter list input, the parameter IDs should be in that list order, and for a parameter groups input, the parameter IDs should be in order within each parameter group and in order across parameter groups. Args: model (torch.nn.Module): Model whose parameters are passed into the optimizer. optim_input (Optional[Union[List[Dict[str, Any]], Iterable[torch.nn.Parameter]]]): Input passed into the optimizer representing either a :class:`list` of parameter groups or an iterable of parameters; if ``None``, then this method assumes the input was ``model.parameters()``. (Default: ``None``) Returns: List[torch.nn.Parameter]: Mapping from parameter IDs to parameters, where the parameter ID is implicitly the index in the :class:`list`. """ # Assume the standard case of passing `model.parameters()` to the optimizer # if `optim_input` is not specified if optim_input is None: return list(model.parameters()) try: params = list(optim_input) except TypeError: raise TypeError( "Optimizer input should be an iterable of Tensors or dicts, " f"but got {optim_input}" ) if len(params) == 0: raise ValueError("Optimizer input should not be empty") # Check if the optimizer input represents tensors or parameter groups all_tensors = True all_dicts = True for param in params: all_tensors &= isinstance(param, torch.Tensor) all_dicts &= isinstance(param, dict) if not all_tensors and not all_dicts: raise TypeError( "Optimizer input should be an iterable of Tensors or dicts" ) if all_tensors: return params # type: ignore[return-value] assert all_dicts param_id_to_param = [] for param_group in params: has_params_key = "params" in param_group # type: ignore[operator] assert has_params_key, \ "A parameter group should map \"params\" to a list of the " \ "parameters in the group" for param in param_group["params"]: # type: ignore[index] # Implicitly map `flat_param_id` (current length of the list) to # `param` param_id_to_param.append(param) return param_id_to_param # type: ignore[return-value] def _get_param_to_param_id( model: torch.nn.Module, optim_input: Optional[Union[ List[Dict[str, Any]], Iterable[torch.nn.Parameter], ]] = None, ) -> Dict[torch.nn.Parameter, int]: """Constructs the inverse mapping of :func:`_get_param_id_to_param`.""" param_id_to_param = _get_param_id_to_param(model, optim_input) return { param: param_id for param_id, param in enumerate(param_id_to_param) } def _get_unflat_to_flat_param_ids( flat_to_unflat_param_ids: Dict[int, List[int]], ) -> List[int]: """ Inverts the mapping ``flat_to_unflat_param_ids`` to be from unflattened parameter ID to flattened parameter ID, where the unflattened parameter ID is the index in the returned :class:`list`. There may be multiple unflattened parameter IDs mapping to the same flattened parameter ID. Args: flat_to_unflat_param_ids (Dict[int, List[int]]): A mapping from flattened parameter ID to a :class:`list` of corresponding unflattened parameter IDs. Returns: List[int]: A mapping from unflattened parameter ID to flattened parameter ID, where the unflattened parameter ID is the index in the :class:`list`. """ # Construct as a dict and then convert to list unflat_to_flat_param_ids = {} for flat_param_id, unflat_param_ids in flat_to_unflat_param_ids.items(): for unflat_param_id in unflat_param_ids: assert unflat_param_id not in unflat_to_flat_param_ids, \ "`flat_to_unflat_param_ids` has the unflattened parameter " \ f"ID {unflat_param_id} mapped to multiple flattened " \ "parameter IDs" unflat_to_flat_param_ids[unflat_param_id] = flat_param_id num_unflat_param_ids = len(unflat_to_flat_param_ids) unflat_param_ids_set = set(unflat_to_flat_param_ids.keys()) assert unflat_param_ids_set == set(range(num_unflat_param_ids)), \ "The set of unflattened parameter IDs should be {0, ..., " + \ str(num_unflat_param_ids - 1) + "} but got " + \ f"{unflat_param_ids_set}" return [ unflat_to_flat_param_ids[unflat_param_id] for unflat_param_id in range(num_unflat_param_ids) ] def _is_zero_dim_tensor(x: Any) -> bool: return torch.is_tensor(x) and x.dim() == 0
f498651857a6a53c8e4ebfeb0f204f23da1d3690
5b683c7f0cc23b1a2b8927755f5831148f4f7e1c
/Python_Study/DataStructureAndAlgorithm/company_programming_test/度小满/duxiaoman_1.py
44a022a61f6419461c25e2f49b922a112256b254
[]
no_license
Shmilyqjj/Shmily-py
970def5a53a77aa33b93404e18c57130f134772a
770fc26607ad3e05a4d7774a769bc742582c7b64
refs/heads/master
2023-09-02T04:43:39.192052
2023-08-31T03:28:39
2023-08-31T03:28:39
199,372,223
1
0
null
null
null
null
UTF-8
Python
false
false
688
py
#!/usr/bin/python3 # -*- coding:utf-8 -*- """ Description: Author:jiajing_qu Date: 2019/9/15 19:44 穿越障碍物 时间限制:C/C++语言 1000MS;其他语言 3000MS 内存限制:C/C++语言 65536KB;其他语言 589824KB 题目描述: 你现在在(0,0),需要到(x,y)去,路上有n个障碍物。给出每个障碍物的坐标,你只能平行于坐标轴走整数步,问你最少需要多少步才能走到目的地。 输入 第一行三个数x,y,n 接下来n行,每行描述一个障碍物的坐标x_i,y_i -500≤x,y,x_i,y_i≤500 n≤10000 保证有解 输出 输出一个数,代表最少的步数。 样例输入 2 0 3 1 0 1 1 1 -1 样例输出 6 """
9e417c4b3a95f7d673fce3c57bf7c5e06c2e5714
d6c117812a618ff34055488337aaffea8cf81ca1
/database/TupleSqlite3.py
27c1e232d6c79bc55a122c9de4b5b04e955b77e3
[]
no_license
c0ns0le/Pythonista
44829969f28783b040dd90b46d08c36cc7a1f590
4caba2d48508eafa2477370923e96132947d7b24
refs/heads/master
2023-01-21T19:44:28.968799
2016-04-01T22:34:04
2016-04-01T22:34:04
55,368,932
3
0
null
2023-01-22T01:26:07
2016-04-03T21:04:40
Python
UTF-8
Python
false
false
1,880
py
# coding: utf-8 # https://forum.omz-software.com/topic/2375/problem-with-list-comprehension from collections import namedtuple import sqlite3 from random import randint from faker import Faker fake = Faker() my_def = {'namedtuple_name': 'REC', 'field_names' :[('id' , 'INTEGER PRIMARY KEY'), ('resid','INTEGER UNIQUE'), ('key','TEXT') , ('ord','INTEGER'), ('value', 'INTEGER'), ('value1','TEXT'), ('data','TEXT'), ('pickled', 'INTEGER'),] ,} ''' my_def = {'namedtuple_name': 'REC', 'field_names' :[('id' , 'INTEGER PRIMARY KEY'), ('resid','INTEGER UNIQUE'), ('key','TEXT') , ('ord','INTEGER'), ('data','TEXT'),] ,} ''' MY_REC = my_def['namedtuple_name'] MY_REC = namedtuple(my_def['namedtuple_name'],[fld[0] for fld in my_def['field_names']]) MY_REC.__new__.__defaults__ = tuple((None for x in range(0,len(MY_REC._fields)))) mytbl_def = MY_REC._make(val[1] for val in my_def['field_names']) _table_sql_new = '''CREATE TABLE IF NOT EXISTS '{0}' ({1})'''.format('{0}', ', '.join(mytbl_def._fields[i] + ' ' + item for i, item in enumerate(mytbl_def)) ) insert_pattern = '({0})'.format(','.join( c for c in str('?' * len(MY_REC._fields)))) _insert_sql = ''' INSERT INTO {0} VALUES ''' + insert_pattern if __name__ == '__main__': db_name = 'test.db' db_table = 'table_c' db_num_recs_to_add = 51 db = sqlite3.connect(db_name) db.execute(_table_sql_new.format(db_table)) # using randint() for testing...resid is unquie for i in range(1, db_num_recs_to_add): r = MY_REC(resid = randint(1, 500000), key = fake.city(), data = fake.first_name()) db.execute(_insert_sql.format(db_table), [v for v in r]) db.commit() cur = db.execute('SELECT * FROM {0}'.format(db_table)) for row in cur: print repr(row) db.close()
84a5f8ae828e44cebcb306f6837843ac1f96503a
48b9d828acf80792bc4385febaa734a2e96ad465
/test-openmps/Examples/08_Heisenberg_spinone_iMPS.py
cb60a6f9b6a1ef388cf4d116e46e08b2104d414d
[ "MIT" ]
permissive
OminiaVincit/qphase-trans
dd4ab2e0cacc449ead3bef318a65eb05aed45621
40e0c078dcd74282e8d8f44690433bf670bff8cb
refs/heads/master
2023-05-06T12:14:30.368375
2021-05-28T05:11:58
2021-05-28T05:11:58
235,478,493
0
0
null
null
null
null
UTF-8
Python
false
false
3,663
py
import MPSPyLib as mps import numpy as np import sys import os.path def main(PostProcess=False): # Build operators Operators = mps.BuildSpinOperators(spin=1.0) # Define Hamiltonian MPO H = mps.MPO(Operators) H.AddMPOTerm('bond', ['splus', 'sminus'], hparam='J_xy', weight=0.5) H.AddMPOTerm('bond', ['sz','sz'], hparam='J_z', weight=1.0) # Ground state observables myObservables = mps.Observables(Operators) # Site terms myObservables.AddObservable('site', 'sz', 'z') # correlation functions myObservables.AddObservable('corr', ['sz', 'sz'], 'zz') myObservables.AddObservable('corr', ['splus', 'sminus'], 'pm') # Get correlation functions out to a distance of 1000 myObservables.SpecifyCorrelationRange(1000) # Convergence parameters myConv = mps.iMPSConvParam(max_bond_dimension=12, variance_tol=-1.0, max_num_imps_iter=1000) mod_list = ['max_bond_dimension','max_num_imps_iter'] myConv.AddModifiedConvergenceParameters(0, mod_list, [20, 500]) myConv.AddModifiedConvergenceParameters(0, mod_list, [40, 250]) # Long run time (Enable if you prefer) #myConv.AddModifiedConvergenceParameters(0, mod_list, [60, 250]) #myConv.AddModifiedConvergenceParameters(0, mod_list, [80, 250]) L = 2 # Define statics parameters = [{ # Directories 'job_ID' : 'Spin1.0Heisenberg', 'Write_Directory' : 'TMP_08/', 'Output_Directory' : 'OUTPUTS_08/', # System size and Hamiltonian parameters 'L' : L, 'J_z' : 1.0, 'J_xy' : 1.0, 'simtype' : 'Infinite', # Convergence parameters 'MPSObservables' : myObservables, 'MPSConvergenceParameters' : myConv, 'logfile' : True }] # Write Fortran-readable main files MainFiles = mps.WriteFiles(parameters, Operators, H, PostProcess=PostProcess) # Run the simulations if(not PostProcess): if os.path.isfile('./Execute_MPSMain'): RunDir = './' else: RunDir = None mps.runMPS(MainFiles, RunDir=RunDir) return # Postprocessing and plotting # --------------------------- Outputs = mps.ReadStaticObservables(parameters) clfilename = parameters[0]['job_ID'] + 'correlationLength.dat' clfile = open(clfilename, 'w') for Output in Outputs: chi = Output['max_bond_dimension'] state = Output['state'] print('Chi', chi, 'state', state, 'energy density', Output['energy_density']) if(state == 0): corrfilename = parameters[0]['job_ID'] + 'chi' + str(chi) \ + 'corr.dat' corrfile = open(corrfilename, 'w') for ii in range(0, myObservables.correlation_range): corrfile.write('%16i'%(ii) + '%30.15E'%(Output['zz'][ii]) + '%30.15E'%(Output['pm'][ii]) + '\n') corrfile.close() clfile.write('%16i'%(chi) + '%30.15E'%(Output['Correlation_length']) + '\n') print(sum(Output['z']), Output['zz'][0:6]) clfile.close() return if(__name__ == '__main__'): # Check for command line arguments Post = False for arg in sys.argv[1:]: key, val = arg.split('=') if(key == '--PostProcess'): Post = (val == 'T') or (val == 'True') # Run main function main(PostProcess=Post)
53b08e77991e0b1c805ef8a3b886ebef4fe0b617
47a17b7b649e90ad0eedb270603193eb55703dba
/webapps/API/settings/requests.py
e8da027820d888797c2f58b52f88f9ddf45fa539
[]
no_license
omiguelperez/kaumer-django-knowledge-test
25ff72f0e91e8ebeb542b80921b7083addf2cc3b
63da7943d00e37f4ee8edf6c7cc0cb46656deabf
refs/heads/master
2021-09-28T19:09:49.716506
2018-11-19T19:15:38
2018-11-19T19:15:38
157,953,517
0
0
null
null
null
null
UTF-8
Python
false
false
655
py
# -*- coding: utf-8 -*- from rest_framework import serializers # noinspection PyAbstractClass class CreateSettingSerializer(serializers.Serializer): basic_salary = serializers.FloatField() transport_assistance = serializers.FloatField() holiday_percentage = serializers.FloatField() unemployment_percentage = serializers.FloatField() unemployment_interest = serializers.FloatField() premium_services = serializers.FloatField() health_percentage = serializers.FloatField() pension_percentage = serializers.FloatField() occupational_hazards = serializers.FloatField() cash_contributions = serializers.FloatField()
340a21ad7d528e64aeca54c6fcb9ac365b69db55
47c2b01b04ed3ea7c55875b5ea412d90becd970b
/tests/physical_system/test_routing.py
256b1994db12aaa6e854f0f9c384573f153dc669
[]
no_license
adysonmaia/phd-sp-dynamic
f2df9bee38a0246f40739a8e413ec4cb832ab03f
ce7045918f60c92ce1ed5ca4389b969bf28e6b82
refs/heads/master
2023-04-03T20:10:32.593381
2020-12-28T11:12:06
2020-12-28T11:12:06
355,110,247
0
0
null
null
null
null
UTF-8
Python
false
false
2,132
py
from sp.core.model import Scenario, System, EnvironmentInput from sp.physical_system.routing.shortest_path import ShortestPathRouting from sp.physical_system.estimator import DefaultLinkDelayEstimator import json import unittest class RoutingTestCase(unittest.TestCase): @classmethod def setUpClass(cls): filename = "tests/physical_system/fixtures/test_routing.json" system = None with open(filename) as json_file: data = json.load(json_file) system = System() system.scenario = Scenario.from_json(data) cls.system = system def setUp(self): self.assertIsInstance(self.system, System) self.assertEqual(len(self.system.nodes), 11) self.assertEqual(len(self.system.bs_nodes), 9) self.assertEqual(len(self.system.users), 1) self.assertEqual(len(self.system.apps), 1) self.assertEqual(self.system.apps[0].id, 0) time = 0 self.system.time = time self.environment = EnvironmentInput.create_empty(self.system) def test_shortest_path(self): app_id = 0 app = self.system.get_app(app_id) routing = ShortestPathRouting() routing.static_routing = True routing.link_delay_estimator = DefaultLinkDelayEstimator() routing.update(self.system, self.environment) for link in self.system.links: l_nodes = list(link.nodes_id) path = routing.get_path(app.id, *l_nodes) dist = routing.get_path_length(app.id, *l_nodes) self.assertListEqual(l_nodes, path) self.assertEqual(dist, 1.001) for node in self.system.nodes: path = routing.get_path(app.id, node.id, node.id) dist = routing.get_path_length(app.id, node.id, node.id) self.assertListEqual(path, []) self.assertEqual(dist, 0.0) path = routing.get_path(app.id, 0, 10) dist = routing.get_path_length(app.id, 0, 10) self.assertEqual(len(path), 7) self.assertEqual(round(dist, 3), 6.006) if __name__ == '__main__': unittest.main()
b74fb1a17ed2f7316dcf55fb45d1f45bf67c4f0f
8cbd55d35a179dff6a7c23a6835bcd329cba8bee
/simplekiq/base.py
6a751156867038799c739df70a90f232355e729c
[ "Apache-2.0" ]
permissive
charsyam/simplekiq
31e3dac37981f48d80cbf8c8d921bebf8cf8a7cc
cd8b02078e06af64d79c5498af55fcdfbaf81676
refs/heads/main
2023-06-24T18:08:47.468046
2021-07-28T15:59:57
2021-07-28T15:59:57
380,718,347
0
0
Apache-2.0
2021-07-28T15:59:58
2021-06-27T11:06:15
Python
UTF-8
Python
false
false
1,413
py
from .constants import Constants import json import redis class KiqQueue: def __init__(self, addr, name, create=True): if not name: raise Exception("Queue name should be supported") self.addr = addr self.conn = self.connect_to_redis(addr) self._name = name self._queue_name = Constants.QUEUE_TPL.format(name) if create: self.conn.sadd(Constants.QUEUES_NAME, self._name) def connect_to_redis(self, addr): return redis.from_url(f"redis://{addr}/") @property def name(self): return self._name @property def queue_name(self): return self._queue_name def enqueue(self, event): try: self.conn.rpush(self.queue_name, json.dumps(event)) return True except redis.exceptions.ConnectionError as e: self.conn = self.connect_to_redis(self.addr) return False def dequeue(self, wait=True): try: if wait: v = self.conn.blpop(self.queue_name)[1] else: v = self.conn.lpop(self.queue_name) if v: return json.loads(v.decode('utf-8')) else: return None except redis.exceptions.ConnectionError as e: self.conn = self.connect_to_redis(self.addr) return None
7a05c0aaddc62ea69efb81d1cbd4b5c08f771f64
209c876b1e248fd67bd156a137d961a6610f93c7
/python/paddle/fluid/tests/unittests/test_increment.py
34c7af4ac081e315c1694b8ef917fc2f08febfa0
[ "Apache-2.0" ]
permissive
Qengineering/Paddle
36e0dba37d29146ebef4fba869490ecedbf4294e
591456c69b76ee96d04b7d15dca6bb8080301f21
refs/heads/develop
2023-01-24T12:40:04.551345
2022-10-06T10:30:56
2022-10-06T10:30:56
544,837,444
0
0
Apache-2.0
2022-10-03T10:12:54
2022-10-03T10:12:54
null
UTF-8
Python
false
false
2,252
py
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle import paddle.fluid as fluid class TestIncrement(unittest.TestCase): def test_api(self): with fluid.program_guard(fluid.Program(), fluid.Program()): input = fluid.layers.fill_constant(shape=[1], dtype='int64', value=5) expected_result = np.array([8], dtype='int64') output = paddle.tensor.math.increment(input, value=3) exe = fluid.Executor(fluid.CPUPlace()) result = exe.run(fetch_list=[output]) self.assertEqual((result == expected_result).all(), True) with fluid.dygraph.guard(): input = paddle.ones(shape=[1], dtype='int64') expected_result = np.array([2], dtype='int64') output = paddle.tensor.math.increment(input, value=1) self.assertEqual((output.numpy() == expected_result).all(), True) class TestInplaceApiWithDataTransform(unittest.TestCase): def test_increment(self): if fluid.core.is_compiled_with_cuda(): paddle.enable_static() with paddle.fluid.device_guard("gpu:0"): x = paddle.fluid.layers.fill_constant([1], "float32", 0) with paddle.fluid.device_guard("cpu"): x = paddle.increment(x) exe = paddle.static.Executor(paddle.CUDAPlace(0)) a, = exe.run(paddle.static.default_main_program(), fetch_list=[x]) paddle.disable_static() self.assertEqual(a[0], 1) if __name__ == "__main__": unittest.main()
e05ca1e744cc58f496b63f7b2feb5c87157fb2bc
99d7a6448a15e7770e3b6f3859da043300097136
/src/mv/segment/region.py
b533e040ccccc4667f5e6e485620c1628d3b316d
[]
no_license
softtrainee/arlab
125c5943f83b37bc7431ae985ac7b936e08a8fe4
b691b6be8214dcb56921c55daed4d009b0b62027
refs/heads/master
2020-12-31T07:54:48.447800
2013-05-06T02:49:12
2013-05-06T02:49:12
53,566,313
0
0
null
null
null
null
UTF-8
Python
false
false
3,357
py
#=============================================================================== # Copyright 2012 Jake Ross # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #=============================================================================== #============= enthought library imports ======================= from traits.api import HasTraits, Bool from traitsui.api import View, Item, TableEditor #============= standard library imports ======================== from numpy import zeros_like, invert, percentile, ones_like from skimage.filter import sobel, threshold_adaptive from skimage.morphology import watershed #============= local library imports ========================== from src.mv.segment.base import BaseSegmenter # from skimage.exposure.exposure import rescale_intensity # from scipy.ndimage.morphology import binary_closing cnt = 0 class RegionSegmenter(BaseSegmenter): use_adaptive_threshold = Bool(True) threshold_low = 0 threshold_high = 255 block_size = 20 def segment(self, src): ''' src: preprocessing cv.Mat ''' image = src.ndarray[:] if self.use_adaptive_threshold: # block_size = 25 markers = threshold_adaptive(image, self.block_size) n = markers[:].astype('uint8') n[markers == True] = 255 n[markers == False] = 1 markers = n # print markers # markers = markers.astype('uint8') # n = ones_like(markers) # n[markers] = 255 # print n # markers[markers] = 255 # markers[not markers] = 1 # print markers # markers = n.astype('uint8') # markers = invert(markers).astype('uint8') else: markers = zeros_like(image) markers[image < self.threshold_low] = 1 markers[image > self.threshold_high] = 255 # global cnt # # remove holes # if cnt % 2 == 0: # markers = binary_closing(markers).astype('uint8') * 255 # cnt += 1 # print markers elmap = sobel(image, mask=image) wsrc = watershed(elmap, markers, mask=image) return invert(wsrc) # elmap = ndimage.distance_transform_edt(image) # local_maxi = is_local_maximum(elmap, image, # ones((3, 3)) # ) # markers = ndimage.label(local_maxi)[0] # wsrc = watershed(-elmap, markers, mask=image) # fwsrc = ndimage.binary_fill_holes(out) # return wsrc # if self.use_inverted_image: # out = invert(wsrc) # else: # out = wsrc # time.sleep(1) # do_later(lambda:self.show_image(image, -elmap, out)) # return out #============= EOF =============================================
[ "jirhiker@localhost" ]
jirhiker@localhost
86ab1b6210f05d584469ce7ed92af41e66519780
451331db65a364d3b40eb18a1349e4349695dc87
/FinalFit/datacards/Systematics/PlotLimits.py
c8fe91a84d0e0ab8f2a48a5bef9b9d6d026159a5
[]
no_license
hbakhshi/HaNaMiniAnalyzer
97bc5cdd72cd9651979184b4a1e50f6513100210
1d658c410318271b0c4981a5fba965924a15edff
refs/heads/master
2020-12-25T11:00:13.569640
2017-10-23T17:24:22
2017-10-23T17:24:22
60,080,249
0
1
null
2016-10-26T10:40:23
2016-05-31T10:28:27
Python
UTF-8
Python
false
false
5,304
py
from ROOT import TFile, TTree, TObject, TGraphAsymmErrors, TCanvas, kYellow, kBlack import os import stat import array import math import shutil from ROOT import RooWorkspace, TCanvas , RooFit, TColor, kBlue, kRed, kGreen, RooRealVar, RooConstVar, gROOT, TMath from subprocess import call import sys AllNuisances = [ "CMS_hgg_nuisance_MaterialForward_13TeV", "CMS_hgg_nuisance_ShowerShapeHighR9EB_13TeV", "CMS_hgg_nuisance_MCSmearHighR9EEPhi_13TeV", "CMS_hgg_nuisance_ShowerShapeHighR9EE_13TeV", "CMS_hgg_nuisance_MCSmearHighR9EBPhi_13TeV", "CMS_hgg_nuisance_ShowerShapeLowR9EE_13TeV", "CMS_hgg_nuisance_MCScaleGain1EB_13TeV", "CMS_hgg_nuisance_MaterialCentralBarrel_13TeV", "CMS_hgg_nuisance_MCSmearLowR9EERho_13TeV", "CMS_hgg_nuisance_MCSmearHighR9EBRho_13TeV", "CMS_hgg_nuisance_MCScaleGain6EB_13TeV", "CMS_hgg_nuisance_MCScaleLowR9EB_13TeV", "CMS_hgg_nuisance_MCSmearLowR9EBRho_13TeV", "CMS_hgg_nuisance_FNUFEB_13TeV", "CMS_hgg_nuisance_FNUFEE_13TeV", "CMS_hgg_nuisance_MCScaleLowR9EE_13TeV", "CMS_hgg_nuisance_MCScaleHighR9EB_13TeV", "CMS_hgg_nuisance_MaterialOuterBarrel_13TeV", "CMS_hgg_nuisance_MCSmearLowR9EEPhi_13TeV", "CMS_hgg_nuisance_MCScaleHighR9EE_13TeV", "CMS_hgg_nuisance_MCSmearLowR9EBPhi_13TeV", "CMS_hgg_nuisance_MCSmearHighR9EERho_13TeV", "CMS_hgg_nuisance_ShowerShapeLowR9EB_13TeV"] def GetLimits( syst_name ): #path = "./SingleSystINWS11July/higgsCombine%s.Asymptotic.mH125.root" % (syst_name) path = "./%s/higgsCombine%s.Asymptotic.mH125.root" % (sys.argv[1] , syst_name) val = -100 val1sigmap = -100 val1sigmam = -100 val2sigmap = -100 val2sigmam = -100 if os.path.exists( path ) : f = TFile.Open( path ) if f : limit = f.Get("limit") if not type(limit) == TTree : val = -200 val1sigmap = -200 val1sigmam = -200 else : for i in limit : if i.quantileExpected == 0.5 : val = i.limit elif int(100*i.quantileExpected) in [15,16,17] : val1sigmam = i.limit elif int(100*i.quantileExpected) in [83,84,85] : val1sigmap = i.limit elif int(100*i.quantileExpected) in [2,3,4]: val2sigmam = i.limit elif int(100*i.quantileExpected) in [97,98,99]: val2sigmap = i.limit else : print int(100*i.quantileExpected) f.Close() else : val = -400 val1sigmap = -400 val1sigmam = -400 else: print path val = -300 val1sigmap = -300 val1sigmam = -300 if val <= 0 : val /= 1000 print syst_name, val, val1sigmam, val1sigmap, val2sigmam, val2sigmap return val, val1sigmam, val1sigmap, val2sigmam, val2sigmap x = array.array('d') y = array.array('d') ex = array.array('d') ey1sigmap = array.array('d') ey1sigman = array.array('d') ey2sigmap = array.array('d') ey2sigman = array.array('d') for syst in AllNuisances: systName = syst.split("_")[3] val, val1sigmam, val1sigmap, val2sigmam, val2sigmap = GetLimits( systName ) print AllNuisances.index( syst ) , syst x.append( AllNuisances.index( syst ) ) y.append( val ) ex.append(0) ey1sigmap.append( abs(val1sigmap-val) ) ey1sigman.append( abs(val1sigmam-val) ) ey2sigmap.append( abs(val2sigmap-val) ) ey2sigman.append( abs(val2sigmam-val) ) Bin = "Systematics" canvas2 = TCanvas("sigma_bands") graph_2sigma = TGraphAsymmErrors( len(x) , x , y , ex , ex , ey2sigman , ey2sigmap ) graph_2sigma.SetName( "GraphAsym_2SigmaBand_%s" % ( Bin )) #graph_2sigma.SetTitle( Bin+ "(" +date+ ")" ) graph_2sigma.SetLineColor( kYellow-4) graph_2sigma.SetFillColor( kYellow -4) graph_2sigma.SetFillStyle( 1001 ) graph_2sigma.Draw( "a3" ) graph_1sigma = TGraphAsymmErrors( len(x) , x , y , ex , ex , ey1sigman , ey1sigmap ) graph_1sigma.SetName( "GraphAsym_1SigmaBand_%s" % (Bin ) ) #graph_1sigma.SetTitle( Bin + "(" +date+ ")" ) graph_1sigma.SetLineColor( kGreen - 4) graph_1sigma.SetFillColor( kGreen -4) graph_1sigma.SetFillStyle( 1001 ) graph_1sigma.Draw( "3 same" ) graph_1sigma.SetLineColor( kBlack ) graph_1sigma.SetLineWidth( 2 ) graph_1sigma.SetLineStyle( 2 ) graph_1sigma.SetMarkerColor( kBlack ) graph_1sigma.SetMarkerStyle( 0 ) graph_1sigma.Draw("lp X") xax = graph_2sigma.GetXaxis() pi = TMath.Pi() i = 0 while i*pi/3 <= xax.GetXmax(): systName = AllNuisances[i].split("_")[3] bin_index = xax.FindBin(i*pi/3) xax.SetBinLabel(bin_index, systName ) i+=1 print i,bin_index,xax.GetBinCenter(bin_index), systName canvas2.Modified() canvas2.Update()
bd33c7acbcad90997801a4d28eae63b1c866db4b
34c88cb508fe7ad10f258d220d645a60463a9063
/Misc/LUIGenerateGrid.py
b966b2efa47d986046a0f8a62a44e50754c24b0b
[]
no_license
tzaeru/LUI
5a922f3f830a86c424831a6c5947a413c45f2bb8
14f59e24dc45d88f26214d6f51ed3565a7206374
refs/heads/master
2021-01-18T07:30:55.618553
2015-02-27T13:17:19
2015-02-27T14:08:39
31,418,557
0
0
null
2015-02-27T12:38:06
2015-02-27T12:38:05
null
UTF-8
Python
false
false
1,475
py
from os import makedirs from os.path import dirname, join, isdir from panda3d.core import * # Configuration # source = raw_input("Source png file: ") # destPath = dirname(source) # borderSize = int(raw_input("Border size in pixel: ")) source = "btn_green_focus.png" destPath = "../Builtin/res/" destName = "ButtonMagicFocus_#.png" borderSize = 7 def extractSubImage(x, y, w, h, name): print "Extracting sub image to",name subPNM = PNMImage(w, h, 4) subPNM.copySubImage(img, 0, 0, x, y, w, h) subPNM.write(destPath + destName.replace("#", name)) img = PNMImage(source) w, h = img.getReadXSize(), img.getReadYSize() if not isdir(destPath): makedirs(destPath) # top left extractSubImage(0, 0, borderSize, borderSize, "TL") # top right extractSubImage(w-borderSize, 0, borderSize, borderSize, "TR") # bottom left extractSubImage(0, h-borderSize, borderSize, borderSize, "BL") # bottom right extractSubImage(w-borderSize, h-borderSize, borderSize, borderSize, "BR") # top extractSubImage(borderSize, 0, w-2*borderSize, borderSize, "Top") # bottom extractSubImage(borderSize, h - borderSize, w-2*borderSize, borderSize, "Bottom") # left extractSubImage(0, borderSize, borderSize, h-2*borderSize, "Left") # right extractSubImage(w-borderSize, borderSize, borderSize, h-2*borderSize, "Right") # mid # extractSubImage(borderSize, borderSize, w-2*borderSize, h-2*borderSize, "Mid") extractSubImage(borderSize, borderSize, 1, h-2*borderSize, "Mid")
732625a0056d57c7d7fb9c8e4a10d6158b1d7766
781e2692049e87a4256320c76e82a19be257a05d
/all_data/exercism_data/python/bob/ed53134d1d8147729802412e83a90f33.py
56931b59d9f26e4f52f9b4e5d7075fe3408da235
[]
no_license
itsolutionscorp/AutoStyle-Clustering
54bde86fe6dbad35b568b38cfcb14c5ffaab51b0
be0e2f635a7558f56c61bc0b36c6146b01d1e6e6
refs/heads/master
2020-12-11T07:27:19.291038
2016-03-16T03:18:00
2016-03-16T03:18:42
59,454,921
4
0
null
2016-05-23T05:40:56
2016-05-23T05:40:56
null
UTF-8
Python
false
false
45
py
#this program the user interacts with "bob".
029bec16424b0a6a283b9075d4ce821c32a71078
9189218d0520ff06fecfa4193466e5662a1628ba
/road_trip/road_trip.py
19225229adf8a091068a100cfdb2f3c0a783b9d3
[]
no_license
TStand90/code-eval
1167e4139a60fead5026ddccb3ba2ede7c8f8666
6cbc4eba0cea4d980648cc238c20a3fcbf942aa5
refs/heads/master
2021-01-17T13:08:00.461910
2016-07-08T22:53:14
2016-07-08T22:53:14
41,000,731
0
0
null
null
null
null
UTF-8
Python
false
false
858
py
import sys def main(file_arg): with open(file_arg) as f: for line in f: location_list = line.strip().split(';') location_list = [location.strip() for location in location_list if location] distances_from_start = [] for each_location in location_list: name, distance = each_location.split(',') distances_from_start.append(int(distance)) distances_from_start = sorted(distances_from_start) distances = [] distances.append(distances_from_start[0]) for i, distance in enumerate(distances_from_start[1:]): distances.append(distances_from_start[i+1] - distances_from_start[i]) print(','.join([str(distance) for distance in distances])) if __name__ == '__main__': main(sys.argv[1])
529b590d1c69e0ec006f3264aa3e99a1908178bd
d7a4701e18be0f38820f5c15d80099fda6385f9f
/code-festival-2018-quala/A.py
0169373e8ab1935cb62b53a90e895bcbd3510868
[]
no_license
shiki7/Atcoder
979a6f0eeb65f3704ea20a949940a0d5e3434579
c215c02d3bfe1e9d68846095b1bd706bd4557dd0
refs/heads/master
2022-05-21T16:59:01.529489
2022-04-29T11:26:42
2022-04-29T11:26:42
201,536,692
0
0
null
null
null
null
UTF-8
Python
false
false
137
py
a = int(input()) b = int(input()) c = int(input()) s = int(input()) if 0 <= s - (a + b + c) <= 3: print('Yes') else: print('No')
b691b9bbb53e18dfee434ea542d15b52b5b2b775
7c0820998f6ed2f1f5ee82b8b7ffd67c3228bfb6
/pytest_training/conftest.py
46ce2679f535f34c569f0dec3ccd74d57edb06d5
[]
no_license
youinmelin/practice2020
5127241eaccf3ec997bb10671008a9a7c5f9d741
47d376b6d264141c229b6afcc2be803f41fd611e
refs/heads/master
2022-12-12T00:28:22.293373
2020-09-22T08:29:37
2020-09-22T08:29:37
237,427,204
0
0
null
2022-11-04T19:10:12
2020-01-31T12:38:26
Python
UTF-8
Python
false
false
1,363
py
import pytest import tasks from tasks import Task @pytest.fixture() def tasks_db(tmpdir): '''prepare for the test. before the test, build the db envirment''' tasks.start_tasks_db(str(tmpdir),'tiny') yield tasks.stop_tasks_db() @pytest.fixture() def tasks_just_a_few(): """All summaries and owners are unique.""" return ( Task('Write some code', 'Brian', True), Task("Code review Brian's code", 'Katie', False), Task('Fix what Brian did', 'Michelle', False)) @pytest.fixture() def tasks_mult_per_owner(): """Several owners with several tasks each.""" return ( Task('Make a cookie', 'Raphael'), Task('Use an emoji', 'Raphael'), Task('Move to Berlin', 'Raphael'), Task('Create', 'Michelle'), Task('Inspire', 'Michelle'), Task('Encourage', 'Michelle'), Task('Do a handstand', 'Daniel'), Task('Write some books', 'Daniel'), Task('Eat ice cream', 'Daniel')) @pytest.fixture() def db_with_3_tasks(tasks_db, tasks_just_a_few): """Connected db with 3 tasks, all unique.""" for t in tasks_just_a_few: tasks.add(t) @pytest.fixture() def db_with_multi_per_owner(tasks_db, tasks_mult_per_owner): """Connected db with 9 tasks, 3 owners, all with 3 tasks.""" for t in tasks_mult_per_owner: tasks.add(t)
e253f5dfd8597281db7b5940b3b852b6df8bf7f1
95fcab4fd10cbd6bd3194002a82aee1337b75e82
/crazy_decrypter
59f65442d9c133d0fc67f6120b3cf57a54e2a00a
[ "MIT" ]
permissive
Python3pkg/Crazy-Decrypter
56b8490a3159fd1482a0cba212d8835518fd2537
ee1dc91cf633d38131ba60e1675f5293bb83a323
refs/heads/master
2021-01-21T17:22:24.733510
2016-05-21T07:14:32
2016-05-21T07:14:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,535
#!/usr/bin/env python # -*- coding: utf-8 -*- import time, string, sys import itertools, hashlib NAME = 'Python Crazy Decrypter' VERSION = '0.0.4' AUTHOR = 'Summon Agus' DESCRIPTION = NAME + ''' is real crazy tool to decrypt md5, sha1, sha224, sha256, sha384, and sha512 with Brute Force method.''' CHRS = string.printable.replace(' \t\n\r\x0b\x0c', '') DICT_MODULE_TYPES = { 'md5' : 32, 'sha1' : 40, 'sha224' : 56, 'sha256' : 64, 'sha384' : 96, 'sha512' : 128 } def print_help(): print '\n'+NAME print 'Author : {}'.format(AUTHOR) print 'Version : {}\n'.format(VERSION) print DESCRIPTION print '''\nPARAMETERS: -m \t To try with specific module choice. -a \t To try with all modules. -c \t To try with specific charachters. -ac \t To try with all charachters. \n\nUSAGE: SPECIFIC MODULE $ crazy_decrypter -m <module_type> <hashed> -c <chars> <min_length> <max_length> $ crazy_decrypter -m md5 d73d1e93a306b8230410cbe496ec84bf -c ABC 1 2 $ crazy_decrypter -m <module_type> <hashed> -ac <min_length> <max_length> $ crazy_decrypter -m md5 d73d1e93a306b8230410cbe496ec84bf -ac 1 2 ALL MODULES $ crazy_decrypter -a <hashed> -c <chars> <min_length> <max_length> $ crazy_decrypter -a d73d1e93a306b8230410cbe496ec84bf -c ABC 1 2 $ crazy_decrypter -a <hashed> -ac <min_length> <max_length> $ crazy_decrypter -a d73d1e93a306b8230410cbe496ec84bf -ac 1 2 ''' def decrypter(choice, module_type, hashed, chrs, min_length, max_length): if module_type in DICT_MODULE_TYPES.keys(): improt_module = getattr(hashlib, '{}'.format(module_type)) else: print '\n The `{}` does not exist in the list module!\n Please try this: {}\n'.format(module_type, DICT_MODULE_TYPES.keys()) sys.exit() if min_length > max_length: print '\n Min-length must be longer than Max-length or as same as with Max-length.\n' sys.exit() if len(hashed) not in DICT_MODULE_TYPES.values(): print "\n Provided hash doesn't match any of known hashes bitmap." print " Correct length for hases type:" for k, i in sorted(DICT_MODULE_TYPES.iteritems()): print ' -', k,':',i print '' sys.exit() if choice == '-m' and len(hashed) != DICT_MODULE_TYPES[module_type]: print "\n The hash `{}` is doesn't exist in `{}`.\n Please try another type!\n".format(hashed, module_type) sys.exit() end_result_chip = '' try: for n in range(min_length, max_length+1): for xs in itertools.product(chrs, repeat=n): result_chip = ''.join(xs) hash_chip = improt_module(result_chip).hexdigest() if hashed == hash_chip: end_result_chip += result_chip print 'Decrypt found : {}'.format(end_result_chip) print 'Type Decrypt : {}'.format(module_type) print 'End time : {}\n'.format(time.strftime('%H:%M:%S')) sys.exit() else: print ' *** Please drink your coffee first! ***' print '\t{} {}\n'.format(NAME, VERSION) print 'CTRL+C to Exit!' print 'Charachters to try : {}'.format(chrs) print 'Min-length : {}'.format(min_length) print 'Max-length : {}'.format(max_length) if choice == '-a': print 'Type Decrypt found : {}'.format(module_type) else: print 'Type Decrypt now : {}'.format(module_type) print 'Trying with : {} - {}'.format(result_chip, hash_chip) time.sleep(0.01) print("\033c") except KeyboardInterrupt: print 'Finished!\n' sys.exit() if end_result_chip == '': print 'Not Found!' print 'End time: {}\n'.format(time.strftime('%H:%M:%S')) sys.exit() else: pass if __name__ == '__main__': if len(sys.argv) == 1 or len(sys.argv) > 8: print_help() elif sys.argv[1] == '-m': try: if sys.argv[4] == '-c': decrypter(sys.argv[1], sys.argv[2], sys.argv[3], sys.argv[5], int(sys.argv[6]), int(sys.argv[7])) elif sys.argv[4] == '-ac': decrypter(sys.argv[1], sys.argv[2], sys.argv[3], CHRS, int(sys.argv[5]), int(sys.argv[6])) else: print_help() except IndexError: print_help() elif sys.argv[1] == '-a': try: len_hases = len(sys.argv[2]) try: module_type = DICT_MODULE_TYPES.keys()[DICT_MODULE_TYPES.values().index(len_hases)] except ValueError: print "\n Provided hash doesn't match any of known hashes bitmap." print " Correct length for hases type:" for k, i in sorted(DICT_MODULE_TYPES.iteritems()): print ' -', k,':',i print '' sys.exit() if sys.argv[3] == '-c': decrypter(sys.argv[1], module_type, sys.argv[2], sys.argv[4], int(sys.argv[5]), int(sys.argv[6])) elif sys.argv[3] == '-ac': decrypter(sys.argv[1], module_type, sys.argv[2], CHRS, int(sys.argv[4]), int(sys.argv[5])) else: print_help() except IndexError: print_help() else: print_help()
2cd54f26168a16fdb61877804a0372677aa8d4ea
99f6c5b7a6b6840163b32d633e658678d5829b46
/practice/autumn/fibonacci.py
5020c32d0e53287a274b521a1ecefd3b96822b40
[]
no_license
aliceayres/leetcode-practice
32f2695a567317013b567a68863f2c95c75b438b
0743cbeb0e9aa4a8a25f4520a1e3f92793fae1ee
refs/heads/master
2021-06-02T15:11:29.946006
2020-02-06T04:06:55
2020-02-06T04:06:55
131,126,554
0
0
null
null
null
null
UTF-8
Python
false
false
1,261
py
''' Fibonacci ''' class Solution: def solute(self,n): return self.matrix(n) def naive(self,n): if n == 0: return 0 if n == 1: return 1 if n > 1: return self.naive(n-1)+self.naive(n-2) def bottom(self,n): cache = [] for i in range(n+1): if i == 0: cache += [0] elif i == 1: cache += [1] else: cache += [cache[i-1] + cache[i-2]] return cache[n] def matrixmulti(self,a,b): m = len(a) n = len(b[0]) p = len(a[0]) matrix = [[] for i in range(m)] for i in range(m): for j in range(n): sum = 0 for k in range(p): sum += a[i][k]*b[k][j] matrix[i].append(sum) return matrix def matrixpower(self,matrix,n): power = matrix for i in range(n-1): power = self.matrixmulti(power,matrix) return power def matrix(self,n): mt = [[1,1],[1,0]] fb = self.matrixpower(mt,n-1) return fb[0][0] if __name__ == '__main__': slt = Solution() n = 10 fb = slt.solute(n) print(fb)
62812ccf590249b14771c4b7938a4c52c2551f53
64bf39b96a014b5d3f69b3311430185c64a7ff0e
/intro-ansible/venv3/lib/python3.8/site-packages/ansible_collections/community/network/tests/unit/plugins/modules/network/apconos/test_apconos_command.py
e7070abb121baad0615be7211de59725358f3b9d
[ "MIT", "GPL-3.0-or-later", "GPL-3.0-only" ]
permissive
SimonFangCisco/dne-dna-code
7072eba7da0389e37507b7a2aa5f7d0c0735a220
2ea7d4f00212f502bc684ac257371ada73da1ca9
refs/heads/master
2023-03-10T23:10:31.392558
2021-02-25T15:04:36
2021-02-25T15:04:36
342,274,373
0
0
MIT
2021-02-25T14:39:22
2021-02-25T14:39:22
null
UTF-8
Python
false
false
4,564
py
# (c) 2019 Red Hat Inc. # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # Make coding more python3-ish from __future__ import (absolute_import, division, print_function) __metaclass__ = type import json from ansible_collections.community.network.tests.unit.compat.mock import patch from ansible_collections.community.network.plugins.modules.network.apconos import apconos_command from ansible_collections.community.network.tests.unit.plugins.modules.utils import set_module_args from .apconos_module import TestApconosModule, load_fixture class TestApconosCommandModule(TestApconosModule): module = apconos_command def setUp(self): super(TestApconosCommandModule, self).setUp() self.mock_run_commands = patch('ansible_collections.community.network.plugins.modules.network.apconos.apconos_command.run_commands') self.run_commands = self.mock_run_commands.start() def tearDown(self): super(TestApconosCommandModule, self).tearDown() self.mock_run_commands.stop() def load_fixtures(self, commands=None): def load_from_file(*args, **kwargs): module, commands = args output = list() for item in commands: filename = str(item).replace(' ', '_') output.append(load_fixture(filename)) return output self.run_commands.side_effect = load_from_file def test_apcon_command_simple(self): set_module_args(dict(commands=['show version'])) result = self.execute_module() self.assertEqual(len(result['stdout_lines']), 1) self.assertEqual(result['stdout_lines'][0][0], 'APCON') def test_apcon_command_multiple(self): set_module_args(dict(commands=['show version', 'show version'])) result = self.execute_module() self.assertEqual(len(result['stdout_lines']), 2) self.assertEqual(result['stdout_lines'][0][0], 'APCON') self.assertEqual(result['stdout_lines'][1][0], 'APCON') def test_apcon_command_wait_for(self): wait_for = 'result[0] contains "APCON"' set_module_args(dict(commands=['show version'], wait_for=wait_for)) self.execute_module() def test_apcon_command_wait_for_fails(self): wait_for = 'result[0] contains "test string"' set_module_args(dict(commands=['show version'], wait_for=wait_for)) self.execute_module(failed=True) self.assertEqual(self.run_commands.call_count, 10) def test_apcon_command_retries(self): wait_for = 'result[0] contains "test string"' set_module_args(dict(commands=['show version'], wait_for=wait_for, retries=2)) self.execute_module(failed=True) self.assertEqual(self.run_commands.call_count, 2) def test_apcon_command_match_any(self): wait_for = ['result[0] contains "test string"', 'result[0] contains "VERSION"'] set_module_args(dict(commands=['show version'], wait_for=wait_for, match='any')) self.execute_module() def test_apcon_command_match_all(self): wait_for = ['result[0] contains "COMPONENT"', 'result[0] contains "MODEL"', 'result[0] contains "VERSION"'] set_module_args(dict(commands=['show version'], wait_for=wait_for, match='all')) self.execute_module() def test_apcon_command_match_all_failure(self): wait_for = ['result[0] contains "APCON OS"', 'result[0] contains "test string"'] commands = ['show version', 'show version'] set_module_args(dict(commands=commands, wait_for=wait_for, match='all')) self.execute_module(failed=True) def test_apcon_command_checkmode_not_warning(self): commands = ['enable ssh'] set_module_args(dict(commands=commands, _ansible_check_mode=False)) result = self.execute_module(changed=True) self.assertEqual(result['warnings'], [])
739421ee81e9e6b444bf86baf71044687467e859
9e988c0dfbea15cd23a3de860cb0c88c3dcdbd97
/sdBs/AllRun/sbss_1210+511/sdB_SBSS_1210+511_lc.py
c7a524db24e2e93df6d5e26eeb3fa943b51619ff
[]
no_license
tboudreaux/SummerSTScICode
73b2e5839b10c0bf733808f4316d34be91c5a3bd
4dd1ffbb09e0a599257d21872f9d62b5420028b0
refs/heads/master
2021-01-20T18:07:44.723496
2016-08-08T16:49:53
2016-08-08T16:49:53
65,221,159
0
0
null
null
null
null
UTF-8
Python
false
false
350
py
from gPhoton.gAperture import gAperture def main(): gAperture(band="NUV", skypos=[183.124667,50.900608], stepsz=30., csvfile="/data2/fleming/GPHOTON_OUTPU/LIGHTCURVES/sdBs/sdB_SBSS_1210+511 /sdB_SBSS_1210+511_lc.csv", maxgap=1000., overwrite=True, radius=0.00555556, annulus=[0.005972227,0.0103888972], verbose=3) if __name__ == "__main__": main()
302e910ed7e156d7359de27096dd03221bb48cb4
ac5ba4cc5f1636b1ef48927ea7a7d9c214f4789d
/CFEBBufferOverloadProducer/test/submit_NtupleProducer.py
02316b93e0570526faf429e4e1830ff39b4dfdce
[]
no_license
sunilbansal/CSCPostLS2RateStudies
c5daa8841288bd7492efc30f779e9108c26b3b39
1411e6ea3e91242e6c4ef35163c71d50781f969f
refs/heads/master
2021-01-18T05:01:16.767500
2015-07-07T17:16:43
2015-07-07T17:16:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
886
py
''' A simple script to easily submit all jobs for buffer rereco studies. ''' import subprocess BufferVersion = 'v7' version = 'v2' datasets = ['HZZ', 'ZZ', 'Zprime'] failureStrings = ['0p00', '0p01', '0p02', '0p05', '0p10', '0p20', '0p03', '0p50', '1p00'] failureModes = ["BOTH", "CFEB", "DDU"] for dataset in datasets: for failureString in failureStrings: for failureMode in failureModes: commandString = "farmoutAnalysisJobs $1 --input-file-list=inputs/inputs_BufferOverload_%s_%s_%s_%s.txt BufferOverload_%s_%s_%s_StandAlone_%s $CMSSW_BASE CSCPostLS2RateStudies/NtupleProducer/test/makeStandAloneNtuple_cfg.py 'outputFile=$outputFileName' 'inputFiles=$inputFileNames'" % (dataset, failureString, failureMode, BufferVersion, dataset, failureString, failureMode, version) print commandString subprocess.call(commandString,shell=True)
479b76c941db06aea4b63feb4a66b427168ce71e
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/jdJ5HYuhmrr89nhkB_12.py
fc8eeda3545cbfc7b0afda8beafa87d4b39d5f69
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
43
py
def adds_n(n): return lambda a : a + n
dc8a8cd9cca1d12c7b9559429f70f1a2aa8a6dde
eaea9ca458ae4949e049743e6d712c3389dced00
/cesm_hist2tseries/__init__.py
6c0f8ee7181dbbd2399cd85ed26c937f2e76f9ea
[ "Apache-2.0" ]
permissive
mnlevy1981/cesm-hist2tseries
1702fc1f192c140df3a70dd777892df46b48e435
c9bfcb5b16783bda1849f2d402897f0f6ef3b0c4
refs/heads/main
2023-04-14T04:35:36.554423
2021-05-04T15:54:49
2021-05-04T15:54:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
337
py
#!/usr/bin/env python3 # flake8: noqa """Top-level module for cesm-hist2tseries .""" from pkg_resources import DistributionNotFound, get_distribution try: __version__ = get_distribution(__name__).version except DistributionNotFound: # pragma: no cover # package is not installed __version__ = 'unknown' # pragma: no cover
fef950be4883a6c91c31bc909c9b76fe895df6f7
ccdeae68e468ad399a89181c37bba4490bcdc259
/scripts/40-genNonLinModelDistMatTopOnRLOnOther.py
5a155d8ec1e6b4f1987b13299f879ceea31190fd
[]
no_license
jameshughes89/NonlinearModelsFMRI-2
19262d4494aa6adc0e9bd9592069ad6b757dda6b
a507a41d0a0a728d02616023aea0e66fafc1c387
refs/heads/master
2021-09-06T17:05:38.086733
2018-02-07T15:19:23
2018-02-07T15:19:23
109,417,040
0
0
null
null
null
null
UTF-8
Python
false
false
3,822
py
''' creates a large distance matrix for all non liear models. CHANGE THE iFile line to switch between LR/RL --- Also be sure to save the output file names too! ''' import csv from math import * import numpy as np import matplotlib.pyplot as plt import topExpressions_NL_RL_EMOTION as emotion import topExpressions_NL_RL_GAMBLING as gambling import topExpressions_NL_RL_LANGUAGE as language import topExpressions_NL_RL_MOTOR as motor import topExpressions_NL_RL_RELATIONAL as relational import topExpressions_NL_RL_SOCIAL as social import topExpressions_NL_RL_WM as wm all_functions_line = emotion.getFuncs() + gambling.getFuncs() + language.getFuncs() + motor.getFuncs() + relational.getFuncs() + social.getFuncs() + wm.getFuncs() tasks = ["EMOTION", "GAMBLING", "LANGUAGE", "MOTOR", "RELATIONAL", "SOCIAL", "WM"] lasts = ["7", "2", "16", "21", "28", "3", "21"] #subjects =[100307, 100408, 101006, 101107, 101309, 101410, 101915, 102008, 102311, 102816, 103111, 103414, 103515, 103818, 104012, 104820, 105014, 105115, 105216, 105923, 106016, 106319, 106521, 107321, 107422, 108121, 108323, 108525, 108828, 109123, 109325, 110411, 111312, 111413, 111514, 111716, 112819, 113215, 113619, 113821, 113922, 114419, 114924, 115320, 116524, 117122, 117324, 118528, 118730, 118932, 119833, 120111, 120212, 120515, 121315, 121618, 122317, 122620, 123117, 123420, 123925, 124220, 124422, 124826, 125525, 126325, 126628, 127630, 127933, 128127, 128632, 129028, 130013, 130316, 130922, 131217, 131722, 131924, 132118, 133019, 133625, 133827, 133928, 134324, 135225, 135528, 135932, 136227, 136833, 137027, 137128, 137633, 137936, 138231, 138534, 139233, 139637, 140117, 140824, 140925, 141422, 141826, 142424, 142626, 142828, 143325, 144226, 144832, 145531, 145834] subjects =[100307, 100408, 101006, 101107, 101309, 101410, 101915, 102008, 102311, 102816, 103111, 103414, 103515, 103818, 104012, 104820, 105014, 105115, 105216, 105923, 106016, 106319, 106521, 107321, 107422, 108121, 108323, 108525, 108828, 109123, 109325, 110411, 111312, 111413, 111514, 111716, 113215, 113619, 113922, 114419] matrixMSE = [] matrixABE = [] matrixMIN = [] lastsCount = 0 for t in tasks: fs='funcsL_' + t + ' = [' count = 0 for s in subjects: print t, s ALL = [] #iFile = csv.reader(open("/home/james/Desktop/nData/" + t + "_"+str(s)+"_2_L" + lasts[lastsCount] + "_Z.csv",'r')) iFile = csv.reader(open("/home/james/Desktop/nData/" + t + "_"+str(s)+"_2_L" + lasts[lastsCount] + "_Z.csv",'r')) for l in iFile: ALL.append(l) ALL = np.array(ALL) ALL = ALL.astype(float) allmsE = [] allabE = [] for f in all_functions_line: try: msE = [] abE = [] for l in ALL: try: err = l[-1] - f(l[0],l[1],l[2],l[3],l[4],l[5],l[6],l[7],l[8],l[9],l[10],l[11],l[12],l[13],l[14],l[15],l[16],l[17],l[18],l[19],l[20],l[21],l[22],l[23],l[24],l[25],l[26],l[27],l[28],l[29]) msE.append(err**2) abE.append(abs(err)) except(ValueError, OverflowError, ZeroDivisionError): msE.append(float('nan')) abE.append(float('nan')) allmsE.append((np.mean(msE))) allabE.append((np.mean(abE))) #allmsE.append(log(np.mean(msE))) #allabE.append(log(np.mean(abE))) except (ValueError, OverflowError, ZeroDivisionError): print '\t\t\tBBBBBUSTTTEDDDD: ', t, s allmsE.append(np.float('nan')) allabE.append(np.float('nan')) continue matrixMSE.append(allmsE) matrixABE.append(allabE) allmin = np.zeros(len(allabE)) allmin[np.argsort(allabE)[0]] = 1 matrixMIN.append(allmin) lastsCount +=1 np.savetxt('msEmat_NL_LR_topRL.csv', matrixMSE, delimiter=",") np.savetxt('abEmat_NL_LR_topRL.csv', matrixABE, delimiter=",") np.savetxt('minmat_NL_LR_topRL.csv', matrixMIN, delimiter=",")
751621fe4393f2b0e5ae91137618498f9a96c992
525c4a4a65b9b87a2acd027164381d4be8e2d03a
/autotf/tuner/priors/default_priors.py
a725781d2d1bc099191bb22d28cc75a620c8016a
[ "BSD-3-Clause" ]
permissive
DMALab/autotf
da1aecae7b9e51d3e27ccd7ee610dc9b3d6cf491
3f82d858f49c27d5ecb624cee555fb8fd47bf067
refs/heads/master
2021-10-25T06:24:38.243496
2019-04-02T07:41:42
2019-04-02T07:41:42
123,559,497
8
1
null
null
null
null
UTF-8
Python
false
false
1,627
py
import numpy as np from tuner.priors.base_prior import BasePrior, TophatPrior, \ LognormalPrior, HorseshoePrior class DefaultPrior(BasePrior): def __init__(self, n_dims, rng=None): if rng is None: self.rng = np.random.RandomState(np.random.randint(0, 10000)) else: self.rng = rng # The number of hyperparameters self.n_dims = n_dims # Prior for the Matern52 lengthscales self.tophat = TophatPrior(-10, 2, rng=self.rng) # Prior for the covariance amplitude self.ln_prior = LognormalPrior(mean=0.0, sigma=1.0, rng=self.rng) # Prior for the noise self.horseshoe = HorseshoePrior(scale=0.1, rng=self.rng) def lnprob(self, theta): lp = 0 # Covariance amplitude lp += self.ln_prior.lnprob(theta[0]) # Lengthscales lp += self.tophat.lnprob(theta[1:-1]) # Noise lp += self.horseshoe.lnprob(theta[-1]) return lp def sample_from_prior(self, n_samples): p0 = np.zeros([n_samples, self.n_dims]) # Covariance amplitude p0[:, 0] = self.ln_prior.sample_from_prior(n_samples)[:, 0] # Lengthscales ls_sample = np.array([self.tophat.sample_from_prior(n_samples)[:, 0] for _ in range(1, (self.n_dims - 1))]).T p0[:, 1:(self.n_dims - 1)] = ls_sample # Noise p0[:, -1] = self.horseshoe.sample_from_prior(n_samples)[:, 0] return p0 def gradient(self, theta): # TODO: Implement real gradient here return np.zeros([theta.shape[0]])
2f0aed1419a0bebcacecf1a22b33d367a5260d73
f295b56e9af284092233a724af041a91b35a9f6a
/insert-into-a-binary-search-tree/insert-into-a-binary-search-tree.py
b797e9509a60d9727d912eddfcc852375834be7c
[]
no_license
saviaga/Coding_E
7ebdf03b5eca775903ee4b863b56e26190b40029
dd21bb3b9d8905263416b206877f1a3d9416ee3f
refs/heads/main
2023-05-02T19:42:07.267054
2021-05-21T17:41:52
2021-05-21T17:41:52
334,220,320
0
0
null
null
null
null
UTF-8
Python
false
false
886
py
# Definition for a binary tree node. # class TreeNode(object): # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution(object): def insertIntoBST(self, root, val): """ :type root: TreeNode :type val: int :rtype: TreeNode """ node = root while node: if val > node.val: if not node.right: node.right = TreeNode(val) return root else: node = node.right elif val <= node.val: if not node.left: node.left = TreeNode(val) return root else: node = node.left return TreeNode(val)
2c60021bb0b9c29e761d5edbece3cbe083fae8ac
5eb29ce7104e10a399d9afd7e253f029bf8bc0ff
/cu_image_search/search/searcher_filelocal.py
86fe5cc3b6a27c98519f67eb698cc7e8693a9caf
[ "BSD-2-Clause" ]
permissive
svebk/DeepSentiBank_memex
69789dc09316e97aad711edeb251837a60184e7e
4e69ce66e3a177817ff360ddc263f55c6e0b63f7
refs/heads/master
2021-01-18T18:55:10.870052
2017-10-19T22:51:29
2017-10-19T22:51:29
36,091,024
22
1
null
2017-02-09T20:31:20
2015-05-22T19:20:54
Python
UTF-8
Python
false
false
12,685
py
import sys import time import json import numpy as np from collections import OrderedDict from ..memex_tools.sha1_tools import get_SHA1_from_file class SearcherFileLocal(): def __init__(self,global_conf_filename): self.global_conf_filename = global_conf_filename self.global_conf = json.load(open(global_conf_filename,'rt')) self.read_conf() self.init_indexer() self.init_ingester() def read_conf(self): # these parameters may be overwritten by web call self.features_dim = self.global_conf['FE_features_dim'] self.sim_limit = self.global_conf['SE_sim_limit'] self.near_dup = self.global_conf['SE_near_dup'] self.near_dup_th = self.global_conf['SE_near_dup_th'] self.ratio = self.global_conf['SE_ratio'] self.topfeature = 0 if "SE_topfeature" in self.global_conf: self.topfeature = int(self.global_conf['SE_topfeature']) def init_indexer(self): """ Initialize `indexer` from `global_conf['SE_indexer']` value. Currently supported indexer types are: - local_indexer - hbase_indexer """ field = 'SE_indexer' if field not in self.global_conf: raise ValueError("[Searcher: error] "+field+" is not defined in configuration file.") if self.global_conf[field]=="local_indexer": from ..indexer.local_indexer import LocalIndexer self.indexer = LocalIndexer(self.global_conf_filename) elif self.global_conf[field]=="hbase_indexer": from ..indexer.hbase_indexer import HBaseIndexer self.indexer = HBaseIndexer(self.global_conf_filename) else: raise ValueError("[Searcher: error] unknown 'indexer' {}.".format(self.global_conf[field])) def init_ingester(self): """ Initialize `ingester` from `global_conf['SE_ingester']` value. Currently supported indexer types are: - local_ingester - hbase_indexer """ field = 'SE_ingester' if field not in self.global_conf: raise ValueError("[Searcher: error] "+field+" is not defined in configuration file.") if self.global_conf[field]=="local_ingester": from ..ingester.local_ingester import LocalIngester self.ingester = LocalIngester(self.global_conf_filename) else: raise ValueError("[Searcher: error] unknown 'ingester' {}.".format(self.global_conf[field])) def check_ratio(self): '''Check if we need to set the ratio based on topfeature.''' if self.topfeature > 0: self.ratio = self.topfeature*1.0/self.indexer.get_nb_images_indexed() msg = "[Searcher.check_ratio: log] Set ratio to {} as we want top {} images out of {} indexed." print msg.format(self.ratio, self.topfeature, self.indexer.get_nb_images_indexed()) def filter_near_dup(self,nums): # nums is a list of ids then distances # onum is the number of similar images onum = len(nums)/2 temp_nums=[] #print "[Searcher.filter_near_dup: log] nums {}".format(nums) for one_num in range(0,onum): # maintain only near duplicates, i.e. distance less than self.near_dup_th if float(nums[onum+one_num])>self.near_dup_th: return temp_nums # insert id at its right place temp_nums.insert(one_num,nums[one_num]) # insert corresponding distance at the end temp_nums.insert(len(temp_nums),nums[onum+one_num]) #print "[Searcher.filter_near_dup: log] temp_nums {}".format(temp_nums) return temp_nums def read_sim(self, simname, nb_query): # initialization sim = [] sim_score = [] # read similar images count = 0 f = open(simname); for line in f: #sim_index.append([]) nums = line.replace(' \n','').split(' ') if self.near_dup: #filter near duplicate here nums=self.filter_near_dup(nums) #print nums onum = len(nums)/2 n = min(self.sim_limit,onum) #print n if n==0: # no returned images, e.g. no near duplicate sim.append(()) sim_score.append([]) continue sim.append(self.indexer.get_sim_infos(nums[0:n])) sim_score.append(nums[onum:onum+n]) count = count + 1 if count == nb_query: break f.close() return sim,sim_score def format_output(self, simname, list_sha1_id, nb_query, corrupted): # read hashing similarity results sim, sim_score = self.read_sim(simname, nb_query) # build final output output = [] dec = 0 for i in range(0,nb_query): output.append(dict()) output[i]['query_sha1'] = list_sha1_id[i] if i in corrupted: output[i]['similar_images']= OrderedDict([['number',0],['image_urls',[]],['cached_image_urls',[]],['page_urls',[]],['ht_ads_id',[]],['ht_images_id',[]],['sha1',[]],['distance',[]]]) dec += 1 continue ii = i - dec output[i]['similar_images']= OrderedDict([['number',len(sim[ii])],['image_urls',[]],['cached_image_urls',[]],['page_urls',[]],['ht_ads_id',[]],['ht_images_id',[]],['sha1',[]],['distance',[]]]) for simj in sim[ii]: url = simj[0] #print url, self.ingester.host_data_dir, self.ingester.data_dir if not url.startswith('http'): # This will not work, need to serve static files. url = "/show_image/image?data="+url #print url, self.ingester.host_data_dir, self.ingester.data_dir output[i]['similar_images']['image_urls'].append(url) output[i]['similar_images']['cached_image_urls'].append(url) output[i]['similar_images']['page_urls'].append(simj[2]) output[i]['similar_images']['ht_ads_id'].append(simj[3]) output[i]['similar_images']['ht_images_id'].append(simj[4]) output[i]['similar_images']['sha1'].append(simj[5]) output[i]['similar_images']['distance']=sim_score[ii] #print "[Searcher.format_output: log] output {}".format(output) outp = OrderedDict([['number',nb_query],['images',output]]) #print "[Searcher.format_output: log] outp {}".format(outp) #json.dump(outp, open(outputname,'w'),indent=4, sort_keys=False) return outp def search_one_imagepath(self, image_path): # initialization search_id = str(time.time()) all_img_filenames = [image_path] return self.search_from_image_filenames(all_img_filenames, search_id) def search_image_list(self, query_urls, options_dict): # initialization search_id = str(time.time()) # read list of images all_img_filenames = [None]*len(query_urls) URL_images = [] for pos,image in enumerate(query_urls): if image[0:4] == "http": URL_images.append((pos,image)) else: all_img_filenames[pos] = image if URL_images: readable_images = self.indexer.image_downloader.download_images(URL_images, search_id) print readable_images for img_tup in readable_images: # print "[Searcher.search_image_list: log] {} readable image tuple {}.".format(i,img_tup) all_img_filenames[img_tup[0]] = img_tup[-1] print "all_img_filenames: ",all_img_filenames return self.search_from_image_filenames(all_img_filenames, search_id, options_dict) def search_from_image_filenames(self, all_img_filenames, search_id, options_dict): # compute all sha1s corrupted = [] list_sha1_id = [] valid_images = [] for i, image_name in enumerate(all_img_filenames): if image_name[0:4]!="http": sha1 = get_SHA1_from_file(image_name) if sha1: list_sha1_id.append(sha1) valid_images.append((i, sha1, image_name)) else: corrupted.append(i) else: # we did not manage to download image # need to deal with that in output formatting too corrupted.append(i) print "valid_images",valid_images sys.stdout.flush() #print "[Searcher.search_from_image_filenames: log] valid_images {}".format(valid_images) # get indexed images list_ids_sha1_found = self.indexer.get_ids_from_sha1s(list_sha1_id) tmp_list_ids_found = [x[0] for x in list_ids_sha1_found] list_sha1_found = [x[1] for x in list_ids_sha1_found] #print "[Searcher.search_from_image_filenames: log] list_sha1_id {}".format(list_sha1_id) #print "[Searcher.search_from_image_filenames: log] list_sha1_found {}".format(list_sha1_found) # this is to keep proper ordering list_ids_found = [tmp_list_ids_found[list_sha1_found.index(sha1)] for sha1 in list_sha1_id if sha1 in list_sha1_found] #print "[Searcher.search_from_image_filenames: log] tmp_list_ids_found {}".format(tmp_list_ids_found) #print "[Searcher.search_from_image_filenames: log] list_ids_found {}".format(list_ids_found) # get there features if list_ids_found: feats, ok_ids = self.indexer.hasher.get_precomp_feats(list_ids_found) if len(ok_ids)!=len(list_ids_found): raise ValueError("[Searcher.search_from_image_filenames: error] We did not get enough precomputed features ({}) from list of {} images.".format(len(ok_ids),len(list_ids_found))) # compute new images features not_indexed_sha1 = set(list_sha1_id)-set(list_sha1_found) #res = self.indexer.get_precomp_from_sha1(list_ids_sha1_found) new_files = [] all_valid_images = [] precomp_img_filenames=[] for i, sha1, image_name in valid_images: if sha1 in list_sha1_found: # image is indexed precomp_img_filenames.append(image_name) else: new_files.append(image_name) all_valid_images.append(all_img_filenames[i]) print "[Searcher.search_from_image_filenames: log] all_valid_images {}".format(all_valid_images) print "[Searcher.search_from_image_filenames: log] new_files {}".format(new_files) sys.stdout.flush() features_filename, ins_num = self.indexer.feature_extractor.compute_features(new_files, search_id) if ins_num!=len(new_files): raise ValueError("[Searcher.search_from_image_filenames: error] We did not get enough features ({}) from list of {} images.".format(ins_num,len(new_files))) # merge feats with features_filename final_featuresfile = search_id+'.dat' read_dim = self.features_dim*4 read_type = np.float32 #print "[Searcher.search_from_image_filenames: log] feats {}".format(feats) with open(features_filename,'rb') as new_feats, open(final_featuresfile,'wb') as out: for image_name in all_valid_images: #print "[Searcher.search_from_image_filenames: log] saving feature of image {}".format(image_name) if image_name in precomp_img_filenames: # select precomputed precomp_pos = precomp_img_filenames.index(image_name) #print "[Searcher.search_from_image_filenames: log] getting precomputed feature at position {}".format(precomp_pos) tmp_feat = feats[precomp_pos][:] else: # read from new feats tmp_feat = np.frombuffer(new_feats.read(read_dim),dtype=read_type) # Should tmp_feat be normalized? print "tmp_feat",tmp_feat tmp_feat = tmp_feat/np.linalg.norm(tmp_feat) print "tmp_feat normed", tmp_feat sys.stdout.flush() out.write(tmp_feat) # query with merged features_filename self.check_ratio() simname = self.indexer.hasher.get_similar_images_from_featuresfile(final_featuresfile, self.ratio) #outputname = simname[:-4]+".json" outp = self.format_output(simname, list_sha1_id, len(all_img_filenames), corrupted) #return outp, outputname return outp
784d8ea7bf5c599bdbf456370cc6a1361af7936b
e33dbdee28b7452ecd3b051d04af871edd901968
/tools/transcode_tool.py
1561d961bb4466e8b3858456413509a8551e7fbf
[]
no_license
gm19900510/py_examples
07f2b9c35362e95989e4c3e8f0f786056dd828af
48431167458e6528bc6d44b2f51a39d338dd1df1
refs/heads/master
2020-05-30T03:33:53.976482
2019-05-31T02:58:54
2019-05-31T02:58:54
189,517,979
0
0
null
null
null
null
UTF-8
Python
false
false
2,184
py
# -*- coding:utf-8 -*- import redis import subprocess import time import sys def handle(ffmpeg_path, input_path, out_path): command = [ffmpeg_path , '-i' , input_path , '-vcodec', 'copy', '-f' , 'flv', '-an' , out_path] p = subprocess.Popen(command) return p class TranscodeTool(): def __init__(self, args): self.pool = redis.ConnectionPool(host=args.redis_host) # 实现一个连接池 self.r = redis.Redis(connection_pool=self.pool) self.args = args def trans(self, device): device_id = 'device_id_' + device process_id = 'process_id_' + device print('device_id:', device_id) print('process_id:', process_id) # 子进程PID键值不存在表示无转换码流进行,需进行转换 if not self.r.exists(process_id): print('用户执行播放操作,无转换进程,开启转换进程') # 获取设备的RTSP路径 rtsp_path = str(self.r.get(device_id), encoding="utf-8") print('设备:' + device_id + ' ,对应的RTSP路径:', rtsp_path) p = handle(self.args.ffmpeg_path, rtsp_path, self.args.rtmp_path + device) print('开始执行码流转换进程:' , p.pid) print('保存码流转换进程键值对:' + process_id, 1) self.r.setex(process_id, 60 * 60 * 1, 1) while True: time.sleep(20) if not self.r.exists(process_id): p.kill() print('码流转换进程键值对不存在,关闭转换进程') break; sys.exit(0) else: # 子进程PID键值存在表示有转换码流进行,运行进程数+1 process_num = int(str(self.r.get(process_id), encoding="utf-8")) print('用户执行播放操作,存在转换进程,当前转换进程数:', process_num) self.r.setex(process_id, 60 * 60 * 1, (process_num + 1)) print('更新码流转换进程键值对:' + process_id, (process_num + 1)) sys.exit(0)
[ "Administrator@PC-20170308PKRS" ]
Administrator@PC-20170308PKRS
4e1dd335864e7af9b9c0fa24be2426897758e16f
04a89d6cbc02af00db57af791eb07f90ddf43944
/Final/junk.py
a0a8b222f27ef60865326eaf40c74a9395d3af52
[]
no_license
jclarkrichards/PacmanRedo
000518456c3de9a29af65176d83e4f6694a697e6
343b661631716ea6f2286c5c8f597f7f600b1e89
refs/heads/main
2023-07-16T09:33:38.891573
2021-08-29T22:12:25
2021-08-29T22:12:25
390,863,357
0
0
null
null
null
null
UTF-8
Python
false
false
302
py
def startFreight(self): self.mode.setFreightMode() if self.mode.current == FREIGHT: self.setSpeed(50) self.directionMethod = self.randomDirection def normalMode(self): self.setSpeed(100) self.directionMethod = self.goalDirection
30a6eea1c2a60e712bdc1dd08cc73cd8b0adafab
e1e4c05cfe65ec3cf8d42cee703f86c3ac92cf7f
/venv/bin/django-admin
4b33bea41b7df2974115f7c903a12f04f1d6fb35
[]
no_license
jasimdipu/OnlineFoodOrderApp
346095fe74bc765190c436cbe2b8d63bb1cb8837
4e2a523e74bf23c839990a5396d9088b4372605c
refs/heads/main
2023-06-04T01:29:41.011310
2021-06-25T05:36:55
2021-06-25T05:36:55
373,167,609
0
1
null
null
null
null
UTF-8
Python
false
false
298
#!/Users/dipu/Desktop/OnlineFoodOrder/venv/bin/python # -*- coding: utf-8 -*- import re import sys from django.core.management import execute_from_command_line if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(execute_from_command_line())
8b2f2d87f609391859046650bf67f19055c15ae8
b29589f95734682663ae6cd40ab00eb0a94b6d87
/longwave/lblnew_20160916/study__g1_threshold/h2o/conc_None/band09_wn_1900_3000/nv_1000/dv_0.001/ng_5/g_ascending_k_descending/refPTs_P_500_T_250/ng_refs_5/ng_adju_0/getabsth_auto/absth_dlogN_uniform/klin_1e-24/atmpro_mls/wgt_k_1/wgt_0.4_0.4_0.5_0.55_0.85/wgt_flux_1/w_diffuse_1.66_1.66_1.66_1.66_1.66/option_compute_ktable_1/option_compute_btable_0/crd_a06b618/param.py
035cb1191b725e44b014aa9d037c9615a42b702a
[]
no_license
qAp/offline_radiation_notebooks
02c2b2414ef1410f235776001a668f7df0b9f1cf
44fb62391c27e4e314ad68ae3e91f6111b3172c5
refs/heads/master
2020-04-15T14:31:34.675322
2019-07-08T04:45:54
2019-07-08T04:45:54
43,118,324
0
0
null
null
null
null
UTF-8
Python
false
false
847
py
DIR_FORTRAN = '/chia_cluster/home/jackyu/radiation/crd/LW/examples/separate_g_groups/study__lblnew_g1_threshold/h2o/conc_None/band09_wn_1900_3000/nv_1000/dv_0.001/ng_5/g_ascending_k_descending/refPTs_P_500_T_250/ng_refs_5/ng_adju_0/getabsth_auto/absth_dlogN_uniform/klin_1e-24/atmpro_mls/wgt_k_1/wgt_0.4_0.4_0.5_0.55_0.85/wgt_flux_1/w_diffuse_1.66_1.66_1.66_1.66_1.66/option_compute_ktable_1/option_compute_btable_0/crd_a06b618' PARAM = {'molecule': 'h2o', 'band': '9', 'commitnumber': 'a06b618', 'vmin': 1900, 'vmax': 3000, 'dv': 0.001, 'nv': 1000, 'ref_pts': [(500, 250)], 'ng_refs': [5], 'ng_adju': [0], 'klin': 1e-24, 'option_wgt_k': 1, 'wgt': [(0.4, 0.4, 0.5, 0.55, 0.85)], 'w_diffuse': [(1.66, 1.66, 1.66, 1.66, 1.66)], 'option_wgt_flux': 1, 'atmpro': 'mls', 'tsfc': 294, 'conc': None, 'option_compute_btable': 0, 'option_compute_ktable': 1}
090eda276fb550f3ed332283b7330f88c4a215ac
27da1c772decb031eeabdee94530c6c0d53d82d7
/DataStructures/DataStructureAndAlgorithmicThinkingWithPython-master/chapter21miscconcepts/NumberPlusone.py
22e11b09ac5829b47aedb942d7753bb821f14943
[ "MIT" ]
permissive
ManasveeMittal/dropbox
09e400c1cf0286051b115d81b509eabba0159c91
58d893b14119d1a4e87a122ab37aeaa523fa0a3c
refs/heads/master
2021-05-11T19:35:27.104757
2018-01-31T13:46:07
2018-01-31T13:46:07
117,876,352
1
1
null
null
null
null
UTF-8
Python
false
false
1,035
py
# Copyright (c) Dec 22, 2014 CareerMonk Publications and others. # E-Mail : [email protected] # Creation Date : 2014-01-10 06:15:46 # Last modification : 2008-10-31 # by : Narasimha Karumanchi # Book Title : Data Structures And Algorithmic Thinking With Python # Warranty : This software is provided "as is" without any # warranty; without even the implied warranty of # merchantability or fitness for a particular purpose. #!/usr/bin/env python ''' Given a number represented as an array of digits, plus one to the number. ''' from __future__ import division import random def plus_one(digits): print digits, '+ 1 =', carry = 1 for i in reversed(xrange(len(digits))): x = digits[i] carry, x = divmod(x + carry, 10) digits[i] = x if carry > 0: digits.insert(0, carry) print digits return digits if __name__ == '__main__': plus_one([1, 2, 3, 4]) plus_one([1, 9, 9]) plus_one([9, 9, 9]) plus_one([0])
010012fa069264721194c28e9de89102e43737dc
704393fd5ee87339623e343e493071c8139f1750
/examples/structured_heatmap.py
5fe55b42bb4025e9201be903cf95257a3a40fd29
[ "BSD-3-Clause" ]
permissive
seanzhou1023/seaborn
18af2d3fa82242899bcd0363ea3810fd521c1c5c
30b4cd8b75e7c80e9edad2b19aa28394cc592455
refs/heads/master
2020-12-02T21:08:54.956829
2017-07-03T19:36:45
2017-07-03T19:36:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,206
py
""" Discovering structure in heatmap data ===================================== _thumb: .4, .2 """ import pandas as pd import seaborn as sns sns.set(font="monospace") # Load the brain networks example dataset df = sns.load_dataset("brain_networks", header=[0, 1, 2], index_col=0) # Select a subset of the networks used_networks = [1, 5, 6, 7, 8, 11, 12, 13, 16, 17] used_columns = (df.columns.get_level_values("network") .astype(int) .isin(used_networks)) df = df.loc[:, used_columns] # Create a custom palette to identify the networks network_pal = sns.cubehelix_palette(len(used_networks), light=.9, dark=.1, reverse=True, start=1, rot=-2) network_lut = dict(zip(map(str, used_networks), network_pal)) # Convert the palette to vectors that will be drawn on the side of the matrix networks = df.columns.get_level_values("network") network_colors = pd.Series(networks, index=df.columns).map(network_lut) # Draw the full plot sns.clustermap(df.corr(), center=0, cmap="vlag", row_colors=network_colors, col_colors=network_colors, figsize=(13, 13))
0e5abbc5b9435a3e0799123bc67bc74ebf4e32df
473035074bd546694d5e3dbe6decb900ba79e034
/traffic fluid simulator/backend/env_4_6/model/Memory.py
151d10fed341470aef177d167c464d139f4f46c9
[]
no_license
johny1614/magazyn
35424203036191fb255c410412c195c8f41f0ba5
a170fea3aceb20f59716a7b5088ccdcb6eea472f
refs/heads/master
2022-03-26T01:10:04.472374
2019-09-19T16:34:22
2019-09-19T16:34:22
171,033,407
0
0
null
null
null
null
UTF-8
Python
false
false
279
py
import attr from model.Action import ActionInt from model.LearningState import LearningState @attr.s(auto_attribs=True) class Memory: state: LearningState action: ActionInt reward: float new_state: LearningState times: any reshapedReward: bool = False
492cdf65fcd139d8447f856e9245891e042dcb48
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/adjectives/_bummed.py
6448a6af4a3d357aec3ad853a9879cbba2677024
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
231
py
from xai.brain.wordbase.adjectives._bum import _BUM #calss header class _BUMMED(_BUM, ): def __init__(self,): _BUM.__init__(self) self.name = "BUMMED" self.specie = 'adjectives' self.basic = "bum" self.jsondata = {}
ba5ba8e5b02e27d9baf981f26b5d946dfbcd4aee
d38a51120668fea2664b95537d3c792ad83729c3
/TestCode/archive/HUAWEI_HITLESS_SR_TEST_00.py
cc27b1203f3f7a90a5d82b9a90bcbd899a0b8fa3
[]
no_license
bopopescu/myRepository
fc0847658ebb5f8a78824ec92e0e2fdf47c3ef3c
b0bd6b350101b4a841d00b4294921a9f419cb581
refs/heads/master
2022-11-22T07:19:56.721066
2019-09-07T06:17:32
2019-09-07T06:17:32
282,152,264
0
0
null
2020-07-24T07:25:30
2020-07-24T07:25:29
null
UTF-8
Python
false
false
12,664
py
#Command List ## -it.dbgTemps(7)- DemodReal ## -it.dbgTemps(0)- DomainStage Filter1 ## -it.dbgTemps(1)- DomainStage Filter2 ## -it.dbgTemps(3)- SiBlock Temperature ## -it.dbgTemps(2)- Sled Temperature ## -it.dbgTemps(4)- Photodiode Current ## -it.dbgTemps(16)- GMI ## -it.dbgTemps(512)- ADC channel 0 ## -it.dbgTemps(513)- ADC channel 1 ## -it.dbgTemps(514)- ADC channel 2 ## -it.dbgTemps(515)- ADC channel 3 ## -it.dbgTemps(516)- ADC channel 4 ## -it.dbgTemps(517)- ADC channel 5 ## -it.dbgTemps(518)- ADC channel 6 ## -it.dbgTemps(519)- ADC channel 7 ## -it.dbgTemps(1024)- DAC channel 0 ## -it.dbgTemps(1025)- DAC channel 1 ## -it.dbgTemps(1026)- DAC channel 2 ## -it.dbgTemps(1027)- DAC channel 3 ## -it.dbgTemps(1028)- DAC channel 4 ## -it.dbgTemps(1029)- DAC channel 5 ## -it.dbgTemps(1030)- DAC channel 6 ## -it.dbgTemps(1031)- DAC channel 7 ## -it.dbgTemps(2048)- RTD 1 SAMPLE MSB ## -it.dbgTemps(2049)- RTD 1 SAMPLE LSB ## -it.dbgTemps(1050)- RTD 2 SAMPLE MSB ## -it.dbgTemps(1051)- RTD 2 SAMPLE LSB ## -it.dbgTemps(1052)- SLED THERMISTOR ADC SAMPLE ## -it.dbgTemps(1053)- SI BLOCK RTD SAMPLE ## -it.dbgTemps(1055)- PHOTODIODE MONITOR SAMPLE ## -it.dbgTemps(1056)- DEMOD SAMPLE import time import ConfigParser as parser import struct import instrumentDrivers as inst import os import sys import RegressionUtility sys.path.append(os.path.abspath('.')) import TTM.TTM t = TTM.TTM.TTM() import ITLA.ITLA it = ITLA.ITLA.ITLA(t) import TTM.Logger as l t.save_it_obj(it) print 'Instantiated a TTX interface as t, ITLA as it.' reg = open('RegressionUtility.py','r') exec(reg) #PS = inst.HP3631A(0,6) def PS_ON (): return PS.setOutputState('ON') def PS_OFF(): return PS.setOutputState('OFF') def lognumoftime(itr,timeG,timeL,resetflag,testfile,wave_meter,power_meter): ini = 0 Error1 = 0 Error2 = 0 duration = (time.time()-timeL) while duration <itr: if (resetflag != 'NO') and ini==0: ini = 1 outstring,Error1 = itpull(timeG,resetflag,wave_meter,power_meter) ## print Error1 ## if duration > 1: ## if Error1 > 0.0015 or Error1 < -0.0015: ## if 1: ## print"Sucks Here" ## print Error1 ## raise "Mode Hop Stop Test" else: outstring,Error2 = itpull(timeG,0,wave_meter,power_meter) ## print Error2 ## if duration > 1: ## if Error2 > 0.0015 or Error2 < -0.0015: ## if 1: ## print"Bad Here" ## print Error2 ## raise "Mode Hop Stop Test" try: testfile.write(outstring+"\n") print outstring except IOError: raise 'Error : file is opened in another program' duration = (time.time()-timeL) def demodConv(val): if val>=32768: #0x8000 fval = -(65536-float(val))#0x10000 else: fval = float(val) return fval/1000.0 def itpull (time0,resflag,wave_meter,power_meter): if 1: c1 = time.asctime() c2 = str(time.time()-time0) (dummy1,lf) = it.lf() c3 = str(lf) (dummy4,c4) = it.channel() c4 = str(c4) reset = str(resflag) strdemodR = float(it.dbgTemps(7)[1].data()) #demodR demodR = demodConv(strdemodR) strdemodR = str(demodR) strF1 = str(float(it.dbgTemps(0)[1].data())/100)#filter1 strF2 = str(float(it.dbgTemps(1)[1].data())/100)#filter2 strSiBlock = str(float(it.dbgTemps(3)[1].data())/100)#SiBlock strSled = str(float(it.dbgTemps(2)[1].data())/100)#Sledtemp strphoto = str(float(it.dbgTemps(4)[1].data())/100)#photodiode strGMI = str(float(it.dbgTemps(16)[1].data())/100)#GMI strSiBlockControl= str(float(it.dbgTemps(258)[1].data())/100)#SiBlock Controller DAC1 = str(int(it.dbgTemps(1025)[1].data()))#DAC CHANNEL 1 DAC2 = str(int(it.dbgTemps(1026)[1].data()))#DAC CHANNEL 2 DAC3 = str(int(it.dbgTemps(1027)[1].data()))#DAC CHANNEL 3 DAC4 = str(int(it.dbgTemps(1028)[1].data()))#DAC CHANNEL 4 DAC5 = str(int(it.dbgTemps(1029)[1].data()))#DAC CHANNEL 5 DAC6 = str(int(it.dbgTemps(1030)[1].data()))#DAC CHANNEL 6 DAC7 = str(int(it.dbgTemps(1031)[1].data()))#DAC CHANNEL 7 c,pcbTemp = it.temps()[1][1] #IF(pcbtemp < 32768,PCBtemp,-(65536-pcbtemp)) if int(pcbTemp) >= 32768: intpcbTemp = int(-(65536-int(pcbTemp))) strpcbTemp = str(intpcbTemp) else: intpcbTemp = int(pcbTemp) strpcbTemp = str(intpcbTemp) statusF = str(hex(int(it.statusF()[1].data()))) statusW = str(hex(int(it.statusW()[1].data()))) exec ('c39 = str(power_meter.%s)'%(ConfigIni.get('Station','Pwr_Cmd'))) exec ('c40 = str(wave_meter.%s)'%(ConfigIni.get('Station','Wave_Cmd'))) age = str(it.age()[1]) #c39 = '0' #c40 = '0' freqError = str(float(lf) - float(c40)) floatError = float(freqError) #freqError = '0' #floatError = '0' return "Date: " + "," + c1 + "," +"Duration:"+ "," + c2+ "," + "LF:" + "," +c3 + "," + "Meter:" + "," + c40 + "," + "FreqError" + "," + freqError+ "," +"Channel:" + "," + c4 + "," + "Power_Meter" + "," + c39 \ + "," + "Reset:" + "," + reset + "," + "demodR:" + "," + strdemodR + "," + "Filter1:" + "," + strF1\ + "," +"Filter2:" + "," + strF2 + "," + "SiBlockTemp:" + "," + strSiBlock + "," + "SledTemp:" + "," + strSled\ + "," + "photodiode:"+ "," + strphoto + "," + "GMI:" + "," + strGMI + "," + "DAC1-Siblock:"\ + "," + DAC1 + "," + "DAC3-F2:" + "," + DAC3 + "," + "DAC4-TEC:" + "," + DAC4\ + "," + "DAC5-GMI:" + "," + DAC5 + ","+ "DAC7-F1:" + "," + DAC7 + "," + "PCBTEMP:" + ","\ + strpcbTemp + "," + "StatusF:" + "," + statusF + "," + "statusW:" + "," + statusW + "," + "AGE:" + ","+ age ,floatError def pendingClear(): timeOut = 60 starttime = time.time() duration = time.time() - starttime while duration < timeOut: pendingFlag = str(int(it.nop()[1].fieldPending().value())) if pendingFlag == '0': print "Pending bit Cleared" print "Pending drop at %2fs:"%duration break duration = time.time() - starttime if duration >=timeOut: print it.temps() print it.currents() print it.statusF() print it.statusW() raise "Tunetime more than 60 seconds: Stop Test" return duration def clearAlarms(): return it.statusF(1,1,1,1,1,1,1,1),it.statusW(1,1,1,1,1,1,1,1) if __name__ == '__main__': ConfigIni = parser.ConfigParser() ConfigIni.read('Regression.ini') record_meters = ConfigIni.get('Freq_Seq','Record_Meters') if record_meters: WM_cmd = ConfigIni.get('Station','WaveMeter') print 'wavemeter:',WM_cmd exec ('wave_meter = inst.%s'%(WM_cmd)) wave_meter.connect() PM_cmd = ConfigIni.get('Station','PwrMeter') print 'pwrmeter:',PM_cmd exec ('power_meter = inst.%s'%(PM_cmd)) power_meter.connect() ## ## PM_cfg = ConfigIni.get('Station','PM_Cfg') ## exec("power_meter.SetActiveConf('POW',%s)"%(PM_cfg)) rststr = ConfigIni.get('Reset','RSTlst') rstlst = rststr.split(',') for rst in rstlst: com_port = int(ConfigIni.get('Station','COM_PORT')) preresetX = int(ConfigIni.get('Reset','Pre_ResetX')) postresetX = int(ConfigIni.get('Reset','Post_ResetX')) repeatX = int(ConfigIni.get('Reset','RepeatX')) repeatY = int(ConfigIni.get('Reset','RepeatY')) channelstr = ConfigIni.get('Reset','Channelst') channelst = channelstr.split(',') print 'preresetX:',preresetX print 'postresetX:',postresetX print 'channel lst:',channelst print 'reset:',rst if rst == 'SR': repeat = repeatY else: repeat = repeatX print 'repeat:',repeat #PS.connect() #PS_OFF() time.sleep(.5) #PS_ON() it.disconnect() time.sleep(.5) it.connect(com_port) print 'it connected to COM_PORT %d '%(com_port) print it.baudrate() it.mcb(adt=1) it.resena(1) time.sleep(30) print 'sena = 1' globleST = time.time() for chnl in channelst: #create a file to save data daytime = time.asctime() daytimestr = daytime.replace(' ','') daytimestr = daytimestr.replace(':','') test_name = ConfigIni.get('Station','Serial')+ "_" + chnl + "_"+rst+"_"+daytimestr test_file = open("%s.csv"%(test_name),"w") test_file.close() test_file = open("%s.csv"%(test_name),"a+") print 'test_name:',test_name #set default chnl = int(chnl) it.channel(int(chnl)) #it.pwr(1600) pwr = it.pwr() baud = it.baudrate() print chnl, pwr , baud ##laser on it.resena(1) if rst == 'SR': time.sleep(45) else: time.sleep(45) print "reset is %4s repeat %d times"%(rst,repeat) for i in range(repeat): set = 0 if rst=='SR': clearAlarms() set = 1 it.resena(sena=1,sr=1) time.sleep(.1) print 'Issued Soft Reset' #localST = time.time() #lognumoftime(postresetX,globleST,localST,set,test_file,wave_meter,power_meter) outstring,Error = itpull(globleST,1,wave_meter,power_meter) test_file.write(outstring+"\n") elif rst=='ECHO': clearAlarms() set = 1 it.write('\x91\x90\x00\x45') it.read(4) it.write('\xF1\x90\x00\x43') it.read(4) it.write('\x41\x90\x00\x48') it.read(4) it.write('\x31\x90\x00\x4F') it.read(4) time.sleep(.5) outstring,Error = itpull(globleST,1,wave_meter,power_meter) test_file.write(outstring+"\n") print 'Issued ECHO Command' elif rst=='TINA': clearAlarms() set = 1 it.write('\xa1\x93\x00\x54') it.read(4) it.write('\x61\x93\x00\x49') it.read(4) it.write('\x11\x93\x00\x4e') it.read(4) it.write('\xe1\x93\x00\x41') it.read(4) print 'Issued TINA Command' elif rst=='MR': print 'Issued MR Command' it.resena(mr=1) time.sleep(4) clearAlarms() it.resena(1) pendingClear() outstring,Error = itpull(globleST,1,wave_meter,power_meter) test_file.write(outstring+"\n") print '%s Command Count = %d'%(rst,i) #for i in range(10): ## it.write('\x00\x00\x00\x00') ## a1 = it.read(4) ## if len(a1)== 0: ## break localST = time.time() print 'log %d samples'%(postresetX) print "Take Data" lognumoftime(postresetX,globleST,localST,set,test_file,wave_meter,power_meter) #it.resena(0) test_file.close() it.disconnect() #PS_OFF() #PS.disconnect() print 'finished'
1ebe3832f7d3e6e2cad8cb7b057128d7445ae88f
5e84763c16bd6e6ef06cf7a129bb4bd29dd61ec5
/blimgui/dist/sdl2/test/sdl2ext_test.py
634c91a13c8617bde9751ff7777b72eacbae1f42
[ "MIT" ]
permissive
juso40/bl2sdk_Mods
8422a37ca9c2c2bbf231a2399cbcb84379b7e848
29f79c41cfb49ea5b1dd1bec559795727e868558
refs/heads/master
2023-08-15T02:28:38.142874
2023-07-22T21:48:01
2023-07-22T21:48:01
188,486,371
42
110
MIT
2022-11-20T09:47:56
2019-05-24T20:55:10
Python
UTF-8
Python
false
false
3,023
py
import sys import pytest import sdl2 from sdl2 import ext as sdl2ext from sdl2 import SDL_Quit, SDL_WasInit, SDL_FlushEvent, SDL_USEREVENT, \ SDL_FIRSTEVENT, SDL_LASTEVENT, SDL_Event, SDL_UserEvent, SDL_PushEvent @pytest.fixture(scope="module") def with_sdl_ext(): if SDL_WasInit(0) != 0: SDL_Quit() sdl2ext.init() yield sdl2ext.quit() def test_init_quit(): # NOTE: Currently init only inits the video subsystem, but quit shuts down # SDL2 and ttf/image/mixer libraries. This latter function should be tested. try: sdl2ext.init() except sdl2ext.SDLError: raise pytest.skip('Video subsystem not supported') assert SDL_WasInit(sdl2.SDL_INIT_VIDEO) == sdl2.SDL_INIT_VIDEO assert SDL_WasInit(sdl2.SDL_INIT_EVENTS) == sdl2.SDL_INIT_EVENTS sdl2ext.quit() assert SDL_WasInit(sdl2.SDL_INIT_VIDEO) != sdl2.SDL_INIT_VIDEO sdl2ext.init() sdl2ext.init() sdl2ext.init() assert SDL_WasInit(sdl2.SDL_INIT_VIDEO) == sdl2.SDL_INIT_VIDEO sdl2ext.quit() assert SDL_WasInit(sdl2.SDL_INIT_VIDEO) != sdl2.SDL_INIT_VIDEO # Test initializing other subsystems sdl2ext.init(video=False, events=True) assert SDL_WasInit(sdl2.SDL_INIT_VIDEO) != sdl2.SDL_INIT_VIDEO assert SDL_WasInit(sdl2.SDL_INIT_EVENTS) == sdl2.SDL_INIT_EVENTS sdl2ext.init(video=True, audio=True, timer=True) assert SDL_WasInit(sdl2.SDL_INIT_VIDEO) == sdl2.SDL_INIT_VIDEO assert SDL_WasInit(sdl2.SDL_INIT_AUDIO) == sdl2.SDL_INIT_AUDIO assert SDL_WasInit(sdl2.SDL_INIT_TIMER) == sdl2.SDL_INIT_TIMER sdl2ext.init(joystick=True, haptic=True) assert SDL_WasInit(sdl2.SDL_INIT_VIDEO) == sdl2.SDL_INIT_VIDEO assert SDL_WasInit(sdl2.SDL_INIT_JOYSTICK) == sdl2.SDL_INIT_JOYSTICK assert SDL_WasInit(sdl2.SDL_INIT_HAPTIC) == sdl2.SDL_INIT_HAPTIC assert SDL_WasInit(sdl2.SDL_INIT_GAMECONTROLLER) != sdl2.SDL_INIT_GAMECONTROLLER sdl2ext.init(controller=True) assert SDL_WasInit(sdl2.SDL_INIT_GAMECONTROLLER) == sdl2.SDL_INIT_GAMECONTROLLER if sdl2.dll.version < 2009: with pytest.raises(RuntimeError): sdl2ext.init(sensor=True) else: sdl2ext.init(sensor=True) assert SDL_WasInit(sdl2.SDL_INIT_SENSOR) == sdl2.SDL_INIT_SENSOR sdl2ext.quit() def test_get_events(with_sdl_ext): SDL_FlushEvent(SDL_FIRSTEVENT, SDL_LASTEVENT) for x in range(12): event = SDL_Event() event.type = SDL_USEREVENT + x event.user = SDL_UserEvent( type=event.type, timestamp=0, windowID=0, code=0 ) SDL_PushEvent(event) results = sdl2ext.get_events() assert len(results) == 12 for idx, r in enumerate(results): assert idx == r.type - SDL_USEREVENT def test_TestEventProcessor(with_sdl_ext): # NOTE: This doesn't really test functionality, but since I don't think # it's terribly useful I'm not going to bother expanding it proc = sdl2ext.TestEventProcessor() assert isinstance(proc, sdl2ext.TestEventProcessor)
d5e5f8ff2426fb8d7ade6fa65b9a3c9e98864f8f
578923e3caaae1d6cde2ad77aa5305f8f87fb360
/docs/conf.py
2396870e3fb317beabf4b0aad5c041bfe97818de
[]
no_license
acieroid/redbaron
0242583bd7a61b3f70611053f01701162809996d
0452393fb070f17c5cbfbefaf0003ab4fcca734f
refs/heads/master
2021-01-14T10:54:21.092982
2014-03-25T20:17:03
2014-03-25T20:17:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,229
py
# -*- coding: utf-8 -*- # # RedBaron documentation build configuration file, created by # sphinx-quickstart on Mon Mar 24 06:52:35 2014. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.todo', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'RedBaron' copyright = u'2014, Laurent Peuch' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '0.1' # The full version, including alpha/beta/rc tags. release = '0.1' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'RedBarondoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ ('index', 'RedBaron.tex', u'RedBaron Documentation', u'Laurent Peuch', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'redbaron', u'RedBaron Documentation', [u'Laurent Peuch'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'RedBaron', u'RedBaron Documentation', u'Laurent Peuch', 'RedBaron', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False
a0ece73e9e41e6c549bf663092a130f37be60564
2d0b7c568de35671c54bbe0a32a59bf72983273e
/src/token_generator.py
cbf968be44d0975bbe24f871d1e9461588fe1862
[]
no_license
pantsbuild/rbe-token-server
7ae2a4668990cb69e193f4c529987fe544ae831e
3bfc6410365e415c40b7c4b1879195ba533d8804
refs/heads/master
2021-06-19T05:39:02.068921
2020-02-23T21:23:49
2020-02-23T21:23:49
195,114,143
0
3
null
2021-03-20T01:38:52
2019-07-03T19:20:04
Python
UTF-8
Python
false
false
861
py
from __future__ import annotations from google.cloud import iam_credentials_v1 credentials_client = iam_credentials_v1.IAMCredentialsClient() # NB: The project name must be a wildcard `-`, per # https://cloud.google.com/iam/credentials/reference/rest/v1/projects.serviceAccounts/generateAccessToken. resource_name = credentials_client.service_account_path( project="-", service_account="[email protected]" ) # NB: This may either be `auth/cloud-platform` or `auth/iam`, per # https://cloud.google.com/iam/docs/creating-short-lived-service-account-credentials#sa-credentials-oauth scope = ["https://www.googleapis.com/auth/cloud-platform"] def generate() -> str: access_token: str = credentials_client.generate_access_token( name=resource_name, scope=scope ).access_token return access_token
213483598738cb2665edf987aeda25096640069a
d24a6e0be809ae3af8bc8daa6dacfc1789d38a84
/ABC/ABC101-150/ABC140/A.py
ea6684c60f4ced8735ed7582a6df92a8e687b9ea
[]
no_license
k-harada/AtCoder
5d8004ce41c5fc6ad6ef90480ef847eaddeea179
02b0a6c92a05c6858b87cb22623ce877c1039f8f
refs/heads/master
2023-08-21T18:55:53.644331
2023-08-05T14:21:25
2023-08-05T14:21:25
184,904,794
9
0
null
2023-05-22T16:29:18
2019-05-04T14:24:18
Python
UTF-8
Python
false
false
23
py
print(int(input())**3)
d083ca1556dd430f3d6201dd69d2bae797c40620
ea7d2090ba1d66fc5bf91b255742ae07e1f74c3d
/2020/insomnihack_teaser/welcome/pow.py
7fe66a371a9a4572dc10a0584c49d9cb52517718
[]
no_license
arty-hlr/CTF-writeups
1a3e29b9a3c3b80e33df0c9489cacd6ec09e46fe
64bcda1d1d8893c2ece308f82348755a2c62ca9e
refs/heads/master
2022-08-04T20:26:07.428393
2022-07-30T11:11:34
2022-07-30T11:11:34
167,851,059
4
3
null
2022-07-30T10:55:11
2019-01-27T19:47:03
Python
UTF-8
Python
false
false
232
py
import hashX from pwn import * s = remote('welcome.insomnihack.ch',1337) s.recvuntil('with "') h = s.recv(6).decode() found = hashX.main(h,'md5') log.info(f"found string: {found}") s.sendline(found) log.info(s.recvall().decode())
d584d7c8d4764221eb0ba568444c06c5b4f675d2
4bc048ebbf5d28b399d3ab89e717f3e7496abc38
/periods/tests/test_email_sender.py
e6b3eb6a2683c922dfbbdc6f65b6fe9db9609a2b
[ "MIT" ]
permissive
jessamynsmith/eggtimer-server
3feff03057148f7ab54c0df8c863f1543be886a9
e1b1d9d848893b9e6e56e985da74d6b378c07744
refs/heads/master
2023-02-05T05:38:51.194914
2023-02-04T04:27:02
2023-02-04T04:27:02
8,124,406
50
18
MIT
2023-01-11T12:45:53
2013-02-10T15:57:26
Python
UTF-8
Python
false
false
871
py
from django.contrib.auth import get_user_model from django.test import TestCase from mock import patch from periods import email_sender class TestEmailSender(TestCase): def setUp(self): self.user = get_user_model().objects.create_user( password='bogus', email='[email protected]', first_name=u'Jessamyn') @patch('django.core.mail.EmailMultiAlternatives.send') def test_send_text_only(self, mock_send): result = email_sender.send(self.user, 'Hi!', 'good day', None) self.assertEqual(True, result) mock_send.assert_called_once_with() @patch('django.core.mail.EmailMultiAlternatives.send') def test_send_with_html(self, mock_send): result = email_sender.send(self.user, 'Hi!', 'good day', '<p>good day</p>') self.assertEqual(True, result) mock_send.assert_called_once_with()
ae04c679aa39b3879f61ca4cc2bb61cc2caaa05f
636007d520745778b34ecb57ef0fce5e9ac04481
/mantle_transition_zone_migration_obspy/section_migration_py/cross_section_Ps_Pds_bootstrap.py
6daf4611ceea6f0a7d20aba38937ecceb30a8ff1
[]
no_license
dIOGOLOC/codes_escritos
afc1e67686ace9162080afd6c61783508965d684
b8b5343d1e9ff28a39fc7221f33952f0ffd3db35
refs/heads/master
2023-06-08T12:40:56.511078
2023-06-02T23:33:57
2023-06-02T23:33:57
94,356,450
3
0
null
null
null
null
UTF-8
Python
false
false
23,700
py
# coding: utf-8 import matplotlib.pyplot as plt import matplotlib as mpl import numpy as np import obspy import os from obspy.taup import TauPyModel from obspy.geodetics import kilometer2degrees import copy import matplotlib from matplotlib.cm import get_cmap from mpl_toolkits.mplot3d import Axes3D import cartopy.crs as ccrs from cartopy.io.shapereader import Reader import cartopy.feature as cfeature from fatiando import gridder, utils import scipy.io import matplotlib.cm as cm from matplotlib.ticker import MultipleLocator, FormatStrFormatter import json import matplotlib.gridspec as gridspec from mpl_toolkits.axes_grid1 import make_axes_locatable from matplotlib.patches import Circle,Rectangle import math from parameters_py.mgconfig import ( RF_DIR,RF_EXT,MODEL_FILE_NPZ,MIN_DEPTH,MAX_DEPTH,INTER_DEPTH, NUMBER_PP_PER_BIN,GRID_PP_MULT,COLORMAP_STD, LLCRNRLON_LARGE,LLCRNRLAT_LARGE,URCRNRLON_LARGE,URCRNRLAT_LARGE,LLCRNRLON_SMALL, URCRNRLON_SMALL,LLCRNRLAT_SMALL,URCRNRLAT_SMALL,PROJECT_LAT,PROJECT_LON, BOUNDARY_1_SHP,BOUNDARY_2_SHP,OUTPUT_DIR, EXT_FIG,DPI_FIG,FRESNEL_ZONE_RADIUS,DIST_GRID_PP,DEPTH_RANGE,COLORMAP_VEL, NUMBER_PP_PER_BIN,NUMBER_STA_PER_BIN,DEPTH_TARGET ) print('Starting Cross section CODE') print('\n') STA_DIR = OUTPUT_DIR+'MODEL_INTER_DEPTH_'+str(INTER_DEPTH)+'_DEPTH_TARGET_'+str(DEPTH_TARGET)+'/'+'Stations'+'/' print('Looking for receiver functions data in JSON file in '+STA_DIR) print('\n') filename_STA = STA_DIR+'sta_dic.json' sta_dic = json.load(open(filename_STA)) event_depth = sta_dic['event_depth'] event_lat = sta_dic['event_lat'] event_long = sta_dic['event_long'] event_dist = sta_dic['event_dist'] event_gcarc = sta_dic['event_gcarc'] event_sta = sta_dic['event_sta'] event_ray = sta_dic['event_ray'] sta_lat = sta_dic['sta_lat'] sta_long = sta_dic['sta_long'] sta_data = sta_dic['sta_data'] sta_time = sta_dic['sta_time'] print('Importing selected binned data') print('\n') PP_SELEC_DIR = OUTPUT_DIR+'MODEL_INTER_DEPTH_'+str(INTER_DEPTH)+'_DEPTH_TARGET_'+str(DEPTH_TARGET)+'/'+'SELECTED_BINNED_DATA'+'/' RESULTS_FOLDER_BINS = PP_SELEC_DIR+'/'+'RESULTS_NUMBER_PP_PER_BIN_'+str(NUMBER_PP_PER_BIN)+'_NUMBER_STA_PER_BIN_'+str(NUMBER_STA_PER_BIN)+'/' filename = RESULTS_FOLDER_BINS+'SELECTED_BINNED.json' SELECTED_BINNED_DATA_dic = json.load(open(filename)) lats = SELECTED_BINNED_DATA_dic['lat'] lons = SELECTED_BINNED_DATA_dic['lon'] RF_number = SELECTED_BINNED_DATA_dic['len_Pds'] RF_stacking_Pds = SELECTED_BINNED_DATA_dic['data_Pds'] RF_stacking_Ppds = SELECTED_BINNED_DATA_dic['data_Ppds'] RF_stacking_Pds_BOOTSTRAP = SELECTED_BINNED_DATA_dic['data_BOOTSTRAP_Pds'] RF_stacking_Ppds_BOOTSTRAP = SELECTED_BINNED_DATA_dic['data_BOOTSTRAP_Ppds'] RF_BOOTSTRAP_DEPTH_mean_1_Pds = SELECTED_BINNED_DATA_dic['RF_BOOTSTRAP_DEPTH_mean_1_Pds'] RF_BOOTSTRAP_DEPTH_mean_1_Ppds = SELECTED_BINNED_DATA_dic['RF_BOOTSTRAP_DEPTH_mean_1_Ppds'] RF_BOOTSTRAP_DEPTH_mean_520_Pds = SELECTED_BINNED_DATA_dic['RF_BOOTSTRAP_DEPTH_mean_520_Pds'] RF_BOOTSTRAP_DEPTH_mean_520_Ppds = SELECTED_BINNED_DATA_dic['RF_BOOTSTRAP_DEPTH_mean_520_Ppds'] RF_BOOTSTRAP_DEPTH_mean_2_Pds = SELECTED_BINNED_DATA_dic['RF_BOOTSTRAP_DEPTH_mean_2_Pds'] RF_BOOTSTRAP_DEPTH_mean_2_Ppds = SELECTED_BINNED_DATA_dic['RF_BOOTSTRAP_DEPTH_mean_2_Ppds'] RF_DEPTH_mean_1_Pds = SELECTED_BINNED_DATA_dic['mean_1_Pds'] RF_DEPTH_std_1_Pds = SELECTED_BINNED_DATA_dic['std_1_Pds'] RF_DEPTH_mean_520_Pds = SELECTED_BINNED_DATA_dic['mean_520_Pds'] RF_DEPTH_std_520_Pds = SELECTED_BINNED_DATA_dic['std_520_Pds'] RF_DEPTH_mean_2_Pds = SELECTED_BINNED_DATA_dic['mean_2_Pds'] RF_DEPTH_std_2_Pds = SELECTED_BINNED_DATA_dic['std_2_Pds'] RF_DEPTH_mean_1_Ppds = SELECTED_BINNED_DATA_dic['mean_1_Ppds'] RF_DEPTH_std_1_Ppds = SELECTED_BINNED_DATA_dic['std_1_Ppds'] RF_DEPTH_mean_520_Ppds = SELECTED_BINNED_DATA_dic['mean_520_Ppds'] RF_DEPTH_std_520_Ppds = SELECTED_BINNED_DATA_dic['std_520_Ppds'] RF_DEPTH_mean_2_Ppds = SELECTED_BINNED_DATA_dic['mean_2_Ppds'] RF_DEPTH_std_2_Ppds = SELECTED_BINNED_DATA_dic['std_2_Ppds'] RF_DEPTH_mtz_thickness_Pds = SELECTED_BINNED_DATA_dic['mtz_thickness_Pds'] RF_DEPTH_mtz_thickness_Pds_std = SELECTED_BINNED_DATA_dic['mtz_thickness_Pds_std'] RF_DEPTH_mtz_thickness_Ppds = SELECTED_BINNED_DATA_dic['mtz_thickness_Ppds'] RF_DEPTH_mtz_thickness_Ppds_std = SELECTED_BINNED_DATA_dic['mtz_thickness_Ppds_std'] RF_DEPTH_true_thickness_MTZ_Pds = SELECTED_BINNED_DATA_dic['true_thickness_MTZ_Pds'] RF_DEPTH_true_thickness_MTZ_Pds_std = SELECTED_BINNED_DATA_dic['true_thickness_MTZ_Pds_std'] RF_DEPTH_true_thickness_MTZ_Ppds = SELECTED_BINNED_DATA_dic['true_thickness_MTZ_Ppds'] RF_DEPTH_true_thickness_MTZ_Ppds_std = SELECTED_BINNED_DATA_dic['true_thickness_MTZ_Ppds_std'] RF_DEPTH_mean_1_true_Pds = SELECTED_BINNED_DATA_dic['true_mean_1_Pds'] RF_DEPTH_std_1_true_Pds = SELECTED_BINNED_DATA_dic['true_std_1_Pds'] RF_DEPTH_mean_2_true_Pds = SELECTED_BINNED_DATA_dic['true_mean_2_Pds'] RF_DEPTH_std_2_true_Pds = SELECTED_BINNED_DATA_dic['true_std_2_Pds'] RF_DEPTH_mean_1_true_Ppds = SELECTED_BINNED_DATA_dic['true_mean_1_Ppds'] RF_DEPTH_std_1_true_Ppds = SELECTED_BINNED_DATA_dic['true_std_1_Ppds'] RF_DEPTH_mean_2_true_Ppds = SELECTED_BINNED_DATA_dic['true_mean_2_Ppds'] RF_DEPTH_std_2_true_Ppds = SELECTED_BINNED_DATA_dic['true_std_2_Ppds'] RF_delta_1_Vp_mean = SELECTED_BINNED_DATA_dic['delta_1_Vp_mean'] RF_delta_1_Vp_std = SELECTED_BINNED_DATA_dic['delta_1_Vp_std'] RF_delta_1_Vs_mean = SELECTED_BINNED_DATA_dic['delta_1_Vs_mean'] RF_delta_1_Vs_std = SELECTED_BINNED_DATA_dic['delta_1_Vs_std'] RF_delta_2_Vp_mean = SELECTED_BINNED_DATA_dic['delta_2_Vp_mean'] RF_delta_2_Vp_std = SELECTED_BINNED_DATA_dic['delta_2_Vp_std'] RF_delta_2_Vs_mean = SELECTED_BINNED_DATA_dic['delta_2_Vs_mean'] RF_delta_2_Vs_std = SELECTED_BINNED_DATA_dic['delta_2_Vs_std'] print('Calculating earth model layers') print('\n') camadas_terra_10_km = np.arange(MIN_DEPTH,MAX_DEPTH+INTER_DEPTH,INTER_DEPTH) print('Plotting ...') print('\n') #Color Maps colormap = plt.get_cmap(COLORMAP_VEL) fig, ax = plt.subplots(nrows=1, ncols=1, subplot_kw={'projection': ccrs.Mercator(central_longitude=PROJECT_LON, globe=None)},figsize=(10,5)) ax.set_extent([LLCRNRLON_LARGE,URCRNRLON_LARGE,LLCRNRLAT_LARGE,URCRNRLAT_LARGE]) ax.yaxis.set_ticks_position('both') ax.xaxis.set_ticks_position('both') ax.set_xticks(np.arange(LLCRNRLON_LARGE,URCRNRLON_LARGE,4), crs=ccrs.PlateCarree()) ax.set_yticks(np.arange(LLCRNRLAT_LARGE,URCRNRLAT_LARGE,4), crs=ccrs.PlateCarree()) ax.tick_params(labelbottom=True,labeltop=True,labelleft=True,labelright=True) ax.grid(True,which='major',color='gray',linewidth=1,linestyle='None') reader_1_SHP = Reader(BOUNDARY_1_SHP) shape_1_SHP = list(reader_1_SHP.geometries()) plot_shape_1_SHP = cfeature.ShapelyFeature(shape_1_SHP, ccrs.PlateCarree()) ax.add_feature(plot_shape_1_SHP, facecolor='none', edgecolor='k',linewidth=3) reader_2_SHP = Reader(BOUNDARY_2_SHP) shape_2_SHP = list(reader_2_SHP.geometries()) plot_shape_2_SHP = cfeature.ShapelyFeature(shape_2_SHP, ccrs.PlateCarree()) ax.add_feature(plot_shape_2_SHP, facecolor='none', edgecolor='k',linewidth=1) norm_410 = mpl.colors.Normalize(vmin=200,vmax=300,clip=True) for i,j in enumerate(lons): if math.isnan(RF_DEPTH_true_thickness_MTZ_Pds[i]) == False: circulo_410 = Circle(radius=DIST_GRID_PP*(1-(RF_DEPTH_true_thickness_MTZ_Pds_std[i]/50)),xy=(lons[i],lats[i]),color=colormap(norm_410(RF_DEPTH_true_thickness_MTZ_Pds[i])), ec='None',transform=ccrs.Geodetic(),zorder=3) ax.add_patch(circulo_410) circulo_410.pickable() circulo_410.set_picker(True) ax.plot(sta_long,sta_lat, '^',markersize=10,markeredgecolor='k',markerfacecolor='grey',transform=ccrs.PlateCarree()) #______________________________________________________________________ sm_410 = plt.cm.ScalarMappable(cmap=colormap,norm=norm_410) sm_410._A = [] fig.colorbar(sm_410,ax=ax,orientation='horizontal',shrink=0.8) plt.title('Pick four points for bootstrapping cross-section and them close the windows', y=1.08) lon_click = [] lat_click = [] def onpick1(event): if isinstance(event.artist,Circle): patch = event.artist patch_lon = float("%.4f" % round(patch.center[0],4)) patch_lat = float("%.4f" % round(patch.center[1],4)) print('Return lon/lat of the rectangle selected (left,bottom)') print('lon='+str(patch_lon), 'lat='+str(patch_lat)) lon_click.append(patch_lon) lat_click.append(patch_lat) retangulo_PICK = Circle(radius=DIST_GRID_PP,xy=(patch_lon, patch_lat),color='k', ec='k',linewidth=1,transform=ccrs.Geodetic(),zorder=5) ax.add_patch(retangulo_PICK) plt.draw() if len(lon_click) == 4: fig.canvas.mpl_disconnect(cid) return lon_click,lat_click cid = fig.canvas.mpl_connect('pick_event', onpick1) plt.show() PP_FIGURE = OUTPUT_DIR+'MODEL_INTER_DEPTH_'+str(INTER_DEPTH)+'_DEPTH_TARGET_'+str(DEPTH_TARGET)+'/'+'Figures'+'/' RESULTS_FOLDER = PP_FIGURE+'/'+'RESULTS_NUMBER_PP_PER_BIN_'+str(NUMBER_PP_PER_BIN)+'_NUMBER_STA_PER_BIN_'+str(NUMBER_STA_PER_BIN)+'/' os.makedirs(RESULTS_FOLDER,exist_ok=True) fig.savefig(RESULTS_FOLDER+'SELECTED_BINNED_DATA_CROSS_SECTION_Pds_Ppds_bootstrap_points.'+EXT_FIG,dpi=DPI_FIG) print('Allocating points') print('\n') #Profile lat/lon RF_lat_profile = [] RF_lon_profile = [] #Profile Data RF_data_profile_Pds = [] RF_data_profile_Ppds = [] #P410s RF_DEPTH_mean_1_profile_Pds = [] RF_DEPTH_std_1_profile_Pds = [] #Pp410s RF_DEPTH_mean_1_profile_Ppds = [] RF_DEPTH_std_1_profile_Ppds = [] #P520s RF_DEPTH_mean_520_profile_Pds = [] RF_DEPTH_std_520_profile_Pds = [] #Pp520s RF_DEPTH_mean_520_profile_Ppds = [] RF_DEPTH_std_520_profile_Ppds = [] #P660s RF_DEPTH_mean_2_profile_Pds = [] RF_DEPTH_std_2_profile_Pds = [] #Pp660s RF_DEPTH_mean_2_profile_Ppds = [] RF_DEPTH_std_2_profile_Ppds = [] #MTZ Pds RF_DEPTH_mtz_thickness_profile_Pds = [] RF_DEPTH_mtz_thickness_profile_Pds_std = [] #MTZ Ppds RF_DEPTH_mtz_thickness_profile_Ppds = [] RF_DEPTH_mtz_thickness_profile_Ppds_std = [] # True 410 km RF_DEPTH_mean_1_true_profile = [] RF_DEPTH_std_1_true_profile = [] # True 660 km RF_DEPTH_mean_2_true_profile = [] RF_DEPTH_std_2_true_profile = [] # True MTZ RF_DEPTH_true_thickness_MTZ_profile = [] RF_DEPTH_true_thickness_MTZ_profile_std = [] #Bootstrap Data Receiver Functions Pds and Ppds RF_stacking_Pds_BOOTSTRAP_profile = [] RF_stacking_Ppds_BOOTSTRAP_profile = [] #Bootstrap Data Mean P410s RF_BOOTSTRAP_DEPTH_mean_1_Pds_profile = [] #Bootstrap Data Mean Pp410s RF_BOOTSTRAP_DEPTH_mean_1_Ppds_profile = [] #Bootstrap Data Mean P520s RF_BOOTSTRAP_DEPTH_mean_520_Pds_profile = [] #Bootstrap Data Mean Pp520s RF_BOOTSTRAP_DEPTH_mean_520_Ppds_profile = [] #Bootstrap Data Mean P660s RF_BOOTSTRAP_DEPTH_mean_2_Pds_profile = [] #Bootstrap Data Mean P660s RF_BOOTSTRAP_DEPTH_mean_2_Ppds_profile = [] lat_lon = [(lons[k],lats[k]) for k,l in enumerate(lats)] for i,j in enumerate(lon_click): idx = lat_lon.index((lon_click[i],lat_click[i])) #Profile lat/lon RF_lat_profile.append(lats[idx]) RF_lon_profile.append(lons[idx]) #Profile Data RF_data_profile_Pds.append(RF_stacking_Pds[idx]) RF_data_profile_Ppds.append(RF_stacking_Ppds[idx]) #P410s RF_DEPTH_mean_1_profile_Pds.append(RF_DEPTH_mean_1_Pds[idx]) RF_DEPTH_std_1_profile_Pds.append(RF_DEPTH_std_1_Pds[idx]) #Pp410s RF_DEPTH_mean_1_profile_Ppds.append(RF_DEPTH_mean_1_Ppds[idx]) RF_DEPTH_std_1_profile_Ppds.append(RF_DEPTH_std_1_Ppds[idx]) #P520s RF_DEPTH_mean_520_profile_Pds.append(RF_DEPTH_mean_520_Pds[idx]) RF_DEPTH_std_520_profile_Pds.append(RF_DEPTH_std_520_Pds[idx]) #Pp520s RF_DEPTH_mean_520_profile_Ppds.append(RF_DEPTH_mean_520_Ppds[idx]) RF_DEPTH_std_520_profile_Ppds.append(RF_DEPTH_std_520_Ppds[idx]) #P660s RF_DEPTH_mean_2_profile_Pds.append(RF_DEPTH_mean_2_Pds[idx]) RF_DEPTH_std_2_profile_Pds.append(RF_DEPTH_std_2_Pds[idx]) #Pp660s RF_DEPTH_mean_2_profile_Ppds.append(RF_DEPTH_mean_2_Ppds[idx]) RF_DEPTH_std_2_profile_Ppds.append(RF_DEPTH_std_2_Ppds[idx]) #MTZ Pds RF_DEPTH_mtz_thickness_profile_Pds.append(RF_DEPTH_mtz_thickness_Pds[idx]) RF_DEPTH_mtz_thickness_profile_Pds_std.append(RF_DEPTH_mtz_thickness_Pds_std[idx]) #MTZ Ppds RF_DEPTH_mtz_thickness_profile_Ppds.append(RF_DEPTH_mtz_thickness_Ppds[idx]) RF_DEPTH_mtz_thickness_profile_Ppds_std.append(RF_DEPTH_mtz_thickness_Ppds_std[idx]) # True 410 km RF_DEPTH_mean_1_true_profile.append(RF_DEPTH_mean_1_true_Pds[idx]) RF_DEPTH_std_1_true_profile.append(RF_DEPTH_std_1_true_Pds[idx]) # True 660 km RF_DEPTH_mean_2_true_profile.append(RF_DEPTH_mean_2_true_Pds[idx]) RF_DEPTH_std_2_true_profile.append(RF_DEPTH_std_2_true_Pds[idx]) # True MTZ RF_DEPTH_true_thickness_MTZ_profile.append(RF_DEPTH_true_thickness_MTZ_Pds[idx]) RF_DEPTH_true_thickness_MTZ_profile_std.append(RF_DEPTH_true_thickness_MTZ_Pds_std[idx]) #Bootstrap Data Receiver Functions Pds and Ppds RF_stacking_Pds_BOOTSTRAP_profile.append(RF_stacking_Pds_BOOTSTRAP[idx]) RF_stacking_Ppds_BOOTSTRAP_profile.append(RF_stacking_Ppds_BOOTSTRAP[idx]) #Bootstrap Data Mean P410s RF_BOOTSTRAP_DEPTH_mean_1_Pds_profile.append(RF_BOOTSTRAP_DEPTH_mean_1_Pds[idx]) #Bootstrap Data Mean Pp410s RF_BOOTSTRAP_DEPTH_mean_1_Ppds_profile.append(RF_BOOTSTRAP_DEPTH_mean_1_Ppds[idx]) #Bootstrap Data Mean P520s RF_BOOTSTRAP_DEPTH_mean_520_Pds_profile.append(RF_BOOTSTRAP_DEPTH_mean_520_Pds[idx]) #Bootstrap Data Mean Pp520s RF_BOOTSTRAP_DEPTH_mean_520_Ppds_profile.append(RF_BOOTSTRAP_DEPTH_mean_520_Ppds[idx]) #Bootstrap Data Mean P660s RF_BOOTSTRAP_DEPTH_mean_2_Pds_profile.append(RF_BOOTSTRAP_DEPTH_mean_2_Pds[idx]) #Bootstrap Data Mean P660s RF_BOOTSTRAP_DEPTH_mean_2_Ppds_profile.append(RF_BOOTSTRAP_DEPTH_mean_2_Ppds[idx]) print('Plotting the Final Figure') #Cross section figure fig = plt.figure(figsize=(30, 10)) fig.suptitle('Pds and Ppds Bootstrapping points') gs = gridspec.GridSpec(6, 8) gs.update(wspace=0.5, hspace=0.75) #Figure Pds for _i, _j in enumerate(RF_data_profile_Pds): pds_grid = fig.add_subplot(gs[0:3, _i*2:_i*2+1]) ppds_grid = fig.add_subplot(gs[3:6, _i*2:_i*2+1]) pds_grid_410_660 = fig.add_subplot(gs[0:3, _i*2+1]) ppds_grid_410_660 = fig.add_subplot(gs[3:6,_i*2+1]) factor_Pds = 1 majorLocatorY = MultipleLocator(50) minorLocatorY = MultipleLocator(10) x_data_Pds= [] for x,c in enumerate(RF_stacking_Pds_BOOTSTRAP_profile[_i]): RF_data_factor_Pds_bootstrap = [l for k, l in enumerate(c)] x_data_Pds.append(RF_data_factor_Pds_bootstrap) pds_grid.plot(RF_data_factor_Pds_bootstrap,camadas_terra_10_km,'silver',linewidth=0.1, zorder=10) min_x = [min(a) for a in zip(*x_data_Pds)] max_x = [max(a) for a in zip(*x_data_Pds)] pds_grid.fill_betweenx(y=camadas_terra_10_km,x1=min_x, x2=max_x, facecolor='whitesmoke',alpha=0.3, interpolate=True, zorder=5) if math.isnan(RF_DEPTH_mean_1_profile_Pds[i]) == False: pds_grid.text(-0.0095,RF_DEPTH_mean_1_profile_Pds[_i],str(round(RF_DEPTH_mean_1_profile_Pds[_i]))+'±'+str(round(RF_DEPTH_std_1_profile_Pds[_i])),zorder=40,fontsize=6, fontweight='bold',ha='left',bbox={'facecolor':'white','edgecolor':'none','pad':1}) #if math.isnan(RF_DEPTH_std_520_profile_Pds[i]) == False: # pds_grid.text(-0.0095,RF_DEPTH_mean_520_profile_Pds[_i],str(round(RF_DEPTH_mean_520_profile_Pds[_i]))+'±'+str(round(RF_DEPTH_std_520_profile_Pds[_i])),zorder=41,fontsize=6, fontweight='bold',ha='left',bbox={'facecolor':'white','edgecolor':'none','pad':1}) if math.isnan(RF_DEPTH_mean_2_profile_Pds[i]) == False: pds_grid.text(-0.0095,RF_DEPTH_mean_2_profile_Pds[_i],str(round(RF_DEPTH_mean_2_profile_Pds[_i]))+'±'+str(round(RF_DEPTH_std_2_profile_Pds[_i])),zorder=42,fontsize=6, fontweight='bold',ha='left',bbox={'facecolor':'white','edgecolor':'none','pad':1}) RF_data_factor_Pds = [l for k, l in enumerate(_j)] pds_grid.plot(RF_data_factor_Pds,camadas_terra_10_km,'k',linewidth=2, zorder=30) pds_grid.yaxis.set_ticks_position('both') pds_grid.yaxis.set_major_locator(majorLocatorY) pds_grid.yaxis.set_minor_locator(minorLocatorY) pds_grid.grid(True,which='major',linestyle='None') pds_grid.fill_betweenx(camadas_terra_10_km,RF_data_factor_Pds,0,where=np.array(RF_data_factor_Pds)>=0,alpha=0.5, facecolor='dimgrey',interpolate=True, zorder=19) pds_grid.fill_betweenx(camadas_terra_10_km,RF_data_factor_Pds,0,where=np.array(RF_data_factor_Pds)<=0,alpha=0.5, facecolor='lightgrey', interpolate=True, zorder=20) #pds_grid.set_xticks([]) pds_grid.set_xlim(-0.01,0.01) pds_grid.set_title('Lat = '+str(round(RF_lat_profile[_i],1))+' - Lon = '+str(round(RF_lon_profile[_i],1))) pds_grid.set_ylim(800,300) if _i == 0: pds_grid.set_ylabel('Depth (km)') pds_grid.yaxis.set_label_position("left") if _i != 0: pds_grid.axes.axes.yaxis.set_ticklabels([]) #Figure Ppds factor_Ppds = 1 x_data_Ppds = [] for x,c in enumerate(RF_stacking_Ppds_BOOTSTRAP_profile[_i]): RF_data_factor_Ppds_bootstrap = [l for k, l in enumerate(c)] x_data_Ppds.append(RF_data_factor_Ppds_bootstrap) ppds_grid.plot(RF_data_factor_Ppds_bootstrap,camadas_terra_10_km,'silver',linewidth=0.1, zorder=10) min_x = [min(a) for a in zip(*x_data_Ppds)] max_x = [max(a) for a in zip(*x_data_Ppds)] ppds_grid.fill_betweenx(y=camadas_terra_10_km,x1=min_x, x2=max_x, facecolor='whitesmoke',alpha=0.3, interpolate=True, zorder=5) RF_data_factor_Ppds = [l for k, l in enumerate(RF_data_profile_Ppds[_i])] ppds_grid.plot(RF_data_factor_Ppds,camadas_terra_10_km,'k',linewidth=2, zorder=30) if math.isnan(RF_DEPTH_mean_1_profile_Ppds[i]) == False: ppds_grid.text(-0.0095,RF_DEPTH_mean_1_profile_Ppds[_i],str(round(RF_DEPTH_mean_1_profile_Ppds[_i]))+'±'+str(round(RF_DEPTH_std_1_profile_Ppds[_i])),zorder=40,fontsize=6, fontweight='bold',ha='left',bbox={'facecolor':'white','edgecolor':'none','pad':1}) #if math.isnan(RF_DEPTH_mean_520_profile_Ppds[i]) == False: # ppds_grid.text(-0.0095,RF_DEPTH_mean_520_profile_Ppds[_i],str(round(RF_DEPTH_mean_520_profile_Ppds[_i]))+'±'+str(round(RF_DEPTH_std_520_profile_Ppds[_i])),zorder=41,fontsize=6, fontweight='bold',bbox={'facecolor':'white','edgecolor':'none','pad':1}) if math.isnan(RF_DEPTH_mean_2_profile_Ppds[i]) == False: ppds_grid.text(-0.0095,RF_DEPTH_mean_2_profile_Ppds[_i],str(round(RF_DEPTH_mean_2_profile_Ppds[_i]))+'±'+str(round(RF_DEPTH_std_2_profile_Ppds[_i])),zorder=42,fontsize=6, fontweight='bold',ha='left',bbox={'facecolor':'white','edgecolor':'none','pad':1}) ppds_grid.fill_betweenx(camadas_terra_10_km,RF_data_factor_Ppds,0,where=np.array(RF_data_factor_Ppds)>=0,alpha=0.5, facecolor='dimgrey',interpolate=True, zorder=19) ppds_grid.fill_betweenx(camadas_terra_10_km,RF_data_factor_Ppds,0,where=np.array(RF_data_factor_Ppds)<=0,alpha=0.5, facecolor='lightgrey',interpolate=True, zorder=20) ppds_grid.yaxis.set_major_locator(majorLocatorY) ppds_grid.yaxis.set_minor_locator(minorLocatorY) ppds_grid.grid(True,which='major',linestyle='None') ppds_grid.yaxis.set_ticks_position('both') #ppds_grid.set_xticks([]) ppds_grid.set_xlim(-0.01,0.01) ppds_grid.set_ylim(800,300) if _i == 0: ppds_grid.set_ylabel('Depth (km)') ppds_grid.yaxis.set_label_position("left") if _i != 0: ppds_grid.axes.axes.yaxis.set_ticklabels([]) #### Plot Depth 410 Pds #### pds_grid_410_660.hist(RF_BOOTSTRAP_DEPTH_mean_1_Pds_profile[_i],bins=5,orientation='horizontal',color='k') #### Plot Depth 520 Pds #### pds_grid_410_660.hist(RF_BOOTSTRAP_DEPTH_mean_520_Pds_profile[_i],bins=5,orientation='horizontal',color='k') #### Plot Depth 660 Pds #### pds_grid_410_660.hist(RF_BOOTSTRAP_DEPTH_mean_2_Pds_profile[_i],bins=5,orientation='horizontal',color='k') pds_grid_410_660.yaxis.set_ticks_position('both') pds_grid_410_660.yaxis.set_ticks_position('both') pds_grid_410_660.yaxis.set_major_locator(majorLocatorY) pds_grid_410_660.yaxis.set_minor_locator(minorLocatorY) pds_grid_410_660.grid(True,which='major',linestyle='None') pds_grid_410_660.set_xlim(0,100) pds_grid_410_660.set_ylim(800,300) pds_grid_410_660.axes.axes.xaxis.set_ticklabels([]) if _i != 3: pds_grid_410_660.axes.axes.yaxis.set_ticklabels([]) if _i == 3: pds_grid_410_660.set_ylabel('Depth (km)') pds_grid_410_660.yaxis.set_label_position("right") pds_grid_410_660.tick_params(labelright=True,labelleft=False) pds_grid_410_660.text(5,550,' MTZ = '+str(round(RF_DEPTH_mtz_thickness_profile_Pds[_i]))+'±'+str(round(RF_DEPTH_mtz_thickness_profile_Pds_std[_i])),zorder=40,fontsize=6, fontweight='bold',bbox={'facecolor':'white','edgecolor':'none','pad':1}) pds_grid_410_660.text(5,580,'(MTZ = '+str(round(RF_DEPTH_true_thickness_MTZ_profile[_i]))+'±'+str(round(RF_DEPTH_true_thickness_MTZ_profile_std[_i]))+')',zorder=40,fontsize=6, fontweight='bold',bbox={'facecolor':'white','edgecolor':'none','pad':1}) pds_grid_410_660.text(5,RF_DEPTH_mean_1_profile_Pds[_i]-30,'('+str(round(RF_DEPTH_mean_1_true_profile[_i]))+'±'+str(round(RF_DEPTH_std_1_true_profile[_i]))+')',zorder=40,fontsize=6, fontweight='bold',bbox={'facecolor':'white','edgecolor':'none','pad':1}) pds_grid_410_660.text(5,RF_DEPTH_mean_2_profile_Pds[_i]+40,'('+str(round(RF_DEPTH_mean_2_true_profile[_i]))+'±'+str(round(RF_DEPTH_std_2_true_profile[_i]))+')',zorder=40,fontsize=6, fontweight='bold',bbox={'facecolor':'white','edgecolor':'none','pad':1}) #### Plot Depth 410 Ppds #### ppds_grid_410_660.hist(RF_BOOTSTRAP_DEPTH_mean_1_Ppds_profile[_i],bins=5,orientation='horizontal',color='k') #### Plot Depth 520 Ppds #### ppds_grid_410_660.hist(RF_BOOTSTRAP_DEPTH_mean_520_Ppds_profile[_i],bins=5,orientation='horizontal',color='k') #### Plot Depth 660 Ppds #### ppds_grid_410_660.hist(RF_BOOTSTRAP_DEPTH_mean_2_Ppds_profile[_i],bins=5,orientation='horizontal',color='k') ppds_grid_410_660.yaxis.set_ticks_position('both') ppds_grid_410_660.set_xlim(0,100) ppds_grid_410_660.yaxis.set_ticks_position('both') ppds_grid_410_660.yaxis.set_major_locator(majorLocatorY) ppds_grid_410_660.yaxis.set_minor_locator(minorLocatorY) ppds_grid_410_660.grid(True,which='major',linestyle='None') ppds_grid_410_660.set_xlabel('Population') ppds_grid_410_660.set_ylim(800,300) ppds_grid_410_660.text(5,550,' MTZ = '+str(round(RF_DEPTH_mtz_thickness_profile_Ppds[_i]))+'±'+str(round(RF_DEPTH_mtz_thickness_profile_Ppds_std[_i])),zorder=40,fontsize=6, fontweight='bold',bbox={'facecolor':'white','edgecolor':'none','pad':1}) ppds_grid_410_660.text(5,580,'(MTZ = '+str(round(RF_DEPTH_true_thickness_MTZ_profile[_i]))+'±'+str(round(RF_DEPTH_true_thickness_MTZ_profile_std[_i]))+')',zorder=40,fontsize=6, fontweight='bold',bbox={'facecolor':'white','edgecolor':'none','pad':1}) ppds_grid_410_660.text(5,RF_DEPTH_mean_1_profile_Ppds[_i]-30,'('+str(round(RF_DEPTH_mean_1_true_profile[_i]))+'±'+str(round(RF_DEPTH_std_1_true_profile[_i]))+')',zorder=40,fontsize=6, fontweight='bold',bbox={'facecolor':'white','edgecolor':'none','pad':1}) ppds_grid_410_660.text(5,RF_DEPTH_mean_2_profile_Ppds[_i]+40,'('+str(round(RF_DEPTH_mean_2_true_profile[_i]))+'±'+str(round(RF_DEPTH_std_2_true_profile[_i]))+')',zorder=40,fontsize=6, fontweight='bold',bbox={'facecolor':'white','edgecolor':'none','pad':1}) if _i != 3: ppds_grid_410_660.axes.axes.yaxis.set_ticklabels([]) if _i == 3: ppds_grid_410_660.set_ylabel('Depth (km)') ppds_grid_410_660.yaxis.set_label_position("right") ppds_grid_410_660.tick_params(labelright=True,labelleft=False) plt.show() fig.savefig(RESULTS_FOLDER+'SELECTED_BINNED_DATA_CROSS_SECTION_Pds_Ppds_bootstrap.'+EXT_FIG,dpi=DPI_FIG) print('Ending the Cross section CODE')
8958e6f53eb6f329cbf8d3590c910185087cc17e
9ae08906602af5eacec43d60e5e428269bf24eb1
/find_light_mask.py
1a766fd56ac704dffe8c178d500376243cf549ba
[]
no_license
yangzhaonan18/TSDcv2
9f73278979542d1a40ced5aa152bbc7fa363398c
e9cb0fefc7177db93510b7bc5ca1bb86e32571c6
refs/heads/master
2020-04-04T19:39:08.138349
2019-03-18T04:54:36
2019-03-18T04:54:36
156,214,910
1
1
null
null
null
null
UTF-8
Python
false
false
55
py
# -*- coding:utf-8 -*- import cv2 import numpy as np
42189efd80b229fc640392070b1616e693ff7ad2
6817457f2f7cb635e84d5ac23c76873628fb04cf
/src/dama/models.py
5bf0b6d11db89966aa4c8e2ce8e34ed97f31c38b
[ "Apache-2.0" ]
permissive
elaeon/dama_ml
5d9a63e0daabe332a08b13813de57d9ed2608015
8b56c62a28c69987fc5dbd8a47406a3a22214371
refs/heads/master
2021-10-26T05:24:10.166028
2019-04-11T00:55:44
2019-04-11T00:55:44
58,218,206
2
0
null
null
null
null
UTF-8
Python
false
false
14,906
py
import os import numpy as np from abc import ABC, abstractmethod from dama.data.ds import Data from dama.data.it import Iterator, BatchIterator from dama.utils.files import check_or_create_path_dir from dama.measures import ListMeasure from dama.utils.logger import log_config from dama.utils.config import get_settings from dama.abc.conn import AbsConn from dama.drivers.sqlite import Sqlite from dama.utils.core import Login, Metadata from dama.utils.files import rm import json settings = get_settings("paths") settings.update(get_settings("vars")) log = log_config(__name__) class MLModel: def __init__(self, fit_fn=None, predictors=None, load_fn=None, save_fn=None, input_transform=None, model=None, to_json_fn=None): self.fit_fn = fit_fn self.predictors = predictors self.load_fn = load_fn self.save_fn = save_fn self.to_json_fn = to_json_fn if input_transform is None: self.input_transform = lambda x: x else: self.input_transform = input_transform self.model = model def fit(self, *args, **kwargs): return self.fit_fn(*args, **kwargs) def predict(self, data: AbsConn, output_format_fn=None, output=None, batch_size: int = 258): def _it(data): data = self.input_transform(data) if batch_size > 0: data = Iterator(data).batchs(chunks=(batch_size, )) for slice_obj in data: batch = slice_obj.batch.to_ndarray() predict = self.predictors(batch) yield output_format_fn(predict) else: for row in data: batch = row.to_ndarray().reshape(1, -1) predict = self.predictors(batch) yield output_format_fn(predict, output=output)[0] if batch_size > 0: return BatchIterator.from_batchs(_it(data), dtypes=data.dtypes, length=data.size, from_batch_size=batch_size, to_slice=True) else: return Iterator(_it(data), length=data.size) def load(self, path): return self.load_fn(path) def save(self, path): return self.save_fn(path) def to_json(self) -> dict: if self.to_json_fn is not None: return self.to_json_fn() return {} class MetadataX(object): metaext = "json" @staticmethod def save_json(file_path, data): with open(file_path, "w") as f: json.dump(data, f) @staticmethod def load_json(path): try: with open(path, 'r') as f: data = json.load(f) return data except IOError as e: log.error(e) return {} except Exception as e: log.error("{} {}".format(e, path)) @staticmethod def get_metadata(path_metadata_version: str = None): metadata = {} if path_metadata_version is not None: metadata["train"] = MetadataX.load_json(path_metadata_version) else: metadata["train"] = {} return metadata @staticmethod def make_model_version_file(name, path, classname, ext, model_version): model_name_v = "version.{}".format(model_version) check_point = check_or_create_path_dir(path, classname) destination = check_or_create_path_dir(check_point, name) model = check_or_create_path_dir(destination, model_name_v) filename = os.path.join(model, "meta") return "{}.{}".format(filename, ext) class BaseModel(MetadataX, ABC): def __init__(self, metrics=None, metadata_path=None): self.model_name = None self.group_name = None self.model_version = None self.base_path = None self.path_model_version = None self.path_metadata_version = None self.model = None self.ext = "ckpt.pkl" self.metrics = metrics self.model_params = None self.num_steps = None self.model_version = None self.ds = None self.data_groups = None self.model_params = None self.num_steps = None self.batch_size = None if metadata_path is None: self.metadata_path = settings["metadata_path"] else: self.metadata_path = metadata_path super(BaseModel, self).__init__() @abstractmethod def scores(self, measures=None, batch_size=2000): return NotImplemented @abstractmethod def output_format(self, prediction, output=None): return NotImplemented @abstractmethod def prepare_model(self, obj_fn=None, num_steps=None, model_params=None, batch_size: int = None) -> MLModel: return NotImplemented @abstractmethod def load_fn(self, path): return NotImplemented def predict(self, data, output=None, batch_size: int = 258): return self.model.predict(data, output_format_fn=self.output_format, output=output, batch_size=batch_size) def metadata_model(self): return { "group_name": self.group_name, "model_module": self.module_cls_name(), "name": self.model_name, "base_path": self.base_path, "hash": self.ds.hash, "from_ds": self.ds.from_ds_hash } def metadata_train(self): return { "model_version": self.model_version, "hyperparams": self.model_params, "num_steps": self.num_steps, "score": self.scores(measures=self.metrics).measures_to_dict(), "batch_size": self.batch_size, "model_json": self.model.to_json(), "data_groups": self.data_groups, } def __enter__(self): self.ds = self.get_dataset() self.ds.open() return self def __exit__(self, exc_type, exc_val, exc_tb): self.ds.close() def get_dataset(self) -> Data: log.debug("LOADING DS FOR MODEL: {} {} {} {}".format(self.cls_name(), self.model_name, self.model_version, self.base_path)) group_name = "s/n" if self.group_name is None else self.group_name with Metadata(Sqlite(login=Login(table=settings["model_tag"]), path=self.metadata_path)) as metadata: query = "SELECT hash FROM {} WHERE name=? AND version=? AND model_module=? AND group_name=? AND base_path=?".format( settings["model_tag"]) data_hash = metadata.query(query, (self.model_name, self.model_version, self.module_cls_name(), group_name, self.base_path)) if len(data_hash) > 0: driver = Sqlite(login=Login(table=settings["data_tag"]), path=self.metadata_path) with Data.load(data_hash[0][0], metadata_driver=driver) as dataset: pass return dataset def preload_model(self): self.model = MLModel(fit_fn=None, predictors=None, load_fn=self.load_fn, save_fn=None) def write_metadata(self): metadata_driver = Sqlite(login=Login(table=settings["model_tag"]), path=self.metadata_path) metadata = self.metadata_model() metadata_train = self.metadata_train() metadata["version"] = self.model_version metadata["model_path"] = self.path_model_version metadata["metadata_path_train"] = self.path_metadata_version with Metadata(metadata_driver, metadata) as metadata: dtypes = np.dtype([("hash", object), ("name", object), ("model_path", object), ("group_name", object), ("is_valid", bool), ("version", int), ("model_module", object), ("score_name", object), ("score", float), ("metadata_path_train", object), ("base_path", object), ("from_ds", object)]) metadata["is_valid"] = True metadata["group_name"] = "s/n" if self.group_name is None else self.group_name keys = ["base_path", "name", "group_name", "version", "model_module", "score_name"] metadata.set_schema(dtypes, unique_key=[keys]) if len(metadata_train["score"]) == 0: metadata["score_name"] = "s/n" metadata["score"] = 0 metadata.insert_update_data(keys=[keys]) else: for score_name in metadata_train["score"].keys(): if score_name != "": metadata["score_name"] = score_name metadata["score"] = metadata_train["score"][score_name]["values"][0] metadata.insert_update_data(keys=[keys]) def save(self, name, path: str = None, model_version="1"): self.model_version = model_version self.model_name = name if path is None: self.base_path = settings["models_path"] else: self.base_path = path self.path_metadata_version = MetadataX.make_model_version_file(name, self.base_path, self.cls_name(), self.metaext, self.model_version) self.path_model_version = MetadataX.make_model_version_file(name, self.base_path, self.cls_name(), self.ext, model_version=model_version) log.debug("SAVING model's data") self.model.save(self.path_model_version) log.debug("SAVING json metadata train info") metadata_train = self.metadata_train() MetadataX.save_json(self.path_metadata_version, metadata_train) self.write_metadata() def load_model(self): self.preload_model() if self.path_model_version is not None: self.model.load(self.path_model_version) def load_metadata(self, path_metadata_version): metadata = MetadataX.get_metadata(path_metadata_version) self.model_version = metadata["train"]["model_version"] self.model_params = metadata["train"]["hyperparams"] self.num_steps = metadata["train"]["num_steps"] self.batch_size = metadata["train"]["batch_size"] self.data_groups = metadata["train"]["data_groups"] @abstractmethod def train(self, ds: Data, batch_size: int = 0, num_steps: int = 0, n_splits=None, obj_fn=None, model_params: dict = None, data_train_group="train_x", target_train_group='train_y', data_test_group="test_x", target_test_group='test_y', data_validation_group="validation_x", target_validation_group="validation_y"): return NotImplemented def scores2table(self): meta = MetadataX.get_metadata(self.path_metadata_version) try: scores = meta["train"]["score"] except KeyError: return else: return ListMeasure.dict_to_measures(scores) @classmethod def load(cls, model_name: str, model_version: str, group_name: str = None, path: str = None, metadata_path: str = None): model = cls(metadata_path=metadata_path) model.model_name = model_name model.model_version = model_version if group_name is None: group_name = "s/n" model.group_name = group_name model.base_path = path path_metadata_version = MetadataX.make_model_version_file(model_name, path, model.cls_name(), model.metaext, model_version=model_version) model.path_metadata_version = path_metadata_version model.path_model_version = MetadataX.make_model_version_file(model_name, path, model.cls_name(), model.ext, model_version=model_version) model.load_metadata(path_metadata_version) model.load_model() return model def destroy(self): if self.path_metadata_version is not None: rm(self.path_model_version) rm(self.path_metadata_version) if hasattr(self, 'ds'): self.ds.destroy() @classmethod def cls_name(cls): return cls.__name__ @classmethod def module_cls_name(cls): return "{}.{}".format(cls.__module__, cls.__name__) class SupervicedModel(BaseModel): def __init__(self, metrics=None, metadata_path=None): super(SupervicedModel, self).__init__(metrics=metrics, metadata_path=metadata_path) def train(self, ds: Data, batch_size: int = 0, num_steps: int = 0, n_splits=None, obj_fn=None, model_params: dict = None, data_train_group="train_x", target_train_group='train_y', data_test_group="test_x", target_test_group='test_y', data_validation_group="validation_x", target_validation_group="validation_y"): self.ds = ds log.info("Training") self.model_params = model_params self.num_steps = num_steps self.batch_size = batch_size self.data_groups = { "data_train_group": data_train_group, "target_train_group": target_train_group, "data_test_group": data_test_group, "target_test_group": target_test_group, "data_validation_group": data_validation_group, "target_validation_group": target_validation_group } self.model = self.prepare_model(obj_fn=obj_fn, num_steps=num_steps, model_params=model_params, batch_size=batch_size) class UnsupervisedModel(BaseModel): def train(self, ds: Data, batch_size: int = 0, num_steps: int = 0, n_splits=None, obj_fn=None, model_params: dict = None, data_train_group="train_x", target_train_group='train_y', data_test_group="test_x", target_test_group='test_y', data_validation_group="validation_x", target_validation_group="validation_y"): self.ds = ds log.info("Training") self.model_params = model_params self.num_steps = num_steps self.batch_size = batch_size self.data_groups = { "data_train_group": data_train_group, "target_train_group": target_train_group, "data_test_group": data_test_group, "target_test_group": target_test_group, "data_validation_group": data_validation_group, "target_validation_group": target_validation_group } self.model = self.prepare_model(obj_fn=obj_fn, num_steps=num_steps, model_params=model_params, batch_size=batch_size) def scores(self, measures=None, batch_size: int = 258) -> ListMeasure: return ListMeasure() def output_format(self, prediction, output=None): return prediction
d865d3d1332562451b41a4baa2d70e83acabd738
ee0b9cd2424e634a212a6d9734af1eaedd40dfe0
/jhub38_dram_mcxtrace/sasview-5.0.4/src/sas/qtgui/MainWindow/UnitTesting/DataExplorerTest.py
03240317cca800fabec43b8d52eb7f4de6dbf3b0
[ "BSD-3-Clause" ]
permissive
moving-northwards/Docker
775755b4618c1a7946f540505b0178e119d294d1
8ef18fd8c6abb0608ce9b53187e53d00d3e4e9ae
refs/heads/master
2023-05-26T08:42:58.634525
2021-06-15T08:41:08
2021-06-15T08:41:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
41,243
py
import sys import time import unittest from PyQt5.QtGui import * from PyQt5.QtWidgets import * from PyQt5.QtTest import QTest from PyQt5.QtCore import * from unittest.mock import MagicMock from unittest.mock import patch from mpl_toolkits.mplot3d import Axes3D # set up import paths import path_prepare # Local from sas.qtgui.Plotting.PlotterData import Data1D, Data2D from sas.sascalc.dataloader.loader import Loader from sas.qtgui.MainWindow.DataManager import DataManager from sas.qtgui.MainWindow.DataExplorer import DataExplorerWindow from sas.qtgui.MainWindow.GuiManager import GuiManager from sas.qtgui.Utilities.GuiUtils import * from sas.qtgui.UnitTesting.TestUtils import QtSignalSpy from sas.qtgui.Plotting.Plotter import Plotter from sas.qtgui.Plotting.Plotter2D import Plotter2D import sas.qtgui.Plotting.PlotHelper as PlotHelper from sas.sasview import __version__ as SASVIEW_VERSION if not QApplication.instance(): app = QApplication(sys.argv) class MyPerspective(object): def __init__(self): self.name = "Dummy Perspective" def communicator(self): return Communicate() def allowBatch(self): return True def allowSwap(self): return True def setData(self, data_item=None, is_batch=False): return None def swapData(self, data_item=None, is_batch=False): return None def title(self): return self.name class dummy_manager(object): def __init__(self): self._perspective = MyPerspective() def communicator(self): return Communicate() def perspective(self): return self._perspective def workspace(self): return None class _parent(object): screen_width = 1024 screen_height = 768 class DataExplorerTest(unittest.TestCase): '''Test the Data Explorer GUI''' def setUp(self): '''Create the GUI''' self.form = DataExplorerWindow(None, dummy_manager()) def tearDown(self): '''Destroy the GUI''' self.form.close() self.form = None def testDefaults(self): '''Test the GUI in its default state''' # Tab widget self.assertIsInstance(self.form, QTabWidget) self.assertEqual(self.form.count(), 2) # Buttons - data tab self.assertEqual(self.form.cmdLoad.text(), "Load data") self.assertEqual(self.form.cmdDeleteData.text(), "Delete Data") self.assertEqual(self.form.cmdDeleteTheory.text(), "Delete") self.assertEqual(self.form.cmdFreeze.text(), "Freeze Theory") self.assertEqual(self.form.cmdSendTo.text(), "Send data to") self.assertEqual(self.form.cmdSendTo.iconSize(), QSize(32, 32)) self.assertIsInstance(self.form.cmdSendTo.icon(), QIcon) self.assertEqual(self.form.chkBatch.text(), "Batch mode") self.assertFalse(self.form.chkBatch.isChecked()) self.assertEqual(self.form.chkSwap.text(), "Swap data") self.assertFalse(self.form.chkSwap.isChecked()) # Buttons - theory tab # Combo boxes self.assertEqual(self.form.cbSelect.count(), 6) self.assertEqual(self.form.cbSelect.currentIndex(), 0) # Models - data self.assertIsInstance(self.form.model, QStandardItemModel) self.assertEqual(self.form.treeView.model().rowCount(), 0) self.assertEqual(self.form.treeView.model().columnCount(), 0) self.assertEqual(self.form.model.rowCount(), 0) self.assertEqual(self.form.model.columnCount(), 0) self.assertIsInstance(self.form.data_proxy, QSortFilterProxyModel) self.assertEqual(self.form.data_proxy.sourceModel(), self.form.model) self.assertEqual("[^()]", str(self.form.data_proxy.filterRegExp().pattern())) self.assertIsInstance(self.form.treeView, QTreeView) # Models - theory self.assertIsInstance(self.form.theory_model, QStandardItemModel) self.assertEqual(self.form.freezeView.model().rowCount(), 0) self.assertEqual(self.form.freezeView.model().columnCount(), 0) self.assertEqual(self.form.theory_model.rowCount(), 0) self.assertEqual(self.form.theory_model.columnCount(), 0) self.assertIsInstance(self.form.theory_proxy, QSortFilterProxyModel) self.assertEqual(self.form.theory_proxy.sourceModel(), self.form.theory_model) self.assertEqual("[^()]", str(self.form.theory_proxy.filterRegExp().pattern())) self.assertIsInstance(self.form.freezeView, QTreeView) def testWidgets(self): """ Test if all required widgets got added """ def testLoadButton(self): loadButton = self.form.cmdLoad filename = "cyl_400_20.txt" # Initialize signal spy instances spy_file_read = QtSignalSpy(self.form, self.form.communicator.fileReadSignal) # Return no files. QFileDialog.getOpenFileNames = MagicMock(return_value=('','')) # Click on the Load button QTest.mouseClick(loadButton, Qt.LeftButton) # Test the getOpenFileName() dialog called once self.assertTrue(QFileDialog.getOpenFileNames.called) QFileDialog.getOpenFileNames.assert_called_once() # Make sure the signal has not been emitted self.assertEqual(spy_file_read.count(), 0) # Now, return a single file QFileDialog.getOpenFileNames = MagicMock(return_value=(filename,'')) # Click on the Load button QTest.mouseClick(loadButton, Qt.LeftButton) qApp.processEvents() # Test the getOpenFileName() dialog called once self.assertTrue(QFileDialog.getOpenFileNames.called) QFileDialog.getOpenFileNames.assert_called_once() # Expected one spy instance #self.assertEqual(spy_file_read.count(), 1) #self.assertIn(filename, str(spy_file_read.called()[0]['args'][0])) def testLoadFiles(self): """ Test progress bar update while loading of multiple files """ # Set up the spy on progress bar update signal spy_progress_bar_update = QtSignalSpy(self.form, self.form.communicator.progressBarUpdateSignal) # Populate the model filename = ["cyl_400_20.txt", "P123_D2O_10_percent.dat", "cyl_400_20.txt"] self.form.readData(filename) # 0, 0, 33, 66, -1 -> 5 signals reaching progressBar self.assertEqual(spy_progress_bar_update.count(), 5) expected_list = [0, 0, 33, 66, -1] spied_list = [spy_progress_bar_update.called()[i]['args'][0] for i in range(5)] self.assertEqual(expected_list, spied_list) def testDeleteButton(self): """ Functionality of the delete button """ deleteButton = self.form.cmdDeleteData # Mock the confirmation dialog with return=No QMessageBox.question = MagicMock(return_value=QMessageBox.No) # Populate the model filename = ["cyl_400_20.txt", "cyl_400_20.txt", "cyl_400_20.txt"] self.form.readData(filename) # Assure the model contains three items self.assertEqual(self.form.model.rowCount(), 3) # Assure the checkboxes are on item1 = self.form.model.item(0) item2 = self.form.model.item(1) item3 = self.form.model.item(2) self.assertTrue(item1.checkState() == Qt.Checked) self.assertTrue(item2.checkState() == Qt.Checked) self.assertTrue(item3.checkState() == Qt.Checked) # Click on the delete button QTest.mouseClick(deleteButton, Qt.LeftButton) # Test the warning dialog called once self.assertTrue(QMessageBox.question.called) # Assure the model still contains the items self.assertEqual(self.form.model.rowCount(), 3) # Now, mock the confirmation dialog with return=Yes QMessageBox.question = MagicMock(return_value=QMessageBox.Yes) # Click on the delete button QTest.mouseClick(deleteButton, Qt.LeftButton) # Test the warning dialog called once self.assertTrue(QMessageBox.question.called) # Assure the model contains no items self.assertEqual(self.form.model.rowCount(), 0) # Click delete once again to assure no nasty behaviour on empty model QTest.mouseClick(deleteButton, Qt.LeftButton) def testDeleteTheory(self): """ Test that clicking "Delete" in theories tab removes selected indices """ deleteButton = self.form.cmdDeleteTheory # Mock the confirmation dialog with return=No QMessageBox.question = MagicMock(return_value=QMessageBox.No) # Populate the model item1 = HashableStandardItem(True) item1.setCheckable(True) item1.setCheckState(Qt.Checked) item1.setText("item 1") self.form.theory_model.appendRow(item1) item2 = HashableStandardItem(True) item2.setCheckable(True) item2.setCheckState(Qt.Unchecked) item2.setText("item 2") self.form.theory_model.appendRow(item2) # Assure the model contains two items self.assertEqual(self.form.theory_model.rowCount(), 2) # Assure the checkboxes are on self.assertTrue(item1.checkState() == Qt.Checked) self.assertTrue(item2.checkState() == Qt.Unchecked) # Click on the delete button QTest.mouseClick(deleteButton, Qt.LeftButton) # Test the warning dialog called once self.assertTrue(QMessageBox.question.called) # Assure the model still contains the items self.assertEqual(self.form.theory_model.rowCount(), 2) # Now, mock the confirmation dialog with return=Yes QMessageBox.question = MagicMock(return_value=QMessageBox.Yes) # Click on the delete button QTest.mouseClick(deleteButton, Qt.LeftButton) # Test the warning dialog called once self.assertTrue(QMessageBox.question.called) # Assure the model contains 1 item self.assertEqual(self.form.theory_model.rowCount(), 1) # Set the remaining item to checked self.form.theory_model.item(0).setCheckState(Qt.Checked) # Click on the delete button again QTest.mouseClick(deleteButton, Qt.LeftButton) # Assure the model contains no items self.assertEqual(self.form.theory_model.rowCount(), 0) # Click delete once again to assure no nasty behaviour on empty model QTest.mouseClick(deleteButton, Qt.LeftButton) def testSendToButton(self): """ Test that clicking the Send To button sends checked data to a perspective """ # Send empty data mocked_perspective = self.form._perspective() mocked_perspective.setData = MagicMock() # Click on the Send To button QTest.mouseClick(self.form.cmdSendTo, Qt.LeftButton) # The set_data method not called self.assertFalse(mocked_perspective.setData.called) # Populate the model filename = ["cyl_400_20.txt"] self.form.readData(filename) QApplication.processEvents() # setData is the method we want to see called mocked_perspective.swapData = MagicMock() # Assure the checkbox is on self.form.cbSelect.setCurrentIndex(0) # Click on the Send To button QTest.mouseClick(self.form.cmdSendTo, Qt.LeftButton) QApplication.processEvents() # Test the set_data method called self.assertTrue(mocked_perspective.setData.called) self.assertFalse(mocked_perspective.swapData.called) # Now select the swap data checkbox self.form.chkSwap.setChecked(True) # Click on the Send To button QTest.mouseClick(self.form.cmdSendTo, Qt.LeftButton) QApplication.processEvents() # Now the swap data method should be called self.assertTrue(mocked_perspective.setData.called_once) self.assertTrue(mocked_perspective.swapData.called) # Test the exception block QMessageBox.exec_ = MagicMock() QMessageBox.setText = MagicMock() mocked_perspective.swapData = MagicMock(side_effect = Exception("foo")) # Click on the button to so the mocked swapData method raises an exception QTest.mouseClick(self.form.cmdSendTo, Qt.LeftButton) # Assure the message box popped up QMessageBox.exec_.assert_called_once() # With the right message QMessageBox.setText.assert_called_with("foo") # open another file filename = ["cyl_400_20.txt"] self.form.readData(filename) # Mock the warning message and the swapData method QMessageBox.exec_ = MagicMock() QMessageBox.setText = MagicMock() mocked_perspective.swapData = MagicMock() # Click on the button to swap both datasets to the perspective QTest.mouseClick(self.form.cmdSendTo, Qt.LeftButton) # Assure the message box popped up QMessageBox.exec_.assert_called_once() # With the right message QMessageBox.setText.assert_called_with( "Dummy Perspective does not allow replacing multiple data.") def testDataSelection(self): """ Tests the functionality of the Selection Option combobox """ # Populate the model with 1d and 2d data filename = ["cyl_400_20.txt", "P123_D2O_10_percent.dat"] self.form.readData(filename) # Wait a moment for data to load time.sleep(1) # Unselect all data self.form.cbSelect.activated.emit(1) # Test the current selection item1D = self.form.model.item(0) item2D = self.form.model.item(1) self.assertTrue(item1D.checkState() == Qt.Unchecked) self.assertTrue(item2D.checkState() == Qt.Unchecked) # Select all data self.form.cbSelect.activated.emit(0) # Test the current selection self.assertTrue(item1D.checkState() == Qt.Checked) self.assertTrue(item2D.checkState() == Qt.Checked) # select 1d data self.form.cbSelect.activated.emit(2) # Test the current selection self.assertTrue(item1D.checkState() == Qt.Checked) self.assertTrue(item2D.checkState() == Qt.Checked) # unselect 1d data self.form.cbSelect.activated.emit(3) # Test the current selection self.assertTrue(item1D.checkState() == Qt.Unchecked) self.assertTrue(item2D.checkState() == Qt.Checked) # select 2d data self.form.cbSelect.activated.emit(4) # Test the current selection self.assertTrue(item1D.checkState() == Qt.Unchecked) self.assertTrue(item2D.checkState() == Qt.Checked) # unselect 2d data self.form.cbSelect.activated.emit(5) # Test the current selection self.assertTrue(item1D.checkState() == Qt.Unchecked) self.assertTrue(item2D.checkState() == Qt.Unchecked) def testFreezeTheory(self): """ Assure theory freeze functionality works """ # Not yet tested - agree on design first. pass def testRecursivelyCloneItem(self): """ Test the rescursive QAbstractItem/QStandardItem clone """ # Create an item with several branches item1 = QStandardItem() item2 = QStandardItem() item3 = QStandardItem() item4 = QStandardItem() item5 = QStandardItem() item6 = QStandardItem() item4.appendRow(item5) item2.appendRow(item4) item2.appendRow(item6) item1.appendRow(item2) item1.appendRow(item3) # Clone new_item = self.form.recursivelyCloneItem(item1) # assure the trees look identical self.assertEqual(item1.rowCount(), new_item.rowCount()) self.assertEqual(item1.child(0).rowCount(), new_item.child(0).rowCount()) self.assertEqual(item1.child(1).rowCount(), new_item.child(1).rowCount()) self.assertEqual(item1.child(0).child(0).rowCount(), new_item.child(0).child(0).rowCount()) def testReadData(self): """ Test the low level readData() method """ filename = ["cyl_400_20.txt"] self.form.manager.add_data = MagicMock() # Initialize signal spy instances spy_status_update = QtSignalSpy(self.form, self.form.communicator.statusBarUpdateSignal) spy_data_received = QtSignalSpy(self.form, self.form.communicator.fileDataReceivedSignal) # Read in the file self.form.readData(filename) # Expected two status bar updates self.assertEqual(spy_status_update.count(), 2) self.assertIn(filename[0], str(spy_status_update.called()[0]['args'][0])) # Check that the model contains the item self.assertEqual(self.form.model.rowCount(), 1) self.assertEqual(self.form.model.columnCount(), 1) # The 0th item header should be the name of the file model_item = self.form.model.index(0,0) model_name = self.form.model.data(model_item) self.assertEqual(model_name, filename[0]) def skip_testDisplayHelp(self): # Skip due to help path change """ Test that the Help window gets shown correctly """ partial_url = "qtgui/MainWindow/data_explorer_help.html" button1 = self.form.cmdHelp button2 = self.form.cmdHelp_2 # Click on the Help button QTest.mouseClick(button1, Qt.LeftButton) qApp.processEvents() # Check the browser self.assertIn(partial_url, str(self.form._helpView.url())) # Close the browser self.form._helpView.close() # Click on the Help_2 button QTest.mouseClick(button2, Qt.LeftButton) qApp.processEvents() # Check the browser self.assertIn(partial_url, str(self.form._helpView.url())) def testLoadFile(self): """ Test the threaded call to readData() """ #self.form.loadFile() pass def testGetWList(self): """ Test the list of known extensions """ w_list = self.form.getWlist() defaults = 'All (*.*);;canSAS files (*.xml);;SESANS files' +\ ' (*.ses);;ASCII files (*.txt);;' +\ 'IGOR/DAT 2D Q_map files (*.dat);;IGOR 1D files (*.abs);;'+\ 'DANSE files (*.sans)' default_list = defaults.split(';;') for def_format in default_list: self.assertIn(def_format, w_list) def testLoadComplete(self): """ Test the callback method updating the data object """ message="Loading Data Complete" data_dict = {"a1":Data1D()} output_data = (data_dict, message) self.form.manager.add_data = MagicMock() # Initialize signal spy instances spy_status_update = QtSignalSpy(self.form, self.form.communicator.statusBarUpdateSignal) spy_data_received = QtSignalSpy(self.form, self.form.communicator.fileDataReceivedSignal) # Read in the file self.form.loadComplete(output_data) # "Loading data complete" no longer sent in LoadFile but in callback self.assertIn("Loading Data Complete", str(spy_status_update.called()[0]['args'][0])) # Expect one Data Received signal self.assertEqual(spy_data_received.count(), 1) # Assure returned dictionary has correct data # We don't know the data ID, so need to iterate over dict data_dict = spy_data_received.called()[0]['args'][0] for data_key, data_value in data_dict.items(): self.assertIsInstance(data_value, Data1D) # Assure add_data on data_manager was called (last call) self.assertTrue(self.form.manager.add_data.called) @patch('sas.qtgui.Utilities.GuiUtils.plotsFromCheckedItems') def testNewPlot1D(self, test_patch): """ Creating new plots from Data1D/2D """ loader = Loader() manager = DataManager() PlotHelper.clear() self.form.enableGraphCombo(None) # Make sure the controls are disabled self.assertFalse(self.form.cbgraph.isEnabled()) self.assertFalse(self.form.cmdAppend.isEnabled()) # get Data1D p_file="cyl_400_20.txt" output_object = loader.load(p_file) new_data = [(None, manager.create_gui_data(output_object[0], p_file))] _, test_data = new_data[0] self.assertTrue(f'Data file generated by SasView v{SASVIEW_VERSION}' in test_data.notes) # Mask retrieval of the data test_patch.return_value = new_data # Mask plotting self.form.parent.workspace = MagicMock() # Call the plotting method self.form.newPlot() time.sleep(1) QApplication.processEvents() # The plot was registered self.assertEqual(len(PlotHelper.currentPlots()), 1) self.assertTrue(self.form.cbgraph.isEnabled()) self.assertTrue(self.form.cmdAppend.isEnabled()) @patch('sas.qtgui.Utilities.GuiUtils.plotsFromCheckedItems') def testNewPlot2D(self, test_patch): """ Creating new plots from Data1D/2D """ loader = Loader() manager = DataManager() PlotHelper.clear() self.form.enableGraphCombo(None) # Make sure the controls are disabled self.assertFalse(self.form.cbgraph.isEnabled()) self.assertFalse(self.form.cmdAppend.isEnabled()) # get Data2D p_file="P123_D2O_10_percent.dat" output_object = loader.load(p_file) new_data = [(None, manager.create_gui_data(output_object[0], p_file))] # Mask retrieval of the data test_patch.return_value = new_data # Mask plotting self.form.parent.workspace = MagicMock() # Call the plotting method #self.form.newPlot() #QApplication.processEvents() # The plot was registered #self.assertEqual(len(PlotHelper.currentPlots()), 1) #self.assertTrue(self.form.cbgraph.isEnabled()) #self.assertTrue(self.form.cmdAppend.isEnabled()) @patch('sas.qtgui.Utilities.GuiUtils.plotsFromCheckedItems') def testAppendPlot(self, test_patch): """ Creating new plots from Data1D/2D """ loader = Loader() manager = DataManager() PlotHelper.clear() self.form.enableGraphCombo(None) # Make sure the controls are disabled self.assertFalse(self.form.cbgraph.isEnabled()) self.assertFalse(self.form.cmdAppend.isEnabled()) # get Data1D p_file="cyl_400_20.txt" output_object = loader.load(p_file) output_item = QStandardItem() new_data = [(output_item, manager.create_gui_data(output_object[0], p_file))] # Mask plotting self.form.parent.workspace = MagicMock() # Mask the plot show call Plotter.show = MagicMock() # Mask retrieval of the data test_patch.return_value = new_data # Call the plotting method self.form.newPlot() # Call the plotting method again, so we have 2 graphs self.form.newPlot() QApplication.processEvents() # See that we have two plots self.assertEqual(len(PlotHelper.currentPlots()), 2) # Add data to plot #1 self.form.cbgraph.setCurrentIndex(1) self.form.appendPlot() # See that we still have two plots self.assertEqual(len(PlotHelper.currentPlots()), 2) def testUpdateGraphCombo(self): """ Test the combo box update """ PlotHelper.clear() graph_list=["1","2","3"] self.form.updateGraphCombo(graph_list) self.assertEqual(self.form.cbgraph.count(), 3) self.assertEqual(self.form.cbgraph.currentText(), '1') graph_list=[] self.form.updateGraphCombo(graph_list) self.assertEqual(self.form.cbgraph.count(), 0) def testUpdateModelFromPerspective(self): """ Assure the model update is correct """ good_item = QStandardItem() bad_item = "I'm so bad" self.form.model.reset = MagicMock() self.form.updateModelFromPerspective(good_item) # See that the model got reset # self.form.model.reset.assert_called_once() # See that the bad item causes raise with self.assertRaises(Exception): self.form.updateModelFromPerspective(bad_item) def testContextMenu(self): """ See if the context menu is present """ # get Data1D p_file=["cyl_400_20.txt"] # Read in the file output, message = self.form.readData(p_file) self.form.loadComplete((output, message)) # Pick up the treeview index corresponding to that file index = self.form.treeView.indexAt(QPoint(5,5)) self.form.show() # Find out the center pointof the treeView row rect = self.form.treeView.visualRect(index).center() self.form.context_menu.exec_ = MagicMock() # Move the mouse pointer to the first row QTest.mouseMove(self.form.treeView.viewport(), pos=rect) # This doesn't invoke the action/signal. Investigate why? # QTest.mouseClick(self.form.treeView.viewport(), Qt.RightButton, pos=rect) # Instead, send the signal directly self.form.treeView.customContextMenuRequested.emit(rect) # See that the menu has been shown self.form.context_menu.exec_.assert_called_once() def baseNameStateCheck(self): """ Helper method for the Name Change Tests Below - Check the base state of the window """ self.assertTrue(hasattr(self.form, "nameChangeBox")) self.assertTrue(self.form.nameChangeBox.isModal()) self.assertEqual(self.form.nameChangeBox.windowTitle(), "Display Name Change") self.assertFalse(self.form.nameChangeBox.isVisible()) self.assertIsNone(self.form.nameChangeBox.data) self.assertIsNone(self.form.nameChangeBox.model_item) self.assertFalse(self.form.nameChangeBox.txtCurrentName.isEnabled()) self.assertFalse(self.form.nameChangeBox.txtDataName.isEnabled()) self.assertFalse(self.form.nameChangeBox.txtFileName.isEnabled()) self.assertFalse(self.form.nameChangeBox.txtNewCategory.isEnabled()) self.assertEqual(self.form.nameChangeBox.txtCurrentName.text(), "") self.assertEqual(self.form.nameChangeBox.txtDataName.text(), "") self.assertEqual(self.form.nameChangeBox.txtFileName.text(), "") self.assertEqual(self.form.nameChangeBox.txtNewCategory.text(), "") def testNameChange(self): """ Test the display name change routines """ # Define Constants FILE_NAME = "cyl_400_20.txt" FILE_NAME_APPENDED = FILE_NAME + " [1]" TEST_STRING_1 = "test value change" TEST_STRING_2 = "TEST VALUE CHANGE" # Test base state of the name change window self.baseNameStateCheck() # Get Data1D p_file=[FILE_NAME] # Read in the file output, message = self.form.readData(p_file) key = list(output.keys()) output[key[0]].title = TEST_STRING_1 self.form.loadComplete((output, message)) # select the data and run name change routine self.form.treeView.selectAll() self.form.changeName() # Test window state after adding data self.assertTrue(self.form.nameChangeBox.isVisible()) self.assertIsNotNone(self.form.nameChangeBox.data) self.assertIsNotNone(self.form.nameChangeBox.model_item) self.assertEqual(self.form.nameChangeBox.txtCurrentName.text(), FILE_NAME) self.assertEqual(self.form.nameChangeBox.txtDataName.text(), TEST_STRING_1) self.assertEqual(self.form.nameChangeBox.txtFileName.text(), FILE_NAME) self.assertTrue(self.form.nameChangeBox.rbExisting.isChecked()) self.assertFalse(self.form.nameChangeBox.rbDataName.isChecked()) self.assertFalse(self.form.nameChangeBox.rbFileName.isChecked()) self.assertFalse(self.form.nameChangeBox.rbNew.isChecked()) # Take the existing name self.form.nameChangeBox.cmdOK.click() self.form.changeName() self.assertEqual(self.form.nameChangeBox.txtCurrentName.text(), FILE_NAME) # Take the title self.form.nameChangeBox.rbDataName.setChecked(True) self.assertFalse(self.form.nameChangeBox.rbExisting.isChecked()) self.form.nameChangeBox.cmdOK.click() self.form.changeName() self.assertEqual(self.form.nameChangeBox.txtCurrentName.text(), TEST_STRING_1) # Take the file name again self.form.nameChangeBox.rbFileName.setChecked(True) self.assertFalse(self.form.nameChangeBox.rbExisting.isChecked()) self.form.nameChangeBox.cmdOK.click() self.form.changeName() self.assertEqual(self.form.nameChangeBox.txtCurrentName.text(), FILE_NAME_APPENDED) # Take the user-defined name, which is empty - should retain existing value self.form.nameChangeBox.rbNew.setChecked(True) self.assertFalse(self.form.nameChangeBox.rbExisting.isChecked()) self.form.nameChangeBox.cmdOK.click() self.form.changeName() self.assertEqual(self.form.nameChangeBox.txtCurrentName.text(), FILE_NAME_APPENDED) # Take a different user-defined name self.form.nameChangeBox.rbNew.setChecked(True) self.form.nameChangeBox.txtNewCategory.setText(TEST_STRING_2) self.assertFalse(self.form.nameChangeBox.rbExisting.isChecked()) self.form.nameChangeBox.cmdOK.click() self.form.changeName() self.assertEqual(self.form.nameChangeBox.txtCurrentName.text(), TEST_STRING_2) # Test cancel button self.form.nameChangeBox.rbNew.setChecked(True) self.form.nameChangeBox.txtNewCategory.setText(TEST_STRING_1) self.form.nameChangeBox.cmdCancel.click() self.form.changeName() self.assertEqual(self.form.nameChangeBox.txtCurrentName.text(), TEST_STRING_2) self.form.nameChangeBox.cmdOK.click() # Test delete data self.form.nameChangeBox.removeData(None) # Nothing should happen self.assertEqual(self.form.nameChangeBox.txtCurrentName.text(), TEST_STRING_2) self.form.nameChangeBox.removeData([self.form.nameChangeBox.model_item]) # Should return to base state self.baseNameStateCheck() def testShowDataInfo(self): """ Test of the showDataInfo method """ # get Data1D p_file=["cyl_400_20.txt"] # Read in the file output, message = self.form.readData(p_file) self.form.loadComplete((output, message)) # select the data self.form.treeView.selectAll() # Call the tested method self.form.showDataInfo() # Test the properties self.assertTrue(self.form.txt_widget.isReadOnly()) self.assertEqual(self.form.txt_widget.windowTitle(), "Data Info: cyl_400_20.txt") self.assertIn("Waveln_max", self.form.txt_widget.toPlainText()) # Slider moved all the way up self.assertEqual(self.form.txt_widget.verticalScrollBar().sliderPosition(), 0) def testSaveDataAs(self): """ Test the Save As context menu action """ # get Data1D p_file=["cyl_400_20.txt"] # Read in the file output, message = self.form.readData(p_file) self.form.loadComplete((output, message)) # select the data self.form.treeView.selectAll() QFileDialog.getSaveFileName = MagicMock(return_value=("cyl_400_20_out", "(*.txt)")) # Call the tested method self.form.saveDataAs() QFileDialog.getSaveFileName.assert_called_with( caption="Save As", filter='Text files (*.txt);;CanSAS 1D files(*.xml);;NXcanSAS files (*.h5)', options=16, parent=None) QFileDialog.getSaveFileName.assert_called_once() # get Data2D p_file=["P123_D2O_10_percent.dat"] # Read in the file output, message = self.form.readData(p_file) self.form.loadComplete((output, message)) # select the data index = self.form.model.index(1, 0) selmodel = self.form.treeView.selectionModel() selmodel.setCurrentIndex(index, QItemSelectionModel.NoUpdate) selmodel.select(index, QItemSelectionModel.Select|QItemSelectionModel.Rows) QFileDialog.getSaveFileName = MagicMock(return_value="test.xyz") # Call the tested method self.form.saveDataAs() QFileDialog.getSaveFileName.assert_called_with( caption="Save As", filter='IGOR/DAT 2D file in Q_map (*.dat);;NXcanSAS files (*.h5)', options=16, parent=None) QFileDialog.getSaveFileName.assert_called_once() def testQuickDataPlot(self): """ Quick data plot generation. """ # get Data1D p_file=["cyl_400_20.txt"] # Read in the file output, message = self.form.readData(p_file) self.form.loadComplete((output, message)) # select the data self.form.treeView.selectAll() Plotter.show = MagicMock() # for masking the display self.form.quickDataPlot() self.assertTrue(Plotter.show.called) def notestQuickData3DPlot(self): """ Slow(er) 3D data plot generation. """ # get Data1D p_file=["P123_D2O_10_percent.dat"] # Read in the file output, message = self.form.readData(p_file) self.form.loadComplete((output, message)) # select the data self.form.treeView.selectAll() Plotter2D.show = MagicMock() # for masking the display self.form.quickData3DPlot() self.assertTrue(Plotter2D.show.called) def testShowEditMask(self): """ Edit mask on a 2D plot. TODO: add content once plotting finalized """ pass def testDeleteItem(self): """ Delete selected item from data explorer """ # Mock the confirmation dialog with return=No QMessageBox.question = MagicMock(return_value=QMessageBox.No) # Populate the model filename = ["cyl_400_20.txt", "cyl_400_20.txt", "cyl_400_20.txt"] self.form.readData(filename) # Assure the model contains three items self.assertEqual(self.form.model.rowCount(), 3) # Add an item to first file item item1 = QtGui.QStandardItem("test") item1.setCheckable(True) self.form.model.item(0).appendRow(item1) # Check the new item is in self.assertTrue(self.form.model.item(0).hasChildren()) #select_item = self.form.model.item(0).child(3) select_item = self.form.model.item(0) select_index = self.form.model.indexFromItem(select_item) # Open up items self.form.current_view.expandAll() # Select the newly created item self.form.current_view.selectionModel().select(select_index, QtCore.QItemSelectionModel.Rows) # Attempt at deleting self.form.deleteSelectedItem() # Test the warning dialog called once self.assertTrue(QMessageBox.question.called) # Assure the model still contains the items self.assertEqual(self.form.model.rowCount(), 3) # Now, mock the confirmation dialog with return=Yes QMessageBox.question = MagicMock(return_value=QMessageBox.Yes) # Select the newly created item self.form.current_view.selectionModel().select(select_index, QtCore.QItemSelectionModel.Rows) # delete it. now for good self.form.deleteSelectedItem() # Test the warning dialog called once self.assertTrue(QMessageBox.question.called) # Assure the model contains no items self.assertEqual(self.form.model.rowCount(), 3) def testClosePlotsForItem(self): """ Delete selected item from data explorer should also delete corresponding plots """ # Mock the confirmation dialog with return=No QMessageBox.question = MagicMock(return_value=QMessageBox.No) loader = Loader() manager = DataManager() PlotHelper.clear() self.form.enableGraphCombo(None) # Make sure the controls are disabled self.assertFalse(self.form.cbgraph.isEnabled()) self.assertFalse(self.form.cmdAppend.isEnabled()) # Populate the model filename = ["cyl_400_20.txt"] self.form.readData(filename) # Mask plotting self.form.parent.workspace = MagicMock() # Call the plotting method self.form.newPlot() time.sleep(1) QApplication.processEvents() # The plot was registered self.assertEqual(len(PlotHelper.currentPlots()), 1) self.assertEqual(len(self.form.plot_widgets), 1) # could have leftovers from previous tests #self.assertEqual(list(self.form.plot_widgets.keys()), ['Graph3']) self.assertEqual(len(self.form.plot_widgets.keys()), 1) # data index model_item = self.form.model.item(0,0) # Call the method self.form.closePlotsForItem(model_item) # See that no plot remained self.assertEqual(len(PlotHelper.currentPlots()), 0) self.assertEqual(len(self.form.plot_widgets), 0) def testPlotsFromMultipleData1D(self): """ Tests interplay between plotting 1D datasets and plotting a single 1D dataset from two separate fit tabs GH issue 1546 """ # prepare active_plots plot1 = Plotter(parent=self.form) data1 = Data1D() data1.name = 'p1' data1.plot_role = Data1D.ROLE_DATA plot1.data = data1 plot2 = Plotter(parent=self.form) data2 = Data1D() data2.name = 'M2 [p1]' data2.plot_role = Data1D.ROLE_DEFAULT plot2.data = data2 plot3 = Plotter(parent=self.form) data3 = Data1D() data3.name = 'Residuals for M2[p1]' data3.plot_role = Data1D.ROLE_RESIDUAL plot3.data = data3 # pretend we're displaying three plots self.form.active_plots['p1'] = plot1 self.form.active_plots['M2 [p1]'] = plot2 self.form.active_plots['Residuals for M2[p1]'] = plot3 # redoing plots from the same tab # data -> must be shown self.assertFalse(self.form.isPlotShown(data1)) # model and residuals are already shown self.assertTrue(self.form.isPlotShown(data2)) self.assertTrue(self.form.isPlotShown(data3)) # Try from different fit page plot4 = Plotter(parent=self.form) data4 = Data1D() data4.name = 'M1 [p1]' data4.plot_role = Data1D.ROLE_DEFAULT plot4.data = data1 # same data but must show, since different model self.assertFalse(self.form.isPlotShown(data4)) def testPlotsFromMultipleData2D(self): """ Tests interplay between plotting 2D datasets and plotting a single 2D dataset from two separate fit tabs GH issue 1546 """ # prepare active_plots plot1 = Plotter(parent=self.form) data1 = Data2D() data1.name = 'p1' data1.plot_role = Data1D.ROLE_DATA plot1.data = data1 plot2 = Plotter(parent=self.form) data2 = Data2D() data2.name = 'M2 [p1]' data2.plot_role = Data1D.ROLE_DEFAULT plot2.data = data2 plot3 = Plotter(parent=self.form) data3 = Data2D() data3.name = 'Residuals for M2[p1]' data3.plot_role = Data1D.ROLE_RESIDUAL plot3.data = data3 # pretend we're displaying three plots self.form.active_plots['p1'] = plot1 self.form.active_plots['M2 [p1]'] = plot2 self.form.active_plots['Residuals for M2[p1]'] = plot3 # redoing plots from the same tab # data -> Already there, don't show self.assertTrue(self.form.isPlotShown(data1)) # model and residuals are already shown self.assertTrue(self.form.isPlotShown(data2)) self.assertTrue(self.form.isPlotShown(data3)) # Try from different fit page plot4 = Plotter(parent=self.form) data4 = Data2D() data4.name = 'M1 [p1]' plot4.data = data1 # same data but must show, since different model self.assertFalse(self.form.isPlotShown(data4)) if __name__ == "__main__": unittest.main()
d4fcfeef7b63063c5f5d8f152d236ed85efe6a52
41f4415409901876ac153459b4f6fe28a5a934a7
/src/lambda_reduce2.py
8775db4ef45cb5721860c3a3f4f8ed9297b3fde1
[]
no_license
prasertcbs/python_tutorial
4062a413df6192a71eb56f211501d710ddc26b90
2302ea030f6984e6ac3f77a366369e9c47502f5a
refs/heads/master
2023-03-18T16:47:27.564924
2023-03-09T14:33:59
2023-03-09T14:33:59
320,748,324
1
3
null
null
null
null
UTF-8
Python
false
false
1,199
py
from functools import reduce def demo_reduce_logic(): age = 15 gender = 'F' height = 165 weight = 48 crit = [age > 18, gender == 'F', height > 160, weight > 45] ok = reduce(lambda cv, v: cv and v, crit) # ok = crit[0] and crit[1] and crit[2] and crit[3] print(ok) def demo_join_list(): sep='|' names=['Peter', 'Jenny', 'Linda', 'Bruce', 'Ann'] print(sep.join(names)) x = reduce(lambda cv, v: f'{cv}{sep}{v}', names) print(x) def demo_if_reduce(): numbers = [3, 6, 4, 1, 7, 8] # sum even numbers x = reduce(lambda cv, v: cv + (v if v % 2 == 0 else 0), numbers, 0) # x = reduce(lambda cv, v: cv + (v if v % 2 == 0 else 0), numbers) print(x) def demo_list_dict(): names = [ {'name': 'Peter', 'score': 5}, {'name': 'Ann', 'score': 8}, {'name': 'Jenny', 'score': 7}, {'name': 'Bruce', 'score': 10} ] x = reduce(lambda cv, v: cv + v['score'], names, 0) # x = reduce(lambda cv, v: cv + v['score'], names) print(x) print(sum([v['score'] for v in names])) if __name__ == "__main__": # demo_reduce_logic() # demo_join_list() # demo_if_reduce() demo_list_dict()
b7b671cd460bf84fd46bd1bcb8cbca90d74ec439
344e2956b4e2a30a8ef7532d951f96d995d1dd1e
/16_mmdet/lib/mmdet/models/dense_heads/rpn_test_mixin.py
a59422fd69ed7e61f628b90f4528d0cec11c2370
[ "Apache-2.0", "LGPL-3.0-only", "MIT", "LicenseRef-scancode-proprietary-license", "BSD-3-Clause", "GPL-3.0-only" ]
permissive
karndeepsingh/Monk_Object_Detection
e64199705326e4cd65e4b29946cae210a4ef9649
425fa50a3236cb9097389646275da06bf9185f6b
refs/heads/master
2022-12-22T18:26:53.933397
2020-09-28T12:49:50
2020-09-28T12:49:50
299,307,843
1
1
Apache-2.0
2020-09-28T12:52:18
2020-09-28T12:52:17
null
UTF-8
Python
false
false
2,151
py
import sys from mmdet.core import merge_aug_proposals if sys.version_info >= (3, 7): from mmdet.utils.contextmanagers import completed class RPNTestMixin(object): """Test methods of RPN.""" if sys.version_info >= (3, 7): async def async_simple_test_rpn(self, x, img_metas): sleep_interval = self.rpn_head.test_cfg.pop( 'async_sleep_interval', 0.025) async with completed( __name__, 'rpn_head_forward', sleep_interval=sleep_interval): rpn_outs = self(x) proposal_list = self.get_bboxes(*rpn_outs, img_metas) return proposal_list def simple_test_rpn(self, x, img_metas): """Test without augmentation. Args: x (tuple[Tensor]): Features from the upstream network, each is a 4D-tensor. img_metas (list[dict]): Meta info of each image. Returns: list[Tensor]: Proposals of each image. """ rpn_outs = self(x) proposal_list = self.get_bboxes(*rpn_outs, img_metas) return proposal_list def aug_test_rpn(self, feats, img_metas): samples_per_gpu = len(img_metas[0]) aug_proposals = [[] for _ in range(samples_per_gpu)] for x, img_meta in zip(feats, img_metas): proposal_list = self.simple_test_rpn(x, img_meta) for i, proposals in enumerate(proposal_list): aug_proposals[i].append(proposals) # reorganize the order of 'img_metas' to match the dimensions # of 'aug_proposals' aug_img_metas = [] for i in range(samples_per_gpu): aug_img_meta = [] for j in range(len(img_metas)): aug_img_meta.append(img_metas[j][i]) aug_img_metas.append(aug_img_meta) # after merging, proposals will be rescaled to the original image size merged_proposals = [ merge_aug_proposals(proposals, aug_img_meta, self.test_cfg) for proposals, aug_img_meta in zip(aug_proposals, aug_img_metas) ] return merged_proposals
ba069b17cac491de9884a946e82b583bcaab68e4
2713827b2f68aae65d4be516f024d51a7e762a97
/doc/user/SConscript
9e039dac7b1b08fbd7c55e9e8439769e0b70f962
[ "MIT" ]
permissive
ptomulik/scons-tool-gnuplot
bd83fd6c4d85fb4391288d90d7e26f67ec4f1f29
2b92500feed48267d1bfdcaaae542a65dcc42b60
refs/heads/master
2021-05-21T12:03:14.776722
2020-04-16T22:36:33
2020-04-16T22:36:33
9,398,514
1
0
null
2020-04-16T22:36:35
2013-04-12T16:21:39
Python
UTF-8
Python
false
false
1,493
# # Copyright (c) 2013-2020 by Pawel Tomulik # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE Import(['env']) if 'user-doc' in COMMAND_LINE_TARGETS: env.Tool('docbook') pdf = env.DocbookPdf('manual') html = env.DocbookHtml('manual') env.Ignore('.', pdf + html) env.Alias( 'user-doc', pdf + html ) env.AlwaysBuild( 'user-doc' ) # Local Variables: # # tab-width:4 # # indent-tabs-mode:nil # # End: # vim: set syntax=scons expandtab tabstop=4 shiftwidth=4:
6a3716a612b8ebb22cb755b1aaab49a349259463
fc38005e1474ce803a272387d401da6cd0a8c0ef
/lter_pasta/src/pasta_gmn_adapter/app/restrict_to_verb.py
b5ab1b462e5d53d91264fe160c26b0abe8ce0482
[ "Apache-2.0" ]
permissive
DataONEorg/SlenderNodes
4a3876e12d46c031b99821717533e2f4f39a57c8
34dd4ed9d581d259a70d7c9a884f520226dd2691
refs/heads/master
2023-02-18T08:39:24.072662
2022-01-07T13:12:18
2022-01-07T13:12:18
53,552,615
1
3
Apache-2.0
2023-02-08T02:36:49
2016-03-10T03:38:03
HTML
UTF-8
Python
false
false
1,243
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """:mod:`restrict_to_verb` ========================== :Synopsis: Limit views to be called only with specific verb. :Author: Roger Dahl """ import django.http def _allow_only_verbs(f, verbs): def wrap(request, *args, **kwargs): if request.method not in verbs: return django.http.HttpResponseNotAllowed(verbs) return f(request, *args, **kwargs) wrap.__doc__ = f.__doc__ wrap.__name__ = f.__name__ return wrap def get(f): return _allow_only_verbs(f, ['GET']) def put(f): return _allow_only_verbs(f, ['PUT']) def post(f): return _allow_only_verbs(f, ['POST']) def delete(f): return _allow_only_verbs(f, ['DELETE'])
b968ff45bd84273d0e43339d72915b1cd40cf9af
0bff4e342d15d90dde7ed0b8a8a479b2c82d17d7
/home/check_images.py
7a787f6253d0666f6a04e6ff8730a63e9d128ce2
[]
no_license
AyodejiOkusanya/Dog_classifier_project
e272070d21646d11c5724724c0abdc691c4b8226
13a8f29d9506332bd0bc23415501918565147624
refs/heads/master
2020-07-26T23:41:14.535123
2019-09-16T13:31:38
2019-09-16T13:31:38
208,800,039
0
0
null
null
null
null
UTF-8
Python
false
false
6,398
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # */AIPND-revision/intropyproject-classify-pet-images/check_images.py # # TODO 0: Add your information below for Programmer & Date Created. # PROGRAMMER: Ayodeji Okusanya # DATE CREATED: 11th September 2019 # REVISED DATE: # PURPOSE: Classifies pet images using a pretrained CNN model, compares these # classifications to the true identity of the pets in the images, and # summarizes how well the CNN performed on the image classification task. # Note that the true identity of the pet (or object) in the image is # indicated by the filename of the image. Therefore, your program must # first extract the pet image label from the filename before # classifying the images using the pretrained CNN model. With this # program we will be comparing the performance of 3 different CNN model # architectures to determine which provides the 'best' classification. # # Use argparse Expected Call with <> indicating expected user input: # python check_images.py --dir <directory with images> --arch <model> # --dogfile <file that contains dognames> # Example call: # python check_images.py --dir pet_images/ --arch vgg --dogfile dognames.txt ## # Imports python modules from time import time, sleep # Imports print functions that check the lab from print_functions_for_lab_checks import * # Imports functions created for this program from get_input_args import get_input_args from get_pet_labels import get_pet_labels from classify_images import classify_images from adjust_results4_isadog import adjust_results4_isadog from calculates_results_stats import calculates_results_stats from print_results import print_results # Main program function defined below def main(): # TODO 0: Measures total program runtime by collecting start time start_time = time() # TODO 1: Define get_input_args function within the file get_input_args.py # This function retrieves 3 Command Line Arugments from user as input from # the user running the program from a terminal window. This function returns # the collection of these command line arguments from the function call as # the variable in_arg in_arg = get_input_args() # Function that checks command line arguments using in_arg check_command_line_arguments(in_arg) # TODO 2: Define get_pet_labels function within the file get_pet_labels.py # Once the get_pet_labels function has been defined replace 'None' # in the function call with in_arg.dir Once you have done the replacements # your function call should look like this: # get_pet_labels(in_arg.dir) # This function creates the results dictionary that contains the results, # this dictionary is returned from the function call as the variable results results = get_pet_labels(in_arg.dir) # Function that checks Pet Images in the results Dictionary using results check_creating_pet_image_labels(results) # TODO 3: Define classify_images function within the file classiy_images.py # Once the classify_images function has been defined replace first 'None' # in the function call with in_arg.dir and replace the last 'None' in the # function call with in_arg.arch Once you have done the replacements your # function call should look like this: # classify_images(in_arg.dir, results, in_arg.arch) # Creates Classifier Labels with classifier function, Compares Labels, # and adds these results to the results dictionary - results classify_images(in_arg.dir, results, in_arg.arch) # Function that checks Results Dictionary using results check_classifying_images(results) # TODO 4: Define adjust_results4_isadog function within the file adjust_results4_isadog.py # Once the adjust_results4_isadog function has been defined replace 'None' # in the function call with in_arg.dogfile Once you have done the # replacements your function call should look like this: # adjust_results4_isadog(results, in_arg.dogfile) # Adjusts the results dictionary to determine if classifier correctly # classified images as 'a dog' or 'not a dog'. This demonstrates if # model can correctly classify dog images as dogs (regardless of breed) adjust_results4_isadog(results, in_arg.dogfile) # Function that checks Results Dictionary for is-a-dog adjustment using results check_classifying_labels_as_dogs(results) # TODO 5: Define calculates_results_stats function within the file calculates_results_stats.py # This function creates the results statistics dictionary that contains a # summary of the results statistics (this includes counts & percentages). This # dictionary is returned from the function call as the variable results_stats # Calculates results of run and puts statistics in the Results Statistics # Dictionary - called results_stats results_stats = calculates_results_stats(results) # Function that checks Results Statistics Dictionary using results_stats check_calculating_results(results, results_stats) # TODO 6: Define print_results function within the file print_results.py # Once the print_results function has been defined replace 'None' # in the function call with in_arg.arch Once you have done the # replacements your function call should look like this: # print_results(results, results_stats, in_arg.arch, True, True) # Prints summary results, incorrect classifications of dogs (if requested) # and incorrectly classified breeds (if requested) print_results(results, results_stats, in_arg.arch, True, True) # TODO 0: Measure total program runtime by collecting end time end_time = time() # TODO 0: Computes overall runtime in seconds & prints it in hh:mm:ss format tot_time = end_time - start_time #calculate difference between end time and start time print("\n** Total Elapsed Runtime:", str(int((tot_time/3600)))+":"+str(int((tot_time%3600)/60))+":" +str(int((tot_time%3600)%60)) ) # Call to main function to run the program if __name__ == "__main__": main()
[ "github email address" ]
github email address
18a586efdc6122d4271bb81d3d0b85f45f3fc386
000a4b227d970cdc6c8db192f4437698cb782721
/python/helpers/typeshed/stubs/redis/redis/commands/json/path.pyi
d33df3045beadd6a79613752d247d376006a94bb
[ "Apache-2.0", "MIT" ]
permissive
trinhanhngoc/intellij-community
2eb2f66a2a3a9456e7a0c5e7be1eaba03c38815d
1d4a962cfda308a73e0a7ef75186aaa4b15d1e17
refs/heads/master
2022-11-03T21:50:47.859675
2022-10-19T16:39:57
2022-10-19T23:25:35
205,765,945
1
0
Apache-2.0
2019-09-02T02:55:15
2019-09-02T02:55:15
null
UTF-8
Python
false
false
125
pyi
class Path: strPath: str @staticmethod def rootPath() -> str: ... def __init__(self, path: str) -> None: ...
c3c2c3822b57e06c8b713582230fd8a9950bcfcf
ebd5c4632bb5f85c9e3311fd70f6f1bf92fae53f
/Sourcem8/pirates/inventory/InventoryUIGoldItem.py
1a3afd314852cc484b7e5797f1275e913e7e2160
[]
no_license
BrandonAlex/Pirates-Online-Retribution
7f881a64ec74e595aaf62e78a39375d2d51f4d2e
980b7448f798e255eecfb6bd2ebb67b299b27dd7
refs/heads/master
2020-04-02T14:22:28.626453
2018-10-24T15:33:17
2018-10-24T15:33:17
154,521,816
2
1
null
null
null
null
UTF-8
Python
false
false
1,541
py
from direct.gui.DirectGui import * from pandac.PandaModules import * from pirates.piratesgui import GuiPanel, PiratesGuiGlobals from pirates.piratesbase import PiratesGlobals from pirates.piratesbase import PLocalizer from otp.otpbase import OTPLocalizer from pirates.inventory.InventoryUIGlobals import * from pirates.inventory.InventoryGlobals import * from pirates.inventory import InventoryUIStackItem class InventoryUIGoldItem(InventoryUIStackItem.InventoryUIStackItem): def __init__(self, manager, itemTuple, imageScaleFactor = 1.0, update = False): InventoryUIStackItem.InventoryUIStackItem.__init__(self, manager, itemTuple, imageScaleFactor = imageScaleFactor, showMax = 0, update = False) self.initialiseoptions(InventoryUIGoldItem) gui = loader.loadModel('models/gui/toplevel_gui') self['image'] = gui.find('**/treasure_w_coin*') self['image_scale'] = 0.1 * imageScaleFactor self.imageScale = 3.0 self.textScale = 1.1 if update: self.accept(getCategoryChangeMsg(localAvatar.getInventoryId(), InventoryType.ItemTypeMoney), self.updateAmount) def destroy(self): self.ignoreAll() InventoryUIStackItem.InventoryUIStackItem.destroy(self) def getName(self): return PLocalizer.GoldName def updateAmount(self, caller = None): inventory = localAvatar.getInventory() if inventory: amount = inventory.getGoldInPocket() self.amount = amount self.updateAmountText()
05464dd5b1fdbd853afe7496ba59a07cb777199b
ce26ae9315d7814f6dbfa1918c7f5c5a6293e49b
/Lammps/Pore/qsub/Launcher.py.bak
145233501f45b556ca2fb8eec925aebc7b2a894c
[]
no_license
sramirezh/Utilities
25982a28cc40c6bea47c8ccbd95870addd2e826d
a86e72787059e511983cd047f3027aa10eba7090
refs/heads/master
2023-02-09T10:16:28.571756
2023-01-31T00:14:28
2023-01-31T00:14:28
89,708,819
4
1
null
null
null
null
UTF-8
Python
false
false
1,576
bak
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Tue May 28 09:24:03 2019 "Creates replicas of simulations starting from configurations during the equilibration" @author: sr802 """ import glob import sys import os sys.path.append(os.path.join(os.path.dirname(__file__), '../../../')) #This falls into Utilities path import Lammps.core_functions as cf import shutil from simulation_utilities import simulation cwd = os.getcwd() #current working directory dir_path = os.path.dirname(os.path.realpath(__file__))#Path of this python script #Main #Getting the path to all the restart files files=glob.glob('./Try/particle/*') template=cwd+'/Template' home=cwd+'/mu_force' times=cf.extract_digits(files) times=[str(int(time)) for time in times] #Takign the last N configurations n_conf=4 conf_times=times[-n_conf:] files_analysis=cf.parameter_finder(files,conf_times) shutil.rmtree(home,ignore_errors=True) for i in files_analysis: #The extraction of the parameters for the simulation comes here path="%s/%s"%(home,times[i]) time=int(cf.extract_digits(files[i])[-1]) name=str(time) restart=files[i] #Creating the simulation instance sim=simulation(home,template,name,restart) sim.create_folder() sim.create_qsub('test',1,1,1,'input.lmp',) #Mofications to the files here file_name="input.lmp" file_path=sim.folder+'/'+file_name value_modify=sim.initial_conf.split('/')[-1] cf.modify_file(file_path,'read_restart','read_restart\t%s\n'%value_modify)
46bc65733acedf9596954169791412496a1c48f4
8b2e795c3040a2ef1d3f0c21752bec57a0614bd6
/venv/Scripts/enhancer.py
294eaaa77d0cdd6cb0de824a7d27a60fe56e0e2b
[]
no_license
harshit8858/NHDO
c75e244dfdc91817b3047d65c7be610f3e18aba3
6a5ea2de4ba607c20c0b9bd241e6b1c82090eba9
refs/heads/master
2023-01-06T20:18:33.795898
2018-01-03T07:39:04
2018-01-03T07:39:04
105,629,451
1
3
null
2022-12-20T22:32:34
2017-10-03T08:26:57
Python
UTF-8
Python
false
false
1,603
py
#!c:\users\harshi~1\nhdo\venv\scripts\python.exe # # The Python Imaging Library # $Id$ # # this demo script creates four windows containing an image and a slider. # drag the slider to modify the image. # import sys if sys.version_info[0] > 2: import tkinter else: import Tkinter as tkinter from PIL import Image, ImageTk, ImageEnhance # # enhancer widget class Enhance(tkinter.Frame): def __init__(self, master, image, name, enhancer, lo, hi): tkinter.Frame.__init__(self, master) # set up the image self.tkim = ImageTk.PhotoImage(image.mode, image.size) self.enhancer = enhancer(image) self.update("1.0") # normalize # image window tkinter.Label(self, image=self.tkim).pack() # scale s = tkinter.Scale(self, label=name, orient=tkinter.HORIZONTAL, from_=lo, to=hi, resolution=0.01, command=self.update) s.set(self.value) s.pack() def update(self, value): self.value = float(value) self.tkim.paste(self.enhancer.enhance(self.value)) # # main if len(sys.argv) != 2: print("Usage: enhancer file") sys.exit(1) root = tkinter.Tk() im = Image.open(sys.argv[1]) im.thumbnail((200, 200)) Enhance(root, im, "Color", ImageEnhance.Color, 0.0, 4.0).pack() Enhance(tkinter.Toplevel(), im, "Sharpness", ImageEnhance.Sharpness, -2.0, 2.0).pack() Enhance(tkinter.Toplevel(), im, "Brightness", ImageEnhance.Brightness, -1.0, 3.0).pack() Enhance(tkinter.Toplevel(), im, "Contrast", ImageEnhance.Contrast, -1.0, 3.0).pack() root.mainloop()
48a4d700a45b7466b60ce18dc1bbe99043d5a7ed
42a7abc31b447d1bfa5db19d5e047c475a00ca81
/leetcode/contest/2017/mar4/531.py
15c29bfc748d3be08dcc2797495bcce045c9fc0b
[]
no_license
jonathantsang/CompetitiveProgramming
f01f3727e49e03038a981871f29234fccfac0e7c
05d49ca91ac2a4d414dbb38b01266962ce68f34a
refs/heads/master
2022-12-12T11:52:13.327425
2022-12-07T20:37:37
2022-12-07T20:37:37
121,400,994
2
0
null
2020-10-08T19:24:10
2018-02-13T15:43:07
Python
UTF-8
Python
false
false
1,229
py
class Solution(object): def findLonelyPixel(self, picture): """ :type picture: List[List[str]] :rtype: int """ lonely = 0 picleng = len(picture) row = [] column = [] for w in range(0, 501): row.append(0) for w in range(0, 501): column.append(0) ## Find the number of B in the rows for j in range(0, picleng): leng = len(picture[j]); for i in range(0, leng): if(picture[j][i] == 'B'): row[j] += 1 ## Find the number of B in the columns for j in range(0, picleng): leng = len(picture[j]); for i in range(0, leng): if(picture[j][i] == 'B'): column[i] += 1 ## Go through all the rows and mark not lonely for j in range(0, picleng): leng = len(picture[j]) for i in range(0, leng): ## If it is a B if('B' == picture[j][i]): if(row[j] == 1 and column[i] == 1): lonely += 1 return lonely
f19f8a0455cc9545e32288d7e8eefcc1050952ce
88eb24f0890457b994e867b68e1b2d3a34a3b900
/rv/uniform.py
ee15e496062954df619b976f1ae08b5fc1370b41
[]
no_license
jiye-ML/Probalistic-Graphical-Model-21-Sample-Method
9cf4168ee5cf2fb33d92236997fc03ff84a2243b
a17351de817dd340a189696592dee9ec77e49edd
refs/heads/master
2020-05-17T08:44:24.075793
2019-04-26T12:56:22
2019-04-26T12:56:22
183,615,211
0
0
null
null
null
null
UTF-8
Python
false
false
1,699
py
import numpy as np from rv.rv import RandomVariable class Uniform(RandomVariable): """ Uniform distribution p(x|a, b) = 1 / ((b_0 - a_0) * (b_1 - a_1)) if a <= x <= b else 0 """ def __init__(self, low, high): """ construct uniform distribution Parameters ---------- low : int, float, or np.ndarray lower boundary high : int, float, or np.ndarray higher boundary """ super().__init__() low = np.asarray(low) high = np.asarray(high) assert low.shape == high.shape assert (low <= high).all() self.low = low self.high = high self.value = 1 / np.prod(high - low) pass @property def low(self): return self.parameter["low"] @low.setter def low(self, low): self.parameter["low"] = low pass @property def high(self): return self.parameter["high"] @high.setter def high(self, high): self.parameter["high"] = high pass @property def ndim(self): return self.low.ndim @property def size(self): return self.low.size @property def shape(self): return self.low.shape @property def mean(self): return 0.5 * (self.low + self.high) def _pdf(self, X): higher = np.logical_and.reduce(X >= self.low, 1) lower = np.logical_and.reduce(X <= self.high, 1) return self.value * np.logical_and(higher, lower) def _draw(self, sample_size=1): u01 = np.random.uniform(size=(sample_size,) + self.shape) return u01 * (self.high - self.low) + self.low
a4a582cb04903022b261b7f8fc8ea362601afe49
ac52ddddf672216998a33d5e6905a1a1e4d97a55
/pipe/scripts/filter_misaligned_shared_indels.py
549616ebf8ce5e5022ab69d39483766500b714b8
[ "MIT" ]
permissive
EddieKHHo/megadaph
62e29e72896a5969b21d531a20a95fbce1589c3c
23010e7ce9ee6cceedaa3d4ba3e990e9af34aae0
refs/heads/master
2021-09-22T00:53:15.881183
2018-09-04T02:14:21
2018-09-04T02:14:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,362
py
#!/usr/bin/env python3 """Remove indels which are falsely aligned as runs of single base mismatches in other samples.""" # This script is awful import sys import click from pandas import read_csv from plumbum.cmd import rg BASE_IDX = { "A": [4, 8], "T": [5, 9], "C": [6, 10], "G": [7, 11] } def is_insertion(indel): return len(indel["REF"]) < len(indel["ALT"]) def get_ref_base(chrom, pos, pileup): exit_code, stdout, stderr = rg.run( ["\s".join([chrom, str(pos)]), pileup], retcode=None ) if exit_code != 0: return 0 return stdout.split()[2] def check_indel(indel, pileups): if is_insertion(indel): bad_bases = indel["ALT"][1:] indel_length = len(indel["ALT"]) else: indel_length = len(indel["REF"]) bad_base_start = indel["POS"] + indel_length bad_base_pos = range(bad_base_start, bad_base_start + indel_length) bad_bases = [ get_ref_base(indel["CHROM"], pos, pileups[0]) for pos in bad_base_pos ] if any([base == 0 for base in bad_bases]): return True adj_base = int(indel["POS"] + 1) adj_base_pos = range(adj_base, adj_base + indel_length - 1) for bad, adj in zip(bad_bases, adj_base_pos): if get_ref_base(indel["CHROM"], adj, pileups[0]) != bad: for pileup in pileups: counts = rg.run( ["\s".join([indel["CHROM"], str(adj)]), pileup], retcode=None )[1].split() if counts: target_base_counts = ( int(counts[BASE_IDX[bad][0]]) + int(counts[BASE_IDX[bad][1]]) ) if target_base_counts > 0: return False return True def filter_indels(pileups, indels): if len(indels): passing = indels.apply(check_indel, axis=1, pileups=pileups) filtered_indels = indels[passing] else: filtered_indels = indels filtered_indels.to_csv(sys.stdout, sep="\t", index=False) @click.command() @click.option("--indels", help="TSV file containing indels.") @click.argument("pileups", nargs=-1) def cli(pileups, indels): filter_indels(pileups, read_csv(indels, sep="\t")) if __name__ == "__main__": cli()
13a2d878d94dd5ce7ae75e793523a256cbb3845e
4fc21c3f8dca563ce8fe0975b5d60f68d882768d
/Ekeopara_Praise/Phase 1/Python Basic 1/Day4 Tasks/Task 4.py
859dab1a442dd79e17c8a15f153c9475f280c367
[ "MIT" ]
permissive
Uche-Clare/python-challenge-solutions
17e53dbedbff2f33e242cf8011696b3059cd96e9
49ede6204ee0a82d5507a19fbc7590a1ae10f058
refs/heads/master
2022-11-13T15:06:52.846937
2020-07-10T20:59:37
2020-07-10T20:59:37
266,404,840
1
0
MIT
2020-05-23T19:24:56
2020-05-23T19:24:55
null
UTF-8
Python
false
false
299
py
'''4. Write a Python program to test whether a passed letter is a vowel or not.''' letr = str(input("Enter any letter: ")) vowel = ["A", 'a', "E", 'e', "I", 'i', "O", 'o', "U", 'u'] if letr in vowel: print("The letter entered is a vowel!") else: print("The letter entered is not a vowel!")
0ea60aa86c763bb8a7b07ee39bbe0bdd0cbcfddd
50725a9ada0fe57fa2b49af36863eb1ce9d8c134
/lists/forms.py
319463e501e13dc9c5482844c30dda02536e6d03
[]
no_license
dungnguyen1991/superlists
1381537a2b168b6d5ea5bac23608f8f425ce642f
e3bcca1876275414d5dba1f83c482eadaff381d3
refs/heads/master
2023-08-28T07:09:12.855120
2021-10-12T09:24:21
2021-10-12T09:24:21
396,571,092
0
0
null
null
null
null
UTF-8
Python
false
false
1,324
py
from django import forms from django.core.exceptions import ValidationError from lists.models import Item, List EMPTY_ITEM_ERROR = "You can't have an empty list item" DUPLICATE_ITEM_ERROR = "You've already got this in your list" class ItemForm(forms.models.ModelForm): class Meta: model = Item fields = ('text', ) widgets = { 'text': forms.TextInput(attrs={ 'placeholder': 'Enter a to-do item', 'class': 'form-control input-lg', }) } error_messages = { 'text': { 'required': EMPTY_ITEM_ERROR } } class ExistingListItemForm(ItemForm): def __init__(self, for_list, *args, **kwargs): super().__init__(*args, **kwargs) self.instance.list = for_list def validate_unique(self): try: self.instance.validate_unique() except ValidationError as e: e.error_dict = {'text': [DUPLICATE_ITEM_ERROR]} self._update_errors(e) class NewListForm(ItemForm): def save(self, owner): if owner.is_authenticated: return List.create_new(first_item_text=self.cleaned_data['text'], owner=owner) else: return List.create_new(first_item_text=self.cleaned_data['text'])
014ee15478ee543d6b6c2633912f2e2076087098
f576f0ea3725d54bd2551883901b25b863fe6688
/sdk/redis/azure-mgmt-redis/generated_samples/redis_cache_linked_server_get.py
b448a35a6f903c774db566a3add94321ac068413
[ "MIT", "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later" ]
permissive
Azure/azure-sdk-for-python
02e3838e53a33d8ba27e9bcc22bd84e790e4ca7c
c2ca191e736bb06bfbbbc9493e8325763ba990bb
refs/heads/main
2023-09-06T09:30:13.135012
2023-09-06T01:08:06
2023-09-06T01:08:06
4,127,088
4,046
2,755
MIT
2023-09-14T21:48:49
2012-04-24T16:46:12
Python
UTF-8
Python
false
false
1,543
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from azure.identity import DefaultAzureCredential from azure.mgmt.redis import RedisManagementClient """ # PREREQUISITES pip install azure-identity pip install azure-mgmt-redis # USAGE python redis_cache_linked_server_get.py Before run the sample, please set the values of the client ID, tenant ID and client secret of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, AZURE_CLIENT_SECRET. For more info about how to get the value, please see: https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal """ def main(): client = RedisManagementClient( credential=DefaultAzureCredential(), subscription_id="subid", ) response = client.linked_server.get( resource_group_name="rg1", name="cache1", linked_server_name="cache2", ) print(response) # x-ms-original-file: specification/redis/resource-manager/Microsoft.Cache/stable/2023-04-01/examples/RedisCacheLinkedServer_Get.json if __name__ == "__main__": main()
439f9f249c544c5523729e5e44bf9a0b2f7f1174
954c112d4805da5b1c8ba6460ae137935d85fe69
/advanced/methods.py
972de67fc2b7a1924eb22c1ebfe1fed93ab18985
[]
no_license
ProsenjitKumar/DataHeadOffice
b329b96b9efa59976031483dc32beb5e09082528
89dc2b4fe73bc952252b190d3c64186908a026f1
refs/heads/master
2020-04-24T10:23:25.974884
2019-04-29T17:10:36
2019-04-29T17:10:36
171,892,722
1
0
null
null
null
null
UTF-8
Python
false
false
1,167
py
class Employee: def __init__(self, first_name, last_name, pay): self.first_name = first_name self.last_name = last_name self.pay = pay @classmethod def another_stuff(cls, full_name): cls.full_name = full_name @classmethod def from_string(cls, emp_str): first, last, pay = emp_str.split('-') return cls(first, last, pay) @staticmethod def is_workkday(day): if day.weekday() == 5 or day.weekday() == 6: # saturday return False return True import datetime my_date = datetime.date(2019, 2, 22) print(Employee.is_workkday(my_date)) print(my_date.weekday()) # emp_obj = Employee('Prosenjit', 'Das', 26980) # emp_obj1 = Employee('Samoli', 'Das', 5688) # emp_obj.another_stuff('Prosenjit Das') # print(Employee.full_name) # print(emp_obj.full_name) # print(emp_obj1.full_name) # emp_str_1 = 'Prosenjit-Das-85200' # emp_str_2 = 'Jalil-Khan-56870' # emp_str_3 = 'Suvo-Roy-87452' # first, last, pay = emp_str_1.split('-') # new_emp_1 = Employee(first, last, pay) # new_emp_1 = Employee.from_string(emp_str_1) # print(new_emp_1.first_name) # print(new_emp_1.pay)
eb4caeb850832163e9a1b127ded1f4c34520b942
6710c52d04e17facbc9fb35a7df313f7a2a7bd53
/Templates/0133. Clone Graph.py
c68d1c458509885aef75e70880935fb3dbd2c431
[]
no_license
pwang867/LeetCode-Solutions-Python
535088fbe747a453360457728cc22cf336020bd2
188befbfb7080ba1053ee1f7187b177b64cf42d2
refs/heads/master
2022-11-13T16:20:28.211707
2020-06-28T06:01:14
2020-06-28T06:01:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,897
py
""" # Definition for a Node. class Node(object): def __init__(self, val, neighbors): self.val = val self.neighbors = neighbors """ # method 2, combine node creation and relationship copy # make sure that: 1. a node is only copied once, 2. a node's relationship is only processed once class Solution(object): def cloneGraph(self, node): """ :type node: Node :rtype: Node """ if not node: return None d = {node: Node(node.val, [])} visited = set() # visited means the nodes whose copies' neighbors has been copied stack = [node] while stack: p = stack.pop() if p in visited: continue visited.add(p) for nei in p.neighbors: if nei not in d: d[nei] = Node(nei.val, []) d[p].neighbors.append(d[nei]) stack.append(nei) return d[node] # method 1: separate creating node and copying relation class Solution1(object): def cloneGraph(self, node): """ :type node: Node :rtype: Node """ d = {} stack = [node] while stack: p = stack.pop() if p in d: continue else: d[p] = Node(p.val, []) for nei in p.neighbors: stack.append(nei) stack = [node] visited = set() # save nodes whose neighbor relationship has been cloned while stack: p = stack.pop() if p in visited: continue else: visited.add(p) for nei in p.neighbors: d[p].neighbors.append(d[nei]) stack.append(nei) return d[node] """ Given a reference of a node in a connected undirected graph, return a deep copy (clone) of the graph. Each node in the graph contains a val (int) and a list (List[Node]) of its neighbors. Example: Input: {"$id":"1","neighbors":[{"$id":"2","neighbors":[{"$ref":"1"},{"$id":"3","neighbors":[{"$ref":"2"}, {"$id":"4","neighbors":[{"$ref":"3"},{"$ref":"1"}],"val":4}],"val":3}],"val":2},{"$ref":"4"}],"val":1} Explanation: Node 1's value is 1, and it has two neighbors: Node 2 and 4. Node 2's value is 2, and it has two neighbors: Node 1 and 3. Node 3's value is 3, and it has two neighbors: Node 2 and 4. Node 4's value is 4, and it has two neighbors: Node 1 and 3. Note: The number of nodes will be between 1 and 100. The undirected graph is a simple graph, which means no repeated edges and no self-loops in the graph. Since the graph is undirected, if node p has node q as neighbor, then node q must have node p as neighbor too. You must return the copy of the given node as a reference to the cloned graph. """
240ba5faf2e6c26a2582db83afe8123094b20c04
1515be3015ad988278d5a095416c0a0066a02757
/src/users/models/componentsschemasmicrosoft_graph_detectedappallof1.py
5b14ba5d58afbceee708dcfb5a655fe2b76c8442
[ "MIT" ]
permissive
peombwa/Sample-Graph-Python-Client
2ad494cc5b5fe026edd6ed7fee8cac2dd96aaa60
3396f531fbe6bb40a740767c4e31aee95a3b932e
refs/heads/master
2020-12-29T09:50:38.941350
2020-02-05T22:45:28
2020-02-05T22:45:28
238,561,578
0
0
null
null
null
null
UTF-8
Python
false
false
1,975
py
# coding=utf-8 # -------------------------------------------------------------------------- # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class ComponentsschemasmicrosoftGraphDetectedappallof1(Model): """detectedApp. A managed or unmanaged app that is installed on a managed device. Unmanaged apps will only appear for devices marked as corporate owned. :param display_name: Name of the discovered application. Read-only :type display_name: str :param version: Version of the discovered application. Read-only :type version: str :param size_in_byte: Discovered application size in bytes. Read-only :type size_in_byte: long :param device_count: The number of devices that have installed this application :type device_count: int :param managed_devices: :type managed_devices: list[~users.models.MicrosoftgraphmanagedDevice] """ _validation = { 'device_count': {'maximum': 2147483647, 'minimum': -2147483648}, } _attribute_map = { 'display_name': {'key': 'displayName', 'type': 'str'}, 'version': {'key': 'version', 'type': 'str'}, 'size_in_byte': {'key': 'sizeInByte', 'type': 'long'}, 'device_count': {'key': 'deviceCount', 'type': 'int'}, 'managed_devices': {'key': 'managedDevices', 'type': '[MicrosoftgraphmanagedDevice]'}, } def __init__(self, display_name=None, version=None, size_in_byte=None, device_count=None, managed_devices=None): super(ComponentsschemasmicrosoftGraphDetectedappallof1, self).__init__() self.display_name = display_name self.version = version self.size_in_byte = size_in_byte self.device_count = device_count self.managed_devices = managed_devices
3d5ebcfd0cf48f5f261c0ae6530b42549b161e95
33c7a8d150f0f95f5240c1ad8b458284e4db7ae0
/musicdl/modules/utils/logger.py
35a600ed1b3cd771a681fbbdaeb69ddeb9c8bedf
[ "MIT" ]
permissive
Yellowhxc/musicdl
55a81d75923f7d3cf9917aa6ef635d4ddabdd4ef
97d6254c9427046fef5d2ef1e65297cf04397728
refs/heads/master
2023-01-07T04:56:26.223829
2020-11-03T17:37:22
2020-11-03T17:37:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,549
py
''' Function: 一些终端打印工具 Author: Charles 微信公众号: Charles的皮卡丘 ''' import logging from prettytable import PrettyTable '''打印日志类''' class Logger(): def __init__(self, logfilepath, **kwargs): setattr(self, 'logfilepath', logfilepath) logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)-8s %(message)s', datefmt='%Y-%m-%d %H:%M:%S', handlers=[logging.FileHandler(logfilepath), logging.StreamHandler()]) @staticmethod def log(level, message): logging.log(level, message) def debug(self, message, disable_print=False): if disable_print: fp = open(self.logfilepath, 'a') fp.write(message + '\n') else: Logger.log(logging.DEBUG, message) def info(self, message, disable_print=False): if disable_print: fp = open(self.logfilepath, 'a') fp.write(message + '\n') else: Logger.log(logging.INFO, message) def warning(self, message, disable_print=False): if disable_print: fp = open(self.logfilepath, 'a') fp.write(message + '\n') else: Logger.log(logging.WARNING, message) def error(self, message, disable_print=False): if disable_print: fp = open(self.logfilepath, 'a') fp.write(message + '\n') else: Logger.log(logging.ERROR, message) '''打印表格''' def printTable(title, items): assert isinstance(title, list) and isinstance(items, list), 'title and items should be list in function printTable' table = PrettyTable(title) for item in items: table.add_row(item) print(table) return table
c633b8af692b31e91dbcff3ebf60b0db3f82e672
59080f5116b9e8f625b5cc849eb14b7ff9d19f3d
/088 Flask/test.py
8999a6a4206b15516ef8d305813e52da1540fd61
[]
no_license
yyq1609/Python_road
eda2bcd946b480a05ec31cdcb65e35b3f3e739d1
e9ba2f47c8dd2d00a6e5ddff03c546152efd8f49
refs/heads/master
2020-09-11T11:51:35.903284
2019-11-11T13:02:21
2019-11-11T13:02:21
222,054,462
1
0
null
2019-11-16T05:58:13
2019-11-16T05:58:12
null
UTF-8
Python
false
false
31
py
print(__file__) print(__name__)
589872846ac6ea51c041f6cd2f35f8715f7aa528
d04c79e5ed09d47f306eeee2bd9ef9a1a67ef693
/20200316/118. Pascal's Triangle.py
16df0c80adff5ce4749bdf955b38fab3aeb9f641
[]
no_license
mycomax0416/LeetCode
fe1d345d9b9355b37d9aa33b2633597de65a3838
b706a57a64313ca48df9eb61cb2e08d16ddf35b1
refs/heads/master
2021-03-09T20:22:24.356206
2020-04-04T12:27:39
2020-04-04T12:27:39
246,377,186
0
0
null
null
null
null
UTF-8
Python
false
false
465
py
class Solution: def generate(self, numRows: int) -> List[List[int]]: if numRows == 0: return [] elif numRows == 1: return [[1]] else: ans = [[1]] for n in range(numRows-1): row = [1] for idx in range(len(ans)-1): row.append(ans[-1][idx]+ans[-1][idx+1]) row.append(1) ans.append(row) return ans
4d77d33b162d01b0729e4f0492e7ad90b02aa416
4ca8df3a127e9b15cbfecea6505928741f685a63
/gongfei/month04/spider/爬虫滑块验证.py
7bce8222aa6cd7fdcb4220a8bd736da8e4350889
[]
no_license
gongfei6644/gongfei
2beb082c56197bc23ca20a6927ff6c10d8beaa83
bfdd5e6a3a8d76ad1e43cf54df186b944cad29e4
refs/heads/master
2022-11-30T20:49:22.213040
2020-08-16T12:52:28
2020-08-16T12:52:28
286,283,597
0
0
null
null
null
null
UTF-8
Python
false
false
10,385
py
# Python爬虫滑块验证 # 滑块验证网址:http://www.cnbaowen.net/api/geetest/ from selenium import webdriver from selenium.webdriver.support.ui import WebDriverWait # 等待元素加载的 from selenium.webdriver.common.action_chains import ActionChains #拖拽 from selenium.webdriver.support import expected_conditions as EC #等待查找 from selenium.common.exceptions import TimeoutException, NoSuchElementException #错误 from selenium.webdriver.common.by import By #标签查找 from PIL import Image #处理图片 import requests #处理网络请求 import time import re #正则 import random #随机数 from io import BytesIO import os def merge_image(image_file,location_list): """ 拼接图片 :param image_file: :param location_list: :return: """ im = Image.open(image_file) #打开图片二进制文件 im.save('code.jpg') #保存到code.jpg new_im = Image.new('RGB',(260,116)) #空白图片长260,宽116的实例 # 把无序的图片 切成52张小图片 im_list_upper = [] #上边边 im_list_down = [] #下半边 # print(location_list) for location in location_list: # print(location['y']) if location['y'] == -58: # 上半边 #im.crop(图片的x左坐标,图片的y上坐标,图片的x右坐标,图片的y下坐标)左、上、右和下像素的4元组 im_list_upper.append(im.crop((abs(location['x']),58,abs(location['x'])+10,116))) if location['y'] == 0: # 下半边 #同理如上,返回一个对象的对象PIL.Image.Image的object im_list_down.append(im.crop((abs(location['x']),0,abs(location['x'])+10,58))) x_offset = 0 for im in im_list_upper: #拼接上半部分 new_im.paste(im,(x_offset,0)) # 把小图片放到 新的空白图片上,im为无序图片,(x_offset,0)用的是二元组,可以为四元(左上右下),二元或不填,默认为左上方填充 x_offset += im.size[0] #每一次一定图片的长度 x_offset = 0 #重置为零,下面同样的拼接下半部分 for im in im_list_down: new_im.paste(im,(x_offset,58)) x_offset += im.size[0] # new_im.show() #显示生成的图片 return new_im #返回这张图片 def get_image(driver,div_path): ''' 下载无序的图片 然后进行拼接 获得完整的图片 :param driver: :param div_path: :return: ''' time.sleep(2) background_images = driver.find_elements_by_xpath(div_path) location_list = [] image_url="" for background_image in background_images: location = {} result = re.findall('background-image: url\("(.*?)"\); background-position: (.*?)px (.*?)px;',background_image.get_attribute('style')) # # print(result) location['x'] = int(result[0][1]) #获取无序图片x坐标 location['y'] = int(result[0][2]) #获取无序图片y坐标 image_url = result[0][0].replace('webp','jpg') #图片链接 location_list.append(location) #将xy坐标 字典放入列表中 {"x":"-157","y":"-58"} print('==================================') # '替换url http://static.geetest.com/pictures/gt/579066de6/579066de6.webp' #content响应的内容,以字节为单位 image_result = requests.get(image_url).content #b'\xff\ 字节 #BytesIO相当于实现一个with open: # with open('1.jpg','wb') as f: # f.write(image_result) image_file = BytesIO(image_result) # 是一张无序的图片 返回一个对象<_io.BytesIO object at 0x000001B5A139D3B8> image = merge_image(image_file,location_list) #拼接图片 <PIL.Image.Image image mode=RGB size=260x116 at 0x1B5A131AD30> return image def get_track(distance): ''' 拿到移动轨迹,模仿人的滑动行为,先匀加速后匀减速 匀变速运动基本公式: ①v=v0+at ②s=v0t+(1/2)at² ③v²-v0²=2as :param distance: 需要移动的距离 :return: 存放每0.2秒移动的距离 ''' # 初速度 v=0 # 单位时间为0.2s来统计轨迹,轨迹即0.2内的位移 t=0.2 # 位移/轨迹列表,列表内的一个元素代表0.2s的位移 tracks=[] # 当前的位移 current=0 accuracy_distance=distance # 到达目标值的八分之七,开始减速 mid=distance * 3/5 # distance += 20 # 先滑过一点,最后再反着滑动回来 # a = random.randint(1,3) while current < distance: if current < mid: # 加速度越小,单位时间的位移越小,模拟的轨迹就越多越详细 a = random.randint(2,4) # 加速运动的加速度 else: a = -random.randint(2,4) # 减速运动的加速度 # 初速度 v0 = v # 0.2秒时间内的位移 s = v0*t+0.5*a*(t**2) #s=v0t+(1/2)at² # 当前的位置 current += s # 添加到轨迹列表 print(a) tracks.append(round(s)) #添加每一次x位置的坐标 # 速度已经达到v,该速度作为下次的初速度 v= v0+a*t #记录每一次0.2s的末速度,作为下一个0.2s的初速度,拼接一个滑动动作 # 反着滑动到大概准确位置 if abs(current - distance) > 1: s = -(current - distance - 1) tracks.append(round(s)) # 添加每一次x位置的坐标 print(current,"<><><>",distance) # for i in range(4): # tracks.append(-random.randint(1,3)) return tracks #返回位置坐标列表 def get_distance(image1,image2): ''' 拿到滑动验证码需要移动的距离 :param image1:没有缺口的图片对象 :param image2:带缺口的图片对象 :return:需要移动的距离 ''' # print('size', image1.size) threshold = 50 #设置rgb差值 for i in range(0,image1.size[0]): # 0到260的x坐标 0 for j in range(0,image1.size[1]): # 0到160的y坐标0 pixel1 = image1.getpixel((i,j)) #返回一个像素值的元组 <class 'tuple'>: (255, 101, 86) pixel2 = image2.getpixel((i,j)) #<class 'tuple'>: (255, 101, 86) res_R = abs(pixel1[0]-pixel2[0]) # 计算RGB差 res_G = abs(pixel1[1] - pixel2[1]) # 计算RGB差 res_B = abs(pixel1[2] - pixel2[2]) # 计算RGB差 if res_R > threshold and res_G > threshold and res_B > threshold: #即判断两张图片的每个像素的色差大于五十,即锁定了缺口, #因为滑块起点始终为0,i 的坐标,即为滑块x轴移动距离 return i # 需要移动的距离 def main_check_code(driver, element): """ 拖动识别验证码 :param driver: :param element: :return: """ image1 = get_image(driver, '//div[@class="gt_cut_bg gt_show"]/div') #拼接无序缺口图片1 image2 = get_image(driver, '//div[@class="gt_cut_fullbg gt_show"]/div') # 拼接无序完整图片2 # 图片上 缺口的位置的x坐标 # 2 对比两张图片的所有RBG像素点,得到不一样像素点的x值,即要移动的距离 l = get_distance(image1, image2) #像素值 182 print('l=',l) # 3 获得移动轨迹 track_list = get_track(l) #模拟人行为滑动,即匀加速在匀速 print('第一步,点击滑动按钮') #ActionChains执行用户操作的WebDriver实例,按住元素上的鼠标左键。on_element:鼠标向下移动的元素。perform() 执行操作 ActionChains(driver).click_and_hold(on_element=element).perform() # 点击鼠标左键,按住不放 time.sleep(0.3) print('第二步,拖动元素') for track in track_list: #move_by_offset将鼠标移动到当前鼠标位置的偏移量。xoffset为x轴,yoffset为y轴 ActionChains(driver).move_by_offset(xoffset=track, yoffset=0).perform() # 鼠标移动到距离当前位置(x,y) time.sleep(0.003) # if l>100: ActionChains(driver).move_by_offset(xoffset=-random.randint(2,5), yoffset=0).perform() time.sleep(0.3) print('第三步,释放鼠标') #释放元素上的已按住的鼠标按钮。 on_element:鼠标向上移动的元素。 ActionChains(driver).release(on_element=element).perform() time.sleep(5) def main_check_slider(driver): """ 检查滑动按钮是否加载 :param driver: :return: """ while True: try : driver.get('http://www.cnbaowen.net/api/geetest/') element = WebDriverWait(driver, 30, 0.5).until(EC.element_to_be_clickable((By.CLASS_NAME, 'gt_slider_knob'))) if element: return element except TimeoutException as e: print('超时错误,继续') time.sleep(5) if __name__ == '__main__': count = 6 # 最多识别6次 chrome_path = os.path.join(os.path.dirname(__file__), "chromedriver.exe") # 拼接chrome路径 driver = webdriver.Chrome(executable_path=chrome_path) # 示列化Chrome try: # 等待滑动按钮加载完成 element = main_check_slider(driver) #返回一个 滑块加载的页面 while count > 0: main_check_code(driver,element) #进行滑块验证 time.sleep(2) try: success_element = (By.CSS_SELECTOR, '.gt_holder .gt_ajax_tip.gt_success') # 得到成功标志 print('suc=',driver.find_element_by_css_selector('.gt_holder .gt_ajax_tip.gt_success')) #等待20s,直到找到成功标签 success_images = WebDriverWait(driver, 20).until(EC.presence_of_element_located(success_element)) if success_images: #存在,不为空 print('成功识别!!!!!!') count = 0 #这里验证完成后就自动跳转,或者再加一个点击跳转,后面跟上你的爬虫数据爬取的自定义函数模块,进行解析即可 break except NoSuchElementException as e: print('识别错误,继续') count -= 1 time.sleep(2) else: print('too many attempt check code ') exit('退出程序') finally: driver.close()
[ "1" ]
1
79f634ddc2c7a0378b19100eb808178af2628c13
d094ba0c8a9b1217fbf014aa79a283a49aabe88c
/env/lib/python3.6/site-packages/pandas/tests/test_config.py
54db3887850ea2b768f3ff942424c6530c69a3d8
[ "Apache-2.0" ]
permissive
Raniac/NEURO-LEARN
d9274e0baadd97bb02da54bdfcf6ca091fc1c703
3c3acc55de8ba741e673063378e6cbaf10b64c7a
refs/heads/master
2022-12-25T23:46:54.922237
2020-09-06T03:15:14
2020-09-06T03:15:14
182,013,100
9
2
Apache-2.0
2022-12-09T21:01:00
2019-04-18T03:57:00
CSS
UTF-8
Python
false
false
16,196
py
# -*- coding: utf-8 -*- import warnings import pytest import pandas as pd class TestConfig(object): @classmethod def setup_class(cls): from copy import deepcopy cls.cf = pd.core.config cls.gc = deepcopy(getattr(cls.cf, '_global_config')) cls.do = deepcopy(getattr(cls.cf, '_deprecated_options')) cls.ro = deepcopy(getattr(cls.cf, '_registered_options')) def setup_method(self, method): setattr(self.cf, '_global_config', {}) setattr(self.cf, 'options', self.cf.DictWrapper( self.cf._global_config)) setattr(self.cf, '_deprecated_options', {}) setattr(self.cf, '_registered_options', {}) # Our test fixture in conftest.py sets "chained_assignment" # to "raise" only after all test methods have been setup. # However, after this setup, there is no longer any # "chained_assignment" option, so re-register it. self.cf.register_option('chained_assignment', 'raise') def teardown_method(self, method): setattr(self.cf, '_global_config', self.gc) setattr(self.cf, '_deprecated_options', self.do) setattr(self.cf, '_registered_options', self.ro) def test_api(self): # the pandas object exposes the user API assert hasattr(pd, 'get_option') assert hasattr(pd, 'set_option') assert hasattr(pd, 'reset_option') assert hasattr(pd, 'describe_option') def test_is_one_of_factory(self): v = self.cf.is_one_of_factory([None, 12]) v(12) v(None) pytest.raises(ValueError, v, 1.1) def test_register_option(self): self.cf.register_option('a', 1, 'doc') # can't register an already registered option pytest.raises(KeyError, self.cf.register_option, 'a', 1, 'doc') # can't register an already registered option pytest.raises(KeyError, self.cf.register_option, 'a.b.c.d1', 1, 'doc') pytest.raises(KeyError, self.cf.register_option, 'a.b.c.d2', 1, 'doc') # no python keywords pytest.raises(ValueError, self.cf.register_option, 'for', 0) pytest.raises(ValueError, self.cf.register_option, 'a.for.b', 0) # must be valid identifier (ensure attribute access works) pytest.raises(ValueError, self.cf.register_option, 'Oh my Goddess!', 0) # we can register options several levels deep # without predefining the intermediate steps # and we can define differently named options # in the same namespace self.cf.register_option('k.b.c.d1', 1, 'doc') self.cf.register_option('k.b.c.d2', 1, 'doc') def test_describe_option(self): self.cf.register_option('a', 1, 'doc') self.cf.register_option('b', 1, 'doc2') self.cf.deprecate_option('b') self.cf.register_option('c.d.e1', 1, 'doc3') self.cf.register_option('c.d.e2', 1, 'doc4') self.cf.register_option('f', 1) self.cf.register_option('g.h', 1) self.cf.register_option('k', 2) self.cf.deprecate_option('g.h', rkey="k") self.cf.register_option('l', "foo") # non-existent keys raise KeyError pytest.raises(KeyError, self.cf.describe_option, 'no.such.key') # we can get the description for any key we registered assert 'doc' in self.cf.describe_option('a', _print_desc=False) assert 'doc2' in self.cf.describe_option('b', _print_desc=False) assert 'precated' in self.cf.describe_option('b', _print_desc=False) assert 'doc3' in self.cf.describe_option('c.d.e1', _print_desc=False) assert 'doc4' in self.cf.describe_option('c.d.e2', _print_desc=False) # if no doc is specified we get a default message # saying "description not available" assert 'vailable' in self.cf.describe_option('f', _print_desc=False) assert 'vailable' in self.cf.describe_option('g.h', _print_desc=False) assert 'precated' in self.cf.describe_option('g.h', _print_desc=False) assert 'k' in self.cf.describe_option('g.h', _print_desc=False) # default is reported assert 'foo' in self.cf.describe_option('l', _print_desc=False) # current value is reported assert 'bar' not in self.cf.describe_option('l', _print_desc=False) self.cf.set_option("l", "bar") assert 'bar' in self.cf.describe_option('l', _print_desc=False) def test_case_insensitive(self): self.cf.register_option('KanBAN', 1, 'doc') assert 'doc' in self.cf.describe_option('kanbaN', _print_desc=False) assert self.cf.get_option('kanBaN') == 1 self.cf.set_option('KanBan', 2) assert self.cf.get_option('kAnBaN') == 2 # gets of non-existent keys fail pytest.raises(KeyError, self.cf.get_option, 'no_such_option') self.cf.deprecate_option('KanBan') assert self.cf._is_deprecated('kAnBaN') def test_get_option(self): self.cf.register_option('a', 1, 'doc') self.cf.register_option('b.c', 'hullo', 'doc2') self.cf.register_option('b.b', None, 'doc2') # gets of existing keys succeed assert self.cf.get_option('a') == 1 assert self.cf.get_option('b.c') == 'hullo' assert self.cf.get_option('b.b') is None # gets of non-existent keys fail pytest.raises(KeyError, self.cf.get_option, 'no_such_option') def test_set_option(self): self.cf.register_option('a', 1, 'doc') self.cf.register_option('b.c', 'hullo', 'doc2') self.cf.register_option('b.b', None, 'doc2') assert self.cf.get_option('a') == 1 assert self.cf.get_option('b.c') == 'hullo' assert self.cf.get_option('b.b') is None self.cf.set_option('a', 2) self.cf.set_option('b.c', 'wurld') self.cf.set_option('b.b', 1.1) assert self.cf.get_option('a') == 2 assert self.cf.get_option('b.c') == 'wurld' assert self.cf.get_option('b.b') == 1.1 pytest.raises(KeyError, self.cf.set_option, 'no.such.key', None) def test_set_option_empty_args(self): pytest.raises(ValueError, self.cf.set_option) def test_set_option_uneven_args(self): pytest.raises(ValueError, self.cf.set_option, 'a.b', 2, 'b.c') def test_set_option_invalid_single_argument_type(self): pytest.raises(ValueError, self.cf.set_option, 2) def test_set_option_multiple(self): self.cf.register_option('a', 1, 'doc') self.cf.register_option('b.c', 'hullo', 'doc2') self.cf.register_option('b.b', None, 'doc2') assert self.cf.get_option('a') == 1 assert self.cf.get_option('b.c') == 'hullo' assert self.cf.get_option('b.b') is None self.cf.set_option('a', '2', 'b.c', None, 'b.b', 10.0) assert self.cf.get_option('a') == '2' assert self.cf.get_option('b.c') is None assert self.cf.get_option('b.b') == 10.0 def test_validation(self): self.cf.register_option('a', 1, 'doc', validator=self.cf.is_int) self.cf.register_option('b.c', 'hullo', 'doc2', validator=self.cf.is_text) pytest.raises(ValueError, self.cf.register_option, 'a.b.c.d2', 'NO', 'doc', validator=self.cf.is_int) self.cf.set_option('a', 2) # int is_int self.cf.set_option('b.c', 'wurld') # str is_str pytest.raises( ValueError, self.cf.set_option, 'a', None) # None not is_int pytest.raises(ValueError, self.cf.set_option, 'a', 'ab') pytest.raises(ValueError, self.cf.set_option, 'b.c', 1) validator = self.cf.is_one_of_factory([None, self.cf.is_callable]) self.cf.register_option('b', lambda: None, 'doc', validator=validator) self.cf.set_option('b', '%.1f'.format) # Formatter is callable self.cf.set_option('b', None) # Formatter is none (default) pytest.raises(ValueError, self.cf.set_option, 'b', '%.1f') def test_reset_option(self): self.cf.register_option('a', 1, 'doc', validator=self.cf.is_int) self.cf.register_option('b.c', 'hullo', 'doc2', validator=self.cf.is_str) assert self.cf.get_option('a') == 1 assert self.cf.get_option('b.c') == 'hullo' self.cf.set_option('a', 2) self.cf.set_option('b.c', 'wurld') assert self.cf.get_option('a') == 2 assert self.cf.get_option('b.c') == 'wurld' self.cf.reset_option('a') assert self.cf.get_option('a') == 1 assert self.cf.get_option('b.c') == 'wurld' self.cf.reset_option('b.c') assert self.cf.get_option('a') == 1 assert self.cf.get_option('b.c') == 'hullo' def test_reset_option_all(self): self.cf.register_option('a', 1, 'doc', validator=self.cf.is_int) self.cf.register_option('b.c', 'hullo', 'doc2', validator=self.cf.is_str) assert self.cf.get_option('a') == 1 assert self.cf.get_option('b.c') == 'hullo' self.cf.set_option('a', 2) self.cf.set_option('b.c', 'wurld') assert self.cf.get_option('a') == 2 assert self.cf.get_option('b.c') == 'wurld' self.cf.reset_option("all") assert self.cf.get_option('a') == 1 assert self.cf.get_option('b.c') == 'hullo' def test_deprecate_option(self): # we can deprecate non-existent options self.cf.deprecate_option('foo') assert self.cf._is_deprecated('foo') with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') with pytest.raises( KeyError, match="No such keys.s.: 'foo'"): self.cf.get_option('foo') assert len(w) == 1 # should have raised one warning assert 'deprecated' in str(w[-1]) # we get the default message self.cf.register_option('a', 1, 'doc', validator=self.cf.is_int) self.cf.register_option('b.c', 'hullo', 'doc2') self.cf.register_option('foo', 'hullo', 'doc2') self.cf.deprecate_option('a', removal_ver='nifty_ver') with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') self.cf.get_option('a') assert len(w) == 1 # should have raised one warning assert 'eprecated' in str(w[-1]) # we get the default message assert 'nifty_ver' in str(w[-1]) # with the removal_ver quoted pytest.raises( KeyError, self.cf.deprecate_option, 'a') # can't depr. twice self.cf.deprecate_option('b.c', 'zounds!') with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') self.cf.get_option('b.c') assert len(w) == 1 # should have raised one warning assert 'zounds!' in str(w[-1]) # we get the custom message # test rerouting keys self.cf.register_option('d.a', 'foo', 'doc2') self.cf.register_option('d.dep', 'bar', 'doc2') assert self.cf.get_option('d.a') == 'foo' assert self.cf.get_option('d.dep') == 'bar' self.cf.deprecate_option('d.dep', rkey='d.a') # reroute d.dep to d.a with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') assert self.cf.get_option('d.dep') == 'foo' assert len(w) == 1 # should have raised one warning assert 'eprecated' in str(w[-1]) # we get the custom message with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') self.cf.set_option('d.dep', 'baz') # should overwrite "d.a" assert len(w) == 1 # should have raised one warning assert 'eprecated' in str(w[-1]) # we get the custom message with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') assert self.cf.get_option('d.dep') == 'baz' assert len(w) == 1 # should have raised one warning assert 'eprecated' in str(w[-1]) # we get the custom message def test_config_prefix(self): with self.cf.config_prefix("base"): self.cf.register_option('a', 1, "doc1") self.cf.register_option('b', 2, "doc2") assert self.cf.get_option('a') == 1 assert self.cf.get_option('b') == 2 self.cf.set_option('a', 3) self.cf.set_option('b', 4) assert self.cf.get_option('a') == 3 assert self.cf.get_option('b') == 4 assert self.cf.get_option('base.a') == 3 assert self.cf.get_option('base.b') == 4 assert 'doc1' in self.cf.describe_option('base.a', _print_desc=False) assert 'doc2' in self.cf.describe_option('base.b', _print_desc=False) self.cf.reset_option('base.a') self.cf.reset_option('base.b') with self.cf.config_prefix("base"): assert self.cf.get_option('a') == 1 assert self.cf.get_option('b') == 2 def test_callback(self): k = [None] v = [None] def callback(key): k.append(key) v.append(self.cf.get_option(key)) self.cf.register_option('d.a', 'foo', cb=callback) self.cf.register_option('d.b', 'foo', cb=callback) del k[-1], v[-1] self.cf.set_option("d.a", "fooz") assert k[-1] == "d.a" assert v[-1] == "fooz" del k[-1], v[-1] self.cf.set_option("d.b", "boo") assert k[-1] == "d.b" assert v[-1] == "boo" del k[-1], v[-1] self.cf.reset_option("d.b") assert k[-1] == "d.b" def test_set_ContextManager(self): def eq(val): assert self.cf.get_option("a") == val self.cf.register_option('a', 0) eq(0) with self.cf.option_context("a", 15): eq(15) with self.cf.option_context("a", 25): eq(25) eq(15) eq(0) self.cf.set_option("a", 17) eq(17) def test_attribute_access(self): holder = [] def f(): options.b = 1 def f2(): options.display = 1 def f3(key): holder.append(True) self.cf.register_option('a', 0) self.cf.register_option('c', 0, cb=f3) options = self.cf.options assert options.a == 0 with self.cf.option_context("a", 15): assert options.a == 15 options.a = 500 assert self.cf.get_option("a") == 500 self.cf.reset_option("a") assert options.a == self.cf.get_option("a", 0) pytest.raises(KeyError, f) pytest.raises(KeyError, f2) # make sure callback kicks when using this form of setting options.c = 1 assert len(holder) == 1 def test_option_context_scope(self): # Ensure that creating a context does not affect the existing # environment as it is supposed to be used with the `with` statement. # See https://github.com/pandas-dev/pandas/issues/8514 original_value = 60 context_value = 10 option_name = 'a' self.cf.register_option(option_name, original_value) # Ensure creating contexts didn't affect the current context. ctx = self.cf.option_context(option_name, context_value) assert self.cf.get_option(option_name) == original_value # Ensure the correct value is available inside the context. with ctx: assert self.cf.get_option(option_name) == context_value # Ensure the current context is reset assert self.cf.get_option(option_name) == original_value def test_dictwrapper_getattr(self): options = self.cf.options # GH 19789 pytest.raises(self.cf.OptionError, getattr, options, 'bananas') assert not hasattr(options, 'bananas')
2eb9bf182ce1419f171b1e57e534ce9d199b59c2
f138cfdc2f488100074d946a059f0967d76f4a70
/tests/example/settings.py
5331be406d20d662be7b18c66763d0753f8bd900
[ "MIT" ]
permissive
davecap/django-subdomains
7677a5a31ac6cf8d22391997288821af83f4d4eb
d595959a8bce8ff9605c42f367c02a91340e9a05
refs/heads/master
2021-01-16T20:28:55.738879
2012-07-04T19:56:43
2012-07-04T19:56:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
651
py
DEBUG = True DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': ':memory:', } } SITE_ID = 1 MIDDLEWARE_CLASSES = ( 'django.middleware.common.CommonMiddleware', 'subdomains.middleware.SubdomainURLRoutingMiddleware', ) ROOT_URLCONF = 'example.urls.application' SUBDOMAIN_URLCONFS = { None: 'example.urls.marketing', 'api': 'example.urls.api', 'www': 'example.urls.marketing', } # Python dotted path to the WSGI application used by Django's runserver. WSGI_APPLICATION = 'example.wsgi.application' INSTALLED_APPS = ( 'django.contrib.sites', 'example', 'subdomains', )
d73bd6fb3edc4500c6a7773789366ce45328e797
48e124e97cc776feb0ad6d17b9ef1dfa24e2e474
/sdk/python/pulumi_azure_native/web/v20200601/static_site.py
63de03a3ff2b659e6b9332781a9646196d9c719a
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
bpkgoud/pulumi-azure-native
0817502630062efbc35134410c4a784b61a4736d
a3215fe1b87fba69294f248017b1591767c2b96c
refs/heads/master
2023-08-29T22:39:49.984212
2021-11-15T12:43:41
2021-11-15T12:43:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
16,883
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs from ._inputs import * __all__ = ['StaticSiteArgs', 'StaticSite'] @pulumi.input_type class StaticSiteArgs: def __init__(__self__, *, resource_group_name: pulumi.Input[str], branch: Optional[pulumi.Input[str]] = None, build_properties: Optional[pulumi.Input['StaticSiteBuildPropertiesArgs']] = None, kind: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, repository_token: Optional[pulumi.Input[str]] = None, repository_url: Optional[pulumi.Input[str]] = None, sku: Optional[pulumi.Input['SkuDescriptionArgs']] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None): """ The set of arguments for constructing a StaticSite resource. :param pulumi.Input[str] resource_group_name: Name of the resource group to which the resource belongs. :param pulumi.Input[str] branch: The target branch in the repository. :param pulumi.Input['StaticSiteBuildPropertiesArgs'] build_properties: Build properties to configure on the repository. :param pulumi.Input[str] kind: Kind of resource. :param pulumi.Input[str] location: Resource Location. :param pulumi.Input[str] name: Name of the static site to create or update. :param pulumi.Input[str] repository_token: A user's github repository token. This is used to setup the Github Actions workflow file and API secrets. :param pulumi.Input[str] repository_url: URL for the repository of the static site. :param pulumi.Input['SkuDescriptionArgs'] sku: Description of a SKU for a scalable resource. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags. """ pulumi.set(__self__, "resource_group_name", resource_group_name) if branch is not None: pulumi.set(__self__, "branch", branch) if build_properties is not None: pulumi.set(__self__, "build_properties", build_properties) if kind is not None: pulumi.set(__self__, "kind", kind) if location is not None: pulumi.set(__self__, "location", location) if name is not None: pulumi.set(__self__, "name", name) if repository_token is not None: pulumi.set(__self__, "repository_token", repository_token) if repository_url is not None: pulumi.set(__self__, "repository_url", repository_url) if sku is not None: pulumi.set(__self__, "sku", sku) if tags is not None: pulumi.set(__self__, "tags", tags) @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> pulumi.Input[str]: """ Name of the resource group to which the resource belongs. """ return pulumi.get(self, "resource_group_name") @resource_group_name.setter def resource_group_name(self, value: pulumi.Input[str]): pulumi.set(self, "resource_group_name", value) @property @pulumi.getter def branch(self) -> Optional[pulumi.Input[str]]: """ The target branch in the repository. """ return pulumi.get(self, "branch") @branch.setter def branch(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "branch", value) @property @pulumi.getter(name="buildProperties") def build_properties(self) -> Optional[pulumi.Input['StaticSiteBuildPropertiesArgs']]: """ Build properties to configure on the repository. """ return pulumi.get(self, "build_properties") @build_properties.setter def build_properties(self, value: Optional[pulumi.Input['StaticSiteBuildPropertiesArgs']]): pulumi.set(self, "build_properties", value) @property @pulumi.getter def kind(self) -> Optional[pulumi.Input[str]]: """ Kind of resource. """ return pulumi.get(self, "kind") @kind.setter def kind(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "kind", value) @property @pulumi.getter def location(self) -> Optional[pulumi.Input[str]]: """ Resource Location. """ return pulumi.get(self, "location") @location.setter def location(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "location", value) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: """ Name of the static site to create or update. """ return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @property @pulumi.getter(name="repositoryToken") def repository_token(self) -> Optional[pulumi.Input[str]]: """ A user's github repository token. This is used to setup the Github Actions workflow file and API secrets. """ return pulumi.get(self, "repository_token") @repository_token.setter def repository_token(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "repository_token", value) @property @pulumi.getter(name="repositoryUrl") def repository_url(self) -> Optional[pulumi.Input[str]]: """ URL for the repository of the static site. """ return pulumi.get(self, "repository_url") @repository_url.setter def repository_url(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "repository_url", value) @property @pulumi.getter def sku(self) -> Optional[pulumi.Input['SkuDescriptionArgs']]: """ Description of a SKU for a scalable resource. """ return pulumi.get(self, "sku") @sku.setter def sku(self, value: Optional[pulumi.Input['SkuDescriptionArgs']]): pulumi.set(self, "sku", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ Resource tags. """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "tags", value) class StaticSite(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, branch: Optional[pulumi.Input[str]] = None, build_properties: Optional[pulumi.Input[pulumi.InputType['StaticSiteBuildPropertiesArgs']]] = None, kind: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, repository_token: Optional[pulumi.Input[str]] = None, repository_url: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, sku: Optional[pulumi.Input[pulumi.InputType['SkuDescriptionArgs']]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None): """ Static Site ARM resource. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] branch: The target branch in the repository. :param pulumi.Input[pulumi.InputType['StaticSiteBuildPropertiesArgs']] build_properties: Build properties to configure on the repository. :param pulumi.Input[str] kind: Kind of resource. :param pulumi.Input[str] location: Resource Location. :param pulumi.Input[str] name: Name of the static site to create or update. :param pulumi.Input[str] repository_token: A user's github repository token. This is used to setup the Github Actions workflow file and API secrets. :param pulumi.Input[str] repository_url: URL for the repository of the static site. :param pulumi.Input[str] resource_group_name: Name of the resource group to which the resource belongs. :param pulumi.Input[pulumi.InputType['SkuDescriptionArgs']] sku: Description of a SKU for a scalable resource. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags. """ ... @overload def __init__(__self__, resource_name: str, args: StaticSiteArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Static Site ARM resource. :param str resource_name: The name of the resource. :param StaticSiteArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(StaticSiteArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, branch: Optional[pulumi.Input[str]] = None, build_properties: Optional[pulumi.Input[pulumi.InputType['StaticSiteBuildPropertiesArgs']]] = None, kind: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, repository_token: Optional[pulumi.Input[str]] = None, repository_url: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, sku: Optional[pulumi.Input[pulumi.InputType['SkuDescriptionArgs']]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = StaticSiteArgs.__new__(StaticSiteArgs) __props__.__dict__["branch"] = branch __props__.__dict__["build_properties"] = build_properties __props__.__dict__["kind"] = kind __props__.__dict__["location"] = location __props__.__dict__["name"] = name __props__.__dict__["repository_token"] = repository_token __props__.__dict__["repository_url"] = repository_url if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__.__dict__["resource_group_name"] = resource_group_name __props__.__dict__["sku"] = sku __props__.__dict__["tags"] = tags __props__.__dict__["custom_domains"] = None __props__.__dict__["default_hostname"] = None __props__.__dict__["type"] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-native:web:StaticSite"), pulumi.Alias(type_="azure-native:web/v20190801:StaticSite"), pulumi.Alias(type_="azure-native:web/v20200901:StaticSite"), pulumi.Alias(type_="azure-native:web/v20201001:StaticSite"), pulumi.Alias(type_="azure-native:web/v20201201:StaticSite"), pulumi.Alias(type_="azure-native:web/v20210101:StaticSite"), pulumi.Alias(type_="azure-native:web/v20210115:StaticSite"), pulumi.Alias(type_="azure-native:web/v20210201:StaticSite")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(StaticSite, __self__).__init__( 'azure-native:web/v20200601:StaticSite', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'StaticSite': """ Get an existing StaticSite resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = StaticSiteArgs.__new__(StaticSiteArgs) __props__.__dict__["branch"] = None __props__.__dict__["build_properties"] = None __props__.__dict__["custom_domains"] = None __props__.__dict__["default_hostname"] = None __props__.__dict__["kind"] = None __props__.__dict__["location"] = None __props__.__dict__["name"] = None __props__.__dict__["repository_token"] = None __props__.__dict__["repository_url"] = None __props__.__dict__["sku"] = None __props__.__dict__["tags"] = None __props__.__dict__["type"] = None return StaticSite(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def branch(self) -> pulumi.Output[Optional[str]]: """ The target branch in the repository. """ return pulumi.get(self, "branch") @property @pulumi.getter(name="buildProperties") def build_properties(self) -> pulumi.Output[Optional['outputs.StaticSiteBuildPropertiesResponse']]: """ Build properties to configure on the repository. """ return pulumi.get(self, "build_properties") @property @pulumi.getter(name="customDomains") def custom_domains(self) -> pulumi.Output[Sequence[str]]: """ The custom domains associated with this static site. """ return pulumi.get(self, "custom_domains") @property @pulumi.getter(name="defaultHostname") def default_hostname(self) -> pulumi.Output[str]: """ The default autogenerated hostname for the static site. """ return pulumi.get(self, "default_hostname") @property @pulumi.getter def kind(self) -> pulumi.Output[Optional[str]]: """ Kind of resource. """ return pulumi.get(self, "kind") @property @pulumi.getter def location(self) -> pulumi.Output[str]: """ Resource Location. """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Resource Name. """ return pulumi.get(self, "name") @property @pulumi.getter(name="repositoryToken") def repository_token(self) -> pulumi.Output[Optional[str]]: """ A user's github repository token. This is used to setup the Github Actions workflow file and API secrets. """ return pulumi.get(self, "repository_token") @property @pulumi.getter(name="repositoryUrl") def repository_url(self) -> pulumi.Output[Optional[str]]: """ URL for the repository of the static site. """ return pulumi.get(self, "repository_url") @property @pulumi.getter def sku(self) -> pulumi.Output[Optional['outputs.SkuDescriptionResponse']]: """ Description of a SKU for a scalable resource. """ return pulumi.get(self, "sku") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Resource tags. """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Resource type. """ return pulumi.get(self, "type")
877058f526d932f0aac12ea9786b22eef88a0462
e6dab5aa1754ff13755a1f74a28a201681ab7e1c
/.parts/lib/django-1.3/tests/regressiontests/cache/tests.py
dabbff3c4ad8c6f02e786633ef6625d346dfad58
[]
no_license
ronkagan/Euler_1
67679203a9510147320f7c6513eefd391630703e
022633cc298475c4f3fd0c6e2bde4f4728713995
refs/heads/master
2021-01-06T20:45:52.901025
2014-09-06T22:34:16
2014-09-06T22:34:16
23,744,842
0
1
null
null
null
null
UTF-8
Python
false
false
102
py
/home/action/.parts/packages/googleappengine/1.9.4/lib/django-1.3/tests/regressiontests/cache/tests.py
07ffc5e871f981299be97b62551c7b294f59e64a
a2e638cd0c124254e67963bda62c21351881ee75
/Extensions/Default/FPythonCode/interestRateSpreadDeltaCurveBucketsShift.py
5440ba998dea1a913984998dd3f6f72075eb13f5
[]
no_license
webclinic017/fa-absa-py3
1ffa98f2bd72d541166fdaac421d3c84147a4e01
5e7cc7de3495145501ca53deb9efee2233ab7e1c
refs/heads/main
2023-04-19T10:41:21.273030
2021-05-10T08:50:05
2021-05-10T08:50:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,483
py
import acm def CreateBuckets(validSpreadCurve): buckets = acm.FArray() for point in validSpreadCurve.Points(): bucketDef = acm.FFixedDateTimeBucketDefinition() date = point.ActualDate() bucketDef.FixedDate( date ) bucketDef.DiscardIfExpired( True ) if(point.Instrument()): bucketDef.Name(point.Name()) elif(not point.Date()): period = point.DatePeriod() bucketDef.Name(acm.Time().DatePeriodToString(period)) buckets.Add(bucketDef) if buckets.Size(): return buckets; else: return None yieldCurveTypeEnum = acm.GetDomain('enum(IrType)') q = acm.CreateFASQLQuery(acm.FYieldCurve, 'AND') yieldCurveType = q.AddOpNode('OR') yieldCurveType.AddAttrNode('Type', 'EQUAL', yieldCurveTypeEnum.Enumeration('Spread')) yieldCurveType.AddAttrNode('Type', 'EQUAL', yieldCurveTypeEnum.Enumeration('Attribute Spread')) validSpreadCurves = q.Select() ael_variables = [ ['Base Value', 'Base Value', 'string', acm.GetDomain('EnumRiskBaseCalculation').Enumerators(), None, 1, 0, 'Determines if Theoretical TPL or Theoretical Value (default) is used as the base for curve shifts. Different results can be arrived at if the ThTPL column includes Cash values sensitive to curves (for example via Exact FX conversions).', None, 1], ['Yield Curve', 'Yield Curve', 'FYieldCurve', validSpreadCurves, None, 1, 0, 'The attribute spread curve that will be shifted in buckets.', None, 1] ] def ael_custom_label( parameters, dictExtra ): label = parameters.At('Yield Curve').Name() if parameters.At('Base Value'): label += ", Including Cash" return label def ael_main_ex(parameters, dictExtra): validSpreadCurve = parameters['Yield Curve'] baseValue = parameters['Base Value'] buckets = CreateBuckets(validSpreadCurve) if not buckets: return 0 resultVector = [] timeBuckets = acm.Time.CreateTimeBucketsFromDefinitions(0, buckets, None, 0, True, False, False, False, False) for idx, bucket in enumerate(timeBuckets): params = acm.FNamedParameters() if idx == 0: params.AddParameter('baseValueChoice', baseValue) params.AddParameter('buckets', timeBuckets) params.AddParameter('yieldCurve', validSpreadCurve) params.Name(bucket.Name()) params.UniqueTag(bucket.Spec()) resultVector.append(params) return resultVector
02976528d092c165749236583b260d77148e8d5c
6cbc44e497be77774c62b0d894bec03218b3b9c1
/utils/custom_context_processors.py
02a15c775eb2b8683d6969e39dbb424730aa982f
[ "LicenseRef-scancode-public-domain" ]
permissive
usnistgov/InternationalMetrologyResourceRegistry
416263c8775bd70f27d8d7892f6342a7c66f7adf
d1eaee864727466c0e62f7ed2fafa034ce17ddee
refs/heads/master
2021-01-17T19:21:07.832355
2016-09-23T21:33:50
2016-09-23T21:33:50
60,211,427
0
1
null
null
null
null
UTF-8
Python
false
false
953
py
from django.conf import settings def domain_context_processor(request): return { 'CUSTOM_TITLE': settings.CUSTOM_TITLE if hasattr(settings, 'CUSTOM_TITLE') else '', 'CUSTOM_ORGANIZATION': settings.CUSTOM_ORGANIZATION if hasattr(settings, 'CUSTOM_ORGANIZATION') else '', 'CUSTOM_NAME': settings.CUSTOM_NAME if hasattr(settings, 'CUSTOM_NAME') else '', 'CUSTOM_SUBTITLE': settings.CUSTOM_SUBTITLE if hasattr(settings, 'CUSTOM_SUBTITLE') else '', 'CUSTOM_DATA': settings.CUSTOM_DATA if hasattr(settings, 'CUSTOM_DATA') else '', 'CUSTOM_CURATE': settings.CUSTOM_CURATE if hasattr(settings, 'CUSTOM_CURATE') else '', 'CUSTOM_EXPLORE': settings.CUSTOM_EXPLORE if hasattr(settings, 'CUSTOM_EXPLORE') else '', 'CUSTOM_COMPOSE': settings.CUSTOM_COMPOSE if hasattr(settings, 'CUSTOM_COMPOSE') else '', 'CUSTOM_URL': settings.CUSTOM_URL if hasattr(settings, 'CUSTOM_URL') else '', }
aee8ed2b1303f7ec53448b742aac1467ec30e201
eed3d7d9dcf5804d602a1acb32d535e2f49d3324
/2018-07-01_Valid-Parentheses/solution.py
8aece5a21d9de72a16fb7a524bcc5bdcba662466
[]
no_license
ansonmiu0214/algorithms
e928b8a932ca3050a3c6fd5d07fae6df3fd7c5c4
f35efb3536186dcd672c9aa91856d8d9213b1b82
refs/heads/master
2020-03-21T05:18:12.768425
2019-03-24T12:30:24
2019-03-24T12:30:24
138,154,059
1
0
null
null
null
null
UTF-8
Python
false
false
782
py
#!/bin/python3 from collections import deque """ Stack-based approach to keep track of bracket depth in LIFO. Running time complexity of O(n). """ def isValid(s): brackets = { '(' : ')', '[': ']', '{': '}' } stack = deque() count = 0 for letter in s: if letter in brackets: stack.append(letter) # keep track of open brackets count += 1 else: if count == 0: return False # not expecting closing open_bracket = stack.pop() count -= 1 if brackets[open_bracket] != letter: return False # not the closing expected return count == 0 # stack should be empty now if __name__ == "__main__": print("Enter bracket pattern: ", end="") s = input().strip() print("Pattern '{}' is {}.".format(s, "valid" if isValid(s) else "not valid"))
a40e9ab681bab08ec937fc638b267119a9bf37bc
350d6b7246d6ef8161bdfccfb565b8671cc4d701
/Last Stone Weight.py
ba9f5c8adb1c5b151887f749b6ed3c70aee94f06
[]
no_license
YihaoGuo2018/leetcode_python_2
145d5fbe7711c51752b2ab47a057b37071d2fbf7
2065355198fd882ab90bac6041c1d92d1aff5c65
refs/heads/main
2023-02-14T14:25:58.457991
2021-01-14T15:57:10
2021-01-14T15:57:10
329,661,893
0
0
null
null
null
null
UTF-8
Python
false
false
273
py
class Solution(object): def lastStoneWeight(self, A): pq = [-x for x in A] heapq.heapify(pq) for i in xrange(len(A) - 1): x, y = -heapq.heappop(pq), -heapq.heappop(pq) heapq.heappush(pq, -abs(x - y)) return -pq[0]
56ff8e02d953cdf69263eb9a3ecb20990afd092d
2b3ea7bb0df4be7f55d2ac188e23d801e497df8d
/fcsm_eos_api_client/models/vmware_availability_zone.py
ff4e4ce3c2bc04d8cce251739b49b4d377799d7d
[]
no_license
mikespub/fcsm-eos-api-client
12b663b4e79ac5d86c2162dec168bfa240a85f0c
107a3a7733c55ae6a750e32497268300c6be590e
refs/heads/master
2020-08-01T18:13:17.229375
2019-10-29T14:30:56
2019-10-29T14:30:56
211,071,995
0
0
null
null
null
null
UTF-8
Python
false
false
4,713
py
# coding: utf-8 """ Combined FCSM EOS API No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 The version of the OpenAPI document: 1.2.1 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six class VmwareAvailabilityZone(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'available': 'bool', 'id': 'str', 'name': 'str' } attribute_map = { 'available': 'available', 'id': 'id', 'name': 'name' } def __init__(self, available=None, id=None, name=None): # noqa: E501 """VmwareAvailabilityZone - a model defined in OpenAPI""" # noqa: E501 self._available = None self._id = None self._name = None self.discriminator = None self.available = available self.id = id self.name = name @property def available(self): """Gets the available of this VmwareAvailabilityZone. # noqa: E501 Determines whether the availability zone is available for use # noqa: E501 :return: The available of this VmwareAvailabilityZone. # noqa: E501 :rtype: bool """ return self._available @available.setter def available(self, available): """Sets the available of this VmwareAvailabilityZone. Determines whether the availability zone is available for use # noqa: E501 :param available: The available of this VmwareAvailabilityZone. # noqa: E501 :type: bool """ if available is None: raise ValueError("Invalid value for `available`, must not be `None`") # noqa: E501 self._available = available @property def id(self): """Gets the id of this VmwareAvailabilityZone. # noqa: E501 :return: The id of this VmwareAvailabilityZone. # noqa: E501 :rtype: str """ return self._id @id.setter def id(self, id): """Sets the id of this VmwareAvailabilityZone. :param id: The id of this VmwareAvailabilityZone. # noqa: E501 :type: str """ if id is None: raise ValueError("Invalid value for `id`, must not be `None`") # noqa: E501 self._id = id @property def name(self): """Gets the name of this VmwareAvailabilityZone. # noqa: E501 :return: The name of this VmwareAvailabilityZone. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this VmwareAvailabilityZone. :param name: The name of this VmwareAvailabilityZone. # noqa: E501 :type: str """ if name is None: raise ValueError("Invalid value for `name`, must not be `None`") # noqa: E501 self._name = name def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, VmwareAvailabilityZone): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
5fed848b6244c2b76b7dd85998ccef56a6a34f40
2eae961147a9627a2b9c8449fa61cb7292ad4f6a
/openapi_client/api/tax_types_api.py
7130750124302e90fd34997b17a2be912471ade6
[]
no_license
kgr-eureka/SageOneSDK
5a57cc6f62ffc571620ec67c79757dcd4e6feca7
798e240eb8f4a5718013ab74ec9a0f9f9054399a
refs/heads/master
2021-02-10T04:04:19.202332
2020-03-02T11:11:04
2020-03-02T11:11:04
244,350,350
0
0
null
null
null
null
UTF-8
Python
false
false
14,013
py
# coding: utf-8 """ Sage Business Cloud Accounting - Accounts Documentation of the Sage Business Cloud Accounting API. # noqa: E501 The version of the OpenAPI document: 3.1 Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import re # noqa: F401 # python 2 and python 3 compatibility library import six from openapi_client.api_client import ApiClient from openapi_client.exceptions import ( ApiTypeError, ApiValueError ) class TaxTypesApi(object): """NOTE: This class is auto generated by OpenAPI Generator Ref: https://openapi-generator.tech Do not edit the class manually. """ def __init__(self, api_client=None): if api_client is None: api_client = ApiClient() self.api_client = api_client def get_tax_types(self, **kwargs): # noqa: E501 """Returns all Tax Types # noqa: E501 Returns all Tax Types ### Endpoint Availability * Accounting: 🇨🇦, 🇩🇪, 🇪🇸, 🇫🇷, 🇬🇧, 🇮🇪, 🇺🇸 * Accounting Start: 🇨🇦, 🇩🇪, 🇪🇸, 🇫🇷, 🇬🇧, 🇮🇪, 🇺🇸 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_tax_types(async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param bool show_legacy_id: Display the legacy_id for the Tax Types. :param int items_per_page: Returns the given number of Tax Types per request. :param int page: Go to specific page of Tax Types :param str attributes: Specify the attributes that you want to expose for the Tax Types (expose all attributes with 'all'). These are in addition to the base attributes (name, path) :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: list[TaxType] If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True return self.get_tax_types_with_http_info(**kwargs) # noqa: E501 def get_tax_types_with_http_info(self, **kwargs): # noqa: E501 """Returns all Tax Types # noqa: E501 Returns all Tax Types ### Endpoint Availability * Accounting: 🇨🇦, 🇩🇪, 🇪🇸, 🇫🇷, 🇬🇧, 🇮🇪, 🇺🇸 * Accounting Start: 🇨🇦, 🇩🇪, 🇪🇸, 🇫🇷, 🇬🇧, 🇮🇪, 🇺🇸 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_tax_types_with_http_info(async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param bool show_legacy_id: Display the legacy_id for the Tax Types. :param int items_per_page: Returns the given number of Tax Types per request. :param int page: Go to specific page of Tax Types :param str attributes: Specify the attributes that you want to expose for the Tax Types (expose all attributes with 'all'). These are in addition to the base attributes (name, path) :param _return_http_data_only: response data without head status code and headers :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: tuple(list[TaxType], status_code(int), headers(HTTPHeaderDict)) If the method is called asynchronously, returns the request thread. """ local_var_params = locals() all_params = ['show_legacy_id', 'items_per_page', 'page', 'attributes'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') for key, val in six.iteritems(local_var_params['kwargs']): if key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method get_tax_types" % key ) local_var_params[key] = val del local_var_params['kwargs'] if self.api_client.client_side_validation and 'items_per_page' in local_var_params and local_var_params['items_per_page'] > 200: # noqa: E501 raise ApiValueError("Invalid value for parameter `items_per_page` when calling `get_tax_types`, must be a value less than or equal to `200`") # noqa: E501 if self.api_client.client_side_validation and 'items_per_page' in local_var_params and local_var_params['items_per_page'] < 1: # noqa: E501 raise ApiValueError("Invalid value for parameter `items_per_page` when calling `get_tax_types`, must be a value greater than or equal to `1`") # noqa: E501 collection_formats = {} path_params = {} query_params = [] if 'show_legacy_id' in local_var_params and local_var_params['show_legacy_id'] is not None: # noqa: E501 query_params.append(('show_legacy_id', local_var_params['show_legacy_id'])) # noqa: E501 if 'items_per_page' in local_var_params and local_var_params['items_per_page'] is not None: # noqa: E501 query_params.append(('items_per_page', local_var_params['items_per_page'])) # noqa: E501 if 'page' in local_var_params and local_var_params['page'] is not None: # noqa: E501 query_params.append(('page', local_var_params['page'])) # noqa: E501 if 'attributes' in local_var_params and local_var_params['attributes'] is not None: # noqa: E501 query_params.append(('attributes', local_var_params['attributes'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/tax_types', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='list[TaxType]', # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats) def get_tax_types_key(self, key, **kwargs): # noqa: E501 """Returns a Tax Type # noqa: E501 Returns a Tax Type ### Endpoint Availability * Accounting: 🇨🇦, 🇩🇪, 🇪🇸, 🇫🇷, 🇬🇧, 🇮🇪, 🇺🇸 * Accounting Start: 🇨🇦, 🇩🇪, 🇪🇸, 🇫🇷, 🇬🇧, 🇮🇪, 🇺🇸 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_tax_types_key(key, async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param str key: The Tax Type Key. (required) :param bool show_legacy_id: Display the legacy_id for the Tax Type. :param str attributes: Specify the attributes that you want to expose for the Tax Type (expose all attributes with 'all'). These are in addition to the base attributes (name, path) :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: TaxType If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True return self.get_tax_types_key_with_http_info(key, **kwargs) # noqa: E501 def get_tax_types_key_with_http_info(self, key, **kwargs): # noqa: E501 """Returns a Tax Type # noqa: E501 Returns a Tax Type ### Endpoint Availability * Accounting: 🇨🇦, 🇩🇪, 🇪🇸, 🇫🇷, 🇬🇧, 🇮🇪, 🇺🇸 * Accounting Start: 🇨🇦, 🇩🇪, 🇪🇸, 🇫🇷, 🇬🇧, 🇮🇪, 🇺🇸 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_tax_types_key_with_http_info(key, async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param str key: The Tax Type Key. (required) :param bool show_legacy_id: Display the legacy_id for the Tax Type. :param str attributes: Specify the attributes that you want to expose for the Tax Type (expose all attributes with 'all'). These are in addition to the base attributes (name, path) :param _return_http_data_only: response data without head status code and headers :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: tuple(TaxType, status_code(int), headers(HTTPHeaderDict)) If the method is called asynchronously, returns the request thread. """ local_var_params = locals() all_params = ['key', 'show_legacy_id', 'attributes'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') for key, val in six.iteritems(local_var_params['kwargs']): if key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method get_tax_types_key" % key ) local_var_params[key] = val del local_var_params['kwargs'] # verify the required parameter 'key' is set if self.api_client.client_side_validation and ('key' not in local_var_params or # noqa: E501 local_var_params['key'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `key` when calling `get_tax_types_key`") # noqa: E501 collection_formats = {} path_params = {} if 'key' in local_var_params: path_params['key'] = local_var_params['key'] # noqa: E501 query_params = [] if 'show_legacy_id' in local_var_params and local_var_params['show_legacy_id'] is not None: # noqa: E501 query_params.append(('show_legacy_id', local_var_params['show_legacy_id'])) # noqa: E501 if 'attributes' in local_var_params and local_var_params['attributes'] is not None: # noqa: E501 query_params.append(('attributes', local_var_params['attributes'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/tax_types/{key}', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='TaxType', # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats)
adbebf98c026159ef9c04143343d4151516385e5
60a6ba6e5f3faca2b1e17c1e90917efc3cfc561a
/aoc2015/day1/day1_part1.py
d9bbe04649059dc1e7251f5840c3bd4ee320b3d9
[ "MIT" ]
permissive
GetPastTheMonkey/advent-of-code
f462f5e2b72d913e39484446ce92a043d455091c
7a5ee30dbafaf8ef6f9bf9936e484efd024aa308
refs/heads/master
2023-01-14T09:45:00.553575
2022-12-25T10:59:19
2022-12-25T13:00:44
160,684,715
3
0
null
null
null
null
UTF-8
Python
false
false
307
py
from os.path import join, dirname, realpath with open(join(dirname(realpath(__file__)), "input.txt")) as f: c = 0 for char in f.read(): if char == '(': c += 1 elif char == ')': c -= 1 else: raise ValueError("Invalid character") print(c)
883c46163f5400da29155668fbcf6818585325c3
09e5cfe06e437989a2ccf2aeecb9c73eb998a36c
/modules/cctbx_project/iotbx/examples/recalculate_phenix_refine_r_factors.py
55f7cb79f2b307b7a1d57a9bb37a58306055e6c0
[ "BSD-3-Clause-LBNL", "BSD-3-Clause" ]
permissive
jorgediazjr/dials-dev20191018
b81b19653624cee39207b7cefb8dfcb2e99b79eb
77d66c719b5746f37af51ad593e2941ed6fbba17
refs/heads/master
2020-08-21T02:48:54.719532
2020-01-25T01:41:37
2020-01-25T01:41:37
216,089,955
0
1
BSD-3-Clause
2020-01-25T01:41:39
2019-10-18T19:03:17
Python
UTF-8
Python
false
false
2,864
py
""" Simple script to read in an MTZ file produced by phenix.refine, extract the F-obs-filtered, F-model, and R-free-flags arrays, and calculate R-factors both for the entire dataset and for resolution shells. This serves as an example both for processing MTZ files, and for cctbx.miller functionality. """ from __future__ import absolute_import, division, print_function from iotbx.reflection_file_utils import get_r_free_flags_scores from iotbx.file_reader import any_file import sys def compute_r_factors(fobs, fmodel, flags): fmodel, fobs = fmodel.common_sets(other=fobs) fmodel, flags = fmodel.common_sets(other=flags) fc_work = fmodel.select(~(flags.data())) fo_work = fobs.select(~(flags.data())) fc_test = fmodel.select(flags.data()) fo_test = fobs.select(flags.data()) r_work = fo_work.r1_factor(fc_work) r_free = fo_test.r1_factor(fc_test) print("r_work = %.4f" % r_work) print("r_free = %.4f" % r_free) print("") flags.setup_binner(n_bins=20) fo_work.use_binning_of(flags) fc_work.use_binner_of(fo_work) fo_test.use_binning_of(fo_work) fc_test.use_binning_of(fo_work) for i_bin in fo_work.binner().range_all(): sel_work = fo_work.binner().selection(i_bin) sel_test = fo_test.binner().selection(i_bin) fo_work_bin = fo_work.select(sel_work) fc_work_bin = fc_work.select(sel_work) fo_test_bin = fo_test.select(sel_test) fc_test_bin = fc_test.select(sel_test) if fc_test_bin.size() == 0 : continue r_work_bin = fo_work_bin.r1_factor(other=fc_work_bin, assume_index_matching=True) r_free_bin = fo_test_bin.r1_factor(other=fc_test_bin, assume_index_matching=True) cc_work_bin = fo_work_bin.correlation(fc_work_bin).coefficient() cc_free_bin = fo_test_bin.correlation(fc_test_bin).coefficient() legend = flags.binner().bin_legend(i_bin, show_counts=False) print("%s %8d %8d %.4f %.4f %.3f %.3f" % (legend, fo_work_bin.size(), fo_test_bin.size(), r_work_bin, r_free_bin, cc_work_bin, cc_free_bin)) def run(args): mtz_in = any_file(args[0]) ma = mtz_in.file_server.miller_arrays flags = fmodel = fobs = None # select the output arrays from phenix.refine. This could easily be modified # to handle MTZ files from other programs. for array in ma : labels = array.info().label_string() if labels.startswith("R-free-flags"): flags = array elif labels.startswith("F-model"): fmodel = abs(array) elif labels.startswith("F-obs-filtered"): fobs = array if (None in [flags, fobs, fmodel]): raise RuntimeError("Not a valid phenix.refine output file") scores = get_r_free_flags_scores([flags], None) test_flag_value = scores.test_flag_values[0] flags = flags.customized_copy(data=flags.data()==test_flag_value) compute_r_factors(fobs, fmodel, flags) if (__name__ == "__main__"): run(sys.argv[1:])
ef1e1983b2ac1c067072b73e5cee912bd983e800
5ad1428a02a57c95273c43bf50ef6886397f75ac
/src/experiment_proto_sentiment.py
9b2eabd996bf5975f75889cd7e694edfb071983f
[ "MIT" ]
permissive
icoderzqliu/protoinfomax
bcf3ad9131afd28fe09958611b2ec7d2a87a9e65
c534b6e7df31727e14d56e7b02db4d7ba70105a9
refs/heads/main
2023-08-30T11:56:07.394374
2021-11-05T01:07:26
2021-11-05T01:07:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,545
py
import os import sys sys.path.append(os.getcwd()) import torch import torch.nn.functional as F from torch.autograd import Variable import torch.nn as nn import torch.optim as optim from workspace.workspace_cls import SENT_WORDID, SENT_LABELID, SENT_WORD_MASK, SENT_ORIGINAL_TXT import numpy import random from torch.utils.data import Dataset, DataLoader import _pickle as cPickle def read_pickle(filepath, filename): f = open(os.path.join(filepath, filename), 'rb') read_file = cPickle.load(f) f.close() return read_file def save_pickle(filepath, filename, data): f = open(os.path.join(filepath, filename), 'wb') cPickle.dump(data, f) print(" file saved to: %s"%(os.path.join(filepath, filename))) f.close() class RunExperiment: def __init__(self, model, params): self.model = model self.params = params def run_training_epoch(self, params, train_dl, optimizer, epoch): RSL_PATH= HOME_DIR+'/results' model = self.model idx2word = params['idx2word'] total_loss = 0. i = 0 domains = [] for b in train_dl: x, x_len, y, y_oh, xq, xq_len, yq, yq_oh, x_ood, x_ood_len, y_ood, y_ood_oh, domain = b['X_sup'], b['X_sup_len'], b['Y_sup'], b['Y_sup_oh'], b['X_q'], b['Xq_len'], b['Y_q'], b['Y_q_oh'], b['X_neg'], b['X_neg_len'], b['Y_neg'], b['Y_neg_oh'], b['target_sets_files'] x = x.squeeze() x_len = x_len.squeeze() y = y.squeeze() y_oh = y_oh.squeeze() xq = xq.squeeze() xq_len = xq_len.squeeze() yq = yq.squeeze() yq_oh = yq_oh.squeeze() x_ood = x_ood.squeeze() x_ood_len = x_ood_len.squeeze() y_ood = y_ood.squeeze() y_ood_oh = y_ood_oh.squeeze() x_ = x y_ = y xq_ = xq yq_ = yq x_ood_ = x_ood y_ood_ = y_ood x = x.view(200 * self.params['min_ss_size'], self.params['max_length']) x_len = x_len.view(200 * self.params['min_ss_size']) y = y.view(200 * self.params['min_ss_size']) y_oh = y_oh.view(200 * self.params['min_ss_size'], 2) loss = model(x, x_len, y, y_oh, xq, xq_len, yq, yq_oh, x_ood, x_ood_len, y_ood) loss.backward() optimizer.step() domains.append(domain) total_loss += loss.item() i+=1 train_loss = total_loss/i if epoch % 10 == 0: print("train_loss", train_loss) state = {'epoch': epoch, 'state_dict': model.state_dict(), 'optim_dict' : optimizer.state_dict()} torch.save(state, open(os.path.join(RSL_PATH, 'proto_sentiment_k100_%s.pth'%epoch), 'wb')) return train_loss, domains def run_testing_epoch(self, params, dev_dl): model = self.model idx2word = params['idx2word'] with torch.no_grad(): preds = [] all_dataset = [] probs = [] gts = [] avg_conf_ood = [] for dat in dev_dl: for b in dat: x, x_len, y, y_oh, xq, xq_len, yq, dataset = b['X_sup'], b['X_sup_len'], b['Y_sup'], b['Y_sup_oh'], b['X_q'], b['X_q_len'], b['Y_q'], b['target_set_file'] x = x.squeeze(0) x_len = x_len.squeeze(0) y = y.squeeze(0) y_oh = y_oh.squeeze(0) xq = xq.squeeze(0) # sorting examples based on classes srt = torch.sort(y, axis=0) id_srt = srt[1][:,0] x = x[id_srt] x_len = x_len[id_srt] y = y[id_srt] y_oh = y_oh[id_srt] x_cpu = x.cpu().numpy() y_ = y.cpu().numpy() x_str = [[idx2word[i] for i in tknids if i in idx2word and idx2word[i] != '</s>'] for tknids in x_cpu[:,0,:]] for eid, (s, ys) in enumerate(zip(x_str, y_[:,0])): s_ = ' '.join(s) s_ = s_.replace('</s>', '').strip() xq_cpu = xq.cpu().numpy() xq_str = [[idx2word[i] for i in tknids if i in idx2word and idx2word[i] != '</s>'] for tknids in xq_cpu] xq_str = ' '.join(xq_str[0]) pred = model._predict(x, x_len, y, xq, xq_len) pred = pred.cpu().data.numpy() pred_cls = numpy.argmax(pred) conf = numpy.max(pred) pred_cls_ = '' yq_str = '' if pred_cls == 0: pred_cls_ = '1' else: pred_cls_ = '2' if yq.cpu().data.numpy().tolist()[0][0] == 0: yq_str = '1' probs.append(pred) gts.append(yq.cpu().data.numpy().tolist()[0][0]) elif yq.cpu().data.numpy().tolist()[0][0] == 1: yq_str = '2' probs.append(pred) gts.append(yq.cpu().data.numpy().tolist()[0][0]) else: yq_str = 'UNCONFIDENT_INTENT_FROM_SLAD' avg_conf_ood.append(conf) probs.append(pred) gts.append(yq_str) atuple = (pred_cls_, yq_str, conf) preds.append(atuple) all_dataset.append(dataset) probs = numpy.array(probs) gts = numpy.array(gts) avg_conf_ood = numpy.mean(avg_conf_ood) return preds, all_dataset, probs, gts, avg_conf_ood def project_data(self, idx_, dev_dl, idx2word, epoch, str_): RSL_PATH= HOME_DIR+'/encodeds/proto' model = self.model with torch.no_grad(): for i, dat in enumerate(dev_dl): for j, sdat in enumerate(dat): x, x_len, y, y_oh, xq, xq_len, yq, dataset = sdat['X_sup'], sdat['X_sup_len'], sdat['Y_sup'], sdat['Y_sup_oh'], sdat['X_q'], sdat['X_q_len'], sdat['Y_q'], sdat['target_set_file'] x = x.squeeze(0) x_len = x_len.squeeze(0) y = y.squeeze(0) y_oh = y_oh.squeeze(0) xq = xq.squeeze(0) xq_len = xq_len.squeeze(0) # sorting examples based on classes srt = torch.sort(y, axis=0) id_srt = srt[1][:,0] x = x[id_srt] x_len = x_len[id_srt] y = y[id_srt] y_oh = y_oh[id_srt] sims, enc_prototype, x_sup_enc, y_sup, x_q_enc, y_q , x_sup_raw, xq_raw, y_raw_sup, y_raw, x_raw_sup_len, x_raw_q_len = model._encode(x, x_len, y, xq, xq_len, yq) encodeds = sims, enc_prototype, x_sup_enc, y_sup, x_q_enc, y_q, x_sup_raw, xq_raw, y_raw_sup, y_raw, x_raw_sup_len, x_raw_q_len save_pickle(RSL_PATH, 'encoded_sent_proto_k100_%s_%s_%s_%s_%s.pkl'%(str_, epoch, idx_, i, j), (dataset, encodeds)) return 0 def project_data_continue(self, i, dat, domain, idx2word, epoch, str_): RSL_PATH= HOME_DIR+'/encodeds/proto' model = self.model with torch.no_grad(): x, xq, y, yq, x_len, xq_len = dat x = x.squeeze(0) x_len = x_len.squeeze(0) y = y.squeeze(0) srt = torch.sort(y, axis=0) id_srt = srt[1][:,0] x = x[id_srt] x_len = x_len[id_srt] y = y[id_srt] sims, enc_prototype, x_sup_enc, y_sup, x_q_enc, y_q , x_sup_raw, xq_raw, y_raw_sup, y_raw, x_raw_sup_len, x_raw_q_len = model._encode(x, x_len, y, xq, xq_len, yq) encodeds = sims, enc_prototype, x_sup_enc, y_sup, x_q_enc, y_q, x_sup_raw, xq_raw, y_raw_sup, y_raw save_pickle(RSL_PATH, 'encoded_sent_proto_k100_%s_%s_0_%s.pkl'%(str_, epoch, i), (domain, encodeds)) return 0 def get_support_set_one_hot(self, support_set, classe_list): cls_id_map = dict() for lid in classe_list: cls_id_map[lid] = len(cls_id_map) support_set_one_hot = numpy.zeros([len(support_set), len(support_set[0]), len(cls_id_map)]) for k in range(len(support_set)): for j in range(len(support_set[k])): support_set_one_hot[k][j][cls_id_map[support_set[k][j]]] = 1.0 return support_set_one_hot def get_one_hot(self, y_target, classe_list): cls_id_map = dict() for lid in classe_list: cls_id_map[lid] = len(cls_id_map) y_target_one_hot = numpy.zeros([len(y_target), len(cls_id_map)]) for k in range(len(y_target)): y_target_one_hot[k][cls_id_map[y_target[k]]] = 1.0 return y_target_one_hot
eb68af81c19aa405345e4b717d86a0032583c9e8
eec267b544295bccb2ab88b13b221ff4fd3d2985
/test_new_edi.py
d82f2d0cbabccbb7fac6c5dbe44dfe81e85531d0
[]
no_license
ralfcam/sandbox_scripts
dda368dcf8b8d01147660dedc6d0fcae2d15f80c
6fa53a63152c4a00396b38fb92ae7dc6f72d6b90
refs/heads/master
2022-05-29T02:02:24.849913
2020-05-01T02:23:57
2020-05-01T02:23:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,211
py
# -*- coding: utf-8 -*- """ Created on Wed May 25 10:48:11 2016 @author: jpeacock """ import mtpy.core.z as mtz import numpy as np f1 = r"c:\Users\jpeacock\Documents\ShanesBugs\Sev_MT_Final_ga\MT001.edi" with open(f1, 'r') as fid: data_lines = fid.readlines()[102:] data_dict = {} data_find = False for line in data_lines: if line.find('>') >= 0 and line.find('!') == -1: line_list = line[1:].strip().split() key = line_list[0].lower() if key[0] == 'z' or key[0] == 't' or key == 'freq': data_find = True data_dict[key] = [] else: data_find = False elif data_find == True and line.find('>') == -1 and line.find('!') == -1: d_lines = line.strip().split() for ii, dd in enumerate(d_lines): # check for empty values and set them to 0, check for any # other characters sometimes there are ****** for a null # component try: d_lines[ii] = float(dd) if d_lines[ii] == 1.0e32: d_lines[ii] = 0.0 except ValueError: d_lines[ii] = 0.0 data_dict[key] += d_lines ## fill useful arrays freq_arr = np.array(data_dict['freq'], dtype=np.float) ## fill impedance tensor z_obj = mtz.Z() z_obj.freq = freq_arr.copy() z_obj.z = np.zeros((freq_arr.size, 2, 2), dtype=np.complex) z_obj.z_err = np.zeros((freq_arr.size, 2, 2), dtype=np.float) try: z_obj.rotation_angle = data_dict['zrot'] except KeyError: z_obj.rotation_angle = np.zeros_like(freq_arr) z_obj.z[:, 0, 0] = np.array(data_dict['zxxr'])+\ np.array(data_dict['zxxi'])*1j z_obj.z[:, 0, 1] = np.array(data_dict['zxyr'])+\ np.array(data_dict['zxyi'])*1j z_obj.z[:, 1, 0] = np.array(data_dict['zyxr'])+\ np.array(data_dict['zyxi'])*1j z_obj.z[:, 1, 1] = np.array(data_dict['zyyr'])+\ np.array(data_dict['zyyi'])*1j z_obj.z_err[:, 0, 0] = np.array(data_dict['zxx.var']) z_obj.z_err[:, 0, 1] = np.array(data_dict['zxy.var']) z_obj.z_err[:, 1, 0] = np.array(data_dict['zyx.var']) z_obj.z_err[:, 1, 1] = np.array(data_dict['zyy.var'])
41dcc0f46adda32291cfcb69a957b1b3ffce535f
8e311f8f94c9d218bd37f81c0badc906d78d6b33
/env/Lib/site-packages/reversion/__init__.py
e3b63c498750aeee9563ccdc26d3ceff9e27f228
[ "MIT" ]
permissive
htwenhe/DJOA
d76307ff8752c1e2a89101de1f74094b94bf9b18
3c2d384a983e42dedfd72561353ecf9370a02115
refs/heads/master
2021-09-03T21:49:28.267986
2018-01-12T08:12:55
2018-01-12T08:12:55
108,937,324
0
1
MIT
2018-01-12T08:06:50
2017-10-31T02:59:26
Python
UTF-8
Python
false
false
923
py
""" An extension to the Django web framework that provides version control for model instances. Developed by Dave Hall. <http://www.etianen.com/> """ try: import django # noqa except ImportError: # pragma: no cover # The top-level API requires Django, which might not be present if setup.py # is importing reversion to get __version__. pass else: from reversion.errors import ( # noqa RevertError, RevisionManagementError, RegistrationError, ) from reversion.revisions import ( # noqa is_active, is_manage_manually, get_user, set_user, get_comment, set_comment, get_date_created, set_date_created, add_meta, add_to_revision, create_revision, register, is_registered, unregister, get_registered_models, ) __version__ = VERSION = (2, 0, 10)
bd94c819b0a4ffdedd7fe7221a210a1d599e191d
8f3336bbf7cd12485a4c52daa831b5d39749cf9b
/Python/course-schedule-ii.py
584064f35bc6f961716bc46e8c017dda5ee86015
[]
no_license
black-shadows/LeetCode-Topicwise-Solutions
9487de1f9a1da79558287b2bc2c6b28d3d27db07
b1692583f7b710943ffb19b392b8bf64845b5d7a
refs/heads/master
2022-05-30T22:16:38.536678
2022-05-18T09:18:32
2022-05-18T09:18:32
188,701,704
240
110
null
2020-05-08T13:04:36
2019-05-26T15:41:03
C++
UTF-8
Python
false
false
1,129
py
from collections import defaultdict, deque class Solution(object): def findOrder(self, numCourses, prerequisites): """ :type numCourses: int :type prerequisites: List[List[int]] :rtype: List[int] """ res, zero_in_degree_queue = [], deque() in_degree, out_degree = defaultdict(set), defaultdict(set) for i, j in prerequisites: in_degree[i].add(j) out_degree[j].add(i) for i in xrange(numCourses): if i not in in_degree: zero_in_degree_queue.append(i) while zero_in_degree_queue: prerequisite = zero_in_degree_queue.popleft() res.append(prerequisite) if prerequisite in out_degree: for course in out_degree[prerequisite]: in_degree[course].discard(prerequisite) if not in_degree[course]: zero_in_degree_queue.append(course) del out_degree[prerequisite] if out_degree: return [] return res
f9d2a50793292a53ca569289d3130dccc8a80386
e10a6d844a286db26ef56469e31dc8488a8c6f0e
/gift/experiment/cifar10_classification/multicifar10_wide_resnet_gradualmixup_1000_config.py
ebe2db0f88122e4e8cd4430b15c0185d117daf04
[ "Apache-2.0", "CC-BY-4.0" ]
permissive
Jimmy-INL/google-research
54ad5551f97977f01297abddbfc8a99a7900b791
5573d9c5822f4e866b6692769963ae819cb3f10d
refs/heads/master
2023-04-07T19:43:54.483068
2023-03-24T16:27:28
2023-03-24T16:32:17
282,682,170
1
0
Apache-2.0
2020-07-26T15:50:32
2020-07-26T15:50:31
null
UTF-8
Python
false
false
4,803
py
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Config for Cifar10 classification with end2end training.""" import ml_collections def get_config(): """Returns the experiment configuration for WideResnet on Cifar10.""" config = ml_collections.ConfigDict() config.experiment_name = 'wide_resnet_cifar10_cls_gradual_mixup' # Train mode config.train_mode = 'self_adaptive_gradual_mixup' config.pretrained = ml_collections.ConfigDict() config.pretrained.only_backbone_pretrained = False config.pretrained.checkpoint_path = '' # Task config.task_name = 'multi_env_identity_dm_cls' config.dataset_name = 'multi_cifar10' config.data_augmentations = ['random_flip'] config.train_environments = ['cifar', 'translated'] config.eval_environments = ['cifar', 'translated'] config.labeled_environments = ['cifar'] config.unlabeled_environments = ['translated'] # Model and data dtype config.model_dtype_str = 'float32' config.data_dtype_str = 'float32' config.model_name = 'wide_resnet' config.blocks_per_group = 4 config.channel_multiplier = 10 config.num_outputs = 10 config.dropout_rate = 0.0 config.output_dim = 10 # Training config.optimizer = 'adam' config.opt_hparams = {'weight_decay': 0.001} config.l2_decay_factor = .0 config.max_grad_norm = 5.0 config.label_smoothing = None config.num_training_steps = 1000 config.num_training_epochs = None config.eval_frequency = 100 config.batch_size = 512 config.eval_batch_size = 512 config.rng_seed = 0 # Learning rate config.steps_per_epoch = 50000 // config.batch_size config.total_steps = config.num_training_steps config.base_lr = 0.000002 * (config.batch_size / 256) config.lr_hparams = { 'learning_rate_schedule': 'compound', 'factors': 'constant * decay_every', 'initial_learning_rate': config.base_lr, 'steps_per_decay': 100, 'decay_factor': 0.99, } # Pipeline params config.confidence_quantile_threshold = 0.3 config.self_supervised_label_transformation = 'sharp' config.label_temp = 0.5 config.self_training_iterations = 5 config.reinitialize_optimizer_at_each_step = False config.restart_learning_rate = False config.pseudo_labels_train_mode = False config.stop_gradient_for_interpolations = True config.ground_truth_factor_params = {'mode': 'constant', 'initial_value': 0.0} config.inter_env_interpolation = False config.intra_env_interpolation = False config.unlabeled_interpolation = True config.mixup_layer_set = [0, 1, 2, 3] config.interpolation_method = 'plain_convex_combination' config.intra_interpolation_method = 'plain_convex_combination' config.interpolation_mode = 'hard' config.ot_label_cost = 0.1 config.ot_l2_cost = 0.0000000 config.ot_noise_cost = 0.0 config.intra_mixup_factor_params = {'mode': 'constant', 'initial_value': 0.0} config.beta_schedule_params = {'mode': 'constant', 'initial_value': 1.0} config.alpha_schedule_param = {'mode': 'constant', 'initial_value': 1.0} config.inter_mixup_factor_params = {'mode': 'constant', 'initial_value': 0.0} config.inter_beta_schedule_params = {'mode': 'constant', 'initial_value': 1.0} config.inter_alpha_schedule_param = {'mode': 'constant', 'initial_value': 1.0} config.unlabeled_mixup_factor_params = { 'mode': 'constant', 'initial_value': 1.0 } config.unlabeled_beta_params = { 'mode': 'linear_decay', 'initial_value': 10, 'min_value': 0, 'total_steps': config.total_steps, 'num_steps': config.self_training_iterations } config.unlabeled_alpha_params = { 'mode': 'linear_grow', 'initial_value': 1, 'max_value': 10, 'total_steps': config.total_steps, 'num_steps': config.self_training_iterations } # IRM related config.penalty_weight = 0.0 config.penalty_anneal_iters = 0 # Continual learning related: config.gift_factor = 0.001 # Domain Mapper related: config.aux_weight = 0 config.aux_l2 = 0 # logging config.write_summary = True # write TB and XM summary config.checkpoint = True # do checkpointing config.keep_ckpts = 3 config.keep_env_ckpts = False config.write_xm_measurements = True config.trial = 0 return config
bc3feca74db58c5140fd26ee1ae452b49921fbcf
178109bccf5014a97d74054d8f40511a241625fe
/signature/signature.py
258257f75fa208b6755eb6441b82953b60aaf0a3
[]
no_license
rajeshwarg/signature-disambiguation
1b6d46a144feb71ca7efe7e7f4105cc3d93b548a
2b10c4f1ec4ca7785d812ea8de679ab681d0d98f
refs/heads/master
2021-01-19T11:54:39.793623
2014-04-28T21:28:43
2014-04-28T21:28:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,050
py
import matplotlib.pyplot as plt import numpy as np from skimage.data import imread from skimage import io from skimage.color import rgb2gray from skimage.measure import find_contours from skimage.transform import probabilistic_hough_line from itertools import cycle from pylab import * from PIL import Image import os import shutil import sys import pandas as pd from skimage.morphology import square, erosion from skimage.filter import hsobel from scipy.spatial.distance import euclidean from scipy.signal import convolve2d, convolve ## CONSTANTS ## CONTOUR_MINLENGTH = 200 def compute_contours(img, length=300, value=0.1): """ Given an Image object, finds the contours. Filters the contours by how long they are (this is the optional length argument) Returns: ret_contours (list of contours), ret_lengths (list of lengths of each contour in ret_contours) """ length = CONTOUR_MINLENGTH contours = find_contours(img, value) contour_lengths = [len(x[:, 1]) for x in contours] ret_contours = [] ret_lengths = [] for contour in contours: if (contour.shape[0] >= length): ret_contours.append(contour) ret_lengths.append(contour.shape[0]) return ret_contours, ret_lengths def get_boundingboxes(contours, plot=False): """ Given a list of contours, computes the bounding box for each and returns the list """ boxes = [] for contour in contours: # compute bounding box coordinates minx = miny = float('inf') maxx = maxy = float('-inf') minx = min(minx, min(contour, key=lambda x: x[1])[1]) miny = min(miny, min(contour, key=lambda x: x[0])[0]) maxx = max(maxx, max(contour, key=lambda x: x[1])[1]) maxy = max(maxy, max(contour, key=lambda x: x[0])[0]) if plot: x = (minx, maxx, maxx, minx, minx) y = (miny, miny, maxy, maxy, miny) plt.plot(x,y,'-b',linewidth=2) boxes.append( map(int,(minx,miny,maxx,maxy)) ) return boxes def boundingbox(contour): """ Given a list of contours, computes the bounding box for each and returns the list """ # compute bounding box coordinates minx = miny = float('inf') maxx = maxy = float('-inf') minx = int(min(minx, min(contour, key=lambda x: x[1])[1])) miny = int(min(miny, min(contour, key=lambda x: x[0])[0])) maxx = int(max(maxx, max(contour, key=lambda x: x[1])[1])) maxy = int(max(maxy, max(contour, key=lambda x: x[0])[0])) return (minx,miny,maxx,maxy) def boundingboxcorners(box): minx,miny,maxx,maxy = box corners = [] for x in (minx,maxx): for y in (miny,maxy): corners.append((x,y)) return corners def mergeboxes(box1,box2): minx1,miny1,maxx1,maxy1 = box1 minx2,miny2,maxx2,maxy2 = box2 minx = min(minx1,minx2) maxx = max(maxx1,maxx2) miny = min(miny1,miny2) maxy = max(maxy1,maxy2) return (minx,miny,maxx,maxy) def is_box_in_box(corners1, corners2): """ returns True if corners1 is in-part contained inside corners2 """ min_x = min(map(lambda x: x[0], corners2)) max_x = max(map(lambda x: x[0], corners2)) min_y = min(map(lambda x: x[1], corners2)) max_y = max(map(lambda x: x[1], corners2)) width = max_x - min_x height = max_y - min_y for p in corners1: if p[0] >= min_x and p[1] >= min_y and \ p[0] < min_x+width and p[1] < min_y+height: return True return False def do_merge(corners1, corners2): for corner1 in corners1: for corner2 in corners2: if euclidean(corner1,corner2) < 100: return True if is_box_in_box(corners1, corners2) or is_box_in_box(corners2, corners1): return True return False def link_contours(contours): # check overlaps # remove flat lines merged = True boxes = map(boundingbox, contours) iterations_left = len(boxes) old_boxes = None for i in range(10*len(boxes)): if iterations_left == 0: print 'none',i,boxes break box1 = boxes.pop(0) iterations_left -= 1 corners1 = boundingboxcorners(box1) for index,box2 in enumerate(boxes): corners2 = boundingboxcorners(box2) if do_merge(corners1, corners2): boxes.pop(index) boxes.append(mergeboxes(box1,box2)) iterations_left += 1 merged=True break else: if box1 not in boxes: boxes.append(box1) merged = False return boxes def process(filename): imagepath = os.path.join(os.getcwd(), filename) orig_img = io.imread(filename,True,'pil') img = orig_img > 0.9 # binary threshold lines = probabilistic_hough_line(hsobel(img),line_length=200) for l in lines: x0, x1 = l[0][0],l[1][0] y = l[0][1] for x in range(x0,x1): img[y+1,x] = 1 img[y,x] = 1 img[y-1,x] = 1 erode_img = erosion(img, square(2)) contours, lengths = compute_contours(erode_img,0.8) lengths = pd.Series(lengths) lengths = lengths[lengths > 400] for i in lengths.index: contour = contours[i] box = get_boundingboxes([contour])[0] x_sum = sum(map(abs, np.gradient(contour[:,1]))) y_sum = sum(map(abs, np.gradient(contour[:,0]))) area = (box[2] - box[0]) * (box[3] - box[1]) plt.plot(contour[:,1],contour[:,0]) contours = [contours[i] for i in lengths.index] newboxes = set(link_contours(contours)) retboxes = [] for box in newboxes: minx,miny,maxx,maxy = box x = (minx, maxx, maxx, minx, minx) y = (miny, miny, maxy, maxy, miny) area = (maxx-minx) * (maxy-miny) if area > 10000: retboxes.append(box) plt.plot(x, y, '-b', linewidth=2) imshow(erode_img) return retboxes, contours def output(contours,shape=(126,126),outputfile='signatures.csv'): """ Take the set of all contours that we have identified as possible signatures and resize them all into a canonical shape (the best shape and the best method for doing so have yet to be determined) so we can train a classifier on the pixels. We want to do unsupervised clustering to separate the signatures from non-signatures """ from scipy import resize with open(outputfile,'a') as f: for c in contours: newc = map(int, resize(c, shape).flatten()) f.write('\t'.join(map(str, newc))+'\n') if __name__=='__main__': plt.gray() f = plt.figure(figsize=(16,12)) filename = sys.argv[1] basename = ''.join(filename.split('/')[-1].split('.')[:-1]) boxes, contours = process(filename) output(contours) plt.savefig(basename+'-signature.png') if len(sys.argv) > 2: shutil.move(basename+'-signature.png',sys.argv[2])
0c3b7cd7d2c76d0d5aaee1d1c5f1f0d14ecccbb4
f47bfd6d1f6e2040c070086a6c0b7f279dfebb6a
/brick/check_point_subclass_dict.py
d198eff7693fb0a1dd818062f964ad95e1f006b8
[ "BSD-3-Clause" ]
permissive
metehangelgi/scrabble
b34844cbd17a5588f69af22eb04dfe8d89d14bf3
6d64be2e9c7d0392332592c804eb15c20a3e2516
refs/heads/master
2022-03-26T12:17:06.133378
2018-11-25T03:42:56
2018-11-25T03:42:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
363
py
import json with open('point_subclass_dict.json', 'r') as fp: d = json.load(fp) found_tagsets = set() redundant_tagsets = set() for superclass, tagsets in d.items(): redundant_tagsets.union(set([tagset for tagset in tagsets \ if tagset in found_tagsets])) found_tagsets.union(set(tagsets)) print(redundant_tagsets)
4bbc331673aca10bf2d8e93f9f0ce957c28ecf56
92bf406d734e5ffe32a369e9e3efa327bf2b926f
/paperboy/config/application.py
e0b857d9781e33a48c281deb2a0fd7b7f7352cc0
[ "Apache-2.0" ]
permissive
samanalysis/paperboy
ee0e299f93f60f8d69804577e82d21833b9c6c43
2e20cffdea8567e560223996b855e64faf3f3c02
refs/heads/master
2020-06-20T09:20:27.721493
2019-06-15T15:24:18
2019-06-15T15:24:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,346
py
import falcon import logging import os from six.moves.urllib_parse import urljoin from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from traitlets.config.application import Application from traitlets import Int, Instance, List, Tuple, Unicode, Bool, validate, TraitError from uuid import uuid4 # falcon api from ..server.api import FalconAPI # deployer from ..server.deploy import FalconDeploy # base configs from .user import UserConfig from .notebook import NotebookConfig from .job import JobConfig from .report import ReportConfig from .scheduler import AirflowSchedulerConfig from .storage import SQLAStorageConfig from .output import LocalOutputConfig # no auth from ..middleware import NoUserMiddleware, NoAuthRequiredMiddleware # essential middleware from ..middleware import CORSMiddleware, MultipartMiddleware # sql from ..storage.sqla import Base from ..storage.sqla import UserSQLStorage, NotebookSQLStorage, JobSQLStorage, ReportSQLStorage from ..middleware import SQLAlchemySessionMiddleware, SQLUserMiddleware, SQLAuthRequiredMiddleware class Paperboy(Application): """Base class for paperboy applications""" name = 'paperboy' description = 'paperboy' ############ # Gunicorn # ############ workers = Int(default_value=1, help="Number of gunicorn workers").tag(config=True) port = Unicode(default_value='8080', help="Port to run on").tag(config=True) ############ ########## # Falcon # ########## api = Instance(falcon.API, help="A Falcon API instance").tag(config=True) ########## ######## # URLs # ######## baseurl = Unicode(default_value='/', help="Base URL (for reverse proxies)").tag(config=True) apiurl = Unicode(default_value='/api/v1/', help="API base URL (for reverse proxies)").tag(config=True) loginurl = Unicode(default_value='login', help="login url").tag(config=True) logouturl = Unicode(default_value='logout', help="logout url").tag(config=True) registerurl = Unicode(default_value='register', help="register url").tag(config=True) ######## ######## # Auth # ######## http = Bool(default_value=True, help="Running on HTTP (as opposed to https, so token is insecure)").tag(config=True) include_password = Bool(default_value=False).tag(config=True) include_register = Bool(default_value=True).tag(config=True) token_timeout = Int(default_value=600).tag(config=True) ############# ########## # Config # ########## # FIXME doesnt allow default_value yet user_config = UserConfig notebook_config = NotebookConfig job_config = JobConfig report_config = ReportConfig ########## ############## # Middleware # ############## essential_middleware = [CORSMiddleware(allow_all_origins=True).middleware, MultipartMiddleware()] extra_middleware = List(default_value=[]) # List of extra middlewares to install auth_required_middleware = Instance(object) load_user_middleware = Instance(object) ############## ################## # Custom handler # ################## extra_handlers = List(trait=Tuple(), default_value=[]) # List of tuples (route, handler) of handlers to install ################## ########################################## # Predefined Configurations # # ########################################## backend = Unicode(default_value='dummy', help="Backend set to use, options are {sqla, custom}").tag(config=True) auth = Unicode(default_value='dummy', help="Authentication backend set to use, options are {none, sqla, custom}").tag(config=True) secret = Unicode() @validate('backend') def _validate_backend(self, proposed): if proposed['value'] not in ('custom', 'dummy', 'git', 'sqla',): raise TraitError('backend not recognized: %s'.format(proposed['value'])) return proposed['value'] @validate('auth') def _validate_auth(self, proposed): if proposed['value'] not in ('custom', 'none', 'sqla',): raise TraitError('backend not recognized: %s'.format(proposed['value'])) return proposed['value'] ########################################## ########### # Storage # ########### # FIXME doesnt allow default_value yet storage = SQLAStorageConfig() sql_dev = Bool(default_value=False) ########### ############# # Scheduler # ############# # FIXME doesnt allow default_value yet scheduler = AirflowSchedulerConfig() ############# ################## # Output # ################## output = LocalOutputConfig() ################## def start(self): """Start the whole thing""" self.port = os.environ.get('PORT', self.port) options = { 'bind': '0.0.0.0:{}'.format(self.port), 'workers': self.workers } self.secret = str(uuid4()) if self.sql_dev: self.sql_url = 'sqlite:///:memory:' logging.critical('Using SQL in memory backend') self.storage.engine = create_engine(self.storage.sql_url, echo=False) Base.metadata.create_all(self.storage.engine) self.sessionmaker = sessionmaker(bind=self.storage.engine) self.backend = 'sqla' self.auth = 'sqla' self.extra_middleware = self.extra_middleware + [SQLAlchemySessionMiddleware(self.storage.sessionmaker)] self.storage.notebook_storage = NotebookSQLStorage self.storage.job_storage = JobSQLStorage self.storage.report_storage = ReportSQLStorage self.storage.user_storage = UserSQLStorage self.storage.sql_user = True logging.critical('Using SQL auth') self.auth_required_middleware = SQLAuthRequiredMiddleware self.load_user_middleware = SQLUserMiddleware else: # Preconfigured storage backends if self.backend == 'git': logging.critical('Using Git backend') raise NotImplementedError() # default to sqla # elif self.backend == 'sqla': else: logging.critical('Using SQL backend') self.storage.engine = create_engine(os.environ.get('PAPERBOY_SQL_URL') or self.storage.sql_url, echo=False) Base.metadata.create_all(self.storage.engine) self.storage.sessionmaker = sessionmaker(bind=self.storage.engine) self.extra_middleware = self.extra_middleware + [SQLAlchemySessionMiddleware(self.storage.sessionmaker)] self.storage.notebook_storage = NotebookSQLStorage self.storage.job_storage = JobSQLStorage self.storage.report_storage = ReportSQLStorage self.storage.user_storage = UserSQLStorage self.storage.sql_user = True self.auth = 'sqla' # Preconfigured auth backends if self.auth == 'none': logging.critical('Using No auth') self.auth_required_middleware = NoAuthRequiredMiddleware self.load_user_middleware = NoUserMiddleware elif self.auth == 'sqla': logging.critical('Using SQL auth') self.auth_required_middleware = SQLAuthRequiredMiddleware self.load_user_middleware = SQLUserMiddleware FalconDeploy(FalconAPI(self), options).run() @classmethod def launch_instance(cls, argv=None, **kwargs): """Launch an instance of a Paperboy Application""" return super(Paperboy, cls).launch_instance(argv=argv, **kwargs) def to_dict(self): return {'name': self.name, 'description': self.description, 'workers': self.workers, 'port': self.port} aliases = { 'workers': 'Paperboy.workers', 'port': 'Paperboy.port', 'baseurl': 'Paperboy.baseurl', 'backend': 'Paperboy.backend', 'auth': 'Paperboy.auth', 'sql_url': 'Paperboy.storage.sql_url', } def _login_redirect(config, *args, **kwargs): raise falcon.HTTPFound(urljoin(config.baseurl, config.loginurl))
2eff6562ec8a043de5548599076490f426fda71e
eedea7d2f6ad0f497f1469ab78ea00c3c33bd57a
/hamon_shu/materials/score_structure/segment_07/pitch_material_pattern.py
c24b023291d9b5b7db9bb259abe6928e367405ee
[]
no_license
GregoryREvans/hamon_shu
750927aec941f60bf0b90ee2196a886c19c611ad
8081ee57fce8db07c3492e67e7a634e3b08f3bb3
refs/heads/master
2022-02-27T06:22:44.449635
2022-02-10T13:48:23
2022-02-10T13:48:23
144,753,533
0
1
null
null
null
null
UTF-8
Python
false
false
2,713
py
from hamon_shu.materials.pitch import pitches_VII key_list_1 = [ "violin_1_pitch_handler_three", "violin_1_pitch_handler_one", "violin_1_pitch_handler_two", "violin_1_pitch_handler_four", "violin_1_pitch_handler_three", "violin_1_pitch_handler_one", "violin_1_pitch_handler_four", "violin_1_pitch_handler_two", ] key_list_2 = [ "violin_2_pitch_handler_three", "violin_2_pitch_handler_one", "violin_2_pitch_handler_two", "violin_2_pitch_handler_four", "violin_2_pitch_handler_three", "violin_2_pitch_handler_one", "violin_2_pitch_handler_four", "violin_2_pitch_handler_two", ] key_list_3 = [ "viola_pitch_handler_three", "viola_pitch_handler_one", "viola_pitch_handler_two", "viola_pitch_handler_four", "viola_pitch_handler_three", "viola_pitch_handler_one", "viola_pitch_handler_four", "viola_pitch_handler_two", ] key_list_4 = [ "cello_pitch_handler_three", "cello_pitch_handler_one", "cello_pitch_handler_two", "cello_pitch_handler_four", "cello_pitch_handler_three", "cello_pitch_handler_one", "cello_pitch_handler_four", "cello_pitch_handler_two", ] dict = { "violin_1_pitch_handler_one": pitches_VII.violin_1_pitch_handler_one, "violin_1_pitch_handler_two": pitches_VII.violin_1_pitch_handler_two, "violin_1_pitch_handler_three": pitches_VII.violin_1_pitch_handler_three, "violin_1_pitch_handler_four": pitches_VII.violin_1_pitch_handler_four, "violin_2_pitch_handler_one": pitches_VII.violin_2_pitch_handler_one, "violin_2_pitch_handler_two": pitches_VII.violin_2_pitch_handler_two, "violin_2_pitch_handler_three": pitches_VII.violin_2_pitch_handler_three, "violin_2_pitch_handler_four": pitches_VII.violin_2_pitch_handler_four, "viola_pitch_handler_one": pitches_VII.viola_pitch_handler_one, "viola_pitch_handler_two": pitches_VII.viola_pitch_handler_two, "viola_pitch_handler_three": pitches_VII.viola_pitch_handler_three, "viola_pitch_handler_four": pitches_VII.viola_pitch_handler_four, "cello_pitch_handler_one": pitches_VII.cello_pitch_handler_one, "cello_pitch_handler_two": pitches_VII.cello_pitch_handler_two, "cello_pitch_handler_three": pitches_VII.cello_pitch_handler_three, "cello_pitch_handler_four": pitches_VII.cello_pitch_handler_four, } material_list_1 = [dict[x] for x in key_list_1] material_list_2 = [dict[x] for x in key_list_2] material_list_3 = [dict[x] for x in key_list_3] material_list_4 = [dict[x] for x in key_list_4] materials = [material_list_1, material_list_2, material_list_3, material_list_4] pitch_material_list = [] for x in materials: pitch_material_list.extend(x)
55844d8aed6b61cd815f0b6c616ce85c2dce5750
5900bc2615f456512b73455203fa90c4a016230f
/mimic.py
77ba93da838bbfae6e99cae87a3ee91c38346f59
[]
no_license
RamiroAlvaro/google-python-exercises
615a2a4aa6c02d7a7b74eed42119dc8402eccd4c
50b711ca3fbcd008f28e60c53b7d5136573a44ad
refs/heads/master
2020-12-25T15:08:36.125816
2017-01-27T20:24:47
2017-01-27T20:24:47
66,118,312
0
1
null
null
null
null
UTF-8
Python
false
false
2,568
py
#!/usr/bin/python -tt # Copyright 2010 Google Inc. # Licensed under the Apache License, Version 2.0 # http://www.apache.org/licenses/LICENSE-2.0 # Google's Python Class # http://code.google.com/edu/languages/google-python-class/ """Mimic pyquick exercise -- optional extra exercise. Google's Python Class Read in the file specified on the command line. Do a simple split() on whitespace to obtain all the words in the file. Rather than read the file line by line, it's easier to read it into one giant string and split it once. Build a "mimic" dict that maps each word that appears in the file to a list of all the words that immediately follow that word in the file. The list of words can be be in any order and should include duplicates. So for example the key "and" might have the list ["then", "best", "then", "after", ...] listing all the words which came after "and" in the text. We'll say that the empty string is what comes before the first word in the file. With the mimic dict, it's fairly easy to emit random text that mimics the original. Print a word, then look up what words might come next and pick one at random as the next work. Use the empty string as the first word to prime things. If we ever get stuck with a word that is not in the dict, go back to the empty string to keep things moving. Note: the standard python module 'random' includes a random.choice(list) method which picks a random element from a non-empty list. For fun, feed your program to itself as input. Could work on getting it to put in linebreaks around 70 columns, so the output looks better. """ import random import sys import textwrap def mimic_dict(filename): """Returns mimic dict mapping each word to list of words which follow it.""" with open(filename, 'rt') as f: text = f.read().split() d = {'': text} for i, item in enumerate(text): if i < len(text) - 1 and item not in d.keys(): d[item] = text[i + 1:] return d def print_mimic(mimic_dict, word): """Given mimic dict and start word, prints 200 random words.""" words = [] for item in range(200): if word not in mimic_dict: word = '' word = random.choice(mimic_dict[word]) words.append(word) s = ' '.join(words) print(textwrap.fill(s, 70)) # Provided main(), calls mimic_dict() and mimic() def main(): if len(sys.argv) != 2: print('usage: ./mimic.py file-to-read') sys.exit(1) dict = mimic_dict(sys.argv[1]) print_mimic(dict, '') if __name__ == '__main__': main()
ce53004e1ff1be30445cc2cf0fb824a75c34b070
f2e8afed063bef9292a2ac8d3a84943ebcef9b11
/09_INSTAGRAM/feeds/views.py
b5126502c96408a53875d8d8ebf6f954d57c4287
[]
no_license
seunggue/django
e8a4f376bda247b8780d4f838365b7621cde6101
377b73652b723be1d7bd83abd9bc9e14203799be
refs/heads/master
2022-12-15T13:59:31.218873
2019-10-28T08:42:33
2019-10-28T08:42:33
200,620,105
0
0
null
2022-12-08T06:14:59
2019-08-05T08:59:41
Python
UTF-8
Python
false
false
573
py
from django.shortcuts import render, redirect from .models import Feed # from IPython import embed # Create your views here. def index(request): feeds = Feed.objects.all() context = { 'feeds':feeds } return render(request, 'index.html', context) def create(request): if request.method == 'POST': content = request.POST.get('content') image = request.FILES.get('image') feed = Feed.objects.create(content=content, image=image) return redirect('feeds:index') else: return render(request, 'form.html')
20d57108762761a55044954f0a80ae5d2bc49f5d
50f0d33b12778f911fe16a4e18d0659936b9086b
/0x04-python-more_data_structures/9-multiply_by_2.py
ba5f3c37cd1dca83e69eaeffc1980d63f74de8c8
[]
no_license
monicajoa/holbertonschool-higher_level_programming
4f4eaa7aa2cad1642e7aed54663cb30eb92e1b4f
451d20174144ad96fa726a4389c7aae72abf2495
refs/heads/master
2022-12-18T00:35:00.682624
2020-09-25T05:14:57
2020-09-25T05:14:57
259,479,680
0
0
null
null
null
null
UTF-8
Python
false
false
148
py
#!/usr/bin/python3 def multiply_by_2(a_dictionary): new_dictionary = {n: a_dictionary[n] * 2 for n in a_dictionary} return (new_dictionary)
76e6b924ecfda63a2b4613e3f47eb9b30e9f9c31
595b7157cdf72060c88b8f5b0807b984fa3e63a4
/python/scrap_wiki.py
3e8c74c56d0aaaaf94851c796dbe90ce65c9027f
[]
no_license
HomingYuan/data_science_way
248d15710004eedc1f0fe70ab67318cbdc6e42aa
dd3153f44d3b4cc90b589ae0dc1d4d4f0f671da4
refs/heads/master
2021-01-20T14:34:54.943011
2018-03-06T02:00:29
2018-03-06T02:00:29
90,630,422
1
0
null
null
null
null
UTF-8
Python
false
false
822
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ @author: Homing @software: PyCharm Community Edition @file: scrap_wiki.py @time: 2017/6/7 20:46 """ import csv from urllib.request import urlopen from bs4 import BeautifulSoup html = urlopen("http://en.wikipedia.org/wiki/Comparison_of_text_editors") bsObj = BeautifulSoup(html) #The main comparison table is currently the first table on the page table = bsObj.findAll("table",{"class":"wikitable"})[0] rows = table.findAll("tr") csvFile = open(r"D:\Big_data\scrap_download\editors.csv", 'wt', encoding='utf-8') # need add encoding writer = csv.writer(csvFile) try: for row in rows: csvRow = [] for cell in row.findAll(['td', 'th']): csvRow.append(cell.get_text()) writer.writerow(csvRow) finally: csvFile.close()
7551344d8026f5fb3005279407d84d4d63ca3528
d12b59b33df5c467abf081d48e043dac70cc5a9c
/ixnetwork_restpy/testplatform/sessions/ixnetwork/vport/protocolstack/egtpserveroptions_0da9d0ef7484fcc78603ede124e9e586.py
490e482bf5889cf5c552be904b732a2bf4472d79
[ "MIT" ]
permissive
ajbalogh/ixnetwork_restpy
59ce20b88c1f99f95a980ff01106bda8f4ad5a0f
60a107e84fd8c1a32e24500259738e11740069fd
refs/heads/master
2023-04-02T22:01:51.088515
2021-04-09T18:39:28
2021-04-09T18:39:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,424
py
# MIT LICENSE # # Copyright 1997 - 2020 by IXIA Keysight # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from ixnetwork_restpy.base import Base from ixnetwork_restpy.files import Files class EgtpServerOptions(Base): """ The EgtpServerOptions class encapsulates a list of egtpServerOptions resources that are managed by the user. A list of resources can be retrieved from the server using the EgtpServerOptions.find() method. The list can be managed by using the EgtpServerOptions.add() and EgtpServerOptions.remove() methods. """ __slots__ = () _SDM_NAME = 'egtpServerOptions' _SDM_ATT_MAP = { 'DistributeUserPlaneIps': 'distributeUserPlaneIps', 'EnableCreateBearerTFTHack': 'enableCreateBearerTFTHack', 'EnableDynamicAllocation': 'enableDynamicAllocation', 'ObjectId': 'objectId', 'PcpuLogLevel': 'pcpuLogLevel', 'PublishStatistics': 'publishStatistics', } def __init__(self, parent): super(EgtpServerOptions, self).__init__(parent) @property def DistributeUserPlaneIps(self): """ Returns ------- - bool: Distribute L7 user plane IP addresses across all assigned Ixia ports. """ return self._get_attribute(self._SDM_ATT_MAP['DistributeUserPlaneIps']) @DistributeUserPlaneIps.setter def DistributeUserPlaneIps(self, value): self._set_attribute(self._SDM_ATT_MAP['DistributeUserPlaneIps'], value) @property def EnableCreateBearerTFTHack(self): """ Returns ------- - bool: Send the first port received from the peer activity in the Create Bearer Request TFT. """ return self._get_attribute(self._SDM_ATT_MAP['EnableCreateBearerTFTHack']) @EnableCreateBearerTFTHack.setter def EnableCreateBearerTFTHack(self, value): self._set_attribute(self._SDM_ATT_MAP['EnableCreateBearerTFTHack'], value) @property def EnableDynamicAllocation(self): """ Returns ------- - bool: Enable dynamic allocation of UEs and sessions on PGW. """ return self._get_attribute(self._SDM_ATT_MAP['EnableDynamicAllocation']) @EnableDynamicAllocation.setter def EnableDynamicAllocation(self, value): self._set_attribute(self._SDM_ATT_MAP['EnableDynamicAllocation'], value) @property def ObjectId(self): """ Returns ------- - str: Unique identifier for this object """ return self._get_attribute(self._SDM_ATT_MAP['ObjectId']) @property def PcpuLogLevel(self): """ Returns ------- - str: PCPU log level """ return self._get_attribute(self._SDM_ATT_MAP['PcpuLogLevel']) @PcpuLogLevel.setter def PcpuLogLevel(self, value): self._set_attribute(self._SDM_ATT_MAP['PcpuLogLevel'], value) @property def PublishStatistics(self): """ Returns ------- - bool: Publish statistics for SGW. """ return self._get_attribute(self._SDM_ATT_MAP['PublishStatistics']) @PublishStatistics.setter def PublishStatistics(self, value): self._set_attribute(self._SDM_ATT_MAP['PublishStatistics'], value) def update(self, DistributeUserPlaneIps=None, EnableCreateBearerTFTHack=None, EnableDynamicAllocation=None, PcpuLogLevel=None, PublishStatistics=None): """Updates egtpServerOptions resource on the server. Args ---- - DistributeUserPlaneIps (bool): Distribute L7 user plane IP addresses across all assigned Ixia ports. - EnableCreateBearerTFTHack (bool): Send the first port received from the peer activity in the Create Bearer Request TFT. - EnableDynamicAllocation (bool): Enable dynamic allocation of UEs and sessions on PGW. - PcpuLogLevel (str): PCPU log level - PublishStatistics (bool): Publish statistics for SGW. Raises ------ - ServerError: The server has encountered an uncategorized error condition """ return self._update(self._map_locals(self._SDM_ATT_MAP, locals())) def add(self, DistributeUserPlaneIps=None, EnableCreateBearerTFTHack=None, EnableDynamicAllocation=None, PcpuLogLevel=None, PublishStatistics=None): """Adds a new egtpServerOptions resource on the server and adds it to the container. Args ---- - DistributeUserPlaneIps (bool): Distribute L7 user plane IP addresses across all assigned Ixia ports. - EnableCreateBearerTFTHack (bool): Send the first port received from the peer activity in the Create Bearer Request TFT. - EnableDynamicAllocation (bool): Enable dynamic allocation of UEs and sessions on PGW. - PcpuLogLevel (str): PCPU log level - PublishStatistics (bool): Publish statistics for SGW. Returns ------- - self: This instance with all currently retrieved egtpServerOptions resources using find and the newly added egtpServerOptions resources available through an iterator or index Raises ------ - ServerError: The server has encountered an uncategorized error condition """ return self._create(self._map_locals(self._SDM_ATT_MAP, locals())) def remove(self): """Deletes all the contained egtpServerOptions resources in this instance from the server. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ self._delete() def find(self, DistributeUserPlaneIps=None, EnableCreateBearerTFTHack=None, EnableDynamicAllocation=None, ObjectId=None, PcpuLogLevel=None, PublishStatistics=None): """Finds and retrieves egtpServerOptions resources from the server. All named parameters are evaluated on the server using regex. The named parameters can be used to selectively retrieve egtpServerOptions resources from the server. To retrieve an exact match ensure the parameter value starts with ^ and ends with $ By default the find method takes no parameters and will retrieve all egtpServerOptions resources from the server. Args ---- - DistributeUserPlaneIps (bool): Distribute L7 user plane IP addresses across all assigned Ixia ports. - EnableCreateBearerTFTHack (bool): Send the first port received from the peer activity in the Create Bearer Request TFT. - EnableDynamicAllocation (bool): Enable dynamic allocation of UEs and sessions on PGW. - ObjectId (str): Unique identifier for this object - PcpuLogLevel (str): PCPU log level - PublishStatistics (bool): Publish statistics for SGW. Returns ------- - self: This instance with matching egtpServerOptions resources retrieved from the server available through an iterator or index Raises ------ - ServerError: The server has encountered an uncategorized error condition """ return self._select(self._map_locals(self._SDM_ATT_MAP, locals())) def read(self, href): """Retrieves a single instance of egtpServerOptions data from the server. Args ---- - href (str): An href to the instance to be retrieved Returns ------- - self: This instance with the egtpServerOptions resources from the server available through an iterator or index Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ return self._read(href) def CustomProtocolStack(self, *args, **kwargs): """Executes the customProtocolStack operation on the server. Create custom protocol stack under /vport/protocolStack customProtocolStack(Arg2=list, Arg3=enum) ----------------------------------------- - Arg2 (list(str)): List of plugin types to be added in the new custom stack - Arg3 (str(kAppend | kMerge | kOverwrite)): Append, merge or overwrite existing protocol stack Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self } for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('customProtocolStack', payload=payload, response_object=None) def DisableProtocolStack(self, *args, **kwargs): """Executes the disableProtocolStack operation on the server. Disable a protocol under protocolStack using the class name disableProtocolStack(Arg2=string)string --------------------------------------- - Arg2 (str): Protocol class name to disable - Returns str: Status of the exec Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self.href } for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('disableProtocolStack', payload=payload, response_object=None) def EnableProtocolStack(self, *args, **kwargs): """Executes the enableProtocolStack operation on the server. Enable a protocol under protocolStack using the class name enableProtocolStack(Arg2=string)string -------------------------------------- - Arg2 (str): Protocol class name to enable - Returns str: Status of the exec Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self.href } for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('enableProtocolStack', payload=payload, response_object=None)
b494c0f5bfd4f8fe4d82481a52b55d9096e1edc9
93f47ba04fc18c4e537f0a48fe6232e2a89a4d30
/examples/adspygoogle/dfp/v201408/creative_service/create_creative_from_template.py
c1a1728c927822b20cd10193664e4ff7cbe1cbf5
[ "Apache-2.0" ]
permissive
jasonshih/googleads-python-legacy-lib
c56dc52a1dab28b9de461fd5db0fcd6020b84a04
510fad41ecf986fe15258af64b90f99a96dc5548
refs/heads/master
2021-04-30T22:12:12.900275
2015-03-06T15:35:21
2015-03-06T15:35:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,585
py
#!/usr/bin/python # # Copyright 2013 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This code example creates a new template creative for a given advertiser. To determine which companies are advertisers, run get_advertisers.py. To determine which creative templates exist, run get_all_creative_templates.py. Tags: CreativeService.createCreative """ __author__ = 'Nicholas Chen' # Locate the client library. If module was installed via "setup.py" script, then # the following two lines are not needed. import base64 import os import sys sys.path.insert(0, os.path.join('..', '..', '..', '..', '..')) # Import appropriate classes from the client library. from adspygoogle import DfpClient from adspygoogle.common import Utils # Set id of the advertiser (company) that the creative will be assigned to. ADVERTISER_ID = 'INSERT_ADVERTISER_COMPANY_ID_HERE' def main(client, advertiser_id): # Initialize appropriate service. creative_service = client.GetService('CreativeService', version='v201408') # Use the image banner with optional third party tracking template. creative_template_id = '10000680' image_data = open(os.path.join(__file__[:__file__.rfind('/')], '..', 'data', 'medium_rectangle.jpg'), 'r').read() image_data = base64.encodestring(image_data) # Create creative from templates. creative = { 'type': 'TemplateCreative', 'name': 'Template Creative #%s' % Utils.GetUniqueName(), 'advertiserId': advertiser_id, 'size': {'width': '300', 'height': '250'}, 'creativeTemplateId': creative_template_id, 'creativeTemplateVariableValues': [ { 'type': 'AssetCreativeTemplateVariableValue', 'uniqueName': 'Imagefile', 'assetByteArray': image_data, 'fileName': 'image%s.jpg' % Utils.GetUniqueName() }, { 'type': 'LongCreativeTemplateVariableValue', 'uniqueName': 'Imagewidth', 'value': '300' }, { 'type': 'LongCreativeTemplateVariableValue', 'uniqueName': 'Imageheight', 'value': '250' }, { 'type': 'UrlCreativeTemplateVariableValue', 'uniqueName': 'ClickthroughURL', 'value': 'www.google.com' }, { 'type': 'StringCreativeTemplateVariableValue', 'uniqueName': 'Targetwindow', 'value': '_blank' } ] } # Call service to create the creative. creative = creative_service.CreateCreative(creative)[0] # Display results. print ('Template creative with id \'%s\', name \'%s\', and type \'%s\' was ' 'created and can be previewed at %s.' % (creative['id'], creative['name'], creative['Creative_Type'], creative['previewUrl'])) if __name__ == '__main__': # Initialize client object. dfp_client = DfpClient(path=os.path.join('..', '..', '..', '..', '..')) main(dfp_client, ADVERTISER_ID)
b147294d2e555d356a3bddf7311e9d144a4dc147
4f825250d1f3b00d4dff1601001bc72f9666f6b6
/app/request.py
d75359b292c50cad0f63226d1a6931451ae18be7
[]
no_license
MigotSharon/Watch-list
ee7c33fb8cc50fd6eedeaa76ee853fcd3389aadd
139687ccbea73b7029a956a18fa7fe9b0d0458ba
refs/heads/main
2023-01-02T00:36:08.861473
2020-10-24T16:54:31
2020-10-24T16:54:31
303,660,887
0
0
null
null
null
null
UTF-8
Python
false
false
2,972
py
import urllib.request,json from .models import Movie # Getting api key api_key = None # Getting the movie base url base_url = None def configure_request(app): global api_key,base_url api_key = app.config['MOVIE_API_KEY'] base_url = app.config['MOVIE_API_BASE_URL'] def get_movies(category): ''' Function that gets the json responce to our url request ''' get_movies_url = base_url.format(category,api_key) with urllib.request.urlopen(get_movies_url) as url: get_movies_data = url.read() get_movies_response = json.loads(get_movies_data) movie_results = None if get_movies_response['results']: movie_results_list = get_movies_response['results'] movie_results = process_results(movie_results_list) return movie_results def get_movie(id): get_movie_details_url = base_url.format(id,api_key) with urllib.request.urlopen(get_movie_details_url) as url: movie_details_data = url.read() movie_details_response = json.loads(movie_details_data) movie_object = None if movie_details_response: id = movie_details_response.get('id') title = movie_details_response.get('original_title') overview = movie_details_response.get('overview') poster = movie_details_response.get('poster_path') vote_average = movie_details_response.get('vote_average') vote_count = movie_details_response.get('vote_count') movie_object = Movie(id,title,overview,poster,vote_average,vote_count) return movie_object def search_movie(movie_name): search_movie_url = 'https://api.themoviedb.org/3/search/movie?api_key={}&query={}'.format(api_key,movie_name) with urllib.request.urlopen(search_movie_url) as url: search_movie_data = url.read() search_movie_response = json.loads(search_movie_data) search_movie_results = None if search_movie_response['results']: search_movie_list = search_movie_response['results'] search_movie_results = process_results(search_movie_list) return search_movie_results def process_results(movie_list): ''' Function that processes the movie result and transform them to a list of Objects Args: movie_list: A list of dictionaries that contain movie details Returns : movie_results: A list of movie objects ''' movie_results = [] for movie_item in movie_list: id = movie_item.get('id') title = movie_item.get('original_title') overview = movie_item.get('overview') poster = movie_item.get('poster_path') vote_average = movie_item.get('vote_average') vote_count = movie_item.get('vote_count') if poster: movie_object = Movie(id,title,overview,poster,vote_average,vote_count) movie_results.append(movie_object) return movie_results