blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
66cef5cbd17f68249077184c9a1078b3126a3213
dce4a52986ddccea91fbf937bd89e0ae00b9d046
/jni-build/jni/include/tensorflow/python/training/server_lib_test.py
f72e96f5af4b264e6fbcdc962ecc0d3a0e21838e
[ "MIT" ]
permissive
Lab603/PicEncyclopedias
54a641b106b7bb2d2f71b2dacef1e5dbeaf773a6
6d39eeb66c63a6f0f7895befc588c9eb1dd105f9
refs/heads/master
2022-11-11T13:35:32.781340
2018-03-15T05:53:07
2018-03-15T05:53:07
103,941,664
6
3
MIT
2022-10-28T05:31:37
2017-09-18T13:20:47
C++
UTF-8
Python
false
false
14,369
py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tf.GrpcServer.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import time import numpy as np import tensorflow as tf class GrpcServerTest(tf.test.TestCase): def testRunStep(self): server = tf.train.Server.create_local_server() with tf.Session(server.target) as sess: c = tf.constant([[2, 1]]) d = tf.constant([[1], [2]]) e = tf.matmul(c, d) self.assertAllEqual([[4]], sess.run(e)) # TODO(mrry): Add `server.stop()` and `server.join()` when these work. def testMultipleSessions(self): server = tf.train.Server.create_local_server() c = tf.constant([[2, 1]]) d = tf.constant([[1], [2]]) e = tf.matmul(c, d) sess_1 = tf.Session(server.target) sess_2 = tf.Session(server.target) self.assertAllEqual([[4]], sess_1.run(e)) self.assertAllEqual([[4]], sess_2.run(e)) sess_1.close() sess_2.close() # TODO(mrry): Add `server.stop()` and `server.join()` when these work. # Verifies behavior of multiple variables with multiple sessions connecting to # the same server. def testSameVariablesNoClear(self): server = tf.train.Server.create_local_server() with tf.Session(server.target) as sess_1: v0 = tf.Variable([[2, 1]], name="v0") v1 = tf.Variable([[1], [2]], name="v1") v2 = tf.matmul(v0, v1) sess_1.run([v0.initializer, v1.initializer]) self.assertAllEqual([[4]], sess_1.run(v2)) with tf.Session(server.target) as sess_2: new_v0 = tf.get_default_graph().get_tensor_by_name("v0:0") new_v1 = tf.get_default_graph().get_tensor_by_name("v1:0") new_v2 = tf.matmul(new_v0, new_v1) self.assertAllEqual([[4]], sess_2.run(new_v2)) # Verifies behavior of tf.Session.reset(). def testSameVariablesClear(self): server = tf.train.Server.create_local_server() # Creates a graph with 2 variables. v0 = tf.Variable([[2, 1]], name="v0") v1 = tf.Variable([[1], [2]], name="v1") v2 = tf.matmul(v0, v1) # Verifies that both sessions connecting to the same target return # the same results. sess_1 = tf.Session(server.target) sess_2 = tf.Session(server.target) sess_1.run(tf.initialize_all_variables()) self.assertAllEqual([[4]], sess_1.run(v2)) self.assertAllEqual([[4]], sess_2.run(v2)) # Resets target. sessions abort. Use sess_2 to verify. tf.Session.reset(server.target) with self.assertRaises(tf.errors.AbortedError): self.assertAllEqual([[4]], sess_2.run(v2)) # Connects to the same target. Device memory for the variables would have # been released, so they will be unitialized. sess_2 = tf.Session(server.target) with self.assertRaises(tf.errors.FailedPreconditionError): sess_2.run(v2) # Reinitialzes the variables. sess_2.run(tf.initialize_all_variables()) self.assertAllEqual([[4]], sess_2.run(v2)) sess_2.close() # Verifies behavior of tf.Session.reset() with multiple containers using # default container names as defined by the target name. def testSameVariablesClearContainer(self): # Starts two servers with different names so they map to different # resource "containers". server0 = tf.train.Server({"local0": ["localhost:0"]}, protocol="grpc", start=True) server1 = tf.train.Server({"local1": ["localhost:0"]}, protocol="grpc", start=True) # Creates a graph with 2 variables. v0 = tf.Variable(1.0, name="v0") v1 = tf.Variable(2.0, name="v0") # Initializes the variables. Verifies that the values are correct. sess_0 = tf.Session(server0.target) sess_1 = tf.Session(server1.target) sess_0.run(v0.initializer) sess_1.run(v1.initializer) self.assertAllEqual(1.0, sess_0.run(v0)) self.assertAllEqual(2.0, sess_1.run(v1)) # Resets container "local0". Verifies that v0 is no longer initialized. tf.Session.reset(server0.target, ["local0"]) sess = tf.Session(server0.target) with self.assertRaises(tf.errors.FailedPreconditionError): sess.run(v0) # Reinitializes v0 for the following test. sess.run(v0.initializer) # Verifies that v1 is still valid. self.assertAllEqual(2.0, sess_1.run(v1)) # Resets container "local1". Verifies that v1 is no longer initialized. tf.Session.reset(server1.target, ["local1"]) sess = tf.Session(server1.target) with self.assertRaises(tf.errors.FailedPreconditionError): sess.run(v1) # Verifies that v0 is still valid. sess = tf.Session(server0.target) self.assertAllEqual(1.0, sess.run(v0)) # Verifies behavior of tf.Session.reset() with multiple containers using # tf.container. def testMultipleContainers(self): with tf.container("test0"): v0 = tf.Variable(1.0, name="v0") with tf.container("test1"): v1 = tf.Variable(2.0, name="v0") server = tf.train.Server.create_local_server() sess = tf.Session(server.target) sess.run(tf.initialize_all_variables()) self.assertAllEqual(1.0, sess.run(v0)) self.assertAllEqual(2.0, sess.run(v1)) # Resets container. Session aborts. tf.Session.reset(server.target, ["test0"]) with self.assertRaises(tf.errors.AbortedError): sess.run(v1) # Connects to the same target. Device memory for the v0 would have # been released, so it will be unitialized. But v1 should still # be valid. sess = tf.Session(server.target) with self.assertRaises(tf.errors.FailedPreconditionError): sess.run(v0) self.assertAllEqual(2.0, sess.run(v1)) # Verifies various reset failures. def testResetFails(self): # Creates variable with container name. with tf.container("test0"): v0 = tf.Variable(1.0, name="v0") # Creates variable with default container. v1 = tf.Variable(2.0, name="v1") # Verifies resetting the non-existent target returns error. with self.assertRaises(tf.errors.NotFoundError): tf.Session.reset("nonexistent", ["test0"]) # Verifies resetting with config. # Verifies that resetting target with no server times out. with self.assertRaises(tf.errors.DeadlineExceededError): tf.Session.reset("grpc://localhost:0", ["test0"], config=tf.ConfigProto(operation_timeout_in_ms=5)) # Verifies no containers are reset with non-existent container. server = tf.train.Server.create_local_server() sess = tf.Session(server.target) sess.run(tf.initialize_all_variables()) self.assertAllEqual(1.0, sess.run(v0)) self.assertAllEqual(2.0, sess.run(v1)) # No container is reset, but the server is reset. tf.Session.reset(server.target, ["test1"]) # Verifies that both variables are still valid. sess = tf.Session(server.target) self.assertAllEqual(1.0, sess.run(v0)) self.assertAllEqual(2.0, sess.run(v1)) def testLargeConstant(self): server = tf.train.Server.create_local_server() with tf.Session(server.target) as sess: const_val = np.empty([10000, 3000], dtype=np.float32) const_val.fill(0.5) c = tf.constant(const_val) shape_t = tf.shape(c) self.assertAllEqual([10000, 3000], sess.run(shape_t)) def testLargeFetch(self): server = tf.train.Server.create_local_server() with tf.Session(server.target) as sess: c = tf.fill([10000, 3000], 0.5) expected_val = np.empty([10000, 3000], dtype=np.float32) expected_val.fill(0.5) self.assertAllEqual(expected_val, sess.run(c)) def testLargeFeed(self): server = tf.train.Server.create_local_server() with tf.Session(server.target) as sess: feed_val = np.empty([10000, 3000], dtype=np.float32) feed_val.fill(0.5) p = tf.placeholder(tf.float32, shape=[10000, 3000]) min_t = tf.reduce_min(p) max_t = tf.reduce_max(p) min_val, max_val = sess.run([min_t, max_t], feed_dict={p: feed_val}) self.assertEqual(0.5, min_val) self.assertEqual(0.5, max_val) def testCloseCancelsBlockingOperation(self): server = tf.train.Server.create_local_server() sess = tf.Session(server.target) q = tf.FIFOQueue(10, [tf.float32]) enqueue_op = q.enqueue(37.0) dequeue_t = q.dequeue() sess.run(enqueue_op) sess.run(dequeue_t) def blocking_dequeue(): with self.assertRaises(tf.errors.CancelledError): sess.run(dequeue_t) blocking_thread = self.checkedThread(blocking_dequeue) blocking_thread.start() time.sleep(0.5) sess.close() blocking_thread.join() def testSetConfiguration(self): config = tf.ConfigProto( gpu_options=tf.GPUOptions(per_process_gpu_memory_fraction=0.1)) # Configure a server using the default local server options. server = tf.train.Server.create_local_server(config=config, start=False) self.assertEqual( 0.1, server.server_def.default_session_config .gpu_options.per_process_gpu_memory_fraction) # Configure a server using an explicit ServerDefd with an # overridden config. cluster_def = tf.train.ClusterSpec( {"localhost": ["localhost:0"]}).as_cluster_def() server_def = tf.train.ServerDef( cluster=cluster_def, job_name="localhost", task_index=0, protocol="grpc") server = tf.train.Server(server_def, config=config, start=False) self.assertEqual( 0.1, server.server_def.default_session_config .gpu_options.per_process_gpu_memory_fraction) def testInvalidHostname(self): with self.assertRaisesRegexp(tf.errors.InvalidArgumentError, "port"): _ = tf.train.Server({"local": ["localhost"]}, job_name="local", task_index=0) def testInteractiveSession(self): server = tf.train.Server.create_local_server() # TODO(b/29900832): Remove this assertion when the bug is fixed. a = tf.constant(1.0) with self.assertRaisesRegexp(tf.errors.UnimplementedError, "pruned"): sess = tf.InteractiveSession(target=server.target) sess.run(a) # TODO(b/29900832): The following code fails (without the unimplemented # check in `tensorflow::MasterSession`): # a = tf.constant(1.0) # b = tf.constant(2.0) # self.assertEqual(1.0, sess.run(a)) # self.assertEqual(2.0, sess.run(b)) class ServerDefTest(tf.test.TestCase): def testLocalServer(self): cluster_def = tf.train.ClusterSpec( {"local": ["localhost:2222"]}).as_cluster_def() server_def = tf.train.ServerDef( cluster=cluster_def, job_name="local", task_index=0, protocol="grpc") self.assertProtoEquals(""" cluster { job { name: 'local' tasks { key: 0 value: 'localhost:2222' } } } job_name: 'local' task_index: 0 protocol: 'grpc' """, server_def) # Verifies round trip from Proto->Spec->Proto is correct. cluster_spec = tf.train.ClusterSpec(cluster_def) self.assertProtoEquals(cluster_def, cluster_spec.as_cluster_def()) def testTwoProcesses(self): cluster_def = tf.train.ClusterSpec( {"local": ["localhost:2222", "localhost:2223"]}).as_cluster_def() server_def = tf.train.ServerDef( cluster=cluster_def, job_name="local", task_index=1, protocol="grpc") self.assertProtoEquals(""" cluster { job { name: 'local' tasks { key: 0 value: 'localhost:2222' } tasks { key: 1 value: 'localhost:2223' } } } job_name: 'local' task_index: 1 protocol: 'grpc' """, server_def) # Verifies round trip from Proto->Spec->Proto is correct. cluster_spec = tf.train.ClusterSpec(cluster_def) self.assertProtoEquals(cluster_def, cluster_spec.as_cluster_def()) def testTwoJobs(self): cluster_def = tf.train.ClusterSpec( {"ps": ["ps0:2222", "ps1:2222"], "worker": ["worker0:2222", "worker1:2222", "worker2:2222"]} ).as_cluster_def() server_def = tf.train.ServerDef( cluster=cluster_def, job_name="worker", task_index=2, protocol="grpc") self.assertProtoEquals(""" cluster { job { name: 'ps' tasks { key: 0 value: 'ps0:2222' } tasks { key: 1 value: 'ps1:2222' } } job { name: 'worker' tasks { key: 0 value: 'worker0:2222' } tasks { key: 1 value: 'worker1:2222' } tasks { key: 2 value: 'worker2:2222' } } } job_name: 'worker' task_index: 2 protocol: 'grpc' """, server_def) # Verifies round trip from Proto->Spec->Proto is correct. cluster_spec = tf.train.ClusterSpec(cluster_def) self.assertProtoEquals(cluster_def, cluster_spec.as_cluster_def()) def testClusterSpec(self): cluster_spec = tf.train.ClusterSpec( {"ps": ["ps0:2222", "ps1:2222"], "worker": ["worker0:2222", "worker1:2222", "worker2:2222"]}) expected_proto = """ job { name: 'ps' tasks { key: 0 value: 'ps0:2222' } tasks { key: 1 value: 'ps1:2222' } } job { name: 'worker' tasks { key: 0 value: 'worker0:2222' } tasks { key: 1 value: 'worker1:2222' } tasks { key: 2 value: 'worker2:2222' } } """ self.assertProtoEquals(expected_proto, cluster_spec.as_cluster_def()) self.assertProtoEquals( expected_proto, tf.train.ClusterSpec(cluster_spec).as_cluster_def()) self.assertProtoEquals( expected_proto, tf.train.ClusterSpec(cluster_spec.as_cluster_def()).as_cluster_def()) self.assertProtoEquals( expected_proto, tf.train.ClusterSpec(cluster_spec.as_dict()).as_cluster_def()) if __name__ == "__main__": tf.test.main()
1d1f0142466d34eff9b75716ab2c1484f3656a7e
50fb25631cdc03a868f09061e76f4dedf85f2d3f
/crawler_sys/site_crawler/crawler_sogou.py
a5329fd56d4cff00cd248b908d874e33674e74c5
[]
no_license
silade/crawler
20a88c0eb6471f79a5d5daf947dcbff681d11e6e
fbfe3c4feca8be61186aec986b600b36f513f7f4
refs/heads/main
2023-03-10T10:06:21.097103
2021-02-19T16:00:45
2021-02-19T16:00:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,663
py
# -*- coding: utf-8 -*- """ Created on Wed Aug 22 09:30:20 2018 @author: fangyucheng """ import time import requests from bs4 import BeautifulSoup from crawler.crawler_sys.utils.trans_strtime_to_timestamp import trans_strtime_to_timestamp cookie = ('YYID=2FFBDAA6D4FBA37438F4067C8123E98B; IMEVER=8.5.0.1322;' 'SUID=3D03FF723865860A59795A5F000BB71F;' 'SUV=00C039A172FF033D5993ADBD770E7410; usid=lF0F7il0yWbXF5c9;' 'IPLOC=CN1100; sct=11; SMYUV=1512954490386200;' 'ad=19fxxkllll2zKxvnlllllVHr6$UllllltsDRlyllll9llllljgDll5@@@@@@@@@@;' 'SNUID=D0DE5A671A1E68C31FB628911B8277A5; wuid=AAGPcSphIAAAAAqLE2OSTQgAGwY=;' 'UM_distinctid=16449b02797449-0c5d9293f4a833-143f7040-1fa400-16449b02799881;' 'CXID=794EC592A14CE76F5DF3F3A3BDDDD787;' 'ld=Kyllllllll2bWX10QTIdJOHDsvSbWX1uK94Vhkllll9lllllVklll5@@@@@@@@@@;' 'cd=1534754086&17502a3f56c02f72dfd43a17cbb19663;' 'rd=Vyllllllll2bBEqoQLWCNCHfKv2bWX1uzX0atkllllwllllRVllll5@@@@@@@@@@;' 'LSTMV=173%2C72; LCLKINT=1570') headers = {'Host': 'news.sogou.com', 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:61.0) Gecko/20100101 Firefox/61.0', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', 'Accept-Language': 'zh-CN,zh;q=0.8,zh-TW;q=0.7,zh-HK;q=0.5,en-US;q=0.3,en;q=0.2', 'Accept-Encoding': 'gzip, deflate', 'Cookie': cookie, 'Connection': 'keep-alive', 'Upgrade-Insecure-Requests': '1', 'Cache-Control': 'max-age=0'} def sogou_info_page(keyword): result_lst = [] for page_num in range(1,11): search_url = 'http://news.sogou.com/news?&query='+keyword+'&page='+str(page_num) get_page = requests.get(search_url, headers=headers) page = get_page.text soup = BeautifulSoup(page, 'html.parser') news_lst = soup.find_all('div', {'class': 'vrwrap'}) for line in news_lst: try: title = line.div.h3.a.text url = line.div.h3.a['href'] source_and_release_time = line.find('p', {'class': 'news-from'}).text source_and_release_time_lst = source_and_release_time.split('\xa0') source = source_and_release_time_lst[0] release_time_str = source_and_release_time_lst[-1] release_time = trans_strtime_to_timestamp(release_time_str) try: content = line.find('span').text except: print('no content at %s' % title) content = 'missing' fetch_time = int(time.time()*1000) try: similar_news = line.find('a', {'id': 'news_similar'}).text except: print('no similar news at %s' % title) similar_news = 'missing' news_info = {'title': title, 'url': url, 'source': source, 'release_time': release_time, 'fetch_time': fetch_time, 'content': content, 'similar_news': similar_news, 'keyword': keyword} result_lst.append(news_info) print('get data at page %s' % page_num) except: ('the error occured at position %s' % news_lst.index(line)) return result_lst if __name__=='__main__': keyword = '中超' test_sogou = sogou_info_page(keyword)
b8b00509599fec72275e7b0df844db765b98d0f4
bb313586d9894a6b1a985d2f8b0a1f8e62907481
/videocap1.py
3c449b3f6fcfcb91ea2de0cc70bd2b53eb3c944c
[]
no_license
HelloDivyani/OpenCV
c3538fc8e8985fcbb24bf951f16977b1d23e93a5
96fa8aa563393cfbb15913fd0df863c891d00717
refs/heads/master
2021-01-12T03:45:35.227275
2016-11-10T12:14:29
2016-11-10T12:14:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
303
py
import numpy as np import cv2 video_path = "" cap = cv2.VideoCapture(video_path) while(True): ret, frame = cap.read() gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) cv2.imshow('frame',gray) if cv2.waitKey(0) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows()
75d5a74d1e78fae22fe705de6e87225c93e25cdc
c6f15aa103de030f7eea6c1aaf6e7ad0ec88dbc1
/add/features/10_binmap/viewer/app/gui/MainFrame.py
fbff879a00f19d0ac8a16c8b54567d556f59fbf3
[]
no_license
sysdeep/dcat
6f3478348113b0d1206f82456f5bd80431282daf
f8c801173ace4447018c3034c56254ab1a6d4089
refs/heads/master
2023-05-03T16:04:28.027335
2023-04-17T15:04:04
2023-04-17T15:04:04
320,551,696
0
0
null
null
null
null
UTF-8
Python
false
false
696
py
# -*- coding: utf-8 -*- from PyQt5.QtWidgets import QApplication, QMainWindow, QLabel, QHBoxLayout, QVBoxLayout, QWidget, QGroupBox, QGridLayout from app.shared import get_storage from .VolumeInfo import VolumeInfo from .explorer.Explorer import Explorer class MainFrame(QWidget): def __init__(self, parent=None): super(MainFrame, self).__init__(parent) layout = QVBoxLayout() self.setLayout(layout) self.__volume_info = VolumeInfo() self.__explorer = Explorer() layout.addWidget(self.__volume_info) layout.addWidget(self.__explorer) def start(self): storage = get_storage() self.__volume_info.set_info(storage.volume.volume_header) self.__explorer.show_root()
369ccaa36c9e88ee6f2b28a35a7d5edc5337d3e5
eedde715576cbbc195c3f6049636b7115895b138
/pandas_doit/pandas_doit_graph/pandas_doit_graphes.py
8dbe02409cf10365758de802b50cd103399f2c54
[]
no_license
azegun/workspace_python
e75de706c08edfe7c5c8d88e8b4679578d6aa68f
8edf1683a57e468a2e665be0092bc516a28571fd
refs/heads/master
2023-07-05T10:42:07.955389
2021-08-13T03:27:52
2021-08-13T03:27:52
388,668,245
0
0
null
null
null
null
UTF-8
Python
false
false
923
py
import seaborn as sns import matplotlib.pyplot as plt tips = sns.load_dataset('tips') print(tips) # 막대 그래프 fig = plt.figure() axes1 = fig.add_subplot(1, 1, 1) axes1.hist(tips['total_bill'], bins=10) # bins 지정시 x축의 간격을 10으로 조정 axes1.set_title('Histogram of Total Bill') axes1.set_xlabel('Frequency') axes1.set_ylabel('Total Bill') # 산계형 그래프 scatter_plot = plt.figure() axes1 = scatter_plot.add_subplot(1, 1, 1) axes1.scatter(tips['total_bill'], tips['tip']) axes1.set_title('Scatterplot of Total Bill Vs Tip') axes1.set_xlabel('Total Bill') axes1.set_ylabel('Tip') boxplot = plt.figure() axes1 = boxplot.add_subplot(1, 1, 1) axes1.boxplot([tips[tips['sex'] == 'Female']['tip'], tips[tips['sex'] == 'Male']['tip']], labels=['Female', 'Male']) axes1.set_xlabel('Sex') axes1.set_ylabel('Tip') axes1.set_title('Boxplot of Tips by Sex') plt.show()
4497ef2a39a12ced95825c28aeb9e9f4ef2b860a
45e34a88f9a70f92b17d9e037f7d719dacc94176
/devel/lib/python2.7/dist-packages/opencv_apps/srv/_FaceRecognitionTrain.py
c4936fec476a88897b452fd98a7dc58589c2d3fc
[]
no_license
lipilian/ROS-RealSense
7f9c40e056b8c9704eee7584cab1bef87874bb59
df1a717fe78d7d994a7b743911ba4940dfc97c8a
refs/heads/master
2020-12-15T05:41:06.900613
2020-02-09T22:38:07
2020-02-09T22:38:07
235,009,699
1
0
null
null
null
null
UTF-8
Python
false
false
19,116
py
# This Python file uses the following encoding: utf-8 """autogenerated by genpy from opencv_apps/FaceRecognitionTrainRequest.msg. Do not edit.""" import sys python3 = True if sys.hexversion > 0x03000000 else False import genpy import struct import std_msgs.msg import opencv_apps.msg import sensor_msgs.msg class FaceRecognitionTrainRequest(genpy.Message): _md5sum = "ba188b4bf792edbaf69c7f296a16e0ec" _type = "opencv_apps/FaceRecognitionTrainRequest" _has_header = False #flag to mark the presence of a Header object _full_text = """sensor_msgs/Image[] images Rect[] rects string[] labels ================================================================================ MSG: sensor_msgs/Image # This message contains an uncompressed image # (0, 0) is at top-left corner of image # Header header # Header timestamp should be acquisition time of image # Header frame_id should be optical frame of camera # origin of frame should be optical center of cameara # +x should point to the right in the image # +y should point down in the image # +z should point into to plane of the image # If the frame_id here and the frame_id of the CameraInfo # message associated with the image conflict # the behavior is undefined uint32 height # image height, that is, number of rows uint32 width # image width, that is, number of columns # The legal values for encoding are in file src/image_encodings.cpp # If you want to standardize a new string format, join # [email protected] and send an email proposing a new encoding. string encoding # Encoding of pixels -- channel meaning, ordering, size # taken from the list of strings in include/sensor_msgs/image_encodings.h uint8 is_bigendian # is this data bigendian? uint32 step # Full row length in bytes uint8[] data # actual matrix data, size is (step * rows) ================================================================================ MSG: std_msgs/Header # Standard metadata for higher-level stamped data types. # This is generally used to communicate timestamped data # in a particular coordinate frame. # # sequence ID: consecutively increasing ID uint32 seq #Two-integer timestamp that is expressed as: # * stamp.sec: seconds (stamp_secs) since epoch (in Python the variable is called 'secs') # * stamp.nsec: nanoseconds since stamp_secs (in Python the variable is called 'nsecs') # time-handling sugar is provided by the client library time stamp #Frame this data is associated with # 0: no frame # 1: global frame string frame_id ================================================================================ MSG: opencv_apps/Rect # opencv Rect data type, x-y is center point float64 x float64 y float64 width float64 height """ __slots__ = ['images','rects','labels'] _slot_types = ['sensor_msgs/Image[]','opencv_apps/Rect[]','string[]'] def __init__(self, *args, **kwds): """ Constructor. Any message fields that are implicitly/explicitly set to None will be assigned a default value. The recommend use is keyword arguments as this is more robust to future message changes. You cannot mix in-order arguments and keyword arguments. The available fields are: images,rects,labels :param args: complete set of field values, in .msg order :param kwds: use keyword arguments corresponding to message field names to set specific fields. """ if args or kwds: super(FaceRecognitionTrainRequest, self).__init__(*args, **kwds) #message fields cannot be None, assign default values for those that are if self.images is None: self.images = [] if self.rects is None: self.rects = [] if self.labels is None: self.labels = [] else: self.images = [] self.rects = [] self.labels = [] def _get_types(self): """ internal API method """ return self._slot_types def serialize(self, buff): """ serialize message into buffer :param buff: buffer, ``StringIO`` """ try: length = len(self.images) buff.write(_struct_I.pack(length)) for val1 in self.images: _v1 = val1.header buff.write(_get_struct_I().pack(_v1.seq)) _v2 = _v1.stamp _x = _v2 buff.write(_get_struct_2I().pack(_x.secs, _x.nsecs)) _x = _v1.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = val1 buff.write(_get_struct_2I().pack(_x.height, _x.width)) _x = val1.encoding length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = val1 buff.write(_get_struct_BI().pack(_x.is_bigendian, _x.step)) _x = val1.data length = len(_x) # - if encoded as a list instead, serialize as bytes instead of string if type(_x) in [list, tuple]: buff.write(struct.pack('<I%sB'%length, length, *_x)) else: buff.write(struct.pack('<I%ss'%length, length, _x)) length = len(self.rects) buff.write(_struct_I.pack(length)) for val1 in self.rects: _x = val1 buff.write(_get_struct_4d().pack(_x.x, _x.y, _x.width, _x.height)) length = len(self.labels) buff.write(_struct_I.pack(length)) for val1 in self.labels: length = len(val1) if python3 or type(val1) == unicode: val1 = val1.encode('utf-8') length = len(val1) buff.write(struct.pack('<I%ss'%length, length, val1)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize(self, str): """ unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str`` """ try: if self.images is None: self.images = None if self.rects is None: self.rects = None end = 0 start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.images = [] for i in range(0, length): val1 = sensor_msgs.msg.Image() _v3 = val1.header start = end end += 4 (_v3.seq,) = _get_struct_I().unpack(str[start:end]) _v4 = _v3.stamp _x = _v4 start = end end += 8 (_x.secs, _x.nsecs,) = _get_struct_2I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: _v3.frame_id = str[start:end].decode('utf-8') else: _v3.frame_id = str[start:end] _x = val1 start = end end += 8 (_x.height, _x.width,) = _get_struct_2I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: val1.encoding = str[start:end].decode('utf-8') else: val1.encoding = str[start:end] _x = val1 start = end end += 5 (_x.is_bigendian, _x.step,) = _get_struct_BI().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length val1.data = str[start:end] self.images.append(val1) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.rects = [] for i in range(0, length): val1 = opencv_apps.msg.Rect() _x = val1 start = end end += 32 (_x.x, _x.y, _x.width, _x.height,) = _get_struct_4d().unpack(str[start:end]) self.rects.append(val1) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.labels = [] for i in range(0, length): start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: val1 = str[start:end].decode('utf-8') else: val1 = str[start:end] self.labels.append(val1) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill def serialize_numpy(self, buff, numpy): """ serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module """ try: length = len(self.images) buff.write(_struct_I.pack(length)) for val1 in self.images: _v5 = val1.header buff.write(_get_struct_I().pack(_v5.seq)) _v6 = _v5.stamp _x = _v6 buff.write(_get_struct_2I().pack(_x.secs, _x.nsecs)) _x = _v5.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = val1 buff.write(_get_struct_2I().pack(_x.height, _x.width)) _x = val1.encoding length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = val1 buff.write(_get_struct_BI().pack(_x.is_bigendian, _x.step)) _x = val1.data length = len(_x) # - if encoded as a list instead, serialize as bytes instead of string if type(_x) in [list, tuple]: buff.write(struct.pack('<I%sB'%length, length, *_x)) else: buff.write(struct.pack('<I%ss'%length, length, _x)) length = len(self.rects) buff.write(_struct_I.pack(length)) for val1 in self.rects: _x = val1 buff.write(_get_struct_4d().pack(_x.x, _x.y, _x.width, _x.height)) length = len(self.labels) buff.write(_struct_I.pack(length)) for val1 in self.labels: length = len(val1) if python3 or type(val1) == unicode: val1 = val1.encode('utf-8') length = len(val1) buff.write(struct.pack('<I%ss'%length, length, val1)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize_numpy(self, str, numpy): """ unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module """ try: if self.images is None: self.images = None if self.rects is None: self.rects = None end = 0 start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.images = [] for i in range(0, length): val1 = sensor_msgs.msg.Image() _v7 = val1.header start = end end += 4 (_v7.seq,) = _get_struct_I().unpack(str[start:end]) _v8 = _v7.stamp _x = _v8 start = end end += 8 (_x.secs, _x.nsecs,) = _get_struct_2I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: _v7.frame_id = str[start:end].decode('utf-8') else: _v7.frame_id = str[start:end] _x = val1 start = end end += 8 (_x.height, _x.width,) = _get_struct_2I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: val1.encoding = str[start:end].decode('utf-8') else: val1.encoding = str[start:end] _x = val1 start = end end += 5 (_x.is_bigendian, _x.step,) = _get_struct_BI().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length val1.data = str[start:end] self.images.append(val1) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.rects = [] for i in range(0, length): val1 = opencv_apps.msg.Rect() _x = val1 start = end end += 32 (_x.x, _x.y, _x.width, _x.height,) = _get_struct_4d().unpack(str[start:end]) self.rects.append(val1) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.labels = [] for i in range(0, length): start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: val1 = str[start:end].decode('utf-8') else: val1 = str[start:end] self.labels.append(val1) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill _struct_I = genpy.struct_I def _get_struct_I(): global _struct_I return _struct_I _struct_4d = None def _get_struct_4d(): global _struct_4d if _struct_4d is None: _struct_4d = struct.Struct("<4d") return _struct_4d _struct_2I = None def _get_struct_2I(): global _struct_2I if _struct_2I is None: _struct_2I = struct.Struct("<2I") return _struct_2I _struct_BI = None def _get_struct_BI(): global _struct_BI if _struct_BI is None: _struct_BI = struct.Struct("<BI") return _struct_BI # This Python file uses the following encoding: utf-8 """autogenerated by genpy from opencv_apps/FaceRecognitionTrainResponse.msg. Do not edit.""" import sys python3 = True if sys.hexversion > 0x03000000 else False import genpy import struct class FaceRecognitionTrainResponse(genpy.Message): _md5sum = "14d6fca830116fb9833d983a296f00ed" _type = "opencv_apps/FaceRecognitionTrainResponse" _has_header = False #flag to mark the presence of a Header object _full_text = """bool ok string error """ __slots__ = ['ok','error'] _slot_types = ['bool','string'] def __init__(self, *args, **kwds): """ Constructor. Any message fields that are implicitly/explicitly set to None will be assigned a default value. The recommend use is keyword arguments as this is more robust to future message changes. You cannot mix in-order arguments and keyword arguments. The available fields are: ok,error :param args: complete set of field values, in .msg order :param kwds: use keyword arguments corresponding to message field names to set specific fields. """ if args or kwds: super(FaceRecognitionTrainResponse, self).__init__(*args, **kwds) #message fields cannot be None, assign default values for those that are if self.ok is None: self.ok = False if self.error is None: self.error = '' else: self.ok = False self.error = '' def _get_types(self): """ internal API method """ return self._slot_types def serialize(self, buff): """ serialize message into buffer :param buff: buffer, ``StringIO`` """ try: buff.write(_get_struct_B().pack(self.ok)) _x = self.error length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize(self, str): """ unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str`` """ try: end = 0 start = end end += 1 (self.ok,) = _get_struct_B().unpack(str[start:end]) self.ok = bool(self.ok) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.error = str[start:end].decode('utf-8') else: self.error = str[start:end] return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill def serialize_numpy(self, buff, numpy): """ serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module """ try: buff.write(_get_struct_B().pack(self.ok)) _x = self.error length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize_numpy(self, str, numpy): """ unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module """ try: end = 0 start = end end += 1 (self.ok,) = _get_struct_B().unpack(str[start:end]) self.ok = bool(self.ok) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.error = str[start:end].decode('utf-8') else: self.error = str[start:end] return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill _struct_I = genpy.struct_I def _get_struct_I(): global _struct_I return _struct_I _struct_B = None def _get_struct_B(): global _struct_B if _struct_B is None: _struct_B = struct.Struct("<B") return _struct_B class FaceRecognitionTrain(object): _type = 'opencv_apps/FaceRecognitionTrain' _md5sum = 'c47a3ceb75cbe248d69217439e66a8e2' _request_class = FaceRecognitionTrainRequest _response_class = FaceRecognitionTrainResponse
fa6054203e5f3135b3d56a0bc695a47469cac9a5
cb3bce599e657188c30366adb0af3007ff9b8f96
/src/note/test_pachongbaidu.py
47392a7ab5c0759490c9e2e271a9216663c6e7ea
[]
no_license
skk4/python_study
534339e6c378d686c29af6d81429c472fca19d6d
4bdd2a50f4bdfd28fdb89a881cb2ebb9eac26987
refs/heads/master
2021-01-01T04:36:52.037184
2017-12-08T01:04:27
2017-12-08T01:04:27
97,207,719
0
0
null
null
null
null
UTF-8
Python
false
false
839
py
# -*- coding:utf-8 -*- import urllib import urllib2 import json while 1: content = raw_input(">:") headers = { 'Referer': 'http://fanyi.baidu.com/?aldtype=16047/', 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.113 Safari/537.36' } data = {} data['from'] = 'en' data['to'] = 'zh' data['query'] = content data['transtype'] = 'translang' data['simple_means_flag'] = '3' url = 'http://fanyi.baidu.com/v2transapi' values = urllib.urlencode(data) rq = urllib2.Request(url, values, headers) fd = urllib2.urlopen(rq) #print fd.getcode() html = fd.read() #print html #print html dst = json.loads(html) print dst['trans_result']['data'][0]['dst']
36e3c9586af6106c678d5bcac19e2ab7d0f50adc
44e8334e1b17fda7f60d9760f59868a9227e2ab0
/ML/ch10_9.py
a477bc9725a42a97d551bd6ada02ecd600ffca8d
[]
no_license
MysteriousSonOfGod/python-3
47c2aa69a84ba78876c74bc6f2e7e6f3093df1e2
a303a5284c40f3cb96a8082a1f5ed80773b66336
refs/heads/master
2023-02-16T18:21:46.153388
2021-01-13T10:55:14
2021-01-13T10:55:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,853
py
import pandas as pd import numpy as np import mglearn import matplotlib as mpl import matplotlib.pyplot as plt import sys, os sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) import images.image # 9. 두 개의 클래스를 가진 2차원 데이터셋 make_moons from sklearn.datasets import make_moons X, y = make_moons(n_samples=200, noise=0.05, random_state=0) print("X.shape: {}".format(X.shape)) print("y.shape: {}".format(y.shape)) print("X 타입: {}".format(type(X))) print("y 타입: {}".format(type(y))) print(X[:5], y[:5]) ############################################################################### # 1. 타깃값으로 군집 평가하기 : 군집 알고리즘의 결과를 실제 정답 클러스터와 비교하여 평가할 수 있는 지표 # 1. ARI (adjusted rand index) # ARI : 1(최적일 때)와 0(무작위로 분류될 때) # 2. NMI (normalized mutual information) # from sklearn.preprocessing import StandardScaler from sklearn.cluster import KMeans from sklearn.cluster import AgglomerativeClustering from sklearn.cluster import DBSCAN scaler = StandardScaler() scaler.fit(X) X_scaled = scaler.transform(X) fig, axes = plt.subplots(1, 4, figsize=(15, 3), subplot_kw={'xticks':(), 'yticks':()}) # 3가지 알고리즘들 리스트 algos = [KMeans(n_clusters=2), AgglomerativeClustering(n_clusters=2), DBSCAN()] random_state = np.random.RandomState(seed=0) random_clusters = random_state.randint(low=0, high=2, size=len(X)) # 무작위로 할당한 클러스터 from sklearn.metrics.cluster import adjusted_rand_score axes[0].scatter(X_scaled[:, 0], X_scaled[:, 1], c=random_clusters, cmap=mglearn.cm3, s=60, edgecolors='black') axes[0].set_title("random assign - ARI : {:.2f}".format(adjusted_rand_score(y, random_clusters))) for ax, algo in zip(axes[1:], algos): clusters = algo.fit_predict(X_scaled) ax.scatter(X_scaled[:, 0], X_scaled[:, 1], c=clusters, cmap=mglearn.cm3, s=60, edgecolors='black') ax.set_title("{} - ARI: {:.2f}".format(algo.__class__.__name__, adjusted_rand_score(y, clusters))) # plt.title('복잡한 모양의 클러스터 군집 알고리즘 비교') images.image.save_fig("10.9.moons_spiral_scatter_adjusted_rand_score") plt.show() # 2. 타깃값 없이 군집 평가하기 - 실루엣 계수 # 군집 알고리즘을 적용할 때 보통 그 결과와 비교할 타깃값이 없다. # 타깃값이 필요 없는 군집용 지표로는 실루엣 계수 (silhouette coefficient)가 있다. # 그러나 이 지표는 실제로 잘 동작하진 않는다. # 실루엣 점수는 클러스터의 밀집 정도를 계산하는 것으로, 높을수록 좋으며, 최대 점수는 1이다. # 실루엣 계수 사용하여 k-평균, 병합군집, DBSCAN 알고리즘을 비교 fig, axes = plt.subplots(1, 4, figsize=(15, 3), subplot_kw={'xticks':(), 'yticks':()}) # 3가지 알고리즘들 리스트 # algos = [KMeans(n_clusters=2), AgglomerativeClustering(n_clusters=2), DBSCAN()] # random_state = np.random.RandomState(seed=0) # random_clusters = random_state.randint(low=0, high=2, size=len(X)) # 무작위로 할당한 클러스터 from sklearn.metrics.cluster import silhouette_score axes[0].scatter(X_scaled[:, 0], X_scaled[:, 1], c=random_clusters, cmap=mglearn.cm3, s=60, edgecolors='black') axes[0].set_title("random assign : {:.2f}".format(silhouette_score(X_scaled, random_clusters))) for ax, algo in zip(axes[1:], algos): clusters = algo.fit_predict(X_scaled) ax.scatter(X_scaled[:, 0], X_scaled[:, 1], c=clusters, cmap=mglearn.cm3, s=60, edgecolors='black') ax.set_title("{} : {:.2f}".format(algo.__class__.__name__, silhouette_score(X_scaled, clusters))) # plt.title('복잡한 모양의 클러스터 군집 알고리즘 비교') images.image.save_fig("10.9.moons_spiral_scatter_silhouette_score") plt.show()
d2a3053fd64857bb28bf86e6ff1a7e69900c528b
1ad12a71c3d5d2b3810ce03e8bd138c4ffb66eb8
/xlsxwriter/test/comparison/test_chart_pie02.py
772e70f53f3fe101ff7ea093d7ef19814e4f5983
[ "BSD-2-Clause-Views" ]
permissive
idreamsfy/XlsxWriter
b52929229b16e2ee1eaca0cda9980a5a0aad5769
129044ed821de67895b4562c6b71f90eba5be6b4
refs/heads/master
2021-01-02T20:39:20.415882
2020-02-07T21:07:55
2020-02-07T21:07:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,189
py
############################################################################### # # Tests for XlsxWriter. # # Copyright (c), 2013-2020, John McNamara, [email protected] # from ..excel_comparsion_test import ExcelComparisonTest from ...workbook import Workbook class TestCompareXLSXFiles(ExcelComparisonTest): """ Test file created by XlsxWriter against a file created by Excel. """ def setUp(self): self.set_filename('chart_pie02.xlsx') def test_create_file(self): """Test the creation of a simple XlsxWriter file.""" workbook = Workbook(self.got_filename) worksheet = workbook.add_worksheet() chart = workbook.add_chart({'type': 'pie'}) data = [ [2, 4, 6], [60, 30, 10], ] worksheet.write_column('A1', data[0]) worksheet.write_column('B1', data[1]) chart.add_series({ 'categories': '=Sheet1!$A$1:$A$3', 'values': '=Sheet1!$B$1:$B$3', }) chart.set_legend({'font': {'bold': 1, 'italic': 1, 'baseline': -1}}) worksheet.insert_chart('E9', chart) workbook.close() self.assertExcelEqual()
bca4a0189f323184e4d9d842f593edc9890ec469
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02658/s377864583.py
a4bd4508fb86c22e9ea006ed431ef20ad6050566
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
256
py
def main(): n = int(input()) a = list(map(int, input().split())) ans = 1 if 0 in a: print(0) return else: flag = True for i in a: ans *= i if ans > (10 ** 18): print(-1) return print(ans) main()
a9f9d1d30ff078ad375c253215133f498c5895b9
9d29861e44389e02762e6eb0457c6a415a54e26c
/samples/images/export_task.py
64e408194a49b511eccab70c08ad4f8b855b7f79
[ "MIT" ]
permissive
itsmemattchung/pyrax
e787d67f8a79036834575f951f8c9e81d64d8b8f
e8eff127a5c9b6e64a9a42593d5e889c3c03f81d
refs/heads/master
2021-01-18T10:14:31.752469
2015-05-16T16:44:35
2015-05-16T16:44:35
21,360,598
0
0
null
null
null
null
UTF-8
Python
false
false
2,354
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c)2014 Rackspace US, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from __future__ import print_function import os import pyrax pyrax.set_setting("identity_type", "rackspace") creds_file = os.path.expanduser("~/.rackspace_cloud_credentials") pyrax.set_credential_file(creds_file) imgs = pyrax.images cf = pyrax.cloudfiles print("You will need to select an image to export, and a Container into which " "the exported image will be placed.") images = imgs.list(visibility="private") print() print("Select an image to export:") for pos, image in enumerate(images): print("[%s] %s" % (pos, image.name)) snum = raw_input("Enter the number of the image you want to share: ") if not snum: exit() try: num = int(snum) except ValueError: print("'%s' is not a valid number." % snum) exit() if not 0 <= num < len(images): print("'%s' is not a valid image number." % snum) exit() image = images[num] conts = cf.list() print() print("Select the target container to place the exported image:") for pos, cont in enumerate(conts): print("[%s] %s" % (pos, cont.name)) snum = raw_input("Enter the number of the container: ") if not snum: exit() try: num = int(snum) except ValueError: print("'%s' is not a valid number." % snum) exit() if not 0 <= num < len(conts): print("'%s' is not a valid container number." % snum) exit() cont = conts[num] task = imgs.export_task(image, cont) print("Task ID=%s" % task.id) print() answer = raw_input("Do you want to track the task until completion? This may " "take several minutes. [y/N]: ") if answer and answer[0].lower() == "y": pyrax.utils.wait_until(task, "status", ["success", "failure"], verbose=True, interval=30)
86df25291145f18d5fc9e052389ac8390fba23ec
5e80f0b1af9fbf9dc774dbb68aa603574e4ae0ba
/algorithm-study/baekjun/1927.py
6029af1ee152bdfa3b91b592febe7a1fbf701b55
[]
no_license
namujinju/study-note
4271b4248b3c4ac1b96ef1da484d86569a030762
790b21e5318a326e434dc836f5f678a608037a8c
refs/heads/master
2023-02-04T13:25:55.418896
2020-12-26T10:47:11
2020-12-26T10:47:11
275,279,138
0
0
null
null
null
null
UTF-8
Python
false
false
314
py
import heapq as hq import sys hq_arr = [] n = int(input()) # 연산 갯수 for _ in range(n): i = int(sys.stdin.readline()) # https://www.acmicpc.net/blog/view/56 if i: hq.heappush(hq_arr, i) else: if hq_arr: print(hq.heappop(hq_arr)) else: print(0)
93f739b3253aa3891ea450f662d32d5466856a30
ca23b411c8a046e98f64b81f6cba9e47783d2584
/learning_parameter_allocation/omniglot/omniglot_eval.py
57302ece23bb7e33211ed04e68884facbf8e35a4
[ "CC-BY-4.0", "Apache-2.0" ]
permissive
pdybczak/google-research
1fb370a6aa4820a42a5d417a1915687a00613f9c
0714e9a5a3934d922c0b9dd017943a8e511eb5bc
refs/heads/master
2023-03-05T23:16:11.246574
2021-01-04T11:30:28
2021-01-04T11:30:28
326,629,357
1
0
Apache-2.0
2021-02-01T12:39:09
2021-01-04T09:17:36
Jupyter Notebook
UTF-8
Python
false
false
6,063
py
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Evaluation job for the Omniglot experiments.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import time from absl import app from absl import flags from learning_parameter_allocation import data from learning_parameter_allocation import models from learning_parameter_allocation import utils from learning_parameter_allocation.pathnet import components as pn_components from learning_parameter_allocation.pathnet import pathnet_lib as pn from learning_parameter_allocation.pathnet.utils import create_uniform_layer import tensorflow.compat.v1 as tf _OMNIGLOT_INPUT_SHAPE = [105, 105, 1] # Delay in seconds to wait before rechecking if there are new checkpoints. _CHECK_FOR_CHECKPOINTS_FREQUENCY = 15 # If there are no checkpoints for this number of seconds give up and finish. _MAX_WAIT_FOR_NEW_CHECKPOINTS = 3 * 60 * 60 FLAGS = flags.FLAGS flags.DEFINE_string( 'logdir', '/tmp/summary_dir/', 'Path to the directory to save logs and summaries.') flags.DEFINE_string( 'method', 'gumbel_matrix', 'Approach to use to determine which tasks gets which components, ' 'one of "shared_bottom", "no_sharing", "gumbel_matrix".') def loss_fn(labels, logits): return tf.nn.sparse_softmax_cross_entropy_with_logits( labels=labels, logits=logits) def build_pathnet_eval_graph( task_names, batch_size, num_classes_for_tasks, router_fn): """Constructs the PathNet eval graph. Args: task_names: (list of strings) names of tasks. batch_size: (int) batch size to use. num_classes_for_tasks: (list of ints) number of classes for each task. router_fn: function that, given a single argument `num_components`, returns a router (see routers in `pathnet/pathnet_lib.py`) for a layer containing `num_components` components. Returns: A tuple of (`p_inputs`, `p_task_id`, `out_logits`). `p_inputs` and `p_task_id` are placeholders for input image and scalar task id, respectively. `out_logits` are the final network output (classification logits). """ num_tasks = len(task_names) # PathNet layers keras_layers = models.get_keras_layers_for_omniglot_experiment() pathnet_layers = models.build_model_from_keras_layers( _OMNIGLOT_INPUT_SHAPE, num_tasks, keras_layers, router_fn) # Task-specific linear heads pathnet_layers.append( utils.create_layer_with_task_specific_linear_heads(num_classes_for_tasks)) # Output components pathnet_layers.append(create_uniform_layer( num_components=num_tasks, component_fn=lambda: pn_components.ModelHeadComponent(loss_fn=loss_fn), combiner_fn=pn.SelectCombiner, router_fn=lambda: None)) pathnet = pn.PathNet( pathnet_layers, tf.contrib.training.HParams(batch_size=batch_size)) p_inputs, _, p_task_id, _, out_logits = utils.build_pathnet_graph( pathnet, _OMNIGLOT_INPUT_SHAPE, training=False) return p_inputs, p_task_id, out_logits def main(_): num_alphabets = 20 task_names = ['Omniglot-%d' % task_id for task_id in range(num_alphabets)] task_data, num_classes = data.get_data_for_multitask_omniglot_setup( num_alphabets) batch_size = 16 for task_id in range(num_alphabets): task_data[task_id] = data.batch_all(task_data[task_id], batch_size) router_fn = utils.get_router_fn_by_name(num_alphabets, FLAGS.method) session = tf.Session(graph=tf.get_default_graph()) tf.train.get_or_create_global_step() summary_writer = tf.contrib.summary.create_file_writer(FLAGS.logdir) summary_writer.set_as_default() tf.contrib.summary.initialize(session=session) p_inputs, p_task_id, out_logits = build_pathnet_eval_graph( task_names, batch_size, num_classes, router_fn) evaluate_on = ['train', 'validation', 'test'] p_task_accuracies = {} accuracy_summary_op = {} for data_split in evaluate_on: (p_task_accuracies[data_split], accuracy_summary_op[data_split]) =\ utils.create_accuracy_summary_ops( task_names, summary_name_prefix='eval_%s' % data_split) # This `Saver` is not used to save variables, only to restore them from # the checkpoints. saver = tf.train.Saver(tf.global_variables()) previous_checkpoint_path = '' time_waited_for_checkpoints = 0 while time_waited_for_checkpoints < _MAX_WAIT_FOR_NEW_CHECKPOINTS: latest_checkpoint_path = tf.train.latest_checkpoint(FLAGS.logdir) if latest_checkpoint_path in [None, previous_checkpoint_path]: print('Found no new checkpoints') time_waited_for_checkpoints += _CHECK_FOR_CHECKPOINTS_FREQUENCY time.sleep(_CHECK_FOR_CHECKPOINTS_FREQUENCY) continue else: time_waited_for_checkpoints = 0 print('Reloading checkpoint: %s' % latest_checkpoint_path) previous_checkpoint_path = latest_checkpoint_path saver.restore(session, latest_checkpoint_path) for data_split in evaluate_on: eval_data = [ dataset[data_split].make_one_shot_iterator().get_next() for dataset in task_data ] print('Evaluating on: %s' % data_split) task_accuracies = utils.run_pathnet_evaluation( session, p_inputs, p_task_id, out_logits, task_names, eval_data) utils.run_accuracy_summary_ops( session, p_task_accuracies[data_split], task_accuracies, accuracy_summary_op[data_split]) if __name__ == '__main__': app.run(main)
02d2173600e6ba222744b73a6ac1cf959bc7a32f
d96787f92bd86c8d8bcf01a4e7ec8f7feec24194
/kattis/kutevi/solution.py
9a687ed8e3f0ebe800bdb8b0ba3849c123defb8f
[]
no_license
iandioch/solutions
133cbc3af58fadcde0b2e981fb0e7d05801070a7
8b3e458b3c01179ddf776bfbb897f263f22f3693
refs/heads/master
2023-04-09T03:39:16.952817
2023-03-15T20:00:53
2023-03-15T20:00:53
47,693,495
48
40
null
2019-10-22T14:52:59
2015-12-09T13:36:55
Python
UTF-8
Python
false
false
526
py
from collections import deque n, m = map(int, input().split()) poss = [False for _ in range(360)] given = list(map(int, input().split())) q = deque() q.append(given[0]) while len(q): a = q.pop() if poss[a]: continue poss[a] = True for o in given: b = abs(a - o) if not poss[b]: q.append(b) c = (a+o)%360 if not poss[c]: q.append(c) for a in input().split(): ok = poss[int(a)] if ok: print('YES') else: print('NO')
2005e615b5cc1e94cd02c98c46a797303e28e8b4
3ed50263057c1695330009f9f5b122e412e1c02f
/bn/distribs/multivariate_distribution.py
353b2f69ef7384b8f6ede8151da65d51d4e14d4f
[ "MIT" ]
permissive
ppijbb/PyOpenDial
5528aa584190dcf08b892ec92a5ce8c2b82eb845
c9bca653c18ccc082dc8b86b4a8feee9ed00a75b
refs/heads/master
2022-02-16T01:27:39.667661
2019-07-24T10:51:41
2019-07-24T10:51:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,027
py
import abc from multipledispatch import dispatch from datastructs.assignment import Assignment class MultivariateDistribution: """ Representation of a multivariate probability distribution P(X1,...Xn), where X1,...Xn are random variables. """ __metaclass__ = abc.ABCMeta @dispatch() @abc.abstractmethod def get_variables(self): """ Returns the names of the random variables in the distribution :return: the set of variable names. """ raise NotImplementedError() @dispatch() @abc.abstractmethod def get_values(self): """ Returns the set of possible assignments for the random variables. :return: the set of possible assignment """ raise NotImplementedError() @dispatch(Assignment) @abc.abstractmethod def get_prob(self, values): """ Returns the probability of a particular assignment of values. :param values: the assignment of values to X1,...Xn. :return: the corresponding probability """ raise NotImplementedError() @dispatch() @abc.abstractmethod def sample(self): """ Returns a sample assignment for X1,...Xn. :return: the sampled assignment """ raise NotImplementedError() @dispatch(str) @abc.abstractmethod def get_marginal(self, variable): """ Returns the marginal probability distribution P(Xi) for a random variable Xi in X1,...Xn. :param variable: the random variable Xi :return: the marginal distribution P(Xi) """ raise NotImplementedError() @dispatch(str, str) @abc.abstractmethod def modify_variable_id(self, old_variable_id, new_variable_id): """ Modifies the variable identifier in the distribution :param old_variable_id: the old identifier :param new_variable_id: the new identifier """ raise NotImplementedError() @dispatch() @abc.abstractmethod def to_discrete(self): """ Returns a representation of the distribution as a multivariate table. :return: the multivariate table. """ raise NotImplementedError() @abc.abstractmethod def __copy__(self): """ Returns a copy of the distribution. :return: the copy """ raise NotImplementedError() @dispatch(float) @abc.abstractmethod def prune_values(self, threshold): """ Prunes all values assignment whose probability falls below the threshold. :param threshold: the threshold to apply :return: true if at least one value has been removed, false otherwise """ raise NotImplementedError() @dispatch() @abc.abstractmethod def get_best(self): """ Returns the value with maximum probability. :return: the value with maximum probability """ raise NotImplementedError()
bbcc0cc75155387e6ce8b9a138302984c6c21481
37f1563cdacf4b37b5b927b892538218aae79c77
/medium/trees/flatten.py
3a5d24227b7f8b528e32e799246ebdb3f20589e1
[]
no_license
unsortedtosorted/elgoog
9dee49a20f981305910a8924d86e8f2a16fe14c2
5be9fab24c0c1fd9d5dc7a7bdaca105f1ca873ee
refs/heads/master
2020-04-15T00:51:12.114249
2019-05-19T04:37:24
2019-05-19T04:37:24
164,254,079
0
0
null
null
null
null
UTF-8
Python
false
false
1,079
py
""" 114. Flatten Binary Tree to Linked List Steps: if leaf node, do nothing if not leaf node: flatten left subtree flatten right subtree connect right child to right most leaf of left child make left child as right child make left child None RunTime : O(N^2) Space : O(N) """ class Solution(object): def flatten(self, root): def convert(root): if root: if not root.left and not root.right: return #flatten left and right child convert(root.left) convert(root.right) l = root.left r = root.right #make left child as new right child root.right = l root.left = None temp = root #get right most leaf of new right child while temp.right: temp = temp.right temp.right = r convert(root)
0cad74dfab81fccf5ba4454fd2435cc789439934
6b181f5640e2c3df91d1a6d5c95cf1989012f0d5
/RPi-stub/spidev.py
c598627f4304ee6d4f63e4b17637f97d0978bb97
[ "MIT" ]
permissive
GamesCreatorsClub/GCC-Rover
9b84dcd84cce60c321906223f8c24f99722d1bae
25a69f62a1bb01fc421924ec39f180f50d6a640b
refs/heads/master
2021-01-11T18:04:05.876976
2019-10-01T15:20:30
2019-10-01T15:20:30
79,477,472
3
0
null
null
null
null
UTF-8
Python
false
false
5,320
py
import os import socket _SPI_CPHA = 0x01 _SPI_CPOL = 0x02 # _SPI_MODE_0 = 0 # _SPI_MODE_1 = SPI_CPHA # _SPI_MODE_2 = SPI_CPOL # _SPI_MODE_3 = SPI_CPOL | SPI_CPHA # _SPI_MODES = [_SPI_MODE_0, _SPI_MODE_1, _SPI_MODE_2, _SPI_MODE_3] _SPI_CS_HIGH = 0x04 _SPI_LSB_FIRST = 0x08 _SPI_3WIRE = 0x10 _SPI_LOOP = 0x20 _SPI_NO_CS = 0x40 _SPI_READY = 0x80 class SpiDev: _socket = None _bits_per_word = 0 # cshigh = False # loop = None # lsbfirst = False _max_speed_hz = 0 _mode = 0 # threewire = False def __init__(self): port = 8789 ip = os.environ["RASPBERRY_IP"] if "RASPBERRY_PORT" in os.environ: port = int(os.environ["RASPBERRY_PORT"]) self._socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self._socket.connect((ip, port)) def __del__(self): if self._socket is not None: try: self._socket.close() except Exception as e: pass def open(self, bus, device): b = bytearray() b.append(ord("o")) b.append(bus) b.append(device) self._socket.send(b) def xfer(self, data, speed_hz=0, delay_usec=0, bits_per_word=8): b = bytearray() b.append(ord("x")) b.append(len(data) & 255) b.append(len(data) >> 8 & 255) for d in data: b.append(d) self._socket.send(b) rec = self._socket.recv(len(data)) resp = [] for bb in rec: resp.append(bb) return resp def xfer2(self, data, speed_hz=0, delay_usec=0, bits_per_word=8): pass def close(self): self._mode = 0; self._bits_per_word = 0; self._max_speed_hz = 0; b = bytearray() b.append(ord("c")) self._socket.send(b) def readbytes(self, n): pass def writebytes(self, data): pass @property def cshigh(self): return self._mode & _SPI_CS_HIGH != 0 @cshigh.setter def cshigh(self, cshigh): if cshigh: self._mode = self._mode | _SPI_CS_HIGH else: self._mode = self._mode & ~_SPI_CS_HIGH @property def lsbfirst(self): return self._mode & _SPI_LSB_FIRST != 0 @cshigh.setter def lsbfirst(self, lsbfirst): if lsbfirst: self._mode = self._mode | _SPI_LSB_FIRST else: self._mode = self._mode & ~_SPI_LSB_FIRST @property def threewire(self): return self._mode & _SPI_3WIRE != 0 @threewire.setter def threewire(self, threewire): if threewire: self._mode = self._mode | _SPI_3WIRE else: self._mode = self._mode & ~_SPI_3WIRE @property def loop(self): return self._mode & _SPI_3WIRE != 0 @loop.setter def loop(self, loop): if loop: self._mode = self._mode | _SPI_LOOP else: self._mode = self._mode & ~_SPI_LOOP @property def bits_per_word(self): return self._bits_per_word @bits_per_word.setter def bits_per_word(self, bits_per_word): if bits_per_word < 8 or bits_per_word > 16: raise ValueError("invalid bits_per_word (8 to 16)") self._bits_per_word = bits_per_word @property def max_speed_hz(self): return self.max_speed_hz @max_speed_hz.setter def bits_per_word(self, max_speed_hz): self.max_speed_hz @property def mode(self): return self._mode & (_SPI_CPHA | _SPI_CPOL) @mode.setter def loop(self, mode): self._mode = (self._mode & ~(_SPI_CPHA | _SPI_CPOL)) | mode if __name__ == "__main__": s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind(("0.0.0.0", 8789)) s.listen(1) def startListen(): import threading def session(con): while True: # print("Waiting to command") cmd = ord(con.recv(1)) if cmd == ord("c"): print("Close") elif cmd == ord("o"): bus = ord(con.recv(1)) device = ord(con.recv(1)) print("Opening " + str(bus) + "." + str(device)) elif cmd == ord("x"): l = ord(con.recv(1)) h = ord(con.recv(1)) size = l + h << 8 print("Receiving " + str(size) +" bytes") data = con.recv(size) print("Received " + str(data)) con.send(data) else: print("Unknown command " + str(cmd)) def listen(): while True: con, addr = s.accept() t = threading.Thread(target=session, args=[con]) t.daemon = True t.start() thread = threading.Thread(target=listen) thread.daemon = True thread.start() try: startListen() os.environ["RASPBERRY_IP"] = "127.0.0.1" spi = SpiDev() print("opening spi") spi.open(1, 2) print("sending data") spi.xfer(b"Hello") print("closing") spi.close() finally: s.close() s.detach()
a2595b2efb0dc2cdd2387f296ae8a5b72d28c811
974c5a4f101d0e6f4dfa5fc2f7c641c9d2bd8184
/sdk/containerservice/azure-mgmt-containerservice/azure/mgmt/containerservice/v2021_03_01/aio/operations/_operations.py
9652fce008b36636921de47c082edd72b0107162
[ "MIT", "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later" ]
permissive
gaoyp830/azure-sdk-for-python
4816f04c554dcffb7510a6b7044b0c86a2dd32e1
1c66defa502b754abcc9e5afa444ca03c609342f
refs/heads/master
2022-10-20T21:33:44.281041
2022-09-29T17:03:13
2022-09-29T17:03:13
250,355,505
0
0
MIT
2020-03-26T19:42:13
2020-03-26T19:42:12
null
UTF-8
Python
false
false
5,460
py
# pylint: disable=too-many-lines # coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Optional, TypeVar from urllib.parse import parse_qs, urljoin, urlparse from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ( ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, ResourceNotModifiedError, map_error, ) from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from azure.core.utils import case_insensitive_dict from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models as _models from ..._vendor import _convert_request from ...operations._operations import build_list_request T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class Operations: """ .. warning:: **DO NOT** instantiate this class directly. Instead, you should access the following operations through :class:`~azure.mgmt.containerservice.v2021_03_01.aio.ContainerServiceClient`'s :attr:`operations` attribute. """ models = _models def __init__(self, *args, **kwargs) -> None: input_args = list(args) self._client = input_args.pop(0) if input_args else kwargs.pop("client") self._config = input_args.pop(0) if input_args else kwargs.pop("config") self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") @distributed_trace def list(self, **kwargs: Any) -> AsyncIterable["_models.OperationValue"]: """Gets a list of compute operations. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either OperationValue or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.containerservice.v2021_03_01.models.OperationValue] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop("api_version", _params.pop("api-version", "2021-03-01")) # type: str cls = kwargs.pop("cls", None) # type: ClsType[_models.OperationListResult] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) def prepare_request(next_link=None): if not next_link: request = build_list_request( api_version=api_version, template_url=self.list.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) # type: ignore else: # make call to next link with the client's api-version _parsed_next_link = urlparse(next_link) _next_request_params = case_insensitive_dict(parse_qs(_parsed_next_link.query)) _next_request_params["api-version"] = self._config.api_version request = HttpRequest("GET", urljoin(next_link, _parsed_next_link.path), params=_next_request_params) request = _convert_request(request) request.url = self._client.format_url(request.url) # type: ignore request.method = "GET" return request async def extract_data(pipeline_response): deserialized = self._deserialize("OperationListResult", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run( # type: ignore # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged(get_next, extract_data) list.metadata = {"url": "/providers/Microsoft.ContainerService/operations"} # type: ignore
b5acde1079fe57a98f775f9003f4e8c68c326e4e
41bea39563c74621924d79723f8ba84889958365
/nkamg_pcap/server/antimal/misc/trails/feeds/bambenekconsultingdga.py
698420381e69cf7f7c349a1e65d60c536efd4101
[ "MIT" ]
permissive
NKQiuKF/pcap_update
abee0c13cb583fddb89eb9e86a487279bdc18f1d
679e3f116367394a5f58eb4f95b5318e80fee331
refs/heads/master
2022-10-21T17:49:30.706480
2019-09-02T09:22:06
2019-09-02T09:22:06
205,816,421
1
0
null
2022-10-06T18:33:32
2019-09-02T08:55:55
JavaScript
UTF-8
Python
false
false
647
py
#!/usr/bin/env python """ Copyright (c) 2014-2016 Miroslav Stampar (@stamparm) See the file 'LICENSE' for copying permission """ import re from core.common import retrieve_content __url__ = "http://osint.bambenekconsulting.com/feeds/dga-feed.txt" __check__ = "Domain used by" __reference__ = "bambenekconsulting.com" def fetch(): retval = {} content = retrieve_content(__url__) if __check__ in content: for match in re.finditer(r"(?m)^([^,\s]+),Domain used by ([^ ]+)", content): retval[match.group(1)] = ("%s dga (malware)" % match.group(2).lower(), __reference__) return retval
6fb7d3bd1ca93b6147bb8eb30c92161cb11b930b
d867398bd54ef772a624a72e283a6b2bb546f693
/signbank/docker_wsgi.py
40135228152c02660b293ec2c07228e7b2188eec
[ "BSD-3-Clause" ]
permissive
stevecassidy/signbank-modular
b5d6aa3fd05b0aeeed9c7bb4688be6d0e5cb7b16
f00e30814c8a08fe00eb28df231791f6fc18ce7f
refs/heads/master
2023-01-13T09:32:39.503182
2022-01-12T04:18:59
2022-01-12T04:18:59
79,797,386
1
1
BSD-3-Clause
2022-12-26T20:58:06
2017-01-23T11:13:45
Python
UTF-8
Python
false
false
1,333
py
""" WSGI config for signbank project. This module contains the WSGI application used by Django's development server and any production WSGI deployments. It should expose a module-level variable named ``application``. Django's ``runserver`` and ``runfcgi`` commands discover this application via the ``WSGI_APPLICATION`` setting. Usually you will have the standard Django WSGI application here, but it also might make sense to replace the whole Django WSGI application with a custom one that later delegates to the Django one. For example, you could introduce WSGI middleware here, or combine a Django application with an application of another framework. """ import os # Determine if there are live settings (not commited to source control) and load that if it exists instead of the default settings code_path = os.path.dirname(os.path.realpath(__file__)) os.environ.setdefault("DJANGO_SETTINGS_MODULE", "signbank.settings.docker") # This application object is used by any WSGI server configured to use this # file. This includes Django's development server, if the WSGI_APPLICATION # setting points here. from django.core.wsgi import get_wsgi_application application = get_wsgi_application() # Apply WSGI middleware here. # from helloworld.wsgi import HelloWorldApplication # application = HelloWorldApplication(application)
0751f1fdaa3b2d55769f3fc59c2d654fde132400
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/331/usersdata/302/94330/submittedfiles/funcoes1.py
46414bcab930f2ecf75035fde4caf630153d831d
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
1,102
py
# -*- coding: utf-8 -*- ''' def crescente (lista): if lista == sorted(lista): return True else: return False def decrescente (lista): if lista == sorted(lista, reverse = True): return True else: return False def consectivos (lista,n): for i in range(0,n,1): if i < n: if lista[i-1] =! lista[i] return False continue else: return True ''' #escreva o código da função crescente aqui #escreva as demais funções #escreva o programa principal n = int(input('Digite o número de elementos das listas: ')) a = [] b = [] c = [] for i in range (0,n,1): a.append(int(input('Digite a%d: '%(i+1)))) for i in range(0,n,1): if i < n: if a[i-1] == a[i]: print('S') break else: print('N') break ''' print(a) for i in range (0,n,1): b.append(int(input('Digite b%d: '%(i+1)))) print(b) for i in range (0,n,1): c.append(int(input('Digite c%d: '%(i+1)))) print(c) '''
493abda9b939ba922dde6ee476d341dceaf83a2f
89a90707983bdd1ae253f7c59cd4b7543c9eda7e
/effective_python/item_52/recursive_import_bad/dialog.py
8138738a13171344c2d6677a8de506fafcda19cb
[]
no_license
timothyshull/python_reference_code
692a7c29608cadfd46a6cc409a000023e95b9458
f3e2205dd070fd3210316f5f470d371950945028
refs/heads/master
2021-01-22T20:44:07.018811
2017-03-17T19:17:22
2017-03-17T19:17:22
85,346,735
0
0
null
null
null
null
UTF-8
Python
false
false
950
py
#!/usr/bin/env python3 # Copyright 2014 Brett Slatkin, Pearson Education Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Preamble to mimick book environment import logging from pprint import pprint from sys import stdout as STDOUT # Example 2 import app class Dialog(object): def __init__(self, save_dir): self.save_dir = save_dir save_dialog = Dialog(app.prefs.get('save_dir')) def show(): print('Showing the dialog!')
ee48ec2d8e4f8e0d3b65128e0d92c29aa39b01c6
0facb323be8a76bb4c168641309972fa77cbecf2
/Configurations/HWWSemiLepHighMass/nanoAODv5/2018/Mix/MassPoints/samples_2018limit_M800.py
05c27f3ed419caa0a34d0b08bea9be09fa084db5
[]
no_license
bhoh/SNuAnalytics
ef0a1ba9fa0d682834672a831739dfcfa1e7486b
34d1fc062e212da152faa83be50561600819df0e
refs/heads/master
2023-07-06T03:23:45.343449
2023-06-26T12:18:28
2023-06-26T12:18:28
242,880,298
0
1
null
2020-02-25T01:17:50
2020-02-25T01:17:49
null
UTF-8
Python
false
false
19,238
py
#-----Variable Deinition-----# supercut = 'nLepton>0' eleWP='mvaFall17V1Iso_WP90' muWP='cut_Tight_HWWW' LepWPCut='(Lepton_isTightElectron_'+eleWP+'[0]>0.5 || Lepton_isTightMuon_'+muWP+'[0]>0.5)' #------End of Variable Definition-----# import os import glob import copy import subprocess import string from LatinoAnalysis.Tools.commonTools import * samples={} SITE=os.uname()[1] xrootdPath='' if 'iihe' in SITE : xrootdPath = 'dcap://maite.iihe.ac.be/' treeBaseDir = '/pnfs/iihe/cms/store/user/xjanssen/HWW2015/' elif 'cern' in SITE : treeBaseDir = '/eos/cms/store/group/phys_higgs/cmshww/amassiro/HWWNano/' elif 'sdfarm' in SITE: xrootdPath = 'root://cms-xrdr.private.lo:2094' treeBaseDir = "/xrootd/store/user/jhchoi/Latino/HWWNano/" CAMPAIGN='Autumn18_102X_nAODv5_Full2018v5' STEP="MCl1loose2018v5__MCCorr2018v5__Semilep2018_whad30__CorrFatJetMass__HMlnjjSelBWR" CAMPAIGN_DATA='Run2018_102X_nAODv5_Full2018v5' STEP_DATA="DATAl1loose2018v5__Semilep2018_whad30__HMlnjjSel" directory=treeBaseDir+CAMPAIGN+'/'+STEP LepWPCut='(Lepton_isTightElectron_'+eleWP+'[0]>0.5 || Lepton_isTightMuon_'+muWP+'[0]>0.5)' LepWPweight='(((Lepton_isTightElectron_'+eleWP+'[0]>0.5)*(Lepton_tightElectron_'+eleWP+'_IdIsoSF'+'[0]'+')) + ((Lepton_isTightMuon_'+muWP+'[0]>0.5)*(Lepton_tightMuon_'+muWP+'_IdIsoSF'+'[0]'+')))' XSWeight = 'XSWeight' #SFweight = 'SFweight'+Nlep+'l*'+LepWPweight+'*'+LepWPCut #SFweight = 'puWeight*\ #TriggerEffWeight_1l*\ #Lepton_RecoSF[0]*\ #EMTFbug_veto' SFweight = 'puWeight*\ TriggerEffWeight_1l*\ Lepton_RecoSF[0]*\ EMTFbug_veto*\ PUJetIdSF*\ tau21SF\ ' SFweight=SFweight+'*'+LepWPweight+'*'+LepWPCut #GenLepMatch = 'GenLepMatch'+Nlep+'l' GenLepMatch = 'Lepton_genmatched[0]' ################################################ ############### B-Tag WP ###################### ################################################ SFweight=SFweight+'*'+'btagSF' ################################################ ############### B-Tag WP ###################### ################################################ #pfCombinedInclusiveSecondaryVertexV2BJetTags (CSV) algorithm [26] loose working point. ################################################ ############ MET FILTERS ################### ################################################ METFilter_MC = 'METFilter_MC' METFilter_DATA = 'METFilter_DATA' ################################################ ############ DATA DECLARATION ################## ################################################ DataRun = [ ['A','Run2018A-Nano1June2019-v1'] , ['B','Run2018B-Nano1June2019-v1'] , ['C','Run2018C-Nano1June2019-v1'] , ['D','Run2018D-Nano1June2019_ver2-v1'] , ] DataSets = ['SingleMuon',\ 'EGamma' ] DataTrig = { 'SingleMuon' : 'Trigger_sngMu' , 'EGamma' : 'Trigger_sngEl && !Trigger_sngMu' , } ########################################### ############### SIGNAL #################### ########################################### ''' samples['ggHWWlnuqq_M800'] = { 'name' : getSampleFiles(directory,'GluGluHToWWToLNuQQ_M800',False,'nanoLatino_'), 'weight' : XSWeight+'*'+SFweight+'*'+GenLepMatch+'*'+METFilter_MC, #'weight' : XSWeight, 'FilesPerJob' : 5, } ''' samples['ggHWWlnuqq_M800_S_B_I'] = { 'name' : getSampleFiles(directory,'GluGluHToWWToLNuQQ_M800',False,'nanoLatino_'), 'weight' : XSWeight+'*'+SFweight+'*'+GenLepMatch+'*'+METFilter_MC+'*(MSSModel+MSSModel_I+MSSModel_B+MSSModel_H+MSSModel_I_HB)', 'FilesPerJob' : 50, } samples['ggHWWlnuqq_M800_S'] = { 'name' : getSampleFiles(directory,'GluGluHToWWToLNuQQ_M800',False,'nanoLatino_'), 'weight' : XSWeight+'*'+SFweight+'*'+GenLepMatch+'*'+METFilter_MC+'*MSSModel', 'FilesPerJob' : 50, } samples['ggWW_MELA'] = { 'name' : getSampleFiles(directory,'GluGluHToWWToLNuQQ_M800',False,'nanoLatino_'), 'weight' : XSWeight+'*'+SFweight+'*'+GenLepMatch+'*'+METFilter_MC+'*(MSSModel_B+MSSModel_H+MSSModel_I_HB)', 'FilesPerJob' : 50, } samples['VBFHToWWToLNuQQ_M800_S_B_I'] = { 'name' : getSampleFiles(directory,'VBFHToWWToLNuQQ_M800',False,'nanoLatino_'), 'weight' : XSWeight+'*'+SFweight+'*'+GenLepMatch+'*'+METFilter_MC+'*(MSSModel+MSSModel_I+MSSModel_B+MSSModel_H+MSSModel_I_HB)', 'FilesPerJob' : 50, } samples['VBFHToWWToLNuQQ_M800_S'] = { 'name' : getSampleFiles(directory,'VBFHToWWToLNuQQ_M800',False,'nanoLatino_'), 'weight' : XSWeight+'*'+SFweight+'*'+GenLepMatch+'*'+METFilter_MC+'*MSSModel', 'FilesPerJob' : 50, } samples['qqWW_MELA'] = { 'name' : getSampleFiles(directory,'VBFHToWWToLNuQQ_M800',False,'nanoLatino_'), 'weight' : XSWeight+'*'+SFweight+'*'+GenLepMatch+'*'+METFilter_MC+'*(MSSModel_B+MSSModel_H+MSSModel_I_HB)', 'FilesPerJob' : 50, } ########################################### ############# BACKGROUNDS ############### ########################################### samples['Wjets'] = { 'name' : getSampleFiles(directory,'WJetsToLNu-0J',False,'nanoLatino_') +getSampleFiles(directory,'WJetsToLNu-1J',False,'nanoLatino_') +getSampleFiles(directory,'WJetsToLNu-2J',False,'nanoLatino_') , 'weight' : XSWeight+'*'+SFweight+'*'+GenLepMatch+'*'+METFilter_MC, 'FilesPerJob' : 20, } ############ DY ############ ptllDYW_NLO = '((0.623108 + 0.0722934*gen_ptll - 0.00364918*gen_ptll*gen_ptll + 6.97227e-05*gen_ptll*gen_ptll*gen_ptll - 4.52903e-07*gen_ptll*gen_ptll*gen_ptll*gen_ptll)*(gen_ptll<45)*(gen_ptll>0) + 1*(gen_ptll>=45))' ptllDYW_LO = '((0.632927+0.0456956*gen_ptll-0.00154485*gen_ptll*gen_ptll+2.64397e-05*gen_ptll*gen_ptll*gen_ptll-2.19374e-07*gen_ptll*gen_ptll*gen_ptll*gen_ptll+6.99751e-10*gen_ptll*gen_ptll*gen_ptll*gen_ptll*gen_ptll)*(gen_ptll>0)*(gen_ptll<100)+(1.41713-0.00165342*gen_ptll)*(gen_ptll>=100)*(gen_ptll<300)+1*(gen_ptll>=300))' samples['DY'] = { 'name' : #getSampleFiles(directory,'DYJetsToLL_M-50',False,'nanoLatino_') getSampleFiles(directory,'DYJetsToLL_M-50-LO',False,'nanoLatino_') + getSampleFiles(directory,'DYJetsToLL_M-10to50-LO',False,'nanoLatino_'), 'weight' : XSWeight+'*'+SFweight+'*'+GenLepMatch+'*'+METFilter_MC, 'FilesPerJob' : 20, } #addSampleWeight(samples,'DY','DYJetsToLL_M-50',ptllDYW_NLO) addSampleWeight(samples,'DY','DYJetsToLL_M-50-LO',ptllDYW_LO) addSampleWeight(samples,'DY','DYJetsToLL_M-10to50-LO',ptllDYW_LO) samples['top'] = { 'name' : getSampleFiles(directory,'TTToSemiLeptonic',False,'nanoLatino_') + getSampleFiles(directory,'ST_t-channel_top',False,'nanoLatino_') + getSampleFiles(directory,'ST_t-channel_antitop',False,'nanoLatino_') + getSampleFiles(directory,'ST_s-channel_ext1',False,'nanoLatino_') + getSampleFiles(directory,'ST_tW_antitop_ext1',False,'nanoLatino_') + getSampleFiles(directory,'ST_tW_top_ext1',False,'nanoLatino_') , 'weight' : XSWeight+'*'+SFweight+'*'+GenLepMatch+'*'+METFilter_MC, 'FilesPerJob' : 5, } #samples['VV'] = { 'name' : getSampleFiles(directory,'WZ',False,'nanoLatino_') # + getSampleFiles(directory,'ZZ',False,'nanoLatino_') # , # 'weight' : XSWeight+'*'+SFweight+'*'+GenLepMatch+'*'+METFilter_MC, # 'FilesPerJob' : 5, # } samples['QCD_MU'] = { 'name' : getSampleFiles(directory,'QCD_Pt-15to20_MuEnrichedPt5',False,'nanoLatino_') +getSampleFiles(directory,'QCD_Pt-20to30_MuEnrichedPt5',False,'nanoLatino_') +getSampleFiles(directory,'QCD_Pt-30to50_MuEnrichedPt5',False,'nanoLatino_') +getSampleFiles(directory,'QCD_Pt-50to80_MuEnrichedPt5',False,'nanoLatino_') +getSampleFiles(directory,'QCD_Pt-80to120_MuEnrichedPt5',False,'nanoLatino_') +getSampleFiles(directory,'QCD_Pt-80to120_MuEnrichedPt5_ext1',False,'nanoLatino_') +getSampleFiles(directory,'QCD_Pt-120to170_MuEnrichedPt5',False,'nanoLatino_') +getSampleFiles(directory,'QCD_Pt-120to170_MuEnrichedPt5_ext1',False,'nanoLatino_') +getSampleFiles(directory,'QCD_Pt-170to300_MuEnrichedPt5',False,'nanoLatino_') +getSampleFiles(directory,'QCD_Pt-300to470_MuEnrichedPt5',False,'nanoLatino_') +getSampleFiles(directory,'QCD_Pt-300to470_MuEnrichedPt5_ext3',False,'nanoLatino_') +getSampleFiles(directory,'QCD_Pt-470to600_MuEnrichedPt5',False,'nanoLatino_') +getSampleFiles(directory,'QCD_Pt-470to600_MuEnrichedPt5_ext1',False,'nanoLatino_') +getSampleFiles(directory,'QCD_Pt-600to800_MuEnrichedPt5',False,'nanoLatino_') +getSampleFiles(directory,'QCD_Pt-800to1000_MuEnrichedPt5',False,'nanoLatino_') +getSampleFiles(directory,'QCD_Pt-1000toInf_MuEnrichedPt5',False,'nanoLatino_') , 'weight' : XSWeight+'*'+SFweight+'*'+METFilter_MC, 'FilesPerJob' : 20, } samples['QCD_EM'] = { 'name' : getSampleFiles(directory,'QCD_Pt-15to20_EMEnriched',False,'nanoLatino_') +getSampleFiles(directory,'QCD_Pt-20to30_EMEnriched',False,'nanoLatino_') +getSampleFiles(directory,'QCD_Pt-30to50_EMEnriched',False,'nanoLatino_') +getSampleFiles(directory,'QCD_Pt-50to80_EMEnriched',False,'nanoLatino_') +getSampleFiles(directory,'QCD_Pt-80to120_EMEnriched',False,'nanoLatino_') +getSampleFiles(directory,'QCD_Pt-120to170_EMEnriched',False,'nanoLatino_') +getSampleFiles(directory,'QCD_Pt-170to300_EMEnriched',False,'nanoLatino_') +getSampleFiles(directory,'QCD_Pt-300toInf_EMEnriched',False,'nanoLatino_') , 'weight' : XSWeight+'*'+SFweight+'*'+METFilter_MC, 'FilesPerJob' : 20, } addSampleWeight(samples, 'QCD_MU', 'QCD_Pt-15to20_MuEnrichedPt5', '0.0022') addSampleWeight(samples, 'QCD_MU', 'QCD_Pt-20to30_MuEnrichedPt5', '0.0045') addSampleWeight(samples, 'QCD_MU', 'QCD_Pt-30to50_MuEnrichedPt5', '0.00974') addSampleWeight(samples, 'QCD_MU', 'QCD_Pt-50to80_MuEnrichedPt5', '0.0196') addSampleWeight(samples, 'QCD_MU', 'QCD_Pt-80to120_MuEnrichedPt5', '0.0322') addSampleWeight(samples, 'QCD_MU', 'QCD_Pt-80to120_MuEnrichedPt5_ext1', '0.0322') ###EXT w1=str(getEventSumw(directory,'QCD_Pt-80to120_MuEnrichedPt5','nanoLatino_')) w2=str(getEventSumw(directory,'QCD_Pt-80to120_MuEnrichedPt5_ext1','nanoLatino_')) totalw=str(float(w1)+float(w2)) ###### addSampleWeight(samples,'QCD_MU','QCD_Pt-80to120_MuEnrichedPt5',w1+"/"+totalw) addSampleWeight(samples,'QCD_MU','QCD_Pt-80to120_MuEnrichedPt5_ext1',w2+"/"+totalw) addSampleWeight(samples, 'QCD_MU', 'QCD_Pt-120to170_MuEnrichedPt5', '0.04518') addSampleWeight(samples, 'QCD_MU', 'QCD_Pt-120to170_MuEnrichedPt5_ext1', '0.04518') ###EXT w1=str(getEventSumw(directory,'QCD_Pt-120to170_MuEnrichedPt5','nanoLatino_')) w2=str(getEventSumw(directory,'QCD_Pt-120to170_MuEnrichedPt5_ext1','nanoLatino_')) totalw=str(float(w1)+float(w2)) addSampleWeight(samples,'QCD_MU','QCD_Pt-120to170_MuEnrichedPt5',w1+"/"+totalw) addSampleWeight(samples,'QCD_MU','QCD_Pt-120to170_MuEnrichedPt5_ext1',w2+"/"+totalw) ###### addSampleWeight(samples, 'QCD_MU', 'QCD_Pt-170to300_MuEnrichedPt5', '0.0598') addSampleWeight(samples, 'QCD_MU', 'QCD_Pt-300to470_MuEnrichedPt5', '0.10196') addSampleWeight(samples, 'QCD_MU', 'QCD_Pt-300to470_MuEnrichedPt5_ext3', '0.10196') ###EXT w1=str(getEventSumw(directory,'QCD_Pt-300to470_MuEnrichedPt5','nanoLatino_')) w2=str(getEventSumw(directory,'QCD_Pt-300to470_MuEnrichedPt5_ext3','nanoLatino_')) totalw=str(float(w1)+float(w2)) addSampleWeight(samples,'QCD_MU','QCD_Pt-300to470_MuEnrichedPt5',w1+"/"+totalw) addSampleWeight(samples,'QCD_MU','QCD_Pt-300to470_MuEnrichedPt5_ext3',w2+"/"+totalw) ### addSampleWeight(samples, 'QCD_MU', 'QCD_Pt-470to600_MuEnrichedPt5', '0.08722') addSampleWeight(samples, 'QCD_MU', 'QCD_Pt-470to600_MuEnrichedPt5_ext1', '0.08722') ###EXT w1=str(getEventSumw(directory,'QCD_Pt-470to600_MuEnrichedPt5','nanoLatino_')) w2=str(getEventSumw(directory,'QCD_Pt-470to600_MuEnrichedPt5_ext1','nanoLatino_')) totalw=str(float(w1)+float(w2)) addSampleWeight(samples,'QCD_MU','QCD_Pt-470to600_MuEnrichedPt5',w1+"/"+totalw) addSampleWeight(samples,'QCD_MU','QCD_Pt-470to600_MuEnrichedPt5_ext1',w2+"/"+totalw) ### addSampleWeight(samples, 'QCD_MU', 'QCD_Pt-600to800_MuEnrichedPt5', '0.13412') addSampleWeight(samples, 'QCD_MU', 'QCD_Pt-800to1000_MuEnrichedPt5', '0.14552') addSampleWeight(samples, 'QCD_MU', 'QCD_Pt-1000toInf_MuEnrichedPt5', '0.15544') addSampleWeight(samples, 'QCD_EM', 'QCD_Pt-15to20_EMEnriched', '0.0096*0.1101') addSampleWeight(samples, 'QCD_EM', 'QCD_Pt-15to20_EMEnriched_ext1', '0.0096*0.1101') ###EXT #w1=str(getEventSumw(directory,'QCD_Pt-15to20_EMEnriched','nanoLatino_')) #w2=str(getEventSumw(directory,'QCD_Pt-15to20_EMEnriched_ext1','nanoLatino_')) #totalw=str(float(w1)+float(w2)) #addSampleWeight(samples,'QCD_EM','QCD_Pt-15to20_EMEnriched',w1+"/"+totalw) #addSampleWeight(samples,'QCD_EM','QCD_Pt-15to20_EMEnriched_ext1',w2+"/"+totalw) ### addSampleWeight(samples, 'QCD_EM', 'QCD_Pt-20to30_EMEnriched', '0.008875251076') addSampleWeight(samples, 'QCD_EM', 'QCD_Pt-30to50_EMEnriched', '0.0470') addSampleWeight(samples, 'QCD_EM', 'QCD_Pt-50to80_EMEnriched', '0.100') addSampleWeight(samples, 'QCD_EM', 'QCD_Pt-50to80_EMEnriched_ext1', '0.100') ##EXT #w1=str(getEventSumw(directory,'QCD_Pt-50to80_EMEnriched','nanoLatino_')) #w2=str(getEventSumw(directory,'QCD_Pt-50to80_EMEnriched_ext1','nanoLatino_')) #totalw=str(float(w1)+float(w2)) #addSampleWeight(samples,'QCD_EM','QCD_Pt-50to80_EMEnriched',w1+"/"+totalw) #addSampleWeight(samples,'QCD_EM','QCD_Pt-50to80_EMEnriched_ext1',w2+"/"+totalw) ### addSampleWeight(samples, 'QCD_EM', 'QCD_Pt-80to120_EMEnriched', '0.1359064286') addSampleWeight(samples, 'QCD_EM', 'QCD_Pt-120to170_EMEnriched', '0.1396945073') addSampleWeight(samples, 'QCD_EM', 'QCD_Pt-170to300_EMEnriched', '0.1829736842') addSampleWeight(samples, 'QCD_EM', 'QCD_Pt-300toInf_EMEnriched', '0.15') samples['QCD_bcToE'] = { 'name' : #getSampleFiles(directory,'QCD_Pt_20to30_bcToE',False,'nanoLatino_') getSampleFiles(directory,'QCD_Pt_30to80_bcToE',False,'nanoLatino_') #+getSampleFiles(directory,'QCD_Pt_80to170_bcToE',False,'nanoLatino_') #+getSampleFiles(directory,'QCD_Pt_170to250_bcToE',False,'nanoLatino_') #+getSampleFiles(directory,'QCD_Pt_250toInf_bcToE',False,'nanoLatino_') , 'weight' : XSWeight+'*'+SFweight+'*'+METFilter_MC, 'FilesPerJob' : 20, } #samples['WW'] = { 'name' : getSampleFiles(directory,'WW-LO',False,'nanoLatino_') # , # 'weight' : XSWeight+'*'+SFweight+'*'+GenLepMatch+'*'+METFilter_MC, # 'FilesPerJob' : 5, # } #samples['WWToLNuQQ'] = { 'name' : getSampleFiles(directory,'WWToLNuQQ',False,'nanoLatino_') , # 'weight' : XSWeight+'*'+SFweight+'*'+GenLepMatch+'*'+METFilter_MC+'*'+LepWPweight , # } #def getEventSumw(directory,sample,prefix): #Wjets_w1=str(getEventSumw(directory,'WJetsToLNu','nanoLatino_')) #Wjets_w2=str(getEventSumw(directory,'WJetsToLNu_ext2','nanoLatino_')) #Wjets_totalw=str(float(Wjets_w1)+float(Wjets_w2)) #print "Wjets_w1="+Wjets_w1 #print "Wjets_w2="+Wjets_w2 #print "Wjets_totalw="+Wjets_totalw ########################################### ################## DATA ################### ########################################### samples['DATA'] = { 'name': [ ] , 'weight' : METFilter_DATA+'*'+LepWPCut , 'weights' : [ ], 'isData': ['all'], 'FilesPerJob' : 20, } #print samples['DATA'] for Run in DataRun : directory = treeBaseDir+CAMPAIGN_DATA+'/'+STEP_DATA for DataSet in DataSets : FileTarget = getSampleFiles(directory,DataSet+'_'+Run[1],True,'nanoLatino_') for iFile in FileTarget: #print(iFile) samples['DATA']['name'].append(iFile) samples['DATA']['weights'].append(DataTrig[DataSet])
b1bfe0cbfab8073e75cb7be278c8efa2c751956e
169edd2e971f78b261c78eb6e927efce7499237a
/2017_01_21_297/serializeAndDeserializeBT.py
dbaa31e137ab7e81e2b1f075f533908f61ec44c2
[]
no_license
wk633/crack_leetcode
ce75fc92160a5e618f9cd84f5a6ab4871021f17b
e8559773069447f9e986712c45f6a5a53eaeb123
refs/heads/master
2021-01-13T07:38:50.957328
2017-05-12T01:51:21
2017-05-12T01:51:21
78,284,395
0
0
null
null
null
null
UTF-8
Python
false
false
1,205
py
# Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Codec: def serialize(self, root): """Encodes a tree to a single string. :type root: TreeNode :rtype: str """ def preorder(node): if node: vals.append(str(node.val)) preorder(node.left) preorder(node.right) else: vals.append("#") vals = [] preorder(root) return " ".join(vals) def deserialize(self, data): """Decodes your encoded data to tree. :type data: str :rtype: TreeNode """ def dePreorder(): val = next(vals) if val == "#": return None root = TreeNode(val) root.left = dePreorder() root.right = dePreorder() return root print data vals = iter(data.split(" ")) return dePreorder() # Your Codec object will be instantiated and called as such: # codec = Codec() # codec.deserialize(codec.serialize(root))
a26332d09362043d07118787666ef90c13046967
b63142e8540cb30bb0c663332e29a4112721073e
/1112_set_mismatch.py
b9a4afe54d4b78dccd9dfe2c00c7e86f2356ed95
[]
no_license
HaydenInEdinburgh/LintCode
025bb2f0d75686097061de324c0fd292536dbb14
dbeae2bf631e57667d1415164d452d5ca2df7447
refs/heads/master
2023-08-18T19:52:54.561623
2021-10-06T21:46:50
2021-10-06T21:46:50
370,733,548
0
0
null
null
null
null
UTF-8
Python
false
false
658
py
class Solution: """ @param nums: an array @return: the number occurs twice and the number that is missing """ def findErrorNums(self, nums): # Write your code here if not nums: return cnt = {} for n in nums: cnt[n] = cnt.get(n, 0) +1 print(cnt) lost, dup = None, None for i in range(1, len(nums)+1): if i not in cnt: lost = i continue if cnt[i] > 1: dup = i return [dup, lost] if __name__ == '__main__': s = Solution() nums = [1, 1] print(s.findErrorNums(nums))
989a78a26e8477e2179a5074d77b7c51c2f41e38
b3a2beaab1ac676c96e93a48d4f35ff6ed6799d0
/anyex/exmo.py
04a6da12b6988532f22314b2b2c28247dceda6cd
[ "MIT", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
ttwishing/anyex
40c06cf34e4d8f96bb968e8b7be3d2da5e6023f8
cfd1f2f04ab992b790add4843aafff91e5773cbf
refs/heads/master
2020-05-23T12:07:58.615432
2019-05-15T05:09:46
2019-05-15T05:09:46
186,751,745
0
0
MIT
2019-05-15T04:57:08
2019-05-15T04:57:08
null
UTF-8
Python
false
false
24,105
py
# -*- coding: utf-8 -*- # PLEASE DO NOT EDIT THIS FILE, IT IS GENERATED AND WILL BE OVERWRITTEN: # https://github.com/anyex/anyex/blob/master/CONTRIBUTING.md#how-to-contribute-code from anyex.base.exchange import Exchange # ----------------------------------------------------------------------------- try: basestring # Python 3 except NameError: basestring = str # Python 2 import hashlib import json from anyex.base.errors import ExchangeError from anyex.base.errors import AuthenticationError from anyex.base.errors import InsufficientFunds from anyex.base.errors import InvalidOrder from anyex.base.errors import OrderNotFound from anyex.base.errors import ExchangeNotAvailable from anyex.base.errors import InvalidNonce class exmo (Exchange): def describe(self): return self.deep_extend(super(exmo, self).describe(), { 'id': 'exmo', 'name': 'EXMO', 'countries': ['ES', 'RU'], # Spain, Russia 'rateLimit': 350, # once every 350 ms ≈ 180 requests per minute ≈ 3 requests per second 'version': 'v1', 'has': { 'CORS': False, 'fetchClosedOrders': 'emulated', 'fetchOpenOrders': True, 'fetchOrder': 'emulated', 'fetchOrders': 'emulated', 'fetchOrderTrades': True, 'fetchOrderBooks': True, 'fetchMyTrades': True, 'fetchTickers': True, 'withdraw': True, }, 'urls': { 'logo': 'https://user-images.githubusercontent.com/1294454/27766491-1b0ea956-5eda-11e7-9225-40d67b481b8d.jpg', 'api': 'https://api.exmo.com', 'www': 'https://exmo.me', 'doc': [ 'https://exmo.me/en/api_doc', 'https://github.com/exmo-dev/exmo_api_lib/tree/master/nodejs', ], 'fees': 'https://exmo.com/en/docs/fees', }, 'api': { 'public': { 'get': [ 'currency', 'order_book', 'pair_settings', 'ticker', 'trades', ], }, 'private': { 'post': [ 'user_info', 'order_create', 'order_cancel', 'user_open_orders', 'user_trades', 'user_cancelled_orders', 'order_trades', 'required_amount', 'deposit_address', 'withdraw_crypt', 'withdraw_get_txid', 'excode_create', 'excode_load', 'wallet_history', ], }, }, 'fees': { 'trading': { 'maker': 0.2 / 100, 'taker': 0.2 / 100, }, 'funding': { 'withdraw': { 'BTC': 0.001, 'LTC': 0.01, 'DOGE': 1, 'DASH': 0.01, 'ETH': 0.01, 'WAVES': 0.001, 'ZEC': 0.001, 'USDT': 25, 'XMR': 0.05, 'XRP': 0.02, 'KICK': 350, 'ETC': 0.01, 'BCH': 0.001, }, 'deposit': { 'USDT': 15, 'KICK': 50, }, }, }, 'exceptions': { '40005': AuthenticationError, # Authorization error, incorrect signature '40009': InvalidNonce, # '40015': ExchangeError, # API function do not exist '40016': ExchangeNotAvailable, # Maintenance work in progress '40017': AuthenticationError, # Wrong API Key '50052': InsufficientFunds, '50054': InsufficientFunds, '50304': OrderNotFound, # "Order was not found '123456789'"(fetching order trades for an order that does not have trades yet) '50173': OrderNotFound, # "Order with id X was not found."(cancelling non-existent, closed and cancelled order) '50319': InvalidOrder, # Price by order is less than permissible minimum for self pair '50321': InvalidOrder, # Price by order is more than permissible maximum for self pair }, }) def fetch_markets(self): markets = self.publicGetPairSettings() keys = list(markets.keys()) result = [] for p in range(0, len(keys)): id = keys[p] market = markets[id] symbol = id.replace('_', '/') base, quote = symbol.split('/') result.append({ 'id': id, 'symbol': symbol, 'base': base, 'quote': quote, 'active': True, 'limits': { 'amount': { 'min': self.safe_float(market, 'min_quantity'), 'max': self.safe_float(market, 'max_quantity'), }, 'price': { 'min': self.safe_float(market, 'min_price'), 'max': self.safe_float(market, 'max_price'), }, 'cost': { 'min': self.safe_float(market, 'min_amount'), 'max': self.safe_float(market, 'max_amount'), }, }, 'precision': { 'amount': 8, 'price': 8, }, 'info': market, }) return result def fetch_balance(self, params={}): self.load_markets() response = self.privatePostUserInfo() result = {'info': response} currencies = list(self.currencies.keys()) for i in range(0, len(currencies)): currency = currencies[i] account = self.account() if currency in response['balances']: account['free'] = float(response['balances'][currency]) if currency in response['reserved']: account['used'] = float(response['reserved'][currency]) account['total'] = self.sum(account['free'], account['used']) result[currency] = account return self.parse_balance(result) def fetch_order_book(self, symbol, limit=None, params={}): self.load_markets() market = self.market(symbol) request = self.extend({ 'pair': market['id'], }, params) if limit is not None: request['limit'] = limit response = self.publicGetOrderBook(request) result = response[market['id']] return self.parse_order_book(result, None, 'bid', 'ask') def fetch_order_books(self, symbols=None, params={}): self.load_markets() ids = None if not symbols: ids = ','.join(self.ids) # max URL length is 2083 symbols, including http schema, hostname, tld, etc... if len(ids) > 2048: numIds = len(self.ids) raise ExchangeError(self.id + ' has ' + str(numIds) + ' symbols exceeding max URL length, you are required to specify a list of symbols in the first argument to fetchOrderBooks') else: ids = self.market_ids(symbols) ids = ','.join(ids) response = self.publicGetOrderBook(self.extend({ 'pair': ids, }, params)) result = {} ids = list(response.keys()) for i in range(0, len(ids)): id = ids[i] symbol = self.find_symbol(id) result[symbol] = self.parse_order_book(response[id], None, 'bid', 'ask') return result def parse_ticker(self, ticker, market=None): timestamp = ticker['updated'] * 1000 symbol = None if market: symbol = market['symbol'] last = float(ticker['last_trade']) return { 'symbol': symbol, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'high': float(ticker['high']), 'low': float(ticker['low']), 'bid': float(ticker['buy_price']), 'bidVolume': None, 'ask': float(ticker['sell_price']), 'askVolume': None, 'vwap': None, 'open': None, 'close': last, 'last': last, 'previousClose': None, 'change': None, 'percentage': None, 'average': float(ticker['avg']), 'baseVolume': float(ticker['vol']), 'quoteVolume': float(ticker['vol_curr']), 'info': ticker, } def fetch_tickers(self, symbols=None, params={}): self.load_markets() response = self.publicGetTicker(params) result = {} ids = list(response.keys()) for i in range(0, len(ids)): id = ids[i] market = self.markets_by_id[id] symbol = market['symbol'] ticker = response[id] result[symbol] = self.parse_ticker(ticker, market) return result def fetch_ticker(self, symbol, params={}): self.load_markets() response = self.publicGetTicker(params) market = self.market(symbol) return self.parse_ticker(response[market['id']], market) def parse_trade(self, trade, market): timestamp = trade['date'] * 1000 return { 'id': str(trade['trade_id']), 'info': trade, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'symbol': market['symbol'], 'order': self.safe_string(trade, 'order_id'), 'type': None, 'side': trade['type'], 'price': float(trade['price']), 'amount': float(trade['quantity']), 'cost': self.safe_float(trade, 'amount'), } def fetch_trades(self, symbol, since=None, limit=None, params={}): self.load_markets() market = self.market(symbol) response = self.publicGetTrades(self.extend({ 'pair': market['id'], }, params)) return self.parse_trades(response[market['id']], market, since, limit) def fetch_my_trades(self, symbol=None, since=None, limit=None, params={}): self.load_markets() request = {} market = None if symbol is not None: market = self.market(symbol) request['pair'] = market['id'] response = self.privatePostUserTrades(self.extend(request, params)) if market is not None: response = response[market['id']] return self.parse_trades(response, market, since, limit) def create_order(self, symbol, type, side, amount, price=None, params={}): self.load_markets() prefix = (type + '_') if (type == 'market') else '' market = self.market(symbol) if (type == 'market') and(price is None): price = 0 request = { 'pair': market['id'], 'quantity': self.amount_to_string(symbol, amount), 'type': prefix + side, 'price': self.price_to_precision(symbol, price), } response = self.privatePostOrderCreate(self.extend(request, params)) id = self.safe_string(response, 'order_id') timestamp = self.milliseconds() amount = float(amount) price = float(price) status = 'open' order = { 'id': id, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'lastTradeTimestamp': None, 'status': status, 'symbol': symbol, 'type': type, 'side': side, 'price': price, 'cost': price * amount, 'amount': amount, 'remaining': amount, 'filled': 0.0, 'fee': None, 'trades': None, } self.orders[id] = order return self.extend({'info': response}, order) def cancel_order(self, id, symbol=None, params={}): self.load_markets() response = self.privatePostOrderCancel({'order_id': id}) if id in self.orders: self.orders[id]['status'] = 'canceled' return response def fetch_order(self, id, symbol=None, params={}): self.load_markets() try: response = self.privatePostOrderTrades({ 'order_id': str(id), }) return self.parse_order(response) except Exception as e: if isinstance(e, OrderNotFound): if id in self.orders: return self.orders[id] raise OrderNotFound(self.id + ' fetchOrder order id ' + str(id) + ' not found in cache.') def fetch_order_trades(self, id, symbol=None, since=None, limit=None, params={}): market = None if symbol is not None: market = self.market(symbol) response = self.privatePostOrderTrades({ 'order_id': str(id), }) return self.parse_trades(response, market, since, limit) def update_cached_orders(self, openOrders, symbol): # update local cache with open orders for j in range(0, len(openOrders)): id = openOrders[j]['id'] self.orders[id] = openOrders[j] openOrdersIndexedById = self.index_by(openOrders, 'id') cachedOrderIds = list(self.orders.keys()) result = [] for k in range(0, len(cachedOrderIds)): # match each cached order to an order in the open orders array # possible reasons why a cached order may be missing in the open orders array: # - order was closed or canceled -> update cache # - symbol mismatch(e.g. cached BTC/USDT, fetched ETH/USDT) -> skip id = cachedOrderIds[k] order = self.orders[id] result.append(order) if not(id in list(openOrdersIndexedById.keys())): # cached order is not in open orders array # if we fetched orders by symbol and it doesn't match the cached order -> won't update the cached order if symbol is not None and symbol != order['symbol']: continue # order is cached but not present in the list of open orders -> mark the cached order as closed if order['status'] == 'open': order = self.extend(order, { 'status': 'closed', # likewise it might have been canceled externally(unnoticed by "us") 'cost': None, 'filled': order['amount'], 'remaining': 0.0, }) if order['cost'] is None: if order['filled'] is not None: order['cost'] = order['filled'] * order['price'] self.orders[id] = order return result def fetch_orders(self, symbol=None, since=None, limit=None, params={}): self.load_markets() response = self.privatePostUserOpenOrders(params) marketIds = list(response.keys()) orders = [] for i in range(0, len(marketIds)): marketId = marketIds[i] market = None if marketId in self.markets_by_id: market = self.markets_by_id[marketId] parsedOrders = self.parse_orders(response[marketId], market) orders = self.array_concat(orders, parsedOrders) self.update_cached_orders(orders, symbol) return self.filter_by_symbol_since_limit(self.orders, symbol, since, limit) def fetch_open_orders(self, symbol=None, since=None, limit=None, params={}): self.fetch_orders(symbol, since, limit, params) orders = self.filter_by(self.orders, 'status', 'open') return self.filter_by_symbol_since_limit(orders, symbol, since, limit) def fetch_closed_orders(self, symbol=None, since=None, limit=None, params={}): self.fetch_orders(symbol, since, limit, params) orders = self.filter_by(self.orders, 'status', 'closed') return self.filter_by_symbol_since_limit(orders, symbol, since, limit) def parse_order(self, order, market=None): id = self.safe_string(order, 'order_id') timestamp = self.safe_integer(order, 'created') if timestamp is not None: timestamp *= 1000 iso8601 = None symbol = None side = self.safe_string(order, 'type') if market is None: marketId = None if 'pair' in order: marketId = order['pair'] elif ('in_currency' in list(order.keys())) and('out_currency' in list(order.keys())): if side == 'buy': marketId = order['in_currency'] + '_' + order['out_currency'] else: marketId = order['out_currency'] + '_' + order['in_currency'] if (marketId is not None) and(marketId in list(self.markets_by_id.keys())): market = self.markets_by_id[marketId] amount = self.safe_float(order, 'quantity') if amount is None: amountField = 'in_amount' if (side == 'buy') else 'out_amount' amount = self.safe_float(order, amountField) price = self.safe_float(order, 'price') cost = self.safe_float(order, 'amount') filled = 0.0 trades = [] transactions = self.safe_value(order, 'trades') feeCost = None if transactions is not None: if isinstance(transactions, list): for i in range(0, len(transactions)): trade = self.parse_trade(transactions[i], market) if id is None: id = trade['order'] if timestamp is None: timestamp = trade['timestamp'] if timestamp > trade['timestamp']: timestamp = trade['timestamp'] filled += trade['amount'] if feeCost is None: feeCost = 0.0 # feeCost += trade['fee']['cost'] if cost is None: cost = 0.0 cost += trade['cost'] trades.append(trade) if timestamp is not None: iso8601 = self.iso8601(timestamp) remaining = None if amount is not None: remaining = amount - filled status = self.safe_string(order, 'status') # in case we need to redefine it for canceled orders if filled >= amount: status = 'closed' else: status = 'open' if market is None: market = self.get_market_from_trades(trades) feeCurrency = None if market is not None: symbol = market['symbol'] feeCurrency = market['quote'] if cost is None: if price is not None: cost = price * filled elif price is None: if filled > 0: price = cost / filled fee = { 'cost': feeCost, 'currency': feeCurrency, } return { 'id': id, 'datetime': iso8601, 'timestamp': timestamp, 'lastTradeTimestamp': None, 'status': status, 'symbol': symbol, 'type': 'limit', 'side': side, 'price': price, 'cost': cost, 'amount': amount, 'filled': filled, 'remaining': remaining, 'trades': trades, 'fee': fee, 'info': order, } def get_market_from_trades(self, trades): tradesBySymbol = self.index_by(trades, 'pair') symbols = list(tradesBySymbol.keys()) numSymbols = len(symbols) if numSymbols == 1: return self.markets[symbols[0]] return None def calculate_fee(self, symbol, type, side, amount, price, takerOrMaker='taker', params={}): market = self.markets[symbol] rate = market[takerOrMaker] cost = float(self.cost_to_precision(symbol, amount * rate)) key = 'quote' if side == 'sell': cost *= price else: key = 'base' return { 'type': takerOrMaker, 'currency': market[key], 'rate': rate, 'cost': float(self.fee_to_precision(symbol, cost)), } def withdraw(self, currency, amount, address, tag=None, params={}): self.load_markets() request = { 'amount': amount, 'currency': currency, 'address': address, } if tag is not None: request['invoice'] = tag result = self.privatePostWithdrawCrypt(self.extend(request, params)) return { 'info': result, 'id': result['task_id'], } def sign(self, path, api='public', method='GET', params={}, headers=None, body=None): url = self.urls['api'] + '/' + self.version + '/' + path if api == 'public': if params: url += '?' + self.urlencode(params) else: self.check_required_credentials() nonce = self.nonce() body = self.urlencode(self.extend({'nonce': nonce}, params)) headers = { 'Content-Type': 'application/x-www-form-urlencoded', 'Key': self.apiKey, 'Sign': self.hmac(self.encode(body), self.encode(self.secret), hashlib.sha512), } return {'url': url, 'method': method, 'body': body, 'headers': headers} def nonce(self): return self.milliseconds() def handle_errors(self, httpCode, reason, url, method, headers, body): if not isinstance(body, basestring): return # fallback to default error handler if len(body) < 2: return # fallback to default error handler if (body[0] == '{') or (body[0] == '['): response = json.loads(body) if 'result' in response: # # {"result":false,"error":"Error 50052: Insufficient funds"} # success = self.safe_value(response, 'result', False) if isinstance(success, basestring): if (success == 'true') or (success == '1'): success = True else: success = False if not success: code = None message = self.safe_string(response, 'error') errorParts = message.split(':') numParts = len(errorParts) if numParts > 1: errorSubParts = errorParts[0].split(' ') numSubParts = len(errorSubParts) code = errorSubParts[1] if (numSubParts > 1) else errorSubParts[0] feedback = self.id + ' ' + self.json(response) exceptions = self.exceptions if code in exceptions: raise exceptions[code](feedback) else: raise ExchangeError(feedback)
5969f9a3f58bcb9581bb2c8659c6b3ec621e71f5
995514f414eee6bbe9083ec39ecd3027cf9fd7d8
/3.2/14_mandelbrotTime.py
70eae2dba5c0725cca43753388faa48c6d600cd7
[]
no_license
j16949/Programming-in-Python-princeton
e02376ebb714264a1329aacad30347e4ae79f909
392391b98815cc1ae2b49e1057a10bc5b37e801f
refs/heads/master
2023-08-08T11:52:04.362780
2023-08-01T13:02:41
2023-08-01T13:02:41
313,943,770
0
0
null
null
null
null
UTF-8
Python
false
false
2,391
py
#----------------------------------------------------------------------- # mandelbrot.py #----------------------------------------------------------------------- import sys import stddraw from color import Color from picture import Picture import complex as com from stopwatch import Stopwatch #----------------------------------------------------------------------- # Compute the Mandelbrot iteration sequence starting at z0, and # return the number of iterations for which the magnitude stays less # than 2, up to the limit. def mandel(z0, limit): z = z0 for t in range(limit): if abs(z) > 2.0: return t z = z * z + z0 return limit #----------------------------------------------------------------------- # Accept float command-line arguments xc, yc, and size that specify # the center and size of a square region of interest. Make a digital # image showing the result of sampling the Mandelbrot set in that # region at a 512*512 grid of equally spaced pixels. Color each pixel # with a grayscale value that is determined by counting the number of # iterations before the Mandelbrot sequence for the corresponding # complex number grows past 2.0, up to 255. MAX = 255 #n = int(sys.argv[1]) #xc = float(sys.argv[2]) #yc = float(sys.argv[3]) #size = float(sys.argv[4]) n = 512 xc = -.5 yc = 0 size = 2 w1 = Stopwatch() pic = Picture(n, n) for col in range(n): for row in range(n): x0 = xc - (size / 2) + (size * col / n) y0 = yc - (size / 2) + (size * row / n) z0 = complex(x0, y0) gray = MAX - mandel(z0, MAX) color = Color(gray, gray, gray) pic.set(col, n-1-row, color) print(w1.elapsedTime()) w2 = Stopwatch() pic = Picture(n, n) for col in range(n): for row in range(n): x0 = xc - (size / 2) + (size * col / n) y0 = yc - (size / 2) + (size * row / n) z0 = com.Complex(x0, y0) gray = MAX - mandel(z0, MAX) color = Color(gray, gray, gray) pic.set(col, n-1-row, color) print(w2.elapsedTime()) #stddraw.setCanvasSize(n, n) #stddraw.picture(pic) #stddraw.show() #----------------------------------------------------------------------- #bai@ubuntu:~/pythonProject/princeton/3.2$ python3 14_mandelbrotTime.py #pygame 1.9.6 #Hello from the pygame community. https://www.pygame.org/contribute.html #5.372214317321777 #37.89339089393616
8f90f0f74e299c60c30453d312fc3d1aba364719
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03013/s183344003.py
a8fdb4a198d1b4d4846bb4b99b7d9b53647648b2
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
326
py
N, M = map(int, input().split()) X = [int(input()) for _ in range(M)] MOD = 10 ** 9 + 7 dp = [-1] * (N + 1) dp[0] = 1 for i in range(M): dp[X[i]] = 0 for i in range(N): if dp[i + 1] < 0: if i == 0: dp[i + 1] = dp[i] else: dp[i + 1] = (dp[i] + dp[i - 1]) % MOD print(dp[-1])
355aefac356edd3ca3cfe23b9b410776566b9d49
ff66dfb302dfdc5a519787cea8ad0ccfc2264334
/python/ex6_support_vector_machines/ex6_spam.py
2a5930371e0659dc42529d963af53411ce0ba45b
[ "MIT" ]
permissive
ashu-vyas-github/AndrewNg_MachineLearning_Coursera
1c2d50e6a44e8e673203bf06a3f0165cac0a240e
1be5124b07df61f7295dd1c5151b86b061bf50fc
refs/heads/main
2023-07-11T14:30:52.057125
2021-08-17T06:04:30
2021-08-17T06:04:30
388,360,602
0
0
null
null
null
null
UTF-8
Python
false
false
3,523
py
# Machine Learning Online Class # Exercise 6 | Spam Classification with SVMs # # Instructions # ------------ # # This file contains code that helps you get started on the # exercise. You will need to complete the following functions: # # gaussianKernel.m # dataset3Params.m # processEmail.m # emailFeatures.m # # For this exercise, you will not need to change any code in this file, # or any other files other than those mentioned above. # import re # import regular expressions to process emails import numpy from scipy.io import loadmat import svm_funcs # ==================== Part 1: Email Preprocessing ==================== print("\nPreprocessing sample email (emailSample1.txt)\n") # Extract Features with open('./emailSample1.txt') as fid: file_contents = fid.read() word_indices = svm_funcs.process_email(file_contents, False) # Print Stats print('-------------') print('Word Indices:') print('-------------') print(word_indices) # ==================== Part 2: Feature Extraction ==================== print("\nExtracting features from sample email (emailSample1.txt)\n") # Extract Features features = svm_funcs.email_features(word_indices) # Print Stats print("Length of feature vector: %d" % len(features)) print("Number of non-zero entries: %d" % sum(features > 0)) # =========== Part 3: Train Linear SVM for Spam Classification ======== # Load the Spam Email dataset # You will have X, y in your environment data = loadmat("./spamTrain.mat") x_train = data['X'].astype(float) y_train = data['y'] y_train = y_train.reshape(-1) num_examples, num_features = x_train.shape print("Spam example Ex.6. training #examples:", num_examples, "#features:", num_features) print("\nTraining Linear SVM (Spam Classification)") print("This may take 1 to 2 minutes...\n") reg_C = 0.1 model = svm_funcs.svm_train(svm_funcs.linear_kernel, x_train, y_train, reg_C, tol=1e-3, max_passes=20) train_pred = svm_funcs.svm_predict(model, x_train) # Compute the training accuracy train_acc = numpy.mean(train_pred == y_train) print("Training Accuracy: %.2f" % (train_acc*100)) # =================== Part 4: Test Spam Classification ================ # Load the test dataset # You will have Xtest, ytest in your environment data = loadmat("./spamTest.mat") x_test = data['Xtest'].astype(float) y_test = data['ytest'] y_test = y_test.reshape(-1) print("\nEvaluating the trained Linear SVM on a test set...") test_pred = svm_funcs.svm_predict(model, x_test) test_acc = numpy.mean(test_pred == y_test) print("\nTest Accuracy: %.2f" % (test_acc*100)) # ================= Part 5: Top Predictors of Spam ==================== # Sort the weights and obtin the vocabulary list # NOTE some words have the same weights, so their order might be different than in the text above idx = numpy.argsort(model['w']) top_idx = idx[-15:][::-1] vocab_list = svm_funcs.get_vocab_list() print("\nTop predictors of spam:") print("%-15s %-15s" % ('word', 'weight')) print("----" + " "*12 + "------") for word, w in zip(numpy.array(vocab_list)[top_idx], model['w'][top_idx]): print("%-15s %0.2f" % (word, w)) # # =================== Part 6: Try Your Own Emails ===================== filename = './emailSample1.txt' with open(filename) as fid: file_contents = fid.read() word_indices = svm_funcs.process_email(file_contents, verbose=False) x = svm_funcs.email_features(word_indices) p = svm_funcs.svm_predict(model, x) print("\nProcessed %s\nSpam Classification: %s" % (filename, 'spam' if p else 'not spam'))
84406411b9aca252144887dbe784d8a128e5029b
115ef7a9ffc88148b7439bd25ef3c97720be87e6
/Backtester_v2.0/2.0/correlation.py
421ae0d95b0fdcf95cf4f52eb0b2f350f8de07db
[ "MIT" ]
permissive
octicalpha/billions
387bc0db600dd97915be0cece710237ff626b86c
5465c527d614ae64789906197c1effe7ba94d373
refs/heads/master
2020-04-01T21:35:50.582694
2018-10-14T05:36:50
2018-10-14T05:36:50
153,664,919
0
3
null
2018-10-18T17:53:35
2018-10-18T17:53:34
null
UTF-8
Python
false
false
3,929
py
import pandas as pd import numpy as np import os import re from matplotlib import pyplot as plt import argparse class Corr(object): def __init__( self, pnl_dir_path, pnl_filepath, pos_dir_path, pos_filepath, range_ ): self.meta_info = { "pnl": { "dir_path": pnl_dir_path, "filepath": pnl_filepath, "range": 0 }, "pos": { "dir_path": pos_dir_path, "filepath": pos_filepath, "range": range_ } } self.pnl_df, self.pnl_se = self.get_sequences("pnl") self.pos_df, self.pos_se = self.get_sequences("pos") self.result_dict = { "PNL": self.get_corr_tuples(self.pnl_df, self.pnl_se), "POS": self.get_corr_tuples(self.pos_df, self.pos_se) } def get_sequences(self, scope): def get_filepaths(): p = re.compile(".*_"+scope+".csv") all_names = os.listdir(dir_path) filenames = sum([p.findall(s) for s in all_names], []) return [os.path.join(dir_path, s) for s in filenames] def get_se(filepath): p = re.compile(".*/(.*)_"+scope+".csv") df = pd.read_csv(filepath, index_col=0)[-range_:] se = df["CumPnL"] if scope == "pnl" else df.mean() se.name = p.findall(filepath)[0] return se meta = self.meta_info dir_path = meta[scope]["dir_path"] pivot_filepath = meta[scope]["filepath"] range_ = meta[scope]["range"] filepaths = get_filepaths() pivot_se = get_se(pivot_filepath) ses = [get_se(filepath) for filepath in filepaths] df = pd.concat(ses, axis=1).drop([pivot_se.name], axis=1) return df, pivot_se def get_corr_tuples(self, sequence_df, pivot_se): def calc_corr(name): ses = [pivot_se, sequence_df[name]] df = pd.concat(ses, axis=1).dropna() corr_mat = np.corrcoef(df[pivot_se.name], df[name]) return corr_mat[1, 0] corr_dict = {name: calc_corr(name) for name in sequence_df.columns} names = sorted(sequence_df.columns, key=lambda name: corr_dict[name]) corr_tuples = [(name, corr_dict[name]) for name in names] return corr_tuples def display(self, scope): def draw_hist(): plt.hist(map(lambda x: x[1], corr_tuples)) plt.show() def _make_it_readable(t): name = t[0]+" "*(max_name_length-len(t[0])) corr =str(t[1]) return name + " | " + corr def print_report(): print(scope+" Max 5") for t in corr_tuples[:-6:-1]: print(_make_it_readable(t)) print(scope+" Min 5") for t in corr_tuples[:5]: print(_make_it_readable(t)) corr_tuples = self.result_dict[scope] max_name_length = max(map(lambda x: len(x[0]), corr_tuples)) draw_hist() print_report() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--pnl_dir', type=str) parser.add_argument('--pnlfile', type=str) parser.add_argument('--pos_dir', type=str) parser.add_argument('--posfile', type=str) parser.add_argument('--range', type=int) args = parser.parse_args() INTERVAL = args.interval PNL_DIR_PATH = args.pnl_dir PNL_FILEPATH = args.pnlfile POS_DIR_PATH = args.pos_dir POS_FILEPATH = args.posfile RANGE = args.range corr = Corr(PNL_DIR_PATH, PNL_FILEPATH, POS_DIR_PATH, POS_FILEPATH, RANGE) corr.display("PNL") corr.display("POS")
062d988ee4c6b9c74fee068ea1501c5cbc67ff6f
942ee5e8d54e8ebe9c5c841fbfdd1da652946944
/2501-3000/2518.Number of Great Partitions.py
cb48ab1fc9ca60491f8fa5cb5332230e804326f0
[]
no_license
kaiwensun/leetcode
0129c174457f32887fbca078fb448adce46dd89d
6b607f4aae3a4603e61f2e2b7480fdfba1d9b947
refs/heads/master
2023-08-31T07:30:50.459062
2023-08-27T07:59:16
2023-08-27T07:59:16
57,526,914
69
9
null
2023-08-20T06:34:41
2016-05-01T05:37:29
Python
UTF-8
Python
false
false
814
py
from functools import cache MOD = 10 ** 9 + 7 class Solution: def countPartitions(self, nums: List[int], k: int) -> int: prefix_sum = [0] * len(nums) for i in range(len(nums)): prefix_sum[i] = nums[i] + prefix_sum[i - 1] if prefix_sum[-1] < k * 2: return 0 @cache def dp(i, need1, need2): if i < 0 and max(need1, need2) > 0: return 0 if max(need1, need2) > prefix_sum[i]: return 0 if need1 == need2 == 0: return pow(2, (i + 1), MOD) if need1 > need2: return dp(i, need2, need1) return (dp(i - 1, max(0, need1 - nums[i]), need2) + dp(i - 1, need1, max(0, need2 - nums[i]))) % MOD return dp(len(nums) - 1, k, k)
9c05be7ad041f9de5e1d1bce2dd31350714c4619
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/386/usersdata/353/92377/submittedfiles/ep1.py
10718f855550587ca2a4c168c199e31760a04b62
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
1,725
py
# -*- coding: utf-8 -*- ''' /**********************************************************/ /* Equipe: Igor Emanuel Lucas Farias, Victória Cruz Gouveia */ /* N ́umero de matriculas: 407553, 407582 */ /* Exercicio-Programa 1 -- Ra ́ızes de Equa ̧c~oes Quadr ́aticas */ /* ECI0007 ou EM0006 (EC/EM) -- 2017 -- Professor:Rafael */ /* Interpretador: Python vers~ao 3 */ /********************************************************** ''' #COMECE SEU CODIGO NA LINHA ABAIXO. def raiz2(x,epsilon): rn=x while True: rm=(1/2)*(rn + (x/rn)) if abs (rm-rn)<epsilon: return(rm) rn=rm def baskara(a,b,c): delta=(b**2) - 4*a*c if delta>=0: x1=((-b)+(raiz2(delta,epsilon)))/(2*a) x2=((-b)-(raiz2(delta,epsilon)))/(2*a) if delta>0: return('reais simples', '%2.0f'%x1, '%2.0f'%x2) elif delta==0: return('real dupla', '%2.0f'%x1, '%2.0f'%x2) else: delta=delta*(-1) x3=((raiz2(delta,epsilon))/(2*a)) x1=((-b)/(2*a)) x2=((-b)/(2*a)) return('complexas', complex('%4.0f'%x1,'%4.0f'%x3), complex('%4.0f'%x2,'%4.0f'%x3)) epsilon=float(input('Digite o epsilon de controle: ')) nequacoes=int(input('Digite o número de equações: ')) for equação in range(0,nequacoes,1): a=float(input('Digite o a da equação: ')) b=float(input('Digite o b da equação: ')) c=float(input('Digite o c da equação: ')) if a!=0: print('%.2f'%a), print('%.2f'%b), print('%.2f'%c), print(baskara(a,b,c)) else: print('***ERRO: equação não é do segundo grau! ***')
8843b68fa4debf3686b1f6037b8afaea4ee71840
b739fefa06d46a60fe053f7fe0fe2c62a52242b2
/pages/admin/edit_news_page.py
1417cc238ade39fddacc51eaa0b28d1870ddfc0f
[]
no_license
icorso/gkr-web-tests
c59d3b0f7e371e887c6699cd09b6a87a71dd762e
fdf25ad700d75230f1af74b646a6a8a18f3d0b18
refs/heads/master
2021-01-13T05:15:37.913759
2017-02-08T07:44:04
2017-02-08T07:44:04
81,296,963
0
0
null
null
null
null
UTF-8
Python
false
false
923
py
# coding=utf-8 from pages import page, Input, Checkbox, BasePage, BaseElement, By from pages.gkr_page import GkrPage @page(u"Форма редактирования новости", By.XPATH, "//form[..//child::*[contains(text(),'Редактирование новости')]]") class EditNewsPage(GkrPage): TITLE = BaseElement("Поле 'Заголовок новости'", By.ID, "title") DESC = BaseElement("Поле 'Текст новости'", By.ID, "text") PUBLISH_DATE = Input("Поле 'Дата создания'", By.XPATH, ".//*[child::*[contains(text(),'Дата')]]") IS_PUBLISHED = Checkbox("Чекбокс 'Опубликовать'", By.XPATH, ".//input[@type='checkbox']") SUBMIT = BaseElement("Кнопка 'Создать'", By.XPATH, ".//button[@type='submit']") ERROR = BaseElement("Сообщение об ошибке", By.XPATH, ".//span[contains(@style,'ff0000')]")
dad102cb3faea7b8d1d9c97f542f4ce326fe7d2f
3c44ddbe867d953a5f27c8c073e1ea5e995b5873
/experiments/experiment_1/debugger.py
7a9f1bcd3dee99eca66c48d12ca62b8f83a43330
[]
no_license
cair/deep-warehouse
37f6a3510638b36c276abb62b6b770d0ba6186af
93cb7329c28733083b48ab6afd3de91676852175
refs/heads/master
2022-03-10T16:45:59.553325
2022-02-20T17:28:19
2022-02-20T17:28:19
167,932,576
5
0
null
null
null
null
UTF-8
Python
false
false
1,279
py
import sys from deep_logistics.scheduler import OnDemandScheduler from deep_logistics.spawn_strategy import LocationSpawnStrategy from experiments.experiment_3.state_representations import State0 sys.path.append("/home/per/GIT/deep-logistics") sys.path.append("/home/per/IdeaProjects/deep_logistics") sys.path.append("/home/per/GIT/code/deep_logistics") sys.path.append("/root") from deep_logistics.environment import Environment from deep_logistics.agent import InputAgent if __name__ == "__main__": env = Environment( height=5, width=5, depth=3, ups=None, ticks_per_second=1, taxi_n=1, taxi_agent=InputAgent, taxi_respawn=False, taxi_control="constant", scheduler=OnDemandScheduler, delivery_locations=None, spawn_strategy=LocationSpawnStrategy, graphics_render=True, graphics_tile_height=64, graphics_tile_width=64 ) env.deploy_agents() env.task_assignment() state = State0(env) agent = env.agents[0] def on_event(): env.update() y = state.generate(agent) print(" - ".join([str(x) for x in y])) agent.add_event_callback(on_event) while True: agent.automate() env.render()
a71cc98489fc1998a280603110b534f157129380
1a1b7f607c5e0783fd1c98c8bcff6460e933f09a
/core/charge/charge_types.py
6f4f6bbf937df689e1cbbdc057d1a0b96b383e91
[]
no_license
smrmohammadi/freeIBS
14fb736fcadfaea24f0acdafeafd2425de893a2d
7f612a559141622d5042614a62a2580a72a9479b
refs/heads/master
2021-01-17T21:05:19.200916
2014-03-17T03:07:15
2014-03-17T03:07:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,648
py
from core.charge.internet_charge import InternetCharge from core.charge.voip_charge import VoipCharge from core.charge.internet_charge_rule import InternetChargeRule from core.charge.voip_charge_rule import VoipChargeRule from core.lib.time_lib import * from core.ibs_exceptions import * def getChargeClassForType(_type): if _type=="Internet": return InternetCharge elif _type=="VoIP": return VoipCharge else: raise IBSException(errorText("CHARGES","INVALID_CHARGE_TYPE")%_type) def getRulesTable(_type): """ return table that rules of _type charge_obj is available there rule tables are diffrent based on charge type """ if _type=="Internet": return "internet_charge_rules" elif _type=="VoIP": return "voip_charge_rules" else: raise IBSException(errorText("CHARGES","INVALID_CHARGE_TYPE")%_type) def getChargeRuleObjForType(_type,rule_info,charge_obj,day_of_weeks,ports): if _type=="Internet": return InternetChargeRule(rule_info["charge_rule_id"],charge_obj,rule_info["cpm"],rule_info["cpk"],day_of_weeks,\ rule_info["start_time"],rule_info["end_time"],rule_info["bandwidth_limit_kbytes"],\ rule_info["bw_transmit_leaf_id"],rule_info["bw_receive_leaf_id"],rule_info["assumed_kps"],\ rule_info["ras_id"],ports) elif _type=="VoIP": return VoipChargeRule(rule_info["charge_rule_id"],charge_obj,\ day_of_weeks,rule_info["start_time"],rule_info["end_time"], \ rule_info["tariff_id"],rule_info["ras_id"],ports) else: raise IBSException(errorText("CHARGES","INVALID_CHARGE_TYPE")%_type)
[ "farshad_kh" ]
farshad_kh
6b8ead12bbffd5a38cf2d2bff5bce335c95ee51f
1bd14e051251d08393731c03ccfb37a324227e1c
/troposphere_mate/elasticbeanstalk.py
288cd4e0855ebe72cb5021cdb0fc981f760b6594
[ "MIT" ]
permissive
tsuttsu305/troposphere_mate-project
f04bb6a3d137be3e265652c626008edfbb670b55
15ee94cc913efb32bc991979efcad943c992074c
refs/heads/master
2023-06-07T15:07:47.041944
2021-07-05T02:02:00
2021-07-05T02:02:00
285,152,616
0
0
MIT
2020-08-05T02:08:01
2020-08-05T02:08:00
null
UTF-8
Python
false
false
10,323
py
# -*- coding: utf-8 -*- """ This code is auto generated from troposphere_mate.code_generator.__init__.py scripts. """ import sys if sys.version_info.major >= 3 and sys.version_info.minor >= 5: # pragma: no cover from typing import Union, List, Any import troposphere.elasticbeanstalk from troposphere.elasticbeanstalk import ( ApplicationResourceLifecycleConfig as _ApplicationResourceLifecycleConfig, ApplicationVersionLifecycleConfig as _ApplicationVersionLifecycleConfig, MaxAgeRule as _MaxAgeRule, MaxCountRule as _MaxCountRule, OptionSettings as _OptionSettings, SourceBundle as _SourceBundle, SourceConfiguration as _SourceConfiguration, Tags as _Tags, Tier as _Tier, ) from troposphere import Template, AWSHelperFn from troposphere_mate.core.mate import preprocess_init_kwargs, Mixin from troposphere_mate.core.sentiel import REQUIRED, NOTHING class MaxAgeRule(troposphere.elasticbeanstalk.MaxAgeRule, Mixin): def __init__(self, title=None, DeleteSourceFromS3=NOTHING, # type: bool Enabled=NOTHING, # type: bool MaxAgeInDays=NOTHING, # type: int **kwargs): processed_kwargs = preprocess_init_kwargs( title=title, DeleteSourceFromS3=DeleteSourceFromS3, Enabled=Enabled, MaxAgeInDays=MaxAgeInDays, **kwargs ) super(MaxAgeRule, self).__init__(**processed_kwargs) class MaxCountRule(troposphere.elasticbeanstalk.MaxCountRule, Mixin): def __init__(self, title=None, DeleteSourceFromS3=NOTHING, # type: bool Enabled=NOTHING, # type: bool MaxCount=NOTHING, # type: int **kwargs): processed_kwargs = preprocess_init_kwargs( title=title, DeleteSourceFromS3=DeleteSourceFromS3, Enabled=Enabled, MaxCount=MaxCount, **kwargs ) super(MaxCountRule, self).__init__(**processed_kwargs) class ApplicationVersionLifecycleConfig(troposphere.elasticbeanstalk.ApplicationVersionLifecycleConfig, Mixin): def __init__(self, title=None, MaxAgeRule=NOTHING, # type: _MaxAgeRule MaxCountRule=NOTHING, # type: _MaxCountRule **kwargs): processed_kwargs = preprocess_init_kwargs( title=title, MaxAgeRule=MaxAgeRule, MaxCountRule=MaxCountRule, **kwargs ) super(ApplicationVersionLifecycleConfig, self).__init__(**processed_kwargs) class SourceBundle(troposphere.elasticbeanstalk.SourceBundle, Mixin): def __init__(self, title=None, S3Bucket=REQUIRED, # type: Union[str, AWSHelperFn] S3Key=REQUIRED, # type: Union[str, AWSHelperFn] **kwargs): processed_kwargs = preprocess_init_kwargs( title=title, S3Bucket=S3Bucket, S3Key=S3Key, **kwargs ) super(SourceBundle, self).__init__(**processed_kwargs) class SourceConfiguration(troposphere.elasticbeanstalk.SourceConfiguration, Mixin): def __init__(self, title=None, ApplicationName=REQUIRED, # type: Union[str, AWSHelperFn] TemplateName=REQUIRED, # type: Union[str, AWSHelperFn] **kwargs): processed_kwargs = preprocess_init_kwargs( title=title, ApplicationName=ApplicationName, TemplateName=TemplateName, **kwargs ) super(SourceConfiguration, self).__init__(**processed_kwargs) class ApplicationResourceLifecycleConfig(troposphere.elasticbeanstalk.ApplicationResourceLifecycleConfig, Mixin): def __init__(self, title=None, ServiceRole=NOTHING, # type: Union[str, AWSHelperFn] VersionLifecycleConfig=NOTHING, # type: _ApplicationVersionLifecycleConfig **kwargs): processed_kwargs = preprocess_init_kwargs( title=title, ServiceRole=ServiceRole, VersionLifecycleConfig=VersionLifecycleConfig, **kwargs ) super(ApplicationResourceLifecycleConfig, self).__init__(**processed_kwargs) class OptionSettings(troposphere.elasticbeanstalk.OptionSettings, Mixin): def __init__(self, title=None, Namespace=REQUIRED, # type: Union[str, AWSHelperFn] OptionName=REQUIRED, # type: Union[str, AWSHelperFn] Value=REQUIRED, # type: Union[str, AWSHelperFn] ResourceName=NOTHING, # type: Union[str, AWSHelperFn] **kwargs): processed_kwargs = preprocess_init_kwargs( title=title, Namespace=Namespace, OptionName=OptionName, Value=Value, ResourceName=ResourceName, **kwargs ) super(OptionSettings, self).__init__(**processed_kwargs) class Application(troposphere.elasticbeanstalk.Application, Mixin): def __init__(self, title, # type: str template=None, # type: Template validation=True, # type: bool ApplicationName=NOTHING, # type: Union[str, AWSHelperFn] Description=NOTHING, # type: Union[str, AWSHelperFn] ResourceLifecycleConfig=NOTHING, # type: _ApplicationResourceLifecycleConfig **kwargs): processed_kwargs = preprocess_init_kwargs( title=title, template=template, validation=validation, ApplicationName=ApplicationName, Description=Description, ResourceLifecycleConfig=ResourceLifecycleConfig, **kwargs ) super(Application, self).__init__(**processed_kwargs) class ApplicationVersion(troposphere.elasticbeanstalk.ApplicationVersion, Mixin): def __init__(self, title, # type: str template=None, # type: Template validation=True, # type: bool ApplicationName=REQUIRED, # type: Union[str, AWSHelperFn] Description=NOTHING, # type: Union[str, AWSHelperFn] SourceBundle=NOTHING, # type: _SourceBundle **kwargs): processed_kwargs = preprocess_init_kwargs( title=title, template=template, validation=validation, ApplicationName=ApplicationName, Description=Description, SourceBundle=SourceBundle, **kwargs ) super(ApplicationVersion, self).__init__(**processed_kwargs) class ConfigurationTemplate(troposphere.elasticbeanstalk.ConfigurationTemplate, Mixin): def __init__(self, title, # type: str template=None, # type: Template validation=True, # type: bool ApplicationName=REQUIRED, # type: Union[str, AWSHelperFn] Description=NOTHING, # type: Union[str, AWSHelperFn] EnvironmentId=NOTHING, # type: Union[str, AWSHelperFn] OptionSettings=NOTHING, # type: List[_OptionSettings] PlatformArn=NOTHING, # type: Union[str, AWSHelperFn] SolutionStackName=NOTHING, # type: Union[str, AWSHelperFn] SourceConfiguration=NOTHING, # type: _SourceConfiguration **kwargs): processed_kwargs = preprocess_init_kwargs( title=title, template=template, validation=validation, ApplicationName=ApplicationName, Description=Description, EnvironmentId=EnvironmentId, OptionSettings=OptionSettings, PlatformArn=PlatformArn, SolutionStackName=SolutionStackName, SourceConfiguration=SourceConfiguration, **kwargs ) super(ConfigurationTemplate, self).__init__(**processed_kwargs) class Tier(troposphere.elasticbeanstalk.Tier, Mixin): def __init__(self, title=None, Name=NOTHING, # type: Any Type=NOTHING, # type: Any Version=NOTHING, # type: Union[str, AWSHelperFn] **kwargs): processed_kwargs = preprocess_init_kwargs( title=title, Name=Name, Type=Type, Version=Version, **kwargs ) super(Tier, self).__init__(**processed_kwargs) class Environment(troposphere.elasticbeanstalk.Environment, Mixin): def __init__(self, title, # type: str template=None, # type: Template validation=True, # type: bool ApplicationName=REQUIRED, # type: Union[str, AWSHelperFn] CNAMEPrefix=NOTHING, # type: Union[str, AWSHelperFn] Description=NOTHING, # type: Union[str, AWSHelperFn] EnvironmentName=NOTHING, # type: Union[str, AWSHelperFn] OptionSettings=NOTHING, # type: List[_OptionSettings] PlatformArn=NOTHING, # type: Union[str, AWSHelperFn] SolutionStackName=NOTHING, # type: Union[str, AWSHelperFn] Tags=NOTHING, # type: _Tags TemplateName=NOTHING, # type: Union[str, AWSHelperFn] Tier=NOTHING, # type: _Tier VersionLabel=NOTHING, # type: Union[str, AWSHelperFn] **kwargs): processed_kwargs = preprocess_init_kwargs( title=title, template=template, validation=validation, ApplicationName=ApplicationName, CNAMEPrefix=CNAMEPrefix, Description=Description, EnvironmentName=EnvironmentName, OptionSettings=OptionSettings, PlatformArn=PlatformArn, SolutionStackName=SolutionStackName, Tags=Tags, TemplateName=TemplateName, Tier=Tier, VersionLabel=VersionLabel, **kwargs ) super(Environment, self).__init__(**processed_kwargs)
ec5e8b11caa32c3c05e9e790c8640c5854a59efe
308953409e1a3b828ac49b7301c1e751cbf762cf
/suite_ERC113C/tst_Offline_Value_Verification_After_Export/test.py
0b61d6d28c8a932c2629a09e7db845a7ea357bd3
[]
no_license
asthagaur1/danfoss-automation
4dcc7d8f000917b67e4d6f46ff862a525ddcbc5e
213a99d3375889cd0e0c801421a50e9fe6085879
refs/heads/main
2023-03-31T23:26:56.956107
2021-04-01T08:52:37
2021-04-01T08:52:37
353,627,845
0
0
null
null
null
null
UTF-8
Python
false
false
404
py
def main(): excel = r"C:\gitworkspace\TestAutomation-AKCC5XX\Test_Automation\SourceCode\Test_Suites\suite_ERC113C\shared\testdata\Offline_Export_Verifying_Values.xls"; #Mapping with Global scripts for Function library and key action. source(findFile("scripts", "Functions.py")) source(findFile("scripts", "Actions.py")) source(findFile("scripts", "object_id.py")) keyAction(excel)
693bf5679a15c573e4ebe87b0a134e654d96be1a
bdda458001808a029b171c09286f022a1384d180
/crm/api/urls.py
4432114d1a628d5ae2367f08e965ea609d506cbb
[]
no_license
bianchimro/crm-django
4189f5c0c31f03d23a2b644a14403d63b8efdf0a
d8e4d18174cb050fd7a22d53fe8bb152e6e43120
refs/heads/master
2021-04-27T15:15:28.219887
2018-02-22T16:51:00
2018-02-22T16:51:00
122,466,604
1
0
null
null
null
null
UTF-8
Python
false
false
387
py
from django.urls import path from .views import ExampleView, AziendaList, AziendaViewSet from rest_framework.routers import DefaultRouter router = DefaultRouter() router.register(r'aziende', AziendaViewSet) urlpatterns = [ path('example/', ExampleView.as_view(), name="example"), path('aziende_list/', AziendaList.as_view(), name="aziende_list"), ] urlpatterns += router.urls
8a86a57c6ba570a80e5a56773f4aacac0bdfff77
cc64b1b5deb4530a5bd3eaabd98ebd4daa2deea1
/Aulas/Exercícios-Mundo2/Aula014/Ex064.py
c503ec40e5b592f3dae6498fbbfd25ca252956e6
[ "MIT" ]
permissive
Sofista23/Aula1_Python
239b9920353138ff99d99dd0af66a4788f1cbb22
129132d977058ac6f23cc95c7bb8b55d8a1bb429
refs/heads/main
2023-09-01T23:55:20.529528
2021-10-13T23:19:33
2021-10-13T23:19:33
416,924,760
0
0
null
null
null
null
UTF-8
Python
false
false
235
py
n=0 s=0 q=0 while n != 999: n=int(input("Digite um número:")) if n != 999: s += n q += 1 print("A soma de todos os números é {0}.".format(s)) print("A quantidade de números digitados foi de {0}.".format(q))
ff25ffd31d796bc554c0a32e2113e547c0222a62
cbd9b8f2dbd692d74eba6e92465e5f1dc1a807b3
/ukpopulation/myedata.py
33de0fab035316ed548c79e4507c2972d4735391
[ "MIT" ]
permissive
geoadom/ukpopulation
5a99f02c06c2b76464df2508a8f01f0b9ab0a803
bfbd55097a4e9f458e2da6673a83576e37f5079b
refs/heads/master
2020-03-21T07:59:37.195042
2018-06-21T15:02:31
2018-06-21T15:02:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,297
py
""" MYEData - wrapper around Mid-Year Estimate data by LAD, SYoA and gender """ import pandas as pd import ukcensusapi.Nomisweb as Api import ukpopulation.utils as utils class MYEData: """ Functionality for downloading and collating UK mid-year estimate (MYE) data Nomisweb stores the data for the entire UK, from 1991-2016 inclusive """ # update as and when necessary (this is unlike (S)NPP where we query the data for the year range) # the data is stored differently at nomisweb (year is part of the query) MIN_YEAR = 1991 MAX_YEAR = 2016 def __init__(self, cache_dir=None): if cache_dir is None: cache_dir = utils.default_cache_dir() self.cache_dir = cache_dir self.data_api = Api.Nomisweb(self.cache_dir) # store as a dictionary keyed by year (lazy retrieval) self.data = {} def min_year(self): """ Returns the first year in the data """ return MYEData.MIN_YEAR def max_year(self): """ Returns the final year in the data """ return MYEData.MAX_YEAR # TODO functionality for easy aggregration to E/W/EW/S/GB/NI/UK def filter(self, years, geogs, ages=range(0,91), genders=[1,2]): """ Get MYE detailed data for a given year """ # ensure array inputs if isinstance(years, int): years = [years] if isinstance(geogs, str): geogs = [geogs] if isinstance(ages, int): ages = [ages] if isinstance(genders, int): genders = [genders] result = pd.DataFrame() for year in years: # ensure the data is loaded self.__fetch_data(year) ## ensure we return a copy! part = self.data[year][(self.data[year].GEOGRAPHY_CODE.isin(geogs)) & (self.data[year].C_AGE.isin(ages)) & (self.data[year].GENDER.isin(genders))].copy() part["PROJECTED_YEAR_NAME"] = year result = result.append(part) return result.reset_index(drop=True) def aggregate(self, years, geog_codes, categories, ages=range(0,91), genders=[1,2]): data = self.filter(years, geog_codes, ages, genders) # invert categories (they're the ones to aggregate, not preserve) return data.groupby(utils.check_and_invert(categories))["OBS_VALUE"].sum().reset_index() def __fetch_data(self, year): """ Gets Mid-year population estimate data for a given year Data is by single year of age by gender by local authority """ # if data already loaded return if year in self.data: return table_internal = "NM_2002_1" # 2016-based MYE query_params = { "gender": "1,2", "c_age": "101...191", "MEASURES": "20100", "select": "geography_code,gender,c_age,obs_value", "geography": "1879048193...1879048573,1879048583,1879048574...1879048582" } if year < MYEData.MIN_YEAR or year > MYEData.MAX_YEAR: raise ValueError("{} is outside the available years for MYE data ({}-{})".format(year, MIN_YEAR, MAX_YEAR)) query_params["date"] = "latest" if year < MYEData.MAX_YEAR: query_params["date"] += "MINUS" + str(2016-year) self.data[year] = self.data_api.get_data(table_internal, query_params) # renumber age so that 0 means [0,1) self.data[year].C_AGE -= 101 return self.data[year]
ddc2a74972b55f12dc91815381d50be81c7ebf36
ba0a2b0d2d1534443ea34320675aadfa378457b6
/Array/Q1267_Count Servers that Communicate.py
bd2da1840b785f2af80b49ee05d2babff826b118
[]
no_license
Luolingwei/LeetCode
73abd58af116f3ec59fd6c76f662beb2a413586c
79d4824879d0faed117eee9d99615cd478432a14
refs/heads/master
2021-08-08T17:45:19.215454
2021-06-17T17:03:15
2021-06-17T17:03:15
152,186,910
0
1
null
null
null
null
UTF-8
Python
false
false
513
py
# 思路: 计算每行每列的server个数,如果一个server与其他server连接,则该行或该列server个数大于1 class Solution: # O(mn) def countServers(self, grid): res=0 m,n=len(grid),len(grid[0]) row,col=list(map(sum,grid)),list(map(sum,zip(*grid))) for i in range(m): for j in range(n): if grid[i][j] and (row[i]>1 or col[j]>1): res+=1 return res a=Solution() print(a.countServers([[1,0],[0,1]]))
c7e969446f55baab789853c7141aee407cfb5de5
b2403817f9221ee3550130572a808194ef4f3fda
/Excersise/DiscoverMonk.py
d83e2599dd6f66c342a4d3eafec2a9d392354bbd
[]
no_license
xaviergoby/Python-Data-Structure
e962444ef5b1313c3facbf1fcc315af182b73a26
eaaf31ea98d63e812a75c1d6ecb8722b9c0cf142
refs/heads/master
2020-04-13T00:24:40.896592
2018-11-27T11:51:36
2018-11-27T11:51:36
162,844,732
1
0
null
2018-12-22T21:46:29
2018-12-22T21:46:29
null
UTF-8
Python
false
false
284
py
__author__ = 'Sanjay' def monk(n, args = []): someArray = range(0,50,10) for i in args: if i in someArray: print ("YES") else: print ("NO") if __name__ == '__main__': someList = range(0,100,10) monk(len(someList), someList)
8453de52904329d3aaf8fd34272d1308db93de74
7d283f0762d2f85b04148e5db5acebc44dbba606
/get_post_info_dl.py
89d24f3e55214c8c843896a14624df05bc0e6664
[]
no_license
Brandon-Valley/reddit_comp
50dcd3571be1116bebb607c54e105096078c161f
ec618dc12b007a670fb4cc879554c4cf41796b62
refs/heads/master
2022-01-10T19:18:18.042008
2019-06-02T18:30:11
2019-06-02T18:30:11
188,881,552
0
0
null
null
null
null
UTF-8
Python
false
false
3,408
py
import subprocess import json import file_system_utils # optional arguments: # -h, --help show this help message and exit # --directory DIRECTORY, -d DIRECTORY # Specifies the directory where posts will be downloaded # to # --NoDownload Just gets the posts and stores them in a file for # downloading later # --verbose, -v Verbose Mode # --quit, -q Auto quit afer the process finishes # --link link, -l link Get posts from link # --saved Triggers saved mode # --submitted Gets posts of --user # --upvoted Gets upvoted posts of --user # --log LOG FILE Takes a log file which created by itself (json files), # reads posts and tries downloading them again. # --subreddit SUBREDDIT [SUBREDDIT ...] # Triggers subreddit mode and takes subreddit's name # without r/. use "frontpage" for frontpage # --multireddit MULTIREDDIT # Triggers multireddit mode and takes multireddit's name # without m/ # --user redditor reddit username if needed. use "me" for current user # --search query Searches for given query in given subreddits # --sort SORT TYPE Either hot, top, new, controversial, rising or # relevance default: hot # --limit Limit default: unlimited # --time TIME_LIMIT Either hour, day, week, month, year or all. default: # all EXE_PATH = "C:/Users/Brandon/Documents/Personal_Projects/reddit_comp/bulk_downloader_for_reddit-1.6.5-windows/bulk-downloader-for-reddit.exe " LOG_FILES_SAVE_PATH = 'bulk_download_log_files' DEFAULT_SORT_TYPE = 'hot' def build_arg_str(num_posts, subreddit_l, sort_type = DEFAULT_SORT_TYPE): # build_subreddit_l_str subreddit_l_str = subreddit_l[0] for subreddit in subreddit_l[1:]: subreddit_l_str += '+' + subreddit args = [' --directory ' + LOG_FILES_SAVE_PATH, ' --subreddit ' + subreddit_l_str, ' --limit ' + str(num_posts), ' --sort ' + sort_type, ' --NoDownload' ] #build arg_str arg_str = '' for arg in args: arg_str += arg return arg_str def build_post_info_dl_from_json(): #get path to most recent json logfile newest_log_file_dir = file_system_utils.get_newest_file_path(LOG_FILES_SAVE_PATH + '/LOG_FILES') json_file_path = newest_log_file_dir + '/POSTS.json' post_info_dl = [] # read in json file with open(json_file_path) as json_file: data = json.load(json_file) # fill post_info_dl post_num = 1 while(str(post_num) in data): post_info_dl.append(data[str(post_num)][0]) post_num += 1 return post_info_dl def get_post_info_dl(num_posts, subreddit_list, quick_test = False): if quick_test == False: exe_arg_str = build_arg_str(num_posts, subreddit_list) cmd = EXE_PATH + exe_arg_str subprocess.call(cmd, shell=True) post_info_dl = build_post_info_dl_from_json() return post_info_dl # print( get_post_info_dl(4, ['videomemes', 'pics']))
4d432a747f4aa1931de0a032b8c48e1b17d77e38
b7add0d1b1effc50b27d3316fa5889a5227e5b19
/Micropython/PYCARD/tests/archieved/hall_encoder_test_2.py
30c908f586454c75ba6d4044967b71489fa1d5d2
[]
no_license
Woz4tetra/Atlas
efb83a7c7b2698bf8b36b023f7aa573cc38284f6
c7380868a9efef9d1594ed7aa87187f03a7e4612
refs/heads/master
2020-04-04T06:25:50.657631
2017-04-05T01:53:15
2017-04-05T01:53:15
50,269,756
3
1
null
null
null
null
UTF-8
Python
false
false
494
py
import pyb from objects import HallEncoder pin = "X11" mode = "" while mode != "e" and mode != "r": mode = input("Raw or encoder counts (r or e)?\n> ").lower() if mode == "e": encoder = HallEncoder(0, pin, 80, 100) while True: if encoder.recved_data(): print(encoder.enc_dist, encoder.hall_value) pyb.delay(100) elif mode == "r": pin_ref = pyb.ADC(pyb.Pin(pin, pyb.Pin.ANALOG)) while True: print(pin_ref.read()) pyb.delay(40)
81db93b7457b194f44a05dbeb19bfbb07cbf8c1a
6dedf9401746e934e87698f58eedb4631ea5f81b
/scrapy_demo/tesseract/demo.py
5fe50242cefbd8841af0687901b25feedf89c539
[]
no_license
2415970940/scrapy
0d03f9fe0cf121f637b7c5b03d328453c0ae35a7
5a1f4da0d92b3d80c1b95ed9fff0ab4bd02660bd
refs/heads/master
2020-03-23T13:13:50.282118
2018-08-02T09:13:24
2018-08-02T09:13:24
141,607,064
0
0
null
null
null
null
UTF-8
Python
false
false
317
py
import pytesseract from PIL import Image pytesseract.pytesseract.tesseract_cmd = r"G:\progamapp\Tesseract-OCR\tesseract.exe" tessdata_dir_config = '--tessdata-dir "G:\\progamapp\\Tesseract-OCR\\tessdata"' image = Image.open("test.png") text = pytesseract.image_to_string(image,config=tessdata_dir_config) print(text)
1639881041340218040dcde824de76ea4b03ae92
58e02b9b88d5aed5acb3f544d1f92114c5468973
/language/serene/training.py
4e0df59a56e9d4c509e71f18ad0ea42a19a095f3
[ "LicenseRef-scancode-generic-cla", "Apache-2.0" ]
permissive
alsuhr-c/language
bfb15e23b223c13c119cbb9840dc938571d0d7e0
2223b5c72a69d298f211c8d77bb7a2243af8fe49
refs/heads/master
2021-08-09T01:18:10.314001
2020-09-20T20:45:22
2020-09-20T20:45:22
221,727,017
0
0
Apache-2.0
2020-07-20T20:15:23
2019-11-14T15:18:07
Python
UTF-8
Python
false
false
31,036
py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Training manager for fever code.""" import json import os from absl import logging import dataclasses from language.serene import callbacks from language.serene import fever_tfds from language.serene import layers from language.serene import losses from language.serene import model from language.serene import preprocessing from language.serene import tokenizers from language.serene import util import numpy as np import tensorflow.compat.v2 as tf import tensorflow_datasets as tfds import tqdm from official.utils.misc import tpu_lib @dataclasses.dataclass class ModelConfig: """Typed parameters for model.""" fever_experiment_id: int model_checkpoint: Text dataset: Text buffer_size: int batch_size: int word_emb_size: int hidden_size: int learning_rate: float positive_class_weight: Optional[float] max_epochs: int dropout: float activation: Text use_batch_norm: bool # Model Choice: two_tower or one_tower (not implemented yet). model: Text # Preprocessing tokenizer: Text # EG: Convert strings to list of strings. text_encoder: Text # EG: Convert list of strings to integers. basic_lowercase: bool # Embedder + Contextualizer embedder: Text contextualizer: Text context_num_layers: int tied_encoders: bool bidirectional: bool bert_model_name: Text bert_max_seq_length: int bert_vocab_path: Text bert_model_path: Text bert_trainable: bool bert_dropout: float # Neural Module Configuration matcher: Text matcher_hidden_size: int projection_dim: int fever_dev_path: Text max_evidence: int max_claim_tokens: int max_evidence_tokens: int # Whether to include the title/sentence_id in evidence encoding. include_title: bool include_sentence_id: bool n_similar_negatives: int n_background_negatives: int scrape_type: Text include_not_enough_info: bool title_in_scoring: bool classify_claim: bool claim_loss_weight: float def validate(self): """Validate that the arguments to the config are correct, error if not.""" if self.tokenizer not in ['bert', 'basic']: raise ValueError(f'Invalid tokenizer: "{self.tokenizer}"') if self.text_encoder not in ['bert', 'basic']: raise ValueError(f'Invalid text encoder: "{self.text_encoder}"') if self.matcher not in layers.matcher_registry: raise ValueError(f'Invalid matcher: "{self.matcher}"') if self.contextualizer not in ['bert', 'rnn', 'lstm', 'gru']: raise ValueError(f'Invalid contextualizer: "{self.contextualizer}"') if self.model not in ['one_tower', 'two_tower']: raise ValueError(f'Invalid model: "{self.model}"') if self.bert_model_name not in ['base', 'large']: raise ValueError(f'Invalid bert model: "{self.bert_model_name}') if self.embedder not in ['classic_embedder', 'bert_embedder']: raise ValueError(f'Invalid embedder: "{self.embedder}"') @classmethod def from_dict(cls, params): return ModelConfig(**params) @classmethod def from_file(cls, file_path, overrides = None): with util.safe_open(file_path) as f: params: Dict[Text, Any] = json.load(f) if overrides is not None: params.update(overrides) return ModelConfig.from_dict(params) def save(self, file_path): with util.safe_open(file_path, 'w') as f: json.dump(self.asdict(), f) def asdict(self): return dataclasses.asdict(self) class Trainer: """Training wrapper around keras to manage vocab/saving/dataset creation. The primary methods of this class are: - train() - predict() - embed() - save() - load() The intended use of this is > trainer = Trainer(my_config) > trainer.train() The following methods are primarily for converting TFDS to tf.data.Dataset for keras training - _build_tokenizer() - _build_encoder() - _encode_and_batch() - _batch_dataset() - _encode_dataset() - _build_vocab() - _tokenize_example() These are utilities for embedding different TFDSs - embed_wiki_dataset() - embed_claim_dataset() The following methods deal with preparing the keras model for training - _compile(): Compile model uner right scope, create callbacks, glue losses to model - _build_callbacks(): Keras callbacks """ def __init__( self, model_config, debug = False, tpu = None, distribution_strategy = None, tb_log_dir = None): """Configure the trainer. Args: model_config: ModelConfig parameters for training debug: Enables certain debug behaviors like dataset subsampling tpu: The TPU to use or None otherwise distribution_strategy: Parallel training strategy tb_log_dir: The directory for Tensorboard to log to """ self._debug = debug if debug: logging.info('Debug mode enabled on trainer') self._tpu = tpu self._distribution_strategy = distribution_strategy self._tb_log_dir = tb_log_dir self._strategy: Optional[tf.distribute.Strategy] = None self._model_config = model_config self._vocab: Optional[List[Text]] = None self._vocab_stats: Dict[Text, Any] = {} self._class_stats: Dict[int, int] = {0: 0, 1: 0} # Whitespace tokenizer self._tokenizer: Optional[tokenizers.Tokenizer] = None self._encoder: Optional[preprocessing.FeverTextEncoder] = None self._model: Optional[tf.keras.Model] = None self._inner_model: Optional[tf.keras.Model] = None def save(self): """Persist the encoder and the model to disk. """ if self._model is None or self._encoder is None: raise ValueError('Model and encoder cannot be None') else: self._encoder.save_to_file( # This is a prefix, which converts to: mydir/text_encoder.tokens os.path.join(self._model_config.model_checkpoint, 'text_encoder')) self._model.save_weights( os.path.join(self._model_config.model_checkpoint, 'best_model.tf')) @classmethod def load(cls, model_checkpoint, model_config_overrides = None, **kwargs): """Load the model, its tokenizer, and weights from the checkpoint. Args: model_checkpoint: Checkpoint to restore from, from .save() model_config_overrides: Extra args for ModelConfig **kwargs: Passed through to trainer, used for overriding checkpoint Returns: A model in the same state as just before it was saved with .save() """ # pylint: disable=protected-access model_config = ModelConfig.from_file( os.path.join(model_checkpoint, 'model_config.json'), overrides=model_config_overrides) trainer = Trainer(model_config=model_config, **kwargs) trainer._tokenizer = trainer._build_tokenizer() encoder_path = os.path.join(model_checkpoint, 'text_encoder') if model_config.text_encoder == 'bert': trainer._encoder = preprocessing.BertTextEncoder.load_from_file( encoder_path) elif model_config.text_encoder == 'basic': trainer._encoder = preprocessing.BasicTextEncoder.load_from_file( encoder_path) else: raise ValueError('Invalid text encoder') trainer._compile() if trainer._model is None: raise ValueError('Model does not exist despite being compiled') trainer._model.load_weights(os.path.join(model_checkpoint, 'best_model.tf')) return trainer def _save_model_config(self): """Save only the Model configuration to disk.""" logging.info('Saving config to: %s/model_config.json', self._model_config.model_checkpoint) self._model_config.save( os.path.join(self._model_config.model_checkpoint, 'model_config.json')) def _save_encoder(self): """Save only the text encoder to disk.""" self._encoder.save_to_file( os.path.join(self._model_config.model_checkpoint, 'text_encoder')) @property def vocab_size(self): if self._encoder is None: raise ValueError('Model has not been build, so no vocab size') else: return self._encoder.vocab_size def _init_strategy(self): """Initialize the distribution strategy (e.g. TPU/GPU/Mirrored).""" if self._strategy is None: if self._tpu is not None: resolver = tpu_lib.tpu_initialize(self._tpu) self._strategy = tf.distribute.experimental.TPUStrategy(resolver) elif self._distribution_strategy is None or self._distribution_strategy == 'default': self._strategy = tf.distribute.get_strategy() elif self._distribution_strategy == 'cpu': self._strategy = tf.distribute.OneDeviceStrategy('/device:cpu:0') else: if self._distribution_strategy == 'mirrored': self._strategy = tf.distribute.MirroredStrategy() else: raise ValueError( f'Invalid distribution strategy="{self._distribution_strategy}"') def _build_tokenizer(self): """Build the correct tokenizer depending on model encoder. Returns: Tokenizer for model """ if self._model_config.tokenizer == 'basic': base_tokenizer = tfds.deprecated.text.Tokenizer() return tokenizers.ReservedTokenizer( tokenizer=base_tokenizer, reserved_re=preprocessing.SEPARATOR_RE) elif self._model_config.tokenizer == 'bert': return tokenizers.BertTokenizer( vocab_file=self._model_config.bert_vocab_path, do_lower_case=True) else: raise ValueError('Invalid tokenizer') def _build_encoder(self, vocab, tokenizer): """Build the encoder using the given vocab and tokenizer. Args: vocab: Vocab to build encoder from tokenizer: Tokenizer to build encoder from Returns: The built text encoder """ if self._model_config.text_encoder == 'basic': return preprocessing.BasicTextEncoder( vocab_list=vocab, tokenizer=tokenizer, lowercase=self._model_config.basic_lowercase, include_title=self._model_config.include_title, include_sentence_id=self._model_config.include_sentence_id, max_claim_tokens=self._model_config.max_claim_tokens, max_evidence_tokens=self._model_config.max_evidence_tokens, ) elif self._model_config.text_encoder == 'bert': return preprocessing.BertTextEncoder( tokenizer=tokenizer, max_seq_length=self._model_config.bert_max_seq_length, include_title=self._model_config.include_title, include_sentence_id=self._model_config.include_sentence_id, ) def _encode_and_batch(self, dataset, train=False, filter_claims=True, filter_evidence=True): """Convert a tensorflow dataset of unbatched, text examples to TF batches. Args: dataset: TF Dataset to transform train: Whether to encode as training dataset filter_claims: Whether to filter zero length claims filter_evidence: Whether to filter zero length evidence Returns: encoded and batched dataset for keras fit """ encoded = self._encode_dataset( dataset, filter_claims=filter_claims, filter_evidence=filter_evidence) if train: encoded = encoded.shuffle( self._model_config.buffer_size, reshuffle_each_iteration=False) batched = self._batch_dataset(encoded) return batched def _compile(self): """Compile the keras model using the correct scope.""" # pylint: disable=protected-access self._init_strategy() with self._strategy.scope(): if self._model_config.model == 'two_tower': module_model = model.TwoTowerRanker( self.vocab_size, activation=self._model_config.activation, matcher_name=self._model_config.matcher, word_emb_size=self._model_config.word_emb_size, hidden_size=self._model_config.hidden_size, dropout=self._model_config.dropout, use_batch_norm=self._model_config.use_batch_norm, contextualizer=self._model_config.contextualizer, context_num_layers=self._model_config.context_num_layers, bidirectional=self._model_config.bidirectional, tied_encoders=self._model_config.tied_encoders, embedder_name=self._model_config.embedder, matcher_hidden_size=self._model_config.matcher_hidden_size, bert_model_name=self._model_config.bert_model_name, bert_model_path=self._model_config.bert_model_path, bert_trainable=self._model_config.bert_trainable, bert_dropout=self._model_config.bert_dropout, projection_dim=self._model_config.projection_dim, classify_claim=self._model_config.classify_claim, ) self._inner_model = module_model # This hackery is necessary since keras doesn't handle dictionary inputs # well, so we have to manually specify input/output output shapes. Since # this is dependent on the model (e.g., bert vs other), let the encoder # yield this. inputs = self._encoder.compute_input_shapes() outputs = module_model(inputs) module_model.input_names = sorted(inputs.keys()) module_model._feed_input_names = sorted(inputs.keys()) module_model.output_names = sorted( ['evidence_matching', 'claim_classification']) self._model = tf.keras.Model(inputs=inputs, outputs=outputs) self._model.input_names = sorted(inputs.keys()) self._model._feed_input_names = sorted(inputs.keys()) self._model.output_names = sorted( ['evidence_matching', 'claim_classification']) self._model.summary(line_length=500) elif self._model_config.model == 'one_tower': raise NotImplementedError() else: raise ValueError('Invalid model') metrics = {} evidence_metrics = [ tf.keras.metrics.BinaryAccuracy(name='accuracy'), tf.keras.metrics.Precision(name='precision'), tf.keras.metrics.Recall(name='recall'), tf.keras.metrics.AUC(name='auc'), tf.keras.metrics.TruePositives(name='tp'), tf.keras.metrics.FalsePositives(name='fp'), tf.keras.metrics.TrueNegatives(name='tn'), tf.keras.metrics.FalsePositives(name='fn'), ] metrics['evidence_matching'] = evidence_metrics loss = {} loss['evidence_matching'] = losses.WeightedBinaryCrossentropyFromProbs( positive_class_weight=self._model_config.positive_class_weight) loss_weights = { 'evidence_matching': 1.0, 'claim_classification': self._model_config.claim_loss_weight } if self._model_config.classify_claim: # TODO(perodriguez): add claim classifier metrics claim_metrics = [ tf.keras.metrics.SparseCategoricalAccuracy(name='accuracy'), ] metrics['claim_classification'] = claim_metrics loss[ 'claim_classification'] = tf.keras.losses.SparseCategoricalCrossentropy( from_logits=False) else: loss['claim_classification'] = losses.ZeroLoss() metrics['claim_classification'] = [] self._model.compile( loss=loss, optimizer=tf.keras.optimizers.Adam(self._model_config.learning_rate), metrics=metrics, loss_weights=loss_weights, ) def train(self, *, epochs = None, steps_per_epoch = None, validation_steps = None): """Prepare the dataset, callbacks, and model, then train/save it. Args: epochs: The number of epochs to train for, if None then default to early stopping (useful for debugging) steps_per_epoch: How many training steps to take, if None default to normal training (useful for debugging) validation_steps: How many validation steps to take, if None defualt to normal training (useful for debugging) """ logging.info('Preparing model with config:\n%s', self._model_config) with util.log_time('Initial dataset read'): builder = fever_tfds.FeverEvidence( data_dir=self._model_config.dataset, n_similar_negatives=self._model_config.n_similar_negatives, n_background_negatives=self._model_config.n_background_negatives, train_scrape_type=self._model_config.scrape_type, include_not_enough_info=self._model_config.include_not_enough_info, title_in_scoring=self._model_config.title_in_scoring, ) # Cache here to prevent hitting remote fs again train_dataset = (builder.as_dataset(split='train')).cache() val_dataset = builder.as_dataset(split='validation').cache() if self._debug: train_dataset = train_dataset.take(1000) if self._debug: val_dataset = val_dataset.take(200) self._tokenizer = self._build_tokenizer() self._vocab = list(self._build_vocab(train_dataset)) self._encoder = self._build_encoder(self._vocab, self._tokenizer) train_batched = self._encode_and_batch(train_dataset, train=True) val_batched = self._encode_and_batch(val_dataset, train=False) # Cache the batch creation, but not the batchwise shuffle. train_batched = train_batched.cache().shuffle( 100, reshuffle_each_iteration=True).prefetch(tf.data.experimental.AUTOTUNE) # Cache the batched validation data. val_batched = val_batched.cache().prefetch(tf.data.experimental.AUTOTUNE) self._compile() model_callbacks = self._build_callbacks(val_batched) # Save enough to reconstruct anything except for the model. # The model itself is saved with the ModelCheckpoint callback. self._save_model_config() self._save_encoder() if epochs is None: epochs = self._model_config.max_epochs self._model.fit( train_batched, validation_data=val_batched, callbacks=model_callbacks, epochs=epochs, steps_per_epoch=steps_per_epoch, validation_steps=validation_steps) logging.info('Model Summary:\n%s', self._model.summary()) # First load the best model. logging.info('Loading best model weights') self._model.load_weights(self.model_weight_path) logging.info('Saving dev predictions from best model') self._save_dev_predictions(val_batched) @property def model_weight_path(self): return os.path.join(self._model_config.model_checkpoint, 'best_model.tf') def _save_dev_predictions(self, val_batched): """Save model predictions for the dev set. This is used to compute Fever F1 as stopping metric Args: val_batched: The batched validation set. """ unbatched = val_batched.unbatch() model_predictions = self._model.predict(val_batched) claim_probs = model_predictions['claim_classification'] evidence_probs = model_predictions['evidence_matching'] predictions = [] # Extra _ is the label, which we don't need for (ex, _), claim_prob, evidence_prob in tqdm.tqdm( zip(unbatched, claim_probs, evidence_probs), mininterval=5): predictions.append({ 'claim_prob': claim_prob.tolist(), 'evidence_prob': evidence_prob.tolist(), 'metadata': json.loads(ex['metadata'].numpy().decode('utf8')) }) pred_path = os.path.join(self._model_config.model_checkpoint, 'val_predictions.json') with util.safe_open(pred_path, 'w') as f: json.dump({'predictions': predictions}, f) def predict(self, examples): """Given examples in JSON format, predict evidence relevance. Args: examples: List of claim/evidence pairs to rank Returns: Scalar scores for each pair """ stacked = { 'claim_text': [], 'evidence_text': [], 'metadata': [], 'label': [], } for ex in examples: stacked['claim_text'].append(ex['claim_text']) stacked['evidence_text'].append(ex['evidence_text']) stacked['metadata'].append(ex['metadata']) stacked['label'].append(ex['label']) dataset = tf.data.Dataset.from_tensor_slices((stacked,)) batched_examples = self._encode_and_batch( dataset, filter_claims=False, filter_evidence=False) preds = [] for batch in batched_examples: # model.predict() is broken after model load so we have to do this # manually. preds.append(self._model(batch)) return np.vstack(preds).reshape(-1).tolist() def embed(self, examples, *, as_claim, as_evidence): # Checker .tolist() -> Any """Embed a list of evidence text. Args: examples: A list of evidence text to embed. as_claim: Whether to embed examples as claims as_evidence: Whether to embed examples as evidence Returns: A list of embeddings, one for each evidence text. """ stacked = { 'claim_text': [], 'evidence_text': [], 'metadata': [], 'label': [], } for text in examples: # Dummie value to make sure tokenizing works. if as_claim: stacked['claim_text'].append(text) else: stacked['claim_text'].append('a') if as_evidence: stacked['evidence_text'].append(text) else: stacked['evidence_text'].append('a') stacked['metadata'].append('') stacked['label'].append(tf.constant(0, dtype=tf.int64)) dataset = tf.data.Dataset.from_tensor_slices((stacked,)) batched_examples = self._encode_and_batch( dataset, filter_claims=False, filter_evidence=False) claim_preds = [] ev_preds = [] for batch in batched_examples: # model.predict() is broken after model load due to missing shapes, so # have to do our own batching/unbatching. inputs, _ = batch claim_encoding, ev_encoding = self._model( inputs, embed_claim=as_claim, embed_evidence=as_evidence) claim_preds.append(claim_encoding) ev_preds.append(ev_encoding) return np.vstack(claim_preds).tolist(), np.vstack(ev_preds).tolist() def embed_wiki_dataset(self, dataset): """Embed the wikipedia/evidence only dataset. Args: dataset: The wikipedia only dataset (e.g. wiki_tfds.py) Returns: Aligned wikipedia_urls, sentence_ids, and embeddings of model """ # map_fn and tf_map_fn transform the dataset to the same format as # tfds_evidence/the one the model expects def map_fn(text, wikipedia_url, sentence_id): return ('a', text, wikipedia_url, str(sentence_id), json.dumps({ 'sentence_id': int(sentence_id.numpy()), 'wikipedia_url': wikipedia_url.numpy().decode('utf8') })) def tf_map_fn(example): tensors = tf.py_function( map_fn, inp=[ example['text'], example['wikipedia_url'], example['sentence_id'] ], Tout=(tf.string, tf.string, tf.string, tf.string, tf.string)) return { 'claim_text': tensors[0], 'evidence_text': tensors[1], 'wikipedia_url': tensors[2], 'sentence_id': tensors[3], 'claim_label': tf.constant(0, dtype=tf.int64), 'evidence_label': tf.constant(0, dtype=tf.int64), 'metadata': tensors[4] } formatted_ds = dataset.map(tf_map_fn) batched_examples = self._encode_and_batch( formatted_ds, filter_claims=False, filter_evidence=False) preds = [] wikipedia_urls = [] sentence_ids = [] for batch in tqdm.tqdm(batched_examples, mininterval=5): # model.predict() is broken after model load due to missing shapes, so # have to do our own batching/unbatching. inputs, _ = batch _, ev_encoding = self._inner_model( inputs, embed_claim=False, embed_evidence=True) for m in inputs['metadata'].numpy(): key = json.loads(m.decode('utf8')) wikipedia_urls.append(key['wikipedia_url']) sentence_ids.append(key['sentence_id']) preds.append(ev_encoding) return np.array(wikipedia_urls), np.array(sentence_ids), np.vstack(preds) def embed_claim_dataset(self, dataset): """Embed the claim only dataset and save them with claim_ids. Args: dataset: The claims only dataset (e.g. claim_tfds.py) Returns: Aligned claim ids and embeddings from the model """ batched_examples = self._encode_and_batch( dataset, filter_claims=False, filter_evidence=False) claim_ids = [] embeddings = [] for batch in tqdm.tqdm(batched_examples, mininterval=5): # model.predict() is broken after model load due to missing shapes, so # have to do our own batching/unbatching. inputs, _ = batch # Cannot use self._model since it does not take extra arguments. Since # we're not using the keras API (namey .predict()), we can just use the # underlying model stored in self._inner_model. claim_encoding, _ = self._inner_model( inputs, embed_claim=True, embed_evidence=False) for m in inputs['metadata'].numpy(): key = json.loads(m.decode('utf8')) claim_ids.append(int(key['claim_id'])) embeddings.append(claim_encoding) return np.array(claim_ids), np.vstack(embeddings) def _build_callbacks(self, val_batched): """Build the callbacks used during training.""" cns_model_checkpoint = util.safe_path( os.path.join(self._model_config.model_checkpoint, 'best_model.tf')) model_callbacks = [ # Note: Order matters here, particularly that FeverMetricsCallback # comes before tensorboard so it can write to the log dictionary # and TB picks it up. callbacks.FeverMetricsCallback( validation_batched=val_batched, debug=self._debug, fever_dev_path=self._model_config.fever_dev_path, max_evidence=self._model_config.max_evidence, checkpoint_dir=self._model_config.model_checkpoint, ), # TODO(perodriguez): Determine a better thing to stop on tf.keras.callbacks.EarlyStopping( monitor='val_loss', min_delta=.001, patience=3, verbose=1, mode='min'), # TODO(perodriguez): Determine a better thing to save on # Checkpointing also needs to know about fever recall. tf.keras.callbacks.ModelCheckpoint( filepath=cns_model_checkpoint, save_best_only=True, monitor='val_loss', mode='min', verbose=1, # There is no support for GRU/LSTM Dropout with normal save save_weights_only=True, ), ] if self._tb_log_dir is not None: model_callbacks.append( tf.keras.callbacks.TensorBoard(log_dir=self._tb_log_dir)) return model_callbacks def _batch_dataset(self, dataset): """Batch the dataset depending on what model is used. Args: dataset: A dataset to batch Returns: A batched dataset with correct padding shapes. """ return dataset.padded_batch( batch_size=self._model_config.batch_size, padded_shapes=( self._encoder.padded_shapes(), # Must match losses in training.py { 'claim_classification': [], 'evidence_matching': [] })) def _encode_dataset(self, dataset, filter_claims=True, filter_evidence=True): """Convert the tfds dataset to numbers by tokenizing/embedding.""" encode = self._encoder.build_encoder_fn() encoded_data = dataset.map( encode, num_parallel_calls=tf.data.experimental.AUTOTUNE) if filter_claims: encoded_data = encoded_data.filter(preprocessing.filter_claim_fn) if filter_evidence: encoded_data = encoded_data.filter(preprocessing.filter_evidence_fn) return encoded_data def _build_vocab(self, dataset): """Build the vocabulary and encoder from the dataset. Args: dataset: The dataset to build vocab from. Returns: The vocabulary in the dataset, or empty vocab if using bert """ # If we are using bert, then we do not need to build the vocab # since its already defined if self._model_config.tokenizer == 'bert' and self._model_config.text_encoder == 'bert': logging.info('Using bert, skipping vocabulary creation') return set() if self._tokenizer is None: raise ValueError('Cannot build vocab without a tokenizer.') claim_lengths = [] evidence_lengths = [] vocab = set() for example in tqdm.tqdm(dataset, mininterval=5): tokenized_claim, tokenized_evidence = self._tokenize_example(example) claim_lengths.append(len(tokenized_claim)) evidence_lengths.append(len(tokenized_evidence)) vocab.update(tokenized_claim) vocab.update(tokenized_evidence) logging.info('Build vocab of size (without padding): %s', len(vocab)) logging.info('Claim length statistics') logging.info('Max: %s', max(claim_lengths)) logging.info('Min: %s', min(claim_lengths)) claim_percentiles = np.percentile(claim_lengths, [50, 90, 95, 99]).tolist() logging.info('50/90/95/99: %s', str(claim_percentiles)) logging.info('Evidence length statistics') logging.info('Max: %s', max(evidence_lengths)) logging.info('Min: %s', min(evidence_lengths)) evidence_percentiles = np.percentile(evidence_lengths, [50, 90, 95, 99]).tolist() logging.info('50/90/95/99: %s', str(evidence_percentiles)) self._vocab_stats['claim_max'] = max(claim_lengths) self._vocab_stats['claim_min'] = min(claim_lengths) self._vocab_stats['claim_percentiles'] = claim_percentiles self._vocab_stats['evidence_max'] = max(evidence_lengths) self._vocab_stats['evidence_min'] = min(evidence_lengths) self._vocab_stats['evidence_percentiles'] = evidence_percentiles return vocab def _tokenize_example(self, example): tokenized_claim = self._tokenizer.tokenize( example['claim_text'].numpy().decode('utf8')) tokenized_evidence = self._tokenizer.tokenize( example['evidence_text'].numpy().decode('utf8')) return tokenized_claim, tokenized_evidence
7c7fc0f5567572ab0c07b65e752550907fbbcd9e
9e988c0dfbea15cd23a3de860cb0c88c3dcdbd97
/sdBs/AllRun/sdssj_135144.13+124255.8/sdB_sdssj_135144.13+124255.8_coadd.py
4c2a173777392d114cb21ec9fb51411e53878edf
[]
no_license
tboudreaux/SummerSTScICode
73b2e5839b10c0bf733808f4316d34be91c5a3bd
4dd1ffbb09e0a599257d21872f9d62b5420028b0
refs/heads/master
2021-01-20T18:07:44.723496
2016-08-08T16:49:53
2016-08-08T16:49:53
65,221,159
0
0
null
null
null
null
UTF-8
Python
false
false
480
py
from gPhoton.gMap import gMap def main(): gMap(band="NUV", skypos=[207.933875,12.7155], skyrange=[0.0333333333333,0.0333333333333], stepsz = 30., cntfile="/data2/fleming/GPHOTON_OUTPUT/LIGHTCURVES/sdBs/sdB_sdssj_135144.13+124255.8/sdB_sdssj_135144.13+124255.8_movie_count.fits", cntcoaddfile="/data2/fleming/GPHOTON_OUTPUT/LIGHTCURVES/sdB/sdB_sdssj_135144.13+124255.8/sdB_sdssj_135144.13+124255.8_count_coadd.fits", overwrite=True, verbose=3) if __name__ == "__main__": main()
ed785e2b5af05ae400c0d35d937f9c33162497ac
09e57dd1374713f06b70d7b37a580130d9bbab0d
/benchmark/startQiskit_QC59.py
2688aa43ef87eefbaedb8591966863e235cc4be4
[ "BSD-3-Clause" ]
permissive
UCLA-SEAL/QDiff
ad53650034897abb5941e74539e3aee8edb600ab
d968cbc47fe926b7f88b4adf10490f1edd6f8819
refs/heads/main
2023-08-05T04:52:24.961998
2021-09-19T02:56:16
2021-09-19T02:56:16
405,159,939
2
0
null
null
null
null
UTF-8
Python
false
false
2,580
py
# qubit number=3 # total number=10 import numpy as np from qiskit import QuantumCircuit, execute, Aer, QuantumRegister, ClassicalRegister, transpile, BasicAer, IBMQ import networkx as nx from qiskit.visualization import plot_histogram from typing import * from pprint import pprint from math import log2 from collections import Counter from qiskit.test.mock import FakeVigo, FakeYorktown kernel = 'circuit/bernstein' def make_circuit(n:int) -> QuantumCircuit: # circuit begin input_qubit = QuantumRegister(n,"qc") prog = QuantumCircuit(input_qubit) prog.h(input_qubit[0]) # number=1 prog.h(input_qubit[1]) # number=2 prog.h(input_qubit[2]) # number=3 prog.h(input_qubit[3]) # number=4 prog.y(input_qubit[3]) # number=5 for edge in E: k = edge[0] l = edge[1] prog.cp(-2 * gamma, input_qubit[k-1], input_qubit[l-1]) prog.p(gamma, k) prog.p(gamma, l) prog.rx(2 * beta, range(len(V))) prog.swap(input_qubit[1],input_qubit[0]) # number=6 prog.swap(input_qubit[1],input_qubit[0]) # number=7 prog.cx(input_qubit[1],input_qubit[0]) # number=8 prog.cx(input_qubit[1],input_qubit[0]) # number=9 # circuit end return prog if __name__ == '__main__': n = 4 V = np.arange(0, n, 1) E = [(0, 1, 1.0), (0, 2, 1.0), (1, 2, 1.0), (3, 2, 1.0), (3, 1, 1.0)] G = nx.Graph() G.add_nodes_from(V) G.add_weighted_edges_from(E) step_size = 0.1 a_gamma = np.arange(0, np.pi, step_size) a_beta = np.arange(0, np.pi, step_size) a_gamma, a_beta = np.meshgrid(a_gamma, a_beta) F1 = 3 - (np.sin(2 * a_beta) ** 2 * np.sin(2 * a_gamma) ** 2 - 0.5 * np.sin(4 * a_beta) * np.sin(4 * a_gamma)) * ( 1 + np.cos(4 * a_gamma) ** 2) result = np.where(F1 == np.amax(F1)) a = list(zip(result[0], result[1]))[0] gamma = a[0] * step_size beta = a[1] * step_size prog = make_circuit(4) sample_shot =5600 writefile = open("../data/startQiskit_QC59.csv", "w") # prog.draw('mpl', filename=(kernel + '.png')) IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') provider.backends() backend = provider.get_backend("ibmq_5_yorktown") circuit1 = transpile(prog, FakeYorktown()) circuit1.measure_all() prog = circuit1 info = execute(prog,backend=backend, shots=sample_shot).result().get_counts() print(info, file=writefile) print("results end", file=writefile) print(circuit1.depth(), file=writefile) print(circuit1, file=writefile) writefile.close()
7b9e7785e184e54395de1a8b8168e9e9f6dd5da5
3604693215eeac8667a2d140cf0881ec8c3461c4
/TA1_solution.py
eafff85dea49f69746c0240874fd1d89c4227619
[]
no_license
SanjuktaBhatt/G11_C5
7ded1547a5939442f8e6f0a7bcbba065e0ef38e2
2b35462c67bf3a4cfdc3a3a7b257531352304d2a
refs/heads/main
2023-09-04T20:14:41.379654
2021-10-28T06:42:10
2021-10-28T06:42:10
381,617,303
0
0
null
null
null
null
UTF-8
Python
false
false
113
py
maria_busy=True while maria_busy: print("Keep decorating!") maria_busy=False print("Get ready to surprise!")
b80afaa7949dc6770d059a0287bbc3a17570e136
ac09dbe531660a8f5ea6d0ab9b9496db856fe88e
/rules/download_data.smk
bd1e90cfe76baacaac35853c849070aadbdbe100
[ "MIT" ]
permissive
EthanHolleman/GLOE-reps
fc203c0676d474e1477318c18251eb0ff1ac0fc3
196e98eb8cf5fb591ae02b5e999d3562c46b81c2
refs/heads/main
2023-04-09T18:14:23.009901
2021-04-15T01:53:33
2021-04-15T01:53:33
354,414,057
0
0
MIT
2021-04-04T17:57:18
2021-04-03T23:18:50
Python
UTF-8
Python
false
false
1,745
smk
import pandas as pd GLOE_SAMPLES = pd.read_csv( 'samples/GLOE_samples.csv', sep=',' ).set_index('Sample Name', drop=False) # Download GLOE-seq data and process into fastq rule expand_gloe_samples: input: expand('rawdata/GLOE-seq/{sample_name}.sra', sample_name=GLOE_SAMPLES['Sample Name']) rule download_all_gloe_samples: conda: '../envs/sra-toolkit.yml' params: sra_accession = lambda wildcards: GLOE_SAMPLES.loc[wildcards.sample_name]['Run'], output: temp('rawdata/GLOE-seq/{sample_name}.sra') shell:''' prefetch {params.sra_accession} --output-file {output} ''' rule dump_gloe_fastq: input: 'rawdata/GLOE-seq/{sample}.sra' output: 'rawdata/GLOE-seq/{sample}.fastq.gz' shell:''' fastq-dump -Z {input} | gzip > {output} ''' # Download primers rule download_primer_file: output: 'rawdata/primers/TruSeq3-SE.fa' shell:''' curl https://raw.githubusercontent.com/timflutre/trimmomatic/master/adapters/TruSeq3-SE.fa \ -o {output} ''' rule download_hg19_chr_sizes: output: 'rawdata/hg19/hg19.chrom.sizes' shell:''' curl -L http://hgdownload.cse.ucsc.edu/goldenpath/hg19/bigZips/hg19.chrom.sizes -o {output} ''' # Download footloop data rule download_footloop_all: output: 'rawdata/footloop/footloop_all.bed' shell:''' curl -L "https://genome.ucsc.edu/cgi-bin/hgTables?hgsid=1079385889_dXqdbBP5Hsal2siu4fVmefmsWOgX&boolshad.hgta_printCustomTrackHeaders=0&hgta_ctName=tb_ct_footLoopPeakALL_41&hgta_ctDesc=table+browser+query+on+ct_footLoopPeakALL_41&hgta_ctVis=pack&hgta_ctUrl=&fbQual=whole&fbUpBases=200&fbDownBases=200&hgta_doGetBed=get+BED" -o {output} '''
126b2a8c33e68656967eae19d2378d22a7ea2628
242918b007e06cbebbf5b276580a0ed89d0020fa
/thrift/compiler/test/fixtures/inheritance/gen-py3/module/services.pyi
f696015594a83586fbfc4424fc7df5a066a60980
[ "Apache-2.0" ]
permissive
wby-test/fbthrift
2a16ce45d94d3961936300f5b81098cf345360e6
8c50c4ac75ec16ebcd2485ca886b49d3ea55515e
refs/heads/master
2022-08-03T08:30:40.931712
2017-11-28T06:28:36
2017-11-28T06:34:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
907
pyi
# # Autogenerated by Thrift # # DO NOT EDIT UNLESS YOU ARE SURE THAT YOU KNOW WHAT YOU ARE DOING # @generated # import typing as _typing from thrift.py3.server import RequestContext, ServiceInterface import module.types as _module_types class MyRootInterface( ServiceInterface ): @_typing.overload async def do_root( self, ctx: RequestContext ) -> None: ... async def do_root( self ) -> None: ... class MyNodeInterface( _module_services.MyRootInterface ): @_typing.overload async def do_mid( self, ctx: RequestContext ) -> None: ... async def do_mid( self ) -> None: ... class MyLeafInterface( _module_services.MyNodeInterface ): @_typing.overload async def do_leaf( self, ctx: RequestContext ) -> None: ... async def do_leaf( self ) -> None: ...
09f0bceefb59bb73736f9993fabbf1ed9b32640e
9766c2e479e99cca5bf7cc834c949fc4d5286275
/SRC/engine/element.spy
c45a0915e20516a294ba71e27364b627bf1d54c2
[ "LicenseRef-scancode-warranty-disclaimer" ]
no_license
UstbCmsPjy/OOF2
4c141e8da3c7e3c5bc9129c2cb27ed301455a155
f8539080529d257a02b8f5cc44040637387ed9a1
refs/heads/master
2023-05-05T09:58:22.597997
2020-05-28T23:05:30
2020-05-28T23:05:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
784
spy
# -*- python -*- # This software was produced by NIST, an agency of the U.S. government, # and by statute is not subject to copyright in the United States. # Recipients of this software assume all responsibilities associated # with its operation, modification and maintenance. However, to # facilitate maintenance we ask that before distributing modified # versions of this software, you first contact the authors at # [email protected]. def _Element__position(self, coords): return map(self.from_master, coords) ElementPtr.position = _Element__position from ooflib.SWIG.engine.masterelement import MasterElementPtr from ooflib.SWIG.common.coord import CoordPtr from ooflib.SWIG.engine.mastercoord import MasterCoordPtr from ooflib.SWIG.engine.edge import BoundaryEdgePtr
8d6306d191fe7def474de55a4085373419f1808d
b9dcea5142af620b651fdfac05ffcac021ef6f83
/heroku_deploy/settings.py
0c8efb0f8c32a6b2ddba5192ab7b8e4fb168aedd
[]
no_license
Jordan-Ak/heroku_deployment
aee7c1f721a51831329fef244a48fc7d65c3d0fc
ada1568a1c120903e400ba190f9a8fac3fb86d77
refs/heads/master
2023-03-29T12:16:30.680308
2021-02-23T08:16:58
2021-02-23T08:16:58
339,159,841
1
0
null
null
null
null
UTF-8
Python
false
false
3,474
py
""" Django settings for heroku_deploy project. Generated by 'django-admin startproject' using Django 3.1.6. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'kg%s)6nnp0+b%k=i7e3xgjawp16z3=9@x(_m#_(_s=40$g5m*1' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['safe-chamber-01830.herokuapp.com'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', #My apps 'deploys', ] MIDDLEWARE = [ 'whitenoise.middleware.WhiteNoiseMiddleware', 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'heroku_deploy.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'heroku_deploy.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/' # Add configuration for static files storage using whitenoise STATICFILES_STORAGE = 'whitenoise.django.GzipManifestStaticFilesStorage' #Database configuration import dj_database_url prod_db = dj_database_url.config(conn_max_age=500) DATABASES['default'].update(prod_db)
31061a65eab30817d6bac7d2d11b6ae2e84bf634
e6f73cc3398050b23df28e3f11a10afbb46ee38b
/idea/chain_iter/great.py
9ef7b72eb2ef2aebef5e53d23cfc96e52856e86a
[]
no_license
monarin/divelite
3db262bf07a0de870d0bfe650ebdf21225b88c1b
0d297bda7368c5295336565431fbfa18a5686f15
refs/heads/master
2023-06-29T23:42:34.541874
2023-06-08T17:59:59
2023-06-08T17:59:59
120,695,376
0
1
null
2018-09-06T00:03:30
2018-02-08T01:41:19
C++
UTF-8
Python
false
false
1,054
py
class Step: def __init__(self,chunks): self.chunks = chunks def events(self): for i, chunk in enumerate(chunks): print(f'events() chunk {i}') for dg in chunk: if dg==102: return if dg<100: yield dg chunks = [iter([101,1,2,3,102,101,4,5,102,101,6]),iter([7,8,102,101,9,10])] class Run: def __init__(self): pass def events(self): for chunk in chunks: for dg in chunk: if dg<100: yield dg def steps(self): for chunk in chunks: for dg in chunk: if dg==101: yield Step(chunks) myrun = Run() #for evt in myrun.events(): # print(evt) for istep,step in enumerate(myrun.steps()): print('step:',istep) for evt in step.events(): print(evt)
f9644cf63ba76c1285a5a362ae49db9da36c072d
711756b796d68035dc6a39060515200d1d37a274
/output_cog/optimized_16052.py
ef3296d91a540d8831255e1a96840896b72cfa8c
[]
no_license
batxes/exocyst_scripts
8b109c279c93dd68c1d55ed64ad3cca93e3c95ca
a6c487d5053b9b67db22c59865e4ef2417e53030
refs/heads/master
2020-06-16T20:16:24.840725
2016-11-30T16:23:16
2016-11-30T16:23:16
75,075,164
0
0
null
null
null
null
UTF-8
Python
false
false
10,843
py
import _surface import chimera try: import chimera.runCommand except: pass from VolumePath import markerset as ms try: from VolumePath import Marker_Set, Link new_marker_set=Marker_Set except: from VolumePath import volume_path_dialog d= volume_path_dialog(True) new_marker_set= d.new_marker_set marker_sets={} surf_sets={} if "Cog2_GFPN" not in marker_sets: s=new_marker_set('Cog2_GFPN') marker_sets["Cog2_GFPN"]=s s= marker_sets["Cog2_GFPN"] mark=s.place_marker((352.463, 469.079, 509.037), (0.89, 0.1, 0.1), 18.4716) if "Cog2_0" not in marker_sets: s=new_marker_set('Cog2_0') marker_sets["Cog2_0"]=s s= marker_sets["Cog2_0"] mark=s.place_marker((409.222, 449.195, 522.743), (0.89, 0.1, 0.1), 17.1475) if "Cog2_1" not in marker_sets: s=new_marker_set('Cog2_1') marker_sets["Cog2_1"]=s s= marker_sets["Cog2_1"] mark=s.place_marker((492.237, 446.886, 544.215), (0.89, 0.1, 0.1), 17.1475) if "Cog2_GFPC" not in marker_sets: s=new_marker_set('Cog2_GFPC') marker_sets["Cog2_GFPC"]=s s= marker_sets["Cog2_GFPC"] mark=s.place_marker((413.797, 543.405, 607.247), (0.89, 0.1, 0.1), 18.4716) if "Cog2_Anch" not in marker_sets: s=new_marker_set('Cog2_Anch') marker_sets["Cog2_Anch"]=s s= marker_sets["Cog2_Anch"] mark=s.place_marker((687.523, 413.102, 555.67), (0.89, 0.1, 0.1), 18.4716) if "Cog3_GFPN" not in marker_sets: s=new_marker_set('Cog3_GFPN') marker_sets["Cog3_GFPN"]=s s= marker_sets["Cog3_GFPN"] mark=s.place_marker((398.822, 468.584, 510.435), (1, 1, 0), 18.4716) if "Cog3_0" not in marker_sets: s=new_marker_set('Cog3_0') marker_sets["Cog3_0"]=s s= marker_sets["Cog3_0"] mark=s.place_marker((398.385, 469.641, 509.134), (1, 1, 0.2), 17.1475) if "Cog3_1" not in marker_sets: s=new_marker_set('Cog3_1') marker_sets["Cog3_1"]=s s= marker_sets["Cog3_1"] mark=s.place_marker((411.171, 482.142, 487.69), (1, 1, 0.2), 17.1475) if "Cog3_2" not in marker_sets: s=new_marker_set('Cog3_2') marker_sets["Cog3_2"]=s s= marker_sets["Cog3_2"] mark=s.place_marker((411.254, 501.272, 466.984), (1, 1, 0.2), 17.1475) if "Cog3_3" not in marker_sets: s=new_marker_set('Cog3_3') marker_sets["Cog3_3"]=s s= marker_sets["Cog3_3"] mark=s.place_marker((430.691, 520.729, 461.297), (1, 1, 0.2), 17.1475) if "Cog3_4" not in marker_sets: s=new_marker_set('Cog3_4') marker_sets["Cog3_4"]=s s= marker_sets["Cog3_4"] mark=s.place_marker((429.462, 538.628, 439.679), (1, 1, 0.2), 17.1475) if "Cog3_5" not in marker_sets: s=new_marker_set('Cog3_5') marker_sets["Cog3_5"]=s s= marker_sets["Cog3_5"] mark=s.place_marker((403.448, 539.246, 450.212), (1, 1, 0.2), 17.1475) if "Cog3_GFPC" not in marker_sets: s=new_marker_set('Cog3_GFPC') marker_sets["Cog3_GFPC"]=s s= marker_sets["Cog3_GFPC"] mark=s.place_marker((374.544, 453.872, 507.792), (1, 1, 0.4), 18.4716) if "Cog3_Anch" not in marker_sets: s=new_marker_set('Cog3_Anch') marker_sets["Cog3_Anch"]=s s= marker_sets["Cog3_Anch"] mark=s.place_marker((432.859, 619.991, 387.562), (1, 1, 0.4), 18.4716) if "Cog4_GFPN" not in marker_sets: s=new_marker_set('Cog4_GFPN') marker_sets["Cog4_GFPN"]=s s= marker_sets["Cog4_GFPN"] mark=s.place_marker((605.419, 524.709, 432.249), (0, 0, 0.8), 18.4716) if "Cog4_0" not in marker_sets: s=new_marker_set('Cog4_0') marker_sets["Cog4_0"]=s s= marker_sets["Cog4_0"] mark=s.place_marker((605.419, 524.709, 432.249), (0, 0, 0.8), 17.1475) if "Cog4_1" not in marker_sets: s=new_marker_set('Cog4_1') marker_sets["Cog4_1"]=s s= marker_sets["Cog4_1"] mark=s.place_marker((585.283, 505.346, 436.949), (0, 0, 0.8), 17.1475) if "Cog4_2" not in marker_sets: s=new_marker_set('Cog4_2') marker_sets["Cog4_2"]=s s= marker_sets["Cog4_2"] mark=s.place_marker((565.966, 486.066, 444.1), (0, 0, 0.8), 17.1475) if "Cog4_3" not in marker_sets: s=new_marker_set('Cog4_3') marker_sets["Cog4_3"]=s s= marker_sets["Cog4_3"] mark=s.place_marker((538.347, 483.318, 449.587), (0, 0, 0.8), 17.1475) if "Cog4_4" not in marker_sets: s=new_marker_set('Cog4_4') marker_sets["Cog4_4"]=s s= marker_sets["Cog4_4"] mark=s.place_marker((517.296, 472.977, 465.542), (0, 0, 0.8), 17.1475) if "Cog4_5" not in marker_sets: s=new_marker_set('Cog4_5') marker_sets["Cog4_5"]=s s= marker_sets["Cog4_5"] mark=s.place_marker((490.807, 469.282, 475.056), (0, 0, 0.8), 17.1475) if "Cog4_6" not in marker_sets: s=new_marker_set('Cog4_6') marker_sets["Cog4_6"]=s s= marker_sets["Cog4_6"] mark=s.place_marker((465.402, 463.364, 486.656), (0, 0, 0.8), 17.1475) if "Cog4_GFPC" not in marker_sets: s=new_marker_set('Cog4_GFPC') marker_sets["Cog4_GFPC"]=s s= marker_sets["Cog4_GFPC"] mark=s.place_marker((581.844, 675.271, 397.552), (0, 0, 0.8), 18.4716) if "Cog4_Anch" not in marker_sets: s=new_marker_set('Cog4_Anch') marker_sets["Cog4_Anch"]=s s= marker_sets["Cog4_Anch"] mark=s.place_marker((330.666, 258.472, 574.594), (0, 0, 0.8), 18.4716) if "Cog5_GFPN" not in marker_sets: s=new_marker_set('Cog5_GFPN') marker_sets["Cog5_GFPN"]=s s= marker_sets["Cog5_GFPN"] mark=s.place_marker((486.399, 435.61, 498.969), (0.3, 0.3, 0.3), 18.4716) if "Cog5_0" not in marker_sets: s=new_marker_set('Cog5_0') marker_sets["Cog5_0"]=s s= marker_sets["Cog5_0"] mark=s.place_marker((486.399, 435.61, 498.969), (0.3, 0.3, 0.3), 17.1475) if "Cog5_1" not in marker_sets: s=new_marker_set('Cog5_1') marker_sets["Cog5_1"]=s s= marker_sets["Cog5_1"] mark=s.place_marker((482.785, 459.266, 514.82), (0.3, 0.3, 0.3), 17.1475) if "Cog5_2" not in marker_sets: s=new_marker_set('Cog5_2') marker_sets["Cog5_2"]=s s= marker_sets["Cog5_2"] mark=s.place_marker((477.362, 476.059, 537.526), (0.3, 0.3, 0.3), 17.1475) if "Cog5_3" not in marker_sets: s=new_marker_set('Cog5_3') marker_sets["Cog5_3"]=s s= marker_sets["Cog5_3"] mark=s.place_marker((482.759, 472.07, 565.487), (0.3, 0.3, 0.3), 17.1475) if "Cog5_GFPC" not in marker_sets: s=new_marker_set('Cog5_GFPC') marker_sets["Cog5_GFPC"]=s s= marker_sets["Cog5_GFPC"] mark=s.place_marker((358.907, 486.453, 564.415), (0.3, 0.3, 0.3), 18.4716) if "Cog5_Anch" not in marker_sets: s=new_marker_set('Cog5_Anch') marker_sets["Cog5_Anch"]=s s= marker_sets["Cog5_Anch"] mark=s.place_marker((606.76, 457.202, 572.692), (0.3, 0.3, 0.3), 18.4716) if "Cog6_GFPN" not in marker_sets: s=new_marker_set('Cog6_GFPN') marker_sets["Cog6_GFPN"]=s s= marker_sets["Cog6_GFPN"] mark=s.place_marker((404.881, 470.855, 541.854), (0.21, 0.49, 0.72), 18.4716) if "Cog6_0" not in marker_sets: s=new_marker_set('Cog6_0') marker_sets["Cog6_0"]=s s= marker_sets["Cog6_0"] mark=s.place_marker((404.89, 470.878, 541.865), (0.21, 0.49, 0.72), 17.1475) if "Cog6_1" not in marker_sets: s=new_marker_set('Cog6_1') marker_sets["Cog6_1"]=s s= marker_sets["Cog6_1"] mark=s.place_marker((428.992, 473.142, 523.35), (0.21, 0.49, 0.72), 17.1475) if "Cog6_2" not in marker_sets: s=new_marker_set('Cog6_2') marker_sets["Cog6_2"]=s s= marker_sets["Cog6_2"] mark=s.place_marker((433.502, 458.721, 497.623), (0.21, 0.49, 0.72), 17.1475) if "Cog6_3" not in marker_sets: s=new_marker_set('Cog6_3') marker_sets["Cog6_3"]=s s= marker_sets["Cog6_3"] mark=s.place_marker((439.571, 453.063, 469.191), (0.21, 0.49, 0.72), 17.1475) if "Cog6_4" not in marker_sets: s=new_marker_set('Cog6_4') marker_sets["Cog6_4"]=s s= marker_sets["Cog6_4"] mark=s.place_marker((435.205, 469.322, 445.925), (0.21, 0.49, 0.72), 17.1475) if "Cog6_5" not in marker_sets: s=new_marker_set('Cog6_5') marker_sets["Cog6_5"]=s s= marker_sets["Cog6_5"] mark=s.place_marker((420.331, 487.98, 430.413), (0.21, 0.49, 0.72), 17.1475) if "Cog6_6" not in marker_sets: s=new_marker_set('Cog6_6') marker_sets["Cog6_6"]=s s= marker_sets["Cog6_6"] mark=s.place_marker((404.427, 511.312, 432.331), (0.21, 0.49, 0.72), 17.1475) if "Cog6_GFPC" not in marker_sets: s=new_marker_set('Cog6_GFPC') marker_sets["Cog6_GFPC"]=s s= marker_sets["Cog6_GFPC"] mark=s.place_marker((422.823, 430.126, 451.356), (0.21, 0.49, 0.72), 18.4716) if "Cog6_Anch" not in marker_sets: s=new_marker_set('Cog6_Anch') marker_sets["Cog6_Anch"]=s s= marker_sets["Cog6_Anch"] mark=s.place_marker((386.643, 595.882, 416.921), (0.21, 0.49, 0.72), 18.4716) if "Cog7_GFPN" not in marker_sets: s=new_marker_set('Cog7_GFPN') marker_sets["Cog7_GFPN"]=s s= marker_sets["Cog7_GFPN"] mark=s.place_marker((431.079, 405.034, 489.233), (0.7, 0.7, 0.7), 18.4716) if "Cog7_0" not in marker_sets: s=new_marker_set('Cog7_0') marker_sets["Cog7_0"]=s s= marker_sets["Cog7_0"] mark=s.place_marker((436.007, 421.364, 509.242), (0.7, 0.7, 0.7), 17.1475) if "Cog7_1" not in marker_sets: s=new_marker_set('Cog7_1') marker_sets["Cog7_1"]=s s= marker_sets["Cog7_1"] mark=s.place_marker((448.694, 457.188, 552.471), (0.7, 0.7, 0.7), 17.1475) if "Cog7_2" not in marker_sets: s=new_marker_set('Cog7_2') marker_sets["Cog7_2"]=s s= marker_sets["Cog7_2"] mark=s.place_marker((461.339, 493.01, 595.697), (0.7, 0.7, 0.7), 17.1475) if "Cog7_GFPC" not in marker_sets: s=new_marker_set('Cog7_GFPC') marker_sets["Cog7_GFPC"]=s s= marker_sets["Cog7_GFPC"] mark=s.place_marker((386.894, 472.908, 620.709), (0.7, 0.7, 0.7), 18.4716) if "Cog7_Anch" not in marker_sets: s=new_marker_set('Cog7_Anch') marker_sets["Cog7_Anch"]=s s= marker_sets["Cog7_Anch"] mark=s.place_marker((533.738, 557.235, 634.873), (0.7, 0.7, 0.7), 18.4716) if "Cog8_0" not in marker_sets: s=new_marker_set('Cog8_0') marker_sets["Cog8_0"]=s s= marker_sets["Cog8_0"] mark=s.place_marker((471.119, 433.752, 467.911), (1, 0.5, 0), 17.1475) if "Cog8_1" not in marker_sets: s=new_marker_set('Cog8_1') marker_sets["Cog8_1"]=s s= marker_sets["Cog8_1"] mark=s.place_marker((494.266, 417.148, 471.636), (1, 0.5, 0), 17.1475) if "Cog8_2" not in marker_sets: s=new_marker_set('Cog8_2') marker_sets["Cog8_2"]=s s= marker_sets["Cog8_2"] mark=s.place_marker((510.32, 411.76, 494.28), (1, 0.5, 0), 17.1475) if "Cog8_3" not in marker_sets: s=new_marker_set('Cog8_3') marker_sets["Cog8_3"]=s s= marker_sets["Cog8_3"] mark=s.place_marker((516.393, 407.226, 521.62), (1, 0.5, 0), 17.1475) if "Cog8_4" not in marker_sets: s=new_marker_set('Cog8_4') marker_sets["Cog8_4"]=s s= marker_sets["Cog8_4"] mark=s.place_marker((496.239, 409.823, 541.053), (1, 0.5, 0), 17.1475) if "Cog8_5" not in marker_sets: s=new_marker_set('Cog8_5') marker_sets["Cog8_5"]=s s= marker_sets["Cog8_5"] mark=s.place_marker((496.895, 410.969, 569.174), (1, 0.5, 0), 17.1475) if "Cog8_GFPC" not in marker_sets: s=new_marker_set('Cog8_GFPC') marker_sets["Cog8_GFPC"]=s s= marker_sets["Cog8_GFPC"] mark=s.place_marker((428.284, 432.604, 531.352), (1, 0.6, 0.1), 18.4716) if "Cog8_Anch" not in marker_sets: s=new_marker_set('Cog8_Anch') marker_sets["Cog8_Anch"]=s s= marker_sets["Cog8_Anch"] mark=s.place_marker((565.447, 389.538, 607.451), (1, 0.6, 0.1), 18.4716) for k in surf_sets.keys(): chimera.openModels.add([surf_sets[k]])
f2b92c95db0379a8834ace8efc29165dfbec2f75
6569f43b525305a8899b920b8e58aab413feb519
/CommitteApp/migrations/0001_initial.py
b35fc854aca31273b4892e95c7c63a3797207735
[]
no_license
sontus-tripura-python/tsfbd
daa6b19f2dae8eaf8fd9c5a5c412d7cc9606a381
5f851c2616e912d0af1addaaeb8e64167eed9501
refs/heads/main
2023-04-25T08:36:59.288577
2021-05-07T05:13:28
2021-05-07T05:13:28
242,639,065
0
0
null
null
null
null
UTF-8
Python
false
false
7,016
py
# Generated by Django 3.1.5 on 2021-03-26 13:47 import autoslug.fields from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='BranchCategory', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=200)), ('slug', autoslug.fields.AutoSlugField(editable=False, populate_from='name')), ], ), migrations.CreateModel( name='BranchName', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('branchname', models.CharField(max_length=200)), ('slug', autoslug.fields.AutoSlugField(editable=False, populate_from='branchname')), ('branch_category', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='branch_categories', to='CommitteApp.branchcategory')), ], options={ 'verbose_name_plural': 'Branch Name', }, ), migrations.CreateModel( name='CentralYear', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('yearname', models.CharField(max_length=30)), ('slug', autoslug.fields.AutoSlugField(editable=False, populate_from='yearname')), ], options={ 'verbose_name_plural': 'central year', }, ), migrations.CreateModel( name='Coordinator', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('photo', models.ImageField(blank=True, default='default.jpg', upload_to='branchmember')), ('name', models.CharField(blank=True, max_length=50)), ('slug', autoslug.fields.AutoSlugField(editable=False, populate_from='name')), ('position', models.CharField(blank=True, max_length=200)), ('blood_group', models.CharField(blank=True, max_length=20)), ('phone', models.CharField(blank=True, max_length=11)), ('about_description', models.TextField()), ('facebook', models.URLField(blank=True)), ('twitter', models.URLField(blank=True)), ('instagram', models.URLField(blank=True)), ('linkdin', models.URLField(blank=True)), ], options={ 'verbose_name_plural': 'Co-ordinator', }, ), migrations.CreateModel( name='CentralMember', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('photo', models.ImageField(blank=True, default='default.jpg', upload_to='central')), ('name', models.CharField(blank=True, max_length=50)), ('slug', autoslug.fields.AutoSlugField(editable=False, populate_from='name')), ('position', models.CharField(blank=True, max_length=50)), ('blood_group', models.CharField(blank=True, max_length=20)), ('phone', models.CharField(blank=True, max_length=11)), ('village', models.CharField(blank=True, max_length=200)), ('thana', models.CharField(blank=True, max_length=200)), ('district', models.CharField(blank=True, max_length=200)), ('gender', models.CharField(choices=[('Male', 'Male'), ('Female', 'Female')], default='Male', max_length=20)), ('current_enroll', models.CharField(choices=[('University', 'University'), ('College', 'College'), ('School', 'School'), ('Job', 'Job'), ('Other', 'Other')], max_length=200, null=True)), ('facebook', models.URLField(blank=True)), ('twitter', models.URLField(blank=True)), ('instagram', models.URLField(blank=True)), ('linkdin', models.URLField(blank=True)), ('session', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='CommitteApp.centralyear')), ], options={ 'verbose_name_plural': 'Central Member', }, ), migrations.CreateModel( name='BranchYear', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('branchyear', models.CharField(max_length=200)), ('slug', autoslug.fields.AutoSlugField(editable=False, populate_from='branchyear')), ('branches', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='CommitteApp.branchname')), ], options={ 'verbose_name_plural': 'Branch year', }, ), migrations.CreateModel( name='BranchMember', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('photo', models.ImageField(blank=True, default='default.jpg', upload_to='branchmember')), ('University', models.CharField(blank=True, max_length=100)), ('name', models.CharField(blank=True, max_length=50)), ('slug', autoslug.fields.AutoSlugField(editable=False, populate_from='name')), ('position', models.CharField(blank=True, max_length=50)), ('blood_group', models.CharField(blank=True, max_length=20)), ('phone', models.CharField(blank=True, max_length=11)), ('gender', models.CharField(choices=[('Male', 'Male'), ('Female', 'Female')], default='Male', max_length=20)), ('current_enroll', models.CharField(choices=[('University', 'University'), ('College', 'College'), ('School', 'School'), ('Job', 'Job'), ('Other', 'Other')], max_length=200, null=True)), ('facebook', models.URLField(blank=True)), ('twitter', models.URLField(blank=True)), ('instagram', models.URLField(blank=True)), ('linkdin', models.URLField(blank=True)), ('memberbranch', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='CommitteApp.branchyear')), ('namebranch', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='CommitteApp.branchname')), ], options={ 'verbose_name_plural': 'Branch member', 'ordering': ('id',), }, ), ]
cb039221da592e976304557e61902704eecbcbac
ab0315bcded75c10c591076b22ed8ff664ee76af
/fig4/8mods_round4_0919/config_scf_8mods_data_freeze_190917_sub3_1_2.py
df15d79c7bc45e5b1e3aad780dae8f8d1bab9a7e
[]
no_license
mukamel-lab/BICCN-Mouse-MOp
389f62492986a2ffe4278ed16f59fc17dc75b767
8058ab8ae827c6e019fff719903b0ba5b400931d
refs/heads/master
2021-07-06T11:14:25.401628
2020-09-30T04:54:27
2020-09-30T04:54:27
189,758,115
1
0
null
null
null
null
UTF-8
Python
false
false
1,916
py
#!/usr/bin/env python3 """An example configuration file """ import sys sys.path.insert(0, '/cndd/fangming/CEMBA/snmcseq_dev') import os import snmcseq_utils # # Configs name = 'mop_8mods_0915_k30_sub3-1-2' outdir = '/cndd/fangming/CEMBA/data/MOp_all/results' output_pcX_all = outdir + '/pcX_all_{}.npy'.format(name) output_cells_all = outdir + '/cells_all_{}.npy'.format(name) output_imputed_data_format = outdir + '/imputed_data_{}_{{}}.npy'.format(name) output_clst_and_umap = outdir + '/intg_summary_{}.tsv'.format(name) output_figures = outdir + '/figures/{}_{{}}.{{}}'.format(name) output_cluster_centroids = outdir + '/centroids_{}.pkl'.format(name) DATA_DIR = '/cndd/fangming/CEMBA/data/MOp_all/data_freeze_neurons_subtypes_8mods_round4/sub3-1-2' # fixed dataset configs sys.path.insert(0, DATA_DIR) from __init__datasets import * meta_f = os.path.join(DATA_DIR, '{0}_metadata.tsv') hvftrs_f = os.path.join(DATA_DIR, '{0}_hvfeatures.{1}') hvftrs_gene = os.path.join(DATA_DIR, '{0}_hvfeatures.gene') hvftrs_cell = os.path.join(DATA_DIR, '{0}_hvfeatures.cell') # mods_selected = [ # 'snmcseq_gene', # 'snatac_gene', # 'smarter_cells', # 'smarter_nuclei', # '10x_cells_v2', # '10x_cells_v3', # '10x_nuclei_v3', # '10x_nuclei_v3_macosko', # ] mods_selected = snmcseq_utils.import_single_textcol(os.path.join(DATA_DIR, 'datasets.txt')) print(mods_selected) features_selected = ['10x_cells_v2'] # check features for features_modality in features_selected: assert (features_modality in mods_selected) # within modality ps = {'mc': 0.9, 'atac': 0.1, 'rna': 0.7, } drop_npcs = { 'mc': 0, 'atac': 0, 'rna': 0, } # across modality cross_mod_distance_measure = 'correlation' # cca knn = 20 relaxation = 3 n_cca = 30 # PCA npc = 50 # clustering k = 30 resolutions = [0.1, 0.2, 0.5, 1,] # umap umap_neighbors = 30 min_dist = 0.5
8bfe423384a181fbcaaca4b82f6299f2a9d8cac4
b6203a8829e4387031762d7a3d9c2125f82a465e
/helloDjango/mainapp/migrations/0011_auto_20210716_1550.py
387e9863e32ec579fb9003544d74473618a96248
[]
no_license
Jack-liyuanjie/Django01
db5f88560d65311987d70325c35f1783ded5ace9
7068dab5fe85b21d7a0f052572a68a2fe814fc21
refs/heads/master
2023-06-27T22:10:44.852483
2021-07-28T07:02:13
2021-07-28T07:02:13
390,248,440
0
0
null
null
null
null
UTF-8
Python
false
false
1,263
py
# Generated by Django 2.0.1 on 2021-07-16 07:50 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('mainapp', '0010_auto_20210716_1531'), ] operations = [ migrations.CreateModel( name='FruitCartEntity', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('cnt', models.IntegerField(default=1, verbose_name='数量')), ('cart', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='mainapp.CartEntity', verbose_name='购物车')), ], options={ 'verbose_name': '购物车详情表', 'verbose_name_plural': '购物车详情表', 'db_table': 't_fruit_cart', }, ), migrations.AlterModelTable( name='fruitentity', table='t_fruit', ), migrations.AddField( model_name='fruitcartentity', name='fruit', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='mainapp.FruitEntity', verbose_name='水果名'), ), ]
16fbdc4c4b8b382fdc8963e09498fcd6e61b7633
e262e64415335060868e9f7f73ab8701e3be2f7b
/.history/demo_20201106171218.py
e40917f42694981b872f3e9e7b9a58b87321d17f
[]
no_license
Allison001/developer_test
6e211f1e2bd4287ee26fd2b33baf1c6a8d80fc63
b8e04b4b248b0c10a35e93128a5323165990052c
refs/heads/master
2023-06-18T08:46:40.202383
2021-07-23T03:31:54
2021-07-23T03:31:54
322,807,303
0
0
null
null
null
null
UTF-8
Python
false
false
1,118
py
# a = 1 # if a==0: # print("a=0") # else: # print("a!0") # """ # x>1 (3x-5) # -1<=x<=1 (x+2) # x < -1 (5x+3) # """ # x = int(input("输入您的数字:")) # if x > 1: # print(3*x-5) # else: # if x >= -1: # print(x + 2) # else: # print(5*x+3) # 猜数字游戏 # import random # computet_num = random.randint(1,100) # while True: # people_num = int(input("请输入您的数字:")) # if people_num < computet_num: # print("大一点") # elif people_num > computet_num: # print("小一点") # else: # print("猜对了") # break # def fun1(a,b,c): # print("这是参数a:",a) # print("这是参数b:",b) # print("这是参数c:",c) # fun1(1,23,4) # def fun1(a): # # return "ac" # print("a") # fun1("c") # def fun1(a,b,c,d): # print(a,b,c,d) # fun1(10,13,d=13,c=90) # fun1 = lambda x: x+10 # print(fun1(5)) # def fun1(x): # return x+10 # print(fun1(5)) # fun1 = lambda x,y: x+y # print(fun1(10,12)) list = ["ha"] b = {"hah"} c = "a" print(type(list)) print(type(b)) print(type())
67c3ac7edd41ead61f20b9de0717ebc0397b9688
bf683eb4a6080cf67669de90d1afdad53fccb738
/Lib/site-packages/django/contrib/gis/geoip2/base.py
b1035ac6ff31eecbe0e9d58d3948e23d7caa0892
[ "MIT" ]
permissive
mspgeek/Client_Portal
cd513308840aa4203554ebc1160f17f0dd4b17cf
0267168bb90e8e9c85aecdd715972b9622b82384
refs/heads/master
2023-03-07T21:33:22.767108
2020-04-08T01:43:19
2020-04-08T01:43:19
253,946,635
6
0
MIT
2022-12-31T07:01:43
2020-04-08T00:43:07
HTML
UTF-8
Python
false
false
9,033
py
import os import socket import geoip2.database from django.conf import settings from django.core.exceptions import ValidationError from django.core.validators import validate_ipv46_address from .resources import City, Country # Creating the settings dictionary with any settings, if needed. GEOIP_SETTINGS = { 'GEOIP_PATH': getattr(settings, 'GEOIP_PATH', None), 'GEOIP_CITY': getattr(settings, 'GEOIP_CITY', 'GeoLite2-City.mmdb'), 'GEOIP_COUNTRY': getattr(settings, 'GEOIP_COUNTRY', 'GeoLite2-Country.mmdb'), } class GeoIP2Exception(Exception): pass class GeoIP2: # The flags for GeoIP memory caching. # Try MODE_MMAP_EXT, MODE_MMAP, MODE_FILE in that order. MODE_AUTO = 0 # Use the C extension with memory map. MODE_MMAP_EXT = 1 # Read from memory map. Pure Python. MODE_MMAP = 2 # Read database as standard file. Pure Python. MODE_FILE = 4 # Load database into memory. Pure Python. MODE_MEMORY = 8 cache_options = frozenset((MODE_AUTO, MODE_MMAP_EXT, MODE_MMAP, MODE_FILE, MODE_MEMORY)) # Paths to the city & country binary databases. _city_file = '' _country_file = '' # Initially, pointers to GeoIP file references are NULL. _city = None _country = None def __init__(self, path=None, cache=0, country=None, city=None): """ Initialize the GeoIP object. No parameters are required to use default settings. Keyword arguments may be passed in to customize the locations of the GeoIP datasets. * path: Base directory to where GeoIP data is located or the full path to where the city or country data files (*.mmdb) are located. Assumes that both the city and country data sets are located in this directory; overrides the GEOIP_PATH setting. * cache: The cache settings when opening up the GeoIP datasets. May be an integer in (0, 1, 2, 4, 8) corresponding to the MODE_AUTO, MODE_MMAP_EXT, MODE_MMAP, MODE_FILE, and MODE_MEMORY, `GeoIPOptions` C API settings, respectively. Defaults to 0, meaning MODE_AUTO. * country: The name of the GeoIP country data file. Defaults to 'GeoLite2-Country.mmdb'; overrides the GEOIP_COUNTRY setting. * city: The name of the GeoIP city data file. Defaults to 'GeoLite2-City.mmdb'; overrides the GEOIP_CITY setting. """ # Checking the given cache option. if cache in self.cache_options: self._cache = cache else: raise GeoIP2Exception('Invalid GeoIP caching option: %s' % cache) # Getting the GeoIP data path. if not path: path = GEOIP_SETTINGS['GEOIP_PATH'] if not path: raise GeoIP2Exception('GeoIP path must be provided via parameter or the GEOIP_PATH setting.') if not isinstance(path, str): raise TypeError('Invalid path type: %s' % type(path).__name__) if os.path.isdir(path): # Constructing the GeoIP database filenames using the settings # dictionary. If the database files for the GeoLite country # and/or city datasets exist, then try to open them. country_db = os.path.join(path, country or GEOIP_SETTINGS['GEOIP_COUNTRY']) if os.path.isfile(country_db): self._country = geoip2.database.Reader(country_db, mode=cache) self._country_file = country_db city_db = os.path.join(path, city or GEOIP_SETTINGS['GEOIP_CITY']) if os.path.isfile(city_db): self._city = geoip2.database.Reader(city_db, mode=cache) self._city_file = city_db elif os.path.isfile(path): # Otherwise, some detective work will be needed to figure out # whether the given database path is for the GeoIP country or city # databases. reader = geoip2.database.Reader(path, mode=cache) db_type = reader.metadata().database_type if db_type.endswith('City'): # GeoLite City database detected. self._city = reader self._city_file = path elif db_type.endswith('Country'): # GeoIP Country database detected. self._country = reader self._country_file = path else: raise GeoIP2Exception('Unable to recognize database edition: %s' % db_type) else: raise GeoIP2Exception('GeoIP path must be a valid file or directory.') @property def _reader(self): if self._country: return self._country else: return self._city @property def _country_or_city(self): if self._country: return self._country.country else: return self._city.city def __del__(self): # Cleanup any GeoIP file handles lying around. if self._reader: self._reader.close() def __repr__(self): meta = self._reader.metadata() version = '[v%s.%s]' % (meta.binary_format_major_version, meta.binary_format_minor_version) return '<%(cls)s %(version)s _country_file="%(country)s", _city_file="%(city)s">' % { 'cls': self.__class__.__name__, 'version': version, 'country': self._country_file, 'city': self._city_file, } def _check_query(self, query, country=False, city=False, city_or_country=False): "Check the query and database availability." # Making sure a string was passed in for the query. if not isinstance(query, str): raise TypeError('GeoIP query must be a string, not type %s' % type(query).__name__) # Extra checks for the existence of country and city databases. if city_or_country and not (self._country or self._city): raise GeoIP2Exception('Invalid GeoIP country and city data files.') elif country and not self._country: raise GeoIP2Exception('Invalid GeoIP country data file: %s' % self._country_file) elif city and not self._city: raise GeoIP2Exception('Invalid GeoIP city data file: %s' % self._city_file) # Return the query string back to the caller. GeoIP2 only takes IP addresses. try: validate_ipv46_address(query) except ValidationError: query = socket.gethostbyname(query) return query def city(self, query): """ Return a dictionary of city information for the given IP address or Fully Qualified Domain Name (FQDN). Some information in the dictionary may be undefined (None). """ enc_query = self._check_query(query, city=True) return City(self._city.city(enc_query)) def country_code(self, query): "Return the country code for the given IP Address or FQDN." enc_query = self._check_query(query, city_or_country=True) return self.country(enc_query)['country_code'] def country_name(self, query): "Return the country name for the given IP Address or FQDN." enc_query = self._check_query(query, city_or_country=True) return self.country(enc_query)['country_name'] def country(self, query): """ Return a dictionary with the country code and name when given an IP address or a Fully Qualified Domain Name (FQDN). For example, both '24.124.1.80' and 'djangoproject.com' are valid parameters. """ # Returning the country code and name enc_query = self._check_query(query, city_or_country=True) return Country(self._country_or_city(enc_query)) # #### Coordinate retrieval routines #### def coords(self, query, ordering=('longitude', 'latitude')): cdict = self.city(query) if cdict is None: return None else: return tuple(cdict[o] for o in ordering) def lon_lat(self, query): "Return a tuple of the (longitude, latitude) for the given query." return self.coords(query) def lat_lon(self, query): "Return a tuple of the (latitude, longitude) for the given query." return self.coords(query, ('latitude', 'longitude')) def geos(self, query): "Return a GEOS Point object for the given query." ll = self.lon_lat(query) if ll: from django.contrib.gis.geos import Point return Point(ll, srid=4326) else: return None # #### GeoIP Database Information Routines #### @property def info(self): "Return information about the GeoIP library and databases in use." meta = self._reader.metadata() return 'GeoIP Library:\n\t%s.%s\n' % (meta.binary_format_major_version, meta.binary_format_minor_version) @classmethod def open(cls, full_path, cache): return GeoIP2(full_path, cache)
e46760ca6a1ddba11d0537d234a557acc6dd3425
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_216/ch25_2020_09_09_21_54_03_750638.py
ad2b06073c8d92f2380ee1a03f82efb712a43682
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
229
py
import math v = float(input("Velocidade")) a = float(input("Angulo")) d = ((v**2) * math.sin(2*a))/9.8 if d <= 98: print("Muito perto") else: if d >= 102: print("Muito longe") else: print("Acertou!")
b18bc25f8220824e4dc95d1c7070d671cc8e4d5f
e2f9d506dcc3fee7dbbbce370c7e2c3f48275828
/poc/merge-multiple-json-file/test.py
13f57b73202835f5b6dd25006a623ec8932c627f
[ "MIT" ]
permissive
MacHu-GWU/s3splitmerge-project
d33829f1ff6aed9cc77c9b4bec30601ce4570f60
873892158f4a2d0ee20f291e5d3b2a80f0bae1ba
refs/heads/main
2023-08-30T09:07:32.312453
2021-11-07T16:08:24
2021-11-07T16:08:24
394,803,306
0
0
null
null
null
null
UTF-8
Python
false
false
2,238
py
# -*- coding: utf-8 -*- import io import time import boto3 from boto3.s3.transfer import TransferConfig from icecream import ic import awswrangler as wr from datetime import datetime import pandas as pd from pathlib_mate import Path boto_ses = boto3.session.Session() s3_client = boto_ses.client("s3") class Config: bucket = "aws-data-lab-sanhe-aws-etl-solutions" key_prefix = "s3splitmerge/poc/merge-multiple-json-file" n_file = 3 n_records_per_file = 150000 bucket = "aws-data-lab-sanhe-aws-etl-solutions" key_prefix = "s3splitmerge/poc/merge-multiple-json-file" def create_test_data(): n_file = 3 n_records_per_file = 150000 columns = ["id", "value"] value = "[email protected]" for nth_file in range(1, 1+n_file): start_id = (nth_file - 1) * n_records_per_file + 1 end_id = start_id + n_records_per_file df = pd.DataFrame(columns=columns) df["id"] = range(start_id, end_id) df["value"] = value wr.s3.to_json( df=df, path=f"s3://{bucket}/{key_prefix}/{nth_file}.json", orient="records", lines=True, ) def merge_files(): KB = 1024 config = TransferConfig(multipart_threshold=1) target_key = f"{key_prefix}/data.json" response = s3_client.create_multipart_upload( Bucket=bucket, Key=target_key, ) upload_id = response["UploadId"] n_file = 3 s3_key_lst = [ f"{key_prefix}/{nth_file}.json" for nth_file in range(1, 1+n_file) ] parts = list() for part_number, s3_key in enumerate(s3_key_lst): part_number += 1 response = s3_client.upload_part_copy( Bucket=bucket, Key=target_key, CopySource={"Bucket": bucket, "Key": s3_key}, PartNumber=part_number, UploadId=upload_id, ) etag = response["CopyPartResult"]["ETag"] parts.append({"ETag": etag, "PartNumber": part_number}) s3_client.complete_multipart_upload( Bucket=bucket, Key=target_key, MultipartUpload={"Parts": parts}, UploadId=upload_id ) if __name__ == "__main__": create_test_data() merge_files() pass
932b2be3018c7e85db9ac36d0ef3868c1c8bc902
89521af529f155a2352003caddd4b5edd58a57a6
/sale_invoice_plan/models/sale.py
5010af3a87f864d3e5aff52079aa8eef1222c4d7
[]
no_license
ecosoft-odoo/eco-addons
bd132d326c4af150f16dda7935af23d200e1e3df
cb0ebea2cb9a26945093e2a4036a0854b6fc89b2
refs/heads/11.0
2021-07-15T03:22:37.875705
2019-02-23T08:32:59
2019-02-23T08:32:59
168,274,323
0
5
null
2020-07-17T09:15:20
2019-01-30T03:41:11
Python
UTF-8
Python
false
false
6,745
py
# License AGPL-3.0 or later (http://www.gnu.org/licenses/agpl). from dateutil.relativedelta import relativedelta from odoo import models, fields, api, _ from odoo.exceptions import UserError from odoo.addons import decimal_precision as dp from odoo.tools.float_utils import float_round as round class SaleOder(models.Model): _inherit = 'sale.order' invoice_plan_ids = fields.One2many( comodel_name='sale.invoice.plan', inverse_name='sale_id', string='Inovice Plan', copy=False, ) use_invoice_plan = fields.Boolean( string='Use Invoice Plan', default=False, copy=False, ) @api.multi def create_invoice_plan(self, num_installment, installment_date, interval, interval_type, advance): self.ensure_one() self.invoice_plan_ids.unlink() invoice_plans = [] if num_installment <= 1: raise UserError(_('Number Installment must greater than 1')) Decimal = self.env['decimal.precision'] prec = Decimal.precision_get('Product Unit of Measure') percent = round(1.0 / num_installment * 100, prec) percent_last = 100 - (percent * (num_installment-1)) # Advance if advance: vals = {'installment': 0, 'plan_date': installment_date, 'type': 'advance', 'percent': 0.0} invoice_plans.append((0, 0, vals)) installment_date = self._next_date(installment_date, interval, interval_type) # Normal for i in range(num_installment): this_installment = i+1 if num_installment == this_installment: percent = percent_last vals = {'installment': this_installment, 'plan_date': installment_date, 'type': 'installment', 'percent': percent} invoice_plans.append((0, 0, vals)) installment_date = self._next_date(installment_date, interval, interval_type) self.write({'invoice_plan_ids': invoice_plans}) return True @api.multi def remove_invoice_plan(self): self.ensure_one() self.invoice_plan_ids.unlink() return True @api.model def _next_date(self, installment_date, interval, interval_type): installment_date = fields.Date.from_string(installment_date) if interval_type == 'month': next_date = installment_date + relativedelta(months=+interval) elif interval_type == 'year': next_date = installment_date + relativedelta(years=+interval) else: next_date = installment_date + relativedelta(days=+interval) next_date = fields.Date.to_string(next_date) return next_date @api.multi def action_invoice_create(self, grouped=False, final=False): inv_ids = super().action_invoice_create(grouped=grouped, final=final) invoice_plan_id = self._context.get('invoice_plan_id') if invoice_plan_id: plan = self.env['sale.invoice.plan'].browse(invoice_plan_id) invoices = self.env['account.invoice'].browse(inv_ids) invoices.ensure_one() # Expect 1 invoice for 1 invoice plan plan._compute_new_invoice_quantity(invoices[0]) plan.invoice_ids += invoices return inv_ids class SaleInvoicePlan(models.Model): _name = 'sale.invoice.plan' _order = 'installment' sale_id = fields.Many2one( comodel_name='sale.order', string='Sales Order', index=True, readonly=True, ondelete='cascade', ) installment = fields.Integer( string='Installment', ) plan_date = fields.Date( string='Plan Date', required=True, ) type = fields.Selection( [('advance', 'Advance'), ('installment', 'Installment'), ], string='Type', required=True, default='installment', ) last = fields.Boolean( string='Last Installment', compute='_compute_last', help="Last installment will create invoice use remaining amount", ) percent = fields.Float( string='Percent', digits=dp.get_precision('Product Unit of Measure'), help="This percent will be used to calculate new quantity" ) invoice_ids = fields.Many2many( 'account.invoice', relation="sale_invoice_plan_invoice_rel", column1='plan_id', column2='invoice_id', string='Invoices', readonly=True, ) to_invoice = fields.Boolean( string='Next Invoice', compute='_compute_to_invoice', help="If this line is ready to create new invoice", ) invoiced = fields.Boolean( string='Invoice Created', compute='_compute_invoiced', help="If this line already invoiced", ) _sql_constraint = [('unique_instalment', 'UNIQUE (sale_id, installment)', 'Installment must be unique on invoice plan')] @api.multi def _compute_to_invoice(self): """ If any invoice is in draft/open/paid do not allow to create inv Only if previous to_invoice is False, it is eligible to_invoice """ for rec in self.sorted('installment'): rec.to_invoice = False if rec.sale_id.state != 'sale': # Not confirmed, no to_invoice continue if not rec.invoiced: rec.to_invoice = True break @api.multi def _compute_invoiced(self): for rec in self: invoiced = rec.invoice_ids.filtered( lambda l: l.state in ('draft', 'open', 'paid')) rec.invoiced = invoiced and True or False @api.multi def _compute_last(self): for rec in self: last = max(rec.sale_id.invoice_plan_ids.mapped('installment')) rec.last = rec.installment == last @api.multi def _compute_new_invoice_quantity(self, invoice): self.ensure_one() if self.last: # For last install, let the system do the calc. return percent = self.percent for line in invoice.invoice_line_ids: assert len(line.sale_line_ids) >= 0, \ 'No matched order line for invoice line' order_line = line.sale_line_ids[0] if order_line.is_downpayment: line.quantity = -percent/100 # Always based on 1 unit else: line.quantity = order_line.product_uom_qty * (percent/100) invoice.compute_taxes()
3759d19c7821225d7aff6f1f4cd1a6780d8444bb
d7390fea6c7f712ee32be6d3478835d965d795e0
/py26_08day/task_08day.py
db5bc4485d6ca0abe1775d07e118dc8743cc7d00
[]
no_license
luwenchun/Automated_Test
2f424655d80127e3ed98657869021a775beca868
79b9937cfc0841b0a80d4fd45d8ff467654b5b55
refs/heads/master
2021-02-10T15:23:08.446463
2020-03-26T10:39:38
2020-03-26T10:39:38
244,393,626
0
0
null
null
null
null
UTF-8
Python
false
false
2,430
py
""" ============================ Author:柠檬班-木森 Time:2019/10/7 E-mail:[email protected] Company:湖南零檬信息技术有限公司 ============================ """ # 第一题 def mul_table(): for i in range(1, 10): for j in range(1, i + 1): print('{} * {} = {:<4}'.format(i,j,i*j),end="") print() mul_table() # for i in range(1, 10): # print() # for j in range(1, i + 1): # print('{}*{}={} '.format(i,j,i*j), end="") # print() # 第二题 def count_num(): count = 0 for a in range(1, 5): for b in range(1, 5): for c in range(1, 5): if a != b and c != b and a != c: print(a, b, c) number = int('{}{}{}'.format(a,b,c)) print(number) count += 1 print('一共有{}个'.format(count)) count_num() # 第三题 def compute_number(): print('欢迎使用计算器') a = int(input('请输入数字1:')) b = int(input('请输入数字2:')) print('功能提示:【1】加 【2】减【3】乘 【4】除') num = input('请选择:') if num == '1': return a + b elif num == '2': return a - b elif num == '3': return a * b elif num == '4': return a / b else: print('没有此选项!') res = compute_number() print(res) # 第四题 users = [{"name": "py01", "pwd": "123"}, {"name": "py02", "pwd": "123"}, {"name": "py03", "pwd": "123"}, {"name": "py04", "pwd": "123"}] def register(): # 注册功能 username = input('请输入新账号:') # 输入账号 password1 = input('请输入密码:') # 输入密码 password2 = input('请再次确认密码:') # 再次确认密码 for user in users: # 遍历出所有账号,判断账号是否存在 if username == user['name']: print('该账户已存在') # 账号存在, break else: # 判断两次密码是否一致 if password1 != password2: print('注册失败,两次输入的密码不一致') else: # 账号不存在 密码一样,则添加到账户列表中 users.append({'name': username, 'pwd': password2}) print('注册成功!') register()
8c810e7e7f2efde783f7790fd2f14511ddd35ac6
8ded89b0aff486337e17ddd710eca15b8450a015
/first.py
25f35fa4facb43418c0376e78efcdf8fc5547efa
[]
no_license
svetlyak40wt/moscow-python-confpp-2021
2f99881efce9e41f0b281bd9f16d0611025ac684
d0b7ce93ac24d0c681697eb17703e975d15fdb27
refs/heads/master
2023-08-04T07:53:23.776076
2021-09-20T09:28:19
2021-09-20T09:28:19
406,925,502
2
0
null
null
null
null
UTF-8
Python
false
false
157
py
def load_ipython_extension(ipython): print('Loading "first" extension') def unload_ipython_extension(ipython): print('Unloading "first" extension')
b3603edcdd2487b22caaac500e8b836d86c87e51
d01670aa5bddb47dc414bf01921155610e2a5070
/leetcode/091_decodeways.py
66c865541c4fc56aa6acd0de248dfcfb71736389
[]
no_license
hwillmott/csfundamentals
14c7e4253b581cef7046ca035bda038c24a52613
832f6a8c0deb0569d3fe0dc03e4564c2d850f067
refs/heads/master
2020-08-01T12:27:01.914391
2020-03-26T16:47:35
2020-03-26T16:47:35
73,576,522
0
0
null
null
null
null
UTF-8
Python
false
false
501
py
class Solution(object): def numDecodings(self, s): """ :type s: str :rtype: int """ if len(s) == 0: return 0 if len(s) == 1: return 0 if s[0] == "0" else 1 dp = [0]*(len(s)+1) dp[0] = 1 dp[1] = 0 if s[1] == "0" else 1 s = "0" + s for i in range(2,len(s)): if s[i] == 0: continue dp[i] = dp[i-1] + dp[i-2] if int(s[i-2:i+1]) <= 26 else dp[i-1] return dp[len(s)-1]
1b01b4d4b97db401bb32399f6d99e33daa724450
ba90cb8a089d38de2c6d63bf65e9bf556731d5c6
/Projeto1/aplicacaoR.py
026fceaa757598cd22376291ab7299d7ce43933c
[]
no_license
luizasilveira/Camada_fisica
edc96288250b155b4d68156cf2a9ec638a3cb8c8
98c9f6c04d293abaa450c080403d3f25db9c4ef4
refs/heads/master
2020-07-05T21:00:33.782301
2019-10-31T18:50:12
2019-10-31T18:50:12
202,774,216
0
0
null
2019-09-05T17:33:14
2019-08-16T17:46:54
Python
UTF-8
Python
false
false
1,966
py
#!/usr/bin/env python3 # -- coding: utf-8 -- ##################################################### # Camada Física da Computação #Carareto #17/02/2018 # Aplicação #################################################### print("comecou") from enlace import * import time # Serial Com Port # para saber a sua porta, execute no terminal : # python -m serial.tools.list_ports #serialName = "/dev/ttyACM0" # Ubuntu (variacao de) serialName = "/dev/cu.usbmodem146201" # Mac (variacao de) #serialName = "COM5" # Windows(variacao de) print("abriu com") def main(): # Inicializa enlace ... variavel com possui todos os metodos e propriedades do enlace, que funciona em threading com = enlace(serialName) # repare que o metodo construtor recebe um string (nome) # Ativa comunicacao com.enable() # Log print("-------------------------") print("Comunicação inicializada") print(" porta : {}".format(com.fisica.name)) print("-------------------------") # Faz a recepção dos dados print ("Recebendo dados .... ") bufferReceived = bytearray() while True: rxBuffer, nRx = com.getData(1) bufferReceived += rxBuffer if (b"end" in bufferReceived): break imgSize = bufferReceived[:-3] rxBuffer, nRx = com.getData(int(imgSize)) txLen = len(rxBuffer) with open("teste.jpg", "wb") as img: img.write(rxBuffer) print ("Recebidos {} bytes ".format(txLen)) com.sendData(imgSize) print ("Transmitido {} bytes ".format(len(imgSize))) while(com.tx.getIsBussy()): pass # Encerra comunicação print("-------------------------") print("Comunicação encerrada") print("-------------------------") com.disable() #so roda o main quando for executado do terminal ... se for chamado dentro de outro modulo nao roda if __name__ == "__main__": main()
60fba09736c5b2b4834cc41097c27d5db61e411f
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2486/60793/268658.py
cb6f125c3651fd7219133d58cda5cf81b8bf149a
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
318
py
ls = [] for test in range(0, int(input())): ls.append(input()) if ls == []: print() print() elif ls == []: print() print() elif ls == []: print() print() elif ls == []: print() print() elif ls == []: print() print() elif ls == []: print() print() else: print(ls)
ab109fe310c0a92a3c5a6c5d7cc674974201c387
84a19fe0b89bb19caa1641aeadc9623c1a181767
/arc/078/d.py
0ff00fea6d789210dda2f0e596992697ebc2dad2
[ "MIT" ]
permissive
wotsushi/competitive-programming
75abae653cff744189c53ad7e6dbd2ca1a62e3a8
17ec8fd5e1c23aee626aee70b1c0da8d7f8b8c86
refs/heads/master
2021-06-10T06:42:40.846666
2021-05-31T10:32:51
2021-05-31T10:32:51
175,002,279
3
0
null
null
null
null
UTF-8
Python
false
false
970
py
from heapq import heappush, heappop # 入力 N = int(input()) a, b = ( zip(*(map(int, input().split()) for _ in range(N - 1))) if N - 1 else ((), ()) ) # 頂点1, N から各蝶点への距離を求める G = [{} for _ in range(N + 1)] for x, y in zip(a, b): G[x][y] = 1 G[y][x] = 1 INF = 10**10 def dijkstra(G, s): dp = [INF for _ in range(len(G))] q = [] heappush(q, (0, s)) while q: c, i = heappop(q) if dp[i] == INF: dp[i] = c for j, w in G[i].items(): heappush(q, (c + w, j)) return dp dp1 = dijkstra(G, 1) dpN = dijkstra(G, N) # 頂点Nより頂点1のほうが近い頂点、または、頂点1と頂点Nとの距離が等しい頂点は # 頂点1から頂点Nの間のパスに含まれる頂点のうち、Fennecが塗れる頂点である。 ans = ( 'Fennec' if sum(dp1[i] <= dpN[i] for i in range(1, N + 1)) > N // 2 else 'Snuke' ) # 出力 print(ans)
bd9820da489ae49e89dde62f758b29cba5318c2b
7997a9581ac4badc53793e32bc85878b8e16094e
/breaklines2dxf.py
8f168312c1ed8ca374fbae7ab17271d31999fc5e
[]
no_license
jasonfleming/pputils
78adb832c5860a37e1473a43a5b9a54ad4d5ce55
2b34e47e4c3331d5780019d248e3f37c71164665
refs/heads/master
2022-09-29T13:40:38.657005
2022-08-10T19:40:06
2022-08-10T19:40:06
79,500,881
1
0
null
2017-01-19T22:17:09
2017-01-19T22:17:09
null
UTF-8
Python
false
false
2,917
py
#!/usr/bin/env python3 # #+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+! # # # breaklines2dxf.py # # # #+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+! # # Author: Pat Prodanovic, Ph.D., P.Eng. # # Date: Sept 12, 2015 # # Modified: Feb 20, 2016 # Made it work for python 2 and 3 # # Purpose: Takes a pputils 3d breakline and exports it to dxf format. # To create the 3d breakline from xyz and lines.csv, run mkbreakline.py # # Uses: Python 2 or 3, Numpy # # Example: # # python breaklines2dxf.py -l lines3d.csv -o lines3d.dxf # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Global Imports #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ import os,sys # system parameters import numpy as np # numpy from dxfwrite import DXFEngine as dxf # for dxf export from progressbar import ProgressBar, Bar, Percentage, ETA curdir = os.getcwd() # # I/O if len(sys.argv) == 5 : dummy2 = sys.argv[1] lines_file = sys.argv[2] dummy3 = sys.argv[3] output_file = sys.argv[4] else: print('Wrong number of Arguments, stopping now...') print('Usage:') print('python breaklines2dxf.py -l lines3d.csv -o lines3d.dxf') sys.exit() # to create the output file drawing = dxf.drawing(output_file) #fout = open(output_file,"w") # use numpy to read the file # each column in the file is a row in data read by np.loadtxt method lines_data = np.loadtxt(lines_file, delimiter=',',skiprows=0,unpack=True) shapeid_lns = lines_data[0,:] x_lns = lines_data[1,:] y_lns = lines_data[2,:] z_lns = lines_data[3,:] # round lines nodes to three decimals x_lns = np.around(x_lns,decimals=3) y_lns = np.around(y_lns,decimals=3) z_lns = np.around(z_lns,decimals=3) # finds out how many unique breaklines there are n_unique_lns = np.unique(shapeid_lns) # number of nodes in the lines file n_lns = len(x_lns) w = [Percentage(), Bar(), ETA()] pbar = ProgressBar(widgets=w, maxval=n_lns).start() # write the breaklines poly = dxf.polyline() for i in range(0,n_lns): pbar.update(i+1) if (i>0): cur_lns_shapeid = shapeid_lns[i] prev_lns_shapeid = shapeid_lns[i-1] if (cur_lns_shapeid - prev_lns_shapeid < 0.001): # create tupples for vertexes to add v0 = (x_lns[i-1], y_lns[i-1], z_lns[i-1]) v1 = (x_lns[i], y_lns[i], z_lns[i]) poly.add_vertices( [v0, v1] ) # this is needed, as the else below is never executed # for the last line in the lines file! if (i == n_lns-1): drawing.add(poly) else: drawing.add(poly) poly = dxf.polyline() ############################################################################ drawing.save() pbar.finish()
2283913c20c0a5855e4b54e307d09da3b38a5e03
28a462a28f443c285ca5efec181ebe36b147c167
/tests/compile/basic/es2019/IsInteger.spec
a3eeb6b9762f1cd246c58bd8d2323452533ffde5
[ "BSD-3-Clause", "BSD-2-Clause" ]
permissive
kaist-plrg/jstar
63e71f9156860dc21cccc33a9f6c638dfee448ea
1282919127ea18a7e40c7a55e63a1ddaaf7d9db4
refs/heads/main
2022-07-22T08:12:34.947712
2022-02-27T04:19:33
2022-02-27T11:06:14
384,045,526
6
4
NOASSERTION
2022-02-27T11:05:26
2021-07-08T07:53:21
Python
UTF-8
Python
false
false
231
spec
1. If Type(_argument_) is not Number, return *false*. 1. If _argument_ is *NaN*, *+∞*, or *-∞*, return *false*. 1. If floor(abs(_argument_)) ≠ abs(_argument_), return *false*. 1. Return *true*.
457a65493ed4ce617c56aab78df164c4dfc8fce9
24c0f121340a2a2df4490ed2c40057170b131087
/words/admin.py
be801cfd5893ebd14272dd0ea963be5109b4ba4f
[]
no_license
Rediet8abere/wordplay
81bcb7dfde11aa6d850aa7ae27ada2953b3c81a3
bb366a0d003d0efa91a1e5bb2ca754d3b24642ec
refs/heads/master
2022-12-12T18:31:22.046606
2020-01-08T17:01:03
2020-01-08T17:01:03
224,571,086
0
0
null
2022-12-08T01:23:19
2019-11-28T04:40:43
Python
UTF-8
Python
false
false
88
py
from django.contrib import admin from .models import Words admin.site.register(Words)
8a92c87c32c27752fd7b041c88469c7df129a667
70b339d0b2638a7914d0d56c5edf8a2637c9f4b0
/maxSideLength.py
cddba5c45c0fad94452c6e6bf97e8ce6d0442861
[]
no_license
pflun/advancedAlgorithms
9991da7514024e18ba08de8688966b9220e12571
5520dbcd26999b98e1229bf03c2f62dd690a2ddc
refs/heads/master
2023-02-19T12:05:26.902535
2023-02-14T06:08:54
2023-02-14T06:08:54
189,055,701
4
0
null
null
null
null
UTF-8
Python
false
false
1,253
py
class Solution(object): def maxSideLength(self, mat, threshold): res = 0 sum = [[0 for _ in range(len(mat[0]) + 1)] for _ in range(len(mat) + 1)] for i in range(1, len(mat) + 1): for j in range(1, len(mat[0]) + 1): sum[i][j] = int(mat[i - 1][j - 1]) + sum[i - 1][j] + sum[i][j - 1] - sum[i - 1][j - 1] for i in range(1, len(mat) + 1): for j in range(1, len(mat[0]) + 1): for k in range(1, min(len(mat) - i + 1, len(mat[0]) - j + 1)): # large square - two rectangle + small square tmp = sum[i + k - 1][j + k - 1] - sum[i + k - 1][j - 1] - sum[i - 1][j + k - 1] + sum[i - 1][j - 1] print k, tmp if tmp > threshold: break else: res = max(res, k) return res test = Solution() print test.maxSideLength([[1,1,3,2,4,3,2],[1,1,3,2,4,3,2],[1,1,3,2,4,3,2]], 4) print test.maxSideLength([[2,2,2,2,2],[2,2,2,2,2],[2,2,2,2,2],[2,2,2,2,2],[2,2,2,2,2]], 1) print test.maxSideLength([[1,1,1,1],[1,0,0,0],[1,0,0,0],[1,0,0,0]], 6) print test.maxSideLength([[18,70],[61,1],[25,85],[14,40],[11,96],[97,96],[63,45]], 40184)
3805526ca3074737c6cb1a415f59d1e0594a8a86
45ca434bdb9e48fdbb2cda0e7fdd9a76474117b0
/aliyun-python-sdk-cdn/aliyunsdkcdn/request/v20141111/SetOptimizeConfigRequest.py
19d77da4c23b5c17673b622254d3d165edf91520
[ "Apache-2.0" ]
permissive
wanyanzhenjiang/aliyun-openapi-python-sdk
e41e9937ad3f851e5a58f6bea95663e88f7fee13
4a5bf1b35f2395d047ead4444ea46721976bdd24
refs/heads/master
2020-12-30T10:37:55.789911
2017-07-27T06:55:15
2017-07-27T06:55:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,659
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest class SetOptimizeConfigRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Cdn', '2014-11-11', 'SetOptimizeConfig') def get_OwnerId(self): return self.get_query_params().get('OwnerId') def set_OwnerId(self,OwnerId): self.add_query_param('OwnerId',OwnerId) def get_SecurityToken(self): return self.get_query_params().get('SecurityToken') def set_SecurityToken(self,SecurityToken): self.add_query_param('SecurityToken',SecurityToken) def get_DomainName(self): return self.get_query_params().get('DomainName') def set_DomainName(self,DomainName): self.add_query_param('DomainName',DomainName) def get_Enable(self): return self.get_query_params().get('Enable') def set_Enable(self,Enable): self.add_query_param('Enable',Enable)
089f41da2f0384caa4f7439752ccbadea77a3cf2
e15294825647bb904a32703bc4e7b9008d094710
/services/recognize-text/textrecognizer/service.py
eabc4901eb16c2c6ad0cbbf6fa22b332c3352ea4
[ "MIT" ]
permissive
seekersapp2013/aleph
44494ea7c8c02df4f74a817ae2cf901a9a13f099
2c4767da3c75d38d8ea39769559a06a1f29390a8
refs/heads/master
2020-06-14T01:35:31.328619
2019-07-01T15:01:59
2019-07-01T15:01:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,073
py
import grpc import time import logging from threading import RLock from concurrent import futures from servicelayer.rpc.ocr_pb2 import Image from servicelayer.rpc.common_pb2 import Text from servicelayer.rpc.ocr_pb2_grpc import RecognizeTextServicer from servicelayer.rpc.ocr_pb2_grpc import add_RecognizeTextServicer_to_server from textrecognizer.recognize import OCR, PSM log = logging.getLogger('service') class OCRServicer(RecognizeTextServicer): MODES = { Image.PAGE: PSM.AUTO_OSD, Image.WORD: PSM.SINGLE_WORD, Image.CHARACTER: PSM.SINGLE_CHAR } def __init__(self): self.lock = RLock() self.ocr = OCR() def Recognize(self, image, context): # acquired = self.lock.acquire(blocking=False) # if acquired is False: # context.set_code(grpc.StatusCode.RESOURCE_EXHAUSTED) # context.set_details('OCR engine is busy.') # return Text() try: mode = self.MODES.get(image.mode, PSM.AUTO_OSD) text = self.ocr.extract_text(image.data, mode=mode, languages=image.languages) return Text(text=text) except Exception as exc: log.exception("Failed OCR.") self.ocr.clear_engine() context.abort(grpc.StatusCode.INTERNAL, str(exc)) # finally: # self.lock.release() def serve(port): options = [('grpc.max_receive_message_length', 20 * 1024 * 1024)] executor = futures.ThreadPoolExecutor(max_workers=4) server = grpc.server(executor, options=options) add_RecognizeTextServicer_to_server(OCRServicer(), server) server.add_insecure_port(port) server.start() log.info("Server started: %s", port) try: while True: time.sleep(84600) except KeyboardInterrupt: server.stop(60) if __name__ == '__main__': logging.basicConfig(level=logging.DEBUG) logging.getLogger('PIL').setLevel(logging.INFO) serve('[::]:50000')
c58e47f6987edea2fd07cc9f63d9d6781e4a2217
e6c65e2e354336a4bea5b6a4ccbccd3682915fe2
/out-bin/py/google/fhir/models/model_test.runfiles/pypi__numpy_1_15_4/numpy/core/tests/test_scalarmath.py
7edf9eee8a8e442e4d1620267a1d1d9b7627cebe
[ "Apache-2.0" ]
permissive
rasalt/fhir-datalab
c30ab773d84983dd04a37e9d0ddec8bf2824b8a4
3e329fc8b4226d3e3a4a7c23c306a86e7a9ea0de
refs/heads/master
2021-10-09T05:51:04.593416
2018-12-21T18:11:03
2018-12-22T05:38:32
162,744,237
0
0
null
null
null
null
UTF-8
Python
false
false
140
py
/home/rkharwar/.cache/bazel/_bazel_rkharwar/0ddaa3627472ad9d1367a008236ce2f5/external/pypi__numpy_1_15_4/numpy/core/tests/test_scalarmath.py
abb229e9e35ef546af8d18066a68b81643982096
48832d27da16256ee62c364add45f21b968ee669
/res_bw/scripts/common/lib/plat-sunos5/sunaudiodev.py
0a3efa9bcb6cdc1e4b813c180119e8e06ce79f19
[]
no_license
webiumsk/WOT-0.9.15.1
0752d5bbd7c6fafdd7f714af939ae7bcf654faf7
17ca3550fef25e430534d079876a14fbbcccb9b4
refs/heads/master
2021-01-20T18:24:10.349144
2016-08-04T18:08:34
2016-08-04T18:08:34
64,955,694
0
0
null
null
null
null
WINDOWS-1250
Python
false
false
776
py
# 2016.08.04 20:01:31 Střední Evropa (letní čas) # Embedded file name: scripts/common/Lib/plat-sunos5/SUNAUDIODEV.py from warnings import warnpy3k warnpy3k('the SUNAUDIODEV module has been removed in Python 3.0', stacklevel=2) del warnpy3k ENCODING_NONE = 0 ENCODING_ULAW = 1 ENCODING_ALAW = 2 ENCODING_LINEAR = 3 MIN_GAIN = 0 MAX_GAIN = 255 LEFT_BALANCE = 0 MID_BALANCE = 32 RIGHT_BALANCE = 64 BALANCE_SHIFT = 3 PORT_A = 1 PORT_B = 2 PORT_C = 3 PORT_D = 4 SPEAKER = 1 HEADPHONE = 2 LINE_OUT = 4 MICROPHONE = 1 LINE_IN = 2 CD = 4 INTERNAL_CD_IN = CD # okay decompyling c:\Users\PC\wotsources\files\originals\res_bw\scripts\common\lib\plat-sunos5\sunaudiodev.pyc # decompiled 1 files: 1 okay, 0 failed, 0 verify failed # 2016.08.04 20:01:31 Střední Evropa (letní čas)
e5f5f2ed9f2ca264930ccfbd5c09c43a13883401
ee974d693ca4c4156121f8cb385328b52eaac07c
/env/lib/python3.6/site-packages/h5py/_hl/datatype.py
d692af241f56461c8de827c823faa1554b264d1b
[]
no_license
ngonhi/Attendance_Check_System_with_Face_Recognition
f4531cc4dee565d0e45c02217f73f3eda412b414
92ff88cbc0c740ad48e149033efd38137c9be88d
refs/heads/main
2023-03-12T07:03:25.302649
2021-02-26T15:37:33
2021-02-26T15:37:33
341,493,686
1
0
null
null
null
null
UTF-8
Python
false
false
129
py
version https://git-lfs.github.com/spec/v1 oid sha256:ecdc9625758fdf18b86e1432c4f0eaf840a3df0001c5c84f83bc420c7ac598f4 size 1652
[ "Nqk180998!" ]
Nqk180998!
da395f369c351d53a3417bc633bb6b772db67d10
f9273a89fa79c74efb931787dd5bf6d899730adb
/Python_file/python_westos_teacher_doc/day22/03_实现最简单的web开发.py
fbc24a7213ca41949ae3194548593f2a7405637a
[]
no_license
lianlian-YE/Mypycharm
53148a58c6cbc07604abff801fd22b2a3212c6e7
004612a52300a6a99fbeedefa14ece0eeaf96556
refs/heads/master
2020-04-13T22:43:01.650018
2019-01-14T15:15:53
2019-01-14T15:15:53
163,486,739
1
0
null
null
null
null
UTF-8
Python
false
false
1,270
py
""" 目标: Flask应用的基本构成? """ # 1. 导入Flask类; from flask import Flask, render_template # 2. 实例化Flaks类。 生成一个实例; # __name__结果是__main__或者模块名/包名, 根据这个参数确定项目的位置,(确定该项目的静态文件或者模板的位置); app = Flask(__name__) # 3. 通过路由绑定处理的视图函数; # URL: (eg:http://127.0.0.1:5000/ ) # 装饰器@app.route()告诉Flask哪个url才能触发装饰器装饰的函数, 这个又专业的称为路由; # 定义的函数hello, return后面的返回值是想要显示在浏览器上的内容; @app.route('/') def hello(): return "<h1 style='color:red'>hello python!</h1><br/><a href='/westos/'>西部开源技术中心</a>" @app.route('/westos/') def westos(): # 如何在flask程序中返回一个html页面;flask默认查找页面内容的位置为templates目录; return render_template('westos.html') if __name__ == "__main__": # 4. 运行flask应用, # 默认端口是5000, 如果想要修改端口,传递参数port=xxx; # 默认情况下该web程序只能在本机浏览器访问, 如果想要其他主机访问, 指定host="0.0.0.0" app.run(host='0.0.0.0', port=9000)
bb7edc05ec8515b7ec7187ce1fed24a80cdd19ee
7c7c3a34b266e664cf63f710ae5aff5587672c91
/TutorialSeries/Pandas/Outlier Detection.py
2efd45237f8e7a3ffec7defd1e29d09ed123a69a
[]
no_license
Schnei1811/PythonScripts
845594a886a1fecc81cf5d7c550abec325f006a3
89eb331357b7cea86f5b2d0b33089215b73f9481
refs/heads/main
2023-03-31T23:36:48.731570
2021-04-11T21:55:46
2021-04-11T21:55:46
356,950,318
0
0
null
null
null
null
UTF-8
Python
false
false
668
py
import pandas as pd import matplotlib.pyplot as plt from matplotlib import style style.use('fivethirtyeight') bridge_height = {'meters':[10.26, 10.31, 10.27, 10.22, 10.23, 6212.42, 10.28, 10.25, 10.31]} df = pd.DataFrame(bridge_height) df['STD'] = pd.rolling_std(df['meters'], 2) print(df) df_std = df.describe() print(df_std) df_std = df.describe()['meters']['std'] print(df_std) df = df[ (df['STD'] < df_std) ] print(df) ''' df is equal now to df, where df['STD'] is less than the overall df_std that we calculated before. Thus, the only remaining Data here will be Data where the standard deviation is less than that 2067. ''' df['meters'].plot() plt.show()
b350d005f125d2893bb96db7385f592cd56d8246
74912c10f66e90195bf87fd71e9a78fa09f017ec
/execroot/syntaxnet/bazel-out/local-opt/bin/syntaxnet/text_formats_test.runfiles/org_tensorflow/tensorflow/contrib/slim/python/slim/data/data_provider.py
21a5295b1d8d173a3f752de142703231d27b73a6
[]
no_license
koorukuroo/821bda42e7dedbfae9d936785dd2d125-
1f0b8f496da8380c6e811ed294dc39a357a5a8b8
237fcc152ff436f32b2b5a3752a4181d279b3a57
refs/heads/master
2020-03-17T03:39:31.972750
2018-05-13T14:35:24
2018-05-13T14:35:24
133,244,956
0
0
null
null
null
null
UTF-8
Python
false
false
145
py
/root/.cache/bazel/_bazel_root/821bda42e7dedbfae9d936785dd2d125/external/org_tensorflow/tensorflow/contrib/slim/python/slim/data/data_provider.py
[ "k" ]
k
4dc4c8e77c4b1dbe4795c4926c3672a5c19aeadf
c537ce53f435f1c17d5fdbfe8f97405d0fb3f4f3
/src/apps/utils/fields.py
ae1a5e895451ee1b1590f2bdd8f4023874c796e4
[]
no_license
HiPiH/life
dbe8892ceb9cc4aaaf6409ffb8391b4903be7fdc
8b0cd5906bd5c508776831368896fc935c9e044b
refs/heads/master
2021-01-10T21:33:17.478873
2011-12-21T05:13:55
2011-12-21T05:13:55
2,938,055
0
0
null
null
null
null
UTF-8
Python
false
false
296
py
from django.db import models __all__ = ('BigIntegerField', ) class BigIntegerField(models.IntegerField): empty_strings_allowed=False def get_internal_type(self): return "BigIntegerField" def db_type(self): return 'bigint' # Note this won't work with Oracle.
664e32a8982f250cb5211834d2f57d9b1dc032f0
79b0a4d3db7299814b963a8ff98732a6df4fe5f8
/worker.py
a87844e6fa3d49823247f731fe051eba67a746a8
[]
no_license
jattoabdul/Ranti-bot
549b28cf84b47d52a767a84e759e1f66c2fee860
6673778ed610c2b331e2da7d8348a798b122cb35
refs/heads/master
2022-12-14T03:24:32.191750
2018-06-05T12:04:08
2018-06-05T12:04:08
136,028,737
8
6
null
2021-06-01T22:12:37
2018-06-04T13:24:25
Python
UTF-8
Python
false
false
232
py
from app.actions import Actions from app.utils.slackhelper import SlackHelper # Main function def main(): slackhelper = SlackHelper() actions = Actions(slackhelper) actions.notify_channel() if __name__ == '__main__': main()
6e772685c7255e17b1203cec46dc6e0be930ed40
315788ed9c3727acca394ad107b0a55285a7ddc4
/listings/v5_ra9.py
d0b7aacba374b0a4b256ffe2a6c38a0b987bb53a
[]
no_license
n04hk/Python_Zusammenfassung
b118e967d5d5547ad3eb88f9570cb7c9de45d443
923fadb28ab4609450e532f08de41dc4bf4913d1
refs/heads/master
2020-04-24T20:28:43.656148
2019-04-28T13:52:31
2019-04-28T13:52:31
172,245,211
1
0
null
null
null
null
UTF-8
Python
false
false
159
py
def func(m): return '(' + m.group() + ')' s = re.sub(r'\d+', func, '3 Stuecke kosten 250 Franken.') print(s) # Ausgabe: (3) Stuecke kosten (250) Franken.
07e216c632b6520fb95391258bf9ab1b25475733
762742b3c5cb5706e93e12dbdc3f8c46fc65f0db
/Packs/ML/Scripts/DBotPredictOutOfTheBoxV2/DBotPredictOutOfTheBoxV2.py
adc01d9712e96b7678df42b5718f5d43aecb9715
[ "MIT" ]
permissive
EmersonElectricCo/content
018f95f7fe7de13819e093a3661587a18407e348
82c82bbee7d428f0b14991a88c67672e2c02f5af
refs/heads/master
2021-06-17T04:54:22.938033
2021-05-06T16:39:59
2021-05-06T16:39:59
161,693,191
2
0
MIT
2018-12-18T15:16:49
2018-12-13T20:47:26
Python
UTF-8
Python
false
false
4,087
py
# pylint: disable=no-member import demisto_ml from CommonServerPython import * import traceback TARGET_PRECISION = 0.97 THRESHOLD = 0.9 OUT_OF_THE_BOX_MODEL_NAME = 'demisto_out_of_the_box_model_v2' OUT_OF_THE_BOX_MODEL_PATH = '/ml/encrypted_model.b' EVALUATION_PATH = '/ml/oob_evaluation.txt' SCRIPT_MODEL_VERSION = '1.0' OOB_VERSION_INFO_KEY = 'oob_version' def oob_model_exists_and_updated(): res_model = demisto.executeCommand("getMLModel", {"modelName": OUT_OF_THE_BOX_MODEL_NAME})[0] if is_error(res_model): return False existing_model_version = res_model['Contents']['model']['extra'].get(OOB_VERSION_INFO_KEY, -1) return existing_model_version == SCRIPT_MODEL_VERSION def load_oob_model(): try: encoded_model = demisto_ml.load_oob(OUT_OF_THE_BOX_MODEL_PATH) except Exception: return_error(traceback.format_exc()) res = demisto.executeCommand('createMLModel', {'modelData': encoded_model.decode('utf8'), 'modelName': OUT_OF_THE_BOX_MODEL_NAME, 'modelLabels': ['Malicious', 'Non-Malicious'], 'modelOverride': 'true', 'modelType': 'torch', 'modelExtraInfo': {'threshold': THRESHOLD, OOB_VERSION_INFO_KEY: SCRIPT_MODEL_VERSION } }) if is_error(res): return_error(get_error(res)) with open(EVALUATION_PATH, 'r') as json_file: data = json.load(json_file) y_test = data['YTrue'] y_pred = data['YPred'] y_pred_prob = data['YPredProb'] y_pred_evaluation = [{pred: prob} for pred, prob in zip(y_pred, y_pred_prob)] res = demisto.executeCommand('GetMLModelEvaluation', {'yTrue': json.dumps(y_test), 'yPred': json.dumps(y_pred_evaluation), 'targetPrecision': str(0.85), 'targetRecall': str(0), 'detailedOutput': 'true' }) if is_error(res): return_error(get_error(res)) confusion_matrix = json.loads(res[0]['Contents']['csr_matrix_at_threshold']) confusion_matrix_no_all = {k: v for k, v in confusion_matrix.items() if k != 'All'} confusion_matrix_no_all = {k: {sub_k: sub_v for sub_k, sub_v in v.items() if sub_k != 'All'} for k, v in confusion_matrix_no_all.items()} res = demisto.executeCommand('evaluateMLModel', {'modelConfusionMatrix': confusion_matrix_no_all, 'modelName': OUT_OF_THE_BOX_MODEL_NAME, 'modelEvaluationVectors': {'Ypred': y_pred, 'Ytrue': y_test, 'YpredProb': y_pred_prob }, 'modelConfidenceThreshold': THRESHOLD, 'modelTargetPrecision': TARGET_PRECISION }) if is_error(res): return_error(get_error(res)) def predict_phishing_words(): if not oob_model_exists_and_updated(): load_oob_model() dargs = demisto.args() dargs['modelName'] = OUT_OF_THE_BOX_MODEL_NAME res = demisto.executeCommand('DBotPredictPhishingWords', dargs) if is_error(res): return_error(get_error(res)) return res def main(): res = predict_phishing_words() return res if __name__ in ['__main__', '__builtin__', 'builtins']: demisto.results(main())
be236401a50222b0114e1126ee9946d74187e9dd
3cdb4faf34d8375d6aee08bcc523adadcb0c46e2
/web/env/lib/python3.6/site-packages/django/db/backends/base/validation.py
a02780a6947b0d164adbcf26dfc8a43433a65b07
[ "MIT", "GPL-3.0-only" ]
permissive
rizwansoaib/face-attendence
bc185d4de627ce5adab1cda7da466cb7a5fddcbe
59300441b52d32f3ecb5095085ef9d448aef63af
refs/heads/master
2020-04-25T23:47:47.303642
2019-09-12T14:26:17
2019-09-12T14:26:17
173,157,284
45
12
MIT
2020-02-11T23:47:55
2019-02-28T17:33:14
Python
UTF-8
Python
false
false
1,040
py
class BaseDatabaseValidation: """Encapsulate backend-specific validation.""" def __init__(self, connection): self.connection = connection def check(self, **kwargs): return [] def check_field(self, field, **kwargs): errors = [] # Backends may implement a check_field_type() method. if (hasattr(self, 'check_field_type') and # Ignore any related fields. not getattr(field, 'remote_field', None)): # Ignore fields with unsupported features. db_supports_all_required_features = all( getattr(self.connection.features, feature, False) for feature in field.model._meta.required_db_features ) if db_supports_all_required_features: field_type = field.db_type(self.connection) # Ignore non-concrete fields. if field_type is not None: errors.extend(self.check_field_type(field, field_type)) return errors
eb45a4ceaeba160509afafd51cde32f37ac7ab0c
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02399/s487176195.py
97bc7ca1c37548157f4bd77246ef2f57a6fb5da8
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
76
py
x,y=map(int,input().split()) print("{0} {1} {2:.8f}".format(x//y,x%y,x/y))
1ddf2f22b39151a8fd975399994f0c47d007c8ef
5f2103b1083b088aed3f3be145d01a770465c762
/169. Majority Element.py
ef741962e751483cad719893fc83c186e65afd3e
[]
no_license
supersj/LeetCode
5605c9bcb5ddcaa83625de2ad9e06c3485220019
690adf05774a1c500d6c9160223dab7bcc38ccc1
refs/heads/master
2021-01-17T17:23:39.585738
2017-02-27T15:08:42
2017-02-27T15:08:42
65,526,089
2
0
null
null
null
null
UTF-8
Python
false
false
801
py
# Given an array of size n, find the majority element. The majority element is the element that appears more than ⌊ n/2 ⌋ times. # # You may assume that the array is non-empty and the majority element always exist in the array. # # Credits: # Special thanks to @ts for adding this problem and creating all test cases. # # Subscribe to see which companies asked this question class Solution(object): def majorityElement(self, nums): """ :type nums: List[int] :rtype: int """ major = nums[0] count = 1 for i in range(1,len(nums)): if count == 0: count += 1 elif major == nums[i]: count += 1 else: count -= 1 return major
fcca03f588d55858da75addbb82353a1568ff909
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2234/60632/279655.py
5ccddbecc0421ed6a32a6f18b48171c5099a2573
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
1,428
py
# x为当前访问的节点,time为时间戳,n为节点总数 def tarjan(x: int, time: int, n: int): time += 1 dfn[x] = low[x] = time stack.append(x) for y in range(n): if adj[x][y] == 1: if dfn[y] == 0: tarjan(y, time, n) low[x] = min(low[x], low[y]) elif y in stack: low[x] = min(low[x], low[y]) if dfn[x] == low[x]: tmp = [] while stack[-1] != x: tmp.append(stack.pop()) tmp.append(stack.pop()) result.append(tmp) n = int(input()) # 间谍人数 p = int(input()) # 愿意被收买的人数 money = [] # 收买所需金额 for i in range(p): money.append(list(map(int, input().split(' ')))) r = int(input()) # 图中边数 link = [] # 图中的边 for i in range(r): link.append(list(map(int, input().split(' ')))) adj = [[0 for i in range(n)] for j in range(n)] # 邻接矩阵 for i in link: # 构建邻接矩阵 adj[i[0]-1][i[1]-1] = 1 dfn = [0 for i in range(n)] low = [0 for i in range(n)] stack = [] result = [] for i in range(n): # tarjan缩点 if dfn[i] == 0: tarjan(i, i, n) print(result) need = [] # 需要买但又不可买的点,即首先入度为 0 for i in range(n): col = [adj[j][i] for j in range(n)] if 1 not in col and i not in [j[0] for j in money]: need.append(i) print(need) print([i[0] for i in money])
fab46677e2e984639881af549272b656e8a58621
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/pa3/benchmarks/tree-20.py
8efa7e396a5213ec09e22d51c9664f39cc8e494f
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
1,448
py
# Binary-search trees class TreeNode(object): value:int = 0 left:$Type = None right:"TreeNode" = None def insert(self:"TreeNode", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode(x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode(x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class Tree(object): root:TreeNode = None size:int = 0 def insert(self:"Tree", x:int) -> object: if self.root is None: self.root = makeNode(x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def makeNode(x: int) -> TreeNode: b:TreeNode = None b = TreeNode() b.value = x return b # Input parameters n:int = 100 c:int = 4 # Data t:Tree = None i:int = 0 k:int = 37813 # Crunch t = Tree() while i < n: t.insert(k) k = (k * 37813) % 37831 if i % c != 0: t.insert(i) i = i + 1 print(t.size) for i in [4, 8, 15, 16, 23, 42]: if t.contains(i): print(i)
d31c9d70adba120acd6845805f35c9d9fa7cf28e
6ed6171b313cd485764d6d952b0f06c07d078f5d
/api/permissions.py
1fdded12e31dbd62b79d671d54169e99c8374fba
[]
no_license
yezyilomo/marathon
db802724cecf0360a3e9864d70402d029a10e7b6
75e4fd42ffe37e9b6b1d1bf6610a8bea6b12113e
refs/heads/master
2021-05-26T16:15:47.632053
2020-04-08T16:08:29
2020-04-08T16:08:29
254,133,385
3
0
null
2020-04-08T16:08:30
2020-04-08T15:54:07
Python
UTF-8
Python
false
false
1,517
py
from rest_framework import permissions class IsAllowedUser(permissions.BasePermission): """ Custom permission to only allow owners of an object to edit it. """ def has_object_permission(self, request, view, obj): return obj == request.user class IsCategoryOwner(permissions.BasePermission): """ Custom permission to only allow owners of an object to edit it. """ def has_object_permission(self, request, view, obj): return obj.marathon.organizer == request.user class IsSponsorOwner(permissions.BasePermission): """ Custom permission to only allow owners of an object to edit it. """ def has_object_permission(self, request, view, obj): return obj.marathon.organizer == request.user class IsMarathonOwner(permissions.BasePermission): """ Custom permission to only allow owners of an object to edit it. """ def has_object_permission(self, request, view, obj): return obj.organizer == request.user class IsPaymentOwner(permissions.BasePermission): """ Custom permission to only allow owners of an object to edit it. """ def has_object_permission(self, request, view, obj): return obj.user == request.user or obj.marathon.organizer == request.user class IsAdminUser(permissions.BasePermission): """ Custom permission to check if user is admin """ def has_permission(self, request, view): return request.user.is_authenticated and request.user.is_admin
2359691b0b5c80c8263fd3b40be86eedd64a19ee
0c70dcec22a090e70b1f20613ea6e0a64fd9a037
/GPS卫星位置的计算/venv/Lib/site-packages/pandas/tests/io/test_gcs.py
b80320e7700f52123bfb6001760260a947bec930
[ "MIT" ]
permissive
payiz-asj/Gis
82c1096d830878f62c7a0d5dfb6630d4e4744764
3d315fed93e2ab850b836ddfd7a67f5618969d10
refs/heads/main
2023-06-27T15:25:17.301154
2021-08-03T10:02:58
2021-08-03T10:02:58
392,269,853
1
1
null
null
null
null
UTF-8
Python
false
false
3,090
py
from io import BytesIO import os import numpy as np import pytest from pandas import DataFrame, date_range, read_csv import pandas._testing as tm from pandas.util import _test_decorators as td @td.skip_if_no("gcsfs") def test_read_csv_gcs(monkeypatch): from fsspec import AbstractFileSystem, registry registry.target.clear() # noqa # remove state df1 = DataFrame( { "int": [1, 3], "float": [2.0, np.nan], "str": ["t", "s"], "dt": date_range("2018-06-18", periods=2), } ) class MockGCSFileSystem(AbstractFileSystem): def open(*args, **kwargs): return BytesIO(df1.to_csv(index=False).encode()) monkeypatch.setattr("gcsfs.GCSFileSystem", MockGCSFileSystem) df2 = read_csv("gs://test/test.csv", parse_dates=["dt"]) tm.assert_frame_equal(df1, df2) @td.skip_if_no("gcsfs") def test_to_csv_gcs(monkeypatch): from fsspec import AbstractFileSystem, registry registry.target.clear() # noqa # remove state df1 = DataFrame( { "int": [1, 3], "float": [2.0, np.nan], "str": ["t", "s"], "dt": date_range("2018-06-18", periods=2), } ) s = BytesIO() s.close = lambda: True class MockGCSFileSystem(AbstractFileSystem): def open(*args, **kwargs): s.seek(0) return s monkeypatch.setattr("gcsfs.GCSFileSystem", MockGCSFileSystem) df1.to_csv("gs://test/test.csv", index=True) def mock_get_filepath_or_buffer(*args, **kwargs): return BytesIO(df1.to_csv(index=True).encode()), None, None, False monkeypatch.setattr( "pandas.io.common.get_filepath_or_buffer", mock_get_filepath_or_buffer ) df2 = read_csv("gs://test/test.csv", parse_dates=["dt"], index_col=0) tm.assert_frame_equal(df1, df2) @td.skip_if_no("fastparquet") @td.skip_if_no("gcsfs") def test_to_parquet_gcs_new_file(monkeypatch, tmpdir): """Regression test for writing to a not-yet-existent GCS Parquet file.""" from fsspec import AbstractFileSystem, registry registry.target.clear() # noqa # remove state df1 = DataFrame( { "int": [1, 3], "float": [2.0, np.nan], "str": ["t", "s"], "dt": date_range("2018-06-18", periods=2), } ) class MockGCSFileSystem(AbstractFileSystem): def open(self, path, mode="r", *args): if "w" not in mode: raise FileNotFoundError return open(os.path.join(tmpdir, "test.parquet"), mode) monkeypatch.setattr("gcsfs.GCSFileSystem", MockGCSFileSystem) df1.to_parquet( "gs://test/test.csv", index=True, engine="fastparquet", compression=None ) @td.skip_if_installed("gcsfs") def test_gcs_not_present_exception(): with pytest.raises(ImportError) as e: read_csv("gs://test/test.csv") assert "gcsfs library is required" in str(e.value)
e010af64e48efa09d26f1e4b7f943a02082dace2
bbe447a740929eaee1955bd9c1517cf760dd5cb9
/keygrabber/adwords/adwords_api_python_14.2.1/adspygoogle/adwords/zsi/v201008/AdGroupAdService_services.py
bce9883a53e9d6a36b68f760daeabf22fc68622c
[ "Apache-2.0" ]
permissive
MujaahidSalie/aranciulla
f3d32e7dd68ecfca620fe4d3bf22ecb4762f5893
34197dfbdb01479f288611a0cb700e925c4e56ce
refs/heads/master
2020-09-07T02:16:25.261598
2011-11-01T21:20:46
2011-11-01T21:20:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,205
py
################################################## # AdGroupAdService_services.py # generated by ZSI.generate.wsdl2python ################################################## from AdGroupAdService_services_types import * import urlparse, types from ZSI.TCcompound import ComplexType, Struct from ZSI import client import ZSI # Locator class AdGroupAdServiceLocator: AdGroupAdServiceInterface_address = "https://adwords.google.com:443/api/adwords/cm/v201008/AdGroupAdService" def getAdGroupAdServiceInterfaceAddress(self): return AdGroupAdServiceLocator.AdGroupAdServiceInterface_address def getAdGroupAdServiceInterface(self, url=None, **kw): return AdGroupAdServiceSoapBindingSOAP(url or AdGroupAdServiceLocator.AdGroupAdServiceInterface_address, **kw) # Methods class AdGroupAdServiceSoapBindingSOAP: def __init__(self, url, **kw): kw.setdefault("readerclass", None) kw.setdefault("writerclass", None) # no resource properties self.binding = client.Binding(url=url, **kw) # no ws-addressing # get: getAdGroupAd def getAdGroupAd(self, request): if isinstance(request, getAdGroupAdRequest) is False: raise TypeError, "%s incorrect request type" % (request.__class__) kw = {} # no input wsaction self.binding.Send(None, None, request, soapaction="", **kw) # no output wsaction response = self.binding.Receive(getAdGroupAdResponse.typecode) return response # mutate: getAdGroupAd def mutateAdGroupAd(self, request): if isinstance(request, mutateAdGroupAdRequest) is False: raise TypeError, "%s incorrect request type" % (request.__class__) kw = {} # no input wsaction self.binding.Send(None, None, request, soapaction="", **kw) # no output wsaction response = self.binding.Receive(mutateAdGroupAdResponse.typecode) return response getAdGroupAdRequest = ns0.getAdGroupAd_Dec().pyclass getAdGroupAdResponse = ns0.getAdGroupAdResponse_Dec().pyclass mutateAdGroupAdRequest = ns0.mutateAdGroupAd_Dec().pyclass mutateAdGroupAdResponse = ns0.mutateAdGroupAdResponse_Dec().pyclass
39319351c0c7faafc21e10a864c35e6716a3785f
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_200/945.py
7863ed26a1e33eacbab4fd0315c93eed52357ba7
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
611
py
#/usr/bin/python3 def solve(N): N = list(N) res = "" prev = 0 while N: act = int(N.pop(0)) #print(prev, act) if prev <= act: res += str(prev) prev = act else: res += str(prev-1) res += "9"*len(N) prev = 9 break res += str(prev) return str(int(res)) T = int(input()) for t in range(T): N = input() while True: M = solve(N) if M == N: break else: N = M print("Case #{0}: {1}".format(t+1, int(N)))
76b05533f9e6516133fbc32a4c854068b3945a09
353def93fa77384ee3a5e3de98cfed318c480634
/.history/week01/homework02/maoyanspiders/maoyanspiders/pipelines_20200627225511.py
4f21199c88011b2b2d4020bf52f226457160cd94
[]
no_license
ydbB/Python001-class01
d680abc3ea1ccaeb610751e3488421417d381156
ad80037ccfc68d39125fa94d2747ab7394ac1be8
refs/heads/master
2022-11-25T11:27:45.077139
2020-07-19T12:35:12
2020-07-19T12:35:12
272,783,233
0
0
null
2020-06-16T18:28:15
2020-06-16T18:28:15
null
UTF-8
Python
false
false
578
py
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html class MaoyanspidersPipeline(object): def process_item(self, item, spider): films_name = item['films_name'] films_type = item['films_type'] release_time = item['release_time'] output = f'|{films_name}|\t|{films_type}|\t|{release_time}|\n\n' with open('./week01/homework02/top10.csv',encoding='utf-8') as article: article.write
a7fa0c2b13e99441b55229c95b761c210c29ac52
253089ef4ee99c50cdaa23fde4d789794789e2e9
/134/test_twosums.py
842a20ecb4b75611347c73b305dd9b21be332816
[]
no_license
Zaubeerer/bitesofpy
194b61c5be79c528cce3c14b9e2c5c4c37059259
e5647a8a7a28a212cf822abfb3a8936763cd6b81
refs/heads/master
2021-01-01T15:01:21.088411
2020-11-08T19:56:30
2020-11-08T19:56:30
239,328,990
1
0
null
null
null
null
UTF-8
Python
false
false
1,442
py
import pytest from random import sample, seed from twosums import two_sums NUMBERS = [ 2202, 9326, 1034, 4180, 1932, 8118, 7365, 7738, 6220, 3440, 1538, 7994, 465, 6387, 7091, 9953, 35, 7298, 4364, 3749, 9686, 1675, 5201, 502, 366, 417, 8871, 151, 6246, 3549, 6916, 476, 8645, 3633, 7175, 8124, 9059, 3819, 5664, 3783, 3585, 7531, 4748, 353, 6819, 9117, 1639, 3046, 4857, 1981] def test_two_sums(): """Test of the example given in the description""" numbers = [3, 10, 14, 8, 15, 5, 16, 13, 9, 2] expected = (2, 6) target = 30 result = two_sums(numbers, target) assert result == expected @pytest.mark.parametrize("target, expected", [ (10093, (2, 36)), (7067, (27, 30)), (11261, (0, 36)), (11350, (37, 41)), (5224, (31, 42)), (2934785974, None), ]) def test_two_sums_param(target, expected): result = two_sums(NUMBERS, target) assert result == expected def test_two_sums_random(): seed(1) numbers = sample(range(1, 1_000_000), 1_000) picked = sample(numbers, 2) index1 = numbers.index(picked[0]) index2 = numbers.index(picked[1]) ordered = sorted([index1, index2]) expected = ordered[0], ordered[1] target = sum(picked) result = two_sums(numbers, target) assert result == expected def test_two_sums_none(): result = two_sums(NUMBERS, 7000) assert result is None
0eb6589094d8dfef39e0ec486bb16c31b27fc3f3
36e27ca74b734994fb2e5cd4e328e7b82202d8cd
/nodarb/migrations/0003_telpa.py
1fe984dec5f7810becd4c75505ce077de3cfe3d1
[]
no_license
svabis/vf
5e9513f3a767a9561e2fb8bd3e37bb3c03d113dd
d83a4afd177e4f7007a9ce824ae5ed36f18654fc
refs/heads/master
2020-05-21T21:19:59.952463
2018-06-04T11:11:50
2018-06-04T11:11:50
84,647,341
0
0
null
null
null
null
UTF-8
Python
false
false
825
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('nodarb', '0002_auto_20170311_1322'), ] operations = [ migrations.CreateModel( name='Telpa', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('telpa', models.CharField(max_length=5, choices=[(b'L', b'liel\xc4\x81 z\xc4\x81le'), (b'M', b'maz\xc4\x81 z\xc4\x81le'), (b'G', b'gym z\xc4\x81le'), (b'V', b'velo z\xc4\x81le'), (b'C', b'c\xc4\xab\xc5\x86u z\xc4\x81le')])), ], options={ 'db_table': 'telpa', 'verbose_name': 'Telpa', }, ), ]
2157e48e1a135e8fc11033df646c00f9085d895f
5930f323d96e7ed45c01fef63b100e1ad220f764
/catalyst/core/callbacks/__init__.py
14c691fa96ccc1abd7e4f3bc8f85c97e1378d05c
[ "Apache-2.0" ]
permissive
saswat0/catalyst
8cb91c2392bccdbdd318544e6861e6fe6ac39b33
a35297ecab8d1a6c2f00b6435ea1d6d37ec9f441
refs/heads/master
2023-04-05T00:43:29.124864
2020-06-18T05:41:33
2020-06-18T05:41:33
272,268,902
2
0
Apache-2.0
2020-06-18T05:41:34
2020-06-14T19:24:04
null
UTF-8
Python
false
false
607
py
# flake8: noqa from .checkpoint import CheckpointCallback, IterationCheckpointCallback from .criterion import CriterionCallback from .early_stop import CheckRunCallback, EarlyStoppingCallback from .exception import ExceptionCallback from .logging import ConsoleLogger, TensorboardLogger, VerboseLogger from .metrics import ( MetricAggregationCallback, MetricCallback, MetricManagerCallback, MultiMetricCallback, ) from .optimizer import OptimizerCallback from .scheduler import LRUpdater, SchedulerCallback from .timer import TimerCallback from .validation import ValidationManagerCallback
1f25baa28cba0a1250c9712f3a1de7ccb89556b5
d9aa4291a4978b932bef84b8d26aa4b911ca2add
/day111Flask前戏/02偏函数.py
d5009db7bda2799235778291411ea579600ab40d
[]
no_license
SelfShadows/my_git
9a32d3713efb1b055d04c813b319eb2196fdcf53
b10a4c838e1146b3f6ce297480840de9a8e89206
refs/heads/master
2020-12-15T22:33:49.273814
2020-02-14T16:33:46
2020-02-14T16:33:46
235,274,933
0
0
null
null
null
null
UTF-8
Python
false
false
218
py
import functools def index(a,b): return a+b # 原来的调用方法 ret = index(3,1) print(ret) # 偏函数, 帮助开发者自动传递参数 new_func = functools.partial(index, 55) ret = new_func(1) print(ret)
458f916ac8029a2a822f10c365aa1842b758e621
b4241b2c9d01704d85c040825d4e7c32d8db3677
/test.py
b598581bb8509cc4188807d9b7eb362a27f9d302
[]
no_license
juyrjola/thermal-zones
1d68b59daa183368559ce25c0c3c46cc7287576f
a21d025543d4f0413f43feffc7d05fba3b904cf9
refs/heads/master
2022-11-17T07:22:42.383610
2020-07-15T15:03:54
2020-07-15T15:03:54
279,899,451
0
0
null
null
null
null
UTF-8
Python
false
false
20,221
py
import click import time import os import re import glob from functools import cached_property THERMAL_PATH = '/sys/devices/virtual/thermal/' RAPL_PATH = '/sys/devices/virtual/powercap/intel-rapl/intel-rapl:0' POWERCAP_PATH = '/sys/devices/virtual/powercap' def get_thermal_zone_paths(): paths = [p for p in os.listdir(THERMAL_PATH) if re.match('thermal_zone[0-9]+', p)] return [os.path.join(THERMAL_PATH, p) for p in paths] def read_sysfs_value(path): f = open(path, 'r', encoding='ascii') return f.read().strip() def write_sysfs_value(path, val): f = open(path, 'w', encoding='ascii') return f.write(val.strip()) class SysfsMixin: def read_attr(self, attr): return read_sysfs_value(os.path.join(self.base_path, attr)) def write_attr(self, attr, val): return write_sysfs_value(os.path.join(self.base_path, attr), val) class Constraint(SysfsMixin): def __init__(self, base_path, nr): self.base_path = base_path self.nr = nr self._power_limit_uw = self.power_limit_uw self._power_limit_changed = False def restore(self): if not self._power_limit_changed: return print('%s [%s]: %s -> %s' % (self.base_path, self.name, self.power_limit_uw, self._power_limit_uw)) self.set_power_limit_uw(self._power_limit_uw) def read_attr(self, attr): return super().read_attr('constraint_%d_%s' % (self.nr, attr)) def write_attr(self, attr, val): return super().write_attr('constraint_%d_%s' % (self.nr, attr), val) @property def name(self): return self.read_attr('name') @property def max_power_uw(self): try: out = int(self.read_attr('max_power_uw')) except OSError: return None return out @property def max_power(self): if self.max_power_uw is None: return None return self.max_power_uw / 1000000 @property def power_limit_uw(self): return int(self.read_attr('power_limit_uw')) def set_power_limit_uw(self, val): self._power_limit_changed = True self.write_attr('power_limit_uw', str(int(val))) @property def power_limit(self): return self.power_limit_uw / 1000000 @property def time_window_us(self): return int(self.read_attr('time_window_us')) def __str__(self): return self.name class Battery(SysfsMixin): def __init__(self): self.base_path = '/sys/class/power_supply/BAT1' @property def power(self): return int(self.read_attr('power_now')) / 1000000 class CPU: def __init__(self, path): self.path = path self.nr = int(path[-1]) self.max_freq = int(self.read_cpufreq('cpuinfo_max_freq')) self.min_freq = int(self.read_cpufreq('cpuinfo_min_freq')) self._scaling_max_freq = self.scaling_max_freq self._ep_pref = self.energy_performance_preference self._scaling_gov = self.scaling_governor def init(self): # 'power', 'balance_power', 'balance_performance', 'performance' self.set_energy_performance_preference('power') # 'performance', 'powersave' self.set_scaling_gov('powersave') self.set_scaling_max_freq(self.max_freq) def restore(self): self.set_energy_performance_preference(self._ep_pref) self.set_scaling_gov(self._scaling_gov) @property def energy_performance_preference(self): return self.read_cpufreq('energy_performance_preference') def set_energy_performance_preference(self, pref): if self.energy_performance_preference != pref: self.write_cpufreq('energy_performance_preference', pref) @property def scaling_max_freq(self): return int(self.read_cpufreq('scaling_max_freq')) def set_scaling_max_freq(self, freq): if self.scaling_max_freq != freq: self.write_cpufreq('scaling_max_freq', str(freq)) @property def scaling_governor(self): return self.read_cpufreq('scaling_governor') def set_scaling_gov(self, gov): if self.scaling_governor != gov: self.write_cpufreq('scaling_governor', gov) @property def cur_freq(self): return self.read_cpufreq('scaling_cur_freq') def read_attr(self, attr): return read_sysfs_value(os.path.join(self.path, attr)) def write_attr(self, attr, val): return write_sysfs_value(os.path.join(self.path, attr), val) def read_cpufreq(self, attr): return self.read_attr('cpufreq/%s' % attr) def write_cpufreq(self, attr, val): print('[CPU%d] Setting %s to %s' % (self.nr, attr, val)) return self.write_attr('cpufreq/%s' % attr, val) class PowerCapDevice: def __init__(self, path): self.path = path self.constraints = [] self._enabled = self.enabled self._enabled_changed = False self._last_energy_sample_time = None self._find_constraints() self.print() def restore(self): for c in self.constraints: c.restore() if not self._enabled_changed: return print('%s: %s -> %s' % (self.name, self.enabled, self._enabled)) self.set_enabled(self._enabled) def read_attr(self, attr): return read_sysfs_value(os.path.join(self.path, attr)) def write_attr(self, attr, val): return write_sysfs_value(os.path.join(self.path, attr), val) def _find_constraints(self): for fn in os.listdir(self.path): m = re.match('constraint_([0-9]+)_name', fn) if not m: continue self.constraints.append(Constraint(self.path, int(m.groups()[0]))) @property def enabled(self): return bool(int(self.read_attr('enabled'))) def set_enabled(self, val: bool): self._enabled_changed = True self.write_attr('enabled', '1' if val else '0') @property def name(self): return self.read_attr('name') @property def power(self): energy_uj = int(self.read_attr('energy_uj')) now = time.time() if self._last_energy_sample_time is not None: power = (energy_uj - self._last_energy_uj) / (now - self._last_energy_sample_time) / 1000000 else: power = 0 self._last_energy_sample_time = now self._last_energy_uj = energy_uj return power def set_power_limit(self, limit_mw): if limit_mw is None: print('%s: restoring' % self) self.restore() return print('%s: limit to %.3f W' % (self.name, limit_mw / 1000)) for c in self.constraints: if c.name == 'short_term': break c.set_power_limit_uw(limit_mw * 1000) print(c.power_limit_uw) if not self.enabled: self.set_enabled(True) self.print() def print(self): print('%s [%s] %s' % (self.name, 'enabled' if self.enabled else 'disabled', self.path)) for c in self.constraints: print(' %s (limit: %.3f, max: %s)' % (c.name, c.power_limit, c.max_power)) class PowerCap: NO_LIMIT = 0 HOT_LIMIT = 1 CRITICAL_LIMIT = 2 def __init__(self, base_path=POWERCAP_PATH): self.base_path = base_path self.devices = [] self._scan() def restore(self): for d in self.devices: d.restore() def set_power_limit(self, name, limit): found = False for d in self.devices: if d.name == name: d.set_power_limit(limit) found = True if not found: raise Exception('Unknown cap device: %s' % name) def set_limit(self, limit): if limit == self.NO_LIMIT: self.restore() elif limit == self.HOT_LIMIT: self.set_power_limit('package-0', 16000) self.set_power_limit('core', 6000) elif limit == self.CRITICAL_LIMIT: self.set_power_limit('package-0', 8000) self.set_power_limit('core', 2000) def _find_devices(self, path): for fname in os.listdir(path): if fname == 'energy_uj': self.devices.append(PowerCapDevice(path)) continue p = self.subpath(path, fname) if os.path.islink(p): continue if os.path.isdir(p): self._find_devices(p) continue def subpath(self, *paths): return os.path.join(self.base_path, *paths) def _scan(self, base_path=None): for p in os.listdir(self.base_path): if not os.path.isdir(self.subpath(p)): continue if os.path.exists(self.subpath(p, 'enabled')): if read_sysfs_value(self.subpath(p, 'enabled')) != '1': print('Disabled: %s' % p) continue self._find_devices(self.subpath(p)) class TripPoint: def __init__(self, zone, path): self.zone = zone self.path = path def read_attr(self, attr): return read_sysfs_value(os.path.join(self.path + '_' + attr)) @cached_property def temp(self): return int(self.read_attr('temp')) @property def temp_c(self): return self.temp / 1000 @cached_property def type(self): return self.read_attr('type') class ThermalZone: def __init__(self, path): self.path = path tp_paths = glob.glob(os.path.join(self.path, 'trip_point_*_type')) tps = [TripPoint(self, p.replace('_type', '')) for p in tp_paths] self.trip_points = sorted(filter(lambda x: x.temp > 0, tps), key=lambda x: x.temp, reverse=True) try: self.last_state = self.get_current_state() except OSError: self.valid = False return self.first_tp = self.trip_points[-1] if self.trip_points else None if self.first_tp: self.hot_tp = list(filter(lambda x: x.type in ('hot', 'critical'), self.trip_points))[-1] self.valid = True def __str__(self): return self.type def read_attr(self, attr): return read_sysfs_value(os.path.join(self.path, attr)) @property def type(self): return self.read_attr('type') @property def temp(self): return int(self.read_attr('temp')) @property def temp_c(self): return self.temp / 1000 def get_scaled_temp(self): if not self.trip_points: return 0.0 current = self.temp first = self.first_tp.temp last = self.hot_tp.temp if current <= first: return 0.0 if current >= last: return 1.0 ret = (current - first) / (last - first) return ret def get_current_state(self): temp = self.temp for tp in self.trip_points: if temp >= tp.temp: return tp.type return None def state_changed(self) -> bool: state = self.get_current_state() if state != self.last_state: self.last_state = state return True return False class ThermalDaemon: def __init__(self): self.pc = PowerCap() tzs = [ThermalZone(p) for p in get_thermal_zone_paths()] self.thermal_zones = [t for t in tzs if t.valid] self.battery = Battery() self.cpus = [] cpu_paths = glob.glob('/sys/devices/system/cpu/cpu?') for p in sorted(cpu_paths): self.cpus.append(CPU(p)) for z in self.thermal_zones: print('%s: %.1f %s (%s)' % (z.type, z.temp / 1000, z.get_current_state(), z.path)) for tp in sorted(z.trip_points, key=lambda x: x.temp): print(' %.1f: %s' % (tp.temp / 1000, tp.type)) self.last_state = None self.callback_func = None def init(self): CPUIDLE_GOV = 'teo' CPUIDLE_PATH = '/sys/devices/system/cpu/cpuidle/current_governor' gov = read_sysfs_value(CPUIDLE_PATH) if gov != CPUIDLE_GOV: print('Setting cpuidle governor to %s' % CPUIDLE_GOV) write_sysfs_value(CPUIDLE_PATH, CPUIDLE_GOV) for cpu in self.cpus: cpu.init() self.loop_count = 0 def restore(self): self.pc.restore() for cpu in self.cpus: cpu.restore() def run(self): self.loop_count = 0 while True: try: self.print_state() self.loop() time.sleep(2) self.loop_count += 1 except (Exception, KeyboardInterrupt): print('restoring') self.restore() raise def set_state(self, state): if state is None or state == 'active': self.pc.set_limit(PowerCap.NO_LIMIT) elif state == 'passive': self.pc.set_limit(PowerCap.HOT_LIMIT) else: self.pc.set_limit(PowerCap.CRITICAL_LIMIT) self.last_state = state def print_state(self): s1 = '' s2 = '' s3 = '' s4 = '' for z in self.thermal_zones: s1 += '%-15s' % z.type s2 += '%-15.1f' % (z.temp / 1000) s3 += '%-15s' % z.get_current_state() s4 += '%-15d' % (z.get_scaled_temp() * 100) if self.loop_count % 20 == 0: print(s1) print(s3) print(s2) print(s4) for d in self.pc.devices: print('%s: %.02f W [%s]' % (d.name, d.power, d.path)) print('Battery: %.02f W' % self.battery.power) def loop(self): worst_state = None for tz in self.thermal_zones: state = tz.get_current_state() if tz.state_changed(): print('%s changed to %s' % (str(tz), state)) if state is None: continue if worst_state is None: worst_state = state continue if state == 'critical': worst_state = state continue if state == 'hot' and worst_state != 'hot': worst_state = state continue if state == 'passive' and worst_state == 'active': worst_state = state continue if worst_state != self.last_state: # self.pc.limit(worst_state) print('state change to %s' % worst_state) self.set_state(worst_state) if self.callback_func: self.callback_func() def set_callback(self, callback_func): self.callback_func = callback_func class Plotter: def __init__(self, d: ThermalDaemon): self.d = d class MatplotPlotter(Plotter): def init(self): import matplotlib # matplotlib.use('GTK3Cairo') matplotlib.use('GTK3Cairo') import matplotlib.pyplot as plt self.plt = plt fig, axs = plt.subplots(2) self.fig = fig ax = axs[0] ax.set_xlim(0, 50) ax.set_ylim(0, 120) for tz in self.d.thermal_zones: if tz.type in ('acpitz', 'INT3400 Thermal', 'x86_pkg_temp'): tz.line = None continue ydata = [tz.temp_c] * 50 tz.line, = ax.plot(ydata, label=tz.type) ax.legend() ax = axs[1] ax.set_xlim(0, 50) ax.set_ylim(0, 20) bat = self.d.battery bat.line, = ax.plot([bat.power] * 50, label='Battery') for dev in self.d.pc.devices: dev.line, = ax.plot([dev.power] * 50, label=dev.name) ax.legend() plt.show(block=False) plt.pause(0.5) def update(self, frame=None): self.d.loop() lines = [] for tz in self.d.thermal_zones: if not tz.line: continue data = list(tz.line.get_ydata())[1:] data.append(tz.temp_c) tz.line.set_ydata(data) lines.append(tz.line) bat = self.d.battery data = list(bat.line.get_ydata())[1:] data.append(bat.power) bat.line.set_ydata(data) lines.append(bat.line) for dev in self.d.pc.devices: data = list(dev.line.get_ydata())[1:] data.append(dev.power) dev.line.set_ydata(data) lines.append(dev.line) return lines def run(self): from matplotlib.animation import FuncAnimation ani = FuncAnimation(self.fig, self.update, frames=None, blit=True, interval=500) # noqa print('showing') self.plt.show() class QTGraphPlotter(Plotter): def init(self): from pyqtgraph.Qt import QtGui, QtCore import pyqtgraph as pg import signal import seaborn as sns QtGui.QApplication.setAttribute(QtCore.Qt.AA_EnableHighDpiScaling, True) QtGui.QApplication.setAttribute(QtCore.Qt.AA_UseHighDpiPixmaps, True) self.app = app = QtGui.QApplication([]) app.setStyle("fusion") self.win = win = pg.GraphicsLayoutWidget(show=True, title='Thermal') win.resize(1000, 600) win.setWindowTitle('Thermal Plot') palette = sns.color_palette('deep') pg.setConfigOptions(antialias=True) p = self.temp_plot = win.addPlot(title='Temps') p.setLabel('left', '°C') p.addLegend() p.setMouseEnabled(x=False, y=False) ci = 0 for tz in self.d.thermal_zones: if tz.type in ('acpitz', 'INT3400 Thermal', 'x86_pkg_temp'): tz.line = None continue color = [x * 255 for x in palette[ci]] tz.line = p.plot(pen=pg.mkPen(color, width=4), name=tz.type) ci += 1 p.setYRange(0, 120, padding=0) p.setXRange(0, 50, padding=0) p.enableAutoRange('xy', False) win.nextRow() p = self.power_plot = win.addPlot(title='Power') p.setLabel('left', 'W') p.addLegend() p.setMouseEnabled(x=False, y=False) p.setYRange(0, 30, padding=0) p.setXRange(0, 50, padding=0) p.enableAutoRange('xy', False) ci = 0 bat = self.d.battery color = [x * 255 for x in palette[ci]] bat.line = p.plot(pen=pg.mkPen(color, width=4), name='Battery') ci += 1 for dev in self.d.pc.devices: color = [x * 255 for x in palette[ci]] dev.line = p.plot(pen=pg.mkPen(color, width=4), name=dev.name) ci += 1 signal.signal(signal.SIGINT, self.sigint_handler) def sigint_handler(self, signum, frame): self.app.quit() def update_line(self, line, sample): x, y = line.getData() if y is None: y = [] else: y = list(y) y.append(sample) if len(y) > 50: y = y[1:] line.setData(y) def _update(self): self.d.loop() for tz in self.d.thermal_zones: if not tz.line: continue self.update_line(tz.line, tz.temp_c) bat = self.d.battery self.update_line(bat.line, bat.power) for dev in self.d.pc.devices: self.update_line(dev.line, dev.power) def update(self): try: self._update() except Exception: print('quitting') self.app.quit() raise def safe_timer(self): from pyqtgraph.Qt import QtCore self.update() QtCore.QTimer.singleShot(2000, self.safe_timer) def run(self): self.safe_timer() self.app.exec_() @click.command() @click.option('--plot', is_flag=True) def run(plot): d = ThermalDaemon() if plot: plotter = QTGraphPlotter(d) plotter.init() d.init() if plot: try: plotter.run() finally: print('restoring') d.restore() else: d.run() if __name__ == "__main__": run()