blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
659225b6d0ed14ffec7d992922f69f21209fb358
1f468bc6edd2619c4fcc213f44fc64db129eaa51
/tf_agents/bandits/policies/linalg.py
8d54bd8cbfb1f5f4c655288016339d79ba97f24e
[ "Apache-2.0" ]
permissive
sanket-kamthe/agents
8ae89da7d581d6d9165ad87ad10d10375e7f4d68
5876d78cacaec1cf5994f93ad0aa48f347f7fff0
refs/heads/master
2021-06-21T03:09:46.953822
2021-02-05T22:19:15
2021-02-05T22:19:15
181,042,465
2
0
Apache-2.0
2021-02-05T22:19:16
2019-04-12T16:12:06
Python
UTF-8
Python
false
false
7,331
py
# coding=utf-8 # Copyright 2020 The TF-Agents Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility code for linear algebra functions.""" from __future__ import absolute_import from __future__ import division # Using Type Annotations. from __future__ import print_function import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import from tf_agents.typing import types from tf_agents.utils import common def _cg_check_shapes(a_mat, b): if a_mat.shape[0] != a_mat.shape[1] or a_mat.shape.rank != 2: raise ValueError('`a_mat` must be rank 2 square matrix; ' 'got shape {}.'.format(a_mat.shape)) if a_mat.shape[1] != b.shape[0]: raise ValueError('The dims of `a_mat` and `b` are not compatible; ' 'got shapes {} and {}.'.format(a_mat.shape, b.shape)) @common.function def conjugate_gradient(a_mat: types.Tensor, b: types.Tensor, tol: float = 1e-10) -> types.Float: """Returns `x` such that `A * x = b`. Implements the Conjugate Gradient method. https://en.wikipedia.org/wiki/Conjugate_gradient_method Args: a_mat: a Symmetric Positive Definite matrix, represented as a `Tensor` of shape `[n, n]`. b: a `Tensor` of shape `[n, 1]`. tol: (float) desired tolerance on the residual. Returns: x: `Tensor` `x` of shape `[n, 1]` such that `A * x = b`. Raises: ValueError: if `a_mat` is not square or `a_mat` and `b` have incompatible shapes. """ _cg_check_shapes(a_mat, b) n = tf.shape(b)[0] x = tf.zeros_like(b) r = b - tf.matmul(a_mat, x) p = r rs_old = tf.reduce_sum(r * r) rs_new = rs_old def body_fn(i, x, p, r, rs_old, rs_new): """One iteration of CG.""" a_x_p = tf.matmul(a_mat, p) alpha = rs_old / tf.reduce_sum(p * a_x_p) x = x + alpha * p r = r - alpha * a_x_p rs_new = tf.reduce_sum(r * r) p = r + (rs_new / rs_old) * p rs_old = rs_new i = i + 1 return i, x, p, r, rs_old, rs_new def while_exit_cond(i, x, p, r, rs_old, rs_new): """Exit the loop when n is reached or when the residual becomes small.""" del x # unused del p # unused del r # unused del rs_old # unused i_cond = tf.less(i, n) residual_cond = tf.greater(tf.sqrt(rs_new), tol) return tf.logical_and(i_cond, residual_cond) _, x, _, _, _, _ = tf.while_loop( while_exit_cond, body_fn, [tf.constant(0), x, p, r, rs_old, rs_new], parallel_iterations=1) return x @common.function def conjugate_gradient_solve(a_mat: types.Tensor, b_mat: types.Tensor, tol: float = 1e-10) -> types.Tensor: """Returns `X` such that `A * X = B`. Uses Conjugate Gradient to solve many linear systems of equations with the same matrix `a_mat` and multiple right hand sides provided as columns in the matrix `b_mat`. Args: a_mat: a Symmetric Positive Definite matrix, represented as a `Tensor` of shape `[n, n]`. b_mat: a `Tensor` of shape `[n, k]`. tol: (float) desired tolerance on the residual. Returns: X: `Tensor` `X` of shape `[n, k]` such that `A * X = B`. Raises: ValueError: if `a_mat` is not square or `a_mat` and `b_mat` have incompatible shapes. """ # Allows for flexible shape handling. If the shape is statically known, it # will use the first part. If the shape is not statically known, tf.shape() # will be used. n = tf.compat.dimension_value(b_mat.shape[0]) or tf.shape(b_mat)[0] k = tf.compat.dimension_value(b_mat.shape[1]) or tf.shape(b_mat)[1] x = tf.zeros_like(b_mat) def body_fn(i, x): """Solve one linear system of equations with the `i`-th column of b_mat.""" b_vec = tf.slice(b_mat, begin=[0, i], size=[n, 1]) x_sol = conjugate_gradient(a_mat, b_vec, tol) indices = tf.concat([tf.reshape(tf.range(n, dtype=tf.int32), [n, 1]), i * tf.ones([n, 1], dtype=tf.int32)], axis=-1) x = tf.tensor_scatter_nd_update( tensor=x, indices=indices, updates=tf.squeeze(x_sol, 1)) x.set_shape(b_mat.shape) i = i + 1 return i, x _, x = tf.while_loop( lambda i, _: i < k, body_fn, loop_vars=[tf.constant(0), x], parallel_iterations=10) return x def _check_shapes(a_inv: types.Tensor, u: types.Tensor): if a_inv.shape[0] != a_inv.shape[1] or a_inv.shape.rank != 2: raise ValueError('`a_inv` must be rank 2 square matrix; ' 'got shape {}.'.format(a_inv.shape)) if u.shape.rank != 2: raise ValueError('`u` must be rank 2 matrix; ' 'got shape {}.'.format(u.shape)) if a_inv.shape[1] != u.shape[1]: raise ValueError('`a_inv` and `u` must have shapes [m, m] and [n, m]; ' 'got shapes {} and {}.'.format(a_inv.shape, u.shape)) def simplified_woodbury_update(a_inv: types.Float, u: types.Float) -> types.Float: """Returns `w` such that `inverse(a + u.T.dot(u)) = a_inv + w`. Makes use of the Woodbury matrix identity. See https://en.wikipedia.org/wiki/Woodbury_matrix_identity. **NOTE**: This implementation assumes that a_inv is symmetric. Since it's too expensive to check symmetricity, the function silently outputs a wrong answer in case `a` is not symmetric. Args: a_inv: an invertible SYMMETRIC `Tensor` of shape `[m, m]`. u: a `Tensor` of shape `[n, m]`. Returns: A `Tensor` `w` of shape `[m, m]` such that `inverse(a + u.T.dot(u)) = a_inv + w`. Raises: ValueError: if `a_inv` is not square or `a_inv` and `u` have incompatible shapes. """ _check_shapes(a_inv, u) u_x_a_inv = tf.matmul(u, a_inv) capacitance = ( tf.eye(tf.shape(u)[0], dtype=u.dtype) + tf.matmul(u_x_a_inv, u, transpose_b=True)) return -1. * tf.matmul( u_x_a_inv, tf.linalg.solve(capacitance, u_x_a_inv), transpose_a=True) def update_inverse(a_inv: types.Float, x: types.Float) -> types.Float: """Updates the inverse using the Woodbury matrix identity. Given a matrix `A` of size d-by-d and a matrix `X` of size k-by-d, this function computes the inverse of B = A + X^T X, assuming that the inverse of A is available. Reference: https://en.wikipedia.org/wiki/Woodbury_matrix_identity Args: a_inv: a `Tensor` of shape [`d`, `d`]. This is the current inverse of `A`. x: a `Tensor` of shape [`k`, `d`]. Returns: The update that needs to be added to 'a_inv' to compute the inverse. If `x` is empty, a zero matrix is returned. """ batch_size = tf.shape(x)[0] def true_fn(): return tf.zeros_like(a_inv) def false_fn(): return simplified_woodbury_update(a_inv, x) a_inv_update = tf.cond(tf.equal(batch_size, 0), true_fn, false_fn) return a_inv_update
49de6098f4d8b05a00fbb57f00b1af5d4ea13289
3bdff0b728d8754a9a424c5eae79f1bc417d8728
/pi_db/client/entity/UserEntity.py
7ccab845eb7258395a5196a071d26e75d43dc305
[]
no_license
wangshiyu/pi
92e8ac753f8de878d080a7dd0eecd8aa2a276d18
e6c42f2c24407e5857bde4ba777ef78e88cb9263
refs/heads/master
2023-02-12T12:05:27.525452
2021-01-12T13:57:30
2021-01-12T13:57:30
291,059,595
0
0
null
null
null
null
UTF-8
Python
false
false
577
py
# encoding: utf-8 # !/usr/bin/python3 from sqlalchemy import Column, Integer, String from pi_db.client.entity.ClientBaseEntity import ClientBaseEntity from sqlalchemy.ext.declarative import declarative_base DeclarativeBase = declarative_base() """ UserEntity对象 用户表 """ class UserEntity(DeclarativeBase, ClientBaseEntity): # 表的名字: __tablename__ = 'tb_user' # 表的结构: name = Column(String(12)) # 名称 password = Column(String(32)) # 密码 privilegeLevel = Column(Integer, name='privilege_level', default=0) # 权限等级
9227a7b8cf65dae2dea286079ee8966be6e1d118
c6abe311e9bc57fbe2454983c30bdd46e1feaf0d
/python/8-practiceProblemI.py
9c2bce2f10885c7434ac9e8dbce3714c04cb5138
[]
no_license
muon012/practiceProblems
5966241d0af6c396bc52b2adac6d180e734a322d
8dde7810212ed79745ab06320c5d96ce179db1bd
refs/heads/master
2020-04-02T15:43:45.496026
2019-07-10T18:55:45
2019-07-10T18:55:45
154,581,118
0
0
null
null
null
null
UTF-8
Python
false
false
1,089
py
# Hackerrank Challenge if __name__ == '__main__': # py_students = [['Harry', 37.21], ['Berry', 37.21], ['Tina', 37.2], ['Akriti', 41], ['Harsh', 39]] py_students = [] print("For this program, you will enter the name of the student followed by its grade. All values are separated by" " commas. The program will output all the students who have the second lowest grades.") for _ in range(int(input("How many students will you enter in this program? "))): name = input() score = int(input()) student = [name, score] py_students.append(student) l = len(py_students) for i in range(l): for j in range(l - i - 1): if py_students[j][1] > py_students[j + 1][1]: py_students[j], py_students[j + 1] = py_students[j + 1], py_students[j] second_lowest = 0 for k in range(l): if py_students[k][1] > py_students[0][1]: second_lowest = py_students[k][1] break second_lowest_students = [] for student in py_students: if student[1] == second_lowest: second_lowest_students.append(student) for student in sorted(second_lowest_students): print(student[0])
c3e6459704cdacd14fbef32550033a2c7b5cdc7c
0e5291f09c5117504447cc8df683ca1506b70560
/test/test_ip_address_interface.py
0743121b18b16fb3ace5cfe5aad58f0e6bd725fc
[ "MIT" ]
permissive
nrfta/python-netbox-client
abd0192b79aab912325485bf4e17777a21953c9b
68ba6dd4d7306513dc1ad38f3ac59122ba4f70a8
refs/heads/master
2022-11-13T16:29:02.264187
2020-07-05T18:06:42
2020-07-05T18:06:42
277,121,108
0
0
null
null
null
null
UTF-8
Python
false
false
879
py
# coding: utf-8 """ NetBox API API to access NetBox # noqa: E501 OpenAPI spec version: 2.8 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import netbox_client from netbox_client.models.ip_address_interface import IPAddressInterface # noqa: E501 from netbox_client.rest import ApiException class TestIPAddressInterface(unittest.TestCase): """IPAddressInterface unit test stubs""" def setUp(self): pass def tearDown(self): pass def testIPAddressInterface(self): """Test IPAddressInterface""" # FIXME: construct object with mandatory attributes with example values # model = netbox_client.models.ip_address_interface.IPAddressInterface() # noqa: E501 pass if __name__ == '__main__': unittest.main()
8bfdf81e80831a58f4e585c3016eb416e2c55ff4
71ac98ddc5a58a033631683757b5a7509f5dfc5f
/0x05-python-exceptions/3-safe_print_division.py
a1183b7378a83d70ab8cfc7619d3a5136fd69857
[]
no_license
Virteip/holbertonschool-higher_level_programming
8193a22eb0de4b800ec2408207735f242dfda6f5
616948631871acbd8a5b6887f79ee1801f3b5516
refs/heads/master
2020-09-29T01:17:15.120539
2020-05-15T02:25:22
2020-05-15T02:25:22
226,911,855
0
1
null
null
null
null
UTF-8
Python
false
false
184
py
#!/usr/bin/python3 def safe_print_division(a, b): try: r = a / b except: r = None finally: print("Inside result: {0}".format(r)) return r
339357bd4950057f0ff663546f4b6a87a621cca9
e21c70d5b03633b4e0a89dfccb0cb8ccd88612d0
/venv/lib/python3.5/site-packages/engineio/socket.py
65cff1c7b929b32fb0d80ee35a24b800f90379bd
[ "MIT" ]
permissive
LavanyaRamkumar/Networking-app_Dynamic-Quiz
4d5540088b1e2724626dda8df0fd83442391b40f
4de8329845712864d3cc8e8b81cfce5a1207224d
refs/heads/master
2023-02-09T12:08:19.913354
2019-10-26T04:23:54
2019-10-26T04:23:54
173,337,916
1
1
MIT
2023-02-02T04:48:55
2019-03-01T16:56:13
Python
UTF-8
Python
false
false
9,102
py
import six import sys import time from . import exceptions from . import packet from . import payload class Socket(object): """An Engine.IO socket.""" upgrade_protocols = ['websocket'] def __init__(self, server, sid): self.server = server self.sid = sid self.queue = self.create_queue() self.last_ping = time.time() self.connected = False self.upgraded = False self.closing = False self.closed = False def create_queue(self): return getattr(self.server._async['queue'], self.server._async['queue_class'])() def poll(self): """Wait for packets to send to the client.""" try: packets = [self.queue.get(timeout=self.server.ping_timeout)] self.queue.task_done() except self.server._async['queue'].Empty: raise exceptions.QueueEmpty() if packets == [None]: return [] while True: try: packets.append(self.queue.get(block=False)) self.queue.task_done() except self.server._async['queue'].Empty: break return packets def receive(self, pkt): """Receive packet from the client.""" packet_name = packet.packet_names[pkt.packet_type] \ if pkt.packet_type < len(packet.packet_names) else 'UNKNOWN' self.server.logger.info('%s: Received packet %s data %s', self.sid, packet_name, pkt.data if not isinstance(pkt.data, bytes) else '<binary>') if pkt.packet_type == packet.PING: self.last_ping = time.time() self.send(packet.Packet(packet.PONG, pkt.data)) elif pkt.packet_type == packet.MESSAGE: self.server._trigger_event('message', self.sid, pkt.data, run_async=self.server.async_handlers) elif pkt.packet_type == packet.UPGRADE: self.send(packet.Packet(packet.NOOP)) elif pkt.packet_type == packet.CLOSE: self.close(wait=False, abort=True) else: raise exceptions.UnknownPacketError() def send(self, pkt): """Send a packet to the client.""" if self.closed: raise exceptions.SocketIsClosedError() if time.time() - self.last_ping > self.server.ping_timeout: self.server.logger.info('%s: Client is gone, closing socket', self.sid) self.close(wait=False, abort=True) return self.queue.put(pkt) self.server.logger.info('%s: Sending packet %s data %s', self.sid, packet.packet_names[pkt.packet_type], pkt.data if not isinstance(pkt.data, bytes) else '<binary>') def handle_get_request(self, environ, start_response): """Handle a long-polling GET request from the client.""" connections = [ s.strip() for s in environ.get('HTTP_CONNECTION', '').lower().split(',')] transport = environ.get('HTTP_UPGRADE', '').lower() if 'upgrade' in connections and transport in self.upgrade_protocols: self.server.logger.info('%s: Received request to upgrade to %s', self.sid, transport) return getattr(self, '_upgrade_' + transport)(environ, start_response) try: packets = self.poll() except exceptions.QueueEmpty: exc = sys.exc_info() self.close(wait=False) six.reraise(*exc) return packets def handle_post_request(self, environ): """Handle a long-polling POST request from the client.""" length = int(environ.get('CONTENT_LENGTH', '0')) if length > self.server.max_http_buffer_size: raise exceptions.ContentTooLongError() else: body = environ['wsgi.input'].read(length) p = payload.Payload(encoded_payload=body) for pkt in p.packets: self.receive(pkt) def close(self, wait=True, abort=False): """Close the socket connection.""" if not self.closed and not self.closing: self.closing = True self.server._trigger_event('disconnect', self.sid, run_async=False) if not abort: self.send(packet.Packet(packet.CLOSE)) self.closed = True if wait: self.queue.join() def _upgrade_websocket(self, environ, start_response): """Upgrade the connection from polling to websocket.""" if self.upgraded: raise IOError('Socket has been upgraded already') if self.server._async['websocket'] is None or \ self.server._async['websocket_class'] is None: # the selected async mode does not support websocket return self.server._bad_request() websocket_class = getattr(self.server._async['websocket'], self.server._async['websocket_class']) ws = websocket_class(self._websocket_handler) return ws(environ, start_response) def _websocket_handler(self, ws): """Engine.IO handler for websocket transport.""" # try to set a socket timeout matching the configured ping interval for attr in ['_sock', 'socket']: # pragma: no cover if hasattr(ws, attr) and hasattr(getattr(ws, attr), 'settimeout'): getattr(ws, attr).settimeout(self.server.ping_timeout) if self.connected: # the socket was already connected, so this is an upgrade self.queue.join() # flush the queue first pkt = ws.wait() if pkt != packet.Packet(packet.PING, data=six.text_type('probe')).encode( always_bytes=False): self.server.logger.info( '%s: Failed websocket upgrade, no PING packet', self.sid) return [] ws.send(packet.Packet( packet.PONG, data=six.text_type('probe')).encode(always_bytes=False)) self.send(packet.Packet(packet.NOOP)) pkt = ws.wait() decoded_pkt = packet.Packet(encoded_packet=pkt) if decoded_pkt.packet_type != packet.UPGRADE: self.upgraded = False self.server.logger.info( ('%s: Failed websocket upgrade, expected UPGRADE packet, ' 'received %s instead.'), self.sid, pkt) return [] self.upgraded = True else: self.connected = True self.upgraded = True # start separate writer thread def writer(): while True: packets = None try: packets = self.poll() except exceptions.QueueEmpty: break if not packets: # empty packet list returned -> connection closed break try: for pkt in packets: ws.send(pkt.encode(always_bytes=False)) except: break writer_task = self.server.start_background_task(writer) self.server.logger.info( '%s: Upgrade to websocket successful', self.sid) while True: p = None try: p = ws.wait() except Exception as e: # if the socket is already closed, we can assume this is a # downstream error of that if not self.closed: # pragma: no cover self.server.logger.info( '%s: Unexpected error "%s", closing connection', self.sid, str(e)) break if p is None: # connection closed by client break if isinstance(p, six.text_type): # pragma: no cover p = p.encode('utf-8') pkt = packet.Packet(encoded_packet=p) try: self.receive(pkt) except exceptions.UnknownPacketError: pass except exceptions.SocketIsClosedError: self.server.logger.info('Receive error -- socket is closed') break except: # pragma: no cover # if we get an unexpected exception we log the error and exit # the connection properly self.server.logger.exception('Unknown receive error') break self.queue.put(None) # unlock the writer task so that it can exit writer_task.join() self.close(wait=True, abort=True) return []
4613d4637b8e5446f2b84a1ba6f4097ec0a3d330
f8666599b83d34c861651861cc7db5b3c434fc87
/plotly/validators/scatter3d/error_y/__init__.py
a9450d059bf50c8b989357d05ae9e897fc206983
[ "MIT" ]
permissive
mode/plotly.py
8b66806e88c9f1820d478bab726f0bea81884432
c5a9ac386a40df2816e6c13264dadf14299401e4
refs/heads/master
2022-08-26T00:07:35.376636
2018-09-26T19:08:54
2018-09-26T19:19:31
60,372,968
1
1
MIT
2019-11-13T23:03:22
2016-06-03T19:34:55
Python
UTF-8
Python
false
false
618
py
from ._width import WidthValidator from ._visible import VisibleValidator from ._valueminus import ValueminusValidator from ._value import ValueValidator from ._type import TypeValidator from ._tracerefminus import TracerefminusValidator from ._traceref import TracerefValidator from ._thickness import ThicknessValidator from ._symmetric import SymmetricValidator from ._copy_zstyle import CopyZstyleValidator from ._color import ColorValidator from ._arraysrc import ArraysrcValidator from ._arrayminussrc import ArrayminussrcValidator from ._arrayminus import ArrayminusValidator from ._array import ArrayValidator
5956a7e2faaa079368dd7896181b368f16ece831
1079e654ce950f50bc4ed27c0974f78589428573
/tests/__init__.py
23ad5cb638accd087a54d8728cf2d5068b0f93ee
[]
no_license
uranusjr/python-web-stack
d2aaa64a4ba6e5d447db1444ab08813e507961e1
971c0190f28abfbd8c577e2b149e2d1a604d3f13
refs/heads/master
2020-04-27T11:17:21.922742
2013-11-20T10:40:16
2013-11-20T10:40:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
953
py
#!/usr/bin/env python # -*- coding: utf-8 import os.path import shutil import tempfile from nose.plugins.skip import SkipTest from pywebstack import utils __all__ = [ 'ALL_FORMULAE_NAMES', 'PROJECT_NAME', 'TEMP_DIR', 'MockedArguments', 'skipped', 'create_tempdir', 'cleanup_tempdir' ] ALL_FORMULAE_NAMES = ( 'django', 'Django' ) PROJECT_NAME = 'omega_directive' TEMP_DIR = os.path.join(tempfile.gettempdir(), 'pywebstack_test') class MockedArguments(dict): def __getattr__(self, key): try: return self[key] except KeyError: raise AttributeError(key) def __setattr__(self, key, value): self[key] = value def create_tempdir(): utils.mkdir_p(TEMP_DIR) def cleanup_tempdir(): shutil.rmtree(TEMP_DIR) def skipped(f): """Decorator for instructing nose to skip the decorated test""" def _(): raise SkipTest _.__name__ = f.__name__ return _
c2ec06b06c3e618131391854042d37d0ab13a261
426aed70aa6925105f10c7fcb7b611b277bf8b84
/benchmarks/benchmarks/model_acc/bench_sage_ns.py
6f99d94ad32d6ce29bf95b128eed28951ecb9b7f
[ "Apache-2.0" ]
permissive
hengruizhang98/dgl
0ce7201ca7380482440f031cb8ced6ca0e8c8dc1
195f99362d883f8b6d131b70a7868a537e55b786
refs/heads/master
2023-06-10T22:21:45.835646
2021-04-13T12:29:43
2021-04-13T12:29:43
336,804,001
3
0
Apache-2.0
2021-02-07T14:16:20
2021-02-07T14:16:20
null
UTF-8
Python
false
false
7,162
py
import dgl import torch as th import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.multiprocessing as mp from torch.utils.data import DataLoader import dgl.nn.pytorch as dglnn import time from .. import utils class SAGE(nn.Module): def __init__(self, in_feats, n_hidden, n_classes, n_layers, activation, dropout): super().__init__() self.n_layers = n_layers self.n_hidden = n_hidden self.n_classes = n_classes self.layers = nn.ModuleList() self.layers.append(dglnn.SAGEConv(in_feats, n_hidden, 'mean')) for i in range(1, n_layers - 1): self.layers.append(dglnn.SAGEConv(n_hidden, n_hidden, 'mean')) self.layers.append(dglnn.SAGEConv(n_hidden, n_classes, 'mean')) self.dropout = nn.Dropout(dropout) self.activation = activation def forward(self, blocks, x): h = x for l, (layer, block) in enumerate(zip(self.layers, blocks)): h = layer(block, h) if l != len(self.layers) - 1: h = self.activation(h) h = self.dropout(h) return h def inference(self, g, x, batch_size, device): """ Inference with the GraphSAGE model on full neighbors (i.e. without neighbor sampling). g : the entire graph. x : the input of entire node set. The inference code is written in a fashion that it could handle any number of nodes and layers. """ # During inference with sampling, multi-layer blocks are very inefficient because # lots of computations in the first few layers are repeated. # Therefore, we compute the representation of all nodes layer by layer. The nodes # on each layer are of course splitted in batches. # TODO: can we standardize this? for l, layer in enumerate(self.layers): y = th.zeros(g.number_of_nodes(), self.n_hidden if l != len(self.layers) - 1 else self.n_classes) sampler = dgl.dataloading.MultiLayerFullNeighborSampler(1) dataloader = dgl.dataloading.NodeDataLoader( g, th.arange(g.number_of_nodes()), sampler, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4) for input_nodes, output_nodes, blocks in dataloader: block = blocks[0] block = block.int().to(device) h = x[input_nodes].to(device) h = layer(block, h) if l != len(self.layers) - 1: h = self.activation(h) h = self.dropout(h) y[output_nodes] = h.cpu() x = y return y def compute_acc(pred, labels): """ Compute the accuracy of prediction given the labels. """ labels = labels.long() return (th.argmax(pred, dim=1) == labels).float().sum() / len(pred) def evaluate(model, g, inputs, labels, val_nid, batch_size, device): """ Evaluate the model on the validation set specified by ``val_nid``. g : The entire graph. inputs : The features of all the nodes. labels : The labels of all the nodes. val_nid : the node Ids for validation. batch_size : Number of nodes to compute at the same time. device : The GPU device to evaluate on. """ model.eval() with th.no_grad(): pred = model.inference(g, inputs, batch_size, device) model.train() return compute_acc(pred[val_nid], labels[val_nid]) def load_subtensor(g, seeds, input_nodes, device): """ Copys features and labels of a set of nodes onto GPU. """ batch_inputs = g.ndata['features'][input_nodes].to(device) batch_labels = g.ndata['labels'][seeds].to(device) return batch_inputs, batch_labels @utils.benchmark('acc', 600) @utils.parametrize('data', ['ogbn-products', "reddit"]) def track_acc(data): data = utils.process_data(data) device = utils.get_bench_device() g = data[0] g.ndata['features'] = g.ndata['feat'] g.ndata['labels'] = g.ndata['label'] in_feats = g.ndata['features'].shape[1] n_classes = data.num_classes # Create csr/coo/csc formats before launching training processes with multi-gpu. # This avoids creating certain formats in each sub-process, which saves momory and CPU. g.create_formats_() num_epochs = 20 num_hidden = 16 num_layers = 2 fan_out = '5,10' batch_size = 1024 lr = 0.003 dropout = 0.5 num_workers = 4 train_nid = th.nonzero(g.ndata['train_mask'], as_tuple=True)[0] # Create PyTorch DataLoader for constructing blocks sampler = dgl.dataloading.MultiLayerNeighborSampler( [int(fanout) for fanout in fan_out.split(',')]) dataloader = dgl.dataloading.NodeDataLoader( g, train_nid, sampler, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=num_workers) # Define model and optimizer model = SAGE(in_feats, num_hidden, n_classes, num_layers, F.relu, dropout) model = model.to(device) loss_fcn = nn.CrossEntropyLoss() loss_fcn = loss_fcn.to(device) optimizer = optim.Adam(model.parameters(), lr=lr) # dry run one epoch for step, (input_nodes, seeds, blocks) in enumerate(dataloader): # Load the input features as well as output labels #batch_inputs, batch_labels = load_subtensor(g, seeds, input_nodes, device) blocks = [block.int().to(device) for block in blocks] batch_inputs = blocks[0].srcdata['features'] batch_labels = blocks[-1].dstdata['labels'] # Compute loss and prediction batch_pred = model(blocks, batch_inputs) loss = loss_fcn(batch_pred, batch_labels) optimizer.zero_grad() loss.backward() optimizer.step() # Training loop for epoch in range(num_epochs): # Loop over the dataloader to sample the computation dependency graph as a list of # blocks. for step, (input_nodes, seeds, blocks) in enumerate(dataloader): # Load the input features as well as output labels #batch_inputs, batch_labels = load_subtensor(g, seeds, input_nodes, device) blocks = [block.int().to(device) for block in blocks] batch_inputs = blocks[0].srcdata['features'] batch_labels = blocks[-1].dstdata['labels'] # Compute loss and prediction batch_pred = model(blocks, batch_inputs) loss = loss_fcn(batch_pred, batch_labels) optimizer.zero_grad() loss.backward() optimizer.step() test_g = g test_nid = th.nonzero( ~(test_g.ndata['train_mask'] | test_g.ndata['val_mask']), as_tuple=True)[0] test_acc = evaluate( model, test_g, test_g.ndata['features'], test_g.ndata['labels'], test_nid, batch_size, device) return test_acc.item()
daba2bcf498cc73ac6ef73cd4a09cb9bed329969
53edf6b0f4262ee76bb4e3b943394cfeafe54865
/linear_theory/Non_linear_stuff/plot_nonlinear_from_data.py
97e9a4d14b244d725d021a167e009d6a2dcf67e6
[]
no_license
Yoshi2112/hybrid
f86265a2d35cb0a402ba6ab5f718717d8eeb740c
85f3051be9368bced41af7d73b4ede9c3e15ff16
refs/heads/master
2023-07-07T21:47:59.791167
2023-06-27T23:09:23
2023-06-27T23:09:23
82,878,960
0
1
null
2020-04-16T18:03:59
2017-02-23T03:14:49
Python
UTF-8
Python
false
false
37,835
py
# -*- coding: utf-8 -*- """ Created on Sun Jan 2 22:05:39 2022 @author: Yoshi """ import os, sys, warnings, pdb, emd sys.path.append('../../') import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as colors import matplotlib.dates as mdates import matplotlib as mpl import matplotlib.cm as cm sys.path.append('D://Google Drive//Uni//PhD 2017//Data//Scripts//') import crres_file_readers as cfr import rbsp_file_readers as rfr import rbsp_fields_loader as rfl import analysis_scripts as ascr import fast_scripts as fscr import nonlinear_scripts as nls import extract_parameters_from_data as epd sys.path.append('..//new_general_DR_solver//') from matplotlib.lines import Line2D from multiapprox_dispersion_solver import create_species_array, get_dispersion_relation, get_cold_growth_rates #%% Constants PCHARGE = 1.602e-19 ECHARGE =-1.602e-19 PMASS = 1.673e-27 EMASS = 9.110e-31 EPS0 = 8.854e-12 MU0 = 4e-7*np.pi RE = 6.371e6 SPLIGHT = 3e8 KB = 1.380649e-23 B_SURF = 3.12e-5 #%% FIELD ANALYSIS def get_mag_data(time_start, time_end, probe, low_cut=None, high_cut=None): ''' Load and process data ''' if probe != 'crres': ti, pc1_mags, pc1_elec, HM_mags, HM_elec, dt, e_flag, gfreq =\ rfl.load_decomposed_fields(_rbsp_path, time_start, time_end, probe, pad=600, LP_B0=1.0, LP_HM=30.0, ex_threshold=5.0, get_gyfreqs=True) else: ti, B0, HM_mags, pc1_mags, \ E0, HM_elec, pc1_elec, S, B, E = cfr.get_crres_fields(_crres_path, time_start, time_end, pad=600, output_raw_B=True, Pc5_LP=30.0, B0_LP=1.0, Pc5_HP=None, dEx_LP=None, interpolate_nan=True) dt = 1/32. # Bandpass selected component and return if low_cut is not None: dat = ascr.clw_high_pass(pc1_mags, low_cut*1000., dt, filt_order=4) if high_cut is not None: dat = ascr.clw_low_pass(pc1_mags, high_cut*1000., dt, filt_order=4) #pc1_res = 5.0 _xpow, _xtime, _xfreq = fscr.autopower_spectra(ti, pc1_mags[:, 0], time_start, time_end, dt, overlap=0.95, df=pc1_res, window_data=True) _ypow, _xtime, _xfreq = fscr.autopower_spectra(ti, pc1_mags[:, 1], time_start, time_end, dt, overlap=0.95, df=pc1_res, window_data=True) _zpow, _xtime, _xfreq = fscr.autopower_spectra(ti, pc1_mags[:, 2], time_start, time_end, dt, overlap=0.95, df=pc1_res, window_data=True) _pow = np.array([_xpow, _ypow, _zpow]) return ti, dat, HM_mags, dt, _xtime, _xfreq, _pow, gfreq def load_EMIC_IMFs_and_dynspec(imf_start, imf_end, IA_filter=None): ''' Loads IMFs and dynamic spectra ''' _ti, _dat, _HM_mags, _dt, _xtime, _xfreq, _pow, gfreq = get_mag_data(_time_start, _time_end, _probe, low_cut=_band_start, high_cut=_band_end) sample_rate = 1./_dt # Calculate IMFs, get instantaneous phase, frequency, amplitude print(f'Sifting IMFs and performing HHT between {imf_start} and {imf_end}') imfs, IPs, IFs, IAs = [], [], [], [] for ii, lbl in zip(range(3), ['x', 'y', 'z']): imf = emd.sift.sift(_dat[:, ii], sift_thresh=1e-2) IP, IF, IA = emd.spectra.frequency_transform(imf, sample_rate, 'hilbert') print(f'{imf.shape[1]} IMFs found for B{lbl}') imfs.append(imf) IPs.append(IP) IFs.append(IF) IAs.append(IA) # ============================================================================= # if IA_filter is not None: # for ii in range(3): # for ii in range(IAs[ii].shape[0]): # if # ============================================================================= # Snip IMFs to time st, en = ascr.boundary_idx64(_ti, imf_start, imf_end) for ii in range(3): _imf_t = _ti[st:en] IAs[ii] = IAs[ii][st:en] IFs[ii] = IFs[ii][st:en] IPs[ii] = IPs[ii][st:en] return _ti, _dat, _HM_mags, _imf_t, IAs, IFs, IPs, _xtime, _xfreq, _pow, gfreq def get_pc1_peaks(sfreq, spower, band_start, band_end, npeaks=None): ''' Returns integrated spower spectrum between band_start and band_end as well as index locations of the most prominent npeaks ''' fst, fen = ascr.boundary_idx64(sfreq, band_start, band_end) pc1_int_power = spower[fst:fen, :].sum(axis=0) peak_idx = ascr.find_peaks(pc1_int_power, npeaks=npeaks, sortby='prom') return pc1_int_power, peak_idx #%% DATA INTERPOLATION AND LOADING def HOPE_interpolate_to_time(new_time, HOPE_time, HOPE_dens, HOPE_temp, HOPE_anis): ''' edens_time :: WAVES electron density time to interpolate data_array to (length M) data_time :: Current HOPE sample times of length N data_array :: Data arrays consisting of ni, Ti, Ai in a 3xN ndarra ''' new_dens = np.zeros((3, new_time.shape[0]), dtype=np.float64) new_temp = np.zeros((3, new_time.shape[0]), dtype=np.float64) new_anis = np.zeros((3, new_time.shape[0]), dtype=np.float64) xi = new_time.astype(np.int64) xp = HOPE_time.astype(np.int64) for ii in range(3): new_dens[ii, :] = np.interp(xi, xp, HOPE_dens[ii, :]) new_temp[ii, :] = np.interp(xi, xp, HOPE_temp[ii, :]) new_anis[ii, :] = np.interp(xi, xp, HOPE_anis[ii, :]) return new_dens, new_temp, new_anis def SPICE_interpolate_to_time(new_time, SPICE_times, SPICE_dens, SPICE_PerpPres, SPICE_ParaPres): ''' edens_time :: WAVES electron density time to interpolate data_array to (length M) data_times :: Current RBSPICE data sample times of length 3xN data_array :: Data arrays consisting of ni, Ti, Ai in a 3xN ndarra ''' new_dens = np.zeros((3, new_time.shape[0]), dtype=np.float64) new_Pper = np.zeros((3, new_time.shape[0]), dtype=np.float64) new_Ppar = np.zeros((3, new_time.shape[0]), dtype=np.float64) xi = new_time.astype(np.int64) for ii in range(3): # Skip if bad if (SPICE_times[ii] is None) or (SPICE_dens[ii] is None): continue xp = SPICE_times[ii].astype(np.int64) new_dens[ii, :] = np.interp(xi, xp, SPICE_dens[ii, :]) new_Pper[ii, :] = np.interp(xi, xp, SPICE_PerpPres[ii, :]) new_Ppar[ii, :] = np.interp(xi, xp, SPICE_ParaPres[ii, :]) return new_dens, new_Pper, new_Ppar def interpolate_B(new_time, b_time, b_array, dt, LP_filter=True): ''' Does second LP filter based on the Nyquist of the new sample rate Different to original filter, which is just to get rid of EMIC signal ''' # Filter at Nyquist frequency to prevent aliasing if LP_filter == True: nyq = 1.0 / (2.0 * dt) for ii in range(3): b_array[:, ii] = ascr.clw_low_pass(b_array[:, ii].copy(), nyq, 1./64., filt_order=4) xp = b_time.astype(np.int64) yp = np.sqrt(b_array[:, 0] ** 2 + b_array[:, 1] ** 2 + b_array[:, 2] ** 2) xi = new_time.astype(np.int64) yi = np.interp(xi, xp, yp) return yi def interpolate_ne(new_time, den_time, den_array): return np.interp(new_time.astype(np.int64), den_time.astype(np.int64), den_array) def load_and_interpolate_plasma_params(time_start, time_end, probe, nsec=None, rbsp_path='G://DATA//RBSP//', HM_filter_mhz=None, time_array=None, check_interp=False): ''' Same copy+paste as other versions, without the SPICE stuff ''' print('Loading and interpolating satellite data') # Ephemeris data # Load ephemeris data eph_params = ['L', 'CD_MLAT', 'CD_MLT'] eph_times, eph_dict = rfr.retrieve_RBSP_ephemeris_data(rbsp_path, probe, time_start, time_end, eph_params, padding=[60, 60]) # Cold (total?) electron plasma density den_times, edens, dens_err = rfr.retrieve_RBSP_electron_density_data(rbsp_path, time_start, time_end, probe, pad=30) # Magnetic magnitude mag_times, raw_mags = rfl.load_magnetic_field(rbsp_path, time_start, time_end, probe, return_raw=True, pad=3600) # Filter out EMIC waves (background plus HM) if HM_filter_mhz is not None: filt_mags = np.zeros(raw_mags.shape) for ii in range(3): filt_mags[:, ii] = ascr.clw_low_pass(raw_mags[:, ii], HM_filter_mhz, 1./64., filt_order=4) else: filt_mags = raw_mags # HOPE data itime, etime, pdict, perr = rfr.retrieve_RBSP_hope_moment_data( rbsp_path, time_start, time_end, padding=30, probe=probe) hope_dens = np.array([pdict['Dens_p_30'], pdict['Dens_he_30'], pdict['Dens_o_30']]) hope_tperp = np.array([pdict['Tperp_p_30'], pdict['Tperp_he_30'], pdict['Tperp_o_30']]) hope_tpar = np.array([pdict['Tpar_p_30'], pdict['Tpar_he_30'], pdict['Tpar_o_30']]) hope_anis = np.array([pdict['Tperp_Tpar_p_30'], pdict['Tperp_Tpar_he_30'], pdict['Tperp_Tpar_o_30']]) - 1. # Interpolation step if nsec is None: # This should let me set my own timebase by feeding in an array if time_array is None: time_array = den_times.copy() iedens = edens.copy() else: iedens = interpolate_ne(time_array, den_times, edens) else: time_array = np.arange(time_start, time_end, np.timedelta64(nsec, 's'), dtype='datetime64[us]') iedens = interpolate_ne(time_array, den_times, edens) ihope_dens , ihope_tpar , ihope_anis = HOPE_interpolate_to_time(time_array, itime, hope_dens, hope_tpar, hope_anis) ihope_dens , ihope_tperp, ihope_anis = HOPE_interpolate_to_time(time_array, itime, hope_dens, hope_tperp, hope_anis) Bi = interpolate_B(time_array, mag_times, filt_mags, nsec, LP_filter=False) iL = interpolate_ne(time_array, eph_times, eph_dict['L']) if check_interp: plt.ioff() # Cold dens + Magnetic field fig1, axes1 = plt.subplots(2) axes1[0].plot(den_times, edens, c='b') axes1[0].plot(time_array, iedens, c='r', lw=0.75) axes1[0].set_ylabel('$n_e$') B_total = np.sqrt(raw_mags[:, 0]**2+raw_mags[:, 1]**2+raw_mags[:, 2]**2) axes1[1].plot(mag_times, B_total, c='b') axes1[1].plot(time_array, Bi, c='r', lw=0.75) axes1[1].set_ylabel('B') for ax in axes1: ax.set_xlim(time_start, time_end) # HOPE parameters (dens, temp, anis) fig2, axes2 = plt.subplots(3) for xx, clr in zip(range(3), ['r', 'g', 'b']): axes2[0].plot(itime, hope_dens[xx], c=clr, ls='-') axes2[0].plot(time_array, ihope_dens[xx], c=clr, ls='--') axes2[0].set_ylabel('$n_i (cc)$') axes2[1].plot(itime, hope_tpar[xx], c=clr, ls='-') axes2[1].plot(time_array, ihope_tpar[xx], c=clr, ls='--') axes2[1].set_ylabel('$T_{\perp, i} (keV)$') axes2[2].plot(itime, hope_anis[xx], c=clr, ls='-') axes2[2].plot(time_array, ihope_anis[xx], c=clr, ls='--') axes2[2].set_ylabel('$A_i$') for ax in axes2: ax.set_xlim(time_start, time_end) plt.show() # Subtract energetic components from total electron density (assuming each is singly charged) cold_dens = iedens - ihope_dens.sum(axis=0) # Original DTs just for reference den_dt = ( den_times[1] - den_times[0]) / np.timedelta64(1, 's') mag_dt = ( mag_times[1] - mag_times[0]) / np.timedelta64(1, 's') hope_dt = ( itime[1] - itime[0]) / np.timedelta64(1, 's') new_dt = ( time_array[1] - time_array[0]) / np.timedelta64(1, 's') print('Original sample periods:') print(f'Cold Plasma Density: {den_dt} s') print(f'Magnetic field: {mag_dt} s ') print(f'HOPE Particle data: {hope_dt} s') print('') print(f'New sample period: {new_dt} s') return time_array, Bi*1e-9, iedens*1e6, cold_dens*1e6, ihope_dens*1e6, ihope_tpar, ihope_tperp, ihope_anis, iL def load_CRRES_data(time_start, time_end, crres_path='G://DATA//CRRES//', nsec=None): ''' Since no moment data exists for CRRES, this loads only the cold electron density and magnetic field (with option to low-pass filter) and interpolates them to the same timebase (linear or cubic? Just do linear for now). If nsec is none, interpolates B to ne. Else, interpolates both to nsec. CRRES density cadence bounces between 8-9 seconds (terrible for FFT, alright for interp) den_dict params: ['VTCW', 'YRDOY', 'TIMESTRING', 'FCE_KHZ', 'FUHR_KHZ', 'FPE_KHZ', 'NE_CM3', 'ID', 'M'] TODO: Fix this. B_arr shape and nyq in mHz ''' # Load data times, B0, HM, dB, E0, HMe, dE, S, B, E = cfr.get_crres_fields(crres_path, time_start, time_end, pad=1800, E_ratio=5.0, rotation_method='vector', output_raw_B=True, interpolate_nan=None, B0_LP=1.0, Pc1_LP=5000, Pc1_HP=100, Pc5_LP=30, Pc5_HP=None, dEx_LP=None) den_times, den_dict = cfr.get_crres_density(crres_path, time_start, time_end, pad=600) edens = den_dict['NE_CM3'] # Interpolate B only if nsec is None: # Low-pass total field to avoid aliasing (Assume 8.5 second cadence) B_dt = 1.0 / 32.0 nyq = 1.0 / (2.0 * 8.5) for ii in range(3): B[:, ii] = ascr.clw_low_pass(B[:, ii].copy(), nyq, B_dt, filt_order=4) # Take magnitude and interpolate B_mag = np.sqrt(B[:, 0] ** 2 + B[:, 1] ** 2 + B[:, 2] ** 2) B_interp = np.interp(den_times.astype(np.int64), times.astype(np.int64), B_mag) return den_times, B_interp, edens else: # Define new time array ntime = np.arange(time_start, time_end, np.timedelta64(nsec, 's'), dtype='datetime64[us]') # Low-pass total field to avoid aliasing (Assume 8.5 second cadence) B_dt = 1.0 / 32.0 nyq = 1.0 / (2.0 * nsec) for ii in range(3): B[ii] = ascr.clw_low_pass(B[ii].copy(), nyq, B_dt, filt_order=4) # Take magnitude and interpolate B_mag = np.sqrt(B[0] ** 2 + B[1] ** 2 + B[2] ** 2) B_interp = np.interp(ntime.astype(np.int64), times.astype(np.int64), B_mag) # Also interpolate density ne_interp = np.interp(ntime.astype(np.int64), den_times.astype(np.int64), edens) return ntime, B_interp, ne_interp #%% PLOTTING ROUTINES def add_custom_legend(_ax, _labels, _linestyles, _alpha, _color): ''' TODO: Add some catches for 'if None...' for things like alpha and linestyle ''' legend_elements = [] for label, style, alpha, clr in zip(_labels, _linestyles, _alpha, _color): legend_elements.append(Line2D([0], [0], color=clr, lw=1, label=label, linestyle=style, alpha=alpha)) new_legend = _ax.legend(handles=legend_elements, loc='upper left') return new_legend def calculate_all_NL_amplitudes(): # Import cutoff-derived composition information cutoff_filename = 'D://Google Drive//Uni//PhD 2017//Josh PhD Share Folder//Thesis//Data_Plots//20130725_RBSP-A//pearl_times.txt' cutoff_dict = epd.read_cutoff_file(cutoff_filename) #plot_amplitudes_from_data(_time_start, _time_end, probe=_probe, pad=600) time_start = _time_start time_end = _time_end probe = 'a' pad = 0 plot_start = time_start - np.timedelta64(int(pad), 's') plot_end = time_end + np.timedelta64(int(pad), 's') time, mag, edens, cold_dens, hope_dens, hope_tpar, hope_tperp, hope_anis, L_vals =\ load_and_interpolate_plasma_params( plot_start, plot_end, probe, nsec=None, rbsp_path='E://DATA//RBSP//', HM_filter_mhz=50.0, time_array=None, check_interp=False) mag_time, pc1_mags, HM_mags, imf_time, IA, IF, IP, stime, sfreq, spower = \ load_EMIC_IMFs_and_dynspec(plot_start, plot_end) # Specify color values for time time0 = time[ 0].astype(np.int64) time1 = time[-1].astype(np.int64) norm = mpl.colors.LogNorm(vmin=time0, vmax=time1, clip=False) mapper = cm.ScalarMappable(norm=norm, cmap=cm.jet) lpad = 20 fig, axes = plt.subplots(nrows=4, ncols=2, figsize=(8.27, 11.69), gridspec_kw={'width_ratios':[1, 0.01], 'height_ratios':[1, 1, 0.5, 2] }) # Spectra/IP im0 = axes[0, 0].pcolormesh(stime, sfreq, spower.sum(axis=0).T, cmap='jet', norm=colors.LogNorm(vmin=1e-4, vmax=1e1)) axes[0, 0].set_ylim(0, fmax) axes[0, 0].set_ylabel('$f$\n(Hz)', rotation=0, labelpad=lpad, fontsize=12) fig.colorbar(im0, cax=axes[0, 1], extend='both').set_label( r'$\frac{nT^2}{Hz}$', fontsize=16, rotation=0, labelpad=5) axes[0, 0].plot(imf_time, IF[0][:, 0], c='k', lw=0.75) axes[0, 0].plot(imf_time, IF[1][:, 0], c='k', lw=0.75, alpha=0.8) #axes[0, 0].plot(imf_time, IF[2][:, 0], c='k', lw=0.75, alpha=0.6) #axes[0, 0].axvline(this_time, color='white', ls='-' , alpha=0.7) axes[0, 0].set_xlim(plot_start, plot_end) axes[0, 0].set_xticklabels([]) axes[0, 0].axhline(_band_start , color='white', ls='--') axes[0, 0].axhline(_band_end , color='white', ls='--') # mag_time, pc1_mags, IA, IF, IP, stime, sfreq, spower # Timeseries for comparison axes[1, 0].plot(mag_time, pc1_mags[:, 0], c='b', label='$\delta B_\\nu$') axes[1, 0].plot(mag_time, pc1_mags[:, 1], c='r', label='$\delta B_\phi$', alpha=0.5) #axes[1, 0].plot(mag_time, pc1_mags[:, 2], c='k', label='$\delta B_\mu$', alpha=0.25) axes[1, 0].set_ylabel('nT', rotation=0, labelpad=lpad) axes[1, 0].set_xlim(plot_start, plot_end) axes[1, 0].set_xlabel('Time [UT]') axes[1, 0].set_xlim(plot_start, plot_end) # CALCULATE PLASMA PARAMETERS AND AMPLITUDES FOR ALL TIMES # Plot all on same graph, use colorbar to discern time # Maybe do for cutoff times/packet times for ii in range(0, time.shape[0], 4): this_time = time[ii] clr = mapper.to_rgba(time[ii].astype(np.int64)) print('Doing time:', this_time) # Get oxygen concentration from cutoffs cutoff = np.interp(this_time.astype(np.int64), cutoff_dict['CUTOFF_TIME'].astype(np.int64), cutoff_dict['CUTOFF_NORM']) o_frac = epd.calculate_o_from_he_and_cutoff(cutoff, he_frac) h_frac = 1. - he_frac - o_frac # Cold plasma params, SI units B0 = mag[ii] name = np.array(['H' , 'He' , 'O' ]) mass = np.array([1.0 , 4.0 , 16.0 ]) * PMASS charge = np.array([1.0 , 1.0 , 1.0 ]) * PCHARGE density = np.array([h_frac, he_frac, o_frac ]) * edens[ii] ani = np.array([0.0 , 0.0 , 0.0 ]) tpar = np.array([0.0 , 0.0 , 0.0 ]) tper = (ani + 1) * tpar Species, PP = create_species_array(B0, name, mass, charge, density, tper, ani) # Frequencies to evaluate, calculate wavenumber (cold approximation) f_min = 0.07*PP['pcyc_rad'] / (2*np.pi) f_max = 0.24*PP['pcyc_rad'] / (2*np.pi) Nf = 10000 f_vals = np.linspace(f_min, f_max, Nf) w_vals = 2*np.pi*f_vals k_vals = nls.get_k_cold(w_vals, Species) # Define hot proton parameters (velocities normalized c) # Remember: temperatures originally in eV nh = hope_dens[0][ii] wph2 = nh * PCHARGE ** 2 / (PMASS * EPS0) Vth_para = np.sqrt(KB * hope_tpar[0][ii]*(PCHARGE/KB) / PMASS) / SPLIGHT Vth_perp = np.sqrt(KB * hope_tperp[0][ii]*(PCHARGE/KB) / PMASS) / SPLIGHT Q = 0.5 # Curvature parameters (this has the most wiggle room) L = 4.7#L_vals[ii] a = 4.5 / (L*RE)**2 a = a*(SPLIGHT**2/PP['pcyc_rad']**2) Vg, Vp, Vr = nls.get_velocities(w_vals, Species, PP, normalize=True) s0, s1, s2 = nls.get_inhomogeneity_terms(w_vals, Species, PP, Vth_perp, normalize_vel=True) # Normalize input parameters wph = np.sqrt(wph2) / PP['pcyc_rad'] w = w_vals / PP['pcyc_rad'] # DO THE ACTUAL CALCULATION (All hands off from here, using existing code/proforma) tau = 1.00 B_th = nls.get_threshold_amplitude(w, wph, Q, s2, a, Vp, Vr, Vth_para, Vth_perp) B_opt = nls.get_optimum_amplitude(w, wph, Q, tau, s0, s1, Vg, Vr, Vth_para, Vth_perp) T_tr = nls.get_nonlinear_trapping_period(k_vals, Vth_perp*SPLIGHT, B_opt*PP['B0']) T_N = tau*T_tr*PP['pcyc_rad'] # Filter zeros and infs: B_th[B_th == np.inf] = np.nan B_th[B_th == 0] = np.nan B_opt[B_opt == np.inf] = np.nan B_opt[B_opt == 0] = np.nan T_N[T_N == np.inf] = np.nan T_N[T_N == 0] = np.nan ################ ### PLOTTING ### ################ # Bth, Bopt, Inst. Amplitudes axes[3, 0].plot(f_vals, B_th*B0*1e9, c=clr, ls='--', label=r'$B_{th}$') axes[3, 0].plot(f_vals, B_opt*B0*1e9, c=clr, ls='-' , label=r'$B_{opt}$') axes[3, 0].set_ylabel('$B$ [nT]', rotation=0, labelpad=20, fontsize=16) axes[3, 0].set_xlabel('$f$ [Hz]', fontsize=16) axes[3, 0].set_ylim(0, 17) axes[3, 0].set_xlim(f_vals[0], f_vals[-1]) axes[3, 0].tick_params(top=True, right=True) add_custom_legend(axes[3, 0], [r'$B_{th}$', r'$B_{opt}$'], ['--', '-'], [1.0, 1.0], ['k', 'k']) label_every = 15 cbar = fig.colorbar(mapper, cax=axes[3, 1], label='Time', orientation='vertical', ticks=time[::label_every].astype(np.int64)) for label in cbar.ax.get_yminorticklabels(): label.set_visible(False) cbar.ax.set_yticklabels(time[::label_every].astype('datetime64[m]')) axes[1, 1].set_visible(False) axes[2, 0].set_visible(False) axes[2, 1].set_visible(False) axes[0, 0].xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S')) axes[1, 0].xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S')) fig.tight_layout() fig.subplots_adjust(wspace=0.05, hspace=0) fig.align_ylabels() plt.show() return #%% MAIN if __name__ == '__main__': _rbsp_path = 'F://DATA//RBSP//' _crres_path = 'F://DATA//CRRES//' _plot_path = 'D://Google Drive//Uni//PhD 2017//Josh PhD Share Folder//Thesis//Data_Plots//REVISION_PLOTS//' if not os.path.exists(_plot_path): os.makedirs(_plot_path) save_plot = True # TODO: Put all important event-specific variables in the switch pc1_res = 15.0 dpi = 200 if True: _probe = 'a' _time_start = np.datetime64('2013-07-25T21:25:00') _time_end = np.datetime64('2013-07-25T21:47:00') _band_start = 0.20 _band_end = 0.80 _npeaks = 22 fmax = 1.0 he_frac = 0.30 L = 4.70 B_max = 17.0 #cutoff_filename = 'D://Google Drive//Uni//PhD 2017//Josh PhD Share Folder//Thesis//Data_Plots//20130725_RBSP-A//pearl_times.txt' cutoff_filename = 'D://Google Drive//Uni//PhD 2017//Josh PhD Share Folder//Thesis//Data_Plots//20130725_RBSP-A//cutoffs_only.txt' cases = [0] else: _probe = 'a' _time_start = np.datetime64('2015-01-16T04:25:00') _time_end = np.datetime64('2015-01-16T05:15:00') _band_start = 0.10 _band_end = 0.20 _npeaks = 22 fmax = 0.5 he_frac = 0.30 L = 5.73 B_max = 6.00 cutoff_filename = 'D://Google Drive//Uni//PhD 2017//Josh PhD Share Folder//Thesis//Data_Plots//20150116_RBSP-A//cutoffs_only.txt' #cutoff_filename = 'D://Google Drive//Uni//PhD 2017//Josh PhD Share Folder//Thesis//Data_Plots//20150116_RBSP-A//cutoffs_only_10mHz.txt' #cutoff_filename = 'D://Google Drive//Uni//PhD 2017//Josh PhD Share Folder//Thesis//Data_Plots//20150116_RBSP-A//pearl_times.txt' cases = [4, 5] time_start = _time_start time_end = _time_end probe = 'a' pad = 0 plot_start = time_start - np.timedelta64(int(pad), 's') plot_end = time_end + np.timedelta64(int(pad), 's') #%% Non-linear trace plots if True: for case in cases: if case == 0: # Section 1 (Whole) parameter_time = np.datetime64('2013-07-25T21:29:40') packet_start = np.datetime64('2013-07-25T21:27:30') packet_end = np.datetime64('2013-07-25T21:32:15') cutoff_filename = 'D://Google Drive//Uni//PhD 2017//Josh PhD Share Folder//Thesis//Data_Plots//20130725_RBSP-A//cutoffs_only.txt' _band_start = 0.21 _band_end = 0.43 elif case == 1: # Single Packet near end parameter_time = np.datetime64('2013-07-25T21:42:12') packet_start = np.datetime64('2013-07-25T21:42:12') #packet_end = np.datetime64('2013-07-25T21:42:45') packet_end = np.datetime64('2013-07-25T21:43:00') cutoff_filename = 'D://Google Drive//Uni//PhD 2017//Josh PhD Share Folder//Thesis//Data_Plots//20130725_RBSP-A//cutoffs_only.txt' _band_start = 0.43 _band_end = 0.76 elif case == 2: # Single Packet parameter_time = np.datetime64('2015-01-16T04:32:04') packet_start = np.datetime64('2015-01-16T04:27:00') packet_end = np.datetime64('2015-01-16T05:08:30') cutoff_filename = 'D://Google Drive//Uni//PhD 2017//Josh PhD Share Folder//Thesis//Data_Plots//20150116_RBSP-A//cutoffs_only.txt' _band_start = 0.12 _band_end = 0.35 elif case == 3: # Single Packet 1 packet_start = np.datetime64('2015-01-16T04:32:17') packet_end = np.datetime64('2015-01-16T04:33:31') parameter_time = np.datetime64('2015-01-16T04:32:34') cutoff_filename = 'D://Google Drive//Uni//PhD 2017//Josh PhD Share Folder//Thesis//Data_Plots//20150116_RBSP-A//cutoffs_only.txt' _band_start = 0.12 _band_end = 0.18 elif case == 4: # Single Packet 2 packet_start = np.datetime64('2015-01-16T04:35:03') packet_end = np.datetime64('2015-01-16T04:36:01') parameter_time = np.datetime64('2015-01-16T04:35:18') cutoff_filename = 'D://Google Drive//Uni//PhD 2017//Josh PhD Share Folder//Thesis//Data_Plots//20150116_RBSP-A//cutoffs_only.txt' _band_start = 0.12 _band_end = 0.18 elif case == 5: # Single Packet 2 packet_start = np.datetime64('2015-01-16T04:47:24') packet_end = np.datetime64('2015-01-16T04:48:50') parameter_time = np.datetime64('2015-01-16T04:47:31') cutoff_filename = 'D://Google Drive//Uni//PhD 2017//Josh PhD Share Folder//Thesis//Data_Plots//20150116_RBSP-A//cutoffs_only.txt' _band_start = 0.12 _band_end = 0.18 # Import cutoff-derived composition information cutoff_dict = epd.read_cutoff_file(cutoff_filename) time, mag, edens, cold_dens, hope_dens, hope_tpar, hope_tperp, hope_anis, L_vals, =\ load_and_interpolate_plasma_params( plot_start, plot_end, probe, nsec=None, rbsp_path=_rbsp_path, HM_filter_mhz=50.0, time_array=None, check_interp=False) time_idx = np.where(abs(time - parameter_time) == np.min(abs(time - parameter_time)))[0][0] # Get oxygen concentration from cutoffs cutoff = np.interp(parameter_time.astype(np.int64), cutoff_dict['CUTOFF_TIME'].astype(np.int64), cutoff_dict['CUTOFF_NORM']) o_frac = epd.calculate_o_from_he_and_cutoff(cutoff, he_frac) h_frac = 1. - he_frac - o_frac # Cold plasma params, SI units B0 = mag[time_idx] name = np.array(['H' , 'He' , 'O' ]) mass = np.array([1.0 , 4.0 , 16.0 ]) * PMASS charge = np.array([1.0 , 1.0 , 1.0 ]) * PCHARGE density = np.array([h_frac, he_frac, o_frac ]) * edens[time_idx] ani = np.array([0.0 , 0.0 , 0.0 ]) tpar = np.array([0.0 , 0.0 , 0.0 ]) tper = (ani + 1) * tpar Species, PP = create_species_array(B0, name, mass, charge, density, tper, ani) # Frequencies to evaluate, calculate wavenumber (cold approximation) f_min = 0.07*PP['pcyc_rad'] / (2*np.pi) f_max = 0.24*PP['pcyc_rad'] / (2*np.pi) Nf = 10000 f_vals = np.linspace(f_min, f_max, Nf) w_vals = 2*np.pi*f_vals k_vals = nls.get_k_cold(w_vals, Species) # Define hot proton parameters (velocities normalized c) : vth = sqrt(kT/m)? # Remember: temperatures originally in eV nh = hope_dens[0][time_idx] wph2 = nh * PCHARGE ** 2 / (PMASS * EPS0) Vth_para = np.sqrt(KB * hope_tpar[0][time_idx]*(PCHARGE/KB) / PMASS) / SPLIGHT Vth_perp = np.sqrt(KB * hope_tperp[0][time_idx]*(PCHARGE/KB) / PMASS) / SPLIGHT Q = 0.5 # Curvature parameters (this has the most wiggle room) a = 4.5 / (L*RE)**2 a = a*(SPLIGHT**2/PP['pcyc_rad']**2) Vg, Vp, Vr = nls.get_velocities(w_vals, Species, PP, normalize=True) s0, s1, s2 = nls.get_inhomogeneity_terms(w_vals, Species, PP, Vth_perp, normalize_vel=True) # Normalize input parameters wph = np.sqrt(wph2) / PP['pcyc_rad'] w = w_vals / PP['pcyc_rad'] # DO THE ACTUAL CALCULATION (All hands off from here, using existing code/proforma) tau = 1.00 B_th = nls.get_threshold_amplitude(w, wph, Q, s2, a, Vp, Vr, Vth_para, Vth_perp) # Filter zeros and infs: B_th[B_th == np.inf] = np.nan B_th[B_th == 0] = np.nan # Load EMIC data IMF values mag_time, pc1_mags, HM_mags, imf_time, IA, IF, IP, stime, sfreq, spower, gyfreqs = \ load_EMIC_IMFs_and_dynspec(packet_start, packet_end) #%% PLOT: NaN's and inf's in arrays: How to filter to plot? Set to all NaN's # Also semilogy doesn't like zero: Set to NaN # # Plot axes: # -- Dynamic spectra for context, /w label for parameter time and packet times. Maybe IF? # -- Plot IMF just for check? # -- Large bottom plot: IF vs. IA # -- Maybe try a plot for linear/nonlinear growth rates vs. frequency? # -- Also should look at velocities/energies so we can see what sort of values are resonant # (Do this separately) # Filter IF/IA if outside bandpassed frequencies if True: for ii in range(IF[0].shape[0]): for jj in [0, 1]: if IF[jj][ii, 0] > _band_end or IF[jj][ii, 0] < _band_start: IF[jj][ii, 0] = np.nan # Maybe add extra filter for amplitude lower than a certain fraction (e.g. <0.1 nT) plt.ioff() lpad = 20; fsize=12 fig, axes = plt.subplots(nrows=3, ncols=2, figsize=(8.00, 0.5*11.00), gridspec_kw={'width_ratios':[1, 0.01], 'height_ratios':[1, 0.3, 2] }) # Spectra/IP im0 = axes[0, 0].pcolormesh(stime, sfreq, spower.sum(axis=0).T, cmap='jet', norm=colors.LogNorm(vmin=1e-4, vmax=1e1)) axes[0, 0].set_ylim(0, fmax) axes[0, 0].set_ylabel('$f$\n(Hz)', rotation=0, labelpad=lpad, fontsize=fsize) fig.colorbar(im0, cax=axes[0, 1], extend='both').set_label( r'$\frac{nT^2}{Hz}$', fontsize=fsize+2, rotation=0, labelpad=20) axes[0, 0].plot(mag_time, gyfreqs[1], c='yellow', label='$f_{cHe^+}$') axes[0, 0].plot(mag_time, gyfreqs[2], c='r', label='$f_{cO^+}$') axes[0, 0].legend(loc='upper right') axes[0, 0].plot(imf_time, IF[0][:, 0], c='k', lw=0.75) axes[0, 0].plot(imf_time, IF[1][:, 0], c='k', lw=0.75, alpha=0.8) #axes[0, 0].plot(imf_time, IF[2][:, 0], c='k', lw=0.75, alpha=0.6) axes[0, 0].axvline(parameter_time, color='white', ls='-' , alpha=0.7) axes[0, 0].set_xlim(plot_start, plot_end) axes[0, 0].axhline(_band_start, color='white', ls='--') axes[0, 0].axhline(_band_end , color='white', ls='--') # Bth, Bopt, Inst. Amplitudes axes[2, 0].plot(f_vals, B_th*B0*1e9, c='k', ls='--', label=r'$B_{th}$') for tau in [0.25, 0.5, 1.0, 2.0]: B_opt = nls.get_optimum_amplitude(w, wph, Q, tau, s0, s1, Vg, Vr, Vth_para, Vth_perp) B_opt[B_opt == np.inf] = np.nan B_opt[B_opt == 0] = np.nan tau_lbl = r'$B_{opt}$' if tau==0.25 else None axes[2, 0].plot(f_vals, B_opt*B0*1e9, c='k', ls='-', label=tau_lbl) xv = 0.50 yi = np.where(abs(f_vals - xv) == abs(f_vals - xv).min())[0][0] yv = B_opt[yi]*B0*1e9 axes[2, 0].text(xv, yv, f'{tau:.2f}', ha='center', bbox={'facecolor':'white', 'alpha':1.0, 'edgecolor':'white'}) axes[2, 0].set_ylabel('$B$\n(nT)', rotation=0, labelpad=20, fontsize=fsize) axes[2, 0].set_xlabel('$f$ (Hz)]', fontsize=fsize) axes[2, 0].set_ylim(0, B_max) axes[2, 0].set_xlim(f_vals[0], f_vals[-1]) axes[2, 0].tick_params(top=True, right=True) m_size = 1 axes[2, 0].scatter(IF[0][:, 0], IA[0][:, 0], c='b', s=m_size, marker='.', label='$B_\\nu$') axes[2, 0].scatter(IF[1][:, 0], IA[1][:, 0], c='r', s=m_size, marker='.', label='$B_\phi$') #axes[3, 0].scatter(IF[2][:, 0], IA[2][:, 0], c='k', s=m_size) # Start/Stop axes[2, 0].scatter(IF[0][0, 0], IA[0][0, 0], c='b', s=40, marker='o') axes[2, 0].scatter(IF[1][0, 0], IA[1][0, 0], c='r', s=40, marker='o') axes[2, 0].scatter(IF[0][-1, 0], IA[0][-1, 0], c='b', s=40, marker='x') axes[2, 0].scatter(IF[1][-1, 0], IA[1][-1, 0], c='r', s=40, marker='x') axes[2, 0].legend(loc='upper right') axes[1, 0].set_visible(False) axes[1, 1].set_visible(False) axes[2, 1].set_visible(False) axes[0, 0].xaxis.set_major_formatter(mdates.DateFormatter('%H:%M')) fig.tight_layout() fig.subplots_adjust(wspace=0.05, hspace=0) fig.align_ylabels() if save_plot == True: save_string = parameter_time.astype(object).strftime('%Y%m%d_%H%M%S') print('Saving plot...') fig.savefig(_plot_path + 'NONLINEAR_TRACE_' + save_string + '.png', dpi=dpi) plt.close('all') else: plt.show()
b4c4fc2a2bbd87a9e3d856bcc2e74c883eb189d1
066ee4df594a5dc90335d271b9d5a1b1e2a4d34c
/y/google-cloud-sdk/platform/google_appengine/google/appengine/ext/cloudstorage/cloudstorage_stub.py
069b7b65ad138552819b75d0ada18b1defcf0999
[ "Apache-2.0", "LGPL-2.1-or-later", "BSD-3-Clause", "MIT", "GPL-2.0-or-later", "MPL-1.1", "LicenseRef-scancode-unknown-license-reference" ]
permissive
ychen820/microblog
a2d82447525325ec58285c2e5db58b79cceaca1b
d379afa2db3582d5c3be652165f0e9e2e0c154c6
refs/heads/master
2021-01-20T05:58:48.424357
2015-04-28T22:03:09
2015-04-28T22:03:09
32,948,331
0
2
BSD-3-Clause
2020-07-25T05:04:35
2015-03-26T19:45:07
Python
UTF-8
Python
false
false
18,503
py
#!/usr/bin/env python # # Copyright 2007 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Stub for Google storage.""" import calendar import datetime import hashlib import httplib import StringIO from google.appengine.api import datastore from google.appengine.api import namespace_manager from google.appengine.api.blobstore import blobstore_stub from google.appengine.ext import db from google.appengine.ext.cloudstorage import common _GCS_DEFAULT_CONTENT_TYPE = 'binary/octet-stream' class _AE_GCSFileInfo_(db.Model): """Store GCS specific info. GCS allows user to define arbitrary metadata via header x-goog-meta-foo: bar. These headers are returned when user does a GET or HEAD on the object. Key name is blobkey. """ filename = db.StringProperty(required=True) finalized = db.BooleanProperty(required=True) raw_options = db.StringListProperty() size = db.IntegerProperty() next_offset = db.IntegerProperty(default=0) creation = db.DateTimeProperty() content_type = db.StringProperty(default=_GCS_DEFAULT_CONTENT_TYPE) etag = db.ByteStringProperty() def get_options(self): return dict(o.split(':', 1) for o in self.raw_options) def set_options(self, options_dict): self.raw_options = [ '%s:%s' % (k.lower(), v) for k, v in options_dict.iteritems()] if 'content-type' in options_dict: self.content_type = options_dict['content-type'] options = property(get_options, set_options) @classmethod def kind(cls): return blobstore_stub._GS_INFO_KIND class _AE_GCSPartialFile_(db.Model): """Store partial content for uploading files.""" end = db.IntegerProperty(required=True) partial_content = db.TextProperty(required=True) class CloudStorageStub(object): """Google Cloud Storage stub implementation. We use blobstore stub to store files. All metadata are stored in _AE_GCSFileInfo_. Note: this Google Cloud Storage stub is designed to work with apphosting.ext.cloudstorage.storage_api.py. It only implements the part of GCS storage_api.py uses, and its interface maps to GCS XML APIs. """ def __init__(self, blob_storage): """Initialize. Args: blob_storage: apphosting.api.blobstore.blobstore_stub.BlobStorage instance """ self.blob_storage = blob_storage def _filename_to_blobkey(self, filename): """Get blobkey for filename. Args: filename: gcs filename of form /bucket/filename. Returns: blobinfo's datastore's key name, aka, blobkey. """ common.validate_file_path(filename) return blobstore_stub.BlobstoreServiceStub.CreateEncodedGoogleStorageKey( filename[1:]) @db.non_transactional def post_start_creation(self, filename, options): """Start object creation with a POST. This implements the resumable upload XML API. Only major limitation of current implementation is that we don't support multiple upload sessions for the same GCS file. Previous _AE_GCSFileInfo (which represents either a finalized file, or an upload session) will be removed when a new upload session is created. Args: filename: gcs filename of form /bucket/filename. options: a dict containing all user specified request headers. e.g. {'content-type': 'foo', 'x-goog-meta-bar': 'bar'}. Returns: a token (blobkey) used for continuing upload. """ ns = namespace_manager.get_namespace() try: namespace_manager.set_namespace('') common.validate_file_path(filename) token = self._filename_to_blobkey(filename) gcs_file = _AE_GCSFileInfo_.get_by_key_name(token) self._cleanup_old_file(gcs_file) new_file = _AE_GCSFileInfo_(key_name=token, filename=filename, finalized=False) new_file.options = options new_file.put() return token finally: namespace_manager.set_namespace(ns) @db.non_transactional def _cleanup_old_file(self, gcs_file): """Clean up the old version of a file. The old version may or may not be finalized yet. Either way, when user tries to create a file that already exists, we delete the old version first. Args: gcs_file: an instance of _AE_GCSFileInfo_. """ if gcs_file: if gcs_file.finalized: blobkey = gcs_file.key().name() self.blob_storage.DeleteBlob(blobkey) else: db.delete(_AE_GCSPartialFile_.all().ancestor(gcs_file)) gcs_file.delete() @db.non_transactional def put_empty(self, token): """Empty put is used to query upload progress. The file must has not finished upload. Args: token: upload token returned by post_start_creation. Returns: last offset uploaded. -1 if none has been uploaded. Raises: ValueError: if token matches no in progress uploads. """ ns = namespace_manager.get_namespace() try: namespace_manager.set_namespace('') gcs_file = _AE_GCSFileInfo_.get_by_key_name(token) if not gcs_file: raise ValueError('Invalid token', httplib.BAD_REQUEST) return gcs_file.next_offset - 1 finally: namespace_manager.set_namespace(ns) @db.non_transactional def put_continue_creation(self, token, content, content_range, length=None, _upload_filename=None): """Continue object upload with PUTs. This implements the resumable upload XML API. Args: token: upload token returned by post_start_creation. content: object content. None if no content was provided with this PUT request. content_range: a (start, end) tuple specifying the content range of this chunk. Both are inclusive according to XML API. None is content is None. length: file length, if this is the last chunk of file content. _upload_filename: internal use. Might be removed any time! This is used by blobstore to pass in the upload filename from user. Returns: _AE_GCSFileInfo entity for this file if the file is finalized. Raises: ValueError: if something is invalid. The exception.args is a tuple of (msg, http status code). """ ns = namespace_manager.get_namespace() try: namespace_manager.set_namespace('') gcs_file = _AE_GCSFileInfo_.get_by_key_name(token) if not gcs_file: raise ValueError('Invalid token', httplib.BAD_REQUEST) if gcs_file.next_offset == -1: raise ValueError('Received more uploads after file %s ' 'was finalized.' % gcs_file.filename, httplib.OK) if content: start, end = content_range if len(content) != (end - start + 1): raise ValueError('Invalid content range %d-%d' % content_range, httplib.REQUESTED_RANGE_NOT_SATISFIABLE) if start > gcs_file.next_offset: raise ValueError('Expect start offset %s, got %s' % (gcs_file.next_offset, start), httplib.REQUESTED_RANGE_NOT_SATISFIABLE) elif end < gcs_file.next_offset: return else: content = content[gcs_file.next_offset - start:] start = gcs_file.next_offset blobkey = '%s-%d-%d' % (token, start, end) self.blob_storage.StoreBlob(blobkey, StringIO.StringIO(content)) new_content = _AE_GCSPartialFile_( parent=gcs_file, key_name='%020d' % start, partial_content=blobkey, start=start, end=end + 1) new_content.put() gcs_file.next_offset = end + 1 gcs_file.put() if length is not None and length != gcs_file.next_offset: raise ValueError( 'Got finalization request with wrong file length. ' 'Expecting %s, got %s' % (gcs_file.next_offset, length), httplib.REQUESTED_RANGE_NOT_SATISFIABLE) elif length is not None: return self._end_creation(token, _upload_filename) finally: namespace_manager.set_namespace(ns) @db.non_transactional def put_copy(self, src, dst, options): """Copy file from src to dst. Metadata is copied. Args: src: /bucket/filename. This file must exist. dst: /bucket/filename. options: a dict containing all user specified request headers. e.g. {'content-type': 'foo', 'x-goog-meta-bar': 'bar'}. If None, old metadata is copied. """ common.validate_file_path(src) common.validate_file_path(dst) ns = namespace_manager.get_namespace() try: namespace_manager.set_namespace('') src_blobkey = self._filename_to_blobkey(src) source = _AE_GCSFileInfo_.get_by_key_name(src_blobkey) token = self._filename_to_blobkey(dst) new_file = _AE_GCSFileInfo_(key_name=token, filename=dst, finalized=True) if options: new_file.options = options else: new_file.options = source.options new_file.etag = source.etag new_file.size = source.size new_file.creation = source.creation new_file.put() finally: namespace_manager.set_namespace(ns) if src_blobkey != token: local_file = self.blob_storage.OpenBlob(src_blobkey) self.blob_storage.StoreBlob(token, local_file) @db.non_transactional def _end_creation(self, token, _upload_filename): """End object upload. Args: token: upload token returned by post_start_creation. Returns: _AE_GCSFileInfo Entity for this file. Raises: ValueError: if token is invalid. Or file is corrupted during upload. Save file content to blobstore. Save blobinfo and _AE_GCSFileInfo. """ gcs_file = _AE_GCSFileInfo_.get_by_key_name(token) if not gcs_file: raise ValueError('Invalid token') if gcs_file.finalized: return gcs_file error_msg, content = self._get_content(gcs_file) if error_msg: raise ValueError(error_msg) gcs_file.etag = hashlib.md5(content).hexdigest() gcs_file.creation = datetime.datetime.utcnow() gcs_file.size = len(content) blob_info = datastore.Entity('__BlobInfo__', name=str(token), namespace='') blob_info['content_type'] = gcs_file.content_type blob_info['creation'] = gcs_file.creation blob_info['filename'] = _upload_filename blob_info['md5_hash'] = gcs_file.etag blob_info['size'] = gcs_file.size datastore.Put(blob_info) self.blob_storage.StoreBlob(token, StringIO.StringIO(content)) gcs_file.finalized = True gcs_file.next_offset = -1 gcs_file.put() return gcs_file @db.transactional(propagation=db.INDEPENDENT) def _get_content(self, gcs_file): """Aggregate all partial content of the gcs_file. Args: gcs_file: an instance of _AE_GCSFileInfo_. Returns: (error_msg, content) tuple. error_msg is set if the file is corrupted during upload. Otherwise content is set to the aggregation of all partial contents. """ content = '' previous_end = 0 error_msg = '' for partial in (_AE_GCSPartialFile_.all(namespace='').ancestor(gcs_file). order('__key__')): start = int(partial.key().name()) if not error_msg: if start < previous_end: error_msg = 'File is corrupted due to missing chunks.' elif start > previous_end: error_msg = 'File is corrupted due to overlapping chunks' previous_end = partial.end content += self.blob_storage.OpenBlob(partial.partial_content).read() self.blob_storage.DeleteBlob(partial.partial_content) partial.delete() if error_msg: gcs_file.delete() content = '' return error_msg, content @db.non_transactional def get_bucket(self, bucketpath, prefix, marker, max_keys, delimiter): """Get bucket listing with a GET. How GCS listbucket work in production: GCS tries to return as many items as possible in a single response. If there are more items satisfying user's query and the current request took too long (e.g spent on skipping files in a subdir) or items to return gets too big (> max_keys), it returns fast and sets IsTruncated and NextMarker for continuation. They serve redundant purpose: if NextMarker is set, IsTruncated is True. Note NextMarker is not where GCS scan left off. It is only valid for the exact same type of query the marker was generated from. For example, if a marker is generated from query with delimiter, the marker is the name of a subdir (instead of the last file within the subdir). Thus you can't use this marker to issue a query without delimiter. Args: bucketpath: gcs bucket path of form '/bucket' prefix: prefix to limit listing. marker: a str after which to start listing. Exclusive. max_keys: max items we scan & return. delimiter: delimiter for directory. See https://developers.google.com/storage/docs/reference-methods#getbucket for details. Returns: A tuple of (a list of GCSFileStat for files or directories sorted by filename, next_marker to use as next marker, is_truncated boolean to indicate if there are more results satisfying query). """ common.validate_bucket_path(bucketpath) q = _AE_GCSFileInfo_.all(namespace='') fully_qualified_prefix = '/'.join([bucketpath, prefix]) if marker: q.filter('filename >', '/'.join([bucketpath, marker])) else: q.filter('filename >=', fully_qualified_prefix) result = set() name = None first = True first_dir = None for info in q.run(): if not info.filename.startswith(fully_qualified_prefix): break if len(result) == max_keys: break info = db.get(info.key()) if not info: continue name = info.filename if delimiter: start_index = name.find(delimiter, len(fully_qualified_prefix)) if start_index != -1: name = name[:start_index + len(delimiter)] if marker and (first or name == first_dir): first = False first_dir = name else: result.add(common.GCSFileStat(name, st_size=None, st_ctime=None, etag=None, is_dir=True)) continue if info.finalized: first = False result.add(common.GCSFileStat( filename=name, st_size=info.size, st_ctime=calendar.timegm(info.creation.utctimetuple()), etag=info.etag)) def is_truncated(): """Check if there are more results satisfying the query.""" if not result: return False q = _AE_GCSFileInfo_.all(namespace='') q.filter('filename >', name) info = None if delimiter and name.endswith(delimiter): for info in q.run(): if not info.filename.startswith(name): break if info is not None and info.filename.startswith(name): info = None else: info = q.get() if info is None or not info.filename.startswith(fully_qualified_prefix): return False return True result = list(result) result.sort() truncated = is_truncated() next_marker = name if truncated else None return result, next_marker, truncated @db.non_transactional def get_object(self, filename, start=0, end=None): """Get file content with a GET. Args: filename: gcs filename of form '/bucket/filename'. start: start offset to request. Inclusive. end: end offset to request. Inclusive. Returns: The segment of file content requested. Raises: ValueError: if file doesn't exist. """ common.validate_file_path(filename) blobkey = self._filename_to_blobkey(filename) key = blobstore_stub.BlobstoreServiceStub.ToDatastoreBlobKey(blobkey) gcsfileinfo = db.get(key) if not gcsfileinfo or not gcsfileinfo.finalized: raise ValueError('File does not exist.') local_file = self.blob_storage.OpenBlob(blobkey) local_file.seek(start) if end: return local_file.read(end - start + 1) else: return local_file.read() @db.non_transactional def head_object(self, filename): """Get file stat with a HEAD. Args: filename: gcs filename of form '/bucket/filename' Returns: A GCSFileStat object containing file stat. None if file doesn't exist. """ common.validate_file_path(filename) blobkey = self._filename_to_blobkey(filename) key = blobstore_stub.BlobstoreServiceStub.ToDatastoreBlobKey(blobkey) info = db.get(key) if info and info.finalized: metadata = common.get_metadata(info.options) filestat = common.GCSFileStat( filename=info.filename, st_size=info.size, etag=info.etag, st_ctime=calendar.timegm(info.creation.utctimetuple()), content_type=info.content_type, metadata=metadata) return filestat return None @db.non_transactional def delete_object(self, filename): """Delete file with a DELETE. Args: filename: gcs filename of form '/bucket/filename' Returns: True if file is deleted. False if file doesn't exist. """ common.validate_file_path(filename) blobkey = self._filename_to_blobkey(filename) key = blobstore_stub.BlobstoreServiceStub.ToDatastoreBlobKey(blobkey) gcsfileinfo = db.get(key) if not gcsfileinfo: return False blobstore_stub.BlobstoreServiceStub.DeleteBlob(blobkey, self.blob_storage) return True
4e4ab4639104f571fb8a3fb079a9036e4b226ebf
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_59/321.py
0a9767e0766e4ba935813b4c36b5d417c281ff86
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
819
py
f = open("A-large.in") T = int(f.readline()) out = open("A-large.out", "w") for i in range(T): N, M = [int(x) for x in f.readline().split()] dirs = [] for j in range(N): dirs.append(f.readline()[1:].strip()) ndirs = [] for j in range(M): ndirs.append(f.readline()[1:].strip()) tree = {} for d in dirs: cur = tree for fold in d.split("/"): if not fold in cur: cur[fold] = {} cur = cur[fold] count = 0 for d in ndirs: cur = tree for fold in d.split("/"): if not fold in cur: count += 1 cur[fold] = {} cur = cur[fold] out.write("Case #%d: %d\n" % (i+1, count)) out.close() f.close()
5e61a1ac0bdda6850396f1dde2ef6f5ad1ae89a0
d125c002a6447c3f14022b786b07712a7f5b4974
/tests/bugs/core_5647_test.py
6270292da43b931230fb13d42925508c89a4e987
[ "MIT" ]
permissive
FirebirdSQL/firebird-qa
89d5b0035071f9f69d1c869997afff60c005fca9
cae18186f8c31511a7f68248b20f03be2f0b97c6
refs/heads/master
2023-08-03T02:14:36.302876
2023-07-31T23:02:56
2023-07-31T23:02:56
295,681,819
3
2
MIT
2023-06-16T10:05:55
2020-09-15T09:41:22
Python
UTF-8
Python
false
false
1,390
py
#coding:utf-8 """ ID: issue-5913 ISSUE: 5913 TITLE: Increase number of formats/versions of views from 255 to 32K DESCRIPTION: JIRA: CORE-5647 FBTEST: bugs.core_5647 """ import pytest from firebird.qa import * db = db_factory() test_script = """ set bail on; set list on; set term ^; execute block returns(ret_code smallint) as declare n int = 300; begin while (n > 0) do begin if (mod(n, 2) = 0) then begin in autonomous transaction do begin execute statement 'create or alter view vw1 (dump1) as select 1 from rdb$database'; end end else begin in autonomous transaction do begin execute statement 'create or alter view vw1 (dump1, dump2) as select 1, 2 from rdb$database'; end end n = n - 1; end ret_code = -abs(n); suspend; end ^ set term ;^ quit; """ act = isql_act('db', test_script) expected_stdout = """ RET_CODE 0 """ @pytest.mark.version('>=3.0.8') def test_1(act: Action): act.expected_stdout = expected_stdout act.execute() assert act.clean_stdout == act.clean_expected_stdout
a59632cf8ae532ffe1310f5a4589020417954045
e2f68f7f2b96af92d0d56ef9aa3119e7909cd992
/dataplicity/m2m/remoteprocess.py
96322c408309ccf7a475c5dba744ded0b077d147
[ "BSD-3-Clause", "BSD-2-Clause" ]
permissive
anuradhawick/dataplicity-agent
c89edd563103aa251f858d38aeba8ed6c605481c
9d4c234f0d7b24aa144a079f54883d38eb8b9f40
refs/heads/master
2022-04-09T18:16:18.590182
2020-03-26T12:10:44
2020-03-26T12:10:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,356
py
"""Manage a subprocess that streams to a remote side""" from __future__ import unicode_literals from __future__ import print_function import json import logging import os import signal import shlex from . import proxy log = logging.getLogger("m2m") class RemoteProcess(proxy.Interceptor): """Process managed remotely over m2m.""" def __init__(self, command, channel, user=None, group=None, size=None): self.command = command self.channel = channel self.size = size self._closed = False self.channel.set_callbacks( on_data=self.on_data, on_close=self.on_close, on_control=self.on_control ) super(RemoteProcess, self).__init__(user=user, group=group, size=size) @property def is_closed(self): return self._closed def __repr__(self): return "RemoteProcess({!r}, {!r})".format(self.command, self.channel) def run(self): self.spawn(shlex.split(self.command)) def on_data(self, data): try: self.stdin_read(data) except Exception: self.channel.close() def on_control(self, data): try: control = json.loads(data) except Exception: log.exception("error decoding control") return control_type = control.get("type", None) if control_type == "window_resize": size = control["size"] log.debug("resize terminal to {} X {}".format(*size)) self.resize_terminal(size) else: log.warning("unknown control packet {}".format(control_type)) def on_close(self): self.close() def master_read(self, data): self.channel.write(data) super(RemoteProcess, self).master_read(data) def write_master(self, data): super(RemoteProcess, self).write_master(data) def close(self): if not self._closed and self.pid is not None: log.debug("sending kill signal to %r", self) # TODO: Implement a non-blocking kill os.kill(self.pid, signal.SIGKILL) log.debug("waiting for %r", self) os.waitpid(self.pid, 0) log.debug("killed %r", self) self._closed = True def __enter__(self): return self def __exit__(self, *args): self.close()
96cb59c86f3f04d1a645ab6dbe5dec9566815298
f693c9c487d31a677f009afcdf922b4e7f7d1af0
/biomixer-venv/lib/python3.9/site-packages/pylint/config/configuration_mixin.py
2b8402b1de70ad6af27d329a9b8a26da1ae427c9
[ "MIT" ]
permissive
Shellowb/BioMixer
9048b6c07fa30b83c87402284f0cebd11a58e772
1939261589fe8d6584a942a99f0308e898a28c1c
refs/heads/master
2022-10-05T08:16:11.236866
2021-06-29T17:20:45
2021-06-29T17:20:45
164,722,008
1
3
MIT
2022-09-30T20:23:34
2019-01-08T19:52:12
Python
UTF-8
Python
false
false
1,105
py
# Licensed under the GPL: https://www.gnu.org/licenses/old-licenses/gpl-2.0.html # For details: https://github.com/PyCQA/pylint/blob/master/LICENSE from pylint.config.option_manager_mixin import OptionsManagerMixIn from pylint.config.options_provider_mixin import OptionsProviderMixIn class ConfigurationMixIn(OptionsManagerMixIn, OptionsProviderMixIn): """basic mixin for simple configurations which don't need the manager / providers model""" def __init__(self, *args, **kwargs): if not args: kwargs.setdefault("usage", "") OptionsManagerMixIn.__init__(self, *args, **kwargs) OptionsProviderMixIn.__init__(self) if not getattr(self, "option_groups", None): self.option_groups = [] for _, optdict in self.options: try: gdef = (optdict["group"].upper(), "") except KeyError: continue if gdef not in self.option_groups: self.option_groups.append(gdef) self.register_options_provider(self, own_group=False)
42ff135cd3c609889f324bcda93251136a3573db
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/421/usersdata/309/85689/submittedfiles/tomadas.py
e849c70f0e33e8eac82fa6a18c34f43c973659d4
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
560
py
# -*- coding: utf-8 -*- import math #COMECE SEU CODIGO AQUI soma =1 for i in range(1,5,1) : while (True): t=int(input("Digite o valor de tomadas da régua %d, por gentileza:" %i)) if (t>0): break soma=soma+t print ("%d"%soma) #t2=int( input("Digite o valor de tomadas na segunda régua, por gentileza:")) #t3=int(input("Digite o valor de tomadas na terceira régua, por gentileza:")) #t4=int(input("Digite o valor de tomadas na quarta régua, por gentileza:"))
bc624e51be65ae34c43f9fe58871a1a0b9359c12
a66460a46611483dfbdc94c7996893f427e60d97
/ansible/my_env/lib/python2.7/site-packages/ansible/modules/network/f5/bigip_pool_member.py
b2225b411eb0334eb3d8273b4c28adc1a05c030a
[ "GPL-3.0-only", "MIT" ]
permissive
otus-devops-2019-02/yyashkin_infra
06b57807dde26f94f501828c07503d6bf1d70816
0cd0c003884155ac922e3e301305ac202de7028c
refs/heads/master
2020-04-29T02:42:22.056724
2019-05-15T16:24:35
2019-05-15T16:24:35
175,780,718
0
0
MIT
2019-05-15T16:24:36
2019-03-15T08:37:35
HCL
UTF-8
Python
false
false
26,646
py
#!/usr/bin/python # -*- coding: utf-8 -*- # # Copyright (c) 2017 F5 Networks Inc. # Copyright (c) 2013 Matt Hite <[email protected]> # GNU General Public License v3.0 (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'certified'} DOCUMENTATION = r''' --- module: bigip_pool_member short_description: Manages F5 BIG-IP LTM pool members description: - Manages F5 BIG-IP LTM pool members via iControl SOAP API. version_added: 1.4 options: name: description: - Name of the node to create, or re-use, when creating a new pool member. - This parameter is optional and, if not specified, a node name will be created automatically from either the specified C(address) or C(fqdn). - The C(enabled) state is an alias of C(present). version_added: 2.6 state: description: - Pool member state. required: True default: present choices: - present - absent - enabled - disabled - forced_offline pool: description: - Pool name. This pool must exist. required: True partition: description: - Partition default: Common address: description: - IP address of the pool member. This can be either IPv4 or IPv6. When creating a new pool member, one of either C(address) or C(fqdn) must be provided. This parameter cannot be updated after it is set. aliases: - ip - host version_added: 2.2 fqdn: description: - FQDN name of the pool member. This can be any name that is a valid RFC 1123 DNS name. Therefore, the only characters that can be used are "A" to "Z", "a" to "z", "0" to "9", the hyphen ("-") and the period ("."). - FQDN names must include at lease one period; delineating the host from the domain. ex. C(host.domain). - FQDN names must end with a letter or a number. - When creating a new pool member, one of either C(address) or C(fqdn) must be provided. This parameter cannot be updated after it is set. aliases: - hostname version_added: 2.6 port: description: - Pool member port. - This value cannot be changed after it has been set. required: True connection_limit: description: - Pool member connection limit. Setting this to 0 disables the limit. description: description: - Pool member description. rate_limit: description: - Pool member rate limit (connections-per-second). Setting this to 0 disables the limit. ratio: description: - Pool member ratio weight. Valid values range from 1 through 100. New pool members -- unless overridden with this value -- default to 1. preserve_node: description: - When state is C(absent) attempts to remove the node that the pool member references. - The node will not be removed if it is still referenced by other pool members. If this happens, the module will not raise an error. - Setting this to C(yes) disables this behavior. type: bool version_added: 2.1 priority_group: description: - Specifies a number representing the priority group for the pool member. - When adding a new member, the default is 0, meaning that the member has no priority. - To specify a priority, you must activate priority group usage when you create a new pool or when adding or removing pool members. When activated, the system load balances traffic according to the priority group number assigned to the pool member. - The higher the number, the higher the priority, so a member with a priority of 3 has higher priority than a member with a priority of 1. version_added: 2.5 fqdn_auto_populate: description: - Specifies whether the system automatically creates ephemeral nodes using the IP addresses returned by the resolution of a DNS query for a node defined by an FQDN. - When C(yes), the system generates an ephemeral node for each IP address returned in response to a DNS query for the FQDN of the node. Additionally, when a DNS response indicates the IP address of an ephemeral node no longer exists, the system deletes the ephemeral node. - When C(no), the system resolves a DNS query for the FQDN of the node with the single IP address associated with the FQDN. - When creating a new pool member, the default for this parameter is C(yes). - This parameter is ignored when C(reuse_nodes) is C(yes). type: bool version_added: 2.6 reuse_nodes: description: - Reuses node definitions if requested. default: yes type: bool version_added: 2.6 extends_documentation_fragment: f5 author: - Tim Rupp (@caphrim007) ''' EXAMPLES = ''' - name: Add pool member bigip_pool_member: server: lb.mydomain.com user: admin password: secret state: present pool: my-pool partition: Common host: "{{ ansible_default_ipv4['address'] }}" port: 80 description: web server connection_limit: 100 rate_limit: 50 ratio: 2 delegate_to: localhost - name: Modify pool member ratio and description bigip_pool_member: server: lb.mydomain.com user: admin password: secret state: present pool: my-pool partition: Common host: "{{ ansible_default_ipv4['address'] }}" port: 80 ratio: 1 description: nginx server delegate_to: localhost - name: Remove pool member from pool bigip_pool_member: server: lb.mydomain.com user: admin password: secret state: absent pool: my-pool partition: Common host: "{{ ansible_default_ipv4['address'] }}" port: 80 delegate_to: localhost - name: Force pool member offline bigip_pool_member: server: lb.mydomain.com user: admin password: secret state: forced_offline pool: my-pool partition: Common host: "{{ ansible_default_ipv4['address'] }}" port: 80 delegate_to: localhost - name: Create members with priority groups bigip_pool_member: server: lb.mydomain.com user: admin password: secret pool: my-pool partition: Common host: "{{ item.address }}" name: "{{ item.name }}" priority_group: "{{ item.priority_group }}" port: 80 delegate_to: localhost loop: - host: 1.1.1.1 name: web1 priority_group: 4 - host: 2.2.2.2 name: web2 priority_group: 3 - host: 3.3.3.3 name: web3 priority_group: 2 - host: 4.4.4.4 name: web4 priority_group: 1 ''' RETURN = ''' rate_limit: description: The new rate limit, in connections per second, of the pool member. returned: changed type: int sample: 100 connection_limit: description: The new connection limit of the pool member returned: changed type: int sample: 1000 description: description: The new description of pool member. returned: changed type: string sample: My pool member ratio: description: The new pool member ratio weight. returned: changed type: int sample: 50 priority_group: description: The new priority group. returned: changed type: int sample: 3 fqdn_auto_populate: description: Whether FQDN auto population was set on the member or not. returned: changed type: bool sample: True fqdn: description: The FQDN of the pool member. returned: changed type: string sample: foo.bar.com address: description: The address of the pool member. returned: changed type: string sample: 1.2.3.4 ''' from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.basic import env_fallback try: from library.module_utils.network.f5.bigip import HAS_F5SDK from library.module_utils.network.f5.bigip import F5Client from library.module_utils.network.f5.common import F5ModuleError from library.module_utils.network.f5.common import AnsibleF5Parameters from library.module_utils.network.f5.common import cleanup_tokens from library.module_utils.network.f5.common import fq_name from library.module_utils.network.f5.common import is_valid_hostname from library.module_utils.network.f5.common import f5_argument_spec from library.module_utils.network.f5.ipaddress import is_valid_ip from library.module_utils.network.f5.ipaddress import validate_ip_address from library.module_utils.network.f5.ipaddress import validate_ip_v6_address try: from library.module_utils.network.f5.common import iControlUnexpectedHTTPError except ImportError: HAS_F5SDK = False except ImportError: from ansible.module_utils.network.f5.bigip import HAS_F5SDK from ansible.module_utils.network.f5.bigip import F5Client from ansible.module_utils.network.f5.common import F5ModuleError from ansible.module_utils.network.f5.common import AnsibleF5Parameters from ansible.module_utils.network.f5.common import cleanup_tokens from ansible.module_utils.network.f5.common import fq_name from ansible.module_utils.network.f5.common import is_valid_hostname from ansible.module_utils.network.f5.common import f5_argument_spec from ansible.module_utils.network.f5.ipaddress import is_valid_ip from ansible.module_utils.network.f5.ipaddress import validate_ip_address from ansible.module_utils.network.f5.ipaddress import validate_ip_v6_address try: from ansible.module_utils.network.f5.common import iControlUnexpectedHTTPError except ImportError: HAS_F5SDK = False class Parameters(AnsibleF5Parameters): api_map = { 'rateLimit': 'rate_limit', 'connectionLimit': 'connection_limit', 'priorityGroup': 'priority_group', } api_attributes = [ 'rateLimit', 'connectionLimit', 'description', 'ratio', 'priorityGroup', 'address', 'fqdn', 'session', 'state' ] returnables = [ 'rate_limit', 'connection_limit', 'description', 'ratio', 'priority_group', 'fqdn_auto_populate', 'session', 'state', 'fqdn', 'address' ] updatables = [ 'rate_limit', 'connection_limit', 'description', 'ratio', 'priority_group', 'fqdn_auto_populate', 'state' ] class ModuleParameters(Parameters): @property def full_name(self): delimiter = ':' try: if validate_ip_v6_address(self.full_name_dict['name']): delimiter = '.' except TypeError: pass return '{0}{1}{2}'.format(self.full_name_dict['name'], delimiter, self.port) @property def full_name_dict(self): if self._values['name'] is None: name = self._values['address'] if self._values['address'] else self._values['fqdn'] else: name = self._values['name'] return dict( name=name, port=self.port ) @property def node_name(self): return self.full_name_dict['name'] @property def fqdn_name(self): return self._values['fqdn'] @property def fqdn(self): result = {} if self.fqdn_auto_populate: result['autopopulate'] = 'enabled' else: result['autopopulate'] = 'disabled' if self._values['fqdn'] is None: return result if not is_valid_hostname(self._values['fqdn']): raise F5ModuleError( "The specified 'fqdn' is not a valid hostname." ) result['tmName'] = self._values['fqdn'] return result @property def pool(self): return fq_name(self.want.partition, self._values['pool']) @property def port(self): if 0 > int(self._values['port']) or int(self._values['port']) > 65535: raise F5ModuleError( "Valid ports must be in range 0 - 65535" ) return int(self._values['port']) @property def address(self): if self._values['address'] is None: return None elif self._values['address'] == 'any6': return 'any6' if is_valid_ip(self._values['address']): return self._values['address'] raise F5ModuleError( "The specified 'address' value is not a valid IP address." ) @property def state(self): if self._values['state'] == 'enabled': return 'present' return self._values['state'] class ApiParameters(Parameters): @property def allow(self): if self._values['allow'] is None: return '' if self._values['allow'][0] == 'All': return 'all' allow = self._values['allow'] result = list(set([str(x) for x in allow])) result = sorted(result) return result @property def rate_limit(self): if self._values['rate_limit'] is None: return None if self._values['rate_limit'] == 'disabled': return 0 return int(self._values['rate_limit']) @property def state(self): if self._values['state'] in ['user-up', 'unchecked', 'fqdn-up-no-addr', 'fqdn-up'] and self._values['session'] in ['user-enabled']: return 'present' elif self._values['state'] in ['down', 'up'] and self._values['session'] == 'monitor-enabled': return 'present' elif self._values['state'] in ['user-down'] and self._values['session'] in ['user-disabled']: return 'forced_offline' else: return 'disabled' class NodeApiParameters(Parameters): pass class Changes(Parameters): def to_return(self): result = {} try: for returnable in self.returnables: result[returnable] = getattr(self, returnable) result = self._filter_params(result) except Exception: pass return result class UsableChanges(Changes): pass class ReportableChanges(Changes): @property def ssl_cipher_suite(self): default = ':'.join(sorted(Parameters._ciphers.split(':'))) if self._values['ssl_cipher_suite'] == default: return 'default' else: return self._values['ssl_cipher_suite'] @property def fqdn_auto_populate(self): if self._values['fqdn'] is None: return None if 'autopopulate' in self._values['fqdn']: if self._values['fqdn']['autopopulate'] == 'enabled': return True return False @property def fqdn(self): if self._values['fqdn'] is None: return None if 'tmName' in self._values['fqdn']: return self._values['fqdn']['tmName'] @property def state(self): if self._values['state'] in ['user-up', 'unchecked', 'fqdn-up-no-addr', 'fqdn-up'] and self._values['session'] in ['user-enabled']: return 'present' elif self._values['state'] in ['down', 'up'] and self._values['session'] == 'monitor-enabled': return 'present' elif self._values['state'] in ['user-down'] and self._values['session'] in ['user-disabled']: return 'forced_offline' else: return 'disabled' class Difference(object): def __init__(self, want, have=None): self.want = want self.have = have def compare(self, param): try: result = getattr(self, param) return result except AttributeError: return self.__default(param) def __default(self, param): attr1 = getattr(self.want, param) try: attr2 = getattr(self.have, param) if attr1 != attr2: return attr1 except AttributeError: return attr1 @property def state(self): if self.want.state == self.have.state: return None if self.want.state == 'forced_offline': return { 'state': 'user-down', 'session': 'user-disabled' } elif self.want.state == 'disabled': return { 'state': 'user-up', 'session': 'user-disabled' } elif self.want.state in ['present', 'enabled']: return { 'state': 'user-up', 'session': 'user-enabled' } class ModuleManager(object): def __init__(self, *args, **kwargs): self.module = kwargs.get('module', None) self.client = kwargs.get('client', None) self.want = ModuleParameters(params=self.module.params) self.have = ApiParameters() self.changes = UsableChanges() def _set_changed_options(self): changed = {} for key in Parameters.returnables: if getattr(self.want, key) is not None: changed[key] = getattr(self.want, key) if changed: self.changes = UsableChanges(params=changed) def _update_changed_options(self): diff = Difference(self.want, self.have) updatables = Parameters.updatables changed = dict() for k in updatables: change = diff.compare(k) if change is None: continue else: if isinstance(change, dict): changed.update(change) else: changed[k] = change if changed: self.changes = UsableChanges(params=changed) return True return False def should_update(self): result = self._update_changed_options() if result: return True return False def exec_module(self): changed = False result = dict() state = self.want.state try: if state in ['present', 'present', 'enabled', 'disabled', 'forced_offline']: changed = self.present() elif state == "absent": changed = self.absent() except iControlUnexpectedHTTPError as e: raise F5ModuleError(str(e)) reportable = ReportableChanges(params=self.changes.to_return()) changes = reportable.to_return() result.update(**changes) result.update(dict(changed=changed)) self._announce_deprecations(result) return result def _announce_deprecations(self, result): warnings = result.pop('__warnings', []) for warning in warnings: self.module.deprecate( msg=warning['msg'], version=warning['version'] ) def present(self): if self.exists(): return self.update() else: return self.create() def exists(self): try: pool = self.client.api.tm.ltm.pools.pool.load( name=self.want.pool, partition=self.want.partition ) except Exception as ex: raise F5ModuleError('The specified pool does not exist') result = pool.members_s.members.exists( name=self.want.full_name, partition=self.want.partition ) return result def node_exists(self): resource = self.client.api.tm.ltm.nodes.node.exists( name=self.want.node_name, partition=self.want.partition ) return resource def update(self): self.have = self.read_current_from_device() if not self.should_update(): return False if self.module.check_mode: return True self.update_on_device() return True def remove(self): if self.module.check_mode: return True self.remove_from_device() if not self.want.preserve_node: self.remove_node_from_device() if self.exists(): raise F5ModuleError("Failed to delete the resource.") return True def _set_host_by_name(self): if is_valid_ip(self.want.name): self.want.update({ 'fqdn': None, 'address': self.want.name }) else: if not is_valid_hostname(self.want.name): raise F5ModuleError( "'name' is neither a valid IP address or FQDN name." ) self.want.update({ 'fqdn': self.want.name, 'address': None }) def _update_api_state_attributes(self): if self.want.state == 'forced_offline': self.want.update({ 'state': 'user-down', 'session': 'user-disabled', }) elif self.want.state == 'disabled': self.want.update({ 'state': 'user-up', 'session': 'user-disabled', }) elif self.want.state in ['present', 'enabled']: self.want.update({ 'state': 'user-up', 'session': 'user-enabled', }) def _update_address_with_existing_nodes(self): try: have = self.read_current_node_from_device(self.want.node_name) if self.want.fqdn_auto_populate and self.want.reuse_nodes: self.module.warn("'fqdn_auto_populate' is discarded in favor of the re-used node's auto-populate setting.") self.want.update({ 'fqdn_auto_populate': True if have.fqdn['autopopulate'] == 'enabled' else False }) if 'tmName' in have.fqdn: self.want.update({ 'fqdn': have.fqdn['tmName'], 'address': 'any6' }) else: self.want.update({ 'address': have.address }) except Exception: return None def create(self): if self.want.reuse_nodes: self._update_address_with_existing_nodes() if self.want.name and not any(x for x in [self.want.address, self.want.fqdn_name]): self._set_host_by_name() self._update_api_state_attributes() self._set_changed_options() if self.module.check_mode: return True self.create_on_device() return True def create_on_device(self): params = self.changes.api_params() pool = self.client.api.tm.ltm.pools.pool.load( name=self.want.pool, partition=self.want.partition ) pool.members_s.members.create( name=self.want.full_name, partition=self.want.partition, **params ) def update_on_device(self): params = self.changes.api_params() pool = self.client.api.tm.ltm.pools.pool.load( name=self.want.pool, partition=self.want.partition ) resource = pool.members_s.members.load( name=self.want.full_name, partition=self.want.partition ) resource.modify(**params) def absent(self): if self.exists(): return self.remove() elif not self.want.preserve_node and self.node_exists(): return self.remove_node_from_device() return False def remove_from_device(self): pool = self.client.api.tm.ltm.pools.pool.load( name=self.want.pool, partition=self.want.partition ) resource = pool.members_s.members.load( name=self.want.full_name, partition=self.want.partition ) if resource: resource.delete() def remove_node_from_device(self): resource = self.client.api.tm.ltm.nodes.node.load( name=self.want.node_name, partition=self.want.partition ) if resource: resource.delete() def read_current_from_device(self): pool = self.client.api.tm.ltm.pools.pool.load( name=self.want.pool, partition=self.want.partition ) resource = pool.members_s.members.load( name=self.want.full_name, partition=self.want.partition ) return ApiParameters(params=resource.attrs) def read_current_node_from_device(self, node): resource = self.client.api.tm.ltm.nodes.node.load( name=node, partition=self.want.partition ) return NodeApiParameters(params=resource.attrs) class ArgumentSpec(object): def __init__(self): self.supports_check_mode = True argument_spec = dict( pool=dict(required=True), address=dict(aliases=['host', 'ip']), fqdn=dict( aliases=['hostname'] ), name=dict(), port=dict(type='int', required=True), connection_limit=dict(type='int'), description=dict(), rate_limit=dict(type='int'), ratio=dict(type='int'), preserve_node=dict(type='bool'), priority_group=dict(type='int'), state=dict( default='present', choices=['absent', 'present', 'enabled', 'disabled', 'forced_offline'] ), partition=dict( default='Common', fallback=(env_fallback, ['F5_PARTITION']) ), fqdn_auto_populate=dict(type='bool'), reuse_nodes=dict(type='bool', default=True), ) self.argument_spec = {} self.argument_spec.update(f5_argument_spec) self.argument_spec.update(argument_spec) self.mutually_exclusive = [ ['address', 'fqdn'] ] self.required_one_of = [ ['name', 'address', 'fqdn'], ] def main(): spec = ArgumentSpec() module = AnsibleModule( argument_spec=spec.argument_spec, supports_check_mode=spec.supports_check_mode ) if not HAS_F5SDK: module.fail_json(msg="The python f5-sdk module is required") try: client = F5Client(**module.params) mm = ModuleManager(module=module, client=client) results = mm.exec_module() cleanup_tokens(client) module.exit_json(**results) except F5ModuleError as ex: cleanup_tokens(client) module.fail_json(msg=str(ex)) if __name__ == '__main__': main()
bb6dc98e989399e948ba525a6d333964b95d3386
df4fd380b3e1720a970573c4692eb0a32faf8f47
/sort/insert_sort.py
81debeb0a668d5850d4dd0f8ba1ff0eeeb77b87e
[]
no_license
Taeheon-Lee/Algorithm
99dd21e1e0ddba31190a16d6c9646a9f393f4c4b
64ebacf24dfdf25194b5bce39f4ce43c4bc87141
refs/heads/master
2023-07-10T20:26:10.121214
2021-08-07T17:26:26
2021-08-07T17:26:26
383,803,983
0
0
null
null
null
null
UTF-8
Python
false
false
1,307
py
"Insert Sort 삽입 정렬" # 아직 정렬되지 않은 임의의 데이터를 이미 정렬된 부분의 적절한 위치에 삽입해 가며 정렬하는 방식 # 선택된 키값을 앞쪽 데이터들의 키값과 비교하며 자신의 위치를 찾아 삽입하여 정렬 # 최선의 경우, n-1번 비교하면 정렬이 완료 # 최악의 경우, 모든 단계에서 앞에 놓인 데이터들을 전부 이동 "n(n-1)/2 번 수행" # 시간 복잡도는 최선의 경우 O(n), 최악의 경우 O(n²) def insert_sort(lst): "삽입 정렬 함수" length = len(lst) # 리스트 길이 for i in range(1, length): # 인덱스 0은 이미 정렬된 것으로 볼 수 있음 key = lst[i] for j in range(i-1, -1, -1): if lst[j] < key: j += 1 # 중간에 조건에 의하여 탈출할 경우, 키값 삽입을 위하여 인덱스값에 1을 더함 break lst[j+1] = lst[j] # 키값보다 큰 요소값은 오른쪽으로 이동 lst[j] = key lst = list(map(int, input().split())) # 정렬할 리스트 입력 insert_sort(lst) # 삽입 정렬 수행 print(lst) # 결과 출력
a0cc6c8dfeb588a79e84e11ed632982a28f48784
a7122df9b74c12a5ef23af3cd38550e03a23461d
/Elementary/Three Words.py
ae2e7c11af4f31ee48707685af3bc478b686b7e3
[]
no_license
CompetitiveCode/py.checkIO.org
c41f6901c576c614c4c77ad5c4162448828c3902
e34648dcec54364a7006e4d78313e9a6ec6c498b
refs/heads/master
2022-01-09T05:48:02.493606
2019-05-27T20:29:24
2019-05-27T20:29:24
168,180,493
1
0
null
null
null
null
UTF-8
Python
false
false
843
py
#Answer to Three Words - https://py.checkio.org/en/mission/three-words/ def checkio(words: str) -> bool: word_list = words.split() three = 0 for i in word_list: if i.isalpha(): three += 1 else: three = 0 if three == 3: return True return False #These "asserts" using only for self-checking and not necessary for auto-testing if __name__ == '__main__': print('Example:') print(checkio("Hello World hello")) assert checkio("Hello World hello") == True, "Hello" assert checkio("He is 123 man") == False, "123 man" assert checkio("1 2 3 4") == False, "Digits" assert checkio("bla bla bla bla") == True, "Bla Bla" assert checkio("Hi") == False, "Hi" print("Coding complete? Click 'Check' to review your tests and earn cool rewards!")
5d0e2596df37927c85962b5901035adae9d5f07f
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/synthetic/stdlib-big-1069.py
0eb2deca32b6d008f79111e9b825723d65fb45f8
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
9,001
py
# ChocoPy library functions def int_to_str(x: int) -> str: digits:[str] = None result:str = "" # Set-up digit mapping digits = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"] # Write sign if necessary if x < 0: result = "-" x = -x # Write digits using a recursive call if x >= 10: result = result + int_to_str(x // 10) result = result + digits[x % 10] return result def int_to_str2(x: int, x2: int) -> str: digits:[str] = None digits2:[str] = None result:str = "" result2:str = "" # Set-up digit mapping digits = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"] # Write sign if necessary if x < 0: result = "-" x = -x # Write digits using a recursive call if x >= 10: result = result + int_to_str(x // 10) result = result + digits[x % 10] return result def int_to_str3(x: int, x2: int, x3: int) -> str: digits:[str] = None digits2:[str] = None digits3:[str] = None result:str = "" result2:str = "" result3:str = "" # Set-up digit mapping digits = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"] # Write sign if necessary if x < 0: result = "-" x = -x # Write digits using a recursive call if x >= 10: result = result + int_to_str(x // 10) result = result + digits[x % 10] return result def int_to_str4(x: int, x2: int, x3: int, x4: int) -> str: digits:[str] = None digits2:[str] = None digits3:[str] = None digits4:[str] = None result:str = "" result2:str = "" result3:str = "" result4:str = "" # Set-up digit mapping digits = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"] # Write sign if necessary if x < 0: result = "-" x = -x # Write digits using a recursive call if x >= 10: result = result + int_to_str(x // 10) result = result + digits[x % 10] return result def int_to_str5(x: int, x2: int, x3: int, x4: int, x5: int) -> str: digits:[str] = None digits2:[str] = None digits3:[str] = None digits4:[str] = None digits5:[str] = None result:str = "" result2:str = "" result3:str = "" result4:str = "" result5:str = "" # Set-up digit mapping digits = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"] # Write sign if necessary if x < 0: result = "-" x = -x # Write digits using a recursive call if x >= 10: result = result + int_to_str(x // 10) result = result + digits[x % 10] return result def str_to_int(x: str) -> int: result:int = 0 digit:int = 0 char:str = "" sign:int = 1 first_char:bool = True # Parse digits for char in x: if char == "-": if not first_char: return 0 # Error sign = $Exp elif char == "0": digit = 0 elif char == "1": digit = 1 elif char == "2": digit = 2 elif char == "3": digit = 3 elif char == "3": digit = 3 elif char == "4": digit = 4 elif char == "5": digit = 5 elif char == "6": digit = 6 elif char == "7": digit = 7 elif char == "8": digit = 8 elif char == "9": digit = 9 else: return 0 # On error first_char = False result = result * 10 + digit # Compute result return result * sign def str_to_int2(x: str, x2: str) -> int: result:int = 0 result2:int = 0 digit:int = 0 digit2:int = 0 char:str = "" char2:str = "" sign:int = 1 sign2:int = 1 first_char:bool = True first_char2:bool = True # Parse digits for char in x: if char == "-": if not first_char: return 0 # Error sign = -1 elif char == "0": digit = 0 elif char == "1": digit = 1 elif char == "2": digit = 2 elif char == "3": digit = 3 elif char == "3": digit = 3 elif char == "4": digit = 4 elif char == "5": digit = 5 elif char == "6": digit = 6 elif char == "7": digit = 7 elif char == "8": digit = 8 elif char == "9": digit = 9 else: return 0 # On error first_char = False result = result * 10 + digit # Compute result return result * sign def str_to_int3(x: str, x2: str, x3: str) -> int: result:int = 0 result2:int = 0 result3:int = 0 digit:int = 0 digit2:int = 0 digit3:int = 0 char:str = "" char2:str = "" char3:str = "" sign:int = 1 sign2:int = 1 sign3:int = 1 first_char:bool = True first_char2:bool = True first_char3:bool = True # Parse digits for char in x: if char == "-": if not first_char: return 0 # Error sign = -1 elif char == "0": digit = 0 elif char == "1": digit = 1 elif char == "2": digit = 2 elif char == "3": digit = 3 elif char == "3": digit = 3 elif char == "4": digit = 4 elif char == "5": digit = 5 elif char == "6": digit = 6 elif char == "7": digit = 7 elif char == "8": digit = 8 elif char == "9": digit = 9 else: return 0 # On error first_char = False result = result * 10 + digit # Compute result return result * sign def str_to_int4(x: str, x2: str, x3: str, x4: str) -> int: result:int = 0 result2:int = 0 result3:int = 0 result4:int = 0 digit:int = 0 digit2:int = 0 digit3:int = 0 digit4:int = 0 char:str = "" char2:str = "" char3:str = "" char4:str = "" sign:int = 1 sign2:int = 1 sign3:int = 1 sign4:int = 1 first_char:bool = True first_char2:bool = True first_char3:bool = True first_char4:bool = True # Parse digits for char in x: if char == "-": if not first_char: return 0 # Error sign = -1 elif char == "0": digit = 0 elif char == "1": digit = 1 elif char == "2": digit = 2 elif char == "3": digit = 3 elif char == "3": digit = 3 elif char == "4": digit = 4 elif char == "5": digit = 5 elif char == "6": digit = 6 elif char == "7": digit = 7 elif char == "8": digit = 8 elif char == "9": digit = 9 else: return 0 # On error first_char = False result = result * 10 + digit # Compute result return result * sign def str_to_int5(x: str, x2: str, x3: str, x4: str, x5: str) -> int: result:int = 0 result2:int = 0 result3:int = 0 result4:int = 0 result5:int = 0 digit:int = 0 digit2:int = 0 digit3:int = 0 digit4:int = 0 digit5:int = 0 char:str = "" char2:str = "" char3:str = "" char4:str = "" char5:str = "" sign:int = 1 sign2:int = 1 sign3:int = 1 sign4:int = 1 sign5:int = 1 first_char:bool = True first_char2:bool = True first_char3:bool = True first_char4:bool = True first_char5:bool = True # Parse digits for char in x: if char == "-": if not first_char: return 0 # Error sign = -1 elif char == "0": digit = 0 elif char == "1": digit = 1 elif char == "2": digit = 2 elif char == "3": digit = 3 elif char == "3": digit = 3 elif char == "4": digit = 4 elif char == "5": digit = 5 elif char == "6": digit = 6 elif char == "7": digit = 7 elif char == "8": digit = 8 elif char == "9": digit = 9 else: return 0 # On error first_char = False result = result * 10 + digit # Compute result return result * sign # Input parameters c:int = 42 c2:int = 42 c3:int = 42 c4:int = 42 c5:int = 42 n:int = 10 n2:int = 10 n3:int = 10 n4:int = 10 n5:int = 10 # Run [-nc, nc] with step size c s:str = "" s2:str = "" s3:str = "" s4:str = "" s5:str = "" i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 i5:int = 0 i = -n * c # Crunch while i <= n * c: s = int_to_str(i) print(s) i = str_to_int(s) + c
d90029074a8b3cb21014a71c04d262ed15bdd2a4
09e57dd1374713f06b70d7b37a580130d9bbab0d
/benchmark/startQiskit_Class2105.py
46f966d0a752418c6145076ba857b2bce1e11250
[ "BSD-3-Clause" ]
permissive
UCLA-SEAL/QDiff
ad53650034897abb5941e74539e3aee8edb600ab
d968cbc47fe926b7f88b4adf10490f1edd6f8819
refs/heads/main
2023-08-05T04:52:24.961998
2021-09-19T02:56:16
2021-09-19T02:56:16
405,159,939
2
0
null
null
null
null
UTF-8
Python
false
false
4,100
py
# qubit number=4 # total number=36 import cirq import qiskit from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import BasicAer, execute, transpile from pprint import pprint from qiskit.test.mock import FakeVigo from math import log2 import numpy as np import networkx as nx def bitwise_xor(s: str, t: str) -> str: length = len(s) res = [] for i in range(length): res.append(str(int(s[i]) ^ int(t[i]))) return ''.join(res[::-1]) def bitwise_dot(s: str, t: str) -> str: length = len(s) res = 0 for i in range(length): res += int(s[i]) * int(t[i]) return str(res % 2) def build_oracle(n: int, f) -> QuantumCircuit: # implement the oracle O_f # NOTE: use multi_control_toffoli_gate ('noancilla' mode) # https://qiskit.org/documentation/_modules/qiskit/aqua/circuits/gates/multi_control_toffoli_gate.html # https://quantumcomputing.stackexchange.com/questions/3943/how-do-you-implement-the-toffoli-gate-using-only-single-qubit-and-cnot-gates # https://quantumcomputing.stackexchange.com/questions/2177/how-can-i-implement-an-n-bit-toffoli-gate controls = QuantumRegister(n, "ofc") target = QuantumRegister(1, "oft") oracle = QuantumCircuit(controls, target, name="Of") for i in range(2 ** n): rep = np.binary_repr(i, n) if f(rep) == "1": for j in range(n): if rep[j] == "0": oracle.x(controls[j]) oracle.mct(controls, target[0], None, mode='noancilla') for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.barrier() return oracle def make_circuit(n:int,f) -> QuantumCircuit: # circuit begin input_qubit = QuantumRegister(n,"qc") classical = ClassicalRegister(n, "qm") prog = QuantumCircuit(input_qubit, classical) prog.h(input_qubit[3]) # number=16 prog.cz(input_qubit[0],input_qubit[3]) # number=17 prog.h(input_qubit[3]) # number=18 prog.cx(input_qubit[0],input_qubit[3]) # number=33 prog.x(input_qubit[3]) # number=34 prog.cx(input_qubit[0],input_qubit[3]) # number=35 prog.h(input_qubit[3]) # number=24 prog.cz(input_qubit[0],input_qubit[3]) # number=25 prog.h(input_qubit[3]) # number=26 prog.h(input_qubit[1]) # number=2 prog.h(input_qubit[2]) # number=3 prog.h(input_qubit[3]) # number=4 prog.h(input_qubit[0]) # number=5 oracle = build_oracle(n-1, f) prog.append(oracle.to_gate(),[input_qubit[i] for i in range(n-1)]+[input_qubit[n-1]]) prog.h(input_qubit[1]) # number=6 prog.h(input_qubit[2]) # number=30 prog.cz(input_qubit[0],input_qubit[2]) # number=31 prog.h(input_qubit[2]) # number=32 prog.x(input_qubit[2]) # number=28 prog.cx(input_qubit[0],input_qubit[2]) # number=29 prog.h(input_qubit[2]) # number=7 prog.h(input_qubit[3]) # number=8 prog.h(input_qubit[0]) # number=9 prog.cx(input_qubit[3],input_qubit[2]) # number=22 prog.cx(input_qubit[2],input_qubit[0]) # number=10 prog.h(input_qubit[0]) # number=19 prog.cz(input_qubit[2],input_qubit[0]) # number=20 prog.h(input_qubit[0]) # number=21 prog.cx(input_qubit[2],input_qubit[3]) # number=15 # circuit end return prog if __name__ == '__main__': a = "111" b = "0" f = lambda rep: bitwise_xor(bitwise_dot(a, rep), b) prog = make_circuit(4,f) backend = BasicAer.get_backend('statevector_simulator') sample_shot =8000 info = execute(prog, backend=backend).result().get_statevector() qubits = round(log2(len(info))) info = { np.binary_repr(i, qubits): round((info[i]*(info[i].conjugate())).real,3) for i in range(2 ** qubits) } backend = FakeVigo() circuit1 = transpile(prog,backend,optimization_level=2) writefile = open("../data/startQiskit_Class2105.csv","w") print(info,file=writefile) print("results end", file=writefile) print(circuit1.__len__(),file=writefile) print(circuit1,file=writefile) writefile.close()
2e87fd0b48a421b52fc6a50780c58fc1488e04e6
add74ecbd87c711f1e10898f87ffd31bb39cc5d6
/xcp2k/classes/_angles1.py
96616c02397b22202a79759ec0c9b16dd6cb2395
[]
no_license
superstar54/xcp2k
82071e29613ccf58fc14e684154bb9392d00458b
e8afae2ccb4b777ddd3731fe99f451b56d416a83
refs/heads/master
2021-11-11T21:17:30.292500
2021-11-06T06:31:20
2021-11-06T06:31:20
62,589,715
8
2
null
null
null
null
UTF-8
Python
false
false
329
py
from xcp2k.inputsection import InputSection class _angles1(InputSection): def __init__(self): InputSection.__init__(self) self.Default_keyword = [] self._name = "ANGLES" self._repeated_default_keywords = {'Default_keyword': 'DEFAULT_KEYWORD'} self._attributes = ['Default_keyword']
1ff557c19d6ccf18f76ca6ae2e5858460cee6803
1811d37ed6474ab7eaeafff3c82d3bb7c0466e3d
/parts/zodiac/pyramid/scripting.py
f54f87f456200dc87c12bc8cacc3288eee7809a2
[]
no_license
bernatcortina/zodiac
ed384fe96f6739d841a3a777d10bad4b33fd0e78
aa0ecb2c386fc5b54ff60ba94e0a1bc5a7493f17
refs/heads/master
2021-01-18T14:02:44.978553
2014-02-07T17:33:27
2014-02-07T17:33:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
75
py
/Users/Bernat/GitHub/zodiac/eggs/pyramid-1.4-py2.7.egg/pyramid/scripting.py
3c22e9c21b6f644c8bbd5ffc9b800d480868215d
07ec5a0b3ba5e70a9e0fb65172ea6b13ef4115b8
/lib/python3.6/site-packages/pip/_vendor/requests/packages/urllib3/contrib/appengine.py
d71d9e21e57c5fa6a6e12c71e7f2d39ec15bdbf1
[]
no_license
cronos91/ML-exercise
39c5cd7f94bb90c57450f9a85d40c2f014900ea4
3b7afeeb6a7c87384049a9b87cac1fe4c294e415
refs/heads/master
2021-05-09T22:02:55.131977
2017-12-14T13:50:44
2017-12-14T13:50:44
118,736,043
0
0
null
2018-01-24T08:30:23
2018-01-24T08:30:22
null
UTF-8
Python
false
false
129
py
version https://git-lfs.github.com/spec/v1 oid sha256:35d37fc4e8032cc69d50f7bf74ddf075a9ff0c7f7e7f154da8582ad7db5ba90b size 7937
a2ca84aef2b9b69a884aa9a30a8f8b1264c9c8f1
c2e3f66a7c26be1b12a48a464c0db0f170826433
/WDI/lekcja 5 04.11.2020/zad20.py
2c4959a63829e8937d95dc7a62da9da9a7a0b7d5
[]
no_license
HITOfficial/College
7b801b4eb93afc0b1b6a2b6f405db4161d8976d7
84eae6182397a9ad373718a077939461eb189fbb
refs/heads/main
2023-08-01T01:50:07.875292
2021-09-20T11:21:43
2021-09-20T11:21:43
303,842,865
2
0
null
null
null
null
UTF-8
Python
false
false
1,671
py
# Dana jest tablica T[N][N] (reprezentująca szachownicę) wypełniona liczbami naturalnymi. # Proszę napisać funkcję która ustawia na szachownicy dwie wieże, tak aby suma liczb na „szachowanych” # przez wieże polach była największa. Do funkcji należy przekazać tablicę, funkcja powinna zwrócić położenie # wież. Uwaga- zakładamy, że wieża szachuje cały wiersz i kolumnę z wyłączeniem pola na którym stoi # myslałem że zadanie jest jakieś weird, ale wychodzi na to że jest luz from random import randint def chess_table(): chess_list = [[randint(1, 100) for _ in range(8)] for _ in range(8)] return chess_list def longest_row_col(chess_list): # wstępnie zsumuję sobie każdy wiersz, i kolumnę i przypiszę je do tupla w liście (row,0,20) - (row/col, index, suma) # print(chess_list) sum_of_row_col = 16 * [0] # żeby sobie wczesniej zadeklarować długość listy, bo tak 3ba na zajęęciach to -> 0-7 rzędy, 8-15 kolumny for i in range(len(chess_list)): # i - wiersz, j kolumna sum_of_column = 0 sum_of_row = 0 for j in range(len(chess_list)): sum_of_row += chess_list[i][j] # sumuje wiersze sum_of_column += chess_list[j][i] # sumuje kolumny sum_of_row_col[i] = ('ROW',i ,sum_of_row) # 0-7 będą sumy wierwszy sum_of_row_col[8+i] = ('COL',i ,sum_of_column) # 8-15 sumy kolumn sum_of_row_col.sort(key=lambda tup: tup[2], reverse=True) print(sum_of_row_col[0:3]) # nie jest zrobione dokładnie bo jest łacznie z polem na którym stoi longest_row_col(chess_table())
ae84f2f4ef44978d98a6a363f6caa06b298960c2
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03227/s957546769.py
48b0de137f448123c6d2f66af5501853e90c21d3
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
301
py
# -*- coding: utf-8 -*- """ A - Measure https://atcoder.jp/contests/tenka1-2018-beginner/tasks/tenka1_2018_a """ import sys def solve(S): return S if len(S) == 2 else S[::-1] def main(args): S = input() ans = solve(S) print(ans) if __name__ == '__main__': main(sys.argv[1:])
a2749475eac129473aaa17068f2336ac1eb515ee
7b1edb732ca1159e428ecc4c2c1f5148f2ff03f0
/0x04-python-more_data_structures/9-multiply_by_2.py
43677229d843a9d8a1c7e025bbc2b610e5ef9fc6
[]
no_license
maroua199525/holbertonschool-higher_level_programming
0045b1a31438f79e0da96b97e0a4d6eee46217c8
1df7014614ffb4b3fb2693a9711603d939b5dc35
refs/heads/master
2023-08-02T04:57:16.217728
2021-09-22T15:59:14
2021-09-22T15:59:14
361,716,729
0
0
null
null
null
null
UTF-8
Python
false
false
260
py
#!/usr/bin/python3 def multiply_by_2(a_dictionary): dictionary = a_dictionary.copy() value = list(map(lambda x: x * 2, dictionary.values())) key = dictionary.keys() for i, v in zip(key, value): dictionary[i] = v return (dictionary)
3cfa936ed48c53fcf3e5d2235f299be8bce0cf99
eda632b4d9f5a643bd4d086eef0860249bfbd64d
/8장/models.py
e639604d3c3ab0283ce33aa288d4887d8345c232
[]
no_license
sohn0356-git/python_web
508e9bc7167893426d216c067f7eb634f71c4e65
f9b8d46df6be4b85b06daf491c3bda6a83117467
refs/heads/master
2021-01-13T17:59:48.799620
2020-03-12T00:26:14
2020-03-12T00:26:14
242,445,531
1
0
null
null
null
null
UTF-8
Python
false
false
281
py
from flask_sqlalchemy import SQLAlchemy db = SQLAlchemy() class Fcuser(db.Model): __tablename__ = 'fcuser' id = db.Column(db.Integer, primary_key = True) password = db.Column(db.String(64)) userid = db.Column(db.String(32)) username = db.Column(db.String(8))
3ff4e2e9c9b07471979ab4bb2934b128bc6109b7
ba694353a3cb1cfd02a6773b40f693386d0dba39
/sdk/python/pulumi_google_native/healthcare/v1beta1/get_dataset.py
d56e29284fb73b5d51cfe90e671e86f999afa748
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
pulumi/pulumi-google-native
cc57af8bd3d1d6b76f1f48333ed1f1b31d56f92b
124d255e5b7f5440d1ef63c9a71e4cc1d661cd10
refs/heads/master
2023-08-25T00:18:00.300230
2023-07-20T04:25:48
2023-07-20T04:25:48
323,680,373
69
16
Apache-2.0
2023-09-13T00:28:04
2020-12-22T16:39:01
Python
UTF-8
Python
false
false
3,030
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import copy import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities __all__ = [ 'GetDatasetResult', 'AwaitableGetDatasetResult', 'get_dataset', 'get_dataset_output', ] @pulumi.output_type class GetDatasetResult: def __init__(__self__, name=None, time_zone=None): if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if time_zone and not isinstance(time_zone, str): raise TypeError("Expected argument 'time_zone' to be a str") pulumi.set(__self__, "time_zone", time_zone) @property @pulumi.getter def name(self) -> str: """ Resource name of the dataset, of the form `projects/{project_id}/locations/{location_id}/datasets/{dataset_id}`. """ return pulumi.get(self, "name") @property @pulumi.getter(name="timeZone") def time_zone(self) -> str: """ The default timezone used by this dataset. Must be a either a valid IANA time zone name such as "America/New_York" or empty, which defaults to UTC. This is used for parsing times in resources, such as HL7 messages, where no explicit timezone is specified. """ return pulumi.get(self, "time_zone") class AwaitableGetDatasetResult(GetDatasetResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetDatasetResult( name=self.name, time_zone=self.time_zone) def get_dataset(dataset_id: Optional[str] = None, location: Optional[str] = None, project: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetDatasetResult: """ Gets any metadata associated with a dataset. """ __args__ = dict() __args__['datasetId'] = dataset_id __args__['location'] = location __args__['project'] = project opts = pulumi.InvokeOptions.merge(_utilities.get_invoke_opts_defaults(), opts) __ret__ = pulumi.runtime.invoke('google-native:healthcare/v1beta1:getDataset', __args__, opts=opts, typ=GetDatasetResult).value return AwaitableGetDatasetResult( name=pulumi.get(__ret__, 'name'), time_zone=pulumi.get(__ret__, 'time_zone')) @_utilities.lift_output_func(get_dataset) def get_dataset_output(dataset_id: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, project: Optional[pulumi.Input[Optional[str]]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetDatasetResult]: """ Gets any metadata associated with a dataset. """ ...
7fa89e0e08735ef2d3f91806030c4918a84d5aad
d2ca1ab6ed63983d1bd6497f26a63f0445451844
/2015/04/fc_2015_04_08.py
871c3052fbcb6c6fd633cdaac920497c029bd5d2
[ "MIT" ]
permissive
mfwarren/FreeCoding
96636367f4f4a53351535372c5691d7805199f23
58ac87f35ad2004a3514782556762ee0ed72c39a
refs/heads/master
2021-01-19T14:30:09.057354
2015-07-05T05:59:53
2015-07-05T05:59:53
24,469,988
0
0
null
null
null
null
UTF-8
Python
false
false
953
py
#!/usr/bin/env python3 # imports go here import datetime from collections import defaultdict from github import Github import os import plotly.plotly as py from plotly.graph_objs import Data, Layout, Figure, Bar # # Free Coding session for 2015-04-08 # Written by Matt Warren # hub = Github(os.environ['GITHUB_USERNAME'], os.environ['GITHUB_PASSWORD']) r = hub.get_repo('mfwarren/freecoding') events = r.get_events() week_ago = datetime.datetime.now() + datetime.timedelta(days=-7) counts = defaultdict(int) for event in events: if event.created_at < week_ago: break counts[event.created_at.date()] += 1 # sort the dict dates = list(counts.keys()) dates.sort() event_counts = Bar( x=dates, y=[counts[d] for d in dates], name='Github Events' ) data = Data([event_counts]) layout = Layout( barmode='stack' ) fig = Figure(data=data, layout=layout) plot_url = py.plot(fig, filename='Github Activity for the week')
9c332035934bf11c99d4e9c9ec7262069f653b2c
d6952f048727add5b54a521d04f6c9b5889bcd35
/test/test_dag_folder_input_alias.py
768d7f33bd3474d3cc5bf000ee28744202ea245f
[]
no_license
TfedUD/python-sdk
bf719644041c2ab7b741af9c7fb8e5acfe085922
7ddc34611de44d2f9c5b217cf9b9e7cec27b2a27
refs/heads/master
2023-08-10T21:13:45.270193
2021-06-21T14:48:36
2021-06-21T14:51:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,866
py
# coding: utf-8 """ pollination-server Pollination Server OpenAPI Definition # noqa: E501 The version of the OpenAPI document: 0.13.0 Contact: [email protected] Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import datetime import pollination_sdk from pollination_sdk.models.dag_folder_input_alias import DAGFolderInputAlias # noqa: E501 from pollination_sdk.rest import ApiException class TestDAGFolderInputAlias(unittest.TestCase): """DAGFolderInputAlias unit test stubs""" def setUp(self): pass def tearDown(self): pass def make_instance(self, include_optional): """Test DAGFolderInputAlias include_option is a boolean, when False only required params are included, when True both required and optional params are included """ # model = pollination_sdk.models.dag_folder_input_alias.DAGFolderInputAlias() # noqa: E501 if include_optional : return DAGFolderInputAlias( annotations = { 'key' : '0' }, default = null, description = '0', handler = [ pollination_sdk.models.io_alias_handler.IOAliasHandler( annotations = { 'key' : '0' }, function = '0', index = 56, language = '0', module = 'honeybee_rhino.handlers', type = 'IOAliasHandler', ) ], name = '0', platform = [ '0' ], required = True, spec = pollination_sdk.models.spec.Spec(), type = 'DAGFolderInputAlias' ) else : return DAGFolderInputAlias( handler = [ pollination_sdk.models.io_alias_handler.IOAliasHandler( annotations = { 'key' : '0' }, function = '0', index = 56, language = '0', module = 'honeybee_rhino.handlers', type = 'IOAliasHandler', ) ], name = '0', platform = [ '0' ], ) def testDAGFolderInputAlias(self): """Test DAGFolderInputAlias""" inst_req_only = self.make_instance(include_optional=False) inst_req_and_optional = self.make_instance(include_optional=True) if __name__ == '__main__': unittest.main()
202e3ec820a2bfc5f5dd2de6968bf8fdae7afcd9
82a9077bcb5a90d88e0a8be7f8627af4f0844434
/google-cloud-sdk/lib/tests/unit/surface/endpoints/quota/update_test.py
9b8a0dd8fffe1836395bc164e16e520aba4c729b
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
piotradamczyk5/gcloud_cli
1ae2553595e569fad6ce84af62b91a7ee5489017
384ece11040caadcd64d51da74e0b8491dd22ca3
refs/heads/master
2023-01-01T23:00:27.858583
2020-10-21T04:21:23
2020-10-21T04:21:23
290,238,061
0
0
null
2020-10-19T16:43:36
2020-08-25T14:31:00
Python
UTF-8
Python
false
false
3,206
py
# -*- coding: utf-8 -*- # # Copyright 2019 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unit tests for endpoints quota list command.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from googlecloudsdk.calliope import base as calliope_base from tests.lib.surface.services import unit_test_base class UpdateTestAlpha(unit_test_base.SCMUnitTestBase): """Unit tests for endpoints quota update command.""" OPERATION_NAME = 'operations/123' OVERRIDE_ID = 'hello-override' def PreSetUp(self): self.track = calliope_base.ReleaseTrack.ALPHA def testUpdate(self): self.ExpectUpdateQuotaOverrideCall(self.mutate_limit_name, self.mutate_metric, self.unit, 666, self.OPERATION_NAME) self.ExpectOperation(self.OPERATION_NAME, 3) self.Run('endpoints quota update --service=example.googleapis.com ' '--consumer=projects/helloworld ' '--metric=example.googleapis.com/mutate_requests ' '--unit=1/min/{project} --value=666') self.AssertErrEquals( """\ Operation "operations/123" finished successfully. """, normalize_space=True) def testUpdate_force(self): self.ExpectUpdateQuotaOverrideCall( self.mutate_limit_name, self.mutate_metric, self.unit, 666, self.OPERATION_NAME, force=True) self.ExpectOperation(self.OPERATION_NAME, 3) self.Run('endpoints quota update --service=example.googleapis.com ' '--consumer=projects/helloworld ' '--metric=example.googleapis.com/mutate_requests ' '--unit=1/min/{project} ' '--value=666 --force') self.AssertErrEquals( """\ Operation "operations/123" finished successfully. """, normalize_space=True) def testUpdate_dimensions(self): self.ExpectUpdateQuotaOverrideCall( self.mutate_limit_name, self.mutate_metric, self.unit, 666, self.OPERATION_NAME, dimensions=[('regions', 'us-central1'), ('zones', 'us-central1-c')]) self.ExpectOperation(self.OPERATION_NAME, 3) self.Run('endpoints quota update --service=example.googleapis.com ' '--consumer=projects/helloworld ' '--metric=example.googleapis.com/mutate_requests ' '--unit=1/min/{project} --value=666 ' '--dimensions=regions=us-central1 ' '--dimensions=zones=us-central1-c') self.AssertErrEquals( """\ Operation "operations/123" finished successfully. """, normalize_space=True)
f558ac962c214ea3311588dbcddd5abf0f98c210
c057d05c60521096897f120c598b3ebcddb07c21
/swagger_client/api/electioneering_api.py
461c011d07124b4f94f5e5ba74532538c7e43540
[]
no_license
ottomata/fec_python
97e9ae13b37dc0e26421f7d3c682fcfb1753db4f
70a50c0c1c90dd553a81f7b450b037646dfe4cb3
refs/heads/master
2022-09-27T03:22:57.054350
2020-06-05T16:48:59
2020-06-05T16:48:59
269,473,559
0
0
null
null
null
null
UTF-8
Python
false
false
44,948
py
# coding: utf-8 """ OpenFEC This API allows you to explore the way candidates and committees fund their campaigns. The FEC API is a RESTful web service supporting full-text and field-specific searches on FEC data. [Bulk downloads](https://www.fec.gov/data/advanced/?tab=bulk-data) are available on the current site. Information is tied to the underlying forms by file ID and image ID. Data is updated nightly. There is a lot of data, but a good place to start is to use search to find interesting candidates and committees. Then, you can use their IDs to find report or line item details with the other endpoints. If you are interested in individual donors, check out contributor information in schedule_a. Get an [API key here](https://api.data.gov/signup/). That will enable you to place up to 1,000 calls an hour. Each call is limited to 100 results per page. You can email questions, comments or a request to get a key for 120 calls per minute to [[email protected]](mailto:[email protected]). You can also ask questions and discuss the data in the [FEC data Google Group](https://groups.google.com/forum/#!forum/fec-data). API changes will also be added to this group in advance of the change. The model definitions and schema are available at [/swagger](/swagger/). This is useful for making wrappers and exploring the data. A few restrictions limit the way you can use FEC data. For example, you can’t use contributor lists for commercial purposes or to solicit donations. [Learn more here](https://www.fec.gov/updates/sale-or-use-contributor-information/). [View our source code](https://github.com/fecgov/openFEC). We welcome issues and pull requests! # noqa: E501 OpenAPI spec version: 1.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import re # noqa: F401 # python 2 and python 3 compatibility library import six from swagger_client.api_client import ApiClient class ElectioneeringApi(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. Ref: https://github.com/swagger-api/swagger-codegen """ def __init__(self, api_client=None): if api_client is None: api_client = ApiClient() self.api_client = api_client def committee_committee_id_electioneering_by_candidate_get(self, api_key, committee_id, **kwargs): # noqa: E501 """committee_committee_id_electioneering_by_candidate_get # noqa: E501 Electioneering costs aggregated by candidate # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.committee_committee_id_electioneering_by_candidate_get(api_key, committee_id, async_req=True) >>> result = thread.get() :param async_req bool :param str api_key: API key for https://api.data.gov. Get one at https://api.data.gov/signup. (required) :param str committee_id: (required) :param bool sort_null_only: Toggle that filters out all rows having sort column that is non-null :param bool sort_hide_null: Hide null values on sorted column(s). :param str state: US state or territory where a candidate runs for office :param str sort: Provide a field to sort by. Use - for descending order. :param int page: For paginating through results, starting at page 1 :param str district: Two-digit US House distirict of the office the candidate is running for. Presidential, Senate and House at-large candidates will have District 00. :param bool election_full: `True` indicates that full election period of a candidate. `False` indicates that two year election cycle. :param str office: Federal office candidate runs for: H, S or P :param int per_page: The number of results returned per page. Defaults to 20. :param bool sort_nulls_last: Toggle that sorts null values last :param list[int] cycle: Filter records to only those that were applicable to a given two-year period.The cycle begins with an odd year and is named for its ending, even year. :param list[str] candidate_id: A unique identifier assigned to each candidate registered with the FEC. If a person runs for several offices, that person will have separate candidate IDs for each office. :return: ElectioneeringByCandidatePage If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.committee_committee_id_electioneering_by_candidate_get_with_http_info(api_key, committee_id, **kwargs) # noqa: E501 else: (data) = self.committee_committee_id_electioneering_by_candidate_get_with_http_info(api_key, committee_id, **kwargs) # noqa: E501 return data def committee_committee_id_electioneering_by_candidate_get_with_http_info(self, api_key, committee_id, **kwargs): # noqa: E501 """committee_committee_id_electioneering_by_candidate_get # noqa: E501 Electioneering costs aggregated by candidate # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.committee_committee_id_electioneering_by_candidate_get_with_http_info(api_key, committee_id, async_req=True) >>> result = thread.get() :param async_req bool :param str api_key: API key for https://api.data.gov. Get one at https://api.data.gov/signup. (required) :param str committee_id: (required) :param bool sort_null_only: Toggle that filters out all rows having sort column that is non-null :param bool sort_hide_null: Hide null values on sorted column(s). :param str state: US state or territory where a candidate runs for office :param str sort: Provide a field to sort by. Use - for descending order. :param int page: For paginating through results, starting at page 1 :param str district: Two-digit US House distirict of the office the candidate is running for. Presidential, Senate and House at-large candidates will have District 00. :param bool election_full: `True` indicates that full election period of a candidate. `False` indicates that two year election cycle. :param str office: Federal office candidate runs for: H, S or P :param int per_page: The number of results returned per page. Defaults to 20. :param bool sort_nulls_last: Toggle that sorts null values last :param list[int] cycle: Filter records to only those that were applicable to a given two-year period.The cycle begins with an odd year and is named for its ending, even year. :param list[str] candidate_id: A unique identifier assigned to each candidate registered with the FEC. If a person runs for several offices, that person will have separate candidate IDs for each office. :return: ElectioneeringByCandidatePage If the method is called asynchronously, returns the request thread. """ all_params = ['api_key', 'committee_id', 'sort_null_only', 'sort_hide_null', 'state', 'sort', 'page', 'district', 'election_full', 'office', 'per_page', 'sort_nulls_last', 'cycle', 'candidate_id'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method committee_committee_id_electioneering_by_candidate_get" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'api_key' is set if ('api_key' not in params or params['api_key'] is None): raise ValueError("Missing the required parameter `api_key` when calling `committee_committee_id_electioneering_by_candidate_get`") # noqa: E501 # verify the required parameter 'committee_id' is set if ('committee_id' not in params or params['committee_id'] is None): raise ValueError("Missing the required parameter `committee_id` when calling `committee_committee_id_electioneering_by_candidate_get`") # noqa: E501 collection_formats = {} path_params = {} if 'committee_id' in params: path_params['committee_id'] = params['committee_id'] # noqa: E501 query_params = [] if 'sort_null_only' in params: query_params.append(('sort_null_only', params['sort_null_only'])) # noqa: E501 if 'sort_hide_null' in params: query_params.append(('sort_hide_null', params['sort_hide_null'])) # noqa: E501 if 'state' in params: query_params.append(('state', params['state'])) # noqa: E501 if 'sort' in params: query_params.append(('sort', params['sort'])) # noqa: E501 if 'page' in params: query_params.append(('page', params['page'])) # noqa: E501 if 'district' in params: query_params.append(('district', params['district'])) # noqa: E501 if 'election_full' in params: query_params.append(('election_full', params['election_full'])) # noqa: E501 if 'office' in params: query_params.append(('office', params['office'])) # noqa: E501 if 'per_page' in params: query_params.append(('per_page', params['per_page'])) # noqa: E501 if 'sort_nulls_last' in params: query_params.append(('sort_nulls_last', params['sort_nulls_last'])) # noqa: E501 if 'cycle' in params: query_params.append(('cycle', params['cycle'])) # noqa: E501 collection_formats['cycle'] = 'multi' # noqa: E501 if 'candidate_id' in params: query_params.append(('candidate_id', params['candidate_id'])) # noqa: E501 collection_formats['candidate_id'] = 'multi' # noqa: E501 if 'api_key' in params: query_params.append(('api_key', params['api_key'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['apiKey'] # noqa: E501 return self.api_client.call_api( '/committee/{committee_id}/electioneering/by_candidate/', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='ElectioneeringByCandidatePage', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def electioneering_aggregates_get(self, api_key, **kwargs): # noqa: E501 """electioneering_aggregates_get # noqa: E501 Electioneering communications costs aggregates # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.electioneering_aggregates_get(api_key, async_req=True) >>> result = thread.get() :param async_req bool :param str api_key: API key for https://api.data.gov. Get one at https://api.data.gov/signup. (required) :param bool sort_null_only: Toggle that filters out all rows having sort column that is non-null :param bool sort_hide_null: Hide null values on sorted column(s). :param str sort: Provide a field to sort by. Use - for descending order. :param int page: For paginating through results, starting at page 1 :param list[str] committee_id: A unique identifier assigned to each committee or filer registered with the FEC. In general committee id's begin with the letter C which is followed by eight digits. :param int per_page: The number of results returned per page. Defaults to 20. :param bool sort_nulls_last: Toggle that sorts null values last :param list[int] cycle: Filter records to only those that were applicable to a given two-year period.The cycle begins with an odd year and is named for its ending, even year. :param list[str] candidate_id: A unique identifier assigned to each candidate registered with the FEC. If a person runs for several offices, that person will have separate candidate IDs for each office. :return: ElectioneeringByCandidatePage If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.electioneering_aggregates_get_with_http_info(api_key, **kwargs) # noqa: E501 else: (data) = self.electioneering_aggregates_get_with_http_info(api_key, **kwargs) # noqa: E501 return data def electioneering_aggregates_get_with_http_info(self, api_key, **kwargs): # noqa: E501 """electioneering_aggregates_get # noqa: E501 Electioneering communications costs aggregates # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.electioneering_aggregates_get_with_http_info(api_key, async_req=True) >>> result = thread.get() :param async_req bool :param str api_key: API key for https://api.data.gov. Get one at https://api.data.gov/signup. (required) :param bool sort_null_only: Toggle that filters out all rows having sort column that is non-null :param bool sort_hide_null: Hide null values on sorted column(s). :param str sort: Provide a field to sort by. Use - for descending order. :param int page: For paginating through results, starting at page 1 :param list[str] committee_id: A unique identifier assigned to each committee or filer registered with the FEC. In general committee id's begin with the letter C which is followed by eight digits. :param int per_page: The number of results returned per page. Defaults to 20. :param bool sort_nulls_last: Toggle that sorts null values last :param list[int] cycle: Filter records to only those that were applicable to a given two-year period.The cycle begins with an odd year and is named for its ending, even year. :param list[str] candidate_id: A unique identifier assigned to each candidate registered with the FEC. If a person runs for several offices, that person will have separate candidate IDs for each office. :return: ElectioneeringByCandidatePage If the method is called asynchronously, returns the request thread. """ all_params = ['api_key', 'sort_null_only', 'sort_hide_null', 'sort', 'page', 'committee_id', 'per_page', 'sort_nulls_last', 'cycle', 'candidate_id'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method electioneering_aggregates_get" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'api_key' is set if ('api_key' not in params or params['api_key'] is None): raise ValueError("Missing the required parameter `api_key` when calling `electioneering_aggregates_get`") # noqa: E501 collection_formats = {} path_params = {} query_params = [] if 'sort_null_only' in params: query_params.append(('sort_null_only', params['sort_null_only'])) # noqa: E501 if 'sort_hide_null' in params: query_params.append(('sort_hide_null', params['sort_hide_null'])) # noqa: E501 if 'sort' in params: query_params.append(('sort', params['sort'])) # noqa: E501 if 'page' in params: query_params.append(('page', params['page'])) # noqa: E501 if 'committee_id' in params: query_params.append(('committee_id', params['committee_id'])) # noqa: E501 collection_formats['committee_id'] = 'multi' # noqa: E501 if 'per_page' in params: query_params.append(('per_page', params['per_page'])) # noqa: E501 if 'sort_nulls_last' in params: query_params.append(('sort_nulls_last', params['sort_nulls_last'])) # noqa: E501 if 'cycle' in params: query_params.append(('cycle', params['cycle'])) # noqa: E501 collection_formats['cycle'] = 'multi' # noqa: E501 if 'candidate_id' in params: query_params.append(('candidate_id', params['candidate_id'])) # noqa: E501 collection_formats['candidate_id'] = 'multi' # noqa: E501 if 'api_key' in params: query_params.append(('api_key', params['api_key'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['apiKey'] # noqa: E501 return self.api_client.call_api( '/electioneering/aggregates/', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='ElectioneeringByCandidatePage', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def electioneering_by_candidate_get(self, api_key, **kwargs): # noqa: E501 """electioneering_by_candidate_get # noqa: E501 Electioneering costs aggregated by candidate # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.electioneering_by_candidate_get(api_key, async_req=True) >>> result = thread.get() :param async_req bool :param str api_key: API key for https://api.data.gov. Get one at https://api.data.gov/signup. (required) :param bool sort_null_only: Toggle that filters out all rows having sort column that is non-null :param bool sort_hide_null: Hide null values on sorted column(s). :param str state: US state or territory where a candidate runs for office :param str sort: Provide a field to sort by. Use - for descending order. :param int page: For paginating through results, starting at page 1 :param str district: Two-digit US House distirict of the office the candidate is running for. Presidential, Senate and House at-large candidates will have District 00. :param bool election_full: `True` indicates that full election period of a candidate. `False` indicates that two year election cycle. :param str office: Federal office candidate runs for: H, S or P :param int per_page: The number of results returned per page. Defaults to 20. :param bool sort_nulls_last: Toggle that sorts null values last :param list[int] cycle: Filter records to only those that were applicable to a given two-year period.The cycle begins with an odd year and is named for its ending, even year. :param list[str] candidate_id: A unique identifier assigned to each candidate registered with the FEC. If a person runs for several offices, that person will have separate candidate IDs for each office. :return: ElectioneeringByCandidatePage If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.electioneering_by_candidate_get_with_http_info(api_key, **kwargs) # noqa: E501 else: (data) = self.electioneering_by_candidate_get_with_http_info(api_key, **kwargs) # noqa: E501 return data def electioneering_by_candidate_get_with_http_info(self, api_key, **kwargs): # noqa: E501 """electioneering_by_candidate_get # noqa: E501 Electioneering costs aggregated by candidate # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.electioneering_by_candidate_get_with_http_info(api_key, async_req=True) >>> result = thread.get() :param async_req bool :param str api_key: API key for https://api.data.gov. Get one at https://api.data.gov/signup. (required) :param bool sort_null_only: Toggle that filters out all rows having sort column that is non-null :param bool sort_hide_null: Hide null values on sorted column(s). :param str state: US state or territory where a candidate runs for office :param str sort: Provide a field to sort by. Use - for descending order. :param int page: For paginating through results, starting at page 1 :param str district: Two-digit US House distirict of the office the candidate is running for. Presidential, Senate and House at-large candidates will have District 00. :param bool election_full: `True` indicates that full election period of a candidate. `False` indicates that two year election cycle. :param str office: Federal office candidate runs for: H, S or P :param int per_page: The number of results returned per page. Defaults to 20. :param bool sort_nulls_last: Toggle that sorts null values last :param list[int] cycle: Filter records to only those that were applicable to a given two-year period.The cycle begins with an odd year and is named for its ending, even year. :param list[str] candidate_id: A unique identifier assigned to each candidate registered with the FEC. If a person runs for several offices, that person will have separate candidate IDs for each office. :return: ElectioneeringByCandidatePage If the method is called asynchronously, returns the request thread. """ all_params = ['api_key', 'sort_null_only', 'sort_hide_null', 'state', 'sort', 'page', 'district', 'election_full', 'office', 'per_page', 'sort_nulls_last', 'cycle', 'candidate_id'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method electioneering_by_candidate_get" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'api_key' is set if ('api_key' not in params or params['api_key'] is None): raise ValueError("Missing the required parameter `api_key` when calling `electioneering_by_candidate_get`") # noqa: E501 collection_formats = {} path_params = {} query_params = [] if 'sort_null_only' in params: query_params.append(('sort_null_only', params['sort_null_only'])) # noqa: E501 if 'sort_hide_null' in params: query_params.append(('sort_hide_null', params['sort_hide_null'])) # noqa: E501 if 'state' in params: query_params.append(('state', params['state'])) # noqa: E501 if 'sort' in params: query_params.append(('sort', params['sort'])) # noqa: E501 if 'page' in params: query_params.append(('page', params['page'])) # noqa: E501 if 'district' in params: query_params.append(('district', params['district'])) # noqa: E501 if 'election_full' in params: query_params.append(('election_full', params['election_full'])) # noqa: E501 if 'office' in params: query_params.append(('office', params['office'])) # noqa: E501 if 'per_page' in params: query_params.append(('per_page', params['per_page'])) # noqa: E501 if 'sort_nulls_last' in params: query_params.append(('sort_nulls_last', params['sort_nulls_last'])) # noqa: E501 if 'cycle' in params: query_params.append(('cycle', params['cycle'])) # noqa: E501 collection_formats['cycle'] = 'multi' # noqa: E501 if 'candidate_id' in params: query_params.append(('candidate_id', params['candidate_id'])) # noqa: E501 collection_formats['candidate_id'] = 'multi' # noqa: E501 if 'api_key' in params: query_params.append(('api_key', params['api_key'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['apiKey'] # noqa: E501 return self.api_client.call_api( '/electioneering/by_candidate/', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='ElectioneeringByCandidatePage', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def electioneering_get(self, api_key, **kwargs): # noqa: E501 """electioneering_get # noqa: E501 An electioneering communication is any broadcast, cable or satellite communication that fulfills each of the following conditions: _The communication refers to a clearly identified federal candidate._ _The communication is publicly distributed by a television station, radio station, cable television system or satellite system for a fee._ _The communication is distributed within 60 days prior to a general election or 30 days prior to a primary election to federal office._ # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.electioneering_get(api_key, async_req=True) >>> result = thread.get() :param async_req bool :param str api_key: API key for https://api.data.gov. Get one at https://api.data.gov/signup. (required) :param bool sort_null_only: Toggle that filters out all rows having sort column that is non-null :param int per_page: The number of results returned per page. Defaults to 20. :param bool sort_hide_null: Hide null values on sorted column(s). :param int last_index: Index of last result from previous page :param int page: For paginating through results, starting at page 1 :param str description: :param str sort: Provide a field to sort by. Use - for descending order. :param list[str] committee_id: A unique identifier assigned to each committee or filer registered with the FEC. In general committee id's begin with the letter C which is followed by eight digits. :param str max_amount: Filter for all amounts less than a value. :param str min_amount: Filter for all amounts greater than a value. :param date min_date: Minimum disbursement date :param date max_date: Maximum disbursement date :param list[str] candidate_id: A unique identifier assigned to each candidate registered with the FEC. If a person runs for several offices, that person will have separate candidate IDs for each office. :param bool sort_nulls_last: Toggle that sorts null values last :param list[int] report_year: Forms with coverage date - year from the coverage ending date. Forms without coverage date - year from the receipt date. :return: ElectioneeringPage If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.electioneering_get_with_http_info(api_key, **kwargs) # noqa: E501 else: (data) = self.electioneering_get_with_http_info(api_key, **kwargs) # noqa: E501 return data def electioneering_get_with_http_info(self, api_key, **kwargs): # noqa: E501 """electioneering_get # noqa: E501 An electioneering communication is any broadcast, cable or satellite communication that fulfills each of the following conditions: _The communication refers to a clearly identified federal candidate._ _The communication is publicly distributed by a television station, radio station, cable television system or satellite system for a fee._ _The communication is distributed within 60 days prior to a general election or 30 days prior to a primary election to federal office._ # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.electioneering_get_with_http_info(api_key, async_req=True) >>> result = thread.get() :param async_req bool :param str api_key: API key for https://api.data.gov. Get one at https://api.data.gov/signup. (required) :param bool sort_null_only: Toggle that filters out all rows having sort column that is non-null :param int per_page: The number of results returned per page. Defaults to 20. :param bool sort_hide_null: Hide null values on sorted column(s). :param int last_index: Index of last result from previous page :param int page: For paginating through results, starting at page 1 :param str description: :param str sort: Provide a field to sort by. Use - for descending order. :param list[str] committee_id: A unique identifier assigned to each committee or filer registered with the FEC. In general committee id's begin with the letter C which is followed by eight digits. :param str max_amount: Filter for all amounts less than a value. :param str min_amount: Filter for all amounts greater than a value. :param date min_date: Minimum disbursement date :param date max_date: Maximum disbursement date :param list[str] candidate_id: A unique identifier assigned to each candidate registered with the FEC. If a person runs for several offices, that person will have separate candidate IDs for each office. :param bool sort_nulls_last: Toggle that sorts null values last :param list[int] report_year: Forms with coverage date - year from the coverage ending date. Forms without coverage date - year from the receipt date. :return: ElectioneeringPage If the method is called asynchronously, returns the request thread. """ all_params = ['api_key', 'sort_null_only', 'per_page', 'sort_hide_null', 'last_index', 'page', 'description', 'sort', 'committee_id', 'max_amount', 'min_amount', 'min_date', 'max_date', 'candidate_id', 'sort_nulls_last', 'report_year'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method electioneering_get" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'api_key' is set if ('api_key' not in params or params['api_key'] is None): raise ValueError("Missing the required parameter `api_key` when calling `electioneering_get`") # noqa: E501 collection_formats = {} path_params = {} query_params = [] if 'sort_null_only' in params: query_params.append(('sort_null_only', params['sort_null_only'])) # noqa: E501 if 'per_page' in params: query_params.append(('per_page', params['per_page'])) # noqa: E501 if 'sort_hide_null' in params: query_params.append(('sort_hide_null', params['sort_hide_null'])) # noqa: E501 if 'last_index' in params: query_params.append(('last_index', params['last_index'])) # noqa: E501 if 'page' in params: query_params.append(('page', params['page'])) # noqa: E501 if 'description' in params: query_params.append(('description', params['description'])) # noqa: E501 if 'sort' in params: query_params.append(('sort', params['sort'])) # noqa: E501 if 'committee_id' in params: query_params.append(('committee_id', params['committee_id'])) # noqa: E501 collection_formats['committee_id'] = 'multi' # noqa: E501 if 'max_amount' in params: query_params.append(('max_amount', params['max_amount'])) # noqa: E501 if 'min_amount' in params: query_params.append(('min_amount', params['min_amount'])) # noqa: E501 if 'min_date' in params: query_params.append(('min_date', params['min_date'])) # noqa: E501 if 'max_date' in params: query_params.append(('max_date', params['max_date'])) # noqa: E501 if 'candidate_id' in params: query_params.append(('candidate_id', params['candidate_id'])) # noqa: E501 collection_formats['candidate_id'] = 'multi' # noqa: E501 if 'api_key' in params: query_params.append(('api_key', params['api_key'])) # noqa: E501 if 'sort_nulls_last' in params: query_params.append(('sort_nulls_last', params['sort_nulls_last'])) # noqa: E501 if 'report_year' in params: query_params.append(('report_year', params['report_year'])) # noqa: E501 collection_formats['report_year'] = 'multi' # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['apiKey'] # noqa: E501 return self.api_client.call_api( '/electioneering/', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='ElectioneeringPage', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def electioneering_totals_by_candidate_get(self, api_key, **kwargs): # noqa: E501 """electioneering_totals_by_candidate_get # noqa: E501 Total electioneering communications spent on candidates by cycle or candidate election year # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.electioneering_totals_by_candidate_get(api_key, async_req=True) >>> result = thread.get() :param async_req bool :param str api_key: API key for https://api.data.gov. Get one at https://api.data.gov/signup. (required) :param bool sort_null_only: Toggle that filters out all rows having sort column that is non-null :param bool sort_hide_null: Hide null values on sorted column(s). :param str sort: Provide a field to sort by. Use - for descending order. :param int page: For paginating through results, starting at page 1 :param bool election_full: `True` indicates that full election period of a candidate. `False` indicates that two year election cycle. :param int per_page: The number of results returned per page. Defaults to 20. :param bool sort_nulls_last: Toggle that sorts null values last :param list[int] cycle: Filter records to only those that were applicable to a given two-year period.The cycle begins with an odd year and is named for its ending, even year. :param list[str] candidate_id: A unique identifier assigned to each candidate registered with the FEC. If a person runs for several offices, that person will have separate candidate IDs for each office. :return: ECTotalsByCandidatePage If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.electioneering_totals_by_candidate_get_with_http_info(api_key, **kwargs) # noqa: E501 else: (data) = self.electioneering_totals_by_candidate_get_with_http_info(api_key, **kwargs) # noqa: E501 return data def electioneering_totals_by_candidate_get_with_http_info(self, api_key, **kwargs): # noqa: E501 """electioneering_totals_by_candidate_get # noqa: E501 Total electioneering communications spent on candidates by cycle or candidate election year # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.electioneering_totals_by_candidate_get_with_http_info(api_key, async_req=True) >>> result = thread.get() :param async_req bool :param str api_key: API key for https://api.data.gov. Get one at https://api.data.gov/signup. (required) :param bool sort_null_only: Toggle that filters out all rows having sort column that is non-null :param bool sort_hide_null: Hide null values on sorted column(s). :param str sort: Provide a field to sort by. Use - for descending order. :param int page: For paginating through results, starting at page 1 :param bool election_full: `True` indicates that full election period of a candidate. `False` indicates that two year election cycle. :param int per_page: The number of results returned per page. Defaults to 20. :param bool sort_nulls_last: Toggle that sorts null values last :param list[int] cycle: Filter records to only those that were applicable to a given two-year period.The cycle begins with an odd year and is named for its ending, even year. :param list[str] candidate_id: A unique identifier assigned to each candidate registered with the FEC. If a person runs for several offices, that person will have separate candidate IDs for each office. :return: ECTotalsByCandidatePage If the method is called asynchronously, returns the request thread. """ all_params = ['api_key', 'sort_null_only', 'sort_hide_null', 'sort', 'page', 'election_full', 'per_page', 'sort_nulls_last', 'cycle', 'candidate_id'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method electioneering_totals_by_candidate_get" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'api_key' is set if ('api_key' not in params or params['api_key'] is None): raise ValueError("Missing the required parameter `api_key` when calling `electioneering_totals_by_candidate_get`") # noqa: E501 collection_formats = {} path_params = {} query_params = [] if 'sort_null_only' in params: query_params.append(('sort_null_only', params['sort_null_only'])) # noqa: E501 if 'sort_hide_null' in params: query_params.append(('sort_hide_null', params['sort_hide_null'])) # noqa: E501 if 'sort' in params: query_params.append(('sort', params['sort'])) # noqa: E501 if 'page' in params: query_params.append(('page', params['page'])) # noqa: E501 if 'election_full' in params: query_params.append(('election_full', params['election_full'])) # noqa: E501 if 'per_page' in params: query_params.append(('per_page', params['per_page'])) # noqa: E501 if 'sort_nulls_last' in params: query_params.append(('sort_nulls_last', params['sort_nulls_last'])) # noqa: E501 if 'cycle' in params: query_params.append(('cycle', params['cycle'])) # noqa: E501 collection_formats['cycle'] = 'multi' # noqa: E501 if 'candidate_id' in params: query_params.append(('candidate_id', params['candidate_id'])) # noqa: E501 collection_formats['candidate_id'] = 'multi' # noqa: E501 if 'api_key' in params: query_params.append(('api_key', params['api_key'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['apiKey'] # noqa: E501 return self.api_client.call_api( '/electioneering/totals/by_candidate/', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='ECTotalsByCandidatePage', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats)
f7ddb88ee40975c1f6cf4d7261152d33c5be59d8
43f2a863243fbb93883d10207662a626a7da5b54
/scripts/interp_sea_level_ICESat2_ATL07.py
f73900beec9d1bdce44f7fe9ddbae6a26c87436c
[ "MIT", "CC-BY-4.0" ]
permissive
mrsiegfried/read-ICESat-2
cdc6f0d0963140c968e602c4b8b36c4b80e82116
1406b92691d284616ca6c9d72646eca4592d1f1d
refs/heads/main
2023-06-13T21:49:46.089847
2021-06-15T00:11:37
2021-06-15T00:11:37
382,966,888
0
0
MIT
2021-07-04T23:24:17
2021-07-04T23:24:17
null
UTF-8
Python
false
false
34,396
py
#!/usr/bin/env python u""" interp_sea_level_ICESat2_ATL07.py Written by Tyler Sutterley (05/2021) Interpolates sea level anomalies (sla), absolute dynamic topography (adt) and mean dynamic topography (mdt) to times and locations of ICESat-2 ATL07 data https://www.aviso.altimetry.fr/en/data/products/sea-surface-height-products/ global/msla-h.html ftp://ftp.sltac.cls.fr/Core/SEALEVEL_GLO_PHY_L4_REP_OBSERVATIONS_008_047/ dataset-duacs-rep-global-merged-allsat-phy-l4-v3 Note that the AVISO sea level data are gzip compressed netCDF4 files COMMAND LINE OPTIONS: -D X, --directory X: Working data directory -V, --verbose: Output information about each created file -M X, --mode X: Permission mode of directories and files created PYTHON DEPENDENCIES: numpy: Scientific Computing Tools For Python https://numpy.org https://numpy.org/doc/stable/user/numpy-for-matlab-users.html pyproj: Python interface to PROJ library https://pypi.org/project/pyproj/ scikit-learn: Machine Learning in Python https://scikit-learn.org/stable/index.html https://github.com/scikit-learn/scikit-learn h5py: Python interface for Hierarchal Data Format 5 (HDF5) https://h5py.org netCDF4: Python interface to the netCDF C library https://unidata.github.io/netcdf4-python/netCDF4/index.html PROGRAM DEPENDENCIES: read_ICESat2_ATL07.py: reads ICESat-2 sea ice height data files time.py: utilities for calculating time operations utilities.py: download and management utilities for syncing files UPDATE HISTORY: Updated 05/2021: print full path of output filename Written 03/2021 """ from __future__ import print_function import os import re import gzip import h5py import pyproj import netCDF4 import argparse import datetime import numpy as np import sklearn.neighbors import icesat2_toolkit.time from icesat2_toolkit.read_ICESat2_ATL07 import read_HDF5_ATL07 #-- PURPOSE: set the hemisphere of interest based on the granule def set_hemisphere(GRANULE): if GRANULE in ('10','11','12'): projection_flag = 'S' elif GRANULE in ('03','04','05'): projection_flag = 'N' return projection_flag #-- PURPOSE: interpolates to coordinates with inverse distance weighting def inverse_distance(x, y, z, xi, yi, SEARCH='BallTree', N=10, POWER=2.0): #-- number of output points npts = len(xi) #-- create neighbors object for coordinates if (SEARCH == 'BallTree'): tree = sklearn.neighbors.BallTree(np.c_[x,y]) elif (SEARCH == 'KDTree'): tree = sklearn.neighbors.KDTree(np.c_[x,y]) #-- query the search tree to find the N closest points dist,indices = tree.query(np.c_[xi,yi], k=N, return_distance=True) #-- normalized weights if POWER > 0 (typically between 1 and 3) #-- in the inverse distance weighting power_inverse_distance = dist**(-POWER) s = np.sum(power_inverse_distance, axis=1) w = power_inverse_distance/np.broadcast_to(s[:,None],(npts,N)) #-- calculate interpolated fields by inverse distance weighting return np.sum(w*z[indices],axis=1) #-- PURPOSE interpolate sea level anomalies to lat/lon and then to time def interpolate_sea_level(base_dir, xi, yi, CJD, HEM): #-- EPSG projections for converting lat/lon to polar stereographic EPSG = dict(N=3413,S=3031) #-- pyproj transformer for converting to polar stereographic crs1 = pyproj.CRS.from_string('epsg:4326') crs2 = pyproj.CRS.from_string(EPSG[HEM]) transformer = pyproj.Transformer.from_crs(crs1, crs2, always_xy=True) #-- interpolate mean dynamic topography input_file = 'mdt_cnes_cls2013_global.nc.gz' #-- read bytes from compressed file fd = gzip.open(os.path.join(base_dir,input_file),'rb') #-- dictionary with input fields dinput = {} #-- read netCDF file for mean dynamic topography with netCDF4.Dataset('mdt', mode='r', memory=fd.read()) as fileID: dinput['lon'] = fileID['lon'][:].copy() dinput['lat'] = fileID['lat'][:].copy() dinput['mdt'] = np.ma.array(fileID['mdt'][0,:,:].copy(), fill_value=fileID['mdt']._FillValue) dinput['mdt'].mask = (dinput['mdt'].data == dinput['mdt'].fill_value) #-- close the compressed file objects fd.close() #-- create 2-D grid coordinates from longitude and latitude vectors gridlon,gridlat = np.meshgrid(dinput['lon'],dinput['lat']) #-- convert from latitude/longitude into polar stereographic xg,yg = transformer.transform(gridlon,gridlat) #-- reduce to local coordinates to improve computational time gridmask = np.logical_not(dinput['mdt'].mask) if (HEM.upper() == 'N'): gridmask &= (gridlat >= 50.0) elif (HEM.upper() == 'S'): gridmask &= (gridlat <= -50.0) indy,indx = np.nonzero(gridmask) #-- calculate mean dynamic topography by inverse distance weighting MDT = inverse_distance(xg[indy,indx], yg[indy,indx], dinput['mdt'].data[indy,indx], xi, yi) #-- CNES Julian Days before and after measurement CJD1 = np.floor(CJD) #-- scale for linearly interpolating to date dt = (CJD - CJD1[0]) #-- output sea level anomaly and absolute dynamic topography SLA = np.zeros_like(CJD) ADT = np.zeros_like(CJD) #-- for the range of dates for day in range(2): #-- convert from CNES Julians Days to calendar dates for time JD1 = CJD1 + day + 2433282.5 YY,MM,DD,HH,MN,SS = icesat2_toolkit.time.convert_julian(JD1[0], FORMAT='tuple', ASTYPE=int) #-- sea level directory ddir = os.path.join(base_dir, '{0:0.0f}'.format(YY)) #-- input file for day before the measurement regex = re.compile(('dt_global_allsat_phy_l4_{0:4d}{1:02d}{2:02d}_' '(\d{{4}})(\d{{2}})(\d{{2}}).nc.gz').format(YY,MM,DD)) input_file, = [fi for fi in os.listdir(ddir) if regex.match(fi)] #-- dictionary with input fields dinput = {} #-- read bytes from compressed file fd = gzip.open(os.path.join(ddir,input_file),'rb') #-- read netCDF file for time with netCDF4.Dataset('sla', mode='r', memory=fd.read()) as fileID: dinput['lon'] = fileID['lon'][:].copy() dinput['lat'] = fileID['lat'][:].copy() dinput['sla'] = np.ma.array(fileID['sla'][0,:,:].copy(), fill_value=fileID['sla']._FillValue) dinput['adt'] = np.ma.array(fileID['adt'][0,:,:].copy(), fill_value=fileID['adt']._FillValue) #-- close the compressed file objects fd.close() #-- for each variable to interpolate out = {} for var in ['sla','adt']: #-- reduce to local coordinates to improve computational time gridmask = np.logical_not(dinput[var].mask) if (HEM.upper() == 'N'): gridmask &= (gridlat >= 50.0) elif (HEM.upper() == 'S'): gridmask &= (gridlat <= -50.0) indy,indx = np.nonzero(gridmask) #-- calculate variable by inverse distance weighting out[var] = inverse_distance(xg[indy,indx], yg[indy,indx], dinput[var].data[indy,indx], xi, yi) #-- linearly interpolate to date for iteration SLA += out['sla']*(2.0*dt*day - dt - day + 1.0) ADT += out['adt']*(2.0*dt*day - dt - day + 1.0) #-- return interpolated values return dict(h_mdt=MDT,h_sla=SLA,h_adt=ADT) #-- PURPOSE: read ICESat-2 sea ice height (ATL07) from NSIDC #-- interpolate AVISO sea level at points and times def interp_sea_level_ICESat2(base_dir, FILE, VERBOSE=False, MODE=0o775): #-- read data from input_file print('{0} -->'.format(os.path.basename(FILE))) if VERBOSE else None IS2_atl07_mds,IS2_atl07_attrs,IS2_atl07_beams = read_HDF5_ATL07(FILE, ATTRIBUTES=True) DIRECTORY = os.path.dirname(FILE) #-- extract parameters from ICESat-2 ATLAS HDF5 sea ice file name rx = re.compile(r'(processed_)?(ATL\d{2})-(\d{2})_(\d{4})(\d{2})(\d{2})' r'(\d{2})(\d{2})(\d{2})_(\d{4})(\d{2})(\d{2})_(\d{3})_(\d{2})(.*?).h5$') SUB,PRD,HMN,YY,MM,DD,HH,MN,SS,TRK,CYCL,SN,RL,VERS,AUX=rx.findall(FILE).pop() #-- set the hemisphere flag based on ICESat-2 granule HEM = set_hemisphere(HMN) #-- HDF5 file attributes attrib = {} #-- mean dynamic topography attrib['h_mdt'] = {} attrib['h_mdt']['long_name'] = 'Mean Dynamic Topography' attrib['h_mdt']['description'] = 'Sea surface height above geoid' attrib['h_mdt']['reference'] = ('https://www.aviso.altimetry.fr/en/data/' 'products/sea-surface-height-products/global/msla-h.html') #-- sea level anomalies attrib['h_sla'] = {} attrib['h_sla']['long_name'] = 'Sea Level Anomaly' attrib['h_sla']['description'] = 'Sea surface anomalies' attrib['h_sla']['reference'] = ('https://www.aviso.altimetry.fr/en/data/' 'products/sea-surface-height-products/global/msla-h.html') #-- absolute dynamic topography attrib['h_adt'] = {} attrib['h_adt']['long_name'] = 'Absolute Dynamic Topography' attrib['h_adt']['description'] = ('Sea surface height above geoid calculated ' 'by adding the mean dynamic topography to the sea level anomalies') attrib['h_adt']['reference'] = ('https://www.aviso.altimetry.fr/en/data/' 'products/sea-surface-height-products/global/msla-h.html') #-- EPSG projections for converting lat/lon to polar stereographic EPSG = dict(N=3413,S=3031) #-- pyproj transformer for converting to polar stereographic crs1 = pyproj.CRS.from_string("epsg:{0:d}".format(4326)) crs2 = pyproj.CRS.from_string("epsg:{0:d}".format(EPSG[HEM])) transformer = pyproj.Transformer.from_crs(crs1, crs2, always_xy=True) #-- number of GPS seconds between the GPS epoch #-- and ATLAS Standard Data Product (SDP) epoch atlas_sdp_gps_epoch = IS2_atl07_mds['ancillary_data']['atlas_sdp_gps_epoch'] #-- copy variables for outputting to HDF5 file IS2_atl07_corr = {} IS2_atl07_fill = {} IS2_atl07_dims = {} IS2_atl07_corr_attrs = {} #-- number of GPS seconds between the GPS epoch (1980-01-06T00:00:00Z UTC) #-- and ATLAS Standard Data Product (SDP) epoch (2018-01-01T00:00:00Z UTC) #-- Add this value to delta time parameters to compute full gps_seconds IS2_atl07_corr['ancillary_data'] = {} IS2_atl07_corr_attrs['ancillary_data'] = {} for key in ['atlas_sdp_gps_epoch']: #-- get each HDF5 variable IS2_atl07_corr['ancillary_data'][key] = IS2_atl07_mds['ancillary_data'][key] #-- Getting attributes of group and included variables IS2_atl07_corr_attrs['ancillary_data'][key] = {} for att_name,att_val in IS2_atl07_attrs['ancillary_data'][key].items(): IS2_atl07_corr_attrs['ancillary_data'][key][att_name] = att_val #-- for each input beam within the file for gtx in sorted(IS2_atl07_beams): #-- output data dictionaries for beam IS2_atl07_corr[gtx] = dict(sea_ice_segments={}) IS2_atl07_fill[gtx] = dict(sea_ice_segments={}) IS2_atl07_dims[gtx] = dict(sea_ice_segments={}) IS2_atl07_corr_attrs[gtx] = dict(sea_ice_segments={}) #-- number of segments val = IS2_atl07_mds[gtx]['sea_ice_segments'] n_seg = len(val['height_segment_id']) #-- convert time from ATLAS SDP to CNES JD #-- days relative to 1950-01-01T00:00:00 gps_seconds = atlas_sdp_gps_epoch + val['delta_time'] leap_seconds = icesat2_toolkit.time.count_leap_seconds(gps_seconds) cnes_time = icesat2_toolkit.time.convert_delta_time(gps_seconds-leap_seconds, epoch1=(1980,1,6,0,0,0), epoch2=(1950,1,1,0,0,0), scale=1.0/86400.0) #-- extract lat/lon and convert to polar stereographic X,Y = transformer.transform(val['longitude'],val['latitude']) #-- interpolate sea level anomalies and dynamic topographies interp = interpolate_sea_level(base_dir,X,Y,cnes_time,HEM) #-- group attributes for beam IS2_atl07_corr_attrs[gtx]['Description'] = IS2_atl07_attrs[gtx]['Description'] IS2_atl07_corr_attrs[gtx]['atlas_pce'] = IS2_atl07_attrs[gtx]['atlas_pce'] IS2_atl07_corr_attrs[gtx]['atlas_beam_type'] = IS2_atl07_attrs[gtx]['atlas_beam_type'] IS2_atl07_corr_attrs[gtx]['groundtrack_id'] = IS2_atl07_attrs[gtx]['groundtrack_id'] IS2_atl07_corr_attrs[gtx]['atmosphere_profile'] = IS2_atl07_attrs[gtx]['atmosphere_profile'] IS2_atl07_corr_attrs[gtx]['atlas_spot_number'] = IS2_atl07_attrs[gtx]['atlas_spot_number'] IS2_atl07_corr_attrs[gtx]['sc_orientation'] = IS2_atl07_attrs[gtx]['sc_orientation'] #-- group attributes for sea_ice_segments IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['Description'] = ("Top group for sea " "ice segments as computed by the ATBD algorithm.") IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['data_rate'] = ("Data within this " "group are stored at the variable segment rate.") #-- geolocation, time and segment ID #-- delta time IS2_atl07_corr[gtx]['sea_ice_segments']['delta_time'] = val['delta_time'].copy() IS2_atl07_fill[gtx]['sea_ice_segments']['delta_time'] = None IS2_atl07_dims[gtx]['sea_ice_segments']['delta_time'] = None IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['delta_time'] = {} IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['delta_time']['units'] = "seconds since 2018-01-01" IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['delta_time']['long_name'] = "Elapsed GPS seconds" IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['delta_time']['standard_name'] = "time" IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['delta_time']['source'] = "telemetry" IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['delta_time']['calendar'] = "standard" IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['delta_time']['description'] = ("Number of " "GPS seconds since the ATLAS SDP epoch. The ATLAS Standard Data Products (SDP) epoch " "offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS " "seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP " "epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time " "parameters, the time in gps_seconds relative to the GPS epoch can be computed.") IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['delta_time']['coordinates'] = \ "height_segment_id latitude longitude" #-- latitude IS2_atl07_corr[gtx]['sea_ice_segments']['latitude'] = val['latitude'].copy() IS2_atl07_fill[gtx]['sea_ice_segments']['latitude'] = None IS2_atl07_dims[gtx]['sea_ice_segments']['latitude'] = ['delta_time'] IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['latitude'] = {} IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['latitude']['units'] = "degrees_north" IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['latitude']['contentType'] = "physicalMeasurement" IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['latitude']['long_name'] = "Latitude" IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['latitude']['standard_name'] = "latitude" IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['latitude']['description'] = ("Latitude of " "segment center") IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['latitude']['valid_min'] = -90.0 IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['latitude']['valid_max'] = 90.0 IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['latitude']['coordinates'] = \ "height_segment_id delta_time longitude" #-- longitude IS2_atl07_corr[gtx]['sea_ice_segments']['longitude'] = val['longitude'].copy() IS2_atl07_fill[gtx]['sea_ice_segments']['longitude'] = None IS2_atl07_dims[gtx]['sea_ice_segments']['longitude'] = ['delta_time'] IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['longitude'] = {} IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['longitude']['units'] = "degrees_east" IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['longitude']['contentType'] = "physicalMeasurement" IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['longitude']['long_name'] = "Longitude" IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['longitude']['standard_name'] = "longitude" IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['longitude']['description'] = ("Longitude of " "segment center") IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['longitude']['valid_min'] = -180.0 IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['longitude']['valid_max'] = 180.0 IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['longitude']['coordinates'] = \ "height_segment_id delta_time latitude" #-- segment ID IS2_atl07_corr[gtx]['sea_ice_segments']['height_segment_id'] = val['height_segment_id'] IS2_atl07_fill[gtx]['sea_ice_segments']['height_segment_id'] = None IS2_atl07_dims[gtx]['sea_ice_segments']['height_segment_id'] = ['delta_time'] IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['height_segment_id'] = {} IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['height_segment_id']['units'] = "1" IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['height_segment_id']['contentType'] = "referenceInformation" IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['height_segment_id']['long_name'] = \ "Identifier of each height segment" IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['height_segment_id']['description'] = \ "Identifier of each height segment" IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['height_segment_id']['coordinates'] = \ "delta_time latitude longitude" #-- geolocation segment beginning IS2_atl07_corr[gtx]['sea_ice_segments']['geoseg_beg'] = val['geoseg_beg'].copy() IS2_atl07_fill[gtx]['sea_ice_segments']['geoseg_beg'] = None IS2_atl07_dims[gtx]['sea_ice_segments']['geoseg_beg'] = ['delta_time'] IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['geoseg_beg'] = {} IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['geoseg_beg']['units'] = "1" IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['geoseg_beg']['contentType'] = "referenceInformation" IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['geoseg_beg']['long_name'] = "Beginning GEOSEG" IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['geoseg_beg']['description'] = \ "Geolocation segment (geoseg) ID associated with the first photon used in this sea ice segment" IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['geoseg_beg']['coordinates'] = \ "height_segment_id delta_time latitude longitude" #-- geolocation segment ending IS2_atl07_corr[gtx]['sea_ice_segments']['geoseg_end'] = val['geoseg_end'].copy() IS2_atl07_fill[gtx]['sea_ice_segments']['geoseg_end'] = None IS2_atl07_dims[gtx]['sea_ice_segments']['geoseg_end'] = ['delta_time'] IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['geoseg_end'] = {} IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['geoseg_end']['units'] = "1" IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['geoseg_end']['contentType'] = "referenceInformation" IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['geoseg_end']['long_name'] = "Ending GEOSEG" IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['geoseg_end']['description'] = \ "Geolocation segment (geoseg) ID associated with the last photon used in this sea ice segment" IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['geoseg_end']['coordinates'] = \ "height_segment_id delta_time latitude longitude" #-- along track distance IS2_atl07_corr[gtx]['sea_ice_segments']['seg_dist_x'] = val['seg_dist_x'].copy() IS2_atl07_fill[gtx]['sea_ice_segments']['seg_dist_x'] = None IS2_atl07_dims[gtx]['sea_ice_segments']['seg_dist_x'] = ['delta_time'] IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['seg_dist_x'] = {} IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['seg_dist_x']['units'] = "meters" IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['seg_dist_x']['contentType'] = "referenceInformation" IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['seg_dist_x']['long_name'] = "Along track distance" IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['seg_dist_x']['description'] = \ "Along-track distance from the equator crossing to the segment center." IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['seg_dist_x']['coordinates'] = \ "height_segment_id delta_time latitude longitude" #-- geophysical variables IS2_atl07_corr[gtx]['sea_ice_segments']['geophysical'] = {} IS2_atl07_fill[gtx]['sea_ice_segments']['geophysical'] = {} IS2_atl07_dims[gtx]['sea_ice_segments']['geophysical'] = {} IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['geophysical'] = {} IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['geophysical']['Description'] = ("Contains geophysical " "parameters and corrections used to correct photon heights for geophysical effects, such as tides.") IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['geophysical']['data_rate'] = ("Data within this group " "are stored at the sea_ice_height segment rate.") #-- interpolated sea level products for key,val in interp.items(): #-- copy output variables sea_level = np.ma.zeros((n_seg)) sea_level.data[:] = np.copy(val) #-- replace nan values with fill value sea_level.mask = np.isnan(sea_level.data) sea_level.data[sea_level.mask] = sea_level.fill_value #-- add to output IS2_atl07_corr[gtx]['sea_ice_segments']['geophysical'][key] = sea_level.copy() IS2_atl07_fill[gtx]['sea_ice_segments']['geophysical'][key] = sea_level.fill_value IS2_atl07_dims[gtx]['sea_ice_segments']['geophysical'][key] = ['delta_time'] IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['geophysical'][key] = {} IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['geophysical'][key]['units'] = "meters" IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['geophysical'][key]['contentType'] = "referenceInformation" IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['geophysical'][key]['long_name'] = attrib[key]['long_name'] IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['geophysical'][key]['description'] = attrib[key]['description'] IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['geophysical'][key]['source'] = 'AVISO/Copernicus' IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['geophysical'][key]['reference'] = attrib[key]['reference'] IS2_atl07_corr_attrs[gtx]['sea_ice_segments']['geophysical'][key]['coordinates'] = \ "../height_segment_id ../delta_time ../latitude ../longitude" #-- output HDF5 files with interpolated sea level data fargs = (PRD,HEM,'AVISO_SEA_LEVEL',YY,MM,DD,HH,MN,SS,TRK,CYCL,SN,RL,VERS,AUX) file_format = '{0}-{1}_{2}_{3}{4}{5}{6}{7}{8}_{9}{10}{11}_{12}_{13}{14}.h5' output_file = os.path.join(DIRECTORY,file_format.format(*fargs)) #-- print file information print('\t{0}'.format(output_file)) if VERBOSE else None HDF5_ATL07_corr_write(IS2_atl07_corr, IS2_atl07_corr_attrs, CLOBBER=True, INPUT=os.path.basename(FILE), FILL_VALUE=IS2_atl07_fill, DIMENSIONS=IS2_atl07_dims, FILENAME=output_file) #-- change the permissions mode os.chmod(output_file, MODE) #-- PURPOSE: outputting the correction values for ICESat-2 data to HDF5 def HDF5_ATL07_corr_write(IS2_atl07_corr, IS2_atl07_attrs, INPUT=None, FILENAME='', FILL_VALUE=None, DIMENSIONS=None, CLOBBER=False): #-- setting HDF5 clobber attribute if CLOBBER: clobber = 'w' else: clobber = 'w-' #-- open output HDF5 file fileID = h5py.File(os.path.expanduser(FILENAME), clobber) #-- create HDF5 records h5 = {} #-- number of GPS seconds between the GPS epoch (1980-01-06T00:00:00Z UTC) #-- and ATLAS Standard Data Product (SDP) epoch (2018-01-01T00:00:00Z UTC) h5['ancillary_data'] = {} for k,v in IS2_atl07_corr['ancillary_data'].items(): #-- Defining the HDF5 dataset variables val = 'ancillary_data/{0}'.format(k) h5['ancillary_data'][k] = fileID.create_dataset(val, np.shape(v), data=v, dtype=v.dtype, compression='gzip') #-- add HDF5 variable attributes for att_name,att_val in IS2_atl07_attrs['ancillary_data'][k].items(): h5['ancillary_data'][k].attrs[att_name] = att_val #-- write each output beam beams = [k for k in IS2_atl07_corr.keys() if bool(re.match(r'gt\d[lr]',k))] for gtx in beams: fileID.create_group(gtx) #-- add HDF5 group attributes for beam for att_name in ['Description','atlas_pce','atlas_beam_type', 'groundtrack_id','atmosphere_profile','atlas_spot_number', 'sc_orientation']: fileID[gtx].attrs[att_name] = IS2_atl07_attrs[gtx][att_name] #-- create sea_ice_segments group fileID[gtx].create_group('sea_ice_segments') h5[gtx] = dict(sea_ice_segments={}) for att_name in ['Description','data_rate']: att_val = IS2_atl07_attrs[gtx]['sea_ice_segments'][att_name] fileID[gtx]['sea_ice_segments'].attrs[att_name] = att_val #-- delta_time, geolocation and segment identification variables for k in ['delta_time','latitude','longitude','height_segment_id', 'geoseg_beg','geoseg_end','seg_dist_x']: #-- values and attributes v = IS2_atl07_corr[gtx]['sea_ice_segments'][k] attrs = IS2_atl07_attrs[gtx]['sea_ice_segments'][k] fillvalue = FILL_VALUE[gtx]['sea_ice_segments'][k] #-- Defining the HDF5 dataset variables val = '{0}/{1}/{2}'.format(gtx,'sea_ice_segments',k) if fillvalue: h5[gtx]['sea_ice_segments'][k] = fileID.create_dataset(val, np.shape(v), data=v, dtype=v.dtype, fillvalue=fillvalue, compression='gzip') else: h5[gtx]['sea_ice_segments'][k] = fileID.create_dataset(val, np.shape(v), data=v, dtype=v.dtype, compression='gzip') #-- create or attach dimensions for HDF5 variable if DIMENSIONS[gtx]['sea_ice_segments'][k]: #-- attach dimensions for i,dim in enumerate(DIMENSIONS[gtx]['sea_ice_segments'][k]): h5[gtx]['sea_ice_segments'][k].dims[i].attach_scale( h5[gtx]['sea_ice_segments'][dim]) else: #-- make dimension h5[gtx]['sea_ice_segments'][k].make_scale(k) #-- add HDF5 variable attributes for att_name,att_val in attrs.items(): h5[gtx]['sea_ice_segments'][k].attrs[att_name] = att_val #-- add to geophysical corrections key = 'geophysical' fileID[gtx]['sea_ice_segments'].create_group(key) h5[gtx]['sea_ice_segments'][key] = {} for att_name in ['Description','data_rate']: att_val=IS2_atl07_attrs[gtx]['sea_ice_segments'][key][att_name] fileID[gtx]['sea_ice_segments'][key].attrs[att_name] = att_val for k,v in IS2_atl07_corr[gtx]['sea_ice_segments'][key].items(): #-- attributes attrs = IS2_atl07_attrs[gtx]['sea_ice_segments'][key][k] fillvalue = FILL_VALUE[gtx]['sea_ice_segments'][key][k] #-- Defining the HDF5 dataset variables val = '{0}/{1}/{2}/{3}'.format(gtx,'sea_ice_segments',key,k) if fillvalue: h5[gtx]['sea_ice_segments'][key][k] = \ fileID.create_dataset(val, np.shape(v), data=v, dtype=v.dtype, fillvalue=fillvalue, compression='gzip') else: h5[gtx]['sea_ice_segments'][key][k] = \ fileID.create_dataset(val, np.shape(v), data=v, dtype=v.dtype, compression='gzip') #-- attach dimensions for i,dim in enumerate(DIMENSIONS[gtx]['sea_ice_segments'][key][k]): h5[gtx]['sea_ice_segments'][key][k].dims[i].attach_scale( h5[gtx]['sea_ice_segments'][dim]) #-- add HDF5 variable attributes for att_name,att_val in attrs.items(): h5[gtx]['sea_ice_segments'][key][k].attrs[att_name] = att_val #-- HDF5 file title fileID.attrs['featureType'] = 'trajectory' fileID.attrs['title'] = 'ATLAS/ICESat-2 L3A Sea Ice Height' fileID.attrs['summary'] = ('Estimates of the sea ice correction parameters ' 'needed to interpret and assess the quality of sea height estimates.') fileID.attrs['description'] = ('The data set (ATL07) contains along-track ' 'heights for sea ice and open water leads (at varying length scales) ' 'relative to the WGS84 ellipsoid (ITRF2014 reference frame) after ' 'adjustment for geoidal and tidal variations, and inverted barometer ' 'effects.') date_created = datetime.datetime.today() fileID.attrs['date_created'] = date_created.isoformat() project = 'ICESat-2 > Ice, Cloud, and land Elevation Satellite-2' fileID.attrs['project'] = project platform = 'ICESat-2 > Ice, Cloud, and land Elevation Satellite-2' fileID.attrs['project'] = platform #-- add attribute for elevation instrument and designated processing level instrument = 'ATLAS > Advanced Topographic Laser Altimeter System' fileID.attrs['instrument'] = instrument fileID.attrs['source'] = 'Spacecraft' fileID.attrs['references'] = 'https://nsidc.org/data/icesat-2' fileID.attrs['processing_level'] = '4' #-- add attributes for input ATL07 file fileID.attrs['input_files'] = os.path.basename(INPUT) #-- find geospatial and temporal ranges lnmn,lnmx,ltmn,ltmx,tmn,tmx = (np.inf,-np.inf,np.inf,-np.inf,np.inf,-np.inf) for gtx in beams: lon = IS2_atl07_corr[gtx]['sea_ice_segments']['longitude'] lat = IS2_atl07_corr[gtx]['sea_ice_segments']['latitude'] delta_time = IS2_atl07_corr[gtx]['sea_ice_segments']['delta_time'] #-- setting the geospatial and temporal ranges lnmn = lon.min() if (lon.min() < lnmn) else lnmn lnmx = lon.max() if (lon.max() > lnmx) else lnmx ltmn = lat.min() if (lat.min() < ltmn) else ltmn ltmx = lat.max() if (lat.max() > ltmx) else ltmx tmn = delta_time.min() if (delta_time.min() < tmn) else tmn tmx = delta_time.max() if (delta_time.max() > tmx) else tmx #-- add geospatial and temporal attributes fileID.attrs['geospatial_lat_min'] = ltmn fileID.attrs['geospatial_lat_max'] = ltmx fileID.attrs['geospatial_lon_min'] = lnmn fileID.attrs['geospatial_lon_max'] = lnmx fileID.attrs['geospatial_lat_units'] = "degrees_north" fileID.attrs['geospatial_lon_units'] = "degrees_east" fileID.attrs['geospatial_ellipsoid'] = "WGS84" fileID.attrs['date_type'] = 'UTC' fileID.attrs['time_type'] = 'CCSDS UTC-A' #-- convert start and end time from ATLAS SDP seconds into GPS seconds atlas_sdp_gps_epoch=IS2_atl07_corr['ancillary_data']['atlas_sdp_gps_epoch'] gps_seconds = atlas_sdp_gps_epoch + np.array([tmn,tmx]) #-- calculate leap seconds leaps = icesat2_toolkit.time.count_leap_seconds(gps_seconds) #-- convert from seconds since 1980-01-06T00:00:00 to Modified Julian days MJD = icesat2_toolkit.time.convert_delta_time(gps_seconds - leaps, epoch1=(1980,1,6,0,0,0), epoch2=(1858,11,17,0,0,0), scale=1.0/86400.0) #-- convert to calendar date YY,MM,DD,HH,MN,SS = icesat2_toolkit.time.convert_julian(MJD + 2400000.5, FORMAT='tuple') #-- add attributes with measurement date start, end and duration tcs = datetime.datetime(int(YY[0]), int(MM[0]), int(DD[0]), int(HH[0]), int(MN[0]), int(SS[0]), int(1e6*(SS[0] % 1))) fileID.attrs['time_coverage_start'] = tcs.isoformat() tce = datetime.datetime(int(YY[1]), int(MM[1]), int(DD[1]), int(HH[1]), int(MN[1]), int(SS[1]), int(1e6*(SS[1] % 1))) fileID.attrs['time_coverage_end'] = tce.isoformat() fileID.attrs['time_coverage_duration'] = '{0:0.0f}'.format(tmx-tmn) #-- Closing the HDF5 file fileID.close() #-- Main program that calls interp_sea_level_ICESat2() def main(): #-- Read the system arguments listed after the program parser = argparse.ArgumentParser( description="""Interpolates AVISO sea level anomalies, absolute dynamic topography and mean dynamic topography to ICESat-2 ATL07 sea ice height data """ ) #-- command line parameters parser.add_argument('infile', type=lambda p: os.path.abspath(os.path.expanduser(p)), nargs='+', help='ICESat-2 ATL07 file to run') #-- directory with sea level data parser.add_argument('--directory','-D', type=lambda p: os.path.abspath(os.path.expanduser(p)), default=os.getcwd(), help='Working data directory') #-- verbosity settings #-- verbose will output information about each output file parser.add_argument('--verbose','-V', default=False, action='store_true', help='Output information about each created file') #-- permissions mode of the local files (number in octal) parser.add_argument('--mode','-M', type=lambda x: int(x,base=8), default=0o775, help='Permission mode of directories and files created') args = parser.parse_args() #-- run for each input ATL07 file for FILE in args.infile: interp_sea_level_ICESat2(args.directory, FILE, VERBOSE=args.verbose, MODE=args.mode) #-- run main program if __name__ == '__main__': main()
612241aac8a50b5bd7b171fbe0a2fc7176d5547b
04b494a2286e7d0ec3bbe8d25c15d575486a0f91
/_exercises/exercise101/exercise101.py
f564c92b008b53d9142ca0ef0f10178c6cdd171b
[]
no_license
ViniciusGranado/_studies_Python
ea6adc35edccfbd81a67a613e8cd468fd8485856
af645fa777a408a8ff1b8ed89911971f5b537ac7
refs/heads/master
2023-02-01T19:57:04.117047
2020-12-19T00:56:10
2020-12-19T00:56:10
258,855,637
0
0
null
null
null
null
UTF-8
Python
false
false
1,034
py
# Functions def vote(birth_year): """ :param birth_year: int. The users birth year. :return: A string containing the age and wheter the vote is NOT ALLOWED, OPTIONAL or MANDATORY. """ from datetime import date age = date.today().year - birth_year return_str = f'Com {age} anos: ' if age < 16: return_str += 'VOTO NÃO PERMITIDO' elif age < 18 or age >= 70: return_str += 'VOTO OPCIONAL' else: return_str += 'VOTO OBRIGATÓRIO' return return_str def get_birth_year(): """ Get a number string by an user input, if the str is a valid int number, return it in number format. :return: num. A number in number format. """ while True: user_number_str = input('Ano de nascimento: ').strip() if user_number_str.isnumeric(): return int(user_number_str) else: print('Valor inválido.') # Main program users_birth_year = get_birth_year() print(vote(users_birth_year))
cf90720c6752ac6cb6cac711bf8eec906f46ce2a
4b07658528a035c558a6757c31f7f864b781e8e9
/fluent/example-code/03-dict-set/support/container_perftest.py
e9fc80a4f38964d236c5231e778a8c22f743ac94
[ "MIT" ]
permissive
ghjan/fluent-python
eae307c53d0382b91f2dd71f4ab1126f93d961c7
68e27072f43701710fc1f2e0ed69f3c558bc579b
refs/heads/master
2020-03-24T07:55:02.293996
2018-07-29T14:08:24
2018-07-29T14:08:24
142,570,905
0
0
null
null
null
null
UTF-8
Python
false
false
2,120
py
""" Container ``in`` operator performance test """ import sys import timeit SETUP = ''' import array selected = array.array('d') with open('selected.arr', 'rb') as fp: selected.fromfile(fp, {size}) if {container_type} is dict: haystack = dict.fromkeys(selected, 1) else: haystack = {container_type}(selected) if {verbose}: print(type(haystack), end=' ') print('haystack: %10d' % len(haystack), end=' ') needles = array.array('d') with open('not_selected.arr', 'rb') as fp: needles.fromfile(fp, 500) needles.extend(selected[::{size}//500]) if {container_type} is set: needles = set(needles.tolist()) if {verbose}: print(type(needles), end=' ') print(' needles: %10d' % len(needles), end=' ') ''' TEST = ''' found = 0 if {container_type} is dict or {container_type} is list: for n in needles: if n in haystack: found += 1 else: found = len(needles & haystack) if {verbose}: print(' found: %10d' % found) ''' def test(container_type, verbose): MAX_EXPONENT = 7 for n in range(3, MAX_EXPONENT + 1): size = 10 ** n setup = SETUP.format(container_type=container_type, size=size, verbose=verbose) test_part = TEST.format(container_type=container_type, verbose=verbose) tt = timeit.repeat(stmt=test_part, setup=setup, repeat=5, number=1) print('|{:{}d}|{:f}'.format(size, MAX_EXPONENT + 1, min(tt))) if __name__ == '__main__': if '-v' in sys.argv: sys.argv.remove('-v') verbose = True else: verbose = False if len(sys.argv) != 2: print('Usage: %s <container_type>' % sys.argv[0]) else: test(sys.argv[1], verbose) ''' dict | 1000|0.000137 | 10000|0.000149 | 100000|0.000284 | 1000000|0.000376 |10000000|0.000434 set | 1000|0.000110 | 10000|0.000133 | 100000|0.000244 | 1000000|0.000348 |10000000|0.000386 list | 1000|0.010700 | 10000|0.103838 | 100000|1.047780 | 1000000|10.561153 |10000000|105.547498 '''
4748a443a829edd552558787816d88e5b52a9f9d
9047aec2400933376e71fdc24d087d2ad35b4d45
/minSteps_1347.py
770c0d81af89a4f15a52f640b29b27fbd6c500d8
[]
no_license
sasankyadavalli/leetcode
a8c3a4b63970cfa67a8bbec5d1fb7cca818f7ea9
555931bc5a74e0031726070be90c945da9cb3251
refs/heads/master
2021-02-07T12:12:06.938562
2020-07-28T18:25:10
2020-07-28T18:25:10
244,024,453
0
0
null
null
null
null
UTF-8
Python
false
false
393
py
class Solution: def minSteps(self, s: str, t: str) -> int: d1 = {} steps = 0 for ele in s: if ele in d1.keys(): d1[ele] +=1 else: d1[ele] = 1 for i in t: if i in d1 and d1[i] > 0: d1[i] -= 1 else: steps += 1 return steps
8befc2b3af60d0d72bfc6445f068647e539b68e2
826ded51e15bf5c4e1f3a202b8f58764e56ee742
/virtual/bin/confusable_homoglyphs
1abf67144eb83ea41671d5a3125599be22e887ee
[]
no_license
LeoAmby/webly
0473766476ec93f0bdb0ed09512c9045cc6948d2
85cf765c654324f5aea27562c3a2b90e665a88b3
refs/heads/master
2022-11-30T21:17:49.065335
2019-10-31T11:28:45
2019-10-31T11:28:45
216,031,732
0
0
null
2022-11-22T04:35:55
2019-10-18T13:35:48
Python
UTF-8
Python
false
false
303
#!/home/moringa/Documents/MoringaSchool-Projects/Core-Projects/Django/webly/virtual/bin/python3 # -*- coding: utf-8 -*- import re import sys from confusable_homoglyphs.cli import cli if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(cli())
ad6cfbbb49e897d10a9a2e9d3b5c73a7dd860b8d
e6dab5aa1754ff13755a1f74a28a201681ab7e1c
/.parts/lib/django-1.4/tests/regressiontests/context_processors/urls.py
00733253b4a73fce10bdfbc64b1b05f237247246
[]
no_license
ronkagan/Euler_1
67679203a9510147320f7c6513eefd391630703e
022633cc298475c4f3fd0c6e2bde4f4728713995
refs/heads/master
2021-01-06T20:45:52.901025
2014-09-06T22:34:16
2014-09-06T22:34:16
23,744,842
0
1
null
null
null
null
UTF-8
Python
false
false
114
py
/home/action/.parts/packages/googleappengine/1.9.4/lib/django-1.4/tests/regressiontests/context_processors/urls.py
384a851a30913f3137316f99735cf23dd303b3f8
54f352a242a8ad6ff5516703e91da61e08d9a9e6
/Source Codes/AtCoder/abc055/B/4903050.py
7731624b54ba064fa0b812064ee63aa67d499a16
[]
no_license
Kawser-nerd/CLCDSA
5cbd8a4c3f65173e4e8e0d7ed845574c4770c3eb
aee32551795763b54acb26856ab239370cac4e75
refs/heads/master
2022-02-09T11:08:56.588303
2022-01-26T18:53:40
2022-01-26T18:53:40
211,783,197
23
9
null
null
null
null
UTF-8
Python
false
false
127
py
N = int(input()) ans = 1 for i in range(1,N+1): a = i % (10 ** 9 + 7) ans *= a ans = ans % (10 ** 9 + 7) print(ans)
63b0012fef513a4036e954d58f9db81a958f3b1f
31ab401afc2c99d85765bec73204e4009a80993d
/비밀지도.py
987f993508357810019aadf595e373fa247d045a
[]
no_license
rheehot/Algorithm-coding_test
bdd700acda13ddbef2aa9c8c77d010b440c82964
3aca4ae1d60130515f7b9a0f85ef0625faf3c298
refs/heads/master
2023-02-20T01:21:20.015565
2021-01-24T03:47:45
2021-01-24T03:47:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
430
py
# 나의 풀이 def solution(d, budget): cnt = 0 num = 0 if sum(d) > budget: d = sorted(d) for i in d: num += i cnt += 1 if num > int(budget): cnt -= 1 break return cnt else: return len(d) # 다른 사람의 풀이 def solution(d, budget): d.sort() while budget < sum(d): d.pop() return len(d)
c2c65dbf9cb33392837f4936001f292cac812aa8
09c00563e44d0e4b62449f1648ba1c595a4fa455
/Python_File_IO_Pty_Fork.py
0743c2633d406ecd6af9216f4e7743dbfc60fddf
[]
no_license
VakinduPhilliam/Python_File_IO
20da71688384fe145873ae5ade064b37be6c67d6
016d7d6d5315def35d82354e9d46a627afa2f271
refs/heads/master
2020-05-27T17:54:15.751253
2019-05-26T21:31:10
2019-05-26T21:31:10
188,731,817
5
0
null
null
null
null
WINDOWS-1252
Python
false
false
1,685
py
# Python File IO # pty — Pseudo-terminal utilities. # The pty module defines operations for handling the pseudo-terminal concept: starting another process and being able # to write to and read from its controlling terminal programmatically. # pty.fork() # Fork. Connect the child’s controlling terminal to a pseudo-terminal. # Return value is (pid, fd). Note that the child gets pid 0, and the fd is invalid. # The parent’s return value is the pid of the child, and fd is a file descriptor connected to the child’s controlling # terminal (and also to the child’s standard input and output). # # The following program acts like the Unix command script(1), using a pseudo-terminal to record all input and output of # a terminal session in a “typescript”. # import argparse import os import pty import sys import time parser = argparse.ArgumentParser() parser.add_argument('-a', dest='append', action='store_true') parser.add_argument('-p', dest='use_python', action='store_true') parser.add_argument('filename', nargs='?', default='typescript') options = parser.parse_args() shell = sys.executable if options.use_python else os.environ.get('SHELL', 'sh') filename = options.filename mode = 'ab' if options.append else 'wb' with open(filename, mode) as script: def read(fd): data = os.read(fd, 1024) script.write(data) return data print('Script started, file is', filename) script.write(('Script started on %s\n' % time.asctime()).encode()) pty.spawn(shell, read) script.write(('Script done on %s\n' % time.asctime()).encode()) print('Script done, file is', filename)
ad214cee844e8e823915ece27cc7713e3373e328
5a07828016e8bafbea5dac8f83c8bfd5d0bfd603
/py_93w93/140318_eiz.py
44744b47e9e56314ce840f16e1483c47051102c8
[]
no_license
JJHopkins/rajter_compare
db5b88d2c6c1efc0fead9b6ed40fb3cce36bedb4
2ba52f4f16cf2aca350a82ea58d0aa8f8866c47c
refs/heads/master
2020-06-04T23:53:57.089329
2014-04-08T18:02:30
2014-04-08T18:02:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,210
py
#!/usr/bin/python import matplotlib #import pyreport import numpy as np from pylab import * #from pylab import show from matplotlib import pyplot as pl x_x,y_x_unsc = np.loadtxt('data/CNT9_3_xe2_solid_30.txt',unpack=True, usecols = [0,1]) x_z,y_z_unsc = np.loadtxt('data/CNT9_3_ze2_solid_30.txt',unpack=True, usecols = [0,1]) x_w,y_w = np.loadtxt('data/water-L.txt',unpack=True, usecols = [0,1]) y_x = y_x_unsc*1.#4.949 y_z = y_z_unsc*1.#4.949 def Aiz(perp, par,med): return (2.0*(perp-med)*med)/((perp+med)*(par-med)) ## DEFINE FUNCTIONS FOR CALCULATING e(iz) #------------------------------------------------------------- # Matsubara frequencies: z_n at room temp is (2pikbT/hbar)*n (ie coeff*n) coeff = 0.159 # in eV #(2.41*1e14) # in rad/s #coeff = 2.41e14 # in (1 rad)*(1/s)=inverse seconds T = 297.0 #kb_J = 1.3806488e-23 # in J/K #hbar = 6.625e-34 # in J/s #coeff_J = 2.0*np.pi*kb_J*T/hbar#1.602e-19*0.159e15 # in eV #(2.41*1e14) # in rad/s n = arange(0,500) z = n * coeff #coeff_J = 1.602e-19*0.159e15 # in eV #(2.41*1e14) # in rad/s #z = n * coeff #z = n * coeff_J eiz_x = empty(len(z)) eiz_z = empty(len(z)) eiz_w = empty(len(z)) eiz_x_arg=empty(len(x_x)) eiz_z_arg=empty(len(x_z)) eiz_w_arg=empty(len(x_w)) for j in range(len(z)): for i in range(len(x_x)): eiz_x_arg[i]=x_x[i]*y_x[i] / (x_x[i]**2 + z[j]**2) eiz_x[j] = 1 + (2./pi) * trapz(eiz_x_arg,x_x) for m in range(len(x_z)): eiz_z_arg[m]=x_z[m]*y_z[m] / (x_z[m]**2 + z[j]**2) eiz_z[j] = 1 + (2./pi) * trapz(eiz_z_arg,x_z) for p in range(len(x_w)): eiz_w_arg[p]=x_w[p]*y_w[p] / (x_w[p]**2 + z[j]**2) eiz_w[j] = 1 + (2./pi) * trapz(eiz_w_arg,x_w) # savetxt("data/eiz_x_output_eV.txt", eiz_x) savetxt("data/eiz_z_output_eV.txt", eiz_z) savetxt("data/eiz_w_output_eV.txt", eiz_w) a = Aiz(eiz_x,eiz_z,eiz_w) pl.figure() pl.plot(x_x,y_x, color = 'b', label = r'$\varepsilon^{\prime\prime}_\hat{x}(\omega)$') pl.plot(x_z,y_z, color = 'r', label = r'$\varepsilon^{\prime\prime}_\hat{z}(\omega)$') pl.plot(x_z,y_z, color = 'r', label = r'$first\,peak:\,\,%6.2f$'%max(y_z)) pl.plot(x_w,y_w, color = 'c', label = r'$\varepsilon^{\prime\prime}_{H_{2}O}(\omega)$') pl.axis([0,35,0,25]) pl.xlabel(r'$\hbar\omega\,\,\,[eV]$', size = 24) pl.ylabel(r'$\varepsilon^{\prime\prime}(\omega)$', size = 24) pl.legend() pl.title(r'[9,3] and water eps2') pl.savefig('plots/93w93_eps2.pdf') pl.show() # fig = pl.figure() ax = fig.add_axes([0.1,0.1,0.8,0.8]) ax.plot(n,eiz_x, color = 'b', label = r'$\varepsilon_{\hat{x}}(i\zeta_{N})$') ax.plot(n,eiz_z, color = 'r', label = r'$\varepsilon_{\hat{z}}(i\zeta_{n})$') ax.plot(n,eiz_z, color = 'r', label = r'$max\,%6.2f$'%max(eiz_z)) ax.plot(n,eiz_w, color = 'c', label = r'$\varepsilon_{\hat{w}}(i\zeta_{n})$') pl.axis([0,500,0,10]) pl.xlabel(r'$N$', size = 24) pl.ylabel(r'$\varepsilon(i\zeta)$', size = 24) #pl.legend() pl.title(r'[9,3] and water eiz') ax_inset = fig.add_axes([0.53,0.50,0.36,0.36]) ax_inset.plot(n, a,'k-.', linewidth = 2)#,label=r'$a(i\xi_{N})$') pl.tick_params(labelsize = 'small') pl.xlabel(r'$N$', size = 14) pl.ylabel(r'$a(i\xi)$', size = 14) pl.savefig('plots/93w93_eiz.pdf') pl.show()
14476f6a4599c9269c4a8e5b073ec545726b44d2
2635edb96afa8117d4584a470061e447b79adc6e
/life/models.py
37074983630a300a534a3e96598353345abd2c40
[]
no_license
Mark-Seaman/Sensei-2018
673609731ecb5ebb782dab94b2cf3d7c22940424
06b02892cfe1bf1d25cb4224e86eb693c82b0f29
refs/heads/master
2022-02-18T19:14:10.343093
2022-01-15T20:06:21
2022-01-15T20:06:21
158,728,468
0
0
null
2022-01-16T21:06:09
2018-11-22T16:51:55
HTML
UTF-8
Python
false
false
1,045
py
from __future__ import unicode_literals from django.db import models class Year(models.Model): age = models.IntegerField() contribute = models.TextField() relate = models.TextField() learn = models.TextField() enjoy = models.TextField() def __unicode__(self): return str(self.age) class Aspect(models.Model): name = models.CharField(max_length=100) def __unicode__(self): return str(self.name) class Experience(models.Model): age = models.IntegerField(editable=False) aspect = models.ForeignKey(Aspect, on_delete=models.CASCADE, editable=False) summary = models.TextField() def __unicode__(self): return "age %s - %s" % (self.age, self.aspect.name) def get_absolute_url(self): return '/life/year/%s' % self.age def initialize(): Aspect.objects.create(name='Contribute') Aspect.objects.create(name='Relate') Aspect.objects.create(name='Learn') Aspect.objects.create(name='Enjoy') for a in Aspect.objects.all(): print(a)
b1adf4597ffc1d7b98b6e5894e2b69610f88ec25
de33091037128fe3feb5a6dad28be5b72aed86a0
/g4g/Amazon/Easy/greater-on-right-side.py
ec15ed83e0616ea9bf406e0ca8fc1d1f4914e3e2
[]
no_license
khannasarthak/codingPrep
78fbf089c6f095f7ec8a5f5d9998593aea2942fe
2b638ab284bf9fefa2259fd7aa4ca3905438b7ab
refs/heads/master
2021-01-12T02:58:04.236524
2018-11-07T06:03:37
2018-11-07T06:03:37
78,140,645
0
0
null
null
null
null
UTF-8
Python
false
false
463
py
# USING MAX t = int(input()) for p in (range(t)): n = int(input()) a = list(map(int,input().split())) op = [] for i in range(len(a)-1): op.append(max(a[i+1:])) op.append(-1) print (*op) # SECOND SOLUTION WITHOUT MAX t = int(input()) for p in (range(t)): n = int(input()) a = list(map(int,input().split())) l = len(a) op = [] maxr = a[-1] for i in range(l-2,-1,-1): tmp = a[i] a[i] = maxr if maxr<tmp: maxr = tmp a[-1] = -1 print (*a)
dfb5a65a4ca0886e97fb23f03b987514cc0edc0f
4b68243d9db908945ee500174a8a12be27d150f9
/pogoprotos/enums/variable_name_pb2.py
cd222f47297fec06b2cc4a740ef6ca9f93b9e07f
[]
no_license
ykram/pogoprotos-py
7285c86498f57dcbbec8e6c947597e82b2518d80
a045b0140740625d9a19ded53ece385a16c4ad4a
refs/heads/master
2020-04-20T10:19:51.628964
2019-02-02T02:58:03
2019-02-02T02:58:03
168,787,721
0
0
null
null
null
null
UTF-8
Python
false
true
9,227
py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: pogoprotos/enums/variable_name.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf.internal import enum_type_wrapper from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='pogoprotos/enums/variable_name.proto', package='pogoprotos.enums', syntax='proto3', serialized_pb=_b('\n$pogoprotos/enums/variable_name.proto\x12\x10pogoprotos.enums*\xa7\x07\n\x0cVariableName\x12\x17\n\x13UNSET_VARIABLE_NAME\x10\x00\x12\r\n\tCODE_NAME\x10\x01\x12\x08\n\x04TEAM\x10\x02\x12\t\n\x05LEVEL\x10\x03\x12\x0e\n\nEXPERIENCE\x10\x04\x12\x14\n\x10POKECOIN_BALANCE\x10\x05\x12\x14\n\x10STARDUST_BALANCE\x10\x06\x12\t\n\x05\x45MAIL\x10\x07\x12\x10\n\x0cLOGIN_METHOD\x10\x08\x12\x0b\n\x06GYM_ID\x10\xe8\x07\x12\r\n\x08GYM_NAME\x10\xe9\x07\x12\x14\n\x0fPOKEMON_DISPLAY\x10\xea\x07\x12\x19\n\x14POKEDEX_ENTRY_NUMBER\x10\xeb\x07\x12\x0f\n\nPOKEMON_ID\x10\xec\x07\x12\x15\n\x10POKEMON_NICKNAME\x10\xed\x07\x12\x1c\n\x17GYM_BADGE_EARNED_POINTS\x10\xee\x07\x12\x17\n\x12GYM_BADGE_PROGRESS\x10\xef\x07\x12\x13\n\x0eGYM_BADGE_RANK\x10\xf0\x07\x12\x18\n\x13GYM_BADGE_IMAGE_URL\x10\xf1\x07\x12\x17\n\x12GYM_BADGE_LEVEL_UP\x10\xf2\x07\x12\x15\n\x10POKECOIN_AWARDED\x10\xf3\x07\x12\x1b\n\x16POKECOIN_AWARDED_TODAY\x10\xf4\x07\x12\x17\n\x12MAX_DAILY_POKECOIN\x10\xf5\x07\x12\x10\n\x0b\x42\x41TTLES_WON\x10\xf6\x07\x12\x11\n\x0c\x42\x41TTLES_LOST\x10\xf7\x07\x12\x14\n\x0f\x44\x45PLOYED_MILLIS\x10\xf8\x07\x12\x0e\n\tRAID_SEED\x10\xf9\x07\x12%\n EXCLUSIVE_RAID_CANCELLATION_INFO\x10\xfa\x07\x12\x14\n\x0fGIFTBOX_DETAILS\x10\xfb\x07\x12\x12\n\rFRIEND_AVATAR\x10\xfc\x07\x12\x10\n\x0b\x46RIEND_TEAM\x10\xfd\x07\x12\x14\n\x0f\x46RIEND_CODENAME\x10\xfe\x07\x12\x14\n\x0fGIFT_LOOT_ITEMS\x10\xff\x07\x12\r\n\x08GIFT_EGG\x10\x80\x08\x12(\n#FRIENDSHIP_MILESTONE_REWARD_DETAILS\x10\x81\x08\x12\x1d\n\x18\x46RIENDSHIP_LEVEL_DISPLAY\x10\x82\x08\x12\"\n\x1d\x42GMODE_BUDDY_POKEMON_NICKNAME\x10\x83\x08\x12\x15\n\x10\x43OMBAT_CHALLENGE\x10\x84\x08\x12\x1f\n\x1a\x43OMBAT_CHALLENGER_CODENAME\x10\x85\x08\x12#\n\x1e\x42GMODE_OFF_SESSION_DISTANCE_KM\x10\x86\x08\x12\r\n\x08POI_NAME\x10\x87\x08\x62\x06proto3') ) _VARIABLENAME = _descriptor.EnumDescriptor( name='VariableName', full_name='pogoprotos.enums.VariableName', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='UNSET_VARIABLE_NAME', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='CODE_NAME', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='TEAM', index=2, number=2, options=None, type=None), _descriptor.EnumValueDescriptor( name='LEVEL', index=3, number=3, options=None, type=None), _descriptor.EnumValueDescriptor( name='EXPERIENCE', index=4, number=4, options=None, type=None), _descriptor.EnumValueDescriptor( name='POKECOIN_BALANCE', index=5, number=5, options=None, type=None), _descriptor.EnumValueDescriptor( name='STARDUST_BALANCE', index=6, number=6, options=None, type=None), _descriptor.EnumValueDescriptor( name='EMAIL', index=7, number=7, options=None, type=None), _descriptor.EnumValueDescriptor( name='LOGIN_METHOD', index=8, number=8, options=None, type=None), _descriptor.EnumValueDescriptor( name='GYM_ID', index=9, number=1000, options=None, type=None), _descriptor.EnumValueDescriptor( name='GYM_NAME', index=10, number=1001, options=None, type=None), _descriptor.EnumValueDescriptor( name='POKEMON_DISPLAY', index=11, number=1002, options=None, type=None), _descriptor.EnumValueDescriptor( name='POKEDEX_ENTRY_NUMBER', index=12, number=1003, options=None, type=None), _descriptor.EnumValueDescriptor( name='POKEMON_ID', index=13, number=1004, options=None, type=None), _descriptor.EnumValueDescriptor( name='POKEMON_NICKNAME', index=14, number=1005, options=None, type=None), _descriptor.EnumValueDescriptor( name='GYM_BADGE_EARNED_POINTS', index=15, number=1006, options=None, type=None), _descriptor.EnumValueDescriptor( name='GYM_BADGE_PROGRESS', index=16, number=1007, options=None, type=None), _descriptor.EnumValueDescriptor( name='GYM_BADGE_RANK', index=17, number=1008, options=None, type=None), _descriptor.EnumValueDescriptor( name='GYM_BADGE_IMAGE_URL', index=18, number=1009, options=None, type=None), _descriptor.EnumValueDescriptor( name='GYM_BADGE_LEVEL_UP', index=19, number=1010, options=None, type=None), _descriptor.EnumValueDescriptor( name='POKECOIN_AWARDED', index=20, number=1011, options=None, type=None), _descriptor.EnumValueDescriptor( name='POKECOIN_AWARDED_TODAY', index=21, number=1012, options=None, type=None), _descriptor.EnumValueDescriptor( name='MAX_DAILY_POKECOIN', index=22, number=1013, options=None, type=None), _descriptor.EnumValueDescriptor( name='BATTLES_WON', index=23, number=1014, options=None, type=None), _descriptor.EnumValueDescriptor( name='BATTLES_LOST', index=24, number=1015, options=None, type=None), _descriptor.EnumValueDescriptor( name='DEPLOYED_MILLIS', index=25, number=1016, options=None, type=None), _descriptor.EnumValueDescriptor( name='RAID_SEED', index=26, number=1017, options=None, type=None), _descriptor.EnumValueDescriptor( name='EXCLUSIVE_RAID_CANCELLATION_INFO', index=27, number=1018, options=None, type=None), _descriptor.EnumValueDescriptor( name='GIFTBOX_DETAILS', index=28, number=1019, options=None, type=None), _descriptor.EnumValueDescriptor( name='FRIEND_AVATAR', index=29, number=1020, options=None, type=None), _descriptor.EnumValueDescriptor( name='FRIEND_TEAM', index=30, number=1021, options=None, type=None), _descriptor.EnumValueDescriptor( name='FRIEND_CODENAME', index=31, number=1022, options=None, type=None), _descriptor.EnumValueDescriptor( name='GIFT_LOOT_ITEMS', index=32, number=1023, options=None, type=None), _descriptor.EnumValueDescriptor( name='GIFT_EGG', index=33, number=1024, options=None, type=None), _descriptor.EnumValueDescriptor( name='FRIENDSHIP_MILESTONE_REWARD_DETAILS', index=34, number=1025, options=None, type=None), _descriptor.EnumValueDescriptor( name='FRIENDSHIP_LEVEL_DISPLAY', index=35, number=1026, options=None, type=None), _descriptor.EnumValueDescriptor( name='BGMODE_BUDDY_POKEMON_NICKNAME', index=36, number=1027, options=None, type=None), _descriptor.EnumValueDescriptor( name='COMBAT_CHALLENGE', index=37, number=1028, options=None, type=None), _descriptor.EnumValueDescriptor( name='COMBAT_CHALLENGER_CODENAME', index=38, number=1029, options=None, type=None), _descriptor.EnumValueDescriptor( name='BGMODE_OFF_SESSION_DISTANCE_KM', index=39, number=1030, options=None, type=None), _descriptor.EnumValueDescriptor( name='POI_NAME', index=40, number=1031, options=None, type=None), ], containing_type=None, options=None, serialized_start=59, serialized_end=994, ) _sym_db.RegisterEnumDescriptor(_VARIABLENAME) VariableName = enum_type_wrapper.EnumTypeWrapper(_VARIABLENAME) UNSET_VARIABLE_NAME = 0 CODE_NAME = 1 TEAM = 2 LEVEL = 3 EXPERIENCE = 4 POKECOIN_BALANCE = 5 STARDUST_BALANCE = 6 EMAIL = 7 LOGIN_METHOD = 8 GYM_ID = 1000 GYM_NAME = 1001 POKEMON_DISPLAY = 1002 POKEDEX_ENTRY_NUMBER = 1003 POKEMON_ID = 1004 POKEMON_NICKNAME = 1005 GYM_BADGE_EARNED_POINTS = 1006 GYM_BADGE_PROGRESS = 1007 GYM_BADGE_RANK = 1008 GYM_BADGE_IMAGE_URL = 1009 GYM_BADGE_LEVEL_UP = 1010 POKECOIN_AWARDED = 1011 POKECOIN_AWARDED_TODAY = 1012 MAX_DAILY_POKECOIN = 1013 BATTLES_WON = 1014 BATTLES_LOST = 1015 DEPLOYED_MILLIS = 1016 RAID_SEED = 1017 EXCLUSIVE_RAID_CANCELLATION_INFO = 1018 GIFTBOX_DETAILS = 1019 FRIEND_AVATAR = 1020 FRIEND_TEAM = 1021 FRIEND_CODENAME = 1022 GIFT_LOOT_ITEMS = 1023 GIFT_EGG = 1024 FRIENDSHIP_MILESTONE_REWARD_DETAILS = 1025 FRIENDSHIP_LEVEL_DISPLAY = 1026 BGMODE_BUDDY_POKEMON_NICKNAME = 1027 COMBAT_CHALLENGE = 1028 COMBAT_CHALLENGER_CODENAME = 1029 BGMODE_OFF_SESSION_DISTANCE_KM = 1030 POI_NAME = 1031 DESCRIPTOR.enum_types_by_name['VariableName'] = _VARIABLENAME _sym_db.RegisterFileDescriptor(DESCRIPTOR) # @@protoc_insertion_point(module_scope)
f8e843416fa7b2feb722ee1f940bc09e65143ea4
4e8dc479fbf28d34fa1678c14ef02f3aca31d46a
/Arrays_and_Strings.md/String_Compression(1).py
c52c58b4f06b85ecece2fd1f1664495ef14b09a1
[]
no_license
fagan2888/Leetcode-2
b0ace8e0695875bdcd61acdec33c45b5d1d52247
4175d14985172eabee0a49a821eaeaf57a5b6593
refs/heads/master
2020-12-02T23:08:23.519672
2019-02-06T22:20:03
2019-02-06T22:20:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
337
py
# coding: utf-8 # In[3]: def compressed(s): count=1 new=[] for i in range(len(s)-1): if(s[i]==s[i+1]): count+=1 else: new.extend([s[i],str(count)]) count=1 return ''.join(new) st=input('Enter string: ') print('Compressed string is: ',compressed(st))
fb4a313bf56af0e92e006eb7f102755ba3bcbf98
bdf3879b183611fef4239ece505f9f9a05fe49aa
/work/work1.py
20963567d8a0b4d994237ce241bccfbf6f749825
[]
no_license
Prabithapallat01/pythondjangoluminar
9578fccd1628ed0810000cbec1ab97ac8d931bf9
3248939c0d454084326f9694ecb3094f599c0b6b
refs/heads/master
2023-03-20T10:22:54.524782
2021-03-10T08:43:01
2021-03-10T08:43:01
327,939,255
0
0
null
null
null
null
UTF-8
Python
false
false
1,044
py
# # [1,2,3,4,5,6] [4,5,6,1,2,3] # #lst=[1,2,3,4,5,6] # def leftRotate(lst, d, n): # for i in range(d): # leftRotatebyOne(lst, n) # # # # Function to left Rotate arr[] of size n by 1*/ # def leftRotatebyOne(lst, n): # temp = lst[0] # for i in range(n - 1): # lst[i] = lst[i + 1] # lst[n - 1] = temp # # # # utility function to print an array */ # def printlist(lst, size): # for i in range(size): # print("% d" % lst[i], end=" ") # # # # Driver program to test above functions */ # lst= [1, 2, 3, 4, 5, 6, ] # leftRotate(lst, 3, 6) # printlist(lst,6) lst=[1,2,3,4,5,6] print("Before Rotation:",lst) d=3 n=6 def rotation(lst,d): for i in range(0,d): temp=lst[0] #TEMP=1 for j in range(0,n-1): #((0,5)j=0, j=1 j=2 j=3 j=4 lst[j]=lst[j+1] # lst[0]=lst[1], lst[0]=2 lst[1]=3 lst[2]=4 lst[3]=5 lst[4]=6 lst[n-1]=temp return lst rotatedlist=rotation(lst,d) print("Before Rotation:",rotatedlist)
fe21a650d7becd85577455403863b65cb3d04236
859ca4b957af0c3486ed11bbf87c1b18d6e589a0
/src/rathings/notebooks/SpectralIndexCalc.py
2027453412f7e7eb0bd5bc0b3c557644e9ae9810
[ "Apache-2.0" ]
permissive
Joshuaalbert/RadioAstronomyThings
b5f84b15d8d787d38dab90b05b6905b1b74acf18
c72d6e5af8b0831a2e0e86d2d99ca894ad7f43ff
refs/heads/master
2020-04-12T06:40:28.737231
2018-07-24T09:44:30
2018-07-24T09:44:30
60,545,956
1
0
null
null
null
null
UTF-8
Python
false
false
17,389
py
# coding: utf-8 # In[ ]: '''Compute the posterior estimates of spectral index, S1.4GHz, and P1.4GHz as well as the posterior estimates of measured fluxes (S_i) using the Metropolis Hastings algorithm. We assume priors: Gaussian measurments fluxes, uniform spectral index, uniform S1.4, and uniform P1.4. Detection is defined as 5*sigma_rms. The detection mask can be defined to include nondetection measurements (a valid assumption for point sources). The posterior density is then: prior x Likelihood (with priors described above). The likelihood is an L2 on spectral index and S1.4 due to the Gaussian prior on observables. Likelihood = exp(-1/2 * Sum (S_obs - g(alpha_i,S1.4))**2 / (Cd_i + Ct_i)) where S_obs are the measured fluxes g(alpha_i,S1.4) gives model S_i Cd_i is the measurement variance S_i Ct_i is a systematic for g(...) taken to be (0.15*S_obs)**2 assuming z ~ 0.516 +- 0.002 we use the sampling of alpha and S14 to monte carlo compute the mean and variances of posterior S_i and P14 in lognormal as suggested by their posterior plots. We find that the posterior distributions for: alpha is Gaussian S1.4 is lognormal P1.4 is lognormal S_i is lognormal ''' import numpy as np import pylab as plt from matplotlib.patches import Polygon from matplotlib.collections import PatchCollection def g(alpha,S14,nu): '''Forward equation, evaluate model at given nu array''' out = S14*(nu/1400e6)**alpha return out def L(Sobs,alpha,S14,nu,CdCt): '''Likeihood for alpha and S14''' #only as nu_obs d = g(alpha,S14,nu) L2 = np.sum((Sobs - d)**2/CdCt) #L1 = np.sum(np.abs(Sobs - d)/np.sqrt(CdCt)) return np.exp(-L2/2.) def P(nu,z,alpha,S14): c = 3e8 h0 = 0.7 ch = 1.32151838 q0 = 0.5 D = ch*z*(1+z*(1-q0)/(np.sqrt(1+2*q0*z) + 1 + q0*z)) S = S14*(nu/1400e6) out = 4*np.pi*S*D**2 / (1+z)**(1+alpha) * 1e26 return out/1e24 def MHSolveSpectealIndex(nu,S,Cd,Ct,name,z,dz,nuModel=None,plot=False,plotDir=None): '''Assumes S in mJy''' if nuModel is None: nuModel = nu if plotDir is not None: import os try: os.makedirs(plotDir) except: pass N = int(1e6) alpha_ = np.zeros(N,dtype=np.double) S14_ = np.zeros(N,dtype=np.double) alpha_[0] = -0.8 S14_[0] = S[0]*(1400e6/nu[0])**-0.8 print("Working on source {}".format(name)) mask = detectionMask[idx,:] CdCt = Cd + Ct Li = L(S,alpha_[0],S14_[0],nu,CdCt) print("Initial L: {}".format(Li)) maxL = Li alphaMAP = alpha_[0] S14MAP = S14_[0] accepted = 0 binning = 50 i = 1 while accepted < binning*binning and i < N: #sample priors in uniform steps alpha_j = np.random.uniform(low=alpha_[i-1] - 0.5,high=alpha_[i-1] + 0.5) S14_j = 10**(np.random.uniform(low = np.log10(S14_[i-1]/100),high=np.log10(S14_[i-1]*100))) Lj = L(S,alpha_j,S14_j,nu,CdCt) if np.random.uniform() < Lj/Li: alpha_[i] = alpha_j S14_[i] = S14_j Li = Lj accepted += 1 else: alpha_[i] = alpha_[i-1] S14_[i] = S14_[i-1] if Lj > maxL: maxL = Lj alphaMAP = alpha_j S14MAP = S14_j i += 1 if accepted == binning**2: print("Converged in {} steps".format(i)) print("Acceptance: {}, rate : {}".format(accepted,float(accepted)/i)) else: print("Acceptance: {}, rate : {}".format(accepted,float(accepted)/i)) alpha_ = alpha_[:i] S14_ = S14_[:i] #integrate out uncertainty unsing MC integration logS_int = np.zeros([len(alpha_),len(nuModel)],dtype=np.double) logP14_int = np.zeros(len(alpha_),dtype=np.double) i = 0 while i < len(alpha_): logS_int[i,:] = np.log(g(alpha_[i],S14_[i],nuModel)) logP14_int[i] = np.log(P(1400e6,np.random.normal(loc=z,scale=dz),alpha_[i],S14_[i]/1e3)) i += 1 logS_mu = np.mean(logS_int,axis=0) logS_std = np.sqrt(np.mean(logS_int**2,axis=0) - logS_mu**2) logP14_mu = np.mean(logP14_int) logP14_std = np.sqrt(np.mean(logP14_int**2) - logP14_mu**2) S_post_mu = np.exp(logS_mu) S_post_up = np.exp(logS_mu + logS_std) - S_post_mu S_post_low = S_post_mu - np.exp(logS_mu - logS_std) P14_post_mu = np.exp(logP14_mu) P14_post_up = np.exp(logP14_mu + logP14_std) - P14_post_mu P14_post_low = P14_post_mu - np.exp(logP14_mu- logP14_std) P14 = P14_post_mu P14u = P14_post_up P14l = P14_post_low alpha = np.mean(alpha_) std_alpha = np.std(alpha_) mu = np.exp(np.mean(np.log(S14_))) S14 = mu S14u = np.exp(np.mean(np.log(S14_)) + np.std(np.log(S14_))) - mu S14l = mu - np.exp(np.mean(np.log(S14_)) - np.std(np.log(S14_))) if plot: plt.hist(alpha_,bins=binning) plt.xlabel(r"$\alpha$") plt.ylabel(r"Count") plt.title("alpha") if plotDir is not None: plt.savefig("{}/{}-alpha-posterior.png".format(plotDir,name),format='png') plt.clf() else: plt.show() plt.hist(S14_,bins=binning) plt.xlabel(r"$S_{\rm 1.4GHz}[mJy]$") plt.ylabel(r"Count") plt.title("S14") if plotDir is not None: plt.savefig("{}/{}-S14-posterior.png".format(plotDir,name),format='png') plt.clf() else: plt.show() plt.hist(np.log10(S14_),bins=binning) plt.xlabel(r"$\log_{10}{S_{\rm 1.4GHz}[mJy]}$") plt.ylabel(r"Count") plt.title("log(S14)") if plotDir is not None: plt.savefig("{}/{}-logS14-posterior.png".format(plotDir,name),format='png') plt.clf() else: plt.show() print("---------") print("Results for source {}".format(name)) print("Max Likelihood: {}".format(maxL)) print("alpha: {} +- {}".format(alpha,std_alpha)) print("MAP alpha: {}".format(alphaMAP)) print("S14: {} + {} - {} mJy".format(S14,S14u,S14l)) print("MAP S14: {} mJy".format(S14MAP)) for fi in range(len(nuModel)): mu = S_post_mu[fi] up = S_post_up[fi] low = S_post_low[fi] print("(lognormal) S{}MHz: {} + {} - {} mJy".format(int(nuModel[fi]/1e6),mu,up,low)) print("(lognormal) P14: {} + {} - {} mJy".format(P14_post_mu, P14_post_up, P14_post_low)) #plot the Gassuan model and data if plot: plt.errorbar(nu, S, yerr=np.sqrt(CdCt), fmt='x',label='data') plt.errorbar(nuModel, S_post_mu, yerr=[S_post_up,S_post_low], fmt='--o',label='model') plt.xlabel(r"$\nu$ [Hz]") plt.ylabel(r"$S(\nu)$ [mJy]") #plt.plot(nu,S_map,label='map') #plt.errorbar(nu, S_model, yerr=CdCt[idx,mask], fmt='--o') plt.legend() points = [] for j in range(len(nuModel)): points.append((nuModel[j],S_post_mu[j] + S_post_up[j])) #points.append((nuModel[j],S_post_mu[j] - S_post_low[j])) for j in range(len(nuModel)): #points.append((nuModel[j],S_post_mu[j] + S_post_up[j])) points.append((nuModel[-j-1],S_post_mu[-j-1] - S_post_low[-j-1])) plt.gca().add_collection(PatchCollection([Polygon(points,True)],alpha=0.4)) plt.yscale('log') plt.xscale('log') if plotDir is not None: plt.savefig("{}/{}-fluxes-posterior.png".format(plotDir,name),format='png') plt.clf() else: plt.show() print("--------") return alpha,std_alpha,S14,S14u,S14l,S_post_mu,S_post_up,S_post_low,P14_post_mu,P14_post_up,P14_post_low if __name__ == '__main__': names = ['C1+2','NW1','NW2','H','E','X1','X2','S'] nu = np.array([147.667e6,322.667e6,608.046e6]) rms = np.array([1.4e-3,120e-6,90e-6])*1e3 beams = np.array([43.3*18.9,17.5*9.5,7.2*4.9])*np.pi/4./np.log(2.) print("Beams: {} (arcsec^2)".format(beams)) pixels = np.array([5.25**2,2**2,1.25**2]) print("px/beam: {} (pixels)".format(beams/pixels)) print("Uncertainty per px: {} mJy".format(rms*np.sqrt(pixels/beams))) #measurement mask detectionMask = np.bitwise_not(np.array([[0,0,0], [0,0,0], [0,0,0], [0,0,0], [0,0,0], [0,0,0], [0,0,0], [0,0,0]],dtype=np.bool)) #measurements S = np.array([[ 66.034 , 7.653 , 4.241 ], [ 159.14 , 62.206 , 45.998 ], [ 147.575 , 77.056 , 46.834 ], [ 10.40630611, 3.98776452, 1.16477836], [ 57.346 , 22.343 , 7.6797 ], [ 40.672 , 4.556 , 0.48076422], [ 9.45811655, 5.508 , 4.426 ], [ 32.342 , 15.314 , 9.277 ]],dtype=np.double) std_d = np.array([[ 6.58200000e+00, 2.94200000e-01, 3.12511200e-01], [ 7.85100000e+00, 3.86200000e-01, 1.05200000e-01], [ 8.11100000e+00, 3.54800000e-01, 3.58600000e-01], [ 1.34408838e+00, 2.55608364e-01, 4.16152840e-01], [ 7.16500000e+00, 3.11300000e-01, 2.90741019e-04], [ 7.82100000e+00, 2.09200000e-01, 8.90090959e-02], [ 1.40738833e+00, 2.27200000e-01, 2.34200000e-01], [ 8.07500000e+00, 2.77200000e-01, 3.67694221e-01]],dtype=np.double) S = np.array([[66.034,7.653,2.357 + 1.884],#c12 [159.140,62.206,45.998],#nw1 [147.575,77.056,46.834],#nw2 [648.7*pixels[0]/beams[0],324.8*pixels[1]/beams[1],76.31*pixels[2]/beams[2]],#h [57.346,22.343,(7.619+6.07E-2)],#e [40.672,4.556,12.3*pixels[2]/beams[2]],#x1 [318.2*pixels[0]/beams[0],5.508,4.426],#x2 [32.342,15.314,3.744+5.533]],dtype=np.double)#s std_d = np.array([[6.582,2.942E-1,np.sqrt(2.086E-1**2 + 2.327E-1**2)],#c12 [7.851,3.862E-1,1.052E-1],#nw1 [8.111,3.548E-1,3.586E-1],#nw2 [rms[0]*np.sqrt(937.1/beams[0]),rms[1]*np.sqrt(928./beams[1]),rms[2]*np.sqrt(925./beams[2])],#h [7.165,3.113E-1,np.sqrt(1.845E-4**2 + 2.247E-4**2)],#e [7.821,2.092E-1,rms[2]*np.sqrt(39.1/beams[2])],#x1 [rms[0]*np.sqrt(937.1/beams[0]),2.272E-1,2.342E-1],#x2 [8.075,2.772E-1,np.sqrt(1.900E-1**2 + 3.148E-1**2)]],dtype=np.double)#s Cd = std_d**2 Ct = (S*0.15)**2 CdCt = Cd + Ct #previous estimates #alpha0 = np.array([-2.5501,-0.8804,-0.8458, -1.4624, -0.1102, -0.8988, -0.3312, -0.7236],dtype=np.double) #S140 = np.array([0.4034,20.5293, 23.2775, 0.113, 13.2874, 1.1842, 3.0169, 6.2674],dtype=np.double) #P0 = np.array([0.4,13,15,2.1,5.7,0.9,2.3,3.7],dtype=np.double) #samples m = S.shape[0] #posterior moments alpha = np.zeros(m,dtype=np.double) std_alpha = np.zeros(m,dtype=np.double) S14 = np.zeros(m,dtype=np.double) S14u = np.zeros(m,dtype=np.double) S14l = np.zeros(m,dtype=np.double) P14 = np.zeros(m,dtype=np.double) P14u = np.zeros(m,dtype=np.double) P14l = np.zeros(m,dtype=np.double) S_post_mu = np.zeros([m,3],dtype=np.double) S_post_up = np.zeros([m,3],dtype=np.double) S_post_low = np.zeros([m,3],dtype=np.double) idx = 0 while idx < m: mask = detectionMask[idx,:] alpha_,std_alpha_,S14_,S14u_,S14l_, S_post_mu_,S_post_up_,S_post_low_,P14_post_mu_,P14_post_up_,P14_post_low_ = MHSolveSpectealIndex(nu[mask],S[idx,mask], Cd[idx,mask],Ct[idx,mask], names[idx],0.516,0.002,nuModel=nu,plot=True, plotDir='spectral-figs') alpha[idx] = alpha_ std_alpha[idx] = std_alpha_ S14[idx] = S14_ S14u[idx] = S14u_ S14l[idx] = S14l_ S_post_mu[idx,:] = S_post_mu_ S_post_up[idx,:] = S_post_up_ S_post_low[idx,:] = S_post_low_ P14[idx] = P14_post_mu_ P14u[idx] = P14_post_up_ P14l[idx] = P14_post_low_ idx += 1 i = 0 while i < len(alpha): print(r"{} & ${:.2g} \pm {:.2g}$ & ${:.2g} \pm {:.2g}$ & ${:.2g} \pm {:.2g}$ & ${:.2g} \pm {:.2g}$ & ${:.2g}^{{{:.2g}}}_{{{:.2g}}}$ & ${:.2g}^{{{:.2g}}}_{{{:.2g}}}$\\".format(names[i], S[i,0],np.sqrt(CdCt[i,0]), S[i,1],np.sqrt(CdCt[i,1]), S[i,2],np.sqrt(CdCt[i,2]), alpha[i],std_alpha[i], S14[i],S14u[i],S14l[i], P14[i],P14u[i],P14l[i])) i += 1 f, axs = plt.subplots(4,2,sharex=True,figsize=(11,11)) cols= 2 rows = 4 i=0 while i < len(alpha): #i = row*2 + col col = i%cols row = (i - col)//cols if rows == 1: if cols == 1: ax = axs else: ax = axs[col] else: ax = axs[row][col] mask = detectionMask[i,:] mask[:] = True ax.errorbar(nu[mask], S[i,mask], yerr=np.sqrt(CdCt[i,mask]), fmt='x',label='data') ax.errorbar(nu, S_post_mu[i,:], yerr=[S_post_up[i,:],S_post_low[i,:]], fmt='--o',label='model') points = [] for j in range(len(nu)): points.append((nu[j],S_post_mu[i,j] + S_post_up[i,j])) #points.append((nuModel[j],S_post_mu[j] - S_post_low[j])) for j in range(len(nu)): #points.append((nuModel[j],S_post_mu[j] + S_post_up[j])) points.append((nu[-j-1],S_post_mu[i,-j-1] - S_post_low[i,-j-1])) ax.add_collection(PatchCollection([Polygon(points,True)],alpha=0.4)) #ax.set_ylim([]) ax.set_yscale('log') ax.set_xscale('log') ylims = list(ax.get_ylim()) ylims[0] = 10**(np.floor(np.log10(ylims[0]))) ylims[1] = 10**(np.ceil(np.log10(ylims[1]))) print(ylims) ax.set_ylim(ylims) ax.set_xticks([])#('right') ax.set_xticklabels([]) if col==1: ax.yaxis.set_label_position('right') i += 1 #axs[-1][0].set_xlabel(r'$\nu$ [Hz]') #axs[-1][1].set_xlabel(r'$\nu$ [Hz]') #axs[4>>1][0].set_ylabel(r'$S(\nu)$ [mJy]') f.subplots_adjust(hspace=0,wspace=0) plt.setp([ax.get_xticklabels() for ax in f.axes],visible=False) plt.setp([ax.get_yticklabels() for ax in f.axes],visible=False) plt.show() # In[ ]: def plotSpectrum(nu,S,CdCt,S_post_mu,S_post_up,S_post_low, mask, ax): ax.errorbar(nu[mask], S[mask], yerr=np.sqrt(CdCt[mask]), fmt='x',label='data') #ax.errorbar(nu, S_post_mu, yerr=[S_post_up,S_post_low], fmt='--o',label='model') ax.plot(nu, S_post_mu, ls='--',label='model') points = [] for j in range(len(nu)): points.append((nu[j],S_post_mu[j] + S_post_up[j])) #points.append((nuModel[j],S_post_mu[j] - S_post_low[j])) for j in range(len(nu)): #points.append((nuModel[j],S_post_mu[j] + S_post_up[j])) points.append((nu[-j-1],S_post_mu[-j-1] - S_post_low[-j-1])) ax.add_collection(PatchCollection([Polygon(points,True)],alpha=0.4)) #ax.set_ylim([]) ax.set_yscale('log') ax.set_xscale('log') ylims = list(ax.get_ylim()) ylims[0] = 10**(np.floor(np.log10(ylims[0]))) ylims[1] = 10**(np.ceil(np.log10(ylims[1]))) ax.set_ylim(ylims) ax.set_xticks([])#('right') ax.set_xticklabels([]) f, axs = plt.subplots(4,2,sharex=True,figsize=(11,11)) cols= 2 rows = 4 i=0 while i < len(alpha): #i = row*2 + col col = i%cols row = (i - col)//cols if rows == 1: if cols == 1: ax = axs else: ax = axs[col] else: ax = axs[row][col] #plt.figure() #ax = plt.subplot(111) mask = detectionMask[i,:] mask[:] = True plotSpectrum(np.append(nu,1400e6),np.append(S[i,:],0),np.append(CdCt[i,:],0),np.append(S_post_mu[i,:],S14[i]), np.append(S_post_up[i,:],S14u[i]),np.append(S_post_low[i,:],S14l[i]),np.append(mask,False), ax) if col==1: ax.yaxis.set_label_position('right') i += 1 #axs[-1][0].set_xlabel(r'$\nu$ [Hz]') #axs[-1][1].set_xlabel(r'$\nu$ [Hz]') #axs[4>>1][0].set_ylabel(r'$S(\nu)$ [mJy]') f.subplots_adjust(hspace=0,wspace=0) #plt.setp([ax.get_xticklabels() for ax in f.axes],visible=False) #plt.setp([ax.get_yticklabels() for ax in f.axes],visible=False) plt.show() # In[ ]:
3c42675b2801430204bd563ea33ea0d5e27554ea
a9ca47eddea033e7d3ea530ee62dc3c70c07702e
/leet_code717.py
86293c99210bdf282c0023bf9c2d4ddcf4177cab
[]
no_license
tejamupparaju/LeetCode_Python
94d5eb80ea038dfdfc6ce5e8d833af9404215f01
6e4894c2d80413b13dc247d1783afd709ad984c8
refs/heads/master
2021-01-22T05:33:58.443569
2018-11-05T18:00:42
2018-11-05T18:00:42
81,676,499
2
0
null
null
null
null
UTF-8
Python
false
false
1,270
py
""" 717. 1-bit and 2-bit Characters We have two special characters. The first character can be represented by one bit 0. The second character can be represented by two bits (10 or 11). Now given a string represented by several bits. Return whether the last character must be a one-bit character or not. The given string will always end with a zero. Example 1: Input: bits = [1, 0, 0] Output: True Explanation: The only way to decode it is two-bit character and one-bit character. So the last character is one-bit character. Example 2: Input: bits = [1, 1, 1, 0] Output: False Explanation: The only way to decode it is two-bit character and two-bit character. So the last character is NOT one-bit character. Note: 1 <= len(bits) <= 1000. bits[i] is always 0 or 1. Companies Quora """ # MOWN # everytime we hit 1 we update a flag class Solution(object): def isOneBitCharacter(self, bits): """ :type bits: List[int] :rtype: bool """ result = two = False for num in bits: if not two: if num == 0: result = True else: two = True result = False else: two = False return result
8f9f30d6831cde1e4fcbf7f239ea70d1b594ea72
d554b1aa8b70fddf81da8988b4aaa43788fede88
/5 - Notebooks e Data/1 - Análises numéricas/Arquivos David/Atualizados/logDicas-master/data/2019-1/224/users/4378/codes/1734_2506.py
469f436519bd3fef7d7fc8e98ac992cba7f1f7a7
[]
no_license
JosephLevinthal/Research-projects
a3bc3ca3b09faad16f5cce5949a2279cf14742ba
60d5fd6eb864a5181f4321e7a992812f3c2139f9
refs/heads/master
2022-07-31T06:43:02.686109
2020-05-23T00:24:26
2020-05-23T00:24:26
266,199,309
1
0
null
null
null
null
UTF-8
Python
false
false
343
py
q_inicial=int(input("quantidade inicial: ")) perc=float(input("percentual de crescimento: ")) quant=int(input("quantidade de pirarucus retirados: ")) perc=perc/100 t=0 while(0<=q_inicial <=12000): q_inicial=(q_inicial+q_inicial*perc)-quant t=t+1 if(q_inicial<=0): print("EXTINCAO") print(t) if(q_inicial>=12000): print("LIMITE") print(t)
461f66f089b405e1c9d10bf004d48db54981b2e5
4ca44b7bdb470fcbbd60c2868706dbd42b1984c9
/21.05.09/SWEA_1208.py
739beb273d68e6696bc62fdfc2ef56bb16859b3f
[]
no_license
titiman1013/Algorithm
3b3d14b3e2f0cbc4859029eb73ad959ec8778629
8a67e36931c42422779a4c90859b665ee468255b
refs/heads/master
2023-06-29T17:04:40.015311
2021-07-06T01:37:29
2021-07-06T01:37:29
242,510,483
2
0
null
null
null
null
UTF-8
Python
false
false
351
py
import sys; sys.stdin = open('1208.txt', 'r') for tc in range(1, 11): N = int(input()) arr = list(map(int, input().split())) for i in range(N): if arr.count(max(arr)) >= len(arr) - 1: break arr[arr.index(max(arr))] -= 1 arr[arr.index(min(arr))] += 1 answer = max(arr) - min(arr) print(f'#{tc} {answer}')
f6c50cffa088f6323d15a6017b52e49948b80c58
00c9022edb984b68f0a6b1df9ba15d62d79ec62e
/src/chapter3/exercise7.py
674b706737ef6f39bf866101b9d8972467bc2342
[ "MIT" ]
permissive
Group3BCS1/BCS-2021
c037bcc86193ac1c773fc9d402ef9d95a4d1276d
b8ee8f900e3fd23822844e10fb2c6475a4f3400a
refs/heads/main
2023-06-03T08:19:24.035239
2021-06-18T07:42:49
2021-06-18T07:42:49
349,341,077
0
2
MIT
2021-03-19T07:45:39
2021-03-19T07:45:38
null
UTF-8
Python
false
false
863
py
try: location = input("enter location: ") location = location.upper() # this converts the user's string to uppercase pay = float(input('enter pay: ')) if location == 'MBARARA' and pay > 4000000: print('I WILL TAKE THE JOB') elif location == 'MBARARA' and pay <= 4000000: print('SORRY, I CAN NOT WORK FOR THAT') elif location == 'KAMPALA' and pay > 10000000: print('I WILL DEFINITELY WORK') elif location == 'KAMPALA' and pay <= 10000000: print('NO WAY !') elif location == 'SPACE' and pay >= 0: print('WITHOUT DOUBT, I WILL TAKE IT') elif pay >= 6000000: # x==other districts and y>=6000000 print('I will surely work') else: print('No thanks, I can find something better') except: print('invalid entry') # this is printed when the user enters an invalid input
6f2d0035b27900c2f7fc843139b6b74c96b2bf51
ae2c2bdf3aba6b5bd0753778be1991f968e689ec
/dotbiz/migrations/0031_uploadedfile_file_name.py
86e1abecbb628ab31cbfd47120129aac6079d12d
[]
no_license
bintangx1902/clone_biz
7cd5ce56073ebd7627c93bb1608de10177a33dfd
80ee7b04aaff167001f5cbd9307bd3f487d3919c
refs/heads/main
2023-08-24T10:53:18.590655
2021-10-25T06:32:28
2021-10-25T06:32:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
410
py
# Generated by Django 3.1.4 on 2020-12-30 15:39 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('dotbiz', '0030_uploadedfile'), ] operations = [ migrations.AddField( model_name='uploadedfile', name='file_name', field=models.CharField(blank=True, max_length=255, null=True), ), ]
6bbddf9120b6877356513aa49b8ece59f6e330f0
f48778b953c76cfb0039735094eb2246d6e56177
/graphs/enhanced_qos/experiment_rssi/plot_association.py
a8ac4e20efc2706cfee98114ffb05ca5c8729634
[]
no_license
phisolani/wifi_monitoring
36826c52a00cf79d71f93c4acd0dc8b6d56ff934
06c62e625d395e4f179b9fef95318a746fee1786
refs/heads/master
2021-06-07T02:53:59.832752
2021-04-09T09:36:37
2021-04-09T09:36:37
142,306,383
2
0
null
null
null
null
UTF-8
Python
false
false
508
py
#!/usr/bin/env python __author__ = "Daniel Kulenkamp" __copyright__ = "Copyright 2020, QoS-aware WiFi Slicing" __license__ = "GPL" __version__ = "1.0" __maintainer__ = "Daniel Kulenkamp" __email__ = "[email protected]" __status__ = "Prototype" " Python script for testing association plot" from graphs.enhanced_qos.association_graph import * make_association_graph( experiment_path='workload/experiment_2/gomez/association/', filenames=['ap_1_association', 'ap_2_association', 'ap_3_association'] )
da866e6ea6f4eb4518bbc5ec3a0d9a1479af131e
c3c8b7779381c37a97c7176947f175a1168b6149
/instrument/generate_port_agent_config.py
95920fcfc744e6aff2b2d762f9af8f11f88e0f0a
[]
no_license
ronkyo/ooi-tools
9f7e51dc6fbc8fc5d77d91d3523f4342e957f8e1
36034ae3f950ff7c585363c6cc07f8a51549185d
refs/heads/master
2021-01-21T03:54:24.522565
2015-04-27T23:22:23
2015-04-28T20:52:01
25,649,899
0
0
null
null
null
null
UTF-8
Python
false
false
2,645
py
#!/usr/bin/env python """ generate_port_agent_config.py Generate port agent configuration files and a supervisord file from CSV input Usage: generate_port_agent_config.py <path> <name> <csv_file> """ import shutil import jinja2 import os import docopt from csv import DictReader loader = jinja2.FileSystemLoader(searchpath="templates") env = jinja2.Environment(loader=loader, trim_blocks=True, lstrip_blocks=True) pa_template = env.get_template('pa_config.jinja') super_template = env.get_template('supervisord.jinja') def prep_dir(path, name): configdir = os.path.join(path, 'configs') configfile = os.path.join(path, '%s.conf' % name) if os.path.exists(path): if not os.path.isdir(path): raise Exception('path matches existing file, looking for directory') if os.path.exists(configdir): shutil.rmtree(configdir) if os.path.exists(configfile): os.remove(configfile) os.makedirs(configdir) def create_pa_dict(csv_file): pa_dict = {} with open(csv_file) as fh: for row in DictReader(fh): name = create_pa_name(row) if name is not None: pa_dict[name] = row return pa_dict def create_pa_name(pa_dict): if any([pa_dict['instrument'] == '', pa_dict['refdes'] == '']): return None return '%s_%s' % (pa_dict['instrument'], pa_dict['refdes']) def create_pa_config(pa_dict): return pa_template.render(**pa_dict) def create_pa_configs(pa_dict): pa_configs = {} for name in pa_dict: config = create_pa_config(pa_dict[name]) pa_configs[name] = config return pa_configs def create_supervisord_config(name, pa_dict): groups = {} for name in pa_dict: each = pa_dict[name] group = each['group'] groups.setdefault(group, []).append(name) return super_template.render(name=name, groups=groups) def write(path, name, supervisord_config, pa_configs): with open(os.path.join(path, '%s.conf' % name), 'wb') as fh: fh.write(supervisord_config) for pa_name in pa_configs: with open(os.path.join(path, 'configs', '%s.conf' % pa_name), 'wb') as fh: fh.write(pa_configs[pa_name]) def main(): options = docopt.docopt(__doc__) path = options['<path>'] name = options['<name>'] csv_file = options['<csv_file>'] prep_dir(path, name) pa_dict = create_pa_dict(csv_file) pa_configs = create_pa_configs(pa_dict) supervisord_config = create_supervisord_config(name, pa_dict) write(path, name, supervisord_config, pa_configs) if __name__ == '__main__': main()
5b545d841152235d7e1f5f4957a3721084e203b0
8d6f73af697f56834e8cef88876be78a360190d9
/flaskblog/users/forms.py
73112b0e9cadba5151b9b28e081593b41fb3d9b2
[]
no_license
Sukhrobjon/flask-blog
7a837f3454263f69935d88cc3c73858a2848c22c
357b311efd32f3537fce9f84ecbadd0835aac524
refs/heads/master
2020-04-18T10:49:58.829788
2019-02-25T23:28:14
2019-02-25T23:28:14
167,480,195
1
0
null
null
null
null
UTF-8
Python
false
false
3,654
py
from flask_wtf import FlaskForm from flask_wtf.file import FileField, FileAllowed from wtforms import StringField, PasswordField, SubmitField, BooleanField from wtforms.validators import DataRequired, Length, Email, EqualTo, ValidationError from flask_login import current_user from flaskblog.models import User class RegistrationForm(FlaskForm): username = StringField('Username', validators=[DataRequired(), Length(min=2, max=20)]) email = StringField('Email', validators=[DataRequired(), Email()]) password = PasswordField('Password', validators=[DataRequired()]) confirm_password = PasswordField('Confirm Password', validators=[DataRequired(), EqualTo('password')]) submit = SubmitField('Sign Up') def validate_username(self, username): ''' Raise ValidationError if username exists in database alreay ''' user = User.query.filter_by(username=username.data).first() if user: raise ValidationError( 'This username is taken! Please choose different one') def validate_email(self, email): ''' Raise ValidationError if email exists in database already ''' user = User.query.filter_by(email=email.data).first() if user: raise ValidationError( 'This email is taken! Please choose different one') class LoginForm(FlaskForm): email = StringField('Email', validators=[DataRequired(), Email()]) password = PasswordField('Password', validators=[DataRequired()]) remember = BooleanField('Remember Me') submit = SubmitField('Login') class UpdateAccountForm(FlaskForm): username = StringField('Username', validators=[DataRequired(), Length(min=2, max=20)]) email = StringField('Email', validators=[DataRequired(), Email()]) picture = FileField('Update profile picture', validators=[ FileAllowed(['jpg', 'png'])]) submit = SubmitField('Update Account') def validate_username(self, username): ''' Raise ValidationError if username exists in database alreay ''' if username.data != current_user.username: user = User.query.filter_by(username=username.data).first() if user: raise ValidationError( 'This username is taken! Please choose different one') def validate_email(self, email): ''' Raise ValidationError if email exists in database alreay ''' if email.data != current_user.email: user = User.query.filter_by(email=email.data).first() if user: raise ValidationError( 'This email is taken! Please choose different one') class RequestResetForm(FlaskForm): email = StringField('Email', validators=[DataRequired(), Email()]) submit = SubmitField('Request Password Reset') def validate_email(self, email): ''' Raise ValidationError if email exists in database alreay ''' user = User.query.filter_by(email=email.data).first() if user is None: raise ValidationError( 'There is no account associated with this email. You must register first.') class ResetPasswordForm(FlaskForm): password = PasswordField('Password', validators=[DataRequired()]) confirm_password = PasswordField('Confirm Password', validators=[DataRequired(), EqualTo('password')]) submit = SubmitField('Reset Password')
bd65812cfdd6ab3cd0e5706f3851f79bf3fe9fda
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02803/s706884747.py
68d1a7bdccac1d1136b3fdc1c6c24530314347e6
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
1,575
py
import numpy as np H, W = map(int, input().split()) map_lis = [input() for i in range(H)] ans = 0 def prob(x,y,h,w): if 0<=x<h and 0<=y<w: return True else: return False def count(x,y,lis): if not lis[x][y]: return True else: return False def maze(x,y,lis): if lis[x][y] == ".": return True else: return False for i in range(H): for j in range(W): k = 0 count_lis = np.zeros((H,W)) num_lis = [[] for i in range(1000)] if maze(i,j,map_lis): count_lis[i][j] = 1 num_lis[0].append([i,j]) while True: for l in num_lis[k]: if prob(l[0]-1,l[1],H,W) and count(l[0]-1,l[1],count_lis) and maze(l[0]-1,l[1],map_lis): num_lis[k+1].append([l[0]-1,l[1]]) count_lis[l[0]-1][l[1]] = 1 if prob(l[0],l[1]-1,H,W) and count(l[0],l[1]-1,count_lis) and maze(l[0],l[1]-1,map_lis): num_lis[k+1].append([l[0],l[1]-1]) count_lis[l[0]][l[1]-1] = 1 if prob(l[0]+1,l[1],H,W) and count(l[0]+1,l[1],count_lis) and maze(l[0]+1,l[1],map_lis): num_lis[k+1].append([l[0]+1,l[1]]) count_lis[l[0]+1][l[1]] = 1 if prob(l[0],l[1]+1,H,W) and count(l[0],l[1]+1,count_lis) and maze(l[0],l[1]+1,map_lis): num_lis[k+1].append([l[0],l[1]+1]) count_lis[l[0]][l[1]+1] = 1 new_ans = 0 for m in num_lis[1:]: if m != []: new_ans += 1 if m == []: break ans = max(ans, new_ans) k += 1 if num_lis[k] == []: break print(ans)
098e437846ce6912a30c7c1604db09a0b6f8e608
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/87/usersdata/190/59803/submittedfiles/contido.py
665f253469da7a4df1c7e7b19b10513a1ca38f72
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
232
py
# -*- coding: utf-8 -*- n=int(input('digite o numero de elementos de a:')) m=int(input('digite o numero de elementos de b:')) a=[] b=[] for i in range(1,n+1,1): valor=float(input('digite o valor:')) a.append(valor) print(a)
8e2190e81d771f4be02cbe29247c7364b863a649
da1dbb0e1c8c323bbf7ba0eac43b5815ce075282
/python/ccxt/btcmarkets.py
17d7528793b07519dacb1addd93c125255c0cd09
[ "MIT" ]
permissive
alexander-dev-hub/ccxt
d339662d527bdf0d99380c61ccce233c4475d1a1
eba5dbe98cf106361c45cec9debda3d2722ea878
refs/heads/master
2022-07-10T05:03:35.809978
2019-09-02T19:10:10
2019-09-02T19:10:10
205,919,117
1
1
MIT
2022-06-22T15:56:21
2019-09-02T19:00:14
JavaScript
UTF-8
Python
false
false
24,692
py
# -*- coding: utf-8 -*- # PLEASE DO NOT EDIT THIS FILE, IT IS GENERATED AND WILL BE OVERWRITTEN: # https://github.com/ccxt/ccxt/blob/master/CONTRIBUTING.md#how-to-contribute-code from ccxt.base.exchange import Exchange import base64 import hashlib import math from ccxt.base.errors import ExchangeError from ccxt.base.errors import ArgumentsRequired from ccxt.base.errors import InvalidOrder from ccxt.base.errors import OrderNotFound from ccxt.base.errors import DDoSProtection class btcmarkets (Exchange): def describe(self): return self.deep_extend(super(btcmarkets, self).describe(), { 'id': 'btcmarkets', 'name': 'BTC Markets', 'countries': ['AU'], # Australia 'rateLimit': 1000, # market data cached for 1 second(trades cached for 2 seconds) 'has': { 'CORS': False, 'fetchOHLCV': True, 'fetchOrder': True, 'fetchOrders': True, 'fetchClosedOrders': 'emulated', 'fetchOpenOrders': True, 'fetchMyTrades': True, 'cancelOrders': True, }, 'urls': { 'logo': 'https://user-images.githubusercontent.com/1294454/29142911-0e1acfc2-7d5c-11e7-98c4-07d9532b29d7.jpg', 'api': { 'public': 'https://api.btcmarkets.net', 'private': 'https://api.btcmarkets.net', 'web': 'https://btcmarkets.net/data', }, 'www': 'https://btcmarkets.net', 'doc': 'https://github.com/BTCMarkets/API', }, 'api': { 'public': { 'get': [ 'market/{id}/tick', 'market/{id}/orderbook', 'market/{id}/trades', 'v2/market/{id}/tickByTime/{timeframe}', 'v2/market/{id}/trades', 'v2/market/active', ], }, 'private': { 'get': [ 'account/balance', 'account/{id}/tradingfee', 'fundtransfer/history', 'v2/order/open', 'v2/order/open/{id}', 'v2/order/history/{instrument}/{currency}/', 'v2/order/trade/history/{id}', 'v2/transaction/history/{currency}', ], 'post': [ 'fundtransfer/withdrawCrypto', 'fundtransfer/withdrawEFT', 'order/create', 'order/cancel', 'order/history', 'order/open', 'order/trade/history', 'order/createBatch', # they promise it's coming soon... 'order/detail', ], }, 'web': { 'get': [ 'market/BTCMarkets/{id}/tickByTime', ], }, }, 'timeframes': { '1m': 'minute', '1h': 'hour', '1d': 'day', }, 'exceptions': { '3': InvalidOrder, '6': DDoSProtection, }, }) def fetch_transactions(self, code=None, since=None, limit=None, params={}): self.load_markets() request = {} if limit is not None: request['limit'] = limit if since is not None: request['since'] = since response = self.privateGetFundtransferHistory(self.extend(request, params)) transactions = response['fundTransfers'] return self.parseTransactions(transactions, None, since, limit) def parse_transaction_status(self, status): # todo: find more statuses statuses = { 'Complete': 'ok', } return self.safe_string(statuses, status, status) def parse_transaction(self, item, currency=None): # # { # status: 'Complete', # fundTransferId: 1904311906, # description: 'ETH withdraw from [[email protected]] to Address: 0xF123aa44FadEa913a7da99cc2eE202Db684Ce0e3 amount: 8.28965701 fee: 0.00000000', # creationTime: 1529418358525, # currency: 'ETH', # amount: 828965701, # fee: 0, # transferType: 'WITHDRAW', # errorMessage: null, # lastUpdate: 1529418376754, # cryptoPaymentDetail: { # address: '0xF123aa44FadEa913a7da99cc2eE202Db684Ce0e3', # txId: '0x8fe483b6f9523559b9ebffb29624f98e86227d2660d4a1fd4785d45e51c662c2' # } # } # # { # status: 'Complete', # fundTransferId: 494077500, # description: 'BITCOIN Deposit, B 0.1000', # creationTime: 1501077601015, # currency: 'BTC', # amount: 10000000, # fee: 0, # transferType: 'DEPOSIT', # errorMessage: null, # lastUpdate: 1501077601133, # cryptoPaymentDetail: null # } # # { # "fee": 0, # "amount": 56, # "status": "Complete", # "currency": "BCHABC", # "lastUpdate": 1542339164044, # "description": "BitcoinCashABC Deposit, P 0.00000056", # "creationTime": 1542339164003, # "errorMessage": null, # "transferType": "DEPOSIT", # "fundTransferId": 2527326972, # "cryptoPaymentDetail": null # } # timestamp = self.safe_integer(item, 'creationTime') lastUpdate = self.safe_integer(item, 'lastUpdate') transferType = self.safe_string(item, 'transferType') cryptoPaymentDetail = self.safe_value(item, 'cryptoPaymentDetail', {}) address = self.safe_string(cryptoPaymentDetail, 'address') txid = self.safe_string(cryptoPaymentDetail, 'txId') type = None if transferType == 'DEPOSIT': type = 'deposit' elif transferType == 'WITHDRAW': type = 'withdrawal' else: type = transferType fee = self.safe_float(item, 'fee') status = self.parse_transaction_status(self.safe_string(item, 'status')) ccy = self.safe_string(item, 'currency') code = self.safe_currency_code(ccy) # todo: self logic is duplicated below amount = self.safe_float(item, 'amount') if amount is not None: amount = amount * 1e-8 return { 'id': self.safe_string(item, 'fundTransferId'), 'txid': txid, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'address': address, 'tag': None, 'type': type, 'amount': amount, 'currency': code, 'status': status, 'updated': lastUpdate, 'fee': { 'currency': code, 'cost': fee, }, 'info': item, } def fetch_markets(self, params={}): response = self.publicGetV2MarketActive(params) result = [] markets = self.safe_value(response, 'markets') for i in range(0, len(markets)): market = markets[i] baseId = self.safe_string(market, 'instrument') quoteId = self.safe_string(market, 'currency') id = baseId + '/' + quoteId base = self.safe_currency_code(baseId) quote = self.safe_currency_code(quoteId) symbol = base + '/' + quote # todo: refactor self fee = 0.0085 if (quote == 'AUD') else 0.0022 pricePrecision = 2 amountPrecision = 4 minAmount = 0.001 # where does it come from? minPrice = None if quote == 'AUD': if (base == 'XRP') or (base == 'OMG'): pricePrecision = 4 amountPrecision = -math.log10(minAmount) minPrice = math.pow(10, -pricePrecision) precision = { 'amount': amountPrecision, 'price': pricePrecision, } limits = { 'amount': { 'min': minAmount, 'max': None, }, 'price': { 'min': minPrice, 'max': None, }, 'cost': { 'min': None, 'max': None, }, } result.append({ 'info': market, 'id': id, 'symbol': symbol, 'base': base, 'quote': quote, 'baseId': baseId, 'quoteId': quoteId, 'active': None, 'maker': fee, 'taker': fee, 'limits': limits, 'precision': precision, }) return result def fetch_balance(self, params={}): self.load_markets() balances = self.privateGetAccountBalance(params) result = {'info': balances} for i in range(0, len(balances)): balance = balances[i] currencyId = self.safe_string(balance, 'currency') code = self.safe_currency_code(currencyId) multiplier = 100000000 total = self.safe_float(balance, 'balance') if total is not None: total /= multiplier used = self.safe_float(balance, 'pendingFunds') if used is not None: used /= multiplier account = self.account() account['used'] = used account['total'] = total result[code] = account return self.parse_balance(result) def parse_ohlcv(self, ohlcv, market=None, timeframe='1m', since=None, limit=None): multiplier = 100000000 # for price and volume return [ ohlcv[0], float(ohlcv[1]) / multiplier, float(ohlcv[2]) / multiplier, float(ohlcv[3]) / multiplier, float(ohlcv[4]) / multiplier, float(ohlcv[5]) / multiplier, ] def fetch_ohlcv(self, symbol, timeframe='1m', since=None, limit=None, params={}): self.load_markets() market = self.market(symbol) request = { 'id': market['id'], 'timeWindow': self.timeframes[timeframe], } if since is not None: request['since'] = since response = self.webGetMarketBTCMarketsIdTickByTime(self.extend(request, params)) return self.parse_ohlcvs(response['ticks'], market, timeframe, since, limit) def fetch_order_book(self, symbol, limit=None, params={}): self.load_markets() market = self.market(symbol) request = { 'id': market['id'], } response = self.publicGetMarketIdOrderbook(self.extend(request, params)) timestamp = self.safe_timestamp(response, 'timestamp') return self.parse_order_book(response, timestamp) def parse_ticker(self, ticker, market=None): timestamp = self.safe_timestamp(ticker, 'timestamp') symbol = None if market is not None: symbol = market['symbol'] last = self.safe_float(ticker, 'lastPrice') return { 'symbol': symbol, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'high': None, 'low': None, 'bid': self.safe_float(ticker, 'bestBid'), 'bidVolume': None, 'ask': self.safe_float(ticker, 'bestAsk'), 'askVolume': None, 'vwap': None, 'open': None, 'close': last, 'last': last, 'previousClose': None, 'change': None, 'percentage': None, 'average': None, 'baseVolume': self.safe_float(ticker, 'volume24h'), 'quoteVolume': None, 'info': ticker, } def fetch_ticker(self, symbol, params={}): self.load_markets() market = self.market(symbol) request = { 'id': market['id'], } response = self.publicGetMarketIdTick(self.extend(request, params)) return self.parse_ticker(response, market) def parse_trade(self, trade, market=None): timestamp = self.safe_timestamp(trade, 'timestamp') symbol = None if market is not None: symbol = market['symbol'] id = self.safe_string(trade, 'tid') price = self.safe_float(trade, 'price') amount = self.safe_float(trade, 'amount') cost = None if amount is not None: if price is not None: cost = amount * price return { 'info': trade, 'id': id, 'order': None, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'symbol': symbol, 'type': None, 'side': None, 'takerOrMaker': None, 'price': price, 'amount': amount, 'cost': cost, 'fee': None, } def fetch_trades(self, symbol, since=None, limit=None, params={}): self.load_markets() market = self.market(symbol) request = { # 'since': 59868345231, 'id': market['id'], } response = self.publicGetMarketIdTrades(self.extend(request, params)) return self.parse_trades(response, market, since, limit) def create_order(self, symbol, type, side, amount, price=None, params={}): self.load_markets() market = self.market(symbol) multiplier = 100000000 # for price and volume orderSide = 'Bid' if (side == 'buy') else 'Ask' request = self.ordered({ 'currency': market['quote'], }) request['currency'] = market['quote'] request['instrument'] = market['base'] request['price'] = int(price * multiplier) request['volume'] = int(amount * multiplier) request['orderSide'] = orderSide request['ordertype'] = self.capitalize(type) request['clientRequestId'] = str(self.nonce()) response = self.privatePostOrderCreate(self.extend(request, params)) id = self.safe_string(response, 'id') return { 'info': response, 'id': id, } def cancel_orders(self, ids, symbol=None, params={}): self.load_markets() for i in range(0, len(ids)): ids[i] = int(ids[i]) request = { 'orderIds': ids, } return self.privatePostOrderCancel(self.extend(request, params)) def cancel_order(self, id, symbol=None, params={}): self.load_markets() return self.cancel_orders([id]) def calculate_fee(self, symbol, type, side, amount, price, takerOrMaker='taker', params={}): market = self.markets[symbol] rate = market[takerOrMaker] currency = None cost = None if market['quote'] == 'AUD': currency = market['quote'] cost = float(self.cost_to_precision(symbol, amount * price)) else: currency = market['base'] cost = float(self.amount_to_precision(symbol, amount)) return { 'type': takerOrMaker, 'currency': currency, 'rate': rate, 'cost': float(self.fee_to_precision(symbol, rate * cost)), } def parse_my_trade(self, trade, market): multiplier = 100000000 timestamp = self.safe_integer(trade, 'creationTime') side = self.safe_float(trade, 'side') side = 'buy' if (side == 'Bid') else 'sell' # BTCMarkets always charge in AUD for AUD-related transactions. feeCurrencyCode = None symbol = None if market is not None: feeCurrencyCode = market['quote'] if (market['quote'] == 'AUD') else market['base'] symbol = market['symbol'] id = self.safe_string(trade, 'id') price = self.safe_float(trade, 'price') if price is not None: price /= multiplier amount = self.safe_float(trade, 'volume') if amount is not None: amount /= multiplier feeCost = self.safe_float(trade, 'fee') if feeCost is not None: feeCost /= multiplier cost = None if price is not None: if amount is not None: cost = price * amount orderId = self.safe_string(trade, 'orderId') return { 'info': trade, 'id': id, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'order': orderId, 'symbol': symbol, 'type': None, 'side': side, 'price': price, 'amount': amount, 'cost': cost, 'fee': { 'currency': feeCurrencyCode, 'cost': feeCost, }, } def parse_my_trades(self, trades, market=None, since=None, limit=None): result = [] for i in range(0, len(trades)): trade = self.parse_my_trade(trades[i], market) result.append(trade) return result def parse_order(self, order, market=None): multiplier = 100000000 side = 'buy' if (order['orderSide'] == 'Bid') else 'sell' type = 'limit' if (order['ordertype'] == 'Limit') else 'market' timestamp = self.safe_integer(order, 'creationTime') if market is None: market = self.market(order['instrument'] + '/' + order['currency']) status = 'open' if order['status'] == 'Failed' or order['status'] == 'Cancelled' or order['status'] == 'Partially Cancelled' or order['status'] == 'Error': status = 'canceled' elif order['status'] == 'Fully Matched' or order['status'] == 'Partially Matched': status = 'closed' price = self.safe_float(order, 'price') / multiplier amount = self.safe_float(order, 'volume') / multiplier remaining = self.safe_float(order, 'openVolume', 0.0) / multiplier filled = amount - remaining trades = self.parse_my_trades(order['trades'], market) numTrades = len(trades) cost = filled * price average = None lastTradeTimestamp = None if numTrades > 0: cost = 0 for i in range(0, numTrades): trade = trades[i] cost = self.sum(cost, trade['cost']) if filled > 0: average = cost / filled lastTradeTimestamp = trades[numTrades - 1]['timestamp'] id = self.safe_string(order, 'id') return { 'info': order, 'id': id, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'lastTradeTimestamp': lastTradeTimestamp, 'symbol': market['symbol'], 'type': type, 'side': side, 'price': price, 'cost': cost, 'amount': amount, 'filled': filled, 'remaining': remaining, 'average': average, 'status': status, 'trades': trades, 'fee': None, } def fetch_order(self, id, symbol=None, params={}): self.load_markets() ids = [int(id)] request = { 'orderIds': ids, } response = self.privatePostOrderDetail(self.extend(request, params)) numOrders = len(response['orders']) if numOrders < 1: raise OrderNotFound(self.id + ' No matching order found: ' + id) order = response['orders'][0] return self.parse_order(order) def create_paginated_request(self, market, since=None, limit=None): limit = 100 if (limit is None) else limit since = 0 if (since is None) else since request = self.ordered({ 'currency': market['quoteId'], 'instrument': market['baseId'], 'limit': limit, 'since': since, }) return request def fetch_orders(self, symbol=None, since=None, limit=None, params={}): if symbol is None: raise ArgumentsRequired(self.id + ': fetchOrders requires a `symbol` argument.') self.load_markets() market = self.market(symbol) request = self.create_paginated_request(market, since, limit) response = self.privatePostOrderHistory(self.extend(request, params)) return self.parse_orders(response['orders'], market) def fetch_open_orders(self, symbol=None, since=None, limit=None, params={}): if symbol is None: raise ArgumentsRequired(self.id + ': fetchOpenOrders requires a `symbol` argument.') self.load_markets() market = self.market(symbol) request = self.create_paginated_request(market, since, limit) response = self.privatePostOrderOpen(self.extend(request, params)) return self.parse_orders(response['orders'], market) def fetch_closed_orders(self, symbol=None, since=None, limit=None, params={}): orders = self.fetch_orders(symbol, since, limit, params) return self.filter_by(orders, 'status', 'closed') def fetch_my_trades(self, symbol=None, since=None, limit=None, params={}): if symbol is None: raise ArgumentsRequired(self.id + ': fetchMyTrades requires a `symbol` argument.') self.load_markets() market = self.market(symbol) request = self.create_paginated_request(market, since, limit) response = self.privatePostOrderTradeHistory(self.extend(request, params)) return self.parse_my_trades(response['trades'], market) def nonce(self): return self.milliseconds() def sign(self, path, api='public', method='GET', params={}, headers=None, body=None): uri = '/' + self.implode_params(path, params) url = self.urls['api'][api] + uri if api == 'private': self.check_required_credentials() nonce = str(self.nonce()) auth = None headers = { 'apikey': self.apiKey, 'timestamp': nonce, } if method == 'POST': headers['Content-Type'] = 'application/json' auth = uri + "\n" + nonce + "\n" # eslint-disable-line quotes body = self.json(params) auth += body else: query = self.keysort(self.omit(params, self.extract_params(path))) queryString = '' if query: queryString = self.urlencode(query) url += '?' + queryString queryString += "\n" # eslint-disable-line quotes auth = uri + "\n" + queryString + nonce + "\n" # eslint-disable-line quotes secret = base64.b64decode(self.secret) signature = self.hmac(self.encode(auth), secret, hashlib.sha512, 'base64') headers['signature'] = self.decode(signature) else: if params: url += '?' + self.urlencode(params) return {'url': url, 'method': method, 'body': body, 'headers': headers} def handle_errors(self, code, reason, url, method, headers, body, response, requestHeaders, requestBody): if response is None: return # fallback to default error handler if 'success' in response: if not response['success']: error = self.safe_string(response, 'errorCode') message = self.id + ' ' + self.json(response) if error in self.exceptions: ExceptionClass = self.exceptions[error] raise ExceptionClass(message) else: raise ExchangeError(message)
7f66de5ad7a64720048a36fbb2fe4e9553f4d762
cb57a9ea4622b94207d12ea90eab9dd5b13e9e29
/lc/python/0404_sum_of_left_leaves.py
8933e5d4e7cc50241ba77f57829793df8661ba7e
[]
no_license
boknowswiki/mytraning
b59585e1e255a7a47c2b28bf2e591aef4af2f09a
5e2f6ceacf5dec8260ce87e9a5f4e28e86ceba7a
refs/heads/master
2023-08-16T03:28:51.881848
2023-08-10T04:28:54
2023-08-10T04:28:54
124,834,433
1
0
null
null
null
null
UTF-8
Python
false
false
2,263
py
# binary tree and dfs # Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def sumOfLeftLeaves(self, root: Optional[TreeNode]) -> int: if not root: return 0 self.ret = 0 self.helper(root.left, True) self.helper(root.right, False) return self.ret def helper(self, node, is_left): if not node: return if is_left and node.left is None and node.right is None: self.ret += node.val return self.helper(node.left, True) self.helper(node.right, False) return # binary tree and bfs # time O(n) # space O(n) # Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def sumOfLeftLeaves(self, root: Optional[TreeNode]) -> int: ret = 0 if not root: return ret q = collections.deque([root]) while q: cur = q.popleft() if cur.left and cur.left.left is None and cur.left.right is None: ret += cur.left.val if cur.left: q.append(cur.left) if cur.right: q.append(cur.right) return ret # binary tree and dfs # time O(n) # space O(1) # Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def sumOfLeftLeaves(self, root: Optional[TreeNode]) -> int: self.ret = 0 self.helper(root, False) return self.ret def helper(self, node, is_left): if not node: return if node.left == None and node.right == None and is_left: self.ret += node.val self.helper(node.left, True) self.helper(node.right, False) return
a5693d14d44e83141c8b81ec18c896a2cc1e4a0d
5842d17a6c85f7e135609fc9e9951978ad42e6a5
/app/migrations/0015_userprofile_tz.py
cfecfa463d489995a488b33d945bc7b61d423689
[]
no_license
projectdata8thsem/lctva
ca95f56b8f3ceaffe6ef724fddcde2f3edb37e30
71522cd65451cc52f65eed2033f4ae2bac52040f
refs/heads/master
2020-04-07T06:03:45.380412
2016-10-11T20:05:34
2016-10-11T20:05:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
458
py
# -*- coding: utf-8 -*- # Generated by Django 1.9.1 on 2016-01-07 03:21 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('app', '0014_auto_20160102_1636'), ] operations = [ migrations.AddField( model_name='userprofile', name='tz', field=models.CharField(blank=True, max_length=100), ), ]
e647def5e76581edc66f86e284a7583b0c68c1e2
c32809922bbdb8bef698f9979999187a30823d8f
/setup.py
a5da1976c5aad387385a747d3276c2692a26520b
[ "MIT" ]
permissive
mattdennewitz/pat
6f98cc19ed7d647dac27ffee6d434fac0be63107
782ebf29a75ab9b35d45fc11d2eb7a50fa2f611b
refs/heads/master
2020-04-01T18:45:35.721013
2016-07-27T05:35:20
2016-07-27T05:35:20
64,279,791
0
0
null
null
null
null
UTF-8
Python
false
false
741
py
#!/usr/bin/env python import os from setuptools import setup, find_packages import pip.download from pip.req import parse_requirements reqs_txt = os.path.join(os.path.dirname(__file__), 'requirements.txt') pip_reqs = parse_requirements(reqs_txt, session=pip.download.PipSession()) pip_reqs = [str(obj.req) for obj in pip_reqs] setup( name = 'pat', version = '0.1.0', description = ( 'CLI for testing Xpath and CSS queries on HTML documents' ), author = 'Matt Dennewitz', author_email = '[email protected]', url = 'https://github.com/mattdennewitz/pat', install_requires = pip_reqs, include_package_data=True, packages = find_packages(), scripts = [ 'bin/pat' ], )
0182379e6cb385585af008abaae27b6f33a00cb1
cbd2f3db68ec311e0d40f5281111bc3a8f200115
/modelo/bookings/api/urls.py
ef95c12cefbd96832bd4ab68b6f9dfb1c5b4e6b3
[]
no_license
CoutinhoElias/fullcalendar
fceff2dfae07508f02ceabf0247bac2da4528224
4553828cd1dd20f15a139bf535060b9cee27d3f1
refs/heads/master
2020-03-09T20:28:53.020188
2018-04-25T20:35:37
2018-04-25T20:35:37
128,986,130
0
0
null
null
null
null
UTF-8
Python
false
false
1,033
py
from django.conf.urls import url from django.contrib import admin from modelo.bookings.api.serializers import BookingListFeriadoSerializer app_name = 'bookings-api' from .views import ( PostListAPIView, PostListFeriadoAPIView, PostDetailAPIView, PostDeleteAPIView, PostUpdateAPIView, PostCreateAPIView, PostList2APIView, PostUpdate2APIView) urlpatterns = [ url(r'^$', PostListAPIView.as_view(), name='listapi'), url(r'^(?P<pk>\d+)/$',PostDetailAPIView.as_view(),name='detail'), url(r'^(?P<pk>\d+)/delete/$',PostDeleteAPIView.as_view(),name='delete'), url(r'^(?P<pk>\d+)/edit/$',PostUpdateAPIView.as_view(),name='update'), url(r'^create/$', PostCreateAPIView.as_view(), name='create'), url(r'^feriado/$', PostListFeriadoAPIView.as_view(), name='feriado'), #url(r'^(?P<slug>[\W-]+)/$',PostDetailAPIView.as_view(),name='detail') url(r'^list/$', PostList2APIView.as_view(), name='listapi2'), url(r'^(?P<pk>\d+)/edita/$', PostUpdate2APIView.as_view(), name='update2'), ]
5e259794546b32d33fda459110047e2905c88230
382e1f0fe6349c9c65aeb369114f739ac7b099c6
/apps/launchie/admin.py
8c7d468ff4b88caa0c6a5c0c4d5425f0b32acd71
[]
no_license
iambibhas/lpad
e2350af49ab049aa9627750a8921eceee770446f
7205791c743cd27f5f7cdb7bb091e4bcde42b0d4
refs/heads/master
2020-05-16T22:23:46.528044
2012-03-01T21:38:45
2012-03-01T21:38:45
3,564,279
0
0
null
null
null
null
UTF-8
Python
false
false
99
py
from django.contrib import admin from launchie.models import Project admin.site.register(Project)
0266435bf4f57fd88ee473e431c5d9eff7fce795
49536aafb22a77a6caf249c7fadef46d63d24dfe
/tensorflow/tensorflow/contrib/learn/python/learn/estimators/__init__.py
bb9f7f894f49a611d744418418bbce85167cbf4c
[ "Apache-2.0" ]
permissive
wangzhi01/deeplearning-1
4e5ad93f0d9ecd302b74352f80fe1fa6ae70bf0d
46ab82253d956953b8aa98e97ceb6cd290e82288
refs/heads/master
2020-05-28T03:14:55.687567
2018-09-12T16:52:09
2018-09-12T16:52:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
12,817
py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """An estimator is a rule for calculating an estimate of a given quantity. # Estimators * **Estimators** are used to train and evaluate TensorFlow models. They support regression and classification problems. * **Classifiers** are functions that have discrete outcomes. * **Regressors** are functions that predict continuous values. ## Choosing the correct estimator * For **Regression** problems use one of the following: * `LinearRegressor`: Uses linear model. * `DNNRegressor`: Uses DNN. * `DNNLinearCombinedRegressor`: Uses Wide & Deep. * `TensorForestEstimator`: Uses RandomForest. See tf.contrib.tensor_forest.client.random_forest.TensorForestEstimator. * `Estimator`: Use when you need a custom model. * For **Classification** problems use one of the following: * `LinearClassifier`: Multiclass classifier using Linear model. * `DNNClassifier`: Multiclass classifier using DNN. * `DNNLinearCombinedClassifier`: Multiclass classifier using Wide & Deep. * `TensorForestEstimator`: Uses RandomForest. See tf.contrib.tensor_forest.client.random_forest.TensorForestEstimator. * `SVM`: Binary classifier using linear SVMs. * `LogisticRegressor`: Use when you need custom model for binary classification. * `Estimator`: Use when you need custom model for N class classification. ## Pre-canned Estimators Pre-canned estimators are machine learning estimators premade for general purpose problems. If you need more customization, you can always write your own custom estimator as described in the section below. Pre-canned estimators are tested and optimized for speed and quality. ### Define the feature columns Here are some possible types of feature columns used as inputs to a pre-canned estimator. Feature columns may vary based on the estimator used. So you can see which feature columns are fed to each estimator in the below section. ```python sparse_feature_a = sparse_column_with_keys( column_name="sparse_feature_a", keys=["AB", "CD", ...]) embedding_feature_a = embedding_column( sparse_id_column=sparse_feature_a, dimension=3, combiner="sum") sparse_feature_b = sparse_column_with_hash_bucket( column_name="sparse_feature_b", hash_bucket_size=1000) embedding_feature_b = embedding_column( sparse_id_column=sparse_feature_b, dimension=16, combiner="sum") crossed_feature_a_x_b = crossed_column( columns=[sparse_feature_a, sparse_feature_b], hash_bucket_size=10000) real_feature = real_valued_column("real_feature") real_feature_buckets = bucketized_column( source_column=real_feature, boundaries=[18, 25, 30, 35, 40, 45, 50, 55, 60, 65]) ``` ### Create the pre-canned estimator DNNClassifier, DNNRegressor, and DNNLinearCombinedClassifier are all pretty similar to each other in how you use them. You can easily plug in an optimizer and/or regularization to those estimators. #### DNNClassifier A classifier for TensorFlow DNN models. ```python my_features = [embedding_feature_a, embedding_feature_b] estimator = DNNClassifier( feature_columns=my_features, hidden_units=[1024, 512, 256], optimizer=tf.train.ProximalAdagradOptimizer( learning_rate=0.1, l1_regularization_strength=0.001 )) ``` #### DNNRegressor A regressor for TensorFlow DNN models. ```python my_features = [embedding_feature_a, embedding_feature_b] estimator = DNNRegressor( feature_columns=my_features, hidden_units=[1024, 512, 256]) # Or estimator using the ProximalAdagradOptimizer optimizer with # regularization. estimator = DNNRegressor( feature_columns=my_features, hidden_units=[1024, 512, 256], optimizer=tf.train.ProximalAdagradOptimizer( learning_rate=0.1, l1_regularization_strength=0.001 )) ``` #### DNNLinearCombinedClassifier A classifier for TensorFlow Linear and DNN joined training models. * Wide and deep model * Multi class (2 by default) ```python my_linear_features = [crossed_feature_a_x_b] my_deep_features = [embedding_feature_a, embedding_feature_b] estimator = DNNLinearCombinedClassifier( # Common settings n_classes=n_classes, weight_column_name=weight_column_name, # Wide settings linear_feature_columns=my_linear_features, linear_optimizer=tf.train.FtrlOptimizer(...), # Deep settings dnn_feature_columns=my_deep_features, dnn_hidden_units=[1000, 500, 100], dnn_optimizer=tf.train.AdagradOptimizer(...)) ``` #### LinearClassifier Train a linear model to classify instances into one of multiple possible classes. When number of possible classes is 2, this is binary classification. ```python my_features = [sparse_feature_b, crossed_feature_a_x_b] estimator = LinearClassifier( feature_columns=my_features, optimizer=tf.train.FtrlOptimizer( learning_rate=0.1, l1_regularization_strength=0.001 )) ``` #### LinearRegressor Train a linear regression model to predict a label value given observation of feature values. ```python my_features = [sparse_feature_b, crossed_feature_a_x_b] estimator = LinearRegressor( feature_columns=my_features) ``` ### LogisticRegressor Logistic regression estimator for binary classification. ```python # See tf.contrib.learn.Estimator(...) for details on model_fn structure def my_model_fn(...): pass estimator = LogisticRegressor(model_fn=my_model_fn) # Input builders def input_fn_train: pass estimator.fit(input_fn=input_fn_train) estimator.predict(x=x) ``` #### SVM - Support Vector Machine Support Vector Machine (SVM) model for binary classification. Currently only linear SVMs are supported. ```python my_features = [real_feature, sparse_feature_a] estimator = SVM( example_id_column='example_id', feature_columns=my_features, l2_regularization=10.0) ``` #### DynamicRnnEstimator An `Estimator` that uses a recurrent neural network with dynamic unrolling. ```python problem_type = ProblemType.CLASSIFICATION # or REGRESSION prediction_type = PredictionType.SINGLE_VALUE # or MULTIPLE_VALUE estimator = DynamicRnnEstimator(problem_type, prediction_type, my_feature_columns) ``` ### Use the estimator There are two main functions for using estimators, one of which is for training, and one of which is for evaluation. You can specify different data sources for each one in order to use different datasets for train and eval. ```python # Input builders def input_fn_train: # returns x, Y ... estimator.fit(input_fn=input_fn_train) def input_fn_eval: # returns x, Y ... estimator.evaluate(input_fn=input_fn_eval) estimator.predict(x=x) ``` ## Creating Custom Estimator To create a custom `Estimator`, provide a function to `Estimator`'s constructor that builds your model (`model_fn`, below): ```python estimator = tf.contrib.learn.Estimator( model_fn=model_fn, model_dir=model_dir) # Where the model's data (e.g., checkpoints) # are saved. ``` Here is a skeleton of this function, with descriptions of its arguments and return values in the accompanying tables: ```python def model_fn(features, targets, mode, params): # Logic to do the following: # 1. Configure the model via TensorFlow operations # 2. Define the loss function for training/evaluation # 3. Define the training operation/optimizer # 4. Generate predictions return predictions, loss, train_op ``` You may use `mode` and check against `tf.contrib.learn.ModeKeys.{TRAIN, EVAL, INFER}` to parameterize `model_fn`. In the Further Reading section below, there is an end-to-end TensorFlow tutorial for building a custom estimator. ## Additional Estimators There is an additional estimators under `tensorflow.contrib.factorization.python.ops`: * Gaussian mixture model (GMM) clustering ## Further reading For further reading, there are several tutorials with relevant topics, including: * [Overview of linear models](../../../tutorials/linear/overview.md) * [Linear model tutorial](../../../tutorials/wide/index.md) * [Wide and deep learning tutorial](../../../tutorials/wide_and_deep/index.md) * [Custom estimator tutorial](../../../tutorials/estimators/index.md) * [Building input functions](../../../tutorials/input_fn/index.md) """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.learn.python.learn.estimators._sklearn import NotFittedError from tensorflow.contrib.learn.python.learn.estimators.constants import ProblemType from tensorflow.contrib.learn.python.learn.estimators.dnn import DNNClassifier from tensorflow.contrib.learn.python.learn.estimators.dnn import DNNEstimator from tensorflow.contrib.learn.python.learn.estimators.dnn import DNNRegressor from tensorflow.contrib.learn.python.learn.estimators.dnn_linear_combined import DNNLinearCombinedClassifier from tensorflow.contrib.learn.python.learn.estimators.dnn_linear_combined import DNNLinearCombinedEstimator from tensorflow.contrib.learn.python.learn.estimators.dnn_linear_combined import DNNLinearCombinedRegressor from tensorflow.contrib.learn.python.learn.estimators.dynamic_rnn_estimator import DynamicRnnEstimator from tensorflow.contrib.learn.python.learn.estimators.estimator import BaseEstimator from tensorflow.contrib.learn.python.learn.estimators.estimator import Estimator from tensorflow.contrib.learn.python.learn.estimators.estimator import GraphRewriteSpec from tensorflow.contrib.learn.python.learn.estimators.estimator import infer_real_valued_columns_from_input from tensorflow.contrib.learn.python.learn.estimators.estimator import infer_real_valued_columns_from_input_fn from tensorflow.contrib.learn.python.learn.estimators.estimator import SKCompat from tensorflow.contrib.learn.python.learn.estimators.head import binary_svm_head from tensorflow.contrib.learn.python.learn.estimators.head import Head from tensorflow.contrib.learn.python.learn.estimators.head import loss_only_head from tensorflow.contrib.learn.python.learn.estimators.head import multi_class_head from tensorflow.contrib.learn.python.learn.estimators.head import multi_head from tensorflow.contrib.learn.python.learn.estimators.head import multi_label_head from tensorflow.contrib.learn.python.learn.estimators.head import no_op_train_fn from tensorflow.contrib.learn.python.learn.estimators.head import poisson_regression_head from tensorflow.contrib.learn.python.learn.estimators.head import regression_head from tensorflow.contrib.learn.python.learn.estimators.kmeans import KMeansClustering from tensorflow.contrib.learn.python.learn.estimators.linear import LinearClassifier from tensorflow.contrib.learn.python.learn.estimators.linear import LinearEstimator from tensorflow.contrib.learn.python.learn.estimators.linear import LinearRegressor from tensorflow.contrib.learn.python.learn.estimators.logistic_regressor import LogisticRegressor from tensorflow.contrib.learn.python.learn.estimators.metric_key import MetricKey from tensorflow.contrib.learn.python.learn.estimators.model_fn import ModeKeys from tensorflow.contrib.learn.python.learn.estimators.model_fn import ModelFnOps from tensorflow.contrib.learn.python.learn.estimators.prediction_key import PredictionKey from tensorflow.contrib.learn.python.learn.estimators.rnn_common import PredictionType from tensorflow.contrib.learn.python.learn.estimators.run_config import ClusterConfig from tensorflow.contrib.learn.python.learn.estimators.run_config import Environment from tensorflow.contrib.learn.python.learn.estimators.run_config import RunConfig from tensorflow.contrib.learn.python.learn.estimators.run_config import TaskType from tensorflow.contrib.learn.python.learn.estimators.svm import SVM
0c7322d41077b64b7c875f3f2f1d39845ebd37f3
d93159d0784fc489a5066d3ee592e6c9563b228b
/Calibration/EcalAlCaRecoProducers/python/ALCARECOEcalESAlign_Output_cff.py
4dd5cc22d3f4dbedd90a21eaf5229cad92c545c6
[]
permissive
simonecid/cmssw
86396e31d41a003a179690f8c322e82e250e33b2
2559fdc9545b2c7e337f5113b231025106dd22ab
refs/heads/CAallInOne_81X
2021-08-15T23:25:02.901905
2016-09-13T08:10:20
2016-09-13T08:53:42
176,462,898
0
1
Apache-2.0
2019-03-19T08:30:28
2019-03-19T08:30:24
null
UTF-8
Python
false
false
1,006
py
import FWCore.ParameterSet.Config as cms OutALCARECOEcalESAlign_noDrop = cms.PSet( # put this if you have a filter SelectEvents = cms.untracked.PSet( SelectEvents = cms.vstring('pathALCARECOEcalESAlign') ), outputCommands = cms.untracked.vstring( 'keep ESDCCHeaderBlocksSorted_ecalPreshowerDigis_*_*', 'keep ESDigiCollection_ecalPreshowerDigis_*_*', 'keep ESKCHIPBlocksSorted_ecalPreshowerDigis_*_*', 'keep SiPixelClusteredmNewDetSetVector_ecalAlCaESAlignTrackReducer_*_*', 'keep SiStripClusteredmNewDetSetVector_ecalAlCaESAlignTrackReducer_*_*', 'keep TrackingRecHitsOwned_ecalAlCaESAlignTrackReducer_*_*', 'keep recoTrackExtras_ecalAlCaESAlignTrackReducer_*_*', 'keep recoTracks_ecalAlCaESAlignTrackReducer_*_*', 'keep recoBeamSpot_offlineBeamSpot_*_*' ) ) import copy OutALCARECOEcalESAlign=copy.deepcopy(OutALCARECOEcalESAlign_noDrop) OutALCARECOEcalESAlign.outputCommands.insert(0,"drop *")
0f277c60902e8603255da3dbd08294738084831d
4fbd844113ec9d8c526d5f186274b40ad5502aa3
/algorithms/python3/minimum_area_rectangle_ii.py
708813731bf76371e270627e1c38eb0d4c3a71c5
[]
no_license
capric8416/leetcode
51f9bdc3fa26b010e8a1e8203a7e1bcd70ace9e1
503b2e303b10a455be9596c31975ee7973819a3c
refs/heads/master
2022-07-16T21:41:07.492706
2020-04-22T06:18:16
2020-04-22T06:18:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,363
py
# !/usr/bin/env python # -*- coding: utf-8 -*- """ Given a set of points in the xy-plane, determine the minimum area of any rectangle formed from these points, with sides not necessarily parallel to the x and y axes. If there isn't any rectangle, return 0.   Example 1: Input: [[1,2],[2,1],[1,0],[0,1]] Output: 2.00000 Explanation: The minimum area rectangle occurs at [1,2],[2,1],[1,0],[0,1], with an area of 2. Example 2: Input: [[0,1],[2,1],[1,1],[1,0],[2,0]] Output: 1.00000 Explanation: The minimum area rectangle occurs at [1,0],[1,1],[2,1],[2,0], with an area of 1. Example 3: Input: [[0,3],[1,2],[3,1],[1,3],[2,1]] Output: 0 Explanation: There is no possible rectangle to form from these points. Example 4: Input: [[3,1],[1,1],[0,1],[2,1],[3,3],[3,2],[0,2],[2,3]] Output: 2.00000 Explanation: The minimum area rectangle occurs at [2,1],[2,3],[3,3],[3,1], with an area of 2.   Note: 1 <= points.length <= 50 0 <= points[i][0] <= 40000 0 <= points[i][1] <= 40000 All points are distinct. Answers within 10^-5 of the actual value will be accepted as correct. """ """ ==================== body ==================== """ class Solution: def minAreaFreeRect(self, points): """ :type points: List[List[int]] :rtype: float """ """ ==================== body ==================== """
b90f6e7917af6e75b2d7465f1ec61af936e8ad06
a08f5a2a75dcbe8e6871759d6b7a89e0e2f3519e
/pypodman/pypodman/lib/actions/rmi_action.py
7c3d0bd795b1c9a13a592f15020303f704fb5c37
[ "Apache-2.0" ]
permissive
4383/python-podman
99a7d8906e13811059743feba005a7550ff9f604
94a46127cb0db2b6187186788a941ec72af476dd
refs/heads/master
2020-04-22T10:47:05.035526
2019-01-14T14:30:35
2019-01-14T14:30:35
170,317,428
0
0
Apache-2.0
2019-02-12T12:52:13
2019-02-12T12:52:12
null
UTF-8
Python
false
false
1,339
py
"""Remote client command for deleting images.""" import sys import podman from pypodman.lib import AbstractActionBase class Rmi(AbstractActionBase): """Class for removing images from storage.""" @classmethod def subparser(cls, parent): """Add Rmi command to parent parser.""" parser = parent.add_parser('rmi', help='delete image(s)') parser.add_flag( '--force', '-f', help='force delete of image(s) and associated containers.') parser.add_argument('targets', nargs='+', help='image id(s) to delete') parser.set_defaults(class_=cls, method='remove') def remove(self): """Remove image(s).""" for ident in self._args.targets: try: img = self.client.images.get(ident) img.remove(self._args.force) print(ident) except podman.ImageNotFound as e: sys.stdout.flush() print( 'Image {} not found.'.format(e.name), file=sys.stderr, flush=True) except podman.ErrorOccurred as e: sys.stdout.flush() print( '{}'.format(e.reason).capitalize(), file=sys.stderr, flush=True)
5bedb6acfb11c0720e53b72916dc4b2a3fe2290b
1843fd5ccb4377240e664acd21ba5a9369eca2ab
/bluebottle/utils/exchange_rates.py
5a13a2e89fbde1ff2d96b0f6451e16a83362c4b3
[ "BSD-2-Clause" ]
permissive
raux/bluebottle
ba2e576cebcb6835065004c410b22bd8a6b9ee29
49d92b5deb289c1539f99122abc20f845577b879
refs/heads/master
2020-03-27T03:20:11.465491
2018-08-23T13:09:25
2018-08-23T13:09:25
145,854,614
0
0
null
2018-08-23T13:05:00
2018-08-23T13:04:59
null
UTF-8
Python
false
false
198
py
from djmoney_rates.utils import convert_money def convert(money, currency): """ Convert money object `money` to `currency`.""" return convert_money(money.amount, money.currency, currency)
36b6bc2a275ccfba0a769e03a047842003034ffa
8d1d1e7677e1a18c00fb295971211d4e29d10896
/vocal_synthesis/experiments/22feb_testing_b2_rmsprop_rectify.py
5bbb31566fa7981f6bc49ff20056e209698369f4
[]
no_license
christopher-beckham/ift6266h16
8296d1529f6ce3e209af371283f816a4c6d63ea9
f141fb0a320c20c2c7b43b46f06b1c68cde183f0
refs/heads/master
2021-01-10T13:38:40.733180
2016-04-17T02:22:52
2016-04-17T02:22:52
49,399,600
0
0
null
null
null
null
UTF-8
Python
false
false
1,177
py
import numpy as np from scipy.io import wavfile import os import sys sys.path.append( os.pardir ) import cPickle as pickle from lasagne.updates import * import rnn_experiment as experiment if __name__ == "__main__": # e.g. 1000_60sec.pkl in_pkl = sys.argv[1] out_pkl = sys.argv[2] with open(in_pkl) as f: dat = pickle.load(f) X_train, X_valid, X_test = dat[0] sys.stderr.write("X_train shape = %s\n" % str(X_train.shape)) sys.stderr.write("X_valid shape = %s\n" % str(X_valid.shape)) sys.stderr.write("X_test shape = %s\n" % str(X_test.shape)) args = dict() args["seed"] = 0 args["batch_size"] = 16 args["learning_rate"] = 0.01 args["momentum"] = 0.9 args["num_epochs"] = 5000 args["X_train"] = X_train args["X_valid"] = X_valid args["X_test"] = X_test #args["update_method"] = nesterov_momentum args["update_method"] = adagrad args["config"] = "../configurations/19feb_testing_e2_relu.py" model = experiment.train(args) sys.stderr.write( "writing to file: %s\n" % (out_pkl) ) with open(out_pkl, "wb") as f: pickle.dump(model, f, pickle.HIGHEST_PROTOCOL)
b665f56e5dff437feeb254d063d46896215f3942
bad686ba27539a3d3286418cc3ebf2aa80ae4958
/src/kits/maker-pi-rp2040-robots/time-of-flight-display-test.py
f633d990bc842f9f8617dc32d4679a845184fb29
[]
no_license
AaryaBatchu/micropython
f0a31b579b3a998586f26b92036875c93588eca7
aef7d33937352e9ab6f9615bfc5bf9aa1a9bee57
refs/heads/main
2023-08-19T13:33:15.006432
2021-10-23T19:06:26
2021-10-23T19:06:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
657
py
# Test program for VL53L0X import time from machine import Pin, I2C from ssd1306 import SSD1306_I2C import VL53L0X I2C0_SDA_PIN = 0 I2C0_SCL_PIN = 1 I2C1_SDA_PIN = 2 I2C1_SCL_PIN = 3 i2c0=machine.I2C(0,sda=machine.Pin(I2C0_SDA_PIN), scl=machine.Pin(I2C0_SCL_PIN)) i2c1=machine.I2C(1,sda=machine.Pin(I2C1_SDA_PIN), scl=machine.Pin(I2C1_SCL_PIN), freq=400000) oled = SSD1306_I2C(128, 64, i2c0) tof = VL53L0X.VL53L0X(i2c1) tof.start() while True: tof.read() print(tof.read()) oled.fill(0) oled.text("CoderDojo Robot", 0, 0) oled.text("P1:", 0, 20) oled.text(str(tof.read()), 40, 20) oled.show() time.sleep(0.05) # tof.stop()
105c0808de6a0d4f0fca7819c1b26ac7d1fd97cf
1cd83cf06ff7ae750ab419ac867d475d38342388
/play-with-numbers/lychrel.py
ee4e3ef1b0281f78eebe6e5db760bed2cd2e7ead
[ "MIT" ]
permissive
AnuragAnalog/maths
28e402a980075e0201a699528387a7ca223737e8
b8fd5398dd8fce657ba5c3c0170b5e493eb9d341
refs/heads/master
2022-10-31T14:50:52.114560
2022-10-15T19:19:36
2022-10-15T19:19:36
146,905,452
0
3
MIT
2022-10-15T19:19:37
2018-08-31T14:52:56
C
UTF-8
Python
false
false
1,074
py
#!/usr/bin/python3.6 """ If we take 47, reverse and add, 47 + 74 = 121, which is palindromic. It is thought that some numbers, like 196, never produce a palindrome. A number that never forms a palindrome through the reverse and add process is called a Lychrel number. Due to the theoretical nature of these numbers, and for the purpose of this problem, we shall assume that a number is Lychrel until proven otherwise. In addition you are given that for every number below ten-thousand, it will either (i) become a palindrome in less than fifty iterations, or, (ii) no one, with all the computing power that exists, has managed so far to map it to a palindrome. """ def ispalindrome(s): return s[:] == s[::-1] def lychrel(n): tot = n for i in range(50): temp = list(str(tot)) temp.reverse() tot += int("".join(temp)) if ispalindrome(str(tot)): print(f"Given {n} is not a lychrel number") return None print(f"Given {n} is a lychrel number") n = int(input("Enter the number: ")) lychrel(n)
d0d2170beaa496a695545f31c255a9f64e877438
3c38febb2f7a42fb72b543eb23caa9f46580f06b
/Uva Problems/Python/713.py
e95e6f573511da20421cca9b7150a6881a4d1807
[]
no_license
joyonto51/Programming_Practice
479b8e84862e35f29a3904bd3556edb6532efb4b
1d6ff08cf63011cfde6b73988bc1686a12e70a79
refs/heads/master
2020-03-09T05:34:39.502942
2018-10-01T14:34:17
2018-10-01T14:34:17
128,617,218
0
0
null
null
null
null
UTF-8
Python
false
false
175
py
T = int(input()) for i in range(T): a,b=map(str,input().split()) x = int(a[::-1]) y = int(b[::-1]) w = str(x+y) z = int(w[::-1]) print("{}".format(z))
[ "meghla1609" ]
meghla1609
09d70c0aefbd48906980a784bebbb7489af1e443
b6d3ff62c8baa193226414e0a4ee7e8c242340cc
/crf-seq/sets/sets_2/7/seq_detect_1i.py
3f0c0ed2646bac57d171b6c4b4cdd9046f430e70
[ "Apache-2.0" ]
permissive
roma-patel/seq
a0c8025c6629f06157d7530f1f21ca6d9c9c146f
25012b1218b60090f467fe5ed5a15d7a28b3134c
refs/heads/master
2021-09-16T15:21:53.842958
2018-06-21T20:21:16
2018-06-21T20:21:16
110,298,977
1
0
null
null
null
null
UTF-8
Python
false
false
11,349
py
import pycrfsuite import sklearn from itertools import chain from sklearn.metrics import classification_report, confusion_matrix from sklearn.preprocessing import LabelBinarizer import re import json annotypes = ['Participants', 'Intervention', 'Outcome'] annotype = annotypes[1] path = '/nlp/data/romap/crf/' #path = '/Users/romapatel/Desktop/crf/' def run(): train_sents, test_sents = get_train_test_sets() print len(test_sents) indwords_list = get_ind_words() patterns_list = get_patterns() X_train = [sent_features(train_sents[docid], indwords_list, patterns_list) for docid in train_sents.keys()] y_train = [sent_labels(train_sents[docid]) for docid in train_sents.keys()] X_test = [sent_features(test_sents[docid], indwords_list, patterns_list) for docid in test_sents.keys()] y_test = [sent_labels(test_sents[docid]) for docid in test_sents.keys()] trainer = pycrfsuite.Trainer(verbose=False) for xseq, yseq in zip(X_train, y_train): trainer.append(xseq, yseq) trainer.set_params({'c1': 1.0,'c2': 1e-3, 'max_iterations': 50, 'feature.possible_transitions': True}) trainer.train('PICO.crfsuite') tagger = pycrfsuite.Tagger() tagger.open('PICO.crfsuite') get_results(test_sents, tagger, indwords_list, patterns_list) def get_results(test_sents, tagger, indwords_list, patterns_list): f1 = open(path + 'sets_2/7/' + annotype + '-test_pred.json', 'w+') f2 = open(path + 'sets_2/7/' + annotype + '-test_correct.json', 'w+') pred_dict, correct_dict = {}, {} for docid in test_sents: pred, correct = tagger.tag(sent_features(test_sents[docid], indwords_list, patterns_list)), sent_labels(test_sents[docid]) spans, span, outside = [], [], True for i in range(len(pred)): if pred[i] == '0' and outside is True: continue elif pred[i] == '0' and outside is False: span.append(i+1) spans.append(span) span, outside = [], True elif pred[i] == '1' and outside is False: continue elif pred[i] == '1' and outside is True: outside = False span.append(i) pred_dict[docid] = spans spans, span, outside = [], [], True for i in range(len(correct)): if correct[i] == '0' and outside is True: continue elif correct[i] == '0' and outside is False: span.append(i+1) spans.append(span) span, outside = [], True elif correct[i] == '1' and outside is False: continue elif correct[i] == '1' and outside is True: outside = False span.append(i) correct_dict[docid] = spans f1.write(json.dumps(pred_dict)) f2.write(json.dumps(correct_dict)) def get_ind_words(): fin_list = [] for annotype in annotypes: list = [] #filename = annotype.lower() + '_words.txt' filename = annotype.lower() + '_unigrams.tsv' f = open(path + 'crf_files/' + filename, 'r') for line in f: #word = line[:-1] items = line.split('\t') word = items[1][:-1] if word not in list: list.append(word) if annotype == 'Intervention': f = open(path + 'crf_files/drug_names.txt', 'r') for line in f: word = line[:-1] if word not in list: list.append(word) fin_list.append(list) indwords = [fin_list[0], fin_list[1], fin_list[2]] return indwords #all lowercased def get_patterns(): fin_list = [] for annotype in annotypes: list = [] #filename = annotype.lower() + '_pattern_copy.txt' filename = annotype.lower() + '_trigrams.tsv' f = open(path + 'crf_files/' + filename, 'r') for line in f: #word = line[:-1].lower() word = line[:-1].split('\t') word = word[1] if word not in list: list.append(word) fin_list.append(list) patterns = [fin_list[0], fin_list[1], fin_list[2]] return patterns def isindword(word, annotype, indwords_list): if annotype == annotypes[0]: list = indwords_list[0] elif annotype == annotypes[1]: list = indwords_list[1] else: list = indwords_list[2] if word.lower() in list or word.lower()[:-1] in list or word.lower()[-3:] in list: return True else: return False def ispattern(word, pos, annotype, pattern_list): if annotype == annotypes[0]: list = pattern_list[0] elif annotype == annotypes[1]: list = pattern_list[1] else: list = pattern_list[2] for pattern in pattern_list: if word.lower() in pattern or pos.lower() in pattern: return True else: return False def word_features(sent, i, indwords_list, pattern_list): word = sent[i][0] postag = sent[i][2] features = ['bias', 'word.lower=' + word.lower(),'word[-3:]=' + word[-3:], 'word[-4:]=' + word[-4:],'word.isupper=%s' % word.isupper(), 'word.istitle=%s' % word.istitle(), 'word.isdigit=%s' % word.isdigit(), 'postag=' + postag, 'isindword=%s' % isindword(word, annotype, indwords_list), 'word[0:4]=' + word[0:4], 'ispattern=%s' % ispattern(word, postag, annotype, pattern_list)] #prev previous word if i > 1: word1 = sent[i-2][0] postag1 = sent[i-2][2] features.extend(['-1:word.lower=' + word1.lower(), '-1:word.istitle=%s' % word1.istitle(), '-1:word.isupper=%s' % word1.isupper(), '-1:postag=' + postag1, 'isindword=%s' % isindword(word1, annotype, indwords_list), 'word[0:4]=' + word[0:4], 'word[-3:]=' + word[-3:]]) #previous word if i > 0: word1 = sent[i-1][0] postag1 = sent[i-1][2] features.extend(['-1:word.lower=' + word1.lower(), '-1:word.istitle=%s' % word1.istitle(), '-1:word.isupper=%s' % word1.isupper(), '-1:postag=' + postag1, 'isindword=%s' % isindword(word1, annotype, indwords_list), 'word[0:4]=' + word[0:4], 'word[-3:]=' + word[-3:], 'ispattern=%s' % ispattern(word, postag, annotype, pattern_list)]) else: features.append('BOS') #next to next word if i < len(sent)-2: word1 = sent[i+2][0] postag1 = sent[i+2][2] features.extend(['+1:word.lower=' + word1.lower(), '+1:word.istitle=%s' % word1.istitle(), '+1:word.isupper=%s' % word1.isupper(), '+1:postag=' + postag1, 'isindword=%s' % isindword(word1, annotype, indwords_list), 'word[0:4]=' + word[0:4], 'word[-3:]=' + word[-3:]]) #next word if i < len(sent)-1: word1 = sent[i+1][0] postag1 = sent[i+1][2] features.extend(['+1:word.lower=' + word1.lower(), '+1:word.istitle=%s' % word1.istitle(), '+1:word.isupper=%s' % word1.isupper(), '+1:postag=' + postag1, 'isindword=%s' % isindword(word1, annotype, indwords_list), 'word[0:4]=' + word[0:4], 'word[-3:]=' + word[-3:], 'ispattern=%s' % ispattern(word, postag, annotype, pattern_list)]) else: features.append('EOS') return features def sent_features(sent, indwords_list, patterns_list): return [word_features(sent, i, indwords_list, patterns_list) for i in range(len(sent))] def sent_labels(sent): return [str(i_label) for token, ner, postag, p_label, i_label, o_label in sent] def sent_tokens(sent): return [token for token, ner, postag, p_label, i_label, o_label in sent] def print_results(example_sent, tagger, indwords_list, docid, dict): pred, correct = tagger.tag(sent_features(example_sent, indwords_list)), sent_labels(example_sent) spans, span, outside = [], [], True for i in range(len(pred)): if pred[i] == '0' and outside is True: continue elif pred[i] == '0' and outside is False: span.append(i+1) spans.append(span) span, outside = [], True elif pred[i] == '1' and outside is False: continue elif pred[i] == '1' and outside is True: outside = False span.append(i) f = open(path + annotype + '-test.json', 'w+') print '\n\nPredicted: ' + str(spans) for span in spans: s = ' ' for i in range(span[0], span[1]): s += example_sent[i][0] + ' ' print s spans, span, outside = [], [], True for i in range(len(correct)): if correct[i] == '0' and outside is True: continue elif correct[i] == '0' and outside is False: span.append(i+1) spans.append(span) span, outside = [], True elif correct[i] == '1' and outside is False: continue elif correct[i] == '1' and outside is True: outside = False span.append(i) print '\n\nCorrect: ' + str(spans) for span in spans: s = ' ' for i in range(span[0], span[1]): s += example_sent[i][0] + ' ' print s def get_training_data(): f = open(path + 'crf_files/difficulty_crf_mv.json', 'r') for line in f: dict = json.loads(line) return dict def get_train_test_sets(): test_docids = [] f = open(path + 'crf_files/gold_docids.txt', 'r') for line in f: test_docids.append(line[:-1]) doc_dict = get_training_data() test_sents, train_sents = {}, {} count = 0 for docid in doc_dict: sents = doc_dict[docid] if len(sents) == 0: continue count += 1 #if count >= 100: break if docid not in test_docids: train_sents[docid] = sents else: test_sents[docid] = sents f = open(path + 'difficulty_new.json', 'r') for line in f: doc_dict_new = json.loads(line) count = 1 for docid in doc_dict_new: if docid in train_sents.keys(): continue if count < 4741: count += 1 continue if count == 9481: break train_sents[docid] = doc_dict_new[docid] count += 1 #added 5 times docid_new = 0 for docid in doc_dict: sents = doc_dict[docid] if len(sents) == 0: continue if docid not in test_docids: train_sents[str(docid_new)] = sents docid_new += 1 for docid in doc_dict: sents = doc_dict[docid] if len(sents) == 0: continue if docid not in test_docids: train_sents[str(docid_new)] = sents docid_new += 1 for docid in doc_dict: sents = doc_dict[docid] if len(sents) == 0: continue if docid not in test_docids: train_sents[str(docid_new)] = sents docid_new += 1 for docid in doc_dict: sents = doc_dict[docid] if len(sents) == 0: continue if docid not in test_docids: train_sents[str(docid_new)] = sents docid_new += 1 for docid in doc_dict: sents = doc_dict[docid] if len(sents) == 0: continue if docid not in test_docids: train_sents[str(docid_new)] = sents docid_new += 1 return train_sents, test_sents if __name__ == '__main__': run()
91225add6aa7e75a6cef7c47459470a6ff209b39
58d2b60989a83142286273c1d3bdd66a77842c76
/Wind/Train/RunConfig.py
0220ddff4b85e2aa74b7fa6c181234275d0f4756
[]
no_license
castorgit/wind_code
8193c7439eb459e58a55b8ff107df6032f77ad7d
6f25302e9ba581f769d22d47b2c86aa2d60de393
refs/heads/master
2022-09-24T13:14:59.280976
2020-06-06T17:13:58
2020-06-06T17:13:58
270,047,772
3
0
null
null
null
null
UTF-8
Python
false
false
1,846
py
""" .. module:: RunConfig RunConfig ************* :Description: RunConfig Object to store information from the flags passed to the script for training :Authors: HPAI-BSC :Version: :Created on: 06/07/2018 8:09 """ __author__ = 'HPAI-BSC' class RunConfig: """Class Runconfig Stores information from the flags of the script and are not in the configuration file of the experiment """ ## Implementation to use for RNN impl = 1 ## Activates TF verbose output and other information verbose = False ## Generate output for tensorboard tboard = False ## Keep the model with best validation accuracy best = True ## Early stopping early = True ## Multi GPU training multi = False ## Get experiment configuration using the proxy proxy = False ## Save the final model save = False ## Get the data from the remote server remote = False ## Print info of dataset and model at the end of training info = False ## Not yet used log = None def __init__(self, impl=1, verbose=False, tboard=False, best=True, early=True, multi=False, proxy=False, save=False, remote=False, info=False, log=False): """ Constructor Stores the parameters in the object attributes :param impl: :param verbose: :param tboard: :param best: :param early: :param multi: :param proxy: :param save: :param remote: :param info: :param log: """ self.impl = impl self.verbose = verbose self.tboard = tboard self.best = best self.early = early self.multi = multi self.proxy = proxy self.save = save self.remote = remote self.info = info self.log = log
927db656a17a58d4953f22fbdc57fd16d812b724
27ff7fec0ae3f29f58089a2acab0aa3bc4e6e1f7
/RIDE-python3/utest/controller/test_tcuk_copy.py
4d4c8ab42b7c9cad385b512f4c7fb6b0a38d324f
[ "Apache-2.0" ]
permissive
zhangsong1417/xx
01435d6057364991b649c1acc00b36ab13debe5a
c40cfdede194daf3bdf91b36c1936150577128b9
refs/heads/master
2020-04-06T14:06:23.011363
2019-07-09T02:38:02
2019-07-09T02:38:02
157,528,207
1
0
null
null
null
null
UTF-8
Python
false
false
1,828
py
import time import unittest from robotide.robotapi import TestCaseFile from robotide.controller.filecontrollers import TestCaseFileController from resources import COMPLEX_SUITE_PATH from nose.tools import assert_equal, assert_true class TestCaseAndUserKeywordCopyingTest(unittest.TestCase): controller = TestCaseFileController( TestCaseFile(source=COMPLEX_SUITE_PATH).populate()) def test_test_case_copy(self): test = self.controller.tests[0] copy = test.copy('New Name') assert_equal(copy.name, 'New Name') for orig, copied in zip(test.settings, copy.settings): assert_equal(orig.value, copied.value) assert_true(copied is not orig) assert_equal(test.steps, copy.steps) assert_true(test.steps is not copy.steps) def test_keyword_copy(self): test = self.controller.keywords[0] copy = test.copy('New Name') assert_equal(copy.name, 'New Name') for orig, copied in zip(test.settings, copy.settings): assert_equal(orig.value, copied.value) assert_true(copied is not orig) assert_equal(test.steps, copy.steps) assert_true(test.steps is not copy.steps) def test_test_copy_performance(self): self._run_copy_test(self.controller.tests[0]) def test_keyword_copy_performance(self): self._run_copy_test(self.controller.keywords[0]) def _run_copy_test(self, item): self._test_copy(item, 10) self._test_copy(item, 200) def _test_copy(self, item, count): start_time = time.time() for i in range(0, count): item.copy(str(i)) self.assertTrue(time.time() < (start_time + 2), "Copy operation takes too long time") if __name__ == '__main__': unittest.main()
e09bfea83d8f83c4c3596a4e1384efbdb19d67e1
f5a1fcc57ba6d1bdd946158d269f861747023977
/google_problems/problem_19.py
ba9c6737ede40571563275798458611485c593dd
[ "MIT" ]
permissive
younes38/Daily-Coding-Problem
64f8c4137b86fc44d6202585f009a3a5e05f4eac
ba2b48fbd4d86b2130a396b9d464f2395b9983b6
refs/heads/master
2021-07-19T01:41:20.665277
2019-11-30T21:00:50
2019-11-30T21:00:50
225,072,874
2
0
MIT
2019-11-30T21:38:13
2019-11-30T21:38:13
null
UTF-8
Python
false
false
463
py
"""This problem was asked by Google. Implement an LRU (Least Recently Used) cache. It should be able to be initialized with a cache size n, and contain the following methods: • set(key, value): sets key to value. If there are already n items in the cache and we are adding a new item, then it should also remove the least recently used item. • get(key): gets the value at key. If no such key exists, return null. Each operation should run in O(1) time. """
8ceb1e40fd1074a3ca829be6b58a977dfba353b3
828e58fff5f3779b6fddbc029f332345adb97c4f
/yoohalal/apps/dashboard/promotions/app.py
9a86e30efe48de93a9f59df745206195afa7b01e
[]
no_license
sofyandamha/Django-Oscar-Marketplace-yoohalal
5c33ac77834dcbc199d5f39971b0f527e9627167
8bc1f11b1fe301f1dc5f9f9edfd6c24402effeb3
refs/heads/master
2020-03-27T20:52:37.031477
2018-09-02T16:03:43
2018-09-02T16:03:43
147,099,611
1
2
null
null
null
null
UTF-8
Python
false
false
1,564
py
from django.conf.urls import url from oscar.apps.dashboard.promotions.app import PromotionsDashboardApplication as CorePromotionsDashboardApplication from oscar.core.loading import get_class from apps.promotions.conf import PROMOTION_CLASSES class PromotionsDashboardApplication(CorePromotionsDashboardApplication): # Dynamically set the CRUD views for all promotion classes view_names = ( ('create_%s_view', 'Create%sView'), ('update_%s_view', 'Update%sView'), ('delete_%s_view', 'Delete%sView') ) for klass in PROMOTION_CLASSES: if klass.classname() == 'categoryproductlist': for attr_name, view_name in view_names: full_attr_name = attr_name % klass.classname() full_view_name = view_name % klass.__name__ view = get_class('apps.dashboard.promotions.views', full_view_name) locals()[full_attr_name] = view def get_urls(self): urls = super(PromotionsDashboardApplication, self).get_urls() for klass in PROMOTION_CLASSES: if klass.classname() == 'categoryproductlist': code = klass.classname() urls += [ url(r'create/%s/' % code, getattr(self, 'create_%s_view' % code).as_view(), name='promotion-create-%s' % code), url(r'^update/(?P<ptype>%s)/(?P<pk>\d+)/$' % code, getattr(self, 'update_%s_view' % code).as_view(), name='promotion-update'), url(r'^delete/(?P<ptype>%s)/(?P<pk>\d+)/$' % code, getattr(self, 'delete_%s_view' % code).as_view(), name='promotion-delete')] return self.post_process_urls(urls) application = PromotionsDashboardApplication()
2e1034143ccd6580c372cfbb8d6a5d8edcd31a92
11c94a2c46a337293a35866788895634dee9c0c6
/third_party/typ/typ/expectations_parser.py
09bb7e0d85234aa720ccbf9c569293925145ee83
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference", "BSD-3-Clause" ]
permissive
tobeqj/catapult
cce63e58b0fcf5713b942ed73708581491ac2f69
4d850033271b29cd51e6343747c75631d335f14c
refs/heads/master
2020-05-24T14:16:13.287182
2019-05-17T22:27:20
2019-05-17T23:36:44
187,305,972
1
0
BSD-3-Clause
2019-05-18T02:42:59
2019-05-18T02:42:59
null
UTF-8
Python
false
false
13,436
py
# Copyright 2017 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. # TODO(dpranke): Rename this to 'expectations.py' to remove the 'parser' # part and make it a bit more generic. Consider if we can reword this to # also not talk about 'expectations' so much (i.e., to find a clearer way # to talk about them that doesn't have quite so much legacy baggage), but # that might not be possible. import fnmatch import re from collections import OrderedDict from collections import defaultdict from typ.json_results import ResultType _EXPECTATION_MAP = { 'Crash': ResultType.Crash, 'Failure': ResultType.Failure, 'Pass': ResultType.Pass, 'Timeout': ResultType.Timeout, 'Skip': ResultType.Skip } def _group_to_string(group): msg = ', '.join(group) k = msg.rfind(', ') return msg[:k] + ' and ' + msg[k+2:] if k != -1 else msg class ParseError(Exception): def __init__(self, lineno, msg): super(ParseError, self).__init__('%d: %s' % (lineno, msg)) class Expectation(object): def __init__(self, reason, test, tags, results, lineno, retry_on_failure=False): """Constructor for expectations. Args: reason: String that indicates the reason for the expectation. test: String indicating which test is being affected. tags: List of tags that the expectation applies to. Tags are combined using a logical and, i.e., all of the tags need to be present for the expectation to apply. For example, if tags = ['Mac', 'Debug'], then the test must be running with the 'Mac' and 'Debug' tags set; just 'Mac', or 'Mac' and 'Release', would not qualify. results: List of outcomes for test. Example: ['Skip', 'Pass'] """ assert isinstance(reason, basestring) or reason is None assert isinstance(test, basestring) self._reason = reason self._test = test self._tags = frozenset(tags) self._results = frozenset(results) self._lineno = lineno self.should_retry_on_failure = retry_on_failure def __eq__(self, other): return (self.reason == other.reason and self.test == other.test and self.tags == other.tags and self.results == other.results and self.lineno == other.lineno) @property def reason(self): return self._reason @property def test(self): return self._test @property def tags(self): return self._tags @property def results(self): return self._results @property def lineno(self): return self._lineno class TaggedTestListParser(object): """Parses lists of tests and expectations for them. This parser covers the 'tagged' test lists format in: bit.ly/chromium-test-list-format Takes raw expectations data as a string read from the expectation file in the format: # This is an example expectation file. # # tags: [ # Mac Mac10.1 Mac10.2 # Win Win8 # ] # tags: [ Release Debug ] crbug.com/123 [ Win ] benchmark/story [ Skip ] ... """ TAG_TOKEN = '# tags: [' # The bug field (optional), including optional subproject. _MATCH_STRING = r'^(?:(crbug.com/(?:[^/]*/)?\d+) )?' _MATCH_STRING += r'(?:\[ (.+) \] )?' # The label field (optional). _MATCH_STRING += r'(\S+) ' # The test path field. _MATCH_STRING += r'\[ ([^\[.]+) \]' # The expectation field. _MATCH_STRING += r'(\s+#.*)?$' # End comment (optional). MATCHER = re.compile(_MATCH_STRING) def __init__(self, raw_data): self.tag_sets = [] self.expectations = [] self._tag_to_tag_set = {} self._parse_raw_expectation_data(raw_data) def _parse_raw_expectation_data(self, raw_data): lines = raw_data.splitlines() lineno = 1 num_lines = len(lines) tag_sets_intersection = set() first_tag_line = None while lineno <= num_lines: line = lines[lineno - 1].strip() if line.startswith(self.TAG_TOKEN): # Handle tags. if self.expectations: raise ParseError(lineno, 'Tag found after first expectation.') if not first_tag_line: first_tag_line = lineno right_bracket = line.find(']') if right_bracket == -1: # multi-line tag set tag_set = set(line[len(self.TAG_TOKEN):].split()) lineno += 1 while lineno <= num_lines and right_bracket == -1: line = lines[lineno - 1].strip() if line[0] != '#': raise ParseError( lineno, 'Multi-line tag set missing leading "#"') right_bracket = line.find(']') if right_bracket == -1: tag_set.update(line[1:].split()) lineno += 1 else: tag_set.update(line[1:right_bracket].split()) if line[right_bracket+1:]: raise ParseError( lineno, 'Nothing is allowed after a closing tag ' 'bracket') else: if line[right_bracket+1:]: raise ParseError( lineno, 'Nothing is allowed after a closing tag ' 'bracket') tag_set = set( line[len(self.TAG_TOKEN):right_bracket].split()) tag_sets_intersection.update( (t for t in tag_set if t.lower() in self._tag_to_tag_set)) self.tag_sets.append(tag_set) self._tag_to_tag_set.update( {tg.lower(): id(tag_set) for tg in tag_set}) elif line.startswith('#') or not line: # Ignore, it is just a comment or empty. lineno += 1 continue elif not tag_sets_intersection: self.expectations.append( self._parse_expectation_line(lineno, line)) else: break lineno += 1 if tag_sets_intersection: is_multiple_tags = len(tag_sets_intersection) > 1 tag_tags = 'tags' if is_multiple_tags else 'tag' was_were = 'were' if is_multiple_tags else 'was' error_msg = 'The {0} {1} {2} found in multiple tag sets'.format( tag_tags, _group_to_string( sorted(list(tag_sets_intersection))), was_were) raise ParseError(first_tag_line, error_msg) def _parse_expectation_line(self, lineno, line): match = self.MATCHER.match(line) if not match: raise ParseError(lineno, 'Syntax error: %s' % line) # Unused group is optional trailing comment. reason, raw_tags, test, raw_results, _ = match.groups() tags = [raw_tag.lower() for raw_tag in raw_tags.split()] if raw_tags else [] tag_set_ids = set() if '*' in test[:-1]: raise ParseError(lineno, 'Invalid glob, \'*\' can only be at the end of the pattern') for t in tags: if not t in self._tag_to_tag_set: raise ParseError(lineno, 'Unknown tag "%s"' % t) else: tag_set_ids.add(self._tag_to_tag_set[t]) if len(tag_set_ids) != len(tags): error_msg = ('The tag group contains tags that are ' 'part of the same tag set') tags_by_tag_set_id = defaultdict(list) for t in tags: tags_by_tag_set_id[self._tag_to_tag_set[t]].append(t) for tag_intersection in tags_by_tag_set_id.values(): error_msg += ('\n - Tags %s are part of the same tag set' % _group_to_string(sorted(tag_intersection))) raise ParseError(lineno, error_msg) results = [] retry_on_failure = False for r in raw_results.split(): try: # The test expectations may contain expected results and # the RetryOnFailure tag if r in _EXPECTATION_MAP: results.append(_EXPECTATION_MAP[r]) elif r == 'RetryOnFailure': retry_on_failure = True else: raise KeyError except KeyError: raise ParseError(lineno, 'Unknown result type "%s"' % r) # Tags from tag groups will be stored in lower case in the Expectation # instance. These tags will be compared to the tags passed in to # the Runner instance which are also stored in lower case. return Expectation( reason, test, tags, results, lineno, retry_on_failure) class TestExpectations(object): def __init__(self, tags): self.tags = [tag.lower() for tag in tags] # Expectations may either refer to individual tests, or globs of # tests. Each test (or glob) may have multiple sets of tags and # expected results, so we store these in dicts ordered by the string # for ease of retrieve. glob_exps use an OrderedDict rather than # a regular dict for reasons given below. self.individual_exps = {} self.glob_exps = OrderedDict() def parse_tagged_list(self, raw_data): try: parser = TaggedTestListParser(raw_data) except ParseError as e: return 1, e.message # TODO(crbug.com/83560) - Add support for multiple policies # for supporting multiple matching lines, e.g., allow/union, # reject, etc. Right now, you effectively just get a union. glob_exps = [] for exp in parser.expectations: if exp.test.endswith('*'): glob_exps.append(exp) else: self.individual_exps.setdefault(exp.test, []).append(exp) # Each glob may also have multiple matching lines. By ordering the # globs by decreasing length, this allows us to find the most # specific glob by a simple linear search in expected_results_for(). glob_exps.sort(key=lambda exp: len(exp.test), reverse=True) for exp in glob_exps: self.glob_exps.setdefault(exp.test, []).append(exp) return 0, None def expectations_for(self, test): # Returns a tuple of (expectations, should_retry_on_failure) # # A given test may have multiple expectations, each with different # sets of tags that apply and different expected results, e.g.: # # [ Mac ] TestFoo.test_bar [ Skip ] # [ Debug Win ] TestFoo.test_bar [ Pass Failure ] # # To determine the expected results for a test, we have to loop over # all of the failures matching a test, find the ones whose tags are # a subset of the ones in effect, and return the union of all of the # results. For example, if the runner is running with {Debug, Mac, Mac10.12} # then lines with no tags, {Mac}, or {Debug, Mac} would all match, but # {Debug, Win} would not. We also have to set the should_retry_on_failure # boolean variable to True if any of the expectations have the # should_retry_on_failure flag set to true # # The longest matching test string (name or glob) has priority. results = set() should_retry_on_failure = False # First, check for an exact match on the test name. for exp in self.individual_exps.get(test, []): if exp.tags.issubset(self.tags): results.update(exp.results) should_retry_on_failure |= exp.should_retry_on_failure if results or should_retry_on_failure: return (results or {ResultType.Pass}), should_retry_on_failure # If we didn't find an exact match, check for matching globs. Match by # the most specific (i.e., longest) glob first. Because self.globs is # ordered by length, this is a simple linear search. for glob, exps in self.glob_exps.items(): if fnmatch.fnmatch(test, glob): for exp in exps: if exp.tags.issubset(self.tags): results.update(exp.results) should_retry_on_failure |= exp.should_retry_on_failure # if *any* of the exps matched, results will be non-empty, # and we're done. If not, keep looking through ever-shorter # globs. if results or should_retry_on_failure: return ((results or {ResultType.Pass}), should_retry_on_failure) # Nothing matched, so by default, the test is expected to pass. return {ResultType.Pass}, False
44d13ab9183844ac238550a00eb7aa2a9725fc68
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/synthetic/tree-big-7417.py
ea541f93983bdad42dfad5f037191888021db2c1
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
23,276
py
# Binary-search trees class TreeNode(object): value:int = 0 left:"TreeNode" = None right:"TreeNode" = None def insert(self:"TreeNode", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode(x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode(x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class TreeNode2(object): value:int = 0 value2:int = 0 left:"TreeNode2" = None left2:"TreeNode2" = None right:"TreeNode2" = None right2:"TreeNode2" = None def insert(self:"TreeNode2", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode2(x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode2(x, x) return True else: return self.right.insert(x) return False def insert2(self:"TreeNode2", x:int, x2:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode2(x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode2(x, x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode2", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains2(self:"TreeNode2", x:int, x2:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class TreeNode3(object): value:int = 0 value2:int = 0 value3:int = 0 left:"TreeNode3" = None left2:"TreeNode3" = None left3:"TreeNode3" = None right:"TreeNode3" = None right2:"TreeNode3" = None right3:"TreeNode3" = None def insert(self:"TreeNode3", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode3(x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode3(x, x, x) return True else: return self.right.insert(x) return False def insert2(self:"TreeNode3", x:int, x2:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode3(x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode3(x, x, x) return True else: return self.right.insert(x) return False def insert3(self:"TreeNode3", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode3(x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode3(x, x, x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode3", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains2(self:"TreeNode3", x:int, x2:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains3(self:"TreeNode3", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class TreeNode4(object): value:int = 0 value2:int = 0 value3:int = 0 value4:int = 0 left:"TreeNode4" = None left2:"TreeNode4" = None left3:"TreeNode4" = None left4:"TreeNode4" = None right:"TreeNode4" = None right2:"TreeNode4" = None right3:"TreeNode4" = None right4:"TreeNode4" = None def insert(self:"TreeNode4", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode4(x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode4(x, x, x, x) return True else: return self.right.insert(x) return False def insert2(self:"TreeNode4", x:int, x2:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode4(x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode4(x, x, x, x) return True else: return self.right.insert(x) return False def insert3(self:"TreeNode4", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode4(x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode4(x, x, x, x) return True else: return self.right.insert(x) return False def insert4(self:"TreeNode4", x:int, x2:int, x3:int, x4:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode4(x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode4(x, x, x, x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode4", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains2(self:"TreeNode4", x:int, x2:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains3(self:"TreeNode4", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains4(self:"TreeNode4", x:int, x2:int, x3:int, x4:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class TreeNode5(object): value:int = 0 value2:int = 0 value3:int = 0 value4:int = 0 value5:int = 0 left:"TreeNode5" = None left2:"TreeNode5" = None left3:"TreeNode5" = None left4:"TreeNode5" = None left5:"TreeNode5" = None right:"TreeNode5" = None right2:"TreeNode5" = None right3:"TreeNode5" = None right4:"TreeNode5" = None right5:"TreeNode5" = None def insert(self:"TreeNode5", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def insert2(self:"TreeNode5", x:int, x2:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def insert3(self:"TreeNode5", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def insert4(self:"TreeNode5", x:int, x2:int, x3:int, x4:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def insert5(self:"TreeNode5", x:int, x2:int, x3:int, x4:int, x5:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode5", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains2(self:"TreeNode5", x:int, x2:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains3(self:"TreeNode5", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains4(self:"TreeNode5", x:int, x2:int, x3:int, x4:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains5(self:"TreeNode5", x:int, x2:int, x3:int, x4:int, x5:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class Tree(object): root:TreeNode = None size:int = 0 def insert(self:"Tree", x:int) -> object: if self.root is None: self.root = makeNode(x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) class Tree2(object): root:TreeNode2 = None root2:TreeNode2 = None size:int = 0 size2:int = 0 def insert(self:"Tree2", x:int) -> object: if self.root is None: self.root = makeNode2(x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert2(self:"Tree2", x:int, x2:int) -> object: if self.root is None: self.root = makeNode2(x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree2", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains2(self:"Tree2", x:int, x2:int) -> bool: if self.root is None: return False else: return self.root.contains(x) class Tree3(object): root:TreeNode3 = None root2:TreeNode3 = None root3:TreeNode3 = None size:int = 0 size2:int = 0 size3:int = 0 def insert(self:"Tree3", x:int) -> object: if self.root is None: self.root = makeNode3(x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert2(self:"Tree3", x:int, x2:int) -> object: if self.root is None: self.root = makeNode3(x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert3(self:"Tree3", x:int, x2:int, x3:int) -> object: if self.root is None: self.root = makeNode3(x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree3", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains2(self:"Tree3", x:int, x2:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains3(self:"Tree3", x:int, x2:int, x3:int) -> bool: if self.root is None: return False else: return self.root.contains(x) class Tree4(object): root:TreeNode4 = None root2:TreeNode4 = None root3:TreeNode4 = None root4:TreeNode4 = None size:int = 0 size2:int = 0 size3:int = 0 size4:int = 0 def insert(self:"Tree4", x:int) -> object: if self.root is None: self.root = makeNode4(x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert2(self:"Tree4", x:int, x2:int) -> object: if self.root is None: self.root = makeNode4(x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert3(self:"Tree4", x:int, x2:int, x3:int) -> object: if self.root is None: self.root = makeNode4(x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert4(self:"Tree4", x:int, x2:int, x3:int, x4:int) -> object: if self.root is None: self.root = makeNode4(x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree4", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains2(self:"Tree4", x:int, x2:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains3(self:"Tree4", x:int, x2:int, x3:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains4(self:"Tree4", x:int, x2:int, x3:int, x4:int) -> bool: if self.root is None: return False else: return self.root.contains(x) class Tree5(object): root:TreeNode5 = None root2:TreeNode5 = None root3:TreeNode5 = None root4:TreeNode5 = None root5:TreeNode5 = None size:int = 0 size2:int = 0 size3:int = 0 size4:int = 0 size5:int = 0 def insert(self:"Tree5", x:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert2(self:"Tree5", x:int, x2:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert3(self:"Tree5", x:int, x2:int, x3:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert4(self:"Tree5", x:int, x2:int, x3:int, x4:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert5(self:"Tree5", x:int, x2:int, x3:int, x4:int, x5:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree5", x:int) -> bool: if $Exp: return False else: return self.root.contains(x) def contains2(self:"Tree5", x:int, x2:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains3(self:"Tree5", x:int, x2:int, x3:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains4(self:"Tree5", x:int, x2:int, x3:int, x4:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains5(self:"Tree5", x:int, x2:int, x3:int, x4:int, x5:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def makeNode(x: int) -> TreeNode: b:TreeNode = None b = TreeNode() b.value = x return b def makeNode2(x: int, x2: int) -> TreeNode2: b:TreeNode2 = None b2:TreeNode2 = None b = TreeNode2() b.value = x return b def makeNode3(x: int, x2: int, x3: int) -> TreeNode3: b:TreeNode3 = None b2:TreeNode3 = None b3:TreeNode3 = None b = TreeNode3() b.value = x return b def makeNode4(x: int, x2: int, x3: int, x4: int) -> TreeNode4: b:TreeNode4 = None b2:TreeNode4 = None b3:TreeNode4 = None b4:TreeNode4 = None b = TreeNode4() b.value = x return b def makeNode5(x: int, x2: int, x3: int, x4: int, x5: int) -> TreeNode5: b:TreeNode5 = None b2:TreeNode5 = None b3:TreeNode5 = None b4:TreeNode5 = None b5:TreeNode5 = None b = TreeNode5() b.value = x return b # Input parameters n:int = 100 n2:int = 100 n3:int = 100 n4:int = 100 n5:int = 100 c:int = 4 c2:int = 4 c3:int = 4 c4:int = 4 c5:int = 4 # Data t:Tree = None t2:Tree = None t3:Tree = None t4:Tree = None t5:Tree = None i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 i5:int = 0 k:int = 37813 k2:int = 37813 k3:int = 37813 k4:int = 37813 k5:int = 37813 # Crunch t = Tree() while i < n: t.insert(k) k = (k * 37813) % 37831 if i % c != 0: t.insert(i) i = i + 1 print(t.size) for i in [4, 8, 15, 16, 23, 42]: if t.contains(i): print(i)
e0ed0dfefb138ca3c8fd3e937468c210583a4899
ace717292aec2cbff637da1455e265b2c4f5894b
/azdev/operations/tests/test_break_change.py
6a81837caf7c11c4c8bb9ba49d0e3b8e9f1cb7b8
[ "MIT" ]
permissive
Azure/azure-cli-dev-tools
b62b936327c1129d970e7b836b7f926e7c277cce
d4e9490071a5161c3f663e41a99f16b7a091feea
refs/heads/dev
2023-08-24T12:36:36.386669
2023-08-10T05:57:09
2023-08-10T05:57:09
158,465,443
78
106
MIT
2023-09-14T02:55:18
2018-11-20T23:46:08
Python
UTF-8
Python
false
false
2,621
py
# ----------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # ----------------------------------------------------------------------------- import unittest import os from azdev.operations.command_change import export_command_meta, cmp_command_meta from azdev.operations.command_change.util import get_command_tree class MyTestCase(unittest.TestCase): def test_cmd_meta_generation(self): if os.path.exists("./jsons/az_monitor_meta.json"): os.remove("./jsons/az_monitor_meta.json") module_list = ["monitor"] export_command_meta(modules=module_list, meta_output_path="./jsons/") self.assertTrue(os.path.exists("./jsons/az_monitor_meta.json"), "new monitor meta generation failed") def test_parse_cmd_tree(self): cmd_name = "monitor log-profiles create" ret = get_command_tree(cmd_name) self.assertTrue(ret["is_group"], "group parse failed") self.assertFalse(ret["sub_info"]["sub_info"]["is_group"], "group parse failed") self.assertTrue(ret["sub_info"]["sub_info"]["cmd_name"] == "monitor log-profiles create", "group parse failed") def test_diff_meta(self): if not os.path.exists("./jsons/az_monitor_meta_before.json") \ or not os.path.exists("./jsons/az_monitor_meta_after.json"): return result = cmp_command_meta(base_meta_file="./jsons/az_monitor_meta_before.json", diff_meta_file="./jsons/az_monitor_meta_after.json", output_type="text") target_message = [ "please confirm cmd `monitor private-link-scope scoped-resource show` removed", "sub group `monitor private-link-scope private-endpoint-connection cust` removed", ] for mes in target_message: found = False for line in result: if line.find(mes) > -1: found = True break self.assertTrue(found, "target message not found") ignored_message = [ "updated property `is_aaz` from `False` to `True`" ] for mes in ignored_message: ignored = True for line in result: if line.find(mes) > -1: ignored = False break self.assertTrue(ignored, "ignored message found") if __name__ == '__main__': unittest.main()
989ffac9bbb35c98fef0e0e921d47fbd26eac1d9
4e02d5b0b1b0739553fd40bbbdfb0d02c9830350
/0279_Perfect_Squares.py
a4f7a1558f81bae7ae146a21635bc67ee099f516
[]
no_license
bingli8802/leetcode
b039ab6af62f0c8992463393f561caafd21056e6
a509b383a42f54313970168d9faa11f088f18708
refs/heads/master
2023-03-29T03:11:45.801090
2021-03-23T22:55:16
2021-03-23T22:55:16
279,321,659
0
0
null
null
null
null
UTF-8
Python
false
false
1,738
py
class Solution(object): def numSquares(self, n): """ :type n: int :rtype: int """ dp = [0] * (n+1) for i in range(1, n+1): dp[i] = i j = 1 while i - j*j >= 0: dp[i] = min(dp[i], dp[i-j*j] + 1) j += 1 return dp[n] # 和第一种解法思路类似 但是更好理解 效率也更高 def numSquares(self, n): """ :type n: int :rtype: int """ # lst is to store all the perfect squares that are smaller or equal to n # lst用来存放所有比n小的完全平方数 lst = [i*i for i in range(1,n) if i*i <= n] print lst # create another list dp to store perfect squares that a number need from 1 to n # dp存放所有小于n的数 遍历每一个数字 dp = [0] * (n+1) for num in range(1,n+1): # number from 1 to 4, for each number, it can be divided into n 1's # 对于每个数字num来说 都可以拆分成num个1 所以把当前最小完全平方数就设为num # 比如4 它可以拆分成4个1 min_num = 4 min_num = num # a temporary list is to store perfect squares that are smaller or equal to current number # 这个临时list存放所有小于等于4的完全平方数[1,4] tmp_lst = [c for c in lst if c <= num] for j in tmp_lst: # 在dp中找到num-j的完全平方数的个数 dp[4-4]=1 perfectSquares = dp[num-j] + 1 if perfectSquares < min_num: min_num = perfectSquares dp[num] = min_num return dp[n]
b85bd0e003e0af4800ebefdd62eaedba1d847289
83cbb5554f488f78b9cc8fddda5749e4a77cd9d7
/corona_chan/app_celery.py
d2f74a0925bf8a3b6fdd875f3bcee3262aaa42f5
[ "WTFPL" ]
permissive
dem4ply/corona_chan
5273beef3bb859314a39bf6948d983db1f9ead38
e422a6ddd2ea7628d83f9f7eb09dc8b39984971b
refs/heads/master
2022-01-21T17:34:56.458016
2020-03-28T08:12:40
2020-03-28T08:12:40
252,572,781
0
0
WTFPL
2022-01-06T22:43:34
2020-04-02T21:53:46
Python
UTF-8
Python
false
false
398
py
from __future__ import absolute_import import os from celery import Celery from django.conf import settings __all__ = [ 'corona_chan_task' ] os.environ.setdefault( 'DJANGO_SETTINGS_MODULE', 'corona_chan.settings' ) corona_chan_task = Celery( 'corona_chan' ) corona_chan_task.config_from_object( 'django.conf:settings' ) corona_chan_task.autodiscover_tasks( lambda: settings.INSTALLED_APPS )
d9a61d0432914bf06dd735f4f255e00fbb172535
6a3db7061752a7dc7466f3965e1d7aef116b2adc
/core/manager/threadmanager.py
0a24f226af42726d5611b3b10dedc9d19d0f664f
[ "BSD-2-Clause" ]
permissive
bwbj/imagepy
f3b68b320a82bbb3e0641539a244046e9dc6fa73
e2ee389f1003fc297a541968dcfd7fd883b91e01
refs/heads/master
2021-01-25T09:25:45.077798
2017-06-04T16:02:19
2017-06-04T16:02:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
153
py
# -*- coding: utf-8 -*- """ Created on Sat Jan 14 23:24:32 2017 @author: yxl """ import numpy as np, os import IPy class ThreadManager: threads = []
c64c92384af399fffd97ca2e1811f3c53183049a
ad20495c8df427211dba51c93c507365f9fce319
/tilejetserver/source/models.py
99a2588f534876baed6957523db4f391849ae42f
[ "LicenseRef-scancode-public-domain" ]
permissive
tilejet/tilejet-server
779398257c65138c906f3989c63e029dfe45587e
7bd0caa18cde98a8fd80aeea6e06bbe8aa2fa1be
refs/heads/master
2021-01-10T02:41:23.553939
2015-12-06T07:18:56
2015-12-06T07:19:59
43,448,267
0
1
null
null
null
null
UTF-8
Python
false
false
5,709
py
import datetime import logging import os import io import sys import uuid from base64 import b64encode from optparse import make_option import json import argparse import time import os import subprocess import binascii import re from django.db import models from django.db.models import signals from django.conf import settings from django.contrib.contenttypes.models import ContentType from django.contrib.auth.models import User from django.utils.translation import ugettext_lazy as _ from django.core.urlresolvers import reverse from tilejetserver.utils import TYPE_TMS, TYPE_TMS_FLIPPED, TYPE_BING, TYPE_WMS, TYPE_CHOICES, IMAGE_EXTENSION_CHOICES def parse_url(url): if (url is None) or len(url) == 0: return None index = url.rfind('/') if index != (len(url)-1): url += '/' return url class TileOrigin(models.Model): TYPE_CHOICES = [ (TYPE_TMS, _("TMS")), (TYPE_TMS_FLIPPED, _("TMS - Flipped")), (TYPE_BING, _("Bing")), (TYPE_WMS, _("WMS")) ] name = models.CharField(max_length=100) description = models.CharField(max_length=400, help_text=_('Human-readable description of the services provided by this tile origin.')) type = models.IntegerField(choices=TYPE_CHOICES, default=TYPE_TMS) cacheable = models.BooleanField(default=True, help_text=_('If true, tiles from the origin might be cached given other constraints. If false, tiles from the origin will never be cached.')) multiple = models.BooleanField(default=True, help_text=_('If true, make sure to include {slug} in the url to be replaced by each source.')) auto = models.BooleanField(default=True, help_text=_('Should the proxy automatically create tile sources for this origin?')) url = models.CharField(max_length=400, help_text=_('Used to generate url for new tilesource. For example, http://c.tile.openstreetmap.org/{z}/{x}/{y}.png.')) extensions = models.CharField(max_length=400,null=True,blank=True) pattern = models.CharField(max_length=400,null=True,blank=True) auth = models.CharField(max_length=400, blank=True, null=True, help_text=_('Authentication or access token. Dynamically replaced in downstream sources by replacing {auth}.')) def __unicode__(self): return self.name class Meta: ordering = ("name","type") verbose_name_plural = _("Tile Origins") def type_title(self): return unicode([v for i, v in enumerate(TYPE_CHOICES) if v[0] == self.type][0][1]); #def match(self, url): # match = None # # If matches primary pattern, then check secondary patterns/filters. # if self.pattern: # match = re.match(self.pattern, url, re.M|re.I) #patterns = TileOriginPattern.objects.filter(origin__pk=self.pk) #for pattern in patterns: # match = pattern.match(url) # if match: # break return match class TileOriginPattern(models.Model): origin = models.ForeignKey(TileOrigin,null=True,blank=True,help_text=_('The origin.')) includes = models.CharField(max_length=400,null=True,blank=True) excludes = models.CharField(max_length=400,null=True,blank=True) def __unicode__(self): return self.origin.name + " - "+str(self.pk) class Meta: ordering = ("origin", "includes", "excludes") verbose_name_plural = _("Tile Origin Patterns") def match(self,url): #print "matching includes: "+str(self.includes) #print "matching excludes: "+str(self.excludes) #print "matching url: "+str(url) match = None if self.includes: match = re.match(self.includes, url, re.M|re.I) if self.excludes: if re.match(self.excludes, url, re.M|re.I): match = None #print "match: "+str(match) return match class TileSource(models.Model): name = models.CharField(max_length=100) description = models.CharField(max_length=400, null=True, blank=True, help_text=_('Human-readable description of this tile source.')) type = models.IntegerField(choices=TYPE_CHOICES, default=TYPE_TMS) auto = models.BooleanField(default=True, help_text=_('Was the tile source created automatically by the proxy or manually by a user?')) cacheable = models.BooleanField(default=True, help_text=_('If true, tiles from this source might be cached given other constraints. If false, tiles from this source will never be cached.')) origin = models.ForeignKey(TileOrigin,null=True,blank=True,help_text=_('The Tile Origin, if there is one.')) url = models.CharField(max_length=400, help_text=_('Standard Tile URL. If applicable, replace {slug} from origin. For example, http://c.tile.openstreetmap.org/{z}/{x}/{y}.{ext}. If url includes {auth}, it is dynamically replaced with the relevant auth token stored with origin.')) #extensions = models.CharField(max_length=400,null=True,blank=True,choices=IMAGE_EXTENSION_CHOICES) extensions = models.CharField(max_length=400,null=True,blank=True) pattern = models.CharField(max_length=400,null=True,blank=True) extents = models.CharField(max_length=800,blank=True,null=True) minZoom = models.IntegerField(default=0,null=True,blank=True) maxZoom = models.IntegerField(default=None,null=True,blank=True) def __unicode__(self): return self.name class Meta: ordering = ("name",) verbose_name_plural = _("Tile Sources") @property def tileservices(self): return self.tileservice_set def type_title(self): return unicode([v for i, v in enumerate(TYPE_CHOICES) if v[0] == self.type][0][1]);
d046dfadb9f91a4651d440ee1c6c211841633686
51f887286aa3bd2c3dbe4c616ad306ce08976441
/pybind/slxos/v17r_1_01a/routing_system/router/router_bgp/address_family/ipv6/ipv6_unicast/default_vrf/af_ipv6_uc_and_vrf_cmds_call_point_holder/redistribute/static/__init__.py
0bb0151f518a6c84ba89cf606dd97f1974d8b36b
[ "Apache-2.0" ]
permissive
b2220333/pybind
a8c06460fd66a97a78c243bf144488eb88d7732a
44c467e71b2b425be63867aba6e6fa28b2cfe7fb
refs/heads/master
2020-03-18T09:09:29.574226
2018-04-03T20:09:50
2018-04-03T20:09:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
14,312
py
from operator import attrgetter import pyangbind.lib.xpathhelper as xpathhelper from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType from pyangbind.lib.yangtypes import YANGBool, YANGListType, YANGDynClass, ReferenceType from pyangbind.lib.base import PybindBase from decimal import Decimal from bitarray import bitarray import __builtin__ class static(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module brocade-common-def - based on the path /routing-system/router/router-bgp/address-family/ipv6/ipv6-unicast/default-vrf/af-ipv6-uc-and-vrf-cmds-call-point-holder/redistribute/static. Each member element of the container is represented as a class variable - with a specific YANG type. """ __slots__ = ('_pybind_generated_by', '_path_helper', '_yang_name', '_rest_name', '_extmethods', '__redistribute_static','__unicast_static_metric','__static_route_map',) _yang_name = 'static' _rest_name = 'static' _pybind_generated_by = 'container' def __init__(self, *args, **kwargs): path_helper_ = kwargs.pop("path_helper", None) if path_helper_ is False: self._path_helper = False elif path_helper_ is not None and isinstance(path_helper_, xpathhelper.YANGPathHelper): self._path_helper = path_helper_ elif hasattr(self, "_parent"): path_helper_ = getattr(self._parent, "_path_helper", False) self._path_helper = path_helper_ else: self._path_helper = False extmethods = kwargs.pop("extmethods", None) if extmethods is False: self._extmethods = False elif extmethods is not None and isinstance(extmethods, dict): self._extmethods = extmethods elif hasattr(self, "_parent"): extmethods = getattr(self._parent, "_extmethods", None) self._extmethods = extmethods else: self._extmethods = False self.__unicast_static_metric = YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'1..4294967295']}), is_leaf=True, yang_name="unicast-static-metric", rest_name="metric", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-full-command': None, u'info': u'Metric for redistributed routes', u'alt-name': u'metric'}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='conn-metric', is_config=True) self.__static_route_map = YANGDynClass(base=RestrictedClassType(base_type=unicode, restriction_dict={'length': [u'1..63']}), is_leaf=True, yang_name="static-route-map", rest_name="route-map", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-full-command': None, u'info': u'Route map reference', u'alt-name': u'route-map'}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='rmap-type', is_config=True) self.__redistribute_static = YANGDynClass(base=YANGBool, is_leaf=True, yang_name="redistribute-static", rest_name="redistribute-static", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-run-template': u'$(.?$(../unicast-static-metric?\\r:$(../static-route-map?\\r:redistribute static\n)):\\r)', u'cli-drop-node-name': None}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='empty', is_config=True) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path()+[self._yang_name] else: return [u'routing-system', u'router', u'router-bgp', u'address-family', u'ipv6', u'ipv6-unicast', u'default-vrf', u'af-ipv6-uc-and-vrf-cmds-call-point-holder', u'redistribute', u'static'] def _rest_path(self): if hasattr(self, "_parent"): if self._rest_name: return self._parent._rest_path()+[self._rest_name] else: return self._parent._rest_path() else: return [u'router', u'bgp', u'address-family', u'ipv6', u'unicast', u'redistribute', u'static'] def _get_redistribute_static(self): """ Getter method for redistribute_static, mapped from YANG variable /routing_system/router/router_bgp/address_family/ipv6/ipv6_unicast/default_vrf/af_ipv6_uc_and_vrf_cmds_call_point_holder/redistribute/static/redistribute_static (empty) """ return self.__redistribute_static def _set_redistribute_static(self, v, load=False): """ Setter method for redistribute_static, mapped from YANG variable /routing_system/router/router_bgp/address_family/ipv6/ipv6_unicast/default_vrf/af_ipv6_uc_and_vrf_cmds_call_point_holder/redistribute/static/redistribute_static (empty) If this variable is read-only (config: false) in the source YANG file, then _set_redistribute_static is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_redistribute_static() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=YANGBool, is_leaf=True, yang_name="redistribute-static", rest_name="redistribute-static", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-run-template': u'$(.?$(../unicast-static-metric?\\r:$(../static-route-map?\\r:redistribute static\n)):\\r)', u'cli-drop-node-name': None}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='empty', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """redistribute_static must be of a type compatible with empty""", 'defined-type': "empty", 'generated-type': """YANGDynClass(base=YANGBool, is_leaf=True, yang_name="redistribute-static", rest_name="redistribute-static", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-run-template': u'$(.?$(../unicast-static-metric?\\r:$(../static-route-map?\\r:redistribute static\n)):\\r)', u'cli-drop-node-name': None}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='empty', is_config=True)""", }) self.__redistribute_static = t if hasattr(self, '_set'): self._set() def _unset_redistribute_static(self): self.__redistribute_static = YANGDynClass(base=YANGBool, is_leaf=True, yang_name="redistribute-static", rest_name="redistribute-static", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-run-template': u'$(.?$(../unicast-static-metric?\\r:$(../static-route-map?\\r:redistribute static\n)):\\r)', u'cli-drop-node-name': None}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='empty', is_config=True) def _get_unicast_static_metric(self): """ Getter method for unicast_static_metric, mapped from YANG variable /routing_system/router/router_bgp/address_family/ipv6/ipv6_unicast/default_vrf/af_ipv6_uc_and_vrf_cmds_call_point_holder/redistribute/static/unicast_static_metric (conn-metric) """ return self.__unicast_static_metric def _set_unicast_static_metric(self, v, load=False): """ Setter method for unicast_static_metric, mapped from YANG variable /routing_system/router/router_bgp/address_family/ipv6/ipv6_unicast/default_vrf/af_ipv6_uc_and_vrf_cmds_call_point_holder/redistribute/static/unicast_static_metric (conn-metric) If this variable is read-only (config: false) in the source YANG file, then _set_unicast_static_metric is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_unicast_static_metric() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'1..4294967295']}), is_leaf=True, yang_name="unicast-static-metric", rest_name="metric", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-full-command': None, u'info': u'Metric for redistributed routes', u'alt-name': u'metric'}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='conn-metric', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """unicast_static_metric must be of a type compatible with conn-metric""", 'defined-type': "brocade-bgp:conn-metric", 'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'1..4294967295']}), is_leaf=True, yang_name="unicast-static-metric", rest_name="metric", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-full-command': None, u'info': u'Metric for redistributed routes', u'alt-name': u'metric'}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='conn-metric', is_config=True)""", }) self.__unicast_static_metric = t if hasattr(self, '_set'): self._set() def _unset_unicast_static_metric(self): self.__unicast_static_metric = YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'1..4294967295']}), is_leaf=True, yang_name="unicast-static-metric", rest_name="metric", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-full-command': None, u'info': u'Metric for redistributed routes', u'alt-name': u'metric'}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='conn-metric', is_config=True) def _get_static_route_map(self): """ Getter method for static_route_map, mapped from YANG variable /routing_system/router/router_bgp/address_family/ipv6/ipv6_unicast/default_vrf/af_ipv6_uc_and_vrf_cmds_call_point_holder/redistribute/static/static_route_map (rmap-type) """ return self.__static_route_map def _set_static_route_map(self, v, load=False): """ Setter method for static_route_map, mapped from YANG variable /routing_system/router/router_bgp/address_family/ipv6/ipv6_unicast/default_vrf/af_ipv6_uc_and_vrf_cmds_call_point_holder/redistribute/static/static_route_map (rmap-type) If this variable is read-only (config: false) in the source YANG file, then _set_static_route_map is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_static_route_map() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedClassType(base_type=unicode, restriction_dict={'length': [u'1..63']}), is_leaf=True, yang_name="static-route-map", rest_name="route-map", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-full-command': None, u'info': u'Route map reference', u'alt-name': u'route-map'}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='rmap-type', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """static_route_map must be of a type compatible with rmap-type""", 'defined-type': "brocade-bgp:rmap-type", 'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=unicode, restriction_dict={'length': [u'1..63']}), is_leaf=True, yang_name="static-route-map", rest_name="route-map", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-full-command': None, u'info': u'Route map reference', u'alt-name': u'route-map'}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='rmap-type', is_config=True)""", }) self.__static_route_map = t if hasattr(self, '_set'): self._set() def _unset_static_route_map(self): self.__static_route_map = YANGDynClass(base=RestrictedClassType(base_type=unicode, restriction_dict={'length': [u'1..63']}), is_leaf=True, yang_name="static-route-map", rest_name="route-map", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-full-command': None, u'info': u'Route map reference', u'alt-name': u'route-map'}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='rmap-type', is_config=True) redistribute_static = __builtin__.property(_get_redistribute_static, _set_redistribute_static) unicast_static_metric = __builtin__.property(_get_unicast_static_metric, _set_unicast_static_metric) static_route_map = __builtin__.property(_get_static_route_map, _set_static_route_map) _pyangbind_elements = {'redistribute_static': redistribute_static, 'unicast_static_metric': unicast_static_metric, 'static_route_map': static_route_map, }
804ae630fba94c13e8ca0673bfb3b16caf9c116b
e7451193592aaee2536924ef03846eee920bcf94
/ucscentralsdk/mometa/ls/LsIssues.py
ed90bd3be818f6f0f3d288ee7ced886d4a637c0a
[ "Apache-2.0" ]
permissive
vinayravish/ucscentralsdk
eb33191f3c7675561298af8cef9b30f6e220b7b2
809a3782d26c69f50cf7237700e107f1a9857870
refs/heads/master
2021-01-18T01:51:57.275207
2016-07-20T05:37:26
2016-07-20T05:37:26
62,137,219
0
0
null
2016-06-28T12:00:34
2016-06-28T12:00:34
null
UTF-8
Python
false
false
12,494
py
"""This module contains the general information for LsIssues ManagedObject.""" from ...ucscentralmo import ManagedObject from ...ucscentralcoremeta import UcsCentralVersion, MoPropertyMeta, MoMeta from ...ucscentralmeta import VersionMeta class LsIssuesConsts(): pass class LsIssues(ManagedObject): """This is LsIssues class.""" consts = LsIssuesConsts() naming_props = set([]) mo_meta = MoMeta("LsIssues", "lsIssues", "config-issue", VersionMeta.Version112a, "InputOutput", 0xf, [], ["admin", "ls-compute", "ls-config", "ls-server"], [u'computeInstance', u'lsServer'], [u'faultInst'], ["Get"]) prop_meta = { "child_action": MoPropertyMeta("child_action", "childAction", "string", VersionMeta.Version112a, MoPropertyMeta.INTERNAL, None, None, None, r"""((deleteAll|ignore|deleteNonPresent),){0,2}(deleteAll|ignore|deleteNonPresent){0,1}""", [], []), "dn": MoPropertyMeta("dn", "dn", "string", VersionMeta.Version112a, MoPropertyMeta.READ_ONLY, 0x2, 0, 256, None, [], []), "iscsi_config_issues": MoPropertyMeta("iscsi_config_issues", "iscsiConfigIssues", "string", VersionMeta.Version112a, MoPropertyMeta.READ_ONLY, None, None, None, r"""((defaultValue|not-applicable|static-target-mix|native-vlan|auto-target-auth|iscsi-config|missing-vlan|invalid-target-params|invalid-target-name|initiator-name|ip-addr-dhcp|init-target-passwd|auto-target-init|iscsi-initiator-ip-address|iqn-pool-name|vnic-name|no-luns|target-iscsilif-static-ip|unclassified|init-identity|target-name|no-vlan-ip|invalid-mac|iscsi-cardinality|allowed-vlan|internal-cfg-error|unresolvable-managed-target|auth-profile-same),){0,27}(defaultValue|not-applicable|static-target-mix|native-vlan|auto-target-auth|iscsi-config|missing-vlan|invalid-target-params|invalid-target-name|initiator-name|ip-addr-dhcp|init-target-passwd|auto-target-init|iscsi-initiator-ip-address|iqn-pool-name|vnic-name|no-luns|target-iscsilif-static-ip|unclassified|init-identity|target-name|no-vlan-ip|invalid-mac|iscsi-cardinality|allowed-vlan|internal-cfg-error|unresolvable-managed-target|auth-profile-same){0,1}""", [], []), "network_config_issues": MoPropertyMeta("network_config_issues", "networkConfigIssues", "string", VersionMeta.Version112a, MoPropertyMeta.READ_ONLY, None, None, None, r"""((defaultValue|not-applicable|network-feature-capability-mismatch|switch-virtual-if-capacity|conflicting-vlan-access|unsupported-usnic-config|named-vlan-inaccessible|unsupported-multicast-policy|permit-unresolved|unsupported-vmq-config|vlan-port-capacity|pinning-invalid),){0,11}(defaultValue|not-applicable|network-feature-capability-mismatch|switch-virtual-if-capacity|conflicting-vlan-access|unsupported-usnic-config|named-vlan-inaccessible|unsupported-multicast-policy|permit-unresolved|unsupported-vmq-config|vlan-port-capacity|pinning-invalid){0,1}""", [], []), "rn": MoPropertyMeta("rn", "rn", "string", VersionMeta.Version112a, MoPropertyMeta.READ_ONLY, 0x4, 0, 256, None, [], []), "server_config_issues": MoPropertyMeta("server_config_issues", "serverConfigIssues", "string", VersionMeta.Version112a, MoPropertyMeta.READ_ONLY, None, None, None, r"""((defaultValue|not-applicable|insufficient-power-budget|server-position-requirement|boot-configuration-unsupported|processor-type-bios-downgrade-restriction|compute-undiscovered|power-group-requirement|imgsec-policy-invalid|soft-pinning-vlan-mismatch|embedded-controller-not-supported|missing-firmware-image|resource-ownership-conflict|boot-order-pxe|vmedia-policy-unsupported|on-next-boot-unsupported|insufficient-resources|mac-address-assignment|remote-service-profile|server-feature-capability-mismatch|boot-order-jbod-image-path|incompat-bios-for-sriov-vnics|processor-requirement|provsrv-policy-invalid|cimc-downgrade-restriction|unsupported-vic-slot|board-controller-update-unsupported|non-interrupt-fsm-running|boot-order-san-image-path|bootip-policy-invalid|boot-policy-vmedia-invalid|server-type-bios-downgrade-restriction|memory-requirement|system-uuid-assignment|domain-requirement|qualified-pool-without-binding|boot-configuration-invalid|incompatible-bios-image|remote-policy|qos-policy-invalid|processor-type-cimc-downgrade-restriction|compute-unavailable|physical-requirement|hostimg-policy-invalid|vmedia-mount-config-invalid|server-type-cimc-downgrade-restriction|migration|wwnn-derivation-from-vhba|duplicate-address-conflict|unsupported-bios-for-vnic-cdn|boot-order-iscsi),){0,50}(defaultValue|not-applicable|insufficient-power-budget|server-position-requirement|boot-configuration-unsupported|processor-type-bios-downgrade-restriction|compute-undiscovered|power-group-requirement|imgsec-policy-invalid|soft-pinning-vlan-mismatch|embedded-controller-not-supported|missing-firmware-image|resource-ownership-conflict|boot-order-pxe|vmedia-policy-unsupported|on-next-boot-unsupported|insufficient-resources|mac-address-assignment|remote-service-profile|server-feature-capability-mismatch|boot-order-jbod-image-path|incompat-bios-for-sriov-vnics|processor-requirement|provsrv-policy-invalid|cimc-downgrade-restriction|unsupported-vic-slot|board-controller-update-unsupported|non-interrupt-fsm-running|boot-order-san-image-path|bootip-policy-invalid|boot-policy-vmedia-invalid|server-type-bios-downgrade-restriction|memory-requirement|system-uuid-assignment|domain-requirement|qualified-pool-without-binding|boot-configuration-invalid|incompatible-bios-image|remote-policy|qos-policy-invalid|processor-type-cimc-downgrade-restriction|compute-unavailable|physical-requirement|hostimg-policy-invalid|vmedia-mount-config-invalid|server-type-cimc-downgrade-restriction|migration|wwnn-derivation-from-vhba|duplicate-address-conflict|unsupported-bios-for-vnic-cdn|boot-order-iscsi){0,1}""", [], []), "status": MoPropertyMeta("status", "status", "string", VersionMeta.Version112a, MoPropertyMeta.READ_WRITE, 0x8, None, None, r"""((removed|created|modified|deleted),){0,3}(removed|created|modified|deleted){0,1}""", [], []), "storage_config_issues": MoPropertyMeta("storage_config_issues", "storageConfigIssues", "string", VersionMeta.Version112a, MoPropertyMeta.READ_ONLY, None, None, None, r"""((defaultValue|not-applicable|flexflash-metadata|unsupported-disk-controller-config|unsupported-expand-to-available|unsupported-use-remaining-disks|zone-capacity|duplicated-lun-name|unsupported-hotspare-change|unsupported-vd-modification|disk-role-mismatch|missing-raid-key|orphaned-lun-ref-missing|virtual-drive-access-denied|destructive-local-disk-config|storage-feature-capability-mismatch|insufficient-disks|conflicting-lun-config|unsupported-global-hotspares|drive-cache-not-supported|flexflash-controller|unsupported-controller|invalid-storage-profile-binding|lun-in-use|incompatible-disk-types|storage-path-configuration-error|disk-type-mismatch|orphaned-lun-ref-access-denied|virtual-drive-deletion-in-progress|unsupported-raid-level|incomplete-lun-config|unsupported-order|embedded-controller-not-supported|incompatible-number-of-local-disks|flexflash-card|unsupported-destructive-change|invalid-local-lun-disk-policy-reference|set-proper-order|wwnn-assignment|unsupported-orphan-lun-modification|unsupported-lun-map-modification|unsupported-write-cache-policy|unsupported-io-policy|insufficient-storage-space|order-should-be-unique|virtual-drive-capacity|incompatible-raid-level),){0,46}(defaultValue|not-applicable|flexflash-metadata|unsupported-disk-controller-config|unsupported-expand-to-available|unsupported-use-remaining-disks|zone-capacity|duplicated-lun-name|unsupported-hotspare-change|unsupported-vd-modification|disk-role-mismatch|missing-raid-key|orphaned-lun-ref-missing|virtual-drive-access-denied|destructive-local-disk-config|storage-feature-capability-mismatch|insufficient-disks|conflicting-lun-config|unsupported-global-hotspares|drive-cache-not-supported|flexflash-controller|unsupported-controller|invalid-storage-profile-binding|lun-in-use|incompatible-disk-types|storage-path-configuration-error|disk-type-mismatch|orphaned-lun-ref-access-denied|virtual-drive-deletion-in-progress|unsupported-raid-level|incomplete-lun-config|unsupported-order|embedded-controller-not-supported|incompatible-number-of-local-disks|flexflash-card|unsupported-destructive-change|invalid-local-lun-disk-policy-reference|set-proper-order|wwnn-assignment|unsupported-orphan-lun-modification|unsupported-lun-map-modification|unsupported-write-cache-policy|unsupported-io-policy|insufficient-storage-space|order-should-be-unique|virtual-drive-capacity|incompatible-raid-level){0,1}""", [], []), "vnic_config_issues": MoPropertyMeta("vnic_config_issues", "vnicConfigIssues", "string", VersionMeta.Version112a, MoPropertyMeta.READ_ONLY, None, None, None, r"""((defaultValue|not-applicable|adaptor-protected-eth-capability|vif-resources-overprovisioned|ungrouped-domain|unsupported-nvgre|unsupported-adaptor-for-vnic-cdn|unresolved-remote-vlan-name|invalid-wwn|service-profile-virtualization-conflict|unsupported-roce-netflow|unsupported-vxlan-netflow|fcoe-capacity|wwpn-derivation-virtualized-port|unresolved-vlan-name|vnic-virtualization-netflow-conflict|unsupported-vxlan-usnic|unsupported-roce-properties|pinning-vlan-mismatch|adaptor-requirement|vnic-not-ha-ready|missing-ipv4-inband-mgmt-addr|unsupported-nvgre-dynamic-vnic|duplicate-vnic-cdn-name|unresolved-remote-vsan-name|mac-derivation-virtualized-port|vnic-virtualization-conflict|unsupported-roce|unsupported-nvgre-netflow|vnic-vlan-assignment-error|insufficient-vhba-capacity|inaccessible-vlan|unable-to-update-ucsm|soft-pinning-vlan-mismatch|unsupported-roce-usnic|unsupported-nvgre-vmq|connection-placement|vnic-vcon-provisioning-change|missing-ipv6-inband-mgmt-addr|unsupported-nvgre-usnic|insufficient-roce-resources|missing-primary-vlan|adaptor-fcoe-capability|vfc-vnic-pvlan-conflict|virtualization-not-supported|unsupported-vxlan|unsupported-roce-nvgre|unresolved-vsan-name|insufficient-vnic-capacity|unassociated-vlan|unsupported-roce-vmq|unsupported-roce-vxlan|unsupported-vxlan-vmq|dynamic-vf-vnic|wwpn-assignment|missing-ipv4-addr|unsupported-vxlan-dynamic-vnic|pinned-target-misconfig|unsupported-vmq-resources),){0,58}(defaultValue|not-applicable|adaptor-protected-eth-capability|vif-resources-overprovisioned|ungrouped-domain|unsupported-nvgre|unsupported-adaptor-for-vnic-cdn|unresolved-remote-vlan-name|invalid-wwn|service-profile-virtualization-conflict|unsupported-roce-netflow|unsupported-vxlan-netflow|fcoe-capacity|wwpn-derivation-virtualized-port|unresolved-vlan-name|vnic-virtualization-netflow-conflict|unsupported-vxlan-usnic|unsupported-roce-properties|pinning-vlan-mismatch|adaptor-requirement|vnic-not-ha-ready|missing-ipv4-inband-mgmt-addr|unsupported-nvgre-dynamic-vnic|duplicate-vnic-cdn-name|unresolved-remote-vsan-name|mac-derivation-virtualized-port|vnic-virtualization-conflict|unsupported-roce|unsupported-nvgre-netflow|vnic-vlan-assignment-error|insufficient-vhba-capacity|inaccessible-vlan|unable-to-update-ucsm|soft-pinning-vlan-mismatch|unsupported-roce-usnic|unsupported-nvgre-vmq|connection-placement|vnic-vcon-provisioning-change|missing-ipv6-inband-mgmt-addr|unsupported-nvgre-usnic|insufficient-roce-resources|missing-primary-vlan|adaptor-fcoe-capability|vfc-vnic-pvlan-conflict|virtualization-not-supported|unsupported-vxlan|unsupported-roce-nvgre|unresolved-vsan-name|insufficient-vnic-capacity|unassociated-vlan|unsupported-roce-vmq|unsupported-roce-vxlan|unsupported-vxlan-vmq|dynamic-vf-vnic|wwpn-assignment|missing-ipv4-addr|unsupported-vxlan-dynamic-vnic|pinned-target-misconfig|unsupported-vmq-resources){0,1}""", [], []), } prop_map = { "childAction": "child_action", "dn": "dn", "iscsiConfigIssues": "iscsi_config_issues", "networkConfigIssues": "network_config_issues", "rn": "rn", "serverConfigIssues": "server_config_issues", "status": "status", "storageConfigIssues": "storage_config_issues", "vnicConfigIssues": "vnic_config_issues", } def __init__(self, parent_mo_or_dn, **kwargs): self._dirty_mask = 0 self.child_action = None self.iscsi_config_issues = None self.network_config_issues = None self.server_config_issues = None self.status = None self.storage_config_issues = None self.vnic_config_issues = None ManagedObject.__init__(self, "LsIssues", parent_mo_or_dn, **kwargs)
847223e52750a1c83489ec6b1a24eef605dc399e
2e682fd72e3feaa70e3f7bf2a3b83c50d783ec02
/PyTorch/contrib/cv/detection/centernet2/projects/CenterNet2/centernet/modeling/layers/deform_conv.py
1f769c8cc406ad284f290a81f443686934da2c31
[ "Apache-2.0", "LicenseRef-scancode-proprietary-license", "GPL-1.0-or-later", "BSD-2-Clause", "MIT", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "LicenseRef-scancode-unknown-license-reference" ]
permissive
Ascend/ModelZoo-PyTorch
4c89414b9e2582cef9926d4670108a090c839d2d
92acc188d3a0f634de58463b6676e70df83ef808
refs/heads/master
2023-07-19T12:40:00.512853
2023-07-17T02:48:18
2023-07-17T02:48:18
483,502,469
23
6
Apache-2.0
2022-10-15T09:29:12
2022-04-20T04:11:18
Python
UTF-8
Python
false
false
4,579
py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # import torch from torch import nn from detectron2.layers import Conv2d class _NewEmptyTensorOp(torch.autograd.Function): @staticmethod def forward(ctx, x, new_shape): ctx.shape = x.shape return x.new_empty(new_shape) @staticmethod def backward(ctx, grad): shape = ctx.shape return _NewEmptyTensorOp.apply(grad, shape), None class DFConv2d(nn.Module): """Deformable convolutional layer""" def __init__( self, in_channels, out_channels, with_modulated_dcn=True, kernel_size=3, stride=1, groups=1, dilation=1, deformable_groups=1, bias=False, padding=None ): super(DFConv2d, self).__init__() if isinstance(kernel_size, (list, tuple)): assert isinstance(stride, (list, tuple)) assert isinstance(dilation, (list, tuple)) assert len(kernel_size) == 2 assert len(stride) == 2 assert len(dilation) == 2 padding = ( dilation[0] * (kernel_size[0] - 1) // 2, dilation[1] * (kernel_size[1] - 1) // 2 ) offset_base_channels = kernel_size[0] * kernel_size[1] else: padding = dilation * (kernel_size - 1) // 2 offset_base_channels = kernel_size * kernel_size if with_modulated_dcn: from detectron2.layers.deform_conv import ModulatedDeformConv offset_channels = offset_base_channels * 3 # default: 27 conv_block = ModulatedDeformConv else: from detectron2.layers.deform_conv import DeformConv offset_channels = offset_base_channels * 2 # default: 18 conv_block = DeformConv self.offset = Conv2d( in_channels, deformable_groups * offset_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=1, dilation=dilation ) nn.init.constant_(self.offset.weight, 0) nn.init.constant_(self.offset.bias, 0) ''' for l in [self.offset, ]: nn.init.kaiming_uniform_(l.weight, a=1) torch.nn.init.constant_(l.bias, 0.) ''' self.conv = conv_block( in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, deformable_groups=deformable_groups, bias=bias ) self.with_modulated_dcn = with_modulated_dcn self.kernel_size = kernel_size self.stride = stride self.padding = padding self.dilation = dilation self.offset_split = offset_base_channels * deformable_groups * 2 def forward(self, x, return_offset=False): if x.numel() > 0: if not self.with_modulated_dcn: offset_mask = self.offset(x) x = self.conv(x, offset_mask) else: offset_mask = self.offset(x) offset = offset_mask[:, :self.offset_split, :, :] mask = offset_mask[:, self.offset_split:, :, :].sigmoid() x = self.conv(x, offset, mask) if return_offset: return x, offset_mask return x # get output shape output_shape = [ (i + 2 * p - (di * (k - 1) + 1)) // d + 1 for i, p, di, k, d in zip( x.shape[-2:], self.padding, self.dilation, self.kernel_size, self.stride ) ] output_shape = [x.shape[0], self.conv.weight.shape[0]] + output_shape return _NewEmptyTensorOp.apply(x, output_shape)
ede7c645eab3f1f455a1d33accfd7f85666937fa
afebbb07b2b4eada17a5853c1ce63b4075d280df
/marketsim/gen/_out/_imultiassetstrategy.py
af12f65be98a441b14e7d2cd86e9acf0c7e41cf3
[]
no_license
peter1000/marketsimulator
8c0a55fc6408b880311d3ad49defc55e9af57824
1b677200a9d5323f2970c83f076c2b83d39d4fe6
refs/heads/master
2021-01-18T01:39:04.869755
2015-03-29T17:47:24
2015-03-29T17:47:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
45
py
class IMultiAssetStrategy(object): pass
5e3edb681874b53ffa1b0407e4f3f44e9c9564ce
a2d36e471988e0fae32e9a9d559204ebb065ab7f
/huaweicloud-sdk-gaussdb/huaweicloudsdkgaussdb/v3/model/mysql_flavors_info.py
f645f35059fe903ce4c4505600efa70fabee5fdc
[ "Apache-2.0" ]
permissive
zhouxy666/huaweicloud-sdk-python-v3
4d878a90b8e003875fc803a61414788e5e4c2c34
cc6f10a53205be4cb111d3ecfef8135ea804fa15
refs/heads/master
2023-09-02T07:41:12.605394
2021-11-12T03:20:11
2021-11-12T03:20:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,889
py
# coding: utf-8 import re import six from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class MysqlFlavorsInfo: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'vcpus': 'str', 'ram': 'str', 'type': 'str', 'id': 'str', 'spec_code': 'str', 'version_name': 'str', 'instance_mode': 'str', 'az_status': 'dict(str, str)' } attribute_map = { 'vcpus': 'vcpus', 'ram': 'ram', 'type': 'type', 'id': 'id', 'spec_code': 'spec_code', 'version_name': 'version_name', 'instance_mode': 'instance_mode', 'az_status': 'az_status' } def __init__(self, vcpus=None, ram=None, type=None, id=None, spec_code=None, version_name=None, instance_mode=None, az_status=None): """MysqlFlavorsInfo - a model defined in huaweicloud sdk""" self._vcpus = None self._ram = None self._type = None self._id = None self._spec_code = None self._version_name = None self._instance_mode = None self._az_status = None self.discriminator = None self.vcpus = vcpus self.ram = ram self.type = type self.id = id self.spec_code = spec_code self.version_name = version_name self.instance_mode = instance_mode self.az_status = az_status @property def vcpus(self): """Gets the vcpus of this MysqlFlavorsInfo. CPU大小。例如:1表示1U。 :return: The vcpus of this MysqlFlavorsInfo. :rtype: str """ return self._vcpus @vcpus.setter def vcpus(self, vcpus): """Sets the vcpus of this MysqlFlavorsInfo. CPU大小。例如:1表示1U。 :param vcpus: The vcpus of this MysqlFlavorsInfo. :type: str """ self._vcpus = vcpus @property def ram(self): """Gets the ram of this MysqlFlavorsInfo. 内存大小,单位为GB。 :return: The ram of this MysqlFlavorsInfo. :rtype: str """ return self._ram @ram.setter def ram(self, ram): """Sets the ram of this MysqlFlavorsInfo. 内存大小,单位为GB。 :param ram: The ram of this MysqlFlavorsInfo. :type: str """ self._ram = ram @property def type(self): """Gets the type of this MysqlFlavorsInfo. 规格类型,取值为arm和x86。 :return: The type of this MysqlFlavorsInfo. :rtype: str """ return self._type @type.setter def type(self, type): """Sets the type of this MysqlFlavorsInfo. 规格类型,取值为arm和x86。 :param type: The type of this MysqlFlavorsInfo. :type: str """ self._type = type @property def id(self): """Gets the id of this MysqlFlavorsInfo. 规格ID,该字段唯一 :return: The id of this MysqlFlavorsInfo. :rtype: str """ return self._id @id.setter def id(self, id): """Sets the id of this MysqlFlavorsInfo. 规格ID,该字段唯一 :param id: The id of this MysqlFlavorsInfo. :type: str """ self._id = id @property def spec_code(self): """Gets the spec_code of this MysqlFlavorsInfo. 资源规格编码,同创建指定的flavor_ref。例如:gaussdb.mysql.xlarge.x86.4。 :return: The spec_code of this MysqlFlavorsInfo. :rtype: str """ return self._spec_code @spec_code.setter def spec_code(self, spec_code): """Sets the spec_code of this MysqlFlavorsInfo. 资源规格编码,同创建指定的flavor_ref。例如:gaussdb.mysql.xlarge.x86.4。 :param spec_code: The spec_code of this MysqlFlavorsInfo. :type: str """ self._spec_code = spec_code @property def version_name(self): """Gets the version_name of this MysqlFlavorsInfo. 数据库版本号。 :return: The version_name of this MysqlFlavorsInfo. :rtype: str """ return self._version_name @version_name.setter def version_name(self, version_name): """Sets the version_name of this MysqlFlavorsInfo. 数据库版本号。 :param version_name: The version_name of this MysqlFlavorsInfo. :type: str """ self._version_name = version_name @property def instance_mode(self): """Gets the instance_mode of this MysqlFlavorsInfo. 实例类型。目前仅支持Cluster。 :return: The instance_mode of this MysqlFlavorsInfo. :rtype: str """ return self._instance_mode @instance_mode.setter def instance_mode(self, instance_mode): """Sets the instance_mode of this MysqlFlavorsInfo. 实例类型。目前仅支持Cluster。 :param instance_mode: The instance_mode of this MysqlFlavorsInfo. :type: str """ self._instance_mode = instance_mode @property def az_status(self): """Gets the az_status of this MysqlFlavorsInfo. 规格所在az的状态,包含以下状态: - normal,在售 - unsupported,暂不支持该规格 - sellout,售罄。 :return: The az_status of this MysqlFlavorsInfo. :rtype: dict(str, str) """ return self._az_status @az_status.setter def az_status(self, az_status): """Sets the az_status of this MysqlFlavorsInfo. 规格所在az的状态,包含以下状态: - normal,在售 - unsupported,暂不支持该规格 - sellout,售罄。 :param az_status: The az_status of this MysqlFlavorsInfo. :type: dict(str, str) """ self._az_status = az_status def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, MysqlFlavorsInfo): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
f98b586ac029d55f77d430b036cbbe0642135da8
0660cfca0799685969f75b4082455a5608e23bc4
/TensorFlow2/Recommendation/WideAndDeep/data/outbrain/nvtabular/preproc.py
52240c1143495c764743a4c98d2bd58e20e4257a
[]
no_license
resemble-ai/DeepLearningExamples
c88dc66930bc2c4627fd187fc0034e783e6244d3
2d555548b698e4fc207965b7121f525c37e0401c
refs/heads/master
2023-04-12T17:23:45.349726
2021-04-26T13:00:10
2021-04-26T13:00:10
362,784,409
4
3
null
2021-04-29T10:51:42
2021-04-29T10:51:41
null
UTF-8
Python
false
false
1,995
py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os os.environ['TF_MEMORY_ALLOCATION'] = "0.0" from data.outbrain.nvtabular.utils.converter import nvt_to_tfrecords from data.outbrain.nvtabular.utils.workflow import execute_pipeline from data.outbrain.nvtabular.utils.arguments import parse_args from data.outbrain.nvtabular.utils.setup import create_config def is_empty(path): return not os.path.exists(path) or (not os.path.isfile(path) and not os.listdir(path)) def main(): args = parse_args() config = create_config(args) if is_empty(args.metadata_path): logging.warning('Creating new stats data into {}'.format(config['stats_file'])) execute_pipeline(config) else: logging.warning('Directory is not empty {args.metadata_path}') logging.warning('Skipping NVTabular preprocessing') if os.path.exists(config['output_train_folder']) and os.path.exists(config['output_valid_folder']): if is_empty(config['tfrecords_path']): logging.warning('Executing NVTabular parquets to TFRecords conversion') nvt_to_tfrecords(config) else: logging.warning(f"Directory is not empty {config['tfrecords_path']}") logging.warning('Skipping TFrecords conversion') else: logging.warning(f'Train and validation dataset not found in {args.metadata_path}') if __name__ == '__main__': main()
8319f4003ac2e4e7bc59b13fa6bded86492c5bf2
d89cbdfbb67e46d43a05edb2abeb5e1deedfd3a2
/functions/shake_shake_function.py
2b38e2c551c100ed70044885d915227a673d2921
[ "MIT" ]
permissive
minhtannguyen/pytorch_shake_shake
c9a6fb520ba2201c1ccb022767cbba963225bbae
d7f245d8d8b9e81a6020aadb438ffeae6d5593c2
refs/heads/master
2020-03-27T14:22:09.646020
2018-09-01T02:00:25
2018-09-01T02:00:25
146,658,651
0
0
MIT
2018-08-29T21:07:24
2018-08-29T21:07:24
null
UTF-8
Python
false
false
1,363
py
# coding: utf-8 import torch from torch.autograd import Function class ShakeFunction(Function): @staticmethod def forward(ctx, x1, x2, alpha, beta): ctx.save_for_backward(x1, x2, alpha, beta) y = x1 * alpha + x2 * (1 - alpha) return y @staticmethod def backward(ctx, grad_output): x1, x2, alpha, beta = ctx.saved_variables grad_x1 = grad_x2 = grad_alpha = grad_beta = None if ctx.needs_input_grad[0]: grad_x1 = grad_output * beta if ctx.needs_input_grad[1]: grad_x2 = grad_output * (1 - beta) return grad_x1, grad_x2, grad_alpha, grad_beta shake_function = ShakeFunction.apply def get_alpha_beta(batch_size, shake_config, is_cuda): forward_shake, backward_shake, shake_image = shake_config if forward_shake and not shake_image: alpha = torch.rand(1) elif forward_shake and shake_image: alpha = torch.rand(batch_size).view(batch_size, 1, 1, 1) else: alpha = torch.FloatTensor([0.5]) if backward_shake and not shake_image: beta = torch.rand(1) elif backward_shake and shake_image: beta = torch.rand(batch_size).view(batch_size, 1, 1, 1) else: beta = torch.FloatTensor([0.5]) if is_cuda: alpha = alpha.cuda() beta = beta.cuda() return alpha, beta
94c31b6f766395c271029a4a360588b51ce03a06
bc40c23403c1926e5bb81d3f6b6be567ccee7a70
/ecommerce/user_model/models.py
049da65fb7f8b02f6947ab77d96e101120f2e8e3
[]
no_license
hrupesh/ecommerce
e1e0abf624ad3222bcf57548f051a3197ae899e5
2fc645e0e43f1920d787612e8f5b47d5990c793e
refs/heads/master
2020-04-20T01:28:35.977058
2019-01-31T14:51:20
2019-01-31T14:51:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,178
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.core.urlresolvers import reverse from django.db import models import hashlib # Create your models here. class register_model(models.Model): firstname = models.CharField(max_length=250, help_text='Required') lastname = models.CharField(max_length=250, help_text='Required') username = models.CharField(max_length=250, help_text='Required') email = models.EmailField(max_length=250, help_text='Required') contact_no = models.IntegerField(null=True) slug = models.SlugField(unique = True, null=True) password = models.CharField(max_length=100) timestamp = models.DateTimeField(auto_now=False, auto_now_add=True) updated = models.DateTimeField(auto_now=True, auto_now_add=False) verified = models.BooleanField(default = False) is_active = models.BooleanField(default = False) email_confirmed = models.BooleanField(default=False) USERNAME_FIELD = 'username' REQUIRED_FIELD = ['firstname','lastname'] '''def get_absolute_url(self): return reverse('details', kwargs={'pk':self.pk})''' def __str__(self): return self.email
db865ebb216e0b6efcc8947e4b2809b42095bcd7
07c3034f7b6ef88e08430b8c908613ea0091f1b6
/Labs/Lab 7.py
540d228ec6bf38673cdb8a3ea31a04a997b03f8a
[]
no_license
HelalChow/Data-Structures
494b8fabcdf1cac20db78055547ce4160ad6a018
3b3401cbd23e01b2d7d95dfc3b95451ca179cee9
refs/heads/master
2021-10-19T00:24:23.589224
2019-02-15T22:34:05
2019-02-15T22:34:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,395
py
#Question 1 def powers_of_two(num): for i in range(1,num+1): yield 2**i #Question 2 def decimal_to_binary(int): if int==1: return "1" else: hold = decimal_to_binary(int-1) #Question 3 def partition(lst): low = 1 high = len(lst)-1 pivot = lst[0] while low <= high: if lst[low]>pivot>lst[high]: lst[low],lst[high]=lst[high],lst[low] low+=1 high-=1 elif lst[low]<pivot>lst[high]: low+=1 elif lst[low]>pivot<lst[high]: high-=1 else: low+=1 high-=1 lst[low-1],lst[0]=lst[0],lst[low-1] lst = [54, 26, 93, 17, 77, 31, 44, 55, 20] partition(lst) print(lst) class MyString(): def __init__(self,str_input): self.str = str_input def __len__(self): return len(self.str) def __iter__(self): for i in range(len(self)): return self[i] def __repr__(self): str = '' return str def __getitem__(self, ind): if ind >= len(self): raise IndexError("Index is out of range") return self[ind] def __add__(self, other): new = self return new+other def __radd__(self, other): new = self return new + other def upper(self): new = ''
cf2d48e9ab4da0ece9b9ee4ddd631919aa2261e1
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2790/60720/237340.py
ea1258231b7d219c2f8c047b47fb50bd69d1f997
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
455
py
list=input().split() size1=int(list[0]) size2=int(list[1]) list1=input().split() list2=input().split() for i in range(size1): list1[i]=int(list1[i]) for i in range(size2): list2[i]=int(list2[i]) count=0 for i in range(size2-1): for j in range(size1): if list1[j]<=list2[i]: count=count+1 print(count,end=' ') count=0 for j in range(size1): if list1[j]<=list2[size2-1]: count=count+1 print(count)
e8d4272f4fa006bd29293b9b21adeec8080c6d47
3b15dc211cb6c034f4d843b1bbc540f1699182f7
/爬虫/多线程爬取.py
5fb5a954f28cf987da7a0401528b87219b49f4f9
[]
no_license
Hanlen520/-
eea27d5a1272272a2f47f9070f285e44300ab0d2
308d3401ff368cd11f4aeac7949d57c3136f2b6e
refs/heads/master
2023-03-15T19:18:25.168665
2020-07-05T14:39:41
2020-07-05T14:39:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,074
py
import requests import re import threading import os num = 1 def get_html_text_one(url, headers): request = requests.get(url, headers=headers) if request.status_code == 200: return request.text return request def get_images_one(html, headers): urls = re.findall('><a href="(.*?)" alt=".*?".*?"><img src=.*? alt="" data-src=.*? data-nclazyload="true"></a>',html) for url in urls: file_name = url.split('/')[-1] global num print('正在下载p第{}'.format(num)) request = requests.get(url, headers=headers) with open('你与星河,皆可收藏' + '/' + file_name, 'wb') as f: f.write(request.content) num += 1 print("=======================================================================================================") def get_images_two(): headers = { 'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.106 Safari/537.36' } dir_name = '妹子自拍' if not os.path.exists(dir_name): os.mkdir(dir_name) global num for i in range(1, 3): urls = 'https://www.mzitu.com/jiepai/comment-page-{}/#comments'.format(i) request = requests.get(urls, headers=headers) html = request.text urs = re.findall('<p><img class=".*?" src=".*?" data-original="(.*?)" width="640" height="auto"/></p>', html) for uls in urs: file_name = uls.split('/')[-1] print('正在下载p1第{}张图片'.format(num)) request_a = requests.get(uls, headers=headers) with open(dir_name + '/' + file_name, 'wb') as f: f.write(request_a.content) num += 1 def get_images_two_three(): headers = { 'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.106 Safari/537.36' } dir_name = '妹子自拍' if not os.path.exists(dir_name): os.mkdir(dir_name) global num for i in range(4, 6): urls = 'https://www.mzitu.com/jiepai/comment-page-{}/#comments'.format(i) request = requests.get(urls, headers=headers) html = request.text urs = re.findall('<p><img class=".*?" src=".*?" data-original="(.*?)" width="640" height="auto"/></p>', html) for uls in urs: file_name = uls.split('/')[-1] print('正在下载p1第{}张图片'.format(num)) request_a = requests.get(uls, headers=headers) with open(dir_name + '/' + file_name, 'wb') as f: f.write(request_a.content) num += 1 def main(): headers = { 'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.106 Safari/537.36' } url = 'https://www.vmgirls.com/3545.html' html = get_html_text_one(url, headers) get_images_one(html, headers) def main2(): get_images_two() def main3(): get_images_two_three() if __name__ == '__main__': main()
9d822d260cb327e22781dc7abc5ad41d19df961c
01c2254dcd0547058e66dd0ca0ecd9e2941e3cb9
/billingstack/openstack/common/jsonutils.py
e8ab2d559752d171eeb769e1538b0bc0a47621dc
[ "Apache-2.0" ]
permissive
lanve/billingstack
8ac3c52eca8f1d2dc46753d043ff09b55f536fcf
dfeb22992d503e1d407a55b7cf1a7658386fefa3
refs/heads/master
2021-01-22T15:22:08.731143
2014-10-31T10:21:35
2014-10-31T10:21:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,458
py
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # Copyright 2011 Justin Santa Barbara # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. ''' JSON related utilities. This module provides a few things: 1) A handy function for getting an object down to something that can be JSON serialized. See to_primitive(). 2) Wrappers around loads() and dumps(). The dumps() wrapper will automatically use to_primitive() for you if needed. 3) This sets up anyjson to use the loads() and dumps() wrappers if anyjson is available. ''' import datetime import functools import inspect import itertools import json try: import xmlrpclib except ImportError: # NOTE(jd): xmlrpclib is not shipped with Python 3 xmlrpclib = None import six from billingstack.openstack.common import gettextutils from billingstack.openstack.common import importutils from billingstack.openstack.common import timeutils netaddr = importutils.try_import("netaddr") _nasty_type_tests = [inspect.ismodule, inspect.isclass, inspect.ismethod, inspect.isfunction, inspect.isgeneratorfunction, inspect.isgenerator, inspect.istraceback, inspect.isframe, inspect.iscode, inspect.isbuiltin, inspect.isroutine, inspect.isabstract] _simple_types = (six.string_types + six.integer_types + (type(None), bool, float)) def to_primitive(value, convert_instances=False, convert_datetime=True, level=0, max_depth=3): """Convert a complex object into primitives. Handy for JSON serialization. We can optionally handle instances, but since this is a recursive function, we could have cyclical data structures. To handle cyclical data structures we could track the actual objects visited in a set, but not all objects are hashable. Instead we just track the depth of the object inspections and don't go too deep. Therefore, convert_instances=True is lossy ... be aware. """ # handle obvious types first - order of basic types determined by running # full tests on nova project, resulting in the following counts: # 572754 <type 'NoneType'> # 460353 <type 'int'> # 379632 <type 'unicode'> # 274610 <type 'str'> # 199918 <type 'dict'> # 114200 <type 'datetime.datetime'> # 51817 <type 'bool'> # 26164 <type 'list'> # 6491 <type 'float'> # 283 <type 'tuple'> # 19 <type 'long'> if isinstance(value, _simple_types): return value if isinstance(value, datetime.datetime): if convert_datetime: return timeutils.strtime(value) else: return value # value of itertools.count doesn't get caught by nasty_type_tests # and results in infinite loop when list(value) is called. if type(value) == itertools.count: return six.text_type(value) # FIXME(vish): Workaround for LP bug 852095. Without this workaround, # tests that raise an exception in a mocked method that # has a @wrap_exception with a notifier will fail. If # we up the dependency to 0.5.4 (when it is released) we # can remove this workaround. if getattr(value, '__module__', None) == 'mox': return 'mock' if level > max_depth: return '?' # The try block may not be necessary after the class check above, # but just in case ... try: recursive = functools.partial(to_primitive, convert_instances=convert_instances, convert_datetime=convert_datetime, level=level, max_depth=max_depth) if isinstance(value, dict): return dict((k, recursive(v)) for k, v in value.iteritems()) elif isinstance(value, (list, tuple)): return [recursive(lv) for lv in value] # It's not clear why xmlrpclib created their own DateTime type, but # for our purposes, make it a datetime type which is explicitly # handled if xmlrpclib and isinstance(value, xmlrpclib.DateTime): value = datetime.datetime(*tuple(value.timetuple())[:6]) if convert_datetime and isinstance(value, datetime.datetime): return timeutils.strtime(value) elif isinstance(value, gettextutils.Message): return value.data elif hasattr(value, 'iteritems'): return recursive(dict(value.iteritems()), level=level + 1) elif hasattr(value, '__iter__'): return recursive(list(value)) elif convert_instances and hasattr(value, '__dict__'): # Likely an instance of something. Watch for cycles. # Ignore class member vars. return recursive(value.__dict__, level=level + 1) elif netaddr and isinstance(value, netaddr.IPAddress): return six.text_type(value) else: if any(test(value) for test in _nasty_type_tests): return six.text_type(value) return value except TypeError: # Class objects are tricky since they may define something like # __iter__ defined but it isn't callable as list(). return six.text_type(value) def dumps(value, default=to_primitive, **kwargs): return json.dumps(value, default=default, **kwargs) def loads(s): return json.loads(s) def load(s): return json.load(s) try: import anyjson except ImportError: pass else: anyjson._modules.append((__name__, 'dumps', TypeError, 'loads', ValueError, 'load')) anyjson.force_implementation(__name__)
ab19e7a013264bab618abc32f5c3b27d2161ed9d
3ef70fe63acaa665e2b163f30f1abd0a592231c1
/stackoverflow/venv/lib/python3.6/site-packages/pip-19.0.3-py3.6.egg/pip/_vendor/html5lib/_utils.py
0703afb38b13bf56998d43aa542dcea9839d8132
[ "MIT" ]
permissive
wistbean/learn_python3_spider
14914b63691ac032955ba1adc29ad64976d80e15
40861791ec4ed3bbd14b07875af25cc740f76920
refs/heads/master
2023-08-16T05:42:27.208302
2023-03-30T17:03:58
2023-03-30T17:03:58
179,152,420
14,403
3,556
MIT
2022-05-20T14:08:34
2019-04-02T20:19:54
Python
UTF-8
Python
false
false
4,015
py
from __future__ import absolute_import, division, unicode_literals from types import ModuleType from pip._vendor.six import text_type try: import xml.etree.cElementTree as default_etree except ImportError: import xml.etree.ElementTree as default_etree __all__ = ["default_etree", "MethodDispatcher", "isSurrogatePair", "surrogatePairToCodepoint", "moduleFactoryFactory", "supports_lone_surrogates"] # Platforms not supporting lone surrogates (\uD800-\uDFFF) should be # caught by the below test. In general this would be any platform # using UTF-16 as its encoding of unicode strings, such as # Jython. This is because UTF-16 itself is based on the use of such # surrogates, and there is no mechanism to further escape such # escapes. try: _x = eval('"\\uD800"') # pylint:disable=eval-used if not isinstance(_x, text_type): # We need this with u"" because of http://bugs.jython.org/issue2039 _x = eval('u"\\uD800"') # pylint:disable=eval-used assert isinstance(_x, text_type) except: # pylint:disable=bare-except supports_lone_surrogates = False else: supports_lone_surrogates = True class MethodDispatcher(dict): """Dict with 2 special properties: On initiation, keys that are lists, sets or tuples are converted to multiple keys so accessing any one of the items in the original list-like object returns the matching value md = MethodDispatcher({("foo", "bar"):"baz"}) md["foo"] == "baz" A default value which can be set through the default attribute. """ def __init__(self, items=()): # Using _dictEntries instead of directly assigning to self is about # twice as fast. Please do careful performance testing before changing # anything here. _dictEntries = [] for name, value in items: if isinstance(name, (list, tuple, frozenset, set)): for item in name: _dictEntries.append((item, value)) else: _dictEntries.append((name, value)) dict.__init__(self, _dictEntries) assert len(self) == len(_dictEntries) self.default = None def __getitem__(self, key): return dict.get(self, key, self.default) # Some utility functions to deal with weirdness around UCS2 vs UCS4 # python builds def isSurrogatePair(data): return (len(data) == 2 and ord(data[0]) >= 0xD800 and ord(data[0]) <= 0xDBFF and ord(data[1]) >= 0xDC00 and ord(data[1]) <= 0xDFFF) def surrogatePairToCodepoint(data): char_val = (0x10000 + (ord(data[0]) - 0xD800) * 0x400 + (ord(data[1]) - 0xDC00)) return char_val # Module Factory Factory (no, this isn't Java, I know) # Here to stop this being duplicated all over the place. def moduleFactoryFactory(factory): moduleCache = {} def moduleFactory(baseModule, *args, **kwargs): if isinstance(ModuleType.__name__, type("")): name = "_%s_factory" % baseModule.__name__ else: name = b"_%s_factory" % baseModule.__name__ kwargs_tuple = tuple(kwargs.items()) try: return moduleCache[name][args][kwargs_tuple] except KeyError: mod = ModuleType(name) objs = factory(baseModule, *args, **kwargs) mod.__dict__.update(objs) if "name" not in moduleCache: moduleCache[name] = {} if "args" not in moduleCache[name]: moduleCache[name][args] = {} if "kwargs" not in moduleCache[name][args]: moduleCache[name][args][kwargs_tuple] = {} moduleCache[name][args][kwargs_tuple] = mod return mod return moduleFactory def memoize(func): cache = {} def wrapped(*args, **kwargs): key = (tuple(args), tuple(kwargs.items())) if key not in cache: cache[key] = func(*args, **kwargs) return cache[key] return wrapped
ec5e14ca7ee91e5a11c352f1f40d86319a8f3aca
6e8f2e28479566dbaa338300b2d61f784ff83f97
/.history/code/live_20210421141743.py
fc17bb0a93cda5b645c4b46e5443cb671d1f180d
[]
no_license
eeng5/CV-final-project
55a7d736f75602858233ebc380c4e1d67ab2b866
580e28819560b86f6974959efb1d31ef138198fc
refs/heads/main
2023-04-09T21:28:21.531293
2021-04-21T19:57:22
2021-04-21T19:57:22
352,703,734
0
0
null
null
null
null
UTF-8
Python
false
false
3,640
py
import os import cv2 import sys import numpy as np from models import SimpleModel from preprocess import Datasets import hyperparameters as hp import tensorflow as tf from skimage.transform import resize from PIL import Image, ImageFont, ImageDraw from scipy.spatial import distance as dist from imutils import face_utils from imutils.video import VideoStream import fastai import fastai.vision import imutils import argparse import time import dlib """ This file is a live video emotion detection application. To run simply activate the virtual environment in the code dirrectory via: $ source cs14_30/bin/activate Then run teh below command in the virtual environment: $ python3 live.py """ class LiveApp: def __init__(self, data_path): def doLive(self): weights_str = "/Users/elizabethwang/Desktop/CS1430/CV-final-project/code/checkpoints/simple_model/041321-113618/your.weights.e015-acc0.6121.h5" os.chdir(sys.path[0]) model = SimpleModel() model(tf.keras.Input(shape=(hp.img_size, hp.img_size,3))) model.load_weights(weights_str, by_name=False) model.compile( optimizer=model.optimizer, loss=model.loss_fn, metrics=["sparse_categorical_accuracy"], ) face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') vs = VideoStream(src=0).start() start = time.perf_counter() data = [] time_value = 0 out = cv2.VideoWriter( "liveoutput.avi", cv2.VideoWriter_fourcc("M", "J", "P", "G"), 10, (450, 253) ) while True: frame = vs.read() frame = imutils.resize(frame, width=450) gray = frame #gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) face_coord = face_cascade.detectMultiScale(gray, 1.1, 5, minSize=(48, 48)) for coords in face_coord: X, Y, w, h = coords H, W, _ = frame.shape X_1, X_2 = (max(0, X - int(w)), min(X + int(1.3 * w), W)) Y_1, Y_2 = (max(0, Y - int(0.1 * h)), min(Y + int(1.3 * h), H)) img_cp = gray[Y_1:Y_1+48, X_1:X_1+48].copy() img_mod = createPixelArray(img_cp) img_mod = np.expand_dims(img_mod, 0) prediction = model.predict(img_mod) p = np.argmax(prediction) caption = '' if (p == 0): caption = 'Angry' elif (p == 1): caption = 'Disgust' elif (p == 2): caption = 'Fear' elif (p == 3): caption = 'Happy' elif (p == 4): caption = 'Sad' elif (p == 5): caption = 'Surprise' elif (p == 6): caption = 'Neutral' cv2.rectangle( img=frame, pt1=(X_1, Y_1), pt2=(X_2, Y_2), color=(128, 128, 0), thickness=2, ) cv2.putText( frame, caption, (10, frame.shape[0] - 25), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (225, 255, 255), 2,) cv2.imshow("frame", frame) out.write(frame) if cv2.waitKey(1) & 0xFF == ord("q"): break vs.stop() out.release() cv2.destroyAllWindows()