blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
2833dbab283205ed517a25347f6766087148e5cf
d565991b30a72837cd6f335c3ea9802a9b472467
/Acoustic_Signal/test/SamplingRateConversion.py
7dd39c8fabb129e810b88832a84ee768809b72c0
[ "Apache-2.0", "MIT" ]
permissive
philip-shen/note_python
c8ebab9731a2f8c40a2ab1ad4f0ca0cf4ab24f59
ee6940486c557f9be2e6b967b28656e30c3598dd
refs/heads/master
2023-08-09T12:05:14.974944
2023-08-06T03:16:07
2023-08-06T03:16:07
175,354,005
0
0
MIT
2023-02-16T06:47:10
2019-03-13T05:42:46
Tcl
UTF-8
Python
false
false
5,721
py
# -*- coding:utf-8 -*- import numpy as np import scipy.signal import wave import array import struct from scipy.io import wavfile def wav_read(file_path, mmap=False): """ return sample value between range(-1,1) Note" librosa.load use aioread, which may truncate the precision of the audio data to 16 bits. :param file_path: :param mmap: False read all data directly, True read data memory mapping :return: samples ,fs """ fs, samples = wavfile.read(file_path, mmap=mmap) # transfer samples from fixed to float if samples.dtype == np.int16: samples = np.array(samples, dtype=np.float32) samples /= 2 ** 15 elif samples.dtype == np.float32: samples = np.array(samples) else: raise NotImplementedError return samples, fs def wav_write(file_path, samples, fs, wav_type='int16'): # scipy.io.wavfile.write cannot process np.float16 data if wav_type == 'float32': wavfile.write(file_path, fs, samples.astype(np.float32)) elif wav_type == 'int16': output_samples = samples * (2 ** 15) wav_type_iinfo = np.iinfo(wav_type) output_samples.clip(min=wav_type_iinfo.min, max=wav_type_iinfo.max, out=output_samples) output_samples = output_samples.astype(wav_type) wavfile.write(file_path, fs, output_samples) else: raise NotImplementedError def readWav(filename): """ wavファイルを読み込んで,データ・サンプリングレートを返す関数 """ try: wf = wave.open(filename) fs = wf.getframerate() # -1 ~ 1までに正規化した信号データを読み込む data = np.frombuffer(wf.readframes(wf.getnframes()),dtype="int16")/32768.0 return (data,fs) except Exception as e: print(e) exit() def writeWav(filename,data,fs): """ 入力されたファイル名でwavファイルを書き出す. """ # データを-32768から32767の整数値に変換 data = [int(x * 32767.0) for x in data] #バイナリ化 binwave = struct.pack("h" * len(data), *data) wf = wave.Wave_write(filename) wf.setparams(( 1, # channel 2, # byte width fs, # sampling rate len(data), # number of frames "NONE", "not compressed" # no compression )) wf.writeframes(binwave) wf.close() def upsampling(conversion_rate,data,fs): """ アップサンプリングを行う. 入力として,変換レートとデータとサンプリング周波数. アップサンプリング後のデータとサンプリング周波数を返す. """ # 補間するサンプル数を決める interpolationSampleNum = conversion_rate-1 # FIRフィルタの用意をする nyqF = (fs*conversion_rate)/2.0 # 変換後のナイキスト周波数 cF = (fs/2.0-500.)/nyqF # カットオフ周波数を設定(変換前のナイキスト周波数より少し下を設定) taps = 511 # フィルタ係数(奇数じゃないとだめ) b = scipy.signal.firwin(taps, cF) # LPFを用意 # 補間処理 upData = [] for d in data: upData.append(d) # 1サンプルの後に,interpolationSampleNum分だけ0を追加する for i in range(interpolationSampleNum): upData.append(0.0) # フィルタリング resultData = scipy.signal.lfilter(b,1,upData) return (resultData,fs*conversion_rate) def downsampling(conversion_rate,data,fs): """ ダウンサンプリングを行う. 入力として,変換レートとデータとサンプリング周波数. アップサンプリング後のデータとサンプリング周波数を返す. """ # 間引くサンプル数を決める decimationSampleNum = conversion_rate-1 # FIRフィルタの用意をする nyqF = (fs/conversion_rate)/2.0 # 変換後のナイキスト周波数 cF = (fs/conversion_rate/2.0-500.)/nyqF # カットオフ周波数を設定(変換前のナイキスト周波数より少し下を設定) taps = 511 # フィルタ係数(奇数じゃないとだめ) b = scipy.signal.firwin(taps, cF) # LPFを用意 #フィルタリング data = scipy.signal.lfilter(b,1,data) #間引き処理 downData = [] for i in range(0,len(data),decimationSampleNum+1): downData.append(data[i]) return (downData,fs/conversion_rate) FILENAME = "D:/project/FeqResp/Asus/asus_S54C_0807_Igo_Speech_FR_BandG/dut.wav" #FILENAME = "../src_wav/3Quest_Standmic.wav" if __name__ == "__main__": # 何倍にするかを決めておく up_conversion_rate = 2 # 何分の1にするか決めておく.ここではその逆数を指定しておく(例:1/2なら2と指定) down_conversion_rate = 2 down_conversion_wave = "D:/project/FeqResp/Asus/asus_S54C_0807_Igo_Speech_FR_BandG/dut_16k.wav" # テストwavファイルを読み込む #data,fs = readWav(FILENAME) data,fs = wav_read(FILENAME) print('fs {}',fs) upData,upFs = upsampling(up_conversion_rate,data,fs) downData,downFs = downsampling(down_conversion_rate,data,fs) #writeWav("../src_wav/up.wav",upData,upFs) writeWav(down_conversion_wave,downData,downFs) #wav_write("../src_wav/up.wav",upFs,upData) #wav_write("../src_wav/down.wav",downFs,downData)
eed25826a0b13183199cd8198fbb81ba552fa0cb
cd0f3fa5c3b202599812ac8b49e374fe2b2f2e8b
/ExerciciosAprendizagem/CapApendices/ApBex02.py
6aea5b29bb4f6629cb43b944a077056fb3ad0dcb
[]
no_license
J-AugustoManzano/livro_Python
46c14dc4bc5fb361d850fcd361477a952de172c2
e42b79ef78c6b1ab936fe9a13d32ddc94deeb2a8
refs/heads/main
2023-06-25T03:10:30.297226
2023-06-08T23:34:54
2023-06-08T23:34:54
354,116,051
3
0
null
null
null
null
UTF-8
Python
false
false
116
py
import const const.pi = 3.14159 print(const.pi) enter = input("\nPressione <Enter> para encerrar... ")
1581702e30bf17521341ad3c8b02a00a78d7d427
86948735307c603936f22fc029349bf669ecaa6e
/ble-sensor-pi/sensortag/echoserverzal.py
f219034d6d6edca7ddc785107e3321c4558c534d
[ "Apache-2.0" ]
permissive
Kowo39/pythonPeter
2b43fb1fc8ef16700be53e912b04b53117f745d5
629550a160445760cb95f6e9b58df5264e24a9e1
refs/heads/master
2021-01-10T20:26:41.463098
2015-07-21T15:38:58
2015-07-21T15:38:58
39,141,543
0
0
null
null
null
null
UTF-8
Python
false
false
1,116
py
import socket import sys import time import datetime #create a TCP/IP Socket sock=socket.socket(socket.AF_INET, socket.SOCK_STREAM) #bind the socket to the port server_address = ('localhost', 10000) print >>sys.stderr, 'starting up on %s port %s' % server_address sock.bind(server_address) #listen incomming connection sock.listen(1) while True: #wait for a connection print >>sys.stderr, '\n\n\n\t\t*** A Server waiting for a connection ***' connection, client_address = sock.accept() ts = time.time() try: print >>sys.stderr, '\n - connection from', client_address print " -",datetime.datetime.fromtimestamp(ts).strftime('%Y-%m-%d %H:%M:%S') #Recieve data in small chunks and retrasmi it while True: data = connection.recv(30) if data: pass print >>sys.stderr, ' - Data received from tag"%s"' %data # print >>sys.stderr, 'sendinng data back to the client' # connection.sendall(data) else: #print >>sys.stderr, '\nno more data my friend from', client_address break finally: pass #Clean up the conection #connection.close()
[ "root@raspberrypi.(none)" ]
root@raspberrypi.(none)
56ed3798bc39ceb83d99ccb445df785a9b2636ee
5785d7ed431b024dd910b642f10a6781df50e4aa
/.venv/lib/python3.8/site-packages/aws_okta_processor/commands/getroles.py
784273d95ce8b03239ea7970f701411f6994ee96
[]
no_license
kashyapa/interview-prep
45d77324446da34d99bf8efedb3544b367b5523e
7060c090c40602fb9c4778eace2078e1b51e235b
refs/heads/master
2023-07-28T13:12:49.515299
2021-09-06T14:33:25
2021-09-06T14:33:25
403,706,510
0
0
null
null
null
null
UTF-8
Python
false
false
7,102
py
""" Usage: aws-okta-processor get-roles [options] Options: -h --help Show this screen. --version Show version. --no-okta-cache Do not read okta cache. --no-aws-cache Do not read aws cache. -e --environment Dump auth into ENV variables. -u <user_name>, --user=<user_name> Okta user name. -p <user_pass>, --pass=<user_pass> Okta user password. -o <okta_organization>, --organization=<okta_organization> Okta organization domain. -a <okta_application>, --application=<okta_application> Okta application url. -r <role_name>, --role=<role_name> AWS role ARN. -R <region_name>, --region=<region_name> AWS region name. -A <account>, --account-alias=<account> AWS account alias filter (uses wildcards). -d <duration_seconds> ,--duration=<duration_seconds> Duration of role session [default: 3600]. -k <key>, --key=<key> Key used for generating and accessing cache. -f <factor>, --factor=<factor> Factor type for MFA. -s --silent Run silently. --target-shell <target_shell> Target shell to output the export command. --output=<output> Output type (json, text, profiles) [default: json] --output-format=<format> Format string for the output [default: {account},{role}] """ from __future__ import print_function import os import json import re import sys from .base import Base from aws_okta_processor.core.fetcher import SAMLFetcher from botocore.credentials import JSONFileCache UNIX_EXPORT_STRING = ("export AWS_ACCESS_KEY_ID='{}' && " "export AWS_SECRET_ACCESS_KEY='{}' && " "export AWS_SESSION_TOKEN='{}'") NT_EXPORT_STRING = ("$env:AWS_ACCESS_KEY_ID='{}'; " "$env:AWS_SECRET_ACCESS_KEY='{}'; " "$env:AWS_SESSION_TOKEN='{}'") CONFIG_MAP = { "--environment": "AWS_OKTA_ENVIRONMENT", "--user": "AWS_OKTA_USER", "--pass": "AWS_OKTA_PASS", "--organization": "AWS_OKTA_ORGANIZATION", "--application": "AWS_OKTA_APPLICATION", "--role": "AWS_OKTA_ROLE", "--duration": "AWS_OKTA_DURATION", "--key": "AWS_OKTA_KEY", "--factor": "AWS_OKTA_FACTOR", "--silent": "AWS_OKTA_SILENT", "--no-okta-cache": "AWS_OKTA_NO_OKTA_CACHE", "--no-aws-cache": "AWS_OKTA_NO_AWS_CACHE", "--output": "AWS_OKTA_OUTPUT", "--output-format": "AWS_OKTA_OUTPUT_FORMAT" } class GetRoles(Base): def get_accounts_and_roles(self): cache = JSONFileCache() saml_fetcher = SAMLFetcher( self, cache=cache ) app_and_role = saml_fetcher.get_app_roles() result_accounts = [] results = { "application_url": app_and_role["Application"], "accounts": result_accounts, "user": app_and_role["User"], "organization": app_and_role["Organization"], } accounts = app_and_role["Accounts"] for name_raw in accounts: account_parts = re.match(r"(Account:) ([a-zA-Z0-9-_]+) \(([0-9]+)\)", name_raw) account = account_parts[2] account_id = account_parts[3] roles = accounts[name_raw] result_roles = [] result_account = { "name": account, "id": account_id, "name_raw": name_raw, "roles": result_roles } result_accounts.append(result_account) for role in roles: role_suffix = role.split(os.environ.get("AWS_OKTA_ROLE_SUFFIX_DELIMITER", "-"))[-1] result_roles.append({ "name": role, "suffix": role_suffix }) return results def run(self): accounts_and_roles = self.get_accounts_and_roles() output = self.configuration.get("AWS_OKTA_OUTPUT", "json").lower() if output == "json": sys.stdout.write(json.dumps(accounts_and_roles)) else: output_format = self.configuration.get("AWS_OKTA_OUTPUT_FORMAT", "{account},{role}") if output == "profiles": output_format = '\n[{account}-{role_suffix}]\ncredential_process=aws-okta-processor authenticate ' \ '--organization="{organization}" --user="{user}" --application="{application_url}" ' \ '--role="{role}" --key="{account}-{role}"' formatted_roles = self.get_formatted_roles(accounts_and_roles, output_format) for role in formatted_roles: sys.stdout.write(role + "\n") def get_formatted_roles(self, accounts_and_roles, output_format): application_url = accounts_and_roles["application_url"] accounts = accounts_and_roles["accounts"] organization = accounts_and_roles["organization"] user = accounts_and_roles["user"] for account in accounts: account_name = account["name"] account_id = account["id"] account_raw = account["name_raw"] roles = account["roles"] for role in roles: yield output_format.format( account=account_name, account_id=account_id, account_raw=account_raw, role=role["name"], organization=organization, application_url=application_url, user=user, role_suffix=role["suffix"].lower() ) def get_pass(self): if self.configuration["AWS_OKTA_PASS"]: return self.configuration["AWS_OKTA_PASS"] def get_key_dict(self): return { "Organization": self.configuration["AWS_OKTA_ORGANIZATION"], "User": self.configuration["AWS_OKTA_USER"], "Key": self.configuration["AWS_OKTA_KEY"] } def get_configuration(self, options=None): configuration = {} for param, var in CONFIG_MAP.items(): if options.get(param, None): configuration[var] = options[param] if var not in configuration.keys(): if var in os.environ: configuration[var] = os.environ[var] else: configuration[var] = None return configuration
03f970ba4bcdee92ff5b8b31f973424f87b081b6
2efd0540d7b05d1e56b625a92172b6aac0c9a48e
/Copa/venv/Scripts/pip3.6-script.py
a8aa2e13aee23f62ade69cbd0b144de241c157b8
[]
no_license
EricKurachi/algoritmo_genetico
f40003381fc0baba91db2e42437e59f33bb0ae5c
46659dbfcdd6a93f66f2e8dff4c920d6300c1c41
refs/heads/master
2021-10-09T08:13:09.647460
2018-12-23T23:46:35
2018-12-23T23:46:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
404
py
#!C:\Users\Eric\Python\Copa\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'pip==10.0.1','console_scripts','pip3.6' __requires__ = 'pip==10.0.1' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==10.0.1', 'console_scripts', 'pip3.6')() )
847e269f9a9c6a38b6d1af2ea9b074571cd66b64
a425842a51deab915fc4319b3226cef3f49e53ea
/build/extriPACK/intelligent_actuator/robo_cylinder/catkin_generated/pkg.installspace.context.pc.py
25b485d848699b5198e6532286e6957b091976b9
[]
no_license
Sinchiguano/Part-Localization-For-Robotic-Arm
1458204e52f34354cbd0e8e1bff1dfaf6caefe1c
ebc1ed19da171ff4b5a52a3a031ae3049b0b9eb8
refs/heads/master
2021-10-08T19:49:53.455680
2018-12-16T20:03:04
2018-12-16T20:03:04
155,774,219
0
0
null
null
null
null
UTF-8
Python
false
false
481
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "/home/casch/yumi_ws/install/include".split(';') if "/home/casch/yumi_ws/install/include" != "" else [] PROJECT_CATKIN_DEPENDS = "roscpp;rospy;std_msgs;message_runtime".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "robo_cylinder" PROJECT_SPACE_DIR = "/home/casch/yumi_ws/install" PROJECT_VERSION = "0.0.0"
d2211d3eaf542db3587fdce683a7c3b3881827a9
bcf98d9adf6f0e44601d91c83453b01ad311071d
/listings/models.py
6ccf1ecd4cff2f0209fb8a27b2f7a0ceed3d7559
[]
no_license
GMNaim/Real-Estate-project
89fa64cb5afeb344d43095da93bbcbf35b6b9121
93286edde1e5d34dcbbf3ca1695a5ef4e3577f64
refs/heads/master
2022-02-13T06:04:34.202090
2019-08-28T14:33:08
2019-08-28T14:33:08
192,858,474
0
0
null
null
null
null
UTF-8
Python
false
false
1,610
py
from django.db import models from datetime import datetime from realtors.models import RealtorInformation class IndividualListInformation(models.Model): realtor = models.ForeignKey(RealtorInformation, on_delete=models.DO_NOTHING) title = models.CharField(max_length=250) house_address = models.CharField(max_length=100, blank=True) state = models.CharField(max_length=100) zip_code = models.CharField(max_length=50) city = models.CharField(max_length=100) country = models.CharField(max_length=100) description = models.TextField(blank=True) price = models.IntegerField() bedrooms = models.IntegerField() bathrooms = models.DecimalField(max_digits=4, decimal_places=1) garage = models.IntegerField(default=0) square_feet = models.IntegerField() lot_size = models.DecimalField(max_digits=5, decimal_places=1) photo_main = models.ImageField(upload_to='photos/%Y/%m/%d/') photo_1 = models.ImageField(upload_to='photos/%Y/%m/%d/', blank=True) photo_2 = models.ImageField(upload_to='photos/%Y/%m/%d/', blank=True) photo_3 = models.ImageField(upload_to='photos/%Y/%m/%d/', blank=True) photo_4 = models.ImageField(upload_to='photos/%Y/%m/%d/', blank=True) photo_5 = models.ImageField(upload_to='photos/%Y/%m/%d/', blank=True) photo_6 = models.ImageField(upload_to='photos/%Y/%m/%d/', blank=True) is_published = models.BooleanField(default=True) list_date = models.DateTimeField(default=datetime.now, blank=True) def __str__(self): # Main field to display return self.title # Here title is the main field
7f9ddb6f4ba36d244e11ae5efd596f4b35b5ff07
0cc4eb3cb54f8394c127ace62d3108fdb5230c85
/.spack-env/view/lib/python3.7/site-packages/pylint/test/functional/misplaced_format_function.py
4c3b8af018026bba7ccd1d78159bec027a34dd62
[]
no_license
jacobmerson/spack-develop-env
5b2d76f58c0b64ae97c64f77a3c4d33a770c71c8
5fca20ca343b1a76f05fc635c87f94ed25417d94
refs/heads/master
2022-07-04T02:22:50.264727
2020-05-06T05:13:50
2020-05-06T05:13:50
261,657,112
0
0
null
null
null
null
UTF-8
Python
false
false
192
py
/lore/mersoj/spack/spack/opt/spack/linux-rhel7-x86_64/gcc-7.3.0/py-pylint-2.3.0-pmz72kdc34fnma6vo5sc2y3c5wp5sjeb/lib/python3.7/site-packages/pylint/test/functional/misplaced_format_function.py
8841420544c5a92b4429c203c368ca8f123180ab
32e55bf28b9f22265bcbc1d8c0ebf52a3608187d
/12. Integer to Roman.py
03281264063156d7c93642f5364115012353c373
[]
no_license
Garacc/LeetCode
9f843672a18701d032f36769c9025761199d8caf
215d12703b2cac4c1ad49d5a0e1060948fbbacd2
refs/heads/master
2018-10-10T03:37:48.889898
2018-09-17T08:38:22
2018-09-17T08:38:22
120,304,202
0
0
null
null
null
null
UTF-8
Python
false
false
992
py
class Solution: def intToRoman(self, num): """ :type num: int :rtype: str """ #romandict = {1:'I', 5:'V', 10:'X', 50:'L', 100:'C', 500:'D', 1000:'M'} thou = num // 1000 hun = (num%1000)//100 ten = (num%100)//10 one = num%10 output = '' output += thou*'M' if hun == 9: output += 'CM' elif hun == 5 or hun == 6 or hun == 7 or hun == 8: output += 'D' + (hun-5)*'C' elif hun == 4: output += 'CD' else: output += hun*'C' if ten == 9: output += 'XC' elif ten == 5 or ten == 6 or ten == 7 or ten == 8: output += 'L' + (ten-5)*'X' elif ten == 4: output += 'XL' else: output += ten*'X' if one == 9: output += 'IX' elif one == 5 or one == 6 or one == 7 or one == 8: output += 'V' + (one-5)*'I' elif one == 4: output += 'IV' else: output += one*'I' return output
49b096d2e37b444b6167aab4b4c3ee32ff9c8f02
21e76f93747336bb649ec1906257b0dee66442d3
/resources/lib/services/nfsession/nfsession_requests.py
648a46b52e40073504ca231fd3706fe5f7f3ffd9
[ "MIT", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
freedomhkg-tv/plugin.video.netflix
d55f1671b4fbf201e3cda34e6eea4347c3935ee6
30ac436ffd02389983df8610aee098eb0bc10b0c
refs/heads/master
2021-01-02T17:39:28.005728
2020-02-09T19:50:18
2020-02-09T19:50:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,480
py
# -*- coding: utf-8 -*- """ Copyright (C) 2017 Sebastian Golasch (plugin.video.netflix) Copyright (C) 2018 Caphm (original implementation module) Copyright (C) 2019 Stefano Gottardo - @CastagnaIT Stateful Netflix session management: handle the http requests SPDX-License-Identifier: MIT See LICENSES/MIT.md for more information. """ from __future__ import absolute_import, division, unicode_literals import time import json import requests import resources.lib.common as common import resources.lib.api.website as website from resources.lib.globals import g from resources.lib.services.nfsession.nfsession_base import NFSessionBase, needs_login from resources.lib.database.db_utils import TABLE_SESSION from resources.lib.api.exceptions import (APIError, WebsiteParsingError, InvalidMembershipStatusError) BASE_URL = 'https://www.netflix.com' """str: Secure Netflix url""" URLS = { 'login': {'endpoint': '/login', 'is_api_call': False}, 'logout': {'endpoint': '/SignOut', 'is_api_call': False}, 'shakti': {'endpoint': '/pathEvaluator', 'is_api_call': True}, 'browse': {'endpoint': '/browse', 'is_api_call': False}, 'profiles': {'endpoint': '/profiles/manage', 'is_api_call': False}, 'switch_profile': {'endpoint': '/SwitchProfile', 'is_api_call': False}, 'activate_profile': {'endpoint': '/profiles/switch', 'is_api_call': True}, 'pin': {'endpoint': '/pin', 'is_api_call': False}, 'pin_reset': {'endpoint': '/pin/reset', 'is_api_call': True}, 'pin_service': {'endpoint': '/pin/service', 'is_api_call': True}, 'metadata': {'endpoint': '/metadata', 'is_api_call': True}, 'set_video_rating': {'endpoint': '/setVideoRating', 'is_api_call': True}, # Old rating system 'set_thumb_rating': {'endpoint': '/setThumbRating', 'is_api_call': True}, 'update_my_list': {'endpoint': '/playlistop', 'is_api_call': True}, # Don't know what these could be used for. Keeping for reference # 'video_list_ids': {'endpoint': '/preflight', 'is_api_call': True}, # 'kids': {'endpoint': '/Kids', 'is_api_call': False} } # List of all static endpoints for HTML/JSON POST/GET requests # How many entries of a list will be fetched with one path request class NFSessionRequests(NFSessionBase): """Handle the http requests""" @common.addonsignals_return_call @needs_login def get(self, component, **kwargs): """Execute a GET request to the designated component's URL.""" return self._get(component, **kwargs) @common.addonsignals_return_call @needs_login def post(self, component, **kwargs): """Execute a POST request to the designated component's URL.""" return self._post(component, **kwargs) def _get(self, component, **kwargs): return self._request_call( method=self.session.get, component=component, **kwargs) def _post(self, component, **kwargs): return self._request_call( method=self.session.post, component=component, **kwargs) @common.time_execution(immediate=True) def _request_call(self, method, component, **kwargs): return self._request(method, component, None, **kwargs) def _request(self, method, component, session_refreshed, **kwargs): url = (_api_url(component) if URLS[component]['is_api_call'] else _document_url(component)) common.debug('Executing {verb} request to {url}', verb='GET' if method == self.session.get else 'POST', url=url) data, headers, params = self._prepare_request_properties(component, kwargs) start = time.clock() response = method( url=url, verify=self.verify_ssl, headers=headers, params=params, data=data) common.debug('Request took {}s', time.clock() - start) common.debug('Request returned statuscode {}', response.status_code) if response.status_code in [404, 401] and not session_refreshed: # 404 - It may happen when Netflix update the build_identifier version and causes the api address to change # 401 - It may happen when authURL is not more valid (Unauthorized for url) # So let's try refreshing the session data (just once) common.warn('Try refresh session data due to {} http error', response.status_code) if self.try_refresh_session_data(): return self._request(method, component, True, **kwargs) response.raise_for_status() return (_raise_api_error(response.json() if response.content else {}) if URLS[component]['is_api_call'] else response.content) def try_refresh_session_data(self, raise_exception=False): """Refresh session_data from the Netflix website""" # pylint: disable=broad-except try: website.extract_session_data(self._get('profiles')) self.update_session_data() common.debug('Successfully refreshed session data') return True except InvalidMembershipStatusError: raise except WebsiteParsingError: # it is possible that cookies may not work anymore, # it should be due to updates in the website, # this can happen when opening the addon while executing update_profiles_data import traceback common.warn('Failed to refresh session data, login expired (WebsiteParsingError)') common.debug(traceback.format_exc()) self.session.cookies.clear() return self._login() except requests.exceptions.RequestException: import traceback common.warn('Failed to refresh session data, request error (RequestException)') common.warn(traceback.format_exc()) if raise_exception: raise except Exception: import traceback common.warn('Failed to refresh session data, login expired (Exception)') common.debug(traceback.format_exc()) self.session.cookies.clear() if raise_exception: raise return False def _login(self, modal_error_message=False): raise NotImplementedError def _prepare_request_properties(self, component, kwargs): data = kwargs.get('data', {}) headers = kwargs.get('headers', {}) params = kwargs.get('params', {}) if component in ['set_video_rating', 'set_thumb_rating', 'update_my_list', 'pin_service']: headers.update({ 'Content-Type': 'application/json', 'Accept': 'application/json, text/javascript, */*'}) data['authURL'] = self.auth_url data = json.dumps(data) return data, headers, params def _document_url(component): return BASE_URL + URLS[component]['endpoint'] def _api_url(component): return '{baseurl}{componenturl}'.format( baseurl=g.LOCAL_DB.get_value('api_endpoint_url', table=TABLE_SESSION), componenturl=URLS[component]['endpoint']) def _raise_api_error(decoded_response): if decoded_response.get('status', 'success') == 'error': raise APIError(decoded_response.get('message')) return decoded_response
d702030522318f0d1aa5c9c134e670bf2dd23db5
10f091bf946bdd6b50c3fa0637504ab19d9c65c2
/albums/3/challenge41_easy/code.py
ad0dfe1fae293f17ce7bc56dcbb430c51c67f770
[]
no_license
Rich43/rog
ccebee00b982579c46c30a7dab55b4dbe6396fdc
029dd57c920aa869750b809d22092c9614e67ba9
refs/heads/master
2023-01-23T07:07:16.069821
2023-01-19T19:10:43
2023-01-19T19:10:43
109,163,883
0
0
null
null
null
null
UTF-8
Python
false
false
967
py
''' Write a program that will accept a sentence as input and then output that sentence surrounded by some type of an ASCII decoratoin banner. Sample run: Enter a sentence: So long and thanks for all the fish Output ***************************************** * * * So long and thanks for all the fish * * * ***************************************** Bonus: If the sentence is too long, move words to the next line. ''' def outer(): global leng return ('x' * (leng +6)) def inner(): global leng return ('x' + (' ' * (leng + 4)) + 'x') def string(): global quote return ('x' + ' ' * 2 + quote + ' ' * 2 + 'x') if __name__ == '__main__': #quote = input("Let's have a quote...: ") quote = 'I am a python' leng = len(quote) out = outer() inn = inner() txt = string() print(out + "\n" + inn + "\n" + txt + "\n" + inn + "\n" + out)
fd1757cbaefda4ceaf1aa771e045b08774c21f1c
b7086d5e907aaf983af5b8d7d6f74c4fc6e40f23
/RA5/Skimmer/HLTSkimmer.py
eee2d8bf3b15d8d4b70614a251575da60d72ad3c
[]
no_license
ahmad3213/PyNTupleProcessor
da40c596f275406f21e83e117c5b8020d6ee309c
c84fa597b132e91342226b12a74213f675c0b125
refs/heads/master
2023-03-29T18:59:19.454585
2020-09-21T21:52:25
2020-09-21T21:52:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,299
py
from Core.Module import Module class HLTSkimmer(Module): def __init__(self,name,emulation=False,cutflow="SR"): super(HLTSkimmer,self).__init__(name) self.emulation = emulation self.cutflow = cutflow def return_sr_trigger(self,event): if self.emulation or (self.dataset.isData and "2016" in self.dataset.parent.name): notRunH = ("2016H" not in self.dataset.parent.name and self.dataset.isData) or self.dataset.isMC if event.htJet40[0] < 300.: if abs(event.firstLep.pdgId) == abs(event.secondLep.pdgId) and abs(event.firstLep.pdgId) == 11: return event.HLT_BIT_HLT_Ele23_Ele12_CaloIdL_TrackIdL_IsoVL_DZ_v[0] elif abs(event.firstLep.pdgId) == abs(event.secondLep.pdgId) and abs(event.firstLep.pdgId) == 13: if notRunH: return event.HLT_BIT_HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL_v[0] or event.HLT_BIT_HLT_Mu17_TrkIsoVVL_TkMu8_TrkIsoVVL_v[0] else: return event.HLT_BIT_HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL_DZ_v[0] or event.HLT_BIT_HLT_Mu17_TrkIsoVVL_TkMu8_TrkIsoVVL_DZ_v[0] elif (abs(event.firstLep.pdgId) == 13 and abs(event.secondLep.pdgId) == 11) or (abs(event.firstLep.pdgId) == 11 and abs(event.secondLep.pdgId) == 13): if notRunH: return event.HLT_BIT_HLT_Mu23_TrkIsoVVL_Ele8_CaloIdL_TrackIdL_IsoVL_v[0] or event.HLT_BIT_HLT_Mu8_TrkIsoVVL_Ele23_CaloIdL_TrackIdL_IsoVL_v[0] else: return event.HLT_BIT_HLT_Mu23_TrkIsoVVL_Ele8_CaloIdL_TrackIdL_IsoVL_DZ_v[0] or event.HLT_BIT_HLT_Mu8_TrkIsoVVL_Ele23_CaloIdL_TrackIdL_IsoVL_DZ_v[0] else: if notRunH: if abs(event.firstLep.pdgId) == abs(event.secondLep.pdgId) and abs(event.firstLep.pdgId) == 11: return event.HLT_BIT_HLT_DoubleMu8_Mass8_PFHT300_v[0] elif abs(event.firstLep.pdgId) == abs(event.secondLep.pdgId) and abs(event.firstLep.pdgId) == 13: return event.HLT_BIT_HLT_DoubleEle8_CaloIdM_TrackIdM_Mass8_PFHT300_v[0] elif (abs(event.firstLep.pdgId) == 13 and abs(event.secondLep.pdgId) == 11) or (abs(event.firstLep.pdgId) == 11 and abs(event.secondLep.pdgId) == 13): return event.HLT_BIT_HLT_Mu8_Ele8_CaloIdM_TrackIdM_Mass8_PFHT300_v[0] else: passTrig = False if abs(event.firstLep.pdgId) == abs(event.secondLep.pdgId) and abs(event.firstLep.pdgId) == 11: passTrig = event.HLT_BIT_HLT_DoubleMu8_Mass8_PFHT300_v[0] elif abs(event.firstLep.pdgId) == abs(event.secondLep.pdgId) and abs(event.firstLep.pdgId) == 13: passTrig = event.HLT_BIT_HLT_DoubleEle8_CaloIdM_TrackIdM_Mass8_PFHT300_v[0] elif (abs(event.firstLep.pdgId) == 13 and abs(event.secondLep.pdgId) == 11) or (abs(event.firstLep.pdgId) == 11 and abs(event.secondLep.pdgId) == 13): passTrig = event.HLT_BIT_HLT_Mu8_Ele8_CaloIdM_TrackIdM_Mass8_PFHT300_v[0] if not passTrig and self.dataset.isData: return event.HLT_BIT_HLT_PFJet450_v[0] else: return passTrig else: raise RuntimeError,"Data other than 2016 are not supported atm" def analyze(self,event): if self.dataset.isMC and not self.emulation: return True if not hasattr(event,"firstLep") or not hasattr(event,"secondLep"): event.tightLeps.sort(key=lambda x: x.pt,reverse=True) firstLep = event.tightLeps[0] for l in event.tightLeps[1:]: if l.charge*event.tightLeps[0].charge > 0.: secondLep = l event.firstLep = firstLep event.secondLep = secondLep if self.cutflow == "SR": return self.return_sr_trigger(event) elif self.cutflow == "TightLoose": #return self.return_tl_trigger(event) return self.return_sr_trigger(event) else: raise RuntimeError,"cutflow other than SR and TightLoose are not supported atm"
60168d852d76649dbac368f415e7030b85d364e9
f134679dc39849cc741f5d8aaa63793d7c9f9b7d
/testapi/urls.py
36438b62909899e93887156062e759da560ad8a0
[]
no_license
namraht/trial
792d7c7a427c463ab62b9675e745a7d537e3483c
3283ee39fcda03f5a1b1a04f3a4939d32ed40ac0
refs/heads/master
2020-12-04T01:04:27.056179
2016-09-07T21:38:14
2016-09-07T21:38:14
67,645,127
0
0
null
null
null
null
UTF-8
Python
false
false
947
py
"""testapi URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.9/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url from django.contrib import admin from rest_framework.urlpatterns import format_suffix_patterns from UserInfo import views urlpatterns = [ url(r'^admin/', admin.site.urls), url(r'^users/',views.UsersList.as_view()), ] urlpatterns=format_suffix_patterns(urlpatterns)
[ "admin" ]
admin
c160e52892a736da04cfcce881b61a37f4b39b87
e49a07ad215172e9c82cb418b10371bf0ce1c0f7
/第1章 python基础/Python基础06-面向对象1/2-创建一个对象.py
0b4e1cd81068687f7f9621c83d7dba09708014b8
[]
no_license
taogangshow/python_Code
829c25a7e32ead388c8b3ffa763cb9cf587bfd7b
4b3d6992ec407d6069f3187ca7e402a14d863fff
refs/heads/master
2022-12-16T01:26:17.569230
2018-11-16T10:07:59
2018-11-16T10:07:59
157,832,985
0
1
null
2022-11-25T09:55:32
2018-11-16T08:00:13
Python
UTF-8
Python
false
false
174
py
class Cat: #属性 #方法 def eat(self): print("猫在吃鱼...") def drink(self): print("猫在喝水...") #创建一个对象 tom = Cat()
30f21d83dc43f9b8236344d296befd0755ec54a7
a657cea31cd9f0f69825a458530afac1e0391122
/examples/GAN/Image2Image.py
196f7743312bbad6da9d50ee706bb74588fef2e5
[ "Apache-2.0" ]
permissive
liaoheping/tensorpack
5f7dd337b6ec22cf7f27a2ee35a4a0c6a602abfa
e04bb2d59ec63f1b6549b485af1e1946376f723d
refs/heads/master
2021-01-12T05:27:03.291185
2017-01-03T14:19:19
2017-01-03T14:19:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,240
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # File: Image2Image.py # Author: Yuxin Wu <[email protected]> import numpy as np import tensorflow as tf import glob import pickle import os import sys import argparse import cv2 from tensorpack import * from tensorpack.utils.viz import * from tensorpack.tfutils.summary import add_moving_summary, summary_moving_average import tensorpack.tfutils.symbolic_functions as symbf from GAN import GANTrainer, build_GAN_losses """ To train: ./Image2Image.py --data /path/to/datadir --mode {AtoB,BtoA} # datadir should contain jpg images of shpae 2s x s, formed by A and B # you can download some data from the original authors: # https://people.eecs.berkeley.edu/~tinghuiz/projects/pix2pix/datasets/ # training visualization will appear be in tensorboard Speed: On GTX1080 with BATCH=1, the speed is about 9.3it/s (the original torch version is 9.5it/s) To visualize on test set: ./Image2Image.py --sample --data /path/to/test/datadir --mode {AtoB,BtoA} --load model """ SHAPE = 256 BATCH = 1 IN_CH = 3 OUT_CH = 3 LAMBDA = 100 NF = 64 # number of filter class Model(ModelDesc): def _get_input_vars(self): return [InputVar(tf.float32, (None, SHAPE, SHAPE, IN_CH), 'input'), InputVar(tf.float32, (None, SHAPE, SHAPE, OUT_CH), 'output')] def generator(self, imgs): # imgs: input: 256x256xch # U-Net structure, it's slightly different from the original on the location of relu/lrelu with argscope(BatchNorm, use_local_stat=True), \ argscope(Dropout, is_training=True): # always use local stat for BN, and apply dropout even in testing with argscope(Conv2D, kernel_shape=4, stride=2, nl=lambda x, name: LeakyReLU(BatchNorm('bn', x), name=name)): e1 = Conv2D('conv1', imgs, NF, nl=LeakyReLU) e2 = Conv2D('conv2', e1, NF * 2) e3 = Conv2D('conv3', e2, NF * 4) e4 = Conv2D('conv4', e3, NF * 8) e5 = Conv2D('conv5', e4, NF * 8) e6 = Conv2D('conv6', e5, NF * 8) e7 = Conv2D('conv7', e6, NF * 8) e8 = Conv2D('conv8', e7, NF * 8, nl=BNReLU) # 1x1 with argscope(Deconv2D, nl=BNReLU, kernel_shape=4, stride=2): return (LinearWrap(e8) .Deconv2D('deconv1', NF * 8) .Dropout() .ConcatWith(3, e7) .Deconv2D('deconv2', NF * 8) .Dropout() .ConcatWith(3, e6) .Deconv2D('deconv3', NF * 8) .Dropout() .ConcatWith(3, e5) .Deconv2D('deconv4', NF * 8) .ConcatWith(3, e4) .Deconv2D('deconv5', NF * 4) .ConcatWith(3, e3) .Deconv2D('deconv6', NF * 2) .ConcatWith(3, e2) .Deconv2D('deconv7', NF * 1) .ConcatWith(3, e1) .Deconv2D('deconv8', OUT_CH, nl=tf.tanh)()) def discriminator(self, inputs, outputs): """ return a (b, 1) logits""" l = tf.concat(3, [inputs, outputs]) with argscope(Conv2D, nl=tf.identity, kernel_shape=4, stride=2): l = (LinearWrap(l) .Conv2D('conv0', NF, nl=LeakyReLU) .Conv2D('conv1', NF * 2) .BatchNorm('bn1').LeakyReLU() .Conv2D('conv2', NF * 4) .BatchNorm('bn2').LeakyReLU() .Conv2D('conv3', NF * 8, stride=1, padding='VALID') .BatchNorm('bn3').LeakyReLU() .Conv2D('convlast', 1, stride=1, padding='VALID')()) return l def _build_graph(self, input_vars): input, output = input_vars input, output = input / 128.0 - 1, output / 128.0 - 1 with argscope([Conv2D, Deconv2D], W_init=tf.truncated_normal_initializer(stddev=0.02)), \ argscope(LeakyReLU, alpha=0.2): with tf.variable_scope('gen'): fake_output = self.generator(input) with tf.variable_scope('discrim'): real_pred = self.discriminator(input, output) with tf.variable_scope('discrim', reuse=True): fake_pred = self.discriminator(input, fake_output) self.g_loss, self.d_loss = build_GAN_losses(real_pred, fake_pred) errL1 = tf.reduce_mean(tf.abs(fake_output - output), name='L1_loss') self.g_loss = tf.add(self.g_loss, LAMBDA * errL1, name='total_g_loss') add_moving_summary(errL1, self.g_loss) # tensorboard visualization if IN_CH == 1: input = tf.image.grayscale_to_rgb(input) if OUT_CH == 1: output = tf.image.grayscale_to_rgb(output) fake_output = tf.image.grayscale_to_rgb(fake_output) viz = (tf.concat(2, [input, output, fake_output]) + 1.0) * 128.0 viz = tf.cast(tf.clip_by_value(viz, 0, 255), tf.uint8, name='viz') tf.summary.image('input,output,fake', viz, max_outputs=max(30, BATCH)) all_vars = tf.trainable_variables() self.g_vars = [v for v in all_vars if v.name.startswith('gen/')] self.d_vars = [v for v in all_vars if v.name.startswith('discrim/')] def split_input(img): """ img: an image with shape (s, 2s, 3) :return: [input, output] """ s = img.shape[0] input, output = img[:, :s, :], img[:, s:, :] if args.mode == 'BtoA': input, output = output, input if IN_CH == 1: input = cv2.cvtColor(input, cv2.COLOR_RGB2GRAY)[:, :, np.newaxis] if OUT_CH == 1: output = cv2.cvtColor(output, cv2.COLOR_RGB2GRAY)[:, :, np.newaxis] return [input, output] def get_data(): datadir = args.data # assume each image is 512x256 split to left and right imgs = glob.glob(os.path.join(datadir, '*.jpg')) ds = ImageFromFile(imgs, channel=3, shuffle=True) ds = MapData(ds, lambda dp: split_input(dp[0])) augs = [imgaug.Resize(286), imgaug.RandomCrop(256)] ds = AugmentImageComponents(ds, augs, (0, 1)) ds = BatchData(ds, BATCH) ds = PrefetchDataZMQ(ds, 1) return ds def get_config(): logger.auto_set_dir() dataset = get_data() lr = symbolic_functions.get_scalar_var('learning_rate', 2e-4, summary=True) return TrainConfig( dataset=dataset, optimizer=tf.train.AdamOptimizer(lr, beta1=0.5, epsilon=1e-3), callbacks=Callbacks([ StatPrinter(), PeriodicCallback(ModelSaver(), 3), ScheduledHyperParamSetter('learning_rate', [(200, 1e-4)]) ]), model=Model(), step_per_epoch=dataset.size(), max_epoch=300, ) def sample(datadir, model_path): pred = PredictConfig( session_init=get_model_loader(model_path), model=Model(), input_names=['input', 'output'], output_names=['viz']) imgs = glob.glob(os.path.join(datadir, '*.jpg')) ds = ImageFromFile(imgs, channel=3, shuffle=True) ds = BatchData(MapData(ds, lambda dp: split_input(dp[0])), 6) pred = SimpleDatasetPredictor(pred, ds) for o in pred.get_result(): o = o[0][:, :, :, ::-1] next(build_patch_list(o, nr_row=3, nr_col=2, viz=True)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.') parser.add_argument('--load', help='load model') parser.add_argument('--sample', action='store_true', help='run sampling') parser.add_argument('--data', help='Image directory') parser.add_argument('--mode', choices=['AtoB', 'BtoA'], default='AtoB') global args args = parser.parse_args() if args.gpu: os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu assert args.data if args.sample: sample(args.data, args.load) else: config = get_config() if args.load: config.session_init = SaverRestore(args.load) GANTrainer(config).train()
f847516b8340b2693429d43db570e49faaff7d04
f3399d1ab1849b267cc83de30044dfe556598262
/src/main.py
705fe0947eac4f2daadef39724ef1951b6d1d92f
[]
no_license
JiayuHeUSYD/DARNN_Multi_GPU
0114c263c026ca39e52fb2f47ed7031204a0d966
7e608237a0a7f8165e0e62d9ac50671346e7979b
refs/heads/master
2020-09-07T09:29:02.305668
2019-01-30T05:12:30
2019-01-30T05:12:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,562
py
# -*- coding: utf-8 -*- from __future__ import print_function, division import torch import argparse import numpy as np from tensorboardX import SummaryWriter from DARNN import Encoder, Decoder from CsiDataSet import CSI300Dataset from VerParams import Version def set_seed(seed=1): ''' https://github.com/pytorch/pytorch/issues/11278 https://github.com/pytorch/pytorch/issues/11278 https://github.com/pytorch/pytorch/issues/12207 ''' import random import os random.seed(seed) np.random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.backends.cudnn.deterministic = True # Determinism Seed set_seed() from torch import nn from torch import optim # Parameters settings parser = argparse.ArgumentParser(description="DA-RNN") # Dataset setting parser.add_argument( '--norm_csi_dir', type=str, default='/project/chli/scp/CSI300_NORM/', help='normalized csi300 csv dir') parser.add_argument( '--num_workers', type=int, default=12, help='number of data loading workers (default 3)') parser.add_argument( '--dataset_split_ratio', default=[0.8, 0.1, 0.1], type=list, help='train, valid, test dataset split ratio') parser.add_argument( '--x_columns', default=['o', 'h', 'l', 'v', 'a'], type=list, help='list of features\' (X) column names') parser.add_argument( '--y_columns', default=['c'], type=list, help='list of target (Y) column names') parser.add_argument( '--pin_memory', type=bool, default=True, help='pin memory page') parser.add_argument( '--debug', type=bool, default=False, help='debug with small data') # Encoder / Decoder parameters setting parser.add_argument( '--hid_dim_encoder', type=int, default=32, help='size of hidden states for the encoder m [64, 128]') parser.add_argument( '--hid_dim_decoder', type=int, default=32, help='size of hidden states for the decoder p [64, 128]') parser.add_argument( '--ind_steps', type=int, default=0, help='window length for computing indicator') parser.add_argument( '--lag_steps', type=int, default=20, help='the number of lag time steps (history window length T)') parser.add_argument( '--pred_steps', type=int, default=1, help='y_{t+pred_steps} = p(y_t,...,y_{timesteps-1}, x_t,...,x_{timesteps-1})' ) # Training parameters setting parser.add_argument( '--param_version', type=int, default=None, help='int versioning params') parser.add_argument( '--epochs', type=int, default=10, help='number of epochs to train [10, 200, 500]') parser.add_argument( '--lr', type=float, default=0.001, help='learning rate [0.001] reduced by 0.1 after each 10000 iterations') parser.add_argument('--seed', default=1, type=int, help='manual seed') parser.add_argument( '--batchsize', type=int, default=512, help='input batch size [128]') parser.add_argument('--shuffle', type=bool, default=True, help='shuffle batch') parser.add_argument( '--task_type', default='single', type=str, help='single or multi') parser.add_argument( '--pred_type', default='shift', type=str, help='steps or shift') # debug parse_cli = False opt = parser.parse_args('') if parse_cli: opt = parser.parse_args() if __name__ == "__main__": # debug # from importlib import reload opt.debug = False opt.num_workers = 20 # import os # os.environ['CUDA_VISIBLE_DEVICES'] = '0' ver = Version() ver.set_ver_opt(opt.param_version, opt) suffix = 'L%dP%dHdim%d' % (opt.lag_steps, opt.pred_steps, opt.hid_dim_encoder) writer = SummaryWriter(comment=suffix) csi300 = CSI300Dataset() train_dataset, valid_dataset, test_dataset, \ train_loader, valid_loader, test_loader = csi300.get_dataset_loader( opt) feat_dim = 13 encoder = Encoder(opt.lag_steps, feat_dim, opt.hid_dim_encoder) decoder = Decoder(opt.lag_steps, opt.hid_dim_encoder, opt.hid_dim_decoder) # device = ('cpu') # Multi-GPU Support device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if torch.cuda.device_count() > 1: encoder = nn.DataParallel(encoder) decoder = nn.DataParallel(decoder) encoder.to(device) decoder.to(device) criterion = nn.MSELoss() encoder_optimizer = optim.Adam(encoder.parameters(), lr=opt.lr) decoder_optimizer = optim.Adam(decoder.parameters(), lr=opt.lr) # Train Loops n_batches_count = 1 epoch_batch_loss_list = list() for epoch in range(opt.epochs): batch_loss_list = list() for data_dict in train_loader: # Prepare Data On Devices X = data_dict['X'].type(torch.FloatTensor).to(device) Y = data_dict['Y'].type(torch.FloatTensor).squeeze().to(device) Ygt = data_dict['Y_gt'].type(torch.FloatTensor).to(device) # Forward Pass H = encoder(X) Ypred = decoder(H, Y) loss = criterion(Ypred.squeeze(), Ygt) # Gradient Descent encoder_optimizer.zero_grad() decoder_optimizer.zero_grad() loss.backward() encoder_optimizer.step() decoder_optimizer.step() # Log Stats if n_batches_count % 100 == 0: writer.add_scalar('train/loss', loss.item(), n_batches_count) if n_batches_count % 50000 == 0: for p in encoder_optimizer.param_groups: p['lr'] *= 0.9 for p in decoder_optimizer.param_groups: p['lr'] *= 0.9 n_batches_count += 1 print(batch_loss_list) epoch_batch_loss_list.append(batch_loss_list)
7b8b2c10c5c88c5070533d1be5d7e8280fd94ed0
3d060dd745ac19e58255843d496d6afe7168abe2
/work_for_aca_lsq/make_7122_intensities.py
5b203f1eb526a63b22446584054feab32121456f
[]
no_license
nksauter/LS49
352e96e3601d2475f7f81e0c6a7e4771e9cf9911
e660c7395e3e3349d43ccd6e59cc099042c5c512
refs/heads/master
2023-05-27T01:50:34.996331
2023-05-15T22:09:56
2023-05-15T22:09:56
113,079,929
8
9
null
2023-05-10T18:37:14
2017-12-04T18:34:22
Python
UTF-8
Python
false
false
1,552
py
from __future__ import print_function from __future__ import division from six.moves import cPickle as pickle from six.moves import range if __name__=="__main__": from LS49.sim.util_fmodel import gen_fmodel from LS49.sim.step5_pad import pdb_lines,Fe_oxidized_model,Fe_reduced_model W2 = 12398.425/7122. GF = gen_fmodel(resolution=1.9,pdb_text=pdb_lines,algorithm="fft",wavelength=W2) GF.set_k_sol(0.435) GF.reset_wavelength(W2) GF.reset_specific_at_wavelength(label_has="FE1",tables=Fe_oxidized_model,newvalue=W2) GF.reset_specific_at_wavelength(label_has="FE2",tables=Fe_reduced_model,newvalue=W2) W2_reduced = GF.get_intensities() # Einsle paper: Reduced form has # buried irons, FE1, in Fe(III) state (absorption at higher energy, oxidized) # surface iron, FE2, in Fe(II) state (absorption at lower energy, reduced) W2i = W2_reduced.indices() with (open("debug26.data","w")) as F: for iw in range(len(W2i)): print ("%20s, %10.2f"%(W2_reduced.indices()[iw],W2_reduced.data()[iw]), file=F) intensity_dict = {} for iw in range(len(W2i)): intensity_dict[W2_reduced.indices()[iw]] = W2_reduced.data()[iw] with (open("debug26_intensities.pickle","wb")) as F: pickle.dump(intensity_dict, F, pickle.HIGHEST_PROTOCOL) with (open("sfall_7122_amplitudes.pickle","wb")) as F: pickle.dump(GF.get_amplitudes(), F, pickle.HIGHEST_PROTOCOL) GF.make_P1_primitive() with (open("sfall_P1_7122_amplitudes.pickle","wb")) as F: pickle.dump(GF.get_amplitudes(), F, pickle.HIGHEST_PROTOCOL)
f77db9cc87b1c554b9314bab2c7e4a9c2b3e15af
a332b34158b0b7e6ee04b51c3de54f220a5263ef
/virtual/bin/django-admin.py
eb3dee42caf8171d5fd70aa71c39a49b83b58d4d
[]
no_license
IngabireTina/Ing_api
41eef33b3df0c289d05c247fc1065295274eda59
b482b5e97b916063d5a6926ec927246e1f2d276c
refs/heads/master
2023-04-11T07:46:10.021649
2021-04-26T15:05:53
2021-04-26T15:05:53
361,655,218
0
0
null
null
null
null
UTF-8
Python
false
false
685
py
#!/home/tina/Desktop/ing_api/virtual/bin/python3.6 # When the django-admin.py deprecation ends, remove this script. import warnings from django.core import management try: from django.utils.deprecation import RemovedInDjango40Warning except ImportError: raise ImportError( 'django-admin.py was deprecated in Django 3.1 and removed in Django ' '4.0. Please manually remove this script from your virtual environment ' 'and use django-admin instead.' ) if __name__ == "__main__": warnings.warn( 'django-admin.py is deprecated in favor of django-admin.', RemovedInDjango40Warning, ) management.execute_from_command_line()
b0234fee86193c0f241ac55eb21416301a933d0c
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02785/s477774791.py
60aa3b22a33800e8d7a30bb8d0694975657ee378
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
134
py
N, K = map(int, input().split()) H = list(map(int, input().split())) H = sorted(H) hp = 0 for i in range(N-K): hp += H[i] print(hp)
5a9ba52649275f8cb827ccb6185ac2b1cf2f8f62
4e0f2938b003f5d68a57f213e652fbffb2f72ba2
/FishStat_M.py
4cb6b0e27eeb6eb548d7e915ecb695342689ce9f
[]
no_license
adcGG/Lianxi
e4b1ce0d3cfc76e625e1e1caca0a58f25ba5d692
3659c3ca11a13b4ad54dbd2e669949701bae10b5
refs/heads/master
2022-12-13T05:45:41.312292
2019-08-14T07:38:19
2019-08-14T07:38:19
201,189,540
0
1
null
2022-04-22T22:08:16
2019-08-08T06:07:53
Python
UTF-8
Python
false
false
1,483
py
def day_stat(day,fishs): ''' :param day: 为字符串参数 :param fishs: 为两层嵌套字典参数 :return: ''' nums = 0 amount = 0 for name0,sub_records in fishs.items(): print('%s 数量 %d 单价%.2f元'%(name0,sub_records[0],sub_records[1])) nums+=sub_records[0] amount += sub_records[0]*sub_records[1] print('%s 数量小计%d金额小计%.2f'%(day,nums,amount)) def allday_stat(fish,maxs): ''' 统计所有鱼,并保存到统计字典里 :param fish: 为两层嵌套字典参数 :return: ''' name1 = "" sub_record = {} stat_record = {} for day,day_record in fish.items(): for name1,sub_record in day_record.items(): if name1 in stat_record: stat_record[name1][0]+=sub_record[0] stat_record[name1][1] += sub_record[0]*sub_record[1] else: stat_record[name1] = [sub_record[0],sub_record[0]*sub_record[1]] for name1,nums in stat_record.items(): if maxs[1] < nums[0]: maxs[0] = name1 maxs[1] = nums[0] if maxs[3] <nums[1]: maxs[2] = name1 maxs[3] = nums[1] maxs[4] = maxs[4]+nums[0] maxs[5] = maxs[5]+nums[1] return stat_record def PrintMaxValues(maxstat1): ''' 打印最大值 :param maxstat1:[:4]为列表参数,记录最大值。[4]记录总数量 。 [5]记录总金额 :return: ''' print('最大数量的鱼是%s,%d条'%(maxstat1[0],maxstat1[1])) print('最大金额的鱼是%s,%.2f元'%(maxstat1[2],maxstat1[3])) print('钓鱼总数量为%d,总金额为%.2f元'%(maxstat1[4],maxstat1[5]))
ff67401d63b733d6006d89cf2cc4e7cc50d61f84
77f537f24d7d1cc2657c581de887e5a4da4c1754
/python/rapidstream/BE/AnchorPlacement/PairwiseAnchorPlacementForSLRCrossing.py
995a45e4c269af40afdf71fb7ec1d4c2b6b09818
[ "LicenseRef-scancode-proprietary-license", "MIT" ]
permissive
UCLA-VAST/RapidStream
d5e4c75b666693964138d96ffb6bdf4d682cf0e9
106ae4055f72b1d59245e0650d7b838d8abdfb78
refs/heads/main
2023-04-14T20:40:01.332134
2022-12-20T03:01:25
2022-12-20T03:01:25
321,000,047
27
7
MIT
2022-06-02T04:01:12
2020-12-13T06:32:09
Python
UTF-8
Python
false
false
14,359
py
import itertools import logging import json import operator import time from collections import defaultdict from typing import List, Tuple, Dict from mip import Model, minimize, CONTINUOUS, xsum, OptimizationStatus from rapidstream.BE.Utilities import isPairSLRCrossing from rapidstream.BE.Device.U250 import idx_of_left_side_slice_of_laguna_column from autobridge.Device.DeviceManager import DeviceU250 from autobridge.Opt.Slot import Slot U250_inst = DeviceU250() slice_to_laguna = {idx_of_left_side_slice_of_laguna_column[i] : i \ for i in range(len(idx_of_left_side_slice_of_laguna_column))} class SLLChannel: """ each SLLChannel consists of 24 SLL wires The bottom/top of those SLL wires are the same with reference to SLICE coordinates each channel will correspond to 8 laguna sites, each with 6 RX registers if an anchor is upward, it must be placed on the RX at the top side otherwise it must be placed on the RX at the bottom side """ def __init__(self, bottom_coor_y, i_th_column: int): self.bottom_coor_x = idx_of_left_side_slice_of_laguna_column[i_th_column] self.bottom_coor_y = bottom_coor_y self.top_coor_x = self.bottom_coor_x self.top_coor_y = bottom_coor_y + 60 self.capacity = 20 self.bottom_slot_y_min = int(bottom_coor_y / 120) * 120 self.bottom_slot_y_max = self.bottom_slot_y_min + 119 self._initRXList(i_th_column, bottom_coor_y) def __hash__(self): return hash((self.bottom_coor_x, self.bottom_coor_y)) def __str__(self): return self.getString() def getString(self): return f'X{self.bottom_coor_x}Y{self.bottom_coor_y} <-> X{self.top_coor_x}Y{self.top_coor_y}' def _initRXList(self, i_th_column, bottom_coor_y): """ get the laguna RX registers associated with this channel """ bottom_laguna_sites = [ f'LAGUNA_X{x}Y{y}' for x in (i_th_column*2, i_th_column*2+1) \ for y in self._get_nearest_laguna_y(bottom_coor_y) ] top_laguna_sites = [ f'LAGUNA_X{x}Y{y}' for x in (i_th_column*2, i_th_column*2+1) \ for y in self._get_nearest_laguna_y(bottom_coor_y + 60) ] # each laguna site has 6 RX registers self.bottom_laguna_RX = [f'{site}/RX_REG{i}' for i in range(6) for site in bottom_laguna_sites] self.top_laguna_RX = [f'{site}/RX_REG{i}' for i in range(6) for site in top_laguna_sites] def _get_nearest_laguna_y(self, slice_y): """ convert from SLICE coordinate to laguna coordinate """ if 180 <= slice_y <= 299: laguna_y = (slice_y - 180) * 2 + 120 elif 420 <= slice_y <= 539: laguna_y = (slice_y - 420) * 2 + 360 elif 660 <= slice_y <= 779: laguna_y = (slice_y - 660) * 2 + 600 else: assert False return (laguna_y, laguna_y+1) def getCostForAnchor(self, list_of_cell_property_dict: List[Dict], anchor_direction: str) -> float: """ the cost for placing an anchor on this channel """ SLR_crossing_penalty = 10 SLL_length = 60 lut_penalty = lambda num_lut_on_path : 1 + 0.3 * num_lut_on_path def getDistFromCells(list_of_cell_property_dict: List[Dict]) -> List[int]: """ Distance between the RX of the SLL and the end cell. If the connection goes up, the dist is between the end cells and the top_coor Else the dist is between the end cells and the bottom_coor """ dists = [] # for loc, type in coor_to_cell_types.items(): for cell_property_dict in list_of_cell_property_dict: loc = cell_property_dict["normalized_coordinate"] x, y = loc[0], loc[1] # determine if the cell is at the top side or bottom side is_cell_at_bottom = self.bottom_slot_y_min <= y <= self.bottom_slot_y_max if anchor_direction == 'DOWN': if is_cell_at_bottom: orig_dist = abs(x - self.bottom_coor_x) + abs(y - self.bottom_coor_y) else: # if a connection goes down, the end cell at the top will connect to # the input of the SLL at the top, then travel through SLL to the RX at the bottom orig_dist = SLR_crossing_penalty + SLL_length + abs(x - self.top_coor_x) + abs(y - self.top_coor_y) elif anchor_direction == 'UP': if is_cell_at_bottom: # if a connection goes up, the end cell at the bottom will connect to # the input of the SLL at the bottom, then travel through SLL to the RX at the top orig_dist = SLR_crossing_penalty + SLL_length + abs(x - self.bottom_coor_x) + abs(y - self.bottom_coor_y) else: orig_dist = abs(x - self.top_coor_x) + abs(y - self.top_coor_y) else: assert False # penaltize wires to LUTs dists.append(orig_dist * lut_penalty(cell_property_dict["num_lut_on_path"])) return dists dists = getDistFromCells(list_of_cell_property_dict) # avg wire length dist_score = sum(dists) / len(dists) unbalance_penalty = max(dists) - min(dists) # prevent extremely short wires hold_penalty = max(0, 10 - min(dists)) return dist_score + unbalance_penalty + hold_penalty def placeAnchor(self, anchor_dir): """ mark an RX register as occupied by popping it out The sites at the top will use the RX from small index to large index the sites at the bottom will use the RX from large index to small index Note that each SLL is associate with two RX and two TX registers so that it can be used in both directions. But only one of them could be used. """ if anchor_dir == 'UP': return self.top_laguna_RX.pop() elif anchor_dir == 'DOWN': return self.bottom_laguna_RX.pop(0) else: assert False, anchor_dir def _get_anchor_2_sll_dir(hub, slot1_name, slot2_name, anchor_connections: Dict[str, List[Dict[str, str]]]) -> Dict[str, str]: """ each anchor will use one SLL connection. get which direction will the SLL will be used, upward or downward """ slot1 = Slot(U250_inst, slot1_name) slot2 = Slot(U250_inst, slot2_name) up_slot = slot1 if slot1.down_left_y > slot2.down_left_y else slot2 # get the downward IO of the upper slot up_slot_io = hub['PathPlanningWire'][up_slot.getRTLModuleName()]['DOWN'] # double check that the information in the hub is consistent all_io = hub['SlotIO'][up_slot.getRTLModuleName()] io_from_all_directions = list(itertools.chain.from_iterable(hub['PathPlanningWire'][up_slot.getRTLModuleName()].values())) if not len(all_io) == len(io_from_all_directions) + 1: # +1 because of ap_clk name_all_io = [io[-1] for io in all_io] name_io_from_all_directions = [io[-1] for io in io_from_all_directions] diff_list = set(name_all_io) - set(name_io_from_all_directions) # the only difference should be top-level IOs assert all('_axi_' in d or 'clk' in d or 'interrupt' == d or 'ap_rst_n' == d for d in diff_list), diff_list # the output wire of the upper slot will travel DOWN the sll get_sll_dir = lambda in_or_out : 'DOWN' if in_or_out == 'output' else 'UP' slot_io_2_sll_dir = {io[-1] : get_sll_dir(io[0]) for io in up_slot_io} anchor_2_sll_dir = {} for anchor in anchor_connections.keys(): hls_var_name = anchor.split('_q0_reg')[0] anchor_2_sll_dir[anchor] = slot_io_2_sll_dir[hls_var_name] return anchor_2_sll_dir def getSLLChannelToAnchorCost( sll_channel_list: List[SLLChannel], anchor_connections: Dict[str, List[Dict]], anchor_to_sll_dir: Dict[str, str]): """ We need to assign a score if an anchor is placed in a bin To prevent hold violation, we neglect the length of the SLL. Thus the distance will be (1) the source cell to the input of the SLL (2) the output of the SLL to the destination cells return: SLL channel -> anchor -> score """ sll_to_anchor_to_cost = {} for sll_channel in sll_channel_list: anchor_to_cost = {anchor : sll_channel.getCostForAnchor(list_of_cell_property_dict, anchor_to_sll_dir[anchor]) \ for anchor, list_of_cell_property_dict in anchor_connections.items()} sll_to_anchor_to_cost[sll_channel] = anchor_to_cost anchor_to_sll_to_cost = defaultdict(dict) for sll, anchor_to_cost in sll_to_anchor_to_cost.items(): for anchor, cost in anchor_to_cost.items(): anchor_to_sll_to_cost[anchor][sll] = cost saveAnchorToSLLToCost(anchor_to_sll_to_cost) return sll_to_anchor_to_cost, anchor_to_sll_to_cost def getSLLChannels(slot1_name: str, slot2_name: str) -> List[SLLChannel]: """ get all SLL channels between a slot pair each channel should have an input coor, an output coor, and 24 RX names first get the X coor of the 4 columns """ slot1 = Slot(U250_inst, slot1_name) slot2 = Slot(U250_inst, slot2_name) i_th_column_range = range(slot1.down_left_x * 2, (slot1.up_right_x+1) * 2) pair_down_left_y = min(slot1.down_left_y, slot2.down_left_y) if pair_down_left_y == 2: sll_bottom_y_range = range(180, 240) elif pair_down_left_y == 6: sll_bottom_y_range = range(420, 480) elif pair_down_left_y == 10: sll_bottom_y_range = range(660, 720) else: assert False sll_channels = [SLLChannel(y, i) for y in sll_bottom_y_range for i in i_th_column_range] logging.info(f'SLL channel num: {len(sll_channels)}') logging.info(f'Total SLL channel capacity: {len(sll_channels) * sll_channels[0].capacity }') return sll_channels def placeAnchorToSLLChannel(anchor_to_sll_to_cost, pair_name) -> Dict[str, SLLChannel]: """ run ILP to map anchor to channels """ start_time = time.perf_counter() get_time_stamp = lambda : time.perf_counter() - start_time m = Model() anchor_to_sll_to_var = {} for anchor, sll_to_cost in anchor_to_sll_to_cost.items(): sll_to_var = {sll : m.add_var(var_type=CONTINUOUS, lb=0, ub=1) for sll in sll_to_cost.keys()} anchor_to_sll_to_var[anchor] = sll_to_var sll_to_anchor_to_var = defaultdict(dict) for anchor, sll_to_var in anchor_to_sll_to_var.items(): for sll, var in sll_to_var.items(): sll_to_anchor_to_var[sll][anchor] = var # each anchor is placed once for anchor, sll_to_var in anchor_to_sll_to_var.items(): m += xsum(var for var in sll_to_var.values()) == 1 # limit on sll capacity, currently set to 20/24 for sll, anchor_to_var in sll_to_anchor_to_var.items(): m += xsum(var for var in anchor_to_var.values()) <= sll.capacity # objective var_and_cost = [] for anchor, sll_to_cost in anchor_to_sll_to_cost.items(): sll_to_var = anchor_to_sll_to_var[anchor] for sll in sll_to_cost.keys(): var_and_cost.append((sll_to_var[sll], sll_to_cost[sll])) m.objective = minimize(xsum(var * cost for var, cost in var_and_cost)) status = m.optimize() if anchor_to_sll_to_var: assert status == OptimizationStatus.OPTIMAL or status == OptimizationStatus.FEASIBLE, f'failed in ILP placement for {pair_name}' anchor_to_sll = {} for anchor, sll_to_var in anchor_to_sll_to_var.items(): for sll, var in sll_to_var.items(): var_value = round(var.x) assert abs(var.x - var_value) < 0.000001, var.x if var_value == 1: anchor_to_sll[anchor] = sll return anchor_to_sll def saveAnchorToSLLToCost(anchor_to_sll_to_cost): anchor_to_sll_string_to_cost = {} for anchor, sll_to_cost in anchor_to_sll_to_cost.items(): anchor_to_sll_string_to_cost[anchor] = {sll.getString() : cost for sll, cost in sll_to_cost.items()} open('debug_anchor_to_bin_to_cost.json', 'w').write(json.dumps(anchor_to_sll_string_to_cost, indent=2)) def _analyzeILPResults(anchor_to_sll_to_cost, anchor_to_selected_bin): """ get how optimal is the final position for each anchor """ saveAnchorToSLLToCost(anchor_to_sll_to_cost) ilp_report = {} for anchor, chosen_bin in anchor_to_selected_bin.items(): ilp_report[anchor] = {} bin2cost = anchor_to_sll_to_cost[anchor] all_cost_list = [[cost, bin] for bin, cost in bin2cost.items()] all_cost_list = sorted(all_cost_list, key=operator.itemgetter(0)) cost_value_list = [x[0] for x in all_cost_list] ilp_report[anchor]['curr_cost'] = bin2cost[chosen_bin] ilp_report[anchor]['min_cost'] = all_cost_list[0][0] ilp_report[anchor]['max_cost'] = all_cost_list[-1][0] ilp_report[anchor]['rank_of_chosen_bin'] = cost_value_list.index(bin2cost[chosen_bin]) ilp_report[anchor]['total_bin_num'] = len(all_cost_list) ilp_report[anchor]['bin_location'] = chosen_bin.getString() optimal_bin = all_cost_list[0][1] ilp_report[anchor]['optimal_location'] = optimal_bin.getString() ranks = [anchor_info['rank_of_chosen_bin'] for anchor_info in ilp_report.values()] if len(ranks): logging.info(f'average rank of the final placed bins: {sum(ranks) / len(ranks)}') logging.info(f'worst rank of the final placed bins: {max(ranks)}') else: logging.warning(f'no anchors between the pair') open('ilp_quality_report.json', 'w').write(json.dumps(ilp_report, indent=2)) def placeLagunaAnchors(hub, pair_name: str, anchor_connections: Dict[str, List[Dict[str, str]]]) -> Dict[str, str]: """ separally handle the anchor placement for SLR crossing pairs The source cannot be too close to the chose SLL There are 4 laguna columns between a pair of slots Each column has 1440 SLL wires We divide the 1440 SLL into 60 channels, each of 24 wire. Wires in the same channel has the same src/sink position thus are deemed the same Thus we have 4 * 60 = 240 bins, each with a capacity of 24 Each SLL is of 60 SLICE high, thus each bin has a input coor and an output coor differed by 60 """ slot1_name, slot2_name = pair_name.split('_AND_') assert isPairSLRCrossing(slot1_name, slot2_name) sll_channels = getSLLChannels(slot1_name, slot2_name) anchor_to_sll_dir = _get_anchor_2_sll_dir(hub, slot1_name, slot2_name, anchor_connections) logging.info(f'anchor num: {len(anchor_to_sll_dir.keys())}') _, anchor_to_sll_to_cost = getSLLChannelToAnchorCost(sll_channels, anchor_connections, anchor_to_sll_dir) anchor_to_sll = placeAnchorToSLLChannel(anchor_to_sll_to_cost, pair_name) _analyzeILPResults(anchor_to_sll_to_cost, anchor_to_sll) anchor_to_laguna_reg = {} for anchor, sll in anchor_to_sll.items(): anchor_dir = anchor_to_sll_dir[anchor] anchor_to_laguna_reg[anchor] = sll.placeAnchor(anchor_dir) return anchor_to_laguna_reg
883879f04c62bf4e480cf92b5d51696e945aea20
fc4fb632da74ba1b535192f26f64cbb3aa124c2d
/tests/scripts/thread-cert/Cert_5_3_08_ChildAddressSet.py
9613af53472edcfbdbfd5043edf8aaa94ad564c2
[ "BSD-3-Clause", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
sbobrowicz/openthread
dc1fd4caed785a5d3ff9365530b0030e3498d3eb
a43fb455d99d3692bdc68aa6d9be96f973a1a4ea
refs/heads/master
2021-01-16T23:19:11.674806
2016-06-24T19:43:02
2016-06-24T19:43:02
61,918,103
1
1
null
2016-06-24T23:38:19
2016-06-24T23:38:18
null
UTF-8
Python
false
false
4,073
py
#!/usr/bin/python # # Copyright (c) 2016, Nest Labs, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # import pexpect import time import unittest import node LEADER = 1 ED1 = 2 ED2 = 3 ED3 = 4 ED4 = 5 class Cert_5_3_8_ChildAddressSet(unittest.TestCase): def setUp(self): self.nodes = {} for i in range(1,6): self.nodes[i] = node.Node(i) self.nodes[LEADER].set_panid(0xface) self.nodes[LEADER].set_mode('rsdn') self.nodes[LEADER].add_whitelist(self.nodes[ED1].get_addr64()) self.nodes[LEADER].add_whitelist(self.nodes[ED2].get_addr64()) self.nodes[LEADER].add_whitelist(self.nodes[ED3].get_addr64()) self.nodes[LEADER].add_whitelist(self.nodes[ED4].get_addr64()) self.nodes[LEADER].enable_whitelist() self.nodes[ED1].set_panid(0xface) self.nodes[ED1].set_mode('rsn') self.nodes[ED1].add_whitelist(self.nodes[LEADER].get_addr64()) self.nodes[ED1].enable_whitelist() self.nodes[ED2].set_panid(0xface) self.nodes[ED2].set_mode('rsn') self.nodes[ED2].add_whitelist(self.nodes[LEADER].get_addr64()) self.nodes[ED2].enable_whitelist() self.nodes[ED3].set_panid(0xface) self.nodes[ED3].set_mode('rsn') self.nodes[ED3].add_whitelist(self.nodes[LEADER].get_addr64()) self.nodes[ED3].enable_whitelist() self.nodes[ED4].set_panid(0xface) self.nodes[ED4].set_mode('rsn') self.nodes[ED4].add_whitelist(self.nodes[LEADER].get_addr64()) self.nodes[ED4].enable_whitelist() def tearDown(self): for node in self.nodes.itervalues(): node.stop() del self.nodes def test(self): self.nodes[LEADER].start() self.nodes[LEADER].set_state('leader') self.assertEqual(self.nodes[LEADER].get_state(), 'leader') self.nodes[ED1].start() time.sleep(3) self.assertEqual(self.nodes[ED1].get_state(), 'child') self.nodes[ED2].start() time.sleep(3) self.assertEqual(self.nodes[ED2].get_state(), 'child') self.nodes[ED3].start() time.sleep(3) self.assertEqual(self.nodes[ED3].get_state(), 'child') self.nodes[ED4].start() time.sleep(3) self.assertEqual(self.nodes[ED4].get_state(), 'child') for i in range(2,6): addrs = self.nodes[i].get_addrs() for addr in addrs: if addr[0:4] != 'fe80': self.nodes[LEADER].ping(addr) if __name__ == '__main__': unittest.main()
7274b14eb762afe828b515ecea48e3d6adf0ee84
818e11a0545de5ed0337e5baa4b92a732bd79521
/leetcode/python/128_Longest_Consecutive_Sequence.py
7262c304222f95a03e296ebf7273426408d6570c
[]
no_license
JaySurplus/online_code
85300fb63dd4020d9135e32dfad5792850d335f6
8f44df0bcb521bbc3a7ff2564cbe931e146ae297
refs/heads/master
2021-01-20T09:07:30.038815
2018-08-21T15:08:01
2018-08-21T15:08:01
34,469,525
0
0
null
null
null
null
UTF-8
Python
false
false
1,040
py
""" 128. Longest Consecutive Sequence Given an unsorted array of integers, find the length of the longest consecutive elements sequence. For example, Given [100, 4, 200, 1, 3, 2], The longest consecutive elements sequence is [1, 2, 3, 4]. Return its length: 4. Your algorithm should run in O(n) complexity. """ import time class Solution(object): def longestConsecutive(self, nums): """ :type nums: List[int] :rtype: int """ nums = set(nums) dic = {} #for i in nums: # print i best = 0 while nums: m = n = nums.pop() while m - 1 in nums: nums.remove(m-1) m -= 1 while n + 1 in nums: nums.remove(n+1) n += 1 best = max(best , n - m +1) return best sol = Solution() nums = [100,101,102,103 ,5,4,200,6,8,201,7,1,3,2 , 105 ,104] #nums = [1,-8,7,-2,-4,-4,6,3,-4,0,-7,-1,5,1,-9,-3] #nums = [1,2,3,4,5,0, -1] res = sol.longestConsecutive(nums) print res
4bf857590fcb621dad5d6aade0336448fb6ec833
eacff46eda2c6b509449979a16002b96d4645d8e
/Collections-a-installer/community-general-2.4.0/plugins/modules/online_server_facts.py
5902f477135e736171debe37114a81e8d66abb26
[ "MIT", "GPL-3.0-only", "GPL-3.0-or-later" ]
permissive
d-amien-b/simple-getwordpress
5e6d4d15d5f87124ab591e46b63fec552998fdc3
da90d515a0aa837b633d50db4d91d22b031c04a2
refs/heads/master
2023-04-08T22:13:37.347545
2021-04-06T09:25:51
2021-04-06T09:25:51
351,698,069
0
0
MIT
2021-03-31T16:16:45
2021-03-26T07:30:00
HTML
UTF-8
Python
false
false
35
py
cloud/online/online_server_facts.py
ea3d92ac6eaa0e3765679bde1dcdd3826f9104b9
4a8c1f7d9935609b780aff95c886ef7781967be0
/Flask/module/root/__init__.py
9e57fe84d463cdf6098fd2ee5cf2c0332eda0a49
[]
no_license
recuraki/PythonJunkTest
d5e5f5957ac5dd0c539ef47759b1fe5ef7a2c52a
2556c973d468a6988d307ce85c5f2f8ab15e759a
refs/heads/master
2023-08-09T17:42:21.875768
2023-07-18T23:06:31
2023-07-18T23:06:31
13,790,016
0
0
null
null
null
null
UTF-8
Python
false
false
317
py
#!env python # coding:utf-8 from flask import Flask from hoge.main import hoge app = Flask(__name__) app.debug = True app.config.from_envvar('FLASK_APP_SETTINGS', silent=True) app.register_module(hoge, url_prefix="/moge") @app.route("/") def index(): return("index") if __name__ == '__main__': app.run()
221143b22b0808f84df7a4d31d7bc24371fbb9bf
6189f34eff2831e3e727cd7c5e43bc5b591adffc
/WebMirror/management/rss_parser_funcs/feed_parse_extractTxytranslationsWordpressCom.py
65323eb27a4c3c955883db9a3025cf3603421cb6
[ "BSD-3-Clause" ]
permissive
fake-name/ReadableWebProxy
24603660b204a9e7965cfdd4a942ff62d7711e27
ca2e086818433abc08c014dd06bfd22d4985ea2a
refs/heads/master
2023-09-04T03:54:50.043051
2023-08-26T16:08:46
2023-08-26T16:08:46
39,611,770
207
20
BSD-3-Clause
2023-09-11T15:48:15
2015-07-24T04:30:43
Python
UTF-8
Python
false
false
570
py
def extractTxytranslationsWordpressCom(item): ''' Parser for 'txytranslations.wordpress.com' ''' vol, chp, frag, postfix = extractVolChapterFragmentPostfix(item['title']) if not (chp or vol) or "preview" in item['title'].lower(): return None tagmap = [ ('PRC', 'PRC', 'translated'), ('Loiterous', 'Loiterous', 'oel'), ] for tagname, name, tl_type in tagmap: if tagname in item['tags']: return buildReleaseMessageWithType(item, name, vol, chp, frag=frag, postfix=postfix, tl_type=tl_type) return False
f8957ea5ea0f59fe279970da77af2889af7bfebd
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/otherforms/_noting.py
23cacc23506f5124a72149831f5c2e50cc7fbca8
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
216
py
#calss header class _NOTING(): def __init__(self,): self.name = "NOTING" self.definitions = note self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.basic = ['note']
afa762b941f1e50c05f69a041402ec8dac2894e1
a2c7bc7f0cf5c18ba84e9a605cfc722fbf169901
/python_1_to_1000/871_Minimum_Number_of_Refueling_Stops.py
cd4663edd331b07e501988b519ace8b0387a1bb5
[]
no_license
jakehoare/leetcode
3bf9edd499034ce32be462d4c197af9a8ed53b5d
05e0beff0047f0ad399d0b46d625bb8d3459814e
refs/heads/master
2022-02-07T04:03:20.659422
2022-01-26T22:03:00
2022-01-26T22:03:00
71,602,471
58
38
null
null
null
null
UTF-8
Python
false
false
2,363
py
_author_ = 'jake' _project_ = 'leetcode' # https://leetcode.com/problems/minimum-number-of-refueling-stops/ # A car travels from a starting position to a destination which is target miles east of the starting position. # Along the way, there are gas stations. # Each station[i] represents a gas station that is station[i][0] miles east of the starting position, # and has station[i][1] liters of gas. # The car starts with an infinite tank of gas, which initially has startFuel liters of fuel in it. # It uses 1 liter of gas per 1 mile that it drives. # When the car reaches a gas station, it may stop and refuel, transferring all the gas from the station into the car. # What is the least number of refueling stops the car must make in order to reach its destination? # If it cannot reach the destination, return -1. # Note that if the car reaches a gas station with 0 fuel left, the car can still refuel there. # If the car reaches the destination with 0 fuel left, it is still considered to have arrived. # Maintain a heap of fuel at previous stations that has not been used. At each station the total fuel used must not be # less than the distance. If it is less, use fuel from previous stations starting with the largest amounts. If no more # fuel is unused, we cannot reach the target. # Time - O(n log n) # Space - O(n) import heapq class Solution: def minRefuelStops(self, target, startFuel, stations): """ :type target: int :type startFuel: int :type stations: List[List[int]] :rtype: int """ stops = 0 fuel = startFuel # total fuel used past_fuels = [] # heap of unused fuel from previous stations stations.append([target, 0]) # target is beyond final station for distance, station_fuel in stations: while fuel < distance: # cannot reach this station without more fuel if not past_fuels: # no more unused previous stations return -1 fuel -= heapq.heappop(past_fuels) # use the previous station with the most fuel stops += 1 heapq.heappush(past_fuels, -station_fuel) # add this station's fuel to unused fuel return stops
64a41985166cecbfeb82821809d57b7442637d8d
5a52ccea88f90dd4f1acc2819997fce0dd5ffb7d
/alipay/aop/api/domain/CaptureCreateDTO.py
aab34c8dce4d17455c21624f902a4b43cf45d6cc
[ "Apache-2.0" ]
permissive
alipay/alipay-sdk-python-all
8bd20882852ffeb70a6e929038bf88ff1d1eff1c
1fad300587c9e7e099747305ba9077d4cd7afde9
refs/heads/master
2023-08-27T21:35:01.778771
2023-08-23T07:12:26
2023-08-23T07:12:26
133,338,689
247
70
Apache-2.0
2023-04-25T04:54:02
2018-05-14T09:40:54
Python
UTF-8
Python
false
false
1,388
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class CaptureCreateDTO(object): def __init__(self): self._capture_no = None self._out_biz_no = None @property def capture_no(self): return self._capture_no @capture_no.setter def capture_no(self, value): self._capture_no = value @property def out_biz_no(self): return self._out_biz_no @out_biz_no.setter def out_biz_no(self, value): self._out_biz_no = value def to_alipay_dict(self): params = dict() if self.capture_no: if hasattr(self.capture_no, 'to_alipay_dict'): params['capture_no'] = self.capture_no.to_alipay_dict() else: params['capture_no'] = self.capture_no if self.out_biz_no: if hasattr(self.out_biz_no, 'to_alipay_dict'): params['out_biz_no'] = self.out_biz_no.to_alipay_dict() else: params['out_biz_no'] = self.out_biz_no return params @staticmethod def from_alipay_dict(d): if not d: return None o = CaptureCreateDTO() if 'capture_no' in d: o.capture_no = d['capture_no'] if 'out_biz_no' in d: o.out_biz_no = d['out_biz_no'] return o
e5d4969ae671189786a083b8438e5cbbb026b013
59fbeea017110472a788218db3c6459e9130c7fe
/maximum-swap/maximum-swap.py
3e4a1fe1c9171bb242c09a041e623ad88bc2d7e4
[]
no_license
niufenjujuexianhua/Leetcode
82b55d9382bc9f63f4d9da9431194e20a4d299f1
542c99e038d21429853515f62af51a77deaa4d9c
refs/heads/master
2022-04-27T16:55:00.035969
2022-03-10T01:10:04
2022-03-10T01:10:04
79,742,663
0
0
null
null
null
null
UTF-8
Python
false
false
342
py
class Solution: def maximumSwap(self, num: int) -> int: A =list(str(num)) ans = A[:] for i in range(len(A)): for j in range(i+1,len(A)): A[i],A[j] = A[j],A[i] if A>ans: ans = A[:] A[i],A[j] = A[j],A[i] return int(''.join(ans))
6b9dec43d43bea442c82ebcbf64509eb70bf7973
68d267a3e352e40dd2e21359fabb7c97ce9c26aa
/2SAT/cases.py
603243d0922ff178a90b672d9cd64b8675e1476a
[]
no_license
danyuanwang/karatsuba_mult
ac2ad60e98c05910036483f8e418b8478b27081f
a357af85e094f5836c2fbdabebf141b027a13076
refs/heads/master
2023-06-11T06:43:43.504877
2021-07-03T21:05:09
2021-07-03T21:05:09
285,746,475
0
0
null
null
null
null
UTF-8
Python
false
false
2,036
py
import math class Cases: def __init__(self, link): self.size = 0 self.cases = [] handle = open(link) for line in handle: a = line.split() #print(a) res = [int(i) for i in a] self.cases.append(res) self.size += 1 for j in range(100): removableValues = [] absRemovableValues = [] counter = 0 for case in self.cases: counter += 1 print(j, counter, len(self.cases)," init") for value in case: if abs(value) not in absRemovableValues: removableValues.append(value) absRemovableValues.append(abs(value)) else: if -value in removableValues: removableValues.remove(-value) #absRemovableValues.remove(abs(value)) for case in self.cases: for value in case: if value in removableValues: self.cases.remove(case) break #test one case in the set #true if the first value or the second value == true #* negative indicates not def test_case(self, index, values): #print(int(self.cases[index][0])) value1 = values[abs(self.cases[index][0])] value2 = values[abs(self.cases[index][1])] if self.cases[index][0] < 0: value1 = not value1 if self.cases[index][1] < 0: value2 = not value2 return value1 or value2 #test all cases using test above if there is one that evaluates to false return #that case, otherwise return -1 def test_all_cases(self, values): for index in range(len(self.cases)): result = self.test_case(index, values) if not result: return index return -1
96ab6cd72fa5ce049a87e20ed26fe57c4d0a7395
30d0ca288a74835836d72804cfbda81e98bfd075
/core/utils/net_utils_dgcn.py
df07e2e4bc9e3d8b699219e202eb9a316c257bfb
[]
no_license
JoeeYF/GCN-MT
ffe5b0561e7a172c7b7f09f5497640b6a91df63c
3757af844c94190ad182bfdfed35541b3c30bf56
refs/heads/master
2023-04-19T16:33:27.927961
2021-04-29T11:21:43
2021-04-29T11:21:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
40,698
py
import os import time import glob import cv2 import csv import logging import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import albumentations import pandas as pd from .tools import * from .metric_utils import * from .config import * from .ramps import * from core.modules.losses.mse_loss import cls_mse_loss, att_mse_loss, relation_mse_loss from core.modules.feature_queue import FeatureQueue from core.data.custom_dataset import * mask_mse_loss_func = att_mse_loss consistency_criterion_cls = cls_mse_loss consistency_criterion_att = att_mse_loss # sigma_loss_func = nn.SmoothL1Loss() label_list = ['MEL', 'NV', 'BCC', 'AKIEC', 'BKL', 'DF', 'VASC'] label_to_num = {name: index for index, name in enumerate(label_list)} num_to_label = {v: k for k, v in label_to_num.items()} global_step = 0 def get_current_consistency_cls_weight(epoch, config): # Consistency ramp-up from https://arxiv.org/abs/1610.02242 return config['consistency_cls'] * sigmoid_rampup(epoch, config['consistency_rampup'], type='cls') def get_current_consistency_att_weight(epoch, config): # Consistency ramp-up from https://arxiv.org/abs/1610.02242 if epoch < config['consistency_start_epoch']: return 0.0 else: return config['consistency_att'] * sigmoid_rampup(epoch, config['consistency_rampup'], type='att') def update_ema_variables(model, ema_model, alpha, global_step): # Use the true average until the exponential average is more correct alpha = min(1 - 1 / (global_step + 1), alpha) for ema_param, param in zip(ema_model.parameters(), model.parameters()): ema_param.data.mul_(alpha).add_(1 - alpha, param.data) def prepare_net(config, model, GCNModel, _use='train'): # img_size = (config['img_size'], config['img_size']) def worker_init_fn(worker_id): random.seed(config['seed']+worker_id) if _use == 'train': if config['optim'] == 'Adam': optimizer = torch.optim.Adam(model.parameters(), config['lr'], weight_decay=config['weight_decay']) gcn_optimizer = torch.optim.Adam(GCNModel.parameters(), config['lr'], weight_decay=config['weight_decay']) if config['optim'] == 'RMSprop': optimizer = torch.optim.RMSprop(model.parameters(), config['lr'], weight_decay=config['weight_decay']) gcn_optimizer = torch.optim.RMSprop(GCNModel.parameters(), config['lr'], weight_decay=config['weight_decay']) elif config['optim'] == 'SGD': optimizer = torch.optim.SGD(model.parameters(), config['lr'], momentum=config['momentum'], weight_decay=config['weight_decay'], nesterov=config['nesterov']) gcn_optimizer = torch.optim.SGD(GCNModel.parameters(), config['lr'], momentum=config['momentum'], weight_decay=config['weight_decay'], nesterov=config['nesterov']) folds = [fold for fold in range(config['n_fold'])] train_dataset = CustomDataset('train', config['DataRoot'], config['TrainFold'], None, transform=albumentations.Compose([ albumentations.Resize( config['img_size'], config['img_size']), albumentations.OneOf([ # albumentations.RandomGamma(gamma_limit=(60, 120), p=0.9), albumentations.RandomBrightnessContrast(brightness_limit=0.05, contrast_limit=0.05, p=0.9), ], p=0.5), albumentations.OneOf([ albumentations.Blur( blur_limit=4, p=1), # albumentations.MotionBlur(blur_limit=4, p=1), # albumentations.MedianBlur( # blur_limit=4, p=1) ], p=0.5), albumentations.HorizontalFlip(p=0.5), albumentations.ShiftScaleRotate(shift_limit=0.01, scale_limit=0.01, rotate_limit=3, interpolation=cv2.INTER_LINEAR, border_mode=cv2.BORDER_CONSTANT, p=0.5), # albumentations.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), max_pixel_value=255.0, always_apply=False, p=1.0) ]), ) labeled_df = pd.read_csv(config['TrainFold']) labeled_fold = [i for i in config['label_fold']] labeled_df = labeled_df[labeled_df.fold_label.isin(labeled_fold)] labeled_fold_name = labeled_df.image.tolist() labeled_idxs, unlabeled_idxs = relabel_dataset( train_dataset, labeled_fold_name) batch_sampler = TwoStreamBatchSampler( unlabeled_idxs, labeled_idxs, config['batchsize'], config['label_bs']) train_loader = torch.utils.data.DataLoader( train_dataset, num_workers=config['num_workers'], batch_sampler=batch_sampler, pin_memory=True, worker_init_fn=worker_init_fn) # Count different classes num in train dataset # all_label = np.array([label for _, _, label, _, _ in train_dataset]) # class_sample_count = np.array([len(np.where(all_label == t)[0]) for t in np.unique(all_label)]) # for index in range(len(config['Data_CLASSES'])): # print("Train class {}: Num {}".format(index, class_sample_count[index])) valid_dataset = CustomDataset('valid', config['DataRoot'], config['ValidFold'], None, transform=albumentations.Compose([ albumentations.Resize( config['img_size'], config['img_size']), ]) ) valid_loader = torch.utils.data.DataLoader(valid_dataset, batch_size=10, shuffle=False, num_workers=config['num_workers'], drop_last=False, pin_memory=True, worker_init_fn=worker_init_fn) # Count different classes num in valid dataset # all_label = np.array([label for _, _, label, _, _ in valid_dataset]) # class_sample_count = np.array([len(np.where(all_label == t)[0]) for t in np.unique(all_label)]) # for index in range(len(config['Data_CLASSES'])): # print("Valid class {}: Num {}".format(index, class_sample_count[index])) return optimizer, gcn_optimizer, train_loader, valid_loader elif _use == 'infer': infer_dataset = CustomDataset('infer', config['DataRoot'], config['TestFold'], None, transform=albumentations.Compose([ albumentations.Resize( config['img_size'], config['img_size']), ]) ) infer_loader = torch.utils.data.DataLoader(infer_dataset, batch_size=10, shuffle=False, num_workers=config['num_workers'], drop_last=False, pin_memory=True, worker_init_fn=worker_init_fn) return infer_loader def train_net(visualizer, optimizer, gcn_optimizer, train_loader, val_loader, model, config): best_metric_dict = {i: 0 for i in ['acc', 'bac', 'auc', 'f1', 'recall', 'tiou', 'tior', 'acc_epoch']} cls_criterion = nn.NLLLoss() if config['lr_decay'] == None: lr_decay = 0.1 else: lr_decay = config['lr_decay'] for epoch in range(1, config['num_epoch']+1): adjust_learning_rate(optimizer, epoch - 1, config['num_epoch'], config['lr'], config['lr_decay_freq'], lr_decay) # adjust_learning_rate(gcn_optimizer, epoch - 21, config['num_epoch'], config['lr'], config['lr_decay_freq'], lr_decay) train(visualizer, train_loader, model, optimizer, gcn_optimizer, epoch, config, cls_criterion) if (epoch) % config['valid_freq'] == 0: best_metric_dict = valid_net(val_loader, model, config, best_metric_dict, epoch) logging.info('Valid-Cls: Best ACC update to: {:.4f}, from Epoch {}'.format(best_metric_dict['acc'], best_metric_dict['acc_epoch'])) logging.info('Valid-Cls: Best BAC update to: {:.4f}'.format(best_metric_dict['bac'])) logging.info('Valid-Cls: Best AUC update to: {:.4f}'.format(best_metric_dict['auc'])) logging.info('Valid-Cls: Best F1 update to: {:.4f}'.format(best_metric_dict['f1'])) logging.info('Valid-Cls: Best recal update to: {:.4f}'.format(best_metric_dict['recall'])) logging.info('Valid-Cls: Best TIOU update to: {:.4f}'.format(best_metric_dict['tiou'])) logging.info('Valid-Cls: Best TIOR update to: {:.4f}'.format(best_metric_dict['tior'])) def valid_net(val_loader, model, config, best_metric_dict, epoch): result_s, result_t, result_gcn, TIOU, TIOR = valid(val_loader, model, config) StudentModel, TeacherModel, GCNStudentModel, GCNTeacherModel = model m_acc_s, all_acc_s, m_auc_s, all_auc_s, m_recall_s, all_recall_s, m_f1_s, all_f1_s, m_bac_s, all_bac_s = result_s m_acc_t, all_acc_t, m_auc_t, all_auc_t, m_recall_t, all_recall_t, m_f1_t, all_f1_t, m_bac_t, all_bac_t = result_t m_acc_gcn, all_acc_gcn, m_auc_gcn, all_auc_gcn, m_recall_gcn, all_recall_gcn, m_f1_gcn, all_f1_gcn, m_bac_gcn, all_bac_gcn = result_gcn TIOU_s, TIOU_t = TIOU TIOR_s, TIOR_t = TIOR mTIOU_s = 0. mTIOU_t = 0. assert TIOU_s.shape[1] == TIOU_t.shape[1], "TIOU dimension error" len_TIOU = TIOU_s.shape[1] for idx in range(len(config['Data_CLASSES'])): mTIOU_s += TIOU_s[idx].sum() / float(len_TIOU) mTIOU_t += TIOU_t[idx].sum() / float(len_TIOU) mTIOU_s /= float(len(config['Data_CLASSES'])) mTIOU_t /= float(len(config['Data_CLASSES'])) mTIOR_s = 0. mTIOR_t = 0. assert TIOR_s.shape[1] == TIOR_t.shape[1], "TIOR dimension error" len_TIOR = TIOR_s.shape[1] for idx in range(len(config['Data_CLASSES'])): mTIOR_s += TIOR_s[idx].sum() / float(len_TIOR) mTIOR_t += TIOR_t[idx].sum() / float(len_TIOR) mTIOR_s /= float(len(config['Data_CLASSES'])) mTIOR_t /= float(len(config['Data_CLASSES'])) logging.info('[Student Model]') logging.info('Valid-Cls: Mean ACC: {:.4f}, Mean BAC: {:.4f}, Mean AUC: {:.4f}, Mean F1: {:.4f}, Mean recall: {:.4f}, Mean TIoU: {:.4f}, Mean TIoR: {:.4f}'.format(m_acc_s, m_bac_s, m_auc_s, m_f1_s, m_recall_s, mTIOU_s, mTIOR_s)) print_result('Valid-Cls: ACC for All Classes: ', all_acc_s, config['Data_CLASSES']) print_result('Valid-Cls: BAC for All Classes: ', all_bac_s, config['Data_CLASSES']) print_result('Valid-Cls: AUC for All Classes: ', all_auc_s, config['Data_CLASSES']) print_result('Valid-Cls: F1 for All Classes: ', all_f1_s, config['Data_CLASSES']) print_result('Valid-Cls: recall for All Classes: ', all_recall_s, config['Data_CLASSES']) print_thresh_result('Valid-TIoU: ', TIOU_s, thresh_TIOU, config['Data_CLASSES']) print_thresh_result('Valid-TIoR: ', TIOR_s, thresh_TIOR, config['Data_CLASSES']) logging.info('[Teacher Model]') logging.info('Valid-Cls: Mean ACC: {:.4f}, Mean BAC: {:.4f}, Mean AUC: {:.4f}, Mean F1: {:.4f}, Mean recall: {:.4f}, Mean TIoU: {:.4f}, Mean TIoR: {:.4f}'.format(m_acc_t, m_bac_t, m_auc_t, m_f1_t, m_recall_t, mTIOU_t, mTIOR_t)) print_result('Valid-Cls: ACC for All Classes: ', all_acc_t, config['Data_CLASSES']) print_result('Valid-Cls: BAC for All Classes: ', all_bac_t, config['Data_CLASSES']) print_result('Valid-Cls: AUC for All Classes: ', all_auc_t, config['Data_CLASSES']) print_result('Valid-Cls: F1 for All Classes: ', all_f1_t, config['Data_CLASSES']) print_result('Valid-Cls: recall for All Classes: ', all_recall_t, config['Data_CLASSES']) print_thresh_result('Valid-TIoU: ', TIOU_t, thresh_TIOU, config['Data_CLASSES']) print_thresh_result('Valid-TIoR: ', TIOR_t, thresh_TIOR, config['Data_CLASSES']) logging.info('[GCN Model]') logging.info('Valid-Cls: Mean ACC: {:.4f}, Mean BAC: {:.4f}, Mean AUC: {:.4f}, Mean F1: {:.4f}, Mean recall: {:.4f}'.format(m_acc_gcn, m_bac_gcn, m_auc_gcn, m_f1_gcn, m_recall_gcn)) print_result('Valid-Cls: ACC for All Classes: ', all_acc_gcn, config['Data_CLASSES']) print_result('Valid-Cls: BAC for All Classes: ', all_bac_gcn, config['Data_CLASSES']) print_result('Valid-Cls: AUC for All Classes: ', all_auc_gcn, config['Data_CLASSES']) print_result('Valid-Cls: F1 for All Classes: ', all_f1_gcn, config['Data_CLASSES']) print_result('Valid-Cls: recall for All Classes: ', all_recall_gcn, config['Data_CLASSES']) m_acc = max(m_acc_s, m_acc_t, m_acc_gcn) m_recall = max(m_recall_s, m_recall_t, m_recall_gcn) m_bac = max(m_bac_s, m_bac_t, m_bac_gcn) m_auc = max(m_auc_s, m_auc_t, m_auc_gcn) m_f1 = max(m_f1_s, m_f1_t, m_f1_gcn) m_tiou = max(mTIOU_s, mTIOU_t) m_tior = max(mTIOR_s, mTIOR_t) if m_acc > best_metric_dict['acc']: save_checkpoint(StudentModel, 'S_fold' + str(config['label_fold']) + '_' + config['arch'], epoch, config['base_dir'], _best='acc', best=m_acc_s) save_checkpoint(TeacherModel, 'T_fold' + str(config['label_fold']) + '_' + config['arch'], epoch, config['base_dir'], _best='acc', best=m_acc_t) save_checkpoint(GCNStudentModel, 'G_fold' + str(config['label_fold']) + '_' + config['arch'], epoch, config['base_dir'], _best='acc', best=m_acc_gcn) best_metric_dict['acc'] = m_acc best_metric_dict['acc_epoch'] = epoch if m_recall >= best_metric_dict['recall']: save_checkpoint(StudentModel, 'S_fold' + str(config['label_fold']) + '_' + config['arch'], epoch, config['base_dir'], _best='recall', best=m_recall_s) save_checkpoint(TeacherModel, 'T_fold' + str(config['label_fold']) + '_' + config['arch'], epoch, config['base_dir'], _best='recall', best=m_recall_t) save_checkpoint(GCNStudentModel, 'G_fold' + str(config['label_fold']) + '_' + config['arch'], epoch, config['base_dir'], _best='recall', best=m_recall_gcn) best_metric_dict['recall'] = m_recall if m_bac >= best_metric_dict['bac']: save_checkpoint(StudentModel, 'S_fold' + str(config['label_fold']) + '_' + config['arch'], epoch, config['base_dir'], _best='bac', best=m_recall_s) save_checkpoint(TeacherModel, 'T_fold' + str(config['label_fold']) + '_' + config['arch'], epoch, config['base_dir'], _best='bac', best=m_recall_t) save_checkpoint(GCNStudentModel, 'G_fold' + str(config['label_fold']) + '_' + config['arch'], epoch, config['base_dir'], _best='bac', best=m_recall_gcn) best_metric_dict['bac'] = m_bac if m_auc >= best_metric_dict['auc']: save_checkpoint(StudentModel, 'S_fold' + str(config['label_fold']) + '_' + config['arch'], epoch, config['base_dir'], _best='auc', best=m_auc_s) save_checkpoint(TeacherModel, 'T_fold' + str(config['label_fold']) + '_' + config['arch'], epoch, config['base_dir'], _best='auc', best=m_auc_t) save_checkpoint(GCNStudentModel, 'G_fold' + str(config['label_fold']) + '_' + config['arch'], epoch, config['base_dir'], _best='auc', best=m_auc_gcn) best_metric_dict['auc'] = m_auc if m_f1 >= best_metric_dict['f1']: save_checkpoint(StudentModel, 'S_fold' + str(config['label_fold']) + '_' + config['arch'], epoch, config['base_dir'], _best='f1', best=m_f1_s) save_checkpoint(TeacherModel, 'T_fold' + str(config['label_fold']) + '_' + config['arch'], epoch, config['base_dir'], _best='f1', best=m_f1_t) save_checkpoint(GCNStudentModel, 'G_fold' + str(config['label_fold']) + '_' + config['arch'], epoch, config['base_dir'], _best='f1', best=m_f1_gcn) best_metric_dict['f1'] = m_f1 if m_tiou >= best_metric_dict['tiou']: save_checkpoint(StudentModel, 'S_fold' + str(config['label_fold']) + '_' + config['arch'], epoch, config['base_dir'], _best='tiou', best=mTIOU_s) save_checkpoint(TeacherModel, 'T_fold' + str(config['label_fold']) + '_' + config['arch'], epoch, config['base_dir'], _best='tiou', best=mTIOU_t) best_metric_dict['tiou'] = m_tiou if m_tior >= best_metric_dict['tior']: save_checkpoint(StudentModel, 'S_fold' + str(config['label_fold']) + '_' + config['arch'], epoch, config['base_dir'], _best='tior', best=mTIOR_s) save_checkpoint(TeacherModel, 'T_fold' + str(config['label_fold']) + '_' + config['arch'], epoch, config['base_dir'], _best='tior', best=mTIOR_t) best_metric_dict['tior'] = m_tior return best_metric_dict def train(visualizer, train_loader, model, optimizer, gcn_optimizer, epoch, config, cls_criterion): global global_step StudentModel, TeacherModel, GCNStudentModel, GCNTeacherModel = model losses = AverageMeter() cls_losses = AverageMeter() attmse_losses = AverageMeter() attbound_losses = AverageMeter() src_losses = AverageMeter() consiscls_losses = AverageMeter() consisatt_losses = AverageMeter() batch_time = AverageMeter() cls_accs = AverageMeter() cls_accs_gcn = AverageMeter() cls_AUCs = AverageMeter() cls_F1s = AverageMeter() gcn_cls_losses = AverageMeter() num_classes = len(config['Data_CLASSES']) StudentModel.train() TeacherModel.train() GCNStudentModel.train() GCNTeacherModel.train() end = time.time() StudentFeatureQueue = FeatureQueue(config, 2) TeacherFeatureQueue = FeatureQueue(config, 2) for i, (input, ema_input, label, flags, name) in enumerate(train_loader): with torch.autograd.set_detect_anomaly(True): image1, masks1 = input image2, masks2 = ema_input im_h = image1.size(2) im_w = image1.size(3) bs = image1.size(0) label_bs = config['label_bs'] visualizer.reset() visual_ret = OrderedDict() errors_ret = OrderedDict() image1 = image1.cuda() masks1 = masks1.cuda() image2 = image2.cuda() # masks2 = masks2.cuda() masks1 = masks1.unsqueeze(1) # masks2 = masks2.unsqueeze(1) label = label.cuda() # flags = flags.cuda() visual_ret['input'] = image1 masks_vis = visual_masks(masks1, im_h, im_w) visual_ret['mask'] = masks_vis output_s, cam_refined_s, feature_s = StudentModel(image1) output_t, cam_refined_t, feature_t = TeacherModel(image2) # StudentFeatureQueue.enqueue(feature_s, label) # TeacherFeatureQueue.enqueue(feature_s, label) output_feature_gcns, output_gcns = GCNStudentModel(feature_s, feature_s) output_feature_gcnt, output_gcnt = GCNStudentModel(feature_t, feature_t) class_idx = label.cpu().long().numpy() for index, idx in enumerate(class_idx): tmp1 = cam_refined_s[index, idx, :, :].unsqueeze(0).unsqueeze(1) tmp2 = cam_refined_t[index, idx, :, :].unsqueeze(0).unsqueeze(1) if index == 0: cam_refined_class_s = tmp1 cam_refined_class_t = tmp2 else: cam_refined_class_s = torch.cat((cam_refined_class_s, tmp1), dim=0) cam_refined_class_t = torch.cat((cam_refined_class_t, tmp2), dim=0) cam_refined_s = cam_refined_class_s cam_refined_t = cam_refined_class_t # Classification probe = torch.softmax(output_s, dim=1) cls_loss = cls_criterion(torch.log(probe[:label_bs]), label[:label_bs]) # Attention # MSE loss mask_loss = mask_mse_loss_func(masks1[:label_bs], cam_refined_s[:label_bs]) # Bound loss # bound_loss = torch.exp(torch.tensor(1) - torch.min(masks1[:label_bs], cam_refined_s[:label_bs]).sum((2, 3)) / torch.clamp(cam_refined_s[:label_bs].sum((2, 3)), min=1e-5)) bound_loss = torch.tensor(1) - torch.min(masks1[:label_bs], cam_refined_s[:label_bs]).sum((2, 3)) / torch.clamp(cam_refined_s[:label_bs].sum((2, 3)), min=1e-5) bound_loss = bound_loss.sum() / bs gcams_vis = visual_masks(cam_refined_s.float(), im_h, im_w) visual_ret['attention'] = gcams_vis # Attention Consistency consistency_weight_att = get_current_consistency_att_weight(epoch, config) consistency_loss_att = consistency_weight_att * consistency_criterion_att(cam_refined_s[label_bs:], cam_refined_t[label_bs:]) # Classification Consistency consistency_weight_cls = get_current_consistency_cls_weight(epoch, config) consistency_loss_cls = consistency_weight_att * consistency_criterion_cls(output_s, output_t) # SRC Loss consistency_relation_dist = torch.sum(relation_mse_loss(output_feature_gcns, output_feature_gcnt)) / bs src_loss = consistency_weight_att * consistency_relation_dist*config['src_weight'] # GCN Classification gcn_probe = torch.softmax(output_gcns, dim=1) gcn_cls_loss = cls_criterion(torch.log(gcn_probe[:label_bs]), label[:label_bs])*config['gcn_weight'] # GCN Classification Consistency gcn_consistency_loss_cls = consistency_weight_att * consistency_criterion_cls(output_gcns, output_gcnt)*config['gcn_weight'] total_loss = loss_cls * cls_loss + (loss_masks * mask_loss + loss_bound * bound_loss)*config['attention_weight'] if epoch >= config['gcn_start_epoch']: total_loss = total_loss+gcn_cls_loss if epoch >= config['consistency_start_epoch']: total_loss = total_loss + consistency_loss_cls + consistency_loss_att + gcn_consistency_loss_cls errors_ret['ClsLoss'] = float(cls_loss) errors_ret['AttMseLoss'] = float(mask_loss) errors_ret['AttBoundLoss'] = float(bound_loss) errors_ret['ConsisClsLoss'] = float(consistency_loss_cls) errors_ret['ConsisAttLoss'] = float(consistency_loss_att) errors_ret['SRCLoss'] = float(src_loss) errors_ret['GCNClsLoss'] = float(gcn_cls_loss) errors_ret['Loss'] = float(total_loss) losses.update(total_loss.item(), bs) cls_losses.update(cls_loss.item(), bs) attmse_losses.update(mask_loss.item(), bs) attbound_losses.update(bound_loss.item(), bs) consiscls_losses.update(consistency_loss_cls.item(), bs) consisatt_losses.update(consistency_loss_att.item(), bs) src_losses.update(src_loss.item(), bs) gcn_cls_losses.update(gcn_cls_loss.item(), bs) if epoch >= config['consistency_start_epoch']: optimizer.zero_grad() gcn_optimizer.zero_grad() total_loss.backward() gcn_optimizer.step() optimizer.step() elif epoch >= config['gcn_start_epoch']: # optimizer.zero_grad() gcn_optimizer.zero_grad() total_loss.backward() gcn_optimizer.step() # optimizer.step() else: optimizer.zero_grad() # gcn_optimizer.zero_grad() total_loss.backward() # gcn_optimizer.step() optimizer.step() global_step += 1 if epoch < config['gcn_start_epoch'] or epoch >= config['consistency_start_epoch']: update_ema_variables(StudentModel, TeacherModel, config['ema_decay'], global_step) if epoch >= config['gcn_start_epoch']: update_ema_variables(GCNStudentModel, GCNTeacherModel, config['ema_decay'], global_step) m_acc, _ = calculate_acc(probe.cpu().detach().numpy(), label.cpu().detach().numpy(), config) cls_accs.update(m_acc, bs) m_acc_gcn, _ = calculate_acc(gcn_probe.cpu().detach().numpy(), label.cpu().detach().numpy(), config) cls_accs_gcn.update(m_acc_gcn, bs) m_auc, _ = calculate_auc(probe.cpu().detach().numpy(), label.cpu().detach().numpy(), config) cls_AUCs.update(m_auc, bs) m_f1, _ = calculate_f1(probe.cpu().detach().numpy(), label.cpu().detach().numpy(), config) cls_F1s.update(m_f1, bs) batch_time.update(time.time() - end) end = time.time() if i % config['print_freq'] == 0: logging.info('Epoch: [{}][{}/{}]\t' 'Lr: {:.5f} ' 'GCNLr: {:.5f} ' 'ConsistencyWeightAtt: {:.4f} ' 'ClsAcc: {cls_acc.val:.4f} ({cls_acc.avg:.4f}) ' 'ClsAccg: {cls_accg.val:.4f} ({cls_accg.avg:.4f}) ' 'Loss: {loss.val:.4f} ({loss.avg:.4f}) ' 'ClsLoss: {cls_loss.val:.4f} ({cls_loss.avg:.4f}) ' 'AttMseloss: {attmse_loss.val:.4f} ({attmse_loss.avg:.4f}) ' 'AttBndLoss: {attbnd_loss.val:.4f} ({attbnd_loss.avg:.4f}) ' 'ConsisClsLoss: {concls_loss.val:.4f} ({concls_loss.avg:.4f}) ' 'ConsisAttLoss: {conatt_loss.val:.4f} ({conatt_loss.avg:.4f}) ' 'SRCLoss: {src_loss.val:.4f} ({src_loss.avg:.4f}) ' 'GCNClsLoss: {gcn_cls_loss.val:.4f} ({gcn_cls_loss.avg:.4f}) '.format( epoch, i, len(train_loader), optimizer.param_groups[0]['lr'], gcn_optimizer.param_groups[0]['lr'], consistency_weight_att, cls_acc=cls_accs, cls_accg=cls_accs_gcn, loss=losses, cls_loss=cls_losses, attmse_loss=attmse_losses, attbnd_loss=attbound_losses, concls_loss=consiscls_losses, conatt_loss=consisatt_losses, src_loss=src_losses, gcn_cls_loss=gcn_cls_losses)) if config['display_id'] > 0: visualizer.plot_current_losses(epoch, float(i) / float(len(train_loader)), errors_ret) if i % config['display_freq'] == 0: visualizer.display_current_results(visual_ret, class_idx[0], epoch, save_result=False) def valid(valid_loader, model, config): StudentModel, TeacherModel, GCNStudentModel, GCNTeacherModel = model batch_time = AverageMeter() StudentModel.eval() TeacherModel.eval() GCNStudentModel.eval() GCNTeacherModel.eval() num_classes = len(config['Data_CLASSES']) counts = np.zeros(num_classes) TIOU_s = np.zeros((num_classes, len(thresh_TIOU))) TIOR_s = np.zeros((num_classes, len(thresh_TIOR))) TIOU_t = np.zeros((num_classes, len(thresh_TIOU))) TIOR_t = np.zeros((num_classes, len(thresh_TIOR))) with torch.no_grad(): end = time.time() for i, (input, ema_input, label, flags, name) in enumerate(valid_loader): image, masks = input im_h = image.size(2) im_w = image.size(3) bs = image.size(0) image = image.cuda() masks = masks.cuda() label = label.cuda() masks = masks.unsqueeze(1) output_s, cam_refined_s, feature_s = StudentModel(image) output_t, cam_refined_t, feature_t = TeacherModel(image) # StudentFeatureQueue.enqueue(feature_s, label) # TeacherFeatureQueue.enqueue(feature_s, label) output_feature_gcns, output_gcns = GCNStudentModel(feature_s, feature_s) output_feature_gcnt, output_gcnt = GCNStudentModel(feature_t, feature_t) class_idx = label.cpu().long().numpy() for index, idx in enumerate(class_idx): tmp_s = cam_refined_s[index, idx, :, :].unsqueeze(0).unsqueeze(1) tmp_t = cam_refined_t[index, idx, :, :].unsqueeze(0).unsqueeze(1) if index == 0: cam_refined_class_s = tmp_s cam_refined_class_t = tmp_t else: cam_refined_class_s = torch.cat((cam_refined_class_s, tmp_s), dim=0) cam_refined_class_t = torch.cat((cam_refined_class_t, tmp_t), dim=0) cam_refined_s = cam_refined_class_s cam_refined_t = cam_refined_class_t probe_s = torch.softmax(output_s, dim=1) probe_t = torch.softmax(output_t, dim=1) probe_gcn = torch.softmax(output_gcns, dim=1) cam_refined_s = cam_refined_s >= cam_thresh cam_refined_t = cam_refined_t >= cam_thresh batch_iou_s = single_IOU(cam_refined_s[:, 0, :, :], masks[:, 0, :, :]) batch_ior_s = single_IOR(cam_refined_s[:, 0, :, :], masks[:, 0, :, :]) batch_iou_t = single_IOU(cam_refined_t[:, 0, :, :], masks[:, 0, :, :]) batch_ior_t = single_IOR(cam_refined_t[:, 0, :, :], masks[:, 0, :, :]) # print(TIOU.shape) # print(TIOR.shape) for j in range(len(thresh_TIOU)): if batch_iou_s >= thresh_TIOU[j]: TIOU_s[class_idx, j] += 1 if batch_iou_t >= thresh_TIOU[j]: TIOU_t[class_idx, j] += 1 for j in range(len(thresh_TIOR)): if batch_ior_s >= thresh_TIOR[j]: TIOR_s[class_idx, j] += 1 if batch_ior_t >= thresh_TIOR[j]: TIOR_t[class_idx, j] += 1 counts[class_idx] += 1 batch_time.update(time.time() - end) end = time.time() if i % (config['print_freq'] * config['batchsize']) == 0: logging.info('Valid: [{}/{}]\t''Time: {batch_time.val:.3f} ({batch_time.avg:.3f}) '.format(i, len(valid_loader), batch_time=batch_time)) if i == 0: y_true = label.cpu().detach().numpy() y_pred_s = probe_s.cpu().detach().numpy() y_pred_t = probe_t.cpu().detach().numpy() y_pred_gcn = probe_gcn.cpu().detach().numpy() else: y_true = np.concatenate((y_true, label.cpu().detach().numpy()), axis=0) y_pred_s = np.concatenate((y_pred_s, probe_s.cpu().detach().numpy()), axis=0) y_pred_t = np.concatenate((y_pred_t, probe_t.cpu().detach().numpy()), axis=0) y_pred_gcn = np.concatenate((y_pred_gcn, probe_gcn.cpu().detach().numpy()), axis=0) m_acc_s, all_acc_s = calculate_acc(y_pred_s, y_true, config) m_auc_s, all_auc_s = calculate_auc(y_pred_s, y_true, config) m_recall_s, all_recall_s = recall(y_pred_s, y_true, config, show_confusion_matrix=True) m_f1_s, all_f1_s = calculate_f1(y_pred_s, y_true, config) m_bac_s, all_bac_s = calculate_bac(y_pred_s, y_true, config) m_acc_t, all_acc_t = calculate_acc(y_pred_t, y_true, config) m_auc_t, all_auc_t = calculate_auc(y_pred_t, y_true, config) m_recall_t, all_recall_t = recall(y_pred_t, y_true, config) m_f1_t, all_f1_t = calculate_f1(y_pred_t, y_true, config) m_bac_t, all_bac_t = calculate_bac(y_pred_t, y_true, config) m_acc_gcn, all_acc_gcn = calculate_acc(y_pred_gcn, y_true, config) m_auc_gcn, all_auc_gcn = calculate_auc(y_pred_gcn, y_true, config) m_recall_gcn, all_recall_gcn = recall(y_pred_gcn, y_true, config) m_f1_gcn, all_f1_gcn = calculate_f1(y_pred_gcn, y_true, config) m_bac_gcn, all_bac_gcn = calculate_bac(y_pred_gcn, y_true, config) for idx in range(num_classes): for j in range(len(thresh_TIOU)): if counts[idx] == 0: TIOU_s[idx, j] = 0. TIOU_t[idx, j] = 0. else: TIOU_s[idx, j] = float(TIOU_s[idx, j]) / float(counts[idx]) TIOU_t[idx, j] = float(TIOU_t[idx, j]) / float(counts[idx]) for idx in range(num_classes): for j in range(len(thresh_TIOR)): if counts[idx] == 0: TIOR_s[idx, j] = 0. TIOR_t[idx, j] = 0. else: TIOR_s[idx, j] = float(TIOR_s[idx, j]) / float(counts[idx]) TIOR_t[idx, j] = float(TIOR_t[idx, j]) / float(counts[idx]) return [m_acc_s, all_acc_s, m_auc_s, all_auc_s, m_recall_s, all_recall_s, m_f1_s, all_f1_s, m_bac_s, all_bac_s], \ [m_acc_t, all_acc_t, m_auc_t, all_auc_t, m_recall_t, all_recall_t, m_f1_t, all_f1_t, m_bac_t, all_bac_t], \ [m_acc_gcn, all_acc_gcn, m_auc_gcn, all_auc_gcn, m_recall_gcn, all_recall_gcn, m_f1_gcn, all_f1_gcn, m_bac_gcn, all_bac_gcn], \ [TIOU_s, TIOU_t], \ [TIOR_s, TIOR_t] def infer(infer_loader, model, config): batch_time = AverageMeter() model.eval() num_classes = len(config['Data_CLASSES']) counts = np.zeros(num_classes) TIOU = np.zeros((num_classes, len(thresh_TIOU))) TIOR = np.zeros((num_classes, len(thresh_TIOR))) all_name = [] with torch.no_grad(): end = time.time() for i, (input, ema_input, label, flags, name) in enumerate(infer_loader): all_name = all_name + list(name) image, masks = input im_h = image.size(2) im_w = image.size(3) bs = image.size(0) image = image.cuda() masks = masks.cuda() label = label.cuda() masks = masks.unsqueeze(1) output, cam_refined, cam, = model(image) class_idx = label.cpu().long().numpy() for index, idx in enumerate(class_idx): tmp = cam_refined[index, idx, :, :].unsqueeze(0).unsqueeze(1) if index == 0: cam_refined_class = tmp else: cam_refined_class = torch.cat((cam_refined_class, tmp), dim=0) cam_refined = cam_refined_class probe = torch.softmax(output, dim=1) cam_refined = cam_refined >= cam_thresh batch_iou = single_IOU(cam_refined[:, 0, :, :], masks[:, 0, :, :]) batch_ior = single_IOR(cam_refined[:, 0, :, :], masks[:, 0, :, :]) # print(TIOU.shape) # print(TIOR.shape) for j in range(len(thresh_TIOU)): if batch_iou >= thresh_TIOU[j]: TIOU[class_idx, j] += 1 for j in range(len(thresh_TIOR)): if batch_ior >= thresh_TIOR[j]: TIOR[class_idx, j] += 1 counts[class_idx] += 1 batch_time.update(time.time() - end) end = time.time() if i % (config['print_freq'] * config['batchsize']) == 0: logging.info('Infer-Cls: [{}/{}]\t' 'Time: {batch_time.val:.3f} ({batch_time.avg:.3f}) '.format( i, len(infer_loader), batch_time=batch_time)) if i == 0: y_gt = label.cpu().detach().numpy() y_pred = probe.cpu().detach().numpy() else: y_gt = np.concatenate((y_gt, label.cpu().detach().numpy()), axis=0) y_pred = np.concatenate((y_pred, probe.cpu().detach().numpy()), axis=0) m_acc, all_acc = calculate_acc(y_pred, y_gt, config) m_auc, all_auc = calculate_auc(y_pred, y_gt, config) m_recall, all_recall = recall(y_pred, y_gt, config, show_confusion_matrix=True) m_f1, all_f1 = calculate_f1(y_pred, y_gt, config) m_bac, all_bac = calculate_bac(y_pred, y_gt, config) for idx in range(num_classes): for j in range(len(thresh_TIOU)): if counts[idx] == 0: TIOU[idx, j] = 0. else: TIOU[idx, j] = float(TIOU[idx, j]) / float(counts[idx]) for idx in range(num_classes): for j in range(len(thresh_TIOR)): if counts[idx] == 0: TIOR[idx, j] = 0. else: TIOR[idx, j] = float(TIOR[idx, j]) / float(counts[idx]) mTIOU = 0. len_TIOU = TIOU.shape[1] for idx in range(len(config['Data_CLASSES'])): mTIOU += TIOU[idx].sum() / float(len_TIOU) mTIOU /= float(len(config['Data_CLASSES'])) mTIOR = 0. len_TIOR = TIOR.shape[1] for idx in range(len(config['Data_CLASSES'])): mTIOR += TIOR[idx].sum() / float(len_TIOR) mTIOR /= float(len(config['Data_CLASSES'])) # result_dict = {'Path': all_name, 'G0_Pred': y_pred[:, 0], 'G1_Pred': y_pred[:, 1], 'G2_Pred': y_pred[:, 2], 'Label': y_gt} # result_df = pd.DataFrame(result_dict) # result_df.to_csv('./outputs/results/{}.csv'.format(config['model_name']), index=False) logging.info('Infer-Cls: Mean ACC: {:.4f}, Mean BAC: {:.4f}, Mean AUC: {:.4f}, Mean F1: {:.4f}, Mean recall: {:.4f}, Mean TIoU: {:.4f}, Mean TIoR: {:.4f}'.format( m_acc, m_bac, m_auc, m_f1, m_recall, mTIOU, mTIOR)) print_result('Infer-Cls: ACC for All Classes: ', all_acc, config['Data_CLASSES']) print_result('Valid-Cls: BAC for All Classes: ', all_bac, config['Data_CLASSES']) print_result('Infer-Cls: AUC for All Classes: ', all_auc, config['Data_CLASSES']) print_result('Infer-Cls: F1 for All Classes: ', all_f1, config['Data_CLASSES']) print_result('Infer-Cls: recall for All Classes: ', all_recall, config['Data_CLASSES']) print_thresh_result('Infer-TIoU: ', TIOU, thresh_TIOU, config['Data_CLASSES']) print_thresh_result('Infer-TIoR: ', TIOR, thresh_TIOR, config['Data_CLASSES']) def single_IOU(pred, target): pred_class = pred.data.cpu().contiguous().view(-1) target_class = target.data.cpu().contiguous().view(-1) pred_inds = pred_class == 1 target_inds = target_class == 1 # Cast to long to prevent overflows intersection = (pred_inds[target_inds]).long().sum().item() union = pred_inds.long().sum().item() + target_inds.long().sum().item() - intersection iou = float(intersection) / float(max(union, 1)) return iou def single_IOR(pred, target): pred_class = pred.data.cpu().contiguous().view(-1) target_class = target.data.cpu().contiguous().view(-1) pred_inds = pred_class == 1 target_inds = target_class == 1 # Cast to long to prevent overflows intersection = (pred_inds[target_inds]).long().sum().item() union = pred_inds.long().sum().item() + target_inds.long().sum().item() - intersection iou = float(intersection) / float(max(pred_inds.long().sum().item(), 1)) return iou def visual_masks(masks, im_h, im_w): mask_vis = masks[0, :, :, :].unsqueeze(0).clone() mask_one = torch.zeros((1, im_h, im_w)).cuda() mask_one = mask_one + mask_vis[:, 0, :, :] mask_one[mask_one >= 1] = 1 vis_mask1 = mask_one.clone() vis_mask2 = mask_one.clone() vis_mask3 = mask_one.clone() vis_mask1[vis_mask1 == 1] = palette[1][0] vis_mask2[vis_mask2 == 1] = palette[1][1] vis_mask3[vis_mask3 == 1] = palette[1][2] vis_mask1 = vis_mask1.unsqueeze(1) vis_mask2 = vis_mask2.unsqueeze(1) vis_mask3 = vis_mask3.unsqueeze(1) vis_mask = torch.cat((vis_mask1, vis_mask2, vis_mask3), 1) return vis_mask
41d25d6445a09f1adb75f00de0d32733a3f6f56a
e408a1c27efcafaec1f6bf1e6255075eae171102
/LocationAdapter/src/server.py
57e659b1da6992afaa047a4ab336305e30ea855a
[]
no_license
adoggie/BlueEarth
acd609a5da9eb0276dc810776f97a35c5b5ccf8c
ef2c4d045d8d933bcbf5789a87a189be6b33947d
refs/heads/master
2020-03-29T15:31:54.834861
2018-12-23T16:03:59
2018-12-23T16:03:59
150,067,522
0
1
null
null
null
null
UTF-8
Python
false
false
3,103
py
#--coding:utf-8-- import traceback from datetime import datetime from logging import getLogger import gevent import gevent.socket from gevent.server import StreamServer import gevent.event import gevent.ssl from mantis.fundamental.utils.importutils import import_class from mantis.fundamental.application.app import instance class SocketClientIdentifier(object): def __init__(self): self.unique_id = '' # 可以是连接设备的唯一设备标识 self.props = {} class SocketConnection(object): def __init__(self,sock,consumer,server=None): self.server = server self.sock = sock self.consumer = consumer self.datetime = None self.client_id = SocketClientIdentifier() def getAddress(self): return 'RpcConnectionSocket:'+str(self.sock.getsockname()) def open(self): self.datetime = datetime.now() return True def close(self): if self.sock: self.sock.close() self.sock = None def sendData(self,data): self.sock.sendall(data) instance.getLogger().debug( 'sent >> ' + self.hex_dump(data) ) def hex_dump(self, bytes): dump = ' '.join(map(hex, map(ord, bytes))) return dump def recv(self): while True: try: d = self.sock.recv(1000) if not d: break except: # traceback.print_exc() break try: self.consumer.onData(d) except: instance.getLogger().error(traceback.format_exc()) # traceback.print_exc() instance.getLogger().debug( 'socket disconnected!' ) self.sock = None class DataConsumer(object): def __init__(self,accumulator,handler): self.accumulator = accumulator self.handler = handler def onData(self,bytes): messages = self.accumulator.enqueue(bytes) for message in messages: self.handler.handle(message) class Server(object): def __init__(self): self.cfgs = None self.conns = [] self.server = None @property def name(self): return self.cfgs.get('name') def init(self,cfgs): self.cfgs = cfgs return self def stop(self): self.server.stop() def start(self): ssl = self.cfgs.get('ssl') if ssl: self.server = StreamServer((self.cfgs.get('host'),self.cfgs.get('port')), self._service,keyfile=self.cfgs.get('keyfile'), certfile=self.cfgs.get('certfile')) else: self.server = StreamServer((self.cfgs.get('host'),self.cfgs.get('port')), self._service) print 'socket server started!' self.server.start() #serve_forever() , not block def _service(self,sock,address): cfgs = self.cfgs.get('accumulator') accCls = import_class(cfgs.get('class')) acc = accCls().init(cfgs) cfgs = self.cfgs.get('handler') handlerCls = import_class(cfgs.get('class')) handler = handlerCls().init(cfgs) # consumer = DataConsumer(acc,handler) conn = SocketConnection(sock,handler,self) self.addConnection(conn) # handler.setConnection(conn) handler.setAccumulator(acc) handler.onConnected(conn,address) conn.recv() self.removeConnection(conn) handler.onDisconnected() def sendMessage(self,m): pass def addConnection(self,conn): self.conns.append(conn) def removeConnection(self,conn): self.conns.remove(conn)
b676e67a2be2fd461702f27946b6db58bf5a602a
1d342125c0f14dcbd56d02f6b85d40beb19b5a10
/interfaces/animal/stagnant.py
192590bd354dc9952090ccd44616cff669a99897
[]
no_license
nss-cohort-36/keahua-arboretum-digital-destroyers
fb570a124c9c77a901722d271ca18c38742a2a37
7052fece09c00c32d2c245989315ee5695219a15
refs/heads/master
2020-12-19T04:25:13.269263
2020-01-29T17:40:00
2020-01-29T17:40:00
235,619,937
0
0
null
2020-01-29T18:01:38
2020-01-22T16:54:07
Python
UTF-8
Python
false
false
148
py
from .aquatic import IAquatic class IStagnant(IAquatic): def __init__(self): super().__init__() self.dwell_type = "stillwater"
eb99914b6fe3e8f58cfe85a0b2d331a33565fb19
60341a48087ba9683a8ee773237426d6e9411cf2
/hubspot/crm/objects/feedback_submissions/models/previous_page.py
507d39e5b4f2a07a20d0c700b047b86283d10caa
[]
no_license
dalmaTeam/hubspot-api-python
86051bc676c4e007f23d7e7b759a3481c13fdea6
7c60c0f572b98c73e1f1816bf5981396a42735f6
refs/heads/master
2023-06-29T10:53:04.404611
2021-07-23T14:03:03
2021-07-23T14:03:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,064
py
# coding: utf-8 """ Feedback Submissions No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 The version of the OpenAPI document: v3 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from hubspot.crm.objects.feedback_submissions.configuration import Configuration class PreviousPage(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'before': 'str', 'link': 'str' } attribute_map = { 'before': 'before', 'link': 'link' } def __init__(self, before=None, link=None, local_vars_configuration=None): # noqa: E501 """PreviousPage - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._before = None self._link = None self.discriminator = None self.before = before if link is not None: self.link = link @property def before(self): """Gets the before of this PreviousPage. # noqa: E501 :return: The before of this PreviousPage. # noqa: E501 :rtype: str """ return self._before @before.setter def before(self, before): """Sets the before of this PreviousPage. :param before: The before of this PreviousPage. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and before is None: # noqa: E501 raise ValueError("Invalid value for `before`, must not be `None`") # noqa: E501 self._before = before @property def link(self): """Gets the link of this PreviousPage. # noqa: E501 :return: The link of this PreviousPage. # noqa: E501 :rtype: str """ return self._link @link.setter def link(self, link): """Sets the link of this PreviousPage. :param link: The link of this PreviousPage. # noqa: E501 :type: str """ self._link = link def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, PreviousPage): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, PreviousPage): return True return self.to_dict() != other.to_dict()
7717d5b027b8dd04eae03dca16efba7adc05a5a9
e57d7785276053332c633b57f6925c90ad660580
/sdk/containerservice/azure-mgmt-containerservice/azure/mgmt/containerservice/v2021_02_01/aio/operations/_resolve_private_link_service_id_operations.py
305883969cbd73df32e03192f06cfe879f752c03
[ "MIT", "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later" ]
permissive
adriananeci/azure-sdk-for-python
0d560308497616a563b6afecbb494a88535da4c5
b2bdfe659210998d6d479e73b133b6c51eb2c009
refs/heads/main
2023-08-18T11:12:21.271042
2021-09-10T18:48:44
2021-09-10T18:48:44
405,684,423
1
0
MIT
2021-09-12T15:51:51
2021-09-12T15:51:50
null
UTF-8
Python
false
false
5,539
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, Callable, Dict, Generic, Optional, TypeVar import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models as _models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class ResolvePrivateLinkServiceIdOperations: """ResolvePrivateLinkServiceIdOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.containerservice.v2021_02_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config async def post( self, resource_group_name: str, resource_name: str, parameters: "_models.PrivateLinkResource", **kwargs: Any ) -> "_models.PrivateLinkResource": """Gets the private link service ID for the specified managed cluster. Gets the private link service ID the specified managed cluster. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param resource_name: The name of the managed cluster resource. :type resource_name: str :param parameters: Parameters (name, groupId) supplied in order to resolve a private link service ID. :type parameters: ~azure.mgmt.containerservice.v2021_02_01.models.PrivateLinkResource :keyword callable cls: A custom type or function that will be passed the direct response :return: PrivateLinkResource, or the result of cls(response) :rtype: ~azure.mgmt.containerservice.v2021_02_01.models.PrivateLinkResource :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.PrivateLinkResource"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-02-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.post.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', min_length=1), 'resourceName': self._serialize.url("resource_name", resource_name, 'str', max_length=63, min_length=1, pattern=r'^[a-zA-Z0-9]$|^[a-zA-Z0-9][-_a-zA-Z0-9]{0,61}[a-zA-Z0-9]$'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'PrivateLinkResource') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('PrivateLinkResource', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized post.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ContainerService/managedClusters/{resourceName}/resolvePrivateLinkServiceId'} # type: ignore
6e03b2df41395c711153b632f9ae05e2e9e58d42
b0814b43440a36c9998924c9fe05f335302a2717
/venv/lib/python2.7/site-packages/nipype/interfaces/slicer/surface.py
6e84a7875dabad87047f07db0c2d79ef4a403f89
[ "MIT" ]
permissive
nagyistge/electrode-gui
0b47324ce8c61ffb54c24c400aee85f16fd79c7a
6d89c78ea61935042ead5df5e1474101df3557eb
refs/heads/master
2021-06-03T22:47:30.329355
2016-09-13T19:43:31
2016-09-13T19:43:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
16,187
py
# -*- coding: utf8 -*- """Autogenerated file - DO NOT EDIT If you spot a bug, please report it on the mailing list and/or change the generator.""" from nipype.interfaces.base import CommandLine, CommandLineInputSpec, SEMLikeCommandLine, TraitedSpec, File, Directory, traits, isdefined, InputMultiPath, OutputMultiPath import os class MergeModelsInputSpec(CommandLineInputSpec): Model1 = File(position=-3, desc="Model", exists=True, argstr="%s") Model2 = File(position=-2, desc="Model", exists=True, argstr="%s") ModelOutput = traits.Either(traits.Bool, File(), position=-1, hash_files=False, desc="Model", argstr="%s") class MergeModelsOutputSpec(TraitedSpec): ModelOutput = File(position=-1, desc="Model", exists=True) class MergeModels(SEMLikeCommandLine): """title: Merge Models category: Surface Models description: Merge the polydata from two input models and output a new model with the added polydata. Uses the vtkAppendPolyData filter. Works on .vtp and .vtk surface files. version: $Revision$ documentation-url: http://wiki.slicer.org/slicerWiki/index.php/Documentation/4.1/Modules/MergeModels contributor: Nicole Aucoin (SPL, BWH), Ron Kikinis (SPL, BWH), Daniel Haehn (SPL, BWH) acknowledgements: This work is part of the National Alliance for Medical Image Computing (NAMIC), funded by the National Institutes of Health through the NIH Roadmap for Medical Research, Grant U54 EB005149. """ input_spec = MergeModelsInputSpec output_spec = MergeModelsOutputSpec _cmd = "MergeModels " _outputs_filenames = {'ModelOutput':'ModelOutput.vtk'} class ModelToLabelMapInputSpec(CommandLineInputSpec): distance = traits.Float(desc="Sample distance", argstr="--distance %f") InputVolume = File(position=-3, desc="Input volume", exists=True, argstr="%s") surface = File(position=-2, desc="Model", exists=True, argstr="%s") OutputVolume = traits.Either(traits.Bool, File(), position=-1, hash_files=False, desc="The label volume", argstr="%s") class ModelToLabelMapOutputSpec(TraitedSpec): OutputVolume = File(position=-1, desc="The label volume", exists=True) class ModelToLabelMap(SEMLikeCommandLine): """title: Model To Label Map category: Surface Models description: Intersects an input model with an reference volume and produces an output label map. version: 0.1.0.$Revision: 8643 $(alpha) documentation-url: http://wiki.slicer.org/slicerWiki/index.php/Documentation/4.1/Modules/PolyDataToLabelMap contributor: Nicole Aucoin (SPL, BWH), Xiaodong Tao (GE) acknowledgements: This work is part of the National Alliance for Medical Image Computing (NAMIC), funded by the National Institutes of Health through the NIH Roadmap for Medical Research, Grant U54 EB005149. """ input_spec = ModelToLabelMapInputSpec output_spec = ModelToLabelMapOutputSpec _cmd = "ModelToLabelMap " _outputs_filenames = {'OutputVolume':'OutputVolume.nii'} class GrayscaleModelMakerInputSpec(CommandLineInputSpec): InputVolume = File(position=-2, desc="Volume containing the input grayscale data.", exists=True, argstr="%s") OutputGeometry = traits.Either(traits.Bool, File(), position=-1, hash_files=False, desc="Output that contains geometry model.", argstr="%s") threshold = traits.Float(desc="Grayscale threshold of isosurface. The resulting surface of triangles separates the volume into voxels that lie above (inside) and below (outside) the threshold.", argstr="--threshold %f") name = traits.Str(desc="Name to use for this model.", argstr="--name %s") smooth = traits.Int(desc="Number of smoothing iterations. If 0, no smoothing will be done.", argstr="--smooth %d") decimate = traits.Float(desc="Target reduction during decimation, as a decimal percentage reduction in the number of polygons. If 0, no decimation will be done.", argstr="--decimate %f") splitnormals = traits.Bool(desc="Splitting normals is useful for visualizing sharp features. However it creates holes in surfaces which affect measurements", argstr="--splitnormals ") pointnormals = traits.Bool(desc="Calculate the point normals? Calculated point normals make the surface appear smooth. Without point normals, the surface will appear faceted.", argstr="--pointnormals ") class GrayscaleModelMakerOutputSpec(TraitedSpec): OutputGeometry = File(position=-1, desc="Output that contains geometry model.", exists=True) class GrayscaleModelMaker(SEMLikeCommandLine): """title: Grayscale Model Maker category: Surface Models description: Create 3D surface models from grayscale data. This module uses Marching Cubes to create an isosurface at a given threshold. The resulting surface consists of triangles that separate a volume into regions below and above the threshold. The resulting surface can be smoothed and decimated. This model works on continuous data while the module Model Maker works on labeled (or discrete) data. version: 3.0 documentation-url: http://wiki.slicer.org/slicerWiki/index.php/Documentation/4.1/Modules/GrayscaleModelMaker license: slicer3 contributor: Nicole Aucoin (SPL, BWH), Bill Lorensen (GE) acknowledgements: This work is part of the National Alliance for Medical Image Computing (NAMIC), funded by the National Institutes of Health through the NIH Roadmap for Medical Research, Grant U54 EB005149. """ input_spec = GrayscaleModelMakerInputSpec output_spec = GrayscaleModelMakerOutputSpec _cmd = "GrayscaleModelMaker " _outputs_filenames = {'OutputGeometry':'OutputGeometry.vtk'} class ProbeVolumeWithModelInputSpec(CommandLineInputSpec): InputVolume = File(position=-3, desc="Volume to use to 'paint' the model", exists=True, argstr="%s") InputModel = File(position=-2, desc="Input model", exists=True, argstr="%s") OutputModel = traits.Either(traits.Bool, File(), position=-1, hash_files=False, desc="Output 'painted' model", argstr="%s") class ProbeVolumeWithModelOutputSpec(TraitedSpec): OutputModel = File(position=-1, desc="Output 'painted' model", exists=True) class ProbeVolumeWithModel(SEMLikeCommandLine): """title: Probe Volume With Model category: Surface Models description: Paint a model by a volume (using vtkProbeFilter). version: 0.1.0.$Revision: 1892 $(alpha) documentation-url: http://wiki.slicer.org/slicerWiki/index.php/Documentation/4.1/Modules/ProbeVolumeWithModel contributor: Lauren O'Donnell (SPL, BWH) acknowledgements: BWH, NCIGT/LMI """ input_spec = ProbeVolumeWithModelInputSpec output_spec = ProbeVolumeWithModelOutputSpec _cmd = "ProbeVolumeWithModel " _outputs_filenames = {'OutputModel':'OutputModel.vtk'} class LabelMapSmoothingInputSpec(CommandLineInputSpec): labelToSmooth = traits.Int(desc="The label to smooth. All others will be ignored. If no label is selected by the user, the maximum label in the image is chosen by default.", argstr="--labelToSmooth %d") numberOfIterations = traits.Int(desc="The number of iterations of the level set AntiAliasing algorithm", argstr="--numberOfIterations %d") maxRMSError = traits.Float(desc="The maximum RMS error.", argstr="--maxRMSError %f") gaussianSigma = traits.Float(desc="The standard deviation of the Gaussian kernel", argstr="--gaussianSigma %f") inputVolume = File(position=-2, desc="Input label map to smooth", exists=True, argstr="%s") outputVolume = traits.Either(traits.Bool, File(), position=-1, hash_files=False, desc="Smoothed label map", argstr="%s") class LabelMapSmoothingOutputSpec(TraitedSpec): outputVolume = File(position=-1, desc="Smoothed label map", exists=True) class LabelMapSmoothing(SEMLikeCommandLine): """title: Label Map Smoothing category: Surface Models description: This filter smoothes a binary label map. With a label map as input, this filter runs an anti-alising algorithm followed by a Gaussian smoothing algorithm. The output is a smoothed label map. version: 1.0 documentation-url: http://wiki.slicer.org/slicerWiki/index.php/Documentation/4.1/Modules/LabelMapSmoothing contributor: Dirk Padfield (GE), Josh Cates (Utah), Ross Whitaker (Utah) acknowledgements: This work is part of the National Alliance for Medical Image Computing (NAMIC), funded by the National Institutes of Health through the NIH Roadmap for Medical Research, Grant U54 EB005149. This filter is based on work developed at the University of Utah, and implemented at GE Research. """ input_spec = LabelMapSmoothingInputSpec output_spec = LabelMapSmoothingOutputSpec _cmd = "LabelMapSmoothing " _outputs_filenames = {'outputVolume':'outputVolume.nii'} class ModelMakerInputSpec(CommandLineInputSpec): InputVolume = File(position=-1, desc="Input label map. The Input Volume drop down menu is populated with the label map volumes that are present in the scene, select one from which to generate models.", exists=True, argstr="%s") color = File(desc="Color table to make labels to colors and objects", exists=True, argstr="--color %s") modelSceneFile = traits.Either(traits.Bool, InputMultiPath(File(), ), hash_files=False, desc="Generated models, under a model hierarchy node. Models are imported into Slicer under a model hierarchy node, and their colors are set by the color table associated with the input label map volume. The model hierarchy node must be created before running the model maker, by selecting Create New ModelHierarchy from the Models drop down menu. If you're running from the command line, a model hierarchy node in a new mrml scene will be created for you.", argstr="--modelSceneFile %s...") name = traits.Str(desc="Name to use for this model. Any text entered in the entry box will be the starting string for the created model file names. The label number and the color name will also be part of the file name. If making multiple models, use this as a prefix to the label and color name.", argstr="--name %s") generateAll = traits.Bool(desc="Generate models for all labels in the input volume. select this option if you want to create all models that correspond to all values in a labelmap volume (using the Joint Smoothing option below is useful with this option). Ignores Labels, Start Label, End Label settings. Skips label 0.", argstr="--generateAll ") labels = InputMultiPath(traits.Int, desc="A comma separated list of label values from which to make models. f you specify a list of Labels, it will override any start/end label settings. If you click Generate All Models it will override the list of labels and any start/end label settings.", sep=",", argstr="--labels %s") start = traits.Int(desc="If you want to specify a continuous range of labels from which to generate models, enter the lower label here. Voxel value from which to start making models. Used instead of the label list to specify a range (make sure the label list is empty or it will over ride this).", argstr="--start %d") end = traits.Int(desc="If you want to specify a continuous range of labels from which to generate models, enter the higher label here. Voxel value up to which to continue making models. Skip any values with zero voxels.", argstr="--end %d") skipUnNamed = traits.Bool(desc="Select this to not generate models from labels that do not have names defined in the color look up table associated with the input label map. If true, only models which have an entry in the color table will be generated. If false, generate all models that exist within the label range.", argstr="--skipUnNamed ") jointsmooth = traits.Bool(desc="This will ensure that all resulting models fit together smoothly, like jigsaw puzzle pieces. Otherwise the models will be smoothed independently and may overlap.", argstr="--jointsmooth ") smooth = traits.Int(desc="Here you can set the number of smoothing iterations for Laplacian smoothing, or the degree of the polynomial approximating the windowed Sinc function. Use 0 if you wish no smoothing. ", argstr="--smooth %d") filtertype = traits.Enum("Sinc", "Laplacian", desc="You can control the type of smoothing done on the models by selecting a filter type of either Sinc or Laplacian.", argstr="--filtertype %s") decimate = traits.Float(desc="Chose the target reduction in number of polygons as a decimal percentage (between 0 and 1) of the number of polygons. Specifies the percentage of triangles to be removed. For example, 0.1 means 10% reduction and 0.9 means 90% reduction.", argstr="--decimate %f") splitnormals = traits.Bool(desc="Splitting normals is useful for visualizing sharp features. However it creates holes in surfaces which affects measurements.", argstr="--splitnormals ") pointnormals = traits.Bool(desc="Turn this flag on if you wish to calculate the normal vectors for the points.", argstr="--pointnormals ") pad = traits.Bool(desc="Pad the input volume with zero value voxels on all 6 faces in order to ensure the production of closed surfaces. Sets the origin translation and extent translation so that the models still line up with the unpadded input volume.", argstr="--pad ") saveIntermediateModels = traits.Bool(desc="You can save a copy of the models after each of the intermediate steps (marching cubes, smoothing, and decimation if not joint smoothing, otherwise just after decimation). These intermediate models are not saved in the mrml file, you have to load them manually after turning off deleting temporary files in they python console (View ->Python Interactor) using the following command slicer.modules.modelmaker.cliModuleLogic().DeleteTemporaryFilesOff().", argstr="--saveIntermediateModels ") debug = traits.Bool(desc="turn this flag on in order to see debugging output (look in the Error Log window that is accessed via the View menu)", argstr="--debug ") class ModelMakerOutputSpec(TraitedSpec): modelSceneFile = OutputMultiPath(File(exists=True), desc="Generated models, under a model hierarchy node. Models are imported into Slicer under a model hierarchy node, and their colors are set by the color table associated with the input label map volume. The model hierarchy node must be created before running the model maker, by selecting Create New ModelHierarchy from the Models drop down menu. If you're running from the command line, a model hierarchy node in a new mrml scene will be created for you.") class ModelMaker(SEMLikeCommandLine): """title: Model Maker category: Surface Models description: Create 3D surface models from segmented data.<p>Models are imported into Slicer under a model hierarchy node in a MRML scene. The model colors are set by the color table associated with the input volume (these colours will only be visible if you load the model scene file).</p><p><b>Create Multiple:</b></p><p>If you specify a list of Labels, it will over ride any start/end label settings.</p><p>If you click<i>Generate All</i>it will over ride the list of lables and any start/end label settings.</p><p><b>Model Maker Settings:</b></p><p>You can set the number of smoothing iterations, target reduction in number of polygons (decimal percentage). Use 0 and 1 if you wish no smoothing nor decimation.<br>You can set the flags to split normals or generate point normals in this pane as well.<br>You can save a copy of the models after intermediate steps (marching cubes, smoothing, and decimation if not joint smoothing, otherwise just after decimation); these models are not saved in the mrml file, turn off deleting temporary files first in the python window:<br><i>slicer.modules.modelmaker.cliModuleLogic().DeleteTemporaryFilesOff()</i></p> version: 4.1 documentation-url: http://wiki.slicer.org/slicerWiki/index.php/Documentation/4.1/Modules/ModelMaker license: slicer4 contributor: Nicole Aucoin (SPL, BWH), Ron Kikinis (SPL, BWH), Bill Lorensen (GE) acknowledgements: This work is part of the National Alliance for Medical Image Computing (NAMIC), funded by the National Institutes of Health through the NIH Roadmap for Medical Research, Grant U54 EB005149. """ input_spec = ModelMakerInputSpec output_spec = ModelMakerOutputSpec _cmd = "ModelMaker " _outputs_filenames = {'modelSceneFile':'modelSceneFile.mrml'}
c893d4f0178ef7371b5ccb8bdde93d4981590a80
7699cd22ca370c89fb949eca80c587c0c3a9f8d5
/clients/opening_quote/high_price.py
cd9e9be7c05aceb3fc8152f88c399ef07a8e4ad4
[]
no_license
ccliuyang/trader
8bc2d5f144784c9deca92908c209dc9dd69da4f2
f7975352bd6c2f34e164a87b03c0cc5e02b48752
refs/heads/master
2023-02-10T07:44:24.498417
2021-01-12T02:06:08
2021-01-12T02:06:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,732
py
from gevent import monkey; monkey.patch_all() import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), *(['..' + os.sep] * 2)))) import gevent from clients.common import morning_client from datetime import datetime, date, timedelta, time from morning.back_data import holidays from morning_server import stock_api, message from gevent.queue import Queue from pymongo import MongoClient from configs import db from morning.pipeline.converter import dt import pandas as pd import numpy as np import daydata import plotly.graph_objects as go from plotly.subplots import make_subplots import order # Kospi D VI: 3%, KOSDAQ: 6% # 1. Point, Year High(3), TodayHigh(1), from yesterday to today(2) # from current price and add most highest candle and check what point you can get # find strongest momentum (from yesterday to today -> 1 min amount, exceed within 10 sec) def find_open_time(one_min_dict): earlist_time = None for k, v in one_min_dict.items(): for t in v: if t['market_type'] == 50: if earlist_time is None: earlist_time = t['date'] elif earlist_time > t['date']: earlist_time = t['date'] break return earlist_time def find_candidate(tdate, codes, start_datetime=None): yesterday = holidays.get_yesterday(tdate) daydata.load_day_data(yesterday, codes, False) candidate = [] one_minute_dict = {} codes = list(filter(lambda x: daydata.has_day_data(x), codes)) for code in codes: start_datetime = datetime.combine(tdate, time(8, 59, 59)) ticks = morning_client.get_tick_data_by_datetime(code, start_datetime, start_datetime + timedelta(minutes=1)) one_minute_dict[code] = ticks if start_datetime is None: start_datetime = find_open_time(one_minute_dict) print(tdate, 'START TICK TIME', start_datetime) for code in codes: is_kospi = morning_client.is_kospi_code(code) quote_amount = 0 open_price = 0 cname = '' is_started = False all_amount = 0 bias_amount = 0 for t in one_minute_dict[code]: if not is_started: if t['market_type'] == 50: if t['time'] > 900: break quote_amount = t['cum_amount'] * (10000 if is_kospi else 1000) open_price = t['current_price'] cname = t['company_name'] is_started = True else: if t['date'] > start_datetime + timedelta(seconds=10): candidate.append({'code': code, 'name': cname, 'ratio': quote_amount / daydata.get_yesterday_amount(code), 'starter_ratio': all_amount / quote_amount, 'bias_amount': bias_amount > 0, 'current_percent': (t['current_price'] - open_price) / open_price * 100.0}) break all_amount += t['volume'] * t['current_price'] if t['buy_or_sell'] == 49: bias_amount += t['volume'] * t['current_price'] else: bias_amount -= t['volume'] * t['current_price'] return candidate, start_datetime def start_trading(tdate, codes, start_datetime): for code in codes: print('start_trading', code) start_datetime = start_datetime + timedelta(seconds=11) ticks = morning_client.get_tick_data_by_datetime(code, start_datetime, start_datetime + timedelta(minutes=10)) order_tick = ticks[0] order.add_order(code, order_tick, [order_tick['ask_price'] * 1.03]) for t in ticks[1:-1]: if not order.check_tick(code, t): break order.finalize(code, ticks[-1]) if __name__ == '__main__': all_codes = morning_client.get_all_market_code() # for is_kospi #all_codes = ['A326030', 'A002100'] # 8/10 datetime(2020, 8, 10, 8, 59, 59) #all_codes = ['A128940', 'A060150', 'A005257'] # datetime(2020, 8, 6, 9, 0, 0, 503000) # 8/7, 8/11 empty start_dt = datetime(2020, 8, 20).date() while start_dt <= datetime(2020, 8, 20).date(): if holidays.is_holidays(start_dt) or datetime(2020, 8, 12).date() == start_dt or datetime(2020, 8, 13).date() == start_dt: start_dt += timedelta(days=1) continue tdate = start_dt candidate, start_datetime = find_candidate(tdate, all_codes, None) #print(candidate) sorted_by_ratio = sorted(candidate, key=lambda x: x['ratio'], reverse=True) sorted_by_ratio = sorted_by_ratio[:20] sorted_by_ratio = list(filter(lambda x: x['bias_amount'] and 0.5 < x['current_percent'] <= 5, sorted_by_ratio)) #sorted_by_ratio = sorted(sorted_by_ratio, key=lambda x: x['starter_ratio'], reverse=True) sorted_by_profit = sorted(sorted_by_ratio, key=lambda x: x['current_percent'], reverse=True) filtered_codes = [t['code'] for t in sorted_by_ratio[:5]] print(filtered_codes) start_trading(tdate, filtered_codes, start_datetime) start_dt += timedelta(days=1) #df = pd.DataFrame(order._bills) #df.to_excel('trade_bills.xlsx') """ start_trading A326030 ORDER {'code': 'A326030', 'date': datetime.datetime(2020, 8, 10, 9, 0, 11, 8000), 'bought': 186500, 'target': 189297.49999999997} {'code': 'A326030', 'btime': datetime.datetime(2020, 8, 10, 9, 0, 11, 8000), 'stime': datetime.datetime(2020, 8, 10, 9, 7, 13, 728000), 'bought': 186500, 'sell': 185000, 'profit': '-1.08', 'reason': 'CUT', 'scount': 0, 'fcount': 1} start_trading A002100 ORDER {'code': 'A002100', 'date': datetime.datetime(2020, 8, 10, 9, 0, 11, 204000), 'bought': 16650, 'target': 16899.75} {'code': 'A002100', 'btime': datetime.datetime(2020, 8, 10, 9, 0, 11, 204000), 'stime': datetime.datetime(2020, 8, 10, 9, 1, 41, 688000), 'bought': 16650, 'sell': 16900, 'profit': '1.22', 'reason': 'PROFIT', 'scount': 1, 'fcount': 1} start_trading A185750 ORDER {'code': 'A185750', 'date': datetime.datetime(2020, 8, 10, 9, 0, 11, 47000), 'bought': 177500, 'target': 180162.49999999997} {'code': 'A185750', 'btime': datetime.datetime(2020, 8, 10, 9, 0, 11, 47000), 'stime': datetime.datetime(2020, 8, 10, 9, 7, 49, 727000), 'bought': 177500, 'sell': 175500, 'profit': '-1.40', 'reason': 'CUT', 'scount': 1, 'fcount': 2} start_trading A128940 ORDER {'code': 'A128940', 'date': datetime.datetime(2020, 8, 6, 9, 0, 11, 22000), 'bought': 383000, 'target': 388744.99999999994} {'code': 'A128940', 'btime': datetime.datetime(2020, 8, 6, 9, 0, 11, 22000), 'stime': datetime.datetime(2020, 8, 6, 9, 0, 19, 725000), 'bought': 383000, 'sell': 380000, 'profit': '-1.06', 'reason': 'CUT', 'scount': 0, 'fcount': 1} start_trading A060150 ORDER {'code': 'A060150', 'date': datetime.datetime(2020, 8, 6, 9, 0, 11, 59000), 'bought': 10500, 'target': 10657.499999999998} {'code': 'A060150', 'btime': datetime.datetime(2020, 8, 6, 9, 0, 11, 59000), 'stime': datetime.datetime(2020, 8, 6, 9, 0, 19, 999000), 'bought': 10500, 'sell': 10700, 'profit': '1.62', 'reason': 'PROFIT', 'scount': 1, 'fcount': 1} start_trading A005257 ORDER {'code': 'A005257', 'date': datetime.datetime(2020, 8, 6, 9, 0, 12, 47000), 'bought': 247000, 'target': 250704.99999999997} {'code': 'A005257', 'btime': datetime.datetime(2020, 8, 6, 9, 0, 12, 47000), 'stime': datetime.datetime(2020, 8, 6, 9, 0, 41, 577000), 'bought': 247000, 'sell': 251500, 'profit': '1.54', 'reason': 'PROFIT', 'scount': 2, 'fcount': 1} """
31b8195ebc6b66e72576c39573db54f394df7e49
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p04013/s491767407.py
0a1b3009b328e28350daacffd06009c1c38057f1
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
641
py
N, A = map(int, input().split()) # N枚数のカード, 平均をAにしたい X = tuple(map(int, input().split())) # N枚のカードの中身 dp = [[[0]*(50*N+2) for _ in range(N+2)] for _ in range(N+2)] dp[0][0][0] = 1 # 0枚の中から0枚選んで合計が0になる選び方が1通りある for i in range(N): for j in range(N+1): for k in range(50*N+1): # if dp[i][j][k]: # ここの分岐が分からん if k+X[i] < 50*N+2: dp[i+1][j][k] += dp[i][j][k] dp[i+1][j+1][k+X[i]] += dp[i][j][k] ans = 0 for i in range(1, N+1): ans += dp[N][i][i*A] print(ans)
fa6e3b81e58e6880620d69439c3e6617bb0f2d24
a0f0efaaaf69d6ccdc2a91596db29f04025f122c
/build/mongodb_store_msgs/devel/lib/python2.7/dist-packages/mongodb_store_msgs/msg/_MoveEntriesAction.py
beec80f857d14c89cc008cb09202c6c3138385cb
[]
no_license
chiuhandsome/ros_ws_test-git
75da2723154c0dadbcec8d7b3b1f3f8b49aa5cd6
619909130c23927ccc902faa3ff6d04ae0f0fba9
refs/heads/master
2022-12-24T05:45:43.845717
2020-09-22T10:12:54
2020-09-22T10:12:54
297,582,735
0
0
null
null
null
null
UTF-8
Python
false
false
31,544
py
# This Python file uses the following encoding: utf-8 """autogenerated by genpy from mongodb_store_msgs/MoveEntriesAction.msg. Do not edit.""" import sys python3 = True if sys.hexversion > 0x03000000 else False import genpy import struct import actionlib_msgs.msg import genpy import mongodb_store_msgs.msg import std_msgs.msg class MoveEntriesAction(genpy.Message): _md5sum = "603d33caf9a321e4af460957d0a9266a" _type = "mongodb_store_msgs/MoveEntriesAction" _has_header = False # flag to mark the presence of a Header object _full_text = """# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ====== MoveEntriesActionGoal action_goal MoveEntriesActionResult action_result MoveEntriesActionFeedback action_feedback ================================================================================ MSG: mongodb_store_msgs/MoveEntriesActionGoal # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ====== Header header actionlib_msgs/GoalID goal_id MoveEntriesGoal goal ================================================================================ MSG: std_msgs/Header # Standard metadata for higher-level stamped data types. # This is generally used to communicate timestamped data # in a particular coordinate frame. # # sequence ID: consecutively increasing ID uint32 seq #Two-integer timestamp that is expressed as: # * stamp.sec: seconds (stamp_secs) since epoch (in Python the variable is called 'secs') # * stamp.nsec: nanoseconds since stamp_secs (in Python the variable is called 'nsecs') # time-handling sugar is provided by the client library time stamp #Frame this data is associated with string frame_id ================================================================================ MSG: actionlib_msgs/GoalID # The stamp should store the time at which this goal was requested. # It is used by an action server when it tries to preempt all # goals that were requested before a certain time time stamp # The id provides a way to associate feedback and # result message with specific goal requests. The id # specified must be unique. string id ================================================================================ MSG: mongodb_store_msgs/MoveEntriesGoal # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ====== # the db to move entries from string database # the collections to move entries from StringList collections # only entries before rospy.get_rostime() - move_before are moved. if 0, all are moved duration move_before # delete moved entries after replication bool delete_after_move # query to move entries by StringPairList query ================================================================================ MSG: mongodb_store_msgs/StringList string[] data ================================================================================ MSG: mongodb_store_msgs/StringPairList StringPair[] pairs ================================================================================ MSG: mongodb_store_msgs/StringPair string first string second ================================================================================ MSG: mongodb_store_msgs/MoveEntriesActionResult # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ====== Header header actionlib_msgs/GoalStatus status MoveEntriesResult result ================================================================================ MSG: actionlib_msgs/GoalStatus GoalID goal_id uint8 status uint8 PENDING = 0 # The goal has yet to be processed by the action server uint8 ACTIVE = 1 # The goal is currently being processed by the action server uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing # and has since completed its execution (Terminal State) uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State) uint8 ABORTED = 4 # The goal was aborted during execution by the action server due # to some failure (Terminal State) uint8 REJECTED = 5 # The goal was rejected by the action server without being processed, # because the goal was unattainable or invalid (Terminal State) uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing # and has not yet completed execution uint8 RECALLING = 7 # The goal received a cancel request before it started executing, # but the action server has not yet confirmed that the goal is canceled uint8 RECALLED = 8 # The goal received a cancel request before it started executing # and was successfully cancelled (Terminal State) uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be # sent over the wire by an action server #Allow for the user to associate a string with GoalStatus for debugging string text ================================================================================ MSG: mongodb_store_msgs/MoveEntriesResult # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ====== ================================================================================ MSG: mongodb_store_msgs/MoveEntriesActionFeedback # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ====== Header header actionlib_msgs/GoalStatus status MoveEntriesFeedback feedback ================================================================================ MSG: mongodb_store_msgs/MoveEntriesFeedback # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ====== # the collections which have been operated on so far string[] completed """ __slots__ = ['action_goal','action_result','action_feedback'] _slot_types = ['mongodb_store_msgs/MoveEntriesActionGoal','mongodb_store_msgs/MoveEntriesActionResult','mongodb_store_msgs/MoveEntriesActionFeedback'] def __init__(self, *args, **kwds): """ Constructor. Any message fields that are implicitly/explicitly set to None will be assigned a default value. The recommend use is keyword arguments as this is more robust to future message changes. You cannot mix in-order arguments and keyword arguments. The available fields are: action_goal,action_result,action_feedback :param args: complete set of field values, in .msg order :param kwds: use keyword arguments corresponding to message field names to set specific fields. """ if args or kwds: super(MoveEntriesAction, self).__init__(*args, **kwds) # message fields cannot be None, assign default values for those that are if self.action_goal is None: self.action_goal = mongodb_store_msgs.msg.MoveEntriesActionGoal() if self.action_result is None: self.action_result = mongodb_store_msgs.msg.MoveEntriesActionResult() if self.action_feedback is None: self.action_feedback = mongodb_store_msgs.msg.MoveEntriesActionFeedback() else: self.action_goal = mongodb_store_msgs.msg.MoveEntriesActionGoal() self.action_result = mongodb_store_msgs.msg.MoveEntriesActionResult() self.action_feedback = mongodb_store_msgs.msg.MoveEntriesActionFeedback() def _get_types(self): """ internal API method """ return self._slot_types def serialize(self, buff): """ serialize message into buffer :param buff: buffer, ``StringIO`` """ try: _x = self buff.write(_get_struct_3I().pack(_x.action_goal.header.seq, _x.action_goal.header.stamp.secs, _x.action_goal.header.stamp.nsecs)) _x = self.action_goal.header.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self buff.write(_get_struct_2I().pack(_x.action_goal.goal_id.stamp.secs, _x.action_goal.goal_id.stamp.nsecs)) _x = self.action_goal.goal_id.id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self.action_goal.goal.database length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) length = len(self.action_goal.goal.collections.data) buff.write(_struct_I.pack(length)) for val1 in self.action_goal.goal.collections.data: length = len(val1) if python3 or type(val1) == unicode: val1 = val1.encode('utf-8') length = len(val1) buff.write(struct.pack('<I%ss'%length, length, val1)) _x = self buff.write(_get_struct_2iB().pack(_x.action_goal.goal.move_before.secs, _x.action_goal.goal.move_before.nsecs, _x.action_goal.goal.delete_after_move)) length = len(self.action_goal.goal.query.pairs) buff.write(_struct_I.pack(length)) for val1 in self.action_goal.goal.query.pairs: _x = val1.first length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = val1.second length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self buff.write(_get_struct_3I().pack(_x.action_result.header.seq, _x.action_result.header.stamp.secs, _x.action_result.header.stamp.nsecs)) _x = self.action_result.header.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self buff.write(_get_struct_2I().pack(_x.action_result.status.goal_id.stamp.secs, _x.action_result.status.goal_id.stamp.nsecs)) _x = self.action_result.status.goal_id.id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self.action_result.status.status buff.write(_get_struct_B().pack(_x)) _x = self.action_result.status.text length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self buff.write(_get_struct_3I().pack(_x.action_feedback.header.seq, _x.action_feedback.header.stamp.secs, _x.action_feedback.header.stamp.nsecs)) _x = self.action_feedback.header.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self buff.write(_get_struct_2I().pack(_x.action_feedback.status.goal_id.stamp.secs, _x.action_feedback.status.goal_id.stamp.nsecs)) _x = self.action_feedback.status.goal_id.id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self.action_feedback.status.status buff.write(_get_struct_B().pack(_x)) _x = self.action_feedback.status.text length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) length = len(self.action_feedback.feedback.completed) buff.write(_struct_I.pack(length)) for val1 in self.action_feedback.feedback.completed: length = len(val1) if python3 or type(val1) == unicode: val1 = val1.encode('utf-8') length = len(val1) buff.write(struct.pack('<I%ss'%length, length, val1)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize(self, str): """ unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str`` """ try: if self.action_goal is None: self.action_goal = mongodb_store_msgs.msg.MoveEntriesActionGoal() if self.action_result is None: self.action_result = mongodb_store_msgs.msg.MoveEntriesActionResult() if self.action_feedback is None: self.action_feedback = mongodb_store_msgs.msg.MoveEntriesActionFeedback() end = 0 _x = self start = end end += 12 (_x.action_goal.header.seq, _x.action_goal.header.stamp.secs, _x.action_goal.header.stamp.nsecs,) = _get_struct_3I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.action_goal.header.frame_id = str[start:end].decode('utf-8') else: self.action_goal.header.frame_id = str[start:end] _x = self start = end end += 8 (_x.action_goal.goal_id.stamp.secs, _x.action_goal.goal_id.stamp.nsecs,) = _get_struct_2I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.action_goal.goal_id.id = str[start:end].decode('utf-8') else: self.action_goal.goal_id.id = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.action_goal.goal.database = str[start:end].decode('utf-8') else: self.action_goal.goal.database = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.action_goal.goal.collections.data = [] for i in range(0, length): start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: val1 = str[start:end].decode('utf-8') else: val1 = str[start:end] self.action_goal.goal.collections.data.append(val1) _x = self start = end end += 9 (_x.action_goal.goal.move_before.secs, _x.action_goal.goal.move_before.nsecs, _x.action_goal.goal.delete_after_move,) = _get_struct_2iB().unpack(str[start:end]) self.action_goal.goal.delete_after_move = bool(self.action_goal.goal.delete_after_move) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.action_goal.goal.query.pairs = [] for i in range(0, length): val1 = mongodb_store_msgs.msg.StringPair() start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: val1.first = str[start:end].decode('utf-8') else: val1.first = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: val1.second = str[start:end].decode('utf-8') else: val1.second = str[start:end] self.action_goal.goal.query.pairs.append(val1) _x = self start = end end += 12 (_x.action_result.header.seq, _x.action_result.header.stamp.secs, _x.action_result.header.stamp.nsecs,) = _get_struct_3I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.action_result.header.frame_id = str[start:end].decode('utf-8') else: self.action_result.header.frame_id = str[start:end] _x = self start = end end += 8 (_x.action_result.status.goal_id.stamp.secs, _x.action_result.status.goal_id.stamp.nsecs,) = _get_struct_2I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.action_result.status.goal_id.id = str[start:end].decode('utf-8') else: self.action_result.status.goal_id.id = str[start:end] start = end end += 1 (self.action_result.status.status,) = _get_struct_B().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.action_result.status.text = str[start:end].decode('utf-8') else: self.action_result.status.text = str[start:end] _x = self start = end end += 12 (_x.action_feedback.header.seq, _x.action_feedback.header.stamp.secs, _x.action_feedback.header.stamp.nsecs,) = _get_struct_3I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.action_feedback.header.frame_id = str[start:end].decode('utf-8') else: self.action_feedback.header.frame_id = str[start:end] _x = self start = end end += 8 (_x.action_feedback.status.goal_id.stamp.secs, _x.action_feedback.status.goal_id.stamp.nsecs,) = _get_struct_2I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.action_feedback.status.goal_id.id = str[start:end].decode('utf-8') else: self.action_feedback.status.goal_id.id = str[start:end] start = end end += 1 (self.action_feedback.status.status,) = _get_struct_B().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.action_feedback.status.text = str[start:end].decode('utf-8') else: self.action_feedback.status.text = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.action_feedback.feedback.completed = [] for i in range(0, length): start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: val1 = str[start:end].decode('utf-8') else: val1 = str[start:end] self.action_feedback.feedback.completed.append(val1) return self except struct.error as e: raise genpy.DeserializationError(e) # most likely buffer underfill def serialize_numpy(self, buff, numpy): """ serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module """ try: _x = self buff.write(_get_struct_3I().pack(_x.action_goal.header.seq, _x.action_goal.header.stamp.secs, _x.action_goal.header.stamp.nsecs)) _x = self.action_goal.header.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self buff.write(_get_struct_2I().pack(_x.action_goal.goal_id.stamp.secs, _x.action_goal.goal_id.stamp.nsecs)) _x = self.action_goal.goal_id.id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self.action_goal.goal.database length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) length = len(self.action_goal.goal.collections.data) buff.write(_struct_I.pack(length)) for val1 in self.action_goal.goal.collections.data: length = len(val1) if python3 or type(val1) == unicode: val1 = val1.encode('utf-8') length = len(val1) buff.write(struct.pack('<I%ss'%length, length, val1)) _x = self buff.write(_get_struct_2iB().pack(_x.action_goal.goal.move_before.secs, _x.action_goal.goal.move_before.nsecs, _x.action_goal.goal.delete_after_move)) length = len(self.action_goal.goal.query.pairs) buff.write(_struct_I.pack(length)) for val1 in self.action_goal.goal.query.pairs: _x = val1.first length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = val1.second length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self buff.write(_get_struct_3I().pack(_x.action_result.header.seq, _x.action_result.header.stamp.secs, _x.action_result.header.stamp.nsecs)) _x = self.action_result.header.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self buff.write(_get_struct_2I().pack(_x.action_result.status.goal_id.stamp.secs, _x.action_result.status.goal_id.stamp.nsecs)) _x = self.action_result.status.goal_id.id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self.action_result.status.status buff.write(_get_struct_B().pack(_x)) _x = self.action_result.status.text length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self buff.write(_get_struct_3I().pack(_x.action_feedback.header.seq, _x.action_feedback.header.stamp.secs, _x.action_feedback.header.stamp.nsecs)) _x = self.action_feedback.header.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self buff.write(_get_struct_2I().pack(_x.action_feedback.status.goal_id.stamp.secs, _x.action_feedback.status.goal_id.stamp.nsecs)) _x = self.action_feedback.status.goal_id.id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self.action_feedback.status.status buff.write(_get_struct_B().pack(_x)) _x = self.action_feedback.status.text length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) length = len(self.action_feedback.feedback.completed) buff.write(_struct_I.pack(length)) for val1 in self.action_feedback.feedback.completed: length = len(val1) if python3 or type(val1) == unicode: val1 = val1.encode('utf-8') length = len(val1) buff.write(struct.pack('<I%ss'%length, length, val1)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize_numpy(self, str, numpy): """ unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module """ try: if self.action_goal is None: self.action_goal = mongodb_store_msgs.msg.MoveEntriesActionGoal() if self.action_result is None: self.action_result = mongodb_store_msgs.msg.MoveEntriesActionResult() if self.action_feedback is None: self.action_feedback = mongodb_store_msgs.msg.MoveEntriesActionFeedback() end = 0 _x = self start = end end += 12 (_x.action_goal.header.seq, _x.action_goal.header.stamp.secs, _x.action_goal.header.stamp.nsecs,) = _get_struct_3I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.action_goal.header.frame_id = str[start:end].decode('utf-8') else: self.action_goal.header.frame_id = str[start:end] _x = self start = end end += 8 (_x.action_goal.goal_id.stamp.secs, _x.action_goal.goal_id.stamp.nsecs,) = _get_struct_2I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.action_goal.goal_id.id = str[start:end].decode('utf-8') else: self.action_goal.goal_id.id = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.action_goal.goal.database = str[start:end].decode('utf-8') else: self.action_goal.goal.database = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.action_goal.goal.collections.data = [] for i in range(0, length): start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: val1 = str[start:end].decode('utf-8') else: val1 = str[start:end] self.action_goal.goal.collections.data.append(val1) _x = self start = end end += 9 (_x.action_goal.goal.move_before.secs, _x.action_goal.goal.move_before.nsecs, _x.action_goal.goal.delete_after_move,) = _get_struct_2iB().unpack(str[start:end]) self.action_goal.goal.delete_after_move = bool(self.action_goal.goal.delete_after_move) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.action_goal.goal.query.pairs = [] for i in range(0, length): val1 = mongodb_store_msgs.msg.StringPair() start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: val1.first = str[start:end].decode('utf-8') else: val1.first = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: val1.second = str[start:end].decode('utf-8') else: val1.second = str[start:end] self.action_goal.goal.query.pairs.append(val1) _x = self start = end end += 12 (_x.action_result.header.seq, _x.action_result.header.stamp.secs, _x.action_result.header.stamp.nsecs,) = _get_struct_3I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.action_result.header.frame_id = str[start:end].decode('utf-8') else: self.action_result.header.frame_id = str[start:end] _x = self start = end end += 8 (_x.action_result.status.goal_id.stamp.secs, _x.action_result.status.goal_id.stamp.nsecs,) = _get_struct_2I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.action_result.status.goal_id.id = str[start:end].decode('utf-8') else: self.action_result.status.goal_id.id = str[start:end] start = end end += 1 (self.action_result.status.status,) = _get_struct_B().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.action_result.status.text = str[start:end].decode('utf-8') else: self.action_result.status.text = str[start:end] _x = self start = end end += 12 (_x.action_feedback.header.seq, _x.action_feedback.header.stamp.secs, _x.action_feedback.header.stamp.nsecs,) = _get_struct_3I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.action_feedback.header.frame_id = str[start:end].decode('utf-8') else: self.action_feedback.header.frame_id = str[start:end] _x = self start = end end += 8 (_x.action_feedback.status.goal_id.stamp.secs, _x.action_feedback.status.goal_id.stamp.nsecs,) = _get_struct_2I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.action_feedback.status.goal_id.id = str[start:end].decode('utf-8') else: self.action_feedback.status.goal_id.id = str[start:end] start = end end += 1 (self.action_feedback.status.status,) = _get_struct_B().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.action_feedback.status.text = str[start:end].decode('utf-8') else: self.action_feedback.status.text = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.action_feedback.feedback.completed = [] for i in range(0, length): start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: val1 = str[start:end].decode('utf-8') else: val1 = str[start:end] self.action_feedback.feedback.completed.append(val1) return self except struct.error as e: raise genpy.DeserializationError(e) # most likely buffer underfill _struct_I = genpy.struct_I def _get_struct_I(): global _struct_I return _struct_I _struct_2I = None def _get_struct_2I(): global _struct_2I if _struct_2I is None: _struct_2I = struct.Struct("<2I") return _struct_2I _struct_2iB = None def _get_struct_2iB(): global _struct_2iB if _struct_2iB is None: _struct_2iB = struct.Struct("<2iB") return _struct_2iB _struct_3I = None def _get_struct_3I(): global _struct_3I if _struct_3I is None: _struct_3I = struct.Struct("<3I") return _struct_3I _struct_B = None def _get_struct_B(): global _struct_B if _struct_B is None: _struct_B = struct.Struct("<B") return _struct_B
05908f9e878730f361c397fe8138bb1d4e96e6e4
f4e45e2f6a6c42571eefdc64773ca83c6b9c2b98
/lib/telepot2/filtering.py
3b6aca406e3f6ffe1af3f1a3657701be9b06abc3
[]
no_license
soju6jan2/sjva2_src_obfuscate
83659707ca16d94378b7eff4d20e5e7ccf224007
e2dd6c733bbf34b444362011f11b5aca2053aa34
refs/heads/master
2023-04-21T12:27:01.132955
2021-05-06T17:35:03
2021-05-06T17:35:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
929
py
def pick(obj,keys): def pick1(k): if type(obj)is dict: return obj[k] else: return getattr(obj,k) if isinstance(keys,list): return[pick1(k)for k in keys] else: return pick1(keys) def match(data,template): if isinstance(template,dict)and isinstance(data,dict): def pick_and_match(kv): template_key,template_value=kv if hasattr(template_key,'search'): data_keys=list(filter(template_key.search,data.keys())) if not data_keys: return False elif template_key in data: data_keys=[template_key] else: return False return any(map(lambda data_value:match(data_value,template_value),pick(data,data_keys))) return all(map(pick_and_match,template.items())) elif callable(template): return template(data) else: return data==template def match_all(msg,templates): return all(map(lambda t:match(msg,t),templates)) # Created by pyminifier (https://github.com/liftoff/pyminifier)
1624a5f97468afb319da8fcebad9fbc440a0f1cb
60a831fb3c92a9d2a2b52ff7f5a0f665d4692a24
/IronPythonStubs/release/stubs.min/Autodesk/Revit/UI/Mechanical.py
7918f6d2c82c384d607a5c89c4a612322313f8a0
[ "MIT" ]
permissive
shnlmn/Rhino-Grasshopper-Scripts
a9411098c5d1bbc55feb782def565d535b27b709
0e43c3c1d09fb12cdbd86a3c4e2ba49982e0f823
refs/heads/master
2020-04-10T18:59:43.518140
2020-04-08T02:49:07
2020-04-08T02:49:07
161,219,695
11
2
null
null
null
null
UTF-8
Python
false
false
4,755
py
# encoding: utf-8 # module Autodesk.Revit.UI.Mechanical calls itself Mechanical # from RevitAPIUI,Version=17.0.0.0,Culture=neutral,PublicKeyToken=null # by generator 1.145 # no doc # no imports # no functions # classes class DuctFittingAndAccessoryPressureDropUIData(object,IDisposable): """ The input and output data used by external UI servers for storing UI settings. """ def Dispose(self): """ Dispose(self: DuctFittingAndAccessoryPressureDropUIData) """ pass def GetUIDataItems(self): """ GetUIDataItems(self: DuctFittingAndAccessoryPressureDropUIData) -> IList[DuctFittingAndAccessoryPressureDropUIDataItem] Gets all UI data items stored in the UI data. Returns: An array of UI data items. """ pass def GetUnits(self): """ GetUnits(self: DuctFittingAndAccessoryPressureDropUIData) -> Units Gets units. Returns: The Units object. """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: DuctFittingAndAccessoryPressureDropUIData,disposing: bool) """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass def __repr__(self,*args): """ __repr__(self: object) -> str """ pass IsValidObject=property(lambda self: object(),lambda self,v: None,lambda self: None) """Specifies whether the .NET object represents a valid Revit entity. Get: IsValidObject(self: DuctFittingAndAccessoryPressureDropUIData) -> bool """ class DuctFittingAndAccessoryPressureDropUIDataItem(object,IDisposable): """ Each duct fitting or duct accessory FamilyInstance has one DuctFittingAndAccessoryPressureDropUIDataItem. """ def Dispose(self): """ Dispose(self: DuctFittingAndAccessoryPressureDropUIDataItem) """ pass def GetDuctFittingAndAccessoryData(self): """ GetDuctFittingAndAccessoryData(self: DuctFittingAndAccessoryPressureDropUIDataItem) -> DuctFittingAndAccessoryData Gets the fitting data stored in the UI data item. Returns: The fitting data stored in the UI data item. """ pass def GetEntity(self): """ GetEntity(self: DuctFittingAndAccessoryPressureDropUIDataItem) -> Entity Returns the entity set by UI server. or an invalid entity otherwise. Returns: The returned Entity. """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: DuctFittingAndAccessoryPressureDropUIDataItem,disposing: bool) """ pass def SetEntity(self,entity): """ SetEntity(self: DuctFittingAndAccessoryPressureDropUIDataItem,entity: Entity) Stores the entity in the UI data item. entity: The Entity to be stored. """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass def __repr__(self,*args): """ __repr__(self: object) -> str """ pass IsValidObject=property(lambda self: object(),lambda self,v: None,lambda self: None) """Specifies whether the .NET object represents a valid Revit entity. Get: IsValidObject(self: DuctFittingAndAccessoryPressureDropUIDataItem) -> bool """ class IDuctFittingAndAccessoryPressureDropUIServer(IExternalServer): """ Interface for external servers providing optional UI for duct fitting and duct accessory coefficient calculation. """ def GetDBServerId(self): """ GetDBServerId(self: IDuctFittingAndAccessoryPressureDropUIServer) -> Guid Returns the Id of the corresponding DB server for which this server provides an optional UI. Returns: The Id of the DB server. """ pass def ShowSettings(self,data): """ ShowSettings(self: IDuctFittingAndAccessoryPressureDropUIServer,data: DuctFittingAndAccessoryPressureDropUIData) -> bool Shows the settings UI. data: The input data of the calculation. Returns: True if the user makes any changes in the UI,false otherwise. """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass
baa865fa991c54891788aec59bcb183d5b563a5f
655a0c0de7b518b1b0b978fd17cd6da8576db9af
/src/envoy/config/filter/network/dubbo_proxy/v2alpha1/dubbo_proxy_pb2.py
63c456b68de143878c07a08f1ba2bafc34d5fb8d
[ "Apache-2.0" ]
permissive
opensvc/igw_envoy
1fe803e02f4166a6ce1d21e9f4f26e4184ce0694
939f8c1eac242156c9b179fa067d23be63e65167
refs/heads/master
2023-04-08T06:01:21.715904
2023-03-15T14:18:43
2023-03-15T14:18:43
155,705,611
2
1
null
null
null
null
UTF-8
Python
false
true
10,707
py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: envoy/config/filter/network/dubbo_proxy/v2alpha1/dubbo_proxy.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf.internal import enum_type_wrapper from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from envoy.config.filter.network.dubbo_proxy.v2alpha1 import route_pb2 as envoy_dot_config_dot_filter_dot_network_dot_dubbo__proxy_dot_v2alpha1_dot_route__pb2 from google.protobuf import any_pb2 as google_dot_protobuf_dot_any__pb2 from validate import validate_pb2 as validate_dot_validate__pb2 from gogoproto import gogo_pb2 as gogoproto_dot_gogo__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='envoy/config/filter/network/dubbo_proxy/v2alpha1/dubbo_proxy.proto', package='envoy.config.filter.network.dubbo_proxy.v2alpha1', syntax='proto3', serialized_pb=_b('\nBenvoy/config/filter/network/dubbo_proxy/v2alpha1/dubbo_proxy.proto\x12\x30\x65nvoy.config.filter.network.dubbo_proxy.v2alpha1\x1a<envoy/config/filter/network/dubbo_proxy/v2alpha1/route.proto\x1a\x19google/protobuf/any.proto\x1a\x17validate/validate.proto\x1a\x14gogoproto/gogo.proto\"\xae\x03\n\nDubboProxy\x12\x1e\n\x0bstat_prefix\x18\x01 \x01(\tB\t\xba\xe9\xc0\x03\x04r\x02 \x01\x12\x61\n\rprotocol_type\x18\x02 \x01(\x0e\x32>.envoy.config.filter.network.dubbo_proxy.v2alpha1.ProtocolTypeB\n\xba\xe9\xc0\x03\x05\x82\x01\x02\x10\x01\x12k\n\x12serialization_type\x18\x03 \x01(\x0e\x32\x43.envoy.config.filter.network.dubbo_proxy.v2alpha1.SerializationTypeB\n\xba\xe9\xc0\x03\x05\x82\x01\x02\x10\x01\x12Z\n\x0croute_config\x18\x04 \x03(\x0b\x32\x44.envoy.config.filter.network.dubbo_proxy.v2alpha1.RouteConfiguration\x12T\n\rdubbo_filters\x18\x05 \x03(\x0b\x32=.envoy.config.filter.network.dubbo_proxy.v2alpha1.DubboFilter\"L\n\x0b\x44ubboFilter\x12\x17\n\x04name\x18\x01 \x01(\tB\t\xba\xe9\xc0\x03\x04r\x02 \x01\x12$\n\x06\x63onfig\x18\x02 \x01(\x0b\x32\x14.google.protobuf.Any*\x19\n\x0cProtocolType\x12\t\n\x05\x44ubbo\x10\x00*!\n\x11SerializationType\x12\x0c\n\x08Hessian2\x10\x00\x42W\n>io.envoyproxy.envoy.config.filter.network.dubbo_proxy.v2alpha1B\x0f\x44ubboProxyProtoP\x01Z\x02v2b\x06proto3') , dependencies=[envoy_dot_config_dot_filter_dot_network_dot_dubbo__proxy_dot_v2alpha1_dot_route__pb2.DESCRIPTOR,google_dot_protobuf_dot_any__pb2.DESCRIPTOR,validate_dot_validate__pb2.DESCRIPTOR,gogoproto_dot_gogo__pb2.DESCRIPTOR,]) _PROTOCOLTYPE = _descriptor.EnumDescriptor( name='ProtocolType', full_name='envoy.config.filter.network.dubbo_proxy.v2alpha1.ProtocolType', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='Dubbo', index=0, number=0, options=None, type=None), ], containing_type=None, options=None, serialized_start=767, serialized_end=792, ) _sym_db.RegisterEnumDescriptor(_PROTOCOLTYPE) ProtocolType = enum_type_wrapper.EnumTypeWrapper(_PROTOCOLTYPE) _SERIALIZATIONTYPE = _descriptor.EnumDescriptor( name='SerializationType', full_name='envoy.config.filter.network.dubbo_proxy.v2alpha1.SerializationType', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='Hessian2', index=0, number=0, options=None, type=None), ], containing_type=None, options=None, serialized_start=794, serialized_end=827, ) _sym_db.RegisterEnumDescriptor(_SERIALIZATIONTYPE) SerializationType = enum_type_wrapper.EnumTypeWrapper(_SERIALIZATIONTYPE) Dubbo = 0 Hessian2 = 0 _DUBBOPROXY = _descriptor.Descriptor( name='DubboProxy', full_name='envoy.config.filter.network.dubbo_proxy.v2alpha1.DubboProxy', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='stat_prefix', full_name='envoy.config.filter.network.dubbo_proxy.v2alpha1.DubboProxy.stat_prefix', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\272\351\300\003\004r\002 \001'))), _descriptor.FieldDescriptor( name='protocol_type', full_name='envoy.config.filter.network.dubbo_proxy.v2alpha1.DubboProxy.protocol_type', index=1, number=2, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\272\351\300\003\005\202\001\002\020\001'))), _descriptor.FieldDescriptor( name='serialization_type', full_name='envoy.config.filter.network.dubbo_proxy.v2alpha1.DubboProxy.serialization_type', index=2, number=3, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\272\351\300\003\005\202\001\002\020\001'))), _descriptor.FieldDescriptor( name='route_config', full_name='envoy.config.filter.network.dubbo_proxy.v2alpha1.DubboProxy.route_config', index=3, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='dubbo_filters', full_name='envoy.config.filter.network.dubbo_proxy.v2alpha1.DubboProxy.dubbo_filters', index=4, number=5, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=257, serialized_end=687, ) _DUBBOFILTER = _descriptor.Descriptor( name='DubboFilter', full_name='envoy.config.filter.network.dubbo_proxy.v2alpha1.DubboFilter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='name', full_name='envoy.config.filter.network.dubbo_proxy.v2alpha1.DubboFilter.name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\272\351\300\003\004r\002 \001'))), _descriptor.FieldDescriptor( name='config', full_name='envoy.config.filter.network.dubbo_proxy.v2alpha1.DubboFilter.config', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=689, serialized_end=765, ) _DUBBOPROXY.fields_by_name['protocol_type'].enum_type = _PROTOCOLTYPE _DUBBOPROXY.fields_by_name['serialization_type'].enum_type = _SERIALIZATIONTYPE _DUBBOPROXY.fields_by_name['route_config'].message_type = envoy_dot_config_dot_filter_dot_network_dot_dubbo__proxy_dot_v2alpha1_dot_route__pb2._ROUTECONFIGURATION _DUBBOPROXY.fields_by_name['dubbo_filters'].message_type = _DUBBOFILTER _DUBBOFILTER.fields_by_name['config'].message_type = google_dot_protobuf_dot_any__pb2._ANY DESCRIPTOR.message_types_by_name['DubboProxy'] = _DUBBOPROXY DESCRIPTOR.message_types_by_name['DubboFilter'] = _DUBBOFILTER DESCRIPTOR.enum_types_by_name['ProtocolType'] = _PROTOCOLTYPE DESCRIPTOR.enum_types_by_name['SerializationType'] = _SERIALIZATIONTYPE _sym_db.RegisterFileDescriptor(DESCRIPTOR) DubboProxy = _reflection.GeneratedProtocolMessageType('DubboProxy', (_message.Message,), dict( DESCRIPTOR = _DUBBOPROXY, __module__ = 'envoy.config.filter.network.dubbo_proxy.v2alpha1.dubbo_proxy_pb2' # @@protoc_insertion_point(class_scope:envoy.config.filter.network.dubbo_proxy.v2alpha1.DubboProxy) )) _sym_db.RegisterMessage(DubboProxy) DubboFilter = _reflection.GeneratedProtocolMessageType('DubboFilter', (_message.Message,), dict( DESCRIPTOR = _DUBBOFILTER, __module__ = 'envoy.config.filter.network.dubbo_proxy.v2alpha1.dubbo_proxy_pb2' # @@protoc_insertion_point(class_scope:envoy.config.filter.network.dubbo_proxy.v2alpha1.DubboFilter) )) _sym_db.RegisterMessage(DubboFilter) DESCRIPTOR.has_options = True DESCRIPTOR._options = _descriptor._ParseOptions(descriptor_pb2.FileOptions(), _b('\n>io.envoyproxy.envoy.config.filter.network.dubbo_proxy.v2alpha1B\017DubboProxyProtoP\001Z\002v2')) _DUBBOPROXY.fields_by_name['stat_prefix'].has_options = True _DUBBOPROXY.fields_by_name['stat_prefix']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\272\351\300\003\004r\002 \001')) _DUBBOPROXY.fields_by_name['protocol_type'].has_options = True _DUBBOPROXY.fields_by_name['protocol_type']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\272\351\300\003\005\202\001\002\020\001')) _DUBBOPROXY.fields_by_name['serialization_type'].has_options = True _DUBBOPROXY.fields_by_name['serialization_type']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\272\351\300\003\005\202\001\002\020\001')) _DUBBOFILTER.fields_by_name['name'].has_options = True _DUBBOFILTER.fields_by_name['name']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\272\351\300\003\004r\002 \001')) try: # THESE ELEMENTS WILL BE DEPRECATED. # Please use the generated *_pb2_grpc.py files instead. import grpc from grpc.beta import implementations as beta_implementations from grpc.beta import interfaces as beta_interfaces from grpc.framework.common import cardinality from grpc.framework.interfaces.face import utilities as face_utilities except ImportError: pass # @@protoc_insertion_point(module_scope)
a76fbfcbd6a9727bd7e8f2f90802a7d1f3d3dfec
bdb3716c644b8d031af9a5285626d7ccf0ecb903
/code/UI/OpenAPI/python-flask-server/KG2/openapi_server/test/test_entity_controller.py
e780d02dcb6fb787d438c3fd38e7c36eba951a02
[ "MIT", "Apache-2.0" ]
permissive
RTXteam/RTX
97d2a8946d233d48cc1b165f5e575af21bda4b26
ed0693dd03149e56f7dfaf431fb8a82ace0c4ef3
refs/heads/master
2023-09-01T21:48:49.008407
2023-09-01T20:55:06
2023-09-01T20:55:06
111,240,202
43
31
MIT
2023-09-14T16:20:01
2017-11-18T21:19:13
Python
UTF-8
Python
false
false
872
py
# coding: utf-8 from __future__ import absolute_import import unittest from flask import json from six import BytesIO from openapi_server.test import BaseTestCase class TestEntityController(BaseTestCase): """EntityController integration test stubs""" def test_get_entity(self): """Test case for get_entity Obtain CURIE and synonym information about a search term """ query_string = [('q', ["MESH:D014867","NCIT:C34373"])] headers = { 'Accept': 'application/json', } response = self.client.open( '/api/rtxkg2/v1.0/entity', method='GET', headers=headers, query_string=query_string) self.assert200(response, 'Response body is : ' + response.data.decode('utf-8')) if __name__ == '__main__': unittest.main()
273c9a78a2f06229134518a5ee0ee75c043c5e8f
cbd2eee46663fad5b5375b13c8c21b1b06eb4c6b
/ecloud/code/src/main/python/easted/network/__init__.py
dd0a418f0f5c9bd47a8e408f7d9ea0c723488ad7
[]
no_license
1026237416/Python
ef474ee40d7efcd6dabb6fb0ecba81b4dcfc7e14
ffa8f9ffb8bfec114b0ca46295db05c4213c4c30
refs/heads/master
2021-07-05T00:57:00.456886
2019-04-26T10:13:46
2019-04-26T10:13:46
114,510,323
0
0
null
null
null
null
UTF-8
Python
false
false
303
py
# -*- coding: utf-8 -*- from exception import * from network import * from networkdao import * from networkhost import * from subnet import * from subnetdao import * from subnet import * from tenant_subnet import * from tenant_host import * from common import request_create_ports, request_delete_ports
fdb12c98cca4cd1b2931ec80ce4bc5bd1cfc0bc4
e902470b1e6dad9be93631d3663382082f2b3221
/supervised_learning/0x03-optimization/12-learning_rate_decay.py
5350524cf17e57663bd160289bdbecd21c9bff91
[]
no_license
BrianFs04/holbertonschool-machine_learning
11bb645d86a0de74434d37bb36a239534e7d0787
d9b5fa4d60cd896c42242d9e72c348bd33046fba
refs/heads/master
2022-12-30T07:13:12.868358
2020-10-03T22:40:36
2020-10-03T22:40:36
279,386,948
0
0
null
null
null
null
UTF-8
Python
false
false
348
py
#!/usr/bin/env python3 """learning_rate_decay""" import tensorflow as tf def learning_rate_decay(alpha, decay_rate, global_step, decay_step): """Creates a learning rate decay operation""" rate_op = tf.train.inverse_time_decay(alpha, global_step, decay_step, decay_rate, True) return(rate_op)
7bbba9fa880f15ce4c10fba89b19daed63c4b17e
c9c1ac74238bd9ce8598af9ec4a52baae3cd4c26
/pkg/clm/DEBIAN/prerm
faadaf2324fcfda30cabf6dac71288502af74c20
[ "Apache-2.0" ]
permissive
cloudcache/cc1
4dbd9b5931483eed2d62459546c502c2d0ceb513
360392995a8aea37573dd772d809a006b78f575b
refs/heads/master
2021-01-24T04:13:54.670317
2014-06-06T08:17:46
2014-06-06T08:17:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
940
#!/usr/bin/python import sys import subprocess import netifaces if __name__ == '__main__': if 'remove' in sys.argv: log = open('/var/log/cc1/cm_install.log', 'a') r = subprocess.call('cc1_clm_setup_config remove', shell=True, stdout=log) r = subprocess.call('cc1_clm_setup_db_psql remove', shell=True, stdout=log) r = subprocess.call('cc1_clm_setup_apache disable', shell=True, stdout=log) log.close() sys.exit(0) elif 'purge' in sys.argv: log = open('/var/log/cc1/cm_install.log', 'a') r = subprocess.call('cc1_clm_setup_config purge', shell=True, stdout=log) r = subprocess.call('cc1_clm_setup_db_psql purge', shell=True, stdout=log) r = subprocess.call('cc1_clm_setup_apache purge', shell=True, stdout=log) log.close() sys.exit(0) else: print "Use cc1 tools (cc1_...) to reconfigure services!" sys.exit(0)
dd02bba44f176099278785f7272ae549e975f3f3
fa66cc0f9fba22da4b2a3291e804d358e88e0a47
/class6/exercises/ex2a_yaml_inventory.py
91ed3c734ef90b7de41327c17867727c82f012dd
[ "Apache-2.0" ]
permissive
bminus87/pyplus_course
d6aa2246b9882454bca029a0c5d807b461b89561
46fcf460df0e06c0df563822ba604c78b75043ae
refs/heads/master
2020-05-30T00:53:19.291358
2019-05-30T19:12:28
2019-05-30T19:12:28
189,467,288
0
0
Apache-2.0
2019-05-30T19:00:36
2019-05-30T19:00:36
null
UTF-8
Python
false
false
928
py
import pyeapi import yaml from getpass import getpass def yaml_load_devices(filename="arista_devices.yml"): with open(filename, "r") as f: return yaml.safe_load(f) raise ValueError("Reading YAML file failed") def main(): devices = yaml_load_devices() password = getpass() for name, device_dict in devices.items(): device_dict["password"] = password connection = pyeapi.client.connect(**device_dict) device = pyeapi.client.Node(connection) output = device.enable("show ip arp") print() print("-" * 40) arp_list = output[0]["result"]["ipV4Neighbors"] for arp_entry in arp_list: mac_address = arp_entry["hwAddress"] ip_address = arp_entry["address"] print("{:^15}{:^5}{:^15}".format(ip_address, "-->", mac_address)) print("-" * 40) print() if __name__ == "__main__": main()
5487a5680a39929ea9cadae8ca2975340c24f0cc
83e42b592923e56b99ff16d3762e89ffb29a75dc
/collective/abovecontentportlets/abovecontentportlets.py
b69467fe1ef6b3010757bc81b282e20085aa35e7
[]
no_license
intk/collective.abovecontentportlets
996a1b2bac8c7a471b0e26287f08d87298b4a277
460c68e7e66622c355356e6f84e733e8d979ec11
refs/heads/master
2021-01-20T18:39:44.176794
2016-06-28T13:53:27
2016-06-28T13:53:27
62,136,662
0
0
null
null
null
null
UTF-8
Python
false
false
1,490
py
from five import grok from z3c.form import group, field from zope import schema from zope.interface import invariant, Invalid from zope.schema.interfaces import IContextSourceBinder from zope.schema.vocabulary import SimpleVocabulary, SimpleTerm from plone.dexterity.content import Container from plone.directives import dexterity, form from plone.app.textfield import RichText from plone.namedfile.field import NamedImage, NamedFile from plone.namedfile.field import NamedBlobImage, NamedBlobFile from plone.namedfile.interfaces import IImageScaleTraversable from plone.dexterity.browser.view import DefaultView from zope.interface import implementer from collective.abovecontentportlets import MessageFactory as _ from datetime import date from zope.component import queryMultiAdapter from plone.app.layout.viewlets.common import ViewletBase from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile from zope.component import getMultiAdapter class AboveContentPortletsViewlet(ViewletBase): index = ViewPageTemplateFile('abovecontentportlets_templates/portlet.pt') def update(self): super(AboveContentPortletsViewlet, self).update() self.year = date.today().year def render_abovecontent_portlets(self): portlet_manager = getMultiAdapter( (self.context, self.request, self.__parent__), name='collective.abovecontentportlets' ) portlet_manager.update() return portlet_manager.render()
f2e1711dfdbe726e45e948694eb6a02760f26fb7
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_370/ch20_2019_08_19_13_59_53_782660.py
ea6bf7b829c953e0f9b8066ff16007d74678b664
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
121
py
NOME=input('Qual o seu nome? ') if NOME == 'Chris': print('Todo mundo odeia o Chris') else: print('Olá, '+ NOME)
418fc3f76fbbd227adf1da0a03818bf10b7febf0
17edb3537087dffeabfd9694c71ddf878088713c
/django-master/tests/model_meta/test.py
8fd0a6bb330336b36f5f293e094a4d39abdbd213
[ "BSD-3-Clause" ]
permissive
BrianBGrant/DNDC
dbb9004c7cddbb34fb16ca94992fc76127c4b588
d0cdec5c5436f6fe1fd55d6bae093c21ccb27f6b
refs/heads/master
2020-04-15T19:43:33.351799
2014-10-02T16:48:44
2014-10-02T16:48:44
42,128,284
2
1
null
2015-09-08T17:34:42
2015-09-08T17:34:41
null
UTF-8
Python
false
false
24,972
py
from django import test from django.db.models.fields import related, CharField, Field, FieldDoesNotExist from django.contrib.contenttypes.fields import GenericRelation from .models import ( AbstractPerson, BasePerson, Person, Relating, Relation ) TEST_RESULTS = { 'fields': { Person: [ 'id', 'data_abstract', 'fk_abstract_id', 'data_not_concrete_abstract', 'content_type_abstract_id', 'object_id_abstract', 'data_base', 'fk_base_id', 'data_not_concrete_base', 'content_type_base_id', 'object_id_base', 'baseperson_ptr_id', 'data_inherited', 'fk_inherited_id', 'data_not_concrete_inherited', 'content_type_concrete_id', 'object_id_concrete', ], BasePerson: [ 'id', 'data_abstract', 'fk_abstract_id', 'data_not_concrete_abstract', 'content_type_abstract_id', 'object_id_abstract', 'data_base', 'fk_base_id', 'data_not_concrete_base', 'content_type_base_id', 'object_id_base', ], AbstractPerson: [ 'data_abstract', 'fk_abstract_id', 'data_not_concrete_abstract', 'content_type_abstract_id', 'object_id_abstract', ], Relating: [ 'id', 'baseperson_id', 'baseperson_hidden_id', 'person_id', 'person_hidden_id', 'proxyperson_id', 'proxyperson_hidden_id', ], }, 'local_fields': { Person: [ 'baseperson_ptr_id', 'data_inherited', 'fk_inherited_id', 'data_not_concrete_inherited', 'content_type_concrete_id', 'object_id_concrete', ], BasePerson: [ 'id', 'data_abstract', 'fk_abstract_id', 'data_not_concrete_abstract', 'content_type_abstract_id', 'object_id_abstract', 'data_base', 'fk_base_id', 'data_not_concrete_base', 'content_type_base_id', 'object_id_base', ], AbstractPerson: [ 'data_abstract', 'fk_abstract_id', 'data_not_concrete_abstract', 'content_type_abstract_id', 'object_id_abstract', ], Relating: [ 'id', 'baseperson_id', 'baseperson_hidden_id', 'person_id', 'person_hidden_id', 'proxyperson_id', 'proxyperson_hidden_id', ], }, 'local_concrete_fields': { Person: [ 'baseperson_ptr_id', 'data_inherited', 'fk_inherited_id', 'content_type_concrete_id', 'object_id_concrete', ], BasePerson: [ 'id', 'data_abstract', 'fk_abstract_id', 'content_type_abstract_id', 'object_id_abstract', 'data_base', 'fk_base_id', 'content_type_base_id', 'object_id_base', ], AbstractPerson: [ 'data_abstract', 'fk_abstract_id', 'content_type_abstract_id', 'object_id_abstract', ], Relating: [ 'id', 'baseperson_id', 'baseperson_hidden_id', 'person_id', 'person_hidden_id', 'proxyperson_id', 'proxyperson_hidden_id', ], }, 'many_to_many': { Person: [ 'm2m_abstract', 'friends_abstract', 'following_abstract', 'm2m_base', 'friends_base', 'following_base', 'm2m_inherited', 'friends_inherited', 'following_inherited', ], BasePerson: [ 'm2m_abstract', 'friends_abstract', 'following_abstract', 'm2m_base', 'friends_base', 'following_base', ], AbstractPerson: [ 'm2m_abstract', 'friends_abstract', 'following_abstract', ], Relating: [ 'basepeople', 'basepeople_hidden', 'people', 'people_hidden', ], }, 'many_to_many_with_model': { Person: [ BasePerson, BasePerson, BasePerson, BasePerson, BasePerson, BasePerson, None, None, None, ], BasePerson: [ None, None, None, None, None, None, ], AbstractPerson: [ None, None, None, ], Relating: [ None, None, None, None, ], }, 'get_all_related_objects_with_model': { Person: ( ('relating_baseperson', BasePerson), ('relating_person', None), ), BasePerson: ( ('person', None), ('relating_baseperson', None), ), Relation: ( ('fk_abstract_rel', None), ('fo_abstract_rel', None), ('fk_base_rel', None), ('fo_base_rel', None), ('fk_concrete_rel', None), ('fo_concrete_rel', None), ), }, 'get_all_related_objects_with_model_local': { Person: ( ('relating_person', None), ), BasePerson: ( ('person', None), ('relating_baseperson', None) ), Relation: ( ('fk_abstract_rel', None), ('fo_abstract_rel', None), ('fk_base_rel', None), ('fo_base_rel', None), ('fk_concrete_rel', None), ('fo_concrete_rel', None), ), }, 'get_all_related_objects_with_model_hidden': { BasePerson: ( ('model_meta:baseperson_friends_base', None), ('model_meta:baseperson_friends_base', None), ('model_meta:baseperson_m2m_base', None), ('model_meta:baseperson_following_base', None), ('model_meta:baseperson_following_base', None), ('model_meta:baseperson_m2m_abstract', None), ('model_meta:baseperson_friends_abstract', None), ('model_meta:baseperson_friends_abstract', None), ('model_meta:baseperson_following_abstract', None), ('model_meta:baseperson_following_abstract', None), ('model_meta:person', None), ('model_meta:relating_basepeople', None), ('model_meta:relating_basepeople_hidden', None), ('model_meta:relating', None), ('model_meta:relating', None), ), Person: ( ('model_meta:baseperson_friends_base', BasePerson), ('model_meta:baseperson_friends_base', BasePerson), ('model_meta:baseperson_m2m_base', BasePerson), ('model_meta:baseperson_following_base', BasePerson), ('model_meta:baseperson_following_base', BasePerson), ('model_meta:baseperson_m2m_abstract', BasePerson), ('model_meta:baseperson_friends_abstract', BasePerson), ('model_meta:baseperson_friends_abstract', BasePerson), ('model_meta:baseperson_following_abstract', BasePerson), ('model_meta:baseperson_following_abstract', BasePerson), ('model_meta:relating_basepeople', BasePerson), ('model_meta:relating_basepeople_hidden', BasePerson), ('model_meta:relating', BasePerson), ('model_meta:relating', BasePerson), ('model_meta:person_m2m_inherited', None), ('model_meta:person_friends_inherited', None), ('model_meta:person_friends_inherited', None), ('model_meta:person_following_inherited', None), ('model_meta:person_following_inherited', None), ('model_meta:relating_people', None), ('model_meta:relating_people_hidden', None), ('model_meta:relating', None), ('model_meta:relating', None), ), Relation: ( ('model_meta:baseperson_m2m_base', None), ('model_meta:baseperson_m2m_abstract', None), ('model_meta:baseperson', None), ('model_meta:baseperson', None), ('model_meta:baseperson', None), ('model_meta:baseperson', None), ('model_meta:baseperson', None), ('model_meta:baseperson', None), ('model_meta:person_m2m_inherited', None), ('model_meta:person', None), ('model_meta:person', None), ('model_meta:person', None), ('model_meta:person', None), ('model_meta:person', None), ('model_meta:proxyperson', None), ('model_meta:proxyperson', None), ('model_meta:proxyperson', None), ), }, 'get_all_related_objects_with_model_hidden_local': { BasePerson: ( ('model_meta:baseperson_friends_base', None), ('model_meta:baseperson_friends_base', None), ('model_meta:baseperson_m2m_base', None), ('model_meta:baseperson_following_base', None), ('model_meta:baseperson_following_base', None), ('model_meta:baseperson_m2m_abstract', None), ('model_meta:baseperson_friends_abstract', None), ('model_meta:baseperson_friends_abstract', None), ('model_meta:baseperson_following_abstract', None), ('model_meta:baseperson_following_abstract', None), ('model_meta:person', None), ('model_meta:relating_basepeople', None), ('model_meta:relating_basepeople_hidden', None), ('model_meta:relating', None), ('model_meta:relating', None), ), Person: ( ('model_meta:person_m2m_inherited', None), ('model_meta:person_friends_inherited', None), ('model_meta:person_friends_inherited', None), ('model_meta:person_following_inherited', None), ('model_meta:person_following_inherited', None), ('model_meta:relating_people', None), ('model_meta:relating_people_hidden', None), ('model_meta:relating', None), ('model_meta:relating', None), ), Relation: ( ('model_meta:baseperson_m2m_base', None), ('model_meta:baseperson_m2m_abstract', None), ('model_meta:baseperson', None), ('model_meta:baseperson', None), ('model_meta:baseperson', None), ('model_meta:baseperson', None), ('model_meta:baseperson', None), ('model_meta:baseperson', None), ('model_meta:person_m2m_inherited', None), ('model_meta:person', None), ('model_meta:person', None), ('model_meta:person', None), ('model_meta:person', None), ('model_meta:person', None), ('model_meta:proxyperson', None), ('model_meta:proxyperson', None), ('model_meta:proxyperson', None), ), }, 'get_all_related_objects_with_model_proxy': { BasePerson: ( ('person', None), ('relating_baseperson', None), ), Person: ( ('relating_baseperson', BasePerson), ('relating_person', None), ('relating_proxyperson', None), ), Relation: ( ('fk_abstract_rel', None), ('fo_abstract_rel', None), ('fk_base_rel', None), ('fo_base_rel', None), ('fk_concrete_rel', None), ('fo_concrete_rel', None), ), }, 'get_all_related_objects_with_model_proxy_hidden': { BasePerson: ( ('model_meta:baseperson_friends_base', None), ('model_meta:baseperson_friends_base', None), ('model_meta:baseperson_m2m_base', None), ('model_meta:baseperson_following_base', None), ('model_meta:baseperson_following_base', None), ('model_meta:baseperson_m2m_abstract', None), ('model_meta:baseperson_friends_abstract', None), ('model_meta:baseperson_friends_abstract', None), ('model_meta:baseperson_following_abstract', None), ('model_meta:baseperson_following_abstract', None), ('model_meta:person', None), ('model_meta:relating_basepeople', None), ('model_meta:relating_basepeople_hidden', None), ('model_meta:relating', None), ('model_meta:relating', None), ), Person: ( ('model_meta:baseperson_friends_base', BasePerson), ('model_meta:baseperson_friends_base', BasePerson), ('model_meta:baseperson_m2m_base', BasePerson), ('model_meta:baseperson_following_base', BasePerson), ('model_meta:baseperson_following_base', BasePerson), ('model_meta:baseperson_m2m_abstract', BasePerson), ('model_meta:baseperson_friends_abstract', BasePerson), ('model_meta:baseperson_friends_abstract', BasePerson), ('model_meta:baseperson_following_abstract', BasePerson), ('model_meta:baseperson_following_abstract', BasePerson), ('model_meta:relating_basepeople', BasePerson), ('model_meta:relating_basepeople_hidden', BasePerson), ('model_meta:relating', BasePerson), ('model_meta:relating', BasePerson), ('model_meta:person_m2m_inherited', None), ('model_meta:person_friends_inherited', None), ('model_meta:person_friends_inherited', None), ('model_meta:person_following_inherited', None), ('model_meta:person_following_inherited', None), ('model_meta:relating_people', None), ('model_meta:relating_people_hidden', None), ('model_meta:relating', None), ('model_meta:relating', None), ('model_meta:relating', None), ('model_meta:relating', None), ), Relation: ( ('model_meta:baseperson_m2m_base', None), ('model_meta:baseperson_m2m_abstract', None), ('model_meta:baseperson', None), ('model_meta:baseperson', None), ('model_meta:baseperson', None), ('model_meta:baseperson', None), ('model_meta:baseperson', None), ('model_meta:baseperson', None), ('model_meta:person_m2m_inherited', None), ('model_meta:person', None), ('model_meta:person', None), ('model_meta:person', None), ('model_meta:person', None), ('model_meta:person', None), ('model_meta:proxyperson', None), ('model_meta:proxyperson', None), ('model_meta:proxyperson', None), ), }, 'get_all_related_many_to_many_with_model': { BasePerson: ( ('friends_abstract_rel_+', None), ('followers_abstract', None), ('friends_base_rel_+', None), ('followers_base', None), ('relating_basepeople', None), ('+', None), ), Person: ( ('friends_abstract_rel_+', BasePerson), ('followers_abstract', BasePerson), ('friends_base_rel_+', BasePerson), ('followers_base', BasePerson), ('relating_basepeople', BasePerson), ('+', BasePerson), ('friends_inherited_rel_+', None), ('followers_concrete', None), ('relating_people', None), ('+', None), ), Relation: ( ('m2m_abstract_rel', None), ('m2m_base_rel', None), ('m2m_concrete_rel', None), ), }, 'get_all_related_many_to_many_local': { BasePerson: [ 'friends_abstract_rel_+', 'followers_abstract', 'friends_base_rel_+', 'followers_base', 'relating_basepeople', '+', ], Person: [ 'friends_inherited_rel_+', 'followers_concrete', 'relating_people', '+', ], Relation: [ 'm2m_abstract_rel', 'm2m_base_rel', 'm2m_concrete_rel', ], }, 'virtual_fields': { AbstractPerson: [ 'generic_relation_abstract', 'content_object_abstract', ], BasePerson: [ 'generic_relation_base', 'content_object_base', 'generic_relation_abstract', 'content_object_abstract', ], Person: [ 'content_object_concrete', 'generic_relation_concrete', 'generic_relation_base', 'content_object_base', 'generic_relation_abstract', 'content_object_abstract', ], }, } class OptionsBaseTests(test.TestCase): def _map_rq_names(self, res): return tuple([(o.field.related_query_name(), m) for o, m in res]) def _map_names(self, res): return tuple([(f.name, m) for f, m in res]) class DataTests(OptionsBaseTests): def test_fields(self): for model, expected_result in TEST_RESULTS['fields'].items(): fields = model._meta.fields self.assertEqual([f.attname for f in fields], expected_result) def test_local_fields(self): is_data_field = lambda f: isinstance(f, Field) and not isinstance(f, related.ManyToManyField) for model, expected_result in TEST_RESULTS['local_fields'].items(): fields = model._meta.local_fields self.assertEqual([f.attname for f in fields], expected_result) self.assertTrue(all([f.model is model for f in fields])) self.assertTrue(all([is_data_field(f) for f in fields])) def test_local_concrete_fields(self): for model, expected_result in TEST_RESULTS['local_concrete_fields'].items(): fields = model._meta.local_concrete_fields self.assertEqual([f.attname for f in fields], expected_result) self.assertTrue(all([f.column is not None for f in fields])) class M2MTests(OptionsBaseTests): def test_many_to_many(self): for model, expected_result in TEST_RESULTS['many_to_many'].items(): fields = model._meta.many_to_many self.assertEqual([f.attname for f in fields], expected_result) self.assertTrue(all([isinstance(f.rel, related.ManyToManyRel) for f in fields])) def test_many_to_many_with_model(self): for model, expected_result in TEST_RESULTS['many_to_many_with_model'].items(): models = [model for field, model in model._meta.get_m2m_with_model()] self.assertEqual(models, expected_result) class RelatedObjectsTests(OptionsBaseTests): def setUp(self): self.key_name = lambda r: r[0] def test_related_objects(self): result_key = 'get_all_related_objects_with_model' for model, expected in TEST_RESULTS[result_key].items(): objects = model._meta.get_all_related_objects_with_model() self.assertEqual(self._map_rq_names(objects), expected) def test_related_objects_local(self): result_key = 'get_all_related_objects_with_model_local' for model, expected in TEST_RESULTS[result_key].items(): objects = model._meta.get_all_related_objects_with_model(local_only=True) self.assertEqual(self._map_rq_names(objects), expected) def test_related_objects_include_hidden(self): result_key = 'get_all_related_objects_with_model_hidden' for model, expected in TEST_RESULTS[result_key].items(): objects = model._meta.get_all_related_objects_with_model(include_hidden=True) self.assertEqual( sorted(self._map_names(objects), key=self.key_name), sorted(expected, key=self.key_name) ) def test_related_objects_include_hidden_local_only(self): result_key = 'get_all_related_objects_with_model_hidden_local' for model, expected in TEST_RESULTS[result_key].items(): objects = model._meta.get_all_related_objects_with_model( include_hidden=True, local_only=True) self.assertEqual( sorted(self._map_names(objects), key=self.key_name), sorted(expected, key=self.key_name) ) def test_related_objects_proxy(self): result_key = 'get_all_related_objects_with_model_proxy' for model, expected in TEST_RESULTS[result_key].items(): objects = model._meta.get_all_related_objects_with_model( include_proxy_eq=True) self.assertEqual(self._map_rq_names(objects), expected) def test_related_objects_proxy_hidden(self): result_key = 'get_all_related_objects_with_model_proxy_hidden' for model, expected in TEST_RESULTS[result_key].items(): objects = model._meta.get_all_related_objects_with_model( include_proxy_eq=True, include_hidden=True) self.assertEqual( sorted(self._map_names(objects), key=self.key_name), sorted(expected, key=self.key_name) ) class RelatedM2MTests(OptionsBaseTests): def test_related_m2m_with_model(self): result_key = 'get_all_related_many_to_many_with_model' for model, expected in TEST_RESULTS[result_key].items(): objects = model._meta.get_all_related_m2m_objects_with_model() self.assertEqual(self._map_rq_names(objects), expected) def test_related_m2m_local_only(self): result_key = 'get_all_related_many_to_many_local' for model, expected in TEST_RESULTS[result_key].items(): objects = model._meta.get_all_related_many_to_many_objects(local_only=True) self.assertEqual([o.field.related_query_name() for o in objects], expected) def test_related_m2m_asymmetrical(self): m2m = Person._meta.many_to_many self.assertTrue('following_base' in [f.attname for f in m2m]) related_m2m = Person._meta.get_all_related_many_to_many_objects() self.assertTrue('followers_base' in [o.field.related_query_name() for o in related_m2m]) def test_related_m2m_symmetrical(self): m2m = Person._meta.many_to_many self.assertTrue('friends_base' in [f.attname for f in m2m]) related_m2m = Person._meta.get_all_related_many_to_many_objects() self.assertIn('friends_inherited_rel_+', [o.field.related_query_name() for o in related_m2m]) class VirtualFieldsTests(OptionsBaseTests): def test_virtual_fields(self): for model, expected_names in TEST_RESULTS['virtual_fields'].items(): objects = model._meta.virtual_fields self.assertEqual(sorted([f.name for f in objects]), sorted(expected_names)) class GetFieldByNameTests(OptionsBaseTests): def test_get_data_field(self): field_info = Person._meta.get_field_by_name('data_abstract') self.assertEqual(field_info[1:], (BasePerson, True, False)) self.assertIsInstance(field_info[0], CharField) def test_get_m2m_field(self): field_info = Person._meta.get_field_by_name('m2m_base') self.assertEqual(field_info[1:], (BasePerson, True, True)) self.assertIsInstance(field_info[0], related.ManyToManyField) def test_get_related_object(self): field_info = Person._meta.get_field_by_name('relating_baseperson') self.assertEqual(field_info[1:], (BasePerson, False, False)) self.assertIsInstance(field_info[0], related.RelatedObject) def test_get_related_m2m(self): field_info = Person._meta.get_field_by_name('relating_people') self.assertEqual(field_info[1:], (None, False, True)) self.assertIsInstance(field_info[0], related.RelatedObject) def test_get_generic_foreign_key(self): # For historic reasons generic foreign keys aren't available. with self.assertRaises(FieldDoesNotExist): Person._meta.get_field_by_name('content_object_base') def test_get_generic_relation(self): field_info = Person._meta.get_field_by_name('generic_relation_base') self.assertEqual(field_info[1:], (None, True, False)) self.assertIsInstance(field_info[0], GenericRelation)
7753fba106e04f5a55c9d9234dfd02dacd0afb9b
6e9d54971c55336fe93551d38e3fc7929b6ac548
/1008.ConstructBinarySearchTreefromPreorderTraversal.py
5cef22d795f2cc7e88c313bb9bfd1a9a5673cc3d
[]
no_license
aucan/LeetCode-problems
61549b69c33a9ac94b600791c4055d4fbfb5a0c3
57b84c684a9171100166133ee04a69665334ca84
refs/heads/master
2023-04-12T00:46:26.521951
2021-05-04T13:44:28
2021-05-04T13:44:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,535
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Apr 20 11:04:36 2020 @author: nenad """ """ Problem URL: https://leetcode.com/problems/construct-binary-search-tree-from-preorder-traversal/ Problem description: Return the root node of a binary search tree that matches the given preorder traversal. (Recall that a binary search tree is a binary tree where for every node, any descendant of node.left has a value < node.val, and any descendant of node.right has a value > node.val. Also recall that a preorder traversal displays the value of the node first, then traverses node.left, then traverses node.right.) Example 1: Input: [8,5,1,7,10,12] Output: [8,5,10,1,7,null,12] Note: 1 <= preorder.length <= 100 The values """ # Definition for a binary tree node. class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None # Time: O(n), space: O(n) class Solution: index = 0 def bstFromPreorder(self, preorder) -> TreeNode: n = len(preorder) def reconstructBST(minimum, maximum): # all elements from preorder are used if Solution.index >= n: return root = None # take next element from preorder array nodeValue = preorder[Solution.index] # node belongs to the current subtree if minimum < nodeValue < maximum: # create new node root = TreeNode(nodeValue) # go to next index Solution.index += 1 if Solution.index < n: # reconstruct left and right subtree # maximum value in the left subtree will be value of current node (all values in left subtree are smaller) # minimum value in the right subtree will be value of current node (all values in right subtree are greater) root.left = reconstructBST(minimum, nodeValue) root.right = reconstructBST(nodeValue, maximum) return root # initial bounds are - -oo and +oo root = reconstructBST(float("-inf"), float("inf")) # reset index - for test cases sake Solution.index = 0 return root def preorder(root): if root is None: return print(root.val, end=" ") preorder(root.left) preorder(root.right) sol = Solution() # Test 1 root = sol.bstFromPreorder([8,5,1,7,10,12]) preorder(root)
a20a45a37faa268905d98259d366dd9792eac8a8
f9d564f1aa83eca45872dab7fbaa26dd48210d08
/huaweicloud-sdk-eg/huaweicloudsdkeg/v1/model/update_channel_request.py
16e1db4ed57fc9808a3041c879fafe6b983edd17
[ "Apache-2.0" ]
permissive
huaweicloud/huaweicloud-sdk-python-v3
cde6d849ce5b1de05ac5ebfd6153f27803837d84
f69344c1dadb79067746ddf9bfde4bddc18d5ecf
refs/heads/master
2023-09-01T19:29:43.013318
2023-08-31T08:28:59
2023-08-31T08:28:59
262,207,814
103
44
NOASSERTION
2023-06-22T14:50:48
2020-05-08T02:28:43
Python
UTF-8
Python
false
false
3,925
py
# coding: utf-8 import six from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class UpdateChannelRequest: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'channel_id': 'str', 'body': 'ChannelUpdateReq' } attribute_map = { 'channel_id': 'channel_id', 'body': 'body' } def __init__(self, channel_id=None, body=None): """UpdateChannelRequest The model defined in huaweicloud sdk :param channel_id: 指定查询的事件通道ID :type channel_id: str :param body: Body of the UpdateChannelRequest :type body: :class:`huaweicloudsdkeg.v1.ChannelUpdateReq` """ self._channel_id = None self._body = None self.discriminator = None self.channel_id = channel_id if body is not None: self.body = body @property def channel_id(self): """Gets the channel_id of this UpdateChannelRequest. 指定查询的事件通道ID :return: The channel_id of this UpdateChannelRequest. :rtype: str """ return self._channel_id @channel_id.setter def channel_id(self, channel_id): """Sets the channel_id of this UpdateChannelRequest. 指定查询的事件通道ID :param channel_id: The channel_id of this UpdateChannelRequest. :type channel_id: str """ self._channel_id = channel_id @property def body(self): """Gets the body of this UpdateChannelRequest. :return: The body of this UpdateChannelRequest. :rtype: :class:`huaweicloudsdkeg.v1.ChannelUpdateReq` """ return self._body @body.setter def body(self, body): """Sets the body of this UpdateChannelRequest. :param body: The body of this UpdateChannelRequest. :type body: :class:`huaweicloudsdkeg.v1.ChannelUpdateReq` """ self._body = body def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, UpdateChannelRequest): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
8a2f0e7ff7c6835148031531256843f97c099281
1cc344683f0cb166f17bcd74bca5656124597a7f
/ideal_college/staff/admin.py
6b4e21ea97f7a2d5fcef2e97c1c2796f58a2ebec
[]
no_license
technomicssolutions/ideal_college
f15974b8d048b40c8f27212840599fc28bf02d76
712bd89ee8428cd5ae4473ccab417f2755fc4ecc
refs/heads/master
2020-06-05T00:15:13.337423
2015-04-28T06:52:09
2015-04-28T06:52:09
23,145,363
0
0
null
null
null
null
UTF-8
Python
false
false
121
py
from django.contrib import admin from staff.models import * admin.site.register(Designation) admin.site.register(Staff)
eb146857efd243b4b309e66308a85ae8576f3360
71324aca11e16d6da17b0440e72d0107f5af6e04
/ptt_blog/blog/models.py
aa4bd122f7bcb84f921c94e8680a92d716cb437f
[ "MIT" ]
permissive
n3k0fi5t/Django_Tutorial
6bad82a919d1de0162b34f4c7f753cd126b05cc3
e3953335ca88fe22c68268fd76afb7c4f9bbb55f
refs/heads/master
2023-02-16T07:56:56.416031
2021-01-11T23:17:33
2021-01-11T23:17:33
291,436,266
0
0
null
null
null
null
UTF-8
Python
false
false
537
py
from django.db import models # Create your models here. class Post(models.Model): title = models.CharField(max_length=50) content = models.TextField() date = models.DateTimeField(auto_now_add=True) class Meta: ordered = ['-date', ] class Push(models.Model): pusher = models.CharField(max_length=50) content = models.TextField() post = models.ForeignKey(Post, on_delete=models.CASCADE) class PostImage(models.Model): url = models.TextField(null=False) post = models.ManyToManyField(Post)
55f4af44562a8fc8d1b2bddb29a09dc31b69a781
4913fb7fd32c3dd0da53af7a012569ec2254b35a
/86.继承.py
2b60c2224b77d2ecd852301be1d17e7343045f9e
[]
no_license
puhaoran12/python_note
8a21954050ba3126f2ef6d5d1e4a2904df954b9b
b807e7b7dd90c87cee606f50421400c8f3d0ba03
refs/heads/master
2023-07-07T20:20:04.546541
2021-08-21T02:17:12
2021-08-21T02:17:12
398,439,725
0
0
null
null
null
null
UTF-8
Python
false
false
793
py
# 继承 # 语法格式: # class 子类类名(父类1,父类2...): # pass # 如果一个类没有继承任何类,则默认继承object # 定义子类时,必须在其构造函数中调用父类的构造函数 class Person(object): def __init__(self,name,age): self.name=name self.age=age def info(self): print('姓名:{0},年龄:{1}'.format(self.name,self.age)) class Student(Person): def __init__(self,name,age,score): super().__init__(name,age) self.score=score class Teacher(Person): def __init__(self,name,age,teacheryear): super().__init__(name,age) self.teacheryear=teacheryear stu=Student('张三',20,100) stu.info() print(stu.score) tea=Teacher('李四',50,28) tea.info() print(tea.teacheryear)
5fd4bd2fcda784801ee0548c57a0339b09041fa4
76f1331d083d360fb3822312537e72d4ff9d50b5
/keywords_extraction/multilanguage/util/file_utils.py
654041f49873d8e758e9dc718089da91ad352125
[]
no_license
ZouJoshua/ml_project
2fe0efee49aa1454b04cd83c61455232601720a6
b1d8eb050182cd782bc6f3bb3ac1429fe22ab7b7
refs/heads/master
2021-07-22T10:37:56.452484
2020-05-09T09:54:39
2020-05-09T09:54:39
158,562,016
0
0
null
null
null
null
UTF-8
Python
false
false
696
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ @Author : Joshua @Time : 12/5/19 1:47 PM @File : file_utils.py @Desc : """ from keywords_extraction.multilanguage.core.language import Language def writeLines(filePath, lines): writer = open(filePath, 'w', encoding='utf-8') for line in lines: writer.write(line + '\n') writer.close() def readLines(filePath): reader = open(filePath, 'r', encoding='utf-8') return [line.strip() for line in reader.readlines()] def readLanguages(filePath): return [Language(kv[0], kv[1]) for kv in [line.split('\t') for line in readLines(filePath)]] def readStopwords(filePath): return set(readLines(filePath))
437324b82fcec902626d1fcec0186f7e95d6bed7
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02270/s773469916.py
da9d345dfc9c9101bb74b1f5e3021c1dd24ec32e
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
521
py
import math n, k = map(int, input().split()) num = [int(input()) for i in range(n)] #num.sort() left = max(max(num), math.ceil(sum(num)/k)) right = sum(num) while left < right: mid = (left + right) // 2 track = 1 cnt = 0 flag = 0 for i in num: cnt += i if cnt > mid: track+=1 cnt = i if track > k: flag = 1 break if flag: break if flag == 0: right = mid else: left = mid+1 print(left)
343da047233e132fb28a1787d96c19fa6b312cc8
87b006149b16a3028385fc58cf781f5a12c94ad9
/PyFunceble/query/http_status_code.py
cd4836d29c4b0b24c22337f13be5a6a56335e063
[ "Apache-2.0" ]
permissive
spirillen/PyFunceble
04d03b2678ad46ec81c520a32df5397832414451
3c8f62062bffa0e16d465c150a853af8bf2f2205
refs/heads/master
2023-05-12T04:32:04.587521
2022-11-20T11:19:06
2022-11-20T11:19:06
237,827,167
2
0
Apache-2.0
2021-01-27T10:09:59
2020-02-02T19:50:47
Python
UTF-8
Python
false
false
11,767
py
""" The tool to check the availability or syntax of domain, IP or URL. :: ██████╗ ██╗ ██╗███████╗██╗ ██╗███╗ ██╗ ██████╗███████╗██████╗ ██╗ ███████╗ ██╔══██╗╚██╗ ██╔╝██╔════╝██║ ██║████╗ ██║██╔════╝██╔════╝██╔══██╗██║ ██╔════╝ ██████╔╝ ╚████╔╝ █████╗ ██║ ██║██╔██╗ ██║██║ █████╗ ██████╔╝██║ █████╗ ██╔═══╝ ╚██╔╝ ██╔══╝ ██║ ██║██║╚██╗██║██║ ██╔══╝ ██╔══██╗██║ ██╔══╝ ██║ ██║ ██║ ╚██████╔╝██║ ╚████║╚██████╗███████╗██████╔╝███████╗███████╗ ╚═╝ ╚═╝ ╚═╝ ╚═════╝ ╚═╝ ╚═══╝ ╚═════╝╚══════╝╚═════╝ ╚══════╝╚══════╝ Provides our interface for getting the status code of a given subject. Author: Nissar Chababy, @funilrys, contactTATAfunilrysTODTODcom Special thanks: https://pyfunceble.github.io/#/special-thanks Contributors: https://pyfunceble.github.io/#/contributors Project link: https://github.com/funilrys/PyFunceble Project documentation: https://pyfunceble.readthedocs.io/en/latest/ Project homepage: https://pyfunceble.github.io/ License: :: Copyright 2017, 2018, 2019, 2020, 2022 Nissar Chababy Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import functools import socket from typing import Optional, Union import PyFunceble.facility import PyFunceble.factory import PyFunceble.storage from PyFunceble.converter.url2netloc import Url2Netloc class HTTPStatusCode: """ Provides an interface for the extration of the HTTP status code. """ STD_UNKNOWN_STATUS_CODE: int = 99999999 STD_TIMEOUT: float = 5.0 STD_VERIFY_CERTIFICATE: bool = True STD_ALLOW_REDIRECTS: bool = False _subject: Optional[str] = None _timeout: float = 5.0 _verify_certificate: bool = True _allow_redirects: bool = False _url2netloc: Optional[Url2Netloc] = None def __init__( self, subject: Optional[str] = None, *, timeout: Optional[float] = None, verify_certificate: Optional[bool] = None, allow_redirects: Optional[bool] = None, ) -> None: if subject is not None: self.subject = subject if timeout is not None: self.timeout = timeout else: self.guess_and_set_timeout() if verify_certificate is not None: self.verify_certificate = verify_certificate else: self.guess_and_set_verify_certificate() if allow_redirects is not None: self.allow_redirects = allow_redirects else: self.allow_redirects = self.STD_ALLOW_REDIRECTS self._url2netloc = Url2Netloc() def ensure_subject_is_given(func): # pylint: disable=no-self-argument """ Ensures that the subject is given before running the decorated method. :raise TypeError: If the subject is not a string. """ @functools.wraps(func) def wrapper(self, *args, **kwargs): if not isinstance(self.subject, str): raise TypeError( f"<self.subject> should be {str}, {type(self.subject)} given." ) return func(self, *args, **kwargs) # pylint: disable=not-callable return wrapper @property def subject(self) -> Optional[str]: """ Provides the current state of the :code:`_subject` attribute. """ return self._subject @subject.setter def subject(self, value: str) -> None: """ Sets the subject to work with. :param value: The subject to set. :raise TypeError: When the given :code:`value` is not a :py:class:`str`. :raise ValueError: When the given :code:`value` is empty. """ if not isinstance(value, str): raise TypeError(f"<value> should be {str}, {type(value)} given.") if not value: raise ValueError("<value> should not be empty.") self._subject = value def set_subject(self, value: str) -> "HTTPStatusCode": """ Sets the subject to work with. :param value: The subject to set. """ self.subject = value return self @property def timeout(self) -> float: """ Provides the current state of the :code:`_timeout` attribute. """ return self._timeout @timeout.setter def timeout(self, value: Union[float, int]) -> None: """ Sets the timeout to apply. :param value: The timeout to apply. :raise TypeError: When the given :code:`value` is not a :py:class:`int` nor :py:class:`float`. :raise ValueError: When the given :code:`value` is less than `1`. """ if not isinstance(value, (int, float)): raise TypeError(f"<value> should be {int} or {float}, {type(value)} given.") if value < 0: raise ValueError(f"<value> ({value!r}) shouldn't be less than 0.") self._timeout = float(value) def set_timeout(self, value: Union[float, int]) -> "HTTPStatusCode": """ Sets the timeout to apply. :param value: The timeout to apply. """ self.timeout = value return self def guess_and_set_timeout(self) -> "HTTPStatusCode": """ Tries to guess and set the timeout from the configuration. """ if PyFunceble.facility.ConfigLoader.is_already_loaded(): self.timeout = PyFunceble.storage.CONFIGURATION.lookup.timeout else: self.timeout = self.STD_TIMEOUT return self @property def verify_certificate(self) -> bool: """ Provides the current state of the :code:`verify_certificate` attribute. """ return self._verify_certificate @verify_certificate.setter def verify_certificate(self, value: bool) -> None: """ Sets the value of the :code:`verify_certificate` variable. :param value: The value to set. :raise TypeError: When the given :code:`value` is not a :py:class:`bool`. """ if not isinstance(value, bool): raise TypeError(f"<value> should be {bool}, {type(value)} given.") self._verify_certificate = value def set_verify_certificate(self, value: bool) -> "HTTPStatusCode": """ Sets the value of the :code:`verify_certificate` variable. :param value: The value to set. """ self.verify_certificate = value return self def guess_and_set_verify_certificate(self) -> "HTTPStatusCode": """ Tries to guess and set the :code:`verify_certificate` attribute. """ if PyFunceble.facility.ConfigLoader.is_already_loaded(): self.verify_certificate = bool( PyFunceble.storage.CONFIGURATION["verify_ssl_certificate"] ) else: self.verify_certificate = self.STD_VERIFY_CERTIFICATE return self @property def allow_redirects(self) -> bool: """ Provides the current state of the :code:`_allow_redirects` attribute. """ return self._allow_redirects @allow_redirects.setter def allow_redirects(self, value: bool) -> None: """ Sets the value of the :code:`verify_certificate` variable. :param value: The value to set. :raise TypeError: When the given :code:`value` is not a :py:class:`bool`. """ if not isinstance(value, bool): raise TypeError(f"<value> should be {bool}, {type(value)} given.") self._allow_redirects = value def set_allow_redirects(self, value: bool) -> "HTTPStatusCode": """ Sets the value of the :code:`verify_certificate` variable. :param value: The value to set. """ self.allow_redirects = value return self @ensure_subject_is_given def get_status_code(self) -> int: """ Provides the status code. .. note:: The HTTP status code provided will differs regarding the following conditions. Assuming, that :code:`allow_redirects` is set to :py:class:`False`, you will be provided the following: - :code:`http://example.org (302) -> https://example.org (200) ===> 200` - :code:`http://example.org (302) -> https://test.example.rog (200) ===> 302` - :code:`http://example.org (302) -> https://test.example.org (301) -> https://example.org (200) ===> 302 On the other site if the :code:`allow_redirects` property is set to :py:class:`True`, this method will provide the status of the last one in the redirection order. In case of any error, this method will provide the default one. """ # pylint: disable=line-too-long try: req = PyFunceble.factory.Requester.get( self.subject, timeout=self.timeout, verify=self.verify_certificate, allow_redirects=True, ) first_origin = self._url2netloc.set_data_to_convert( self.subject ).get_converted() if len(req.history) > 1: final_origin = self._url2netloc.set_data_to_convert( req.history[1].url ).get_converted() else: final_origin = self._url2netloc.set_data_to_convert( req.url ).get_converted() if ( not self.allow_redirects and first_origin != final_origin and req.history ): return req.history[0].status_code return req.status_code except ( PyFunceble.factory.Requester.exceptions.RequestException, PyFunceble.factory.Requester.exceptions.InvalidSchema, PyFunceble.factory.Requester.exceptions.InvalidURL, PyFunceble.factory.Requester.exceptions.MissingSchema, socket.timeout, PyFunceble.factory.Requester.urllib3_exceptions.InvalidHeader, ): pass return self.STD_UNKNOWN_STATUS_CODE
b6c3622f32e6ca37c49c9b38c97cdb597eb83ca8
d9c0a55dfc3a87e4166f3ee73d60d302730278d1
/board/urls.py
2215b2f3120742acd4a673f42981a768205a51a5
[]
no_license
mzazakeith/codeboard
358872794b1b2c35886bde8c26631e7d4877883c
f73b9a303d6ab5984c4ce73684e9ed34ceff4fe4
refs/heads/development
2020-03-25T15:59:23.795795
2018-08-10T07:20:36
2018-08-10T07:20:36
143,910,011
0
0
null
2018-08-10T07:20:37
2018-08-07T18:07:48
Python
UTF-8
Python
false
false
625
py
from django.conf.urls import url, include from . import views urlpatterns = [ url(r'^$', views.index, name='index'), url(r'^home$', views.home, name='home'), url(r'^new-service$', views.new_service, name='new-service'), url(r'^userprofile/(?P<user_id>\d+)', views.userprofile, name='profile'), url(r'^forum$', views.forum, name='forum'), url(r'^comment/(?P<topic_id>\d+)', views.comment, name='comment'), url(r'^read/(?P<msg_id>\d+)', views.read, name='read'), url(r'^rate/(?P<user_id>\d+)', views.rate, name='rate'), url(r'^all-services/', views.get_services, name='all-services') ]
5d43aaf753ce4267514d56d9a4f3b9e3b905f9c2
3d989666e6ceb2abc9175dcf7b1d0c1f8c76d205
/py_solution/p119_yanghui_ii.py
610dda33ec40d7516cd4cee381295e6206749b63
[]
no_license
dengshilong/leetcode
00ae0898b4645efd1de69a13f2fa92606e899297
5ab258f04771db37a3beb3cb0c490a06183f7b51
refs/heads/master
2021-01-10T11:58:10.396399
2020-04-10T12:10:54
2020-04-10T12:10:54
47,912,974
0
0
null
null
null
null
UTF-8
Python
false
false
576
py
class Solution(object): def getRow(self, rowIndex): """ :type rowIndex: int :rtype: List[int] """ res = [0] * (rowIndex + 1) res[0] = 1 for i in range(1, rowIndex + 1): for j in range(i, 0, -1): if j == i: res[j] = 1 elif j == 0: res[j] = 1 else: res[j] = res[j] + res[j - 1] return res if __name__ == "__main__": solution = Solution() assert solution.getRow(3) == [1, 3, 3, 1]
0e26994af468ecff3062e2111115bd78d92a4d34
2869eb01810389ab7b64355ec189800e7b1d49b9
/picoCTF 2021/Cryptography/ddes/ddes.py
d417d6774654db27ccb697bcb42c0ffd37d83515
[]
no_license
Giantpizzahead/ctf-archive
096b1673296510bddef9f284700ebdb0e76d71a7
5063cd2889cd300aade440429faf9c4ca68511ef
refs/heads/master
2021-12-28T14:23:33.598960
2021-12-20T17:23:55
2021-12-20T17:23:55
252,905,854
1
0
null
2021-12-20T17:14:05
2020-04-04T04:11:24
C
UTF-8
Python
false
false
1,023
py
#!/usr/bin/python3 -u from Crypto.Cipher import DES import binascii import itertools import random import string def pad(msg): block_len = 8 over = len(msg) % block_len pad = block_len - over return (msg + " " * pad).encode() def generate_key(): return pad("".join(random.choice(string.digits) for _ in range(6))) FLAG = open("flag").read().rstrip() KEY1 = generate_key() KEY2 = generate_key() def get_input(): try: res = binascii.unhexlify(input("What data would you like to encrypt? ").rstrip()).decode() except: res = None exit(0) return res def double_encrypt(m): msg = pad(m) cipher1 = DES.new(KEY1, DES.MODE_ECB) enc_msg = cipher1.encrypt(msg) cipher2 = DES.new(KEY2, DES.MODE_ECB) return binascii.hexlify(cipher2.encrypt(enc_msg)).decode() print("Here is the flag:") print(double_encrypt(FLAG)) while True: inputs = get_input() if inputs: print(double_encrypt(inputs)) else: print("Invalid input.")
b1eb29ee864eccdeb3ab8cfa998a45eb742f03e2
44bbfe1c9a7f16e632cdd27c2de058033b33ea6d
/mayan/apps/document_indexing/migrations/0013_auto_20170714_2133.py
6ccaeb6689a30d2b114e6f833b74cc71243d8372
[ "Apache-2.0", "ISC", "MIT" ]
permissive
lxny2004/open-paperless
34025c3e8ac7b4236b0d8fc5ca27fc11d50869bc
a8b45f8f0ee5d7a1b9afca5291c6bfaae3db8280
refs/heads/master
2020-04-27T04:46:25.992405
2019-03-06T03:30:15
2019-03-06T03:30:15
174,064,366
0
0
NOASSERTION
2019-03-06T03:29:20
2019-03-06T03:29:20
null
UTF-8
Python
false
false
480
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.7 on 2017-07-14 21:33 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('document_indexing', '0012_auto_20170530_0728'), ] operations = [ migrations.AlterModelOptions( name='index', options={'ordering': ('label',), 'verbose_name': 'Index', 'verbose_name_plural': 'Indexes'}, ), ]
b62113cd03cc7ab736d4f927336349eb36009d71
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2606/59018/259657.py
cd4fd07059a27026b20e660f67c13043d6659581
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
93
py
a1=input()[1:-2].split(',') a=[int(y) for y in a1] target=int(input()) print(a.index(target))
4eb91ee482ea775363eefe35c1d564339ab6ae90
f6688132ec14a9d03c8bb05e85819f810fd3e4e6
/tfold/object_detection/protos/ssd_pb2.py
4e8d32ed2521c56c9b2a282a8c96024adf452b5d
[ "Apache-2.0" ]
permissive
mariusionescu/tfold
44515b9eba027a8d4a9265e6f7299dc08294dc42
b6a9913d29a62326bfc3086fa14ed317d1e02a0a
refs/heads/master
2020-04-08T19:59:39.676558
2018-12-05T19:47:57
2018-12-05T19:47:57
159,679,441
0
0
Apache-2.0
2018-11-29T14:33:13
2018-11-29T14:33:12
null
UTF-8
Python
false
true
23,985
py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: tfold.object_detection/protos/ssd.proto import sys _b = sys.version_info[0] < 3 and (lambda x: x) or (lambda x: x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from tfold.object_detection.protos import anchor_generator_pb2 as object__detection_dot_protos_dot_anchor__generator__pb2 from tfold.object_detection.protos import box_coder_pb2 as object__detection_dot_protos_dot_box__coder__pb2 from tfold.object_detection.protos import box_predictor_pb2 as object__detection_dot_protos_dot_box__predictor__pb2 from tfold.object_detection.protos import hyperparams_pb2 as object__detection_dot_protos_dot_hyperparams__pb2 from tfold.object_detection.protos import image_resizer_pb2 as object__detection_dot_protos_dot_image__resizer__pb2 from tfold.object_detection.protos import matcher_pb2 as object__detection_dot_protos_dot_matcher__pb2 from tfold.object_detection.protos import losses_pb2 as object__detection_dot_protos_dot_losses__pb2 from tfold.object_detection.protos import post_processing_pb2 as object__detection_dot_protos_dot_post__processing__pb2 from tfold.object_detection.protos import \ region_similarity_calculator_pb2 as object__detection_dot_protos_dot_region__similarity__calculator__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='object_detection/protos/ssd.proto', package='object_detection.protos', syntax='proto2', serialized_options=None, serialized_pb=_b( '\n!object_detection/protos/ssd.proto\x12\x17object_detection.protos\x1a.object_detection/protos/anchor_generator.proto\x1a\'object_detection/protos/box_coder.proto\x1a+object_detection/protos/box_predictor.proto\x1a)object_detection/protos/hyperparams.proto\x1a+object_detection/protos/image_resizer.proto\x1a%object_detection/protos/matcher.proto\x1a$object_detection/protos/losses.proto\x1a-object_detection/protos/post_processing.proto\x1a:object_detection/protos/region_similarity_calculator.proto\"\xa7\x08\n\x03Ssd\x12\x13\n\x0bnum_classes\x18\x01 \x01(\x05\x12<\n\rimage_resizer\x18\x02 \x01(\x0b\x32%.object_detection.protos.ImageResizer\x12G\n\x11\x66\x65\x61ture_extractor\x18\x03 \x01(\x0b\x32,.object_detection.protos.SsdFeatureExtractor\x12\x34\n\tbox_coder\x18\x04 \x01(\x0b\x32!.object_detection.protos.BoxCoder\x12\x31\n\x07matcher\x18\x05 \x01(\x0b\x32 .object_detection.protos.Matcher\x12R\n\x15similarity_calculator\x18\x06 \x01(\x0b\x32\x33.object_detection.protos.RegionSimilarityCalculator\x12)\n\x1a\x65ncode_background_as_zeros\x18\x0c \x01(\x08:\x05\x66\x61lse\x12 \n\x15negative_class_weight\x18\r \x01(\x02:\x01\x31\x12<\n\rbox_predictor\x18\x07 \x01(\x0b\x32%.object_detection.protos.BoxPredictor\x12\x42\n\x10\x61nchor_generator\x18\x08 \x01(\x0b\x32(.object_detection.protos.AnchorGenerator\x12@\n\x0fpost_processing\x18\t \x01(\x0b\x32\'.object_detection.protos.PostProcessing\x12+\n\x1dnormalize_loss_by_num_matches\x18\n \x01(\x08:\x04true\x12-\n\x1enormalize_loc_loss_by_codesize\x18\x0e \x01(\x08:\x05\x66\x61lse\x12+\n\x04loss\x18\x0b \x01(\x0b\x32\x1d.object_detection.protos.Loss\x12\x1f\n\x10\x66reeze_batchnorm\x18\x10 \x01(\x08:\x05\x66\x61lse\x12\'\n\x18inplace_batchnorm_update\x18\x0f \x01(\x08:\x05\x66\x61lse\x12.\n\x1fweight_regression_loss_by_score\x18\x11 \x01(\x08:\x05\x66\x61lse\x12>\n/use_expected_classification_loss_under_sampling\x18\x12 \x01(\x08:\x05\x66\x61lse\x12#\n\x18min_num_negative_samples\x18\x13 \x01(\x02:\x01\x30\x12*\n\x1f\x64\x65sired_negative_sampling_ratio\x18\x14 \x01(\x02:\x01\x33\x12\"\n\x14\x61\x64\x64_background_class\x18\x15 \x01(\x08:\x04true\"\xf6\x02\n\x13SsdFeatureExtractor\x12\x0c\n\x04type\x18\x01 \x01(\t\x12\x1b\n\x10\x64\x65pth_multiplier\x18\x02 \x01(\x02:\x01\x31\x12\x15\n\tmin_depth\x18\x03 \x01(\x05:\x02\x31\x36\x12>\n\x10\x63onv_hyperparams\x18\x04 \x01(\x0b\x32$.object_detection.protos.Hyperparams\x12:\n+override_base_feature_extractor_hyperparams\x18\t \x01(\x08:\x05\x66\x61lse\x12\x1a\n\x0fpad_to_multiple\x18\x05 \x01(\x05:\x01\x31\x12#\n\x14use_explicit_padding\x18\x07 \x01(\x08:\x05\x66\x61lse\x12\x1c\n\ruse_depthwise\x18\x08 \x01(\x08:\x05\x66\x61lse\x12<\n\x03\x66pn\x18\n \x01(\x0b\x32/.object_detection.protos.FeaturePyramidNetworksJ\x04\x08\x06\x10\x07\"i\n\x16\x46\x65\x61turePyramidNetworks\x12\x14\n\tmin_level\x18\x01 \x01(\x05:\x01\x33\x12\x14\n\tmax_level\x18\x02 \x01(\x05:\x01\x37\x12#\n\x16\x61\x64\x64itional_layer_depth\x18\x03 \x01(\x05:\x03\x32\x35\x36') , dependencies=[object__detection_dot_protos_dot_anchor__generator__pb2.DESCRIPTOR, object__detection_dot_protos_dot_box__coder__pb2.DESCRIPTOR, object__detection_dot_protos_dot_box__predictor__pb2.DESCRIPTOR, object__detection_dot_protos_dot_hyperparams__pb2.DESCRIPTOR, object__detection_dot_protos_dot_image__resizer__pb2.DESCRIPTOR, object__detection_dot_protos_dot_matcher__pb2.DESCRIPTOR, object__detection_dot_protos_dot_losses__pb2.DESCRIPTOR, object__detection_dot_protos_dot_post__processing__pb2.DESCRIPTOR, object__detection_dot_protos_dot_region__similarity__calculator__pb2.DESCRIPTOR, ]) _SSD = _descriptor.Descriptor( name='Ssd', full_name='object_detection.protos.Ssd', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='num_classes', full_name='object_detection.protos.Ssd.num_classes', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='image_resizer', full_name='object_detection.protos.Ssd.image_resizer', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='feature_extractor', full_name='object_detection.protos.Ssd.feature_extractor', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='box_coder', full_name='object_detection.protos.Ssd.box_coder', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='matcher', full_name='object_detection.protos.Ssd.matcher', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='similarity_calculator', full_name='object_detection.protos.Ssd.similarity_calculator', index=5, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='encode_background_as_zeros', full_name='object_detection.protos.Ssd.encode_background_as_zeros', index=6, number=12, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='negative_class_weight', full_name='object_detection.protos.Ssd.negative_class_weight', index=7, number=13, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(1), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='box_predictor', full_name='object_detection.protos.Ssd.box_predictor', index=8, number=7, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='anchor_generator', full_name='object_detection.protos.Ssd.anchor_generator', index=9, number=8, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='post_processing', full_name='object_detection.protos.Ssd.post_processing', index=10, number=9, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='normalize_loss_by_num_matches', full_name='object_detection.protos.Ssd.normalize_loss_by_num_matches', index=11, number=10, type=8, cpp_type=7, label=1, has_default_value=True, default_value=True, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='normalize_loc_loss_by_codesize', full_name='object_detection.protos.Ssd.normalize_loc_loss_by_codesize', index=12, number=14, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='loss', full_name='object_detection.protos.Ssd.loss', index=13, number=11, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='freeze_batchnorm', full_name='object_detection.protos.Ssd.freeze_batchnorm', index=14, number=16, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='inplace_batchnorm_update', full_name='object_detection.protos.Ssd.inplace_batchnorm_update', index=15, number=15, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='weight_regression_loss_by_score', full_name='object_detection.protos.Ssd.weight_regression_loss_by_score', index=16, number=17, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='use_expected_classification_loss_under_sampling', full_name='object_detection.protos.Ssd.use_expected_classification_loss_under_sampling', index=17, number=18, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='min_num_negative_samples', full_name='object_detection.protos.Ssd.min_num_negative_samples', index=18, number=19, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='desired_negative_sampling_ratio', full_name='object_detection.protos.Ssd.desired_negative_sampling_ratio', index=19, number=20, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(3), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='add_background_class', full_name='object_detection.protos.Ssd.add_background_class', index=20, number=21, type=8, cpp_type=7, label=1, has_default_value=True, default_value=True, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=469, serialized_end=1532, ) _SSDFEATUREEXTRACTOR = _descriptor.Descriptor( name='SsdFeatureExtractor', full_name='object_detection.protos.SsdFeatureExtractor', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='type', full_name='object_detection.protos.SsdFeatureExtractor.type', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='depth_multiplier', full_name='object_detection.protos.SsdFeatureExtractor.depth_multiplier', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(1), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='min_depth', full_name='object_detection.protos.SsdFeatureExtractor.min_depth', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=True, default_value=16, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='conv_hyperparams', full_name='object_detection.protos.SsdFeatureExtractor.conv_hyperparams', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='override_base_feature_extractor_hyperparams', full_name='object_detection.protos.SsdFeatureExtractor.override_base_feature_extractor_hyperparams', index=4, number=9, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='pad_to_multiple', full_name='object_detection.protos.SsdFeatureExtractor.pad_to_multiple', index=5, number=5, type=5, cpp_type=1, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='use_explicit_padding', full_name='object_detection.protos.SsdFeatureExtractor.use_explicit_padding', index=6, number=7, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='use_depthwise', full_name='object_detection.protos.SsdFeatureExtractor.use_depthwise', index=7, number=8, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='fpn', full_name='object_detection.protos.SsdFeatureExtractor.fpn', index=8, number=10, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=1535, serialized_end=1909, ) _FEATUREPYRAMIDNETWORKS = _descriptor.Descriptor( name='FeaturePyramidNetworks', full_name='object_detection.protos.FeaturePyramidNetworks', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='min_level', full_name='object_detection.protos.FeaturePyramidNetworks.min_level', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=True, default_value=3, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='max_level', full_name='object_detection.protos.FeaturePyramidNetworks.max_level', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=True, default_value=7, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='additional_layer_depth', full_name='object_detection.protos.FeaturePyramidNetworks.additional_layer_depth', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=True, default_value=256, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=1911, serialized_end=2016, ) _SSD.fields_by_name['image_resizer'].message_type = object__detection_dot_protos_dot_image__resizer__pb2._IMAGERESIZER _SSD.fields_by_name['feature_extractor'].message_type = _SSDFEATUREEXTRACTOR _SSD.fields_by_name['box_coder'].message_type = object__detection_dot_protos_dot_box__coder__pb2._BOXCODER _SSD.fields_by_name['matcher'].message_type = object__detection_dot_protos_dot_matcher__pb2._MATCHER _SSD.fields_by_name[ 'similarity_calculator'].message_type = object__detection_dot_protos_dot_region__similarity__calculator__pb2._REGIONSIMILARITYCALCULATOR _SSD.fields_by_name['box_predictor'].message_type = object__detection_dot_protos_dot_box__predictor__pb2._BOXPREDICTOR _SSD.fields_by_name[ 'anchor_generator'].message_type = object__detection_dot_protos_dot_anchor__generator__pb2._ANCHORGENERATOR _SSD.fields_by_name[ 'post_processing'].message_type = object__detection_dot_protos_dot_post__processing__pb2._POSTPROCESSING _SSD.fields_by_name['loss'].message_type = object__detection_dot_protos_dot_losses__pb2._LOSS _SSDFEATUREEXTRACTOR.fields_by_name[ 'conv_hyperparams'].message_type = object__detection_dot_protos_dot_hyperparams__pb2._HYPERPARAMS _SSDFEATUREEXTRACTOR.fields_by_name['fpn'].message_type = _FEATUREPYRAMIDNETWORKS DESCRIPTOR.message_types_by_name['Ssd'] = _SSD DESCRIPTOR.message_types_by_name['SsdFeatureExtractor'] = _SSDFEATUREEXTRACTOR DESCRIPTOR.message_types_by_name['FeaturePyramidNetworks'] = _FEATUREPYRAMIDNETWORKS _sym_db.RegisterFileDescriptor(DESCRIPTOR) Ssd = _reflection.GeneratedProtocolMessageType('Ssd', (_message.Message,), dict( DESCRIPTOR=_SSD, __module__='object_detection.protos.ssd_pb2' # @@protoc_insertion_point(class_scope:object_detection.protos.Ssd) )) _sym_db.RegisterMessage(Ssd) SsdFeatureExtractor = _reflection.GeneratedProtocolMessageType('SsdFeatureExtractor', (_message.Message,), dict( DESCRIPTOR=_SSDFEATUREEXTRACTOR, __module__='object_detection.protos.ssd_pb2' # @@protoc_insertion_point(class_scope:object_detection.protos.SsdFeatureExtractor) )) _sym_db.RegisterMessage(SsdFeatureExtractor) FeaturePyramidNetworks = _reflection.GeneratedProtocolMessageType('FeaturePyramidNetworks', (_message.Message,), dict( DESCRIPTOR=_FEATUREPYRAMIDNETWORKS, __module__='object_detection.protos.ssd_pb2' # @@protoc_insertion_point(class_scope:object_detection.protos.FeaturePyramidNetworks) )) _sym_db.RegisterMessage(FeaturePyramidNetworks) # @@protoc_insertion_point(module_scope)
4bec73da24b04e8ce1af04ca95cda3cfc8369b6e
9dab41a71bf19a9ad17ee3e9f77c0f58aebd1d6d
/python/uline/uline/uline/handlers/api/risk/urls.py
1cf460fe48872c54f9c6f0ee70bdc2f31883a7c4
[]
no_license
apollowesley/Demo
f0ef8ec6c4ceb0aec76771da8dd9a62fb579eac8
471c4af95d3a7222d6933afc571a8e52e8fe4aee
refs/heads/master
2021-02-15T04:01:51.590697
2018-01-29T01:44:29
2018-01-29T01:44:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
241
py
#!/usr/bin/env python # -*- coding: utf-8 -*- from tornado.web import URLSpec as url from uline.handlers.api.risk.alipay_risk import AlipayTransactionRiskNotify # 前缀/api/fee/ urls = [ url(r'/alipay', AlipayTransactionRiskNotify) ]
50b551d144ecadac213a7c075f1701bc50f5ea45
e64b6966665a0964e382953a96df1ebe1a41cf10
/0001-0100/0096-Unique Binary Search Trees/0096-Unique Binary Search Trees.py
277969006a390820311ba754da3b175119ed218e
[ "MIT" ]
permissive
deepbas/LeetCode
8dfbb2b0b88b32c01033e6eabd8a3641c9a57083
a93f907f03cb3861e6858370f57129e01563fe5a
refs/heads/master
2020-08-01T14:14:38.649057
2019-09-09T01:51:42
2019-09-09T01:51:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
233
py
class Solution: def numTrees(self, n: int) -> int: dp = [0] * (n + 1) dp[0] = 1 for j in range(1, n + 1): for i in range(j): dp[j] += dp[i] * dp[j - i - 1] return dp[n]
412857054cb500dfa2b27027186cf74f4f227492
25ebc03b92df764ff0a6c70c14c2848a49fe1b0b
/daily/20180525/example_structlog/fixedlog/__init__.py
f62cd854d6508bd55d2fb0d39b93de3b120d5ff5
[]
no_license
podhmo/individual-sandbox
18db414fafd061568d0d5e993b8f8069867dfcfb
cafee43b4cf51a321f4e2c3f9949ac53eece4b15
refs/heads/master
2023-07-23T07:06:57.944539
2023-07-09T11:45:53
2023-07-09T11:45:53
61,940,197
6
0
null
2022-10-19T05:01:17
2016-06-25T11:27:04
Python
UTF-8
Python
false
false
340
py
import structlog def get_logger(name, *args, **kwargs): logger = structlog.get_logger(name, source=name) return logger DEFAULT_PROCESSORS = [ structlog.processors.JSONRenderer(), ] def setup(*args, **kwargs): kwargs["processors"] = kwargs.pop("processors", DEFAULT_PROCESSORS) structlog.configure(*args, **kwargs)
bb02b542b17a538bf4ce6df589bf32f9432df22d
010c5fbc97731286be00028ff33fc981d943bca3
/primal/src/code/impute/impute/dev/plot_segments.py
230cd92d5c372b17af8ef68bb5ce21fcfd9e04d8
[]
no_license
orenlivne/ober
6ce41e0f75d3a8baebc53e28d7f6ae4aeb645f30
810b16b2611f32c191182042240851152784edea
refs/heads/master
2021-01-23T13:48:49.172653
2014-04-03T13:57:44
2014-04-03T13:57:44
6,902,212
7
1
null
null
null
null
UTF-8
Python
false
false
347
py
''' Created on Jan 31, 2013 @author: oren ''' import sys, matplotlib.pylab as P, numpy as np if __name__ == '__main__': s = np.loadtxt(sys.argv[1]) P.figure(1) P.clf() P.hist((s[:, 3] - s[:, 2]) / 1e6, 50) P.xlabel('Length [Mbp]') P.ylabel('Frequency') P.title('IBD Segment Length Distribution in the Hutterites')
2c797dafb38c53aaf146fd45cba67212fe584319
dacb2bba2c91877c5157ccb8ab34e112abfea0ee
/projects/project_12/src/navigation/scripts/waypoint_logger.py
15828bacbbada3e4a83c3efa3875b7e5f4697bdd
[]
no_license
amuamushu/projects-2020-2021
7fd4e29a8f51406ded59a97cd878a5752ffc700b
f1c385e46d2d5475b28dec91b57a933ac81c23c5
refs/heads/main
2023-04-01T11:47:55.935278
2021-03-28T00:37:29
2021-03-28T00:37:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,538
py
#!/usr/bin/env python import pandas as pd import rospy from nav_msgs.msg import Odometry class WaypointLogger: def __init__(self): self.output_name = rospy.get_param("~wp_log_output", "saved_waypoints.csv") self.odom_topic = rospy.get_param("~odom_topic", "/vehicle/odom") # save waypoints from odometry in csv self.wps = [] self.current_count = 0 self.logging_time = 100 rospy.Subscriber(self.odom_topic, Odometry, self.odom_callback) rospy.loginfo("Started Odometry") def odom_callback(self, data): waypoint = (data.pose.pose.position.x, data.pose.pose.position.y, data.pose.pose.position.z, data.pose.pose.orientation.x, data.pose.pose.orientation.y, data.pose.pose.orientation.z, data.pose.pose.orientation.w) self.wps.append(waypoint) # Save waypoint logs every self.logging_time iterations if self.current_count % self.logging_time == 0: rospy.logerr(f"saving odometry logs to {self.output_name}") self.df_logs = pd.DataFrame(self.wps, columns=["x", "y", "z", "qx", "qy", "qz", "qw"]) self.df_logs.to_csv(self.output_name, index=False) self.current_count += 1 if __name__ == '__main__': try: rospy.init_node('waypoint_logger', anonymous=True) WaypointLogger() rospy.spin() except rospy.ROSInterruptException: pass
2d38b298243ab9608a59b9b5c60b83576b6a368b
25ebc03b92df764ff0a6c70c14c2848a49fe1b0b
/daily/20200414/codes/output/code111.py
e947c90eb401915b8fe4acb6b8e2111b71fd0060
[]
no_license
podhmo/individual-sandbox
18db414fafd061568d0d5e993b8f8069867dfcfb
cafee43b4cf51a321f4e2c3f9949ac53eece4b15
refs/heads/master
2023-07-23T07:06:57.944539
2023-07-09T11:45:53
2023-07-09T11:45:53
61,940,197
6
0
null
2022-10-19T05:01:17
2016-06-25T11:27:04
Python
UTF-8
Python
false
false
410
py
import pygal box_plot = pygal.Box(box_mode="pstdev") box_plot.title = 'V8 benchmark results' box_plot.add('Chrome', [6395, 8212, 7520, 7218, 12464, 1660, 2123, 8607]) box_plot.add('Firefox', [7473, 8099, 11700, 2651, 6361, 1044, 3797, 9450]) box_plot.add('Opera', [3472, 2933, 4203, 5229, 5810, 1828, 9013, 4669]) box_plot.add('IE', [43, 41, 59, 79, 144, 136, 34, 102]) print(box_plot.render(is_unicode=True))
afb9fc8593fbbc1f50b77535b5f02b2d020e9683
fce8a56e09739bad6b0953fc3d890292bb2b7f31
/RedditScraperService/FileWriting.py
30dcc3aaadff30e3bffd6fc5040aac23ee460864
[]
no_license
whorst/WsbInvesting
d69f84af2e9bd81560ee8b88d7e882f022350aae
e48ea1a2f3434ab3084746ecce4012c656800280
refs/heads/master
2022-11-26T00:23:24.887989
2020-08-06T03:04:16
2020-08-06T03:04:16
284,287,474
0
1
null
null
null
null
UTF-8
Python
false
false
623
py
def writeRidiculouslyHighOrLowToFile(comment): outFile = open("resources/files/ridiculouslyHighOrLowReason", "a") outFile.write(comment) outFile.write("\n\n") outFile.close() def writeClosePositionFailureToFile(msg): outFile = open("resources/files/closePositionFailure", "a") outFile.write(msg+"\n\n") outFile.close() def writeValidPositionsToFile(comment, newPosition): outFile = open("resources/files/commentFileOut", "a") outFile.write("\n\n") outFile.write(comment) outFile.write("\n") outFile.write(newPosition.__str__()) outFile.write("\n\n") outFile.close()
8b9a6b1fa210fa7d31ae50de5904a35240c8326d
7c8da5b1fa05c6d6799aa3d0aef0fadb215f04db
/example/vis.py
97ff149c6340e0ad47c5b8a30f5d81210c343df5
[]
no_license
jackd/tiny_imagenet
a71a7b2a3b328dd6e2a06ec37cf4da365b837d32
1669940c8ec6ecc6d38a7094b4a00a7182020603
refs/heads/master
2020-04-12T08:29:34.255095
2018-12-19T05:12:05
2018-12-19T05:12:05
162,386,086
0
0
null
null
null
null
UTF-8
Python
false
false
821
py
#!/usr/bin/python from __future__ import absolute_import from __future__ import division from __future__ import print_function from PIL import Image import numpy as np import matplotlib.pyplot as plt from tiny_imagenet.manager import TinyImagenetManager, N_VAL_EXAMPLES man = TinyImagenetManager() print(man.extract_dir) ids = man.load_wordnet_ids() indices = {wnid: i for i, wnid in enumerate(ids)} val_ids, bboxes = man.load_val_annotations() wnids = man.load_wordnet_ids() words = man.load_words() class_words = [words[wnid] for wnid in wnids] val_indices = [indices[i] for i in val_ids] for i in range(N_VAL_EXAMPLES): image = Image.open(man.val_image_path(i)) class_index = val_indices[i] plt.imshow(np.array(image)) plt.title('%d: %s' % (class_index, class_words[class_index])) plt.show()
4315e3bdde66e49919a7e3977603a8efd6504cd7
7f7e5e86dde3dbae74d5bc059d31d26184553287
/docs/conf.py
d449e6c2811de5ea921cceb2e1dd288fe4382eb5
[ "MIT" ]
permissive
CRFS/python3-ncplib
9ada935dcecbc5d99ab03a8e90e16c1f1178f136
1f3d527c71749e63a28f772b7b8d9442281889be
refs/heads/master
2023-05-11T09:46:25.292060
2023-04-30T11:34:23
2023-04-30T11:34:23
37,270,803
4
2
MIT
2023-04-30T11:34:24
2015-06-11T15:51:08
Python
UTF-8
Python
false
false
9,604
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # ncplib documentation build configuration file, created by # sphinx-quickstart on Thu Jun 2 08:41:36 2016. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) import os import pkg_resources # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = ["sphinx.ext.autodoc", "sphinx.ext.intersphinx"] intersphinx_mapping = { "python": ("https://docs.python.org/3", None), } # Add any paths that contain templates here, relative to this directory. templates_path = [] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The encoding of source files. # # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = 'ncplib' copyright = '2016, CRFS' author = 'Dave Hall' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The full version, including alpha/beta/rc tags. release = pkg_resources.require("ncplib")[0].version # The short X.Y version. version = '.'.join(str(x) for x in release.split(".")[:2]) # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = "en" # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # # today = '' # # Else, today_fmt is used as the format for a strftime call. # # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = ['_build', '_include', 'Thumbs.db', '.DS_Store'] # The reST default role (used for this markup: `text`) to use for all # documents. # # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. # keep_warnings = False suppress_warnings = ["image.nonlocal_uri"] # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # Use RTD theme locally. if not os.environ.get('READTHEDOCS', None) == 'True': import sphinx_rtd_theme html_theme = "sphinx_rtd_theme" html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # The name for this set of Sphinx documents. # "<project> v<release> documentation" by default. # # html_title = 'ncplib v1.10.3' # A shorter title for the navigation bar. Default is the same as html_title. # # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # # html_logo = None # The name of an image file (relative to this directory) to use as a favicon of # the docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = [] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. # # html_extra_path = [] # If not None, a 'Last updated on:' timestamp is inserted at every page # bottom, using the given strftime format. # The empty string is equivalent to '%b %d, %Y'. # # html_last_updated_fmt = None # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # # html_additional_pages = {} # If false, no module index is generated. # # html_domain_indices = True # If false, no index is generated. # # html_use_index = True # If true, the index is split into individual pages for each letter. # # html_split_index = False # If true, links to the reST sources are added to the pages. # # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'h', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'r', 'sv', 'tr', 'zh' # # html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # 'ja' uses this config value. # 'zh' user can custom change `jieba` dictionary path. # # html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. # # html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = 'ncplibdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'ncplib.tex', 'ncplib Documentation', 'Dave Hall', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # # latex_use_parts = False # If true, show page references after internal links. # # latex_show_pagerefs = False # If true, show URL addresses after external links. # # latex_show_urls = False # Documents to append as an appendix to all manuals. # # latex_appendices = [] # If false, no module index is generated. # # latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'ncplib', 'ncplib Documentation', [author], 1) ] # If true, show URL addresses after external links. # # man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'ncplib', 'ncplib Documentation', author, 'ncplib', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. # # texinfo_appendices = [] # If false, no module index is generated. # # texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. # # texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. # # texinfo_no_detailmenu = False
ad13fe4d4034323194ccb0aa7d343a294e231820
7bb9bd2bdadef1590b2ef7ff309e08abf454e49d
/Tests/pydeijao.py
1c0590f6fee34dceac4db08a964cc1f5fc772b52
[]
no_license
ALREstevam/Curso-de-Python-e-Programacao-com-Python
afdf12717a710f20d4513d5df375ba63ba1e1c19
af6227376736e63810e5979be54eb1c433d669ac
refs/heads/master
2021-09-07T12:11:17.158298
2018-02-22T17:47:19
2018-02-22T17:47:19
87,453,286
0
0
null
null
null
null
UTF-8
Python
false
false
999
py
import requests as Rq from bs4 import BeautifulSoup as Bs link = 'http://www.pfl.unicamp.br/Rest/view/site/cardapio.php' page = Rq.get(link) soup = Bs(page.content, 'html.parser', from_encoding='iso-8859-1') soup = Bs(page.content, 'html.parser') def formatInput(text): text = text.replace('\n', '') text = text.replace('\r', '') text = text.replace(': ', ':') text = text.replace(' - ', '-') text = text.strip() return text html = [] html.append(formatInput(soup.find_all('tr')[0].getText())) for i in range(4, 11): html.append(formatInput(soup.find_all('tr')[i].getText())) print('\n\n') print('{:^50s}'.format(html[0].split('-')[0].upper())) print() print('{:^50s}'.format(html[0].split('-')[1])) print('-'*57) broke = [] for elem in html[2:11]: broke.append(elem.split(':')) for tup in broke: for elem in tup: elem = formatInput(elem) for tup in broke: print('| {:20s} | {:<30s} |'.format(tup[0], tup[1].lower())) print('-'*57) input()
ad841ea0fa5e33e9fa357d47590200fdfde6347c
dadd814aceb7ad6698107dea474f92855f79ba51
/ReplicatedStochasticGradientDescent/rsgd/ReplicatedStochasticGradientDescent.py
978541c75ccda28c54978f4ee9d18d6fed0ffb8a
[ "MIT" ]
permissive
Nico-Curti/rSGD
16e41524be2dd8d4988a5ecd368d3ac72d072ffe
b1f72c06a7f68c04fc97aaeae45d75852b541d42
refs/heads/master
2020-05-20T15:18:33.520000
2019-10-01T14:00:40
2019-10-01T14:00:40
185,641,977
2
0
null
null
null
null
UTF-8
Python
false
false
4,828
py
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function from __future__ import division import pickle import pandas as pd import numpy as np import warnings from scipy.special import erf from .Patterns import Pattern from .misc import _check_string from lib.ReplicatedStochasticGradientDescent.rSGD import _rsgd from lib.ReplicatedStochasticGradientDescent.rSGD import _predict import multiprocessing __package__ = "ReplicatedStochasticGradientDescent" __author__ = ["Nico Curti ([email protected])", "Daniele Dall'Olio ([email protected])"] NTH = multiprocessing.cpu_count() class ReplicatedStochasticGradientDescent(): def __init__(self, K=1, formula='simple', max_iter=1000, seed=135, init_equal=True, waitcenter=False, center=False): ''' ''' if formula not in ['simple', 'hard', 'continuous', 'corrected']: raise TypeError('Invalid iteration scheme. Allowed values are ["simple", "hard", "continuous", "corrected"]') self._K = K self._formula = formula self._max_iter = max_iter self._seed = seed self._init_equal = init_equal self._waitcenter = waitcenter self._center = center self._weights = None self._fit = False def predict(self, X): ''' Predict the new labels computed by ReplicatedStochasticGradientDescent model Parameters ---------- X : array of shape [n_samples, n_features] The input samples. Returns ------- y : array of shape [n_samples] The predicted target values. ''' if not self._fit: raise ValueError('ReplicatedStochasticGradientDescent classifier is not fitted yet. Please use the fit method before predict') if not self._weights: raise ValueError("Weights must be computed before predict function. Use 'fit' function or 'load_weights' to read them from file") if isinstance(X, Pattern): testset = X # use this with c++ version else: testset = Pattern(X, []) # use this with c++ version N, K = np.shape(X) # miss check dimensions predicted_labels = _predict(testset, self._weights.ravel().astype('int64'), N) return predicted_labels def fit(self, X, y=None, parameters={'y' : 1, 'eta': (2., 1.), 'lambda' : (.1, 1.), 'gamma' : (float('Inf'), .01) }, nth=NTH): ''' Fit the ReplicatedStochasticGradientDescent model meta-transformer Parameters ---------- X : array-like of shape (n_samples, n_features) The training input samples. y : array-like, shape (n_samples,) The target values (integers that correspond to classes in classification, real numbers in regression). Returns ------- self : object Returns self. ''' self._fit = False if isinstance(X, Pattern): pattern = X else: pattern = Pattern(X, y) self._weights = _rsgd(pattern=pattern.pattern, K=self._K, y=parameters['y'], eta=parameters['eta'], lamda=parameters['lambda'], gamma=parameters['gamma'], formula=self._formula, seed=self._seed, max_iter=self._max_iter, init_equal=self._init_equal, waitcenter=self._waitcenter, center=self._center, nth=nth ) self._fit = True return self def load_weights(self, weightfile, delimiter='\t', binary=False): ''' Load weights from file Parameters ---------- weightfile : string Filename of weights delimiter : char Separator for ascii loading binary : bool Switch between binary and ascii loading style Returns ------- self ''' if binary: with open(weightfile, 'rb') as fp: self._weights = pickle.load(fp) else: self._weights = pd.read_csv(weightfile, sep=delimiter, header=None).values.tolist() self._fit = True return self def save_weights(self, weightfile, delimiter='\t', binary=False): ''' Load weights from file Parameters ---------- weightfile : string Filename to dump the weights delimiter : char Separator for ascii dump binary : bool Switch between binary and ascii dumping style ''' if binary: with open(weightfile, 'wb') as fp: pickle.dump(self._weights, fp) else: pd.DataFrame(self._weights).to_csv(weightfile, sep=delimiter, header=False, index=False) def __repr__(self): class_name = self.__class__.__name__ return '<{} Class>'.format(class_name)
5e9517f7cd2ef1665d41f8b905ff72df96c9955c
6e5ab77fee1fb4a0310213dd8c6dd8601828b1b9
/Algorithm/Swea/D3_10761.py
32b83f64fe69ec3ebfcdef0f23b68b5069769425
[]
no_license
hongyong3/TIL
36d031c0da9e3e6db3eebb977bd3e12df00a849f
7f1492128e957a78fc95b255f4f7f2978161e471
refs/heads/master
2023-08-19T09:16:03.231757
2023-08-18T09:38:47
2023-08-18T09:38:47
162,100,258
1
0
null
2023-02-11T00:52:32
2018-12-17T08:42:42
Jupyter Notebook
UTF-8
Python
false
false
1,755
py
import sys sys.stdin = open("D3_10761_input.txt", "r") def solve1(a, b, ad, bd): if a[0][2] > ad: ad += 1 T = int(input()) for test_case in range(T): data = input().split()[1:] O, B, k = [], [], 1 # [k, name, distance]; 순서, name, 거리 ODist, BDist = 1, 1 ans = 0 while data: if data[0] == 'B': B.append([k, data.pop(0), int(data.pop(0))]) else: O.append([k, data.pop(0), int(data.pop(0))]) k += 1 while O or B: if O and B: if O[0][0] > B[0][0]: if B[0][2] > BDist: BDist += 1 elif B[0][2] == BDist: B.pop(0) else: BDist -= 1 if O[0][2] > ODist: ODist += 1 elif O[0][2] == ODist: pass else: ODist -= 1 else: if O[0][2] > ODist: ODist += 1 elif O[0][2] == ODist: O.pop(0) else: ODist -= 1 if B[0][2] > BDist: BDist += 1 elif B[0][2] == BDist: pass else: BDist -= 1 elif O and not B: if O[0][2] > ODist: ODist += 1 elif O[0][2] == ODist: O.pop(0) else: ODist -= 1 else: if B[0][2] > BDist: BDist += 1 elif B[0][2] == BDist: B.pop(0) else: BDist -= 1 ans += 1 print("#{} {}".format(test_case + 1, ans))
027615d70d9fdcdf0d7bf877bb460b3469d5d748
046207f434966462fff55f634ba5a450d2208534
/APSS/hanoi.py
21b4fc20625f00db38af0fb461694eb31d1690ae
[]
no_license
sungsikyang92/pythonStudy
e293e1ac8af443809f840ccee7052a8f57480b70
26522b5e232ccd9ab25c52122d254aa7249a8fdf
refs/heads/master
2023-07-04T16:58:40.318976
2021-08-04T02:00:27
2021-08-04T02:00:27
365,398,522
0
0
null
null
null
null
UTF-8
Python
false
false
1,495
py
def hanoi_tower(n, start, end): if n == 1: print(start, end) return hanoi_tower(n - 1, start, 6 - start - end) # 1단계 print(start, end) # 2단계 hanoi_tower(n - 1, 6 - start - end, end) # 3단계 n = int(input()) print(2 ** n - 1) hanoi_tower(n, 1, 3) # 하노이의 탑 # 입력: 옮기려는 원반의 갯수 n # 옮길 원반이 현재 있는 출발점 기둥 from_pos # 원반을 옮길 도착점 기둥 to_pos # 옮기는 과정에서 사용할 보조 기둥 aux_pos # 출력: 원반을 옮기는 순서 # def hanoi(n, from_pos, to_pos, aux_pos): # if n == 1: # 원반 한 개를 옮기는 문제면 그냥 옮기면 됨 # print(from_pos, "->", to_pos) # return # # 원반 n - 1개를 aux_pos로 이동(to_pos를 보조 기둥으로) # hanoi(n - 1, from_pos, aux_pos, to_pos) # # 가장 큰 원반을 목적지로 이동 # print(from_pos, "->", to_pos) # # aux_pos에 있는 원반 n-1개를 목적지로 이동(from_pos를 보조 기둥으로) # hanoi(n - 1, aux_pos, to_pos, from_pos) # # print("n = 1") # hanoi(1, 1, 3, 2) # 원반 한 개를 1번 기둥에서 3번 기둥으로 이동(2번을 보조 기둥으로) # print("n = 2") # hanoi(2, 1, 3, 2) # 원반 두 개를 1번 기둥에서 3번 기둥으로 이동(2번을 보조 기둥으로) # print("n = 3") # hanoi(3, 1, 3, 2) # 원반 세 개를 1번 기둥에서 3번 기둥으로 이동(2번을 보조 기둥으로)
a0fc06bf78776729139fe2a1d000a1a3dc8067cd
6c49c40d35d485c6fa7f9b92358b0888751b1dbe
/data/QSO_CIV_catalogs/matchingHam17toKoz17.py
d1e772e4082e9901d45e7d1b9c9c7bb813dfb224
[]
no_license
d80b2t/CIV_CLQs
7f8bfa954f29e9516ddb9ce80c59fffe9ce8235b
95ea176c8f5ab6ee0c19d42aab964ebfd8bd0ce8
refs/heads/master
2020-08-31T20:56:17.168339
2020-07-30T13:35:19
2020-07-30T13:35:19
218,782,627
1
0
null
null
null
null
UTF-8
Python
false
false
3,064
py
import numpy as np import pandas as pd from pandas import DataFrame from astropy.io import fits from astropy.io import ascii from astropy.table import Table ## Hamann et al. (2017) ERQ BOSS DR12 catalog path = '/cos_pc19a_npr/data/ERQs/Hamann2017_CIVcatalog/' filename = 'C4N5REWs_DR12v11_MNRAS.fits' infile = path+filename data_full = fits.open(infile) Ham17_full = data_full[1].data #with fits.open(infile) as data: # df_Ham17 = pd.DataFrame(data[0].data) ## knocking out a couple of objects with bad REW values #Ham17 = Ham17_full[np.where( (Ham17['rew'] >0.) & (Ham17['rew'] < 10000.) )] Ham17 = Ham17_full ## Kozłowski_2017_ApJS_228_9. BOSS DR12 "Value Added" catalog path = '/cos_pc19a_npr/programs/quasars/CIV_CLQs/data/QSO_CIV_catalogs/' filename = 'SDSS-DR12Q-BH_extra.fits' infile = path+filename data_full = fits.open(infile) Koz17_full = data_full[1].data Koz17 = Koz17_full ## astropy Table to pandas DataFrame #2804 ## https://github.com/astropy/astropy/issues/2804 Ham17_table = Table(Ham17) Ham17_df = DataFrame(np.array(Ham17_table)) print('len(Ham17_df)', len(Ham17_df)) Koz17_table = Table(Koz17) ## Have to remove this '5 value' columns in order for the ## DataFrame swith-aroo to work.. Koz17_table.remove_column('PSFFLUX') Koz17_table.remove_column('IVAR_PSFFLUX') Koz17_table.remove_column('PSFMAG') Koz17_table.remove_column('ERR_PSFMAG') ## Some nice DataFrame polish/manipulation Koz17_df = DataFrame(np.array(Koz17_table)) print('len(Koz17_df)', len(Koz17_df)) ## Columns names are case senstive! Koz17_df.rename(columns={'SDSS_NAME':'sdss_name'}, inplace=True) ## Testing on a wee bit of the DataFrame... mini_merge = pd.merge(Ham17_df[0:100], Koz17_df[0:100], on="sdss_name") The_DF = pd.merge(Ham17_df, Koz17_df, on="sdss_name") ## Just wanting to write a few things out to a simple text file. file1 = open("temp.txt","w+") #for ii in range(len(Koz17)): # if the full catalog is wanted! for ii in range(100): print(ii) name = Ham17[np.where((Koz17['SDSS_NAME'][ii] == Ham17['SDSS_NAME']))]['SDSS_NAME'] REW = Ham17[np.where((Koz17['SDSS_NAME'][ii] == Ham17['SDSS_NAME']))]['rew'] bal_flag_vi = Ham17[np.where((Koz17['SDSS_NAME'][ii] == Ham17['SDSS_NAME']))]['bal_flag_vi'] f1450 = Ham17[np.where((Koz17['SDSS_NAME'][ii] == Ham17['SDSS_NAME']))]['f1450'] if (len(name) > 0 and bal_flag_vi <1) : #print(ii, Koz17['SDSS_NAME'][ii], name, REW, f1450) file1.write(str(ii)+str(Koz17['SDSS_NAME'][ii])+str(we_name)+str(we_rew)) file1.write(" {} {} {} {} {} {} {} {} {} \n".format(ii, name, Koz17['RA'][ii], Koz17['DEC'][ii], #bal_flag_vi, REW, f1450, Koz17['L1350'][ii], Koz17['LBol'][ii], #Koz17['eLBol'][ii], Koz17['nEdd'][ii])) file1.close()
d372b40b45954581e27277427a4693ec3ac1125d
d92ce9a32bf20086e30701585a4e73c1f2469aff
/Programs/dsaenv/lib/python3.6/site-packages/pkg_resources/_vendor/packaging/__init__.py
0a8b952fb5bfc53a50be9c2858538e2322e08730
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
Prem-chouhan/fellowshipProgram_PremsinghChouhan
f61cf4407458f14ef7eb6d80effb25f9592d2552
33e6b57f6c75a80d8a3d1f868d379e85365a1336
refs/heads/master
2020-09-14T12:45:16.269268
2019-12-23T14:24:10
2019-12-23T14:24:10
223,128,906
0
1
null
2020-07-22T11:50:46
2019-11-21T08:47:28
Python
UTF-8
Python
false
false
519
py
# This file is dual licensed under the terms of the Apache License, Version # 2.0, and the BSD License. See the LICENSE file in the root of this inventorymanager # for complete details. from __future__ import absolute_import, division, print_function from .__about__ import ( __author__, __copyright__, __email__, __license__, __summary__, __title__, __uri__, __version__ ) __all__ = [ "__title__", "__summary__", "__uri__", "__version__", "__author__", "__email__", "__license__", "__copyright__", ]
094cca08d2e6669c3f9919555d9985f0bd653d5a
1ed536ef1527e6655217e731f622d643ece49c2b
/scripts/links2fasta.py
1c68c928d99a83eb5b7a1d4e7307d3cfc697cb29
[]
no_license
siping/cgat
de0f7af124eb38c72d7dece78fff83ff92ddbf96
aa4cc85ffdc53998ea1a5ac5516df2d16c254d2e
refs/heads/master
2021-01-22T13:03:18.060139
2013-10-07T15:53:55
2013-10-07T15:53:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
18,378
py
''' links2fasta.py - convert links into alignments ============================================== :Author: Andreas Heger :Release: $Id$ :Date: |today| :Tags: Python Purpose ------- .. todo:: describe purpose of the script. Usage ----- Example:: python links2fasta.py --help Type:: python links2fasta.py --help for command line help. Command line options -------------------- ''' import os import sys import string import re import getopt import tempfile import time import optparse import CGAT.Experiment as E import CGAT.BlastAlignments as BlastAlignments import alignlib import CGAT.Genomics as Genomics import CGAT.Exons as Exons import CGAT.FastaIterator as FastaIterator class Map: def __init__(self): pass def read( self, line ): try: ( self.mToken, self.mOldFrom, self.mOldTo, self.mOldAli, self.mNewFrom, self.mNewTo, self.mNewAli, self.mOldLength, self.mNewLength) = line[:-1].split("\t") except ValueError: raise ValueError("parsing error in line\n%s" % line) (self.mOldFrom, self.mOldTo, self.mNewFrom, self.mNewTo) = \ map(int, (self.mOldFrom, self.mOldTo, self.mNewFrom, self.mNewTo)) self.mMapOld2New = None def expand( self ): if not self.mMapOld2New: self.mMapOld2New = alignlib.makeAlignmentVector() alignlib.AlignmentFormatEmissions( self.mOldFrom, self.mOldAli, self.mNewFrom, self.mNewAli).copy( self.mMapOld2New ) def clear( self ): if self.mMapOld2New: self.mMapOld2New.clear() self.mMapOld2New = None def __str__(self): return string.join(map(str, (self.mToken, self.mOldFrom, self.mOldTo, self.mOldAli, self.mNewFrom, self.mNewTo, self.mNewAli, self.mOldLength, self.mNewLength)), "\t") def ScaleAlignment( alignment, factor ): """scale alignment string.""" data = re.split("[+-]", alignment[1:]) data = map( lambda x: int(x) * factor, data ) signs = [ "+", "-" ] * (1 + len(data) / 2) if alignment[0] == "+": del signs[-1] else: del signs[0] s = map( lambda x,y: "%s%i" % (x,y), signs, data) return string.join(s, "") ##------------------------------------------------------------------------- def Write( map_row2col, row_seq, col_seq, link, no_gaps = False, no_identical = False, min_length = 0, suffix1="", suffix2="", outfile = None, pair_filter = None, format = "fasta" ): """write alignment based on map_row2col.""" status = None filter_status = "new" if map_row2col.getLength() == 0: status = "empty" if not status: f = alignlib.AlignmentFormatExplicit( map_row2col, row_seq, col_seq ) row_from = map_row2col.getRowFrom() row_to = map_row2col.getRowTo() col_from = map_row2col.getColFrom() col_to = map_row2col.getColTo() row_ali, col_ali = f.mRowAlignment, f.mColAlignment if not status: if no_gaps: # remove gaps from fasta r = [] c = [] for x in range(len(row_ali)): if row_ali[x] != "-" and col_ali[x] != "-": r.append( row_ali[x] ) c.append( col_ali[x] ) row_ali = string.join(r, "") col_ali = string.join(c, "") if not status and len(row_ali) < min_length: status = "length" if not status and no_identical: if row_ali == col_ali: status = "identical" if not status: if pair_filter: id = "%s-%s" % (link.mQueryToken, link.mSbjctToken) if id in pair_filter: h = Genomics.GetHID( row_ali + ";" + col_ali ) if h in pair_filter[id]: filter_status = "old" translation1 = Genomics.TranslateDNA2Protein( row_ali ) translation2 = Genomics.TranslateDNA2Protein( col_ali ) if "X" in translation1 or "x" in translation2: status = "stops" else: status = "success" if filter_status == "new": if format == "fasta": print ">%s%s %s %s\n%s\n>%s%s %s %s\n%s" % (link.mQueryToken, suffix1, row_from, row_to, row_ali, link.mSbjctToken, suffix2, col_from, col_to, col_ali ) elif format == "dummy": pass else: raise ValueError("unknown format") if outfile: outfile.write( "%s%s\t%s%s\t%s\t%i\t%s\n" % (link.mQueryToken, suffix1, link.mSbjctToken, suffix2, status, map_row2col.getLength(), filter_status ) ) return status def GetAdjustedBoundaries( id, exons ): """return codon adjusted exon boundaries.""" f, t = exons[id].mPeptideFrom, exons[id].mPeptideTo f += exons[id].frame if id < len(exons) -1: next_frame = exons[id+1].frame else: next_frame = 0 if next_frame: t -= 3 - next_frame return f, t if __name__ == '__main__': parser = E.OptionParser( version = "%prog version: $Id: links2fasta.py 2446 2009-01-27 16:32:35Z andreas $", usage = globals()["__doc__"] ) parser.add_option( "-s", "--sequences", dest="filename_sequences", type="string", help="peptide sequence [Default=%default]" ) parser.add_option( "-f", "--format", dest="format", type="string", help="output format [Default=%default]" ) parser.add_option( "-e", "--expand", dest="expand", action="store_true", help="expand positions from peptide to nucleotide alignment [Default=%default]") parser.add_option( "-m", "--map", dest="filename_map", type="string", help="map alignments [Default=%default]") parser.add_option( "-c", "--codons", dest="require_codons", action="store_true", help="require codons [Default=%default]") parser.add_option( "--one-based-coordinates", dest="one_based_coordinates", action="store_true", help="expect one-based coordinates. The default are zero based coordinates [Default=%default].") parser.add_option( "--no-identical", dest="no_identical", action="store_true", help="do not output identical pairs [Default=%default]" ) parser.add_option( "-g", "--no-gaps", dest="no_gaps", action="store_true", help="remove all gaps from aligned sequences [Default=%default]") parser.add_option( "-x", "--exons", dest="filename_exons", type="string", help="filename with exon boundaries [Default=%default]") parser.add_option( "-o", "--outfile", dest="filename_outfile", type="string", help="filename to save links [Default=%default]") parser.add_option( "--min-length", dest="min_length", type="int", help="minimum length of alignment [Default=%default]") parser.add_option( "--filter", dest="filename_filter", type="string", help="given a set of previous alignments, only write new pairs [Default=%default].") parser.set_defaults( filename_sequences = None, filename_exons = None, filename_map = None, filename_outfile = None, no_gaps = False, format = "fasta", expand = False, require_codons = False, no_identical = False, min_length = 0, report_step = 100, one_based_coordinates = False, filename_filter = None) (options, args) = E.Start( parser, add_mysql_options = True ) t0 = time.time() if options.filename_sequences: sequences = Genomics.ReadPeptideSequences( open(options.filename_sequences, "r") ) else: sequences = {} if options.loglevel >= 1: options.stdlog.write( "# read %i sequences\n" % len(sequences) ) sys.stdout.flush() if options.filename_exons: exons = Exons.ReadExonBoundaries( open(options.filename_exons, "r") ) else: exons = {} if options.loglevel >= 1: options.stdlog.write( "# read %i exons\n" % len(exons) ) sys.stdout.flush() if options.filename_map: map_old2new = {} for line in open(options.filename_map, "r"): if line[0] == "#": continue m = Map() m.read( line ) map_old2new[m.mToken] = m else: map_old2new = {} if options.loglevel >= 1: options.stdlog.write( "# read %i maps\n" % len(map_old2new) ) sys.stdout.flush() if options.filename_filter: if options.loglevel >= 1: options.stdlog.write( "# reading filtering information.\n" ) sys.stdout.flush() map_pair2hids = {} if os.path.exists( options.filename_filter ): infile = open(options.filename_filter, "r") iterator = FastaIterator.FastaIterator( infile ) while 1: cur_record = iterator.next() if cur_record is None: break record1 = cur_record cur_record = iterator.next() if cur_record is None: break record2 = cur_record identifier1 = re.match("(\S+)", record1.title).groups()[0] identifier2 = re.match("(\S+)", record2.title).groups()[0] id = "%s-%s" % (identifier1, identifier2) s = Genomics.GetHID(record1.sequence + ";" + record2.sequence) if id not in map_pair2hids: map_pair2hids[id] = [] map_pair2hids[id].append( s ) infile.close() if options.loglevel >= 1: options.stdlog.write( "# read filtering information for %i pairs.\n" % len(map_pair2hids) ) sys.stdout.flush() else: map_pair2hids = None if options.loglevel >= 1: options.stdlog.write( "# finished input in %i seconds.\n" % (time.time() - t0)) if options.filename_outfile: outfile = open(options.filename_outfile, "w") else: outfile = None map_row2col = alignlib.makeAlignmentVector() tmp1_map_row2col = alignlib.makeAlignmentVector() counts = {} iterations = 0 t1 = time.time() ninput, nskipped, noutput = 0, 0, 0 for link in BlastAlignments.iterator_links( sys.stdin ): iterations += 1 ninput += 1 if options.loglevel >= 1: if (iterations % options.report_step == 0): options.stdlog.write( "# iterations: %i in %i seconds.\n" % (iterations, time.time() - t1) ) sys.stdout.flush() if link.mQueryToken not in sequences or \ link.mSbjctToken not in sequences: nskipped += 1 continue if options.loglevel >= 3: options.stdlog.write( "# read link %s\n" % str(link) ) row_seq = alignlib.makeSequence( sequences[link.mQueryToken] ) col_seq = alignlib.makeSequence( sequences[link.mSbjctToken] ) if options.one_based_coordinates: link.mQueryFrom -= 1 link.mSbjctFrom -= 1 if options.expand: link.mQueryFrom = link.mQueryFrom * 3 link.mSbjctFrom = link.mSbjctFrom * 3 link.mQueryAli = ScaleAlignment( link.mQueryAli, 3 ) link.mSbjctAli = ScaleAlignment( link.mSbjctAli, 3 ) map_row2col.clear() alignlib.AlignmentFormatEmissions( link.mQueryFrom, link.mQueryAli, link.mSbjctFrom, link.mSbjctAli ).copy( map_row2col ) if link.mQueryToken in map_old2new: tmp1_map_row2col.clear() map_old2new[link.mQueryToken].expand() if options.loglevel >= 3: options.stdlog.write( "# combining in row with %s\n" %\ str(alignlib.AlignmentFormatEmissions(map_old2new[link.mQueryToken].mMapOld2New ) )) alignlib.combineAlignment( tmp1_map_row2col, map_old2new[link.mQueryToken].mMapOld2New, map_row2col, alignlib.RR ) map_old2new[link.mQueryToken].clear() alignlib.copyAlignment( map_row2col, tmp1_map_row2col ) if link.mSbjctToken in map_old2new: tmp1_map_row2col.clear() map_old2new[link.mSbjctToken].expand() if options.loglevel >= 3: options.stdlog.write( "# combining in col with %s\n" %\ str(alignlib.AlignmentFormatEmissions(map_old2new[link.mSbjctToken].mMapOld2New ) )) alignlib.combineAlignment( tmp1_map_row2col, map_row2col, map_old2new[link.mSbjctToken].mMapOld2New, alignlib.CR ) map_old2new[link.mSbjctToken].clear() alignlib.copyAlignment( map_row2col, tmp1_map_row2col ) dr = row_seq.getLength() - map_row2col.getRowTo() dc = col_seq.getLength() - map_row2col.getColTo() if dr < 0 or dc < 0: raise ValueError("out of bounds alignment: %s-%s: alignment out of bounds. row=%i col=%i ali=%s" %\ (link.mQueryToken, link.mSbjctToken, row_seq.getLength(), col_seq.getLength(), str(alignlib.AlignmentFormatEmissions(map_row2col)))) if options.loglevel >= 2: options.stdlog.write( str( alignlib.AlignmentFormatExplicit( map_row2col, row_seq, col_seq )) + "\n" ) ## check for incomplete codons if options.require_codons: naligned = map_row2col.getNumAligned() # turned off, while fixing alignlib if naligned % 3 != 0: options.stdlog.write( "# %s\n" % str(map_row2col) ) options.stdlog.write( "# %s\n" % str(link) ) options.stdlog.write( "# %s\n" % str(map_old2new[link.mQueryToken]) ) options.stdlog.write( "# %s\n" % str(map_old2new[link.mSbjctToken]) ) options.stdlog.write( "#\n%s\n" % alignlib.AlignmentFormatExplicit( map_row2col, row_seq, col_seq ) ) raise ValueError("incomplete codons %i in pair %s - %s" % (naligned, link.mQueryToken, link.mSbjctToken)) ## if so desired, write on a per exon level: if exons: if link.mQueryToken not in exons: raise IndexError("%s not found in exons" % (link.mQueryToken)) if link.mSbjctToken not in exons: raise IndexError("%s not found in exons" % (link.mSbjctToken)) exons1 = exons[link.mQueryToken] exons2 = exons[link.mSbjctToken] ## Get overlapping segments segments = Exons.MatchExons( map_row2col, exons1, exons2 ) for a,b in segments: tmp1_map_row2col.clear() # make sure you got codon boundaries. Note that frameshifts # in previous exons will cause the codons to start at positions # different from mod 3. The problem is that I don't know where # the frameshifts occur exactly. The exon boundaries are given # with respect to the cds, which include the frame shifts. # Unfortunately, phase information seems to be incomplete in the input files. from1, to1 = GetAdjustedBoundaries( a, exons1 ) from2, to2 = GetAdjustedBoundaries( b, exons2 ) alignlib.copyAlignment( tmp1_map_row2col, map_row2col, from1+1, to1, from2+1, to2 ) mode = Write( tmp1_map_row2col, row_seq, col_seq, link, no_gaps = options.no_gaps, no_identical = options.no_identical, min_length = options.min_length, suffix1="_%s" % str(a), suffix2="_%s" % str(b), outfile = outfile, pair_filter = map_pair2hid, format = options.format ) if mode not in counts: counts[mode] = 0 counts[mode] += 1 else: mode = Write( map_row2col, row_seq, col_seq, link, min_length = options.min_length, no_gaps = options.no_gaps, no_identical = options.no_identical, outfile = outfile, pair_filter = map_pair2hids, format = options.format ) if mode not in counts: counts[mode] = 0 counts[mode] += 1 noutput += 1 if outfile: outfile.close() if options.loglevel >= 1: options.stdlog.write("# %s\n" % ", ".join( map( lambda x,y: "%s=%i" % (x,y), counts.keys(), counts.values() ) )) options.stdlog.write("# ninput=%i, noutput=%i, nskipped=%i\n" % (ninput, noutput, nskipped) ) E.Stop()
8dcb09f3f8575bdcaa50a1cc60c11410132e1057
8b2e95525139765c5344cc7992203def31b4a300
/Python-PSdrone/DRONEtowple.py
1e7fde360af416ea7e17fcad4989e444ac0f22bb
[]
no_license
tttienthinh/Drone
e84ff2b7dea32346e0717a9597a980e15a43543b
73e98a0e727128a6e290872befe3a42df3d45c7c
refs/heads/master
2022-04-21T20:16:26.169552
2020-04-10T19:31:20
2020-04-10T19:31:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
935
py
from ps_drone import * from threading import Thread class DroneTowple(Thread): def __init__(self): self.drone = Drone() # Start using drone self.drone.startup() # Connects to drone and starts subprocesses self.drone.reset() # Always good, at start while self.drone.getBattery()[0] == -1: time.sleep(0.1) # Waits until the drone has done its reset ''' ICI LE NOM DES PACKAGES ''' self.packages = ['altitude', 'demo', 'pressure_raw', 'wind_speed', 'pwm'] self.drone.setConfig("control vz max", "0.04") self.drone.useDemoMode(False) self.drone.getNDpackage(self.packages) Thread.__init__(self) self.Quit = False self.start() def run(self): input('Entre Enter pour quitter') self.Quit = True self.drone.land() def NavData(self): navData = self.drone.NavData return navData
f41bc5dcd8f481d090853be8b87143d2ea9ff3f8
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/JBkfqYW4iYwmgvwTf_5.py
582e98c416631fbc83dbdb5cd9b9d88f03ac5c67
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
695
py
""" Create a function that returns `True` if a number is prime, and `False` otherwise. A prime number is any positive integer that is evenly divisible by only two divisors: 1 and itself. The first ten prime numbers are: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 ### Examples is_prime(31) ➞ True is_prime(18) ➞ False is_prime(11) ➞ True ### Notes * A prime number has no other factors except 1 and itself. * If a number is odd it is not divisible by an even number. * 1 is not considered a prime number. """ def is_prime(num): if num == 1: return False else: for i in range(2,num): if num%i == 0: return False return True
d0e588e90b6e9d3db72d1392a01a7e6b09d3bdb7
1b5404b8099de74d4e39e0a41b1d04c61defa8d4
/five-words-five-letters/stuff/idea1.py
ed03774f208d9a8f86f2c874a5aa0592ccdb6ad7
[]
no_license
ipeterov/random-stuff
5d07bdcfdcb145d06ed89095f2ad34b70ff0f0bd
dbb38d42331f636919fd149b23783e02ee2c9afb
refs/heads/master
2023-05-14T00:41:51.122251
2023-05-04T12:10:26
2023-05-04T12:10:26
206,028,412
0
0
null
null
null
null
UTF-8
Python
false
false
505
py
import json N_WORDS = 4 with open("data.json") as f: data = json.load(f) words = data["words"] found_words = [] letters = set() while len(found_words) < N_WORDS: for word in words: if set(word).intersection(letters): continue if not found_words: print(f"Trying {word}") found_words.append(word) letters.update(word) break else: found_words = [] letters = set() words = words[1:] print(found_words)
744685a3a5a9654399524c7be7eeb912353c7b3b
e3abf21d5e3aac6de49395db8dae56565198a701
/workon/contrib/flow/redis/consumer.py
758084a6d86ba4b7505738396020753ea64447ba
[ "BSD-3-Clause" ]
permissive
workon-io/django-workon_old
0bcb63025eda5d6815b082d23e95ab22385d6233
be935a07a855b2150b4b81ee87d5041761ff168e
refs/heads/master
2021-08-19T07:24:19.801106
2017-11-25T06:13:00
2017-11-25T06:13:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
994
py
import asyncio from aioredis import create_connection, Channel import websockets async def publish_to_redis(msg, path): # Connect to Redis conn = await create_connection(('localhost', 6379)) # Publish to channel "lightlevel{path}" await conn.execute('publish', 'lightlevel{}'.format(path), msg) async def server(websocket, path): try: while True: # Receive data from "the outside world" message = await websocket.recv() # Feed this data to the PUBLISH co-routine await publish_to_redis(message, path) await asyncio.sleep(1) except websockets.exceptions.ConnectionClosed: print('Connection Closed!') if __name__ == '__main__': # Boiler-plate for the websocket server, running on localhost, port 8765 loop = asyncio.get_event_loop() loop.set_debug(True) ws_server = websockets.serve(server, 'localhost', 8765) loop.run_until_complete(ws_server) loop.run_forever()
f075789d1da3f0e16a12c9a8acfcde09b6e99bf2
8b57c6609e4bf3e6f5e730b7a4a996ad6b7023f0
/models/view_escaping/search.py
e2ff59769f0e7b547699cce159f1c3593f689047
[]
no_license
bullll/splunk
862d9595ad28adf0e12afa92a18e2c96308b19fe
7cf8a158bc8e1cecef374dad9165d44ccb00c6e0
refs/heads/master
2022-04-20T11:48:50.573979
2020-04-23T18:12:58
2020-04-23T18:12:58
258,293,313
2
0
null
null
null
null
UTF-8
Python
false
false
3,501
py
from __future__ import absolute_import from builtins import object from splunk.models.view_escaping.base import STRING_SEARCH_MODE, DEFAULT_SEARCH_ID,POST_SEARCH_MODE from splunk.models.view_escaping.base import SAVED_SEARCH_MODE, TEMPLATE_SEARCH_MODE from splunk.models.view_escaping.drilldown import parseEventHandler from splunk.models.view_escaping.tokendeps import parseTokenDeps class Search(object): def __init__(self, searchMode=STRING_SEARCH_MODE, searchCommand="", earliestTime=None, latestTime=None, id=None, base=None, app=None, cache=None, sampleRatio=None, tokenDeps=None, refresh=None, refreshType=None): self.searchMode = searchMode self.searchCommand = searchCommand self.earliestTime = earliestTime self.latestTime = latestTime self.id = id self.baseSearchId = base self.app = app self.statusBuckets = 0 self.sampleRatio = sampleRatio self.refresh = refresh self.refreshType = refreshType if self.searchMode == POST_SEARCH_MODE and self.baseSearchId == None: self.baseSearchId = DEFAULT_SEARCH_ID self.eventHandlers = [] self.cache = cache self.tokenDeps = tokenDeps def normalizedSearchCommand(self): return self.searchCommand.strip() def createSearchFromSearchXml(searchNode): """ Parses a search from search, dashboard, panel element xml nodes @param searchNode: Lxml representing a form or dashboard element @param id: and optional id to force id to @return: """ opt = dict() base = searchNode.attrib.get('base') if searchNode.find('query') is not None: opt['searchMode'] = TEMPLATE_SEARCH_MODE opt['searchCommand'] = ( searchNode.findtext('query')).replace("\n", " ").replace("\t", " ") sampleRatio = searchNode.findtext('sampleRatio') if sampleRatio is not None: opt['sampleRatio'] = int(sampleRatio) elif searchNode.get('ref') is not None: opt['searchMode'] = SAVED_SEARCH_MODE opt['searchCommand'] = ( searchNode.get('ref')).replace("\n", " ").replace("\t", " ") if searchNode.get('app') is not None: opt['app'] = searchNode.get('app') cacheVal = searchNode.findtext('cache') if cacheVal: opt['cache'] = cacheVal elif not base: return False for nodePair in [('earliest', 'earliestTime'), ('latest', 'latestTime')]: nodeVal = searchNode.findtext(nodePair[0]) if nodeVal: opt[nodePair[1]] = nodeVal refresh = searchNode.findtext('refresh') if refresh is not None: opt['refresh'] = refresh refreshType = searchNode.findtext('refreshType') if refreshType is not None: opt['refreshType'] = refreshType id = searchNode.attrib.get('id') tokenDeps = parseTokenDeps(searchNode) if id: opt['id'] = id if base: opt['base'] = base opt['searchMode'] = POST_SEARCH_MODE if tokenDeps: opt['tokenDeps'] = tokenDeps search = Search(**opt) for evtName in ('progress', 'preview', 'done', 'finalized', 'error', 'fail', 'cancelled'): createEventHandlerFromXml(search, searchNode, evtName) return search def createEventHandlerFromXml(search, searchNode, eventName): node = searchNode.find(eventName) if node is not None: search.eventHandlers.append((eventName, parseEventHandler(node, ('any', 'match'))))
9ce428f475168d006ce5e4484cc7ed838008ff93
3545ee160458acac7452666aa07826b58e144351
/demo/text_recognition/__base__/test_scripts/test_crnn.py
e8f2480000631e7e11685879696526362fa2f576
[ "Apache-2.0" ]
permissive
OCRWorld/DAVAR-Lab-OCR
7cc81af43a0e8f60066e7761d950f509c40cfd46
fb47a96d1a38f5ce634c6f12d710ed5300cc89fc
refs/heads/main
2023-08-29T09:41:19.377628
2021-11-08T11:16:37
2021-11-08T11:16:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,450
py
""" ################################################################################################## # Copyright Info : Copyright (c) Davar Lab @ Hikvision Research Institute. All rights reserved. # Filename : test_crnn.py # Abstract : CRNN Model evaluation config # Current Version: 1.0.0 # Date : 2021-06-11 ################################################################################################## """ import os _base_ = [ '../test_base_setting.py' ] ckpts = list() # model name setting out_name = 'davar_test_crnn' # model parameter dictionary tmp_dict = dict() # experiment Name tmp_dict['Name'] = 'davar_test_crnn' # ===================== model .pth file path ======================== tmp_dict['ModelPath'] = '/data1/workdir/davar_opensource/att_test/CRNN_pretrained-84c6eb23.pth' out_name += '/' + tmp_dict['ModelPath'].split('/')[-2].split('.')[0] # ===================== model config file path ======================== tmp_dict['ConfigPath'] = '/data1/open-source/demo/text_recognition/__base__/res32_bilstm_ctc.py' # ===================== model test mode ======================== tmp_dict['Epochs'] = None ckpts.append(tmp_dict) # save result of the test experiment out_path = os.path.join('/data1/output_dir/sota_exp', out_name + '/') force_test = False force_eval = False do_test = 1 # 1 for test do_eval = 1 test_path = out_path + 'res/' eval_path = out_path + 'eval/'
dc3d16d9e2f41a0ba7b4b953991209736a19d45f
0bc57447bedd04510a94a35cdee5b8ffdf3e5245
/musics/urls.py
4f2331c8f8e2ee46fc5241e057da0295090d012d
[]
no_license
GH-Lim/DRF
243eead15f28bfbae056d01e0e0821058c39ca38
b839df7b8eb1adbc72f31b530700389536551308
refs/heads/master
2020-08-26T12:14:15.010107
2019-10-24T04:37:43
2019-10-24T04:37:43
217,007,653
0
0
null
null
null
null
UTF-8
Python
false
false
1,211
py
from django.urls import path from drf_yasg.views import get_schema_view from drf_yasg import openapi from . import views schema_view = get_schema_view( openapi.Info( title='Music API', default_version='v1', description='음악 관련 API 서비스입니다.', ) ) app_name = 'musics' urlpatterns = [ path('musics/', views.music_list, name='music_list'), path('musics/<int:music_pk>/', views.music_detail, name='music_detail'), path('musics/<int:music_pk>/comments/', views.comments_create, name='comments_create'), path('artists/', views.artist_list_apply, name='artist_list_apply'), path('artists/<int:artist_pk>/', views.artist_detail, name='artist_detail'), path('artists/<int:artist_pk>/musics/', views.musics_create, name='musics_create'), path('comments/', views.comment_list, name='comment_list'), path('comments/<int:comment_pk>/', views.comments_update_and_delete, name='comments_update_and_delete'), path('artists/<int:comment_pk>/', views.comment_detail, name='comment_detail'), path('docs/', schema_view.with_ui('redoc'), name='api_docs'), path('swagger/', schema_view.with_ui('swagger'), name='api_swagger'), ]
6b5349d39fd002718d738dbc82a3a4e7a56d2951
f614e8567f9458e298c651d0be166da9fc72b4bf
/Django/Solutions/Library + guide/book_app/admin.py
f9c0e4512a43793359d50e572636f53a7f0fbdcf
[]
no_license
PdxCodeGuild/class_Binary_Beasts
458c5be00b7bce3bb4ac9b7ab485c47f72be4294
b1298cb5d74513873f82be4ed37676f8b0de93dd
refs/heads/master
2023-06-28T07:05:21.703491
2021-07-29T03:44:09
2021-07-29T03:44:09
344,980,863
4
4
null
null
null
null
UTF-8
Python
false
false
189
py
from django.contrib import admin from .models import Author, Book, LandBook # Register your models here. admin.site.register(Author) admin.site.register(Book) admin.site.register(LandBook)
c4c57f37ed4a49d9eb574c0bd04b37b0ad5aa68b
747f759311d404af31c0f80029e88098193f6269
/addons/pxgo_bank_statement_analytic/__openerp__.py
bc4a6165e0019bfd1aa45c93a4a573e041b856ba
[]
no_license
sgeerish/sirr_production
9b0d0f7804a928c0c582ddb4ccb7fcc084469a18
1081f3a5ff8864a31b2dcd89406fac076a908e78
refs/heads/master
2020-05-19T07:21:37.047958
2013-09-15T13:03:36
2013-09-15T13:03:36
9,648,444
0
1
null
null
null
null
UTF-8
Python
false
false
81
py
/home/openerp/production/extra-addons/pxgo_bank_statement_analytic/__openerp__.py
4d09d8081569fd51a578fd6ce0ad57f163f3fc80
044bb7ac47cfc1a6dc685e81637d6049e5cee452
/backend_deploy_0330_21140/urls.py
4e516b775d26f86e79fef19a8ad7ccb1d5a5c7d4
[]
no_license
crowdbotics-apps/backend-deploy-0330-21140
c1034bad2df5d212efd4b0d372a96af08e007444
57a5e272767f317d5072a6287bf86e80a321d2f5
refs/heads/master
2023-03-28T12:21:00.269768
2021-03-30T16:53:08
2021-03-30T16:53:08
353,063,297
0
0
null
null
null
null
UTF-8
Python
false
false
2,279
py
"""backend_deploy_0330_21140 URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include, re_path from django.views.generic.base import TemplateView from allauth.account.views import confirm_email from rest_framework import permissions from drf_yasg.views import get_schema_view from drf_yasg import openapi urlpatterns = [ path("", include("home.urls")), path("accounts/", include("allauth.urls")), path("modules/", include("modules.urls")), path("api/v1/", include("home.api.v1.urls")), path("admin/", admin.site.urls), path("users/", include("users.urls", namespace="users")), path("rest-auth/", include("rest_auth.urls")), # Override email confirm to use allauth's HTML view instead of rest_auth's API view path("rest-auth/registration/account-confirm-email/<str:key>/", confirm_email), path("rest-auth/registration/", include("rest_auth.registration.urls")), path("home/", include("home.urls")), path("api/v1/", include("store.api.v1.urls")), path("store/", include("store.urls")), path("api/v1/", include("users.api.v1.urls")), ] admin.site.site_header = "Backend Deploy 0330" admin.site.site_title = "Backend Deploy 0330 Admin Portal" admin.site.index_title = "Backend Deploy 0330 Admin" # swagger api_info = openapi.Info( title="Backend Deploy 0330 API", default_version="v1", description="API documentation for Backend Deploy 0330 App", ) schema_view = get_schema_view( api_info, public=True, permission_classes=(permissions.IsAuthenticated,), ) urlpatterns += [ path("api-docs/", schema_view.with_ui("swagger", cache_timeout=0), name="api_docs") ]
db8d4d672410d929a4d61b58127f7fd8a6612656
aa1352a2f32c0c36194d3a6f8e683adba487a3eb
/FiRoom_backend/tryon/migrations/0002_userbodyshot.py
bef0d540635aef2bce342031f71eb08313e492d7
[]
no_license
Ace-bb/FiRoom_backend
6c98d01c40e8de31ccbe86beaeada6c62516705e
efd4d9c1d7265e42f56638d5374a569a146acc03
refs/heads/main
2023-03-30T15:48:21.376390
2021-03-23T15:53:48
2021-03-23T15:53:48
338,780,869
0
0
null
null
null
null
UTF-8
Python
false
false
622
py
# Generated by Django 3.1.4 on 2021-03-14 10:49 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('tryon', '0001_initial'), ] operations = [ migrations.CreateModel( name='userBodyShot', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('userId', models.IntegerField()), ('userName', models.CharField(max_length=64)), ('shot', models.CharField(max_length=1024)), ], ), ]
4e6beec5dd0e85ffc2488e15652415b40cee11c3
23130cd12e38dbce8db8102810edaad70b240ae2
/lintcode/594.py
a81e22c00509f4292f1898da5963ca42968389f4
[ "MIT" ]
permissive
kangli-bionic/algorithm
ee6687c82101088db20f10fb958b4e45e97d3d31
c3c38723b9c5f1cc745550d89e228f92fd4abfb2
refs/heads/master
2023-01-05T09:29:33.204253
2020-10-25T17:29:38
2020-10-25T17:29:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,032
py
""" robin karp: abcdefgh, find string def we only need to calculate a hash for def, that kaes O(K) abcdefgh --- abcdefgh --- we only have to check the hash kth len's at a time, the hash can be culated in O(1) time hash(bcd) = hash(abc) * 31 + e - 31^4 * a it will take O(n) to check all the hash agaist the target hash. for those rare cases where hashes clides, check letter by letter O(k) total time O(n + k) """ class Solution: """ @param: source: A source string @param: target: A target string @return: An integer as index """ def strStr2(self, source, target): # write your code here if source is None or target is None: return -1 if not target: return 0 if not source: return -1 BASE = 2000000 k = len(target) #3 highest_power = 1 for i in range(len(target)): highest_power = (highest_power * 31) % BASE #abc #012 = (a31^2+b*31 + c) #31^3= 1*31^31^31 hash_target = 0 for i in range(len(target)): hash_target = (hash_target * 31 + ord(target[i])) % BASE hash_code = 0 #0123456 #abcdefg 7 #efg 3 for i in range(len(source)): #add next char hash_code = (hash_code * 31 + ord(source[i])) % BASE #a*31^3 + b*31*2+ c*31 +d #abcd #0123 if i >= k: hash_code = (hash_code - highest_power * ord(source[i - k])) % BASE if hash_code < 0: hash_code += BASE #match if hash_code == hash_target: match = True for j in range(len(target)): if source[i - k + 1 + j] != target[j]: match = False break if match: return i - k + 1 return -1 s = Solution() source = "" target = "" print(s.strStr2(source, target))
41b8ba509c04dd91d9f7df54a9af6e6ac7a56c52
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/izfXy5SGfeekmKExH_15.py
dd6d5ebcb9a300d2e25edcd9ddd6522907132499
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
899
py
""" Write a function that takes two lists and adds the first element in the first list with the first element in the second list, the second element in the first list with the second element in the second list, etc, etc. Return `True` if all element combinations add up to the same number. Otherwise, return `False`. ### Examples puzzle_pieces([1, 2, 3, 4], [4, 3, 2, 1]) ➞ True # 1 + 4 = 5; 2 + 3 = 5; 3 + 2 = 5; 4 + 1 = 5 # Both lists sum to [5, 5, 5, 5] puzzle_pieces([1, 8, 5, 0, -1, 7], [0, -7, -4, 1, 2, -6]) ➞ True puzzle_pieces([1, 2], [-1, -1]) ➞ False puzzle_pieces([9, 8, 7], [7, 8, 9, 10]) ➞ False ### Notes * Each list will have at least one element. * Return `False` if both lists are of different length. """ def puzzle_pieces(a1,a2): return len(a1) == len(a2) and len(set(list(map(lambda x,y: x + y,a1,a2)))) == 1
4c5f13f15969a69343f4b1d22fc01fd48532443f
25d641a55eb868cc74fd4e3e4daea43f6deb5853
/3 - Web UI & API/virtual/Lib/site-packages/pip/_internal/req/_vti_cnf/__init__.py
47fccc4e6889f48b611d2cacf286d35b83631172
[]
no_license
greens1/Final-Year-Project
370b7ef9979049cfc75e6776da24c7a286848b71
2e72f43893595deef6aa5323773a6161f2cd873a
refs/heads/master
2022-11-13T19:55:17.884414
2018-05-17T22:15:14
2018-05-17T22:15:14
133,852,365
1
0
null
2022-11-01T20:11:11
2018-05-17T18:21:16
Python
UTF-8
Python
false
false
193
py
vti_encoding:SR|utf8-nl vti_timelastmodified:TR|15 Apr 2018 11:07:36 -0000 vti_extenderversion:SR|12.0.0.0 vti_cacheddtm:TX|15 Apr 2018 11:07:36 -0000 vti_filesize:IR|2152 vti_backlinkinfo:VX|
0f261603cefc73452c72b9da92ee340e11c55b14
9e988c0dfbea15cd23a3de860cb0c88c3dcdbd97
/sdBs/AllRun/rat_j0455+1305/sdB_RAT_J0455+1305_lc.py
ffb25211b57623347ad503f12006e96baf0c0b4a
[]
no_license
tboudreaux/SummerSTScICode
73b2e5839b10c0bf733808f4316d34be91c5a3bd
4dd1ffbb09e0a599257d21872f9d62b5420028b0
refs/heads/master
2021-01-20T18:07:44.723496
2016-08-08T16:49:53
2016-08-08T16:49:53
65,221,159
0
0
null
null
null
null
UTF-8
Python
false
false
351
py
from gPhoton.gAperture import gAperture def main(): gAperture(band="NUV", skypos=[73.813417,13.091611], stepsz=30., csvfile="/data2/fleming/GPHOTON_OUTPU/LIGHTCURVES/sdBs/sdB_RAT_J0455+1305 /sdB_RAT_J0455+1305_lc.csv", maxgap=1000., overwrite=True, radius=0.00555556, annulus=[0.005972227,0.0103888972], verbose=3) if __name__ == "__main__": main()
6539b59094b60080421eff95fd512b2b1b2ed89b
bb33e6be8316f35decbb2b81badf2b6dcf7df515
/source/res/scripts/client/gui/Scaleform/daapi/view/lobby/telecom_rentals/__init__.py
f6ea7400ff249f307dd982a1c74bf9bf2f1aaa75
[]
no_license
StranikS-Scan/WorldOfTanks-Decompiled
999c9567de38c32c760ab72c21c00ea7bc20990c
d2fe9c195825ececc728e87a02983908b7ea9199
refs/heads/1.18
2023-08-25T17:39:27.718097
2022-09-22T06:49:44
2022-09-22T06:49:44
148,696,315
103
39
null
2022-09-14T17:50:03
2018-09-13T20:49:11
Python
UTF-8
Python
false
false
152
py
# Python bytecode 2.7 (decompiled from Python 2.7) # Embedded file name: scripts/client/gui/Scaleform/daapi/view/lobby/telecom_rentals/__init__.py pass
11cdf608475191afaab295a70f80e4b59a17acab
c6759b857e55991fea3ef0b465dbcee53fa38714
/tools/nntool/nntool/utils/subclasses.py
ea06cf5d380d6472e2c4708b7ea47ad84d4290ed
[ "AGPL-3.0-or-later", "AGPL-3.0-only", "GPL-1.0-or-later", "LicenseRef-scancode-other-copyleft", "Apache-2.0" ]
permissive
GreenWaves-Technologies/gap_sdk
1b343bba97b7a5ce62a24162bd72eef5cc67e269
3fea306d52ee33f923f2423c5a75d9eb1c07e904
refs/heads/master
2023-09-01T14:38:34.270427
2023-08-10T09:04:44
2023-08-10T09:04:44
133,324,605
145
96
Apache-2.0
2023-08-27T19:03:52
2018-05-14T07:50:29
C
UTF-8
Python
false
false
855
py
# Copyright (C) 2021, 2020 GreenWaves Technologies, SAS # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <https://www.gnu.org/licenses/>. def get_all_subclasses(cls): for subclass in cls.__subclasses__(): yield from get_all_subclasses(subclass) yield subclass
3fbe12b6c3d9e9312e0eb977fbb0043690062f4d
9c85d132b2ed8c51f021f42ed9f20652827bca45
/source/res/scripts/client/gui/Scaleform/daapi/view/lobby/vehicle_compare/cmp_configurator_view.py
8189adf02685d7a82b14defc4eeb0491950b6b8c
[]
no_license
Mododejl/WorldOfTanks-Decompiled
0f4063150c7148184644768b55a9104647f7e098
cab1b318a58db1e428811c41efc3af694906ba8f
refs/heads/master
2020-03-26T18:08:59.843847
2018-06-12T05:40:05
2018-06-12T05:40:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
40,803
py
# Python bytecode 2.7 (decompiled from Python 2.7) # Embedded file name: scripts/client/gui/Scaleform/daapi/view/lobby/vehicle_compare/cmp_configurator_view.py from collections import defaultdict from adisp import process from debug_utils import LOG_WARNING, LOG_DEBUG, LOG_ERROR from gui.Scaleform.daapi import LobbySubView from gui.Scaleform.daapi.settings.views import VIEW_ALIAS from gui.Scaleform.daapi.view.lobby.hangar.AmmunitionPanel import getFittingSlotsData, getAmmo, VEHICLE_FITTING_SLOTS, ARTEFACTS_SLOTS, FITTING_MODULES from gui.Scaleform.daapi.view.lobby.shared.fitting_slot_vo import FittingSlotVO from gui.Scaleform.daapi.view.lobby.vehicle_compare import cmp_helpers from gui.Scaleform.daapi.view.lobby.vehicle_compare.cmp_configurator_base import VehicleCompareConfiguratorBaseView from gui.Scaleform.daapi.view.lobby.vehicle_compare.cmp_configurator_parameters import VehicleCompareParameters from gui.Scaleform.daapi.view.lobby.vehicle_compare.cmp_helpers import getSuitableCamouflage from gui.Scaleform.daapi.view.meta.VehicleCompareConfiguratorMainMeta import VehicleCompareConfiguratorMainMeta from gui.Scaleform.daapi.view.meta.VehicleCompareConfiguratorViewMeta import VehicleCompareConfiguratorViewMeta from gui.Scaleform.framework import g_entitiesFactories from gui.Scaleform.genConsts.FITTING_TYPES import FITTING_TYPES from gui.Scaleform.genConsts.TOOLTIPS_CONSTANTS import TOOLTIPS_CONSTANTS from gui.Scaleform.genConsts.VEHICLE_COMPARE_CONSTANTS import VEHICLE_COMPARE_CONSTANTS from gui.Scaleform.genConsts.SLOT_HIGHLIGHT_TYPES import SLOT_HIGHLIGHT_TYPES from gui.Scaleform.locale.VEH_COMPARE import VEH_COMPARE from gui.Scaleform.locale.TOOLTIPS import TOOLTIPS from gui.game_control.veh_comparison_basket import CREW_TYPES, PARAMS_AFFECTED_TANKMEN_SKILLS from gui.shared.event_bus import EVENT_BUS_SCOPE from gui.shared.formatters import text_styles from gui.shared.gui_items import Tankman, GUI_ITEM_TYPE from gui.shared.gui_items.Vehicle import Vehicle from gui.shared.gui_items.items_actions.actions import processMsg from gui.shared.gui_items.processors import module as installer_module from gui.shared.gui_items.processors.module import ModuleProcessor from gui.shared.utils.functions import makeTooltip from helpers import dependency from helpers.i18n import makeString as _ms from items import tankmen from items.vehicles import NUM_OPTIONAL_DEVICE_SLOTS from shared_utils import findFirst from skeletons.gui.game_control import IVehicleComparisonBasket from skeletons.gui.shared import IItemsCache @process def _installModulesSet(vehicle, modules, notFitted): UNDEFINED_INDEX = -1 def __findModuleIndex(mList, moduleTypeID): for i in xrange(len(mList)): if mList[i].itemTypeID == moduleTypeID: return i return UNDEFINED_INDEX def __updateVehicleModule(vehicle, module): typeID = module.itemTypeID if typeID == GUI_ITEM_TYPE.CHASSIS: vehicle.chassis = module elif typeID == GUI_ITEM_TYPE.ENGINE: vehicle.engine = module elif typeID == GUI_ITEM_TYPE.RADIO: vehicle.radio = module elif typeID == GUI_ITEM_TYPE.TURRET: vehicle.turret = module elif typeID == GUI_ITEM_TYPE.GUN: vehicle.gun = module if modules: while modules: module = modules.pop() isFit, notFitReason = module.mayInstall(vehicle) if isFit: yield installer_module.getPreviewInstallerProcessor(vehicle, module).request() __updateVehicleModule(vehicle, module) if notFitReason == 'need turret': turretIndex = __findModuleIndex(modules, GUI_ITEM_TYPE.TURRET) if turretIndex != UNDEFINED_INDEX: modules.append(module) modules.append(modules.pop(turretIndex)) _installModulesSet(vehicle, modules, notFitted) break else: notFitted.append(notFitReason) if notFitReason == 'need gun': gunIndex = __findModuleIndex(modules, GUI_ITEM_TYPE.GUN) if gunIndex != UNDEFINED_INDEX: modules.append(module) modules.append(modules.pop(gunIndex)) _installModulesSet(vehicle, modules, notFitted) break else: notFitted.append(notFitReason) if notFitReason == 'too heavy': chassisIndex = __findModuleIndex(modules, GUI_ITEM_TYPE.CHASSIS) if chassisIndex != UNDEFINED_INDEX: modules.append(module) modules.append(modules.pop(chassisIndex)) _installModulesSet(vehicle, modules, notFitted) break else: notFitted.append(notFitReason) if notFitReason == 'too heavy chassis': modules.insert(0, module) _installModulesSet(vehicle, modules, notFitted) break def _getSlotDataIndexes(slots): index = 0 indexes = [] for slot in slots: if slot in ARTEFACTS_SLOTS: indexes.append(range(index, index + NUM_OPTIONAL_DEVICE_SLOTS)) index += NUM_OPTIONAL_DEVICE_SLOTS indexes.append((index,)) index += 1 return indexes _SLOT_DATA_INDEXES = _getSlotDataIndexes(VEHICLE_FITTING_SLOTS) class _CmpOptDeviceRemover(ModuleProcessor): def __init__(self, vehicle, item, slotIndex, plugs=tuple()): super(_CmpOptDeviceRemover, self).__init__(item, 'remove', plugs) self.__vehicle = vehicle self.__slotIndex = slotIndex def _request(self, callback): mayRemove, reason = self.__vehicle.descriptor.mayRemoveOptionalDevice(self.__slotIndex) if mayRemove: self.__vehicle.descriptor.removeOptionalDevice(self.__slotIndex) self.__vehicle.optDevices[self.__slotIndex] = None super(_CmpOptDeviceRemover, self)._request(callback) else: callback(self._errorHandler(0, reason)) return def _errorHandler(self, code, errStr='', ctx=None): if errStr == 'too heavy': errStr = 'error_too_heavy' return super(_CmpOptDeviceRemover, self)._errorHandler(code, errStr, ctx) def _getMsgCtx(self): return {'name': self.item.userName, 'kind': self.item.userType, 'money': 0} class _ConfigFittingSlotVO(FittingSlotVO): def __init__(self, modulesData, vehicle, slotType, slotId=None, tooltipType=None): super(_ConfigFittingSlotVO, self).__init__(modulesData, vehicle, slotType, slotId, tooltipType) slotEmpty = self['id'] == -1 self['showRemoveBtn'] = not slotEmpty if slotEmpty: self['tooltipType'] = TOOLTIPS_CONSTANTS.COMPLEX if slotType == 'equipment': self['tooltip'] = VEH_COMPARE.VEHCONF_TOOLTIPS_EMPTYEQSLOT elif slotType == 'battleBooster': self['tooltip'] = TOOLTIPS.HANGAR_AMMO_PANEL_BATTLEBOOSTER_EMPTY else: self['tooltip'] = VEH_COMPARE.VEHCONF_TOOLTIPS_EMPTYOPTDEVICESLOT else: if slotType == FITTING_TYPES.VEHICLE_TURRET and not vehicle.hasTurrets: self['tooltipType'] = '' if slotType == FITTING_TYPES.OPTIONAL_DEVICE: optDev = findFirst(lambda item: item.isInstalled(vehicle, slotId), modulesData) if optDev is not None and optDev.isDeluxe(): self['bgHighlightType'] = SLOT_HIGHLIGHT_TYPES.EQUIPMENT_PLUS else: self['bgHighlightType'] = SLOT_HIGHLIGHT_TYPES.NO_HIGHLIGHT self['tooltipType'] = TOOLTIPS_CONSTANTS.COMPARE_MODULE elif slotType == FITTING_TYPES.BOOSTER: self['tooltipType'] = TOOLTIPS_CONSTANTS.BATTLE_BOOSTER_COMPARE else: self['tooltipType'] = TOOLTIPS_CONSTANTS.COMPARE_MODULE return def _prepareModule(self, modulesData, vehicle, slotType, slotId): if slotType == FITTING_TYPES.BOOSTER: vehicleModule = vehicle.equipment.battleBoosterConsumables[0] if vehicleModule is not None: affectsAtTTC = vehicleModule.isAffectsOnVehicle(vehicle) self['affectsAtTTC'] = affectsAtTTC if affectsAtTTC: if vehicleModule.isCrewBooster(): isPerkReplace = not vehicleModule.isAffectedSkillLearnt(vehicle) bgType = SLOT_HIGHLIGHT_TYPES.BATTLE_BOOSTER_CREW_REPLACE if isPerkReplace else SLOT_HIGHLIGHT_TYPES.BATTLE_BOOSTER self['bgHighlightType'] = bgType else: self['highlight'] = affectsAtTTC self['bgHighlightType'] = SLOT_HIGHLIGHT_TYPES.BATTLE_BOOSTER else: vehicleModule = super(_ConfigFittingSlotVO, self)._prepareModule(modulesData, vehicle, slotType, slotId) if slotType == FITTING_TYPES.OPTIONAL_DEVICE: moduleInSlot = findFirst(lambda item: item.isInstalled(vehicle, slotId), modulesData) for battleBooster in vehicle.equipment.battleBoosterConsumables: if battleBooster is not None and battleBooster.isOptionalDeviceCompatible(moduleInSlot): self['highlight'] = True break return vehicleModule class _DefaultSkillCompletenessChecker(object): def isCompleted(self, levels, crew): for lvl in levels: if lvl < tankmen.MAX_SKILL_LEVEL: return False return True class _FullCrewSkillsCompletenessChecker(_DefaultSkillCompletenessChecker): def isCompleted(self, levels, crew): isAllSkillsAre100 = super(_FullCrewSkillsCompletenessChecker, self).isCompleted(levels, crew) return len(levels) == len(crew) if isAllSkillsAre100 else False class _CurrentCrewMonitor(object): _DEF_SKILL_CHECKER = _DefaultSkillCompletenessChecker() _FULL_CREW_SKILL_CHECKER = _FullCrewSkillsCompletenessChecker() itemsCache = dependency.descriptor(IItemsCache) def __init__(self, container): super(_CurrentCrewMonitor, self).__init__() self.__container = container self.__increasedTo100Skills = set() skillsCheckerStorage = defaultdict(lambda : self._DEF_SKILL_CHECKER) skillsCheckerStorage[PARAMS_AFFECTED_TANKMEN_SKILLS[0]] = self._FULL_CREW_SKILL_CHECKER skillsCheckerStorage[PARAMS_AFFECTED_TANKMEN_SKILLS[1]] = self._FULL_CREW_SKILL_CHECKER vehicleCrew = self.itemsCache.items.getItemByCD(self.__container.getCurrentVehicle().intCD).crew levelsBySkills = defaultdict(list) for _, tankman in vehicleCrew: if tankman is not None: for skill in tankman.skills: if skill.name in PARAMS_AFFECTED_TANKMEN_SKILLS: levelsBySkills[skill.name].append(skill.level) for skillName, levels in levelsBySkills.iteritems(): if not skillsCheckerStorage[skillName].isCompleted(levels, vehicleCrew): self.__increasedTo100Skills.add(skillName) return def isIncreasedSkillsSelected(self): if self.__container.getCurrentCrewSkillLevel() != CREW_TYPES.CURRENT: return False return True if self.__container.getCurrentCrewSkills().intersection(self.__increasedTo100Skills) else False def dispose(self): self.__container = None return class _CrewSkillsManager(object): def __init__(self, vehicle, crewSkillLevel, selectedSkills): super(_CrewSkillsManager, self).__init__() self.__vehicle = vehicle self.__crewSkillLevel = None self.__selectedSkills = selectedSkills crewSkills = cmp_helpers.getVehicleCrewSkills(self.__vehicle) self.__rolesBySkills = defaultdict(set) self.__skillsByRoles = {} for idx, (role, skillsSet) in enumerate(crewSkills): for skill in skillsSet: self.__rolesBySkills[skill].add((idx, role)) self.__skillsByRoles[role] = skillsSet self.changeCrewSkillLevel(crewSkillLevel) return def toggleSkill(self, skillName): if skillName not in PARAMS_AFFECTED_TANKMEN_SKILLS: LOG_WARNING('Attempt to set skill not affected on the vehicle parameters: {}'.format(skillName)) return False if self.__crewSkillLevel != CREW_TYPES.SKILL_100 and self.__crewSkillLevel != CREW_TYPES.CURRENT: LOG_WARNING('It is forbidden to set skill for {}% level crew!'.format(self.__crewSkillLevel)) return False if skillName not in self.__selectedSkills: self.__selectedSkills.add(skillName) else: self.__selectedSkills.remove(skillName) return self._applyTankmanSkill(self.__vehicle, self.__getAffectedTankmens((skillName,)), self.__skillsByRoles, self.__selectedSkills) def applySkillForTheSameVehicle(self, vehicle, skillName): if vehicle.intCD != self.__vehicle.intCD: LOG_DEBUG('Target vehicle is not the same as current vehicle! Expected {}, received {}'.format(self.__vehicle.intCD, vehicle.intCD)) return False if skillName not in PARAMS_AFFECTED_TANKMEN_SKILLS: LOG_WARNING('Attempt to set skill not affected on the vehicle parameters: {}'.format(skillName)) return False selectedSkills = self.__selectedSkills.copy() selectedSkills.add(skillName) return self._applyTankmanSkill(vehicle, self.__getAffectedTankmens((skillName,)), self.__skillsByRoles, selectedSkills) def changeCrewSkillLevel(self, newSkillsLevel): success = False if self.__crewSkillLevel != newSkillsLevel: self.__crewSkillLevel = newSkillsLevel skillsByRoles = {} if self.__crewSkillLevel == CREW_TYPES.SKILL_100 or self.__crewSkillLevel == CREW_TYPES.CURRENT: affectedTankmens = self.__getAffectedTankmens(self.__selectedSkills) for idx, role in affectedTankmens: skillsByRoles[idx] = self.__skillsByRoles[role].intersection(self.__selectedSkills) if self.__crewSkillLevel == CREW_TYPES.CURRENT: levelsByIndexes, nativeVehiclesByIndexes = cmp_helpers.getVehCrewInfo(self.__vehicle.intCD) defRoleLevel = None else: nativeVehiclesByIndexes = None levelsByIndexes = None defRoleLevel = self.__crewSkillLevel self.__vehicle.crew = self.__vehicle.getCrewBySkillLevels(defRoleLevel, skillsByRoles, levelsByIndexes, nativeVehiclesByIndexes) success = True return success def getSelectedSkills(self): return self.__selectedSkills.copy() def getCrewSkillLevel(self): return self.__crewSkillLevel def dispose(self): self.__vehicle = None return @classmethod def _applyTankmanSkill(cls, vehicle, affectedTankmens, skillsByRoles, selectedSkills): nationID, vehicleTypeID = vehicle.descriptor.type.id success = False for roleIdx, role in affectedTankmens: skills = skillsByRoles[role] veh_crew = vehicle.crew for idx, (vehCrewRoleIdx, vehCrewRole) in enumerate(veh_crew): if vehCrewRoleIdx == roleIdx: prevRoleLevel = vehCrewRole.roleLevel if vehCrewRole is not None else tankmen.MAX_SKILL_LEVEL veh_crew[idx] = (roleIdx, cmp_helpers.createTankman(nationID, vehicleTypeID, role, prevRoleLevel, skills.intersection(selectedSkills))) success = True break else: LOG_WARNING('Tankmen with role index {} has not been found'.format(roleIdx)) return success def __getAffectedTankmens(self, skills): tankmens = set() for skill in skills: tankmens |= self.__rolesBySkills[skill] return tankmens class VehicleCompareConfiguratorView(LobbySubView, VehicleCompareConfiguratorViewMeta): itemsCache = dependency.descriptor(IItemsCache) def __init__(self, ctx=None): self.__parametersView = None super(VehicleCompareConfiguratorView, self).__init__(ctx) self.__slotsVoData = [None] * (_SLOT_DATA_INDEXES[-1][-1] + 1) self.__currentCrewMonitor = None return def onCloseView(self): self._container.closeView() def onCamouflageUpdated(self): self.as_setCamoS(self._container.isCamouflageSet()) self.__updateParametersView() def onOptDeviceUpdated(self): self.__updateOptDevicesData() def onEquipmentUpdated(self): self.__updateEquipmentData() def onBattleBoosterUpdated(self): self.__updateBattleBoosterData() def onModulesUpdated(self): self.__updateSlotsData(FITTING_MODULES) self.__updateParametersView() self.as_setTopModulesSelectedS(self._container.isTopModulesSelected()) def onCrewSkillUpdated(self): self.__updateParametersView() self.__updateCrewAttentionIcon() self.__updateBattleBoosterData() def onCrewLevelUpdated(self, newLvl): self.__updateParametersView() self.__updateCrewSelectionAvailability(newLvl) self.__updateCrewAttentionIcon() def onResetToDefault(self): self.__updateSkillsData() self.__parametersView.init(self._container.getCurrentVehicle()) self.__updateSlotsData(VEHICLE_FITTING_SLOTS) self.as_setTopModulesSelectedS(self._container.isTopModulesSelected()) self.__updateCrewLvl() self.__updateCrewAttentionIcon() def onShellsUpdated(self, updateShells=False, selectedIndex=-1): if selectedIndex != -1: self.as_setSelectedAmmoIndexS(selectedIndex) self.__updateParametersView() if updateShells: self.__updateShellSlots() self.__updateControlBtns() def resetConfig(self): self._container.resetToDefault() def applyConfig(self): self._container.applyNewParameters() self.onCloseView() def selectShell(self, shellId, slotIndex): self._container.selectShell(slotIndex) def camoSelected(self, selected): self._container.selectCamouflage(selected) def installDevice(self, newId, slotType, slotIndex): if slotType == cmp_helpers.OPTIONAL_DEVICE_TYPE_NAME: self._container.installOptionalDevice(newId, slotIndex) elif slotType == cmp_helpers.EQUIPMENT_TYPE_NAME: self._container.installEquipment(newId, slotIndex) else: LOG_ERROR('{} installDevice. Unsupported slotType: {}'.format(self, slotType)) def removeDevice(self, slotType, slotIndex): if slotType == cmp_helpers.OPTIONAL_DEVICE_TYPE_NAME: self._container.removeOptionalDevice(slotIndex) elif slotType == cmp_helpers.EQUIPMENT_TYPE_NAME: self._container.removeEquipment(slotIndex) elif slotType == cmp_helpers.BATTLE_BOOSTER_TYPE_NAME: self._container.removeBattleBooster() else: LOG_ERROR('{} removeDevice. Unsupported slotType: {}'.format(self, slotType)) def toggleTopModules(self, value): self._container.selectTopModules(value) def showModules(self): self._container.as_showViewS(VEHICLE_COMPARE_CONSTANTS.VEHICLE_MODULES_VIEW) def skillSelect(self, skillType, slotIndex, selected): self._container.selectCrewSkill(skillType, selected) def changeCrewLevel(self, crewLevelId): self._container.selectCrewLevel(crewLevelId) def _onRegisterFlashComponent(self, viewPy, alias): super(VehicleCompareConfiguratorView, self)._onRegisterFlashComponent(viewPy, alias) if isinstance(viewPy, VehicleCompareParameters): self.__parametersView = viewPy def _init(self): super(VehicleCompareConfiguratorView, self)._init() currentVehicle = self._container.getCurrentVehicle() enableCamo = bool(getSuitableCamouflage(currentVehicle)) topModulesFromStock = self._container.isTopModulesFromStock() enableTopModules = not (currentVehicle.isPremium or topModulesFromStock) isInInventory = self._container.getBasketVehCmpData().isInInventory() if isInInventory: self.__currentCrewMonitor = _CurrentCrewMonitor(self._container) self.as_setInitDataS({'title': text_styles.promoSubTitle(_ms(VEH_COMPARE.VEHCONF_HEADER, vehName=currentVehicle.userName)), 'resetBtnLabel': VEH_COMPARE.VEHCONF_RESETBTNLABEL, 'cancelBtnLabel': VEH_COMPARE.VEHCONF_CANCELBTNLABEL, 'applyBtnLabel': VEH_COMPARE.VEHCONF_APPLYBTNLABEL, 'resetBtnTooltip': VEH_COMPARE.VEHCONF_RESETBTNLABEL_TOOLTIP, 'cancelBtnTooltip': VEH_COMPARE.VEHCONF_CANCELBTNLABEL_TOOLTIP, 'applyBtnTooltip': VEH_COMPARE.VEHCONF_COMPAREBTNLABEL_TOOLTIP, 'crewLevels': self.__getCrewLevels(isInInventory), 'enableTopModules': enableTopModules, 'enableCamo': enableCamo}) self.__updateCrewLvl() self.__updateShellSlots() self.as_setSelectedAmmoIndexS(self._container.getCurrentShellIndex()) self.as_setCamoS(self._container.isCamouflageSet()) if currentVehicle.descriptor.type.hasCustomDefaultCamouflage: self.as_disableCamoS() self.__updateControlBtns() topModulesSelected = topModulesFromStock or self._container.isTopModulesSelected() self.as_setTopModulesSelectedS(topModulesSelected) self.__updateCrewAttentionIcon() self.__updateSkillsData() self.__updateSlotsData(VEHICLE_FITTING_SLOTS) initialVehicle, _ = self._container.getInitialVehicleData() self.__parametersView.init(currentVehicle, initialVehicle) def _dispose(self): if self.__currentCrewMonitor: self.__currentCrewMonitor.dispose() self.__parametersView = None super(VehicleCompareConfiguratorView, self)._dispose() return def __updateOptDevicesData(self): self.__updateSlotsData((cmp_helpers.OPTIONAL_DEVICE_TYPE_NAME,)) def __updateEquipmentData(self): self.__updateSlotsData((cmp_helpers.EQUIPMENT_TYPE_NAME,)) def __updateBattleBoosterData(self): self.__updateSlotsData((cmp_helpers.BATTLE_BOOSTER_TYPE_NAME, cmp_helpers.OPTIONAL_DEVICE_TYPE_NAME)) def __updateSlotsData(self, slotsTypes): newVoData = getFittingSlotsData(self._container.getCurrentVehicle(), slotsTypes, _ConfigFittingSlotVO) for slotType in slotsTypes: indexesRange = _SLOT_DATA_INDEXES[VEHICLE_FITTING_SLOTS.index(slotType)] for idx in indexesRange: newSlotData = newVoData.pop(0) slotDataID = newSlotData.get('id', 0) if slotDataID > 0: moduleItem = self.itemsCache.items.getItemByCD(slotDataID) itemTypeID = moduleItem.itemTypeID itemName = moduleItem.name if itemTypeID == GUI_ITEM_TYPE.EQUIPMENT: if itemName in cmp_helpers.NOT_AFFECTED_EQUIPMENTS: newSlotData['affectsAtTTC'] = False newSlotData['tooltipType'] = 'complex' newSlotData['tooltip'] = makeTooltip(moduleItem.userName, attention=VEH_COMPARE.VEHCONF_TOOLTIPS_DEVICENOTAFFECTEDTTC) self.__slotsVoData[idx] = newSlotData self.as_setDevicesDataS(self.__slotsVoData) self.__updateParametersView() def __updateParametersView(self): if self.__parametersView is not None: self.__parametersView.update() self.__updateControlBtns() return def __updateCrewSelectionAvailability(self, newLvl): self.as_setSkillsBlockedS(newLvl != CREW_TYPES.SKILL_100 and newLvl != CREW_TYPES.CURRENT) def __updateControlBtns(self): self.as_setResetEnabledS(self._container.isDifferentWithInitialBasketVeh()) self.as_setApplyEnabledS(self._container.isCurrentVehicleModified()) def __updateSkillsData(self): skills = [ {'icon': Tankman.getSkillBigIconPath(skillType), 'label': Tankman.getSkillUserName(skillType), 'skillType': skillType, 'isForAll': skillType in tankmen.COMMON_SKILLS, 'selected': skillType in self._container.getCurrentCrewSkills()} for skillType in PARAMS_AFFECTED_TANKMEN_SKILLS ] self.as_setSkillsS(skills) @staticmethod def __getCrewLevels(isInHangar): items = [{'label': VEH_COMPARE.VEHICLECOMPAREVIEW_CREW_SKILL100, 'id': CREW_TYPES.SKILL_100, 'showAlert': False, 'tooltip': None}, {'label': VEH_COMPARE.VEHICLECOMPAREVIEW_CREW_SKILL75, 'id': CREW_TYPES.SKILL_75}, {'label': VEH_COMPARE.VEHICLECOMPAREVIEW_CREW_SKILL50, 'id': CREW_TYPES.SKILL_50}] if isInHangar: items.append({'label': VEH_COMPARE.VEHICLECOMPAREVIEW_CREW_CURRENT, 'id': CREW_TYPES.CURRENT}) return items def __updateCrewLvl(self): crewLevel = self._container.getCurrentCrewSkillLevel() self.as_setCrewLevelIndexS(CREW_TYPES.ALL.index(crewLevel)) self.__updateCrewSelectionAvailability(crewLevel) def __updateShellSlots(self): getter = self.itemsCache.items.getItemByCD shells = [ getter(shot.shell.compactDescr) for shot in self._container.getCurrentVehicle().descriptor.gun.shots ] self.as_setAmmoS(getAmmo(shells)) def __updateCrewAttentionIcon(self): isVisible = False if self.__currentCrewMonitor: isVisible = self.__currentCrewMonitor.isIncreasedSkillsSelected() self.as_setCrewAttentionIconVisibleS(isVisible) class VehicleCompareConfiguratorMain(LobbySubView, VehicleCompareConfiguratorMainMeta): itemsCache = dependency.descriptor(IItemsCache) comparisonBasket = dependency.descriptor(IVehicleComparisonBasket) def __init__(self, ctx=None): super(VehicleCompareConfiguratorMain, self).__init__(ctx) self.__vehIndex = ctx.get('index') if not isinstance(self.__vehIndex, int): raise UserWarning('Index of vehicle should be integer: {}'.format(self.__vehIndex)) if self.__vehIndex < 0 or self.__vehIndex >= self.comparisonBasket.getVehiclesCount(): raise UserWarning('Index of vehicle out of range: {} not in (0, {})'.format(self.__vehIndex, self.comparisonBasket.getVehiclesCount())) self.__backAlias = ctx.get('previewAlias', VIEW_ALIAS.VEHICLE_COMPARE) self.__vehicle = None self.__crewSkillsManager = None self.__views = {} self.__topModules = None self.__stockModules = None self.__selectedShellIndex = None return def as_showViewS(self, alias): result = super(VehicleCompareConfiguratorMain, self).as_showViewS(alias) if alias in self.__views: self.__views[alias].onShow() return result def getCurrentVehicle(self): return self.__vehicle def getInitialVehicleData(self): basketVehicle = self.getBasketVehCmpData() if basketVehicle.isInInventory(): strCD = basketVehicle.getInvVehStrCD() crewLvl, crewSkills = basketVehicle.getInventoryCrewData() equipment = basketVehicle.getInvEquipment() else: strCD = basketVehicle.getStockVehStrCD() crewLvl = basketVehicle.getStockCrewLvl() crewSkills = basketVehicle.getStockCrewSkills() equipment = basketVehicle.getStockEquipment() vehicle = Vehicle(strCD) for slotIndex in xrange(len(equipment)): cmp_helpers.installEquipmentOnVehicle(vehicle, equipment[slotIndex], slotIndex) cmp_helpers.applyCamouflage(vehicle, basketVehicle.invHasCamouflage()) return (vehicle, _CrewSkillsManager(vehicle, crewLvl, crewSkills)) def getCurrentCrewSkills(self): return self.__crewSkillsManager.getSelectedSkills() def getCurrentCrewSkillLevel(self): return self.__crewSkillsManager.getCrewSkillLevel() def getBasketVehCmpData(self): return self.comparisonBasket.getVehicleAt(self.__vehIndex) def getVehicleWithAppliedSkill(self, skillName): vehicle = self._getCurrentVehicleCopy() return vehicle if self.__crewSkillsManager.applySkillForTheSameVehicle(vehicle, skillName) else None def getCurrentShellIndex(self): return self.__selectedShellIndex def isTopModulesFromStock(self): topModules = self.__getTopModules() stockModules = self.__getStockModules() return all((bool(item in stockModules) for item in topModules)) def isTopModulesSelected(self): topModules = self.__getTopModules() selectedModules = cmp_helpers.getVehicleModules(self.__vehicle) return all((bool(item in selectedModules) for item in topModules)) def isCamouflageSet(self): return cmp_helpers.isCamouflageSet(self.__vehicle) def applyNewParameters(self): self.comparisonBasket.applyNewParameters(self.__vehIndex, self.__vehicle, self.getCurrentCrewSkillLevel(), self.getCurrentCrewSkills(), self.getCurrentShellIndex()) def isDifferentWithInitialBasketVeh(self): basketVehicle = self.getBasketVehCmpData() if basketVehicle.isInInventory(): basketVehCrewLvl, basketVehCrewSkills = basketVehicle.getInventoryCrewData() equipment = basketVehicle.getInvEquipment() strCD = basketVehicle.getInvVehStrCD() else: basketVehCrewLvl = basketVehicle.getStockCrewLvl() basketVehCrewSkills = basketVehicle.getStockCrewSkills() equipment = basketVehicle.getStockEquipment() strCD = basketVehicle.getStockVehStrCD() return self.__isHasDifferences(strCD, equipment, basketVehCrewLvl, basketVehCrewSkills, basketVehicle.getInventoryShellIndex(), basketVehicle.invHasCamouflage(), basketVehicle.getBattleBooster()) def isCurrentVehicleModified(self): basketVehicle = self.getBasketVehCmpData() crewLvl, crewSkills = basketVehicle.getCrewData() return self.__isHasDifferences(basketVehicle.getVehicleStrCD(), basketVehicle.getEquipment(), crewLvl, crewSkills, basketVehicle.getSelectedShellIndex(), basketVehicle.hasCamouflage(), basketVehicle.getBattleBooster()) def __isHasDifferences(self, strCD, equipment, basketVehCrewLvl, basketVehCrewSkills, selShellIndex, hasCamouflage, battleBooster): if basketVehCrewLvl != self.getCurrentCrewSkillLevel(): return True elif basketVehCrewSkills != self.getCurrentCrewSkills(): return True elif not cmp_helpers.isEquipmentSame(equipment, self.__vehicle.equipment.regularConsumables.getIntCDs(default=None)): return True elif selShellIndex != self.__selectedShellIndex: return True else: currVehHasCamouflage = cmp_helpers.isCamouflageSet(self.__vehicle) if hasCamouflage != currVehHasCamouflage: return True currVehBattleBooster = self.__vehicle.equipment.battleBoosterConsumables[0] if not battleBooster == currVehBattleBooster: return True if currVehHasCamouflage: targetVehicle = Vehicle(self.__vehicle.descriptor.makeCompactDescr()) cmp_helpers.removeVehicleCamouflages(targetVehicle) else: targetVehicle = self.__vehicle return True if strCD != targetVehicle.descriptor.makeCompactDescr() else False def setModules(self, modules): if modules: notFittedReasons = [] oldGunIntCD = self.__vehicle.gun.intCD _installModulesSet(self.__vehicle, list(modules[:]), notFittedReasons) if notFittedReasons: for notFitReason in notFittedReasons: LOG_DEBUG('Module has not been installed properly, reason: {}'.format(notFitReason)) if oldGunIntCD != self.__vehicle.gun.intCD: firstShellIndex = 0 newShellIndex = -1 if self.__updateSelectedShell(firstShellIndex): newShellIndex = firstShellIndex self.__notifyViews('onShellsUpdated', updateShells=True, selectedIndex=newShellIndex) else: newGunToInstall = findFirst(lambda module: module.itemTypeID == GUI_ITEM_TYPE.GUN, modules, None) if newGunToInstall is not None: self.__vehicle.descriptor.activeGunShotIndex = self.__selectedShellIndex self.__notifyViews('onModulesUpdated') return def selectTopModules(self, select): if select: modules = self.__getTopModules() else: modules = self.__getStockModules() self.setModules(modules) def selectShell(self, slotIndex): if self.__updateSelectedShell(slotIndex): self.__notifyViews('onShellsUpdated', selectedIndex=slotIndex) def selectCamouflage(self, select): cmp_helpers.applyCamouflage(self.__vehicle, select) self.__notifyViews('onCamouflageUpdated') def resetToDefault(self): self.__vehicle, self.__crewSkillsManager = self.getInitialVehicleData() basketShellIndex = self.getBasketVehCmpData().getInventoryShellIndex() newShellIndex = -1 if self.__updateSelectedShell(basketShellIndex): newShellIndex = basketShellIndex self.__notifyViews('onShellsUpdated', updateShells=True, selectedIndex=newShellIndex) self.__notifyViews('onResetToDefault') self.__notifyViews('onCamouflageUpdated') def installOptionalDevice(self, newId, slotIndex): newId = int(newId) optDev = self.itemsCache.items.getItemByCD(newId) itemTypeID = optDev.itemTypeID mayInstall, reason = optDev.mayInstall(self.__vehicle, slotIndex) if mayInstall: self.__vehicle.descriptor.installOptionalDevice(optDev.intCD, slotIndex) self.__vehicle.optDevices[slotIndex] = optDev self.__notifyViews('onOptDeviceUpdated') self.__notifyViews('onBattleBoosterUpdated') else: LOG_WARNING('Component "{}" has not been installed. Reason: {}.'.format(itemTypeID, reason)) def removeOptionalDevice(self, slotIndex): installedDevice = self.__vehicle.optDevices[slotIndex] if installedDevice is not None: self.__launchOptDeviceRemoving(installedDevice, slotIndex) self.__notifyViews('onBattleBoosterUpdated') else: LOG_WARNING("Couldn't remove optional device from slot {} because slot is already empty!".format(slotIndex)) return def installEquipment(self, newId, slotIndex): self.__installEquipment(newId, slotIndex) self.__notifyViews('onEquipmentUpdated') def removeEquipment(self, slotIndex): self.__installEquipment(None, slotIndex) self.__notifyViews('onEquipmentUpdated') return def installBattleBooster(self, newId): self.__installBattleBooster(newId) self.__notifyViews('onBattleBoosterUpdated') def removeBattleBooster(self): self.__installBattleBooster(None) self.__notifyViews('onBattleBoosterUpdated') return def selectCrewSkill(self, skillType, selected): savedValue = skillType in self.__crewSkillsManager.getSelectedSkills() if selected != savedValue: if self.__crewSkillsManager.toggleSkill(skillType): self.__notifyViews('onCrewSkillUpdated') else: LOG_WARNING('Attempt to apply the same value for {} = {}'.format(skillType, selected)) def selectCrewLevel(self, crewLevelId): if self.__crewSkillsManager.changeCrewSkillLevel(crewLevelId): self.__notifyViews('onCrewLevelUpdated', crewLevelId) def closeView(self, forcedBackAliace=None): event = g_entitiesFactories.makeLoadEvent(forcedBackAliace or self.__backAlias) self.fireEvent(event, scope=EVENT_BUS_SCOPE.LOBBY) def _getCurrentVehicleCopy(self): vehicle = Vehicle(strCompactDescr=self.__vehicle.descriptor.makeCompactDescr()) vehicle.crew = self.__vehicle.crew[:] for i, equipmentIntCD in enumerate(self.__vehicle.equipment.regularConsumables.getIntCDs(default=None)): cmp_helpers.installEquipmentOnVehicle(vehicle, equipmentIntCD, i) vehicle.descriptor.activeGunShotIndex = self.__vehicle.descriptor.activeGunShotIndex return vehicle def _populate(self): super(VehicleCompareConfiguratorMain, self)._populate() self.comparisonBasket.onSwitchChange += self.__onBasketStateChanged basketVehcileData = self.getBasketVehCmpData() basketVehCrewLvl, basketVehCrewSkills = basketVehcileData.getCrewData() self.__vehicle = Vehicle(basketVehcileData.getVehicleStrCD()) self.__crewSkillsManager = _CrewSkillsManager(self.__vehicle, basketVehCrewLvl, basketVehCrewSkills) equipment = basketVehcileData.getEquipment() for slotIndex in xrange(len(equipment)): self.__installEquipment(equipment[slotIndex], slotIndex) cmp_helpers.applyCamouflage(self.__vehicle, basketVehcileData.hasCamouflage()) battleBooster = basketVehcileData.getBattleBooster() if battleBooster is not None: cmp_helpers.installBattleBoosterOnVehicle(self.__vehicle, battleBooster.intCD) self.__updateSelectedShell(basketVehcileData.getSelectedShellIndex()) self.as_showViewS(VEHICLE_COMPARE_CONSTANTS.VEHICLE_CONFIGURATOR_VIEW) self.comparisonBasket.isLocked = True return def _dispose(self): self.comparisonBasket.onSwitchChange -= self.__onBasketStateChanged if self.__crewSkillsManager is not None: self.__crewSkillsManager.dispose() self.__crewSkillsManager = None self.__views = None self.comparisonBasket.isLocked = False super(VehicleCompareConfiguratorMain, self)._dispose() return def _onRegisterFlashComponent(self, viewPy, alias): super(VehicleCompareConfiguratorMain, self)._onRegisterFlashComponent(viewPy, alias) if isinstance(viewPy, VehicleCompareConfiguratorBaseView): self.__views[alias] = viewPy viewPy.setContainer(self) @process def __launchOptDeviceRemoving(self, installedDevice, slotIndex): result = yield _CmpOptDeviceRemover(self.__vehicle, installedDevice, slotIndex).request() if result.success: self.__notifyViews('onOptDeviceUpdated') else: processMsg(result) def __getTopModules(self): if self.__topModules is None: self.__topModules = cmp_helpers.getVehicleTopModules(self.__vehicle) return self.__topModules def __getStockModules(self): if self.__stockModules is None: self.__stockModules = tuple(reversed(cmp_helpers.getVehicleModules(Vehicle(self.getBasketVehCmpData().getStockVehStrCD())))) return self.__stockModules def __installEquipment(self, intCD, slotIndex): cmp_helpers.installEquipmentOnVehicle(self.__vehicle, intCD, slotIndex) def __installBattleBooster(self, intCD): cmp_helpers.installBattleBoosterOnVehicle(self.__vehicle, intCD) def __updateSelectedShell(self, slotIndex): slotIndex = int(slotIndex) if self.__selectedShellIndex != slotIndex: self.__vehicle.descriptor.activeGunShotIndex = slotIndex self.__selectedShellIndex = slotIndex return True return False def __onBasketStateChanged(self): if not self.comparisonBasket.isEnabled(): self.closeView(VIEW_ALIAS.LOBBY_HANGAR) def __notifyViews(self, event, *args, **kwargs): for component in self.__views.itervalues(): notifier = getattr(component, event, None) if notifier and callable(notifier): notifier(*args, **kwargs) return
e653e6a03c8f0d3af8e678a8ee480073889dfb04
362e68fa033cc42cf9981e5f0c441ef2fb4816e6
/scripts/pick_reference_otus_through_otu_table.py
5b07919bad20bc776fd595b77388ecffb039c3d5
[]
no_license
kartoffelpuffer/qiime
6d409c058f777be3e17a7130d0902f4d0256795a
eeac244b5553579a8d0b540c31d6202acbc983d3
refs/heads/master
2020-12-25T02:39:52.585360
2013-04-25T16:59:25
2013-04-25T16:59:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
443
py
#!/usr/bin/env python from __future__ import division __author__ = "Greg Caporaso" __copyright__ = "Copyright 2011, The QIIME Project" __credits__ = ["Greg Caporaso"] __license__ = "GPL" __version__ = "1.6.0-dev" __maintainer__ = "Greg Caporaso" __email__ = "[email protected]" __status__ = "Development" print "\nThis script has been renamed pick_closed_reference_otus.py for clarity. For help, call pick_closed_reference_otus.py -h\n"