blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
125eda5c2ea26724993805d2bdd9694df6fbe0fb
ab9eac7d27788b98bd3d43577bf11658fa6c67c5
/src/clean_data.py
2e7beaeb134717e44de0b902f242bee563130bad
[]
no_license
IkeyBenz/Instagram-Network-Graph
1b0d5163b945a56ec024af77419bc03c3088bbac
82ca93b94cb7b75b341683d4c20b489960c7378d
refs/heads/master
2023-02-02T01:52:44.235220
2020-12-20T21:12:00
2020-12-20T21:12:00
321,414,811
0
0
null
null
null
null
UTF-8
Python
false
false
1,355
py
from os import listdir, path from util import get_data_dir, get_mutual_followship_path, get_user_connections_path, get_authenticated_username data_dir = get_data_dir() authenticated_username = get_authenticated_username() connections_path = get_user_connections_path() def get_users_connections(): return set(open(connections_path).read().splitlines()) def correct_mutual_follwers(): for account in listdir(data_dir): mutuals_path = get_mutual_followship_path(account) if account is authenticated_username or not path.exists(mutuals_path): continue mutuals = set(open(mutuals_path).read().splitlines()) corrected = mutuals.intersection(get_users_connections()) with open(mutuals_path, 'w') as out: out.write("\n".join(corrected)) def check_mutual_correctness(): for account in listdir(data_dir): mutuals_path = get_mutual_followship_path(account) if account is authenticated_username or not path.exists(mutuals_path): continue stored_mutuals = set(open(mutuals_path).read().splitlines()) extras = stored_mutuals.difference(get_users_connections()) if len(extras) > 0: print(account, "has extra mutuals:", extras) if __name__ == '__main__': correct_mutual_follwers() check_mutual_correctness()
0afc429868366eb8eadd730a1566d020e31b6f46
dbb32a7d5b96a94533b27a6ccf2474c660a863b7
/containers/actor/sources/utils/__init__.py
756cad2b8abb42638833a16139c9961fc42fd77d
[]
no_license
ankurhcu/FogBus2
772e8346c5e01e2aa8a02da9ef91fd696dd587a7
2cefabdd1d131fc8e9015ca31d414665e6014a69
refs/heads/main
2023-08-07T15:33:54.039724
2021-09-21T05:02:49
2021-09-21T05:02:49
410,610,212
1
0
null
2021-09-26T16:57:23
2021-09-26T16:57:22
null
UTF-8
Python
false
false
1,823
py
from .component import BasicComponent from .component import PeriodicTaskRunner from .config import ConfigActor from .config import ConfigMaster from .config import ConfigRemoteLogger from .config import ConfigTaskExecutor from .config import ConfigUser from .connection import BasicMessageHandler from .connection import MessageReceived from .connection import MessageReceiver from .connection import MessageSender from .connection import MessageToSend from .container import ContainerManager from .container import ContainerManager from .debugLogPrinter import DebugLogPrinter from .resourceDiscovery import DiscoveredActors from .resourceDiscovery import DiscoveredMasters from .resourceDiscovery import DiscoveredRemoteLoggers from .resourceDiscovery import ResourcesDiscovery from .tools import camelToSnake from .tools import decrypt from .tools import encrypt from .tools import filterIllegalCharacter from .tools import newDebugLogger from .tools import snakeToCamel from .tools import terminate from .types import ActorResources from .types import Address from .types import AutoDictionary from .types import CannotBindAddr from .types import Component from .types import ComponentIdentity from .types import ComponentRole from .types import CPU from .types import LoopSourceDestination from .types import Memory from .types import Message from .types import MessageDoesNotContainSourceInfo from .types import MessageDoesNotContainType from .types import MessageSubSubType from .types import MessageSubType from .types import MessageType from .types import PairsMedian from .types import PeriodicTask from .types import PeriodicTasks from .types import ProcessingTime from .types import Resources from .types import SequenceMedian from .types import SerializableDictionary from .types import SynchronizedAttribute
1a29ed7174a5e46688668e138299e976917f4743
34a9a91e6c3fbf427826d2cb2ad3d7c7a00ad0c0
/collision_detection_program/SBI/beans/__init__.py
87e717e7f04422002fd6fbaeabcf242107d76132
[ "MIT" ]
permissive
structuralbioinformatics/SPServer
015d7ede4b2c439c648b663b9af56a0ca98e277b
946b7afdac16aef391ddd162daabfcc968eb9110
refs/heads/master
2021-04-23T14:02:10.935764
2020-07-24T09:00:19
2020-07-24T09:00:19
249,930,917
3
6
null
null
null
null
UTF-8
Python
false
false
466
py
__all__ = [ "Singleton", "Butler", "File", "FileError", "StorableObject", "Executable", "Path", "IndexedNum", "JSONer" ] from .singleton import Singleton from .butler import Butler from .file import (File, FileError) from .StorableObject import StorableObject from .Executable import Executable from .Path import Path from .IndexedNum import IndexedNum from .JSONer import JSONer
090b01787d67ad38963fba38a99e8b1e8a557d7c
15581a76b36eab6062e71d4e5641cdfaf768b697
/LeetCode_30days_challenge/2021/June/Pascal's Triangle.py
d5f72948364fa07f9c70d38dfef7769ff10d9ebb
[]
no_license
MarianDanaila/Competitive-Programming
dd61298cc02ca3556ebc3394e8d635b57f58b4d2
3c5a662e931a5aa1934fba74b249bce65a5d75e2
refs/heads/master
2023-05-25T20:03:18.468713
2023-05-16T21:45:08
2023-05-16T21:45:08
254,296,597
0
0
null
null
null
null
UTF-8
Python
false
false
403
py
from typing import List class Solution: def generate(self, numRows: int) -> List[List[int]]: if numRows == 1: return [[1]] rows = [[1], [1, 1]] for i in range(2, numRows): row = [1] for j in range(1, i): row.append(rows[-1][j] + rows[-1][j - 1]) row.append(1) rows.append(row) return rows
c70c9bfee7433de27be912a8ac54969a41472e76
6a95112805b64322953429270a305d01fef3faea
/dist/weewx-4.0.0a9/bin/weewx/defaults.py
98e51e336d2a837c2f8b4b3a9e2dac5943299e1d
[ "GPL-1.0-or-later", "GPL-3.0-only", "Apache-2.0" ]
permissive
tomdotorg/docker-weewx
c6d59dc492a9e53f3bc898f7b9f593717092d72c
7085654f455d39b06acc688738fde27e1f78ad1e
refs/heads/main
2023-06-08T17:57:44.184399
2023-01-30T11:21:23
2023-01-30T11:21:23
54,113,384
21
16
Apache-2.0
2022-10-19T23:46:26
2016-03-17T11:39:29
Dockerfile
UTF-8
Python
false
false
8,541
py
# coding: utf-8 # # Copyright (c) 2019 Tom Keffer <[email protected]> # # See the file LICENSE.txt for your rights. # """Backstop defaults used in the absence of any other values.""" from __future__ import absolute_import from six.moves import StringIO import configobj default_str = u"""# Copyright (c) 2009-2019 Tom Keffer <[email protected]> # See the file LICENSE.txt for your rights. # Where the skins reside, relative to WEEWX_ROOT SKIN_ROOT = skins # Where the generated reports should go, relative to WEEWX_ROOT HTML_ROOT = public_html # The database binding indicates which data should be used in reports. data_binding = wx_binding # Whether to log a successful operation log_success = True # Whether to log an unsuccessful operation log_failure = False # The following section determines the selection and formatting of units. [Units] # The following section sets what unit to use for each unit group. # NB: The unit is always in the singular. I.e., 'mile_per_hour', # NOT 'miles_per_hour' [[Groups]] group_altitude = foot # Options are 'foot' or 'meter' group_degree_day = degree_F_day # Options are 'degree_F_day' or 'degree_C_day' group_direction = degree_compass group_distance = mile # Options are 'mile' or 'km' group_moisture = centibar group_percent = percent group_pressure = inHg # Options are 'inHg', 'mmHg', 'mbar', or 'hPa' group_radiation = watt_per_meter_squared group_rain = inch # Options are 'inch', 'cm', or 'mm' group_rainrate = inch_per_hour # Options are 'inch_per_hour', 'cm_per_hour', or 'mm_per_hour' group_speed = mile_per_hour # Options are 'mile_per_hour', 'km_per_hour', 'knot', or 'meter_per_second' group_speed2 = mile_per_hour2 # Options are 'mile_per_hour2', 'km_per_hour2', 'knot2', or 'meter_per_second2' group_temperature = degree_F # Options are 'degree_F' or 'degree_C' group_uv = uv_index group_volt = volt # The following are used internally and should not be changed: group_count = count group_interval = minute group_time = unix_epoch group_elapsed = second # The following section sets the formatting for each type of unit. [[StringFormats]] centibar = %.0f cm = %.2f cm_per_hour = %.2f degree_C = %.1f degree_F = %.1f degree_compass = %.0f foot = %.0f hPa = %.1f hour = %.1f inHg = %.3f inch = %.2f inch_per_hour = %.2f km = %.1f km_per_hour = %.0f km_per_hour2 = %.1f knot = %.0f knot2 = %.1f mbar = %.1f meter = %.0f meter_per_second = %.1f meter_per_second2 = %.1f mile = %.1f mile_per_hour = %.0f mile_per_hour2 = %.1f mm = %.1f mmHg = %.1f mm_per_hour = %.1f percent = %.0f second = %.0f uv_index = %.1f volt = %.1f watt_per_meter_squared = %.0f NONE = " N/A" # The following section sets the label to be used for each type of unit [[Labels]] centibar = " cb" cm = " cm" cm_per_hour = " cm/hr" degree_C = °C degree_F = °F degree_compass = ° foot = " feet" hPa = " hPa" inHg = " inHg" inch = " in" inch_per_hour = " in/hr" km = " km", " kms" km_per_hour = " km/h" km_per_hour2 = " km/h" knot = " knots" knot2 = " knots" mbar = " mbar" meter = " meters" meter_per_second = " m/s" meter_per_second2 = " m/s" mile = " mile", " miles" mile_per_hour = " mph" mile_per_hour2 = " mph" mm = " mm" mmHg = " mmHg" mm_per_hour = " mm/hr" percent = % volt = " V" watt_per_meter_squared = " W/m²" day = " day", " days" hour = " hour", " hours" minute = " minute", " minutes" second = " second", " seconds" NONE = "" # The following section sets the format to be used for each time scale. # The values below will work in every locale, but they may not look # particularly attractive. See the Customization Guide for alternatives. [[TimeFormats]] hour = %H:%M day = %X week = %X (%A) month = %x %X year = %x %X rainyear = %x %X current = %x %X ephem_day = %X ephem_year = %x %X [[Ordinates]] # Ordinal directions. The last one should be for no wind direction directions = N, NNE, NE, ENE, E, ESE, SE, SSE, S, SSW, SW, WSW, W, WNW, NW, NNW, N/A # The following section sets the base temperatures used for the # calculation of heating and cooling degree-days. [[[DegreeDays]]] # Base temperature for heating days, with unit: heating_base = 65, degree_F # Base temperature for cooling days, with unit: cooling_base = 65, degree_F # Base temperature for growing days, with unit: growing_base = 50, degree_F # A trend takes a difference across a time period. The following # section sets the time period, and how big an error is allowed to # still be counted as the start or end of a period. [[[Trend]]] time_delta = 10800 # 3 hours time_grace = 300 # 5 minutes # The labels are applied to observations or any other strings. [Labels] # Set to hemisphere abbreviations suitable for your location: hemispheres = N, S, E, W # Formats to be used for latitude whole degrees, longitude whole # degrees, and minutes: latlon_formats = "%02d", "%03d", "%05.2f" # Generic labels, keyed by an observation type. [[Generic]] barometer = Barometer dewpoint = Dew Point ET = ET heatindex = Heat Index inHumidity = Inside Humidity inTemp = Inside Temperature outHumidity = Humidity outTemp = Outside Temperature radiation = Radiation rain = Rain rainRate = Rain Rate UV = UV Index windDir = Wind Direction windGust = Gust Speed windGustDir = Gust Direction windSpeed = Wind Speed windchill = Wind Chill windgustvec = Gust Vector windvec = Wind Vector windrun = Wind Run extraTemp1 = Temperature1 extraTemp2 = Temperature2 extraTemp3 = Temperature3 # Sensor status indicators rxCheckPercent = Signal Quality txBatteryStatus = Transmitter Battery windBatteryStatus = Wind Battery rainBatteryStatus = Rain Battery outTempBatteryStatus = Outside Temperature Battery inTempBatteryStatus = Inside Temperature Battery consBatteryVoltage = Console Battery heatingVoltage = Heating Battery supplyVoltage = Supply Voltage referenceVoltage = Reference Voltage [Almanac] # The labels to be used for the phases of the moon: moon_phases = New, Waxing crescent, First quarter, Waxing gibbous, Full, Waning gibbous, Last quarter, Waning crescent """ # Even though default_str is in Unicode, specify an encoding in # case someone wants to write the ConfigObj out. defaults = configobj.ConfigObj(StringIO(default_str), encoding='utf-8', default_encoding='utf-8')
d9450370110654bbba361d0adb0ff18def6f3bf6
52f0984561895b48f3e6e40658a6e52c97705715
/python-folder/year-grade.py
5b6647ed5326a8d753ec1092b8476883e8bf511b
[]
no_license
jsanon01/python
8da2755e7724850875518455c1760bb9f04dd873
edd52214e3578f18b71b0ad944c287411fb23dfb
refs/heads/master
2022-05-20T00:29:10.550169
2022-05-10T01:08:48
2022-05-10T01:08:48
165,682,490
0
0
null
null
null
null
UTF-8
Python
false
false
1,245
py
# This script prints a while-loop with if-elif statement year = " " while year != 'q': year = input('Enter a grade from 0 - 13 or q to quit: ') if year.isdigit(): year = int(year) if year == 0: print('You are in Pre-School') elif year == 1: print('You are in Kindergarten') elif year == 2: print('You are in 1st Grade') elif year == 3: print('You are in 2nd Grade') elif year == 4: print('You are in 3rd Grade') elif year == 5: print('You are in 4th Grade') elif year == 6: print('You are in 5th Grade') elif year == 7: print('You are in 6th Grade') elif year == 8: print('You are in 7th Grade') elif year == 9: print('You are in 8th Grade') elif year == 10: print('You are in 9th Grade or Freshman') elif year == 11: print('You are in 10th Grade or Sophomore') elif year == 12: print('You are in 11th Grade or Junior') elif year == 13: print('You are in 12th Grade or Senior') else: print('You entered an invalid entry')
005fc965039152d62022c24120d51fc81fda661b
4bde2d1e2282014f71b8cfec4440cb062db172cb
/euler_021.py
1bbf96ecb93e58589edeffbbaf5d3fcf9c7699a2
[]
no_license
MrDeshaies/NOT-projecteuler.net
6b107a515b1322fcd5f7d88e187ca2ea97edddcf
c6f0bd38d074b427345b4f5b41733bda38fbcdb4
refs/heads/master
2022-11-17T18:39:43.321814
2022-11-13T11:35:10
2022-11-13T11:35:10
201,793,983
0
0
null
2019-08-18T19:50:45
2019-08-11T17:20:18
Python
UTF-8
Python
false
false
923
py
from euler import * import math # Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n). # If d(a) = b and d(b) = a, where a ≠ b, then a and b are an amicable pair and each of a and b are called # amicable numbers. # # For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; # therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220. # # Evaluate the sum of all the amicable numbers under 10000. def sumDivisors(x): return sum(factLessItself(x)) amicableSet = set() #skip 1, since d(1) = 1, so does not satisby a!=b for x in range(2,10000): if x in amicableSet: continue d = sumDivisors(x) y = sumDivisors(d) if d != x and y == x: print( str(x) + " and " + str(d) + " are best buds.") amicableSet.update([x,d]) print(amicableSet) print(sum(amicableSet))
055c26bc9905e675638f8bf8b9191eb93fadf19d
44869749f8af2b548a2fbb23403e1a623e29d691
/myvenv/Scripts/django-admin.py
99ad1c3626d471588a35651a3339f4396eba88e2
[]
no_license
Ojou/my-first-blog
4536c4db194d325508fd000ccd5919a722772994
e29be78c3c87b39c474dabf2a27387797c2d2a41
refs/heads/master
2016-08-12T15:27:52.761420
2016-03-12T05:06:06
2016-03-12T05:06:06
53,712,106
0
0
null
null
null
null
UTF-8
Python
false
false
160
py
#!C:\Users\tova\djangogirls\myvenv\Scripts\python.exe from django.core import management if __name__ == "__main__": management.execute_from_command_line()
206043e6d4c95bbf4afa57ff9b6d0fa29d8d4d3d
bc441bb06b8948288f110af63feda4e798f30225
/resource_monitor_sdk/model/resource_manage/filter_strategy_instance_data_pb2.py
754fef25b2c606e53ea2f232404bda2034096d3d
[ "Apache-2.0" ]
permissive
easyopsapis/easyops-api-python
23204f8846a332c30f5f3ff627bf220940137b6b
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
refs/heads/master
2020-06-26T23:38:27.308803
2020-06-16T07:25:41
2020-06-16T07:25:41
199,773,131
5
0
null
null
null
null
UTF-8
Python
false
true
4,615
py
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: filter_strategy_instance_data.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from resource_monitor_sdk.model.resource_manage import filter_condition_group_pb2 as resource__monitor__sdk_dot_model_dot_resource__manage_dot_filter__condition__group__pb2 from google.protobuf import struct_pb2 as google_dot_protobuf_dot_struct__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='filter_strategy_instance_data.proto', package='resource_manage', syntax='proto3', serialized_options=_b('ZIgo.easyops.local/contracts/protorepo-models/easyops/model/resource_manage'), serialized_pb=_b('\n#filter_strategy_instance_data.proto\x12\x0fresource_manage\x1aGresource_monitor_sdk/model/resource_manage/filter_condition_group.proto\x1a\x1cgoogle/protobuf/struct.proto\"\xa2\x01\n\x1a\x46ilterStrategyInstanceData\x12\n\n\x02id\x18\x01 \x01(\t\x12\x1a\n\x12strategyInstanceId\x18\x02 \x01(\t\x12%\n\x04\x64\x61ta\x18\x03 \x01(\x0b\x32\x17.google.protobuf.Struct\x12\x35\n\x06\x66ilter\x18\x04 \x03(\x0b\x32%.resource_manage.FilterConditionGroupBKZIgo.easyops.local/contracts/protorepo-models/easyops/model/resource_manageb\x06proto3') , dependencies=[resource__monitor__sdk_dot_model_dot_resource__manage_dot_filter__condition__group__pb2.DESCRIPTOR,google_dot_protobuf_dot_struct__pb2.DESCRIPTOR,]) _FILTERSTRATEGYINSTANCEDATA = _descriptor.Descriptor( name='FilterStrategyInstanceData', full_name='resource_manage.FilterStrategyInstanceData', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='id', full_name='resource_manage.FilterStrategyInstanceData.id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='strategyInstanceId', full_name='resource_manage.FilterStrategyInstanceData.strategyInstanceId', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='data', full_name='resource_manage.FilterStrategyInstanceData.data', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='filter', full_name='resource_manage.FilterStrategyInstanceData.filter', index=3, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=160, serialized_end=322, ) _FILTERSTRATEGYINSTANCEDATA.fields_by_name['data'].message_type = google_dot_protobuf_dot_struct__pb2._STRUCT _FILTERSTRATEGYINSTANCEDATA.fields_by_name['filter'].message_type = resource__monitor__sdk_dot_model_dot_resource__manage_dot_filter__condition__group__pb2._FILTERCONDITIONGROUP DESCRIPTOR.message_types_by_name['FilterStrategyInstanceData'] = _FILTERSTRATEGYINSTANCEDATA _sym_db.RegisterFileDescriptor(DESCRIPTOR) FilterStrategyInstanceData = _reflection.GeneratedProtocolMessageType('FilterStrategyInstanceData', (_message.Message,), { 'DESCRIPTOR' : _FILTERSTRATEGYINSTANCEDATA, '__module__' : 'filter_strategy_instance_data_pb2' # @@protoc_insertion_point(class_scope:resource_manage.FilterStrategyInstanceData) }) _sym_db.RegisterMessage(FilterStrategyInstanceData) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
52cc436d976d9ead1d13b314196b6be9d9d8fc4c
c29eba01ce299ebb27b886a83e19e59add7e2f6b
/tests/pytest_extension/fixtures/test_issue_github_54.py
34ceadfa56fc64602d0e04f8a54879098f489c44
[ "BSD-3-Clause" ]
permissive
smarie/python-pytest-cases
e87516e73d5067d5c307c7fdb37cc5f1f97c417e
ab3b7190d728b18512141b9f5f3a1c3dfc7cedf2
refs/heads/main
2023-07-08T11:41:57.278697
2023-02-23T13:11:25
2023-02-23T13:11:25
138,296,136
286
40
BSD-3-Clause
2023-07-03T14:57:02
2018-06-22T11:42:19
Python
UTF-8
Python
false
false
600
py
# Authors: Sylvain MARIE <[email protected]> # + All contributors to <https://github.com/smarie/python-pytest-cases> # # License: 3-clause BSD, <https://github.com/smarie/python-pytest-cases/blob/master/LICENSE> import pytest from pytest_cases.fixture_core1_unions import InvalidParamsList from pytest_cases import parametrize, fixture_ref @pytest.fixture def test(): return ['a', 'b', 'c'] def test_invalid_argvalues(): with pytest.raises(InvalidParamsList): @parametrize('main_msg', fixture_ref(test)) def test_prints(main_msg): print(main_msg)
a3e9a18765fad1e19b88ac4df2ef46b6ddef4d9b
2e682fd72e3feaa70e3f7bf2a3b83c50d783ec02
/PyTorch/contrib/cv/detection/SOLOv1/configs/guided_anchoring/ga_faster_r50_caffe_fpn_1x.py
eba5902c5acd2a9c3bbb92f63de00ac450eb4f6b
[ "LicenseRef-scancode-proprietary-license", "BSD-2-Clause", "Apache-2.0", "MIT", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "LicenseRef-scancode-unknown-license-reference", "GPL-1.0-or-later" ]
permissive
Ascend/ModelZoo-PyTorch
4c89414b9e2582cef9926d4670108a090c839d2d
92acc188d3a0f634de58463b6676e70df83ef808
refs/heads/master
2023-07-19T12:40:00.512853
2023-07-17T02:48:18
2023-07-17T02:48:18
483,502,469
23
6
Apache-2.0
2022-10-15T09:29:12
2022-04-20T04:11:18
Python
UTF-8
Python
false
false
6,718
py
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the BSD 3-Clause License (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # model settings model = dict( type='FasterRCNN', pretrained='open-mmlab://resnet50_caffe', backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False), norm_eval=True, style='caffe'), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5), rpn_head=dict( type='GARPNHead', in_channels=256, feat_channels=256, octave_base_scale=8, scales_per_octave=3, octave_ratios=[0.5, 1.0, 2.0], anchor_strides=[4, 8, 16, 32, 64], anchor_base_sizes=None, anchoring_means=[.0, .0, .0, .0], anchoring_stds=[0.07, 0.07, 0.14, 0.14], target_means=(.0, .0, .0, .0), target_stds=[0.07, 0.07, 0.11, 0.11], loc_filter_thr=0.01, loss_loc=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_shape=dict(type='BoundedIoULoss', beta=0.2, loss_weight=1.0), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=dict( type='SharedFCBBoxHead', num_fcs=2, in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=81, target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1], reg_class_agnostic=False, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))) # model training and testing settings train_cfg = dict( rpn=dict( ga_assigner=dict( type='ApproxMaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, ignore_iof_thr=-1), ga_sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=-1, pos_weight=-1, center_ratio=0.2, ignore_ratio=0.5, debug=False), rpn_proposal=dict( nms_across_levels=False, nms_pre=2000, nms_post=2000, max_num=300, nms_thr=0.7, min_bbox_size=0), rcnn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.6, neg_iou_thr=0.6, min_pos_iou=0.6, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False)) test_cfg = dict( rpn=dict( nms_across_levels=False, nms_pre=1000, nms_post=1000, max_num=300, nms_thr=0.7, min_bbox_size=0), rcnn=dict( score_thr=1e-3, nms=dict(type='nms', iou_thr=0.5), max_per_img=100)) # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' img_norm_cfg = dict( mean=[102.9801, 115.9465, 122.7717], std=[1.0, 1.0, 1.0], to_rgb=False) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( imgs_per_gpu=2, workers_per_gpu=2, train=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_train2017.json', img_prefix=data_root + 'train2017/', pipeline=train_pipeline), val=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline), test=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline)) # optimizer optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001) optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=1.0 / 3, step=[8, 11]) checkpoint_config = dict(interval=1) # yapf:disable log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook') ]) # yapf:enable # runtime settings total_epochs = 12 dist_params = dict(backend='nccl') log_level = 'INFO' work_dir = './work_dirs/ga_faster_rcnn_r50_caffe_fpn_1x' load_from = None resume_from = None workflow = [('train', 1)]
861755d3c8cbf83029189ac9a98f4896f67dafad
b0110e27e3162e2092259dd299481de1dafb4ea8
/parallel/p7red.test.key.py
44867a6a942964cfe29d902c74675fd2ad65708f
[ "MIT" ]
permissive
mobarski/sandbox
f9be203bf7015f6df70badd605a40172b63a90f8
f9054fb3252488208e503a87efba5df74fc70538
refs/heads/master
2023-05-29T14:51:00.125028
2023-05-14T21:02:38
2023-05-14T21:02:38
86,854,790
0
0
null
null
null
null
UTF-8
Python
false
false
282
py
from __future__ import print_function import sys lines = sys.stdin.readlines() rows = [str.partition(x,' ') for x in lines if x.strip()] key_sum = 0 key = rows[0][0] for k,_,x in rows: if k!=key: print(key,key_sum) key_sum = 0 key = k key_sum += int(x) print(key,key_sum)
544f532144174157f2267fe49d08336f13de9d1e
3d7039903da398ae128e43c7d8c9662fda77fbdf
/database/前端/juejin_2003.py
68c317bc66f0071a6e258987ac4befff8d3dcb57
[]
no_license
ChenYongChang1/spider_study
a9aa22e6ed986193bf546bb567712876c7be5e15
fe5fbc1a5562ff19c70351303997d3df3af690db
refs/heads/master
2023-08-05T10:43:11.019178
2021-09-18T01:30:22
2021-09-18T01:30:22
406,727,214
0
0
null
null
null
null
UTF-8
Python
false
false
67,318
py
{"err_no": 0, "err_msg": "success", "data": [{"article_id": "6986465633114259469", "article_info": {"article_id": "6986465633114259469", "user_id": "1996368846261294", "category_id": "6809637767543259144", "tag_ids": [6809640407484334093, 6809640369764958215, 6809640653266354190], "visible_level": 0, "link_url": "", "cover_image": "https://p1-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/d1f5ea8a6b3041879c44e13109d3c34b~tplv-k3u1fbpfcp-watermark.image", "is_gfw": 0, "title": "uni-app开发微信小程序和h5应用", "brief_content": "最近,有个需求需要开发H5应用和微信小程序。如果针对不同的平台开发自己的一套代码,那将是一件很糟糕的事情:如果下次需要兼容支付宝小程序、快应用,那工作量随着平台的添加而快速增加。所以选择uni-app", "is_english": 0, "is_original": 1, "user_index": 11.204596981717515, "original_type": 0, "original_author": "", "content": "", "ctime": "1626663399", "mtime": "1626663516", "rtime": "1626663516", "draft_id": "6984667078162645029", "view_count": 992, "collect_count": 11, "digg_count": 10, "comment_count": 1, "hot_index": 60, "is_hot": 0, "rank_index": 0.00580811, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "1996368846261294", "user_name": "Jimmy", "company": "Foreign Enterprise", "job_title": "Canton", "avatar_large": "https://sf3-ttcdn-tos.pstatp.com/img/user-avatar/67854670252c7aa1d747ae166576a645~300x300.image", "level": 4, "description": "https://www.jimmyarea.com", "followee_count": 1, "follower_count": 2247, "post_article_count": 100, "digg_article_count": 227, "got_digg_count": 6048, "got_view_count": 331277, "post_shortmsg_count": 18, "digg_shortmsg_count": 59, "isfollowed": false, "favorable_author": 1, "power": 9306, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}, {"id": 2546498, "tag_id": "6809640369764958215", "tag_name": "Vue.js", "color": "#41B883", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/7b5c3eb591b671749fee.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432234520, "mtime": 1631692660, "id_type": 9, "tag_alias": "", "post_article_count": 31256, "concern_user_count": 313520}, {"id": 2546704, "tag_id": "6809640653266354190", "tag_name": "微信小程序", "color": "#11a600", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/a1e7773920f51db40441.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1474932627, "mtime": 1631692796, "id_type": 9, "tag_alias": "", "post_article_count": 7107, "concern_user_count": 221757}], "user_interact": {"id": 6986465633114259469, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "20210915160509010204026215010001E4"}, {"article_id": "6976054641746247688", "article_info": {"article_id": "6976054641746247688", "user_id": "4054654615555854", "category_id": "6809637767543259144", "tag_ids": [6809640625856577549, 6809640407484334093], "visible_level": 0, "link_url": "", "cover_image": "", "is_gfw": 0, "title": "浏览器知识点整理(八)DOM 和 JS、CSS 不得不说的故事", "brief_content": "这篇文章带你了解 DOM、JS、CSS 三者的爱恨情长:DOM树是怎么生成的?解析 HTML 时遇到了 JS 会怎么样?JS 遇到了 CSS 又会怎么样?为什么要把 CSS 放头部和把 JS 放尾部", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1624239319", "mtime": "1626495834", "rtime": "1624247493", "draft_id": "6973678917895454756", "view_count": 945, "collect_count": 14, "digg_count": 51, "comment_count": 20, "hot_index": 118, "is_hot": 0, "rank_index": 0.00580486, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "4054654615555854", "user_name": "起风了Q", "company": "kingsoft", "job_title": "前端", "avatar_large": "https://sf3-ttcdn-tos.pstatp.com/img/user-avatar/288ec7eadb3dfe0f8b55047f2ee52574~300x300.image", "level": 3, "description": "你相信什么,就会遇见什么", "followee_count": 76, "follower_count": 305, "post_article_count": 73, "digg_article_count": 1528, "got_digg_count": 2076, "got_view_count": 47830, "post_shortmsg_count": 1, "digg_shortmsg_count": 2, "isfollowed": false, "favorable_author": 0, "power": 2554, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546683, "tag_id": "6809640625856577549", "tag_name": "浏览器", "color": "#47ebc7", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/baf3558e2acdfa623201.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1460153459, "mtime": 1631677186, "id_type": 9, "tag_alias": "", "post_article_count": 3341, "concern_user_count": 28324}, {"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}], "user_interact": {"id": 6976054641746247688, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "20210915160509010204026215010001E4"}, {"article_id": "7001522790784303112", "article_info": {"article_id": "7001522790784303112", "user_id": "2401755217788935", "category_id": "6809637767543259144", "tag_ids": [6809640398105870343, 6809640407484334093], "visible_level": 0, "link_url": "", "cover_image": "", "is_gfw": 0, "title": "时间对象及时间戳的运用(时针、倒计时)", "brief_content": "时间对象 时间的获取 时间的操作 及特别需要注意的两点 时间的操作实现时针的写法 时间戳 实现 倒计时的写法注意事项", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1630169322", "mtime": "1630304771", "rtime": "1630304771", "draft_id": "7001506304221003812", "view_count": 196, "collect_count": 0, "digg_count": 4, "comment_count": 0, "hot_index": 13, "is_hot": 0, "rank_index": 0.00580381, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "2401755217788935", "user_name": "sunShine", "company": "", "job_title": "", "avatar_large": "https://sf3-ttcdn-tos.pstatp.com/img/mosaic-legacy/3793/3114521287~300x300.image", "level": 1, "description": "", "followee_count": 6, "follower_count": 1, "post_article_count": 36, "digg_article_count": 11, "got_digg_count": 35, "got_view_count": 1305, "post_shortmsg_count": 0, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 48, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546519, "tag_id": "6809640398105870343", "tag_name": "JavaScript", "color": "#616161", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/5d70fd6af940df373834.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1435884803, "mtime": 1631692583, "id_type": 9, "tag_alias": "", "post_article_count": 67405, "concern_user_count": 398956}, {"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}], "user_interact": {"id": 7001522790784303112, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "20210915160509010204026215010001E4"}, {"article_id": "6995882287539683358", "article_info": {"article_id": "6995882287539683358", "user_id": "457021165420152", "category_id": "6809637767543259144", "tag_ids": [6809640407484334093, 6809640398105870343], "visible_level": 0, "link_url": "", "cover_image": "https://p9-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/24965ec109d94db99d11661209725441~tplv-k3u1fbpfcp-watermark.image", "is_gfw": 0, "title": "JavaScrip入门指南之“Web API、DOM”(笔记十)", "brief_content": "Web API介绍 API 的概念 API(Application Programming Interface,应用程序编程接口)是一些预先定义的函数或方法,目的是提供应用程序与开发人员基于某软件或硬", "is_english": 0, "is_original": 1, "user_index": 7.630034299002856, "original_type": 0, "original_author": "", "content": "", "ctime": "1628855942", "mtime": "1629101909", "rtime": "1629101909", "draft_id": "6993515250540642340", "view_count": 187, "collect_count": 3, "digg_count": 11, "comment_count": 2, "hot_index": 22, "is_hot": 0, "rank_index": 0.00580334, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "457021165420152", "user_name": "Grit_1024", "company": "", "job_title": "前端开发工程师", "avatar_large": "https://sf1-ttcdn-tos.pstatp.com/img/user-avatar/9bed61fa13462d9d3cb55946bb9cbad8~300x300.image", "level": 2, "description": "温故而知新", "followee_count": 130, "follower_count": 37, "post_article_count": 31, "digg_article_count": 1041, "got_digg_count": 489, "got_view_count": 5651, "post_shortmsg_count": 1, "digg_shortmsg_count": 4, "isfollowed": false, "favorable_author": 0, "power": 545, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}, {"id": 2546519, "tag_id": "6809640398105870343", "tag_name": "JavaScript", "color": "#616161", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/5d70fd6af940df373834.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1435884803, "mtime": 1631692583, "id_type": 9, "tag_alias": "", "post_article_count": 67405, "concern_user_count": 398956}], "user_interact": {"id": 6995882287539683358, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "20210915160509010204026215010001E4"}, {"article_id": "7002419362430713893", "article_info": {"article_id": "7002419362430713893", "user_id": "3737995266239848", "category_id": "6809637767543259144", "tag_ids": [6809640398105870343, 6809640407484334093], "visible_level": 0, "link_url": "", "cover_image": "https://p6-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/71c1b56fe6a145818dd81bcd0639f7d8~tplv-k3u1fbpfcp-watermark.image", "is_gfw": 0, "title": "湖中剑 前端周刊 #6 | 2021-08-30", "brief_content": "周刊收集包括前端(但不限于前端)的文章、新闻、开源项目、工具等等,每周一更新。 📰 News TypeScript 发布4.4版本 主要变更: 提供针对 Aliased Conditions 的控制流", "is_english": 0, "is_original": 1, "user_index": 6.331357980475461, "original_type": 0, "original_author": "", "content": "", "ctime": "1630377827", "mtime": "1630386850", "rtime": "1630386850", "draft_id": "7002418597129617444", "view_count": 83, "collect_count": 1, "digg_count": 2, "comment_count": 0, "hot_index": 6, "is_hot": 0, "rank_index": 0.00579866, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "3737995266239848", "user_name": "ineo6", "company": "", "job_title": "B站打工人", "avatar_large": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/mirror-assets/1698faa8df39380d260~tplv-t2oaga2asx-image.image", "level": 2, "description": "", "followee_count": 12, "follower_count": 42, "post_article_count": 42, "digg_article_count": 2, "got_digg_count": 133, "got_view_count": 36680, "post_shortmsg_count": 6, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 500, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546519, "tag_id": "6809640398105870343", "tag_name": "JavaScript", "color": "#616161", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/5d70fd6af940df373834.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1435884803, "mtime": 1631692583, "id_type": 9, "tag_alias": "", "post_article_count": 67405, "concern_user_count": 398956}, {"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}], "user_interact": {"id": 7002419362430713893, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "20210915160509010204026215010001E4"}, {"article_id": "6994563519047794701", "article_info": {"article_id": "6994563519047794701", "user_id": "3747558609661213", "category_id": "6809637767543259144", "tag_ids": [6809640407484334093, 6809640398105870343], "visible_level": 0, "link_url": "", "cover_image": "", "is_gfw": 0, "title": "🚀详解JavaScript系列之数组(十)终结篇", "brief_content": "这是我参与8月更文挑战的第10天,活动详情查看:8月更文挑战 前言 reduce() 作用: reduce() 方法接收一个函数作为累加器,数组中的每个值(从左到右)开始缩减,最终计算为一个值。返回值", "is_english": 0, "is_original": 1, "user_index": 6.870045844634849, "original_type": 0, "original_author": "", "content": "", "ctime": "1628549434", "mtime": "1628567307", "rtime": "1628567307", "draft_id": "6994444076149899277", "view_count": 154, "collect_count": 1, "digg_count": 24, "comment_count": 0, "hot_index": 31, "is_hot": 0, "rank_index": 0.00579776, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "3747558609661213", "user_name": "小只前端攻城狮", "company": "滴滴 | 前端研发工程师", "job_title": "公众号:小攻城狮学前端", "avatar_large": "https://sf1-ttcdn-tos.pstatp.com/img/user-avatar/4533378875c883604f33d3a3a2e9de5c~300x300.image", "level": 3, "description": "Web全栈开发、持续学习者,关注公众号第一时间接收最新文章,也经常分享一些好用的工具", "followee_count": 40, "follower_count": 114, "post_article_count": 92, "digg_article_count": 323, "got_digg_count": 1575, "got_view_count": 28793, "post_shortmsg_count": 5, "digg_shortmsg_count": 1, "isfollowed": false, "favorable_author": 0, "power": 1862, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}, {"id": 2546519, "tag_id": "6809640398105870343", "tag_name": "JavaScript", "color": "#616161", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/5d70fd6af940df373834.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1435884803, "mtime": 1631692583, "id_type": 9, "tag_alias": "", "post_article_count": 67405, "concern_user_count": 398956}], "user_interact": {"id": 6994563519047794701, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "20210915160509010204026215010001E4"}, {"article_id": "6967972435064782879", "article_info": {"article_id": "6967972435064782879", "user_id": "2049145407280557", "category_id": "6809637767543259144", "tag_ids": [6809640407484334093], "visible_level": 0, "link_url": "", "cover_image": "", "is_gfw": 0, "title": "GitLab+Docker快速搭建CI/CD自动化部署", "brief_content": "什么是持续集成(Continuous integration)? CI 在持续集成环境中,开发人员将会频繁得提交代码到主干。这些新提交在最终合并到主线之前,都需要通过编译和自动化测试进行验证。这样做是", "is_english": 0, "is_original": 1, "user_index": 3.842857466371409, "original_type": 0, "original_author": "", "content": "", "ctime": "1622357531", "mtime": "1622359785", "rtime": "1622359785", "draft_id": "6967660902879330340", "view_count": 2228, "collect_count": 70, "digg_count": 43, "comment_count": 1, "hot_index": 155, "is_hot": 0, "rank_index": 0.00579307, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "2049145407280557", "user_name": "贪吃的猫", "company": "", "job_title": "前端开发", "avatar_large": "https://sf3-ttcdn-tos.pstatp.com/img/user-avatar/944711d0171517fd54809d133bde5907~300x300.image", "level": 2, "description": "每天坚持学习,学习要有输出。有计划有目标进行。坚持就是胜利!", "followee_count": 13, "follower_count": 6, "post_article_count": 10, "digg_article_count": 11, "got_digg_count": 77, "got_view_count": 4273, "post_shortmsg_count": 0, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 119, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}], "user_interact": {"id": 6967972435064782879, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "20210915160509010204026215010001E4"}, {"article_id": "6997032386462482469", "article_info": {"article_id": "6997032386462482469", "user_id": "3368559357218382", "category_id": "6809637767543259144", "tag_ids": [6809640407484334093, 6809640357354012685], "visible_level": 0, "link_url": "", "cover_image": "https://p1-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/81caa82f299d41f0a27e21fef79586b4~tplv-k3u1fbpfcp-watermark.image", "is_gfw": 0, "title": "浅谈前端状态管理的进化", "brief_content": "如何重新思考前端状态设计?还有,为什么必须要凑够50字?是考虑对排版友好吗哈哈哈哈哈哈哈哈哈哈哈哈哈", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1629123715", "mtime": "1629167911", "rtime": "1629167911", "draft_id": "6997032014914256926", "view_count": 435, "collect_count": 2, "digg_count": 8, "comment_count": 0, "hot_index": 29, "is_hot": 0, "rank_index": 0.00579504, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "3368559357218382", "user_name": "王圣松", "company": "Gitee", "job_title": "前端开发工程师", "avatar_large": "https://sf1-ttcdn-tos.pstatp.com/img/user-avatar/935bb913da4e37a6c7d5071dcb0d8c88~300x300.image", "level": 3, "description": "前端扫地机器人", "followee_count": 159, "follower_count": 946, "post_article_count": 23, "digg_article_count": 119, "got_digg_count": 1569, "got_view_count": 92964, "post_shortmsg_count": 17, "digg_shortmsg_count": 41, "isfollowed": false, "favorable_author": 0, "power": 2497, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}, {"id": 2546490, "tag_id": "6809640357354012685", "tag_name": "React.js", "color": "#61DAFB", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/f655215074250f10f8d4.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432234367, "mtime": 1631692935, "id_type": 9, "tag_alias": "", "post_article_count": 16999, "concern_user_count": 226420}], "user_interact": {"id": 6997032386462482469, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "20210915160509010204026215010001E4"}, {"article_id": "6997052050903138334", "article_info": {"article_id": "6997052050903138334", "user_id": "1451011082030302", "category_id": "6809637767543259144", "tag_ids": [6809640357354012685, 6809640407484334093], "visible_level": 0, "link_url": "", "cover_image": "https://p1-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/79519e453c4e41d5aebe6f5fcf1d9679~tplv-k3u1fbpfcp-watermark.image", "is_gfw": 0, "title": "用 Next.js 做服务端渲染, React 农民工快速搬砖必学", "brief_content": "在新兴性前端农民工日益增加的时代,为了更好的搬砖,`next` 成了 `React` 项目在做服务端渲染不得不学的一个框架,前端为什么要做服务端渲染,一搜索引擎 `SEO` 优化,二 减少首屏渲染时间", "is_english": 0, "is_original": 1, "user_index": 6.508716229440013, "original_type": 0, "original_author": "", "content": "", "ctime": "1629128262", "mtime": "1629183287", "rtime": "1629183287", "draft_id": "6997047428943708197", "view_count": 308, "collect_count": 4, "digg_count": 5, "comment_count": 2, "hot_index": 22, "is_hot": 0, "rank_index": 0.00579455, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "1451011082030302", "user_name": "我说姑娘", "company": "杭州某互联网", "job_title": "前端萌新", "avatar_large": "https://sf6-ttcdn-tos.pstatp.com/img/user-avatar/36f734693e4fef4cc32a2e7e08c66d72~300x300.image", "level": 1, "description": "", "followee_count": 17, "follower_count": 18, "post_article_count": 4, "digg_article_count": 79, "got_digg_count": 30, "got_view_count": 2442, "post_shortmsg_count": 1, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 54, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546490, "tag_id": "6809640357354012685", "tag_name": "React.js", "color": "#61DAFB", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/f655215074250f10f8d4.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432234367, "mtime": 1631692935, "id_type": 9, "tag_alias": "", "post_article_count": 16999, "concern_user_count": 226420}, {"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}], "user_interact": {"id": 6997052050903138334, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "20210915160509010204026215010001E4"}, {"article_id": "7003267384358207501", "article_info": {"article_id": "7003267384358207501", "user_id": "641770522946254", "category_id": "6809637767543259144", "tag_ids": [6809640407484334093], "visible_level": 0, "link_url": "", "cover_image": "", "is_gfw": 0, "title": "原型 原型链", "brief_content": "js分为函数对象和普通对象,每个对象都有__proto__属性,但是只有函数对象才有prototype属性 Object、Function都是js内置的函数, 类似的还有我们常用到的Array、Reg", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1630575301", "mtime": "1630651717", "rtime": "1630575849", "draft_id": "7003239518023204877", "view_count": 204, "collect_count": 1, "digg_count": 0, "comment_count": 0, "hot_index": 10, "is_hot": 0, "rank_index": 0.00579413, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "641770522946254", "user_name": "Lisanmu", "company": "", "job_title": "前端开发", "avatar_large": "https://sf6-ttcdn-tos.pstatp.com/img/user-avatar/9410632d2470acf51c3a2f3e7b67e3d1~300x300.image", "level": 1, "description": "", "followee_count": 39, "follower_count": 1, "post_article_count": 11, "digg_article_count": 0, "got_digg_count": 2, "got_view_count": 577, "post_shortmsg_count": 0, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 7, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}], "user_interact": {"id": 7003267384358207501, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "20210915160509010204026215010001E4"}, {"article_id": "7002975286539075592", "article_info": {"article_id": "7002975286539075592", "user_id": "1654113622572472", "category_id": "6809637767543259144", "tag_ids": [6809640407484334093, 6809640398105870343], "visible_level": 0, "link_url": "", "cover_image": "", "is_gfw": 0, "title": "JavaScript中this指向问题", "brief_content": "无论是工作或者面试中,this指向问题是经常遇到的。所以这篇文章把常见的指向问题列出来给大家,避免踩坑。首先我们要知道,在函数中this到底取何值,是在函数真正被调用执行的时候确定的,函数定义的时候确", "is_english": 0, "is_original": 1, "user_index": 3.969362295916118, "original_type": 0, "original_author": "", "content": "", "ctime": "1630507245", "mtime": "1630554178", "rtime": "1630554178", "draft_id": "7002967243252301860", "view_count": 64, "collect_count": 0, "digg_count": 3, "comment_count": 0, "hot_index": 6, "is_hot": 0, "rank_index": 0.00579235, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "1654113622572472", "user_name": "芒果炒香菜", "company": "", "job_title": "", "avatar_large": "https://sf3-ttcdn-tos.pstatp.com/img/user-avatar/b0ad8ff1d5e6f8490b1d6d710bd0ed89~300x300.image", "level": 2, "description": "虽无圣贤之心,益慕圣贤之道", "followee_count": 12, "follower_count": 11, "post_article_count": 60, "digg_article_count": 197, "got_digg_count": 252, "got_view_count": 4961, "post_shortmsg_count": 0, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 301, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}, {"id": 2546519, "tag_id": "6809640398105870343", "tag_name": "JavaScript", "color": "#616161", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/5d70fd6af940df373834.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1435884803, "mtime": 1631692583, "id_type": 9, "tag_alias": "", "post_article_count": 67405, "concern_user_count": 398956}], "user_interact": {"id": 7002975286539075592, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "20210915160509010204026215010001E4"}, {"article_id": "7002036441601540109", "article_info": {"article_id": "7002036441601540109", "user_id": "2911162520331037", "category_id": "6809637767543259144", "tag_ids": [6809640407484334093, 6809640398105870343], "visible_level": 0, "link_url": "", "cover_image": "", "is_gfw": 0, "title": "「轻松科普」浏览器中的 JavaScript", "brief_content": "学习编程知识,能不能生动有趣,容易理解呢?我还在探索尝试的过程中,这篇文章,将从不一样的角度切入,让大家对浏览器中的 JavaScript 有了一些了解,希望大家看完之后,都有不一样的收获。", "is_english": 0, "is_original": 1, "user_index": 8.366364165700077, "original_type": 0, "original_author": "", "content": "", "ctime": "1630288673", "mtime": "1630293175", "rtime": "1630293175", "draft_id": "6999623926242344990", "view_count": 53, "collect_count": 0, "digg_count": 3, "comment_count": 0, "hot_index": 5, "is_hot": 0, "rank_index": 0.00578797, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "2911162520331037", "user_name": "追梦玩家", "company": "广州", "job_title": "前端", "avatar_large": "https://sf1-ttcdn-tos.pstatp.com/img/user-avatar/6cef914c7bbca2a112552b013ebf61f5~300x300.image", "level": 2, "description": "相信自己有能力,那么你就真的会有!", "followee_count": 5, "follower_count": 117, "post_article_count": 36, "digg_article_count": 100, "got_digg_count": 541, "got_view_count": 44842, "post_shortmsg_count": 22, "digg_shortmsg_count": 20, "isfollowed": false, "favorable_author": 0, "power": 989, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}, {"id": 2546519, "tag_id": "6809640398105870343", "tag_name": "JavaScript", "color": "#616161", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/5d70fd6af940df373834.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1435884803, "mtime": 1631692583, "id_type": 9, "tag_alias": "", "post_article_count": 67405, "concern_user_count": 398956}], "user_interact": {"id": 7002036441601540109, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "20210915160509010204026215010001E4"}, {"article_id": "6993951401952935972", "article_info": {"article_id": "6993951401952935972", "user_id": "272334614432887", "category_id": "6809637767543259144", "tag_ids": [6809640407484334093, 6809640396788858887], "visible_level": 0, "link_url": "", "cover_image": "https://p9-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/f8ad5b4457c74d45b03ba76ec029b11b~tplv-k3u1fbpfcp-watermark.image", "is_gfw": 0, "title": "玩转 Docker 部署", "brief_content": "前言 相信很多人都很头疼 Docker 的部署,我自己也是。 最近发现一个很有意思的现象:一个人想学某样技术的时候,当学会了之后,但是这时出现了一个问题需要学习另一门技术时,无论这个人前面学得多么刻苦", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1628406256", "mtime": "1628492105", "rtime": "1628492105", "draft_id": "6993878290234605604", "view_count": 494, "collect_count": 7, "digg_count": 12, "comment_count": 3, "hot_index": 39, "is_hot": 0, "rank_index": 0.0057874, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "272334614432887", "user_name": "写代码的海怪", "company": "公众号 | 写代码的海怪 | 腾讯", "job_title": "", "avatar_large": "https://sf1-ttcdn-tos.pstatp.com/img/user-avatar/fd56914f48c601eb135015f35b94bece~300x300.image", "level": 2, "description": "聊聊技术和分享生活。", "followee_count": 18, "follower_count": 154, "post_article_count": 40, "digg_article_count": 56, "got_digg_count": 314, "got_view_count": 19642, "post_shortmsg_count": 17, "digg_shortmsg_count": 3, "isfollowed": false, "favorable_author": 0, "power": 510, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}, {"id": 2546518, "tag_id": "6809640396788858887", "tag_name": "Docker", "color": "#344D56", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/1265c034d36735225ac5.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432604595, "mtime": 1631684954, "id_type": 9, "tag_alias": "", "post_article_count": 5601, "concern_user_count": 134765}], "user_interact": {"id": 6993951401952935972, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "20210915160509010204026215010001E4"}, {"article_id": "7004735253755478029", "article_info": {"article_id": "7004735253755478029", "user_id": "1310273590265821", "category_id": "6809637767543259144", "tag_ids": [6809640398105870343, 6809640407484334093], "visible_level": 0, "link_url": "", "cover_image": "https://p1-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/4ccff10900f74fc2a621a83c6bd9fa71~tplv-k3u1fbpfcp-watermark.image", "is_gfw": 0, "title": "必须知道的JavaScript String原生方法", "brief_content": "在JavaScript中,字符串的原生方法并不多,所以字符串操作是每个前端必须掌握的,面试的时候也会被重点考察。 创建字符串 静态方法 fromCharCode() 将Unicode编码转换为字符 f", "is_english": 0, "is_original": 1, "user_index": 2.304290107072768, "original_type": 0, "original_author": "", "content": "", "ctime": "1630917063", "mtime": "1630982329", "rtime": "1630982329", "draft_id": "7004650821619023880", "view_count": 50, "collect_count": 2, "digg_count": 1, "comment_count": 0, "hot_index": 3, "is_hot": 0, "rank_index": 0.00578523, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "1310273590265821", "user_name": "傲夫靠斯", "company": "", "job_title": "公号 @ 前端工程师的自我修养", "avatar_large": "https://sf3-ttcdn-tos.pstatp.com/img/user-avatar/745930fdd28cb84dfe523839ebd57483~300x300.image", "level": 2, "description": "个人微信:cmdfas 备注来源[掘金]", "followee_count": 4, "follower_count": 17, "post_article_count": 21, "digg_article_count": 11, "got_digg_count": 106, "got_view_count": 5030, "post_shortmsg_count": 0, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 156, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546519, "tag_id": "6809640398105870343", "tag_name": "JavaScript", "color": "#616161", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/5d70fd6af940df373834.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1435884803, "mtime": 1631692583, "id_type": 9, "tag_alias": "", "post_article_count": 67405, "concern_user_count": 398956}, {"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}], "user_interact": {"id": 7004735253755478029, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "20210915160509010204026215010001E4"}, {"article_id": "6998042582865412110", "article_info": {"article_id": "6998042582865412110", "user_id": "3737995267806766", "category_id": "6809637767543259144", "tag_ids": [6809640407484334093, 6809640699667939342], "visible_level": 0, "link_url": "", "cover_image": "", "is_gfw": 0, "title": "什么是函数式编程?", "brief_content": "什么是函数式编程? 函数式编程(Function Programming,简写 FP ),和面对对象编程,面向过程编程一样,是一种编程范式.", "is_english": 0, "is_original": 1, "user_index": 3.969362295916118, "original_type": 0, "original_author": "", "content": "", "ctime": "1629358775", "mtime": "1629442663", "rtime": "1629442663", "draft_id": "6998040943681093640", "view_count": 249, "collect_count": 1, "digg_count": 7, "comment_count": 2, "hot_index": 21, "is_hot": 0, "rank_index": 0.00578427, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "3737995267806766", "user_name": "南园游", "company": "", "job_title": "", "avatar_large": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/gold-user-assets/2019/12/16/16f0cadb85cdfad9~tplv-t2oaga2asx-image.image", "level": 1, "description": "", "followee_count": 5, "follower_count": 2, "post_article_count": 4, "digg_article_count": 8, "got_digg_count": 13, "got_view_count": 925, "post_shortmsg_count": 0, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 22, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}, {"id": 2546737, "tag_id": "6809640699667939342", "tag_name": "函数式编程", "color": "#000000", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/75f57f953f13200a7e6a.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1480964210, "mtime": 1631669923, "id_type": 9, "tag_alias": "", "post_article_count": 946, "concern_user_count": 35874}], "user_interact": {"id": 6998042582865412110, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "20210915160509010204026215010001E4"}, {"article_id": "7001134628916428836", "article_info": {"article_id": "7001134628916428836", "user_id": "378645226199581", "category_id": "6809637767543259144", "tag_ids": [6809640407484334093], "visible_level": 0, "link_url": "", "cover_image": "https://p1-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/dc4d59ada990432b924ca8ab025a829a~tplv-k3u1fbpfcp-watermark.image", "is_gfw": 0, "title": "TCP三次握手与四次挥手,TCP/IP,UDP和TCP区别全在这里了", "brief_content": "TCP位于传输层,作用是提供可靠的字节流服务,为了准确无误地将数据送达目的地,TCP协议采纳三次握手策略", "is_english": 0, "is_original": 1, "user_index": 4.508716229440012, "original_type": 0, "original_author": "", "content": "", "ctime": "1630078718", "mtime": "1630546498", "rtime": "1630131665", "draft_id": "7001122333259726861", "view_count": 118, "collect_count": 1, "digg_count": 4, "comment_count": 2, "hot_index": 11, "is_hot": 0, "rank_index": 0.00578299, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "378645226199581", "user_name": "jojo的奇妙前端", "company": "Dio的面包屋", "job_title": "面包师", "avatar_large": "https://sf1-ttcdn-tos.pstatp.com/img/user-avatar/694be53d2340f5910447b65e31b96684~300x300.image", "level": 1, "description": "", "followee_count": 3, "follower_count": 11, "post_article_count": 13, "digg_article_count": 28, "got_digg_count": 65, "got_view_count": 1788, "post_shortmsg_count": 0, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 82, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}], "user_interact": {"id": 7001134628916428836, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "20210915160509010204026215010001E4"}, {"article_id": "6993990148752932872", "article_info": {"article_id": "6993990148752932872", "user_id": "1486195453595736", "category_id": "6809637767543259144", "tag_ids": [6809640369764958215, 6809640407484334093], "visible_level": 0, "link_url": "", "cover_image": "https://p9-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/8d3665f2b80346239177c80c2b3c8959~tplv-k3u1fbpfcp-watermark.image", "is_gfw": 0, "title": "vue中的key到底有什么用?", "brief_content": "key是什么 在vue中,我们经常使用的指令其中必定有key,我们先看看vue的官网文档中是怎么定义key这个指令的 vue使用的虚拟dom,不直接操作dom元素,在操作虚拟dom的时候又使用了dif", "is_english": 0, "is_original": 1, "user_index": 5.643386594270234, "original_type": 0, "original_author": "", "content": "", "ctime": "1628415285", "mtime": "1628415793", "rtime": "1628415793", "draft_id": "6993599238328287263", "view_count": 447, "collect_count": 0, "digg_count": 13, "comment_count": 0, "hot_index": 35, "is_hot": 0, "rank_index": 0.00578088, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "1486195453595736", "user_name": "HavanaLee", "company": "", "job_title": "前端摸鱼工程师", "avatar_large": "https://sf6-ttcdn-tos.pstatp.com/img/user-avatar/5bd836af021fb14b274fd87909535a7e~300x300.image", "level": 2, "description": "", "followee_count": 14, "follower_count": 7, "post_article_count": 10, "digg_article_count": 154, "got_digg_count": 77, "got_view_count": 3018, "post_shortmsg_count": 0, "digg_shortmsg_count": 2, "isfollowed": false, "favorable_author": 0, "power": 107, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546498, "tag_id": "6809640369764958215", "tag_name": "Vue.js", "color": "#41B883", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/7b5c3eb591b671749fee.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432234520, "mtime": 1631692660, "id_type": 9, "tag_alias": "", "post_article_count": 31256, "concern_user_count": 313520}, {"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}], "user_interact": {"id": 6993990148752932872, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "20210915160509010204026215010001E4"}, {"article_id": "6844904201672196110", "article_info": {"article_id": "6844904201672196110", "user_id": "712139233840407", "category_id": "6809637767543259144", "tag_ids": [6809640398105870343, 6809640407484334093], "visible_level": 0, "link_url": "https://juejin.im/post/6844904201672196110", "cover_image": "", "is_gfw": 0, "title": "总感觉自己不会的太多了,不知该如何下手?", "brief_content": "前端东西确实蛮多,但也没必要什么都想学。一旦你有这个想法,多半会像个无头苍蝇乱飞。这个看看,那个学点,到头来啥东西都没学好。 这样的例子其实我在读者里看到好些了,学习确实看起来是在学习,啥资料都收藏了,今天看会这个技术的视频,明天拿上另一个技术的书读起来,但是这种学习方式相当低…", "is_english": 0, "is_original": 1, "user_index": 0.53262452509886, "original_type": 0, "original_author": "", "content": "", "ctime": "1593400023", "mtime": "1599038787", "rtime": "1593400023", "draft_id": "6845076841087107080", "view_count": 14283, "collect_count": 124, "digg_count": 229, "comment_count": 48, "hot_index": 991, "is_hot": 0, "rank_index": 0.00577923, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "712139233840407", "user_name": "yck", "company": "「前端真好玩」公众号作者", "job_title": "前端开发", "avatar_large": "https://sf1-ttcdn-tos.pstatp.com/img/user-avatar/a386aa8db73c9678458ec34161472ca5~300x300.image", "level": 7, "description": "", "followee_count": 21, "follower_count": 34610, "post_article_count": 84, "digg_article_count": 105, "got_digg_count": 45060, "got_view_count": 1475733, "post_shortmsg_count": 12, "digg_shortmsg_count": 7, "isfollowed": false, "favorable_author": 1, "power": 59614, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 98, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546519, "tag_id": "6809640398105870343", "tag_name": "JavaScript", "color": "#616161", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/5d70fd6af940df373834.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1435884803, "mtime": 1631692583, "id_type": 9, "tag_alias": "", "post_article_count": 67405, "concern_user_count": 398956}, {"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}], "user_interact": {"id": 6844904201672196110, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "20210915160509010204026215010001E4"}, {"article_id": "7002541621828911117", "article_info": {"article_id": "7002541621828911117", "user_id": "4195392104175527", "category_id": "6809637767543259144", "tag_ids": [6809640357354012685, 6809640407484334093], "visible_level": 0, "link_url": "", "cover_image": "https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/33623236cdd441b1be41706d227e4fa6~tplv-k3u1fbpfcp-watermark.image", "is_gfw": 0, "title": "从源码理解setState(React15.6.0)", "brief_content": "React:setState执行机制,setState同步异步表现形式成因,setState连续设置对象参数只生效最后一次设置问题原因", "is_english": 0, "is_original": 1, "user_index": 4.889445618977261, "original_type": 0, "original_author": "", "content": "", "ctime": "1630406325", "mtime": "1630588778", "rtime": "1630473914", "draft_id": "7002485527974772744", "view_count": 130, "collect_count": 0, "digg_count": 0, "comment_count": 0, "hot_index": 6, "is_hot": 0, "rank_index": 0.00577807, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "4195392104175527", "user_name": "Tsuki_", "company": "苞米", "job_title": "more than two years", "avatar_large": "https://sf1-ttcdn-tos.pstatp.com/img/user-avatar/99973816f15115ba1f9437e862674257~300x300.image", "level": 2, "description": "没有翻不过的沟 只是你努力还不够", "followee_count": 10, "follower_count": 73, "post_article_count": 25, "digg_article_count": 43, "got_digg_count": 91, "got_view_count": 8933, "post_shortmsg_count": 1, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 180, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546490, "tag_id": "6809640357354012685", "tag_name": "React.js", "color": "#61DAFB", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/f655215074250f10f8d4.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432234367, "mtime": 1631692935, "id_type": 9, "tag_alias": "", "post_article_count": 16999, "concern_user_count": 226420}, {"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}], "user_interact": {"id": 7002541621828911117, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "20210915160509010204026215010001E4"}, {"article_id": "7001409580890587172", "article_info": {"article_id": "7001409580890587172", "user_id": "2928754707141608", "category_id": "6809637767543259144", "tag_ids": [6809640407484334093, 6809640394175971342], "visible_level": 0, "link_url": "", "cover_image": "", "is_gfw": 0, "title": "CSS动画-调速函数 | steps与帧动画", "brief_content": "这是我参与8月更文挑战的第28天,活动详情查看:8月更文挑战 在文章CSS动画-调速函数一文中,我们初步了解了一下CSS调速函数animation-timing-function的作用,介绍了一个重要", "is_english": 0, "is_original": 1, "user_index": 3.881363120879044, "original_type": 0, "original_author": "", "content": "", "ctime": "1630142986", "mtime": "1630309636", "rtime": "1630309636", "draft_id": "7001400277320499230", "view_count": 138, "collect_count": 1, "digg_count": 3, "comment_count": 0, "hot_index": 9, "is_hot": 0, "rank_index": 0.0057777, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "2928754707141608", "user_name": "KevinQ", "company": "某国企", "job_title": "全干工程师", "avatar_large": "https://sf6-ttcdn-tos.pstatp.com/img/user-avatar/985fdb8019434c98a2d1ef549dc59fef~300x300.image", "level": 2, "description": "啥都会一点儿的后端coder", "followee_count": 111, "follower_count": 35, "post_article_count": 102, "digg_article_count": 181, "got_digg_count": 339, "got_view_count": 23803, "post_shortmsg_count": 274, "digg_shortmsg_count": 449, "isfollowed": false, "favorable_author": 0, "power": 507, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}, {"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}], "user_interact": {"id": 7001409580890587172, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "20210915160509010204026215010001E4"}], "cursor": "eyJ2IjoiNzAwNzk5MTg0ODMwODMxMDAyNCIsImkiOjQ3NjB9", "count": 34210, "has_more": true}
06bd77a00c108cd3162f43c0b8c735e395c7c330
a12a4be7e8c792b4c1f2765d3e7a43056e9196b0
/399-evaluate-division/399-evaluate-division.py
317cbb08733f23f1593c0c5e5836a04b160ea65c
[]
no_license
fdas3213/Leetcode
d4b7cfab70446b3f6a961252a55b36185bc87712
1335d5759c41f26eb45c8373f33ee97878c4a638
refs/heads/master
2022-05-28T16:24:15.856679
2022-05-19T21:56:35
2022-05-19T21:56:35
94,024,751
0
0
null
null
null
null
UTF-8
Python
false
false
2,198
py
class Solution: def calcEquation(self, equations: List[List[str]], values: List[float], queries: List[List[str]]) -> List[float]: #step 1. initialize a graph graph = defaultdict(defaultdict) for pair, value in zip(equations, values): v1, v2 = pair[0], pair[1] graph[v1][v2] = value graph[v2][v1] = 1/value def evaluate(cur_node, target_node, product, visited): visited.add(cur_node) val = -1 neighbors = graph[cur_node] if target_node in neighbors: return product * neighbors[target_node] else: for neighbor, value in neighbors.items(): if neighbor not in visited: val = evaluate(neighbor, target_node, product*value, visited) if val != -1: break visited.remove(cur_node) return val def evaluate_bfs(cur_node, target_node): visited = set() queue = deque([(cur_node, 1)]) while queue: cur_node, cur_val = queue.popleft() visited.add(cur_node) if target_node == cur_node: return cur_val neighbors = graph[cur_node] for neighbor, val in neighbors.items(): if neighbor not in visited: queue.append((neighbor, cur_val*val)) return -1 #step 2. evaluate the query res = [] for n1,n2 in queries: #if either of the node does not exist in the graph if n1 not in graph or n2 not in graph: res.append(-1) continue #if n1 and n2 is the same node if n1 == n2: res.append(1) continue #dfs visited = set() res.append(evaluate(n1, n2, 1, visited)) #bfs: res.append(evaluate_bfs(n1, n2)) return res
4749db7324c75666dd8e25a25566092e3b09963e
dd3bbd4e7aaee7a8a5f26b927ce28ac472c855a5
/eggs/plone.app.kss-1.6.2-py2.7.egg/plone/app/kss/demo/bbb_oldkssdemo.py
112c7267a425cbc4ada948bfe06706153dd4619d
[]
no_license
nacho22martin/tesis
ea0a822f8bdbdef6f13f41276ecd4d6e85427ca5
e137eb6225cc5e724bee74a892567796166134ac
refs/heads/master
2020-12-24T13:20:58.334839
2013-11-09T12:42:41
2013-11-09T12:42:41
14,261,570
0
1
null
null
null
null
UTF-8
Python
false
false
1,315
py
# XXX future BBB # Provide a way for the old kss.demo version, not to fail # with import error - even if it cannot execute these tests. # This enables that the package can contain application level # test setup, but it still does not fail with the old version. try: import kss.demo from kss.demo import ( KSSSeleniumTestDirectory, KSSDemo, KSSSeleniumTestCase, KSSSeleniumTestSuite, KSSSeleniumTestLayerBase, KSSSeleniumSandboxCreationTestCase, ) except ImportError: # nonexistent constructs. They will not work, but # they will run without errors. class Fake(object): # test_directory is needed because the caller code # will treat us as a TestDirectory. So, we give a # directory that does not contain any *.html files. test_directory = '/' def __init__(self, *arg, **kw): pass # import kss.demo.resource # Provide the classes directly on kss.demo namespace kss.demo.KSSSeleniumTestDirectory = kss.demo.resource.KSSSeleniumTestDirectory kss.demo.KSSDemo = kss.demo.resource.KSSDemo kss.demo.KSSSeleniumTestCase = Fake kss.demo.KSSSeleniumTestSuite = Fake kss.demo.KSSSeleniumTestLayerBase = Fake kss.demo.KSSSeleniumSandboxCreationTestCase = Fake
[ "ignacio@plone.(none)" ]
ignacio@plone.(none)
a14daf25d28db1dfa5c33f566606bc651a65b733
81539aba88c22cf75bd2e14f5e0e92f2bf54e962
/DarkMatterMap2017/TTbarDMJets_Dilepton_pseudoscalar_LO_TuneCP5_13TeV_madgraph_mcatnlo_pythia8/TTbarDMJets_Dilepton_pseudoscalar_LO_Mchi-1_Mphi-500_TuneCP5_13TeV-madgraph-mcatnlo-pythia8/TTbarDMJets_Dilepton_pseudoscalar_LO_TuneCP5_13TeV_madgraph_mcatnlo_pythia8_30000_2_cff.py
ef4683daac65cf865ef31df25cfc4909e6363974
[]
no_license
nistefan/RandomizedParametersSeparator
ad35b48b95e9745814c0bf9d8d8b6eb8aa479177
66a0e291b59113c6b5301768f1c10e36cf23d3c3
refs/heads/master
2021-01-03T00:41:17.415005
2020-02-19T13:30:54
2020-02-19T13:30:54
239,838,928
0
0
null
null
null
null
UTF-8
Python
false
false
2,904
py
import FWCore.ParameterSet.Config as cms maxEvents = cms.untracked.PSet( input = cms.untracked.int32(-1) ) readFiles = cms.untracked.vstring() source = cms.Source ("PoolSource",fileNames = readFiles, lumisToProcess = cms.untracked.VLuminosityBlockRange(*('1:36371', '1:38472', '1:38822', '1:36982', '1:37704', '1:36037', '1:37534', '1:36568', '1:37660', '1:37478', '1:37731', '1:37801', '1:38380', '1:38969', '1:38974', '1:38986', '1:37623', '1:36199', '1:36294', '1:36484', '1:38278', '1:38661', '1:38684', '1:36313', '1:36435', '1:37491', '1:38628', '1:38196', '1:38329', '1:38866', '1:36066', '1:36523', '1:38614', '1:38532', '1:38601', '1:37893', '1:37009', '1:38498', '1:36354', '1:36942', '1:36763', '1:37334', '1:37896', '1:37001', '1:37480', '1:36334', '1:36879', '1:36339', '1:36299', '1:36303', '1:36896', '1:36903', '1:36153', '1:38597', '1:38880', '1:38946', '1:38952', '1:38953', '1:38273', '1:38703', '1:38771', )) ) readFiles.extend( ['/store/mc/RunIIFall17MiniAODv2/TTbarDMJets_Dilepton_pseudoscalar_LO_TuneCP5_13TeV-madgraph-mcatnlo-pythia8/MINIAODSIM/PU2017_12Apr2018_rp_94X_mc2017_realistic_v14-v1/30000/D0F8A41C-990E-EA11-A50D-AC1F6B1E3074.root', '/store/mc/RunIIFall17MiniAODv2/TTbarDMJets_Dilepton_pseudoscalar_LO_TuneCP5_13TeV-madgraph-mcatnlo-pythia8/MINIAODSIM/PU2017_12Apr2018_rp_94X_mc2017_realistic_v14-v1/30000/DCD9D649-2013-EA11-BBCA-98039B3B0032.root', '/store/mc/RunIIFall17MiniAODv2/TTbarDMJets_Dilepton_pseudoscalar_LO_TuneCP5_13TeV-madgraph-mcatnlo-pythia8/MINIAODSIM/PU2017_12Apr2018_rp_94X_mc2017_realistic_v14-v1/30000/88D5C4F6-9D0C-EA11-A344-24BE05C63681.root', '/store/mc/RunIIFall17MiniAODv2/TTbarDMJets_Dilepton_pseudoscalar_LO_TuneCP5_13TeV-madgraph-mcatnlo-pythia8/MINIAODSIM/PU2017_12Apr2018_rp_94X_mc2017_realistic_v14-v1/30000/14F851FE-6510-EA11-B76F-008CFAF74B22.root', '/store/mc/RunIIFall17MiniAODv2/TTbarDMJets_Dilepton_pseudoscalar_LO_TuneCP5_13TeV-madgraph-mcatnlo-pythia8/MINIAODSIM/PU2017_12Apr2018_rp_94X_mc2017_realistic_v14-v1/30000/2AC7749D-2013-EA11-AAAA-001E67792738.root', '/store/mc/RunIIFall17MiniAODv2/TTbarDMJets_Dilepton_pseudoscalar_LO_TuneCP5_13TeV-madgraph-mcatnlo-pythia8/MINIAODSIM/PU2017_12Apr2018_rp_94X_mc2017_realistic_v14-v1/30000/8228DED2-F60C-EA11-9D11-002590FD5A78.root', '/store/mc/RunIIFall17MiniAODv2/TTbarDMJets_Dilepton_pseudoscalar_LO_TuneCP5_13TeV-madgraph-mcatnlo-pythia8/MINIAODSIM/PU2017_12Apr2018_rp_94X_mc2017_realistic_v14-v1/30000/B4730441-2013-EA11-8532-0242AC130002.root', '/store/mc/RunIIFall17MiniAODv2/TTbarDMJets_Dilepton_pseudoscalar_LO_TuneCP5_13TeV-madgraph-mcatnlo-pythia8/MINIAODSIM/PU2017_12Apr2018_rp_94X_mc2017_realistic_v14-v1/30000/98375E4E-2013-EA11-BDE2-7CD30AD095BC.root', '/store/mc/RunIIFall17MiniAODv2/TTbarDMJets_Dilepton_pseudoscalar_LO_TuneCP5_13TeV-madgraph-mcatnlo-pythia8/MINIAODSIM/PU2017_12Apr2018_rp_94X_mc2017_realistic_v14-v1/30000/86D1A249-EF0D-EA11-BAF6-008CFAE45108.root']);
e12d9c7779e15c081580d82cfaaf33c753eba8e5
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/2gFkEsAqNZrs4yeck_5.py
1deffbbc4273056ca01743885242d8e47d869034
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
66
py
mini_peaks=lambda l:[y for x,y,z in zip(l,l[1:],l[2:])if x<y>z]
10688edc40347097c51ecda235be420e4c48ecaa
2bcc421ee345b00cf805c543b37d18b5d019dc04
/adafruit-circuitpython-bundle-6.x-mpy-20201126/examples/led_animation_group.py
011a019ee803683432760c85a49cbbacb6bfd77c
[]
no_license
saewoonam/sc-current-source-titano
5a1ad46889c1b09c168424901fd71cb4eab5c61b
1c136aa8b61268d9ac0b5a682b30ece70ab87663
refs/heads/main
2023-03-02T22:12:26.685537
2021-02-09T03:28:01
2021-02-09T03:28:01
317,299,900
0
2
null
null
null
null
UTF-8
Python
false
false
1,947
py
""" This example shows three different ways to use AnimationGroup: syncing two animations, displaying two animations at different speeds, and displaying two animations sequentially, across two separate pixel objects such as the built-in NeoPixels on a Circuit Playground Bluefruit and a NeoPixel strip. This example is written for Circuit Playground Bluefruit and a 30-pixel NeoPixel strip connected to pad A1. It does not work on Circuit Playground Express. """ import board import neopixel from adafruit_circuitplayground import cp from adafruit_led_animation.animation.blink import Blink from adafruit_led_animation.animation.comet import Comet from adafruit_led_animation.animation.chase import Chase from adafruit_led_animation.group import AnimationGroup from adafruit_led_animation.sequence import AnimationSequence import adafruit_led_animation.color as color strip_pixels = neopixel.NeoPixel(board.A1, 30, brightness=0.5, auto_write=False) cp.pixels.brightness = 0.5 animations = AnimationSequence( # Synchronized to 0.5 seconds. Ignores the second animation setting of 3 seconds. AnimationGroup( Blink(cp.pixels, 0.5, color.CYAN), Blink(strip_pixels, 3.0, color.AMBER), sync=True, ), # Different speeds AnimationGroup( Comet(cp.pixels, 0.1, color.MAGENTA, tail_length=5), Comet(strip_pixels, 0.01, color.MAGENTA, tail_length=15), ), # Different animations AnimationGroup( Blink(cp.pixels, 0.5, color.JADE), Comet(strip_pixels, 0.05, color.TEAL, tail_length=15), ), # Sequential animations on the built-in NeoPixels then the NeoPixel strip Chase(cp.pixels, 0.05, size=2, spacing=3, color=color.PURPLE), Chase(strip_pixels, 0.05, size=2, spacing=3, color=color.PURPLE), advance_interval=3.0, auto_clear=True, auto_reset=True, ) while True: animations.animate()
e6aa1fc31893a65606e16abf84d605a55a52173a
e5a20362b2f9b17055cb95d56dc8dea2059205fb
/arrays_manipulations_algorithms/is_str_equal.py
4c1d539801e17f907e0371055984660ed94ffd56
[]
no_license
uchenna-j-edeh/dailly_problems
0c97d1ab3c91756abf625a04e3bb6e0cd6e3405c
7bd47232704297851f8acdd9331f90da96c732af
refs/heads/master
2023-08-17T12:27:00.640834
2023-08-07T17:03:00
2023-08-07T17:03:00
158,981,409
0
0
null
null
null
null
UTF-8
Python
false
false
548
py
# write a code to check if two str are equal def is_equal(s1, s2): for i in range(len(s1)): # if len(s2) - 1 >= i: # return False if len(s2) - 1 >= i or (s1[i].lower() != s2[i].lower()): return False for i in range(len(s2)): # if len(s1) - 1 >= i: # return False if len(s1) - 1 >= i or (s1[i].lower() != s2[i].lower()): # i = 4, len(s1) = 4 return False return True s1 = "abcd" # 4 s2 = "ABCDj" # 5 print(is_equal(s1, s2))
edd919cfe5efef37c9386e8f94227f5bb2b80185
09ba5ae2edc51f3fd812b9205188b1b01e6bea77
/test/src/CPMel/core/metaclass.py
61cec13411e956af6f67e786d3014ce281188ff7
[]
no_license
cpcgskill/Maya_tools
c6a43ad20eab3b97e82c9dfe40a1745b6098e5c4
93f9e66e5dc3bb51f33df0615415a56a60613ff1
refs/heads/main
2023-02-26T16:20:52.959050
2021-01-28T06:12:18
2021-01-28T06:12:18
325,512,423
1
0
null
null
null
null
UTF-8
Python
false
false
854
py
#!/usr/bin/python # -*-coding:utf-8 -*- u""" :创建时间: 2020/5/18 23:57 :作者: 苍之幻灵 :我的主页: https://cpcgskill.com :QQ: 2921251087 :爱发电: https://afdian.net/@Phantom_of_the_Cang :aboutcg: https://www.aboutcg.org/teacher/54335 :bilibili: https://space.bilibili.com/351598127 """ import functools def newClass(name, bases, attrs): u""" 构建元类使用此元类的类在创建时自动创建对象 :param name: :param bases: :param attrs: :return: """ cls = type(name, bases, attrs) return cls() def createClass(name, bases, attrs): u""" 创建器元类 以此为元类的类在创建时将不会自动调用__init__ :param name: :param bases: :param attrs: :return: """ cls = type(name, bases, attrs) return functools.partial(cls.__new__, cls)
[ "www.cpcgskill.com" ]
www.cpcgskill.com
053b8628f236c89b6e4071334424c1a57a3c1d50
5cbde24d02eea9e762994af976aff8b4fdc731b3
/actus/wsgi.py
657d6f36c1718379520c54b937aa9fb42599d2c5
[]
no_license
paulo-romano/actus
f94e874ef3351181c79539ba69df9f7bbdb9e90f
d424afa6672f6f714f094b2080d0255bad257268
refs/heads/master
2021-01-17T15:06:40.486493
2016-12-17T00:47:03
2016-12-17T00:59:53
70,018,546
2
1
null
2016-11-04T00:05:47
2016-10-05T00:41:06
JavaScript
UTF-8
Python
false
false
424
py
""" WSGI config for actus project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.10/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application from dj_static import Cling os.environ.setdefault("DJANGO_SETTINGS_MODULE", "actus.settings") application = Cling(get_wsgi_application())
a8e18dcbe6113a775bc2a7239cc76ff8420db740
3fb0ce33f00b96ae3808a32da44de3e887434afb
/.提出一覧/AtCoder/ABC156/b/main.py
54120439e9bf75e86574bad0f396250ddd7c9bf0
[]
no_license
Yukikazari/kyoupuro
ca3d74d8db024b1988cd0ff00bf069ab739783d7
343de455c4344dbcfa4524b492f7f6205c9db26f
refs/heads/master
2023-02-21T01:53:52.403729
2021-01-27T03:55:01
2021-01-27T03:55:01
282,222,950
0
0
null
null
null
null
UTF-8
Python
false
false
206
py
#!/usr/bin/env python3 #import #import math #import numpy as np #= int(input()) #= input() N, K = map(int, input().split()) for i in range(1, 10 ** 6): if K ** i > N: print(i) exit()
93077dc4d63732f42922d4c942ec5ed4352f5da7
bc441bb06b8948288f110af63feda4e798f30225
/patch_manager_sdk/api/patch_task/list_task_pb2.py
4516260317484520a501c4388802ba9301b167a4
[ "Apache-2.0" ]
permissive
easyopsapis/easyops-api-python
23204f8846a332c30f5f3ff627bf220940137b6b
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
refs/heads/master
2020-06-26T23:38:27.308803
2020-06-16T07:25:41
2020-06-16T07:25:41
199,773,131
5
0
null
null
null
null
UTF-8
Python
false
true
15,278
py
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: list_task.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='list_task.proto', package='patch_task', syntax='proto3', serialized_options=None, serialized_pb=_b('\n\x0flist_task.proto\x12\npatch_task\"[\n\x14ListPatchTaskRequest\x12\x0c\n\x04page\x18\x01 \x01(\x05\x12\x11\n\tpage_size\x18\x02 \x01(\x05\x12\x11\n\tstartTime\x18\x03 \x01(\x05\x12\x0f\n\x07\x65ndTime\x18\x04 \x01(\x05\"\x81\x03\n\x15ListPatchTaskResponse\x12\x0c\n\x04page\x18\x01 \x01(\x05\x12\x11\n\tpage_size\x18\x02 \x01(\x05\x12\r\n\x05total\x18\x03 \x01(\x05\x12\x34\n\x04list\x18\x04 \x03(\x0b\x32&.patch_task.ListPatchTaskResponse.List\x1a\x81\x02\n\x04List\x12\x0e\n\x06taskId\x18\x01 \x01(\t\x12?\n\x07request\x18\x02 \x03(\x0b\x32..patch_task.ListPatchTaskResponse.List.Request\x12\x0f\n\x07\x63reator\x18\x03 \x01(\t\x12\r\n\x05\x63time\x18\x04 \x01(\x05\x12\r\n\x05\x65time\x18\x05 \x01(\x05\x12\x0e\n\x06status\x18\x06 \x01(\t\x12\x11\n\tgroupSize\x18\x07 \x01(\x05\x12\x16\n\x0eprocessedCount\x18\x08 \x01(\x05\x1a>\n\x07Request\x12\x0e\n\x06hostId\x18\x01 \x01(\t\x12\x0e\n\x06hostIp\x18\x02 \x01(\t\x12\x13\n\x0bpatchIdList\x18\x03 \x03(\t\"\x81\x01\n\x1cListPatchTaskResponseWrapper\x12\x0c\n\x04\x63ode\x18\x01 \x01(\x05\x12\x13\n\x0b\x63odeExplain\x18\x02 \x01(\t\x12\r\n\x05\x65rror\x18\x03 \x01(\t\x12/\n\x04\x64\x61ta\x18\x04 \x01(\x0b\x32!.patch_task.ListPatchTaskResponseb\x06proto3') ) _LISTPATCHTASKREQUEST = _descriptor.Descriptor( name='ListPatchTaskRequest', full_name='patch_task.ListPatchTaskRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='page', full_name='patch_task.ListPatchTaskRequest.page', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='page_size', full_name='patch_task.ListPatchTaskRequest.page_size', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='startTime', full_name='patch_task.ListPatchTaskRequest.startTime', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='endTime', full_name='patch_task.ListPatchTaskRequest.endTime', index=3, number=4, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=31, serialized_end=122, ) _LISTPATCHTASKRESPONSE_LIST_REQUEST = _descriptor.Descriptor( name='Request', full_name='patch_task.ListPatchTaskResponse.List.Request', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='hostId', full_name='patch_task.ListPatchTaskResponse.List.Request.hostId', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='hostIp', full_name='patch_task.ListPatchTaskResponse.List.Request.hostIp', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='patchIdList', full_name='patch_task.ListPatchTaskResponse.List.Request.patchIdList', index=2, number=3, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=448, serialized_end=510, ) _LISTPATCHTASKRESPONSE_LIST = _descriptor.Descriptor( name='List', full_name='patch_task.ListPatchTaskResponse.List', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='taskId', full_name='patch_task.ListPatchTaskResponse.List.taskId', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='request', full_name='patch_task.ListPatchTaskResponse.List.request', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='creator', full_name='patch_task.ListPatchTaskResponse.List.creator', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='ctime', full_name='patch_task.ListPatchTaskResponse.List.ctime', index=3, number=4, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='etime', full_name='patch_task.ListPatchTaskResponse.List.etime', index=4, number=5, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='status', full_name='patch_task.ListPatchTaskResponse.List.status', index=5, number=6, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='groupSize', full_name='patch_task.ListPatchTaskResponse.List.groupSize', index=6, number=7, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='processedCount', full_name='patch_task.ListPatchTaskResponse.List.processedCount', index=7, number=8, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_LISTPATCHTASKRESPONSE_LIST_REQUEST, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=253, serialized_end=510, ) _LISTPATCHTASKRESPONSE = _descriptor.Descriptor( name='ListPatchTaskResponse', full_name='patch_task.ListPatchTaskResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='page', full_name='patch_task.ListPatchTaskResponse.page', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='page_size', full_name='patch_task.ListPatchTaskResponse.page_size', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='total', full_name='patch_task.ListPatchTaskResponse.total', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='list', full_name='patch_task.ListPatchTaskResponse.list', index=3, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_LISTPATCHTASKRESPONSE_LIST, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=125, serialized_end=510, ) _LISTPATCHTASKRESPONSEWRAPPER = _descriptor.Descriptor( name='ListPatchTaskResponseWrapper', full_name='patch_task.ListPatchTaskResponseWrapper', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='code', full_name='patch_task.ListPatchTaskResponseWrapper.code', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='codeExplain', full_name='patch_task.ListPatchTaskResponseWrapper.codeExplain', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='error', full_name='patch_task.ListPatchTaskResponseWrapper.error', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='data', full_name='patch_task.ListPatchTaskResponseWrapper.data', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=513, serialized_end=642, ) _LISTPATCHTASKRESPONSE_LIST_REQUEST.containing_type = _LISTPATCHTASKRESPONSE_LIST _LISTPATCHTASKRESPONSE_LIST.fields_by_name['request'].message_type = _LISTPATCHTASKRESPONSE_LIST_REQUEST _LISTPATCHTASKRESPONSE_LIST.containing_type = _LISTPATCHTASKRESPONSE _LISTPATCHTASKRESPONSE.fields_by_name['list'].message_type = _LISTPATCHTASKRESPONSE_LIST _LISTPATCHTASKRESPONSEWRAPPER.fields_by_name['data'].message_type = _LISTPATCHTASKRESPONSE DESCRIPTOR.message_types_by_name['ListPatchTaskRequest'] = _LISTPATCHTASKREQUEST DESCRIPTOR.message_types_by_name['ListPatchTaskResponse'] = _LISTPATCHTASKRESPONSE DESCRIPTOR.message_types_by_name['ListPatchTaskResponseWrapper'] = _LISTPATCHTASKRESPONSEWRAPPER _sym_db.RegisterFileDescriptor(DESCRIPTOR) ListPatchTaskRequest = _reflection.GeneratedProtocolMessageType('ListPatchTaskRequest', (_message.Message,), { 'DESCRIPTOR' : _LISTPATCHTASKREQUEST, '__module__' : 'list_task_pb2' # @@protoc_insertion_point(class_scope:patch_task.ListPatchTaskRequest) }) _sym_db.RegisterMessage(ListPatchTaskRequest) ListPatchTaskResponse = _reflection.GeneratedProtocolMessageType('ListPatchTaskResponse', (_message.Message,), { 'List' : _reflection.GeneratedProtocolMessageType('List', (_message.Message,), { 'Request' : _reflection.GeneratedProtocolMessageType('Request', (_message.Message,), { 'DESCRIPTOR' : _LISTPATCHTASKRESPONSE_LIST_REQUEST, '__module__' : 'list_task_pb2' # @@protoc_insertion_point(class_scope:patch_task.ListPatchTaskResponse.List.Request) }) , 'DESCRIPTOR' : _LISTPATCHTASKRESPONSE_LIST, '__module__' : 'list_task_pb2' # @@protoc_insertion_point(class_scope:patch_task.ListPatchTaskResponse.List) }) , 'DESCRIPTOR' : _LISTPATCHTASKRESPONSE, '__module__' : 'list_task_pb2' # @@protoc_insertion_point(class_scope:patch_task.ListPatchTaskResponse) }) _sym_db.RegisterMessage(ListPatchTaskResponse) _sym_db.RegisterMessage(ListPatchTaskResponse.List) _sym_db.RegisterMessage(ListPatchTaskResponse.List.Request) ListPatchTaskResponseWrapper = _reflection.GeneratedProtocolMessageType('ListPatchTaskResponseWrapper', (_message.Message,), { 'DESCRIPTOR' : _LISTPATCHTASKRESPONSEWRAPPER, '__module__' : 'list_task_pb2' # @@protoc_insertion_point(class_scope:patch_task.ListPatchTaskResponseWrapper) }) _sym_db.RegisterMessage(ListPatchTaskResponseWrapper) # @@protoc_insertion_point(module_scope)
263d88bc1127e17bd9788a19259e6a996b95f48f
8ce2b8314fd2e11f3118f7b57f15d1aeb661eec9
/backend/bagel_buoy_1801/settings.py
e5641f87d26096e7d8b6da1fdacf8134eb1580ba
[]
no_license
crowdbotics-apps/bagel-buoy-1801
2b4f17b3ea8f56fc574f01736900a9d15a216ca8
d053cf93ff55a0dab5d6af49a6351fe740022ac0
refs/heads/master
2022-12-09T00:33:29.351845
2019-03-30T22:14:51
2019-03-30T22:14:51
178,616,820
0
0
null
2022-12-03T04:13:29
2019-03-30T22:14:47
JavaScript
UTF-8
Python
false
false
4,758
py
""" Django settings for bagel_buoy_1801 project. Generated by 'django-admin startproject' using Django 1.11.16. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os import environ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ env = environ.Env() environ.Env.read_env(os.path.join(BASE_DIR, '.env')) # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = env.str('SECRET_KEY') # SECURITY WARNING: don't run with debug turned on in production! DEBUG = env.bool('DEBUG', default=True) ALLOWED_HOSTS = ['*'] SITE_ID = 1 # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.sites' ] LOCAL_APPS = [ 'home', ] THIRD_PARTY_APPS = [ 'rest_framework', 'rest_framework.authtoken', 'bootstrap4', 'allauth', 'allauth.account', 'allauth.socialaccount', 'allauth.socialaccount.providers.google', ] INSTALLED_APPS += LOCAL_APPS + THIRD_PARTY_APPS MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'whitenoise.middleware.WhiteNoiseMiddleware', ] ROOT_URLCONF = 'bagel_buoy_1801.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates'), ], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'bagel_buoy_1801.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': 'bagel_buoy_1801', 'USER': 'bagel_buoy_1801', 'PASSWORD': 'bagel_buoy_1801', 'HOST': 'localhost', 'PORT': '5432', } } if env.str('DATABASE_URL', default=None): DATABASES = { 'default': env.db() } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'staticfiles') STATICFILES_DIRS = [ os.path.join(BASE_DIR, 'static') ] STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage' AUTHENTICATION_BACKENDS = ( 'django.contrib.auth.backends.ModelBackend', 'allauth.account.auth_backends.AuthenticationBackend' ) # allauth ACCOUNT_EMAIL_REQUIRED = True ACCOUNT_AUTHENTICATION_METHOD = 'email' ACCOUNT_USERNAME_REQUIRED = False ACCOUNT_EMAIL_VERIFICATION = None LOGIN_REDIRECT_URL = '/' if DEBUG: # output email to console instead of sending EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend' EMAIL_HOST = 'smtp.sendgrid.net' EMAIL_HOST_USER = env.str('SENDGRID_USERNAME', '') EMAIL_HOST_PASSWORD = env.str('SENDGRID_PASSWORD', '') EMAIL_PORT = 587 EMAIL_USE_TLS = True # Import local settings try: from .local_settings import * INSTALLED_APPS += DEBUG_APPS except: pass
6509b905b984eb3598af4a3d6006cd6728c0a5b0
f114cd3da2ca11a8635e8f25c82e2cbbe4bf25c5
/python/swexpert/sw2058.py
8712ff9a1d5e263912097d0f2f76ef2e1b9650b6
[]
no_license
mizm/TIL
86641e0565e28b482148da84e98c4a32b90356de
62da3fca85335f833a6f3462fd834cd87eb492c8
refs/heads/master
2021-06-11T08:11:18.670048
2021-04-19T02:09:17
2021-04-19T02:09:17
162,208,488
0
0
null
null
null
null
UTF-8
Python
false
false
59
py
s = input() print(sum([int(s[i]) for i in range(len(s))]))
d7600096286394a49b83fc56e6f04ee102c8d3b4
53e58c213232e02250e64f48b97403ca86cd02f9
/16/mc/ExoDiBosonResonances/EDBRTreeMaker/test/crab3_analysisM3000_R_0-9.py
fa92ea4e8a878d40f96c26dc962f729463d22f78
[]
no_license
xdlyu/fullRunII_ntuple_102X
32e79c3bbc704cfaa00c67ab5124d40627fdacaf
d420b83eb9626a8ff1c79af5d34779cb805d57d8
refs/heads/master
2020-12-23T15:39:35.938678
2020-05-01T14:41:38
2020-05-01T14:41:38
237,192,426
0
2
null
null
null
null
UTF-8
Python
false
false
2,303
py
from WMCore.Configuration import Configuration name = 'WWW/sig' steam_dir = 'xulyu' config = Configuration() config.section_("General") config.General.requestName = 'M3000_R0-9_off' config.General.transferLogs = True config.section_("JobType") config.JobType.pluginName = 'Analysis' config.JobType.inputFiles = ['Summer16_07Aug2017_V11_MC_L1FastJet_AK4PFchs.txt','Summer16_07Aug2017_V11_MC_L2Relative_AK4PFchs.txt','Summer16_07Aug2017_V11_MC_L3Absolute_AK4PFchs.txt','Summer16_07Aug2017_V11_MC_L1FastJet_AK8PFchs.txt','Summer16_07Aug2017_V11_MC_L2Relative_AK8PFchs.txt','Summer16_07Aug2017_V11_MC_L3Absolute_AK8PFchs.txt','Summer16_07Aug2017_V11_MC_L1FastJet_AK8PFPuppi.txt','Summer16_07Aug2017_V11_MC_L2Relative_AK8PFPuppi.txt','Summer16_07Aug2017_V11_MC_L3Absolute_AK8PFPuppi.txt','Summer16_07Aug2017_V11_MC_L1FastJet_AK4PFPuppi.txt','Summer16_07Aug2017_V11_MC_L2Relative_AK4PFPuppi.txt','Summer16_07Aug2017_V11_MC_L3Absolute_AK4PFPuppi.txt'] #config.JobType.inputFiles = ['PHYS14_25_V2_All_L1FastJet_AK4PFchs.txt','PHYS14_25_V2_All_L2Relative_AK4PFchs.txt','PHYS14_25_V2_All_L3Absolute_AK4PFchs.txt','PHYS14_25_V2_All_L1FastJet_AK8PFchs.txt','PHYS14_25_V2_All_L2Relative_AK8PFchs.txt','PHYS14_25_V2_All_L3Absolute_AK8PFchs.txt'] # Name of the CMSSW configuration file #config.JobType.psetName = 'bkg_ana.py' config.JobType.psetName = 'analysis_sig.py' #config.JobType.allowUndistributedCMSSW = True config.JobType.allowUndistributedCMSSW = True config.section_("Data") #config.Data.inputDataset = '/WJetsToLNu_13TeV-madgraph-pythia8-tauola/Phys14DR-PU20bx25_PHYS14_25_V1-v1/MINIAODSIM' config.Data.inputDataset = '/WkkToWRadionToWWW_M3000-R0-9-TuneCUETP8M1_13TeV-madgraph-pythia/RunIISummer16MiniAODv3-PUMoriond17_94X_mcRun2_asymptotic_v3-v1/MINIAODSIM' #config.Data.inputDBS = 'global' config.Data.inputDBS = 'global' config.Data.splitting = 'FileBased' config.Data.unitsPerJob =5 config.Data.totalUnits = -1 config.Data.publication = False config.Data.outLFNDirBase = '/store/group/dpg_trigger/comm_trigger/TriggerStudiesGroup/STEAM/' + steam_dir + '/' + name + '/' # This string is used to construct the output dataset name config.Data.outputDatasetTag = 'M3000_R0-9_off' config.section_("Site") # Where the output files will be transmitted to config.Site.storageSite = 'T2_CH_CERN'
624480f7f2ed0cbdd5c554530d35447d513dcd1b
02778455d6c88a4e83bbad836f4598d49ebe81e5
/recipes/shared_logging/server.py
70d9aafd35f8e98eb1fdfc2509c9dea385db9c5a
[ "MIT" ]
permissive
stjordanis/easyrpc
d703ad81e7c2a5cb83dab2e5a424baeea5d997c6
1c0d6f8c33aaf70ccf62d75777f5e4ca8c55fedc
refs/heads/main
2023-08-13T05:52:18.459507
2021-10-13T20:15:44
2021-10-13T20:15:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
386
py
# central logging server import logging from fastapi import FastAPI from easyrpc.server import EasyRpcServer logging.basicConfig() server = FastAPI() @server.on_event('startup') async def setup(): logger = logging.getLogger() rpc_server = EasyRpcServer(server, '/ws/server', server_secret='abcd1234', debug=True) rpc_server.register_logger(logger, namespace='logger')
ce0994b51ccee45b1b6cb2f4bcb1f11296c7c002
538833a15b119ca835b82886ca047dc25e71f134
/app/bin/file/text_remove_duplicate.py
76f01c83d8fd0252f6345e396e259a54a5368c1d
[]
no_license
buxizhizhoum/tool_scripts
901ffb3749aa9521912636039bc897f969759d67
d13b9217b4cde6b626451e9638d737911a0911c5
refs/heads/master
2021-01-01T15:39:01.396282
2018-12-11T06:53:29
2018-12-11T06:53:29
97,667,877
2
0
null
null
null
null
UTF-8
Python
false
false
407
py
#!/usr/bin/python # -*- coding: utf-8 -*- def text_remove_duplicate(original_file, processed_file): file_buffer = [] with open(original_file, "r") as f: for line in f.readlines(): if line not in file_buffer: file_buffer.append(line) with open(processed_file, "w") as f: f.writelines(file_buffer) text_remove_duplicate("a.txt", "b.txt")
5cd33b20e5bc4c1c4b6e25e9df92b6fdc8d17e1a
5ec06dab1409d790496ce082dacb321392b32fe9
/clients/python/generated/swaggeraemosgi/model/com_adobe_granite_system_monitoring_impl_system_stats_m_bean_impl_info.py
3e05ccd3726996c38d3fdaef1f4e610603a6ae96
[ "Apache-2.0" ]
permissive
shinesolutions/swagger-aem-osgi
e9d2385f44bee70e5bbdc0d577e99a9f2525266f
c2f6e076971d2592c1cbd3f70695c679e807396b
refs/heads/master
2022-10-29T13:07:40.422092
2021-04-09T07:46:03
2021-04-09T07:46:03
190,217,155
3
3
Apache-2.0
2022-10-05T03:26:20
2019-06-04T14:23:28
null
UTF-8
Python
false
false
7,630
py
""" Adobe Experience Manager OSGI config (AEM) API Swagger AEM OSGI is an OpenAPI specification for Adobe Experience Manager (AEM) OSGI Configurations API # noqa: E501 The version of the OpenAPI document: 1.0.0-pre.0 Contact: [email protected] Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 import nulltype # noqa: F401 from swaggeraemosgi.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, ) def lazy_import(): from swaggeraemosgi.model.com_adobe_granite_system_monitoring_impl_system_stats_m_bean_impl_properties import ComAdobeGraniteSystemMonitoringImplSystemStatsMBeanImplProperties globals()['ComAdobeGraniteSystemMonitoringImplSystemStatsMBeanImplProperties'] = ComAdobeGraniteSystemMonitoringImplSystemStatsMBeanImplProperties class ComAdobeGraniteSystemMonitoringImplSystemStatsMBeanImplInfo(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } additional_properties_type = None _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ lazy_import() return { 'pid': (str,), # noqa: E501 'title': (str,), # noqa: E501 'description': (str,), # noqa: E501 'properties': (ComAdobeGraniteSystemMonitoringImplSystemStatsMBeanImplProperties,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'pid': 'pid', # noqa: E501 'title': 'title', # noqa: E501 'description': 'description', # noqa: E501 'properties': 'properties', # noqa: E501 } _composed_schemas = {} required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, *args, **kwargs): # noqa: E501 """ComAdobeGraniteSystemMonitoringImplSystemStatsMBeanImplInfo - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) pid (str): [optional] # noqa: E501 title (str): [optional] # noqa: E501 description (str): [optional] # noqa: E501 properties (ComAdobeGraniteSystemMonitoringImplSystemStatsMBeanImplProperties): [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value)
e7eda5397bfd521186cf038a7a0de9700c42024a
871d2a367e45164f21ecdbefe52bf442b563b33c
/tests/tests/correctness/EPLAnalytics/Streaming_Calculations/FFT/fft_cor_003/run.py
9d18dc0589837f3b625b0e287ef5aa58bf669523
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
SoftwareAG/apama-industry-analytics-kit
c0f6c30badf31411a29bc6daa4a7125b76f4e737
a3f6039915501d41251b6f7ec41b0cb8111baf7b
refs/heads/master
2022-02-19T20:47:27.180233
2022-02-02T12:58:23
2022-02-02T12:58:23
185,572,282
3
2
Apache-2.0
2022-02-02T12:58:24
2019-05-08T09:14:07
Python
UTF-8
Python
false
false
2,472
py
# $Copyright (c) 2015 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or Terracotta Inc., San Francisco, CA, USA, and/or Software AG (Canada) Inc., Cambridge, Ontario, Canada, and/or, Software AG (UK) Ltd., Derby, United Kingdom, and/or Software A.G. (Israel) Ltd., Or-Yehuda, Israel and/or their licensors.$ # Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with Software AG from industry.framework.AnalyticsBaseTest import AnalyticsBaseTest from pysys.constants import * class PySysTest(AnalyticsBaseTest): def execute(self): # Start the correlator correlator = self.startTest() self.injectAnalytic(correlator) self.injectFFTAnalysis(correlator) self.ready(correlator) correlator.injectMonitorscript(['test.mon'], self.input) self.waitForSignal('correlator.out', expr='TEST COMPLETE', condition='==1', timeout=5) def validate(self): # Basic sanity checks self.checkSanity() # Ensure the test output was correct exprList=[] exprList.append('FAILED TO CREATE ANALYTIC: 1') exprList.append('TEST PASSED: 2') exprList.append('FAILED TO CREATE ANALYTIC: 3') exprList.append('FAILED TO CREATE ANALYTIC: 4') exprList.append('FAILED TO CREATE ANALYTIC: 5') exprList.append('FAILED TO CREATE ANALYTIC: 6') exprList.append('FAILED TO CREATE ANALYTIC: 7') exprList.append('FAILED TO CREATE ANALYTIC: 8') exprList.append('FAILED TO CREATE ANALYTIC: 9') exprList.append('FAILED TO CREATE ANALYTIC: 10') exprList.append('FAILED TO CREATE ANALYTIC: 11') exprList.append('FAILED TO CREATE ANALYTIC: 12') exprList.append('FAILED TO CREATE ANALYTIC: 13') exprList.append('FAILED TO CREATE ANALYTIC: 14') exprList.append('FAILED TO CREATE ANALYTIC: 15') exprList.append('FAILED TO CREATE ANALYTIC: 16') exprList.append('FAILED TO CREATE ANALYTIC: 17') exprList.append('FAILED TO CREATE ANALYTIC: 18') exprList.append('FAILED TO CREATE ANALYTIC: 19') exprList.append('FAILED TO CREATE ANALYTIC: 20') exprList.append('TEST PASSED: 21') self.assertOrderedGrep("correlator.out", exprList=exprList) # Make sure that the we got the right number of actions/listeners called self.assertLineCount('correlator.out', expr='TEST PASSED', condition='==2') self.assertLineCount('correlator.out', expr='FAILED TO CREATE ANALYTIC:', condition='==19')
a25599fcc363658ae14985fb1168f14a33ecb67e
ef7a5e1445706482a0e20d2632f6cd3d0e279031
/amy/extrequests/migrations/0026_auto_20201107_1428.py
f1264cda61cc04a509b387aff45fb9e84eeac2d9
[ "MIT" ]
permissive
pbanaszkiewicz/amy
7bf054463f4ecfa217cc9e52a7927d22d32bcd84
f97631b2f3dd8e8f502e90bdb04dd72f048d4837
refs/heads/develop
2022-11-17T18:56:18.975192
2022-11-03T23:19:41
2022-11-03T23:19:41
28,005,098
0
3
MIT
2018-03-20T18:48:55
2014-12-14T19:25:22
Python
UTF-8
Python
false
false
714
py
# Generated by Django 2.2.13 on 2020-11-07 14:28 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('extrequests', '0025_auto_20201105_1949'), ] operations = [ migrations.AddField( model_name='selforganisedsubmission', name='end', field=models.DateField(null=True, verbose_name='Workshop end date'), ), migrations.AddField( model_name='selforganisedsubmission', name='start', field=models.DateField(help_text='Please provide the dates that your Self-Organised workshop will run.', null=True, verbose_name='Workshop start date'), ), ]
c298137ca5f8ba3d23d361dc3cc858f6eb4f2f2e
15a0797f087a9c05b7a679f47fefeeb875affab5
/fermipy/validate/utils.py
af79b178f1eb202b6ff272a7d3fa1304526c98b8
[ "BSD-3-Clause" ]
permissive
XanAstia/fermipy
2496a6a07980faff20958f1a20ad1a3171bf7b35
8d9995934fd44959d51ad7bdcd2981b3694fa35e
refs/heads/master
2021-01-05T20:03:15.590334
2020-07-22T12:35:18
2020-07-22T12:35:18
257,225,629
0
0
BSD-3-Clause
2020-06-24T13:45:52
2020-04-20T09:00:16
Python
UTF-8
Python
false
false
4,675
py
# Licensed under a 3-clause BSD style license - see LICENSE.rst from __future__ import absolute_import, division, print_function import os import copy import re import yaml import sys import mimetypes import tempfile import string import random from os.path import splitext, basename import xml.etree.cElementTree as ElementTree import argparse import numpy as np def rand_str(size=7): chars = string.ascii_uppercase + string.ascii_lowercase + string.digits return ''.join(random.choice(chars) for x in range(size)) def replace_aliases(cut_dict, aliases): """Substitute aliases in a cut dictionary.""" for k, v in cut_dict.items(): for k0, v0 in aliases.items(): cut_dict[k] = cut_dict[k].replace(k0, '(%s)' % v0) def strip(input_str): """Strip newlines and whitespace from a string.""" return str(input_str.replace('\n', '').replace(' ', '')) def get_files(files, extnames=['.root']): """Extract a list of file paths from a list containing both paths and file lists with one path per line.""" files_out = [] for f in files: mime = mimetypes.guess_type(f) if os.path.splitext(f)[1] in extnames: files_out += [f] elif mime[0] == 'text/plain': files_out += list(np.loadtxt(f, unpack=True, dtype='str')) else: raise Exception('Unrecognized input type.') return files_out def load_chain(chain, files, nfiles=None): if isinstance(nfiles, list) and len(nfiles) == 1: files = files[:nfiles[0]] elif isinstance(nfiles, list) and len(nfiles) >= 2: files = files[nfiles[0]:nfiles[1]] elif nfiles is not None: files = files[:nfiles] print("Loading %i files..." % len(files)) for f in files: chain.Add(f) return chain def load_aliases(alias_files): aliases = {} for f in alias_files: if f.endswith('.xml'): aliases.update(get_cuts_from_xml(f)) elif f.endswith('.yaml'): aliases.update(yaml.load(open(f, 'r'))) else: raise Exception('Invalid file type for aliases option.') return aliases def get_cuts_from_xml(xmlfile): """Extract event selection strings from the XML file.""" root = ElementTree.ElementTree(file=xmlfile).getroot() event_maps = root.findall('EventMap') alias_maps = root.findall('AliasDict')[0] event_classes = {} event_types = {} event_aliases = {} for m in event_maps: if m.attrib['altName'] == 'EVENT_CLASS': for c in m.findall('EventCategory'): event_classes[c.attrib['name']] = strip( c.find('ShortCut').text) elif m.attrib['altName'] == 'EVENT_TYPE': for c in m.findall('EventCategory'): event_types[c.attrib['name']] = strip(c.find('ShortCut').text) for m in alias_maps.findall('Alias'): event_aliases[m.attrib['name']] = strip(m.text) replace_aliases(event_aliases, event_aliases.copy()) replace_aliases(event_aliases, event_aliases.copy()) replace_aliases(event_classes, event_aliases) replace_aliases(event_types, event_aliases) event_selections = {} event_selections.update(event_classes) event_selections.update(event_types) event_selections.update(event_aliases) return event_selections def set_event_list(tree, selection=None, fraction=None, start_fraction=None): """ Set the event list for a tree or chain. Parameters ---------- tree : `ROOT.TTree` Input tree/chain. selection : str Cut string defining the event list. fraction : float Fraction of the total file to include in the event list starting from the *end* of the file. """ import ROOT elist = rand_str() if selection is None: cuts = '' else: cuts = selection if fraction is None or fraction >= 1.0: n = tree.Draw(">>%s" % elist, cuts, "goff") tree.SetEventList(ROOT.gDirectory.Get(elist)) elif start_fraction is None: nentries = int(tree.GetEntries()) first_entry = min(int((1.0 - fraction) * nentries), nentries) n = tree.Draw(">>%s" % elist, cuts, "goff", nentries, first_entry) tree.SetEventList(ROOT.gDirectory.Get(elist)) else: nentries = int(tree.GetEntries()) first_entry = min(int(start_fraction * nentries), nentries) n = first_entry + int(nentries * fraction) n = tree.Draw(">>%s" % elist, cuts, "goff", n - first_entry, first_entry) tree.SetEventList(ROOT.gDirectory.Get(elist)) return n
26dcfc08a00b7aeb3c786eddbad0189fcb96d23a
21b0b4c27193898207751c91b8b2ed168a1b1638
/py/py_0637_flexible_digit_sum.py
1f93090be6969f91e0df5a37180db7d4318b6121
[ "MIT" ]
permissive
lcsm29/project-euler
67560a4e66968f1671a3d7ecf2dda6c956893dca
fab794ece5aa7a11fc7c2177f26250f40a5b1447
refs/heads/main
2023-07-04T11:45:24.374841
2021-08-07T08:20:41
2021-08-07T08:20:41
371,808,781
0
0
null
null
null
null
UTF-8
Python
false
false
984
py
# Solution of; # Project Euler Problem 637: Flexible digit sum # https://projecteuler.net/problem=637 # # Given any positive integer $n$, we can construct a new integer by inserting # plus signs between some of the digits of the base $B$ representation of $n$, # and then carrying out the additions. For example, from $n=123_{10}$ ($n$ in # base 10) we can construct the four base 10 integers $123_{10}$, # $1+23=24_{10}$, $12+3=15_{10}$ and $1+2+3=6_{10}$Let $f(n,B)$ be the # smallest number of steps needed to arrive at a single-digit number in base # $B$. For example, $f(7,10)=0$ and $f(123,10)=1$. Let $g(n,B_1,B_2)$ be the # sum of the positive integers $i$ not exceeding $n$ such that # $f(i,B_1)=f(i,B_2)$. You are given $g(100,10,3)=3302$. Find $g(10^7,10,3)$ # # by lcsm29 http://github.com/lcsm29/project-euler import timed def dummy(n): pass if __name__ == '__main__': n = 1000 i = 10000 prob_id = 637 timed.caller(dummy, n, i, prob_id)
92e3cdf8225d45ea6513de9fe7fb005957dc43f2
dc2682f687a203dcf5f4f4260f857ef5099bbdab
/src/bootstrapping_olympics/interfaces/rep_nuisance_causal.py
fbe394ac400c52c679a98d561a9b9c3e359c92b9
[]
no_license
AndreaCensi/boot_olympics
1bc3d0cd887ca6b47a159929b53032c298979450
dc05e283bde01cafc4843d82f17413b13c6ce1af
refs/heads/master
2020-07-08T10:49:37.368104
2013-07-19T07:00:22
2013-07-19T07:00:22
2,098,134
0
0
null
null
null
null
UTF-8
Python
false
false
800
py
from .boot_spec import BootSpec from abc import abstractmethod from blocks import SimpleBlackBox from contracts import ContractsMeta, contract __all__ = ['RepresentationNuisanceCausal'] class RepresentationNuisanceCausal(object): ''' ''' __metaclass__ = ContractsMeta class NotInvertible(Exception): pass def inverse(self): ''' Returns the inverse representation nuisance, or raises NotInvertible ''' @contract(spec=BootSpec, returns=BootSpec) def transform_spec(self, spec): ''' ''' @abstractmethod @contract(returns=SimpleBlackBox) def get_pre(self): pass @abstractmethod @contract(returns=SimpleBlackBox) def get_post(self): pass
dff763da53b7be13b548bd30531adeb22a32193d
bb005bbd0e71d968beb2fc7d7bd88b0cd70def1c
/pytype/mixin.py
d3a9bd998cb15a79e1fd8905c1e4fd5c98f7fb21
[ "Apache-2.0", "MIT" ]
permissive
sawravchy/pytype
eec072afd261b6c7ab6502699c56c13bd6e529fa
284d0f0edb3c60cf02367645bf8a8d055ca50fe9
refs/heads/master
2022-10-12T13:30:32.607779
2020-06-12T23:59:49
2020-06-12T23:59:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
16,732
py
"""Mixins for abstract.py.""" import logging from pytype import abstract_utils from pytype import datatypes from pytype import function from pytype.pytd import mro from pytype.pytd import pytd import six log = logging.getLogger(__name__) class MixinMeta(type): """Metaclass for mix-ins.""" def __init__(cls, name, superclasses, *args, **kwargs): super(MixinMeta, cls).__init__(name, superclasses, *args, **kwargs) for sup in superclasses: if hasattr(sup, "overloads"): for method in sup.overloads: if method not in cls.__dict__: setattr(cls, method, getattr(sup, method)) # Record the fact that we have set a method on the class, to do # superclass lookups. if "__mixin_overloads__" in cls.__dict__: cls.__mixin_overloads__[method] = sup else: setattr(cls, "__mixin_overloads__", {method: sup}) def super(cls, method): """Imitate super() in a mix-in. This method is a substitute for super(MixinClass, self).overloaded_method(arg), which we can't use because mix-ins appear at the end of the MRO. It should be called as MixinClass.super(self.overloaded_method)(arg) . It works by finding the class on which MixinMeta.__init__ set MixinClass.overloaded_method and calling super() on that class. Args: method: The method in the mix-in. Returns: The method overloaded by 'method'. """ for supercls in type(method.__self__).__mro__: # Fetch from __dict__ rather than using getattr() because we only want # to consider methods defined on supercls itself (not on a parent). if ("__mixin_overloads__" in supercls.__dict__ and supercls.__mixin_overloads__.get(method.__name__) is cls): method_cls = supercls break return getattr(super(method_cls, method.__self__), method.__name__) @six.add_metaclass(MixinMeta) class PythonConstant(object): """A mix-in for storing actual Python constants, not just their types. This is used for things that are stored in cfg.Variable, but where we may need the actual data in order to proceed later. E.g. function / class definitions, tuples. Also, potentially: Small integers, strings (E.g. "w", "r" etc.). """ overloads = ("__repr__",) def init_mixin(self, pyval): """Mix-in equivalent of __init__.""" self.pyval = pyval def str_of_constant(self, printer): """Get a string representation of this constant. Args: printer: An AtomicAbstractValue -> str function that will be used to print abstract values. Returns: A string of self.pyval. """ del printer return repr(self.pyval) def __repr__(self): return "<%s %r>" % (self.name, self.str_of_constant(str)) @six.add_metaclass(MixinMeta) class HasSlots(object): """Mix-in for overriding slots with custom methods. This makes it easier to emulate built-in classes like dict which need special handling of some magic methods (__setitem__ etc.) """ overloads = ("get_special_attribute",) def init_mixin(self): self._slots = {} self._super = {} self._function_cache = {} def make_native_function(self, name, method): key = (name, method) if key not in self._function_cache: self._function_cache[key] = self.vm.make_native_function(name, method) return self._function_cache[key] def set_slot(self, name, method): """Add a new slot to this value.""" assert name not in self._slots, "slot %s already occupied" % name _, attr = self.vm.attribute_handler.get_attribute( self.vm.root_cfg_node, self, name, self.to_binding(self.vm.root_cfg_node)) self._super[name] = attr f = self.make_native_function(name, method) self._slots[name] = f.to_variable(self.vm.root_cfg_node) def call_pytd(self, node, name, *args): """Call the (original) pytd version of a method we overwrote.""" return self.vm.call_function(node, self._super[name], function.Args(args), fallback_to_unsolvable=False) def get_special_attribute(self, node, name, valself): if name in self._slots: attr = self.vm.program.NewVariable() additional_sources = {valself} if valself else None attr.PasteVariable(self._slots[name], node, additional_sources) return attr return HasSlots.super(self.get_special_attribute)(node, name, valself) @six.add_metaclass(MixinMeta) class Class(object): """Mix-in to mark all class-like values.""" overloads = ("get_special_attribute", "get_own_new", "call", "compute_mro") def __new__(cls, *unused_args, **unused_kwds): """Prevent direct instantiation.""" assert cls is not Class, "Cannot instantiate Class" return object.__new__(cls) def init_mixin(self, metaclass): """Mix-in equivalent of __init__.""" if metaclass is None: self.cls = self._get_inherited_metaclass() else: # TODO(rechen): Check that the metaclass is a (non-strict) subclass of the # metaclasses of the base classes. self.cls = metaclass # Key-value store of metadata for overlays to use. self.metadata = {} self._instance_cache = {} self._init_abstract_methods() self._init_protocol_methods() self._init_overrides_bool() self._all_formal_type_parameters = datatypes.AliasingMonitorDict() self._all_formal_type_parameters_loaded = False def bases(self): return [] @property def all_formal_type_parameters(self): self._load_all_formal_type_parameters() return self._all_formal_type_parameters def _load_all_formal_type_parameters(self): """Load _all_formal_type_parameters.""" if self._all_formal_type_parameters_loaded: return bases = [ abstract_utils.get_atomic_value( base, default=self.vm.convert.unsolvable) for base in self.bases()] for base in bases: abstract_utils.parse_formal_type_parameters( base, self.full_name, self._all_formal_type_parameters) self._all_formal_type_parameters_loaded = True def get_own_methods(self): """Get the methods defined by this class.""" raise NotImplementedError(self.__class__.__name__) def _is_protocol(self): """Whether this class is a protocol.""" if self.isinstance_PyTDClass(): for parent in self.pytd_cls.parents: if isinstance( parent, pytd.ClassType) and parent.name == "typing.Protocol": return True elif self.isinstance_InterpreterClass(): for parent_var in self._bases: for parent in parent_var.data: if (parent.isinstance_PyTDClass() and parent.full_name == "typing.Protocol"): return True return False def _init_protocol_methods(self): """Compute this class's protocol methods.""" if self.isinstance_ParameterizedClass(): self.protocol_methods = self.base_cls.protocol_methods return if not self._is_protocol(): self.protocol_methods = set() return if self.isinstance_PyTDClass() and self.pytd_cls.name.startswith("typing."): # In typing.pytd, we've experimentally marked some classes such as # Sequence, which contains a mix of abstract and non-abstract methods, as # protocols, with only the abstract methods being required. self.protocol_methods = self.abstract_methods return # For the algorithm to run, protocol_methods needs to be populated with the # protocol methods defined by this class. We'll overwrite the attribute # with the full set of protocol methods later. self.protocol_methods = self.get_own_methods() protocol_methods = set() for cls in reversed(self.mro): if not isinstance(cls, Class): continue if cls.is_protocol: # Add protocol methods defined by this class. protocol_methods |= {m for m in cls.protocol_methods if m in cls} else: # Remove methods implemented by this class. protocol_methods = {m for m in protocol_methods if m not in cls} self.protocol_methods = protocol_methods def _init_overrides_bool(self): """Compute and cache whether the class sets its own boolean value.""" # A class's instances can evaluate to False if it defines __bool__ or # __len__. Python2 used __nonzero__ rather than __bool__. bool_override = "__bool__" if self.vm.PY3 else "__nonzero__" if self.isinstance_ParameterizedClass(): self.overrides_bool = self.base_cls.overrides_bool return for cls in self.mro: if isinstance(cls, Class): if any(x in cls.get_own_methods() for x in (bool_override, "__len__")): self.overrides_bool = True return self.overrides_bool = False def get_own_abstract_methods(self): """Get the abstract methods defined by this class.""" raise NotImplementedError(self.__class__.__name__) def _init_abstract_methods(self): """Compute this class's abstract methods.""" # For the algorithm to run, abstract_methods needs to be populated with the # abstract methods defined by this class. We'll overwrite the attribute # with the full set of abstract methods later. self.abstract_methods = self.get_own_abstract_methods() abstract_methods = set() for cls in reversed(self.mro): if not isinstance(cls, Class): continue # Remove methods implemented by this class. abstract_methods = {m for m in abstract_methods if m not in cls or m in cls.abstract_methods} # Add abstract methods defined by this class. abstract_methods |= {m for m in cls.abstract_methods if m in cls} self.abstract_methods = abstract_methods @property def is_abstract(self): has_abstract_metaclass = self.cls and any( parent.full_name == "abc.ABCMeta" for parent in self.cls.mro) return has_abstract_metaclass and bool(self.abstract_methods) @property def is_test_class(self): return any(base.full_name in ("unittest.TestCase", "unittest.case.TestCase") for base in self.mro) @property def is_protocol(self): return bool(self.protocol_methods) def _get_inherited_metaclass(self): for base in self.mro[1:]: if isinstance(base, Class) and base.cls is not None: return base.cls return None def call_metaclass_init(self, node): """Call the metaclass's __init__ method if it does anything interesting.""" if not self.cls: return node node, init = self.vm.attribute_handler.get_attribute( node, self.cls, "__init__") if not init or not any( f.isinstance_InterpreterFunction() for f in init.data): # Only an InterpreterFunction has interesting side effects. return node # TODO(rechen): The signature is (cls, name, bases, dict); should we fill in # the last three args more precisely? args = function.Args(posargs=(self.to_variable(node),) + tuple( self.vm.new_unsolvable(node) for _ in range(3))) log.debug("Calling __init__ on metaclass %s of class %s", self.cls.name, self.name) node, _ = self.vm.call_function(node, init, args) return node def get_own_new(self, node, value): """Get this value's __new__ method, if it isn't object.__new__. Args: node: The current node. value: A cfg.Binding containing this value. Returns: A tuple of (1) a node and (2) either a cfg.Variable of the special __new__ method, or None. """ node, new = self.vm.attribute_handler.get_attribute( node, value.data, "__new__") if new is None: return node, None if len(new.bindings) == 1: f = new.bindings[0].data if (f.isinstance_AMBIGUOUS_OR_EMPTY() or self.vm.convert.object_type.is_object_new(f)): # Instead of calling object.__new__, our abstract classes directly # create instances of themselves. return node, None return node, new def _call_new_and_init(self, node, value, args): """Call __new__ if it has been overridden on the given value.""" node, new = self.get_own_new(node, value) if new is None: return node, None cls = value.AssignToNewVariable(node) new_args = args.replace(posargs=(cls,) + args.posargs) node, variable = self.vm.call_function(node, new, new_args) for val in variable.bindings: # If val.data is a class, _call_init mistakenly calls val.data's __init__ # method rather than that of val.data.cls. if not isinstance(val.data, Class) and self == val.data.cls: node = self._call_init(node, val, args) return node, variable def _call_method(self, node, value, method_name, args): node, method = self.vm.attribute_handler.get_attribute( node, value.data, method_name, value) if method: call_repr = "%s.%s(..._)" % (self.name, method_name) log.debug("calling %s", call_repr) node, ret = self.vm.call_function(node, method, args) log.debug("%s returned %r", call_repr, ret) return node def _call_init(self, node, value, args): node = self._call_method(node, value, "__init__", args) # Test classes initialize attributes in setUp() as well. if self.is_test_class: node = self._call_method(node, value, "setUp", function.Args(())) return node def _new_instance(self): # We allow only one "instance" per code location, regardless of call stack. key = self.vm.frame.current_opcode assert key if key not in self._instance_cache: self._instance_cache[key] = self._to_instance() return self._instance_cache[key] def call(self, node, value, args): if self.is_abstract: self.vm.errorlog.not_instantiable(self.vm.frames, self) node, variable = self._call_new_and_init(node, value, args) if variable is None: value = self._new_instance() variable = self.vm.program.NewVariable() val = variable.AddBinding(value, [], node) node = self._call_init(node, val, args) return node, variable def get_special_attribute(self, node, name, valself): """Fetch a special attribute.""" if name == "__getitem__" and valself is None: # See vm._call_binop_on_bindings: valself == None is a special value that # indicates an annotation. if self.cls: # This class has a custom metaclass; check if it defines __getitem__. _, attr = self.vm.attribute_handler.get_attribute( node, self, name, self.to_binding(node)) if attr: return attr # Treat this class as a parameterized container in an annotation. We do # not need to worry about the class not being a container: in that case, # AnnotationContainer's param length check reports an appropriate error. container = self.to_annotation_container() return container.get_special_attribute(node, name, valself) return Class.super(self.get_special_attribute)(node, name, valself) def has_dynamic_attributes(self): return any(a in self for a in abstract_utils.DYNAMIC_ATTRIBUTE_MARKERS) def compute_is_dynamic(self): # This needs to be called after self.mro is set. return any(c.has_dynamic_attributes() for c in self.mro if isinstance(c, Class)) def compute_mro(self): """Compute the class precedence list (mro) according to C3.""" bases = abstract_utils.get_mro_bases(self.bases(), self.vm) bases = [[self]] + [list(base.mro) for base in bases] + [list(bases)] # If base classes are `ParameterizedClass`, we will use their `base_cls` to # calculate the MRO. Bacause of type parameter renaming, we can not compare # the `ParameterizedClass`s which contain the same `base_cls`. See example: # class A(Iterator[T]): ... # class B(Iterator[U], A[V]): ... # The inheritance: [B], [Iterator, ...], [A, Iterator, ...], [Iterator, A] # So this has MRO order issue, but because the template names of # `ParameterizedClass` of `Iterator` are different, they will be treated as # different base classes and it will infer the MRO order is correct. # TODO(ahxun): fix this by solving the template rename problem base2cls = {} newbases = [] for row in bases: baselist = [] for base in row: if base.isinstance_ParameterizedClass(): base2cls[base.base_cls] = base baselist.append(base.base_cls) else: base2cls[base] = base baselist.append(base) newbases.append(baselist) # calc MRO and replace them with original base classes return tuple(base2cls[base] for base in mro.MROMerge(newbases))
b2c96c93f8929908a4a3a0d19dc92b0814c5c748
c46754b9600a12df4f9d7a6320dfc19aa96b1e1d
/src/transformers/models/gptj/modeling_tf_gptj.py
f215adaaac005501e99f26d42bef5e99b732eac3
[ "Apache-2.0" ]
permissive
huggingface/transformers
ccd52a0d7c59e5f13205f32fd96f55743ebc8814
4fa0aff21ee083d0197a898cdf17ff476fae2ac3
refs/heads/main
2023-09-05T19:47:38.981127
2023-09-05T19:21:33
2023-09-05T19:21:33
155,220,641
102,193
22,284
Apache-2.0
2023-09-14T20:44:49
2018-10-29T13:56:00
Python
UTF-8
Python
false
false
43,937
py
# coding=utf-8 # Copyright 2022 The EleutherAI and HuggingFace Teams. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 GPT-J model.""" from __future__ import annotations from typing import Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...file_utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, ) from ...modeling_tf_outputs import ( TFBaseModelOutputWithPast, TFCausalLMOutputWithPast, TFQuestionAnsweringModelOutput, TFSequenceClassifierOutputWithPast, ) from ...modeling_tf_utils import ( TFCausalLanguageModelingLoss, TFModelInputType, TFPreTrainedModel, TFQuestionAnsweringLoss, TFSequenceClassificationLoss, TFSharedEmbeddings, get_initializer, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import logging from .configuration_gptj import GPTJConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "EleutherAI/gpt-j-6B" _CONFIG_FOR_DOC = "GPTJConfig" GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST = [ "EleutherAI/gpt-j-6B", # See all GPT-J models at https://huggingface.co/models?filter=gptj ] def create_sinusoidal_positions(num_pos: int, dim: int) -> tf.Tensor: inv_freq = tf.cast(1.0 / (10000 ** (tf.range(0, dim, 2) / dim)), tf.float32) sinusoid_inp = tf.cast(tf.einsum("i , j -> i j", tf.range(num_pos, dtype=tf.float32), inv_freq), tf.float32) sin, cos = tf.sin(sinusoid_inp), tf.cos(sinusoid_inp) out = tf.concat((sin, cos), axis=1) return out def rotate_every_two(x: tf.Tensor) -> tf.Tensor: rotate_half_tensor = tf.stack((-x[:, :, :, 1::2], x[:, :, :, ::2]), axis=-1) new_shape = shape_list(rotate_half_tensor)[:-2] + [tf.math.reduce_prod(shape_list(rotate_half_tensor)[-2:])] rotate_half_tensor = tf.reshape(rotate_half_tensor, new_shape) return rotate_half_tensor def apply_rotary_pos_emb(tensor: tf.Tensor, sincos: tf.Tensor) -> tf.Tensor: sin_pos, cos_pos = sincos sin_pos = tf.repeat(sin_pos[:, :, None, :], 2, 3) cos_pos = tf.repeat(cos_pos[:, :, None, :], 2, 3) return (tensor * cos_pos) + (rotate_every_two(tensor) * sin_pos) class TFGPTJAttention(tf.keras.layers.Layer): def __init__(self, config: GPTJConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.hidden_size self.num_attention_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_attention_heads if self.head_dim * self.num_attention_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and" f" `num_attention_heads`: {self.num_attention_heads})." ) self.scale_attn = self.head_dim**0.5 self.rotary_dim = config.rotary_dim self.attn_dropout = tf.keras.layers.Dropout(config.attn_pdrop) self.resid_dropout = tf.keras.layers.Dropout(config.resid_pdrop) self.q_proj = tf.keras.layers.Dense( self.embed_dim, use_bias=False, kernel_initializer=get_initializer(config.initializer_range), name="q_proj", ) self.k_proj = tf.keras.layers.Dense( self.embed_dim, use_bias=False, kernel_initializer=get_initializer(config.initializer_range), name="k_proj", ) self.v_proj = tf.keras.layers.Dense( self.embed_dim, use_bias=False, kernel_initializer=get_initializer(config.initializer_range), name="v_proj", ) self.out_proj = tf.keras.layers.Dense( self.embed_dim, use_bias=False, kernel_initializer=get_initializer(config.initializer_range), name="out_proj", ) self.max_positions = config.max_position_embeddings self.lower_triangle_mask = tf.reshape( tf.cast(tf.experimental.numpy.tril(tf.ones((self.max_positions, self.max_positions))), tf.int8), (1, 1, self.max_positions, self.max_positions), ) pos_embd_dim = self.rotary_dim or self.embed_dim self.embed_positions = create_sinusoidal_positions(self.max_positions, pos_embd_dim) def get_causal_mask(self, key_length, query_length) -> tf.Tensor: return tf.cast(self.lower_triangle_mask[:, :, key_length - query_length : key_length, :key_length], tf.bool) @staticmethod def get_masked_bias(dtype: tf.DType) -> tf.Tensor: return tf.cast(tf.constant(-1e9), dtype) def _split_heads(self, hidden_states: tf.Tensor, rotary: bool) -> tf.Tensor: """ Splits hidden dim into attn_head_size and num_attention_heads """ new_shape = shape_list(hidden_states)[:-1] + [self.num_attention_heads, self.head_dim] hidden_states = tf.reshape(hidden_states, new_shape) if rotary: return hidden_states if len(shape_list(hidden_states)) == 4: return tf.transpose(hidden_states, (0, 2, 1, 3)) # (batch, head, seq_length, head_features) if len(shape_list(hidden_states)) == 5: return tf.transpose(hidden_states, (0, 1, 3, 2, 4)) # (batch, blocks, head, block_length, head_features) raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(shape_list(hidden_states))}") def _merge_heads(self, hidden_states: tf.Tensor) -> tf.Tensor: """ Merges attn_head_size dim and num_attn_heads dim into hidden dim """ if len(shape_list(hidden_states)) == 4: hidden_states = tf.transpose(hidden_states, (0, 2, 1, 3)) elif len(shape_list(hidden_states)) == 5: hidden_states = tf.transpose(hidden_states, (0, 1, 3, 2, 4)) else: raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(shape_list(hidden_states))}") new_shape = shape_list(hidden_states)[:-2] + [self.num_attention_heads * self.head_dim] return tf.reshape(hidden_states, new_shape) def _attn( self, query: tf.Tensor, key: tf.Tensor, value: tf.Tensor, attention_mask: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, ) -> Tuple[tf.Tensor, tf.Tensor]: # compute causal mask from causal mask buffer query_length, key_length = shape_list(query)[-2], shape_list(key)[-2] causal_mask = self.get_causal_mask(key_length, query_length) # Keep the attention weights computation in fp32 to avoid overflow issues query = tf.cast(query, tf.float32) key = tf.cast(key, tf.float32) attn_weights = tf.matmul(query, key, transpose_b=True) attn_weights = tf.where(causal_mask, attn_weights, self.get_masked_bias(attn_weights.dtype)) attn_weights = attn_weights / self.scale_attn if attention_mask is not None: # Apply the attention mask attn_weights = attn_weights + attention_mask attn_weights = stable_softmax(attn_weights, axis=-1) attn_weights = tf.cast(attn_weights, value.dtype) attn_weights = self.attn_dropout(attn_weights) # Mask heads if we want to if head_mask is not None: attn_weights = attn_weights * head_mask attn_output = tf.matmul(attn_weights, value) return attn_output, attn_weights def call( self, hidden_states: tf.Tensor, layer_past: Optional[Tuple[tf.Tensor, tf.Tensor]] = None, attention_mask: tf.Tensor | None = None, position_ids: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, use_cache: bool = False, output_attentions: bool = False, ): query = self.q_proj(hidden_states) key = self.k_proj(hidden_states) value = self.v_proj(hidden_states) query = self._split_heads(query, True) key = self._split_heads(key, True) value = self._split_heads(value, False) sincos = tf.cast(tf.gather(self.embed_positions, position_ids, axis=0), hidden_states.dtype) sincos = tf.split(sincos, 2, axis=-1) if self.rotary_dim is not None: k_rot = key[:, :, :, : self.rotary_dim] k_pass = key[:, :, :, self.rotary_dim :] q_rot = query[:, :, :, : self.rotary_dim] q_pass = query[:, :, :, self.rotary_dim :] k_rot = apply_rotary_pos_emb(k_rot, sincos) q_rot = apply_rotary_pos_emb(q_rot, sincos) key = tf.concat((k_rot, k_pass), axis=-1) query = tf.concat((q_rot, q_pass), axis=-1) else: key = apply_rotary_pos_emb(key, sincos) query = apply_rotary_pos_emb(query, sincos) key = tf.transpose(key, (0, 2, 1, 3)) query = tf.transpose(query, (0, 2, 1, 3)) if layer_past is not None: past_key = layer_past[0] past_value = layer_past[1] key = tf.concat((past_key, key), axis=-2) value = tf.concat((past_value, value), axis=-2) if use_cache is True: present = (key, value) else: present = None # compute self-attention: V x Softmax(QK^T) attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask) attn_output = self._merge_heads(attn_output) attn_output = self.out_proj(attn_output) attn_output = self.resid_dropout(attn_output) outputs = (attn_output, present) if output_attentions: outputs += (attn_weights,) return outputs # a, present, (attentions) class TFGPTJMLP(tf.keras.layers.Layer): def __init__(self, intermediate_size: int, config: GPTJConfig, **kwargs): super().__init__(**kwargs) embed_dim = config.n_embd self.fc_in = tf.keras.layers.Dense( intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="fc_in" ) self.fc_out = tf.keras.layers.Dense( embed_dim, kernel_initializer=get_initializer(config.initializer_range), name="fc_out" ) self.act = get_tf_activation(config.activation_function) self.dropout = tf.keras.layers.Dropout(config.embd_pdrop) def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.fc_in(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.fc_out(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class TFGPTJBlock(tf.keras.layers.Layer): def __init__(self, config: GPTJConfig, **kwargs): super().__init__(**kwargs) inner_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd self.ln_1 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name="ln_1") self.attn = TFGPTJAttention(config, name="attn") self.mlp = TFGPTJMLP(inner_dim, config, name="mlp") def call( self, hidden_states: tf.Tensor, layer_past: tf.Tensor | None = None, attention_mask: tf.Tensor | None = None, position_ids: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, use_cache: bool = False, output_attentions: bool = False, ): residual = hidden_states hidden_states = self.ln_1(hidden_states) attn_outputs = self.attn( hidden_states=hidden_states, layer_past=layer_past, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, use_cache=use_cache, output_attentions=output_attentions, ) # attn_outputs: attn_output, present, (attentions) attn_output = attn_outputs[0] outputs = attn_outputs[1:] feed_forward_hidden_states = self.mlp(hidden_states) hidden_states = attn_output + feed_forward_hidden_states + residual if use_cache: outputs = (hidden_states,) + outputs else: outputs = (hidden_states,) + outputs[1:] return outputs # hidden_states, present, (attentions) @keras_serializable class TFGPTJMainLayer(tf.keras.layers.Layer): config_class = GPTJConfig def __init__(self, config: GPTJConfig, *inputs, **kwargs): super().__init__(*inputs, **kwargs) self.config = config self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.use_cache = config.use_cache self.return_dict = config.use_return_dict self.num_hidden_layers = config.n_layer self.n_embd = config.n_embd self.n_positions = config.n_positions self.initializer_range = config.initializer_range self.wte = TFSharedEmbeddings( config.vocab_size, config.hidden_size, initializer_range=config.initializer_range, name="wte" ) self.drop = tf.keras.layers.Dropout(config.embd_pdrop) self.h = [TFGPTJBlock(config, name=f"h_._{i}") for i in range(config.n_layer)] self.ln_f = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name="ln_f") def get_input_embeddings(self): return self.wte def set_input_embeddings(self, value: tf.Tensor): self.wte.weight = value self.wte.vocab_size = shape_list(value)[0] def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} """ raise NotImplementedError @unpack_inputs def call( self, input_ids=None, past_key_values=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, ) -> Union[TFBaseModelOutputWithPast, Tuple[tf.Tensor]]: if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) input_ids = tf.reshape(input_ids, [-1, input_shape[-1]]) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if past_key_values is None: past_length = 0 past_key_values = [None] * len(self.h) else: past_length = shape_list(past_key_values[0][0])[-2] if position_ids is None: position_ids = tf.expand_dims(tf.range(past_length, input_shape[-1] + past_length), axis=0) if attention_mask is not None: # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. attention_mask_shape = shape_list(attention_mask) attention_mask = tf.reshape(attention_mask, (attention_mask_shape[0], 1, 1, attention_mask_shape[1])) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. one_cst = tf.constant(1.0) attention_mask = tf.cast(attention_mask, dtype=one_cst.dtype) attention_mask = tf.multiply(tf.subtract(one_cst, attention_mask), tf.constant(-10000.0)) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.num_hidden_layers # head_mask = tf.constant([0] * self.num_hidden_layers) position_ids = tf.reshape(position_ids, [-1, shape_list(position_ids)[-1]]) if inputs_embeds is None: check_embeddings_within_bounds(input_ids, self.wte.vocab_size) inputs_embeds = self.wte(input_ids, mode="embedding") if token_type_ids is not None: token_type_ids = tf.reshape(token_type_ids, [-1, shape_list(token_type_ids)[-1]]) token_type_embeds = self.wte(token_type_ids, mode="embedding") else: token_type_embeds = tf.constant(0.0) token_type_embeds = tf.cast(token_type_embeds, dtype=inputs_embeds.dtype) hidden_states = inputs_embeds + token_type_embeds hidden_states = self.drop(hidden_states, training=training) output_shape = input_shape + [shape_list(hidden_states)[-1]] presents = () if use_cache else None all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): if output_hidden_states: all_hidden_states = all_hidden_states + (tf.reshape(hidden_states, output_shape),) outputs = block( hidden_states=hidden_states, layer_past=layer_past, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask[i], use_cache=use_cache, output_attentions=output_attentions, training=training, ) hidden_states = outputs[0] if use_cache: presents = presents + (outputs[1],) if output_attentions: all_attentions = all_attentions + (outputs[2 if use_cache else 1],) hidden_states = self.ln_f(hidden_states) hidden_states = tf.reshape(hidden_states, output_shape) # Add last hidden state if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if output_attentions: # let the number of heads free (-1) so we can extract attention even after head pruning attention_output_shape = input_shape[:-1] + [-1] + shape_list(all_attentions[0])[-2:] all_attentions = tuple(tf.reshape(t, attention_output_shape) for t in all_attentions) if not return_dict: return tuple(v for v in [hidden_states, presents, all_hidden_states, all_attentions] if v is not None) return TFBaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_attentions, ) class TFGPTJPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = GPTJConfig base_model_prefix = "transformer" # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"h.\d+.attn.bias"] GPTJ_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Parameters: config ([`GPTJConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ GPTJ_INPUTS_DOCSTRING = r""" Args: input_ids (`Numpy array` or `tf.Tensor` of shape `(batch_size, input_ids_length)`): `input_ids_length` = `sequence_length` if `past` is `None` else `past[0].shape[-2]` (`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary. If `past` is used, only input IDs that do not have their past calculated should be passed as `input_ids`. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) past_key_values (`List[tf.Tensor]` of length `config.n_layers`): Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model (see `past` output below). Can be used to speed up sequential decoding. The token ids which have their past given to this model should not be passed as input ids as they have already been computed. attention_mask (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare GPT-J Model transformer outputting raw hidden-states without any specific head on top.", GPTJ_START_DOCSTRING, ) class TFGPTJModel(TFGPTJPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFGPTJMainLayer(config, name="transformer") @unpack_inputs @add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutputWithPast, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[TFBaseModelOutputWithPast, Tuple[tf.Tensor]]: r""" use_cache (`bool`, *optional*, defaults to `True`): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past`). Set to `False` during training, `True` during generation """ outputs = self.transformer( input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs @add_start_docstrings( """ The GPT-J Model transformer with a language modeling head on top. """, GPTJ_START_DOCSTRING, ) class TFGPTJForCausalLM(TFGPTJPreTrainedModel, TFCausalLanguageModelingLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFGPTJMainLayer(config, name="transformer") self.lm_head = tf.keras.layers.Dense( config.vocab_size, kernel_initializer=get_initializer(config.initializer_range), name="lm_head" ) def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def prepare_inputs_for_generation(self, inputs, past_key_values=None, use_cache=None, **kwargs): token_type_ids = kwargs.get("token_type_ids", None) # only last token for inputs_ids if past is defined in kwargs if past_key_values: inputs = tf.expand_dims(inputs[:, -1], -1) if token_type_ids is not None: token_type_ids = tf.expand_dims(token_type_ids[:, -1], -1) position_ids = kwargs.get("position_ids", None) attention_mask = kwargs.get("attention_mask", None) if attention_mask is not None and position_ids is None: position_ids = tf.math.cumsum(attention_mask, axis=-1, exclusive=True) if past_key_values: position_ids = tf.expand_dims(position_ids[:, -1], -1) return { "input_ids": inputs, "attention_mask": attention_mask, "position_ids": position_ids, "past_key_values": past_key_values, "use_cache": use_cache, "token_type_ids": token_type_ids, } @unpack_inputs @add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, labels: np.ndarray | tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[TFCausalLMOutputWithPast, Tuple[tf.Tensor]]: r""" labels (`np.ndarray` or `tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` """ transformer_outputs = self.transformer( input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) hidden_states = transformer_outputs[0] lm_logits = self.lm_head(hidden_states) loss = None if labels is not None: # shift labels to the left and cut last logit token shifted_logits = lm_logits[:, :-1] labels = labels[:, 1:] loss = self.hf_compute_loss(labels, shifted_logits) if not return_dict: output = (lm_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFCausalLMOutputWithPast( loss=loss, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @add_start_docstrings( """ The GPT-J Model transformer with a sequence classification head on top (linear layer). [`GPTJForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT, GPT-2, GPT-Neo) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """, GPTJ_START_DOCSTRING, ) class TFGPTJForSequenceClassification(TFGPTJPreTrainedModel, TFSequenceClassificationLoss): _keys_to_ignore_on_load_missing = [r"h.\d+.attn.masked_bias", r"h.\d+.attn.bias", r"lm_head.weight"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.transformer = TFGPTJMainLayer(config, name="transformer") self.score = tf.keras.layers.Dense( self.num_labels, use_bias=False, kernel_initializer=get_initializer(config.initializer_range), name="score", ) @unpack_inputs @add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFSequenceClassifierOutputWithPast, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, labels: np.ndarray | tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[TFSequenceClassifierOutputWithPast, Tuple[tf.Tensor]]: r""" labels (`np.ndarray` or `tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ transformer_outputs = self.transformer( input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) logits_shape = shape_list(logits) in_logits = None if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: sequence_lengths = ( tf.argmax(tf.cast(tf.math.equal(input_ids, self.config.pad_token_id), input_ids.dtype), axis=-1) - 1 ) sequence_lengths = tf.where(sequence_lengths >= 0, sequence_lengths, input_ids.shape[-1] - 1) in_logits = tf.gather(logits, sequence_lengths, batch_dims=1, axis=1) else: sequence_lengths = -1 logger.warning( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " "unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) loss = None if labels is not None: if self.config.pad_token_id is None and logits_shape[0] != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if not tf.is_tensor(sequence_lengths): in_logits = logits[0 : logits_shape[0], sequence_lengths] loss = self.hf_compute_loss(tf.reshape(labels, [-1]), tf.reshape(in_logits, [-1, self.num_labels])) pooled_logits = in_logits if in_logits is not None else logits if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @add_start_docstrings( """ The GPT-J Model transformer with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, GPTJ_START_DOCSTRING, ) class TFGPTJForQuestionAnswering(TFGPTJPreTrainedModel, TFQuestionAnsweringLoss): _keys_to_ignore_on_load_missing = [r"h.\d+.attn.masked_bias", r"h.\d+.attn.bias", r"lm_head.weight"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.transformer = TFGPTJMainLayer(config, name="transformer") self.qa_outputs = tf.keras.layers.Dense( self.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" ) @unpack_inputs @add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, start_positions: np.ndarray | tf.Tensor | None = None, end_positions: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: r""" start_positions (`np.ndarray` or `tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`np.ndarray` or `tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ transformer_outputs = self.transformer( input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = transformer_outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = tf.split(logits, 2, axis=-1) start_logits = tf.squeeze(start_logits, axis=-1) end_logits = tf.squeeze(end_logits, axis=-1) loss = None if start_positions is not None and end_positions is not None: labels = {"start_position": start_positions} labels["end_position"] = end_positions loss = self.hf_compute_loss(labels, (start_logits, end_logits)) if not return_dict: output = (start_logits, end_logits) + transformer_outputs[2:] return ((loss,) + output) if loss is not None else output return TFQuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )
5afadcff75d577496520b4eb19d8797e2579c837
f68e0b205bd3eb036905c60bd03a8d9c7f3b1d88
/machine_learning/3.3.logistic-regression.py
1d88351ce1bc85e63bb039ea2ead4f43f3e9061a
[]
no_license
SleepyBag/TrivialPractice
c31458d0c28afba158cb4090cb7013267ff54bb2
8e006fbe1425f62b52b2a5fe5b6404ea1883f3ab
refs/heads/master
2020-03-22T00:34:37.415074
2018-06-30T14:02:04
2018-06-30T14:02:04
139,253,389
2
0
null
null
null
null
UTF-8
Python
false
false
1,386
py
import numpy as np from math import log from math import exp input_dim = 2 output_dim = 1 beta = np.random.normal(size=(input_dim + 1, output_dim)) def p1(xhat, beta): e = np.exp(np.dot(beta.T, xhat))[0][0] return e / (1 + e) def iterate(X, Y, beta): import pdb # pdb.set_trace() grad = np.zeros(shape=beta.shape) grad2 = 0 loss = 0 for x, y in zip(X, Y): xhat = np.concatenate((np.array([x]).T, np.array([[1]]))) grad += - xhat * (y - p1(xhat, beta)) grad2 += np.dot(xhat, xhat.T) * p1(xhat, beta) * (1 - p1(xhat, beta)) loss += log(1 + exp(np.dot(beta.T, xhat))) - y * np.dot(beta.T, xhat) print(log(1 + exp(np.dot(beta.T, xhat))) - y * np.dot(beta.T, xhat)) # pdb.set_trace() beta = beta - np.dot(np.linalg.inv(grad2), grad) return grad, grad2, beta, loss X = np.array([[.697, .460], [.774, .376], [.634, .264], [.608, .318], [.556, .215], [.403, .237], [.481, .149], [.437, .211], [.666, .091], [.243, .267], [.245, .057], [.343, .099], [.639, .161], [.657, .198], [.360, .370], [.593, .042], [.719, .103]]) Y = np.array([[1]] * 8 + [[0]] * 9) epoch = 50 for i in range(epoch): print('Epoch' ,i ,'started') grad, grad2, beta, loss = iterate(X, Y, beta) print('loss =',loss)
c1c45cd2c22039c954ba3d32df4cdc8fca29ead1
9d0195aa83cc594a8c61f334b90375961e62d4fe
/JTTest/SL7/CMSSW_10_2_15/src/dataRunA/nano3083.py
5e9f2bdd220d538e97177f62beff4913cf0d5d34
[]
no_license
rsk146/CMS
4e49592fc64f6438051544c5de18598db36ed985
5f8dab8c59ae556598b9747b52b88205fffc4dbe
refs/heads/master
2022-12-01T03:57:12.126113
2020-08-04T03:29:27
2020-08-04T03:29:27
284,863,383
0
0
null
null
null
null
UTF-8
Python
false
false
4,293
py
# Auto generated configuration file # using: # Revision: 1.19 # Source: /local/reps/CMSSW/CMSSW/Configuration/Applications/python/ConfigBuilder.py,v # with command line options: nanoAOD_jetToolbox_cff -s NANO --data --eventcontent NANOAOD --datatier NANOAOD --no_exec --conditions 102X_dataRun2_Sep2018Rereco_v1 --era Run2_2018,run2_nanoAOD_102Xv1 --customise_commands=process.add_(cms.Service('InitRootHandlers', EnableIMT = cms.untracked.bool(False))) --customise JMEAnalysis/JetToolbox/nanoAOD_jetToolbox_cff.nanoJTB_customizeMC --filein /users/h2/rsk146/JTTest/SL7/CMSSW_10_6_12/src/ttbarCutTest/dataReprocessing/0004A5E9-9F18-6B42-B31D-4206406CE423.root --fileout file:jetToolbox_nano_datatest.root import FWCore.ParameterSet.Config as cms from Configuration.StandardSequences.Eras import eras process = cms.Process('NANO',eras.Run2_2018,eras.run2_nanoAOD_102Xv1) # import of standard configurations process.load('Configuration.StandardSequences.Services_cff') process.load('SimGeneral.HepPDTESSource.pythiapdt_cfi') process.load('FWCore.MessageService.MessageLogger_cfi') process.load('Configuration.EventContent.EventContent_cff') process.load('Configuration.StandardSequences.GeometryRecoDB_cff') process.load('Configuration.StandardSequences.MagneticField_AutoFromDBCurrent_cff') process.load('PhysicsTools.NanoAOD.nano_cff') process.load('Configuration.StandardSequences.EndOfProcess_cff') process.load('Configuration.StandardSequences.FrontierConditions_GlobalTag_cff') process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(-1) ) # Input source process.source = cms.Source("PoolSource", fileNames = cms.untracked.vstring('file:root://cms-xrd-global.cern.ch//store/data/Run2018A/EGamma/MINIAOD/17Sep2018-v2/120000/88C77E97-2037-B64C-9BB6-EA084CD2A6BE.root'), secondaryFileNames = cms.untracked.vstring() ) process.options = cms.untracked.PSet( ) # Production Info process.configurationMetadata = cms.untracked.PSet( annotation = cms.untracked.string('nanoAOD_jetToolbox_cff nevts:1'), name = cms.untracked.string('Applications'), version = cms.untracked.string('$Revision: 1.19 $') ) # Output definition process.NANOAODoutput = cms.OutputModule("NanoAODOutputModule", compressionAlgorithm = cms.untracked.string('LZMA'), compressionLevel = cms.untracked.int32(9), dataset = cms.untracked.PSet( dataTier = cms.untracked.string('NANOAOD'), filterName = cms.untracked.string('') ), fileName = cms.untracked.string('file:jetToolbox_nano_datatest3083.root'), outputCommands = process.NANOAODEventContent.outputCommands ) # Additional output definition # Other statements from Configuration.AlCa.GlobalTag import GlobalTag process.GlobalTag = GlobalTag(process.GlobalTag, '102X_dataRun2_Sep2018Rereco_v1', '') # Path and EndPath definitions process.nanoAOD_step = cms.Path(process.nanoSequence) process.endjob_step = cms.EndPath(process.endOfProcess) process.NANOAODoutput_step = cms.EndPath(process.NANOAODoutput) # Schedule definition process.schedule = cms.Schedule(process.nanoAOD_step,process.endjob_step,process.NANOAODoutput_step) from PhysicsTools.PatAlgos.tools.helpers import associatePatAlgosToolsTask associatePatAlgosToolsTask(process) # customisation of the process. # Automatic addition of the customisation function from PhysicsTools.NanoAOD.nano_cff from PhysicsTools.NanoAOD.nano_cff import nanoAOD_customizeData #call to customisation function nanoAOD_customizeData imported from PhysicsTools.NanoAOD.nano_cff process = nanoAOD_customizeData(process) # Automatic addition of the customisation function from JMEAnalysis.JetToolbox.nanoAOD_jetToolbox_cff from JMEAnalysis.JetToolbox.nanoAOD_jetToolbox_cff import nanoJTB_customizeMC #call to customisation function nanoJTB_customizeMC imported from JMEAnalysis.JetToolbox.nanoAOD_jetToolbox_cff process = nanoJTB_customizeMC(process) # End of customisation functions # Customisation from command line process.add_(cms.Service('InitRootHandlers', EnableIMT = cms.untracked.bool(False))) # Add early deletion of temporary data products to reduce peak memory need from Configuration.StandardSequences.earlyDeleteSettings_cff import customiseEarlyDelete process = customiseEarlyDelete(process) # End adding early deletion
4eebc2b5ea092f4821209c3a0ae4de3b3c0976ec
a72a154e735100827456a22571aa520d1bbdf50e
/nnvm/python/nnvm/frontend/keras.py
d8c98ec66a56e9e249b285e0aade19adc8066b2c
[ "Apache-2.0" ]
permissive
chengshaoyi/tvm
e6a0caf06ca3ea28ce82caef283b2f1e98f88491
b877687fbeb8a6c12b62aac9869f7e54091395f4
refs/heads/master
2020-03-19T15:39:28.603095
2018-06-08T17:23:34
2018-06-08T17:23:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
21,431
py
# pylint: disable=invalid-name, import-self """Keras frontend.""" from __future__ import absolute_import as _abs import sys import numpy as np import tvm from .. import symbol as _sym from .common import SymbolTable __all__ = ['from_keras'] def _check_data_format(keras_layer): if hasattr(keras_layer, ('data_format')): if keras_layer.data_format != 'channels_last': raise ValueError("Keras frontend currently supports data_format = channels_last only.") def _get_pad_pair(input1d, kernel1d, stride1d): out1d = (input1d + stride1d - 1) // stride1d pad = np.maximum((out1d - 1) * stride1d + kernel1d - input1d, 0) pad_before = pad // 2 pad_after = pad - pad_before return [pad_before, pad_after] def _get_elu(insym, alpha): """ A helper method for elu. """ return -alpha * _sym.relu(1 - _sym.exp(insym)) + _sym.relu(insym) def _convert_activation(insym, keras_layer, _): if isinstance(keras_layer, str): act_type = keras_layer else: if sys.version_info.major < 3: act_type = keras_layer.activation.func_name else: act_type = keras_layer.activation.__name__ if act_type == 'linear': if isinstance(keras_layer, str): return insym alpha = keras_layer.alpha if hasattr(keras_layer, "alpha") else 1 beta = keras_layer.beta if hasattr(keras_layer, "beta") else 0 return _sym.__add_scalar__(_sym.__mul_scalar__(insym, \ scalar=alpha), scalar=beta) elif act_type == 'softmax': return _sym.softmax(insym, axis=1) elif act_type == 'sigmoid': return _sym.sigmoid(insym) elif act_type == 'tanh': return _sym.tanh(insym) elif act_type == 'relu': return _sym.relu(insym) elif act_type == 'softplus': return _sym.log(_sym.__add_scalar__(_sym.exp(insym), scalar=1)) elif act_type == 'elu': alpha = keras_layer.alpha if hasattr(keras_layer, "alpha") else 1 return _get_elu(insym, alpha) elif act_type == 'selu': # Alpha, Gamma values, obtained from https://arxiv.org/abs/1706.02515 alpha = keras_layer.alpha if hasattr(keras_layer, "alpha") else 1.6732 gamma = keras_layer.gamma if hasattr(keras_layer, "gamma") else 1.0507 return gamma * _get_elu(insym, alpha) elif act_type == 'relu6': return _sym.clip(insym, a_min=0, a_max=6) elif act_type == 'softsign': return insym / (1 + (_sym.relu(insym) + _sym.relu(_sym.negative(insym)))) elif act_type == 'hard_sigmoid': transformX = (0.2 * insym) + 0.5 return _sym.clip(transformX, a_min=0, a_max=1) else: raise TypeError("Unsupported activation type : {}".format(act_type)) def _convert_advanced_activation(insym, keras_layer, symtab): act_type = type(keras_layer).__name__ if act_type == 'LeakyReLU': return _sym.leaky_relu(insym, alpha=keras_layer.alpha) elif act_type == 'ELU': alpha = keras_layer.alpha if hasattr(keras_layer, "alpha") else 1 return _get_elu(insym, alpha) elif act_type == 'PReLU': assert hasattr(keras_layer, "alpha"), \ "alpha required for PReLU." _check_data_format(keras_layer) size = len(keras_layer.alpha.shape) return -symtab.new_const(keras_layer.get_weights()[0] \ .transpose(np.roll(range(size), 1))) \ * _sym.relu(-insym) + _sym.relu(insym) elif act_type == 'ThresholdedReLU': theta = keras_layer.theta if hasattr(keras_layer, "theta") else 1.0 theta_tensor = _sym.full_like(insym[0], fill_value=float(theta)) return _sym.elemwise_mul(insym[0], _sym.greater(insym[0], theta_tensor, out_type="float32")) else: raise TypeError("Unsupported advanced activation type : {}".format(act_type)) def _convert_merge(insym, keras_layer, _): merge_type = type(keras_layer).__name__ ret = insym[0] for i in range(1, len(insym)): if merge_type == 'Add': ret = _sym.elemwise_add(ret, insym[i]) elif merge_type == 'Subtract': ret = _sym.elemwise_sub(ret, insym[i]) elif merge_type == 'Multiply': ret = _sym.elemwise_mul(ret, insym[i]) elif merge_type == 'Average': raise NotImplementedError('Average merge not implemented') elif merge_type == 'Maximum': raise NotImplementedError('Maximum merge not implemented') else: raise TypeError("Unsupported merge type : {}".format(merge_type)) return ret def _convert_dense(insym, keras_layer, symtab): weightList = keras_layer.get_weights() weight = symtab.new_const(weightList[0].transpose([1, 0])) params = {'weight':weight, 'use_bias':False, 'units':weightList[0].shape[1]} if keras_layer.use_bias: params['use_bias'] = True params['bias'] = symtab.new_const(weightList[1]) out = _sym.dense(data=insym, **params) # defuse activation if sys.version_info.major < 3: act_type = keras_layer.activation.func_name else: act_type = keras_layer.activation.__name__ if act_type != 'linear': out = _convert_activation(out, act_type, symtab) return out def _convert_convolution(insym, keras_layer, symtab): _check_data_format(keras_layer) is_deconv = type(keras_layer).__name__ == 'Conv2DTranspose' is_depthconv = type(keras_layer).__name__ == 'DepthwiseConv2D' weightList = keras_layer.get_weights() if is_deconv: kernel_h, kernel_w, n_filters, in_channels = weightList[0].shape weight = weightList[0].transpose([3, 2, 0, 1]) elif is_depthconv: kernel_h, kernel_w, in_channels, depth_mult = weightList[0].shape weight = weightList[0].transpose([2, 3, 0, 1]) else: kernel_h, kernel_w, in_channels, n_filters = weightList[0].shape weight = weightList[0].transpose([3, 2, 0, 1]) dilation = [1, 1] if isinstance(keras_layer.dilation_rate, (list, tuple)): dilation = [keras_layer.dilation_rate[0], keras_layer.dilation_rate[1]] else: dilation = [keras_layer.dilation_rate, keras_layer.dilation_rate] kernel_h = (kernel_h - 1) * dilation[0] + 1 kernel_w = (kernel_w - 1) * dilation[1] + 1 stride_h, stride_w = keras_layer.strides params = {'weight': symtab.new_const(weight), 'kernel_size': [kernel_h, kernel_w], 'strides': [stride_h, stride_w], 'dilation': dilation, 'padding': [0, 0], 'use_bias': False} if is_depthconv: params['channels'] = in_channels * depth_mult params['groups'] = in_channels else: params['channels'] = n_filters if keras_layer.use_bias: params['use_bias'] = True params['bias'] = symtab.new_const(weightList[1]) if keras_layer.padding == 'valid': pass # we insert a separate pad operator elif keras_layer.padding == 'same': in_h = keras_layer.input_shape[1] in_w = keras_layer.input_shape[2] pad_t, pad_b = _get_pad_pair(in_h, kernel_h, stride_h) pad_l, pad_r = _get_pad_pair(in_w, kernel_w, stride_w) insym = _sym.pad(data=insym, pad_width=((0, 0), (0, 0), (pad_t, pad_b), (pad_l, pad_r))) else: raise TypeError("Unsupported padding type : {}".format(keras_layer.padding)) if is_deconv: out = _sym.conv2d_transpose(data=insym, **params) else: out = _sym.conv2d(data=insym, **params) # defuse activation if sys.version_info.major < 3: act_type = keras_layer.activation.func_name else: act_type = keras_layer.activation.__name__ if act_type != 'linear': out = _convert_activation(out, act_type, symtab) return out def _convert_separable_convolution(insym, keras_layer, symtab): _check_data_format(keras_layer) weightList = keras_layer.get_weights() # depthwise conv kernel_h, kernel_w, in_channels, depth_mult = weightList[0].shape stride_h, stride_w = keras_layer.strides weight0 = weightList[0].transpose([2, 3, 0, 1]) params0 = {'weight': symtab.new_const(weight0), 'channels': in_channels * depth_mult, 'groups': in_channels, 'kernel_size': [kernel_h, kernel_w], 'strides': [stride_h, stride_w], 'dilation': [1, 1], 'padding': [0, 0], 'use_bias': False} if keras_layer.padding == 'valid': pass # we insert a separate pad operator elif keras_layer.padding == 'same': in_h = keras_layer.input_shape[1] in_w = keras_layer.input_shape[2] pad_t, pad_b = _get_pad_pair(in_h, kernel_h, stride_h) pad_l, pad_r = _get_pad_pair(in_w, kernel_w, stride_w) insym = _sym.pad(data=insym, pad_width=( (0, 0), (0, 0), (pad_t, pad_b), (pad_l, pad_r))) else: raise TypeError("Unsupported padding type : {}".format(keras_layer.padding)) depthconv = _sym.conv2d(data=insym, **params0) # pointwise conv weight1 = weightList[1].transpose([3, 2, 0, 1]) params1 = {'weight': symtab.new_const(weight1), 'channels': weight1.shape[0], 'groups': 1, 'kernel_size': [1, 1], 'strides': [1, 1], 'dilation': [1, 1], 'use_bias': False} if keras_layer.use_bias: params1['use_bias'] = True params1['bias'] = symtab.new_const(weightList[2]) out = _sym.conv2d(data=depthconv, **params1) # defuse activation if sys.version_info.major < 3: act_type = keras_layer.activation.func_name else: act_type = keras_layer.activation.__name__ if act_type != 'linear': out = _convert_activation(out, act_type, symtab) return out def _convert_flatten(insym, keras_layer, _): _check_data_format(keras_layer) # NCHW -> NHWC so that dense can be correctly converted insym = _sym.transpose(insym, axes=[0, 2, 3, 1]) return _sym.flatten(insym) def _convert_pooling(insym, keras_layer, symtab): _check_data_format(keras_layer) pool_type = type(keras_layer).__name__ # global pool in keras = global pool + flatten in nnvm if pool_type == 'GlobalMaxPooling2D': return _convert_flatten(_sym.global_max_pool2d(insym), keras_layer, symtab) elif pool_type == 'GlobalAveragePooling2D': return _convert_flatten(_sym.global_avg_pool2d(insym), keras_layer, symtab) else: pool_h, pool_w = keras_layer.pool_size stride_h, stride_w = keras_layer.strides params = {'pool_size': [pool_h, pool_w], 'strides': [stride_h, stride_w], 'padding': [0, 0]} if keras_layer.padding == 'valid': pass # we insert a separate pad operator elif keras_layer.padding == 'same': in_h = keras_layer.input_shape[1] in_w = keras_layer.input_shape[2] pad_t, pad_b = _get_pad_pair(in_h, pool_h, stride_h) pad_l, pad_r = _get_pad_pair(in_w, pool_w, stride_w) insym = _sym.pad(data=insym, pad_width=( (0, 0), (0, 0), (pad_t, pad_b), (pad_l, pad_r))) else: raise TypeError("Unsupported padding type : {}".format(keras_layer.padding)) if pool_type == 'MaxPooling2D': return _sym.max_pool2d(insym, **params) elif pool_type == 'AveragePooling2D': # TODO: in keras, padded zeros are not calculated return _sym.avg_pool2d(insym, **params) else: raise TypeError("Unsupported pooling type : {}".format(keras_layer)) def _convert_upsample(insym, keras_layer, _): _check_data_format(keras_layer) upsample_type = type(keras_layer).__name__ if upsample_type == "UpSampling1D": h = keras_layer.size params = {'scale': h} elif upsample_type == "UpSampling2D": h, w = keras_layer.size if h != w: raise TypeError("Unsupported upsampling type with different axes size : {}" .format(keras_layer.size)) params = {'scale': h} elif upsample_type == "UpSampling3D": h, w, d = keras_layer.size if h != w or w != d: raise TypeError("Unsupported upsampling type with different axes size : {}" .format(keras_layer.size)) params = {'scale': h} else: raise TypeError("Unsupported upsampling type : {}".format(upsample_type)) return _sym.upsampling(insym, **params) def _convert_batchnorm(insym, keras_layer, symtab): params = {'scale': False, 'center': False, 'epsilon': keras_layer.epsilon} idx = 0 if keras_layer.scale: params['scale'] = True gamma = keras_layer.get_weights()[idx] params['gamma'] = symtab.new_const(gamma) idx += 1 if keras_layer.center: params['center'] = True beta = keras_layer.get_weights()[idx] params['beta'] = symtab.new_const(beta) idx += 1 moving_mean = keras_layer.get_weights()[idx] moving_var = keras_layer.get_weights()[idx + 1] params['moving_mean'] = symtab.new_const(moving_mean) params['moving_var'] = symtab.new_const(moving_var) return _sym.batch_norm(data=insym, **params) def _convert_padding(insym, keras_layer, _): _check_data_format(keras_layer) padding_type = type(keras_layer).__name__ padding = keras_layer.padding top = left = bottom = right = 0 if padding_type == 'ZeroPadding2D': if isinstance(padding, int): top = left = bottom = right = padding elif isinstance(padding, tuple): if isinstance(padding[0], int): top, left = padding bottom, right = padding elif isinstance(padding[0], tuple): top, bottom = padding[0] left, right = padding[1] else: raise ValueError("Unrecognized padding option: {}".format(str(padding))) else: raise ValueError("Unrecognized padding option: {}".format(str(padding))) elif padding_type == 'ZeroPadding1D': raise NotImplementedError("ZeroPadding1D not implemented") else: raise ValueError("Unrecognized padding type: {}".format(padding_type)) return _sym.pad(data=insym, pad_width=((0, 0), (0, 0), (top, bottom), (left, right))) def _convert_concat(insym, keras_layer, _): _check_data_format(keras_layer) if not isinstance(insym, list): insym = [insym] return _sym.concatenate(*insym, axis=1) def _convert_reshape(insym, keras_layer, _): _check_data_format(keras_layer) ch = keras_layer.input_shape[-1] assert ch == keras_layer.target_shape[-1], \ "Only supports last dimension in target shape being equal to " \ "the channel number of input tensor." shape = (-1, ch) + keras_layer.target_shape[:-1] return _sym.reshape(insym, shape=shape) def _default_skip(insym, keras_layer, _): # pylint: disable=unused-argument """Layers that can be skipped because they are train time only.""" return insym _convert_map = { 'Dense' : _convert_dense, 'Activation' : _convert_activation, 'LeakyReLU' : _convert_advanced_activation, 'PReLU' : _convert_advanced_activation, 'ELU' : _convert_advanced_activation, 'ThresholdedReLU' : _convert_advanced_activation, 'AveragePooling2D' : _convert_pooling, 'MaxPooling2D' : _convert_pooling, 'GlobalAveragePooling2D' : _convert_pooling, 'GlobalMaxPooling2D' : _convert_pooling, 'Conv2D' : _convert_convolution, 'Conv2DTranspose' : _convert_convolution, 'DepthwiseConv2D' : _convert_convolution, 'SeparableConv2D' : _convert_separable_convolution, 'Flatten' : _convert_flatten, 'Reshape' : _convert_reshape, 'Concatenate' : _convert_concat, 'BatchNormalization' : _convert_batchnorm, 'Add' : _convert_merge, 'Subtract' : _convert_merge, 'Multiply' : _convert_merge, 'ZeroPadding2D' : _convert_padding, 'UpSampling2D' : _convert_upsample, # 'ZeroPadding1D' : _convert_padding, # 'AveragePooling1D' : _convert_pooling, # 'MaxPooling1D' : _convert_pooling, # 'GlobalAveragePooling1D' : _convert_pooling, # 'GlobalMaxPooling1D' : _convert_pooling, # 'Cropping1D' : _convert_cropping, # 'Cropping2D' : _convert_cropping, # 'UpSampling1D' : _convert_upsample, # 'UpSampling3D' : _convert_upsample, # 'Conv1D' : _convert_convolution1d, # 'GRU' : _convert_gru, # 'LSTM' : _convert_lstm, # 'SimpleRNN' : _convert_simple_rnn, # 'Bidirectional' : _convert_bidirectional, # 'TimeDistributed' : _default_skip, # 'Average' : _convert_merge, # 'Maximum' : _convert_merge, # 'Dot' : _convert_merge, # 'Permute' : _convert_permute, # 'Embedding' : _convert_embedding, # 'RepeatVector' : _convert_repeat_vector, 'InputLayer' : _default_skip, 'Dropout' : _default_skip, 'SpatialDropout2D' : _default_skip, 'SpatialDropout1D' : _default_skip, } def _check_unsupported_layers(model): for layer in model.layers: if type(layer).__name__ not in _convert_map: raise ValueError("Keras layer {} not supported.".format(type(layer).__name__)) def keras_op_to_nnvm(insym, keras_layer, outname, symtab): """Convert keras layer to nnvm symbol, and update symtab. Parameters ---------- insym : nnvm.symbol.Symbol or a list of it The input nnvm symbol(s) keras_layer : keras.layers The keras layer to be converted outname : str Name of the output nnvm symbol symtab : nnvm.frontend.common.SymbolTable The global symbol table to be updated """ if type(keras_layer).__name__ not in _convert_map: raise NotImplementedError("{} is not supported".format((type(keras_layer).__name__))) ret = _convert_map[type(keras_layer).__name__](insym, keras_layer, symtab) symtab.set_var(outname, ret) def from_keras(model): """Convert keras model to NNVM format. Parameters ---------- model : keras.engine.training.Model The keras model to be converted Returns ------- sym : nnvm.Symbol Compatible nnvm symbol params : dict of str to tvm.NDArray The parameter dict to be used by nnvm """ try: import keras except ImportError: raise ImportError('Keras must be installed') assert isinstance(model, keras.engine.training.Model) if keras.backend.image_data_format() != 'channels_last': raise ValueError("Keras frontend currently supports data_format = channels_last only.") _check_unsupported_layers(model) symtab = SymbolTable() for keras_layer in model.layers: if isinstance(keras_layer, keras.engine.topology.InputLayer): symtab.get_var(keras_layer.name, must_contain=False) else: inbound_nodes = keras_layer.inbound_nodes if hasattr(keras_layer, 'inbound_nodes') \ else keras_layer._inbound_nodes if hasattr(keras_layer, '_inbound_nodes') \ else None if inbound_nodes is None: raise TypeError("Unknown layer type or unsupported Keras version : {}" .format(keras_layer)) for my_idx, node in enumerate(inbound_nodes): insym = [] # Since Keras allows creating multiple layers from the same name instance, # we append node index to the symbol name to make it unique. # The one exception is InputLayer. Changing input variable names after conversion # would confuse users, so we should keep them as far as possible. Fortunately, # they are named uniquely to input_1, input_2, input_3 ... by default. for pred_idx, pred in zip(node.node_indices, node.inbound_layers): if isinstance(pred, keras.engine.topology.InputLayer): _sym = symtab.get_var(pred.name, must_contain=True) else: _sym = symtab.get_var(pred.name + ':' + str(pred_idx), must_contain=True) insym.append(_sym) if len(insym) == 1: insym = insym[0] keras_op_to_nnvm(insym, keras_layer, keras_layer.name + ':' + str(my_idx), symtab) outsym = symtab.get_var(model.output_layers[0].name + ':0') tvmparams = {k:tvm.nd.array(np.array(v, dtype=np.float32)) for k, v in symtab.params.items()} return outsym, tvmparams
555e47b52b537e75c5f7db4a5e347387352054ae
2de2437bbf480f6518554bcb204106dd37262023
/office365/sharepoint/portal/SPSiteCreationResponse.py
571a183cf080a80520369bacb01a8d04eb63bccb
[ "MIT" ]
permissive
stardust85/Office365-REST-Python-Client
386e5bba16cdee1472b7e23d405a4bf9b6f5e73a
cd369c607c7d137a000734e9c5e8f03ae3e3c603
refs/heads/master
2022-09-29T19:44:02.166438
2020-06-03T23:12:40
2020-06-03T23:12:40
269,356,313
0
0
MIT
2020-06-04T12:41:03
2020-06-04T12:41:02
null
UTF-8
Python
false
false
285
py
from office365.runtime.client_value_object import ClientValueObject class SPSiteCreationResponse(ClientValueObject): def __init__(self): super(SPSiteCreationResponse, self).__init__() self.SiteId = None self.SiteStatus = None self.SiteUrl = None
a4663248aee0f453eeadac2ea056632f3e0246f5
2840fe577ab00f93b752c78d36077bab7e68dbf7
/pp_validate.py
6490f4bdc328efd4f5d24ace83ad28a2998e538b
[ "LicenseRef-scancode-warranty-disclaimer", "LicenseRef-scancode-mit-taylor-variant" ]
permissive
jmsteitz/pipresents-gapless
41ab4d3375a374e009adf5944535ca7c79afe0e6
ad2252444c01617294545c62e5ddbb612384dc0e
refs/heads/master
2020-05-25T20:12:09.112735
2017-03-16T14:09:10
2017-03-16T14:09:10
84,963,208
0
0
null
2017-03-14T15:10:15
2017-03-14T15:10:15
null
UTF-8
Python
false
false
46,540
py
import os import json import ConfigParser from Tkinter import Toplevel, Scrollbar,Text from Tkinter import VERTICAL,RIGHT,LEFT,BOTH,Y,NORMAL,END,DISABLED """ 1/12/2016 - warn if foreign files in profile rather than abort """ class Validator(object): def validate_profile(self, root, pp_dir, pp_home, pp_profile,editor_issue,display): # USES # self.current_showlist # CREATES # v_media_lists - file names of all medialists in the profile # v_shows # v_track_labels - list of track labels in current medialist. # v_show_labels - list of show labels in the showlist # v_medialist_refs - list of references to medialist files in the showlist # open results display self.result=ResultWindow(root,"Validate "+pp_profile,display) self.result.display('t',"\nVALIDATING PROFILE '"+ pp_profile + "'") if not os.path.exists(pp_profile+os.sep+"pp_showlist.json"): self.result.display('f',"pp_showlist.json not in profile") self.result.display('t', "Validation Aborted") return False ifile = open(pp_profile+os.sep+"pp_showlist.json", 'rb') sdict= json.load(ifile) ifile.close() v_shows=sdict['shows'] if 'issue' in sdict: profile_issue= sdict['issue'] else: profile_issue="1.0" if profile_issue != editor_issue: self.result.display('f',"Profile version "+profile_issue+ " is different to that editor") self.result.display('t', "Validation Aborted") return False # read the gpio config # gpio_cfg_ok=read_gpio_cfg(pp_dir,pp_home,pp_profile) # MAKE LIST OF SHOW LABELS v_show_labels=[] for show in v_shows: if show['type'] != 'start': v_show_labels.append(show['show-ref']) # CHECK ALL MEDIALISTS AND THEIR TRACKS v_media_lists = [] for medialist_file in os.listdir(pp_profile): if not medialist_file.endswith(".json") and medialist_file not in ('pp_io_config','readme.txt'): self.result.display('w',"Non medialist file in profile: "+ medialist_file) if medialist_file.endswith(".json") and medialist_file not in ('pp_showlist.json','schedule.json'): self.result.display('t',"\nChecking medialist '"+medialist_file+"'") v_media_lists.append(medialist_file) # open a medialist and test its tracks ifile = open(pp_profile + os.sep + medialist_file, 'rb') sdict= json.load(ifile) ifile.close() tracks = sdict['tracks'] if 'issue' in sdict: medialist_issue= sdict['issue'] else: medialist_issue="1.0" # check issue of medialist if medialist_issue != editor_issue: self.result.display('f',"Medialist version "+medialist_issue+ " is different to that editor") self.result.display('t', "Validation Aborted") return False # open a medialist and test its tracks v_track_labels=[] anonymous=0 for track in tracks: self.result.display('t'," Checking track '"+track['title']+"'") # check track-ref if track['track-ref'] == '': anonymous+=1 else: if track['track-ref'] in v_track_labels: self.result.display('f',"'duplicate track reference: "+ track['track-ref']) v_track_labels.append(track['track-ref']) # warn if media tracks blank where optional if track['type'] in ('audio','image','web','video'): if track['location'].strip() == '': self.result.display('w',"blank location") # check location of relative media tracks where present if track['type'] in ('video','audio','image','web'): track_file=track['location'] if track_file.strip() != '' and track_file[0] == "+": track_file=pp_home+track_file[1:] if not os.path.exists(track_file): self.result.display('f',"location "+track['location']+ " Media File not Found") if track['type'] in ('video','audio','message','image','web','menu'): # check common fields self.check_animate('animate-begin',track['animate-begin']) self.check_animate('animate-end',track['animate-end']) self.check_plugin(track['plugin'],pp_home) self.check_show_control(track['show-control-begin'],v_show_labels) self.check_show_control(track['show-control-end'],v_show_labels) if track['background-image'] != '': track_file=track['background-image'] if track_file[0] == "+": track_file=pp_home+track_file[1:] if not os.path.exists(track_file): self.result.display('f',"background-image "+track['background-image']+ " background image file not found") if track['track-text'] != "": if not track['track-text-x'].isdigit(): self.result.display('f',"'Track Text x position' is not 0 or a positive integer") if not track['track-text-y'].isdigit(): self.result.display('f',"'Track Text y Position' is not 0 or a positive integer") if track['track-text-colour']=='': self.result.display('f',"'Track Text Colour' is blank") if track['track-text-font']=='': self.result.display('f',"'Track Text Font' is blank") if track['type']=='menu': self.check_menu(track) if track['type'] == "image": if track['duration'] != "" and not track['duration'].isdigit(): self.result.display('f',"'Duration' is not blank, 0 or a positive integer") if track['image-rotate'] != "" and not track['image-rotate'].isdigit(): self.result.display('f',"'Image Rotation' is not blank, 0 or a positive integer") self.check_image_window('track','image-window',track['image-window']) if track['type'] == "video": self.check_omx_window('track','omx-window',track['omx-window']) self.check_volume('track','omxplayer-volume',track['omx-volume']) if track['type'] == "audio": if track['duration'] != '' and not track['duration'].isdigit(): self.result.display('f',"'Duration' is not 0 or a positive integer") if track['duration'] == '0' : self.result.display('w',"'Duration' of an audio track is zero") self.check_volume('track','mplayer-volume',track['mplayer-volume']) if track['type'] == "message": if track['duration'] != '' and not track['duration'].isdigit(): self.result.display('f',"'Duration' is not 0 or a positive integer") if track['text'] != "": if track['message-x'] != '' and not track['message-x'].isdigit(): self.result.display('f',"'Message x Position' is not blank, 0 or a positive integer") if track['message-y'] != '' and not track['message-y'].isdigit(): self.result.display('f',"'Message y Position' is not blank, 0 or a positive integer") if track['message-colour']=='': self.result.display('f',"'Message Text Colour' is blank") if track['message-font']=='': self.result.display('f',"Message Text Font' is blank") if track['type'] == 'web': self.check_browser_commands(track['browser-commands']) self.check_web_window('track','web-window',track['web-window']) # CHECK CROSS REF TRACK TO SHOW if track['type'] == 'show': if track['sub-show'] == "": self.result.display('f',"No 'Sub-show to Run'") else: if track['sub-show'] not in v_show_labels: self.result.display('f',"Sub-show "+track['sub-show'] + " does not exist") # if anonymous == 0 :self.result.display('w',"zero anonymous tracks in medialist " + file) # check for duplicate track-labels # !!!!!!!!!!!!!!!!!! add check for all labels # SHOWS # find start show and test it, test show-refs at the same time found=0 for show in v_shows: if show['type'] == 'start': self.result.display('t',"\nChecking show '"+show['title'] + "' first pass") found+=1 if show['show-ref'] != 'start': self.result.display('f',"start show has incorrect label") else: self.result.display('t',"Checking show '"+show['title'] + "' first pass") if show['show-ref'] == '': self.result.display('f',"Show Reference is blank") if ' ' in show['show-ref']: self.result.display('f',"Spaces not allowed in Show Reference: " + show['show-ref']) if found == 0:self.result.display('f',"There is no start show") if found > 1:self.result.display('f',"There is more than 1 start show") # check for duplicate show-labels for show_label in v_show_labels: found = 0 for show in v_shows: if show['show-ref'] == show_label: found+=1 if found > 1: self.result.display('f',show_label + " is defined more than once") # check other things about all the shows and create a list of medialist file references v_medialist_refs=[] for show in v_shows: if show['type'] == "start": self.result.display('t',"\nChecking show '"+show['title']+ "' second pass" ) self.check_start_shows(show,v_show_labels) else: self.result.display('t',"Checking show '"+show['title']+ "' second pass" ) if show['medialist']=='': self.result.display('f', show['show-ref']+ " show has blank medialist") if '.json' not in show['medialist']: self.result.display('f', show['show-ref']+ " show has invalid medialist") self.result.display('t', "Validation Aborted") return False if show['medialist'] not in v_media_lists: self.result.display('f', "'"+show['medialist']+ "' medialist not found") self.result.display('t', "Validation Aborted") return False if not os.path.exists(pp_profile + os.sep + show['medialist']): self.result.display('f', "'"+show['medialist']+ "' medialist file does not exist") self.result.display('t', "Validation Aborted") return False v_medialist_refs.append(show['medialist']) # open medialist and produce a dictionary of its contents for use later ifile = open(pp_profile + os.sep + show['medialist'], 'rb') tracks = json.load(ifile)['tracks'] ifile.close() # make a list of the track labels v_track_labels=[] for track in tracks: if track['track-ref'] !='': v_track_labels.append(track['track-ref']) # check common fields in the show #show self.check_show_canvas('show','Show Canvas',show['show-canvas']) #show background and text if show['show-text'] != "": if not show['show-text-x'].isdigit(): self.result.display('f',"'Show Text x Position' is not 0 or a positive integer") if not show['show-text-y'].isdigit(): self.result.display('f',"'Show Text y Position' is not 0 or a positive integer") if show['show-text-colour']=='': self.result.display('f',"'Show Text Colour' is blank") if show['show-text-font']=='': self.result.display('f',"'Show Text Font' is blank") background_image_file=show['background-image'] if background_image_file.strip() != '' and background_image_file[0] == "+": track_file=pp_home+background_image_file[1:] if not os.path.exists(track_file): self.result.display('f',"Background Image "+show['background-image']+ " background image file not found") #track defaults if not show['duration'].isdigit(): self.result.display('f',"'Duration' is not 0 or a positive integer") if not show['image-rotate'].isdigit(): self.result.display('f',"'Image Rotation' is not 0 or a positive integer") self.check_volume('show','Video Player Volume',show['omx-volume']) self.check_volume('show','Audio Volume',show['mplayer-volume']) self.check_omx_window('show','Video Window',show['omx-window']) self.check_image_window('show','Image Window',show['image-window']) #eggtimer if show['eggtimer-text'] != "": if show['eggtimer-colour']=='': self.result.display('f',"'Eggtimer Colour' is blank") if show['eggtimer-font']=='': self.result.display('f',"'Eggtimer Font' is blank") if not show['eggtimer-x'].isdigit(): self.result.display('f',"'Eggtimer x Position' is not 0 or a positive integer") if not show['eggtimer-y'].isdigit(): self.result.display('f',"'Eggtimer y Position' is not 0 or a positive integer") # Validate simple fields of each show type if show['type'] in ("mediashow",'liveshow'): if show['child-track-ref'] != '': if show['child-track-ref'] not in v_track_labels: self.result.display('f',"'Child Track ' " + show['child-track-ref'] + ' is not in medialist' ) if not show['hint-y'].isdigit(): self.result.display('f',"'Hint y Position' is not 0 or a positive integer") if not show['hint-x'].isdigit(): self.result.display('f',"'Hint x Position' is not 0 or a positive integer") if show['hint-colour']=='': self.result.display('f',"'Hint Colour' is blank") if show['hint-font']=='': self.result.display('f',"'Hint Font' is blank") self.check_hh_mm_ss('Show Timeout',show['show-timeout']) self.check_hh_mm_ss('Repeat Interval',show['interval']) if not show['track-count-limit'].isdigit(): self.result.display('f',"'Track Count Limit' is not 0 or a positive integer") if show['trigger-start-type']in('input','input-persist'): self.check_triggers('Trigger for Start',show['trigger-start-param']) if show['trigger-next-type'] == 'input': self.check_triggers('Trigger for Next',show['trigger-next-param']) if show['trigger-end-type'] == 'input': self.check_triggers('Trigger for End',show['trigger-end-param']) self.check_web_window('show','web-window',show['web-window']) self.check_controls('controls',show['controls']) #notices if show['trigger-wait-text'] != "" or show['empty-text'] != "": if show['admin-colour']=='': self.result.display('f',"' Notice Text Colour' is blank") if show['admin-font']=='': self.result.display('f',"'Notice Text Font' is blank") if not show['admin-x'].isdigit(): self.result.display('f',"'Notice Text x Position' is not 0 or a positive integer") if not show['admin-y'].isdigit(): self.result.display('f',"'Notice Text y Position' is not 0 or a positive integer") if show['type'] in ("artmediashow",'artliveshow'): #notices if show['empty-text'] != "": if show['admin-colour']=='': self.result.display('f',"' Notice Text Colour' is blank") if show['admin-font']=='': self.result.display('f',"'Notice Text Font' is blank") if not show['admin-x'].isdigit(): self.result.display('f',"'Notice Text x Position' is not 0 or a positive integer") if not show['admin-y'].isdigit(): self.result.display('f',"'Notice Text y Position' is not 0 or a positive integer") self.check_controls('controls',show['controls']) if show['type'] == "menu": self.check_hh_mm_ss('Show Timeout',show['show-timeout']) self.check_hh_mm_ss('Track Timeout',show['track-timeout']) if show['menu-track-ref'] not in v_track_labels: self.result.display('f',"'menu track ' is not in medialist: " + show['menu-track-ref']) self.check_web_window('show','web-window',show['web-window']) self.check_controls('controls',show['controls']) if show['type'] == 'hyperlinkshow': if show['first-track-ref'] not in v_track_labels: self.result.display('f',"'first track ' is not in medialist: " + show['first-track-ref']) if show['home-track-ref'] not in v_track_labels: self.result.display('f',"'home track ' is not in medialist: " + show['home-track-ref']) if show['timeout-track-ref'] not in v_track_labels: self.result.display('f',"'timeout track ' is not in medialist: " + show['timeout-track-ref']) self.check_hyperlinks('links',show['links'],v_track_labels) self.check_hh_mm_ss('Show Timeout',show['show-timeout']) self.check_hh_mm_ss('Track Timeout',show['track-timeout']) self.check_web_window('show','web-window',show['web-window']) if show['type'] == 'radiobuttonshow': if show['first-track-ref'] not in v_track_labels: self.result.display('f',"'first track ' is not in medialist: " + show['first-track-ref']) self.check_radiobutton_links('links',show['links'],v_track_labels) self.check_hh_mm_ss('Show Timeout',show['show-timeout']) self.check_hh_mm_ss('Track Timeout',show['track-timeout']) self.check_web_window('show','web-window',show['web-window']) self.result.display('t', "\nValidation Complete") self.result.stats() if self.result.num_errors() == 0: return True else: return False def check_hh_mm_ss(self,name,item): fields=item.split(':') if len(fields) == 0: return if len(fields)>3: self.result.display('f','Too many fields in '+ name + ': ' + item) return if len(fields) == 1: seconds=fields[0] minutes='0' hours='0' if len(fields) == 2: seconds=fields[1] minutes=fields[0] hours='0' if len(fields) == 3: seconds=fields[2] minutes=fields[1] hours=fields[0] if not seconds.isdigit() or not minutes.isdigit() or not hours.isdigit(): self.result.display('f','Fields of '+ name + ' are not positive integers: ' + item) return if int(minutes)>59 or int(seconds)>59: if len(fields)<>1: self.result.display('f','Fields of '+ name + ' are out of range: ' + item) else: self.result.display('w','Seconds or Minutes is greater then 59 in '+ name + ': ' + item) return def check_start_shows(self,show,v_show_labels): text=show['start-show'] show_count=0 fields = text.split() for field in fields: show_count+=1 if field not in v_show_labels: self.result.display('f',"start show has undefined Start Show: "+ field) if show_count == 0: self.result.display('w',"start show has zero Start Shows") # *********************************** # triggers # ************************************ def check_triggers(self,field,line): words=line.split() if len(words)!=1: self.result.display('f','Wrong number of fields in: ' + field + ", " + line) # *********************************** # volume # ************************************ def check_volume(self,track_type,field,line): if track_type == 'show' and line.strip() == '': self.result.display('f','Wrong number of fields: ' + field + ", " + line) return if track_type == 'track' and line.strip() == '': return if line[0] not in ('0','-'): self.result.display('f','Invalid value: ' + field + ", " + line) return if line[0] == '0': if not line.isdigit(): self.result.display('f','Invalid value: ' + field + ", " + line) return if int(line) != 0: self.result.display('f','out of range -60 > 0: ' + field + ", " + line) return return elif line[0] == '-': if not line[1:].isdigit(): self.result.display('f','Invalid value: ' + field + ", " + line) return if int(line)<-60 or int(line)>0: self.result.display('f','out of range -60 > 0: ' + field + ", " + line) return return else: self.result.display('f','help, do not understaand!: ' + field + ", " + line) return # *********************************** # time of day inputs # ************************************ def check_times(self,text): lines = text.split("\n") for line in lines: self.check_times_line(line) def check_times_line(self,line): items = line.split() if len(items) == 0: self.result.display('w','No time values when using time of day trigger: ') for item in items: self.check_times_item(item) def check_times_item(self,item): if item[0] == '+': if not item.lstrip('+').isdigit(): self.result.display('f','Value of relative time is not positive integer: ' + item) return else: # hh:mm;ss fields=item.split(':') if len(fields) == 0: return if len(fields) == 1: self.result.display('f','Too few fields in time: ' + item) return if len(fields)>3: self.result.display('f','Too many fields in time: ' + item) return if len(fields) != 3: seconds='0' else: seconds=fields[2] if not fields[0].isdigit() or not fields[1].isdigit() or not seconds.isdigit(): self.result.display('f','Fields of time are not positive integers: ' + item) return if int(fields[0])>23 or int(fields[1])>59 or int(seconds)>59: self.result.display('f','Fields of time are out of range: ' + item) return def check_duration(self,field,line): fields=line.split(':') if len(fields) == 0: self.result.display('f','End Trigger, ' + field +' Field is empty: ' + line) return if len(fields)>3: self.result.display('f','End Trigger, ' + field + ' More then 3 fields: ' + line) return if len(fields) == 1: secs=fields[0] minutes='0' hours='0' if len(fields) == 2: secs=fields[1] minutes=fields[0] hours='0' if len(fields) == 3: secs=fields[2] minutes=fields[1] hours=fields[0] if not hours.isdigit() or not minutes.isdigit() or not secs.isdigit(): self.result.display('f','End Trigger, ' + field + ' Fields are not positive integers: ' + line) return if int(hours)>23 or int(minutes)>59 or int(secs)>59: self.result.display('f','End Trigger, ' + field + ' Fields are out of range: ' + line) return # ******************* # Check menu # *********************** # window # consistencty of modes def check_menu(self,track): if not track['menu-rows'].isdigit(): self.result.display('f'," Menu Rows is not 0 or a positive integer") if not track['menu-columns'].isdigit(): self.result.display('f'," Menu Columns is not 0 or a positive integer") if not track['menu-icon-width'].isdigit(): self.result.display('f'," Icon Width is not 0 or a positive integer") if not track['menu-icon-height'].isdigit(): self.result.display('f'," Icon Height is not 0 or a positive integer") if not track['menu-horizontal-padding'].isdigit(): self.result.display('f'," Horizontal Padding is not 0 or a positive integer") if not track['menu-vertical-padding'].isdigit(): self.result.display('f'," Vertical padding is not 0 or a positive integer") if not track['menu-text-width'].isdigit(): self.result.display('f'," Text Width is not 0 or a positive integer") if not track['menu-text-height'].isdigit(): self.result.display('f'," Text Height is not 0 or a positive integer") if not track['menu-horizontal-separation'].isdigit(): self.result.display('f'," Horizontal Separation is not 0 or a positive integer") if not track['menu-vertical-separation'].isdigit(): self.result.display('f'," Vertical Separation is not 0 or a positive integer") if not track['menu-strip-padding'].isdigit(): self.result.display('f'," Stipple padding is not 0 or a positive integer") if not track['hint-x'].isdigit(): self.result.display('f',"'Hint x Position' is not 0 or a positive integer") if not track['hint-y'].isdigit(): self.result.display('f',"'Hint y Position' is not 0 or a positive integer") if not track['track-text-x'].isdigit(): self.result.display('f'," Menu Text x Position is not 0 or a positive integer") if not track['track-text-y'].isdigit(): self.result.display('f'," Menu Text y Position is not 0 or a positive integer") if track['menu-icon-mode'] == 'none' and track['menu-text-mode'] == 'none': self.result.display('f'," Icon and Text are both None") if track['menu-icon-mode'] == 'none' and track['menu-text-mode'] == 'overlay': self.result.display('f'," cannot overlay none icon") self.check_menu_window(track['menu-window']) def check_menu_window(self,line): if line == '': self.result.display('f'," menu Window: may not be blank") return if line != '': fields = line.split() if len(fields) not in (1, 2,4): self.result.display('f'," menu Window: wrong number of fields") return if len(fields) == 1: if fields[0] != 'fullscreen': self.result.display('f'," menu Window: single argument must be fullscreen") return if len(fields) == 2: if not (fields[0].isdigit() and fields[1].isdigit()): self.result.display('f'," menu Window: coordinates must be positive integers") return if len(fields) == 4: if not(fields[0].isdigit() and fields[1].isdigit() and fields[2].isdigit() and fields[3].isdigit()): self.result.display('f'," menu Window: coordinates must be positive integers") return # ******************* # Check plugin # *********************** def check_plugin(self,plugin_cfg,pp_home): if plugin_cfg.strip() != '' and plugin_cfg[0] == "+": plugin_cfg=pp_home+plugin_cfg[1:] if not os.path.exists(plugin_cfg): self.result.display('f','plugin configuration file not found: '+ plugin_cfg) # ******************* # Check browser commands # *********************** def check_browser_commands(self,command_text): lines = command_text.split('\n') for line in lines: if line.strip() == "": continue self.check_browser_command(line) def check_browser_command(self,line): fields = line.split() if fields[0] == 'uzbl': return if len(fields) not in (1,2): self.result.display('f','incorrect number of fields in browser command: '+ line) return command = fields[0] if command not in ('load','refresh','wait','exit','loop'): self.result.display('f','unknown command in browser commands: '+ line) return if command in ('refresh','exit','loop') and len(fields) != 1: self.result.display('f','incorrect number of fields for '+ command + 'in: '+ line) return if command == 'load': if len(fields) != 2: self.result.display('f','incorrect number of fields for '+ command + 'in: '+ line) return if command == 'wait': if len(fields) != 2: self.result.display('f','incorrect number of fields for '+ command + 'in: '+ line) return arg = fields[1] if not arg.isdigit(): self.result.display('f','Argument for Wait is not 0 or positive number in: '+ line) return # ******************* # Check controls # ******************* def check_controls(self,name,controls_text): lines = controls_text.split('\n') for line in lines: if line.strip() == "": continue self.check_control(line) def check_control(self,line): fields = line.split() if len(fields) != 2 : self.result.display('f',"incorrect number of fields in Control: " + line) return operation=fields[1] if operation in ('up','down','play','stop','exit','pause','no-command','null') or operation[0:6] == 'mplay-' or operation[0:4] == 'omx-' or operation[0:5] == 'uzbl-': return else: self.result.display('f',"unknown Command in Control: " + line) # ******************* # Check hyperlinkshow links # *********************** def check_hyperlinks(self,name,links_text,v_track_labels): lines = links_text.split('\n') for line in lines: if line.strip() == "": continue self.check_hyperlink(line,v_track_labels) def check_hyperlink(self,line,v_track_labels): fields = line.split() if len(fields) not in (2,3): self.result.display('f',"Incorrect number of fields in Control: " + line) return symbol=fields[0] operation=fields[1] if operation in ('home','null','stop','exit','repeat','pause','no-command') or operation[0:6] == 'mplay-' or operation[0:4] == 'omx-' or operation[0:5] == 'uzbl-': return elif operation in ('call','goto','jump'): if len(fields)!=3: self.result.display('f','Incorrect number of fields in Control: ' + line) return else: operand=fields[2] if operand not in v_track_labels: self.result.display('f',operand + " Command argument is not in medialist: " + line) return elif operation == 'return': if len(fields)==2: return else: operand=fields[2] if operand.isdigit() is True: return else: if operand not in v_track_labels: self.result.display('f',operand + " Command argument is not in medialist: " + line) return else: self.result.display('f',"unknown Command in Control: " + line) # ******************* # Check radiobuttonshow links # *********************** def check_radiobutton_links(self,name,links_text,v_track_labels): lines = links_text.split('\n') for line in lines: if line.strip() == "": continue self.check_radiobutton_link(line,v_track_labels) def check_radiobutton_link(self,line,v_track_labels): fields = line.split() if len(fields) not in (2,3): self.result.display('f',"Incorrect number of fields in Control: " + line) return symbol=fields[0] operation=fields[1] if operation in ('return','stop','exit','pause','no-command') or operation[0:6] == 'mplay-' or operation[0:4] == 'omx-' or operation[0:5] == 'uzbl-': return elif operation == 'play': if len(fields)!=3: self.result.display('f','Incorrect number of fields in Control: ' + line) return else: operand=fields[2] if operand not in v_track_labels: self.result.display('f',operand + " Command argument is not in medialist: " + line) return else: self.result.display('f',"unknown Command in Control: " + line) # *********************************** # checking show controls # ************************************ def check_show_control(self,text,v_show_labels): lines = text.split("\n") for line in lines: self.check_show_control_fields(line,v_show_labels) def check_show_control_fields(self,line,v_show_labels): fields = line.split() if len(fields) == 0: return # OSC command elif len(fields)>0 and fields[0][0] =='/': return elif len(fields)==1: if fields[0] not in ('exitpipresents','shutdownnow'): self.result.display('f','Show control - Unknown command in: ' + line) return elif len(fields) == 2: if fields[0] not in ('open','close'): self.result.display('f','Show Control - Unknown command in: ' + line) if fields[1] not in v_show_labels: self.result.display('f',"Show Control - cannot find Show Reference: "+ line) return else: self.result.display('f','Show Control - Incorrect number of fields in: ' + line) return # *********************************** # checking animation # ************************************ def check_animate_fields(self,field,line): fields= line.split() if len(fields) == 0: return if len(fields)>4: self.result.display('f','Too many fields in: ' + field + ", " + line) if len(fields)<4: self.result.display('f','Too few fields in: ' + field + ", " + line) return delay_text=fields[0] if not delay_text.isdigit(): self.result.display('f','Delay is not 0 or a positive integer in:' + field + ", " + line) name = fields[1] # name not checked - done at runtime out_type = fields[2] if out_type != 'state': self.result.display('f','Unknownl type in: ' + field + ", " + line) to_state_text=fields[3] if not (to_state_text in ('on','off')): self.result.display('f','Unknown parameter in: ' + field + ", " + line) return def check_animate(self,field,text): lines = text.split("\n") for line in lines: self.check_animate_fields(field,line) # ************************************* # GPIO CONFIG - NOT USED # ************************************ def read_gpio_cfg(self,pp_dir,pp_home): tryfile=pp_home+os.sep+"gpio.cfg" if os.path.exists(tryfile): filename=tryfile else: self.result.display('t', "gpio.cfg not found in pp_home") tryfile=pp_dir+os.sep+'pp_resources'+os.sep+"gpio.cfg" if os.path.exists(tryfile): filename=tryfile else: self.result.display('w', "gpio.cfg not found in pipresents/pp_resources - GPIO checking turned off") return False self.config = ConfigParser.ConfigParser() self.config.read(filename) return True def get(self,section,item): if self.config.has_option(section,item) is False: return False else: return self.config.get(section,item) # ************************************* # WEB WINDOW # ************************************ def check_web_window(self,track_type,field,line): # check warp _ or xy2 fields = line.split() if track_type == 'show' and len(fields) == 0: self.result.display('f','Show must specify Web Window: ' + field + ", " + line) return if len(fields) == 0: return # deal with warp which has 1 or 5 arguments if fields[0] != 'warp': self.result.display('f','Illegal command: ' + field + ", " + line) if len(fields) not in (1,5): self.result.display('f','Wrong number of fields for warp: ' + field + ", " + line) return # deal with window coordinates if len(fields) == 5: # window is specified if not (fields[1].isdigit() and fields[2].isdigit() and fields[3].isdigit() and fields[4].isdigit()): self.result.display('f','coordinate is not a positive integer ' + field + ", " + line) return # ************************************* # SHOW CANVAS # ************************************ def check_show_canvas(self,track_type,name,line): fields=line.split() if len(fields)== 0: return if len(fields) !=4: self.result.display('f','wrong number of fields for ' + name + ", " + line) return else: # show canvas is specified if not (fields[0].isdigit() and fields[1].isdigit() and fields[2].isdigit() and fields[3].isdigit()): self.result.display('f','coordinate is not a positive integer ' + name + ", " + line) return # ************************************* # IMAGE WINDOW # ************************************ def check_image_window(self,track_type,field,line): fields = line.split() if track_type == 'show' and len(fields) == 0: self.result.display('f','Show must specify Image Window: ' + field + ", " + line) return if len(fields) == 0: return # deal with original whch has 0 or 2 arguments if fields[0] == 'original': if len(fields) not in (1,3): self.result.display('f','Wrong number of fields for original: ' + field + ", " + line) return # deal with window coordinates if len(fields) == 3: # window is specified if not (fields[1].isdigit() and fields[2].isdigit()): self.result.display('f','coordinate is not a positive integer ' + field + ", " + line) return return else: return # deal with remainder which has 1, 2, 5 or 6arguments # check basic syntax if fields[0] not in ('shrink','fit','warp'): self.result.display('f','Illegal command: ' + field + ", " + line) return if len(fields) not in (1,2,5,6): self.result.display('f','Wrong number of fields: ' + field + ", " + line) return if len(fields) == 6 and fields[5] not in ('NEAREST','BILINEAR','BICUBIC','ANTIALIAS'): self.result.display('f','Illegal Filter: ' + field + ", " + line) return if len(fields) == 2 and fields[1] not in ('NEAREST','BILINEAR','BICUBIC','ANTIALIAS'): self.result.display('f','Illegal Filter: ' + field + ", " + line) # deal with window coordinates if len(fields) in (5,6): # window is specified if not (fields[1].isdigit() and fields[2].isdigit() and fields[3].isdigit() and fields[4].isdigit()): self.result.display('f','coordinate is not a positive integer ' + field + ", " + line) return # ************************************* # VIDEO WINDOW # ************************************ def check_omx_window(self,track_type,field,line): fields = line.split() if track_type == 'show' and len(fields) == 0: self.result.display('f','show must have video window: ' + field + ", " + line) return if len(fields) == 0: return # deal with original which has 1 if fields[0] == 'original': if len(fields) != 1: self.result.display('f','Wrong number of fields for original: ' + field + ", " + line) return return # deal with warp which has 1 or 5 arguments # check basic syntax if fields[0] != 'warp': self.result.display('f','Illegal command: ' + field + ", " + line) return if len(fields) not in (1,5): self.result.display('f','Wrong number of fields for warp: ' + field + ", " + line) # deal with window coordinates if len(fields) == 5: # window is specified if not (fields[1].isdigit() and fields[2].isdigit() and fields[3].isdigit() and fields[4].isdigit()): self.result.display('f','coordinate is not a positive integer ' + field + ", " + line) return # ************************************* # RESULT WINDOW CLASS # ************************************ class ResultWindow(object): def __init__(self, parent, title,display_it): self.display_it=display_it self.errors=0 self.warnings=0 if self.display_it is False: return top = Toplevel() top.title(title) scrollbar = Scrollbar(top, orient=VERTICAL) self.textb = Text(top,width=80,height=40, wrap='word', font="arial 11",padx=5,yscrollcommand=scrollbar.set) scrollbar.config(command=self.textb.yview) scrollbar.pack(side=RIGHT, fill=Y) self.textb.pack(side=LEFT, fill=BOTH, expand=1) self.textb.config(state=NORMAL) self.textb.delete(1.0, END) self.textb.config(state=DISABLED) def display(self,priority,text): if priority == 'f': self.errors+=1 if priority == 'w':self.warnings +=1 if self.display_it is False: return self.textb.config(state=NORMAL) if priority == 't': self.textb.insert(END, text+"\n") if priority == 'f': self.textb.insert(END, " ** Error: "+text+"\n\n") if priority == 'w': self.textb.insert(END, " ** Warning: "+text+"\n\n") self.textb.config(state=DISABLED) def stats(self): if self.display_it is False: return self.textb.config(state=NORMAL) self.textb.insert(END, "\nErrors: "+str(self.errors)+"\nWarnings: "+str(self.warnings)+"\n\n\n") self.textb.config(state=DISABLED) def num_errors(self): return self.errors
add2fdf8fbb97db4726458d6089e1bea384ed165
8fc7b22d6ea7444e0b90d5fb8e361ace06b4cb57
/setup.py
fad40934e3e44c29fddd2fe552a04cdead0b85d7
[ "Apache-2.0" ]
permissive
rixx/django-hierarkey
80a9569eca317d997560fc92d3d67e5083ae081e
e61f03bd1a35489905f3b08fdc18755f1ed07973
refs/heads/master
2021-06-07T09:47:59.710988
2020-07-21T14:57:27
2020-07-21T14:57:27
195,140,375
0
0
Apache-2.0
2019-07-03T23:51:33
2019-07-03T23:51:32
null
UTF-8
Python
false
false
1,490
py
from codecs import open from os import path from setuptools import find_packages, setup here = path.abspath(path.dirname(__file__)) # Get the long description from the relevant file try: with open(path.join(here, 'README.rst'), encoding='utf-8') as f: long_description = f.read() except: long_description = '' try: from hierarkey import version except ImportError: version = '?' setup( name='django-hierarkey', version=version, description='Hierarchical key-value store for django', long_description=long_description, url='https://github.com/raphaelm/django-hierarkey', author='Raphael Michel', author_email='[email protected]', license='Apache License 2.0', classifiers=[ 'Intended Audience :: Developers', 'Intended Audience :: Other Audience', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Framework :: Django :: 2.0', 'Framework :: Django :: 2.1', 'Framework :: Django :: 3.0', ], keywords='strings database models keyvalue', install_requires=[ 'python-dateutil' ], packages=find_packages(exclude=['tests', 'tests.*', 'demoproject', 'demoproject.*']), include_package_data=True, )
eb250e5339657728771d905ffbc0be84a8103fcc
4e353bf7035eec30e5ad861e119b03c5cafc762d
/QtCore/QXmlStreamNamespaceDeclaration.py
50587d69bdc7d2c462e766f31a2c38b6faa6a6d9
[]
no_license
daym/PyQt4-Stubs
fb79f54d5c9a7fdb42e5f2506d11aa1181f3b7d5
57d880c0d453641e31e1e846be4087865fe793a9
refs/heads/master
2022-02-11T16:47:31.128023
2017-10-06T15:32:21
2017-10-06T15:32:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,849
py
# encoding: utf-8 # module PyQt4.QtCore # from C:\Python27\lib\site-packages\PyQt4\QtCore.pyd # by generator 1.145 # no doc # imports import sip as __sip class QXmlStreamNamespaceDeclaration(): # skipped bases: <type 'sip.simplewrapper'> """ QXmlStreamNamespaceDeclaration() QXmlStreamNamespaceDeclaration(QXmlStreamNamespaceDeclaration) QXmlStreamNamespaceDeclaration(QString, QString) """ def namespaceUri(self): # real signature unknown; restored from __doc__ """ QXmlStreamNamespaceDeclaration.namespaceUri() -> QStringRef """ return QStringRef def prefix(self): # real signature unknown; restored from __doc__ """ QXmlStreamNamespaceDeclaration.prefix() -> QStringRef """ return QStringRef def __eq__(self, y): # real signature unknown; restored from __doc__ """ x.__eq__(y) <==> x==y """ pass def __ge__(self, y): # real signature unknown; restored from __doc__ """ x.__ge__(y) <==> x>=y """ pass def __gt__(self, y): # real signature unknown; restored from __doc__ """ x.__gt__(y) <==> x>y """ pass def __init__(self, *__args): # real signature unknown; restored from __doc__ with multiple overloads pass def __le__(self, y): # real signature unknown; restored from __doc__ """ x.__le__(y) <==> x<=y """ pass def __lt__(self, y): # real signature unknown; restored from __doc__ """ x.__lt__(y) <==> x<y """ pass def __ne__(self, y): # real signature unknown; restored from __doc__ """ x.__ne__(y) <==> x!=y """ pass __weakref__ = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """list of weak references to the object (if defined)"""
7adaffb1cbe579b1d161a731e9ac13a98af57b08
5a27471bc2ae4a815db2c58d047dbbea03cd8f77
/comparisonFiles/codigos/Simulacion/LV/PDmasIcf_comparacion.py
674865b1769c477c33b36cfaf1c0ec73d109887f
[]
no_license
ezalorpro/LaboratorioDeControl
6ef52bb77b6a2283decb8c9fa153d7b43f019609
ac286214f9a4b32298aa1caec808717f4b2d9a29
refs/heads/master
2023-01-20T19:27:56.233542
2020-03-15T20:24:10
2020-03-15T20:24:10
190,772,544
0
0
null
null
null
null
UTF-8
Python
false
false
4,102
py
import numpy as np from scipy.interpolate import interp1d from scipy.signal import correlate from scipy.stats import energy_distance from scipy.integrate import cumtrapz from scipy import io from matplotlib import pyplot as plt import pickle MatFileMATLAB = io.loadmat('comparisonFiles/Data MATLAB/Simulacion/PDcfmasI10', squeeze_me=True) MatFileSciLab = io.loadmat('comparisonFiles/Data SciLab/Simulacion/PDmasIcf10', squeeze_me=True) with open('comparisonFiles/Data LVSCCD/Simulacion/Controlador13.pkl', 'rb') as f: t_lv, yout_lv, yc_lv, set_point, _ = pickle.load(f) t_lv = np.asarray(t_lv) yout_lv = np.asarray(yout_lv) yc_lv = np.asarray(yc_lv) set_point = np.asarray(set_point) t_mat = MatFileMATLAB['t'] yout_mat = MatFileMATLAB['yout'] yc_mat = MatFileMATLAB['yc'] t_sci = MatFileSciLab['t'] yout_sci = MatFileSciLab['yout'] yc_sci = MatFileSciLab['yc'] if len(t_sci) > len(t_mat) and len(t_sci) > len(t_lv): mask1 = t_sci <= max(t_mat) mask2 = t_sci[mask1] <= max(t_lv) t_sci = t_sci[mask1][mask2] yout_sci = yout_sci[mask1][mask2] funcion1 = interp1d(t_mat, yout_mat) yout_mat = funcion1(t_sci) funcion2 = interp1d(t_lv, yout_lv) yout_lv = funcion2(t_sci) funcion3 = interp1d(t_lv, set_point) set_point = funcion3(t_sci) t_comun = t_sci if len(t_lv) > len(t_mat) and len(t_lv) > len(t_sci): mask1 = t_lv <= max(t_mat) mask2 = t_lv[mask1] <= max(t_sci) t_lv = t_lv[mask1][mask2] yout_lv = yout_lv[mask1][mask2] set_point = set_point[mask1][mask2] funcion1 = interp1d(t_mat, yout_mat) yout_mat = funcion1(t_lv) funcion2 = interp1d(t_sci, yout_sci) yout_sci = funcion2(t_lv) t_comun = t_lv if len(t_mat) > len(t_sci) and len(t_mat) > len(t_lv): mask1 = t_mat <= max(t_sci) mask2 = t_mat[mask1] <= max(t_lv) t_mat = t_mat[mask1][mask2] yout_mat = yout_mat[mask1][mask2] funcion1 = interp1d(t_lv, yout_lv) yout_lv = funcion1(t_mat) funcion2 = interp1d(t_sci, yout_sci) yout_sci = funcion2(t_mat) funcion3 = interp1d(t_lv, set_point) set_point = funcion3(t_mat) t_comun = t_mat index_m = np.argmax([abs(yout_lv - yout_mat), abs(yout_lv - yout_sci)], axis=1) index_temp = np.argmax([ abs(yout_lv[index_m[0]] - yout_mat[index_m[0]]), abs(yout_lv[index_m[1]] - yout_sci[index_m[1]]) ]) index_temp2 = np.argmax([ yout_lv[index_m[index_temp]], yout_mat[index_m[index_temp]], yout_sci[index_m[index_temp]] ]) index_temp3 = np.argmin([ yout_lv[index_m[index_temp]], yout_mat[index_m[index_temp]], yout_sci[index_m[index_temp]] ]) index_max = index_m[index_temp] index_min = index_m[index_temp] if index_temp2 == 0: YMAX = yout_lv elif index_temp2 == 1: YMAX = yout_mat else: YMAX = yout_sci if index_temp3 == 0: YMIN = yout_lv elif index_temp3 == 1: YMIN = yout_mat else: YMIN = yout_sci fig, ax = plt.subplots(figsize=(5.1, 4.2)) ax.plot(t_comun, yout_mat, color="#001C7F", label='MATLAB/ode45', linewidth=2) ax.plot(t_comun, yout_lv, 'r', dashes=[1, 2], label='LV/RK2 sin filtro', linewidth=3) ax.plot(t_comun, yout_sci, color="#12711C", dashes=[2, 2], label='SciLab/BDF-Newton', linewidth=2) ax.plot(t_comun, set_point, 'k', linestyle='-.', label='SetPoint', linewidth=2) ax.set_title('Controlador PD difuso mas integral con setpoint variable', fontsize=11) ax.legend(loc=8, bbox_to_anchor=(0.37, 0)) ax.grid() axins = ax.inset_axes([0.42, 0.65, 0.25, 0.25]) axins.plot(t_comun, yout_mat, color="#001C7F", linewidth=2) axins.plot(t_comun, yout_lv, 'r', dashes=[1, 2], linewidth=3) axins.plot(t_comun, yout_sci, color="#12711C", dashes=[2, 2], linewidth=2) axins.plot(t_comun, set_point, 'k', linestyle='-.', linewidth=2) axins.grid() axins.set_xlim(t_comun[index_max] - 0.1, t_comun[index_min] + 0.1) axins.set_ylim(YMIN[index_min] - 1 * abs(YMIN[index_min] - YMAX[index_min]) / 2, YMAX[index_max] + 1 * abs(YMIN[index_min] - YMAX[index_min]) / 2) ax.indicate_inset_zoom(axins) fig.tight_layout() plt.savefig('comparisonFiles/plots/Simulacion/PDmasIc.pdf') plt.show()
bea4ba346ee7ce82719f9664f3447a91400044e8
16f36b0fc607cb9c0d7b4eb7d5123a1b7ed40c62
/untitled1/.idea/sda.py
aa69dcd7d98aab5175474796216259bf79104703
[]
no_license
IanChen6/python-learning
64c5137f536d10ffc10a9664da43ec02722c95de
fea998620ba0a354a741cdbc9d8455bca4080bae
refs/heads/master
2021-01-23T18:45:18.595877
2017-10-31T10:34:51
2017-10-31T10:34:51
102,805,586
0
0
null
null
null
null
UTF-8
Python
false
false
192
py
#!/usr/bin/env python3 #_*_ coding:utf-8 _*_ import sys print(len("中文")) print(sys.getdefaultencoding()) print(len("中文".encode("utf-8"))) print(sys.getdefaultencoding()) import scrapy
f4ae8716a1913caf616981c80109ad0bd68f39a5
e2bf489830e55a57945b8e696f8e2d6acefeb560
/05-系统编程-2/06-列表传递给线程.py
f6412c260a9060ce455498ed6ed3712e669c1585
[]
no_license
taizilinger123/pythonjichu
e713de06fb050943a8a1e0256ccba8dea40a411d
5ee896e92edbac55d02aa63965d896200b8c2623
refs/heads/master
2023-04-01T02:00:37.557667
2023-03-31T05:08:40
2023-03-31T05:08:40
148,663,792
0
0
null
null
null
null
UTF-8
Python
false
false
386
py
from threading import Thread import time def work1(nums): nums.append(44) print("----in work1---",nums) def work2(nums): #延时一会,保证t1线程中的事情做完 time.sleep(1) print("----in work2---",nums) g_nums = [11,22,33] t1 = Thread(target=work1, args=(g_nums,)) t1.start() t2 = Thread(target=work2, args=(g_nums,)) t2.start()
4b0f0f8ce51b0e74329b1c5d2ed22111fce36c37
f09dc121f213f2881df3572288b7ee5b39246d73
/aliyun-python-sdk-drds/aliyunsdkdrds/request/v20150413/ProductInfoComplementRequest.py
41256ac6198538d4dcc5655592121677237a8a82
[ "Apache-2.0" ]
permissive
hetw/aliyun-openapi-python-sdk
2f31378ad6be0896fb8090423f607e9c7d3ae774
7443eacee9fbbaa93c7975c6dbec92d3c364c577
refs/heads/master
2023-01-19T22:42:36.214770
2020-12-04T10:55:14
2020-12-04T10:55:14
318,689,093
1
0
NOASSERTION
2020-12-05T03:03:03
2020-12-05T03:03:03
null
UTF-8
Python
false
false
1,567
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkdrds.endpoint import endpoint_data class ProductInfoComplementRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Drds', '2015-04-13', 'ProductInfoComplement','Drds') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_gender(self): return self.get_query_params().get('gender') def set_gender(self,gender): self.add_query_param('gender',gender) def get_name(self): return self.get_query_params().get('name') def set_name(self,name): self.add_query_param('name',name)
1ae2de28aadc8ec72bc4790674f8652982a75968
931515a9fdd4404cb548fb6b80c91590f5d5e3c9
/presalytics/client/presalytics_ooxml_automation/models/theme_background_fills_details.py
523ff5504f7e35da55d93fbdc0052ca07a5c56ce
[ "MIT" ]
permissive
presalytics/python-client
2e2fbd617b493ed8be90b844e23b736f294065e3
5d80b78562126feeeb49af4738e2c1aed12dce3a
refs/heads/master
2021-08-18T02:41:06.938468
2020-12-07T15:04:18
2020-12-07T15:04:18
203,414,411
4
1
MIT
2020-03-31T19:27:47
2019-08-20T16:31:57
Python
UTF-8
Python
false
false
9,185
py
# coding: utf-8 """ OOXML Automation This API helps users convert Excel and Powerpoint documents into rich, live dashboards and stories. # noqa: E501 The version of the OpenAPI document: 0.1.0-no-tags Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six class ThemeBackgroundFillsDetails(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'theme_id': 'str', 'theme': 'ThemeThemesDetails', 'intensity_id': 'int', 'fill_map': 'SharedFillMapDetails', 'id': 'str', 'date_created': 'datetime', 'user_created': 'str', 'date_modified': 'datetime', 'user_modified': 'str' } attribute_map = { 'theme_id': 'themeId', 'theme': 'theme', 'intensity_id': 'intensityId', 'fill_map': 'fillMap', 'id': 'id', 'date_created': 'dateCreated', 'user_created': 'userCreated', 'date_modified': 'dateModified', 'user_modified': 'userModified' } def __init__(self, theme_id=None, theme=None, intensity_id=None, fill_map=None, id=None, date_created=None, user_created=None, date_modified=None, user_modified=None): # noqa: E501 """ThemeBackgroundFillsDetails - a model defined in OpenAPI""" # noqa: E501 self._theme_id = None self._theme = None self._intensity_id = None self._fill_map = None self._id = None self._date_created = None self._user_created = None self._date_modified = None self._user_modified = None self.discriminator = None self.theme_id = theme_id if theme is not None: self.theme = theme if intensity_id is not None: self.intensity_id = intensity_id if fill_map is not None: self.fill_map = fill_map if id is not None: self.id = id if date_created is not None: self.date_created = date_created if user_created is not None: self.user_created = user_created if date_modified is not None: self.date_modified = date_modified if user_modified is not None: self.user_modified = user_modified @property def theme_id(self): """Gets the theme_id of this ThemeBackgroundFillsDetails. # noqa: E501 :return: The theme_id of this ThemeBackgroundFillsDetails. # noqa: E501 :rtype: str """ return self._theme_id @theme_id.setter def theme_id(self, theme_id): """Sets the theme_id of this ThemeBackgroundFillsDetails. :param theme_id: The theme_id of this ThemeBackgroundFillsDetails. # noqa: E501 :type: str """ self._theme_id = theme_id @property def theme(self): """Gets the theme of this ThemeBackgroundFillsDetails. # noqa: E501 :return: The theme of this ThemeBackgroundFillsDetails. # noqa: E501 :rtype: ThemeThemesDetails """ return self._theme @theme.setter def theme(self, theme): """Sets the theme of this ThemeBackgroundFillsDetails. :param theme: The theme of this ThemeBackgroundFillsDetails. # noqa: E501 :type: ThemeThemesDetails """ self._theme = theme @property def intensity_id(self): """Gets the intensity_id of this ThemeBackgroundFillsDetails. # noqa: E501 :return: The intensity_id of this ThemeBackgroundFillsDetails. # noqa: E501 :rtype: int """ return self._intensity_id @intensity_id.setter def intensity_id(self, intensity_id): """Sets the intensity_id of this ThemeBackgroundFillsDetails. :param intensity_id: The intensity_id of this ThemeBackgroundFillsDetails. # noqa: E501 :type: int """ self._intensity_id = intensity_id @property def fill_map(self): """Gets the fill_map of this ThemeBackgroundFillsDetails. # noqa: E501 :return: The fill_map of this ThemeBackgroundFillsDetails. # noqa: E501 :rtype: SharedFillMapDetails """ return self._fill_map @fill_map.setter def fill_map(self, fill_map): """Sets the fill_map of this ThemeBackgroundFillsDetails. :param fill_map: The fill_map of this ThemeBackgroundFillsDetails. # noqa: E501 :type: SharedFillMapDetails """ self._fill_map = fill_map @property def id(self): """Gets the id of this ThemeBackgroundFillsDetails. # noqa: E501 :return: The id of this ThemeBackgroundFillsDetails. # noqa: E501 :rtype: str """ return self._id @id.setter def id(self, id): """Sets the id of this ThemeBackgroundFillsDetails. :param id: The id of this ThemeBackgroundFillsDetails. # noqa: E501 :type: str """ self._id = id @property def date_created(self): """Gets the date_created of this ThemeBackgroundFillsDetails. # noqa: E501 :return: The date_created of this ThemeBackgroundFillsDetails. # noqa: E501 :rtype: datetime """ return self._date_created @date_created.setter def date_created(self, date_created): """Sets the date_created of this ThemeBackgroundFillsDetails. :param date_created: The date_created of this ThemeBackgroundFillsDetails. # noqa: E501 :type: datetime """ self._date_created = date_created @property def user_created(self): """Gets the user_created of this ThemeBackgroundFillsDetails. # noqa: E501 :return: The user_created of this ThemeBackgroundFillsDetails. # noqa: E501 :rtype: str """ return self._user_created @user_created.setter def user_created(self, user_created): """Sets the user_created of this ThemeBackgroundFillsDetails. :param user_created: The user_created of this ThemeBackgroundFillsDetails. # noqa: E501 :type: str """ self._user_created = user_created @property def date_modified(self): """Gets the date_modified of this ThemeBackgroundFillsDetails. # noqa: E501 :return: The date_modified of this ThemeBackgroundFillsDetails. # noqa: E501 :rtype: datetime """ return self._date_modified @date_modified.setter def date_modified(self, date_modified): """Sets the date_modified of this ThemeBackgroundFillsDetails. :param date_modified: The date_modified of this ThemeBackgroundFillsDetails. # noqa: E501 :type: datetime """ self._date_modified = date_modified @property def user_modified(self): """Gets the user_modified of this ThemeBackgroundFillsDetails. # noqa: E501 :return: The user_modified of this ThemeBackgroundFillsDetails. # noqa: E501 :rtype: str """ return self._user_modified @user_modified.setter def user_modified(self, user_modified): """Sets the user_modified of this ThemeBackgroundFillsDetails. :param user_modified: The user_modified of this ThemeBackgroundFillsDetails. # noqa: E501 :type: str """ self._user_modified = user_modified def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ThemeBackgroundFillsDetails): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
6b318fa6df2f38457877794dba277c5ba5cc3a84
f26af24795d913a4dd17f467052255d256c95032
/apps/price/models.py
168110b8818fd660a191212deac9e181f91eaf29
[]
no_license
minimedj/3dhero.ru
ccbd8d5d37fe149e6194457e66cfc338afe21bd6
5790f448fe03eecf79760c2e73154f0831abaf54
refs/heads/master
2021-01-22T21:08:00.632873
2016-03-28T13:11:26
2016-03-28T13:11:26
85,397,391
1
0
null
2017-03-18T11:49:44
2017-03-18T11:49:44
null
UTF-8
Python
false
false
618
py
# -*- coding: utf-8 -*- from apps.file.models import File from google.appengine.ext import ndb from model import Base from werkzeug.wrappers import cached_property class PriceFile(Base): order_id = ndb.IntegerProperty( default=0, verbose_name=u'Порядок сортиовки' ) file = ndb.KeyProperty(File) @cached_property def get_file(self): if self.file: return self.file.get() else: return None @classmethod def _pre_delete_hook(cls, key): obj = key.get() if obj and obj.file: obj.file.delete()
c3dbc32ffea4a9344505e038a381bfe1d443f5d0
3b0336b70c400cac212a9877a45393bb143327dc
/pymontecarlo/util/parameter.py
3d5bc3e4391f5a9678f8089827a5d72f11e7e76b
[]
no_license
silrichter/pymontecarlo
85c0966d4be776e44a51d0665cbd8f8240872a62
77b4b4ede221cea3f3177f9fe84ee89a2a85cb8b
refs/heads/master
2021-01-17T06:20:16.719448
2016-01-22T17:23:28
2016-01-22T17:23:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
23,673
py
#!/usr/bin/env python """ ================================================================================ :mod:`option` -- Building block for options ================================================================================ .. module:: option :synopsis: Building block for options .. inheritance-diagram:: pymontecarlo.options.option """ # Script information for the file. __author__ = "Philippe T. Pinard" __email__ = "[email protected]" __version__ = "0.1" __copyright__ = "Copyright (c) 2014 Philippe T. Pinard" __license__ = "GPL v3" # Standard library modules. import copy import operator from operator import itemgetter, attrgetter from collections import MutableMapping, MutableSet, MutableSequence # Third party modules. import numpy as np # Local modules. from pymontecarlo.util.multipleloop import combine # Globals and constants variables. class ParameterizedMetaclass(type): """ Meta class that automatically registered parameters defined in the class header. """ def __new__(cls, clsname, bases, methods): parameters = {} # Parameters from parents parents = [b for b in bases if isinstance(b, ParameterizedMetaclass)] for base in parents: parameters.update(base.__parameters__) # Attach attribute names to parameters for key, value in list(methods.items()): if not isinstance(value, Parameter): continue value._new(cls, clsname, bases, methods, key) parameters[value.name] = value # Add __parameters__ attribute methods['__parameters__'] = parameters return type.__new__(cls, clsname, bases, methods) class Parameter(object): def __init__(self, dtype=object, validators=None, fields=None, required=True, doc=None): self._dtype = np.dtype(dtype) if self._dtype.hasobject: self._dtype = np.dtype(dtype, metadata={'class': dtype}) if validators is None: validators = [] if not hasattr(validators, '__iter__'): validators = [validators] self._validators = validators if fields is not None and len(fields) == 0: raise ValueError('At least one field must be specified') if fields is None: fields = [] self._fields = fields self._required = required self.__doc__ = doc def __repr__(self): return '<%s(%s)>' % (self.__class__.__name__, self.name) def __get__(self, obj, objtype=None, simplify=True): if obj is None: return self if self.name not in obj.__dict__: raise AttributeError("No value for attribute '%s'" % self.name) values = obj.__dict__[self.name] if simplify: values = self._simplify_values(values) return values def __set__(self, obj, values): if not obj.__dict__.get(self.name, np.array([])).flags.writeable: raise ValueError("Frozen parameter") values = self._parse_values(values) self.validate(self._simplify_values(values)) obj.__dict__[self.name] = values def _new(self, cls, clsname, bases, methods, name): self._name = name def _parse_values(self, values): # Hack when values are numpy record if hasattr(values, 'tolist'): values = values.tolist() # Generate 2d array # One value per row, each column corresponds to a field values = np.array(values, dtype=self._dtype, ndmin=2) # Check dtype for object if self._dtype.hasobject: klass = self._dtype.metadata['class'] for value in values.flat: if not isinstance(value, klass): raise ValueError("Wrong type of values: '%s' != '%s'" % \ (value.__class__.__name__, klass.__name__)) # Reshape values to have one value per row try: values = values.reshape((-1, len(self._fields) or 1)) except: raise ValueError('Inconsistent number of values. ' + \ 'Expected %i number per value' % len(self._fields)) # Create recarray if fields are defined if self.has_field(): dtype = [(field, values.dtype) for field in self._fields] values = np.rec.fromarrays(values.transpose(), dtype) return values def _simplify_values(self, values): if values.size == 1: return next(values.flat) if not self.has_field(): return values[:, 0] else: if len(values) == 1: return values[0] else: return values def validate(self, values): if not hasattr(values, '__iter__'): values = [values] if self.is_required() and len(values) == 0: raise ValueError('%s is required and no values are provided' % self.name) for value in values: for validator in self._validators: validator(value) def freeze(self, obj): if self.name not in obj.__dict__: obj.__dict__[self.name] = np.array([]) obj.__dict__[self.name].flags.writeable = False def has_field(self): return len(self._fields) > 0 def set_required(self, state): self._required = state def is_required(self): return self._required @property def name(self): return self._name @property def dtype(self): return self._dtype class Alias(object): def __init__(self, alias, doc=None): """ Creates an alias of a parameter. If the value of the alias is modified, the value of the original parameter will also be modified. :arg alias: original parameter :arg doc: documentation """ self._alias = alias self.__doc__ = doc def __repr__(self): return '<%s(Alias of %s)>' % (self.__class__.__name__, self._alias.name) def __get__(self, obj, objtype=None, simplify=True): if obj is None: return self return self._alias.__get__(obj, objtype, simplify) def __set__(self, obj, value): self._alias.__set__(obj, value) def has_field(self): return self._alias.has_field() def is_required(self): return self._alias.is_required() def freeze(self, obj): self._alias.freeze(obj) # class FrozenParameter(Parameter): # # def __init__(self, klass_or_value, doc=None, args=(), kwargs=None): # """ # Creates a frozen parameter. # Either the frozen value of this parameter should be specified, or # a class which will be instantiated when the parameter is first # retrieved. # # :arg klass_or_value: frozen class or value # :arg doc: documentation # :arg args: arguments to be passed to the class during instantiation # :arg kwargs: keyword-arguments to be passed to the class # during instantiation # """ # Parameter.__init__(self, None, doc) # # self._value = klass_or_value # self._klass_args = args # if kwargs is None: kwargs = {} # self._klass_kwargs = kwargs # # def __get__(self, obj, objtype=None): # if obj is None: # return self # # if not self.name in obj.__dict__: # value = self._value # if inspect.isclass(value): # value = self._value(*self._klass_args, **self._klass_kwargs) # self._validate(value) # obj.__dict__[self.name] = {'value': value, 'frozen': True} # # return Parameter.__get__(self, obj, objtype=objtype) class FactorAlias(Alias): """ Multiplies the set value(s) by the specified factor before passing them to the alias parameter and divides the returned value(s) from the alias parameter by the specified factor. """ def __init__(self, alias, factor): Alias.__init__(self, alias) self._factor = factor def __get__(self, obj, objtype=None, simplify=True): if obj is None: return self values = Alias.__get__(self, obj, objtype, False) # Hack since record and recarray do not have ufunc if isinstance(values, np.rec.recarray): tmpvalues = values.view((self._alias._dtype, len(values.dtype.names))) / self._factor values = np.rec.fromarrays(tmpvalues.transpose(), values.dtype) else: values = values / self._factor if simplify: values = self._alias._simplify_values(values) return values def __set__(self, obj, values): values = np.array(values) * self._factor Alias.__set__(self, obj, values) # class AngleParameter(Parameter): """ Automatically defined two parameters to specified an angle value in radians or degrees:: class Object(object, metaclass=OptionMetaclass): angle = AngleParameter() obj.angle_rad = math.pi print obj.angle_deg # 180.0 """ def __init__(self, validators=None, fields=None, required=True, doc=None): Parameter.__init__(self, np.float, validators, fields, required, doc) def _new(self, cls, clsname, bases, methods, name): parameter = methods.pop(name) methods[name + '_rad'] = parameter methods[name + '_deg'] = FactorAlias(parameter, np.pi / 180.0) Parameter._new(self, cls, clsname, bases, methods, name + '_rad') class UnitParameter(Parameter): """ Automatically defined all possible unit prefix (M, k, d, etc.) for a quantity:: class Object(object, metaclass=OptionMetaclass): distance = UnitParameter('m') obj = Object() obj.distance_cm = 156 print obj.distance_m # 1.56 """ _PREFIXES = [('y', 1e-24), # yocto ('z', 1e-21), # zepto ('a', 1e-18), # atto ('f', 1e-15), # femto ('p', 1e-12), # pico ('n', 1e-9), # nano ('u', 1e-6), # micro ('m', 1e-3), # mili ('c', 1e-2), # centi ('d', 1e-1), # deci ('k', 1e3), # kilo ('M', 1e6), # mega ('G', 1e9), # giga ('T', 1e12), # tera ('P', 1e15), # peta ('E', 1e18), # exa ('Z', 1e21), # zetta ('Y', 1e24)] # yotta def __init__(self, unit, validators=None, fields=None, required=True, doc=None): Parameter.__init__(self, float, validators, fields, required, doc) self._unit = unit def _new(self, cls, clsname, bases, methods, name): parameter = methods.pop(name) methods[name + '_' + self.unit] = parameter for prefix, factor in self._PREFIXES: methods['%s_%s%s' % (name, prefix, self.unit)] = \ FactorAlias(parameter, factor) Parameter._new(self, cls, clsname, bases, methods, name + "_" + self.unit) @property def unit(self): return self._unit class TimeParameter(Parameter): """ Automatically defined all possible time prefix (s, min, hr, etc.) for a quantity:: class Object(object, metaclass=OptionMetaclass): duration = TimeParameter() obj = Object() obj.duration_s = 78 print obj.duration_min # 1.3 """ _factors = {'year': 31536000.0, 'month': 2628000.0, 'day': 86400.0, 'hr': 3600.0, 'min': 60.0} def __init__(self, validators=None, fields=None, required=True, doc=None): Parameter.__init__(self, np.float, validators, fields, required, doc) def _new(self, cls, clsname, bases, methods, name): parameter = methods.pop(name) methods[name + '_s'] = parameter for unit, factor in self._factors.items(): methods['%s_%s' % (name, unit)] = \ FactorAlias(parameter, factor) Parameter._new(self, cls, clsname, bases, methods, name + '_s') def range_validator(low=-np.infty, high=np.infty, inclusive=True): """ Validates if a value is between the low and high limits, inclusively. """ if inclusive: op1 = operator.lt op2 = operator.gt else: op1 = operator.le if not np.isinf(low) else operator.lt op2 = operator.ge if not np.isinf(high) else operator.gt op1str = '[' if op1.__name__ == 'lt' else ']' op2str = ']' if op2.__name__ == 'gt' else '[' def validator(value): if op1(value, low) or op2(value, high): raise ValueError('Value (%s) must be between %s%s, %s%s' % \ (value, op1str, low, high, op2str)) return validator def notempty_validator(): """ Validates if a value is not empty or not None. """ def validator(value): if value is None or not bool(value): raise ValueError('Empty value or None') return validator def enum_validator(constants): """ Validates that the value is within the specified constant values. :arg constants: constant values """ constants = frozenset(constants) def validator(value): if value not in constants: raise ValueError("Incorrect value(s), possible values: " + str(constants)) return validator class ParameterizedMutableMapping(MutableMapping): def __init__(self, *parameter_args, **parameter_kwargs): self._parameter_args = parameter_args self._parameter_kwargs = parameter_kwargs self.__parameters__ = {} def __repr__(self): valstr = ', '.join(['%s: %s' % item for item in self.items()]) return '<%s(%s)>' % (self.__class__.__name__, valstr) def __str__(self): return str(dict(self)) def __len__(self): return len(self.__parameters__) def __getitem__(self, key): if key not in self.__parameters__: raise KeyError(key) return self.__parameters__[key].__get__(self) def __delitem__(self, key): if key not in self.__parameters__: raise KeyError(key) del self.__dict__[key] del self.__parameters__[key] def __setitem__(self, key, value): try: parameter = self.__parameters__[key] except KeyError: parameter = Parameter(*self._parameter_args, **self._parameter_kwargs) parameter._name = key self.__parameters__[key] = parameter parameter.__set__(self, value) def __iter__(self): return iter(self.__parameters__) class ParameterizedMutableSet(MutableSet): def __init__(self, *parameter_args, **parameter_kwargs): self._parameter_args = parameter_args self._parameter_kwargs = parameter_kwargs self.__parameters__ = {} def __repr__(self): valstr = ', '.join(map(str, self)) return '<%s(%s)>' % (self.__class__.__name__, valstr) def __str__(self): return str(set(self)) def __len__(self): return len(self.__parameters__) def __iter__(self): for parameter in self.__parameters__.values(): yield parameter.__get__(self) def __contains__(self, item): return self._get_key(item) in self.__parameters__ # def __deepcopy__(self, memo): # Override # cls = self.__class__ # result = cls.__new__(cls) # memo[id(self)] = result # for k, v in self.__dict__.items(): # result.__dict__[k] = copy.deepcopy(v, memo) # # # Key must be update with new key from objects # for key, parameter in result.__parameters__.items(): # values = parameter.__get__(self, simplify=False) # newkey = self._get_key(values) # # del result.__parameters__[key] # parameter._name = newkey # result.__parameters__[newkey] = parameter # # del result.__dict__[key] # result.__dict__[newkey] = values # # return result def _get_key(self, item): return str(hash(item)) def add(self, item): key = self._get_key(item) try: parameter = self.__parameters__[key] except KeyError: parameter = Parameter(*self._parameter_args, **self._parameter_kwargs) parameter._name = key self.__parameters__[key] = parameter parameter.__set__(self, item) def discard(self, item): key = self._get_key(item) if key not in self.__parameters__: raise KeyError(key) del self.__parameters__[key] del self.__dict__[key] def update(self, items): for item in items: self.add(item) class ParameterizedMutableSequence(MutableSequence): def __init__(self, *parameter_args, **parameter_kwargs): self._parameter_args = parameter_args self._parameter_kwargs = parameter_kwargs self._parameter_keys = [] self.__parameters__ = {} def __repr__(self): valstr = ', '.join(map(str, self)) return '<%s(%s)>' % (self.__class__.__name__, valstr) def __str__(self): return str(list(self)) def __len__(self): return len(self.__parameters__) def __iter__(self): for key in self._parameter_keys: yield self.__parameters__[key].__get__(self) def __contains__(self, item): return self._get_key(item) in self._parameter_keys def __setitem__(self, index, item): oldkey = self._parameter_keys[index] parameter = self.__parameters__.pop(oldkey) newkey = self._get_key(item) self._parameter_keys[index] = newkey parameter.__set__(self, item) parameter._name = newkey self.__parameters__[newkey] = parameter def __getitem__(self, index): key = self._parameter_keys[index] return self.__parameters__[key].__get__(self) def __delitem__(self, index): key = self._parameter_keys.pop(index) del self._parameter_keys[key] def _get_key(self, item): return str(hash(item)) def insert(self, index, item): try: key = self._parameter_keys[index] except IndexError: key = self._get_key(item) parameter = Parameter(*self._parameter_args, **self._parameter_kwargs) parameter._name = key self.__parameters__[key] = parameter self._parameter_keys.insert(index, key) else: parameter = self.__parameters__[key] parameter.__set__(self, item) def iter_parameters(obj): """ Recursively iterates over all parameters defined in the specified object. The method yields: * the object contains the parameter * the name of the parameter * the parameter object :arg obj: object containing parameters """ for name, parameter in getattr(obj, '__parameters__', {}).items(): try: subobj = parameter.__get__(obj) # getattr(obj, name, None) except AttributeError: subobj = None if subobj is not None: yield from iter_parameters(subobj) yield obj, name, parameter def iter_values(obj): """ Recursively iterates over all values defined for all parameters in the specified object. The method yields: * the object from which the value belongs * the name of the parameter with this value * the value :arg obj: object containing parameters :arg keep_frozen: whether to return frozen values """ for baseobj, name, parameter in iter_parameters(obj): try: values = np.array(parameter.__get__(baseobj), ndmin=1) except AttributeError: # No value continue for value in values: if hasattr(value, '__parameters__'): continue yield baseobj, name, value def iter_getters(obj): params = () return _iter_getters(obj, params) def _getter(params): def _inside(obj): for param in params: try: obj = param.__get__(obj) except AttributeError: obj = None return obj return _inside def _iter_getters(obj, params): for name, parameter in obj.__parameters__.items(): newparams = params + (parameter,) try: subobj = parameter.__get__(obj) except AttributeError: continue if hasattr(subobj, '__parameters__'): yield from _iter_getters(subobj, newparams) else: name = '.'.join(map(attrgetter('name'), newparams)) yield name, _getter(newparams) def freeze(obj): """ Recursively freezes all parameters in the specified object. :arg obj: object containing parameters """ for baseobj, _, parameter in iter_parameters(obj): parameter.freeze(baseobj) class Expander(object): """ Expands an parameterized object based on all possible combinations of parameter/values. """ def expand(self, obj): """ Returns a list of the specified object where only one value is defined for each parameter. The function computes all possible combinations of parameter/values. :arg obj: object containing parameters """ obj = copy.deepcopy(obj) parameter_values, parameter_obj_ids = \ self._create_parameter_values_dict(obj) if not parameter_values: return [obj] combinations, parameter_objs, parameters = \ self._create_combinations(parameter_values, parameter_obj_ids) objs = self._create_objects(obj, combinations, parameter_objs, parameters) return objs def is_expandable(self, obj): parameter_values, _ = self._create_parameter_values_dict(obj) return bool(parameter_values) def _create_parameter_values_dict(self, obj): parameter_values = {} parameter_obj_ids = {} for parameter_obj, _name, parameter in iter_parameters(obj): try: values = parameter.__get__(parameter_obj, simplify=False) except AttributeError: # No value continue if values.size < 2: continue parameter_obj_id = id(parameter_obj) # Use id in case baseobj is not hashable parameter_values[(parameter_obj_id, parameter)] = values.tolist() parameter_obj_ids[parameter_obj_id] = parameter_obj return parameter_values, parameter_obj_ids def _create_combinations(self, parameter_values, parameter_obj_ids): combinations, names, _varied = combine(parameter_values) parameter_objs = list(map(parameter_obj_ids.get, map(itemgetter(0), names))) parameters = list(map(itemgetter(1), names)) return combinations, parameter_objs, parameters def _create_objects(self, baseobj, combinations, parameter_objs, parameters): objs = [] for combination in combinations: for parameter_obj, parameter, value in zip(parameter_objs, parameters, combination): parameter.__set__(parameter_obj, value) objs.append(copy.deepcopy(baseobj)) return objs _root_expander = Expander() expand = _root_expander.expand
[ "devnull@localhost" ]
devnull@localhost
529d1708aadd414f217458769cc1134d4712d1e0
67e317d203ba478f0dda6d9014b1daa03acee080
/nidm/workflows/ProcessExecution.py
6be6844f43ea864b6b151d88ff96358edf493717
[ "Apache-2.0" ]
permissive
tvanerp/PyNIDM
ec074dee9550dee91b21339c78105e8bf661cb6b
6a94875969c6bc5247b09d7d2793ed979b18ab3f
refs/heads/master
2020-07-25T16:54:03.905301
2019-09-13T23:56:18
2019-09-13T23:56:18
208,361,857
0
0
NOASSERTION
2019-09-13T23:23:06
2019-09-13T23:23:05
null
UTF-8
Python
false
false
1,235
py
import prov.model as pm from ..core import Constants from ..experiment.Core import Core from ..experiment.Core import getUUID class ProcessExecution(pm.ProvActivity, Core): """Class for NIDM-Workflow ProcessExecution Objects. Default constructor uses empty graph with namespaces added from NIDM/Scripts/Constants.py. Additional alternate constructors for user-supplied graphs and default namespaces (i.e. from Constants.py) and user-supplied graph and namespaces """ def __init__(self, parentDoc=None, attributes=None): """ Default contructor, creates document and adds Process activity to graph with optional attributes :param parentDoc: optional ProvDocument :param attributes: optional dictionary of attributes to add """ #set graph document if (parentDoc): self.graph = parentDoc else: self.graph = Constants.p_graph #execute default parent class constructor super(ProcessExecution, self).__init__(self.graph, pm.PROV[getUUID()], attributes) self.graph._add_record(self)
8aa4f99dfc142943b8b42bf343e240017caf68eb
40c6f8449f25d30b16510d6b6da3893e5eae3641
/shorts/urls.py
60cdd103cf7055a38d253710c377d68d0a5a68c5
[]
no_license
fergalmoran/shortio
b2188df44ebf08455ffd150fb6234dbff582f3c8
575dfd8438b37f383e1fc865baf5b7ad65e788ee
refs/heads/master
2020-03-29T13:03:02.682420
2014-04-17T22:10:41
2014-04-17T22:10:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
870
py
from django.conf.urls import patterns, url, include from shorts import views from .api import UserList, UserDetail from .api import UrlList, UrlDetail, UserUrlList user_urls = patterns( '', url(r'^/(?P<username>[0-9a-zA-Z_-]+)/urlss$', UserUrlList.as_view(), name='userurl-list'), url(r'^/(?P<username>[0-9a-zA-Z_-]+)$', UserDetail.as_view(), name='user-detail'), url(r'^$', UserList.as_view(), name='user-list') ) urls_urls = patterns( '', url(r'^/(?P<pk>\d+)$', UrlDetail.as_view(), name='urls-detail'), url(r'^$', UrlList.as_view(), name='urls-list') ) urlpatterns = patterns( '', url(r'^users', include(user_urls)), url(r'^urls', include(urls_urls)), url(r'^$', views.index, name='index'), url(r'^create', views.create, name='create'), url(r'^(?P<url_id>\d+)/$', views.detail, name='detail') )
628022e1b0203108c42330f824295c40095a5238
0b312224bd5a9e6b1dd92b78ccf58049b5d69b1b
/compounds/migrations/0022_auto_20180724_2343.py
f8ceb737b47e0233ffe92b7a56a38ba85a895549
[]
no_license
paulosjd/frags
e573cc9bc373a7e0847985478b5bf0bfca9b7153
4af65c7415dbbfa0a92f308bf93d5734c3583c5e
refs/heads/master
2020-03-17T00:58:15.530581
2018-12-12T23:48:15
2018-12-12T23:48:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
763
py
# Generated by Django 2.0.4 on 2018-07-24 21:43 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('compounds', '0021_userbioactive'), ] operations = [ migrations.AddField( model_name='compoundsource', name='user_bioactive', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='compounds.UserBioactive'), ), migrations.AlterField( model_name='compoundsource', name='user_odorant', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='compounds.UserOdorant'), ), ]
3cf3ebd056bcb46c29d75f30833eea9c8d1dddc6
33110fa5ad8c47e31401769086a985eea1a991c7
/mmsegmentation/tests/test_data/test_dataset.py
3ebd20e28ed6168d7746eb9e04e12c532d11f73c
[ "Apache-2.0" ]
permissive
UESTC-Liuxin/SKMT
32bc2781063de1da2a778659e6501762531b15a8
377bbe3e5d2777d6c3ccaae7a6c364bd9c85d651
refs/heads/master
2023-01-12T19:28:49.340298
2020-11-16T03:35:09
2020-11-16T03:35:09
283,365,017
1
0
null
null
null
null
UTF-8
Python
false
false
7,658
py
import os.path as osp from unittest.mock import MagicMock, patch import numpy as np import pytest from mmseg.core.evaluation import get_classes, get_palette from mmseg.datasets import (ADE20KDataset, CityscapesDataset, ConcatDataset, CustomDataset, PascalVOCDataset, RepeatDataset,USDataset,SkmtDataset) def test_classes(): assert list(CityscapesDataset.CLASSES) == get_classes('cityscapes') assert list(PascalVOCDataset.CLASSES) == get_classes('voc') == get_classes( 'pascal_voc') assert list( ADE20KDataset.CLASSES) == get_classes('ade') == get_classes('ade20k') with pytest.raises(ValueError): get_classes('unsupported') def test_palette(): assert CityscapesDataset.PALETTE == get_palette('cityscapes') assert PascalVOCDataset.PALETTE == get_palette('voc') == get_palette( 'pascal_voc') assert ADE20KDataset.PALETTE == get_palette('ade') == get_palette('ade20k') with pytest.raises(ValueError): get_palette('unsupported') @patch('mmseg.datasets.CustomDataset.load_annotations', MagicMock) @patch('mmseg.datasets.CustomDataset.__getitem__', MagicMock(side_effect=lambda idx: idx)) def test_dataset_wrapper(): # CustomDataset.load_annotations = MagicMock() # CustomDataset.__getitem__ = MagicMock(side_effect=lambda idx: idx) dataset_a = CustomDataset(img_dir=MagicMock(), pipeline=[]) len_a = 10 dataset_a.img_infos = MagicMock() dataset_a.img_infos.__len__.return_value = len_a dataset_b = CustomDataset(img_dir=MagicMock(), pipeline=[]) len_b = 20 dataset_b.img_infos = MagicMock() dataset_b.img_infos.__len__.return_value = len_b concat_dataset = ConcatDataset([dataset_a, dataset_b]) assert concat_dataset[5] == 5 assert concat_dataset[25] == 15 assert len(concat_dataset) == len(dataset_a) + len(dataset_b) repeat_dataset = RepeatDataset(dataset_a, 10) assert repeat_dataset[5] == 5 assert repeat_dataset[15] == 5 assert repeat_dataset[27] == 7 assert len(repeat_dataset) == 10 * len(dataset_a) def test_custom_dataset(): # img_norm_cfg = dict( # mean=[123.675, 116.28, 103.53], # std=[58.395, 57.12, 57.375], # to_rgb=True) # crop_size = (512, 1024) # train_pipeline = [ # dict(type='LoadImageFromFile'), # dict(type='LoadAnnotations'), # dict(type='Resize', img_scale=(128, 256), ratio_range=(0.5, 2.0)), # dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), # dict(type='RandomFlip', flip_ratio=0.5), # dict(type='PhotoMetricDistortion'), # dict(type='Normalize', **img_norm_cfg), # dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), # dict(type='DefaultFormatBundle'), # dict(type='Collect', keys=['img', 'gt_semantic_seg']), # ] # test_pipeline = [ # dict(type='LoadImageFromFile'), # dict( # type='MultiScaleFlipAug', # img_scale=(128, 256), # # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], # flip=False, # transforms=[ # dict(type='Resize', keep_ratio=True), # dict(type='RandomFlip'), # dict(type='Normalize', **img_norm_cfg), # dict(type='ImageToTensor', keys=['img']), # dict(type='Collect', keys=['img']), # ]) # ] # # # with img_dir and ann_dir # train_dataset = CustomDataset( # train_pipeline, # data_root=osp.join(osp.dirname(__file__), '../data/pseudo_dataset'), # img_dir='imgs/', # ann_dir='gts/', # img_suffix='img.jpg', # seg_map_suffix='gt.png') # assert len(train_dataset) == 5 # # # with img_dir, ann_dir, split # train_dataset = CustomDataset( # train_pipeline, # data_root=osp.join(osp.dirname(__file__), '../data/pseudo_dataset'), # img_dir='imgs/', # ann_dir='gts/', # img_suffix='img.jpg', # seg_map_suffix='gt.png', # split='splits/train.txt') # assert len(train_dataset) == 4 # # # no data_root # train_dataset = CustomDataset( # train_pipeline, # img_dir=osp.join(osp.dirname(__file__), '../data/pseudo_dataset/imgs'), # ann_dir=osp.join(osp.dirname(__file__), '../data/pseudo_dataset/gts'), # img_suffix='img.jpg', # seg_map_suffix='gt.png') # assert len(train_dataset) == 5 # # # with data_root but img_dir/ann_dir are abs path # train_dataset = CustomDataset( # train_pipeline, # data_root=osp.join(osp.dirname(__file__), '../data/pseudo_dataset'), # img_dir=osp.abspath( # osp.join(osp.dirname(__file__), '../data/pseudo_dataset/imgs')), # ann_dir=osp.abspath( # osp.join(osp.dirname(__file__), '../data/pseudo_dataset/gts')), # img_suffix='img.jpg', # seg_map_suffix='gt.png') # assert len(train_dataset) == 5 # # # test_mode=True # test_dataset = CustomDataset( # test_pipeline, # img_dir=osp.join(osp.dirname(__file__), '../data/pseudo_dataset/imgs'), # img_suffix='img.jpg', # test_mode=True) # assert len(test_dataset) == 5 # # # training data get # train_data = train_dataset[0] # assert isinstance(train_data, dict) # # # test data get # test_data = test_dataset[0] # assert isinstance(test_data, dict) # # # get gt seg map # gt_seg_maps = train_dataset.get_gt_seg_maps() # assert len(gt_seg_maps) == 5 # dataset settings data_root = '/media/Program/CV/Project/SKMT/mmsegmentation/data/VOCdevkit/Seg/skmt5' # data_root = '/media/Program/CV/Project/SKMT/mmsegmentation/data/VOCdevkit/VOC2012' # data_root = '/media/Program/CV/Project/SKMT/mmsegmentation/data/VOCdevkit/US_dataset' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) crop_size = (512, 512) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations'), dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', flip_ratio=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']), ] # with img_dir and ann_dir train_dataset = USDataset( split='ImageSets/Segmentation/train.txt', data_root=data_root, img_dir='JPEGImages', ann_dir='SegmentationClass', pipeline=train_pipeline ) # get gt seg map gt_seg_maps = train_dataset.get_gt_seg_maps() # evaluation pseudo_results = [] for gt_seg_map in gt_seg_maps: h, w = gt_seg_map.shape pseudo_results.append(np.random.randint(low=0, high=16, size=(h, w))) eval_results = train_dataset.evaluate(pseudo_results) assert isinstance(eval_results, dict) assert 'mIoU' in eval_results assert 'mAcc' in eval_results assert 'aAcc' in eval_results # evaluation with CLASSES train_dataset.CLASSES = tuple(['a'] * 16) eval_results = train_dataset.evaluate(pseudo_results) assert isinstance(eval_results, dict) assert 'mIoU' in eval_results assert 'mAcc' in eval_results assert 'aAcc' in eval_results test_custom_dataset()
3d513b4d49ec184a8c212f0e9e39bded5560e491
a9e60d0e5b3b5062a81da96be2d9c748a96ffca7
/configurations/i21-config/scripts/scannable/waveform_channel/BinpointWaveformChannelController.py
306459920ad78dce613a3566b8f00496e66b5507
[]
no_license
openGDA/gda-diamond
3736718596f47607335ada470d06148d7b57526e
bbb64dcfd581c30eddb210c647db5b5864b59166
refs/heads/master
2023-08-16T08:01:11.075927
2023-08-15T16:01:52
2023-08-15T16:01:52
121,757,699
4
1
null
null
null
null
UTF-8
Python
false
false
3,892
py
""" define a Binpoint class to control data collection during continuous move. Note that the Binpoint device is slaved from the ADC_ACQ_GRP, therefore there is no concept of exposure time. However collection time is required for data pulling stream timing in order to retrieve collected data in a more or less synchronised fashion between different channels. @author: Fajin Yuan @organization: Diamond Light Source Ltd @since: 25 August 2020 """ from gda.epics import CAClient from scannable.waveform_channel.WaveformChannelPollingInputStream import WaveformChannelPollingInputStream from org.slf4j import LoggerFactory import installation TIMEOUT = 5 class BinpointWaveformChannelController(object): def __init__(self, name, binpoint_root_pv): self.logger = LoggerFactory.getLogger("BinpointWaveformChannelController:%s" % name) self.verbose = False self.name = name #ADC_ACQ_GRP in EPICS doing the Binpoint reset comes after PGME waveform reset self.pv_reset = CAClient(binpoint_root_pv + 'BPTS:BINPOINTALL:RESET.PROC') self.binpoint_root_pv = binpoint_root_pv self.configure() self.exposure_time = 1 self.number_of_positions = 0 self.started = False self.hardware_trigger_provider=None self.stream=None def set_hardware_trigger_provider(self, hardwareTriggerProvider): self.hardware_trigger_provider=hardwareTriggerProvider def get_hardware_trigger_provider(self): return self.hardware_trigger_provider def configure(self): if self.verbose: self.logger.info("%s %s" % (self.name,'configure()...')) if installation.isLive(): self.pv_reset.configure() def erase(self): if self.verbose: self.logger.info("%s %s" % (self.name,'erase()...')) self.started = False if self.verbose: self.logger.info("%s %s" % (self.name,'...erase()')) def erase_and_start(self): if self.verbose: self.logger.info("%s %s" % (self.name,'erase_and_start()...')) if installation.isLive(): self.pv_reset.caput(1) self.started = True if self.verbose: self.logger.info("%s %s" % (self.name,'...erase_and_start()')) def stop(self): if self.verbose: self.logger.info("%s %s" % (self.name,'stop()...')) # Binpoint has no stop, since it is slaved from the ADC. if self.stream: self.stream.stop() self.started = False # added after I10-145 if self.verbose: self.logger.info("%s %s" % (self.name,'...stop()')) # Provide functions to configure WaveformChannelScannable def getChannelInputStream(self, channel_pv_suffix): # Channel suffix assumes trailing : self.stream = WaveformChannelPollingInputStream(self, channel_pv_suffix) # TODO: Investigate if the NLAST.B can be listened to, if so we can avoid using this polling class self.stream.verbose = self.verbose return self.stream def getChannelInputStreamFormat(self): return '%f' # Provide functions to configure WaveformChannelPollingInputStream def getChannelInputStreamType(self): return float def getChannelInputStreamCAClients(self, channel_pv_suffix): if installation.isLive(): pv_waveform = CAClient(self.binpoint_root_pv + channel_pv_suffix + 'BINPOINT') pv_count = CAClient(self.binpoint_root_pv + channel_pv_suffix + 'BINPOINT:NLAST.B') else: pv_waveform = [] pv_count = self.number_of_positions return pv_waveform, pv_count def getExposureTime(self): return self.exposure_time def getChannelInputStreamAcquiring(self): #return true when continuous move started return self.started and self.hardware_trigger_provider.continuousMovingStarted
6c8c3176d6fab6f847718ff9bf0b86f79b2e7b9f
1fe8d4133981e53e88abf633046060b56fae883e
/venv/lib/python3.8/site-packages/tensorflow/python/tpu/tpu_strategy_util.py
7c6396205ab5e127f88ed702d0b0bdcaa2a13c21
[]
no_license
Akira331/flask-cifar10
6c49db8485038731ce67d23f0972b9574746c7a7
283e7a2867c77d4b6aba7aea9013bf241d35d76c
refs/heads/master
2023-06-14T16:35:06.384755
2021-07-05T14:09:15
2021-07-05T14:09:15
382,864,970
0
0
null
null
null
null
UTF-8
Python
false
false
129
py
version https://git-lfs.github.com/spec/v1 oid sha256:3ea6cc5b52461659dafea8bd5247a3e94f163ecadc1e3f2e4dc1b668a5ca730e size 8774
2b0895d4db4313398af8c77ebcb6a061bcb4237a
73e07f0dc3d8b8625105c1528746c91e382567ed
/tests/__init__.py
79c17586ae066ff7d284c0c88d19930680dae095
[ "MIT" ]
permissive
econchick/attrs
d10114f0e838ef0b63aadf5055f3e4a482cd0850
6a1a740c46e3071296eaa7b64d0120913ddadade
refs/heads/master
2021-01-21T00:22:29.237367
2015-02-07T09:06:08
2015-02-07T09:06:08
30,468,084
0
0
null
2015-02-07T19:54:49
2015-02-07T19:54:49
null
UTF-8
Python
false
false
1,181
py
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function from attr import Attribute from attr._make import NOTHING, make_class def simple_class(no_cmp=True, no_repr=True, no_hash=True): """ Return a new simple class. """ return make_class( "C", ["a", "b"], no_cmp=no_cmp, no_repr=no_repr, no_hash=no_hash, no_init=False, ) def simple_attr(name, default=NOTHING, validator=None, no_repr=False, no_cmp=False, no_hash=False, no_init=False): """ Return an attribute with a name and no other bells and whistles. """ return Attribute( name=name, default=default, validator=validator, no_repr=no_repr, no_cmp=no_cmp, no_hash=no_hash, no_init=no_init ) class TestSimpleClass(object): """ Tests for the testing helper function `make_class`. """ def test_returns_class(self): """ Returns a class object. """ assert type is simple_class().__class__ def returns_distinct_classes(self): """ Each call returns a completely new class. """ assert simple_class() is not simple_class()
63abffd0d5f913554789ad7d511d77f209c117cc
6aa36fee3f4fcc9ac8f5509e51ea6bd8fc05b39b
/virtualenv-flask/lib/python2.7/site-packages/cybox/objects/win_task_object.py
6349e56f3ccb9792cf8b1ede28ff5f69ce019358
[]
no_license
syn-ack-zack/msg-stix-parser
8c46c4d897d579162f224360a077ac42f28ffe89
1edb7c3b6d60f76f24b91830a1ae7076d46ede14
refs/heads/master
2021-03-27T15:01:07.344754
2016-09-30T16:43:22
2016-09-30T16:43:22
69,684,161
0
0
null
null
null
null
UTF-8
Python
false
false
4,857
py
# Copyright (c) 2013, The MITRE Corporation. All rights reserved. # See LICENSE.txt for complete terms. import cybox import cybox.bindings.win_task_object as win_task_binding from cybox.common import (Base64Binary, DateTime, Duration, HashList, Long, ObjectProperties, String, UnsignedLong) from cybox.objects.email_message_object import EmailMessage class Trigger(cybox.Entity): _binding = win_task_binding _binding_class = win_task_binding.TriggerType _namespace = 'http://cybox.mitre.org/objects#WinTaskObject-2' trigger_begin = cybox.TypedField("Trigger_Begin", DateTime) trigger_delay = cybox.TypedField("Trigger_Delay", Duration) trigger_end = cybox.TypedField("Trigger_End", DateTime) trigger_frequency = cybox.TypedField("Trigger_Frequency", String) trigger_max_run_time = cybox.TypedField("Trigger_Max_Run_Time", Duration) trigger_session_change_type = cybox.TypedField( "Trigger_Session_Change_Type", String) #TODO: add Trigger_Type (see CybOXProject/schemas issue #76) class TriggerList(cybox.EntityList): _binding = win_task_binding _binding_class = win_task_binding.TriggerListType _binding_var = 'Trigger' _contained_type = Trigger _namespace = 'http://cybox.mitre.org/objects#WinTaskObject-2' class IComHandlerAction(cybox.Entity): _binding = win_task_binding _binding_class = win_task_binding.IComHandlerActionType _namespace = 'http://cybox.mitre.org/objects#WinTaskObject-2' com_data = cybox.TypedField("COM_Data", String) com_class_id = cybox.TypedField("COM_Class_ID", String) class IExecAction(cybox.Entity): _binding = win_task_binding _binding_class = win_task_binding.IExecActionType _namespace = 'http://cybox.mitre.org/objects#WinTaskObject-2' exec_arguments = cybox.TypedField("Exec_Arguments", String) exec_program_path = cybox.TypedField("Exec_Program_Path", String) exec_working_directory = cybox.TypedField("Exec_Working_Directory", String) exec_program_hashes = cybox.TypedField("Exec_Program_Hashes", HashList) class IShowMessageAction(cybox.Entity): _binding = win_task_binding _binding_class = win_task_binding.IShowMessageActionType _namespace = 'http://cybox.mitre.org/objects#WinTaskObject-2' show_message_body = cybox.TypedField("Show_Message_Body", String) show_message_title = cybox.TypedField("Show_Message_Title", String) class TaskAction(cybox.Entity): _binding = win_task_binding _binding_class = win_task_binding.TaskActionType _namespace = 'http://cybox.mitre.org/objects#WinTaskObject-2' action_type = cybox.TypedField("Action_Type", String) action_id = cybox.TypedField("Action_ID", String) iemailaction = cybox.TypedField("IEmailAction", EmailMessage) icomhandleraction = cybox.TypedField("IComHandlerAction", IComHandlerAction) iexecaction = cybox.TypedField("IExecAction", IExecAction) ishowmessageaction = cybox.TypedField("IShowMessageAction", IShowMessageAction) class TaskActionList(cybox.EntityList): _binding = win_task_binding _binding_class = win_task_binding.TaskActionListType _binding_var = 'Action' _contained_type = TaskAction _namespace = 'http://cybox.mitre.org/objects#WinTaskObject-2' class WinTask(ObjectProperties): _binding = win_task_binding _binding_class = win_task_binding.WindowsTaskObjectType _namespace = 'http://cybox.mitre.org/objects#WinTaskObject-2' _XSI_NS = "WinTaskObj" _XSI_TYPE = "WindowsTaskObjectType" status = cybox.TypedField("Status", String) priority = cybox.TypedField("Priority", String) name = cybox.TypedField("Name", String) application_name = cybox.TypedField("Application_Name", String) parameters = cybox.TypedField("Parameters", String) flags = cybox.TypedField("Flags", String) account_name = cybox.TypedField("Account_Name", String) account_run_level = cybox.TypedField("Account_Run_Level", String) account_logon_type = cybox.TypedField("Account_Logon_Type", String) creator = cybox.TypedField("Creator", String) creation_date = cybox.TypedField("Creation_Date", DateTime) most_recent_run_time = cybox.TypedField("Most_Recent_Run_Time", DateTime) exit_code = cybox.TypedField("Exit_Code", Long) max_run_time = cybox.TypedField("Max_Run_Time", UnsignedLong) next_run_time = cybox.TypedField("Next_Run_Time", DateTime) action_list = cybox.TypedField("Action_List", TaskActionList) trigger_list = cybox.TypedField("Trigger_List", TriggerList) comment = cybox.TypedField("Comment", String) working_directory = cybox.TypedField("Working_Directory", String) work_item_data = cybox.TypedField("Work_Item_Data", Base64Binary)
6a89ebca4f0ef920b63c07807d9ea8970a5dca97
7ef2308e51d1d5700fbd092177ee15e2a03ebdd8
/DisasterCrawler/ZHNewsCrawlerPostgreSql/gooseker/gooseeker.py
95f8c3f6537f0b93bfdd207b0375084375a77bfa
[]
no_license
STAWZW/STAWZW1.0
741002eb35c2883e5739fee8d14ff430e9622c01
a835ac27aba17f968116e321bd201b26c9fb3578
refs/heads/master
2020-07-21T20:21:59.753992
2019-09-26T09:21:28
2019-09-26T09:21:28
206,965,347
2
0
null
null
null
null
UTF-8
Python
false
false
1,601
py
#!/usr/bin/python # -*- coding: utf-8 -*- # 模块名: gooseeker # 类名: gsExtractor # Version: 2.0 # 说明: html内容提取器 # 功能: 使用xslt作为模板,快速提取HTML DOM中的内容。 # released by 集搜客(http://www.gooseeker.com) on May 18, 2016 # github: https://github.com/FullerHua/jisou/core/gooseeker.py from urllib import request from urllib.parse import quote from lxml import etree import time class GsExtractor(object): def _init_(self): self.xslt = "" # 从文件读取xslt def setXsltFromFile(self , xsltFilePath): file = open(xsltFilePath , 'r' , encoding='UTF-8') try: self.xslt = file.read() finally: file.close() # 从字符串获得xslt def setXsltFromMem(self , xsltStr): self.xslt = xsltStr # 通过GooSeeker API接口获得xslt def setXsltFromAPI(self , APIKey , theme, middle=None, bname=None): apiurl = "http://www.gooseeker.com/api/getextractor?key="+ APIKey +"&theme="+quote(theme) if (middle): apiurl = apiurl + "&middle="+quote(middle) if (bname): apiurl = apiurl + "&bname="+quote(bname) apiconn = request.urlopen(apiurl) self.xslt = apiconn.read() print(apiurl) # 返回当前xslt def getXslt(self): return self.xslt # 提取方法,入参是一个HTML DOM对象,返回是提取结果 def extract(self , html): xslt_root = etree.XML(self.xslt) transform = etree.XSLT(xslt_root) result_tree = transform(html) return result_tree
b7278ef00ee2684f7f141252dd31fd099d9161ac
a6894d17fdbceb56d4364f0e279d03b16a181396
/working-env/lib/python2.5/TurboGears-1.0.2.2-py2.5.egg/turbogears/i18n/data/el_GR.py
195ec513132505f69da61123e521240105357ad6
[]
no_license
thraxil/gtreed
c1c5a19178c1f50ff5e61887b13ff7b004da1d25
ca228848364edb204b15a7411fd6192379781c78
refs/heads/master
2020-04-18T03:02:15.468044
2008-12-10T20:02:12
2008-12-10T20:02:12
88,388
1
0
null
null
null
null
UTF-8
Python
false
false
22,155
py
# Formatting configuration for locale el_GR languages={'el': u'\u0395\u03bb\u03bb\u03b7\u03bd\u03b9\u03ba\u03ac', 'en': u'\u0391\u03b3\u03b3\u03bb\u03b9\u03ba\u03ac', 'zh': u'\u039a\u03b9\u03bd\u03b5\u03b6\u03b9\u03ba\u03ac', 'ca': u'\u039a\u03b1\u03c4\u03b1\u03bb\u03b1\u03bd\u03b9\u03ba\u03ac', 'it': u'\u0399\u03c4\u03b1\u03bb\u03b9\u03ba\u03ac', 'ar': u'\u0391\u03c1\u03b1\u03b2\u03b9\u03ba\u03ac', 'cs': u'\u03a4\u03c3\u03b5\u03c7\u03b9\u03ba\u03ac', 'et': u'\u0395\u03c3\u03b8\u03bf\u03bd\u03b9\u03ba\u03ac', 'es': u'\u0399\u03c3\u03c0\u03b1\u03bd\u03b9\u03ba\u03ac', 'ru': u'\u03a1\u03c9\u03c3\u03b9\u03ba\u03ac', 'nl': u'\u039f\u03bb\u03bb\u03b1\u03bd\u03b4\u03b9\u03ba\u03ac', 'pt': u'\u03a0\u03bf\u03c1\u03c4\u03bf\u03b3\u03b1\u03bb\u03b9\u03ba\u03ac', 'no': u'\u039d\u03bf\u03c1\u03b2\u03b7\u03b3\u03b9\u03ba\u03ac', 'tr': u'\u03a4\u03bf\u03c5\u03c1\u03ba\u03b9\u03ba\u03ac', 'lv': u'\u039b\u03b5\u03c4\u03bf\u03bd\u03b9\u03ba\u03ac', 'lt': u'\u039b\u03b9\u03b8\u03bf\u03c5\u03b1\u03bd\u03b9\u03ba\u03ac', 'ro': u'\u03a1\u03bf\u03c5\u03bc\u03b1\u03bd\u03b9\u03ba\u03ac', 'pl': u'\u03a0\u03bf\u03bb\u03c9\u03bd\u03b9\u03ba\u03ac', 'fr': u'\u0393\u03b1\u03bb\u03bb\u03b9\u03ba\u03ac', 'bg': u'\u0392\u03bf\u03c5\u03bb\u03b3\u03b1\u03c1\u03b9\u03ba\u03ac', 'hr': u'\u039a\u03c1\u03bf\u03b1\u03c4\u03b9\u03ba\u03ac', 'de': u'\u0393\u03b5\u03c1\u03bc\u03b1\u03bd\u03b9\u03ba\u03ac', 'da': u'\u0394\u03b1\u03bd\u03b9\u03ba\u03ac', 'fi': u'\u03a6\u03b9\u03bd\u03bb\u03b1\u03bd\u03b4\u03b9\u03ba\u03ac', 'hu': u'\u039f\u03c5\u03b3\u03b3\u03c1\u03b9\u03ba\u03ac', 'ja': u'\u0399\u03b1\u03c0\u03c9\u03bd\u03b9\u03ba\u03ac', 'he': u'\u0395\u03b2\u03c1\u03b1\u03ca\u03ba\u03ac', 'sr': u'\u03a3\u03b5\u03c1\u03b2\u03b9\u03ba\u03ac', 'sq': u'\u0391\u03bb\u03b2\u03b1\u03bd\u03b9\u03ba\u03ac', 'ko': u'\u039a\u03bf\u03c1\u03b5\u03b1\u03c4\u03b9\u03ba\u03ac', 'sv': u'\u03a3\u03bf\u03c5\u03b7\u03b4\u03b9\u03ba\u03ac', 'mk': u'\u03a3\u03bb\u03b1\u03b2\u03bf\u03bc\u03b1\u03ba\u03b5\u03b4\u03bf\u03bd\u03b9\u03ba\u03ac', 'sk': u'\u03a3\u03bb\u03bf\u03b2\u03b1\u03ba\u03b9\u03ba\u03ac', 'sl': u'\u03a3\u03bb\u03bf\u03b2\u03b5\u03bd\u03b9\u03ba\u03ac'} countries={'BD': u'\u039c\u03c0\u03b1\u03bd\u03b3\u03ba\u03bb\u03b1\u03bd\u03c4\u03ad\u03c2', 'BE': u'\u0392\u03ad\u03bb\u03b3\u03b9\u03bf', 'BF': u'\u039c\u03c0\u03bf\u03c5\u03c1\u03ba\u03af\u03bd\u03b1 \u03a6\u03ac\u03c3\u03bf', 'BG': u'\u0392\u03bf\u03c5\u03bb\u03b3\u03b1\u03c1\u03af\u03b1', 'BA': u'\u0392\u03bf\u03c3\u03bd\u03af\u03b1 - \u0395\u03c1\u03b6\u03b5\u03b3\u03bf\u03b2\u03af\u03bd\u03b7', 'BB': u'\u039c\u03c0\u03b1\u03c1\u03bc\u03c0\u03ac\u03bd\u03c4\u03bf\u03c2', 'WF': u'\u039d\u03ae\u03c3\u03bf\u03b9 \u039f\u03c5\u03b1\u03bb\u03bb\u03af\u03c2 \u03ba\u03b1\u03b9 \u03a6\u03bf\u03c5\u03c4\u03bf\u03c5\u03bd\u03ac', 'BM': u'\u0392\u03b5\u03c1\u03bc\u03bf\u03cd\u03b4\u03b5\u03c2', 'BN': u'\u039c\u03c0\u03c1\u03bf\u03c5\u03bd\u03ad\u03b9 \u039d\u03c4\u03b1\u03c1\u03bf\u03c5\u03c3\u03b1\u03bb\u03ac\u03bc', 'BO': u'\u0392\u03bf\u03bb\u03b9\u03b2\u03af\u03b1', 'BH': u'\u039c\u03c0\u03b1\u03c7\u03c1\u03ad\u03b9\u03bd', 'BI': u'\u039c\u03c0\u03bf\u03c5\u03c1\u03bf\u03cd\u03bd\u03c4\u03b9', 'BJ': u'\u039c\u03c0\u03ad\u03bd\u03b9\u03bd', 'BT': u'\u039c\u03c0\u03bf\u03c5\u03c4\u03ac\u03bd', 'JM': u'\u03a4\u03b6\u03b1\u03bc\u03ac\u03b9\u03ba\u03b1', 'BV': u'\u039d\u03ae\u03c3\u03bf\u03c2 \u039c\u03c0\u03bf\u03c5\u03b2\u03ad', 'BW': u'\u039c\u03c0\u03bf\u03c4\u03c3\u03bf\u03c5\u03ac\u03bd\u03b1', 'WS': u'\u03a3\u03b1\u03bc\u03cc\u03b1', 'BR': u'\u0392\u03c1\u03b1\u03b6\u03b9\u03bb\u03af\u03b1', 'BS': u'\u039c\u03c0\u03b1\u03c7\u03ac\u03bc\u03b5\u03c2', 'BY': u'\u039b\u03b5\u03c5\u03ba\u03bf\u03c1\u03c9\u03c3\u03af\u03b1', 'BZ': u'\u039c\u03c0\u03b5\u03bb\u03af\u03b6', 'RU': u'\u03a1\u03c9\u03c3\u03af\u03b1', 'RW': u'\u03a1\u03bf\u03c5\u03ac\u03bd\u03c4\u03b1', 'TL': u'\u0391\u03bd\u03b1\u03c4\u03bf\u03bb\u03b9\u03ba\u03cc \u03a4\u03b9\u03bc\u03cc\u03c1', 'RE': u'\u03a1\u03b5\u03cb\u03bd\u03b9\u03cc\u03bd', 'TM': u'\u03a4\u03bf\u03c5\u03c1\u03ba\u03bc\u03b5\u03bd\u03b9\u03c3\u03c4\u03ac\u03bd', 'TJ': u'\u03a4\u03b1\u03c4\u03b6\u03b9\u03ba\u03b9\u03c3\u03c4\u03ac\u03bd', 'RO': u'\u03a1\u03bf\u03c5\u03bc\u03b1\u03bd\u03af\u03b1', 'TK': u'\u03a4\u03bf\u03ba\u03b5\u03bb\u03ac\u03bf\u03c5', 'GW': u'\u0393\u03bf\u03c5\u03b9\u03bd\u03ad\u03b1-\u039c\u03c0\u03b9\u03c3\u03ac\u03bf\u03c5', 'GU': u'\u0393\u03ba\u03bf\u03c5\u03ac\u03bc', 'GT': u'\u0393\u03bf\u03c5\u03b1\u03c4\u03b5\u03bc\u03ac\u03bb\u03b1', 'GS': u'\u039d\u03cc\u03c4\u03b9\u03b1 \u0393\u03b5\u03c9\u03c1\u03b3\u03af\u03b1 \u03ba\u03b1\u03b9 \u039d\u03ae\u03c3\u03bf\u03b9 \u039d\u03cc\u03c4\u03b9\u03b5\u03c2 \u03a3\u03ac\u03bd\u03c4\u03bf\u03c5\u03b9\u03c4\u03c2', 'GR': u'\u0395\u03bb\u03bb\u03ac\u03b4\u03b1', 'GQ': u'\u0399\u03c3\u03b7\u03bc\u03b5\u03c1\u03b9\u03bd\u03ae \u0393\u03bf\u03c5\u03b9\u03bd\u03ad\u03b1', 'GP': u'\u0393\u03bf\u03c5\u03b1\u03b4\u03b5\u03bb\u03bf\u03cd\u03c0\u03b7', 'JP': u'\u0399\u03b1\u03c0\u03c9\u03bd\u03af\u03b1', 'GY': u'\u0393\u03bf\u03c5\u03b9\u03ac\u03bd\u03b1', 'GF': u'\u0393\u03b1\u03bb\u03bb\u03b9\u03ba\u03ae \u0393\u03bf\u03c5\u03b9\u03ac\u03bd\u03b1', 'GE': u'\u0393\u03b5\u03c9\u03c1\u03b3\u03af\u03b1', 'GD': u'\u0393\u03c1\u03b5\u03bd\u03ac\u03b4\u03b1', 'GB': u'\u0397\u03bd\u03c9\u03bc\u03ad\u03bd\u03bf \u0392\u03b1\u03c3\u03af\u03bb\u03b5\u03b9\u03bf', 'GA': u'\u0393\u03ba\u03b1\u03bc\u03c0\u03cc\u03bd', 'SV': u'\u0395\u03bb \u03a3\u03b1\u03bb\u03b2\u03b1\u03b4\u03cc\u03c1', 'GN': u'\u0393\u03bf\u03c5\u03b9\u03bd\u03ad\u03b1', 'GM': u'\u0393\u03ba\u03ac\u03bc\u03c0\u03b9\u03b1', 'GL': u'\u0393\u03c1\u03bf\u03b9\u03bb\u03b1\u03bd\u03b4\u03af\u03b1', 'GI': u'\u0393\u03b9\u03b2\u03c1\u03b1\u03bb\u03c4\u03ac\u03c1', 'GH': u'\u0393\u03ba\u03ac\u03bd\u03b1', 'OM': u'\u039f\u03bc\u03ac\u03bd', 'TN': u'\u03a4\u03c5\u03bd\u03b7\u03c3\u03af\u03b1', 'JO': u'\u0399\u03bf\u03c1\u03b4\u03b1\u03bd\u03af\u03b1', 'SP': u'\u03a3\u03b5\u03c1\u03b2\u03af\u03b1', 'HR': u'\u039a\u03c1\u03bf\u03b1\u03c4\u03af\u03b1', 'HT': u'\u0391\u03ca\u03c4\u03ae', 'HU': u'\u039f\u03c5\u03b3\u03b3\u03b1\u03c1\u03af\u03b1', 'HK': u'\u03a7\u03bf\u03bd\u03b3\u03ba \u039a\u03bf\u03bd\u03b3\u03ba, \u0395\u03b9\u03b4\u03b9\u03ba\u03ae \u0394\u03b9\u03bf\u03b9\u03ba\u03b7\u03c4\u03b9\u03ba\u03ae \u03a0\u03b5\u03c1\u03b9\u03c6\u03ad\u03c1\u03b5\u03b9\u03b1 \u03c4\u03b7\u03c2 \u039a\u03af\u03bd\u03b1\u03c2', 'HN': u'\u039f\u03bd\u03b4\u03bf\u03cd\u03c1\u03b1', 'HM': u'\u039d\u03ae\u03c3\u03bf\u03b9 \u03a7\u03b5\u03c1\u03bd\u03c4 \u03ba\u03b1\u03b9 \u039c\u03b1\u03ba\u03bd\u03c4\u03cc\u03bd\u03b1\u03bb\u03bd\u03c4', 'VE': u'\u0392\u03b5\u03bd\u03b5\u03b6\u03bf\u03c5\u03ad\u03bb\u03b1', 'PR': u'\u03a0\u03bf\u03c5\u03ad\u03c1\u03c4\u03bf \u03a1\u03af\u03ba\u03bf', 'PS': u'\u03a0\u03b1\u03bb\u03b1\u03b9\u03c3\u03c4\u03b9\u03bd\u03b9\u03b1\u03ba\u03ac \u0395\u03b4\u03ac\u03c6\u03b7', 'PW': u'\u03a0\u03b1\u03bb\u03ac\u03bf\u03c5', 'PT': u'\u03a0\u03bf\u03c1\u03c4\u03bf\u03b3\u03b1\u03bb\u03af\u03b1', 'SJ': u'\u039d\u03ae\u03c3\u03bf\u03b9 \u03a3\u03b2\u03ac\u03bb\u03bc\u03c0\u03b1\u03c1 \u03ba\u03b1\u03b9 \u0393\u03b9\u03b1\u03bd \u039c\u03b1\u03b3\u03b9\u03ad\u03bd', 'PY': u'\u03a0\u03b1\u03c1\u03b1\u03b3\u03bf\u03c5\u03ac\u03b7', 'IQ': u'\u0399\u03c1\u03ac\u03ba', 'PA': u'\u03a0\u03b1\u03bd\u03b1\u03bc\u03ac\u03c2', 'PF': u'\u0393\u03b1\u03bb\u03bb\u03b9\u03ba\u03ae \u03a0\u03bf\u03bb\u03c5\u03bd\u03b7\u03c3\u03af\u03b1', 'PG': u'\u03a0\u03b1\u03c0\u03bf\u03cd\u03b1 - \u039d\u03ad\u03b1 \u0393\u03bf\u03c5\u03b9\u03bd\u03ad\u03b1', 'PE': u'\u03a0\u03b5\u03c1\u03bf\u03cd', 'PK': u'\u03a0\u03b1\u03ba\u03b9\u03c3\u03c4\u03ac\u03bd', 'PH': u'\u03a6\u03b9\u03bb\u03b9\u03c0\u03c0\u03af\u03bd\u03b5\u03c2', 'PN': u'\u03a0\u03af\u03c4\u03ba\u03b5\u03c1\u03bd', 'PL': u'\u03a0\u03bf\u03bb\u03c9\u03bd\u03af\u03b1', 'PM': u'\u03a3\u03b1\u03b9\u03bd\u03c4 \u03a0\u03b9\u03ad\u03c1 \u03ba\u03b1\u03b9 \u039c\u03b9\u03ba\u03b5\u03bb\u03cc\u03bd', 'ZM': u'\u0396\u03ac\u03bc\u03c0\u03b9\u03b1', 'EH': u'\u0394\u03c5\u03c4\u03b9\u03ba\u03ae \u03a3\u03b1\u03c7\u03ac\u03c1\u03b1', 'EE': u'\u0395\u03c3\u03b8\u03bf\u03bd\u03af\u03b1', 'EG': u'\u0391\u03af\u03b3\u03c5\u03c0\u03c4\u03bf\u03c2', 'ZA': u'\u039d\u03cc\u03c4\u03b9\u03b1 \u0391\u03c6\u03c1\u03b9\u03ba\u03ae', 'EC': u'\u0399\u03c3\u03b7\u03bc\u03b5\u03c1\u03b9\u03bd\u03cc\u03c2', 'IT': u'\u0399\u03c4\u03b1\u03bb\u03af\u03b1', 'VN': u'\u0392\u03b9\u03b5\u03c4\u03bd\u03ac\u03bc', 'SB': u'\u039d\u03ae\u03c3\u03bf\u03b9 \u03a3\u03bf\u03bb\u03bf\u03bc\u03ce\u03bd\u03c4\u03bf\u03c2', 'ET': u'\u0391\u03b9\u03b8\u03b9\u03bf\u03c0\u03af\u03b1', 'SO': u'\u03a3\u03bf\u03bc\u03b1\u03bb\u03af\u03b1', 'ZW': u'\u0396\u03b9\u03bc\u03c0\u03ac\u03bc\u03c0\u03bf\u03c5\u03b5', 'SA': u'\u03a3\u03b1\u03bf\u03c5\u03b4\u03b9\u03ba\u03ae \u0391\u03c1\u03b1\u03b2\u03af\u03b1', 'ES': u'\u0399\u03c3\u03c0\u03b1\u03bd\u03af\u03b1', 'ER': u'\u0395\u03c1\u03c5\u03b8\u03c1\u03b1\u03af\u03b1', 'MD': u'\u039c\u03bf\u03bb\u03b4\u03b1\u03b2\u03af\u03b1, \u0394\u03b7\u03bc\u03bf\u03ba\u03c1\u03b1\u03c4\u03af\u03b1 \u03c4\u03b7\u03c2', 'MG': u'\u039c\u03b1\u03b4\u03b1\u03b3\u03b1\u03c3\u03ba\u03ac\u03c1\u03b7', 'MA': u'\u039c\u03b1\u03c1\u03cc\u03ba\u03bf', 'MC': u'\u039c\u03bf\u03bd\u03b1\u03ba\u03cc', 'UZ': u'\u039f\u03c5\u03b6\u03bc\u03c0\u03b5\u03ba\u03b9\u03c3\u03c4\u03ac\u03bd', 'MM': u'\u039c\u03b9\u03b1\u03bd\u03bc\u03ac\u03c1', 'ML': u'\u039c\u03ac\u03bb\u03b9', 'MO': u'\u039c\u03b1\u03ba\u03ac\u03bf, \u0395\u03b9\u03b4\u03b9\u03ba\u03ae \u0394\u03b9\u03bf\u03b9\u03ba\u03b7\u03c4\u03b9\u03ba\u03ae \u03a0\u03b5\u03c1\u03b9\u03c6\u03ad\u03c1\u03b5\u03b9\u03b1 \u03c4\u03b7\u03c2 \u039a\u03af\u03bd\u03b1\u03c2', 'MN': u'\u039c\u03bf\u03b3\u03b3\u03bf\u03bb\u03af\u03b1', 'MH': u'\u039d\u03ae\u03c3\u03bf\u03b9 \u039c\u03ac\u03c1\u03c3\u03b1\u03bb', 'MK': u'\u03a0\u0393\u0394 \u039c\u03b1\u03ba\u03b5\u03b4\u03bf\u03bd\u03af\u03b1\u03c2', 'MU': u'\u039c\u03b1\u03c5\u03c1\u03af\u03ba\u03b9\u03bf\u03c2', 'MT': u'\u039c\u03ac\u03bb\u03c4\u03b1', 'MW': u'\u039c\u03b1\u03bb\u03ac\u03bf\u03c5\u03b9', 'MV': u'\u039c\u03b1\u03bb\u03b4\u03af\u03b2\u03b5\u03c2', 'MQ': u'\u039c\u03b1\u03c1\u03c4\u03b9\u03bd\u03af\u03ba\u03b1', 'MP': u'\u039d\u03ae\u03c3\u03bf\u03b9 \u0392\u03cc\u03c1\u03b5\u03b9\u03b5\u03c2 \u039c\u03b1\u03c1\u03b9\u03ac\u03bd\u03b5\u03c2', 'MS': u'\u039c\u03bf\u03bd\u03c3\u03b5\u03c1\u03ac\u03c4', 'MR': u'\u039c\u03b1\u03c5\u03c1\u03b9\u03c4\u03b1\u03bd\u03af\u03b1', 'UG': u'\u039f\u03c5\u03b3\u03ba\u03ac\u03bd\u03c4\u03b1', 'MY': u'\u039c\u03b1\u03bb\u03b1\u03b9\u03c3\u03af\u03b1', 'MX': u'\u039c\u03b5\u03be\u03b9\u03ba\u03cc', 'IL': u'\u0399\u03c3\u03c1\u03b1\u03ae\u03bb', 'FR': u'\u0393\u03b1\u03bb\u03bb\u03af\u03b1', 'IO': u'\u0392\u03c1\u03b5\u03c4\u03b1\u03bd\u03b9\u03ba\u03ac \u0388\u03b4\u03ac\u03c6\u03b7 \u0399\u03bd\u03b4\u03b9\u03ba\u03bf\u03cd \u03a9\u03ba\u03b5\u03b1\u03bd\u03bf\u03cd', 'SH': u'\u0391\u03b3\u03af\u03b1 \u0395\u03bb\u03ad\u03bd\u03b7', 'FI': u'\u03a6\u03b9\u03bd\u03bb\u03b1\u03bd\u03b4\u03af\u03b1', 'FJ': u'\u03a6\u03af\u03c4\u03b6\u03b9', 'FK': u'\u039d\u03ae\u03c3\u03bf\u03b9 \u03a6\u03ce\u03ba\u03bb\u03b1\u03bd\u03c4', 'FM': u'\u039c\u03b9\u03ba\u03c1\u03bf\u03bd\u03b7\u03c3\u03af\u03b1, \u039f\u03bc\u03cc\u03c3\u03c0\u03bf\u03bd\u03b4\u03b5\u03c2 \u03a0\u03bf\u03bb\u03b9\u03c4\u03b5\u03af\u03b5\u03c2 \u03c4\u03b7\u03c2', 'FO': u'\u039d\u03ae\u03c3\u03bf\u03b9 \u03a6\u03b5\u03c1\u03cc\u03b5\u03c2', 'NI': u'\u039d\u03b9\u03ba\u03b1\u03c1\u03ac\u03b3\u03bf\u03c5\u03b1', 'NL': u'\u039f\u03bb\u03bb\u03b1\u03bd\u03b4\u03af\u03b1', 'NO': u'\u039d\u03bf\u03c1\u03b2\u03b7\u03b3\u03af\u03b1', 'NA': u'\u039d\u03b1\u03bc\u03af\u03bc\u03c0\u03b9\u03b1', 'VU': u'\u0392\u03b1\u03bd\u03bf\u03c5\u03ac\u03c4\u03bf\u03c5', 'NC': u'\u039d\u03ad\u03b1 \u039a\u03b1\u03bb\u03b7\u03b4\u03bf\u03bd\u03af\u03b1', 'NE': u'\u039d\u03af\u03b3\u03b7\u03c1', 'NF': u'\u039d\u03ae\u03c3\u03bf\u03c2 \u039d\u03cc\u03c1\u03c6\u03bf\u03bb\u03ba', 'NG': u'\u039d\u03b9\u03b3\u03b7\u03c1\u03af\u03b1', 'NZ': u'\u039d\u03ad\u03b1 \u0396\u03b7\u03bb\u03b1\u03bd\u03b4\u03af\u03b1', 'NP': u'\u039d\u03b5\u03c0\u03ac\u03bb', 'NR': u'\u039d\u03b1\u03bf\u03cd\u03c1\u03bf\u03c5', 'NU': u'\u039d\u03b9\u03bf\u03cd\u03b5', 'CK': u'\u039d\u03ae\u03c3\u03bf\u03b9 \u039a\u03bf\u03c5\u03ba', 'CI': u'\u0391\u03ba\u03c4\u03ae \u0395\u03bb\u03b5\u03c6\u03b1\u03bd\u03c4\u03cc\u03b4\u03bf\u03bd\u03c4\u03bf\u03c2', 'CH': u'\u0395\u03bb\u03b2\u03b5\u03c4\u03af\u03b1', 'CO': u'\u039a\u03bf\u03bb\u03bf\u03bc\u03b2\u03af\u03b1', 'CN': u'\u039a\u03af\u03bd\u03b1', 'CM': u'\u039a\u03b1\u03bc\u03b5\u03c1\u03bf\u03cd\u03bd', 'CL': u'\u03a7\u03b9\u03bb\u03ae', 'CC': u'\u039d\u03ae\u03c3\u03bf\u03b9 \u039a\u03cc\u03ba\u03bf\u03c2 (\u039a\u03ae\u03bb\u03b9\u03bd\u03b3\u03ba)', 'CA': u'\u039a\u03b1\u03bd\u03b1\u03b4\u03ac\u03c2', 'CG': u'\u039a\u03bf\u03bd\u03b3\u03ba\u03cc', 'CF': u'\u039a\u03b5\u03bd\u03c4\u03c1\u03bf\u03b1\u03c6\u03c1\u03b9\u03ba\u03b1\u03bd\u03b9\u03ba\u03ae \u0394\u03b7\u03bc\u03bf\u03ba\u03c1\u03b1\u03c4\u03af\u03b1', 'CD': u'\u039a\u03bf\u03bd\u03b3\u03ba\u03cc, \u039b\u03b1\u03ca\u03ba\u03ae \u0394\u03b7\u03bc\u03bf\u03ba\u03c1\u03b1\u03c4\u03af\u03b1 \u03c4\u03bf\u03c5', 'CZ': u'\u03a4\u03c3\u03b5\u03c7\u03af\u03b1', 'CY': u'\u039a\u03cd\u03c0\u03c1\u03bf\u03c2', 'CX': u'\u039d\u03ae\u03c3\u03bf\u03c2 \u03a7\u03c1\u03b9\u03c3\u03c4\u03bf\u03c5\u03b3\u03ad\u03bd\u03bd\u03c9\u03bd', 'CR': u'\u039a\u03cc\u03c3\u03c4\u03b1 \u03a1\u03af\u03ba\u03b1', 'CV': u'\u039d\u03ae\u03c3\u03bf\u03b9 \u03a0\u03c1\u03ac\u03c3\u03b9\u03bd\u03bf\u03c5 \u0391\u03ba\u03c1\u03c9\u03c4\u03b7\u03c1\u03af\u03bf\u03c5', 'CU': u'\u039a\u03bf\u03cd\u03b2\u03b1', 'SZ': u'\u03a3\u03bf\u03c5\u03b1\u03b6\u03b9\u03bb\u03ac\u03bd\u03b4\u03b7', 'SY': u'\u03a3\u03c5\u03c1\u03af\u03b1, \u0391\u03c1\u03b1\u03b2\u03b9\u03ba\u03ae \u0394\u03b7\u03bc\u03bf\u03ba\u03c1\u03b1\u03c4\u03af\u03b1 \u03c4\u03b7\u03c2', 'KG': u'\u039a\u03b9\u03c1\u03b3\u03b9\u03b6\u03af\u03b1', 'KE': u'\u039a\u03ad\u03bd\u03c5\u03b1', 'SR': u'\u03a3\u03bf\u03c5\u03c1\u03b9\u03bd\u03ac\u03bc', 'KI': u'\u039a\u03b9\u03c1\u03b9\u03bc\u03c0\u03ac\u03c4\u03b9', 'KH': u'\u039a\u03b1\u03bc\u03c0\u03cc\u03c4\u03b6\u03b7', 'KN': u'\u03a3\u03b1\u03b9\u03bd\u03c4 \u039a\u03b9\u03c4\u03c2 \u03ba\u03b1\u03b9 \u039d\u03ad\u03b2\u03b9\u03c2', 'KM': u'\u039a\u03bf\u03bc\u03cc\u03c1\u03b5\u03c2', 'ST': u'\u03a3\u03ac\u03bf \u03a4\u03bf\u03bc\u03ad \u03ba\u03b1\u03b9 \u03a0\u03c1\u03af\u03bd\u03c3\u03b9\u03c0\u03b5', 'SK': u'\u03a3\u03bb\u03bf\u03b2\u03b1\u03ba\u03af\u03b1', 'KR': u'\u039a\u03bf\u03c1\u03ad\u03b1, \u039d\u03cc\u03c4\u03b9\u03b1', 'SI': u'\u03a3\u03bb\u03bf\u03b2\u03b5\u03bd\u03af\u03b1', 'KP': u'\u039a\u03bf\u03c1\u03ad\u03b1, \u0392\u03cc\u03c1\u03b5\u03b9\u03b1', 'KW': u'\u039a\u03bf\u03c5\u03b2\u03ad\u03b9\u03c4', 'SN': u'\u03a3\u03b5\u03bd\u03b5\u03b3\u03ac\u03bb\u03b7', 'SM': u'\u0386\u03b3\u03b9\u03bf\u03c2 \u039c\u03b1\u03c1\u03af\u03bd\u03bf\u03c2', 'SL': u'\u03a3\u03b9\u03ad\u03c1\u03b1 \u039b\u03b5\u03cc\u03bd\u03b5', 'SC': u'\u03a3\u03b5\u03cb\u03c7\u03ad\u03bb\u03bb\u03b5\u03c2', 'KZ': u'\u039a\u03b1\u03b6\u03b1\u03ba\u03c3\u03c4\u03ac\u03bd', 'KY': u'\u039d\u03ae\u03c3\u03bf\u03b9 \u039a\u03ad\u03b9\u03bc\u03b1\u03bd', 'SG': u'\u03a3\u03b9\u03b3\u03ba\u03b1\u03c0\u03bf\u03cd\u03c1\u03b7', 'SE': u'\u03a3\u03bf\u03c5\u03b7\u03b4\u03af\u03b1', 'SD': u'\u03a3\u03bf\u03c5\u03b4\u03ac\u03bd', 'DO': u'\u0394\u03bf\u03bc\u03b9\u03bd\u03b9\u03ba\u03b1\u03bd\u03ae \u0394\u03b7\u03bc\u03bf\u03ba\u03c1\u03b1\u03c4\u03af\u03b1', 'DM': u'\u039d\u03c4\u03bf\u03bc\u03af\u03bd\u03b9\u03ba\u03b1', 'DJ': u'\u03a4\u03b6\u03b9\u03bc\u03c0\u03bf\u03c5\u03c4\u03af', 'DK': u'\u0394\u03b1\u03bd\u03af\u03b1', 'VG': u'\u0392\u03c1\u03b5\u03c4\u03b1\u03bd\u03b9\u03ba\u03ad\u03c2 \u03a0\u03b1\u03c1\u03b8\u03ad\u03bd\u03bf\u03b9 \u039d\u03ae\u03c3\u03bf\u03b9', 'DE': u'\u0393\u03b5\u03c1\u03bc\u03b1\u03bd\u03af\u03b1', 'YE': u'\u03a5\u03b5\u03bc\u03ad\u03bd\u03b7', 'DZ': u'\u0391\u03bb\u03b3\u03b5\u03c1\u03af\u03b1', 'US': u'\u0397\u03bd\u03c9\u03bc\u03ad\u03bd\u03b5\u03c2 \u03a0\u03bf\u03bb\u03b9\u03c4\u03b5\u03af\u03b5\u03c2', 'UY': u'\u039f\u03c5\u03c1\u03bf\u03c5\u03b3\u03bf\u03c5\u03ac\u03b7', 'YU': u'\u0393\u03b9\u03bf\u03c5\u03b3\u03ba\u03bf\u03c3\u03bb\u03b1\u03b2\u03af\u03b1', 'YT': u'\u039c\u03b1\u03b3\u03b9\u03cc\u03c4', 'UM': u'\u0391\u03c0\u03bf\u03bc\u03b1\u03ba\u03c1\u03c5\u03c3\u03bc\u03ad\u03bd\u03b5\u03c2 \u039d\u03b7\u03c3\u03af\u03b4\u03b5\u03c2 \u03c4\u03c9\u03bd \u0397\u03bd\u03c9\u03bc\u03ad\u03bd\u03c9\u03bd \u03a0\u03bf\u03bb\u03b9\u03c4\u03b5\u03b9\u03ce\u03bd', 'LB': u'\u039b\u03af\u03b2\u03b1\u03bd\u03bf\u03c2', 'LC': u'\u0391\u03b3\u03af\u03b1 \u039b\u03bf\u03c5\u03ba\u03af\u03b1', 'LA': u'\u039b\u03b1\u03c4\u03b9\u03bd\u03b9\u03ba\u03ae \u0391\u03bc\u03b5\u03c1\u03b9\u03ba\u03ae', 'TV': u'\u03a4\u03bf\u03c5\u03b2\u03b1\u03bb\u03bf\u03cd', 'TW': u'\u03a4\u03b1\u03ca\u03b2\u03ac\u03bd (\u0394.\u039a.)', 'TT': u'\u03a4\u03c1\u03b9\u03bd\u03b9\u03b4\u03ac\u03b4 \u03ba\u03b1\u03b9 \u03a4\u03bf\u03bc\u03c0\u03ac\u03b3\u03ba\u03bf', 'TR': u'\u03a4\u03bf\u03c5\u03c1\u03ba\u03af\u03b1', 'LK': u'\u03a3\u03c1\u03b9 \u039b\u03ac\u03bd\u03ba\u03b1', 'LI': u'\u039b\u03b9\u03c7\u03c4\u03b5\u03bd\u03c3\u03c4\u03ac\u03b9\u03bd', 'LV': u'\u039b\u03b5\u03c4\u03bf\u03bd\u03af\u03b1', 'TO': u'\u03a4\u03cc\u03bd\u03b3\u03ba\u03b1', 'LT': u'\u039b\u03b9\u03b8\u03bf\u03c5\u03b1\u03bd\u03af\u03b1', 'LU': u'\u039b\u03bf\u03c5\u03be\u03b5\u03bc\u03b2\u03bf\u03cd\u03c1\u03b3\u03bf', 'LR': u'\u039b\u03b9\u03b2\u03b5\u03c1\u03af\u03b1', 'LS': u'\u039b\u03b5\u03c3\u03cc\u03c4\u03bf', 'TH': u'\u03a4\u03b1\u03ca\u03bb\u03ac\u03bd\u03b4\u03b7', 'TF': u'\u0393\u03b1\u03bb\u03bb\u03b9\u03ba\u03ac \u039d\u03cc\u03c4\u03b9\u03b1 \u0395\u03b4\u03ac\u03c6\u03b7', 'TG': u'\u03a4\u03cc\u03b3\u03ba\u03bf', 'TD': u'\u03a4\u03c3\u03b1\u03bd\u03c4', 'TC': u'\u039d\u03ae\u03c3\u03bf\u03b9 \u03a4\u03b5\u03c1\u03ba\u03c2 \u03ba\u03b1\u03b9 \u039a\u03ac\u03b9\u03ba\u03bf\u03c2', 'VA': u'\u0391\u03b3\u03af\u03b1 \u0388\u03b4\u03c1\u03b1 (\u0392\u03b1\u03c4\u03b9\u03ba\u03b1\u03bd\u03cc)', 'VC': u'\u0386\u03b3\u03b9\u03bf\u03c2 \u0392\u03b9\u03ba\u03ad\u03bd\u03c4\u03b9\u03bf\u03c2 \u03ba\u03b1\u03b9 \u0393\u03c1\u03b5\u03bd\u03b1\u03b4\u03af\u03bd\u03b5\u03c2', 'AE': u'\u0397\u03bd\u03c9\u03bc\u03ad\u03bd\u03b1 \u0391\u03c1\u03b1\u03b2\u03b9\u03ba\u03ac \u0395\u03bc\u03b9\u03c1\u03ac\u03c4\u03b1', 'AD': u'\u0391\u03bd\u03b4\u03cc\u03c1\u03b1', 'AG': u'\u0391\u03bd\u03c4\u03af\u03b3\u03ba\u03bf\u03c5\u03b1 \u03ba\u03b1\u03b9 \u039c\u03c0\u03b1\u03c1\u03bc\u03c0\u03bf\u03cd\u03bd\u03c4\u03b1', 'AF': u'\u0391\u03c6\u03b3\u03b1\u03bd\u03b9\u03c3\u03c4\u03ac\u03bd', 'AI': u'\u0391\u03bd\u03b3\u03ba\u03bf\u03c5\u03af\u03bb\u03b1', 'VI': u'\u0391\u03bc\u03b5\u03c1\u03b9\u03ba\u03b1\u03bd\u03b9\u03ba\u03ad\u03c2 \u03a0\u03b1\u03c1\u03b8\u03ad\u03bd\u03bf\u03b9 \u039d\u03ae\u03c3\u03bf\u03b9', 'IS': u'\u0399\u03c3\u03bb\u03b1\u03bd\u03b4\u03af\u03b1', 'IR': u'\u0399\u03c1\u03ac\u03bd, \u0399\u03c3\u03bb\u03b1\u03bc\u03b9\u03ba\u03ae \u0394\u03b7\u03bc\u03bf\u03ba\u03c1\u03b1\u03c4\u03af\u03b1 \u03c4\u03bf\u03c5', 'AM': u'\u0391\u03c1\u03bc\u03b5\u03bd\u03af\u03b1', 'AL': u'\u0391\u03bb\u03b2\u03b1\u03bd\u03af\u03b1', 'AO': u'\u0391\u03bd\u03b3\u03ba\u03cc\u03bb\u03b1', 'AN': u'\u039f\u03bb\u03bb\u03b1\u03bd\u03b4\u03b9\u03ba\u03ad\u03c2 \u0391\u03bd\u03c4\u03af\u03bb\u03bb\u03b5\u03c2', 'AQ': u'\u0391\u03bd\u03c4\u03b1\u03c1\u03ba\u03c4\u03b9\u03ba\u03ae', 'AS': u'\u0391\u03bc\u03b5\u03c1\u03b9\u03ba\u03b1\u03bd\u03b9\u03ba\u03ae \u03a3\u03b1\u03bc\u03cc\u03b1', 'AR': u'\u0391\u03c1\u03b3\u03b5\u03bd\u03c4\u03b9\u03bd\u03ae', 'AU': u'\u0391\u03c5\u03c3\u03c4\u03c1\u03b1\u03bb\u03af\u03b1', 'AT': u'\u0391\u03c5\u03c3\u03c4\u03c1\u03af\u03b1', 'AW': u'\u0391\u03c1\u03bf\u03cd\u03bc\u03c0\u03b1', 'IN': u'\u0399\u03bd\u03b4\u03af\u03b1', 'TZ': u'\u03a4\u03b1\u03bd\u03b6\u03b1\u03bd\u03af\u03b1', 'AZ': u'\u0391\u03b6\u03b5\u03c1\u03bc\u03c0\u03b1\u03ca\u03c4\u03b6\u03ac\u03bd', 'IE': u'\u0399\u03c1\u03bb\u03b1\u03bd\u03b4\u03af\u03b1', 'ID': u'\u0399\u03bd\u03b4\u03bf\u03bd\u03b7\u03c3\u03af\u03b1', 'UA': u'\u039f\u03c5\u03ba\u03c1\u03b1\u03bd\u03af\u03b1', 'QA': u'\u039a\u03b1\u03c4\u03ac\u03c1', 'MZ': u'\u039c\u03bf\u03b6\u03b1\u03bc\u03b2\u03af\u03ba\u03b7'} months=[u'\u0399\u03b1\u03bd\u03bf\u03c5\u03ac\u03c1\u03b9\u03bf\u03c2', u'\u03a6\u03b5\u03b2\u03c1\u03bf\u03c5\u03ac\u03c1\u03b9\u03bf\u03c2', u'\u039c\u03ac\u03c1\u03c4\u03b9\u03bf\u03c2', u'\u0391\u03c0\u03c1\u03af\u03bb\u03b9\u03bf\u03c2', u'\u039c\u03ac\u03b9\u03bf\u03c2', u'\u0399\u03bf\u03cd\u03bd\u03b9\u03bf\u03c2', u'\u0399\u03bf\u03cd\u03bb\u03b9\u03bf\u03c2', u'\u0391\u03cd\u03b3\u03bf\u03c5\u03c3\u03c4\u03bf\u03c2', u'\u03a3\u03b5\u03c0\u03c4\u03ad\u03bc\u03b2\u03c1\u03b9\u03bf\u03c2', u'\u039f\u03ba\u03c4\u03ce\u03b2\u03c1\u03b9\u03bf\u03c2', u'\u039d\u03bf\u03ad\u03bc\u03b2\u03c1\u03b9\u03bf\u03c2', u'\u0394\u03b5\u03ba\u03ad\u03bc\u03b2\u03c1\u03b9\u03bf\u03c2'] abbrMonths=[u'\u0399\u03b1\u03bd', u'\u03a6\u03b5\u03b2', u'\u039c\u03b1\u03c1', u'\u0391\u03c0\u03c1', u'\u039c\u03b1\u03ca', u'\u0399\u03bf\u03c5\u03bd', u'\u0399\u03bf\u03c5\u03bb', u'\u0391\u03c5\u03b3', u'\u03a3\u03b5\u03c0', u'\u039f\u03ba\u03c4', u'\u039d\u03bf\u03b5', u'\u0394\u03b5\u03ba'] days=[u'\u0394\u03b5\u03c5\u03c4\u03ad\u03c1\u03b1', u'\u03a4\u03c1\u03af\u03c4\u03b7', u'\u03a4\u03b5\u03c4\u03ac\u03c1\u03c4\u03b7', u'\u03a0\u03ad\u03bc\u03c0\u03c4\u03b7', u'\u03a0\u03b1\u03c1\u03b1\u03c3\u03ba\u03b5\u03c5\u03ae', u'\u03a3\u03ac\u03b2\u03b2\u03b1\u03c4\u03bf', u'\u039a\u03c5\u03c1\u03b9\u03b1\u03ba\u03ae'] abbrDays=[u'\u0394\u03b5\u03c5', u'\u03a4\u03c1\u03b9', u'\u03a4\u03b5\u03c4', u'\u03a0\u03b5\u03bc', u'\u03a0\u03b1\u03c1', u'\u03a3\u03b1\u03b2', u'\u039a\u03c5\u03c1'] dateFormats={'medium': '%d %%(abbrmonthname)s %Y', 'full': '%%(dayname)s, %d %%(monthname)s %Y', 'long': '%d %%(monthname)s %Y', 'short': '%d/%m/%Y'} numericSymbols={'group': '.', 'nativeZeroDigit': '0', 'exponential': 'E', 'perMille': u'\u2030', 'nan': u'\ufffd', 'decimal': ',', 'percentSign': '%', 'list': ';', 'patternDigit': '#', 'plusSign': '+', 'infinity': u'\u221e', 'minusSign': '-'}
901b405f4a2a51fd6ca9bfd5094110f8809a137e
487ce91881032c1de16e35ed8bc187d6034205f7
/codes/CodeJamCrawler/16_0_1_neat/16_0_1_ankso_problem1.py
abdcde8c10348975b61eb615936ae90fb286edb5
[]
no_license
DaHuO/Supergraph
9cd26d8c5a081803015d93cf5f2674009e92ef7e
c88059dc66297af577ad2b8afa4e0ac0ad622915
refs/heads/master
2021-06-14T16:07:52.405091
2016-08-21T13:39:13
2016-08-21T13:39:13
49,829,508
2
0
null
2021-03-19T21:55:46
2016-01-17T18:23:00
Python
UTF-8
Python
false
false
736
py
def returnList(n): n = str(n) digits = list(n) return digits def check(all): stat = False for i in range(10): if str(i) in all: stat = True else: stat = False break return stat testCases = int(raw_input()) for i in range(testCases): N = int(raw_input()) if N == 0: print "Case #"+str(i+1)+": INSOMNIA" else: listOfNum = returnList(N) j=1 while True: if check(listOfNum): print "Case #"+str(i+1)+": "+str(newNumber) break j = j+1 newNumber = N*j listOfNum.extend(returnList(newNumber)) listOfNum = list(set(listOfNum))
d4529fd488e177eff6820f5688b7d6fd9790eab3
c43fbcb4442428e85616f664964d1e27ca396070
/runs/malte/simple/config.py
5d9a5f0f13ad31b04abdecbc9011127e24d6fd1c
[]
no_license
megalut/megalut
ddac89a0dca70e13979d31b80d52233226233ade
63bd4bec8000ad13f4963d464d7b7b4d470a36ab
refs/heads/master
2020-04-15T00:33:42.815988
2018-09-11T08:45:48
2018-09-11T08:45:48
20,882,727
2
1
null
2018-09-11T08:45:49
2014-06-16T11:39:14
Python
UTF-8
Python
false
false
317
py
import megalut import megalut.learn import os import numpy as np import logging #logging.basicConfig(level=logging.INFO) logging.basicConfig(format='PID %(process)06d | %(asctime)s | %(levelname)s: %(name)s(%(funcName)s): %(message)s',level=logging.INFO) workdir = "/vol/fohlen11/fohlen11_1/mtewes/simplewd/"
918d1f2c0d7a9e30280136bb90e114355d60de4c
63bacb52d016cf7a237dacd79ba2861842c49ca9
/test/test_put_write_off_invoice_response_credit_memo.py
e43a4fa1e412ddeef0e6976ce236a3740fe64cd4
[]
no_license
arundharumar-optimizely/zuora-client-python
ee9667956b32b64b456920ad6246e02528fe6645
a529a01364e41844c91f39df300c85c8d332912a
refs/heads/master
2020-07-05T23:09:20.081816
2019-07-30T21:46:47
2019-07-30T21:46:47
202,811,594
0
0
null
2019-08-16T23:26:52
2019-08-16T23:26:52
null
UTF-8
Python
false
false
40,430
py
# coding: utf-8 """ Zuora API Reference # Introduction Welcome to the reference for the Zuora REST API! <a href=\"http://en.wikipedia.org/wiki/REST_API\" target=\"_blank\">REST</a> is a web-service protocol that lends itself to rapid development by using everyday HTTP and JSON technology. The Zuora REST API provides a broad set of operations and resources that: * Enable Web Storefront integration from your website. * Support self-service subscriber sign-ups and account management. * Process revenue schedules through custom revenue rule models. * Enable manipulation of most objects in the Zuora Object Model. Want to share your opinion on how our API works for you? <a href=\"https://community.zuora.com/t5/Developers/API-Feedback-Form/gpm-p/21399\" target=\"_blank\">Tell us how you feel </a>about using our API and what we can do to make it better. ## Access to the API If you have a Zuora tenant, you can access the Zuora REST API via one of the following endpoints: | Tenant | Base URL for REST Endpoints | |-------------------------|-------------------------| |US Production | https://rest.zuora.com | |US API Sandbox | https://rest.apisandbox.zuora.com| |US Performance Test | https://rest.pt1.zuora.com | |EU Production | https://rest.eu.zuora.com | |EU Sandbox | https://rest.sandbox.eu.zuora.com | The Production endpoint provides access to your live user data. API Sandbox tenants are a good place to test code without affecting real-world data. If you would like Zuora to provision an API Sandbox tenant for you, contact your Zuora representative for assistance. **Note:** If you have a tenant in the Production Copy Environment, submit a request at <a href=\"http://support.zuora.com/\" target=\"_blank\">Zuora Global Support</a> to enable the Zuora REST API in your tenant and obtain the base URL for REST endpoints. If you do not have a Zuora tenant, go to <a href=\"https://www.zuora.com/resource/zuora-test-drive\" target=\"_blank\">https://www.zuora.com/resource/zuora-test-drive</a> and sign up for a Production Test Drive tenant. The tenant comes with seed data, including a sample product catalog. # API Changelog You can find the <a href=\"https://community.zuora.com/t5/Developers/API-Changelog/gpm-p/18092\" target=\"_blank\">Changelog</a> of the API Reference in the Zuora Community. # Authentication ## OAuth v2.0 Zuora recommends that you use OAuth v2.0 to authenticate to the Zuora REST API. Currently, OAuth is not available in every environment. See [Zuora Testing Environments](https://knowledgecenter.zuora.com/BB_Introducing_Z_Business/D_Zuora_Environments) for more information. Zuora recommends you to create a dedicated API user with API write access on a tenant when authenticating via OAuth, and then create an OAuth client for this user. See <a href=\"https://knowledgecenter.zuora.com/CF_Users_and_Administrators/A_Administrator_Settings/Manage_Users/Create_an_API_User\" target=\"_blank\">Create an API User</a> for how to do this. By creating a dedicated API user, you can control permissions of the API user without affecting other non-API users. If a user is deactivated, all of the user's OAuth clients will be automatically deactivated. Authenticating via OAuth requires the following steps: 1. Create a Client 2. Generate a Token 3. Make Authenticated Requests ### Create a Client You must first [create an OAuth client](https://knowledgecenter.zuora.com/CF_Users_and_Administrators/A_Administrator_Settings/Manage_Users#Create_an_OAuth_Client_for_a_User) in the Zuora UI. To do this, you must be an administrator of your Zuora tenant. This is a one-time operation. You will be provided with a Client ID and a Client Secret. Please note this information down, as it will be required for the next step. **Note:** The OAuth client will be owned by a Zuora user account. If you want to perform PUT, POST, or DELETE operations using the OAuth client, the owner of the OAuth client must have a Platform role that includes the \"API Write Access\" permission. ### Generate a Token After creating a client, you must make a call to obtain a bearer token using the [Generate an OAuth token](https://www.zuora.com/developer/api-reference/#operation/createToken) operation. This operation requires the following parameters: - `client_id` - the Client ID displayed when you created the OAuth client in the previous step - `client_secret` - the Client Secret displayed when you created the OAuth client in the previous step - `grant_type` - must be set to `client_credentials` **Note**: The Client ID and Client Secret mentioned above were displayed when you created the OAuth Client in the prior step. The [Generate an OAuth token](https://www.zuora.com/developer/api-reference/#operation/createToken) response specifies how long the bearer token is valid for. Call [Generate an OAuth token](https://www.zuora.com/developer/api-reference/#operation/createToken) again to generate a new bearer token. ### Make Authenticated Requests To authenticate subsequent API requests, you must provide a valid bearer token in an HTTP header: `Authorization: Bearer {bearer_token}` If you have [Zuora Multi-entity](https://www.zuora.com/developer/api-reference/#tag/Entities) enabled, you need to set an additional header to specify the ID of the entity that you want to access. You can use the `scope` field in the [Generate an OAuth token](https://www.zuora.com/developer/api-reference/#operation/createToken) response to determine whether you need to specify an entity ID. If the `scope` field contains more than one entity ID, you must specify the ID of the entity that you want to access. For example, if the `scope` field contains `entity.1a2b7a37-3e7d-4cb3-b0e2-883de9e766cc` and `entity.c92ed977-510c-4c48-9b51-8d5e848671e9`, specify one of the following headers: - `Zuora-Entity-Ids: 1a2b7a37-3e7d-4cb3-b0e2-883de9e766cc` - `Zuora-Entity-Ids: c92ed977-510c-4c48-9b51-8d5e848671e9` **Note**: For a limited period of time, Zuora will accept the `entityId` header as an alternative to the `Zuora-Entity-Ids` header. If you choose to set the `entityId` header, you must remove all \"-\" characters from the entity ID in the `scope` field. If the `scope` field contains a single entity ID, you do not need to specify an entity ID. ## Other Supported Authentication Schemes Zuora continues to support the following additional legacy means of authentication: * Use username and password. Include authentication with each request in the header: * `apiAccessKeyId` * `apiSecretAccessKey` Zuora recommends that you create an API user specifically for making API calls. See <a href=\"https://knowledgecenter.zuora.com/CF_Users_and_Administrators/A_Administrator_Settings/Manage_Users/Create_an_API_User\" target=\"_blank\">Create an API User</a> for more information. * Use an authorization cookie. The cookie authorizes the user to make calls to the REST API for the duration specified in **Administration > Security Policies > Session timeout**. The cookie expiration time is reset with this duration after every call to the REST API. To obtain a cookie, call the [Connections](https://www.zuora.com/developer/api-reference/#tag/Connections) resource with the following API user information: * ID * Password * For CORS-enabled APIs only: Include a 'single-use' token in the request header, which re-authenticates the user with each request. See below for more details. ### Entity Id and Entity Name The `entityId` and `entityName` parameters are only used for [Zuora Multi-entity](https://knowledgecenter.zuora.com/BB_Introducing_Z_Business/Multi-entity \"Zuora Multi-entity\"). These are the legacy parameters that Zuora will only continue to support for a period of time. Zuora recommends you to use the `Zuora-Entity-Ids` parameter instead. The `entityId` and `entityName` parameters specify the Id and the [name of the entity](https://knowledgecenter.zuora.com/BB_Introducing_Z_Business/Multi-entity/B_Introduction_to_Entity_and_Entity_Hierarchy#Name_and_Display_Name \"Introduction to Entity and Entity Hierarchy\") that you want to access, respectively. Note that you must have permission to access the entity. You can specify either the `entityId` or `entityName` parameter in the authentication to access and view an entity. * If both `entityId` and `entityName` are specified in the authentication, an error occurs. * If neither `entityId` nor `entityName` is specified in the authentication, you will log in to the entity in which your user account is created. To get the entity Id and entity name, you can use the GET Entities REST call. For more information, see [API User Authentication](https://knowledgecenter.zuora.com/BB_Introducing_Z_Business/Multi-entity/A_Overview_of_Multi-entity#API_User_Authentication \"API User Authentication\"). ### Token Authentication for CORS-Enabled APIs The CORS mechanism enables REST API calls to Zuora to be made directly from your customer's browser, with all credit card and security information transmitted directly to Zuora. This minimizes your PCI compliance burden, allows you to implement advanced validation on your payment forms, and makes your payment forms look just like any other part of your website. For security reasons, instead of using cookies, an API request via CORS uses **tokens** for authentication. The token method of authentication is only designed for use with requests that must originate from your customer's browser; **it should not be considered a replacement to the existing cookie authentication** mechanism. See [Zuora CORS REST](https://knowledgecenter.zuora.com/DC_Developers/C_REST_API/Zuora_CORS_REST \"Zuora CORS REST\") for details on how CORS works and how you can begin to implement customer calls to the Zuora REST APIs. See [HMAC Signatures](https://www.zuora.com/developer/api-reference/#operation/POSTHMACSignature \"HMAC Signatures\") for details on the HMAC method that returns the authentication token. # Requests and Responses ## Request IDs As a general rule, when asked to supply a \"key\" for an account or subscription (accountKey, account-key, subscriptionKey, subscription-key), you can provide either the actual ID or the number of the entity. ## HTTP Request Body Most of the parameters and data accompanying your requests will be contained in the body of the HTTP request. The Zuora REST API accepts JSON in the HTTP request body. No other data format (e.g., XML) is supported. ### Data Type ([Actions](https://www.zuora.com/developer/api-reference/#tag/Actions) and CRUD operations only) We recommend that you do not specify the decimal values with quotation marks, commas, and spaces. Use characters of `+-0-9.eE`, for example, `5`, `1.9`, `-8.469`, and `7.7e2`. Also, Zuora does not convert currencies for decimal values. ## Testing a Request Use a third party client, such as [curl](https://curl.haxx.se \"curl\"), [Postman](https://www.getpostman.com \"Postman\"), or [Advanced REST Client](https://advancedrestclient.com \"Advanced REST Client\"), to test the Zuora REST API. You can test the Zuora REST API from the Zuora API Sandbox or Production tenants. If connecting to Production, bear in mind that you are working with your live production data, not sample data or test data. ## Testing with Credit Cards Sooner or later it will probably be necessary to test some transactions that involve credit cards. For suggestions on how to handle this, see [Going Live With Your Payment Gateway](https://knowledgecenter.zuora.com/CB_Billing/M_Payment_Gateways/C_Managing_Payment_Gateways/B_Going_Live_Payment_Gateways#Testing_with_Credit_Cards \"C_Zuora_User_Guides/A_Billing_and_Payments/M_Payment_Gateways/C_Managing_Payment_Gateways/B_Going_Live_Payment_Gateways#Testing_with_Credit_Cards\" ). ## Concurrent Request Limits Zuora enforces tenant-level concurrent request limits. See <a href=\"https://knowledgecenter.zuora.com/BB_Introducing_Z_Business/Policies/Concurrent_Request_Limits\" target=\"_blank\">Concurrent Request Limits</a> for more information. ## Timeout Limit If a request does not complete within 120 seconds, the request times out and Zuora returns a Gateway Timeout error. ## Error Handling Responses and error codes are detailed in [Responses and errors](https://knowledgecenter.zuora.com/DC_Developers/C_REST_API/Responses_and_Errors \"Responses and errors\"). # Pagination When retrieving information (using GET methods), the optional `pageSize` query parameter sets the maximum number of rows to return in a response. The maximum is `40`; larger values are treated as `40`. If this value is empty or invalid, `pageSize` typically defaults to `10`. The default value for the maximum number of rows retrieved can be overridden at the method level. If more rows are available, the response will include a `nextPage` element, which contains a URL for requesting the next page. If this value is not provided, no more rows are available. No \"previous page\" element is explicitly provided; to support backward paging, use the previous call. ## Array Size For data items that are not paginated, the REST API supports arrays of up to 300 rows. Thus, for instance, repeated pagination can retrieve thousands of customer accounts, but within any account an array of no more than 300 rate plans is returned. # API Versions The Zuora REST API are version controlled. Versioning ensures that Zuora REST API changes are backward compatible. Zuora uses a major and minor version nomenclature to manage changes. By specifying a version in a REST request, you can get expected responses regardless of future changes to the API. ## Major Version The major version number of the REST API appears in the REST URL. Currently, Zuora only supports the **v1** major version. For example, `POST https://rest.zuora.com/v1/subscriptions`. ## Minor Version Zuora uses minor versions for the REST API to control small changes. For example, a field in a REST method is deprecated and a new field is used to replace it. Some fields in the REST methods are supported as of minor versions. If a field is not noted with a minor version, this field is available for all minor versions. If a field is noted with a minor version, this field is in version control. You must specify the supported minor version in the request header to process without an error. If a field is in version control, it is either with a minimum minor version or a maximum minor version, or both of them. You can only use this field with the minor version between the minimum and the maximum minor versions. For example, the `invoiceCollect` field in the POST Subscription method is in version control and its maximum minor version is 189.0. You can only use this field with the minor version 189.0 or earlier. If you specify a version number in the request header that is not supported, Zuora will use the minimum minor version of the REST API. In our REST API documentation, if a field or feature requires a minor version number, we note that in the field description. You only need to specify the version number when you use the fields require a minor version. To specify the minor version, set the `zuora-version` parameter to the minor version number in the request header for the request call. For example, the `collect` field is in 196.0 minor version. If you want to use this field for the POST Subscription method, set the `zuora-version` parameter to `196.0` in the request header. The `zuora-version` parameter is case sensitive. For all the REST API fields, by default, if the minor version is not specified in the request header, Zuora will use the minimum minor version of the REST API to avoid breaking your integration. ### Minor Version History The supported minor versions are not serial. This section documents the changes made to each Zuora REST API minor version. The following table lists the supported versions and the fields that have a Zuora REST API minor version. | Fields | Minor Version | REST Methods | Description | |:--------|:--------|:--------|:--------| | invoiceCollect | 189.0 and earlier | [Create Subscription](https://www.zuora.com/developer/api-reference/#operation/POST_Subscription \"Create Subscription\"); [Update Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_Subscription \"Update Subscription\"); [Renew Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_RenewSubscription \"Renew Subscription\"); [Cancel Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_CancelSubscription \"Cancel Subscription\"); [Suspend Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_SuspendSubscription \"Suspend Subscription\"); [Resume Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_ResumeSubscription \"Resume Subscription\"); [Create Account](https://www.zuora.com/developer/api-reference/#operation/POST_Account \"Create Account\")|Generates an invoice and collects a payment for a subscription. | | collect | 196.0 and later | [Create Subscription](https://www.zuora.com/developer/api-reference/#operation/POST_Subscription \"Create Subscription\"); [Update Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_Subscription \"Update Subscription\"); [Renew Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_RenewSubscription \"Renew Subscription\"); [Cancel Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_CancelSubscription \"Cancel Subscription\"); [Suspend Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_SuspendSubscription \"Suspend Subscription\"); [Resume Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_ResumeSubscription \"Resume Subscription\"); [Create Account](https://www.zuora.com/developer/api-reference/#operation/POST_Account \"Create Account\")|Collects an automatic payment for a subscription. | | invoice | 196.0 and 207.0| [Create Subscription](https://www.zuora.com/developer/api-reference/#operation/POST_Subscription \"Create Subscription\"); [Update Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_Subscription \"Update Subscription\"); [Renew Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_RenewSubscription \"Renew Subscription\"); [Cancel Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_CancelSubscription \"Cancel Subscription\"); [Suspend Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_SuspendSubscription \"Suspend Subscription\"); [Resume Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_ResumeSubscription \"Resume Subscription\"); [Create Account](https://www.zuora.com/developer/api-reference/#operation/POST_Account \"Create Account\")|Generates an invoice for a subscription. | | invoiceTargetDate | 196.0 and earlier | [Preview Subscription](https://www.zuora.com/developer/api-reference/#operation/POST_SubscriptionPreview \"Preview Subscription\") |Date through which charges are calculated on the invoice, as `yyyy-mm-dd`. | | invoiceTargetDate | 207.0 and earlier | [Create Subscription](https://www.zuora.com/developer/api-reference/#operation/POST_Subscription \"Create Subscription\"); [Update Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_Subscription \"Update Subscription\"); [Renew Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_RenewSubscription \"Renew Subscription\"); [Cancel Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_CancelSubscription \"Cancel Subscription\"); [Suspend Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_SuspendSubscription \"Suspend Subscription\"); [Resume Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_ResumeSubscription \"Resume Subscription\"); [Create Account](https://www.zuora.com/developer/api-reference/#operation/POST_Account \"Create Account\")|Date through which charges are calculated on the invoice, as `yyyy-mm-dd`. | | targetDate | 207.0 and later | [Preview Subscription](https://www.zuora.com/developer/api-reference/#operation/POST_SubscriptionPreview \"Preview Subscription\") |Date through which charges are calculated on the invoice, as `yyyy-mm-dd`. | | targetDate | 211.0 and later | [Create Subscription](https://www.zuora.com/developer/api-reference/#operation/POST_Subscription \"Create Subscription\"); [Update Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_Subscription \"Update Subscription\"); [Renew Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_RenewSubscription \"Renew Subscription\"); [Cancel Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_CancelSubscription \"Cancel Subscription\"); [Suspend Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_SuspendSubscription \"Suspend Subscription\"); [Resume Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_ResumeSubscription \"Resume Subscription\"); [Create Account](https://www.zuora.com/developer/api-reference/#operation/POST_Account \"Create Account\")|Date through which charges are calculated on the invoice, as `yyyy-mm-dd`. | | includeExisting DraftInvoiceItems | 196.0 and earlier| [Preview Subscription](https://www.zuora.com/developer/api-reference/#operation/POST_SubscriptionPreview \"Preview Subscription\"); [Update Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_Subscription \"Update Subscription\") | Specifies whether to include draft invoice items in subscription previews. Specify it to be `true` (default) to include draft invoice items in the preview result. Specify it to be `false` to excludes draft invoice items in the preview result. | | includeExisting DraftDocItems | 207.0 and later | [Preview Subscription](https://www.zuora.com/developer/api-reference/#operation/POST_SubscriptionPreview \"Preview Subscription\"); [Update Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_Subscription \"Update Subscription\") | Specifies whether to include draft invoice items in subscription previews. Specify it to be `true` (default) to include draft invoice items in the preview result. Specify it to be `false` to excludes draft invoice items in the preview result. | | previewType | 196.0 and earlier| [Preview Subscription](https://www.zuora.com/developer/api-reference/#operation/POST_SubscriptionPreview \"Preview Subscription\"); [Update Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_Subscription \"Update Subscription\") | The type of preview you will receive. The possible values are `InvoiceItem`(default), `ChargeMetrics`, and `InvoiceItemChargeMetrics`. | | previewType | 207.0 and later | [Preview Subscription](https://www.zuora.com/developer/api-reference/#operation/POST_SubscriptionPreview \"Preview Subscription\"); [Update Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_Subscription \"Update Subscription\") | The type of preview you will receive. The possible values are `LegalDoc`(default), `ChargeMetrics`, and `LegalDocChargeMetrics`. | | runBilling | 211.0 and later | [Create Subscription](https://www.zuora.com/developer/api-reference/#operation/POST_Subscription \"Create Subscription\"); [Update Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_Subscription \"Update Subscription\"); [Renew Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_RenewSubscription \"Renew Subscription\"); [Cancel Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_CancelSubscription \"Cancel Subscription\"); [Suspend Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_SuspendSubscription \"Suspend Subscription\"); [Resume Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_ResumeSubscription \"Resume Subscription\"); [Create Account](https://www.zuora.com/developer/api-reference/#operation/POST_Account \"Create Account\")|Generates an invoice or credit memo for a subscription. **Note:** Credit memos are only available if you have the Invoice Settlement feature enabled. | | invoiceDate | 214.0 and earlier | [Invoice and Collect](https://www.zuora.com/developer/api-reference/#operation/POST_TransactionInvoicePayment \"Invoice and Collect\") |Date that should appear on the invoice being generated, as `yyyy-mm-dd`. | | invoiceTargetDate | 214.0 and earlier | [Invoice and Collect](https://www.zuora.com/developer/api-reference/#operation/POST_TransactionInvoicePayment \"Invoice and Collect\") |Date through which to calculate charges on this account if an invoice is generated, as `yyyy-mm-dd`. | | documentDate | 215.0 and later | [Invoice and Collect](https://www.zuora.com/developer/api-reference/#operation/POST_TransactionInvoicePayment \"Invoice and Collect\") |Date that should appear on the invoice and credit memo being generated, as `yyyy-mm-dd`. | | targetDate | 215.0 and later | [Invoice and Collect](https://www.zuora.com/developer/api-reference/#operation/POST_TransactionInvoicePayment \"Invoice and Collect\") |Date through which to calculate charges on this account if an invoice or a credit memo is generated, as `yyyy-mm-dd`. | | memoItemAmount | 223.0 and earlier | [Create credit memo from charge](https://www.zuora.com/developer/api-reference/#operation/POST_CreditMemoFromPrpc \"Create credit memo from charge\"); [Create debit memo from charge](https://www.zuora.com/developer/api-reference/#operation/POST_DebitMemoFromPrpc \"Create debit memo from charge\") | Amount of the memo item. | | amount | 224.0 and later | [Create credit memo from charge](https://www.zuora.com/developer/api-reference/#operation/POST_CreditMemoFromPrpc \"Create credit memo from charge\"); [Create debit memo from charge](https://www.zuora.com/developer/api-reference/#operation/POST_DebitMemoFromPrpc \"Create debit memo from charge\") | Amount of the memo item. | | subscriptionNumbers | 222.4 and earlier | [Create order](https://www.zuora.com/developer/api-reference/#operation/POST_Order \"Create order\") | Container for the subscription numbers of the subscriptions in an order. | | subscriptions | 223.0 and later | [Create order](https://www.zuora.com/developer/api-reference/#operation/POST_Order \"Create order\") | Container for the subscription numbers and statuses in an order. | | creditTaxItems | 238.0 and earlier | [Get credit memo items](https://www.zuora.com/developer/api-reference/#operation/GET_CreditMemoItems \"Get credit memo items\"); [Get credit memo item](https://www.zuora.com/developer/api-reference/#operation/GET_CreditMemoItem \"Get credit memo item\") | Container for the taxation items of the credit memo item. | | taxItems | 238.0 and earlier | [Get debit memo items](https://www.zuora.com/developer/api-reference/#operation/GET_DebitMemoItems \"Get debit memo items\"); [Get debit memo item](https://www.zuora.com/developer/api-reference/#operation/GET_DebitMemoItem \"Get debit memo item\") | Container for the taxation items of the debit memo item. | | taxationItems | 239.0 and later | [Get credit memo items](https://www.zuora.com/developer/api-reference/#operation/GET_CreditMemoItems \"Get credit memo items\"); [Get credit memo item](https://www.zuora.com/developer/api-reference/#operation/GET_CreditMemoItem \"Get credit memo item\"); [Get debit memo items](https://www.zuora.com/developer/api-reference/#operation/GET_DebitMemoItems \"Get debit memo items\"); [Get debit memo item](https://www.zuora.com/developer/api-reference/#operation/GET_DebitMemoItem \"Get debit memo item\") | Container for the taxation items of the memo item. | #### Version 207.0 and Later The response structure of the [Preview Subscription](https://www.zuora.com/developer/api-reference/#operation/POST_SubscriptionPreview \"Preview Subscription\") and [Update Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_Subscription \"Update Subscription\") methods are changed. The following invoice related response fields are moved to the invoice container: * amount * amountWithoutTax * taxAmount * invoiceItems * targetDate * chargeMetrics # Zuora Object Model The following diagram presents a high-level view of the key Zuora objects. Click the image to open it in a new tab to resize it. <a href=\"https://www.zuora.com/wp-content/uploads/2017/01/ZuoraERD.jpeg\" target=\"_blank\"><img src=\"https://www.zuora.com/wp-content/uploads/2017/01/ZuoraERD.jpeg\" alt=\"Zuora Object Model Diagram\"></a> See the following articles for information about other parts of the Zuora business object model: * <a href=\"https://knowledgecenter.zuora.com/CB_Billing/Invoice_Settlement/D_Invoice_Settlement_Object_Model\" target=\"_blank\">Invoice Settlement Object Model</a> * <a href=\"https://knowledgecenter.zuora.com/BC_Subscription_Management/Orders/BA_Orders_Object_Model\" target=\"_blank\">Orders Object Model</a> You can use the [Describe object](https://www.zuora.com/developer/api-reference/#operation/GET_Describe) operation to list the fields of each Zuora object that is available in your tenant. When you call the operation, you must specify the API name of the Zuora object. The following table provides the API name of each Zuora object: | Object | API Name | |-----------------------------------------------|--------------------------------------------| | Account | `Account` | | Accounting Code | `AccountingCode` | | Accounting Period | `AccountingPeriod` | | Amendment | `Amendment` | | Application Group | `ApplicationGroup` | | Billing Run | <p>`BillingRun`</p><p>**Note:** The API name of this object is `BillingRun` in the [Describe object](https://www.zuora.com/developer/api-reference/#operation/GET_Describe) operation, Export ZOQL queries, and Data Query. Otherwise, the API name of this object is `BillRun`.</p> | | Contact | `Contact` | | Contact Snapshot | `ContactSnapshot` | | Credit Balance Adjustment | `CreditBalanceAdjustment` | | Credit Memo | `CreditMemo` | | Credit Memo Application | `CreditMemoApplication` | | Credit Memo Application Item | `CreditMemoApplicationItem` | | Credit Memo Item | `CreditMemoItem` | | Credit Memo Part | `CreditMemoPart` | | Credit Memo Part Item | `CreditMemoPartItem` | | Credit Taxation Item | `CreditTaxationItem` | | Custom Exchange Rate | `FXCustomRate` | | Debit Memo | `DebitMemo` | | Debit Memo Item | `DebitMemoItem` | | Debit Taxation Item | `DebitTaxationItem` | | Discount Applied Metrics | `DiscountAppliedMetrics` | | Entity | `Tenant` | | Feature | `Feature` | | Gateway Reconciliation Event | `PaymentGatewayReconciliationEventLog` | | Gateway Reconciliation Job | `PaymentReconciliationJob` | | Gateway Reconciliation Log | `PaymentReconciliationLog` | | Invoice | `Invoice` | | Invoice Adjustment | `InvoiceAdjustment` | | Invoice Item | `InvoiceItem` | | Invoice Item Adjustment | `InvoiceItemAdjustment` | | Invoice Payment | `InvoicePayment` | | Journal Entry | `JournalEntry` | | Journal Entry Item | `JournalEntryItem` | | Journal Run | `JournalRun` | | Order | `Order` | | Order Action | `OrderAction` | | Order ELP | `OrderElp` | | Order Item | `OrderItem` | | Order MRR | `OrderMrr` | | Order Quantity | `OrderQuantity` | | Order TCB | `OrderTcb` | | Order TCV | `OrderTcv` | | Payment | `Payment` | | Payment Application | `PaymentApplication` | | Payment Application Item | `PaymentApplicationItem` | | Payment Method | `PaymentMethod` | | Payment Method Snapshot | `PaymentMethodSnapshot` | | Payment Method Transaction Log | `PaymentMethodTransactionLog` | | Payment Method Update | `UpdaterDetail` | | Payment Part | `PaymentPart` | | Payment Part Item | `PaymentPartItem` | | Payment Run | `PaymentRun` | | Payment Transaction Log | `PaymentTransactionLog` | | Processed Usage | `ProcessedUsage` | | Product | `Product` | | Product Feature | `ProductFeature` | | Product Rate Plan | `ProductRatePlan` | | Product Rate Plan Charge | `ProductRatePlanCharge` | | Product Rate Plan Charge Tier | `ProductRatePlanChargeTier` | | Rate Plan | `RatePlan` | | Rate Plan Charge | `RatePlanCharge` | | Rate Plan Charge Tier | `RatePlanChargeTier` | | Refund | `Refund` | | Refund Application | `RefundApplication` | | Refund Application Item | `RefundApplicationItem` | | Refund Invoice Payment | `RefundInvoicePayment` | | Refund Part | `RefundPart` | | Refund Part Item | `RefundPartItem` | | Refund Transaction Log | `RefundTransactionLog` | | Revenue Charge Summary | `RevenueChargeSummary` | | Revenue Charge Summary Item | `RevenueChargeSummaryItem` | | Revenue Event | `RevenueEvent` | | Revenue Event Credit Memo Item | `RevenueEventCreditMemoItem` | | Revenue Event Debit Memo Item | `RevenueEventDebitMemoItem` | | Revenue Event Invoice Item | `RevenueEventInvoiceItem` | | Revenue Event Invoice Item Adjustment | `RevenueEventInvoiceItemAdjustment` | | Revenue Event Item | `RevenueEventItem` | | Revenue Event Item Credit Memo Item | `RevenueEventItemCreditMemoItem` | | Revenue Event Item Debit Memo Item | `RevenueEventItemDebitMemoItem` | | Revenue Event Item Invoice Item | `RevenueEventItemInvoiceItem` | | Revenue Event Item Invoice Item Adjustment | `RevenueEventItemInvoiceItemAdjustment` | | Revenue Event Type | `RevenueEventType` | | Revenue Schedule | `RevenueSchedule` | | Revenue Schedule Credit Memo Item | `RevenueScheduleCreditMemoItem` | | Revenue Schedule Debit Memo Item | `RevenueScheduleDebitMemoItem` | | Revenue Schedule Invoice Item | `RevenueScheduleInvoiceItem` | | Revenue Schedule Invoice Item Adjustment | `RevenueScheduleInvoiceItemAdjustment` | | Revenue Schedule Item | `RevenueScheduleItem` | | Revenue Schedule Item Credit Memo Item | `RevenueScheduleItemCreditMemoItem` | | Revenue Schedule Item Debit Memo Item | `RevenueScheduleItemDebitMemoItem` | | Revenue Schedule Item Invoice Item | `RevenueScheduleItemInvoiceItem` | | Revenue Schedule Item Invoice Item Adjustment | `RevenueScheduleItemInvoiceItemAdjustment` | | Subscription | `Subscription` | | Subscription Product Feature | `SubscriptionProductFeature` | | Taxable Item Snapshot | `TaxableItemSnapshot` | | Taxation Item | `TaxationItem` | | Updater Batch | `UpdaterBatch` | | Usage | `Usage` | # noqa: E501 OpenAPI spec version: 2019-07-26 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import zuora_client from zuora_client.models.put_write_off_invoice_response_credit_memo import PUTWriteOffInvoiceResponseCreditMemo # noqa: E501 from zuora_client.rest import ApiException class TestPUTWriteOffInvoiceResponseCreditMemo(unittest.TestCase): """PUTWriteOffInvoiceResponseCreditMemo unit test stubs""" def setUp(self): pass def tearDown(self): pass def testPUTWriteOffInvoiceResponseCreditMemo(self): """Test PUTWriteOffInvoiceResponseCreditMemo""" # FIXME: construct object with mandatory attributes with example values # model = zuora_client.models.put_write_off_invoice_response_credit_memo.PUTWriteOffInvoiceResponseCreditMemo() # noqa: E501 pass if __name__ == '__main__': unittest.main()
aca3d953cd1e8d9ebdc2f0213306bab4491b589f
d488f052805a87b5c4b124ca93494bc9b78620f7
/google-cloud-sdk/lib/surface/compute/addresses/create.py
009544b0796daa56bbdd5968a5eb18a72122a125
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0", "MIT" ]
permissive
PacktPublishing/DevOps-Fundamentals
5ce1fc938db66b420691aa8106ecfb3f9ceb1ace
60597e831e08325c7e51e8557591917f7c417275
refs/heads/master
2023-02-02T04:48:15.346907
2023-01-30T08:33:35
2023-01-30T08:33:35
131,293,311
13
19
null
null
null
null
UTF-8
Python
false
false
14,666
py
# Copyright 2014 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Command for reserving IP addresses.""" from googlecloudsdk.api_lib.compute import base_classes from googlecloudsdk.api_lib.compute import constants from googlecloudsdk.api_lib.compute import name_generator from googlecloudsdk.calliope import base from googlecloudsdk.calliope import exceptions from googlecloudsdk.command_lib.compute import flags as compute_flags from googlecloudsdk.command_lib.compute.addresses import flags def _Args(cls, parser): """Argument parsing.""" cls.ADDRESSES_ARG = flags.AddressArgument(required=False) cls.ADDRESSES_ARG.AddArgument(parser, operation_type='create') flags.AddDescription(parser) parser.display_info.AddCacheUpdater(flags.AddressesCompleter) @base.ReleaseTracks(base.ReleaseTrack.GA) class Create(base.CreateCommand): """Reserve IP addresses. *{command}* is used to reserve one or more IP addresses. Once an IP address is reserved, it will be associated with the project until it is released using 'gcloud compute addresses delete'. Ephemeral IP addresses that are in use by resources in the project can be reserved using the `--addresses` flag. ## EXAMPLES To reserve three IP addresses in the `us-central1` region, run: $ {command} ADDRESS-1 ADDRESS-2 ADDRESS-3 --region us-central1 To reserve ephemeral IP addresses 162.222.181.198 and 23.251.146.189 which are being used by virtual machine instances in the `us-central1` region, run: $ {command} --addresses 162.222.181.198,23.251.146.189 --region us-central1 In the above invocation, the two addresses will be assigned random names. To reserve an IP address from the subnet ``default'' in the ``us-central1'' region, run: $ {command} SUBNET-ADDRESS-1 --region us-central1 --subnet default """ SUBNETWORK_ARG = None ADDRESSES_ARG = None @classmethod def Args(cls, parser): _Args(cls, parser) flags.AddAddressesAndIPVersions(parser, required=False) cls.SUBNETWORK_ARG = flags.SubnetworkArgument() cls.SUBNETWORK_ARG.AddArgument(parser) def GetAddress(self, messages, args, address, address_ref, resource_parser): if args.ip_version or ( address is None and address_ref.Collection() == 'compute.globalAddresses'): ip_version = messages.Address.IpVersionValueValuesEnum( args.ip_version or 'IPV4') else: # IP version is only specified in global requests if an address is not # specified to determine whether an ipv4 or ipv6 address should be # allocated. ip_version = None # TODO(b/36862747): get rid of args.subnet check if args.subnet: if address_ref.Collection() == 'compute.globalAddresses': raise exceptions.ToolException( '[--subnet] may not be specified for global addresses.') if not args.subnet_region: args.subnet_region = address_ref.region subnetwork_url = flags.SubnetworkArgument().ResolveAsResource( args, resource_parser).SelfLink() else: subnetwork_url = None return messages.Address( address=address, description=args.description, ipVersion=ip_version, name=address_ref.Name(), addressType=(messages.Address.AddressTypeValueValuesEnum.INTERNAL if subnetwork_url else None), subnetwork=subnetwork_url) def Run(self, args): """Issues requests necessary to create Addresses.""" holder = base_classes.ComputeApiHolder(self.ReleaseTrack()) client = holder.client names, addresses = self._GetNamesAndAddresses(args) if not args.name: args.name = names address_refs = self.ADDRESSES_ARG.ResolveAsResource( args, holder.resources, scope_lister=compute_flags.GetDefaultScopeLister(client)) requests = [] for address, address_ref in zip(addresses, address_refs): address_msg = self.GetAddress(client.messages, args, address, address_ref, holder.resources) if address_ref.Collection() == 'compute.globalAddresses': requests.append((client.apitools_client.globalAddresses, 'Insert', client.messages.ComputeGlobalAddressesInsertRequest( address=address_msg, project=address_ref.project))) elif address_ref.Collection() == 'compute.addresses': requests.append((client.apitools_client.addresses, 'Insert', client.messages.ComputeAddressesInsertRequest( address=address_msg, region=address_ref.region, project=address_ref.project))) return client.MakeRequests(requests) def _GetNamesAndAddresses(self, args): """Returns names and addresses provided in args.""" if not args.addresses and not args.name: raise exceptions.ToolException( 'At least one name or address must be provided.') if args.name: names = args.name else: # If we dont have any names then we must some addresses. names = [name_generator.GenerateRandomName() for _ in args.addresses] if args.addresses: addresses = args.addresses else: # If we dont have any addresses then we must some names. addresses = [None] * len(args.name) if len(addresses) != len(names): raise exceptions.ToolException( 'If providing both, you must specify the same number of names as ' 'addresses.') return names, addresses @base.ReleaseTracks(base.ReleaseTrack.BETA) class CreateBeta(Create): """Reserve IP addresses. *{command}* is used to reserve one or more IP addresses. Once an IP address is reserved, it will be associated with the project until it is released using 'gcloud compute addresses delete'. Ephemeral IP addresses that are in use by resources in the project, can be reserved using the ``--addresses'' flag. ## EXAMPLES To reserve three IP addresses in the ``us-central1'' region, run: $ {command} ADDRESS-1 ADDRESS-2 ADDRESS-3 --region us-central1 To reserve ephemeral IP addresses 162.222.181.198 and 23.251.146.189 which are being used by virtual machine instances in the ``us-central1'' region, run: $ {command} --addresses 162.222.181.198,23.251.146.189 --region us-central1 In the above invocation, the two addresses will be assigned random names. To reserve an IP address from the subnet ``default'' in the ``us-central1'' region, run: $ {command} SUBNET-ADDRESS-1 --region us-central1 --subnet default """ SUBNETWORK_ARG = None ADDRESSES_ARG = None @classmethod def Args(cls, parser): _Args(cls, parser) flags.AddAddressesAndIPVersions(parser, required=False) flags.AddNetworkTier(parser) cls.SUBNETWORK_ARG = flags.SubnetworkArgument() cls.SUBNETWORK_ARG.AddArgument(parser) def ConstructNetworkTier(self, messages, args): if args.network_tier: network_tier = args.network_tier.upper() if network_tier in constants.NETWORK_TIER_CHOICES_FOR_INSTANCE: return messages.Address.NetworkTierValueValuesEnum(args.network_tier) else: raise exceptions.InvalidArgumentException( '--network-tier', 'Invalid network tier [{tier}]'.format(tier=network_tier)) else: return None def GetAddress(self, messages, args, address, address_ref, resource_parser): """Override.""" network_tier = self.ConstructNetworkTier(messages, args) if args.ip_version or ( address is None and address_ref.Collection() == 'compute.globalAddresses'): ip_version = messages.Address.IpVersionValueValuesEnum(args.ip_version or 'IPV4') else: # IP version is only specified in global requests if an address is not # specified to determine whether an ipv4 or ipv6 address should be # allocated. ip_version = None # TODO(b/36862747): get rid of args.subnet check if args.subnet: if address_ref.Collection() == 'compute.globalAddresses': raise exceptions.ToolException( '[--subnet] may not be specified for global addresses.') if not args.subnet_region: args.subnet_region = address_ref.region subnetwork_url = flags.SubnetworkArgument().ResolveAsResource( args, resource_parser).SelfLink() else: subnetwork_url = None return messages.Address( address=address, description=args.description, networkTier=network_tier, ipVersion=ip_version, name=address_ref.Name(), addressType=(messages.Address.AddressTypeValueValuesEnum.INTERNAL if subnetwork_url else None), subnetwork=subnetwork_url) @base.ReleaseTracks(base.ReleaseTrack.ALPHA) class CreateAlpha(CreateBeta): """Reserve IP addresses. *{command}* is used to reserve one or more IP addresses. Once an IP address is reserved, it will be associated with the project until it is released using 'gcloud compute addresses delete'. Ephemeral IP addresses that are in use by resources in the project, can be reserved using the ``--addresses'' flag. ## EXAMPLES To reserve three IP addresses in the ``us-central1'' region, run: $ {command} ADDRESS-1 ADDRESS-2 ADDRESS-3 --region us-central1 To reserve ephemeral IP addresses 162.222.181.198 and 23.251.146.189 which are being used by virtual machine instances in the ``us-central1'' region, run: $ {command} --addresses 162.222.181.198,23.251.146.189 --region us-central1 In the above invocation, the two addresses will be assigned random names. To reserve an IP address from the subnet ``default'' in the ``us-central1'' region, run: $ {command} SUBNET-ADDRESS-1 --region us-central1 --subnet default To reserve an IP range 10.110.0.0/16 from the network ``default'' for VPC_PEERING, run: $ {command} IP-RANGE-1 --global --addresses 10.110.0.0 --prefix-length 16 --purpose VPC_PEERING --network default To reserve any IP range with prefix length 16 from the network ``default'' for VPC_PEERING, run: $ {command} IP-RANGE-1 --global --prefix-length 16 --purpose VPC_PEERING --network default """ SUBNETWORK_ARG = None NETWORK_ARG = None @classmethod def Args(cls, parser): _Args(cls, parser) flags.AddAddressesAndIPVersions(parser, required=False) flags.AddNetworkTier(parser) flags.AddPrefixLength(parser) flags.AddPurpose(parser) cls.SUBNETWORK_ARG = flags.SubnetworkArgument() cls.SUBNETWORK_ARG.AddArgument(parser) cls.NETWORK_ARG = flags.NetworkArgument() cls.NETWORK_ARG.AddArgument(parser) def GetAddress(self, messages, args, address, address_ref, resource_parser): """Override.""" network_tier = self.ConstructNetworkTier(messages, args) if args.ip_version or ( address is None and address_ref.Collection() == 'compute.globalAddresses'): ip_version = messages.Address.IpVersionValueValuesEnum( args.ip_version or 'IPV4') else: # IP version is only specified in global requests if an address is not # specified to determine whether an ipv4 or ipv6 address should be # allocated. ip_version = None if args.subnet and args.network: raise exceptions.ConflictingArgumentsException('--network', '--subnet') purpose = None if args.purpose and not args.network and not args.subnet: raise exceptions.MinimumArgumentException(['--network', '--subnet'], ' if --purpose is specified') # TODO(b/36862747): get rid of args.subnet check if args.subnet: if address_ref.Collection() == 'compute.globalAddresses': raise exceptions.ToolException( '[--subnet] may not be specified for global addresses.') if not args.subnet_region: args.subnet_region = address_ref.region subnetwork_url = flags.SubnetworkArgument().ResolveAsResource( args, resource_parser).SelfLink() purpose = messages.Address.PurposeValueValuesEnum(args.purpose or 'GCE_ENDPOINT') if purpose != messages.Address.PurposeValueValuesEnum.GCE_ENDPOINT: raise exceptions.InvalidArgumentException( '--purpose', 'must be GCE_ENDPOINT for regional internal addresses.') else: subnetwork_url = None network_url = None if args.network: if address_ref.Collection() == 'compute.addresses': raise exceptions.InvalidArgumentException( '--network', 'network may not be specified for regional addresses.') network_url = flags.NetworkArgument().ResolveAsResource( args, resource_parser).SelfLink() purpose = messages.Address.PurposeValueValuesEnum(args.purpose or 'VPC_PEERING') if purpose != messages.Address.PurposeValueValuesEnum.VPC_PEERING: raise exceptions.InvalidArgumentException( '--purpose', 'must be VPC_PEERING for global internal addresses.') if not args.prefix_length: raise exceptions.RequiredArgumentException( '--prefix-length', 'prefix length is needed for reserving IP ranges.') if args.prefix_length: if purpose != messages.Address.PurposeValueValuesEnum.VPC_PEERING: raise exceptions.InvalidArgumentException( '--prefix-length', 'can only be used with [--purpose VPC_PEERING].') return messages.Address( address=address, prefixLength=args.prefix_length, description=args.description, networkTier=network_tier, ipVersion=ip_version, name=address_ref.Name(), addressType=(messages.Address.AddressTypeValueValuesEnum.INTERNAL if subnetwork_url or network_url else None), purpose=purpose, subnetwork=subnetwork_url, network=network_url)
f677ca474fb5707bca7e6923f812c0f9b03202fe
aa6e1dd07a71a73bc08574b76f9e57a3ce8c8286
/077.Test_BeeWare_windows/beeware-tutorial/beeware-venv/Lib/site-packages/pip/_internal/network/cache.py
a0d55b5e992a5f85890fc06703f33dc53995a17b
[ "MIT" ]
permissive
IvanaXu/PyTools
0aff5982f50bb300bfa950405192c78473b69537
358ae06eef418fde35f424909d4f13049ca9ec7b
refs/heads/master
2023-06-07T21:45:44.242363
2023-06-06T16:00:25
2023-06-06T16:00:25
163,940,845
60
8
MIT
2022-12-23T02:49:05
2019-01-03T07:54:16
Python
UTF-8
Python
false
false
2,329
py
"""HTTP cache implementation. """ import os from contextlib import contextmanager from pip._vendor.cachecontrol.cache import BaseCache from pip._vendor.cachecontrol.caches import FileCache from pip._vendor.requests.models import Response from pip._internal.utils.filesystem import adjacent_tmp_file, replace from pip._internal.utils.misc import ensure_dir from pip._internal.utils.typing import MYPY_CHECK_RUNNING if MYPY_CHECK_RUNNING: from typing import Optional, Iterator def is_from_cache(response): # type: (Response) -> bool return getattr(response, "from_cache", False) @contextmanager def suppressed_cache_errors(): # type: () -> Iterator[None] """If we can't access the cache then we can just skip caching and process requests as if caching wasn't enabled. """ try: yield except (OSError, IOError): pass class SafeFileCache(BaseCache): """ A file based cache which is safe to use even when the target directory may not be accessible or writable. """ def __init__(self, directory): # type: (str) -> None assert directory is not None, "Cache directory must not be None." super(SafeFileCache, self).__init__() self.directory = directory def _get_cache_path(self, name): # type: (str) -> str # From cachecontrol.caches.file_cache.FileCache._fn, brought into our # class for backwards-compatibility and to avoid using a non-public # method. hashed = FileCache.encode(name) parts = list(hashed[:5]) + [hashed] return os.path.join(self.directory, *parts) def get(self, key): # type: (str) -> Optional[bytes] path = self._get_cache_path(key) with suppressed_cache_errors(): with open(path, 'rb') as f: return f.read() def set(self, key, value): # type: (str, bytes) -> None path = self._get_cache_path(key) with suppressed_cache_errors(): ensure_dir(os.path.dirname(path)) with adjacent_tmp_file(path) as f: f.write(value) replace(f.name, path) def delete(self, key): # type: (str) -> None path = self._get_cache_path(key) with suppressed_cache_errors(): os.remove(path)
b04538155bd3cd73f2f1271087a0b63e9be949e1
b6303baeaa840671f1ea747d47c905779a07ffce
/edital/migrations/0015_auto_20210928_1833.py
9a7475e433d719627343e80ac38fcc3a631bb3c5
[]
no_license
amarantejoacil/sisnae
89954ef9e837799750dc56274ec1207e6d39daef
90e237a41e698cda357b8f555fbb0649f16a78b3
refs/heads/main
2023-08-24T23:06:47.628428
2021-10-27T16:26:12
2021-10-27T16:26:12
401,503,074
1
0
null
null
null
null
UTF-8
Python
false
false
739
py
# Generated by Django 3.2.6 on 2021-09-28 22:33 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('edital', '0014_auto_20210907_2050'), ] operations = [ migrations.AddField( model_name='edital', name='edital_quantidade_vaga', field=models.IntegerField(default=100, verbose_name='Quantidade de vaga'), preserve_default=False, ), migrations.AddField( model_name='edital', name='edital_valor_auxilio', field=models.DecimalField(decimal_places=2, default=100, max_digits=8, verbose_name='Valor do auxílio'), preserve_default=False, ), ]
feead4ae8987ec4ae2e3b66f634259e951d22ad3
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/synthetic/tree-big-4214.py
2e4e8115bab2dbd80fa145b28bc6f637fbeefaec
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
23,299
py
# Binary-search trees class TreeNode(object): value:int = 0 left:"TreeNode" = None right:"TreeNode" = None def insert(self:"TreeNode", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode(x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode(x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class TreeNode2(object): value:int = 0 value2:int = 0 left:"TreeNode2" = None left2:"TreeNode2" = None right:"TreeNode2" = None right2:"TreeNode2" = None def insert(self:"TreeNode2", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode2(x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode2(x, x) return True else: return self.right.insert(x) return False def insert2(self:"TreeNode2", x:int, x2:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode2(x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode2(x, x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode2", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains2(self:"TreeNode2", x:int, x2:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class TreeNode3(object): value:int = 0 value2:int = 0 value3:int = 0 left:"TreeNode3" = None left2:"TreeNode3" = None left3:"TreeNode3" = None right:"TreeNode3" = None right2:"TreeNode3" = None right3:"TreeNode3" = None def insert(self:"TreeNode3", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode3(x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode3(x, x, x) return True else: return self.right.insert(x) return False def insert2(self:"TreeNode3", x:int, x2:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode3(x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode3(x, x, x) return True else: return self.right.insert(x) return False def insert3(self:"TreeNode3", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode3(x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode3(x, x, x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode3", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains2(self:"TreeNode3", x:int, x2:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains3(self:"TreeNode3", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class TreeNode4(object): value:int = 0 value2:int = 0 value3:int = 0 value4:int = 0 left:"TreeNode4" = None left2:"TreeNode4" = None left3:"TreeNode4" = None left4:"TreeNode4" = None right:"TreeNode4" = None right2:"TreeNode4" = None right3:"TreeNode4" = None right4:"TreeNode4" = None def insert(self:"TreeNode4", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode4(x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode4(x, x, x, x) return True else: return self.right.insert(x) return False def insert2(self:"TreeNode4", x:int, x2:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode4(x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode4(x, x, x, x) return True else: return self.right.insert(x) return False def insert3(self:"TreeNode4", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode4(x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode4(x, x, x, x) return True else: return self.right.insert(x) return False def insert4(self:"TreeNode4", x:int, x2:int, x3:int, x4:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode4(x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode4(x, x, x, x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode4", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains2(self:"TreeNode4", x:int, x2:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains3(self:"TreeNode4", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains4(self:"TreeNode4", x:int, x2:int, x3:int, x4:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class TreeNode5(object): value:int = 0 value2:int = 0 value3:int = 0 value4:int = 0 value5:int = 0 left:"TreeNode5" = None left2:"TreeNode5" = None left3:"TreeNode5" = None left4:"TreeNode5" = None left5:"TreeNode5" = None right:"TreeNode5" = None right2:"TreeNode5" = None right3:"TreeNode5" = None right4:"TreeNode5" = None right5:"TreeNode5" = None def insert(self:"TreeNode5", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def insert2(self:"TreeNode5", x:int, x2:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def insert3(self:"TreeNode5", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def insert4(self:"TreeNode5", x:int, x2:int, x3:int, x4:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def insert5(self:"TreeNode5", x:int, x2:int, x3:int, x4:int, x5:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert($Parameters) return False def contains(self:"TreeNode5", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains2(self:"TreeNode5", x:int, x2:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains3(self:"TreeNode5", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains4(self:"TreeNode5", x:int, x2:int, x3:int, x4:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains5(self:"TreeNode5", x:int, x2:int, x3:int, x4:int, x5:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class Tree(object): root:TreeNode = None size:int = 0 def insert(self:"Tree", x:int) -> object: if self.root is None: self.root = makeNode(x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) class Tree2(object): root:TreeNode2 = None root2:TreeNode2 = None size:int = 0 size2:int = 0 def insert(self:"Tree2", x:int) -> object: if self.root is None: self.root = makeNode2(x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert2(self:"Tree2", x:int, x2:int) -> object: if self.root is None: self.root = makeNode2(x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree2", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains2(self:"Tree2", x:int, x2:int) -> bool: if self.root is None: return False else: return self.root.contains(x) class Tree3(object): root:TreeNode3 = None root2:TreeNode3 = None root3:TreeNode3 = None size:int = 0 size2:int = 0 size3:int = 0 def insert(self:"Tree3", x:int) -> object: if self.root is None: self.root = makeNode3(x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert2(self:"Tree3", x:int, x2:int) -> object: if self.root is None: self.root = makeNode3(x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert3(self:"Tree3", x:int, x2:int, x3:int) -> object: if self.root is None: self.root = makeNode3(x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree3", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains2(self:"Tree3", x:int, x2:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains3(self:"Tree3", x:int, x2:int, x3:int) -> bool: if self.root is None: return False else: return self.root.contains(x) class Tree4(object): root:TreeNode4 = None root2:TreeNode4 = None root3:TreeNode4 = None root4:TreeNode4 = None size:int = 0 size2:int = 0 size3:int = 0 size4:int = 0 def insert(self:"Tree4", x:int) -> object: if self.root is None: self.root = makeNode4(x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert2(self:"Tree4", x:int, x2:int) -> object: if self.root is None: self.root = makeNode4(x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert3(self:"Tree4", x:int, x2:int, x3:int) -> object: if self.root is None: self.root = makeNode4(x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert4(self:"Tree4", x:int, x2:int, x3:int, x4:int) -> object: if self.root is None: self.root = makeNode4(x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree4", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains2(self:"Tree4", x:int, x2:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains3(self:"Tree4", x:int, x2:int, x3:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains4(self:"Tree4", x:int, x2:int, x3:int, x4:int) -> bool: if self.root is None: return False else: return self.root.contains(x) class Tree5(object): root:TreeNode5 = None root2:TreeNode5 = None root3:TreeNode5 = None root4:TreeNode5 = None root5:TreeNode5 = None size:int = 0 size2:int = 0 size3:int = 0 size4:int = 0 size5:int = 0 def insert(self:"Tree5", x:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert2(self:"Tree5", x:int, x2:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert3(self:"Tree5", x:int, x2:int, x3:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert4(self:"Tree5", x:int, x2:int, x3:int, x4:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert5(self:"Tree5", x:int, x2:int, x3:int, x4:int, x5:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree5", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains2(self:"Tree5", x:int, x2:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains3(self:"Tree5", x:int, x2:int, x3:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains4(self:"Tree5", x:int, x2:int, x3:int, x4:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains5(self:"Tree5", x:int, x2:int, x3:int, x4:int, x5:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def makeNode(x: int) -> TreeNode: b:TreeNode = None b = TreeNode() b.value = x return b def makeNode2(x: int, x2: int) -> TreeNode2: b:TreeNode2 = None b2:TreeNode2 = None b = TreeNode2() b.value = x return b def makeNode3(x: int, x2: int, x3: int) -> TreeNode3: b:TreeNode3 = None b2:TreeNode3 = None b3:TreeNode3 = None b = TreeNode3() b.value = x return b def makeNode4(x: int, x2: int, x3: int, x4: int) -> TreeNode4: b:TreeNode4 = None b2:TreeNode4 = None b3:TreeNode4 = None b4:TreeNode4 = None b = TreeNode4() b.value = x return b def makeNode5(x: int, x2: int, x3: int, x4: int, x5: int) -> TreeNode5: b:TreeNode5 = None b2:TreeNode5 = None b3:TreeNode5 = None b4:TreeNode5 = None b5:TreeNode5 = None b = TreeNode5() b.value = x return b # Input parameters n:int = 100 n2:int = 100 n3:int = 100 n4:int = 100 n5:int = 100 c:int = 4 c2:int = 4 c3:int = 4 c4:int = 4 c5:int = 4 # Data t:Tree = None t2:Tree = None t3:Tree = None t4:Tree = None t5:Tree = None i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 i5:int = 0 k:int = 37813 k2:int = 37813 k3:int = 37813 k4:int = 37813 k5:int = 37813 # Crunch t = Tree() while i < n: t.insert(k) k = (k * 37813) % 37831 if i % c != 0: t.insert(i) i = i + 1 print(t.size) for i in [4, 8, 15, 16, 23, 42]: if t.contains(i): print(i)
768fff722cf0d2f12f0a7428a500a54db6db3a92
02952fc67147a2f11a9ed8c4eb29210bec5672ed
/business/service/urls/polardb.py
239025e7fe9457d9d1dfc284c34ba4bc1af18f10
[]
no_license
cuijianzhe/cow
b110a70398b09a401dadc7d3ed24dfe2bae50f5b
3539cab6e73571f84b7f17391d9a363a756f12e1
refs/heads/main
2023-06-04T10:33:33.975885
2021-06-19T10:40:36
2021-06-19T10:40:36
340,634,448
2
0
null
null
null
null
UTF-8
Python
false
false
365
py
from django.urls import path from business.service.apis import polardb as polardb_api urlpatterns = [ path('service/polardb/create/', polardb_api.CreateServicePolarDBApi.as_view()), path('service/polardb/delete/', polardb_api.DeleteServicePolarDBApi.as_view()), path('service/polardb/list/', polardb_api.ListServicePolarDBApi.as_view()), ]
bffd945b3e55d605e9bdc96d37c366719e574dc5
32cb0be487895629ad1184ea25e0076a43abba0a
/LifePictorial/top/api/rest/CrmGroupsGetRequest.py
fdf3e997d2a6a1433995e490178adfa406e9a607
[]
no_license
poorevil/LifePictorial
6814e447ec93ee6c4d5b0f1737335601899a6a56
b3cac4aa7bb5166608f4c56e5564b33249f5abef
refs/heads/master
2021-01-25T08:48:21.918663
2014-03-19T08:55:47
2014-03-19T08:55:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
334
py
''' Created by auto_sdk on 2014-02-10 16:59:30 ''' from top.api.base import RestApi class CrmGroupsGetRequest(RestApi): def __init__(self,domain='gw.api.taobao.com',port=80): RestApi.__init__(self,domain, port) self.current_page = None self.page_size = None def getapiname(self): return 'taobao.crm.groups.get'
d3987022176ead2e9f190e5c0da47c1505c6fba0
dfdecc0f91c6fa0319325561ed0a20f8544f0312
/test.py
4b61a3c63775e29a496c1734d0afc1a30b4e6eeb
[]
no_license
ShichaoMa/MultiThreadClosing
c3807047938329a8655d65dc011173c16375240c
43b556d9ee6a6ae11f1481675b822b2660a7c36b
refs/heads/master
2021-01-20T19:27:04.450710
2017-12-09T08:58:15
2017-12-09T08:58:15
64,533,341
4
0
null
null
null
null
UTF-8
Python
false
false
697
py
import time from threading import Thread from multi_thread_closing import MultiThreadClosing class Test(MultiThreadClosing): name = "test_thread" def start(self): t1 = Thread(target=self.process) t2 = Thread(target=self.process) self.threads.append(t1) self.threads.append(t2) t1.start() t2.start() while filter(lambda x:x.is_alive(), self.threads): print "main %s.."%self.alive time.sleep(1) def process(self): while self.alive: for i in range(20): print i time.sleep(3) if __name__ == "__main__": t = Test() t.set_logger() t.start()
a4f087cbb7c9c43b0ecc4c3defb3fd07e34068fa
5bf245e55b756ca3e664d857f36db092855c7a98
/externals/mne/beamformer/_lcmv.py
75a9b0204b6b6c2681bca51cb1e578b8a713ac9b
[ "BSD-3-Clause" ]
permissive
kingjr/decoding_challenge_cortana_2016_3rd
b264fabbe8fb2f3788d11dc2c4deebcf217a64a5
26c2ebf5200b5a5cd268fa73ac3928d7257d08d3
refs/heads/master
2021-01-20T17:54:12.617430
2016-07-13T22:31:58
2016-07-13T22:31:58
63,120,115
10
2
null
null
null
null
UTF-8
Python
false
false
30,679
py
"""Compute Linearly constrained minimum variance (LCMV) beamformer. """ # Authors: Alexandre Gramfort <[email protected]> # Roman Goj <[email protected]> # # License: BSD (3-clause) import numpy as np from scipy import linalg from ..io.constants import FIFF from ..io.proj import make_projector from ..io.pick import ( pick_types, pick_channels_forward, pick_channels_cov, pick_info) from ..forward import _subject_from_forward from ..minimum_norm.inverse import _get_vertno, combine_xyz, _check_reference from ..cov import compute_whitener, compute_covariance from ..source_estimate import _make_stc, SourceEstimate from ..source_space import label_src_vertno_sel from ..utils import logger, verbose, warn from .. import Epochs from ..externals import six def _setup_picks(picks, info, forward, noise_cov=None): if picks is None: picks = pick_types(info, meg=True, eeg=True, ref_meg=False, exclude='bads') ok_ch_names = set([c['ch_name'] for c in forward['info']['chs']]) if noise_cov is not None: ok_ch_names.union(set(noise_cov.ch_names)) if noise_cov is not None and set(info['bads']) != set(noise_cov['bads']): logger.info('info["bads"] and noise_cov["bads"] do not match, ' 'excluding bad channels from both') bads = set(info['bads']) if noise_cov is not None: bads.union(set(noise_cov['bads'])) ok_ch_names -= bads ch_names = [info['chs'][k]['ch_name'] for k in picks] ch_names = [c for c in ch_names if c in ok_ch_names] picks = [info['ch_names'].index(k) for k in ch_names if k in info['ch_names']] return picks @verbose def _apply_lcmv(data, info, tmin, forward, noise_cov, data_cov, reg, label=None, picks=None, pick_ori=None, rank=None, verbose=None): """ LCMV beamformer for evoked data, single epochs, and raw data Parameters ---------- data : array or list / iterable Sensor space data. If data.ndim == 2 a single observation is assumed and a single stc is returned. If data.ndim == 3 or if data is a list / iterable, a list of stc's is returned. info : dict Measurement info. tmin : float Time of first sample. forward : dict Forward operator. noise_cov : Covariance The noise covariance. data_cov : Covariance The data covariance. reg : float The regularization for the whitened data covariance. label : Label Restricts the LCMV solution to a given label. picks : array-like of int | None Indices (in info) of data channels. If None, MEG and EEG data channels (without bad channels) will be used. pick_ori : None | 'normal' | 'max-power' If 'normal', rather than pooling the orientations by taking the norm, only the radial component is kept. If 'max-power', the source orientation that maximizes output source power is chosen. rank : None | int | dict Specified rank of the noise covariance matrix. If None, the rank is detected automatically. If int, the rank is specified for the MEG channels. A dictionary with entries 'eeg' and/or 'meg' can be used to specify the rank for each modality. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- stc : SourceEstimate | VolSourceEstimate (or list of thereof) Source time courses. """ is_free_ori, ch_names, proj, vertno, G = \ _prepare_beamformer_input(info, forward, label, picks, pick_ori) # Handle whitening + data covariance whitener, _ = compute_whitener(noise_cov, info, picks, rank=rank) # whiten the leadfield G = np.dot(whitener, G) # Apply SSPs + whitener to data covariance data_cov = pick_channels_cov(data_cov, include=ch_names) Cm = data_cov['data'] if info['projs']: Cm = np.dot(proj, np.dot(Cm, proj.T)) Cm = np.dot(whitener, np.dot(Cm, whitener.T)) # Calculating regularized inverse, equivalent to an inverse operation after # the following regularization: # Cm += reg * np.trace(Cm) / len(Cm) * np.eye(len(Cm)) Cm_inv = linalg.pinv(Cm, reg) # Compute spatial filters W = np.dot(G.T, Cm_inv) n_orient = 3 if is_free_ori else 1 n_sources = G.shape[1] // n_orient for k in range(n_sources): Wk = W[n_orient * k: n_orient * k + n_orient] Gk = G[:, n_orient * k: n_orient * k + n_orient] Ck = np.dot(Wk, Gk) # Find source orientation maximizing output source power if pick_ori == 'max-power': eig_vals, eig_vecs = linalg.eigh(Ck) # Choosing the eigenvector associated with the middle eigenvalue. # The middle and not the minimal eigenvalue is used because MEG is # insensitive to one (radial) of the three dipole orientations and # therefore the smallest eigenvalue reflects mostly noise. for i in range(3): if i != eig_vals.argmax() and i != eig_vals.argmin(): idx_middle = i # TODO: The eigenvector associated with the smallest eigenvalue # should probably be used when using combined EEG and MEG data max_ori = eig_vecs[:, idx_middle] Wk[:] = np.dot(max_ori, Wk) Ck = np.dot(max_ori, np.dot(Ck, max_ori)) is_free_ori = False if is_free_ori: # Free source orientation Wk[:] = np.dot(linalg.pinv(Ck, 0.1), Wk) else: # Fixed source orientation Wk /= Ck # Pick source orientation maximizing output source power if pick_ori == 'max-power': W = W[0::3] # Preparing noise normalization noise_norm = np.sum(W ** 2, axis=1) if is_free_ori: noise_norm = np.sum(np.reshape(noise_norm, (-1, 3)), axis=1) noise_norm = np.sqrt(noise_norm) # Pick source orientation normal to cortical surface if pick_ori == 'normal': W = W[2::3] is_free_ori = False # Applying noise normalization if not is_free_ori: W /= noise_norm[:, None] if isinstance(data, np.ndarray) and data.ndim == 2: data = [data] return_single = True else: return_single = False subject = _subject_from_forward(forward) for i, M in enumerate(data): if len(M) != len(picks): raise ValueError('data and picks must have the same length') if not return_single: logger.info("Processing epoch : %d" % (i + 1)) # SSP and whitening if info['projs']: M = np.dot(proj, M) M = np.dot(whitener, M) # project to source space using beamformer weights if is_free_ori: sol = np.dot(W, M) logger.info('combining the current components...') sol = combine_xyz(sol) sol /= noise_norm[:, None] else: # Linear inverse: do computation here or delayed if M.shape[0] < W.shape[0] and pick_ori != 'max-power': sol = (W, M) else: sol = np.dot(W, M) if pick_ori == 'max-power': sol = np.abs(sol) tstep = 1.0 / info['sfreq'] yield _make_stc(sol, vertices=vertno, tmin=tmin, tstep=tstep, subject=subject) logger.info('[done]') def _prepare_beamformer_input(info, forward, label, picks, pick_ori): """Input preparation common for all beamformer functions. Check input values, prepare channel list and gain matrix. For documentation of parameters, please refer to _apply_lcmv. """ is_free_ori = forward['source_ori'] == FIFF.FIFFV_MNE_FREE_ORI if pick_ori in ['normal', 'max-power'] and not is_free_ori: raise ValueError('Normal or max-power orientation can only be picked ' 'when a forward operator with free orientation is ' 'used.') if pick_ori == 'normal' and not forward['surf_ori']: raise ValueError('Normal orientation can only be picked when a ' 'forward operator oriented in surface coordinates is ' 'used.') if pick_ori == 'normal' and not forward['src'][0]['type'] == 'surf': raise ValueError('Normal orientation can only be picked when a ' 'forward operator with a surface-based source space ' 'is used.') # Restrict forward solution to selected channels info_ch_names = [c['ch_name'] for c in info['chs']] ch_names = [info_ch_names[k] for k in picks] fwd_ch_names = forward['sol']['row_names'] # Keep channels in forward present in info: fwd_ch_names = [c for c in fwd_ch_names if c in info_ch_names] forward = pick_channels_forward(forward, fwd_ch_names) picks_forward = [fwd_ch_names.index(c) for c in ch_names] # Get gain matrix (forward operator) if label is not None: vertno, src_sel = label_src_vertno_sel(label, forward['src']) if is_free_ori: src_sel = 3 * src_sel src_sel = np.c_[src_sel, src_sel + 1, src_sel + 2] src_sel = src_sel.ravel() G = forward['sol']['data'][:, src_sel] else: vertno = _get_vertno(forward['src']) G = forward['sol']['data'] # Apply SSPs proj, ncomp, _ = make_projector(info['projs'], fwd_ch_names) if info['projs']: G = np.dot(proj, G) # Pick after applying the projections G = G[picks_forward] proj = proj[np.ix_(picks_forward, picks_forward)] return is_free_ori, ch_names, proj, vertno, G @verbose def lcmv(evoked, forward, noise_cov, data_cov, reg=0.01, label=None, pick_ori=None, picks=None, rank=None, verbose=None): """Linearly Constrained Minimum Variance (LCMV) beamformer. Compute Linearly Constrained Minimum Variance (LCMV) beamformer on evoked data. NOTE : This implementation has not been heavily tested so please report any issue or suggestions. Parameters ---------- evoked : Evoked Evoked data to invert forward : dict Forward operator noise_cov : Covariance The noise covariance data_cov : Covariance The data covariance reg : float The regularization for the whitened data covariance. label : Label Restricts the LCMV solution to a given label pick_ori : None | 'normal' | 'max-power' If 'normal', rather than pooling the orientations by taking the norm, only the radial component is kept. If 'max-power', the source orientation that maximizes output source power is chosen. picks : array-like of int Channel indices to use for beamforming (if None all channels are used except bad channels). rank : None | int | dict Specified rank of the noise covariance matrix. If None, the rank is detected automatically. If int, the rank is specified for the MEG channels. A dictionary with entries 'eeg' and/or 'meg' can be used to specify the rank for each modality. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- stc : SourceEstimate | VolSourceEstimate Source time courses See Also -------- lcmv_raw, lcmv_epochs Notes ----- The original reference is: Van Veen et al. Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. Biomedical Engineering (1997) vol. 44 (9) pp. 867--880 The reference for finding the max-power orientation is: Sekihara et al. Asymptotic SNR of scalar and vector minimum-variance beamformers for neuromagnetic source reconstruction. Biomedical Engineering (2004) vol. 51 (10) pp. 1726--34 """ _check_reference(evoked) info = evoked.info data = evoked.data tmin = evoked.times[0] picks = _setup_picks(picks, info, forward, noise_cov) data = data[picks] stc = _apply_lcmv( data=data, info=info, tmin=tmin, forward=forward, noise_cov=noise_cov, data_cov=data_cov, reg=reg, label=label, picks=picks, rank=rank, pick_ori=pick_ori) return six.advance_iterator(stc) @verbose def lcmv_epochs(epochs, forward, noise_cov, data_cov, reg=0.01, label=None, pick_ori=None, return_generator=False, picks=None, rank=None, verbose=None): """Linearly Constrained Minimum Variance (LCMV) beamformer. Compute Linearly Constrained Minimum Variance (LCMV) beamformer on single trial data. NOTE : This implementation has not been heavily tested so please report any issue or suggestions. Parameters ---------- epochs : Epochs Single trial epochs. forward : dict Forward operator. noise_cov : Covariance The noise covariance. data_cov : Covariance The data covariance. reg : float The regularization for the whitened data covariance. label : Label Restricts the LCMV solution to a given label. pick_ori : None | 'normal' | 'max-power' If 'normal', rather than pooling the orientations by taking the norm, only the radial component is kept. If 'max-power', the source orientation that maximizes output source power is chosen. return_generator : bool Return a generator object instead of a list. This allows iterating over the stcs without having to keep them all in memory. picks : array-like of int Channel indices to use for beamforming (if None all channels are used except bad channels). rank : None | int | dict Specified rank of the noise covariance matrix. If None, the rank is detected automatically. If int, the rank is specified for the MEG channels. A dictionary with entries 'eeg' and/or 'meg' can be used to specify the rank for each modality. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- stc: list | generator of (SourceEstimate | VolSourceEstimate) The source estimates for all epochs See Also -------- lcmv_raw, lcmv Notes ----- The original reference is: Van Veen et al. Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. Biomedical Engineering (1997) vol. 44 (9) pp. 867--880 The reference for finding the max-power orientation is: Sekihara et al. Asymptotic SNR of scalar and vector minimum-variance beamformers for neuromagnetic source reconstruction. Biomedical Engineering (2004) vol. 51 (10) pp. 1726--34 """ _check_reference(epochs) info = epochs.info tmin = epochs.times[0] picks = _setup_picks(picks, info, forward, noise_cov) data = epochs.get_data()[:, picks, :] stcs = _apply_lcmv( data=data, info=info, tmin=tmin, forward=forward, noise_cov=noise_cov, data_cov=data_cov, reg=reg, label=label, picks=picks, rank=rank, pick_ori=pick_ori) if not return_generator: stcs = [s for s in stcs] return stcs @verbose def lcmv_raw(raw, forward, noise_cov, data_cov, reg=0.01, label=None, start=None, stop=None, picks=None, pick_ori=None, rank=None, verbose=None): """Linearly Constrained Minimum Variance (LCMV) beamformer. Compute Linearly Constrained Minimum Variance (LCMV) beamformer on raw data. NOTE : This implementation has not been heavily tested so please report any issue or suggestions. Parameters ---------- raw : mne.io.Raw Raw data to invert. forward : dict Forward operator. noise_cov : Covariance The noise covariance. data_cov : Covariance The data covariance. reg : float The regularization for the whitened data covariance. label : Label Restricts the LCMV solution to a given label. start : int Index of first time sample (index not time is seconds). stop : int Index of first time sample not to include (index not time is seconds). picks : array-like of int Channel indices to use for beamforming (if None all channels are used except bad channels). pick_ori : None | 'normal' | 'max-power' If 'normal', rather than pooling the orientations by taking the norm, only the radial component is kept. If 'max-power', the source orientation that maximizes output source power is chosen. rank : None | int | dict Specified rank of the noise covariance matrix. If None, the rank is detected automatically. If int, the rank is specified for the MEG channels. A dictionary with entries 'eeg' and/or 'meg' can be used to specify the rank for each modality. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- stc : SourceEstimate | VolSourceEstimate Source time courses See Also -------- lcmv, lcmv_epochs Notes ----- The original reference is: Van Veen et al. Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. Biomedical Engineering (1997) vol. 44 (9) pp. 867--880 The reference for finding the max-power orientation is: Sekihara et al. Asymptotic SNR of scalar and vector minimum-variance beamformers for neuromagnetic source reconstruction. Biomedical Engineering (2004) vol. 51 (10) pp. 1726--34 """ _check_reference(raw) info = raw.info picks = _setup_picks(picks, info, forward, noise_cov) data, times = raw[picks, start:stop] tmin = times[0] stc = _apply_lcmv( data=data, info=info, tmin=tmin, forward=forward, noise_cov=noise_cov, data_cov=data_cov, reg=reg, label=label, picks=picks, rank=rank, pick_ori=pick_ori) return six.advance_iterator(stc) @verbose def _lcmv_source_power(info, forward, noise_cov, data_cov, reg=0.01, label=None, picks=None, pick_ori=None, rank=None, verbose=None): """Linearly Constrained Minimum Variance (LCMV) beamformer. Calculate source power in a time window based on the provided data covariance. Noise covariance is used to whiten the data covariance making the output equivalent to the neural activity index as defined by Van Veen et al. 1997. NOTE : This implementation has not been heavily tested so please report any issues or suggestions. Parameters ---------- info : dict Measurement info, e.g. epochs.info. forward : dict Forward operator. noise_cov : Covariance The noise covariance. data_cov : Covariance The data covariance. reg : float The regularization for the whitened data covariance. label : Label | None Restricts the solution to a given label. picks : array-like of int | None Indices (in info) of data channels. If None, MEG and EEG data channels (without bad channels) will be used. pick_ori : None | 'normal' If 'normal', rather than pooling the orientations by taking the norm, only the radial component is kept. rank : None | int | dict Specified rank of the noise covariance matrix. If None, the rank is detected automatically. If int, the rank is specified for the MEG channels. A dictionary with entries 'eeg' and/or 'meg' can be used to specify the rank for each modality. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- stc : SourceEstimate Source power with a single time point representing the entire time window for which data covariance was calculated. Notes ----- The original reference is: Van Veen et al. Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. Biomedical Engineering (1997) vol. 44 (9) pp. 867--880 """ if picks is None: picks = pick_types(info, meg=True, eeg=True, ref_meg=False, exclude='bads') is_free_ori, ch_names, proj, vertno, G =\ _prepare_beamformer_input( info, forward, label, picks, pick_ori) # Handle whitening info = pick_info( info, [info['ch_names'].index(k) for k in ch_names if k in info['ch_names']]) whitener, _ = compute_whitener(noise_cov, info, picks, rank=rank) # whiten the leadfield G = np.dot(whitener, G) # Apply SSPs + whitener to data covariance data_cov = pick_channels_cov(data_cov, include=ch_names) Cm = data_cov['data'] if info['projs']: Cm = np.dot(proj, np.dot(Cm, proj.T)) Cm = np.dot(whitener, np.dot(Cm, whitener.T)) # Calculating regularized inverse, equivalent to an inverse operation after # the following regularization: # Cm += reg * np.trace(Cm) / len(Cm) * np.eye(len(Cm)) Cm_inv = linalg.pinv(Cm, reg) # Compute spatial filters W = np.dot(G.T, Cm_inv) n_orient = 3 if is_free_ori else 1 n_sources = G.shape[1] // n_orient source_power = np.zeros((n_sources, 1)) for k in range(n_sources): Wk = W[n_orient * k: n_orient * k + n_orient] Gk = G[:, n_orient * k: n_orient * k + n_orient] Ck = np.dot(Wk, Gk) if is_free_ori: # Free source orientation Wk[:] = np.dot(linalg.pinv(Ck, 0.1), Wk) else: # Fixed source orientation Wk /= Ck # Noise normalization noise_norm = np.dot(Wk, Wk.T) noise_norm = noise_norm.trace() # Calculating source power sp_temp = np.dot(np.dot(Wk, Cm), Wk.T) sp_temp /= max(noise_norm, 1e-40) # Avoid division by 0 if pick_ori == 'normal': source_power[k, 0] = sp_temp[2, 2] else: source_power[k, 0] = sp_temp.trace() logger.info('[done]') subject = _subject_from_forward(forward) return SourceEstimate(source_power, vertices=vertno, tmin=1, tstep=1, subject=subject) @verbose def tf_lcmv(epochs, forward, noise_covs, tmin, tmax, tstep, win_lengths, freq_bins, subtract_evoked=False, reg=0.01, label=None, pick_ori=None, n_jobs=1, picks=None, rank=None, verbose=None): """5D time-frequency beamforming based on LCMV. Calculate source power in time-frequency windows using a spatial filter based on the Linearly Constrained Minimum Variance (LCMV) beamforming approach. Band-pass filtered epochs are divided into time windows from which covariance is computed and used to create a beamformer spatial filter. NOTE : This implementation has not been heavily tested so please report any issues or suggestions. Parameters ---------- epochs : Epochs Single trial epochs. forward : dict Forward operator. noise_covs : list of instances of Covariance Noise covariance for each frequency bin. tmin : float Minimum time instant to consider. tmax : float Maximum time instant to consider. tstep : float Spacing between consecutive time windows, should be smaller than or equal to the shortest time window length. win_lengths : list of float Time window lengths in seconds. One time window length should be provided for each frequency bin. freq_bins : list of tuples of float Start and end point of frequency bins of interest. subtract_evoked : bool If True, subtract the averaged evoked response prior to computing the tf source grid. reg : float The regularization for the whitened data covariance. label : Label | None Restricts the solution to a given label. pick_ori : None | 'normal' If 'normal', rather than pooling the orientations by taking the norm, only the radial component is kept. n_jobs : int | str Number of jobs to run in parallel. Can be 'cuda' if scikits.cuda is installed properly and CUDA is initialized. picks : array-like of int Channel indices to use for beamforming (if None all channels are used except bad channels). rank : None | int | dict Specified rank of the noise covariance matrix. If None, the rank is detected automatically. If int, the rank is specified for the MEG channels. A dictionary with entries 'eeg' and/or 'meg' can be used to specify the rank for each modality. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- stcs : list of SourceEstimate Source power at each time window. One SourceEstimate object is returned for each frequency bin. Notes ----- The original reference is: Dalal et al. Five-dimensional neuroimaging: Localization of the time-frequency dynamics of cortical activity. NeuroImage (2008) vol. 40 (4) pp. 1686-1700 """ _check_reference(epochs) if pick_ori not in [None, 'normal']: raise ValueError('Unrecognized orientation option in pick_ori, ' 'available choices are None and normal') if len(noise_covs) != len(freq_bins): raise ValueError('One noise covariance object expected per frequency ' 'bin') if len(win_lengths) != len(freq_bins): raise ValueError('One time window length expected per frequency bin') if any(win_length < tstep for win_length in win_lengths): raise ValueError('Time step should not be larger than any of the ' 'window lengths') # Extract raw object from the epochs object raw = epochs._raw if raw is None: raise ValueError('The provided epochs object does not contain the ' 'underlying raw object. Please use preload=False ' 'when constructing the epochs object') picks = _setup_picks(picks, epochs.info, forward, noise_covs[0]) ch_names = [epochs.ch_names[k] for k in picks] # Use picks from epochs for picking channels in the raw object raw_picks = [raw.ch_names.index(c) for c in ch_names] # Make sure epochs.events contains only good events: epochs.drop_bad() # Multiplying by 1e3 to avoid numerical issues, e.g. 0.3 // 0.05 == 5 n_time_steps = int(((tmax - tmin) * 1e3) // (tstep * 1e3)) sol_final = [] for (l_freq, h_freq), win_length, noise_cov in \ zip(freq_bins, win_lengths, noise_covs): n_overlap = int((win_length * 1e3) // (tstep * 1e3)) raw_band = raw.copy() raw_band.filter(l_freq, h_freq, picks=raw_picks, method='iir', n_jobs=n_jobs) raw_band.info['highpass'] = l_freq raw_band.info['lowpass'] = h_freq epochs_band = Epochs(raw_band, epochs.events, epochs.event_id, tmin=epochs.tmin, tmax=epochs.tmax, baseline=None, picks=raw_picks, proj=epochs.proj, preload=True) del raw_band if subtract_evoked: epochs_band.subtract_evoked() sol_single = [] sol_overlap = [] for i_time in range(n_time_steps): win_tmin = tmin + i_time * tstep win_tmax = win_tmin + win_length # If in the last step the last time point was not covered in # previous steps and will not be covered now, a solution needs to # be calculated for an additional time window if i_time == n_time_steps - 1 and win_tmax - tstep < tmax and\ win_tmax >= tmax + (epochs.times[-1] - epochs.times[-2]): warn('Adding a time window to cover last time points') win_tmin = tmax - win_length win_tmax = tmax if win_tmax < tmax + (epochs.times[-1] - epochs.times[-2]): logger.info('Computing time-frequency LCMV beamformer for ' 'time window %d to %d ms, in frequency range ' '%d to %d Hz' % (win_tmin * 1e3, win_tmax * 1e3, l_freq, h_freq)) # Counteracts unsafe floating point arithmetic ensuring all # relevant samples will be taken into account when selecting # data in time windows win_tmin = win_tmin - 1e-10 win_tmax = win_tmax + 1e-10 # Calculating data covariance from filtered epochs in current # time window data_cov = compute_covariance(epochs_band, tmin=win_tmin, tmax=win_tmax) stc = _lcmv_source_power(epochs_band.info, forward, noise_cov, data_cov, reg=reg, label=label, pick_ori=pick_ori, verbose=verbose) sol_single.append(stc.data[:, 0]) # Average over all time windows that contain the current time # point, which is the current time window along with # n_overlap - 1 previous ones if i_time - n_overlap < 0: curr_sol = np.mean(sol_single[0:i_time + 1], axis=0) else: curr_sol = np.mean(sol_single[i_time - n_overlap + 1: i_time + 1], axis=0) # The final result for the current time point in the current # frequency bin sol_overlap.append(curr_sol) # Gathering solutions for all time points for current frequency bin sol_final.append(sol_overlap) sol_final = np.array(sol_final) # Creating stc objects containing all time points for each frequency bin stcs = [] for i_freq, _ in enumerate(freq_bins): stc = SourceEstimate(sol_final[i_freq, :, :].T, vertices=stc.vertices, tmin=tmin, tstep=tstep, subject=stc.subject) stcs.append(stc) return stcs
878f78437dc5e1bec4b5c66bd1443295fcebfb4e
bcf678908eb3e26f6172265406bfaaa7129f6b18
/Blog/myapp/views.py
64d2228c228fc572bf4ed3eb5100262b4f3071d9
[]
no_license
loganjoon/0713-Blog
935cbd75c8682ff6bc6841bc414ad0db3225a917
71494795515753b6a354e1b93ed57858e852a4a5
refs/heads/master
2022-11-17T00:09:40.770351
2020-07-13T02:31:34
2020-07-13T02:31:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
417
py
from django.shortcuts import render from .models import BlogFrame from django.shortcuts import render, get_object_or_404 def main(request): blogs = BlogFrame.objects return render(request, 'main.html',{'blogs':blogs}) def detail(request, blog_id): blog_detail = get_object_or_404(BlogFrame, pk=blog_id) return render(request, '/detail.html', {'blogdetail': blog_detail}) # Create your views here.
5649862f39c4121adba3f3cf54160b5251b6ff8e
242da8865e037f9fffb76269c3acddb73ce9fa14
/packages/pyright-internal/src/tests/samples/forLoop1.py
6f5ced2b691c9f7c57d066e0809a9261e765695a
[ "MIT", "LicenseRef-scancode-generic-cla" ]
permissive
khyveasna11111908/pyright
f42eceae044f6fbc27552c1765b03ebd345a451c
493d47807b96137995e4bb6ca341930e4de911f9
refs/heads/main
2023-08-30T00:08:36.191799
2021-09-25T19:17:13
2021-09-25T19:17:13
410,361,483
1
1
NOASSERTION
2021-09-25T19:15:23
2021-09-25T19:15:22
null
UTF-8
Python
false
false
1,185
py
# This sample tests 'for' operations (both simple for loops # and list comprehension for loops). from typing import AsyncIterator, List, Iterator def requires_int(val: int): pass list1 = [1, 2, 3] # type: List[int] for a in list1: requires_int(a) int1 = 1 # This should generate an error because # an int type is not iterable. for foo1 in int1: pass async def func1(): # This should generate an error because # list1 isn't an async iterator. async for foo2 in list1: requires_int(foo2) class AsyncIterable1(object): def __aiter__(self): return self async def __anext__(self): return 1 iter1 = AsyncIterable1() async def func2(): async for foo3 in iter1: requires_int(foo3) for d in [b for b in list1]: requires_int(d) for e in [b async for b in iter1]: requires_int(e) class ClassWithGetItem(object): def __getitem__(self, item) -> str: return "hello" def testGetItemIterator() -> str: objWithGetItem = ClassWithGetItem() for f in objWithGetItem: return f return "none" # This should generate a syntax error. for in range(3): pass
5348b105b39d20eb47abfa9721d17ff45cc83590
d1aa6e7d5631d7806531660febbd1f856eaeece7
/python/paddle/distribution/normal.py
8a9e5cd7372a7ef98548986242a286f6f14efc4c
[ "Apache-2.0" ]
permissive
gongweibao/Paddle
510cd4bc0ef89bc6ccee7b6b8eca52c00e014b77
60f9c60cd8196c66c391d79c35d341e9072f8838
refs/heads/develop
2023-03-13T17:43:35.675875
2022-09-20T08:46:15
2022-09-20T08:46:15
82,279,237
3
2
Apache-2.0
2021-05-26T06:17:43
2017-02-17T09:16:16
Python
UTF-8
Python
false
false
10,689
py
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import warnings import numpy as np from paddle import _C_ops, _legacy_C_ops from paddle.distribution import distribution from paddle.fluid import core from paddle.fluid.data_feeder import (check_dtype, check_type, check_variable_and_dtype, convert_dtype) from paddle.fluid.framework import _non_static_mode, in_dygraph_mode from paddle.fluid.layers import (control_flow, elementwise_add, elementwise_div, elementwise_mul, elementwise_sub, nn, ops, tensor) class Normal(distribution.Distribution): r"""The Normal distribution with location `loc` and `scale` parameters. Mathematical details The probability density function (pdf) is .. math:: pdf(x; \mu, \sigma) = \\frac{1}{Z}e^{\\frac {-0.5 (x - \mu)^2} {\sigma^2} } .. math:: Z = (2 \pi \sigma^2)^{0.5} In the above equation: * :math:`loc = \mu`: is the mean. * :math:`scale = \sigma`: is the std. * :math:`Z`: is the normalization constant. Args: loc(int|float|list|tuple|numpy.ndarray|Tensor): The mean of normal distribution.The data type is int, float, list, numpy.ndarray or Tensor. scale(int|float|list|tuple|numpy.ndarray|Tensor): The std of normal distribution.The data type is int, float, list, numpy.ndarray or Tensor. name(str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Examples: .. code-block:: python import paddle from paddle.distribution import Normal # Define a single scalar Normal distribution. dist = Normal(loc=0., scale=3.) # Define a batch of two scalar valued Normals. # The first has mean 1 and standard deviation 11, the second 2 and 22. dist = Normal(loc=[1., 2.], scale=[11., 22.]) # Get 3 samples, returning a 3 x 2 tensor. dist.sample([3]) # Define a batch of two scalar valued Normals. # Both have mean 1, but different standard deviations. dist = Normal(loc=1., scale=[11., 22.]) # Complete example value_tensor = paddle.to_tensor([0.8], dtype="float32") normal_a = Normal([0.], [1.]) normal_b = Normal([0.5], [2.]) sample = normal_a.sample([2]) # a random tensor created by normal distribution with shape: [2, 1] entropy = normal_a.entropy() # [1.4189385] with shape: [1] lp = normal_a.log_prob(value_tensor) # [-1.2389386] with shape: [1] p = normal_a.probs(value_tensor) # [0.28969154] with shape: [1] kl = normal_a.kl_divergence(normal_b) # [0.34939718] with shape: [1] """ def __init__(self, loc, scale, name=None): if not _non_static_mode(): check_type(loc, 'loc', (int, float, np.ndarray, tensor.Variable, list, tuple), 'Normal') check_type(scale, 'scale', (int, float, np.ndarray, tensor.Variable, list, tuple), 'Normal') self.batch_size_unknown = False self.all_arg_is_float = False self.name = name if name is not None else 'Normal' self.dtype = 'float32' if isinstance(loc, int): loc = float(loc) if isinstance(scale, int): scale = float(scale) if self._validate_args(loc, scale): self.batch_size_unknown = True self.loc = loc self.scale = scale self.dtype = convert_dtype(loc.dtype) else: if isinstance(loc, float) and isinstance(scale, float): self.all_arg_is_float = True if isinstance(loc, np.ndarray) and str( loc.dtype) in ['float32', 'float64']: self.dtype = loc.dtype elif isinstance(scale, np.ndarray) and str( scale.dtype) in ['float32', 'float64']: self.dtype = scale.dtype # pylint: disable=unbalanced-tuple-unpacking self.loc, self.scale = self._to_tensor(loc, scale) if self.dtype != convert_dtype(self.loc.dtype): self.loc = tensor.cast(self.loc, dtype=self.dtype) self.scale = tensor.cast(self.scale, dtype=self.dtype) super(Normal, self).__init__(self.loc.shape) def sample(self, shape, seed=0): """Generate samples of the specified shape. Args: shape (list): 1D `int32`. Shape of the generated samples. seed (int): Python integer number. Returns: Tensor: A tensor with prepended dimensions shape.The data type is float32. """ if not _non_static_mode(): check_type(shape, 'shape', (list), 'sample') check_type(seed, 'seed', (int), 'sample') batch_shape = list((self.loc + self.scale).shape) name = self.name + '_sample' if self.batch_size_unknown: output_shape = shape + batch_shape zero_tmp = tensor.fill_constant_batch_size_like( self.loc + self.scale, batch_shape + shape, self.dtype, 0.) zero_tmp_reshape = nn.reshape(zero_tmp, output_shape) zero_tmp_shape = nn.shape(zero_tmp_reshape) normal_random_tmp = nn.gaussian_random(zero_tmp_shape, mean=0., std=1., seed=seed, dtype=self.dtype) output = normal_random_tmp * (zero_tmp_reshape + self.scale) output = elementwise_add(output, self.loc, name=name) return output else: output_shape = shape + batch_shape output = nn.gaussian_random(output_shape, mean=0., std=1., seed=seed, dtype=self.dtype) * \ (tensor.zeros(output_shape, dtype=self.dtype) + self.scale) output = elementwise_add(output, self.loc, name=name) if self.all_arg_is_float: return nn.reshape(output, shape, name=name) else: return output def entropy(self): r"""Shannon entropy in nats. The entropy is .. math:: entropy(\sigma) = 0.5 \\log (2 \pi e \sigma^2) In the above equation: * :math:`scale = \sigma`: is the std. Returns: Tensor: Shannon entropy of normal distribution.The data type is float32. """ name = self.name + '_entropy' batch_shape = list((self.loc + self.scale).shape) zero_tmp = tensor.fill_constant_batch_size_like(self.loc + self.scale, batch_shape, self.dtype, 0.) return elementwise_add(0.5 + zero_tmp, 0.5 * math.log(2 * math.pi) + nn.log( (self.scale + zero_tmp)), name=name) def log_prob(self, value): """Log probability density/mass function. Args: value (Tensor): The input tensor. Returns: Tensor: log probability.The data type is same with value. """ name = self.name + '_log_prob' value = self._check_values_dtype_in_probs(self.loc, value) var = self.scale * self.scale log_scale = nn.log(self.scale) return elementwise_sub(-1. * ((value - self.loc) * (value - self.loc)) / (2. * var), log_scale + math.log(math.sqrt(2. * math.pi)), name=name) def probs(self, value): """Probability density/mass function. Args: value (Tensor): The input tensor. Returns: Tensor: probability.The data type is same with value. """ name = self.name + '_probs' value = self._check_values_dtype_in_probs(self.loc, value) var = self.scale * self.scale return elementwise_div(ops.exp(-1. * ((value - self.loc) * (value - self.loc)) / (2. * var)), (math.sqrt(2 * math.pi) * self.scale), name=name) def kl_divergence(self, other): r"""The KL-divergence between two normal distributions. The probability density function (pdf) is .. math:: KL\_divergence(\mu_0, \sigma_0; \mu_1, \sigma_1) = 0.5 (ratio^2 + (\\frac{diff}{\sigma_1})^2 - 1 - 2 \\ln {ratio}) .. math:: ratio = \\frac{\sigma_0}{\sigma_1} .. math:: diff = \mu_1 - \mu_0 In the above equation: * :math:`loc = \mu_0`: is the mean of current Normal distribution. * :math:`scale = \sigma_0`: is the std of current Normal distribution. * :math:`loc = \mu_1`: is the mean of other Normal distribution. * :math:`scale = \sigma_1`: is the std of other Normal distribution. * :math:`ratio`: is the ratio of scales. * :math:`diff`: is the difference between means. Args: other (Normal): instance of Normal. Returns: Tensor: kl-divergence between two normal distributions.The data type is float32. """ if not _non_static_mode(): check_type(other, 'other', Normal, 'kl_divergence') name = self.name + '_kl_divergence' var_ratio = self.scale / other.scale var_ratio = (var_ratio * var_ratio) t1 = (self.loc - other.loc) / other.scale t1 = (t1 * t1) return elementwise_add(0.5 * var_ratio, 0.5 * (t1 - 1. - nn.log(var_ratio)), name=name)
484234961357522c403302d254ccabdc4df0e383
f3f10bb0ec28489d3111c72ce9811b01fa629d64
/setup.py
ada05e6131d7ef1e7ee185a5fae1c8a5dfe88d3b
[ "BSD-2-Clause" ]
permissive
gitter-badger/labscript
db0e6f1a0c49a78f6dc08efea8607bce499a26a4
26f68923c71a56d84e19ae2ab894d2f4d6bdd9b4
refs/heads/master
2022-04-26T02:40:36.586340
2020-05-02T17:33:28
2020-05-02T17:33:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,497
py
# USAGE NOTES # # Make a PyPI release tarball with: # # python setup.py sdist # # Upload to test PyPI with: # # twine upload --repository-url https://test.pypi.org/legacy/ dist/* # # Install from test PyPI with: # # pip install --index-url https://test.pypi.org/simple/ labscript # # Upload to real PyPI with: # # twine upload dist/* # # Build conda packages for all platforms (in a conda environment with setuptools_conda # installed) with: # # python setup.py dist_conda # # Upoad to your own account (for testing) on anaconda cloud (in a conda environment with # anaconda-client installed) with: # # anaconda upload --skip-existing conda_packages/*/* # # (Trickier on Windows, as it won't expand the wildcards) # # Upoad to the labscript-suite organisation's channel on anaconda cloud (in a # conda environment with anaconda-client installed) with: # # anaconda upload -u labscript-suite --skip-existing conda_packages/*/* # # If you need to rebuild the same version of the package for conda due to a packaging # issue, you must increment CONDA_BUILD_NUMBER in order to create a unique version on # anaconda cloud. When subsequently releasing a new version of the package, # CONDA_BUILD_NUMBER should be reset to zero. import os from setuptools import setup try: from setuptools_conda import dist_conda except ImportError: dist_conda = None SETUP_REQUIRES = ['setuptools', 'setuptools_scm'] INSTALL_REQUIRES = [ "labscript_utils >=2.14.0", "numpy >=1.15", "scipy", "matplotlib", ] setup( name='labscript', use_scm_version=True, description="The labscript compiler", long_description=open('README.md').read(), long_description_content_type='text/markdown', author='The labscript suite community', author_email='[email protected] ', url='http://labscriptsuite.org', license="BSD", packages=["labscript"], zip_safe=False, setup_requires=SETUP_REQUIRES, include_package_data=True, python_requires=">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5", install_requires=INSTALL_REQUIRES if 'CONDA_BUILD' not in os.environ else [], cmdclass={'dist_conda': dist_conda} if dist_conda is not None else {}, command_options={ 'dist_conda': { 'pythons': (__file__, ['3.6', '3.7', '3.8']), 'platforms': (__file__, ['linux-64', 'win-32', 'win-64', 'osx-64']), 'force_conversion': (__file__, True), }, }, )
efa84b7b252d3f011527c3e5a96bab39d82863ad
c817d8c3daf2ea79dc02a2e624e49c2fd556007d
/audit/models.py
40eea1974af60239d983e11b9cab78dd9c239773
[]
no_license
DUMBALINYOLO/stats-filtering
7a3d1ccd52527031a66946cdb06286a244be0b1f
64d62f84bcfb465cb8721cdbfbb00fe034ac9893
refs/heads/master
2023-03-17T11:09:17.522663
2021-03-12T12:01:16
2021-03-12T12:01:16
347,049,684
0
0
null
null
null
null
UTF-8
Python
false
false
673
py
from django.db import models class AuditLog(models.Model): timestamp = models.DateTimeField(auto_now=True) user = models.CharField(max_length=50, null=False, blank=False) user_ip = models.CharField(max_length=100, null=False, blank=False) action_name = models.CharField(max_length=20, null=False, blank=False) table_name = models.CharField(max_length=50, null=True, blank=True) task_name = models.CharField(max_length=50, null=True, blank=True) action_details = models.CharField(max_length=200, null=True, blank=True) data = models.TextField(null=True, blank=True) def __str__(self): return str(self.timestamp)+'_'+self.user
0bce70d10cc3aaf768ca97f81cc8c150bf7dc968
e5483ab737acd9fb222f0b7d1c770cfdd45d2ba7
/ecommerce/core/migrations/0019_auto_20200617_1118.py
ac79742a44b8082f258a0b47704601705075a955
[]
no_license
mxmaslin/otus_web
6c1e534047444d7a1fc4cd1bf8245c25d9fc4835
b90ad69e1b5c1828fa2ace165710422d113d1d17
refs/heads/master
2022-12-09T19:52:58.626199
2020-07-07T19:15:52
2020-07-07T19:15:52
226,154,128
1
1
null
2022-12-08T03:23:10
2019-12-05T17:25:11
JavaScript
UTF-8
Python
false
false
2,545
py
# Generated by Django 2.2.12 on 2020-06-17 08:18 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('core', '0018_coupon_refund_userprofile'), ] operations = [ migrations.AlterModelOptions( name='coupon', options={'verbose_name': 'Купон', 'verbose_name_plural': 'Купоны'}, ), migrations.AlterModelOptions( name='refund', options={'verbose_name': 'Возврат', 'verbose_name_plural': 'Возвраты'}, ), migrations.AlterModelOptions( name='userprofile', options={'verbose_name': 'Профиль пользователя', 'verbose_name_plural': 'Профили пользователей'}, ), migrations.AlterField( model_name='address', name='user', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL, verbose_name='Пользователь'), ), migrations.AlterField( model_name='coupon', name='amount', field=models.FloatField(verbose_name='Скидка'), ), migrations.AlterField( model_name='coupon', name='code', field=models.CharField(max_length=15, verbose_name='Код'), ), migrations.AlterField( model_name='refund', name='accepted', field=models.BooleanField(default=False, verbose_name='Выполнен'), ), migrations.AlterField( model_name='refund', name='order', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='core.Order', verbose_name='Заказ'), ), migrations.AlterField( model_name='refund', name='reason', field=models.TextField(verbose_name='Причина'), ), migrations.AlterField( model_name='userprofile', name='one_click_purchasing', field=models.BooleanField(default=False, verbose_name='Покупка в один клик'), ), migrations.AlterField( model_name='userprofile', name='user', field=models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL, verbose_name='Пользователь'), ), ]
cfa5f4341bf4ff6482ca10400733edefed6df658
f3693916a8b118bf139364604dac3f51235ed613
/functional/Components/Clients/Clients_GET/test_TC_42892_Clients_GET_Invalid_Page_Size.py
8e24a8ec90dc24677d7dd10d3374b3b4a548f8b0
[]
no_license
muktabehera/QE
e7d62284889d8241d22506f6ee20547f1cfe6db1
3fedde591568e35f7b80c5bf6cd6732f8eeab4f8
refs/heads/master
2021-03-31T02:19:15.369562
2018-03-13T02:45:10
2018-03-13T02:45:10
124,984,177
0
0
null
null
null
null
UTF-8
Python
false
false
1,684
py
# -*- coding: UTF-8 -*- """PFE Component Tests - Clients. * TC-42892 - Clients GET: Verify that 20 records is displayed on providing 'page-size' value as 0 for 'page' parameter using request GET /clients. Equivalent test CURL command: curl -H "Host: <client_host>" -H "Authorization: Bearer <valid_token>" -X GET -H "Content-Type: application/json" "<PF_host>://<client_host>/clients?page=1;0" Same, with test data: curl -H "Host: <client_host>" -H "Authorization: Bearer <valid_token>" -X GET -H "Content-Type: application/json" "<PF_host>://<client_host>/clients?page=1;0" """ import pytest from qe_common import * logger = init_logger() @pytest.mark.components @pytest.allure.story('Clients') @pytest.allure.feature('GET') class Test_PFE_Components(object): """PFE Clients test cases.""" @pytest.allure.link('https://jira.qumu.com/browse/TC-42892') @pytest.mark.Clients @pytest.mark.GET def test_TC_42892_GET_Clients_Invalid_Page_Size(self, context): """TC-42892 - Clients-GET Verify that 20 records is displayed on providing 'page-size' value as 0 for 'page' parameter using request GET /clients.""" # Define a test step with pytest.allure.step("""Verify that 20 records is displayed on providing 'page-size' value as 0 for 'page' parameter using request GET /clients."""): # listEntities the Clients. # The `check` call validates return code # and some of the swagger schema. # Most schema checks are disabled. check( context.cl.Clients.listEntities( page='1;0') )
4b1816e64d86e656e29c4d7e8747cabafc9b5f74
4a36b5979b0753b32cff3956fd97fb8ed8b11e84
/1.0/_downloads/a783c0b285deabf61a1ae7035b88256a/cluster_stats_evoked.py
30ed1d1a078ff13647503661206530566df17338
[]
permissive
mne-tools/mne-tools.github.io
8aac7ae10bf2faeeb875b9a351a5530dc0e53154
495e878adc1ef3374e3db88604504d7542b01194
refs/heads/main
2023-09-03T07:06:00.660557
2023-09-03T04:10:18
2023-09-03T04:10:18
35,639,371
12
16
BSD-3-Clause
2023-05-05T19:04:32
2015-05-14T22:04:23
HTML
UTF-8
Python
false
false
2,790
py
# -*- coding: utf-8 -*- """ .. _ex-cluster-evoked: ======================================================= Permutation F-test on sensor data with 1D cluster level ======================================================= One tests if the evoked response is significantly different between conditions. Multiple comparison problem is addressed with cluster level permutation test. """ # Authors: Alexandre Gramfort <[email protected]> # # License: BSD-3-Clause # %% import matplotlib.pyplot as plt import mne from mne import io from mne.stats import permutation_cluster_test from mne.datasets import sample print(__doc__) # %% # Set parameters data_path = sample.data_path() meg_path = data_path / 'MEG' / 'sample' raw_fname = meg_path / 'sample_audvis_filt-0-40_raw.fif' event_fname = meg_path / 'sample_audvis_filt-0-40_raw-eve.fif' tmin = -0.2 tmax = 0.5 # Setup for reading the raw data raw = io.read_raw_fif(raw_fname) events = mne.read_events(event_fname) channel = 'MEG 1332' # include only this channel in analysis include = [channel] # %% # Read epochs for the channel of interest picks = mne.pick_types(raw.info, meg=False, eog=True, include=include, exclude='bads') event_id = 1 reject = dict(grad=4000e-13, eog=150e-6) epochs1 = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), reject=reject) condition1 = epochs1.get_data() # as 3D matrix event_id = 2 epochs2 = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), reject=reject) condition2 = epochs2.get_data() # as 3D matrix condition1 = condition1[:, 0, :] # take only one channel to get a 2D array condition2 = condition2[:, 0, :] # take only one channel to get a 2D array # %% # Compute statistic threshold = 6.0 T_obs, clusters, cluster_p_values, H0 = \ permutation_cluster_test([condition1, condition2], n_permutations=1000, threshold=threshold, tail=1, n_jobs=1, out_type='mask') # %% # Plot times = epochs1.times fig, (ax, ax2) = plt.subplots(2, 1, figsize=(8, 4)) ax.set_title('Channel : ' + channel) ax.plot(times, condition1.mean(axis=0) - condition2.mean(axis=0), label="ERF Contrast (Event 1 - Event 2)") ax.set_ylabel("MEG (T / m)") ax.legend() for i_c, c in enumerate(clusters): c = c[0] if cluster_p_values[i_c] <= 0.05: h = ax2.axvspan(times[c.start], times[c.stop - 1], color='r', alpha=0.3) else: ax2.axvspan(times[c.start], times[c.stop - 1], color=(0.3, 0.3, 0.3), alpha=0.3) hf = plt.plot(times, T_obs, 'g') ax2.legend((h, ), ('cluster p-value < 0.05', )) ax2.set_xlabel("time (ms)") ax2.set_ylabel("f-values")
b21cc60288a12a525d33281ba13def79fd81b34a
597c4f48332251552a602122bb3d325bc43a9d7f
/etc/chapter09_stack_old/implement/04_empty.py
aacff5442075e0c2020872af886861589bfe5559
[]
no_license
Kyeongrok/python_algorithm
46de1909befc7b17766a57090a7036886361fd06
f0cdc221d7908f26572ae67b5c95b12ade007ccd
refs/heads/master
2023-07-11T03:23:05.782478
2023-06-22T06:32:31
2023-06-22T06:32:31
147,303,654
0
1
null
null
null
null
UTF-8
Python
false
false
407
py
class Stack1(): arr = [] last_index = 0 def __init__(self, size=10000): self.arr = [None] * size def push(self, value): self.arr[self.last_index] = value self.last_index += 1 def pop(self): value = self.arr[self.last_index - 1] self.last_index -= 1 return value st = Stack1() print(st.pop()) from _collections import deque [].pop()
b34a8a5649c8d6340f7eb3cfb2c1d166f74f221b
33736b585caa659ac4a5a8a1ac52df50bdf71f1b
/py_solution/5_SMS.py
53e953b2191981118abe61d67c0f78617db28fe7
[]
no_license
oliverhuangchao/epic_interview
3d649fadab0728c629bfe9d8cc14b9045a593385
4cfdbc0b83e13e7552633e566b3ddbb4a250a6a0
refs/heads/master
2021-01-10T22:29:37.663863
2015-07-17T18:55:42
2015-07-17T18:55:42
38,897,661
0
0
null
null
null
null
UTF-8
Python
false
false
1,412
py
# SMS # You are given a telephone keyboard # 0-0, 1-1, 2-ABC2, 3-DEF3, 4-GHI4, 5-JKL5, 6-MNO6,7-PQRS7, 8-TUV8, 9-WXYZ9, *-space, # #-char separater # if you type "2", you will get 'A', that is "2"-'A', "22"-'B' ,"222"-'C', "2222"-'D' # However, the digits can repeated many times # "22222"-you get 'A' again . Waral # You can use "#" to separate characters, for example # "2#22", you get "AB" . # However, you may also have consecutive different digits without separator:"23"-'AD' # If you type "*", it means space. # You a given a sequence of digits, translate it into a text message import string #prepare at the begining ori = {0:'0', 1:'1', 2:'ABC2', 3:'DEF3', 4:'GHI4', 5:'JKL5', 6:'MNO6',7:'PQRS7', 8:'TUV8', 9:'WXYZ9'} all = string.ascii_uppercase newdict = dict() for i in ori: newdict[str(i)] = ori[i][-1] for i in range(2,10): count = 1 for j in ori[i][:-1]: newdict[str(i)*count] = j#[str(i) for k in range(count)] count+=1 def transform(newdict,inputstring): words = inputstring.split("*") res = "" for item in words: z = item.split("#") for each in z: if each in newdict: res += newdict[each] else: x = each[0] for i in range(1,len(each)): if each[i] != x: res += newdict[each[:i]] res += newdict[each[i:]] x = each[i] res += " " print res inputstring = "12*322#2*33" print inputstring transform(newdict, inputstring)
4ae97a5658a60b30643ff161b05f6a8521096ec4
5a4d5ee624b375ece06fda1467afe18beb69c14b
/Algorithm/SW_Expert/1-38.py
88b04484164d99806c34411f17d319537db83606
[]
no_license
Knightofcydonia51/TIL
cd10dab949659bc827118ee42b25d926336dce23
78d7e8617f4abed9932a557c12e68bd950f8230d
refs/heads/master
2022-12-26T00:10:06.262200
2022-05-26T01:12:32
2022-05-26T01:12:32
195,938,010
0
0
null
2022-12-16T01:03:09
2019-07-09T05:22:49
Python
UTF-8
Python
false
false
109
py
l=[1,2,3,4,3,2,1] def deleter(list2): list2=list(set(list2)) return list2 print(l) print(deleter(l))
5e405561491c9f8ec9865d157896c876e026bf58
98c6ea9c884152e8340605a706efefbea6170be5
/examples/data/Assignment_2/mhmmik002/question2.py
f65b3961a2a06e9df45c62d5bc009ab70df32d71
[]
no_license
MrHamdulay/csc3-capstone
479d659e1dcd28040e83ebd9e3374d0ccc0c6817
6f0fa0fa1555ceb1b0fb33f25e9694e68b6a53d2
refs/heads/master
2021-03-12T21:55:57.781339
2014-09-22T02:22:22
2014-09-22T02:22:22
22,372,174
0
0
null
null
null
null
UTF-8
Python
false
false
2,274
py
print("Welcome to the 30 Second Rule Expert") print("------------------------------------") print("Answer the following questions by selecting from among the options.") x=input("Did anyone see you? (yes/no)\n") if (x) == "yes": b=input("Was it a boss/lover/parent? (yes/no)\n") if (b) == "no": print("Decision: Eat it.") else: a=input("Was it expensive? (yes/no)\n") if (a) == "yes": s=input("Can you cut off the part that touched the floor? (yes/no)\n") if (s) == "yes": print("Decision: Eat it.") else: print("Decision: Your call.") else: f=input("Is it chocolate? (yes/no)\n") if (f) == "yes": print("Decision: Eat it.") else: print("Decision: Don't eat it.") else: z=input("Was it sticky? (yes/no)\n") if (z) == "yes": v=input("Is it a raw steak? (yes/no)\n") if (v) == "yes": m=input("Are you a puma? (yes/no)\n") if (m) == "yes": print("Decision: Eat it.") else: print("Decision: Don't eat it.") else: n=input("Did the cat lick it? (yes/no)\n") if (n) == "yes": g=input("Is your cat healthy? (yes/no)\n") if (g) == "yes": print("Decision: Eat it.") else: print("Decision: Your call.") else: print("Decision: Eat it.") else: c=input("Is it an Emausaurus? (yes/no)\n") if (c) == "yes": d=input("Are you a Megalosaurus? (yes/no)\n") if (d) == "yes": print("Decision: Eat it.") else: print("Decision: Don't eat it.") else: n=input("Did the cat lick it? (yes/no)\n") if (n) == "yes": g=input("Is your cat healthy? (yes/no)\n") if (g) == "yes": print("Decision: Eat it.") else: print("Decision: Your call.") else: print("Decision: Eat it.")
b5b6b93910e5075aaefa207e44ac09ac7a47bada
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_89/41.py
4cb3ead2a2dc396c5a937e620544e8867f8ae5e0
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,082
py
#!/usr/bin/env python primes=[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997] from math import log from sys import stdin for case in range(1, int(stdin.readline())+1): N=int(stdin.readline()) if N==1: n=0 else: n=1 for p in primes: if p<=N: n+=int(log(N,p))-1 else: break print "Case #%d:"%case, n
0cbeaf2442721ecc71a0cd8158504cac1b4e4f47
eade1861db1968645e0e17dfaa5250a4b8245b98
/instacart/faron.py
bf8a14a8e3fb487d4321cee3fb9b8eb7eb4a4b08
[]
no_license
piupiuup/competition
5b5da56fed336e07cf99cef8f5bfe89a8f771900
076c30df3d2647cb3580c543e604375e84590ca7
refs/heads/master
2022-09-30T14:47:01.244084
2020-05-30T12:56:02
2020-05-30T12:56:02
268,074,180
1
0
null
null
null
null
UTF-8
Python
false
false
2,764
py
""" @author: Faron """ import numpy as np import pandas as pd from joblib import Parallel, delayed import multiprocessing from datetime import datetime ''' Calculates (user, product) order_streak for the last n orders. - abs(order_streak) is length of streak - sgn(order_streak) encodes type of streak (non-ordered vs ordered) ''' DATA_DIR = "../input/" PRIOR_FILE = "order_products__prior" ORDERS_FILE = "orders" def load_input_data(): PATH = "{}{}{}".format(DATA_DIR, PRIOR_FILE, ".csv") prior = pd.read_csv(PATH, dtype={'order_id': np.int32, 'product_id': np.uint16, 'add_to_cart_order': np.int16, 'reordered': np.int8}) PATH = "{}{}{}".format(DATA_DIR, ORDERS_FILE, ".csv") orders = pd.read_csv(PATH, dtype={'order_id': np.int32, 'user_id': np.int64, 'order_number': np.int16, 'order_dow': np.int8, 'order_hour_of_day': np.int8, 'days_since_prior_order': np.float32}) return prior, orders def apply_parallel(df_groups, _func): nthreads = multiprocessing.cpu_count() >> 1 print("nthreads: {}".format(nthreads)) res = Parallel(n_jobs=nthreads)(delayed(_func)(grp.copy()) for _, grp in df_groups) return pd.concat(res) def add_order_streak(df): tmp = df.copy() tmp.user_id = 1 UP = tmp.pivot(index="product_id", columns='order_number').fillna(-1) UP.columns = UP.columns.droplevel(0) x = np.abs(UP.diff(axis=1).fillna(2)).values[:, ::-1] df.set_index("product_id", inplace=True) df['order_streak'] = np.multiply(np.argmax(x, axis=1) + 1, UP.iloc[:, -1]) df.reset_index(drop=False, inplace=True) return df if __name__ == '__main__': prior, orders = load_input_data() print("orders: {}".format(orders.shape)) print("take only recent 5 orders per user:") orders = orders.groupby(['user_id']).tail(5 + 1) print("orders: {}".format(orders.shape)) prior = orders.merge(prior, how='inner', on="order_id") prior = prior[['user_id', 'product_id', 'order_number']] print("prior: {}".format(prior.shape)) user_groups = prior.groupby('user_id') s = datetime.now() df = apply_parallel(user_groups, add_order_streak) e = datetime.now() print("time elapsed: {}".format(e - s)) df = df.drop("order_number", axis=1).drop_duplicates().reset_index(drop=True) df = df[['user_id', 'product_id', 'order_streak']] print(df.head(n=10)) df.to_csv("order_streaks.csv", index=False) print("order_streaks.csv has been written")
92c1d2a705987af6519a8232a61560316e935a30
039f2c747a9524daa1e45501ada5fb19bd5dd28f
/ABC008/ABC008c.py
87101a377b00a29da7177f1b64b86131d72617f7
[ "Unlicense" ]
permissive
yuto-moriizumi/AtCoder
86dbb4f98fea627c68b5391bf0cc25bcce556b88
21acb489f1594bbb1cdc64fbf8421d876b5b476d
refs/heads/master
2023-03-25T08:10:31.738457
2021-03-23T08:48:01
2021-03-23T08:48:01
242,283,632
0
0
null
null
null
null
UTF-8
Python
false
false
76
py
#ABC008c import sys input = sys.stdin.readline sys.setrecursionlimit(10**6)
aeb73fa853bdfc044c427f1d12e75525607b2690
b7d766db43e1857bc1c886bbffa01817d201fb2e
/Algorithm PS/이것이 취업을 위한 코딩테스트다/Chapter 11 그리디 문제/볼링공 고르기.py
7b772fe7bd59365f6202c61571944cf8694f0793
[]
no_license
Jongminfire/Python
ae4010b23b60b59cddd837344784ef9da33d1b1d
11219310cd13c18647c3220b89878c25fdc98922
refs/heads/main
2023-07-27T20:27:12.612883
2021-09-10T08:05:01
2021-09-10T08:05:01
307,398,237
0
0
null
null
null
null
UTF-8
Python
false
false
372
py
n,m = map(int,input().split()) ball = list(map(int,input().split())) # 중복을 제외한 종류를 얻기 위해 (문제에서는 m이 10이하 이므로 list로 선언해도 됨) s = set(ball) answer = 0 # 중복이 하나도 없는 경우 계산 for i in range(1,n): answer += i # 중복된 만큼 빼주기 for i in s: answer -= ball.count(i)-1 print(answer)
1b1ff1573ecfd049b15a8a82ced9916ca5a8548e
cd127231a354bf7a299667e65cbd83265988be7f
/COMPANIES/ness/ex.py
f54d1ef46bca7fff2e8525f57769802775ccf1a2
[]
no_license
nagireddy96666/Interview_-python
de96c8d2dfd56343351bd0039adad561e79aac1a
6789d200ded60575682f467c880990937e4d4f0f
refs/heads/master
2020-03-10T01:53:17.185819
2018-04-11T16:22:05
2018-04-11T16:22:05
129,121,777
1
0
null
null
null
null
UTF-8
Python
false
false
1,416
py
>>> x=(1,2,(4,5,6,7,8)) >>> x[2][1:4] (5, 6, 7) >>> "".join([str(i) for i in x[2][1:4]]) '567' >>> s="apple banna and apple banna " >>> s.count('apple') 2 >>> s.count('banna')==s.count('apple') True >>> l=['apple',['banna','apple']] >>> l.count('apple') 1 >>> set(l) Traceback (most recent call last): File "<pyshell#8>", line 1, in <module> set(l) TypeError: unhashable type: 'list' >>> i='apple' >>> list(l) ['apple', ['banna', 'apple']] >>> for i in l: if i=="apple:" SyntaxError: invalid syntax >>> for i in l: if i=="apple": count+=1 else: x=i.count('apple') count+=x Traceback (most recent call last): File "<pyshell#18>", line 3, in <module> count+=1 NameError: name 'count' is not defined >>> count=0 >>> for i in l: if i=="apple": count+=1 else: x=i.count('apple') count+=x >>> print count 2 >>> count=0 >>> for i in l: if i.count('apple'): count+=i.count('apple') print count SyntaxError: invalid syntax >>> >>> for i in l: if i.count('apple'): count+=i.count('apple') print count SyntaxError: invalid syntax >>> for i in l: if i.count('apple'): count+=i.count('apple') >>> >>> count 2 >>> l=['apple','banaba',['apple','banan']] >>> count=0 >>> for i in l: if i.count('apple'): count+=i.count('apple') >>> count 2 >>> l=['banaba',['apple','banan']] >>> count=0 >>> for i in l: if i.count('apple'): count+=i.count('apple') >>> count 1 >>>
e80898bbcbe582829b80d0cba3f32816f4b4f2e6
15102eb2c657a296eb00821dc378225b79fbc17e
/Homework/venv/Lib/site-packages/pip-19.0.3-py3.7.egg/pip/_vendor/html5lib/treebuilders/__init__.py
719f41d61f65e2d4064afc9d24e406f6c2af3e92
[]
no_license
yuju13488/pyworkspace
746446b3573fa6241d979b205e964e7d52af009b
0c77836185237450ee446542e6ff3856c7cd7de1
refs/heads/master
2020-08-02T03:56:55.577735
2019-10-04T05:50:56
2019-10-04T05:50:56
211,226,300
0
0
null
null
null
null
UTF-8
Python
false
false
3,607
py
"""A collection of modules for building different kinds of trees from HTML documents. To create a treebuilder for a new type of tree, you need to do implement several things: 1. A set of classes for various types of elements: Document, Doctype, Comment, Element. These must implement the interface of ``base.treebuilders.Node`` (although comment nodes have a different signature for their constructor, see ``treebuilders.etree.Comment``) Textual content may also be implemented as another node type, or not, as your tree implementation requires. 2. A treebuilder object (called ``TreeBuilder`` by convention) that inherits from ``treebuilders.base.TreeBuilder``. This has 4 required attributes: * ``documentClass`` - the class_hw to use for the bottommost node of a document * ``elementClass`` - the class_hw to use for HTML Elements * ``commentClass`` - the class_hw to use for comments * ``doctypeClass`` - the class_hw to use for doctypes It also has one required method: * ``getDocument`` - Returns the root node of the complete document tree 3. If you wish to run the unit tests, you must also create a ``testSerializer`` method on your treebuilder which accepts a node and returns a string containing Node and its children serialized according to the format used in the unittests """ from __future__ import absolute_import, division, unicode_literals from .._utils import default_etree treeBuilderCache = {} def getTreeBuilder(treeType, implementation=None, **kwargs): """Get a TreeBuilder class_hw for various types of trees with built-in support :arg treeType: the name of the tree type required (case-insensitive). Supported values are: * "dom" - A generic builder for DOM implementations, defaulting to a xml.dom.minidom based implementation. * "etree" - A generic builder for tree implementations exposing an ElementTree-like interface, defaulting to xml.etree.cElementTree if available and xml.etree.ElementTree if not. * "lxml" - A etree-based builder for lxml.etree, handling limitations of lxml's implementation. :arg implementation: (Currently applies to the "etree" and "dom" tree types). A module implementing the tree type e.g. xml.etree.ElementTree or xml.etree.cElementTree. :arg kwargs: Any additional options to pass to the TreeBuilder when creating it. Example: >>> from html5lib.treebuilders import getTreeBuilder >>> builder = getTreeBuilder('etree') """ treeType = treeType.lower() if treeType not in treeBuilderCache: if treeType == "dom": from . import dom # Come up with a sane default (pref. from the stdlib) if implementation is None: from xml.dom import minidom implementation = minidom # NEVER cache here, caching is done in the dom submodule return dom.getDomModule(implementation, **kwargs).TreeBuilder elif treeType == "lxml": from . import etree_lxml treeBuilderCache[treeType] = etree_lxml.TreeBuilder elif treeType == "etree": from . import etree if implementation is None: implementation = default_etree # NEVER cache here, caching is done in the etree submodule return etree.getETreeModule(implementation, **kwargs).TreeBuilder else: raise ValueError("""Unrecognised treebuilder "%s" """ % treeType) return treeBuilderCache.get(treeType)
1405cbdf7ef8552c640e6016fb19520d9b5d29bb
f82757475ea13965581c2147ff57123b361c5d62
/gi-stubs/repository/Clutter/ActorPrivate.py
5442f5ceb9b035c2bbbd78a25b97746718dc1c0e
[]
no_license
ttys3/pygobject-stubs
9b15d1b473db06f47e5ffba5ad0a31d6d1becb57
d0e6e93399212aada4386d2ce80344eb9a31db48
refs/heads/master
2022-09-23T12:58:44.526554
2020-06-06T04:15:00
2020-06-06T04:15:00
269,693,287
8
2
null
2020-06-05T15:57:54
2020-06-05T15:57:54
null
UTF-8
Python
false
false
4,378
py
# encoding: utf-8 # module gi.repository.Clutter # from /usr/lib64/girepository-1.0/Clutter-1.0.typelib # by generator 1.147 """ An object which wraps an introspection typelib. This wrapping creates a python module like representation of the typelib using gi repository as a foundation. Accessing attributes of the module will dynamically pull them in and create wrappers for the members. These members are then cached on this introspection module. """ # imports import gi as __gi import gi.overrides.GObject as __gi_overrides_GObject import gi.repository.Atk as __gi_repository_Atk import gi.repository.GObject as __gi_repository_GObject import gobject as __gobject class ActorPrivate(__gi.Struct): # no doc def __delattr__(self, *args, **kwargs): # real signature unknown """ Implement delattr(self, name). """ pass def __dir__(self, *args, **kwargs): # real signature unknown """ Default dir() implementation. """ pass def __eq__(self, *args, **kwargs): # real signature unknown """ Return self==value. """ pass def __format__(self, *args, **kwargs): # real signature unknown """ Default object formatter. """ pass def __getattribute__(self, *args, **kwargs): # real signature unknown """ Return getattr(self, name). """ pass def __ge__(self, *args, **kwargs): # real signature unknown """ Return self>=value. """ pass def __gt__(self, *args, **kwargs): # real signature unknown """ Return self>value. """ pass def __hash__(self, *args, **kwargs): # real signature unknown """ Return hash(self). """ pass def __init_subclass__(self, *args, **kwargs): # real signature unknown """ This method is called when a class is subclassed. The default implementation does nothing. It may be overridden to extend subclasses. """ pass def __init__(self, *args, **kwargs): # real signature unknown pass def __le__(self, *args, **kwargs): # real signature unknown """ Return self<=value. """ pass def __lt__(self, *args, **kwargs): # real signature unknown """ Return self<value. """ pass @staticmethod # known case of __new__ def __new__(*args, **kwargs): # real signature unknown """ Create and return a new object. See help(type) for accurate signature. """ pass def __ne__(self, *args, **kwargs): # real signature unknown """ Return self!=value. """ pass def __reduce_ex__(self, *args, **kwargs): # real signature unknown """ Helper for pickle. """ pass def __reduce__(self, *args, **kwargs): # real signature unknown """ Helper for pickle. """ pass def __repr__(self, *args, **kwargs): # real signature unknown """ Return repr(self). """ pass def __setattr__(self, *args, **kwargs): # real signature unknown """ Implement setattr(self, name, value). """ pass def __sizeof__(self, *args, **kwargs): # real signature unknown """ Size of object in memory, in bytes. """ pass def __str__(self, *args, **kwargs): # real signature unknown """ Return str(self). """ pass def __subclasshook__(self, *args, **kwargs): # real signature unknown """ Abstract classes can override this to customize issubclass(). This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached). """ pass def __weakref__(self, *args, **kwargs): # real signature unknown pass __class__ = None # (!) real value is "<class 'gi.types.StructMeta'>" __dict__ = None # (!) real value is "mappingproxy({'__info__': StructInfo(ActorPrivate), '__module__': 'gi.repository.Clutter', '__gtype__': <GType void (4)>, '__dict__': <attribute '__dict__' of 'ActorPrivate' objects>, '__weakref__': <attribute '__weakref__' of 'ActorPrivate' objects>, '__doc__': None})" __gtype__ = None # (!) real value is '<GType void (4)>' __info__ = StructInfo(ActorPrivate)
9b18c9b220820abf2ca3f6d3ac3ad54b51e7b61b
8115597c29c6d38b947f7097cbe00e43d20839c4
/src/watch_copter_vs_enemies.py
96cd17b6be2b6432e87fd2488b31b7371376b2e0
[]
no_license
Vottivott/evolutionary-algorithms
cd323f85fb9aa8e57377dfba9237275bf9326649
ccd6f7670fea42fee40d2c127efe8c96bba21cb0
refs/heads/master
2018-10-23T23:16:28.085776
2017-09-28T22:04:02
2017-09-28T22:04:02
103,953,407
0
0
null
null
null
null
UTF-8
Python
false
false
80
py
from copter_simulation import watch_copter_vs_enemies watch_copter_vs_enemies()
0cad81c5959f3b052190971ff25ba4c17be272b4
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/K3qMssK6mF34ctXE5_0.py
d554d4ac09f043697d131072a7af0034bd43ba29
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
42
py
def square_patch(n): return [[n]*n]*n
6a8fd64fa290a4515022aa9b4be3f29099b8f7b8
537e2be29992f8bfd3fb2797003102f4e79f5f9f
/scripts/seq-composition
617c244546da86e1baf3cf510e368eabb5095e37
[ "BSD-2-Clause", "BSD-3-Clause" ]
permissive
etal/biofrills
a0cf45700abbda865f71d55030717dee4d769446
36684bb6c7632f96215e8b2b4ebc86640f331bcd
refs/heads/master
2020-06-01T16:29:41.540511
2013-10-21T23:01:19
2013-10-21T23:01:19
5,113,363
5
1
null
null
null
null
UTF-8
Python
false
false
642
#!/usr/bin/env python """Print the frequencies of each letter in a sequence set.""" # TODO - move the calculation to module (take input stream, return freqs) import fileinput from collections import Counter # Count character types counts = Counter() for line in fileinput.input(): if line.startswith('>') or not line.strip(): continue counts.update(Counter(line.strip())) # Convert counts to frequencies scale = 1.0 / sum(counts.values()) freqs = dict((char, cnt * scale) for char, cnt in counts.iteritems()) # Print a nice table for char, frq in sorted(freqs.iteritems()): print '%s: %f' % (char, frq)
7362e34f612448e62b39d7ee13d6f41730354825
ba27372850fd287f4e268f486103afb797c7f4f4
/setup.py
286ff3234f0365f85c60fc77027909c3e6576437
[ "BSD-3-Clause" ]
permissive
django-blog-zinnia/feed2zinnia
9702a3b177f16009ac49907b2298f98243fab374
ec1a5e44f6175dab248e2f4f9ba3f9ecb2800e6b
HEAD
2016-09-16T05:26:56.676013
2015-01-15T11:19:01
2015-01-15T11:19:01
29,293,499
0
1
null
null
null
null
UTF-8
Python
false
false
1,092
py
"""Setup script of feed2zinnia""" from setuptools import setup from setuptools import find_packages import zinnia_feed setup( name='feed2zinnia', version=zinnia_feed.__version__, description='Import your RSS or Atom feed into Zinnia', long_description=open('README.rst').read(), keywords='django, zinnia, feed, rss, atom', author=zinnia_feed.__author__, author_email=zinnia_feed.__email__, url=zinnia_feed.__url__, packages=find_packages(exclude=['demo_zinnia_feed']), classifiers=[ 'Framework :: Django', 'Development Status :: 5 - Production/Stable', 'Environment :: Web Environment', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Intended Audience :: Developers', 'Operating System :: OS Independent', 'License :: OSI Approved :: BSD License', 'Topic :: Software Development :: Libraries :: Python Modules'], license=zinnia_feed.__license__, include_package_data=True, zip_safe=False, install_requires=['feedparser>=5.1.3'] )
177e721a596ee080d3343228f66a65ecd4fa0724
dc965a62709bbb2c6c9ad01859a83507d7457941
/Assignments/Class Assignments/AutoGenerateClass.py
ee53ba982de479f56ddc5aeb651099442d698a61
[]
no_license
JyotiSathe/Python
ead31a84cde86d734acdf0ad83c27c6bb1c1a331
846371d678ba225c210493605233b262a51bd950
refs/heads/master
2021-05-11T22:38:30.299035
2018-06-24T14:08:37
2018-06-24T14:08:37
117,364,196
0
0
null
null
null
null
UTF-8
Python
false
false
692
py
class AutoGenerate: def __init__(self,start,stop,step=1): self.start=start self.stop=stop self.step=step def Next(self): self.start+=self.step if self.start>=self.stop: raise StopIteration yield self.start def next(self): return self.Next().next() def __next__(self): return self.Next().__next__() #def __iter__(self): # return self def main(): x=AutoGenerate(0,100,5) #for sets iterator so if need to give for needs to have iter method #for y in x: # print y y=x.next() print (y) if __name__=='__main__': main()
a9dfdb93f377c71c1655c5383fe4d557af7f730b
6758974fd7046a3947f1387a788cfebe7ac85b22
/BilibiliUpVideosDownloader/BilibiliUpVideosDownload.py
d5eba781595ae6be622bd83dbf99b1ad88cb45dd
[]
no_license
HkerVit/facebook-api-video-upload-py
d85ec55c3e7adacaf094b8440111ccdb8d065a6f
6bcf0f4c08512c5b3896c6f61a80de66c0a59744
refs/heads/main
2023-03-16T22:42:48.137863
2021-03-11T03:49:23
2021-03-11T03:49:23
346,636,830
1
0
null
2021-03-11T08:51:47
2021-03-11T08:51:46
null
UTF-8
Python
false
false
2,444
py
import sys, getopt import requests import json import os import pymysql def get_history(bvid): find_sql = "SELECT * FROM download_history_bilibili WHERE bvid='{}'".format(bvid) findres = cursor.execute(find_sql) if findres == 0: res = False else: res = True return res def get_url_list(uid): url = f"https://api.bilibili.com/x/space/arc/search?mid={uid}&ps=30&tid=0&pn=1&keyword=&order=pubdate&jsonp=jsonp" data = json.loads(requests.get(url).text) if data["code"] == 0: count = data["data"]["page"]["count"] page_count = int(count/30) + 1 for page in range(page_count): pn = page + 1 url = f"https://api.bilibili.com/x/space/arc/search?mid={uid}&ps=30&tid=0&pn={pn}&keyword=&order=pubdate&jsonp=jsonp" page_vdict = json.loads(requests.get(url).text)["data"]["list"]["vlist"] for vdict in page_vdict: bvid="https://www.bilibili.com/video/"+vdict["bvid"] vdict['bvid']=bvid vdict['pic']=vdict['pic'].replace("//",'') bvidExits=get_history(bvid) if not bvidExits: values_list = list(vdict.values()) values_list = ["0"] + values_list values = tuple(values_list) add_sql = "INSERT INTO download_history_bilibili VALUES {}".format(values) cursor.execute(add_sql) db.commit() print("Insert: ", bvid) elif bvidExits: print("Exist: ",bvid) def downloadVideo(uid): find_sql = "SELECT * FROM download_history_bilibili WHERE mid='{}'".format(uid) cursor.execute(find_sql) res=cursor.fetchall() for r in res: bvid = r[16] author=r[10] path = "./download/{}/".format(author) pathExist=os.path.exists(path) if not pathExist: os.makedirs(path) cmd = "annie -o {} {}".format(path,bvid) os.system(cmd) if __name__ == "__main__": db_host = "45.76.170.159" db_user = "db_poster" db_name = "db_poster" db_pass = "ysq1159889481" db = pymysql.connect(host=db_host, user=db_user, password=db_pass, database=db_name) cursor = db.cursor() # get_url_list(15183062) downloadVideo(15183062) db.close()
256bc94180a64e4adbbbbc23b29e319b6f40ded7
751b094918ae9200afe7824d58804549082caa95
/src/python/WMComponent/DBS3Buffer/Oracle/CreateBlocks.py
cad2bf954ebb5bcb10c781f908e8dbdf8a3500e2
[]
no_license
cinquo/WMCore
7ebd13269f42eb97f416f8f2bdaca05fa93c6afc
122f9332f2e944154dd0df68b6b3f2875427b032
refs/heads/master
2021-01-09T06:28:58.947626
2013-06-05T08:31:53
2013-06-05T08:31:53
2,965,330
1
0
null
null
null
null
UTF-8
Python
false
false
346
py
#!/usr/bin/env python """ _DBSBuffer.SetBlockStatus_ Create new block in dbsbuffer_block Update file to reflect block information """ import threading import exceptions from WMComponent.DBS3Buffer.MySQL.CreateBlocks import CreateBlocks as MySQLCreateBlocks class CreateBlocks(MySQLCreateBlocks): """ Oracle implementation """
[ "sfoulkes@4525493e-7705-40b1-a816-d608a930855b" ]
sfoulkes@4525493e-7705-40b1-a816-d608a930855b
a36698307a7e3d636b68d44b8f6c8edb79ccff13
97da505ec0524d7b214764d198ed9b82e79300ed
/pyiem/util.py
214d7992d40ef89bc531b372e3a548bf3c071eb3
[ "MIT" ]
permissive
morganetanu/pyIEM
c035a1706cccff0afed209f14760f2668259667f
2a38d1de77d056161408e804b5c246b7e6b38056
refs/heads/master
2021-08-20T07:10:40.071377
2017-11-28T13:41:29
2017-11-28T13:41:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,813
py
# -*- coding: utf-8 -*- """Utility functions for pyIEM package This module contains utility functions used by various parts of the codebase. """ import netrc import time import random import logging import datetime import re import warnings import getpass from socket import error as socket_error import psycopg2 from pyiem.ftpsession import FTPSession import numpy as np SEQNUM = re.compile(r"\001?[0-9]{3}\s?") def get_dbconn(dbname, user=None): """Helper function with business logic to get a database connection Note that this helper could return a read-only database connection if the connection to the primary server fails. Args: dbname (str): the database name to connect to user (str,optional): hard coded user to connect as, default: current user Returns: psycopg2 database connection """ if user is None: user = getpass.getuser() # We hard code the apache user back to nobody if user == 'apache': user = 'nobody' host = "iemdb" if dbname == 'hads': host = "iemdb-hads" try: pgconn = psycopg2.connect(database=dbname, host=host, user=user, connect_timeout=15) except psycopg2.OperationalError as exp: warnings.warn("database connection failure: %s" % (exp, )) # as a stop-gap, lets try connecting to iemdb2 pgconn = psycopg2.connect(database=dbname, host='iemdb2', user=user, connect_timeout=15) return pgconn def noaaport_text(text): """Make whatever text look like it is NOAAPort Pristine Args: text (string): the inbound text Returns: text that looks noaaportish """ # Convert to LFLFCR text = text.replace("\n", "\r\r\n").replace("\r\r\r\r", "\r\r") lines = text.split("\r\r\n") # remove any beginning empty lines while lines and lines[0] == '': lines.pop(0) # lime 0 should be start of product sequence if lines[0] != "\001": lines.insert(0, "\001") # line 1 should be the LDM sequence number 4 chars if not SEQNUM.match(lines[1]): if len(lines[1]) > 5: lines.insert(1, "000 ") # last line should be the control-c, by itself if lines[-1] != "\003": lines.append("\003") # Second line should not be blank if lines[1].strip() == 0: lines = [lines[0], ] + lines[2:] return "\r\r\n".join(lines) def get_autoplot_context(fdict, cfg): """Get the variables out of a dict of strings This helper for IEM autoplot gets values out of a dictionary of strings, as provided by CGI. It does some magic to get types right, defaults right and so on. The typical way this is called ctx = iemutils.get_context(fdict, get_description()) Args: fdict (dictionary): what was likely provided by `cgi.FieldStorage()` cfg (dictionary): autoplot value of get_description Returns: dictionary of variable names and values, with proper types! """ ctx = {} for opt in cfg.get('arguments', []): name = opt.get('name') default = opt.get('default') typ = opt.get('type') minval = opt.get('min') maxval = opt.get('max') optional = opt.get('optional', False) value = fdict.get(name) if optional and value is None and typ not in ['vtec_ps']: continue if typ in ['station', 'zstation', 'sid', 'networkselect']: # A bit of hackery here if we have a name ending in a number netname = "network%s" % (name[-1] if name[-1] != 'n' else '',) ctx[netname] = fdict.get(netname) # The network variable tags along and within a non-PHP context, # this variable is unset, so we do some more hackery here if ctx[netname] is None: ctx[netname] = opt.get('network') elif typ in ['int', 'month', 'zhour', 'hour', 'day', 'year']: if value is not None: value = int(value) if default is not None: default = int(default) elif typ == 'float': if value is not None: value = float(value) if default is not None: default = float(default) elif typ == 'select': options = opt.get('options', dict()) if value not in options: value = default elif typ == 'datetime': # tricky here, php has YYYY/mm/dd and CGI has YYYY-mm-dd if default is not None: default = datetime.datetime.strptime(default, '%Y/%m/%d %H%M') if minval is not None: minval = datetime.datetime.strptime(minval, '%Y/%m/%d %H%M') if maxval is not None: maxval = datetime.datetime.strptime(maxval, '%Y/%m/%d %H%M') if value is not None: if value.find(" ") == -1: value += " 0000" value = datetime.datetime.strptime(value, '%Y-%m-%d %H%M') elif typ == 'date': # tricky here, php has YYYY/mm/dd and CGI has YYYY-mm-dd if default is not None: default = datetime.datetime.strptime(default, '%Y/%m/%d').date() if minval is not None: minval = datetime.datetime.strptime(minval, '%Y/%m/%d').date() if maxval is not None: maxval = datetime.datetime.strptime(maxval, '%Y/%m/%d').date() if value is not None: value = datetime.datetime.strptime(value, '%Y-%m-%d').date() elif typ == 'vtec_ps': # VTEC phenomena and significance for label in ['phenomena', 'significance']: label = label + name ctx[label] = fdict.get(label) continue # validation if minval is not None and value is not None and value < minval: value = default if maxval is not None and value is not None and value > maxval: value = default ctx[name] = value if value is not None else default return ctx def exponential_backoff(func, *args, **kwargs): """ Exponentially backoff some function until it stops erroring""" msgs = [] for i in range(5): try: return func(*args, **kwargs) except socket_error as serr: msgs.append("%s/5 %s traceback: %s" % (i+1, func.__name__, serr)) time.sleep((2 ** i) + (random.randint(0, 1000) / 1000)) except Exception as exp: msgs.append("%s/5 %s traceback: %s" % (i+1, func.__name__, exp)) time.sleep((2 ** i) + (random.randint(0, 1000) / 1000)) logging.error("%s failure" % (func.__name__,)) logging.error("\n".join(msgs)) return None def send2box(filenames, remote_path, remotenames=None, ftpserver='ftp.box.com', tmpdir='/tmp', fs=None): """Send one or more files to CyBox Box has a filesize limit of 15 GB, so if we find any files larger than that, we shall split them into chunks prior to uploading. Args: filenames (str or list): filenames to upload remote_path (str): location to place the filenames remotenames (str or list): filenames to use on the remote FTP server should match size and type of filenames ftpserver (str): FTP server to connect to... tmpdir (str, optional): Temperary folder to if an individual file is over 15 GB in size Returns: FTPSession list of success `True` or failures `False` matching filenames """ credentials = netrc.netrc().hosts[ftpserver] if fs is None: fs = FTPSession(ftpserver, credentials[0], credentials[2], tmpdir=tmpdir) if isinstance(filenames, str): filenames = [filenames, ] if remotenames is None: remotenames = filenames if isinstance(remotenames, str): remotenames = [remotenames, ] res = fs.put_files(remote_path, filenames, remotenames) return fs, res def get_properties(): """Fetch the properties set Returns: dict: a dictionary of property names and values (both str) """ pgconn = psycopg2.connect(database='mesosite', host='iemdb', user='nobody') cursor = pgconn.cursor() cursor.execute("""SELECT propname, propvalue from properties""") res = {} for row in cursor: res[row[0]] = row[1] return res def drct2text(drct): """Convert an degree value to text representation of direction. Args: drct (int or float): Value in degrees to convert to text Returns: str: String representation of the direction, could be `None` """ if drct is None: return None # Convert the value into a float drct = float(drct) if drct > 360: return None text = None if drct >= 350 or drct < 13: text = "N" elif drct >= 13 and drct < 35: text = "NNE" elif drct >= 35 and drct < 57: text = "NE" elif drct >= 57 and drct < 80: text = "ENE" elif drct >= 80 and drct < 102: text = "E" elif drct >= 102 and drct < 127: text = "ESE" elif drct >= 127 and drct < 143: text = "SE" elif drct >= 143 and drct < 166: text = "SSE" elif drct >= 166 and drct < 190: text = "S" elif drct >= 190 and drct < 215: text = "SSW" elif drct >= 215 and drct < 237: text = "SW" elif drct >= 237 and drct < 260: text = "WSW" elif drct >= 260 and drct < 281: text = "W" elif drct >= 281 and drct < 304: text = "WNW" elif drct >= 304 and drct < 324: text = "NW" elif drct >= 324 and drct < 350: text = "NNW" return text def grid_bounds(lons, lats, bounds): """Figure out indices that we can truncate big grid Args: lons (np.array): grid lons lats (np.array): grid lats bounds (list): [x0, y0, x1, y1] Returns: [x0, y0, x1, y1] """ x0 = 0 x1 = -1 y0 = 0 y1 = -1 if len(lons.shape) == 1: # Do 1-d work (x0, x1) = np.digitize([bounds[0], bounds[2]], lons) (y0, y1) = np.digitize([bounds[1], bounds[3]], lats) szx = len(lons) szy = len(lats) else: # Do 2-d work diff = ((lons - bounds[0])**2 + (lats - bounds[1])**2)**0.5 (lly, llx) = np.unravel_index(np.argmin(diff), lons.shape) diff = ((lons - bounds[2])**2 + (lats - bounds[3])**2)**0.5 (ury, urx) = np.unravel_index(np.argmin(diff), lons.shape) diff = ((lons - bounds[0])**2 + (lats - bounds[3])**2)**0.5 (uly, ulx) = np.unravel_index(np.argmin(diff), lons.shape) diff = ((lons - bounds[2])**2 + (lats - bounds[1])**2)**0.5 (lry, lrx) = np.unravel_index(np.argmin(diff), lons.shape) x0 = min([llx, ulx]) x1 = max([lrx, urx]) y0 = min([lry, lly]) y1 = max([uly, ury]) (szy, szx) = lons.shape return [int(i) for i in [max([0, x0]), max([0, y0]), min([szx, x1]), min([szy, y1])]] if __name__ == '__main__': logger = logging.getLogger() logger.setLevel(logging.DEBUG) send2box(['util.py', 'plot.py'], '/bah1/bah2/', remotenames=['util2.py', 'plot.py']) # mirror2box("/tmp/mytest", "mytest")
3b126b869bfccc6a9d0b195367775643248e1374
1caf4418f3549567637f5e9893a445f52a38c6a0
/CmsAdmin/user_content/api/resources/account_verify_api.py
69ed7dcf8e0a5f7723260d2e105ebf033f022654
[]
no_license
Final-Game/social_network_backend
c601563e08c0fd7de72a614944f354ef8d2d31d8
8111787d1d20eb87733ae360d8baa745a65e2743
refs/heads/master
2023-03-04T21:12:43.147084
2021-02-23T03:45:22
2021-02-23T03:45:22
290,542,389
0
0
null
null
null
null
UTF-8
Python
false
false
1,577
py
from user_content.api.resources.filters.account_verify_filter import AccountVerifyFilter from user_content.api.serializers.resources.account_verify_serializer import ( AccountVerifySerializer, ) from rest_framework.filters import OrderingFilter, SearchFilter from django_filters.rest_framework import DjangoFilterBackend from rest_framework.viewsets import ModelViewSet from user_content.models import AccountVerify from core.api.rest_frameworks import StandardResultsSetPagination from core.api.rest_frameworks.order_filter import CustomOrderingFilter class AccountVerifyApi(ModelViewSet): queryset = AccountVerify.objects.all() serializer_class = AccountVerifySerializer filter_class = AccountVerifyFilter pagination_class = StandardResultsSetPagination filter_backends = [ SearchFilter, OrderingFilter, CustomOrderingFilter, DjangoFilterBackend, ] search_fields = ["account__profile__first_name", "account__profile__last_name"] ordering_fields = ["created_at", "updated_at"] def list(self, request, *args, **kwargs): return super().list(request, *args, **kwargs) def create(self, request, *args, **kwargs): return super().create(request, *args, **kwargs) def update(self, request, *args, **kwargs): return super().update(request, *args, **kwargs) def destroy(self, request, *args, **kwargs): return super().destroy(request, *args, **kwargs) def retrieve(self, request, *args, **kwargs): return super().retrieve(request, *args, **kwargs)
a7a6bbcef0abbc635c7fab15e94f6e05e49edb93
8a5ccfbd09fdc3eb42e8240c0b7ceaf981f27814
/astropy_stark/astropy_stark/myresample.py
3955dbeb0583809c82943f8a3f5932d6b34aed52
[]
no_license
hlabathems/pycecream
97edfd388e32ab12b22765debab31ee8c4929ab4
cd52937c3ff053dede0b02803933ba58789d5ff3
refs/heads/master
2020-06-09T22:46:14.114693
2019-06-19T17:42:24
2019-06-19T17:42:24
193,521,752
0
1
null
2019-06-24T14:30:05
2019-06-24T14:30:04
null
UTF-8
Python
false
false
6,010
py
#### code to randomly resample a set of input light curves #10/9/2017 sampcode 3 update includes sampmin the minum spacing between data points #sampcode 4, dtave indicates the minimum space between data points, data points will be selected (with no interpolation) from the parent sample, skipping points until the minimum spacing dtave is achieved ##avesamp is the average length of time between the random samples #set dir = '' and fname=[''] to have this function work on datin[nt,3] and output array rather than save to file #new 10/9/2017 added option dtsdin need mean and standard deviation of spacing between points e.g setting #dtsdin very small will give very regularly spaced points. #if negative then the absolute value is the fraction relative to the mean e.g -0.2 will set the #standard deviation as a fifth of the mean spacing between points import numpy as np import os import sys import astropy_stark.myrandom as mr def myresample(dir,fname,dtave,dtsdin = -0.2, sampmin=0.8,sampcode=3,datin=[]): if (dtsdin < 0): dtsd = np.abs(dtsdin)*dtave else: dtsd = dtsdin dirpy=os.getcwd() #dir = sys.argv[1] #the directory storing the light curves e.g '../fort/fortcode/fakelc/kep_18mar' #fname = sys.argv[2] # a list of the files .e.g ['file1.dat','file2.dat','...'] etc #dtave = sys.argv[3] #e.g 0.5 will resample with mean half day cadence #sampmin = 0.8 #sampcode = 2 #!!### user arguments above. Don't change sampcode or sampmin unless you know what they do (I don't and I wrote the code).### if (dir != ''): os.chdir(dir) Nfile=len(fname) for ifile in range(Nfile): if (fname[ifile] == ''): dat = datin else: dat=np.loadtxt(fname[ifile]) t=dat[:,0] x=dat[:,1] sig=dat[:,2] Ndat=t.shape[0] dt = (t[-1] - t[0])/(Ndat-1) # below are two versions of the code (the 2nd should be more sophisticated and consider the approximate spacing between each point when making its idxsamp selection if sampcode == 1: nidx=(1.-sampmin)*np.random.ranom_sample(1)[0]+sampmin idxsamp=np.random.rand(low=0,high=Ndat,size=nidx) datsamp=np.zeros((nidx,3)) datsamp[:,0]=t[idxsamp] datsamp[:,1]=x[idxsamp] datsamp[:,2]=sig[idxsamp] elif sampcode == 2: idxcount=0 tthen=t[0] idxsamp=[] xn = [] sign = [] tn = [] while (idxcount < Ndat) & (tthen < t[-1]): a = np.random.randn(1)*dt*2 tnow = tthen + dtave + a tn.append(tnow) xn.append(np.interp([tnow],t,x)[0]) sign.append(np.interp([tnow],t,sig)[0]) #idxsamp.append(np.abs(t-tnow).argmin()) ## index of closest time to tnow tthen=tnow idxcount=idxcount+1 #idxsamp=np.array(idxsamp) tn = np.array(tn) xn = np.array(xn) sign = np.array(sign) nn = xn.shape[0] datsamp=np.zeros((nn,3)) datsamp[:,0]=tn[:,0] datsamp[:,1]=xn[:,0] datsamp[:,2]=sign[:,0] elif sampcode == 3: #print 'ararar' idxcount=0 tthen=t[0] idxsamp=[] tlast = t[-1] while (idxcount < Ndat-1) & (tthen < tlast - 4*sampmin): #a = np.random.randn(1)*dtave a = np.random.normal(dtave,dtsd,1)[0] tnow = tthen + np.abs(a) idxtemp = np.abs(t-tnow).argmin() #print tnow,tthen,'before mrs' #print tnow, tthen, idxcount, sampmin if ((idxtemp not in idxsamp) and ((tnow - tthen > sampmin) or (tnow > tlast - sampmin))): idxsamp.append(idxtemp) ## index of closest time to tnow idxcount=idxcount+1 a= 1.*tthen-tnow tthen=tnow #print idxcount, Ndat, tthen, t[-1],'mrs' idxsamp=np.array(idxsamp) datsamp=np.zeros((idxsamp.shape[0],3)) datsamp[:,0]=t[idxsamp] datsamp[:,1]=x[idxsamp] datsamp[:,2]=sig[idxsamp] ttemp_space = datsamp[1:,0]-datsamp[:-1,0] #print('min,max,and ave spacing between elements',ttemp_space.min(), ttemp_space.max(), np.mean(ttemp_space)) elif sampcode == 4: idxcount=0 tthen=t[0] idxsamp=[] while (idxcount < Ndat) & (tthen < t[-1]): tnow = tthen + dtave b = t>tnow idxtemp = [i for i, elem in enumerate(b, 1) if elem] if (len(idxtemp) ==0): break idxtemp = idxtemp[0] if (idxtemp >= t.shape[0]): break if (idxtemp not in idxsamp): idxsamp.append(idxtemp) ## index of closest time to tnow idxcount=idxcount+1 a= tnow - tthen tthen=t[idxtemp] #if (t[idxtemp] - t[idxtemp-1] < dtave): #print 'PROBLEM!!', #print t[idxtemp] - t[idxtemp-1], dtave#print tnow, idxcount, dtave, dt, tthen, a #raw_input() #print idxsamp idxsamp=np.array(idxsamp) datsamp=np.zeros((idxsamp.shape[0],3)) datsamp[:,0]=t[idxsamp] datsamp[:,1]=x[idxsamp] datsamp[:,2]=sig[idxsamp] ttemp_space = datsamp[1:,0]-datsamp[:-1,0] ns = len(idxsamp) #for i in range(ns): # print i,datsamp[i,:] #print('min,max,and ave spacing between elements',ttemp_space.min(), ttemp_space.max(), np.mean(ttemp_space)) #print('locations...',ttemp_space.argmin(),ttemp_space.argmax()) np.savetxt('resamp_'+fname[ifile],datsamp) os.chdir(dirpy) # change back to python directory return(datsamp)