blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
e0dfb630e3c0d0a11d8d97f1a3ea11e4ee039b3f
9139abff4dfec3c4c0623e42db2d44a866595752
/test/test_metric.py
7a707dd862755c51471ed48bea7b3115fd862a22
[ "MIT" ]
permissive
LorinChen/lagom
42e7c0c89c356b1cc7c160f12517fa01693e91c5
273bb7f5babb1f250f6dba0b5f62c6614f301719
refs/heads/master
2020-07-20T17:46:45.648603
2019-08-13T13:20:57
2019-08-13T13:20:57
206,686,173
1
0
MIT
2019-09-06T01:16:27
2019-09-06T01:16:24
null
UTF-8
Python
false
false
12,830
py
import pytest import numpy as np import torch import gym from gym.wrappers import TimeLimit from lagom import RandomAgent from lagom import EpisodeRunner from lagom import StepRunner from lagom.utils import numpify from lagom.envs import make_vec_env from lagom.envs.wrappers import StepInfo from lagom.envs.wrappers import VecStepInfo from lagom.metric import returns from lagom.metric import bootstrapped_returns from lagom.metric import td0_target from lagom.metric import td0_error from lagom.metric import gae from lagom.metric import vtrace from .sanity_env import SanityEnv @pytest.mark.parametrize('gamma', [0.1, 0.99, 1.0]) def test_returns(gamma): assert np.allclose(returns(1.0, [1, 2, 3]), [6, 5, 3]) assert np.allclose(returns(0.1, [1, 2, 3]), [1.23, 2.3, 3]) assert np.allclose(returns(1.0, [1, 2, 3, 4, 5]), [15, 14, 12, 9, 5]) assert np.allclose(returns(0.1, [1, 2, 3, 4, 5]), [1.2345, 2.345, 3.45, 4.5, 5]) assert np.allclose(returns(1.0, [1, 2, 3, 4, 5, 6, 7, 8]), [36, 35, 33, 30, 26, 21, 15, 8]) assert np.allclose(returns(0.1, [1, 2, 3, 4, 5, 6, 7, 8]), [1.2345678, 2.345678, 3.45678, 4.5678, 5.678, 6.78, 7.8, 8]) y1 = [0.1] y2 = [0.1 + gamma*0.2, 0.2] y3 = [0.1 + gamma*(0.2 + gamma*0.3), 0.2 + gamma*0.3, 0.3] y4 = [0.1 + gamma*(0.2 + gamma*(0.3 + gamma*0.4)), 0.2 + gamma*(0.3 + gamma*0.4), 0.3 + gamma*0.4, 0.4] y5 = [0.1 + gamma*(0.2 + gamma*(0.3 + gamma*(0.4 + gamma*0.5))), 0.2 + gamma*(0.3 + gamma*(0.4 + gamma*0.5)), 0.3 + gamma*(0.4 + gamma*0.5), 0.4 + gamma*0.5, 0.5] y6 = [0.1 + gamma*(0.2 + gamma*(0.3 + gamma*(0.4 + gamma*(0.5 + gamma*0.6)))), 0.2 + gamma*(0.3 + gamma*(0.4 + gamma*(0.5 + gamma*0.6))), 0.3 + gamma*(0.4 + gamma*(0.5 + gamma*0.6)), 0.4 + gamma*(0.5 + gamma*0.6), 0.5 + gamma*0.6, 0.6] assert np.allclose(returns(gamma, [0.1]), y1) assert np.allclose(returns(gamma, [0.1, 0.2]), y2) assert np.allclose(returns(gamma, [0.1, 0.2, 0.3]), y3) assert np.allclose(returns(gamma, [0.1, 0.2, 0.3, 0.4]), y4) assert np.allclose(returns(gamma, [0.1, 0.2, 0.3, 0.4, 0.5]), y5) assert np.allclose(returns(gamma, [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]), y6) @pytest.mark.parametrize('gamma', [0.1, 0.99, 1.0]) @pytest.mark.parametrize('last_V', [-3.0, 0.0, 2.0]) def test_bootstrapped_returns(gamma, last_V): y = [0.1 + gamma*(0.2 + gamma*(0.3 + gamma*(0.4 + gamma*last_V))), 0.2 + gamma*(0.3 + gamma*(0.4 + gamma*last_V)), 0.3 + gamma*(0.4 + gamma*last_V), 0.4 + gamma*last_V] reach_terminal = False rewards = [0.1, 0.2, 0.3, 0.4] assert np.allclose(bootstrapped_returns(gamma, rewards, last_V, reach_terminal), y) assert np.allclose(bootstrapped_returns(gamma, rewards, torch.tensor(last_V), reach_terminal), y) y = [0.1 + gamma*(0.2 + gamma*(0.3 + gamma*(0.4 + gamma*last_V*0.0))), 0.2 + gamma*(0.3 + gamma*(0.4 + gamma*last_V*0.0)), 0.3 + gamma*(0.4 + gamma*last_V*0.0), 0.4 + gamma*last_V*0.0] reach_terminal = True rewards = [0.1, 0.2, 0.3, 0.4] assert np.allclose(bootstrapped_returns(gamma, rewards, last_V, reach_terminal), y) assert np.allclose(bootstrapped_returns(gamma, rewards, torch.tensor(last_V), reach_terminal), y) y = [0.1 + gamma*(0.2 + gamma*(0.3 + gamma*(0.4 + gamma*(0.5 + gamma*last_V)))), 0.2 + gamma*(0.3 + gamma*(0.4 + gamma*(0.5 + gamma*last_V))), 0.3 + gamma*(0.4 + gamma*(0.5 + gamma*last_V)), 0.4 + gamma*(0.5 + gamma*last_V), 0.5 + gamma*last_V] reach_terminal = False rewards = [0.1, 0.2, 0.3, 0.4, 0.5] assert np.allclose(bootstrapped_returns(gamma, rewards, last_V, reach_terminal), y) assert np.allclose(bootstrapped_returns(gamma, rewards, torch.tensor(last_V), reach_terminal), y) y = [0.1 + gamma*(0.2 + gamma*(0.3 + gamma*(0.4 + gamma*(0.5 + gamma*last_V*0.0)))), 0.2 + gamma*(0.3 + gamma*(0.4 + gamma*(0.5 + gamma*last_V*0.0))), 0.3 + gamma*(0.4 + gamma*(0.5 + gamma*last_V*0.0)), 0.4 + gamma*(0.5 + gamma*last_V*0.0), 0.5 + gamma*last_V*0.0] reach_terminal = True rewards = [0.1, 0.2, 0.3, 0.4, 0.5] assert np.allclose(bootstrapped_returns(gamma, rewards, last_V, reach_terminal), y) assert np.allclose(bootstrapped_returns(gamma, rewards, torch.tensor(last_V), reach_terminal), y) @pytest.mark.parametrize('gamma', [0.1, 0.99, 1.0]) @pytest.mark.parametrize('last_V', [-3.0, 0.0, 2.0]) def test_td0_target(gamma, last_V): y = [0.1 + gamma*2, 0.2 + gamma*3, 0.3 + gamma*4, 0.4 + gamma*last_V*0.0] rewards = [0.1, 0.2, 0.3, 0.4] Vs = [1, 2, 3, 4] reach_terminal = True assert np.allclose(td0_target(gamma, rewards, Vs, last_V, reach_terminal), y) assert np.allclose(td0_target(gamma, rewards, torch.tensor(Vs), torch.tensor(last_V), reach_terminal), y) y = [0.1 + gamma*2, 0.2 + gamma*3, 0.3 + gamma*4, 0.4 + gamma*last_V] rewards = [0.1, 0.2, 0.3, 0.4] Vs = [1, 2, 3, 4] reach_terminal = False assert np.allclose(td0_target(gamma, rewards, Vs, last_V, reach_terminal), y) assert np.allclose(td0_target(gamma, rewards, torch.tensor(Vs), torch.tensor(last_V), reach_terminal), y) y = [0.1 + gamma*2, 0.2 + gamma*3, 0.3 + gamma*4, 0.4 + gamma*5, 0.5 + gamma*6, 0.6 + gamma*last_V*0.0] rewards = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6] Vs = [1, 2, 3, 4, 5, 6] reach_terminal = True assert np.allclose(td0_target(gamma, rewards, Vs, last_V, reach_terminal), y) assert np.allclose(td0_target(gamma, rewards, torch.tensor(Vs), torch.tensor(last_V), reach_terminal), y) y = [0.1 + gamma*2, 0.2 + gamma*3, 0.3 + gamma*4, 0.4 + gamma*5, 0.5 + gamma*6, 0.6 + gamma*last_V] rewards = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6] Vs = [1, 2, 3, 4, 5, 6] reach_terminal = False assert np.allclose(td0_target(gamma, rewards, Vs, last_V, reach_terminal), y) assert np.allclose(td0_target(gamma, rewards, torch.tensor(Vs), torch.tensor(last_V), reach_terminal), y) @pytest.mark.parametrize('gamma', [0.1, 0.99, 1.0]) @pytest.mark.parametrize('last_V', [-3.0, 0.0, 2.0]) def test_td0_error(gamma, last_V): y = [0.1 + gamma*2 - 1, 0.2 + gamma*3 - 2, 0.3 + gamma*4 - 3, 0.4 + gamma*last_V*0.0 - 4] rewards = [0.1, 0.2, 0.3, 0.4] Vs = [1, 2, 3, 4] reach_terminal = True assert np.allclose(td0_error(gamma, rewards, Vs, last_V, reach_terminal), y) assert np.allclose(td0_error(gamma, rewards, torch.tensor(Vs), torch.tensor(last_V), reach_terminal), y) y = [0.1 + gamma*2 - 1, 0.2 + gamma*3 - 2, 0.3 + gamma*4 - 3, 0.4 + gamma*last_V - 4] rewards = [0.1, 0.2, 0.3, 0.4] Vs = [1, 2, 3, 4] reach_terminal = False assert np.allclose(td0_error(gamma, rewards, Vs, last_V, reach_terminal), y) assert np.allclose(td0_error(gamma, rewards, torch.tensor(Vs), torch.tensor(last_V), reach_terminal), y) y = [0.1 + gamma*2 - 1, 0.2 + gamma*3 - 2, 0.3 + gamma*4 - 3, 0.4 + gamma*5 - 4, 0.5 + gamma*6 - 5, 0.6 + gamma*last_V*0.0 - 6] rewards = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6] Vs = [1, 2, 3, 4, 5, 6] reach_terminal = True assert np.allclose(td0_error(gamma, rewards, Vs, last_V, reach_terminal), y) assert np.allclose(td0_error(gamma, rewards, torch.tensor(Vs), torch.tensor(last_V), reach_terminal), y) y = [0.1 + gamma*2 - 1, 0.2 + gamma*3 - 2, 0.3 + gamma*4 - 3, 0.4 + gamma*5 - 4, 0.5 + gamma*6 - 5, 0.6 + gamma*last_V - 6] rewards = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6] Vs = [1, 2, 3, 4, 5, 6] reach_terminal = False assert np.allclose(td0_error(gamma, rewards, Vs, last_V, reach_terminal), y) assert np.allclose(td0_error(gamma, rewards, torch.tensor(Vs), torch.tensor(last_V), reach_terminal), y) def test_gae(): rewards = [1, 2, 3] Vs = [0.1, 1.1, 2.1] assert np.allclose(gae(1.0, 0.5, rewards, Vs, 10, True), [3.725, 3.45, 0.9]) assert np.allclose(gae(1.0, 0.5, rewards, torch.tensor(Vs), torch.tensor(10), True), [3.725, 3.45, 0.9]) assert np.allclose(gae(0.1, 0.2, rewards, Vs, 10, True), [1.03256, 1.128, 0.9]) assert np.allclose(gae(0.1, 0.2, rewards, torch.tensor(Vs), torch.tensor(10), True), [1.03256, 1.128, 0.9]) rewards = [1, 2, 3] Vs = [0.5, 1.5, 2.5] assert np.allclose(gae(1.0, 0.5, rewards, Vs, 99, True), [3.625, 3.25, 0.5]) assert np.allclose(gae(1.0, 0.5, rewards, torch.tensor(Vs), torch.tensor(99), True), [3.625, 3.25, 0.5]) assert np.allclose(gae(0.1, 0.2, rewards, Vs, 99, True), [0.6652, 0.76, 0.5]) assert np.allclose(gae(0.1, 0.2, rewards, torch.tensor(Vs), torch.tensor(99), True), [0.6652, 0.76, 0.5]) rewards = [1, 2, 3, 4, 5] Vs = [0.5, 1.5, 2.5, 3.5, 4.5] assert np.allclose(gae(1.0, 0.5, rewards, Vs, 20, False), [6.40625, 8.8125, 11.625, 15.25, 20.5]) assert np.allclose(gae(1.0, 0.5, rewards, torch.tensor(Vs), torch.tensor(20), False), [6.40625, 8.8125, 11.625, 15.25, 20.5]) assert np.allclose(gae(0.1, 0.2, rewards, Vs, 20, False), [0.665348, 0.7674, 0.87, 1, 2.5]) assert np.allclose(gae(0.1, 0.2, rewards, torch.tensor(Vs), torch.tensor(20), False), [0.665348, 0.7674, 0.87, 1, 2.5]) rewards = [1, 2, 3, 4, 5] Vs = [0.1, 1.1, 2.1, 3.1, 4.1] assert np.allclose(gae(1.0, 0.5, rewards, Vs, 10, False), [5.80625, 7.6125, 9.225, 10.45, 10.9]) assert np.allclose(gae(1.0, 0.5, rewards, torch.tensor(Vs), torch.tensor(10), False), [5.80625, 7.6125, 9.225, 10.45, 10.9]) assert np.allclose(gae(0.1, 0.2, rewards, Vs, 10, False), [1.03269478, 1.1347393, 1.23696, 1.348, 1.9]) assert np.allclose(gae(0.1, 0.2, rewards, torch.tensor(Vs), torch.tensor(10), False), [1.03269478, 1.1347393, 1.23696, 1.348, 1.9]) rewards = [1, 2, 3, 4, 5, 6, 7, 8] Vs = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0] assert np.allclose(gae(1.0, 0.5, rewards, Vs, 30, True), [5.84375, 7.6875, 9.375, 10.75, 11.5, 11., 8, 0.]) assert np.allclose(gae(1.0, 0.5, rewards, torch.tensor(Vs), torch.tensor(30), True), [5.84375, 7.6875, 9.375, 10.75, 11.5, 11., 8, 0.]) assert np.allclose(gae(0.1, 0.2, rewards, Vs, 30, True), [0.206164098, 0.308204915, 0.410245728, 0.5122864, 0.61432, 0.716, 0.8, 0]) assert np.allclose(gae(0.1, 0.2, rewards, torch.tensor(Vs), torch.tensor(30), True), [0.206164098, 0.308204915, 0.410245728, 0.5122864, 0.61432, 0.716, 0.8, 0]) @pytest.mark.parametrize('gamma', [0.1, 1.0]) @pytest.mark.parametrize('last_V', [0.3, [0.5]]) @pytest.mark.parametrize('reach_terminal', [True, False]) @pytest.mark.parametrize('clip_rho', [0.5, 1.0]) @pytest.mark.parametrize('clip_pg_rho', [0.3, 1.1]) def test_vtrace(gamma, last_V, reach_terminal, clip_rho, clip_pg_rho): behavior_logprobs = [1, 2, 3] target_logprobs = [4, 5, 6] Rs = [7, 8, 9] Vs = [10, 11, 12] vs_test, As_test = vtrace(behavior_logprobs, target_logprobs, gamma, Rs, Vs, last_V, reach_terminal, clip_rho, clip_pg_rho) # ground truth calculation behavior_logprobs = numpify(behavior_logprobs, np.float32) target_logprobs = numpify(target_logprobs, np.float32) Rs = numpify(Rs, np.float32) Vs = numpify(Vs, np.float32) last_V = numpify(last_V, np.float32) rhos = np.exp(target_logprobs - behavior_logprobs) clipped_rhos = np.minimum(clip_rho, rhos) cs = np.minimum(1.0, rhos) deltas = clipped_rhos*td0_error(gamma, Rs, Vs, last_V, reach_terminal) vs = np.array([Vs[0] + gamma**0*1*deltas[0] + gamma*cs[0]*deltas[1] + gamma**2*cs[0]*cs[1]*deltas[2], Vs[1] + gamma**0*1*deltas[1] + gamma*cs[1]*deltas[2], Vs[2] + gamma**0*1*deltas[2]]) vs_next = np.append(vs[1:], (1. - reach_terminal)*last_V) clipped_pg_rhos = np.minimum(clip_pg_rho, rhos) As = clipped_pg_rhos*(Rs + gamma*vs_next - Vs) assert np.allclose(vs, vs_test) assert np.allclose(As, As_test)
b00094732bf4e992d6d1f015c038435845b72877
f15d9b6513a053258e1b96fe54d14ee84e92b33a
/wirefox/db/moz_places.py
561d64e34c1c1363ef89b2f1850d4faf8d44a68b
[]
no_license
amol9/wirefox
867cbd00c9e250bd91509dfbc1baf751871d8f42
3f8561d0c6d01773d510bae337b9348132e3a5c8
refs/heads/master
2021-01-13T21:14:12.091991
2017-03-13T14:29:14
2017-03-13T14:29:14
81,830,235
0
0
null
null
null
null
UTF-8
Python
false
false
1,096
py
from .time_window import TimeWindow from .firefox_db import FirefoxDB class MozPlaces: def __init__(self): self._firefox_db = None def query(self, url=None, title=None, start_time=None, end_time=None, period=None): if self._firefox_db is None: self._firefox_db = FirefoxDB() self._firefox_db.open_places_db() session = self._firefox_db.session moz_places = self._firefox_db.get_moz_places() q = session.query(moz_places) if url is not None: q = q.filter(moz_places.url.like('%s'%url)) if title is not None: q = q.filter(moz_places.title.like('%%%s%%'%title)) if start_time is not None or end_time is not None or period is not None: tw = TimeWindow(start=start_time, end=end_time, period=period) q = q.filter(moz_places.last_visit_date >= (tw.start_time.timestamp() * 1000000)) q = q.filter(moz_places.last_visit_date <= (tw.end_time.timestamp() * 1000000)) for r in q: print(r.url, '|', r.visit_count)
b25ed1e03530488687d2617d36d418c6756cd81b
0b2d1b4e2b7e8aa9440e616ab2528b13ff5918e5
/babi/buf.py
e1b0ee3e8e4f097d9fda0e371aac8ceeebe0316b
[ "MIT" ]
permissive
tech-chad/babi
2b332568460fa78acabb9913fdfe084b3a15fe44
144bbb9daf8d879f5f3ceb30a6c20d47ea2f538b
refs/heads/master
2022-11-02T06:12:43.419506
2020-05-27T22:50:30
2020-05-27T22:50:30
272,864,505
0
0
MIT
2020-06-17T03:00:15
2020-06-17T03:00:15
null
UTF-8
Python
false
false
9,033
py
import bisect import contextlib from typing import Callable from typing import Generator from typing import Iterator from typing import List from typing import NamedTuple from typing import Optional from typing import Tuple from babi._types import Protocol from babi.horizontal_scrolling import line_x from babi.horizontal_scrolling import scrolled_line from babi.horizontal_scrolling import wcwidth from babi.margin import Margin SetCallback = Callable[['Buf', int, str], None] DelCallback = Callable[['Buf', int, str], None] InsCallback = Callable[['Buf', int], None] def _offsets(s: str, tab_size: int) -> Tuple[int, ...]: ret = [0] for c in s: if c == '\t': ret.append(ret[-1] + (tab_size - ret[-1] % tab_size)) else: ret.append(ret[-1] + wcwidth(c)) return tuple(ret) class Modification(Protocol): def __call__(self, buf: 'Buf') -> None: ... class SetModification(NamedTuple): idx: int s: str def __call__(self, buf: 'Buf') -> None: buf[self.idx] = self.s class InsModification(NamedTuple): idx: int s: str def __call__(self, buf: 'Buf') -> None: buf.insert(self.idx, self.s) class DelModification(NamedTuple): idx: int def __call__(self, buf: 'Buf') -> None: del buf[self.idx] class Buf: def __init__(self, lines: List[str], tab_size: int = 4) -> None: self._lines = lines self.tab_size = tab_size self.file_y = self.y = self._x = self._x_hint = 0 self._set_callbacks: List[SetCallback] = [self._set_cb] self._del_callbacks: List[DelCallback] = [self._del_cb] self._ins_callbacks: List[InsCallback] = [self._ins_cb] self._positions: List[Optional[Tuple[int, ...]]] = [] # read only interface def __repr__(self) -> str: return ( f'{type(self).__name__}(' f'{self._lines!r}, x={self.x}, y={self.y}, file_y={self.file_y}' f')' ) def __bool__(self) -> bool: return bool(self._lines) def __getitem__(self, idx: int) -> str: return self._lines[idx] def __iter__(self) -> Iterator[str]: yield from self._lines def __len__(self) -> int: return len(self._lines) # mutators def __setitem__(self, idx: int, val: str) -> None: if idx < 0: idx %= len(self) victim = self._lines[idx] self._lines[idx] = val for set_callback in self._set_callbacks: set_callback(self, idx, victim) def __delitem__(self, idx: int) -> None: if idx < 0: idx %= len(self) victim = self._lines[idx] del self._lines[idx] for del_callback in self._del_callbacks: del_callback(self, idx, victim) def insert(self, idx: int, val: str) -> None: if idx < 0: idx %= len(self) self._lines.insert(idx, val) for ins_callback in self._ins_callbacks: ins_callback(self, idx) # also mutators, but implemented using above functions def append(self, val: str) -> None: self.insert(len(self), val) def pop(self, idx: int = -1) -> str: victim = self[idx] del self[idx] return victim def restore_eof_invariant(self) -> None: """the file lines will always contain a blank empty string at the end' to simplify rendering. call this whenever the last line may change """ if self[-1] != '': self.append('') def set_tab_size(self, tab_size: int) -> None: self.tab_size = tab_size self._positions = [None] # event handling def add_set_callback(self, cb: SetCallback) -> None: self._set_callbacks.append(cb) def remove_set_callback(self, cb: SetCallback) -> None: self._set_callbacks.remove(cb) def add_del_callback(self, cb: DelCallback) -> None: self._del_callbacks.append(cb) def remove_del_callback(self, cb: DelCallback) -> None: self._del_callbacks.remove(cb) def add_ins_callback(self, cb: InsCallback) -> None: self._ins_callbacks.append(cb) def remove_ins_callback(self, cb: InsCallback) -> None: self._ins_callbacks.remove(cb) @contextlib.contextmanager def record(self) -> Generator[List[Modification], None, None]: modifications: List[Modification] = [] def set_cb(buf: 'Buf', idx: int, victim: str) -> None: modifications.append(SetModification(idx, victim)) def del_cb(buf: 'Buf', idx: int, victim: str) -> None: modifications.append(InsModification(idx, victim)) def ins_cb(buf: 'Buf', idx: int) -> None: modifications.append(DelModification(idx)) self.add_set_callback(set_cb) self.add_del_callback(del_cb) self.add_ins_callback(ins_cb) try: yield modifications finally: self.remove_ins_callback(ins_cb) self.remove_del_callback(del_cb) self.remove_set_callback(set_cb) def apply(self, modifications: List[Modification]) -> List[Modification]: with self.record() as ret_modifications: for modification in reversed(modifications): modification(self) return ret_modifications # position properties @property def displayable_count(self) -> int: return len(self._lines) - self.file_y @property def x(self) -> int: return self._x @x.setter def x(self, x: int) -> None: self._x = x self._x_hint = self._cursor_x def _extend_positions(self, idx: int) -> None: self._positions.extend([None] * (1 + idx - len(self._positions))) def _set_cb(self, buf: 'Buf', idx: int, victim: str) -> None: self._extend_positions(idx) self._positions[idx] = None def _del_cb(self, buf: 'Buf', idx: int, victim: str) -> None: self._extend_positions(idx) del self._positions[idx] def _ins_cb(self, buf: 'Buf', idx: int) -> None: self._extend_positions(idx) self._positions.insert(idx, None) def line_positions(self, idx: int) -> Tuple[int, ...]: self._extend_positions(idx) value = self._positions[idx] if value is None: value = _offsets(self._lines[idx], self.tab_size) self._positions[idx] = value return value def line_x(self, margin: Margin) -> int: return line_x(self._cursor_x, margin.cols) @property def _cursor_x(self) -> int: return self.line_positions(self.y)[self.x] def cursor_position(self, margin: Margin) -> Tuple[int, int]: y = self.y - self.file_y + margin.header x = self._cursor_x - self.line_x(margin) return y, x # rendered lines def rendered_line(self, idx: int, margin: Margin) -> str: x = self._cursor_x if idx == self.y else 0 expanded = self._lines[idx].expandtabs(self.tab_size) return scrolled_line(expanded, x, margin.cols) # movement def scroll_screen_if_needed(self, margin: Margin) -> None: # if the `y` is not on screen, make it so if not (self.file_y <= self.y < self.file_y + margin.body_lines): self.file_y = max(self.y - margin.body_lines // 2, 0) def _set_x_after_vertical_movement(self) -> None: positions = self.line_positions(self.y) x = bisect.bisect_left(positions, self._x_hint) x = min(len(self._lines[self.y]), x) if positions[x] > self._x_hint: x -= 1 self._x = x def up(self, margin: Margin) -> None: if self.y > 0: self.y -= 1 if self.y < self.file_y: self.file_y = max(self.file_y - margin.scroll_amount, 0) self._set_x_after_vertical_movement() def down(self, margin: Margin) -> None: if self.y < len(self._lines) - 1: self.y += 1 if self.y >= self.file_y + margin.body_lines: self.file_y += margin.scroll_amount self._set_x_after_vertical_movement() def right(self, margin: Margin) -> None: if self.x >= len(self._lines[self.y]): if self.y < len(self._lines) - 1: self.down(margin) self.x = 0 else: self.x += 1 def left(self, margin: Margin) -> None: if self.x == 0: if self.y > 0: self.up(margin) self.x = len(self._lines[self.y]) else: self.x -= 1 # screen movement def file_up(self, margin: Margin) -> None: if self.file_y > 0: self.file_y -= 1 if self.y > self.file_y + margin.body_lines - 1: self.up(margin) def file_down(self, margin: Margin) -> None: if self.file_y < len(self._lines) - 1: self.file_y += 1 if self.y < self.file_y: self.down(margin)
a7d0ef36c591c177b20512e93fa42951fb059e14
e5202e0f36c15b8898920a461a866168fa059947
/clirad/h2o_trp/band_8/atmpro_trp/cliradlw_1013f91/param.py
ad74245f6dbe533491fcea57312d88984757cf90
[]
no_license
qAp/analysis_-_new_kdist_param
653c9873751646f6fa9481544e98ed6065a16155
272dc3667030cdb18664108d0bd78fee03736144
refs/heads/master
2021-06-11T04:21:35.105924
2019-08-04T13:13:07
2019-08-04T13:13:07
136,108,828
0
0
null
null
null
null
UTF-8
Python
false
false
522
py
PARAM = {'commitnumber': '1013f91', 'band': [8], 'molecule': {'h2o': 'atmpro'}, 'atmpro': 'trp', 'tsfc': 300} PARAM_LBLNEW = {'atmpro': 'trp', 'band': '6', 'commitnumber': '5014a19', 'conc': None, 'dv': 0.001, 'klin': 5e-25, 'molecule': 'h2o', 'ng_adju': [0], 'ng_refs': [4], 'nv': 1000, 'option_compute_btable': 0, 'option_compute_ktable': 0, 'option_wgt_flux': 1, 'option_wgt_k': 1, 'ref_pts': [[600, 250]], 'tsfc': 300, 'vmax': 1215, 'vmin': 1100, 'w_diffuse': [[1.66, 1.66, 1.7, 1.8]], 'wgt': [[0.3, 0.45, 0.6, 0.95]]}
758eb49de79ccd0c369067efc4283f514df09080
f77b0f2cc709b9670e6b4dc7145a6ea5368585d2
/templates/compiled/macros/grids.py
6c7879946fd4f337eb9525497945a87c107b0aa0
[]
no_license
sgammon/StonerHub
45ccac6bd349200bbc75c494002c3ffeb082dcb8
a81f7fdd2c7118c6cea3c25ef9f53f272d27b0cc
refs/heads/master
2021-01-20T10:54:47.546251
2011-11-07T12:02:20
2011-11-07T12:02:20
2,664,437
0
0
null
null
null
null
UTF-8
Python
false
false
408
py
from __future__ import division from jinja2.runtime import LoopContext, TemplateReference, Macro, Markup, TemplateRuntimeError, missing, concat, escape, markup_join, unicode_join, to_string, identity, TemplateNotFound def run(environment): name = 'source/macros/grids.html' def root(context, environment=environment): if 0: yield None blocks = {} debug_info = '' return locals()
e5735a8778ca5d33468e7d9caf2b4a808fae37fb
bbe0cb13a7d9ba461b2af6a69f18f8e7ef2301fe
/code_processing/Lc2D.1.0e-02_LcSlab.1.0e-02/calc_k_vs_t.py
772e49ece97cb6b3a37614a19f8f80df774f52ae
[]
no_license
jimsrc/corpad
b52b841f0a1b8ddca98236d4a61a9d6079699aff
60756729b3cc1206352b95b2038f87b75ac749ef
refs/heads/master
2021-03-27T10:10:39.756497
2018-02-04T18:04:58
2018-02-04T18:04:58
99,851,623
0
0
null
null
null
null
UTF-8
Python
false
false
3,055
py
## from funcs import * import os def generate_k_vs_t(Ek, dir_data): dir_info = '%s/info' % dir_data fname_orient = '%s/orientations.in' % dir_info fname_plas = '%s/plas.in' % dir_info fname_turb = '%s/turb.in' % dir_info NPLAS = count_lines_in_file(fname_orient) # orden del nro max de giroperiodos order_tmax = int(log10(value(fname_plas, 'nmax_gyroperiods'))) # nro de filas x archivo (nro de puntos q le pedi a la simulacion) nfil = int(order_tmax*value(fname_plas, 'npoints') + 1) ncol = 6 # nro de columnas x archivo: (t, x, y, z, mu, err-gamma) NBs = int(value(fname_plas, 'nro_Bfield_realizations')) rigidity = value(fname_plas, 'rigidity') #-------------- Nm = int(value(fname_turb, 'n_modos')) Bo = value(fname_turb, 'Bunif') Sig = value(fname_turb, 'sigma_Bo_ratio') perc_2d = value(fname_turb, 'percent_2d') perc_slab = value(fname_turb, 'percent_slab') Lc_2d = value(fname_turb, 'Lc_2d') Lc_slab = value(fname_turb, 'Lc_slab') lambda_min = value(fname_turb, 'lambda_min') lambda_max = value(fname_turb, 'lambda_max') print " ------> Ek [eV]: %g" % Ek calc_k_versus_t(dir_data, Ek, Sig, NPLAS, NBs, nfil, ncol, Bo, Lc_2d, Lc_slab, Nm, perc_slab) def calc_k_versus_t(dir_data, Ek, Sig, NPLAS, NBs, nfil, ncol, Bo, Lc_2d, Lc_slab, Nm, perc_slab): dir_plots = '../../plots' #dir_data= '../../output/Ek.%1.1eeV/sig%d' % (Ek, Sig) """dir_out = '../../post/Ek.%1.1eeV/Nm%03d/slab%1.2f/sig.%1.1e/Lc2D.%1.1e_LcSlab.%1.1e' % (Ek, Nm, perc_slab, Sig, Lc_2d, Lc_slab) try: os.system('mkdir %s' % dir_out) except: print "" """ dir_out = '../../post' fname_out = '%s/k_vs_t_Ek.%1.1eeV_Nm%03d_slab%1.2f_sig.%1.1e_Lc2d.%1.1e_LcSlab.%1.1e.dat' % (dir_out, Ek, Nm, perc_slab, Sig, Lc_2d, Lc_slab) #--------------------- # nok : nro de files q existe Y tienen data # nbad : nro de files q solicite y no existen # time : grilla temporal DATA, time, nok, nbad = load_trajectories(NBs, NPLAS, nfil, ncol, dir_data) print " nro de plas: ", NPLAS print " nro de B-realizations: ", NBs print " nro de ptos por trayectoria: %d\n" % nfil print " nro de archivos q existe c/data: %d/%d " % (nok, nok+nbad) print " nro de archivos q pedi y NO existen: %d/%d " % (nbad, nok+nbad) #--------------------- every = 1 # no en c/tiempo, sino cada 'every' tt, x2, y2, z2 = sqr_deviations(DATA, time, every) AUinkm = 1.5e8 AUincm = AUinkm*1e5 # [cm] r2 = x2 + y2 r2 = r2*AUincm**2 # [cm^2] x2 = x2*AUincm**2 # [cm^2] y2 = y2*AUincm**2 # [cm^2] z2 = z2*AUincm**2 # [cm^2] wc = calc_omega(Bo, Ek) #4.781066E-01 #4.325188E-01 #Ek=1e8eV #4.735689E-01 # Ek=1e7eV #4.781066E-01 # Ek=1e6eV print " wc[s-1]: ", wc tt = tt*wc # [1] #------------------- kxx = x2/(2.*tt/wc) # [cm2/s] kyy = y2/(2.*tt/wc) # [cm2/s] kzz = z2/(2.*tt/wc) # [cm2/s] #-- guarda data kxx(t) data_out = array([tt, kxx, kyy, kzz]).T data_out = data_out[1:] # el 1er tiempo no lo guardo xq es division por zero 1/2t print " ---> guardando: %s" % fname_out print "" savetxt(fname_out, data_out, fmt='%12.2f')
566ce5e5e8474e086d441fd7c8275b972cf78d88
45c170fb0673deece06f3055979ece25c3210380
/toontown/building/DoorTypes.py
80898b9b1397fad9906528cf98341b9f7b720109
[]
no_license
MTTPAM/PublicRelease
5a479f5f696cfe9f2d9dcd96f378b5ce160ec93f
825f562d5021c65d40115d64523bb850feff6a98
refs/heads/master
2021-07-24T09:48:32.607518
2018-11-13T03:17:53
2018-11-13T03:17:53
119,129,731
2
6
null
2018-11-07T22:10:10
2018-01-27T03:43:39
Python
UTF-8
Python
false
false
207
py
#Embedded file name: toontown.building.DoorTypes EXT_STANDARD = 1 INT_STANDARD = 2 EXT_HQ = 3 INT_HQ = 4 EXT_HOUSE = 5 INT_HOUSE = 6 EXT_COGHQ = 7 INT_COGHQ = 8 EXT_KS = 9 INT_KS = 10 EXT_ANIM_STANDARD = 11
de4286376cdead9bc0b4496d09485374ed60e6cc
7202b4cf562fcacf2f684c1985b448b5780c4967
/itp1/07c.py
6be9c7cdedee836bbe698a934c291f7e9f692031
[]
no_license
mskt4440/AOJ
ce523182dbd75e85c1bba43d7d23217711b8e617
f6d9ca36e77a88ed9ddbeb53340a745bf8cac157
refs/heads/master
2021-07-07T00:34:23.034606
2020-09-24T02:25:43
2020-09-24T02:25:43
188,768,314
0
0
null
null
null
null
UTF-8
Python
false
false
396
py
# # 7c # def main(): r, c = map(int, input().split()) T = [] S = [0 for _ in range(c+1)] for i in range(r): C = list(map(int, input().split())) C.append(sum(C)) T.append(C) for i in range(r): for j in range(c+1): S[j] += T[i][j] T.append(S) for i in range(r+1): print(*T[i]) if __name__ == '__main__': main()
ed43ef6c060ebc2daed645b5f334029f9b430d09
95d20fe737d711cf92d68130eb59b6aef4435ec2
/正则表达式/非捕获分组.py
651491d6f2bb7a136ac85dd6e1b2fef4dc0d1d70
[]
no_license
CCH21/Python
d11b93851579d85f972828c760a96c5be1f79531
33e218810856971f3f1f97a2b8a4c8dce761362e
refs/heads/master
2022-04-29T11:48:01.816283
2022-03-17T11:53:01
2022-03-17T11:53:01
226,452,057
1
0
null
null
null
null
UTF-8
Python
false
false
195
py
import re s = 'imgl.jpg, img2.jpg, img3.bmp' # 捕获分组 p = r'\w+(\.jpg)' mlist = re.findall(p, s) print(mlist) # 非捕获分组 p = r'\w+(?:\.jpg)' mlist = re.findall(p, s) print(mlist)
82b049d66f3602dbc6cae01e74fd629f0634ef53
b4cf3438011c9521561143e677736c611ff19a0c
/boxx/ylsys.py
7643ca805dfe8ff7b284b931db1a46f85be72c4c
[]
no_license
BUCT-Vision/boxx
3e5c24af20c06d4943dc04859e6cbfb577fe8a48
3d405c9ad744d2ff9f6f5d9efb1e31962474565b
refs/heads/master
2020-03-18T17:35:18.573106
2018-09-18T02:49:10
2018-09-18T02:49:10
135,037,392
2
0
null
2018-09-18T02:49:11
2018-05-27T10:44:44
Python
UTF-8
Python
false
false
3,683
py
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ A module provide system info and Python Info for boxx @author: yanglei """ import sys, os from os import environ def jupyterNotebookOrQtConsole(): env = 'Unknow' cmd = 'ps -ef' try: with os.popen(cmd) as stream: if not py2: stream = stream._stream s = stream.read() pid = os.getpid() ls = list(filter(lambda l:'jupyter' in l and str(pid) in l.split(' '), s.split('\n'))) if len(ls) == 1: l = ls[0] import re pa = re.compile(r'kernel-([-a-z0-9]*)\.json') rs = pa.findall(l) if len(rs): r = rs[0] if len(r)<12: env = 'qtipython' else : env = 'jn' return env except: return env print(r, env) pyv = sys.version_info.major py3 = (pyv == 3) py2 = (pyv == 2) linuxYl = sys.platform.startswith('linux') winYl = sys.platform.startswith('win') osxYl = sys.platform.startswith('darwin') import multiprocessing as __module cpun = __module.cpu_count() cloud = cpun > 16 if linuxYl or osxYl: cuda = not os.system('nvcc --version> /dev/null 2>&1') elif winYl: import subprocess try: cuda = not subprocess.call('nvcc --version', creationflags=0x00000008) except FileNotFoundError: cuda = False usecuda = 'auto' # auto: auto, False: not use if linuxYl or osxYl: homeYl = os.getenv('HOME') + '/' tmpYl = '/tmp/' elif winYl: homeYl = os.path.expanduser("~") tmpYl = os.getenv('TMP') + '\\' class __TmpboxxWithCall(str): ''' the tmp dir for boxx use tmpboxx() to get tmpdir if not exist then will auto mkdir of boxxTmp in `/tmp` ''' def __call__(self): if not os.path.isdir(self): os.makedirs(self) return self tmpboxx = __TmpboxxWithCall(os.path.join(tmpYl,'boxxTmp/')) class PythonInfo(): ''' python info plt : Bool mean plt avaliable env : belong [cmd, cmdipython, qtipython, spyder, jn] ''' pid = os.getpid() gui = 'ipykernel' in sys.modules cmdipython = 'IPython' in sys.modules and not gui ipython = cmdipython or gui spyder = 'spyder' in sys.modules if gui: env = 'spyder' if spyder else jupyterNotebookOrQtConsole() else: env = 'cmdipython' if ipython else 'cmd' cmd = not ipython qtipython = env == 'qtipython' jn = env == 'jn' interactive = bool(getattr(sys, 'ps1', sys.flags.interactive)) plt = True if not gui and linuxYl and 'DISPLAY' not in os.environ : plt = False reloadplt = False def __str__(self): from boxx import strMethodForDiraAttrs return strMethodForDiraAttrs(self) __repr__ = __str__ pyi = PythonInfo() class SystemInfo(): ''' sys info ''' pyv = pyv cpun = cpun cuda = cuda tmp = tmpYl linux = linuxYl win = winYl osx = osxYl os = sys.platform display = True if linuxYl: display = 'DISPLAY' in environ and environ['DISPLAY'] gui = pyi.gui or display if 0: @property def ip(self): ''' TODO: ''' return '127.0.0.1' @property def user(self): import getpass return getpass.getuser() @property def host(self): import platform return platform.node() def __str__(self): from boxx import strMethodForDiraAttrs return strMethodForDiraAttrs(self) __repr__ = __str__ sysi = SystemInfo()
05f71de710935c9f61b9d68da2dd6130d14c0aef
76027f6d013e12ca4fda95957e0cedbef1779def
/leetcode/84-Hard-Largest-Rectangle-In-Histogram/answer.py
73fea12149d06b2de3f14d2834336d5e705517c6
[ "Unlicense" ]
permissive
BenDataAnalyst/Practice-Coding-Questions
79a56617f27a5b2b8d5d9650057a9b0128b9becf
4c21ab38b75389cfb71f12f995e3860e4cd8641a
refs/heads/master
2020-07-23T13:31:48.965116
2019-09-09T16:23:09
2019-09-09T16:23:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,555
py
#!/usr/bin/python3 #------------------------------------------------------------------------------ # Solution O(n) Stack Solution #------------------------------------------------------------------------------ class Solution(object): def largestRectangleArea(self, heights): """ :type heights: List[int] :rtype: int """ heights.append(0) stack = [-1] result = 0 for i in range(len(heights)): while heights[i] < heights[stack[-1]]: h = heights[stack.pop()] w = i - stack[-1] - 1 result = max(result, h * w) stack.append(i) return result #------------------------------------------------------------------------------ # Solution O(n) Kinda DP Solution #------------------------------------------------------------------------------ class Solution(object): def largestRectangleArea(self, heights): """ :type heights: List[int] :rtype: int """ result = 0 # Left and right will be a cache to hold the number of bars to left and right >= curr height left = [1 for _ in range(len(heights))] right = [1 for _ in range(len(heights))] # Calculate left for i in range(len(heights)): l = i-1 # Grow as far left as possible # We make jumps based on the previously computed left values while l >= 0: if heights[l] >= heights[i]: left[i] += left[l] l -= left[l] else: break # Calculate right for i in range(len(heights)): r = i+1 # Grow as far right as possible # We make jumps based on the previously computed right values while r < len(heights): if heights[r] >= heights[i]: right[i] += right[r] r += right[r] else: break # Now we can iterate through all of our possible rectangles # We calculate our areas with our height * width (left+right) for i in range(len(heights)): result = max(result, heights[i] * (left[i] + right[i] - 1)) return result #------------------------------------------------------------------------------ # Brute Force Solution (O(n^2)) #------------------------------------------------------------------------------ class Solution(object): def largestRectangleArea(self, heights): """ :type heights: List[int] :rtype: int """ result = 0 # Find the max area for each bar i for i in range(len(heights)): area = heights[i] l, r = i-1, i+1 # Grow as far left as possible while l >= 0: if heights[l] >= heights[i]: area += heights[i] l -= 1 else: break # Grow as far right as possible while r < len(heights): if heights[r] >= heights[i]: area += heights[i] r += 1 else: break result = max(result, area) return result #------------------------------------------------------------------------------
1523bd6cee28d5286c62ffee8fe3728695519c71
7deda84f7a280f5a0ee69b98c6a6e7a2225dab24
/Manage/migrations/0015_draft_request_user.py
5f6519727e28bb0c0b16dca2a87445ff181ff05d
[]
no_license
Cornex-Inc/Coffee
476e30f29412373fb847b2d518331e6c6b9fdbbf
fcd86f20152e2b0905f223ff0e40b1881db634cf
refs/heads/master
2023-01-13T01:56:52.755527
2020-06-08T02:59:18
2020-06-08T02:59:18
240,187,025
0
0
null
2023-01-05T23:58:52
2020-02-13T05:47:41
Python
UTF-8
Python
false
false
401
py
# Generated by Django 2.1.15 on 2020-05-04 22:27 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('Manage', '0014_auto_20200503_1043'), ] operations = [ migrations.AddField( model_name='draft', name='request_user', field=models.CharField(default='', max_length=64), ), ]
02d97dde72d76aa6fba06b86768511a2925fe6f3
d9b53673b899a9b842a42060740b734bf0c63a31
/leetcode/python/medium/p494_findTargetSumWays.py
44d6f3cbbfbba1910bfe6c636afae6b5d7481421
[ "Apache-2.0" ]
permissive
kefirzhang/algorithms
a8d656774b576295625dd663154d264cd6a6a802
549e68731d4c05002e35f0499d4f7744f5c63979
refs/heads/master
2021-06-13T13:05:40.851704
2021-04-02T07:37:59
2021-04-02T07:37:59
173,903,408
0
0
null
null
null
null
UTF-8
Python
false
false
969
py
class Solution: def __init__(self): self.helper = {} def findTargetSumWays(self, nums, S: int) -> int: if not nums: return 0 if self.helper.__contains__(tuple([len(nums), S])): return self.helper[tuple([len(nums), S])] if len(nums) == 1: if S == nums[0] and S == -nums[0]: self.helper[tuple([len(nums), S])] = 2 return 2 elif S == nums[0] or S == -nums[0]: self.helper[tuple([len(nums), S])] = 1 return 1 else: self.helper[tuple([len(nums), S])] = 0 return 0 num = self.findTargetSumWays(nums[:-1], S + nums[-1]) + self.findTargetSumWays(nums[:-1], S - nums[-1]) self.helper[tuple([len(nums), S])] = num return num slu = Solution() print(slu.findTargetSumWays([2, 20, 24, 38, 44, 21, 45, 48, 30, 48, 14, 9, 21, 10, 46, 46, 12, 48, 12, 38], 48))
9454fedfe20dd2763d21f24cf97f9d757233075e
ea5a2999512a58f45a899d2dd2fa812dc83ef73b
/an_huiV3/AnHui.py
0be7b33debb675ba76cf85f6109809f9b9969624
[]
no_license
nanqianbeiquan/GsClawlerV2
f3190968818ae9d108c247527ca3e717da2fc8a8
884de1f94dad63e6b256592309a9425b7423e66f
refs/heads/master
2021-07-22T13:44:31.148097
2017-11-02T07:02:35
2017-11-02T07:02:35
109,227,946
0
0
null
null
null
null
UTF-8
Python
false
false
81,648
py
# coding=utf-8 import requests import os import uuid import urllib from urllib import quote import PackageTool from PIL import Image from bs4 import BeautifulSoup import json import re from gs.KafkaAPI import KafkaAPI import datetime from requests.exceptions import RequestException import sys import PyV8 import random import subprocess import time from Tables_dict import * from gs.Searcher import Searcher from gs.Searcher import get_args from gs.ProxyConf import * from gs.TimeUtils import * from gs.ProxyConf import ProxyConf, key1 as app_key from requests.exceptions import ReadTimeout from requests.exceptions import ConnectTimeout from requests.exceptions import ProxyError from requests.exceptions import ConnectionError from requests.exceptions import ChunkedEncodingError from gs.MyException import StatusCodeException class AnHui(Searcher): json_result = {} pattern = re.compile("\s") save_tag_a = True flag = True lock_id = 0 cur_time = None cur_mc = None cur_zch = None entName = None entId = None entNo = None creditt = None credit_ticket = None iframe_src = {} def __init__(self, use_proxy=True): super(AnHui, self).__init__(use_proxy=use_proxy) # self.session = requests.session() # self.session.proxies = {'http': '123.56.238.200:8123', 'https': '123.56.238.200:8123'} # self.session.proxies = {'http': '121.28.134.29:80'} self.headers = {"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.8,en-US;q=0.5,en;q=0.3", "Connection": "keep-alive", "Content-type": "application/x-www-form-urlencoded", "Host": "www.ahcredit.gov.cn", # "Referer": "http://www.ahcredit.gov.cn/search.jspx", "Referer": "http://www.ahcredit.gov.cn/", "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.11; rv:47.0) Gecko/20100101 Firefox/47.0" } # self.cur_time = '%d' % (time.time() * 1000) self.get_credit_ticket() self.json_result = {} # json输出结果 self.iframe_name = {'qyjbqk': u'基本信息', 'tzrczxx': u'股东信息', 'qybgxx': u'变更信息', 'qybaxxzyryxx': u'主要人员信息', 'qybaxxfgsxx': u'分支机构信息', 'qybaxxqsxx': u'清算信息', 'gqczxx': u'股权出质登记信息', 'dcdyxx': u'动产抵押登记信息', 'jyycxx':u'经营异常信息', 'yzwfxx': u'严重违法信息', 'xzcfxx': u'行政处罚信息', 'ccjcxx':u'抽查检查信息'} self.domain = 'http://www.ahcredit.gov.cn' # self.add_proxy(app_key) self.set_config() self.log_name = self.topic + "_" + str(uuid.uuid1()) def set_config(self): # headers = {} # rt = self.get_request('http://1212.ip138.com/ic.asp', headers=headers) # rt.encoding = 'gb2312' # print rt.text self.plugin_path = sys.path[0] + r'\..\an_hui\ocr\pinyin.bat' self.group = 'Crawler' # 正式 self.kafka = KafkaAPI("GSCrawlerResult") # 正式 # self.group = 'CrawlerTest' # 测试 # self.kafka = KafkaAPI("GSCrawlerTest") # 测试 self.topic = 'GsSrc34' self.province = u'安徽省' self.kafka.init_producer() # try: # self.go_cookies() # except AttributeError: # pass def download_yzm(self): pass # self.lock_id = self.proxy_config.get_lock_id() # self.cur_time = '%d' % (time.time() * 1000) # params = {'currentTimeMillis': self.cur_time} # image_url = 'http://www.ahcredit.gov.cn/validateCode.jspx?type=2' # r = self.get_request(url=image_url, params={}) # # print r.headers # # print r.status_code,r.text # yzm_path = os.path.join(sys.path[0], str(random.random())[2:]+'.jpg') # with open(yzm_path, 'wb') as f: # for chunk in r.iter_content(chunk_size=1024): # if chunk: # filter out keep-alive new chunks # f.write(chunk) # f.flush() # f.close() # return yzm_path def get_credit_ticket(self): # r = self.get_request('http://qyxy.baic.gov.cn/gjjbj/gjjQueryCreditAction!toIndex.dhtml') # print 'credit_headers',r.headers # soup = BeautifulSoup(r.text, 'lxml') # # print soup # self.credit_ticket = soup.select('input#credit_ticket')[0].attrs['value'] pass def go_cookies(self): url = 'http://www.ahcredit.gov.cn/search.jspx#' r = self.get_request(url=url) r.encoding = 'utf-8' set_cookie = [r.headers['Set-Cookie']] soup = BeautifulSoup(r.text, 'lxml') script = soup.select('script')[0].text script = script[len('eval(')+1:-1] # print 'script', script ctxt = PyV8.JSContext() ctxt.enter() res = ctxt.eval(script) # print 'eval_after', res res = res.replace('if(findDimensions()) {} else ', '') res = res.replace('window.location=dynamicurl', '') res = res.replace('document.cookie = cookieString; var confirm = QWERTASDFGXYSF()', 'res=cookieString; var confirm = QWERTASDFGXYSF()') res = res.replace("document.cookie = cookieString;", "res = res+', '+cookieString;return res") # print 'res', res js_res_text = ctxt.eval(res) # print 'dealt_JSresult', js_res_text set_cookie.extend(js_res_text.split(', ')) # print set_cookie for x in set_cookie: y = x.split(';')[0] idx_1 = y.index('=') name = y[:idx_1] value = y[idx_1+1:] self.session.cookies.set(name=name, value=value, domain='www.ahcredit.gov.cn', path='/') def get_tag_a_from_db(self, keyword): return None def save_tag_a_to_db(self, keyword): pass def get_the_mc_or_code(self, keyword): if keyword: if len(keyword) == 15 or len(keyword) == 18: cnt = 0 for i in keyword: if i in 'abcdefghijklmnopqrstuvwxyz1234567890': cnt += 1 if cnt > 10: return False else: return True else: self.info(u'输入keyword有误') return True def get_tag_a_from_page(self, keyword, ac=0): return self.get_tag_a_from_page0(keyword) def get_tag_a_from_page0(self, keyword): self.flag = self.get_the_mc_or_code(keyword) for t in range(50): # time.sleep(3) # print u'验证码识别中...第%s次' %(t+1) self.info(u'验证码识别中...第%s次' %(t+1)) self.today = str(datetime.date.today()).replace('-', '') # yzm = self.get_yzm() # print 'yzm', yzm # url = 'http://www.ahcredit.gov.cn/searchList.jspx' # params = {'checkNo': yzm, 'entName': keyword} url = 'http://www.ahcredit.gov.cn/queryListData.jspx' params = {'currentPageIndex': 1, 'entName': keyword, 'searchType': 1, } # print 'params:', params # r = self.post_request(url=url, params=params) # print 'r.headers',r.headers r = self.post_request(url=url, params=params) r.encoding = 'utf-8' # print '**************************', r.text soup = BeautifulSoup(r.text, 'html5lib') # print 'soup:', soup, r.status_code # print '*******cpn_request_ok?:', soup.select('.list')[0], 'next_siblings', soup.select('.list')[0].find_next_sibling() # tgr = soup.find(id='alert_win').find(id='MzImgExpPwd').get('alt') # print '*************', soup.select('#gggscpnametext')[0] # if u'请开启JavaScript并刷新该页' in soup.text: # print u'cookie失效,更新cookie' # 安徽360特色 # self.go_cookies() # if r.status_code == 200: # print '*'*100 if not soup.text.strip(): # print u'***验证码识别通过***no_result***' self.info(u'***验证码识别通过***no_result***') break if soup.find(id='gggscpnametext'): # print 'r.headers', r.headers # print u'**********验证码识别通过***安徽*********' #, soup.find(class_='list') self.info(u'**********验证码识别通过***安徽*********') if soup.find(id='gggscpnametext').text.strip() != u'': return soup.select('#gggscpnametext') break return None def get_search_args(self, tag_a, keyword): # print 'tag_a', tag_a # 不是连接地址tagA if len(tag_a) > 1: for ta in tag_a: cm = ta.find_all('p')[0].text.strip().split('\n')[0] # print 'cmpame', cm self.save_company_name_to_db(cm) tag_a = tag_a[0] name = tag_a.find_all('p')[0].text.strip().split('\n')[0] # name为公司查询结果名;keyword为查询前数据库公司名 # name_link = tag_a.find('a').get('href') # mainID = re.search(r'(?<=id=).*',name_link).group() mainID = tag_a.find_all('p')[0].find_all('span')[-1].get('class')[0] code = tag_a.find_all('p')[1].find_all('span')[0].text.strip().replace(' ', '').split(u':')[1] # 注册号 # tagA = self.domain + name_link # 验证码通过后链接地址 # print '+++++++', name, '##', code, 'mainID:', mainID self.mainID = mainID # 安徽有分页情况可能用到 self.cur_mc = name.replace('(', u'(').replace(')', u')').strip() self.cur_zch = code # self.tagA = tagA # 安徽三大参数,公司名称name,注册号code, 跳过验证码的地址tagA self.xydm_if = '' self.zch_if = '' if len(code) == 18: self.xydm_if = code else: self.zch_if = code # print u'公司名(name)cur_mc: %s, 注册号(code)cur_zch: %s, 链接地址tagA: %s' % (name, code, tagA), 'mainID:', mainID if self.flag: if self.cur_mc == keyword: # print 'same' self.info(u'查询结果一致') return 1 else: # print 'insane' self.info(u'查询结果不一致') self.save_company_name_to_db(self.cur_mc) return 0 else: self.info(self.cur_mc) return 1 def parse_detail(self): """ 解析公司详情信息 :param kwargs: :return: """ # print '****************HIHI************************' # r = self.get_request(self.tagA) # print r.text # bs = BeautifulSoup(r.text, 'html5lib') # bd = bs.find(class_='dConBox') # print '#hei_long_soup', bd, '**' # print '&&&&&&&&&&&&&&&&&&&&&&&', len(bs.select('#dConBox div iframe')), bs.select('#dConBox div iframe') self.get_ji_ben() # print 'jb_step_json', self.json_result self.get_gu_dong() # print 'gd_step_json', self.json_result self.get_bian_geng() # print 'bg_step_json', self.json_result self.get_zhu_yao_ren_yuan() self.get_fen_zhi_ji_gou() self.get_qing_suan() self.get_dong_chan_di_ya() self.get_gu_quan_chu_zhi() self.get_xing_zheng_chu_fa() self.get_jing_ying_yi_chang() self.get_yan_zhong_wei_fa() self.get_chou_cha_jian_cha() # self.get_nian_bao() # print 'the_last_json_result', len(self.json_result), self.json_result json_go = json.dumps(self.json_result, ensure_ascii=False) # print 'the_last_json_result:', len(self.json_result), get_cur_time(), json_go def get_ji_ben(self): """ 查询基本信息 :return: 基本信息结果 """ json_list = [] family = 'Registered_Info' table_id = '01' self.json_result[family] = [] url = 'http://www.ahcredit.gov.cn/business/YYZZ.jspx?id='+self.mainID # print 'jiben_url', url # r = self.get_request(url=url, params={}) # r.encoding = 'gbk' r = self.get_request_302(url=url, params={}) r.encoding = 'utf-8' soup = BeautifulSoup(r.text, 'html5lib') # soup = bd # print '*******ji_ben*******', soup tr_element_list = soup.find_all('tr')#(".//*[@id='jbxx']/table/tbody/tr") values = {} for tr_element in tr_element_list: # th_element_list = tr_element.find_all('th') td_element_list = tr_element.find_all('td') for td in td_element_list: if td.text.strip(): td_list = td.text.replace(u'·', '').replace(u' ', '').strip().replace(u' ', '').split(u':',1) col = td_list[0].strip() val = td_list[1].strip() # print col, val col = jiben_column_dict[col] values[col] = val # if len(th_element_list) == len(td_element_list): # col_nums = len(th_element_list) # for i in range(col_nums): # col_dec = th_element_list[i].text.strip() # val = td_element_list[i].text.strip() # if col_dec != u'': # col = jiben_column_dict[col_dec] # values[col] = val values['rowkey'] = '%s_%s_%s_' % (self.cur_mc, table_id, self.cur_zch) values[family + ':registrationno'] = self.cur_zch values[family + ':enterprisename'] = self.cur_mc values[family + ':tyshxy_code'] = self.xydm_if values[family + ':zch'] = self.zch_if values[family + ':lastupdatetime'] = get_cur_time() values[family + ':province'] = u'安徽省' json_list.append(values) self.json_result[family] = json_list # print 'jiben_values', values def get_gu_dong(self): """ 查询股东信息 :param param_pripid: :param param_type: :return: """ family = 'Shareholder_Info' table_id = '04' # self.json_result[family] = [] json_list = [] json_dict = {} url = 'http://www.ahcredit.gov.cn/business/GDCZ.jspx?id='+self.mainID # print 'gudongurl', url r = self.get_request(url=url) soup = BeautifulSoup(r.text, 'html5lib') # soup = aa # try: # url = soup.find(id='invDiv').text # 此处url不是连接地址,是判断内容是否为空的参数 # except: # url = '' # print 'gudong_url', self.cur_time, url # print '******gudong_soup******', soup if soup.text.strip(): try: title = soup.find('span').text.strip() except: title = '' return # print 'title:', title soup = soup.find(id='paging') # print '*******gudong*******', soup # print 'gu_dong_turn_page', turn_page # print 'body_tr',len(soup.select('#table2 tr a')),soup.select('#table2 tr a') # print 'gd_tr1',soup.select('#tr1') tr_num = soup.find_all(class_='detailsList') if len(tr_num) >= 2: gd_th = soup.find_all(class_='detailsList')[0].find_all('tr')[0].find_all('th') iftr = soup.find_all(class_='detailsList')[1].find_all('tr') # if len(iftr) > 0: cnt = 1 thn = len(gd_th) if thn == 4: family = 'Partner_Info' elif thn == 6: family = 'DIC_Info' elif thn == 2: family = 'Investor_Info' else: family = 'Shareholder_Info' # print 'len(th):', thn for i in range(len(iftr)): gd_td = iftr[i].find_all('td') for j in range(len(gd_th)): th = gd_th[j].text.strip() td = gd_td[j].text.strip() if td == u'查看': td = gd_td[j].a.get('onclick') # print 'gudong', td td = re.search(r'(?<=[(]).*(?=[)])', td).group().strip("'") detail_url = 'http://www.ahcredit.gov.cn/queryInvDetailAction.jspx?invId='+td # print 'detail_url', detail_url td = detail_url self.get_gu_dong_detail(detail_url, json_dict) # self.load_func(td) 抓取详情页内容方法,见cnt分页内容 if title == u'主管部门(出资人)信息': json_dict[DICInfo_column_dict[th]] = td elif thn == 4: json_dict[hehuoren_column_dict[th]] = td elif thn == 6: json_dict[DICInfo_column_dict[th]] = td elif thn == 2: json_dict[touziren_column_dict[th]] = td else: json_dict[gudong_column_dict[th]] = td json_dict['rowkey'] = '%s_%s_%s_%s%d' % (self.cur_mc, table_id, self.cur_zch, self.today, cnt) json_dict[family + ':registrationno'] = self.cur_zch json_dict[family + ':enterprisename'] = self.cur_mc json_dict[family + ':id'] = str(cnt) json_list.append(json_dict) json_dict = {} cnt += 1 turn_pageo = soup.find_all('div', recursive=False)[1].ul.find_all('li')[1].text.strip()[1:-1] #判断是否有分页,需要post分页地址,暂不处理 # print 'gudong_turn_page:', turn_pageo turn_page = int(turn_pageo) # 股东分页情况处理 if turn_page > 1: # print '*'*1000 # print 'len_gudong_page', turn_page for p in range(2, turn_page+1): # link = 'http://www.ahcredit.gov.cn/QueryInvList.jspx?pno='+str(p)+'&mainId='+self.mainID fkurl = 'http://www.ahcredit.gov.cn/business/QueryInvList.jspx?pno='+str(p)+'&order=0&mainId='+self.mainID # print '***********gudongfenyelink******************', link url = fkurl r = self.get_request(url=url, params={}) # r.encoding = 'gbk' soup = BeautifulSoup(r.text, 'html5lib') # print '*******gudong**fenye*****',soup # gd_th = soup.find_all(class_='detailsList')[0].find_all('tr')[1].find_all('th') iftr = soup.find_all(class_='detailsList')[0].find_all('tr')[1:] # print 'pp', p for i in range(len(iftr)): gd_td = iftr[i].find_all('td') # print 'mm', i for j in range(len(gd_th)): th = gd_th[j].text.strip() td = gd_td[j].text.strip() if td == u'查看': td = gd_td[j].a.get('onclick') # print 'gudong', td td = re.search(r'(?<=[(]).*(?=[)])', td).group().strip("'") detail_url = self.domain+td # print 'detail_url', detail_url td = detail_url self.get_gu_dong_detail(detail_url, json_dict) # self.load_func(td) 抓取详情页内容方法,见cnt分页内容 if title == u'主管部门(出资人)信息': json_dict[DICInfo_column_dict[th]] = td elif thn == 4: json_dict[hehuoren_column_dict[th]] = td elif thn == 6: json_dict[DICInfo_column_dict[th]] = td elif thn == 2: json_dict[touziren_column_dict[th]] = td else: json_dict[gudong_column_dict[th]] = td json_dict['rowkey'] = '%s_%s_%s_%s%d' % (self.cur_mc, table_id, self.cur_zch, self.today, cnt) json_dict[family + ':registrationno'] = self.cur_zch json_dict[family + ':enterprisename'] = self.cur_mc json_dict[family + ':id'] = str(cnt) json_list.append(json_dict) json_dict = {} cnt += 1 if json_list: self.json_result[family] = json_list # print '-,-**gudong_json_list', len(json_list), json_list def get_gu_dong_detail(self, url, values): """ 查询股东详情 :param param_pripid: :param param_invid: :return: """ family = 'Shareholder_Info' table_id = '04' # print 'gudong_detail_url',url r = self.get_request_302(url=url, params={}) # r.encoding = 'gbk' soup = BeautifulSoup(r.text, 'html5lib') # print '***__****gudong_detail*******',soup detail_tb_list = soup.find_all(class_='detailsList') # detail_th_list = ['subscripted_capital','actualpaid_capital','subscripted_method','subscripted_amount','subscripted_time','actualpaid_method','actualpaid_amount','actualpaid_time'] # detail_th_new_list = [family+':'+x for x in detail_th_list] # print 'detail_th_new_list', detail_th_new_list n = 0 for tr_ele in detail_tb_list: tr_ele_list = tr_ele.find_all('tr') if n == 0: for tr in tr_ele_list[1:]: col = tr.th.text val = tr.td.text # print 'gddetails', col, val values[gudong_column_dict[col]] = val else: th_list = tr_ele_list[0].find_all('th') if len(tr_ele_list) == 1: for c in range(len(th_list)): col = th_list[c].text.strip() val = u'' values[gudong_column_dict[col]] = val if len(tr_ele_list) > 1: for tr in tr_ele_list[1:]: td_list = tr.find_all('td') for c in range(len(th_list)): col = th_list[c].text.strip() val = td_list[c].text.strip() # print col,val values[gudong_column_dict[col]] = val n += 1 # print 'gdl_values',len(values),values def get_bian_geng(self): """ 查询变更信息 :param param_pripid: :param param_type: :return: """ family = 'Changed_Announcement' table_id = '05' # self.json_result[family] = [] json_list = [] json_dict = {} url = 'http://www.ahcredit.gov.cn/business/BGXX.jspx?id='+self.mainID # print 'biangeng_url', url r = self.get_request_302(url=url, params={}) # r.encoding = 'gbk' r.encoding = 'utf-8' soup = BeautifulSoup(r.text, 'html5lib') # print '*******biangeng*******',soup try: tr_num = len(soup.find_all(class_='detailsList')) except: tr_num = 0 if tr_num > 1: gd_th = soup.find_all(class_='detailsList')[0].find_all('th') # print 'th_previous',cc.find(id='altDiv').find_previous_sibling().text iftr = soup.find_all(class_='detailsList')[1].find_all('tr') if len(iftr) > 0: cnt = 1 for i in range(len(iftr)): gd_td = iftr[i].find_all('td') for j in range(len(gd_th)): th = gd_th[j].text.strip() td = gd_td[j].text.strip() # print i,j,th,td json_dict[biangeng_column_dict[th]] = td json_dict['rowkey'] = '%s_%s_%s_%s%d' % (self.cur_mc, table_id, self.cur_zch, self.today, cnt) json_dict[family + ':registrationno'] = self.cur_zch json_dict[family + ':enterprisename'] = self.cur_mc json_dict[family + ':id'] = str(cnt) json_list.append(json_dict) json_dict = {} cnt += 1 turn_pageo = soup.find(id='altDiv2').find_all('div', recursive=False)[1].ul.find_all('li')[1].text.strip()[1:-1] #判断是否有分页,需要post分页地址,暂不处理 # print 'biangeng_turn_page:', turn_pageo turn_page = int(turn_pageo) if turn_page > 1: # print '*3'*1000 # sys.exit() # print 'biangeng_page_splitter***************' for p in range(2, turn_page+1): # bgurl = 'http://www.ahcredit.gov.cn/QueryAltList.jspx?pno='+str(p)+'&mainId='+self.mainID fkurl = 'http://www.ahcredit.gov.cn/business/QueryAltList.jspx?pno='+str(p)+'&order=0&mainId='+self.mainID # print 'biangeng_fen_ye_link', fkurl rc = self.get_request_302(url=fkurl) soup = BeautifulSoup(rc.text, 'lxml') # print 'biangeng_turn_soup', soup # gd_th = soup.find_all(class_='detailsList')[0].find_all('tr')[1].find_all('th') iftr = soup.find_all(class_='detailsList')[1].find_all('tr') for i in range(len(iftr)): gd_td = soup.find_all(class_='detailsList')[1].find_all('tr')[i].find_all('td') for j in range(len(gd_th)): th = gd_th[j].text.strip() td = gd_td[j].text.strip() # print i,j,th,td json_dict[biangeng_column_dict[th]] = td # print '****************json_dict',json_dict json_dict['rowkey'] = '%s_%s_%s_%s%d' % (self.cur_mc, table_id, self.cur_zch, self.today, cnt) json_dict[family + ':registrationno'] = self.cur_zch json_dict[family + ':enterprisename'] = self.cur_mc json_dict[family + ':id'] = str(cnt) json_list.append(json_dict) json_dict = {} cnt += 1 if json_list: self.json_result[family] = json_list # print '-,-**biangeng_json_list****', len(json_list), json_list def get_detail(self, sop): # 北京变更详情专用, 其他省份暂时无用 row_data = [] # tables=self.driver.find_elements_by_xpath("//*[@id='tableIdStyle']/tbody") tables=sop.find_all(id='tableIdStyle') for t in tables: time.sleep(1) trs = t.find_all("tr") bt = trs[0].text ths = trs[1].find_all("th") for tr in trs[2:]: tds = tr.find_all("td") col_nums = len(ths) for j in range(col_nums): col = ths[j].text.strip().replace('\n','') td = tds[j] val = td.text.strip() row = col+u':'+val # print 'row',row row_data.append(row) if u'变更前' in bt: self.bgq = u';'.join(row_data) # print 'bgq',self.bgq elif u'变更后' in bt: self.bgh = u';'.join(row_data) # print 'bgh',self.bgh row_data = [] def get_zhu_yao_ren_yuan(self): """ 查询主要人员信息 :param param_pripid: :param param_type: :return: """ family = 'KeyPerson_Info' table_id = '06' # self.json_result[family] = [] json_list = [] values = {} url = 'http://www.ahcredit.gov.cn/business/ZYRY.jspx?id='+self.mainID # print 'zhuyaorenyuan_url', url r = self.get_request_302(url=url, params={}) # r.encoding = 'gbk' r.encoding = 'utf-8' soup = BeautifulSoup(r.text, 'html5lib') # print '*******zhuyaorenyuan*******', soup try: tr_num = len(soup.find_all(class_='keyPerInfo')) except: tr_num = 0 # print 'zyry()*)(', tr_num if tr_num > 0: soup = soup.find_all(class_='keyPerInfo') # 有几个人员 # print '*******zhuyaorenyuan*******',soup cnt = 1 for t in range(tr_num): pson = soup[t].find_all('p') if len(pson): name = pson[0].text.strip() posn = pson[1].text.strip() # print '******', t, 'name:', name, 'position:', posn values[zhuyaorenyuan_column_dict[u'姓名']] = name values[zhuyaorenyuan_column_dict[u'职务']] = posn values['rowkey'] = '%s_%s_%s_%s%d' % (self.cur_mc, table_id, self.cur_zch, self.today, cnt) values[family + ':registrationno'] = self.cur_zch values[family + ':enterprisename'] = self.cur_mc values[family + ':id'] = str(cnt) json_list.append(values) values = {} cnt += 1 if json_list: # print 'zhuyaorenyuan_jsonlist:', json_list self.json_result[family] = json_list def get_fen_zhi_ji_gou(self): """ 查询分支机构信息 :param param_pripid: :param param_type: :return: """ family = 'Branches' table_id = '08' # self.json_result[family] = [] url = 'http://www.ahcredit.gov.cn/business/FZJG.jspx?id='+self.mainID # print 'fenzhijigou_url', url r = self.get_request_302(url=url, params={}) # r.encoding = 'gbk' r.encoding = 'utf-8' soup = BeautifulSoup(r.text, 'html5lib') # print '*******fenzhijigou*******', soup try: tr_num = len(soup.find_all('p')) except: tr_num = 0 # print 'fenzhijigou:', tr_num if tr_num > 1: soup = soup.find(class_='xxwk') # print '*******fenzhijigou*******', soup values = {} json_list = [] if soup.text.strip(): tr_element_list = soup.find_all(class_='fenzhixinxin') idn = 1 for tr_element in tr_element_list: if tr_element.text == u'': # print 'fenzhijigou_boom_breaker' break td_element_list = tr_element.find_all("p") values[fenzhijigou_column_dict[u'名称']] = td_element_list[0].text.strip() values[fenzhijigou_column_dict[u'注册号']] = td_element_list[1].text.strip().replace(u'·', '').split(u':')[1] values[fenzhijigou_column_dict[u'登记机关']] = td_element_list[2].text.strip().replace(u'·', '').split(u':')[1] values['rowkey'] = '%s_%s_%s_%s%d' % (self.cur_mc, table_id, self.cur_zch, self.today, idn) values[family + ':registrationno'] = self.cur_zch values[family + ':enterprisename'] = self.cur_mc values[family + ':id'] = str(idn) json_list.append(values) # json_fenzhijigou=json.dumps(values,ensure_ascii=False) # print 'json_fenzhijigou',json_fenzhijigou values = {} idn += 1 if json_list: self.json_result[family] = json_list # print '-,-**fenzhijigou_json_list', len(json_list), json_list def get_qing_suan(self): """ 查询清算信息 :param param_pripid: :param param_type: :return: """ family = 'liquidation_Information' table_id = '09' # self.json_result[family] = [] values = {} json_list = [] url = 'http://www.ahcredit.gov.cn/business/QSXX.jspx?id='+self.mainID # print 'qingsuan_url:', url r = self.get_request(url=url, params={}) # r.encoding = 'gbk' r.encoding = 'utf-8' soup = BeautifulSoup(r.text, 'html5lib') # print 'qingsuan', soup if u'清算信息' in soup.text: table = soup.find_all(class_='details')[0] tr_list = table.find_all('tr') try: fzr = tr_list[0] # 清算负责人 cy = tr_list[1] # 清算组成员 fzrtd = fzr.td.text.strip() cytd = cy.td.text.strip() # print '****qingsuanyisen**' if fzrtd or cytd: # print u'清算有内容' self.info(u'清算有内容') values[qingsuan_column_dict[u'清算负责人']] = fzrtd values[qingsuan_column_dict[u'清算组成员']] = cytd values['rowkey'] = '%s_%s_%s_%s_' % (self.cur_mc, table_id, self.cur_zch, self.today) values[family + ':registrationno'] = self.cur_zch values[family + ':enterprisename'] = self.cur_mc json_list.append(values) if json_list: # print 'qingsuan', json_list self.json_result[family] = json_list except: return def get_dong_chan_di_ya(self): """ 查询动产抵押信息 :param param_pripid: :param param_type: :return: """ family = 'Chattel_Mortgage' table_id = '11' # self.json_result[family] = [] values = {} json_list = [] url = 'http://www.ahcredit.gov.cn/business/DCDY.jspx?id='+self.mainID # print 'dcdyurl:', url try: r = self.get_request(url=url, params={}) except: r = self.get_request_302(url=url, params={}) # r.encoding = 'gbk' r.encoding = 'utf-8' soup = BeautifulSoup(r.text, 'html5lib') # print '*******dongchandiya*******', soup try: tr_num = len(soup.find_all('p')) except: tr_num = 0 # print 'fenzhijigou:', tr_num if tr_num: soup = soup.find(id='mortDiv2') row_cnt = len(soup.find_all(class_="detailsList")[1].find_all('tr')) if row_cnt > 0: # print 'come_on_bb_not_OK' tr_element_list = soup.find_all(class_="detailsList")[1].find_all('tr') th_element_list = soup.find_all(class_="detailsList")[0].find_all('tr')[0].find_all('th') idn = 1 for tr_element in tr_element_list: td_element_list = tr_element.find_all('td') col_nums = len(th_element_list) # print '*****', col_nums for j in range(col_nums): col_dec = th_element_list[j].text.strip().replace('\n','') col = dongchandiyadengji_column_dict[col_dec] td = td_element_list[j] val = td.text.strip() if val == u'查看': mex = td.a.get('onclick') td = re.search(r'(?<=[(]).*(?=[)])', mex).group().replace("'", "") # urlsample = 'http://www.ahcredit.gov.cn/business/mortInfoDetail.jspx?id=400000000122041524' # link = self.domain+td link = 'http://www.ahcredit.gov.cn/business/mortInfoDetail.jspx?id='+td # print u'动产抵押详情', link values[col] = link else: values[col] = val # values['RegistrationNo']=self.cur_code # values['EnterpriseName']=self.org_name # values['rowkey'] = values['EnterpriseName']+'_11_'+ values['RegistrationNo']+'_'+str(id) values['rowkey'] = '%s_%s_%s_%s%d' % (self.cur_mc, table_id, self.cur_zch, self.today, idn) values[family + ':registrationno'] = self.cur_zch values[family + ':enterprisename'] = self.cur_mc values[family + ':id'] = str(idn) json_list.append(values) # json_dongchandiyadengji=json.dumps(values,ensure_ascii=False) # print 'json_dongchandiyadengji',json_dongchandiyadengji values = {} idn += 1 if json_list: # print '-,-**dongchandiya_json_list',len(json_list),json_list self.json_result[family] = json_list def get_gu_quan_chu_zhi(self): """ 查询股权出置信息 :param param_pripid: :param param_type: :return: """ family = 'Equity_Pledge' table_id = '12' # self.json_result[family] = [] json_list = [] values = {} url = 'http://www.ahcredit.gov.cn/business/GQCZ.jspx?id='+self.mainID # print 'gqczurl:', url try: r = self.get_request(url=url, params={}) except: r = self.get_request_302(url=url, params={}) # r.encoding = 'gbk' r.encoding = 'utf-8' soup = BeautifulSoup(r.text, 'html5lib') # print '*******guquanchuzhi*******', soup try: tr_num = len(soup.find_all('p')) except: tr_num = 0 # print 'fenzhijigou:', tr_num if tr_num: # print '*******guquanchuzhi*******',soup soup = soup.find(id='pledgeDiv2') table_element = soup.find_all(class_="detailsList") row_cnt = len(soup.find_all(class_="detailsList")[1].find_all('tr')) if row_cnt > 0: tr_element_list = soup.find_all(class_="detailsList")[1].find_all('tr') th_element_list = soup.find_all(class_="detailsList")[0].find_all('tr')[0].find_all('th') idn = 1 for tr_element in tr_element_list: td_element_list = tr_element.find_all('td') col_nums = len(th_element_list) for j in range(col_nums): col_dec = th_element_list[j].text.strip().replace('\n','') # print 'col_dec',col_dec if col_dec == u'证照/证件号码' and th_element_list[j-1].text.strip().replace('\n','') == u'出质人': # print '**',col_dec col = guquanchuzhidengji_column_dict[col_dec] elif col_dec == u'证照/证件号码' and th_element_list[j-1].text.strip().replace('\n','') == u'质权人': # print '***',col_dec col = guquanchuzhidengji_column_dict[u'证照/证件号码1'] else: col = guquanchuzhidengji_column_dict[col_dec] td = td_element_list[j] val = td.text.strip() if val == u'查看': mex = td.a.get('onclick') td = re.search(r'(?<=[(]).*(?=[)])', mex).group().replace("'", "") # link = self.domain+td link = 'http://www.ahcredit.gov.cn/business/altPleInfo.jspx?pleId='+td # print 'gqcz_link', link values[col] = link # print u'股权出质详情', link else: values[col] = val # values['RegistrationNo']=self.cur_code # values['EnterpriseName']=self.org_name # values['rowkey'] = values['EnterpriseName']+'_12_'+ values['RegistrationNo']+'_'+str(id) values['rowkey'] = '%s_%s_%s_%s%d' % (self.cur_mc, table_id, self.cur_zch, self.today, idn) values[family + ':registrationno'] = self.cur_zch values[family + ':enterprisename'] = self.cur_mc values[family + ':id'] = str(idn) json_list.append(values) # json_guquanchuzhidengji=json.dumps(values,ensure_ascii=False) # print 'json_guquanchuzhidengji',json_guquanchuzhidengji values = {} idn += 1 if len(table_element) == 3: turn_page = table_element[2].find_all('a') # if len(turn_page) > 1: # print u'股权出质有分页' if json_list: self.json_result[family] = json_list # print '-,-**guquanchuzhi_json_list**',len(json_list),json_list def get_xing_zheng_chu_fa(self): """ 查询行政处罚信息 :param param_pripid: :param param_type: :return: """ family = 'Administrative_Penalty' table_id = '13' # self.json_result[family] = [] values = {} json_list = [] url = 'http://www.ahcredit.gov.cn/business/XZCF.jspx?id='+self.mainID # print 'xzcfurl:', url try: r = self.get_request(url=url, params={}) except: r = self.get_request_302(url=url, params={}) # r.encoding = 'gbk' r.encoding = 'utf-8' soup = BeautifulSoup(r.text, 'html5lib') # print '*******xingzhengchufa*******', soup try: tr_num = len(soup.find_all('p')) except: tr_num = 0 # print 'xingzhengchufa:', tr_num if tr_num: # print '*******xingzhengchufa*******',soup soup = soup.find(id='punDiv2') table_element = soup.find_all(class_='detailsList') row_cnt = len(soup.find_all(class_="detailsList")[1].find_all('tr')) if row_cnt > 0: tr_element_list = soup.find_all(class_="detailsList")[1].find_all('tr') th_element_list = soup.find_all(class_="detailsList")[0].find_all('tr')[0].find_all('th') idn = 1 for tr_element in tr_element_list: td_element_list = tr_element.find_all('td') col_nums = len(th_element_list) for j in range(col_nums): col_dec = th_element_list[j].text.strip().replace('\n','') col = xingzhengchufa_column_dict[col_dec] td = td_element_list[j] val = td.text.strip() if val == u'查看': mex = td.a.get('onclick') td = re.search(r'(?<=[(]).*(?=[)])', mex).group().replace("'", "") # val = self.domain+td val = 'http://www.ahcredit.gov.cn/business/punishInfoDetail.jspx?id='+td # print 'xingzhengchufa__val', val values[col] = val # values['RegistrationNo']=self.cur_code # values['EnterpriseName']=self.org_name # values['rowkey'] = values['EnterpriseName']+'_13_'+ values['RegistrationNo']+'_'+str(id) values['rowkey'] = '%s_%s_%s_%s%d' % (self.cur_mc, table_id, self.cur_zch, self.today, idn) values[family + ':registrationno'] = self.cur_zch values[family + ':enterprisename'] = self.cur_mc values[family + ':id'] = str(idn) json_list.append(values) # json_xingzhengchufa=json.dumps(values,ensure_ascii=False) # print 'json_xingzhengchufa',json_xingzhengchufa values = {} idn += 1 if len(table_element) == 3: turn_page = table_element[2].find_all('a') # if len(turn_page) > 1: # print u'行政处罚有分页' if json_list: self.json_result[family] = json_list # print '-,-**xingzhengchufa_jsonlist***', len(json_list), json_list def get_jing_ying_yi_chang(self): """ 查询经营异常信息 :param param_pripid: :param param_type: :return: """ family = 'Business_Abnormal' table_id = '14' # self.json_result[family] = [] values = {} json_list = [] url = 'http://www.ahcredit.gov.cn/business/JYYC.jspx?id='+self.mainID # print 'jyycurl:', url try: r = self.get_request(url=url, params={}) except: r = self.get_request_302(url=url, params={}) # r.encoding = 'gbk' r.encoding = 'utf-8' soup = BeautifulSoup(r.text, 'html5lib') # print '*******jingyingyichang*******', soup try: tr_num = len(soup.find_all('p')) except: tr_num = 0 # print 'jingyingyichang:', tr_num if tr_num: soup = soup.find(id='excDiv2') table_element = soup.find_all(class_='detailsList') row_cnt = len(soup.find_all(class_="detailsList")[1].find_all('tr')) if row_cnt > 0: idn = 1 tr_element_list = soup.find_all(class_="detailsList")[1].find_all('tr') th_element_list = soup.find_all(class_="detailsList")[0].find_all('tr')[0].find_all('th') for tr_element in tr_element_list: td_element_list = tr_element.find_all('td') col_nums = len(th_element_list) for j in range(col_nums): col_dec = th_element_list[j].text.strip().replace('\n','') # print 'col_dec',col_dec col = jingyingyichang_column_dict[col_dec] td = td_element_list[j] val = td.text.strip().replace('\t','').replace('\n','') values[col] = val # print 'iii',col,val # values['RegistrationNo']=self.cur_code # values['EnterpriseName']=self.org_name # values['rowkey'] = values['EnterpriseName']+'_14_'+ values['RegistrationNo']+'_'+str(id) values['rowkey'] = '%s_%s_%s_%s%d' % (self.cur_mc, table_id, self.cur_zch, self.today, idn) values[family + ':registrationno'] = self.cur_zch values[family + ':enterprisename'] = self.cur_mc values[family + ':id'] = str(idn) json_list.append(values) # json_jingyingyichang=json.dumps(values,ensure_ascii=False) # print 'json_jingyingyichang',json_jingyingyichang values = {} idn += 1 if len(table_element) == 3: turn_page = table_element[2].find_all('a') # if len(turn_page) > 1: # print u'经营异常有分页' if json_list: self.json_result[family] = json_list # print '-,-**jingyingyichang',json_list def get_yan_zhong_wei_fa(self): """ 查询严重违法信息 :param param_pripid: :param param_type: :return: """ family = 'Serious_Violations' table_id = '15' # self.json_result[family] = [] values = {} json_list = [] url = 'http://www.ahcredit.gov.cn/business/YZWF.jspx?id='+self.mainID # print 'yzwfurl:', url try: r = self.get_request(url=url, params={}) except: r = self.get_request_302(url=url, params={}) # r.encoding = 'gbk' r.encoding = 'utf-8' soup = BeautifulSoup(r.text, 'html5lib') # print '*******yanzhongweifa*******', soup try: tr_num = len(soup.find_all('p')) except: tr_num = 0 # print 'yanzhongweifa:', tr_num if tr_num: soup = soup.find(id='serillDiv2') table_element = soup.find_all(class_='detailsList') row_cnt = len(soup.find_all(class_="detailsList")[1].find_all('tr')) if row_cnt > 0: tr_element_list = soup.find_all(class_="detailsList")[1].find_all('tr') th_element_list = soup.find_all(class_="detailsList")[0].find_all('tr')[0].find_all('th') idn = 1 for tr_element in tr_element_list: td_element_list = tr_element.find_all('td') col_nums = len(th_element_list) for j in range(col_nums): col_dec = th_element_list[j].text.strip().replace('\n','') col = yanzhongweifa_column_dict[col_dec] td = td_element_list[j] val = td.text.strip() values[col]=val # values['RegistrationNo']=self.cur_code # values['EnterpriseName']=self.org_name # values['rowkey'] = values['EnterpriseName']+'_15_'+ values['RegistrationNo']+'_'+str(id) values['rowkey'] = '%s_%s_%s_%s%d' % (self.cur_mc, table_id, self.cur_zch, self.today, idn) values[family + ':registrationno'] = self.cur_zch values[family + ':enterprisename'] = self.cur_mc values[family + ':id'] = str(idn) json_list.append(values) # json_yanzhongweifa=json.dumps(values,ensure_ascii=False) # print 'json_yanzhongweifa',json_yanzhongweifa values = {} idn += 1 if len(table_element) == 3: turn_page = table_element[2].find_all('a') # if len(turn_page) > 1: # print u'严重违法有分页' if json_list: self.json_result[family] = json_list # print '-,-**yanzhongweifa_json_list', len(json_list), json_list def get_chou_cha_jian_cha(self): """ 查询抽查检查信息 :param param_pripid: :param param_type: :return: """ family = 'Spot_Check' table_id = '16' # self.json_result[family] = [] values = {} json_list = [] url = 'http://www.ahcredit.gov.cn/business/CCJC.jspx?id='+self.mainID # print 'ccjcurl:', url try: r = self.get_request(url=url, params={}) except: r = self.get_request_302(url=url, params={}) # r.encoding = 'gbk' r.encoding = 'utf-8' soup = BeautifulSoup(r.text, 'html5lib') # print '*******chouchajiancha*******', soup try: tr_num = len(soup.find_all('p')) except: tr_num = 0 # print 'chouchajiancha:', tr_num if tr_num: soup = soup.find(id='spotCheck2') try: row_cnt = len(soup.find_all(class_='detailsList')[1].find_all('tr')) except: row_cnt = 0 # print 'ccjc_row_cnt',row_cnt if row_cnt > 0: # print '*****mmmm****' table_element = soup.find_all(class_='detailsList') tr_element_list = soup.find_all(class_='detailsList')[1].find_all('tr') th_element_list = soup.find_all(class_='detailsList')[0].find_all('tr')[0].find_all('th') idn = 1 for tr_element in tr_element_list: td_element_list = tr_element.find_all('td') col_nums = len(th_element_list) for j in range(col_nums): col_dec = th_element_list[j].text.strip().replace('\n','') col = chouchajiancha_column_dict[col_dec] td = td_element_list[j] val = td.text.strip() values[col] = val # values['RegistrationNo']=self.cur_code # values['EnterpriseName']=self.org_name # values['rowkey'] = values['EnterpriseName']+'_16_'+ values['RegistrationNo']+'_'+str(id) values['rowkey'] = '%s_%s_%s_%s%d' % (self.cur_mc, table_id, self.cur_zch, self.today, idn) values[family + ':registrationno'] = self.cur_zch values[family + ':enterprisename'] = self.cur_mc values[family + ':id'] = str(idn) json_list.append(values) # json_chouchajiancha=json.dumps(values,ensure_ascii=False) # print 'json_chouchajiancha',json_chouchajiancha values = {} idn += 1 if len(table_element) == 3: turn_page = table_element[2].find_all('a') # if len(turn_page) > 1: # print u'抽查检查有分页' if json_list: self.json_result[family] = json_list # print '-,-**chouchajiancha', len(json_list), json_list def get_nian_bao(self): dic = {} # 年份容器 self.nbjb_list = [] # 年报基本信息 self.nbzczk_list = [] # 年报资产状况 self.nbdwdb_list = [] self.nbgdcz_list = [] self.nbgqbg_list = [] self.nbwz_list = [] self.nbxg_list = [] self.nbdwtz_list = [] url = 'http://www.ahcredit.gov.cn/yearExm/QYNBXX.jspx?ram='+str(random.random())+'&id='+self.mainID # print 'nianbaourl:', url try: r = self.get_request(url=url) except: self.info(u'该企业暂无年度报告信息') return soup = BeautifulSoup(r.text, 'html5lib') soup = soup.find(class_='panel_state_content') # print '****niaobao_soup****', soup div_list = soup.find_all('div', recursive=False) year_opt = div_list[0].select('option')[1] nball = div_list[0].select('option')[1:] for yb in nball: yr = yb.text.strip()[:4] yid = yb.get('value').strip() # print '**', yr, '*', yid dic[yr] = yid # for y in year_opt: # print 'year', year_opt self.y = year_opt.text.strip()[:4] # print 'y', self.y cnt = 0 for div in div_list[1:]: cnt += 1 dn = div.find_all('span')[0].text.strip() # print cnt, dn if dn == u'基本信息': self.load_nianbaojiben(div) elif dn == u'网站或网店信息': self.load_nianbaowangzhan(div) elif dn == u'股东及出资信息': self.load_nianbaogudongchuzi(div) elif dn == u'对外投资信息': self.load_nianbaoduiwaitouzi(div) elif dn == u'行政许可情况': # 个体工商户出现 e.g.濉溪县界沟鸿星尔克专卖 self.load_nianbaoxingzhengxuke(div) elif dn == u'资产状况信息': # 个体工商户出现 self.load_nianbaozichangeti(div) elif dn == u'分支机构情况': # 个体工商户出现 e.g. 青阳县五梅经济林农民专业合作社 self.load_nianbaofenzhijigou(div) elif dn == u'生产经营情况': # 与企业资产状况信息区别? e.g. 安徽修正堂药房连锁经营有限公司阜南县任庙店 self.load_nianbaoshengchanjingying(div) elif dn == u'企业资产状况信息': self.load_nianbaozichanzhuangkuang(div) elif dn == u'对外提供保证担保信息': self.load_nianbaoduiwaidanbao(div) elif dn == u'股权变更信息': self.load_nianbaoguquanbiangeng(div) elif dn == u'修改记录': self.load_nianbaoxiugai(div) else: # print u'未知区域div,看看是什么', dn self.info(u'未知区域div,看看是什么'+ dn) # print 'dic_before:', dic if len(dic) > 1: dic.pop(self.y) # print 'dic_after:', dic for y in dic.keys(): urln = 'http://www.ahcredit.gov.cn/yearExm/QYNBXX.jspx?ram='+str(random.random())+'&id='+self.mainID+'&yearId='+dic[y] # print 'url', y, urln self.y = y try: r = self.get_request(url=urln) except: self.info(u'该企业年度报告信息无法打开') break soup = BeautifulSoup(r.text, 'html5lib') soup = soup.find(class_='panel_state_content') # print '****niaobao_soup****', soup div_list = soup.find_all('div', recursive=False) year_opt = div_list[0].select('option')[1] nball = div_list[0].select('option')[1:] cnt = 0 for div in div_list[1:]: cnt += 1 dn = div.find_all('span')[0].text.strip() # print cnt, dn if dn == u'基本信息': self.load_nianbaojiben(div) elif dn == u'网站或网店信息': self.load_nianbaowangzhan(div) elif dn == u'股东及出资信息': self.load_nianbaogudongchuzi(div) elif dn == u'对外投资信息': self.load_nianbaoduiwaitouzi(div) elif dn == u'行政许可情况': # 个体工商户出现 e.g.濉溪县界沟鸿星尔克专卖 self.load_nianbaoxingzhengxuke(div) elif dn == u'资产状况信息': # 个体工商户出现 self.load_nianbaozichangeti(div) elif dn == u'分支机构情况': # 个体工商户出现 e.g. 青阳县五梅经济林农民专业合作社 self.load_nianbaofenzhijigou(div) elif dn == u'生产经营情况': # 与企业资产状况信息区别? e.g. 安徽修正堂药房连锁经营有限公司阜南县任庙店 self.load_nianbaoshengchanjingying(div) elif dn == u'企业资产状况信息': self.load_nianbaozichanzhuangkuang(div) elif dn == u'对外提供保证担保信息': self.load_nianbaoduiwaidanbao(div) elif dn == u'股权变更信息': self.load_nianbaoguquanbiangeng(div) elif dn == u'修改记录': self.load_nianbaoxiugai(div) else: # print u'未知区域div,看看是什么', dn self.info(u'未知区域div,看看是什么' + dn) if self.nbjb_list: self.json_result['report_base'] = self.nbjb_list # 年报基本信息 if self.nbzczk_list: self.json_result['industry_status'] = self.nbzczk_list # 年报资产状况 if self.nbdwdb_list: self.json_result['guarantee'] = self.nbdwdb_list if self.nbgdcz_list: self.json_result['enterprise_shareholder'] = self.nbgdcz_list if self.nbgqbg_list: self.json_result['equity_transfer'] = self.nbgqbg_list if self.nbwz_list: self.json_result['web_site'] = self.nbwz_list if self.nbxg_list: self.json_result['modify'] = self.nbxg_list if self.nbdwtz_list: self.json_result['investment'] = self.nbdwtz_list def load_nianbaojiben(self, soup): family = 'report_base' table_id = '40' tr_element_list = soup.find_all('tr')#(".//*[@id='jbxx']/table/tbody/tr") values = {} json_list = [] for tr_element in tr_element_list[1:]: # th_element_list = tr_element.find_all('th') td_element_list = tr_element.find_all('td') for td in td_element_list: if td.text.strip(): td_list = td.text.replace(u'·', '').replace(u' ', '').strip().replace(u' ', '').split(u':',1) col = td_list[0].strip() val = td_list[1].strip() # print col, val col = qiyenianbaojiben_column_dict[col] values[col] = val values['rowkey'] = '%s_%s_%s_' %(self.cur_mc, self.y, table_id) values[family + ':registrationno'] = self.cur_zch values[family + ':enterprisename'] = self.cur_mc json_list.append(values) self.nbjb_list.append(values) # if json_list: # # print 'nianbaojibenxinxi', json_list # self.json_result[family] = json_list def load_nianbaowangzhan(self, soup): family = 'web_site' table_id = '41' values = {} json_list = [] try: tr_num = len(soup.find_all(class_='detailsList')) except: tr_num = 0 # print 'lentr', tr_num if tr_num > 1: gd_th = soup.find_all(class_='detailsList')[0].find_all('th') # print 'th_previous',cc.find(id='altDiv').find_previous_sibling().text try: iftr = soup.find_all(class_='detailsList')[1].find_all('tr') except: iftr = [] if len(iftr) > 0: cnt = 1 for i in range(len(iftr)): if iftr[i].text.strip(): gd_td = iftr[i].find_all('td') for j in range(len(gd_th)): th = gd_th[j].text.strip() td = gd_td[j].text.strip() # print i,j,th,td values[qiyenianbaowangzhan_column_dict[th]] = td values['rowkey'] = '%s_%s_%s_%d' %(self.cur_mc, self.y, table_id, cnt) values[family + ':registrationno'] = self.cur_zch values[family + ':enterprisename'] = self.cur_mc values[family + ':id'] = str(cnt) json_list.append(values) self.nbwz_list.append(values) values = {} cnt += 1 # if json_list: # # print 'nianbaowangzhan', json_list # self.json_result[family] = json_list def load_nianbaogudongchuzi(self, soup): family = 'enterprise_shareholder' table_id = '42' values = {} json_list = [] try: tr_num = len(soup.find_all(class_='detailsList')) except: tr_num = 0 if tr_num > 1: gd_th = soup.find_all(class_='detailsList')[0].find_all('th') # print 'th_previous',cc.find(id='altDiv').find_previous_sibling().text try: iftr = soup.find_all(class_='detailsList')[1].find_all('tr') except: iftr = [] if len(iftr) > 0: cnt = 1 for i in range(len(iftr)): if iftr[i].text.strip(): gd_td = iftr[i].find_all('td') for j in range(len(gd_th)): th = gd_th[j].text.strip() td = gd_td[j].text.strip() # print i,j,th,td values[qiyenianbaogudong_column_dict[th]] = td values['rowkey'] = '%s_%s_%s_%d' %(self.cur_mc, self.y, table_id, cnt) values[family + ':registrationno'] = self.cur_zch values[family + ':enterprisename'] = self.cur_mc values[family + ':id'] = str(cnt) json_list.append(values) self.nbgdcz_list.append(values) values = {} cnt += 1 # if json_list: # # print 'nianbaogudongchuzi', json_list # self.json_result[family] = json_list def load_nianbaoxingzhengxuke(self, soup): # 个体工商户年报·行政许可暂缺字段 pass def load_nianbaozichangeti(self, soup): # 个体工商户年报·资产状况暂缺字段 pass def load_nianbaofenzhijigou(self, soup): # 个体工商户年报·分支机构情况暂缺字段 pass def load_nianbaoshengchanjingying(self, soup): # 年报生产经营情况 pass def load_nianbaoduiwaitouzi(self, soup): family = 'investment' table_id = '47' values = {} json_list = [] try: tr_num = len(soup.find_all(class_='detailsList')) except: tr_num = 0 if tr_num > 1: gd_th = soup.find_all(class_='detailsList')[0].find_all('th') # print 'th_previous',cc.find(id='altDiv').find_previous_sibling().text try: iftr = soup.find_all(class_='detailsList')[1].find_all('tr') except: iftr = [] if len(iftr) > 0: cnt = 1 for i in range(len(iftr)): if iftr[i].text.strip(): gd_td = iftr[i].find_all('td') for j in range(len(gd_th)): th = gd_th[j].text.strip() td = gd_td[j].text.strip() # print i,j,th,td values[qiyenianbaoduiwaitouzi_column_dict[th]] = td values['rowkey'] = '%s_%s_%s_%d' %(self.cur_mc, self.y, table_id, cnt) values[family + ':id'] = str(cnt) json_list.append(values) self.nbdwtz_list.append(values) values = {} cnt += 1 # if json_list: # # print 'nianbaoduiwaitouzi', json_list # self.json_result[family] = json_list def load_nianbaozichanzhuangkuang(self, soup): family = 'industry_status' table_id = '43' tr_element_list = soup.find_all("tr") values = {} json_list = [] for tr_element in tr_element_list[1:]: # th_element_list = tr_element.find_all('th') td_element_list = tr_element.find_all('td') if len(td_element_list) > 0: col_nums = len(td_element_list) for i in range(col_nums/2): col = td_element_list[i*2].get_text().strip().replace('\n','') val = td_element_list[i*2+1].get_text().strip().replace('\n','') if col != u'': values[qiyenianbaozichanzhuangkuang_column_dict[col]] = val # print col,val values['rowkey'] = '%s_%s_%s_' %(self.cur_mc, self.y, table_id) values[family + ':registrationno'] = self.cur_zch values[family + ':enterprisename'] = self.cur_mc json_list.append(values) self.nbzczk_list.append(values) # if json_list: # # print 'json_nianbaozichan', json_list # self.json_result[family] = json_list def load_nianbaoduiwaidanbao(self, soup): family = 'guarantee' table_id = '44' values = {} json_list = [] try: tr_num = len(soup.find_all(class_='detailsList')) except: tr_num = 0 if tr_num > 1: gd_th = soup.find_all(class_='detailsList')[0].find_all('th') # print 'th_previous',cc.find(id='altDiv').find_previous_sibling().text try: iftr = soup.find_all(class_='detailsList')[1].find_all('tr') except: iftr = [] if len(iftr) > 0: cnt = 1 for i in range(len(iftr)): if iftr[i].text.strip(): gd_td = iftr[i].find_all('td') for j in range(len(gd_th)): th = gd_th[j].text.strip() td = gd_td[j].text.strip() # print i,j,th,td values[qiyenianbaoduiwaidanbao_column_dict[th]] = td values['rowkey'] = '%s_%s_%s_%d' %(self.cur_mc, self.y, table_id, cnt) values[family + ':registrationno'] = self.cur_zch values[family + ':enterprisename'] = self.cur_mc values[family + ':id'] = str(cnt) json_list.append(values) self.nbdwdb_list.append(values) values = {} cnt += 1 # if json_list: # # print 'nianbaoduiwaidanbao', json_list # self.json_result[family] = json_list def load_nianbaoguquanbiangeng(self, soup): family = 'equity_transfer' table_id = '45' values = {} json_list = [] try: tr_num = len(soup.find_all(class_='detailsList')) except: tr_num = 0 if tr_num > 1: gd_th = soup.find_all(class_='detailsList')[0].find_all('th') # print 'th_previous',cc.find(id='altDiv').find_previous_sibling().text try: iftr = soup.find_all(class_='detailsList')[1].find_all('tr') except: iftr = [] if len(iftr) > 0: cnt = 1 for i in range(len(iftr)): if iftr[i].text.strip(): gd_td = iftr[i].find_all('td') for j in range(len(gd_th)): th = gd_th[j].text.strip() td = gd_td[j].text.strip() # print i,j,th,td values[qiyenianbaoguquanbiangeng_column_dict[th]] = td values['rowkey'] = '%s_%s_%s_%d' %(self.cur_mc, self.y, table_id, cnt) values[family + ':registrationno'] = self.cur_zch values[family + ':enterprisename'] = self.cur_mc values[family + ':id'] = str(cnt) json_list.append(values) self.nbgqbg_list.append(values) values = {} cnt += 1 # if json_list: # # print 'nianbaoguquanbiangeng', json_list # self.json_result[family] = json_list def load_nianbaoxiugai(self, soup): family = 'modify' table_id = '46' values = {} json_list = [] try: tr_num = len(soup.find_all(class_='detailsList')) except: tr_num = 0 if tr_num > 1: gd_th = soup.find_all(class_='detailsList')[0].find_all('th') # print 'th_previous',cc.find(id='altDiv').find_previous_sibling().text try: iftr = soup.find_all(class_='detailsList')[1].find_all('tr') except: iftr = [] if len(iftr) > 0: cnt = 1 for i in range(len(iftr)): if iftr[i].text.strip(): gd_td = iftr[i].find_all('td') for j in range(len(gd_th)): th = gd_th[j].text.strip() td = gd_td[j].text.strip() # print i,j,th,td values[qiyenianbaoxiugaijilu_column_dict[th]] = td values['rowkey'] = '%s_%s_%s_%d' %(self.cur_mc, self.y, table_id, cnt) values[family + ':registrationno'] = self.cur_zch values[family + ':enterprisename'] = self.cur_mc values[family + ':id'] = str(cnt) json_list.append(values) self.nbxg_list.append(values) values = {} cnt += 1 # if json_list: # # print 'nianbaoxiugai', json_list # self.json_result[family] = json_list def get_request_302(self, url, t=0, **kwargs): """ 手动处理包含302的请求 :param url: :param t: :return: """ try: self.get_lock_id() # print self.lock_id for i in range(10): if self.use_proxy: self.headers['Proxy-Authorization'] = self.proxy_config.get_auth_header(lock_id=self.lock_id, release_id=self.release_id) r = self.session.get(url=url, headers=self.headers, allow_redirects=False, timeout=self.timeout, **kwargs) if r.status_code != 200: if 300 <= r.status_code < 400: self.release_id = '0' # print '302a', url,r.headers if i == 0: urlo = url protocal, addr = urllib.splittype(url) # print 'protocal', protocal, 'addr', addr # url = protocal + '://' + urllib.splithost(addr)[0] + r.headers['Location'] url = urlo + '&' + r.headers['Set-Cookie'] # print '302b', url continue elif self.province in (u'浙江省', u'北京市') and r.status_code == 504: del self.session self.session = requests.session() self.session.proxies = self.proxy_config.get_proxy() raise Exception(u'504错误') elif r.status_code == 403: if self.use_proxy: if self.lock_id != '0': self.proxy_config.release_lock_id(self.lock_id) self.lock_id = self.proxy_config.get_lock_id() self.release_id = self.lock_id else: raise Exception(u'IP被封') raise StatusCodeException(u'错误的响应代码 -> %d' % r.status_code) else: if self.release_id != '0': self.release_id = '0' return r except (ChunkedEncodingError, StatusCodeException, ReadTimeout, ConnectTimeout, ProxyError, ConnectionError) as e: if t == 5: raise e else: return self.get_request_302(url, t+1, **kwargs) def post_request(self, url, t=0, **kwargs): """ 发送post请求,包含添加代理,锁定ip与重试机制 :param url: 请求的url :param t: 重试次数 :return: """ try: if 'timeout' not in kwargs: kwargs['timeout'] = self.timeout if 'headers' not in kwargs: kwargs['headers'] = self.headers if self.use_proxy: kwargs['headers']['Proxy-Authorization'] = self.proxy_config.get_auth_header(lock_id=self.lock_id, release_id=self.release_id) r = self.session.post(url=url, **kwargs) # print r.status_code,r.headers,r.text if r.status_code != 200: self.info(u'错误的响应代码 -> %d\n%s' % (r.status_code, url)) if self.province in (u'浙江省', u'北京市') and r.status_code == 504: del self.session self.session = requests.session() self.session.proxies = self.proxy_config.get_proxy() raise Exception(u'504错误') if r.status_code == 403: if self.use_proxy: if self.lock_id != '0': self.proxy_config.release_lock_id(self.lock_id) self.lock_id = self.proxy_config.get_lock_id() self.release_id = self.lock_id else: raise Exception(u'IP被封') raise StatusCodeException(u'错误的响应代码 -> %d\n%s' % (r.status_code, url)) else: if self.release_id != '0': self.release_id = '0' return r except (ChunkedEncodingError, StatusCodeException, ReadTimeout, ConnectTimeout, ProxyError, ConnectionError) as e: if t == 15: raise e else: return self.post_request(url, t+1, **kwargs) def get_args(): args = dict() for arg in sys.argv: kv = arg.split('=') if kv[0] == 'companyName': args['companyName'] = kv[1].decode(sys.stdin.encoding, 'ignore') elif kv[0] == 'taskId': args['taskId'] = kv[1].decode(sys.stdin.encoding, 'ignore') args['taskId'] = kv[1].decode(sys.stdin.encoding, 'ignore') elif kv[0] == 'accountId': args['accountId'] = kv[1].decode(sys.stdin.encoding, 'ignore') return args if __name__ == '__main__': args_dict = get_args() searcher = AnHui() searcher.submit_search_request(u"安徽海德石油化工有限公司") # 安徽省茶叶公司蚌埠市批发站")#安徽海德石油化工有限公司") # #安徽古酒业有限公司")#安徽华隆塑料有限责任公司")#安徽宝庭门业有限公司") #合肥浍溪新能源汽车技术有限公司")#颍上县艺之家装饰工程有限公司")#霍山县工艺厂")#芜湖歌斐证捷投资中心(有限合伙)") #阜阳市物资回收总公司第一经营部")#肥西合宴福酒店(普通合伙)")#合肥钢铁集团有限公司")#泾县月亮湾吊车租赁部")#亳州市元一置业有限公司")芜湖县城北友谊印刷厂 # searcher.get_tag_a_from_page(u"银川塔木金商贸有限公司") # searcher.parse_detail(1) # rst = searcher.parse_detail(1) # print 'rst',rst # searcher.get_credit_ticket() # print searcher.credit_ticket # print json.dumps(args_dict, ensure_ascii=False) # searcher = LiaoNing() # searcher.submit_search_request(keyword=args_dict['companyName'], account_id=args_dict['accountId'], task_id=args_dict['taskId']) # p, t = '210200000011992092800017', '6210' # p, t = '21060200002200908053570X', '1151' # print searcher.get_gu_dong_detail('210200000011992092800017', '754198044') # pattern = re.compile("\s") # print pattern.sub('', '12 434 5')
74dc0695aadeb764d830515c0fcfee9c3c7fce09
5f4e13201d4c5b7edc8dbbda289380682a187bec
/deps/scikit-image/doc/examples/filters/plot_deconvolution.py
e934221396c76735c9652da0a75a70f6b0ab65a3
[ "MIT", "BSD-3-Clause" ]
permissive
intellivoid/CoffeeHousePy
92f4fb344de757837c3d3da05cb5513e90408039
57c453625239f28da88b88ddd0ae5f1ecdd4de3c
refs/heads/master
2023-02-23T14:32:01.606630
2021-01-28T02:57:10
2021-01-28T02:57:10
324,419,067
0
2
null
null
null
null
UTF-8
Python
false
false
1,678
py
""" ===================== Image Deconvolution ===================== In this example, we deconvolve an image using Richardson-Lucy deconvolution algorithm ([1]_, [2]_). The algorithm is based on a PSF (Point Spread Function), where PSF is described as the impulse response of the optical system. The blurred image is sharpened through a number of iterations, which needs to be hand-tuned. .. [1] William Hadley Richardson, "Bayesian-Based Iterative Method of Image Restoration", J. Opt. Soc. Am. A 27, 1593-1607 (1972), :DOI:`10.1364/JOSA.62.000055` .. [2] https://en.wikipedia.org/wiki/Richardson%E2%80%93Lucy_deconvolution """ import numpy as np import matplotlib.pyplot as plt from scipy.signal import convolve2d as conv2 from skimage import color, data, restoration astro = color.rgb2gray(data.astronaut()) psf = np.ones((5, 5)) / 25 astro = conv2(astro, psf, 'same') # Add Noise to Image astro_noisy = astro.copy() astro_noisy += (np.random.poisson(lam=25, size=astro.shape) - 10) / 255. # Restore Image using Richardson-Lucy algorithm deconvolved_RL = restoration.richardson_lucy(astro_noisy, psf, iterations=30) fig, ax = plt.subplots(nrows=1, ncols=3, figsize=(8, 5)) plt.gray() for a in (ax[0], ax[1], ax[2]): a.axis('off') ax[0].imshow(astro) ax[0].set_title('Original Data') ax[1].imshow(astro_noisy) ax[1].set_title('Noisy data') ax[2].imshow(deconvolved_RL, vmin=astro_noisy.min(), vmax=astro_noisy.max()) ax[2].set_title('Restoration using\nRichardson-Lucy') fig.subplots_adjust(wspace=0.02, hspace=0.2, top=0.9, bottom=0.05, left=0, right=1) plt.show()
739a057d4d441fd18cf2d851c70c964bdf3dd74e
9f1b8a1ada57198e2a06d88ddcdc0eda0c683df7
/submission - Homework1/ALEXANDER T KOHLROSER_2240_assignsubmission_file_HW1/HW1/index_nested_list.py
ca01168c4a25471ab1064be8afb0e0ea61dca486
[]
no_license
sendurr/spring-grading
90dfdced6327ddfb5c311ae8f42ae1a582768b63
2cc280ee3e0fba02e95b6e9f45ad7e13bc7fad54
refs/heads/master
2020-04-15T17:42:10.781884
2016-08-29T20:38:17
2016-08-29T20:38:17
50,084,068
0
0
null
null
null
null
UTF-8
Python
false
false
382
py
q = [['a','b','c'],['d','e','f'],['g','h',]] print q[0][0] #calls the top right print q[1] #calls the middle row print q[2][1] #calls the second column of the third row print q[-1][-2] print("This calls [2][0] because it goes one left from the first place which would then call the equivalent of [2]. Then it travels two left of the g, which would call g also.") #ends the code
60ef1583477da2f9e5ba9f8242678d5c50047692
7da12f580db1c2d4e5e9d3348476c83a6c901c15
/shop/admin.py
a9189a8cde6f32a5393b8ba54541cfd01c3228c4
[]
no_license
aeksei/shop_step9
10967756f58f2d001804efca77c3f2da3dbaa616
80a0dc4d468a025863db2f32d54cae7b087b4a4c
refs/heads/master
2022-09-29T19:57:43.324752
2020-04-22T17:10:16
2020-04-22T17:10:16
257,964,572
0
0
null
2020-06-04T17:40:33
2020-04-22T16:55:52
CSS
UTF-8
Python
false
false
116
py
from django.contrib import admin from .models import * # Register your models here. admin.site.register(Products)
8b307a46ca1af76374ddabfb9bce3c7ff2c5d912
bf80f309b6deb240be5fa82428ccffaedcb7ecf1
/contrib/devtools/update-translations.py
a65cd759c1fa4b440ea27665cd95756623258d97
[ "MIT", "LicenseRef-scancode-public-domain" ]
permissive
danxb827/vektorcoin
b4677be9320de92a514d40eac213f51d1bc5e106
be2a7adba6d00d1e378c969c77ea90daeecef9f7
refs/heads/main
2023-03-06T11:49:18.688978
2021-02-09T14:54:10
2021-02-09T14:54:10
336,577,132
1
1
MIT
2021-02-09T14:54:12
2021-02-06T16:05:36
null
UTF-8
Python
false
false
8,441
py
#!/usr/bin/env python3 # Copyright (c) 2014 Wladimir J. van der Laan # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. ''' Run this script from the root of the repository to update all translations from transifex. It will do the following automatically: - fetch all translations using the tx tool - post-process them into valid and committable format - remove invalid control characters - remove location tags (makes diffs less noisy) TODO: - auto-add new translations to the build system according to the translation process ''' import subprocess import re import sys import os import io import xml.etree.ElementTree as ET # Name of transifex tool TX = 'tx' # Name of source language file SOURCE_LANG = 'vektorcoin_en.ts' # Directory with locale files LOCALE_DIR = 'src/qt/locale' # Minimum number of messages for translation to be considered at all MIN_NUM_MESSAGES = 10 # Regexp to check for VEKTORCOIN addresses ADDRESS_REGEXP = re.compile('([13]|bc1)[a-zA-Z0-9]{30,}') def check_at_repository_root(): if not os.path.exists('.git'): print('No .git directory found') print('Execute this script at the root of the repository', file=sys.stderr) sys.exit(1) def fetch_all_translations(): if subprocess.call([TX, 'pull', '-f', '-a']): print('Error while fetching translations', file=sys.stderr) sys.exit(1) def find_format_specifiers(s): '''Find all format specifiers in a string.''' pos = 0 specifiers = [] while True: percent = s.find('%', pos) if percent < 0: break specifiers.append(s[percent+1]) pos = percent+2 return specifiers def split_format_specifiers(specifiers): '''Split format specifiers between numeric (Qt) and others (strprintf)''' numeric = [] other = [] for s in specifiers: if s in {'1','2','3','4','5','6','7','8','9'}: numeric.append(s) else: other.append(s) # If both numeric format specifiers and "others" are used, assume we're dealing # with a Qt-formatted message. In the case of Qt formatting (see https://doc.qt.io/qt-5/qstring.html#arg) # only numeric formats are replaced at all. This means "(percentage: %1%)" is valid, without needing # any kind of escaping that would be necessary for strprintf. Without this, this function # would wrongly detect '%)' as a printf format specifier. if numeric: other = [] # numeric (Qt) can be present in any order, others (strprintf) must be in specified order return set(numeric),other def sanitize_string(s): '''Sanitize string for printing''' return s.replace('\n',' ') def check_format_specifiers(source, translation, errors, numerus): source_f = split_format_specifiers(find_format_specifiers(source)) # assert that no source messages contain both Qt and strprintf format specifiers # if this fails, go change the source as this is hacky and confusing! assert(not(source_f[0] and source_f[1])) try: translation_f = split_format_specifiers(find_format_specifiers(translation)) except IndexError: errors.append("Parse error in translation for '%s': '%s'" % (sanitize_string(source), sanitize_string(translation))) return False else: if source_f != translation_f: if numerus and source_f == (set(), ['n']) and translation_f == (set(), []) and translation.find('%') == -1: # Allow numerus translations to omit %n specifier (usually when it only has one possible value) return True errors.append("Mismatch between '%s' and '%s'" % (sanitize_string(source), sanitize_string(translation))) return False return True def all_ts_files(suffix=''): for filename in os.listdir(LOCALE_DIR): # process only language files, and do not process source language if not filename.endswith('.ts'+suffix) or filename == SOURCE_LANG+suffix: continue if suffix: # remove provided suffix filename = filename[0:-len(suffix)] filepath = os.path.join(LOCALE_DIR, filename) yield(filename, filepath) FIX_RE = re.compile(b'[\x00-\x09\x0b\x0c\x0e-\x1f]') def remove_invalid_characters(s): '''Remove invalid characters from translation string''' return FIX_RE.sub(b'', s) # Override cdata escape function to make our output match Qt's (optional, just for cleaner diffs for # comparison, disable by default) _orig_escape_cdata = None def escape_cdata(text): text = _orig_escape_cdata(text) text = text.replace("'", '&apos;') text = text.replace('"', '&quot;') return text def contains_vektorcoin_addr(text, errors): if text != None and ADDRESS_REGEXP.search(text) != None: errors.append('Translation "%s" contains a vektorcoin address. This will be removed.' % (text)) return True return False def postprocess_translations(reduce_diff_hacks=False): print('Checking and postprocessing...') if reduce_diff_hacks: global _orig_escape_cdata _orig_escape_cdata = ET._escape_cdata ET._escape_cdata = escape_cdata for (filename,filepath) in all_ts_files(): os.rename(filepath, filepath+'.orig') have_errors = False for (filename,filepath) in all_ts_files('.orig'): # pre-fixups to cope with transifex output parser = ET.XMLParser(encoding='utf-8') # need to override encoding because 'utf8' is not understood only 'utf-8' with open(filepath + '.orig', 'rb') as f: data = f.read() # remove control characters; this must be done over the entire file otherwise the XML parser will fail data = remove_invalid_characters(data) tree = ET.parse(io.BytesIO(data), parser=parser) # iterate over all messages in file root = tree.getroot() for context in root.findall('context'): for message in context.findall('message'): numerus = message.get('numerus') == 'yes' source = message.find('source').text translation_node = message.find('translation') # pick all numerusforms if numerus: translations = [i.text for i in translation_node.findall('numerusform')] else: translations = [translation_node.text] for translation in translations: if translation is None: continue errors = [] valid = check_format_specifiers(source, translation, errors, numerus) and not contains_vektorcoin_addr(translation, errors) for error in errors: print('%s: %s' % (filename, error)) if not valid: # set type to unfinished and clear string if invalid translation_node.clear() translation_node.set('type', 'unfinished') have_errors = True # Remove location tags for location in message.findall('location'): message.remove(location) # Remove entire message if it is an unfinished translation if translation_node.get('type') == 'unfinished': context.remove(message) # check if document is (virtually) empty, and remove it if so num_messages = 0 for context in root.findall('context'): for message in context.findall('message'): num_messages += 1 if num_messages < MIN_NUM_MESSAGES: print('Removing %s, as it contains only %i messages' % (filepath, num_messages)) continue # write fixed-up tree # if diff reduction requested, replace some XML to 'sanitize' to qt formatting if reduce_diff_hacks: out = io.BytesIO() tree.write(out, encoding='utf-8') out = out.getvalue() out = out.replace(b' />', b'/>') with open(filepath, 'wb') as f: f.write(out) else: tree.write(filepath, encoding='utf-8') return have_errors if __name__ == '__main__': check_at_repository_root() fetch_all_translations() postprocess_translations()
de7b13d92631a345de71ca8e1d4f3dc2b0aafc2c
c4599b387df99da05475dc3e464c6df25511919f
/tensorflow/python/ops/nn_batchnorm_test.py
3292a7bfd7401541a469eb317ce0b6ec0fa5475c
[ "Apache-2.0" ]
permissive
agrawalnishant/tensorflow
0ca19b303d1d474febe4e895b4dc558c864706f7
cce87661db51b78fb406525285c9402be44e019b
refs/heads/master
2022-12-09T10:53:51.852543
2022-08-27T19:36:50
2022-08-27T19:36:50
60,673,664
2
9
Apache-2.0
2022-11-26T16:19:03
2016-06-08T06:20:26
C++
UTF-8
Python
false
false
23,420
py
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for batch_norm related functionality in tensorflow.ops.nn.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from six.moves import xrange # pylint: disable=redefined-builtin import tensorflow as tf from tensorflow.python.ops import gen_nn_ops class BatchNormalizationTest(tf.test.TestCase): def _npBatchNorm(self, x, m, v, beta, gamma, epsilon, scale_after_normalization, shift_after_normalization): y = (x - m) / np.sqrt(v + epsilon) y = y * gamma if scale_after_normalization else y return y + beta if shift_after_normalization else y def _opsBatchNorm(self, x, m, v, beta, gamma, epsilon, scale_after_normalization, shift_after_normalization): y = (x - m) * tf.rsqrt(v + epsilon) if scale_after_normalization: y = gamma * y return y + beta if shift_after_normalization else y def _tfBatchNormV1(self, x, m, v, beta, gamma, epsilon, scale_after_normalization): """Original implementation.""" # _batch_norm_with_global_normalization is deprecated in v9 tf.get_default_graph().graph_def_versions.producer = 8 # pylint: disable=protected-access return gen_nn_ops._batch_norm_with_global_normalization( x, m, v, beta, gamma, epsilon, scale_after_normalization) # pylint: enable=protected-access def _tfBatchNormV1BW(self, x, m, v, beta, gamma, epsilon, scale_after_normalization): """Re-implementation of the original kernel for backward compatibility.""" return tf.nn.batch_norm_with_global_normalization( x, m, v, beta, gamma, epsilon, scale_after_normalization) def _tfBatchNormV2(self, x, m, v, beta, gamma, epsilon, scale_after_normalization, shift_after_normalization): """New implementation.""" return tf.nn.batch_normalization( x, m, v, beta if shift_after_normalization else None, gamma if scale_after_normalization else None, epsilon) def testBatchNorm(self): x_shape = [3, 5, 4, 2] param_shape = [2] x_val = np.random.random_sample(x_shape).astype(np.float32) m_val = np.random.random_sample(param_shape).astype(np.float32) v_val = np.random.random_sample(param_shape).astype(np.float32) beta_val = np.random.random_sample(param_shape).astype(np.float32) gamma_val = np.random.random_sample(param_shape).astype(np.float32) for use_gpu in [True, False]: with self.test_session(use_gpu=use_gpu) as sess: x = tf.constant(x_val, name="x") m = tf.constant(m_val, name="m") v = tf.constant(v_val, name="v") beta = tf.constant(beta_val, name="beta") gamma = tf.constant(gamma_val, name="gamma") epsilon = 0.001 for scale_after_normalization in [True, False]: for shift_after_normalization in [True, False]: bn2 = self._tfBatchNormV2( x, m, v, beta, gamma, epsilon, scale_after_normalization, shift_after_normalization) bn1bw = self._tfBatchNormV1BW( x, m, v, beta, gamma, epsilon, scale_after_normalization) bn1 = self._tfBatchNormV1( x, m, v, beta, gamma, epsilon, scale_after_normalization) on = self._opsBatchNorm( x, m, v, beta, gamma, epsilon, scale_after_normalization, shift_after_normalization) np_bn = self._npBatchNorm( x_val, m_val, v_val, beta_val, gamma_val, epsilon, scale_after_normalization, shift_after_normalization) tf_bn_v2, tf_bn_v1bw, tf_bn_v1, ops_bn = sess.run( [bn2, bn1bw, bn1, on]) self.assertAllClose(np_bn, ops_bn, atol=0.00001) self.assertAllClose(np_bn, tf_bn_v2, atol=0.00001) self.assertAllClose(tf_bn_v2, ops_bn, atol=0.00001) # shift_after_normalization=False is not supported in v1. if shift_after_normalization: self.assertAllClose(np_bn, tf_bn_v1bw, atol=0.00001) self.assertAllClose(np_bn, tf_bn_v1, atol=0.00001) self.assertAllClose(tf_bn_v1, ops_bn, atol=0.00001) self.assertAllClose(tf_bn_v1bw, ops_bn, atol=0.00001) def _testBatchNormGradient(self, param_index, tag, scale_after_normalization, shift_after_normalization, version, err_tolerance=1e-11): x_shape = [3, 5, 4, 5] param_shape = [5] np.random.seed(1) # Make it reproducible. x_val = np.random.random_sample(x_shape).astype(np.float64) m_val = np.random.random_sample(param_shape).astype(np.float64) v_val = np.random.random_sample(param_shape).astype(np.float64) beta_val = np.random.random_sample(param_shape).astype(np.float64) gamma_val = np.random.random_sample(param_shape).astype(np.float64) with self.test_session(): x = tf.constant(x_val, name="x") m = tf.constant(m_val, name="m") v = tf.constant(v_val, name="v") beta = tf.constant(beta_val, name="beta") gamma = tf.constant(gamma_val, name="gamma") epsilon = 0.001 if version == 1: output = self._tfBatchNormV1( x, m, v, beta, gamma, epsilon, scale_after_normalization) elif version == 2: output = self._tfBatchNormV2( x, m, v, beta, gamma, epsilon, scale_after_normalization, shift_after_normalization) else: print("Invalid version", version) raise ValueError() all_params = [x, m, v, beta, gamma] all_shapes = [x_shape, param_shape, param_shape, param_shape, param_shape] err = tf.test.compute_gradient_error( all_params[param_index], all_shapes[param_index], output, x_shape) print("Batch normalization v%d %s gradient %s scale and %s shift err = " % (version, tag, "with" if scale_after_normalization else "without", "with" if shift_after_normalization else "without"), err) self.assertLess(err, err_tolerance) def _testBatchNormGradientInAllNeedConfigs( self, param_index, tag, err_tolerance=1e-11): for scale_after_normalization in [True, False]: for shift_after_normalization in [True, False]: # shift_after_normalization=False is not supported in version 1. for v in ([1, 2] if shift_after_normalization else [2]): self._testBatchNormGradient( param_index, tag, scale_after_normalization, shift_after_normalization, v, err_tolerance) def testBatchNormInputGradient(self): self._testBatchNormGradientInAllNeedConfigs(0, "x") def testBatchNormMeanGradient(self): self._testBatchNormGradientInAllNeedConfigs(1, "mean") def testBatchNormVarianceGradient(self): self._testBatchNormGradientInAllNeedConfigs(2, "variance", err_tolerance=1e-03) def testBatchNormBetaGradient(self): # Since beta does not exist when scale_after_normalization=False, we only # test for scale_after_normalization=True. for scale_after_normalization in [True, False]: for v in [1, 2]: self._testBatchNormGradient(3, "beta", scale_after_normalization, True, v) def testBatchNormGammaGradient(self): # If scale_after_normalization is False, backprop for gamma in v1 # will be 0. In version 2 of the API, if scale_after_normalization is False, # gamma is not used at all, and the gradient is None, which displeases the # gradient checker. for scale_after_normalization in [True, False]: self._testBatchNormGradient(4, "gamma", scale_after_normalization, True, 1) for shift_after_normalization in [True, False]: self._testBatchNormGradient(4, "gamma", True, shift_after_normalization, 2) def testBatchNormGradImpl(self): x_shape = [7, 5, 4, 6] param_shape = [6] np.random.seed(1) # Make it reproducible. x_val = np.random.random_sample(x_shape).astype(np.float32) m_val = np.random.random_sample(param_shape).astype(np.float32) v_val = np.random.random_sample(param_shape).astype(np.float32) beta_val = np.random.random_sample(param_shape).astype(np.float32) gamma_val = np.random.random_sample(param_shape).astype(np.float32) backprop_val = np.random.random_sample(x_shape).astype(np.float32) for use_gpu in [False, True]: with self.test_session(use_gpu=use_gpu) as sess: x = tf.constant(x_val, name="x") m = tf.constant(m_val, name="m") v = tf.constant(v_val, name="v") beta = tf.constant(beta_val, name="beta") gamma = tf.constant(gamma_val, name="gamma") backprop = tf.constant(backprop_val, name="backprop") epsilon = 0.001 for scale_after_normalization in [True, False]: # _batch_norm_with_global_normalization_grad is deprecated in v9 tf.get_default_graph().graph_def_versions.producer = 8 grad = gen_nn_ops._batch_norm_with_global_normalization_grad( x, m, v, gamma, backprop, epsilon, scale_after_normalization) dx, dm, dv, db, dg = grad self.assertEqual(grad.dx, dx) self.assertEqual(grad.dm, dm) self.assertEqual(grad.dv, dv) self.assertEqual(grad.db, db) self.assertEqual(grad.dg, dg) on = self._opsBatchNorm( x, m, v, beta, gamma, epsilon, scale_after_normalization, True) odx, odm, odv, odb, odg = tf.gradients( [on], [x, m, v, beta, gamma], [backprop]) if scale_after_normalization: all_grads = sess.run([dx, dm, dv, db, dg, odx, odm, odv, odb, odg]) to_check = ["dx", "dm", "dv", "db", "dg"] else: all_grads = sess.run([dx, dm, dv, db, odx, odm, odv, odb]) to_check = ["dx", "dm", "dv", "db"] for i, _ in enumerate(to_check): self.assertAllClose( all_grads[i + len(to_check)], all_grads[i], atol=0.000001) def testBatchNormKeepDims(self): """Test for tf.nn.moments(..., keep_dims=True / False). Make sure that parameters with shape (1, 1, 1, depth) yield the same result as parameters with shape (depth) """ x_shape = (3, 5, 4, 2) param_shape = (2) keep_dims_param_shape = (1, 1, 1, 2) x_val = np.random.random_sample(x_shape).astype(np.float32) m_val = np.random.random_sample(param_shape).astype(np.float32) v_val = np.random.random_sample(param_shape).astype(np.float32) beta_val = np.random.random_sample(param_shape).astype(np.float32) gamma_val = np.random.random_sample(param_shape).astype(np.float32) for use_gpu in [True, False]: with self.test_session(use_gpu=use_gpu) as sess: x = tf.constant(x_val, name="x") m = tf.constant(m_val, name="m") v = tf.constant(v_val, name="v") beta = tf.constant(beta_val, name="beta") gamma = tf.constant(gamma_val, name="gamma") keep_dims_m = tf.reshape(m, keep_dims_param_shape, name="keep_dims_m") keep_dims_v = tf.reshape(v, keep_dims_param_shape, name="keep_dims_v") keep_dims_beta = tf.reshape( beta, keep_dims_param_shape, name="keep_dims_beta") keep_dims_gamma = tf.reshape( gamma, keep_dims_param_shape, name="keep_dims_gamma") epsilon = 0.001 for scale_after_normalization in [True, False]: for shift_after_normalization in [True, False]: bn = self._tfBatchNormV2( x, m, v, beta, gamma, epsilon, scale_after_normalization, shift_after_normalization) keep_dims_bn = self._tfBatchNormV2( x, keep_dims_m, keep_dims_v, keep_dims_beta, keep_dims_gamma, epsilon, scale_after_normalization, shift_after_normalization) tf_batch_norm, keep_dims_tf_batch_norm = sess.run( [bn, keep_dims_bn]) self.assertEquals(x_shape, tf_batch_norm.shape) self.assertEquals(x_shape, keep_dims_tf_batch_norm.shape) self.assertAllClose( tf_batch_norm, keep_dims_tf_batch_norm, atol=0.000001) def _testBatchNormArbitraryShapes(self, x_shape, param_shape, atol=0.0001): x_val = np.random.random_sample(x_shape).astype(np.float32) m_val = np.random.random_sample(param_shape).astype(np.float32) v_val = np.random.random_sample(param_shape).astype(np.float32) beta_val = np.random.random_sample(param_shape).astype(np.float32) gamma_val = np.random.random_sample(param_shape).astype(np.float32) for use_gpu in [True, False]: with self.test_session(use_gpu=use_gpu) as sess: x = tf.constant(x_val, name="x") m = tf.constant(m_val, name="m") v = tf.constant(v_val, name="v") beta = tf.constant(beta_val, name="beta") gamma = tf.constant(gamma_val, name="gamma") epsilon = 0.001 for scale_after_normalization in [True, False]: for shift_after_normalization in [True, False]: bn = self._tfBatchNormV2( x, m, v, beta, gamma, epsilon, scale_after_normalization, shift_after_normalization) np_batch_norm = self._npBatchNorm( x_val, m_val, v_val, beta_val, gamma_val, epsilon, scale_after_normalization, shift_after_normalization) [tf_batch_norm] = sess.run([bn]) self.assertEquals(x_shape, np_batch_norm.shape) self.assertEquals(x_shape, tf_batch_norm.shape) self.assertAllClose(np_batch_norm, tf_batch_norm, atol=atol) def testBatchNormArbitraryShapes(self): """Test for a variety of shapes and moments. Batch normalization is expected to work regardless of the position and dimensionality of the 'depth' axis/axes. """ self._testBatchNormArbitraryShapes((3, 3), (1, 3)) self._testBatchNormArbitraryShapes((3, 3), (3, 1)) self._testBatchNormArbitraryShapes((3, 2, 4, 5), (1, 2, 1, 1)) self._testBatchNormArbitraryShapes((2, 3, 2, 4, 5), (1, 1, 1, 4, 5), atol=0.005) class SufficientStatisticsTest(tf.test.TestCase): def _npSuffStats(self, x, axes, shift, keep_dims): axis = tuple(axes) if shift is not None: m_ss = np.sum(x - shift, axis=axis, keepdims=keep_dims) v_ss = np.sum((x - shift) * (x - shift), axis=axis, keepdims=keep_dims) else: m_ss = np.sum(x, axis=axis, keepdims=keep_dims) v_ss = np.sum(x * x, axis=axis, keepdims=keep_dims) count = 1.0 for d in xrange(x.ndim): if d in set(axes): count *= x.shape[d] if not keep_dims: shift = np.squeeze(shift, axis=axis) return count, m_ss, v_ss, shift def _opSuffStats(self, x, axes, shift, keep_dims): return tf.nn.sufficient_statistics(x, axes, shift, keep_dims) def _testSuffStats(self, x_shape, axes, shift, keep_dims, has_shape): x_val = np.random.random_sample(x_shape).astype(np.float32) np_c, np_m, np_v, np_s = self._npSuffStats(x_val, axes, shift, keep_dims) for use_gpu in [True, False]: with self.test_session(use_gpu=use_gpu) as sess: if has_shape: x = tf.constant(x_val, name="x") x.set_shape(x_shape) op_c, op_m, op_v, op_s = self._opSuffStats(x, axes, shift, keep_dims) if shift: tf_c, tf_m, tf_v, tf_s = sess.run([op_c, op_m, op_v, op_s]) else: tf_c, tf_m, tf_v = sess.run([op_c, op_m, op_v]) else: x = tf.placeholder(dtype=tf.float32, shape=[None] * len(x_shape), name="x") op_c, op_m, op_v, op_s = self._opSuffStats(x, axes, shift, keep_dims) if shift: tf_c, tf_m, tf_v, tf_s = sess.run( [op_c, op_m, op_v, op_s], feed_dict={x: x_val}) else: tf_c, tf_m, tf_v = sess.run( [op_c, op_m, op_v], feed_dict={x: x_val}) self.assertAllClose(np_c, tf_c, atol=0.000001) self.assertAllClose(np_m, tf_m, atol=0.000001) self.assertAllClose(np_v, tf_v, atol=0.000001) if shift: self.assertAllClose(np_s, tf_s, atol=0.000001) def testSuffStats(self): for has_shape in [True, False]: for keep_dims in [True, False]: for shift in [None, 1.0]: self._testSuffStats([2, 3], [1], shift, keep_dims, has_shape) self._testSuffStats([2, 3], [0], shift, keep_dims, has_shape) self._testSuffStats([1, 2, 3], [0, 2], shift, keep_dims, has_shape) class NormalizeMomentsTest(tf.test.TestCase): def _npNormalizeMoments(self, counts, mean_ss, variance_ss, shift): mean = mean_ss / counts variance = variance_ss / counts - mean * mean if shift is not None: mean += shift return mean, variance def _opNormalizeMoments(self, counts, mean_ss, variance_ss, shift): return tf.nn.normalize_moments(counts, mean_ss, variance_ss, shift) def _testNormalizeMoments(self, shape, shift): counts = np.ones([1]).astype(np.float32) mean_ss = np.random.random_sample(shape).astype(np.float32) variance_ss = np.random.random_sample(shape).astype(np.float32) variance_ss *= variance_ss if shift: shift_v = np.random.random_sample(shape).astype(np.float32) else: shift_v = None npm, npv = self._npNormalizeMoments(counts, mean_ss, variance_ss, shift_v) for use_gpu in [True, False]: with self.test_session(use_gpu=use_gpu) as sess: tf_counts = tf.constant(counts, name="counts") tf_mean_ss = tf.constant(mean_ss, name="mean_ss") tf_variance_ss = tf.constant(variance_ss, name="variance_ss") if shift: tf_shift_v = tf.constant(shift_v, name="shift") else: tf_shift_v = None opm, opv = self._opNormalizeMoments(tf_counts, tf_mean_ss, tf_variance_ss, tf_shift_v) tfm, tfv = sess.run([opm, opv]) self.assertAllClose(npm, tfm, atol=0.000001) self.assertAllClose(npv, tfv, atol=0.000001) def testNormalizeMoments(self): for shift in [None, 4.0]: self._testNormalizeMoments([3], shift) self._testNormalizeMoments([2, 3], shift) class MomentsTest(tf.test.TestCase): def RunMomentTestWithDynamicShape(self, shape, axes, keep_dims): with self.test_session(): # shape = [batch, width, height, depth] assert len(shape) == 4 x_numpy = np.random.normal(size=shape).astype(np.float32) x = tf.placeholder(tf.float32, shape=[None] * len(shape)) mean, var = tf.nn.moments(x, axes, keep_dims=keep_dims) num_elements = np.prod([shape[i] for i in axes]) ax = tuple(axes) expected_mean = np.sum( x_numpy, axis=ax, keepdims=keep_dims) / num_elements expected_mean_squared = np.multiply(expected_mean, expected_mean) expected_x_squared = np.sum( np.multiply(x_numpy, x_numpy), axis=ax, keepdims=keep_dims) / num_elements expected_variance = expected_x_squared - expected_mean_squared # Check that the moments are correct. self.assertAllClose(expected_mean, mean.eval(feed_dict={x: x_numpy})) self.assertAllClose(expected_variance, var.eval(feed_dict={x: x_numpy})) def RunMomentTest(self, shape, axes, keep_dims): with self.test_session(): # shape = [batch, width, height, depth] assert len(shape) == 4 x_numpy = np.random.normal(size=shape).astype(np.float32) x = tf.constant(x_numpy) mean, var = tf.nn.moments(x, axes, keep_dims=keep_dims) num_elements = np.prod([shape[i] for i in axes]) ax = tuple(axes) expected_mean = np.sum( x_numpy, axis=ax, keepdims=keep_dims) / num_elements expected_mean_squared = np.multiply(expected_mean, expected_mean) expected_x_squared = np.sum( np.multiply(x_numpy, x_numpy), axis=ax, keepdims=keep_dims) / num_elements expected_variance = expected_x_squared - expected_mean_squared # Check that the moments are correct. self.assertAllClose(expected_mean, mean.eval()) self.assertAllClose(expected_variance, var.eval()) def testBasic(self): for keep_dims in [False, True]: self.RunMomentTest(shape=[2, 3, 5, 4], axes=[0], keep_dims=keep_dims) self.RunMomentTestWithDynamicShape( shape=[2, 3, 5, 4], axes=[0], keep_dims=keep_dims) def testGlobalNormalization(self): for keep_dims in [False, True]: self.RunMomentTest( shape=[2, 3, 5, 4], axes=[0, 1, 2], keep_dims=keep_dims) self.RunMomentTestWithDynamicShape( shape=[2, 3, 5, 4], axes=[0, 1, 2], keep_dims=keep_dims) def testAxes(self): for keep_dims in [False, True]: self.RunMomentTest( shape=[2, 3, 5, 4], axes=[1, 2, 3], keep_dims=keep_dims) self.RunMomentTestWithDynamicShape( shape=[2, 3, 5, 4], axes=[1, 2, 3], keep_dims=keep_dims) def _testGlobalGradient(self, from_y="mean"): with self.test_session(): x_shape = [3, 5, 4, 2] x_val = np.random.random_sample(x_shape).astype(np.float64) x = tf.constant(x_val) x.set_shape(x_shape) axes = [0, 1, 2] y_shape = [2] # Depth of x out_mean, out_var = tf.nn.moments(x, axes) if from_y == "mean": y = out_mean elif from_y == "var": y = out_var err = tf.test.compute_gradient_error(x, x_shape, y, y_shape) print("Moments %s gradient err = %g" % (from_y, err)) self.assertLess(err, 1e-11) def testMeanGlobalGradient(self): self._testGlobalGradient(from_y="mean") def testVarGlobalGradient(self): self._testGlobalGradient(from_y="var") def testOutputNamesNoKeep(self): """Make sure the output names are stable.""" with self.test_session(): mean, var = tf.nn.moments(tf.constant([1]), [0], keep_dims=False) self.assertEquals(mean.op.name, "moments/normalize/mean") self.assertEquals(var.op.name, "moments/normalize/variance") def testOutputNamesKeep(self): """Make sure the output names are stable.""" with self.test_session(): mean, var = tf.nn.moments(tf.constant([1]), [0], keep_dims=True) self.assertEquals(mean.op.name, "moments/normalize/mean") self.assertEquals(var.op.name, "moments/normalize/variance") if __name__ == "__main__": tf.test.main()
fc884806482e9cabe64688601017f54570459f99
515a97129ce1b2b8eecca4b2087fde8985b82d5b
/Code-Scraps/old_modules/SpiceGif/gif/Thumbs_Up.py
cd3625bd689d898907897679c0cf84a12536f03c
[]
no_license
SpiceBot/scraps
3ad6e81ac75e2b6a684fea64eb7e75477b0f4f63
90125e1397b57ac87cae5f3e506363aa04ddffdc
refs/heads/master
2020-05-02T21:51:01.297114
2019-03-28T15:38:28
2019-03-28T15:38:28
178,232,887
0
0
null
null
null
null
UTF-8
Python
false
false
1,676
py
#!/usr/bin/env python # coding=utf-8 from __future__ import unicode_literals, absolute_import, print_function, division import sopel.module import urllib2 import json from BeautifulSoup import BeautifulSoup from random import randint import sys import os moduledir = os.path.dirname(__file__) shareddir = os.path.dirname(os.path.dirname(os.path.dirname(__file__))) sys.path.append(shareddir) from BotShared import * gifshareddir = os.path.dirname(os.path.dirname(__file__)) sys.path.append(gifshareddir) from GifShared import * @sopel.module.commands('thumbsup') def mainfunction(bot, trigger): enablestatus, triggerargsarray, botcom, instigator = spicebot_prerun(bot, trigger, trigger.group(1)) if not enablestatus: # IF "&&" is in the full input, it is treated as multiple commands, and is split commands_array = spicemanip(bot, triggerargsarray, "split_&&") if commands_array == []: commands_array = [[]] for command_split_partial in commands_array: triggerargsarray_part = spicemanip(bot, command_split_partial, 'create') execute_main(bot, trigger, triggerargsarray_part, botcom, instigator) def execute_main(bot, trigger, triggerargsarray, botcom, instigator): gif = getGif(bot, {"query": "thumbs up"}) instigator = trigger.nick responsemsg = [' a thumbs up.', ' a pat on the back.', ' a sarcastic smile.', ' a high five.'] if not gif["error"]: osd(bot, trigger.sender, 'say', "%s Result (#%s): %s" % (gif['gifapi'].title(), gif['returnnum'], gif['returnurl'])) else: osd(bot, trigger.sender, 'action', 'gives ' + instigator + random.choice(responsemsg))
afa189e5c781d2c121d42e882f1e8fcfd10bc8f1
30f8722391c3403a147a7a45a56013693141bb52
/configs/htc/htc_hrnetv2p_w48_20e_kaggle_pku_no_semantic_translation_wudi.py
b3c55b456aff7ca11641bbe802d66234b3a7689c
[ "Apache-2.0" ]
permissive
fsxy1063200037/Kaggle_PKU_Baidu
2bfbe1e04ae031b6f7856067824e7f03c31ca847
7ee39b60be25558539ac47d80a2f89f39698b4a6
refs/heads/master
2022-04-12T21:02:36.780457
2020-04-07T09:01:50
2020-04-07T09:01:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
14,316
py
# model settings model = dict( type='HybridTaskCascade', num_stages=3, interleaved=True, mask_info_flow=True, car_cls_info_flow=False, backbone=dict( type='HRNet', extra=dict( stage1=dict( num_modules=1, num_branches=1, block='BOTTLENECK', num_blocks=(4,), num_channels=(64,)), stage2=dict( num_modules=1, num_branches=2, block='BASIC', num_blocks=(4, 4), num_channels=(48, 96)), stage3=dict( num_modules=4, num_branches=3, block='BASIC', num_blocks=(4, 4, 4), num_channels=(48, 96, 192)), stage4=dict( num_modules=3, num_branches=4, block='BASIC', num_blocks=(4, 4, 4, 4), num_channels=(48, 96, 192, 384)))), neck=dict( type='HRFPN', in_channels=[48, 96, 192, 384], out_channels=256), rpn_head=dict( type='RPNHead', in_channels=256, feat_channels=256, anchor_scales=[8], anchor_ratios=[0.5, 1.0, 2.0], anchor_strides=[4, 8, 16, 32, 64], target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0], loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)), bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=[ dict( type='SharedFCBBoxHead', num_fcs=2, in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=81, target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2], reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='SharedFCBBoxHead', num_fcs=2, in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=81, target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1], reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='SharedFCBBoxHead', num_fcs=2, in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=81, target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.067, 0.067], reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)) ], mask_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', out_size=14, sample_num=2), out_channels=256, featmap_strides=[4, 8, 16, 32]), mask_head=dict( type='HTCMaskHead', num_convs=4, in_channels=256, conv_out_channels=256, num_classes=81, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)), with_semantic_loss=False, with_car_cls_rot=True, with_translation=True, # This is DI WU's customised model semantic_fusion=('bbox', 'mask', 'car_cls_rot'), car_cls_rot_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', out_size=14, sample_num=2), out_channels=256, featmap_strides=[4, 8, 16, 32]), car_cls_rot_head=dict( type='SharedCarClsRotHead', in_channels=256, fc_out_channels=1024, roi_feat_size=14, num_classes=34, # There are total 34 car classes reg_class_agnostic=True, loss_car_cls=dict(type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_quaternion=dict(type='L1', beta=1.0, loss_weight=1.0)), translation_head=dict( type='SharedTranslationHead', in_channels_bboxes=4, in_channels_carclsrot=1024, fc_out_channels=100, num_translation_reg=3, bbox_relative=False, # if bbox_relative=False, then it requires training/test input the same translation_bboxes_regression=False, # If set to True, we will have a SSD like offset regression bboxes_regression=dict(type='maxIoU', iou_thresh=0.1), #bboxes_regression=dict(type='allIoU', iou_thresh=0.1), # This is only effective during test loss_translation=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), bayesian_weight_learning=True, # If set to true, the loss weight coefficient will be updated. ) # model training and testing settings train_cfg = dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=0, pos_weight=-1, debug=False), rpn_proposal=dict( nms_across_levels=False, nms_pre=2000, nms_post=2000, max_num=2000, nms_thr=0.7, min_bbox_size=0), rcnn=[ dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.6, neg_iou_thr=0.6, min_pos_iou=0.6, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.7, min_pos_iou=0.7, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False) ], stage_loss_weights=[1, 0.5, 0.25], car_cls_weight=1.0, rot_weight=10., translation_weight=10., ) test_cfg = dict( rpn=dict( nms_across_levels=False, nms_pre=1000, nms_post=1000, max_num=1000, nms_thr=0.7, min_bbox_size=0), rcnn=dict( score_thr=0.001, nms=dict(type='nms', iou_thr=0.5), max_per_img=100, mask_thr_binary=0.5), keep_all_stages=False, ) # dataset settings dataset_type = 'KagglePKUDataset' img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) # Add albumentation transform # albu_train_transforms = [ # dict(type='RandomBrightnessContrast', brightness_limit=0.2, contrast_limit=0.5, p=0.2), # dict(type='GaussianBlur', blur_limit=20, p=0.1), # dict(type='GaussNoise', var_limit=(10, 80.), p=0.1), # dict( # type='OneOf', # transforms=[ # dict( # type='RGBShift', # r_shift_limit=30, # g_shift_limit=30, # b_shift_limit=30, # p=0.2), # dict( # type='HueSaturationValue', # hue_shift_limit=20, # sat_shift_limit=20, # val_shift_limit=20, # p=0.1) # ], # p=0.1), # ] train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True, with_carcls_rot=True, with_translation=True, with_camera_rot=True), dict(type='CameraRotation'), dict(type='CropBottom', bottom_half=1480), dict(type='Resize', img_scale=(1664, 576), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), # dict( # type='Albu', # transforms=albu_train_transforms, # update_pad_shape=False, # skip_img_without_anno=True), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks', 'carlabels', 'quaternion_semispheres', 'translations', 'scale_factor']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='CropBottom', bottom_half=1480), #dict(type='CropCentreResize', top=50, bottom=100, left=25, right=50), #dict(type='CropCentreResize', top=100, bottom=250, left=50, right=100), dict( type='MultiScaleFlipAug', img_scale=(1664, 576), # (576, 1600, 3) flip=False, # test pipelines doest not need this transforms=[ dict(type='Resize', img_scale=(1664, 576), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.), # We always want to have this flip_ratio=1.0 for test dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] # data_root = '/data/Kaggle/pku-autonomous-driving/' data_root = '/data/Kaggle/ApolloScape_3D_car/train/' data = dict( imgs_per_gpu=1, workers_per_gpu=2, train=dict( type=dataset_type, data_root=data_root, #ann_file='/data/cyh/kaggle/kaggle_apollo_combine_6692.json', # ann_file=data_root + 'apollo_kaggle_combined_6725_wudi.json', ann_file='/data/Kaggle/kaggle_apollo_combined_6691_origin.json', # 6691 means the final cleaned data img_prefix=data_root + 'train_images/', pipeline=train_pipeline, rotation_augmenation=True), val=dict( type=dataset_type, data_root=data_root, ann_file='/data/Kaggle/pku-autonomous-driving/validation.csv', img_prefix='/data/Kaggle/pku-autonomous-driving/validation_images/', pipeline=test_pipeline), test=dict( type=dataset_type, data_root=data_root, ann_file="", #ann_file='/data/Kaggle/ApolloScape_3D_car/train/split/validation-list.txt', #img_prefix='/data/Kaggle/pku-autonomous-driving/validation_images_RandomBrightnessContrast', # valid variation #img_prefix='/data/Kaggle/pku-autonomous-driving/validation_images_RGBShift', # valid variation #img_prefix='/data/Kaggle/pku-autonomous-driving/validation_images_JpegCompression', # valid variation #img_prefix='/data/Kaggle/pku-autonomous-driving/validation_images_GaussianBlur', # valid variation #img_prefix='/data/Kaggle/pku-autonomous-driving/validation_images_GaussNoise', # valid variation #img_prefix='/data/Kaggle/pku-autonomous-driving/validation_images_RandomContrast', # valid variation #img_prefix='/data/Kaggle/pku-autonomous-driving/validation_images_HueSaturationValue', # valid variation #img_prefix='/data/Kaggle/pku-autonomous-driving/validation_images_CLAHE', # valid variation #img_prefix='/data/Kaggle/pku-autonomous-driving/validation_images', # We create 400 validation images #img_prefix='/data/Kaggle/pku-autonomous-driving/test_images', #img_prefix='/data/Kaggle/ApolloScape_3D_car/train/images', img_prefix='/data/Kaggle/ApolloScape_3D_car/3d-car-understanding-test/test/images', pipeline=test_pipeline)) evaluation = dict( conf_thresh=0.1, interval=1, ) # optimizer optimizer = dict(type='Adam', lr=0.0003) # We increase the learning rate to 3e-4 (It is supposed to be the best practice) optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=1.0 / 3, step=[80, 180]) checkpoint_config = dict(interval=1) # yapf:disable log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), dict(type='TensorboardLoggerHook') ]) # yapf:enable # runtime settings total_epochs = 200 #dist_params = dict(backend='nccl') dist_params = dict(backend='nccl', init_method="tcp://127.0.0.1:8001") log_level = 'INFO' work_dir = '/data/Kaggle/wudi_data/' load_from = None #load_from = '/data/Kaggle/mmdet_pretrained_weights/trimmed_htc_hrnetv2p_w48_20e_kaggle_pku.pth' #load_from = '/data/Kaggle/wudi_data/Jan07-20-00-59/epoch_5.pth' #load_from = '/data/Kaggle/checkpoints/all_cwxe99_3070100flip05resumme93Dec29-16-28-48_trimmed_translation.pth' #load_from = '/data/Kaggle/wudi_data/Jan18-19-45/epoch_116.pth' resume_from = '/data/Kaggle/checkpoints/all_cwxe99_3070100flip05resumme93Dec29-16-28-48/epoch_100.pth' #load_from = '/data/Kaggle/wudi_data/Jan29-00-02/epoch_261.pth' #resume_from = None workflow = [('train', 1)] # postprocessing flags here pkl_postprocessing_restore_xyz = True # Use YYJ post processing write_submission = True valid_eval = False # evaluate validation set at the end
3b5c2be55f423005b409da55eb4cb003a822b22f
84c9a6fb5e18741f14a55d0d737e2a556383770d
/venv/Lib/site-packages/w3af/plugins/infrastructure/server_header.py
9b95285e772beba1b79e247989486a937a290603
[]
no_license
AravindChan96/Vulcan
638a1db2f84df08bc50dd76c7f142014d529fbec
5548a6f36f04108ac1a6ed8e707930f9821f0bd9
refs/heads/master
2022-11-05T15:05:54.224578
2020-06-19T20:44:14
2020-06-19T20:44:14
273,396,348
1
1
null
null
null
null
UTF-8
Python
false
false
6,343
py
""" server_header.py Copyright 2006 Andres Riancho This file is part of w3af, http://w3af.org/ . w3af is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation version 2 of the License. w3af is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with w3af; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA """ from threading import RLock import w3af.core.controllers.output_manager as om import w3af.core.data.kb.knowledge_base as kb from w3af.core.controllers.plugins.infrastructure_plugin import InfrastructurePlugin from w3af.core.data.url.helpers import is_no_content_response from w3af.core.data.kb.info import Info class server_header(InfrastructurePlugin): """ Identify the server type based on the server header. :author: Andres Riancho ([email protected]) """ def __init__(self): InfrastructurePlugin.__init__(self) # Internal variables self._server_headers = set() self._x_powered = set() self._lock = RLock() def discover(self, fuzzable_request, debugging_id): """ Nothing strange, just do a GET request to the url and save the server headers to the kb. A smarter way to check the server type is with the hmap plugin. :param debugging_id: A unique identifier for this call to discover() :param fuzzable_request: A fuzzable_request instance that contains (among other things) the URL to test. """ response = self._uri_opener.GET(fuzzable_request.get_url(), cache=True) with self._lock: self._check_server_header(fuzzable_request, response) self._check_x_power(fuzzable_request, response) def _check_server_header(self, fuzzable_request, response): """ HTTP GET and analyze response for server header """ if is_no_content_response(response): # # UrlOpenerProxy(), a helper class used by most plugins, will # generate 204 HTTP responses for HTTP requests that fail. # This makes plugins have less error handling code (try/except), # and looks like this in the scan log: # # Generated 204 "No Content" response (id:2131) # # The problem is that in some strange cases, like this plugin, # the 204 response will trigger a false positive. Because of # that I had to add this if statement to completely ignore # the HTTP responses with 204 status code # return server, header_name = response.get_headers().iget('server') if server in self._server_headers: return self._server_headers.add(server) if server: desc = 'The server header for the remote web server is: "%s".' desc %= server i = Info('Server header', desc, response.id, self.get_name()) i['server'] = server i.add_to_highlight(header_name + ':') om.out.information(i.get_desc()) # Save the results in the KB so the user can look at it kb.kb.append(self, 'server', i) # Also save this for easy internal use # other plugins can use this information kb.kb.raw_write(self, 'server_string', server) else: # strange ! desc = ('The remote HTTP Server omitted the "server" header in' ' its response.') i = Info('Omitted server header', desc, response.id, self.get_name()) om.out.information(i.get_desc()) # Save the results in the KB so that other plugins can use this # information kb.kb.append(self, 'omitted_server_header', i) # Also save this for easy internal use # other plugins can use this information kb.kb.raw_write(self, 'server_string', '') def _check_x_power(self, fuzzable_request, response): """ Analyze X-Powered-By header. """ for header_name in response.get_headers().keys(): for needle in ['ASPNET', 'POWERED']: if needle in header_name.upper(): powered_by = response.get_headers()[header_name] if powered_by in self._x_powered: return self._x_powered.add(powered_by) desc = 'The %s header for the target HTTP server is "%s".' desc %= (header_name, powered_by) i = Info('Powered-by header', desc, response.id, self.get_name()) i['powered_by'] = powered_by i.add_to_highlight(header_name + ':') om.out.information(i.get_desc()) # Save the results in the KB so that other plugins can # use this information. Before knowing that some servers # may return more than one poweredby header I had: # # kb.kb.raw_write( self , 'powered_by' , powered_by ) # # But I have seen an IIS server with PHP that returns # both the ASP.NET and the PHP headers kb.kb.append(self, 'powered_by', i) # Save the list to the KB kb.kb.raw_write(self, 'powered_by_string', list(powered_by)) def get_long_desc(self): """ :return: A DETAILED description of the plugin functions and features. """ return """ This plugin GETs the server header and saves the result to the knowledge base. Nothing strange, just do a GET request to the url and save the server headers to the kb. A smarter way to check the server type is with the hmap plugin. """
4b83674f41dfe0e01b5e0deb3e30fb897f25bc5a
977f1105b3a475055631689523b1dcef951c7f72
/py_numpy_1.py
2110065b1ebc86effcb568fa5a0643b2def8ba8a
[]
no_license
pbarton666/PES_Python_examples_and_solutions
2f973296796d91a5c8c28000002b996ef143ebb2
94fc2c8101a6e654a3ab67b39d1878b9d9f6aa74
refs/heads/master
2021-01-10T22:45:27.446831
2017-05-14T17:11:52
2017-05-14T17:11:52
70,357,916
0
1
null
null
null
null
UTF-8
Python
false
false
2,327
py
#py_numpy_1.py """a snake-charming application""" from PIL import Image import numpy as np import os idir =os.getcwd() iname= 'eastern_coral_1_clean.png'# 'white_snake.PNG' saveas='new_snake.PNG' #sets up an array for pixel processing white=np.array([255,255,255,0]) #r, g, b, a transparent = np.array([0, 0, 0, 0]) background = white #open the image and convert it raw_image = Image.open(iname) raw_image.show() converted_image = raw_image.convert('RGBA') raw_image.close() h, w = converted_image.size converted_histo=converted_image.histogram() converted_colors=converted_image.getcolors(w*h) #dump the data into a numpy array and split the channels "bands" data = np.array(converted_image) # h * w * 4 array (rgba) r, g, b, a = data.T #this sets the masking condition and replaces the background color replace = (r == background[0]) & (b == background[1]) & (g == background[2]) data[replace.T] = (0,0,0,0) #generate a new image, grab some stats, and save it. new_image = Image.fromarray(data, 'RGBA') h, w = new_image.size new_histo=new_image.histogram() new_colors=new_image.getcolors(w*h) #a list of tuples [count (rgba), ...] new_image.save(saveas) recovered_image = Image.open(saveas) h, w = recovered_image.size #we've successfully 'masked out' and replaced the background new_image.show() recovered_histo=recovered_image.histogram() recovered_colors=recovered_image.getcolors(w*h) #a list of tuples [count (rgba), ...] #but we can do more... #strategy: make a list of color bins we expect to find. These will have pixel ranges # that are human-friendly e.g., 'brownish', 'gold'. Each spec within the bin can be # additively applied to a mask - functionally reducing the color palette. reduced_image = recovered_image.convert('P', palette=Image.ADAPTIVE, colors=10) reduc1 = reduced_image = recovered_image.convert('P', palette=Image.ADAPTIVE, colors=10) reduc2 = reduc1.convert('RGB') #turns it to rgb #save the image in a couple formats reduc_fn = 'scratch.BMP' reduc2.save(reduc_fn) reduced_histo=reduced_image.histogram() reduced_colors=reduced_image.getcolors(w*h) #a list of tuples [count (rgba), ...] reduced_image.save(saveas+'reduced.BMP') #now show them recovered_image.show() reduced_image.show() recovered_image.close()
dca9fddc3b23f660445b7dfdc4fa69e6a6bfd984
56abd8f94a511ae0d163161cb2f5e0a91d4b8bed
/datahub/event/migrations/0014_update_permissions_django_21.py
c27dc191d9543f8aa33c9c96a70980890b259390
[ "MIT" ]
permissive
cgsunkel/data-hub-api
994c58bd975d902bf2bc44b415a5892919ff4539
a92faabf73fb93b5bfd94fd465eafc3e29aa6d8e
refs/heads/develop
2023-05-31T22:35:56.344904
2021-06-30T11:23:06
2021-06-30T11:23:06
303,947,456
0
0
MIT
2021-06-30T10:34:50
2020-10-14T08:14:46
Python
UTF-8
Python
false
false
381
py
# Generated by Django 2.0.8 on 2018-08-03 14:51 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('event', '0013_add_default_id_for_metadata'), ('core', '0003_rename_read_permissions'), ] operations = [ migrations.AlterModelOptions( name='event', options={}, ), ]
80c5c7cf5342a44c5852c7740bd5710c955ced36
6b201605227f11880c1d32c9cad300f6e29ff4ae
/Python/Buch_Python3_Das_umfassende_Praxisbuch/Kapitel_07_Sequenzen_Mengen_und_Generatoren/08_chapter_07_repetition_questions.py
0c221875dd13afd534b86ec96cd3820a2eaca0c7
[ "MIT" ]
permissive
Apop85/Scripts
e2e8e6ed0c0da08a4d7c895aa366c9305197137b
467c34e59f2708f2d2f8bb369c36fd782d365e8b
refs/heads/master
2022-12-08T08:11:04.566376
2022-05-13T13:17:04
2022-05-13T13:17:04
164,251,836
0
0
MIT
2022-12-08T01:50:22
2019-01-05T21:16:45
Python
UTF-8
Python
false
false
2,887
py
#!/usr/bin/env python3 # -*- coding:utf-8 -*- ### # File: 08_chapter_07_repetition_questions.py # Project: Kapitel_07_Sequenzen_Mengen_und_Generatoren # Created Date: Tuesday 05.03.2019, 16:17 # Author: Apop85 # ----- # Last Modified: Tuesday 05.03.2019, 16:43 # ----- # Copyright (c) 2019 Apop85 # This software is published under the MIT license. # Check http://www.opensource.org/licenses/MIT for further informations # ----- # Description: ### import re def output(title, string): max_length=80 max_delta=20 string+=' '*max_length print('╔'+'═'*max_length+'╗') print('║'+title.center(max_length).upper()+'║') print('╠'+'═'*max_length+'╣') search_pattern=re.compile(r'(.{'+str(max_length-max_delta-10)+r','+str(max_length-10)+r'}[^\w"])') reg_lines=search_pattern.findall(string) for line in reg_lines: print('║ '+line+' '*(max_length-len(line)-1)+'║') print('╚'+'═'*max_length+'╝') input() output('Aufgabe 1','Die Ausgangsliste lautet ["mond","stoff","treib","raum","schiff"]. Wie lautet die Ausgabe von folgenden Anweisungen?') output('Anweisung 1','print(liste[0])') output('Lösung Anweisung 1:','Das erste Item der Liste wird ausgegeben: "mond"') output('Anweisung 2','print(liste[2]+liste[1])') output('Lösung Anweisung 2:','Das dritte und zweite Item der liste wird konkatiniert: "treibstoff"') output('Anweisung 3','print(liste[-2]+liste[-1])') output('Lösung Anweisung 3:','Das zweitletzte und letzte Item der Liste wird konkatiniert: "raumschiff"') output('Anweisung 4','for wort in liste: if wort[0] == "s": print(wort)') output('Lösung Anweisung 4:','Alle Items der Liste die mit einem "s" beginnen werden ausgegeben: "stoff", "schiff"') output('Anweisung 5','for wort in liste: print(wort[1])') output('Lösung Anweisung 5:','Von jedem Item der Liste wird der 2. Buchstabe ausgegeben: o,t,r,a,c') output('Anweisung 6','liste=liste+["gestein"]') output('Lösung Anweisung 6:','Fügt der Liste ein weiteres Item mit dem Inhalt "gestein" hinzu: ["mond","stoff","treib","raum","schiff", "gestein"]') output('Anweisung 7','print(liste[0]+liste[-1])') output('Lösung Anweisung 7:','Das erste und letzte Item der Liste wird konkatiniert: "mondgestein"') output('Aufgabe 2','Welchen Wert haben die Listenobjekte s1,s2 und s3 jeweils nach folgenden Anweisungen:') output('Anweisung 1','s1 = [1]: s1=[1,s1]: s1=[1,s1]') output('Lösung Anweisung 1','s1=[1,[1,[1]]]') output('Anweisung 2','A=["Haus","Garten"]: B=["bau","tier","pflanze"]: s2=[i+j for i in A for j in B]') output('Lösung Anweisung 2','"Hausbau", "Haustier", "Hauspflanze", "Gartenbau", "Gartentier", "Gartenpflanze"') output('Anweisung 3','A=[1,2,3,4]: B=[2,3,4,5]: s3=[i for i in A+B if (i not in A) or (i not in B)') output('Lösung Anweisung 3','Es werden alle Zahlen ausgegeben welche nicht in beiden Listen vorkommen: 1,5')
de11b77370f05d31f929a0e89ae8518b594ead80
8d47af9482444b07b52cf44cebcaf4b992df4d09
/agents/14_MinimumPRB/14.py
5f38c96b71c0088d5b0857b5e87d87b1363e01c9
[]
no_license
w0lv3r1nix/retro-agents
f4dbce2db558c880b161062796e5397be65bdd10
c7f93a737dc6c6fc5d8343c099e14bd2bc97aaf1
refs/heads/master
2020-08-01T01:19:41.660018
2018-06-13T04:28:09
2018-06-13T04:28:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,842
py
#!/usr/bin/env python """ Train an agent on Sonic using an open source Rainbow DQN implementation. """ import tensorflow as tf from anyrl.algos import DQN from anyrl.envs import BatchedGymEnv from anyrl.envs.wrappers import BatchedFrameStack from anyrl.models import rainbow_models from anyrl.rollouts import BatchedPlayer, PrioritizedReplayBuffer, NStepPlayer from anyrl.spaces import gym_space_vectorizer import gym_remote.exceptions as gre from sonic_util import AllowBacktracking, make_env from MinimumPRB import MinimumPRB def main(): """Run DQN until the environment throws an exception.""" env = AllowBacktracking(make_env(stack=False, scale_rew=False)) env = BatchedFrameStack(BatchedGymEnv([[env]]), num_images=4, concat=False) config = tf.ConfigProto() config.gpu_options.allow_growth = True # pylint: disable=E1101 with tf.Session(config=config) as sess: dqn = DQN(*rainbow_models(sess, env.action_space.n, gym_space_vectorizer(env.observation_space), min_val=-200, max_val=200)) player = NStepPlayer(BatchedPlayer(env, dqn.online_net), 3) optimize = dqn.optimize(learning_rate=1e-4) sess.run(tf.global_variables_initializer()) dqn.train(num_steps=2000000, # Make sure an exception arrives before we stop. player=player, replay_buffer=MinimumPRB(500000, 0.5, 0.4, epsilon=0.1), optimize_op=optimize, train_interval=1, target_interval=8192, batch_size=32, min_buffer_size=20000) if __name__ == '__main__': try: main() except gre.GymRemoteError as exc: print('exception', exc)
205a1f4bb79dfbfe132609918fb50ee0c8ed7da2
461cbe14775be116ea001ec36b8b9b4deb2f77bc
/lesson1.6_step7.py
42f6193f82db311382de80a482bc63b4c18cc740
[]
no_license
Adoyan-Grigor/stepik-auto-tests-course
898a653062cfa4bdf484a363b956ed2004ef0629
406b1498362538ebec27118083c3de5a94898140
refs/heads/master
2023-05-10T18:25:09.085013
2021-06-02T13:16:35
2021-06-02T13:16:35
369,514,851
0
0
null
null
null
null
UTF-8
Python
false
false
599
py
#!/usr/bin/python3 from selenium import webdriver import time try: browser = webdriver.Chrome() browser.get("http://suninjuly.github.io/huge_form.html") elements = browser.find_elements_by_css_selector('[type="text"]') for element in elements: element.send_keys("Мой ответ") button = browser.find_element_by_css_selector("button.btn") button.click() finally: # успеваем скопировать код за 30 секунд time.sleep(30) # закрываем браузер после всех манипуляций browser.quit()
aba19dd9fae018990c2a4be8d819f2689788d268
a0fb29f99a852089193e4cc9a11e7263dc3f8b5f
/mayan/apps/documents/tests/test_document_version_models.py
b19f865060f817d3028cfe3263bdeaa1716f406d
[ "Apache-2.0" ]
permissive
ikang9712/Mayan-EDMS
0e22a944d63657cea59c78023b604a01a622b52a
d6e57e27a89805329fe0c5582caa8e17882d94e6
refs/heads/master
2023-07-28T19:41:55.269513
2021-09-07T14:16:14
2021-09-07T14:16:14
402,884,683
1
0
NOASSERTION
2021-09-03T20:00:09
2021-09-03T20:00:09
null
UTF-8
Python
false
false
2,826
py
from ..literals import ( DOCUMENT_FILE_ACTION_PAGES_NEW, DOCUMENT_FILE_ACTION_PAGES_APPEND, DOCUMENT_FILE_ACTION_PAGES_KEEP ) from .base import GenericDocumentTestCase class DocumentVersionTestCase(GenericDocumentTestCase): def test_version_new_file_new_pages(self): test_document_version_page_content_objects = self.test_document_version.page_content_objects self.assertEqual(self.test_document.versions.count(), 1) self._upload_test_document_file(action=DOCUMENT_FILE_ACTION_PAGES_NEW) self.assertEqual(self.test_document.versions.count(), 2) self.assertNotEqual( self.test_document_version.page_content_objects, test_document_version_page_content_objects ) self.assertEqual( self.test_document_version.page_content_objects, list(self.test_document.file_latest.pages.all()) ) def test_version_new_version_keep_pages(self): test_document_version_page_content_objects = self.test_document_version.page_content_objects self.assertEqual(self.test_document.versions.count(), 1) self._upload_test_document_file(action=DOCUMENT_FILE_ACTION_PAGES_KEEP) self.assertEqual(self.test_document.versions.count(), 1) self.assertEqual( self.test_document_version.page_content_objects, test_document_version_page_content_objects ) self.assertNotEqual( self.test_document_version.page_content_objects, list(self.test_document.file_latest.pages.all()) ) def test_version_new_file_append_pages(self): test_document_version_page_content_objects = self.test_document_version.page_content_objects self.assertEqual(self.test_document.versions.count(), 1) self.assertEqual(self.test_document.files.count(), 1) self._upload_test_document_file(action=DOCUMENT_FILE_ACTION_PAGES_APPEND) self.assertEqual(self.test_document.files.count(), 2) self.assertEqual(self.test_document.versions.count(), 2) test_document_version_expected_page_content_objects = list( self.test_document.files.first().pages.all() ) test_document_version_expected_page_content_objects.extend( list( self.test_document.files.last().pages.all() ) ) self.assertNotEqual( self.test_document_version.page_content_objects, test_document_version_page_content_objects ) self.assertEqual( self.test_document_version.page_content_objects, test_document_version_expected_page_content_objects ) def test_method_get_absolute_url(self): self.assertTrue(self.test_document.version_active.get_absolute_url())
c4722abdfbd81b2b5a9a7eff8b02d361d255c7af
8a29f983b122602ef960d8c1f6fc6451569ed2d2
/te_discovery/conservation/extract_conservation_classes.py
166c8a4c459770ec2d21599a94d48d05cbd58982
[ "MIT" ]
permissive
oaxiom/hesc_lincrna
a4832841b49f2b9b0da6bf8a169857550a0e8797
7a87d426bba93a027794b6bea36f1ae61d5d205b
refs/heads/master
2022-05-08T04:16:57.760960
2022-04-02T00:17:57
2022-04-02T00:17:57
187,936,591
1
3
null
null
null
null
UTF-8
Python
false
false
2,718
py
import sys, os, itertools from collections import Counter import numpy as np import matplotlib.pyplot as plot import matplotlib.tri as tri from glbase3 import * import shared_conservation # collect three things: # 1. The total PhyloP score of the transcript # 2. score for TE-containing bits # 3. score for non-TE containign bits; dfam = genelist('../dfam/dfam_annotation.tsv', format={'force_tsv': True, 'name': 0, 'type': 3, 'subtype': 4}) dfam_dict = {} for te in dfam: dfam_dict[te['name']] = '{0}:{1}:{2}'.format(te['type'], te['subtype'], te['name']) transcripts = glload('../te_transcripts/transcript_table_merged.mapped.glb') gl = glload('phyloP_conservation_table.glb') print(gl) t = 0.25 not_counted = 0 both_conserved = [] te_conserved = [] lncrna_conserved = [] for item in gl: if item['phyloP_tes'] > t and item['phyloP_nottes'] > t: both_conserved.append(item) elif item['phyloP_tes'] > t: te_conserved.append(item) elif item['phyloP_nottes'] > t: lncrna_conserved.append(item) else: not_counted += 1 print('Not counted : {0:,}'.format(not_counted)) print('Both conserved : {0:,}'.format(len(both_conserved))) print('TE conserved : {0:,}'.format(len(te_conserved))) print('lncRNA conserved: {0:,}'.format(len(lncrna_conserved))) print('Total TE-containing transcripts: {0:,}'.format(len(transcripts))) gl = genelist() gl.load_list(both_conserved) both_conserved = gl gl = genelist() gl.load_list(te_conserved) te_conserved = gl gl = genelist() gl.load_list(lncrna_conserved) lncrna_conserved = gl all_data = {'both_conserved': both_conserved.map(genelist=transcripts, key='transcript_id'), 'te_conserved': te_conserved.map(genelist=transcripts, key='transcript_id'), 'lncrna_conserved': lncrna_conserved.map(genelist=transcripts, key='transcript_id') } for k in all_data: # convert to a list of doms: doms = [] for t in all_data[k]: doms += [dfam_dict[d['dom']] for d in t['doms']] c = Counter(doms) c = c.most_common(20)#.items() print(c) vals = [i[1] for i in c] labs = [i[0] for i in c] vals.reverse() labs.reverse() fig = plot.figure(figsize=[2,2]) fig.subplots_adjust(left=0.5, top=0.97) ax = fig.add_subplot(111) ys = np.arange(len(vals)) ax.barh(ys, vals) ax.set_xlabel('Number of TE domains') ax.set_yticks(ys) ax.set_yticklabels(labs) [t.set_fontsize(6) for t in ax.get_yticklabels()] [t.set_fontsize(6) for t in ax.get_xticklabels()] #for y, p, x in zip(ys, percs, num_hits): # ax.text(x+4, y, s='{0} ({1:.1f}%)'.format(x, p), va='center', fontsize=6) fig.savefig('class_summary-{0}.pdf'.format(k))
7ae56f768a8f140ecb1394772602106519a9ee18
eb38089224f1c2598f6ba17a28756bb040d4975a
/{{ cookiecutter.appname }}/program.py
04dd0d1ae5812276dd17999afe12ac501fb3280d
[]
no_license
zooba/sqlazure-cookiecutter-demo
b21afe1775547ca3ecc014396f53fb12170c3df9
eee1aed495cafc32d29ff5e335f4cf3963d1f7ba
refs/heads/master
2021-06-08T10:02:56.428740
2016-11-04T22:40:58
2016-11-04T22:40:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
534
py
import pyodbc CONNECTION_STRING = "{{cookiecutter.connection_string}}" connection = pyodbc.connect(CONNECTION_STRING) # Read all cursor = connection.cursor() cursor.execute( "select LastName, Count(*) as 'Members' " "from {{cookiecutter.namespace}}.{{cookiecutter.table}} " "group by LastName " "having Count(*) > 3 " "order by 'Members' DESC") row = cursor.fetchall() print('Family Name | Members') print('-------------------+--------') print('\n'.join('{0[0]:<19}|{0[1]:>8}'.format(r) for r in row))
d7c6e469c589e6a81c8cab720f7504fcc6b98f5c
f9d564f1aa83eca45872dab7fbaa26dd48210d08
/huaweicloud-sdk-bss/huaweicloudsdkbss/v2/model/list_quota_coupons_request.py
32bac674877d7d2748d85e8b59d9ef77c75969ef
[ "Apache-2.0" ]
permissive
huaweicloud/huaweicloud-sdk-python-v3
cde6d849ce5b1de05ac5ebfd6153f27803837d84
f69344c1dadb79067746ddf9bfde4bddc18d5ecf
refs/heads/master
2023-09-01T19:29:43.013318
2023-08-31T08:28:59
2023-08-31T08:28:59
262,207,814
103
44
NOASSERTION
2023-06-22T14:50:48
2020-05-08T02:28:43
Python
UTF-8
Python
false
false
3,159
py
# coding: utf-8 import six from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class ListQuotaCouponsRequest: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'body': 'QueryCouponQuotasReqExt' } attribute_map = { 'body': 'body' } def __init__(self, body=None): """ListQuotaCouponsRequest The model defined in huaweicloud sdk :param body: Body of the ListQuotaCouponsRequest :type body: :class:`huaweicloudsdkbss.v2.QueryCouponQuotasReqExt` """ self._body = None self.discriminator = None if body is not None: self.body = body @property def body(self): """Gets the body of this ListQuotaCouponsRequest. :return: The body of this ListQuotaCouponsRequest. :rtype: :class:`huaweicloudsdkbss.v2.QueryCouponQuotasReqExt` """ return self._body @body.setter def body(self, body): """Sets the body of this ListQuotaCouponsRequest. :param body: The body of this ListQuotaCouponsRequest. :type body: :class:`huaweicloudsdkbss.v2.QueryCouponQuotasReqExt` """ self._body = body def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ListQuotaCouponsRequest): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
41fa742a05fa6098767800003e945f5fca7db849
b7ba98a9038f977f1efcbda5da2a41ae08e602ae
/exercises/21_jinja2/task_21_1c.py
d015a0565f2d71e065ba18dfbd812d00edb77cff
[]
no_license
Stanleygoo/pyneng-examples-exercises
f7914bc21aca119c7423af373a8b17b2917ea675
c27b608ac954149d841c0a53f1108a6100295544
refs/heads/master
2021-05-11T15:35:11.043546
2018-01-12T06:42:04
2018-01-12T06:42:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,721
py
# -*- coding: utf-8 -*- ''' Задание 21.1c Переделать функцию generate_cfg_from_template из задания 21.1, 21.1a или 21.1b: * сделать автоматическое распознавание разных форматов для файла с данными * для передачи разных типов данных, должен использоваться один и тот же параметр data Должны поддерживаться такие форматы: * YAML - файлы с расширением yml или yaml * JSON - файлы с расширением json * словарь Python Если не получилось определить тип данных, вывести сообщение error_message (перенести текст сообщения в тело функции), завершить работу функции и вернуть None. Проверить работу функции на шаблоне templates/for.txt и данных: * data_files/for.yml * data_files/for.json * словаре data_dict ''' error_message = ''' Не получилось определить формат данных. Поддерживаются файлы с расширением .json, .yml, .yaml и словари Python ''' data_dict = {'vlans': { 10: 'Marketing', 20: 'Voice', 30: 'Management'}, 'ospf': [{'network': '10.0.1.0 0.0.0.255', 'area': 0}, {'network': '10.0.2.0 0.0.0.255', 'area': 2}, {'network': '10.1.1.0 0.0.0.255', 'area': 0}], 'id': 3, 'name': 'R3'}
5778b74123229319dcbed1fffaeff1f0615fd64d
f4103057ccbe0c08ec51626cdd0c016acd446be9
/tensorflow_ReinForcementLearning/Dueling_Double_DQN/DuelingDoubleDQN.py
2fe050cc3bcf811ed260a73d7dd78486fb175870
[]
no_license
leehongpyo/Tensorflow_Advanced_Tutorials
e7cb0fe84e65f90fefa430893083b36981f587ec
1c76d35504b090a223294bc6648325dfe49a0e26
refs/heads/master
2020-04-29T11:00:50.485795
2019-03-16T14:24:13
2019-03-16T14:24:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
28,261
py
import glob import os import shutil import time import cv2 import gym import matplotlib.animation as animation import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from tqdm import tqdm class ReplayMemory(object): def __init__(self, maxlen, batch_size, with_replacement): self.maxlen = maxlen self.buffer = np.empty(shape=maxlen, dtype=np.object) # dtype = np.object인게 중요하다. self.index = 0 self.length = 0 self.batch_size = batch_size self.with_replacement = with_replacement self.sequence_state = [] def remember(self, sequence_state, action, reward, next_state, gamestate): self.sequence_state = np.concatenate((sequence_state[:, :, 1:], next_state[:, :, np.newaxis]), axis=-1) self.buffer[self.index] = [sequence_state, action, reward, self.sequence_state, gamestate] self.length = min(self.length + 1, self.maxlen) self.index = (self.index + 1) % self.maxlen @property def next_sequence_state(self): return self.sequence_state @property def sample(self): if self.with_replacement: indices = np.random.randint(self.length, size=self.batch_size) else: indices = np.random.permutation(self.length)[:self.batch_size] return self.buffer[indices] class model(object): def __init__(self, model_name="BreakoutDeterministic-v4", training_display=(True, 100000), training_step=200000000, training_start_point=10000, training_interval=4, rememorystackNum=500000, save_step=10000, copy_step=10000, framesize=4, learning_rate=0.00025, momentum=0.95, egreedy_max=1, egreedy_min=0.1, egreedy_step=1000000, discount_factor=0.99, batch_size=32, with_replacement=True, only_draw_graph=False, SaveGameMovie=True, doubleQ=True, dueling=True): # 환경 만들기 if model_name == "BreakoutDeterministic-v4": print("\n<<< ""{}"" 게임 환경 >>>".format(model_name)) elif model_name == "PongDeterministic-v4": print("\n<<< ""{}"" 게임 환경 >>>".format(model_name)) else: print("<<< 실행 불가 >>>") print( "<<< 현재의 _data_preprocessing 함수는 ""BreakoutDeterministic-v4"" 와 ""PongDeterministic-v4"" 이 두 게임 환경에 맞게 처리되어 있습니다. >>>") print("<<< ""{}"" 게임 환경을 실행하려면 _data_preprocessing 함수의 수정이 필요 합니다. >>>".format(model_name)) print("<<< ""{}"" 게임 환경에 알맞게 전처리 함수를 수정한 후 조건문에 게임 환경을 추가해 주세요 >>>".format( model_name, model_name)) exit(0) self.game_name = model_name self.model_name = model_name + "_IC" + str(framesize) # IC -> Input Channel if doubleQ: self.model_name = self.model_name + "DDQN" if dueling: self.model_name = self.model_name + "Dueling" self.env = gym.make(self.game_name) # train , test self.display = training_display[0] self.display_step = training_display[1] self.SaveGameMovie = SaveGameMovie # 학습 하이퍼파라미터 self.framesize = framesize self.training_step = training_step self.training_start_point = training_start_point self.training_interval = training_interval self.learning_rate = learning_rate self.momentum = momentum self.egreedy_min = egreedy_min self.egreedy_max = egreedy_max self.egreedy_step = egreedy_step self.discount_factor = discount_factor self.batch_size = batch_size self.save_step = save_step self.copy_step = copy_step self.only_draw_graph = only_draw_graph # 재현 메모리 self.stacked_state = [] # 연속 관측을 담아두기 위한 변수 self.with_replacement = with_replacement self.rememorystackNum = rememorystackNum # Double Q 사용여부 self.doubleQ = doubleQ # Dueiling 사용 여부 self.dueling = dueling self.RM = ReplayMemory(maxlen=self.rememorystackNum, batch_size=self.batch_size, with_replacement=self.with_replacement) # DQN 연산그래프 그리기 self._build_graph() def __repr__(self): print("{} With Dueling Double DQN".format(self.model_name)) @property def _action_space_number(self): return self.env.action_space.n @property def _sample_memories(self): # 상태, 행동, 보상, 다음 상태, 게임지속여부 cols = [[], [], [], [], []] for memory in self.RM.sample: for col, value in zip(cols, memory): col.append(value) cols = [np.array(col) for col in cols] state = cols[0] action = cols[1] reward = cols[2].reshape(-1, 1) # 형태 맞춰주기 next_state = cols[3] gamestate = cols[4].reshape(-1, 1) # 형태 맞춰주기 return state, action, reward, next_state, gamestate def _epsilon_greedy(self, Qvalue, step): # off policy 요소 # 훈련 스텝 전체에 걸쳐서 epsilon을 1.0 에서 0.1로 감소 시킨다. epsilon = np.maximum(self.egreedy_min, self.egreedy_max - (self.egreedy_max - self.egreedy_min) * (step / self.egreedy_step)) if np.random.rand() < epsilon: # epsilon 확률로 랜덤하게 행동 return np.random.randint(self._action_space_number) else: return np.argmax(Qvalue) # 1 - epsilon 확률로 랜덤하게 행동 # DDQN의 연산량을 줄이고 훈련속도를 향상시키기 def _data_preprocessing(self, obs): ''' DQN 논문에서... Working directly with raw Atari frames, which are 210 × 160 pixel images with a 128 color palette, can be computationally demanding, so we apply a basic preprocessing step aimed at reducing the input dimensionality. The raw frames are preprocessed by first converting their RGB representation to gray-scale and down-sampling it to a 110×84 image. The final input representation is obtained by cropping an 84 × 84 region of the image that roughly captures the playing area. The final cropping stage is only required because we use the GPU implementation of 2D convolutions from [11], which expects square inputs. For the experiments in this paper, the function φ from algorithm 1 applies this preprocessing to the last 4 frames of a history and stacks them to produce the input to the Q-function. ''' # 84 x 84 gray로 만들기 obs = cv2.cvtColor(obs, cv2.COLOR_BGR2GRAY) obs = cv2.resize(obs, dsize=(84, 110)) return obs[17:101, :].astype(np.uint8) def _concatenated_state(self, state): listed_state = [self._data_preprocessing(state)[:, :, np.newaxis] for _ in range(self.framesize)] concatenated_state = np.concatenate(listed_state, axis=-1) return concatenated_state def _DQN(self, inputs, name): # N X 84 x 84 x 4 initializer = tf.contrib.layers.variance_scaling_initializer() with tf.variable_scope(name) as scope: conv1 = tf.layers.conv2d(inputs=inputs, filters=32, kernel_size=(8, 8), strides=(4, 4), padding='valid', activation=tf.nn.relu, use_bias=True, kernel_initializer=initializer) # N X 20 X 20 X 32 conv2 = tf.layers.conv2d(inputs=conv1, filters=64, kernel_size=(4, 4), strides=(2, 2), padding='valid', activation=tf.nn.relu, use_bias=True, kernel_initializer=initializer) # N X 9 X 9 X 64 conv3 = tf.layers.conv2d(inputs=conv2, filters=64, kernel_size=(3, 3), strides=(1, 1), padding='valid', activation=tf.nn.relu, use_bias=True, kernel_initializer=initializer) # N X 7 X 7 X 64 hidden = tf.layers.dense(tf.reshape(conv3, shape=(-1, 7 * 7 * 64)), 512, activation=tf.nn.relu, use_bias=True, kernel_initializer=initializer) if self.dueling: state_value, action_advantages = tf.split(hidden, 2, axis=-1) value = tf.layers.dense(state_value, 1, activation=None, use_bias=True, kernel_initializer=initializer) # N x 1 advantage = tf.layers.dense(action_advantages, self._action_space_number, activation=None, use_bias=True, kernel_initializer=initializer) # # N x self._action_space_number # < An alternative module replaces the max operator with an average > output = value + tf.subtract(advantage, tf.reduce_mean(advantage, axis=-1, keepdims=True)) else: output = tf.layers.dense(hidden, self._action_space_number, activation=None, use_bias=True, kernel_initializer=initializer) # train_vars = tf.trainable_variables(scope = scope.name) train_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=scope.name) train_vars_dictionary = {var.name[len(scope.name):]: var for var in train_vars} return output, train_vars_dictionary def _build_graph(self): self.Graph = tf.Graph() with self.Graph.as_default(): # model input self.state = tf.placeholder(tf.float32, shape=[None, None, None, self.framesize]) self.action = tf.placeholder(tf.int32, shape=None) self.target = tf.placeholder(tf.float32, shape=None) # tensorboard self.rewards = tf.placeholder(tf.float32, shape=None) self.Qvalues = tf.placeholder(tf.float32, shape=None) self.gamelength = tf.placeholder(tf.int32, shape=None) with tf.name_scope("online"): self.online_Qvalue, online_var_dictionary = self._DQN(self.state, name="online") with tf.name_scope("target"): self.target_Qvalue, target_var_dictionary = self._DQN(self.state, name="target") with tf.name_scope("copy"): # 온라인 네트워크의 가중치를 타깃 네트워크로 복사하기 self.cpFromOnlinetoTarget = [target_var.assign(online_var_dictionary[var_name]) for var_name, target_var in target_var_dictionary.items()] with tf.name_scope("update_variable"): trainable_var_list = tf.global_variables() with tf.name_scope("saver"): self.saver = tf.train.Saver(var_list=trainable_var_list, max_to_keep=5) with tf.name_scope("Loss"): Qvalue = tf.reduce_sum( tf.multiply(self.online_Qvalue, tf.one_hot(self.action, self._action_space_number)), axis=1, keepdims=True) error = tf.abs(self.target - Qvalue) # 0 < error < 1 일 때는 tf.square(clipped_error) # error > 1 일때는 2*error-1 적용 - 선형 clipped_error = tf.clip_by_value(error, 0, 1) linear_error = 2 * (error - clipped_error) self.loss = tf.reduce_mean(tf.square(clipped_error) + linear_error) with tf.name_scope("trainer"): optimizer = tf.train.RMSPropOptimizer(learning_rate=self.learning_rate, momentum=self.momentum, epsilon=1e-2) self.train_operation = optimizer.minimize(self.loss, var_list=trainable_var_list) all_var_list = tf.global_variables() with tf.name_scope("game_infomation"): tf.summary.scalar("Loss", self.loss) tf.summary.scalar("Reward", self.rewards) tf.summary.scalar("Qvalue", self.Qvalues) tf.summary.scalar("Game length", self.gamelength) self.summary_operation = tf.summary.merge_all() for operator in (self.state, self.online_Qvalue): tf.add_to_collection("way", operator) # generator graph 구조를 파일에 쓴다. meta_save_file_path = os.path.join(self.model_name, 'Graph.meta') self.saver.export_meta_graph(meta_save_file_path, collection_list=["way"]) if self.only_draw_graph: print('<<< Graph.meta 파일만 저장하고 종료합니다. >>>') exit(0) config = tf.ConfigProto(log_device_placement=False, allow_soft_placement=True) # config.gpu_options.allow_growth = True # config.gpu_options.per_process_gpu_memory_fraction = 0.1 self.sess = tf.Session(graph=self.Graph, config=config) # 가중치 초기화 및 online DQN -> target DQN으로 복사 or 복구 print("<<< initializing!!! >>>") self.sess.run(tf.variables_initializer(all_var_list)) self.sess.run(self.cpFromOnlinetoTarget) ckpt = tf.train.get_checkpoint_state(self.model_name) if (ckpt and tf.train.checkpoint_exists(ckpt.model_checkpoint_path)): print("<<< all variable retored except for optimizer parameter >>>") print("<<< Restore {} checkpoint!!! >>>".format(os.path.basename(ckpt.model_checkpoint_path))) self.saver.restore(self.sess, ckpt.model_checkpoint_path) self.start = int(os.path.basename(ckpt.model_checkpoint_path).split("-")[-1]) self.start += 1 else: self.start = 1 def _normalizaiton(self, value=None, factor=255.0): return np.divide(value, factor) @property def train(self): if os.path.exists("tensorboard/{}".format(self.model_name)): shutil.rmtree("tensorboard/{}".format(self.model_name)) self.summary_writer = tf.summary.FileWriter(os.path.join("tensorboard", self.model_name), self.sess.graph) update_counter = 0 # 학습 횟수 카운터!!! gamelength = 0 totalgame = 0 totalQvalues = 0 totalrewards = 0 gamestate = True # 게임 초기화 및 게임의 완료 정보를 위함 # 실질적으로 (self.training_step - self.rememorystackNum) 만큼만 학습한다. for step in tqdm(range(self.start, self.training_start_point + self.training_step + 1, 1)): if (self.training_start_point + step) % self.display_step == 0 and self.display: val_env = gym.make(self.game_name) # val print("\n<<< Validation at {} step >>>".format(step)) valid_total_reward = 0 valid_sequence_state = self._concatenated_state(val_env.reset()) valid_gamestate = False val_step = 0 while valid_gamestate != True: val_step += 1 val_env.render() time.sleep(1 / 30) # 30fps online_Qvalue = self.sess.run(self.online_Qvalue, feed_dict={self.state: self._normalizaiton([valid_sequence_state])}) valid_action = self._epsilon_greedy(online_Qvalue, step) valid_next_state, valid_reward, valid_gamestate, _ = val_env.step(valid_action) valid_sequence_state = np.concatenate((valid_sequence_state[:, :, 1:], self._data_preprocessing(valid_next_state)[:, :, np.newaxis]), axis=-1) valid_total_reward += valid_reward # 점수를 받은 부분만 표시하기 if valid_reward != 0: print("게임 step {} -> reward :{}".format(val_step, valid_reward)) print("total reward : {}\n".format(valid_total_reward)) val_env.close() if gamestate: totalQvalues = 0 gamelength = 0 totalrewards = 0 totalgame += 1 # 현재의 연속된 관측을 연결하기 -> 84 x 84 x self.frame_size , self.sequence_state = self._concatenated_state(self.env.reset()) # 온라인 DQN을 시작한다. / 왜 normalization을 하는 것인가? scale을 맞춰주는것!!! online_Qvalue = self.sess.run(self.online_Qvalue, feed_dict={self.state: self._normalizaiton([self.sequence_state])}) if step < self.training_start_point + 1: action = np.random.randint(self._action_space_number) else: action = self._epsilon_greedy(online_Qvalue, step - self.training_start_point) next_state, reward, gamestate, _ = self.env.step(action) # # reward -1, 0, 1로 제한하기 reward = np.clip(reward, a_min=-1, a_max=1) ''' 재현 메모리 실행 why ? not gamestate -> 1게임이 끝나면, gamestate 는 True(즉, 1)를 반환하는데, 이는 게임 종료에 해당함으로, gamestate가 0(즉 not True = False = 0)이 되어야 학습할 때 target_Qvalue를 0으로 만들 수 있다. ''' # 가장 중요한 부분이라고 생각한다. 시간의 흐름을 저장하는 곳!!! self.RM.remember(self.sequence_state, action, reward, self._data_preprocessing(next_state), not gamestate) self.sequence_state = self.RM.next_sequence_state # 1게임이 얼마나 지속? gamelength, 1게임의 q 가치의 평균 값 totalrewards += reward gamelength += 1 totalQvalues += (np.max(online_Qvalue) / gamelength) if step < self.training_start_point or step % self.training_interval != 0: continue ##################################### 학습 ######################################### ''' Double DQN 설명 DQN이 각 상태에서 잠재적인 액션의 Q값을 종종 overestimation 한다는 점에서 착안!!! 모든 Action이 언제나 동일하게 overestimation 된다면 별 문제가 아니겠지만, 그렇지 않다고 한다. 따라서 DDQN 논문에서는 간단한 트릭을 제시하게 되는데 학습 단계에서 target Q 값을 계산할 때, q값들에서 최댓값을 구하는 대신(바로 max 안한다는 얘기) online network에서 가장 큰 Q값을 가지는 action을 선택하고, 해당 action에 대한 target Q값을 target 네트워크에서 생성하는 방법!!! action 선택과 타깃 Q값 생성을 분리하면, 추정값이 크게 나오는 일을 상당 부분 줄일 수 있으며, 더 빠르고 안정적으로 학습을 진행할 수 있다고 한다. ''' sampled_state, sampled_action, sampled_reward, sampled_next_state, continues = self._sample_memories target_Qvalue = self.sess.run(self.target_Qvalue, feed_dict={self.state: self._normalizaiton(sampled_next_state)}) # 더블큐!!! # online network에서 action 가져오기 if self.doubleQ: online_Qvalue = self.sess.run(self.online_Qvalue, feed_dict={self.state: self._normalizaiton(sampled_next_state)}) online_selection = np.argmax(online_Qvalue, axis=1) # target_Qvalue의 q값을 online network 에서 고른 action으로 선택하기 double_Qvalue = target_Qvalue[range(self.batch_size), online_selection] target_Qvalue = sampled_reward + continues * self.discount_factor * double_Qvalue else: target_Qvalue = sampled_reward + continues * self.discount_factor * np.max(target_Qvalue, axis=1, keepdims=True) _, loss = self.sess.run([self.train_operation, self.loss], feed_dict={self.state: self._normalizaiton(sampled_state), self.action: sampled_action, self.target: target_Qvalue}) update_counter += 1 # self.copy_step마다 online DQN -> target DQN으로 복사 if update_counter % self.copy_step == 0: print("<<< '{}' 번째 'online' copy to 'target' >>>".format(update_counter // self.copy_step)) self.sess.run(self.cpFromOnlinetoTarget) # self.save_step 마다 tensorboard 및 가중치 저장 : if update_counter % self.save_step == 0: # 학습 과정은 Tensorboard에서 확인하자 summary_str = self.sess.run(self.summary_operation, feed_dict={self.state: self._normalizaiton(sampled_state), self.action: sampled_action, self.target: target_Qvalue, self.rewards: totalrewards, self.gamelength: gamelength, self.Qvalues: totalQvalues}) self.summary_writer.add_summary(summary_str, global_step=update_counter) if not os.path.exists(self.model_name): os.makedirs(self.model_name) # step과 맞춰주기 위해(self.START 에 영향을 준다.) np.multiply(update_counter, self.training_interval) 를 한다. self.saver.save(self.sess, self.model_name + "/", global_step=np.multiply(update_counter, self.training_interval), write_meta_graph=False) print("<<< 학습간 전체 게임 횟수 : {} >>>".format(totalgame)) # 닫기 self.sess.close() self.env.close() @property def test(self): tf.reset_default_graph() meta_path = glob.glob(os.path.join(self.model_name, '*.meta')) if len(meta_path) == 0: print("<<< Graph가 존재 하지 않습니다. 그래프를 그려 주세요. - only_draw_graph = True >>>") print("<<< 강제 종료 합니다. >>>") exit(0) else: print("<<< Graph가 존재 합니다. >>>") Graph = tf.Graph() with Graph.as_default(): saver = tf.train.import_meta_graph(meta_path[0], clear_devices=True) # meta graph 읽어오기 if saver == None: print("<<< meta 파일을 읽을 수 없습니다. >>>") print("<<< 강제 종료합니다. >>>") exit(0) state, online_Qvalue = tf.get_collection('way') with tf.Session(graph=Graph) as sess: ckpt = tf.train.get_checkpoint_state(self.model_name) if ckpt == None: print("<<< checkpoint file does not exist>>>") print("<<< Exit the program >>>") exit(0) if (ckpt and tf.train.checkpoint_exists(ckpt.model_checkpoint_path)): print("<<< all variable retored except for optimizer parameter >>>") print("<<< Restore {} checkpoint!!! >>>".format(os.path.basename(ckpt.model_checkpoint_path))) saver.restore(sess, ckpt.model_checkpoint_path) total_reward = 0 frames = [] sequence_state = self._concatenated_state(self.env.reset()) gamestate = False step = 0 while gamestate != True: step += 1 self.env.render() time.sleep(1 / 30) # 30fps frame = self.env.render(mode="rgb_array") frames.append(frame) Qvalue = sess.run(online_Qvalue, feed_dict={state: self._normalizaiton([sequence_state])}) # Test 코드에서도 epsilon_greedy를 사용해야한다. ''' Toward Data science 에서... But even during testing, we may maintain ϵ to a small value like 0.05. A deterministic policy may stuck in a local optimal.- 이게 주 원인!!! A non-deterministic policy allows us to break out for a chance to reach a better optimal. ''' action = self._epsilon_greedy(Qvalue, self.egreedy_step) next_state, reward, gamestate, _ = self.env.step(action) total_reward += reward # 예전의 가장 왼쪽의 프레임 날려버리기 sequence_state = np.concatenate( (sequence_state[:, :, 1:], self._data_preprocessing(next_state)[:, :, np.newaxis]), axis=-1) if reward != 0: print("게임 step {} -> reward :{}".format(step, reward)) print("total reward : {}".format(total_reward)) self.env.close() if self.SaveGameMovie: # 애니매이션 만들기 fig = plt.figure(figsize=(2, 3)) patch = plt.imshow(frames[0]) # 첫번째 scene 보여주기 plt.axis("off") # 축 제거 ani = animation.FuncAnimation(fig, func=lambda i, frames, patch: patch.set_data(frames[i]), fargs=(frames, patch), frames=len(frames), repeat=True) # 리눅스 : sudo apt-get install ffmepg or conda install -c conda-forge ffmpeg # 윈도우 : conda install ffmpeg ani.save("{}.mp4".format(self.model_name), writer="ffmpeg", fps=30, dpi=200) plt.show() if __name__ == "__main__": Atari = model( # https://gym.openai.com/envs/#atari # PongDeterministic-v4 or BreakoutDeterministic-v4 model_name="PongDeterministic-v4", # model_name="BreakoutDeterministic-v4", training_display=(True, 1000000), training_step=50000000, training_start_point=50000, # 4번마다 한번씩만 학습 하겠다는 것이다. # -> 4번중 3번은 게임을 진행해보고 4번째에는 그 결과들을 바탕으로 학습을 하겠다는 이야기 training_interval=4, rememorystackNum=500000, save_step=10000, # 가중치 업데이트의 save_step 마다 저장한다. copy_step=10000, # 가중치 업데이트의 copy_step 마다 저장한다. framesize=4, # 입력 상태 개수 learning_rate=0.00025, momentum=0.95, egreedy_max=1, egreedy_min=0.1, egreedy_step=1000000, discount_factor=0.99, batch_size=32, with_replacement=True, # True : 중복추출, False : 비중복 추출 only_draw_graph=False, # model 초기화 하고 연산 그래프 그리기 SaveGameMovie=True, doubleQ=True, dueling=True) Atari.train # 학습 하기 Atari.test # 테스트 하기
d0772dd0edd20d0af5d33d835497aa7e243a2f9f
afc4333ad944301ad969de445a5a4e3b223bb456
/greedy/greedy_03.py
c5f1ec91097b5ff762d82881078e50a0b2bf23bf
[]
no_license
ykiseong303/python_algorithm
4cf2df8c0ff2223eab70d246c87466d1ebc26133
e90268103983917835ba6dbcd14b4b515c3d0fae
refs/heads/main
2023-07-18T10:41:40.180855
2021-08-27T14:33:14
2021-08-27T14:33:14
342,607,860
0
0
null
null
null
null
UTF-8
Python
false
false
538
py
''' 분류 : 그리디 알고리즘 문제 : 1로 만들기 (이코테 문제) 작성일자 : 2021.02.26 ''' # 정수 N이 입력될 때 # K로 나누거나 1로 빼기 # 1까지 되는 연산을 사용하는 횟수의 최솟값을 출력 ## 목적 : N을 1로 만드는데 가장 적은 횟수로 수행하기 ## 접근 : 현재의 N 값에서 가장 작게 만들 수 있는 연산을 수행 N, K = map(int, input().split()) count = 0 while N>1 : if not N%K : N//=K else : N-=1 count += 1 print(count)
9d44c7fc30c7532a83cbfd55e8f20cb446146010
2f63688febd21dc3ae6b19abfa79ad313c820154
/0343_Integer_Break/try_3.py
528ae78d9d8cc6ac2b91f6f7d4fed33f238a4064
[]
no_license
novayo/LeetCode
cadd03587ee4ed6e35f60294070165afc1539ac8
54d0b3c237e0ffed8782915d6b75b7c6a0fe0de7
refs/heads/master
2023-08-14T00:35:15.528520
2023-07-30T05:56:05
2023-07-30T05:56:05
200,248,146
8
1
null
2022-11-19T04:37:54
2019-08-02T14:24:19
Python
UTF-8
Python
false
false
412
py
class Solution: def integerBreak(self, n: int) -> int: dp = [1] * (n+1) for _n in range(2, n+1): i, j = 1, _n-1 max_value = 0 while i <= j: max_value = max(max_value, max(i, dp[i]) * max(j, dp[j])) i, j = i+1, j-1 dp[_n] = max_value return dp[-1]
1558ce39aec8e8a80e658eadae3fa17706dbffbc
4315cfa1bd13f08053d549c7c00287a76d656f9e
/src/abc159/B.py
612261c7290dcb8c80f4dd9c313c478367e21286
[]
no_license
ma96o/atcoder_archive
1c47e2189b2d55e7f519349e02ceb24500e2164e
8bc21d351535eda1f81a47442156f92f234cf6c3
refs/heads/main
2023-08-13T17:03:13.855154
2021-09-15T14:55:00
2021-09-15T14:55:00
350,179,699
0
0
null
null
null
null
UTF-8
Python
false
false
161
py
s = input() n = len(s) hs = s[:(n-1)//2] vs = s[((n+3)//2-1):] if s == s[::-1] and hs == hs[::-1] and vs == vs[::-1]: print("Yes") exit() print("No")
325c7ead66c60a3d6d4100600e21b951274e002e
2efee5574ff160c97a94e243c1c820814b008058
/parse/atest.py
d1fb32e644208592b435d8764e45b986a204877e
[]
no_license
haobtc/blockinfo
5c18430f3f5eaa7b979c119945b686e0e09d2e1c
00a094d917224dbe6acb6565125badec14f2400f
refs/heads/master
2020-03-29T07:01:35.936157
2014-05-14T03:55:27
2014-05-14T03:55:27
17,733,081
0
0
null
null
null
null
UTF-8
Python
false
false
589
py
from bitcointools.deserialize import decode_script script = 'j(n\xd6{q\xado\xbcp3\xa74\x06>I\x84\x8dv\x9b\x89m\x83h\xfe\x05\x9e;7\xf0q\n\x1a\x89\x00\x00\x00\x00\x01\x00\x00\x00' script = 'j(\xd8`\x1d4\xd0\x07lLR/\xab\xe9\xa4>\x83\x87\xcb,\xaa\r\xec\xfcJ\xd0/\xc1\xda\x83o\xb8\xfe\xa4\x00\x00\x00\x00\x03\x00\x00\x00' script = '$\x12\xae\xab\xaf\x92O[\xc9{$0\xe8/2\xe3\r\x1e&\xda\xccVw\x072Y\n[\xf4V\xbe\xb1f\x05\x00\x00\x00' script = '$\xc6\xfe\xfa\x02\x8eY5\x10+\xb6\xc0\xf0}bG\xc2\x12\x8a\x19*L\x0eW\xd8\x94\x0e\xfa!e\xde>\xb4P\x00\x00\x00' print len(script), decode_script(script)
102137592b05149728da3095ba674e187218c5b7
7a9472018f8a5c06da7341746bdb54a91ec02df0
/client/locustfile.py
09f77e398421728f25ea0b2e23edca5f75a846d6
[]
no_license
nmaekawa/websockets-tst
fb55fcca04d953b086ae8c36e4c2df5c55566c0e
7278e134b1c60a87873a38f7bbff7f8e3b96fa1c
refs/heads/master
2022-07-27T00:31:53.448846
2020-01-28T21:33:22
2020-01-28T21:33:22
221,528,746
0
0
null
2022-05-25T03:33:53
2019-11-13T18:47:05
Python
UTF-8
Python
false
false
5,553
py
# # automated run: use --no-web and --csv # $> locust -f examples/basic.py --csv=example --no-web -t10m -c 1 -r 1 --host <hxat url> # import os import json import logging from random import randint from subprocess import Popen from subprocess import PIPE from uuid import uuid4 from locust import between from locust import HttpLocust from locust import TaskSet from locust import task import locust.stats # set custom interval for stats; default is 2s locust.stats.CSV_STATS_INTERVAL_SEC = 5 TOKEN = '' USER_ID = '' USER_NAME = '' CONTEXT_ID = '' COLLECTION_ID = '' TARGET_SOURCE_ID = '' RESOURCE_LINK_ID = '' UTM_SOURCE = '' # this is particular to the target_source document # and used to randomize the region being annotate PTAG=2 target_doc = [0, 589, 313, 434, 593, 493] def fetch_fortune(): process = Popen('fortune', shell=True, stdout=PIPE, stderr=None) output, _ = process.communicate() return output.decode('utf-8') def fresh_wa(): sel_start = randint(0, target_doc[PTAG]) sel_end = randint(sel_start, target_doc[PTAG]) x = { "@context": "http://catchpy.harvardx.harvard.edu.s3.amazonaws.com/jsonld/catch_context_jsonld.json", "body": { "type": "List", "items": [{ "format": "text/html", "language": "en", "purpose": "commenting", "type": "TextualBody", "value": fetch_fortune() }], }, "creator": { "id": "d99019cf42efda58f412e711d97beebe", "name": "nmaekawa2017" }, "id": "013ec74f-1234-5678-3c61-b5cf9d6f7484", "permissions": { "can_admin": [ USER_ID ], "can_delete": [ USER_ID ], "can_read": [], "can_update": [ USER_ID ] }, "platform": { "collection_id": COLLECTION_ID, "context_id": CONTEXT_ID, "platform_name": "edX", "target_source_id": TARGET_SOURCE_ID, }, "schema_version": "1.1.0", "target": { "items": [{ "selector": { "items": [ { "endSelector": { "type": "XPathSelector", "value": "/div[1]/p[{}]".format(PTAG) }, "refinedBy": { "end": sel_end, "start": sel_start, "type": "TextPositionSelector" }, "startSelector": { "type": "XPathSelector", "value": "/div[1]/p[{}]".format(PTAG) }, "type": "RangeSelector" }, ], "type": "Choice" }, "source": "http://sample.com/fake_content/preview", "type": "Text" }], "type": "List" }, "type": "Annotation" } return x class UserBehavior_CreateWebAnnotation(TaskSet): #def on_start(self): # self.catcha = fresh_wa() @task(1) def add_annotation(self): catcha = fresh_wa() # create annotation anno_id = str(uuid4()) target_path = '/annotation_store/api/{}?resource_link_id={}&utm_source={}&version=catchpy'.format( anno_id, RESOURCE_LINK_ID, UTM_SOURCE) response = self.client.post( target_path, json=catcha, catch_response=True, headers={ 'Content-Type': 'Application/json', 'x-annotator-auth-token': TOKEN, 'Referer': 'https://naomi.hxat.hxtech.org/lti_init/launch_lti/', }, verify=False, ) if response.content == '': response.failure('no data') else: try: a_id = response.json()['id'] except KeyError: resp = response.json() if 'payload' in resp: response.failure(resp['payload']) else: response.failure('no id in response') return except json.decoder.JSONDecodeError as e: response.failure(e) return else: response.success() @task(10) def search(self): target_path = '/annotation_store/api/?resource_link_id={}&utm_source={}&version=catchpy&limit=10&offset=0&media=text&source_id={}&context_id={}&collection_id={}'.format( RESOURCE_LINK_ID, UTM_SOURCE, TARGET_SOURCE_ID, CONTEXT_ID, COLLECTION_ID) response = self.client.get( target_path, catch_response=True, headers={ 'Content-Type': 'Application/json', 'x-annotator-auth-token': TOKEN, 'Referer': 'https://naomi.hxat.hxtech.org/lti_init/launch_lti/', }, verify=False, ) if response.content == '': response.failure('no data') else: try: rows = response.json()['rows'] except KeyError: resp = response.json() if 'payload' in resp: response.failure(resp['payload']) else: response.failure('missing rows in search response') return except json.decoder.JSONDecodeError as e: response.failure(e) return else: response.success() class WebsiteUser(HttpLocust): task_set = UserBehavior_CreateWebAnnotation wait_time = between(5, 20)
a07aa91eec7899727971e8ef6382c7d6c75ff0dc
bf75d497793b9f5df14bacc368cb43a509615045
/accounts/migrations/0001_initial.py
0f45c720c0474885cb3946df0d1bf4ea76c3b478
[]
no_license
haruyasu/django-allauth-base
05202fff81f74e44ec8d41cafd141c66d97cc034
b7f65e4844331e3341ec9f562b9f71b79f333941
refs/heads/main
2023-07-18T21:53:47.670149
2021-09-22T06:24:06
2021-09-22T06:24:06
409,087,878
0
0
null
null
null
null
UTF-8
Python
false
false
2,397
py
# Generated by Django 3.2.7 on 2021-09-22 05:24 import accounts.models from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ('auth', '0012_alter_user_first_name_max_length'), ] operations = [ migrations.CreateModel( name='CustomUser', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('password', models.CharField(max_length=128, verbose_name='password')), ('last_login', models.DateTimeField(blank=True, null=True, verbose_name='last login')), ('is_superuser', models.BooleanField(default=False, help_text='Designates that this user has all permissions without explicitly assigning them.', verbose_name='superuser status')), ('email', models.EmailField(max_length=254, unique=True, verbose_name='メールアドレス')), ('name', models.CharField(max_length=30, verbose_name='氏名')), ('company', models.CharField(blank=True, max_length=30, null=True, verbose_name='会社名')), ('created', models.DateTimeField(auto_now_add=True, verbose_name='入会日')), ('is_staff', models.BooleanField(default=False, help_text='Designates whether the user can log into this admin site.', verbose_name='staff status')), ('is_active', models.BooleanField(default=True, help_text='Designates whether this user should be treated as active. Unselect this instead of deleting accounts.', verbose_name='active')), ('groups', models.ManyToManyField(blank=True, help_text='The groups this user belongs to. A user will get all permissions granted to each of their groups.', related_name='user_set', related_query_name='user', to='auth.Group', verbose_name='groups')), ('user_permissions', models.ManyToManyField(blank=True, help_text='Specific permissions for this user.', related_name='user_set', related_query_name='user', to='auth.Permission', verbose_name='user permissions')), ], options={ 'verbose_name': 'user', 'verbose_name_plural': 'users', }, managers=[ ('objects', accounts.models.UserManager()), ], ), ]
69af161c933e2333c069fc3bf5828085f06d2373
ceb3d82494813cd21e38231964e098bb3efe093b
/Feature/structure_tensor_eigenvalues.py
f72a99520193f77a04dcbe1808375927c8ee383b
[ "Apache-2.0" ]
permissive
Joevaen/Scikit-image_On_CT
0c0a306a9ca18668bd9bb4105e577766b1d5578b
e3bf0eeadc50691041b4b7c44a19d07546a85001
refs/heads/main
2023-03-16T01:28:04.871513
2021-03-16T07:53:57
2021-03-16T07:53:57
344,071,656
0
0
null
null
null
null
UTF-8
Python
false
false
311
py
# 计算结构张量的特征值。 from skimage.feature import structure_tensor from skimage.feature import structure_tensor_eigenvalues import numpy as np square = np.zeros((5, 5)) square[2, 2] = 1 A_elems = structure_tensor(square, sigma=0.1, order='rc') print(structure_tensor_eigenvalues(A_elems)[0])
c1b3bd9f77d36739a30305d571e50d3ca6a74293
ae46ca697eabe8ec5eea14aa0e218f6b9f7d0457
/util/puzzle_runner.py
ab24a1ae85838269695b3f3f11c93e591fe295be
[]
no_license
MyreMylar/word_search
334993d0bd4eafa8a641ba09abf82d4f4cbbed48
4d33ad230240cbf259b374725122786118cf5b2c
refs/heads/master
2020-03-12T23:56:28.520090
2018-04-24T15:37:15
2018-04-24T15:37:15
130,876,847
0
0
null
null
null
null
UTF-8
Python
false
false
7,075
py
import hashlib import pygame from pygame.locals import * class Puzzle: def __init__(self, task, answer): self.task = task self.answer = answer self.answer_hash = "" self.correct = False class RenderedPuzzle: def __init__(self, task, task_size, answer, answer_size, result, result_size): self.task = task self.task_size = task_size self.answer = answer self.answer_size = answer_size self.result = result self.result_size = result_size def encode_answer(answer): encoded_answer = hashlib.sha1(answer.lower().encode()).hexdigest() return encoded_answer def run_puzzles(puzzle1, puzzle2, puzzle3, puzzle4, puzzle5, puzzle6): pygame.init() pygame.display.set_icon(pygame.image.load("util/puzzle_icon.png")) pygame.display.set_caption('Word Search') screen = pygame.display.set_mode((1000, 800)) background = pygame.Surface(screen.get_size()) background = background.convert(screen) background.fill((30, 37, 41)) font = pygame.font.Font("util/FiraCode-Regular.ttf", 12) font_bold = pygame.font.Font("util/FiraCode-Bold.ttf", 12) allowed_keys = u'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ' final_answer_string = u'' running = True text_color = pygame.Color(215, 218, 219, 255) question_colour = pygame.Color(231, 132, 162, 255) right_text_color = pygame.Color(60, 255, 255, 255) wrong_text_color = pygame.Color(255, 200, 80, 255) meta_text_color = pygame.Color(133, 152, 244, 255) puzzle1.answer_hash = "24e7451df05ed5cd4cf1041be67c68f8d89d087a" puzzle2.answer_hash = "063a6bf659ec1feb283f3b09d97c6814af62d134" puzzle3.answer_hash = "48181acd22b3edaebc8a447868a7df7ce629920a" puzzle4.answer_hash = "5737ef08a3ec16a337ac79a1d719fb91acba20a4" puzzle5.answer_hash = "4c1f32a51dbf7d6943108c64980b6935762f87d2" puzzle6.answer_hash = "56b80273da1d7c0ac32ce82840d543a9da755bfd" puzzles = [puzzle1, puzzle2, puzzle3, puzzle4, puzzle5, puzzle6] rendered_puzzles = [] puzzle_num = 1 for puzzle in puzzles: task_text = font_bold.render("Puzzle " + str(puzzle_num) + ". " + puzzle.task, True, question_colour) task_text_size = font.size("Puzzle " + str(puzzle_num) + ". " + puzzle.task) answer_text = font.render("Your current answer is: " + puzzle.answer, True, text_color) answer_text_size = font.size("Your current answer is: " + puzzle.answer) answer_hash = hashlib.sha1(puzzle.answer.lower().encode()).hexdigest() if answer_hash == puzzle.answer_hash: result_text = font.render("This answer is correct!", True, right_text_color) result_text_size = font.size("This answer is correct!") result_text_size = [result_text_size[0], result_text_size[1] * 3] puzzle.correct = True else: result_text = font.render("This answer is wrong.", True, wrong_text_color) result_text_size = font.size("This answer is wrong.") result_text_size = [result_text_size[0], result_text_size[1] * 3] rendered_puzzles.append(RenderedPuzzle(task_text, task_text_size, answer_text, answer_text_size, result_text, result_text_size)) puzzle_num += 1 if all(puzzle.correct for puzzle in puzzles): all_correct = True else: all_correct = False final_puzzle_text_1 = font_bold.render("CONGRATULATIONS! ALL NORMAL PUZZLES SOLVED. ", True, right_text_color) final_puzzle_text_2 = font_bold.render("META PUZZLE UNLOCKED!", True, meta_text_color) final_puzzle_text_3 = font.render("1. Enter the fourth letter of your first answer.", True, meta_text_color) final_puzzle_text_4 = font.render("2. Enter the third letter of your fifth answer.", True, meta_text_color) final_puzzle_text_5 = font.render("3. Enter the second letter of your third Answer.", True, meta_text_color) final_puzzle_text_6 = font.render("4. Enter the second letter of your fourth answer.", True, meta_text_color) final_puzzle_text_7 = font.render("5. Enter the second letter of your second answer.", True, meta_text_color) final_puzzle_text_8 = font.render("6. Enter the eighth letter of your sixth answer.", True, meta_text_color) final_puzzle_result_text = font_bold.render("CORRECT! FINAL META PUZZLE SOLVED!!! HOORAY!!!", True, right_text_color) while running: for event in pygame.event.get(): if event.type == KEYDOWN: if event.key == K_ESCAPE: running = False elif event.key == K_BACKSPACE: final_answer_string = final_answer_string[:-1] elif all_correct: if event.unicode in allowed_keys: final_answer_string += event.unicode if event.type == QUIT: running = False screen.blit(background, (0, 0)) y_height = 20 for puzzle in rendered_puzzles: screen.blit(puzzle.task, puzzle.task.get_rect(x=20, y=y_height)) y_height += puzzle.task_size[1] screen.blit(puzzle.answer, puzzle.answer.get_rect(x=20, y=y_height)) y_height += puzzle.answer_size[1] screen.blit(puzzle.result, puzzle.result.get_rect(x=20, y=y_height)) y_height += puzzle.result_size[1] if all_correct: screen.blit(final_puzzle_text_1, (20, y_height)) x_adjust = final_puzzle_text_1.get_rect().width screen.blit(final_puzzle_text_2, (20 + x_adjust, y_height)) y_height += final_puzzle_text_2.get_rect().height*2 screen.blit(final_puzzle_text_3, (20, y_height)) y_height += final_puzzle_text_3.get_rect().height screen.blit(final_puzzle_text_4, (20, y_height)) y_height += final_puzzle_text_4.get_rect().height screen.blit(final_puzzle_text_5, (20, y_height)) y_height += final_puzzle_text_5.get_rect().height screen.blit(final_puzzle_text_6, (20, y_height)) y_height += final_puzzle_text_6.get_rect().height screen.blit(final_puzzle_text_7, (20, y_height)) y_height += final_puzzle_text_7.get_rect().height screen.blit(final_puzzle_text_8, (20, y_height)) y_height += final_puzzle_text_8.get_rect().height*2 answer_text = font.render("Answer: " + final_answer_string, True, text_color) screen.blit(answer_text, answer_text.get_rect(x=20, y=y_height)) y_height += font.size("Answer: " + final_answer_string)[1]*2 final_answer = final_answer_string.lower() if encode_answer(final_answer) == "59c826fc854197cbd4d1083bce8fc00d0761e8b3": screen.blit(final_puzzle_result_text, (20, y_height)) pygame.display.flip() # flip all our drawn stuff onto the screen pygame.quit()
462d5c413f4d07555ec10a8367098bb854b7d802
e33fa4ac60f3504deb885d1c5af5df4127b2cc81
/src/azure-cli/azure/cli/command_modules/vm/tests/hybrid_2020_09_01/test_vm_commands.py
8962a2cbb656aee4f1a36ee25f34740bc68df4a0
[ "MIT", "LGPL-2.1-only", "GPL-1.0-or-later", "BSD-3-Clause", "MPL-2.0", "LGPL-2.1-or-later", "Apache-2.0", "BSD-2-Clause" ]
permissive
isabella232/azure-cli
d82f504480c9ff53f23cd383a4ec3fe67301132a
417d2189453437a4b109b0536c1131f73d53312e
refs/heads/dev
2023-03-07T14:11:11.093502
2020-12-04T08:33:12
2020-12-04T08:33:12
318,479,446
0
0
MIT
2021-02-23T20:57:28
2020-12-04T10:20:15
null
UTF-8
Python
false
false
87,641
py
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- # AZURE CLI VM TEST DEFINITIONS import json import os import platform import tempfile import time import unittest import mock import uuid import six from knack.util import CLIError from azure_devtools.scenario_tests import AllowLargeResponse, record_only from azure.cli.core.profiles import ResourceType from azure.cli.testsdk import ( ScenarioTest, ResourceGroupPreparer, LiveScenarioTest, api_version_constraint, StorageAccountPreparer) TEST_DIR = os.path.abspath(os.path.join(os.path.abspath(__file__), '..')) # pylint: disable=line-too-long # pylint: disable=too-many-lines TEST_SSH_KEY_PUB = "ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAACAQCbIg1guRHbI0lV11wWDt1r2cUdcNd27CJsg+SfgC7miZeubtwUhbsPdhMQsfDyhOWHq1+ZL0M+nJZV63d/1dhmhtgyOqejUwrPlzKhydsbrsdUor+JmNJDdW01v7BXHyuymT8G4s09jCasNOwiufbP/qp72ruu0bIA1nySsvlf9pCQAuFkAnVnf/rFhUlOkhtRpwcq8SUNY2zRHR/EKb/4NWY1JzR4sa3q2fWIJdrrX0DvLoa5g9bIEd4Df79ba7v+yiUBOS0zT2ll+z4g9izHK3EO5d8hL4jYxcjKs+wcslSYRWrascfscLgMlMGh0CdKeNTDjHpGPncaf3Z+FwwwjWeuiNBxv7bJo13/8B/098KlVDl4GZqsoBCEjPyJfV6hO0y/LkRGkk7oHWKgeWAfKtfLItRp00eZ4fcJNK9kCaSMmEugoZWcI7NGbZXzqFWqbpRI7NcDP9+WIQ+i9U5vqWsqd/zng4kbuAJ6UuKqIzB0upYrLShfQE3SAck8oaLhJqqq56VfDuASNpJKidV+zq27HfSBmbXnkR/5AK337dc3MXKJypoK/QPMLKUAP5XLPbs+NddJQV7EZXd29DLgp+fRIg3edpKdO7ZErWhv7d+3Kws+e1Y+ypmR2WIVSwVyBEUfgv2C8Ts9gnTF4pNcEY/S2aBicz5Ew2+jdyGNQQ== [email protected]\n" def _write_config_file(user_name): public_key = ('ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQC8InHIPLAu6lMc0d+5voyXqigZfT5r6fAM1+FQAi+mkPDdk2hNq1BG0Bwfc88G' 'm7BImw8TS+x2bnZmhCbVnHd6BPCDY7a+cHCSqrQMW89Cv6Vl4ueGOeAWHpJTV9CTLVz4IY1x4HBdkLI2lKIHri9+z7NIdvFk7iOk' 'MVGyez5H1xDbF2szURxgc4I2/o5wycSwX+G8DrtsBvWLmFv9YAPx+VkEHQDjR0WWezOjuo1rDn6MQfiKfqAjPuInwNOg5AIxXAOR' 'esrin2PUlArNtdDH1zlvI4RZi36+tJO7mtm3dJiKs4Sj7G6b1CjIU6aaj27MmKy3arIFChYav9yYM3IT') config = { 'username': user_name, 'ssh_key': public_key } _, config_file = tempfile.mkstemp() with open(config_file, 'w') as outfile: json.dump(config, outfile) return config_file # class VMImageListByAliasesScenarioTest(ScenarioTest): # def test_vm_image_list_by_alias(self): # result = self.cmd('vm image list --offer ubuntu').get_output_in_json() # self.assertTrue(len(result) >= 1) # self.assertEqual(result[0]['publisher'], 'Canonical') # self.assertTrue(result[0]['sku'].endswith('LTS')) # class VMUsageScenarioTest(ScenarioTest): # def test_vm_usage(self): # self.cmd('vm list-usage --location westus', # checks=self.check('type(@)', 'array')) # class VMImageListThruServiceScenarioTest(ScenarioTest): # @AllowLargeResponse() # def test_vm_images_list_thru_services(self): # result = self.cmd('vm image list -l westus --publisher Canonical --offer UbuntuServer -o tsv --all').output # assert result.index('16.04') >= 0 # result = self.cmd('vm image list -p Canonical -f UbuntuServer -o tsv --all').output # assert result.index('16.04') >= 0 # class VMOpenPortTest(ScenarioTest): # @ResourceGroupPreparer(name_prefix='cli_test_open_port') # def test_vm_open_port(self, resource_group): # self.kwargs.update({ # 'vm': 'vm1' # }) # self.cmd('vm create -g {rg} -l westus -n {vm} --admin-username ubuntu --image Canonical:UbuntuServer:14.04.4-LTS:latest --admin-password @PasswordPassword1! --public-ip-address-allocation dynamic --authentication-type password') # # min params - apply to existing NIC (updates existing NSG) # self.kwargs['nsg_id'] = self.cmd('vm open-port -g {rg} -n {vm} --port "*" --priority 900').get_output_in_json()['id'] # self.kwargs['nsg'] = os.path.split(self.kwargs['nsg_id'])[1] # self.cmd('network nsg show -g {rg} -n {nsg}', # checks=self.check("length(securityRules[?name == 'open-port-all'])", 1)) # # apply to subnet (creates new NSG) # self.kwargs['nsg'] = 'newNsg' # self.cmd('vm open-port -g {rg} -n {vm} --apply-to-subnet --nsg-name {nsg} --port "*" --priority 900') # self.cmd('network nsg show -g {rg} -n {nsg}', # checks=self.check("length(securityRules[?name == 'open-port-all'])", 1)) # class VMShowListSizesListIPAddressesScenarioTest(ScenarioTest): # @ResourceGroupPreparer(name_prefix='cli_test_vm_list_ip') # def test_vm_show_list_sizes_list_ip_addresses(self, resource_group): # self.kwargs.update({ # 'loc': 'centralus', # 'vm': 'vm-with-public-ip', # 'allocation': 'dynamic', # 'zone': 2 # }) # # Expecting no results at the beginning # self.cmd('vm list-ip-addresses --resource-group {rg}', checks=self.is_empty()) # self.cmd('vm create --resource-group {rg} --location {loc} -n {vm} --admin-username ubuntu --image Canonical:UbuntuServer:14.04.4-LTS:latest' # ' --admin-password testPassword0 --public-ip-address-allocation {allocation} --authentication-type password --zone {zone}') # result = self.cmd('vm show --resource-group {rg} --name {vm} -d', checks=[ # self.check('type(@)', 'object'), # self.check('name', '{vm}'), # self.check('location', '{loc}'), # self.check('resourceGroup', '{rg}') # ]).get_output_in_json() # self.assertEqual(4, len(result['publicIps'].split('.'))) # result = self.cmd('vm list --resource-group {rg} -d', checks=[ # self.check('[0].name', '{vm}'), # self.check('[0].location', '{loc}'), # self.check('[0].resourceGroup', '{rg}'), # self.check('[0].powerState', 'VM running') # ]).get_output_in_json() # self.assertEqual(4, len(result[0]['publicIps'].split('.'))) # self.cmd('vm list-vm-resize-options --resource-group {rg} --name {vm}', # checks=self.check('type(@)', 'array')) # # Expecting the one we just added # self.kwargs['rg_caps'] = resource_group.upper() # test the command handles name with casing diff. # self.cmd('vm list-ip-addresses --resource-group {rg_caps}', checks=[ # self.check('length(@)', 1), # self.check('[0].virtualMachine.name', '{vm}'), # self.check('[0].virtualMachine.resourceGroup', '{rg}'), # self.check('length([0].virtualMachine.network.publicIpAddresses)', 1), # self.check('[0].virtualMachine.network.publicIpAddresses[0].ipAllocationMethod', self.kwargs['allocation'].title()), # self.check('type([0].virtualMachine.network.publicIpAddresses[0].ipAddress)', 'string'), # self.check('[0].virtualMachine.network.publicIpAddresses[0].zone', '{zone}'), # self.check('type([0].virtualMachine.network.publicIpAddresses[0].name)', 'string'), # self.check('[0].virtualMachine.network.publicIpAddresses[0].resourceGroup', '{rg}') # ]) class VMSizeListScenarioTest(ScenarioTest): def test_vm_size_list(self): self.cmd('vm list-sizes --location westus', checks=self.check('type(@)', 'array')) class VMImageListOffersScenarioTest(ScenarioTest): def test_vm_image_list_offers(self): self.kwargs.update({ 'loc': 'westus', 'pub': 'Canonical' }) result = self.cmd('vm image list-offers --location {loc} --publisher {pub}').get_output_in_json() self.assertTrue(len(result) > 0) self.assertFalse([i for i in result if i['location'].lower() != self.kwargs['loc']]) class VMImageListPublishersScenarioTest(ScenarioTest): @AllowLargeResponse() def test_vm_image_list_publishers(self): self.kwargs.update({ 'loc': 'westus' }) self.cmd('vm image list-publishers --location {loc}', checks=[ self.check('type(@)', 'array'), self.check("length([?location == '{loc}']) == length(@)", True), ]) class VMImageListSkusScenarioTest(ScenarioTest): def test_vm_image_list_skus(self): self.kwargs.update({ 'loc': 'westus', 'pub': 'Canonical', 'offer': 'UbuntuServer' }) result = self.cmd("vm image list-skus --location {loc} -p {pub} --offer {offer} --query \"length([].id.contains(@, '/Publishers/{pub}/ArtifactTypes/VMImage/Offers/{offer}/Skus/'))\"").get_output_in_json() self.assertTrue(result > 0) class VMImageShowScenarioTest(ScenarioTest): def test_vm_image_show(self): self.kwargs.update({ 'loc': 'westus', 'pub': 'Canonical', 'offer': 'UbuntuServer', 'sku': '14.04.2-LTS', 'ver': '14.04.201503090' }) self.cmd('vm image show --location {loc} --publisher {pub} --offer {offer} --sku {sku} --version {ver}', checks=[ self.check('type(@)', 'object'), self.check('location', '{loc}'), self.check('name', '{ver}'), self.check("contains(id, '/Publishers/{pub}/ArtifactTypes/VMImage/Offers/{offer}/Skus/{sku}/Versions/{ver}')", True) ]) class VMGeneralizeScenarioTest(ScenarioTest): @ResourceGroupPreparer(name_prefix='cli_test_generalize_vm') def test_vm_generalize(self, resource_group): self.kwargs.update({ 'vm': 'vm-generalize' }) self.cmd('vm create -g {rg} -n {vm} --admin-username ubuntu --image UbuntuLTS --admin-password testPassword0 --authentication-type password --use-unmanaged-disk') self.cmd('vm stop -g {rg} -n {vm}') # Should be able to generalize the VM after it has been stopped self.cmd('vm generalize -g {rg} -n {vm}', checks=self.is_empty()) vm = self.cmd('vm show -g {rg} -n {vm}').get_output_in_json() self.cmd('vm capture -g {rg} -n {vm} --vhd-name-prefix vmtest') # capture to a custom image self.kwargs['image'] = 'myImage' self.cmd('image create -g {rg} -n {image} --source {vm}', checks=[ self.check('name', '{image}'), self.check('sourceVirtualMachine.id', vm['id']), self.check('storageProfile.zoneResilient', None) ]) @ResourceGroupPreparer(name_prefix='cli_test_generalize_vm') def test_vm_capture_zone_resilient_image(self, resource_group): self.kwargs.update({ 'loc': 'francecentral', 'vm': 'vm-generalize' }) self.cmd('vm create -g {rg} --location {loc} -n {vm} --admin-username ubuntu --image centos --admin-password testPassword0 --authentication-type password') self.cmd('vm deallocate -g {rg} -n {vm}') # Should be able to generalize the VM after it has been stopped self.cmd('vm generalize -g {rg} -n {vm}', checks=self.is_empty()) vm = self.cmd('vm show -g {rg} -n {vm}').get_output_in_json() # capture to a custom image self.kwargs['image'] = 'myImage2' self.cmd('image create -g {rg} -n {image} --source {vm} --zone-resilient -l {loc}', checks=[ self.check('name', '{image}'), self.check('sourceVirtualMachine.id', vm['id']), self.check('storageProfile.zoneResilient', True) ]) class VMVMSSWindowsLicenseTest(ScenarioTest): @ResourceGroupPreparer(name_prefix='cli_test_windows_license_type') def test_vm_vmss_windows_license_type(self, resource_group): self.kwargs.update({ 'vm': 'winvm', 'vmss': 'winvmss' }) self.cmd('vm create -g {rg} -n {vm} --image Win2012R2Datacenter --admin-username clitest1234 --admin-password Test123456789# --license-type Windows_Server') self.cmd('vm show -g {rg} -n {vm}', checks=[ self.check('licenseType', 'Windows_Server') ]) self.cmd('vm update -g {rg} -n {vm} --license-type None', checks=[ self.check('licenseType', 'None') ]) self.cmd('vmss create -g {rg} -n {vmss} --image Win2012R2Datacenter --admin-username clitest1234 --admin-password Test123456789# --license-type Windows_Server --instance-count 1') self.cmd('vmss show -g {rg} -n {vmss}', checks=[ self.check('virtualMachineProfile.licenseType', 'Windows_Server') ]) self.cmd('vmss update -g {rg} -n {vmss} --license-type None', checks=[ self.check('virtualMachineProfile.licenseType', 'None') ]) class VMCustomImageTest(ScenarioTest): @ResourceGroupPreparer(name_prefix='cli_test_vm_custom_image') def test_vm_custom_image(self, resource_group): self.kwargs.update({ 'vm1': 'vm-unmanaged-disk', 'vm2': 'vm-managed-disk', 'newvm1': 'fromimage1', 'newvm2': 'fromimage2', 'image1': 'img-from-unmanaged', 'image2': 'img-from-managed', }) self.cmd('vm create -g {rg} -n {vm1} --image ubuntults --use-unmanaged-disk --admin-username sdk-test-admin --admin-password testPassword0') # deprovision the VM, but we have to do it async to avoid hanging the run-command itself self.cmd('vm run-command invoke -g {rg} -n {vm1} --command-id RunShellScript --scripts "echo \'sudo waagent -deprovision+user --force\' | at -M now + 1 minutes"') time.sleep(70) self.cmd('vm deallocate -g {rg} -n {vm1}') self.cmd('vm generalize -g {rg} -n {vm1}') self.cmd('image create -g {rg} -n {image1} --source {vm1}') self.cmd('vm create -g {rg} -n {vm2} --image ubuntults --storage-sku standard_lrs --data-disk-sizes-gb 1 1 --admin-username sdk-test-admin --admin-password testPassword0') self.cmd('vm run-command invoke -g {rg} -n {vm2} --command-id RunShellScript --scripts "echo \'sudo waagent -deprovision+user --force\' | at -M now + 1 minutes"') time.sleep(70) self.cmd('vm deallocate -g {rg} -n {vm2}') self.cmd('vm generalize -g {rg} -n {vm2}') self.cmd('image create -g {rg} -n {image2} --source {vm2}') self.cmd('vm create -g {rg} -n {newvm1} --image {image1} --admin-username sdk-test-admin --admin-password testPassword0 --authentication-type password') self.cmd('vm show -g {rg} -n {newvm1}', checks=[ self.check('storageProfile.imageReference.resourceGroup', '{rg}'), self.check('storageProfile.osDisk.createOption', 'FromImage') ]) self.cmd('vmss create -g {rg} -n vmss1 --image {image1} --admin-username sdk-test-admin --admin-password testPassword0 --authentication-type password', checks=[ self.check('vmss.virtualMachineProfile.storageProfile.imageReference.resourceGroup', '{rg}'), self.check('vmss.virtualMachineProfile.storageProfile.osDisk.createOption', 'FromImage') ]) self.cmd('vm create -g {rg} -n {newvm2} --image {image2} --admin-username sdk-test-admin --admin-password testPassword0 --authentication-type password') self.cmd('vm show -g {rg} -n {newvm2}', checks=[ self.check('storageProfile.imageReference.resourceGroup', '{rg}'), self.check('storageProfile.osDisk.createOption', 'FromImage'), self.check("length(storageProfile.dataDisks)", 2), self.check("storageProfile.dataDisks[0].createOption", 'FromImage'), self.check('storageProfile.dataDisks[0].managedDisk.storageAccountType', 'Standard_LRS') ]) self.cmd('vmss create -g {rg} -n vmss2 --image {image2} --admin-username sdk-test-admin --admin-password testPassword0 --authentication-type password', checks=[ self.check('vmss.virtualMachineProfile.storageProfile.imageReference.resourceGroup', '{rg}'), self.check('vmss.virtualMachineProfile.storageProfile.osDisk.createOption', 'FromImage'), self.check("length(vmss.virtualMachineProfile.storageProfile.dataDisks)", 2), self.check("vmss.virtualMachineProfile.storageProfile.dataDisks[0].createOption", 'FromImage'), self.check("vmss.virtualMachineProfile.storageProfile.dataDisks[0].managedDisk.storageAccountType", 'Standard_LRS'), self.check("vmss.virtualMachineProfile.storageProfile.dataDisks[1].createOption", 'FromImage'), self.check("vmss.virtualMachineProfile.storageProfile.dataDisks[1].managedDisk.storageAccountType", 'Standard_LRS') ]) @ResourceGroupPreparer(name_prefix='cli_test_vm_custom_image_conflict') def test_vm_custom_image_name_conflict(self, resource_group): self.kwargs.update({ 'vm': 'test-vm', 'image1': 'img-from-vm', 'image2': 'img-from-vm-id', 'image3': 'img-from-disk-id', }) self.cmd('vm create -g {rg} -n {vm} --image debian --use-unmanaged-disk --admin-username ubuntu --admin-password testPassword0 --authentication-type password') vm1_info = self.cmd('vm show -g {rg} -n {vm}').get_output_in_json() self.cmd('vm stop -g {rg} -n {vm}') # set variables up to test against name conflict between disk and vm. self.kwargs.update({ 'os_disk_vhd_uri': vm1_info['storageProfile']['osDisk']['vhd']['uri'], 'vm_id': vm1_info['id'], 'os_disk': vm1_info['name'] }) # create disk with same name as vm disk_info = self.cmd('disk create -g {rg} -n {os_disk} --source {os_disk_vhd_uri} --os-type linux').get_output_in_json() self.kwargs.update({'os_disk_id': disk_info['id']}) # Deallocate and generalize vm. Do not need to deprovision vm as this test will not recreate a vm from the image. self.cmd('vm deallocate -g {rg} -n {vm}') self.cmd('vm generalize -g {rg} -n {vm}') # Create image from vm self.cmd('image create -g {rg} -n {image1} --source {vm}', checks=[ self.check("sourceVirtualMachine.id", '{vm_id}'), self.check("storageProfile.osDisk.managedDisk", None) ]) # Create image from vm id self.cmd('image create -g {rg} -n {image2} --source {vm_id}', checks=[ self.check("sourceVirtualMachine.id", '{vm_id}'), self.check("storageProfile.osDisk.managedDisk", None) ]) # Create image from disk id self.cmd('image create -g {rg} -n {image3} --source {os_disk_id} --os-type linux', checks=[ self.check("sourceVirtualMachine", None), self.check("storageProfile.osDisk.managedDisk.id", '{os_disk_id}') ]) class VMImageWithPlanTest(ScenarioTest): @ResourceGroupPreparer() def test_vm_create_with_market_place_image(self, resource_group, resource_group_location): # test 2 scenarios, 1. create vm from market place image, 2. create from a custom image captured from such vms self.kwargs.update({ 'location': resource_group_location, 'publisher': 'microsoft-ads', 'offer': 'linux-data-science-vm-ubuntu', 'sku': 'linuxdsvmubuntu', 'vm1': 'vm1', 'vm2': 'vm2', 'image': 'image1' }) self.kwargs['urn'] = '{publisher}:{offer}:{sku}:latest'.format(**self.kwargs) # extract out the plan info to be used when create the vm from the captured image plan = self.cmd('vm image show --urn {urn}').get_output_in_json()['plan'] self.kwargs['plan_name'] = plan['name'] self.kwargs['plan_product'] = plan['product'] self.kwargs['plan_publisher'] = plan['publisher'] # let us accept the term self.cmd('vm image accept-terms --urn {urn}', checks=self.check('accepted', True)) # create a vm and capture an image from it self.cmd('vm create -g {rg} -n {vm1} --image {urn} --admin-username sdk-test-admin --admin-password testPassword0') # deprovision the VM, but we have to do it async to avoid hanging the run-command itself self.cmd('vm run-command invoke -g {rg} -n {vm1} --command-id RunShellScript --scripts "echo \'sudo waagent -deprovision+user --force\' | at -M now + 1 minutes"') time.sleep(70) self.cmd('vm deallocate -g {rg} -n {vm1}') self.cmd('vm generalize -g {rg} -n {vm1}') self.cmd('image create -g {rg} -n {image} --source {vm1}') self.cmd('vm create -g {rg} -n {vm2} --image {image} --admin-username sdk-test-admin --admin-password testPassword0 --authentication-type password --plan-publisher {plan_publisher} --plan-name {plan_name} --plan-product {plan_product}') self.cmd('vm show -g {rg} -n {vm2}', checks=self.check('provisioningState', 'Succeeded')) class VMCreateFromUnmanagedDiskTest(ScenarioTest): @ResourceGroupPreparer(name_prefix='cli_test_vm_from_unmanaged_disk') def test_vm_create_from_unmanaged_disk(self, resource_group): # create a vm with unmanaged os disk self.kwargs.update({ 'loc': 'westus', 'vm': 'vm1' }) self.cmd('vm create -g {rg} -n {vm} --image debian --use-unmanaged-disk --admin-username ubuntu --admin-password testPassword0 --authentication-type password') vm1_info = self.cmd('vm show -g {rg} -n {vm}', checks=[ self.check('name', '{vm}'), self.check('licenseType', None) ]).get_output_in_json() self.cmd('vm stop -g {rg} -n {vm}') # import the unmanaged os disk into a specialized managed disk self.kwargs.update({ 'os_disk_vhd_uri': vm1_info['storageProfile']['osDisk']['vhd']['uri'], 'vm': 'vm2', 'os_disk': 'os1' }) self.cmd('disk create -g {rg} -n {os_disk} --source {os_disk_vhd_uri} --os-type linux', checks=[self.check('name', '{os_disk}'), self.check('osType', 'Linux')]) # create a vm by attaching to it self.cmd('vm create -g {rg} -n {vm} --attach-os-disk {os_disk} --os-type linux', checks=self.check('powerState', 'VM running')) class VMCreateWithSpecializedUnmanagedDiskTest(ScenarioTest): @ResourceGroupPreparer(name_prefix='cli_test_vm_with_specialized_unmanaged_disk') def test_vm_create_with_specialized_unmanaged_disk(self, resource_group): self.kwargs.update({ 'loc': 'westus' }) # create a vm with unmanaged os disk self.cmd('vm create -g {rg} -n vm1 --image debian --use-unmanaged-disk --admin-username ubuntu --admin-password testPassword0 --authentication-type password') vm1_info = self.cmd('vm show -g {rg} -n vm1').get_output_in_json() self.kwargs['disk_uri'] = vm1_info['storageProfile']['osDisk']['vhd']['uri'] self.cmd('vm delete -g {rg} -n vm1 -y') # create a vm by attaching the OS disk from the deleted VM self.cmd('vm create -g {rg} -n vm2 --attach-os-disk {disk_uri} --os-type linux --use-unmanaged-disk', checks=self.check('powerState', 'VM running')) @ResourceGroupPreparer(name_prefix='cli_test_vm_with_specialized_unmanaged_disk') def test_vm_create_with_unmanaged_data_disks(self, resource_group): self.kwargs.update({ 'vm': 'vm1', 'vm2': 'vm2' }) # create a unmanaged bm with 2 unmanaged disks vm_create_cmd = 'vm create -g {rg} -n vm1 --image debian --use-unmanaged-disk --admin-username ubuntu --admin-password testPassword0 --authentication-type password' self.cmd(vm_create_cmd) self.cmd('vm unmanaged-disk attach -g {rg} --vm-name {vm} --new --size-gb 1') self.cmd('vm unmanaged-disk attach -g {rg} --vm-name {vm} --new --size-gb 2') vm1_info = self.cmd('vm show -g {rg} -n {vm}').get_output_in_json() self.kwargs['disk_uri'] = vm1_info['storageProfile']['osDisk']['vhd']['uri'] self.kwargs['data_disk'] = vm1_info['storageProfile']['dataDisks'][0]['vhd']['uri'] self.kwargs['data_disk2'] = vm1_info['storageProfile']['dataDisks'][1]['vhd']['uri'] self.cmd('vm delete -g {rg} -n vm1 -y') # create a vm by attaching the OS disk from the deleted VM vm_create_cmd = ('vm create -g {rg} -n {vm2} --attach-os-disk {disk_uri} --os-type linux --use-unmanaged-disk ' '--attach-data-disks {data_disk} {data_disk2} --data-disk-caching 0=ReadWrite 1=ReadOnly') self.cmd(vm_create_cmd) self.cmd('vm show -g {rg} -n {vm2} -d', checks=[ self.check('storageProfile.dataDisks[0].caching', 'ReadWrite'), self.check('storageProfile.dataDisks[0].lun', 0), self.check('storageProfile.dataDisks[1].caching', 'ReadOnly'), self.check('storageProfile.dataDisks[1].lun', 1) ]) class VMAttachDisksOnCreate(ScenarioTest): @ResourceGroupPreparer() def test_vm_create_by_attach_os_and_data_disks(self, resource_group): # the testing below follow a real custom's workflow requiring the support of attaching data disks on create # creating a vm self.cmd('vm create -g {rg} -n vm1 --image centos --admin-username centosadmin --admin-password testPassword0 --authentication-type password --data-disk-sizes-gb 2') result = self.cmd('vm show -g {rg} -n vm1').get_output_in_json() self.kwargs.update({ 'origin_os_disk': result['storageProfile']['osDisk']['name'], 'origin_data_disk': result['storageProfile']['dataDisks'][0]['name'], # snapshot the os & data disks 'os_snapshot': 'oSnapshot', 'os_disk': 'sDisk', 'data_snapshot': 'dSnapshot', 'data_disk': 'dDisk' }) self.cmd('snapshot create -g {rg} -n {os_snapshot} --source {origin_os_disk}') self.cmd('disk create -g {rg} -n {os_disk} --source {os_snapshot}') self.cmd('snapshot create -g {rg} -n {data_snapshot} --source {origin_data_disk}') self.cmd('disk create -g {rg} -n {data_disk} --source {data_snapshot}') # rebuild a new vm # (os disk can be resized) self.cmd('vm create -g {rg} -n vm2 --attach-os-disk {os_disk} --attach-data-disks {data_disk} --data-disk-sizes-gb 3 --os-disk-size-gb 100 --os-type linux', checks=self.check('powerState', 'VM running')) self.cmd('vm show -g {rg} -n vm2', checks=[ self.check('length(storageProfile.dataDisks)', 2), self.check('storageProfile.dataDisks[0].diskSizeGb', 3), self.check('storageProfile.dataDisks[0].managedDisk.storageAccountType', 'Premium_LRS'), self.check('storageProfile.osDisk.diskSizeGb', 100) ]) @ResourceGroupPreparer() def test_vm_create_by_attach_unmanaged_os_and_data_disks(self, resource_group): # creating a vm self.cmd('vm create -g {rg} -n vm1 --use-unmanaged-disk --image centos --admin-username centosadmin --admin-password testPassword0 --authentication-type password') self.cmd('vm unmanaged-disk attach -g {rg} --vm-name vm1 --new --size-gb 2') result = self.cmd('vm show -g {rg} -n vm1').get_output_in_json() self.kwargs['os_disk_vhd'] = result['storageProfile']['osDisk']['vhd']['uri'] self.kwargs['data_disk_vhd'] = result['storageProfile']['dataDisks'][0]['vhd']['uri'] # delete the vm to end vhd's leases so they can be used to create a new vm through attaching self.cmd('vm deallocate -g {rg} -n vm1') self.cmd('vm delete -g {rg} -n vm1 -y') # rebuild a new vm self.cmd('vm create -g {rg} -n vm2 --attach-os-disk {os_disk_vhd} --attach-data-disks {data_disk_vhd} --os-type linux --use-unmanaged-disk', checks=self.check('powerState', 'VM running')) class VMManagedDiskScenarioTest(ScenarioTest): @ResourceGroupPreparer(name_prefix='cli_test_managed_disk') def test_vm_managed_disk(self, resource_group): self.kwargs.update({ 'loc': 'westus', 'disk1': 'd1', 'disk2': 'd2', 'snapshot1': 's1', 'snapshot2': 's2', 'image': 'i1', 'image_2': 'i2', 'image_3': 'i3' }) # create a disk and update data_disk = self.cmd('disk create -g {rg} -n {disk1} --size-gb 1 --tags tag1=d1', checks=[ self.check('sku.name', 'Premium_LRS'), self.check('diskSizeGb', 1), self.check('tags.tag1', 'd1') ]).get_output_in_json() self.cmd('disk update -g {rg} -n {disk1} --size-gb 10 --sku Standard_LRS', checks=[ self.check('sku.name', 'Standard_LRS'), self.check('diskSizeGb', 10) ]) # get SAS token result = self.cmd('disk grant-access -g {rg} -n {disk1} --duration-in-seconds 10').get_output_in_json() self.assertTrue('sv=' in result['accessSas']) # create another disk by importing from the disk1 self.kwargs['disk1_id'] = data_disk['id'] data_disk2 = self.cmd('disk create -g {rg} -n {disk2} --source {disk1_id}').get_output_in_json() # create a snpashot os_snapshot = self.cmd('snapshot create -g {rg} -n {snapshot1} --size-gb 1 --sku Premium_LRS --tags tag1=s1', checks=[ self.check('sku.name', 'Premium_LRS'), self.check('diskSizeGb', 1), self.check('tags.tag1', 's1') ]).get_output_in_json() # update the sku self.cmd('snapshot update -g {rg} -n {snapshot1} --sku Standard_LRS', checks=[ self.check('sku.name', 'Standard_LRS'), self.check('diskSizeGb', 1) ]) # create another snapshot by importing from the disk1 data_snapshot = self.cmd('snapshot create -g {rg} -n {snapshot2} --source {disk1} --sku Premium_LRS').get_output_in_json() self.kwargs.update({ 'snapshot1_id': os_snapshot['id'], 'snapshot2_id': data_snapshot['id'], 'disk2_id': data_disk2['id'] }) # till now, image creation doesn't inspect the disk for os, so the command below should succeed with junk disk self.cmd('image create -g {rg} -n {image} --source {snapshot1} --data-disk-sources {disk1} {snapshot2_id} {disk2_id} --os-type Linux --tags tag1=i1', checks=[ self.check('storageProfile.osDisk.osType', 'Linux'), self.check('storageProfile.osDisk.snapshot.id', '{snapshot1_id}'), self.check('length(storageProfile.dataDisks)', 3), self.check('storageProfile.dataDisks[0].lun', 0), self.check('storageProfile.dataDisks[1].lun', 1), self.check('tags.tag1', 'i1') ]) # test that images can be created with different storage skus and os disk caching settings. self.cmd('image create -g {rg} -n {image_2} --source {snapshot1} --data-disk-sources {disk1} {snapshot2_id} {disk2_id}' ' --os-type Linux --tags tag1=i1 --storage-sku Premium_LRS --os-disk-caching None', checks=[ self.check('storageProfile.osDisk.storageAccountType', 'Premium_LRS'), self.check('storageProfile.osDisk.osType', 'Linux'), self.check('storageProfile.osDisk.snapshot.id', '{snapshot1_id}'), self.check('length(storageProfile.dataDisks)', 3), self.check('storageProfile.dataDisks[0].lun', 0), self.check('storageProfile.dataDisks[1].lun', 1), self.check('storageProfile.osDisk.caching', 'None'), self.check('tags.tag1', 'i1') ]) self.cmd('image create -g {rg} -n {image_3} --source {snapshot1} --data-disk-sources {disk1} {snapshot2_id} {disk2_id}' ' --os-type Linux --tags tag1=i1 --storage-sku Standard_LRS --os-disk-caching ReadWrite', checks=[ self.check('storageProfile.osDisk.storageAccountType', 'Standard_LRS'), self.check('storageProfile.osDisk.caching', 'ReadWrite') ]) class ComputeListSkusScenarioTest(ScenarioTest): @unittest.skip("Need to check this") @AllowLargeResponse(size_kb=99999) def test_list_compute_skus_table_output(self): result = self.cmd('vm list-skus -l eastus2 -otable') lines = result.output.split('\n') # 1st line is header self.assertEqual(lines[0].split(), ['ResourceType', 'Locations', 'Name', 'Zones', 'Restrictions']) # spot check the first 4 entries fd_found, ud_found, size_found, zone_found = False, False, False, False for line in lines[2:]: parts = line.split() if not fd_found and (parts[:4] == ['availabilitySets', 'eastus2', 'Classic', 'None']): fd_found = True elif not ud_found and (parts[:4] == ['availabilitySets', 'eastus2', 'Aligned', 'None']): ud_found = True elif not size_found and parts[:3] == ['disks', 'eastus2', 'Standard_LRS']: size_found = True elif not zone_found and parts[3] == '1,2,3': zone_found = True self.assertTrue(fd_found) self.assertTrue(ud_found) self.assertTrue(size_found) self.assertTrue(zone_found) @unittest.skip("Need to check this") @AllowLargeResponse(size_kb=16144) def test_list_compute_skus_filter(self): result = self.cmd('vm list-skus -l eastus2 --size Standard_DS1_V2 --zone').get_output_in_json() self.assertTrue(result and len(result) == len([x for x in result if x['name'] == 'Standard_DS1_v2' and x['locationInfo'][0]['zones']])) result = self.cmd('vm list-skus -l westus --resource-type disks').get_output_in_json() self.assertTrue(result and len(result) == len([x for x in result if x['resourceType'] == 'disks'])) class VMExtensionScenarioTest(ScenarioTest): @ResourceGroupPreparer(name_prefix='cli_test_vm_extension') def test_vm_extension(self, resource_group): user_name = 'foouser1' config_file = _write_config_file(user_name) self.kwargs.update({ 'vm': 'myvm', 'pub': 'Microsoft.OSTCExtensions', 'ext': 'VMAccessForLinux', 'config': config_file, 'user': user_name }) self.cmd('vm create -n {vm} -g {rg} --image UbuntuLTS --authentication-type password --admin-username user11 --admin-password testPassword0') self.cmd('vm extension list --vm-name {vm} --resource-group {rg}', checks=self.check('length([])', 0)) self.cmd('vm extension set -n {ext} --publisher {pub} --version 1.2 --vm-name {vm} --resource-group {rg} --protected-settings "{config}" --force-update') result = self.cmd('vm get-instance-view -n {vm} -g {rg}', checks=[ self.check('*.extensions[0].name', ['VMAccessForLinux']), ]).get_output_in_json() # ensure the minor version is 2+ minor_version = int(result['instanceView']['extensions'][0]['typeHandlerVersion'].split('.')[1]) self.assertGreater(minor_version, 2) result = self.cmd('vm extension show --resource-group {rg} --vm-name {vm} --name {ext}', checks=[ self.check('type(@)', 'object'), self.check('name', '{ext}'), self.check('resourceGroup', '{rg}'), ]).get_output_in_json() uuid.UUID(result['forceUpdateTag']) self.cmd('vm extension delete --resource-group {rg} --vm-name {vm} --name {ext}') @ResourceGroupPreparer(name_prefix='cli_test_vm_extension_2') def test_vm_extension_instance_name(self, resource_group): user_name = 'foouser1' config_file = _write_config_file(user_name) self.kwargs.update({ 'vm': 'myvm', 'pub': 'Microsoft.OSTCExtensions', 'ext_type': 'VMAccessForLinux', 'config': config_file, 'user': user_name, 'ext_name': 'MyAccessExt' }) self.cmd('vm create -n {vm} -g {rg} --image UbuntuLTS --authentication-type password --admin-username user11 --admin-password testPassword0') self.cmd('vm extension set -n {ext_type} --publisher {pub} --version 1.2 --vm-name {vm} --resource-group {rg} ' '--protected-settings "{config}" --extension-instance-name {ext_name}') self.cmd('vm extension show --resource-group {rg} --vm-name {vm} --name {ext_name}', checks=[ self.check('name', '{ext_name}'), self.check('virtualMachineExtensionType', '{ext_type}') ]) self.cmd('vm extension delete --resource-group {rg} --vm-name {vm} --name {ext_name}') class VMMachineExtensionImageScenarioTest(ScenarioTest): def test_vm_machine_extension_image(self): self.kwargs.update({ 'loc': 'westus', 'pub': 'Microsoft.Azure.Diagnostics', 'ext': 'IaaSDiagnostics', 'ver': '1.6.4.0' }) self.cmd('vm extension image list-names --location {loc} --publisher {pub}', checks=[ self.check('type(@)', 'array'), self.check("length([?location == '{loc}']) == length(@)", True), ]) self.cmd('vm extension image list-versions --location {loc} -p {pub} --name {ext}', checks=[ self.check('type(@)', 'array'), self.check("length([?location == '{loc}']) == length(@)", True), ]) self.cmd('vm extension image show --location {loc} -p {pub} --name {ext} --version {ver}', checks=[ self.check('type(@)', 'object'), self.check('location', '{loc}'), self.check("contains(id, '/Providers/Microsoft.Compute/Locations/{loc}/Publishers/{pub}/ArtifactTypes/VMExtension/Types/{ext}/Versions/{ver}')", True) ]) class VMExtensionImageSearchScenarioTest(LiveScenarioTest): def test_vm_extension_image_search(self): # pick this specific name, so the search will be under one publisher. This avoids # the parallel searching behavior that causes incomplete VCR recordings. self.kwargs.update({ 'pub': 'Test.Microsoft.VisualStudio.Services', 'image': 'TeamServicesAgentLinux1' }) self.cmd('vm extension image list -l westus --publisher {pub} --name {image}', checks=[ self.check('type(@)', 'array'), self.check("length([?name == '{image}']) == length(@)", True) ]) class VMCreateUbuntuScenarioTest(ScenarioTest): @ResourceGroupPreparer(name_prefix='cli_test_vm_create_ubuntu') def test_vm_create_ubuntu(self, resource_group, resource_group_location): self.kwargs.update({ 'username': 'ubuntu', 'vm': 'cli-test-vm2', 'image': 'UbuntuLTS', 'auth': 'ssh', 'ssh_key': TEST_SSH_KEY_PUB, 'loc': resource_group_location }) self.cmd('vm create --resource-group {rg} --admin-username {username} --name {vm} --authentication-type {auth} --image {image} --ssh-key-value \'{ssh_key}\' --location {loc} --data-disk-sizes-gb 1 --data-disk-caching ReadOnly') self.cmd('vm show -g {rg} -n {vm}', checks=[ self.check('provisioningState', 'Succeeded'), self.check('osProfile.adminUsername', '{username}'), self.check('osProfile.computerName', '{vm}'), self.check('osProfile.linuxConfiguration.disablePasswordAuthentication', True), self.check('osProfile.linuxConfiguration.ssh.publicKeys[0].keyData', '{ssh_key}'), self.check('storageProfile.dataDisks[0].managedDisk.storageAccountType', 'Premium_LRS'), self.check('storageProfile.osDisk.managedDisk.storageAccountType', 'Premium_LRS'), self.check('storageProfile.dataDisks[0].lun', 0), self.check('storageProfile.dataDisks[0].caching', 'ReadOnly'), ]) # test for idempotency--no need to reverify, just ensure the command doesn't fail self.cmd('vm create --resource-group {rg} --admin-username {username} --name {vm} --authentication-type {auth} --image {image} --ssh-key-value \'{ssh_key}\' --location {loc} --data-disk-sizes-gb 1 --data-disk-caching ReadOnly ') class VMCreateExistingOptions(ScenarioTest): @ResourceGroupPreparer(name_prefix='cli_test_vm_create_existing') @StorageAccountPreparer() def test_vm_create_existing_options(self, resource_group, storage_account): self.kwargs.update({ 'availset': 'vrfavailset', 'pubip': 'vrfpubip', 'vnet': 'vrfvnet', 'subnet': 'vrfsubnet', 'nsg': 'vrfnsg', 'vm': 'vrfvm', 'disk': 'vrfosdisk', 'container': 'vrfcontainer', 'ssh_key': TEST_SSH_KEY_PUB }) self.cmd('vm availability-set create --name {availset} -g {rg} --unmanaged --platform-fault-domain-count 3 --platform-update-domain-count 3') self.cmd('network public-ip create --name {pubip} -g {rg}') self.cmd('network vnet create --name {vnet} -g {rg} --subnet-name {subnet}') self.cmd('network nsg create --name {nsg} -g {rg}') self.cmd('vm create --image UbuntuLTS --os-disk-name {disk} --vnet-name {vnet} --subnet {subnet} --availability-set {availset} --public-ip-address {pubip} -l "West US" --nsg {nsg} --use-unmanaged-disk --size Standard_DS2 --admin-username user11 --storage-account {sa} --storage-container-name {container} -g {rg} --name {vm} --ssh-key-value \'{ssh_key}\'') self.cmd('vm availability-set show -n {availset} -g {rg}', checks=self.check('virtualMachines[0].id.ends_with(@, \'{}\')'.format(self.kwargs['vm'].upper()), True)) self.cmd('network nsg show -n {nsg} -g {rg}', checks=self.check('networkInterfaces[0].id.ends_with(@, \'{vm}VMNic\')', True)) self.cmd('network nic show -n {vm}VMNic -g {rg}', checks=self.check('ipConfigurations[0].publicIpAddress.id.ends_with(@, \'{pubip}\')', True)) self.cmd('vm show -n {vm} -g {rg}', checks=self.check('storageProfile.osDisk.vhd.uri', 'https://{sa}.blob.core.windows.net/{container}/{disk}.vhd')) class VMCreateExistingIdsOptions(ScenarioTest): @ResourceGroupPreparer(name_prefix='cli_test_vm_create_existing_ids') @StorageAccountPreparer() def test_vm_create_existing_ids_options(self, resource_group, storage_account): from azure.cli.core.commands.client_factory import get_subscription_id from msrestazure.tools import resource_id, is_valid_resource_id subscription_id = self.get_subscription_id() self.kwargs.update({ 'availset': 'vrfavailset', 'pubip': 'vrfpubip', 'vnet': 'vrfvnet', 'subnet': 'vrfsubnet', 'nsg': 'vrfnsg', 'vm': 'vrfvm', 'disk': 'vrfosdisk', 'container': 'vrfcontainer', 'ssh_key': TEST_SSH_KEY_PUB }) self.cmd('vm availability-set create --name {availset} -g {rg} --unmanaged --platform-fault-domain-count 3 --platform-update-domain-count 3') self.cmd('network public-ip create --name {pubip} -g {rg}') self.cmd('network vnet create --name {vnet} -g {rg} --subnet-name {subnet}') self.cmd('network nsg create --name {nsg} -g {rg}') rg = self.kwargs['rg'] self.kwargs.update({ 'availset_id': resource_id(subscription=subscription_id, resource_group=rg, namespace='Microsoft.Compute', type='availabilitySets', name=self.kwargs['availset']), 'pubip_id': resource_id(subscription=subscription_id, resource_group=rg, namespace='Microsoft.Network', type='publicIpAddresses', name=self.kwargs['pubip']), 'subnet_id': resource_id(subscription=subscription_id, resource_group=rg, namespace='Microsoft.Network', type='virtualNetworks', child_type_1='subnets', name=self.kwargs['vnet'], child_name_1=self.kwargs['subnet']), 'nsg_id': resource_id(subscription=subscription_id, resource_group=rg, namespace='Microsoft.Network', type='networkSecurityGroups', name=self.kwargs['nsg']) }) assert is_valid_resource_id(self.kwargs['availset_id']) assert is_valid_resource_id(self.kwargs['pubip_id']) assert is_valid_resource_id(self.kwargs['subnet_id']) assert is_valid_resource_id(self.kwargs['nsg_id']) self.cmd('vm create --image UbuntuLTS --os-disk-name {disk} --subnet {subnet_id} --availability-set {availset_id} --public-ip-address {pubip_id} -l "West US" --nsg {nsg_id} --use-unmanaged-disk --size Standard_DS2 --admin-username user11 --storage-account {sa} --storage-container-name {container} -g {rg} --name {vm} --ssh-key-value \'{ssh_key}\'') self.cmd('vm availability-set show -n {availset} -g {rg}', checks=self.check('virtualMachines[0].id.ends_with(@, \'{}\')'.format(self.kwargs['vm'].upper()), True)) self.cmd('network nsg show -n {nsg} -g {rg}', checks=self.check('networkInterfaces[0].id.ends_with(@, \'{vm}VMNic\')', True)) self.cmd('network nic show -n {vm}VMNic -g {rg}', checks=self.check('ipConfigurations[0].publicIpAddress.id.ends_with(@, \'{pubip}\')', True)) self.cmd('vm show -n {vm} -g {rg}', checks=self.check('storageProfile.osDisk.vhd.uri', 'https://{sa}.blob.core.windows.net/{container}/{disk}.vhd')) # region VMSS Tests class VMSSCreateAndModify(ScenarioTest): @ResourceGroupPreparer(name_prefix='cli_test_vmss_create_and_modify') def test_vmss_create_and_modify(self): self.kwargs.update({ 'vmss': 'vmss1', 'count': 5, 'new_count': 4 }) self.cmd('vmss create --admin-password testPassword0 --name {vmss} -g {rg} --admin-username myadmin --image Win2012R2Datacenter --instance-count {count}') self.cmd('vmss show --name {vmss} -g {rg}', checks=[ self.check('virtualMachineProfile.priority', None), self.check('sku.name', 'Standard_DS1_v2'), ]) self.cmd('vmss list', checks=self.check('type(@)', 'array')) self.cmd('vmss list --resource-group {rg}', checks=[ self.check('type(@)', 'array'), self.check('length(@)', 1), self.check('[0].name', '{vmss}'), self.check('[0].resourceGroup', '{rg}') ]) self.cmd('vmss list-skus --resource-group {rg} --name {vmss}', checks=self.check('type(@)', 'array')) self.cmd('vmss show --resource-group {rg} --name {vmss}', checks=[ self.check('type(@)', 'object'), self.check('name', '{vmss}'), self.check('resourceGroup', '{rg}') ]) result = self.cmd('vmss list-instances --resource-group {rg} --name {vmss} --query "[].instanceId"').get_output_in_json() self.kwargs['instance_ids'] = result[3] + ' ' + result[4] self.cmd('vmss update-instances --resource-group {rg} --name {vmss} --instance-ids {instance_ids}') self.cmd('vmss get-instance-view --resource-group {rg} --name {vmss}', checks=[ self.check('type(@)', 'object'), self.check('type(virtualMachine)', 'object'), self.check('type(statuses)', 'array') ]) self.cmd('vmss stop --resource-group {rg} --name {vmss}') self.cmd('vmss start --resource-group {rg} --name {vmss}') self.cmd('vmss restart --resource-group {rg} --name {vmss}') self.cmd('vmss scale --resource-group {rg} --name {vmss} --new-capacity {new_count}') self.cmd('vmss show --resource-group {rg} --name {vmss}', checks=[ self.check('sku.capacity', '{new_count}'), self.check('virtualMachineProfile.osProfile.windowsConfiguration.enableAutomaticUpdates', True) ]) result = self.cmd('vmss list-instances --resource-group {rg} --name {vmss} --query "[].instanceId"').get_output_in_json() self.kwargs['instance_ids'] = result[2] + ' ' + result[3] self.cmd('vmss delete-instances --resource-group {rg} --name {vmss} --instance-ids {instance_ids}') self.cmd('vmss get-instance-view --resource-group {rg} --name {vmss}', checks=[ self.check('type(@)', 'object'), self.check('type(virtualMachine)', 'object'), self.check('virtualMachine.statusesSummary[0].count', self.kwargs['new_count'] - 2) ]) self.cmd('vmss deallocate --resource-group {rg} --name {vmss}') self.cmd('vmss delete --resource-group {rg} --name {vmss}') self.cmd('vmss list --resource-group {rg}', checks=self.is_empty()) class VMSSCreateOptions(ScenarioTest): @ResourceGroupPreparer(name_prefix='cli_test_vmss_create_options') def test_vmss_create_options(self, resource_group): self.kwargs.update({ 'vmss': 'vrfvmss', 'count': 2, 'caching': 'ReadWrite', 'update': 'automatic', 'ip': 'vrfpubip' }) self.cmd('network public-ip create --name {ip} -g {rg}') self.cmd('vmss create --image Debian --admin-password testPassword0 -l westus -g {rg} -n {vmss} --disable-overprovision --instance-count {count} --os-disk-caching {caching} --upgrade-policy-mode {update} --authentication-type password --admin-username myadmin --public-ip-address {ip} --data-disk-sizes-gb 1 --vm-sku Standard_D2_v2') self.cmd('network lb show -g {rg} -n {vmss}lb ', checks=self.check('frontendIpConfigurations[0].publicIpAddress.id.ends_with(@, \'{ip}\')', True)) self.cmd('vmss show -g {rg} -n {vmss}', checks=[ self.check('sku.capacity', '{count}'), self.check('virtualMachineProfile.storageProfile.osDisk.caching', '{caching}'), self.check('upgradePolicy.mode', self.kwargs['update'].title()), self.check('singlePlacementGroup', True), ]) self.kwargs['id'] = self.cmd('vmss list-instances -g {rg} -n {vmss} --query "[].instanceId"').get_output_in_json()[0] self.cmd('vmss show -g {rg} -n {vmss} --instance-id {id}', checks=self.check('instanceId', '{id}')) self.cmd('vmss disk attach -g {rg} --vmss-name {vmss} --size-gb 3') self.cmd('vmss show -g {rg} -n {vmss}', checks=[ self.check('length(virtualMachineProfile.storageProfile.dataDisks)', 2), self.check('virtualMachineProfile.storageProfile.dataDisks[0].diskSizeGb', 1), self.check('virtualMachineProfile.storageProfile.dataDisks[0].managedDisk.storageAccountType', 'Standard_LRS'), self.check('virtualMachineProfile.storageProfile.dataDisks[1].diskSizeGb', 3), self.check('virtualMachineProfile.storageProfile.dataDisks[1].managedDisk.storageAccountType', 'Standard_LRS'), ]) self.cmd('vmss disk detach -g {rg} --vmss-name {vmss} --lun 1') self.cmd('vmss show -g {rg} -n {vmss}', checks=[ self.check('length(virtualMachineProfile.storageProfile.dataDisks)', 1), self.check('virtualMachineProfile.storageProfile.dataDisks[0].lun', 0), self.check('virtualMachineProfile.storageProfile.dataDisks[0].diskSizeGb', 1) ]) @ResourceGroupPreparer(name_prefix='cli_test_vmss_create_options') def test_vmss_update_instance_disks(self, resource_group): self.kwargs.update({ 'vmss': 'vmss1', 'caching': 'ReadWrite', 'update': 'automatic', 'ip': 'vrfpubip', 'disk': 'd1', 'instance_id': '1', 'sku': 'Standard_LRS' }) self.cmd('vmss create --image Debian --admin-username clitest1 --admin-password testPassword0 -l westus -g {rg} -n {vmss} --storage-sku {sku}') self.cmd('disk create -g {rg} -n {disk} --size-gb 1 --sku {sku}') instances = self.cmd('vmss list-instances -g {rg} -n {vmss}').get_output_in_json() self.kwargs['instance_id'] = instances[0]['instanceId'] self.cmd('vmss disk attach -g {rg} --vmss-name {vmss} --instance-id {instance_id} --disk {disk} --caching {caching}') self.cmd("vmss list-instances -g {rg} -n {vmss} --query \"[?instanceId=='{instance_id}']\"", checks=[ self.check('length([0].storageProfile.dataDisks)', 1), self.check('[0].storageProfile.dataDisks[0].caching', self.kwargs['caching']) ]) self.cmd('vmss disk detach -g {rg} --vmss-name {vmss} --instance-id {instance_id} --lun 0') self.cmd("vmss list-instances -g {rg} -n {vmss} --query \"[?instanceId=='{instance_id}']\"", checks=[ self.check('length([0].storageProfile.dataDisks)', 0) ]) @ResourceGroupPreparer(name_prefix='cli_test_vmss_create_options') def test_vmss_create_auth(self, resource_group): self.kwargs.update({ 'vmss_1': 'vmss1', 'vmss_2': 'vmss2', 'ssh_key': TEST_SSH_KEY_PUB, }) self.cmd('vmss create --image Debian -l westus -g {rg} -n {vmss_1} --authentication-type all ' ' --admin-username myadmin --admin-password testPassword0 --ssh-key-value \'{ssh_key}\'', checks=[ self.check('vmss.virtualMachineProfile.osProfile.linuxConfiguration.disablePasswordAuthentication', False), self.check('vmss.virtualMachineProfile.osProfile.linuxConfiguration.ssh.publicKeys[0].keyData', TEST_SSH_KEY_PUB) ]) self.cmd('vmss create --image Debian -l westus -g {rg} -n {vmss_2} --authentication-type ssh ' ' --admin-username myadmin --ssh-key-value \'{ssh_key}\'', checks=[ self.check('vmss.virtualMachineProfile.osProfile.linuxConfiguration.disablePasswordAuthentication', True) ]) class VMSSCreateBalancerOptionsTest(ScenarioTest): # pylint: disable=too-many-instance-attributes @ResourceGroupPreparer(name_prefix='cli_test_vmss_create_none') def test_vmss_create_none_options(self, resource_group): self.kwargs.update({ 'vmss': 'vmss1', 'ssh_key': TEST_SSH_KEY_PUB, 'quotes': '""' if platform.system() == 'Windows' else "''" }) self.cmd('vmss create -n {vmss} -g {rg} --image Debian --load-balancer {quotes} --admin-username ubuntu --ssh-key-value \'{ssh_key}\' --public-ip-address {quotes} --tags {quotes} --vm-sku Basic_A1') self.cmd('vmss show -n {vmss} -g {rg}', checks=[ self.check('tags', {}), self.check('virtualMachineProfile.networkProfile.networkInterfaceConfigurations.ipConfigurations.loadBalancerBackendAddressPools', None), self.check('sku.name', 'Basic_A1'), self.check('sku.tier', 'Basic') ]) self.cmd('vmss update -g {rg} -n {vmss} --set tags.test=success', checks=self.check('tags.test', 'success')) self.cmd('network public-ip show -n {vmss}PublicIP -g {rg}', expect_failure=True) @ResourceGroupPreparer(name_prefix='cli_test_vmss_create_w_ag') def test_vmss_create_with_app_gateway(self, resource_group): self.kwargs.update({ 'vmss': 'vmss1', 'ssh_key': TEST_SSH_KEY_PUB }) self.cmd("vmss create -n {vmss} -g {rg} --image Debian --admin-username clittester --ssh-key-value '{ssh_key}' --app-gateway apt1 --instance-count 5", checks=self.check('vmss.provisioningState', 'Succeeded')) # spot check it is using gateway self.cmd('vmss show -n {vmss} -g {rg}', checks=[ self.check('sku.capacity', 5), self.check('virtualMachineProfile.networkProfile.networkInterfaceConfigurations[0].ipConfigurations[0].applicationGatewayBackendAddressPools[0].resourceGroup', '{rg}') ]) @ResourceGroupPreparer(name_prefix='cli_test_vmss_create_existing_lb') def test_vmss_existing_lb(self, resource_group): self.kwargs.update({ 'vmss': 'vmss1', 'lb': 'lb1' }) self.cmd('network lb create -g {rg} -n {lb} --backend-pool-name test') self.cmd('vmss create -g {rg} -n {vmss} --load-balancer {lb} --image UbuntuLTS --admin-username clitester --admin-password TestTest12#$') @ResourceGroupPreparer() def test_vmss_single_placement_group_default_to_std_lb(self, resource_group): self.kwargs.update({ 'vmss': 'vmss123' }) self.cmd('vmss create -g {rg} -n {vmss} --admin-username clitester --admin-password PasswordPassword1! --image debian --single-placement-group false') self.cmd('vmss show -g {rg} -n {vmss}', checks=[ self.check('singlePlacementGroup', False) ]) self.cmd('network lb list -g {rg}', checks=[ self.check('[0].sku.name', 'Standard') ]) self.cmd('network public-ip list -g {rg}', checks=[ self.check('[0].sku.name', 'Standard') ]) class VMSSCreatePublicIpPerVm(ScenarioTest): # pylint: disable=too-many-instance-attributes @ResourceGroupPreparer(name_prefix='cli_test_vmss_create_w_ips') def test_vmss_public_ip_per_vm_custom_domain_name(self, resource_group): self.kwargs.update({ 'vmss': 'vmss1', 'nsg': 'testnsg', 'ssh_key': TEST_SSH_KEY_PUB, 'dns_label': self.create_random_name('clivmss', 20) }) nsg_result = self.cmd('network nsg create -g {rg} -n {nsg}').get_output_in_json() self.cmd("vmss create -n {vmss} -g {rg} --image Debian --admin-username clittester --ssh-key-value '{ssh_key}' --vm-domain-name {dns_label} --public-ip-per-vm --dns-servers 10.0.0.6 10.0.0.5 --nsg {nsg}", checks=self.check('vmss.provisioningState', 'Succeeded')) result = self.cmd("vmss show -n {vmss} -g {rg}", checks=[ self.check('length(virtualMachineProfile.networkProfile.networkInterfaceConfigurations[0].dnsSettings.dnsServers)', 2), self.check('virtualMachineProfile.networkProfile.networkInterfaceConfigurations[0].dnsSettings.dnsServers[0]', '10.0.0.6'), self.check('virtualMachineProfile.networkProfile.networkInterfaceConfigurations[0].dnsSettings.dnsServers[1]', '10.0.0.5'), self.check('virtualMachineProfile.networkProfile.networkInterfaceConfigurations[0].networkSecurityGroup.id', nsg_result['NewNSG']['id']) ]) # spot check we have the domain name and have a public ip result = self.cmd('vmss list-instance-public-ips -n {vmss} -g {rg}').get_output_in_json() self.assertEqual(len(result[0]['ipAddress'].split('.')), 4) self.assertTrue(result[0]['dnsSettings']['domainNameLabel'].endswith(self.kwargs['dns_label'])) # class SecretsScenarioTest(ScenarioTest): # pylint: disable=too-many-instance-attributes # @ResourceGroupPreparer(name_prefix='cli_test_vm_secrets') # def test_vm_create_linux_secrets(self, resource_group, resource_group_location): # self.kwargs.update({ # 'admin': 'ubuntu', # 'loc': 'westus', # 'image': 'UbuntuLTS', # 'auth': 'ssh', # 'ssh_key': TEST_SSH_KEY_PUB, # 'vm': 'vm-name', # 'secrets': json.dumps([{'sourceVault': {'id': 'id'}, 'vaultCertificates': []}]), # 'vault': self.create_random_name('vmlinuxkv', 20) # }) # message = 'Secret is missing vaultCertificates array or it is empty at index 0' # with self.assertRaisesRegexp(CLIError, message): # self.cmd('vm create -g {rg} -n {vm} --admin-username {admin} --authentication-type {auth} --image {image} --ssh-key-value \'{ssh_key}\' -l {loc} --secrets \'{secrets}\' --nsg-rule NONE') # vault_out = self.cmd('keyvault create -g {rg} -n {vault} -l {loc} --enabled-for-deployment true --enabled-for-template-deployment true').get_output_in_json() # time.sleep(60) # self.kwargs['policy_path'] = os.path.join(TEST_DIR, 'keyvault', 'policy.json') # self.cmd('keyvault certificate create --vault-name {vault} -n cert1 -p @"{policy_path}"') # self.kwargs['secret_out'] = self.cmd('keyvault secret list-versions --vault-name {vault} -n cert1 --query "[?attributes.enabled].id" -o tsv').output.strip() # vm_format = self.cmd('vm secret format -s {secret_out}').get_output_in_json() # self.kwargs['secrets'] = json.dumps(vm_format) # self.cmd('vm create -g {rg} -n {vm} --admin-username {admin} --authentication-type {auth} --image {image} --ssh-key-value \'{ssh_key}\' -l {loc} --secrets \'{secrets}\' --nsg-rule NONE') # self.cmd('vm show -g {rg} -n {vm}', checks=[ # self.check('provisioningState', 'Succeeded'), # self.check('osProfile.secrets[0].sourceVault.id', vault_out['id']), # self.check('osProfile.secrets[0].vaultCertificates[0].certificateUrl', '{secret_out}') # ]) # @ResourceGroupPreparer() # def test_vm_create_windows_secrets(self, resource_group, resource_group_location): # self.kwargs.update({ # 'admin': 'windowsUser', # 'loc': 'westus', # 'image': 'Win2012R2Datacenter', # 'vm': 'vm-name', # 'secrets': json.dumps([{'sourceVault': {'id': 'id'}, 'vaultCertificates': [{'certificateUrl': 'certurl'}]}]), # 'vault': self.create_random_name('vmkeyvault', 20) # }) # message = 'Secret is missing certificateStore within vaultCertificates array at secret index 0 and ' \ # 'vaultCertificate index 0' # with self.assertRaisesRegexp(CLIError, message): # self.cmd('vm create -g {rg} -n {vm} --admin-username {admin} --admin-password VerySecret!12 --image {image} -l {loc} --secrets \'{secrets}\' --nsg-rule NONE') # vault_out = self.cmd( # 'keyvault create -g {rg} -n {vault} -l {loc} --enabled-for-deployment true --enabled-for-template-deployment true').get_output_in_json() # time.sleep(60) # self.kwargs['policy_path'] = os.path.join(TEST_DIR, 'keyvault', 'policy.json') # self.cmd('keyvault certificate create --vault-name {vault} -n cert1 -p @"{policy_path}"') # self.kwargs['secret_out'] = self.cmd('keyvault secret list-versions --vault-name {vault} -n cert1 --query "[?attributes.enabled].id" -o tsv').output.strip() # self.kwargs['secrets'] = self.cmd('vm secret format -s {secret_out} --certificate-store "My"').get_output_in_json() # self.cmd('vm create -g {rg} -n {vm} --admin-username {admin} --admin-password VerySecret!12 --image {image} -l {loc} --secrets "{secrets}" --nsg-rule NONE') # self.cmd('vm show -g {rg} -n {vm}', checks=[ # self.check('provisioningState', 'Succeeded'), # self.check('osProfile.secrets[0].sourceVault.id', vault_out['id']), # self.check('osProfile.secrets[0].vaultCertificates[0].certificateUrl', self.kwargs['secret_out']), # self.check('osProfile.secrets[0].vaultCertificates[0].certificateStore', 'My') # ]) # class VMSSCreateLinuxSecretsScenarioTest(ScenarioTest): # @ResourceGroupPreparer(name_prefix='cli_test_vmss_create_linux_secrets') # @AllowLargeResponse() # def test_vmss_create_linux_secrets(self, resource_group): # self.kwargs.update({ # 'loc': 'westus', # 'vmss': 'vmss1-name', # 'secrets': json.dumps([{'sourceVault': {'id': 'id'}, 'vaultCertificates': []}]), # 'vault': self.create_random_name('vmsslinuxkv', 20), # 'secret': 'mysecret', # 'ssh_key': TEST_SSH_KEY_PUB # }) # vault_out = self.cmd('keyvault create -g {rg} -n {vault} -l {loc} --enabled-for-deployment true --enabled-for-template-deployment true').get_output_in_json() # time.sleep(60) # self.kwargs['policy_path'] = os.path.join(TEST_DIR, 'keyvault', 'policy.json') # self.cmd('keyvault certificate create --vault-name {vault} -n cert1 -p @"{policy_path}"') # self.kwargs['secret_out'] = self.cmd('keyvault secret list-versions --vault-name {vault} -n cert1 --query "[?attributes.enabled].id" -o tsv').output.strip() # vm_format = self.cmd('vm secret format -s {secret_out}').get_output_in_json() # self.kwargs['secrets'] = json.dumps(vm_format) # self.cmd('vmss create -n {vmss} -g {rg} --image Debian --admin-username deploy --ssh-key-value \'{ssh_key}\' --secrets \'{secrets}\'') # self.cmd('vmss show -n {vmss} -g {rg}', checks=[ # self.check('provisioningState', 'Succeeded'), # self.check('virtualMachineProfile.osProfile.secrets[0].sourceVault.id', vault_out['id']), # self.check('virtualMachineProfile.osProfile.secrets[0].vaultCertificates[0].certificateUrl', '{secret_out}') # ]) class VMSSCreateExistingOptions(ScenarioTest): @ResourceGroupPreparer(name_prefix='cli_test_vmss_create_existing_options') def test_vmss_create_existing_options(self): self.kwargs.update({ 'vmss': 'vrfvmss', 'os_disk': 'vrfosdisk', 'container': 'vrfcontainer', 'sku': 'Standard_A3', 'vnet': 'vrfvnet', 'subnet': 'vrfsubnet', 'lb': 'vrflb', 'bepool': 'mybepool', 'ssh_key': TEST_SSH_KEY_PUB }) self.cmd('network vnet create -n {vnet} -g {rg} --subnet-name {subnet}') self.cmd('network lb create --name {lb} -g {rg} --backend-pool-name {bepool}') self.cmd('vmss create --image CentOS --os-disk-name {os_disk} --admin-username ubuntu --vnet-name {vnet} --subnet {subnet} -l "West US" --vm-sku {sku} --storage-container-name {container} -g {rg} --name {vmss} --load-balancer {lb} --ssh-key-value \'{ssh_key}\' --backend-pool-name {bepool} --use-unmanaged-disk') self.cmd('vmss show --name {vmss} -g {rg}', checks=[ self.check('sku.name', '{sku}'), self.check('virtualMachineProfile.storageProfile.osDisk.name', '{os_disk}'), self.check('virtualMachineProfile.storageProfile.osDisk.vhdContainers[0].ends_with(@, \'{container}\')', True) ]) self.cmd('network lb show --name {lb} -g {rg}', checks=self.check('backendAddressPools[0].backendIpConfigurations[0].id.contains(@, \'{vmss}\')', True)) self.cmd('network vnet show --name {vnet} -g {rg}', checks=self.check('subnets[0].ipConfigurations[0].id.contains(@, \'{vmss}\')', True)) class VMSSCreateExistingIdsOptions(ScenarioTest): @ResourceGroupPreparer(name_prefix='cli_test_vmss_create_existing_ids') def test_vmss_create_existing_ids_options(self, resource_group): from msrestazure.tools import resource_id, is_valid_resource_id subscription_id = self.get_subscription_id() self.kwargs.update({ 'vmss': 'vrfvmss', 'os_disk': 'vrfosdisk', 'container': 'vrfcontainer', 'sku': 'Standard_A3', 'vnet': 'vrfvnet', 'subnet': 'vrfsubnet', 'lb': 'vrflb', 'bepool': 'mybepool', 'ssh_key': TEST_SSH_KEY_PUB }) self.cmd('network vnet create -n {vnet} -g {rg} --subnet-name {subnet}') self.cmd('network lb create --name {lb} -g {rg} --backend-pool-name {bepool}') self.kwargs.update({ 'subnet_id': resource_id(subscription=subscription_id, resource_group=resource_group, namespace='Microsoft.Network', type='virtualNetworks', child_type_1='subnets', name=self.kwargs['vnet'], child_name_1=self.kwargs['subnet']), 'lb_id': resource_id(subscription=subscription_id, resource_group=resource_group, namespace='Microsoft.Network', type='loadBalancers', name=self.kwargs['lb']) }) assert is_valid_resource_id(self.kwargs['subnet_id']) assert is_valid_resource_id(self.kwargs['lb_id']) self.cmd('vmss create --image CentOS --os-disk-name {os_disk} --admin-username ubuntu --subnet {subnet_id} -l "West US" --vm-sku {sku} --storage-container-name {container} -g {rg} --name {vmss} --load-balancer {lb_id} --ssh-key-value \'{ssh_key}\' --backend-pool-name {bepool} --use-unmanaged-disk') self.cmd('vmss show --name {vmss} -g {rg}', checks=[ self.check('sku.name', '{sku}'), self.check('virtualMachineProfile.storageProfile.osDisk.name', '{os_disk}'), self.check('virtualMachineProfile.storageProfile.osDisk.vhdContainers[0].ends_with(@, \'{container}\')', True) ]) self.cmd('network lb show --name {lb} -g {rg}', checks=self.check('backendAddressPools[0].backendIpConfigurations[0].id.contains(@, \'{vmss}\')', True)) self.cmd('network vnet show --name {vnet} -g {rg}', checks=self.check('subnets[0].ipConfigurations[0].id.contains(@, \'{vmss}\')', True)) class VMSSVMsScenarioTest(ScenarioTest): def _check_vms_power_state(self, *args): for iid in self.kwargs['instance_ids']: result = self.cmd('vmss get-instance-view --resource-group {{rg}} --name {{vmss}} --instance-id {}'.format(iid)).get_output_in_json() self.assertTrue(result['statuses'][1]['code'] in args) @ResourceGroupPreparer(name_prefix='cli_test_vmss_vms') def test_vmss_vms(self, resource_group): self.kwargs.update({ 'vmss': 'vmss1', 'count': 2, 'instance_ids': [] }) self.cmd('vmss create -g {rg} -n {vmss} --image UbuntuLTS --authentication-type password --admin-username admin123 --admin-password TestTest12#$ --instance-count {count}') instance_list = self.cmd('vmss list-instances --resource-group {rg} --name {vmss}', checks=[ self.check('type(@)', 'array'), self.check('length(@)', '{count}'), self.check("length([].name.starts_with(@, '{vmss}'))", self.kwargs['count']) ]).get_output_in_json() self.kwargs['instance_ids'] = [x['instanceId'] for x in instance_list] self.kwargs['id'] = self.kwargs['instance_ids'][0] self.cmd('vmss show --resource-group {rg} --name {vmss} --instance-id {id}', checks=[ self.check('type(@)', 'object'), self.check('instanceId', '{id}') ]) result = self.cmd('vmss list-instance-connection-info --resource-group {rg} --name {vmss}').get_output_in_json() self.assertTrue(result['instance 0'].split('.')[1], '5000') self.cmd('vmss restart --resource-group {rg} --name {vmss} --instance-ids *') self._check_vms_power_state('PowerState/running', 'PowerState/starting') self.cmd('vmss stop --resource-group {rg} --name {vmss} --instance-ids *') self._check_vms_power_state('PowerState/stopped') self.cmd('vmss start --resource-group {rg} --name {vmss} --instance-ids *') self._check_vms_power_state('PowerState/running', 'PowerState/starting') self.cmd('vmss deallocate --resource-group {rg} --name {vmss} --instance-ids *') self._check_vms_power_state('PowerState/deallocated') self.cmd('vmss delete-instances --resource-group {rg} --name {vmss} --instance-ids *') self.cmd('vmss list-instances --resource-group {rg} --name {vmss}') class VMSSCustomDataScenarioTest(ScenarioTest): @ResourceGroupPreparer(name_prefix='cli_test_vmss_create_custom_data') def test_vmss_create_custom_data(self): self.kwargs.update({ 'vmss': 'vmss-custom-data', 'ssh_key': TEST_SSH_KEY_PUB }) self.cmd('vmss create -n {vmss} -g {rg} --image Debian --admin-username deploy --ssh-key-value "{ssh_key}" --custom-data "#cloud-config\nhostname: myVMhostname"') # custom data is write only, hence we have no automatic way to cross check. Here we just verify VM was provisioned self.cmd('vmss show -n {vmss} -g {rg}', checks=self.check('provisioningState', 'Succeeded')) class VMSSNicScenarioTest(ScenarioTest): @ResourceGroupPreparer(name_prefix='cli_test_vmss_nics') def test_vmss_nics(self): self.kwargs.update({ 'vmss': 'vmss1', }) self.cmd('vmss create -g {rg} -n {vmss} --authentication-type password --admin-username admin123 --admin-password PasswordPassword1! --image Win2012R2Datacenter') self.cmd('vmss nic list -g {rg} --vmss-name {vmss}', checks=[ self.check('type(@)', 'array'), self.check("length([?resourceGroup == '{rg}']) == length(@)", True) ]) result = self.cmd('vmss list-instances -g {rg} -n {vmss}').get_output_in_json() self.kwargs['iid'] = result[0]['instanceId'] nic_list = self.cmd('vmss nic list-vm-nics -g {rg} --vmss-name {vmss} --instance-id {iid}', checks=[ self.check('type(@)', 'array'), self.check("length([?resourceGroup == '{rg}']) == length(@)", True) ]).get_output_in_json() self.kwargs['nic'] = nic_list[0].get('name') self.cmd('vmss nic show --resource-group {rg} --vmss-name {vmss} --instance-id {iid} -n {nic}', checks=[ self.check('type(@)', 'object'), self.check('name', '{nic}'), self.check('resourceGroup', '{rg}') ]) class VMSSCreateIdempotentTest(ScenarioTest): @ResourceGroupPreparer(name_prefix='cli_test_vmss_create_idempotent') def test_vmss_create_idempotent(self, resource_group): self.kwargs.update({'vmss': 'vmss1'}) # run the command twice with the same parameters and verify it does not fail self.cmd('vmss create -g {rg} -n {vmss} --authentication-type password --admin-username admin123 --admin-password PasswordPassword1! --image UbuntuLTS --use-unmanaged-disk') self.cmd('vmss create -g {rg} -n {vmss} --authentication-type password --admin-username admin123 --admin-password PasswordPassword1! --image UbuntuLTS --use-unmanaged-disk') # still 1 vnet and 1 subnet inside self.cmd('network vnet list -g {rg}', checks=[ self.check('length([])', 1), self.check('[0].name', self.kwargs['vmss'] + 'VNET'), self.check('[0].subnets[0].addressPrefix', '10.0.0.0/24'), self.check('length([0].subnets)', 1), ]) class VMSSILBTest(ScenarioTest): @ResourceGroupPreparer(name_prefix='cli_test_vmss_ilb') def test_vmss_with_ilb(self, resource_group): self.kwargs.update({'vmss': 'vmss1'}) self.cmd('vmss create -g {rg} -n {vmss} --admin-username admin123 --admin-password PasswordPassword1! --image centos --instance-count 1 --public-ip-address ""') # TODO: restore error validation when #5155 is addressed # with self.assertRaises(AssertionError) as err: self.cmd('vmss list-instance-connection-info -g {rg} -n {vmss}', expect_failure=True) # self.assertTrue('internal load balancer' in str(err.exception)) @api_version_constraint(ResourceType.MGMT_NETWORK, min_api='2017-08-01') class VMSSLoadBalancerWithSku(ScenarioTest): @ResourceGroupPreparer(name_prefix='cli_test_vmss_lb_sku') def test_vmss_lb_sku(self, resource_group): self.kwargs.update({ 'vmss0': 'vmss0', 'vmss': 'vmss1', 'lb': 'lb1', 'ip': 'pubip1', 'sku': 'standard', 'loc': 'eastus2' }) # default to Basic self.cmd('vmss create -g {rg} -l {loc} -n {vmss0} --image UbuntuLTS --admin-username admin123 --admin-password PasswordPassword1!') self.cmd('network lb list -g {rg}', checks=self.check('[0].sku.name', 'Basic')) self.cmd('network public-ip list -g {rg}', checks=[ self.check('[0].sku.name', 'Basic'), self.check('[0].publicIpAllocationMethod', 'Dynamic') ]) # but you can overrides the defaults self.cmd('vmss create -g {rg} -l {loc} -n {vmss} --lb {lb} --lb-sku {sku} --public-ip-address {ip} --image UbuntuLTS --admin-username admin123 --admin-password PasswordPassword1!') self.cmd('network lb show -g {rg} -n {lb}', checks=self.check('sku.name', 'Standard')) self.cmd('network public-ip show -g {rg} -n {ip}', checks=[ self.check('sku.name', 'Standard'), self.check('publicIpAllocationMethod', 'Static') ]) class VMLiveScenarioTest(LiveScenarioTest): @ResourceGroupPreparer(name_prefix='cli_test_vm_create_progress') def test_vm_create_progress(self, resource_group): from azure.cli.testsdk.utilities import force_progress_logging self.kwargs.update({'vm': 'vm123'}) with force_progress_logging() as test_io: self.cmd('vm create -g {rg} -n {vm} --admin-username {vm} --admin-password PasswordPassword1! --image debian') content = test_io.getvalue() # check log has okay format lines = content.splitlines() for line in lines: self.assertTrue(line.split(':')[0] in ['Accepted', 'Succeeded']) # spot check we do have some relevant progress messages coming out # (Note, CLI's progress controller does routine "sleep" before sample the LRO response. # This has the consequence that it can't promise each resource's result wil be displayed) self.assertTrue(any(line.startswith('Succeeded:') or line.startswith('Accepted:') for line in lines)) @api_version_constraint(ResourceType.MGMT_COMPUTE, min_api='2017-03-30') class VMZoneScenarioTest(ScenarioTest): @ResourceGroupPreparer(name_prefix='cli_test_disk_zones', location='eastus2') def test_vm_disk_create_zones(self, resource_group, resource_group_location): self.kwargs.update({ 'zones': '2', 'disk': 'disk123', 'size': 1 }) self.cmd('disk create -g {rg} -n {disk} --size-gb {size} --zone {zones}', checks=[ self.check('zones[0]', '{zones}') ]) self.cmd('disk show -g {rg} -n {disk}', checks=self.check('zones[0]', '{zones}')) result = self.cmd('disk show -g {rg} -n {disk} -otable') table_output = set(result.output.splitlines()[2].split()) self.assertTrue(set([resource_group, resource_group_location, self.kwargs['disk'], self.kwargs['zones'], str(self.kwargs['size']), 'Premium_LRS']).issubset(table_output)) result = self.cmd('disk list -g {rg} -otable') table_output = set(result.output.splitlines()[2].split()) self.assertTrue(set([resource_group, resource_group_location, self.kwargs['disk'], self.kwargs['zones']]).issubset(table_output)) class VMRunCommandScenarioTest(ScenarioTest): @ResourceGroupPreparer(name_prefix='cli_test_vm_run_command') def test_vm_run_command_e2e(self, resource_group, resource_group_location): self.kwargs.update({ 'vm': 'test-run-command-vm', 'loc': resource_group_location }) self.cmd('vm run-command list -l {loc}') self.cmd('vm run-command show --command-id RunShellScript -l {loc}') public_ip = self.cmd('vm create -g {rg} -n {vm} --image ubuntults --admin-username clitest1 --admin-password Test12345678!!').get_output_in_json()['publicIpAddress'] self.cmd('vm open-port -g {rg} -n {vm} --port 80') self.cmd('vm run-command invoke -g {rg} -n{vm} --command-id RunShellScript --script "sudo apt-get update && sudo apt-get install -y nginx"') time.sleep(15) # 15 seconds should be enough for nginx started(Skipped under playback mode) import requests r = requests.get('http://' + public_ip) self.assertTrue('Welcome to nginx' in str(r.content)) @ResourceGroupPreparer(name_prefix='cli_test_vm_run_command_w_params') def test_vm_run_command_with_parameters(self, resource_group): self.kwargs.update({'vm': 'test-run-command-vm2'}) self.cmd('vm create -g {rg} -n {vm} --image debian --admin-username clitest1 --admin-password Test12345678!!') self.cmd('vm run-command invoke -g {rg} -n{vm} --command-id RunShellScript --scripts "echo $0 $1" --parameters hello world') # @ResourceGroupPreparer(name_prefix='cli_test_vm_encryption', location='westus') # def test_vm_disk_encryption_e2e(self, resource_group, resource_group_location): # self.kwargs.update({ # 'vault': self.create_random_name('vault', 10), # 'vm': 'vm1' # }) # self.cmd('keyvault create -g {rg} -n {vault} --enabled-for-disk-encryption "true"') # time.sleep(60) # to avoid 504(too many requests) on a newly created vault # self.cmd('vm create -g {rg} -n {vm} --image win2012datacenter --admin-username clitester1 --admin-password Test123456789!') # self.cmd('vm encryption enable -g {rg} -n {vm} --disk-encryption-keyvault {vault}') # self.cmd('vm encryption show -g {rg} -n {vm}', checks=[self.check('disks[0].statuses[0].code', 'EncryptionState/encrypted')]) # self.cmd('vm encryption disable -g {rg} -n {vm}') @api_version_constraint(ResourceType.MGMT_COMPUTE, min_api='2017-03-30') class VMSSRollingUpgrade(ScenarioTest): @ResourceGroupPreparer(name_prefix='cli_test_vmss_rolling_update') def test_vmss_rolling_upgrade(self, resource_group): self.kwargs.update({ 'lb': 'lb1', 'probe': 'probe1', 'vmss': 'vmss1' }) # set up a LB with the probe for rolling upgrade self.cmd('network lb create -g {rg} -n {lb}') self.cmd('network lb probe create -g {rg} --lb-name {lb} -n {probe} --protocol http --port 80 --path /') self.cmd('network lb rule create -g {rg} --lb-name {lb} -n rule1 --protocol tcp --frontend-port 80 --backend-port 80 --probe-name {probe}') self.cmd('network lb inbound-nat-pool create -g {rg} --lb-name {lb} -n nat-pool1 --backend-port 22 --frontend-port-range-start 50000 --frontend-port-range-end 50119 --protocol Tcp --frontend-ip-name LoadBalancerFrontEnd') # create a scaleset to use the LB, note, we start with the manual mode as we are not done with the setup yet self.cmd('vmss create -g {rg} -n {vmss} --image ubuntults --admin-username clitester1 --admin-password Testqwer1234! --lb {lb} --health-probe {probe}') # install the web server _, settings_file = tempfile.mkstemp() with open(settings_file, 'w') as outfile: json.dump({ "commandToExecute": "sudo apt-get update && sudo apt-get install -y nginx", }, outfile) settings_file = settings_file.replace('\\', '\\\\') self.kwargs['settings'] = settings_file self.cmd('vmss extension set -g {rg} --vmss-name {vmss} -n customScript --publisher Microsoft.Azure.Extensions --settings {settings} --version 2.0') self.cmd('vmss update-instances -g {rg} -n {vmss} --instance-ids "*"') # now we are ready for the rolling upgrade mode self.cmd('vmss update -g {rg} -n {vmss} --set upgradePolicy.mode=rolling') # make sure the web server works result = self.cmd('vmss list-instance-connection-info -g {rg} -n {vmss} -o tsv') time.sleep(15) # 15 seconds should be enough for nginx started(Skipped under playback mode) import requests r = requests.get('http://' + result.output.split(':')[0]) self.assertTrue('Welcome to nginx' in str(r.content)) # do some rolling upgrade, maybe nonsense, but we need to test the command anyway self.cmd('vmss rolling-upgrade start -g {rg} -n {vmss}') result = self.cmd('vmss rolling-upgrade get-latest -g {rg} -n {vmss}').get_output_in_json() self.assertTrue(('policy' in result) and ('progress' in result)) # spot check that it is about rolling upgrade # 'cancel' should fail as we have no active upgrade to cancel self.cmd('vmss rolling-upgrade cancel -g {rg} -n {vmss}', expect_failure=True) class VMCreateWithExistingNic(ScenarioTest): @ResourceGroupPreparer(name_prefix='cli_test_create_vm_existing_nic') def test_vm_create_existing_nic(self, resource_group): import re self.cmd('network public-ip create -g {rg} -n my-pip') self.cmd('network vnet create -g {rg} -n my-vnet --subnet-name my-subnet1') self.cmd('network nic create -g {rg} -n my-nic --subnet my-subnet1 --vnet-name my-vnet --public-ip-address my-pip') self.cmd('network nic ip-config create -n my-ipconfig2 -g {rg} --nic-name my-nic --private-ip-address-version IPv6') self.cmd('vm create -g {rg} -n vm1 --image ubuntults --nics my-nic --generate-ssh-keys --admin-username ubuntuadmin') result = self.cmd('vm show -g {rg} -n vm1 -d').get_output_in_json() self.assertTrue(re.match(r'[0-9]+\.[0-9]+\.[0-9]+\.[0-9]+', result['publicIps'])) self.assertTrue(re.match(r'[0-9]+\.[0-9]+\.[0-9]+\.[0-9]+', result['privateIps'])) class VMOsDiskSwap(ScenarioTest): @ResourceGroupPreparer() def test_vm_os_disk_swap(self, resource_group): self.kwargs.update({ 'vm': 'vm1', 'backupDisk': 'disk1', }) self.cmd('vm create -g {rg} -n {vm} --image centos --admin-username clitest123 --generate-ssh-keys') res = self.cmd('vm show -g {rg} -n {vm}').get_output_in_json() original_disk_id = res['storageProfile']['osDisk']['managedDisk']['id'] backup_disk_id = self.cmd('disk create -g {{rg}} -n {{backupDisk}} --source {}'.format(original_disk_id)).get_output_in_json()['id'] self.cmd('vm stop -g {rg} -n {vm}') self.cmd('vm update -g {{rg}} -n {{vm}} --os-disk {}'.format(backup_disk_id)) self.cmd('vm show -g {rg} -n {vm}', checks=[ self.check('storageProfile.osDisk.managedDisk.id', backup_disk_id), self.check('storageProfile.osDisk.name', self.kwargs['backupDisk']) ]) class VMGenericUpdate(ScenarioTest): @ResourceGroupPreparer() def test_vm_generic_update(self, resource_group): self.kwargs.update({ 'vm': 'vm1', }) self.cmd('vm create -g {rg} -n {vm} --image debian --data-disk-sizes-gb 1 2 --admin-username cligenerics --generate-ssh-keys') # we will try all kinds of generic updates we can self.cmd('vm update -g {rg} -n {vm} --set identity.type="SystemAssigned"', checks=[ self.check('identity.type', 'SystemAssigned') ]) self.cmd('vm update -g {rg} -n {vm} --set storageProfile.dataDisks[0].caching="ReadWrite"', checks=[ self.check('storageProfile.dataDisks[0].caching', 'ReadWrite') ]) self.cmd('vm update -g {rg} -n {vm} --remove storageProfile.dataDisks', checks=[ self.check('storageProfile.dataDisks', []) ]) # endregion if __name__ == '__main__': unittest.main()
031216c936d39754abde2a11c2e9bc24bcd35fdf
9560e118fafa944de93c5f6aec92a41a53825068
/webaskb_run.py
07997f0184ac34ea0c8d6c1d7cf93247b9085020
[]
no_license
cimeister/WebAsKB
6bedd567646495f3af8daf939cbf4ff9d674ee6e
b8f4488ce9a226bca0f0cff278cc84fd7d2d1f6c
refs/heads/master
2022-01-06T05:49:44.402051
2019-05-24T13:58:55
2019-05-24T13:58:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,265
py
from config import * from SplitQA import SplitQA from noisy_supervision import NoisySupervision from webaskb_ptrnet import WebAsKB_PtrNet import argparse parser = argparse.ArgumentParser() parser.add_argument("operation", help='available operations: "gen_noisy_sup","run_ptrnet" ,"train_ptrnet", "splitqa"') parser.add_argument("--eval_set", help='available eval sets: "dev","test"') args = parser.parse_args() if args.eval_set is not None: config.EVALUATION_SET = args.eval_set if args.operation == 'gen_noisy_sup': noisy_sup = NoisySupervision() noisy_sup.gen_noisy_supervision() elif args.operation == 'run_ptrnet': ptrnet = WebAsKB_PtrNet() ptrnet.load_data() ptrnet.init() ptrnet.eval() elif args.operation == 'train_ptrnet': config.PERFORM_TRAINING = True config.LOAD_SAVED_MODEL = False config.max_evalset_size = 2000 ptrnet = WebAsKB_PtrNet() ptrnet.load_data() ptrnet.init() ptrnet.train() elif args.operation == 'splitqa': config.PERFORM_TRAINING = False splitqa = SplitQA() splitqa.run_executors() splitqa.gen_predictions_file() splitqa.compute_final_results() else: print('option not found, available operations: "gen_noisy_sup","run_ptrnet" ,"train_ptrnet", "splitqa"')
2e295fa94dd0fee0546ab2840203eef3f5a2ae4e
14453c13d552165cabe72a310f44f7c58eaacad0
/tests/main/dsl/test_skip_passes.py
7cb4376f18205ffa80bb6f7e6da33bcb8a3eb791
[ "Apache-2.0" ]
permissive
ai2cm/pace
76a98ffae3baa92bd3b2ddc422b50dfa50255642
c543e8ec478d46d88b48cdd3beaaa1717a95b935
refs/heads/main
2023-07-06T07:18:11.558315
2022-12-22T21:45:34
2022-12-22T21:45:34
392,106,887
27
13
Apache-2.0
2023-07-03T13:47:46
2021-08-02T22:05:11
Python
UTF-8
Python
false
false
2,193
py
import unittest.mock # will need to update this import when gt4py is updated from gt4py.cartesian.gtc.passes.oir_optimizations.horizontal_execution_merging import ( HorizontalExecutionMerging, ) from gt4py.cartesian.gtc.passes.oir_pipeline import DefaultPipeline from gt4py.cartesian.gtscript import PARALLEL, computation, interval from pace.dsl.dace.dace_config import DaceConfig from pace.dsl.stencil import ( CompilationConfig, GridIndexing, StencilConfig, StencilFactory, ) from pace.dsl.typing import FloatField from pace.util import X_DIM, Y_DIM, Z_DIM def stencil_definition(a: FloatField): with computation(PARALLEL), interval(...): a = 0.0 def test_skip_passes_becomes_oir_pipeline(): backend = "numpy" dace_config = DaceConfig(None, backend) config = StencilConfig( compilation_config=CompilationConfig(backend=backend), dace_config=dace_config ) grid_indexing = GridIndexing( domain=(4, 4, 7), n_halo=3, south_edge=False, north_edge=False, west_edge=False, east_edge=False, ) factory = StencilFactory(config=config, grid_indexing=grid_indexing) with unittest.mock.patch( "gt4py.cartesian.gtscript.stencil" ) as mock_stencil_builder: factory.from_dims_halo( stencil_definition, compute_dims=[X_DIM, Y_DIM, Z_DIM], ) pipeline: DefaultPipeline = mock_stencil_builder.call_args.kwargs.get( "oir_pipeline", DefaultPipeline() ) assert HorizontalExecutionMerging not in pipeline.skip assert HorizontalExecutionMerging in pipeline.steps with unittest.mock.patch( "gt4py.cartesian.gtscript.stencil" ) as mock_stencil_builder: factory.from_dims_halo( stencil_definition, compute_dims=[X_DIM, Y_DIM, Z_DIM], skip_passes=("HorizontalExecutionMerging",), ) assert "oir_pipeline" in mock_stencil_builder.call_args.kwargs pipeline: DefaultPipeline = mock_stencil_builder.call_args.kwargs["oir_pipeline"] assert HorizontalExecutionMerging in pipeline.skip assert HorizontalExecutionMerging not in pipeline.steps
99bbd9d46836511c97535c041251b08e19961ac9
a2062cce9fbc6a5392e188ffc1babd26f05e7814
/numpytutorial/basic/tutorial/multiplication.py
8cebe2369875b13916937e2b339ab2c1d3d6a809
[]
no_license
rohitaswchoudhary/spy_tutorial
65fa62b25891a076245cf6a1093ba8ccb9932d3c
0afdb9492f34a59a15d0531de5ca64d8ef8422af
refs/heads/main
2023-06-02T14:52:16.752137
2021-06-17T06:54:59
2021-06-17T06:54:59
328,871,875
2
0
null
null
null
null
UTF-8
Python
false
false
163
py
import numpy as np x = np.array([[1,3,0], [-1,2,1], [0, 0, 2]]) y = np.matrix([[2, 3, 4], [1,2,3], [-1,1,2]]) print(np.dot(x, y)) print(np.dot(y, x)) print(x==y)
2e9d806506c0eb1a705e0a484e74b7e78d806147
9e988c0dfbea15cd23a3de860cb0c88c3dcdbd97
/sdBs/AllRun/kepler_bd/sdB_kepler_bd_coadd.py
848fd3775b6bb4cab1b38014fff779fb2a41155a
[]
no_license
tboudreaux/SummerSTScICode
73b2e5839b10c0bf733808f4316d34be91c5a3bd
4dd1ffbb09e0a599257d21872f9d62b5420028b0
refs/heads/master
2021-01-20T18:07:44.723496
2016-08-08T16:49:53
2016-08-08T16:49:53
65,221,159
0
0
null
null
null
null
WINDOWS-1252
Python
false
false
421
py
from gPhoton.gMap import gMap def main(): gMap(band="NUV", skypos=[+42¡3250,286.91875], skyrange=[0.0333333333333,0.0333333333333], stepsz = 30., cntfile="/data2/fleming/GPHOTON_OUTPUT/LIGHTCURVES/sdBs/sdB_kepler_bd/sdB_kepler_bd_movie_count.fits", cntcoaddfile="/data2/fleming/GPHOTON_OUTPUT/LIGHTCURVES/sdB/sdB_kepler_bd/sdB_kepler_bd_count_coadd.fits", overwrite=True, verbose=3) if __name__ == "__main__": main()
f41ecf32c0cbade99fe1da798f042464bfb10985
c3082eb2adc43b311dd3c9ff16fd3ed9df85f266
/python/examples/pytest/fib7/test_fibonacci.py
412bfcf25a359af1ef1610c04a755329dca30286
[]
no_license
szabgab/slides
78818c7138331b3ba9e221c81da3678a46efe9b3
63bba06678554db737602f2fbcd6510c36037e8a
refs/heads/main
2023-08-31T07:13:51.536711
2023-08-29T13:17:59
2023-08-29T13:17:59
122,212,527
87
69
null
2023-05-19T06:55:11
2018-02-20T14:57:03
Python
UTF-8
Python
false
false
540
py
import pytest from fibonacci import fib def test_fib(): assert fib(10) == 55 def test_fib_negative(): with pytest.raises(Exception) as err: fib(-1) assert err.type == ValueError assert str(err.value) == 'Invalid parameter -1' def test_fib_negative_again(): with pytest.raises(ValueError) as err: fib(-1) assert str(err.value) == 'Invalid parameter -1' def test_fib_negative_again(): with pytest.raises(ValueError) as err: fib(3.5) assert str(err.value) == 'Invalid parameter 3.5'
7415b1fe6c3fef75bcb7ef26e5dc8d6ae6afa1de
7c384a56e1bcd66ad4ee4b9dd413c49ff9f71bf1
/mario.py
cd382e705f6e9b24ee0eb3b92eaf1623ec3f2094
[]
no_license
Rouen007/mario
d9405c016ac172d5b38c26fa239a27be51662448
da5a678feefdcf3e8b220c1c6e8fd0ef67f285b7
refs/heads/master
2020-09-27T07:08:55.213068
2017-10-07T22:38:20
2017-10-07T22:38:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,822
py
#!/usr/bin/env python """Mario Gym Adventure! python mario.py ppaquette/meta-SuperMarioBros-v0 \ -a DQFDAgent -c mario_agent.json \ -ld ./demos/ -s ./agents/ -m ./monitors/ -mv 1000 -D """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import logging import os import demo from model import mario_net from ppaquette_gym_super_mario import wrappers from tensorforce import Configuration, TensorForceError from tensorforce.agents import agents from tensorforce.contrib.openai_gym import OpenAIGym from tensorforce.execution import Runner def main(): parser = argparse.ArgumentParser() parser.add_argument('gym_id', help="ID of the gym environment, i.e. ppaquette/SuperMarioBros-1-1-v0") parser.add_argument('-a', '--agent', help='Agent') parser.add_argument('-c', '--agent-config', help="Agent configuration file") parser.add_argument('-e', '--episodes', type=int, default=50000, help="Number of episodes") parser.add_argument('-t', '--max-timesteps', type=int, default=100000, help="Maximum number of timesteps per episode") parser.add_argument('-m', '--monitor', help="Save results to this directory") parser.add_argument('-ms', '--monitor-safe', action='store_true', default=False, help="Do not overwrite previous results") parser.add_argument('-mv', '--monitor-video', type=int, default=0, help="Save video every x steps (0 = disabled)") parser.add_argument('-s', '--save', help="Save agent to this dir") parser.add_argument('-se', '--save-episodes', type=int, default=100, help="Save agent every x episodes") parser.add_argument('-l', '--load', help="Load agent from this dir") parser.add_argument('-D', '--debug', action='store_true', default=False, help="Show debug outputs") parser.add_argument('-ld', '--load-demo', required=True, help="Load demos from this dir") parser.add_argument('-pt', '--pretrain', action='store_true', default=False, help="Pretrain agent on demos") parser.add_argument('-ul', '--use_lstm', action='store_true', default=False, help="Use LSTM model") parser.add_argument('-ls', '--lstm_size', type=int, default=256, help="LSTM size") args = parser.parse_args() logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) environment = OpenAIGym(args.gym_id, monitor=args.monitor, monitor_safe=args.monitor_safe, monitor_video=args.monitor_video) mode_wrapper = wrappers.SetPlayingMode('algo') ac_wrapper = wrappers.ToDiscrete() environment.gym = mode_wrapper(ac_wrapper(environment.gym)) if args.agent_config: agent_config = Configuration.from_json(args.agent_config) else: agent_config = Configuration() logger.info("No agent configuration provided.") agent_config.default(dict(states=environment.states, actions=environment.actions, network=mario_net(name='mario', lstm_size=args.lstm_size, actions=environment.actions['num_actions'], use_lstm=args.use_lstm))) agent = agents[args.agent](config=agent_config) if args.load: load_dir = os.path.dirname(args.load) if not os.path.isdir(load_dir): raise OSError("Could not load agent from {}: No such directory.".format(load_dir)) logger.info("-" * 16) agent.load_model(args.load) logger.info("Loaded {}".format(agent)) if args.debug: logger.info("-" * 16) logger.info("Configuration:") logger.info(agent_config) if args.save: save_dir = os.path.dirname(args.save) if not os.path.isdir(save_dir): try: os.mkdir(save_dir, 0o755) except OSError: raise OSError("Cannot save agent to dir {} ()".format(save_dir)) try: if args.load_demo: logger.info("-" * 16) logger.info("Loading demos") demos = demo.load(args.load_demo) logger.info("Importing demos") agent.import_demonstrations(demos) if args.pretrain: logger.info("-" * 16) logger.info("Pretraining {} steps".format(len(demos))) agent.pretrain(steps=len(demos)) runner = Runner( agent=agent, environment=environment, repeat_actions=1, save_path=args.save, save_episodes=args.save_episodes ) report_episodes = args.episodes // 1000 if args.debug: report_episodes = 1 def episode_finished(r): if r.episode % report_episodes == 0: logger.info("Finished episode {ep} after {ts} timesteps".format(ep=r.episode, ts=r.timestep)) logger.info("Episode reward: {}".format(r.episode_rewards[-1])) logger.info("Average of last 500 rewards: {}".format(sum(r.episode_rewards[-500:]) / 500)) logger.info("Average of last 100 rewards: {}".format(sum(r.episode_rewards[-100:]) / 100)) return True logger.info("Starting {agent} for Environment '{env}'".format(agent=agent, env=environment)) runner.run(args.episodes, args.max_timesteps, episode_finished=episode_finished) logger.info("Learning finished. Total episodes: {ep}".format(ep=runner.episode)) except (KeyboardInterrupt): agent.save_model(args.save) pass if args.monitor: environment.gym.monitor.close() environment.close() if __name__ == '__main__': main()
9970485c230cc96aa9656113f34c690f37407afc
c2ff2ee2b0c84e047a80cfdf0b0d0b122fc9db79
/VL-BERT/cls/function/train.py
edfa314cfd96d29555f476a8c80cc34b2e73dc0a
[ "MIT" ]
permissive
obarnard99/vilio
275dcb62cdb8b2d8c55ab1e73f3a796bd2073a5b
77aac226c3a0910410f11a5999f8908181f57ccd
refs/heads/master
2023-06-29T17:02:02.282457
2021-06-22T09:50:11
2021-06-22T09:50:11
337,738,373
0
0
MIT
2021-06-22T09:50:12
2021-02-10T13:50:49
Python
UTF-8
Python
false
false
20,986
py
import os import pprint import shutil import inspect import random from tensorboardX import SummaryWriter import imgaug import numpy as np import torch import torch.nn import torch.optim as optim import torch.distributed as distributed from torch.nn.parallel import DistributedDataParallel as DDP from loguru import logger from torch.optim.swa_utils import SWALR from common.utils.create_logger import create_logger from common.utils.misc import summary_parameters, bn_fp16_half_eval from common.utils.load import smart_resume, smart_partial_load_model_state_dict from common.trainer import train from common.metrics.composite_eval_metric import CompositeEvalMetric from common.metrics import cls_metrics from common.callbacks.batch_end_callbacks.speedometer import Speedometer from common.callbacks.epoch_end_callbacks.validation_monitor import ValidationMonitor from common.callbacks.epoch_end_callbacks.checkpoint import Checkpoint from common.lr_scheduler import WarmupMultiStepLR from common.nlp.bert.optimization import AdamW, WarmupLinearSchedule from common.losses import RocStarLoss from cls.data.build import make_dataloader, build_dataset, build_transforms from cls.modules import * from cls.function.val import do_validation try: from apex import amp from apex.parallel import DistributedDataParallel as Apex_DDP except ImportError: pass #raise ImportError("Please install apex from https://www.github.com/nvidia/apex if you want to use fp16.") def train_net(args, config): # setup logger logger, final_output_path = create_logger(config.OUTPUT_PATH, args.cfg, config.DATASET.TRAIN_IMAGE_SET, split='train') model_prefix = os.path.join(final_output_path, config.MODEL_PREFIX) if args.log_dir is None: args.log_dir = os.path.join(final_output_path, 'tensorboard_logs') # pprint.pprint(args) # logger.info('training args:{}\n'.format(args)) # pprint.pprint(config) # logger.info('training config:{}\n'.format(pprint.pformat(config))) # manually set random seed if config.RNG_SEED > -1: random.seed(a=config.RNG_SEED) np.random.seed(config.RNG_SEED) torch.random.manual_seed(config.RNG_SEED) torch.cuda.manual_seed_all(config.RNG_SEED) torch.backends.cudnn.deterministic = True imgaug.random.seed(config.RNG_SEED) # cudnn torch.backends.cudnn.benchmark = False if args.cudnn_off: torch.backends.cudnn.enabled = False if args.dist: model = eval(config.MODULE)(config) local_rank = int(os.environ.get('LOCAL_RANK') or 0) config.GPUS = str(local_rank) torch.cuda.set_device(local_rank) master_address = os.environ['MASTER_ADDR'] master_port = int(os.environ['MASTER_PORT'] or 23456) world_size = int(os.environ['WORLD_SIZE'] or 1) rank = int(os.environ['RANK'] or 0) if rank == 0: pprint.pprint(args) logger.info('training args:{}\n'.format(args)) pprint.pprint(config) logger.info('training config:{}\n'.format(pprint.pformat(config))) if args.slurm: distributed.init_process_group(backend='nccl') else: try: distributed.init_process_group( backend='nccl', init_method='tcp://{}:{}'.format(master_address, master_port), world_size=world_size, rank=rank, group_name='mtorch') except RuntimeError: pass print(f'native distributed, size: {world_size}, rank: {rank}, local rank: {local_rank}') torch.cuda.set_device(local_rank) config.GPUS = str(local_rank) model = model.cuda() if not config.TRAIN.FP16: model = DDP(model, device_ids=[local_rank], output_device=local_rank, find_unused_parameters=True) if rank == 0: summary_parameters(model.module if isinstance(model, torch.nn.parallel.DistributedDataParallel) else model, logger) shutil.copy(args.cfg, final_output_path) shutil.copy(inspect.getfile(eval(config.MODULE)), final_output_path) writer = None if args.log_dir is not None: tb_log_dir = os.path.join(args.log_dir, 'rank{}'.format(rank)) if not os.path.exists(tb_log_dir): os.makedirs(tb_log_dir) writer = SummaryWriter(log_dir=tb_log_dir) batch_size = world_size * (sum(config.TRAIN.BATCH_IMAGES) if isinstance(config.TRAIN.BATCH_IMAGES, list) else config.TRAIN.BATCH_IMAGES) if config.TRAIN.GRAD_ACCUMULATE_STEPS > 1: batch_size = batch_size * config.TRAIN.GRAD_ACCUMULATE_STEPS base_lr = config.TRAIN.LR * batch_size optimizer_grouped_parameters = [{'params': [p for n, p in model.named_parameters() if _k in n], 'lr': base_lr * _lr_mult} for _k, _lr_mult in config.TRAIN.LR_MULT] optimizer_grouped_parameters.append({'params': [p for n, p in model.named_parameters() if all([_k not in n for _k, _ in config.TRAIN.LR_MULT])]}) if config.TRAIN.OPTIMIZER == 'SGD': optimizer = optim.SGD(optimizer_grouped_parameters, lr=config.TRAIN.LR * batch_size, momentum=config.TRAIN.MOMENTUM, weight_decay=config.TRAIN.WD) elif config.TRAIN.OPTIMIZER == 'Adam': optimizer = optim.Adam(optimizer_grouped_parameters, lr=config.TRAIN.LR * batch_size, weight_decay=config.TRAIN.WD) elif config.TRAIN.OPTIMIZER == 'AdamW': optimizer = AdamW(optimizer_grouped_parameters, lr=config.TRAIN.LR * batch_size, betas=(0.9, 0.999), eps=1e-6, weight_decay=config.TRAIN.WD, correct_bias=True) else: raise ValueError('Not support optimizer {}!'.format(config.TRAIN.OPTIMIZER)) total_gpus = world_size train_loader, train_sampler = make_dataloader(config, mode='train', distributed=True, num_replicas=world_size, rank=rank, expose_sampler=True) val_loader = make_dataloader(config, mode='val', distributed=True, num_replicas=world_size, rank=rank) else: pprint.pprint(args) logger.info('training args:{}\n'.format(args)) pprint.pprint(config) logger.info('training config:{}\n'.format(pprint.pformat(config))) #os.environ['CUDA_VISIBLE_DEVICES'] = config.GPUS model = eval(config.MODULE)(config) summary_parameters(model, logger) shutil.copy(args.cfg, final_output_path) shutil.copy(inspect.getfile(eval(config.MODULE)), final_output_path) num_gpus = len(config.GPUS.split(',')) # assert num_gpus <= 1 or (not config.TRAIN.FP16), "Not support fp16 with torch.nn.DataParallel. " \ # "Please use amp.parallel.DistributedDataParallel instead." if num_gpus > 1 and config.TRAIN.FP16: logger.warning("Not support fp16 with torch.nn.DataParallel.") config.TRAIN.FP16 = False total_gpus = num_gpus rank = None writer = SummaryWriter(log_dir=args.log_dir) if args.log_dir is not None else None if hasattr(model, 'setup_adapter'): logger.info('Setting up adapter modules!') model.setup_adapter() # model if num_gpus > 1: model = torch.nn.DataParallel(model, device_ids=[int(d) for d in config.GPUS.split(',')]).cuda() else: torch.cuda.set_device(int(config.GPUS)) model.cuda() # loader # train_set = 'train+val' if config.DATASET.TRAIN_WITH_VAL else 'train' train_loader = make_dataloader(config, mode='train', distributed=False) val_loader = make_dataloader(config, mode='val', distributed=False) train_sampler = None batch_size = num_gpus * (sum(config.TRAIN.BATCH_IMAGES) if isinstance(config.TRAIN.BATCH_IMAGES, list) else config.TRAIN.BATCH_IMAGES) if config.TRAIN.GRAD_ACCUMULATE_STEPS > 1: batch_size = batch_size * config.TRAIN.GRAD_ACCUMULATE_STEPS base_lr = config.TRAIN.LR * batch_size optimizer_grouped_parameters = [{'params': [p for n, p in model.named_parameters() if _k in n], 'lr': base_lr * _lr_mult} for _k, _lr_mult in config.TRAIN.LR_MULT] optimizer_grouped_parameters.append({'params': [p for n, p in model.named_parameters() if all([_k not in n for _k, _ in config.TRAIN.LR_MULT])]}) if config.TRAIN.OPTIMIZER == 'SGD': optimizer = optim.SGD(optimizer_grouped_parameters, lr=config.TRAIN.LR * batch_size, momentum=config.TRAIN.MOMENTUM, weight_decay=config.TRAIN.WD) elif config.TRAIN.OPTIMIZER == 'Adam': optimizer = optim.Adam(optimizer_grouped_parameters, lr=config.TRAIN.LR * batch_size, weight_decay=config.TRAIN.WD) elif config.TRAIN.OPTIMIZER == 'AdamW': optimizer = AdamW(optimizer_grouped_parameters, lr=config.TRAIN.LR * batch_size, betas=(0.9, 0.999), eps=1e-6, weight_decay=config.TRAIN.WD, correct_bias=True) else: raise ValueError('Not support optimizer {}!'.format(config.TRAIN.OPTIMIZER)) # partial load pretrain state dict if config.NETWORK.PARTIAL_PRETRAIN != "": pretrain_state_dict = torch.load(config.NETWORK.PARTIAL_PRETRAIN, map_location=lambda storage, loc: storage)['state_dict'] prefix_change = [prefix_change.split('->') for prefix_change in config.NETWORK.PARTIAL_PRETRAIN_PREFIX_CHANGES] if len(prefix_change) > 0: pretrain_state_dict_parsed = {} for k, v in pretrain_state_dict.items(): no_match = True for pretrain_prefix, new_prefix in prefix_change: if k.startswith(pretrain_prefix): k = new_prefix + k[len(pretrain_prefix):] pretrain_state_dict_parsed[k] = v no_match = False break if no_match: pretrain_state_dict_parsed[k] = v pretrain_state_dict = pretrain_state_dict_parsed smart_partial_load_model_state_dict(model, pretrain_state_dict) # pretrained classifier # if config.NETWORK.CLASSIFIER_PRETRAINED: # print('Initializing classifier weight from pretrained word embeddings...') # answers_word_embed = [] # for k, v in model.state_dict().items(): # if 'word_embeddings.weight' in k: # word_embeddings = v.detach().clone() # break # for answer in train_loader.dataset.answer_vocab: # a_tokens = train_loader.dataset.tokenizer.tokenize(answer) # a_ids = train_loader.dataset.tokenizer.convert_tokens_to_ids(a_tokens) # a_word_embed = (torch.stack([word_embeddings[a_id] for a_id in a_ids], dim=0)).mean(dim=0) # answers_word_embed.append(a_word_embed) # answers_word_embed_tensor = torch.stack(answers_word_embed, dim=0) # for name, module in model.named_modules(): # if name.endswith('final_mlp'): # module[-1].weight.data = answers_word_embed_tensor.to(device=module[-1].weight.data.device) # metrics train_metrics_list = [ cls_metrics.Accuracy(allreduce=args.dist, num_replicas=world_size if args.dist else 1) ] val_metrics_list = [ cls_metrics.Accuracy(allreduce=args.dist, num_replicas=world_size if args.dist else 1), cls_metrics.RocAUC(allreduce=args.dist, num_replicas=world_size if args.dist else 1) ] for output_name, display_name in config.TRAIN.LOSS_LOGGERS: train_metrics_list.append( cls_metrics.LossLogger(output_name, display_name=display_name, allreduce=args.dist, num_replicas=world_size if args.dist else 1)) train_metrics = CompositeEvalMetric() val_metrics = CompositeEvalMetric() for child_metric in train_metrics_list: train_metrics.add(child_metric) for child_metric in val_metrics_list: val_metrics.add(child_metric) # epoch end callbacks epoch_end_callbacks = [] if (rank is None) or (rank == 0): epoch_end_callbacks = [Checkpoint(model_prefix, config.CHECKPOINT_FREQUENT)] validation_monitor = ValidationMonitor(do_validation, val_loader, val_metrics, host_metric_name='RocAUC', label_index_in_batch=config.DATASET.LABEL_INDEX_IN_BATCH, model_dir=os.path.dirname(model_prefix)) # optimizer initial lr before for group in optimizer.param_groups: group.setdefault('initial_lr', group['lr']) # resume/auto-resume if rank is None or rank == 0: smart_resume(model, optimizer, validation_monitor, config, model_prefix, logger) if args.dist: begin_epoch = torch.tensor(config.TRAIN.BEGIN_EPOCH).cuda() distributed.broadcast(begin_epoch, src=0) config.TRAIN.BEGIN_EPOCH = begin_epoch.item() # batch end callbacks batch_size = len(config.GPUS.split(',')) * config.TRAIN.BATCH_IMAGES batch_end_callbacks = [Speedometer(batch_size, config.LOG_FREQUENT, batches_per_epoch=len(train_loader), epochs=config.TRAIN.END_EPOCH - config.TRAIN.BEGIN_EPOCH)] # setup lr step and lr scheduler if config.TRAIN.LR_SCHEDULE == 'plateau': print("Warning: not support resuming on plateau lr schedule!") lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', factor=config.TRAIN.LR_FACTOR, patience=1, verbose=True, threshold=1e-4, threshold_mode='rel', cooldown=2, min_lr=0, eps=1e-8) elif config.TRAIN.LR_SCHEDULE == 'triangle': lr_scheduler = WarmupLinearSchedule(optimizer, config.TRAIN.WARMUP_STEPS if config.TRAIN.WARMUP else 0, t_total=int(config.TRAIN.END_EPOCH * len(train_loader) / config.TRAIN.GRAD_ACCUMULATE_STEPS), last_epoch=int(config.TRAIN.BEGIN_EPOCH * len(train_loader) / config.TRAIN.GRAD_ACCUMULATE_STEPS) - 1) elif config.TRAIN.LR_SCHEDULE == 'step': lr_iters = [ int(epoch * len(train_loader) / config.TRAIN.GRAD_ACCUMULATE_STEPS) for epoch in config.TRAIN.LR_STEP] lr_scheduler = WarmupMultiStepLR(optimizer, milestones=lr_iters, gamma=config.TRAIN.LR_FACTOR, warmup_factor=config.TRAIN.WARMUP_FACTOR, warmup_iters=config.TRAIN.WARMUP_STEPS if config.TRAIN.WARMUP else 0, warmup_method=config.TRAIN.WARMUP_METHOD, last_epoch=int(config.TRAIN.BEGIN_EPOCH * len(train_loader) / config.TRAIN.GRAD_ACCUMULATE_STEPS) - 1) else: raise ValueError("Not support lr schedule: {}.".format(config.TRAIN.LR_SCHEDULE)) if config.TRAIN.SWA: assert config.TRAIN.SWA_START_EPOCH < config.TRAIN.END_EPOCH if not config.TRAIN.DEBUG: true_epoch_step = len(train_loader) / config.TRAIN.GRAD_ACCUMULATE_STEPS else: true_epoch_step = 50 step_per_cycle = config.TRAIN.SWA_EPOCH_PER_CYCLE * true_epoch_step # swa_scheduler = torch.optim.lr_scheduler.CyclicLR( # optimizer, # base_lr=config.TRAIN.SWA_MIN_LR * batch_size, # max_lr=config.TRAIN.SWA_MAX_LR * batch_size, # cycle_momentum=False, # step_size_up=10, # step_size_down=step_per_cycle - 10) anneal_steps = max(1, (config.TRAIN.END_EPOCH - config.TRAIN.SWA_START_EPOCH) // 4) * step_per_cycle anneal_steps = int(anneal_steps) swa_scheduler = SWALR( optimizer, anneal_epochs=anneal_steps, anneal_strategy='linear', swa_lr=config.TRAIN.SWA_MAX_LR * batch_size ) else: swa_scheduler = None if config.TRAIN.ROC_STAR: assert config.TRAIN.ROC_START_EPOCH < config.TRAIN.END_EPOCH roc_star = RocStarLoss( delta=2.0, sample_size=config.TRAIN.ROC_SAMPLE_SIZE, sample_size_gamma=config.TRAIN.ROC_SAMPLE_SIZE * 2, update_gamma_each=config.TRAIN.ROC_SAMPLE_SIZE, ) else: roc_star = None # broadcast parameter and optimizer state from rank 0 before training start if args.dist: for v in model.state_dict().values(): distributed.broadcast(v, src=0) # for v in optimizer.state_dict().values(): # distributed.broadcast(v, src=0) best_epoch = torch.tensor(validation_monitor.best_epoch).cuda() best_val = torch.tensor(validation_monitor.best_val).cuda() distributed.broadcast(best_epoch, src=0) distributed.broadcast(best_val, src=0) validation_monitor.best_epoch = best_epoch.item() validation_monitor.best_val = best_val.item() # apex: amp fp16 mixed-precision training if config.TRAIN.FP16: # model.apply(bn_fp16_half_eval) model, optimizer = amp.initialize(model, optimizer, opt_level='O2', keep_batchnorm_fp32=False, loss_scale=config.TRAIN.FP16_LOSS_SCALE, min_loss_scale=32.0) if args.dist: model = Apex_DDP(model, delay_allreduce=True) # NOTE: final_model == model if not using SWA, else final_model == AveragedModel(model) final_model = train( model, optimizer, lr_scheduler, train_loader, train_sampler, train_metrics, config.TRAIN.BEGIN_EPOCH, config.TRAIN.END_EPOCH, logger, fp16=config.TRAIN.FP16, rank=rank, writer=writer, batch_end_callbacks=batch_end_callbacks, epoch_end_callbacks=epoch_end_callbacks, validation_monitor=validation_monitor, clip_grad_norm=config.TRAIN.CLIP_GRAD_NORM, gradient_accumulate_steps=config.TRAIN.GRAD_ACCUMULATE_STEPS, ckpt_path=config.TRAIN.CKPT_PATH, swa_scheduler=swa_scheduler, swa_start_epoch=config.TRAIN.SWA_START_EPOCH, swa_cycle_epoch=config.TRAIN.SWA_EPOCH_PER_CYCLE, swa_use_scheduler=config.TRAIN.SWA_SCHEDULE, roc_star=roc_star, roc_star_start_epoch=config.TRAIN.ROC_START_EPOCH, roc_interleave=config.TRAIN.ROC_INTERLEAVE, debug=config.TRAIN.DEBUG, ) return rank, final_model
adc963ff1204c00fb87b90795664b46370b2735d
a1e10efa6a131e305351909a437bfa5d083d4513
/summary_product_report/reports/product_sales_qty_report/product_sales_qty_report.py
399f5bde169bc9bdd57785835dabc268a4757791
[]
no_license
h3llopy/glodok_extra_addons_od12
5089412b36b0dafdb17235a627c8e33ed2acbb1f
5c493962b93254fb2ca8cd674c4fe153ac86d680
refs/heads/master
2022-12-05T06:22:08.182302
2020-08-29T14:32:30
2020-08-29T14:32:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,188
py
# -*- coding: utf-8 -*- from odoo import models, fields, api, _,tools from odoo.exceptions import UserError,ValidationError import logging _logger = logging.getLogger(__name__) class ProductSalesQtyReport(models.Model): _name = 'product.sales.qty.report' _description = 'Product Sales Qty Report' _auto = False product_id = fields.Many2one('product.product', string="Product", readonly=True) product_tmpl_id = fields.Many2one('product.template', string="Product Templat", readonly=True) product_uom_qty = fields.Float('Qty', readonly=True, group_operator='sum') date_series = fields.Date(string="Date Series", readonly=True) uom_id = fields.Many2one('product.uom', string="UOM", related="product_tmpl_id.uom_id", readonly=True) def _select(self): query = """ WITH series AS ( SELECT date_trunc('day', dd)::date as ds FROM generate_series( ( SELECT NOW()-(CONCAT(icp.value,' day')::interval) FROM ir_config_parameter icp -- WHERE key='auth_signup.template_user_id' WHERE key='interval.product_sales_qty_report' ) , now()::timestamp , '1 day'::interval ) dd ) SELECT CONCAT(to_char(series.ds, 'YYYYMMDD'), LPAD(prod.product_tmpl_id::text,4,'0'))::bigint AS id ,prod.id as product_id ,prod.product_tmpl_id ,SUM(CASE WHEN ps.product_id is NOT NULL THEN ps.product_uom_qty ELSE 0 END) AS product_uom_qty ,series.ds as date_series FROM series CROSS JOIN product_product prod LEFT JOIN ( SELECT pp.id as product_id ,pp.product_tmpl_id ,(CASE WHEN sol.id IS NOT NULL THEN sol.product_uom_qty ELSE 0 END) AS product_uom_qty ,so.date_order ,so.id as so_id FROM product_product AS pp LEFT JOIN sale_order_line AS sol ON sol.product_id = pp.id AND sol.state='done' LEFT JOIN sale_order AS so ON so.id = sol.order_id ) ps ON prod.id=ps.product_id and series.ds::date = ps.date_order::date GROUP BY prod.id,series.ds """ return query @api.model_cr def init(self): tools.drop_view_if_exists(self.env.cr, self._table) self.env.cr.execute("""CREATE or REPLACE VIEW %s as ( %s )""" % (self._table, self._select()))
7ea725be597104cfa2dac6fd1b1f81b9726da36d
13f4a06cd439f579e34bf38406a9d5647fe7a0f3
/script/try_python/try_Django/mzitu_com/mzitu_com_project/mzitu_com_project/home_page_transform.py
595accd90ae239ec0258a9fae2673b5f268d2f68
[]
no_license
edt-yxz-zzd/python3_src
43d6c2a8ef2a618f750b59e207a2806132076526
41f3a506feffb5f33d4559e5b69717d9bb6303c9
refs/heads/master
2023-05-12T01:46:28.198286
2023-05-01T13:46:32
2023-05-01T13:46:32
143,530,977
2
2
null
null
null
null
UTF-8
Python
false
false
5,505
py
__all__ = ''' home_page_transform__url home_page_transform__page extract_mzitu_com__the_all_or_old_page '''.split() #NotFoundError #find from nn_ns.internet.webpage.fetch_webpage import fetch_webpage from seed.helper.repr_input import repr_helper from bs4 import BeautifulSoup import re from urllib.parse import urlparse, urlunparse from pathlib import PurePosixPath as Path from .DATA import project_per_page_url_route r''' def make_project_per_page_url_base(new_url): parse_result = urlparse(new_url) parts = (parse_result.scheme, parse_result.netloc, project_per_page_url_route, '', '', '') project_per_page_url_base = urlunparse(parts) return project_per_page_url_base ''' r''' def home_page_transform__url(old_url, new_project_website): # .DATA.website_all_old/website_all_new # e.g. home_page_transform__url(.DATA.website_all_old, 'http://127.0.0.1:8000/') # e.g. home_page_transform__url('https://www.mzitu.com/old/', 'http://127.0.0.1:8000/') # e.g. home_page_transform__url('https://www.mzitu.com/all/', 'http://127.0.0.1:8000/') # assert new_project_website[-1:] == '/' ''' project_per_page_url_relative_base = Path(project_per_page_url_route) def home_page_transform__url(old_url): # .DATA.website_all_old/website_all_new # e.g. home_page_transform__url(.DATA.website_all_old) # e.g. home_page_transform__url('https://www.mzitu.com/old/') # e.g. home_page_transform__url('https://www.mzitu.com/all/') # html_page = fetch_webpage(old_url) #project_per_page_url_base = make_project_per_page_url_base(new_url) assert project_per_page_url_route[:1] == '/' #project_per_page_url_base = new_project_website + project_per_page_url_route[1:] #project_per_page_url_base = Path(new_project_website, project_per_page_url_route) project_per_page_url_base = project_per_page_url_relative_base return home_page_transform__page(html_page, project_per_page_url_base) class NotFoundError(Exception): def __init__(self, *args, **kwargs): self.args = args self.kwargs = kwargs def __repr__(self): return repr_helper(self, *self.args, **self.kwargs) def find(soup_find, *args, **kwargs): may_r = soup_find(*args, **kwargs) if may_r is None: raise NotFoundError(*args, **kwargs) r = may_r return r def extract_mzitu_com__the_all_or_old_page(html_page): # html_page of .../all/ or .../old/ # # html_page -> (html_title, [((year::str, month::str), [(old_url::str, title::str)])]) # soup = BeautifulSoup(html_page, 'lxml') [html_title] = soup.head.find_all('title') html_title = html_title.get_text() [class_main] = soup.find_all('div', {'class': 'main'}) [class_all] = class_main.find_all('div', {'class': 'all'}) class_years = class_all.find_all('div', {'class': 'year'}) #what's the name of tail-string?#?No such name in bs4? #print(dir(class_main)) #import sys; sys.exit() year_month__url_title_pairs__pairs = [] for class_year in class_years: year = class_year.get_text() class_archives = find(class_year.find_next_sibling, 'ul', {'class':'archives'}) class_monthes = class_archives.find_all('p', {'class': 'month'}) for class_month in class_monthes: month = class_month.get_text() class_url = find(class_month.find_next_sibling, 'p', {'class':'url'}) href_children = class_url.find_all('a') year_month = year, month url_title_pairs = [] for href_child in href_children: url = href_child['href'] title = href_child.get_text() url_title_pairs.append((url, title)) year_month__url_title_pairs__pairs.append((year_month, url_title_pairs)) return html_title, year_month__url_title_pairs__pairs new_html_begin = r''' <!DOCTYPE html> <html> <head> <title></title> </head> <body> <ul> </ul> </body> </html> ''' body_tpl = r''' {year} {month} {new_url} {title} ''' def old_url2new_url(old_url, project_per_page_url_base:Path): project_per_page_url = project_per_page_url_base / Path(old_url).name new_url = project_per_page_url return new_url def home_page_transform__page(html_page, project_per_page_url_base:Path): (html_title, year_month__url_title_pairs__pairs ) = extract_mzitu_com__the_all_or_old_page(html_page) new_soup = BeautifulSoup(new_html_begin, 'lxml') [new_title_tag] = new_soup.find_all('title') new_title_tag.append(html_title) [new_ul_tag] = new_soup.find_all('ul') for (year, month), url_title_pairs in year_month__url_title_pairs__pairs: new_li_tag = new_soup.new_tag('li') new_ul_tag.append(new_li_tag) fst_new_p_tag = new_soup.new_tag('p') new_li_tag.append(fst_new_p_tag) fst_new_p_tag.string = f'{year} {month}' snd_new_p_tag = new_soup.new_tag('p') new_li_tag.append(snd_new_p_tag) for old_url, title in url_title_pairs: new_url = old_url2new_url(old_url, project_per_page_url_base) new_href_tag = new_soup.new_tag('a', href=new_url, target="_blank") new_href_tag.string = title new_br_tag = new_soup.new_tag('br') snd_new_p_tag.append(new_href_tag) snd_new_p_tag.append(new_br_tag) #new_html_page = new_soup.encode('gb18030') new_html_page = str(new_soup) return new_html_page
eb7284de08d0db2639a08a3dc6348c377f0be6e4
b53e3d57d31a47a98d87141e44a5f8940ee15bca
/src/utils/socket_client/socket_client.py
d64c219641216ff48c67160faa9ad2d93b41bdeb
[ "MIT" ]
permissive
Chrissimple/program-y
52177fcc17e75fb97ab3993a4652bcbe7906bd58
80d80f0783120c2341e6fc57e7716bbbf28a8b3f
refs/heads/master
2020-03-29T13:20:08.162177
2018-09-26T19:09:20
2018-09-26T19:09:20
149,952,995
1
0
null
2018-09-23T06:11:04
2018-09-23T06:11:04
null
UTF-8
Python
false
false
651
py
# client.py import socket import sys import json host = sys.argv[1] port = int(sys.argv[2]) question = sys.argv[3] clientid = sys.argv[4] max_size = 1024 if len(sys.argv) == 6: max_size = sys.argv[5] payload = {"question": question, "clientid": clientid} json_data = json.dumps(payload) # create a socket object s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # connection to hostname on the port. s.connect((host, port)) s.send(json_data.encode('utf-8')) # Receive no more than 1024 bytes received = s.recv(max_size) s.close() json_data = json.loads(received.decode('utf-8')) print("Answer: %s" % json_data['answer'])
c5a78fbd2e9b6d4765751767fa9482d51b71cf16
7986ec6498e3f93967fa9bfe2b6a9d4056138293
/Protheus_WebApp/Modules/SIGAFIN/FINA171TESTCASE.py
d514f8aee6362dfcd0583815fa42b1334b983c59
[ "MIT" ]
permissive
HelenaAdrignoli/tir-script-samples
7d08973e30385551ef13df15e4410ac484554303
bb4f4ab3a49f723216c93f66a4395e5aa328b846
refs/heads/master
2023-02-21T11:26:28.247316
2020-04-28T16:37:26
2020-04-28T16:37:26
257,304,757
0
0
MIT
2020-04-20T14:22:21
2020-04-20T14:22:20
null
UTF-8
Python
false
false
1,786
py
from tir import Webapp import unittest class FINA171(unittest.TestCase): @classmethod def setUpClass(inst): inst.oHelper = Webapp() inst.oHelper.Setup('SIGAFIN','12/09/2019','T1','D MG 01 ','06') inst.oHelper.Program("FINA171") def test_FINA171_CT006(self): self.oHelper.SetButton("Incluir") self.oHelper.SetBranch('D MG 01') self.oHelper.SetValue('Numero','FITIR1') self.oHelper.SetValue('Modelo',"A") self.oHelper.SetValue('Operacao',"CDB") self.oHelper.SetValue('Banco',"033") self.oHelper.SetValue('Agencia', '00001') self.oHelper.SetValue('Conta Banco', '0000000004') self.oHelper.SetValue('Vlr.Operacao', '1000,00') self.oHelper.SetValue('Moeda', '1') self.oHelper.SetButton("Salvar") self.oHelper.SetButton("Cancelar") self.oHelper.SetButton("Visualizar") self.oHelper.CheckResult('EH_NUMERO','FITIR1') self.oHelper.CheckResult('EH_APLEMP','APL') self.oHelper.CheckResult('EH_TIPO','CDB') self.oHelper.CheckResult('EH_BANCO','033') self.oHelper.CheckResult('EH_AGENCIA','00001') self.oHelper.CheckResult('EH_CONTA','0000000004') self.oHelper.CheckResult('EH_VALOR','1000,00') self.oHelper.SetButton("Cancelar") self.oHelper.SearchBrowse(f"D MG 01 FITIR101") self.oHelper.SetButton("Outras Ações", "Excluir") self.oHelper.CheckResult('EH_NUMERO','FITIR1') self.oHelper.CheckResult('EH_APLEMP','APL') self.oHelper.CheckResult('EH_TIPO','CDB') self.oHelper.CheckResult('EH_BANCO','033') self.oHelper.CheckResult('EH_AGENCIA','00001') self.oHelper.CheckResult('EH_CONTA','0000000004') self.oHelper.CheckResult('EH_VALOR','1000,00') self.oHelper.SetButton("Confirmar") self.oHelper.AssertTrue() @classmethod def tearDownClass(inst): inst.oHelper.TearDown() if __name__ == "__main__": unittest.main()
d391896c768c79d6b6c61cc58b27a4c668f5ec58
bf0d7c8d987d5fda14208eb9ce70e31c83c25c25
/dl-stl/nn_util.py
d8f272e50ceddd2ac441aa7907285d1d7fa4afd1
[]
no_license
SummerBigData/SamRepo
7876e9393c7175e300e175a60c17633c3b23a1bb
fd84ad654370faa48c084349952c2921fde4032d
refs/heads/master
2020-03-18T05:09:08.787956
2018-06-18T17:11:49
2018-06-18T17:11:49
134,327,137
0
0
null
null
null
null
UTF-8
Python
false
false
9,666
py
from scipy.io import loadmat from scipy.special import expit from sklearn.preprocessing import OneHotEncoder import scipy.optimize as opt import numpy as np import sae_util from read_mnist import * #from prepro import crop import os from functools import reduce """ Global variables """ # I know they're gross Js, accs = [], [] # lists for tracking the cost and accuracy over time prog_name = 'nn' # the name of the program for avoiding collisions in log files last_tflat = np.zeros((1,1)) # the last theta vector if we need to save it early global_step = 0 # tracks how many times the back_propagation algorithm is called """ Data loading """ def shuffle(X, y): X = np.hstack((X, y.reshape((len(y), 1)))) np.random.shuffle(X) return X[:,:-1], X[:,-1] def onehot(y): onehot_encoder = OneHotEncoder(sparse=False) return onehot_encoder.fit_transform(y.reshape((len(y), 1))) # onehot encode y def shuffle_oh(X, y): X, y = shuffle(X, y) return X, onehot(y) # load the data from the .mat file and do some preprocessing def load_data(all_data=False, train=True, split=False, num_sample=500): # if we are using the full dataset, we can load it from the -ubyte.gz files # if we are using the toy dataset, we can load it from the .mat files # using the full dataset, we have a train and a test set, to the train argument tells us # which dataset to read # using the toy dataset, there is no test set, so split should be set to True so that # we can say that the last 10th of the train set is actually the test set # if you are using the full dataset, don't set split to True, that would just be pointless if all_data: filenames = os.listdir('./data') filenames = [f for f in filenames if f.endswith('.gz')] filenames = [os.path.join('./data', f) for f in filenames] if train: filenames = [f for f in filenames if 'train' in f] else: filenames = [f for f in filenames if not 'train' in f] if not train: num_sample = None if 'images' in filenames[0]: #X, y = read_images(filenames[0], n=num_sample), read_labels(filenames[1], n=num_sample) X, y = read_idx(filenames[0], n=num_sample), read_idx(filenames[1], n=num_sample) else: #X, y = read_images(filenames[1], n=num_sample), read_labels(filenames[0], n=num_sample) X, y = read_idx(filenames[1], n=num_sample), read_idx(filenames[0], n=num_sample) #X = crop(X) X = X / 255.0 X = X.reshape((X.shape[0], X.shape[1]*X.shape[2])) else: mat = loadmat('data/data.mat') X, y = mat['X'], mat['y'] prepro = lambda i: 0 if i == 10 else i v_prepro = np.vectorize(prepro) y = v_prepro(y.flatten()) if not all_data: if split: test_len = 500//10 idxs = reduce( lambda x, y: x+y, [[500*i-j for j in reversed(range(1,test_len+1))] for i in range(1,11)]) X_test, y_test = X[idxs], y[idxs] idxs = [i for i in range(5000) if not i in idxs] train, test = shuffle_oh(X[idxs], y[idxs]), shuffle_oh(X_test, y_test) return train[0], train[1], test[0], test[1] return shuffle_oh(X, y) return X, onehot(y) # generate an array of random matrices according to the given sizes def random_thetas(sizes): def eps(size): return np.sqrt(6.0/(size[0]+size[1]+1.0)) return [np.random.uniform(-eps(s), eps(s), s) for s in sizes] # calculate the cost of the model def cost(h, y, m, k, lmbda=0, thetas=[]): cost = -np.mean(np.sum(y*np.log(h), axis=1), axis=0) if lmbda > 0: weight_sum = sum(list(map( lambda t: np.sum(t[:,1:].flatten()**2), thetas))) cost += weight_sum * lmbda / (2.0*m) return cost """ FORWARD PROP """ # propagate the dataset forward through the network given a set of parameters def forward_prop(X, thetas): a = X a_arr = [] for i, theta in enumerate(thetas): a = np.hstack((np.ones((len(a), 1)), a)) a_arr.append(a) z = a.dot(theta.T) if i == len(thetas)-1: a = np.exp(z) denom = np.sum(a, axis=1) a = a / denom.reshape(len(a), 1) else: a = expit(z) a_arr.append(a) return a_arr """ BACKPROP """ # using backpropagation, calculate the gradient with respect to all weights of the model def back_prop(a_arr, y, m, L, thetas, lmbda=0): global global_step global_step += 1 if global_step % 20 == 0: print 'Global Step: %d' % (global_step) big_del, lil_del = [], [] k = len(y[0]) for a in a_arr: lil_del.append(np.zeros((a[0].shape[0], 1))) for t in thetas: big_del.append(np.zeros(t.shape)) for i in range(m): lil_del[-1] = -(y[i] - a_arr[-1][i]) lil_del[-1] = lil_del[-1].reshape((k, 1)) for l in range(2, L+1): last_delta = lil_del[-l+1] if l > 2: # if it is a hidden layer then ignore the bias error last_delta = last_delta[1:,:] curr_delta = thetas[-l+1].T.dot(last_delta) a = a_arr[-l][i] # get this layer's activation s = len(a) # size of the current layer a = a.reshape((s, 1)) big_del[-l+1] += last_delta.dot(a.T) # increment big delta for the layer accordingly gprime = np.multiply(a, 1-a) gprime = gprime.reshape((s, 1)) curr_delta = np.multiply(curr_delta, gprime) # multiply the error by it lil_del[-l][:] = curr_delta[:] for i, bd in enumerate(big_del): big_del[i] = bd/float(m) if lmbda > 0: reg_mat = thetas[i][:] reg_mat[:,0] = 0 big_del[i] += lmbda*reg_mat/float(m) return big_del def predict(X, thetas, Ws, bs, return_h=False): X = sae_util.forward_prop(X, Ws, bs)[0][1] h = forward_prop(X, thetas)[-1] pred = np.argmax(h, axis=1) if return_h: return (h, pred) return pred def thetas_from_flat(theta_flat, sizes): thetas = [] idx = 0 for size in sizes: n = size[0]*size[1] thetas.append( np.array(theta_flat[idx:idx+n]).reshape(size)) idx += n return thetas def check_grad(X, y, Ws, bs, m, n, k, L, sizes, lmbda=0): print 'Calculating numerical gradient' thetas = random_thetas(sizes) theta_flat = np.array([], dtype=float) for theta in thetas: theta_flat = np.append(theta_flat, theta.flatten()) X = sae_util.forward_prop(X, Ws, bs)[0][1] print X.shape def f(thetas, *args): thetas = thetas_from_flat(thetas, sizes) h = forward_prop(X, thetas)[-1] return cost(h, y, m, k, lmbda=lmbda, thetas=thetas) def fgrad(thetas, *args): thetas = thetas_from_flat(thetas, sizes) a_arr = forward_prop(X, thetas) dels = back_prop(a_arr, y, m, L, thetas, lmbda=lmbda) g = np.array([], dtype=float) for d in dels: g = np.append(g, d.flatten()) return g return opt.check_grad(f, fgrad, theta_flat) def load_test(all_data=False): return load_data(all_data=all_data, train=False) def calc_acc(X_test, y_test, thetas): h = forward_prop(X_test, thetas)[-1] pred = np.argmax(h, axis=1) actual = np.argmax(y_test, axis=1) return np.sum(pred == actual) / float(len(y_test)) def write_cost_and_acc(): global Js, accs with open('logs/'+prog_name+'/cost_and_acc.csv', 'w') as f: f.write('Cost, Accuracy\n') for j, acc in zip(Js, accs): f.write('%f, %f\n' % (j, acc)) def write_last_theta(): global last_tflat, prog_name np.savetxt('logs/'+prog_name+'/weights_nn.txt', last_tflat) # train a network using convergent gradient minimization def train(X, y, Ws, bs, m, n, k, L, sizes, lmbda=0, max_iter=400, test_set=None, name='nn'): global global_step, Js, accs, prog_name, last_tflat prog_name = name X_test, y_test = test_set if X_test is None or y_test is None: X_test, y_test = load_test(all_data=True) X = sae_util.forward_prop(X, Ws, bs)[0][1] X_test = sae_util.forward_prop(X_test, Ws, bs)[0][1] thetas = random_thetas(sizes) theta_flat = np.array([], dtype=float) for theta in thetas: theta_flat = np.append(theta_flat, theta.flatten()) def f(thetas, *args): global last_tflat, Js, accs, global_step last_tflat = np.copy(thetas) # store the last theta for if we get booted thetas = thetas_from_flat(thetas, sizes) h = forward_prop(X, thetas)[-1] J = cost(h, y, m, k, lmbda=lmbda, thetas=thetas) if global_step % 20 == 0: Js.append(J) accs.append(calc_acc(X_test, y_test, thetas)) print Js[-1], accs[-1] write_cost_and_acc() write_last_theta() return J def fgrad(thetas, *args): global last_tflat, Js, accs last_tflat = np.copy(thetas) # store the last theta vector in case we have to exit early thetas = thetas_from_flat(thetas, sizes) a_arr = forward_prop(X, thetas) dels = back_prop(a_arr, y, m, L, thetas, lmbda=lmbda) g = np.array([], dtype=float) for d in dels: g = np.append(g, d.flatten()) return g return opt.minimize( f, theta_flat, jac=fgrad, method='CG', tol=1e-5, options={'disp': True, 'maxiter': max_iter}).x
78bf6e82317ffebd4169455cfddeb3ae20aa7715
8b0fdc693d2551b38d9d99fadc848b333add69a5
/Sesion-04/Ejemplo-03/Bedutravels/Bedutravels/urls.py
a1d9b62d633ad4f342931ebac32211dee0e2cf66
[]
no_license
mayela/Backend-con-Python-Expert
cb2e7f924f37e6c321ed75fc74aad3cf557ecb66
12adb17c0227a48e2252e1c830f0706e9dc36682
refs/heads/master
2022-11-12T19:14:22.365643
2020-07-04T03:18:29
2020-07-04T03:18:29
256,653,359
0
3
null
2020-04-18T02:27:47
2020-04-18T02:27:46
null
UTF-8
Python
false
false
848
py
"""Bedutravels URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include urlpatterns = [ path('admin/', admin.site.urls), path('', include('tours.urls')), path('perfiles/', include('perfiles.urls')), ]
cd1d00359df9774b800509d1661d19dd46beb71a
61bccf4117ba351365a2526603024a0e99e2559f
/pseudo/api_translators/python_api_handlers.py
3c5ed44386fdc67cbeaac8e5745a3471fdeff16d
[ "MIT" ]
permissive
gitter-badger/pseudo
781363ee0c116ee0d7dfce968b007708a33c8bc4
070a2649d47170927184ad19af8c32c7be4f7612
refs/heads/master
2021-01-22T15:43:29.890465
2016-03-07T03:42:19
2016-03-07T03:42:19
53,293,990
0
0
null
2016-03-07T03:48:09
2016-03-07T03:48:08
null
UTF-8
Python
false
false
2,630
py
from pseudo.pseudo_tree import Node, call, method_call, local, assignment, to_node from pseudo.api_handlers import BizarreLeakingNode, NormalLeakingNode def expand_map(receiver, func): if func.type == 'lambda': return Node( '_py_list_comp', sequence=receiver) else: return call('map', [func, receiver]) def expand_filter(receiver, func): if func.type == 'lambda': return Node( '_py_list_comp') else: return call('filter', [func, receiver]) def expand_set_slice(receiver, from_=None, to=None, value=None, pseudo_type=None): s = expand_slice(receiver, from_, to, pseudo_type) return assignment(s, value) def expand_slice(receiver, from_=None, to=None, pseudo_type=None): if from_: if to: if from_.type == 'int' and from_.value == 0: return Node('_py_slice_to', sequence=receiver, to=to, pseudo_type=pseudo_type) else: return Node('_py_slice', sequence=receiver, from_=from_, to=to, pseudo_type=pseudo_type) else: return Node('_py_slice_from', sequence=receiver, from_=from_, pseudo_type=pseudo_type) elif to: return Node('_py_slice_to', sequence=receiver, to=to, pseudo_type=pseudo_type) else: return None class ReadFile(BizarreLeakingNode): ''' transforms `io:read_file` `io:read_file(name)` to `with open(name, 'r') as _f: <target>/_file_contents = f.read()` ''' def temp_name(self, target): return '_file_contents' # assign : as_assignment # block-level: as_expression # inside: as_assignment with temp_name as target def as_expression(self): return [Node( '_py_with', call=call('open', [self.args[0], to_node('r')], 'File'), context='_f', block=[method_call(local('_f', 'File'), 'read', [], 'String')], pseudo_type='Void')], None def as_assignment(self, target): expression = self.as_expression()[0][0] expression.block[0] = assignment(target, expression.block[0]) return [expression] class WriteFile(NormalLeakingNode): ''' transforms `io:write_file` `io:write_file(name, stuff)` `with open(name, 'w') as _f: _f.write(stuff)` ''' def as_expression(self): return [], Node( '_py_with', call=call('open', [self.args[0], to_node('w')], 'File'), context='_f', block=[method_call(local('_f', 'File'), 'write', [self.args[1]], 'Void')], pseudo_type='Void')
2a208e38f3ee3b3d5ad2f906c8d4f09584af8142
3d7383bd777c9c49525ac7a0565b21ddea22f480
/draw/migrations/0003_canvas_in_use.py
285857b18f75cec4f092b92ad0eb9c1de1bb493c
[]
no_license
eranfuchs1/draw-factory
34b785f97960adc7f4ddf105c355f83d0c83f7d7
064f481a5f42a72d6ca2945b145f688ca819ac39
refs/heads/main
2023-08-17T21:24:40.737542
2021-10-10T13:53:32
2021-10-10T13:53:32
411,957,018
0
0
null
null
null
null
UTF-8
Python
false
false
380
py
# Generated by Django 3.2.7 on 2021-09-16 13:32 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('draw', '0002_auto_20210910_0639'), ] operations = [ migrations.AddField( model_name='canvas', name='in_use', field=models.BooleanField(null=True), ), ]
[ "xer@xer-labtop" ]
xer@xer-labtop
9040a4631960319ec6148982d433cd13b8960be8
255e19ddc1bcde0d3d4fe70e01cec9bb724979c9
/all-gists/4975214/snippet.py
89b2ebfbf651f8646080afc7aa78e741eb01c122
[ "MIT" ]
permissive
gistable/gistable
26c1e909928ec463026811f69b61619b62f14721
665d39a2bd82543d5196555f0801ef8fd4a3ee48
refs/heads/master
2023-02-17T21:33:55.558398
2023-02-11T18:20:10
2023-02-11T18:20:10
119,861,038
76
19
null
2020-07-26T03:14:55
2018-02-01T16:19:24
Python
UTF-8
Python
false
false
1,947
py
#!/usr/bin/env python3 # Joonas Kuorilehto 2013 # This script is Public Domain. import csv import subprocess import pipes from datetime import datetime import smtplib from email.mime.text import MIMEText EMAIL = ************** ADB_BINARY = "adt-bundle-linux-x86_64/sdk/platform-tools/adb" SMS_DB = "/data/data/com.android.providers.telephony/databases/mmssms.db" def android_sql(sql_query): cmd = 'sqlite3 -csv -header %s %s' % (SMS_DB, pipes.quote(sql_query)) shell_cmd = 'su -c {}'.format(pipes.quote(cmd)) p = subprocess.Popen([ADB_BINARY, 'shell', shell_cmd], stdout=subprocess.PIPE, universal_newlines=True) sqlite_out, sqlite_stderr = p.communicate() reader = csv.DictReader(sqlite_out.split("\n")) return reader def get_unread_messages(): # Format message; get unread SMS messages from Android result = android_sql("SELECT _id, address, date, body FROM sms WHERE read=0;") message_ids = [] email_message = "" for msg in result: message_ids.append(msg['_id']) date = datetime.fromtimestamp(int(int(msg['date'])/1000)) m = "{} [{}]\n {}\n\n".format(date, msg['address'], msg['body']) email_message += m return (message_ids, email_message) def send_email(message_content, sender=EMAIL, to=EMAIL, subject="Received SMS messages", charset="UTF-8"): # Create a text/plain message msg = MIMEText(message_content.encode(charset), _charset=charset) msg['Subject'] = subject msg['From'] = sender msg['To'] = to # Send the message via our own SMTP server. s = smtplib.SMTP('localhost') s.send_message(msg) s.quit() def main(): message_ids, email_message = get_unread_messages() if len(message_ids) > 0: send_email(email_message) read_ids = ",".join(message_ids) android_sql("UPDATE sms SET read=1 WHERE _id in ({});".format(read_ids)) if __name__ == '__main__': main()
2c9a8ded7947bcb9ce4a3f05b9e33107d4f561f4
297497957c531d81ba286bc91253fbbb78b4d8be
/testing/web-platform/tests/tools/wptrunner/wptrunner/browsers/chrome.py
c04e715a20e5eaa0635c562676c17e8f89f45cf7
[ "LicenseRef-scancode-unknown-license-reference", "BSD-3-Clause" ]
permissive
marco-c/gecko-dev-comments-removed
7a9dd34045b07e6b22f0c636c0a836b9e639f9d3
61942784fb157763e65608e5a29b3729b0aa66fa
refs/heads/master
2023-08-09T18:55:25.895853
2023-08-01T00:40:39
2023-08-01T00:40:39
211,297,481
0
0
NOASSERTION
2019-09-29T01:27:49
2019-09-27T10:44:24
C++
UTF-8
Python
false
false
5,676
py
from . import chrome_spki_certs from .base import WebDriverBrowser, require_arg from .base import NullBrowser from .base import get_timeout_multiplier from .base import cmd_arg from ..executors import executor_kwargs as base_executor_kwargs from ..executors.executorwebdriver import WebDriverCrashtestExecutor from ..executors.base import WdspecExecutor from ..executors.executorchrome import ( ChromeDriverPrintRefTestExecutor, ChromeDriverRefTestExecutor, ChromeDriverTestharnessExecutor, ) __wptrunner__ = {"product": "chrome", "check_args": "check_args", "browser": "ChromeBrowser", "executor": {"testharness": "ChromeDriverTestharnessExecutor", "reftest": "ChromeDriverRefTestExecutor", "print-reftest": "ChromeDriverPrintRefTestExecutor", "wdspec": "WdspecExecutor", "crashtest": "WebDriverCrashtestExecutor"}, "browser_kwargs": "browser_kwargs", "executor_kwargs": "executor_kwargs", "env_extras": "env_extras", "env_options": "env_options", "update_properties": "update_properties", "timeout_multiplier": "get_timeout_multiplier",} def check_args(**kwargs): require_arg(kwargs, "webdriver_binary") def browser_kwargs(logger, test_type, run_info_data, config, **kwargs): return {"binary": kwargs["binary"], "webdriver_binary": kwargs["webdriver_binary"], "webdriver_args": kwargs.get("webdriver_args")} def executor_kwargs(logger, test_type, test_environment, run_info_data, **kwargs): sanitizer_enabled = kwargs.get("sanitizer_enabled") if sanitizer_enabled: test_type = "crashtest" executor_kwargs = base_executor_kwargs(test_type, test_environment, run_info_data, **kwargs) executor_kwargs["close_after_done"] = True executor_kwargs["sanitizer_enabled"] = sanitizer_enabled executor_kwargs["reuse_window"] = kwargs.get("reuse_window", False) capabilities = { "goog:chromeOptions": { "prefs": { "profile": { "default_content_setting_values": { "popups": 1 } } }, "excludeSwitches": ["enable-automation"], "w3c": True } } chrome_options = capabilities["goog:chromeOptions"] if kwargs["binary"] is not None: chrome_options["binary"] = kwargs["binary"] chrome_options["args"] = [] chrome_options["args"].append("--ignore-certificate-errors-spki-list=%s" % ','.join(chrome_spki_certs.IGNORE_CERTIFICATE_ERRORS_SPKI_LIST)) chrome_options["args"].append("--autoplay-policy=no-user-gesture-required") chrome_options["args"].append("--use-fake-device-for-media-stream") chrome_options["args"].append("--use-fake-ui-for-media-stream") chrome_options["args"].append("--use-fake-ui-for-fedcm") chrome_options["args"].append("--short-reporting-delay") chrome_options["args"].append("--host-resolver-rules=MAP nonexistent.*.test ~NOTFOUND, MAP *.test 127.0.0.1") chrome_options["args"].append("--enable-features=SecurePaymentConfirmationBrowser") address_space_overrides_ports = [ ("http-private", "private"), ("http-public", "public"), ("https-private", "private"), ("https-public", "public"), ] address_space_overrides_arg = ",".join( f"127.0.0.1:{port_number}={address_space}" for port_name, address_space in address_space_overrides_ports for port_number in test_environment.config.ports.get(port_name, []) ) if address_space_overrides_arg: chrome_options["args"].append( "--ip-address-space-overrides=" + address_space_overrides_arg) if kwargs["enable_mojojs"]: chrome_options["args"].append("--enable-blink-features=MojoJS,MojoJSTest") if kwargs["enable_swiftshader"]: chrome_options["args"].extend(["--use-gl=angle", "--use-angle=swiftshader"]) if kwargs["enable_experimental"]: chrome_options["args"].extend(["--enable-experimental-web-platform-features"]) if kwargs["binary_args"] is not None: chrome_options["args"].extend(kwargs["binary_args"]) if ((kwargs["headless"] or test_type == "print-reftest") and "--headless" not in chrome_options["args"]): chrome_options["args"].append("--headless") webtranport_h3_port = test_environment.config.ports.get('webtransport-h3') if webtranport_h3_port is not None: chrome_options["args"].append( f"--origin-to-force-quic-on=web-platform.test:{webtranport_h3_port[0]}") if test_type == "wdspec": executor_kwargs["binary_args"] = chrome_options["args"] executor_kwargs["capabilities"] = capabilities return executor_kwargs def env_extras(**kwargs): return [] def env_options(): return {"server_host": "127.0.0.1"} def update_properties(): return (["debug", "os", "processor"], {"os": ["version"], "processor": ["bits"]}) class ChromeBrowser(WebDriverBrowser): def make_command(self): return [self.webdriver_binary, cmd_arg("port", str(self.port)), cmd_arg("url-base", self.base_path), cmd_arg("enable-chrome-logs")] + self.webdriver_args
449a53f9deeb2701e3efcf585c996e3261bf2469
47243c719bc929eef1475f0f70752667b9455675
/bungeni.buildout/branches/bungeni.buildout-refactor-2010-06-02/src/bungeni.main/bungeni/plonepas/tests/test_groupmanager.py
e3b5b1c457f18909d4cec8c2e9e29f42507e0cc5
[]
no_license
malangalanga/bungeni-portal
bbf72ce6d69415b11287a8796b81d4eb6520f03a
5cf0ba31dfbff8d2c1b4aa8ab6f69c7a0ae9870d
refs/heads/master
2021-01-19T15:31:42.943315
2014-11-18T09:03:00
2014-11-18T09:03:00
32,453,405
0
0
null
null
null
null
UTF-8
Python
false
false
8,943
py
# tests from sqlpasplugin ( GPL v2 ) from bungeni.plonepas.tests import basetestcase from Products.PlonePAS.plugins.group import PloneGroup class TestGroupManager( basetestcase.BaseTestCase ): def afterSetUp( self ): self.group_name = "ExampleReporters" self.groupname = self.group_name self.username = 'joe' self.password = 'passw0rd' self.source_groups = self.getPAS().bungeni_groups self.source_users = self.getPAS().bungeni_users def testAddGroup(self): self.source_groups.addGroup( self.group_name ) ret = self.source_groups.enumerateGroups( id=self.group_name, exact_match=True ) self.assertEqual( len(ret), 1 ) self.source_groups.removeGroup( self.group_name ) def testRemoveGroup( self ): # Is it empty? ret = self.source_groups.enumerateGroups(id=self.group_name, exact_match=True) self.assertEqual(len(ret), 0) # allowRemove ret = self.source_groups.allowDeletePrincipal(self.group_name) self.assertEqual(ret, False) # Add one self.source_groups.addGroup(self.group_name) ret = self.source_groups.enumerateGroups(id=self.group_name, exact_match=True) self.assertEqual(len(ret), 1) # allowRemove ret = self.source_groups.allowDeletePrincipal(self.group_name) self.assertEqual(ret, True) # Delete one self.source_groups.removeGroup(self.group_name) ret = self.source_groups.enumerateGroups(id=self.group_name, exact_match=True) self.assertEqual(len(ret), 0) def testMembershipLifecycle(self): # Create Group self.source_groups.addGroup(self.groupname) ret = self.source_groups.enumerateGroups(id=self.groupname, exact_match=True) self.assertEqual(len(ret), 1) # Create User self.source_users.doAddUser(self.username, self.password) ret = self.source_users.enumerateUsers(id=self.username, exact_match=True) self.assertEqual(len(ret), 1) # User should have no memberships ret = self.source_groups.getGroupsForPrincipal(self.username) self.assertEqual(len(ret), 0, "Database seems unclean") # Add the user to the group self.source_groups.addPrincipalToGroup(self.username, self.groupname) ret = self.source_groups.getGroupsForPrincipal(self.username) self.assertEqual(len(ret), 1, "Failed to add user to group") self.assertEqual(ret[0], self.groupname) # Remove the user from the group self.source_groups.removePrincipalFromGroup(self.username, self.groupname) ret = self.source_groups.getGroupsForPrincipal(self.username) self.assertEqual(len(ret), 0, "Failed to remove user from group") # Cleanup self.source_users.removeUser(self.username) self.source_groups.removeGroup(self.groupname) def testEnumerateGroups(self): "groupmanager.enumerateGroups()" ret = self.source_groups.enumerateGroups() self.assertEqual(len(ret), 0) count = 10 for x in range(count): groupname = 'group_%i' % x self.source_groups.addGroup(groupname) ret = self.source_groups.enumerateGroups() self.assertEqual(len(ret), count, "Number added didn't equal the number in the db.") ret = self.source_groups.enumerateGroups(id='group_1', exact_match=True) self.assertEqual(len(ret), 1) ret = self.source_groups.enumerateGroups(max_results=5) self.assertEqual(len(ret), 5) ret = self.source_groups.enumerateGroups(max_results=20) self.assertEqual(len(ret), count) for x in range(count): groupname = 'group_%i' % x self.source_groups.removeGroup(groupname) def testEnumerateGroupSearching(self): ret = self.source_groups.enumerateGroups() self.assertEqual(len(ret), 0) count = 10 for x in range(count): groupname = 'group_%i' % x self.source_groups.addGroup(groupname) ret = self.source_groups.enumerateGroups() self.assertEqual(len(ret), count, "Number added didn't equal the number in the db.") # Exact match Multiple Group Test ret = self.source_groups.enumerateGroups( id=['group_2','group_3'], exact_match=True) self.assertEqual(len(ret), 2, "Failed multi-fetch") # Fuzzy Match Test ret = self.source_groups.enumerateGroups( id=['group_%']) self.assertEqual(len(ret), 10, "Failed the fuzzy match on 'id' test") # Exact Match test ret = self.source_groups.enumerateGroups( id=['group_1','group_1'], exact_match=1) self.assertEqual(len(ret), 1) ret = self.source_groups.enumerateGroups(max_results=5) self.assertEqual(len(ret), 5) ret = self.source_groups.enumerateGroups(max_results=20) self.assertEqual(len(ret), count) for x in range(count): groupname = 'group_%i' % x self.source_groups.removeGroup(groupname) def testIGroupIntrospection_getGroupById_getGroups(self): group = self.source_groups.getGroupById(self.groupname) self.failUnless(group is None) # add group self.source_groups.addGroup(self.groupname) group = self.source_groups.getGroupById(self.groupname) self.failIf(group is None) self.failUnless(isinstance(group, PloneGroup)) # add another group self.source_groups.addGroup(self.groupname+'1') groups = self.source_groups.getGroups() self.assertEqual(len(groups),2) self.failUnless(isinstance(groups[0], PloneGroup)) self.failUnless(isinstance(groups[1], PloneGroup)) # Cleanup self.source_groups.removeGroup(self.groupname) def testIGroupIntrospection_getGroupIds(self): ret = self.source_groups.getGroupIds() self.assertEqual(len(ret), 0) # add one group self.source_groups.addGroup(self.groupname) ret = self.source_groups.getGroupIds() self.assertEqual(len(ret), 1) # add another group self.source_groups.addGroup(self.groupname+'1') ret = self.source_groups.getGroupIds() self.assertEqual(len(ret), 2) # add one user self.source_users.doAddUser(self.username, self.password) self.source_groups.addPrincipalToGroup(self.username, self.groupname) ret = self.source_groups.getGroupIds() self.assertEqual(len(ret), 2) # Cleanup self.source_users.removeUser(self.username) self.source_groups.removeGroup(self.groupname) self.source_groups.removeGroup(self.groupname+'1') def testIGroupIntrospection_getGroupMembers(self): # add group self.source_groups.addGroup(self.groupname) ret = self.source_groups.getGroupMembers(self.groupname) self.assertEqual(len(ret), 0) # add users users_number = 3 for i in range(users_number): username = '%s_%s'%(self.username,i) self.source_users.doAddUser(username, self.password) self.source_groups.addPrincipalToGroup(username, self.groupname) ret = self.source_groups.getGroupMembers(self.groupname) self.assertEqual(len(ret), 3) # Cleanup for i in range(users_number): username = '%s_%s'%(self.username,i) self.source_users.removeUser(username) self.source_groups.removeGroup(self.groupname) def testIGroupCapability(self): ret = self.source_groups.allowGroupAdd(self.username, self.groupname) self.assertEqual(ret, False) ret = self.source_groups.allowGroupRemove(self.username, self.groupname) self.assertEqual(ret, False) # add group self.source_groups.addGroup(self.groupname) ret = self.source_groups.allowGroupAdd(self.username, self.groupname) self.assertEqual(ret, True) ret = self.source_groups.allowGroupRemove(self.username, self.groupname) self.assertEqual(ret, False) # add user self.source_users.doAddUser(self.username, self.password) self.source_groups.addPrincipalToGroup(self.username, self.groupname) ret = self.source_groups.allowGroupRemove(self.username, self.groupname) self.assertEqual(ret, True) # Cleanup self.source_users.removeUser(self.username) self.source_groups.removeGroup(self.groupname) def test_suite( ): from unittest import TestSuite, makeSuite suite = TestSuite() suite.addTest(makeSuite(TestGroupManager)) return suite
[ "ashok.hariharan@fc5d704a-7d24-0410-8c4a-57ddeba10ffc" ]
ashok.hariharan@fc5d704a-7d24-0410-8c4a-57ddeba10ffc
b4b41d922e148e8957787f9ba6595f80af7ff5cd
f83ef53177180ebfeb5a3e230aa29794f52ce1fc
/opencv/opencv-3.4.2/modules/python/test/test_algorithm_rw.py
c925a99e7b378e4a2de119a09516b8791426e911
[ "Apache-2.0", "BSD-3-Clause" ]
permissive
msrLi/portingSources
fe7528b3fd08eed4a1b41383c88ee5c09c2294ef
57d561730ab27804a3172b33807f2bffbc9e52ae
refs/heads/master
2021-07-08T01:22:29.604203
2019-07-10T13:07:06
2019-07-10T13:07:06
196,183,165
2
1
Apache-2.0
2020-10-13T14:30:53
2019-07-10T10:16:46
null
UTF-8
Python
false
false
945
py
#!/usr/bin/env python """Algorithm serializaion test.""" import tempfile import os import cv2 as cv from tests_common import NewOpenCVTests class algorithm_rw_test(NewOpenCVTests): def test_algorithm_rw(self): fd, fname = tempfile.mkstemp(prefix="opencv_python_algorithm_", suffix=".yml") os.close(fd) # some arbitrary non-default parameters gold = cv.AKAZE_create(descriptor_size=1, descriptor_channels=2, nOctaves=3, threshold=4.0) gold.write(cv.FileStorage(fname, cv.FILE_STORAGE_WRITE), "AKAZE") fs = cv.FileStorage(fname, cv.FILE_STORAGE_READ) algorithm = cv.AKAZE_create() algorithm.read(fs.getNode("AKAZE")) self.assertEqual(algorithm.getDescriptorSize(), 1) self.assertEqual(algorithm.getDescriptorChannels(), 2) self.assertEqual(algorithm.getNOctaves(), 3) self.assertEqual(algorithm.getThreshold(), 4.0) os.remove(fname)
0372fae3ea1b5eb2527a825a9ca4ed488c4356f6
dcce56815dca2b18039e392053376636505ce672
/dumpscripts/urllib_parse_parse_qs.py
ac161429c77b20833f8c030beec791aacc03a8ed
[]
no_license
robertopauletto/PyMOTW-it_3.0
28ff05d8aeccd61ade7d4107a971d9d2576fb579
c725df4a2aa2e799a969e90c64898f08b7eaad7d
refs/heads/master
2021-01-20T18:51:30.512327
2020-01-09T19:30:14
2020-01-09T19:30:14
63,536,756
4
1
null
null
null
null
UTF-8
Python
false
false
184
py
# urllib_parse_parse_qs.py from urllib.parse import parse_qs, parse_qsl encoded = 'foo=foo1&foo=foo2' print('parse_qs :', parse_qs(encoded)) print('parse_qsl:', parse_qsl(encoded))
51240397ecfcb413842739d74156a0b5203fe35a
0e478f3d8b6c323c093455428c9094c45de13bac
/src/OTLMOW/PostenMapping/Model/Post050403123.py
d2a98778acbe6ecbe359b1c4d49180ede0abb679
[ "MIT" ]
permissive
davidvlaminck/OTLMOW
c6eae90b2cab8a741271002cde454427ca8b75ba
48f8c357c475da1d2a1bc7820556843d4b37838d
refs/heads/main
2023-01-12T05:08:40.442734
2023-01-10T15:26:39
2023-01-10T15:26:39
432,681,113
3
1
MIT
2022-06-20T20:36:00
2021-11-28T10:28:24
Python
UTF-8
Python
false
false
3,021
py
# coding=utf-8 from OTLMOW.PostenMapping.StandaardPost import StandaardPost from OTLMOW.PostenMapping.StandaardPostMapping import StandaardPostMapping # Generated with PostenCreator. To modify: extend, do not edit class Post050403123(StandaardPost): def __init__(self): super().__init__( nummer='0504.03123', beschrijving='Steenslagfundering met continue korrelverdeling zonder toevoegsels, type I volgens 5-4.3, dikte 23 cm', meetstaateenheid='M2', mappings=[StandaardPostMapping( typeURI='https://wegenenverkeer.data.vlaanderen.be/ns/onderdeel#Onderbouw', attribuutURI='https://wegenenverkeer.data.vlaanderen.be/ns/onderdeel#Onderbouw.type', dotnotation='type', defaultWaarde='steenslag-met-continue-korrelverdeling-zonder-toevoegsel---type-I', range='', usagenote='', isMeetstaatAttr=0, isAltijdInTeVullen=0, isBasisMapping=1, mappingStatus='gemapt 2.0', mappingOpmerking='', standaardpostnummer='0504.03123') , StandaardPostMapping( typeURI='https://wegenenverkeer.data.vlaanderen.be/ns/onderdeel#Onderbouw', attribuutURI='https://wegenenverkeer.data.vlaanderen.be/ns/abstracten#Laag.laagRol', dotnotation='laagRol', defaultWaarde='fundering', range='', usagenote='', isMeetstaatAttr=0, isAltijdInTeVullen=0, isBasisMapping=1, mappingStatus='gemapt 2.0', mappingOpmerking='', standaardpostnummer='0504.03123') , StandaardPostMapping( typeURI='https://wegenenverkeer.data.vlaanderen.be/ns/onderdeel#Onderbouw', attribuutURI='https://wegenenverkeer.data.vlaanderen.be/ns/abstracten#LaagDikte.dikte', dotnotation='dikte', defaultWaarde='23', range='', usagenote='cm^^cdt:ucumunit', isMeetstaatAttr=0, isAltijdInTeVullen=0, isBasisMapping=1, mappingStatus='gemapt 2.0', mappingOpmerking='', standaardpostnummer='0504.03123') , StandaardPostMapping( typeURI='https://wegenenverkeer.data.vlaanderen.be/ns/onderdeel#Onderbouw', attribuutURI='https://wegenenverkeer.data.vlaanderen.be/ns/abstracten#Laag.oppervlakte', dotnotation='oppervlakte', defaultWaarde='', range='', usagenote='m2^^cdt:ucumunit', isMeetstaatAttr=1, isAltijdInTeVullen=1, isBasisMapping=1, mappingStatus='gemapt 2.0', mappingOpmerking='', standaardpostnummer='0504.03123')])
b65a91e413453aed3092f09662080605f87d4241
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_170/ch56_2020_04_13_18_33_51_184386.py
97a6e222fa37eaba3134408fe7f6157aca76afa4
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
97
py
import math def calcula_norma(vetor): m = math.sqrt((vetor[0]**2)+(vetor[1]**2)) return m
eb8d813a61a828c9efb6c8ec52af1b6ef4a5c794
91824d746654fe12881b4fc3b55c553aae0d22ac
/py/redundant-connection.py
ab5fad839fdb7996e843187b4f2991bc9032bb7b
[ "Apache-2.0" ]
permissive
ckclark/leetcode
a1a173c67a36a3256b198f853fcd3d15aa5abbb7
844c6f18d06dcb397db76436e5f4b8ddcb1beddc
refs/heads/master
2021-01-15T08:14:43.368516
2020-02-14T07:25:05
2020-02-14T07:30:10
42,386,911
0
0
null
null
null
null
UTF-8
Python
false
false
1,284
py
from collections import defaultdict class Solution(object): def findRedundantConnection(self, edges): """ :type edges: List[List[int]] :rtype: List[int] """ visited = set() parent = dict() neighbors = defaultdict(list) edge_idx = {tuple(sorted(e)): i for i, e in enumerate(edges)} def cycle_edge(v1, v2): e = tuple(sorted([v1, v2])) max_idx, ans = edge_idx[e], e v = v1 while v != v2: e = tuple(sorted([v, parent[v]])) if edge_idx[e] > max_idx: max_idx = edge_idx[e] ans = e v = parent[v] return list(ans) def dfs(cur): visited.add(cur) for neighbor in neighbors[cur]: if neighbor != parent[cur]: if neighbor in visited: yield cycle_edge(cur, neighbor) else: parent[neighbor] = cur for x in dfs(neighbor): yield x for v1, v2 in edges: neighbors[v1].append(v2) neighbors[v2].append(v1) parent[v1] = -1 return next(dfs(v1))
43c894cedddac6fcbb06773d61b19cb93d4bf03c
2a8c18a9fd129337c043fd2363b48450f0c3185f
/test/gst-msdk/transcode/vc1.py
7e4155599e586463311c20b1dd91b128b51208b1
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
intel/vaapi-fits
9641af9d684a7643c18c7f95e9411b807b2a3ae1
a60be1833b408fee665d0f717a10804ac2fb8ed4
refs/heads/master
2023-09-03T01:15:21.981271
2023-08-25T18:33:26
2023-09-01T14:05:15
164,735,279
26
34
BSD-3-Clause
2023-09-14T11:10:49
2019-01-08T21:24:18
Python
UTF-8
Python
false
false
515
py
## ### Copyright (C) 2018-2019 Intel Corporation ### ### SPDX-License-Identifier: BSD-3-Clause ### from ....lib import * from ....lib.gstreamer.msdk.util import * from ....lib.gstreamer.msdk.transcoder import TranscoderTest spec = load_test_spec("vc1", "transcode") class default(TranscoderTest): @slash.parametrize(("case"), sorted_by_resolution(spec)) def test(self, case): vars(self).update(spec[case].copy()) vars(self).update( case = case, codec = "vc1", ) self.transcode()
7c0227292f7dfe64bf7c5b85a67c03683090503b
b15d2787a1eeb56dfa700480364337216d2b1eb9
/samples/cli/accelbyte_py_sdk_cli/platform/_create_user_payment_order.py
c36e358769fc38c7aedebc890ffc637ee047d686
[ "MIT" ]
permissive
AccelByte/accelbyte-python-sdk
dedf3b8a592beef5fcf86b4245678ee3277f953d
539c617c7e6938892fa49f95585b2a45c97a59e0
refs/heads/main
2023-08-24T14:38:04.370340
2023-08-22T01:08:03
2023-08-22T01:08:03
410,735,805
2
1
MIT
2022-08-02T03:54:11
2021-09-27T04:00:10
Python
UTF-8
Python
false
false
2,810
py
# Copyright (c) 2021 AccelByte Inc. All Rights Reserved. # This is licensed software from AccelByte Inc, for limitations # and restrictions contact your company contract manager. # # Code generated. DO NOT EDIT! # template_file: python-cli-command.j2 # AGS Platform Service (4.32.1) # pylint: disable=duplicate-code # pylint: disable=line-too-long # pylint: disable=missing-function-docstring # pylint: disable=missing-module-docstring # pylint: disable=too-many-arguments # pylint: disable=too-many-branches # pylint: disable=too-many-instance-attributes # pylint: disable=too-many-lines # pylint: disable=too-many-locals # pylint: disable=too-many-public-methods # pylint: disable=too-many-return-statements # pylint: disable=too-many-statements # pylint: disable=unused-import import json import yaml from typing import Optional import click from .._utils import login_as as login_as_internal from .._utils import to_dict from accelbyte_py_sdk.api.platform import ( create_user_payment_order as create_user_payment_order_internal, ) from accelbyte_py_sdk.api.platform.models import ErrorEntity from accelbyte_py_sdk.api.platform.models import PaymentOrderCreate from accelbyte_py_sdk.api.platform.models import PaymentOrderInfo from accelbyte_py_sdk.api.platform.models import ValidationErrorEntity @click.command() @click.argument("user_id", type=str) @click.option("--body", "body", type=str) @click.option("--namespace", type=str) @click.option("--login_as", type=click.Choice(["client", "user"], case_sensitive=False)) @click.option("--login_with_auth", type=str) @click.option("--doc", type=bool) def create_user_payment_order( user_id: str, body: Optional[str] = None, namespace: Optional[str] = None, login_as: Optional[str] = None, login_with_auth: Optional[str] = None, doc: Optional[bool] = None, ): if doc: click.echo(create_user_payment_order_internal.__doc__) return x_additional_headers = None if login_with_auth: x_additional_headers = {"Authorization": login_with_auth} else: login_as_internal(login_as) if body is not None: try: body_json = json.loads(body) body = PaymentOrderCreate.create_from_dict(body_json) except ValueError as e: raise Exception(f"Invalid JSON for 'body'. {str(e)}") from e result, error = create_user_payment_order_internal( user_id=user_id, body=body, namespace=namespace, x_additional_headers=x_additional_headers, ) if error: raise Exception(f"createUserPaymentOrder failed: {str(error)}") click.echo(yaml.safe_dump(to_dict(result), sort_keys=False)) create_user_payment_order.operation_id = "createUserPaymentOrder" create_user_payment_order.is_deprecated = False
b08feec8aa0ebf1c8e0ffc71a57504ca08bfc238
b550eda62179ffd8e49a59df7f8a30163140204f
/backend/openshift/services/data/data/dependencies/xml_templates.py
c3e9ee5b62ab44ae3a4c242f93e504762286d3bc
[ "Apache-2.0" ]
permissive
bgoesswe/openeo-repeatability
6222fb235b70fda9da998b63fec92c0e5ac07169
087b9965e710d16cd6f29cb25e2cb94e443c2b30
refs/heads/master
2022-12-11T03:43:35.365574
2018-08-07T20:02:02
2018-08-07T20:02:02
139,158,921
0
1
null
2022-12-08T02:15:15
2018-06-29T14:27:34
Python
UTF-8
Python
false
false
2,291
py
xml_base = ( "<?xml version='1.0' encoding='ISO-8859-1' standalone='no'?>" "<csw:GetRecords " "xmlns:csw='http://www.opengis.net/cat/csw/2.0.2' " "xmlns:ogc='http://www.opengis.net/ogc' " "service='CSW' " "version='2.0.2' " "resultType='results' " "startPosition='{start_position}' " "maxRecords='1000' " "outputFormat='application/json' " "outputSchema='{output_schema}' " "xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' " "xsi:schemaLocation='http://www.opengis.net/cat/csw/2.0.2 http://schemas.opengis.net/csw/2.0.2/CSW-discovery.xsd' " "xmlns:gml='http://www.opengis.net/gml' " "xmlns:gmd='http://www.isotc211.org/2005/gmd' " "xmlns:apiso='http://www.opengis.net/cat/csw/apiso/1.0'>" "<csw:Query typeNames='csw:Record'>" "<csw:ElementSetName>full</csw:ElementSetName>" "<csw:Constraint version='1.1.0'>" "<ogc:Filter>" "{children}" "</ogc:Filter>" "</csw:Constraint>" "<ogc:SortBy>" "<ogc:SortProperty>" "<ogc:PropertyName>dc:date</ogc:PropertyName>" "<ogc:SortOrder>ASC</ogc:SortOrder>" "</ogc:SortProperty>" "</ogc:SortBy>" "</csw:Query>" "</csw:GetRecords>") xml_and = ( "<ogc:And>" "{children}" "</ogc:And>") xml_series = ( "<ogc:PropertyIsEqualTo>" "<ogc:PropertyName>apiso:Type</ogc:PropertyName>" "<ogc:Literal>series</ogc:Literal>" "</ogc:PropertyIsEqualTo>") xml_product = ( "<ogc:PropertyIsEqualTo>" "<ogc:PropertyName>{property}</ogc:PropertyName>" "<ogc:Literal>{product}</ogc:Literal>" "</ogc:PropertyIsEqualTo>") xml_begin = ( "<ogc:PropertyIsGreaterThanOrEqualTo>" "<ogc:PropertyName>apiso:TempExtent_begin</ogc:PropertyName>" "<ogc:Literal>{start}</ogc:Literal>" "</ogc:PropertyIsGreaterThanOrEqualTo>") xml_end = ( "<ogc:PropertyIsLessThanOrEqualTo>" "<ogc:PropertyName>apiso:TempExtent_end</ogc:PropertyName>" "<ogc:Literal>{end}</ogc:Literal>" "</ogc:PropertyIsLessThanOrEqualTo>") xml_bbox = ( "<ogc:BBOX>" "<ogc:PropertyName>ows:BoundingBox</ogc:PropertyName>" "<gml:Envelope>" "<gml:lowerCorner>{bbox.x1} {bbox.y1}</gml:lowerCorner>" "<gml:upperCorner>{bbox.x2} {bbox.y2}</gml:upperCorner>" "</gml:Envelope>" "</ogc:BBOX>")
8630e43fdef88303ac3890a023c2a9d9ba234303
f062af64ce156719203b79de9c2502b265af27de
/tensorflow_datasets/image_classification/imagenet2012_fewshot.py
8ceb0f003db906d5f9ee337a88de732cb52626d6
[ "Apache-2.0" ]
permissive
tensorflow/datasets
d0c58f3db7ce06347671558b9e5a41e12e6913ce
41ae3cf1439711ed2f50f99caa0e6702082e6d37
refs/heads/master
2023-08-31T03:23:16.581638
2023-08-30T17:25:34
2023-08-30T17:29:38
148,221,325
4,224
1,738
Apache-2.0
2023-09-14T14:04:22
2018-09-10T21:27:22
Python
UTF-8
Python
false
false
938
py
# coding=utf-8 # Copyright 2023 The TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Dataset definition for imagenet2012_fewshot. DEPRECATED! If you want to use the Imagenet2012Fewshot dataset builder class, use: tfds.builder_cls('imagenet2012_fewshot') """ from tensorflow_datasets.core import lazy_builder_import Imagenet2012Fewshot = lazy_builder_import.LazyBuilderImport( 'imagenet2012_fewshot' )
c6f1362845b8706526e3c4be24be5c5c66831c22
2a0865c583a12c66fdd1e7a62535b3e35482d37b
/CarAI/joshua_work/old/tutorial/Code/04_code/Lights/src/Application.py
cd596a8094bb301022e4217d73fa06d9531e57e5
[]
no_license
MyAusweis/UnrealAI
fe4a6df2859143cd4ca66a063016fc4d22d62bb7
9e5ad6b93df7ecf2293de10d41f09969c42404b3
refs/heads/master
2022-02-11T12:43:52.129313
2018-07-01T22:08:23
2018-07-01T22:08:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,520
py
from direct.showbase.ShowBase import ShowBase from direct.actor.Actor import Actor from panda3d.core import * class Application(ShowBase): def __init__(self): ShowBase.__init__(self) self.panda = Actor("panda", {"walk": "panda-walk"}) self.panda.reparentTo(render) self.panda.loop("walk") cm = CardMaker("plane") cm.setFrame(-10, 10, -10, 10) plane = render.attachNewNode(cm.generate()) plane.setP(270) self.cam.setPos(0, -40, 6) ambLight = AmbientLight("ambient") ambLight.setColor(Vec4(0.2, 0.1, 0.1, 1.0)) ambNode = render.attachNewNode(ambLight) render.setLight(ambNode) dirLight = DirectionalLight("directional") dirLight.setColor(Vec4(0.1, 0.4, 0.1, 1.0)) dirNode = render.attachNewNode(dirLight) dirNode.setHpr(60, 0, 90) render.setLight(dirNode) pntLight = PointLight("point") pntLight.setColor(Vec4(0.8, 0.8, 0.8, 1.0)) pntNode = render.attachNewNode(pntLight) pntNode.setPos(0, 0, 15) self.panda.setLight(pntNode) sptLight = Spotlight("spot") sptLens = PerspectiveLens() sptLight.setLens(sptLens) sptLight.setColor(Vec4(1.0, 0.0, 0.0, 1.0)) sptLight.setShadowCaster(True) sptNode = render.attachNewNode(sptLight) sptNode.setPos(-10, -10, 20) sptNode.lookAt(self.panda) render.setLight(sptNode) render.setShaderAuto()
c3d153ca37a314d7c408e5e91912577ac96dcadd
1c69aaf4ff5c9bbabd4e4e3486e3f442808f96ea
/models/r4/datarequirement.py
937eab9daf208c74b3db857de895f03fdab3d00f
[]
no_license
glow-mdsol/devday-boston-clinical-research
72565289b27e9d6105640ec14749e07d7bc14014
560a8141bc3bd1ae5a31b110e82863e25b4ce9f8
refs/heads/master
2020-03-20T00:48:32.862642
2018-06-20T15:33:29
2018-06-20T15:33:29
137,056,522
2
0
null
null
null
null
UTF-8
Python
false
false
8,253
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Generated from FHIR 3.3.0 (http://hl7.org/fhir/StructureDefinition/DataRequirement) on 2018-05-12. # 2018, SMART Health IT. from . import element class DataRequirement(element.Element): """ Describes a required data item. Describes a required data item for evaluation in terms of the type of data, and optional code or date-based filters of the data. """ resource_type = "DataRequirement" def __init__(self, jsondict=None, strict=True): """ Initialize all valid properties. :raises: FHIRValidationError on validation errors, unless strict is False :param dict jsondict: A JSON dictionary to use for initialization :param bool strict: If True (the default), invalid variables will raise a TypeError """ self.codeFilter = None """ What codes are expected. List of `DataRequirementCodeFilter` items (represented as `dict` in JSON). """ self.dateFilter = None """ What dates/date ranges are expected. List of `DataRequirementDateFilter` items (represented as `dict` in JSON). """ self.limit = None """ Number of results. Type `int`. """ self.mustSupport = None """ Indicates that specific structure elements are referenced by the knowledge module. List of `str` items. """ self.profile = None """ The profile of the required data. List of `str` items. """ self.sort = None """ Order of the results. List of `DataRequirementSort` items (represented as `dict` in JSON). """ self.subjectCodeableConcept = None """ E.g. Patient, Practitioner, RelatedPerson, Organization, Location, Device. Type `CodeableConcept` (represented as `dict` in JSON). """ self.subjectReference = None """ E.g. Patient, Practitioner, RelatedPerson, Organization, Location, Device. Type `FHIRReference` (represented as `dict` in JSON). """ self.type = None """ The type of the required data. Type `str`. """ super(DataRequirement, self).__init__(jsondict=jsondict, strict=strict) def elementProperties(self): js = super(DataRequirement, self).elementProperties() js.extend([ ("codeFilter", "codeFilter", DataRequirementCodeFilter, True, None, False), ("dateFilter", "dateFilter", DataRequirementDateFilter, True, None, False), ("limit", "limit", int, False, None, False), ("mustSupport", "mustSupport", str, True, None, False), ("profile", "profile", str, True, None, False), ("sort", "sort", DataRequirementSort, True, None, False), ("subjectCodeableConcept", "subjectCodeableConcept", codeableconcept.CodeableConcept, False, "subject", False), ("subjectReference", "subjectReference", fhirreference.FHIRReference, False, "subject", False), ("type", "type", str, False, None, True), ]) return js class DataRequirementCodeFilter(element.Element): """ What codes are expected. Code filters specify additional constraints on the data, specifying the value set of interest for a particular element of the data. Each code filter defines an additional constraint on the data, i.e. code filters are AND'ed, not OR'ed. """ resource_type = "DataRequirementCodeFilter" def __init__(self, jsondict=None, strict=True): """ Initialize all valid properties. :raises: FHIRValidationError on validation errors, unless strict is False :param dict jsondict: A JSON dictionary to use for initialization :param bool strict: If True (the default), invalid variables will raise a TypeError """ self.code = None """ What code is expected. List of `Coding` items (represented as `dict` in JSON). """ self.path = None """ The code-valued attribute of the filter. Type `str`. """ self.valueSetCanonical = None """ Valueset for the filter. Type `str`. """ self.valueSetUri = None """ Valueset for the filter. Type `str`. """ super(DataRequirementCodeFilter, self).__init__(jsondict=jsondict, strict=strict) def elementProperties(self): js = super(DataRequirementCodeFilter, self).elementProperties() js.extend([ ("code", "code", coding.Coding, True, None, False), ("path", "path", str, False, None, True), ("valueSetCanonical", "valueSetCanonical", str, False, "valueSet", False), ("valueSetUri", "valueSetUri", str, False, "valueSet", False), ]) return js class DataRequirementDateFilter(element.Element): """ What dates/date ranges are expected. Date filters specify additional constraints on the data in terms of the applicable date range for specific elements. Each date filter specifies an additional constraint on the data, i.e. date filters are AND'ed, not OR'ed. """ resource_type = "DataRequirementDateFilter" def __init__(self, jsondict=None, strict=True): """ Initialize all valid properties. :raises: FHIRValidationError on validation errors, unless strict is False :param dict jsondict: A JSON dictionary to use for initialization :param bool strict: If True (the default), invalid variables will raise a TypeError """ self.path = None """ The date-valued attribute of the filter. Type `str`. """ self.valueDateTime = None """ The value of the filter, as a Period, DateTime, or Duration value. Type `FHIRDate` (represented as `str` in JSON). """ self.valueDuration = None """ The value of the filter, as a Period, DateTime, or Duration value. Type `Duration` (represented as `dict` in JSON). """ self.valuePeriod = None """ The value of the filter, as a Period, DateTime, or Duration value. Type `Period` (represented as `dict` in JSON). """ super(DataRequirementDateFilter, self).__init__(jsondict=jsondict, strict=strict) def elementProperties(self): js = super(DataRequirementDateFilter, self).elementProperties() js.extend([ ("path", "path", str, False, None, True), ("valueDateTime", "valueDateTime", fhirdate.FHIRDate, False, "value", False), ("valueDuration", "valueDuration", duration.Duration, False, "value", False), ("valuePeriod", "valuePeriod", period.Period, False, "value", False), ]) return js class DataRequirementSort(element.Element): """ Order of the results. Specifies the order of the results to be returned. """ resource_type = "DataRequirementSort" def __init__(self, jsondict=None, strict=True): """ Initialize all valid properties. :raises: FHIRValidationError on validation errors, unless strict is False :param dict jsondict: A JSON dictionary to use for initialization :param bool strict: If True (the default), invalid variables will raise a TypeError """ self.direction = None """ ascending | descending. Type `str`. """ self.path = None """ The name of the attribute to perform the sort. Type `str`. """ super(DataRequirementSort, self).__init__(jsondict=jsondict, strict=strict) def elementProperties(self): js = super(DataRequirementSort, self).elementProperties() js.extend([ ("direction", "direction", str, False, None, True), ("path", "path", str, False, None, True), ]) return js from . import codeableconcept from . import coding from . import duration from . import fhirdate from . import fhirreference from . import period
79dbda9c85e5d684dfa0a8d30200484398c05def
c83473c2f9b63429f40e8a4806ab49305815c81d
/feature_cross_script/feature_cross_run.py
ba39e49faa933a1e1c10cfa9a816e7e26ae97afd
[]
no_license
pelinbalci/machinelearning
f8f84cda07a2ae87f23598188a6c148badb6e15f
33e9786ea49f114c24c02dbf24e33434d0421f65
refs/heads/master
2022-11-15T19:55:46.633659
2020-07-05T18:38:54
2020-07-05T18:38:54
273,779,533
1
0
null
null
null
null
UTF-8
Python
false
false
1,798
py
from feature_cross_script.feature_cross import import_dataset, scale_label, shuffle_df, create_model, train_model, \ plot_the_loss_curve, create_feature_columns, create_feature_layer, create_bucket_features, create_crossed_feature,\ evaluate_model from parameters import learning_rate, epochs, batch_size, label_name, resolution_in_degrees test_path = '/Users/pelin.balci/PycharmProjects/machinelearning/inputs/california_housing_test.csv' train_path = '/Users/pelin.balci/PycharmProjects/machinelearning/inputs/california_housing_train.csv' train_df = import_dataset(train_path) test_df = import_dataset(test_path) train_df = scale_label(train_df) test_df = scale_label(test_df) shuffled_train_df = shuffle_df(train_df) # Use floating latitude ang longitude vectors seperately: feature_columns = create_feature_columns() fp_feature_layer = create_feature_layer(feature_columns) # Bucketize them intp 10 integer points, we still have two separate vectors: feature_columns, buckets_feature_layer = create_bucket_features(train_df, resolution_in_degrees) ''' Bucket representation outperformed floating-point representations. ''' # In real life we have two dimension vectors for latitude and longitude, cross them: feature_cross_feature_layer = create_crossed_feature(feature_columns) ''' Representing these features as a feature cross produced much lower loss values than representing these features as buckets''' # Create and compile the model's topography. my_model = create_model(learning_rate, feature_cross_feature_layer) # Train the model on the training set. epochs, rmse = train_model(my_model, train_df, epochs, batch_size, label_name) plot_the_loss_curve(epochs, rmse) evaluation_test_result = evaluate_model(my_model, test_df, label_name, batch_size) print('done')
22c64eb6e9eab3d47ae40216f2afd52aa7f58a5a
1000884faf988644d9abe02525c885307fd36f98
/day17/about_md/about_md/settings.py
d507ca2e1f90a0399406b7229861aae74f267488
[ "MIT" ]
permissive
gengna92/PythonProjects
e6f88eb36f636420fbede8e204490c0b3e4c24fc
12d223eb1ec8f90992ea87df79f10ea8c745c4cb
refs/heads/master
2021-08-27T20:48:26.675942
2021-08-14T06:59:34
2021-08-14T06:59:34
166,172,714
0
0
MIT
2021-08-14T07:00:08
2019-01-17T06:28:52
HTML
UTF-8
Python
false
false
3,263
py
""" Django settings for about_md project. Generated by 'django-admin startproject' using Django 1.11.20. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'o)btb@#(-2p*my0wc^qa#zj5uj)tf0$6-ox323m)*t3=(5+2ne' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'app01.apps.App01Config', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'app01.my_middleware.middlewares.MD1', 'app01.my_middleware.middlewares.MD2', ] ROOT_URLCONF = 'about_md.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')] , 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'about_md.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/'
f8eccd51f10bf0fadf99e4d474c60d6a0231a31e
a782e8b77eb9a32ffb2c3f417125553693eaee86
/scripts/fuzzing/check_fuzzer.py
bcb62977c4837b69f26a61f593dc9e38d7478b1d
[ "BSD-3-Clause" ]
permissive
xyuan/fuchsia
9e5251517e88447d3e4df12cf530d2c3068af290
db9b631cda844d7f1a1b18cefed832a66f46d56c
refs/heads/master
2022-06-30T17:53:09.241350
2020-05-13T12:28:17
2020-05-13T12:28:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,737
py
#!/usr/bin/env python2.7 # Copyright 2019 The Fuchsia Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import argparse import sys from lib.args import ArgParser from lib.device import Device from lib.fuzzer import Fuzzer from lib.host import Host def main(): parser = ArgParser( 'Reports status for the fuzzer matching NAME if ' + 'provided, or for all running fuzzers. Status includes execution ' + 'state, corpus size, and number of artifacts.') parser.require_name(False) args = parser.parse_args() host = Host.from_build() device = Device.from_args(host, args) fuzzers = Fuzzer.filter(host.fuzzers, args.name) pids = device.getpids() silent = True for pkg, tgt in fuzzers: fuzzer = Fuzzer(device, pkg, tgt) if not args.name and tgt not in pids: continue silent = False if tgt in pids: print(str(fuzzer) + ': RUNNING') else: print(str(fuzzer) + ': STOPPED') print(' Output path: ' + fuzzer.data_path()) print( ' Corpus size: %d inputs / %d bytes' % fuzzer.measure_corpus()) artifacts = fuzzer.list_artifacts() if len(artifacts) == 0: print(' Artifacts: None') else: print(' Artifacts: ' + artifacts[0]) for artifact in artifacts[1:]: print(' ' + artifact) if silent: print( 'No fuzzers are running. Include \'name\' to check specific ' + 'fuzzers.') return 1 return 0 if __name__ == '__main__': sys.exit(main())
fb5988d10e71565e8e3ad8c771429b17c9cbe261
16fa36449c5b7843923ab40fe37e0563b0f811cf
/r05.py
fe6bda675e4ac8d9443bddda2d5ecdb8a5937750
[ "Apache-2.0" ]
permissive
netlabcode/reader
1d34787c3d619af4d28c08f989e8c0976f18773a
9d42bef6ccb35266abec87db5a2df9bc9d77c355
refs/heads/main
2023-04-17T08:45:15.397981
2021-05-06T05:09:10
2021-05-06T05:09:10
354,858,950
0
0
null
null
null
null
UTF-8
Python
false
false
8,139
py
import psycopg2 from datetime import datetime import binascii import _thread import time import socket PORT1 = 8805 def serverX(): with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s1: s1.bind(('',PORT1)) s1.listen() conn1, addr = s1.accept() with conn1: print('Server Substation 5 from:',addr) conn = psycopg2.connect(host="131.180.165.7",database="CRoF",user="postgres", password="crpg") cursor = conn.cursor() #Value id 34-41 cursor.execute('''SELECT value from objects WHERE id=34''') result = cursor.fetchone() record1 = result[0] cursor.execute('''SELECT value from objects WHERE id=35''') result = cursor.fetchone() record2 = result[0] cursor.execute('''SELECT value from objects WHERE id=36''') result = cursor.fetchone() record3 = result[0] cursor.execute('''SELECT value from objects WHERE id=37''') result = cursor.fetchone() record4 = result[0] cursor.execute('''SELECT value from objects WHERE id=38''') result = cursor.fetchone() record5 = result[0] cursor.execute('''SELECT value from objects WHERE id=39''') result = cursor.fetchone() record6 = result[0] cursor.execute('''SELECT value from objects WHERE id=40''') result = cursor.fetchone() record7 = result[0] cursor.execute('''SELECT value from objects WHERE id=41''') result = cursor.fetchone() record8 = result[0] #Value code cursor.execute('''SELECT code from objects WHERE id=34''') result = cursor.fetchone() r1 = result[0] cursor.execute('''SELECT code from objects WHERE id=35''') result = cursor.fetchone() r2 = result[0] cursor.execute('''SELECT code from objects WHERE id=36''') result = cursor.fetchone() r3 = result[0] cursor.execute('''SELECT code from objects WHERE id=37''') result = cursor.fetchone() r4 = result[0] cursor.execute('''SELECT code from objects WHERE id=38''') result = cursor.fetchone() r5 = result[0] cursor.execute('''SELECT code from objects WHERE id=39''') result = cursor.fetchone() r6 = result[0] cursor.execute('''SELECT code from objects WHERE id=40''') result = cursor.fetchone() r7 = result[0] cursor.execute('''SELECT code from objects WHERE id=41''') result = cursor.fetchone() r8 = result[0] while True: data = "a" dataxy = data.encode() try: #Format: mu01_id+value cursor.execute('''SELECT value from objects WHERE id=34''') result = cursor.fetchone() if record1 != result[0]: print(result[0]) string = "mu01_"+str(r1)+"+"+str(result[0]) datax = string.encode() conn1.sendall(datax) print(string) record1 = result[0] cursor.execute('''SELECT value from objects WHERE id=35''') result = cursor.fetchone() if record2 != result[0]: print(result[0]) string = "mu01_"+str(r2)+"+"+str(result[0]) datax = string.encode() conn1.sendall(datax) print(string) record2 = result[0] cursor.execute('''SELECT value from objects WHERE id=36''') result = cursor.fetchone() if record3 != result[0]: print(result[0]) string = "mu02_"+str(r3)+"+"+str(result[0]) datax = string.encode() conn1.sendall(datax) print(string) record3 = result[0] cursor.execute('''SELECT value from objects WHERE id=37''') result = cursor.fetchone() if record4 != result[0]: print(result[0]) string = "mu02_"+str(r4)+"+"+str(result[0]) datax = string.encode() conn1.sendall(datax) print(string) record4 = result[0] cursor.execute('''SELECT value from objects WHERE id=38''') result = cursor.fetchone() if record5 != result[0]: print(result[0]) string = "mu02_"+str(r5)+"+"+str(result[0]) datax = string.encode() conn1.sendall(datax) print(string) record5 = result[0] cursor.execute('''SELECT value from objects WHERE id=39''') result = cursor.fetchone() if record6 != result[0]: print(result[0]) string = "mu05_"+str(r6)+"+"+str(result[0]) datax = string.encode() conn1.sendall(datax) print(string) record6 = result[0] cursor.execute('''SELECT value from objects WHERE id=40''') result = cursor.fetchone() if record7 != result[0]: print(result[0]) string = "mu03_"+str(r7)+"+"+str(result[0]) datax = string.encode() conn1.sendall(datax) print(string) record7 = result[0] cursor.execute('''SELECT value from objects WHERE id=41''') result = cursor.fetchone() if record8 != result[0]: print(result[0]) string = "mu03_"+str(r8)+"+"+str(result[0]) datax = string.encode() conn1.sendall(datax) print(string) record8 = result[0] conn1.sendall(dataxy) #print(record1) time.sleep(1) except: conn1.close() conn.close() print("Connection Close Substation 5") break conn1.close() print("Restart Server Substation 6") conn.close() s1.close() time.sleep(1) serverX() serverX()
9953913a4f3c4ad0d5c3c64721526baac7fcac32
0f0530b06a59fe6cfaa74b0030d892256e33c666
/aioworkers/net/web/client.py
2734c1f7df6ac6cc16ae2630104baf89ad73f93e
[ "Apache-2.0" ]
permissive
nicoddemus/aioworkers
c269b470be5be0c2a59fb2a91d3a285f54125735
4ab85064844dc28141833d1348989d8c891f3d7d
refs/heads/master
2022-12-06T21:22:29.976784
2020-08-22T11:42:53
2020-08-22T11:43:24
291,555,920
0
0
Apache-2.0
2020-08-30T21:37:29
2020-08-30T21:37:28
null
UTF-8
Python
false
false
3,021
py
import logging import urllib.error import urllib.request from http.client import HTTPResponse from typing import Any, Awaitable, Callable, Mapping, Optional, Tuple, Union from aioworkers.core.base import ExecutorEntity from aioworkers.http import URL logger = logging.getLogger(__name__) class Request: def __init__(self, session: 'Session', *args, **kwargs): self._session = session self._request = urllib.request.Request(*args, **kwargs) self._response = None # type: Optional[Response] async def __aenter__(self) -> 'Response': logger.info('Request %r', self._request) try: response = await self._session.run( self._session.opener.open, self._request, ) except urllib.error.HTTPError as e: response = e logger.info('Response %r', response) self._response = Response(response, self._session) return self._response async def __aexit__(self, exc_type, exc_val, exc_tb): await self._response.close() class Response: def __init__( self, response: HTTPResponse, session: 'Session', ): self._response = response self._session = session @property def status(self): return self._response.status @property def reason(self): return self._response.reason @property def headers(self): return self._response.headers async def read(self) -> bytes: return await self._session.run(self._response.read) def isclosed(self): return self._response.isclosed() async def close(self): return await self._session.run(self._response.close) class Session: def __init__( self, runner: Callable[..., Awaitable[Any]], headers: Mapping = None, conn_timeout: float = 60, read_timeout: float = 60, handlers: Optional[Tuple[urllib.request.BaseHandler]] = None, ): self.run = runner self._headers = headers self._conn_timeout = conn_timeout self._read_timeout = read_timeout if handlers is None: handlers = ( urllib.request.HTTPCookieProcessor(), ) self.opener = urllib.request.build_opener(*handlers) if headers: if isinstance(headers, Mapping): self.opener.addheaders = list(headers.items()) else: self.opener.addheaders = list(headers) @classmethod def from_entity(cls, entity: ExecutorEntity, **kwargs) -> 'Session': kwargs.update( runner=entity.run_in_executor, ) return cls(**kwargs) def request(self, url: Union[str, URL], method='get', **kwargs) -> Request: if isinstance(url, URL): url = str(url) kwargs.update( url=url, method=method.upper(), ) return Request(self, **kwargs) async def close(self): self.opener.close()
a87f5d3a4d2ddee0778d8d514182dbd29955b027
eb33ebb7c144cce5a6a1b039a2cb5dd331bd7863
/asl/datasets/__init__.py
dcf753cb829208644b2265248b2084a642addeb7
[]
no_license
zenna/asl
aeaa2c3cb0f204cf42e03528765d660bd3799ea8
6753eb29f3b1826c40df2eae1dff0dad34629423
refs/heads/master
2021-09-10T12:11:22.304508
2018-02-08T16:02:10
2018-02-08T16:02:10
59,302,612
0
0
null
null
null
null
UTF-8
Python
false
false
23
py
from .omniglot import *
c38a71aa6745843566b5e5e68584da67b3d9b12f
1ba8794a7e38c19fda1cf3a02a4e55004a4f99ec
/pandas/tests/scalar/test_na_scalar.py
e68e49814245f91df964719c373d4f4943563f87
[ "BSD-3-Clause" ]
permissive
souravs17031999/pandas
51003c705c12f2f78d6c264c4333aabf5da7d312
8cdbebd6be92d317e0d21679c5891a10dbf8efe7
refs/heads/master
2020-09-24T13:46:40.314995
2019-12-04T05:40:28
2019-12-04T05:40:28
225,654,387
1
0
BSD-3-Clause
2019-12-04T03:13:02
2019-12-03T15:33:22
Python
UTF-8
Python
false
false
2,751
py
import numpy as np import pytest from pandas._libs.missing import NA from pandas.core.dtypes.common import is_scalar import pandas as pd import pandas.util.testing as tm def test_singleton(): assert NA is NA new_NA = type(NA)() assert new_NA is NA def test_repr(): assert repr(NA) == "NA" assert str(NA) == "NA" def test_truthiness(): with pytest.raises(TypeError): bool(NA) with pytest.raises(TypeError): not NA def test_hashable(): assert hash(NA) == hash(NA) d = {NA: "test"} assert d[NA] == "test" def test_arithmetic_ops(all_arithmetic_functions): op = all_arithmetic_functions for other in [NA, 1, 1.0, "a", np.int64(1), np.nan]: if op.__name__ == "rmod" and isinstance(other, str): continue if op.__name__ in ("divmod", "rdivmod"): assert op(NA, other) is (NA, NA) else: assert op(NA, other) is NA def test_comparison_ops(): for other in [NA, 1, 1.0, "a", np.int64(1), np.nan]: assert (NA == other) is NA assert (NA != other) is NA assert (NA > other) is NA assert (NA >= other) is NA assert (NA < other) is NA assert (NA <= other) is NA if isinstance(other, np.int64): # for numpy scalars we get a deprecation warning and False as result # for equality or error for larger/lesser than continue assert (other == NA) is NA assert (other != NA) is NA assert (other > NA) is NA assert (other >= NA) is NA assert (other < NA) is NA assert (other <= NA) is NA def test_unary_ops(): assert +NA is NA assert -NA is NA assert abs(NA) is NA assert ~NA is NA def test_logical_and(): assert NA & True is NA assert True & NA is NA assert NA & False is False assert False & NA is False assert NA & NA is NA with pytest.raises(TypeError): NA & 5 def test_logical_or(): assert NA | True is True assert True | NA is True assert NA | False is NA assert False | NA is NA assert NA | NA is NA with pytest.raises(TypeError): NA | 5 def test_logical_xor(): assert NA ^ True is NA assert True ^ NA is NA assert NA ^ False is NA assert False ^ NA is NA assert NA ^ NA is NA with pytest.raises(TypeError): NA ^ 5 def test_logical_not(): assert ~NA is NA def test_is_scalar(): assert is_scalar(NA) is True def test_isna(): assert pd.isna(NA) is True assert pd.notna(NA) is False def test_series_isna(): s = pd.Series([1, NA], dtype=object) expected = pd.Series([False, True]) tm.assert_series_equal(s.isna(), expected)
d933617badf4c3b39e324ad69a7ee50c2c10378b
5496b9682dec06925f3572e64d7f1eb48d78ebe1
/src/advection_scenarios/create_grid_spacing.py
ab9a14e171f5c9db216a14e05f9a775bf97de885
[]
no_license
VictorOnink/Lagrangian-Transport-Scenarios
64bec8b992e2909a05b0258524dbae25f967ea29
586bcecc42d6a7f4f299507da8f0cb29c8d71a2e
refs/heads/master
2023-04-14T12:22:29.309172
2022-07-11T18:46:38
2022-07-11T18:46:38
297,894,637
1
0
null
null
null
null
UTF-8
Python
false
false
1,595
py
import settings import utils import numpy as np import xarray import progressbar def create_grid_spacing(output_name: str, grid: np.array, lon: np.array, lat: np.array): grid_lon_spacing = np.zeros(grid.shape) grid_lat_spacing = np.zeros(grid.shape) for lat_step in progressbar.progressbar(range(grid.shape[0] - 1)): for lon_step in range(grid.shape[1] - 1): grid_lon_spacing[lat_step, lon_step] = np.abs(lon[lon_step] - lon[lon_step + 1]) grid_lat_spacing[lat_step, lon_step] = np.abs(lat[lat_step] - lat[lat_step + 1]) grid_lon_spacing = fill_last(grid_lon_spacing) grid_lat_spacing = fill_last(grid_lat_spacing) # Saving the entire grid spacing fields coords = [('time', np.array([0])), ('lat', lat), ('lon', lon)] lon_space = xarray.DataArray(grid_lon_spacing[np.newaxis, :, :], coords=coords) lat_space = xarray.DataArray(grid_lat_spacing[np.newaxis, :, :], coords=coords) dcoo = {'time': np.array([0]), 'lat': lat, 'lon': lon} dset = xarray.Dataset({'lon_spacing': lon_space, 'lat_spacing': lat_space}, coords=dcoo) dset.to_netcdf(output_name) # Checks to see if the grid spacing calculation works as expected utils.print_statement("The maximum lon spacing is {}, and the minimum is {}".format(grid_lon_spacing.max(), grid_lon_spacing.min())) utils.print_statement("The maximum lat spacing is {}, and the minimum is {}".format(grid_lat_spacing.max(), grid_lat_spacing.min())) def fill_last(array: np.array): array[:, -1] = array[:, -2] array[-1, :] = array[-2, :] return array
8475480405ab57c758c966b738b679c6d1f6aef0
b9e99a828952ffeab9767e625c0061cb3ea5b670
/Python编程从入门到实践/data_visual/csv_test/highs_lows.py
2d91031ecfd543481f909f68a6c6648d8d98b679
[]
no_license
ZGA101421/Python3_Project
95d95e23858ef92f6825f018605089c105303ad3
fa30f876fd13890743bc81d1521534c340575132
refs/heads/master
2022-04-03T07:03:46.369710
2019-12-30T15:22:21
2019-12-30T15:22:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,117
py
#!/usr/bin/env python # -*- encoding: utf-8 -*- ''' @File : highs_lows.py @Time : 2019/04/06 22:32:59 @Author : leacoder @Version : 1.0 @Contact : [email protected] @License : @Desc : 处理CSV文件数据,matplotlib绘制最高温度最低温度折线图 ''' # here put the import lib # c sv 模块包含在Python标准库中 import csv from matplotlib import pyplot as plt # 模块datetime 处理日期 from datetime import datetime # 从文件中获取日期、 最高气温和最低气温 filename = 'death_valley_2014.csv' with open(filename) as f: # 创建一个与该文件相关联的阅读器(reader ) 对象 reader = csv.reader(f) # 模块csv 包含函数next() , 调用它并将阅读器对象传递给它时, 它将返回文件中的下一行。 在前面的代码中, 我们只调用了next() 一次, 因此得到的是文件的第一行, 其中包含文件头 header_row = next(reader) dates, highs, lows = [], [], [] for row in reader: # 遍历文件中余下的各行 try: # 错误检查 current_date = datetime.strptime(row[0], "%Y-%m-%d") # '2014-7-1 high = int(row[1]) low = int(row[3]) except ValueError: print(current_date, 'missing data') else: dates.append(current_date) highs.append(high) lows.append(low) # 根据数据绘制图形 fig = plt.figure(dpi=123, figsize=(10, 6)) ''' plot(*args[, scalex, scaley, data]) Plot y versus x as lines and/or markers. alpha: float Set the alpha value used for blending - not supported on all backends. ''' plt.plot(dates, highs, c='red', alpha=0.5) # 绘制最高温度 plt.plot(dates, lows, c='blue', alpha=0.5) # 绘制最低温度 ''' fill_between(x, y1[, y2, where, ...]) Fill the area between two horizontal curves. ''' plt.fill_between(dates, highs, lows, facecolor='blue', alpha=0.1) # 设置图形的格式 plt.title("Daily high temperatures - 2014", fontsize=24) plt.xlabel('', fontsize=16) ''' autofmt_xdate(self, bottom=0.2, rotation=30, ha='right', which=None) Date ticklabels often overlap, so it is useful to rotate them and right align them. bottom : scalar The bottom of the subplots for subplots_adjust(). rotation : angle in degrees The rotation of the xtick labels. ha : string The horizontal alignment of the xticklabels. which : {None, 'major', 'minor', 'both'} Selects which ticklabels to rotate. Default is None which works the same as major. ''' fig.autofmt_xdate() title = "Daily high and low temperatures - 2014\nDeath Valley, CA" plt.title(title, fontsize=24) ''' tick_params([axis]) Change the appearance of ticks, tick labels, and gridlines. 更改刻度,刻度标签和网格线的外观 axis : {'x', 'y', 'both'}, optional Which axis to apply the parameters to. which : {'major', 'minor', 'both'} Default is 'major'; apply arguments to which ticks. ''' plt.tick_params(axis='both', which='major', labelsize=16) plt.show()
504f5eee881638bdd210fa2544365df828b26b6e
ca2b69402afa6149d3b4995c790e9462ecd245b3
/sandbox/static/__init__.py
af788b2604708cd27c0678d84780a7588ddabfbc
[]
no_license
rmorshea/idom-sandbox
9f3d6a8b65312d37e774aafa68395b7653978edf
77e885e70254e3c37c4c3e322c4a6b5edc03b223
refs/heads/master
2020-07-06T00:02:23.564898
2019-09-09T16:34:35
2019-09-09T16:34:35
202,823,384
1
0
null
null
null
null
UTF-8
Python
false
false
64
py
from .view import SandboxView from .server import SandboxServer
01bd12889f388d73cf9422ad1c2e2a22e6480f55
c92a60d7968130cf21b20a943976c0e1929b6eb8
/apps/yoga_schedule/apps.py
0ae9c7f6dfa79f96758b668ccb0054d74c3d34e7
[]
no_license
BeAnhTran/yoga-center-website
efb40103f343b9be627ce926156e66fe9f985435
8b7532f103a73a467cd903923f7cd2ccfc09d949
refs/heads/master
2022-11-25T09:51:27.000385
2020-08-03T01:44:22
2020-08-03T01:44:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
100
py
from django.apps import AppConfig class YogaScheduleConfig(AppConfig): name = 'yoga schedule'
5f939ea970bddbb00c0137ac68aa23127fa09de8
affe80fe068100199dcf64e16c305d1e2b8ca0bf
/official/modeling/progressive/train_lib_test.py
a64b6da3fd504b3c60317df44a150dc891cb416b
[ "Apache-2.0" ]
permissive
farshbafdoustar/models
2c8c474e2e6f0bb38e1679282e8b64c39f58d3b1
3a2e407ce3871551b0074bcf10a0d6ee180bbdb2
refs/heads/master
2023-01-31T19:11:23.084582
2020-12-19T09:26:44
2020-12-19T09:26:44
322,809,980
0
0
Apache-2.0
2020-12-19T09:27:09
2020-12-19T09:22:00
Python
UTF-8
Python
false
false
5,807
py
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for the progressive train_lib.""" import os from absl import flags from absl.testing import parameterized import dataclasses import orbit import tensorflow as tf from tensorflow.python.distribute import combinations from tensorflow.python.distribute import strategy_combinations from official.common import flags as tfm_flags # pylint: disable=unused-import from official.common import registry_imports # pylint: enable=unused-import from official.core import config_definitions as cfg from official.core import task_factory from official.modeling import optimization from official.modeling.hyperparams import params_dict from official.modeling.progressive import policies from official.modeling.progressive import train_lib from official.modeling.progressive import trainer as prog_trainer_lib from official.utils.testing import mock_task FLAGS = flags.FLAGS tfm_flags.define_flags() @dataclasses.dataclass class ProgTaskConfig(cfg.TaskConfig): pass @task_factory.register_task_cls(ProgTaskConfig) class ProgMockTask(policies.ProgressivePolicy, mock_task.MockTask): """Progressive task for testing.""" def __init__(self, params: cfg.TaskConfig, logging_dir: str = None): mock_task.MockTask.__init__( self, params=params, logging_dir=logging_dir) policies.ProgressivePolicy.__init__(self) def num_stages(self): return 2 def num_steps(self, stage_id): return 2 if stage_id == 0 else 4 def get_model(self, stage_id, old_model=None): del stage_id, old_model return self.build_model() def get_optimizer(self, stage_id): """Build optimizer for each stage.""" params = optimization.OptimizationConfig({ 'optimizer': { 'type': 'adamw', }, 'learning_rate': { 'type': 'polynomial', 'polynomial': { 'initial_learning_rate': 0.01, 'end_learning_rate': 0.0, 'power': 1.0, 'decay_steps': 10, }, }, 'warmup': { 'polynomial': { 'power': 1, 'warmup_steps': 2, }, 'type': 'polynomial', } }) opt_factory = optimization.OptimizerFactory(params) optimizer = opt_factory.build_optimizer(opt_factory.build_learning_rate()) return optimizer def get_train_dataset(self, stage_id): del stage_id strategy = tf.distribute.get_strategy() return orbit.utils.make_distributed_dataset( strategy, self.build_inputs, None) def get_eval_dataset(self, stage_id): del stage_id strategy = tf.distribute.get_strategy() return orbit.utils.make_distributed_dataset( strategy, self.build_inputs, None) class TrainTest(tf.test.TestCase, parameterized.TestCase): def setUp(self): super(TrainTest, self).setUp() self._test_config = { 'trainer': { 'checkpoint_interval': 10, 'steps_per_loop': 10, 'summary_interval': 10, 'train_steps': 10, 'validation_steps': 5, 'validation_interval': 10, 'continuous_eval_timeout': 1, 'optimizer_config': { 'optimizer': { 'type': 'sgd', }, 'learning_rate': { 'type': 'constant' } } }, } @combinations.generate( combinations.combine( distribution_strategy=[ strategy_combinations.default_strategy, strategy_combinations.cloud_tpu_strategy, strategy_combinations.one_device_strategy_gpu, ], mode='eager', flag_mode=['train', 'eval', 'train_and_eval'], run_post_eval=[True, False])) def test_end_to_end(self, distribution_strategy, flag_mode, run_post_eval): model_dir = self.get_temp_dir() experiment_config = cfg.ExperimentConfig( trainer=prog_trainer_lib.ProgressiveTrainerConfig(), task=ProgTaskConfig()) experiment_config = params_dict.override_params_dict( experiment_config, self._test_config, is_strict=False) with distribution_strategy.scope(): task = task_factory.get_task(experiment_config.task, logging_dir=model_dir) _, logs = train_lib.run_experiment( distribution_strategy=distribution_strategy, task=task, mode=flag_mode, params=experiment_config, model_dir=model_dir, run_post_eval=run_post_eval) if run_post_eval: self.assertNotEmpty(logs) else: self.assertEmpty(logs) if flag_mode == 'eval': return self.assertNotEmpty( tf.io.gfile.glob(os.path.join(model_dir, 'checkpoint'))) # Tests continuous evaluation. _, logs = train_lib.run_experiment( distribution_strategy=distribution_strategy, task=task, mode='continuous_eval', params=experiment_config, model_dir=model_dir, run_post_eval=run_post_eval) print(logs) if __name__ == '__main__': tf.test.main()
d90e9983e678c614e1ad4d95be16bb3c39cb1ccb
6ccb55befcbc69caa351b8337fdd40e55dbb802f
/venv/bin/update-tld-names
f14760f6fbf606e71bb165ba44b46f3f3723847d
[]
no_license
FiacreT/M-moire
cc0791cbf98bf565ea637e6ec409611bcc596c57
4089755191ffc848614247e98bbb641c1933450d
refs/heads/master
2022-12-12T21:55:23.679854
2019-09-06T23:28:03
2019-09-06T23:28:03
187,702,532
2
2
null
2022-12-08T01:04:58
2019-05-20T19:39:21
Python
UTF-8
Python
false
false
192
#!/home/fiacre/Python-Project/datasploit-master/venv/bin/python2 # We should have absolute imports here from tld.commands.update_tld_names import main if __name__ == "__main__": main()
c8d425241dc48565765bc90cd2afed9745c89bb4
ddb185b0cf581d85a1dd733a6d1e5d027ba3e0ca
/phase1/993.py
9933eaf67c3581eb880d47702addd2ff933ea70c
[]
no_license
GavinPHR/code
8a319e1223a307e755211b7e9b34c5abb00b556b
b1d8d49633db362bbab246c0cd4bd28305964b57
refs/heads/master
2020-05-16T04:09:19.026207
2020-04-30T10:00:06
2020-04-30T10:00:06
182,766,600
1
0
null
null
null
null
UTF-8
Python
false
false
937
py
# Cousins in Binary Tree from binarytree import TreeNode, makeTree import collections class Solution: def isCousins(self, root: TreeNode, x: int, y: int) -> bool: if root.val == x or root.val == y: return False def re(root, val, level): if not root: return if root.left and root.left.val == val: return (level + 1, root.val) if root.right and root.right.val == val: return (level + 1, root.val) l = re(root.left, val, level + 1) r = re(root.right, val, level + 1) return l if l else r a = re(root, x, 0) b = re(root, y, 0) if a[0] != b[0]: return False if a[1] == b[1]: return False return True if __name__ == '__main__': root = makeTree([1,2,3,None,4,None,5]) s = Solution() print(s.isCousins(root, 4, 5))
ff7d9e4d8bf6c338b93d2ca521b0c02ba9e27b95
109d501eeb83981c058bf1e01f10c7851f3866b5
/people/forms.py
22d0e3360774fbe291e21dbe27ebd94aaac1f2fb
[]
no_license
alikhundmiri/revenue_source_directory
028f8164d7a6a5d62f24b1a0214664718c866291
636311269557352d901e47f847b044dc2a7545dc
refs/heads/master
2022-12-16T20:51:44.327649
2018-09-24T13:50:17
2018-09-24T13:50:17
137,063,499
0
0
null
2022-12-08T02:14:33
2018-06-12T11:43:40
JavaScript
UTF-8
Python
false
false
1,237
py
from django import forms from django.core.validators import validate_email from .models import contact_details # Form for accepting new interviews class InterviewRequestForm(forms.ModelForm): class Meta: model = contact_details fields = [ 'contact_form', 'contact', ] def clean_contact(self): this_contact = self.cleaned_data.get('contact') this_contact_form = self.cleaned_data.get('contact_form') if this_contact_form == 'email': try: validate_email(this_contact) except forms.ValidationError: raise forms.ValidationError("Please enter a Valid Email address") existing_contact = contact_details.objects.filter(contact=this_contact, contact_form=this_contact_form) if existing_contact: raise forms.ValidationError("You already submitted a request with these credentials") else: return this_contact def __init__(self, *args , **kwargs): super(InterviewRequestForm, self).__init__(*args, **kwargs) self.fields["contact_form"].help_text = "Select a social media to get in contact with you, example: Twitter, or an email" self.fields["contact"].help_text = "Enter your User ID or e-mail" self.fields["contact"].label = "User ID" self.fields["contact_form"].label = "Platform"
915041a61b6a71d83948b1377ec6af9eacdb1a07
89213af925471c5954a12d0fe5bb47dfd988c351
/tree/0199_right_side_view_BT.py
b9c870d5a7eb7f463f9325d660bcbb7aa25e8deb
[]
no_license
seanchen513/leetcode
be554dd668221b6d03c598090d6684165bc512c5
4723a64b00502c824bb9b848a1737478096aa3e1
refs/heads/master
2021-11-10T11:50:16.674255
2021-11-10T02:57:02
2021-11-10T02:57:02
237,393,266
1
0
null
null
null
null
UTF-8
Python
false
false
2,972
py
""" 199. Binary Tree Right Side View Medium Given a binary tree, imagine yourself standing on the right side of it, return the values of the nodes you can see ordered from top to bottom. Example: Input: [1,2,3,null,5,null,4] Output: [1, 3, 4] Explanation: 1 <--- / \ 2 3 <--- \ \ 5 4 <--- """ #import sys #sys.path.insert(1, '../tree/') from binary_tree import TreeNode, print_tree, array_to_bt_lc from typing import List ############################################################################### """ Solution 1: BFS and take last element of each level. O(n) time O(n) extra space (due to last level) O(h) space for output """ class Solution: def rightSideView(self, root: TreeNode) -> List[int]: if not root: return [] view = [] level = [root] while level: view += [level[-1].val] next_level = [] for node in level: if node.left: next_level.append(node.left) if node.right: next_level.append(node.right) level = next_level return view ############################################################################### """ Solution 2: modified postorder traversal (LRP, left-right-parent). For each level, the rightmost element is visited first. O(n) time O(h) space for recursion stack O(h) space for dict and output """ class Solution2: def rightSideView(self, root: TreeNode) -> List[int]: def dfs(node, depth=0): if not node: return dfs(node.right, depth + 1) dfs(node.left, depth + 1) if depth not in view: view[depth] = node.val view = {} dfs(root) return [view[d] for d in range(len(view))] ############################################################################### if __name__ == "__main__": def test(arr, comment=None): root = array_to_bt_lc(arr) solutions = [Solution(), Solution2()] res = [s.rightSideView(root) for s in solutions] print("="*80) if comment: print(comment, "\n") print(arr, "\n") print_tree(root) print(f"\nSolutions: {res}") comment = "Tree w/ depth 1" arr = [1] test(arr, comment) comment = "Tree w/ depth 2" arr = [1, 2,3] test(arr, comment) comment = "Tree w/ depth 3" arr = [1, 2,3, 4,5,6,7] test(arr, comment) comment = "" arr = [1,None,3,None,7] test(arr, comment) comment = "" arr = [1,2,None,4] test(arr, comment) comment = "" arr = [1, 2,3, 4,None,None,7, 8,None,None,15] test(arr, comment) comment = "LC example 1; answer = [1, 3, 4]" arr = [1, 2,3, None,5,None,4] test(arr, comment)
d8c4edc6e935f0f2cb02543ebdf08f69695c523c
d77a0d5a18af141d36005eba1769f7384f5ce1d4
/mDataAn_venv/Lib/site-packages/numpy/testing/tests/test_decorators.py
69c1c9ad4a3558ad02edf36dd0e0855c6e0df6d9
[]
no_license
LukasPolon/MData
32d756d0df8c8847cf45b8def6e5ef760963d895
2178a0b2f60c4c638fd696a6e11b0ef801724bf4
refs/heads/master
2022-12-11T15:02:07.528855
2018-01-07T16:22:58
2018-01-07T16:22:58
99,687,079
1
0
null
2021-06-01T22:04:39
2017-08-08T11:51:11
Python
UTF-8
Python
false
false
4,493
py
from __future__ import division, absolute_import, print_function import warnings from numpy.testing import (dec, assert_, assert_raises, run_module_suite, SkipTest, KnownFailureException) def test_slow(): @dec.slow def slow_func(x, y, z): pass assert_(slow_func.slow) def test_setastest(): @dec.setastest() def f_default(a): pass @dec.setastest(True) def f_istest(a): pass @dec.setastest(False) def f_isnottest(a): pass assert_(f_default.__test__) assert_(f_istest.__test__) assert_(not f_isnottest.__test__) class DidntSkipException(Exception): pass def test_skip_functions_hardcoded(): @dec.skipif(True) def f1(x): raise DidntSkipException try: f1('a') except DidntSkipException: raise Exception('Failed to skip') except SkipTest: pass @dec.skipif(False) def f2(x): raise DidntSkipException try: f2('a') except DidntSkipException: pass except SkipTest: raise Exception('Skipped when not expected to') def test_skip_functions_callable(): def skip_tester(): return skip_flag == 'skip me!' @dec.skipif(skip_tester) def f1(x): raise DidntSkipException try: skip_flag = 'skip me!' f1('a') except DidntSkipException: raise Exception('Failed to skip') except SkipTest: pass @dec.skipif(skip_tester) def f2(x): raise DidntSkipException try: skip_flag = 'five is right out!' f2('a') except DidntSkipException: pass except SkipTest: raise Exception('Skipped when not expected to') def test_skip_generators_hardcoded(): @dec.knownfailureif(True, "This test is known to fail") def g1(x): for i in range(x): yield i try: for j in g1(10): pass except KnownFailureException: pass else: raise Exception('Failed to mark as known failure') @dec.knownfailureif(False, "This test is NOT known to fail") def g2(x): for i in range(x): yield i raise DidntSkipException('FAIL') try: for j in g2(10): pass except KnownFailureException: raise Exception('Marked incorrectly as known failure') except DidntSkipException: pass def test_skip_generators_callable(): def skip_tester(): return skip_flag == 'skip me!' @dec.knownfailureif(skip_tester, "This test is known to fail") def g1(x): for i in range(x): yield i try: skip_flag = 'skip me!' for j in g1(10): pass except KnownFailureException: pass else: raise Exception('Failed to mark as known failure') @dec.knownfailureif(skip_tester, "This test is NOT known to fail") def g2(x): for i in range(x): yield i raise DidntSkipException('FAIL') try: skip_flag = 'do not skip' for j in g2(10): pass except KnownFailureException: raise Exception('Marked incorrectly as known failure') except DidntSkipException: pass def test_deprecated(): @dec.deprecated(True) def non_deprecated_func(): pass @dec.deprecated() def deprecated_func(): import warnings warnings.warn("TEST: deprecated func", DeprecationWarning) @dec.deprecated() def deprecated_func2(): import warnings warnings.warn("AHHHH") raise ValueError @dec.deprecated() def deprecated_func3(): import warnings warnings.warn("AHHHH") # marked as deprecated, but does not raise DeprecationWarning assert_raises(AssertionError, non_deprecated_func) # should be silent deprecated_func() with warnings.catch_warnings(record=True): warnings.simplefilter("always") # do not propagate unrelated warnings # fails if deprecated decorator just disables test. See #1453. assert_raises(ValueError, deprecated_func2) # warning is not a DeprecationWarning assert_raises(AssertionError, deprecated_func3) if __name__ == '__main__': run_module_suite()
476bac64cef86314952c912a9db75dc57df22e7f
9d0195aa83cc594a8c61f334b90375961e62d4fe
/JTTest/SL7/CMSSW_10_2_15/src/dataRunA/nano3676.py
87a1e1712ffb762de3c1ab0b52a020fbd9e03258
[]
no_license
rsk146/CMS
4e49592fc64f6438051544c5de18598db36ed985
5f8dab8c59ae556598b9747b52b88205fffc4dbe
refs/heads/master
2022-12-01T03:57:12.126113
2020-08-04T03:29:27
2020-08-04T03:29:27
284,863,383
0
0
null
null
null
null
UTF-8
Python
false
false
4,293
py
# Auto generated configuration file # using: # Revision: 1.19 # Source: /local/reps/CMSSW/CMSSW/Configuration/Applications/python/ConfigBuilder.py,v # with command line options: nanoAOD_jetToolbox_cff -s NANO --data --eventcontent NANOAOD --datatier NANOAOD --no_exec --conditions 102X_dataRun2_Sep2018Rereco_v1 --era Run2_2018,run2_nanoAOD_102Xv1 --customise_commands=process.add_(cms.Service('InitRootHandlers', EnableIMT = cms.untracked.bool(False))) --customise JMEAnalysis/JetToolbox/nanoAOD_jetToolbox_cff.nanoJTB_customizeMC --filein /users/h2/rsk146/JTTest/SL7/CMSSW_10_6_12/src/ttbarCutTest/dataReprocessing/0004A5E9-9F18-6B42-B31D-4206406CE423.root --fileout file:jetToolbox_nano_datatest.root import FWCore.ParameterSet.Config as cms from Configuration.StandardSequences.Eras import eras process = cms.Process('NANO',eras.Run2_2018,eras.run2_nanoAOD_102Xv1) # import of standard configurations process.load('Configuration.StandardSequences.Services_cff') process.load('SimGeneral.HepPDTESSource.pythiapdt_cfi') process.load('FWCore.MessageService.MessageLogger_cfi') process.load('Configuration.EventContent.EventContent_cff') process.load('Configuration.StandardSequences.GeometryRecoDB_cff') process.load('Configuration.StandardSequences.MagneticField_AutoFromDBCurrent_cff') process.load('PhysicsTools.NanoAOD.nano_cff') process.load('Configuration.StandardSequences.EndOfProcess_cff') process.load('Configuration.StandardSequences.FrontierConditions_GlobalTag_cff') process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(-1) ) # Input source process.source = cms.Source("PoolSource", fileNames = cms.untracked.vstring('file:root://cms-xrd-global.cern.ch//store/data/Run2018A/EGamma/MINIAOD/17Sep2018-v2/100000/E376F74E-44AE-E947-B57B-37A12C3E004C.root'), secondaryFileNames = cms.untracked.vstring() ) process.options = cms.untracked.PSet( ) # Production Info process.configurationMetadata = cms.untracked.PSet( annotation = cms.untracked.string('nanoAOD_jetToolbox_cff nevts:1'), name = cms.untracked.string('Applications'), version = cms.untracked.string('$Revision: 1.19 $') ) # Output definition process.NANOAODoutput = cms.OutputModule("NanoAODOutputModule", compressionAlgorithm = cms.untracked.string('LZMA'), compressionLevel = cms.untracked.int32(9), dataset = cms.untracked.PSet( dataTier = cms.untracked.string('NANOAOD'), filterName = cms.untracked.string('') ), fileName = cms.untracked.string('file:jetToolbox_nano_datatest3676.root'), outputCommands = process.NANOAODEventContent.outputCommands ) # Additional output definition # Other statements from Configuration.AlCa.GlobalTag import GlobalTag process.GlobalTag = GlobalTag(process.GlobalTag, '102X_dataRun2_Sep2018Rereco_v1', '') # Path and EndPath definitions process.nanoAOD_step = cms.Path(process.nanoSequence) process.endjob_step = cms.EndPath(process.endOfProcess) process.NANOAODoutput_step = cms.EndPath(process.NANOAODoutput) # Schedule definition process.schedule = cms.Schedule(process.nanoAOD_step,process.endjob_step,process.NANOAODoutput_step) from PhysicsTools.PatAlgos.tools.helpers import associatePatAlgosToolsTask associatePatAlgosToolsTask(process) # customisation of the process. # Automatic addition of the customisation function from PhysicsTools.NanoAOD.nano_cff from PhysicsTools.NanoAOD.nano_cff import nanoAOD_customizeData #call to customisation function nanoAOD_customizeData imported from PhysicsTools.NanoAOD.nano_cff process = nanoAOD_customizeData(process) # Automatic addition of the customisation function from JMEAnalysis.JetToolbox.nanoAOD_jetToolbox_cff from JMEAnalysis.JetToolbox.nanoAOD_jetToolbox_cff import nanoJTB_customizeMC #call to customisation function nanoJTB_customizeMC imported from JMEAnalysis.JetToolbox.nanoAOD_jetToolbox_cff process = nanoJTB_customizeMC(process) # End of customisation functions # Customisation from command line process.add_(cms.Service('InitRootHandlers', EnableIMT = cms.untracked.bool(False))) # Add early deletion of temporary data products to reduce peak memory need from Configuration.StandardSequences.earlyDeleteSettings_cff import customiseEarlyDelete process = customiseEarlyDelete(process) # End adding early deletion
430153ab989c70328c2d747dca69ee952a2d761e
03ae0dee75698f5012d80b218e71500181cd3e68
/cd2h_repo_project/utils.py
62197a6d92d58546d86f4a14193d1f23d3f6e3fb
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
galterlibrary/InvenioRDM-at-NU
0b5e5043f67d0dc12960c00617ad2b7e14f4f6e8
5aff6ac7c428c9a61bdf221627bfc05f2280d1a3
refs/heads/master
2020-03-20T14:45:50.950239
2019-09-26T19:14:45
2019-09-26T19:14:45
137,494,704
6
0
MIT
2019-09-26T19:14:47
2018-06-15T14:06:06
Python
UTF-8
Python
false
false
630
py
"""General utility functions for any module.""" from flask_principal import AnonymousIdentity, Identity, RoleNeed, UserNeed def get_identity(user): """Returns the identity for a given user instance. This is needed because we are more explicit then Flask-Principal and it is MUCH more convenient for tests. """ if hasattr(user, 'id'): identity = Identity(user.id) identity.provides.add(UserNeed(user.id)) else: return AnonymousIdentity() for role in getattr(user, 'roles', []): identity.provides.add(RoleNeed(role.name)) identity.user = user return identity
457faf21e9fc6f3d361e17dc6880d7510c0822b5
2d0bada349646b801a69c542407279cc7bc25013
/src/vai_optimizer/example/pruning/tensorflow_v1/resnet50_pruning.py
3f6b05b1cd1911eaf0f109cd895db49dffccf932
[ "Apache-2.0", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "BSD-3-Clause-Open-MPI", "LicenseRef-scancode-free-unknown", "Libtool-exception", "GCC-exception-3.1", "LicenseRef-scancode-mit-old-style", "OFL-1.1", "JSON", "LGPL-2.1-only", "LGPL-2.0-or-later", "ICU", "LicenseRef-scancode-other-permissive", "GPL-2.0-or-later", "GPL-3.0-only", "LicenseRef-scancode-issl-2018", "MIT", "LGPL-2.1-or-later", "LicenseRef-scancode-unicode", "LGPL-3.0-only", "LicenseRef-scancode-warranty-disclaimer", "GPL-3.0-or-later", "Zlib", "BSD-Source-Code", "ClArtistic", "LicenseRef-scancode-unknown-license-reference", "ISC", "NCSA", "LicenseRef-scancode-proprietary-license", "GPL-2.0-only", "CC-BY-4.0", "FSFULLR", "Minpack", "Unlicense", "BSL-1.0", "NAIST-2003", "LicenseRef-scancode-protobuf", "LicenseRef-scancode-public-domain", "Libpng", "Spencer-94", "BSD-2-Clause", "Intel", "GPL-1.0-or-later", "MPL-2.0" ]
permissive
Xilinx/Vitis-AI
31e664f7adff0958bb7d149883ab9c231efb3541
f74ddc6ed086ba949b791626638717e21505dba2
refs/heads/master
2023-08-31T02:44:51.029166
2023-07-27T06:50:28
2023-07-27T06:50:28
215,649,623
1,283
683
Apache-2.0
2023-08-17T09:24:55
2019-10-16T21:41:54
Python
UTF-8
Python
false
false
2,145
py
# MIT License # # Copyright (c) 2023 Advanced Micro Devices, Inc. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from tf1_nndct.optimization.pruning import IterativePruningRunner import tensorflow as tf import numpy as np from nets.resnet_v2 import resnet_v2_50 def eval_fn(frozen_graph_def: tf.compat.v1.GraphDef) -> float: with tf.compat.v1.Session().as_default() as sess: return 0.5 def main(): with tf.compat.v1.Session() as sess: opt = tf.compat.v1.train.GradientDescentOptimizer(learning_rate=0.1) images = tf.convert_to_tensor(np.ones((1, 224, 224, 3), dtype=np.float32)) net, _ = resnet_v2_50(images, 1000) print(net) loss = tf.reduce_sum(net) sess.run(tf.global_variables_initializer()) pruner = IterativePruningRunner("resnet50", sess, {}, ["resnet_v2_50/SpatialSqueeze"]) pruner.ana(eval_fn, gpu_ids=['/GPU:0', '/GPU:1']) shape_tensors, masks = pruner.prune(sparsity=0.5) variables = tf.trainable_variables() sess.run(opt.minimize(loss, var_list=variables)) slim_graph_def = pruner.get_slim_graph_def(shape_tensors, masks) if __name__ == "__main__": main()
17329d67a9eef61295267530f6d4eed9da6ec6a4
a63d907ad63ba6705420a6fb2788196d1bd3763c
/src/api/datahub/access/tests/modules/collector/no_factory_test.py
7cb318fa5707ad99aaceecb1edeccc1dd7dd0110
[ "MIT" ]
permissive
Tencent/bk-base
a38461072811667dc2880a13a5232004fe771a4b
6d483b4df67739b26cc8ecaa56c1d76ab46bd7a2
refs/heads/master
2022-07-30T04:24:53.370661
2022-04-02T10:30:55
2022-04-02T10:30:55
381,257,882
101
51
NOASSERTION
2022-04-02T10:30:56
2021-06-29T06:10:01
Python
UTF-8
Python
false
false
3,992
py
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making BK-BASE 蓝鲸基础平台 available. Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved. BK-BASE 蓝鲸基础平台 is licensed under the MIT License. License for BK-BASE 蓝鲸基础平台: -------------------------------------------------------------------- Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from __future__ import absolute_import import httpretty import pytest from datahub.access.collectors.base_collector import BaseAccessTask from datahub.access.tests.fixture import conftest from datahub.access.tests.fixture.access import * # noqa from datahub.access.tests.utils import post param = { "bk_app_code": "bk_dataweb", "bk_username": "admin", "data_scenario": "unknow", "bk_biz_id": 591, "description": "xx", "access_raw_data": { "raw_data_name": "log_new_00011", "maintainer": "xxxx", "raw_data_alias": "asdfsaf", "data_source": "svr", "data_encoding": "UTF-8", "sensitivity": "private", "description": "xx", }, "access_conf_info": { "collection_model": {"collection_type": "incr", "start_at": 1, "period": 0}, "filters": { "delimiter": "|", "fields": [{"index": 1, "op": "=", "logic_op": "and", "value": "111"}], }, "resource": { "scope": [ { "module_scope": [{"bk_obj_id": "set", "bk_inst_id": 123}], "host_scope": [{"bk_cloud_id": 1, "ip": "x.x.x.x"}], "scope_config": { "paths": [ { "path": ["/tmp/*.log", "/tmp/*.l", "/tmp/*.aaaz"], "system": "linux", } ] }, } ] }, }, } @pytest.mark.django_db def test_error_factory_deploy_plan(): httpretty.enable() httpretty.reset() conftest.mock_user_perm("admin") conftest.mock_app_perm("bk_dataweb") conftest.mock_create_data_id() conftest.mock_get_data_id("unknow") conftest.mock_collector_hub_deploy_plan() url = "/v3/access/deploy_plan/" res = post(url, param) assert not res["result"] assert res["code"] == "1577209" @pytest.mark.django_db def test_error_factory_deploy(): httpretty.enable() httpretty.reset() conftest.mock_user_perm("admin") conftest.mock_app_perm("bk_dataweb") url = "/v3/access/collector/unknow/deploy/" res = post(url, param) assert not res["result"] assert res["code"] == "1577209" @pytest.mark.usefixtures("init_task_log") @pytest.mark.django_db def test_task_log(): conftest.mock_user_perm("admin") conftest.mock_app_perm("bk_dataweb") task = BaseAccessTask(task_id=100) task.log("test debug", level="debug", task_log=False, time=None)
ff370d8533a9be416e4441f7a342c23059b406b2
973713f993166b1d0c2063f6e84361f05803886d
/Day01-15/09_exercise_8.py
bcd5d38fd6e777cae500b75373d3bdd0c6b4c445
[ "MIT" ]
permissive
MaoningGuan/Python-100-Days
20ad669bcc0876b5adfbf2c09b4d25fd4691061a
d36e49d67a134278455438348efc41ffb28b778a
refs/heads/master
2022-11-17T12:24:45.436100
2020-07-18T02:24:42
2020-07-18T02:24:42
275,157,107
0
0
null
null
null
null
UTF-8
Python
false
false
3,995
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ 扑克游戏 """ import random class Card(object): """一张牌""" def __init__(self, suite, face): self._suite = suite self._face = face @property def face(self): return self._face @property def suite(self): return self._suite def __str__(self): if self._face == 1: face_str = 'A' elif self._face == 11: face_str = 'J' elif self._face == 12: face_str = 'Q' elif self._face == 13: face_str = 'K' else: face_str = str(self._face) return '%s%s' % (self._suite, face_str) def __repr__(self): return self.__str__() class Poker(object): """一副牌""" def __init__(self): self._cards = [Card(suite, face) for suite in '♠♥♣♦' for face in range(1, 14)] self._current = 0 @property def cards(self): return self._cards def shuffle(self): """洗牌(随机乱序""" self._current = 0 random.shuffle(self._cards) # 将序列元素随机排序 @property def next(self): """发牌""" card = self._cards[self._current] self._current += 1 return card @property def has_next(self): """还有没有牌""" return self._current < len(self._cards) class Player(object): """玩家""" def __init__(self, name): self._name = name self._cards_on_hand = [] @property def name(self): return self._name @property def cards_on_hand(self): return self._cards_on_hand def get(self, card): """摸牌""" self._cards_on_hand.append(card) def arrange(self, card_key): """玩家整理手上的牌""" self._cards_on_hand.sort(key=card_key) # 排序规则-先根据花色再根据点数排序 def get_key(card): return (card.suite, card.face) def main(): p = Poker() p.shuffle() players = [Player('东邪'), Player('西毒'), Player('南帝'), Player('北丐')] game_name = '21点' cards_number = 2 for _ in range(cards_number): for player in players: player.get(p.next) print(game_name + ':') cards_number = [] for player in players: print(player.name + ':', end=' ') player.arrange(get_key) print(player.cards_on_hand) # 计算玩家的点数 pokers_sum = 0 cards = player.cards_on_hand card_0 = cards[0].face card_1 = cards[1].face if 1 not in [card_0, card_1]: if card_0 in [11, 12, 13]: card_0 = 10 if card_1 in [11, 12, 13]: card_1 = 10 pokers_sum = card_0 + card_1 else: if card_0 == 1 and card_1 == 1: pokers_sum = 12 else: if card_0 == 1: if card_1 in [11, 12, 13]: card_1 = 10 pokers_sum = card_0 + card_1 number = card_1 + 11 if pokers_sum < number <= 21: pokers_sum = number elif card_1 == 1: if card_0 in [11, 12, 13]: card_0 = 10 pokers_sum = card_0 + card_1 number = card_0 + 11 if pokers_sum < number <= 21: pokers_sum = number cards_number.append(pokers_sum) print(cards_number) max_card_num = 0 player = -1 for index, card_number in enumerate(cards_number): if max_card_num < card_number <= 21: max_card_num = card_number player = players[index] if max_card_num != 0: print(f'赢家为{player.name},点数为{max_card_num}') if __name__ == '__main__': main()
a60c7006ec0c959e30a9e86876873f261277a809
aa6e1dd07a71a73bc08574b76f9e57a3ce8c8286
/077.Test_BeeWare_windows/beeware-tutorial/beeware-venv/Lib/site-packages/git/refs/reference.py
aaa9b63fe7fa10fe82bb3632e3410b491b042f8e
[ "MIT" ]
permissive
IvanaXu/PyTools
0aff5982f50bb300bfa950405192c78473b69537
358ae06eef418fde35f424909d4f13049ca9ec7b
refs/heads/master
2023-06-07T21:45:44.242363
2023-06-06T16:00:25
2023-06-06T16:00:25
163,940,845
60
8
MIT
2022-12-23T02:49:05
2019-01-03T07:54:16
Python
UTF-8
Python
false
false
4,408
py
from git.util import ( LazyMixin, Iterable, ) from .symbolic import SymbolicReference __all__ = ["Reference"] #{ Utilities def require_remote_ref_path(func): """A decorator raising a TypeError if we are not a valid remote, based on the path""" def wrapper(self, *args): if not self.is_remote(): raise ValueError("ref path does not point to a remote reference: %s" % self.path) return func(self, *args) # END wrapper wrapper.__name__ = func.__name__ return wrapper #}END utilities class Reference(SymbolicReference, LazyMixin, Iterable): """Represents a named reference to any object. Subclasses may apply restrictions though, i.e. Heads can only point to commits.""" __slots__ = () _points_to_commits_only = False _resolve_ref_on_create = True _common_path_default = "refs" def __init__(self, repo, path, check_path=True): """Initialize this instance :param repo: Our parent repository :param path: Path relative to the .git/ directory pointing to the ref in question, i.e. refs/heads/master :param check_path: if False, you can provide any path. Otherwise the path must start with the default path prefix of this type.""" if check_path and not path.startswith(self._common_path_default + '/'): raise ValueError("Cannot instantiate %r from path %s" % (self.__class__.__name__, path)) super(Reference, self).__init__(repo, path) def __str__(self): return self.name #{ Interface def set_object(self, object, logmsg=None): # @ReservedAssignment """Special version which checks if the head-log needs an update as well :return: self""" oldbinsha = None if logmsg is not None: head = self.repo.head if not head.is_detached and head.ref == self: oldbinsha = self.commit.binsha # END handle commit retrieval # END handle message is set super(Reference, self).set_object(object, logmsg) if oldbinsha is not None: # /* from refs.c in git-source # * Special hack: If a branch is updated directly and HEAD # * points to it (may happen on the remote side of a push # * for example) then logically the HEAD reflog should be # * updated too. # * A generic solution implies reverse symref information, # * but finding all symrefs pointing to the given branch # * would be rather costly for this rare event (the direct # * update of a branch) to be worth it. So let's cheat and # * check with HEAD only which should cover 99% of all usage # * scenarios (even 100% of the default ones). # */ self.repo.head.log_append(oldbinsha, logmsg) # END check if the head return self # NOTE: Don't have to overwrite properties as the will only work without a the log @property def name(self): """:return: (shortest) Name of this reference - it may contain path components""" # first two path tokens are can be removed as they are # refs/heads or refs/tags or refs/remotes tokens = self.path.split('/') if len(tokens) < 3: return self.path # could be refs/HEAD return '/'.join(tokens[2:]) @classmethod def iter_items(cls, repo, common_path=None): """Equivalent to SymbolicReference.iter_items, but will return non-detached references as well.""" return cls._iter_items(repo, common_path) #}END interface #{ Remote Interface @property @require_remote_ref_path def remote_name(self): """ :return: Name of the remote we are a reference of, such as 'origin' for a reference named 'origin/master'""" tokens = self.path.split('/') # /refs/remotes/<remote name>/<branch_name> return tokens[2] @property @require_remote_ref_path def remote_head(self): """:return: Name of the remote head itself, i.e. master. :note: The returned name is usually not qualified enough to uniquely identify a branch""" tokens = self.path.split('/') return '/'.join(tokens[3:]) #} END remote interface
bce5d26895cbbaa98ad04b69f939816ec032ddc7
7feebb0a6c7751ad2b1870efd63c85c2d8f670bb
/txaioetcd/_client_aio.py
6de2f28359bb6d9ba8c403a216e4fef45e309398
[ "MIT" ]
permissive
om26er/txaio-etcd
edbcfe65ac19c8f4326944f0b0bcae986e7aa3fe
0ed71ba01ab13acebf874ddf650f880bb1e676a5
refs/heads/master
2021-01-02T23:36:01.330887
2017-09-14T18:28:21
2017-09-14T18:28:21
99,502,890
0
0
null
2017-08-06T17:36:17
2017-08-06T17:36:17
null
UTF-8
Python
false
false
2,579
py
############################################################################### # # The MIT License (MIT) # # Copyright (c) Crossbar.io Technologies GmbH # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # ############################################################################### from __future__ import absolute_import __all__ = ( 'Client', ) class _None(object): pass class Client(object): """ etcd asyncio client that talks to the gRPC HTTP gateway endpoint of etcd v3. See: https://coreos.com/etcd/docs/latest/dev-guide/apispec/swagger/rpc.swagger.json """ def __init__(self, loop, url): pass def status(self): raise Exception('not implemented') def set(self, key, value, lease=None, return_previous=None): raise Exception('not implemented') def get(self, key, count_only=None, keys_only=None, limit=None, max_create_revision=None, min_create_revision=None, min_mod_revision=None, revision=None, serializable=None, sort_order=None, sort_target=None): raise Exception('not implemented') def delete(self, key, return_previous=None): raise Exception('not implemented') def watch(self, keys, on_watch, start_revision=None): raise Exception('not implemented') def submit(self, txn): raise Exception('not implemented') def lease(self, time_to_live, lease_id=None): raise Exception('not implemented')
20803dc548bd9f4077e54216bfe95ec8e10adf13
d94b6845aeeb412aac6850b70e22628bc84d1d6d
/gfsa/training/simple_train.py
d352630a277e5c92d7087e72fc751cf46dc4ca7d
[ "CC-BY-4.0", "Apache-2.0" ]
permissive
ishine/google-research
541aea114a68ced68736340e037fc0f8257d1ea2
c1ae273841592fce4c993bf35cdd0a6424e73da4
refs/heads/master
2023-06-08T23:02:25.502203
2023-05-31T01:00:56
2023-05-31T01:06:45
242,478,569
0
0
Apache-2.0
2020-06-23T01:55:11
2020-02-23T07:59:42
Jupyter Notebook
UTF-8
Python
false
false
2,569
py
# coding=utf-8 # Copyright 2023 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Simple training runner.""" from absl import app from absl import flags import gin from gfsa.training import simple_runner flags.DEFINE_string("train_log_dir", None, "Path to log directory.") flags.DEFINE_string("train_artifacts_dir", None, "Path to save params and other artifacts.") flags.DEFINE_multi_string("gin_files", [], "Gin config files to use.") flags.DEFINE_multi_string("gin_include_dirs", [], "Directories to search when resolving gin includes.") flags.DEFINE_multi_string( "gin_bindings", [], "Gin bindings to override the values set in the config files.") flags.DEFINE_enum("task", None, {"maze", "edge_supervision", "var_misuse"}, "Task to run.") FLAGS = flags.FLAGS def main(argv): if len(argv) > 1: raise app.UsageError("Too many command-line arguments.") # pylint:disable=g-import-not-at-top if FLAGS.task == "maze": from gfsa.training import train_maze_lib train_fn = train_maze_lib.train elif FLAGS.task == "edge_supervision": from gfsa.training import train_edge_supervision_lib train_fn = train_edge_supervision_lib.train elif FLAGS.task == "var_misuse": from gfsa.training import train_var_misuse_lib train_fn = train_var_misuse_lib.train else: raise ValueError(f"Unrecognized task {FLAGS.task}") # pylint:enable=g-import-not-at-top print("Setting up Gin configuration") for include_dir in FLAGS.gin_include_dirs: gin.add_config_file_search_path(include_dir) gin.bind_parameter("simple_runner.training_loop.artifacts_dir", FLAGS.train_artifacts_dir) gin.bind_parameter("simple_runner.training_loop.log_dir", FLAGS.train_log_dir) gin.parse_config_files_and_bindings( FLAGS.gin_files, FLAGS.gin_bindings, finalize_config=False, skip_unknown=False) gin.finalize() train_fn(runner=simple_runner) if __name__ == "__main__": app.run(main)
f86f0b7160e46973c357dad4d8d75a61687f58b3
ff413ecba8eb6a3f8afc225bd1339abac453202c
/project/admin_bot/keyboards/adding_products_to_package_kb.py
fb360b13d90fd94339878386bb1388ab12bda04c
[]
no_license
Artvell/bot
561b614fde5d19335736ac390e35814afd6b6180
0b85a5efc4c302f522bf23a23fbbbc8a9efc7008
refs/heads/main
2023-08-10T17:10:21.500433
2021-09-11T12:54:32
2021-09-11T12:54:32
405,372,665
0
0
null
null
null
null
UTF-8
Python
false
false
372
py
from aiogram.types import InlineKeyboardButton, InlineKeyboardMarkup def adding_kb(package_id): keyboard = InlineKeyboardMarkup() keyboard.add(InlineKeyboardButton("Добавить",switch_inline_query_current_chat="")) keyboard.add(InlineKeyboardButton("Закончить добавление",callback_data=f"end_adding_{package_id}")) return keyboard
bb9b72d22626e0d25fcc15eb9591c80556396118
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02699/s167779272.py
5ae2267cef04e2bb394c6351bcb67a32ba3d4e70
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
149
py
def main(): S, W = list(map(int, input().split())) print("unsafe" if S <= W else "safe") pass if __name__ == '__main__': main()
6154ea85af213859285844a8e9cbf8f6b018ff55
d37f798101bc6cc795b3ff7e5f9444ff30b4cd83
/kubernetes/client/models/v1alpha1_parent_reference.py
18f7447520f6057f4d3b3f73bc21bd1645ac457f
[ "Apache-2.0" ]
permissive
MorningSong/python
bdd8b9d60b7c2185457fc1bbbc64d098f9682981
ae7b5ddd219fe09b6ed0be715dcca3377a029584
refs/heads/master
2023-08-30T14:41:41.582335
2023-08-23T16:15:28
2023-08-23T16:15:28
139,396,247
0
0
Apache-2.0
2023-09-14T00:11:24
2018-07-02T05:47:43
Python
UTF-8
Python
false
false
6,766
py
# coding: utf-8 """ Kubernetes No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 The version of the OpenAPI document: release-1.27 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from kubernetes.client.configuration import Configuration class V1alpha1ParentReference(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'group': 'str', 'name': 'str', 'namespace': 'str', 'resource': 'str', 'uid': 'str' } attribute_map = { 'group': 'group', 'name': 'name', 'namespace': 'namespace', 'resource': 'resource', 'uid': 'uid' } def __init__(self, group=None, name=None, namespace=None, resource=None, uid=None, local_vars_configuration=None): # noqa: E501 """V1alpha1ParentReference - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._group = None self._name = None self._namespace = None self._resource = None self._uid = None self.discriminator = None if group is not None: self.group = group if name is not None: self.name = name if namespace is not None: self.namespace = namespace if resource is not None: self.resource = resource if uid is not None: self.uid = uid @property def group(self): """Gets the group of this V1alpha1ParentReference. # noqa: E501 Group is the group of the object being referenced. # noqa: E501 :return: The group of this V1alpha1ParentReference. # noqa: E501 :rtype: str """ return self._group @group.setter def group(self, group): """Sets the group of this V1alpha1ParentReference. Group is the group of the object being referenced. # noqa: E501 :param group: The group of this V1alpha1ParentReference. # noqa: E501 :type: str """ self._group = group @property def name(self): """Gets the name of this V1alpha1ParentReference. # noqa: E501 Name is the name of the object being referenced. # noqa: E501 :return: The name of this V1alpha1ParentReference. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this V1alpha1ParentReference. Name is the name of the object being referenced. # noqa: E501 :param name: The name of this V1alpha1ParentReference. # noqa: E501 :type: str """ self._name = name @property def namespace(self): """Gets the namespace of this V1alpha1ParentReference. # noqa: E501 Namespace is the namespace of the object being referenced. # noqa: E501 :return: The namespace of this V1alpha1ParentReference. # noqa: E501 :rtype: str """ return self._namespace @namespace.setter def namespace(self, namespace): """Sets the namespace of this V1alpha1ParentReference. Namespace is the namespace of the object being referenced. # noqa: E501 :param namespace: The namespace of this V1alpha1ParentReference. # noqa: E501 :type: str """ self._namespace = namespace @property def resource(self): """Gets the resource of this V1alpha1ParentReference. # noqa: E501 Resource is the resource of the object being referenced. # noqa: E501 :return: The resource of this V1alpha1ParentReference. # noqa: E501 :rtype: str """ return self._resource @resource.setter def resource(self, resource): """Sets the resource of this V1alpha1ParentReference. Resource is the resource of the object being referenced. # noqa: E501 :param resource: The resource of this V1alpha1ParentReference. # noqa: E501 :type: str """ self._resource = resource @property def uid(self): """Gets the uid of this V1alpha1ParentReference. # noqa: E501 UID is the uid of the object being referenced. # noqa: E501 :return: The uid of this V1alpha1ParentReference. # noqa: E501 :rtype: str """ return self._uid @uid.setter def uid(self, uid): """Sets the uid of this V1alpha1ParentReference. UID is the uid of the object being referenced. # noqa: E501 :param uid: The uid of this V1alpha1ParentReference. # noqa: E501 :type: str """ self._uid = uid def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, V1alpha1ParentReference): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, V1alpha1ParentReference): return True return self.to_dict() != other.to_dict()
eafd3efda8542b0d4645d3e90c82145723998525
2fb738f3bdabebf32296150405486377dba7812b
/nuitka/freezer/DependsExe.py
18433052e9e87ad3cdd5729630829cc4c783b534
[ "Apache-2.0", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
goslion/Nuitka
31f62c9083a1eaec104d64eeebc0b9fb50560812
4a30a987b1586271c31822f574ca2584d1107212
refs/heads/master
2023-03-03T08:06:13.420278
2021-02-07T22:06:13
2021-02-07T22:06:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,923
py
# Copyright 2021, Kay Hayen, mailto:[email protected] # # Part of "Nuitka", an optimizing Python compiler that is compatible and # integrates with CPython, but also works on its own. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Interface to depends.exe on Windows. We use depends.exe to investigate needed DLLs of Python DLLs. """ from nuitka.Options import assumeYesForDownloads from nuitka.utils.Download import getCachedDownload from nuitka.utils.Utils import getArchitecture def getDependsExePath(): """Return the path of depends.exe (for Windows). Will prompt the user to download if not already cached in AppData directory for Nuitka. """ if getArchitecture() == "x86": depends_url = "http://dependencywalker.com/depends22_x86.zip" else: depends_url = "http://dependencywalker.com/depends22_x64.zip" return getCachedDownload( url=depends_url, is_arch_specific=True, binary="depends.exe", flatten=True, specifity="", # Note: If there ever was an update, put version here. message="""\ Nuitka will make use of Dependency Walker (http://dependencywalker.com) tool to analyze the dependencies of Python extension modules.""", reject="Nuitka does not work in --standalone on Windows without.", assume_yes_for_downloads=assumeYesForDownloads(), )