blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
953b13229117505cbd103e683fe9a6c35683cc7a
9434997753b4edec70916aa5e8380c27e88ea2ab
/build/lib.macosx-10.5-x86_64-2.7/pydynet/analysis.py
0bacd711233e1a5843ef9e507974536ee2cdb982
[ "BSD-3-Clause", "BSD-2-Clause" ]
permissive
thelahunginjeet/pydynet
c58df847db969d8e92d6ef54e4e53a6efdad5283
d4e739aebf05f8aec5a9601b804842539d6b9e93
refs/heads/master
2021-04-18T23:59:42.597132
2020-06-12T04:12:24
2020-06-12T04:12:24
37,340,404
1
2
null
null
null
null
UTF-8
Python
false
false
11,440
py
#!/usr/bin/env python # encoding: utf-8 """ analysis.py @author: Kevin S. Brown (University of Connecticut), Ann M. Hermundstad (UPenn) Created by Kevin Brown on 2015-03-17. """ from numpy import log,exp,mean,abs,log2,sqrt from numpy import roll,where,histogram,nonzero,delete,zeros_like,array,zeros,newaxis import networkx as nx def phi_of_t(y,group=None): ''' For y(i,t), computes: phi(t) = |<exp(i*y(t))>| where the average is computed only over the rows indicated in group. If group is None, the average is computed over the entire array. INPUT: y: array-like, required y should be an N x t array of floats/doubles. group : list, optional group should be a list of rows of y to include in the calculation. if group is None, all rows are used. OUTPUT: phi : array phi will be an array of size 1 x t, representing the synchonization index, as a function of time, computed over the input row group ''' if group is None: group = range(0,y.shape[0]) # set up the array exp(i*y) eiy = exp(1j*y) # do the averaging phi = eiy[group,:].mean(axis=0) # now the modulus return abs(phi) def codeword_dictionary(spikes): ''' Computes a dictionary of population codewords from an input spike array. Codewords are keyed on word (represented as a string) and entries indicate counts. INPUT: spikes: array-like, required should be an N x t array of integers (0 and 1 only) OUTPUT: codewords: dictionary number of times (up to t) that each word appears codeseq: list order of appearance of codewords; each codeword is assigned an arbitrary number between 0 and N(codewords)-1 codetonum: dictionary codeword to numerical mapping in codeseq ''' codeseq = [] codetonum = {} codewords = {} N,t = spikes.shape current = 0 for k in xrange(0,t): word = ''.join([str(x) for x in spikes[:,k]]) if codewords.has_key(word): codewords[word] += 1 else: codewords[word] = 1 codetonum[word] = current current += 1 codeseq.append(codetonum[word]) return codewords,codetonum,codeseq def codeword_raster(codewords): ''' Uses a codeword dictionary to produce a codeword raster (codewords x spikes) and a numeric array of codeword frequencies. ''' coderast = [] codenum = [] for k in codewords: coderast.append([int(c) for c in k]) codenum.append(1.0*codewords[k]/sum(codewords.values())) coderast = array(coderast) codenum = array(codenum) return codenum,coderast def bin_spikes(spike_array,b=10): ''' Accepts an input integer array of zeros and ones and bins samples along the column index. Binned samples are computed according to value(bin) = max(bin). ''' n,t = spike_array.shape binned_array = zeros((n,t/b),dtype=int) binstart = 0 while t >= binstart + b: binvals = spike_array[:,binstart:binstart+b].max(axis=1) binned_array[:,binstart:binstart+b] = binvals[:,newaxis] binstart += b return binned_array def isi_stats(spike_array): ''' Accepts an N x t input array of 1's and 0's, with a 1 indicating a spike occurred in that time bin and returns the mean and variance of the interspike intervals. INPUT: spike_array : array, required spike_array should only contain 1's and 0's; amplitude/phase arrays should be pre-converted via convert_to_spikes OUTPUT: isi_mean : array (N elements) ISI mean isi_var : array (N elements) ISI variance ''' N = spike_array.shape[0] isi_mean = zeros(N) isi_var = zeros(N) for k in xrange(0,N): spike_loc = where(spike_array[k,:] == 1)[0] isi_array = spike_loc - roll(spike_loc,1) isi_mean[k] = isi_array[1:].mean() isi_var[k] = isi_array[1:].var() return isi_mean,isi_var def discrete_entropy(x,est='ML'): ''' Computes the entropy of discrete (integer) data. INPUT: x: array-like, required data for which to compute H[x] est: string, optional estimator. current options arange 'ML' : maximum-likelihood (plugin) 'MM' : Miller-Maddow corrected OUTPUT: H[x]: entropy of x, measured in nats ''' # do the frequency counting counts = {} for xi in x: if counts.has_key(xi): counts[xi] += 1 else: counts[xi] = 1 sumpofx = 1.0*sum(counts.values()) pofx = array(counts.values())/sumpofx H_ML = -1*(pofx*log(pofx)).sum() if est == 'ML': H = H_ML if est == 'MM': # nonzero bins have already been removed from pofx H = H_ML + (len(pofx) - 1.0)/(2.0*len(x)) return H def entropy(x,bins=10,est='ML'): ''' Computes the entropy of a continuous (unbinned) set of data x. INPUT: x: array-like, required data for which to compute H[x] bins: integer, optional number of bins est: string, optional estimator. current options are: 'ML': maximum-likelihood (plugin) 'MM': Miller-Maddow corrected 'JK': Jackknifed estimate (can be slow!) OUTPUT: H[x] : entropy of x, measured in nats ''' cx = histogram(x,bins)[0] pofx = (1.0*cx)/cx.sum() # remove zero bins to avoid numerical problems pofx = pofx[nonzero(pofx)] H_ML = -1*(pofx*log(pofx)).sum() if est == 'ML': H = H_ML if est == 'MM': # nonzero bins have already been removed from pofx H = H_ML + (len(pofx) - 1.0)/(2.0*len(x)) if est == 'JK': Sc = 0 for i in xrange(0,len(x)): newx = delete(x,i) Sc += entropy(newx,bins,'ML') H_JK = len(x)*H_ML - ((len(x) - 1.0)/len(x))*Sc H = H_JK return H def codeword_complexity(spike_array,norm=True): ''' Computes the Lempel-Ziv complexity for a series of codewords. If norm is True, the normalized lz_complexity is returned. Also returns the number of unique codewords. ''' N,t = spike_array.shape # find and count the codewords codewords,codetonum,codeseq = codeword_dictionary(spike_array) nunique = len(codetonum.keys()) # compute the non-normalized LZ complexity lzc = lz_complexity(codeseq) # normalize if desired if norm is True: f = 1.0*array(codewords.values())/t # source entropy h = -sum(f*log2(f)) # length term bn = t/log2(t) # normalize lzc = lzc/(h*bn) return lzc,nunique def random_lz_complexity(n,p=0.5): ''' Computes the expected Lempel-Ziv complexity for a random sequence of length n and expected probability of generating a 1 = p. Useful for normalizing the raw lz_complexity. This function will behave poorly if p is identically 0 or 1. Therefore, it would be best to estimate p from real (finite length) strings using pseudocounts. INPUT: n : int, required length of the random sequence p : float, optional probability of seeing a 1 in the sequence ''' # source entropy h = -p*log2(p) - (1-p)*log2(1-p) # expected LZ complexity of binary representations of real numbers bn = n/log2(n) return h*bn def lz_complexity(s): ''' Lempel-Ziv complexity as described in Kaspar and Schuster, Phys. Rev. A. The input iterable (see below) does not have to be binary (2-element), but most applications of LZ complexity have used strings of 0s and 1s. INPUT: s : string, list, or tuple, required sequence to calculate complexity for ''' i, k, l = 0, 1, 1 k_max = 1 n = len(s)-1 lzc = 1 while True: if s[i+k-1] == s[l+k-1]: k += 1 if l + k >= n - 1: lzc += 1 break else: if k > k_max: k_max = k i += 1 if i == l: lzc += 1 l += k_max if l + 1 > n: break else: i = 0 k = 1 k_max = 1 else: k = 1 return lzc def complexity(spike_array,method='lz_norm'): ''' Complexity measure for each node's spiking pattern. Could dispatch to a variety of measures. Returns an array of length equal to spike_array.shape[0]. ''' N,T = spike_array.shape c = zeros(N) if method == 'lz_norm': for i in xrange(0,N): # spike string s = ''.join([str(x) for x in spike_array[i,:]]) # probability of generating a 1 p = (sum(spike_array[i,:]) + 1.0)/(T + 2.0) # compute normalized LZ complexity c[i] = 1.0*lz_complexity(s)/random_lz_complexity(T,p) if method == 'lz': for i in xrange(0,N): # spike string s = ''.join([str(x) for x in spike_array[i,:]]) # non-normalized lz complexity c[i] = lz_complexity(s) return c def node_assortativity(net,attribute,jackknife=True,atype='numeric'): ''' Computes the assortativity coefficient and optional sampling error (via the jackknife) for the desired attribute over the network net. In addition, this only works as expected for unweighted, undirected graphs. This function assumes the input nodes are not already decorated with the attribute; this will almost always be the case when the attribute arises as a post-simulation calculation on the dynamics of the network. INPUT: net: PulseOscillatorNetwork (or networkx graph), required input network attribute : dictionary, required key/value pairs for the attribute; keys should be valid node names in the network net jackknife : bool, optional set to True to compute the expected sampling variance atype : string, optional set to 'numeric' for integer point attributes and 'categorial' for categorical attributes OUTPUT: r : float numerical attribute assortativity coefficient (-1 < r <= 1) sigmar : float, optional jackknife standard deviation of r ''' # set the correct assortativity function if atype is 'numeric': afunc = nx.numeric_assortativity_coefficient else: afunc = nx.attribute_assortativity_coefficient # create a new graph G = nx.Graph() # add nodes from the network, with attributes for n in net.nodes(): G.add_node(n,value=attribute[n]) G.add_edges_from(net.edges()) r = afunc(G,'value') if jackknife: sigmarsq = 0.0 # remove one edge at a time, recompute, then add it back for e in G.edges(): G.remove_edge(e[0],e[1]) sigmarsq += (afunc(G,'value') - r)**2 G.add_edge(e[0],e[1]) return r,sqrt(sigmarsq/len(G.edges())) else: return r
7821a32281f931b75f37a80413b9ec794a2804e3
1377e0c1b2200f5130b149ff77cf0fda5a1d2aa9
/src/pmr2/client/script.py
6cbae7a5414bf1624b23dd63f667976f1e80867c
[]
no_license
alan-wu/pmr2.client
c97ef8371be931da281eba33082d649ce65e1201
3dc6afa008159acaa5b8bde4b291920ea3eceb3d
refs/heads/master
2020-04-04T21:19:54.317615
2014-09-01T02:50:32
2014-09-01T02:50:52
156,282,171
0
0
null
2018-11-05T20:58:31
2018-11-05T20:58:30
null
UTF-8
Python
false
false
7,941
py
import os.path import traceback import json import code import pdb import webbrowser from urllib import quote_plus from requests_oauthlib.oauth1_session import TokenRequestDenied try: import readline except ImportError: pass from pmr2.client import Client from pmr2.client import DemoAuthClient HOME = os.path.expanduser('~') CONFIG_FILENAME = os.path.join(HOME, '.pmr2clirc') PMR2ROOT = 'http://staging.physiomeproject.org' CONSUMER_KEY = 'ovYoqjlJLrpCcEWcIFyxtqRS' CONSUMER_SECRET = 'fHssEYMWZzgo6JWUBh4l1bhd' DEFAULT_SCOPE = quote_plus( 'http://staging.physiomeproject.org/oauth_scope/collection,' 'http://staging.physiomeproject.org/oauth_scope/search,' 'http://staging.physiomeproject.org/oauth_scope/workspace_tempauth,' 'http://staging.physiomeproject.org/oauth_scope/workspace_full' ) class Cli(object): token_key = '' token_secret = '' active = False state = None _debug = 0 last_response = None def __init__(self, site=PMR2ROOT, consumer_key=CONSUMER_KEY, consumer_secret=CONSUMER_SECRET, scope=DEFAULT_SCOPE, ): self.auth_client = DemoAuthClient(site, consumer_key, consumer_secret) @property def debug(self): return self._debug @debug.setter def debug(self, value): if isinstance(value, int): self._debug = value if isinstance(value, basestring): if value.lower() in ('false', 'no', '0',): self._debug = 0 else: self._debug = 1 def build_config(self): return { 'token_key': self.auth_client.session._client.client.resource_owner_key, 'token_secret': self.auth_client.session._client.client.resource_owner_secret, 'debug': self.debug, 'scope': DEFAULT_SCOPE, } def load_config(self, filename=CONFIG_FILENAME): try: with open(filename, 'r') as fd: config = json.load(fd) except IOError: print("Fail to open configuration file.") config = self.build_config() except ValueError: print("Fail to decode JSON configuration. Using default values.") config = self.build_config() token = config.get('token_key', '') secret = config.get('token_secret', '') self.auth_client.session._client.client.resource_owner_key = token self.auth_client.session._client.client.resource_owner_secret = secret self.debug = config.get('debug', 0) self.scope = config.get('scope', DEFAULT_SCOPE) return token and secret def save_config(self, filename=CONFIG_FILENAME): try: with open(filename, 'wb') as fd: json.dump(self.build_config(), fd) except IOError: print("Error saving configuration") def get_access(self): # get user to generate one. try: self.auth_client.fetch_request_token(scope=self.scope) except Exception as e: print('Fail to request temporary credentials.') return target = self.auth_client.authorization_url() webbrowser.open(target) verifier = raw_input('Please enter the verifier: ') self.auth_client.set_verifier(verifier=verifier) token = self.auth_client.fetch_access_token() return True def do_help(self, arg=''): """ Print this message. """ print('Basic demo commands:') print('') for name in sorted(dir(self)): if not name.startswith('do_'): continue obj = getattr(self, name) if not callable(obj): continue print(name[3:]) print(obj.__doc__) def do_console(self, arg=''): """ Start the interactive python console. """ console = code.InteractiveConsole(locals=locals()) result = console.interact('') def do_dashboard(self, arg=''): """ List out the features available on the dashboard. """ dashboard = self.client(endpoint='dashboard') if not arg: for k, v in dashboard.value().items(): print('%s\t%s\t%s' % (k, v['label'], v['target'])) return self.state = dashboard.get(arg) print('Acquired state "%s"; use console to interact.') % arg def do_list_workspace(self, arg=''): """ Returns a list of workspaces within your private workspace container. """ dashboard = self.client(endpoint='dashboard') state = dashboard.get('workspace-home') for i in state.value(): print('"%s"\t%s' % (i['title'], i['target'])) def do_raw(self, arg=''): """ Open a target URL to receive raw API output. """ a = arg.split(None, 1) url = ''.join(a[:1]) data = ''.join(a[1:]) if not url: print("URL is required.") return if not data: self.state = self.client(url) else: self.state = self.client(url, data=data) print(self.client.last_response.json()) def do_property(self, arg=''): """ Set property for this object. """ permitted = ['debug'] a = arg.split() if len(a) < 1: print("need both key and values.") return args = list(arg.split()) prop = args.pop(0) if len(a) < 2: print('%s = %s') % (prop, getattr(self, prop)) return if prop not in permitted: print("'%s' cannot be set") % prop return setattr(self, prop, ' '.join(args)) def shell(self): while self.active: try: raw = raw_input('pmr2cli> ') if not raw: continue rawargs = raw.split(None, 1) command = rawargs.pop(0) obj = getattr(self, 'do_' + command, None) if callable(obj): obj(*rawargs) else: print("Invalid command, try 'help'.") except EOFError: self.active = False print('') except KeyboardInterrupt: print('\nGot interrupt signal.') self.active = False except ValueError: print("Couldn't decode json.") # print("Status was %d") % self.last_response.status_code print("Use console to check `self.last_response` for details.") except: print(traceback.format_exc()) if self.debug: pdb.post_mortem() def run(self): access = self.load_config() if not access: try: access = self.get_access() except TokenRequestDenied as e: print('Fail to validate the verifier.') if not access: self.save_config() return self.client = Client(PMR2ROOT, session=self.auth_client.session, use_default_headers=True) try: self.client() except ValueError as e: # JSON decoding error print('Credentials are invalid and are purged. Quitting') self.auth_client.session._client.client.resource_owner_key = '' self.auth_client.session._client.client.resource_owner_secret = '' self.scope = DEFAULT_SCOPE self.save_config() return self.active = True print('Starting PMR2 Demo Shell...') self.save_config() self.shell() if __name__ == '__main__': cli = Cli() cli.run()
f5e09da800b6be9e3ad3cd52937aa943b1c2ee6d
f087d996fd8164dc4fcf9b312533e51bd42029ae
/products/urls.py
cf8edd5c4698904055f1302df72e09cd2c83a3fe
[]
no_license
Mohamed-Kudratov/Furniture_store
364abc300a3c00b999d54e45badfc7c8ca998e90
98754515937c1d7d934a75f0fe6e5f600a69b5e4
refs/heads/main
2023-07-18T04:40:16.770467
2021-08-30T15:31:16
2021-08-30T15:31:16
399,190,040
0
0
null
null
null
null
UTF-8
Python
false
false
166
py
from django.urls import path from products.views import ProductListView app_name = 'products' urlpatterns = [ path('', ProductListView.as_view(), name='list') ]
9d0fe1cb7381c95d5401a723dc80ac5b70db6e8e
4d9bb813b23f59da3e53e9e5932b9b4f2ec2f876
/backend/manage.py
bb67affcea9ec7200a162f7d747ce71d48c5541c
[]
no_license
crowdbotics-apps/mobile-27-dev-6716
79939276c5ff7f54a7fb35a4267a5a0663f8ff87
bbc168bb35c98604d7afbf074b4d6068790c1192
refs/heads/master
2022-11-11T10:25:45.638298
2020-06-27T06:41:06
2020-06-27T06:41:06
275,303,318
0
0
null
null
null
null
UTF-8
Python
false
false
638
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'mobile_27_dev_6716.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
75ccd59f1058f4fa224b44f4ba3b6b7670f1bca4
c8c77f6cc6c032daf179ea2138e4dda5473b426b
/s3/s3-python-example-download-file.py
44226fc6b8e67109cfe37b2a8ae8611f54e25ad1
[]
no_license
arunmastermind/AWS-examples-using-BOTO3
b411a6c96011ab58a66952a53fa2938cb58d5135
e8390094374c10902bab016a21caba75ea179b5a
refs/heads/master
2020-09-30T13:34:33.657621
2019-12-11T12:37:44
2019-12-11T12:37:44
227,297,211
0
2
null
null
null
null
UTF-8
Python
false
false
404
py
import boto3 import botocore BUCKET_NAME = 'my-bucket' # replace with your bucket name KEY = 'my_image_in_s3.jpg' # replace with your object key s3 = boto3.resource('s3') try: s3.Bucket(BUCKET_NAME).download_file(KEY, 'my_local_image.jpg') except botocore.exceptions.ClientError as e: if e.response['Error']['Code'] == "404": print("The object does not exist.") else: raise
9def36becf9665b78190a6e896d8622be917634c
4668b8330bb287eef380f990cce3d076bf9456df
/venv/lib/python3.6/site-packages/ray/__init__.py
eb02bacfc63ecab548d282500c5d067bd6463a88
[]
no_license
Ali-Khakpash/redis-flask-training
1f7bb1745f224c752bbdb338f4bb4da5ad65f3fb
1d5a59a97486e734cb7b08ddb40c8aaeddd429d8
refs/heads/master
2020-11-25T10:19:25.553265
2020-03-12T19:03:36
2020-03-12T19:03:36
228,612,175
1
0
null
null
null
null
UTF-8
Python
false
false
6,271
py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from os.path import dirname import sys # MUST add pickle5 to the import path because it will be imported by some # raylet modules. if "pickle5" in sys.modules: raise ImportError("Ray must be imported before pickle5 because Ray " "requires a specific version of pickle5 (which is " "packaged along with Ray).") # Add the directory containing pickle5 to the Python path so that we find the # pickle5 version packaged with ray and not a pre-existing pickle5. pickle5_path = os.path.join( os.path.abspath(os.path.dirname(__file__)), "pickle5_files") sys.path.insert(0, pickle5_path) # Expose ray ABI symbols which may be dependent by other shared # libraries such as _streaming.so. See BUILD.bazel:_raylet so_path = os.path.join(dirname(__file__), "_raylet.so") if os.path.exists(so_path): import ctypes from ctypes import CDLL CDLL(so_path, ctypes.RTLD_GLOBAL) # MUST import ray._raylet before pyarrow to initialize some global variables. # It seems the library related to memory allocation in pyarrow will destroy the # initialization of grpc if we import pyarrow at first. # NOTE(JoeyJiang): See https://github.com/ray-project/ray/issues/5219 for more # details. import ray._raylet # noqa: E402 if "pyarrow" in sys.modules: raise ImportError("Ray must be imported before pyarrow because Ray " "requires a specific version of pyarrow (which is " "packaged along with Ray).") # Add the directory containing pyarrow to the Python path so that we find the # pyarrow version packaged with ray and not a pre-existing pyarrow. pyarrow_path = os.path.join( os.path.abspath(os.path.dirname(__file__)), "pyarrow_files") sys.path.insert(0, pyarrow_path) # See https://github.com/ray-project/ray/issues/131. helpful_message = """ If you are using Anaconda, try fixing this problem by running: conda install libgcc """ try: import pyarrow # noqa: F401 # pyarrow is not imported inside of _raylet because of the issue described # above. In order for Cython to compile _raylet, pyarrow is set to None # in _raylet instead, so we give _raylet a real reference to it here. # We first do the attribute checks here so that building the documentation # succeeds without fully installing ray.. # TODO(edoakes): Fix this. if hasattr(ray, "_raylet") and hasattr(ray._raylet, "pyarrow"): ray._raylet.pyarrow = pyarrow except ImportError as e: if ((hasattr(e, "msg") and isinstance(e.msg, str) and ("libstdc++" in e.msg or "CXX" in e.msg))): # This code path should be taken with Python 3. e.msg += helpful_message elif (hasattr(e, "message") and isinstance(e.message, str) and ("libstdc++" in e.message or "CXX" in e.message)): # This code path should be taken with Python 2. condition = (hasattr(e, "args") and isinstance(e.args, tuple) and len(e.args) == 1 and isinstance(e.args[0], str)) if condition: e.args = (e.args[0] + helpful_message, ) else: if not hasattr(e, "args"): e.args = () elif not isinstance(e.args, tuple): e.args = (e.args, ) e.args += (helpful_message, ) raise from ray._raylet import ( ActorCheckpointID, ActorClassID, ActorID, ClientID, Config as _Config, JobID, WorkerID, FunctionID, ObjectID, TaskID, UniqueID, ) # noqa: E402 _config = _Config() from ray.profiling import profile # noqa: E402 from ray.state import (global_state, jobs, nodes, tasks, objects, timeline, object_transfer_timeline, cluster_resources, available_resources, errors) # noqa: E402 from ray.worker import ( LOCAL_MODE, SCRIPT_MODE, WORKER_MODE, connect, disconnect, get, get_gpu_ids, get_resource_ids, get_webui_url, init, is_initialized, put, register_custom_serializer, remote, shutdown, wait, ) # noqa: E402 import ray.internal # noqa: E402 import ray.projects # noqa: E402 # We import ray.actor because some code is run in actor.py which initializes # some functions in the worker. import ray.actor # noqa: F401 from ray.actor import method # noqa: E402 from ray.runtime_context import _get_runtime_context # noqa: E402 # Ray version string. __version__ = "0.8.0" __all__ = [ "global_state", "jobs", "nodes", "tasks", "objects", "timeline", "object_transfer_timeline", "cluster_resources", "available_resources", "errors", "LOCAL_MODE", "PYTHON_MODE", "SCRIPT_MODE", "WORKER_MODE", "__version__", "_config", "_get_runtime_context", "actor", "connect", "disconnect", "get", "get_gpu_ids", "get_resource_ids", "get_webui_url", "init", "internal", "is_initialized", "method", "profile", "projects", "put", "register_custom_serializer", "remote", "shutdown", "wait", ] # ID types __all__ += [ "ActorCheckpointID", "ActorClassID", "ActorID", "ClientID", "JobID", "WorkerID", "FunctionID", "ObjectID", "TaskID", "UniqueID", ] import ctypes # noqa: E402 # Windows only if hasattr(ctypes, "windll"): # Makes sure that all child processes die when we die. Also makes sure that # fatal crashes result in process termination rather than an error dialog # (the latter is annoying since we have a lot of processes). This is done # by associating all child processes with a "job" object that imposes this # behavior. (lambda kernel32: (lambda job: (lambda n: kernel32.SetInformationJobObject(job, 9, "\0" * 17 + chr(0x8 | 0x4 | 0x20) + "\0" * (n - 18), n))(0x90 if ctypes.sizeof(ctypes.c_void_p) > ctypes.sizeof(ctypes.c_int) else 0x70) and kernel32.AssignProcessToJobObject(job, ctypes.c_void_p(kernel32.GetCurrentProcess())))(ctypes.c_void_p(kernel32.CreateJobObjectW(None, None))) if kernel32 is not None else None)(ctypes.windll.kernel32) # noqa: E501
7896761a2d9876cb6e6e8e6d766e7a025d168829
747eeeed1056b69a8bde6364ee9bf266523f19e5
/Important libraries/Numpy.py
940902f2074d483296c520004216c369c0df94d0
[]
no_license
LittleAndroidBunny/Python_Cheatsheet_Nohar_Batit
d18a77d455474834da99c11e763beea598947f7c
a53f5e3a635bb47012fceb50efd43ad124eff180
refs/heads/main
2023-06-10T10:40:54.746084
2021-07-03T23:25:17
2021-07-03T23:25:17
382,595,063
1
0
null
null
null
null
UTF-8
Python
false
false
26,146
py
# -*- coding: utf-8 -*- """colab-tutorial.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/github/cs231n/cs231n.github.io/blob/master/python-colab.ipynb #CS231n Python Tutorial With Google Colab """ """##Introduction Python is a great general-purpose programming language on its own, but with the help of a few popular libraries ( numpy, scipy, matplotlib) it becomes a powerful environment for scientific computing. We expect that many of you will have some experience with Python and numpy; for the rest of you, this section will serve as a quick crash course both on the Python programming language and on the use of Python for scientific computing. Some of you may have previous knowledge in Matlab, in which case we also recommend the numpy for Matlab users page ( https://docs.scipy.org/doc/numpy-dev/user/numpy-for-matlab-users.html). In this tutorial, we will cover: * Basic Python: Basic data types (Containers, Lists, Dictionaries, Sets, Tuples), Functions, Classes * Numpy: Arrays, Array indexing, Datatypes, Array math, Broadcasting * Matplotlib: Plotting, Subplots, Images * IPython: Creating notebooks, Typical workflows ## A Brief Note on Python Versions As of Janurary 1, 2020, Python has [officially dropped support](https://www.python.org/doc/sunset-python-2/) for `python2`. We'll be using Python 3.7 for this iteration of the course. You can check your Python version at the command line by running `python --version`. In Colab, we can enforce the Python version by clicking `Runtime -> Change Runtime Type` and selecting `python3`. Note that as of April 2020, Colab uses Python 3.6.9 which should run everything without any errors. """ # !python --version """##Basics of Python Python is a high-level, dynamically typed multiparadigm programming language. Python code is often said to be almost like pseudocode, since it allows you to express very powerful ideas in very few lines of code while being very readable. As an example, here is an implementation of the classic quicksort algorithm in Python: """ def quicksort(arr): if len(arr) <= 1: return arr pivot = arr[len(arr) // 2] left = [l for l in arr if l < pivot] middle = [m for m in arr if m == pivot] right = [p for p in arr if p > pivot] return quicksort(left) + middle + quicksort(right) print(quicksort([3, 6, 8, 10, 1, 2, 1])) """###Basic data types ####Numbers Integers and floats work as you would expect from other languages: """ x = 3 print(x, type(x)) print(x + 1) # Addition print(x - 1) # Subtraction print(x * 2) # Multiplication print(x ** 2) # Exponentiation x += 1 print(x) x *= 2 print(x) y = 2.5 print(type(y)) print(y, y + 1, y * 2, y ** 2) """Note that unlike many languages, Python does not have unary increment (x++) or decrement (x--) operators. Python also has built-in types for long integers and complex numbers; you can find all of the details in the [ documentation](https://docs.python.org/3.7/library/stdtypes.html#numeric-types-int-float-long-complex). ####Booleans Python implements all of the usual operators for Boolean logic, but uses English words rather than symbols (`&&`, `||`, etc.): """ t, f = True, False print(type(t)) """Now we let's look at the operations:""" print(t and f) # Logical AND; print(t or f) # Logical OR; print(not t) # Logical NOT; print(t != f) # Logical XOR; """####Strings""" hello = 'hello' # String literals can use single quotes world = "world" # or double quotes; it does not matter print(hello, len(hello)) hw = hello + ' ' + world # String concatenation print(hw) hw12 = '{} {} {}'.format(hello, world, 12) # string formatting print(hw12) """String objects have a bunch of useful methods; for example:""" s = "hello" print(s.capitalize()) # Capitalize a string print(s.upper()) # Convert a string to uppercase; prints "HELLO" print(s.rjust(7)) # Right-justify a string, padding with spaces print(s.center(7)) # Center a string, padding with spaces print(s.replace('l', '(ell)')) # Replace all instances of one substring with another print(' world '.strip()) # Strip leading and trailing whitespace """You can find a list of all string methods in the [documentation]( https://docs.python.org/3.7/library/stdtypes.html#string-methods). ###Containers Python includes several built-in container types: lists, dictionaries, sets, and tuples. ####Lists A list is the Python equivalent of an array, but is resizeable and can contain elements of different types: """ xs = [3, 1, 2] # Create a list print(xs, xs[2]) print(xs[-1]) # Negative indices count from the end of the list; prints "2" xs[2] = 'foo' # Lists can contain elements of different types print(xs) xs.append('bar') # Add a new element to the end of the list print(xs) x = xs.pop() # Remove and return the last element of the list print(x, xs) """As usual, you can find all the gory details about lists in the [documentation]( https://docs.python.org/3.7/tutorial/datastructures.html#more-on-lists). ####Slicing In addition to accessing list elements one at a time, Python provides concise syntax to access sublists; this is known as slicing: """ nums = list(range(5)) # range is a built-in function that creates a list of integers print(nums) # Prints "[0, 1, 2, 3, 4]" print(nums[2:4]) # Get a slice from index 2 to 4 (exclusive); prints "[2, 3]" print(nums[2:]) # Get a slice from index 2 to the end; prints "[2, 3, 4]" print(nums[:2]) # Get a slice from the start to index 2 (exclusive); prints "[0, 1]" print(nums[:]) # Get a slice of the whole list; prints ["0, 1, 2, 3, 4]" print(nums[:-1]) # Slice indices can be negative; prints ["0, 1, 2, 3]" nums[2:4] = [8, 9] # Assign a new sublist to a slice print(nums) # Prints "[0, 1, 8, 9, 4]" """####Loops You can loop over the elements of a list like this: """ animals = ['cat', 'dog', 'monkey'] for animal in animals: print(animal) """If you want access to the index of each element within the body of a loop, use the built-in `enumerate` function:""" animals = ['cat', 'dog', 'monkey'] for idx, animal in enumerate(animals): print('#{}: {}'.format(idx + 1, animal)) """####List comprehensions: When programming, frequently we want to transform one type of data into another. As a simple example, consider the following code that computes square numbers: """ nums = [0, 1, 2, 3, 4] squares = [] for x in nums: squares.append(x ** 2) print(squares) """You can make this code simpler using a list comprehension:""" nums = [0, 1, 2, 3, 4] squares = [x ** 2 for x in nums] print(squares) """List comprehensions can also contain conditions:""" nums = [0, 1, 2, 3, 4] even_squares = [x ** 2 for x in nums if x % 2 == 0] print(even_squares) """####Dictionaries A dictionary stores (key, value) pairs, similar to a `Map` in Java or an object in Javascript. You can use it like this: """ d = {'cat': 'cute', 'dog': 'furry'} # Create a new dictionary with some data print(d['cat']) # Get an entry from a dictionary; prints "cute" print('cat' in d) # Check if a dictionary has a given key; prints "True" d['fish'] = 'wet' # Set an entry in a dictionary print(d['fish']) # Prints "wet" # print(d['monkey']) # KeyError: 'monkey' not a key of d print(d.get('monkey', 'N/A')) # Get an element with a default; prints "N/A" print(d.get('fish', 'N/A')) # Get an element with a default; prints "wet" del d['fish'] # Remove an element from a dictionary print(d.get('fish', 'N/A')) # "fish" is no longer a key; prints "N/A" """You can find all you need to know about dictionaries in the [documentation]( https://docs.python.org/2/library/stdtypes.html#dict). It is easy to iterate over the keys in a dictionary: """ d = {'person': 2, 'cat': 4, 'spider': 8} for animal, legs in d.items(): print('A {} has {} legs'.format(animal, legs)) """Dictionary comprehensions: These are similar to list comprehensions, but allow you to easily construct dictionaries. For example: """ nums = [0, 1, 2, 3, 4] even_num_to_square = {x: x ** 2 for x in nums if x % 2 == 0} print(even_num_to_square) """####Sets A set is an unordered collection of distinct elements. As a simple example, consider the following: """ animals = {'cat', 'dog'} print('cat' in animals) # Check if an element is in a set; prints "True" print('fish' in animals) # prints "False" animals.add('fish') # Add an element to a set print('fish' in animals) print(len(animals)) # Number of elements in a set; animals.add('cat') # Adding an element that is already in the set does nothing print(len(animals)) animals.remove('cat') # Remove an element from a set print(len(animals)) """_Loops_: Iterating over a set has the same syntax as iterating over a list; however since sets are unordered, you cannot make assumptions about the order in which you visit the elements of the set: """ animals = {'cat', 'dog', 'fish'} for idx, animal in enumerate(animals): print('#{}: {}'.format(idx + 1, animal)) """Set comprehensions: Like lists and dictionaries, we can easily construct sets using set comprehensions:""" from math import sqrt print({int(sqrt(x)) for x in range(30)}) """####Tuples A tuple is an (immutable) ordered list of values. A tuple is in many ways similar to a list; one of the most important differences is that tuples can be used as keys in dictionaries and as elements of sets, while lists cannot. Here is a trivial example: """ d = {(x, x + 1): x for x in range(10)} # Create a dictionary with tuple keys t = (5, 6) # Create a tuple print(type(t)) print(d[t]) print(d[(1, 2)]) # t[0] = 1 """###Functions Python functions are defined using the `def` keyword. For example: """ def sign(w): if w > 0: return 'positive' elif w < 0: return 'negative' else: return 'zero' for x in [-1, 0, 1]: print(sign(x)) """We will often define functions to take optional keyword arguments, like this:""" def hello(name, loud=False): if loud: print('HELLO, {}'.format(name.upper())) else: print('Hello, {}!'.format(name)) hello('Bob') hello('Fred', loud=True) """###Classes The syntax for defining classes in Python is straightforward: """ class Greeter: # Constructor def __init__(self, name): self.name = name # Create an instance variable # Instance method def greet(self, loud=False): if loud: print('HELLO, {}'.format(self.name.upper())) else: print('Hello, {}!'.format(self.name)) g = Greeter('Fred') # Construct an instance of the Greeter class g.greet() # Call an instance method; prints "Hello, Fred" g.greet(loud=True) # Call an instance method; prints "HELLO, FRED!" """##Numpy Numpy is the core library for scientific computing in Python. It provides a high-performance multidimensional array object, and tools for working with these arrays. If you are already familiar with MATLAB, you might find this [ tutorial](http://wiki.scipy.org/NumPy_for_Matlab_Users) useful to get started with Numpy. To use Numpy, we first need to import the `numpy` package: """ import numpy as np """###Arrays A numpy array is a grid of values, all of the same type, and is indexed by a tuple of nonnative integers. The number of dimensions is the rank of the array; the shape of an array is a tuple of integers giving the size of the array along each dimension. We can initialize numpy arrays from nested Python lists, and access elements using square brackets: """ a = np.array([1, 2, 3]) # Create a rank 1 array print(type(a), a.shape, a[0], a[1], a[2]) a[0] = 5 # Change an element of the array print(a) b = np.array([[1, 2, 3], [4, 5, 6]]) # Create a rank 2 array print(b) print(b.shape) print(b[0, 0], b[0, 1], b[1, 0]) """Numpy also provides many functions to create arrays:""" a = np.zeros((2, 2)) # Create an array of all zeros print(a) b = np.ones((1, 2)) # Create an array of all ones print(b) c = np.full((2, 2), 7) # Create a constant array print(c) d = np.eye(2) # Create a 2x2 identity matrix print(d) e = np.random.random((2, 2)) # Create an array filled with random values print(e) """###Array indexing Numpy offers several ways to index into arrays. Slicing: Similar to Python lists, numpy arrays can be sliced. Since arrays may be multidimensional, you must specify a slice for each dimension of the array: """ import numpy as np # Create the following rank 2 array with shape (3, 4) # [[ 1 2 3 4] # [ 5 6 7 8] # [ 9 10 11 12]] a = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) # Use slicing to pull out the subarray consisting of the first 2 rows # and columns 1 and 2; b is the following array of shape (2, 2): # [[2 3] # [6 7]] b = a[:2, 1:3] print(b) """A slice of an array is a view into the same data, so modifying it will modify the original array.""" print(a[0, 1]) b[0, 0] = 77 # b[0, 0] is the same piece of data as a[0, 1] print(a[0, 1]) """You can also mix integer indexing with slice indexing. However, doing so will yield an array of lower rank than the original array. Note that this is quite different from the way that MATLAB handles array slicing: """ # Create the following rank 2 array with shape (3, 4) a = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) print(a) """Two ways of accessing the data in the middle row of the array. Mixing integer indexing with slices yields an array of lower rank, while using only slices yields an array of the same rank as the original array: """ row_r1 = a[1, :] # Rank 1 view of the second row of a row_r2 = a[1:2, :] # Rank 2 view of the second row of a row_r3 = a[[1], :] # Rank 2 view of the second row of a print(row_r1, row_r1.shape) print(row_r2, row_r2.shape) print(row_r3, row_r3.shape) # We can make the same distinction when accessing columns of an array: col_r1 = a[:, 1] col_r2 = a[:, 1:2] print(col_r1, col_r1.shape) print() print(col_r2, col_r2.shape) """Integer array indexing: When you index into numpy arrays using slicing, the resulting array view will always be a subarray of the original array. In contrast, integer array indexing allows you to construct arbitrary arrays using the data from another array. Here is an example: """ a = np.array([[1, 2], [3, 4], [5, 6]]) # An example of integer array indexing. # The returned array will have shape (3,) and print(a[[0, 1, 2], [0, 1, 0]]) # The above example of integer array indexing is equivalent to this: print(np.array([a[0, 0], a[1, 1], a[2, 0]])) # When using integer array indexing, you can reuse the same # element from the source array: print(a[[0, 0], [1, 1]]) # Equivalent to the previous integer array indexing example print(np.array([a[0, 1], a[0, 1]])) """One useful trick with integer array indexing is selecting or mutating one element from each row of a matrix:""" # Create a new array from which we will select elements a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]) print(a) # Create an array of indices b = np.array([0, 2, 0, 1]) # Select one element from each row of a using the indices in b print(a[np.arange(4), b]) # Prints "[ 1 6 7 11]" # Mutate one element from each row of a using the indices in b a[np.arange(4), b] += 10 print(a) """Boolean array indexing: Boolean array indexing lets you pick out arbitrary elements of an array. Frequently this type of indexing is used to select the elements of an array that satisfy some condition. Here is an example: """ import numpy as np a = np.array([[1, 2], [3, 4], [5, 6]]) bool_idx = (a > 2) # Find the elements of a that are bigger than 2; # this returns a numpy array of Booleans of the same # shape as a, where each slot of bool_idx tells # whether that element of a is > 2. print(bool_idx) # We use boolean array indexing to construct a rank 1 array # consisting of the elements of a corresponding to the True values # of bool_idx print(a[bool_idx]) # We can do all of the above in a single concise statement: print(a[a > 2]) """For brevity we have left out a lot of details about numpy array indexing; if you want to know more you should read the documentation. ###Datatypes Every numpy array is a grid of elements of the same type. Numpy provides a large set of numeric datatype that you can use to construct arrays. Numpy tries to guess a datatype when you create an array, but functions that construct arrays usually also include an optional argument to explicitly specify the datatype. Here is an example: """ x = np.array([1, 2]) # Let numpy choose the datatype y = np.array([1.0, 2.0]) # Let numpy choose the datatype z = np.array([1, 2], dtype=np.int64) # Force a particular datatype print(x.dtype, y.dtype, z.dtype) """You can read all about numpy datatype in the [documentation]( http://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html). ###Array math Basic mathematical functions operate elementwise on arrays, and are available both as operator overloads and as functions in the numpy module: """ x = np.array([[1, 2], [3, 4]], dtype=np.float64) y = np.array([[5, 6], [7, 8]], dtype=np.float64) # Elementwise sum; both produce the array print(x + y) print(np.add(x, y)) # Elementwise difference; both produce the array print(x - y) print(np.subtract(x, y)) # Elementwise product; both produce the array print(x * y) print(np.multiply(x, y)) # Elementwise division; both produce the array # [[ 0.2 0.33333333] # [ 0.42857143 0.5 ]] print(x / y) print(np.divide(x, y)) # Elementwise square root; produces the array # [[ 1. 1.41421356] # [ 1.73205081 2. ]] print(np.sqrt(x)) """Note that unlike MATLAB, `*` is elementwise multiplication, not matrix multiplication. We instead use the dot function to compute inner products of vectors, to multiply a vector by a matrix, and to multiply matrices. dot is available both as a function in the numpy module and as an instance method of array objects: """ x = np.array([[1, 2], [3, 4]]) y = np.array([[5, 6], [7, 8]]) v = np.array([9, 10]) w = np.array([11, 12]) # Inner product of vectors; both produce 219 print(v.dot(w)) print(np.dot(v, w)) """You can also use the `@` operator which is equivalent to numpy's `dot` operator.""" print(v @ w) # Matrix / vector product; both produce the rank 1 array [29 67] print(x.dot(v)) print(np.dot(x, v)) print(x @ v) # Matrix / matrix product; both produce the rank 2 array # [[19 22] # [43 50]] print(x.dot(y)) print(np.dot(x, y)) print(x @ y) """Numpy provides many useful functions for performing computations on arrays; one of the most useful is `sum`:""" x = np.array([[1, 2], [3, 4]]) print(np.sum(x)) # Compute sum of all elements; prints "10" print(np.sum(x, axis=0)) # Compute sum of each column; prints "[4 6]" print(np.sum(x, axis=1)) # Compute sum of each row; prints "[3 7]" """You can find the full list of mathematical functions provided by numpy in the [documentation]( http://docs.scipy.org/doc/numpy/reference/routines.math.html). Apart from computing mathematical functions using arrays, we frequently need to reshape or otherwise manipulate data in arrays. The simplest example of this type of operation is transposing a matrix; to transpose a matrix, simply use the T attribute of an array object: """ print(x) print("transpose\n", x.T) v = np.array([[1, 2, 3]]) print(v) print("transpose\n", v.T) """###Broadcasting Broadcasting is a powerful mechanism that allows numpy to work with arrays of different shapes when performing arithmetic operations. Frequently we have a smaller array and a larger array, and we want to use the smaller array multiple times to perform some operation on the larger array. For example, suppose that we want to add a constant vector to each row of a matrix. We could do it like this: """ # We will add the vector v to each row of the matrix x, # storing the result in the matrix y x = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]) v = np.array([1, 0, 1]) y = np.empty_like(x) # Create an empty matrix with the same shape as x # Add the vector v to each row of the matrix x with an explicit loop for i in range(4): y[i, :] = x[i, :] + v print(y) """This works; however when the matrix `x` is very large, computing an explicit loop in Python could be slow. Note that adding the vector v to each row of the matrix `x` is equivalent to forming a matrix `vv` by stacking multiple copies of `v` vertically, then performing elementwise summation of `x` and `vv`. We could implement this approach like this: """ vv = np.tile(v, (4, 1)) # Stack 4 copies of v on top of each other print(vv) # Prints "[[1 0 1] # [1 0 1] # [1 0 1] # [1 0 1]]" y = x + vv # Add x and vv elementwise print(y) """Numpy broadcasting allows us to perform this computation without actually creating multiple copies of v. Consider this version, using broadcasting: """ import numpy as np # We will add the vector v to each row of the matrix x, # storing the result in the matrix y x = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]) v = np.array([1, 0, 1]) y = x + v # Add v to each row of x using broadcasting print(y) """The line `y = x + v` works even though `x` has shape `(4, 3)` and `v` has shape `(3,)` due to broadcasting; this line works as if v actually had shape `(4, 3)`, where each row was a copy of `v`, and the sum was performed elementwise. Broadcasting two arrays together follows these rules: 1. If the arrays do not have the same rank, prepend the shape of the lower rank array with 1s until both shapes have the same length. 2. The two arrays are said to be compatible in a dimension if they have the same size in the dimension, or if one of the arrays has size 1 in that dimension. 3. The arrays can be broadcast together if they are compatible in all dimensions. 4. After broadcasting, each array behaves as if it had shape equal to the elementwise maximum of shapes of the two input arrays. 5. In any dimension where one array had size 1 and the other array had size greater than 1, the first array behaves as if it were copied along that dimension If this explanation does not make sense, try reading the explanation from the [documentation]( http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) or this [explanation]( http://wiki.scipy.org/EricsBroadcastingDoc). Functions that support broadcasting are known as universal functions. You can find the list of all universal functions in the [documentation](http://docs.scipy.org/doc/numpy/reference/ufuncs.html#available-ufuncs). Here are some applications of broadcasting: """ # Compute outer product of vectors v = np.array([1, 2, 3]) # v has shape (3,) w = np.array([4, 5]) # w has shape (2,) # To compute an outer product, we first reshape v to be a column # vector of shape (3, 1); we can then broadcast it against w to yield # an output of shape (3, 2), which is the outer product of v and w: print(np.reshape(v, (3, 1)) * w) # Add a vector to each row of a matrix x = np.array([[1, 2, 3], [4, 5, 6]]) # x has shape (2, 3) and v has shape (3,) so they broadcast to (2, 3), # giving the following matrix: print(x + v) # Add a vector to each column of a matrix # x has shape (2, 3) and w has shape (2,). # If we transpose x then it has shape (3, 2) and can be broadcast # against w to yield a result of shape (3, 2); transposing this result # yields the final result of shape (2, 3) which is the matrix x with # the vector w added to each column. Gives the following matrix: print((x.T + w).T) # Another solution is to reshape w to be a row vector of shape (2, 1); # we can then broadcast it directly against x to produce the same # output. print(x + np.reshape(w, (2, 1))) # Multiply a matrix by a constant: # x has shape (2, 3). Numpy treats scalars as arrays of shape (); # these can be broadcast together to shape (2, 3), producing the # following array: print(x * 2) """Broadcasting typically makes your code more concise and faster, so you should strive to use it where possible. This brief overview has touched on many of the important things that you need to know about numpy, but is far from complete. Check out the [numpy reference](http://docs.scipy.org/doc/numpy/reference/) to find out much more about numpy. ##Matplotlib Matplotlib is a plotting library. In this section give a brief introduction to the `matplotlib.pyplot` module, which provides a plotting system similar to that of MATLAB. """ import matplotlib.pyplot as plt """By running this special iPython command, we will be displaying plots inline:""" # Commented out IPython magic to ensure Python compatibility. # %matplotlib inline """###Plotting The most important function in `matplotlib` is plot, which allows you to plot 2D data. Here is a simple example: """ # Compute the x and y coordinates for points on a sine curve x = np.arange(0, 3 * np.pi, 0.1) y = np.sin(x) # Plot the points using matplotlib plt.plot(x, y) """With just a little bit of extra work we can easily plot multiple lines at once, and add a title, legend, and axis labels: """ y_sin = np.sin(x) y_cos = np.cos(x) # Plot the points using matplotlib plt.plot(x, y_sin) plt.plot(x, y_cos) plt.xlabel('x axis label') plt.ylabel('y axis label') plt.title('Sine and Cosine') plt.legend(['Sine', 'Cosine']) """###Subplots You can plot different things in the same figure using the subplot function. Here is an example: """ # Compute the x and y coordinates for points on sine and cosine curves x = np.arange(0, 3 * np.pi, 0.1) y_sin = np.sin(x) y_cos = np.cos(x) # Set up a subplot grid that has height 2 and width 1, # and set the first such subplot as active. plt.subplot(2, 1, 1) # Make the first plot plt.plot(x, y_sin) plt.title('Sine') # Set the second subplot as active, and make the second plot. plt.subplot(2, 1, 2) plt.plot(x, y_cos) plt.title('Cosine') # Show the figure. plt.show() """You can read much more about the `subplot` function in the [documentation]( http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.subplot). """
f5d74b47c47767172a0a4f417aabf004bcfcd977
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_192/ch50_2020_03_31_18_24_04_548537.py
160206f489154d64f31662ca60f92d5e9b86c3d2
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
179
py
def junta_nome_sobrenome(nome, sobrenome): n_s = [] espaco = [' ']*len(n) i = 0 while i < len(n): n_s.append(n[i]) = espaco[i] + s[i] i += 1 print(n_s)
d83403b3e62411169dc322e3b39e4f5ae49837ef
dbcef3da83c75c61542c85cfb02dd2b97d5316b5
/016 3Sum Closest/3Sum-Closest.py
f35017735b3e80d7a98e0f12802a93dacd5e1931
[]
no_license
wecoderBao/own-leetcode-solution-python
bbf3efad162f542f510293e614bbbadf67dcd899
ef1760df16d2e298162a33a2ab27a537f8527446
refs/heads/master
2021-01-24T10:52:41.404740
2018-03-26T03:34:04
2018-03-26T03:34:04
123,067,325
0
0
null
null
null
null
UTF-8
Python
false
false
2,007
py
""" Given an array S of n integers, find three integers in S such that the sum is closest to a given number, target. Return the sum of the three integers. You may assume that each input would have exactly one solution. For example, given array S = {-1 2 1 -4}, and target = 1. The sum that is closest to the target is 2. (-1 + 2 + 1 = 2). """ class Solution: def threeSumClosest(self, nums, target): """ :type nums: List[int] :type target: int :rtype: int """ def twoSumClosest(nums, start, sum2): end = len(nums) - 1 distance = abs(sum2 - nums[start] - nums[end]) ans = nums[start] + nums[end] while start < end: if nums[start] + nums[end] == sum2: ans = nums[start] + nums[end] break elif nums[start] + nums[end] > sum2: if abs(sum2 - nums[start] - nums[end]) < distance: distance = abs(sum2 - nums[start] - nums[end]) ans = nums[start] + nums[end] end -= 1 elif nums[start] + nums[end] < sum2: if abs(sum2 - nums[start] - nums[end]) < distance: distance = abs(sum2 - nums[start] - nums[end]) ans = nums[start] + nums[end] start += 1 return ans nums.sort() result = nums[0] + nums[1] + nums[2] # float("inf")正无穷 float("-inf")负无穷 distance = float("inf") for i in range(len(nums)): if i + 1 < len(nums) - 1: sum3 = nums[i] + twoSumClosest(nums, i + 1, target - nums[i]) if abs(target - sum3) < distance: distance = abs(target - sum3) result = sum3 return result if __name__ == '__main__': arr = [-3,-2,-5,3,-4] s = Solution() print(s.threeSumClosest(arr, -1))
b23881cd3ec3b09bc5fbeeb2a6134e6300077f74
524baf7de05bd3fc5b9d08083cbb0b7b47a67979
/66.py
7ea2f8d6d49eac49fd8935d35ebcf0323fa8d74d
[]
no_license
gk90731/100-questions-practice
1356dd577516567a5c51a4257f59fe01b123e7ff
f855549e037b9924dd6f0370dc2f2a53765d9227
refs/heads/master
2020-05-25T14:04:59.642819
2019-05-21T12:49:04
2019-05-21T12:49:04
187,835,741
0
0
null
null
null
null
UTF-8
Python
false
false
528
py
"""Question: Create an English to Portuguese translation program. The program takes a word from the user as input and translates it using the following dictionary as a vocabulary source. d = dict(weather = "clima", earth = "terra", rain = "chuva") Expected output: Enter word: earth terra""" ########################################################################### d = dict(weather = "clima", earth = "terra", rain = "chuva") def vocabulary(word): return d[word] word = input("Enter word: ") print(vocabulary(word))
526254b60ba5c538d70a8f15f972c21f136bb4f9
5094eebd60b2a59114ee493107cb13cf50b04d77
/manage.py
295da3731c97b97bfc98d0e1629722f898b7a1f7
[]
no_license
ryu022304/NLP_100knocks_69
bb6dd80d80485953697f3f47a91c30750bd77f71
3c5448ea8a1d52930b7df67472e1800256569bba
refs/heads/master
2020-04-08T12:13:10.969238
2019-02-17T08:28:40
2019-02-17T08:28:40
159,337,795
0
0
null
null
null
null
UTF-8
Python
false
false
548
py
#!/usr/bin/env python import os import sys if __name__ == '__main__': os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'NLP_100knocks_69.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv)
6bd0239951439edd729d4ce1d71d7ea2d4fbd1ad
97e0064a13111eef4709a0b865e58cf9d8804cc1
/restore_expense.py
8a1372de0f0fdfc5f069b0ca1fd295e00234f914
[]
no_license
c1xfr2e/kky_stuff
ee9dc03f985b405b79388b385543747ad490f3aa
47dc5aafeb8710bebd1486d5a7aff7f669ea94ce
refs/heads/master
2021-05-28T23:02:11.676345
2015-07-02T10:28:24
2015-07-02T10:28:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,600
py
#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'zh' __date__ = '6/30/15' from pymongo import MongoClient from bson import ObjectId import pickle import datetime import time import sys import logging import tablib import xlrd import decimal client = MongoClient('mongodb://sa:[email protected]:7900/admin') db_wukong = client['wukong-release'] db_console = client['console-release'] c_courier = db_wukong['courier'] c_log = db_console['log'] c_expense = db_wukong['expend'] c_withdraw = db_wukong['withdraw'] start_dt = datetime.datetime(2015, 6, 28) end_dt = datetime.datetime(2015, 6, 30, 14) start_timestamp = int(time.mktime(start_dt.timetuple()) * 1000) end_timestamp = int(time.mktime(end_dt.timetuple()) * 1000) ''' unfreeze_logs = list(c_log.find( { 'action': 'courier_account', 'arguments.freeze': 'unfreeze', 'created_time': { '$gte': start_timestamp, '$lt': end_timestamp } } )) unfreeze_courier_ids = [ ObjectId(log['arguments']['id'][0]) for log in unfreeze_logs] headers = ( '速递员ID', '速递员所属校区', '速递员姓名', '速递员手机号' ) couriers = list(c_courier.find( { '_id': { '$in': unfreeze_courier_ids } } )) lines = [] for c in couriers: line = ( str(c['_id']), c.get('school', ''), c.get('name', ''), c.get('mobile', '') ) lines.append(line) data = tablib.Dataset(*lines, headers=headers) with open('couriers.xls', 'wb') as f: f.write(data.xls) bad_expense = list(c_expense.find( { 'courier_id': { '$in': unfreeze_courier_ids }, 'status': { '$in': ['unprocessed', 'freezed'] } } )) ''' bad_expense = list(c_expense.find( { 'status': { '$in': ['freezed'] } } )) bad_withdraw_ids = [] bad_expense_ids = [] for expense in bad_expense: fine_amount = expense['fine_amount'] if fine_amount > 0: result = c_courier.update( { '_id': expense['courier_id'] }, { '$inc': { 'debt': int(fine_amount) } } ) print result bad_withdraw_ids.append(expense['withdraw_id']) bad_expense_ids.append(expense['_id']) result = c_withdraw.update( { '_id': { '$in': bad_withdraw_ids} }, { '$set': { 'status': 'unprocessed', 'unfreezed_time': int(time.time() * 1000) } }, multi=True ) print result result = c_expense.remove( { '_id': { '$in': bad_expense_ids } } ) print result
1de1dd49bfdc0892c65112b7ef0032830fb8ab54
564d6a4d305a8ac6a7e01c761831fb2081c02d0f
/sdk/network/azure-mgmt-network/azure/mgmt/network/v2019_09_01/aio/operations/_azure_firewall_fqdn_tags_operations.py
2a9ee6dd7a76b016f22f8b6f45c0eb67eb0302ba
[ "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later", "MIT" ]
permissive
paultaiton/azure-sdk-for-python
69af4d889bac8012b38f5b7e8108707be679b472
d435a1a25fd6097454b7fdfbbdefd53e05029160
refs/heads/master
2023-01-30T16:15:10.647335
2020-11-14T01:09:50
2020-11-14T01:09:50
283,343,691
0
0
MIT
2020-07-28T22:43:43
2020-07-28T22:43:43
null
UTF-8
Python
false
false
5,081
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class AzureFirewallFqdnTagsOperations: """AzureFirewallFqdnTagsOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2019_09_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list_all( self, **kwargs ) -> AsyncIterable["models.AzureFirewallFqdnTagListResult"]: """Gets all the Azure Firewall FQDN Tags in a subscription. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either AzureFirewallFqdnTagListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2019_09_01.models.AzureFirewallFqdnTagListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.AzureFirewallFqdnTagListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-09-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_all.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('AzureFirewallFqdnTagListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_all.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Network/azureFirewallFqdnTags'} # type: ignore
30119909b42166146f8b4dccfc70438638f747a2
cfa3f958c8b4c7f8617731c6580c16e8daee6218
/board/todos/models.py
1d2a1417eac0374b90f6398deeed334911f10766
[]
no_license
cdh3261/Django
dd01f9c07c8b501c95445748e5d590565ca68352
0003b617ae500cf191e4af5cc8ab5fd06f02f76e
refs/heads/master
2022-12-22T23:12:41.271650
2019-11-04T07:57:46
2019-11-04T07:57:46
217,967,586
0
0
null
2022-11-22T04:46:53
2019-10-28T04:43:09
Python
UTF-8
Python
false
false
238
py
from django.db import models # Create your models here. class Todo(models.Model): title = models.CharField(max_length=50) content = models.TextField() due_date = models.DateField() author = models.CharField(max_length=50)
b4a7e58c3f973d0cd61a90b044f43e9f1ab81be1
41658affd8f1b6fd2ffb89ec08ba7fb13fffacd6
/kbengine/assets/scripts/base/GameRoom.py
ac7864696a42cda106293ef1f62fd201c23b676d
[]
no_license
flyarong/FourDeckCards-kbengine-cocos
42203d3d825e8828baabee236a0f38e161f144c1
1cd40a6d8ffa684a007cfa74fb5bbbce0da49179
refs/heads/master
2023-05-26T00:10:33.429000
2019-04-16T08:32:12
2019-04-16T08:32:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
51,369
py
# -*- coding: utf-8 -*- import math import KBEngine from KBEDebug import * import time from datetime import datetime from interfaces.GameObject import GameObject from entitymembers.iRoomRules import iRoomRules from entitymembers.PlayerProxy import PlayerProxy from BaseEntity import BaseEntity import json import const import switch import utility import copy from Functor import Functor class GameRoom(BaseEntity, GameObject, iRoomRules): """ 这是一个游戏房间/桌子类 该类处理维护一个房间中的实际游戏, 例如:斗地主、麻将等 该房间中记录了房间里所有玩家的mailbox,通过mailbox我们可以将信息推送到他们的客户端。 """ def __init__(self): BaseEntity.__init__(self) GameObject.__init__(self) iRoomRules.__init__(self) self.agent = None self.roomID = utility.gen_room_id() # 状态0:未开始游戏, 1:某一局游戏中 self.state = const.ROOM_WAITING # 存放该房间内的玩家mailbox self.players_dict = {} self.players_list = [None] * self.player_num self.origin_players_list = [None] * self.player_num # 打出财神的index self.discard_king_idx = -1 # 庄家index self.dealer_idx = 0 # 当前控牌的玩家index self.current_idx = 0 # 对当前打出的牌可以进行操作的玩家的index, 服务端会限时等待他的操作 # 房间基础轮询timer self._poll_timer = None # 玩家操作限时timer self._op_timer = None # 一局游戏结束后, 玩家准备界面等待玩家确认timer self._next_game_timer = None #财神(多个) self.kingTiles = [] #圈风 self.prevailing_wind = const.WIND_EAST #一圈中玩家坐庄次数 self.dealerNumList = [0] * self.player_num self.current_round = 0 self.all_discard_tiles = [] # 最后一位出牌的玩家 self.last_player_idx = -1 # 房间开局所有操作的记录(aid, src, des, tile) self.op_record = [] # 房间开局操作的记录对应的记录id self.record_id = -1 # 确认继续的玩家 self.confirm_next_idx = [] # 解散房间操作的发起者 self.dismiss_room_from = -1 # 解散房间操作开始的时间戳 self.dismiss_room_ts = 0 # 解散房间操作投票状态 self.dismiss_room_state_list = [0] * self.player_num self.dismiss_timer = None # 房间创建时间 self.roomOpenTime = time.time() # 玩家操作列表 self.wait_op_info_list = [] # 杠后摸牌延时操作时的标志位,例如主要在延时中出现解散房间操作时需要拒绝操作,同上 self.wait_force_delay_kong_draw = False # 牌局记录 self.game_result = {} # 当前老庄数 self.cur_dealer_mul = self.begin_dealer_mul # 房间所属的茶楼桌子, 仅茶楼中存在 self.club_table = None # 增加房间销毁定时器 self.timeout_timer = self.add_timer(const.ROOM_TTL, self.timeoutDestroy) # 本轮出牌分数 self.curround_score = 0 # 一轮刚开始的标志 self.round_start = True # 玩家要不起的标志位 self.op_pass_flag = 0 # 玩家胜利个数,每当有玩家胜利,个数加一 self.player_win_num = 0 # 控牌玩家出牌列表 self.controller_discard_list = [] # 等待出牌的玩家 self.waitIdx = -1 # 玩家出牌列表 self.deskPokerList = [[],[],[],[]] # 胜利玩家列表 self.win_list = [] # 玩家本局游戏彻底结束的列表 self.round_end_list = [] # 玩家本局得分(除了奖励分) self.curScoreList = [0] * self.player_num # 玩家本局最终得分(除了奖励分) self.lastScoreList = [0] * self.player_num # 玩家本局得奖 self.curPrizeList = [0] * self.player_num def _reset(self): self.state = const.ROOM_WAITING self.agent = None self.players_list = [None] * self.player_num self.discard_king_idx = -1 self.dealer_idx = 0 self.current_idx = 0 self.player_win_num = 0 self.waitIdx = 0 self.op_pass_flag = 0 self.controller_discard_list = [] self.deskPokerList = [[],[],[],[]] self.curround_score = 0 self.round_start = True self.round_end_list = [] self.win_list = [] self._poll_timer = None self._op_timer = None self._next_game_timer = None self.all_discard_tiles = [] self.kingTiles = [] self.current_round = 0 self.confirm_next_idx = [] self.prevailing_wind = const.WIND_EAST self.dismiss_timer = None self.dismiss_room_ts = 0 self.dismiss_room_state_list = [0, 0, 0, 0] self.wait_op_info_list = [] self.cur_dealer_mul = self.begin_dealer_mul KBEngine.globalData["GameWorld"].delRoom(self) # 茶楼座位信息变更 if self.club_table: self.club_table.seatInfoChanged() self.club_table.room = None self.destroySelf() @property def prefixLogStr(self): """ only on Log """ return 'room:{},curround:{}'.format(self.roomID, self.current_round) @property def isFull(self): count = sum([1 for i in self.players_list if i is not None]) return count == self.player_num @property def isEmpty(self): count = sum([1 for i in self.players_list if i is not None]) return count == 0 and self.room_type != const.AGENT_ROOM @property def nextIdx(self): # tryNext = (self.current_idx + 1) % self.player_num # for j in range(2): # for i in range(self.player_num): # if self.player_num > tryNext: # return tryNext # tryNext = (tryNext + 1) % self.player_num return (self.current_idx + 1) % self.player_num @property def wreathsList(self): return [p.wreaths for i,p in enumerate(self.players_list)] @property def windsList(self): return [p.wind for i,p in enumerate(self.players_list)] @property def club(self): try: if self.club_table: return self.club_table.club except: # 引用代理的对象可能已经被destroy, 比如解散茶楼时 pass return None def getSit(self): for i, j in enumerate(self.players_list): if j is None: return i return None def sendEmotion(self, avt_mb, eid): """ 发表情 """ # DEBUG_MSG("Room.Player[%s] sendEmotion: %s" % (self.roomID, eid)) idx = None for i, p in enumerate(self.players_list): if p and avt_mb == p.mb: idx = i break if idx is None: return for i, p in enumerate(self.players_list): if p and i != idx: p.mb.recvEmotion(idx, eid) def sendMsg(self, avt_mb, mid, msg): """ 发消息 """ # DEBUG_MSG("Room.Player[%s] sendMsg: %s" % (self.roomID, mid)) idx = None for i, p in enumerate(self.players_list): if p and avt_mb == p.mb: idx = i break if idx is None: return for i, p in enumerate(self.players_list): if p and i != idx: p.mb.recvMsg(idx, mid, msg) def sendExpression(self, avt_mb, fromIdx, toIdx, eid): """ 发魔法表情 """ # DEBUG_MSG("Room.Player[%s] sendEmotion: %s" % (self.roomID, eid)) idx = None for i, p in enumerate(self.players_list): if p and avt_mb == p.mb: idx = i break if idx is None: return for i, p in enumerate(self.players_list): if p and i != idx: p.mb.recvExpression(fromIdx, toIdx, eid) def sendVoice(self, avt_mb, url): # DEBUG_MSG("Room.Player[%s] sendVoice" % (self.roomID)) idx = None for i, p in enumerate(self.players_list): if p and avt_mb.userId == p.userId: idx = i break if idx is None: return for i, p in enumerate(self.players_list): if p and p.mb: p.mb.recvVoice(idx, url) def sendAppVoice(self, avt_mb, url, time): # DEBUG_MSG("Room.Player[%s] sendVoice" % (self.roomID)) idx = None for i, p in enumerate(self.players_list): if p and avt_mb.userId == p.userId: idx = i break if idx is None: return for i, p in enumerate(self.players_list): if p and p.mb and i != idx: p.mb.recvAppVoice(idx, url, time) def apply_dismiss_room(self, avt_mb): """ 游戏开始后玩家申请解散房间 """ if self.dismiss_timer is not None: self.vote_dismiss_room(avt_mb, 1) return self.dismiss_room_ts = time.time() src = None for i, p in enumerate(self.players_list): if p.userId == avt_mb.userId: src = p break # 申请解散房间的人默认同意 self.dismiss_room_from = src.idx self.dismiss_room_state_list[src.idx] = 1 def dismiss_callback(): self.saveRoomResult() self.give_up_record_game() # self.dropRoom() self.do_drop_room() self.dismiss_timer = self.add_timer(const.DISMISS_ROOM_WAIT_TIME, dismiss_callback) for p in self.players_list: if p and p.mb and p.userId != avt_mb.userId: p.mb.req_dismiss_room(src.idx) def vote_dismiss_room(self, avt_mb, vote): """ 某位玩家对申请解散房间的投票 """ if self.wait_force_delay_kong_draw: return src = None for p in self.players_list: if p and p.userId == avt_mb.userId: src = p break self.dismiss_room_state_list[src.idx] = vote for p in self.players_list: if p and p.mb: p.mb.vote_dismiss_result(src.idx, vote) yes = self.dismiss_room_state_list.count(1) no = self.dismiss_room_state_list.count(2) if yes >= 3: if self.dismiss_timer: self.cancel_timer(self.dismiss_timer) self.dismiss_timer = None self.dismiss_timer = None self.saveRoomResult() self.give_up_record_game() # self.dropRoom() self.do_drop_room() if no >= 2: if self.dismiss_timer: self.cancel_timer(self.dismiss_timer) self.dismiss_timer = None self.dismiss_timer = None self.dismiss_room_from = -1 self.dismiss_room_ts = 0 self.dismiss_room_state_list = [0,0,0,0] def notify_player_online_status(self, userId, status): src = -1 for idx, p in enumerate(self.players_list): if p and p.userId == userId: p.online = status src = idx break if src == -1: return for idx, p in enumerate(self.players_list): if p and p.mb and p.userId != userId: p.mb.notifyPlayerOnlineStatus(src, status) def reqEnterRoom(self, avt_mb, first=False): """ defined. 客户端调用该接口请求进入房间/桌子 """ if self.isFull: avt_mb.enterRoomFailed(const.ENTER_FAILED_ROOM_FULL) return if self.room_type == const.CLUB_ROOM: if self.club and not self.club.isMember(avt_mb.userId): avt_mb.enterRoomFailed(const.ENTER_FAILED_NOT_CLUB_MEMBER) return def _check_user_info(content): if content is None: DEBUG_MSG("room:{0},curround:{1} userId:{2} enterRoomFailed callback error: content is None".format(self.roomID, self.current_round, avt_mb.userId)) if not first: avt_mb.enterRoomFailed(const.CREATE_FAILED_NET_SERVER_ERROR) return False try: data = json.loads(content) card_cost, diamond_cost = switch.calc_cost(self.game_round, self.getCalCostNeed()) if card_cost > data["card"]: avt_mb.enterRoomFailed(const.ENTER_FAILED_ROOM_DIAMOND_NOT_ENOUGH) return False except: err, msg, stack = sys.exc_info() DEBUG_MSG("room:{0},curround:{1} _check_user_info callback error:{2} , exc_info: {3} ,{4}".format(self.roomID, self.current_round, content, err, msg)) avt_mb.enterRoomFailed(const.CREATE_FAILED_OTHER) return False return True def callback(): if self.isDestroyed: avt_mb.enterRoomFailed(const.ENTER_FAILED_ROOM_DESTROYED) return for i, p in enumerate(self.players_list): if p and p.mb and p.mb.userId == avt_mb.userId: p.mb = avt_mb avt_mb.enterRoomSucceed(self, i) return DEBUG_MSG("{} userId:{} reqEnterRoom".format(self.prefixLogStr, avt_mb.userId)) idx = self.getSit() # AA支付的情况下, 可能多个玩家同时走到这里 if idx is None: avt_mb.enterRoomFailed(const.ENTER_FAILED_ROOM_FULL) return n_player = PlayerProxy(avt_mb, self, idx) self.players_dict[avt_mb.userId] = n_player self.players_list[idx] = n_player # 茶楼座位信息变更 if self.club_table: self.club_table.seatInfoChanged() # 确认准备,不需要手动准备 if self.hand_prepare == const.AUTO_PREPARE: self.prepare(avt_mb) if not first: self.broadcastEnterRoom(idx) else: avt_mb.createRoomSucceed(self) self.ready_after_prepare() if switch.DEBUG_BASE: callback() else: if first or self.pay_mode != const.AA_PAY_MODE: callback() else: def _user_info_callback(content): if _check_user_info(content): callback() utility.get_user_info(avt_mb.accountName, _user_info_callback) def client_prepare(self, avt_mb): DEBUG_MSG("room:{0},curround:{1} client_prepare userId:{2}".format(self.roomID, self.current_round, avt_mb.userId)) self.prepare(avt_mb) self.ready_after_prepare() def prepare(self, avt_mb): """ 第一局/一局结束后 玩家准备 """ if self.state == const.ROOM_PLAYING or self.state == const.ROOM_TRANSITION: return idx = -1 for i, p in enumerate(self.players_list): if p and p.userId == avt_mb.userId: idx = i break if idx not in self.confirm_next_idx: self.confirm_next_idx.append(idx) for p in self.players_list: if p and p.idx != idx: p.mb.readyForNextRound(idx) def ready_after_prepare(self): if len(self.confirm_next_idx) == self.player_num and self.isFull and self.state == const.ROOM_WAITING: self.pay2StartGame() def reqReconnect(self, avt_mb): DEBUG_MSG("room:{0},curround:{1} avt_mb reqReconnect userid:{2}".format(self.roomID, self.current_round, avt_mb.userId)) if avt_mb.userId not in self.players_dict.keys(): return DEBUG_MSG("room:{0},curround:{1} avt_mb reqReconnect player:{2} is in room".format(self.roomID, self.current_round, avt_mb.userId)) # 如果进来房间后牌局已经开始, 就要传所有信息 # 如果还没开始, 跟加入房间没有区别 player = self.players_dict[avt_mb.userId] player.mb = avt_mb player.online = 1 if self.state == const.ROOM_PLAYING or 0 < self.current_round <= self.game_round: if self.state == const.ROOM_WAITING: # 重连回来直接准备 self.client_prepare(avt_mb) rec_room_info = self.get_reconnect_room_dict(player.mb.userId) player.mb.handle_reconnect(rec_room_info) if len(self.getTipsCards()) == 0 and self.players_list[self.current_idx].online and not self.round_start: self.players_list[self.current_idx].mb.doOperation(const.OP_PASS, []) else: sit = 0 for idx, p in enumerate(self.players_list): if p and p.mb: if p.mb.userId == avt_mb.userId: sit = idx break avt_mb.enterRoomSucceed(self, sit) def reqLeaveRoom(self, player): """ defined. 客户端调用该接口请求离开房间/桌子 """ DEBUG_MSG("room:{0},curround:{1} reqLeaveRoom userId:{2}, room_type:{3}, state:{4}".format(self.roomID, self.current_round, player.userId, self.room_type, self.state)) if self.state != const.ROOM_WAITING: DEBUG_MSG("{} reqLeaveRoom: not allow ".format(self.prefixLogStr)) # player.quitRoomFailed(-1) return if player.userId in self.players_dict.keys(): n_player = self.players_dict[player.userId] idx = n_player.idx if idx == 0 and self.room_type == const.NORMAL_ROOM: # 房主离开房间, 则解散房间 self.give_up_record_game() # self.dropRoom() self.do_drop_room() else: n_player.mb.quitRoomSucceed() self.players_list[idx] = None del self.players_dict[player.userId] if idx in self.confirm_next_idx: self.confirm_next_idx.remove(idx) # 通知其它玩家该玩家退出房间 for i, p in enumerate(self.players_list): if i != idx and p and p.mb: p.mb.othersQuitRoom(idx) # 茶楼座位信息变更 if self.room_type == const.CLUB_ROOM and self.club_table: self.club_table.seatInfoChanged() if self.isEmpty: self.give_up_record_game() # self.dropRoom() self.do_drop_room() def dropRoom(self): self.dismiss_timer = None for i,p in enumerate(self.players_list): if p and p.mb: try: p.mb.quitRoomSucceed() except: pass if self.room_type == const.AGENT_ROOM and self.agent: # 将房间从代理房间中删除 if not self.agent.isDestroyed: self.agent.agentRoomDropped(self.roomID) try: # 如果是代开房, 没打完一局返还房卡 if switch.DEBUG_BASE == 0 and self.current_round < 1 and self.pay_mode == const.AGENT_PAY_MODE: card_cost, diamond_cost = switch.calc_cost(self.game_round, self.getCalCostNeed()) def callback(room_id, user_id, content): try: content = content.decode() if content[0] != '{': DEBUG_MSG(content) return except: DEBUG_MSG("dropRoom{} AgentRoom return Failed, userID = {}. return {} back".format(room_id, user_id, (card_cost, diamond_cost))) utility.update_card_diamond(self.agent.accountName, card_cost, diamond_cost, Functor(callback, self.roomID, self.agent.userId), "FourDeckCards drop AgentRoomID:{}".format(self.roomID)) # reason 必须为英文 except: pass self._reset() def do_drop_room(self): if self.game_result: if len(self.game_result['round_result']) == 0: self.dropRoom() else: self.subtotal_result() else: self.dropRoom() def broadcastOperation2(self, idx, aid, tile_list = None, curround_score = 0): """ 将操作广播除了自己之外的其他人 """ for i, p in enumerate(self.players_list): if p and i != idx: p.mb.postOperation(idx, aid, tile_list, curround_score) def broadcastMultiOperation(self, idx_list, aid_list, tile_list=None): for i, p in enumerate(self.players_list): if p is not None: p.mb.postMultiOperation(idx_list, aid_list, tile_list) def broadcastRoundEnd(self, info): # 广播胡牌或者流局导致的每轮结束信息, 包括算的扎码和当前轮的统计数据 # 先记录玩家当局战绩, 会累计总得分 self.record_round_result() self.state = const.ROOM_WAITING DEBUG_MSG("room:{0},curround:{1} broadcastRoundEnd state:{2}".format(self.roomID, self.current_round, self.state)) # info['left_tiles'] = self.tiles info['player_info_list'] = [p.get_round_client_dict() for p in self.players_list if p is not None] DEBUG_MSG("room:{0},curround:{1}=={2}".format(self.roomID, self.current_round, "&" * 30)) DEBUG_MSG("room:{0},curround:{1} RoundEnd info:{2}".format(self.roomID, self.current_round, info)) self.confirm_next_idx = [] for p in self.players_list: if p: p.mb.roundResult(info) # self.end_record_game(info) def pay2StartGame(self): """ 开始游戏 """ DEBUG_MSG("room:{},curround:{},game_mode:{},base_score:{},king_mode:{},begin_dealer_mul:{},win_mode:{},three_job:{},pong_useful:{},bao_tou:{},round_max_lose:{},game_max_lose:{},game_round:{},hand_prepare:{} pay2StartGame state:{}".format(self.roomID, self.current_round, self.game_mode, self.base_score, self.king_mode, self.begin_dealer_mul, self.win_mode, self.three_job, self.pong_useful, self.bao_tou, self.round_max_lose, self.game_max_lose, self.game_round, self.hand_prepare, self.state)) if self.timeout_timer: self.cancel_timer(self.timeout_timer) self.timeout_timer = None self.state = const.ROOM_TRANSITION if self.current_round == 0: # 第一局备份原始座位 self.origin_players_list = self.players_list[:] self.dealer_idx = 0 # 仅仅在第1局扣房卡, 不然每局都会扣房卡 if self.current_round == 0: if switch.DEBUG_BASE: self.paySuccessCbk() return card_cost, diamond_cost = switch.calc_cost(self.game_round, self.getCalCostNeed()) if self.pay_mode == const.NORMAL_PAY_MODE: pay_account = self.origin_players_list[0].mb.accountName reason = "FourDeckCards RoomID:{}".format(self.roomID) def pay_callback(content): if self._check_pay_callback(content): self.paySuccessCbk() utility.update_card_diamond(pay_account, -card_cost, -diamond_cost, pay_callback, reason) elif self.pay_mode == const.CLUB_PAY_MODE: pay_account = self.club.owner['accountName'] reason = "FourDeckCards Club:{} RoomID:{}".format(self.club.clubId, self.roomID) def pay_callback(content): if self._check_pay_callback(content): self.paySuccessCbk() utility.update_card_diamond(pay_account, -card_cost, -diamond_cost, pay_callback, reason) elif self.pay_mode == const.AGENT_PAY_MODE: # 开房的时候已经扣了房卡 self.paySuccessCbk() elif self.pay_mode == const.AA_PAY_MODE: pay_accounts = [p.mb.accountName for p in self.players_list] if self.club: reason = "FourDeckCards Club:{} AA RoomID:{}".format(self.club.clubId, self.roomID) else: reason = "FourDeckCards AA RoomID:{}".format(self.roomID) def pay_callback(content): if self._check_aa_pay_callback(content): self.paySuccessCbk() utility.update_card_diamond_aa(pay_accounts, -card_cost, -diamond_cost, pay_callback, reason) else: ERROR_MSG("pay2StartGame Error: No this PayMode:{}".format(self.pay_mode)) return else: self.paySuccessCbk() def _check_pay_callback(self, content): if content is None or content[0] != '{': DEBUG_MSG('{} pay callback {}'.format(self.prefixLogStr, content)) self.give_up_record_game() # self.dropRoom() self.do_drop_room() return False return True def _check_aa_pay_callback(self, content): res = True try: ret = json.loads(content) if ret['errcode'] != 0: res = False DEBUG_MSG('room:{},cur_round:{} aa pay callback error code={}, msg={}'.format(self.roomID, self.current_round, ret['errcode'], ret['errmsg'])) except: res = False import traceback ERROR_MSG(traceback.format_exc()) if not res: self.give_up_record_game() self.do_drop_room() return False return True # 扣房卡/钻石成功后开始游戏(不改动部分) def paySuccessCbk(self): DEBUG_MSG("room:{},curround:{} paySuccessCbk state:{}".format(self.roomID, self.current_round, self.state)) try: # 第一局时房间默认房主庄家, 之后谁上盘赢了谁是, 如果臭庄, 上一把玩家继续坐庄 swap_list = [0,1,2,3] # self.swapSeat(swap_list) self.op_record = [] # self.op_special_record = [] self.state = const.ROOM_PLAYING self.current_round += 1 self.all_discard_tiles = [] for p in self.players_list: p.reset() self.current_idx = self.dealer_idx self.discard_king_idx = -1 def begin(prefabHandTiles=None): # self.setPrevailingWind() # 圈风 # self.setPlayerWind() # 位风 self.initTiles() # 牌堆 self.deal(prefabHandTiles) # 发牌 # self.kongWreath() # 杠花 # self.addWreath() # 补花 # self.rollKingTile(prefabKingTiles) # 财神 beginTilesList = [copy.deepcopy(p.tiles) for i, p in enumerate(self.players_list)] self.tidy() # 整理 self.beginRound(True) # 第一张牌优先抓,后开始游戏 # beginTilesList[self.current_idx].append(self.players_list[self.current_idx].last_draw) self.startGame(beginTilesList, swap_list) if switch.DEBUG_BASE == 0: begin([], [[] for i in range(self.player_num)], []) elif switch.DEBUG_BASE == 1: # 开发模式 除去不必要的通信时间 更接近 真实环境 prefabHandTiles = [ [], [], [], [] ] begin(prefabHandTiles) else: def callback(content): DEBUG_MSG("room:{},curround:{} debugmode,content:{}".format(self.roomID, self.current_round,content)) if content is None or content == "10000" or content[0:2] != "ok": # 10000代表找不到该文件 begin() else: try: content = content[2:] data = json.loads(content) DEBUG_MSG("room:{},curround:{} data:{}".format(self.roomID, self.current_round, data)) handTiles = [[] for i in range(self.player_num)] # 检查数据 for k,v in enumerate(data["handTiles"]): if k < self.player_num: for t in v: if utility.validTile(t): handTiles[k].append(t) begin(handTiles) except: err, msg, stack = sys.exc_info() DEBUG_MSG("room:{},curround:{} try begin error; exc_info: {} ,{}".format(self.roomID, self.current_round, err, msg)) utility.getDebugPrefab(self.origin_players_list[0].mb.accountName, callback) except: err, msg, stack = sys.exc_info() DEBUG_MSG("room:{},curround:{} paySuccessCbk error; exc_info: {} ,{}".format(self.roomID, self.current_round, err, msg)) DEBUG_MSG("room:{},curround:{} consume failed! users: {}".format(self.roomID, self.current_round, [p.userId for p in self.origin_players_list if p])) # 玩家开始游戏 def startGame(self, beginTilesList, swap_list): self.wait_force_delay_kong_draw = False DEBUG_MSG("room:{},curround:{} start game swap_list:{}".format(self.roomID, self.current_round, swap_list)) diceList = self.throwDice([self.dealer_idx]) DEBUG_MSG("room:{},curround:{} start game info:{}".format(self.roomID, self.current_round, self.dealer_idx)) for i,p in enumerate(self.players_list): if p and p.mb: DEBUG_MSG("room:{},curround:{} start tiles:{}".format(self.roomID, self.current_round, p.tiles)) for i,p in enumerate(self.players_list): if p and p.mb: DEBUG_MSG("room:{},curround:{} start idx:{} begin tiles:{}".format(self.roomID, self.current_round, i, beginTilesList[i])) p.mb.startGame(self.dealer_idx, beginTilesList[i], swap_list) self.begin_record_game(diceList) def cutAfterKong(self): if len(self.tiles) <= self.lucky_num + const.END_TILE_NUMBER: self.drawEnd() elif len(self.tiles) > self.lucky_num + const.END_TILE_NUMBER + 1: player = self.players_list[self.current_idx] ti = self.tiles[0] self.tiles = self.tiles[1:] player.cutTile(ti) def beginRound(self, is_first = False): pass # if len(self.tiles) <= self.lucky_num + const.END_TILE_NUMBER: # self.drawEnd() # return # ti = self.tiles[0] # self.tiles = self.tiles[1:] # DEBUG_MSG("room:{0},curround:{1} idx:{2} beginRound tile:{3} leftNum:{4}".format(self.roomID, self.current_round, self.current_idx, ti, len(self.tiles))) # p = self.players_list[self.current_idx] # p.drawTile(ti, is_first) def drawEnd(self): DEBUG_MSG("room:{0},curround:{1} drawEnd.".format(self.roomID, self.current_round)) """ 臭庄 """ lucky_tiles = "" # self.cal_lucky_tile_score(lucky_tiles, -1) self.settlement() info = dict() info['win_op'] = -1 info['win_idx'] = -1 info['lucky_tiles'] = lucky_tiles info['result_list'] = [] info['finalTile'] = 0 info['from_idx'] = -1 info['multiply'] = 0 info['dealer_idx'] = self.dealer_idx info['cur_dealer_mul'] = self.cur_dealer_mul info['job_relation'] = [] DEBUG_MSG("room:{0},curround:{1} drawEnd INFO:{2}".format(self.roomID, self.current_round, info)) if self.current_round < self.game_round: # 在打片模式下 流局必然 继续 self.broadcastRoundEnd(info) else: self.endAll(info) def winGame(self, idx, op, finalTile, from_idx, score, result): """ 座位号为idx的玩家胡牌 """ # self.deskPokerList[idx] = [] self.win_list.append(idx) if len(self.win_list) == self.player_num - 1: self.lastScoreList = copy.deepcopy(self.curScoreList) surScore = 0 for i,score in enumerate(self.lastScoreList): if score % 10 == 5: self.lastScoreList[i] -= 5 surScore += 5 self.lastScoreList[i] -= 100 self.lastScoreList[self.win_list[0]] += surScore self.cal_score(idx, self.win_list, op) self.broadcastOperation(idx, op, [], self.curround_score, self.curScoreList) DEBUG_MSG("room:{0},curround:{1} score0:{2} score1:{3} score2:{4} score3:{5}".format(self.roomID, self.current_round, self.players_list[0].score, self.players_list[1].score, self.players_list[2].score, self.players_list[3].score)) if len(self.win_list) != self.player_num - 1: return self.settlement() prizeScoreList = [0] * self.player_num for i in range(len(self.curPrizeList)): prize_score = 0 for j in range(len(self.curPrizeList)): if i == j: prize_score += self.curPrizeList[j] * 90 else: prize_score -= self.curPrizeList[j] * 30 prizeScoreList[i] = prize_score info = dict() DEBUG_MSG("room:{0},curround:{1} roundEnd win_list:{2} curScoreList:{3} curPrizeList:{4}".format(self.roomID, self.current_round, self.win_list, self.curScoreList, self.curPrizeList)) info['win_list'] = self.win_list info['curScoreList'] = self.curScoreList info['lastScoreList'] = self.lastScoreList info['prizeScoreList'] = prizeScoreList info['dealer_idx'] = last_dealer_idx = self.dealer_idx self.dealer_idx = self.win_list[0] self.round_start = True self.current_idx = self.win_list[0] self.waitIdx = self.win_list[0] self.op_pass_flag = 0 self.controller_discard_list = [] self.deskPokerList = [[],[],[],[]] self.curround_score = 0 self.round_end_list = [] self.win_list = [] self.curScoreList = [0] * self.player_num self.lastScoreList = [0] * self.player_num self.curPrizeList = [0] * self.player_num if self.current_round < self.game_round: self.broadcastRoundEnd(info) else: self.endAll(info) def begin_record_game(self, diceList): DEBUG_MSG("room:{0},curround:{1} begin record game".format(self.roomID, self.current_round)) self.begin_record_room() KBEngine.globalData['GameWorld'].begin_record_room(self, self.roomID, self, diceList) def begin_record_callback(self, record_id): self.record_id = record_id def end_record_game(self, result_info): DEBUG_MSG("room:{0},curround:{1} end record game".format(self.roomID, self.current_round)) KBEngine.globalData['GameWorld'].end_record_room(self.roomID, self, result_info) self.record_id = -1 def give_up_record_game(self): DEBUG_MSG("room:{0},curround:{1} give up record game".format(self.roomID, self.current_round)) KBEngine.globalData['GameWorld'].give_up_record_room(self.roomID) def settlement(self): for i,p in enumerate(self.players_list): if p is not None: p.settlement() def endAll(self, info): """ 游戏局数结束, 给所有玩家显示最终分数记录 """ # 先记录玩家当局战绩, 会累计总得分 self.record_round_result() # info['left_tiles'] = self.tiles info['player_info_list'] = [p.get_round_client_dict() for p in self.players_list if p is not None] player_info_list = [p.get_final_client_dict() for p in self.players_list if p is not None] DEBUG_MSG("room:{0},curround:{1} endAll player_info_list = {2} info = {3}".format(self.roomID, self.current_round, player_info_list, info)) for p in self.players_list: if p and p.mb: p.mb.finalResult(player_info_list, info) if self.room_type == const.CLUB_ROOM: # 有效圈数加一 p.mb.addGameCount() # self.end_record_game(info) self.saveRoomResult() self._reset() def subtotal_result(self): self.dismiss_timer = None player_info_list = [p.get_final_client_dict() for p in self.players_list if p is not None] DEBUG_MSG("room:{0},curround:{1} subtotal_result,player_info_list:{2}".format(self.roomID, self.current_round, player_info_list)) for p in self.players_list: if p and p.mb: try: p.mb.subtotalResult(player_info_list) except: pass self._reset() def doOperation(self, avt_mb, aid, tile_list): idx = -1 for i, p in enumerate(self.players_list): if p and p.mb == avt_mb: idx = i # tile = tile_list[0] DEBUG_MSG("room:{0},curround:{1} idx:{2} doOperation current_idx:{3} aid:{4} tile_list:{5}".format(self.roomID, self.current_round, idx, self.current_idx, aid, tile_list)) """ 当前控牌玩家摸牌后向服务端确认的操作 """ if self.dismiss_room_ts != 0 and int(time.time() - self.dismiss_room_ts) < const.DISMISS_ROOM_WAIT_TIME: # 说明在准备解散投票中,不能进行其他操作 DEBUG_MSG("room:{0},curround:{1} idx:{2} doOperationFailed dismiss_room_ts:{3}".format(self.roomID, self.current_round, idx, self.dismiss_room_ts)) avt_mb.doOperationFailed(const.OP_ERROR_VOTE) return if self.state != const.ROOM_PLAYING: DEBUG_MSG("room:{0},curround:{1} idx:{2} doOperationFailed state:{3}".format(self.roomID, self.current_round, idx, self.state)) avt_mb.doOperationFailed(const.OP_ERROR_STATE) return # DEBUG_MSG("doOperation idx:{0},self.current_idx:{1},self.wait_op_info_list:{2}".format(idx, self.current_idx, self.wait_op_info_list)) if len(tile_list) == 0 and aid == const.OP_DISCARD: avt_mb.doOperationFailed(const.OP_ERROR_ILLEGAL) return if idx != self.current_idx: avt_mb.doOperationFailed(const.OP_ERROR_NOT_CURRENT) return p = self.players_list[idx] # if aid == const.OP_DISCARD and self.can_discard(idx, tile): # self.all_discard_tiles.append(tile) # p.discardTile(tile) # elif aid == const.OP_CONCEALED_KONG and self.can_concealed_kong(idx, tile): # p.concealedKong(tile) # elif aid == const.OP_KONG_WREATH and self.can_kong_wreath(p.tiles, tile): # p.kongWreath(tile) # elif aid == const.OP_CONTINUE_KONG and self.can_continue_kong(idx, tile): # p.continueKong(tile) # elif aid == const.OP_PASS: # # 自己摸牌的时候可以杠或者胡时选择过, 则什么都不做. 继续轮到该玩家打牌. # pass # elif aid == const.OP_DRAW_WIN: #普通自摸胡 # is_win, score, result = self.can_win(list(p.tiles), p.last_draw, const.OP_DRAW_WIN, idx) # DEBUG_MSG("room:{0},curround:{1} idx:{2} do OP_DRAW_WIN==>{3}, {4}, {5}".format(self.roomID, self.current_round, idx, is_win, score, result)) # if is_win: # p.draw_win(tile, score, result) # else: # avt_mb.doOperationFailed(const.OP_ERROR_ILLEGAL) # self.current_idx = self.nextIdx # self.beginRound() # elif aid == const.OP_WREATH_WIN: #自摸8张花胡 # is_win, score, result = self.can_win(list(p.tiles), p.last_draw, const.OP_WREATH_WIN, idx) # DEBUG_MSG("room:{0},curround:{1} idx:{2} do OP_WREATH_WIN==>{3}, {4}, {5}".format(self.roomID, self.current_round, idx, is_win, score, result)) # if is_win: # p.draw_win(tile, score, result) # else: # avt_mb.doOperationFailed(const.OP_ERROR_ILLEGAL) # self.current_idx = self.nextIdx # self.beginRound() # else: # avt_mb.doOperationFailed(const.OP_ERROR_ILLEGAL) # self.current_idx = self.nextIdx # self.beginRound() self.deskPokerList[idx] = tile_list curtile_list = utility.rightShiftCards(tile_list) last_list = utility.rightShiftCards(self.controller_discard_list) for i in range(self.player_num): self.current_idx = self.nextIdx if self.current_idx in self.win_list: self.deskPokerList[self.current_idx] = [] continue else: break DEBUG_MSG("room:{0},curround:{1} idx:{2} curtile_list:{3} last_list:{4} curPrizeList{5}".format(self.roomID, self.current_round, idx, curtile_list, last_list, self.curPrizeList)) if aid == const.OP_DISCARD and utility.compareTile(curtile_list, last_list): self.curround_score += utility.getDiscardScore(curtile_list) bombScore = utility.getBombScore(curtile_list) if bombScore > 0: self.cal_score(idx, self.win_list, const.OP_DISCARD, bombScore) self.curPrizeList[idx] += int(bombScore / 30) if len(self.round_end_list) != len(self.win_list): end_idx = self.win_list[len(self.win_list) - 1] self.round_end_list.append(end_idx) p.discardTile(tile_list) elif aid == const.OP_PASS: # 客户端判定没有大过上家的牌 self.op_pass_flag += 1 if self.op_pass_flag == self.player_num - len(self.round_end_list) - 1: # 这里是其他人都要不起,再次轮到自己出牌 self.controller_discard_list = [] self.round_start = True if len(self.round_end_list) == len(self.win_list): self.players_list[self.current_idx].add_score(self.curround_score) self.curScoreList[self.current_idx] += self.curround_score else: end_idx = self.win_list[len(self.win_list) - 1] self.curScoreList[end_idx] += self.curround_score self.players_list[end_idx].add_score(self.curround_score) self.round_end_list.append(end_idx) self.curround_score = 0 # elif self.op_pass_flag == self.player_num - len(self.win_list) - 1: # end_idx = self.win_list[len(self.win_list) - 1] # self.round_end_list.append(end_idx) # self.controller_discard_list = [] # self.round_start = True # self.curScoreList[self.current_idx] += self.curround_score # self.players_list[self.current_idx].add_score(self.curround_score) # self.curround_score = 0 DEBUG_MSG("room:{0},curround:{1} idx:{2}OP_PASS curround_score:{3}".format(self.roomID, self.current_round, idx, self.curround_score)) def delay_callback(): self.broadcastOperation(idx, aid, [], self.curround_score, self.curScoreList) self.add_timer(const.DELAY_OP_PASS, delay_callback) else: DEBUG_MSG("room:{0},curround:{1} idx:{2} doOperationFailed".format(self.roomID, self.current_round, idx)) avt_mb.doOperationFailed(const.OP_ERROR_ILLEGAL) return if len(self.win_list) < self.player_num - 1: DEBUG_MSG("room:{0},curround:{1} idx:{2} curround_score:{3}".format(self.roomID, self.current_round, idx, self.curround_score)) def delay_callback(): self.waitForOperation(self.current_idx, const.OP_DISCARD, 0, self.round_start) if aid == const.OP_PASS: self.add_timer(const.DELAY_OP_PASS, delay_callback) else: self.waitForOperation(self.current_idx, const.OP_DISCARD, 0, self.round_start) def broadcastOperation(self, idx, aid, tile_list = None, curround_score = 0, curScoreList = []): """ 将操作广播给所有人, 包括当前操作的玩家 :param idx: 当前操作玩家的座位号 :param aid: 操作id :param tile_list: 出牌的list """ for i, p in enumerate(self.players_list): if p is not None: p.mb.postOperation(idx, aid, tile_list, curround_score, curScoreList) def confirmOperation(self, avt_mb, aid, tile_list): tile = tile_list[0] idx = -1 for i, p in enumerate(self.players_list): if p and p.mb == avt_mb: idx = i DEBUG_MSG("room:{0},curround:{1} idx:{2} confirmOperation aid:{3} tile_list:{4}".format(self.roomID, self.current_round, idx, aid, tile_list)) """ 被轮询的玩家确认了某个操作 """ if self.dismiss_room_ts != 0 and int(time.time() - self.dismiss_room_ts) < const.DISMISS_ROOM_WAIT_TIME: # 说明在准备解散投票中,不能进行其他操作 return #玩家是否可以操作 DEBUG_MSG("room:{0},curround:{1} idx:{2} wait_op_info_list:{3}".format(self.roomID, self.current_round, idx, self.wait_op_info_list)) if len(self.wait_op_info_list) <= 0 or sum([1 for waitOpDict in self.wait_op_info_list if (waitOpDict["idx"] == idx and waitOpDict["state"] == const.OP_STATE_WAIT)]) <= 0: avt_mb.doOperationFailed(const.OP_ERROR_NOT_CURRENT) return #提交 玩家结果 for waitOpDict in self.wait_op_info_list: if waitOpDict["idx"] == idx: if waitOpDict["aid"] == const.OP_CHOW and aid == const.OP_CHOW and waitOpDict["tileList"][0] == tile_list[0] and self.can_chow_list(waitOpDict["idx"], tile_list): waitOpDict["state"] = const.OP_STATE_SURE waitOpDict["tileList"] = tile_list elif waitOpDict["aid"] == aid and aid != const.OP_CHOW: waitOpDict["state"] = const.OP_STATE_SURE else: waitOpDict["state"] = const.OP_STATE_PASS #有玩家可以操作 isOver,confirmOpDict = self.getConfirmOverInfo() if isOver: DEBUG_MSG("room:{0},curround:{1} commit over {2}.".format(self.roomID, self.current_round, confirmOpDict)) temp_wait_op_info_list = copy.deepcopy(self.wait_op_info_list) self.wait_op_info_list = [] if len(confirmOpDict) > 0: sureIdx = confirmOpDict["idx"] p = self.players_list[sureIdx] if confirmOpDict["aid"] == const.OP_CHOW: self.current_idx = sureIdx p.chow(confirmOpDict["tileList"]) elif confirmOpDict["aid"] == const.OP_PONG: self.current_idx = sureIdx p.pong(confirmOpDict["tileList"][0]) elif confirmOpDict["aid"] == const.OP_EXPOSED_KONG: self.current_idx = sureIdx p.exposedKong(confirmOpDict["tileList"][0]) elif confirmOpDict["aid"] == const.OP_KONG_WIN: p.kong_win(confirmOpDict["tileList"][0], confirmOpDict["score"], confirmOpDict["result"]) elif confirmOpDict["aid"] == const.OP_GIVE_WIN: p.give_win(confirmOpDict["tileList"][0], confirmOpDict["score"], confirmOpDict["result"]) else: lastAid = temp_wait_op_info_list[0]["aid"] if lastAid == const.OP_WREATH_WIN: self.current_idx = self.last_player_idx elif lastAid == const.OP_KONG_WIN: #*********没人抢杠胡 杠要算分?*********** self.current_idx = self.last_player_idx if self.can_cut_after_kong(): self.cutAfterKong() else: self.current_idx = self.nextIdx self.beginRound() else: lastAid = temp_wait_op_info_list[0]["aid"] if lastAid == const.OP_WREATH_WIN: self.current_idx = self.last_player_idx elif lastAid == const.OP_KONG_WIN: #*********没人抢杠胡 杠要算分?*********** self.current_idx = self.last_player_idx else: self.current_idx = self.nextIdx self.beginRound() def getConfirmOverInfo(self): for i in range(len(self.wait_op_info_list)): waitState = self.wait_op_info_list[i]["state"] if waitState == const.OP_STATE_PASS: continue elif waitState == const.OP_STATE_WAIT: #需等待其他玩家操作 return False, {} elif waitState == const.OP_STATE_SURE: #有玩家可以操作 return True, self.wait_op_info_list[i] return True, {} #所有玩家选择放弃 def waitForOperation(self, idx, aid, tile, round_start = False): # aid抢杠 杠花没人可胡 nextIdx还是自己 # notifyOpList = self.getNotifyOpList(idx, aid, tile) # if sum([len(x) for x in notifyOpList]) > 0: # DEBUG_MSG("room:{0},curround:{1} waitForOperation from:{2},aid:{3},tile:{4}==>notifyOpList:{5}".format(self.roomID, self.current_round, idx, aid, tile, notifyOpList)) # for i,p in enumerate(self.players_list): # if p is not None and len(notifyOpList[i]) > 0: # waitAidList = [notifyOp["aid"] for notifyOp in notifyOpList[i]] # p.mb.waitForOperation(waitAidList, [tile,]) # else: # DEBUG_MSG("room:{0},curround:{1} nobody waitForOperation from:{2},aid:{3},tile:{4},nextIdx:{5}".format(self.roomID, self.current_round, idx, aid, tile, nextIdx)) # if self.can_cut_after_kong() and (aid >> 3) == const.SHOW_KONG: # self.cutAfterKong() # self.current_idx = self.nextIdx if nextIdx < 0 else nextIdx # self.beginRound() DEBUG_MSG("room:{0},curround:{1} waitForOperation idx:{2},aid:{3},round_start:{4}".format(self.roomID, self.current_round, idx, aid, round_start)) self.waitIdx = self.current_idx for i,p in enumerate(self.players_list): if p is not None: p.mb.waitForOperation(idx, aid, round_start) if len(self.getTipsCards()) == 0 and self.players_list[self.current_idx].online and not round_start: self.players_list[self.current_idx].mb.doOperation(const.OP_PASS, []) def get_init_client_dict(self): return { 'roomID' : self.roomID, 'ownerId' : self.owner_uid, 'roomType' : self.room_type, 'dealerIdx' : self.dealer_idx, 'curRound' : self.current_round, 'maxRound' : self.game_round, 'player_num' : self.player_num, # 'king_num' : self.king_num, 'pay_mode' : self.pay_mode, # 'game_mode' : self.game_mode, # 'game_max_lose' : self.game_max_lose, # 'round_max_lose' : self.round_max_lose, # 'lucky_num' : self.lucky_num, 'hand_prepare' : self.hand_prepare, # 'base_score' : self.base_score, # 'king_mode' : self.king_mode, # 'begin_dealer_mul' : self.begin_dealer_mul, # 'cur_dealer_mul' : self.cur_dealer_mul, # 'win_mode' : self.win_mode, # 'three_job' : self.three_job, # 'pong_useful' : self.pong_useful, # 'bao_tou' : self.bao_tou, 'club_id' : self.club.clubId if self.club is not None else 0, 'player_base_info_list': [p.get_init_client_dict() for p in self.players_list if p is not None], 'player_state_list': [1 if i in self.confirm_next_idx else 0 for i in range(const.ROOM_PLAYER_NUMBER)], } def get_agent_client_dict(self): return { 'roomID' : self.roomID, 'curRound' : self.current_round, # 'cur_dealer_mul' : self.cur_dealer_mul, 'maxRound' : self.game_round, # 'king_num' : self.king_num, 'pay_mode' : self.pay_mode, # 'game_mode' : self.game_mode, # 'game_max_lose' : self.game_max_lose, # 'round_max_lose' : self.round_max_lose, 'player_num' : self.player_num, # 'base_score' : self.base_score, # 'king_mode' : self.king_mode, # 'win_mode' : self.win_mode, # 'three_job' : self.three_job, # 'pong_useful' : self.pong_useful, # 'bao_tou' : self.bao_tou, # 'begin_dealer_mul' : self.begin_dealer_mul, # 'lucky_num' : self.lucky_num, 'hand_prepare' : self.hand_prepare, 'player_simple_info_list': [p.get_simple_client_dict() for p in self.players_list if p is not None] } def get_agent_complete_dict(self): return { 'roomID' : self.roomID, 'maxRound' : self.game_round, # 'king_num' : self.king_num, # 'game_mode' : self.game_mode, # 'game_max_lose' : self.game_max_lose, # 'round_max_lose' : self.round_max_lose, 'player_num' : self.player_num, 'pay_mode' : self.pay_mode, # 'base_score' : self.base_score, # 'king_mode' : self.king_mode, # 'win_mode' : self.win_mode, # 'three_job' : self.three_job, # 'pong_useful' : self.pong_useful, # 'bao_tou' : self.bao_tou, # 'begin_dealer_mul' : self.begin_dealer_mul, # 'lucky_num' : self.lucky_num, 'hand_prepare' : self.hand_prepare, 'time' : utility.get_cur_timestamp(), 'player_simple_info_list': [p.get_simple_client_dict() for p in self.origin_players_list if p is not None], } def get_club_complete_dict(self): return { 'roomID' : self.roomID, 'time' : utility.get_cur_timestamp(), 'player_info_list': [p.get_club_client_dict() for p in self.origin_players_list if p is not None], } def get_reconnect_room_dict(self, userId): dismiss_left_time =const.DISMISS_ROOM_WAIT_TIME - (int(time.time() - self.dismiss_room_ts)) if self.dismiss_room_ts == 0 or dismiss_left_time >= const.DISMISS_ROOM_WAIT_TIME: dismiss_left_time = 0 idx = 0 for p in self.players_list: if p and p.userId == userId: idx = p.idx waitAidList = [] for i in range(len(self.wait_op_info_list)): if self.wait_op_info_list[i]["idx"] == idx and self.wait_op_info_list[i]["state"] == const.OP_STATE_WAIT: waitAidList.append(self.wait_op_info_list[i]["aid"]) DEBUG_MSG('room:{},curround:{} reconnect_room waitAidList:{}'.format(self.roomID, self.current_round, waitAidList)) DEBUG_MSG("current_idx:{} controller_discard_list:{} deskPokerList:{} curround_score:{}".format(self.current_idx, self.controller_discard_list, self.deskPokerList, self.curround_score)) return { 'init_info' : self.get_init_client_dict(), 'controllerIdx' : self.current_idx, 'controller_discard_list' : self.controller_discard_list, 'curround_score' : self.curround_score, 'deskPokerList' : self.deskPokerList, 'waitIdx' : self.current_idx, 'room_state' : const.ROOM_PLAYING if self.state == const.ROOM_PLAYING else const.ROOM_WAITING, 'win_list' : self.win_list, 'curPrizeList' : self.curPrizeList, 'curScoreList' : self.curScoreList, 'player_state_list' : [1 if i in self.confirm_next_idx else 0 for i in range(self.player_num)], 'applyCloseFrom' : self.dismiss_room_from, 'applyCloseLeftTime' : dismiss_left_time, 'applyCloseStateList' : self.dismiss_room_state_list, 'player_advance_info_list' : [p.get_reconnect_client_dict(userId) for p in self.players_list if p is not None], } def broadcastEnterRoom(self, idx): new_p = self.players_list[idx] for i, p in enumerate(self.players_list): if p is None: continue if i == idx: p.mb.enterRoomSucceed(self, idx) else: p.mb.othersEnterRoom(new_p.get_init_client_dict()) def record_round_result(self): # 玩家记录当局战绩 d = datetime.fromtimestamp(time.time()) round_result_d = { 'date': '-'.join([str(d.year), str(d.month), str(d.day)]), 'time': ':'.join([str(d.hour), str(d.minute)]), 'round_record': [p.get_round_result_info() for p in self.players_list if p], 'recordId': self.record_id } self.game_result['round_result'].append(round_result_d) def begin_record_room(self): # 在第一局的时候记录基本信息 if self.current_round != 1: return self.game_result = { 'maxRound': self.game_round, # 'gameMaxLose': self.game_max_lose, 'roomID': self.roomID, 'user_info_list': [p.get_basic_user_info() for p in self.players_list if p] } self.game_result['round_result'] = [] def save_game_result(self): DEBUG_MSG('room:{},curround:{} len:{} {}'.format(self.roomID, self.current_round, len(self.game_result.get('round_result', [])), "-save-" * 10)) if len(self.game_result['round_result']) > 0: result_str = json.dumps(self.game_result) for p in self.players_list: p and p.save_game_result(result_str) def save_agent_complete_result(self): DEBUG_MSG('room:{},curround:{} ------ save agent complete result -----'.format(self.roomID, self.current_round)) d = self.get_agent_complete_dict() result_str = json.dumps(d) if self.agent: if self.agent.isDestroyed: import x42 for k, v in x42.GW.avatars.items(): if v.userId == self.agent.userId: v.saveAgentRoomResult(result_str) break else: ERROR_MSG("room:{},curround:{} Save AgentRoom result failed!!! agent.userId = {}".format(self.roomID, self.current_round, self.agent.userId)) else: self.agent.saveAgentRoomResult(result_str) def save_club_result(self): DEBUG_MSG('room:{},curround:{} ------ save club result -----'.format(self.roomID, self.current_round)) d = self.get_club_complete_dict() if self.club: self.club.saveTableResult(d) def saveRoomResult(self): # 保存玩家的战绩记录 self.save_game_result() # 保存代理开房的记录 if self.room_type == const.AGENT_ROOM and self.agent: # 代理开房完成记录 self.save_agent_complete_result() # 将房间从代理房间中删除 self.agent.agentRoomDropped(self.roomID) # 保存茶楼的战绩 if self.room_type == const.CLUB_ROOM: self.save_club_result() def timeoutDestroy(self): INFO_MSG("room:{},curround:{} timeout destroyed. room_type = {}, owner_uid = {}".format(self.roomID, self.current_round, self.room_type, self.owner_uid)) if self.current_round < 1: self.do_drop_room() def destroySelf(self): self.clear_timers() not self.isDestroyed and self.destroy() def destroyByServer(self, reason=None): # 此接口由GameWorld关服时调用 self.dismiss_timer = None for p in self.players_list: if p and p.mb: try: p.mb.quitRoomSucceed() if reason: p.mb.showTip(reason) except: pass self.destroySelf() def getSeatAbstractInfo(self): seat = 0 for i in range(const.ROOM_PLAYER_NUMBER): p = self.players_list[i] if p: seat |= 2 ** i return seat def getSeatDetailInfo(self): detail = [] for p in self.players_list: if p: detail.append(p.get_simple_client_dict()) return detail def getCalCostNeed(self): return { 'pay_mode' : self.pay_mode, }
31556e2ff279b0f2bc83581d282addea9f319f6a
a2dc75a80398dee58c49fa00759ac99cfefeea36
/bluebottle/activities/migrations/0043_auto_20210420_0847.py
1832ca60d59f7222957c239e0285e3bbb6f24d90
[ "BSD-2-Clause" ]
permissive
onepercentclub/bluebottle
e38b0df2218772adf9febb8c6e25a2937889acc0
2b5f3562584137c8c9f5392265db1ab8ee8acf75
refs/heads/master
2023-08-29T14:01:50.565314
2023-08-24T11:18:58
2023-08-24T11:18:58
13,149,527
15
9
BSD-3-Clause
2023-09-13T10:46:20
2013-09-27T12:09:13
Python
UTF-8
Python
false
false
1,330
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.17 on 2021-04-20 06:47 from __future__ import unicode_literals from django.db import migrations, connection def create_activity_view(apps, schema_editor): sql = """ DROP VIEW IF EXISTS activities; CREATE VIEW activities AS SELECT ct.model::text AS activity_type, ac.title, ac.id, ac.status, ac.created, ac.updated FROM {0}.activities_activity ac LEFT JOIN {0}.time_based_dateactivity da ON da.timebasedactivity_ptr_id = ac.id LEFT JOIN {0}.time_based_periodactivity pa ON pa.timebasedactivity_ptr_id = ac.id LEFT JOIN {0}.funding_funding fu ON fu.activity_ptr_id = ac.id LEFT JOIN {0}.deeds_deed de ON de.activity_ptr_id = ac.id JOIN {0}.django_content_type ct ON ac.polymorphic_ctype_id = ct.id; """.format(connection.tenant.schema_name) if connection.tenant.schema_name != 'public': schema_editor.execute(sql) class Migration(migrations.Migration): dependencies = [ ('activities', '0042_effortcontribution_contribution_type'), ('deeds', '0007_auto_20210222_1644') ] operations = [ migrations.RunPython(create_activity_view, migrations.RunPython.noop) ]
988702a78c19d40f847900e6fd1f3b46d60d54af
86ed811106eecf7aa3a15cf98537ef274b811ad7
/headmasters/migrations/0009_headmasterprofile_crop_url.py
1cdccb88138baab74eb6d4ab65b1dfaaa7729e12
[]
no_license
SaifulAbir/Django-MIS
934ad39beff62f0e1cbe9377738b780122989662
d680a0a64211bc9cd7748364454c52b16398ea5c
refs/heads/master
2022-10-19T11:57:46.087577
2020-02-03T10:10:08
2020-02-03T10:10:08
271,542,785
0
0
null
null
null
null
UTF-8
Python
false
false
421
py
# Generated by Django 2.2.4 on 2019-10-22 06:14 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('headmasters', '0008_auto_20190930_1246'), ] operations = [ migrations.AddField( model_name='headmasterprofile', name='crop_url', field=models.TextField(blank=True, default='', null=True), ), ]
de894f519d533dd6183e61c9dd8f23315fa88388
652e6171022bb844102e191e9459e73ff2d7901b
/tests/optimizations/HardImports_2.py
8b513f9b738753c890d6b6be85033361b2fdc0ce
[ "LicenseRef-scancode-warranty-disclaimer", "Apache-2.0" ]
permissive
pombredanne/Nuitka
e07ee1ba2c027c25e4feebc9751bbb0c1cb338b1
02e8d59a275cd7fe482cbc8100e753ff5abe39d7
refs/heads/develop
2022-03-16T23:55:49.295972
2022-02-20T14:28:23
2022-02-20T14:28:23
69,127,861
0
0
null
2016-09-24T21:10:20
2016-09-24T21:10:20
null
UTF-8
Python
false
false
973
py
# Copyright 2021, Kay Hayen, mailto:[email protected] # # Python test originally created or extracted from other peoples work. The # parts from me are licensed as below. It is at least Free Software where # it's copied from other people. In these cases, that will normally be # indicated. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import sys def sysOptionalAttribute(): return sys.maxint, sys.subversion
df189a233dc0b05d92ae76eda7e06be7f66882b2
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/41/usersdata/112/24387/submittedfiles/gravitacional.py
888bc07241bd9b1b980d67c03c96c8be908f635c
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
620
py
# -*- coding: utf-8 -*- from __future__ import division import numpy as np import funcoes #ENTRADA dimensao = input('Digite a dimensao das matrizes: ') matrizA = raw_input('Digite a Matriz A como uma única linha entre aspas: ') matrizD = raw_input('Digite a Matriz D como uma única linha entre aspas: ') alfa = input('Digite o valor de alfa: ') #PREPARANDO A ENTRADA T = np.zeros((dimensao,dimensao)) A = np.fromstring(matrizA, sep=' ').reshape(dimensao, dimensao) d = np.fromstring(matrizD, sep=' ').reshape(dimensao, dimensao) #comece aqui... #INÍCIO #SAÍDA somatorio = sum(sum(T)) print('%.4f' % somatorio)
4351140b637b391a04bca70933beb6392331991c
a56252fda5c9e42eff04792c6e16e413ad51ba1a
/resources/usr/local/lib/python2.7/dist-packages/sklearn/grid_search.py
babf7a6b2e77b260bd4677d8489191de20e18243
[ "Apache-2.0" ]
permissive
edawson/parliament2
4231e692565dbecf99d09148e75c00750e6797c4
2632aa3484ef64c9539c4885026b705b737f6d1e
refs/heads/master
2021-06-21T23:13:29.482239
2020-12-07T21:10:08
2020-12-07T21:10:08
150,246,745
0
0
Apache-2.0
2019-09-11T03:22:55
2018-09-25T10:21:03
Python
UTF-8
Python
false
false
32,847
py
""" The :mod:`sklearn.grid_search` includes utilities to fine-tune the parameters of an estimator. """ from __future__ import print_function # Author: Alexandre Gramfort <[email protected]>, # Gael Varoquaux <[email protected]> # Andreas Mueller <[email protected]> # Olivier Grisel <[email protected]> # License: BSD 3 clause from abc import ABCMeta, abstractmethod from collections import Mapping, namedtuple, Sized from functools import partial, reduce from itertools import product import numbers import operator import time import warnings import numpy as np from .base import BaseEstimator, is_classifier, clone from .base import MetaEstimatorMixin from .cross_validation import check_cv from .externals.joblib import Parallel, delayed, logger from .externals import six from .utils import safe_mask, check_random_state from .utils.validation import _num_samples, check_arrays from .metrics.scorer import _deprecate_loss_and_score_funcs __all__ = ['GridSearchCV', 'ParameterGrid', 'fit_grid_point', 'ParameterSampler', 'RandomizedSearchCV'] class ParameterGrid(object): """Grid of parameters with a discrete number of values for each. Can be used to iterate over parameter value combinations with the Python built-in function iter. Parameters ---------- param_grid : dict of string to sequence, or sequence of such The parameter grid to explore, as a dictionary mapping estimator parameters to sequences of allowed values. An empty dict signifies default parameters. A sequence of dicts signifies a sequence of grids to search, and is useful to avoid exploring parameter combinations that make no sense or have no effect. See the examples below. Examples -------- >>> from sklearn.grid_search import ParameterGrid >>> param_grid = {'a': [1, 2], 'b': [True, False]} >>> list(ParameterGrid(param_grid)) == ( ... [{'a': 1, 'b': True}, {'a': 1, 'b': False}, ... {'a': 2, 'b': True}, {'a': 2, 'b': False}]) True >>> grid = [{'kernel': ['linear']}, {'kernel': ['rbf'], 'gamma': [1, 10]}] >>> list(ParameterGrid(grid)) == [{'kernel': 'linear'}, ... {'kernel': 'rbf', 'gamma': 1}, ... {'kernel': 'rbf', 'gamma': 10}] True See also -------- :class:`GridSearchCV`: uses ``ParameterGrid`` to perform a full parallelized parameter search. """ def __init__(self, param_grid): if isinstance(param_grid, Mapping): # wrap dictionary in a singleton list # XXX Why? The behavior when passing a list is undocumented, # but not doing this breaks one of the tests. param_grid = [param_grid] self.param_grid = param_grid def __iter__(self): """Iterate over the points in the grid. Returns ------- params : iterator over dict of string to any Yields dictionaries mapping each estimator parameter to one of its allowed values. """ for p in self.param_grid: # Always sort the keys of a dictionary, for reproducibility items = sorted(p.items()) if not items: yield {} else: keys, values = zip(*items) for v in product(*values): params = dict(zip(keys, v)) yield params def __len__(self): """Number of points on the grid.""" # Product function that can handle iterables (np.product can't). product = partial(reduce, operator.mul) return sum(product(len(v) for v in p.values()) if p else 1 for p in self.param_grid) class IterGrid(ParameterGrid): """Generators on the combination of the various parameter lists given. This class is DEPRECATED. It was renamed to ``ParameterGrid``. The name ``IterGrid`` will be removed in 0.15. Parameters ---------- param_grid : dict of string to sequence The parameter grid to explore, as a dictionary mapping estimator parameters to sequences of allowed values. Returns ------- params : dict of string to any **Yields** dictionaries mapping each estimator parameter to one of its allowed values. Examples -------- >>> from sklearn.grid_search import IterGrid >>> param_grid = {'a':[1, 2], 'b':[True, False]} >>> list(IterGrid(param_grid)) == ( ... [{'a': 1, 'b': True}, {'a': 1, 'b': False}, ... {'a': 2, 'b': True}, {'a': 2, 'b': False}]) True See also -------- :class:`GridSearchCV`: uses ``IterGrid`` to perform a full parallelized parameter search. """ def __init__(self, param_grid): warnings.warn("IterGrid was renamed to ParameterGrid and will be" " removed in 0.15.", DeprecationWarning) super(IterGrid, self).__init__(param_grid) class ParameterSampler(object): """Generator on parameters sampled from given distributions. Non-deterministic iterable over random candidate combinations for hyper- parameter search. Note that as of SciPy 0.12, the ``scipy.stats.distributions`` do not accept a custom RNG instance and always use the singleton RNG from ``numpy.random``. Hence setting ``random_state`` will not guarantee a deterministic iteration whenever ``scipy.stats`` distributions are used to define the parameter search space. Parameters ---------- param_distributions : dict Dictionary where the keys are parameters and values are distributions from which a parameter is to be sampled. Distributions either have to provide a ``rvs`` function to sample from them, or can be given as a list of values, where a uniform distribution is assumed. n_iter : integer Number of parameter settings that are produced. random_state : int or RandomState Pseudo random number generator state used for random uniform sampling from lists of possible values instead of scipy.stats distributions. Returns ------- params : dict of string to any **Yields** dictionaries mapping each estimator parameter to as sampled value. Examples -------- >>> from sklearn.grid_search import ParameterSampler >>> from scipy.stats.distributions import expon >>> import numpy as np >>> np.random.seed(0) >>> param_grid = {'a':[1, 2], 'b': expon()} >>> param_list = list(ParameterSampler(param_grid, n_iter=4)) >>> rounded_list = [dict((k, round(v, 6)) for (k, v) in d.items()) ... for d in param_list] >>> rounded_list == [{'b': 0.89856, 'a': 1}, ... {'b': 0.923223, 'a': 1}, ... {'b': 1.878964, 'a': 2}, ... {'b': 1.038159, 'a': 2}] True """ def __init__(self, param_distributions, n_iter, random_state=None): self.param_distributions = param_distributions self.n_iter = n_iter self.random_state = random_state def __iter__(self): rnd = check_random_state(self.random_state) # Always sort the keys of a dictionary, for reproducibility items = sorted(self.param_distributions.items()) for _ in range(self.n_iter): params = dict() for k, v in items: if hasattr(v, "rvs"): params[k] = v.rvs() else: params[k] = v[rnd.randint(len(v))] yield params def __len__(self): """Number of points that will be sampled.""" return self.n_iter def fit_grid_point(X, y, base_estimator, parameters, train, test, scorer, verbose, loss_func=None, **fit_params): """Run fit on one set of parameters. Parameters ---------- X : array-like, sparse matrix or list Input data. y : array-like or None Targets for input data. base_estimator : estimator object This estimator will be cloned and then fitted. parameters : dict Parameters to be set on base_estimator clone for this grid point. train : ndarray, dtype int or bool Boolean mask or indices for training set. test : ndarray, dtype int or bool Boolean mask or indices for test set. scorer : callable or None. If provided must be a scorer callable object / function with signature ``scorer(estimator, X, y)``. verbose : int Verbosity level. **fit_params : kwargs Additional parameter passed to the fit function of the estimator. Returns ------- score : float Score of this parameter setting on given training / test split. parameters : dict The parameters that have been evaluated. n_samples_test : int Number of test samples in this split. """ if verbose > 1: start_time = time.time() msg = '%s' % (', '.join('%s=%s' % (k, v) for k, v in parameters.items())) print("[GridSearchCV] %s %s" % (msg, (64 - len(msg)) * '.')) # update parameters of the classifier after a copy of its base structure clf = clone(base_estimator) clf.set_params(**parameters) if hasattr(base_estimator, 'kernel') and callable(base_estimator.kernel): # cannot compute the kernel values with custom function raise ValueError("Cannot use a custom kernel function. " "Precompute the kernel matrix instead.") if not hasattr(X, "shape"): if getattr(base_estimator, "_pairwise", False): raise ValueError("Precomputed kernels or affinity matrices have " "to be passed as arrays or sparse matrices.") X_train = [X[idx] for idx in train] X_test = [X[idx] for idx in test] else: if getattr(base_estimator, "_pairwise", False): # X is a precomputed square kernel matrix if X.shape[0] != X.shape[1]: raise ValueError("X should be a square kernel matrix") X_train = X[np.ix_(train, train)] X_test = X[np.ix_(test, train)] else: X_train = X[safe_mask(X, train)] X_test = X[safe_mask(X, test)] if y is not None: y_test = y[safe_mask(y, test)] y_train = y[safe_mask(y, train)] clf.fit(X_train, y_train, **fit_params) if scorer is not None: this_score = scorer(clf, X_test, y_test) else: this_score = clf.score(X_test, y_test) else: clf.fit(X_train, **fit_params) if scorer is not None: this_score = scorer(clf, X_test) else: this_score = clf.score(X_test) if not isinstance(this_score, numbers.Number): raise ValueError("scoring must return a number, got %s (%s)" " instead." % (str(this_score), type(this_score))) if verbose > 2: msg += ", score=%f" % this_score if verbose > 1: end_msg = "%s -%s" % (msg, logger.short_format_time(time.time() - start_time)) print("[GridSearchCV] %s %s" % ((64 - len(end_msg)) * '.', end_msg)) return this_score, parameters, _num_samples(X_test) def _check_param_grid(param_grid): if hasattr(param_grid, 'items'): param_grid = [param_grid] for p in param_grid: for v in p.values(): if isinstance(v, np.ndarray) and v.ndim > 1: raise ValueError("Parameter array should be one-dimensional.") check = [isinstance(v, k) for k in (list, tuple, np.ndarray)] if not True in check: raise ValueError("Parameter values should be a list.") if len(v) == 0: raise ValueError("Parameter values should be a non-empty " "list.") class _CVScoreTuple (namedtuple('_CVScoreTuple', ('parameters', 'mean_validation_score', 'cv_validation_scores'))): # A raw namedtuple is very memory efficient as it packs the attributes # in a struct to get rid of the __dict__ of attributes in particular it # does not copy the string for the keys on each instance. # By deriving a namedtuple class just to introduce the __repr__ method we # would also reintroduce the __dict__ on the instance. By telling the # Python interpreter that this subclass uses static __slots__ instead of # dynamic attributes. Furthermore we don't need any additional slot in the # subclass so we set __slots__ to the empty tuple. __slots__ = () def __repr__(self): """Simple custom repr to summarize the main info""" return "mean: {0:.5f}, std: {1:.5f}, params: {2}".format( self.mean_validation_score, np.std(self.cv_validation_scores), self.parameters) class BaseSearchCV(six.with_metaclass(ABCMeta, BaseEstimator, MetaEstimatorMixin)): """Base class for hyper parameter search with cross-validation.""" @abstractmethod def __init__(self, estimator, scoring=None, loss_func=None, score_func=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs'): self.scoring = scoring self.estimator = estimator self.loss_func = loss_func self.score_func = score_func self.n_jobs = n_jobs self.fit_params = fit_params if fit_params is not None else {} self.iid = iid self.refit = refit self.cv = cv self.verbose = verbose self.pre_dispatch = pre_dispatch self._check_estimator() def score(self, X, y=None): """Returns the score on the given test data and labels, if the search estimator has been refit. The ``score`` function of the best estimator is used, or the ``scoring`` parameter where unavailable. Parameters ---------- X : array-like, shape = [n_samples, n_features] Input data, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. Returns ------- score : float """ if hasattr(self.best_estimator_, 'score'): return self.best_estimator_.score(X, y) if self.scorer_ is None: raise ValueError("No score function explicitly defined, " "and the estimator doesn't provide one %s" % self.best_estimator_) return self.scorer_(self.best_estimator_, X, y) @property def predict(self): return self.best_estimator_.predict @property def predict_proba(self): return self.best_estimator_.predict_proba @property def decision_function(self): return self.best_estimator_.decision_function @property def transform(self): return self.best_estimator_.transform def _check_estimator(self): """Check that estimator can be fitted and score can be computed.""" if (not hasattr(self.estimator, 'fit') or not (hasattr(self.estimator, 'predict') or hasattr(self.estimator, 'score'))): raise TypeError("estimator should a be an estimator implementing" " 'fit' and 'predict' or 'score' methods," " %s (type %s) was passed" % (self.estimator, type(self.estimator))) if (self.scoring is None and self.loss_func is None and self.score_func is None): if not hasattr(self.estimator, 'score'): raise TypeError( "If no scoring is specified, the estimator passed " "should have a 'score' method. The estimator %s " "does not." % self.estimator) def _fit(self, X, y, parameter_iterable): """Actual fitting, performing the search over parameters.""" estimator = self.estimator cv = self.cv n_samples = _num_samples(X) X, y = check_arrays(X, y, allow_lists=True, sparse_format='csr') self.scorer_ = _deprecate_loss_and_score_funcs( self.loss_func, self.score_func, self.scoring) if y is not None: if len(y) != n_samples: raise ValueError('Target variable (y) has a different number ' 'of samples (%i) than data (X: %i samples)' % (len(y), n_samples)) y = np.asarray(y) cv = check_cv(cv, X, y, classifier=is_classifier(estimator)) if self.verbose > 0: if isinstance(parameter_iterable, Sized): n_candidates = len(parameter_iterable) print("Fitting {0} folds for each of {1} candidates, totalling" " {2} fits".format(len(cv), n_candidates, n_candidates * len(cv))) base_estimator = clone(self.estimator) pre_dispatch = self.pre_dispatch out = Parallel( n_jobs=self.n_jobs, verbose=self.verbose, pre_dispatch=pre_dispatch)( delayed(fit_grid_point)( X, y, base_estimator, parameters, train, test, self.scorer_, self.verbose, **self.fit_params) for parameters in parameter_iterable for train, test in cv) # Out is a list of triplet: score, estimator, n_test_samples n_fits = len(out) n_folds = len(cv) scores = list() grid_scores = list() for grid_start in range(0, n_fits, n_folds): n_test_samples = 0 score = 0 all_scores = [] for this_score, parameters, this_n_test_samples in \ out[grid_start:grid_start + n_folds]: all_scores.append(this_score) if self.iid: this_score *= this_n_test_samples n_test_samples += this_n_test_samples score += this_score if self.iid: score /= float(n_test_samples) else: score /= float(n_folds) scores.append((score, parameters)) # TODO: shall we also store the test_fold_sizes? grid_scores.append(_CVScoreTuple( parameters, score, np.array(all_scores))) # Store the computed scores self.grid_scores_ = grid_scores # Find the best parameters by comparing on the mean validation score: # note that `sorted` is deterministic in the way it breaks ties best = sorted(grid_scores, key=lambda x: x.mean_validation_score, reverse=True)[0] self.best_params_ = best.parameters self.best_score_ = best.mean_validation_score if self.refit: # fit the best estimator using the entire dataset # clone first to work around broken estimators best_estimator = clone(base_estimator).set_params( **best.parameters) if y is not None: best_estimator.fit(X, y, **self.fit_params) else: best_estimator.fit(X, **self.fit_params) self.best_estimator_ = best_estimator return self class GridSearchCV(BaseSearchCV): """Exhaustive search over specified parameter values for an estimator. Important members are fit, predict. GridSearchCV implements a "fit" method and a "predict" method like any classifier except that the parameters of the classifier used to predict is optimized by cross-validation. Parameters ---------- estimator : object type that implements the "fit" and "predict" methods A object of that type is instantiated for each grid point. param_grid : dict or list of dictionaries Dictionary with parameters names (string) as keys and lists of parameter settings to try as values, or a list of such dictionaries, in which case the grids spanned by each dictionary in the list are explored. This enables searching over any sequence of parameter settings. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. fit_params : dict, optional Parameters to pass to the fit method. n_jobs : int, optional Number of jobs to run in parallel (default 1). pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' iid : boolean, optional If True, the data is assumed to be identically distributed across the folds, and the loss minimized is the total loss per sample, and not the mean loss across the folds. cv : integer or cross-validation generator, optional If an integer is passed, it is the number of folds (default 3). Specific cross-validation objects can be passed, see sklearn.cross_validation module for the list of possible objects refit : boolean Refit the best estimator with the entire dataset. If "False", it is impossible to make predictions using this GridSearchCV instance after fitting. verbose : integer Controls the verbosity: the higher, the more messages. Examples -------- >>> from sklearn import svm, grid_search, datasets >>> iris = datasets.load_iris() >>> parameters = {'kernel':('linear', 'rbf'), 'C':[1, 10]} >>> svr = svm.SVC() >>> clf = grid_search.GridSearchCV(svr, parameters) >>> clf.fit(iris.data, iris.target) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS GridSearchCV(cv=None, estimator=SVC(C=1.0, cache_size=..., class_weight=..., coef0=..., degree=..., gamma=..., kernel='rbf', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=..., verbose=False), fit_params={}, iid=..., loss_func=..., n_jobs=1, param_grid=..., pre_dispatch=..., refit=..., score_func=..., scoring=..., verbose=...) Attributes ---------- `grid_scores_` : list of named tuples Contains scores for all parameter combinations in param_grid. Each entry corresponds to one parameter setting. Each named tuple has the attributes: * ``parameters``, a dict of parameter settings * ``mean_validation_score``, the mean score over the cross-validation folds * ``cv_validation_scores``, the list of scores for each fold `best_estimator_` : estimator Estimator that was chosen by the search, i.e. estimator which gave highest score (or smallest loss if specified) on the left out data. `best_score_` : float Score of best_estimator on the left out data. `best_params_` : dict Parameter setting that gave the best results on the hold out data. Notes ------ The parameters selected are those that maximize the score of the left out data, unless an explicit score is passed in which case it is used instead. If `n_jobs` was set to a value higher than one, the data is copied for each point in the grid (and not `n_jobs` times). This is done for efficiency reasons if individual jobs take very little time, but may raise errors if the dataset is large and not enough memory is available. A workaround in this case is to set `pre_dispatch`. Then, the memory is copied only `pre_dispatch` many times. A reasonable value for `pre_dispatch` is `2 * n_jobs`. See Also --------- :class:`ParameterGrid`: generates all the combinations of a an hyperparameter grid. :func:`sklearn.cross_validation.train_test_split`: utility function to split the data into a development set usable for fitting a GridSearchCV instance and an evaluation set for its final evaluation. """ def __init__(self, estimator, param_grid, scoring=None, loss_func=None, score_func=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs'): super(GridSearchCV, self).__init__( estimator, scoring, loss_func, score_func, fit_params, n_jobs, iid, refit, cv, verbose, pre_dispatch) self.param_grid = param_grid _check_param_grid(param_grid) def fit(self, X, y=None, **params): """Run fit with all sets of parameters. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. """ if params: warnings.warn("Additional parameters to GridSearchCV are ignored!" " The params argument will be removed in 0.15.", DeprecationWarning) return self._fit(X, y, ParameterGrid(self.param_grid)) class RandomizedSearchCV(BaseSearchCV): """Randomized search on hyper parameters. RandomizedSearchCV implements a "fit" method and a "predict" method like any classifier except that the parameters of the classifier used to predict is optimized by cross-validation. In contrast to GridSearchCV, not all parameter values are tried out, but rather a fixed number of parameter settings is sampled from the specified distributions. The number of parameter settings that are tried is given by n_iter. Parameters ---------- estimator : object type that implements the "fit" and "predict" methods A object of that type is instantiated for each parameter setting. param_distributions : dict Dictionary with parameters names (string) as keys and distributions or lists of parameters to try. Distributions must provide a ``rvs`` method for sampling (such as those from scipy.stats.distributions). If a list is given, it is sampled uniformly. n_iter : int, default=10 Number of parameter settings that are sampled. n_iter trades off runtime vs quality of the solution. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. fit_params : dict, optional Parameters to pass to the fit method. n_jobs : int, optional Number of jobs to run in parallel (default 1). pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' iid : boolean, optional If True, the data is assumed to be identically distributed across the folds, and the loss minimized is the total loss per sample, and not the mean loss across the folds. cv : integer or cross-validation generator, optional If an integer is passed, it is the number of folds (default 3). Specific cross-validation objects can be passed, see sklearn.cross_validation module for the list of possible objects refit : boolean Refit the best estimator with the entire dataset. If "False", it is impossible to make predictions using this RandomizedSearchCV instance after fitting. verbose : integer Controls the verbosity: the higher, the more messages. Attributes ---------- `grid_scores_` : list of named tuples Contains scores for all parameter combinations in param_grid. Each entry corresponds to one parameter setting. Each named tuple has the attributes: * ``parameters``, a dict of parameter settings * ``mean_validation_score``, the mean score over the cross-validation folds * ``cv_validation_scores``, the list of scores for each fold `best_estimator_` : estimator Estimator that was chosen by the search, i.e. estimator which gave highest score (or smallest loss if specified) on the left out data. `best_score_` : float Score of best_estimator on the left out data. `best_params_` : dict Parameter setting that gave the best results on the hold out data. Notes ----- The parameters selected are those that maximize the score of the held-out data, according to the scoring parameter. If `n_jobs` was set to a value higher than one, the data is copied for each parameter setting(and not `n_jobs` times). This is done for efficiency reasons if individual jobs take very little time, but may raise errors if the dataset is large and not enough memory is available. A workaround in this case is to set `pre_dispatch`. Then, the memory is copied only `pre_dispatch` many times. A reasonable value for `pre_dispatch` is `2 * n_jobs`. See Also -------- :class:`GridSearchCV`: Does exhaustive search over a grid of parameters. :class:`ParameterSampler`: A generator over parameter settins, constructed from param_distributions. """ def __init__(self, estimator, param_distributions, n_iter=10, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', random_state=None): self.param_distributions = param_distributions self.n_iter = n_iter self.random_state = random_state super(RandomizedSearchCV, self).__init__( estimator=estimator, scoring=scoring, fit_params=fit_params, n_jobs=n_jobs, iid=iid, refit=refit, cv=cv, verbose=verbose, pre_dispatch=pre_dispatch) def fit(self, X, y=None): """Run fit on the estimator with randomly drawn parameters. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. """ sampled_params = ParameterSampler(self.param_distributions, self.n_iter, random_state=self.random_state) return self._fit(X, y, sampled_params)
b2e82b041ae60991fc2615856e24aaef9e02e41b
72a58c62d62210e853ef09fdee65bf6ffb8972bd
/src/lib/telegram/bot.py
1814abd2853af3c3711e9a156c5eb5f318c7699b
[ "MIT" ]
permissive
thonkify/thonkify
93ade2489f20fb80c5e8e27fe67b9b231ada62bd
2cb4493d796746cb46c8519a100ef3ef128a761a
refs/heads/master
2023-09-01T00:03:10.398583
2018-03-16T09:18:24
2018-03-16T09:18:24
99,354,595
17
3
MIT
2023-09-05T02:27:42
2017-08-04T15:10:50
Python
UTF-8
Python
false
false
84,929
py
#!/usr/bin/env python # pylint: disable=E0611,E0213,E1102,C0103,E1101,W0613,R0913,R0904 # # A library that provides a Python interface to the Telegram Bot API # Copyright (C) 2015-2017 # Leandro Toledo de Souza <[email protected]> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser Public License for more details. # # You should have received a copy of the GNU Lesser Public License # along with this program. If not, see [http://www.gnu.org/licenses/]. """This module contains an object that represents a Telegram Bot.""" import functools import logging import warnings from telegram import (User, Message, Update, Chat, ChatMember, UserProfilePhotos, File, ReplyMarkup, TelegramObject, WebhookInfo, GameHighScore) from telegram.error import InvalidToken, TelegramError from telegram.utils.request import Request logging.getLogger(__name__).addHandler(logging.NullHandler()) def info(func): @functools.wraps(func) def decorator(self, *args, **kwargs): if not self.bot: self.get_me() result = func(self, *args, **kwargs) return result return decorator def log(func): logger = logging.getLogger(func.__module__) @functools.wraps(func) def decorator(self, *args, **kwargs): logger.debug('Entering: %s', func.__name__) result = func(self, *args, **kwargs) logger.debug(result) logger.debug('Exiting: %s', func.__name__) return result return decorator def message(func): @functools.wraps(func) def decorator(self, *args, **kwargs): url, data = func(self, *args, **kwargs) return self._message_wrapper(url, data, *args, **kwargs) return decorator class Bot(TelegramObject): """This object represents a Telegram Bot. Properties: id (int): Unique identifier for this bot. first_name (str): Bot's first name. last_name (str): Bot's last name. username (str): Bot's username. name (str): Bot's @username. Args: token (str): Bot's unique authentication. base_url (Optional[str]): Telegram Bot API service URL. base_file_url (Optional[str]): Telegram Bot API file URL. request (Optional[Request]): Pre initialized `Request` class. """ def __init__(self, token, base_url=None, base_file_url=None, request=None): self.token = self._validate_token(token) if base_url is None: base_url = 'https://api.telegram.org/bot' if base_file_url is None: base_file_url = 'https://api.telegram.org/file/bot' self.base_url = str(base_url) + str(self.token) self.base_file_url = str(base_file_url) + str(self.token) self.bot = None self._request = request or Request() self.logger = logging.getLogger(__name__) @property def request(self): return self._request @staticmethod def _validate_token(token): """a very basic validation on token""" if any(x.isspace() for x in token): raise InvalidToken() left, sep, _right = token.partition(':') if (not sep) or (not left.isdigit()) or (len(left) < 3): raise InvalidToken() return token @property @info def id(self): return self.bot.id @property @info def first_name(self): return self.bot.first_name @property @info def last_name(self): return self.bot.last_name @property @info def username(self): return self.bot.username @property def name(self): return '@{0}'.format(self.username) def _message_wrapper(self, url, data, *args, **kwargs): if kwargs.get('reply_to_message_id'): data['reply_to_message_id'] = kwargs.get('reply_to_message_id') if kwargs.get('disable_notification'): data['disable_notification'] = kwargs.get('disable_notification') if kwargs.get('reply_markup'): reply_markup = kwargs.get('reply_markup') if isinstance(reply_markup, ReplyMarkup): data['reply_markup'] = reply_markup.to_json() else: data['reply_markup'] = reply_markup result = self._request.post(url, data, timeout=kwargs.get('timeout')) if result is True: return result return Message.de_json(result, self) @log def get_me(self, timeout=None, **kwargs): """A simple method for testing your bot's auth token. Args: timeout (Optional[int|float]): If this value is specified, use it as the read timeout from the server (instead of the one specified during creation of the connection pool). Returns: :class:`telegram.User`: A :class:`telegram.User` instance representing that bot if the credentials are valid, `None` otherwise. Raises: :class:`telegram.TelegramError` """ url = '{0}/getMe'.format(self.base_url) result = self._request.get(url, timeout=timeout) self.bot = User.de_json(result, self) return self.bot @log @message def send_message(self, chat_id, text, parse_mode=None, disable_web_page_preview=None, disable_notification=False, reply_to_message_id=None, reply_markup=None, timeout=None, **kwargs): """Use this method to send text messages. Args: chat_id (int|str): Unique identifier for the target chat or username of the target channel (in the format @channelusername). text (str): Text of the message to be sent. The current maximum length is 4096 UTF-8 characters. parse_mode (Optional[str]): Send Markdown or HTML, if you want Telegram apps to show bold, italic, fixed-width text or inline URLs in your bot's message. disable_web_page_preview (Optional[bool]): Disables link previews for links in this message. disable_notification (Optional[bool]): Sends the message silently. iOS users will not receive a notification, Android users will receive a notification with no sound. reply_to_message_id (Optional[int]): If the message is a reply, ID of the original message. reply_markup (Optional[:class:`telegram.ReplyMarkup`]): Additional interface options. A JSON-serialized object for an inline keyboard, custom reply keyboard, instructions to remove reply keyboard or to force a reply from the user. timeout (Optional[int|float]): If this value is specified, use it as the read timeout from the server (instead of the one specified during creation of the connection pool). **kwargs (dict): Arbitrary keyword arguments. Returns: :class:`telegram.Message`: On success, the sent message is returned. Raises: :class:`telegram.TelegramError` """ url = '{0}/sendMessage'.format(self.base_url) data = {'chat_id': chat_id, 'text': text} if parse_mode: data['parse_mode'] = parse_mode if disable_web_page_preview: data['disable_web_page_preview'] = disable_web_page_preview return url, data @log def delete_message(self, chat_id, message_id, timeout=None, **kwargs): """Use this method to delete a message. A message can only be deleted if it was sent less than 48 hours ago. Any such recently sent outgoing message may be deleted. Additionally, if the bot is an administrator in a group chat, it can delete any message. If the bot is an administrator in a supergroup, it can delete messages from any other user and service messages about people joining or leaving the group (other types of service messages may only be removed by the group creator). In channels, bots can only remove their own messages. Args: chat_id (int|str): Unique identifier for the target chat or username of the target channel (in the format @channelusername). message_id (int): Unique message identifier. timeout (Optional[int|float]): If this value is specified, use it as the read timeout from the server (instead of the one specified during creation of the connection pool). **kwargs (dict): Arbitrary keyword arguments. Returns: bool: On success, `True` is returned. Raises: :class:`telegram.TelegramError` """ url = '{0}/deleteMessage'.format(self.base_url) data = {'chat_id': chat_id, 'message_id': message_id} result = self._request.post(url, data, timeout=timeout) return result @log @message def forward_message(self, chat_id, from_chat_id, message_id, disable_notification=False, timeout=None, **kwargs): """Use this method to forward messages of any kind. Args: chat_id (int|str): Unique identifier for the message recipient - Chat id. from_chat_id (int|str): Unique identifier for the chat where the original message was sent - Chat id. message_id (int): Unique message identifier. disable_notification (Optional[bool]): Sends the message silently. iOS users will not receive a notification, Android users will receive a notification with no sound. timeout (Optional[int|float]): If this value is specified, use it as the read timeout from the server (instead of the one specified during creation of the connection pool). **kwargs (dict): Arbitrary keyword arguments. Returns: :class:`telegram.Message`: On success, instance representing the message forwarded. Raises: :class:`telegram.TelegramError` """ url = '{0}/forwardMessage'.format(self.base_url) data = {} if chat_id: data['chat_id'] = chat_id if from_chat_id: data['from_chat_id'] = from_chat_id if message_id: data['message_id'] = message_id return url, data @log @message def send_photo(self, chat_id, photo, caption=None, disable_notification=False, reply_to_message_id=None, reply_markup=None, timeout=20., **kwargs): """Use this method to send photos. Args: chat_id (int|str): Unique identifier for the message recipient - Chat id. photo: Photo to send. You can either pass a file_id as String to resend a photo that is already on the Telegram servers, or upload a new photo using multipart/form-data. caption (Optional[str]): Photo caption (may also be used when resending photos by file_id). disable_notification (Optional[bool]): Sends the message silently. iOS users will not receive a notification, Android users will receive a notification with no sound. reply_to_message_id (Optional[int]): If the message is a reply, ID of the original message. reply_markup (Optional[:class:`telegram.ReplyMarkup`]): Additional interface options. A JSON-serialized object for an inline keyboard, custom reply keyboard, instructions to remove reply keyboard or to force a reply from the user. timeout (Optional[int|float]): Send file timeout (default: 20 seconds). **kwargs (dict): Arbitrary keyword arguments. Returns: :class:`telegram.Message`: On success, instance representing the message posted. Raises: :class:`telegram.TelegramError` """ url = '{0}/sendPhoto'.format(self.base_url) data = {'chat_id': chat_id, 'photo': photo} if caption: data['caption'] = caption return url, data @log @message def send_audio(self, chat_id, audio, duration=None, performer=None, title=None, caption=None, disable_notification=False, reply_to_message_id=None, reply_markup=None, timeout=20., **kwargs): """Use this method to send audio files, if you want Telegram clients to display them in the music player. Your audio must be in an .mp3 format. On success, the sent Message is returned. Bots can currently send audio files of up to 50 MB in size, this limit may be changed in the future. For backward compatibility, when both fields title and description are empty and mime-type of the sent file is not "audio/mpeg", file is sent as playable voice message. In this case, your audio must be in an .ogg file encoded with OPUS. This will be removed in the future. You need to use sendVoice method instead. Args: chat_id (int|str): Unique identifier for the message recipient - Chat id. audio: Audio file to send. You can either pass a file_id as String to resend an audio that is already on the Telegram servers, or upload a new audio file using multipart/form-data. duration (Optional[int]): Duration of sent audio in seconds. performer (Optional[str]): Performer of sent audio. title (Optional[str]): Title of sent audio. caption (Optional[str]): Audio caption disable_notification (Optional[bool]): Sends the message silently. iOS users will not receive a notification, Android users will receive a notification with no sound. reply_to_message_id (Optional[int]): If the message is a reply, ID of the original message. reply_markup (Optional[:class:`telegram.ReplyMarkup`]): Additional interface options. A JSON-serialized object for an inline keyboard, custom reply keyboard, instructions to remove reply keyboard or to force a reply from the user. timeout (Optional[int|float]): Send file timeout (default: 20 seconds). **kwargs (dict): Arbitrary keyword arguments. Returns: :class:`telegram.Message`: On success, instance representing the message posted. Raises: :class:`telegram.TelegramError` """ url = '{0}/sendAudio'.format(self.base_url) data = {'chat_id': chat_id, 'audio': audio} if duration: data['duration'] = duration if performer: data['performer'] = performer if title: data['title'] = title if caption: data['caption'] = caption return url, data @log @message def send_document(self, chat_id, document, filename=None, caption=None, disable_notification=False, reply_to_message_id=None, reply_markup=None, timeout=20., **kwargs): """Use this method to send general files. Args: chat_id (int|str): Unique identifier for the message recipient - Chat id. document: File to send. You can either pass a file_id as String to resend a file that is already on the Telegram servers, or upload a new file using multipart/form-data. filename (Optional[str]): File name that shows in telegram message (it is useful when you send file generated by temp module, for example). caption (Optional[str]): Document caption (may also be used when resending documents by file_id), 0-200 characters. disable_notification (Optional[bool]): Sends the message silently. iOS users will not receive a notification, Android users will receive a notification with no sound. reply_to_message_id (Optional[int]): If the message is a reply, ID of the original message. reply_markup (Optional[:class:`telegram.ReplyMarkup`]): Additional interface options. A JSON-serialized object for an inline keyboard, custom reply keyboard, instructions to remove reply keyboard or to force a reply from the user. timeout (Optional[int|float]): Send file timeout (default: 20 seconds). **kwargs (dict): Arbitrary keyword arguments. Returns: :class:`telegram.Message`: On success, instance representing the message posted. Raises: :class:`telegram.TelegramError` """ url = '{0}/sendDocument'.format(self.base_url) data = {'chat_id': chat_id, 'document': document} if filename: data['filename'] = filename if caption: data['caption'] = caption return url, data @log @message def send_sticker(self, chat_id, sticker, disable_notification=False, reply_to_message_id=None, reply_markup=None, timeout=None, **kwargs): """Use this method to send .webp stickers. Args: chat_id (int|str): Unique identifier for the message recipient - Chat id. sticker: Sticker to send. You can either pass a file_id as String to resend a sticker that is already on the Telegram servers, or upload a new sticker using multipart/form-data. disable_notification (Optional[bool]): Sends the message silently. iOS users will not receive a notification, Android users will receive a notification with no sound. reply_to_message_id (Optional[int]): If the message is a reply, ID of the original message. reply_markup (Optional[:class:`telegram.ReplyMarkup`]): Additional interface options. A JSON-serialized object for an inline keyboard, custom reply keyboard, instructions to remove reply keyboard or to force a reply from the user. timeout (Optional[int|float]): If this value is specified, use it as the read timeout from the server (instead of the one specified during creation of the connection pool). **kwargs (dict): Arbitrary keyword arguments. Returns: :class:`telegram.Message`: On success, instance representing the message posted. Raises: :class:`telegram.TelegramError` """ url = '{0}/sendSticker'.format(self.base_url) data = {'chat_id': chat_id, 'sticker': sticker} return url, data @log @message def send_video(self, chat_id, video, duration=None, caption=None, disable_notification=False, reply_to_message_id=None, reply_markup=None, timeout=20., **kwargs): """Use this method to send video files, Telegram clients support mp4 videos (other formats may be sent as telegram.Document). Args: chat_id (int|str): Unique identifier for the message recipient - Chat id. video: Video to send. You can either pass a file_id as String to resend a video that is already on the Telegram servers, or upload a new video file using multipart/form-data. duration (Optional[int]): Duration of sent video in seconds. caption (Optional[str]): Video caption (may also be used when resending videos by file_id). disable_notification (Optional[bool]): Sends the message silently. iOS users will not receive a notification, Android users will receive a notification with no sound. reply_to_message_id (Optional[int]): If the message is a reply, ID of the original message. reply_markup (Optional[:class:`telegram.ReplyMarkup`]): Additional interface options. A JSON-serialized object for an inline keyboard, custom reply keyboard, instructions to remove reply keyboard or to force a reply from the user. timeout (Optional[int|float]): Send file timeout (default: 20 seconds). Returns: :class:`telegram.Message`: On success, instance representing the message posted. Raises: :class:`telegram.TelegramError` """ url = '{0}/sendVideo'.format(self.base_url) data = {'chat_id': chat_id, 'video': video} if duration: data['duration'] = duration if caption: data['caption'] = caption return url, data @log @message def send_voice(self, chat_id, voice, duration=None, caption=None, disable_notification=False, reply_to_message_id=None, reply_markup=None, timeout=20., **kwargs): """Use this method to send audio files, if you want Telegram clients to display the file as a playable voice message. For this to work, your audio must be in an .ogg file encoded with OPUS (other formats may be sent as Audio or Document). On success, the sent Message is returned. Bots can currently send audio files of up to 50 MB in size, this limit may be changed in the future. Args: chat_id (int|str): Unique identifier for the message recipient - Chat id. voice: Audio file to send. You can either pass a file_id as String to resend an audio that is already on the Telegram servers, or upload a new audio file using multipart/form-data. duration (Optional[int]): Duration of sent audio in seconds. caption (Optional[str]): Voice caption disable_notification (Optional[bool]): Sends the message silently. iOS users will not receive a notification, Android users will receive a notification with no sound. reply_to_message_id (Optional[int]): If the message is a reply, ID of the original message. reply_markup (Optional[:class:`telegram.ReplyMarkup`]): Additional interface options. A JSON-serialized object for an inline keyboard, custom reply keyboard, instructions to remove reply keyboard or to force a reply from the user. timeout (Optional[int|float]): Send file timeout (default: 20 seconds). **kwargs (dict): Arbitrary keyword arguments. Returns: :class:`telegram.Message`: On success, instance representing the message posted. Raises: :class:`telegram.TelegramError` """ url = '{0}/sendVoice'.format(self.base_url) data = {'chat_id': chat_id, 'voice': voice} if duration: data['duration'] = duration if caption: data['caption'] = caption return url, data @log @message def send_video_note(self, chat_id, video_note, duration=None, length=None, disable_notification=False, reply_to_message_id=None, reply_markup=None, timeout=20., **kwargs): """As of v.4.0, Telegram clients support rounded square mp4 videos of up to 1 minute long. Use this method to send video messages Args: chat_id (int|str): Unique identifier for the message recipient - Chat id. video_note (InputFile|str): Video note to send. Pass a file_id as String to send a video note that exists on the Telegram servers (recommended) or upload a new video. Sending video notes by a URL is currently unsupported duration (Optional[int]): Duration of sent audio in seconds. length (Optional[int]): Video width and height disable_notification (Optional[bool]): Sends the message silently. iOS users will not receive a notification, Android users will receive a notification with no sound. reply_to_message_id (Optional[int]): If the message is a reply, ID of the original message. reply_markup (Optional[:class:`telegram.ReplyMarkup`]): Additional interface options. A JSON-serialized object for an inline keyboard, custom reply keyboard, instructions to remove reply keyboard or to force a reply from the user. timeout (Optional[int|float]): Send file timeout (default: 20 seconds). **kwargs (dict): Arbitrary keyword arguments. Returns: :class:`telegram.Message`: On success, instance representing the message posted. Raises: :class:`telegram.TelegramError` """ url = '{0}/sendVideoNote'.format(self.base_url) data = {'chat_id': chat_id, 'video_note': video_note} if duration is not None: data['duration'] = duration if length is not None: data['length'] = length return url, data @log @message def send_location(self, chat_id, latitude, longitude, disable_notification=False, reply_to_message_id=None, reply_markup=None, timeout=None, **kwargs): """Use this method to send point on the map. Args: chat_id (int|str): Unique identifier for the message recipient - Chat id. latitude (float): Latitude of location. longitude (float): Longitude of location. disable_notification (Optional[bool]): Sends the message silently. iOS users will not receive a notification, Android users will receive a notification with no sound. reply_to_message_id (Optional[int]): If the message is a reply, ID of the original message. reply_markup (Optional[:class:`telegram.ReplyMarkup`]): Additional interface options. A JSON-serialized object for an inline keyboard, custom reply keyboard, instructions to remove reply keyboard or to force a reply from the user. timeout (Optional[int|float]): If this value is specified, use it as the read timeout from the server (instead of the one specified during creation of the connection pool). **kwargs (dict): Arbitrary keyword arguments. Returns: :class:`telegram.Message`: On success, instance representing the message posted. Raises: :class:`telegram.TelegramError` """ url = '{0}/sendLocation'.format(self.base_url) data = {'chat_id': chat_id, 'latitude': latitude, 'longitude': longitude} return url, data @log @message def send_venue(self, chat_id, latitude, longitude, title, address, foursquare_id=None, disable_notification=False, reply_to_message_id=None, reply_markup=None, timeout=None, **kwargs): """ Use this method to send information about a venue. Args: chat_id (int|str): Unique identifier for the target chat or username of the target channel (in the format @channelusername). latitude (float): Latitude of the venue. longitude (float): Longitude of the venue. title (str): Name of the venue. address (str): Address of the venue. foursquare_id (Optional[str]): Foursquare identifier of the venue. disable_notification (Optional[bool]): Sends the message silently. iOS users will not receive a notification, Android users will receive a notification with no sound. reply_to_message_id (Optional[int]): If the message is a reply, ID of the original message. reply_markup (Optional[:class:`telegram.ReplyMarkup`]): Additional interface options. A JSON-serialized object for an inline keyboard, custom reply keyboard, instructions to remove reply keyboard or to force a reply from the user. timeout (Optional[int|float]): If this value is specified, use it as the read timeout from the server (instead of the one specified during creation of the connection pool). **kwargs (dict): Arbitrary keyword arguments. Returns: :class:`telegram.Message`: On success, instance representing the message posted. Raises: :class:`telegram.TelegramError` """ url = '{0}/sendVenue'.format(self.base_url) data = { 'chat_id': chat_id, 'latitude': latitude, 'longitude': longitude, 'address': address, 'title': title } if foursquare_id: data['foursquare_id'] = foursquare_id return url, data @log @message def send_contact(self, chat_id, phone_number, first_name, last_name=None, disable_notification=False, reply_to_message_id=None, reply_markup=None, timeout=None, **kwargs): """ Use this method to send phone contacts. Args: chat_id (int|str): Unique identifier for the target chat or username of the target channel (in the format @channelusername). phone_number (str): Contact's phone number. first_name (str): Contact's first name. last_name (Optional[str]): Contact's last name. disable_notification (Optional[bool]): Sends the message silently. iOS users will not receive a notification, Android users will receive a notification with no sound. reply_to_message_id (Optional[int]): If the message is a reply, ID of the original message. reply_markup (Optional[:class:`telegram.ReplyMarkup`]): Additional interface options. A JSON-serialized object for an inline keyboard, custom reply keyboard, instructions to remove reply keyboard or to force a reply from the user. timeout (Optional[int|float]): If this value is specified, use it as the read timeout from the server (instead of the one specified during creation of the connection pool). **kwargs (dict): Arbitrary keyword arguments. Returns: :class:`telegram.Message`: On success, instance representing the message posted. Raises: :class:`telegram.TelegramError` """ url = '{0}/sendContact'.format(self.base_url) data = {'chat_id': chat_id, 'phone_number': phone_number, 'first_name': first_name} if last_name: data['last_name'] = last_name return url, data @log @message def send_game(self, chat_id, game_short_name, disable_notification=False, reply_to_message_id=None, reply_markup=None, timeout=None, **kwargs): """Use this method to send a game. Args: chat_id (int|str): Unique identifier for the target chat or username of the target channel (in the format @channelusername). game_short_name (str): Short name of the game, serves as the unique identifier for the game. disable_notification (Optional[bool]): Sends the message silently. iOS users will not receive a notification, Android users will receive a notification with no sound. reply_to_message_id (Optional[int]): If the message is a reply, ID of the original message. reply_markup (Optional[:class:`telegram.ReplyMarkup`]): Additional interface options. A JSON-serialized object for an inline keyboard, custom reply keyboard, instructions to remove reply keyboard or to force a reply from the user. timeout (Optional[int|float]): If this value is specified, use it as the read timeout from the server (instead of the one specified during creation of the connection pool). **kwargs (dict): Arbitrary keyword arguments. Returns: :class:`telegram.Message`: On success, the sent message is returned. Raises: :class:`telegram.TelegramError` """ url = '{0}/sendGame'.format(self.base_url) data = {'chat_id': chat_id, 'game_short_name': game_short_name} return url, data @log def send_chat_action(self, chat_id, action, timeout=None, **kwargs): """Use this method when you need to tell the user that something is happening on the bot's side. The status is set for 5 seconds or less (when a message arrives from your bot, Telegram clients clear its typing status). Args: chat_id (int|str): Unique identifier for the message recipient - Chat id. action(:class:`telegram.ChatAction`|str): Type of action to broadcast. Choose one, depending on what the user is about to receive: - ChatAction.TYPING for text messages, - ChatAction.UPLOAD_PHOTO for photos, - ChatAction.UPLOAD_VIDEO for videos, - ChatAction.UPLOAD_AUDIO for audio files, - ChatAction.UPLOAD_DOCUMENT for general files, - ChatAction.FIND_LOCATION for location data. timeout (Optional[int|float]): If this value is specified, use it as the read timeout from the server (instead of the one specified during creation of the connection pool). **kwargs (dict): Arbitrary keyword arguments. """ url = '{0}/sendChatAction'.format(self.base_url) data = {'chat_id': chat_id, 'action': action} result = self._request.post(url, data, timeout=timeout) return result @log def answer_inline_query(self, inline_query_id, results, cache_time=300, is_personal=None, next_offset=None, switch_pm_text=None, switch_pm_parameter=None, timeout=None, **kwargs): """Use this method to send answers to an inline query. No more than 50 results per query are allowed. Args: inline_query_id (str): Unique identifier for the answered query. results (list[:class:`telegram.InlineQueryResult`]): A list of results for the inline query. cache_time (Optional[int]): The maximum amount of time the result of the inline query may be cached on the server. is_personal (Optional[bool]): Pass `True`, if results may be cached on the server side only for the user that sent the query. By default, results may be returned to any user who sends the same query. next_offset (Optional[str]): Pass the offset that a client should send in the next query with the same text to receive more results. Pass an empty string if there are no more results or if you don't support pagination. Offset length can't exceed 64 bytes. switch_pm_text (Optional[str]): If passed, clients will display a button with specified text that switches the user to a private chat with the bot and sends the bot a start message with the parameter switch_pm_parameter. switch_pm_parameter (Optional[str]): Parameter for the start message sent to the bot when user presses the switch button. timeout (Optional[int|float]): If this value is specified, use it as the read timeout from the server (instead of the one specified during creation of the connection pool). **kwargs (dict): Arbitrary keyword arguments. Returns: bool: On success, `True` is returned. Raises: :class:`telegram.TelegramError` """ url = '{0}/answerInlineQuery'.format(self.base_url) results = [res.to_dict() for res in results] data = {'inline_query_id': inline_query_id, 'results': results} if cache_time or cache_time == 0: data['cache_time'] = cache_time if is_personal: data['is_personal'] = is_personal if next_offset is not None: data['next_offset'] = next_offset if switch_pm_text: data['switch_pm_text'] = switch_pm_text if switch_pm_parameter: data['switch_pm_parameter'] = switch_pm_parameter result = self._request.post(url, data, timeout=timeout) return result @log def get_user_profile_photos(self, user_id, offset=None, limit=100, timeout=None, **kwargs): """Use this method to get a list of profile pictures for a user. Args: user_id (int): Unique identifier of the target user. offset (Optional[int]): Sequential number of the first photo to be returned. By default, all photos are returned. limit (Optional[int]): Limits the number of photos to be retrieved. Values between 1-100 are accepted. Defaults to 100. timeout (Optional[int|float]): If this value is specified, use it as the read timeout from the server (instead of the one specified during creation of the connection pool). **kwargs (dict): Arbitrary keyword arguments. Returns: list[:class:`telegram.UserProfilePhotos`]: A list of user profile photos objects is returned. Raises: :class:`telegram.TelegramError` """ url = '{0}/getUserProfilePhotos'.format(self.base_url) data = {'user_id': user_id} if offset: data['offset'] = offset if limit: data['limit'] = limit result = self._request.post(url, data, timeout=timeout) return UserProfilePhotos.de_json(result, self) @log def get_file(self, file_id, timeout=None, **kwargs): """Use this method to get basic info about a file and prepare it for downloading. For the moment, bots can download files of up to 20MB in size. Args: file_id (str): File identifier to get info about. timeout (Optional[int|float]): If this value is specified, use it as the read timeout from the server (instead of the one specified during creation of the connection pool). **kwargs (dict): Arbitrary keyword arguments. Returns: :class:`telegram.File`: On success, a :class:`telegram.File` object is returned. Raises: :class:`telegram.TelegramError` """ url = '{0}/getFile'.format(self.base_url) data = {'file_id': file_id} result = self._request.post(url, data, timeout=timeout) if result.get('file_path'): result['file_path'] = '%s/%s' % (self.base_file_url, result['file_path']) return File.de_json(result, self) @log def kick_chat_member(self, chat_id, user_id, timeout=None, **kwargs): """Use this method to kick a user from a group or a supergroup. In the case of supergroups, the user will not be able to return to the group on their own using invite links, etc., unless unbanned first. The bot must be an administrator in the group for this to work. Args: chat_id (int|str): Unique identifier for the target group or username of the target supergroup (in the format @supergroupusername). user_id (int|str): Unique identifier of the target user. timeout (Optional[int|float]): If this value is specified, use it as the read timeout from the server (instead of the one specified during creation of the connection pool). **kwargs (dict): Arbitrary keyword arguments. Returns: bool: On success, `True` is returned. Raises: :class:`telegram.TelegramError` """ url = '{0}/kickChatMember'.format(self.base_url) data = {'chat_id': chat_id, 'user_id': user_id} result = self._request.post(url, data, timeout=timeout) return result @log def unban_chat_member(self, chat_id, user_id, timeout=None, **kwargs): """Use this method to unban a previously kicked user in a supergroup. The user will not return to the group automatically, but will be able to join via link, etc. The bot must be an administrator in the group for this to work. Args: chat_id (int|str): Unique identifier for the target group or username of the target supergroup (in the format @supergroupusername). user_id (int|str): Unique identifier of the target user. timeout (Optional[int|float]): If this value is specified, use it as the read timeout from the server (instead of the one specified during creation of the connection pool). **kwargs (dict): Arbitrary keyword arguments. Returns: bool: On success, `True` is returned. Raises: :class:`telegram.TelegramError` """ url = '{0}/unbanChatMember'.format(self.base_url) data = {'chat_id': chat_id, 'user_id': user_id} result = self._request.post(url, data, timeout=timeout) return result @log def answer_callback_query(self, callback_query_id, text=None, show_alert=False, url=None, cache_time=None, timeout=None, **kwargs): """Use this method to send answers to callback queries sent from inline keyboards. The answer will be displayed to the user as a notification at the top of the chat screen or as an alert. Args: callback_query_id (str): Unique identifier for the query to be answered. text (Optional[str]): Text of the notification. If not specified, nothing will be shown to the user. show_alert (Optional[bool]): If `True`, an alert will be shown by the client instead of a notification at the top of the chat screen. Defaults to `False`. url (Optional[str]): URL that will be opened by the user's client. cache_time (Optional[int]): The maximum amount of time in seconds that the result of the callback query may be cached client-side. Telegram apps will support caching starting in version 3.14. Defaults to 0. timeout (Optional[int|float]): If this value is specified, use it as the read timeout from the server (instead of the one specified during creation of the connection pool). **kwargs (dict): Arbitrary keyword arguments. Returns: bool: On success, `True` is returned. Raises: :class:`telegram.TelegramError` """ url_ = '{0}/answerCallbackQuery'.format(self.base_url) data = {'callback_query_id': callback_query_id} if text: data['text'] = text if show_alert: data['show_alert'] = show_alert if url: data['url'] = url if cache_time is not None: data['cache_time'] = cache_time result = self._request.post(url_, data, timeout=timeout) return result @log @message def edit_message_text(self, text, chat_id=None, message_id=None, inline_message_id=None, parse_mode=None, disable_web_page_preview=None, reply_markup=None, timeout=None, **kwargs): """Use this method to edit text messages sent by the bot or via the bot (for inline bots). Args: text (str): New text of the message. chat_id (Optional[int|str]): Required if inline_message_id is not specified. Unique identifier for the target chat or username of the target channel (in the format @channelusername). message_id (Optional[int]): Required if inline_message_id is not specified. Unique identifier of the sent message. inline_message_id (Optional[str]): Required if chat_id and message_id are not specified. Identifier of the inline message. parse_mode (:class:`telegram.ParseMode`|str): Send Markdown or HTML, if you want Telegram apps to show bold, italic, fixed-width text or inline URLs in your bot's message. disable_web_page_preview (bool): Disables link previews for links in this message. reply_markup (Optional[:class:`telegram.ReplyMarkup`]): Additional interface options. A JSON-serialized object for an inline keyboard, custom reply keyboard, instructions to remove reply keyboard or to force a reply from the user. timeout (Optional[int|float]): If this value is specified, use it as the read timeout from the server (instead of the one specified during creation of the connection pool). **kwargs (dict): Arbitrary keyword arguments. Returns: :class:`telegram.Message`: On success, if edited message is sent by the bot, the edited message is returned, otherwise `True` is returned. Raises: :class:`telegram.TelegramError` """ url = '{0}/editMessageText'.format(self.base_url) data = {'text': text} if chat_id: data['chat_id'] = chat_id if message_id: data['message_id'] = message_id if inline_message_id: data['inline_message_id'] = inline_message_id if parse_mode: data['parse_mode'] = parse_mode if disable_web_page_preview: data['disable_web_page_preview'] = disable_web_page_preview return url, data @log @message def edit_message_caption(self, chat_id=None, message_id=None, inline_message_id=None, caption=None, reply_markup=None, timeout=None, **kwargs): """Use this method to edit captions of messages sent by the bot or via the bot (for inline bots). Args: chat_id (Optional[int|str]): Required if inline_message_id is not specified. Unique identifier for the target chat or username of the target channel (in the format @channelusername). message_id (Optional[int]): Required if inline_message_id is not specified. Unique identifier of the sent message. inline_message_id (Optional[str]): Required if chat_id and message_id are not specified. Identifier of the inline message. caption (Optional[str]): New caption of the message. reply_markup (Optional[:class:`telegram.InlineKeyboardMarkup`]): A JSON-serialized object for an inline keyboard. timeout (Optional[int|float]): If this value is specified, use it as the read timeout from the server (instead of the one specified during creation of the connection pool). **kwargs (dict): Arbitrary keyword arguments. Returns: :class:`telegram.Message`: On success, if edited message is sent by the bot, the edited message is returned, otherwise `True` is returned. Raises: :class:`telegram.TelegramError` """ if inline_message_id is None and (chat_id is None or message_id is None): raise TelegramError( 'editMessageCaption: Both chat_id and message_id are required when ' 'inline_message_id is not specified') url = '{0}/editMessageCaption'.format(self.base_url) data = {} if caption: data['caption'] = caption if chat_id: data['chat_id'] = chat_id if message_id: data['message_id'] = message_id if inline_message_id: data['inline_message_id'] = inline_message_id return url, data @log @message def edit_message_reply_markup(self, chat_id=None, message_id=None, inline_message_id=None, reply_markup=None, timeout=None, **kwargs): """Use this method to edit only the reply markup of messages sent by the bot or via the bot (for inline bots). Args: chat_id (Optional[int|str]): Required if inline_message_id is not specified. Unique identifier for the target chat or username of the target channel (in the format @channelusername). message_id (Optional[int]): Required if inline_message_id is not specified. Unique identifier of the sent message. inline_message_id (Optional[str]): Required if chat_id and message_id are not specified. Identifier of the inline message. reply_markup (Optional[:class:`telegram.InlineKeyboardMarkup`]): A JSON-serialized object for an inline keyboard. timeout (Optional[int|float]): If this value is specified, use it as the read timeout from the server (instead of the one specified during creation of the connection pool). **kwargs (dict): Arbitrary keyword arguments. Returns: :class:`telegram.Message`: On success, if edited message is sent by the bot, the edited message is returned, otherwise `True` is returned. Raises: :class:`telegram.TelegramError` """ if inline_message_id is None and (chat_id is None or message_id is None): raise TelegramError( 'editMessageCaption: Both chat_id and message_id are required when ' 'inline_message_id is not specified') url = '{0}/editMessageReplyMarkup'.format(self.base_url) data = {} if chat_id: data['chat_id'] = chat_id if message_id: data['message_id'] = message_id if inline_message_id: data['inline_message_id'] = inline_message_id return url, data @log def get_updates(self, offset=None, limit=100, timeout=0, network_delay=None, read_latency=2., allowed_updates=None, **kwargs): """Use this method to receive incoming updates using long polling. Args: offset (Optional[int]): Identifier of the first update to be returned. Must be greater by one than the highest among the identifiers of previously received updates. By default, updates starting with the earliest unconfirmed update are returned. An update is considered confirmed as soon as getUpdates is called with an offset higher than its update_id. limit (Optional[int]): Limits the number of updates to be retrieved. Values between 1-100 are accepted. Defaults to 100. allowed_updates (Optional[list[str]]): List the types of updates you want your bot to receive. For example, specify ``["message", "edited_channel_post", "callback_query"]`` to only receive updates of these types. See ``telegram.Update`` for a complete list of available update types. Specify an empty list to receive all updates regardless of type (default). If not specified, the previous setting will be used. Please note that this parameter doesn't affect updates created before the call to the setWebhook, so unwanted updates may be received for a short period of time. timeout (Optional[int]): Timeout in seconds for long polling. Defaults to 0, i.e. usual short polling. Be careful not to set this timeout too high, as the connection might be dropped and there's no way of knowing it immediately (so most likely the failure will be detected after the timeout had passed). network_delay: Deprecated. Will be honoured as `read_latency` for a while but will be removed in the future. read_latency (Optional[float|int]): Grace time in seconds for receiving the reply from server. Will be added to the `timeout` value and used as the read timeout from server (Default: 2). **kwargs (dict): Arbitrary keyword arguments. Notes: The main problem with long polling is that a connection will be dropped and we won't be getting the notification in time for it. For that, we need to use long polling, but not too long as well read latency which is short, but not too short. Long polling improves performance, but if it's too long and the connection is dropped on many cases we won't know the connection dropped before the long polling timeout and the read latency time had passed. If you experience connection timeouts, you should tune these settings. Returns: list[:class:`telegram.Update`] Raises: :class:`telegram.TelegramError` """ url = '{0}/getUpdates'.format(self.base_url) if network_delay is not None: warnings.warn('network_delay is deprecated, use read_latency instead') read_latency = network_delay data = {'timeout': timeout} if offset: data['offset'] = offset if limit: data['limit'] = limit if allowed_updates is not None: data['allowed_updates'] = allowed_updates # Ideally we'd use an aggressive read timeout for the polling. However, # * Short polling should return within 2 seconds. # * Long polling poses a different problem: the connection might have been dropped while # waiting for the server to return and there's no way of knowing the connection had been # dropped in real time. result = self._request.post(url, data, timeout=float(read_latency) + float(timeout)) if result: self.logger.debug('Getting updates: %s', [u['update_id'] for u in result]) else: self.logger.debug('No new updates found.') return [Update.de_json(u, self) for u in result] @log def set_webhook(self, url=None, certificate=None, timeout=None, max_connections=40, allowed_updates=None, **kwargs): """Use this method to specify a url and receive incoming updates via an outgoing webhook. Whenever there is an update for the bot, we will send an HTTPS POST request to the specified url, containing a JSON-serialized Update. In case of an unsuccessful request, we will give up after a reasonable amount of attempts. Args: url (str): HTTPS url to send updates to. Use an empty string to remove webhook integration. certificate (file): Upload your public key certificate so that the root certificate in use can be checked. max_connections (Optional[int]): Maximum allowed number of simultaneous HTTPS connections to the webhook for update delivery, 1-100. Defaults to 40. Use lower values to limit the load on your bot's server, and higher values to increase your bot's throughput. allowed_updates (Optional[list[str]]): List the types of updates you want your bot to receive. For example, specify ``["message", "edited_channel_post", "callback_query"]`` to only receive updates of these types. See ``telegram.Update`` for a complete list of available update types. Specify an empty list to receive all updates regardless of type (default). If not specified, the previous setting will be used. Please note that this parameter doesn't affect updates created before the call to the setWebhook, so unwanted updates may be received for a short period of time. timeout (Optional[int|float]): If this value is specified, use it as the read timeout from the server (instead of the one specified during creation of the connection pool). **kwargs (dict): Arbitrary keyword arguments. Returns: bool: On success, `True` is returned. Raises: :class:`telegram.TelegramError` """ url_ = '{0}/setWebhook'.format(self.base_url) # Backwards-compatibility: 'url' used to be named 'webhook_url' if 'webhook_url' in kwargs: warnings.warn("The 'webhook_url' parameter has been renamed to 'url' in accordance " "with the API") if url is not None: raise ValueError("The parameters 'url' and 'webhook_url' are mutually exclusive") url = kwargs['webhook_url'] del kwargs['webhook_url'] data = {} if url is not None: data['url'] = url if certificate: data['certificate'] = certificate if max_connections is not None: data['max_connections'] = max_connections if allowed_updates is not None: data['allowed_updates'] = allowed_updates result = self._request.post(url_, data, timeout=timeout) return result @log def delete_webhook(self, timeout=None, **kwargs): """Use this method to remove webhook integration if you decide to switch back to getUpdates. Returns True on success. Requires no parameters. Args: timeout (Optional[float]): If this value is specified, use it as the definitive timeout (in seconds) for urlopen() operations. **kwargs (dict): Arbitrary keyword arguments. Returns: bool: On success, `True` is returned. Raises: :class:`telegram.TelegramError` """ url = '{0}/deleteWebhook'.format(self.base_url) data = {} result = self._request.post(url, data, timeout=timeout) return result @log def leave_chat(self, chat_id, timeout=None, **kwargs): """Use this method for your bot to leave a group, supergroup or channel. Args: chat_id (int|str): Unique identifier for the target chat or username of the target channel (in the format @channelusername). timeout (Optional[int|float]): If this value is specified, use it as the read timeout from the server (instead of the one specified during creation of the connection pool). **kwargs (dict): Arbitrary keyword arguments. Returns: bool: On success, `True` is returned. Raises: :class:`telegram.TelegramError` """ url = '{0}/leaveChat'.format(self.base_url) data = {'chat_id': chat_id} result = self._request.post(url, data, timeout=timeout) return result @log def get_chat(self, chat_id, timeout=None, **kwargs): """Use this method to get up to date information about the chat (current name of the user for one-on-one conversations, current username of a user, group or channel, etc.). Args: chat_id (int|str): Unique identifier for the target chat or username of the target channel (in the format @channelusername). timeout (Optional[int|float]): If this value is specified, use it as the read timeout from the server (instead of the one specified during creation of the connection pool). **kwargs (dict): Arbitrary keyword arguments. Returns: :class:`telegram.Chat`: On success, :class:`telegram.Chat` is returned. Raises: :class:`telegram.TelegramError` """ url = '{0}/getChat'.format(self.base_url) data = {'chat_id': chat_id} result = self._request.post(url, data, timeout=timeout) return Chat.de_json(result, self) @log def get_chat_administrators(self, chat_id, timeout=None, **kwargs): """Use this method to get a list of administrators in a chat. On success, returns an Array of ChatMember objects that contains information about all chat administrators except other bots. If the chat is a group or a supergroup and no administrators were appointed, only the creator will be returned. Args: chat_id (int|str): Unique identifier for the target chat or username of the target channel (in the format @channelusername). timeout (Optional[int|float]): If this value is specified, use it as the read timeout from the server (instead of the one specified during creation of the connection pool). **kwargs (dict): Arbitrary keyword arguments. Returns: list[:class:`telegram.ChatMember`]: A list of chat member objects. Raises: :class:`telegram.TelegramError` """ url = '{0}/getChatAdministrators'.format(self.base_url) data = {'chat_id': chat_id} result = self._request.post(url, data, timeout=timeout) return [ChatMember.de_json(x, self) for x in result] @log def get_chat_members_count(self, chat_id, timeout=None, **kwargs): """Use this method to get the number of members in a chat. Args: chat_id (int|str): Unique identifier for the target chat or username of the target channel (in the format @channelusername). timeout (Optional[int|float]): If this value is specified, use it as the read timeout from the server (instead of the one specified during creation of the connection pool). **kwargs (dict): Arbitrary keyword arguments. Returns: int: On success, an `int` is returned. Raises: :class:`telegram.TelegramError` """ url = '{0}/getChatMembersCount'.format(self.base_url) data = {'chat_id': chat_id} result = self._request.post(url, data, timeout=timeout) return result @log def get_chat_member(self, chat_id, user_id, timeout=None, **kwargs): """Use this method to get information about a member of a chat. Args: chat_id (int|str): Unique identifier for the target chat or username of the target channel (in the format @channelusername). user_id (int): Unique identifier of the target user. timeout (Optional[int|float]): If this value is specified, use it as the read timeout from the server (instead of the one specified during creation of the connection pool). **kwargs (dict): Arbitrary keyword arguments. Returns: :class:`telegram.ChatMember`: On success, chat member object is returned. Raises: :class:`telegram.TelegramError` """ url = '{0}/getChatMember'.format(self.base_url) data = {'chat_id': chat_id, 'user_id': user_id} result = self._request.post(url, data, timeout=timeout) return ChatMember.de_json(result, self) def get_webhook_info(self, timeout=None, **kwargs): """Use this method to get current webhook status. If the bot is using getUpdates, will return an object with the url field empty. Args: timeout (Optional[int|float]): If this value is specified, use it as the read timeout from the server (instead of the one specified during creation of the connection pool). **kwargs (dict): Arbitrary keyword arguments. Returns: :class: `telegram.WebhookInfo` """ url = '{0}/getWebhookInfo'.format(self.base_url) data = {} result = self._request.post(url, data, timeout=timeout) return WebhookInfo.de_json(result, self) @log @message def set_game_score(self, user_id, score, chat_id=None, message_id=None, inline_message_id=None, edit_message=None, force=None, disable_edit_message=None, timeout=None, **kwargs): """Use this method to set the score of the specified user in a game. Args: user_id (int): User identifier. score (int): New score, must be non-negative. chat_id (Optional[int|str]): Required if `inline_message_id` is not specified. Unique identifier for the target chat (or username of the target channel in the format `@channelusername`) message_id (Optional[int]): Required if inline_message_id is not specified. Identifier of the sent message. inline_message_id (Optional[str]): Required if chat_id and message_id are not specified. Identifier of the inline message. force (Optional[bool]): Pass True, if the high score is allowed to decrease. This can be useful when fixing mistakes or banning cheaters. disable_edit_message (Optional[bool]): Pass True, if the game message should not be automatically edited to include the current scoreboard. edit_message (Optional[bool]): Deprecated. Has the opposite logic for `disable_edit_message`. timeout (Optional[int|float]): If this value is specified, use it as the read timeout from the server (instead of the one specified during creation of the connection pool). **kwargs (dict): Arbitrary keyword arguments. Returns: :class:`telegram.Message` or True: The edited message, or if the message wasn't sent by the bot, True. """ url = '{0}/setGameScore'.format(self.base_url) data = {'user_id': user_id, 'score': score} if chat_id: data['chat_id'] = chat_id if message_id: data['message_id'] = message_id if inline_message_id: data['inline_message_id'] = inline_message_id if force is not None: data['force'] = force if disable_edit_message is not None: data['disable_edit_message'] = disable_edit_message if edit_message is not None: warnings.warn('edit_message is deprecated, use disable_edit_message instead') if disable_edit_message is None: data['edit_message'] = edit_message else: warnings.warn('edit_message is ignored when disable_edit_message is used') return url, data @log def get_game_high_scores(self, user_id, chat_id=None, message_id=None, inline_message_id=None, timeout=None, **kwargs): """Use this method to get data for high score tables. Args: user_id (int): User identifier. chat_id (Optional[int|str]): Required if `inline_message_id` is not specified. Unique identifier for the target chat (or username of the target channel in the format `@channelusername`) message_id (Optional[int]): Required if inline_message_id is not specified. Identifier of the sent message. inline_message_id (Optional[str]): Required if chat_id and message_id are not specified. Identifier of the inline message. timeout (Optional[int|float]): If this value is specified, use it as the read timeout from the server (instead of the one specified during creation of the connection pool). **kwargs (dict): Arbitrary keyword arguments. Returns: list[:class:`telegram.GameHighScore`]: Scores of the specified user and several of his neighbors in a game. """ url = '{0}/setGameScore'.format(self.base_url) data = {'user_id': user_id} if chat_id: data['chat_id'] = chat_id if message_id: data['message_id'] = message_id if inline_message_id: data['inline_message_id'] = inline_message_id result = self._request.post(url, data, timeout=timeout) return [GameHighScore.de_json(hs, self) for hs in result] @log @message def send_invoice(self, chat_id, title, description, payload, provider_token, start_parameter, currency, prices, photo_url=None, photo_size=None, photo_width=None, photo_height=None, need_name=None, need_phone_number=None, need_email=None, need_shipping_address=None, is_flexible=None, disable_notification=False, reply_to_message_id=None, reply_markup=None, timeout=None, **kwargs): """ Use this method to send invoices. Args: chat_id (int|str): Unique identifier for the target private chat title (str): Product name description (str): Product description payload (str): Bot-defined invoice payload, 1-128 bytes. This will not be displayed to the user, use for your internal processes. provider_token (str): Payments provider token, obtained via Botfather start_parameter (str): Unique deep-linking parameter that can be used to generate this invoice when used as a start parameter currency (str): Three-letter ISO 4217 currency code prices (List[:class:`telegram.LabeledPrice`]): Price breakdown, a list of components (e.g. product price, tax, discount, delivery cost, delivery tax, bonus, etc.) photo_url (Optional[str]): URL of the product photo for the invoice. Can be a photo of the goods or a marketing image for a service. People like it better when they see what they are paying for. photo_size (Optional[str]): Photo size photo_width (Optional[int]): Photo width photo_height (Optional[int]): Photo height need_name (Optional[bool]): Pass True, if you require the user's full name to complete the order need_phone_number (Optional[bool]): Pass True, if you require the user's phone number to complete the order need_email (Optional[bool]): Pass True, if you require the user's email to complete the order need_shipping_address (Optional[bool]): Pass True, if you require the user's shipping address to complete the order is_flexible (Optional[bool]): Pass True, if the final price depends on the shipping method disable_notification (Optional[bool]): Sends the message silently. iOS users will not receive a notification, Android users will receive a notification with no sound. reply_to_message_id (Optional[int]): If the message is a reply, ID of the original message. reply_markup (Optional[:class:`telegram.ReplyMarkup`]): Additional interface options. An inlinekeyboard. If empty, one 'Pay total price' button will be shown. If not empty, the first button must be a Pay button. timeout (Optional[int|float]): If this value is specified, use it as the read timeout from the server (instead of the one specified during creation of the connection pool). **kwargs (dict): Arbitrary keyword arguments. Returns: :class:`telegram.Message`: On success, instance representing the message posted. Raises: :class:`telegram.TelegramError` """ url = '{0}/sendInvoice'.format(self.base_url) data = { 'chat_id': chat_id, 'title': title, 'description': description, 'payload': payload, 'provider_token': provider_token, 'start_parameter': start_parameter, 'currency': currency, 'prices': [p.to_dict() for p in prices] } if photo_url is not None: data['photo_url'] = photo_url if photo_size is not None: data['photo_size'] = photo_size if photo_width is not None: data['photo_width'] = photo_width if photo_height is not None: data['photo_height'] = photo_height if need_name is not None: data['need_name'] = need_name if need_phone_number is not None: data['need_phone_number'] = need_phone_number if need_email is not None: data['need_email'] = need_email if need_shipping_address is not None: data['need_shipping_address'] = need_shipping_address if is_flexible is not None: data['is_flexible'] = is_flexible return url, data @log def answer_shipping_query(self, shipping_query_id, ok, shipping_options=None, error_message=None, timeout=None, **kwargs): """ If you sent an invoice requesting a shipping address and the parameter is_flexible was specified, the Bot API will send an Update with a shipping_query field to the bot. Use this method to reply to shipping queries. Args: shipping_query_id (str): Unique identifier for the query to be answered ok (bool): Specify True if delivery to the specified address is possible and False if there are any problems (for example, if delivery to the specified address is not possible) shipping_options (Optional[List[:class:`telegram.ShippingOption`]]): Required if ok is True. A list of available shipping options. error_message (Optional[str]): Required if ok is False. Error message in human readable form that explains why it is impossible to complete the order (e.g. "Sorry, delivery to your desired address is unavailable'). Telegram will display this message to the user. timeout (Optional[int|float]): If this value is specified, use it as the read timeout from the server (instead of the one specified during creation of the connection pool). **kwargs (dict): Arbitrary keyword arguments. Returns: bool: On success, `True` is returned. Raises: :class:`telegram.TelegramError` """ ok = bool(ok) if ok and (shipping_options is None or error_message is not None): raise TelegramError( 'answerShippingQuery: If ok is True, shipping_options ' 'should not be empty and there should not be error_message') if not ok and (shipping_options is not None or error_message is None): raise TelegramError( 'answerShippingQuery: If ok is False, error_message ' 'should not be empty and there should not be shipping_options') url_ = '{0}/answerShippingQuery'.format(self.base_url) data = {'shipping_query_id': shipping_query_id, 'ok': ok} if ok: data['shipping_options'] = [option.to_dict() for option in shipping_options] if error_message is not None: data['error_message'] = error_message result = self._request.post(url_, data, timeout=timeout) return result @log def answer_pre_checkout_query(self, pre_checkout_query_id, ok, error_message=None, timeout=None, **kwargs): """ If you sent an invoice requesting a shipping address and the parameter is_flexible was specified, the Bot API will send an Update with a shipping_query field to the bot. Use this method to reply to shipping queries. Args: pre_checkout_query_id (str): Unique identifier for the query to be answered ok (bool): Specify True if everything is alright (goods are available, etc.) and the bot is ready to proceed with the order. Use False if there are any problems. error_message (Optional[str]): Required if ok is False. Error message in human readable form that explains the reason for failure to proceed with the checkout (e.g. "Sorry, somebody just bought the last of our amazing black T-shirts while you were busy filling out your payment details. Please choose a different color or garment!"). Telegram will display this message to the user. timeout (Optional[int|float]): If this value is specified, use it as the read timeout from the server (instead of the one specified during creation of the connection pool). **kwargs (dict): Arbitrary keyword arguments. Returns: bool: On success, `True` is returned. Raises: :class:`telegram.TelegramError` """ ok = bool(ok) if not (ok ^ (error_message is not None)): raise TelegramError( 'answerPreCheckoutQuery: If ok is True, there should ' 'not be error_message; if ok is False, error_message ' 'should not be empty') url_ = '{0}/answerPreCheckoutQuery'.format(self.base_url) data = {'pre_checkout_query_id': pre_checkout_query_id, 'ok': ok} if error_message is not None: data['error_message'] = error_message result = self._request.post(url_, data, timeout=timeout) return result @staticmethod def de_json(data, bot): data = super(Bot, Bot).de_json(data, bot) return Bot(**data) def to_dict(self): data = {'id': self.id, 'username': self.username, 'first_name': self.username} if self.last_name: data['last_name'] = self.last_name return data def __reduce__(self): return (self.__class__, (self.token, self.base_url.replace(self.token, ''), self.base_file_url.replace(self.token, ''))) # camelCase aliases getMe = get_me sendMessage = send_message deleteMessage = delete_message forwardMessage = forward_message sendPhoto = send_photo sendAudio = send_audio sendDocument = send_document sendSticker = send_sticker sendVideo = send_video sendVoice = send_voice sendVideoNote = send_video_note sendLocation = send_location sendVenue = send_venue sendContact = send_contact sendGame = send_game sendChatAction = send_chat_action answerInlineQuery = answer_inline_query getUserProfilePhotos = get_user_profile_photos getFile = get_file kickChatMember = kick_chat_member unbanChatMember = unban_chat_member answerCallbackQuery = answer_callback_query editMessageText = edit_message_text editMessageCaption = edit_message_caption editMessageReplyMarkup = edit_message_reply_markup getUpdates = get_updates setWebhook = set_webhook deleteWebhook = delete_webhook leaveChat = leave_chat getChat = get_chat getChatAdministrators = get_chat_administrators getChatMember = get_chat_member getChatMembersCount = get_chat_members_count getWebhookInfo = get_webhook_info setGameScore = set_game_score getGameHighScores = get_game_high_scores sendInvoice = send_invoice answerShippingQuery = answer_shipping_query answerPreCheckoutQuery = answer_pre_checkout_query
1ef5a65135c034f3e78359e2d7b635ff06eb63f5
a884039e1a8b0ab516b80c2186e0e3bad28d5147
/Livros/Livro-Introdução à Programação-Python/Capitulo 10/Exemplos/nome.py
08708c5df927089c0f4d9b9c55738c7715ea25a2
[ "MIT" ]
permissive
ramonvaleriano/python-
6e744e8bcd58d07f05cd31d42a5092e58091e9f0
ada70918e945e8f2d3b59555e9ccc35cf0178dbd
refs/heads/main
2023-04-10T14:04:24.497256
2021-04-22T18:49:11
2021-04-22T18:49:11
340,360,400
0
0
null
null
null
null
UTF-8
Python
false
false
667
py
# Program: nome.py # Author: Ramon R. Valeriano # Decription: # Developed: 28/02/2020 - 11:28 class Nome: def __init__(self, nome): if nome == None or not nome.strip(): raise ValueError('Nome não pode ser nulo nem em branco.') self.nome = nome self.chave = nome.strip().lower() def __str__(self): return self.nome def __repr__(self): return f'<Class {type(self).__name__} em 0x{id(self):x} Nome: {self.nome}' def __eq__(self, outro): print('__eq__ Chamado') return self.nome == outro def __lt__(self, outro): print('__lt__ Chamado') return self.nome < outro
d9abb2e4a97bc4acab4889f0068a81752db2542f
2486e0cc147230a5d69c6d052217b9f3c5a4d1a8
/Bindings/Python/setup.py.in
d3da821e0d0ecbd48f6d71c80c0154b247cb4a75
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
bit20090138/opensim-core
8b68e13a2e5e0e538651c3f7940d8bed7a8a4fe3
de812be879d7271be92d71ac01c689a3b29e4629
refs/heads/master
2021-01-18T05:13:41.479462
2016-04-29T00:12:56
2016-04-29T00:12:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
662
in
#!/usr/bin/env python import os from setuptools import setup setup(name='opensim', version='@OPENSIM_VERSION@', description='OpenSim Simulation Framework', author='OpenSim Team', author_email='[email protected]', url='http://opensim.stanford.edu/', license='Apache 2.0', packages=['opensim'], package_data={'opensim': ['_*.*']}, include_package_data=True, classifiers=[ 'Intended Audience :: Science/Research', 'Operating System :: OS Independent', 'Programming Language :: Python :: 2.7', 'Topic :: Scientific/Engineering :: Physics', ], )
9513a2411bfa39e1bbf4be4a084440f59c0b600b
a752920841038f1f84df06779ff041d6c1100697
/pypinyin/contrib/neutral_tone.pyi
774407edb8eff8fa0f780e5f8c4d3300f2351d42
[ "MIT" ]
permissive
mozillazg/python-pinyin
06e5eaa5326b642d50aacbe71b7117ac6024b353
6a306a6ec0148502ae4e689a229340555ecb6333
refs/heads/master
2023-08-31T14:13:44.512972
2023-05-14T12:18:47
2023-05-14T12:18:47
12,830,126
4,564
634
MIT
2023-09-09T03:46:41
2013-09-14T14:01:40
Python
UTF-8
Python
false
false
518
pyi
# -*- coding: utf-8 -*- from typing import Any from typing import Optional from typing import Text from typing import Tuple from pypinyin.constants import Style TStyle = Style class NeutralToneWith5Mixin(object): NUMBER_TONE = ... # type: Tuple[TStyle] NUMBER_AT_END = ... # type: Tuple[TStyle] def post_convert_style(self, han: Text, orig_pinyin: Text, converted_pinyin: Text, style: TStyle, strict: bool, **kwargs: Any) -> Optional[Text]: ...
860fc2572ff197af9c82e05aa40b80bb2e6c03c2
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02889/s701044419.py
15a300e4e766231cfc0aae20a07a2905af0d690c
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
1,004
py
import sys input = sys.stdin.readline def calc(N, g): for k in range(N): for i in range(N): for j in range(N): g[i][j] = min(g[i][j], g[i][k] + g[k][j]) def main(): N, M, L = map(int, input().split()) adj = [{} for _ in range(N)] for _ in range(M): A, B, C = map(int, input().split()) adj[A-1][B-1] = C adj[B-1][A-1] = C dst = [[float("inf")] * N for _ in range(N)] for i in range(N): dst[i][i] = 0 for j in adj[i]: dst[i][j] = adj[i][j] calc(N, dst) ans = [[float("inf")] * N for _ in range(N)] for i in range(N): ans[i][i] = 0 for j in range(i+1, N): if dst[i][j] <= L: ans[i][j] = 1 ans[j][i] = 1 calc(N, ans) Q = int(input()) for _ in range(Q): s, t = map(int, input().split()) x = ans[s-1][t-1] print(-1 if x == float("inf") else x-1) if __name__ == "__main__": main()
7729b8232868cb134a2e295ce3058f8047fe5360
f24050f9be7f089ebe97857b4d6dc67a7dda17a8
/poetry/pozzi/python/lite_call_runtime_top.py
ce7c56220fe7521b3d4e5f2d6867c1d30028cf4b
[]
no_license
ntsourakis/regulus-python
63bffdfbf5ba5c09e60e3d729d310edfd961d79b
91830264e0476ccaaf7ccec83e8bb8ca32a9a4fe
refs/heads/master
2020-04-24T10:33:49.220740
2019-04-29T17:11:33
2019-04-29T17:11:33
171,897,806
0
0
null
null
null
null
UTF-8
Python
false
false
2,628
py
#!/usr/bin/python import pozzi.python.lite_call_runtime as call_main import os dir_path = os.path.dirname(os.path.realpath(__file__)) # Use this to load table file from canonical place in zipfile (speech interface) def init(): TableFile = 'call_tables.data.gz' MatchingFile = 'robust_matching_tables.data.gz' return call_main.init_state(TableFile, MatchingFile) # Use this to load table file from canonical place in zipfile (web-server interface) def init_basic(): TableFile = dir_path + '/call_tables.data.gz' MatchingFile = dir_path + '/robust_matching_tables.data.gz' return call_main.init_state_basic(TableFile, MatchingFile) # Top-level call for Alexa version: string to string def string_and_state_to_action(String, State): return call_main.string_and_state_to_action_main(String, State) # Top-level call for web-server version: json to json def message_and_state_to_message(Message, State): return call_main.process_call_message(Message, State) # Top-level call for doing robust matching (either version) def robust_match(String, State, N): return call_main.robust_match_string(String, State, N) # Convenient for testing on local machine (Alexa apps) def init_local(Dir0): LocalCompiledDir = 'c:/cygwin64/home/speech/reguluslitecontent-svn/trunk/litecontent/alexa_content/compiled/' Dir = LocalCompiledDir + Dir0 + '/' TableFile = Dir + 'call_tables.data.gz' MatchingFile = Dir + 'robust_matching_tables.data.gz' return call_main.init_state(TableFile, MatchingFile) # Possible values: # 'quel_animal' # 'zahlenspiel' # 'welches_tier' # 'number_game' # 'which_language' # 'which_movie' # 'jeu_de_chiffres' # 'quelle_langue' # Convenient for testing on local machine (web-server apps) def init_dante(): Dir = 'c:/cygwin64/home/speech/reguluslitecontent-svn/trunk/litecontent/alexa_content/compiled/dante/' TableFile = Dir + 'call_tables.data.gz' return call_main.init_state_basic(TableFile) # import lite_call_runtime_top as call # (State, Init, Bad) = call.init_local('quelle_langue') # call.string_and_state_to_action('aide', State) # call.robust_match('vassili', State, 2) # State = call.init_dante() # call.message_and_state_to_message(['get_available_lessons'], State) # call.message_and_state_to_message(['set_lesson_by_name', 'Inferno I 1-30'], State) # call.message_and_state_to_message(['help_file'], State) # call.message_and_state_to_message(['spoken_help'], State) # call.message_and_state_to_message(['match', 'mi ritrovai per una selva oscura'], State)
5101714fc9c01a1ff9534e8afcec0f66f825348c
742956eb16ebc9ec802929a3ffde7377bbdd461f
/hackbright.py
1ab453681028f9eded0400da2822ef13a84ab553
[]
no_license
mashikro/hb-project-tracker-flask
bb7a964d1d1be90f2f6a608f84766ad4783ad87e
7a3fc23324d9ab2de3b3c8fc72164f32e8a6494f
refs/heads/master
2021-06-24T14:39:31.201648
2019-10-24T00:53:45
2019-10-24T00:53:45
217,180,943
0
0
null
2021-03-20T02:01:22
2019-10-24T00:54:35
Python
UTF-8
Python
false
false
5,311
py
"""Hackbright Project Tracker. A front-end for a database that allows users to work with students, class projects, and the grades students receive in class projects. """ from flask import Flask from flask_sqlalchemy import SQLAlchemy app = Flask(__name__) db = SQLAlchemy() def connect_to_db(app): """Connect the database to our Flask app.""" app.config['SQLALCHEMY_DATABASE_URI'] = 'postgresql:///hackbright' app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False db.app = app db.init_app(app) def get_student_by_github(github): """Given a GitHub account name, print info about the matching student.""" QUERY = """ SELECT first_name, last_name, github FROM students WHERE github = :github """ db_cursor = db.session.execute(QUERY, {'github': github}) row = db_cursor.fetchone() print(f"Student: {row[0]} {row[1]}\nGitHub account: {row[2]}") return row #returns a tuple of (first name, last name, github) def make_new_student(first_name, last_name, github): """Add a new student and print confirmation. Given a first name, last name, and GitHub account, add student to the database and print a confirmation message. """ QUERY = """ INSERT INTO students (first_name, last_name, github) VALUES (:first_name, :last_name, :github) """ db.session.execute(QUERY, {'first_name': first_name, 'last_name': last_name, 'github': github}) db.session.commit() print(f"Successfully added student: {first_name} {last_name}") def get_project_by_title(title): """Given a project title, print information about the project.""" QUERY = """ SELECT title, description, max_grade FROM projects WHERE title = :title """ db_cursor = db.session.execute(QUERY, {'title': title}) row = db_cursor.fetchone() print(f"Title: {row[0]}\nDescription: {row[1]}\nMax Grade: {row[2]}") return row def get_grade_by_github_title(github, title): """Print grade student received for a project.""" QUERY = """ SELECT grade FROM grades WHERE student_github = :github AND project_title = :title """ db_cursor = db.session.execute(QUERY, {'github': github, 'title': title}) row = db_cursor.fetchone() print(f"Student {github} in project {title} received grade of {row[0]}") return row def assign_grade(github, title, grade): """Assign a student a grade on an assignment and print a confirmation.""" QUERY = """ INSERT INTO grades (student_github, project_title, grade) VALUES (:github, :title, :grade) """ db_cursor = db.session.execute(QUERY, {'github': github, 'title': title, 'grade': grade}) db.session.commit() print(f"Successfully assigned grade of {grade} for {github} in {title}") def get_grades_by_github(github): """Get a list of all grades for a student by their github username""" QUERY = """ SELECT project_title, grade FROM grades WHERE student_github = :github """ db_cursor = db.session.execute(QUERY, {'github': github}) rows = db_cursor.fetchall() for row in rows: print(f"Student {github} received grade of {row[1]} for {row[0]}") return rows def get_grades_by_title(title): """Get a list of all student grades for a project by its title""" QUERY = """ SELECT student_github, grade FROM grades WHERE project_title = :title """ db_cursor = db.session.execute(QUERY, {'title': title}) rows = db_cursor.fetchall() for row in rows: print(f"Student {row[0]} received grade of {row[1]} for {title}") return rows def handle_input(): """Main loop. Repeatedly prompt for commands, performing them, until 'quit' is received as a command. """ command = None while command != "quit": input_string = input("HBA Database> ") tokens = input_string.split() command = tokens[0] args = tokens[1:] if command == "student": github = args[0] get_student_by_github(github) elif command == "new_student": first_name, last_name, github = args # unpack! make_new_student(first_name, last_name, github) elif command == "project": title = args[0] get_project_by_title(title) elif command == "grade": github, title = args get_grade_by_github_title(github, title) elif command == "assign_grade": github, title, grade = args assign_grade(github, title, grade) elif command == "student_grades": github = args[0] get_grades_by_github(github) elif command == "project_grades": title = args[0] get_grades_by_title(title) if __name__ == "__main__": connect_to_db(app) handle_input() # To be tidy, we'll close our database connection -- though, since this # is where our program ends, we'd quit anyway. db.session.close()
03695b9c55d45f662abeee3299b7e113eb881646
be0f3dfbaa2fa3d8bbe59229aef3212d032e7dd1
/DaVinci_v39r1/tuplemaking/threesamesignmuondata/B23MuNuSignalDataTest.py
0620ed3ebfbd3c78a4c2ec7e02684fa6c6dbcdaf
[]
no_license
Sally27/backup_cmtuser_full
34782102ed23c6335c48650a6eaa901137355d00
8924bebb935b96d438ce85b384cfc132d9af90f6
refs/heads/master
2020-05-21T09:27:04.370765
2018-12-12T14:41:07
2018-12-12T14:41:07
185,989,173
0
0
null
null
null
null
UTF-8
Python
false
false
8,337
py
# $Id: $ # Test your line(s) of the stripping # # NOTE: Please make a copy of this file for your testing, and do NOT change this one! # from Gaudi.Configuration import * from Configurables import DaVinci line = 'B23MuNu_TriMuLine' location = '/Event/Semileptonic/Phys/B23MuNu_TriMuLine/Particles' #from Configurables import DaVinci, PrintDecayTree #pt = PrintDecayTree(Inputs = [ location ]) #DaVinci().appendToMainSequence( [ pt ] ) ######### Refining the candidate # get classes to build the SelectionSequence from PhysSelPython.Wrappers import AutomaticData, Selection, SelectionSequence # Get the Candidates from the DST. AutomaticData is for data on the DST TriMuSel = AutomaticData(Location = location) TriMuSeq = SelectionSequence('SeqTriMu', TopSelection = TriMuSel, ) DaVinci().appendToMainSequence( [ TriMuSeq.sequence() ] ) # DecayTreeTuple constructor from Configurables import DecayTreeTuple #from DecayTreeTuple.Configuration import * from Configurables import DecayTreeTuple, FitDecayTrees, TupleToolRecoStats, TupleToolTrigger, TupleToolTISTOS, CondDB, SelDSTWriter #from DecayTreeTuple.Configuration import * from Configurables import DecayTreeTuple, FilterDesktop,CombineParticles,FitDecayTrees, TupleToolRecoStats, TupleToolTrigger, TupleToolTISTOS, CondDB from DecayTreeTuple.Configuration import * tuple = DecayTreeTuple("B_Tuple") #tuple.Inputs = [ TriMuSeq.outputLocation() ] tuple.Inputs = ["/Event/Semileptonic/Phys/B23MuNu_TriMuLine/Particles"] #tuple.Inputs = ["Phys/DecayTreeFitterB"] #tuple.ToolList = [ # "TupleToolKinematic" # , "TupleToolEventInfo" # , "TupleToolRecoStats" # , "TupleToolMCTruth" # , "TupleToolMCBackgroundInfo" #] tuple.ToolList = [ "TupleToolKinematic", "TupleToolEventInfo", "TupleToolRecoStats", "TupleToolPid" ] tuple.addBranches({ # remove all "^" except where needed. "Bplus" : "^([B+ -> mu+ mu- mu+]CC)", "mu1" : "[B+ -> ^mu+ mu- mu+]CC ", "mu2" : "[B+ -> mu+ ^mu- mu+]CC ", "mu3" : "[B+ -> mu+ mu- ^mu+]CC ", }) tuple.Bplus.ToolList += [ "TupleToolTISTOS" ] tuple.Bplus.addTool( TupleToolTISTOS, name = "TupleToolTISTOS" ) tuple.Bplus.TupleToolTISTOS.Verbose = True tuple.Bplus.TupleToolTISTOS.TriggerList = [ "L0DiMuonDecision" , "L0MuonDecision" , "L0HadronDecision" , "Hlt1TrackAllL0Decision" , "Hlt1TrackMuonDecision" , "Hlt1DiMuonHighMassDecision" , "Hlt1SingleMuonHighPTDecision" , "Hlt2TopoMu2BodyBBDTDecision" , "Hlt2TopoMu3BodyBBDTDecision" , "Hlt2Topo2BodyBBDTDecision" , "Hlt2Topo3BodyBBDTDecision" , "Hlt2DiMuonDetachedJPsiDecision" , "Hlt2DiMuonDetachedDecision" , "Hlt2SingleMuonDecision" , "Hlt2DiMuonDetachedHeavyDecision" ] LoKi_All=tuple.addTupleTool("LoKi::Hybrid::TupleTool/LoKi_All") LoKi_All.Variables = { 'MINIPCHI2' : "MIPCHI2DV(PRIMARY)", 'MINIP' : "MIPDV(PRIMARY)", 'ETA' : 'ETA', 'PHI' : 'PHI' } LoKi_Bplus=tuple.Bplus.addTupleTool("LoKi::Hybrid::TupleTool/LoKi_Bplus") LoKi_Bplus.Variables = { 'TAU' : "BPVLTIME()", 'DIRA_OWNPV' : "BPVDIRA", 'FD_CHI2' : "BPVVDCHI2", 'ENDVERTEX_CHI2' : "VFASPF(VCHI2/VDOF)", 'X_travelled' : "VFASPF(VX)-BPV(VX)", 'Y_travelled' : "VFASPF(VY)-BPV(VY)", 'Z_travelled' : "VFASPF(VZ)-BPV(VZ)", 'P_Parallel' : "BPVDIRA*P", 'P_Perp' : "sin(acos(BPVDIRA))*P", 'BPVVDZ' : "BPVVDZ", 'Corrected_Mass' : "BPVCORRM" } LoKi_mu1=tuple.mu1.addTupleTool("LoKi::Hybrid::TupleTool/LoKi_mu1") LoKi_mu1.Variables = { 'PIDmuLoki' : "PIDmu", 'PIDKLoki' : "PIDK", 'PIDpLoki' : "PIDp", 'ghost' : "TRGHP", 'TRACK_CHI2' : "TRCHI2DOF", 'NNK' : "PPINFO(PROBNNK)", 'NNpi' : "PPINFO(PROBNNpi)", 'NNmu' : "PPINFO(PROBNNmu)", 'isMuonLoose' : "switch(ISMUONLOOSE,1,0)", 'isMuonLoki' : "switch(ISMUON,1,0)", 'inMuon' : "switch(INMUON,1,0)", 'nShared' : "PPINFO(LHCb.ProtoParticle.MuonNShared,-1000)" } LoKi_mu2=tuple.mu2.addTupleTool("LoKi::Hybrid::TupleTool/LoKi_mu2") LoKi_mu2.Variables = { 'PIDmuLoki' : "PIDmu", 'PIDKLoki' : "PIDK", 'PIDpLoki' : "PIDp", 'ghost' : "TRGHP", 'TRACK_CHI2' : "TRCHI2DOF", 'NNK' : "PPINFO(PROBNNK)", 'NNpi' : "PPINFO(PROBNNpi)", 'NNmu' : "PPINFO(PROBNNmu)", 'isMuonLoose' : "switch(ISMUONLOOSE,1,0)", 'isMuonLoki' : "switch(ISMUON,1,0)", 'inMuon' : "switch(INMUON,1,0)", 'nShared' : "PPINFO(LHCb.ProtoParticle.MuonNShared,-1000)" } LoKi_mu3=tuple.mu3.addTupleTool("LoKi::Hybrid::TupleTool/LoKi_mu3") LoKi_mu3.Variables = { 'PIDmuLoki' : "PIDmu", 'PIDKLoki' : "PIDK", 'PIDpLoki' : "PIDp", 'ghost' : "TRGHP", 'TRACK_CHI2' : "TRCHI2DOF", 'NNK' : "PPINFO(PROBNNK)", 'NNpi' : "PPINFO(PROBNNpi)", 'NNmu' : "PPINFO(PROBNNmu)", 'isMuonLoose' : "switch(ISMUONLOOSE,1,0)", 'isMuonLoki' : "switch(ISMUON,1,0)", 'inMuon' : "switch(INMUON,1,0)", 'nShared' : "PPINFO(LHCb.ProtoParticle.MuonNShared,-1000)" } tuple.Decay = "[B+ -> ^mu+ ^mu- ^mu+]CC" from Configurables import DaVinci from DecayTreeTuple.Configuration import * from Configurables import TupleToolVertexDatappMuMu tuple.mu1.addTool(TupleToolVertexDatappMuMu) tuple.mu1.ToolList+=["TupleToolVertexDatappMuMu"] from DecayTreeTuple.Configuration import * from Configurables import TupleToolVertexDatapmMuMu tuple.mu1.addTool(TupleToolVertexDatapmMuMu) tuple.mu1.ToolList+=["TupleToolVertexDatapmMuMu"] from DecayTreeTuple.Configuration import * from Configurables import TupleToolVertexDatampMuMu tuple.mu1.addTool(TupleToolVertexDatampMuMu) tuple.mu1.ToolList+=["TupleToolVertexDatampMuMu"] from DecayTreeTuple.Configuration import * from Configurables import TupleToolVertexDataMuMuMu tuple.mu1.addTool(TupleToolVertexDataMuMuMu) tuple.mu1.ToolList+=["TupleToolVertexDataMuMuMu"] from DecayTreeTuple.Configuration import * from Configurables import TupleToolSallyvs3 tuple.Bplus.addTool(TupleToolSallyvs3) tuple.Bplus.ToolList+=["TupleToolSallyvs3"] from DecayTreeTuple.Configuration import * from Configurables import TupleToolApplypMuIsolation tuple.Bplus.addTool(TupleToolApplypMuIsolation) tuple.Bplus.TupleToolApplypMuIsolation.OutputSuffix="_weights" tuple.Bplus.TupleToolApplypMuIsolation.WeightsFile="weights_110614_Lc_pX.xml" tuple.Bplus.ToolList+=["TupleToolApplypMuIsolation"] #Mysterious things to make isolation work name="TupleToolApplypMuIsolation" from Configurables import ChargedProtoParticleMaker # veloprotos = ChargedProtoParticleMaker(name+"ProtoPMaker") veloprotos.Inputs = ["Rec/Track/Best"] veloprotos.Output = "Rec/ProtoP/myProtoPMaker/ProtoParticles" # DaVinci().appendToMainSequence( [ veloprotos ]) # from Gaudi.Configuration import * from Configurables import ProtoParticleCALOFilter, CombinedParticleMaker,NoPIDsParticleMaker from CommonParticles.Utils import * # algorithm = NoPIDsParticleMaker('StdNoPIDsVeloPions', Particle = 'pion', ) algorithm.Input = "Rec/ProtoP/myProtoPMaker/ProtoParticles" selector = trackSelector ( algorithm , trackTypes = ['Velo'] ) # locations = updateDoD ( algorithm ) DaVinci().appendToMainSequence( [ algorithm ]) # from Configurables import GaudiSequencer MySequencer = GaudiSequencer('Sequence') #DaVinci().HistogramFile = 'DV_stripping_histosnew2.root' DaVinci().HistogramFile = 'DVHistosignal.root' DaVinci().TupleFile = "DVTuplesignal.root" DaVinci().EvtMax = 10000 DaVinci().PrintFreq = 2000 #DaVinci().appendToMainSequence( [ MySequencer ] ) DaVinci().appendToMainSequence( [ tuple] ) #DaVinci().appendToMainSequence( [ sr ] ) #DaVinci().appendToMainSequence( [ ac ] ) DaVinci().DataType = "2012" DaVinci().InputType = "DST" # change the column size of timing table from Configurables import TimingAuditor, SequencerTimerTool TimingAuditor().addTool(SequencerTimerTool,name="TIMER") TimingAuditor().TIMER.NameSize = 60 #NTupleSvc().Output = ["FILE1 DATAFILE='trythis.root' TYP='ROOT' OPT='NEW'"] MessageSvc().Format = "% F%60W%S%7W%R%T %0W%M" # database DaVinci().DDDBtag = "dddb-20120831" DaVinci().CondDBtag = "cond-20121008" DaVinci().Lumi = True # input file # importOptions("$STRIPPINGSELECTIONSROOT/tests/data/Reco14_Run125113.py")
b8db2d856d22439d7469fcfed29803ac47f6a361
f13acd0d707ea9ab0d2f2f010717b35adcee142f
/Others/past/past202004-open/n.py
f5270ea558cfda85c4314921ba5f9252f01ad907
[ "CC0-1.0", "LicenseRef-scancode-public-domain" ]
permissive
KATO-Hiro/AtCoder
126b9fe89fa3a7cffcbd1c29d42394e7d02fa7c7
bf43320bc1af606bfbd23c610b3432cddd1806b9
refs/heads/master
2023-08-18T20:06:42.876863
2023-08-17T23:45:21
2023-08-17T23:45:21
121,067,516
4
0
CC0-1.0
2023-09-14T21:59:38
2018-02-11T00:32:45
Python
UTF-8
Python
false
false
134
py
# -*- coding: utf-8 -*- def main(): import sys input = sys.stdin.readline if __name__ == '__main__': main()
d84017fd7fe042e521b48cd24401a9e9513723e5
be0f3dfbaa2fa3d8bbe59229aef3212d032e7dd1
/Gauss_v45r10p1/Gen/DecFiles/options/12165092.py
401f428ce7c24c5fb7a3cddf1f6b4d44312d9daa
[]
no_license
Sally27/backup_cmtuser_full
34782102ed23c6335c48650a6eaa901137355d00
8924bebb935b96d438ce85b384cfc132d9af90f6
refs/heads/master
2020-05-21T09:27:04.370765
2018-12-12T14:41:07
2018-12-12T14:41:07
185,989,173
0
0
null
null
null
null
UTF-8
Python
false
false
1,743
py
# file /home/hep/ss4314/cmtuser/Gauss_v45r10p1/Gen/DecFiles/options/12165092.py generated: Wed, 25 Jan 2017 15:25:34 # # Event Type: 12165092 # # ASCII decay Descriptor: [B+ -> (D+ => K- pi+ pi+) K+ pi- ]cc # from Configurables import Generation Generation().EventType = 12165092 Generation().SampleGenerationTool = "SignalRepeatedHadronization" from Configurables import SignalRepeatedHadronization Generation().addTool( SignalRepeatedHadronization ) Generation().SignalRepeatedHadronization.ProductionTool = "PythiaProduction" from Configurables import ToolSvc from Configurables import EvtGenDecay ToolSvc().addTool( EvtGenDecay ) ToolSvc().EvtGenDecay.UserDecayFile = "$DECFILESROOT/dkfiles/Bu_D+K+pi-,Kpipi=sqDalitz.dec" Generation().SignalRepeatedHadronization.CutTool = "" Generation().SignalRepeatedHadronization.SignalPIDList = [ 521,-521 ] # Ad-hoc particle gun code from Configurables import ParticleGun pgun = ParticleGun("ParticleGun") pgun.SignalPdgCode = 521 pgun.DecayTool = "EvtGenDecay" pgun.GenCutTool = "" from Configurables import FlatNParticles pgun.NumberOfParticlesTool = "FlatNParticles" pgun.addTool( FlatNParticles , name = "FlatNParticles" ) from Configurables import MomentumSpectrum pgun.ParticleGunTool = "MomentumSpectrum" pgun.addTool( MomentumSpectrum , name = "MomentumSpectrum" ) pgun.MomentumSpectrum.PdgCodes = [ 521,-521 ] pgun.MomentumSpectrum.InputFile = "$PGUNSDATAROOT/data/Ebeam4000GeV/MomentumSpectrum_521.root" pgun.MomentumSpectrum.BinningVariables = "pteta" pgun.MomentumSpectrum.HistogramPath = "h_pteta" from Configurables import BeamSpotSmearVertex pgun.addTool(BeamSpotSmearVertex, name="BeamSpotSmearVertex") pgun.VertexSmearingTool = "BeamSpotSmearVertex" pgun.EventType = 12165092
a43676dc807faaf5ff96bb4b2e5d3f8aee04c123
9cc3135d5fcd781c0542a905c61dc19b0ceeffef
/file_reader_line.py
66d355dba2173774df41579cbc1cc0eb3dafa21e
[]
no_license
bkalcho/python-crash-course
411d8af223fb6974d4f890c0f82c9e56b062359c
8425649a2ecd5abeeb438e816400f270d937758e
refs/heads/master
2022-09-11T13:47:56.837256
2022-08-23T10:04:35
2022-08-23T10:04:35
69,810,386
14
8
null
2022-08-23T10:04:36
2016-10-02T17:14:41
Python
UTF-8
Python
false
false
250
py
# Author: Bojan G. Kalicanin # Date: 05-Oct-2016 # Program that reads file line by line and prints line by line # on the stdout filename = 'pi_digits.txt' with open(filename) as file_object: for line in file_object: print(line.rstrip())
0316e6973b49d6d7e409eef2969a5e273989a715
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03437/s534128723.py
39f835745095b832d314d35d1a94be11cc79a200
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
209
py
from sys import stdin import fractions def lcm(x, y): return (x * y) // fractions.gcd(x, y) n,m = [int(x) for x in stdin.readline().rstrip().split()] if lcm(n,m) == n: print(-1) else: print(n)
473f81fd11b029ce5acfd36114b5f5d320f145cd
6c5daf5133656a33574dc2f5b62b9f1a1bdf1390
/Elec Power Chongqing/2021/old/dataForecasting.py
fdbd4edc3a5ba2ca8971ae189ad93166be7ca73e
[]
no_license
RobinChen121/Python-Practices
6c10b721dce3a8d2b76e190959d0940c52f0d1cc
85bd9ad30c245dd62dc7ea837f964eaecbe24ed9
refs/heads/master
2023-08-31T10:08:01.613828
2023-08-27T14:51:46
2023-08-27T14:51:46
142,564,793
3
0
null
null
null
null
UTF-8
Python
false
false
3,716
py
# -*- coding: utf-8 -*- """ Created on Fri Oct 15 14:41:47 2021 @author: zhen chen MIT Licence. Python version: 3.8 Description: forecast based on the last 12 months """ import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import statsmodels.api as sm from statsmodels.tsa.stattools import adfuller from statsmodels.graphics.tsaplots import plot_acf, plot_pacf # pacf 是偏相关系数 sns.set() plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False ini_data = pd.read_excel(r'sumCleanData.xlsx') ini_data['日期'] = pd.to_datetime(ini_data['日期']).dt.strftime('%y-%m-%d') group_data = ini_data[['日期', 'sum']].groupby('日期').sum() group_data.plot(kind = 'line', title = '所有用户用电量之和') result = adfuller(group_data.values) print('ADF Statistic: %f' % result[0]) # ADF 检验稳定性的,若不稳定则做差分,直到稳定为止 print('p-value: %f' % result[1]) # 也可以通过看差分的自相关系数确定差分阶数 # 确定差分阶数 d, d = 1, 确定移动平均阶数,q = 0 # Original Series fig, axes = plt.subplots(3, 2) axes[0, 0].plot(group_data.values); axes[0, 0].set_title('原始数据') plot_acf(group_data.values, ax=axes[0, 1], title = '自相关系数') # 1st Differencing axes[1, 0].plot(group_data.diff().dropna().values); axes[1, 0].set_title('一阶差分') plot_acf(group_data.diff().dropna().values, ax=axes[1, 1], title = '自相关系数') # 2nd Differencing axes[2, 0].plot(group_data.diff(2).dropna().values); axes[2, 0].set_title('二阶差分') plot_acf(group_data.diff(2).dropna().values, ax=axes[2, 1], title = '自相关系数') plt.setp(plt.gcf().get_axes(), xticks=[]); # gcf: get current figure plt.show() # print() # result = adfuller(group_data.diff().dropna().values) # print('ADF Statistic: %f' % result[0]) # print('p-value: %f' % result[1]) # 确定自回归阶数, p=1 fig, axes = plt.subplots(1, 2) axes[0].plot(group_data.diff().dropna().values); axes[0].set_title('1st Differencing') plot_pacf(group_data.diff().dropna().values, ax=axes[1]) plt.show() # build ARIMA Model model = sm.tsa.ARIMA(group_data.values, order=(1,1,1)) model_fit = model.fit() print(model_fit.summary()) # # Plot residual errors # residuals = pd.DataFrame(model_fit.resid) # fig, ax = plt.subplots(1,2) # residuals.plot(title="Residuals", ax=ax[0]) # residuals.plot(kind='kde', title='Density', ax=ax[1]) # 密度图 KDE:Kernel Density Estimate # plt.show() # Actual vs Fitted plt.figure() predict = model_fit.predict(start=1, end = 380) plt.plot(range(366), group_data['sum'], 'm', label = '原始数据') plt.plot(range(380), predict, 'r:', label = '预测数据') plt.legend() plt.show() plt.savefig('forecast.png', dpi=1000) # df1 = ini_data[ini_data.户号对应 == 1] # df1.plot(x = '日期', y = 'sum', kind = 'line', title = '用户1的历史用电量') # # df2 = ini_data[ini_data.户号对应 == 2] # # df2.plot(x = '日期', y = 'sum', kind = 'line', title = '用户2的历史用电量') # df3 = ini_data[ini_data.户号对应 == 3] # df3.plot(x = '日期', y = 'sum', kind = 'line', title = '用户3的历史用电量') # df4 = ini_data[ini_data.户号对应 == 4] # df4.plot(x = '日期', y = 'sum', kind = 'line', title = '用户4的历史用电量') # df5 = ini_data[ini_data.户号对应 == 5] # df5.plot(x = '日期', y = 'sum', kind = 'line', title = '用户5的历史用电量') # df6 = ini_data[ini_data.户号对应 == 6] # df6.plot(x = '日期', y = 'sum', kind = 'line', title = '用户6的历史用电量') # df8 = ini_data[ini_data.户号对应 == 8] # df8.plot(x = '日期', y = 'sum', kind = 'line', title = '用户8的历史用电量')
7f4af42352a202cad7474c629138bcd8f86c4a5d
46e271e27afe50b8b62be0651d78164490911bb3
/ws_moveit/src/pkg_task3/scripts/process_packagen2.py
4a895d52be808e3673dd1eeae7d97e3a71b7d4dd
[]
no_license
Nidhiks2000/Vargi-bot
8a43af1e470b6fc84d468003f67471a1e1f47aad
3e2e7be310ed7372cb6960eea8faabec75d9fbcf
refs/heads/master
2023-07-24T01:05:10.049800
2021-09-08T16:31:08
2021-09-08T16:31:08
403,935,308
0
0
null
null
null
null
UTF-8
Python
false
false
10,887
py
#!/usr/bin/env python '''We have used three python scripts to implements task where each script takes care of each coloured package. We choosed this approach considering the compution time and ease to debug ''' # This python script processes packagen2 # ROS- PROCESS_PACKAGEN2 SCRIPT import rospy import sys import copy import moveit_commander import moveit_msgs.msg import geometry_msgs.msg import actionlib import math import tf2_ros import tf2_msgs.msg import std_msgs.msg from hrwros_gazebo.msg import LogicalCameraImage #to use logical camera feed from pkg_vb_sim.srv import vacuumGripper #to activate vaccum gripper from pkg_vb_sim.srv import conveyorBeltPowerMsg #to activate conveyor belt class CartesianPath: #Constructor def __init__(self): rospy.init_node('process_packagen2',anonymous = True) self._planning_group = "ur5_1_planning_group" self._commander = moveit_commander.roscpp_initialize(sys.argv) self._robot = moveit_commander.RobotCommander() self._scene = moveit_commander.PlanningSceneInterface() self._group = moveit_commander.MoveGroupCommander(self._planning_group) self._display_trajectory_publisher = rospy.Publisher( '/move_group/display_planned_path', moveit_msgs.msg.DisplayTrajectory, queue_size=1) self._exectute_trajectory_client = actionlib.SimpleActionClient( 'execute_trajectory', moveit_msgs.msg.ExecuteTrajectoryAction) self._exectute_trajectory_client.wait_for_server() self._planning_frame = self._group.get_planning_frame() self._eef_link = self._group.get_end_effector_link() self._group_names = self._robot.get_group_names() self._tfBuffer = tf2_ros.Buffer() self._listener = tf2_ros.TransformListener(self._tfBuffer) self.box_name = "packagen2" rospy.loginfo('\033[94m' + " >>> Init done." + '\033[0m') def ee_cartesian_translation(self, trans_x, trans_y, trans_z): # 1. Create a empty list to hold waypoints waypoints = [] # 2. Add Current Pose to the list of waypoints waypoints.append(self._group.get_current_pose().pose) # 3. Create a New waypoint wpose = geometry_msgs.msg.Pose() wpose.position.x = waypoints[0].position.x + (trans_x) wpose.position.y = waypoints[0].position.y + (trans_y) wpose.position.z = waypoints[0].position.z + (trans_z) # This to keep EE parallel to Ground Plane wpose.orientation.x = -0.5 wpose.orientation.y = -0.5 wpose.orientation.z = 0.5 wpose.orientation.w = 0.5 # 4. Add the new waypoint to the list of waypoints waypoints.append(copy.deepcopy(wpose)) # 5. Compute Cartesian Path connecting the waypoints in the list of waypoints (plan, fraction) = self._group.compute_cartesian_path( waypoints, # waypoints to follow 0.01, # Step Size, distance between two adjacent computed waypoints will be 1 cm 0.0) # Jump Threshold rospy.loginfo("Path computed successfully. Moving the arm.") num_pts = len(plan.joint_trajectory.points) if (num_pts >= 3): del plan.joint_trajectory.points[0] del plan.joint_trajectory.points[1] # 6. Make the arm follow the Computed Cartesian Path self._group.execute(plan) def go_to_pose(self, arg_pose): pose_values = self._group.get_current_pose().pose rospy.loginfo('\033[94m' + ">>> Current Pose:" + '\033[0m') rospy.loginfo(pose_values) self._group.set_pose_target(arg_pose) flag_plan = self._group.go(wait=True) # wait=False for Async Move pose_values = self._group.get_current_pose().pose rospy.loginfo('\033[94m' + ">>> Final Pose:" + '\033[0m') rospy.loginfo(pose_values) list_joint_values = self._group.get_current_joint_values() rospy.loginfo('\033[94m' + ">>> Final Joint Values:" + '\033[0m') rospy.loginfo(list_joint_values) if (flag_plan == True): rospy.loginfo( '\033[94m' + ">>> go_to_pose() Success" + '\033[0m') else: rospy.logerr( '\033[94m' + ">>> go_to_pose() Failed. Solution for Pose not Found." + '\033[0m') return flag_plan def set_joint_angles(self, arg_list_joint_angles): list_joint_values = self._group.get_current_joint_values() rospy.loginfo('\033[94m' + ">>> Current Joint Values:" + '\033[0m') rospy.loginfo(list_joint_values) self._group.set_joint_value_target(arg_list_joint_angles) self._group.plan() flag_plan = self._group.go(wait=True) list_joint_values = self._group.get_current_joint_values() rospy.loginfo('\033[94m' + ">>> Final Joint Values:" + '\033[0m') rospy.loginfo(list_joint_values) pose_values = self._group.get_current_pose().pose rospy.loginfo('\033[94m' + ">>> Final Pose:" + '\033[0m') rospy.loginfo(pose_values) if (flag_plan == True): rospy.loginfo( '\033[94m' + ">>> set_joint_angles() Success" + '\033[0m') else: rospy.logerr( '\033[94m' + ">>> set_joint_angles() Failed." + '\033[0m') return flag_plan def func_tf(self, arg_frame_1, arg_frame_2): try: trans = self._tfBuffer.lookup_transform(arg_frame_1, arg_frame_2, rospy.Time()) #creating a list to add all the transform points with offset res = [] res.append(trans.transform.translation.x) res.append(trans.transform.translation.y) res.append(trans.transform.translation.z) return res except (tf2_ros.LookupException, tf2_ros.ConnectivityException, tf2_ros.ExtrapolationException): rospy.logerr("TF error") #functions for planning script def add_box(self,timeout=4): box_name = self.box_name scene = self._scene box_pose = geometry_msgs.msg.PoseStamped() box_pose.header.frame_id = "world" box_pose.pose.position.x = -0.62 box_pose.pose.position.y = 0.38 box_pose.pose.position.z = 0.97 scene.add_box(box_name, box_pose, size=(0.15, 0.15, 0.15)) def attach_box(self, timeout=4): box_name = self.box_name robot = self._robot scene = self._scene eef_link = self._eef_link group_names = self._group_names grasping_group = self._group_names touch_links = robot.get_link_names(group="ur5_1_planning_group") scene.attach_box(self._eef_link, box_name,touch_links=touch_links) def detach_box(self, timeout=4): box_name = self.box_name scene = self._scene eef_link = self._eef_link scene.remove_attached_object(eef_link, name=box_name) def remove_box(self, timeout=4): box_name = self.box_name scene = self._scene scene.remove_world_object(box_name) # Destructor def __del__(self): moveit_commander.roscpp_shutdown() rospy.loginfo( '\033[94m' + "Object of class CartesianPath Deleted." + '\033[0m') class Services: def activate_conveyor_belt(self,power): rospy.wait_for_service("/eyrc/vb/conveyor/set_power") try: s = rospy.ServiceProxy("/eyrc/vb/conveyor/set_power",conveyorBeltPowerMsg) result = s(power) except rospy.ServiceException as e: print("Service call failed: %s"%e) #activating the vaccum gripper by calling a service def activate_vacuum_gripper(self,result): rospy.wait_for_service("/eyrc/vb/ur5_1/activate_vacuum_gripper") try: s = rospy.ServiceProxy('/eyrc/vb/ur5_1/activate_vacuum_gripper', vacuumGripper) result = s(result) print(result) return result except rospy.ServiceException as e: print("Service call failed: %s"%e) def main(): ur5 = CartesianPath() service = Services() reference_frame = "world" target_frame = "ur5_wrist_3_link" box_length = 0.15 # Length of the Package vacuum_gripper_width = 0.115 # Vacuum Gripper Width delta = vacuum_gripper_width + (box_length/2) # 0.19 # Teams may use this info in Tasks #to go to green pose ur5_1_bin_pose = geometry_msgs.msg.Pose() ur5_1_bin_pose.position.x = 0.637249966166 ur5_1_bin_pose.position.y = -0.0253975214324 ur5_1_bin_pose.position.z = 1.3188059935 ur5_1_bin_pose.orientation.x = 0.0280425654885 ur5_1_bin_pose.orientation.y = 0.0506628496333 ur5_1_bin_pose.orientation.z = 0.316982812125 ur5_1_bin_pose.orientation.w = 0.946661918007 lst_joint_angles = [math.radians(-12.1413692229), math.radians(-54.3381447029), math.radians(50.18385848), math.radians(10.620928083), math.radians(-49.1547078858), math.radians(-179.745824573)] lst_home_pose = [math.radians(7.8433489314), math.radians(-139.942784159), math.radians(-58.2911345789), math.radians (-71.7204516851), math.radians (89.9713177297), math.radians (7.90736427846)] def callback(data): #detecting the packagen2 if data.models[1].type == "packagen2" : ur5.add_box() #adding box to rviz service.activate_conveyor_belt(9) res = ur5.func_tf(reference_frame, target_frame) rospy.loginfo('\033[94m' + "Translating EE to package from current position." + '\033[0m') #translating the arm position to grab the package ur5.ee_cartesian_translation(0,res[2],0) ur5.ee_cartesian_translation(res[0]+1.0,0,0) #adding some offset so that it doesn't collide service.activate_vacuum_gripper(True) #activating the vaccum ur5.attach_box() #attaching box to the arm in Rviz ur5.go_to_pose(ur5_pose_2) # to near the green bin service.activate_vacuum_gripper(False) #deactivating the vaccum ur5.detach_box() #dettaching the package from the arm ur5.remove_box() ur5.set_joint_angles(lst_home_pose) service.activate_conveyor_belt(100) rospy.signal_shutdown("Green process is done") rospy.Subscriber("/eyrc/vb/logical_camera_2",LogicalCameraImage,callback) rospy.spin() if __name__ == '__main__': main()
[ "Happysunshine.disroot.org" ]
Happysunshine.disroot.org
67f5b410a9c362544f83edcb25f34d9f24d4fc1f
c83e356d265a1d294733885c373d0a4c258c2d5e
/mayan/apps/rest_api/urls.py
43be019b07eb85024ce8607bfd3fde3f44544c10
[ "Apache-2.0" ]
permissive
TrellixVulnTeam/fall-2021-hw2-451-unavailable-for-legal-reasons_6YX3
4160809d2c96707a196b8c94ea9e4df1a119d96a
0e4e919fd2e1ded6711354a0330135283e87f8c7
refs/heads/master
2023-08-21T23:36:41.230179
2021-10-02T03:51:12
2021-10-02T03:51:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,229
py
from django.conf.urls import include, url from .api_views import ( APIRoot, APIVersionRoot, BrowseableObtainAuthToken, ProjectInformationAPIView, schema_view ) from .literals import API_VERSION api_version_urls = [ url(regex=r'^$', name='api_version_root', view=APIVersionRoot.as_view()), url( regex=r'^auth/token/obtain/$', name='auth_token_obtain', view=BrowseableObtainAuthToken.as_view() ), url( regex=r'^project/$', name='project_information', view=ProjectInformationAPIView.as_view() ) ] api_urls = [ url( regex=r'^swagger(?P<format>.json|.yaml)$', name='schema-json', view=schema_view.without_ui(cache_timeout=None), ), url(regex=r'^v{}/'.format(API_VERSION), view=include(api_version_urls)), url(regex=r'^$', name='api_root', view=APIRoot.as_view()), ] urlpatterns = [ url( regex=r'^swagger/ui/$', name='schema-swagger-ui', view=schema_view.with_ui('swagger', cache_timeout=None) ), url( regex=r'^redoc/ui/$', name='schema-redoc', view=schema_view.with_ui('redoc', cache_timeout=None) ), url(regex=r'^', view=include(api_urls)), ]
0a2f3cfff69d681b3500ecf3a9d62ad75e684c68
431a1f738b1edfba7dad8d10a6b7520d51d917cb
/Samples/UserSamples/2018/VBFConfig.py
0f6c4d5699d172ffbfdbde1760a8050c5fd41cbf
[]
no_license
aloeliger/DatacardCreator
5ce702e46fbb77e843b44d8fe088c2645a4a8f66
5c7e890276a5be079ed3b677a471c1dcadcba52d
refs/heads/master
2022-02-26T19:52:30.563747
2022-02-16T20:24:48
2022-02-16T20:24:48
215,602,523
0
1
null
null
null
null
UTF-8
Python
false
false
1,635
py
from Samples.SampleDefinition import Sample from Samples.Uncertainties.UserUncertainties.TES import TESUncertainty from Samples.Uncertainties.UserUncertainties.Signal_JES_18 import JES18Uncertainty from Samples.Uncertainties.UserUncertainties.JER import JERUncertainty from Samples.Uncertainties.UserUncertainties.MetRecoil import MetRecoilUncertainty from Samples.Uncertainties.UserUncertainties.MuonES import MuonESUncertainty #from Samples.Uncertainties.UserUncertainties.Prefiring import PrefiringUncertainty from Samples.Uncertainties.UserUncertainties.TauID import TauIDUncertainty from Samples.Uncertainties.UserUncertainties.Trigger17_18 import Trigger1718Uncertainty from Samples.Uncertainties.UserUncertainties.qqHTheory import qqHTheoryUncertainty from Samples.Uncertainties.UserUncertainties.QCDAcceptanceUncertainties.qqH_QCD_AcceptanceUncertainties.qqH_scale_Inclusive_Uncertainty import qqH_scale_Inclusive_Uncertainty from Samples.EventDefinition.UserEventDictionaries.MuTauEventDictionary import MuTauEventDictionary VBFSample = Sample() VBFSample.name = 'qqH_htt125' VBFSample.path = '/data/aloeliger/SMHTT_Selected_2018_Deep/' VBFSample.files = ['VBF.root'] VBFSample.definition = '' VBFSample.uncertainties = [ TESUncertainty(), JES18Uncertainty(), JERUncertainty(), MetRecoilUncertainty(), MuonESUncertainty(), # PrefiringUncertainty(), TauIDUncertainty(), Trigger1718Uncertainty(), qqHTheoryUncertainty(), qqH_scale_Inclusive_Uncertainty(), ] VBFSample.eventDictionaryInstance = MuTauEventDictionary VBFSample.CreateEventWeight = VBFSample.CreateEventWeight_Standard
c1cbefd9eb254fbfb66fd091901e1f5ea0bc6655
ec0b8bfe19b03e9c3bb13d9cfa9bd328fb9ca3f1
/res/packages/scripts/scripts/common/Lib/distutils/tests/test_sdist.py
4a1af8cd49b957a68f580bed4a2e301705b0a693
[]
no_license
webiumsk/WOT-0.9.20.0
de3d7441c5d442f085c47a89fa58a83f1cd783f2
811cb4e1bca271372a1d837a268b6e0e915368bc
refs/heads/master
2021-01-20T22:11:45.505844
2017-08-29T20:11:38
2017-08-29T20:11:38
101,803,045
0
1
null
null
null
null
WINDOWS-1250
Python
false
false
13,716
py
# 2017.08.29 21:56:18 Střední Evropa (letní čas) # Embedded file name: scripts/common/Lib/distutils/tests/test_sdist.py """Tests for distutils.command.sdist.""" import os import tarfile import unittest import warnings import zipfile from os.path import join from textwrap import dedent from test.test_support import captured_stdout, check_warnings, run_unittest try: import zlib except ImportError: zlib = None try: import grp import pwd UID_GID_SUPPORT = True except ImportError: UID_GID_SUPPORT = False from distutils.command.sdist import sdist, show_formats from distutils.core import Distribution from distutils.tests.test_config import PyPIRCCommandTestCase from distutils.errors import DistutilsOptionError from distutils.spawn import find_executable from distutils.log import WARN from distutils.filelist import FileList from distutils.archive_util import ARCHIVE_FORMATS SETUP_PY = "\nfrom distutils.core import setup\nimport somecode\n\nsetup(name='fake')\n" MANIFEST = '# file GENERATED by distutils, do NOT edit\nREADME\nbuildout.cfg\ninroot.txt\nsetup.py\ndata%(sep)sdata.dt\nscripts%(sep)sscript.py\nsome%(sep)sfile.txt\nsome%(sep)sother_file.txt\nsomecode%(sep)s__init__.py\nsomecode%(sep)sdoc.dat\nsomecode%(sep)sdoc.txt\n' class SDistTestCase(PyPIRCCommandTestCase): def setUp(self): super(SDistTestCase, self).setUp() self.old_path = os.getcwd() os.mkdir(join(self.tmp_dir, 'somecode')) os.mkdir(join(self.tmp_dir, 'dist')) self.write_file((self.tmp_dir, 'README'), 'xxx') self.write_file((self.tmp_dir, 'somecode', '__init__.py'), '#') self.write_file((self.tmp_dir, 'setup.py'), SETUP_PY) os.chdir(self.tmp_dir) def tearDown(self): os.chdir(self.old_path) super(SDistTestCase, self).tearDown() def get_cmd(self, metadata = None): """Returns a cmd""" if metadata is None: metadata = {'name': 'fake', 'version': '1.0', 'url': 'xxx', 'author': 'xxx', 'author_email': 'xxx'} dist = Distribution(metadata) dist.script_name = 'setup.py' dist.packages = ['somecode'] dist.include_package_data = True cmd = sdist(dist) cmd.dist_dir = 'dist' return (dist, cmd) @unittest.skipUnless(zlib, 'requires zlib') def test_prune_file_list(self): os.mkdir(join(self.tmp_dir, 'somecode', '.svn')) self.write_file((self.tmp_dir, 'somecode', '.svn', 'ok.py'), 'xxx') os.mkdir(join(self.tmp_dir, 'somecode', '.hg')) self.write_file((self.tmp_dir, 'somecode', '.hg', 'ok'), 'xxx') os.mkdir(join(self.tmp_dir, 'somecode', '.git')) self.write_file((self.tmp_dir, 'somecode', '.git', 'ok'), 'xxx') self.write_file((self.tmp_dir, 'somecode', '.nfs0001'), 'xxx') dist, cmd = self.get_cmd() cmd.formats = ['zip'] cmd.ensure_finalized() cmd.run() dist_folder = join(self.tmp_dir, 'dist') files = os.listdir(dist_folder) self.assertEqual(files, ['fake-1.0.zip']) zip_file = zipfile.ZipFile(join(dist_folder, 'fake-1.0.zip')) try: content = zip_file.namelist() finally: zip_file.close() self.assertEqual(len(content), 4) @unittest.skipUnless(zlib, 'requires zlib') def test_make_distribution(self): dist, cmd = self.get_cmd() cmd.formats = ['gztar', 'tar'] cmd.ensure_finalized() cmd.run() dist_folder = join(self.tmp_dir, 'dist') result = os.listdir(dist_folder) result.sort() self.assertEqual(result, ['fake-1.0.tar', 'fake-1.0.tar.gz']) os.remove(join(dist_folder, 'fake-1.0.tar')) os.remove(join(dist_folder, 'fake-1.0.tar.gz')) cmd.formats = ['tar', 'gztar'] cmd.ensure_finalized() cmd.run() result = os.listdir(dist_folder) result.sort() self.assertEqual(result, ['fake-1.0.tar', 'fake-1.0.tar.gz']) @unittest.skipUnless(zlib, 'requires zlib') def test_unicode_metadata_tgz(self): """ Unicode name or version should not break building to tar.gz format. Reference issue #11638. """ dist, cmd = self.get_cmd({'name': u'fake', 'version': u'1.0'}) cmd.formats = ['gztar'] cmd.ensure_finalized() cmd.run() dist_folder = join(self.tmp_dir, 'dist') result = os.listdir(dist_folder) self.assertEqual(result, ['fake-1.0.tar.gz']) os.remove(join(dist_folder, 'fake-1.0.tar.gz')) @unittest.skipUnless(zlib, 'requires zlib') def test_add_defaults(self): dist, cmd = self.get_cmd() dist.package_data = {'': ['*.cfg', '*.dat'], 'somecode': ['*.txt']} self.write_file((self.tmp_dir, 'somecode', 'doc.txt'), '#') self.write_file((self.tmp_dir, 'somecode', 'doc.dat'), '#') data_dir = join(self.tmp_dir, 'data') os.mkdir(data_dir) self.write_file((data_dir, 'data.dt'), '#') some_dir = join(self.tmp_dir, 'some') os.mkdir(some_dir) hg_dir = join(self.tmp_dir, '.hg') os.mkdir(hg_dir) self.write_file((hg_dir, 'last-message.txt'), '#') self.write_file((self.tmp_dir, 'buildout.cfg'), '#') self.write_file((self.tmp_dir, 'inroot.txt'), '#') self.write_file((some_dir, 'file.txt'), '#') self.write_file((some_dir, 'other_file.txt'), '#') dist.data_files = [('data', ['data/data.dt', 'buildout.cfg', 'inroot.txt', 'notexisting']), 'some/file.txt', 'some/other_file.txt'] script_dir = join(self.tmp_dir, 'scripts') os.mkdir(script_dir) self.write_file((script_dir, 'script.py'), '#') dist.scripts = [join('scripts', 'script.py')] cmd.formats = ['zip'] cmd.use_defaults = True cmd.ensure_finalized() cmd.run() dist_folder = join(self.tmp_dir, 'dist') files = os.listdir(dist_folder) self.assertEqual(files, ['fake-1.0.zip']) zip_file = zipfile.ZipFile(join(dist_folder, 'fake-1.0.zip')) try: content = zip_file.namelist() finally: zip_file.close() self.assertEqual(len(content), 12) f = open(join(self.tmp_dir, 'MANIFEST')) try: manifest = f.read() finally: f.close() self.assertEqual(manifest, MANIFEST % {'sep': os.sep}) @unittest.skipUnless(zlib, 'requires zlib') def test_metadata_check_option(self): dist, cmd = self.get_cmd(metadata={}) cmd.ensure_finalized() cmd.run() warnings = [ msg for msg in self.get_logs(WARN) if msg.startswith('warning: check:') ] self.assertEqual(len(warnings), 2) self.clear_logs() dist, cmd = self.get_cmd() cmd.ensure_finalized() cmd.metadata_check = 0 cmd.run() warnings = [ msg for msg in self.get_logs(WARN) if msg.startswith('warning: check:') ] self.assertEqual(len(warnings), 0) def test_check_metadata_deprecated(self): dist, cmd = self.get_cmd() with check_warnings() as w: warnings.simplefilter('always') cmd.check_metadata() self.assertEqual(len(w.warnings), 1) def test_show_formats(self): with captured_stdout() as stdout: show_formats() num_formats = len(ARCHIVE_FORMATS.keys()) output = [ line for line in stdout.getvalue().split('\n') if line.strip().startswith('--formats=') ] self.assertEqual(len(output), num_formats) def test_finalize_options(self): dist, cmd = self.get_cmd() cmd.finalize_options() self.assertEqual(cmd.manifest, 'MANIFEST') self.assertEqual(cmd.template, 'MANIFEST.in') self.assertEqual(cmd.dist_dir, 'dist') cmd.formats = 1 self.assertRaises(DistutilsOptionError, cmd.finalize_options) cmd.formats = ['zip'] cmd.finalize_options() cmd.formats = 'supazipa' self.assertRaises(DistutilsOptionError, cmd.finalize_options) @unittest.skipUnless(zlib, 'requires zlib') @unittest.skipUnless(UID_GID_SUPPORT, 'Requires grp and pwd support') @unittest.skipIf(find_executable('tar') is None, 'The tar command is not found') @unittest.skipIf(find_executable('gzip') is None, 'The gzip command is not found') def test_make_distribution_owner_group(self): dist, cmd = self.get_cmd() cmd.formats = ['gztar'] cmd.owner = pwd.getpwuid(0)[0] cmd.group = grp.getgrgid(0)[0] cmd.ensure_finalized() cmd.run() archive_name = join(self.tmp_dir, 'dist', 'fake-1.0.tar.gz') archive = tarfile.open(archive_name) try: for member in archive.getmembers(): self.assertEqual(member.uid, 0) self.assertEqual(member.gid, 0) finally: archive.close() dist, cmd = self.get_cmd() cmd.formats = ['gztar'] cmd.ensure_finalized() cmd.run() archive_name = join(self.tmp_dir, 'dist', 'fake-1.0.tar.gz') archive = tarfile.open(archive_name) try: for member in archive.getmembers(): self.assertEqual(member.uid, os.getuid()) finally: archive.close() def _check_template(self, content): dist, cmd = self.get_cmd() os.chdir(self.tmp_dir) self.write_file('MANIFEST.in', content) cmd.ensure_finalized() cmd.filelist = FileList() cmd.read_template() warnings = self.get_logs(WARN) self.assertEqual(len(warnings), 1) def test_invalid_template_unknown_command(self): self._check_template('taunt knights *') def test_invalid_template_wrong_arguments(self): self._check_template('prune') @unittest.skipIf(os.name != 'nt', 'test relevant for Windows only') def test_invalid_template_wrong_path(self): self._check_template('include examples/') @unittest.skipUnless(zlib, 'requires zlib') def test_get_file_list(self): dist, cmd = self.get_cmd() dist.package_data = {'somecode': ['*.txt']} self.write_file((self.tmp_dir, 'somecode', 'doc.txt'), '#') cmd.formats = ['gztar'] cmd.ensure_finalized() cmd.run() f = open(cmd.manifest) try: manifest = [ line.strip() for line in f.read().split('\n') if line.strip() != '' ] finally: f.close() self.assertEqual(len(manifest), 5) self.write_file((self.tmp_dir, 'somecode', 'doc2.txt'), '#') build_py = dist.get_command_obj('build_py') build_py.finalized = False build_py.ensure_finalized() cmd.run() f = open(cmd.manifest) try: manifest2 = [ line.strip() for line in f.read().split('\n') if line.strip() != '' ] finally: f.close() self.assertEqual(len(manifest2), 6) self.assertIn('doc2.txt', manifest2[-1]) @unittest.skipUnless(zlib, 'requires zlib') def test_manifest_marker(self): dist, cmd = self.get_cmd() cmd.ensure_finalized() cmd.run() f = open(cmd.manifest) try: manifest = [ line.strip() for line in f.read().split('\n') if line.strip() != '' ] finally: f.close() self.assertEqual(manifest[0], '# file GENERATED by distutils, do NOT edit') @unittest.skipUnless(zlib, 'requires zlib') def test_manifest_comments(self): contents = dedent(' # bad.py\n #bad.py\n good.py\n ') dist, cmd = self.get_cmd() cmd.ensure_finalized() self.write_file((self.tmp_dir, cmd.manifest), contents) self.write_file((self.tmp_dir, 'good.py'), '# pick me!') self.write_file((self.tmp_dir, 'bad.py'), "# don't pick me!") self.write_file((self.tmp_dir, '#bad.py'), "# don't pick me!") cmd.run() self.assertEqual(cmd.filelist.files, ['good.py']) @unittest.skipUnless(zlib, 'requires zlib') def test_manual_manifest(self): dist, cmd = self.get_cmd() cmd.formats = ['gztar'] cmd.ensure_finalized() self.write_file((self.tmp_dir, cmd.manifest), 'README.manual') self.write_file((self.tmp_dir, 'README.manual'), 'This project maintains its MANIFEST file itself.') cmd.run() self.assertEqual(cmd.filelist.files, ['README.manual']) f = open(cmd.manifest) try: manifest = [ line.strip() for line in f.read().split('\n') if line.strip() != '' ] finally: f.close() self.assertEqual(manifest, ['README.manual']) archive_name = join(self.tmp_dir, 'dist', 'fake-1.0.tar.gz') archive = tarfile.open(archive_name) try: filenames = [ tarinfo.name for tarinfo in archive ] finally: archive.close() self.assertEqual(sorted(filenames), ['fake-1.0', 'fake-1.0/PKG-INFO', 'fake-1.0/README.manual']) def test_suite(): return unittest.makeSuite(SDistTestCase) if __name__ == '__main__': run_unittest(test_suite()) # okay decompyling c:\Users\PC\wotmods\files\originals\res\packages\scripts\scripts\common\Lib\distutils\tests\test_sdist.pyc # decompiled 1 files: 1 okay, 0 failed, 0 verify failed # 2017.08.29 21:56:18 Střední Evropa (letní čas)
4e1002d9ce5286e189a43928b766b6ff72a4dbff
01926621374435f7daf622f1ef04a51f94e3e883
/litex/build/quicklogic/platform.py
fbd200cb2efd6636f27feeb7075a6e6e6f0658c1
[ "BSD-3-Clause", "BSD-2-Clause" ]
permissive
betrusted-io/litex
d717513e41ff6aba54ac172e886c21479aa41752
8109a8e91ca8321483ccc2f58bd4fed5379bbd18
refs/heads/master
2022-11-23T07:11:35.297128
2022-02-22T11:55:00
2022-02-22T11:55:00
231,203,917
3
0
NOASSERTION
2020-01-01T10:48:06
2020-01-01T10:48:05
null
UTF-8
Python
false
false
1,184
py
# # This file is part of LiteX. # # Copyright (c) 2021 Florent Kermarrec <[email protected]> # SPDX-License-Identifier: BSD-2-Clause import os from litex.build.generic_platform import GenericPlatform from litex.build.quicklogic import common, symbiflow # QuickLogicPlatform ------------------------------------------------------------------------------- class QuickLogicPlatform(GenericPlatform): bitstream_ext = ".bit" def __init__(self, device, *args, toolchain="symbiflow", **kwargs): GenericPlatform.__init__(self, device, *args, **kwargs) if toolchain == "symbiflow": self.toolchain = symbiflow.SymbiflowToolchain() else: raise ValueError(f"Unknown toolchain {toolchain}") def get_verilog(self, *args, special_overrides=dict(), **kwargs): so = dict(common.quicklogic_special_overrides) so.update(special_overrides) return GenericPlatform.get_verilog(self, *args, special_overrides = so, attr_translate = self.toolchain.attr_translate, **kwargs) def build(self, *args, **kwargs): return self.toolchain.build(self, *args, **kwargs)
c480f46b0c551272158063ee08ae7ef47fb91801
6b5c67590979627a97b7d8f0d9fc131b63fa817d
/cgettext.py
11081dd45c063fcc7fa697958c11031a104e4612
[ "MIT" ]
permissive
eevee/cgettext
303357e28349a6cdd906a3e5ffb2fc6889041f37
9efa06369c19c0631dbebbc2f45f787b4cd01eb5
refs/heads/master
2016-09-05T09:01:11.343350
2014-06-27T20:03:10
2014-06-27T20:03:10
19,359,054
1
0
null
2014-05-31T01:02:46
2014-05-01T21:56:14
Python
UTF-8
Python
false
false
495
py
try: from _cgettext import c_parse except ImportError: # No C module available; just re-export the builtin from gettext import GNUTranslations else: import gettext class GNUTranslations(gettext.GNUTranslations): def _parse(self, fp): charset, metadata, catalog, plural = c_parse(fp) self._charset = charset self._info = metadata self._catalog = catalog self.plural = plural __all__ = ['GNUTranslations']
0467a469bfb2a1b833b93af0761a056efbc02d40
a2e638cd0c124254e67963bda62c21351881ee75
/Extensions/TRACE/FPythonCode/FTradeSheetColumnCustom.py
7368f700f8f3f51a6c7c5f45f72afb9cdeed7e09
[]
no_license
webclinic017/fa-absa-py3
1ffa98f2bd72d541166fdaac421d3c84147a4e01
5e7cc7de3495145501ca53deb9efee2233ab7e1c
refs/heads/main
2023-04-19T10:41:21.273030
2021-05-10T08:50:05
2021-05-10T08:50:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,351
py
import acm def get_TradeReportTransType_string_from_value(val): ''' Accepts value for TradeReportTransType, in FIX message and returns mapped value, which needs to be displayed in tradesheet for particular column. ''' switcher = { "0": "New", "1": "Cancel", "2": "Replace", "3": "Release", "4": "Reverse" } ret = switcher.get(val, val) return ret def get_TradeReportType_string_from_value(val): ''' Accepts value for TradeReportType, in FIX message and returns mapped value, which needs to be displayed in tradesheet for particular column. ''' switcher = { "0": "Submit", "1": "Alleged", "2": "Accept", "3": "Decline", "4": "Addendum", "5": "No/Was", "6": "Trade Report Cancel", "7": "Locked In Trade Break" } ret = switcher.get(val, val) return ret def get_PartyRole_string_from_value(val): ''' Accepts value for PartyRole, in FIX message and returns mapped value, which needs to be displayed in tradesheet for particular column. ''' switcher = { "1": "Executing Firm", "7": "Entering Firm", "14": "Giveup Firm", "17": "Contra Firm", "83": "Clearing Account" } ret = switcher.get(val, val) return ret
c12a2731c0266326e4342197497bdbe4b3103bbe
5a52ccea88f90dd4f1acc2819997fce0dd5ffb7d
/alipay/aop/api/domain/KoubeiCateringOrderPayDisburseModel.py
d7684ebecee96e879c01d6568cb06e1e665fd1cf
[ "Apache-2.0" ]
permissive
alipay/alipay-sdk-python-all
8bd20882852ffeb70a6e929038bf88ff1d1eff1c
1fad300587c9e7e099747305ba9077d4cd7afde9
refs/heads/master
2023-08-27T21:35:01.778771
2023-08-23T07:12:26
2023-08-23T07:12:26
133,338,689
247
70
Apache-2.0
2023-04-25T04:54:02
2018-05-14T09:40:54
Python
UTF-8
Python
false
false
4,200
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * from alipay.aop.api.domain.PosOrderKey import PosOrderKey class KoubeiCateringOrderPayDisburseModel(object): def __init__(self): self._auth_code = None self._member_flag = None self._out_pay_no = None self._pos_order_key = None self._timeout = None self._total_amount = None self._undiscountable = None @property def auth_code(self): return self._auth_code @auth_code.setter def auth_code(self, value): self._auth_code = value @property def member_flag(self): return self._member_flag @member_flag.setter def member_flag(self, value): self._member_flag = value @property def out_pay_no(self): return self._out_pay_no @out_pay_no.setter def out_pay_no(self, value): self._out_pay_no = value @property def pos_order_key(self): return self._pos_order_key @pos_order_key.setter def pos_order_key(self, value): if isinstance(value, PosOrderKey): self._pos_order_key = value else: self._pos_order_key = PosOrderKey.from_alipay_dict(value) @property def timeout(self): return self._timeout @timeout.setter def timeout(self, value): self._timeout = value @property def total_amount(self): return self._total_amount @total_amount.setter def total_amount(self, value): self._total_amount = value @property def undiscountable(self): return self._undiscountable @undiscountable.setter def undiscountable(self, value): self._undiscountable = value def to_alipay_dict(self): params = dict() if self.auth_code: if hasattr(self.auth_code, 'to_alipay_dict'): params['auth_code'] = self.auth_code.to_alipay_dict() else: params['auth_code'] = self.auth_code if self.member_flag: if hasattr(self.member_flag, 'to_alipay_dict'): params['member_flag'] = self.member_flag.to_alipay_dict() else: params['member_flag'] = self.member_flag if self.out_pay_no: if hasattr(self.out_pay_no, 'to_alipay_dict'): params['out_pay_no'] = self.out_pay_no.to_alipay_dict() else: params['out_pay_no'] = self.out_pay_no if self.pos_order_key: if hasattr(self.pos_order_key, 'to_alipay_dict'): params['pos_order_key'] = self.pos_order_key.to_alipay_dict() else: params['pos_order_key'] = self.pos_order_key if self.timeout: if hasattr(self.timeout, 'to_alipay_dict'): params['timeout'] = self.timeout.to_alipay_dict() else: params['timeout'] = self.timeout if self.total_amount: if hasattr(self.total_amount, 'to_alipay_dict'): params['total_amount'] = self.total_amount.to_alipay_dict() else: params['total_amount'] = self.total_amount if self.undiscountable: if hasattr(self.undiscountable, 'to_alipay_dict'): params['undiscountable'] = self.undiscountable.to_alipay_dict() else: params['undiscountable'] = self.undiscountable return params @staticmethod def from_alipay_dict(d): if not d: return None o = KoubeiCateringOrderPayDisburseModel() if 'auth_code' in d: o.auth_code = d['auth_code'] if 'member_flag' in d: o.member_flag = d['member_flag'] if 'out_pay_no' in d: o.out_pay_no = d['out_pay_no'] if 'pos_order_key' in d: o.pos_order_key = d['pos_order_key'] if 'timeout' in d: o.timeout = d['timeout'] if 'total_amount' in d: o.total_amount = d['total_amount'] if 'undiscountable' in d: o.undiscountable = d['undiscountable'] return o
8edff0421ebc56d61abee4a4cef9d6eef91672f0
f6290b7b8ffb263b7f0d252a67e2c6320a4c1143
/Binary Tree/height_of_special_binary_tree.py
180231ea70bd5a270e62130aca6e3fd2873838a8
[]
no_license
datAnir/GeekForGeeks-Problems
b45b0ae80053da8a1b47a2af06e688081574ef80
c71f11d0349ed3850dfaa9c7a078ee70f67e46a1
refs/heads/master
2023-05-29T15:21:59.680793
2020-12-15T04:55:01
2020-12-15T04:55:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,656
py
''' https://practice.geeksforgeeks.org/problems/height-of-spiral-tree/1 Given a special Binary Tree whose leaf nodes are connected to form a circular doubly linked list. Find the height of this special Binary Tree. Example 1: Input: 1 / \ 2 3 / \ 4 5 / 6 Output: 4 ​Explanation: In the above binary tree, 6, 5 and 3 are leaf nodes and they form a circular doubly linked list. Here, the left pointer of leaf node will act as a previous pointer of circular doubly linked list and its right pointer will act as next pointer of circular doubly linked list. ''' # method - 1 => create visited array, and using BFS find total level from collections import deque, defaultdict def findTreeHeight(root): q = deque([root]) level = 0 visited = defaultdict(bool) visited[root] = True while len(q) > 0: size = len(q) for i in range(size): node = q.popleft() if node.left and not visited[node.left]: q.append(node.left) visited[node.left] = True if node.right and not visited[node.right]: q.append(node.right) visited[node.right] = True level += 1 return level # method - 2 => check circular conditions extra # if current node is equal to next node's previous or next def findTreeHeight(root): if root == None: return 0 if (root.left != None and root == root.left.right) or (root.right != None and root == root.right.left): return 1 lh = findTreeHeight(root.left) rh = findTreeHeight(root.right) return max(lh, rh) + 1
2056c13bcd2d7119d86fef5e4c54c693d4a2d140
6f10c043a65d7c0f39cb75b3d39370261e2371c3
/papers/tests.py
8b4f86b9d012cc17e78d75343b0d307434c9771f
[ "CC0-1.0", "LicenseRef-scancode-unknown-license-reference", "MIT" ]
permissive
BridgesLab/Lab-Website
8d71def7874d7970c42fe2e697f1c163ae5e7eb9
d6f6c9c068bbf668c253e5943d9514947023e66d
refs/heads/master
2020-12-25T08:37:36.970077
2020-05-26T01:25:00
2020-05-26T01:25:00
12,854,696
0
0
null
null
null
null
UTF-8
Python
false
false
23,411
py
""" This package contains the unit tests for the :mod:`papers` app. It contains view and model tests for each model, grouped together. Contains the two model tests: * :class:`~papers.tests.PublicationModelTests` * :class:`~papers.tests.AuthorDetailsModelTests` The API tests: * :class:`~PublicationResourceTests` And the view tests: * :class:`~papers.tests.PublicationViewTests` """ from django.test import TestCase from django.test.client import Client from django.contrib.auth.models import User from papers.models import Publication, AuthorDetails, Person, Commentary MODELS = [Publication, AuthorDetails, Commentary] class PublicationModelTests(TestCase): '''This class tests various aspects of the :class:`~papers.models.Publication` model.''' fixtures = ['test_publication.json', 'test_publication_personnel.json'] def setUp(self): '''Instantiate the test client. Creates a test user.''' self.client = Client() self.test_user = User.objects.create_user('testuser', '[email protected]', 'testpassword') self.test_user.is_superuser = True self.test_user.is_active = True self.test_user.save() self.assertEqual(self.test_user.is_superuser, True) login = self.client.login(username='testuser', password='testpassword') self.failUnless(login, 'Could not log in') def tearDown(self): '''Depopulate created model instances from test database.''' for model in MODELS: for obj in model.objects.all(): obj.delete() def test_create_new_paper_minimum(self): '''This test creates a :class:`~papers.models.Publication` with the required information only.''' test_publication = Publication(title='Test Publication.', laboratory_paper=True, interesting_paper=False, preprint=False) test_publication.save() self.assertEqual(test_publication.pk, 3) #def test_create_new_paper_all(self): #'''This test creates a `::class:Publication` with the required information only.''' #test_publication = Publication(title='Test Publication') #add more fields #test_publication.save() def test_paper_unicode(self): '''This tests the unicode representation of a :class:`~papers.models.Publication`.''' test_publication = Publication.objects.get(title_slug='14-3-3-proteins-a-number-of-functions-for-a-numbered-protein', laboratory_paper=True, interesting_paper=False, preprint=False) self.assertEqual(test_publication.__unicode__(), "14-3-3 proteins: a number of functions for a numbered protein.") def test_paper_title_slug(self): '''This tests the title_slug field of a :class:`~papers.models.Publication`.''' test_publication = Publication(title='Test Publication.', laboratory_paper=True, interesting_paper=False, preprint=False) test_publication.save() self.assertEqual(test_publication.title_slug, "test-publication") def test_paper_absolute_url(self): '''This tests the title_slug field of a :class:`~papers.models.Publication`.''' test_publication = Publication(title='Test Publication', laboratory_paper=True, interesting_paper=False, preprint=False) test_publication.save() self.assertEqual(test_publication.get_absolute_url(), "/papers/test-publication") def test_paper_doi_link(self): '''This tests the title_slug field of a :class:`~papers.models.Publication`.''' test_publication = Publication.objects.get(title="14-3-3 proteins: a number of functions for a numbered protein.", laboratory_paper=True, interesting_paper=False, preprint=False) self.assertEqual(test_publication.doi_link(), "http://dx.doi.org/10.1126/stke.2962005re10") def test_full_pmcid(self): '''This tests that a correct full PMCID can be generated for a :class:`~papers.models.Publication`.''' test_publication = Publication(title="Test Publication", pmcid = "12345", laboratory_paper=True, interesting_paper=False, preprint=False) test_publication.save() self.assertEqual(test_publication.full_pmcid(), 'PMC12345') class AuthorDetailsModelTests(TestCase): '''This class tests varios aspects of the :class:`~papers.models.AuthorDetails` model.''' fixtures = ['test_publication', 'test_publication_personnel'] def setUp(self): '''Instantiate the test client. Creates a test user.''' self.client = Client() self.test_user = User.objects.create_user('testuser', '[email protected]', 'testpassword') self.test_user.is_superuser = True self.test_user.is_active = True self.test_user.save() self.assertEqual(self.test_user.is_superuser, True) login = self.client.login(username='testuser', password='testpassword') self.failUnless(login, 'Could not log in') def tearDown(self): '''Depopulate created model instances from test database.''' for model in MODELS: for obj in model.objects.all(): obj.delete() def test_create_new_authordetail_minimum(self): '''This test creates a :class:`~papers.models.AuthorDetails` with the required information only.''' test_authordetail = AuthorDetails(author=Person.objects.get(pk=1), order = 1, corresponding_author=True, equal_contributors=False) test_authordetail.save() def test_create_new_authordetail_all(self): '''This test creates a :class:`~papers.models.AuthorDetails` with the required information only.''' test_authordetail = AuthorDetails(author=Person.objects.get(pk=1), order = 1, corresponding_author = True, equal_contributors = True) test_authordetail.save() def test_authordetail_unicode(self): '''This tests that the unicode representaton of an :class:`~papers.models.AuthorDetails` object is correct.''' test_authordetail = AuthorDetails(author=Person.objects.get(pk=1), order = 1, corresponding_author=True, equal_contributors=False) test_authordetail.save() self.assertEqual(test_authordetail.__unicode__(), '1 - None - Dave Bridges') class CommentaryModelTests(TestCase): '''This class tests various aspects of the :class:`~papers.models.Commentary` model.''' fixtures = ['test_publication', 'test_personnel','test_publication_personnel.json'] def setUp(self): '''Instantiate the test client. Creates a test user.''' self.client = Client() self.test_user = User.objects.create_user('testuser', '[email protected]', 'testpassword') self.test_user.is_superuser = True self.test_user.is_active = True self.test_user.save() self.assertEqual(self.test_user.is_superuser, True) login = self.client.login(username='testuser', password='testpassword') self.failUnless(login, 'Could not log in') def tearDown(self): '''Depopulate created model instances from test database.''' for model in MODELS: for obj in model.objects.all(): obj.delete() def test_create_new_commentary_minimum(self): '''This test creates a :class:`~papers.models.Commentary` with the required information only.''' test_commentary = Commentary(paper=Publication.objects.get(pk=1), comments = "Some comments") test_commentary.save() self.assertEqual(test_commentary.pk, 1) def test_create_new_commentary_all(self): '''This test creates a :class:`~papers.models.Commentary` with all fields entered.''' test_commentary = Commentary(paper=Publication.objects.get(pk=1), comments = "Some comments", author = Person.objects.get(pk=1), citation = "some citation") test_commentary.save() self.assertEqual(test_commentary.pk, 1) def test_commentary_unicode(self): '''This test creates a :class:`~papers.models.Commentary` and then verifies the unicode representation is correct.''' test_commentary = Commentary(paper=Publication.objects.get(pk=1), comments = "Some comments") test_commentary.save() self.assertEqual(test_commentary.__unicode__(), "Journal club summary on 14-3-3 proteins: a number of functions for a numbered protein.") class PublicationResourceTests(TestCase): '''This class tests varios aspects of the :class:`~papers.api.PublicationResource` API model.''' fixtures = ['test_publication', 'test_publication_personnel'] def setUp(self): '''Instantiate the test client. Creates a test user.''' self.client = Client() self.test_user = User.objects.create_user('testuser', '[email protected]', 'testpassword') self.test_user.is_superuser = True self.test_user.is_active = True self.test_user.save() self.assertEqual(self.test_user.is_superuser, True) login = self.client.login(username='testuser', password='testpassword') self.failUnless(login, 'Could not log in') def tearDown(self): '''Depopulate created model instances from test database.''' for model in MODELS: for obj in model.objects.all(): obj.delete() def api_publication_list_test(self): '''This tests that the API correctly renders a list of :class:`~papers.models.Publication` objects.''' response = self.client.get('/api/v1/publications/?format=json') self.assertEqual(response.status_code, 200) self.assertEqual(response['Content-Type'], 'application/json; charset=utf-8') def api_publication_detail_test(self): '''This tests that the API correctly renders a particular :class:`~papers.models.Publication` objects.''' response = self.client.get('/api/v1/publications/1/?format=json') self.assertEqual(response.status_code, 200) self.assertEqual(response['Content-Type'], 'application/json; charset=utf-8') print response class PublicationViewTests(TestCase): '''This class tests the views for :class:`~papers.models.Publication` objects.''' fixtures = ['test_publication', 'test_publication_personnel'] def setUp(self): """Instantiate the test client. Creates a test user.""" self.client = Client() self.test_user = User.objects.create_user('testuser', '[email protected]', 'testpassword') self.test_user.is_superuser = True self.test_user.is_active = True self.test_user.save() self.assertEqual(self.test_user.is_superuser, True) login = self.client.login(username='testuser', password='testpassword') self.failUnless(login, 'Could not log in') def tearDown(self): """Depopulate created model instances from test database.""" for model in MODELS: for obj in model.objects.all(): obj.delete() def test_publication_view(self): """This tests the paper-details view, ensuring that templates are loaded correctly. This view uses a user with superuser permissions so does not test the permission levels for this view.""" test_response = self.client.get('/papers/14-3-3-proteins-a-number-of-functions-for-a-numbered-protein/') self.assertEqual(test_response.status_code, 200) self.assertTrue('publication' in test_response.context) self.assertTemplateUsed(test_response, 'paper-detail.html') self.assertTemplateUsed(test_response, 'base.html') self.assertTemplateUsed(test_response, 'disqus_snippet.html') self.assertTemplateUsed(test_response, 'paper_sharing_widgets.html') self.assertTemplateUsed(test_response, 'altmetric_snippet.html') self.assertEqual(test_response.context['publication'].pk, 1) self.assertEqual(test_response.context['publication'].title, u'14-3-3 proteins: a number of functions for a numbered protein.') def test_lab_papers_list(self): """This tests the laboratory-papers view ensuring that templates are loaded correctly. This view uses a user with superuser permissions so does not test the permission levels for this view.""" test_response = self.client.get('/papers/') self.assertEqual(test_response.status_code, 200) self.assertTrue('publication_list' in test_response.context) self.assertTemplateUsed(test_response, 'paper-list.html') self.assertTemplateUsed(test_response, 'base.html') self.assertTemplateUsed(test_response, 'facebook_api_sdk_script.html') self.assertTemplateUsed(test_response, 'analytics_tracking.html') self.assertTemplateUsed(test_response, 'paper-detail-snippet.html') self.assertEqual(test_response.context['publication_list'][0].pk, 1) self.assertEqual(test_response.context['publication_list'][0].title, u'14-3-3 proteins: a number of functions for a numbered protein.') def test_interesting_papers_list(self): """This tests the interesting-papers view ensuring that templates are loaded correctly. This view uses a user with superuser permissions so does not test the permission levels for this view.""" test_response = self.client.get('/papers/interesting') self.assertEqual(test_response.status_code, 200) self.assertTrue('publication_list' in test_response.context) self.assertTemplateUsed(test_response, 'paper-list.html') self.assertTemplateUsed(test_response, 'base.html') self.assertTemplateUsed(test_response, 'paper-detail-snippet.html') self.assertEqual(test_response.context['publication_list'][0].pk, 2) self.assertEqual(test_response.context['publication_list'][0].title, u"THE RELATION OF ADENOSINE-3', 5'-PHOSPHATE AND PHOSPHORYLASE TO THE ACTIONS OF CATECHOLAMINES AND OTHER HORMONES.") def test_publication_view_create(self): """This tests the paper-new view, ensuring that templates are loaded correctly. This view uses a user with superuser permissions so does not test the permission levels for this view.""" test_response = self.client.get('/papers/new/') self.assertEqual(test_response.status_code, 200) self.assertTemplateUsed(test_response, 'base.html') self.assertTemplateUsed(test_response, 'publication_form.html') def test_publication_view_edit(self): """This tests the paper-edit view, ensuring that templates are loaded correctly. This view uses a user with superuser permissions so does not test the permission levels for this view.""" test_response = self.client.get('/papers/14-3-3-proteins-a-number-of-functions-for-a-numbered-protein/edit/') self.assertEqual(test_response.status_code, 200) self.assertTrue('publication' in test_response.context) self.assertTemplateUsed(test_response, 'base.html') self.assertTemplateUsed(test_response, 'publication_form.html') self.assertEqual(test_response.context['publication'].pk, 1) self.assertEqual(test_response.context['publication'].title, u'14-3-3 proteins: a number of functions for a numbered protein.') #verifies that a non-existent object returns a 404 error presuming there is no object with pk=2. null_response = self.client.get('/papers/not-a-real-paper/edit/') self.assertEqual(null_response.status_code, 404) def test_publication_view_delete(self): """This tests the paper-delete view, ensuring that templates are loaded correctly. This view uses a user with superuser permissions so does not test the permission levels for this view.""" test_response = self.client.get('/papers/14-3-3-proteins-a-number-of-functions-for-a-numbered-protein/delete/') self.assertEqual(test_response.status_code, 200) self.assertTrue('publication' in test_response.context) self.assertTemplateUsed(test_response, 'confirm_delete.html') self.assertEqual(test_response.context['publication'].pk, 1) self.assertEqual(test_response.context['publication'].title, u'14-3-3 proteins: a number of functions for a numbered protein.') #verifies that a non-existent object returns a 404 error. null_response = self.client.get('/papers/not-a-real-paper/delete/') self.assertEqual(null_response.status_code, 404) class CommentaryViewTests(TestCase): '''This class tests the views for :class:`~papers.models.Commentary` objects.''' fixtures = ['test_publication', 'test_personnel', 'test_commentary','test_publication_personnel.json'] def setUp(self): """Instantiate the test client. Creates a test user.""" self.client = Client() self.test_user = User.objects.create_user('testuser', '[email protected]', 'testpassword') self.test_user.is_superuser = True self.test_user.is_active = True self.test_user.save() self.assertEqual(self.test_user.is_superuser, True) login = self.client.login(username='testuser', password='testpassword') self.failUnless(login, 'Could not log in') def tearDown(self): """Depopulate created model instances from test database.""" for model in MODELS: for obj in model.objects.all(): obj.delete() def test_commentary_view(self): """This tests the commentary-detail view, ensuring that templates are loaded correctly. This view uses a user with superuser permissions so does not test the permission levels for this view.""" test_response = self.client.get('/papers/commentary/1') self.assertEqual(test_response.status_code, 200) self.assertTrue('commentary' in test_response.context) self.assertTemplateUsed(test_response, 'commentary-detail.html') self.assertTemplateUsed(test_response, 'base.html') self.assertTemplateUsed(test_response, 'disqus_snippet.html') self.assertTemplateUsed(test_response, 'analytics_tracking.html') self.assertEqual(test_response.context['commentary'].pk, 1) self.assertEqual(test_response.context['commentary'].paper.__unicode__(), u'14-3-3 proteins: a number of functions for a numbered protein.') self.assertEqual(test_response.context['commentary'].comments, "some comments for this fixture") #verifies that a non-existent object returns a 404 error. null_response = self.client.get('/papers/commentary/9999') self.assertEqual(null_response.status_code, 404) def test_commentary_view_create(self): """This tests the commentary-new view, ensuring that templates are loaded correctly. This view uses a user with superuser permissions so does not test the permission levels for this view.""" test_response = self.client.get('/papers/commentary/new') self.assertEqual(test_response.status_code, 200) self.assertTemplateUsed(test_response, 'base.html') self.assertTemplateUsed(test_response, 'commentary-form.html') self.assertTemplateUsed(test_response, 'analytics_tracking.html') def test_commentary_view_edit(self): """This tests the commentary-edit view, ensuring that templates are loaded correctly. This view uses a user with superuser permissions so does not test the permission levels for this view.""" test_response = self.client.get('/papers/commentary/1/edit') self.assertEqual(test_response.status_code, 200) self.assertTrue('commentary' in test_response.context) self.assertTemplateUsed(test_response, 'base.html') self.assertTemplateUsed(test_response, 'commentary-form.html') self.assertTemplateUsed(test_response, 'analytics_tracking.html') self.assertEqual(test_response.context['commentary'].pk, 1) self.assertEqual(test_response.context['commentary'].paper.__unicode__(), u'14-3-3 proteins: a number of functions for a numbered protein.') self.assertEqual(test_response.context['commentary'].comments, "some comments for this fixture") #verifies that a non-existent object returns a 404 error. null_response = self.client.get('/papers/commentary/9999/edit') self.assertEqual(null_response.status_code, 404) def test_commentary_view_delete(self): """This tests the commentary-delete view, ensuring that templates are loaded correctly. This view uses a user with superuser permissions so does not test the permission levels for this view.""" test_response = self.client.get('/papers/commentary/1/delete') self.assertEqual(test_response.status_code, 200) self.assertTrue('object' in test_response.context) self.assertTemplateUsed(test_response, 'base.html') self.assertTemplateUsed(test_response, 'confirm_delete.html') def test_commentary_view_list(self): """This tests the commentary-list view, ensuring that templates are loaded correctly. This view uses a user with superuser permissions so does not test the permission levels for this view.""" test_response = self.client.get('/papers/commentaries') self.assertEqual(test_response.status_code, 200) self.assertTrue('commentary_list' in test_response.context) self.assertTemplateUsed(test_response, 'base.html') self.assertTemplateUsed(test_response, 'commentary-list.html') self.assertTemplateUsed(test_response, 'analytics_tracking.html') self.assertEqual(test_response.context['commentary_list'][0].pk, 1) self.assertEqual(test_response.context['commentary_list'][0].paper.__unicode__(), u'14-3-3 proteins: a number of functions for a numbered protein.') self.assertEqual(test_response.context['commentary_list'][0].comments, "some comments for this fixture") def test_jc_view_list(self): """This tests the jc-list view, ensuring that templates are loaded correctly. This view uses a user with superuser permissions so does not test the permission levels for this view.""" test_response = self.client.get('/journal-club') self.assertEqual(test_response.status_code, 200) self.assertTrue('journal_club_list' in test_response.context) self.assertTemplateUsed(test_response, 'base.html') self.assertTemplateUsed(test_response, 'jc-list.html') self.assertTemplateUsed(test_response, 'analytics_tracking.html')
91469a33a999bfea9fed7f0776edd52783522402
b05fee086482565ef48785f2a9c57cfe2c169f68
/part_one/6-builder_pattern/builder/director.py
30ec18b0022359e51962b212e0ff4a289f939982
[]
no_license
diegogcc/py-design_patterns
76db926878d5baf9aea1f3d2f6a09f4866c3ce1e
2b49b981f2d3514bbd02796fe9a8ec083df6bb38
refs/heads/master
2023-04-01T08:28:53.211024
2021-04-05T11:48:19
2021-04-05T11:48:19
304,145,791
0
0
null
null
null
null
UTF-8
Python
false
false
431
py
class Director: def __init__(self, builder): self._builder = builder def get_computer(self): return self._builder.get_computer() def build_computer(self): self._builder.new_computer() self._builder.get_case() self._builder.build_mainboard() self._builder.install_mainboard() self._builder.install_hard_drive() self._builder.install_video_card()
a1bab5f325d133df17fbae75ee780f703da474c6
482467f7875513440ccc9fb5ee5755214137e8df
/homeassistant/components/stiebel_eltron/__init__.py
52dc2d848918bf88b821b56a49c0cb0a36338a48
[ "Apache-2.0" ]
permissive
Watemlifts/home-assistant
fbf16d91489f9ab472b1fda928fc472f99d2b057
6e414983738d9495eb9e4f858e3e98e9e38869db
refs/heads/dev
2023-07-21T06:38:40.212969
2023-07-15T09:33:07
2023-07-15T09:33:07
195,134,511
4
0
Apache-2.0
2023-07-15T09:33:08
2019-07-03T22:34:49
Python
UTF-8
Python
false
false
1,761
py
"""The component for STIEBEL ELTRON heat pumps with ISGWeb Modbus module.""" from datetime import timedelta import logging import voluptuous as vol from homeassistant.components.modbus import ( CONF_HUB, DEFAULT_HUB, DOMAIN as MODBUS_DOMAIN) from homeassistant.const import CONF_NAME, DEVICE_DEFAULT_NAME from homeassistant.helpers import discovery import homeassistant.helpers.config_validation as cv from homeassistant.util import Throttle DOMAIN = 'stiebel_eltron' CONFIG_SCHEMA = vol.Schema({ DOMAIN: vol.Schema({ vol.Optional(CONF_NAME, default=DEVICE_DEFAULT_NAME): cv.string, vol.Optional(CONF_HUB, default=DEFAULT_HUB): cv.string, }) }, extra=vol.ALLOW_EXTRA) _LOGGER = logging.getLogger(__name__) MIN_TIME_BETWEEN_UPDATES = timedelta(seconds=30) def setup(hass, config): """Set up the STIEBEL ELTRON unit. Will automatically load climate platform. """ name = config[DOMAIN][CONF_NAME] modbus_client = hass.data[MODBUS_DOMAIN][config[DOMAIN][CONF_HUB]] hass.data[DOMAIN] = { 'name': name, 'ste_data': StiebelEltronData(name, modbus_client) } discovery.load_platform(hass, 'climate', DOMAIN, {}, config) return True class StiebelEltronData: """Get the latest data and update the states.""" def __init__(self, name, modbus_client): """Init the STIEBEL ELTRON data object.""" from pystiebeleltron import pystiebeleltron self.api = pystiebeleltron.StiebelEltronAPI(modbus_client, 1) @Throttle(MIN_TIME_BETWEEN_UPDATES) def update(self): """Update unit data.""" if not self.api.update(): _LOGGER.warning("Modbus read failed") else: _LOGGER.debug("Data updated successfully")
3333bd7d1d54e4a76c2974fe2941e952ca4dd14a
ff6248be9573caec94bea0fa2b1e4b6bf0aa682b
/log-20190927/132.230.102.123-10.21.11.11/1569575419.py
5356af5e985e01c5e1c1f9be6046d34f1addbda1
[]
no_license
LennartElbe/codeEvo
0e41b1a7705204e934ef71a5a28c047366c10f71
e89b329bc9edd37d5d9986f07ca8a63d50686882
refs/heads/master
2020-12-21T17:28:25.150352
2020-03-26T10:22:35
2020-03-26T10:22:35
236,498,032
0
0
null
null
null
null
UTF-8
Python
false
false
2,812
py
import functools import typing import string import random import pytest def leap(year: int) -> bool: """ Args: year: an integer Returns: a boolean expression """ if year < 1583: return False if year % 4 == 0: #and year % 100 == 0 and year %400 != 0: if year % 100 == 0 and year %400 != 0: print("test") return False else: return True else: return False print(leap(1582)) print(leap(1644)) ###################################################################### ## hidden code def mk_coverage(): covered = set() target = set(range(4)) count = 0 def coverage(func): nonlocal covered, target, count def wrapper(year): nonlocal covered, count if year % 4 != 0: covered.add(0) elif year % 100 != 0: covered.add(1) elif year % 400 != 0: covered.add(2) else: covered.add(3) r = func (year) count += 1 return r if func == "achieved": return len(covered) if func == "required": return len(target) if func == "count" : return count functools.update_wrapper(wrapper, func) return wrapper return coverage coverage = mk_coverage () try: leap = coverage(leap) except: pass ## Lösung Teil 2 (Tests) def test_leap(): assert leap(1582) == False assert leap(1583) == False assert leap(1600) == True assert leap(1644) == False ###################################################################### ## hidden tests pytest.main (["-v", "--assert=plain", "-p", "no:cacheprovider"]) from inspect import getfullargspec class TestNames: def test_leap (self): assert leap assert 'year' in getfullargspec(leap).args class TestGrades: def test_docstring_present(self): assert leap.__doc__ is not None def test_typing_present(self): assert leap.__hints__ == typing.get_type_hints(self.leap_oracle) def test_coverage(self): assert coverage("achieved") == coverage("required") def leap_oracle(self, year :int) -> bool: if year % 4 != 0: return False elif year % 100 != 0: return True elif year % 400 == 0: return True else: return False def check_leap (self, year): assert leap (year) == self.leap_oracle (year) def test_correctness(self): for i in range (100): year = random.randrange (1582,2500) self.check_leap (year) for i in range (100): year = random.randrange (1600,3000, 100) self.check_leap (year)
92eb574a98ab18224e6f678efd484bebf0f75fbd
f1961c86e6da14f35c21d7235f4fc8a89fabdcad
/DailyProgrammer/DP20140226B.py
723789a5c53f06aeb779421827eca6c15247d7f0
[ "MIT" ]
permissive
DayGitH/Python-Challenges
d4930bdd85cd1a977d8f6192775ca956a375fcde
bc32f1332a92fcc2dfa6f5ea4d95f8a8d64c3edf
refs/heads/master
2021-01-17T13:01:03.784523
2018-06-29T23:49:04
2018-06-29T23:49:04
58,497,683
2
0
null
null
null
null
UTF-8
Python
false
false
2,841
py
""" [02/26/14] Challenge #150 [Intermediate] Re-emvoweler 1 https://www.reddit.com/r/dailyprogrammer/comments/1yzlde/022614_challenge_150_intermediate_reemvoweler_1/ # _(Intermediate)_: Re-emvoweler 1 In [this week's Easy challenge](http://www.reddit.com/r/dailyprogrammer/comments/1ystvb/022414_challenge_149_easy_disemvoweler/), series of words were disemvoweled into vowels, and non-vowel letters. Spaces were also removed. Your task today is, given the two strings produced via disemvowelment, output _one possibility_ for the original string. 1. Your output must be such that if you put it through the solution to this week's Easy challenge, you'll recover exactly the input you were given. 2. You don't need to output the same string as the one that was originally disemvoweled, just _some_ string that disemvowels to your input. 3. Use [the Enable word list](http://code.google.com/p/dotnetperls-controls/downloads/detail?name=enable1.txt), or some other reasonable English word list. Every word in your output must appear in your word list. 4. For the sample inputs, all words in originally disemvoweled strings appear in Enable. In particular, I'm not using any words with punctuation, and I'm not using the word "a". 5. As before, ignore punctuation and capitalization. # Formal Inputs & Outputs ## Input description Two strings, one containing only non-vowel letters, and one containing only vowels. ## Output description A space-separated series of words that could be disemvoweled into the input, each word of which must appear in your word list. # Sample Inputs & Outputs ## Sample Input 1 wwllfndffthstrds eieoeaeoi ## Sample Output 1 There are, in general, many correct outputs. Any of these is valid output for the sample input (using the Enable word list to verify words): we wile lo fen daff et host rids we wile lo fend aff eths tor ids we wile lo fen daff the sot rids we will fend off eths tare do si we will fend off the asteroids ## Sample Input 2 bbsrshpdlkftbllsndhvmrbndblbnsthndlts aieaeaeieooaaaeoeeaeoeaau ## Sample Outputs 2 ab bise ars he ae pi ed look fa tab all sned hove me ar bend blob ens than adults ai be base rash pe die look fat bal la sned hove me ar bend blob ens than adults babies ae rash pe die loo ka fat balls end ho vee mar bend blob ens than adults babies rash pedal kef tie bolls nod aah ave omer bendable bones than adults babies are shaped like footballs and have more bendable bones than adults ## Sample Input 3 llfyrbsshvtsmpntbncnfrmdbyncdt aoouiaeaeaoeoieeoieaeoe # Notes Thanks to /u/abecedarius for inspiring this challenge on /r/dailyprogrammer_ideas! Think you can do a better job of re-emvoweling? Check out this week's Hard challenge! """ def main(): pass if __name__ == "__main__": main()
c1a3f8a768bbde06f5bc0e63a67e80424aa23eeb
a7ded5d3d19a98e61a44189cffe3703f7938e0db
/xero_python/accounting/models/country_code.py
20c8ef17a04040149b701b78f318d6a723c86732
[ "MIT" ]
permissive
liseekeralbert/xero-python
dfd1076344f763d74f81f701e32600cf88bcc7b2
d27ab1894ecd84d2a9af0ca91583593756b21ab3
refs/heads/master
2022-12-16T07:41:14.331308
2020-09-18T17:12:35
2020-09-18T17:12:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,889
py
# coding: utf-8 """ Accounting API No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 OpenAPI spec version: 2.3.0 Contact: [email protected] Generated by: https://openapi-generator.tech """ import re # noqa: F401 from enum import Enum class CountryCode(Enum): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. allowed enum values """ AD = "AD" AE = "AE" AF = "AF" AG = "AG" AI = "AI" AL = "AL" AM = "AM" AN = "AN" AO = "AO" AQ = "AQ" AR = "AR" AS = "AS" AT = "AT" AU = "AU" AW = "AW" AZ = "AZ" BA = "BA" BB = "BB" BD = "BD" BE = "BE" BF = "BF" BG = "BG" BH = "BH" BI = "BI" BJ = "BJ" BL = "BL" BM = "BM" BN = "BN" BO = "BO" BR = "BR" BS = "BS" BT = "BT" BW = "BW" BY = "BY" BZ = "BZ" CA = "CA" CC = "CC" CD = "CD" CF = "CF" CG = "CG" CH = "CH" CI = "CI" CK = "CK" CL = "CL" CM = "CM" CN = "CN" CO = "CO" CR = "CR" CU = "CU" CV = "CV" CW = "CW" CX = "CX" CY = "CY" CZ = "CZ" DE = "DE" DJ = "DJ" DK = "DK" DM = "DM" DO = "DO" DZ = "DZ" EC = "EC" EE = "EE" EG = "EG" EH = "EH" ER = "ER" ES = "ES" ET = "ET" FI = "FI" FJ = "FJ" FK = "FK" FM = "FM" FO = "FO" FR = "FR" GA = "GA" GB = "GB" GD = "GD" GE = "GE" GG = "GG" GH = "GH" GI = "GI" GL = "GL" GM = "GM" GN = "GN" GQ = "GQ" GR = "GR" GT = "GT" GU = "GU" GW = "GW" GY = "GY" HK = "HK" HN = "HN" HR = "HR" HT = "HT" HU = "HU" ID = "ID" IE = "IE" IL = "IL" IM = "IM" IN = "IN" IO = "IO" IQ = "IQ" IR = "IR" IS = "IS" IT = "IT" JE = "JE" JM = "JM" JO = "JO" JP = "JP" KE = "KE" KG = "KG" KH = "KH" KI = "KI" KM = "KM" KN = "KN" KP = "KP" KR = "KR" KW = "KW" KY = "KY" KZ = "KZ" LA = "LA" LB = "LB" LC = "LC" LI = "LI" LK = "LK" LR = "LR" LS = "LS" LT = "LT" LU = "LU" LV = "LV" LY = "LY" MA = "MA" MC = "MC" MD = "MD" ME = "ME" MF = "MF" MG = "MG" MH = "MH" MK = "MK" ML = "ML" MM = "MM" MN = "MN" MO = "MO" MP = "MP" MR = "MR" MS = "MS" MT = "MT" MU = "MU" MV = "MV" MW = "MW" MX = "MX" MY = "MY" MZ = "MZ" NA = "NA" NC = "NC" NE = "NE" NG = "NG" NI = "NI" NL = "NL" NO = "NO" NP = "NP" NR = "NR" NU = "NU" NZ = "NZ" OM = "OM" PA = "PA" PE = "PE" PF = "PF" PG = "PG" PH = "PH" PK = "PK" PL = "PL" PM = "PM" PN = "PN" PR = "PR" PS = "PS" PT = "PT" PW = "PW" PY = "PY" QA = "QA" RE = "RE" RO = "RO" RS = "RS" RU = "RU" RW = "RW" SA = "SA" SB = "SB" SC = "SC" SD = "SD" SE = "SE" SG = "SG" SH = "SH" SI = "SI" SJ = "SJ" SK = "SK" SL = "SL" SM = "SM" SN = "SN" SO = "SO" SR = "SR" SS = "SS" ST = "ST" SV = "SV" SX = "SX" SY = "SY" SZ = "SZ" TC = "TC" TD = "TD" TG = "TG" TH = "TH" TJ = "TJ" TK = "TK" TL = "TL" TM = "TM" TN = "TN" TO = "TO" TR = "TR" TT = "TT" TV = "TV" TW = "TW" TZ = "TZ" UA = "UA" UG = "UG" US = "US" UY = "UY" UZ = "UZ" VA = "VA" VC = "VC" VE = "VE" VG = "VG" VI = "VI" VN = "VN" VU = "VU" WF = "WF" WS = "WS" XK = "XK" YE = "YE" YT = "YT" ZA = "ZA" ZM = "ZM" ZW = "ZW"
ca71ccf61df6a0176341a1941ea6e6315f5fcdf1
e3040a2e23a856e319e02037dc6baf3882c796b9
/samples/openapi3/client/3_0_3_unit_test/python/unit_test_api/paths/response_body_post_oneof_response_body_for_content_types/post.pyi
ef5fdf6e1c02d23db716ba98c8ca2592e6274dbc
[ "Apache-2.0" ]
permissive
mishin/openapi-generator
2ed2e0739c0cc2a627c25191d5898071d9294036
3ed650307513d552404f3d76487f3b4844acae41
refs/heads/master
2023-06-10T03:01:09.612130
2022-10-14T08:29:15
2022-10-14T08:29:15
271,080,285
0
0
Apache-2.0
2023-05-30T02:01:25
2020-06-09T18:29:41
Java
UTF-8
Python
false
false
7,519
pyi
# coding: utf-8 """ Generated by: https://openapi-generator.tech """ from dataclasses import dataclass import typing_extensions import urllib3 from urllib3._collections import HTTPHeaderDict from unit_test_api import api_client, exceptions from datetime import date, datetime # noqa: F401 import decimal # noqa: F401 import functools # noqa: F401 import io # noqa: F401 import re # noqa: F401 import typing # noqa: F401 import typing_extensions # noqa: F401 import uuid # noqa: F401 import frozendict # noqa: F401 from unit_test_api import schemas # noqa: F401 from unit_test_api.model.oneof import Oneof SchemaFor200ResponseBodyApplicationJson = Oneof @dataclass class ApiResponseFor200(api_client.ApiResponse): response: urllib3.HTTPResponse body: typing.Union[ SchemaFor200ResponseBodyApplicationJson, ] headers: schemas.Unset = schemas.unset _response_for_200 = api_client.OpenApiResponse( response_cls=ApiResponseFor200, content={ 'application/json': api_client.MediaType( schema=SchemaFor200ResponseBodyApplicationJson), }, ) _all_accept_content_types = ( 'application/json', ) class BaseApi(api_client.Api): @typing.overload def _post_oneof_response_body_for_content_types_oapg( self, accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, skip_deserialization: typing_extensions.Literal[False] = ..., ) -> typing.Union[ ApiResponseFor200, ]: ... @typing.overload def _post_oneof_response_body_for_content_types_oapg( self, accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, ) -> api_client.ApiResponseWithoutDeserialization: ... @typing.overload def _post_oneof_response_body_for_content_types_oapg( self, accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, skip_deserialization: bool = ..., ) -> typing.Union[ ApiResponseFor200, api_client.ApiResponseWithoutDeserialization, ]: ... def _post_oneof_response_body_for_content_types_oapg( self, accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, skip_deserialization: bool = False, ): """ :param skip_deserialization: If true then api_response.response will be set but api_response.body and api_response.headers will not be deserialized into schema class instances """ used_path = path.value _headers = HTTPHeaderDict() # TODO add cookie handling if accept_content_types: for accept_content_type in accept_content_types: _headers.add('Accept', accept_content_type) response = self.api_client.call_api( resource_path=used_path, method='post'.upper(), headers=_headers, stream=stream, timeout=timeout, ) if skip_deserialization: api_response = api_client.ApiResponseWithoutDeserialization(response=response) else: response_for_status = _status_code_to_response.get(str(response.status)) if response_for_status: api_response = response_for_status.deserialize(response, self.api_client.configuration) else: api_response = api_client.ApiResponseWithoutDeserialization(response=response) if not 200 <= response.status <= 299: raise exceptions.ApiException(api_response=api_response) return api_response class PostOneofResponseBodyForContentTypes(BaseApi): # this class is used by api classes that refer to endpoints with operationId fn names @typing.overload def post_oneof_response_body_for_content_types( self, accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, skip_deserialization: typing_extensions.Literal[False] = ..., ) -> typing.Union[ ApiResponseFor200, ]: ... @typing.overload def post_oneof_response_body_for_content_types( self, accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, ) -> api_client.ApiResponseWithoutDeserialization: ... @typing.overload def post_oneof_response_body_for_content_types( self, accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, skip_deserialization: bool = ..., ) -> typing.Union[ ApiResponseFor200, api_client.ApiResponseWithoutDeserialization, ]: ... def post_oneof_response_body_for_content_types( self, accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, skip_deserialization: bool = False, ): return self._post_oneof_response_body_for_content_types_oapg( accept_content_types=accept_content_types, stream=stream, timeout=timeout, skip_deserialization=skip_deserialization ) class ApiForpost(BaseApi): # this class is used by api classes that refer to endpoints by path and http method names @typing.overload def post( self, accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, skip_deserialization: typing_extensions.Literal[False] = ..., ) -> typing.Union[ ApiResponseFor200, ]: ... @typing.overload def post( self, accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, ) -> api_client.ApiResponseWithoutDeserialization: ... @typing.overload def post( self, accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, skip_deserialization: bool = ..., ) -> typing.Union[ ApiResponseFor200, api_client.ApiResponseWithoutDeserialization, ]: ... def post( self, accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, skip_deserialization: bool = False, ): return self._post_oneof_response_body_for_content_types_oapg( accept_content_types=accept_content_types, stream=stream, timeout=timeout, skip_deserialization=skip_deserialization )
f9a778bd121f5471a7545a51299c85b1ed6fe37d
7b74696ff2ab729396cba6c203984fce5cd0ff83
/stockmarket/migrations/0018_auto_20210310_0713.py
a92ec4772b8fef3cfc51038084147fdbfb09d35c
[ "MIT" ]
permissive
webclinic017/investtrack
e9e9a7a8caeecaceebcd79111c32b334c4e1c1d0
4aa204b608e99dfec3dd575e72b64a6002def3be
refs/heads/master
2023-06-18T12:57:32.417414
2021-07-10T14:26:53
2021-07-10T14:26:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,977
py
# Generated by Django 3.0.7 on 2021-03-09 23:13 from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('stockmarket', '0017_auto_20210307_1803'), ] operations = [ migrations.AddField( model_name='companydailybasic', name='pb', field=models.FloatField(blank=True, null=True, verbose_name='市净率'), ), migrations.AddField( model_name='companydailybasic', name='ps', field=models.FloatField(blank=True, null=True, verbose_name='市销率'), ), migrations.AddField( model_name='companydailybasic', name='ps_ttm', field=models.FloatField(blank=True, null=True, verbose_name='市销率TTM'), ), migrations.CreateModel( name='IndexDailyBasic', fields=[ ('id', models.AutoField(primary_key=True, serialize=False)), ('created_time', models.DateTimeField(default=django.utils.timezone.now, verbose_name='创建时间')), ('last_mod_time', models.DateTimeField(default=django.utils.timezone.now, verbose_name='最后更新时间')), ('ts_code', models.CharField(blank=True, max_length=50, unique=True, verbose_name='TS代码')), ('trade_date', models.DateField(blank=True, null=True, verbose_name='交易日期')), ('turnover_rate', models.FloatField(blank=True, max_length=50, null=True, verbose_name='换手率')), ('turnover_rate_f', models.FloatField(blank=True, max_length=50, null=True, verbose_name='换手率(自由流通)')), ('pe', models.FloatField(blank=True, null=True, verbose_name='市盈率')), ('pe_ttm', models.FloatField(blank=True, null=True, verbose_name='市盈率TTM')), ('pb', models.FloatField(blank=True, null=True, verbose_name='市净率')), ('total_share', models.FloatField(blank=True, null=True, verbose_name='总股本')), ('float_share', models.FloatField(blank=True, null=True, verbose_name='流通股本')), ('free_share', models.FloatField(blank=True, null=True, verbose_name='自由流通股本')), ('total_mv', models.FloatField(blank=True, null=True, verbose_name='总市值')), ('float_mv', models.FloatField(blank=True, null=True, verbose_name='流通市值')), ('company', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='stockmarket.StockNameCodeMap')), ], options={ 'verbose_name': '指数每日基本', 'verbose_name_plural': '指数每日基本', 'ordering': ['-last_mod_time'], 'get_latest_by': 'id', }, ), ]
ea5ebbf433af25dabea331bab41b84e86467975b
1f91f88b17b35a9306b6a279ec338921a22c78d0
/team_scripts/nakama_exp076_plus_fp_addition_95.py
97c5fe029241634165c6ce074b9ddc99e16baa90
[ "MIT" ]
permissive
yuv4r4j/kaggle-rfcx
64d02102a78a295e14e8a904e2a34bb7772d2cb4
c3573d014d99312b58882e7b939de6c1055129b1
refs/heads/main
2023-03-03T01:38:14.999693
2021-02-18T10:31:29
2021-02-18T10:31:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
43,120
py
import os import random import time import warnings import audiomentations as A import kornia.augmentation as K import librosa import numpy as np import pandas as pd import soundfile as sf import timm import torch import torch.nn as nn import torch.nn.functional as F from pathlib import Path from sklearn.model_selection import StratifiedKFold from torch.utils.data import Dataset from torch.optim.lr_scheduler import ReduceLROnPlateau, CosineAnnealingLR, CosineAnnealingWarmRestarts from torchlibrosa.augmentation import SpecAugmentation from torchlibrosa.stft import Spectrogram, LogmelFilterBank from tqdm import tqdm from transformers import get_linear_schedule_with_warmup warnings.filterwarnings("ignore") ################################################ # Directory Setting # ################################################ OUTPUT_DIR = Path(f"../out/{__file__.split('/')[-1].replace('.py', '')}") OUTPUT_DIR.mkdir(exist_ok=True, parents=True) ################################################ # Config # ################################################ class CFG: debug = False apex = False num_workers = 20 model_name = "tf_efficientnet_b0_ns" model_param = { "encoder": model_name, "classes_num": 24 } duration = 10 period = 6 step_scheduler = True epochs = 60 T_max = 10 T_0 = 10 lr = 1e-3 min_lr = 0.0 batch_size = 64 weight_decay = 1e-6 gradient_accumulation_steps = 1 max_grad_norm = 1000 alpha = 1.0 mixup_epochs = 0 p_mixup = 0.0 p_cutmux = 0.0 seed = 777 target_size = 24 target_col = "target" n_fold = 5 trn_fold = [0, 1, 2, 3, 4] train = True inference = True device = torch.device("cuda" if torch.cuda.is_available() else "cpu") ################################################ # Utilities # ################################################ def _one_sample_positive_class_precisions(scores: np.ndarray, truth: np.ndarray): num_classes = scores.shape[0] pos_class_indices = np.flatnonzero(truth > 0) if not len(pos_class_indices): return pos_class_indices, np.zeros(0) retrieved_classes = np.argsort(scores)[::-1] class_rankings = np.zeros(num_classes, dtype=np.int) class_rankings[retrieved_classes] = range(num_classes) retrieved_class_true = np.zeros(num_classes, dtype=np.bool) retrieved_class_true[class_rankings[pos_class_indices]] = True retrieved_cumulative_hits = np.cumsum(retrieved_class_true) precision_at_hits = ( retrieved_cumulative_hits[class_rankings[pos_class_indices]] / (1 + class_rankings[pos_class_indices].astype(np.float))) return pos_class_indices, precision_at_hits def lwlrap(truth: np.ndarray, scores: np.ndarray): assert truth.shape == scores.shape num_samples, num_classes = scores.shape precisions_for_samples_by_classes = np.zeros((num_samples, num_classes)) for sample_num in range(num_samples): pos_class_indices, precision_at_hits = _one_sample_positive_class_precisions(scores[sample_num, :], truth[sample_num, :]) precisions_for_samples_by_classes[sample_num, pos_class_indices] = precision_at_hits labels_per_class = np.sum(truth > 0, axis=0) weight_per_class = labels_per_class / float(np.sum(labels_per_class)) per_class_lwlrap = (np.sum(precisions_for_samples_by_classes, axis=0) / np.maximum(1, labels_per_class)) return per_class_lwlrap, weight_per_class def get_score(y_true: np.ndarray, y_pred: np.ndarray): """ y_true = np.array([[1, 0, 0], [0, 0, 1]]) y_pred = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]]) """ score_class, weight = lwlrap(y_true, y_pred) score = (score_class * weight).sum() return score def init_logger(log_file=OUTPUT_DIR / 'train.log'): from logging import getLogger, INFO, FileHandler, Formatter, StreamHandler logger = getLogger(__name__) logger.setLevel(INFO) handler1 = StreamHandler() handler1.setFormatter(Formatter("%(message)s")) handler2 = FileHandler(filename=log_file) handler2.setFormatter(Formatter("%(message)s")) logger.addHandler(handler1) logger.addHandler(handler2) return logger def seed_torch(seed=42): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False LOGGER = init_logger() seed_torch(seed=CFG.seed) ################################################ # Data Loading # ################################################ traint = pd.read_csv("../input/train_tp.csv") trainf = pd.read_csv("../input/train_fp.csv") traint["istp"] = 1 trainf["istp"] = 0 test = pd.read_csv("../input/sample_submission.csv") print(traint.shape, trainf.shape, test.shape) traint_additional = pd.read_csv("../input/train_fp_additional_classwise_threshold_95_percentile.csv") traint_additional["istp"] = 1 PERIOD = CFG.period TIME = CFG.duration SR = 48000 FMIN = 40 FMAX = SR // 2 IMAGE_WIDTH = 320 IMAGE_HEIGHT = 320 N_MELS = IMAGE_HEIGHT HOP_SIZE = 512 WINDOW_SIZE = 512 * 4 # 各speciesのfminとmfaxを求める species_fmin = traint.groupby("species_id")["f_min"].agg(min).reset_index() species_fmax = traint.groupby("species_id")["f_max"].agg(max).reset_index() species_fmin_fmax = pd.merge(species_fmin, species_fmax, on="species_id") MEL_FREQ = librosa.mel_frequencies(fmin=FMIN, fmax=FMAX, n_mels=IMAGE_HEIGHT) def search_bin(value): n = 0 for i, v in enumerate(MEL_FREQ): if v < value: pass else: n = i - 1 break return n # mel specに変換したときの座標を求める # https://akifukka.hatenablog.com/entry/text2speech2 species_fmin_fmax["f_min_mel"] = species_fmin_fmax["f_min"].map(search_bin) species_fmin_fmax["f_max_mel"] = species_fmin_fmax["f_max"].map(search_bin) # train_tpにmelの情報をmerge species_fmin_fmax["species_id"] = species_fmin_fmax["species_id"].astype(int) traint["species_id"] = traint["species_id"].astype(int) trainf["species_id"] = trainf["species_id"].astype(int) traint_additional["specids_id"] = traint_additional["species_id"].astype(int) species_fmin_fmax.drop(["f_min", "f_max"], inplace=True, axis=1) traint = pd.merge(traint, species_fmin_fmax, on="species_id", how="left") trainf = pd.merge(trainf, species_fmin_fmax, on="species_id", how="left") traint_additional = pd.merge(traint_additional, species_fmin_fmax, on="species_id", how="left") # tpとfpをconcat train_df = pd.concat([traint, trainf], axis=0).reset_index() print(train_df.shape) ################################################ # CV split # ################################################ train_gby = train_df.groupby("recording_id")[["species_id"]].first().reset_index() train_gby = train_gby.sample(frac=1, random_state=CFG.seed).reset_index(drop=True) train_gby.loc[:, "kfold"] = -1 X = train_gby["recording_id"].values y = train_gby["species_id"].values kfold = StratifiedKFold(n_splits=CFG.n_fold) for fold, (t_idx, v_idx) in enumerate(kfold.split(X, y)): train_gby.loc[v_idx, "kfold"] = fold train_df = train_df.merge(train_gby[["recording_id", "kfold"]], on="recording_id", how="left") traint_additional = traint_additional.merge(train_gby[["recording_id", "kfold"]], on="recording_id", how="left") print(train_df.kfold.value_counts()) train_df.to_csv(OUTPUT_DIR / "folds.csv", index=False) traint_additional.to_csv(OUTPUT_DIR / "folds_additional.csv", index=False) species_fmin_fmax.to_csv(OUTPUT_DIR / "species_fmin_fmax.csv", index=False) ################################################ # audiomentations # ################################################ augmenter = A.Compose([ A.AddGaussianNoise(min_amplitude=0.01, max_amplitude=0.03, p=0.2), A.PitchShift(min_semitones=-3, max_semitones=3, p=0.2), A.Gain(p=0.2) ]) ################################################ # Dataset # ################################################ def cut_spect(spect: torch.Tensor, fmin_mel: int, fmax_mel: int): return spect[fmin_mel:fmax_mel] def do_normalize(img: torch.Tensor): bs, ch, w, h = img.shape _img = img.clone() _img = _img.view(bs, -1) _img -= _img.min(1, keepdim=True)[0] _img /= _img.max(1, keepdim=True)[0] _img = _img.view(bs, ch, w, h) * 255 return _img class AudioDataset(Dataset): def __init__(self, df, period=PERIOD, time=TIME, transforms=None, data_path="../input/rfcx-species-audio-detection/train"): dfgby = df.groupby("recording_id").agg(lambda x: list(x)).reset_index() self.period = period self.transforms = transforms self.data_path = data_path self.time = time self.recording_ids = dfgby["recording_id"].values self.species_ids = dfgby["species_id"].values self.t_mins = dfgby["t_min"].values self.t_maxs = dfgby["t_max"].values self.f_mins = dfgby["f_min"].values self.f_maxs = dfgby["f_max"].values self.f_min_mels = dfgby["f_min_mel"].values self.f_max_mels = dfgby["f_max_mel"].values self.istps = dfgby["istp"].values def __len__(self): return len(self.recording_ids) def __getitem__(self, idx): recording_id = self.recording_ids[idx] species_id = self.species_ids[idx] istp = self.istps[idx] t_min, t_max = self.t_mins[idx], self.t_maxs[idx] f_min, f_max = self.f_mins[idx], self.f_maxs[idx] f_min_mel, f_max_mel = self.f_min_mels[idx], self.f_max_mels[idx] # 読み込む y, sr = sf.read(f"{self.data_path}/{recording_id}.flac") len_y = len(y) # 全フレーム数 # sampling rate(frame/sec)と取得期間(sec)をかけて必要なフレームを取得 effective_length = sr * self.time rint = np.random.randint(len(t_min)) # tmin, tmaxをフレーム数に変換 tmin, tmax = round(sr * t_min[rint]), round(sr * t_max[rint]) cut_min = max(0, min(tmin - (effective_length - (tmax-tmin)) // 2, min(tmax + (effective_length - (tmax-tmin)) // 2, len_y) - effective_length)) extra = tmax+(effective_length - (tmax-tmin))//2 - len_y lack = tmin - (effective_length - (tmax-tmin)) // 2 start = cut_min + np.random.randint(0, (self.time-self.period)*sr) if extra > 0: start = np.random.randint(tmax-(tmax-tmin)//2-self.period*sr, len_y-self.period*sr) if lack < 0: start = cut_min + np.random.randint(0, tmin) end = start + self.period * sr y = y[start:end] if self.transforms: # 音声のAugumentation(gaussianノイズとか)が入ってる y = self.transforms(samples=y, sample_rate=sr) # start(フレーム数)->time(sec)に変換 # start_timeはeffective_lengthの左端 start_time = start / sr end_time = end / sr label = np.zeros(24, dtype='f') new_tmins = [] new_tmaxs = [] new_fmins = [] new_fmaxs = [] new_sids = [] new_istp = [] for i in range(len(t_min)): # 今回、複数のt_minから選んでいるため、データによってはTP,FPの期間がオーバーラップしている if (t_min[i] >= start_time) & (t_max[i] <= end_time): if f_min_mel[rint] <= (f_min_mel[i]+f_max_mel[i])/2 <= f_max_mel[rint]: if label[species_id[i]] == 0: label[species_id[i]] = 1 * istp[i] new_tmins.append(t_min[i]-start_time) new_tmaxs.append(t_max[i]-start_time) new_fmins.append(f_min[i]) new_fmaxs.append(f_max[i]) new_sids.append(species_id[i]) new_istp.append(istp[i]) elif start_time <= ((t_min[i] + t_max[i]) / 2) <= end_time: # bboxの重心がeffective_lengthの中にある if f_min_mel[rint] <= (f_min_mel[i]+f_max_mel[i])/2 <= f_max_mel[rint]: if label[species_id[i]] == 0: label[species_id[i]] = 1 * istp[i] new_tmin = 0 new_tmax = 0 if t_min[i] - start_time < 0: new_tmin = 0 else: new_tmin = t_min[i] - start_time if t_max[i] - start_time < 0: new_tmax = 0 elif t_max[i] > end_time: new_tmax = end_time - start_time else: new_tmax = t_max[i] - start_time new_tmins.append(new_tmin) new_tmaxs.append(new_tmax) new_fmins.append(f_min[i]) new_fmaxs.append(f_max[i]) new_sids.append(species_id[i]) new_istp.append(istp[i]) return { "wav": torch.tensor(y, dtype=torch.float), "target": torch.tensor(label, dtype=torch.float), "id": recording_id, "f_min_mel": f_min_mel[rint], "f_max_mel": f_max_mel[rint], } class ValidDataset(Dataset): def __init__(self, df, period=PERIOD, transforms=None, data_path="../input/rfcx-species-audio-detection/train"): dfgby = df.groupby("recording_id").agg(lambda x: list(x)).reset_index() self.period = period self.transforms = transforms self.data_path = data_path self.recording_ids = dfgby["recording_id"].values self.species_ids = dfgby["species_id"].values self.t_mins = dfgby["t_min"].values self.t_maxs = dfgby["t_max"].values self.f_mins = dfgby["f_min"].values self.f_maxs = dfgby["f_max"].values self.f_min_mels = dfgby["f_min_mel"].values self.f_max_mels = dfgby["f_max_mel"].values self.istps = dfgby["istp"].values def __len__(self): return len(self.recording_ids) def __getitem__(self, idx): recording_id = self.recording_ids[idx] species_id = self.species_ids[idx] istp = self.istps[idx] t_min, t_max = self.t_mins[idx], self.t_maxs[idx] f_min, f_max = self.f_mins[idx], self.f_maxs[idx] f_min_mel, f_max_mel = self.f_min_mels[idx], self.f_max_mels[idx] rint = np.random.randint(len(t_min)) # 読み込む y, sr = sf.read(f"{self.data_path}/{recording_id}.flac") # tmin, tmaxをフレーム数に変換 tmin, tmax = round(sr * t_min[rint]), round(sr * t_max[rint]) len_y = len(y) # 全フレーム数 # sampling rate(frame/sec)と取得期間(sec)をかけて必要なフレームを取得 effective_length = sr * self.period # 6 sec start = 0 start = max(0, min(tmin - (effective_length - (tmax-tmin)) // 2, min(tmax + (effective_length - (tmax-tmin)) // 2, len_y) - effective_length)) end = start + effective_length y = y[start:end] start_time = start / sr end_time = end / sr label = np.zeros(24, dtype='f') new_tmins = [] new_tmaxs = [] new_fmins = [] new_fmaxs = [] new_sids = [] new_istp = [] for i in range(len(t_min)): # 今回、複数のt_minから選んでいるため、データによってはTP,FPの期間がオーバーラップしている if (t_min[i] >= start_time) & (t_max[i] <= end_time): if f_min_mel[rint] <= (f_min_mel[i]+f_max_mel[i])/2 <= f_max_mel[rint]: if label[species_id[i]] == 0: label[species_id[i]] = 1 * istp[i] new_tmins.append(t_min[i]-start_time) new_tmaxs.append(t_max[i]-start_time) new_fmins.append(f_min[i]) new_fmaxs.append(f_max[i]) new_sids.append(species_id[i]) new_istp.append(istp[i]) elif start_time <= ((t_min[i] + t_max[i]) / 2) <= end_time: # bboxの重心がeffective_lengthの中にある if f_min_mel[rint] <= (f_min_mel[i]+f_max_mel[i])/2 <= f_max_mel[rint]: if label[species_id[i]] == 0: label[species_id[i]] = 1 * istp[i] new_tmin = 0 new_tmax = 0 if t_min[i] - start_time < 0: new_tmin = 0 else: new_tmin = t_min[i] - start_time if t_max[i] - start_time < 0: new_tmax = 0 elif t_max[i] > end_time: new_tmax = end_time - start_time else: new_tmax = t_max[i] - start_time new_tmins.append(new_tmin) new_tmaxs.append(new_tmax) new_fmins.append(f_min[i]) new_fmaxs.append(f_max[i]) new_sids.append(species_id[i]) new_istp.append(istp[i]) return { "wav": torch.tensor(y, dtype=torch.float), "target": torch.tensor(label, dtype=torch.float), "id": recording_id, "f_min_mel": f_min_mel[rint], "f_max_mel": f_max_mel[rint], } class TestDataset(Dataset): def __init__(self, df, period=PERIOD, transforms=None, data_path="../input/rfcx-species-audio-detection/test"): self.period = period self.transforms = transforms self.data_path = data_path self.recording_ids = df["recording_id"].values def __len__(self): return len(self.recording_ids) def __getitem__(self, idx): recording_id = self.recording_ids[idx] y, sr = sf.read(f"{self.data_path}/{recording_id}.flac") len_y = len(y) # フレーム数に変換 effective_length = sr * self.period y_ = [] i = 0 while i < len_y: # インクリメントしていき全部を舐めていく(effective_lengthずつ飛ばしているけど良い??) y__ = y[i:i+effective_length] if effective_length > len(y__): break else: y_.append(y__) i = i + int(effective_length) y = np.stack(y_) # (effective_length, 2N) label = np.zeros(24, dtype='f') # y: clip nums, seq -> clip_nums, width, height return { "wav": torch.tensor(y, dtype=torch.float), "target": torch.tensor(label, dtype=torch.float), "id": recording_id, } ################################################ # Model # ################################################ def init_layer(layer): nn.init.xavier_uniform_(layer.weight) if hasattr(layer, "bias"): if layer.bias is not None: layer.bias.data.fill_(0.) class AudioClassifier(nn.Module): def __init__(self, model_name, n_out): super(AudioClassifier, self).__init__() # Spec augmenter self.spec_augmenter = SpecAugmentation(time_drop_width=80, time_stripes_num=2, freq_drop_width=16, freq_stripes_num=2) self.net = timm.create_model(model_name, pretrained=True, in_chans=1) self.avg_pool = nn.AdaptiveAvgPool2d((1, 1)) self.dropout1 = nn.Dropout(0.3) self.dropout2 = nn.Dropout(0.3) n_features = self.net.classifier.in_features self.net_classifier = nn.Linear(n_features, n_out) self.init_weight() # korrniaのrandom cropはh,wを想定しているため注意 self.transform = nn.Sequential(K.RandomHorizontalFlip(p=0.1), # K.GaussianBlur(7, p=0.5), # K.RandomCrop((round(IMAGE_HEIGHT*0.7), round(IMAGE_WIDTH*0.7)),p=0.3) ) def init_weight(self): init_layer(self.net_classifier) def forward(self, x, f_min_mels, f_max_mels, train=True, test=False): # x: (bs, 1, w, h) # f_min_melとf_max_melによってカットする bs, ch, w, h = x.shape x = x.reshape(bs*w, -1) bsw = bs*w spects = [] fi = 0 if test: for ii, i in enumerate(range(bsw)[::w]): spect = x[i:i+w] # torch (w, h) for f_min, f_max in zip(f_min_mels, f_max_mels): _spect = cut_spect(spect.transpose(0, 1), f_min, f_max).transpose(0, 1) # out:torch (w, h) # resizeする. _spect = torch.unsqueeze(_spect, 0) _spect = torch.unsqueeze(_spect, 0) # torch(1,1,w,h) _spect = F.interpolate(_spect, (IMAGE_WIDTH, IMAGE_HEIGHT), mode='bilinear', align_corners=False) # out: torch (1, 1, w, h) _spect = torch.squeeze(_spect, 0) # out: torch (1, w, h) spects.append(_spect) x = torch.stack(spects) # torch (bs, 1, w, h) bs=24*bs*10 else: for ii, i in enumerate(range(bsw)[::w]): spect = x[i:i+w] # torch (w, h) f_min = f_min_mels[fi] f_max = f_max_mels[fi] spect = cut_spect(spect.transpose(0, 1), f_min, f_max).transpose(0, 1) # out:torch (w, h) # resizeする. spect = torch.unsqueeze(spect, 0) spect = torch.unsqueeze(spect, 0) # torch(1,1,w,h) spect = F.interpolate(spect, (IMAGE_WIDTH, IMAGE_HEIGHT), mode='bilinear', align_corners=False) # out: torch (1, 1, w, h) if train: spect = self.transform(spect.transpose(2, 3)) # out: torch(1,1,h,w) spect = spect.transpose(2, 3) # out: torch(1,1,w,h) spect = torch.squeeze(spect, 0) # torch (1, w, h) spects.append(spect) fi += 1 x = torch.stack(spects) # torch (bs, 1, w, h) x = do_normalize(x) if train: x = self.spec_augmenter(x) # x = x.expand(x.shape[0], 3, x.shape[2], x.shape[3]) # channel分複製 # Output shape (batch size, channels, time, frequency) x = self.net.forward_features(x) x = self.avg_pool(x).flatten(1) x = self.dropout1(x) x = self.net_classifier(x) return x ################################################ # Loss # ################################################ def f1_loss(y_true, y_pred, is_training=False, epsilon=1e-7) -> torch.Tensor: ''' Calculate F1 score. Can work with gpu tensors The original implmentation is written by Michal Haltuf on Kaggle. Returns ------- torch.Tensor `ndim` == 1. 0 <= val <= 1 Reference --------- - https://www.kaggle.com/rejpalcz/best-loss-function-for-f1-score-metric - https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html#sklearn.metrics.f1_score - https://discuss.pytorch.org/t/calculating-precision-recall-and-f1-score-in-case-of-multi-label-classification/28265/6 ''' y_pred = y_pred > 0.5 tp = (y_true * y_pred).sum() fp = ((1 - y_true) * y_pred).sum() fn = (y_true * (1 - y_pred)).sum() precision = tp / (tp + fp + epsilon) recall = tp / (tp + fn + epsilon) f1 = 2 * (precision*recall) / (precision + recall + epsilon) return f1 # https://www.kaggle.com/c/rfcx-species-audio-detection/discussion/213075 class BCEFocalLoss(nn.Module): def __init__(self, alpha=0.25, gamma=2.0): super().__init__() self.alpha = alpha self.gamma = gamma def forward(self, preds, targets): bce_loss = nn.BCEWithLogitsLoss(reduction='none')(preds, targets) probas = torch.sigmoid(preds) loss = targets * self.alpha * (1. - probas)**self.gamma * bce_loss + (1. - targets) * probas**self.gamma * bce_loss loss = loss.mean() return loss ################################################ # Training helper functions # ################################################ class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count class MetricMeter(object): def __init__(self): self.reset() def reset(self): self.y_true = [] self.y_pred = [] def update(self, y_true, y_pred): self.y_true.extend(y_true.cpu().detach().numpy().tolist()) self.y_pred.extend(torch.sigmoid(y_pred).cpu().detach().numpy().tolist()) @property def avg(self): self.f1score = f1_loss(np.array(self.y_true), np.array(self.y_pred)) score_class, weight = lwlrap(np.array(self.y_true), np.array(self.y_pred)) self.score = (score_class * weight).sum() return { "lwlrap": self.score, "f1score": self.f1score } def get_mixup_indices(bs, f_min_mels, f_max_mels): indices_matrix = np.zeros((bs, bs)) for img1_idx in range(bs): for img2_idx in range(bs): if img1_idx != img2_idx: mix_flag = (f_min_mels[img2_idx] >= f_min_mels[img1_idx]) & (f_max_mels[img2_idx] <= f_max_mels[img1_idx]) if mix_flag: indices_matrix[img1_idx, img2_idx] = 1 break # img1に対してmixupするimg2(img1の周波数帯に存在するもの)が1つ見つかり次第終了 indices = np.arange(bs) indices_matrix_1 = np.where(indices_matrix == 1) for i, j in zip(indices_matrix_1[0], indices_matrix_1[1]): if i in range(bs): indices[i] = j else: indices[i] = i return indices def mixup(data, targets, f_min_mels, f_max_mels, alpha=1.0): bs = data.size(0) indices = get_mixup_indices(bs, f_min_mels, f_max_mels) shuffled_data = data[indices] shuffled_targets = targets[indices] # lam = np.random.beta(alpha, alpha) lam = 0.5 data = data * lam + shuffled_data * (1 - lam) targets = targets * lam + shuffled_targets * (1 - lam) return data, targets def train_epoch(model, spectrogram_extractor, logmel_extractor, loader, criterion, optimizer, scheduler, epoch, device, p_mixup, normalize=True, resize=True, spec_aug=True): losses = AverageMeter() scores = MetricMeter() model.train() t = tqdm(loader) for i, sample in enumerate(t): x = sample['wav'].to(device) # (bs, seq) target = sample['target'].to(device) f_min_mels = sample["f_min_mel"] f_max_mels = sample["f_max_mel"] x = spectrogram_extractor(x) # (batch_size, 1, time_steps, freq_bins) x = logmel_extractor(x) if np.random.rand(1) < p_mixup: # mixup mix_x, mix_target = mixup(x, target, f_min_mels, f_max_mels) output = model(mix_x, f_min_mels, f_max_mels, train=True) loss = criterion(output, mix_target) else: output = model(x, f_min_mels, f_max_mels, train=True) loss = criterion(output, target) if CFG.gradient_accumulation_steps > 1: loss = loss / CFG.gradient_accumulation_steps else: loss.backward() if (i + 1) % CFG.gradient_accumulation_steps == 0: optimizer.step() optimizer.zero_grad() if CFG.step_scheduler: scheduler.step() bs = x.size(0) scores.update(target, output) losses.update(loss.item(), bs) t.set_description(f"Train E:{epoch} - Loss{losses.avg:0.4f}") t.close() return scores.avg, losses.avg def valid_epoch(model, spectrogram_extractor, logmel_extractor, loader, criterion, epoch, device): losses = AverageMeter() scores = MetricMeter() model.eval() with torch.no_grad(): t = tqdm(loader) for i, sample in enumerate(t): x = sample['wav'].to(device) # (bs, seq) target = sample['target'].to(device) f_min_mels = sample["f_min_mel"] f_max_mels = sample["f_max_mel"] x = spectrogram_extractor(x) # (batch_size, 1, time_steps, freq_bins) x = logmel_extractor(x) bs = x.size(0) output = model(x, f_min_mels, f_max_mels, train=False) # output = output.reshape(bs, 24, -1) #(bs, 24, 24) batchsize, # output, _ = torch.max(output, dim=1) loss = criterion(output, target) scores.update(target, output) losses.update(loss.item(), bs) t.set_description(f"Valid E:{epoch} - Loss:{losses.avg:0.4f}") t.close() return scores.avg, losses.avg def test_epoch(model, spectrogram_extractor, logmel_extractor, loader, f_min_mels, f_max_mels, device, normalize=True, resize=True): model.eval() pred_list = [] id_list = [] with torch.no_grad(): t = tqdm(loader) for i, sample in enumerate(t): x = sample["wav"].to(device) bs, c, seq = x.shape x = x.reshape(bs*c, seq) x = spectrogram_extractor(x) x = logmel_extractor(x) id = sample["id"] output = torch.sigmoid(model(x, f_min_mels, f_max_mels, train=False, test=True)) output = output.reshape(bs, c*24, -1) output, _ = torch.max(output, dim=1) output = output.cpu().detach().numpy().tolist() pred_list.extend(output) id_list.extend(id) return pred_list, id_list def get_valid_all_clip_result(fold: int): # Load Data train_df = pd.read_csv(OUTPUT_DIR / "folds.csv") train_df = train_df[train_df["istp"] == 1].reset_index(drop=True) species_fmin_fmax = pd.read_csv(OUTPUT_DIR / "species_fmin_fmax.csv") f_min_mels = torch.tensor(species_fmin_fmax["f_min_mel"].values, dtype=torch.int) f_max_mels = torch.tensor(species_fmin_fmax["f_max_mel"].values, dtype=torch.int) # Load model model = AudioClassifier(CFG.model_param["encoder"], CFG.model_param["classes_num"]) model.load_state_dict(torch.load(OUTPUT_DIR / f'fold-{fold}.bin')) model = model.to(device) # Get valid valid_fold = train_df[train_df.kfold == fold].reset_index(drop=True) test_dataset = TestDataset( df=valid_fold, period=CFG.period, transforms=None, data_path="../input/train", ) test_loader = torch.utils.data.DataLoader( test_dataset, batch_size=CFG.batch_size//32, shuffle=False, drop_last=False, num_workers=CFG.num_workers ) window = 'hann' center = True pad_mode = 'reflect' ref = 1.0 amin = 1e-10 top_db = None spectrogram_extractor = Spectrogram(n_fft=WINDOW_SIZE, hop_length=HOP_SIZE, win_length=WINDOW_SIZE, window=window, center=center, pad_mode=pad_mode, freeze_parameters=True).to(device) logmel_extractor = LogmelFilterBank(sr=SR, n_fft=WINDOW_SIZE, n_mels=N_MELS, fmin=FMIN, fmax=FMAX, ref=ref, amin=amin, top_db=top_db, freeze_parameters=True).to(device) test_pred, ids = test_epoch(model, spectrogram_extractor, logmel_extractor, test_loader, f_min_mels, f_max_mels, device, resize=True) test_pred_df = pd.DataFrame({ "recording_id": valid_fold.recording_id.values }) test_pred_df["kfold"] = fold for i in range(24): test_pred_df[f"s{i}"] = 0 test_pred_df[[f's{i}' for i in range(24)]] = test_pred return test_pred_df def inference(fold: int): # Load Data sub_df = pd.read_csv("../input/sample_submission.csv") species_fmin_fmax = pd.read_csv(OUTPUT_DIR / "species_fmin_fmax.csv") f_min_mels = torch.tensor(species_fmin_fmax["f_min_mel"].values, dtype=torch.int) f_max_mels = torch.tensor(species_fmin_fmax["f_max_mel"].values, dtype=torch.int) # Load model model = AudioClassifier(CFG.model_param["encoder"], CFG.model_param["classes_num"]) model.load_state_dict(torch.load(OUTPUT_DIR / f'fold-{fold}.bin')) model = model.to(device) # Get valid test_dataset = TestDataset( df=sub_df, period=CFG.period, transforms=None, data_path="../input/test", ) test_loader = torch.utils.data.DataLoader( test_dataset, batch_size=CFG.batch_size//32, shuffle=False, drop_last=False, num_workers=CFG.num_workers ) window = 'hann' center = True pad_mode = 'reflect' ref = 1.0 amin = 1e-10 top_db = None spectrogram_extractor = Spectrogram(n_fft=WINDOW_SIZE, hop_length=HOP_SIZE, win_length=WINDOW_SIZE, window=window, center=center, pad_mode=pad_mode, freeze_parameters=True).to(device) logmel_extractor = LogmelFilterBank(sr=SR, n_fft=WINDOW_SIZE, n_mels=N_MELS, fmin=FMIN, fmax=FMAX, ref=ref, amin=amin, top_db=top_db, freeze_parameters=True).to(device) test_pred, ids = test_epoch(model, spectrogram_extractor, logmel_extractor, test_loader, f_min_mels, f_max_mels, device, resize=True) test_pred_df = pd.DataFrame({ "recording_id": sub_df.recording_id.values }) test_pred_df["kfold"] = fold for i in range(24): test_pred_df[f"s{i}"] = 0 test_pred_df[[f's{i}' for i in range(24)]] = test_pred return test_pred_df ################################################ # Training Loop # ################################################ def train_loop(fold): LOGGER.info(f"========== fold: {fold} training ==========") train_df = pd.read_csv(OUTPUT_DIR / 'folds.csv') train_additional = pd.read_csv(OUTPUT_DIR / "folds_additional.csv") if CFG.debug: train_df = train_df.sample(n=1000, random_state=42) train_fold = train_df[train_df.kfold != fold] train_additional_fold = train_additional[train_additional.kfold != fold] valid_fold = train_df[train_df.kfold == fold] columns = [ "recording_id", "species_id", "t_min", "f_min", "t_max", "f_max", "istp", "f_min_mel", "f_max_mel", "kfold" ] train_fold = train_fold[columns] print(f"train fold before concat: {train_fold.shape}") train_additional_fold = train_additional_fold[columns] train_fold = pd.concat([train_fold, train_additional_fold], axis=0).reset_index(drop=True) print(f"train fold after concat: {train_fold.shape}") train_dataset = AudioDataset( df=train_fold, period=CFG.period, time=CFG.duration, transforms=augmenter, data_path="../input/train", ) valid_dataset = ValidDataset( df=valid_fold, period=CFG.period, transforms=None, data_path="../input/train" ) train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=CFG.batch_size, shuffle=True, drop_last=True, num_workers=CFG.num_workers, ) valid_loader = torch.utils.data.DataLoader( valid_dataset, batch_size=CFG.batch_size//4, shuffle=False, drop_last=False, num_workers=CFG.num_workers ) window = 'hann' center = True pad_mode = 'reflect' ref = 1.0 amin = 1e-10 top_db = None spectrogram_extractor = Spectrogram(n_fft=WINDOW_SIZE, hop_length=HOP_SIZE, win_length=WINDOW_SIZE, window=window, center=center, pad_mode=pad_mode, freeze_parameters=True).to(device) logmel_extractor = LogmelFilterBank(sr=SR, n_fft=WINDOW_SIZE, n_mels=N_MELS, fmin=FMIN, fmax=FMAX, ref=ref, amin=amin, top_db=top_db, freeze_parameters=True).to(device) # ==================================================== # scheduler # ==================================================== def get_scheduler(optimizer): if CFG.scheduler == 'ReduceLROnPlateau': scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=CFG.factor, patience=CFG.patience, verbose=True, eps=CFG.min_lr) elif CFG.scheduler == 'CosineAnnealingLR': scheduler = CosineAnnealingLR(optimizer, T_max=CFG.T_max, eta_min=CFG.min_lr, last_epoch=-1) elif CFG.scheduler == 'CosineAnnealingWarmRestarts': scheduler = CosineAnnealingWarmRestarts(optimizer, T_0=CFG.T_0, T_mult=1, eta_min=CFG.min_lr, last_epoch=-1) return scheduler # ==================================================== # model & optimizer # ==================================================== model = AudioClassifier(CFG.model_param["encoder"], CFG.model_param["classes_num"]) model = model.to(device) # optimizer = Adam(model.parameters(), lr=CFG.lr, weight_decay=CFG.weight_decay, amsgrad=False) # scheduler = get_scheduler(optimizer) optimizer = torch.optim.AdamW(model.parameters(), lr=CFG.lr) num_train_steps = int(len(train_loader) * CFG.epochs) num_warmup_steps = int(0.1 * CFG.epochs * len(train_loader)) scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_train_steps) # criterion = nn.BCEWithLogitsLoss() criterion = BCEFocalLoss() best_score = -np.inf for epoch in range(CFG.epochs): if epoch < CFG.mixup_epochs: p_mixup = CFG.p_mixup else: p_mixup = 0. start_time = time.time() # train train_avg, train_loss = train_epoch(model, spectrogram_extractor, logmel_extractor, train_loader, criterion, optimizer, scheduler, epoch, device, p_mixup, spec_aug=True) # valid valid_avg, valid_loss = valid_epoch(model, spectrogram_extractor, logmel_extractor, valid_loader, criterion, epoch, device) if isinstance(scheduler, ReduceLROnPlateau): scheduler.step(valid_loss) elif isinstance(scheduler, CosineAnnealingLR): scheduler.step() elif isinstance(scheduler, CosineAnnealingWarmRestarts): scheduler.step() elapsed = time.time() - start_time LOGGER.info(f'Epoch {epoch+1} - avg_train_loss: {train_loss:.5f} avg_val_loss: {valid_loss:.5f} time: {elapsed:.0f}s') LOGGER.info(f"Epoch {epoch+1} - train_LWLRAP:{train_avg['lwlrap']:0.5f} valid_LWLRAP:{valid_avg['lwlrap']:0.5f}") LOGGER.info(f"Epoch {epoch+1} - train_F1:{train_avg['f1score']:0.5f} valid_F1:{valid_avg['f1score']:0.5f}") if valid_avg['f1score'] > best_score: LOGGER.info(f">>>>>>>> Model Improved From {best_score} ----> {valid_avg['f1score']}") torch.save(model.state_dict(), OUTPUT_DIR / f'fold-{fold}.bin') best_score = valid_avg['f1score'] def get_master_df(): df = pd.read_csv("../input/train_tp.csv").sort_values("recording_id") df['species_ids'] = df['species_id'].astype(str) label_dict = {} for recording_id, tmp in df.groupby(['recording_id']): label_dict[recording_id] = ' '.join(sorted(set(tmp['species_ids'].values))) output = pd.DataFrame({'recording_id': df['recording_id'].unique()}) output['species_ids'] = output['recording_id'].map(label_dict) y_true = np.zeros((len(output), 24)) for i, species in enumerate(output['species_ids'].values): for s in species.split(): y_true[i, int(s)] = 1 for i in range(24): output[f"true_s{i}"] = 0 output[[f'true_s{i}' for i in range(24)]] = y_true return output.reset_index(drop=True) def get_result(oof_df): y_true = np.zeros((len(oof_df), 24)) for i, species in enumerate(oof_df['species_ids'].values): for s in species.split(): y_true[i, int(s)] = 1 preds = oof_df[[f's{i}' for i in range(24)]].values score = get_score(y_true, preds) LOGGER.info(f'LWLRAP Score: {score:<.5f}') ################################################ # Main # ################################################ def main(): if CFG.train: master_df = get_master_df() # train oof_df = pd.DataFrame() for fold in range(CFG.n_fold): if fold in CFG.trn_fold: train_loop(fold) _oof_df = get_valid_all_clip_result(fold) _oof_df = _oof_df.merge(master_df, on='recording_id', how='left') oof_df = pd.concat([oof_df, _oof_df]) LOGGER.info(f"========== fold: {fold} result ==========") get_result(_oof_df) # CV result LOGGER.info("========== CV ==========") get_result(oof_df) # save result oof_df.to_csv(OUTPUT_DIR / 'oof_df.csv', index=False) if CFG.inference: # inference LOGGER.info("========== inference ==========") submission = pd.DataFrame() for fold in range(CFG.n_fold): if fold in CFG.trn_fold: sub = inference(fold) submission = pd.concat([submission, sub]) print(f'raw_submission: {submission.shape}') submission.to_csv(OUTPUT_DIR / "raw_submission.csv", index=False) sub = submission.groupby("recording_id", as_index=False).mean() output_cols = ['recording_id'] + [f's{i}' for i in range(24)] print(f'raw_submission: {sub.shape}') sub[output_cols].to_csv(OUTPUT_DIR / "submission.csv", index=False) LOGGER.info("========== submission ==========") LOGGER.info(sub[output_cols].head()) if __name__ == '__main__': main()
01e304b264f3b7116f5df2b1b3345739a66a4d8f
5775513b81096d77b11bfe99949e4cbd80af20d4
/jumpingintodjango/questionsandanswers/migrations/0005_auto__add_field_question_cmpnyvisit.py
1fa82c8c942e0a57ee34a2c78567711f91edea9b
[]
no_license
gzpgg3x/BrowsingOR
55234ba7b785675ea6b1d6a99c083aa0885fba74
15d467c6cc70beece93c699f2e9728509c3ce9f3
refs/heads/master
2016-09-06T11:00:20.737008
2013-04-29T16:19:53
2013-04-29T16:19:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,778
py
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'Question.cmpnyvisit' db.add_column(u'questionsandanswers_question', 'cmpnyvisit', self.gf('django.db.models.fields.IntegerField')(default=100), keep_default=False) def backwards(self, orm): # Deleting field 'Question.cmpnyvisit' db.delete_column(u'questionsandanswers_question', 'cmpnyvisit') models = { u'questionsandanswers.answer': { 'Meta': {'object_name': 'Answer'}, 'best_answer': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'content': ('django.db.models.fields.TextField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'question': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['questionsandanswers.Question']"}) }, u'questionsandanswers.question': { 'Meta': {'object_name': 'Question'}, 'cmpnyvisit': ('django.db.models.fields.IntegerField', [], {'default': '100'}), 'description': ('django.db.models.fields.TextField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'publication_date': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'subject': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'visit': ('django.db.models.fields.IntegerField', [], {'default': '0'}) } } complete_apps = ['questionsandanswers']
4c6fafb9691b1da81bfce3f905fb7e709f18b562
ae26322bb92f81ca9133fce5666dd6be796304d2
/convert/convert_es/convert.py
74c796eb6bdbd9820636dbbfa6044b63413b6cc2
[]
no_license
christinabotros/gis-book
8a7bba0ccb7202e7bf975b4f6ce9da5b4dc7dc00
575f7905b6c3688bb2341ad1c268381e956748c9
refs/heads/master
2021-09-07T10:22:08.340279
2017-05-02T13:46:08
2017-05-02T13:46:08
null
0
0
null
null
null
null
ISO-8859-1
Python
false
false
10,762
py
#!/usr/bin/python # -*- coding: cp1252 -*- import re import os.path import sys import fnmatch import glob import traceback import json import codecs import time import shutil import zipfile tableshtml={ "Tabla:PropiedadesVariablesVisuales": r'<table border="1"><col width="11%" /><col width="13%" /><col width="13%" /><col width="13%" /><col width="13%" /><col width="13%" /><col width="13%" /><col width="13%" /></colgroup><thead valign="bottom"><tr class="row-odd"><th class="head">Propiedad</th><th class="head">Posición</th><th class="head">Tamaño</th><th class="head">Forma</th><th class="head">Valor</th><th class="head">Tono</th><th class="head">Textura</th><th class="head">Orientación</th></tr></thead><tbody valign="top"><tr class="row-even"><td>Asociativa</td><td>&loz;</td><td>&#8212;</td><td>&loz;</td><td>&#8212;</td><td>&loz;</td><td>&loz;</td><td>&loz;</td></tr><tr class="row-odd"><td>Selectiva</td><td>&loz;</td><td>&loz;</td><td>&#8212;</td><td>&loz;</td><td>&loz;</td><td>&loz;</td><td>&loz;</td></tr><tr class="row-even"><td>Ordenada</td><td>&loz;</td><td>&loz;</td><td>&#8212;</td><td>&loz;</td><td>&#8212;</td><td>&#8212;</td><td>&#8212;</td></tr><tr class="row-odd"><td>Cuantitativa</td><td>&loz;</td><td>&loz;</td><td>&#8212;</td><td>&#8212;</td><td>&#8212;</td><td>&#8212;</td><td>&#8212;</td></tr></tbody></table>' } exps_pre = [(r"\\bigskip", ""), (r"\\ldots", "&hellip;"), #(r"[\r\n]{2,}",r"<br><br>"), (r"\\centering", ""), (r"\\par[^t]", ""), (r"\\degree", "&deg;"), (r"\\noindent", ""), (r"\\vspace\{.*?\}", ""), (r"\\begin\{center\}", ""), (r"\\end\{center\}", ""), (r"\\small", ""), (r"\\emph\{(.*?)\}", r"<i>\1</i>"), (r"\$(.*?)\$", r"<i>\1</i>")] exps_post = [(r"\\index\{.*?\}", ""), (r"\\pagestyle\{.*?\}",r""), (r"\\%", "%"), (r"\\_", "_"), (r"\\underline\{(.*?)\}", r"<u>\1</u>"), (r"\\footnote\{[\s\S]*?\}", ""), (r"\\begin\{itemize\}", "<ul>"), (r"\\end\{itemize\}", "</ul>"), (r"\\begin\{enumerate\}", "<ol>"), (r"\\end\{enumerate\}", "</ol>"), (r"\\item", "<li>"), (r"\\subitem", ""), (r"\\texttt\{(.*?)\}", r"<tt>\1</tt>"), (r"\\textbf\{(.*?)\}", r"<b>\1</b>"), (r"\\chapter.*?\{(.*?)\}", r'<h1 id="\1">\1</h1>'), (r"\\section.*?\{(.*?)\}", r'<h2 id="\1">\1</h2>'), (r"\\subsection.*?\{(.*?)\}", r'<h3 id="\1">\1</h3>'), (r"\\subsubsection.*?\{(.*?)\}", r'<h4 id="\1">\1</h4>'), (r"---", "&#8212;"), (">>", "&raquo;"), ("<<", "&laquo;"), (r"([\s\S]*?)[\r\n]{2,}", r"<p>\1</p>"), (r"<p><h",r"<h"), (r"(</h.>)</p>",r"\1"), (r"<p><pre>", r"<pre>"), (r"</pre></p>", r"</pre>"), (r"><br><br>",r"><br>"), ] def template(): path = os.path.join(os.path.dirname(__file__), "html", "template.html") with open(path) as f: s = f.read() return s def convertFile(path, chapterNum): name = os.path.splitext(os.path.basename(path))[0] with open(path) as f: s = f.read() for exp, replace in exps_pre: p = re.compile(exp) s = p.sub(replace, s) p = re.compile(r"\\begin\{figure\}[\s\S]*?\\end\{figure\}?") imgs = p.findall(s) for i, img in enumerate(imgs): f = re.search(r"\\includegraphics.*?\{(.*?)\}", img).groups()[0] path, ext = os.path.splitext(f) if ext == ".pdf": ext = ".png" path = os.path.basename(path) size = img[img.find("["):img.rfind("]")] size = "".join([d for d in size if d in "0123456789."]) try: size = float(size) * 100 except: size = 100 caption = re.search(r"\\caption\{(.*?)\}", img).groups()[0] label = re.search(r"\\label\{(.*?)\}", img).groups()[0] figNum = "%i.%i" % (chapterNum, i + 1) s = s.replace(img, (r"<a name='%s'></a><center><figure><img src='img/%s%s' width='%s%%'/>" "<br><figcaption>Figura %s: %s</figcaption></figure></center>" % (label, path, ext, str(size), figNum, caption))) s = s.replace("\\ref{%s}" % label, '<a href="#%s">%s</a>' % (label, figNum)) p = re.compile(r"(\\begin\{table[\S\s]*?\\end\{table.*?\})") tables = p.findall(s) for tableNum, table in enumerate(tables): idx = table.find("Tabla:") tablelabel = table[idx:table.find("}", idx)] idx = table.find(r"\caption") + 9 caption = table[idx:table.find("}\n", idx)] try: replace = "<a name='%s'></a>%s<center><figcaption>Cuadro %s: %s</figcaption></center>" % (tablelabel, tableshtml[tablelabel], tableNum + 1, caption) s = s.replace(table, replace) s = s.replace("\\ref{%s}" % tablelabel, '<a href="#%s">%s</a>' % (label, tableNum)) except Exception, e: pass for exp, replace in exps_post: p = re.compile(exp) s = p.sub(replace, s) html = template().replace("[BODY]", s) with open(os.path.join(os.path.dirname(__file__), "html", name + ".html"), "w") as f: f.write(html.decode('iso-8859-1').encode('utf8')) return s def convert(): src = os.path.join(os.path.dirname(__file__), "img") dst = os.path.join(os.path.dirname(__file__), "html", "img") if os.path.exists(dst): shutil.rmtree(dst) shutil.copytree(src, dst) chapterFiles = [os.path.join(os.path.dirname(__file__), os.pardir, os.pardir, "latex/es/prologo.tex")] chapterNames = ["Introduccion", "Historia", "Fundamentos_cartograficos", "Datos", "Fuentes_datos", "Software", "Bases_datos", "Analisis", "Visualizacion"] chapterFiles.extend([os.path.join(os.path.dirname(__file__), os.pardir, os.pardir, "latex/es/%s/%s.tex" % (n,n)) for n in chapterNames]) chapters = [] for i, f in enumerate(chapterFiles): try: chapter = convertFile(f, i + 1) chapters.append(chapter) except Exception, e: traceback.print_exc() pass epub = zipfile.ZipFile(os.path.join(os.path.dirname(__file__), "ebook", "librosig.epub"), 'w') epub.writestr("mimetype", "application/epub+zip") epub.writestr("META-INF/container.xml", '''<container version="1.0" xmlns="urn:oasis:names:tc:opendocument:xmlns:container"> <rootfiles> <rootfile full-path="OEBPS/Content.opf" media-type="application/oebps-package+xml"/> </rootfiles> </container>'''); index = '''<package version="2.0" xmlns="http://www.idpf.org/2007/opf"> <metadata xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:opf="http://www.idpf.org/2007/opf"> <dc:title>Introducción a los SIG</dc:title> <dc:creator opf:file-as="Olaya, Víctor" opf:role="aut">Víctor Olaya</dc:creator> <dc:language>es</dc:language> <dc:description>Introducción a los Sistemas de Información Geográfica.</dc:description> <meta name="cover" content="cover.jpg" /> </metadata> <manifest> <item id="cover" href="cover.html" media-type="application/xhtml+xml"/> <item id="cover-image" href="cover.jpg" media-type="image/jpeg"/> <item id="intro" href="intro.html" media-type="application/xhtml+xml"/> %(manifest)s </manifest> <spine toc="ncx"> <itemref idref="cover" linear="no"/> <itemref idref="intro" /> %(spine)s </spine> </package>''' cover = '''<html> <head> <title>Cover</title> <style type="text/css"> img { max-width: 100%; } </style> </head> <body> <div id="cover-image"> <img src="cover.jpg" alt="Introducción a los SIG"/> </div> </body> </html>''' intro = '''<html> <head> <title>Introducción a los SIG</title> </head> <body> <a name="start"> <h2>Introducción a los SIG</h2></a> </p> <p>Copyright © Víctor Olaya. 2016</p> <p>Versión del %s</p> </body> </html>''' chapterTemplate = '''<html> <head> <title></title> <link href="base.css" rel="stylesheet" type="text/css" /> </head> <body> %s </body> </html>''' manifest = "" spine = "" import locale try: locale.setlocale(locale.LC_TIME, "esn") except: pass epub.write(os.path.join(os.path.dirname(__file__), "ebook", "base.css"), os.path.join('OEBPS', "base.css")) epub.write(os.path.join(os.path.dirname(__file__), os.pardir, os.pardir, "covers", "ebook_es.jpg"), os.path.join('OEBPS', "cover.jpg")) epub.writestr('OEBPS/intro.html', (intro % (time.strftime("%x"))).decode('iso-8859-1').encode('utf8')) epub.writestr('OEBPS/cover.html', (intro % (time.strftime("%x"))).decode('iso-8859-1').encode('utf8')) for i, html in enumerate(chapters): manifest += '<item id="file_%s" href="%s.html" media-type="application/xhtml+xml"/>' % ( i+1, i+1) spine += '<itemref idref="file_%s" />' % (i+1) chapterText = chapterTemplate % html.replace("img/", "") epub.writestr('OEBPS/%i.html' % (i+1), chapterText.decode('iso-8859-1').encode('utf8')) for f in os.listdir(src): fn = os.path.join(src, f) epub.write(fn, os.path.join('OEBPS', f)) epub.writestr('OEBPS/Content.opf', (index % { 'manifest': manifest, 'spine': spine, }).decode('iso-8859-1').encode('utf8')) ############################### def findFiles(directory, pattern): for root, dirs, files in os.walk(directory): for basename in files: if fnmatch.fnmatch(basename, pattern): filename = os.path.join(root, basename) yield filename def convertImages(): for f in findFiles('../latex', '*.pdf'): from subprocess import call dest = os.path.basename(f) dest = os.path.splitext(dest)[0] dest = "img/%s.png" % dest commands = [r'"Inkscape.exe"', "--export-png=" + dest, f] print " ".join(commands) #call(commands) ############################### if __name__ == '__main__': convert()
a460b11b44d5739c0f1a1c59783c8dcabe4843f2
02bfa3b84a5c811c3fd4c293b14b0846bd6ab3b5
/SortingAlrorithms/QuickSort.py
46b3cf3f67d0d478023a3d3c18746ddb48f32b9b
[]
no_license
Ronak912/Programming_Fun
9dde0842245b62748b479924921383de07b24d16
2a504d0ef230d09007b8a268c356055ced5ca6c0
refs/heads/master
2020-04-06T03:40:52.046819
2020-04-03T22:25:36
2020-04-03T22:25:36
42,281,340
0
0
null
null
null
null
UTF-8
Python
false
false
984
py
def quickSort(alist): quickSortHelper(alist, 0, len(alist)-1) def quickSortHelper(alist, first, last): if first >= last: return splitpoint = partition(alist, first, last) quickSortHelper(alist, first, splitpoint-1) quickSortHelper(alist, splitpoint+1, last) def partition(alist, first, last): pivotvalue = alist[first] leftmark = first+1 rightmark = last while True: while leftmark <= rightmark and alist[leftmark] <= pivotvalue: leftmark += 1 while alist[rightmark] >= pivotvalue and rightmark >= leftmark: rightmark -= 1 if rightmark < leftmark: break else: temp = alist[leftmark] alist[leftmark] = alist[rightmark] alist[rightmark] = temp temp = alist[first] alist[first] = alist[rightmark] alist[rightmark] = temp return rightmark alist = [54, 26, 93, 17, 77, 31, 44, 55, 20] quickSort(alist) #print(alist)
14c5bba12db00e778ec048d589648f8d833c1e3e
0b76e4db1f08f2d6d7b9379a884c2075f6e258c3
/w9/G4/4.py
8d5116ba23d233d71f26eeda927160fa5d04798e
[]
no_license
bobur554396/WD2020Spring
244ec8b491f297646d1d37f1feeb3767b68b9180
2b833c9043701ebaa4d122f717c8465af8fd5677
refs/heads/master
2020-12-26T19:01:46.605344
2020-04-18T05:33:42
2020-04-18T05:33:42
237,606,624
1
6
null
null
null
null
UTF-8
Python
false
false
176
py
# Functions def hello(request): print('hi') def sum(a, b): return a + b # c = sum(2, 3) # print(c) def mult(a, b=3, c=10): return a * b * c print(mult(2))
60a087f8c198509615937f7b2d47732ab42cbb42
c3a6e39441d70cd632adff3ade7d7d331f702bbf
/DocxTest.py
60456d561aed8d9ef55091e23e4315a838a4c804
[]
no_license
Yzp109062/programming
ef81f5588b28da130d6a4c608578cbf622c50e16
b84aee684fe39623185749e5250ffb454a302176
refs/heads/master
2022-11-23T01:36:18.344437
2020-07-28T21:37:39
2020-07-28T21:37:39
284,621,508
1
0
null
2020-08-03T06:28:43
2020-08-03T06:28:42
null
UTF-8
Python
false
false
502
py
from docx import Document from docx.shared import Pt document = Document("/home/wesley/Desktop/Construction/Conlanging/Daellic/Daool Lexicon Working Version Python Test.docx") style = document.styles["Normal"] font = style.font font.name = "Charis SIL" font.size = Pt(12) p = document.add_paragraph("Test ") p.add_run("bold").bold = True p.add_run(" and ") p.add_run("italic").italic = True p = document.add_paragraph("New paragraph") document.save("/home/wesley/programming/DocxTestOutput.docx")
c59e659d909312483f20f07ec25ed071a0ab1d64
9b1446b26e81a79c303f9799fb6a91785c7adb03
/.history/Code/histogram_20200204122135.py
5d0a4eeb8d476dabb9528ff8aa4b80539dcd1d90
[]
no_license
SamirIngley/CS1.2-Tweet-Gen
017ea15b1113881a156ff24682828bc654eb6c81
bcd95fa63e05849cbf8e36230d8e31032b99daaa
refs/heads/master
2020-12-14T20:19:57.733290
2020-08-04T23:19:23
2020-08-04T23:19:23
234,856,234
0
0
null
2020-06-05T21:13:04
2020-01-19T07:05:55
Python
UTF-8
Python
false
false
5,137
py
from clean_text import clean from benchmark import bench def tuple_hist(source): ''' Fastest - tuples are immutable. List of tuples: [('hello', 3), ('what', 4)] Takes text. Stores each item in text, compares each item to the rest of the words in text and keeps a running total. Used list account for no repeats. ''' histo = [] used = [] text = clean(source) # print(text) for word in text: # see if we've used the word before counter = 0 if word in used: continue used.append(word) print("hello") for word2 in text: if word == word2: counter += 1 instance = (word, counter) histo.append(instance) # print(histo) print('USED: ', used) return histo def list_hist(source): ''' List of lists histogram. [['hello', 1], ['you', 3], ['sir', 4]] Takes text. Stores each item in text, compares each item to the rest of the words in text and keeps a running total. Used list account for no repeats. ''' histo = [] used = [] text = clean(source) # print(text) for word in text: counter = 0 if word in used: continue used.append(word) for word2 in text: if word == word2: counter += 1 instance = [word, counter] histo.append(instance) # print(histo) return histo def dict_hist(source): ''' Dictionary key value pairs {'hello':1, 'sir':2, 'how':5} Takes text. Stores each item in text, compares each item to the rest of the words in text and keeps a running total. Used list account for no repeats.''' histo_dict = {} # used = [] text = clean(source) # print(text) for word in text: if word in histo_dict: histo_dict[word] += 1 else: histo_dict[word] = 1 # print(histo_dict) return histo_dict def counts_list(source): histo = [] instances = [] used = [] text = clean(source) # print(text) for word in text: # check if the word has already been accounted if word in used: continue counter = 0 used.append(word) # for each word in the text if it matches a word in the same text, # we have an instance of that word - so increase counter by 1 for word2 in text: if word == word2: counter += 1 # we know the word and we have the occurances stored in counter. # create a list instance object with the word and its occurances # and append it to the list of word instances. instance = [word, counter] instances.append(instance) used_nums = [] for item in instances: # check if the word frequency has been accounted for before if item[1] in used_nums: continue used_nums.append(item[1]) membs = [] new_instance = (item[1], membs) # this is what an instance of our histogram looks like # for one item in our instances we check if the frequency matches # any other frequencies in the instances list. if it does we add those to members list for item2 in instances: if item[1] == item2[1]: # print(item2[0]) membs.append(item2[0]) histo.append(new_instance) # print(histo) return histo def unique_words(histo): ''' takes a histogram and returns the number of unique words in it. ''' counter = 0 for item in histo: if type(item[0]) == int: # if the first item is an integer for word in item[1]: # print(item[1]) counter += 1 else: # print(item) counter += 1 # print(counter) return counter def frequency(word, histo): ''' takes a word and histo, returns the frequency of that word in the histo ''' for item in histo: if word in item: freq = 0 if type(item[0]) == int: # if the first item is an integer freq = item[0] else: freq = item[1] # print("{} freq: {}".format(word, freq)) return freq if __name__ == '__main__': source = 'one fish two fish red fish blue fish' listo_histo = list_hist("source.txt") # print(listo_histo) tuple_histo = tuple_hist(source) print(tuple_histo) # print(dict_hist('source.txt')) # print(counts_list('source.txt')) print('') print(unique_words(list_hist("source.txt"))) print(unique_words(counts_list('source.txt'))) print('freq of fish: ', frequency('fish', list_hist("source.txt"))) print('freq of tax: ', frequency('tax', list_hist("source.txt"))) print('freq of i: ', frequency('i', list_hist("source.txt"))) print('benchmark for list hist: ', bench(listo_histo)) print('benchmark for dict hist: ', bench(dict_hist('source.txt'))) print('benchmark for tuple hist: ', bench(tuple_histo))
ed7692ac1e2630e87218877cf5032e76083e7c98
e5c3b3a044e826425dd0f783d5e38e5bfeb82626
/diplomacy_research/proto/diplomacy_tensorflow/core/protobuf/transport_options_pb2.py
e079da40929cc5f94bf114d387992431fb51a4c9
[ "MIT" ]
permissive
JACKHAHA363/research
04f67f98dcd238092941725d531517ae2a4ab47f
e752f02f34936bbae904815708904cabda554b57
refs/heads/master
2020-09-14T23:42:32.337085
2019-11-22T03:36:35
2019-11-22T03:36:35
223,296,172
0
0
null
2019-11-22T01:15:52
2019-11-22T01:15:51
null
UTF-8
Python
false
true
2,218
py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: diplomacy_tensorflow/core/protobuf/transport_options.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='diplomacy_tensorflow/core/protobuf/transport_options.proto', package='diplomacy.tensorflow', syntax='proto3', serialized_options=None, serialized_pb=_b('\n:diplomacy_tensorflow/core/protobuf/transport_options.proto\x12\x14\x64iplomacy.tensorflow\"*\n\x10RecvBufRespExtra\x12\x16\n\x0etensor_content\x18\x01 \x03(\x0c\x62\x06proto3') ) _RECVBUFRESPEXTRA = _descriptor.Descriptor( name='RecvBufRespExtra', full_name='diplomacy.tensorflow.RecvBufRespExtra', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='tensor_content', full_name='diplomacy.tensorflow.RecvBufRespExtra.tensor_content', index=0, number=1, type=12, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=84, serialized_end=126, ) DESCRIPTOR.message_types_by_name['RecvBufRespExtra'] = _RECVBUFRESPEXTRA _sym_db.RegisterFileDescriptor(DESCRIPTOR) RecvBufRespExtra = _reflection.GeneratedProtocolMessageType('RecvBufRespExtra', (_message.Message,), dict( DESCRIPTOR = _RECVBUFRESPEXTRA, __module__ = 'diplomacy_tensorflow.core.protobuf.transport_options_pb2' # @@protoc_insertion_point(class_scope:diplomacy.tensorflow.RecvBufRespExtra) )) _sym_db.RegisterMessage(RecvBufRespExtra) # @@protoc_insertion_point(module_scope)
c8da8eefa8c5d426331ac8e5cd31e22fc656e14e
7825f583fc11716f0a7b6a90799170bdfa6cc969
/apps/trade/models.py
fc00ed8ebcd5ba1c8bfafaa8ea5ef7538e3b19c9
[]
no_license
dingmf/TTSX1
ca49dc76a59e1f0e5357a40ac708487e0a32afa2
b1bc1403114961a0830e273f14413f7421647005
refs/heads/master
2020-03-28T16:43:43.526808
2018-09-10T01:38:31
2018-09-10T01:38:31
148,722,478
0
0
null
null
null
null
UTF-8
Python
false
false
2,897
py
from datetime import datetime from django.db import models from django.contrib.auth import get_user_model from goods.models import Goods User = get_user_model() # Create your models here. class ShoppingCart(models.Model): """ 购物车 """ user = models.ForeignKey(User, verbose_name=u"用户",on_delete=models.DO_NOTHING) goods = models.ForeignKey(Goods, verbose_name=u"商品",on_delete=models.DO_NOTHING) nums = models.IntegerField(default=0, verbose_name="购买数量") add_time = models.DateTimeField(default=datetime.now, verbose_name=u"添加时间") class Meta: verbose_name = '购物车' verbose_name_plural = verbose_name unique_together = ("user", "goods") def __str__(self): return "%s(%d)".format(self.goods.name, self.nums) class OrderInfo(models.Model): """ 订单 """ ORDER_STATUS = ( ("TRADE_SUCCESS", "成功"), ("TRADE_CLOSED", "超时关闭"), ("WAIT_BUYER_PAY", "交易创建"), ("TRADE_FINISHED", "交易结束"), ("paying", "待支付"), ) user = models.ForeignKey(User, verbose_name="用户",on_delete=models.DO_NOTHING) order_sn = models.CharField(max_length=30, null=True, blank=True, unique=True, verbose_name="订单号") trade_no = models.CharField(max_length=100, unique=True, null=True, blank=True, verbose_name=u"交易号") pay_status = models.CharField(choices=ORDER_STATUS, default="paying", max_length=30, verbose_name="订单状态") post_script = models.CharField(max_length=200, verbose_name="订单留言") order_mount = models.FloatField(default=0.0, verbose_name="订单金额") pay_time = models.DateTimeField(null=True, blank=True, verbose_name="支付时间") # 用户信息 address = models.CharField(max_length=100, default="", verbose_name="收货地址") signer_name = models.CharField(max_length=20, default="", verbose_name="签收人") singer_mobile = models.CharField(max_length=11, verbose_name="联系电话") add_time = models.DateTimeField(default=datetime.now, verbose_name="添加时间") class Meta: verbose_name = u"订单" verbose_name_plural = verbose_name def __str__(self): return str(self.order_sn) class OrderGoods(models.Model): """ 订单的商品详情 """ order = models.ForeignKey(OrderInfo, verbose_name="订单信息", related_name="goods",on_delete=models.DO_NOTHING) goods = models.ForeignKey(Goods, verbose_name="商品",on_delete=models.DO_NOTHING) goods_num = models.IntegerField(default=0, verbose_name="商品数量") add_time = models.DateTimeField(default=datetime.now, verbose_name="添加时间") class Meta: verbose_name = "订单商品" verbose_name_plural = verbose_name def __str__(self): return str(self.order.order_sn)
8d952a384d61bfa8c0d257aa9b30e1060fa69354
f7ff9607822bb8f347598c10d185941cf1956852
/aliyun-python-sdk-iot/aliyunsdkiot/request/v20180120/CreateOTAStaticUpgradeJobRequest.py
7e7ee501d6c20d1a94d5c9e4dc901b71e523ad7c
[ "Apache-2.0" ]
permissive
djzqbx001/aliyun-openapi-python-sdk
5ca32201c578528f4b4228c7636b36c3f60a7c60
7d2e3c854c4d70ed341f036f5f7be0310216c303
refs/heads/master
2023-09-06T10:17:55.489439
2021-11-19T04:26:37
2021-11-19T04:26:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,658
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkiot.endpoint import endpoint_data class CreateOTAStaticUpgradeJobRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Iot', '2018-01-20', 'CreateOTAStaticUpgradeJob','iot') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_RetryCount(self): return self.get_query_params().get('RetryCount') def set_RetryCount(self,RetryCount): self.add_query_param('RetryCount',RetryCount) def get_TimeoutInMinutes(self): return self.get_query_params().get('TimeoutInMinutes') def set_TimeoutInMinutes(self,TimeoutInMinutes): self.add_query_param('TimeoutInMinutes',TimeoutInMinutes) def get_NeedConfirm(self): return self.get_query_params().get('NeedConfirm') def set_NeedConfirm(self,NeedConfirm): self.add_query_param('NeedConfirm',NeedConfirm) def get_GroupType(self): return self.get_query_params().get('GroupType') def set_GroupType(self,GroupType): self.add_query_param('GroupType',GroupType) def get_NeedPush(self): return self.get_query_params().get('NeedPush') def set_NeedPush(self,NeedPush): self.add_query_param('NeedPush',NeedPush) def get_IotInstanceId(self): return self.get_query_params().get('IotInstanceId') def set_IotInstanceId(self,IotInstanceId): self.add_query_param('IotInstanceId',IotInstanceId) def get_DownloadProtocol(self): return self.get_query_params().get('DownloadProtocol') def set_DownloadProtocol(self,DownloadProtocol): self.add_query_param('DownloadProtocol',DownloadProtocol) def get_TargetSelection(self): return self.get_query_params().get('TargetSelection') def set_TargetSelection(self,TargetSelection): self.add_query_param('TargetSelection',TargetSelection) def get_ScheduleFinishTime(self): return self.get_query_params().get('ScheduleFinishTime') def set_ScheduleFinishTime(self,ScheduleFinishTime): self.add_query_param('ScheduleFinishTime',ScheduleFinishTime) def get_Tags(self): return self.get_query_params().get('Tag') def set_Tags(self, Tags): for depth1 in range(len(Tags)): if Tags[depth1].get('Value') is not None: self.add_query_param('Tag.' + str(depth1 + 1) + '.Value', Tags[depth1].get('Value')) if Tags[depth1].get('Key') is not None: self.add_query_param('Tag.' + str(depth1 + 1) + '.Key', Tags[depth1].get('Key')) def get_GrayPercent(self): return self.get_query_params().get('GrayPercent') def set_GrayPercent(self,GrayPercent): self.add_query_param('GrayPercent',GrayPercent) def get_DnListFileUrl(self): return self.get_query_params().get('DnListFileUrl') def set_DnListFileUrl(self,DnListFileUrl): self.add_query_param('DnListFileUrl',DnListFileUrl) def get_GroupId(self): return self.get_query_params().get('GroupId') def set_GroupId(self,GroupId): self.add_query_param('GroupId',GroupId) def get_FirmwareId(self): return self.get_query_params().get('FirmwareId') def set_FirmwareId(self,FirmwareId): self.add_query_param('FirmwareId',FirmwareId) def get_ProductKey(self): return self.get_query_params().get('ProductKey') def set_ProductKey(self,ProductKey): self.add_query_param('ProductKey',ProductKey) def get_RetryInterval(self): return self.get_query_params().get('RetryInterval') def set_RetryInterval(self,RetryInterval): self.add_query_param('RetryInterval',RetryInterval) def get_SrcVersions(self): return self.get_query_params().get('SrcVersion') def set_SrcVersions(self, SrcVersions): for depth1 in range(len(SrcVersions)): if SrcVersions[depth1] is not None: self.add_query_param('SrcVersion.' + str(depth1 + 1) , SrcVersions[depth1]) def get_ScheduleTime(self): return self.get_query_params().get('ScheduleTime') def set_ScheduleTime(self,ScheduleTime): self.add_query_param('ScheduleTime',ScheduleTime) def get_OverwriteMode(self): return self.get_query_params().get('OverwriteMode') def set_OverwriteMode(self,OverwriteMode): self.add_query_param('OverwriteMode',OverwriteMode) def get_MaximumPerMinute(self): return self.get_query_params().get('MaximumPerMinute') def set_MaximumPerMinute(self,MaximumPerMinute): self.add_query_param('MaximumPerMinute',MaximumPerMinute) def get_TargetDeviceNames(self): return self.get_query_params().get('TargetDeviceName') def set_TargetDeviceNames(self, TargetDeviceNames): for depth1 in range(len(TargetDeviceNames)): if TargetDeviceNames[depth1] is not None: self.add_query_param('TargetDeviceName.' + str(depth1 + 1) , TargetDeviceNames[depth1])
5414549b6e05db7f00d8fa5cd8e78438012ca3b3
d1db2d004f989c89d7d7b599a79be73485d15154
/backend/home/migrations/0001_load_initial_data.py
1d7f53afab7b8c07ccd47a313d03c168330d2153
[]
no_license
crowdbotics-apps/dry-glitter-29203
79161318f4bc536b1b69e07dfc592f19f4056ce5
ee14380afe72369a0e7306b5954885f675493020
refs/heads/master
2023-06-25T06:39:47.076869
2021-07-26T19:47:29
2021-07-26T19:47:29
389,750,638
0
0
null
null
null
null
UTF-8
Python
false
false
540
py
from django.db import migrations def create_site(apps, schema_editor): Site = apps.get_model("sites", "Site") custom_domain = "dry-glitter-29203.botics.co" site_params = { "name": "Dry Glitter", } if custom_domain: site_params["domain"] = custom_domain Site.objects.update_or_create(defaults=site_params, id=1) class Migration(migrations.Migration): dependencies = [ ("sites", "0002_alter_domain_unique"), ] operations = [ migrations.RunPython(create_site), ]
a617079a95a7c319e8098fbc2e673c2307de3965
028ef598a1da5e865691db12a92a7e894d6a20ed
/server/plugins/item/forms.py
7309fe19e115890c8f00281a260ba06e230c85c3
[]
no_license
alvinwan/Puhjiii
e051b39f236525cb8e3cfbdc24fe4bb243708996
bf633015fe13a7a60cd1137b16b8d2cec6b09d39
refs/heads/master
2021-01-22T09:47:55.058092
2015-07-10T17:49:43
2015-07-10T17:49:43
37,454,548
0
0
null
null
null
null
UTF-8
Python
false
false
117
py
from server.forms import DynamicForm class AddItemForm(DynamicForm): pass class EditItemForm(DynamicForm): pass
b2417e1d6d1bbde80e013a3d3c5c891f70809f47
38422c3edeb269926502fed31a0761aff8dd3d3b
/Si_and_InGaAs_detectors/Calibration_2Mar_2015/IGA22030TC_caldata_for_python/run_DSS-IGA22030TC_cal_data.py
77487933e19dc4dedfd57eaf2f4694e28cecc1ca
[]
no_license
vfurtula/Alle-projekter
2dab3ccbf7ddb6be3ee09f9f5e87085f354dd84a
da3d7c9611088043e2aea5d844f1ae6056215e04
refs/heads/master
2022-06-07T05:17:35.327228
2020-04-30T10:28:48
2020-04-30T10:28:48
260,180,957
0
0
null
null
null
null
UTF-8
Python
false
false
5,815
py
## Import libraries import matplotlib.pyplot as plt import numpy as np from numpy.polynomial import polynomial as P from scipy import interpolate ## For Matplotlib fonts from matplotlib import rc ## for LaTeX style use: rc("text", usetex=True) rc("font", family="serif") ###################################################### # Create folder structure for intput and output data # ###################################################### class Get_DSS_IGA22030TC_new: def __init__(self,my_string): # Open new datafile form SOURCE 2 (OLIS) #my_string='Kalibrering_DSS-S025TC.txt' #step=5 f2 = open(my_string, 'r') # Read and ignore header lines headers = [f2.readline() for i in range(7)] self.all_data=[] # Read new datafile for line in f2: line = line.strip() columns = line.split() self.all_data.extend([ float(columns[0]) ]) f2.close() self.wl_indx=[] self.res_m30C_indx=[] self.err_m30C_indx=[] self.res_p23C_indx=[] self.err_p23C_indx=[] self.wl=[] self.res_m30C=[] self.err_m30C=[] self.res_p23C=[] self.err_p23C=[] def getdata(self): for i in range(len(self.all_data)): if i*5<len(self.all_data): self.wl_indx.extend([ i*5 ]) if 1+i*5<len(self.all_data): self.res_m30C_indx.extend([ 1+i*5 ]) if 2+i*5<len(self.all_data): self.err_m30C_indx.extend([ 2+i*5 ]) if 3+i*5<len(self.all_data): self.res_p23C_indx.extend([ 3+i*5 ]) if 4+i*5<len(self.all_data): self.err_p23C_indx.extend([ 4+i*5 ]) for i in range(len(self.wl_indx)): self.wl.extend([ self.all_data[self.wl_indx[i]] ]) self.res_m30C.extend([ self.all_data[self.res_m30C_indx[i]] ]) self.err_m30C.extend([ self.all_data[self.err_m30C_indx[i]] ]) self.res_p23C.extend([ self.all_data[self.res_p23C_indx[i]] ]) self.err_p23C.extend([ self.all_data[self.err_p23C_indx[i]] ]) return self.wl, self.res_m30C, self.err_m30C, self.res_p23C, self.err_p23C class Get_DSS_IGA22030TC_old: def __init__(self,my_string): # Open new datafile form SOURCE 2 (OLIS) #my_string='Kalibrering_DSS-S025TC_HORIBA.txt' f2 = open(my_string, 'r') # Read and ignore header lines headers = [f2.readline() for i in range(3)] self.wl=[] self.res_m30C=[] self.res_p23C=[] # Read new datafile for line in f2: line = line.strip() columns = line.split() self.wl.extend([ float(columns[0]) ]) self.res_m30C.extend([ float(columns[2]) ]) self.res_p23C.extend([ float(columns[1]) ]) f2.close() def getdata(self): return self.wl, self.res_m30C, self.res_p23C if __name__ == "__main__": out_data1=Get_DSS_IGA22030TC_new('Kalibrering_DSS-IGA22030TC.txt').getdata() out_data2=Get_DSS_IGA22030TC_old('Kalibrering_DSS-IGA22030TC_HORIBA.txt').getdata() out_data3=Get_DSS_IGA22030TC_new('Kalibrering_DSS-IGA22030TC_crosscheck.txt').getdata() ''' coef_first = P.polyfit(true_val,Ard_baud_23040,1) #print "polyfit coef = ", coef a1=coef_first[1] b1=coef_first[0] val_first = [a1*i+b1 for i in true_val] coef_second = P.polyfit(true_val,Ard_baud_23040,2) #print "polyfit coef = ", coef a2=coef_second[2] b2=coef_second[1] c2=coef_second[0] val_second = [a2*i**2+b2*i+c2 for i in true_val] delta1=[] delta2=[] for i in range(len(true_val)): if i==0: delta1.extend([ 1 ]) delta2.extend([ 1 ]) else: delta1.extend([ Ard_baud_23040[i]/true_val[i] ]) delta2.extend([ Ard_baud_230400[i]/true_val[i] ]) f2.close() ''' # Plot the results plt.figure(1, figsize=(18,12)) plt.plot(out_data1[0],out_data1[1],'b-',label="-30C, JV, 5 nm step (supply 041004-1)") up_err_m30=[out_data1[1][i]*(1+out_data1[2][i]/100) for i in range(len(out_data1[1]))] do_err_m30=[out_data1[1][i]*(1-out_data1[2][i]/100) for i in range(len(out_data1[1]))] plt.fill_between(out_data1[0], up_err_m30, do_err_m30, facecolor='blue', alpha=0.3) plt.plot(out_data1[0],out_data1[3],'r-',label="+23C, JV, 5 nm step (supply 041004-1)") up_err_p23=[out_data1[3][i]*(1+out_data1[4][i]/100) for i in range(len(out_data1[3]))] do_err_p23=[out_data1[3][i]*(1-out_data1[4][i]/100) for i in range(len(out_data1[3]))] plt.fill_between(out_data1[0], up_err_p23, do_err_p23, facecolor='red', alpha=0.3) plt.plot(out_data2[0],out_data2[1],'b--',label="-30C, HORIBA, Oct 2010 (supply unknown)") plt.plot(out_data2[0],out_data2[2],'r--',label="+23C, HORIBA, Oct 2010 (supply unknown)") ### plt.plot(out_data3[0],out_data3[1],'bx-',label="-30C, JV, 100 nm step (supply 031113-2)") #up_err_m30=[out_data3[1][i]*(1+out_data3[2][i]/100) for i in range(len(out_data3[1]))] #do_err_m30=[out_data3[1][i]*(1-out_data3[2][i]/100) for i in range(len(out_data3[1]))] #plt.fill_between(out_data3[0], up_err_m30, do_err_m30, facecolor='yellow', alpha=0.3) plt.plot(out_data3[0],out_data3[3],'rx-',label="+23C, JV, 100 nm step (supply 031113-2)") #up_err_p23=[out_data3[3][i]*(1+out_data3[4][i]/100) for i in range(len(out_data3[3]))] #do_err_p23=[out_data3[3][i]*(1-out_data3[4][i]/100) for i in range(len(out_data3[3]))] #plt.fill_between(out_data3[0], up_err_p23, do_err_p23, facecolor='green', alpha=0.3) plt.xlabel("Wavelength [nm]", fontsize=20) plt.ylabel("Responsivity [A/W]", fontsize=20) plt.tick_params(axis="both", labelsize=20) plt.title('Calibration of DSS-IGA22030TC (Serial No. 021147) at Justervesenet (JV), Jan 2015') #plt.yticks( np.linspace(0,1,11) ) #plt.xticks( np.linspace(0,11000,12) ) #plt.ylim([0,1]) #plt.xlim([0,11000]) l=plt.legend(loc=2, fontsize=15) l.draw_frame(False) plt.savefig('DSS-IGA22030TC_calplots.pdf') plt.show()
bab675eb57306cc67946459ee039be109cb91a15
810ce1c1ac47743e253171ec7541c0e431d952c2
/standard_library/Concurrency/Subprocess/subprocess_popen.py
d43d2ee87874e36321a9f663df2059047f4a48f9
[]
no_license
hjlarry/practise-py
91052c25dc7ab706c6234f6d657db76667a27124
871e06b9652d356f55e3888f1f7ea180ac2b1954
refs/heads/master
2022-09-11T17:47:48.557194
2022-08-10T02:07:24
2022-08-10T02:07:24
136,263,989
1
0
null
null
null
null
UTF-8
Python
false
false
2,096
py
import subprocess import io print("一、 与进程单向通信") print("read:") proc = subprocess.Popen(["echo", "to stdout"], stdout=subprocess.PIPE) # proc = subprocess.Popen(["ls", "-l"], stdout=subprocess.PIPE) value = proc.communicate() print(value) stdout_value = value[0].decode("utf-8") print(stdout_value) print("write:") proc = subprocess.Popen(["cat", "-"], stdin=subprocess.PIPE) proc.communicate("stdin:sth".encode("utf-8")) print() print() print("二、 与进程双向通信:") proc = subprocess.Popen( 'cat -; echo "to stderr" 1>&2', shell=True, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) msg = "through stdin to stdout".encode("utf-8") stdout_value, stderr_value = proc.communicate(msg) print(stdout_value) print(stderr_value) print() print("三、 管道连接:") # 相当于 $cat signal.ipynb | grep "def" | cut -b -30 cat = subprocess.Popen(["cat", "subprocess.ipynb"], stdout=subprocess.PIPE) grep = subprocess.Popen(["grep", "def"], stdin=cat.stdout, stdout=subprocess.PIPE) cut = subprocess.Popen(["cut", "-b", "-30"], stdin=grep.stdout, stdout=subprocess.PIPE) for line in cut.stdout: print(line) print() print("四、 与另一个命令行去交互:") print("one line at a time:") proc = subprocess.Popen( "python3 repeater.py", shell=True, stdin=subprocess.PIPE, stdout=subprocess.PIPE ) stdin = io.TextIOWrapper(proc.stdin, encoding="utf-8", line_buffering=True) stdout = io.TextIOWrapper(proc.stdout, encoding="utf-8") for i in range(5): line = f"{i} \n" stdin.write(line) output = stdout.readline() print(output) remainder = proc.communicate()[0].decode("utf-8") print(remainder) print() print("All line at a time:") proc = subprocess.Popen( "python3 repeater.py", shell=True, stdin=subprocess.PIPE, stdout=subprocess.PIPE ) stdin = io.TextIOWrapper(proc.stdin, encoding="utf-8") stdout = io.TextIOWrapper(proc.stdout, encoding="utf-8") for i in range(5): line = f"{i} \n" stdin.write(line) stdin.flush() remainder = proc.communicate()[0].decode("utf-8") print(remainder)
51402dc7abea0b29512fea65e9aa3d0f2b55e68b
1c91439673c898c2219ee63750ea05ff847faee1
/downstream/mmsegmentation/mmseg/datasets/pipelines/transforms.py
4fdfaef45591127a88b390ad6e55cf4cc865af0c
[ "Apache-2.0" ]
permissive
ChenhongyiYang/GPViT
d7ba7f00d5139a989a999664ab0874c5c9d53d4d
2b8882b2da41d4e175fe49a33fcefad1423216f4
refs/heads/main
2023-06-08T00:10:07.319078
2023-05-26T15:52:54
2023-05-26T15:52:54
577,075,781
78
2
null
null
null
null
UTF-8
Python
false
false
57,737
py
# Copyright (c) OpenMMLab. All rights reserved. import copy import mmcv import numpy as np from mmcv.utils import deprecated_api_warning, is_tuple_of from numpy import random from ..builder import PIPELINES @PIPELINES.register_module() class AlignedResize(object): """Resize images & seg. Align """ def __init__(self, img_scale=None, multiscale_mode='range', ratio_range=None, keep_ratio=True, size_divisor=32): if img_scale is None: self.img_scale = None else: if isinstance(img_scale, list): self.img_scale = img_scale else: self.img_scale = [img_scale] assert mmcv.is_list_of(self.img_scale, tuple) if ratio_range is not None: # mode 1: given img_scale=None and a range of image ratio # mode 2: given a scale and a range of image ratio assert self.img_scale is None or len(self.img_scale) == 1 else: # mode 3 and 4: given multiple scales or a range of scales assert multiscale_mode in ['value', 'range'] self.multiscale_mode = multiscale_mode self.ratio_range = ratio_range self.keep_ratio = keep_ratio self.size_divisor = size_divisor @staticmethod def random_select(img_scales): """Randomly select an img_scale from given candidates. Args: img_scales (list[tuple]): Images scales for selection. Returns: (tuple, int): Returns a tuple ``(img_scale, scale_dix)``, where ``img_scale`` is the selected image scale and ``scale_idx`` is the selected index in the given candidates. """ assert mmcv.is_list_of(img_scales, tuple) scale_idx = np.random.randint(len(img_scales)) img_scale = img_scales[scale_idx] return img_scale, scale_idx @staticmethod def random_sample(img_scales): """Randomly sample an img_scale when ``multiscale_mode=='range'``. Args: img_scales (list[tuple]): Images scale range for sampling. There must be two tuples in img_scales, which specify the lower and uper bound of image scales. Returns: (tuple, None): Returns a tuple ``(img_scale, None)``, where ``img_scale`` is sampled scale and None is just a placeholder to be consistent with :func:`random_select`. """ assert mmcv.is_list_of(img_scales, tuple) and len(img_scales) == 2 img_scale_long = [max(s) for s in img_scales] img_scale_short = [min(s) for s in img_scales] long_edge = np.random.randint( min(img_scale_long), max(img_scale_long) + 1) short_edge = np.random.randint( min(img_scale_short), max(img_scale_short) + 1) img_scale = (long_edge, short_edge) return img_scale, None @staticmethod def random_sample_ratio(img_scale, ratio_range): """Randomly sample an img_scale when ``ratio_range`` is specified. A ratio will be randomly sampled from the range specified by ``ratio_range``. Then it would be multiplied with ``img_scale`` to generate sampled scale. Args: img_scale (tuple): Images scale base to multiply with ratio. ratio_range (tuple[float]): The minimum and maximum ratio to scale the ``img_scale``. Returns: (tuple, None): Returns a tuple ``(scale, None)``, where ``scale`` is sampled ratio multiplied with ``img_scale`` and None is just a placeholder to be consistent with :func:`random_select`. """ assert isinstance(img_scale, tuple) and len(img_scale) == 2 min_ratio, max_ratio = ratio_range assert min_ratio <= max_ratio ratio = np.random.random_sample() * (max_ratio - min_ratio) + min_ratio scale = int(img_scale[0] * ratio), int(img_scale[1] * ratio) return scale, None def _random_scale(self, results): """Randomly sample an img_scale according to ``ratio_range`` and ``multiscale_mode``. If ``ratio_range`` is specified, a ratio will be sampled and be multiplied with ``img_scale``. If multiple scales are specified by ``img_scale``, a scale will be sampled according to ``multiscale_mode``. Otherwise, single scale will be used. Args: results (dict): Result dict from :obj:`dataset`. Returns: dict: Two new keys 'scale` and 'scale_idx` are added into ``results``, which would be used by subsequent pipelines. """ if self.ratio_range is not None: if self.img_scale is None: h, w = results['img'].shape[:2] scale, scale_idx = self.random_sample_ratio((w, h), self.ratio_range) else: scale, scale_idx = self.random_sample_ratio( self.img_scale[0], self.ratio_range) elif len(self.img_scale) == 1: scale, scale_idx = self.img_scale[0], 0 elif self.multiscale_mode == 'range': scale, scale_idx = self.random_sample(self.img_scale) elif self.multiscale_mode == 'value': scale, scale_idx = self.random_select(self.img_scale) else: raise NotImplementedError results['scale'] = scale results['scale_idx'] = scale_idx def _align(self, img, size_divisor, interpolation=None): align_h = int(np.ceil(img.shape[0] / size_divisor)) * size_divisor align_w = int(np.ceil(img.shape[1] / size_divisor)) * size_divisor if interpolation == None: img = mmcv.imresize(img, (align_w, align_h)) else: img = mmcv.imresize(img, (align_w, align_h), interpolation=interpolation) return img def _resize_img(self, results): """Resize images with ``results['scale']``.""" if self.keep_ratio: img, scale_factor = mmcv.imrescale( results['img'], results['scale'], return_scale=True) #### align #### img = self._align(img, self.size_divisor) # the w_scale and h_scale has minor difference # a real fix should be done in the mmcv.imrescale in the future new_h, new_w = img.shape[:2] h, w = results['img'].shape[:2] w_scale = new_w / w h_scale = new_h / h else: img, w_scale, h_scale = mmcv.imresize( results['img'], results['scale'], return_scale=True) h, w = img.shape[:2] assert int(np.ceil(h / self.size_divisor)) * self.size_divisor == h and \ int(np.ceil(w / self.size_divisor)) * self.size_divisor == w, \ "img size not align. h:{} w:{}".format(h,w) scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], dtype=np.float32) results['img'] = img results['img_shape'] = img.shape results['pad_shape'] = img.shape # in case that there is no padding results['scale_factor'] = scale_factor results['keep_ratio'] = self.keep_ratio def _resize_seg(self, results): """Resize semantic segmentation map with ``results['scale']``.""" for key in results.get('seg_fields', []): if self.keep_ratio: gt_seg = mmcv.imrescale( results[key], results['scale'], interpolation='nearest') gt_seg = self._align(gt_seg, self.size_divisor, interpolation='nearest') else: gt_seg = mmcv.imresize( results[key], results['scale'], interpolation='nearest') h, w = gt_seg.shape[:2] assert int(np.ceil(h / self.size_divisor)) * self.size_divisor == h and \ int(np.ceil(w / self.size_divisor)) * self.size_divisor == w, \ "gt_seg size not align. h:{} w:{}".format(h, w) results[key] = gt_seg def __call__(self, results): """Call function to resize images, bounding boxes, masks, semantic segmentation map. Args: results (dict): Result dict from loading pipeline. Returns: dict: Resized results, 'img_shape', 'pad_shape', 'scale_factor', 'keep_ratio' keys are added into result dict. """ if 'scale' not in results: self._random_scale(results) self._resize_img(results) self._resize_seg(results) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += (f'(img_scale={self.img_scale}, ' f'multiscale_mode={self.multiscale_mode}, ' f'ratio_range={self.ratio_range}, ' f'keep_ratio={self.keep_ratio})') return repr_str @PIPELINES.register_module() class ResizeToMultiple(object): """Resize images & seg to multiple of divisor. Args: size_divisor (int): images and gt seg maps need to resize to multiple of size_divisor. Default: 32. interpolation (str, optional): The interpolation mode of image resize. Default: None """ def __init__(self, size_divisor=32, interpolation=None): self.size_divisor = size_divisor self.interpolation = interpolation def __call__(self, results): """Call function to resize images, semantic segmentation map to multiple of size divisor. Args: results (dict): Result dict from loading pipeline. Returns: dict: Resized results, 'img_shape', 'pad_shape' keys are updated. """ # Align image to multiple of size divisor. img = results['img'] img = mmcv.imresize_to_multiple( img, self.size_divisor, scale_factor=1, interpolation=self.interpolation if self.interpolation else 'bilinear') results['img'] = img results['img_shape'] = img.shape results['pad_shape'] = img.shape # Align segmentation map to multiple of size divisor. for key in results.get('seg_fields', []): gt_seg = results[key] gt_seg = mmcv.imresize_to_multiple( gt_seg, self.size_divisor, scale_factor=1, interpolation='nearest') results[key] = gt_seg return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += (f'(size_divisor={self.size_divisor}, ' f'interpolation={self.interpolation})') return repr_str @PIPELINES.register_module() class Resize(object): """Resize images & seg. This transform resizes the input image to some scale. If the input dict contains the key "scale", then the scale in the input dict is used, otherwise the specified scale in the init method is used. ``img_scale`` can be None, a tuple (single-scale) or a list of tuple (multi-scale). There are 4 multiscale modes: - ``ratio_range is not None``: 1. When img_scale is None, img_scale is the shape of image in results (img_scale = results['img'].shape[:2]) and the image is resized based on the original size. (mode 1) 2. When img_scale is a tuple (single-scale), randomly sample a ratio from the ratio range and multiply it with the image scale. (mode 2) - ``ratio_range is None and multiscale_mode == "range"``: randomly sample a scale from the a range. (mode 3) - ``ratio_range is None and multiscale_mode == "value"``: randomly sample a scale from multiple scales. (mode 4) Args: img_scale (tuple or list[tuple]): Images scales for resizing. Default:None. multiscale_mode (str): Either "range" or "value". Default: 'range' ratio_range (tuple[float]): (min_ratio, max_ratio). Default: None keep_ratio (bool): Whether to keep the aspect ratio when resizing the image. Default: True min_size (int, optional): The minimum size for input and the shape of the image and seg map will not be less than ``min_size``. As the shape of model input is fixed like 'SETR' and 'BEiT'. Following the setting in these models, resized images must be bigger than the crop size in ``slide_inference``. Default: None """ def __init__(self, img_scale=None, multiscale_mode='range', ratio_range=None, keep_ratio=True, min_size=None): if img_scale is None: self.img_scale = None else: if isinstance(img_scale, list): self.img_scale = img_scale else: self.img_scale = [img_scale] assert mmcv.is_list_of(self.img_scale, tuple) if ratio_range is not None: # mode 1: given img_scale=None and a range of image ratio # mode 2: given a scale and a range of image ratio assert self.img_scale is None or len(self.img_scale) == 1 else: # mode 3 and 4: given multiple scales or a range of scales assert multiscale_mode in ['value', 'range'] self.multiscale_mode = multiscale_mode self.ratio_range = ratio_range self.keep_ratio = keep_ratio self.min_size = min_size @staticmethod def random_select(img_scales): """Randomly select an img_scale from given candidates. Args: img_scales (list[tuple]): Images scales for selection. Returns: (tuple, int): Returns a tuple ``(img_scale, scale_dix)``, where ``img_scale`` is the selected image scale and ``scale_idx`` is the selected index in the given candidates. """ assert mmcv.is_list_of(img_scales, tuple) scale_idx = np.random.randint(len(img_scales)) img_scale = img_scales[scale_idx] return img_scale, scale_idx @staticmethod def random_sample(img_scales): """Randomly sample an img_scale when ``multiscale_mode=='range'``. Args: img_scales (list[tuple]): Images scale range for sampling. There must be two tuples in img_scales, which specify the lower and upper bound of image scales. Returns: (tuple, None): Returns a tuple ``(img_scale, None)``, where ``img_scale`` is sampled scale and None is just a placeholder to be consistent with :func:`random_select`. """ assert mmcv.is_list_of(img_scales, tuple) and len(img_scales) == 2 img_scale_long = [max(s) for s in img_scales] img_scale_short = [min(s) for s in img_scales] long_edge = np.random.randint( min(img_scale_long), max(img_scale_long) + 1) short_edge = np.random.randint( min(img_scale_short), max(img_scale_short) + 1) img_scale = (long_edge, short_edge) return img_scale, None @staticmethod def random_sample_ratio(img_scale, ratio_range): """Randomly sample an img_scale when ``ratio_range`` is specified. A ratio will be randomly sampled from the range specified by ``ratio_range``. Then it would be multiplied with ``img_scale`` to generate sampled scale. Args: img_scale (tuple): Images scale base to multiply with ratio. ratio_range (tuple[float]): The minimum and maximum ratio to scale the ``img_scale``. Returns: (tuple, None): Returns a tuple ``(scale, None)``, where ``scale`` is sampled ratio multiplied with ``img_scale`` and None is just a placeholder to be consistent with :func:`random_select`. """ assert isinstance(img_scale, tuple) and len(img_scale) == 2 min_ratio, max_ratio = ratio_range assert min_ratio <= max_ratio ratio = np.random.random_sample() * (max_ratio - min_ratio) + min_ratio scale = int(img_scale[0] * ratio), int(img_scale[1] * ratio) return scale, None def _random_scale(self, results): """Randomly sample an img_scale according to ``ratio_range`` and ``multiscale_mode``. If ``ratio_range`` is specified, a ratio will be sampled and be multiplied with ``img_scale``. If multiple scales are specified by ``img_scale``, a scale will be sampled according to ``multiscale_mode``. Otherwise, single scale will be used. Args: results (dict): Result dict from :obj:`dataset`. Returns: dict: Two new keys 'scale` and 'scale_idx` are added into ``results``, which would be used by subsequent pipelines. """ if self.ratio_range is not None: if self.img_scale is None: h, w = results['img'].shape[:2] scale, scale_idx = self.random_sample_ratio((w, h), self.ratio_range) else: scale, scale_idx = self.random_sample_ratio( self.img_scale[0], self.ratio_range) elif len(self.img_scale) == 1: scale, scale_idx = self.img_scale[0], 0 elif self.multiscale_mode == 'range': scale, scale_idx = self.random_sample(self.img_scale) elif self.multiscale_mode == 'value': scale, scale_idx = self.random_select(self.img_scale) else: raise NotImplementedError results['scale'] = scale results['scale_idx'] = scale_idx def _resize_img(self, results): """Resize images with ``results['scale']``.""" if self.keep_ratio: if self.min_size is not None: # TODO: Now 'min_size' is an 'int' which means the minimum # shape of images is (min_size, min_size, 3). 'min_size' # with tuple type will be supported, i.e. the width and # height are not equal. if min(results['scale']) < self.min_size: new_short = self.min_size else: new_short = min(results['scale']) h, w = results['img'].shape[:2] if h > w: new_h, new_w = new_short * h / w, new_short else: new_h, new_w = new_short, new_short * w / h results['scale'] = (new_h, new_w) img, scale_factor = mmcv.imrescale( results['img'], results['scale'], return_scale=True) # the w_scale and h_scale has minor difference # a real fix should be done in the mmcv.imrescale in the future new_h, new_w = img.shape[:2] h, w = results['img'].shape[:2] w_scale = new_w / w h_scale = new_h / h else: img, w_scale, h_scale = mmcv.imresize( results['img'], results['scale'], return_scale=True) scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], dtype=np.float32) results['img'] = img results['img_shape'] = img.shape results['pad_shape'] = img.shape # in case that there is no padding results['scale_factor'] = scale_factor results['keep_ratio'] = self.keep_ratio def _resize_seg(self, results): """Resize semantic segmentation map with ``results['scale']``.""" for key in results.get('seg_fields', []): if self.keep_ratio: gt_seg = mmcv.imrescale( results[key], results['scale'], interpolation='nearest') else: gt_seg = mmcv.imresize( results[key], results['scale'], interpolation='nearest') results[key] = gt_seg def __call__(self, results): """Call function to resize images, bounding boxes, masks, semantic segmentation map. Args: results (dict): Result dict from loading pipeline. Returns: dict: Resized results, 'img_shape', 'pad_shape', 'scale_factor', 'keep_ratio' keys are added into result dict. """ if 'scale' not in results: self._random_scale(results) self._resize_img(results) self._resize_seg(results) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += (f'(img_scale={self.img_scale}, ' f'multiscale_mode={self.multiscale_mode}, ' f'ratio_range={self.ratio_range}, ' f'keep_ratio={self.keep_ratio})') return repr_str @PIPELINES.register_module() class RandomFlip(object): """Flip the image & seg. If the input dict contains the key "flip", then the flag will be used, otherwise it will be randomly decided by a ratio specified in the init method. Args: prob (float, optional): The flipping probability. Default: None. direction(str, optional): The flipping direction. Options are 'horizontal' and 'vertical'. Default: 'horizontal'. """ @deprecated_api_warning({'flip_ratio': 'prob'}, cls_name='RandomFlip') def __init__(self, prob=None, direction='horizontal'): self.prob = prob self.direction = direction if prob is not None: assert prob >= 0 and prob <= 1 assert direction in ['horizontal', 'vertical'] def __call__(self, results): """Call function to flip bounding boxes, masks, semantic segmentation maps. Args: results (dict): Result dict from loading pipeline. Returns: dict: Flipped results, 'flip', 'flip_direction' keys are added into result dict. """ if 'flip' not in results: flip = True if np.random.rand() < self.prob else False results['flip'] = flip if 'flip_direction' not in results: results['flip_direction'] = self.direction if results['flip']: # flip image results['img'] = mmcv.imflip( results['img'], direction=results['flip_direction']) # flip segs for key in results.get('seg_fields', []): # use copy() to make numpy stride positive results[key] = mmcv.imflip( results[key], direction=results['flip_direction']).copy() return results def __repr__(self): return self.__class__.__name__ + f'(prob={self.prob})' @PIPELINES.register_module() class Pad(object): """Pad the image & mask. There are two padding modes: (1) pad to a fixed size and (2) pad to the minimum size that is divisible by some number. Added keys are "pad_shape", "pad_fixed_size", "pad_size_divisor", Args: size (tuple, optional): Fixed padding size. size_divisor (int, optional): The divisor of padded size. pad_val (float, optional): Padding value. Default: 0. seg_pad_val (float, optional): Padding value of segmentation map. Default: 255. """ def __init__(self, size=None, size_divisor=None, pad_val=0, seg_pad_val=255): self.size = size self.size_divisor = size_divisor self.pad_val = pad_val self.seg_pad_val = seg_pad_val # only one of size and size_divisor should be valid assert size is not None or size_divisor is not None assert size is None or size_divisor is None def _pad_img(self, results): """Pad images according to ``self.size``.""" if self.size is not None: padded_img = mmcv.impad( results['img'], shape=self.size, pad_val=self.pad_val) elif self.size_divisor is not None: padded_img = mmcv.impad_to_multiple( results['img'], self.size_divisor, pad_val=self.pad_val) results['img'] = padded_img results['pad_shape'] = padded_img.shape results['pad_fixed_size'] = self.size results['pad_size_divisor'] = self.size_divisor def _pad_seg(self, results): """Pad masks according to ``results['pad_shape']``.""" for key in results.get('seg_fields', []): results[key] = mmcv.impad( results[key], shape=results['pad_shape'][:2], pad_val=self.seg_pad_val) def __call__(self, results): """Call function to pad images, masks, semantic segmentation maps. Args: results (dict): Result dict from loading pipeline. Returns: dict: Updated result dict. """ self._pad_img(results) self._pad_seg(results) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(size={self.size}, size_divisor={self.size_divisor}, ' \ f'pad_val={self.pad_val})' return repr_str @PIPELINES.register_module() class Normalize(object): """Normalize the image. Added key is "img_norm_cfg". Args: mean (sequence): Mean values of 3 channels. std (sequence): Std values of 3 channels. to_rgb (bool): Whether to convert the image from BGR to RGB, default is true. """ def __init__(self, mean, std, to_rgb=True): self.mean = np.array(mean, dtype=np.float32) self.std = np.array(std, dtype=np.float32) self.to_rgb = to_rgb def __call__(self, results): """Call function to normalize images. Args: results (dict): Result dict from loading pipeline. Returns: dict: Normalized results, 'img_norm_cfg' key is added into result dict. """ results['img'] = mmcv.imnormalize(results['img'], self.mean, self.std, self.to_rgb) results['img_norm_cfg'] = dict( mean=self.mean, std=self.std, to_rgb=self.to_rgb) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(mean={self.mean}, std={self.std}, to_rgb=' \ f'{self.to_rgb})' return repr_str @PIPELINES.register_module() class Rerange(object): """Rerange the image pixel value. Args: min_value (float or int): Minimum value of the reranged image. Default: 0. max_value (float or int): Maximum value of the reranged image. Default: 255. """ def __init__(self, min_value=0, max_value=255): assert isinstance(min_value, float) or isinstance(min_value, int) assert isinstance(max_value, float) or isinstance(max_value, int) assert min_value < max_value self.min_value = min_value self.max_value = max_value def __call__(self, results): """Call function to rerange images. Args: results (dict): Result dict from loading pipeline. Returns: dict: Reranged results. """ img = results['img'] img_min_value = np.min(img) img_max_value = np.max(img) assert img_min_value < img_max_value # rerange to [0, 1] img = (img - img_min_value) / (img_max_value - img_min_value) # rerange to [min_value, max_value] img = img * (self.max_value - self.min_value) + self.min_value results['img'] = img return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(min_value={self.min_value}, max_value={self.max_value})' return repr_str @PIPELINES.register_module() class CLAHE(object): """Use CLAHE method to process the image. See `ZUIDERVELD,K. Contrast Limited Adaptive Histogram Equalization[J]. Graphics Gems, 1994:474-485.` for more information. Args: clip_limit (float): Threshold for contrast limiting. Default: 40.0. tile_grid_size (tuple[int]): Size of grid for histogram equalization. Input image will be divided into equally sized rectangular tiles. It defines the number of tiles in row and column. Default: (8, 8). """ def __init__(self, clip_limit=40.0, tile_grid_size=(8, 8)): assert isinstance(clip_limit, (float, int)) self.clip_limit = clip_limit assert is_tuple_of(tile_grid_size, int) assert len(tile_grid_size) == 2 self.tile_grid_size = tile_grid_size def __call__(self, results): """Call function to Use CLAHE method process images. Args: results (dict): Result dict from loading pipeline. Returns: dict: Processed results. """ for i in range(results['img'].shape[2]): results['img'][:, :, i] = mmcv.clahe( np.array(results['img'][:, :, i], dtype=np.uint8), self.clip_limit, self.tile_grid_size) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(clip_limit={self.clip_limit}, '\ f'tile_grid_size={self.tile_grid_size})' return repr_str @PIPELINES.register_module() class RandomCrop(object): """Random crop the image & seg. Args: crop_size (tuple): Expected size after cropping, (h, w). cat_max_ratio (float): The maximum ratio that single category could occupy. """ def __init__(self, crop_size, cat_max_ratio=1., ignore_index=255): assert crop_size[0] > 0 and crop_size[1] > 0 self.crop_size = crop_size self.cat_max_ratio = cat_max_ratio self.ignore_index = ignore_index def get_crop_bbox(self, img): """Randomly get a crop bounding box.""" margin_h = max(img.shape[0] - self.crop_size[0], 0) margin_w = max(img.shape[1] - self.crop_size[1], 0) offset_h = np.random.randint(0, margin_h + 1) offset_w = np.random.randint(0, margin_w + 1) crop_y1, crop_y2 = offset_h, offset_h + self.crop_size[0] crop_x1, crop_x2 = offset_w, offset_w + self.crop_size[1] return crop_y1, crop_y2, crop_x1, crop_x2 def crop(self, img, crop_bbox): """Crop from ``img``""" crop_y1, crop_y2, crop_x1, crop_x2 = crop_bbox img = img[crop_y1:crop_y2, crop_x1:crop_x2, ...] return img def __call__(self, results): """Call function to randomly crop images, semantic segmentation maps. Args: results (dict): Result dict from loading pipeline. Returns: dict: Randomly cropped results, 'img_shape' key in result dict is updated according to crop size. """ img = results['img'] crop_bbox = self.get_crop_bbox(img) if self.cat_max_ratio < 1.: # Repeat 10 times for _ in range(10): seg_temp = self.crop(results['gt_semantic_seg'], crop_bbox) labels, cnt = np.unique(seg_temp, return_counts=True) cnt = cnt[labels != self.ignore_index] if len(cnt) > 1 and np.max(cnt) / np.sum( cnt) < self.cat_max_ratio: break crop_bbox = self.get_crop_bbox(img) # crop the image img = self.crop(img, crop_bbox) img_shape = img.shape results['img'] = img results['img_shape'] = img_shape # crop semantic seg for key in results.get('seg_fields', []): results[key] = self.crop(results[key], crop_bbox) return results def __repr__(self): return self.__class__.__name__ + f'(crop_size={self.crop_size})' @PIPELINES.register_module() class RandomRotate(object): """Rotate the image & seg. Args: prob (float): The rotation probability. degree (float, tuple[float]): Range of degrees to select from. If degree is a number instead of tuple like (min, max), the range of degree will be (``-degree``, ``+degree``) pad_val (float, optional): Padding value of image. Default: 0. seg_pad_val (float, optional): Padding value of segmentation map. Default: 255. center (tuple[float], optional): Center point (w, h) of the rotation in the source image. If not specified, the center of the image will be used. Default: None. auto_bound (bool): Whether to adjust the image size to cover the whole rotated image. Default: False """ def __init__(self, prob, degree, pad_val=0, seg_pad_val=255, center=None, auto_bound=False): self.prob = prob assert prob >= 0 and prob <= 1 if isinstance(degree, (float, int)): assert degree > 0, f'degree {degree} should be positive' self.degree = (-degree, degree) else: self.degree = degree assert len(self.degree) == 2, f'degree {self.degree} should be a ' \ f'tuple of (min, max)' self.pal_val = pad_val self.seg_pad_val = seg_pad_val self.center = center self.auto_bound = auto_bound def __call__(self, results): """Call function to rotate image, semantic segmentation maps. Args: results (dict): Result dict from loading pipeline. Returns: dict: Rotated results. """ rotate = True if np.random.rand() < self.prob else False degree = np.random.uniform(min(*self.degree), max(*self.degree)) if rotate: # rotate image results['img'] = mmcv.imrotate( results['img'], angle=degree, border_value=self.pal_val, center=self.center, auto_bound=self.auto_bound) # rotate segs for key in results.get('seg_fields', []): results[key] = mmcv.imrotate( results[key], angle=degree, border_value=self.seg_pad_val, center=self.center, auto_bound=self.auto_bound, interpolation='nearest') return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(prob={self.prob}, ' \ f'degree={self.degree}, ' \ f'pad_val={self.pal_val}, ' \ f'seg_pad_val={self.seg_pad_val}, ' \ f'center={self.center}, ' \ f'auto_bound={self.auto_bound})' return repr_str @PIPELINES.register_module() class RGB2Gray(object): """Convert RGB image to grayscale image. This transform calculate the weighted mean of input image channels with ``weights`` and then expand the channels to ``out_channels``. When ``out_channels`` is None, the number of output channels is the same as input channels. Args: out_channels (int): Expected number of output channels after transforming. Default: None. weights (tuple[float]): The weights to calculate the weighted mean. Default: (0.299, 0.587, 0.114). """ def __init__(self, out_channels=None, weights=(0.299, 0.587, 0.114)): assert out_channels is None or out_channels > 0 self.out_channels = out_channels assert isinstance(weights, tuple) for item in weights: assert isinstance(item, (float, int)) self.weights = weights def __call__(self, results): """Call function to convert RGB image to grayscale image. Args: results (dict): Result dict from loading pipeline. Returns: dict: Result dict with grayscale image. """ img = results['img'] assert len(img.shape) == 3 assert img.shape[2] == len(self.weights) weights = np.array(self.weights).reshape((1, 1, -1)) img = (img * weights).sum(2, keepdims=True) if self.out_channels is None: img = img.repeat(weights.shape[2], axis=2) else: img = img.repeat(self.out_channels, axis=2) results['img'] = img results['img_shape'] = img.shape return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(out_channels={self.out_channels}, ' \ f'weights={self.weights})' return repr_str @PIPELINES.register_module() class AdjustGamma(object): """Using gamma correction to process the image. Args: gamma (float or int): Gamma value used in gamma correction. Default: 1.0. """ def __init__(self, gamma=1.0): assert isinstance(gamma, float) or isinstance(gamma, int) assert gamma > 0 self.gamma = gamma inv_gamma = 1.0 / gamma self.table = np.array([(i / 255.0)**inv_gamma * 255 for i in np.arange(256)]).astype('uint8') def __call__(self, results): """Call function to process the image with gamma correction. Args: results (dict): Result dict from loading pipeline. Returns: dict: Processed results. """ results['img'] = mmcv.lut_transform( np.array(results['img'], dtype=np.uint8), self.table) return results def __repr__(self): return self.__class__.__name__ + f'(gamma={self.gamma})' @PIPELINES.register_module() class SegRescale(object): """Rescale semantic segmentation maps. Args: scale_factor (float): The scale factor of the final output. """ def __init__(self, scale_factor=1): self.scale_factor = scale_factor def __call__(self, results): """Call function to scale the semantic segmentation map. Args: results (dict): Result dict from loading pipeline. Returns: dict: Result dict with semantic segmentation map scaled. """ for key in results.get('seg_fields', []): if self.scale_factor != 1: results[key] = mmcv.imrescale( results[key], self.scale_factor, interpolation='nearest') return results def __repr__(self): return self.__class__.__name__ + f'(scale_factor={self.scale_factor})' @PIPELINES.register_module() class PhotoMetricDistortion(object): """Apply photometric distortion to image sequentially, every transformation is applied with a probability of 0.5. The position of random contrast is in second or second to last. 1. random brightness 2. random contrast (mode 0) 3. convert color from BGR to HSV 4. random saturation 5. random hue 6. convert color from HSV to BGR 7. random contrast (mode 1) Args: brightness_delta (int): delta of brightness. contrast_range (tuple): range of contrast. saturation_range (tuple): range of saturation. hue_delta (int): delta of hue. """ def __init__(self, brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18): self.brightness_delta = brightness_delta self.contrast_lower, self.contrast_upper = contrast_range self.saturation_lower, self.saturation_upper = saturation_range self.hue_delta = hue_delta def convert(self, img, alpha=1, beta=0): """Multiple with alpha and add beat with clip.""" img = img.astype(np.float32) * alpha + beta img = np.clip(img, 0, 255) return img.astype(np.uint8) def brightness(self, img): """Brightness distortion.""" if random.randint(2): return self.convert( img, beta=random.uniform(-self.brightness_delta, self.brightness_delta)) return img def contrast(self, img): """Contrast distortion.""" if random.randint(2): return self.convert( img, alpha=random.uniform(self.contrast_lower, self.contrast_upper)) return img def saturation(self, img): """Saturation distortion.""" if random.randint(2): img = mmcv.bgr2hsv(img) img[:, :, 1] = self.convert( img[:, :, 1], alpha=random.uniform(self.saturation_lower, self.saturation_upper)) img = mmcv.hsv2bgr(img) return img def hue(self, img): """Hue distortion.""" if random.randint(2): img = mmcv.bgr2hsv(img) img[:, :, 0] = (img[:, :, 0].astype(int) + random.randint(-self.hue_delta, self.hue_delta)) % 180 img = mmcv.hsv2bgr(img) return img def __call__(self, results): """Call function to perform photometric distortion on images. Args: results (dict): Result dict from loading pipeline. Returns: dict: Result dict with images distorted. """ img = results['img'] # random brightness img = self.brightness(img) # mode == 0 --> do random contrast first # mode == 1 --> do random contrast last mode = random.randint(2) if mode == 1: img = self.contrast(img) # random saturation img = self.saturation(img) # random hue img = self.hue(img) # random contrast if mode == 0: img = self.contrast(img) results['img'] = img return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += (f'(brightness_delta={self.brightness_delta}, ' f'contrast_range=({self.contrast_lower}, ' f'{self.contrast_upper}), ' f'saturation_range=({self.saturation_lower}, ' f'{self.saturation_upper}), ' f'hue_delta={self.hue_delta})') return repr_str @PIPELINES.register_module() class RandomCutOut(object): """CutOut operation. Randomly drop some regions of image used in `Cutout <https://arxiv.org/abs/1708.04552>`_. Args: prob (float): cutout probability. n_holes (int | tuple[int, int]): Number of regions to be dropped. If it is given as a list, number of holes will be randomly selected from the closed interval [`n_holes[0]`, `n_holes[1]`]. cutout_shape (tuple[int, int] | list[tuple[int, int]]): The candidate shape of dropped regions. It can be `tuple[int, int]` to use a fixed cutout shape, or `list[tuple[int, int]]` to randomly choose shape from the list. cutout_ratio (tuple[float, float] | list[tuple[float, float]]): The candidate ratio of dropped regions. It can be `tuple[float, float]` to use a fixed ratio or `list[tuple[float, float]]` to randomly choose ratio from the list. Please note that `cutout_shape` and `cutout_ratio` cannot be both given at the same time. fill_in (tuple[float, float, float] | tuple[int, int, int]): The value of pixel to fill in the dropped regions. Default: (0, 0, 0). seg_fill_in (int): The labels of pixel to fill in the dropped regions. If seg_fill_in is None, skip. Default: None. """ def __init__(self, prob, n_holes, cutout_shape=None, cutout_ratio=None, fill_in=(0, 0, 0), seg_fill_in=None): assert 0 <= prob and prob <= 1 assert (cutout_shape is None) ^ (cutout_ratio is None), \ 'Either cutout_shape or cutout_ratio should be specified.' assert (isinstance(cutout_shape, (list, tuple)) or isinstance(cutout_ratio, (list, tuple))) if isinstance(n_holes, tuple): assert len(n_holes) == 2 and 0 <= n_holes[0] < n_holes[1] else: n_holes = (n_holes, n_holes) if seg_fill_in is not None: assert (isinstance(seg_fill_in, int) and 0 <= seg_fill_in and seg_fill_in <= 255) self.prob = prob self.n_holes = n_holes self.fill_in = fill_in self.seg_fill_in = seg_fill_in self.with_ratio = cutout_ratio is not None self.candidates = cutout_ratio if self.with_ratio else cutout_shape if not isinstance(self.candidates, list): self.candidates = [self.candidates] def __call__(self, results): """Call function to drop some regions of image.""" cutout = True if np.random.rand() < self.prob else False if cutout: h, w, c = results['img'].shape n_holes = np.random.randint(self.n_holes[0], self.n_holes[1] + 1) for _ in range(n_holes): x1 = np.random.randint(0, w) y1 = np.random.randint(0, h) index = np.random.randint(0, len(self.candidates)) if not self.with_ratio: cutout_w, cutout_h = self.candidates[index] else: cutout_w = int(self.candidates[index][0] * w) cutout_h = int(self.candidates[index][1] * h) x2 = np.clip(x1 + cutout_w, 0, w) y2 = np.clip(y1 + cutout_h, 0, h) results['img'][y1:y2, x1:x2, :] = self.fill_in if self.seg_fill_in is not None: for key in results.get('seg_fields', []): results[key][y1:y2, x1:x2] = self.seg_fill_in return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(prob={self.prob}, ' repr_str += f'n_holes={self.n_holes}, ' repr_str += (f'cutout_ratio={self.candidates}, ' if self.with_ratio else f'cutout_shape={self.candidates}, ') repr_str += f'fill_in={self.fill_in}, ' repr_str += f'seg_fill_in={self.seg_fill_in})' return repr_str @PIPELINES.register_module() class RandomMosaic(object): """Mosaic augmentation. Given 4 images, mosaic transform combines them into one output image. The output image is composed of the parts from each sub- image. .. code:: text mosaic transform center_x +------------------------------+ | pad | pad | | +-----------+ | | | | | | | image1 |--------+ | | | | | | | | | image2 | | center_y |----+-------------+-----------| | | cropped | | |pad | image3 | image4 | | | | | +----|-------------+-----------+ | | +-------------+ The mosaic transform steps are as follows: 1. Choose the mosaic center as the intersections of 4 images 2. Get the left top image according to the index, and randomly sample another 3 images from the custom dataset. 3. Sub image will be cropped if image is larger than mosaic patch Args: prob (float): mosaic probability. img_scale (Sequence[int]): Image size after mosaic pipeline of a single image. The size of the output image is four times that of a single image. The output image comprises 4 single images. Default: (640, 640). center_ratio_range (Sequence[float]): Center ratio range of mosaic output. Default: (0.5, 1.5). pad_val (int): Pad value. Default: 0. seg_pad_val (int): Pad value of segmentation map. Default: 255. """ def __init__(self, prob, img_scale=(640, 640), center_ratio_range=(0.5, 1.5), pad_val=0, seg_pad_val=255): assert 0 <= prob and prob <= 1 assert isinstance(img_scale, tuple) self.prob = prob self.img_scale = img_scale self.center_ratio_range = center_ratio_range self.pad_val = pad_val self.seg_pad_val = seg_pad_val def __call__(self, results): """Call function to make a mosaic of image. Args: results (dict): Result dict. Returns: dict: Result dict with mosaic transformed. """ mosaic = True if np.random.rand() < self.prob else False if mosaic: results = self._mosaic_transform_img(results) results = self._mosaic_transform_seg(results) return results def get_indexes(self, dataset): """Call function to collect indexes. Args: dataset (:obj:`MultiImageMixDataset`): The dataset. Returns: list: indexes. """ indexes = [random.randint(0, len(dataset)) for _ in range(3)] return indexes def _mosaic_transform_img(self, results): """Mosaic transform function. Args: results (dict): Result dict. Returns: dict: Updated result dict. """ assert 'mix_results' in results if len(results['img'].shape) == 3: mosaic_img = np.full( (int(self.img_scale[0] * 2), int(self.img_scale[1] * 2), 3), self.pad_val, dtype=results['img'].dtype) else: mosaic_img = np.full( (int(self.img_scale[0] * 2), int(self.img_scale[1] * 2)), self.pad_val, dtype=results['img'].dtype) # mosaic center x, y self.center_x = int( random.uniform(*self.center_ratio_range) * self.img_scale[1]) self.center_y = int( random.uniform(*self.center_ratio_range) * self.img_scale[0]) center_position = (self.center_x, self.center_y) loc_strs = ('top_left', 'top_right', 'bottom_left', 'bottom_right') for i, loc in enumerate(loc_strs): if loc == 'top_left': result_patch = copy.deepcopy(results) else: result_patch = copy.deepcopy(results['mix_results'][i - 1]) img_i = result_patch['img'] h_i, w_i = img_i.shape[:2] # keep_ratio resize scale_ratio_i = min(self.img_scale[0] / h_i, self.img_scale[1] / w_i) img_i = mmcv.imresize( img_i, (int(w_i * scale_ratio_i), int(h_i * scale_ratio_i))) # compute the combine parameters paste_coord, crop_coord = self._mosaic_combine( loc, center_position, img_i.shape[:2][::-1]) x1_p, y1_p, x2_p, y2_p = paste_coord x1_c, y1_c, x2_c, y2_c = crop_coord # crop and paste image mosaic_img[y1_p:y2_p, x1_p:x2_p] = img_i[y1_c:y2_c, x1_c:x2_c] results['img'] = mosaic_img results['img_shape'] = mosaic_img.shape results['ori_shape'] = mosaic_img.shape return results def _mosaic_transform_seg(self, results): """Mosaic transform function for label annotations. Args: results (dict): Result dict. Returns: dict: Updated result dict. """ assert 'mix_results' in results for key in results.get('seg_fields', []): mosaic_seg = np.full( (int(self.img_scale[0] * 2), int(self.img_scale[1] * 2)), self.seg_pad_val, dtype=results[key].dtype) # mosaic center x, y center_position = (self.center_x, self.center_y) loc_strs = ('top_left', 'top_right', 'bottom_left', 'bottom_right') for i, loc in enumerate(loc_strs): if loc == 'top_left': result_patch = copy.deepcopy(results) else: result_patch = copy.deepcopy(results['mix_results'][i - 1]) gt_seg_i = result_patch[key] h_i, w_i = gt_seg_i.shape[:2] # keep_ratio resize scale_ratio_i = min(self.img_scale[0] / h_i, self.img_scale[1] / w_i) gt_seg_i = mmcv.imresize( gt_seg_i, (int(w_i * scale_ratio_i), int(h_i * scale_ratio_i)), interpolation='nearest') # compute the combine parameters paste_coord, crop_coord = self._mosaic_combine( loc, center_position, gt_seg_i.shape[:2][::-1]) x1_p, y1_p, x2_p, y2_p = paste_coord x1_c, y1_c, x2_c, y2_c = crop_coord # crop and paste image mosaic_seg[y1_p:y2_p, x1_p:x2_p] = gt_seg_i[y1_c:y2_c, x1_c:x2_c] results[key] = mosaic_seg return results def _mosaic_combine(self, loc, center_position_xy, img_shape_wh): """Calculate global coordinate of mosaic image and local coordinate of cropped sub-image. Args: loc (str): Index for the sub-image, loc in ('top_left', 'top_right', 'bottom_left', 'bottom_right'). center_position_xy (Sequence[float]): Mixing center for 4 images, (x, y). img_shape_wh (Sequence[int]): Width and height of sub-image Returns: tuple[tuple[float]]: Corresponding coordinate of pasting and cropping - paste_coord (tuple): paste corner coordinate in mosaic image. - crop_coord (tuple): crop corner coordinate in mosaic image. """ assert loc in ('top_left', 'top_right', 'bottom_left', 'bottom_right') if loc == 'top_left': # index0 to top left part of image x1, y1, x2, y2 = max(center_position_xy[0] - img_shape_wh[0], 0), \ max(center_position_xy[1] - img_shape_wh[1], 0), \ center_position_xy[0], \ center_position_xy[1] crop_coord = img_shape_wh[0] - (x2 - x1), img_shape_wh[1] - ( y2 - y1), img_shape_wh[0], img_shape_wh[1] elif loc == 'top_right': # index1 to top right part of image x1, y1, x2, y2 = center_position_xy[0], \ max(center_position_xy[1] - img_shape_wh[1], 0), \ min(center_position_xy[0] + img_shape_wh[0], self.img_scale[1] * 2), \ center_position_xy[1] crop_coord = 0, img_shape_wh[1] - (y2 - y1), min( img_shape_wh[0], x2 - x1), img_shape_wh[1] elif loc == 'bottom_left': # index2 to bottom left part of image x1, y1, x2, y2 = max(center_position_xy[0] - img_shape_wh[0], 0), \ center_position_xy[1], \ center_position_xy[0], \ min(self.img_scale[0] * 2, center_position_xy[1] + img_shape_wh[1]) crop_coord = img_shape_wh[0] - (x2 - x1), 0, img_shape_wh[0], min( y2 - y1, img_shape_wh[1]) else: # index3 to bottom right part of image x1, y1, x2, y2 = center_position_xy[0], \ center_position_xy[1], \ min(center_position_xy[0] + img_shape_wh[0], self.img_scale[1] * 2), \ min(self.img_scale[0] * 2, center_position_xy[1] + img_shape_wh[1]) crop_coord = 0, 0, min(img_shape_wh[0], x2 - x1), min(y2 - y1, img_shape_wh[1]) paste_coord = x1, y1, x2, y2 return paste_coord, crop_coord def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(prob={self.prob}, ' repr_str += f'img_scale={self.img_scale}, ' repr_str += f'center_ratio_range={self.center_ratio_range}, ' repr_str += f'pad_val={self.pad_val}, ' repr_str += f'seg_pad_val={self.pad_val})' return repr_str
3e2a1a8413800f85f2a56ec57d1eb41f78af3a63
926b3c52070f6e309567c8598248fd5c57095be9
/src/mmdeploy/mmdeploy/codebase/mmcls/models/heads/multi_label_head.py
7a5d63375aa42db93fccdde1904c7945f465bc96
[ "Apache-2.0" ]
permissive
fengbingchun/PyTorch_Test
410f7cd2303707b0141d433fb9d144a961e1f4c8
df5c2169f0b699bcd6e74adb4cb0e57f7dcd9348
refs/heads/master
2023-05-23T16:42:29.711338
2023-03-25T11:31:43
2023-03-25T11:31:43
167,339,907
15
4
null
2023-03-25T11:31:45
2019-01-24T09:24:59
C++
UTF-8
Python
false
false
714
py
# Copyright (c) OpenMMLab. All rights reserved. from mmdeploy.core import FUNCTION_REWRITER @FUNCTION_REWRITER.register_rewriter( func_name='mmcls.models.heads.MultiLabelClsHead.post_process') def multi_label_cls_head__post_process(ctx, self, pred, **kwargs): """Rewrite `post_process` of MultiLabelClsHead for default backend. Rewrite this function to directly return pred. Args: ctx (ContextCaller): The context with additional information. self: The instance of the original class. pred (Tensor): Predict result of model. Returns: pred (Tensor): Result of MultiLabelClsHead. The tensor shape (batch_size,num_classes). """ return pred
090ec55ee38d15f5b51f50a928495db00fce01bc
048c6b84e679a3e81bf7b4980ad2b4a99781b9b7
/quantarhei/core/implementations.py
c2fb6b38c5bfa8bd44a0d92d5b3f9187fecc4b07
[]
no_license
saayeh/quantarhei
9b7a7c60e1325ef783bdbc9ac4b6f33a13301802
b77a41272b7df0ccbcde2710bf04bf412c126a6f
refs/heads/master
2020-12-07T06:29:27.954470
2017-09-01T21:09:45
2017-09-01T21:09:45
66,932,421
0
0
null
2016-08-30T10:52:11
2016-08-30T10:52:11
null
UTF-8
Python
false
false
3,130
py
# -*- coding: utf-8 -*- from functools import wraps import os from importlib import import_module from .managers import Manager def implementation(package="", taskname="", at_runtime=False, fallback_local=False, always_local=False): """Decorator to select numerical implememtation """ m = Manager() def decorate_at_runtime(func): """Decoration at run time The wrapper decides which function to return at runtime. """ @wraps(func) def wrapper(*arg,**kwargs): fc = get_function(func,package,taskname, default_local=fallback_local, always_local=always_local) return fc(*arg,**kwargs) return wrapper def decorate_at_loadtime(func): """Decoration at load time The wrapper decides which function to return when the Manager module is loaded, i.e. at the start of the application. """ fc = get_function(func,package,taskname, default_local=fallback_local, always_local=always_local) @wraps(func) def wrapper(*arg,**kwargs): return fc(*arg,**kwargs) return wrapper if (at_runtime and m.change_implementation_at_runtime): return decorate_at_runtime else: return decorate_at_loadtime # # Auxiliary function # def load_function(lib,fce): """Load the module and get the desired function """ a = import_module(lib) if hasattr(a,fce): fc = getattr(a,fce) else: raise Exception("Cannot reach implementation of %s " % fce) return fc def get_function(func,package,taskname,default_local,always_local): """Decide which function to use """ if always_local: return func m = Manager() # default implementation package default_imp_prefix = "quantarhei.implementations.python" # decide which implementation will be used imp_prefix = m.get_implementation_prefix(package=package, taskname=taskname) # load the package try: imp_name = imp_prefix + "." + package fc = load_function(imp_name,taskname) except: try: # fall back on pure Python implementation if default_local: fc = func else: imp_name = default_imp_prefix + "." + package fc = load_function(imp_name,taskname) # FIXME: issue a warning print("WARNING: import failed, falling back on pure Python") except: # do not provide implementation, call the decorated function itself # FIXME: issue a warning (this is an unwanted result) fc = func return fc
68bacba70b10cde713891d28ded05e5009dbe565
1e013dc5f0de0f61e27f2867557803a01c01f4da
/Language/python/module/pybluez/rfcomm-client.py
87fe97bf58fe5eb0164caa0cd0eaa19a542ffacb
[]
no_license
chengyi818/kata
a2941ce8675c6e7a47169a0eae4c757d3f6f5bf9
a7cb7ad499037bcc168aaa0eaba857b33c04ef14
refs/heads/master
2023-04-10T18:39:09.518433
2023-01-08T15:22:12
2023-01-08T15:22:12
53,040,540
1
0
null
2023-03-25T00:46:51
2016-03-03T10:06:58
C++
UTF-8
Python
false
false
193
py
import bluetooth server_address = "00:1A:7D:DA:71:11" port = 1 sock = bluetooth.BluetoothSocket(bluetooth.RFCOMM) sock.connect((server_address, port)) sock.send("hello world!") sock.close()
7c693aa34116f1ed4608e268b1f0fd1a69410f5d
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03693/s330550034.py
8eef2972f7aa05280eb36458f486975c68e02421
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
55
py
print(['NO','YES'][int(''.join(input().split()))%4==0])
8cc11edbf4514684f0ccebeb30a0086a8925dce2
2f98aa7e5bfc2fc5ef25e4d5cfa1d7802e3a7fae
/python/python_21649.py
40532dcb7c23f6e6d1294bf9a3247202883f3fe7
[]
no_license
AK-1121/code_extraction
cc812b6832b112e3ffcc2bb7eb4237fd85c88c01
5297a4a3aab3bb37efa24a89636935da04a1f8b6
refs/heads/master
2020-05-23T08:04:11.789141
2015-10-22T19:19:40
2015-10-22T19:19:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
148
py
# How to use regular expressions to only capture a word by itself rather than in another word? import re print re.subn('Co$','',"Company &amp; Co")
02274a6e349253d379c133717b79435475122281
006ff11fd8cfd5406c6f4318f1bafa1542095f2a
/SimG4CMS/Calo/test/python/runWithGun_cfg.py
bd29197ff9ce3cb18bf543be313d6be973a0ff76
[]
permissive
amkalsi/cmssw
8ac5f481c7d7263741b5015381473811c59ac3b1
ad0f69098dfbe449ca0570fbcf6fcebd6acc1154
refs/heads/CMSSW_7_4_X
2021-01-19T16:18:22.857382
2016-08-09T16:40:50
2016-08-09T16:40:50
262,608,661
0
0
Apache-2.0
2020-05-09T16:10:07
2020-05-09T16:10:07
null
UTF-8
Python
false
false
6,352
py
import FWCore.ParameterSet.Config as cms process = cms.Process("PROD") process.load("SimG4CMS.Calo.pythiapdt_cfi") #process.load("SimGeneral.HepPDTESSource.pythiapdt_cfi") process.load("IOMC.EventVertexGenerators.VtxSmearedGauss_cfi") process.load("Geometry.CMSCommonData.cmsIdealGeometryAPD1XML_cfi") process.load("Geometry.TrackerNumberingBuilder.trackerNumberingGeometry_cfi") process.load("Configuration.StandardSequences.MagneticField_cff") process.load("Configuration.EventContent.EventContent_cff") process.load("SimG4Core.Application.g4SimHits_cfi") process.load("SimG4CMS.Calo.CaloSimHitStudy_cfi") process.MessageLogger = cms.Service("MessageLogger", destinations = cms.untracked.vstring('cout'), categories = cms.untracked.vstring('CaloSim', 'EcalGeom', 'EcalSim', 'HCalGeom', 'HcalSim', 'HFShower', 'SimG4CoreApplication', 'HitStudy', 'G4cout', 'G4cerr', 'SimTrackManager'), # debugModules = cms.untracked.vstring('*'), cout = cms.untracked.PSet( # threshold = cms.untracked.string('DEBUG'), INFO = cms.untracked.PSet( limit = cms.untracked.int32(-1) ), DEBUG = cms.untracked.PSet( limit = cms.untracked.int32(0) ), G4cerr = cms.untracked.PSet( limit = cms.untracked.int32(-1) ), G4cout = cms.untracked.PSet( limit = cms.untracked.int32(-1) ), SimTrackManager = cms.untracked.PSet( limit = cms.untracked.int32(-1) ), SimG4CoreApplication = cms.untracked.PSet( limit = cms.untracked.int32(0) ), HitStudy = cms.untracked.PSet( limit = cms.untracked.int32(0) ), CaloSim = cms.untracked.PSet( limit = cms.untracked.int32(-1) ), EcalGeom = cms.untracked.PSet( limit = cms.untracked.int32(0) ), EcalSim = cms.untracked.PSet( limit = cms.untracked.int32(-1) ), HCalGeom = cms.untracked.PSet( limit = cms.untracked.int32(0) ), HFShower = cms.untracked.PSet( limit = cms.untracked.int32(0) ), HcalSim = cms.untracked.PSet( limit = cms.untracked.int32(0) ) ) ) process.load("IOMC.RandomEngine.IOMC_cff") process.RandomNumberGeneratorService.generator.initialSeed = 456789 process.RandomNumberGeneratorService.g4SimHits.initialSeed = 9876 process.RandomNumberGeneratorService.VtxSmeared.initialSeed = 123456789 process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(2) ) process.source = cms.Source("EmptySource", firstRun = cms.untracked.uint32(1), firstEvent = cms.untracked.uint32(1) ) process.generator = cms.EDProducer("FlatRandomPtGunProducer", PGunParameters = cms.PSet( PartID = cms.vint32(211), MinEta = cms.double(-3.0), MaxEta = cms.double(3.0), MinPhi = cms.double(-3.14159265359), MaxPhi = cms.double(3.14159265359), MinPt = cms.double(100.), MaxPt = cms.double(100.) ), Verbosity = cms.untracked.int32(0), AddAntiParticle = cms.bool(False) ) process.o1 = cms.OutputModule("PoolOutputModule", process.FEVTSIMEventContent, fileName = cms.untracked.string('simevent_QGSP_FTFP_BERT_EML.root') ) process.Timing = cms.Service("Timing") process.SimpleMemoryCheck = cms.Service("SimpleMemoryCheck", oncePerEventMode = cms.untracked.bool(True), showMallocInfo = cms.untracked.bool(True), dump = cms.untracked.bool(True), ignoreTotal = cms.untracked.int32(1) ) process.Tracer = cms.Service("Tracer") process.TFileService = cms.Service("TFileService", fileName = cms.string('runWithGun_QGSP_FTFP_BERT_EML.root') ) process.common_maximum_timex = cms.PSet( MaxTrackTime = cms.double(1000.0), MaxTimeNames = cms.vstring(), MaxTrackTimes = cms.vdouble() ) process.p1 = cms.Path(process.generator*process.VtxSmeared*process.g4SimHits*process.caloSimHitStudy) process.outpath = cms.EndPath(process.o1) process.caloSimHitStudy.MaxEnergy = 1000.0 #process.g4SimHits.Physics.type = 'SimG4Core/Physics/QGSP_FTFP_BERT_EML' process.g4SimHits.Physics.MonopoleCharge = 1 process.g4SimHits.Physics.Verbosity = 0 process.g4SimHits.CaloSD.UseResponseTables = [1,1,0,1] process.g4SimHits.CaloSD.EminHits[0] = 0 process.g4SimHits.ECalSD.StoreSecondary = True process.g4SimHits.CaloTrkProcessing.PutHistory = True process.g4SimHits.CaloResponse.UseResponseTable = True process.g4SimHits.CaloResponse.ResponseScale = 1.0 process.g4SimHits.CaloResponse.ResponseFile = 'SimG4CMS/Calo/data/responsTBpim50.dat' process.g4SimHits.G4Commands = ['/run/verbose 2'] process.g4SimHits.StackingAction = cms.PSet( process.common_heavy_suppression, process.common_maximum_timex, KillDeltaRay = cms.bool(True), TrackNeutrino = cms.bool(False), KillHeavy = cms.bool(False), SaveFirstLevelSecondary = cms.untracked.bool(True), SavePrimaryDecayProductsAndConversionsInTracker = cms.untracked.bool(True), SavePrimaryDecayProductsAndConversionsInCalo = cms.untracked.bool(True), SavePrimaryDecayProductsAndConversionsInMuon = cms.untracked.bool(True) ) process.g4SimHits.SteppingAction = cms.PSet( process.common_maximum_timex, KillBeamPipe = cms.bool(False), CriticalEnergyForVacuum = cms.double(0.0), CriticalDensity = cms.double(1e-15), EkinNames = cms.vstring(), EkinThresholds = cms.vdouble(), EkinParticles = cms.vstring(), Verbosity = cms.untracked.int32(2) ) process.g4SimHits.Watchers = cms.VPSet(cms.PSet( CheckForHighEtPhotons = cms.untracked.bool(False), TrackMin = cms.untracked.int32(0), TrackMax = cms.untracked.int32(0), TrackStep = cms.untracked.int32(1), EventMin = cms.untracked.int32(0), EventMax = cms.untracked.int32(0), EventStep = cms.untracked.int32(1), PDGids = cms.untracked.vint32(), VerboseLevel = cms.untracked.int32(0), G4Verbose = cms.untracked.bool(True), DEBUG = cms.untracked.bool(False), type = cms.string('TrackingVerboseAction') ))
f1e2287dae490a131bbd72f576a927f9b633b777
7bededcada9271d92f34da6dae7088f3faf61c02
/pypureclient/flasharray/FA_2_25/models/file_system_response.py
c255a82c3b1ae1924c1debaa8c376982be89c983
[ "BSD-2-Clause" ]
permissive
PureStorage-OpenConnect/py-pure-client
a5348c6a153f8c809d6e3cf734d95d6946c5f659
7e3c3ec1d639fb004627e94d3d63a6fdc141ae1e
refs/heads/master
2023-09-04T10:59:03.009972
2023-08-25T07:40:41
2023-08-25T07:40:41
160,391,444
18
29
BSD-2-Clause
2023-09-08T09:08:30
2018-12-04T17:02:51
Python
UTF-8
Python
false
false
3,913
py
# coding: utf-8 """ FlashArray REST API No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: 2.25 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re import six import typing from ....properties import Property if typing.TYPE_CHECKING: from pypureclient.flasharray.FA_2_25 import models class FileSystemResponse(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'items': 'list[FileSystem]' } attribute_map = { 'items': 'items' } required_args = { } def __init__( self, items=None, # type: List[models.FileSystem] ): """ Keyword args: items (list[FileSystem]): Displays a list of all items after filtering. If applicable, the values are displayed for each name. """ if items is not None: self.items = items def __setattr__(self, key, value): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `FileSystemResponse`".format(key)) self.__dict__[key] = value def __getattribute__(self, item): value = object.__getattribute__(self, item) if isinstance(value, Property): raise AttributeError else: return value def __getitem__(self, key): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `FileSystemResponse`".format(key)) return object.__getattribute__(self, key) def __setitem__(self, key, value): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `FileSystemResponse`".format(key)) object.__setattr__(self, key, value) def __delitem__(self, key): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `FileSystemResponse`".format(key)) object.__delattr__(self, key) def keys(self): return self.attribute_map.keys() def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): if hasattr(self, attr): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(FileSystemResponse, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, FileSystemResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
d4f9618477330f0db7a60c5a90a8a20f134850ae
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_360/ch27_2020_03_30_19_57_47_608648.py
c67301045edffce312884d90b151fd1e85029789
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
206
py
tem_duvida = True while tem_duvida: perg = input("Tem dúvidas?") if perg != 'não': print("Pratique mais") else: print('Até a próxima') tem_duvidas = False
df6a6d9224d26ef500b67da072b762c5934a7c6d
7a3e9d88b21ef7e4b73d0632e08546d65a9df2ca
/modules/templates/DRKCM/rheaders.py
9ec418a8de18a49907d6b99decdfd4978f33eed3
[ "MIT" ]
permissive
nursix/drkcm
64eeb8ead30784d379d64a0ba2bc2c93bcafb8ca
7ec4b959d009daf26d5ca6ce91dd9c3c0bd978d6
refs/heads/master
2023-09-04T10:07:52.596460
2023-09-04T00:43:45
2023-09-04T00:43:45
97,222,001
3
2
null
null
null
null
UTF-8
Python
false
false
16,175
py
""" Custom rheaders for DRKCM License: MIT """ from gluon import current, A, DIV, SPAN, URL # ============================================================================= def drk_cr_rheader(r, tabs=None): """ CR custom resource headers """ if r.representation != "html": # Resource headers only used in interactive views return None from core import s3_rheader_resource, S3ResourceHeader tablename, record = s3_rheader_resource(r) if tablename != r.tablename: resource = current.s3db.resource(tablename, id=record.id) else: resource = r.resource rheader = None rheader_fields = [] if record: T = current.T if tablename == "cr_shelter": if not tabs: tabs = [(T("Basic Details"), None), ] rheader_fields = [["name", ], ["organisation_id", ], ["location_id", ], ] rheader = S3ResourceHeader(rheader_fields, tabs)(r, table=resource.table, record=record, ) return rheader # ============================================================================= def drk_dvr_rheader(r, tabs=None): """ DVR custom resource headers """ if r.representation != "html": # Resource headers only used in interactive views return None from core import s3_rheader_resource, \ S3ResourceHeader, \ s3_fullname from .uioptions import get_ui_options tablename, record = s3_rheader_resource(r) if tablename != r.tablename: resource = current.s3db.resource(tablename, id=record.id) else: resource = r.resource rheader = None rheader_fields = [] if record: T = current.T record_id = record.id if tablename == "pr_person": # UI Options and ability to read cases from multiple orgs ui_opts = get_ui_options() ui_opts_get = ui_opts.get from .helpers import case_read_multiple_orgs multiple_orgs = case_read_multiple_orgs()[0] if not tabs: activity_tab_label = ui_opts_get("activity_tab_label") if activity_tab_label: ACTIVITIES = T(activity_tab_label) else: ACTIVITIES = T("Counseling Reasons") # Basic Case Documentation tabs = [(T("Basic Details"), None), (T("Contact Info"), "contacts"), (T("Family Members"), "group_membership/"), (ACTIVITIES, "case_activity"), ] # Optional Case Documentation if ui_opts_get("case_use_response_tab"): tabs.append((T("Actions"), "response_action")) if ui_opts_get("case_use_tasks"): tabs.append((T("ToDo"), "todo")) if ui_opts_get("case_use_appointments"): tabs.append((T("Appointments"), "case_appointment")) if ui_opts_get("case_use_service_contacts"): tabs.append((T("Service Contacts"), "service_contact")) if ui_opts_get("case_use_photos_tab"): tabs.append((T("Photos"), "image")) # Uploads tabs.append((T("Documents"), "document/")) # Notes etc. if ui_opts_get("case_use_notes"): tabs.append((T("Notes"), "case_note")) # Get the record data lodging_opt = ui_opts_get("case_lodging") if lodging_opt == "site": lodging_sel = "dvr_case.site_id" lodging_col = "dvr_case.site_id" elif lodging_opt == "text": lodging_sel = "case_details.lodging" lodging_col = "dvr_case_details.lodging" else: lodging_sel = None lodging_col = None if ui_opts_get("case_use_flags"): flags_sel = "dvr_case_flag_case.flag_id" else: flags_sel = None if ui_opts_get("case_use_place_of_birth"): pob_sel = "person_details.place_of_birth" else: pob_sel = None if ui_opts_get("case_use_bamf"): bamf_sel = "bamf.value" else: bamf_sel = None case = resource.select(["first_name", "last_name", "dvr_case.status_id", "dvr_case.archived", "dvr_case.household_size", "dvr_case.organisation_id", "case_details.arrival_date", bamf_sel, "person_details.nationality", pob_sel, lodging_sel, flags_sel, ], represent = True, raw_data = True, ).rows if case: # Extract case data case = case[0] name = lambda person: s3_fullname(person, truncate=False) raw = case["_row"] case_status = lambda row: case["dvr_case.status_id"] archived = raw["dvr_case.archived"] organisation = lambda row: case["dvr_case.organisation_id"] arrival_date = lambda row: case["dvr_case_details.arrival_date"] household_size = lambda row: case["dvr_case.household_size"] nationality = lambda row: case["pr_person_details.nationality"] # Warn if nationality is lacking while mandatory if ui_opts_get("case_nationality_mandatory") and \ raw["pr_person_details.nationality"] is None: current.response.warning = T("Nationality lacking!") bamf = lambda row: case["pr_bamf_person_tag.value"] if pob_sel: place_of_birth = lambda row: case["pr_person_details.place_of_birth"] else: place_of_birth = None if lodging_col: lodging = (T("Lodging"), lambda row: case[lodging_col]) else: lodging = None if flags_sel: flags = lambda row: case["dvr_case_flag_case.flag_id"] else: flags = None else: # Target record exists, but doesn't match filters return None arrival_date_label = ui_opts_get("case_arrival_date_label") arrival_date_label = T(arrival_date_label) \ if arrival_date_label else T("Date of Entry") # Adaptive rheader-fields rheader_fields = [[None, (T("Nationality"), nationality), (T("Case Status"), case_status)], [None, None, None], [None, None, None], ] if ui_opts_get("case_use_pe_label"): rheader_fields[0][0] = (T("ID"), "pe_label") rheader_fields[1][0] = "date_of_birth" else: rheader_fields[0][0] = "date_of_birth" if pob_sel: pob_row = 1 if rheader_fields[1][0] is None else 2 rheader_fields[pob_row][0] = (T("Place of Birth"), place_of_birth) if bamf_sel: doe_row = 2 rheader_fields[1][1] = (T("BAMF-Az"), bamf) else: doe_row = 1 rheader_fields[doe_row][1] = (arrival_date_label, arrival_date) if lodging: rheader_fields[1][2] = lodging if ui_opts_get("case_show_total_consultations"): from .helpers import get_total_consultations total_consultations = (T("Number of Consultations"), get_total_consultations) if rheader_fields[1][2] is None: rheader_fields[1][2] = total_consultations else: rheader_fields[0].append(total_consultations) hhsize = (T("Size of Family"), household_size) if rheader_fields[1][0] is None: rheader_fields[1][0] = hhsize elif rheader_fields[2][0] is None: rheader_fields[2][0] = hhsize elif rheader_fields[1][2] is None: rheader_fields[1][2] = hhsize else: rheader_fields[2][2] = hhsize colspan = 5 if multiple_orgs: # Show organisation if user can see cases from multiple orgs rheader_fields.insert(0, [(T("Organization"), organisation, colspan)]) if flags_sel: rheader_fields.append([(T("Flags"), flags, colspan)]) if ui_opts_get("case_header_protection_themes"): from .helpers import get_protection_themes rheader_fields.append([(T("Protection Need"), get_protection_themes, colspan, )]) if archived: # "Case Archived" hint hint = lambda record: SPAN(T("Invalid Case"), _class="invalid-case") rheader_fields.insert(0, [(None, hint)]) # Generate rheader XML rheader = S3ResourceHeader(rheader_fields, tabs, title=name)( r, table = resource.table, record = record, ) # Add profile picture from core import s3_avatar_represent rheader.insert(0, A(s3_avatar_represent(record_id, "pr_person", _class = "rheader-avatar", _width = 60, _height = 60, ), _href=URL(f = "person", args = [record_id, "image"], vars = r.get_vars, ), ) ) return rheader elif tablename == "dvr_case": if not tabs: tabs = [(T("Basic Details"), None), (T("Activities"), "case_activity"), ] rheader_fields = [["reference"], ["status_id"], ] rheader = S3ResourceHeader(rheader_fields, tabs)(r, table=resource.table, record=record, ) return rheader # ============================================================================= def drk_org_rheader(r, tabs=None): """ ORG custom resource headers """ if r.representation != "html": # Resource headers only used in interactive views return None from core import s3_rheader_resource, s3_rheader_tabs, S3ResourceHeader from .uioptions import get_ui_options s3db = current.s3db tablename, record = s3_rheader_resource(r) if tablename != r.tablename: resource = s3db.resource(tablename, id=record.id) else: resource = r.resource rheader = None rheader_fields = [] if record: T = current.T record_id = record.id ui_options = get_ui_options() is_admin = current.auth.s3_has_role("ADMIN") if tablename == "org_organisation": table = resource.table if record.root_organisation == record_id: branch = False else: branch = True # Custom tabs tabs = [(T("Basic Details"), None), (T("Branches"), "branch"), (T("Facilities"), "facility"), (T("Staff & Volunteers"), "human_resource"), #(T("Projects"), "project"), (T("Counseling Themes"), "response_theme"), ] if is_admin or \ ui_options.get("response_themes_needs") or \ ui_options.get("activity_use_need"): # Ability to manage org-specific need types # as they are used in themes: tabs.append((T("Counseling Reasons"), "need")) if not branch and \ (is_admin or \ ui_options.get("case_document_templates") and \ current.auth.s3_has_role("ORG_ADMIN")): tabs.append((T("Document Templates"), "document")) rheader_tabs = s3_rheader_tabs(r, tabs) # Custom header from gluon import TABLE, TR, TH, TD rheader = DIV() # Name record_data = TABLE(TR(TH("%s: " % table.name.label), record.name, ), ) # Parent Organisation if branch: btable = s3db.org_organisation_branch query = (btable.branch_id == record_id) & \ (btable.organisation_id == table.id) row = current.db(query).select(table.id, table.name, limitby = (0, 1), ).first() if row: record_data.append(TR(TH("%s: " % T("Branch of")), A(row.name, _href=URL(args=[row.id, "read"])), )) # Website as link if record.website: record_data.append(TR(TH("%s: " % table.website.label), A(record.website, _href=record.website))) logo = s3db.org_organisation_logo(record) if logo: rheader.append(TABLE(TR(TD(logo), TD(record_data), ))) else: rheader.append(record_data) rheader.append(rheader_tabs) return rheader elif tablename == "org_facility": if not tabs: tabs = [(T("Basic Details"), None), ] rheader_fields = [["name", "email"], ["organisation_id", "phone1"], ["location_id", "phone2"], ] rheader = S3ResourceHeader(rheader_fields, tabs)(r, table=resource.table, record=record, ) return rheader # END =========================================================================
57a81a6f705289723249fb0b09e8a065b08ab8cf
5fbf2adec8d7647b9aeefa51695aa3f13ee57810
/server/util/ah_handlers.py
455a1dd878527b50e58dde3861598691f56b2737
[]
no_license
angelacantfly/dancedeets-monorepo
8bb6579f6f5d30e88c8d4c0e239c6c8fed678094
6b7a48d91d0737010acd9e08a89d99c2c982205a
refs/heads/master
2021-01-20T09:14:22.613044
2017-08-26T21:48:14
2017-08-26T21:48:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
231
py
import webapp2 import app @app.route('/_ah/start') class StartHandler(webapp2.RequestHandler): def get(self): pass @app.route('/_ah/stop') class StopHandler(webapp2.RequestHandler): def get(self): pass
1c8ee601911e011097943b52fa643c5de3d37cf9
24fe1f54fee3a3df952ca26cce839cc18124357a
/servicegraph/lib/python2.7/site-packages/acimodel-4.0_3d-py2.7.egg/cobra/modelimpl/proc/memhist5min.py
2003290fe47c7f53c9c7ed8a141092387a15e88c
[]
no_license
aperiyed/servicegraph-cloudcenter
4b8dc9e776f6814cf07fe966fbd4a3481d0f45ff
9eb7975f2f6835e1c0528563a771526896306392
refs/heads/master
2023-05-10T17:27:18.022381
2020-01-20T09:18:28
2020-01-20T09:18:28
235,065,676
0
0
null
2023-05-01T21:19:14
2020-01-20T09:36:37
Python
UTF-8
Python
false
false
10,843
py
# coding=UTF-8 # ********************************************************************** # Copyright (c) 2013-2019 Cisco Systems, Inc. All rights reserved # written by zen warriors, do not modify! # ********************************************************************** from cobra.mit.meta import ClassMeta from cobra.mit.meta import StatsClassMeta from cobra.mit.meta import CounterMeta from cobra.mit.meta import PropMeta from cobra.mit.meta import Category from cobra.mit.meta import SourceRelationMeta from cobra.mit.meta import NamedSourceRelationMeta from cobra.mit.meta import TargetRelationMeta from cobra.mit.meta import DeploymentPathMeta, DeploymentCategory from cobra.model.category import MoCategory, PropCategory, CounterCategory from cobra.mit.mo import Mo # ################################################## class MemHist5min(Mo): """ A class that represents historical statistics for memory in a 5 minute sampling interval. This class updates every 10 seconds. """ meta = StatsClassMeta("cobra.model.proc.MemHist5min", "memory") counter = CounterMeta("current", CounterCategory.GAUGE, "gB", "Memory Allocated") counter._propRefs[PropCategory.IMPLICIT_MIN] = "currentMin" counter._propRefs[PropCategory.IMPLICIT_MAX] = "currentMax" counter._propRefs[PropCategory.IMPLICIT_AVG] = "currentAvg" counter._propRefs[PropCategory.IMPLICIT_SUSPECT] = "currentSpct" counter._propRefs[PropCategory.IMPLICIT_THRESHOLDED] = "currentThr" counter._propRefs[PropCategory.IMPLICIT_TREND] = "currentTr" meta._counters.append(counter) meta.moClassName = "procMemHist5min" meta.rnFormat = "HDprocMem5min-%(index)s" meta.category = MoCategory.STATS_HISTORY meta.label = "historical memory stats in 5 minute" meta.writeAccessMask = 0x1 meta.readAccessMask = 0x1 meta.isDomainable = False meta.isReadOnly = True meta.isConfigurable = False meta.isDeletable = False meta.isContextRoot = False meta.parentClasses.add("cobra.model.proc.Entity") meta.parentClasses.add("cobra.model.proc.Entry") meta.superClasses.add("cobra.model.stats.Item") meta.superClasses.add("cobra.model.stats.Hist") meta.superClasses.add("cobra.model.proc.MemHist") meta.rnPrefixes = [ ('HDprocMem5min-', True), ] prop = PropMeta("str", "childAction", "childAction", 4, PropCategory.CHILD_ACTION) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("deleteAll", "deleteall", 16384) prop._addConstant("deleteNonPresent", "deletenonpresent", 8192) prop._addConstant("ignore", "ignore", 4096) meta.props.add("childAction", prop) prop = PropMeta("str", "cnt", "cnt", 16212, PropCategory.REGULAR) prop.label = "Number of Collections During this Interval" prop.isImplicit = True prop.isAdmin = True meta.props.add("cnt", prop) prop = PropMeta("str", "currentAvg", "currentAvg", 10497, PropCategory.IMPLICIT_AVG) prop.label = "Memory Allocated average value" prop.isOper = True prop.isStats = True meta.props.add("currentAvg", prop) prop = PropMeta("str", "currentMax", "currentMax", 10496, PropCategory.IMPLICIT_MAX) prop.label = "Memory Allocated maximum value" prop.isOper = True prop.isStats = True meta.props.add("currentMax", prop) prop = PropMeta("str", "currentMin", "currentMin", 10495, PropCategory.IMPLICIT_MIN) prop.label = "Memory Allocated minimum value" prop.isOper = True prop.isStats = True meta.props.add("currentMin", prop) prop = PropMeta("str", "currentSpct", "currentSpct", 10498, PropCategory.IMPLICIT_SUSPECT) prop.label = "Memory Allocated suspect count" prop.isOper = True prop.isStats = True meta.props.add("currentSpct", prop) prop = PropMeta("str", "currentThr", "currentThr", 10499, PropCategory.IMPLICIT_THRESHOLDED) prop.label = "Memory Allocated thresholded flags" prop.isOper = True prop.isStats = True prop.defaultValue = 0 prop.defaultValueStr = "unspecified" prop._addConstant("avgCrit", "avg-severity-critical", 2199023255552) prop._addConstant("avgHigh", "avg-crossed-high-threshold", 68719476736) prop._addConstant("avgLow", "avg-crossed-low-threshold", 137438953472) prop._addConstant("avgMajor", "avg-severity-major", 1099511627776) prop._addConstant("avgMinor", "avg-severity-minor", 549755813888) prop._addConstant("avgRecovering", "avg-recovering", 34359738368) prop._addConstant("avgWarn", "avg-severity-warning", 274877906944) prop._addConstant("cumulativeCrit", "cumulative-severity-critical", 8192) prop._addConstant("cumulativeHigh", "cumulative-crossed-high-threshold", 256) prop._addConstant("cumulativeLow", "cumulative-crossed-low-threshold", 512) prop._addConstant("cumulativeMajor", "cumulative-severity-major", 4096) prop._addConstant("cumulativeMinor", "cumulative-severity-minor", 2048) prop._addConstant("cumulativeRecovering", "cumulative-recovering", 128) prop._addConstant("cumulativeWarn", "cumulative-severity-warning", 1024) prop._addConstant("lastReadingCrit", "lastreading-severity-critical", 64) prop._addConstant("lastReadingHigh", "lastreading-crossed-high-threshold", 2) prop._addConstant("lastReadingLow", "lastreading-crossed-low-threshold", 4) prop._addConstant("lastReadingMajor", "lastreading-severity-major", 32) prop._addConstant("lastReadingMinor", "lastreading-severity-minor", 16) prop._addConstant("lastReadingRecovering", "lastreading-recovering", 1) prop._addConstant("lastReadingWarn", "lastreading-severity-warning", 8) prop._addConstant("maxCrit", "max-severity-critical", 17179869184) prop._addConstant("maxHigh", "max-crossed-high-threshold", 536870912) prop._addConstant("maxLow", "max-crossed-low-threshold", 1073741824) prop._addConstant("maxMajor", "max-severity-major", 8589934592) prop._addConstant("maxMinor", "max-severity-minor", 4294967296) prop._addConstant("maxRecovering", "max-recovering", 268435456) prop._addConstant("maxWarn", "max-severity-warning", 2147483648) prop._addConstant("minCrit", "min-severity-critical", 134217728) prop._addConstant("minHigh", "min-crossed-high-threshold", 4194304) prop._addConstant("minLow", "min-crossed-low-threshold", 8388608) prop._addConstant("minMajor", "min-severity-major", 67108864) prop._addConstant("minMinor", "min-severity-minor", 33554432) prop._addConstant("minRecovering", "min-recovering", 2097152) prop._addConstant("minWarn", "min-severity-warning", 16777216) prop._addConstant("periodicCrit", "periodic-severity-critical", 1048576) prop._addConstant("periodicHigh", "periodic-crossed-high-threshold", 32768) prop._addConstant("periodicLow", "periodic-crossed-low-threshold", 65536) prop._addConstant("periodicMajor", "periodic-severity-major", 524288) prop._addConstant("periodicMinor", "periodic-severity-minor", 262144) prop._addConstant("periodicRecovering", "periodic-recovering", 16384) prop._addConstant("periodicWarn", "periodic-severity-warning", 131072) prop._addConstant("rateCrit", "rate-severity-critical", 36028797018963968) prop._addConstant("rateHigh", "rate-crossed-high-threshold", 1125899906842624) prop._addConstant("rateLow", "rate-crossed-low-threshold", 2251799813685248) prop._addConstant("rateMajor", "rate-severity-major", 18014398509481984) prop._addConstant("rateMinor", "rate-severity-minor", 9007199254740992) prop._addConstant("rateRecovering", "rate-recovering", 562949953421312) prop._addConstant("rateWarn", "rate-severity-warning", 4503599627370496) prop._addConstant("trendCrit", "trend-severity-critical", 281474976710656) prop._addConstant("trendHigh", "trend-crossed-high-threshold", 8796093022208) prop._addConstant("trendLow", "trend-crossed-low-threshold", 17592186044416) prop._addConstant("trendMajor", "trend-severity-major", 140737488355328) prop._addConstant("trendMinor", "trend-severity-minor", 70368744177664) prop._addConstant("trendRecovering", "trend-recovering", 4398046511104) prop._addConstant("trendWarn", "trend-severity-warning", 35184372088832) prop._addConstant("unspecified", None, 0) meta.props.add("currentThr", prop) prop = PropMeta("str", "currentTr", "currentTr", 10500, PropCategory.IMPLICIT_TREND) prop.label = "Memory Allocated trend" prop.isOper = True prop.isStats = True meta.props.add("currentTr", prop) prop = PropMeta("str", "dn", "dn", 1, PropCategory.DN) prop.label = "None" prop.isDn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("dn", prop) prop = PropMeta("str", "index", "index", 7037, PropCategory.REGULAR) prop.label = "History Index" prop.isConfig = True prop.isAdmin = True prop.isCreateOnly = True prop.isNaming = True meta.props.add("index", prop) prop = PropMeta("str", "lastCollOffset", "lastCollOffset", 111, PropCategory.REGULAR) prop.label = "Collection Length" prop.isImplicit = True prop.isAdmin = True meta.props.add("lastCollOffset", prop) prop = PropMeta("str", "modTs", "modTs", 7, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "never" prop._addConstant("never", "never", 0) meta.props.add("modTs", prop) prop = PropMeta("str", "repIntvEnd", "repIntvEnd", 110, PropCategory.REGULAR) prop.label = "Reporting End Time" prop.isImplicit = True prop.isAdmin = True meta.props.add("repIntvEnd", prop) prop = PropMeta("str", "repIntvStart", "repIntvStart", 109, PropCategory.REGULAR) prop.label = "Reporting Start Time" prop.isImplicit = True prop.isAdmin = True meta.props.add("repIntvStart", prop) prop = PropMeta("str", "rn", "rn", 2, PropCategory.RN) prop.label = "None" prop.isRn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("rn", prop) prop = PropMeta("str", "status", "status", 3, PropCategory.STATUS) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("created", "created", 2) prop._addConstant("deleted", "deleted", 8) prop._addConstant("modified", "modified", 4) meta.props.add("status", prop) meta.namingProps.append(getattr(meta.props, "index")) def __init__(self, parentMoOrDn, index, markDirty=True, **creationProps): namingVals = [index] Mo.__init__(self, parentMoOrDn, markDirty, *namingVals, **creationProps) # End of package file # ##################################################
ffc1de01b564f7729799b45337e5d8ae9fbb92ee
03330fc41b226e3b597676944b335a77f1979965
/examples/using_xref.py
05042801a9b20fdce5800a420dcd161fb80fed47
[ "MIT" ]
permissive
ols3er/ezdxf
b00076742022b21118d3645685205fbdae419b38
a01ed68ea45f25a231e470d239aefed73ab285d5
refs/heads/master
2020-05-29T16:57:18.235926
2019-02-24T03:41:09
2019-02-24T03:41:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
534
py
# Copyright (c) 2018 Manfred Moitzi # License: MIT License import ezdxf # AutoCAD 2010 can not resolve XREFS in DXF R12 Format :-(, ref_dwg = ezdxf.new('R2000') ref_dwg.modelspace().add_circle(center=(5, 5), radius=2.5) ref_dwg.header['$INSBASE'] = (5, 5, 0) # set insertion point ref_dwg.saveas("xref_drawing.dxf") # XREF definition host_dwg = ezdxf.new('R2000') host_dwg.add_xref_def(filename='xref_drawing.dxf', name='my_xref') host_dwg.modelspace().add_blockref(name='my_xref', insert=(0, 0)) host_dwg.saveas("using_xref.dxf")
46b6ba0aa78786fca3bae6b7c69830c69f629ac2
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_202/ch3_2020_02_21_14_51_08_594299.py
dd59ba6a96579ccaf3b3644f63149357f60d9fb2
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
101
py
import math def calcula_gaussiana(x,u,o): return((math.e**(-0.5*((x-u)/o)**2))/o*math.sqrt(2*pi))
7524a1a94270cde413832fe855ab35bb965326de
ff67167c2a620a4da7bae8d945cebf4643f46186
/cisco-ios-xr/ydk/models/cisco_ios_xr/Cisco_IOS_XR_terminal_device_cfg.py
43bc75e9dcadd2fe7ed79416905ba8b1a842376a
[ "Apache-2.0" ]
permissive
gaybro8777/ydk-py
ebbf4a15ac1d699d8c33492c96587c41b5159467
fff6f9da0b37aea117856f415e1a6f1b5eba53cf
refs/heads/master
2021-10-26T13:15:55.819384
2019-04-12T23:02:29
2019-04-12T23:02:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
23,596
py
""" Cisco_IOS_XR_terminal_device_cfg This module contains a collection of YANG definitions for Cisco IOS\-XR terminal\-device package configuration. This module contains definitions for the following management objects\: logical\-channels\: Logical channel in mxp optical\-channels\: optical channels Copyright (c) 2013\-2018 by Cisco Systems, Inc. All rights reserved. """ from collections import OrderedDict from ydk.types import Entity, EntityPath, Identity, Enum, YType, YLeaf, YLeafList, YList, LeafDataList, Bits, Empty, Decimal64 from ydk.filters import YFilter from ydk.errors import YError, YModelError from ydk.errors.error_handler import handle_type_error as _handle_type_error class LogicalAdminState(Enum): """ LogicalAdminState (Enum Class) Logical admin state .. data:: enable = 1 Enable .. data:: disable = 2 Disable .. data:: maintenance = 3 Maintenance """ enable = Enum.YLeaf(1, "enable") disable = Enum.YLeaf(2, "disable") maintenance = Enum.YLeaf(3, "maintenance") class LogicalChannelAssignment(Enum): """ LogicalChannelAssignment (Enum Class) Logical channel assignment .. data:: type_logical_channel = 1 Type Logical channel .. data:: type_optical_channel = 2 Type Optical channel """ type_logical_channel = Enum.YLeaf(1, "type-logical-channel") type_optical_channel = Enum.YLeaf(2, "type-optical-channel") class LogicalChannelOtnTtiAuto(Enum): """ LogicalChannelOtnTtiAuto (Enum Class) Logical channel otn tti auto .. data:: false = 0 Otn tti auto mode false .. data:: true = 1 Otn tti auto mode true """ false = Enum.YLeaf(0, "false") true = Enum.YLeaf(1, "true") class LogicalLoopbackMode(Enum): """ LogicalLoopbackMode (Enum Class) Logical loopback mode .. data:: none = 0 None .. data:: facility = 1 Facility .. data:: terminal = 2 Terminal """ none = Enum.YLeaf(0, "none") facility = Enum.YLeaf(1, "facility") terminal = Enum.YLeaf(2, "terminal") class LogicalProtocol(Enum): """ LogicalProtocol (Enum Class) Logical protocol .. data:: type_ethernet = 1 Type Ethernet .. data:: type_otn = 2 Type OTN """ type_ethernet = Enum.YLeaf(1, "type-ethernet") type_otn = Enum.YLeaf(2, "type-otn") class LogicalTribProtocol(Enum): """ LogicalTribProtocol (Enum Class) Logical trib protocol .. data:: trib_proto_type1ge = 1 1G Ethernet protocol .. data:: trib_proto_type_oc48 = 2 OC48 protocol .. data:: trib_proto_type_stm16 = 3 STM 16 protocol .. data:: trib_proto_type10gelan = 4 10G Ethernet LAN protocol .. data:: trib_proto_type10gewan = 5 10G Ethernet WAN protocol .. data:: trib_proto_type_oc192 = 6 OC 192 (9.6GB) port protocol .. data:: trib_proto_type_stm64 = 7 STM 64 protocol .. data:: trib_proto_type_otu2 = 8 OTU 2 protocol .. data:: trib_proto_type_otu2e = 9 OTU 2e protocol .. data:: trib_proto_type_otu1e = 10 OTU 1e protocol .. data:: trib_proto_type_odu2 = 11 ODU 2 protocol .. data:: trib_proto_type_odu2e = 12 ODU 2e protocol .. data:: trib_proto_type40ge = 13 40G Ethernet port protocol .. data:: trib_proto_type_oc768 = 14 OC 768 protocol .. data:: trib_proto_type_stm256 = 15 STM 256 protocol .. data:: trib_proto_type_otu3 = 16 OTU 3 protocol .. data:: trib_proto_type_odu3 = 17 ODU 3 protocol .. data:: trib_proto_type100ge = 18 100G Ethernet protocol .. data:: trib_proto_type100g_mlg = 19 100G MLG protocol .. data:: trib_proto_type_otu4 = 20 OTU4 signal protocol (112G) for transporting 100GE signal .. data:: trib_proto_type_otu_cn = 21 OTU Cn protocol .. data:: trib_proto_type_odu4 = 22 ODU 4 protocol """ trib_proto_type1ge = Enum.YLeaf(1, "trib-proto-type1ge") trib_proto_type_oc48 = Enum.YLeaf(2, "trib-proto-type-oc48") trib_proto_type_stm16 = Enum.YLeaf(3, "trib-proto-type-stm16") trib_proto_type10gelan = Enum.YLeaf(4, "trib-proto-type10gelan") trib_proto_type10gewan = Enum.YLeaf(5, "trib-proto-type10gewan") trib_proto_type_oc192 = Enum.YLeaf(6, "trib-proto-type-oc192") trib_proto_type_stm64 = Enum.YLeaf(7, "trib-proto-type-stm64") trib_proto_type_otu2 = Enum.YLeaf(8, "trib-proto-type-otu2") trib_proto_type_otu2e = Enum.YLeaf(9, "trib-proto-type-otu2e") trib_proto_type_otu1e = Enum.YLeaf(10, "trib-proto-type-otu1e") trib_proto_type_odu2 = Enum.YLeaf(11, "trib-proto-type-odu2") trib_proto_type_odu2e = Enum.YLeaf(12, "trib-proto-type-odu2e") trib_proto_type40ge = Enum.YLeaf(13, "trib-proto-type40ge") trib_proto_type_oc768 = Enum.YLeaf(14, "trib-proto-type-oc768") trib_proto_type_stm256 = Enum.YLeaf(15, "trib-proto-type-stm256") trib_proto_type_otu3 = Enum.YLeaf(16, "trib-proto-type-otu3") trib_proto_type_odu3 = Enum.YLeaf(17, "trib-proto-type-odu3") trib_proto_type100ge = Enum.YLeaf(18, "trib-proto-type100ge") trib_proto_type100g_mlg = Enum.YLeaf(19, "trib-proto-type100g-mlg") trib_proto_type_otu4 = Enum.YLeaf(20, "trib-proto-type-otu4") trib_proto_type_otu_cn = Enum.YLeaf(21, "trib-proto-type-otu-cn") trib_proto_type_odu4 = Enum.YLeaf(22, "trib-proto-type-odu4") class LogicalTribRate(Enum): """ LogicalTribRate (Enum Class) Logical trib rate .. data:: trib_rate1g = 1 TribRate1G .. data:: trib_rate2_5g = 2 TribRate25G .. data:: trib_rate10g = 3 TribRate10G .. data:: trib_rate40g = 4 TribRate40G .. data:: trib_rate100g = 5 TribRate100G """ trib_rate1g = Enum.YLeaf(1, "trib-rate1g") trib_rate2_5g = Enum.YLeaf(2, "trib-rate2-5g") trib_rate10g = Enum.YLeaf(3, "trib-rate10g") trib_rate40g = Enum.YLeaf(4, "trib-rate40g") trib_rate100g = Enum.YLeaf(5, "trib-rate100g") class LogicalChannels(Entity): """ Logical channel in mxp .. attribute:: channel Logical channel index **type**\: list of :py:class:`Channel <ydk.models.cisco_ios_xr.Cisco_IOS_XR_terminal_device_cfg.LogicalChannels.Channel>` """ _prefix = 'terminal-device-cfg' _revision = '2015-11-09' def __init__(self): super(LogicalChannels, self).__init__() self._top_entity = None self.yang_name = "logical-channels" self.yang_parent_name = "Cisco-IOS-XR-terminal-device-cfg" self.is_top_level_class = True self.has_list_ancestor = False self.ylist_key_names = [] self._child_classes = OrderedDict([("channel", ("channel", LogicalChannels.Channel))]) self._leafs = OrderedDict() self.channel = YList(self) self._segment_path = lambda: "Cisco-IOS-XR-terminal-device-cfg:logical-channels" self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(LogicalChannels, [], name, value) class Channel(Entity): """ Logical channel index .. attribute:: channel_index (key) Logical Channel Index **type**\: int **range:** 0..4294967295 .. attribute:: logical_channel_assignments Logical channel assignment for logical channel **type**\: :py:class:`LogicalChannelAssignments <ydk.models.cisco_ios_xr.Cisco_IOS_XR_terminal_device_cfg.LogicalChannels.Channel.LogicalChannelAssignments>` .. attribute:: otn Otn Related configs for Logical channel **type**\: :py:class:`Otn <ydk.models.cisco_ios_xr.Cisco_IOS_XR_terminal_device_cfg.LogicalChannels.Channel.Otn>` .. attribute:: trib_protocol Protocol framing of the tributary signal **type**\: :py:class:`LogicalTribProtocol <ydk.models.cisco_ios_xr.Cisco_IOS_XR_terminal_device_cfg.LogicalTribProtocol>` .. attribute:: description Description (Max 255 characters) **type**\: str **length:** 1..255 .. attribute:: ingress_client_port Configure ingress client port for this logical channel **type**\: str **pattern:** [a\-zA\-Z0\-9.\_/\-]+ .. attribute:: ingress_physical_channel Configure ingress physical channel for this logical channel **type**\: int **range:** 1..4 .. attribute:: admin_state Configure the admin\-state **type**\: :py:class:`LogicalAdminState <ydk.models.cisco_ios_xr.Cisco_IOS_XR_terminal_device_cfg.LogicalAdminState>` .. attribute:: loopback_mode Configure the loopback mode **type**\: :py:class:`LogicalLoopbackMode <ydk.models.cisco_ios_xr.Cisco_IOS_XR_terminal_device_cfg.LogicalLoopbackMode>` .. attribute:: logical_channel_type Configure the logical\-channel\-type **type**\: :py:class:`LogicalProtocol <ydk.models.cisco_ios_xr.Cisco_IOS_XR_terminal_device_cfg.LogicalProtocol>` .. attribute:: rate_class Rounded bit rate of the tributary signal **type**\: :py:class:`LogicalTribRate <ydk.models.cisco_ios_xr.Cisco_IOS_XR_terminal_device_cfg.LogicalTribRate>` """ _prefix = 'terminal-device-cfg' _revision = '2015-11-09' def __init__(self): super(LogicalChannels.Channel, self).__init__() self.yang_name = "channel" self.yang_parent_name = "logical-channels" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = ['channel_index'] self._child_classes = OrderedDict([("logical-channel-assignments", ("logical_channel_assignments", LogicalChannels.Channel.LogicalChannelAssignments)), ("otn", ("otn", LogicalChannels.Channel.Otn))]) self._leafs = OrderedDict([ ('channel_index', (YLeaf(YType.uint32, 'channel-index'), ['int'])), ('trib_protocol', (YLeaf(YType.enumeration, 'trib-protocol'), [('ydk.models.cisco_ios_xr.Cisco_IOS_XR_terminal_device_cfg', 'LogicalTribProtocol', '')])), ('description', (YLeaf(YType.str, 'description'), ['str'])), ('ingress_client_port', (YLeaf(YType.str, 'ingress-client-port'), ['str'])), ('ingress_physical_channel', (YLeaf(YType.uint32, 'ingress-physical-channel'), ['int'])), ('admin_state', (YLeaf(YType.enumeration, 'admin-state'), [('ydk.models.cisco_ios_xr.Cisco_IOS_XR_terminal_device_cfg', 'LogicalAdminState', '')])), ('loopback_mode', (YLeaf(YType.enumeration, 'loopback-mode'), [('ydk.models.cisco_ios_xr.Cisco_IOS_XR_terminal_device_cfg', 'LogicalLoopbackMode', '')])), ('logical_channel_type', (YLeaf(YType.enumeration, 'logical-channel-type'), [('ydk.models.cisco_ios_xr.Cisco_IOS_XR_terminal_device_cfg', 'LogicalProtocol', '')])), ('rate_class', (YLeaf(YType.enumeration, 'rate-class'), [('ydk.models.cisco_ios_xr.Cisco_IOS_XR_terminal_device_cfg', 'LogicalTribRate', '')])), ]) self.channel_index = None self.trib_protocol = None self.description = None self.ingress_client_port = None self.ingress_physical_channel = None self.admin_state = None self.loopback_mode = None self.logical_channel_type = None self.rate_class = None self.logical_channel_assignments = LogicalChannels.Channel.LogicalChannelAssignments() self.logical_channel_assignments.parent = self self._children_name_map["logical_channel_assignments"] = "logical-channel-assignments" self.otn = LogicalChannels.Channel.Otn() self.otn.parent = self self._children_name_map["otn"] = "otn" self._segment_path = lambda: "channel" + "[channel-index='" + str(self.channel_index) + "']" self._absolute_path = lambda: "Cisco-IOS-XR-terminal-device-cfg:logical-channels/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(LogicalChannels.Channel, ['channel_index', 'trib_protocol', 'description', 'ingress_client_port', 'ingress_physical_channel', 'admin_state', 'loopback_mode', 'logical_channel_type', 'rate_class'], name, value) class LogicalChannelAssignments(Entity): """ Logical channel assignment for logical channel .. attribute:: logical_channel_assignment Logical Channel Assignment id **type**\: list of :py:class:`LogicalChannelAssignment <ydk.models.cisco_ios_xr.Cisco_IOS_XR_terminal_device_cfg.LogicalChannels.Channel.LogicalChannelAssignments.LogicalChannelAssignment>` """ _prefix = 'terminal-device-cfg' _revision = '2015-11-09' def __init__(self): super(LogicalChannels.Channel.LogicalChannelAssignments, self).__init__() self.yang_name = "logical-channel-assignments" self.yang_parent_name = "channel" self.is_top_level_class = False self.has_list_ancestor = True self.ylist_key_names = [] self._child_classes = OrderedDict([("logical-channel-assignment", ("logical_channel_assignment", LogicalChannels.Channel.LogicalChannelAssignments.LogicalChannelAssignment))]) self._leafs = OrderedDict() self.logical_channel_assignment = YList(self) self._segment_path = lambda: "logical-channel-assignments" self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(LogicalChannels.Channel.LogicalChannelAssignments, [], name, value) class LogicalChannelAssignment(Entity): """ Logical Channel Assignment id .. attribute:: assignment_index (key) Logical channel assignment index **type**\: int **range:** 0..4294967295 .. attribute:: description Configure description for this assignment **type**\: str **length:** 1..255 .. attribute:: logical_channel_id Configure logical channel for this assignment **type**\: int **range:** 0..4294967295 .. attribute:: assignment_type Type of assignment for logical channel **type**\: :py:class:`LogicalChannelAssignment <ydk.models.cisco_ios_xr.Cisco_IOS_XR_terminal_device_cfg.LogicalChannelAssignment>` .. attribute:: allocation Configure Allocation for this assignment(10, 40 or 100G) **type**\: int **range:** 0..4294967295 .. attribute:: optical_channel_id Configure optical channel for this assignment **type**\: str """ _prefix = 'terminal-device-cfg' _revision = '2015-11-09' def __init__(self): super(LogicalChannels.Channel.LogicalChannelAssignments.LogicalChannelAssignment, self).__init__() self.yang_name = "logical-channel-assignment" self.yang_parent_name = "logical-channel-assignments" self.is_top_level_class = False self.has_list_ancestor = True self.ylist_key_names = ['assignment_index'] self._child_classes = OrderedDict([]) self._leafs = OrderedDict([ ('assignment_index', (YLeaf(YType.uint32, 'assignment-index'), ['int'])), ('description', (YLeaf(YType.str, 'description'), ['str'])), ('logical_channel_id', (YLeaf(YType.uint32, 'logical-channel-id'), ['int'])), ('assignment_type', (YLeaf(YType.enumeration, 'assignment-type'), [('ydk.models.cisco_ios_xr.Cisco_IOS_XR_terminal_device_cfg', 'LogicalChannelAssignment', '')])), ('allocation', (YLeaf(YType.uint32, 'allocation'), ['int'])), ('optical_channel_id', (YLeaf(YType.str, 'optical-channel-id'), ['str'])), ]) self.assignment_index = None self.description = None self.logical_channel_id = None self.assignment_type = None self.allocation = None self.optical_channel_id = None self._segment_path = lambda: "logical-channel-assignment" + "[assignment-index='" + str(self.assignment_index) + "']" self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(LogicalChannels.Channel.LogicalChannelAssignments.LogicalChannelAssignment, ['assignment_index', 'description', 'logical_channel_id', 'assignment_type', 'allocation', 'optical_channel_id'], name, value) class Otn(Entity): """ Otn Related configs for Logical channel .. attribute:: tti_msg_auto Trail trace identifier (TTI) transmit message automatically created. If True, then setting a custom transmit message would be invalid. Trail trace identifier (TTI) transmit message automatically created **type**\: :py:class:`LogicalChannelOtnTtiAuto <ydk.models.cisco_ios_xr.Cisco_IOS_XR_terminal_device_cfg.LogicalChannelOtnTtiAuto>` .. attribute:: tti_msg_expected Trail trace identifier (TTI) message expectedTrail trace identifier (TTI) message expected **type**\: str **length:** 1..255 .. attribute:: tti_msg_transmit Trail trace identifier (TTI) message transmittedTrail trace identifier (TTI) message transmitted **type**\: str **length:** 1..255 """ _prefix = 'terminal-device-cfg' _revision = '2015-11-09' def __init__(self): super(LogicalChannels.Channel.Otn, self).__init__() self.yang_name = "otn" self.yang_parent_name = "channel" self.is_top_level_class = False self.has_list_ancestor = True self.ylist_key_names = [] self._child_classes = OrderedDict([]) self._leafs = OrderedDict([ ('tti_msg_auto', (YLeaf(YType.enumeration, 'tti-msg-auto'), [('ydk.models.cisco_ios_xr.Cisco_IOS_XR_terminal_device_cfg', 'LogicalChannelOtnTtiAuto', '')])), ('tti_msg_expected', (YLeaf(YType.str, 'tti-msg-expected'), ['str'])), ('tti_msg_transmit', (YLeaf(YType.str, 'tti-msg-transmit'), ['str'])), ]) self.tti_msg_auto = None self.tti_msg_expected = None self.tti_msg_transmit = None self._segment_path = lambda: "otn" self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(LogicalChannels.Channel.Otn, ['tti_msg_auto', 'tti_msg_expected', 'tti_msg_transmit'], name, value) def clone_ptr(self): self._top_entity = LogicalChannels() return self._top_entity class OpticalChannels(Entity): """ optical channels .. attribute:: optical_channel Optical Channel index **type**\: list of :py:class:`OpticalChannel <ydk.models.cisco_ios_xr.Cisco_IOS_XR_terminal_device_cfg.OpticalChannels.OpticalChannel>` """ _prefix = 'terminal-device-cfg' _revision = '2015-11-09' def __init__(self): super(OpticalChannels, self).__init__() self._top_entity = None self.yang_name = "optical-channels" self.yang_parent_name = "Cisco-IOS-XR-terminal-device-cfg" self.is_top_level_class = True self.has_list_ancestor = False self.ylist_key_names = [] self._child_classes = OrderedDict([("optical-channel", ("optical_channel", OpticalChannels.OpticalChannel))]) self._leafs = OrderedDict() self.optical_channel = YList(self) self._segment_path = lambda: "Cisco-IOS-XR-terminal-device-cfg:optical-channels" self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(OpticalChannels, [], name, value) class OpticalChannel(Entity): """ Optical Channel index .. attribute:: ifname (key) Optical Channel Name **type**\: str **pattern:** [\\w\\\-\\.\:,\_@#%$\\+=\\\|;]+ .. attribute:: operational_mode Configure operational mode **type**\: int **range:** 1..100000 .. attribute:: line_port Specify R/S/I/P **type**\: str **pattern:** [a\-zA\-Z0\-9.\_/\-]+ """ _prefix = 'terminal-device-cfg' _revision = '2015-11-09' def __init__(self): super(OpticalChannels.OpticalChannel, self).__init__() self.yang_name = "optical-channel" self.yang_parent_name = "optical-channels" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = ['ifname'] self._child_classes = OrderedDict([]) self._leafs = OrderedDict([ ('ifname', (YLeaf(YType.str, 'ifname'), ['str'])), ('operational_mode', (YLeaf(YType.uint32, 'operational-mode'), ['int'])), ('line_port', (YLeaf(YType.str, 'line-port'), ['str'])), ]) self.ifname = None self.operational_mode = None self.line_port = None self._segment_path = lambda: "optical-channel" + "[ifname='" + str(self.ifname) + "']" self._absolute_path = lambda: "Cisco-IOS-XR-terminal-device-cfg:optical-channels/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(OpticalChannels.OpticalChannel, ['ifname', 'operational_mode', 'line_port'], name, value) def clone_ptr(self): self._top_entity = OpticalChannels() return self._top_entity
3119fae3fe1aadaa71c5cae9f1576b38a7c3afc3
f68eda51246c95597def569224f3b56d4c3700e7
/top/api/rest/PromotionLimitdiscountGetRequest.py
4b9ebc258b2a7047be00899b998a81697c8c960a
[ "MIT", "BSD-3-Clause" ]
permissive
stoensin/taobao-openapi
47de8fb29ae2d8ce47d4fce07c0ccaeaee1ef91f
202a9df2085229838541713bd24433a90d07c7fc
refs/heads/main
2023-07-17T02:17:51.527455
2021-08-25T15:08:49
2021-08-25T15:08:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
430
py
''' Created by auto_sdk on 2018.11.10 ''' from top.api.base import RestApi class PromotionLimitdiscountGetRequest(RestApi): def __init__(self,domain='gw.api.taobao.com',port=80): RestApi.__init__(self,domain, port) self.end_time = None self.limit_discount_id = None self.page_number = None self.start_time = None self.status = None def getapiname(self): return 'taobao.promotion.limitdiscount.get'
c61c33ed11cd6124e71d682034e6e67551e279fc
7d84000f2977def7118b4c93a47b9d71c4ee38f8
/app/src/dbi.py
f5871ef0d1e50dfc9ad71010786307b81ee1d8cb
[]
no_license
tensorci/core
d405d17099987163dfc589711345ce414ace406e
50d18bb43f73b1d5d47fefad543c2554e87a6520
refs/heads/master
2021-03-19T13:27:26.219591
2020-12-03T01:14:57
2020-12-03T01:14:57
110,917,313
0
0
null
2020-12-03T01:15:26
2017-11-16T03:20:09
Python
UTF-8
Python
false
false
4,899
py
""" Postgres Database Interface providing the following helper methods: find_one find_all update create destroy undestroy delete * Destroy-ing is the same as "soft" deleting a record...it will simply set the is_destroyed column to True for a record. The helper methods used for querying the DB are automatically scoped to include is_destroyed=False for a given query. One can simply pass in unscoped=True to these query helper methods to find ALL records for a model, regardless of is_destroyed status. NOTE: If a table does NOT have an is_destroyed column on it, calling destroy is the same as calling delete, and the record will be completely removed from the database. Usage Examples: user = dbi.create(User, {'email': '[email protected]'}) dbi.update(user, {'email': '[email protected]'}) dbi.destroy(user) """ from src import db # Column used for soft-deleting models IS_DESTROYED = 'is_destroyed' def find_one(model, params={}, unscoped=False): """ Find the first record of a database model per specified query params :param model: (required) model class to query (check models.py) :param params: (optional) dict of params to query model with :param unscoped: (optional) whether to gather ALL query results, regardless of model's is_destroyed status :return: first model instance returned from DB query """ if hasattr(model, IS_DESTROYED) and not params.get(IS_DESTROYED) and not unscoped: params[IS_DESTROYED] = False return db.session.query(model).filter_by(**params).first() def find_all(model, params={}, unscoped=False): """ Find ALL records of a database model per specified query params :param model: (required) model class to query (check models.py) :param params: (optional) dict of params to query model with :param unscoped: (optional) whether to gather ALL query results, regardless of model's is_destroyed status :return: list of model instances """ exact_params = {} list_params = {} for k, v in params.items(): if type(v).__name__ in ['list', 'tuple']: list_params[k] = tuple(v) else: exact_params[k] = v if hasattr(model, IS_DESTROYED) and not exact_params.get(IS_DESTROYED) and not unscoped: exact_params[IS_DESTROYED] = False query = db.session.query(model).filter_by(**exact_params) for k, v in list_params.items(): query = query.filter(getattr(model, k).in_(v)) return query.all() def update(model_instance, params={}): """ Update a model instance with new params :param model_instance: (required) model instance to update :param params: (optional) dict of params to update model with :return: the updated model instance """ [setattr(model_instance, k, v) for k, v in params.items()] db.session.commit() return model_instance def create(model, params={}): """ Create a model and save a new record for specified model class and params :param model: (required) model class to create new record for :param params: (model-dependent) dict of params to create model with :return: the created model instance """ model_instance = model(**params) db.session.add(model_instance) db.session.commit() return model_instance def upsert(model, params={}, unscoped=False): """ Update model if already exists. Create new one if not. :param model: (required) model class to upsert new record for :param params: (model-dependent) dict of params to upsert model with :return: tuple --> (model_instance, is_new) """ query_params = {k: v for k, v in params.items()} model_instance = find_one(model, query_params, unscoped=unscoped) if model_instance: return model_instance, False return create(model, params), True def destroy(model_instance): """ "Soft" delete a model instance (if allowed); otherwise, hard delete it. :param model_instance: (required) model instance to soft delete :return: (boolean) whether the model instance was successfully soft deleted """ # If model is not soft-deletable, hard delete it. if not hasattr(model_instance, IS_DESTROYED): return delete(model_instance) model_instance.is_destroyed = True db.session.commit() return True def undestroy(model_instance): """ Undestroy a model instance :param model: (required) model instance to undestroy :return: (boolean) whether the model instance was successfully undestroyed """ if not hasattr(model_instance, IS_DESTROYED): return False model_instance.is_destroyed = False db.session.commit() return True def delete(model_instance): """ Hard delete a model instance :param model_instance: (required) model instance to hard delete :return: (boolean) whether the model instance was successfully hard deleted """ db.session.delete(model_instance) db.session.commit() return True
17539ecb89461a97e039d325bef834b78d08259b
f415dd840e150a0ada86bc8b7c54f8d1c301e314
/tests/helpers.py
694db0ecd5e61ceb7f8490a25316267d22ec46a9
[ "WTFPL" ]
permissive
Feuermurmel/venv_cli
5c3680150f8c54fbbb4e5c36b3d609695b1b1104
87b5185d11ab4d6f66b8dd76533ab405f820ad97
refs/heads/master
2021-01-10T17:19:09.017138
2016-02-25T22:09:52
2016-02-25T22:09:52
51,231,623
0
0
null
null
null
null
UTF-8
Python
false
false
3,678
py
import os, subprocess, sys, contextlib, pkgutil, tempfile, pytest class RunResult: def __init__(self, returncode : int, stdout : str, stderr : str): self.returncode = returncode self.stdout = stdout self.stderr = stderr class Workspace: """ Allows executing commands and checking conditions in a temporary directory. """ def __init__(self, dir): self.cwd = os.path.join(dir, 'cwd') self.home = os.path.join(dir, 'home') os.mkdir(self.cwd) os.mkdir(self.home) def _run_commands(self, lines): environ = dict(os.environ) environ['HOME'] = os.path.abspath(self.home) process = subprocess.Popen( ['bash'], cwd = self.cwd, stdin = subprocess.PIPE, stdout = subprocess.PIPE, stderr = subprocess.PIPE, env = environ) input = ''.join(i + '\n' for i in lines).encode() out, err = process.communicate(input) sys.stdout.buffer.write(out) sys.stderr.buffer.write(err) # We expect all output to be valid UTF-8, mainly because all output should be ASCII. return RunResult(process.returncode, out.decode(), err.decode()) def run(self, *lines, expect_error = False, expect_stdout_contains = '', expect_stderr_contains = ''): """ Runs the specified commands by piping them into a non-interactive bash process. """ def iter_lines(): yield 'set -e' for i in lines: yield i # Enable errexit whenever a new shell session might have been started. if i.split()[0] == 'venv': yield 'set -e' result = self._run_commands(list(iter_lines())) if expect_error: assert result.returncode else: assert not result.returncode assert expect_stdout_contains in result.stdout assert expect_stderr_contains in result.stderr return result def check_venv(self, path = 'venv', *, exists = True): if exists: self.run( '. {}/bin/activate'.format(path), '[ "$VIRTUAL_ENV" ]') else: self.run( '! [ -e venv ]') def create_file(self, path, content : str = ''): with open(os.path.join(self.cwd, path), 'w', encoding = 'utf-8') as file: file.write(content) def create_dir(self, path): os.makedirs(os.path.join(self.cwd, path), exist_ok = True) def check_file(self, path, content = None, *, exists = True): file_path = os.path.join(self.cwd, path) if exists: assert os.path.isfile(file_path) if content is not None: with open(file_path, 'r', encoding = 'utf-8') as file: assert file.read() == content else: if content is not None: raise ValueError('content must be None if exists is set to False.') assert not os.path.exists(file_path) def check_dir(self, dirs = [], files = [], *, path = '.', exclude_hidden = True): """ Check that a set of directories exists and that only those directories exist. """ found_dirs = set() found_files = set() for i in os.listdir(os.path.join(self.cwd, path)): if not (i.startswith('.') and exclude_hidden): item_path = os.path.join(self.cwd, path, i) if os.path.isdir(item_path): found_dirs.add(i) elif os.path.isfile(item_path): found_files.add(i) if dirs is not None: assert found_dirs == set(dirs) if files is not None: assert found_files == set(files) @contextlib.contextmanager def workspace(*, virtualenvs = [], dummy_project = False): with tempfile.TemporaryDirectory() as temp_dir: ws = Workspace(temp_dir) if dummy_project: for i in 'setup.py', 'venv_cli_dummy.py': data = pkgutil.get_data(__name__, os.path.join('example_project', i)).decode() ws.create_file(i, data) for i in virtualenvs: ws.run('venv --no-activate {}'.format(i)) yield ws
c8360ce86d4bfa906128d511027631bc4d8e4c69
d13a1adcf9dda6717dcd1957189b1ad948bffebc
/onepk_without_pyc/tutorials/session/SessionTutorial.py
a605f4dac88adda06955bde55abc20c9759b5cdf
[]
no_license
neoyogi/onepk
ca81170457cfb49ae7a79d3cba58552ce6b74a89
54bc49eaed14f7832aca45c4f52311a00282d862
refs/heads/master
2021-01-01T19:43:22.849196
2015-02-17T11:16:02
2015-02-17T11:16:02
30,422,929
0
0
null
null
null
null
UTF-8
Python
false
false
15,755
py
#!/usr/bin/env python # # Copyright (c) 2010-2013, Cisco Systems, Inc. # # THIS SAMPLE CODE IS PROVIDED "AS IS" WITHOUT ANY EXPRESS OR IMPLIED WARRANTY # BY CISCO SOLELY FOR THE PURPOSE of PROVIDING PROGRAMMING EXAMPLES. # CISCO SHALL NOT BE HELD LIABLE FOR ANY USE OF THE SAMPLE CODE IN ANY # APPLICATION. # # Redistribution and use of the sample code, with or without # modification, are permitted provided that the following conditions # are met: # Redistributions of source code must retain the above disclaimer. # # """ Session Tutorial This tutorial is intended for application developers who need to specify configuration parameters for connections made between onePK applications and network elements. In onePK, a session represents an authenticated channel of communication between an application and a network element. This tutorial shows how to configure a session, how to get the properties and statistics of a session. @author The onePK Team ([email protected]) """ import logging from BaseTutorial import BaseTutorial from onep.element import NetworkElement from onep.element import NetworkApplication from onep.element import SessionConfig from onep.element import SessionHandle from onep.element import SessionStatistics from onep.element import SessionProperty from onep.element import ConnectionListener from onep.core.exception import OnepException from onep.core.util import tlspinning logger = logging.getLogger('onep:SessionTutorial') logger.setLevel(logging.INFO) class SessionTutorial(BaseTutorial): @classmethod def createSessionConfig(self, mode): """ Creates an instance of SessionConfig with the given transport mode and sets the reconnect timer to one minute. All other attributes are set to their default values. When connecting to a network element, the caller may optionally provide a SessionConfig that contains the desired configuration for the resulting session. When creating the SessionConfig, the only required attribute is the transport mode. TLS is the transport mode used for the end node hosting model. TIPC (sometimes referred to as LOCAL) may be used in process and blade hosting models. All other attributes are optional, and will take on their default values if not explicitly set. To demonstrate reconnecting to the session, the reconnect timer will be set to one minute. @param mode The transport mode used by the connection. @return a SessionConfig instance. """ # START SNIPPET: create_session_config # Construct a SessionConfig instance with the given transport mode. config = SessionConfig(mode) # Set the reconnect timer to one minute. config.reconnectTimer = 60 # The session attributes below this point are set to their default # values. # # Set the port to connect to on the network element. # TLS 15002 # TIPC N/A # if mode.lower() == "tls": config.port = config.DEFAULT_PORT config.transportMode = SessionConfig.SessionTransportMode.TLS config.ca_certs = tutorial.root_cert_path config.keyfile = tutorial.client_key_path config.certfile = tutorial.client_cert_path else: # Not required for TIPC. pass # Set the event queue size of the session. config.eventQueueSize = config.DEFAULT_EVENT_QUEUE_SIZE # Set the event thread pool size of the session. config.eventThreadPool = config.DEFAULT_THREADPOOL_SIZE # Set the event drop mode of the session. config.eventDropMode = config.DEFAULT_EVENT_DROP_MODE # Set the keepalive attributes of the session. # Idle time in seconds config.keepAliveIdleTime = config.DEFAULT_KEEPALIVE_IDLE_TIME # Interval between keepalives in seconds config.keepAliveInterval = config.DEFAULT_KEEPALIVE_INTERVAL # Number of keepalives config.keepAliveRetryCount = config.DEFAULT_KEEPALIVE_RETRY_COUNT # END SNIPPET: create_session_config config.set_tls_pinning(tutorial.tls_pinning_file, PinningHandler(tutorial.tls_pinning_file)) return config def connectWithConfig(self, applicationName, config): """ Initializes the network application. Then, gets the network element and connects to it with the given session configuration. @param applicationName The unique name of this application. @param config Configuration options instance. @return SessionHandle The handle of the connected session, or null if there was an error. @throws OnepException If there was an error in executing a onePK call. """ # Get the NetworkApplication instance. networkApplication = NetworkApplication.get_instance() # Set the name of the application to applicationName. networkApplication.name = applicationName # Get the network element's address or hostname passed in from the # command line or the properties file. # element_hostname = tutorial.get_element_hostname() # Get the NetworkElement instance at the given hostname. networkElement = networkApplication.get_network_element(element_hostname) logger.info("Got a NetworkElement - %s ", networkElement) # Set the network element for this tutorial. tutorial.set_network_element(networkElement) # Connect to the element using the given session configuration. If no # configuration is specified by the caller (i.e. null is used), the # session will take on the default values. # # START SNIPPET: onep_element_connect handle = networkElement.connect(tutorial.get_username(), tutorial.get_password(), config) # END SNIPPET: onep_element_connect logger.info("Successfully connected to NetworkElement - %s", tutorial.get_network_element()) return handle def printSessionProperties(self, config,handle): """ Prints the session properties to the logger. @param handle The handle to the session to print the properties for. """ # START SNIPPET: print_session_properties # Get the property instance for this session using the # session handle. # property = handle.sessionProp # Get the port number the session is connected on. logger.info("Port: " + str(property.port)) # Get the event queue size of the session. logger.info("EventQueueSize: " + str(property.eventQueueSize)) # Get the event thread pool size of the session. logger.info("EventThreadPool: " + str(property.eventThreadPool)) # Get the event drop mode of the session. logger.info("EventDropMode: " + str(property.eventDropMode)) # Get the reconnect timer of the session in seconds. logger.info("ReconnectTimer: " + str(property.reconnectTimer)) # Get the transport mode of the session. logger.info("TransportMode: " + str(property.transportMode)) # END SNIPPET: print_session_properties def printSessionStatistics(self, handle): # START SNIPPET: print_session_statistics # Get the statistics instance for this session using the # session handle. # statistics = handle.sessionStat # Get the count of events received and dropped. logger.info("Events Total: %s", statistics.eventTotalCount) logger.info("\nEvents Dropped: %s", statistics.eventDropCount) # END SNIPPET: print_session_statistics def simulate_disconnect(self): ''' Internal function for testing tutorial reconnect ''' self.get_network_element()._reconnect_waiting = True self.get_network_element().disconnect() class PinningHandler(tlspinning.TLSUnverifiedElementHandler): def __init__(self, pinning_file): self.pinning_file = pinning_file def handle_verify(self, host,hashtype, finger_print, changed): """ Callback to the app to determine whether to add a host to pinning DB Upon receipt of a certificate which fails to match based on server-name or IP address, and for which there is no match in the pinning database, this callback asks the application whether to accept the connection and/or whether to add the server to the pinning database. By default, the connection will be terminated and the pinning db will remain unchanged. @param host: String containing either the FQDN or a text version of the IP address @param hashtype: If there was a host name with a non-matching certificate, this will be the hash-type from that entry. If there was no entry, this will be created as "SHA-1". @param finger_print: Fingerprint text created from the certificate. This will be a series of hex bytes separated by colons of the form "A1:B2:C3:..." @changed: changed is TRUE if there was an existing entry in the database but the certificate does not match. FALSE indicates that there was no entry in the database for this host. @return: ACCEPT_AND_PIN if onep should both accept the connection and add the entry to the pinning database. ACCEPT_ONCE if onep should only accept the connection but not add the entry to the pinning database. REJECT if onep should neither accept the connection nor add the entry to the pinning database. """ # START SNIPPET: pin_handler if changed: msg = "\n@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@\n" msg +="WARNING: THE CERTIFICATE PRESENTED BY REMOTE HOST '%s'\n IS DIFFERENT FROM THE ONE PREVIOUSLY ACCEPTED" %(host) msg +="\n@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@" else: msg = "WARNING: Certificate presented by remote host '%s' is not verified."%(host) msg += "\n\nThe %s fingerprint sent by the remote host(%s) is:\n%s" %(hashtype, host, finger_print) msg += "\n\nYou MUST verify the certificate on remote host before proceeding! \n" msg += "\nChoose from following options:" if self.pinning_file: prompt = "\nAccept and Pin (p), Accept Once (o), Reject (r) (default) :" else: prompt = "\nAccept Once (o), Reject (r) (default) :" sys.stdout.write(msg) self.decision = raw_input(prompt) while True: if not self.decision or self.decision.lower() == 'r': return tlspinning.DecisionType.REJECT elif self.decision.lower() == 'p' and self.pinning_file: return tlspinning.DecisionType.ACCEPT_AND_PIN elif self.decision.lower() == 'o': return tlspinning.DecisionType.ACCEPT_ONCE else: self.decision = raw_input(prompt) # END SNIPPET: pin_handler class TutorialReconnectListener(ConnectionListener): ''' Build a listener class to react to application connection events. The connection listener will be registered directly to the instantiated NetworkElement class. In this example we have setup a log to send messages to the application logger. We have also added a maximum reconnect retry count and a flag to tell the listener when the application wants to exit without a reconnect attempt. ''' # START SNIPPET: reconnect log = logging.getLogger('onep:SessionTutorial') log.setLevel(logging.INFO) retry = 3 app_terminate = False def handle_event(self, event, data): self.log.info("\n********* CONNECT LISTENER *******") self.log.info('Received connection event %s', event.elem.OnepSessionState.enumval(event.state)) if self.app_terminate: self.log.info("\n********* TUTORIAL TERMINATED *******") return if event.state == event.elem.OnepSessionState.ONEP_STATE_DISCONNECTED: if not self.retry: self.log.info("\n********* RECONNECT RETRY MAX FOR %d *******" % data['id']) event.elem.set_connection_listener(None, None) return try: self.log.info("\n********* RECONNECT SESSION %d *******" % data['id']) event.elem.reconnect(data['user'], data['pwd'], data['id'], data['sess']) except Exception as e: self.retry -= 1 self.log.info("\n********* RECONNECT FAILED SESSION %d*******" %data['id']) self.log.info("\n********* %s *******" % str(e)) # END SNIPPET: reconnect if __name__ == '__main__': import sys tutorial = SessionTutorial(sys.argv) # Parse arguments from command line or properties file. if not tutorial.parse_command_line(): logger.error("Error in parsing arguments") sys.exit(1) # Create a session configuration with transport mode socket. config = tutorial.createSessionConfig(tutorial.get_transport()) logger.info("\n********* INITIALIZE AND CONNECT *******") # Connect to the network element using the given configuration. originalSessionHandle = None try: originalSessionHandle = tutorial.connectWithConfig("Session Tutorial", config) except OnepException as e: logger.error("Failed to connect to element.", e) # Upon a successful connection, a session is established and a handle # is returned in the form of a SessionHandle. When a session is in the # connected state, its configuration cannot be modified. The session # handle may be used to query information about the session. Here, we # use it to get the session's ID, which will be needed when we want to # reconnect to the session. # # START SNIPPET: onep_session_handle_get_id sessionID = originalSessionHandle._id # END SNIPPET: onep_session_handle_get_id logger.info("Connected to network element with session ID: " + str(sessionID)) logger.info("\n********* PRINT SESSION PROPERTIES *******") tutorial.printSessionProperties(config,originalSessionHandle) logger.info("\n********* PRINT SESSION STATISTICS *******") tutorial.printSessionStatistics(originalSessionHandle) logger.info("\n********* SETUP CONNECT LISTENER *******") # START SNIPPET: reconnect_setup con_listener = TutorialReconnectListener() tutorial.get_network_element().set_connection_listener(con_listener, {'user': tutorial.get_username(), 'pwd': tutorial.get_password(), 'id': sessionID, 'sess' : config}) # END SNIPPET: reconnect_setup logger.info("\n********* SIMULATE INTERRUPTION OF CONNECTION *******") tutorial.simulate_disconnect() logger.info("\n********* DISCONNECT AND CLEAN UP *******\n\n") con_listener.app_terminate = True tutorial.disconnect()
21db26de3198d180a5e39a545b3d434cfcfb9b71
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_117/ch84_2019_06_07_02_09_59_822281.py
c7e3553b0116c2d5fe47dde12a8fa2c6debf32c7
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
189
py
def inverte_dicionario (dic): dic_invert = {} for k, v in dic_invert.items(): if v not in dic: dic_invert = [] dic_invert.append(v) return dic_invert
3dd56adae1191d1dbd4cb5db6911e9f04756571f
4e693506b1b69b28ae2bcf0f5eb0d30e71a5e63d
/keras_models_factory/utils.py
61d28442735ec316350b013d4e5cab50e1268d3f
[ "MIT" ]
permissive
shadiakiki1986/keras-models-factory
62fabc7e786bc2e7ad85f00bf41abff85df57b35
ee4f776eea0ec2e20347105d31cf192877f386bd
refs/heads/master
2021-01-23T16:57:34.653001
2017-09-19T09:22:00
2017-09-19T09:22:00
102,754,603
1
0
null
null
null
null
UTF-8
Python
false
false
2,174
py
# https://gist.github.com/shadiakiki1986/2c293e364563492c65bffdb6122b4e92 from sklearn.preprocessing import MinMaxScaler # normalize, min_max_scaler = MinMaxScaler() # def myNorm3(X): return normalize(X, norm='l2', axis=0) def myNorm3(X): return min_max_scaler.fit_transform(X) ########################################## import numpy as np from matplotlib import pyplot as plt def myPlot(X, space:int=5): X_plt = X+space*np.arange(X.shape[1]) N_PLOT=200 plt.plot(X_plt[0:N_PLOT,:]) plt.show() from sklearn.model_selection import train_test_split def ae_fit_encode_plot_mse(X_in, autoencoder, encoder, N_epochs, verbose=1, callbacks:list=[]): # split X_train, X_test = train_test_split(X_in, train_size=0.8, random_state=8888) # train autoencoder autoencoder.fit( X_train, X_train, epochs=N_epochs, batch_size=256, shuffle=True, validation_data=( X_test, X_test, ), verbose = verbose, callbacks=callbacks ) # if not easy to visualize if X_in.shape[1]<50: # print("encoder predict") X_enc = encoder.predict(X_in) # print("encoded",X_enc) # # X_enc_dec = decoder.predict(X_enc) # # print("enc-dec",X_enc_dec) # X_rec = autoencoder.predict(X_pca) # print("recoded",X_rec) # plot # from matplotlib import pyplot as plt myPlot(X_enc) X_rec = autoencoder.predict(X_in) #result = mse(X_in, X_rec) #print("AE mse = ", result) #return result return X_rec ##################### # functions for t1e_pca_ae_nonlinear-2 # copied from https://stats.stackexchange.com/questions/190148/autoencoder-pca-tensorflow?rq=1 def mse(x, x_est): numerator = np.linalg.norm(x - x_est) denominator = np.linalg.norm(x) #print('num/deonm', numerator, denominator, numerator/denominator) return numerator/denominator from sklearn.linear_model import LinearRegression def pca_err(X, x_pca): #from sklearn.decomposition import PCA #pca = PCA(n_components=2).fit(X) #x_pca = pca.transform(X) lr = LinearRegression().fit(x_pca, X) x_est = lr.predict(x_pca) result = mse(X, x_est) print('err pca = ', result) return result
bda67dea8cdb17417a447b603190fdbc5a7850d8
6351221d588668804e2df01936732eede4d96ed0
/leetcode-cn/Python/232.用栈实现队列.py
7ae75d5f682f19c9bda3328e8f390ed0abeb0c49
[]
no_license
LogicJake/code-for-interview
8e4ec9e24ec661a443ad42aa2496d78a1fbc8a3f
5990b09866696c2f3e845047c755fa72553dd421
refs/heads/master
2021-09-20T20:19:17.118333
2021-09-14T13:46:30
2021-09-14T13:46:30
102,202,212
3
2
null
null
null
null
UTF-8
Python
false
false
1,120
py
# # @lc app=leetcode.cn id=232 lang=python3 # # [232] 用栈实现队列 # # @lc code=start class MyQueue: def __init__(self): """ Initialize your data structure here. """ self.stack = [] def push(self, x: int) -> None: """ Push element x to the back of queue. """ tmp_stack = [] while self.stack: tmp_stack.append(self.stack.pop(-1)) self.stack.append(x) while tmp_stack: self.stack.append(tmp_stack.pop(-1)) def pop(self) -> int: """ Removes the element from in front of queue and returns that element. """ return self.stack.pop(-1) def peek(self) -> int: """ Get the front element. """ return self.stack[-1] def empty(self) -> bool: """ Returns whether the queue is empty. """ return not self.stack # Your MyQueue object will be instantiated and called as such: # obj = MyQueue() # obj.push(x) # param_2 = obj.pop() # param_3 = obj.peek() # param_4 = obj.empty() # @lc code=end
cb0d026ba9bbf7fb071cfc018eaf8538a0285a2d
9a343c495459e79dc408a102730bcaeac7fa8886
/blog/app01/admin.py
d1211d0bccc7fd7e1a91cb51ce105a8e53f5ca8c
[ "MIT" ]
permissive
MMingLeung/Python_Study
62d3ae92bf6760de0804aa5792f53fb3799486a2
4ff1d02d2b6dd54e96f7179fa000548936b691e7
refs/heads/master
2022-12-27T12:53:05.186800
2018-03-07T04:34:36
2018-03-07T04:34:36
92,124,981
3
1
MIT
2021-06-10T18:35:33
2017-05-23T03:28:52
JavaScript
UTF-8
Python
false
false
452
py
from django.contrib import admin from app01 import models # Register your models here. admin.site.register(models.UserInfo) admin.site.register(models.Article) admin.site.register(models.ArticleDetail) admin.site.register(models.Article2Tag) admin.site.register(models.Tag) admin.site.register(models.Category) admin.site.register(models.UserFans) admin.site.register(models.Blog) admin.site.register(models.UpDown) admin.site.register(models.Comment)
00149d0616ecf21778b8fc9f4226f2e31c0455cf
bc9f66258575dd5c8f36f5ad3d9dfdcb3670897d
/lib/surface/container/node_pools/delete.py
85c05b6a7ef85f44a9e6eb9c9c58a6ee068f7c38
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
google-cloud-sdk-unofficial/google-cloud-sdk
05fbb473d629195f25887fc5bfaa712f2cbc0a24
392abf004b16203030e6efd2f0af24db7c8d669e
refs/heads/master
2023-08-31T05:40:41.317697
2023-08-23T18:23:16
2023-08-23T18:23:16
335,182,594
9
2
NOASSERTION
2022-10-29T20:49:13
2021-02-02T05:47:30
Python
UTF-8
Python
false
false
4,208
py
# -*- coding: utf-8 -*- # # Copyright 2014 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Delete node pool command.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from apitools.base.py import exceptions as apitools_exceptions from googlecloudsdk.api_lib.container import util from googlecloudsdk.calliope import base from googlecloudsdk.calliope import exceptions from googlecloudsdk.command_lib.container import flags from googlecloudsdk.core import log from googlecloudsdk.core.console import console_io DETAILED_HELP = { 'DESCRIPTION': """\ *{command}* deletes a node pool from a Google Kubernetes Engine (GKE) cluster. When you delete a node pool, GKE drains all the nodes in the node pool. The draining process involves GKE evicting Pods on each node in the node pool. Each node in a node pool is drained by evicting Pods with an allotted graceful termination period of `MAX_POD`. `MAX_POD` is the maximum `terminationGracePeriodSeconds` set on the Pods scheduled to the node with a cap of one hour. """, 'EXAMPLES': """\ To delete the "node-pool-1" node pool from the cluster "sample-cluster", run: $ {command} node-pool-1 --cluster=sample-cluster """, } class Delete(base.DeleteCommand): """Delete an existing node pool in a running cluster.""" @staticmethod def Args(parser): """Register flags for this command. Args: parser: An argparse.ArgumentParser-like object. It is mocked out in order to capture some information, but behaves like an ArgumentParser. """ # TODO(b/28639250): Support remote completion when the SDK supports it. flags.AddNodePoolNameArg(parser, 'The name of the node pool to delete.') parser.add_argument( '--timeout', type=int, default=1800, hidden=True, help='THIS ARGUMENT NEEDS HELP TEXT.') flags.AddAsyncFlag(parser) flags.AddNodePoolClusterFlag( parser, 'The cluster from which to delete the node pool.') def Run(self, args): """This is what gets called when the user runs this command. Args: args: an argparse namespace. All the arguments that were provided to this command invocation. Returns: Some value that we want to have printed later. """ adapter = self.context['api_adapter'] location_get = self.context['location_get'] location = location_get(args) pool_ref = adapter.ParseNodePool(args.name, location) console_io.PromptContinue( message=('The following node pool will be deleted.\n' '[{name}] in cluster [{clusterId}] in [{zone}]').format( name=pool_ref.nodePoolId, clusterId=pool_ref.clusterId, zone=adapter.Zone(pool_ref)), throw_if_unattended=True, cancel_on_no=True) try: # Make sure it exists (will raise appropriate error if not) adapter.GetNodePool(pool_ref) op_ref = adapter.DeleteNodePool(pool_ref) if args.async_: op = adapter.GetOperation(op_ref) if not args.IsSpecified('format'): args.format = util.OPERATIONS_FORMAT return op adapter.WaitForOperation( op_ref, 'Deleting node pool {0}'.format(pool_ref.nodePoolId), timeout_s=args.timeout) except apitools_exceptions.HttpError as error: raise exceptions.HttpException(error, util.HTTP_ERROR_FORMAT) log.DeletedResource(pool_ref) return op_ref Delete.detailed_help = DETAILED_HELP
1b255b3ddd1df3b1b17cabceab2a798b41728384
164e0f43ef3ad4cb7f6b28dfdd2bfbaa66d38ce2
/Remove_Invalid_Parentheses/Remove_Invalid_Parentheses.py
034e14e6cc19233f7b8b6abc301cc84c82bcdc96
[]
no_license
maoxx241/code
b217f2d10065d90f52cfa38788c99e238565b892
16e97ec5ee7ae9ffa69da2e001d15a86d73d2040
refs/heads/master
2021-07-11T14:25:35.098241
2020-11-25T14:01:56
2020-11-25T14:01:56
222,544,519
0
0
null
null
null
null
UTF-8
Python
false
false
3,153
py
class Solution: def removeInvalidParentheses(self, s: str) -> List[str]: left = 0 right = 0 # First, we find out the number of misplaced left and right parentheses. for char in s: # Simply record the left one. if char == '(': left += 1 elif char == ')': # If we don't have a matching left, then this is a misplaced right, record it. right = right + 1 if left == 0 else right # Decrement count of left parentheses because we have found a right # which CAN be a matching one for a left. left = left - 1 if left > 0 else left result = {} def recurse(s, index, left_count, right_count, left_rem, right_rem, expr): # If we reached the end of the string, just check if the resulting expression is # valid or not and also if we have removed the total number of left and right # parentheses that we should have removed. if index == len(s): if left_rem == 0 and right_rem == 0: ans = "".join(expr) result[ans] = 1 else: # The discard case. Note that here we have our pruning condition. # We don't recurse if the remaining count for that parenthesis is == 0. if (s[index] == '(' and left_rem > 0) or (s[index] == ')' and right_rem > 0): recurse(s, index + 1, left_count, right_count, left_rem - (s[index] == '('), right_rem - (s[index] == ')'), expr) expr.append(s[index]) # Simply recurse one step further if the current character is not a parenthesis. if s[index] != '(' and s[index] != ')': recurse(s, index + 1, left_count, right_count, left_rem, right_rem, expr) elif s[index] == '(': # Consider an opening bracket. recurse(s, index + 1, left_count + 1, right_count, left_rem, right_rem, expr) elif s[index] == ')' and left_count > right_count: # Consider a closing bracket. recurse(s, index + 1, left_count, right_count + 1, left_rem, right_rem, expr) # Pop for backtracking. expr.pop() # Now, the left and right variables tell us the number of misplaced left and # right parentheses and that greatly helps pruning the recursion. recurse(s, 0, 0, 0, left, right, []) return list(result.keys())
69e237230ee8790bc12d09eeeae22d58d793a7de
52b5773617a1b972a905de4d692540d26ff74926
/.history/binary_20200525114701.py
e8cd6e394a55474ea53bc0c4231c7e1d52b17737
[]
no_license
MaryanneNjeri/pythonModules
56f54bf098ae58ea069bf33f11ae94fa8eedcabc
f4e56b1e4dda2349267af634a46f6b9df6686020
refs/heads/master
2022-12-16T02:59:19.896129
2020-09-11T12:05:22
2020-09-11T12:05:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,217
py
def solution(N): print(N) maximumCount = 0 number = format(N,"b") print("wow",number) s = [str(i) for i in number] binary = int("".join(s)) intialNumber = None answer = [] # totalCount = 0 # totalCount = 0 print("binary",number) for i in range(len(str(number))): if number[i] == '1': if intialNumber is not None and (intialNumber + int(number[i]) == 2) and maximumCount > 0: answer.append(maximumCount) if totalCount > maximumCount: print("total",totalCount) return totalCount else: print("total",totalCount) print("max",maximumCount) # return maximumCount else: intialNumber = 1 # print("total",totalCount) maximumCount = 0 totalCount = maximumCount if number[i] == '0': maximumCount +=1 # print("maxcount",maximumCount) return 0 solution(10001)
80c7f0807075a35cdcec4e616e655da777916a79
e23a4f57ce5474d468258e5e63b9e23fb6011188
/125_algorithms/_examples/_algorithms_challenges/leetcode/leetCode/Stack/225_ImplementStackusingQueues.py
605f337ca4287019202fd4d6bbc9e42ac90b852a
[]
no_license
syurskyi/Python_Topics
52851ecce000cb751a3b986408efe32f0b4c0835
be331826b490b73f0a176e6abed86ef68ff2dd2b
refs/heads/master
2023-06-08T19:29:16.214395
2023-05-29T17:09:11
2023-05-29T17:09:11
220,583,118
3
2
null
2023-02-16T03:08:10
2019-11-09T02:58:47
Python
UTF-8
Python
false
false
768
py
#! /usr/bin/env python # -*- coding: utf-8 -*- # @Author: [email protected] from collections import deque class Stack(object): def __init__(self): self._queue = deque() def push(self, x): # Pushing to back and # then rotating the queue until the new element is at the front q = self._queue q.append(x) for i in xrange(len(q) - 1): q.append(q.popleft()) def pop(self): self._queue.popleft() def top(self): return self._queue[0] def empty(self): return not len(self._queue) """Test if __name__ == '__main__': s = Stack() s.push(1) s.push(2) print s.top() s.pop() print s.empty() print s.top() s.pop() print s.empty() """
fc78dfb58fc28e5c173a243deee5202c75eb4f57
5c4a6130f7b09a652f4cd8feb2132b174cf00f25
/test-mab_3.py
108f2d602597592c73b6cf43d6b145e779ff5757
[]
no_license
xiaogaogaoxiao/Machine-Learning-Algorithm-for-Vehicular-Communication-Networks
3ebbb023e6b25dafbbd2cdf4f412c83c0c6ac0b6
c9b8b0f5f4f57ae6506c80956e48bad3ac9457ad
refs/heads/main
2023-06-02T19:58:17.197528
2021-06-21T00:33:44
2021-06-21T00:33:44
445,976,561
1
0
null
2022-01-09T02:38:07
2022-01-09T02:38:07
null
UTF-8
Python
false
false
24,725
py
''' This example shows how a base station chooses a beam to serve an approaching vehicle. The base station has two beam configurations (a long reaching but narrow one, and a short reaching but wide one). We assume that the base station can only activate one beam at a time, with either configuration. The example uses multi-armed bandit (MAB) to select the best beam to serve. ''' import wx import operator import argparse import random from argparse import Namespace, ArgumentParser from sim.simulation import World from sim.loc import XY from sim.scenario import BaseScenario from sim.event import Event from node.node import BaseNode from node.mobility import Stationary, StaticPath from comm.transceiver import Transceiver from comm.channel import DiscModel, SectorModel from comm.signalwave import QualityBasedSignal #################################################################### ## Helper #################################################################### class DebugPrint: def print(self, *args, **kw): print(*args, **kw) # comment this line out to disable debug printing pass #################################################################### ## Communication Module #################################################################### class CommModule: def __init__(self, node): self._node = node ## send hello message, and get replied, record channel quality indicator (cqi) ## return a tuple: (outcome, cqi) def send_hello_to(self, other): cqi = 0 me = self._node # send hello-message hello_message = QualityBasedSignal(me) if me.get("transceiver").unicast(hello_message, other)==None: return (False, cqi) # signal can't reach other? return False # receiver replies with hello-reply hello_reply = QualityBasedSignal(me) if other.get("transceiver").unicast(hello_reply, me)==None: return (False, cqi) # reply can't reach me? return False # hello-reply can reach me, now check the signal quality recv_signal = me.get("transceiver").received_signal(other,hello_reply) if not me.get("transceiver").can_detect(recv_signal): return (False, cqi) # can not detect? return False # return cqi cqi = recv_signal.quality return (True, cqi) #################################################################### ## Nodes #################################################################### class MyBS(BaseNode): ''' MyBS: This is a base station in the VANET sim world. In our system a BS is a radio head, which is just a beam. ''' def __init__(self, simworld, id, loc, channel): super().__init__(simworld, id, node_type=BaseNode.Type.BS) ## beam configuration variables self.set_transceiver(Transceiver(self,channel)) self.channel_property = channel.get_property() self.comm = CommModule(self) self.set_mobility(Stationary(loc)) ## beam runtime variables for service status self.service_node = None self.service_duration = 0 ## MAB related variables self.total_reward = 0 self.total_trial = 0 def associate_vehicle(self,node,time): self.service_node = node self.service_node.associated_bs = self self.service_duration = 0 def lost_vehicle(self,time): self.service_node.associated_bs = None self.service_node = None ## Multi-Armed Bandit: update reward after pulling this arm (i.e. this beam) def MAB_update_reward(self, reward): self.total_reward += reward self.total_trial += 1 ## Multi-Armed Bandit: calculate expected reward for this arm (i.e. this beam) def MAB_get_average_reward(self): if self.total_trial==0: return 0 return self.total_reward/self.total_trial ## show the coverage of this BS def show_coverage(self): self.clear_drawing() if self.channel_property["model"]=="DiscModel": if self.service_node!=None: self.draw_circle(self.channel_property["radius"]) else: pen = wx.Pen(wx.RED,2,style=wx.PENSTYLE_LONG_DASH) if self.service_node!=None: brush = wx.Brush(wx.RED,style=wx.BRUSHSTYLE_BDIAGONAL_HATCH) else: brush = wx.Brush(wx.RED,style=wx.TRANSPARENT) self.draw_sector(self.channel_property["radius"], self.channel_property["azimuth"], self.channel_property["beam width"], pen, brush) # def show_coverage(self): # self.clear_drawing() # if self.channel_property["model"]=="DiscModel": # if self.service_node!=None: # self.draw_circle(self.channel_property["radius"]) # elif self.channel_property["model"]=="SectorModel": # if self.channel_property["beam width"]==60: # pen = wx.Pen(wx.RED,2,style=wx.PENSTYLE_LONG_DASH) # else: # pen = wx.Pen(wx.BLACK,4,style=wx.PENSTYLE_SHORT_DASH) # if self.service_node!=None: # brush = wx.Brush(wx.RED,style=wx.BRUSHSTYLE_BDIAGONAL_HATCH) # else: # brush = wx.Brush(wx.RED,style=wx.TRANSPARENT) # self.draw_sector(self.channel_property["radius"], # self.channel_property["azimuth"], # self.channel_property["beam width"], # pen, brush) class MyVehicle(BaseNode): ''' MyVehicle: This is a transmitting node in the VANET sim world ''' def __init__(self, simworld, id, channel): super().__init__(simworld, id, node_type=BaseNode.Type.Vehicle) ## vehicle configuration variables self.set_transceiver(Transceiver(self,channel)) self.comm = CommModule(self) ## vehicle runtime variables for service status self.associated_bs = None def associate_bs(self,bs,time): bs.associate_vehicle(self,time) def lost_bs(self,time): self.associated_bs.lost_vehicle(time) ## draw a line to the associated BS, if any def show_connection(self): self.clear_drawing() if self.associated_bs!=None: self.draw_line(self.associated_bs,pen = wx.Pen(wx.BLUE,2,style=wx.PENSTYLE_SOLID)) self.set_color(wx.BLUE) else: self.set_color(wx.RED) #################################################################### ## Scenario #################################################################### class MyScenario(BaseScenario,DebugPrint): ''' MyScenario: This is my scenario ''' ## ------------------------------------------------------------ ## This method will be called before the start of the simulation, ## build the simulation world here def on_create(self, simworld) -> bool: ## for statistics self.last_sim_time = 0 ## simulation variables self.simworld = simworld if self.simworld.is_animation_shown(): bitmap = wx.Bitmap() if bitmap.LoadFile("croydon.png"): self.set_background(bitmap,-500,400) else: print("Error loading bitmap file, no background is applied.") self.set_name("Beam selection example") ## define a set of sectors covering 360 degree class Sectors: def __init__(self, freq, radius, sector_number, pointing): self.all_beams = [] beam_width = 360/sector_number for i in range(0,sector_number): angle = pointing + i*beam_width while angle>=360: angle-=360 sector = SectorModel(freq, radius, beam_width, angle) self.all_beams.append(sector) ## create a channel freq = 2.4 radius = 120 self.omni = DiscModel(freq, radius) ## create some sector beams and channels ## - type-1: long but narrow beams ## - type-2: short but wide beams ## - `pointing` is the pointing direction of the first beam in the sector sector1 = Sectors(freq, radius=120,sector_number=6,pointing=0) # sector2 = Sectors(freq, radius=80,sector_number=3,pointing=90) ## create a base station on the map self.bs = [] bs_locs = [XY(200,0)] # locations for i in range(0,len(bs_locs)): # For each BS, do the following j = 0 for beam in sector1.all_beams: # add type 1 narrow beams this_id = "BS%d.%dN"%(i,j); j+=1 this_node = MyBS(simworld, this_id, bs_locs[i], channel=beam) self.bs.append(this_node) j = 0 # for beam in sector2.all_beams: # add type 2 wide beams # this_id = "BS%d.%dW"%(i,j); j+=1 # this_node = MyBS(simworld, this_id, bs_locs[i], channel=beam) # self.bs.append(this_node) ## create the vehicles on a site self.vehicles = [] self.vehicle_start_info = {} self.vehicle_start_info["car1"] = [XY(200,140)] self.vehicle_start_info["car1_faster"] = [XY(200,140)] self.vehicle_start_info["car2_slower"] = [XY(200,140)] self.vehicle_start_info["car2"] = [XY(200,140)] self.vehicle_start_info["car2_faster"] = [XY(200,140)] self.vehicle_start_info["car3"] = [XY(180, 190)] self.vehicle_start_info["car3_faster"] = [XY(180, 190)] self.vehicle_start_info["car4"] = [XY(180, 190)] self.vehicle_start_info["car4_faster"] = [XY(180, 190)] self.vehicle_start_info["car4_inverse"] = [XY(360, 80)] self.vehicle_start_info["car4_inverse_faster"] = [XY(360, 80)] self.vehicle_start_info["car5"] = [XY(200, 130)] self.vehicle_start_info["car5_faster"] = [XY(200, 130)] self.vehicle_start_info["car5_inverse"] = [XY(60, 15)] self.vehicle_start_info["car5_inverse_faster"] = [XY(60, 15)] self.vehicle_start_info["car6"] = [XY(200, 130)] self.vehicle_start_info["car6_faster"] = [XY(200, 130)] self.vehicle_start_info["car6_inverse"] = [XY(265, -180)] self.vehicle_start_info["car6_inverse_faster"] = [XY(265, -180)] self.vehicle_path_info = {} self.vehicle_path_info["car1"] = [(random.uniform(20, 30), XY(230,90)), (random.uniform(20, 30), XY(255,0)), (random.uniform(20, 30), XY(240,-45)), (random.uniform(20, 30), XY(40,-240)) ] self.vehicle_path_info["car1_faster"] = [(random.uniform(80, 100), XY(230, 90)), (random.uniform(80, 100), XY(255, 0)), (random.uniform(80, 100), XY(240, -45)), (random.uniform(80, 100), XY(40, -240))] self.vehicle_path_info["car2_slower"] = [(random.uniform(20, 30), XY(230, 90)), (random.uniform(20, 30), XY(270, 105)), (random.uniform(20, 30), XY(440, 180))] self.vehicle_path_info["car2"] = [(random.uniform(50, 70), XY(230,90)), (random.uniform(50, 80), XY(270,105)), (random.uniform(50, 70), XY(440,180)) ] self.vehicle_path_info["car2_faster"] = [(random.uniform(60, 100), XY(230,90)), (random.uniform(60, 100), XY(270,105)), (random.uniform(60, 100), XY(440,180)) ] self.vehicle_path_info["car3"] = [(random.uniform(50, 80), XY(205, 130)), (random.uniform(50, 70), XY(100, -60)), (random.uniform(50, 80), XY(50, -150))] self.vehicle_path_info["car3_faster"] = [(random.uniform(60, 100), XY(205, 130)), (random.uniform(60, 100), XY(100, -60)), (random.uniform(60, 100), XY(50, -150))] self.vehicle_path_info["car4"] = [(random.uniform(50, 70), XY(230,90)), (random.uniform(50, 80), XY(255, -20)), (random.uniform(50, 70), XY(310, 40)), (random.uniform(50, 80), XY(360, 80))] self.vehicle_path_info["car4_faster"] = [(random.uniform(60, 100), XY(230,90)), (random.uniform(60, 100), XY(255, -20)), (random.uniform(60, 100), XY(310, 40)), (random.uniform(60, 100), XY(360, 80))] self.vehicle_path_info["car4_inverse"] = [(random.uniform(50, 70),XY(310, 40) ), (random.uniform(50, 80), XY(255, -20)), (random.uniform(50, 70), XY(230, 90)), (random.uniform(50, 80), XY(180, 190))] self.vehicle_path_info["car4_inverse_faster"] = [(random.uniform(60, 100),XY(310, 40) ), (random.uniform(60, 100), XY(255, -20)), (random.uniform(60, 100), XY(230, 90)), (random.uniform(60, 100), XY(180, 190))] self.vehicle_path_info["car5"] = [(random.uniform(50, 70), XY(130, -10)), (random.uniform(50, 80), XY(75, 10)), (random.uniform(50, 70), XY(60, 15))] self.vehicle_path_info["car5_faster"] = [(random.uniform(60, 100), XY(130, -10)), (random.uniform(60, 100), XY(75, 10)), (random.uniform(60, 100), XY(60, 15))] self.vehicle_path_info["car5_inverse"] = [(random.uniform(50, 70), XY(75, 10)), (random.uniform(50, 80), XY(130, -10)), (random.uniform(50, 70), XY(200, 130))] self.vehicle_path_info["car5_inverse_faster"] = [(random.uniform(60, 100), XY(75, 10)), (random.uniform(60, 100), XY(130, -10)), (random.uniform(60, 100), XY(200, 130))] self.vehicle_path_info["car6"] = [(random.uniform(50, 70), XY(235, 65)), (random.uniform(50, 80), XY(250, -20)), (random.uniform(50, 70), XY(225, -75)), (random.uniform(50, 80), XY(250, -130))] self.vehicle_path_info["car6_faster"] = [(random.uniform(60, 100), XY(235, 65)), (random.uniform(60, 100), XY(250, -20)), (random.uniform(60, 100), XY(225, -75)), (random.uniform(60, 100), XY(250, -130))] self.vehicle_path_info["car6_inverse"] = [(random.uniform(50, 70), XY(225, -75)), (random.uniform(50, 80), XY(250, -20)), (random.uniform(50, 70), XY(235, 65)), (random.uniform(50, 80), XY(200, 130))] self.vehicle_path_info["car6_inverse_faster"] = [(random.uniform(60, 100), XY(225, -75)), (random.uniform(60, 100), XY(250, -20)), (random.uniform(60, 100), XY(235, 65)), (random.uniform(60, 100), XY(200, 130))] for info in self.vehicle_start_info: self.start_loc = self.vehicle_start_info[info][0] self.path = self.vehicle_path_info[info] node = MyVehicle(simworld, id=info, channel=self.omni) node.set_mobility(StaticPath(start_loc=self.start_loc,path=self.path)) self.vehicles.append(node) ## show all beams for beam in self.bs: beam.show_coverage() return True ## -------------------------------------------------------- ## This method will be called repeatedly until the simulation ## is ended or stopped, perform any simulation action here def on_event(self, sim_time, event_obj): duration = sim_time - self.last_sim_time self.last_sim_time = sim_time if event_obj==Event.MOBILITY_END: # a mobile node has finished its mobility? self.do_mobility(sim_time,duration,event_obj) self.do_restart_node(sim_time,event_obj) elif event_obj==Event.SIM_MOBILITY: # mobility progresses a time step? self.do_mobility(sim_time,duration,event_obj) ## end of mobility, then create a new vehicle to replace this one def do_restart_node(self, sim_time, event_obj): this_node = event_obj.info["node"] # retrieve the node reaching end of mobility new_node = MyVehicle(self.simworld, id=this_node.id, channel=self.omni) new_node.set_mobility(StaticPath(start_loc=self.vehicle_start_info[this_node.id][0], path=self.vehicle_path_info[this_node.id])) self.vehicles.append(new_node) # add new node to our list self.vehicles.remove(this_node) # remove old node from our list this_node.remove_from_simulation() # remove old node from the simulation ## Do user simulation here def do_mobility(self, sim_time, duration, event_obj): all_vehicles = self.vehicles # get all vehicles from our liist all_beams = self.bs # get all BSs from our list connect_time = 0 ## collect stats for beams for the last period for beam in all_beams: if beam.service_node!=None: beam.service_duration += duration ## check beam connectivity with its serving vehicle active_beam_number = 0 for beam in all_beams: if beam.service_node==None: continue # skip if none vehicle = beam.service_node active_beam_number += 1 # found an active beam (is_successful, cqi) = vehicle.comm.send_hello_to(beam) if not is_successful: # can't hear from vehicle, i.e. lost connection ## update reward based on service duration ## this is a random reward due to random vehicle speed beam.MAB_update_reward(beam.service_duration) # self.print("at t = %1.2f, %s lost connection, duration time is %1.2f, " # "Beam %s total connection time is %1.2f" # %(sim_time, beam.service_node.id, beam.service_duration, beam.id, beam.total_reward)) # self.print("%s current total_reward is %1.2f, current total_trail is %s, average reward is %1.2f" # %(beam.id, beam.total_reward, beam.total_trial, beam.total_reward/beam.total_trial)) beam.lost_vehicle(sim_time) active_beam_number -= 1 # can't count this beam as active ## find a vehicle to serve if bs is available (i.e. currently no active beam) ## in this example, we limit the service to one vehicle maxmimum if active_beam_number < 1: ## iterate all beams to find potential vehicles to serve ## each potential service is an `arm` arm_list = [] # list of available `arms` to pull in multi-armed bandit for beam in all_beams: beacon = QualityBasedSignal(beam) node_list = beam.get("transceiver").broadcast(beacon) if beam.service_node != None: continue for node in node_list: ## check that the reachable node is a vehicle if node.type!=BaseNode.Type.Vehicle: continue # skip if not vehicle # if node.associated_bs!=None: continue # skip if already being served ## check also it is in the coverage of the beam (is_successful, cqi) = node.comm.send_hello_to(beam) if not is_successful: continue # skip if failed, likely not in coverage ## add this option as an `arm` to the `arm_list` arm = beam reward_expectation = beam.MAB_get_average_reward() arm_list.append((arm, reward_expectation, node, cqi)) ## for exploration, pick a random arm ## for exploitation, pick the highest expected reward arm selected_beam = None if len(arm_list)!=0: if sim_time<60: # do exploration in the first 200s random_number = random.random() if random_number > 0.1: (selected_beam,_,vehicle, cqi) = random.choice(arm_list) reason = "based on exploration (random pull)" else: for i in arm_list: self.print("the %s cqi is: %1.2f" % (i[2].id, i[3])) (selected_beam,_,vehicle, cqi) = max(arm_list,key=operator.itemgetter(3)) reason = "based on exploration (best cqi)" else: # do exploitation (selected_beam,_,vehicle, cqi) = max(arm_list,key=operator.itemgetter(1)) reason = "by choosing the best arm" n = len(arm_list) self.print("%s final average reaward is:%1.2f " % (arm_list[0][0].id, arm_list[0][1])) for i in range(1, n): last = i - 1 last_id = arm_list[last][0].id current_id = arm_list[i][0].id if last_id == current_id: continue self.print("%s final average reaward is:%1.2f " % (arm_list[i][0].id, arm_list[i][1])) if selected_beam!=None: selected_beam.associate_vehicle(vehicle,sim_time) self.print("at t=%1.2f, %s connected to %s %s" %(sim_time,vehicle.id,selected_beam.id,reason)) ## draw connectivity & beam coverage on the map for vehicle in all_vehicles: vehicle.show_connection() for beam in all_beams: beam.show_coverage() #################################################################### ## main #################################################################### if __name__ == "__main__": ## command line parameters parser: ArgumentParser = argparse.ArgumentParser() parser.add_argument("--nodisplay", help="Run in no GUI mode", action="store_true") parser.add_argument("--step", help="Mobility step time (in sec)", type=int, default=0.2) parser.add_argument("--speed", help="Animation playback speed (x times)", type=float, default=1.0) parser.add_argument("--duration", help="Simulation duration (in sec), -1 for non-stop", type=int, default=1) args: Namespace = parser.parse_args() ## welcome info print("A Simple VANET Environment. Press [^C] to quit") #args.nodisplay = True # <-- hardcoding no GUI mode args.step = 0.1 # <-- hardcoding the mobility step time args.speed = 1.0 # <-- hardcoding the animation speed (times) args.duration = -1 # <-- hardcoding the sim duration (sec) if args.nodisplay: print("- simulation will run without animation") else: print("- animation will playback at x%1.2f speed"%args.speed) print("- vehicles move a step every %1.2f s in simulation"%args.step) if args.duration>0: print("- simulation will stop at %1.2f s"%args.duration) else: print("- simulation will run non-stop") print("") ## create, setup and run the simulation ## note that to run a simulation, we need to create a 'scenario' sim = World() sim.config(sim_stop = args.duration, sim_step = args.step, sim_speed = args.speed, display_option = not args.nodisplay, scenario = MyScenario(sim)) sim.run()
128cca6fe2e6e5e784f55a61facb0487d837a808
127fa3dd454434b4c7526afe161177af2e10226e
/learn/python_base/io.py
60348faa4adbf54d5d67904473a557cd1779d9e7
[]
no_license
lunar-r/sword-to-offer-python
966c46a8ddcff8ce5c95697638c988d83da3beab
fab4c341486e872fb2926d1b6d50499d55e76a4a
refs/heads/master
2023-04-18T18:57:12.126441
2020-11-29T09:51:23
2020-11-29T09:51:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,303
py
# -*- coding: utf-8 -*- """ File Name: io Description : Author : simon date: 19-3-28 """ # -- 文件基本操作 output = open(r'C:\spam', 'w') # 打开输出文件,用于写 input = open('data', 'r') # 打开输入文件,用于读。打开的方式可以为'w', 'r', 'a', 'wb', 'rb', 'ab'等 fp.read([size]) # size为读取的长度,以byte为单位 fp.readline([size]) # 读一行,如果定义了size,有可能返回的只是一行的一部分 fp.readlines([size]) # 把文件每一行作为一个list的一个成员,并返回这个list。其实它的内部是通过循环调用readline()来实现的。如果提供size参数,size是表示读取内容的总长。 fp.readable() # 是否可读 fp.write(str) # 把str写到文件中,write()并不会在str后加上一个换行符 fp.writelines(seq) # 把seq的内容全部写到文件中(多行一次性写入) fp.writeable() # 是否可写 fp.close() # 关闭文件。 fp.flush() # 把缓冲区的内容写入硬盘 fp.fileno() # 返回一个长整型的”文件标签“ fp.isatty() # 文件是否是一个终端设备文件(unix系统中的) fp.tell() # 返回文件操作标记的当前位置,以文件的开头为原点 fp.next() # 返回下一行,并将文件操作标记位移到下一行。把一个file用于for … in file这样的语句时,就是调用next()函数来实现遍历的。 fp.seek(offset[, whence]) # 将文件打开操作标记移到offset的位置。whence为0表示从头开始计算,1表示以当前位置为原点计算。2表示以文件末尾为原点进行计算。 fp.seekable() # 是否可以seek fp.truncate([size]) # 把文件裁成规定的大小,默认的是裁到当前文件操作标记的位置。 for line in open('data'): print(line) # 使用for语句,比较适用于打开比较大的文件 with open('data') as file: print(file.readline()) # 使用with语句,可以保证文件关闭 with open('data') as file: lines = file.readlines() # 一次读入文件所有行,并关闭文件 open('f.txt', encoding='latin-1') # Python3.x Unicode文本文件 open('f.bin', 'rb') # Python3.x 二进制bytes文件 # 文件对象还有相应的属性:buffer closed encoding errors line_buffering name newlines等
404b3dd9bf9118947a73b4b22ab44cac0e5361bd
d5e94042ac2b248b7701117a6ea941bcc862067a
/upvote/gae/modules/bit9_api/constants.py
f473708c778b50b28f70a3411e000b6fa473e0de
[ "Apache-2.0" ]
permissive
codegrande/upvote
f373105203a0595f76c29e138a18a95dc24a63df
e05d477bb13e470127b109eb8905a66a06eed5ac
refs/heads/master
2020-03-07T19:40:47.185833
2019-06-20T14:35:20
2019-06-20T14:35:20
127,677,753
0
0
null
2018-04-01T22:49:28
2018-04-01T22:49:27
null
UTF-8
Python
false
false
2,558
py
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Constants used in communication with Bit9.""" from upvote.shared import constants # RFC 3339/ISO 8601 datetime format. DATETIME_CONVERSION_STRING = '%Y-%m-%dT%H:%M:%SZ' DATETIME_CONVERSION_STRING_USEC = '%Y-%m-%dT%H:%M:%S.%fZ' OLD_DATETIME_CONVERSION_STRING = '%Y-%m-%d %H:%M:%S' # A subtype is the classification of the kind of event. SUBTYPE = constants.Namespace(tuples=[ # A file was blocked because it was unapproved. ('UNAPPROVED', 801), # A file was blocked because it was banned. ('BANNED', 802), # A file was blocked because of a user response to a prompt. ('PROMPTED_BLOCKED', 837), # A file was approved because of a user response to a prompt. ('PROMPTED_APPROVED', 838), # A file was blocked because of a timeout waiting for user response. ('PROMPTED_TIMED_OUT', 839)]) APPROVAL_STATE = constants.Namespace( tuples=[('UNAPPROVED', 1), ('APPROVED', 2), ('BANNED', 3)]) APPROVAL_STATE.DefineMap('TO_STR', { APPROVAL_STATE.UNAPPROVED: 'UNAPPROVED', APPROVAL_STATE.APPROVED: 'APPROVED', APPROVAL_STATE.BANNED: 'BANNED'}) SHA256_TYPE = constants.Namespace(tuples=[('REGULAR', 5), ('FUZZY', 6)]) SHA256_TYPE.DefineMap('TO_ID_TYPE', { SHA256_TYPE.REGULAR: constants.ID_TYPE.SHA256, SHA256_TYPE.FUZZY: constants.ID_TYPE.FUZZY_SHA256}) class FileFlags(object): """File flags for a Bit9 file catalog.""" MARKED_INSTALLER = 0x00004 DETECTED_INSTALLER = 0x00010 MARKED_NOT_INSTALLER = 0x10000 class UpvoteHostHealthProperties(object): """Host health properties.""" AGENT_CACHE_SIZE = 'agent_cache_size' AGENT_VERSION = 'agent_version' CONNECTED = 'connected' HAS_HEALTH_CHECK_ERRORS = 'has_health_check_errors' IS_INITIALIZING = 'is_initializing' LAST_REGISTER_DATE = 'last_register_date' NAME = 'name' POLICY_NAME = 'policy_name' POLICY_STATUS = 'policy_status' POLICY_STATUS_DETAILS = 'policy_status_details' UPGRADE_STATUS = 'upgrade_status'
62dbc06cc71f3f8a7e37df306f12fd1e96d86336
284f2bfaabf91899211e56063026857c496965cf
/users/mixins.py
9da8e98128b9d6e173ab42e6c559d7402fc769a5
[]
no_license
vanessa/building-tuirer
7b56bb9791659fcd04942d2c84a393c3c226f8c4
61d85df7d120387700b2e449a6fde5fb9ca7cfaa
refs/heads/master
2022-12-11T07:25:14.174448
2018-08-07T05:18:29
2018-08-07T05:18:29
142,210,249
18
0
null
2022-12-08T02:19:48
2018-07-24T20:35:34
Python
UTF-8
Python
false
false
706
py
from django.contrib.auth.mixins import LoginRequiredMixin from users.models import User from django.shortcuts import redirect from django.contrib import messages class ProfileAccessMixin(LoginRequiredMixin): def handle_no_permission(self): # Mostrando mensagens messages.error( self.request, 'Você não pode editar um perfil que não é seu!' ) return redirect('index') def dispatch(self, request, *args, **kwargs): user_pk = kwargs.get('pk') user = User.objects.get(pk=user_pk) if not user == request.user: return self.handle_no_permission() return super().dispatch(request, *args, **kwargs)
5463c902b0d00d5e90378a570e33e19db4e6b638
31a0b0749c30ff37c3a72592387f9d8195de4bd6
/release/ray_release/scripts/run_release_test.py
6729c6a6630ae109dcf0bf0513abdb49074b30e0
[ "BSD-3-Clause", "MIT", "Apache-2.0" ]
permissive
longshotsyndicate/ray
15100bad514b602a3fa39bfe205288e7bec75d90
3341fae573868338b665bcea8a1c4ee86b702751
refs/heads/master
2023-01-28T15:16:00.401509
2022-02-18T05:35:47
2022-02-18T05:35:47
163,961,795
1
1
Apache-2.0
2023-01-14T08:01:02
2019-01-03T11:03:35
Python
UTF-8
Python
false
false
3,840
py
import os import sys from typing import Optional import click from ray_release.aws import maybe_fetch_api_token from ray_release.config import ( read_and_validate_release_test_collection, find_test, as_smoke_test, DEFAULT_WHEEL_WAIT_TIMEOUT, ) from ray_release.exception import ReleaseTestCLIError, ReleaseTestError from ray_release.glue import run_release_test from ray_release.logger import logger from ray_release.reporter.legacy_rds import LegacyRDSReporter from ray_release.reporter.log import LogReporter from ray_release.result import Result from ray_release.wheels import find_and_wait_for_ray_wheels_url @click.command() @click.argument("test_name", required=True, type=str) @click.option( "--test-collection-file", default=None, type=str, help="File containing test configurations", ) @click.option( "--smoke-test", default=False, type=bool, is_flag=True, help="Finish quickly for testing", ) @click.option( "--report", default=False, type=bool, is_flag=True, help="Report results to database", ) @click.option( "--ray-wheels", default=None, type=str, help=( "Commit hash or URL to Ray wheels to be used for testing. " "If empty, defaults to the BUILDKITE_COMMIT env variable. " "Can be e.g. `master` to fetch latest wheels from the " "Ray master branch. Can also be `<repo_url>:<branch>` or " "`<repo_url>:<commit>` to specify a different repository to " "fetch wheels from, if available." ), ) @click.option( "--cluster-id", default=None, type=str, help="Cluster ID of existing cluster to be re-used.", ) @click.option( "--cluster-env-id", default=None, type=str, help="Cluster env ID of existing cluster env to be re-used.", ) @click.option( "--no-terminate", default=False, type=bool, is_flag=True, help="Do not terminate cluster after test.", ) def main( test_name: str, test_collection_file: Optional[str] = None, smoke_test: bool = False, report: bool = False, ray_wheels: Optional[str] = None, cluster_id: Optional[str] = None, cluster_env_id: Optional[str] = None, no_terminate: bool = False, ): test_collection_file = test_collection_file or os.path.join( os.path.dirname(__file__), "..", "..", "release_tests.yaml" ) test_collection = read_and_validate_release_test_collection(test_collection_file) test = find_test(test_collection, test_name) if not test: raise ReleaseTestCLIError( f"Test `{test_name}` not found in collection file: " f"{test_collection_file}" ) if smoke_test: test = as_smoke_test(test) ray_wheels_url = find_and_wait_for_ray_wheels_url( ray_wheels, timeout=DEFAULT_WHEEL_WAIT_TIMEOUT ) anyscale_project = os.environ.get("ANYSCALE_PROJECT", None) if not anyscale_project: raise ReleaseTestCLIError( "You have to set the ANYSCALE_PROJECT environment variable!" ) maybe_fetch_api_token() result = Result() reporters = [LogReporter()] if report: reporters.append(LegacyRDSReporter()) try: result = run_release_test( test, anyscale_project=anyscale_project, result=result, ray_wheels_url=ray_wheels_url, reporters=reporters, cluster_id=cluster_id, cluster_env_id=cluster_env_id, no_terminate=no_terminate, ) except ReleaseTestError as e: logger.exception(e) logger.info( f"Release test pipeline for test {test['name']} completed. " f"Returning with exit code = {result.return_code}" ) sys.exit(result.return_code) if __name__ == "__main__": main()
7d59995c77d2bfd70c4e9e24e6d9add01ba90bfb
705ca924bc63e8b324b847b21263f823219280e1
/apps/its_login_register/migrations/0006_job.py
6e32a697bb0da3c4dffe8fc695f96d8bda5c8dfd
[]
no_license
Komaldhall/Helping-Hand
46a28f70045029794b0feb502db1ce3c8ba721e3
a544b3812d3eb968233cfd28464c321f3bc997af
refs/heads/master
2020-04-16T09:29:15.308558
2019-01-13T08:44:26
2019-01-13T08:44:26
165,465,986
2
0
null
null
null
null
UTF-8
Python
false
false
948
py
# Generated by Django 2.0.7 on 2018-07-20 18:05 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('its_login_register', '0005_auto_20180720_1103'), ] operations = [ migrations.CreateModel( name='Job', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100)), ('desc', models.TextField()), ('location', models.CharField(max_length=100)), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='post', to='its_login_register.User')), ], ), ]
782369aa9e5911c9a60e033e2124834fa92cff51
87849e7794e223214b3e40896c708d4ea17f2a12
/tests/test_autogen_computed.py
1144560dca5c23996719909df7610844ed7d95cb
[ "MIT" ]
permissive
novafacing/alembic
0b6d9bfa9a66bd4883e863a6ce70a7094c9bb85b
29ff74c2678ab73f6c5a646477c840f5cdded234
refs/heads/master
2021-01-14T15:21:53.344810
2020-02-24T06:22:46
2020-02-24T06:22:46
242,660,622
0
0
MIT
2020-02-24T06:13:49
2020-02-24T06:13:49
null
UTF-8
Python
false
false
4,577
py
import sqlalchemy as sa from sqlalchemy import Column from sqlalchemy import Integer from sqlalchemy import MetaData from sqlalchemy import Table from alembic import testing from alembic.testing import config from alembic.testing import eq_ from alembic.testing import exclusions from alembic.testing import is_ from alembic.testing import is_true from alembic.testing import TestBase from ._autogen_fixtures import AutogenFixtureTest class AutogenerateComputedTest(AutogenFixtureTest, TestBase): __requires__ = ("computed_columns",) __backend__ = True def test_add_computed_column(self): m1 = MetaData() m2 = MetaData() Table("user", m1, Column("id", Integer, primary_key=True)) Table( "user", m2, Column("id", Integer, primary_key=True), Column("foo", Integer, sa.Computed("5")), ) diffs = self._fixture(m1, m2) eq_(diffs[0][0], "add_column") eq_(diffs[0][2], "user") eq_(diffs[0][3].name, "foo") c = diffs[0][3].computed is_true(isinstance(c, sa.Computed)) is_(c.persisted, None) eq_(str(c.sqltext), "5") def test_remove_computed_column(self): m1 = MetaData() m2 = MetaData() Table( "user", m1, Column("id", Integer, primary_key=True), Column("foo", Integer, sa.Computed("5")), ) Table("user", m2, Column("id", Integer, primary_key=True)) diffs = self._fixture(m1, m2) eq_(diffs[0][0], "remove_column") eq_(diffs[0][2], "user") c = diffs[0][3] eq_(c.name, "foo") is_(c.computed, None) if config.requirements.computed_reflects_as_server_default.enabled: is_true(isinstance(c.server_default, sa.DefaultClause)) eq_(str(c.server_default.arg.text), "5") else: is_(c.server_default, None) @testing.combinations( lambda: (sa.Computed("5"), sa.Computed("5")), lambda: (sa.Computed("bar*5"), sa.Computed("bar*5")), lambda: (sa.Computed("bar*5"), sa.Computed("bar * 42")), lambda: ( sa.Computed("bar*5"), sa.Computed("bar * 42", persisted=True), ), lambda: (None, sa.Computed("bar*5")), ( lambda: (sa.Computed("bar*5"), None), config.requirements.computed_doesnt_reflect_as_server_default, ), ) def test_computed_unchanged(self, test_case): arg_before, arg_after = testing.resolve_lambda(test_case, **locals()) m1 = MetaData() m2 = MetaData() arg_before = [] if arg_before is None else [arg_before] arg_after = [] if arg_after is None else [arg_after] Table( "user", m1, Column("id", Integer, primary_key=True), Column("bar", Integer), Column("foo", Integer, *arg_before), ) Table( "user", m2, Column("id", Integer, primary_key=True), Column("bar", Integer), Column("foo", Integer, *arg_after), ) diffs = self._fixture(m1, m2) eq_(len(diffs), 0) @config.requirements.computed_reflects_as_server_default def test_remove_computed_default_on_computed(self): """Asserts the current behavior which is that on PG and Oracle, the GENERATED ALWAYS AS is reflected as a server default which we can't tell is actually "computed", so these come out as a modification to the server default. """ m1 = MetaData() m2 = MetaData() Table( "user", m1, Column("id", Integer, primary_key=True), Column("bar", Integer), Column("foo", Integer, sa.Computed("bar + 42")), ) Table( "user", m2, Column("id", Integer, primary_key=True), Column("bar", Integer), Column("foo", Integer), ) diffs = self._fixture(m1, m2) eq_(diffs[0][0][0], "modify_default") eq_(diffs[0][0][2], "user") eq_(diffs[0][0][3], "foo") old = diffs[0][0][-2] new = diffs[0][0][-1] is_(new, None) is_true(isinstance(old, sa.DefaultClause)) if exclusions.against(config, "postgresql"): eq_(str(old.arg.text), "(bar + 42)") elif exclusions.against(config, "oracle"): eq_(str(old.arg.text), '"BAR"+42')
a94cf976e9587529566a28af7ecc54d87fa2a67e
733b5c3974dd135c390aedbb75ce863abfac0759
/portal/forms.py
92d9c7bf4f754d5a879255c286ec998952d941e0
[]
no_license
stepin-s/electroportal
eb3ade027d548969761a9482aaddbcfb81666d0d
d8228ff77805d405f56d18537fa17dcc945cf8a6
refs/heads/master
2022-12-02T12:33:29.163301
2020-08-17T07:05:24
2020-08-17T07:05:24
284,604,768
1
0
null
null
null
null
UTF-8
Python
false
false
298
py
from django import forms from .models import News from .models import Videos class NewsForm(forms.ModelForm): class Meta: model = News fields = ('title', 'text',) class VideosForm(forms.ModelForm): class Meta: model = Videos fields = ('title', 'text',)
27c70bdc66179c2000f823081a3d97b2140bc3e8
cf945fb7c961376bfcff37c80fe50312d4f32290
/Books/NetworkScraping_Py3/C2_NetworkHrefScraping/E2_HrefScarpingEntry.py
30aa204aa2cc770573683076ad0a29dac704befa
[]
no_license
lizhenQAZ/code_manage
faa1e805326cc8da8463e0f8820c9d092a04dddb
f98977d58a9febb8212652846314418bba37bfc7
refs/heads/master
2020-12-03T00:00:52.205238
2018-12-19T16:00:48
2018-12-19T16:00:48
95,968,266
1
1
null
null
null
null
UTF-8
Python
false
false
760
py
from urllib.request import urlopen from urllib.error import HTTPError from bs4 import BeautifulSoup import re url = 'https://en.wikipedia.org/wiki/Kevin_Bacon' rex = re.compile('^(/wiki/)((?!:).)*$') def gettitle(url_info): try: html = urlopen(url_info) except HTTPError as e: return None else: try: bsobj = BeautifulSoup(html.read()) title = bsobj.find('div', {'id': 'bodyContent'}).find_all('a', {'href': rex}) except AttributeError as e: return None else: return title # 获取a标签下词条属性href的链接地址 title_list = gettitle(url) for title_info in title_list: if 'href' in title_info.attrs: print(title_info.attrs['href'])