blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
9373c0cd05fa128d62a95b63054c5a5f5d3ec8dc
97426aa614cd9e07d53dd761b55472389a3ebd60
/python/scripts/marketsim/scheduler.py
e4bb7eb635eb6e453927fdca5173fbb21bee0838
[]
no_license
antonkolotaev/v2
e30a12ea710848838d85ee0b6bbd9224e40602d2
db64cd78577cebb366d0b3d849fdfbe694b97f94
refs/heads/master
2020-12-24T14:35:59.486012
2012-08-16T08:24:13
2012-08-16T08:24:13
10,887,220
1
6
null
null
null
null
UTF-8
Python
false
false
1,665
py
import heapq class _EventHandler(object): def __init__(self, handler): self._handler = handler self._cancelled = False def __call__(self): self._handler() def cancel(self): self._cancelled = True @property def cancelled(self): return self._cancelled def __repr__(self): return "("+repr(self._handler) + ("-> Cancelled" if self.cancelled else "") + ")" class Scheduler(object): def __init__(self): self.reset() def reset(self): self._elements = [] self._currentTime = 0. def __repr__(self): return "(t=" + str(self.currentTime) + ": " + repr(self._elements) + ")" @property def currentTime(self): return self._currentTime def schedule(self, actionTime, handler): assert actionTime >= self.currentTime eh = _EventHandler(handler) event = (actionTime, eh) heapq.heappush(self._elements, event) return eh.cancel def scheduleAfter(self, dt, handler): self.schedule(self.currentTime + dt, handler) def workTill(self, limitTime): while (self._elements <> [] and self._elements[0][0] < limitTime): (actionTime, eh) = heapq.heappop(self._elements) if not eh.cancelled: self._currentTime = actionTime eh() self._currentTime = limitTime def advance(self, dt): self.workTill(self.currentTime + dt) def process(self, intervalFunc, handler): def h(): handler() self.scheduleAfter(intervalFunc(), h) self.scheduleAfter(intervalFunc(), h) world = Scheduler()
90e2fd31f15d3ba613a447de0e0f4bb4e370a085
c67dc92dd0c4dc7661b9185ae7487abf086d4dc6
/appraisalproject/settings.py
4130eeb0d62b3e1e7b6a41d0a38d16ffe9f025bf
[ "MIT" ]
permissive
felkiriinya/Quality-Appraisal
1f14339eddaad256994501ab2aa5e1a128b16478
5b9e114d96816a9d146eca7646330da7d273b6ef
refs/heads/master
2023-01-22T22:31:30.052977
2020-12-09T14:13:41
2020-12-09T14:13:41
319,227,932
2
0
MIT
2020-12-08T18:46:21
2020-12-07T06:43:12
HTML
UTF-8
Python
false
false
4,515
py
""" Django settings for appraisalproject project. Generated by 'django-admin startproject' using Django 3.1.3. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ import os from pathlib import Path import cloudinary import cloudinary.api import cloudinary.uploader import django_heroku import dj_database_url from decouple import config,Csv # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ MODE=config("MODE", default="dev") SECRET_KEY = config('SECRET_KEY') DEBUG = config('DEBUG', default=False, cast=bool) # development if config('MODE')=="dev": DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': config('DB_NAME'), 'USER': config('DB_USER'), 'PASSWORD': config('DB_PASSWORD'), 'HOST': config('DB_HOST'), 'PORT': '', } } # production else: DATABASES = { 'default': dj_database_url.config( default=config('DATABASE_URL') ) } db_from_env = dj_database_url.config(conn_max_age=500) DATABASES['default'].update(db_from_env) ALLOWED_HOSTS = config('ALLOWED_HOSTS', cast=Csv()) # Application definition INSTALLED_APPS = [ 'bootstrap3', 'appraisalapp.apps.AppraisalappConfig', 'cloudinary', 'crispy_forms', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'whitenoise.middleware.WhiteNoiseMiddleware', 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'appraisalproject.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'appraisalproject.wsgi.application' cloudinary.config( cloud_name = "duhceor4r", api_key = "988552584751394", api_secret = "grnCc_TFy5WFWteERzMJRj3t88k" ) # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'NAME': 'appraisal', 'USER': 'felista', 'PASSWORD':'ilovemyself', } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'Africa/Nairobi' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/' STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage' STATIC_ROOT = os.path.join(BASE_DIR, 'staticfiles') STATICFILES_DIRS = [ os.path.join(BASE_DIR, "static"), ] MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') AUTH_PROFILE_MODULE = 'accounts.Profile' LOGOUT_REDIRECT_URL='/logout/' LOGIN_REDIRECT_URL='/' django_heroku.settings(locals())
dc8e427f0f9960b214b3229a6aad8301ef411940
e6ab424564e3d651ca2533ad7078dcd9c677d3b1
/tutorial-reference/Day 23/raw_input.py
289f09e2cc0cd7a886a1a9068d76b1906f432bd2
[ "MIT" ]
permissive
fineanmol/30-Days-of-Python
cd274c155d811a0d865dbe790f3d998626e45cae
e4b7b6272febf05ca7fc73652f141ca355e638f8
refs/heads/master
2022-10-16T07:07:14.889425
2022-10-01T21:47:33
2022-10-01T21:47:33
151,871,847
4
1
MIT
2022-10-01T21:47:34
2018-10-06T18:54:29
HTML
UTF-8
Python
false
false
122
py
from getpass import getpass name = input("What's your name?\n") pw = getpass("What's your password?\n") print(name, pw)
f2f8d6a4696af48a294dd7a3760a76943e0fa51a
e3fe234510d19c120d56f9a2876b7d508d306212
/16paddle/dssm_lm_rank/infer.py
46aade009862bd1903c9ce6ade3cb0918b75bd60
[ "Apache-2.0" ]
permissive
KEVINYZY/python-tutorial
78b348fb2fa2eb1c8c55d016affb6a9534332997
ae43536908eb8af56c34865f52a6e8644edc4fa3
refs/heads/master
2020-03-30T02:11:03.394073
2019-12-03T00:52:10
2019-12-03T00:52:10
150,617,875
0
0
Apache-2.0
2018-09-27T16:39:29
2018-09-27T16:39:28
null
UTF-8
Python
false
false
2,827
py
# -*- coding: utf-8 -*- # Author: XuMing <[email protected]> # Data: 17/10/18 # Brief: 预测 import os import sys import paddle.v2 as paddle import config import reader from network import dssm_lm from utils import logger, load_dict, load_reverse_dict def infer(model_path, dic_path, infer_path, prediction_output_path, rnn_type="gru", batch_size=1): logger.info("begin to predict...") # check files assert os.path.exists(model_path), "trained model not exits." assert os.path.exists(dic_path), " word dictionary file not exist." assert os.path.exists(infer_path), "infer file not exist." logger.info("load word dictionary.") word_dict = load_dict(dic_path) word_reverse_dict = load_reverse_dict(dic_path) logger.info("dictionary size = %d" % (len(word_dict))) try: word_dict["<unk>"] except KeyError: logger.fatal("the word dictionary must contain <unk> token.") sys.exit(-1) # initialize PaddlePaddle paddle.init(use_gpu=config.use_gpu, trainer_count=config.num_workers) # load parameter logger.info("load model parameters from %s " % model_path) parameters = paddle.parameters.Parameters.from_tar( open(model_path, "r")) # load the trained model prediction = dssm_lm( vocab_sizes=[len(word_dict), len(word_dict)], emb_dim=config.emb_dim, hidden_size=config.hidden_size, stacked_rnn_num=config.stacked_rnn_num, rnn_type=rnn_type, share_semantic_generator=config.share_semantic_generator, share_embed=config.share_embed, is_infer=True) inferer = paddle.inference.Inference( output_layer=prediction, parameters=parameters) feeding = {"left_input": 0, "left_target": 1, "right_input": 2, "right_target": 3} logger.info("infer data...") # define reader reader_args = { "file_path": infer_path, "word_dict": word_dict, "is_infer": True, } infer_reader = paddle.batch(reader.rnn_reader(**reader_args), batch_size=batch_size) logger.warning("output prediction to %s" % prediction_output_path) with open(prediction_output_path, "w")as f: for id, item in enumerate(infer_reader()): left_text = " ".join([word_reverse_dict[id] for id in item[0][0]]) right_text = " ".join([word_reverse_dict[id] for id in item[0][2]]) probs = inferer.infer(input=item, field=["value"], feeding=feeding) f.write("%f\t%f\t%s\t%s" % (probs[0], probs[1], left_text, right_text)) f.write("\n") if __name__ == "__main__": infer(model_path=config.model_path, dic_path=config.dic_path, infer_path=config.infer_path, prediction_output_path=config.prediction_output_path, rnn_type=config.rnn_type)
84af5643294405a7ff2847ab15b144cbe2e0b180
781e2692049e87a4256320c76e82a19be257a05d
/all_data/exercism_data/python/leap/54a77e4df04741779d39c341ac4e009d.py
3f2016251f8855d98df3f0166caff580674caeeb
[]
no_license
itsolutionscorp/AutoStyle-Clustering
54bde86fe6dbad35b568b38cfcb14c5ffaab51b0
be0e2f635a7558f56c61bc0b36c6146b01d1e6e6
refs/heads/master
2020-12-11T07:27:19.291038
2016-03-16T03:18:00
2016-03-16T03:18:42
59,454,921
4
0
null
2016-05-23T05:40:56
2016-05-23T05:40:56
null
UTF-8
Python
false
false
90
py
def is_leap_year(year): return bool((not year % 4 and year % 100) or not year % 400)
6f115c7096d8ae1c99f1016d22ed8d128fa46b32
75d8667735782cd1d0eb4877e52c89da5cd92dde
/nova/tests/unit/virt/vmwareapi/test_vif.py
5b4fb19c12b3b518d45107c750fd29f41ecc21e7
[ "Apache-2.0" ]
permissive
bopopescu/nova-token
ffecfd3ec561936b7d9d7e691bc57383cde05436
ec98f69dea7b3e2b9013b27fd55a2c1a1ac6bfb2
refs/heads/master
2022-11-22T09:53:31.073483
2016-05-14T02:47:01
2016-05-15T22:02:55
282,105,621
0
0
Apache-2.0
2020-07-24T02:42:19
2020-07-24T02:42:18
null
UTF-8
Python
false
false
31,662
py
begin_unit comment|'# Copyright 2013 Canonical Corp.' nl|'\n' comment|'# All Rights Reserved.' nl|'\n' comment|'#' nl|'\n' comment|'# Licensed under the Apache License, Version 2.0 (the "License"); you may' nl|'\n' comment|'# not use this file except in compliance with the License. You may obtain' nl|'\n' comment|'# a copy of the License at' nl|'\n' comment|'#' nl|'\n' comment|'# http://www.apache.org/licenses/LICENSE-2.0' nl|'\n' comment|'#' nl|'\n' comment|'# Unless required by applicable law or agreed to in writing, software' nl|'\n' comment|'# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT' nl|'\n' comment|'# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the' nl|'\n' comment|'# License for the specific language governing permissions and limitations' nl|'\n' comment|'# under the License.' nl|'\n' nl|'\n' name|'import' name|'mock' newline|'\n' name|'from' name|'oslo_vmware' name|'import' name|'exceptions' name|'as' name|'vexc' newline|'\n' name|'from' name|'oslo_vmware' name|'import' name|'vim_util' newline|'\n' nl|'\n' name|'from' name|'nova' name|'import' name|'exception' newline|'\n' name|'from' name|'nova' op|'.' name|'network' name|'import' name|'model' name|'as' name|'network_model' newline|'\n' name|'from' name|'nova' name|'import' name|'test' newline|'\n' name|'from' name|'nova' op|'.' name|'tests' op|'.' name|'unit' name|'import' name|'matchers' newline|'\n' name|'from' name|'nova' op|'.' name|'tests' op|'.' name|'unit' name|'import' name|'utils' newline|'\n' name|'from' name|'nova' op|'.' name|'tests' op|'.' name|'unit' op|'.' name|'virt' op|'.' name|'vmwareapi' name|'import' name|'fake' newline|'\n' name|'from' name|'nova' op|'.' name|'virt' op|'.' name|'vmwareapi' name|'import' name|'constants' newline|'\n' name|'from' name|'nova' op|'.' name|'virt' op|'.' name|'vmwareapi' name|'import' name|'network_util' newline|'\n' name|'from' name|'nova' op|'.' name|'virt' op|'.' name|'vmwareapi' name|'import' name|'vif' newline|'\n' name|'from' name|'nova' op|'.' name|'virt' op|'.' name|'vmwareapi' name|'import' name|'vm_util' newline|'\n' nl|'\n' nl|'\n' DECL|class|VMwareVifTestCase name|'class' name|'VMwareVifTestCase' op|'(' name|'test' op|'.' name|'NoDBTestCase' op|')' op|':' newline|'\n' DECL|member|setUp indent|' ' name|'def' name|'setUp' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'super' op|'(' name|'VMwareVifTestCase' op|',' name|'self' op|')' op|'.' name|'setUp' op|'(' op|')' newline|'\n' name|'self' op|'.' name|'flags' op|'(' name|'vlan_interface' op|'=' string|"'vmnet0'" op|',' name|'group' op|'=' string|"'vmware'" op|')' newline|'\n' name|'network' op|'=' name|'network_model' op|'.' name|'Network' op|'(' name|'id' op|'=' number|'0' op|',' nl|'\n' name|'bridge' op|'=' string|"'fa0'" op|',' nl|'\n' name|'label' op|'=' string|"'fake'" op|',' nl|'\n' name|'vlan' op|'=' number|'3' op|',' nl|'\n' name|'bridge_interface' op|'=' string|"'eth0'" op|',' nl|'\n' name|'injected' op|'=' name|'True' op|')' newline|'\n' name|'self' op|'.' name|'_network' op|'=' name|'network' newline|'\n' name|'self' op|'.' name|'vif' op|'=' name|'network_model' op|'.' name|'NetworkInfo' op|'(' op|'[' nl|'\n' name|'network_model' op|'.' name|'VIF' op|'(' name|'id' op|'=' name|'None' op|',' nl|'\n' name|'address' op|'=' string|"'DE:AD:BE:EF:00:00'" op|',' nl|'\n' name|'network' op|'=' name|'network' op|',' nl|'\n' name|'type' op|'=' name|'None' op|',' nl|'\n' name|'devname' op|'=' name|'None' op|',' nl|'\n' name|'ovs_interfaceid' op|'=' name|'None' op|',' nl|'\n' name|'rxtx_cap' op|'=' number|'3' op|')' nl|'\n' op|']' op|')' op|'[' number|'0' op|']' newline|'\n' name|'self' op|'.' name|'session' op|'=' name|'fake' op|'.' name|'FakeSession' op|'(' op|')' newline|'\n' name|'self' op|'.' name|'cluster' op|'=' name|'None' newline|'\n' nl|'\n' DECL|member|tearDown dedent|'' name|'def' name|'tearDown' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'super' op|'(' name|'VMwareVifTestCase' op|',' name|'self' op|')' op|'.' name|'tearDown' op|'(' op|')' newline|'\n' nl|'\n' DECL|member|test_ensure_vlan_bridge dedent|'' name|'def' name|'test_ensure_vlan_bridge' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'self' op|'.' name|'mox' op|'.' name|'StubOutWithMock' op|'(' name|'network_util' op|',' string|"'get_network_with_the_name'" op|')' newline|'\n' name|'self' op|'.' name|'mox' op|'.' name|'StubOutWithMock' op|'(' name|'network_util' op|',' nl|'\n' string|"'get_vswitch_for_vlan_interface'" op|')' newline|'\n' name|'self' op|'.' name|'mox' op|'.' name|'StubOutWithMock' op|'(' name|'network_util' op|',' nl|'\n' string|"'check_if_vlan_interface_exists'" op|')' newline|'\n' name|'self' op|'.' name|'mox' op|'.' name|'StubOutWithMock' op|'(' name|'network_util' op|',' string|"'create_port_group'" op|')' newline|'\n' name|'network_util' op|'.' name|'get_network_with_the_name' op|'(' name|'self' op|'.' name|'session' op|',' string|"'fa0'" op|',' nl|'\n' name|'self' op|'.' name|'cluster' op|')' op|'.' name|'AndReturn' op|'(' name|'None' op|')' newline|'\n' name|'network_util' op|'.' name|'get_vswitch_for_vlan_interface' op|'(' name|'self' op|'.' name|'session' op|',' string|"'vmnet0'" op|',' nl|'\n' name|'self' op|'.' name|'cluster' op|')' op|'.' name|'AndReturn' op|'(' string|"'vmnet0'" op|')' newline|'\n' name|'network_util' op|'.' name|'check_if_vlan_interface_exists' op|'(' name|'self' op|'.' name|'session' op|',' string|"'vmnet0'" op|',' nl|'\n' name|'self' op|'.' name|'cluster' op|')' op|'.' name|'AndReturn' op|'(' name|'True' op|')' newline|'\n' name|'network_util' op|'.' name|'create_port_group' op|'(' name|'self' op|'.' name|'session' op|',' string|"'fa0'" op|',' string|"'vmnet0'" op|',' number|'3' op|',' nl|'\n' name|'self' op|'.' name|'cluster' op|')' newline|'\n' name|'network_util' op|'.' name|'get_network_with_the_name' op|'(' name|'self' op|'.' name|'session' op|',' string|"'fa0'" op|',' name|'None' op|')' newline|'\n' nl|'\n' name|'self' op|'.' name|'mox' op|'.' name|'ReplayAll' op|'(' op|')' newline|'\n' name|'vif' op|'.' name|'ensure_vlan_bridge' op|'(' name|'self' op|'.' name|'session' op|',' name|'self' op|'.' name|'vif' op|',' name|'create_vlan' op|'=' name|'True' op|')' newline|'\n' nl|'\n' comment|"# FlatDHCP network mode without vlan - network doesn't exist with the host" nl|'\n' DECL|member|test_ensure_vlan_bridge_without_vlan dedent|'' name|'def' name|'test_ensure_vlan_bridge_without_vlan' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'self' op|'.' name|'mox' op|'.' name|'StubOutWithMock' op|'(' name|'network_util' op|',' string|"'get_network_with_the_name'" op|')' newline|'\n' name|'self' op|'.' name|'mox' op|'.' name|'StubOutWithMock' op|'(' name|'network_util' op|',' nl|'\n' string|"'get_vswitch_for_vlan_interface'" op|')' newline|'\n' name|'self' op|'.' name|'mox' op|'.' name|'StubOutWithMock' op|'(' name|'network_util' op|',' nl|'\n' string|"'check_if_vlan_interface_exists'" op|')' newline|'\n' name|'self' op|'.' name|'mox' op|'.' name|'StubOutWithMock' op|'(' name|'network_util' op|',' string|"'create_port_group'" op|')' newline|'\n' nl|'\n' name|'network_util' op|'.' name|'get_network_with_the_name' op|'(' name|'self' op|'.' name|'session' op|',' string|"'fa0'" op|',' nl|'\n' name|'self' op|'.' name|'cluster' op|')' op|'.' name|'AndReturn' op|'(' name|'None' op|')' newline|'\n' name|'network_util' op|'.' name|'get_vswitch_for_vlan_interface' op|'(' name|'self' op|'.' name|'session' op|',' string|"'vmnet0'" op|',' nl|'\n' name|'self' op|'.' name|'cluster' op|')' op|'.' name|'AndReturn' op|'(' string|"'vmnet0'" op|')' newline|'\n' name|'network_util' op|'.' name|'check_if_vlan_interface_exists' op|'(' name|'self' op|'.' name|'session' op|',' string|"'vmnet0'" op|',' nl|'\n' name|'self' op|'.' name|'cluster' op|')' op|'.' name|'AndReturn' op|'(' name|'True' op|')' newline|'\n' name|'network_util' op|'.' name|'create_port_group' op|'(' name|'self' op|'.' name|'session' op|',' string|"'fa0'" op|',' string|"'vmnet0'" op|',' number|'0' op|',' nl|'\n' name|'self' op|'.' name|'cluster' op|')' newline|'\n' name|'network_util' op|'.' name|'get_network_with_the_name' op|'(' name|'self' op|'.' name|'session' op|',' string|"'fa0'" op|',' name|'None' op|')' newline|'\n' name|'self' op|'.' name|'mox' op|'.' name|'ReplayAll' op|'(' op|')' newline|'\n' name|'vif' op|'.' name|'ensure_vlan_bridge' op|'(' name|'self' op|'.' name|'session' op|',' name|'self' op|'.' name|'vif' op|',' name|'create_vlan' op|'=' name|'False' op|')' newline|'\n' nl|'\n' comment|'# FlatDHCP network mode without vlan - network exists with the host' nl|'\n' comment|'# Get vswitch and check vlan interface should not be called' nl|'\n' DECL|member|test_ensure_vlan_bridge_with_network dedent|'' name|'def' name|'test_ensure_vlan_bridge_with_network' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'self' op|'.' name|'mox' op|'.' name|'StubOutWithMock' op|'(' name|'network_util' op|',' string|"'get_network_with_the_name'" op|')' newline|'\n' name|'self' op|'.' name|'mox' op|'.' name|'StubOutWithMock' op|'(' name|'network_util' op|',' nl|'\n' string|"'get_vswitch_for_vlan_interface'" op|')' newline|'\n' name|'self' op|'.' name|'mox' op|'.' name|'StubOutWithMock' op|'(' name|'network_util' op|',' nl|'\n' string|"'check_if_vlan_interface_exists'" op|')' newline|'\n' name|'self' op|'.' name|'mox' op|'.' name|'StubOutWithMock' op|'(' name|'network_util' op|',' string|"'create_port_group'" op|')' newline|'\n' name|'vm_network' op|'=' op|'{' string|"'name'" op|':' string|"'VM Network'" op|',' string|"'type'" op|':' string|"'Network'" op|'}' newline|'\n' name|'network_util' op|'.' name|'get_network_with_the_name' op|'(' name|'self' op|'.' name|'session' op|',' string|"'fa0'" op|',' nl|'\n' name|'self' op|'.' name|'cluster' op|')' op|'.' name|'AndReturn' op|'(' name|'vm_network' op|')' newline|'\n' name|'self' op|'.' name|'mox' op|'.' name|'ReplayAll' op|'(' op|')' newline|'\n' name|'vif' op|'.' name|'ensure_vlan_bridge' op|'(' name|'self' op|'.' name|'session' op|',' name|'self' op|'.' name|'vif' op|',' name|'create_vlan' op|'=' name|'False' op|')' newline|'\n' nl|'\n' comment|'# Flat network mode with DVS' nl|'\n' DECL|member|test_ensure_vlan_bridge_with_existing_dvs dedent|'' name|'def' name|'test_ensure_vlan_bridge_with_existing_dvs' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'network_ref' op|'=' op|'{' string|"'dvpg'" op|':' string|"'dvportgroup-2062'" op|',' nl|'\n' string|"'type'" op|':' string|"'DistributedVirtualPortgroup'" op|'}' newline|'\n' name|'self' op|'.' name|'mox' op|'.' name|'StubOutWithMock' op|'(' name|'network_util' op|',' string|"'get_network_with_the_name'" op|')' newline|'\n' name|'self' op|'.' name|'mox' op|'.' name|'StubOutWithMock' op|'(' name|'network_util' op|',' nl|'\n' string|"'get_vswitch_for_vlan_interface'" op|')' newline|'\n' name|'self' op|'.' name|'mox' op|'.' name|'StubOutWithMock' op|'(' name|'network_util' op|',' nl|'\n' string|"'check_if_vlan_interface_exists'" op|')' newline|'\n' name|'self' op|'.' name|'mox' op|'.' name|'StubOutWithMock' op|'(' name|'network_util' op|',' string|"'create_port_group'" op|')' newline|'\n' nl|'\n' name|'network_util' op|'.' name|'get_network_with_the_name' op|'(' name|'self' op|'.' name|'session' op|',' string|"'fa0'" op|',' nl|'\n' name|'self' op|'.' name|'cluster' op|')' op|'.' name|'AndReturn' op|'(' name|'network_ref' op|')' newline|'\n' name|'self' op|'.' name|'mox' op|'.' name|'ReplayAll' op|'(' op|')' newline|'\n' name|'ref' op|'=' name|'vif' op|'.' name|'ensure_vlan_bridge' op|'(' name|'self' op|'.' name|'session' op|',' nl|'\n' name|'self' op|'.' name|'vif' op|',' nl|'\n' name|'create_vlan' op|'=' name|'False' op|')' newline|'\n' name|'self' op|'.' name|'assertThat' op|'(' name|'ref' op|',' name|'matchers' op|'.' name|'DictMatches' op|'(' name|'network_ref' op|')' op|')' newline|'\n' nl|'\n' DECL|member|test_get_network_ref_flat_dhcp dedent|'' name|'def' name|'test_get_network_ref_flat_dhcp' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'self' op|'.' name|'mox' op|'.' name|'StubOutWithMock' op|'(' name|'vif' op|',' string|"'ensure_vlan_bridge'" op|')' newline|'\n' name|'vif' op|'.' name|'ensure_vlan_bridge' op|'(' name|'self' op|'.' name|'session' op|',' name|'self' op|'.' name|'vif' op|',' name|'cluster' op|'=' name|'self' op|'.' name|'cluster' op|',' nl|'\n' name|'create_vlan' op|'=' name|'False' op|')' newline|'\n' name|'self' op|'.' name|'mox' op|'.' name|'ReplayAll' op|'(' op|')' newline|'\n' name|'vif' op|'.' name|'get_network_ref' op|'(' name|'self' op|'.' name|'session' op|',' name|'self' op|'.' name|'cluster' op|',' name|'self' op|'.' name|'vif' op|',' name|'False' op|')' newline|'\n' nl|'\n' DECL|member|test_get_network_ref_bridge dedent|'' name|'def' name|'test_get_network_ref_bridge' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'self' op|'.' name|'mox' op|'.' name|'StubOutWithMock' op|'(' name|'vif' op|',' string|"'ensure_vlan_bridge'" op|')' newline|'\n' name|'vif' op|'.' name|'ensure_vlan_bridge' op|'(' name|'self' op|'.' name|'session' op|',' name|'self' op|'.' name|'vif' op|',' name|'cluster' op|'=' name|'self' op|'.' name|'cluster' op|',' nl|'\n' name|'create_vlan' op|'=' name|'True' op|')' newline|'\n' name|'self' op|'.' name|'mox' op|'.' name|'ReplayAll' op|'(' op|')' newline|'\n' name|'network' op|'=' name|'network_model' op|'.' name|'Network' op|'(' name|'id' op|'=' number|'0' op|',' nl|'\n' name|'bridge' op|'=' string|"'fa0'" op|',' nl|'\n' name|'label' op|'=' string|"'fake'" op|',' nl|'\n' name|'vlan' op|'=' number|'3' op|',' nl|'\n' name|'bridge_interface' op|'=' string|"'eth0'" op|',' nl|'\n' name|'injected' op|'=' name|'True' op|',' nl|'\n' name|'should_create_vlan' op|'=' name|'True' op|')' newline|'\n' name|'self' op|'.' name|'vif' op|'=' name|'network_model' op|'.' name|'NetworkInfo' op|'(' op|'[' nl|'\n' name|'network_model' op|'.' name|'VIF' op|'(' name|'id' op|'=' name|'None' op|',' nl|'\n' name|'address' op|'=' string|"'DE:AD:BE:EF:00:00'" op|',' nl|'\n' name|'network' op|'=' name|'network' op|',' nl|'\n' name|'type' op|'=' name|'None' op|',' nl|'\n' name|'devname' op|'=' name|'None' op|',' nl|'\n' name|'ovs_interfaceid' op|'=' name|'None' op|',' nl|'\n' name|'rxtx_cap' op|'=' number|'3' op|')' nl|'\n' op|']' op|')' op|'[' number|'0' op|']' newline|'\n' name|'vif' op|'.' name|'get_network_ref' op|'(' name|'self' op|'.' name|'session' op|',' name|'self' op|'.' name|'cluster' op|',' name|'self' op|'.' name|'vif' op|',' name|'False' op|')' newline|'\n' nl|'\n' DECL|member|test_create_port_group_already_exists dedent|'' name|'def' name|'test_create_port_group_already_exists' op|'(' name|'self' op|')' op|':' newline|'\n' DECL|function|fake_call_method indent|' ' name|'def' name|'fake_call_method' op|'(' name|'module' op|',' name|'method' op|',' op|'*' name|'args' op|',' op|'**' name|'kwargs' op|')' op|':' newline|'\n' indent|' ' name|'if' name|'method' op|'==' string|"'AddPortGroup'" op|':' newline|'\n' indent|' ' name|'raise' name|'vexc' op|'.' name|'AlreadyExistsException' op|'(' op|')' newline|'\n' nl|'\n' dedent|'' dedent|'' name|'with' name|'test' op|'.' name|'nested' op|'(' nl|'\n' name|'mock' op|'.' name|'patch' op|'.' name|'object' op|'(' name|'vm_util' op|',' string|"'get_add_vswitch_port_group_spec'" op|')' op|',' nl|'\n' name|'mock' op|'.' name|'patch' op|'.' name|'object' op|'(' name|'vm_util' op|',' string|"'get_host_ref'" op|')' op|',' nl|'\n' name|'mock' op|'.' name|'patch' op|'.' name|'object' op|'(' name|'self' op|'.' name|'session' op|',' string|"'_call_method'" op|',' nl|'\n' name|'fake_call_method' op|')' nl|'\n' op|')' name|'as' op|'(' name|'_add_vswitch' op|',' name|'_get_host' op|',' name|'_call_method' op|')' op|':' newline|'\n' indent|' ' name|'network_util' op|'.' name|'create_port_group' op|'(' name|'self' op|'.' name|'session' op|',' string|"'pg_name'" op|',' nl|'\n' string|"'vswitch_name'" op|',' name|'vlan_id' op|'=' number|'0' op|',' nl|'\n' name|'cluster' op|'=' name|'None' op|')' newline|'\n' nl|'\n' DECL|member|test_create_port_group_exception dedent|'' dedent|'' name|'def' name|'test_create_port_group_exception' op|'(' name|'self' op|')' op|':' newline|'\n' DECL|function|fake_call_method indent|' ' name|'def' name|'fake_call_method' op|'(' name|'module' op|',' name|'method' op|',' op|'*' name|'args' op|',' op|'**' name|'kwargs' op|')' op|':' newline|'\n' indent|' ' name|'if' name|'method' op|'==' string|"'AddPortGroup'" op|':' newline|'\n' indent|' ' name|'raise' name|'vexc' op|'.' name|'VMwareDriverException' op|'(' op|')' newline|'\n' nl|'\n' dedent|'' dedent|'' name|'with' name|'test' op|'.' name|'nested' op|'(' nl|'\n' name|'mock' op|'.' name|'patch' op|'.' name|'object' op|'(' name|'vm_util' op|',' string|"'get_add_vswitch_port_group_spec'" op|')' op|',' nl|'\n' name|'mock' op|'.' name|'patch' op|'.' name|'object' op|'(' name|'vm_util' op|',' string|"'get_host_ref'" op|')' op|',' nl|'\n' name|'mock' op|'.' name|'patch' op|'.' name|'object' op|'(' name|'self' op|'.' name|'session' op|',' string|"'_call_method'" op|',' nl|'\n' name|'fake_call_method' op|')' nl|'\n' op|')' name|'as' op|'(' name|'_add_vswitch' op|',' name|'_get_host' op|',' name|'_call_method' op|')' op|':' newline|'\n' indent|' ' name|'self' op|'.' name|'assertRaises' op|'(' name|'vexc' op|'.' name|'VMwareDriverException' op|',' nl|'\n' name|'network_util' op|'.' name|'create_port_group' op|',' nl|'\n' name|'self' op|'.' name|'session' op|',' string|"'pg_name'" op|',' nl|'\n' string|"'vswitch_name'" op|',' name|'vlan_id' op|'=' number|'0' op|',' nl|'\n' name|'cluster' op|'=' name|'None' op|')' newline|'\n' nl|'\n' DECL|member|test_get_vif_info_none dedent|'' dedent|'' name|'def' name|'test_get_vif_info_none' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'vif_info' op|'=' name|'vif' op|'.' name|'get_vif_info' op|'(' string|"'fake_session'" op|',' string|"'fake_cluster'" op|',' nl|'\n' string|"'is_neutron'" op|',' string|"'fake_model'" op|',' name|'None' op|')' newline|'\n' name|'self' op|'.' name|'assertEqual' op|'(' op|'[' op|']' op|',' name|'vif_info' op|')' newline|'\n' nl|'\n' DECL|member|test_get_vif_info_empty_list dedent|'' name|'def' name|'test_get_vif_info_empty_list' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'vif_info' op|'=' name|'vif' op|'.' name|'get_vif_info' op|'(' string|"'fake_session'" op|',' string|"'fake_cluster'" op|',' nl|'\n' string|"'is_neutron'" op|',' string|"'fake_model'" op|',' op|'[' op|']' op|')' newline|'\n' name|'self' op|'.' name|'assertEqual' op|'(' op|'[' op|']' op|',' name|'vif_info' op|')' newline|'\n' nl|'\n' dedent|'' op|'@' name|'mock' op|'.' name|'patch' op|'.' name|'object' op|'(' name|'vif' op|',' string|"'get_network_ref'" op|',' name|'return_value' op|'=' string|"'fake_ref'" op|')' newline|'\n' DECL|member|test_get_vif_info name|'def' name|'test_get_vif_info' op|'(' name|'self' op|',' name|'mock_get_network_ref' op|')' op|':' newline|'\n' indent|' ' name|'network_info' op|'=' name|'utils' op|'.' name|'get_test_network_info' op|'(' op|')' newline|'\n' name|'vif_info' op|'=' name|'vif' op|'.' name|'get_vif_info' op|'(' string|"'fake_session'" op|',' string|"'fake_cluster'" op|',' nl|'\n' string|"'is_neutron'" op|',' string|"'fake_model'" op|',' name|'network_info' op|')' newline|'\n' name|'expected' op|'=' op|'[' op|'{' string|"'iface_id'" op|':' name|'utils' op|'.' name|'FAKE_VIF_UUID' op|',' nl|'\n' string|"'mac_address'" op|':' name|'utils' op|'.' name|'FAKE_VIF_MAC' op|',' nl|'\n' string|"'network_name'" op|':' name|'utils' op|'.' name|'FAKE_NETWORK_BRIDGE' op|',' nl|'\n' string|"'network_ref'" op|':' string|"'fake_ref'" op|',' nl|'\n' string|"'vif_model'" op|':' string|"'fake_model'" op|'}' op|']' newline|'\n' name|'self' op|'.' name|'assertEqual' op|'(' name|'expected' op|',' name|'vif_info' op|')' newline|'\n' nl|'\n' dedent|'' op|'@' name|'mock' op|'.' name|'patch' op|'.' name|'object' op|'(' name|'vif' op|',' string|"'_check_ovs_supported_version'" op|')' newline|'\n' DECL|member|test_get_neutron_network_ovs_integration_bridge name|'def' name|'test_get_neutron_network_ovs_integration_bridge' op|'(' name|'self' op|',' nl|'\n' name|'mock_check' op|')' op|':' newline|'\n' indent|' ' name|'self' op|'.' name|'flags' op|'(' name|'integration_bridge' op|'=' string|"'fake-bridge-id'" op|',' name|'group' op|'=' string|"'vmware'" op|')' newline|'\n' name|'vif_info' op|'=' name|'network_model' op|'.' name|'NetworkInfo' op|'(' op|'[' nl|'\n' name|'network_model' op|'.' name|'VIF' op|'(' name|'type' op|'=' name|'network_model' op|'.' name|'VIF_TYPE_OVS' op|',' nl|'\n' name|'address' op|'=' string|"'DE:AD:BE:EF:00:00'" op|',' nl|'\n' name|'network' op|'=' name|'self' op|'.' name|'_network' op|')' op|']' nl|'\n' op|')' op|'[' number|'0' op|']' newline|'\n' name|'network_ref' op|'=' name|'vif' op|'.' name|'_get_neutron_network' op|'(' string|"'fake-session'" op|',' nl|'\n' string|"'fake-cluster'" op|',' nl|'\n' name|'vif_info' op|')' newline|'\n' name|'expected_ref' op|'=' op|'{' string|"'type'" op|':' string|"'OpaqueNetwork'" op|',' nl|'\n' string|"'network-id'" op|':' string|"'fake-bridge-id'" op|',' nl|'\n' string|"'network-type'" op|':' string|"'opaque'" op|',' nl|'\n' string|"'use-external-id'" op|':' name|'False' op|'}' newline|'\n' name|'self' op|'.' name|'assertEqual' op|'(' name|'expected_ref' op|',' name|'network_ref' op|')' newline|'\n' name|'mock_check' op|'.' name|'assert_called_once_with' op|'(' string|"'fake-session'" op|')' newline|'\n' nl|'\n' dedent|'' op|'@' name|'mock' op|'.' name|'patch' op|'.' name|'object' op|'(' name|'vif' op|',' string|"'_check_ovs_supported_version'" op|')' newline|'\n' DECL|member|test_get_neutron_network_ovs name|'def' name|'test_get_neutron_network_ovs' op|'(' name|'self' op|',' name|'mock_check' op|')' op|':' newline|'\n' indent|' ' name|'vif_info' op|'=' name|'network_model' op|'.' name|'NetworkInfo' op|'(' op|'[' nl|'\n' name|'network_model' op|'.' name|'VIF' op|'(' name|'type' op|'=' name|'network_model' op|'.' name|'VIF_TYPE_OVS' op|',' nl|'\n' name|'address' op|'=' string|"'DE:AD:BE:EF:00:00'" op|',' nl|'\n' name|'network' op|'=' name|'self' op|'.' name|'_network' op|')' op|']' nl|'\n' op|')' op|'[' number|'0' op|']' newline|'\n' name|'network_ref' op|'=' name|'vif' op|'.' name|'_get_neutron_network' op|'(' string|"'fake-session'" op|',' nl|'\n' string|"'fake-cluster'" op|',' nl|'\n' name|'vif_info' op|')' newline|'\n' name|'expected_ref' op|'=' op|'{' string|"'type'" op|':' string|"'OpaqueNetwork'" op|',' nl|'\n' string|"'network-id'" op|':' number|'0' op|',' nl|'\n' string|"'network-type'" op|':' string|"'nsx.LogicalSwitch'" op|',' nl|'\n' string|"'use-external-id'" op|':' name|'True' op|'}' newline|'\n' name|'self' op|'.' name|'assertEqual' op|'(' name|'expected_ref' op|',' name|'network_ref' op|')' newline|'\n' name|'mock_check' op|'.' name|'assert_called_once_with' op|'(' string|"'fake-session'" op|')' newline|'\n' nl|'\n' dedent|'' op|'@' name|'mock' op|'.' name|'patch' op|'.' name|'object' op|'(' name|'vif' op|',' string|"'_check_ovs_supported_version'" op|')' newline|'\n' DECL|member|test_get_neutron_network_ovs_logical_switch_id name|'def' name|'test_get_neutron_network_ovs_logical_switch_id' op|'(' name|'self' op|',' name|'mock_check' op|')' op|':' newline|'\n' indent|' ' name|'vif_info' op|'=' name|'network_model' op|'.' name|'NetworkInfo' op|'(' op|'[' nl|'\n' name|'network_model' op|'.' name|'VIF' op|'(' name|'type' op|'=' name|'network_model' op|'.' name|'VIF_TYPE_OVS' op|',' nl|'\n' name|'address' op|'=' string|"'DE:AD:BE:EF:00:00'" op|',' nl|'\n' name|'network' op|'=' name|'self' op|'.' name|'_network' op|',' nl|'\n' name|'details' op|'=' op|'{' string|"'nsx-logical-switch-id'" op|':' nl|'\n' string|"'fake-nsx-id'" op|'}' op|')' op|']' nl|'\n' op|')' op|'[' number|'0' op|']' newline|'\n' name|'network_ref' op|'=' name|'vif' op|'.' name|'_get_neutron_network' op|'(' string|"'fake-session'" op|',' nl|'\n' string|"'fake-cluster'" op|',' nl|'\n' name|'vif_info' op|')' newline|'\n' name|'expected_ref' op|'=' op|'{' string|"'type'" op|':' string|"'OpaqueNetwork'" op|',' nl|'\n' string|"'network-id'" op|':' string|"'fake-nsx-id'" op|',' nl|'\n' string|"'network-type'" op|':' string|"'nsx.LogicalSwitch'" op|',' nl|'\n' string|"'use-external-id'" op|':' name|'True' op|'}' newline|'\n' name|'self' op|'.' name|'assertEqual' op|'(' name|'expected_ref' op|',' name|'network_ref' op|')' newline|'\n' name|'mock_check' op|'.' name|'assert_called_once_with' op|'(' string|"'fake-session'" op|')' newline|'\n' nl|'\n' dedent|'' op|'@' name|'mock' op|'.' name|'patch' op|'.' name|'object' op|'(' name|'network_util' op|',' string|"'get_network_with_the_name'" op|')' newline|'\n' DECL|member|test_get_neutron_network_dvs name|'def' name|'test_get_neutron_network_dvs' op|'(' name|'self' op|',' name|'mock_network_name' op|')' op|':' newline|'\n' indent|' ' name|'fake_network_obj' op|'=' op|'{' string|"'type'" op|':' string|"'DistributedVirtualPortgroup'" op|',' nl|'\n' string|"'dvpg'" op|':' string|"'fake-key'" op|',' nl|'\n' string|"'dvsw'" op|':' string|"'fake-props'" op|'}' newline|'\n' name|'mock_network_name' op|'.' name|'return_value' op|'=' name|'fake_network_obj' newline|'\n' name|'vif_info' op|'=' name|'network_model' op|'.' name|'NetworkInfo' op|'(' op|'[' nl|'\n' name|'network_model' op|'.' name|'VIF' op|'(' name|'type' op|'=' name|'network_model' op|'.' name|'VIF_TYPE_DVS' op|',' nl|'\n' name|'address' op|'=' string|"'DE:AD:BE:EF:00:00'" op|',' nl|'\n' name|'network' op|'=' name|'self' op|'.' name|'_network' op|')' op|']' nl|'\n' op|')' op|'[' number|'0' op|']' newline|'\n' name|'network_ref' op|'=' name|'vif' op|'.' name|'_get_neutron_network' op|'(' string|"'fake-session'" op|',' nl|'\n' string|"'fake-cluster'" op|',' nl|'\n' name|'vif_info' op|')' newline|'\n' name|'mock_network_name' op|'.' name|'assert_called_once_with' op|'(' string|"'fake-session'" op|',' nl|'\n' string|"'fa0'" op|',' nl|'\n' string|"'fake-cluster'" op|')' newline|'\n' name|'self' op|'.' name|'assertEqual' op|'(' name|'fake_network_obj' op|',' name|'network_ref' op|')' newline|'\n' nl|'\n' dedent|'' op|'@' name|'mock' op|'.' name|'patch' op|'.' name|'object' op|'(' name|'network_util' op|',' string|"'get_network_with_the_name'" op|')' newline|'\n' DECL|member|test_get_neutron_network_dvs_vif_details name|'def' name|'test_get_neutron_network_dvs_vif_details' op|'(' name|'self' op|',' name|'mock_network_name' op|')' op|':' newline|'\n' indent|' ' name|'fake_network_obj' op|'=' op|'{' string|"'type'" op|':' string|"'DistributedVirtualPortgroup'" op|',' nl|'\n' string|"'dvpg'" op|':' string|"'pg1'" op|',' nl|'\n' string|"'dvsw'" op|':' string|"'fake-props'" op|'}' newline|'\n' name|'mock_network_name' op|'.' name|'return_value' op|'=' name|'fake_network_obj' newline|'\n' name|'vif_info' op|'=' name|'network_model' op|'.' name|'NetworkInfo' op|'(' op|'[' nl|'\n' name|'network_model' op|'.' name|'VIF' op|'(' name|'type' op|'=' name|'network_model' op|'.' name|'VIF_TYPE_DVS' op|',' nl|'\n' name|'details' op|'=' op|'{' string|"'dvs_port_key'" op|':' string|"'key1'" op|',' nl|'\n' string|"'dvs_port_group_name'" op|':' string|"'pg1'" op|'}' op|',' nl|'\n' name|'address' op|'=' string|"'DE:AD:BE:EF:00:00'" op|',' nl|'\n' name|'network' op|'=' name|'self' op|'.' name|'_network' op|')' op|']' op|')' op|'[' number|'0' op|']' newline|'\n' name|'network_ref' op|'=' name|'vif' op|'.' name|'_get_neutron_network' op|'(' string|"'fake-session'" op|',' nl|'\n' string|"'fake-cluster'" op|',' nl|'\n' name|'vif_info' op|')' newline|'\n' name|'mock_network_name' op|'.' name|'assert_called_once_with' op|'(' string|"'fake-session'" op|',' nl|'\n' string|"'pg1'" op|',' nl|'\n' string|"'fake-cluster'" op|')' newline|'\n' name|'self' op|'.' name|'assertEqual' op|'(' name|'fake_network_obj' op|',' name|'network_ref' op|')' newline|'\n' nl|'\n' dedent|'' op|'@' name|'mock' op|'.' name|'patch' op|'.' name|'object' op|'(' name|'network_util' op|',' string|"'get_network_with_the_name'" op|',' nl|'\n' name|'return_value' op|'=' name|'None' op|')' newline|'\n' DECL|member|test_get_neutron_network_dvs_no_match name|'def' name|'test_get_neutron_network_dvs_no_match' op|'(' name|'self' op|',' name|'mock_network_name' op|')' op|':' newline|'\n' indent|' ' name|'vif_info' op|'=' name|'network_model' op|'.' name|'NetworkInfo' op|'(' op|'[' nl|'\n' name|'network_model' op|'.' name|'VIF' op|'(' name|'type' op|'=' name|'network_model' op|'.' name|'VIF_TYPE_DVS' op|',' nl|'\n' name|'address' op|'=' string|"'DE:AD:BE:EF:00:00'" op|',' nl|'\n' name|'network' op|'=' name|'self' op|'.' name|'_network' op|')' op|']' nl|'\n' op|')' op|'[' number|'0' op|']' newline|'\n' name|'self' op|'.' name|'assertRaises' op|'(' name|'exception' op|'.' name|'NetworkNotFoundForBridge' op|',' nl|'\n' name|'vif' op|'.' name|'_get_neutron_network' op|',' nl|'\n' string|"'fake-session'" op|',' nl|'\n' string|"'fake-cluster'" op|',' nl|'\n' name|'vif_info' op|')' newline|'\n' nl|'\n' DECL|member|test_get_neutron_network_invalid_type dedent|'' name|'def' name|'test_get_neutron_network_invalid_type' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'vif_info' op|'=' name|'network_model' op|'.' name|'NetworkInfo' op|'(' op|'[' nl|'\n' name|'network_model' op|'.' name|'VIF' op|'(' name|'address' op|'=' string|"'DE:AD:BE:EF:00:00'" op|',' nl|'\n' name|'network' op|'=' name|'self' op|'.' name|'_network' op|')' op|']' nl|'\n' op|')' op|'[' number|'0' op|']' newline|'\n' name|'self' op|'.' name|'assertRaises' op|'(' name|'exception' op|'.' name|'InvalidInput' op|',' nl|'\n' name|'vif' op|'.' name|'_get_neutron_network' op|',' nl|'\n' string|"'fake-session'" op|',' nl|'\n' string|"'fake-cluster'" op|',' nl|'\n' name|'vif_info' op|')' newline|'\n' nl|'\n' dedent|'' op|'@' name|'mock' op|'.' name|'patch' op|'.' name|'object' op|'(' name|'vif' op|'.' name|'LOG' op|',' string|"'warning'" op|')' newline|'\n' op|'@' name|'mock' op|'.' name|'patch' op|'.' name|'object' op|'(' name|'vim_util' op|',' string|"'get_vc_version'" op|',' nl|'\n' name|'return_value' op|'=' string|"'5.0.0'" op|')' newline|'\n' DECL|member|test_check_invalid_ovs_version name|'def' name|'test_check_invalid_ovs_version' op|'(' name|'self' op|',' name|'mock_version' op|',' name|'mock_warning' op|')' op|':' newline|'\n' indent|' ' name|'vif' op|'.' name|'_check_ovs_supported_version' op|'(' string|"'fake_session'" op|')' newline|'\n' comment|'# assert that the min version is in a warning message' nl|'\n' name|'expected_arg' op|'=' op|'{' string|"'version'" op|':' name|'constants' op|'.' name|'MIN_VC_OVS_VERSION' op|'}' newline|'\n' name|'version_arg_found' op|'=' name|'False' newline|'\n' name|'for' name|'call' name|'in' name|'mock_warning' op|'.' name|'call_args_list' op|':' newline|'\n' indent|' ' name|'if' name|'call' op|'[' number|'0' op|']' op|'[' number|'1' op|']' op|'==' name|'expected_arg' op|':' newline|'\n' indent|' ' name|'version_arg_found' op|'=' name|'True' newline|'\n' name|'break' newline|'\n' dedent|'' dedent|'' name|'self' op|'.' name|'assertTrue' op|'(' name|'version_arg_found' op|')' newline|'\n' dedent|'' dedent|'' endmarker|'' end_unit
8688f0f01915077265c19b58b0e1101afbd6b545
6bf7c633f31b2c7c222f160b5526bde5fa734690
/magenta/models/latent_transfer/common.py
4f8028201667b166e47fec00669c1c5d5f950408
[ "Apache-2.0" ]
permissive
dax-1895/magenta
04fb27f15fdfd7452980858c364dae46bd861c35
4393c218147e92d805bbe85fddebd3397c766715
refs/heads/master
2020-04-03T22:29:31.388322
2018-10-31T03:39:54
2018-10-31T03:39:54
155,604,293
0
1
Apache-2.0
2018-10-31T18:18:48
2018-10-31T18:18:47
null
UTF-8
Python
false
false
8,387
py
# Copyright 2018 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Common functions/helpers for dataspace model. This library contains many common functions and helpers used to for the dataspace model (defined in `train_dataspace.py`) that is used in training (`train_dataspace.py` and `train_dataspace_classifier.py`), sampling (`sample_dataspace.py`) and encoding (`encode_dataspace.py`). These components are classified in the following categories: - Loading helper that makes dealing with config / dataset easier. This includes: `get_model_uid`, `load_config`, `dataset_is_mnist_family`, `load_dataset`, `get_index_grouped_by_label`. - Helper making dumping dataspace data easier. This includes: `batch_image`, `save_image`, `make_grid`, `post_proc` - Miscellaneous Helpers, including `get_default_scratch`, `ObjectBlob`, """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from functools import partial import importlib import os import numpy as np from PIL import Image import tensorflow as tf from magenta.models.latent_transfer import local_mnist FLAGS = tf.flags.FLAGS tf.flags.DEFINE_string( 'default_scratch', '/tmp/', 'The default root directory for scratching. ' 'It can contain \'~\' which would be handled correctly.') def get_default_scratch(): """Get the default directory for scratching.""" return os.path.expanduser(FLAGS.default_scratch) class ObjectBlob(object): """Helper object storing key-value pairs as attributes.""" def __init__(self, **kwargs): for k, v in kwargs.items(): self.__dict__[k] = v def get_model_uid(config_name, exp_uid): """Helper function returning model's uid.""" return config_name + exp_uid def load_config(config_name): """Load config from corresponding configs.<config_name> module.""" return importlib.import_module('configs.%s' % config_name).config def _load_celeba(data_path, postfix): """Load the CelebA dataset.""" with tf.gfile.Open(os.path.join(data_path, 'train' + postfix), 'rb') as f: train_data = np.load(f) with tf.gfile.Open(os.path.join(data_path, 'eval' + postfix), 'rb') as f: eval_data = np.load(f) with tf.gfile.Open(os.path.join(data_path, 'test' + postfix), 'rb') as f: test_data = np.load(f) with tf.gfile.Open(os.path.join(data_path, 'attr_train.npy'), 'rb') as f: attr_train = np.load(f) with tf.gfile.Open(os.path.join(data_path, 'attr_eval.npy'), 'rb') as f: attr_eval = np.load(f) with tf.gfile.Open(os.path.join(data_path, 'attr_test.npy'), 'rb') as f: attr_test = np.load(f) attr_mask = [4, 8, 9, 11, 15, 20, 24, 31, 35, 39] attribute_names = [ 'Bald', 'Black_Hair', 'Blond_Hair', 'Brown_Hair', 'Eyeglasses', 'Male', 'No_Beard', 'Smiling', 'Wearing_Hat', 'Young', ] attr_train = attr_train[:, attr_mask] attr_eval = attr_eval[:, attr_mask] attr_test = attr_test[:, attr_mask] return (train_data, eval_data, test_data, attr_train, attr_eval, attr_test, attribute_names) def dataset_is_mnist_family(dataset): """returns if dataset is of MNIST family.""" return dataset.lower() == 'mnist' or dataset.lower() == 'fashion-mnist' def load_dataset(config): """Load dataset following instruction in `config`.""" if dataset_is_mnist_family(config['dataset']): crop_width = config.get('crop_width', None) # unused img_width = config.get('img_width', None) # unused scratch = config.get('scratch', get_default_scratch()) basepath = os.path.join(scratch, config['dataset'].lower()) data_path = os.path.join(basepath, 'data') save_path = os.path.join(basepath, 'ckpts') tf.gfile.MakeDirs(data_path) tf.gfile.MakeDirs(save_path) # black-on-white MNIST (harder to learn than white-on-black MNIST) # Running locally (pre-download data locally) mnist_train, mnist_eval, mnist_test = local_mnist.read_data_sets( data_path, one_hot=True) train_data = np.concatenate([mnist_train.images, mnist_eval.images], axis=0) attr_train = np.concatenate([mnist_train.labels, mnist_eval.labels], axis=0) eval_data = mnist_test.images attr_eval = mnist_test.labels attribute_names = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'] elif config['dataset'] == 'CELEBA': crop_width = config['crop_width'] img_width = config['img_width'] postfix = '_crop_%d_res_%d.npy' % (crop_width, img_width) # Load Data scratch = config.get('scratch', get_default_scratch()) basepath = os.path.join(scratch, 'celeba') data_path = os.path.join(basepath, 'data') save_path = os.path.join(basepath, 'ckpts') (train_data, eval_data, _, attr_train, attr_eval, _, attribute_names) = _load_celeba(data_path, postfix) else: raise NotImplementedError return ObjectBlob( crop_width=crop_width, img_width=img_width, basepath=basepath, data_path=data_path, save_path=save_path, train_data=train_data, attr_train=attr_train, eval_data=eval_data, attr_eval=attr_eval, attribute_names=attribute_names, ) def get_index_grouped_by_label(label): """Get (an array of) index grouped by label. This array is used for label-level sampling. It aims at MNIST and CelebA (in Jesse et al. 2018) with 10 labels. Args: label: a list of labels in integer. Returns: A (# label - sized) list of lists contatining indices of that label. """ index_grouped_by_label = [[] for _ in range(10)] for i, label in enumerate(label): index_grouped_by_label[label].append(i) return index_grouped_by_label def batch_image(b, max_images=64, rows=None, cols=None): """Turn a batch of images into a single image mosaic.""" mb = min(b.shape[0], max_images) if rows is None: rows = int(np.ceil(np.sqrt(mb))) cols = rows diff = rows * cols - mb b = np.vstack([b[:mb], np.zeros([diff, b.shape[1], b.shape[2], b.shape[3]])]) tmp = b.reshape(-1, cols * b.shape[1], b.shape[2], b.shape[3]) img = np.hstack(tmp[i] for i in range(rows)) return img def save_image(img, filepath): """Save an image to filepath. It assumes `img` is a float numpy array with value in [0, 1] Args: img: a float numpy array with value in [0, 1] representing the image. filepath: a string of file path. """ img = np.maximum(0, np.minimum(1, img)) im = Image.fromarray(np.uint8(img * 255)) im.save(filepath) def make_grid(boundary=2.0, number_grid=50, dim_latent=2): """Helper function making 1D or 2D grid for evaluation purpose.""" zs = np.linspace(-boundary, boundary, number_grid) z_grid = [] if dim_latent == 1: for x in range(number_grid): z_grid.append([zs[x]]) dim_grid = 1 else: for x in range(number_grid): for y in range(number_grid): z_grid.append([0.] * (dim_latent - 2) + [zs[x], zs[y]]) dim_grid = 2 z_grid = np.array(z_grid) return ObjectBlob(z_grid=z_grid, dim_grid=dim_grid) def make_batch_image_grid(dim_grid, number_grid): """Returns a patched `make_grid` function for grid.""" assert dim_grid in (1, 2) if dim_grid == 1: batch_image_grid = partial( batch_image, max_images=number_grid, rows=1, cols=number_grid, ) else: batch_image_grid = partial( batch_image, max_images=number_grid * number_grid, rows=number_grid, cols=number_grid, ) return batch_image_grid def post_proc(img, config): """Post process image `img` according to the dataset in `config`.""" x = img x = np.minimum(1., np.maximum(0., x)) # clipping if dataset_is_mnist_family(config['dataset']): x = np.reshape(x, (-1, 28, 28)) x = np.stack((x,) * 3, -1) # grey -> rgb return x
8164c15ce080bba486b0e97395893638e109f140
673e829dda9583c8dd2ac8d958ba1dc304bffeaf
/data/multilingual/Latn.QVA/Sun-ExtA_16/pdf_to_json_test_Latn.QVA_Sun-ExtA_16.py
c9e6eeadc61bf0cfc64ae23cd016123070abc397
[ "BSD-3-Clause" ]
permissive
antoinecarme/pdf_to_json_tests
58bab9f6ba263531e69f793233ddc4d33b783b7e
d57a024fde862e698d916a1178f285883d7a3b2f
refs/heads/master
2021-01-26T08:41:47.327804
2020-02-27T15:54:48
2020-02-27T15:54:48
243,359,934
2
1
null
null
null
null
UTF-8
Python
false
false
311
py
import pdf_to_json as p2j import json url = "file:data/multilingual/Latn.QVA/Sun-ExtA_16/udhr_Latn.QVA_Sun-ExtA_16.pdf" lConverter = p2j.pdf_to_json.pdf_to_json_converter() lConverter.mImageHashOnly = True lDict = lConverter.convert(url) print(json.dumps(lDict, indent=4, ensure_ascii=False, sort_keys=True))
310ef3f7f502ac9fca2d6fc43f37500bd8a533f7
3e4c3b6a6ba770fa18e9f072b1cfb58207f96b30
/openaddr/compat.py
ec93ded08da55c579f23fc715124f0d6f8c05740
[ "ISC" ]
permissive
cbmeeks/machine
931b53657db3bb0b960006ccc6abd67fd41d704a
39652f0614597e2b56973ded9f61a1a2a208da2e
refs/heads/master
2020-12-26T00:46:01.112727
2016-07-31T03:41:06
2016-07-31T03:41:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,599
py
import sys import io PY2 = (sys.version_info[0] == 2) if PY2: import unicodecsv, subprocess32, uritemplate unicodecsv.field_size_limit(sys.maxsize) check_output = subprocess32.check_output CalledProcessError = subprocess32.CalledProcessError TimeoutExpired = subprocess32.TimeoutExpired csvIO = io.BytesIO def csvreader(file, encoding=None, **kwargs): ''' Pass encoding to unicodecsv ''' if encoding is not None: kwargs['encoding'] = encoding if 'delimiter' in kwargs: kwargs['delimiter'] = str(kwargs['delimiter']) return unicodecsv.reader(file, **kwargs) def csvwriter(file, encoding=None, **kwargs): ''' Pass encoding to unicodecsv ''' if encoding is not None: kwargs['encoding'] = encoding return unicodecsv.writer(file, **kwargs) def csvDictReader(file, encoding=None, delimiter=None, **kwargs): ''' Pass encoding to unicodecsv ''' # Python2 unicodecsv requires this be not unicode if delimiter is not None: kwargs['delimiter'] = delimiter.encode('ascii') if encoding is not None: kwargs['encoding'] = encoding return unicodecsv.DictReader(file, **kwargs) def csvDictWriter(file, fieldnames, encoding=None, delimiter=None, **kwargs): ''' Pass encoding to unicodecsv ''' # Python2 unicodecsv requires this be not unicode if delimiter is not None: kwargs['delimiter'] = delimiter.encode('ascii') if encoding is not None: kwargs['encoding'] = encoding return unicodecsv.DictWriter(file, fieldnames, **kwargs) def csvopen(filename, mode='r', encoding=None): ''' Discard encoding ''' return io.FileIO(filename, mode=mode) def expand_uri(template, args): ''' ''' new_args = {k: v for (k, v) in args.items() if not hasattr(v, 'encode')} new_args.update({k: v.encode('utf8') for (k, v) in args.items() if hasattr(v, 'encode')}) return uritemplate.expand(template, new_args) from future import standard_library standard_library.install_aliases() else: import csv, subprocess from uritemplate import expand as expand_uri standard_library = None check_output = subprocess.check_output CalledProcessError = subprocess.CalledProcessError TimeoutExpired = subprocess.TimeoutExpired csvIO = io.StringIO def csvreader(file, encoding=None, **kwargs): ''' Discard encoding ''' if 'delimiter' in kwargs: kwargs['delimiter'] = str(kwargs['delimiter']) return csv.reader(file, **kwargs) def csvwriter(file, encoding=None, **kwargs): ''' Discard encoding ''' return csv.writer(file, **kwargs) def csvDictReader(file, encoding=None, **kwargs): ''' Discard encoding ''' return csv.DictReader(file, **kwargs) def csvDictWriter(file, fieldnames, encoding=None, **kwargs): ''' Discard encoding ''' return csv.DictWriter(file, fieldnames, **kwargs) def csvopen(filename, mode='r', encoding=None): ''' Pass encoding to io.open ''' return io.open(filename, mode=mode, encoding=encoding) try: import cairo except ImportError: # http://stackoverflow.com/questions/11491268/install-pycairo-in-virtualenv import cairocffi as cairo
d680686b38adb8e9cdfc5bf3e14016b01354af3a
d1c6de4e0d4aafbe1e7d15a02487494f86bf9b7e
/알고리즘문제/내려가기.py
1515a653c108bd21017b437c35fc3fc9e25479c1
[]
no_license
kdm604/TIL
d2ce2122e0b828a595530ac2a405a4661cf60205
554bbd8e884f4e7fbebdefbfa22a1a5eee0fa452
refs/heads/master
2023-01-11T21:41:57.845549
2020-03-24T08:55:10
2020-03-24T08:55:10
195,938,033
0
0
null
2023-01-05T01:14:37
2019-07-09T05:23:00
Python
UTF-8
Python
false
false
903
py
import sys N = int(input()) ans_max = [[0 for _ in range(3)]for _ in range(2)] ans_min = [[0 for _ in range(3)]for _ in range(2)] for i in range(1, N+1): arr = list(map(int, sys.stdin.readline().split())) ans_max[i % 2][0] = max(ans_max[(i -1)%2][0], ans_max[(i-1) %2][1]) + arr[0] ans_max[i % 2][1] = max(ans_max[(i - 1) % 2][0], ans_max[(i - 1) % 2][1], ans_max[(i - 1) % 2][2]) + arr[1] ans_max[i % 2][2] = max(ans_max[(i - 1) % 2][1], ans_max[(i - 1) % 2][2]) + arr[2] ans_min[i % 2][0] = min(ans_min[(i - 1) % 2][0], ans_min[(i - 1) % 2][1]) + arr[0] ans_min[i % 2][1] = min(ans_min[(i - 1) % 2][0], ans_min[(i - 1) % 2][1], ans_min[(i - 1) % 2][2]) + arr[1] ans_min[i % 2][2] = min(ans_min[(i - 1) % 2][1], ans_min[(i - 1) % 2][2]) + arr[2] print(max(ans_max[N%2][0], ans_max[N%2][1], ans_max[N%2][2])) print(min(ans_min[N%2][0], ans_min[N%2][1], ans_min[N%2][2]))
8f3cc002c398732246f1e2d85326681bd76a8411
c5a8f6dd4e5ebc43f02923704325620f0787b2f4
/visual-experiments/rectangular_visualizer.py
657afe5661a8fb7256dba49930c2c02daf9a6eec
[]
no_license
alex-berman/tforms
50098501d19de75632426423d02025162bbc94e6
046476001609dfa8192c2e373a040d4129975ab6
refs/heads/master
2021-01-01T20:00:00.381901
2014-03-16T13:44:09
2014-03-16T13:44:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
936
py
import visualizer from visualizer import File, run from vector import DirectionalVector, Vector2d import math class Chunk: def peer_position(self): return Visualizer.bearing_to_border_position( self.peer.bearing, self.visualizer.width, self.visualizer.height) class Segment(visualizer.Segment, Chunk): pass class Peer(visualizer.Peer): pass class Visualizer(visualizer.Visualizer): @staticmethod def bearing_to_border_position(bearing, width, height): radius = math.sqrt(width*width + height*height) / 2 midpoint = Vector2d(width/2, height/2) circle_position = midpoint + DirectionalVector(bearing - 2*math.pi/4, radius) return circle_position def pan_segment(self, segment): relative_x = segment.pan space_y = 3 space_x = (relative_x - 0.5) * 5 self.orchestra.place_segment(segment.id, space_x, space_y, segment.duration)
042476a02c8bf29a0201454a2168abe364601a48
a67d999deafb7d3dac60ad95f66234fe3e79030e
/Python/Advanted/src/chauthoi/myGUItest1.py
3a9a1c4fe3d7059a5e5b5415c33d5c352348e5ae
[]
no_license
tielse/Example_Python
1282728a3e38725a48f30a1c49a688b5262be485
0bc31f86f16ef98cf3b7ad8a524c27978e47775f
refs/heads/master
2021-01-02T22:36:58.866922
2017-08-04T15:25:17
2017-08-04T15:25:17
99,355,643
0
0
null
null
null
null
UTF-8
Python
false
false
140
py
#!/usr/bin/env python 2.7 import Tkinter from Tkinter import * Widget=Label(None,text='Hello Python') Widget.pack() Widget.mainloop()
7a15d93ffe5208e8afe7da36fd5f11f27c9fd337
59e8a041435b70f1dfb2464ccef298c69cf8466e
/058_Length_of_Last_Word/tests.py
22dd861ca481516c780a5c55fa2454e7d4fdcbd3
[]
no_license
sallowdish/LeetCode
f0aa6c5be864711c75a3583f320ce967d50c55d3
d12ca00f30a1784802f42f8e76f782d7b72e95a6
refs/heads/master
2021-01-21T04:32:02.351940
2016-06-25T00:12:22
2016-06-25T00:12:22
33,152,440
0
0
null
null
null
null
UTF-8
Python
false
false
1,072
py
#!/usr/bin/python3 from unittest import TestCase, main from sol1 import Solution def split(n): l = [] for i in n: l.append(list(i)) return l class Test(TestCase): sol = None def setUp(self): self.sol = Solution() def test0(self): n = "" self.assertEqual(self.sol.lengthOfLastWord(n) ,0) def test1(self): n = " " self.assertEqual(self.sol.lengthOfLastWord(n) ,0) def test2(self): n = " a" self.assertEqual(self.sol.lengthOfLastWord(n) ,1) def test3(self): n = " ab" self.assertEqual(self.sol.lengthOfLastWord(n) ,2) def test4(self): n = " aVb " self.assertEqual(self.sol.lengthOfLastWord(n) ,3) def test5(self): n = " ab IUHB POQPEQJ83894e2" self.assertEqual(self.sol.lengthOfLastWord(n) ,len("POQPEQJ83894e2")) if __name__ == "__main__": # logging.basicConfig( stream=sys.stderr ) # logging.getLogger( "Test.testSomething" ).setLevel( logging.DEBUG ) main()
dcf94f3467263d06f0cdc6a6fd45814921ae79cf
1e9c9f2a9639db7cdb032aae69cb4d99aef1d3a5
/hackerEarth/practice/dataStructures/advancedDataStructures/segmentTrees/researchOnNumbers.py
cd843193b38d663316dbb8d7bec57cc27e97e182
[ "MIT" ]
permissive
sagarnikam123/learnNPractice
f0da3f8acf653e56c591353ab342765a6831698c
1b3b0cb2cff2f478006626a4c37a99102acbb628
refs/heads/master
2023-02-04T11:21:18.211654
2023-01-24T14:47:52
2023-01-24T14:47:52
61,184,927
2
1
MIT
2022-03-06T11:07:18
2016-06-15T06:57:19
Python
UTF-8
Python
false
false
2,349
py
# Research on Numbers ####################################################################################################################### # # Bob is studying in a research institute. He is currently researching on integer sequences. He has already done # some research on famous fibonacci sequence. Now he is trying to investigate patterns # in a general recursive sequence (Ai) # Sequence (Ai) is # Ai = Bi (for i <= k) # Ai = C1 * Ai-1 + C2 * Ai-2 +.......+ Ck*Ai-k (for i > k) # # But while calculating the sequence he realizes that values are growing very fast. So to keep the values small # he calculates values modulo 109+7 (1000000007) . So that each term of sequence will be less than 109+7. # While he is busy with his work, his girlfriend is disturbing him a lot. He wants to make her busy with some task. # He gives her the task of sorting all the terms from Al to Ar of his sequence. She is very quick so he gives # her same task Q times (of course with different l and r). Since sorting is very boring task so she asks you # to complete the task. # You will be given two numbers l and r and you are expected to output all the terms from Al to Ar in non # decreasing order. But to avoid such a large output, if there are more than 100 terms # in the output print only first 100. # # Input : # First line contains T, the number of test cases. First line of each test case contains two space separated # integers Q and k. Next line contains array B of length k. 3rd line contains array C of length k. # Each of next Q lines contains two space separated integers l and r. # # Output : # For each test case output Q lines. Each line contains terms from Al to Ar in non decreasing order. # If more than 100 terms are there to output,print only first 100 # # Constraints : # 1 <= T <= 3 # 1 <= Q <= 100 # 1 <= k <= 5 # 1 <= Bj,Cj <= 50 # 1 <= l,r <= 10^6 # l <= r # # SAMPLE INPUT # 2 # 4 3 # 1 2 3 # 2 1 1 # 1 5 # 6 8 # 8 9 # 6 9 # 3 4 # 4 5 7 9 # 2 2 1 3 # 2 7 # 10 12 # 100 101 # # SAMPLE OUTPUT # 1 2 3 9 23 # 58 148 377 # 377 960 # 58 148 377 960 # 5 7 9 49 138 404 # 9964 29126 85073 # 483689722 905484679 # #######################################################################################################################
61bdf96e9e66babc6af5fbb50dce07eacb4d3e7e
b804260baffde6044d0da699ebd01eefd5524897
/tests/loss/test_loss.py
db2c74e8c2f0e1a7ffec9783b81e8edcb95589ba
[ "MIT" ]
permissive
pfnet/pynif3d
d8112e659c3158cd87f4f88ebb77c653c2a0eb7c
da3680cce7e8fc4c194f13a1528cddbad9a18ab0
refs/heads/main
2023-07-15T06:27:27.849842
2021-08-18T07:15:13
2021-08-18T07:15:13
397,141,414
72
5
MIT
2021-08-18T07:15:14
2021-08-17T06:53:45
Python
UTF-8
Python
false
false
533
py
from unittest import TestCase import torch from pynif3d.loss import eikonal_loss class TestLoss(TestCase): def test_eikonal_loss(self): x = torch.as_tensor( [ [0.2936261892, -1.0289776325, 0.1445489526], [-0.2577984035, -0.7820385098, 0.3506951332], [-0.4243153632, 0.8669579029, -0.6295363903], ] ) loss = float(eikonal_loss(x)) expected_loss = 0.0135356029 self.assertAlmostEqual(loss, expected_loss, places=5)
75f86cfb2964f955c6eb729325f89b994094d90b
4e27edeea65ccbf56751ce8d2dc77a7133b0acd4
/manage.py
67c6cd2430e82991dd181c57036a89165333e071
[]
no_license
TheFifthMan/whitehat
f1e6faf39c7e56d79ac462de4de847ebd531ecb1
944ff548ec18b2c306af63a53baff9940fdbec84
refs/heads/master
2020-04-08T18:40:27.924936
2018-11-29T06:37:13
2018-11-29T06:37:13
159,619,222
0
0
null
null
null
null
UTF-8
Python
false
false
540
py
#!/usr/bin/env python import os import sys if __name__ == '__main__': os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'whitehat.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv)
1b4972c56701c6145e833481d3454ceb0bfc240a
62980875b6e08d0099b1662fa3148ae29986fb64
/BeautifulSoup/6_bs4.py
898014028b10426db05bb94eb1a9f99b419b19ca
[]
no_license
kogkuemryong/Python_WebScraping-
9db659c9a11c2677074fcac7f7029ec8541cb4f5
51cf7e7e71ce7c90b68f70daa43785671350dfb5
refs/heads/master
2022-12-12T17:01:27.142178
2020-09-08T16:48:19
2020-09-08T16:48:19
293,404,930
0
0
null
null
null
null
UTF-8
Python
false
false
2,019
py
import requests from bs4 import BeautifulSoup url ='https://comic.naver.com/webtoon/weekday.nhn' res = requests.get(url) # url 를 읽음 res.raise_for_status() # 문제가 생기면 프로그램 종료를 시켜줌 soup = BeautifulSoup(res.text, 'lxml') # 텍스트 형태로 가져온 데이터를 lxml를 통해서 # BeautifulSoup 객체로 만든 것이다. ''' 해당 웹페이지를 잘 알 때 사용 print(soup.title) # <title>네이버 만화 &gt; 요일별 웹툰 &gt; 전체웹툰</title> print(soup.title.get_text()) # 글자만 빼옴 / 네이버 만화 > 요일별 웹툰 > 전체웹툰 print(soup.a) # soup 전체에서 첫번째 a element 출력 print(soup.a.attrs) # a element의 속성 정보를 출력 print(soup.a['href']) # a element의 href 속성 '값' 정보를 출력` ''' # print(soup.find('a', attrs={'class' :'Nbtn_upload'})) # class = 'Nbtn_upload' 인 a element를 찾아줘 # print(soup.find(attrs={'class' :'Nbtn_upload'})) # class = 'Nbtn_upload'인 어떤 element 를 찾아줘 # print(soup.find('li', attrs={'class':'rank01'})) # rank1 = soup.find('li', attrs={'class':'rank01'}) # print(rank1.a.get_text()) # 글자만 # print (rank1.next_sibling) # 아무것도 출력 안됨 # rank2 = rank1.next_sibling.next_sibling # 형제 관계로 넘어가게 해준다. # rank3 = rank2.next_sibling.next_sibling # rank4 = rank3.next_sibling.next_sibling # print(rank4.get_text()) # rank2 = rank3.previous_sibling.previous_sibling # 이전으로 가기 # print(rank1.parent) # 부모로 가기 # rank2 = rank1.find_next_sibling('li') # print(rank2.a.get_text()) # next.sibling 을 여러번 사용하게 될 때 대신하여 유용하게 사용. # # rank3 = rank2.find_next_sibling('li') # print(rank3.a.get_text()) # # rank2 = rank3.find_previous_sibling('li') # print(rank2.a.get_text()) # print (rank1.find_next_siblings('li')) webtooon = soup.find('a' , text = '인생존망-43화 : 너 뽀뽀하려고 그랬지!!!') print(webtooon)
2520da0ffe6d528d917b6d76d7e86d7767ae8d15
8f4488494507da4cb6f15073b8aa2e6f97fabb35
/test/integration/local/test_tensorflow.py
c85f8f5d446253c4b38bdc7e634c6851379fd0e4
[ "Apache-2.0" ]
permissive
aws/sagemaker-training-toolkit
025966a1216aeb78b58f7abab19c6ccb01b0897d
e4a765e699e16c5849bbdfd789edbfc9820fdd77
refs/heads/master
2023-08-21T12:33:59.831391
2023-08-08T16:46:40
2023-08-08T16:46:40
212,439,434
415
110
Apache-2.0
2023-09-07T19:58:23
2019-10-02T20:54:32
Python
UTF-8
Python
false
false
1,528
py
# Copyright 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. from __future__ import absolute_import import subprocess import sys import pytest from sagemaker.estimator import Estimator @pytest.fixture(scope="module", autouse=True) def container(): try: command = ( "docker run --name sagemaker-training-toolkit-test " "sagemaker-training-toolkit-test:tensorflow train" ) proc = subprocess.Popen(command.split(), stdout=sys.stdout, stderr=subprocess.STDOUT) yield proc.pid finally: subprocess.check_call("docker rm -f sagemaker-training-toolkit-test".split()) def test_tensorflow_exceptions(capsys): with pytest.raises(Exception): estimator = Estimator( image_uri="sagemaker-training-toolkit-test:tensorflow", role="SageMakerRole", instance_count=1, instance_type="local", ) estimator.fit() stdout = capsys.readouterr().out assert "XlaRuntimeError" in stdout
538432edd63d9503879fed091c2da849b88aeb19
d7ccb4225f623139995a7039f0981e89bf6365a4
/.history/mall/settings_20211011171802.py
d6ac69d215da3f819a7996e8f1d92e8ab5d563bf
[]
no_license
tonnymuchui/django-mall
64fd4abc3725c1bd0a3dcf20b93b490fe9307b37
55c083d8433be3c77adc61939cd197902de4ce76
refs/heads/master
2023-08-23T04:59:20.418732
2021-10-13T15:59:37
2021-10-13T15:59:37
415,668,388
1
0
null
null
null
null
UTF-8
Python
false
false
3,642
py
""" Django settings for mall project. Generated by 'django-admin startproject' using Django 3.2.5. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ import os from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent TEMPLATE_DIR = os.path.join(BASE_DIR,"templates") # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'django-insecure-#l0ij4e$3v@&xi3i#y$19f#_@z(yv+5yw$kc+02!-)g%ny%oi8' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'category', 'accounts', 'store', 'carts' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'mall.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [TEMPLATE_DIR,], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', 'category.context_processors.menu_links', 'cart.cont' ], }, }, ] WSGI_APPLICATION = 'mall.wsgi.application' AUTH_USER_MODEL = 'accounts.Account' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = BASE_DIR /'static' STATICFILES_DIRS = [ 'mall/static', ] # media files configuration MEDIA_URL = '/media/' MEDIA_ROOT = BASE_DIR /'media' # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'
2ea6a54e6d5e934338510fc52ec20c0e4d55851c
ce6cb09c21470d1981f1b459293d353407c8392e
/docs/jnpr_healthbot_swagger/swagger_client/models/rule_schema_formula1_or.py
71314684086751f0563ed538b08bac277bdc9834
[ "Apache-2.0" ]
permissive
minefuto/healthbot-py-client
c4be4c9c3153ef64b37e5344bf84154e93e7b521
bb81452c974456af44299aebf32a73abeda8a943
refs/heads/master
2022-12-04T07:47:04.722993
2020-05-13T14:04:07
2020-05-13T14:04:07
290,145,286
0
0
Apache-2.0
2020-08-25T07:27:54
2020-08-25T07:27:53
null
UTF-8
Python
false
false
5,021
py
# coding: utf-8 """ Healthbot APIs API interface for Healthbot application # noqa: E501 OpenAPI spec version: 1.0.0 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class RuleSchemaFormula1Or(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'left_vector': 'str', 'right_vector': 'str' } attribute_map = { 'left_vector': 'left-vector', 'right_vector': 'right-vector' } def __init__(self, left_vector=None, right_vector=None): # noqa: E501 """RuleSchemaFormula1Or - a model defined in Swagger""" # noqa: E501 self._left_vector = None self._right_vector = None self.discriminator = None self.left_vector = left_vector self.right_vector = right_vector @property def left_vector(self): """Gets the left_vector of this RuleSchemaFormula1Or. # noqa: E501 Vector name. Pattern for giving vector name is @[a-z][a-zA-Z0-9_-]* # noqa: E501 :return: The left_vector of this RuleSchemaFormula1Or. # noqa: E501 :rtype: str """ return self._left_vector @left_vector.setter def left_vector(self, left_vector): """Sets the left_vector of this RuleSchemaFormula1Or. Vector name. Pattern for giving vector name is @[a-z][a-zA-Z0-9_-]* # noqa: E501 :param left_vector: The left_vector of this RuleSchemaFormula1Or. # noqa: E501 :type: str """ if left_vector is None: raise ValueError("Invalid value for `left_vector`, must not be `None`") # noqa: E501 if left_vector is not None and not re.search(r'^@[a-z][a-zA-Z0-9_-]*$', left_vector): # noqa: E501 raise ValueError(r"Invalid value for `left_vector`, must be a follow pattern or equal to `/^@[a-z][a-zA-Z0-9_-]*$/`") # noqa: E501 self._left_vector = left_vector @property def right_vector(self): """Gets the right_vector of this RuleSchemaFormula1Or. # noqa: E501 Vector name. Pattern for giving vector name is @[a-z][a-zA-Z0-9_-]* # noqa: E501 :return: The right_vector of this RuleSchemaFormula1Or. # noqa: E501 :rtype: str """ return self._right_vector @right_vector.setter def right_vector(self, right_vector): """Sets the right_vector of this RuleSchemaFormula1Or. Vector name. Pattern for giving vector name is @[a-z][a-zA-Z0-9_-]* # noqa: E501 :param right_vector: The right_vector of this RuleSchemaFormula1Or. # noqa: E501 :type: str """ if right_vector is None: raise ValueError("Invalid value for `right_vector`, must not be `None`") # noqa: E501 if right_vector is not None and not re.search(r'^@[a-z][a-zA-Z0-9_-]*$', right_vector): # noqa: E501 raise ValueError(r"Invalid value for `right_vector`, must be a follow pattern or equal to `/^@[a-z][a-zA-Z0-9_-]*$/`") # noqa: E501 self._right_vector = right_vector def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(RuleSchemaFormula1Or, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, RuleSchemaFormula1Or): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
4c0d4d4150b62d2151f73bd99f474cc1fcdc41af
e01dde12be71c40065a9d6d2b1451f837c42a41e
/py_trees_ros_viewer/viewer.py
754f696ee24634ae00238eb788ed5305d7f1e131
[ "BSD-3-Clause" ]
permissive
neelj09/py_trees_ros_viewer
29336ce5a7f7592ffb67c0170b42902d16fea5d3
1fbd7877fa4bcb53119b3111db26ce87ec8ccebd
refs/heads/master
2022-04-09T00:48:10.260221
2019-08-10T02:54:03
2019-08-10T02:54:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,833
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # License: BSD # https://github.com/splintered-reality/py_trees_ros_viewer/raw/devel/LICENSE # ############################################################################## # Documentation ############################################################################## """ A qt-javascript application for viewing executing or replaying py_trees """ ############################################################################## # Imports ############################################################################## import functools import json import signal import sys import time import PyQt5.QtCore as qt_core import PyQt5.QtWidgets as qt_widgets from . import console from . import trees from . import main_window ############################################################################## # Helpers ############################################################################## def send_tree_response(reply): console.logdebug("reply: '{}' [viewer]".format(reply)) @qt_core.pyqtSlot() def send_tree(web_view_page, demo_trees, unused_checked): send_tree.index = 0 if send_tree.index == 2 else send_tree.index + 1 demo_trees[send_tree.index]['timestamp'] = time.time() console.logdebug("send: tree '{}' [{}][viewer]".format( send_tree.index, demo_trees[send_tree.index]['timestamp']) ) web_view_page.runJavaScript( "render_tree({tree: '%s'});" % json.dumps(demo_trees[send_tree.index]), send_tree_response ) send_tree.index = 0 ############################################################################## # Main ############################################################################## def main(): # logging console.log_level = console.LogLevel.DEBUG # the players app = qt_widgets.QApplication(sys.argv) demo_trees = trees.create_demo_tree_list() window = main_window.MainWindow( default_tree=demo_trees[0] ) # sig interrupt handling # use a timer to get out of the gui thread and # permit python a chance to catch the signal # https://stackoverflow.com/questions/4938723/what-is-the-correct-way-to-make-my-pyqt-application-quit-when-killed-from-the-co def on_shutdown(unused_signal, unused_frame): console.logdebug("received interrupt signal [viewer]") window.close() signal.signal(signal.SIGINT, on_shutdown) timer = qt_core.QTimer() timer.timeout.connect(lambda: None) timer.start(250) # sigslots window.ui.send_button.clicked.connect( functools.partial( send_tree, window.ui.web_view_group_box.ui.web_engine_view.page(), demo_trees ) ) # qt bringup window.show() result = app.exec_() # shutdown sys.exit(result)
15bd7e332a59184de848af3cc92208ff3dcc0330
7d1e9acf94a5e4533d3ef5828b568e89c29519a3
/11-Message Box/MessageBox.py
a6e635c724e37df0204a8b500c9173b5d056455a
[]
no_license
abuzarrizvi/Python-GUI-s-With-TKinter
c960e3629589d25b72f6720caebb552352e77976
d5c7843cdd3203294762ae92b6503ecb55d083f1
refs/heads/master
2020-07-06T03:17:56.798236
2019-08-23T10:56:41
2019-08-23T10:56:41
202,871,347
0
0
null
null
null
null
UTF-8
Python
false
false
592
py
from tkinter import * from PIL import ImageTk, Image from tkinter import messagebox root = Tk() root.title('Learn To Code at Github.com') root.iconbitmap('Martz90-Circle-Camera.ico') #showinfo, showwarning, showerror, askquestion, askokcancel, askyesno def popup(): response = messagebox.showerror("This is my Popup!", "Hello World!") Label(root, text=response).pack() #if response == "yes": # Label(root, text="You Clicked Yes! ").pack() #else: # Label(root, text="You Clicked No! ").pack() Button(root, text="Popup", command=popup).pack() root.mainloop()
728c81d8394209a41c9c13be78e81117b4680432
250e692078234b0e3ef22ad20ab7168f807d1d5f
/diagonal_matrix.py
08b03ebc30dd750a07341d1b062de7ee30082f1c
[]
no_license
AnTznimalz/python_prepro
694338609985971c5e6eaf8ec463c2a5c62dd836
bdc1e49fa03704bebcf2ab69a4c1600e4cd46a74
refs/heads/master
2022-06-22T23:47:28.396580
2020-05-07T15:07:56
2020-05-07T15:07:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
342
py
""" Diagonal Matrix""" def mat(): """ Func. mat for calculate matrix """ dim = int(input()) box = list() a, b = 0, 0 for n in range(dim): lst = input().split() box.append(lst) lst = [] for i in range(dim): a += int(box[i][i]) b += int(box[i][dim-i-1]) print(abs(a-b)) mat()
fc32cea9c83b3dc402ab49fd5e934718e734f48c
5b221c2809d82cf13a2b24a56589943315cdb381
/2018/2018-29.py
e953d3c14398aab0d4b63f6a0705c7cf5486abfc
[]
no_license
Bruce-V/CS-BM25
c2cd797e9be2fc55af9c8944882fd55109ebee61
2401f0ddb24c1712b13c0c96e13565f60d48705d
refs/heads/main
2023-01-04T23:29:20.906427
2020-11-09T08:44:22
2020-11-09T08:44:22
259,228,835
0
0
null
null
null
null
UTF-8
Python
false
false
10,714
py
# Copyright 2020 zicheng Zhang([email protected]) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pymongo import re from math import log myclient =pymongo.MongoClient("mongodb://localhost:27017/") mydb = myclient["pubmed"] mywords = mydb["freqwords3"] #pubmed中所有的词频、化学词、关键词和主题词表 mytopic=mydb["topics2018"]#pubmed中的主题词相关文献列表 mypapers=mydb["papers"]#pubmed中文献信息表 mytopicdb=myclient["cs2018_29"] mydata=mytopicdb["cs2018_score_29"]#按词表长度改进过后的2次排序表 mycount = mytopicdb["cs2018_score_29_related"]#聚类后对应与主题相关联的文献 def sortsecond(myfreq,mydata,yuzhi): k = 0 k1=1.2 k2=1.2 b1=0.75 b2=0.75 idf_esophageal = log((29138919 - 32358 + 0.5) / (32358 + 0.5), 10) idf_egfr = log((29138919 - 48503 + 0.5) / (48503 + 0.5), 10) idf_ele_1 = log((13670358 - 0 + 0.5) / (0 + 0.5), 10) idf_ele_2 = log((13670358 - 0 + 0.5) / (0 + 0.5), 10) idf_ele_3 = log((13670358 - 37086 + 0.5) / (37086 + 0.5), 10) idf_ele_4 = log((13670358 - 7893 + 0.5) / (7893 + 0.5), 10) idf_ele_5 = log((13670358 - 0 + 0.5) / (0 + 0.5), 10) idf_eleM_1 = log((25389659 - 46906 + 0.5) / (46906 + 0.5), 10) idf_eleM_2 = log((25389659 - 9290 + 0.5) / (9290+ 0.5), 10) idf_eleM_3 = log((25389659 - 0 + 0.5) / (0 + 0.5), 10) idf_eleM_4 = log((25389659 - 0 + 0.5) / (0 + 0.5), 10) idf_eleM_5 = log((25389659 - 17437618 + 0.5) / (17437618 + 0.5), 10) idf_eleM_6 = log((25389659 - 8002162 + 0.5) / (8002162 + 0.5), 10) idf_eleM_7 = log((25389659 - 2842020 + 0.5) / (2842020 + 0.5), 10) idf_eleM_8 = log((25389659 - 0 + 0.5) / (0 + 0.5), 10) idf_eleM_9 = log((25389659 - 4785026 + 0.5) / (4785026 + 0.5), 10) idf_eleK_1 = log((5435471 - 13963 + 0.5) / (13963 + 0.5), 10) idf_eleK_2 = log((5435471 - 6390 + 0.5) / (6390 + 0.5), 10) idf_eleK_3 = log((5435471 - 0 + 0.5) / (0 + 0.5), 10) for x in myfreq.find({}, {'PMID', 'wordfreq', 'ChemicalNameList', 'MeshHeadingNameList', 'KeywordsList'}, no_cursor_timeout=True): ss1 = 0 ss2 = 0 ss4 = 0 gx = 0 gx1 = 0 gx2 = 0 gx3 = 0 gx4=0 len_freq=0 esophageal_score=0 egfr_score = 0 if int(x['PMID']) <= 27868941: cop = re.compile("[^\u4e00-\u9fa5^a-z^A-Z^0-9]") # 匹配不是中文、大小写、数字的其他字符 ChemicalNameList = x['ChemicalNameList'] MeshHeadingNameList = x['MeshHeadingNameList'] KeywordsList = x['KeywordsList'] wordfreq = x['wordfreq'] esophageal = [True for x in wordfreq.items() if 'esophageal' in x] # ---------------摘要统计-------------------# for key in wordfreq: len_freq = len_freq + wordfreq[key] for key in wordfreq: key1 = cop.sub('', key) if 'esophageal' in key1: esophageal_score = esophageal_score + wordfreq[key] for key in wordfreq: key1 = cop.sub('', key) if 'egfr' == key1: egfr_score = egfr_score + wordfreq[key] bm25_esophageal_score = (((k1+1)*esophageal_score)/((k1*(b1+(1-b1)*(len_freq/85)))+esophageal_score)) bm25_egfr_score = (((k1 + 1) * egfr_score) / ((k1 * (b1 + (1 - b1) * (len_freq / 85))) + egfr_score)) bm25_ab_score =idf_esophageal*bm25_esophageal_score+idf_egfr*bm25_egfr_score idf_para=[{str(esophageal_score):idf_esophageal},{str(egfr_score):idf_egfr}] # ---------------共现分析摘要-------------------# if len(esophageal) != 0 and esophageal[0]: for key in wordfreq: key = cop.sub('', key) if 'egfr' == key: gx = idf_egfr # ---------------共现分析化学-------------------# if len(esophageal) != 0 and esophageal[0]: for ele in ChemicalNameList: if 'EGFR' in ele['NameOfSubstance']: gx = idf_egfr break # ---------------共现分析关键字-------------------# if len(esophageal) != 0 and esophageal[0]: for eleK in KeywordsList: if 'egfr' in str(eleK).lower(): gx = idf_egfr break # ---------------共现分析医学主题词-------------------# if len(esophageal) != 0 and esophageal[0]: for eleM in MeshHeadingNameList: if 'EGFR' in eleM['MeshHeadingName']: gx = idf_egfr break for ele in ChemicalNameList: if 'Esophageal Neoplasms' == ele['NameOfSubstance']: ss1 = ss1 + idf_ele_1 break for ele in ChemicalNameList: if 'Rare Diseases' == ele['NameOfSubstance']: ss1 = ss1 + idf_ele_2 break for ele in ChemicalNameList: if 'ErbB Receptors' == ele['NameOfSubstance']: ss1 = ss1 + idf_ele_3 break for ele in ChemicalNameList: if 'EGFR' == ele['NameOfSubstance']: ss1 = ss1 + idf_ele_4 break for eleM in MeshHeadingNameList: if 'Esophageal Neoplasms' == eleM['MeshHeadingName']: ss2 = ss2 + idf_eleM_1 break for eleM in MeshHeadingNameList: if 'Rare Diseases' == eleM['MeshHeadingName']: ss2 = ss2 + idf_eleM_2 break for eleM in MeshHeadingNameList: if 'EGFR' == eleM['MeshHeadingName']: ss2 = ss2 + idf_eleM_3 break for eleM in MeshHeadingNameList: if 'ErbB Receptors' == eleM['MeshHeadingName']: ss2 = ss2 + idf_eleM_4 break for eleM in MeshHeadingNameList: if re.findall(r'(Human|Humans)', eleM['MeshHeadingName']): ss2 = ss2 + idf_eleM_5 break for eleM in MeshHeadingNameList: if 'Male' in eleM['MeshHeadingName']: ss2 = ss2 + idf_eleM_6 break for eleM in MeshHeadingNameList: if 'Aged' == eleM['MeshHeadingName']: ss2 = ss2 + idf_eleM_7 break for eleM in MeshHeadingNameList: if re.findall(r'(Adult|Adults)', eleM['MeshHeadingName']): ss2 = ss2 + idf_eleM_9 break for eleK in KeywordsList: if 'esophageal' in str(eleK).lower(): ss4 = ss4 + idf_eleK_1 break for eleK in KeywordsList: if 'egfr' in str(eleK).lower(): ss4 = ss4 + idf_eleK_2 break total_gx=gx1+gx2+gx3+gx+gx4 cmk_len=len(ChemicalNameList) + len(MeshHeadingNameList) + len(KeywordsList) bm25_cmk_len=ss1 + ss2 + ss4 bm25_cmk_score = (((k2 + 1) * bm25_cmk_len) / ((k2 * (b2 + (1 - b2) * (cmk_len / 13))) + bm25_cmk_len)) bm25_score=bm25_ab_score+bm25_cmk_score+total_gx if(bm25_score>yuzhi): mydict = {"PMID": x['PMID'],"ab_score":bm25_ab_score,"idf_para":idf_para, "cmk_len":cmk_len,"cmk_freq":bm25_cmk_len,"bm25_cmk_score":bm25_cmk_score,"gx":total_gx,"bm25_score":bm25_score, "ChemicalNameList":x['ChemicalNameList'],"MeshHeadingNameList":x['MeshHeadingNameList'],"KeywordsList":x['KeywordsList']} y = mydata.insert_one(mydict) k=k+1 print(str(y) + '---------' + str(k)) def count(mysort,mycount,topic): for x in mysort.find({}, {'PMID', 'ab_score','idf_para', 'cmk_len', 'cmk_freq', 'bm25_cmk_score','gx','bm25_score', 'ChemicalNameList', 'MeshHeadingNameList', 'KeywordsList'}): kk = 0 for y in mytopic.find({"topic": topic}, {'PMID', 'relate'}): if x['PMID'] == y['PMID']: mydict = {"PMID": x['PMID'], "related": y['relate'], "ab_score":x["ab_score"],"idf_para":x['idf_para'], "cmk_len": x['cmk_len'], "cmk_freq": x['cmk_freq'],'bm25_cmk_score':x['bm25_cmk_score'],'gx':x['gx'], "bm25_score": x['bm25_score'], "ChemicalNameList": x['ChemicalNameList'], "MeshHeadingNameList": x['MeshHeadingNameList'], "KeywordsList": x['KeywordsList']} ss = mycount.insert_one(mydict) print(ss) kk = kk + 1 if (kk == 0): mydict = {"PMID": x['PMID'], "related": -1, "ab_score": x["ab_score"], "idf_para": x['idf_para'], "cmk_len": x['cmk_len'], "cmk_freq": x['cmk_freq'], 'bm25_cmk_score': x['bm25_cmk_score'], 'gx': x['gx'], "bm25_score": x['bm25_score'], "ChemicalNameList": x['ChemicalNameList'], "MeshHeadingNameList": x['MeshHeadingNameList'], "KeywordsList": x['KeywordsList']} ss = mycount.insert_one(mydict) print(ss) if __name__ == '__main__': sortsecond(mywords,mydata,7) count(mydata,mycount,"29")
2beb1f616a83a5c13a520bc827faceffac12cedc
5864e86954a221d52d4fa83a607c71bacf201c5a
/eve/devtools/script/networkdatamonitor.py
ad91d9153d462512bd7775ae06745daf165a0b2d
[]
no_license
connoryang/1v1dec
e9a2303a01e5a26bf14159112b112be81a6560fd
404f2cebf13b311e754d45206008918881496370
refs/heads/master
2021-05-04T02:34:59.627529
2016-10-19T08:56:26
2016-10-19T08:56:26
71,334,417
0
0
null
null
null
null
UTF-8
Python
false
false
4,749
py
#Embedded file name: e:\jenkins\workspace\client_SERENITY\branches\release\SERENITY\eve\devtools\script\networkdatamonitor.py import operator import carbonui.const as uiconst from carbonui.primitives.container import Container from eve.client.script.ui.control.buttons import Button from eve.client.script.ui.control.eveLabel import Label from eve.client.script.ui.control.eveWindow import Window import log import uthread2 import util PROPS = [('Packets out', 'packets_out', 0), ('Packets in', 'packets_in', 0), ('Kilobytes out', 'bytes_out', 1), ('Kilobytes in', 'bytes_in', 1)] class NetworkDataMonitor(Window): default_caption = 'Network Data Monitor' default_windowID = 'networkdatamonitor' default_minSize = (400, 300) refreshDelay = 0.5 def ApplyAttributes(self, attributes): self._ready = False Window.ApplyAttributes(self, attributes) self.Reset() self.SetTopparentHeight(4) self.settingsContainer = Container(parent=self.sr.main, align=uiconst.TOBOTTOM, height=16, padding=8) Button(parent=self.settingsContainer, label='Reset', align=uiconst.CENTER, func=self.Reset) container = Container(parent=self.sr.main, align=uiconst.TOALL, padding=8) statusHeader = ' ' for tme in self.intvals: statusHeader += '<t><right>%s' % util.FmtDate(long(tme * 10000), 'ss') statusHeader += '<t><right>total' self.statusLabels = [] txt = Label(parent=container, align=uiconst.TOPLEFT, text=statusHeader, tabs=[80, 130, 180, 230, 280, 330, 380], state=uiconst.UI_DISABLED) for i in xrange(7): statusLabel = Label(parent=container, text='', top=(i + 1) * txt.height + 1, align=uiconst.TOPLEFT, tabs=[80, 130, 180, 230, 280, 330, 380], state=uiconst.UI_DISABLED) self.statusLabels.append(statusLabel) self.PopulateLabels() uthread2.StartTasklet(self.Refresh) def Reset(self, *args): self.intvals = [5000, 10000, 15000, 30000, 60000] self.counter = [[], [], [], [], [], []] self.ticker = 0 self.packets_outTotal = 0 self.packets_inTotal = 0 self.bytes_outTotal = 0 self.bytes_inTotal = 0 self.laststats = {} self.lastresetstats = sm.GetService('machoNet').GetConnectionProperties() def Refresh(self): while not self.destroyed: uthread2.Sleep(self.refreshDelay) self.PopulateLabels() def PopulateLabels(self, *args): self.ticker += self.intvals[0] if self.ticker > self.intvals[-1]: self.ticker = self.intvals[0] stats = sm.GetService('machoNet').GetConnectionProperties() if self.laststats == {}: self.laststats = stats if self.lastresetstats != {}: for key in stats.iterkeys(): stats[key] = stats[key] - self.lastresetstats[key] for i in xrange(len(self.counter) - 1): self.counter[i].append([ stats[key] - self.laststats[key] for header, key, K in PROPS ]) self.counter[i] = self.counter[i][-(self.intvals[i] / 1000):] self.counter[-1].append([ stats[key] - self.laststats[key] for header, key, K in PROPS ]) if not self.display: self.laststats = stats return valueIdx = 0 for header, key, K in PROPS: statusstr = '%s' % header for intvals in self.counter: value = reduce(operator.add, [ intval[valueIdx] for intval in intvals ], 0) if not value: statusstr += '<t><right>-' else: statusstr += '<t><right>%s' % [value, '%.1f' % (value / 1024.0)][K] self.statusLabels[valueIdx].text = statusstr valueIdx += 1 self.statusLabels[valueIdx].text = 'Outstanding<t><right>%s' % stats['calls_outstanding'] valueIdx += 1 self.statusLabels[valueIdx].text = 'Blocking Calls<t><right>%s' % stats['blocking_calls'] valueIdx += 1 block_time = stats['blocking_call_times'] if block_time >= 0: secs = util.SecsFromBlueTimeDelta(block_time) self.statusLabels[valueIdx].text = 'Blocking time<t><right>%sH<t><right>%sM<t><right>%sS' % util.HoursMinsSecsFromSecs(secs) elif not hasattr(self, 'warnedBlockingTimeNegative'): self.warnedBlockingTimeNegative = True log.LogTraceback('Blocking time is negative?') self.laststats = stats
11297a63b6c776b7bc4dd49d2b1fa0ad4699fc53
f8d3f814067415485bb439d7fe92dc2bbe22a048
/models/research/object_detection/models/faster_rcnn_inception_v2_feature_extractor.py
60e98f2b2ba3619347c6f61da69b7f71c6f59039
[ "Apache-2.0" ]
permissive
gmonkman/python
2f9ab8f159c01f6235c86cb0cd52062cd3fdedd3
9123aa6baf538b662143b9098d963d55165e8409
refs/heads/master
2023-04-09T15:53:29.746676
2022-11-26T20:35:21
2022-11-26T20:35:21
60,254,898
0
2
null
2023-03-24T22:58:39
2016-06-02T10:25:27
Python
UTF-8
Python
false
false
12,152
py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Inception V2 Faster R-CNN implementation. See "Rethinking the Inception Architecture for Computer Vision" https://arxiv.org/abs/1512.00567 """ import tensorflow as tf from object_detection.meta_architectures import faster_rcnn_meta_arch from slim.nets import inception_v2 slim = tf.contrib.slim def _batch_norm_arg_scope(list_ops, use_batch_norm=True, batch_norm_decay=0.9997, batch_norm_epsilon=0.001, batch_norm_scale=False, train_batch_norm=False): """Slim arg scope for InceptionV2 batch norm.""" if use_batch_norm: batch_norm_params = { 'is_training': train_batch_norm, 'scale': batch_norm_scale, 'decay': batch_norm_decay, 'epsilon': batch_norm_epsilon } normalizer_fn = slim.batch_norm else: normalizer_fn = None batch_norm_params = None return slim.arg_scope(list_ops, normalizer_fn=normalizer_fn, normalizer_params=batch_norm_params) class FasterRCNNInceptionV2FeatureExtractor( faster_rcnn_meta_arch.FasterRCNNFeatureExtractor): """Faster R-CNN Inception V2 feature extractor implementation.""" def __init__(self, is_training, first_stage_features_stride, batch_norm_trainable=False, reuse_weights=None, weight_decay=0.0, depth_multiplier=1.0, min_depth=16): """Constructor. Args: is_training: See base class. first_stage_features_stride: See base class. batch_norm_trainable: See base class. reuse_weights: See base class. weight_decay: See base class. depth_multiplier: float depth multiplier for feature extractor. min_depth: minimum feature extractor depth. Raises: ValueError: If `first_stage_features_stride` is not 8 or 16. """ if first_stage_features_stride != 8 and first_stage_features_stride != 16: raise ValueError('`first_stage_features_stride` must be 8 or 16.') self._depth_multiplier = depth_multiplier self._min_depth = min_depth super(FasterRCNNInceptionV2FeatureExtractor, self).__init__( is_training, first_stage_features_stride, batch_norm_trainable, reuse_weights, weight_decay) def preprocess(self, resized_inputs): """Faster R-CNN Inception V2 preprocessing. Maps pixel values to the range [-1, 1]. Args: resized_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. """ return (2.0 / 255.0) * resized_inputs - 1.0 def _extract_proposal_features(self, preprocessed_inputs, scope): """Extracts first stage RPN features. Args: preprocessed_inputs: A [batch, height, width, channels] float32 tensor representing a batch of images. scope: A scope name. Returns: rpn_feature_map: A tensor with shape [batch, height, width, depth] activations: A dictionary mapping feature extractor tensor names to tensors Raises: InvalidArgumentError: If the spatial size of `preprocessed_inputs` (height or width) is less than 33. ValueError: If the created network is missing the required activation. """ preprocessed_inputs.get_shape().assert_has_rank(4) shape_assert = tf.Assert( tf.logical_and(tf.greater_equal(tf.shape(preprocessed_inputs)[1], 33), tf.greater_equal(tf.shape(preprocessed_inputs)[2], 33)), ['image size must at least be 33 in both height and width.']) with tf.control_dependencies([shape_assert]): with tf.variable_scope('InceptionV2', reuse=self._reuse_weights) as scope: with _batch_norm_arg_scope([slim.conv2d, slim.separable_conv2d], batch_norm_scale=True, train_batch_norm=self._train_batch_norm): _, activations = inception_v2.inception_v2_base( preprocessed_inputs, final_endpoint='Mixed_4e', min_depth=self._min_depth, depth_multiplier=self._depth_multiplier, scope=scope) return activations['Mixed_4e'], activations def _extract_box_classifier_features(self, proposal_feature_maps, scope): """Extracts second stage box classifier features. Args: proposal_feature_maps: A 4-D float tensor with shape [batch_size * self.max_num_proposals, crop_height, crop_width, depth] representing the feature map cropped to each proposal. scope: A scope name (unused). Returns: proposal_classifier_features: A 4-D float tensor with shape [batch_size * self.max_num_proposals, height, width, depth] representing box classifier features for each proposal. """ net = proposal_feature_maps depth = lambda d: max(int(d * self._depth_multiplier), self._min_depth) trunc_normal = lambda stddev: tf.truncated_normal_initializer(0.0, stddev) data_format = 'NHWC' concat_dim = 3 if data_format == 'NHWC' else 1 with tf.variable_scope('InceptionV2', reuse=self._reuse_weights): with slim.arg_scope( [slim.conv2d, slim.max_pool2d, slim.avg_pool2d], stride=1, padding='SAME', data_format=data_format): with _batch_norm_arg_scope([slim.conv2d, slim.separable_conv2d], batch_norm_scale=True, train_batch_norm=self._train_batch_norm): with tf.variable_scope('Mixed_5a'): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d( net, depth(128), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_0 = slim.conv2d(branch_0, depth(192), [3, 3], stride=2, scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d( net, depth(192), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, depth(256), [3, 3], scope='Conv2d_0b_3x3') branch_1 = slim.conv2d(branch_1, depth(256), [3, 3], stride=2, scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_2'): branch_2 = slim.max_pool2d(net, [3, 3], stride=2, scope='MaxPool_1a_3x3') net = tf.concat([branch_0, branch_1, branch_2], concat_dim) with tf.variable_scope('Mixed_5b'): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, depth(352), [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d( net, depth(192), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, depth(320), [3, 3], scope='Conv2d_0b_3x3') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d( net, depth(160), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, depth(224), [3, 3], scope='Conv2d_0b_3x3') branch_2 = slim.conv2d(branch_2, depth(224), [3, 3], scope='Conv2d_0c_3x3') with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') branch_3 = slim.conv2d( branch_3, depth(128), [1, 1], weights_initializer=trunc_normal(0.1), scope='Conv2d_0b_1x1') net = tf.concat([branch_0, branch_1, branch_2, branch_3], concat_dim) with tf.variable_scope('Mixed_5c'): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, depth(352), [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d( net, depth(192), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, depth(320), [3, 3], scope='Conv2d_0b_3x3') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d( net, depth(192), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, depth(224), [3, 3], scope='Conv2d_0b_3x3') branch_2 = slim.conv2d(branch_2, depth(224), [3, 3], scope='Conv2d_0c_3x3') with tf.variable_scope('Branch_3'): branch_3 = slim.max_pool2d(net, [3, 3], scope='MaxPool_0a_3x3') branch_3 = slim.conv2d( branch_3, depth(128), [1, 1], weights_initializer=trunc_normal(0.1), scope='Conv2d_0b_1x1') proposal_classifier_features = tf.concat( [branch_0, branch_1, branch_2, branch_3], concat_dim) return proposal_classifier_features
3e3fa24bb242e68bd2148c3982eaedf610738f1e
8fa938eddcc75eb7dff1f2055c49cb3817a00c63
/Basic - Part1/ex124.py
a5b7b3c3bf10bb3195275eca92ec3fbbf51c9665
[]
no_license
jayhebe/w3resource_exercises
f27109759d112b0611574aa70eb378ace447c2a0
b29aa7c806f6021a8988e83bb9f674522a41380d
refs/heads/master
2020-05-07T09:23:24.039271
2020-01-30T15:05:06
2020-01-30T15:05:06
180,374,062
2
0
null
null
null
null
UTF-8
Python
false
false
78
py
x = 1 y = 1 z = 1 if x == y == z: print("All variables have same value!")
3b5330ea0aa6a4a8d96e5804f4c85d8878f67ed5
d5440edcfc66496937e98c557ab9c33946234808
/lifting line theory basic.py
750e9c9edd03ecebdd25e481ebf6dc7a98950762
[]
no_license
geoffreynyaga/lifting-line-theory
4df7fb1baca79b9e3dfb19f5ec6c4ba86fa8fe69
352e1379863adf25c5f3e4966e16ae67d38f97ba
refs/heads/master
2022-08-30T04:18:23.725361
2020-02-14T18:55:28
2020-02-14T18:55:28
99,334,542
2
0
null
2022-06-22T01:09:44
2017-08-04T10:58:33
Python
UTF-8
Python
false
false
2,355
py
# coding: utf-8 __author__ = "Geoffrey Nyaga" import numpy as np # type: ignore import math import matplotlib.pylab as plt # type: ignore N: int = 9 # (number of segments - 1) S: float = 24.39 # wing area m^2 AR: float = 7.8 # Aspect ratio taper: float = 0.45 # Taper ratio alpha_twist: float = -2.0 # Twist angle (deg) i_w: float = 1.0 # wing setting angle (deg) a_2d: float = 6.8754 # lift curve slope (1/rad) alpha_0: float = -4.2 # zero-lift angle of attack (deg) b = math.sqrt(AR * S) # wing span (m) MAC = S / b # Mean Aerodynamic Chord (m) Croot = (1.5 * (1 + taper) * MAC) / (1 + taper + taper ** 2) # root chord (m) # theta = np.arange(math.pi/(2*N), math.pi/2, math.pi/(2*(N))) theta = np.linspace((math.pi / (2 * N)), (math.pi / 2), N, endpoint=True) # alpha =np.arange(i_w+alpha_twist,i_w ,-alpha_twist/(N)) alpha = np.linspace(i_w + alpha_twist, i_w, N) z = (b / 2) * np.cos(theta) c = Croot * (1 - (1 - taper) * np.cos(theta)) # Mean Aerodynamics mu = c * a_2d / (4 * b) LHS = mu * (np.array(alpha) - alpha_0) / 57.3 # .reshape((N-1),1)# Left Hand Side RHS = [] for i in range(1, 2 * N + 1, 2): RHS_iter = np.sin(i * theta) * ( 1 + (mu * i) / (np.sin(list(theta))) ) # .reshape(1,N) # print(RHS_iter,"RHS_iter shape") RHS.append(RHS_iter) test = np.asarray(RHS) x = np.transpose(test) inv_RHS = np.linalg.inv(x) ans = np.matmul(inv_RHS, LHS) mynum = np.divide((4 * b), c) test = (np.sin((1) * theta)) * ans[0] * mynum test1 = (np.sin((3) * theta)) * ans[1] * mynum test2 = (np.sin((5) * theta)) * ans[2] * mynum test3 = (np.sin((7) * theta)) * ans[3] * mynum test4 = (np.sin((9) * theta)) * ans[4] * mynum test5 = (np.sin((11) * theta)) * ans[5] * mynum test6 = (np.sin((13) * theta)) * ans[6] * mynum test7 = (np.sin((15) * theta)) * ans[7] * mynum test8 = (np.sin((17) * theta)) * ans[8] * mynum CL = test + test1 + test2 + test3 + test4 + test5 + test6 + test7 + test8 CL1 = np.append(0, CL) y_s = [b / 2, z[0], z[1], z[2], z[3], z[4], z[5], z[6], z[7], z[8]] plt.plot(y_s, CL1, marker="o") plt.title("Lifting Line Theory\n Elliptical Lift distribution") plt.xlabel("Semi-span location (m)") plt.ylabel("Lift coefficient") plt.grid() plt.show() CL_wing = ( math.pi * AR * ans[0] ) # USE THIS CL WITH CRUISE SPEED TO CALCULATE THE ACCURATE LIFT!!!!!!!!!! print(CL_wing, "CL_wing")
ff54639667d43e2a8ef0b80917c081381a5370b5
5471de6fd11cc36e8ad9c05ea25d13ae568ad060
/ClassesAndInstances/Lab Vet.py
0661e0116a2ab4a17184311b5b09a71a094a3404
[]
no_license
olgayordanova/PythonOOP
75bbf9a20c612be7212de7bed59edccef1e02304
2d177d17bf50335b17f6246198b1cf85719de1df
refs/heads/main
2023-03-30T18:59:56.751037
2021-04-03T19:48:37
2021-04-03T19:48:37
333,202,583
1
0
null
null
null
null
UTF-8
Python
false
false
1,327
py
class Vet: animals =[] space =5 def __init__(self, name): self.name =name self.animals = [] def register_animal(self,animal_name): if len(Vet.animals)<Vet.space: self.animals.append(animal_name) Vet.animals.append ( animal_name ) return f"{animal_name} registered in the clinic" else: return f"Not enough space" def unregister_animal(self, animal_name): if animal_name in self.animals: self.animals.remove ( animal_name ) Vet.animals.remove ( animal_name ) return f"{animal_name} unregistered successfully" else: return f"{animal_name} not in the clinic" def info(self): return f"{self.name} has {len(self.animals)} animals. {Vet.space-len(Vet.animals)} space left in clinic" peter = Vet("Peter") george = Vet("George") print(peter.register_animal("Tom")) print(george.register_animal("Cory")) print(peter.register_animal("Fishy")) print(peter.register_animal("Bobby")) print(george.register_animal("Kay")) print(george.unregister_animal("Cory")) print(peter.register_animal("Silky")) print(peter.unregister_animal("Molly")) print(peter.unregister_animal("Tom")) print(peter.info()) print(george.info())
b8728bf275bb2ca91a768945aac95810d2f474eb
55647a80c8b412af9df0ba3f50595cc2f29c25e6
/res/scripts/client/gui/shared/gui_items/dossier/achievements/Achieved.py
abf5a6ed09d5c5dab3a8ed8390af41b1ca9fb8d5
[]
no_license
cnsuhao/WOT-0.9.17-CT
0035eb6070fb4fab8d8ee9f8bbc676c10d511cfb
d1f932d8cabaf8aa21708622e87f83c8d24d6451
refs/heads/master
2021-06-08T18:11:07.039293
2016-11-19T19:12:37
2016-11-19T19:12:37
null
0
0
null
null
null
null
WINDOWS-1250
Python
false
false
668
py
# 2016.11.19 19:52:48 Střední Evropa (běžný čas) # Embedded file name: scripts/client/gui/shared/gui_items/dossier/achievements/Achieved.py from abstract import RegularAchievement from gui.shared.gui_items.dossier.achievements import validators class Achieved(RegularAchievement): @classmethod def checkIsValid(cls, block, name, dossier): return validators.alreadyAchieved(cls, name, block, dossier) # okay decompyling c:\Users\PC\wotsources\files\originals\res\scripts\client\gui\shared\gui_items\dossier\achievements\Achieved.pyc # decompiled 1 files: 1 okay, 0 failed, 0 verify failed # 2016.11.19 19:52:48 Střední Evropa (běžný čas)
8051de40984a9a2acb43e21095fbc3aae7026551
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_118/ch23_2020_03_11_11_23_45_741474.py
c6ecc8ea4e87cf6cff5cef2378d5c6e336252e92
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
203
py
def velocidade(c): v=(c-80)*5 return v x = float(input('Qual a velocidade? ')) y=velocidade(x) if y == 0: print('Não foi multado') else: print ('Foi multado em R$ '' {0:.2f}'.format (y))
b76eebcce6d333ab9eeb6a635d645bcff821d353
cd4bbecc3f713b0c25508d0c5674d9e103db5df4
/toontown/estate/FlowerCollection.py
ae519a6213959a49508db54bc4af3e2794d78be4
[]
no_license
peppythegod/ToontownOnline
dce0351cfa1ad8c476e035aa3947fdf53de916a6
2e5a106f3027714d301f284721382cb956cd87a0
refs/heads/master
2020-04-20T05:05:22.934339
2020-01-02T18:05:28
2020-01-02T18:05:28
168,646,608
11
2
null
null
null
null
UTF-8
Python
false
false
2,443
py
import GardenGlobals from direct.directnotify import DirectNotifyGlobal import FlowerBase class FlowerCollection: notify = DirectNotifyGlobal.directNotify.newCategory('FlowerCollection') def __init__(self): self.flowerlist = [] def __len__(self): return len(self.flowerlist) def getFlower(self): return self.flowerlist def makeFromNetLists(self, speciesList, varietyList): self.flowerlist = [] for (species, variety) in zip(speciesList, varietyList): self.flowerlist.append(FlowerBase.FlowerBase(species, variety)) def getNetLists(self): speciesList = [] varietyList = [] for flower in self.flowerlist: speciesList.append(flower.getSpecies()) varietyList.append(flower.getVariety()) return [speciesList, varietyList] def hasFlower(self, species, variety): for flower in self.flowerlist: if flower.getSpecies() == species and flower.getVariety( ) == variety: return 1 continue return 0 def hasSpecies(self, species): for flower in self.flowerlist: if flower.getSpecies() == species: return 1 continue return 0 def getInitialVariety(self, species): retVal = 100000 for flower in self.flowerlist: if flower.getSpecies() == species: if flower.getVariety() < retVal: retVal = flower.getVariety() flower.getVariety() < retVal if retVal == 100000: retVal = 0 return retVal def _FlowerCollection__collect(self, newFlower, updateCollection): for flower in self.flowerlist: if flower.getVariety() == newFlower.getVariety( ) and flower.getSpecies() == newFlower.getSpecies(): return GardenGlobals.COLLECT_NO_UPDATE continue if updateCollection: self.flowerlist.append(newFlower) return GardenGlobals.COLLECT_NEW_ENTRY def collectFlower(self, newFlower): return self._FlowerCollection__collect(newFlower, updateCollection=1) def __str__(self): numFlower = len(self.flowerlist) txt = 'Flower Collection (%s flowers):' % numFlower for flower in self.flowerlist: txt += '\n' + str(flower) return txt
cc462bc85d0d716ae2e44775a9e09ff96c2e6614
d9f52125601ec26f79202f0e912891b31b60ffc4
/오전반/30-days-of-code/Day_06/Day_06_YNY.py
463f620727b012c7231ca35c7a30dd8078ae48fe
[]
no_license
YoungGaLee/2020_Python_coding-study
5a4f36a39021c89ac773a3a7878c44bf8b0b811f
b876aabc747709afa21035c3afa7e3f7ee01b26a
refs/heads/master
2022-12-12T13:34:44.729245
2020-09-07T04:07:48
2020-09-07T04:07:48
280,745,587
4
4
null
2020-07-22T03:27:22
2020-07-18T21:51:40
Python
UTF-8
Python
false
false
268
py
n=int(input()) q_odd=[] q_even=[] for i in range (n): q=str(input()) for j in range(len(q)): if j%2==0: q_odd.append(q[j]) if j%2==1: q_even.append(q[j]) print("".join(q_odd) ,"".join(q_even)) q_odd,q_even=[],[]
2aacf7a42a5e5ba680eac760fa60e5e5c13abc8f
3d69b7fe8fa95fcd6dbab25885f2e3e42bc891d6
/src/nlp/classification/tf1/bert/run_squad.py
37118c6db8065cbadf118ecc3b0a13473347453d
[ "Apache-2.0", "LicenseRef-scancode-public-domain" ]
permissive
wu-uw/OpenCompetition
ac652d066f667dc2b3061947af5ea0425643a1b5
9aa9d7a50ada1deb653d295dd8a7fe46321b9094
refs/heads/master
2021-01-03T04:59:28.987099
2020-03-02T07:49:11
2020-03-02T07:49:11
239,932,371
0
0
Apache-2.0
2020-03-02T07:49:12
2020-02-12T05:12:02
Python
UTF-8
Python
false
false
51,567
py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Run BERT on SQuAD 1.1 and SQuAD 2.0.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import json import math import os import random import modeling import optimization import tokenization import six import tensorflow as tf flags = tf.flags FLAGS = flags.FLAGS # Required parameters flags.DEFINE_string( "bert_config_file", None, "The config json file corresponding to the pre-trained BERT model. " "This specifies the model architecture.") flags.DEFINE_string("vocab_file", None, "The vocabulary file that the BERT model was trained on.") flags.DEFINE_string( "output_dir", None, "The output directory where the model checkpoints will be written.") # Other parameters flags.DEFINE_string("train_file", None, "SQuAD json for training. E.g., train-v1.1.json") flags.DEFINE_string( "predict_file", None, "SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json") flags.DEFINE_string( "init_checkpoint", None, "Initial checkpoint (usually from a pre-trained BERT model).") flags.DEFINE_bool( "do_lower_case", True, "Whether to lower case the input text. Should be True for uncased " "models and False for cased models.") flags.DEFINE_integer( "max_seq_length", 384, "The maximum total input sequence length after WordPiece tokenization. " "Sequences longer than this will be truncated, and sequences shorter " "than this will be padded.") flags.DEFINE_integer( "doc_stride", 128, "When splitting up a long document into chunks, how much stride to " "take between chunks.") flags.DEFINE_integer( "max_query_length", 64, "The maximum number of tokens for the question. Questions longer than " "this will be truncated to this length.") flags.DEFINE_bool("do_train", False, "Whether to run training.") flags.DEFINE_bool("do_predict", False, "Whether to run eval on the dev set.") flags.DEFINE_integer("train_batch_size", 32, "Total batch size for training.") flags.DEFINE_integer("predict_batch_size", 8, "Total batch size for predictions.") flags.DEFINE_float( "learning_rate", 5e-5, "The initial learning rate for Adam.") flags.DEFINE_float("num_train_epochs", 3.0, "Total number of training epochs to perform.") flags.DEFINE_float( "warmup_proportion", 0.1, "Proportion of training to perform linear learning rate warmup for. " "E.g., 0.1 = 10% of training.") flags.DEFINE_integer("save_checkpoints_steps", 1000, "How often to save the model checkpoint.") flags.DEFINE_integer("iterations_per_loop", 1000, "How many steps to make in each estimator call.") flags.DEFINE_integer( "n_best_size", 20, "The total number of n-best predictions to generate in the " "nbest_predictions.json output file.") flags.DEFINE_integer( "max_answer_length", 30, "The maximum length of an answer that can be generated. This is needed " "because the start and end predictions are not conditioned on one another.") flags.DEFINE_bool("use_tpu", False, "Whether to use TPU or GPU/CPU.") tf.flags.DEFINE_string( "tpu_name", None, "The Cloud TPU to use for training. This should be either the name " "used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 " "url.") tf.flags.DEFINE_string( "tpu_zone", None, "[Optional] GCE zone where the Cloud TPU is located in. If not " "specified, we will attempt to automatically detect the GCE project from " "metadata.") tf.flags.DEFINE_string( "gcp_project", None, "[Optional] Project name for the Cloud TPU-enabled project. If not " "specified, we will attempt to automatically detect the GCE project from " "metadata.") tf.flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.") flags.DEFINE_integer( "num_tpu_cores", 8, "Only used if `use_tpu` is True. Total number of TPU cores to use.") flags.DEFINE_bool( "verbose_logging", False, "If true, all of the warnings related to data processing will be printed. " "A number of warnings are expected for a normal SQuAD evaluation.") flags.DEFINE_bool( "version_2_with_negative", False, "If true, the SQuAD examples contain some that do not have an answer.") flags.DEFINE_float( "null_score_diff_threshold", 0.0, "If null_score - best_non_null is greater than the threshold predict null.") class SquadExample(object): """A single training/test example for simple sequence classification. For examples without an answer, the start and end position are -1. """ def __init__(self, qas_id, question_text, doc_tokens, orig_answer_text=None, start_position=None, end_position=None, is_impossible=False): self.qas_id = qas_id self.question_text = question_text self.doc_tokens = doc_tokens self.orig_answer_text = orig_answer_text self.start_position = start_position self.end_position = end_position self.is_impossible = is_impossible def __str__(self): return self.__repr__() def __repr__(self): s = "" s += "qas_id: %s" % (tokenization.printable_text(self.qas_id)) s += ", question_text: %s" % ( tokenization.printable_text(self.question_text)) s += ", doc_tokens: [%s]" % (" ".join(self.doc_tokens)) if self.start_position: s += ", start_position: %d" % (self.start_position) if self.start_position: s += ", end_position: %d" % (self.end_position) if self.start_position: s += ", is_impossible: %r" % (self.is_impossible) return s class InputFeatures(object): """A single set of features of data.""" def __init__(self, unique_id, example_index, doc_span_index, tokens, token_to_orig_map, token_is_max_context, input_ids, input_mask, segment_ids, start_position=None, end_position=None, is_impossible=None): self.unique_id = unique_id self.example_index = example_index self.doc_span_index = doc_span_index self.tokens = tokens self.token_to_orig_map = token_to_orig_map self.token_is_max_context = token_is_max_context self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids self.start_position = start_position self.end_position = end_position self.is_impossible = is_impossible def read_squad_examples(input_file, is_training): """Read a SQuAD json file into a list of SquadExample.""" with tf.gfile.Open(input_file, "r") as reader: input_data = json.load(reader)["data"] def is_whitespace(c): if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F: return True return False examples = [] for entry in input_data: for paragraph in entry["paragraphs"]: paragraph_text = paragraph["context"] doc_tokens = [] char_to_word_offset = [] prev_is_whitespace = True for c in paragraph_text: if is_whitespace(c): prev_is_whitespace = True else: if prev_is_whitespace: doc_tokens.append(c) else: doc_tokens[-1] += c prev_is_whitespace = False char_to_word_offset.append(len(doc_tokens) - 1) for qa in paragraph["qas"]: qas_id = qa["id"] question_text = qa["question"] start_position = None end_position = None orig_answer_text = None is_impossible = False if is_training: if FLAGS.version_2_with_negative: is_impossible = qa["is_impossible"] if (len(qa["answers"]) != 1) and (not is_impossible): raise ValueError( "For training, each question should have exactly 1 answer.") if not is_impossible: answer = qa["answers"][0] orig_answer_text = answer["text"] answer_offset = answer["answer_start"] answer_length = len(orig_answer_text) start_position = char_to_word_offset[answer_offset] end_position = char_to_word_offset[answer_offset + answer_length - 1] # Only add answers where the text can be exactly recovered from the # document. If this CAN'T happen it's likely due to weird Unicode # stuff so we will just skip the example. # # Note that this means for training mode, every example is NOT # guaranteed to be preserved. actual_text = " ".join( doc_tokens[start_position:(end_position + 1)]) cleaned_answer_text = " ".join( tokenization.whitespace_tokenize(orig_answer_text)) if actual_text.find(cleaned_answer_text) == -1: tf.logging.warning( "Could not find answer: '%s' vs. '%s'", actual_text, cleaned_answer_text) continue else: start_position = -1 end_position = -1 orig_answer_text = "" example = SquadExample( qas_id=qas_id, question_text=question_text, doc_tokens=doc_tokens, orig_answer_text=orig_answer_text, start_position=start_position, end_position=end_position, is_impossible=is_impossible) examples.append(example) return examples def convert_examples_to_features(examples, tokenizer, max_seq_length, doc_stride, max_query_length, is_training, output_fn): """Loads a data file into a list of `InputBatch`s.""" unique_id = 1000000000 for (example_index, example) in enumerate(examples): query_tokens = tokenizer.tokenize(example.question_text) if len(query_tokens) > max_query_length: query_tokens = query_tokens[0:max_query_length] tok_to_orig_index = [] orig_to_tok_index = [] all_doc_tokens = [] for (i, token) in enumerate(example.doc_tokens): orig_to_tok_index.append(len(all_doc_tokens)) sub_tokens = tokenizer.tokenize(token) for sub_token in sub_tokens: tok_to_orig_index.append(i) all_doc_tokens.append(sub_token) tok_start_position = None tok_end_position = None if is_training and example.is_impossible: tok_start_position = -1 tok_end_position = -1 if is_training and not example.is_impossible: tok_start_position = orig_to_tok_index[example.start_position] if example.end_position < len(example.doc_tokens) - 1: tok_end_position = orig_to_tok_index[example.end_position + 1] - 1 else: tok_end_position = len(all_doc_tokens) - 1 (tok_start_position, tok_end_position) = _improve_answer_span( all_doc_tokens, tok_start_position, tok_end_position, tokenizer, example.orig_answer_text) # The -3 accounts for [CLS], [SEP] and [SEP] max_tokens_for_doc = max_seq_length - len(query_tokens) - 3 # We can have documents that are longer than the maximum sequence length. # To deal with this we do a sliding window approach, where we take chunks # of the up to our max length with a stride of `doc_stride`. _DocSpan = collections.namedtuple( # pylint: disable=invalid-name "DocSpan", ["start", "length"]) doc_spans = [] start_offset = 0 while start_offset < len(all_doc_tokens): length = len(all_doc_tokens) - start_offset if length > max_tokens_for_doc: length = max_tokens_for_doc doc_spans.append(_DocSpan(start=start_offset, length=length)) if start_offset + length == len(all_doc_tokens): break start_offset += min(length, doc_stride) for (doc_span_index, doc_span) in enumerate(doc_spans): tokens = [] token_to_orig_map = {} token_is_max_context = {} segment_ids = [] tokens.append("[CLS]") segment_ids.append(0) for token in query_tokens: tokens.append(token) segment_ids.append(0) tokens.append("[SEP]") segment_ids.append(0) for i in range(doc_span.length): split_token_index = doc_span.start + i token_to_orig_map[len( tokens)] = tok_to_orig_index[split_token_index] is_max_context = _check_is_max_context( doc_spans, doc_span_index, split_token_index) token_is_max_context[len(tokens)] = is_max_context tokens.append(all_doc_tokens[split_token_index]) segment_ids.append(1) tokens.append("[SEP]") segment_ids.append(1) input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. while len(input_ids) < max_seq_length: input_ids.append(0) input_mask.append(0) segment_ids.append(0) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length start_position = None end_position = None if is_training and not example.is_impossible: # For training, if our document chunk does not contain an annotation # we throw it out, since there is nothing to predict. doc_start = doc_span.start doc_end = doc_span.start + doc_span.length - 1 out_of_span = False if not (tok_start_position >= doc_start and tok_end_position <= doc_end): out_of_span = True if out_of_span: start_position = 0 end_position = 0 else: doc_offset = len(query_tokens) + 2 start_position = tok_start_position - doc_start + doc_offset end_position = tok_end_position - doc_start + doc_offset if is_training and example.is_impossible: start_position = 0 end_position = 0 if example_index < 20: tf.logging.info("*** Example ***") tf.logging.info("unique_id: %s" % (unique_id)) tf.logging.info("example_index: %s" % (example_index)) tf.logging.info("doc_span_index: %s" % (doc_span_index)) tf.logging.info("tokens: %s" % " ".join( [tokenization.printable_text(x) for x in tokens])) tf.logging.info("token_to_orig_map: %s" % " ".join( ["%d:%d" % (x, y) for (x, y) in six.iteritems(token_to_orig_map)])) tf.logging.info("token_is_max_context: %s" % " ".join([ "%d:%s" % (x, y) for (x, y) in six.iteritems(token_is_max_context) ])) tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) tf.logging.info( "input_mask: %s" % " ".join([str(x) for x in input_mask])) tf.logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids])) if is_training and example.is_impossible: tf.logging.info("impossible example") if is_training and not example.is_impossible: answer_text = " ".join( tokens[start_position:(end_position + 1)]) tf.logging.info("start_position: %d" % (start_position)) tf.logging.info("end_position: %d" % (end_position)) tf.logging.info("answer: %s" % (tokenization.printable_text(answer_text))) feature = InputFeatures( unique_id=unique_id, example_index=example_index, doc_span_index=doc_span_index, tokens=tokens, token_to_orig_map=token_to_orig_map, token_is_max_context=token_is_max_context, input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, start_position=start_position, end_position=end_position, is_impossible=example.is_impossible) # Run callback output_fn(feature) unique_id += 1 def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer, orig_answer_text): """Returns tokenized answer spans that better match the annotated answer.""" # The SQuAD annotations are character based. We first project them to # whitespace-tokenized words. But then after WordPiece tokenization, we can # often find a "better match". For example: # # Question: What year was John Smith born? # Context: The leader was John Smith (1895-1943). # Answer: 1895 # # The original whitespace-tokenized answer will be "(1895-1943).". However # after tokenization, our tokens will be "( 1895 - 1943 ) .". So we can match # the exact answer, 1895. # # However, this is not always possible. Consider the following: # # Question: What country is the top exporter of electornics? # Context: The Japanese electronics industry is the lagest in the world. # Answer: Japan # # In this case, the annotator chose "Japan" as a character sub-span of # the word "Japanese". Since our WordPiece tokenizer does not split # "Japanese", we just use "Japanese" as the annotation. This is fairly rare # in SQuAD, but does happen. tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text)) for new_start in range(input_start, input_end + 1): for new_end in range(input_end, new_start - 1, -1): text_span = " ".join(doc_tokens[new_start:(new_end + 1)]) if text_span == tok_answer_text: return (new_start, new_end) return (input_start, input_end) def _check_is_max_context(doc_spans, cur_span_index, position): """Check if this is the 'max context' doc span for the token.""" # Because of the sliding window approach taken to scoring documents, a single # token can appear in multiple documents. E.g. # Doc: the man went to the store and bought a gallon of milk # Span A: the man went to the # Span B: to the store and bought # Span C: and bought a gallon of # ... # # Now the word 'bought' will have two scores from spans B and C. We only # want to consider the score with "maximum context", which we define as # the *minimum* of its left and right context (the *sum* of left and # right context will always be the same, of course). # # In the example the maximum context for 'bought' would be span C since # it has 1 left context and 3 right context, while span B has 4 left context # and 0 right context. best_score = None best_span_index = None for (span_index, doc_span) in enumerate(doc_spans): end = doc_span.start + doc_span.length - 1 if position < doc_span.start: continue if position > end: continue num_left_context = position - doc_span.start num_right_context = end - position score = min(num_left_context, num_right_context) + \ 0.01 * doc_span.length if best_score is None or score > best_score: best_score = score best_span_index = span_index return cur_span_index == best_span_index def create_model(bert_config, is_training, input_ids, input_mask, segment_ids, use_one_hot_embeddings): """Creates a classification model.""" model = modeling.BertModel( config=bert_config, is_training=is_training, input_ids=input_ids, input_mask=input_mask, token_type_ids=segment_ids, use_one_hot_embeddings=use_one_hot_embeddings) final_hidden = model.get_sequence_output() final_hidden_shape = modeling.get_shape_list(final_hidden, expected_rank=3) batch_size = final_hidden_shape[0] seq_length = final_hidden_shape[1] hidden_size = final_hidden_shape[2] output_weights = tf.get_variable( "cls/squad/output_weights", [2, hidden_size], initializer=tf.truncated_normal_initializer(stddev=0.02)) output_bias = tf.get_variable( "cls/squad/output_bias", [2], initializer=tf.zeros_initializer()) final_hidden_matrix = tf.reshape(final_hidden, [batch_size * seq_length, hidden_size]) logits = tf.matmul(final_hidden_matrix, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) logits = tf.reshape(logits, [batch_size, seq_length, 2]) logits = tf.transpose(logits, [2, 0, 1]) unstacked_logits = tf.unstack(logits, axis=0) (start_logits, end_logits) = (unstacked_logits[0], unstacked_logits[1]) return (start_logits, end_logits) def model_fn_builder(bert_config, init_checkpoint, learning_rate, num_train_steps, num_warmup_steps, use_tpu, use_one_hot_embeddings): """Returns `model_fn` closure for TPUEstimator.""" def model_fn(features, labels, mode, params): # pylint: disable=unused-argument """The `model_fn` for TPUEstimator.""" tf.logging.info("*** Features ***") for name in sorted(features.keys()): tf.logging.info( " name = %s, shape = %s" % (name, features[name].shape)) unique_ids = features["unique_ids"] input_ids = features["input_ids"] input_mask = features["input_mask"] segment_ids = features["segment_ids"] is_training = (mode == tf.estimator.ModeKeys.TRAIN) (start_logits, end_logits) = create_model( bert_config=bert_config, is_training=is_training, input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, use_one_hot_embeddings=use_one_hot_embeddings) tvars = tf.trainable_variables() initialized_variable_names = {} scaffold_fn = None if init_checkpoint: (assignment_map, initialized_variable_names ) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint) if use_tpu: def tpu_scaffold(): tf.train.init_from_checkpoint( init_checkpoint, assignment_map) return tf.train.Scaffold() scaffold_fn = tpu_scaffold else: tf.train.init_from_checkpoint(init_checkpoint, assignment_map) tf.logging.info("**** Trainable Variables ****") for var in tvars: init_string = "" if var.name in initialized_variable_names: init_string = ", *INIT_FROM_CKPT*" tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape, init_string) output_spec = None if mode == tf.estimator.ModeKeys.TRAIN: seq_length = modeling.get_shape_list(input_ids)[1] def compute_loss(logits, positions): one_hot_positions = tf.one_hot( positions, depth=seq_length, dtype=tf.float32) log_probs = tf.nn.log_softmax(logits, axis=-1) loss = -tf.reduce_mean( tf.reduce_sum(one_hot_positions * log_probs, axis=-1)) return loss start_positions = features["start_positions"] end_positions = features["end_positions"] start_loss = compute_loss(start_logits, start_positions) end_loss = compute_loss(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2.0 train_op = optimization.create_optimizer( total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu) output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, loss=total_loss, train_op=train_op, scaffold_fn=scaffold_fn) elif mode == tf.estimator.ModeKeys.PREDICT: predictions = { "unique_ids": unique_ids, "start_logits": start_logits, "end_logits": end_logits, } output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, predictions=predictions, scaffold_fn=scaffold_fn) else: raise ValueError( "Only TRAIN and PREDICT modes are supported: %s" % (mode)) return output_spec return model_fn def input_fn_builder(input_file, seq_length, is_training, drop_remainder): """Creates an `input_fn` closure to be passed to TPUEstimator.""" name_to_features = { "unique_ids": tf.FixedLenFeature([], tf.int64), "input_ids": tf.FixedLenFeature([seq_length], tf.int64), "input_mask": tf.FixedLenFeature([seq_length], tf.int64), "segment_ids": tf.FixedLenFeature([seq_length], tf.int64), } if is_training: name_to_features["start_positions"] = tf.FixedLenFeature([], tf.int64) name_to_features["end_positions"] = tf.FixedLenFeature([], tf.int64) def _decode_record(record, name_to_features): """Decodes a record to a TensorFlow example.""" example = tf.parse_single_example(record, name_to_features) # tf.Example only supports tf.int64, but the TPU only supports tf.int32. # So cast all int64 to int32. for name in list(example.keys()): t = example[name] if t.dtype == tf.int64: t = tf.to_int32(t) example[name] = t return example def input_fn(params): """The actual input function.""" batch_size = params["batch_size"] # For training, we want a lot of parallel reading and shuffling. # For eval, we want no shuffling and parallel reading doesn't matter. d = tf.data.TFRecordDataset(input_file) if is_training: d = d.repeat() d = d.shuffle(buffer_size=100) d = d.apply( tf.contrib.data.map_and_batch( lambda record: _decode_record(record, name_to_features), batch_size=batch_size, drop_remainder=drop_remainder)) return d return input_fn RawResult = collections.namedtuple("RawResult", ["unique_id", "start_logits", "end_logits"]) def write_predictions(all_examples, all_features, all_results, n_best_size, max_answer_length, do_lower_case, output_prediction_file, output_nbest_file, output_null_log_odds_file): """Write final predictions to the json file and log-odds of null if needed.""" tf.logging.info("Writing predictions to: %s" % (output_prediction_file)) tf.logging.info("Writing nbest to: %s" % (output_nbest_file)) example_index_to_features = collections.defaultdict(list) for feature in all_features: example_index_to_features[feature.example_index].append(feature) unique_id_to_result = {} for result in all_results: unique_id_to_result[result.unique_id] = result _PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name "PrelimPrediction", ["feature_index", "start_index", "end_index", "start_logit", "end_logit"]) all_predictions = collections.OrderedDict() all_nbest_json = collections.OrderedDict() scores_diff_json = collections.OrderedDict() for (example_index, example) in enumerate(all_examples): features = example_index_to_features[example_index] prelim_predictions = [] # keep track of the minimum score of null start+end of position 0 score_null = 1000000 # large and positive min_null_feature_index = 0 # the paragraph slice with min mull score null_start_logit = 0 # the start logit at the slice with min null score null_end_logit = 0 # the end logit at the slice with min null score for (feature_index, feature) in enumerate(features): result = unique_id_to_result[feature.unique_id] start_indexes = _get_best_indexes(result.start_logits, n_best_size) end_indexes = _get_best_indexes(result.end_logits, n_best_size) # if we could have irrelevant answers, get the min score of # irrelevant if FLAGS.version_2_with_negative: feature_null_score = result.start_logits[0] + \ result.end_logits[0] if feature_null_score < score_null: score_null = feature_null_score min_null_feature_index = feature_index null_start_logit = result.start_logits[0] null_end_logit = result.end_logits[0] for start_index in start_indexes: for end_index in end_indexes: # We could hypothetically create invalid predictions, e.g., predict # that the start of the span is in the question. We throw out all # invalid predictions. if start_index >= len(feature.tokens): continue if end_index >= len(feature.tokens): continue if start_index not in feature.token_to_orig_map: continue if end_index not in feature.token_to_orig_map: continue if not feature.token_is_max_context.get( start_index, False): continue if end_index < start_index: continue length = end_index - start_index + 1 if length > max_answer_length: continue prelim_predictions.append( _PrelimPrediction( feature_index=feature_index, start_index=start_index, end_index=end_index, start_logit=result.start_logits[start_index], end_logit=result.end_logits[end_index])) if FLAGS.version_2_with_negative: prelim_predictions.append( _PrelimPrediction( feature_index=min_null_feature_index, start_index=0, end_index=0, start_logit=null_start_logit, end_logit=null_end_logit)) prelim_predictions = sorted( prelim_predictions, key=lambda x: (x.start_logit + x.end_logit), reverse=True) _NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name "NbestPrediction", ["text", "start_logit", "end_logit"]) seen_predictions = {} nbest = [] for pred in prelim_predictions: if len(nbest) >= n_best_size: break feature = features[pred.feature_index] if pred.start_index > 0: # this is a non-null prediction tok_tokens = feature.tokens[pred.start_index:( pred.end_index + 1)] orig_doc_start = feature.token_to_orig_map[pred.start_index] orig_doc_end = feature.token_to_orig_map[pred.end_index] orig_tokens = example.doc_tokens[orig_doc_start:( orig_doc_end + 1)] tok_text = " ".join(tok_tokens) # De-tokenize WordPieces that have been split off. tok_text = tok_text.replace(" ##", "") tok_text = tok_text.replace("##", "") # Clean whitespace tok_text = tok_text.strip() tok_text = " ".join(tok_text.split()) orig_text = " ".join(orig_tokens) final_text = get_final_text(tok_text, orig_text, do_lower_case) if final_text in seen_predictions: continue seen_predictions[final_text] = True else: final_text = "" seen_predictions[final_text] = True nbest.append( _NbestPrediction( text=final_text, start_logit=pred.start_logit, end_logit=pred.end_logit)) # if we didn't inlude the empty option in the n-best, inlcude it if FLAGS.version_2_with_negative: if "" not in seen_predictions: nbest.append( _NbestPrediction( text="", start_logit=null_start_logit, end_logit=null_end_logit)) # In very rare edge cases we could have no valid predictions. So we # just create a nonce prediction in this case to avoid failure. if not nbest: nbest.append( _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) assert len(nbest) >= 1 total_scores = [] best_non_null_entry = None for entry in nbest: total_scores.append(entry.start_logit + entry.end_logit) if not best_non_null_entry: if entry.text: best_non_null_entry = entry probs = _compute_softmax(total_scores) nbest_json = [] for (i, entry) in enumerate(nbest): output = collections.OrderedDict() output["text"] = entry.text output["probability"] = probs[i] output["start_logit"] = entry.start_logit output["end_logit"] = entry.end_logit nbest_json.append(output) assert len(nbest_json) >= 1 if not FLAGS.version_2_with_negative: all_predictions[example.qas_id] = nbest_json[0]["text"] else: # predict "" iff the null score - the score of best non-null > # threshold score_diff = score_null - best_non_null_entry.start_logit - ( best_non_null_entry.end_logit) scores_diff_json[example.qas_id] = score_diff if score_diff > FLAGS.null_score_diff_threshold: all_predictions[example.qas_id] = "" else: all_predictions[example.qas_id] = best_non_null_entry.text all_nbest_json[example.qas_id] = nbest_json with tf.gfile.GFile(output_prediction_file, "w") as writer: writer.write(json.dumps(all_predictions, indent=4) + "\n") with tf.gfile.GFile(output_nbest_file, "w") as writer: writer.write(json.dumps(all_nbest_json, indent=4) + "\n") if FLAGS.version_2_with_negative: with tf.gfile.GFile(output_null_log_odds_file, "w") as writer: writer.write(json.dumps(scores_diff_json, indent=4) + "\n") def get_final_text(pred_text, orig_text, do_lower_case): """Project the tokenized prediction back to the original text.""" # When we created the data, we kept track of the alignment between original # (whitespace tokenized) tokens and our WordPiece tokenized tokens. So # now `orig_text` contains the span of our original text corresponding to the # span that we predicted. # # However, `orig_text` may contain extra characters that we don't want in # our prediction. # # For example, let's say: # pred_text = steve smith # orig_text = Steve Smith's # # We don't want to return `orig_text` because it contains the extra "'s". # # We don't want to return `pred_text` because it's already been normalized # (the SQuAD eval script also does punctuation stripping/lower casing but # our tokenizer does additional normalization like stripping accent # characters). # # What we really want to return is "Steve Smith". # # Therefore, we have to apply a semi-complicated alignment heruistic between # `pred_text` and `orig_text` to get a character-to-charcter alignment. This # can fail in certain cases in which case we just return `orig_text`. def _strip_spaces(text): ns_chars = [] ns_to_s_map = collections.OrderedDict() for (i, c) in enumerate(text): if c == " ": continue ns_to_s_map[len(ns_chars)] = i ns_chars.append(c) ns_text = "".join(ns_chars) return (ns_text, ns_to_s_map) # We first tokenize `orig_text`, strip whitespace from the result # and `pred_text`, and check if they are the same length. If they are # NOT the same length, the heuristic has failed. If they are the same # length, we assume the characters are one-to-one aligned. tokenizer = tokenization.BasicTokenizer(do_lower_case=do_lower_case) tok_text = " ".join(tokenizer.tokenize(orig_text)) start_position = tok_text.find(pred_text) if start_position == -1: if FLAGS.verbose_logging: tf.logging.info( "Unable to find text: '%s' in '%s'" % (pred_text, orig_text)) return orig_text end_position = start_position + len(pred_text) - 1 (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text) (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text) if len(orig_ns_text) != len(tok_ns_text): if FLAGS.verbose_logging: tf.logging.info( "Length not equal after stripping spaces: '%s' vs '%s'", orig_ns_text, tok_ns_text) return orig_text # We then project the characters in `pred_text` back to `orig_text` using # the character-to-character alignment. tok_s_to_ns_map = {} for (i, tok_index) in six.iteritems(tok_ns_to_s_map): tok_s_to_ns_map[tok_index] = i orig_start_position = None if start_position in tok_s_to_ns_map: ns_start_position = tok_s_to_ns_map[start_position] if ns_start_position in orig_ns_to_s_map: orig_start_position = orig_ns_to_s_map[ns_start_position] if orig_start_position is None: if FLAGS.verbose_logging: tf.logging.info("Couldn't map start position") return orig_text orig_end_position = None if end_position in tok_s_to_ns_map: ns_end_position = tok_s_to_ns_map[end_position] if ns_end_position in orig_ns_to_s_map: orig_end_position = orig_ns_to_s_map[ns_end_position] if orig_end_position is None: if FLAGS.verbose_logging: tf.logging.info("Couldn't map end position") return orig_text output_text = orig_text[orig_start_position:(orig_end_position + 1)] return output_text def _get_best_indexes(logits, n_best_size): """Get the n-best logits from a list.""" index_and_score = sorted( enumerate(logits), key=lambda x: x[1], reverse=True) best_indexes = [] for i in range(len(index_and_score)): if i >= n_best_size: break best_indexes.append(index_and_score[i][0]) return best_indexes def _compute_softmax(scores): """Compute softmax probability over raw logits.""" if not scores: return [] max_score = None for score in scores: if max_score is None or score > max_score: max_score = score exp_scores = [] total_sum = 0.0 for score in scores: x = math.exp(score - max_score) exp_scores.append(x) total_sum += x probs = [] for score in exp_scores: probs.append(score / total_sum) return probs class FeatureWriter(object): """Writes InputFeature to TF example file.""" def __init__(self, filename, is_training): self.filename = filename self.is_training = is_training self.num_features = 0 self._writer = tf.python_io.TFRecordWriter(filename) def process_feature(self, feature): """Write a InputFeature to the TFRecordWriter as a tf.train.Example.""" self.num_features += 1 def create_int_feature(values): feature = tf.train.Feature( int64_list=tf.train.Int64List(value=list(values))) return feature features = collections.OrderedDict() features["unique_ids"] = create_int_feature([feature.unique_id]) features["input_ids"] = create_int_feature(feature.input_ids) features["input_mask"] = create_int_feature(feature.input_mask) features["segment_ids"] = create_int_feature(feature.segment_ids) if self.is_training: features["start_positions"] = create_int_feature( [feature.start_position]) features["end_positions"] = create_int_feature( [feature.end_position]) impossible = 0 if feature.is_impossible: impossible = 1 features["is_impossible"] = create_int_feature([impossible]) tf_example = tf.train.Example( features=tf.train.Features( feature=features)) self._writer.write(tf_example.SerializeToString()) def close(self): self._writer.close() def validate_flags_or_throw(bert_config): """Validate the input FLAGS or throw an exception.""" tokenization.validate_case_matches_checkpoint(FLAGS.do_lower_case, FLAGS.init_checkpoint) if not FLAGS.do_train and not FLAGS.do_predict: raise ValueError( "At least one of `do_train` or `do_predict` must be True.") if FLAGS.do_train: if not FLAGS.train_file: raise ValueError( "If `do_train` is True, then `train_file` must be specified.") if FLAGS.do_predict: if not FLAGS.predict_file: raise ValueError( "If `do_predict` is True, then `predict_file` must be specified.") if FLAGS.max_seq_length > bert_config.max_position_embeddings: raise ValueError( "Cannot use sequence length %d because the BERT model " "was only trained up to sequence length %d" % (FLAGS.max_seq_length, bert_config.max_position_embeddings)) if FLAGS.max_seq_length <= FLAGS.max_query_length + 3: raise ValueError( "The max_seq_length (%d) must be greater than max_query_length " "(%d) + 3" % (FLAGS.max_seq_length, FLAGS.max_query_length)) def main(_): tf.logging.set_verbosity(tf.logging.INFO) bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file) validate_flags_or_throw(bert_config) tf.gfile.MakeDirs(FLAGS.output_dir) tokenizer = tokenization.FullTokenizer( vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) tpu_cluster_resolver = None if FLAGS.use_tpu and FLAGS.tpu_name: tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver( FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project) is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2 run_config = tf.contrib.tpu.RunConfig( cluster=tpu_cluster_resolver, master=FLAGS.master, model_dir=FLAGS.output_dir, save_checkpoints_steps=FLAGS.save_checkpoints_steps, tpu_config=tf.contrib.tpu.TPUConfig( iterations_per_loop=FLAGS.iterations_per_loop, num_shards=FLAGS.num_tpu_cores, per_host_input_for_training=is_per_host)) train_examples = None num_train_steps = None num_warmup_steps = None if FLAGS.do_train: train_examples = read_squad_examples( input_file=FLAGS.train_file, is_training=True) num_train_steps = int( len(train_examples) / FLAGS.train_batch_size * FLAGS.num_train_epochs) num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion) # Pre-shuffle the input to avoid having to make a very large shuffle # buffer in in the `input_fn`. rng = random.Random(12345) rng.shuffle(train_examples) model_fn = model_fn_builder( bert_config=bert_config, init_checkpoint=FLAGS.init_checkpoint, learning_rate=FLAGS.learning_rate, num_train_steps=num_train_steps, num_warmup_steps=num_warmup_steps, use_tpu=FLAGS.use_tpu, use_one_hot_embeddings=FLAGS.use_tpu) # If TPU is not available, this will fall back to normal Estimator on CPU # or GPU. estimator = tf.contrib.tpu.TPUEstimator( use_tpu=FLAGS.use_tpu, model_fn=model_fn, config=run_config, train_batch_size=FLAGS.train_batch_size, predict_batch_size=FLAGS.predict_batch_size) if FLAGS.do_train: # We write to a temporary file to avoid storing very large constant tensors # in memory. train_writer = FeatureWriter( filename=os.path.join(FLAGS.output_dir, "train.tf_record"), is_training=True) convert_examples_to_features( examples=train_examples, tokenizer=tokenizer, max_seq_length=FLAGS.max_seq_length, doc_stride=FLAGS.doc_stride, max_query_length=FLAGS.max_query_length, is_training=True, output_fn=train_writer.process_feature) train_writer.close() tf.logging.info("***** Running training *****") tf.logging.info(" Num orig examples = %d", len(train_examples)) tf.logging.info(" Num split examples = %d", train_writer.num_features) tf.logging.info(" Batch size = %d", FLAGS.train_batch_size) tf.logging.info(" Num steps = %d", num_train_steps) del train_examples train_input_fn = input_fn_builder( input_file=train_writer.filename, seq_length=FLAGS.max_seq_length, is_training=True, drop_remainder=True) estimator.train(input_fn=train_input_fn, max_steps=num_train_steps) if FLAGS.do_predict: eval_examples = read_squad_examples( input_file=FLAGS.predict_file, is_training=False) eval_writer = FeatureWriter( filename=os.path.join(FLAGS.output_dir, "eval.tf_record"), is_training=False) eval_features = [] def append_feature(feature): eval_features.append(feature) eval_writer.process_feature(feature) convert_examples_to_features( examples=eval_examples, tokenizer=tokenizer, max_seq_length=FLAGS.max_seq_length, doc_stride=FLAGS.doc_stride, max_query_length=FLAGS.max_query_length, is_training=False, output_fn=append_feature) eval_writer.close() tf.logging.info("***** Running predictions *****") tf.logging.info(" Num orig examples = %d", len(eval_examples)) tf.logging.info(" Num split examples = %d", len(eval_features)) tf.logging.info(" Batch size = %d", FLAGS.predict_batch_size) all_results = [] predict_input_fn = input_fn_builder( input_file=eval_writer.filename, seq_length=FLAGS.max_seq_length, is_training=False, drop_remainder=False) # If running eval on the TPU, you will need to specify the number of # steps. all_results = [] for result in estimator.predict( predict_input_fn, yield_single_examples=True): if len(all_results) % 1000 == 0: tf.logging.info("Processing example: %d" % (len(all_results))) unique_id = int(result["unique_ids"]) start_logits = [float(x) for x in result["start_logits"].flat] end_logits = [float(x) for x in result["end_logits"].flat] all_results.append( RawResult( unique_id=unique_id, start_logits=start_logits, end_logits=end_logits)) output_prediction_file = os.path.join( FLAGS.output_dir, "predictions.json") output_nbest_file = os.path.join( FLAGS.output_dir, "nbest_predictions.json") output_null_log_odds_file = os.path.join( FLAGS.output_dir, "null_odds.json") write_predictions(eval_examples, eval_features, all_results, FLAGS.n_best_size, FLAGS.max_answer_length, FLAGS.do_lower_case, output_prediction_file, output_nbest_file, output_null_log_odds_file) if __name__ == "__main__": flags.mark_flag_as_required("vocab_file") flags.mark_flag_as_required("bert_config_file") flags.mark_flag_as_required("output_dir") tf.app.run()
81a8f7309966861e6a73d3cea111f8f0f441759e
153d5ff918a33afb1e73fefab9e774672cf4f129
/auth_demo_stripe/wsgi.py
06be555707e70f63105bf12ae7bbb1f7f8d691c1
[]
no_license
meganduffy/auth_demo_stripe
a67700e406fab62091ab52bbb72b0eede89c1f72
74c6e1d2af19221d78c4eb813513e5f1d36c3abe
refs/heads/master
2021-01-17T10:01:22.309264
2017-03-06T11:44:39
2017-03-06T11:44:39
84,001,104
0
0
null
null
null
null
UTF-8
Python
false
false
410
py
""" WSGI config for auth_demo_stripe project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.10/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "auth_demo_stripe.settings") application = get_wsgi_application()
26c1bf3393e74fe359f62019bcd01a096dc2a25a
f662aa3ce7896ca0283cae38df8ef824c1b80c9a
/examples/larson_hue.py
e59f5ae5199f37f0ab3c97b555d030f940ee0d49
[ "MIT" ]
permissive
pimoroni/plasma
bd7ddebbc60ae7cc9c2561408b52fc46bf810672
7857c44255285aac061a9064dd033fd63bbbda29
refs/heads/master
2023-02-10T13:27:17.565867
2023-01-30T17:27:28
2023-01-30T17:27:28
155,544,928
12
9
MIT
2021-11-06T04:14:19
2018-10-31T11:17:40
Python
UTF-8
Python
false
false
1,548
py
#!/usr/bin/env python3 import math import time import colorsys from plasma import auto NUM_PIXELS = 10 * 4 FALLOFF = 1.9 SCAN_SPEED = 4 plasma = auto(default=f"GPIO:14:15:pixel_count={NUM_PIXELS}") if plasma.get_pixel_count() == 1: raise RuntimeError("Uh, you can't larson scan *one* pixel!?") plasma.set_clear_on_exit() start_time = time.time() while True: delta = (time.time() - start_time) # Offset is a sine wave derived from the time delta # we use this to animate both the hue and larson scan # so they are kept in sync with each other offset = (math.sin(delta * SCAN_SPEED) + 1) / 2 # Use offset to pick the right colour from the hue wheel hue = int(round(offset * 360)) # Maximum number basex on NUM_PIXELS max_val = plasma.get_pixel_count() - 1 # Now we generate a value from 0 to max_val offset = int(round(offset * max_val)) for x in range(plasma.get_pixel_count()): sat = 1.0 val = max_val - (abs(offset - x) * FALLOFF) val /= float(max_val) # Convert to 0.0 to 1.0 val = max(val, 0.0) # Ditch negative values xhue = hue # Grab hue for this pixel xhue += (1 - val) * 10 # Use the val offset to give a slight colour trail variation xhue %= 360 # Clamp to 0-359 xhue /= 360.0 # Convert to 0.0 to 1.0 r, g, b = [int(c * 255) for c in colorsys.hsv_to_rgb(xhue, sat, val)] plasma.set_pixel(x, r, g, b, val) plasma.show() time.sleep(0.001)
9d14d6702c380b23bdbc1f209bb5f8a3e6a6beb7
46bab53f41324fa880626d80c7a175e11ec30f5b
/sinar/representatives/setuphandlers.py
f322b7a6cba088432f71f03cc810a8c9149343b1
[]
no_license
joemariedimzon/sinar.representatives
8d21b5447b65f55fbde809c74dc74be6bc0bfdf7
11d63647a1d82c739a6d4312363392f8a6ca79ed
refs/heads/master
2021-01-18T05:00:12.128279
2015-07-07T07:51:19
2015-07-07T07:51:19
38,667,596
0
0
null
2015-07-07T06:07:04
2015-07-07T06:07:03
null
UTF-8
Python
false
false
384
py
from collective.grok import gs from sinar.representatives import MessageFactory as _ @gs.importstep( name=u'sinar.representatives', title=_('sinar.representatives import handler'), description=_('')) def setupVarious(context): if context.readDataFile('sinar.representatives.marker.txt') is None: return portal = context.getSite() # do anything here
a52afad79d275173735bfbc72a33cf1ba2a7a17e
a217801fdf840d97785f06a1e2381d6ed62d7852
/volume/drivers/netapp/dataontap/nfs_base.py
1e7c08ae0f1bae744bd926cd2f9e9962e8f06264
[]
no_license
TonyChengTW/Cinder_Extend
fb05cdda9d925d1c8344595a19472125959e4830
5e20383660cf5c0340aa8fa3cf387bb8b59efc4b
refs/heads/master
2020-06-18T09:54:06.834743
2016-11-30T03:01:16
2016-11-30T03:01:16
75,145,443
0
0
null
null
null
null
UTF-8
Python
false
false
37,631
py
# Copyright (c) 2012 NetApp, Inc. All rights reserved. # Copyright (c) 2014 Ben Swartzlander. All rights reserved. # Copyright (c) 2014 Navneet Singh. All rights reserved. # Copyright (c) 2014 Clinton Knight. All rights reserved. # Copyright (c) 2014 Alex Meade. All rights reserved. # Copyright (c) 2014 Bob Callaway. All rights reserved. # Copyright (c) 2015 Tom Barron. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Volume driver for NetApp NFS storage. """ import math import os import re import shutil import threading import time from oslo_concurrency import processutils from oslo_config import cfg from oslo_log import log as logging from oslo_utils import excutils from oslo_utils import units import six.moves.urllib.parse as urlparse from cinder import exception from cinder.i18n import _, _LE, _LI, _LW from cinder.image import image_utils from cinder import utils from cinder.volume.drivers.netapp import options as na_opts from cinder.volume.drivers.netapp import utils as na_utils from cinder.volume.drivers import nfs LOG = logging.getLogger(__name__) class NetAppNfsDriver(nfs.NfsDriver): """Base class for NetApp NFS driver for Data ONTAP.""" # do not increment this as it may be used in volume type definitions VERSION = "1.0.0" REQUIRED_FLAGS = ['netapp_login', 'netapp_password', 'netapp_server_hostname'] def __init__(self, *args, **kwargs): na_utils.validate_instantiation(**kwargs) self._execute = None self._context = None self._app_version = kwargs.pop("app_version", "unknown") super(NetAppNfsDriver, self).__init__(*args, **kwargs) self.configuration.append_config_values(na_opts.netapp_connection_opts) self.configuration.append_config_values(na_opts.netapp_basicauth_opts) self.configuration.append_config_values(na_opts.netapp_transport_opts) self.configuration.append_config_values(na_opts.netapp_img_cache_opts) self.configuration.append_config_values(na_opts.netapp_nfs_extra_opts) def set_execute(self, execute): self._execute = execute def do_setup(self, context): super(NetAppNfsDriver, self).do_setup(context) self._context = context na_utils.check_flags(self.REQUIRED_FLAGS, self.configuration) self.zapi_client = None def check_for_setup_error(self): """Returns an error if prerequisites aren't met.""" super(NetAppNfsDriver, self).check_for_setup_error() def get_pool(self, volume): """Return pool name where volume resides. :param volume: The volume hosted by the driver. :return: Name of the pool where given volume is hosted. """ return volume['provider_location'] def create_volume_from_snapshot(self, volume, snapshot): """Creates a volume from a snapshot.""" vol_size = volume.size snap_size = snapshot.volume_size self._clone_volume(snapshot.name, volume.name, snapshot.volume_id) share = self._get_volume_location(snapshot.volume_id) volume['provider_location'] = share path = self.local_path(volume) run_as_root = self._execute_as_root if self._discover_file_till_timeout(path): self._set_rw_permissions(path) if vol_size != snap_size: try: self.extend_volume(volume, vol_size) except Exception: with excutils.save_and_reraise_exception(): LOG.error( _LE("Resizing %s failed. Cleaning volume."), volume.name) self._execute('rm', path, run_as_root=run_as_root) else: raise exception.CinderException( _("NFS file %s not discovered.") % volume['name']) return {'provider_location': volume['provider_location']} def create_snapshot(self, snapshot): """Creates a snapshot.""" self._clone_volume(snapshot['volume_name'], snapshot['name'], snapshot['volume_id']) def delete_snapshot(self, snapshot): """Deletes a snapshot.""" nfs_mount = self._get_provider_location(snapshot.volume_id) if self._volume_not_present(nfs_mount, snapshot.name): return True self._execute('rm', self._get_volume_path(nfs_mount, snapshot.name), run_as_root=self._execute_as_root) def _get_volume_location(self, volume_id): """Returns NFS mount address as <nfs_ip_address>:<nfs_mount_dir>.""" nfs_server_ip = self._get_host_ip(volume_id) export_path = self._get_export_path(volume_id) return nfs_server_ip + ':' + export_path def _clone_volume(self, volume_name, clone_name, volume_id, share=None): """Clones mounted volume using NetApp API.""" raise NotImplementedError() def _get_provider_location(self, volume_id): """Returns provider location for given volume.""" volume = self.db.volume_get(self._context, volume_id) return volume.provider_location def _get_host_ip(self, volume_id): """Returns IP address for the given volume.""" return self._get_provider_location(volume_id).rsplit(':')[0] def _get_export_path(self, volume_id): """Returns NFS export path for the given volume.""" return self._get_provider_location(volume_id).rsplit(':')[1] def _volume_not_present(self, nfs_mount, volume_name): """Check if volume exists.""" try: self._try_execute('ls', self._get_volume_path(nfs_mount, volume_name)) except processutils.ProcessExecutionError: # If the volume isn't present return True return False def _try_execute(self, *command, **kwargs): # NOTE(vish): Volume commands can partially fail due to timing, but # running them a second time on failure will usually # recover nicely. tries = 0 while True: try: self._execute(*command, **kwargs) return True except processutils.ProcessExecutionError: tries += 1 if tries >= self.configuration.num_shell_tries: raise LOG.exception(_LE("Recovering from a failed execute. " "Try number %s"), tries) time.sleep(tries ** 2) def _get_volume_path(self, nfs_share, volume_name): """Get volume path (local fs path) for given volume name on given nfs share. @param nfs_share string, example 172.18.194.100:/var/nfs @param volume_name string, example volume-91ee65ec-c473-4391-8c09-162b00c68a8c """ return os.path.join(self._get_mount_point_for_share(nfs_share), volume_name) def create_cloned_volume(self, volume, src_vref): """Creates a clone of the specified volume.""" vol_size = volume.size src_vol_size = src_vref.size self._clone_volume(src_vref.name, volume.name, src_vref.id) share = self._get_volume_location(src_vref.id) volume['provider_location'] = share path = self.local_path(volume) if self._discover_file_till_timeout(path): self._set_rw_permissions(path) if vol_size != src_vol_size: try: self.extend_volume(volume, vol_size) except Exception as e: LOG.error( _LE("Resizing %s failed. Cleaning volume."), volume.name) self._execute('rm', path, run_as_root=self._execute_as_root) raise e else: raise exception.CinderException( _("NFS file %s not discovered.") % volume['name']) return {'provider_location': volume['provider_location']} def _update_volume_stats(self): """Retrieve stats info from volume group.""" raise NotImplementedError() def copy_image_to_volume(self, context, volume, image_service, image_id): """Fetch the image from image_service and write it to the volume.""" super(NetAppNfsDriver, self).copy_image_to_volume( context, volume, image_service, image_id) LOG.info(_LI('Copied image to volume %s using regular download.'), volume['name']) self._register_image_in_cache(volume, image_id) def _register_image_in_cache(self, volume, image_id): """Stores image in the cache.""" file_name = 'img-cache-%s' % image_id LOG.info(_LI("Registering image in cache %s"), file_name) try: self._do_clone_rel_img_cache( volume['name'], file_name, volume['provider_location'], file_name) except Exception as e: LOG.warning(_LW('Exception while registering image %(image_id)s' ' in cache. Exception: %(exc)s') % {'image_id': image_id, 'exc': e.__str__()}) def _find_image_in_cache(self, image_id): """Finds image in cache and returns list of shares with file name.""" result = [] if getattr(self, '_mounted_shares', None): for share in self._mounted_shares: dir = self._get_mount_point_for_share(share) file_name = 'img-cache-%s' % image_id file_path = '%s/%s' % (dir, file_name) if os.path.exists(file_path): LOG.debug('Found cache file for image %(image_id)s' ' on share %(share)s' % {'image_id': image_id, 'share': share}) result.append((share, file_name)) return result def _do_clone_rel_img_cache(self, src, dst, share, cache_file): """Do clone operation w.r.t image cache file.""" @utils.synchronized(cache_file, external=True) def _do_clone(): dir = self._get_mount_point_for_share(share) file_path = '%s/%s' % (dir, dst) if not os.path.exists(file_path): LOG.info(_LI('Cloning from cache to destination %s'), dst) self._clone_volume(src, dst, volume_id=None, share=share) _do_clone() @utils.synchronized('clean_cache') def _spawn_clean_cache_job(self): """Spawns a clean task if not running.""" if getattr(self, 'cleaning', None): LOG.debug('Image cache cleaning in progress. Returning... ') return else: # Set cleaning to True self.cleaning = True t = threading.Timer(0, self._clean_image_cache) t.start() def _clean_image_cache(self): """Clean the image cache files in cache of space crunch.""" try: LOG.debug('Image cache cleaning in progress.') thres_size_perc_start =\ self.configuration.thres_avl_size_perc_start thres_size_perc_stop = \ self.configuration.thres_avl_size_perc_stop for share in getattr(self, '_mounted_shares', []): try: total_size, total_avl = \ self._get_capacity_info(share) avl_percent = int((total_avl / total_size) * 100) if avl_percent <= thres_size_perc_start: LOG.info(_LI('Cleaning cache for share %s.'), share) eligible_files = self._find_old_cache_files(share) threshold_size = int( (thres_size_perc_stop * total_size) / 100) bytes_to_free = int(threshold_size - total_avl) LOG.debug('Files to be queued for deletion %s', eligible_files) self._delete_files_till_bytes_free( eligible_files, share, bytes_to_free) else: continue except Exception as e: LOG.warning(_LW('Exception during cache cleaning' ' %(share)s. Message - %(ex)s') % {'share': share, 'ex': e.__str__()}) continue finally: LOG.debug('Image cache cleaning done.') self.cleaning = False def _shortlist_del_eligible_files(self, share, old_files): """Prepares list of eligible files to be deleted from cache.""" raise NotImplementedError() def _find_old_cache_files(self, share): """Finds the old files in cache.""" mount_fs = self._get_mount_point_for_share(share) threshold_minutes = self.configuration.expiry_thres_minutes cmd = ['find', mount_fs, '-maxdepth', '1', '-name', 'img-cache*', '-amin', '+%s' % threshold_minutes] res, _err = self._execute(*cmd, run_as_root=self._execute_as_root) if res: old_file_paths = res.strip('\n').split('\n') mount_fs_len = len(mount_fs) old_files = [x[mount_fs_len + 1:] for x in old_file_paths] eligible_files = self._shortlist_del_eligible_files( share, old_files) return eligible_files return [] def _delete_files_till_bytes_free(self, file_list, share, bytes_to_free=0): """Delete files from disk till bytes are freed or list exhausted.""" LOG.debug('Bytes to free %s', bytes_to_free) if file_list and bytes_to_free > 0: sorted_files = sorted(file_list, key=lambda x: x[1], reverse=True) mount_fs = self._get_mount_point_for_share(share) for f in sorted_files: if f: file_path = '%s/%s' % (mount_fs, f[0]) LOG.debug('Delete file path %s', file_path) @utils.synchronized(f[0], external=True) def _do_delete(): if self._delete_file(file_path): return True return False if _do_delete(): bytes_to_free -= int(f[1]) if bytes_to_free <= 0: return def _delete_file(self, path): """Delete file from disk and return result as boolean.""" try: LOG.debug('Deleting file at path %s', path) cmd = ['rm', '-f', path] self._execute(*cmd, run_as_root=self._execute_as_root) return True except Exception as ex: LOG.warning(_LW('Exception during deleting %s'), ex.__str__()) return False def clone_image(self, context, volume, image_location, image_meta, image_service): """Create a volume efficiently from an existing image. image_location is a string whose format depends on the image service backend in use. The driver should use it to determine whether cloning is possible. Returns a dict of volume properties eg. provider_location, boolean indicating whether cloning occurred. """ image_id = image_meta['id'] cloned = False post_clone = False try: cache_result = self._find_image_in_cache(image_id) if cache_result: cloned = self._clone_from_cache(volume, image_id, cache_result) else: cloned = self._direct_nfs_clone(volume, image_location, image_id) if cloned: post_clone = self._post_clone_image(volume) except Exception as e: msg = e.msg if getattr(e, 'msg', None) else e.__str__() LOG.info(_LI('Image cloning unsuccessful for image' ' %(image_id)s. Message: %(msg)s') % {'image_id': image_id, 'msg': msg}) vol_path = self.local_path(volume) volume['provider_location'] = None if os.path.exists(vol_path): self._delete_file(vol_path) finally: cloned = cloned and post_clone share = volume['provider_location'] if cloned else None bootable = True if cloned else False return {'provider_location': share, 'bootable': bootable}, cloned def _clone_from_cache(self, volume, image_id, cache_result): """Clones a copy from image cache.""" cloned = False LOG.info(_LI('Cloning image %s from cache'), image_id) for res in cache_result: # Repeat tries in other shares if failed in some (share, file_name) = res LOG.debug('Cache share: %s', share) if (share and self._is_share_vol_compatible(volume, share)): try: self._do_clone_rel_img_cache( file_name, volume['name'], share, file_name) cloned = True volume['provider_location'] = share break except Exception: LOG.warning(_LW('Unexpected exception during' ' image cloning in share %s'), share) return cloned def _direct_nfs_clone(self, volume, image_location, image_id): """Clone directly in nfs share.""" LOG.info(_LI('Checking image clone %s from glance share.'), image_id) cloned = False image_locations = self._construct_image_nfs_url(image_location) run_as_root = self._execute_as_root for loc in image_locations: share = self._is_cloneable_share(loc) if share and self._is_share_vol_compatible(volume, share): LOG.debug('Share is cloneable %s', share) volume['provider_location'] = share (__, ___, img_file) = loc.rpartition('/') dir_path = self._get_mount_point_for_share(share) img_path = '%s/%s' % (dir_path, img_file) img_info = image_utils.qemu_img_info(img_path, run_as_root=run_as_root) if img_info.file_format == 'raw': LOG.debug('Image is raw %s', image_id) self._clone_volume( img_file, volume['name'], volume_id=None, share=share) cloned = True break else: LOG.info( _LI('Image will locally be converted to raw %s'), image_id) dst = '%s/%s' % (dir_path, volume['name']) image_utils.convert_image(img_path, dst, 'raw', run_as_root=run_as_root) data = image_utils.qemu_img_info(dst, run_as_root=run_as_root) if data.file_format != "raw": raise exception.InvalidResults( _("Converted to raw, but" " format is now %s") % data.file_format) else: cloned = True self._register_image_in_cache( volume, image_id) break return cloned def _post_clone_image(self, volume): """Do operations post image cloning.""" LOG.info(_LI('Performing post clone for %s'), volume['name']) vol_path = self.local_path(volume) if self._discover_file_till_timeout(vol_path): self._set_rw_permissions(vol_path) self._resize_image_file(vol_path, volume['size']) return True raise exception.InvalidResults( _("NFS file could not be discovered.")) def _resize_image_file(self, path, new_size): """Resize the image file on share to new size.""" LOG.debug('Checking file for resize') if self._is_file_size_equal(path, new_size): return else: LOG.info(_LI('Resizing file to %sG'), new_size) image_utils.resize_image(path, new_size, run_as_root=self._execute_as_root) if self._is_file_size_equal(path, new_size): return else: raise exception.InvalidResults( _('Resizing image file failed.')) def _is_file_size_equal(self, path, size): """Checks if file size at path is equal to size.""" data = image_utils.qemu_img_info(path, run_as_root=self._execute_as_root) virt_size = data.virtual_size / units.Gi if virt_size == size: return True else: return False def _discover_file_till_timeout(self, path, timeout=45): """Checks if file size at path is equal to size.""" # Sometimes nfs takes time to discover file # Retrying in case any unexpected situation occurs retry_seconds = timeout sleep_interval = 2 while True: if os.path.exists(path): return True else: if retry_seconds <= 0: LOG.warning(_LW('Discover file retries exhausted.')) return False else: time.sleep(sleep_interval) retry_seconds -= sleep_interval def _is_cloneable_share(self, image_location): """Finds if the image at location is cloneable.""" conn, dr = self._check_get_nfs_path_segs(image_location) return self._check_share_in_use(conn, dr) def _check_get_nfs_path_segs(self, image_location): """Checks if the nfs path format is matched. WebNFS url format with relative-path is supported. Accepting all characters in path-names and checking against the mounted shares which will contain only allowed path segments. Returns connection and dir details. """ conn, dr = None, None if image_location: nfs_loc_pattern = \ ('^nfs://(([\w\-\.]+:{1}[\d]+|[\w\-\.]+)(/[^\/].*)' '*(/[^\/\\\\]+)$)') matched = re.match(nfs_loc_pattern, image_location, flags=0) if not matched: LOG.debug('Image location not in the' ' expected format %s', image_location) else: conn = matched.group(2) dr = matched.group(3) or '/' return conn, dr def _share_match_for_ip(self, ip, shares): """Returns the share that is served by ip. Multiple shares can have same dir path but can be served using different ips. It finds the share which is served by ip on same nfs server. """ raise NotImplementedError() def _check_share_in_use(self, conn, dir): """Checks if share is cinder mounted and returns it.""" try: if conn: host = conn.split(':')[0] ip = na_utils.resolve_hostname(host) share_candidates = [] for sh in self._mounted_shares: sh_exp = sh.split(':')[1] if sh_exp == dir: share_candidates.append(sh) if share_candidates: LOG.debug('Found possible share matches %s', share_candidates) return self._share_match_for_ip(ip, share_candidates) except Exception: LOG.warning(_LW("Unexpected exception while " "short listing used share.")) return None def _construct_image_nfs_url(self, image_location): """Construct direct url for nfs backend. It creates direct url from image_location which is a tuple with direct_url and locations. Returns array of urls with nfs scheme if nfs store else returns url. It needs to be verified by backend before use. """ direct_url, locations = image_location if not direct_url and not locations: raise exception.NotFound(_('Image location not present.')) urls = [] if not locations: urls.append(direct_url) else: for location in locations: url = location['url'] if not location['metadata']: urls.append(url) break location_type = location['metadata'].get('type') if not location_type or location_type.lower() != "nfs": urls.append(url) break share_location = location['metadata'].get('share_location') mountpoint = location['metadata'].get('mountpoint') if not share_location or not mountpoint: urls.append(url) break url_parse = urlparse.urlparse(url) abs_path = os.path.join(url_parse.netloc, url_parse.path) rel_path = os.path.relpath(abs_path, mountpoint) direct_url = "%s/%s" % (share_location, rel_path) urls.append(direct_url) return urls def extend_volume(self, volume, new_size): """Extend an existing volume to the new size.""" LOG.info(_LI('Extending volume %s.'), volume['name']) path = self.local_path(volume) self._resize_image_file(path, new_size) def _is_share_vol_compatible(self, volume, share): """Checks if share is compatible with volume to host it.""" raise NotImplementedError() def _check_share_can_hold_size(self, share, size): """Checks if volume can hold image with size.""" _tot_size, tot_available = self._get_capacity_info( share) if tot_available < size: msg = _("Container size smaller than required file size.") raise exception.VolumeDriverException(msg) def _move_nfs_file(self, source_path, dest_path): """Moves source to destination.""" @utils.synchronized(dest_path, external=True) def _move_file(src, dst): if os.path.exists(dst): LOG.warning(_LW("Destination %s already exists."), dst) return False self._execute('mv', src, dst, run_as_root=self._execute_as_root) return True try: return _move_file(source_path, dest_path) except Exception as e: LOG.warning(_LW('Exception moving file %(src)s. Message - %(e)s') % {'src': source_path, 'e': e}) return False def _get_export_ip_path(self, volume_id=None, share=None): """Returns export ip and path. One of volume id or share is used to return the values. """ if volume_id: host_ip = self._get_host_ip(volume_id) export_path = self._get_export_path(volume_id) elif share: host_ip = share.split(':')[0] export_path = share.split(':')[1] else: raise exception.InvalidInput( 'A volume ID or share was not specified.') return host_ip, export_path def _get_share_capacity_info(self, nfs_share): """Returns the share capacity metrics needed by the scheduler.""" used_ratio = self.configuration.nfs_used_ratio oversub_ratio = self.configuration.nfs_oversub_ratio # The scheduler's capacity filter will reduce the amount of # free space that we report to it by the reserved percentage. reserved_ratio = 1 - used_ratio reserved_percentage = round(100 * reserved_ratio) total_size, total_available = self._get_capacity_info(nfs_share) apparent_size = total_size * oversub_ratio apparent_size_gb = na_utils.round_down( apparent_size / units.Gi, '0.01') apparent_free_size = total_available * oversub_ratio apparent_free_gb = na_utils.round_down( float(apparent_free_size) / units.Gi, '0.01') capacity = dict() capacity['reserved_percentage'] = reserved_percentage capacity['total_capacity_gb'] = apparent_size_gb capacity['free_capacity_gb'] = apparent_free_gb return capacity def _get_capacity_info(self, nfs_share): """Get total capacity and free capacity in bytes for an nfs share.""" export_path = nfs_share.rsplit(':', 1)[1] return self.zapi_client.get_flexvol_capacity(export_path) def _check_volume_type(self, volume, share, file_name): """Match volume type for share file.""" raise NotImplementedError() def _convert_vol_ref_share_name_to_share_ip(self, vol_ref): """Converts the share point name to an IP address The volume reference may have a DNS name portion in the share name. Convert that to an IP address and then restore the entire path. :param vol_ref: Driver-specific information used to identify a volume :return: A volume reference where share is in IP format. """ # First strip out share and convert to IP format. share_split = vol_ref.rsplit(':', 1) vol_ref_share_ip = na_utils.resolve_hostname(share_split[0]) # Now place back into volume reference. vol_ref_share = vol_ref_share_ip + ':' + share_split[1] return vol_ref_share def _get_share_mount_and_vol_from_vol_ref(self, vol_ref): """Get the NFS share, the NFS mount, and the volume from reference Determine the NFS share point, the NFS mount point, and the volume (with possible path) from the given volume reference. Raise exception if unsuccessful. :param vol_ref: Driver-specific information used to identify a volume :return: NFS Share, NFS mount, volume path or raise error """ # Check that the reference is valid. if 'source-name' not in vol_ref: reason = _('Reference must contain source-name element.') raise exception.ManageExistingInvalidReference( existing_ref=vol_ref, reason=reason) vol_ref_name = vol_ref['source-name'] self._ensure_shares_mounted() # If a share was declared as '1.2.3.4:/a/b/c' in the nfs_shares_config # file, but the admin tries to manage the file located at # 'my.hostname.com:/a/b/c/d.vol', this might cause a lookup miss below # when searching self._mounted_shares to see if we have an existing # mount that would work to access the volume-to-be-managed (a string # comparison is done instead of IP comparison). vol_ref_share = self._convert_vol_ref_share_name_to_share_ip( vol_ref_name) for nfs_share in self._mounted_shares: cfg_share = self._convert_vol_ref_share_name_to_share_ip(nfs_share) (orig_share, work_share, file_path) = \ vol_ref_share.partition(cfg_share) if work_share == cfg_share: file_path = file_path[1:] # strip off leading path divider LOG.debug("Found possible share %s; checking mount.", work_share) nfs_mount = self._get_mount_point_for_share(nfs_share) vol_full_path = os.path.join(nfs_mount, file_path) if os.path.isfile(vol_full_path): LOG.debug("Found share %(share)s and vol %(path)s on " "mount %(mnt)s", {'share': nfs_share, 'path': file_path, 'mnt': nfs_mount}) return nfs_share, nfs_mount, file_path else: LOG.debug("vol_ref %(ref)s not on share %(share)s.", {'ref': vol_ref_share, 'share': nfs_share}) raise exception.ManageExistingInvalidReference( existing_ref=vol_ref, reason=_('Volume not found on configured storage backend.')) def manage_existing(self, volume, existing_vol_ref): """Manages an existing volume. The specified Cinder volume is to be taken into Cinder management. The driver will verify its existence and then rename it to the new Cinder volume name. It is expected that the existing volume reference is an NFS share point and some [/path]/volume; e.g., 10.10.32.1:/openstack/vol_to_manage or 10.10.32.1:/openstack/some_directory/vol_to_manage :param volume: Cinder volume to manage :param existing_vol_ref: Driver-specific information used to identify a volume """ # Attempt to find NFS share, NFS mount, and volume path from vol_ref. (nfs_share, nfs_mount, vol_path) = \ self._get_share_mount_and_vol_from_vol_ref(existing_vol_ref) LOG.debug("Asked to manage NFS volume %(vol)s, with vol ref %(ref)s", {'vol': volume['id'], 'ref': existing_vol_ref['source-name']}) self._check_volume_type(volume, nfs_share, vol_path) if vol_path == volume['name']: LOG.debug("New Cinder volume %s name matches reference name: " "no need to rename.", volume['name']) else: src_vol = os.path.join(nfs_mount, vol_path) dst_vol = os.path.join(nfs_mount, volume['name']) try: shutil.move(src_vol, dst_vol) LOG.debug("Setting newly managed Cinder volume name to %s", volume['name']) self._set_rw_permissions_for_all(dst_vol) except (OSError, IOError) as err: exception_msg = (_("Failed to manage existing volume %(name)s," " because rename operation failed:" " Error msg: %(msg)s."), {'name': existing_vol_ref['source-name'], 'msg': err}) raise exception.VolumeBackendAPIException(data=exception_msg) return {'provider_location': nfs_share} def manage_existing_get_size(self, volume, existing_vol_ref): """Returns the size of volume to be managed by manage_existing. When calculating the size, round up to the next GB. :param volume: Cinder volume to manage :param existing_vol_ref: Existing volume to take under management """ # Attempt to find NFS share, NFS mount, and volume path from vol_ref. (nfs_share, nfs_mount, vol_path) = \ self._get_share_mount_and_vol_from_vol_ref(existing_vol_ref) try: LOG.debug("Asked to get size of NFS vol_ref %s.", existing_vol_ref['source-name']) file_path = os.path.join(nfs_mount, vol_path) file_size = float(utils.get_file_size(file_path)) / units.Gi vol_size = int(math.ceil(file_size)) except (OSError, ValueError): exception_message = (_("Failed to manage existing volume " "%(name)s, because of error in getting " "volume size."), {'name': existing_vol_ref['source-name']}) raise exception.VolumeBackendAPIException(data=exception_message) LOG.debug("Reporting size of NFS volume ref %(ref)s as %(size)d GB.", {'ref': existing_vol_ref['source-name'], 'size': vol_size}) return vol_size def unmanage(self, volume): """Removes the specified volume from Cinder management. Does not delete the underlying backend storage object. A log entry will be made to notify the Admin that the volume is no longer being managed. :param volume: Cinder volume to unmanage """ CONF = cfg.CONF vol_str = CONF.volume_name_template % volume['id'] vol_path = os.path.join(volume['provider_location'], vol_str) LOG.info(_LI("Cinder NFS volume with current path \"%(cr)s\" is " "no longer being managed."), {'cr': vol_path})
2bf3f597e8025c8b8805d3462d370391acaf8535
fd97689f062e6d90837ea27b9a5e3de87bcd1e92
/Cliente/MET.py
1037d266937331ca50ced2198eb1c3abeead74d4
[]
no_license
Edresson/MET
9f7b8a43bdea29ee844d0c98a20f0aef4afbcdd2
5945116d0d52fdf8f892a5f266bf6b51afb529eb
refs/heads/master
2023-08-31T10:18:35.942324
2019-10-29T12:17:15
2019-10-29T12:17:15
93,848,160
0
0
null
null
null
null
UTF-8
Python
false
false
75,202
py
# -*- coding: utf-8 -*- import pygame import sys import os #from qtpy import QtCore, QtGui from PyQt5 import QtCore, QtGui, QtWidgets,QtTest import time from matplotlib.figure import Figure #from qtpy import QtTest from threading import Thread #from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.backends.backend_qt5agg import ( FigureCanvasQTAgg as FigureCanvas, NavigationToolbar2QT as NavigationToolbar) import threading import matplotlib.pyplot as plt import math import pickle ##### imports celula e motor#### #from Modulos import celula from Modulos import clientMotor Motor = clientMotor from Modulos import clientCelula celula = clientCelula from Modulos import webcam #from Modulos import celula # #from Modulos import celula ### PDF Imports ### from reportlab.pdfgen.canvas import Canvas from reportlab.lib.pagesizes import letter from reportlab.lib.units import cm, mm, inch, pica import os.path from datetime import datetime from reportlab.lib.utils import ImageReader from io import BytesIO from PIL import Image from reportlab.pdfbase.pdfmetrics import stringWidth webc = webcam.Webcam() celping = celula.ping() motping= Motor.ping() log_file=open('MET_Logs.log', 'w') if celping[0] == 0: print("Aparentemente o Raspberry Pi não está connectado no Roteador, ou aconteceu algo de errado com o mesmo,Verifique se o mesmo está com o IP:",celping[1]," Se ele está connectado no mesmo roteador que o Notebook , ou ainda se a Porta UDP :",celping[2]," não está em uso por outro serviço nesta rede \n \n",file=log_file) #nao está pingando else: print(" Ping Ok ! Raspberry Pi está configurado corretamente \n",file=log_file) if motping[0] == 0: print("Aparentemente o Raspberry Pi não está connectado no Roteador, ou aconteceu algo de errado com o mesmo,Verifique se o mesmo está com o IP:",motping[1]," Se ele está connectado no mesmo roteador que o Notebook , ou ainda se a Porta UDP :",motping[2]," não está em uso por outro serviço nesta rede\n \n",file=log_file) #nao está pingando else: print(" Ping Ok ! Raspberry Pi está configurado corretamente \n"," Caso não seja altere no arquivo IP-Raspberry.txt ",file=log_file) if motping[0] == 1 and celping[0] == 0 : print(" Aparentemente o Problema está com a port UDP: ",celping[2]," Você pode ter aberto 2 instancias do software ao mesmo tempo , reinicie o Notebook, se persistir reiniciei também o RaspBerry Pi",file=log_file) sys.exit() elif motping[0] == 0 and celping[0] == 1 : print(" Aparentemente o Problema está com a port UDP:",motping[2]," Caso não seja altere no arquivo IP-Raspberry.txt ",file=log_file) sys.exit() elif motping[0] == 0 and celping[0] == 0: print(" Aparentemente o Problema está no Raspberry Pi, Verifique se o ip dele é mesmo:",motping[1],file=log_file) sys.exit() Motor.start_thread() testes = [] contando = 0 fig = plt.figure(figsize=(9,9)) tipodeensaio = 0 FormatoCorpoProva = 0 AreaCorpoProva = 0 deslocamentos = [] forcas = [] flag = 0 flag2 =0 tempinicioteste = 0 qforca = None maxforca = None maxdeslocamento = None VelocidadeEn = 0 try: _fromUtf8 = QtCore.QString.fromUtf8 except AttributeError: def _fromUtf8(s): return s try: _encoding = QtWidgets.QApplication.UnicodeUTF8 def _translate(context, text, disambig): return QtWidgets.QApplication.translate(context, text, disambig, _encoding) except AttributeError: def _translate(context, text, disambig): return QtWidgets.QApplication.translate(context, text, disambig) class Ui_MainWindow(): def __init__(self): self.result= QtWidgets.QMessageBox() self.result.setText("Você deseja fazer mais um teste nesse lote?") self.result.addButton(QtWidgets.QMessageBox.Yes) self.result.addButton(QtWidgets.QMessageBox.No) self.webcam_fim= QtWidgets.QMessageBox() self.webcam_fim.setText("Você deseja tirar uma foto do objeto?") self.webcam_fim.addButton(QtWidgets.QMessageBox.Yes) self.webcam_fim.addButton(QtWidgets.QMessageBox.No) self.ensaiologin = False self.filedir = 0 self.u = [] self.thread3 = ServerThread() self.Index=0 self.Index22 =0 self.text= str() self.A = [] self.Linhas=[] self.Grafic = QtWidgets.QWidget() self.Grafic.setObjectName(_fromUtf8("Grafic")) self.verticalLayoutWidget = QtWidgets.QWidget(self.Grafic) self.verticalLayoutWidget.setGeometry(QtCore.QRect(50, 80, 871, 411)) self.verticalLayoutWidget.setObjectName(_fromUtf8("verticalLayoutWidget")) self.frame = QtWidgets.QVBoxLayout(self.verticalLayoutWidget) self.frame.setObjectName(_fromUtf8("verticalLayout_2")) self.t=1 self.fig = Figure(figsize=(5,5), dpi=100) self.ax1f1 = self.fig.add_subplot(111,xlabel='Deslocamento(mm)', ylabel='Força(N)', title='') self.canvas = FigureCanvas(self.fig) self.line1, =self.ax1f1.plot([],[]) self.fig.canvas.draw() self.ax1f1.grid(True) self.canvas = FigureCanvas(self.fig) self.frame.addWidget(self.canvas) self.canvas.draw() self.toolbar = NavigationToolbar(self.canvas, self.Grafic, coordinates=True) self.frame.addWidget(self.toolbar) def selecionar(self): text = self.combo.currentText() self.text = text.replace(" Celula de Carga Fator:",";") self.t = '' for i in self.text: if(i != ';'): self.t = self.t + i else: self.t ='' #print(self.text,self.t) self.CALIBRA = open("Fator_Calibracao.txt","w") self.CALIBRA.write(self.t) self.CALIBRA.close() celula.iniciarcel(self.t) self.updateCelulaInterface() self.obs3.setGeometry(QtCore.QRect(20,190,741,41)) self.obs3.setText(_translate("MainWindow", "Celula: "+self.text+" Selecionada, Agora a maquina Opera com esta Celula de Carga",None)) self.obs3.show() def combo2_chosen(self, text=0): text = self.combo2.currentText() self.Index=self.combo2.currentIndex() self.Index22 = str(text) def combo_chosen(self, text=0): text = self.combo.currentText() self.Index=self.combo.currentIndex() self.text = text.replace(" Celula de Carga Fator:",";") def Excluir(self): self.combo.removeItem(self.Index) for i, valor in enumerate(self.A): if valor == self.text: self.A.pop(i) self.CALIBRA = open("conf_celulas.txt","w") for i in self.A: self.CALIBRA.write(str(i)) self.CALIBRA.close() self.obs3.setGeometry(QtCore.QRect(20,190,741,41)) self.obs3.setText(_translate("MainWindow", "Celula: " +self.text+ " Excluida",None)) self.obs3.show() def ecalibrar(self): self.bcal.hide() self.ecal.hide() self.obs3.setText(_translate("MainWindow", "Calibrando Celula de Carga Aguarde ! ",None)) VALUE_SERIAL= celula.calibrar() B = self.pcal.value() Fator= (float(VALUE_SERIAL)/float(B)) print(Fator,B,VALUE_SERIAL) self.combo.clear() self.t = str() for i, valor in enumerate(self.A): if valor == self.text: self.posicao = i self.p = 0 self.j =0 while(self.p == 0): if(self.A[i][self.j] != ';'): self.t= self.t + self.A[i][self.j] self.j += 1 else: self.p =1 self.A.pop(i) self.A.append(self.t+";"+str(Fator)+"\n") self.CALIBRA = open("conf_celulas.txt","w") for k in self.A: self.CALIBRA.write(k) self.CALIBRA.close() self.bcal2.hide() self.obs3.setText(_translate("MainWindow", "Celula de Carga Calibrada agora você já pode Colocar novamente as Garras/Mordentes\n Celula: "+self.t,None)) self.bcal.show() self.ecal.show() self.pcal.hide() def editCalibra(self): self.bcal2.hide() self.obs3.hide() celula.tare() self.pcal = QtWidgets.QDoubleSpinBox(self.Calibra) self.obs3 = QtWidgets.QLabel(self.Calibra) self.bcal2 = QtWidgets.QPushButton(self.Calibra) self.bcal.hide() self.ecal.hide() self.pcal.setGeometry(QtCore.QRect(210,240,81,29)) self.pcal.setObjectName(_fromUtf8("pcal")) self.pcal.setRange(0,10000.00) self.pcal.setValue(1.00) self.pcal.show() self.obs3.setGeometry(QtCore.QRect(20,190,741,71)) self.obs3.setObjectName(_fromUtf8("obs")) self.obs3.setText(_translate("MainWindow", "Informe o Valor do Peso Padrão (EM KG), após coloque o mesmo na celula de Carga e Clique em continuar.",None)) self.obs3.show() self.bcal2.setGeometry(QtCore.QRect(190,340,151,21)) self.bcal2.setObjectName(_fromUtf8("bcal")) self.bcal2.setText(_translate("MainWindow", "Continuar",None)) self.bcal2.show() self.bcal2.clicked.connect(self.ecalibrar) def editcalib(self): self.combo.hide() self.bcal2 = QtWidgets.QPushButton(self.Calibra) self.bcal2.setGeometry(QtCore.QRect(190,340,151,21)) self.bcal2.setObjectName(_fromUtf8("bcal")) self.bcal2.setText(_translate("MainWindow", "Continuar",None)) self.bcal2.clicked.connect(self.editCalibra) self.bcal2.show() self.bcal.hide() self.ecal.hide() self.ccal.hide() self.dcal.hide() self.scal.hide() self.obs3.setGeometry(QtCore.QRect(20,190,741,41)) self.obs3.setObjectName(_fromUtf8("obs")) self.obs3.setText(_translate("MainWindow", "OBS: Retire as Garras/Mordentes da Celula de Carga, Não deixe nada apenas a Celula de Carga, após Clique em Continuar.",None)) self.obs3.show() def add_nova(self): self.combo.hide() self.obs3.hide() self.bcal2 = QtWidgets.QPushButton(self.Calibra) self.bcal2.setGeometry(QtCore.QRect(190,340,151,21)) self.bcal2.setObjectName(_fromUtf8("bcal")) self.bcal2.setText(_translate("MainWindow", "Continuar",None)) self.bcal2.clicked.connect(self.calibrar) self.bcal2.show() self.bcal.hide() self.ecal.hide() self.scal.hide() self.obs3.setGeometry(QtCore.QRect(20,190,741,41)) self.obs3.setObjectName(_fromUtf8("obs")) self.obs3.setText(_translate("MainWindow", "OBS: Retire as Garras/Mordentes da Celula de Carga, Não deixe nada apenas a Celula de Carga, após Clique em Continuar.",None)) self.obs3.show() def Editar(self): self.scal.show() self.obs3.hide() self.ecal.hide() self.bcal.hide() self.ccal = QtWidgets.QPushButton(self.Calibra) self.ccal.setGeometry(QtCore.QRect(150,110,131,29)) self.ccal.setObjectName(_fromUtf8("bcal")) self.dcal = QtWidgets.QPushButton(self.Calibra) self.dcal.setGeometry(QtCore.QRect(530,110,151,29)) self.dcal.setObjectName(_fromUtf8("bcal")) self.combo.setGeometry(QtCore.QRect(290,20,192,40)) self.combo.setObjectName(_fromUtf8("pcal")) self.combo.show() self.dcal.setText(_translate("MainWindow", "Excluir",None)) self.ccal.setText(_translate("MainWindow", "Calibrar",None)) self.dcal.clicked.connect(self.Excluir) self.ccal.clicked.connect(self.editcalib) self.ccal.show() self.dcal.show() self.CALIBRA = open("conf_celulas.txt","r") self.A = self.CALIBRA.readlines() self.CALIBRA.close() self.CALIBRA = open("conf_celulas.txt","a") self.b=[] for i in range(len(self.A)): self.b.append(self.A[i].replace(";"," Celula de Carga Fator:")) self.combo.addItems(self.b) #self.combo.connect(self.combo, QtCore.SIGNAL('activated(QString)'), self.combo_chosen) self.combo.activated.connect(self.combo_chosen) self.CALIBRA.close() def resetgrafic(self): deslocamentos= [0] forcas= [0] self.PlotGrafico() def PlotGrafico(self): self.line1.set_data(deslocamentos, forcas) self.fig.canvas.draw() def zeraf(self): self.Forca_grafic.setValue(0.00) def zerades(self): self.Deslocamento_grafic.setValue(0.00) def Subir(self): self.pushButton_3.setDisabled(True) self.pushButton_2.setVisible(True) self.pushButton_3.setVisible(True) self.parar_ajuste.setVisible(True) Motor.Subir_descer(self.Vel_ajuste.value(),1,self.deslb.value()) self.pushButton_3.setDisabled(False) def Descer(self): self.pushButton_2.setVisible(True) self.pushButton_3.setVisible(True) self.parar_ajuste.setVisible(True) Motor.Subir_descer(self.Vel_ajuste.value(),2,self.deslb.value()) def Parando(self): global flag flag =0 global flag2 global deslocamentos global forcas global testes self.u = [] flag2 =0 self.pushButton_2.setVisible(True) self.pushButton_3.setVisible(True) self.parar_ajuste.setVisible(True) self.pushButton.setVisible(True) self.pushButton_4.setVisible(False) self.emergrafic.setVisible(False) Motor.Parar() self.confirmar_continuacao() def confirmar_continuacao(self): result_webcam_fim = self.webcam_fim.exec_() if result_webcam_fim == QtWidgets.QMessageBox.No: pass if result_webcam_fim== QtWidgets.QMessageBox.Yes: self.webcamcapture_final() result1 = self.result.exec_() if result1 == QtWidgets.QMessageBox.Yes: self.Config.setCurrentWidget(self.Config) lotes(self.input.text(),deslocamentos,forcas) self.Config.setCurrentWidget(self.Config_2) if result1 == QtWidgets.QMessageBox.No: self.inputl.show() self.input.show() self.botaobrowser.show() lotes(self.input.text(),deslocamentos,forcas,) self.ax1f1.cla() self.ax1f1.grid(True) self.pushButton.hide() if(len(testes) > 0): pass self.Linhas = [] self.combo2.setGeometry(QtCore.QRect(90,20,192,30)) self.combo2.setObjectName(_fromUtf8("p2cal")) self.combo2.show() self.bcombo.setGeometry(QtCore.QRect(90,50,61, 31)) self.bcombo.setText(_translate("MainWindow", "Excluir", None)) self.bcombo.clicked.connect(self.excluirlinha_grafic) self.bcombo.setObjectName(_fromUtf8("p2cal")) self.bcombo.show() for i in range(0,len(testes)): self.u.append(testes[i]["nome"]) self.aux, = self.ax1f1.plot(list(testes[i]["x1"]),list(testes[i]["x2"]),label='${i}$'.format(i=str(testes[i]["nome"]))) self.Linhas.append(self.aux) self.ax1f1.legend(loc ='best') self.fig.canvas.draw() self.combo2.addItems(self.u) #self.combo2.connect(self.combo2, QtCore.SIGNAL('activated(QString)'), self.combo2_chosen) self.combo2.activated.connect(self.combo2_chosen) contando = 0 self.pushButton_6.show() self.pushButton_7.show() pass def returnposteste(self,index): global testes for i in range(0,len(testes)): if(str(testes[i]["nome"]) == str(index)): return i def cancelartestes(self) : global testes global contando contando = 0 testes = [] self.bcombo.hide() self.combo2.clear() self.pushButton_6.hide() self.pushButton_7.hide() self.combo2.hide() self.ax1f1.cla() self.ax1f1.grid(True) self.line1, = self.ax1f1.plot([],[]) self.fig.canvas.draw_idle() self.pushButton.show() def gerarpdf(self): global testes self.bcombo.hide() self.pushButton_6.hide() self.pushButton_7.hide() global VelocidadeEn global forcas global deslocamentos global FormatoCorpoProva global fig fig2 = [] Image2 = [] imgdata2 = [] now = datetime.now() if os.path.isdir("Ensaios/"+str(now.year)): # vemos de este diretorio já existe pass else: os.mkdir("Ensaios/"+str(now.year)) # aqui criamos o diretorio if os.path.isdir("Ensaios/"+str(now.year)+"/"+str(now.month)): # vemos de este diretorio já existe pass else: os.mkdir("Ensaios/"+str(now.year)+"/"+str(now.month)) # aqui criamos o diretorio if os.path.isdir("Ensaios/"+str(now.year)+"/"+str(now.month)+"/"+str(now.day)): # vemos de este diretorio já existe pass else: os.mkdir("Ensaios/"+str(now.year)+"/"+str(now.month)+"/"+str(now.day)) # aqui criamos o diretorio if os.path.isdir("Ensaios/"+str(now.year)+"/"+str(now.month)+"/"+str(now.day)+"/"+str(self.input.text())+"Hora"+str(now.hour)+"-"+str(now.minute)+ "-"+ str(now.second)): # vemos de este diretorio já existe pass else: os.mkdir("Ensaios/"+str(now.year)+"/"+str(now.month)+"/"+str(now.day)+"/"+str(self.input.text())+"Hora"+str(now.hour)+"-"+str(now.minute)+ "-"+ str(now.second)) # aqui criamos o diretorio listdir1 = os.listdir('TempImagens/') print(os.listdir('TempImagens/')) for i in listdir1: os.system('mv '+'TempImagens/'+i+" Ensaios/"+str(now.year)+"/"+str(now.month)+"/"+str(now.day)+"/"+str(self.input.text())+"Hora"+str(now.hour)+"-"+str(now.minute)+ "-"+ str(now.second)+"/"+str(i)) Forcamaxima = forcas[-1] maxdeslocamento = deslocamentos[-1] Posicaomaxima = deslocamentos[-1] pdf2 = Canvas("Ensaios/"+"Ensaio_Atual.pdf", pagesize = letter) #Nome do arquivo e Tipo do papel pdf = Canvas("Ensaios/"+str(now.year)+"/"+str(now.month)+"/"+str(now.day)+"/"+str(self.input.text())+"Hora"+str(now.hour)+"-"+str(now.minute)+ "-"+ str(now.second)+"/"+str(self.input.text())+"Hora:"+str(now.hour)+"-"+str(now.minute)+ "-"+ str(now.second)+".pdf", pagesize = letter) #Nome do arquivo e Tipo do papel pdf.setFont('Helvetica-Bold', 12) pdf2.setFont('Helvetica-Bold', 12) tupla = (' Máquina de Ensaio de Tração e Compressão', '','','','','','','','', ' Ensaio','', 'N° da Solicitação: _________', 'Solicitante/Setor: __________________________________','Inspetor: ___________________________________','Responsável: ___________________________________','' , 'Data: ' + str(now.day)+'/'+str(now.month)+'/'+str(now.year), 'Hora: ' + str(now.hour)+":"+str(now.minute)+ ":"+ str(now.second) ,'', '', '','' ,'') lista = pdf.beginText(inch * 1, inch * 10) lista2 = pdf2.beginText(inch * 1, inch * 10) for i in range(0,len(tupla)): lista.textLine(tupla[i]) lista2.textLine(tupla[i]) fig.clf() ax = fig.add_subplot(111,xlabel='Deslocamento(mm)', ylabel='Força(N)', title='') ax.grid(True) for i in range(0,len(testes)): ax.plot(list(testes[i]["x1"]),list(testes[i]["x2"]),label='${i}$'.format(i=str(testes[i]["nome"]))) ax.legend(loc ='best') with open("Ensaios/"+str(now.year)+"/"+str(now.month)+"/"+str(now.day)+"/"+str(self.input.text())+"Hora"+str(now.hour)+"-"+str(now.minute)+ "-"+ str(now.second)+"/"+"save.txt","wb") as fp: pickle.dump(testes,fp) """CALIBRA.write(str(testes)+"\n") CALIBRA.close()""" imgdata = BytesIO() fig.savefig(imgdata, format='png') imgdata.seek(0) # rewind the data Image = ImageReader(imgdata) pdf2.drawText(lista2) pdf.drawText(lista) pdf2.drawImage(Image ,130,50, width=400,height=350) pdf.drawImage(Image ,130,50, width=400,height=350) pdf2.showPage() pdf.showPage() for j in range(0,len(testes)): fig.clf() ax2= fig.add_subplot(111,xlabel='Deslocamento(mm)', ylabel='Força(N)', title='') #ax2.cla() ax2.grid(True) ax2.plot(list(testes[j]["x1"]),list(testes[j]["x2"])) X = list(testes[j]["x1"]).copy() Y = list(testes[j]["x2"]).copy() X.sort() Y.sort() xmax = X[-1] ymax = Y[-1] if testes[j]["area"] == 0.0: testes[j]["area"] = '_______' tupla = ( '','','','',' Nome Ensaio: '+str(testes[j]["nome"]),'','Tipo de ensaio: '+str(testes[j]["tipo"]) , 'Formato do corpo de prova: '+str(testes[j]["formato"] ), 'Posição Máxima: '+str( xmax )+" mm",'Força Máxima: '+str(ymax)+'N', 'Área do corpo de prova: '+str(testes[j]["area"])+' mm²', 'Velocidadede ensaio: '+str(testes[j]["vel"])+' mm/min','Comprimento do corpo de prova: __________ mm' ,) lista3 = pdf.beginText(inch * 1, inch * 10) lista4 = pdf2.beginText(inch * 1, inch * 10) for i in range(0,len(tupla)): lista3.textLine(tupla[i]) lista4.textLine(tupla[i]) pdf.drawText(lista3) imgdata2 = BytesIO() fig.savefig(imgdata2 , format='png') imgdata2.seek(0) # rewind the data Image2 = ImageReader(imgdata2) pdf2.drawText(lista3) pdf.drawText(lista4) pdf2.drawImage(Image2 ,130,50, width=400,height=350) pdf.drawImage(Image2 ,130,50, width=400,height=350) pdf2.showPage() pdf.showPage() pdf2.save() self.cancelartestes() pdf.save() x = [0] y = [0] def excluirlinha_grafic(self): global testes self.line1.set_data([],[]) self.combo2.removeItem(self.Index) try: self.idx = int(self.returnposteste(self.Index22)) except: pass try: self.Linhas[self.idx].set_data([], []) except: pass testes.pop(self.idx) self.ax1f1.cla() self.Linhas = [] for i in range(0,len(testes)): self.u.append(testes[i]["nome"]) self.aux, = self.ax1f1.plot(list(testes[i]["x1"]),list(testes[i]["x2"]),label='${i}$'.format(i=str(testes[i]["nome"]))) self.Linhas.append(self.aux) self.ax1f1.legend(loc ='best') self.ax1f1.grid(True) self.fig.canvas.draw_idle() def Parando3(self,i = None): global flag2 global flag flag = 0 flag2 =0 self.pushButton_2.setVisible(True) self.pushButton_3.setVisible(True) self.parar_ajuste.setVisible(False) self.pushButton.setVisible(True) self.pushButton_4.setVisible(False) self.emergrafic.setVisible(False) """deslocamentos = [0] forcas = [0] self.Deslocamento_grafic.setValue(float(0.00)) self.Forca_grafic.setValue(float(0.00)) self.ax1f1.set_ylim(0, forcas[-1]+10) self.ax1f1.set_xlim(0, deslocamentos[-1]+10) self.line1.set_data(deslocamentos,forcas) self.fig.canvas.draw()""" Motor.Parar() self.confirmar_continuacao() def Parando2(self): global flag2 flag2 =0 self.pushButton_2.setVisible(True) self.pushButton_3.setVisible(True) self.parar_ajuste.setVisible(True) Motor.Parar() def verificar_Browser_Ensaio(self): try: with open(str(self.filedir[0]),"rb") as fp: testes = pickle.load(fp) return 1 except: self.ensaiologin = False self.res= QtWidgets.QMessageBox() self.res.setText("Aparentemente você selecionou o arquivo de Browser Ensaio incorretamente, você deve selecionar o arquivo save.txt, você deseja tentar novamente e tentar continuar um antigo teste?") self.res.addButton(QtWidgets.QMessageBox.Yes) self.res.addButton(QtWidgets.QMessageBox.No) result1 = self.res.exec_() if result1 == QtWidgets.QMessageBox.Yes: self.func_browser() return self.verificar_Browser_Ensaio() if result1 == QtWidgets.QMessageBox.No: return 0 def iniciar(self): global deslocamentos global forcas global testes global contando self.inputl.hide() self.input.hide() self.botaobrowser.hide() if(self.ensaiologin == True and self.ensaiologin != None ): resul= self.verificar_Browser_Ensaio() if resul == 1: with open(str(self.filedir[0]),"rb") as fp: testes = pickle.load(fp) contando = len(testes) self.ensaiologin = False else: self.ensaiologin = False try: arquivo = open("Fator_Calibracao.txt","r") fator = arquivo.readline() celula.iniciarcel(str(fator)) except: print("O Arquivo Fator_Calibracao.txt, está corrompido ou foi excluido você não pode iniciar o ensaio sem este arquivo, solução: vá até a interface ,selecione a aba celula de carga e escolha novamente a celula de carga isso irá criar o arquivo novamente. \n",file=log_file) sys.exit() self.Config.setCurrentWidget(self.Grafic) deslocamentos = [0] forcas = [0] self.Linhas = [] self.pushButton_2.setVisible(False) self.pushButton_3.setVisible(False) self.parar_ajuste.setVisible(False) self.pushButton.setVisible(False) self.pushButton_4.setVisible(True) self.emergrafic.setVisible(True) global flag2 global qforca global maxforca global maxdeslocamento global tempinicioteste global VelocidadeEn global tipodeensaio if(self.checkBox.isChecked() == True): #Motor.subir() Motor.Subir_descer(self.Velocidade.value(),1,0) tipodeensaio = "Tração" else: Motor.Subir_descer(self.Velocidade.value(),0,0) tipodeensaio = "Compressão" #Motor.baixar() VelocidadeEn = self.Velocidade.value() #Motor.calcular( float(VelocidadeEn) ) tempinicioteste = time.time() if(self.checkBox_3.checkState() == 2): qforca = self.Velocidade_2.value() else: qforca = None if(self.checkBox_4.checkState() == 2): max_forca= self.Velocidade_3.value() else: max_forca = None if (self.checkBox_5.checkState() == 2): maxdeslocamento= self.Velocidade_4.value() else: maxdeslocamento= None if(self.checkBox_6.isChecked() == True): a = self.a_retangulo.value() b = self.b_retangulo.value() else: a =None b = None if(self.checkBox_7.isChecked() == True): c = self.Velocidade_8.value() d = self.d_retangulo.value() else: c =None d = None if(self.checkBox_8.isChecked() == True): e = self.D_cilimdro.value() f = self.H_cilindro.value() else: e =None f = None Area(a,b,c,d,e,f) flag2 =1 self.thread3.start() self.thread3.UPsig.connect(self.update1) self.thread3.Stopsig.connect(self.Parando3) #QtWidgets.QWidget.connect(self.thread3, QtCore.SIGNAL("UP"), self.update1) #QtWidgets.QWidget.connect(self.thread3, QtCore.SIGNAL("Parando"), self.Parando3) def update1(self,lista): self.Deslocamento_grafic.setValue(lista[0]) self.Forca_grafic.setValue(float(lista[1])*9.8) self.ax1f1.set_ylim(0, lista[2]) self.ax1f1.set_xlim(0, lista[3]) self.line1.set_data(lista[4],lista[5]) self.fig.canvas.draw_idle() def calibrar(self): celula.tare() self.bcal2.hide() self.obs3.hide() self.pcal = QtWidgets.QDoubleSpinBox(self.Calibra) self.obs3 = QtWidgets.QLabel(self.Calibra) self.obs4 = QtWidgets.QLabel(self.Calibra) self.qline = QtWidgets.QLineEdit(self.Calibra) self.bcal2 = QtWidgets.QPushButton(self.Calibra) self.bcal.hide() self.ecal.hide() self.pcal.setGeometry(QtCore.QRect(210,240,81,29)) self.pcal.setObjectName(_fromUtf8("pcal")) self.pcal.setRange(0,3000.00) self.pcal.setValue(1.00) self.pcal.show() self.obs3.setGeometry(QtCore.QRect(20,190,741,41)) self.obs3.setObjectName(_fromUtf8("obs")) self.obs3.setText(_translate("MainWindow", "Informe o Valor do Peso Padrão (EM KG), após coloque o mesmo na celula de Carga , de um nome para a nova celula e Clique em continuar.",None)) self.obs3.show() self.qline.setGeometry(QtCore.QRect(180,300,151,21)) self.qline.show() self.obs4.setGeometry(QtCore.QRect(180,280,151,21)) self.obs4.setObjectName(_fromUtf8("obs")) self.obs4.setText(_translate("MainWindow", "Nome da Celula:",None)) self.obs4.show() self.bcal2.setGeometry(QtCore.QRect(190,340,151,21)) self.bcal2.setObjectName(_fromUtf8("bcal")) self.bcal2.setText(_translate("MainWindow", "Continuar",None)) self.bcal2.show() self.bcal2.clicked.connect(self.Ccalibrar) def Ccalibrar(self): self.bcal.hide() self.ecal.hide() self.obs3.setText(_translate("MainWindow", "Calibrando Celula de Carga Aguarde ! ",None)) VALUE_SERIAL=celula.calibrar() B = self.pcal.value() Fator= (float(VALUE_SERIAL)/float(B)) A = self.qline.text() self.CALIBRA = open("conf_celulas.txt","r") self.A = self.CALIBRA.readlines() self.CALIBRA.close() self.t= '' self.C = [] self.posicao = 0 for i, valor in enumerate(self.A): self.p = 0 self.j =0 while(self.p == 0): if(self.A[i][self.j] != ';'): self.t= self.t + self.A[i][self.j] self.j += 1 else: self.p =1 self.C.append(self.t.replace("\n","")) self.t ='' if(self.t.replace("\n","") == A): self.posicao = i if(A != self.C[self.posicao]): CALIBRA = open("conf_celulas.txt","a") CALIBRA.write(str(A)+";") CALIBRA.write(str(Fator)+"\n") CALIBRA.close() self.bcal2.hide() self.obs3.setText(_translate("MainWindow", "Celula de Carga calibrada agora você já pode Colocar novamente as Garras/Mordentes\n Celula:"+str(A),None)) self.obs4.hide() self.obs3.hide() self.pcal.hide() self.qline.hide() self.bcal2.hide() self.bcal.show() self.ecal.show() self.bcal2.hide() else: self.bcal2.hide() self.obs3.setText(_translate("MainWindow", "Não foi Adicionado a Nova Celula, pois a celula com o nome:"+str(A)+"já existe vá em editar para recalibra-la",None)) self.obs4.hide() self.pcal.hide() self.qline.hide() self.bcal2.hide() self.bcal.show() self.ecal.show() self.bcal2.hide() def updateCelulaInterface(self): try: CALIBRA = open("conf_celulas.txt","r") except: print("O Arquivo conf_celulas.txt, está corrompido ou foi excluido você não pode iniciar o ensaio sem este arquivo, solução: Adicione uma versao antiga do arquivo, se não tiver crie o arquivo e adicione a seguinte linha: celulatest;100000 \n Após você deve ir na aba celula de carga no software e adicionar novamente suas celulas de cargas pois os cadastros anteriores foram perdidas\n",file=log_file) sys.exit() try: arquivo = open("Fator_Calibracao.txt","r") fator = arquivo.readline() except: print("O Arquivo Fator_Calibracao.txt, está corrompido ou foi excluido você não pode iniciar o ensaio sem este arquivo, solução: vá até a interface ,selecione a aba celula de carga e escolha novamente a celula de carga isso irá criar o arquivo novamente. \n",file=log_file) sys.exit() A =CALIBRA.readlines() CALIBRA.close() t= '' C = [] posicao = 0 for i, valor in enumerate(A): for j, text in enumerate(valor): if(text == ';'): posicao = j+1 if(valor[posicao::] == fator): posicao = posicao-1 self.input2.setText(_translate("MainWindow", "Celula de Carga: "+str(valor[:posicao]) ,None)) self.input2.show() arquivo.close() CALIBRA.close() def setupUi(self, MainWindow): MainWindow.setObjectName(_fromUtf8("MainWindow")) MainWindow.resize(924, 599) MainWindow.setMinimumSize(924, 599) MainWindow.setMaximumSize(924, 599) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName(_fromUtf8("centralwidget")) self.Config = QtWidgets.QTabWidget(self.centralwidget) self.Config.setGeometry(QtCore.QRect(0, 0, 961, 581)) self.Config.setObjectName(_fromUtf8("Config")) self.Config_2 = QtWidgets.QWidget() self.Config_2.setObjectName(_fromUtf8("Config_2")) self.input = QtWidgets.QLineEdit(self.Config_2) self.input.setGeometry(QtCore.QRect(600, 20, 151, 21)) self.input.setObjectName(_fromUtf8("input")) self.inputl = QtWidgets.QLabel(self.Config_2) self.inputl.setGeometry(QtCore.QRect(500, 20, 100, 21)) self.inputl.setObjectName(_fromUtf8("inputl")) self.inputl.setText(_translate("MainWindow", "Nome do Lote:",None)) self.inputl.show() self.input2 = QtWidgets.QLabel(self.Config_2) self.input2.setGeometry(QtCore.QRect(500, 50,210,21)) self.input2.setObjectName(_fromUtf8("inputl")) #self.input2.setText(_translate("MainWindow", "Celula de Carga:",None)) self.updateCelulaInterface() #self.input2.show() self.pushButton = QtWidgets.QPushButton(self.Config_2) self.pushButton.setGeometry(QtCore.QRect(40, 20, 151, 21)) self.pushButton.setObjectName(_fromUtf8("pushButton")) self.button_webcam = QtWidgets.QPushButton(self.Config_2) self.button_webcam.setGeometry(QtCore.QRect(250, 20, 151, 21)) self.button_webcam.setObjectName(_fromUtf8("button_webcam")) self.combo_webcam = QtWidgets.QComboBox(self.Config_2) self.combo_webcam.setGeometry(QtCore.QRect(250, 60, 151, 21)) self.combo_webcam.setObjectName(_fromUtf8("combo_webcam")) self.combo_webcam.show() clist = webc.cameralist() clist = clist[::-1] self.combo_webcam.addItems(clist) self.t_ensaio = QtWidgets.QFrame(self.Config_2) self.t_ensaio.setGeometry(QtCore.QRect(50, 90, 201, 201)) self.t_ensaio.setFrameShape(QtWidgets.QFrame.StyledPanel) self.t_ensaio.setFrameShadow(QtWidgets.QFrame.Raised) self.t_ensaio.setObjectName(_fromUtf8("t_ensaio")) self.label = QtWidgets.QLabel(self.t_ensaio) self.label.setGeometry(QtCore.QRect(50, 0, 101, 17)) self.label.setObjectName(_fromUtf8("label")) self.checkBox = QtWidgets.QRadioButton(self.t_ensaio) self.checkBox.setGeometry(QtCore.QRect(20, 50, 151, 22)) self.checkBox.setObjectName(_fromUtf8("checkBox")) self.checkBox_2 = QtWidgets.QRadioButton(self.t_ensaio) self.checkBox_2.setGeometry(QtCore.QRect(20, 90, 161, 22)) self.checkBox_2.setObjectName(_fromUtf8("checkBox_2")) self.Velocidade = QtWidgets.QDoubleSpinBox(self.t_ensaio) self.Velocidade.setGeometry(QtCore.QRect(27, 160,81, 29)) self.Velocidade.setObjectName(_fromUtf8("Velocidade")) self.Velocidade.setRange(8, 175 ) self.Velocidade.setValue(10) self.label_2 = QtWidgets.QLabel(self.t_ensaio) self.label_2.setGeometry(QtCore.QRect(40, 130, 141, 17)) self.label_2.setObjectName(_fromUtf8("label_2")) self.label_3 = QtWidgets.QLabel(self.t_ensaio) self.label_3.setGeometry(QtCore.QRect(120, 170, 57, 20)) self.label_3.setObjectName(_fromUtf8("label_3")) self.frame_2 = QtWidgets.QFrame(self.Config_2) self.frame_2.setGeometry(QtCore.QRect(270, 90, 361, 201)) self.frame_2.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame_2.setFrameShadow(QtWidgets.QFrame.Raised) self.frame_2.setObjectName(_fromUtf8("frame_2")) self.checkBox_3 = QtWidgets.QCheckBox(self.frame_2) self.checkBox_3.setGeometry(QtCore.QRect(30, 50, 161, 22)) self.checkBox_3.setObjectName(_fromUtf8("checkBox_3")) self.label_4 = QtWidgets.QLabel(self.frame_2) self.label_4.setGeometry(QtCore.QRect(120, 0, 111, 17)) self.label_4.setObjectName(_fromUtf8("label_4")) self.Velocidade_2 = QtWidgets.QDoubleSpinBox(self.frame_2) self.Velocidade_2.setGeometry(QtCore.QRect(200, 50, 81, 21)) self.Velocidade_2.setObjectName(_fromUtf8("Velocidade_2")) self.Velocidade_2.setRange(0,99.00) self.Velocidade_2.setValue(99.00) self.label_5 = QtWidgets.QLabel(self.frame_2) self.label_5.setGeometry(QtCore.QRect(210, 40, 61, 16)) font = QtGui.QFont() font.setPointSize(8) self.label_5.setFont(font) self.label_5.setObjectName(_fromUtf8("label_5")) self.checkBox_4 = QtWidgets.QCheckBox(self.frame_2) self.checkBox_4.setGeometry(QtCore.QRect(30, 100, 161, 22)) self.checkBox_4.setObjectName(_fromUtf8("checkBox_4")) self.Velocidade_3 = QtWidgets.QDoubleSpinBox(self.frame_2) self.Velocidade_3.setGeometry(QtCore.QRect(200, 100, 81, 21)) self.Velocidade_3.setObjectName(_fromUtf8("Velocidade_3")) self.Velocidade_3.setRange(0,10000.00) self.label_6 = QtWidgets.QLabel(self.frame_2) self.label_6.setGeometry(QtCore.QRect(210, 80, 71, 20)) font = QtGui.QFont() font.setPointSize(8) self.label_6.setFont(font) self.label_6.setObjectName(_fromUtf8("label_6")) self.checkBox_5 = QtWidgets.QCheckBox(self.frame_2) self.checkBox_5.setGeometry(QtCore.QRect(30, 150, 161, 22)) self.checkBox_5.setObjectName(_fromUtf8("checkBox_5")) self.Velocidade_4 = QtWidgets.QDoubleSpinBox(self.frame_2) self.Velocidade_4.setGeometry(QtCore.QRect(200, 150, 81, 21)) self.Velocidade_4.setObjectName(_fromUtf8("Velocidade_4")) self.Velocidade_4.setRange(0,5000.00) self.label_7 = QtWidgets.QLabel(self.frame_2) self.label_7.setGeometry(QtCore.QRect(190, 130, 111, 20)) font = QtGui.QFont() font.setPointSize(8) self.label_7.setFont(font) self.label_7.setObjectName(_fromUtf8("label_7")) self.label_8 = QtWidgets.QLabel(self.frame_2) self.label_8.setGeometry(QtCore.QRect(280, 100, 57, 20)) self.label_8.setObjectName(_fromUtf8("label_8")) self.label_9 = QtWidgets.QLabel(self.frame_2) self.label_9.setGeometry(QtCore.QRect(280, 160, 57, 20)) self.label_9.setObjectName(_fromUtf8("label_9")) self.t_ensaio_2 = QtWidgets.QFrame(self.Config_2) self.t_ensaio_2.setGeometry(QtCore.QRect(660, 90, 201, 201)) self.t_ensaio_2.setFrameShape(QtWidgets.QFrame.StyledPanel) self.t_ensaio_2.setFrameShadow(QtWidgets.QFrame.Raised) self.t_ensaio_2.setObjectName(_fromUtf8("t_ensaio_2")) self.label_10 = QtWidgets.QLabel(self.t_ensaio_2) self.label_10.setGeometry(QtCore.QRect(40, 0, 101, 17)) self.label_10.setObjectName(_fromUtf8("label_10")) self.desl = QtWidgets.QLabel(self.t_ensaio_2) self.desl.setGeometry(QtCore.QRect(20, 20, 141, 17)) self.desl.setObjectName(_fromUtf8("desl")) self.deslb = QtWidgets.QDoubleSpinBox(self.t_ensaio_2) self.deslb.setGeometry(QtCore.QRect(27, 40, 81, 29)) self.deslb.setObjectName(_fromUtf8("Vel_ajuste")) self.deslb.setRange(8, 175) self.deslb.setValue(30) self.deslm = QtWidgets.QLabel(self.t_ensaio_2) self.deslm.setGeometry(QtCore.QRect(110, 50, 57, 20)) self.deslm.setObjectName(_fromUtf8("label_12")) self.Vel_ajuste = QtWidgets.QDoubleSpinBox(self.t_ensaio_2) self.Vel_ajuste.setGeometry(QtCore.QRect(27, 90, 81, 29)) self.Vel_ajuste.setObjectName(_fromUtf8("Vel_ajuste")) self.Vel_ajuste.setRange(8, 175) self.Vel_ajuste.setValue(120) self.label_11 = QtWidgets.QLabel(self.t_ensaio_2) self.label_11.setGeometry(QtCore.QRect(20, 70, 141, 17)) self.label_11.setObjectName(_fromUtf8("label_11")) self.label_12 = QtWidgets.QLabel(self.t_ensaio_2) self.label_12.setGeometry(QtCore.QRect(110, 90, 57, 20)) self.label_12.setObjectName(_fromUtf8("label_12")) self.pushButton_2 = QtWidgets.QPushButton(self.t_ensaio_2) self.pushButton_2.setGeometry(QtCore.QRect(110, 140, 51, 31)) self.pushButton_2.setObjectName(_fromUtf8("pushButton_2")) self.botaodiretorio = QtWidgets.QPushButton(self.Config_2) self.botaodiretorio.setGeometry(QtCore.QRect(800, 50, 100, 21)) self.botaodiretorio.setObjectName(_fromUtf8("pushButton_2")) self.botaobrowser = QtWidgets.QPushButton(self.Config_2) self.botaobrowser.setGeometry(QtCore.QRect(800, 20, 120, 21)) self.botaobrowser.setObjectName(_fromUtf8("pushButton_2")) self.pushButton_3 = QtWidgets.QPushButton(self.t_ensaio_2) self.pushButton_3.setGeometry(QtCore.QRect(40, 140, 41, 31)) self.pushButton_3.setObjectName(_fromUtf8("pushButton_3")) self.parar_ajuste = QtWidgets.QPushButton(self.t_ensaio_2) self.parar_ajuste.setGeometry(QtCore.QRect(60, 175, 80, 21)) self.parar_ajuste.setObjectName(_fromUtf8("parar_ajuste")) self.raio_tubo = QtWidgets.QFrame(self.Config_2) self.raio_tubo.setGeometry(QtCore.QRect(210, 320, 521, 191)) self.raio_tubo.setFrameShape(QtWidgets.QFrame.StyledPanel) self.raio_tubo.setFrameShadow(QtWidgets.QFrame.Raised) self.raio_tubo.setObjectName(_fromUtf8("raio_tubo")) self.label_13 = QtWidgets.QLabel(self.raio_tubo) self.label_13.setGeometry(QtCore.QRect(140, 0, 271, 17)) self.label_13.setObjectName(_fromUtf8("label_13")) self.checkBox_6 = QtWidgets.QRadioButton(self.raio_tubo) self.checkBox_6.setGeometry(QtCore.QRect(40, 30, 111, 22)) self.checkBox_6.setObjectName(_fromUtf8("checkBox_6")) self.checkBox_7 = QtWidgets.QRadioButton(self.raio_tubo) self.checkBox_7.setGeometry(QtCore.QRect(40, 80, 101, 22)) self.checkBox_7.setObjectName(_fromUtf8("checkBox_7")) self.checkBox_8 = QtWidgets.QRadioButton(self.raio_tubo) self.checkBox_8.setGeometry(QtCore.QRect(40, 130, 101, 22)) self.checkBox_8.setObjectName(_fromUtf8("checkBox_8")) self.a_retangulo = QtWidgets.QDoubleSpinBox(self.raio_tubo) self.a_retangulo.setGeometry(QtCore.QRect(180, 30, 81, 21)) self.a_retangulo.setObjectName(_fromUtf8("a_retangulo")) self.a_retangulo.setRange(0,1000.00) self.b_retangulo = QtWidgets.QDoubleSpinBox(self.raio_tubo) self.b_retangulo.setGeometry(QtCore.QRect(260, 30, 81, 21)) self.b_retangulo.setObjectName(_fromUtf8("b_retangulo")) self.b_retangulo.setRange(0,1000.00) self.retanguloima = QtWidgets.QLabel(self.raio_tubo) #,posicaoesquerdadireita,posicaoparabaixoaumentar,largura,altura self.retanguloima.setGeometry(QtCore.QRect(350, 10, 120, 60)) self.retanguloima.setObjectName(_fromUtf8("retangulo")) self.pixmap1 = QtGui.QPixmap('Imagens/retangulo1.png') self.pixmap1= self.pixmap1.scaledToWidth(60) #self.pixmap1= self.pixmap1.scaledToHeight(150) self.retanguloima.setPixmap(self.pixmap1) self.tuboima = QtWidgets.QLabel(self.raio_tubo) #,posicaoesquerdadireita,posicaoparabaixoaumentar,largura,altura self.tuboima.setGeometry(QtCore.QRect(350, 37, 120, 100)) self.tuboima.setObjectName(_fromUtf8("tubo")) self.pixmap2 = QtGui.QPixmap('Imagens/tubo1.png') self.pixmap2= self.pixmap2.scaledToWidth(80) #self.pixmap1= self.pixmap1.scaledToHeight(150) self.tuboima.setPixmap(self.pixmap2) self.ciliima = QtWidgets.QLabel(self.raio_tubo) #,posicaoesquerdadireita,posicaoparabaixoaumentar,largura,altura self.ciliima.setGeometry(QtCore.QRect(400, 100, 120, 100)) self.ciliima.setObjectName(_fromUtf8("tubo")) self.pixmap3 = QtGui.QPixmap('Imagens/cilindro.png') self.pixmap3= self.pixmap3.scaledToWidth(70) #self.pixmap1= self.pixmap1.scaledToHeight(150) self.ciliima.setPixmap(self.pixmap3) self.label_15 = QtWidgets.QLabel(self.raio_tubo) self.label_15.setGeometry(QtCore.QRect(190, 15, 61, 21)) font = QtGui.QFont() font.setPointSize(8) self.label_15.setFont(font) self.label_15.setObjectName(_fromUtf8("label_15")) self.label_16 = QtWidgets.QLabel(self.raio_tubo) self.label_16.setGeometry(QtCore.QRect(280, 10, 61, 31)) font = QtGui.QFont() font.setPointSize(8) self.label_16.setFont(font) self.label_16.setObjectName(_fromUtf8("label_16")) self.Velocidade_8 = QtWidgets.QDoubleSpinBox(self.raio_tubo) self.Velocidade_8.setGeometry(QtCore.QRect(180, 80, 81, 21)) self.Velocidade_8.setObjectName(_fromUtf8("Velocidade_8")) self.Velocidade_8.setRange(0,1000.00) self.d_retangulo = QtWidgets.QDoubleSpinBox(self.raio_tubo) self.d_retangulo.setGeometry(QtCore.QRect(260, 80, 81, 21)) self.d_retangulo.setObjectName(_fromUtf8("d_retangulo")) self.d_retangulo.setRange(0,1000.00) self.label_17 = QtWidgets.QLabel(self.raio_tubo) self.label_17.setGeometry(QtCore.QRect(190, 66, 61, 20)) font = QtGui.QFont() font.setPointSize(8) self.label_17.setFont(font) self.label_17.setObjectName(_fromUtf8("label_17")) self.label_18 = QtWidgets.QLabel(self.raio_tubo) self.label_18.setGeometry(QtCore.QRect(280, 70, 61, 16)) font = QtGui.QFont() font.setPointSize(8) self.label_18.setFont(font) self.label_18.setObjectName(_fromUtf8("label_18")) self.D_cilimdro = QtWidgets.QDoubleSpinBox(self.raio_tubo) self.D_cilimdro.setGeometry(QtCore.QRect(180, 130, 81, 21)) self.D_cilimdro.setObjectName(_fromUtf8("D_cilimdro")) self.D_cilimdro.setRange(0,1000.00) self.H_cilindro = QtWidgets.QDoubleSpinBox(self.raio_tubo) self.H_cilindro.setGeometry(QtCore.QRect(260, 130, 81, 21)) self.H_cilindro.setObjectName(_fromUtf8("H_cilindro")) self.H_cilindro.setRange(0,1000.00) self.label_19 = QtWidgets.QLabel(self.raio_tubo) self.label_19.setGeometry(QtCore.QRect(190, 120, 61, 16)) font = QtGui.QFont() font.setPointSize(8) self.label_19.setFont(font) self.label_19.setObjectName(_fromUtf8("label_19")) self.label_20 = QtWidgets.QLabel(self.raio_tubo) self.label_20.setGeometry(QtCore.QRect(280, 120, 61, 16)) font = QtGui.QFont() font.setPointSize(8) self.label_20.setFont(font) self.label_20.setObjectName(_fromUtf8("label_20")) self.pushButton_4 = QtWidgets.QPushButton(self.Config_2) self.pushButton_4.setGeometry(QtCore.QRect(240, 20, 101, 21)) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Minimum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.pushButton_4.sizePolicy().hasHeightForWidth()) self.pushButton_4.setSizePolicy(sizePolicy) self.pushButton_4.setObjectName(_fromUtf8("pushButton_4")) self.emergrafic = QtWidgets.QPushButton(self.Grafic) self.emergrafic.setGeometry(QtCore.QRect(750, 20, 101, 21)) self.emergrafic.setSizePolicy(sizePolicy) self.emergrafic.setObjectName(_fromUtf8("pushButton_4")) self.Config.addTab(self.Config_2, _fromUtf8("")) self.Deslocamento_grafic = QtWidgets.QDoubleSpinBox(self.Grafic) self.Deslocamento_grafic.setGeometry(QtCore.QRect(170, 90, 131, 31)) self.Deslocamento_grafic.setObjectName(_fromUtf8("Deslocamento_grafic")) self.Deslocamento_grafic.setRange(0,900) self.Forca_grafic = QtWidgets.QDoubleSpinBox(self.Grafic) self.Forca_grafic.setGeometry(QtCore.QRect(540, 90, 121, 31)) self.Forca_grafic.setObjectName(_fromUtf8("Forca_grafic")) self.Forca_grafic.setRange(0,10000) self.label_21 = QtWidgets.QLabel(self.Grafic) self.label_21.setGeometry(QtCore.QRect(180, 70, 111, 17)) self.label_21.setObjectName(_fromUtf8("label_21")) self.label_22 = QtWidgets.QLabel(self.Grafic) self.label_22.setGeometry(QtCore.QRect(570, 70, 111, 17)) self.label_22.setObjectName(_fromUtf8("label_22")) self.label_23 = QtWidgets.QLabel(self.Grafic) self.label_23.setGeometry(QtCore.QRect(310, 100, 111, 17)) self.label_23.setObjectName(_fromUtf8("label_23")) self.label_24 = QtWidgets.QLabel(self.Grafic) self.label_24.setGeometry(QtCore.QRect(670, 100, 111, 20)) self.label_24.setObjectName(_fromUtf8("label_24")) self.pushButton_5 = QtWidgets.QPushButton(self.Grafic) self.pushButton_5.setGeometry(QtCore.QRect(110, 20, 110, 29)) self.pushButton_5.setObjectName(_fromUtf8("pushButton_5")) self.pushButton_6 = QtWidgets.QPushButton(self.Grafic) self.pushButton_6.setGeometry(QtCore.QRect(560, 20,131 , 29)) self.pushButton_6.setObjectName(_fromUtf8("pushButton_6")) self.pushButton_7 = QtWidgets.QPushButton(self.Grafic) self.pushButton_7.setGeometry(QtCore.QRect(320, 20, 131, 29)) self.pushButton_7.setObjectName(_fromUtf8("pushButton_7")) self.Config.addTab(self.Grafic, _fromUtf8("")) MainWindow.setCentralWidget(self.centralwidget) self.fig_dict = {} #definiçaõ Celula de Carga self.Calibra = QtWidgets.QWidget() self.Calibra.setObjectName(_fromUtf8("Celula de Carga")) self.obs = QtWidgets.QLabel(self.Calibra) self.obs.setGeometry(QtCore.QRect(20,50,841,21)) self.obs.setObjectName(_fromUtf8("obs")) self.bcal = QtWidgets.QPushButton(self.Calibra) self.bcal.setGeometry(QtCore.QRect(150,110,131,29)) self.bcal.setObjectName(_fromUtf8("bcal")) self.obs3 = QtWidgets.QLabel(self.Calibra) self.ecal = QtWidgets.QPushButton(self.Calibra) self.ecal.setGeometry(QtCore.QRect(530,110,151,29)) self.ecal.setObjectName(_fromUtf8("ecal")) self.scal = QtWidgets.QPushButton(self.Calibra) self.scal.setGeometry(QtCore.QRect(330,110,161,29)) self.scal.setObjectName(_fromUtf8("scal")) self.combo = QtWidgets.QComboBox(self.Calibra) self.Config.addTab(self.Calibra, _fromUtf8("")) self.combo2 = QtWidgets.QComboBox(self.Grafic) self.bcombo = QtWidgets.QPushButton(self.Grafic) self.menubar = QtWidgets.QMenuBar(MainWindow) self.menubar.setGeometry(QtCore.QRect(0, 0, 924, 23)) self.menubar.setObjectName(_fromUtf8("menubar")) MainWindow.setMenuBar(self.menubar) self.statusbar = QtWidgets.QStatusBar(MainWindow) self.statusbar.setObjectName(_fromUtf8("statusbar")) MainWindow.setStatusBar(self.statusbar) self.retranslateUi(MainWindow) self.Config.setCurrentIndex(0) QtCore.QMetaObject.connectSlotsByName(MainWindow) self.obs.hide() self.combo.hide() self.combo2.hide() self.scal.hide() self.bcombo.hide() def func_browser(self): file = QtWidgets.QFileDialog() self.filedir = file.getOpenFileName() #print (self.filedir) self.ensaiologin = True def relatorios(self): os.system('rm -rf /home/laboratorio/Desktop/Ensaios') os.system('cp -R /opt/MET-Master/Ensaios/ /home/laboratorio/Desktop/Ensaios/') os.system('chmod 777 /home/laboratorio/Desktop/Ensaios/ -R') os.system("nautilus /home/laboratorio/Desktop/Ensaios/") #os.system("exo-open --launch FileManager Ensaios/") def webcamcapture_final(self): global contando escolhido = self.combo.currentText() self.combo.clear() cameras = webc.cameralist() cameras = cameras[::-1] self.combo.addItems(cameras) #print(self.combo.currentText(),cameras[0]) imagesavedir = 'TempImagens/'+self.input.text()+str(contando)+'-final.png' ind=0 for i in range(len(cameras)): if str(cameras[i]) == escolhido: ind = i webc.main(imagesavedir,cameras[ind]) def webcamcapture(self): global contando escolhido = self.combo.currentText() self.combo.clear() cameras = webc.cameralist() cameras = cameras[::-1] self.combo.addItems(cameras) #print(self.combo.currentText(),cameras[0]) imagesavedir = 'TempImagens/'+self.input.text()+str(contando)+'-inicial.png' ind=0 for i in range(len(cameras)): if str(cameras[i]) == escolhido: ind = i webc.main(imagesavedir,cameras[ind]) def retranslateUi(self, MainWindow): MainWindow.setWindowTitle(_translate("MainWindow", "MET", None)) self.pushButton.setText(_translate("MainWindow", "Iniciar Ensaio", None)) self.pushButton.setStyleSheet('color: Blue') self.pushButton.clicked.connect(self.iniciar) self.button_webcam.setText(_translate("MainWindow", "Imagem capture", None)) self.button_webcam.clicked.connect(self.webcamcapture) self.bcal.setText(_translate("MainWindow", "Adicionar Nova", None)) self.bcal.clicked.connect(self.add_nova) self.scal.setText(_translate("MainWindow", "Selecionar Celula", None)) self.scal.clicked.connect(self.selecionar) self.ecal.setText(_translate("MainWindow", "Editar/Calibrar", None)) self.ecal.clicked.connect(self.Editar) self.label.setText(_translate("MainWindow", "Tipo de ensaio:", None)) self.checkBox.setText(_translate("MainWindow", "Ensaio de tração", None)) self.checkBox.setChecked(True) self.checkBox_2.setText(_translate("MainWindow", "Ensaio de compressão", None)) self.label_2.setText(_translate("MainWindow", "Velocidade de ensaio", None)) self.label_3.setText(_translate("MainWindow", "mm/min", None)) self.checkBox_3.setText(_translate("MainWindow", "Parada queda de Força ",None)) self.label_4.setText(_translate("MainWindow", "Parada automatica", None)) self.label_5.setText(_translate("MainWindow", "% de Força", None)) self.checkBox_4.setText(_translate("MainWindow", "Parada de Força maxima", None)) self.label_6.setText(_translate("MainWindow", "Força maxima", None)) self.checkBox_5.setText(_translate("MainWindow", "Parada deslocamento", None)) self.label_7.setText(_translate("MainWindow", "Deslocamento Máximo", None)) self.label_8.setText(_translate("MainWindow", "N", None)) self.label_9.setText(_translate("MainWindow", "mm", None)) self.label_10.setText(_translate("MainWindow", "Ajustes Manuais", None)) self.desl.setText(_translate("MainWindow", "deslocamento", None)) self.label_11.setText(_translate("MainWindow", "Velocidade do ajuste", None)) self.label_12.setText(_translate("MainWindow", "mm/min", None)) self.deslm.setText(_translate("MainWindow", "mm", None)) self.botaodiretorio.setText(_translate("MainWindow", "Relatórios", None)) self.botaodiretorio.clicked.connect(self.relatorios) self.botaodiretorio.show() self.botaobrowser.setText(_translate("MainWindow", "Browser Ensaio", None)) self.botaobrowser.clicked.connect(self.func_browser) self.botaobrowser.show() self.pushButton_2.setText(_translate("MainWindow", "Descer", None)) self.pushButton_2.clicked.connect(self.Descer) self.pushButton_3.setText(_translate("MainWindow", "Subir", None)) self.pushButton_3.clicked.connect(self.Subir) self.parar_ajuste.setText(_translate("MainWindow", "Parar", None)) self.parar_ajuste.clicked.connect(self.Parando2) self.label_13.setText(_translate("MainWindow", "Àrea de Seção do Corpo de Prova", None)) self.checkBox_6.setText(_translate("MainWindow", "Retangular", None)) self.checkBox_7.setText(_translate("MainWindow", "Tubo", None)) self.checkBox_8.setText(_translate("MainWindow", "Cilíndrico", None)) self.label_15.setText(_translate("MainWindow", "L", None)) self.label_16.setText(_translate("MainWindow", "l", None)) self.label_17.setText(_translate("MainWindow", "L", None)) self.label_18.setText(_translate("MainWindow", "D", None)) self.label_19.setText(_translate("MainWindow", "D", None)) self.label_20.setText(_translate("MainWindow", "H", None)) self.pushButton_4.setText(_translate("MainWindow", "Emergência", None)) self.pushButton_4.setStyleSheet('color: red') self.pushButton_4.clicked.connect(self.Parando) self.emergrafic.setText(_translate("MainWindow", "Emergência", None)) self.emergrafic.setStyleSheet('color: red') self.emergrafic.clicked.connect(self.Parando) self.Config.setTabText(self.Config.indexOf(self.Config_2), _translate("MainWindow", "Configurações", None)) self.label_21.setText(_translate("MainWindow", "Deslocamento", None)) self.label_22.setText(_translate("MainWindow", "Força", None)) self.label_23.setText(_translate("MainWindow", "mm", None)) self.label_24.setText(_translate("MainWindow", "N", None)) self.pushButton_5.setText(_translate("MainWindow", "Reset Gráfico", None)) self.pushButton_5.clicked.connect(self.resetgrafic) self.pushButton_6.setText(_translate("MainWindow", "Cancelar Test", None)) self.pushButton_6.clicked.connect(self.cancelartestes) self.pushButton_7.setText(_translate("MainWindow", "Gerar Relátorio", None)) self.pushButton_7.clicked.connect(self.gerarpdf) self.Config.setTabText(self.Config.indexOf(self.Grafic), _translate("MainWindow", "Gráfico", None)) self.Config.setTabText(self.Config.indexOf(self.Calibra), _translate("MainWindow", "Celula de Carga", None)) self.pushButton_6.hide() self.pushButton_7.hide() #Celula de Carga self.obs.setText(_translate("MainWindow", "OBS: Retire as Garras/Mordentes da Celula de Carga, Não deixe nada apenas a Celula de Carga, Clique em Iniciar.", None)) self.combo.hide() self.pushButton_4.setVisible(False) self.emergrafic.setVisible(False) self.combo.hide() #self.label12.hide() class MyForm(QtWidgets.QMainWindow): def __init__(self, parent=None): QtWidgets.QWidget.__init__(self, parent) self.ui = Ui_MainWindow() self.ui.setupUi(self) def closeEvent(self,event): result = QtWidgets.QMessageBox.question(self, "Confirmar Fechamento do Programa...", "Você deseja realmente sair do programa ?", QtWidgets.QMessageBox.Yes| QtWidgets.QMessageBox.No) event.ignore() if result == QtWidgets.QMessageBox.Yes: flag2 =0 Motor.Parar() event.accept() class ServerThread(QtCore.QThread): UPsig = QtCore.pyqtSignal(list) Stopsig =QtCore.pyqtSignal(int) def __init__(self, parent=None): QtCore.QThread.__init__(self) def start_server(self): global flag global VelocidadeEn global qforca global maxforca global maxdeslocamento global tempinicioteste global forcas global deslocamentos tempo = time.time() if(flag == 0): global flag2 while(flag2 == 1): QtTest.QTest.qWait(500) flag =1 Forca = celula.getvalue() if Forca == None: Forca = 0 pass '''self.aviso= QtWidgets.QMessageBox() self.aviso.setText("Por Favor verifique o HX711, aparentemente o mesmo encontra-se desconnectado !") self.aviso.addButton(QtWidgets.QMessageBox.Yes) result1 = self.aviso.exec_()''' else: tempodecorrido = (time.time() - tempinicioteste)/60 deslocamento = (float(VelocidadeEn))*float(tempodecorrido) deslocamentos.append(deslocamento) forcas.append((float(Forca)*9.8)) forcaanterior = forcas[-1] maiorvalor = forcas.copy() maiorvalor.sort() if( time.time()- tempo > 0.8): lista = [float(deslocamento),float(Forca),float(maiorvalor[-1])+30,float(deslocamentos[-1])+30,deslocamentos,forcas] #self.emit(QtCore.SIGNAL("UP"), lista) self.UPsig.emit(lista) tempo = time.time() if( flag2 == 1 and maxdeslocamento != None and float(maxdeslocamento) != 0 and float(deslocamento) >= float(maxdeslocamento)): flag2 =0 #self.emit(QtCore.SIGNAL("Parando"), 1) self.Stopsig.emit(1) lista = [float(deslocamento),float(Forca),maiorvalor[-1]+10,deslocamentos[-1]+10,deslocamentos,forcas] #self.emit(QtCore.SIGNAL("UP"), lista) self.UPsig.emit(lista) if(flag2 == 1 and maxforca != None and float(maxforca) != 0 and float(Forca) >= float(maxforca)): #self.emit(QtCore.SIGNAL("Parando"), 1) self.Stopsig.emit(1) flag2 =0 #self.emit(QtCore.SIGNAL("Parando"), 1) self.Stopsig.emit(1) lista = [float(deslocamento),float(Forca),maiorvalor[-1]+10,deslocamentos[-1]+10,deslocamentos,forcas] self.UPsig.emit(lista) #self.emit(QtCore.SIGNAL("UP"), lista) if(flag2 == 1 and qforca != None and float(qforca) != 0 and (float(forcaanterior)*(1 - (float(qforca)/100))) > Forca ): flag2 =0 for i in range(0,10): QtTest.QTest.qWait(20) Forca = celula.getvalue() tempodecorrido = (time.time() - tempinicioteste)/60 deslocamento = (float(VelocidadeEn))*float(tempodecorrido) deslocamentos.append(deslocamento) forcas.append((float(Forca)*9.8)) forcaanterior = forcas[-1] maiorvalor = forcas.copy() maiorvalor.sort() #self.emit(QtCore.SIGNAL("Parando"), 1) self.Stopsig.emit(1) lista = [float(deslocamento),float(Forca),maiorvalor[-1]+10,deslocamentos[-1]+10,deslocamentos,forcas] self.UPsig.emit(lista) #self.emit(QtCore.SIGNAL("UP"), lista) flag =0 def run(self): self.start_server() def Area(Retangulo_A,Retangulo_B,Tubo_L,Tubo_D,Cilindro_D,Cilindro_H): global AreaCorpoProva global FormatoCorpoProva FormatoCorpoProva = "" AreaCorpoProva = 0.0 if(Retangulo_A != None and Retangulo_B != None): #calcular area AreaCorpoProva = float(Retangulo_A) * float(Retangulo_B) if(Tubo_L != None and Tubo_D != None): AreaCorpoProva = math.pi * float(Tubo_L)* float(Tubo_D) FormatoCorpoProva = "Tubo" if(Cilindro_D != None and Cilindro_H != None): AreaCorpoProva = (math.pi*((float(Cilindro_D)*float(Cilindro_H))))+ 2*(math.pi*(float(Cilindro_D)*float(Cilindro_D))/4) FormatoCorpoProva = "Cilíndrico" def lotes(nome,x1,x2): global contando global testes global AreaCorpoProva global VelocidadeEn global tipodeensaio global FormatoCorpoProva testes.append({}) nome=nome+str(contando) testes[contando]["nome"] = nome testes[contando]["area"] = AreaCorpoProva testes[contando]["vel"] = VelocidadeEn testes[contando]["formato"] = FormatoCorpoProva testes[contando]["tipo"] =tipodeensaio testes[contando]["cont"] = contando testes[contando]["x1"] = x1 testes[contando]["x2"] = x2 contando+=1 if __name__ == "__main__": app =QtWidgets.QApplication(sys.argv) myapp = MyForm() myapp.show() sys.exit(app.exec_())
ccc95a8679b749bc527794939994aee82257f6dd
1d182c8cf1ce19019e0b1cba4a16ee1a2a49751e
/data/base.py
d4e7c2318658561292e5f341ea1513223aa70af8
[ "MIT" ]
permissive
zxt881108/pytorch-cv
e30ac8638a8819b637c6bbef717f733264229126
6f2d1760f12c9a56a3e7b19ba74bc41451ea284c
refs/heads/master
2020-06-18T18:16:09.741626
2019-04-29T14:11:06
2019-04-29T14:11:06
196,396,348
5
0
null
2019-07-11T13:06:29
2019-07-11T13:06:28
null
UTF-8
Python
false
false
4,270
py
"""Base dataset methods.""" import os from torch.utils import data class ClassProperty(object): """Readonly @ClassProperty descriptor for internal usage.""" def __init__(self, fget): self.fget = fget def __get__(self, owner_self, owner_cls): return self.fget(owner_cls) class SimpleDataset(data.Dataset): """Simple Dataset wrapper for lists and arrays. Parameters ---------- data : dataset-like object Any object that implements `len()` and `[]`. """ def __init__(self, data): self._data = data def __len__(self): return len(self._data) def __getitem__(self, idx): return self._data[idx] class _LazyTransformDataset(data.Dataset): """Lazily transformed dataset.""" def __init__(self, data, fn): super(_LazyTransformDataset, self).__init__() self._data = data self._fn = fn def __len__(self): return len(self._data) def __getitem__(self, idx): item = self._data[idx] if isinstance(item, tuple): return self._fn(*item) return self._fn(item) def transform(self, fn): self._fn = fn class VisionDataset(data.Dataset): """Base Dataset with directory checker. Parameters ---------- root : str The root path of xxx.names, by default is '~/.mxnet/datasets/foo', where `foo` is the name of the dataset. """ def __init__(self, root): super(VisionDataset, self).__init__() if not os.path.isdir(os.path.expanduser(root)): helper_msg = "{} is not a valid dir. Did you forget to initialize \ datasets described in: \ `http://gluon-cv.mxnet.io/build/examples_datasets/index.html`? \ You need to initialize each dataset only once.".format(root) raise OSError(helper_msg) @property def classes(self): raise NotImplementedError @property def num_class(self): """Number of categories.""" return len(self.classes) def transform(self, fn, lazy=True): """Returns a new dataset with each sample transformed by the transformer function `fn`. Parameters ---------- fn : callable A transformer function that takes a sample as input and returns the transformed sample. lazy : bool, default True If False, transforms all samples at once. Otherwise, transforms each sample on demand. Note that if `fn` is stochastic, you must set lazy to True or you will get the same result on all epochs. Returns ------- Dataset The transformed dataset. """ trans = _LazyTransformDataset(self, fn) if lazy: return trans return SimpleDataset([i for i in trans]) #### for debug (Note: delete) from PIL import Image import numpy as np class DemoDataset(data.Dataset): """Simple Dataset wrapper for lists and arrays. Parameters ---------- data : dataset-like object Any object that implements `len()` and `[]`. """ def __init__(self, num): self._num = num def __len__(self): return self._num def __getitem__(self, idx): return Image.fromarray(np.random.randint(0, 255, size=(60, 60, 3)).astype(np.uint8)) def transform(self, fn, lazy=True): """Returns a new dataset with each sample transformed by the transformer function `fn`. Parameters ---------- fn : callable A transformer function that takes a sample as input and returns the transformed sample. lazy : bool, default True If False, transforms all samples at once. Otherwise, transforms each sample on demand. Note that if `fn` is stochastic, you must set lazy to True or you will get the same result on all epochs. Returns ------- Dataset The transformed dataset. """ trans = _LazyTransformDataset(self, fn) if lazy: return trans return SimpleDataset([i for i in trans])
96740a5818f496c48cced1e2c40379baf0a7e573
600df3590cce1fe49b9a96e9ca5b5242884a2a70
/native_client/pnacl/driver/pnacl-driver.py
2ac806f22b80cbb2246dd980fe3d41b59f3c1040
[ "BSD-3-Clause" ]
permissive
metux/chromium-suckless
efd087ba4f4070a6caac5bfbfb0f7a4e2f3c438a
72a05af97787001756bae2511b7985e61498c965
refs/heads/orig
2022-12-04T23:53:58.681218
2017-04-30T10:59:06
2017-04-30T23:35:58
89,884,931
5
3
BSD-3-Clause
2022-11-23T20:52:53
2017-05-01T00:09:08
null
UTF-8
Python
false
false
29,863
py
#!/usr/bin/python # Copyright (c) 2012 The Native Client Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import re import subprocess from driver_tools import AddHostBinarySearchPath, DefaultOutputName, \ DefaultPCHOutputName, DriverChain, GetArch, ParseArgs, ParseTriple, \ Run, RunDriver, RunWithEnv, TempNameGen, UnrecognizedOption from driver_env import env from driver_log import DriverOpen, Log import filetype import pathtools EXTRA_ENV = { 'ALLOW_TRANSLATE': '0', # Allow bitcode translation before linking. # It doesn't normally make sense to do this. 'ALLOW_NATIVE' : '0', # Allow native objects (.S,.s,.o) to be in the # linker line for .pexe generation. # It doesn't normally make sense to do this. # CXX_EH_MODE specifies how to deal with C++ exception handling: # * 'none': Strips out use of C++ exception handling. # * 'sjlj': Enables the setjmp()+longjmp()-based implementation of # C++ exception handling. 'CXX_EH_MODE': 'none', 'FORCE_INTERMEDIATE_LL': '0', # Produce an intermediate .ll file # Useful for debugging. # NOTE: potentially different code paths and bugs # might be triggered by this 'LANGUAGE' : '', # C or CXX (set by SetTool) 'INCLUDE_CXX_HEADERS': '0', # This is set by RunCC. # Command-line options 'GCC_MODE' : '', # '' (default), '-E', '-c', or '-S' 'SHARED' : '0', # Identify if the target is a shared library. 'STDINC' : '1', # Include standard headers (-nostdinc sets to 0) 'STDINCCXX' : '1', # Include standard cxx headers (-nostdinc++ sets to 0) 'USE_STDLIB' : '1', # Include standard libraries (-nostdlib sets to 0) 'STDLIB' : 'libc++', # C++ Standard Library. 'DEFAULTLIBS' : '1', # Link with default libraries 'DIAGNOSTIC' : '0', # Diagnostic flag detected 'PIC' : '0', # Generate PIC 'NEED_DASH_E' : '0', # Used for stdin inputs, which must have an explicit # type set (using -x) unless -E is specified. 'VERBOSE' : '0', # Verbose (-v) 'SHOW_VERSION': '0', # Version (--version) 'PTHREAD' : '0', # use pthreads? 'INPUTS' : '', # Input files 'OUTPUT' : '', # Output file 'UNMATCHED' : '', # Unrecognized parameters 'BIAS_NONE' : '', 'BIAS_ARM' : '-D__arm__ -D__ARM_ARCH_7A__ -D__ARMEL__', 'BIAS_MIPS32' : '-D__mips__', 'BIAS_X8632' : '-D__i386__ -D__i386 -D__i686 -D__i686__ -D__pentium4__', 'BIAS_X8664' : '-D__amd64__ -D__amd64 -D__x86_64__ -D__x86_64 -D__core2__', 'BIAS_ARM_NONSFI': '${BIAS_ARM} -D__native_client_nonsfi__', 'BIAS_X8632_NONSFI': '${BIAS_X8632} -D__native_client_nonsfi__', 'FRONTEND_TRIPLE' : 'le32-unknown-nacl', 'OPT_LEVEL' : '', # Default for most tools is 0, but we need to know # if it's explicitly set or not when the driver # is only used for linking + translating. 'CC_FLAGS' : '-O${#OPT_LEVEL ? ${OPT_LEVEL} : 0} ' + '-fno-vectorize -fno-slp-vectorize ' + '-fno-common ${PTHREAD ? -pthread} ' + '-nostdinc ${BIAS_%BIAS%} ' + '-fno-gnu-inline-asm ' + '-target ${FRONTEND_TRIPLE} ' + '${IS_CXX ? -fexceptions}', 'ISYSTEM' : '${ISYSTEM_USER} ${STDINC ? ${ISYSTEM_BUILTIN}}', 'ISYSTEM_USER' : '', # System include directories specified by # using the -isystem flag. 'ISYSTEM_BUILTIN': '${BASE_USR}/usr/include ' + '${ISYSTEM_CLANG} ' + '${ISYSTEM_CXX} ' + '${BASE_USR}/include ' + '${BASE_SDK}/include ', 'ISYSTEM_CLANG' : '${BASE_LLVM}/lib/clang/${CLANG_VER}/include', 'ISYSTEM_CXX' : '${INCLUDE_CXX_HEADERS && STDINCCXX ? ${ISYSTEM_CXX_include_paths}}', 'ISYSTEM_CXX_include_paths' : '${BASE_USR}/include/c++/v1', # Only propagate opt level to linker if explicitly set, so that the # linker will know if an opt level was explicitly set or not. 'LD_FLAGS' : '${#OPT_LEVEL ? -O${OPT_LEVEL}} ' + '${SHARED ? -shared : -static} ' + '${PIC ? -fPIC} ${@AddPrefix:-L:SEARCH_DIRS} ' + '--pnacl-exceptions=${CXX_EH_MODE}', 'SEARCH_DIRS' : '', # Directories specified using -L # Library Strings 'EMITMODE' : '${!USE_STDLIB || SHARED ? nostdlib : static}', # This is setup so that LD_ARGS_xxx is evaluated lazily. 'LD_ARGS' : '${LD_ARGS_%EMITMODE%}', # ${ld_inputs} signifies where to place the objects and libraries # provided on the command-line. 'LD_ARGS_nostdlib': '-nostdlib ${ld_inputs}', 'LD_ARGS_static': '-l:crt1.x -l:crti.bc -l:crtbegin.bc ' '${CXX_EH_MODE==sjlj ? -l:sjlj_eh_redirect.bc : ' '${CXX_EH_MODE==none ? -l:unwind_stubs.bc}} ' + '${ld_inputs} ' + '--start-group ${STDLIBS} --end-group', 'LLVM_PASSES_TO_DISABLE': '', # Flags for translating to native .o files. 'TRANSLATE_FLAGS' : '-O${#OPT_LEVEL ? ${OPT_LEVEL} : 0}', 'STDLIBS' : '${DEFAULTLIBS ? ' '${LIBSTDCPP} ${LIBPTHREAD} ${LIBNACL} ${LIBC} ' '${LIBGCC_BC} ${LIBPNACLMM}}', 'LIBSTDCPP' : '${IS_CXX ? -lc++ -lm -lpthread }', # The few functions in the bitcode version of compiler-rt unfortunately # depend on libm. TODO(jvoung): try rewriting the compiler-rt functions # to be standalone. 'LIBGCC_BC' : '-lgcc -lm', 'LIBC' : '-lc', 'LIBNACL' : '-lnacl', 'LIBPNACLMM': '-lpnaclmm', # Enabled/disabled by -pthreads 'LIBPTHREAD': '${PTHREAD ? -lpthread}', # IS_CXX is set by pnacl-clang and pnacl-clang++ programmatically 'CC' : '${IS_CXX ? ${CLANGXX} : ${CLANG}}', 'RUN_CC': '${CC} ${emit_llvm_flag} ${mode} ${CC_FLAGS} ' + '${@AddPrefix:-isystem :ISYSTEM} ' + '-x${typespec} ${infile} -o ${output}', } def AddLLVMPassDisableFlag(*args): env.append('LLVM_PASSES_TO_DISABLE', *args) env.append('LD_FLAGS', *args) def AddLDFlag(*args): env.append('LD_FLAGS', *args) def AddTranslatorFlag(*args): # pass translator args to ld in case we go all the way to .nexe env.append('LD_FLAGS', *['-Wt,' + a for a in args]) # pass translator args to translator in case we go to .o env.append('TRANSLATE_FLAGS', *args) def AddCCFlag(*args): env.append('CC_FLAGS', *args) def AddDiagnosticFlag(*args): env.append('CC_FLAGS', *args) env.set('DIAGNOSTIC', '1') def SetTarget(*args): arch = ParseTriple(args[0]) env.set('FRONTEND_TRIPLE', args[0]) AddLDFlag('--target=' + args[0]) def SetStdLib(*args): """Set the C++ Standard Library.""" lib = args[0] if lib != 'libc++': Log.Fatal('Only libc++ is supported as standard library') def IsPortable(): return env.getone('FRONTEND_TRIPLE').startswith('le32-') stdin_count = 0 def AddInputFileStdin(): global stdin_count # When stdin is an input, -x or -E must be given. forced_type = filetype.GetForcedFileType() if not forced_type: # Only allowed if -E is specified. forced_type = 'c' env.set('NEED_DASH_E', '1') stdin_name = '__stdin%d__' % stdin_count env.append('INPUTS', stdin_name) filetype.ForceFileType(stdin_name, forced_type) stdin_count += 1 def IsStdinInput(f): return f.startswith('__stdin') and f.endswith('__') def HandleDashX(arg): if arg == 'none': filetype.SetForcedFileType(None) return filetype.SetForcedFileType(filetype.GCCTypeToFileType(arg)) def AddVersionFlag(*args): env.set('SHOW_VERSION', '1') AddDiagnosticFlag(*args) def AddBPrefix(prefix): """ Add a path to the list searched for host binaries and include dirs. """ AddHostBinarySearchPath(prefix) prefix = pathtools.normalize(prefix) if pathtools.isdir(prefix) and not prefix.endswith('/'): prefix += '/' # Add prefix/ to the library search dir if it exists if pathtools.isdir(prefix): env.append('SEARCH_DIRS', prefix) # Add prefix/include to isystem if it exists include_dir = prefix + 'include' if pathtools.isdir(include_dir): env.append('ISYSTEM_USER', include_dir) CustomPatterns = [ ( '--driver=(.+)', "env.set('CC', pathtools.normalize($0))\n"), ( '--pnacl-allow-native', "env.set('ALLOW_NATIVE', '1')"), ( '--pnacl-allow-translate', "env.set('ALLOW_TRANSLATE', '1')"), ( '--pnacl-frontend-triple=(.+)', SetTarget), ( ('-target','(.+)'), SetTarget), ( ('--target=(.+)'), SetTarget), ( '--pnacl-exceptions=(none|sjlj)', "env.set('CXX_EH_MODE', $0)"), ( '(--pnacl-allow-nexe-build-id)', AddLDFlag), ( '(--pnacl-disable-abi-check)', AddLDFlag), ( '(--pnacl-disable-pass=.+)', AddLLVMPassDisableFlag), ] GCCPatterns = [ ( '-o(.+)', "env.set('OUTPUT', pathtools.normalize($0))"), ( ('-o', '(.+)'), "env.set('OUTPUT', pathtools.normalize($0))"), ( '-E', "env.set('GCC_MODE', '-E')"), ( '-S', "env.set('GCC_MODE', '-S')"), ( '-c', "env.set('GCC_MODE', '-c')"), ( '-nostdinc', "env.set('STDINC', '0')"), ( '-nostdinc\+\+', "env.set('STDINCCXX', '0')"), ( '-nostdlib', "env.set('USE_STDLIB', '0')"), ( '-nodefaultlibs', "env.set('DEFAULTLIBS', '0')"), ( '-?-stdlib=(.*)', SetStdLib), ( ('-?-stdlib', '(.*)'), SetStdLib), # Flags to pass to native linker ( '(-Wn,.*)', AddLDFlag), ( '-rdynamic', "env.append('LD_FLAGS', '-export-dynamic')"), # Flags to pass to pnacl-translate ( '-Wt,(.*)', AddTranslatorFlag), ( ('-Xtranslator','(.*)'), AddTranslatorFlag), # We don't care about -fPIC, but pnacl-ld and pnacl-translate do. ( '-fPIC', "env.set('PIC', '1')"), # We must include -l, -Xlinker, and -Wl options into the INPUTS # in the order they appeared. This is the exactly behavior of gcc. # For example: gcc foo.c -Wl,--start-group -lx -ly -Wl,--end-group # ( '(-l.+)', "env.append('INPUTS', $0)"), ( ('(-l)','(.+)'), "env.append('INPUTS', $0+$1)"), ( ('-Xlinker','(.*)'), "env.append('INPUTS', '-Xlinker=' + $0)"), ( '(-Wl,.*)', "env.append('INPUTS', $0)"), ( '(-Bstatic)', "env.append('INPUTS', $0)"), ( '(-Bdynamic)', "env.append('INPUTS', $0)"), ( '-O([sz])', "env.set('OPT_LEVEL', $0)\n"), ( '-O([0-3])', "env.set('OPT_LEVEL', $0)\n"), ( '-O([0-9]+)', "env.set('OPT_LEVEL', '3')\n"), ( '-O', "env.set('OPT_LEVEL', '1')\n"), ( ('-isystem', '(.*)'), "env.append('ISYSTEM_USER', pathtools.normalize($0))"), ( '-isystem(.+)', "env.append('ISYSTEM_USER', pathtools.normalize($0))"), ( ('-I', '(.+)'), "env.append('CC_FLAGS', '-I'+pathtools.normalize($0))"), ( '-I(.+)', "env.append('CC_FLAGS', '-I'+pathtools.normalize($0))"), # -I is passed through, so we allow -isysroot and pass it through as well. # However -L is intercepted and interpreted, so it would take more work # to handle -sysroot w/ libraries. ( ('-isysroot', '(.+)'), "env.append('CC_FLAGS', '-isysroot ' + pathtools.normalize($0))"), ( '-isysroot(.+)', "env.append('CC_FLAGS', '-isysroot ' + pathtools.normalize($0))"), # NOTE: the -iquote =DIR syntax (substitute = with sysroot) doesn't work. # Clang just says: ignoring nonexistent directory "=DIR" ( ('-iquote', '(.+)'), "env.append('CC_FLAGS', '-iquote', pathtools.normalize($0))"), ( ('-iquote(.+)'), "env.append('CC_FLAGS', '-iquote', pathtools.normalize($0))"), ( ('-idirafter', '(.+)'), "env.append('CC_FLAGS', '-idirafter'+pathtools.normalize($0))"), ( '-idirafter(.+)', "env.append('CC_FLAGS', '-idirafter'+pathtools.normalize($0))"), ( ('(-include)','(.+)'), AddCCFlag), ( ('(-include.+)'), AddCCFlag), ( '(--relocatable-pch)', AddCCFlag), ( '(-g)', AddCCFlag), ( '(-W.*)', AddCCFlag), ( '(-w)', AddCCFlag), ( '(-std=.*)', AddCCFlag), ( '(-ansi)', AddCCFlag), ( ('(-D)','(.*)'), AddCCFlag), ( '(-D.+)', AddCCFlag), ( ('(-U)','(.*)'), AddCCFlag), ( '(-U.+)', AddCCFlag), ( '(-f.*)', AddCCFlag), ( '(-pedantic)', AddCCFlag), ( '(-pedantic-errors)', AddCCFlag), ( '(-g.*)', AddCCFlag), ( '(-v|--v)', "env.append('CC_FLAGS', $0)\n" "env.set('VERBOSE', '1')"), ( '(-pthreads?)', "env.set('PTHREAD', '1')"), # No-op: accepted for compatibility in case build scripts pass it. ( '-static', ""), ( ('-B','(.*)'), AddBPrefix), ( ('-B(.+)'), AddBPrefix), ( ('-L','(.+)'), "env.append('SEARCH_DIRS', pathtools.normalize($0))"), ( '-L(.+)', "env.append('SEARCH_DIRS', pathtools.normalize($0))"), ( '(-Wp,.*)', AddCCFlag), ( '(-Xpreprocessor .*)', AddCCFlag), ( ('(-Xclang)', '(.*)'), AddCCFlag), # Accept and ignore default flags ( '-m32', ""), ( '-emit-llvm', ""), ( '(-MG)', AddCCFlag), ( '(-MMD)', AddCCFlag), ( '(-MM?)', "env.append('CC_FLAGS', $0)\n" "env.set('GCC_MODE', '-E')"), ( '(-MP)', AddCCFlag), ( ('(-MQ)','(.*)'), AddCCFlag), ( '(-MD)', AddCCFlag), ( ('(-MT)','(.*)'), AddCCFlag), ( ('(-MF)','(.*)'), "env.append('CC_FLAGS', $0, pathtools.normalize($1))"), ( ('-x', '(.+)'), HandleDashX), ( '-x(.+)', HandleDashX), ( ('(-mllvm)', '(.+)'), AddCCFlag), # Ignore these gcc flags ( '(-msse)', ""), ( '(-march=armv7-a)', ""), ( '(-pipe)', ""), ( '(-shared)', "env.set('SHARED', '1')"), ( '(-s)', AddLDFlag), ( '(--strip-all)', AddLDFlag), ( '(--strip-debug)', AddLDFlag), # Ignore these assembler flags ( '(-Qy)', ""), ( ('(--traditional-format)', '.*'), ""), ( '(-gstabs)', ""), ( '(--gstabs)', ""), ( '(-gdwarf2)', ""), ( '(--gdwarf2)', ""), ( '(--fatal-warnings)', ""), ( '(-meabi=.*)', ""), ( '(-mfpu=.*)', ""), ( '(-mfloat-abi=.+)', AddCCFlag), # GCC diagnostic mode triggers ( '(-print-.*)', AddDiagnosticFlag), ( '(--print.*)', AddDiagnosticFlag), ( '(-dumpspecs)', AddDiagnosticFlag), ( '(--version)', AddVersionFlag), # These are preprocessor flags which should be passed to the frontend, but # should not prevent the usual -i flags (which DIAGNOSTIC mode does) ( '(-d[DIMNU])', AddCCFlag), ( '(-d.*)', AddDiagnosticFlag), # Catch all other command-line arguments ( '(-.+)', "env.append('UNMATCHED', $0)"), # Standard input ( '-', AddInputFileStdin), # Input Files # Call ForceFileType for all input files at the time they are # parsed on the command-line. This ensures that the gcc "-x" # setting is correctly applied. ( '(.*)', "env.append('INPUTS', pathtools.normalize($0))\n" "filetype.ForceFileType(pathtools.normalize($0))"), ] def CheckSetup(): if not env.has('IS_CXX'): Log.Fatal('"pnacl-driver" cannot be used directly. ' 'Use pnacl-clang or pnacl-clang++.') def DriverOutputTypes(driver_flag, compiling_to_native): output_type_map = { ('-E', False) : 'pp', ('-E', True) : 'pp', ('-c', False) : 'po', ('-c', True) : 'o', ('-S', False) : 'll', ('-S', True) : 's', ('', False) : 'pexe', ('', True) : 'nexe', } return output_type_map[(driver_flag, compiling_to_native)] def ReadDriverRevision(): rev_file = env.getone('DRIVER_REV_FILE') nacl_ver = DriverOpen(rev_file, 'rb').readlines()[0] m = re.search(r'\[GIT\].*/native_client(?:\.git)?:\s*([0-9a-f]{40})', nacl_ver) if m: return m.group(1) # fail-fast: if the REV file exists but regex search failed, # we need to fix the regex to get nacl-version. if not m: Log.Fatal('Failed to parse REV file to get nacl-version.') def main(argv): env.update(EXTRA_ENV) CheckSetup() ParseArgs(argv, CustomPatterns + GCCPatterns) # "configure", especially when run as part of a toolchain bootstrap # process, will invoke gcc with various diagnostic options and # parse the output. In these cases we do not alter the incoming # commandline. It is also important to not emit spurious messages. if env.getbool('DIAGNOSTIC'): if env.getbool('SHOW_VERSION'): code, stdout, stderr = Run(env.get('CC') + env.get('CC_FLAGS'), redirect_stdout=subprocess.PIPE) out = stdout.split('\n') nacl_version = ReadDriverRevision() out[0] += ' nacl-version=%s' % nacl_version stdout = '\n'.join(out) print stdout, else: Run(env.get('CC') + env.get('CC_FLAGS')) return 0 unmatched = env.get('UNMATCHED') if len(unmatched) > 0: UnrecognizedOption(*unmatched) # If -arch was given, we are compiling directly to native code compiling_to_native = GetArch() is not None if env.getbool('ALLOW_NATIVE'): if not compiling_to_native: Log.Fatal("--pnacl-allow-native without -arch is not meaningful.") # For native/mixed links, also bring in the native libgcc and # libcrt_platform to avoid link failure if pre-translated native # code needs functions from it. env.append('LD_FLAGS', env.eval('-L${LIBS_NATIVE_ARCH}')) env.append('STDLIBS', '-lgcc') env.append('STDLIBS', '-lcrt_platform') flags_and_inputs = env.get('INPUTS') output = env.getone('OUTPUT') if len(flags_and_inputs) == 0: if env.getbool('VERBOSE'): # -v can be invoked without any inputs. Runs the original # command without modifying the commandline for this case. Run(env.get('CC') + env.get('CC_FLAGS')) return 0 else: Log.Fatal('No input files') gcc_mode = env.getone('GCC_MODE') output_type = DriverOutputTypes(gcc_mode, compiling_to_native) # '-shared' modifies the output from the linker and should be considered when # determining the final output type. if env.getbool('SHARED'): if compiling_to_native: Log.Fatal('Building native shared libraries not supported') if gcc_mode != '': Log.Fatal('-c, -S, and -E are disallowed with -shared') output_type = 'pll' # INPUTS consists of actual input files and a subset of flags like -Wl,<foo>. # Create a version with just the files. inputs = [f for f in flags_and_inputs if not IsFlag(f)] header_inputs = [f for f in inputs if filetype.IsHeaderType(filetype.FileType(f))] # Handle PCH case specially (but only for a limited sense...) if header_inputs and gcc_mode != '-E': # We only handle doing pre-compiled headers for all inputs or not at # all at the moment. This is because DriverOutputTypes only assumes # one type of output, depending on the "gcc_mode" flag. When mixing # header inputs w/ non-header inputs, some of the outputs will be # pch while others will be output_type. We would also need to modify # the input->output chaining for the needs_linking case. if len(header_inputs) != len(inputs): Log.Fatal('mixed compiling of headers and source not supported') CompileHeaders(header_inputs, output) return 0 needs_linking = (gcc_mode == '') if env.getbool('NEED_DASH_E') and gcc_mode != '-E': Log.Fatal("-E or -x required when input is from stdin") # There are multiple input files and no linking is being done. # There will be multiple outputs. Handle this case separately. if not needs_linking: if output != '' and len(inputs) > 1: Log.Fatal('Cannot have -o with -c, -S, or -E and multiple inputs: %s', repr(inputs)) for f in inputs: intype = filetype.FileType(f) if not (filetype.IsSourceType(intype) or filetype.IsHeaderType(intype)): if ((output_type == 'pp' and intype != 'S') or (output_type == 'll') or (output_type == 'po' and intype != 'll') or (output_type == 's' and intype not in ('ll','po','S')) or (output_type == 'o' and intype not in ('ll','po','S','s'))): Log.Fatal("%s: Unexpected type of file for '%s'", pathtools.touser(f), gcc_mode) if output == '': f_output = DefaultOutputName(f, output_type) else: f_output = output namegen = TempNameGen([f], f_output) CompileOne(f, output_type, namegen, f_output) return 0 # Linking case assert(needs_linking) assert(output_type in ('pll', 'pexe', 'nexe')) if output == '': output = pathtools.normalize('a.out') namegen = TempNameGen(flags_and_inputs, output) # Compile all source files (c/c++/ll) to .po for i in xrange(0, len(flags_and_inputs)): if IsFlag(flags_and_inputs[i]): continue intype = filetype.FileType(flags_and_inputs[i]) if filetype.IsSourceType(intype) or intype == 'll': flags_and_inputs[i] = CompileOne(flags_and_inputs[i], 'po', namegen) # Compile all .s/.S to .o if env.getbool('ALLOW_NATIVE'): for i in xrange(0, len(flags_and_inputs)): if IsFlag(flags_and_inputs[i]): continue intype = filetype.FileType(flags_and_inputs[i]) if intype in ('s','S'): flags_and_inputs[i] = CompileOne(flags_and_inputs[i], 'o', namegen) # We should only be left with .po and .o and libraries for f in flags_and_inputs: if IsFlag(f): continue intype = filetype.FileType(f) if intype in ('o','s','S') or filetype.IsNativeArchive(f): if not env.getbool('ALLOW_NATIVE'): Log.Fatal('%s: Native object files not allowed in link. ' 'Use --pnacl-allow-native to override.', pathtools.touser(f)) assert(intype in ('po','o','so','ldscript') or filetype.IsArchive(f)) # Fix the user-specified linker arguments ld_inputs = [] for f in flags_and_inputs: if f.startswith('-Xlinker='): ld_inputs.append(f[len('-Xlinker='):]) elif f.startswith('-Wl,'): ld_inputs += f[len('-Wl,'):].split(',') else: ld_inputs.append(f) if env.getbool('ALLOW_NATIVE'): ld_inputs.append('--pnacl-allow-native') # Invoke the linker env.set('ld_inputs', *ld_inputs) ld_args = env.get('LD_ARGS') ld_flags = env.get('LD_FLAGS') RunDriver('pnacl-ld', ld_flags + ld_args + ['-o', output]) return 0 def IsFlag(f): return f.startswith('-') def CompileHeaders(header_inputs, output): if output != '' and len(header_inputs) > 1: Log.Fatal('Cannot have -o <out> and compile multiple header files: %s', repr(header_inputs)) for f in header_inputs: f_output = output if output else DefaultPCHOutputName(f) RunCC(f, f_output, mode='', emit_llvm_flag='') def CompileOne(infile, output_type, namegen, output = None): if output is None: output = namegen.TempNameForInput(infile, output_type) chain = DriverChain(infile, output, namegen) SetupChain(chain, filetype.FileType(infile), output_type) chain.run() return output def RunCC(infile, output, mode, emit_llvm_flag='-emit-llvm'): intype = filetype.FileType(infile) typespec = filetype.FileTypeToGCCType(intype) include_cxx_headers = ((env.get('LANGUAGE') == 'CXX') or (intype in ('c++', 'c++-header'))) env.setbool('INCLUDE_CXX_HEADERS', include_cxx_headers) if IsStdinInput(infile): infile = '-' RunWithEnv("${RUN_CC}", infile=infile, output=output, emit_llvm_flag=emit_llvm_flag, mode=mode, typespec=typespec) def RunLLVMAS(infile, output): if IsStdinInput(infile): infile = '-' # This is a bitcode only step - so get rid of "-arch xxx" which # might be inherited from the current invocation RunDriver('pnacl-as', [infile, '-o', output], suppress_inherited_arch_args=True) def RunNativeAS(infile, output): if IsStdinInput(infile): infile = '-' RunDriver('pnacl-as', [infile, '-o', output]) def RunTranslate(infile, output, mode): if not env.getbool('ALLOW_TRANSLATE'): Log.Fatal('%s: Trying to convert bitcode to an object file before ' 'bitcode linking. This is supposed to wait until ' 'translation. Use --pnacl-allow-translate to override.', pathtools.touser(infile)) args = env.get('TRANSLATE_FLAGS') + [mode, '--allow-llvm-bitcode-input', infile, '-o', output] if env.getbool('PIC'): args += ['-fPIC'] RunDriver('pnacl-translate', args) def RunOpt(infile, outfile, pass_list): filtered_list = [pass_option for pass_option in pass_list if pass_option not in env.get('LLVM_PASSES_TO_DISABLE')] RunDriver('pnacl-opt', filtered_list + [infile, '-o', outfile]) def SetupChain(chain, input_type, output_type): assert(output_type in ('pp','ll','po','s','o')) cur_type = input_type # source file -> pp if filetype.IsSourceType(cur_type) and output_type == 'pp': chain.add(RunCC, 'cpp', mode='-E') cur_type = 'pp' if cur_type == output_type: return # header file -> pre-process if filetype.IsHeaderType(cur_type) and output_type == 'pp': chain.add(RunCC, 'cpp', mode='-E') cur_type = 'pp' if cur_type == output_type: return # source file -> ll if (filetype.IsSourceType(cur_type) and (env.getbool('FORCE_INTERMEDIATE_LL') or output_type == 'll')): chain.add(RunCC, 'll', mode='-S') cur_type = 'll' if cur_type == output_type: return # ll -> po if cur_type == 'll': chain.add(RunLLVMAS, 'po') cur_type = 'po' if cur_type == output_type: return # source file -> po (we also force native output to go through this phase if filetype.IsSourceType(cur_type) and output_type in ('po', 'o', 's'): chain.add(RunCC, 'po', mode='-c') cur_type = 'po' if cur_type == output_type: return # po -> o if (cur_type == 'po' and output_type == 'o'): # If we aren't using biased bitcode, then at least -expand-byval # must be run to work with the PPAPI shim calling convention. if IsPortable(): chain.add(RunOpt, 'expand.po', pass_list=['-expand-byval']) chain.add(RunTranslate, 'o', mode='-c') cur_type = 'o' if cur_type == output_type: return # po -> s if cur_type == 'po': # If we aren't using biased bitcode, then at least -expand-byval # must be run to work with the PPAPI shim calling convention. if IsPortable(): chain.add(RunOpt, 'expand.po', pass_list=['-expand-byval']) chain.add(RunTranslate, 's', mode='-S') cur_type = 's' if cur_type == output_type: return # S -> s if cur_type == 'S': chain.add(RunCC, 's', mode='-E') cur_type = 's' if output_type == 'pp': return if cur_type == output_type: return # s -> o if cur_type == 's' and output_type == 'o': chain.add(RunNativeAS, 'o') cur_type = 'o' if cur_type == output_type: return Log.Fatal("Unable to compile .%s to .%s", input_type, output_type) def get_help(argv): tool = env.getone('SCRIPT_NAME') if '--help-full' in argv: # To get ${CC}, etc. env.update(EXTRA_ENV) code, stdout, stderr = Run('"${CC}" -help', redirect_stdout=subprocess.PIPE, redirect_stderr=subprocess.STDOUT, errexit=False) return stdout else: return """ This is a "GCC-compatible" driver using clang under the hood. Usage: %s [options] <inputs> ... BASIC OPTIONS: -o <file> Output to <file>. -E Only run the preprocessor. -S Generate bitcode assembly. -c Generate bitcode object. -I <dir> Add header search path. -L <dir> Add library search path. -D<key>[=<val>] Add definition for the preprocessor. -W<id> Toggle warning <id>. -f<feature> Enable <feature>. -Wl,<arg> Pass <arg> to the linker. -Xlinker <arg> Pass <arg> to the linker. -Wt,<arg> Pass <arg> to the translator. -Xtranslator <arg> Pass <arg> to the translator. -Wp,<arg> Pass <arg> to the preprocessor. -Xpreprocessor,<arg> Pass <arg> to the preprocessor. -x <language> Treat subsequent input files as having type <language>. -static Produce a static executable (the default). -Bstatic Link subsequent libraries statically. -Bdynamic Link subsequent libraries dynamically. -fPIC Ignored (only used by translator backend) (accepted for compatibility). -pipe Ignored (for compatibility). -O<n> Optimation level <n>: 0, 1, 2, 3, 4 or s. -g Generate complete debug information. -gline-tables-only Generate debug line-information only (allowing for stack traces). -flimit-debug-info Generate limited debug information. -save-temps Keep intermediate compilation results. -v Verbose output / show commands. -h | --help Show this help. --help-full Show underlying clang driver's help message (warning: not all options supported). """ % (tool)
6235ff1283a1cd1df9f2920ac2d4acc0b4fda5f2
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/otherforms/_tubercles.py
1fd9350940d02997c44f6017604e905edf183a0b
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
230
py
#calss header class _TUBERCLES(): def __init__(self,): self.name = "TUBERCLES" self.definitions = tubercle self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.basic = ['tubercle']
d93f1eac9a51b554e79f2210ef4ec9efb9dc75e3
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02785/s616461833.py
e25ba5505a0fe199b73bcb1668bb380fc510363a
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
100
py
n, k = map(int, input().split()) h = list(map(int, input().split())) print(sum(sorted(h)[::-1][k:]))
23259865da4b2ba2241e13dc4a003730ecd8244e
f483545d7765c25d1b315027726dbd74bc77b98a
/myproject/helloflask/__init__.py
3c841b6144c426d612c3be2276bab54c47abc33d
[]
no_license
niceman5/pythonProject
e51b44a50776100a63443d7da850ba4b8b00f5eb
3589fd200b56f68b856d2b4d2031c2a1135168a0
refs/heads/master
2023-07-10T16:12:57.756944
2023-06-27T08:13:54
2023-06-27T08:13:54
135,047,965
0
0
null
null
null
null
UTF-8
Python
false
false
1,573
py
from flask import Flask, g, request, Response, make_response from flask import session, render_template, Markup, url_for from datetime import date, datetime, timedelta import os from helloflask.init_db import init_database, db_session app = Flask(__name__) import helloflask.views import helloflask.tests import helloflask.filters app.debug = True app.jinja_env.trim_blocks = True # config["connect_args"] = {"options": "-c timezone=utc"} def dated_url_for(endpoint, **values): if endpoint == 'static': filename = values.get('filename', None) if filename: file_path = os.path.join(app.root_path, endpoint, filename) values['q'] = int(os.stat(file_path).st_mtime) return url_for(endpoint, **values) @app.context_processor def override_url_for(): return dict(url_for=dated_url_for) app.config.update( connect_args={"options": "-c timezone=utc"}, SECRET_KEY='X1243yRH!mMwf', SESSION_COOKIE_NAME='pyweb_flask_session', PERMANENT_SESSION_LIFETIME=timedelta(31) # 31 days ) @app.before_first_request def beforeFirstRequest(): print(">> before_first_request!!") init_database() # initialize database @app.after_request def afterReq(response): print(">> after_request!!") return response @app.teardown_request def teardown_request(exception): print(">>> teardown request!!", exception) @app.teardown_appcontext def teardown_context(exception): print(">>> teardown context!!", exception) db_session.remove() # remove used db-session
7e0e11a25de222a5998cf039e5d07b16e1e5ee3d
0cfb5831a748ebd46e438e3ad7e7a09c1d196499
/com/chapter_02/section_03/task_2.3.1_string.py
0ced5f96b6c94cd49087d941d8d2db0b958d7a97
[]
no_license
StevenGeGe/pythonFromIntroductionToPractice01
7cfe8cdb4bc5c0ddbe25b44976231d72d9e10108
9d2ba499056b30ded14180e6c4719ee48edd9772
refs/heads/master
2023-02-15T04:08:59.878711
2020-12-28T13:27:55
2020-12-28T13:27:55
310,980,820
0
0
null
null
null
null
UTF-8
Python
false
false
503
py
#!/usr/bin/python3 # -*- coding: utf-8 -*- # @Time : 2020/11/8 14:44 # @Author : Yong # @Email : [email protected] # @File : task_2.3.1_string.py # @Software: PyCharm # title() : 以首字母大写的方式显示每个单词,即将每个单词的首字母全部大写或者全部小写。 # 更改字符串的小写 name_big = "ada love" print(name_big.title()) # 输出: Ada Love # 更改字符串的大写 name_small = "All The World" print(name_small.title()) # 输出: All The World
4592909cbecdc99a76075adfdb88ebecd628f893
e247d9261676f257752c0c6beac161954137a81c
/src/0670.maximum-swap/maximum-swap.py
a768dba246b1ee138757c7df172f980aba66c1ea
[ "MIT" ]
permissive
henrymorgen/Just-Code
8fbbd8288b485372a44e10b0078b5edb8af61a3b
fa03ebb89edd8f2292de7c0644dbab88dc1d924c
refs/heads/master
2022-10-19T05:59:53.134092
2020-06-10T02:26:43
2020-06-10T02:26:43
273,656,532
1
2
MIT
2020-06-20T07:02:38
2020-06-20T07:02:38
null
UTF-8
Python
false
false
447
py
class Solution: def maximumSwap(self, num: int) -> int: num = list(str(num)) max_idx = len(num) - 1 xi = yi = 0 for i in range(len(num) - 1, -1, -1): if num[i] > num[max_idx]: max_idx = i elif num[i] < num[max_idx]: xi = i yi = max_idx num[xi], num[yi] = num[yi], num[xi] return int("".join(num))
c288be163fc503676e07dbc33ab1ccc5193348d6
f28591fab50d9b7a539c66b5a81fc91d1bc2ce64
/py3/def/uint32_rotateleft.py
3d8529dece0a6541a402dce9cfeefd84e5370f9e
[]
no_license
tnzw/tnzw.github.io
b8a5fe1f8479736bbf2b3594d511a1282939a3b3
6d95968db793cebcfa77cb49eecd987f821350db
refs/heads/master
2023-04-21T14:22:49.849859
2023-03-31T15:55:01
2023-03-31T15:55:01
176,712,013
0
0
null
null
null
null
UTF-8
Python
false
false
532
py
# uint32_rotateleft.py Version 1.0.0 # Copyright (c) 2020 Tristan Cavelier <[email protected]> # This program is free software. It comes without any warranty, to # the extent permitted by applicable law. You can redistribute it # and/or modify it under the terms of the Do What The Fuck You Want # To Public License, Version 2, as published by Sam Hocevar. See # http://www.wtfpl.net/ for more details. def uint32_rotateleft(uint32, n): n %= 32 if n < 0: n += 32 return (((uint32 << n) & 0xFFFFFFFF) | (uint32 >> (32 - n)))
4c13c1b16129e4ea923b3a8845fa0d873f5515cb
471c56d189c21733371fb60f3d4a13e69b6c8c0d
/plot_comp_prediction_clstm.py
ffb3a6bdfb0b40079d1f116578e2cd5e96cf6b3f
[]
no_license
inoue0406/svg
2b3d50e17526d27b37e352a535a8468b23d5773b
6a12e052ca9d9a54eaae1657e236259b00aabdc9
refs/heads/master
2020-08-13T12:25:41.729998
2019-11-03T06:31:06
2019-11-03T06:31:06
214,967,485
0
0
null
2019-10-14T06:43:43
2019-10-14T06:43:43
null
UTF-8
Python
false
false
8,294
py
# # Plot Predicted Rainfall Data # for non-probabilistic clstm model # import torch import numpy as np import torch.utils.data as data from torch.autograd import Variable from torch.utils.data import DataLoader import argparse import pandas as pd import h5py import os import sys import random import itertools import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib.colors import LinearSegmentedColormap import utils from jma_pytorch_dataset import * from scaler import * from colormap_JMA import Colormap_JMA def inv_scaler(x): """ Back to original scale """ return (x ** 2.0)*201.0 def plot_rainfall(pic_tg,pic_pred,pic_path,fname): # input # pic_tg: numpy array with [time,x,y] dim # pic_pred: numpy array with [nsmple,time,x,y] dim print('Plotting: ',fname,np.max(pic_tg),np.max(pic_pred)) # plot cm = Colormap_JMA() for nt in range(pic_tg.shape[0]): fig, ax = plt.subplots(figsize=(20, 8)) fig.suptitle("Precip prediction starting at: "+fname, fontsize=30) # id = nt dtstr = str((id+1)*5) # target plt.subplot(1,2,1) im = plt.imshow(pic_tg[id,:,:],vmin=0,vmax=50,cmap=cm,origin='lower') plt.title("true:"+dtstr+"min", fontsize=30) plt.axis('off') plt.grid() # predicted plt.subplot(1,2,2) im = plt.imshow(pic_pred[id,:,:],vmin=0,vmax=50,cmap=cm,origin='lower') plt.title("pred:"+dtstr+"min", fontsize=30) plt.axis('off') plt.grid() # color bar fig.subplots_adjust(right=0.93,top=0.85) cbar_ax = fig.add_axes([0.94, 0.15, 0.01, 0.7]) fig.colorbar(im, cax=cbar_ax) # save as png nt_str = '_dt%02d' % nt plt.savefig(pic_path+'/'+'comp_pred_'+fname+nt_str+'.png') plt.close() def make_gifs(x, idx, name,frame_predictor,encoder,decoder): all_gen = [] frame_predictor.hidden = frame_predictor.init_hidden() x_in = x[0] all_gen.append(x_in) for i in range(1, opt.n_eval): # h = encoder(x_in) # if opt.last_frame_skip or i < opt.n_past: # h, skip = h # else: # h, _ = h # h = h.detach() # if i < opt.n_past: # h_target = encoder(x[i])[0].detach() # frame_predictor(h) # x_in = x[i] # all_gen.append(x_in) # else: # h = frame_predictor(h.detach()) # x_in = decoder([h, skip]).detach() # all_gen.append(x_in) if i < opt.n_past: x_in = x[i-1] # use ground truth frame for the first half h, skip = encoder(x_in) h = h.detach() else: x_in = x_pred # use predicted frame for the second half (NOT use ground truth) _, skip = encoder(x_in) h = h_pred h_pred = frame_predictor(h).detach() x_pred = decoder([h_pred, skip]).detach() all_gen.append(x_pred) # prep np.array to be plotted TRU = np.zeros([opt.n_eval, opt.batch_size, 1, opt.image_width, opt.image_width]) GEN = np.zeros([opt.n_eval, opt.batch_size, 1, opt.image_width, opt.image_width]) for i in range(opt.n_eval): TRU[i,:,:,:,:] = inv_scaler(x[i].cpu().numpy()) GEN[i,:,:,:,:] = inv_scaler(all_gen[i].cpu().numpy()) # plot print(" ground truth max:",np.max(TRU)," gen max:",np.max(GEN)) for j in range(opt.batch_size): plot_rainfall(TRU[:,j,0,:,:],GEN[:,j,0,:,:],opt.log_dir,name+"_sample"+str(j)) # plot comparison of predicted vs ground truth def plot_comp_prediction(opt,df_sampled,mode='png_ind'): print("Random Seed: ", opt.seed) random.seed(opt.seed) torch.manual_seed(opt.seed) torch.cuda.manual_seed_all(opt.seed) dtype = torch.cuda.FloatTensor # ---------------- load the models ---------------- tmp = torch.load(opt.model_path) frame_predictor = tmp['frame_predictor'] frame_predictor.eval() encoder = tmp['encoder'] decoder = tmp['decoder'] encoder.train() decoder.train() frame_predictor.batch_size = opt.batch_size opt.g_dim = tmp['opt'].g_dim opt.num_digits = tmp['opt'].num_digits # --------- transfer to gpu ------------------------------------ frame_predictor.cuda() encoder.cuda() decoder.cuda() # ---------------- set the options ---------------- opt.dataset = tmp['opt'].dataset opt.last_frame_skip = tmp['opt'].last_frame_skip opt.channels = tmp['opt'].channels opt.image_width = tmp['opt'].image_width print(opt) # --------- load a dataset ------------------------------------ # loading datasets train_dataset = JMARadarDataset(root_dir=opt.data_root, csv_file=opt.train_path, tdim_use=opt.n_past, transform=None) valid_dataset = JMARadarDataset(root_dir=opt.data_root, csv_file=opt.valid_path, tdim_use=opt.n_past, transform=None) train_loader = DataLoader(dataset=train_dataset, num_workers=opt.data_threads, batch_size=opt.batch_size, shuffle=True, drop_last=True, pin_memory=True) test_loader = DataLoader(dataset=valid_dataset, num_workers=opt.data_threads, batch_size=opt.batch_size, shuffle=False, drop_last=True, pin_memory=True) def get_training_batch(): while True: for sequence in train_loader: batch = utils.normalize_data(opt, dtype, sequence) yield batch training_batch_generator = get_training_batch() def get_testing_batch(): while True: for sequence in test_loader: batch = utils.normalize_data(opt, dtype, sequence) yield batch testing_batch_generator = get_testing_batch() for i in range(0, opt.N, opt.batch_size): print(i) # plot train train_x = next(training_batch_generator) make_gifs(train_x, i, 'train',frame_predictor,encoder,decoder) # plot test test_x = next(testing_batch_generator) make_gifs(test_x, i, 'test',frame_predictor,encoder,decoder) break if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--batch_size', default=100, type=int, help='batch size') parser.add_argument('--data_root', default='data', help='root directory for data') parser.add_argument('--train_path', default='', help='csv file containing filenames for training') parser.add_argument('--valid_path', default='', help='csv file containing filenames for validation') parser.add_argument('--model_path', default='', help='path to model') parser.add_argument('--log_dir', default='', help='directory to save generations to') parser.add_argument('--seed', default=1, type=int, help='manual seed') parser.add_argument('--n_past', type=int, default=2, help='number of frames to condition on') parser.add_argument('--n_future', type=int, default=28, help='number of frames to predict') parser.add_argument('--num_threads', type=int, default=0, help='number of data loading threads') parser.add_argument('--N', type=int, default=256, help='number of samples') parser.add_argument('--data_threads', type=int, default=5, help='number of data loading threads') opt = parser.parse_args() os.makedirs('%s' % opt.log_dir, exist_ok=True) opt.n_eval = opt.n_past+opt.n_future opt.max_step = opt.n_eval # samples to be plotted sample_path = '../datasets/jma/sampled_forplot_3day_JMARadar.csv' # read sampled data in csv df_sampled = pd.read_csv(sample_path) print('samples to be plotted') print(df_sampled) plot_comp_prediction(opt,df_sampled,mode='png_ind')
5cbbcad90b7a18247ef4129e11896b12752543ab
ec827bd5df431c9400946e8d0593448814b5534b
/venv/bin/ipython
498f13bc79c779676e375d1d51d86e95af3fa922
[]
no_license
grantnicholas/pytone
7acd70878de8090d06d7a2911a67b3dbb3b64256
b89c688cc88588a3758fff288bc9b1364534b42e
refs/heads/master
2021-01-23T06:19:47.203418
2014-09-21T21:52:27
2014-09-21T21:52:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
253
#!/home/grant/Desktop/pytone/venv/bin/python # -*- coding: utf-8 -*- import re import sys from IPython import start_ipython if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(start_ipython())
56b5cf1eaba651687a7c590fa1649daae00ec525
1b0755fafd5993c8fe5c847d0f3b250f0705cc87
/perf/__init__.py
ccef7a523ee945da1eb514e9d7dade75768eb8dd
[ "MIT" ]
permissive
pombredanne/perf
65b722b2822daf598798da40917abdc608708ec3
da5f2259815c39569957f584a7e1e57cfdbbb927
refs/heads/master
2021-04-29T11:31:23.533547
2016-12-16T14:50:02
2016-12-16T14:50:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
913
py
from __future__ import division, print_function, absolute_import __version__ = '0.9.2' # Clocks try: # Python 3.3+ (PEP 418) from time import monotonic as monotonic_clock, perf_counter except ImportError: import sys import time monotonic_clock = time.time if sys.platform == "win32": perf_counter = time.clock else: perf_counter = time.time del sys, time __all__ = ['monotonic_clock', 'perf_counter'] from perf._utils import is_significant, python_implementation, python_has_jit # noqa __all__.extend(('is_significant', 'python_implementation', 'python_has_jit')) from perf._metadata import format_metadata # noqa __all__.append('format_metadata') from perf._bench import Run, Benchmark, BenchmarkSuite, add_runs # noqa __all__.extend(('Run', 'Benchmark', 'BenchmarkSuite', 'add_runs')) from perf._runner import Runner # noqa __all__.append('Runner')
18038f0af6c237d5b9db5678328e4d466f172dc2
57fec0f5928beaaeb2dc66004267204e77bf05a7
/scripts/05-gmaps-test.py
ca95867cc5fec1d0fc87836f9afd89caf7c679cc
[]
no_license
fgolemo/neo-m8p-python
a26d382cd0a8d90bd8eca4a6a2c13a51bc1a08b9
f9af936cdc804b24a76b697df749b0aca0325bed
refs/heads/master
2020-06-21T09:55:13.280892
2019-07-25T17:36:07
2019-07-25T17:36:07
197,414,904
0
1
null
null
null
null
UTF-8
Python
false
false
138
py
import cv2 from neom8p.gmaps import get_gmap map = get_gmap(45.530807,-73.613293, 19) cv2.imshow("map", map) cv2.waitKey(1) print ("yo")
41ebec25755d59ff6b7c39a02ee7b633ecb9eb93
24223ef61937be40f0ea23db279a93b75a0b7a0f
/pygogo/utils.py
e1c94efb0cea6c5c6bfdab9424b8a04a82d3f199
[ "MIT" ]
permissive
liutaihua/pygogo
cfd13a036bcbdf7767fa05e31ab2161be9c6a99b
7b7a99fdf28cef3185cf7f3f8f0cad8b8d5691b2
refs/heads/master
2021-01-18T01:48:15.294501
2016-01-01T10:58:27
2016-01-01T10:58:27
48,997,690
1
0
null
2016-01-04T13:08:29
2016-01-04T13:08:29
null
UTF-8
Python
false
false
8,266
py
# -*- coding: utf-8 -*- # vim: sw=4:ts=4:expandtab """ pygogo.utils ~~~~~~~~~~~~ Misc classes and functions that don't warrant their own module Examples: basic usage:: >>> CustomEncoder().encode(range(5)) '[0, 1, 2, 3, 4]' """ from __future__ import ( absolute_import, division, print_function, with_statement, unicode_literals) import logging import sys from json import JSONEncoder from builtins import * module_hdlr = logging.StreamHandler(sys.stdout) module_logger = logging.getLogger(__name__) module_logger.addHandler(module_hdlr) class CustomEncoder(JSONEncoder): """A unicode aware JSON encoder that can handle iterators, dates, and times Examples: >>> CustomEncoder().encode(range(5)) '[0, 1, 2, 3, 4]' >>> from json import dumps >>> dumps(range(5), cls=CustomEncoder) '[0, 1, 2, 3, 4]' """ def default(self, obj): """ Encodes a given object Args: obj (scalar): The object to encode. Returns: The encoded object Examples: >>> CustomEncoder().default(range(5)) [0, 1, 2, 3, 4] """ if hasattr(obj, 'real'): encoded = float(obj) elif hasattr(obj, 'union'): encoded = tuple(obj) elif set(['next', 'union', '__iter__']).intersection(dir(obj)): encoded = list(obj) else: encoded = str(obj) return encoded class StructuredMessage(object): """Converts a message and kwargs to a json string Attributes: kwargs (dict): Keyword arguments passed to :class:`~pygogo.utils.CustomEncoder`. Args: message (string): The message to log. kwargs (dict): Keyword arguments passed to :class:`~pygogo.utils.CustomEncoder`. Returns: New instance of :class:`StructuredMessage` See also: :class:`pygogo.utils.StructuredAdapter` Examples: >>> from json import loads >>> msg = StructuredMessage('hello world', key='value') >>> loads(str(msg)) == {'message': 'hello world', 'key': 'value'} True """ def __init__(self, message=None, **kwargs): """Initialization method. Args: message (string): The message to log. kwargs (dict): Keyword arguments passed to :class:`~pygogo.utils.CustomEncoder`. Returns: New instance of :class:`StructuredMessage` Examples: >>> StructuredMessage('message') # doctest: +ELLIPSIS <pygogo.utils.StructuredMessage object at 0x...> """ kwargs['message'] = message self.kwargs = kwargs def __str__(self): """ String method Returns: str: The encoded object Examples >>> from json import loads >>> msg = str(StructuredMessage('hello world', key='value')) >>> loads(msg) == {'message': 'hello world', 'key': 'value'} True """ return str(CustomEncoder().encode(self.kwargs)) class StructuredAdapter(logging.LoggerAdapter): """A logging adapter that creates a json string from a log message and the `extra` kwarg See also: :class:`pygogo.utils.StructuredMessage` :meth:`pygogo.Gogo.get_structured_logger` Examples: >>> from io import StringIO >>> from json import loads >>> s = StringIO() >>> logger = logging.getLogger() >>> hdlr = logging.StreamHandler(s) >>> logger.addHandler(hdlr) >>> structured_logger = StructuredAdapter(logger, {'all': True}) >>> structured_logger.debug('hello', extra={'key': u'value'}) >>> loads(s.getvalue()) == { ... 'all': True, 'message': 'hello', 'key': 'value'} True """ def process(self, msg, kwargs): """ Modifies the message and/or keyword arguments passed to a logging call in order to insert contextual information. Args: msg (str): The message to log. kwargs (dict): Returns: Tuple of (:class:`~pygogo.utils.StructuredMessage`, modified kwargs) Examples: >>> from json import loads >>> logger = logging.getLogger() >>> structured_logger = StructuredAdapter(logger, {'all': True}) >>> extra = {'key': 'value'} >>> m, k = structured_logger.process('message', {'extra': extra}) >>> loads(m) == {'all': True, 'message': 'message', 'key': 'value'} True >>> k == {'extra': {'all': True, 'key': 'value'}} True """ extra = kwargs.get('extra', {}) extra.update(self.extra) kwargs['extra'] = extra return str(StructuredMessage(msg, **extra)), kwargs class LogFilter(logging.Filter): """Filters log messages depending on level Attributes: level (int): The logging level. +-------------------------+-------+ | logging level attribute | value | +=========================+=======+ | CRITICAL | 50 | +-------------------------+-------+ | ERROR | 40 | +-------------------------+-------+ | WARNING | 30 | +-------------------------+-------+ | INFO | 20 | +-------------------------+-------+ | DEBUG | 10 | +-------------------------+-------+ | NOTSET | 0 | +-------------------------+-------+ Args: level (int): The logging level. Returns: New instance of :class:`LogFilter` See also: :meth:`pygogo.Gogo.update_hdlr` """ def __init__(self, level): """Initialization method. Args: level (int): The logging level. Returns: New instance of :class:`LogFilter` Examples: >>> LogFilter(40) # doctest: +ELLIPSIS <pygogo.utils.LogFilter object at 0x...> """ self.high_level = level def filter(self, record): """Determines whether or a not a message should be logged. Args: record (obj): The event to (potentially) log Returns: bool: True if the event level is lower than self.high_level Examples: >>> attrs = {'levelno': logging.INFO} >>> record = logging.makeLogRecord(attrs) >>> LogFilter(40).filter(record) True """ return record.levelno < self.high_level def get_structured_filter(name='', **kwargs): """Returns a structured filter that injects contextual information into log records. Args: kwargs (dict): The contextual information you wish to inject See also: :meth:`pygogo.Gogo.update_hdlr` Returns: New instance of :class:`pygogo.utils.StructuredFilter` Examples: >>> structured_filter = get_structured_filter(user='fred') >>> structured_filter # doctest: +ELLIPSIS <pygogo.utils...StructuredFilter object at 0x...> >>> >>> logger = logging.getLogger('structured_filter') >>> hdlr = logging.StreamHandler(sys.stdout) >>> formatter = logging.Formatter('User %(user)s said, "%(message)s".') >>> hdlr.setFormatter(formatter) >>> logger.addFilter(structured_filter) >>> logger.addHandler(hdlr) >>> logger.debug('A debug message') User fred said, "A debug message". """ class StructuredFilter(logging.Filter): """ Injects contextual information into log records. """ def filter(self, record): """Adds contextual information to a log record Args: record (obj): The event to contextualize Returns: bool: True """ for k, v in kwargs.items(): setattr(record, k, v) return True return StructuredFilter(name)
a47f8034e2370aec414aa1e5b290f1bff3f65fe2
6b2a8dd202fdce77c971c412717e305e1caaac51
/solutions_2700486_0/Python/jbaek/codejam3.py
66cc08fb16dc343fe03e3fc66bf66e11429e006d
[]
no_license
alexandraback/datacollection
0bc67a9ace00abbc843f4912562f3a064992e0e9
076a7bc7693f3abf07bfdbdac838cb4ef65ccfcf
refs/heads/master
2021-01-24T18:27:24.417992
2017-05-23T09:23:38
2017-05-23T09:23:38
84,313,442
2
4
null
null
null
null
UTF-8
Python
false
false
2,392
py
from math import * from itertools import * import os from decimal import * ALLGRIDS = [] def main(): global ALLGRIDS f = open("/home/jackie/Documents/Codejam/in") lines = f.readlines() cases = int(lines.pop(0)) for i in range(cases): ALLGRIDS = [] print "Case #%d:" % (i+1), guide = split_to_int(lines) number = guide[0] x = guide[1] y = guide[2] diamonds = [] grid = {} if x == 0 and y == 0: print "1.0" continue ALLGRIDS.append(grid) do_problem(number, diamonds) total = len(ALLGRIDS) win = 0 for grid in ALLGRIDS: if x in grid and grid[x] >= y+1: win += 1 answer = str(Decimal(win)/Decimal(total)) if "." not in answer: answer += ".0" print answer def do_problem(number,diamonds): global ALLGRIDS for i in range(number): for j in range(len(ALLGRIDS)): helper(ALLGRIDS[j], 0) # drops one diamond def helper(grid, pos): global ALLGRIDS if pos not in grid: grid[pos]=0 highest = grid[pos] if blockedleft(grid, pos): if blockedright(grid,pos): grid[pos]+=2 return else: helper(grid, pos+1) return elif blockedright(grid,pos): helper(grid, pos-1) return # go on ground elif highest == 0: grid[pos]=1 return else: # right newgrid = grid.copy() ALLGRIDS.append(newgrid) helper(newgrid, pos+1) # left helper(grid, pos-1) def blockedleft(grid, pos): return pos-1 in grid and grid[pos-1]>grid[pos] def blockedright(grid, pos): return pos+1 in grid and grid[pos+1]>grid[pos] # general helper functions def split_to_int(lines): return [int(v) for v in lines.pop(0).split()] def factors(n): return set(reduce(list.__add__, ([i, n//i] for i in range(1, int(n**0.5) + 1) if n % i == 0))) def isPrime(n): if n == 2 or n == 3: return True if n < 2 or n%2 == 0: return False if n < 9: return True if n%3 == 0: return False r = int(n**0.5) f = 5 while f <= r: if n%f == 0: return False if n%(f+2) == 0: return False f +=6 return True g = {0:1, 2:1} #helper(g, 0) #print ALLGRIDS main()
ee9a241f9d288ae78366ae06757b0dee588ce874
5acc77c4d594c1750a9b7477499ee25b4c307bca
/ehpi_action_recognition/train_ehpi.py
3c8f3b90123e199bd9a2df7439bbf06c510462ca
[ "MIT" ]
permissive
noboevbo/ehpi_action_recognition
bc15a3c260c79b85a82844a2779c9b1ec9cf42fd
3b77eeb5103f0f11c8d4be993ec79dddad7e661c
refs/heads/master
2021-12-29T05:24:31.891044
2021-12-19T16:23:36
2021-12-19T16:23:36
180,351,212
113
23
null
2019-04-23T11:24:27
2019-04-09T11:22:45
Python
UTF-8
Python
false
false
3,006
py
import os import random from typing import List import torch from ehpi_action_recognition.config import ehpi_dataset_path from nobos_commons.data_structures.constants.dataset_part import DatasetPart from nobos_commons.data_structures.dimension import ImageSize from nobos_torch_lib.configs.training_configs.training_config_base import TrainingConfigBase from nobos_torch_lib.datasets.action_recognition_datasets.ehpi_dataset import EhpiDataset, RemoveJointsOutsideImgEhpi, \ ScaleEhpi, TranslateEhpi, FlipEhpi, NormalizeEhpi from nobos_torch_lib.datasets.samplers.imbalanced_dataset_sampler import ImbalancedDatasetSampler from nobos_torch_lib.models.detection_models.shufflenet_v2 import ShuffleNetV2 from torch.utils.data import ConcatDataset, DataLoader from torchvision.transforms import transforms from ehpi_action_recognition.trainer_ehpi import TrainerEhpi foot_indexes: List[int] = [11, 14] knee_indexes: List[int] = [10, 13] def get_train_set(dataset_path: str, image_size: ImageSize): num_joints = 15 left_indexes: List[int] = [3, 4, 5, 9, 10, 11] right_indexes: List[int] = [6, 7, 8, 12, 13, 14] datasets: List[EhpiDataset] = [ # Set 1 EhpiDataset(os.path.join(dataset_path, "ofp_record_2019_03_11_HSRT_30FPS"), transform=transforms.Compose([ RemoveJointsOutsideImgEhpi(image_size), ScaleEhpi(image_size), TranslateEhpi(image_size), FlipEhpi(left_indexes=left_indexes, right_indexes=right_indexes), NormalizeEhpi(image_size) ]), num_joints=num_joints, dataset_part=DatasetPart.TEST), # Set 2 EhpiDataset(os.path.join(dataset_path, "2019_03_13_Freilichtmuseum_30FPS"), transform=transforms.Compose([ RemoveJointsOutsideImgEhpi(image_size), ScaleEhpi(image_size), TranslateEhpi(image_size), FlipEhpi(left_indexes=left_indexes, right_indexes=right_indexes), NormalizeEhpi(image_size) ]), num_joints=num_joints, dataset_part=DatasetPart.TRAIN), ] for dataset in datasets: dataset.print_label_statistics() return ConcatDataset(datasets) if __name__ == '__main__': batch_size = 128 seed = 0 random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) # Train set train_set = get_train_set(ehpi_dataset_path, image_size=ImageSize(1280, 720)) sampler = ImbalancedDatasetSampler(train_set, dataset_type=EhpiDataset) train_loader = DataLoader(train_set, batch_size=batch_size, sampler=sampler, num_workers=1) # config train_config = TrainingConfigBase("ehpi_model", "models") train_config.weight_decay = 0 train_config.num_epochs = 140 trainer = TrainerEhpi() trainer.train(train_loader, train_config, model=ShuffleNetV2(3))
49df46b47998c18b9a1e1cd63e336461b0b668e5
5390d79dad71ad0d9ff9d0777435dcaf4aad16b3
/chapter_05/toppings5.py
bb3053276c058e6ce16e156ef1659461aab3c552
[]
no_license
JasperMi/python_learning
19770d79cce900d968cec76dac11e45a3df9c34c
8111d0d12e4608484864dddb597522c6c60b54e8
refs/heads/master
2020-11-26T08:57:02.983869
2020-03-11T10:14:55
2020-03-11T10:14:55
218,935,548
0
0
null
null
null
null
UTF-8
Python
false
false
247
py
requested_toppings = [] if requested_toppings: for requested_topping in requested_toppings: print("Adding " + requested_topping + ".") print("\nFinished making your pizza!") else: print("Are you sure you want a plain pizza?")
193cb91ce7cabc2daeb6898364f78bd9d496cf4b
9fc6604ae98e1ae91c490e8201364fdee1b4222a
/eg_delivery_return_disclaimer_msg/wizards/msg_by_unifonic.py
1e5e3eb6e45160c46c0dadf6f1a4942c11dc796a
[]
no_license
nabiforks/baytonia
b65e6a7e1c7f52a7243e82f5fbcc62ae4cbe93c4
58cb304d105bb7332f0a6ab685015f070988ba56
refs/heads/main
2023-03-23T21:02:57.862331
2021-01-04T03:40:58
2021-01-04T03:40:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,566
py
from odoo import models, fields, api from odoo.exceptions import Warning class MsgByUnifonic(models.TransientModel): _name = "msg.by.unifonic" number = fields.Char(string="Number") message = fields.Text(string="Message") @api.model def default_get(self, fields_list): res = super(MsgByUnifonic, self).default_get(fields_list) picking_id = self.env["stock.picking"].browse(self._context.get("active_id")) sms_instance_id = self.env["sms.instance"].search([("provider", "=", "unifonic_sms")], limit=1) if picking_id and sms_instance_id: message = sms_instance_id.return_disclaimer_msg dst_number = picking_id.partner_id.phone or picking_id.partner_id.mobile or None if message: url = "https://oddo.baytonia.com/delivery_return/confirm/{}".format(picking_id.id) message = message.replace("{{order_number}}", picking_id.name) message = message.replace("{{customer_name}}", picking_id.partner_id.name) message = message.replace("{{total_amount}}", str(picking_id.total_amount)) message = message.replace("{{return_approve_url}}", url) res["number"] = dst_number res["message"] = message return res @api.multi def send_msg_customer_by_unifonic(self): if self.message and self.number: self.env["post.sms.wizard"].send_sms(body=self.message, dst_number=self.number) else: raise Warning("Number and Message are required")
7f733621867abbd79a0a8d2784f7d57814b625e5
ebd24e400986c57b4bb1b9578ebd8807a6db62e8
/InstaGrade-FormBuilder/xlsxwriter/test/comparison/test_chart_errorbars05.py
002e0d8055c1d99983bc226195274cbf4b92c183
[]
no_license
nate-parrott/ig
6abed952bf32119a536a524422037ede9b431926
6e0b6ac0fb4b59846680567150ce69a620e7f15d
refs/heads/master
2021-01-12T10:15:15.825004
2016-12-13T21:23:17
2016-12-13T21:23:17
76,399,529
1
0
null
null
null
null
UTF-8
Python
false
false
1,706
py
############################################################################### # # Tests for XlsxWriter. # # Copyright (c), 2013-2014, John McNamara, [email protected] # from ..excel_comparsion_test import ExcelComparisonTest from ...workbook import Workbook class TestCompareXLSXFiles(ExcelComparisonTest): """ Test file created by XlsxWriter against a file created by Excel. """ def setUp(self): self.maxDiff = None filename = 'chart_errorbars05.xlsx' test_dir = 'xlsxwriter/test/comparison/' self.got_filename = test_dir + '_test_' + filename self.exp_filename = test_dir + 'xlsx_files/' + filename self.ignore_files = [] self.ignore_elements = {} def test_create_file(self): """Test the creation of an XlsxWriter file with error bars.""" workbook = Workbook(self.got_filename) worksheet = workbook.add_worksheet() chart = workbook.add_chart({'type': 'bar'}) chart.axis_ids = [49016832, 49019136] data = [ [1, 2, 3, 4, 5], [2, 4, 6, 8, 10], [3, 6, 9, 12, 15], ] worksheet.write_column('A1', data[0]) worksheet.write_column('B1', data[1]) worksheet.write_column('C1', data[2]) chart.add_series({ 'categories': '=Sheet1!$A$1:$A$5', 'values': '=Sheet1!$B$1:$B$5', 'x_error_bars': {'type': 'standard_error'}, }) chart.add_series({ 'categories': '=Sheet1!$A$1:$A$5', 'values': '=Sheet1!$C$1:$C$5', }) worksheet.insert_chart('E9', chart) workbook.close() self.assertExcelEqual()
5ad138fa284a69c9c985ba8a2084ea57d9d8d176
0071aad01ab5e91b7d32567470bd729c23bac656
/g2048.py
d75f388736b07dd7f87d31f67252e7ab02cbf060
[]
no_license
Hakuyume/2048-rl
19c29e24492bd1efaddbbe0dad28474752b2d97f
ff0593582b293bcf1c21bd2e26701da6d24c6647
refs/heads/master
2021-01-22T18:33:36.057004
2017-08-26T06:47:37
2017-08-26T06:47:37
100,769,933
1
2
null
null
null
null
UTF-8
Python
false
false
2,058
py
import numpy as np import random class G2048(object): def __init__(self, size=4): self.size = size self.board = np.empty((size, size), dtype=np.uint8) def reset(self): self.score = 0 self.board[:] = 0 for _ in range(2): self._add() @property def movability(self): m = np.zeros(4, dtype=bool) for d in range(4): board = np.rot90(self.board, d) if np.logical_and(board[:, :-1] == 0, board[:, 1:] > 0).any(): m[d] = True elif np.logical_and( board[:, :-1] > 0, board[:, :-1] == board[:, 1:]).any(): m[d] = True return m @property def is_finished(self): return not self.movability.any() def _add(self): blank = tuple(zip(*np.where(self.board == 0))) if len(blank) > 0: u, v = random.choice(blank) if random.uniform(0, 1) > 1 / 4: self.board[u, v] = 1 else: self.board[u, v] = 2 def move(self, direction): change = False for line in np.rot90(self.board, direction): v, w = 0, 0 new_line = np.zeros_like(line) while v < self.size: if line[v] == 0: v += 1 elif new_line[w] == line[v]: new_line[w] += 1 self.score += 1 << new_line[w] change = True v += 1 w += 1 elif new_line[w] == 0: new_line[w] = line[v] change = change or not v == w v += 1 else: w += 1 line[:] = new_line if change: self._add() def normalize(self): self.board[:] = min( (np.rot90(b, r) for b in (self.board, self.board.transpose()) for r in range(4)), key=lambda b: tuple(b.flatten()))
8ee0c7c66379fbead56732ab779d72356e965329
925f199438b3af508cf083ce094cb6a5f208fed8
/src/lt_847.py
ed54216792f6792912f298fe087f8840d98ee563
[]
no_license
oxhead/CodingYourWay
b1b50236cdfb06669c123fd9202ce3d87304a3bf
e60ba45fe2f2e5e3b3abfecec3db76f5ce1fde59
refs/heads/master
2020-08-06T16:45:21.054650
2018-06-26T03:53:38
2018-06-26T03:53:38
30,577,969
0
0
null
null
null
null
UTF-8
Python
false
false
2,323
py
""" https://leetcode.com/contest/weekly-contest-87/problems/shortest-path-visiting-all-nodes/ """ """ An undirected, connected graph of N nodes (labeled 0, 1, 2, ..., N-1) is given as graph. graph.length = N, and j != i is in the list graph[i] exactly once, if and only if nodes i and j are connected. Return the length of the shortest path that visits every node. You may start and stop at any node, you may revisit nodes multiple times, and you may reuse edges. Example 1: Input: [[1,2,3],[0],[0],[0]] Output: 4 Explanation: One possible path is [1,0,2,0,3] Example 2: Input: [[1],[0,2,4],[1,3,4],[2],[1,2]] Output: 4 Explanation: One possible path is [0,1,4,2,3] Note: 1 <= graph.length <= 12 0 <= graph[i].length < graph.length """ class Solution: def shortestPathLength(self, graph): """ :type graph: List[List[int]] :rtype: int """ def traverse(queue): while queue: current_node, visited, current_length = queue.pop(0) if len(visited) == len(graph): return current_length for neighbor in graph[current_node]: queue.append((neighbor, visited | set([neighbor]), current_length + 1)) num_edges = float('inf') endpoints = [] for node_id in range(len(graph)): node_edges = graph[node_id] if len(node_edges) < num_edges: endpoints = [node_id] num_edges = len(node_edges) elif len(node_edges) == num_edges: endpoints.append(node_id) queue = [] print(endpoints) for node_id in endpoints[1:2]: queue.append((node_id, set([node_id]), 0)) return traverse([x for x in queue]) if __name__ == '__main__': test_cases = [ #([[1,2,3],[0],[0],[0]], 4), #([[1],[0,2,4],[1,3,4],[2],[1,2]], 4), #([[1],[0,2],[1,3],[2],[1,5],[4]], 6), #([[1],[0,2,6],[1,3],[2],[5],[4,6],[1,5,7],[6]], 9), ([[1,4,6,8,9],[0,6],[9],[5],[0],[7,3],[0,1],[9,5],[0],[0,2,7]], 10), ] for test_case in test_cases: print('case:', test_case) output = Solution().shortestPathLength(test_case[0]) print('output:', output) assert output == test_case[1]
a2d189784bb2a282ec8d7cdf005a0c8612dceb9b
bd08d0532f20b7285b437c9bf620de1bbcd5b9ea
/aalh_iit_buildings_006/populate-iso8601-amerdate.py
08c1fdd9ca6bdcee638e2292f3d12d555f36c6ff
[ "Unlicense" ]
permissive
johndewees/iitmigration
a9e8a31ba6ceb541ce12c22fd612596cc243dbca
4dadfbecda719d6e7d60af076a231aedec3c862f
refs/heads/main
2023-03-14T17:06:58.777683
2021-03-27T20:44:58
2021-03-27T20:44:58
320,086,321
0
0
null
null
null
null
UTF-8
Python
false
false
5,719
py
from openpyxl import load_workbook import re filename = 'aalh_iit_buildings_006.xlsx' wb = load_workbook(filename) ws = wb['Metadata Template'] minimumcol = 15 maximumcol = 15 minimumrow = 7 maximumrow = 515 iterationrow = 7 targetcol = 15 isostandardcol = 16 for row in ws.iter_rows(min_row=minimumrow, min_col=minimumcol, max_row=maximumrow, max_col=maximumcol): print(iterationrow) print(ws.cell(row=iterationrow, column=targetcol).value) try: for cell in row: ameryear = None yearraw = ws.cell(row=iterationrow, column=targetcol).value if yearraw.find(',') != -1: ameryearre = re.findall('\d\d\d\d', yearraw) ameryear = ameryearre[0] print(ameryear) else: print('Not an American formatted date (year)') for cell in row: amermon = None monraw = ws.cell(row=iterationrow, column=targetcol).value if monraw.find(',') != -1: if monraw.find('Jan') != -1: amermon = '01' elif monraw.find('jan') != -1: amermon = '01' elif monraw.find('Feb') != -1: amermon = '02' elif monraw.find('feb') != -1: amermon = '02' elif monraw.find('Mar') != -1: amermon = '03' elif monraw.find('mar') != -1: amermon = '03' elif monraw.find('Apr') != -1: amermon = '04' elif monraw.find('apr') != -1: amermon = '04' elif monraw.find('May') != -1: amermon = '05' elif monraw.find('may') != -1: amermon = '05' elif monraw.find('Jun') != -1: amermon = '06' elif monraw.find('jun') != -1: amermon = '06' elif monraw.find('Jul') != -1: amermon = '07' elif monraw.find('jul') != -1: amermon = '07' elif monraw.find('Aug') != -1: amermon = '08' elif monraw.find('aug') != -1: amermon = '08' elif monraw.find('Sep') != -1: amermon = '09' elif monraw.find('sep') != -1: amermon = '09' elif monraw.find('Oct') != -1: amermon = '10' elif monraw.find('oct') != -1: amermon = '10' elif monraw.find('Nov') != -1: amermon = '11' elif monraw.find('nov') != -1: amermon = '11' elif monraw.find('Dec') != -1: amermon = '12' elif monraw.find('dec') != -1: amermon = '12' print(amermon) else: print('Not an American formatted date (month)') for cell in row: amerday = None dayraw = ws.cell(row=iterationrow, column=targetcol).value if dayraw.find(',') != -1: daypart1 = dayraw.split(',') daypart2 = daypart1[0] daypart3 = daypart2.split() daypart4 = daypart3[1] if daypart4.startswith('1'): amerday = daypart4 elif daypart4.startswith('2'): amerday = daypart4 elif daypart4.startswith('3'): amerday = daypart4 else: amerday = '0' + daypart4 print(amerday) else: print('Not an American formatted date (day)') for cell in row: testvar = ws.cell(row=iterationrow, column=targetcol).value if testvar.find('/') != -1: testvarlist = testvar.split('/') testvaryear = testvarlist[2] testvaryear = testvaryear.strip() testvarmonth = testvarlist[0] testvarmonth = testvarmonth.strip() testvarmonth = int(testvarmonth) if testvarmonth < 10: testvarmonth = str(testvarmonth) testvarmonth = '0' + testvarmonth else: testvarmonth = str(testvarmonth) testvarday = testvarlist[1] testvarday = testvarday.strip() testvarday = int(testvarday) if testvarday < 10: testvarday = str(testvarday) testvarday = '0' + testvarday else: testvarday = str(testvarday) isodate = testvaryear + '-' + testvarmonth + '-' + testvarday ws.cell(row=iterationrow, column=targetcol).value = isodate #print(isodate) else: print ('Not a date formatted with a slash') for cell in row: if ameryear == None: print('Not an American formatted date at all') else: amerdatetrans = ameryear + '-' + amermon + '-' + amerday ws.cell(row=iterationrow, column=isostandardcol).value = amerdatetrans print(amerdatetrans) except: print('Not an American formatted date at all') iterationrow = iterationrow + 1 wb.save('aalh_iit_buildings_006.xlsx')
0c2f558ec0494841857978e64f4fd0e8c8937538
045cb1a5638c3575296f83471758dc09a8065725
/addons/hr_recruitment/__init__.py
2283b78b5f3c81ef2cc3a1d49ecbbb3c7b0b0f21
[]
no_license
marionumza/saas
7236842b0db98d1a0d0c3c88df32d268509629cb
148dd95d991a348ebbaff9396759a7dd1fe6e101
refs/heads/main
2023-03-27T14:08:57.121601
2021-03-20T07:59:08
2021-03-20T07:59:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
126
py
# -*- encoding: utf-8 -*- # Part of Harpiya. See LICENSE file for full copyright and licensing details. from . import models
5d46d3160485153a72aeaa43b0d98d716859314c
5cdd13489c995d825985f8e76fb9641d83675972
/PlotConfiguration/ISR/2016/fake_estimation/muon/LLSS/cuts.py
313c13d35f546643f1eed5f28fcb69008150737b
[]
no_license
CMSSNU/MultiUniv
d506cea55b1f57e0694309e04b9584434c859917
cb72ac8cba215598a0f09a46725123e071f9137f
refs/heads/master
2020-04-20T06:23:13.425043
2020-03-25T08:11:31
2020-03-25T08:11:31
168,682,069
0
4
null
2020-02-13T10:14:48
2019-02-01T10:35:47
Python
UTF-8
Python
false
false
509
py
from CommonPyTools.python.CommonTools import * SKFlat_WD = os.getenv('SKFlat_WD') sys.path.insert(0,SKFlat_WD+'/CommonTools/include') from Definitions import * supercut = '1==1' # for fake estimation # LL same sign cuts['detector_level'] = 'is_dimu_tri_passed == 1 && evt_tag_dimuon_rec_Fake == 1 && evt_tag_dielectron_rec_Fake == 0 && evt_tag_analysisevnt_sel_rec_Fake == 1 && dilep_pt_rec_Fake < 100. && dilep_mass_rec_Fake > 40 && evt_tag_oppositecharge_sel_rec_Fake == 0 && evt_tag_LL_rec_Fake == 1 '
f9c2f40f505b378f8301758253f7362e714120e9
4ff5ca8f95e6014fa76323a69f3fbcb91ae8db1f
/usr/lib/python3.8/cgi.py
e41e56e0987fdb28510766b99564fb42e1ee50f8
[ "Python-2.0" ]
permissive
Nasera5222/git-sdk-32
ad1ccd631958d1cdbc6f6c9d06793342d5c566ce
bcff70f916ec1f028f79036d5b913a7279fea0e5
refs/heads/main
2023-06-01T09:05:05.990441
2021-06-20T03:07:00
2021-06-20T03:07:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
33,548
py
#!/usr/bin/python # NOTE: the above "/usr/local/bin/python" is NOT a mistake. It is # intentionally NOT "/usr/bin/env python". On many systems # (e.g. Solaris), /usr/local/bin is not in $PATH as passed to CGI # scripts, and /usr/local/bin is the default directory where Python is # installed, so /usr/bin/env would be unable to find python. Granted, # binary installations by Linux vendors often install Python in # /usr/bin. So let those vendors patch cgi.py to match their choice # of installation. """Support module for CGI (Common Gateway Interface) scripts. This module defines a number of utilities for use by CGI scripts written in Python. """ # History # ------- # # Michael McLay started this module. Steve Majewski changed the # interface to SvFormContentDict and FormContentDict. The multipart # parsing was inspired by code submitted by Andreas Paepcke. Guido van # Rossum rewrote, reformatted and documented the module and is currently # responsible for its maintenance. # __version__ = "2.6" # Imports # ======= from io import StringIO, BytesIO, TextIOWrapper from collections.abc import Mapping import sys import os import urllib.parse from email.parser import FeedParser from email.message import Message import html import locale import tempfile __all__ = ["MiniFieldStorage", "FieldStorage", "parse", "parse_multipart", "parse_header", "test", "print_exception", "print_environ", "print_form", "print_directory", "print_arguments", "print_environ_usage"] # Logging support # =============== logfile = "" # Filename to log to, if not empty logfp = None # File object to log to, if not None def initlog(*allargs): """Write a log message, if there is a log file. Even though this function is called initlog(), you should always use log(); log is a variable that is set either to initlog (initially), to dolog (once the log file has been opened), or to nolog (when logging is disabled). The first argument is a format string; the remaining arguments (if any) are arguments to the % operator, so e.g. log("%s: %s", "a", "b") will write "a: b" to the log file, followed by a newline. If the global logfp is not None, it should be a file object to which log data is written. If the global logfp is None, the global logfile may be a string giving a filename to open, in append mode. This file should be world writable!!! If the file can't be opened, logging is silently disabled (since there is no safe place where we could send an error message). """ global log, logfile, logfp if logfile and not logfp: try: logfp = open(logfile, "a") except OSError: pass if not logfp: log = nolog else: log = dolog log(*allargs) def dolog(fmt, *args): """Write a log message to the log file. See initlog() for docs.""" logfp.write(fmt%args + "\n") def nolog(*allargs): """Dummy function, assigned to log when logging is disabled.""" pass def closelog(): """Close the log file.""" global log, logfile, logfp logfile = '' if logfp: logfp.close() logfp = None log = initlog log = initlog # The current logging function # Parsing functions # ================= # Maximum input we will accept when REQUEST_METHOD is POST # 0 ==> unlimited input maxlen = 0 def parse(fp=None, environ=os.environ, keep_blank_values=0, strict_parsing=0): """Parse a query in the environment or from a file (default stdin) Arguments, all optional: fp : file pointer; default: sys.stdin.buffer environ : environment dictionary; default: os.environ keep_blank_values: flag indicating whether blank values in percent-encoded forms should be treated as blank strings. A true value indicates that blanks should be retained as blank strings. The default false value indicates that blank values are to be ignored and treated as if they were not included. strict_parsing: flag indicating what to do with parsing errors. If false (the default), errors are silently ignored. If true, errors raise a ValueError exception. """ if fp is None: fp = sys.stdin # field keys and values (except for files) are returned as strings # an encoding is required to decode the bytes read from self.fp if hasattr(fp,'encoding'): encoding = fp.encoding else: encoding = 'latin-1' # fp.read() must return bytes if isinstance(fp, TextIOWrapper): fp = fp.buffer if not 'REQUEST_METHOD' in environ: environ['REQUEST_METHOD'] = 'GET' # For testing stand-alone if environ['REQUEST_METHOD'] == 'POST': ctype, pdict = parse_header(environ['CONTENT_TYPE']) if ctype == 'multipart/form-data': return parse_multipart(fp, pdict) elif ctype == 'application/x-www-form-urlencoded': clength = int(environ['CONTENT_LENGTH']) if maxlen and clength > maxlen: raise ValueError('Maximum content length exceeded') qs = fp.read(clength).decode(encoding) else: qs = '' # Unknown content-type if 'QUERY_STRING' in environ: if qs: qs = qs + '&' qs = qs + environ['QUERY_STRING'] elif sys.argv[1:]: if qs: qs = qs + '&' qs = qs + sys.argv[1] environ['QUERY_STRING'] = qs # XXX Shouldn't, really elif 'QUERY_STRING' in environ: qs = environ['QUERY_STRING'] else: if sys.argv[1:]: qs = sys.argv[1] else: qs = "" environ['QUERY_STRING'] = qs # XXX Shouldn't, really return urllib.parse.parse_qs(qs, keep_blank_values, strict_parsing, encoding=encoding) def parse_multipart(fp, pdict, encoding="utf-8", errors="replace"): """Parse multipart input. Arguments: fp : input file pdict: dictionary containing other parameters of content-type header encoding, errors: request encoding and error handler, passed to FieldStorage Returns a dictionary just like parse_qs(): keys are the field names, each value is a list of values for that field. For non-file fields, the value is a list of strings. """ # RFC 2026, Section 5.1 : The "multipart" boundary delimiters are always # represented as 7bit US-ASCII. boundary = pdict['boundary'].decode('ascii') ctype = "multipart/form-data; boundary={}".format(boundary) headers = Message() headers.set_type(ctype) headers['Content-Length'] = pdict['CONTENT-LENGTH'] fs = FieldStorage(fp, headers=headers, encoding=encoding, errors=errors, environ={'REQUEST_METHOD': 'POST'}) return {k: fs.getlist(k) for k in fs} def _parseparam(s): while s[:1] == ';': s = s[1:] end = s.find(';') while end > 0 and (s.count('"', 0, end) - s.count('\\"', 0, end)) % 2: end = s.find(';', end + 1) if end < 0: end = len(s) f = s[:end] yield f.strip() s = s[end:] def parse_header(line): """Parse a Content-type like header. Return the main content-type and a dictionary of options. """ parts = _parseparam(';' + line) key = parts.__next__() pdict = {} for p in parts: i = p.find('=') if i >= 0: name = p[:i].strip().lower() value = p[i+1:].strip() if len(value) >= 2 and value[0] == value[-1] == '"': value = value[1:-1] value = value.replace('\\\\', '\\').replace('\\"', '"') pdict[name] = value return key, pdict # Classes for field storage # ========================= class MiniFieldStorage: """Like FieldStorage, for use when no file uploads are possible.""" # Dummy attributes filename = None list = None type = None file = None type_options = {} disposition = None disposition_options = {} headers = {} def __init__(self, name, value): """Constructor from field name and value.""" self.name = name self.value = value # self.file = StringIO(value) def __repr__(self): """Return printable representation.""" return "MiniFieldStorage(%r, %r)" % (self.name, self.value) class FieldStorage: """Store a sequence of fields, reading multipart/form-data. This class provides naming, typing, files stored on disk, and more. At the top level, it is accessible like a dictionary, whose keys are the field names. (Note: None can occur as a field name.) The items are either a Python list (if there's multiple values) or another FieldStorage or MiniFieldStorage object. If it's a single object, it has the following attributes: name: the field name, if specified; otherwise None filename: the filename, if specified; otherwise None; this is the client side filename, *not* the file name on which it is stored (that's a temporary file you don't deal with) value: the value as a *string*; for file uploads, this transparently reads the file every time you request the value and returns *bytes* file: the file(-like) object from which you can read the data *as bytes* ; None if the data is stored a simple string type: the content-type, or None if not specified type_options: dictionary of options specified on the content-type line disposition: content-disposition, or None if not specified disposition_options: dictionary of corresponding options headers: a dictionary(-like) object (sometimes email.message.Message or a subclass thereof) containing *all* headers The class is subclassable, mostly for the purpose of overriding the make_file() method, which is called internally to come up with a file open for reading and writing. This makes it possible to override the default choice of storing all files in a temporary directory and unlinking them as soon as they have been opened. """ def __init__(self, fp=None, headers=None, outerboundary=b'', environ=os.environ, keep_blank_values=0, strict_parsing=0, limit=None, encoding='utf-8', errors='replace', max_num_fields=None): """Constructor. Read multipart/* until last part. Arguments, all optional: fp : file pointer; default: sys.stdin.buffer (not used when the request method is GET) Can be : 1. a TextIOWrapper object 2. an object whose read() and readline() methods return bytes headers : header dictionary-like object; default: taken from environ as per CGI spec outerboundary : terminating multipart boundary (for internal use only) environ : environment dictionary; default: os.environ keep_blank_values: flag indicating whether blank values in percent-encoded forms should be treated as blank strings. A true value indicates that blanks should be retained as blank strings. The default false value indicates that blank values are to be ignored and treated as if they were not included. strict_parsing: flag indicating what to do with parsing errors. If false (the default), errors are silently ignored. If true, errors raise a ValueError exception. limit : used internally to read parts of multipart/form-data forms, to exit from the reading loop when reached. It is the difference between the form content-length and the number of bytes already read encoding, errors : the encoding and error handler used to decode the binary stream to strings. Must be the same as the charset defined for the page sending the form (content-type : meta http-equiv or header) max_num_fields: int. If set, then __init__ throws a ValueError if there are more than n fields read by parse_qsl(). """ method = 'GET' self.keep_blank_values = keep_blank_values self.strict_parsing = strict_parsing self.max_num_fields = max_num_fields if 'REQUEST_METHOD' in environ: method = environ['REQUEST_METHOD'].upper() self.qs_on_post = None if method == 'GET' or method == 'HEAD': if 'QUERY_STRING' in environ: qs = environ['QUERY_STRING'] elif sys.argv[1:]: qs = sys.argv[1] else: qs = "" qs = qs.encode(locale.getpreferredencoding(), 'surrogateescape') fp = BytesIO(qs) if headers is None: headers = {'content-type': "application/x-www-form-urlencoded"} if headers is None: headers = {} if method == 'POST': # Set default content-type for POST to what's traditional headers['content-type'] = "application/x-www-form-urlencoded" if 'CONTENT_TYPE' in environ: headers['content-type'] = environ['CONTENT_TYPE'] if 'QUERY_STRING' in environ: self.qs_on_post = environ['QUERY_STRING'] if 'CONTENT_LENGTH' in environ: headers['content-length'] = environ['CONTENT_LENGTH'] else: if not (isinstance(headers, (Mapping, Message))): raise TypeError("headers must be mapping or an instance of " "email.message.Message") self.headers = headers if fp is None: self.fp = sys.stdin.buffer # self.fp.read() must return bytes elif isinstance(fp, TextIOWrapper): self.fp = fp.buffer else: if not (hasattr(fp, 'read') and hasattr(fp, 'readline')): raise TypeError("fp must be file pointer") self.fp = fp self.encoding = encoding self.errors = errors if not isinstance(outerboundary, bytes): raise TypeError('outerboundary must be bytes, not %s' % type(outerboundary).__name__) self.outerboundary = outerboundary self.bytes_read = 0 self.limit = limit # Process content-disposition header cdisp, pdict = "", {} if 'content-disposition' in self.headers: cdisp, pdict = parse_header(self.headers['content-disposition']) self.disposition = cdisp self.disposition_options = pdict self.name = None if 'name' in pdict: self.name = pdict['name'] self.filename = None if 'filename' in pdict: self.filename = pdict['filename'] self._binary_file = self.filename is not None # Process content-type header # # Honor any existing content-type header. But if there is no # content-type header, use some sensible defaults. Assume # outerboundary is "" at the outer level, but something non-false # inside a multi-part. The default for an inner part is text/plain, # but for an outer part it should be urlencoded. This should catch # bogus clients which erroneously forget to include a content-type # header. # # See below for what we do if there does exist a content-type header, # but it happens to be something we don't understand. if 'content-type' in self.headers: ctype, pdict = parse_header(self.headers['content-type']) elif self.outerboundary or method != 'POST': ctype, pdict = "text/plain", {} else: ctype, pdict = 'application/x-www-form-urlencoded', {} self.type = ctype self.type_options = pdict if 'boundary' in pdict: self.innerboundary = pdict['boundary'].encode(self.encoding, self.errors) else: self.innerboundary = b"" clen = -1 if 'content-length' in self.headers: try: clen = int(self.headers['content-length']) except ValueError: pass if maxlen and clen > maxlen: raise ValueError('Maximum content length exceeded') self.length = clen if self.limit is None and clen >= 0: self.limit = clen self.list = self.file = None self.done = 0 if ctype == 'application/x-www-form-urlencoded': self.read_urlencoded() elif ctype[:10] == 'multipart/': self.read_multi(environ, keep_blank_values, strict_parsing) else: self.read_single() def __del__(self): try: self.file.close() except AttributeError: pass def __enter__(self): return self def __exit__(self, *args): self.file.close() def __repr__(self): """Return a printable representation.""" return "FieldStorage(%r, %r, %r)" % ( self.name, self.filename, self.value) def __iter__(self): return iter(self.keys()) def __getattr__(self, name): if name != 'value': raise AttributeError(name) if self.file: self.file.seek(0) value = self.file.read() self.file.seek(0) elif self.list is not None: value = self.list else: value = None return value def __getitem__(self, key): """Dictionary style indexing.""" if self.list is None: raise TypeError("not indexable") found = [] for item in self.list: if item.name == key: found.append(item) if not found: raise KeyError(key) if len(found) == 1: return found[0] else: return found def getvalue(self, key, default=None): """Dictionary style get() method, including 'value' lookup.""" if key in self: value = self[key] if isinstance(value, list): return [x.value for x in value] else: return value.value else: return default def getfirst(self, key, default=None): """ Return the first value received.""" if key in self: value = self[key] if isinstance(value, list): return value[0].value else: return value.value else: return default def getlist(self, key): """ Return list of received values.""" if key in self: value = self[key] if isinstance(value, list): return [x.value for x in value] else: return [value.value] else: return [] def keys(self): """Dictionary style keys() method.""" if self.list is None: raise TypeError("not indexable") return list(set(item.name for item in self.list)) def __contains__(self, key): """Dictionary style __contains__ method.""" if self.list is None: raise TypeError("not indexable") return any(item.name == key for item in self.list) def __len__(self): """Dictionary style len(x) support.""" return len(self.keys()) def __bool__(self): if self.list is None: raise TypeError("Cannot be converted to bool.") return bool(self.list) def read_urlencoded(self): """Internal: read data in query string format.""" qs = self.fp.read(self.length) if not isinstance(qs, bytes): raise ValueError("%s should return bytes, got %s" \ % (self.fp, type(qs).__name__)) qs = qs.decode(self.encoding, self.errors) if self.qs_on_post: qs += '&' + self.qs_on_post query = urllib.parse.parse_qsl( qs, self.keep_blank_values, self.strict_parsing, encoding=self.encoding, errors=self.errors, max_num_fields=self.max_num_fields) self.list = [MiniFieldStorage(key, value) for key, value in query] self.skip_lines() FieldStorageClass = None def read_multi(self, environ, keep_blank_values, strict_parsing): """Internal: read a part that is itself multipart.""" ib = self.innerboundary if not valid_boundary(ib): raise ValueError('Invalid boundary in multipart form: %r' % (ib,)) self.list = [] if self.qs_on_post: query = urllib.parse.parse_qsl( self.qs_on_post, self.keep_blank_values, self.strict_parsing, encoding=self.encoding, errors=self.errors, max_num_fields=self.max_num_fields) self.list.extend(MiniFieldStorage(key, value) for key, value in query) klass = self.FieldStorageClass or self.__class__ first_line = self.fp.readline() # bytes if not isinstance(first_line, bytes): raise ValueError("%s should return bytes, got %s" \ % (self.fp, type(first_line).__name__)) self.bytes_read += len(first_line) # Ensure that we consume the file until we've hit our inner boundary while (first_line.strip() != (b"--" + self.innerboundary) and first_line): first_line = self.fp.readline() self.bytes_read += len(first_line) # Propagate max_num_fields into the sub class appropriately max_num_fields = self.max_num_fields if max_num_fields is not None: max_num_fields -= len(self.list) while True: parser = FeedParser() hdr_text = b"" while True: data = self.fp.readline() hdr_text += data if not data.strip(): break if not hdr_text: break # parser takes strings, not bytes self.bytes_read += len(hdr_text) parser.feed(hdr_text.decode(self.encoding, self.errors)) headers = parser.close() # Some clients add Content-Length for part headers, ignore them if 'content-length' in headers: del headers['content-length'] limit = None if self.limit is None \ else self.limit - self.bytes_read part = klass(self.fp, headers, ib, environ, keep_blank_values, strict_parsing, limit, self.encoding, self.errors, max_num_fields) if max_num_fields is not None: max_num_fields -= 1 if part.list: max_num_fields -= len(part.list) if max_num_fields < 0: raise ValueError('Max number of fields exceeded') self.bytes_read += part.bytes_read self.list.append(part) if part.done or self.bytes_read >= self.length > 0: break self.skip_lines() def read_single(self): """Internal: read an atomic part.""" if self.length >= 0: self.read_binary() self.skip_lines() else: self.read_lines() self.file.seek(0) bufsize = 8*1024 # I/O buffering size for copy to file def read_binary(self): """Internal: read binary data.""" self.file = self.make_file() todo = self.length if todo >= 0: while todo > 0: data = self.fp.read(min(todo, self.bufsize)) # bytes if not isinstance(data, bytes): raise ValueError("%s should return bytes, got %s" % (self.fp, type(data).__name__)) self.bytes_read += len(data) if not data: self.done = -1 break self.file.write(data) todo = todo - len(data) def read_lines(self): """Internal: read lines until EOF or outerboundary.""" if self._binary_file: self.file = self.__file = BytesIO() # store data as bytes for files else: self.file = self.__file = StringIO() # as strings for other fields if self.outerboundary: self.read_lines_to_outerboundary() else: self.read_lines_to_eof() def __write(self, line): """line is always bytes, not string""" if self.__file is not None: if self.__file.tell() + len(line) > 1000: self.file = self.make_file() data = self.__file.getvalue() self.file.write(data) self.__file = None if self._binary_file: # keep bytes self.file.write(line) else: # decode to string self.file.write(line.decode(self.encoding, self.errors)) def read_lines_to_eof(self): """Internal: read lines until EOF.""" while 1: line = self.fp.readline(1<<16) # bytes self.bytes_read += len(line) if not line: self.done = -1 break self.__write(line) def read_lines_to_outerboundary(self): """Internal: read lines until outerboundary. Data is read as bytes: boundaries and line ends must be converted to bytes for comparisons. """ next_boundary = b"--" + self.outerboundary last_boundary = next_boundary + b"--" delim = b"" last_line_lfend = True _read = 0 while 1: if self.limit is not None and _read >= self.limit: break line = self.fp.readline(1<<16) # bytes self.bytes_read += len(line) _read += len(line) if not line: self.done = -1 break if delim == b"\r": line = delim + line delim = b"" if line.startswith(b"--") and last_line_lfend: strippedline = line.rstrip() if strippedline == next_boundary: break if strippedline == last_boundary: self.done = 1 break odelim = delim if line.endswith(b"\r\n"): delim = b"\r\n" line = line[:-2] last_line_lfend = True elif line.endswith(b"\n"): delim = b"\n" line = line[:-1] last_line_lfend = True elif line.endswith(b"\r"): # We may interrupt \r\n sequences if they span the 2**16 # byte boundary delim = b"\r" line = line[:-1] last_line_lfend = False else: delim = b"" last_line_lfend = False self.__write(odelim + line) def skip_lines(self): """Internal: skip lines until outer boundary if defined.""" if not self.outerboundary or self.done: return next_boundary = b"--" + self.outerboundary last_boundary = next_boundary + b"--" last_line_lfend = True while True: line = self.fp.readline(1<<16) self.bytes_read += len(line) if not line: self.done = -1 break if line.endswith(b"--") and last_line_lfend: strippedline = line.strip() if strippedline == next_boundary: break if strippedline == last_boundary: self.done = 1 break last_line_lfend = line.endswith(b'\n') def make_file(self): """Overridable: return a readable & writable file. The file will be used as follows: - data is written to it - seek(0) - data is read from it The file is opened in binary mode for files, in text mode for other fields This version opens a temporary file for reading and writing, and immediately deletes (unlinks) it. The trick (on Unix!) is that the file can still be used, but it can't be opened by another process, and it will automatically be deleted when it is closed or when the current process terminates. If you want a more permanent file, you derive a class which overrides this method. If you want a visible temporary file that is nevertheless automatically deleted when the script terminates, try defining a __del__ method in a derived class which unlinks the temporary files you have created. """ if self._binary_file: return tempfile.TemporaryFile("wb+") else: return tempfile.TemporaryFile("w+", encoding=self.encoding, newline = '\n') # Test/debug code # =============== def test(environ=os.environ): """Robust test CGI script, usable as main program. Write minimal HTTP headers and dump all information provided to the script in HTML form. """ print("Content-type: text/html") print() sys.stderr = sys.stdout try: form = FieldStorage() # Replace with other classes to test those print_directory() print_arguments() print_form(form) print_environ(environ) print_environ_usage() def f(): exec("testing print_exception() -- <I>italics?</I>") def g(f=f): f() print("<H3>What follows is a test, not an actual exception:</H3>") g() except: print_exception() print("<H1>Second try with a small maxlen...</H1>") global maxlen maxlen = 50 try: form = FieldStorage() # Replace with other classes to test those print_directory() print_arguments() print_form(form) print_environ(environ) except: print_exception() def print_exception(type=None, value=None, tb=None, limit=None): if type is None: type, value, tb = sys.exc_info() import traceback print() print("<H3>Traceback (most recent call last):</H3>") list = traceback.format_tb(tb, limit) + \ traceback.format_exception_only(type, value) print("<PRE>%s<B>%s</B></PRE>" % ( html.escape("".join(list[:-1])), html.escape(list[-1]), )) del tb def print_environ(environ=os.environ): """Dump the shell environment as HTML.""" keys = sorted(environ.keys()) print() print("<H3>Shell Environment:</H3>") print("<DL>") for key in keys: print("<DT>", html.escape(key), "<DD>", html.escape(environ[key])) print("</DL>") print() def print_form(form): """Dump the contents of a form as HTML.""" keys = sorted(form.keys()) print() print("<H3>Form Contents:</H3>") if not keys: print("<P>No form fields.") print("<DL>") for key in keys: print("<DT>" + html.escape(key) + ":", end=' ') value = form[key] print("<i>" + html.escape(repr(type(value))) + "</i>") print("<DD>" + html.escape(repr(value))) print("</DL>") print() def print_directory(): """Dump the current directory as HTML.""" print() print("<H3>Current Working Directory:</H3>") try: pwd = os.getcwd() except OSError as msg: print("OSError:", html.escape(str(msg))) else: print(html.escape(pwd)) print() def print_arguments(): print() print("<H3>Command Line Arguments:</H3>") print() print(sys.argv) print() def print_environ_usage(): """Dump a list of environment variables used by CGI as HTML.""" print(""" <H3>These environment variables could have been set:</H3> <UL> <LI>AUTH_TYPE <LI>CONTENT_LENGTH <LI>CONTENT_TYPE <LI>DATE_GMT <LI>DATE_LOCAL <LI>DOCUMENT_NAME <LI>DOCUMENT_ROOT <LI>DOCUMENT_URI <LI>GATEWAY_INTERFACE <LI>LAST_MODIFIED <LI>PATH <LI>PATH_INFO <LI>PATH_TRANSLATED <LI>QUERY_STRING <LI>REMOTE_ADDR <LI>REMOTE_HOST <LI>REMOTE_IDENT <LI>REMOTE_USER <LI>REQUEST_METHOD <LI>SCRIPT_NAME <LI>SERVER_NAME <LI>SERVER_PORT <LI>SERVER_PROTOCOL <LI>SERVER_ROOT <LI>SERVER_SOFTWARE </UL> In addition, HTTP headers sent by the server may be passed in the environment as well. Here are some common variable names: <UL> <LI>HTTP_ACCEPT <LI>HTTP_CONNECTION <LI>HTTP_HOST <LI>HTTP_PRAGMA <LI>HTTP_REFERER <LI>HTTP_USER_AGENT </UL> """) # Utilities # ========= def valid_boundary(s): import re if isinstance(s, bytes): _vb_pattern = b"^[ -~]{0,200}[!-~]$" else: _vb_pattern = "^[ -~]{0,200}[!-~]$" return re.match(_vb_pattern, s) # Invoke mainline # =============== # Call test() when this file is run as a script (not imported as a module) if __name__ == '__main__': test()
a7806cbd020f9a30ef0b3337e9f90d839d99a427
da92caf06447ec7e244dfa11e71b551a4dab7d14
/src/plugins/evoked_average.py
21e26af5a91a55b09c07c45812ed17bb1e6ac9ab
[ "MIT" ]
permissive
Frikster/Mesoscale-Brain-Explorer
28298adbcb49dc399f85fe4db1c3dc1263468677
269d8f18162e2b9dca4619561e73a6beb8ba810c
refs/heads/master
2020-04-04T22:17:29.714298
2017-11-20T16:24:19
2017-11-20T16:24:19
61,849,037
5
6
null
null
null
null
UTF-8
Python
false
false
4,036
py
#!/usr/bin/env python3 import os import numpy as np import psutil import qtutil from PyQt4.QtGui import * from .util import project_functions as pfs from .util.plugin import PluginDefault from .util.plugin import WidgetDefault class Widget(QWidget, WidgetDefault): class Labels(WidgetDefault.Labels): pass class Defaults(WidgetDefault.Defaults): manip = 'evoked-avg' def __init__(self, project, plugin_position, parent=None): super(Widget, self).__init__(parent) if not project or not isinstance(plugin_position, int): return self.avg_button = QPushButton('Generate Evoked Average') WidgetDefault.__init__(self, project, plugin_position) def setup_ui(self): super().setup_ui() self.vbox.addWidget(self.avg_button) def setup_signals(self): super().setup_signals() self.avg_button.clicked.connect(self.execute_primary_function) def execute_primary_function(self, input_paths=None): if not input_paths: if not self.selected_videos: return else: selected_videos = self.selected_videos else: selected_videos = input_paths progress_global = QProgressDialog('Creating evoked average...', 'Abort', 0, 100, self) progress_global.setAutoClose(True) progress_global.setMinimumDuration(0) def global_callback(x): progress_global.setValue(x * 100) QApplication.processEvents() filenames = selected_videos if len(filenames) < 2: qtutil.warning('Select multiple files to average.') return stacks = [np.load(f, mmap_mode='r') for f in filenames] lens = [len(stacks[x]) for x in range(len(stacks))] min_lens = np.min(lens) breadth = stacks[0].shape[1] length = stacks[0].shape[2] trig_avg = np.empty((min_lens, length, breadth), np.load(filenames[0], mmap_mode='r').dtype) for frame_index in range(min_lens): global_callback(frame_index / min_lens) frames_to_avg = [stacks[stack_index][frame_index] for stack_index in range(len(stacks))] frames_to_avg = np.array(frames_to_avg, dtype=np.float32) avg = np.mean(frames_to_avg, axis=0, dtype=np.float32) trig_avg[frame_index] = avg global_callback(1) manip = self.Defaults.manip + '_' + str(len(filenames)) output_path = pfs.save_project(filenames[0], self.project, trig_avg, manip, 'video') pfs.refresh_list(self.project, self.video_list, self.params[self.Labels.video_list_indices_label], self.Defaults.list_display_type, self.params[self.Labels.last_manips_to_display_label]) return output_path # self.update_tables() def setup_whats_this(self): super().setup_whats_this() self.avg_button.setWhatsThis("Generate evoked average for selected image stacks where each frame is averaged " "across image stacks for each frame") class MyPlugin(PluginDefault): def __init__(self, project, plugin_position): self.name = 'Evoked Average' self.widget = Widget(project, plugin_position) super().__init__(self.widget, self.widget.Labels, self.name) def check_ready_for_automation(self, expected_input_number): self.summed_filesize = 0 for path in self.widget.selected_videos: self.summed_filesize = self.summed_filesize + os.path.getsize(path) self.available = list(psutil.virtual_memory())[1] if self.summed_filesize > self.available: return False return True def automation_error_message(self): return "Not enough memory. All files to be averaged together are of size ~"+str(self.summed_filesize) +\ " and available memory is: " + str(self.available)
9fa71db652f5ba9a7efaf6487c314e53826c6153
187a6558f3c7cb6234164677a2bda2e73c26eaaf
/jdcloud_sdk/services/tidb/apis/DescribeAvailableDBInfoInternelRequest.py
e771d081b365e9d329da6981125f9fced96c4cf4
[ "Apache-2.0" ]
permissive
jdcloud-api/jdcloud-sdk-python
4d2db584acc2620b7a866af82d21658cdd7cc227
3d1c50ed9117304d3b77a21babe899f939ae91cd
refs/heads/master
2023-09-04T02:51:08.335168
2023-08-30T12:00:25
2023-08-30T12:00:25
126,276,169
18
36
Apache-2.0
2023-09-07T06:54:49
2018-03-22T03:47:02
Python
UTF-8
Python
false
false
1,479
py
# coding=utf8 # Copyright 2018 JDCLOUD.COM # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # NOTE: This class is auto generated by the jdcloud code generator program. from jdcloud_sdk.core.jdcloudrequest import JDCloudRequest class DescribeAvailableDBInfoInternelRequest(JDCloudRequest): """ 查询 TiDB支持的基本信息。 """ def __init__(self, parameters, header=None, version="v1"): super(DescribeAvailableDBInfoInternelRequest, self).__init__( '/regions/{regionId}/instances:describeAvailableDBInfoInternel', 'GET', header, version) self.parameters = parameters class DescribeAvailableDBInfoInternelParameters(object): def __init__(self,regionId, ): """ :param regionId: 地域代码 """ self.regionId = regionId self.azs = None def setAzs(self, azs): """ :param azs: (Optional) 用户可用区[多个使用,分隔] """ self.azs = azs
47d31b4ad6d9d3f9ec16487c975797465de7096d
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/22/usersdata/112/11794/submittedfiles/av1_2.py
5ecfae8a8c59536c3785bab3a905bd43d390601a
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
317
py
# -*- coding: utf-8 -*- from __future__ import division import math ant=0 prox=0 meio=B n=input('Digite o valor de n:') j=input('Digite o valor de j:') k=input('Digite o valor de k:') l=input('Digite o valor de l:') if n=k and j!=l: print('verdadeira') if j=l and n!=k: print('verdadeira') else: ('falsa')
9c125735232060d0d2ab96a7273d2ed807cb7f56
2e682fd72e3feaa70e3f7bf2a3b83c50d783ec02
/PyTorch/dev/cv/detection/YOLOX_ID2833_for_PyTorch/configs/mask2former/mask2former_swin-b-p4-w12-384-in21k_lsj_8x2_50e_coco-panoptic.py
0141271ed055de4c1cb757b1cf83099916ad3b24
[ "GPL-1.0-or-later", "Apache-2.0", "BSD-2-Clause", "MIT", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "LicenseRef-scancode-unknown-license-reference" ]
permissive
Ascend/ModelZoo-PyTorch
4c89414b9e2582cef9926d4670108a090c839d2d
92acc188d3a0f634de58463b6676e70df83ef808
refs/heads/master
2023-07-19T12:40:00.512853
2023-07-17T02:48:18
2023-07-17T02:48:18
483,502,469
23
6
Apache-2.0
2022-10-15T09:29:12
2022-04-20T04:11:18
Python
UTF-8
Python
false
false
941
py
# Copyright 2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copyright (c) Open-MMLab. All rights reserved. _base_ = ['./mask2former_swin-b-p4-w12-384_lsj_8x2_50e_coco-panoptic.py'] pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384_22k.pth' # noqa model = dict( backbone=dict(init_cfg=dict(type='Pretrained', checkpoint=pretrained)))
870d12fe6a587e970c108504b42268cb10c844f3
2ed2dd917afb05d194e87f989d78953b31a5781b
/lesson10/mission08.py
718005e6a8b1523d4636183b46dc3a00179e899b
[]
no_license
RenegaDe1288/pythonProject
4058d549db7c37652f77438c31f8b31476497d98
801c06f3be22ed63214987b11d6f1b3fd2fe5b44
refs/heads/master
2023-08-17T13:20:50.777842
2021-10-05T10:51:00
2021-10-05T10:51:00
393,145,207
0
0
null
null
null
null
UTF-8
Python
false
false
498
py
lent = int(input('Введите ширину ')) lent_2 = int(input('Введите длину ')) for row in range(lent): for col in range(lent_2): if col == lent_2 // 2 and row != lent//2: print('|', end='') elif row == lent // 2: print('-', end='') elif col == lent_2//2 + 5+ row: print('\\', end='') elif col == lent_2//2- row -5: print('/', end='') else: print(' ', end='') print()
473d655633f7f72afa53daced7e8c8a4a90c4f51
a209c2238ff97d781fc6f15d9b3ae6ecf9c15b53
/utils/preprocess.py
6b7077e20c2ba3b9257a3940756e4f54e10dd416
[]
no_license
Arcana-2236/Text-Classification
1788e05e4c29ce0e7130f38cd16af5ab08fbe6fd
69047f0ffdfc621e3cb2d59056ac93d69582090b
refs/heads/master
2022-04-12T08:30:50.089277
2020-03-28T06:09:16
2020-03-28T06:09:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,234
py
import os import re import zipfile import pickle import jieba import pandas as pd import numpy as np from collections import Counter from tensorflow.keras.preprocessing.text import Tokenizer from tensorflow.keras.preprocessing.sequence import pad_sequences from sklearn.preprocessing import MultiLabelBinarizer from sklearn.model_selection import train_test_split ROOT = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # input file ZIP_DATA = os.path.join(ROOT, 'data', '百度题库.zip') # 要解压的文件 STOPWORDS = os.path.join(ROOT, 'data', 'stopwords.txt') # output file path # BERT TRAIN_TSV = os.path.join(ROOT, 'data', 'train.tsv') # BERT的数据文件 DEV_TSV = os.path.join(ROOT, 'data', 'dev.tsv') TEST_TSV = os.path.join(ROOT, 'data', 'test.tsv') # TextCNN and Transformer TOKENIZER_BINARIZER = os.path.join(ROOT, 'data', 'tokenizer_binarizer.pickle') LABELS_FILE = os.path.join(ROOT, 'data', 'label.txt') X_NPY = os.path.join(ROOT, 'data', 'x.npy') # testcnn 和 transformer的数据文件 Y_NPY = os.path.join(ROOT, 'data', 'y.npy') def unzip_data(): """ 解压数据 """ with zipfile.ZipFile(ZIP_DATA, 'r') as z: z.extractall(os.path.join(ROOT, 'data')) print("已将压缩包解压至{}".format(z.filename.rstrip('.zip'))) return z.filename.rstrip('.zip') def combine_data(data_path): """ 把四门科目内的所有文件合并 """ r = re.compile(r'\[知识点:\]\n(.*)') # 用来寻找知识点的正则表达式 r1 = re.compile(r'纠错复制收藏到空间加入选题篮查看答案解析|\n|知识点:|\s|\[题目\]') # 简单清洗 data = [] for root, dirs, files in os.walk(data_path): if files: # 如果文件夹下有csv文件 for f in files: subject = re.findall('高中_(.{2})', root)[0] topic = f.strip('.csv') tmp = pd.read_csv(os.path.join(root, f)) # 打开csv文件 tmp['subject'] = subject # 主标签:科目 tmp['topic'] = topic # 副标签:科目下主题 tmp['knowledge'] = tmp['item'].apply( lambda x: r.findall(x)[0].replace(',', ' ') if r.findall(x) else '') tmp['item'] = tmp['item'].apply(lambda x: r1.sub('', r.sub('', x))) data.append(tmp) data = pd.concat(data).rename(columns={'item': 'content'}).reset_index(drop=True) # 删掉多余的两列 data.drop(['web-scraper-order', 'web-scraper-start-url'], axis=1, inplace=True) return data def extract_label(df, freq=0.01): """ :param df: 合并后的数据集 :param freq: 要过滤的标签占样本数量的比例 :return: DataFrame """ knowledges = ' '.join(df['knowledge']).split() # 合并 knowledges = Counter(knowledges) k = int(df.shape[0] * freq) # 计算对应频率知识点出现的次数 print('过滤掉出现次数少于 %d 次的标签' % k) top_k = {i for i in knowledges if knowledges[i] > k} # 过滤掉知识点出现次数小于k的样本 df.knowledge = df.knowledge.apply(lambda x: ' '.join([label for label in x.split() if label in top_k])) df['label'] = df[['subject', 'topic', 'knowledge']].apply(lambda x: ' '.join(x), axis=1) return df[['label', 'content']] def create_bert_data(df, small=False): """ 对于 bert 的预处理 如果small=True:是因为自己的电脑太菜,就用比较小的数据量在本地实现模型 该函数给bert模型划分了3个数据集 """ df['content'] = df['content'].apply(lambda x: x.replace(' ', '')) if small: print('use small dataset to test my local bert model really work') train = df.sample(128) dev = df.sample(64) test = df.sample(64) else: train, test = train_test_split(df, test_size=0.2, random_state=2020) train, dev = train_test_split(train, test_size=0.2, random_state=2020) print('preprocess for bert!') print('create 3 tsv file(train, dev, test) in %s' % (os.path.join(ROOT, 'data'))) train.to_csv(TRAIN_TSV, index=None, sep='\t') dev.to_csv(DEV_TSV, index=None, sep='\t') test.to_csv(TEST_TSV, index=None, sep='\t') def load_stopwords(): return {line.strip() for line in open(STOPWORDS, encoding='UTF-8').readlines()} def sentence_preprocess(sentence): # 去标点 r = re.compile("[^\u4e00-\u9fa5]+|题目") sentence = r.sub("", sentence) # 删除所有非汉字字符 # 切词 words = jieba.cut(sentence, cut_all=False) # 去停用词 stop_words = load_stopwords() words = [w for w in words if w not in stop_words] return words def df_preprocess(df): """ 合并了去标点,切词,去停用词的操作 :param df: :return: """ df.content = df.content.apply(sentence_preprocess) return df def create_testcnn_data(df, num_words=50000, maxlen=128): # 对于label处理 mlb = MultiLabelBinarizer() y = mlb.fit_transform(df.label.apply(lambda label: label.split())) with open(LABELS_FILE, mode='w', encoding='utf-8') as f: for label in mlb.classes_: f.write(label+'\n') # 对content处理 tokenizer = Tokenizer(num_words=num_words, oov_token="<UNK>") tokenizer.fit_on_texts(df.content.tolist()) x = tokenizer.texts_to_sequences(df.content) x = pad_sequences(x, maxlen=maxlen, padding='post', truncating='post') # padding # 保存数据 np.save(X_NPY, x) np.save(Y_NPY, y) print('已创建并保存x,y至:\n {} \n {}'.format(X_NPY, Y_NPY)) # 同时还要保存tokenizer和 multi_label_binarizer # 否则训练结束后无法还原把数字还原成文本 tb = {'tokenizer': tokenizer, 'binarizer': mlb} # 用个字典来保存 with open(TOKENIZER_BINARIZER, 'wb') as f: pickle.dump(tb, f) print('已创建并保存tokenizer和binarizer至:\n {}'.format(TOKENIZER_BINARIZER)) def load_testcnn_data(): """ 如果分开保存,那要保存6个文件太麻烦了。 所以采取读取之后划分数据集的方式 """ # 与之前的bert同步 x = np.load(X_NPY).astype(np.float32) y = np.load(Y_NPY).astype(np.float32) # 与之前bert的划分方式统一 train_x, test_x, train_y, test_y = train_test_split(x, y, test_size=0.2, random_state=2020) train_x, dev_x, train_y, dev_y = train_test_split(train_x, train_y, test_size=0.2, random_state=2020) return train_x, dev_x, test_x, train_y, dev_y, test_y def load_tokenizer_binarizer(): """ 读取tokenizer 和 binarizer :return: """ with open(TOKENIZER_BINARIZER, 'rb') as f: tb = pickle.load(f) return tb['tokenizer'], tb['binarizer'] def main(): """ 合并以上所有操作 """ data_path = unzip_data() # 解压 df = combine_data(data_path) # 合并 df = extract_label(df) # 提取标签 # 对于bert的预处理 create_bert_data(df) # 对于testcnn和transformer的预处理 df = df_preprocess(df) # 切词,分词,去停用词 create_testcnn_data(df, num_words=50000, maxlen=128) if __name__ == '__main__': main()
4cb105211199b388e964f55bb905a04d35572cf9
b22588340d7925b614a735bbbde1b351ad657ffc
/athena/LArCalorimeter/LArTest/LArConditionsTest/share/FixLArElecCalib_fix6_jobOptions.py
59efd81bb72cab9f075cafd0a9f3b68c0147137b
[]
no_license
rushioda/PIXELVALID_athena
90befe12042c1249cbb3655dde1428bb9b9a42ce
22df23187ef85e9c3120122c8375ea0e7d8ea440
refs/heads/master
2020-12-14T22:01:15.365949
2020-01-19T03:59:35
2020-01-19T03:59:35
234,836,993
1
0
null
null
null
null
UTF-8
Python
false
false
4,813
py
############################################################### # # Job options file 1 # #============================================================== #use McEventSelector include( "AthenaCommon/Atlas_Gen.UnixStandardJob.py" ) from AthenaCommon.DetFlags import DetFlags DetFlags.Calo_setOn() DetFlags.ID_setOff() DetFlags.Muon_setOff() DetFlags.Truth_setOff() DetFlags.LVL1_setOff() DetFlags.digitize.all_setOff() from AthenaCommon.GlobalFlags import GlobalFlags GlobalFlags.DataSource.set_geant4() GlobalFlags.InputFormat.set_pool() GlobalFlags.DetGeo.set_atlas() DetDescrVersion = "ATLAS-CSC-02-00-00" # DetDescrVersion = "ATLAS-DC3-05" # LArIdMapFix=7 # G4Phys ="QGSP_EMV" # G4Phys ="QGSP_BERT" # Switches: # items RunNumber = 1 # RecreateFolder = False WriteIOV = True # Objects and its tag ObjectList = [] TagList = [] # FIX if DetDescrVersion == "ATLAS-CSC-02-00-00" : TagNameForFix = "CSC02-F" else : TagNameForFix = "Wrong" print " ERROR: wrong DetDescrVersion" ObjectList += ["LArNoiseMC#LArNoise#/LAR/ElecCalibMC/Noise"] ObjectList += ["LAruA2MeVMC#LAruA2MeV#/LAR/ElecCalibMC/uA2MeV"] ObjectList += ["LArDAC2uAMC#LArDAC2uA#/LAR/ElecCalibMC/DAC2uA"] ObjectList += ["LArRampMC#LArRamp#/LAR/ElecCalibMC/Ramp"] TagList += ["LARElecCalibMCNoise-"+TagNameForFix] TagList += ["LARElecCalibMCuA2MeV-"+TagNameForFix] TagList += ["LARElecCalibMCDAC2uA-"+TagNameForFix] TagList += ["LARElecCalibMCRamp-"+TagNameForFix] OutputPOOLFileName = "LArFCalADC2MeV_13.0.30_v1.pool.root" #/-------------------------------------------------------------- # Algorithm to fix the LAr Id, if needed #/------------------------------- theApp.Dlls += [ "LArConditionsTest" ] theApp.TopAlg += [ "FixLArElecCalib" ] FixLArElecCalib = Algorithm("FixLArElecCalib") # 1= # 2=fix for IdMapFix=1 # 3=new fsample for CSC-02 # 5=new FCAL noise and minbias FixLArElecCalib.FixFlag =6 #-------------------------------------------------------------- # Private Application Configuration options #-------------------------------------------------------------- theApp.Dlls += [ "LArTools" ] include ("AtlasGeoModel/SetGeometryVersion.py") include ("AtlasGeoModel/GeoModelInit.py") # Other LAr related include( "LArIdCnv/LArIdCnv_joboptions.py" ) include( "CaloDetMgrDetDescrCnv/CaloDetMgrDetDescrCnv_joboptions.py" ) include( "IdDictDetDescrCnv/IdDictDetDescrCnv_joboptions.py" ) include( "LArConditionsCommon/LArConditionsCommon_MC_jobOptions.py" ) include( "LArConditionsCommon/LArIdMap_MC_jobOptions.py" ) #-------------------------------------------------------------- EventSelector = Service( "EventSelector" ) EventSelector.RunNumber=1 #EventSelector.EventsPerRun=10; EventSelector.EventsPerRun=2 EventSelector.FirstEvent=1 # theApp.Dlls += [ "PoolSvc", "AthenaPoolCnvSvc", "AthenaPoolCnvSvcPoolCnv", "EventAthenaPoolPoolCnv", "EventSelectorAthenaPool" ] include( "AthenaPoolCnvSvc/AthenaPool_jobOptions.py" ) theApp.Dlls += [ "AthenaPoolCnvSvc" ] theApp.Dlls += [ "LArCondAthenaPoolPoolCnv" ] include( "AthenaSealSvc/AthenaSealSvc_joboptions.py" ) # AthenaSealSvc.CheckDictAtInit = True include ("LArRawConditions/LArRawConditionsDict_joboptions.py") # include ("LArTools/LArToolsDict_joboptions.py") theApp.EvtMax=1 AthenaEventLoopMgr=Service("AthenaEventLoopMgr") AthenaEventLoopMgr.OutputLevel = INFO MessageSvc = Service( "MessageSvc" ) MessageSvc.OutputLevel = INFO MessageSvc.defaultLimit = 1000000; MessageSvc.Format = "% F%20W%S%7W%R%T %0W%M" theApp.Dlls += [ "GaudiAud" ] theAuditorSvc = AuditorSvc() theAuditorSvc.Auditors = [ "ChronoAuditor" ] ############################################## # Writing POOL and COOL if len(ObjectList)>0 : # include regstration alg (default is WriteIOV = False) include("RegistrationServices/OutputConditionsAlg_jobOptions.py") # List of objects container type#key#foldername OutputConditionsAlg.ObjectList = ObjectList OutputConditionsAlg.IOVTagList = TagList ToolSvc = Service("ToolSvc") ToolSvc.ConditionsAlgStream.OutputFile = OutputPOOLFileName # Set flag to register and run interval Run1/Event1 to Run2/Event2 # Usually, only need to set Run1, others go to default #### OutputConditionsAlg.WriteIOV = WriteIOV OutputConditionsAlg.Run1 = 0 OutputConditionsAlg.LB1 = 0 # Set the connection string include ( "IOVDbSvc/IOVDbSvc_jobOptions.py" ) IOVDbSvc = Service( "IOVDbSvc" ) IOVDbSvc.dbConnection="impl=cool;techno=sqlite;schema=LArElecCalib_FCalADC2MeV.db;X:OFLP200" # For schema creation - only should be used when creating the folder, # i.e. the first time IOVRegSvc = Service( "IOVRegistrationSvc" ) IOVRegSvc.OutputLevel = DEBUG IOVRegSvc.RecreateFolders = RecreateFolder # PoolSvc.FileOpen = "update" ###########################################################################
86e96ae863d4f9f1817fcae036de87f3df2a15ec
e694891ff8c9d06df7b7b5def7ba71c1dba03aa8
/rabbitmq_rabbitpy/test_rabbitmq.py
23f166795359b1166e1d5e54aa4a636cf2e3c2e1
[]
no_license
wangyu190810/python-skill
78f9abb39ebfa01b92ffb2ec96c7ef57c490d68d
719d082d47a5a82ce4a15c57dd481932a9d8f1ba
refs/heads/master
2020-04-05T17:43:48.005145
2019-02-01T01:45:49
2019-02-01T01:45:49
41,524,479
0
1
null
null
null
null
UTF-8
Python
false
false
962
py
# -*-coding:utf-8-*- # email:[email protected] __author__ = 'wangyu' <<<<<<< HEAD ======= import rabbitpy # with rabbitpy.Connection("amqp://guest:guest@localhost:5672/%2F") as conn: # with conn.channel() as channel: # amqp = rabbitpy.AMQP(channel) # # for message in amqp.basic_consume('queue-name'): # print(message) # # import rabbitpy with rabbitpy.Connection('amqp://guest:guest@localhost:5672/%2f') as conn: with conn.channel() as channel: queue = rabbitpy.Queue(channel, 'example') while len(queue) > 0: message = queue.get() print 'Message:' print ' ID: %s' % message.properties['message_id'] print ' Time: %s' % message.properties['timestamp'].isoformat() print ' Body: %s' % message.body message.ack() print 'There are %i more messages in the queue' % len(queue) >>>>>>> 85e7424cf14daa2d8af9040031bec995ac70cde1
fb9705a0d1b4b5da9c80db0e6507fd386d90b160
f28a261132fbf98f5ebfd004672af4155dfa1cc5
/nanodash/service/dataset-description-nano-090.py
b6fd62ced21821aab7733a8570b3d22d64d38b3d
[ "Apache-2.0", "MIT" ]
permissive
curtislisle/nanomaterial-dashboard
8704779b7410747092c8fdb9326fb69b9f6b94ff
06de2e0782f53ce56d6edd0937b14cbd738fc22a
refs/heads/master
2021-01-21T04:41:16.713855
2016-07-08T01:07:17
2016-07-08T01:07:17
54,521,714
0
0
null
null
null
null
UTF-8
Python
false
false
2,213
py
#import bson import pymongo import json from bson import ObjectId from pymongo import MongoClient import string import tangelo def run(ipaddress): # Create an empty response object. response = {} response['datasource'] = 'remote' response['file'] = "http://"+str(ipaddress)+":8080/nanodash/service/dataset-content-nano-090/NanoDB3/Nano_combined_0301" response['name'] = "Nano Database Dashboard v0.9.0" response['separator'] = ',' response['skip'] = 0 response['meta'] = [ { "type": "id", "name": "NanomaterialID" }, { "type": "string", "name": "Molecular Identity" }, { "type": "string", "name": "Material Type" }, { "type": "string", "name": "Molecular Type" }, {"type":"string","name":"Product Name"}, # {'name':'Mean Hydrodynamic Diameter','type':'float'}, {'name':'Mean Primary Particle Size','type':'float'}, # {'name':'Component Molecular Weight','type':'float'}, # {'name':'Molecular Weight','type':'float'}, {'name':'Lambda Max','type':'float'}, # {'name':'Bulk Density','type':'float'}, # {'name':'Primary Particle Size','type':'float'}, {'name':'Specific Surface Area','type':'float'}, {'name':'Zeta Potential','type':'float'} ] response['sets'] = [ { "format": "binary", "start": 1, "end": 5}] response['setlist'] = ['2D Dimensionality','3D Dimensionality','Metal','Metal Oxide','Polymer','Carbohydrate', 'Protein','Nucleic Acid','Group Ii-Vi','Dendrimer','Lipid','Group Iv - Non C', 'Agglomerated','Aggregated','Positive Polarity','Negative Polarity','Purity99+','IsCrystalline', 'Aromatic','Macrocyclic','Sugar','VHQ-R subset', 'UHQ-R subset', 'source_pdf','source_nano_db'] #'Monoclinic','SingleCrystal','Polycrystalline','Amorphous','Anatase','Tetragonal','Rutile','Cubic','Brookite','Wurtzite','Zincite'] response['attributelist'] = [] response['author'] = 'ABCC IVG & KnowledgeVis' response['description'] = 'Nanomaterial database v2' response['source'] = "Nanomaterials reference database" #tangelo.log(str(response)) return json.dumps(response)
e173dd44edd47d50ac75298a2927da10f8cb5fc5
a95236e2dccd588627c6f0a1542f37e26f6899f3
/Chap04Functions/3-1-1.函数对象.py
a969ddb2ef7cb3670e7c3c086c3b5e4d44527a9f
[ "MIT" ]
permissive
royqh1979/programming_with_python
43b1cf0ab1b6a54ad165e30991250cf7bf318bd6
aa0603058f40b5bc7406e92c92134ee34f3b15e2
refs/heads/master
2023-06-11T02:11:59.590880
2023-05-29T06:39:03
2023-05-29T06:39:03
166,190,796
5
4
MIT
2023-02-15T23:13:33
2019-01-17T08:38:56
Python
UTF-8
Python
false
false
70
py
def fun1(): print("this is fun1") print(fun1) fun1=34 print(fun1)
bb32c9b355ff5984723a6f55c49c36cdbc32e17c
da280a226bbf15d7243410c0d3930bdca00d0088
/firsttry/ex41.py
0ba10ceba34cd4003844fa210c2ed0733881e028
[]
no_license
c4collins/PyTHWay
174cae57c73431ce5bfc90a361613c5db5c846d7
135b4b908ef2698084ee1b3fb9f1e5550c3c8843
refs/heads/master
2021-01-10T18:29:43.998528
2012-11-03T22:53:17
2012-11-03T22:53:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,767
py
from sys import exit from random import randint def death(): quips = ["You died. You kinda suck at this.", "Your mum would be proud, if she were smarter.", "Such a loser.", "I have a small puppy that's better at this."] print quips[randint(0, len(quips)-1)] exit(1) def princess_lives_here(): print "You see a beautiful princess with a shiny crown." print "She offers you some cake." eat_it = raw_input("> ") if eat_it == "eat it": print "You explode like a pinata full of frogs." print "The princess cackles and eats the frogs. Yum!" return 'death' elif eat_it == "do not eat it": print "She throws the cake at you and it cuts off your head." print "The last thing you see if her munching on your torso. Yum!" return 'death' elif eat_it == "make her eat it": print "The princess screams as you cram the cake in her mouth." print "The she smiles and cries and thanks you for saving her." print "She points to a tiny door and says, 'The Koi needs cake too.'" print "She gives you the very last bit of cake and shoves you in." return 'gold_koi_pond' else: print "The princess looks at you confused and just points at the cake." return 'princess_lives_here' def gold_koi_pond(): print "There is a garden with a koi pond in the centre." print "You walk close and see a massive fin poke out." print "You peek in and a creepy looking huge Koi stares at you." print "It opens its mouth waiting for food." feed_it = raw_input("> ") if feed_it == "feed it": print "The Koi jumps up, and rather than eating the cake, eats your arm." print "You fall in and the Koi shrugs then eats you." print "You are then pooped out sometime later." return 'death' elif feed_it == "do not feed it": print "The Koi grimaces, then thrashes around for a second." print "If rushes to the other side of the pong, braces against the wall..." print "The it *lunges* out of the water, up in the air and over your" print "entire body, cake and all." print "You are pooped out about a week later." return 'death' elif feed_it == "throw it in": print "The Koi wiggles, then leaps into the air to eat the cake." print "You can see it's happy, it gruts, thrashes..." print "and finally rolls over and poops a magic diamond into the air." print "It lands at your feet." return 'bear_with_sword' else: print "The Koi gets annoyed and wiggles a bit." return 'golden_koi_pond' def bear_with_sword(): print "Puzzled, you are about to pick up the fish poop diamond when" print "a bear bearing a load bearing sword walks in." print "\"Hey, that's MY diamond! Where'd you get that!?\"" print "It holds its paw out and looks at you." give_it = raw_input("> ") if give_it == "give it": print "The bear swipes at your hand to grab the diamond and" print "rips your hand off in the process. It then looks at" print "your bloody stump and says \"Oh crap, sorry about that.\"" print "It tries to put your hand back on, but you collapse." print "The last thing you see is the bear shrug and eat you." return 'death' elif give_it == "say no": print "The bear looks shocked. Nobody ever told a bear" print "with a broadsword 'no'. It asks, " print "\"Is it because it's not a katana? I could go get one!\"" print "It then runs off and you notice a big iron gate." print "\"Where the hell did that come from?\" You say." return 'big_iron_gate' else: print "The bear looks puzzled as to why you'd do that." return 'bear_with_sword' def big_iron_gate(): print "You walk up to the big iron gate and see there's a handle." open_it = raw_input("> ") if open_it == "open it": print "You open it and you are free!" print "There are mountains. And berries! And..." print "Oh, but then the bear comes with his katana and stabs you." print "\"Who's laughing now!? Love this katana.\"" return 'death' else: print "That doesn't seem sensible. I mean, the door's right there." return 'big_iron_gate' ROOMS = {'death': death, 'princess_lives_here': princess_lives_here, 'gold_koi_pond': gold_koi_pond, 'big_iron_gate': big_iron_gate, 'bear_with_sword': bear_with_sword} def runner(map, start): next = start while True: room = map[next] print "\n--------" next = room() runner(ROOMS, 'princess_lives_here')
faa87c8e3f067bcd7755c759e47e022742482bb8
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/wbhjXmdbPSxCSE5hW_0.py
e9536e0fed2a7c9b48f0291977cccbacbce5b686
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
1,262
py
""" A magic sigil is a glyph which represents a desire one wishes to manifest in their lives. There are many ways to create a sigil, but the most common is to write out a specific desire (e.g. " _I HAVE WONDERFUL FRIENDS WHO LOVE ME_ "), remove all vowels, remove any duplicate letters (keeping the last occurence), and then design a glyph from what remains. Using the sentence above as an example, we would remove duplicate letters: AUFRINDSWHLOVME And then remove all vowels, leaving us with: FRNDSWHLVM Create a function that takes a string and removes its vowels and duplicate letters. The returned string should not contain any spaces and be in uppercase. ### Examples sigilize("i am healthy") ➞ "MLTHY" sigilize("I FOUND MY SOULMATE") ➞ "FNDYSLMT" sigilize("I have a job I enjoy and it pays well") ➞ "HVBJNDTPYSWL" ### Notes * For duplicate letters the **last one** is kept. * When performing actual sigil magic, you **must** make your sigils **manually**. * Check the **Resources** tab for more info on sigils if you're interested in the concept. """ def sigilize(desire): a = ''.join(desire.upper().split()) b = sorted(set(a), key=a.rindex) return ''.join(i for i in b if i not in "AEIOU")
e70cf9d6e63ff327f4103d60a0c7ba98634ec982
4d98abd2553e95856d835519424a60634fc4cdd3
/CVE-2016-4437 Apache_Shiro_RCE/ShiroScan_1.2.4/moule/plugins/Spring2.py
68bb19cf574477e3533d5a8f8ec6fe04827cd872
[]
no_license
ANNS666/my_POC
0157fa41bdd2d0f264e464b05bf9c75405083e44
b3a38745609c9407a9bc0427f5dd55e4acfe6d70
refs/heads/master
2023-08-10T19:13:15.521562
2021-10-10T04:09:58
2021-10-10T04:09:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,658
py
# -*- coding: utf-8 -*- # By 斯文beast svenbeast.com import os import re import base64 import uuid import subprocess import requests import sys import threadpool from Crypto.Cipher import AES from ..main import Idea requests.packages.urllib3.disable_warnings() JAR_FILE = 'moule/ysoserial.jar' @Idea.plugin_register('Class26:Spring2') class Spring2(object): def process(self,url,command,resKey,func): self.sendPayload(url,command,resKey) def gcm_encode(self,resKey,file_body): mode = AES.MODE_GCM iv = uuid.uuid4().bytes encryptor = AES.new(base64.b64decode(resKey), mode, iv) ciphertext, tag = encryptor.encrypt_and_digest(file_body) ciphertext = ciphertext + tag payload = base64.b64encode(iv + ciphertext) return payload def cbc_encode(self,resKey,file_body): mode = AES.MODE_CBC iv = uuid.uuid4().bytes encryptor = AES.new(base64.b64decode(resKey), mode, iv) #受key影响的encryptor payload = base64.b64encode(iv + encryptor.encrypt(file_body)) return payload def sendPayload(self,url,command,resKey,fp=JAR_FILE): if not os.path.exists(fp): raise Exception('jar file not found!') popen = subprocess.Popen(['java', '-jar', fp, 'Spring2', command], #popen stdout=subprocess.PIPE) BS = AES.block_size pad = lambda s: s + ( (BS - len(s) % BS) * chr(BS - len(s) % BS)).encode() file_body = pad(popen.stdout.read()) #受popen影响的file_body payloadCBC = self.cbc_encode(resKey,file_body) payloadGCM = self.gcm_encode(resKey,file_body) header={ 'User-agent' : 'Mozilla/5.0 (Windows NT 6.2; WOW64; rv:22.0) Gecko/20100101 Firefox/22.0;' } try: x = requests.post(url, headers=header, cookies={'rememberMe': payloadCBC.decode()+"="},verify=False, timeout=20) # 发送验证请求1 y = requests.post(url, headers=header, cookies={'rememberMe': payloadGCM.decode()+"="},verify=False, timeout=20) # 发送验证请求2 #print("payload1已完成,字段rememberMe:看需要自己到源代码print "+payload.decode()) if(x.status_code==200): print("[+] ****Spring2模块 key: {} 已成功发送! 状态码:{}".format(str(resKey),str(x.status_code))) else: print("[-] ****Spring2模块 key: {} 发送异常! 状态码:{}".format(str(resKey),str(x.status_code))) except Exception as e: print(e) return False
b8fecdcd2f6db4c77f8c2dd91e69e1f8869ea920
ff3da62ab2a336ba286ea320b8bf1eba5b1978ea
/normalization/time_Info/apm.py
e242dc16e93401a0d43eed4f9fa6c779d03c8403
[]
no_license
llq20133100095/bert_ner_time
9e17e9de77ff12b4ae5267986f646665066e070c
9dc3baf5ca8f6d5cc7d4255bcfd913bd695c7b5e
refs/heads/master
2021-10-28T14:59:17.217552
2019-04-24T06:12:22
2019-04-24T06:12:22
182,626,582
1
0
null
null
null
null
UTF-8
Python
false
false
2,688
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2018/11/24 16:33 # @Author : honeyding # @File : apm.py # @Software: PyCharm import re class Apm: apm_pat = re.compile(u'.*?(明早|傍晚|早上|早晨|凌晨|上午|中午|下午|大晚上|晚上|夜里|今晚|明晚|昨晚|前晚|这晚|晚|清晨|午后).*?') apm_hour_pat = re.compile(u'.*?(明早|傍晚|早上|早晨|凌晨|上午|中午|下午|大晚上|晚上|夜里|今晚|明晚|昨晚|前晚|这晚|晚|清晨|午后).*?([0-9一二三四五六七八九两十]).*?') def get_apm_info(self, entity, commonParser): matcher = self.apm_pat.match(entity) if matcher: if commonParser: commonParser.timeUnit[4] = True return True return False def judge_apm_hour(self, entity, commonParser): matcher = self.apm_hour_pat.match(entity) if matcher: if commonParser: commonParser.timeUnit[4] = True return True return False def adjustHours(self, entity, hour, commonParser): if u"早" not in entity and u"上午" not in entity and u"晨" not in entity: if u"中午" in entity: if hour > 14 or hour > 2 and hour < 10: print(u'不能是中午。') commonParser.timeAPMInfo = str(hour) + u"点不能是中午。" elif hour < 2 and hour > 0: hour += 12 elif u"下午" not in entity and u"午后" not in entity: if u"昨晚" in entity or u"明晚" in entity or u"傍晚" in entity or u"晚" in entity or u"晚上" in entity or u"夜里" in entity or u"今晚" in entity: if hour > 12 and hour < 17 or hour >= 0 and hour < 5: print(u'不能是晚上。') commonParser.timeAPMInfo = str(hour) + u"点不能是晚上。" elif hour >= 4 and hour <= 12: hour += 12 else: if hour > 0 and hour <= 12: hour += 12 # if hour > 19 or hour < 1 or hour > 7 and hour < 12: # print(u'不能是下午。') # commonParser.timeAPMInfo = str(hour) + u'不能是下午。' # elif hour > 0 and hour <= 7: # hour += 12 elif hour > 12: print(u'不能是上午或早上。') commonParser.timeAPMInfo = str(hour) + u'点不能是上午或早上。' return hour if __name__ == '__main__': apm_proc = Apm() assert apm_proc.get_apm_info(u'早晨') is True
6e8da8e397cef33da10c132cc14befac799d08b6
e23a4f57ce5474d468258e5e63b9e23fb6011188
/125_algorithms/_exercises/templates/_algorithms_challenges/pybites/intermediate/030_movie_data_analysis/save1_nopass.py
de9624e5838b09cfbf6dd63a838b4df2ba2feb25
[]
no_license
syurskyi/Python_Topics
52851ecce000cb751a3b986408efe32f0b4c0835
be331826b490b73f0a176e6abed86ef68ff2dd2b
refs/heads/master
2023-06-08T19:29:16.214395
2023-05-29T17:09:11
2023-05-29T17:09:11
220,583,118
3
2
null
2023-02-16T03:08:10
2019-11-09T02:58:47
Python
UTF-8
Python
false
false
1,495
py
# _______ c__ # ____ c.. _______ d.., n.. # _______ __ # ____ u__.r.. _______ u.. # # BASE_URL 'https://bites-data.s3.us-east-2.amazonaws.com/' # TMP '/tmp' # # fname 'movie_metadata.csv' # remote __.p...j.. B.. f.. # local __.p...j.. T.. f.. # u.. ? ? # # MOVIE_DATA local # MIN_MOVIES 4 # MIN_YEAR 1960 # # Movie n.. 'Movie', 'title year score' # # # ___ get_movies_by_director # """Extracts all movies from csv and stores them in a dict, # where keys are directors, and values are a list of movies, # use the defined Movie namedtuple""" # # d d.. l.. # full_list # list # # w__ o.. M.. newline='' __ file # reader c__.D.. ? # ___ row __ ? # year ? 'title_year' # __ ? !_ '' a.. i.. ? > 1960 # f__.a.. ? 'director_name' ? 'movie_title' .s.. i.. ? 'title_year' f__ ? 'imdb_score' # # ___ name, movie, year, score __ f.. # d name .a.. ? t.._m.. y.._y.. s.._s.. # # r.. ? # # # ___ calc_mean_score movies # """Helper method to calculate mean of list of Movie namedtuples, # round the mean to 1 decimal place""" # scores movie.s.. ___ ? __ ? # r.. r.. s.. ? / l.. ? 1 # # ___ get_average_scores directors # """Iterate through the directors dict (returned by get_movies_by_director), # return a list of tuples (director, average_score) ordered by highest # score in descending order. Only take directors into account # with >= MIN_MOVIES""" # # p..
f6781a69e1b2ae0d198cc5c11ac27d5d185fa49e
c3cc755ae500e87b6d5fa839efaa4d7d0f746d43
/Part 1/Ch.6 Dictionaries/Nesting/pizza.py
f07401d2bb54c94f78013b95d7f88cd48287e6fd
[]
no_license
AngryGrizzlyBear/PythonCrashCourseRedux
9393e692cdc8e5e28a66077bbc6c1e674642d209
28d48fa16fc238cf0409f6e987a3b4b72e956a92
refs/heads/master
2020-03-28T11:04:44.030307
2018-10-20T21:06:27
2018-10-20T21:06:27
148,175,301
0
0
null
null
null
null
UTF-8
Python
false
false
312
py
# Store information about a pizza being ordered. pizza = { 'crust': 'thick', 'toppings': ['mushrooms', 'extra cheese'], } # Summarized the order print("You ordered a " + pizza['crust'] + "-crust pizza " + "with the following toppings:") for topping in pizza['toppings']: print("\t" + topping)
a381405f3e7de92702f28ddc67b8a4d3d57494cd
7bd5ca970fbbe4a3ed0c7dadcf43ba8681a737f3
/aoj/aoj-icpc/300/1315.py
fc47a7e25bc9e18a6c15f3d4e5a4aeac5a025693
[]
no_license
roiti46/Contest
c0c35478cd80f675965d10b1a371e44084f9b6ee
c4b850d76796c5388d2e0d2234f90dc8acfaadfa
refs/heads/master
2021-01-17T13:23:30.551754
2017-12-10T13:06:42
2017-12-10T13:06:42
27,001,893
0
0
null
null
null
null
UTF-8
Python
false
false
575
py
while 1: n = int(raw_input()) if n == 0: break exist = set([]) enter = [0]*1000 bless = [0]*1000 for loop in xrange(n): md,hm,io,p = raw_input().split() h,m = map(int,hm.split(":")) t = 60*h+m p = int(p) if io == "I": enter[p] = t exist.add(p) else: exist.remove(p) if p == 0: for i in exist: bless[i] += t-max(enter[p],enter[i]) elif 0 in exist: bless[p] += t-max(enter[0],enter[p]) print max(bless)
f23c206436ec78827ec7cbc0ab57a7c924a38e64
70087a0720037639297825a66135b9c985bbf586
/verif/metric.py
93c65c9b670eb008b0ef357dbd97079fe6539478
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
rvalenzuelar/verif
1ab854e2433a69378af8a867a1fb6f0efd1a4de0
034188cabd3a29136433be2ecb2f6555d3c03da8
refs/heads/master
2020-03-30T21:39:27.128496
2018-05-13T16:04:38
2018-05-13T17:48:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
48,947
py
import inspect import metric_type import numpy as np import sys import scipy.stats import verif.aggregator import verif.axis import verif.interval import verif.util def get_all(): """ Returns a dictionary of all metric classes where the key is the class name (string) and the value is the class object """ temp = inspect.getmembers(sys.modules[__name__], inspect.isclass) return temp def get_all_by_type(type): """ Like get_all, except only return metrics that are of a cerrtain verif.metric_type """ temp = [m for m in get_all() if m[1].type == type] return temp def get_all_obs_fcst_based(): """ Like get_all, except only return obs-fcst-based metric classes """ metrics = [metric for metric in get_all() if issubclass(metric[1], verif.metric.ObsFcstBased)] return metrics def get(name): """ Returns an instance of an object with the given class name """ metrics = get_all() m = None for metric in metrics: if name == metric[0].lower() and metric[1].is_valid(): m = metric[1]() return m def get_p(data, input_index, axis, axis_index, interval): """ Retrieves and computes forecast probability and verifying observation for being inside interval Returns: obs (np.array): True when observation is inside interval p (np.array): True when forecast is inside interval """ p0 = 0 p1 = 1 if interval.lower != -np.inf and interval.upper != np.inf: var0 = verif.field.Threshold(interval.lower) var1 = verif.field.Threshold(interval.upper) [obs, p0, p1] = data.get_scores([verif.field.Obs(), var0, var1], input_index, axis, axis_index) elif interval.lower != -np.inf: var0 = verif.field.Threshold(interval.lower) [obs, p0] = data.get_scores([verif.field.Obs(), var0], input_index, axis, axis_index) elif interval.upper != np.inf: var1 = verif.field.Threshold(interval.upper) [obs, p1] = data.get_scores([verif.field.Obs(), var1], input_index, axis, axis_index) obsP = interval.within(obs) p = p1 - p0 # Prob of obs within range return [obsP, p] def get_q(data, input_index, axis, axis_index, interval): """ Retrieve forecast quantile and verifying observation Returns: obs (np.array): True when observation is inside interval p (np.array): True when forecast is inside interval """ p0 = 0 p1 = 1 var = verif.field.Quantile(interval.lower) [obs, q] = data.get_scores([verif.field.Obs(), var], input_index, axis, axis_index) return [obs, q] class Metric(object): """ Class to compute a score for a verification metric Scores are computed by retrieving information from a verif.data.Data object. As data is organized in multiple dimensions, scores are computed for a particular verif.axis.Axis. Also data objects have several input files, so scores are computed for a particular input. The ObsFcstBased class offers a simple way to design a metric that only uses observations and forecasts from data. Class attributes: description (str): A short one-liner describing the metric. This will show up in the main verif documentation. long (str): A longer description. This will show up in the documentation when a specific metric is chosen. min (float): Minimum possible value the metric can take on. None if no min. max (float): Maximum possible value the metric can take on. None if no max. require_threshold_type (str) : What type of thresholds does this metric require? One of 'None', 'deterministic', 'threshold', 'quantile'. supports_threshold (bool) : Does it make sense to use '-x threshold' with this metric? supports_field (bool) : Does it make sense to use '-x obs' or '-x fcst' with this metric? orientation (int): 1 for a positively oriented score (higher values are better), -1 for negative, and 0 for all others reference (str): A string with an academic reference supports_aggregator: Does this metric use self.aggregator? type (verif.metric_type.MetricType): What type of metric is this? To implement a new metric: Fill out cls.description and implement compute_core(). The other class attributes (see above) are optional. """ # This must be overloaded description = None # Default values long = None reference = None orientation = 0 min = None max = None default_axis = verif.axis.Leadtime() # If no axis is specified, use this axis as default default_bin_type = None require_threshold_type = None supports_threshold = False supports_field = False perfect_score = None aggregator = verif.aggregator.Mean() supports_aggregator = False type = verif.metric_type.Deterministic() def compute(self, data, input_index, axis, interval): """ Compute the score along an axis Arguments: data (verif.data.Data): data object to get information from input_index (int): input index to compute the result for axis (verif.axis.Axis): Axis to compute score for for interval: Compute score for this interval (only applies to some metrics) Returns: np.array: A 1D numpy array of one score for each slice along axis """ size = data.get_axis_size(axis) scores = np.zeros(size, 'float') # Loop through axis indices for axis_index in range(0, size): x = self.compute_single(data, input_index, axis, axis_index, interval) scores[axis_index] = x return scores def compute_single(self, data, input_index, axis, axis_index, interval): """ Computes the score for a given slice Arguments: data (verif.data.Data): data object to get information from input_index (int): input index to compute the result for axis (verif.axis.Axis): Axis to compute score for for axis_index (int): Slice along the axis interval: Compute score for this interval (only applies to some metrics) Returns: float: Value representing the score for the slice """ raise NotImplementedError() def label(self, variable): """ What is an appropriate y-axis label for this metric? Override this if the metric does not have the same units as the forecast variable """ return self.name + " (" + variable.units + ")" class ClassProperty(property): def __get__(self, cls, owner): return self.fget.__get__(None, owner)() @ClassProperty @classmethod def name(cls): """ Use the class name as default """ return cls.get_class_name() @classmethod def is_valid(cls): """ Is this a valid metric that can be initialized? """ return cls.description is not None @classmethod def help(cls): s = "" if cls.description is not None: s = cls.description if cls.orientation is not 0: s = s + "\n" + verif.util.green("Orientation: ") if cls.orientation == 1: s = s + "Positive (higher values are better)" elif cls.orientation == -1: s = s + "Negative (lower values are better)" else: s = s + "None" if cls.perfect_score is not None: s = s + "\n" + verif.util.green("Perfect score: ") + str(cls.perfect_score) if cls.min is not None: s = s + "\n" + verif.util.green("Minimum value: ") + str(cls.min) if cls.max is not None: s = s + "\n" + verif.util.green("Maximum value: ") + str(cls.max) if cls.long is not None: s = s + "\n" + verif.util.green("Description: ") + cls.long if cls.reference is not None: s = s + "\n" + verif.util.green("Reference: ") + cls.reference return s @classmethod def get_class_name(cls): name = cls.__name__ return name class ObsFcstBased(Metric): """ Class for scores that are based on observations and deterministic forecasts only """ type = verif.metric_type.Deterministic() supports_field = True def compute_single(self, data, input_index, axis, axis_index, interval): [obs, fcst] = data.get_scores([verif.field.Obs(), verif.field.Fcst()], input_index, axis, axis_index) assert(obs.shape[0] == fcst.shape[0]) if axis == verif.axis.Obs(): I = np.where(interval.within(obs)) obs = obs[I] fcst = fcst[I] elif axis == verif.axis.Fcst(): I = np.where(interval.within(fcst)) obs = obs[I] fcst = fcst[I] return self.compute_from_obs_fcst(obs, fcst, interval) def compute_from_obs_fcst(self, obs, fcst, interval=None): """ Compute the score using only the observations and forecasts obs and fcst must have the same length, but may contain nan values Arguments: obs (np.array): 1D array of observations fcst (np.array): 1D array of forecasts Returns: float: Value of score """ # Remove missing values I = np.where((np.isnan(obs) | np.isnan(fcst)) == 0)[0] obs = obs[I] fcst = fcst[I] if obs.shape[0] > 0: return self._compute_from_obs_fcst(obs, fcst) else: return np.nan def _compute_from_obs_fcst(self, obs, fcst): """ Compute the score Obs and fcst are guaranteed to: - have the same length - length >= 1 - no missing values """ raise NotImplementedError() class FromField(Metric): supports_aggregator = True supports_field = True def __init__(self, field, aux=None): """ Compute scores from a field Arguments: field (verif.field.field): Retrive data from this field aux (verif.field.Field): When reading field, also pull values for this field to ensure only common data points are returned """ self._field = field self._aux = aux def compute_single(self, data, input_index, axis, axis_index, interval): fields = [self._field] axis_pos = None if axis == verif.axis.Obs(): if self._field != verif.field.Obs(): fields += [verif.field.Obs()] axis_pos = len(fields) - 1 elif axis == verif.axis.Fcst(): if self._field != verif.field.Fcst(): fields += [verif.field.Fcst()] axis_pos = len(fields) - 1 if self._aux is not None: fields += [self._aux] values_array = data.get_scores(fields, input_index, axis, axis_index) values = values_array[0] # Subset if we have a subsetting axis if axis_pos is not None: I = np.where(interval.within(values_array[axis_pos]))[0] values = values[I] return self.aggregator(values) def label(self, variable): return self.aggregator.name().title() + " of " + self._field.name() class Obs(FromField): """ Retrives the observation Note: This cannot be a subclass of ObsFcstBased, since we don't want to remove obs for which the forecasts are missing. Same for Fcst. """ type = verif.metric_type.Deterministic() name = "Observation" description = "Observed value" supports_aggregator = True orientation = 0 def __init__(self): super(Obs, self).__init__(verif.field.Obs()) def label(self, variable): return self.aggregator.name().title() + " of observation (" + variable.units + ")" class Fcst(FromField): type = verif.metric_type.Deterministic() name = "Forecast" description = "Forecasted value" supports_aggregator = True orientation = 0 def __init__(self): super(Fcst, self).__init__(verif.field.Fcst()) def label(self, variable): return self.aggregator.name().title() + " of forecast (" + variable.units + ")" class Mae(ObsFcstBased): description = "Mean absolute error" min = 0 perfect_score = 0 supports_aggregator = True orientation = -1 name = "Mean absolute error" def _compute_from_obs_fcst(self, obs, fcst): return self.aggregator(abs(obs - fcst)) def label(self, variable): return "MAE (" + variable.units + ")" class Bias(ObsFcstBased): name = "Bias" description = "Bias (forecast - observation)" perfect_score = 0 supports_aggregator = True orientation = 0 def _compute_from_obs_fcst(self, obs, fcst): return self.aggregator(fcst - obs) class Diff(ObsFcstBased): name = "Diff" description = "Difference in aggregated statistics (agg(forecast) - agg(observation))" perfect_score = 0 supports_aggregator = True orientation = 0 def _compute_from_obs_fcst(self, obs, fcst): return self.aggregator(fcst) - self.aggregator(obs) class Ratio(ObsFcstBased): name = "Ratio" description = "Ratio of aggregated statistics (agg(forecast) / agg(observation))" perfect_score = 1 supports_aggregator = True orientation = 0 def _compute_from_obs_fcst(self, obs, fcst): num = self.aggregator(fcst) denum = self.aggregator(obs) if denum == 0: return np.nan return num / denum def label(self, variable): return "Ratio" class Ef(ObsFcstBased): name = "Exceedance fraction" description = "Exeedance fraction: fraction of times that forecasts > observations" min = 0 max = 1 perfect_score = 0.5 orientation = 0 def _compute_from_obs_fcst(self, obs, fcst): Nfcst = np.sum(obs < fcst) return Nfcst / 1.0 / len(fcst) def label(self, variable): return "Fraction fcst > obs" class StdError(ObsFcstBased): name = "Standard error" description = "Standard error (i.e. RMSE if forecast had no bias)" min = 0 perfect_score = 0 orientation = -1 def _compute_from_obs_fcst(self, obs, fcst): bias = np.mean(obs - fcst) return np.mean((obs - fcst - bias) ** 2) ** 0.5 class Rmse(ObsFcstBased): name = "Root mean squared error" description = "Root mean squared error" min = 0 perfect_score = 0 supports_aggregator = True orientation = -1 def _compute_from_obs_fcst(self, obs, fcst): return self.aggregator((obs - fcst) ** 2) ** 0.5 def label(self, variable): return "RMSE (" + variable.units + ")" class Rmsf(ObsFcstBased): name = "Root mean squared factor" description = "Root mean squared factor" min = 0 perfect_score = 1 supports_aggregator = True orientation = 0 def _compute_from_obs_fcst(self, obs, fcst): return np.exp(self.aggregator((np.log(fcst / obs)) ** 2) ** 0.5) def label(self, variable): return "RMSF (" + variable.units + ")" class Cmae(ObsFcstBased): name = "Cube-root mean absolute cubic error" description = "Cube-root mean absolute cubic error" min = 0 perfect_score = 0 supports_aggregator = True orientation = -1 def _compute_from_obs_fcst(self, obs, fcst): return (self.aggregator(abs(obs ** 3 - fcst ** 3))) ** (1.0 / 3) def label(self, variable): return "CMAE (" + variable.units + ")" class Nsec(ObsFcstBased): name = "Nash-Sutcliffe efficiency coefficient" description = "Nash-Sutcliffe efficiency coefficient" min = 0 max = 1 perfect_score = 1 orientation = 1 def _compute_from_obs_fcst(self, obs, fcst): meanobs = np.mean(obs) num = np.sum((fcst - obs) ** 2) denom = np.sum((obs - meanobs) ** 2) if denom == 0: return np.nan else: return 1 - num / denom def label(self, variable): return "NSEC" class Alphaindex(ObsFcstBased): name = "Alpha index" description = "Alpha index" perfect_score = 0 orientation = -1 max = 2 min = 0 def _compute_from_obs_fcst(self, obs, fcst): meanobs = np.mean(obs) meanfcst = np.mean(fcst) num = np.sum((fcst - obs - meanfcst + meanobs) ** 2) denom = np.sum((fcst - meanfcst) ** 2 + (obs - meanobs) ** 2) if denom == 0: return np.nan else: return 1 - num / denom def label(self, variable): return self.name class Leps(ObsFcstBased): name = "Linear error in probability space" description = "Linear error in probability space" min = 0 perfect_score = 0 orientation = -1 def _compute_from_obs_fcst(self, obs, fcst): N = len(obs) # Compute obs quantiles Iobs = np.array(np.argsort(obs), 'float') qobs = Iobs / N # Compute the quantiles that the forecasts are relative # to the observations qfcst = np.zeros(N, 'float') sortobs = np.sort(obs) for i in range(0, N): I = np.where(fcst[i] < sortobs)[0] if len(I > 0): qfcst[i] = float(I[0]) / N else: qfcst[i] = 1 return np.mean(abs(qfcst - qobs)) def label(self, variable): return "LEPS" class Dmb(ObsFcstBased): name = "Degree of mass balance" description = "Degree of mass balance (obs/fcst)" perfect_score = 1 orientation = 0 def _compute_from_obs_fcst(self, obs, fcst): return np.mean(obs) / np.mean(fcst) def label(self, variable): return self.description class Mbias(ObsFcstBased): name = "Multiplicative bias" description = "Multiplicative bias (fcst/obs)" perfect_score = 1 orientation = 0 def _compute_from_obs_fcst(self, obs, fcst): num = np.nanmean(fcst) denum = np.nanmean(obs) if denum == 0: return np.nan return num / denum def label(self, variable): return self.description class Corr(ObsFcstBased): name = "Correlation" description = "Correlation between observations and forecasts" min = 0 # Technically -1, but values below 0 are not as interesting max = 1 perfect_score = 1 orientation = 1 def _compute_from_obs_fcst(self, obs, fcst): if len(obs) <= 1: return np.nan if np.var(fcst) == 0: return np.nan return np.corrcoef(obs, fcst)[1, 0] def label(self, variable): return self.name class RankCorr(ObsFcstBased): name = "Rank correlation" description = "Rank correlation between observations and forecasts" min = 0 # Technically -1, but values below 0 are not as interesting max = 1 perfect_score = 1 orientation = 1 def _compute_from_obs_fcst(self, obs, fcst): if len(obs) <= 1: return np.nan return scipy.stats.spearmanr(obs, fcst)[0] def label(self, variable): return self.name class KendallCorr(ObsFcstBased): name = "Kendall correlation" description = "Kendall correlation between observations and forecasts" min = 0 # Technically -1, but values below 0 are not as interesting max = 1 perfect_score = 1 orientation = 1 def _compute_from_obs_fcst(self, obs, fcst): if len(obs) <= 1: return np.nan if np.var(fcst) == 0: return np.nan return scipy.stats.kendalltau(obs, fcst)[0] def label(self, variable): return self.name class DError(ObsFcstBased): name = "Distribution Error" description = "Distribution error" min = 0 perfect_score = 0 supports_aggregator = False orientation = -1 def _compute_from_obs_fcst(self, obs, fcst): sortedobs = np.sort(obs) sortedfcst = np.sort(fcst) return np.mean(np.abs(sortedobs - sortedfcst)) class Pit(Metric): """ Retrives the PIT-value corresponding to the observation """ type = verif.metric_type.Probabilistic() name = "Probability integral transform" description = "Verifying PIT-value (CDF at observation)" supports_aggregator = True orientation = 0 def compute_single(self, data, input_index, axis, axis_index, interval): pit = data.get_scores(verif.field.Pit(), input_index, axis, axis_index) return self.aggregator(pit) def label(self, variable): return self.aggregator.name().title() + " of verifying PIT" class PitHistDev(Metric): type = verif.metric_type.Probabilistic() name = "PIT histogram deviation factor" description = "PIT histogram deviation factor (actual deviation / expected deviation)" min = 0 # max = 1 perfect_score = 1 orientation = -1 def __init__(self, numBins=11, field=verif.field.Pit()): self._bins = np.linspace(0, 1, numBins) self._field = field def compute_single(self, data, input_index, axis, axis_index, interval): pit = data.get_scores(self._field, input_index, axis, axis_index) nb = len(self._bins) - 1 D = self.deviation(pit, nb) D0 = self.expected_deviation(pit, nb) dev = D / D0 return dev def label(self, variable): return self.name @staticmethod def expected_deviation(values, numBins): if len(values) == 0 or numBins == 0: return np.nan return np.sqrt((1.0 - 1.0 / numBins) / (len(values) * numBins)) @staticmethod def deviation(values, numBins): if len(values) == 0 or numBins == 0: return np.nan x = np.linspace(0, 1, numBins + 1) n = np.histogram(values, x)[0] n = n * 1.0 / sum(n) return np.sqrt(1.0 / numBins * np.sum((n - 1.0 / numBins) ** 2)) @staticmethod def deviation_std(values, numBins): if len(values) == 0 or numBins == 0: return np.nan n = len(values) p = 1.0 / numBins numPerBinStd = np.sqrt(n * p * (1 - p)) std = numPerBinStd / n return std # What reduction in ignorance is possible by calibrating the PIT-histogram? @staticmethod def ignorance_potential(values, numBins): if len(values) == 0 or numBins == 0: return np.nan x = np.linspace(0, 1, numBins + 1) n = np.histogram(values, x)[0] n = n * 1.0 / sum(n) expected = 1.0 / numBins ign = np.sum(n * np.log2(n / expected)) / sum(n) return ign class PitHistSlope(Metric): type = verif.metric_type.Probabilistic() name = "PIT histogram slope" description = "Average slope of the PIT histogram. Positive mean too many obs in the higher ranks." perfect_score = 0 orientation = 0 def __init__(self, numBins=11, field=verif.field.Pit()): self._bins = np.linspace(0, 1, numBins) self._field = field def compute_single(self, data, input_index, axis, axis_index, interval): # Create a PIT histogram, then compute the average slope across the bars pit = data.get_scores(self._field, input_index, axis, axis_index) n = np.histogram(pit, self._bins)[0] n = n * 1.0 / sum(n) centers = (self._bins[1:] + self._bins[0:-1]) / 2 dx = np.diff(centers) d = np.diff(n) / dx return np.mean(d) def label(self, variable): return self.name class PitHistShape(Metric): type = verif.metric_type.Probabilistic() name = "PIT histogram shape" description = "Second derivative of the PIT histogram. Negative means U-shaped." perfect_score = 0 orientation = 0 def __init__(self, numBins=11, field=verif.field.Pit()): self._bins = np.linspace(0, 1, numBins) self._field = field def compute_single(self, data, input_index, axis, axis_index, interval): # Create a PIT histogram, then compute the second derivative across the bars pit = data.get_scores(self._field, input_index, axis, axis_index) n = np.histogram(pit, self._bins)[0] n = n * 1.0 / sum(n) centers = (self._bins[1:] + self._bins[0:-1]) / 2 dx = np.diff(centers) d = np.diff(n) / dx centers2 = (centers[1:] + centers[0:-1]) / 2 dx2 = np.diff(centers2) dd = np.diff(d) / dx2 return np.mean(dd) def label(self, variable): return self.name class MarginalRatio(Metric): type = verif.metric_type.Probabilistic() name = "Marginal ratio" description = "Ratio of marginal probability of obs to marginal" \ " probability of fcst. Use -r to specify thresholds." min = 0 perfect_score = 1 require_threshold_type = "threshold" supports_threshold = True default_axis = verif.axis.Threshold() orientation = 0 def compute_single(self, data, input_index, axis, axis_index, interval): if np.isinf(interval.lower): pvar = verif.field.Threshold(interval.upper) [obs, p1] = data.get_scores([verif.field.Obs(), pvar], input_index, axis, axis_index) p0 = 0 * p1 elif np.isinf(interval.upper): pvar = verif.field.Threshold(interval.lower) [obs, p0] = data.get_scores([verif.field.Obs(), pvar], input_index, axis, axis_index) p1 = 0 * p0 + 1 else: pvar0 = verif.field.Threshold(interval.lower) pvar1 = verif.field.Threshold(interval.upper) [obs, p0, p1] = data.get_scores([verif.field.Obs(), pvar0, pvar1], input_index, axis, axis_index) obs = interval.within(obs) p = p1 - p0 if np.mean(p) == 0: return np.nan return np.mean(obs) / np.mean(p) def label(self, variable): return "Ratio of marginal probs: Pobs/Pfcst" class Within(Metric): type = verif.metric_type.Deterministic() """ Can't be a subclass of ObsFcstBased, because it depends on threshold """ name = "Within" description = "The percentage of forecasts within some error bound. Use -r to specify error bounds" min = 0 max = 100 default_bin_type = "below" require_threshold_type = "threshold" supports_threshold = True perfect_score = 100 orientation = 0 def compute_single(self, data, input_index, axis, axis_index, interval): [obs, fcst] = data.get_scores([verif.field.Obs(), verif.field.Fcst()], input_index, axis, axis_index) return self.compute_from_obs_fcst(obs, fcst, interval) def compute_from_obs_fcst(self, obs, fcst, interval): diff = abs(obs - fcst) return np.mean(interval.within(diff)) * 100 def label(self, variable): return "% of forecasts" class Conditional(Metric): """ Computes the mean y conditioned on x. For a given range of x-values, what is the average y-value? """ type = verif.metric_type.Deterministic() orientation = 0 def __init__(self, x=verif.field.Obs(), y=verif.field.Fcst(), func=np.mean): self._x = x self._y = y self._func = func def compute_single(self, data, input_index, axis, axis_index, interval): [obs, fcst] = data.get_scores([self._x, self._y], input_index, axis, axis_index) return self.compute_from_obs_fcst(obs, fcst, interval) def compute_from_obs_fcst(self, obs, fcst, interval): I = np.where(interval.within(obs))[0] if len(I) == 0: return np.nan return self._func(fcst[I]) class XConditional(Metric): """ Mean x when conditioned on x. Average x-value that is within a given range. The reason the y-variable is added is to ensure that the same data is used for this metric as for the Conditional metric. """ type = verif.metric_type.Deterministic() orientation = 0 def __init__(self, x=verif.field.Obs(), y=verif.field.Fcst(), func=np.median): self._x = x self._y = y self._func = func def compute_single(self, data, input_index, axis, axis_index, interval): [obs, fcst] = data.get_scores([self._x, self._y], input_index, axis, axis_index) return self.compute_from_obs_fcst(obs, fcst, interval) def compute_from_obs_fcst(self, obs, fcst, interval): I = np.where(interval.within(obs))[0] if len(I) == 0: return np.nan return self._func(obs[I]) class Count(Metric): """ Counts how many values of a specific variable is within the threshold range Not a real metric. """ type = verif.metric_type.Deterministic() orientation = 0 def __init__(self, x): self._x = x def compute_single(self, data, input_index, axis, axis_index, interval): values = data.get_scores(self._x, input_index, axis, axis_index) I = np.where(interval.within(values))[0] if len(I) == 0: return np.nan return len(I) class Quantile(Metric): type = verif.metric_type.Probabilistic() min = 0 max = 1 def __init__(self, quantile): self._quantile = quantile def compute_single(self, data, input_index, axis, axis_index, interval): var = verif.field.Quantile(self._quantile) scores = data.get_scores(var, input_index, axis, axis_index) return verif.util.nanmean(scores) class Bs(Metric): type = verif.metric_type.Probabilistic() name = "Brier score" description = "Brier score" min = 0 max = 1 default_axis = verif.axis.Threshold() require_threshold_type = "threshold" supports_threshold = True perfect_score = 0 orientation = -1 reference = "Glenn W. Brier, 1950: Verification of forecasts expressed in terms of probability. Mon. Wea. Rev., 78, 1-3." def compute_single(self, data, input_index, axis, axis_index, interval): """ Compute probabilities based on thresholds """ [obsP, p] = get_p(data, input_index, axis, axis_index, interval) return self.compute_from_obs_fcst(obsP, p) def compute_from_obs_fcst(self, obs, fcst): bs = np.nan * np.zeros(len(obs), 'float') return np.nanmean((fcst-obs)**2) def label(self, variable): return self.name class BsRel(Metric): default_axis = verif.axis.Threshold() type = verif.metric_type.Probabilistic() name = "brier skill score, reliability term" description = "Brier score, reliability term" min = 0 max = 1 require_threshold_type = "threshold" supports_threshold = True perfect_score = 0 orientation = -1 def __init__(self, num_edges=11): self._edges = np.linspace(0, 1, num_edges) self._edges[-1] = 1.001 def compute_single(self, data, input_index, axis, axis_index, interval): [obsP, p] = get_p(data, input_index, axis, axis_index, interval) return self.compute_from_obs_fcst(obsP, p) def compute_from_obs_fcst(self, obs, fcst): bs = np.nan * np.zeros(len(fcst), 'float') obs_mean = np.mean(obs) """ Break p into bins, and compute reliability. but save each reliability value in an array the same size as fcst. In this way we do not need to do a weighted average """ for i in range(0, len(self._edges) - 1): I = np.where((fcst >= self._edges[i]) & (fcst < self._edges[i + 1]))[0] if len(I) > 0: obs_mean_I = np.mean(obs[I]) bs[I] = (fcst[I] - obs_mean_I) ** 2 return np.nanmean(bs) def label(self, variable): return self.name class BsRes(Metric): default_axis = verif.axis.Threshold() type = verif.metric_type.Probabilistic() name = "Brier score, resolution term" description = "Brier score, resolution term" min = 0 max = 1 require_threshold_type = "threshold" supports_threshold = True perfect_score = 1 orientation = 1 def __init__(self, num_edges=11): self._edges = np.linspace(0, 1, num_edges) self._edges[-1] = 1.001 def compute_single(self, data, input_index, axis, axis_index, interval): [obsP, p] = get_p(data, input_index, axis, axis_index, interval) return self.compute_from_obs_fcst(obsP, p) def compute_from_obs_fcst(self, obs, fcst): bs = np.nan * np.zeros(len(fcst), 'float') obs_mean = np.mean(obs) for i in range(0, len(self._edges) - 1): I = np.where((fcst >= self._edges[i]) & (fcst < self._edges[i + 1]))[0] if len(I) > 0: obs_mean_I = np.mean(obs[I]) bs[I] = (obs_mean_I - obs_mean) ** 2 return np.nanmean(bs) def label(self, variable): return self.name class BsUnc(Metric): default_axis = verif.axis.Threshold() type = verif.metric_type.Probabilistic() name = "Brier score, uncertainty term" description = "Brier score, uncertainty term" min = 0 max = 1 require_threshold_type = "threshold" supports_threshold = True perfect_score = None orientation = 0 def compute_single(self, data, input_index, axis, axis_index, interval): [obsP, p] = get_p(data, input_index, axis, axis_index, interval) return self.compute_from_obs_fcst(obsP, p) def compute_from_obs_fcst(self, obs, fcst): obs_mean = np.mean(obs) bsunc = np.nanmean((obs_mean - obs)**2) return bsunc def label(self, variable): return self.name class Bss(Metric): default_axis = verif.axis.Threshold() type = verif.metric_type.Probabilistic() name = "Brier skill score" description = "Brier skill score" min = 0 max = 1 require_threshold_type = "threshold" supports_threshold = True perfect_score = 1 orientation = 1 def compute_single(self, data, input_index, axis, axis_index, interval): [obsP, p] = get_p(data, input_index, axis, axis_index, interval) return self.compute_from_obs_fcst(obsP, p) def compute_from_obs_fcst(self, obs, fcst): bs = np.nanmean((fcst - obs)**2) obs_mean = np.mean(obs) bsunc = np.nanmean((obs_mean - obs)**2) if bsunc == 0: bss = np.nan else: bss = (bsunc - bs) / bsunc return bss def label(self, variable): return self.name class QuantileScore(Metric): type = verif.metric_type.Probabilistic() name = "Quantile score" description = "Quantile score. Use -q to set which quantiles to use." min = 0 require_threshold_type = "quantile" supports_threshold = True perfect_score = 0 orientation = -1 def compute_single(self, data, input_index, axis, axis_index, interval): [obs, q] = get_q(data, input_index, axis, axis_index, interval) qs = np.nan * np.zeros(len(q), 'float') v = q - obs qs = v * (interval.lower - (v < 0)) return np.mean(qs) def label(self, variable): return self.name class Ign0(Metric): type = verif.metric_type.Probabilistic() name = "Binary ignorance" description = "Ignorance of the binary probability based on threshold" require_threshold_type = "threshold" supports_threshold = True orientation = -1 def compute_single(self, data, input_index, axis, axis_index, interval): [obsP, p] = get_p(data, input_index, axis, axis_index, interval) I0 = np.where(obsP == 0)[0] I1 = np.where(obsP == 1)[0] ign = -np.log2(p) ign[I0] = -np.log2(1 - p[I0]) return np.mean(ign) def label(self, variable): return self.name class Spherical(Metric): type = verif.metric_type.Probabilistic() name = "Spherical score" description = "Spherical probabilistic scoring rule for binary events" require_threshold_type = "threshold" supports_threshold = True max = 1 min = 0 perfect_score = 1 orientation = 1 def compute_single(self, data, input_index, axis, axis_index, interval): [obsP, p] = get_p(data, input_index, axis, axis_index, interval) I0 = np.where(obsP == 0)[0] I1 = np.where(obsP == 1)[0] sp = p / np.sqrt(p ** 2 + (1 - p) ** 2) sp[I0] = (1 - p[I0]) / np.sqrt((p[I0]) ** 2 + (1 - p[I0]) ** 2) return np.mean(sp) def label(self, variable): return self.name class Contingency(Metric): """ Metrics based on 2x2 contingency table for a given interval. Observations and forecasts are converted into binary values, that is if they are within or not within an interval. """ type = verif.metric_type.Threshold() min = 0 max = 1 default_axis = verif.axis.Threshold() require_threshold_type = "deterministic" supports_threshold = True _usingQuantiles = False def compute_from_abcd(self, a, b, c, d): """ Compute the score given the 4 values in the 2x2 contingency table: Arguments: a (float): Hit b (float): False alarm c (float): Miss d (float): Correct rejection Returns: float: The score """ raise NotImplementedError() def label(self, variable): return self.name def compute_single(self, data, input_index, axis, axis_index, interval): [obs, fcst] = data.get_scores([verif.field.Obs(), verif.field.Fcst()], input_index, axis, axis_index) return self.compute_from_obs_fcst(obs, fcst, interval) def _quantile_to_threshold(self, values, interval): """ Convert an interval of quantiles to interval thresholds, for example converting [10%, 50%] of some precip values to [5 mm, 25 mm] Arguments: values (np.array): values to compute thresholds for interval (verif.interval.Interval): interval of quantiles Returns: verif.interval.Interval: Interval of thresholds """ sorted = np.sort(values) lower = -np.inf upper = np.inf if not np.isinf(abs(interval.lower)): lower = np.percentile(sorted, interval.lower * 100) if not np.isinf(abs(interval.lower)): upper = np.percentile(sorted, interval.upper * 100) return verif.interval.Interval(lower, upper, interval.lower_eq, interval.upper_eq) def _compute_abcd(self, obs, fcst, interval, f_interval=None): if f_interval is None: f_interval = interval value = np.nan if len(fcst) > 0: # Compute frequencies if self._usingQuantiles: fcstSort = np.sort(fcst) obsSort = np.sort(obs) f_qinterval = self._quantile_to_threshold(fcstSort, f_interval) o_qinterval = self._quantile_to_threshold(obsSort, interval) a = np.ma.sum(f_qinterval.within(fcst) & o_qinterval.within(obs)) # Hit b = np.ma.sum(f_qinterval.within(fcst) & (o_qinterval.within(obs) == 0)) # FA c = np.ma.sum((f_qinterval.within(fcst) == 0) & o_qinterval.within(obs)) # Miss d = np.ma.sum((f_qinterval.within(fcst) == 0) & (o_qinterval.within(obs) == 0)) # CR else: a = np.ma.sum(f_interval.within(fcst) & interval.within(obs)) # Hit b = np.ma.sum(f_interval.within(fcst) & (interval.within(obs) == 0)) # FA c = np.ma.sum((f_interval.within(fcst) == 0) & interval.within(obs)) # Miss d = np.ma.sum((f_interval.within(fcst) == 0) & (interval.within(obs) == 0)) # CR return [a, b, c, d] def compute_from_obs_fcst(self, obs, fcst, interval, f_interval=None): """ Computes the score Arguments: obs (np.array): array of observations fcst (np.array): array of forecasts interval (verif.interval.Interval): compute score for this interval f_interval (verif.interval.Interval): Use this interval for forecasts. If None, then use the same interval for obs and forecasts. Returns: float: The score """ [a, b, c, d] = self._compute_abcd(obs, fcst, interval, f_interval) value = self.compute_from_abcd(a, b, c, d) if np.isinf(value): value = np.nan return value def compute_from_obs_fcst_resample(self, obs, fcst, N, interval, f_interval=None): """ Same as compute_from_obs_fcst, except compute more robust scores by resampling (with replacement) using the computed values of a, b, c, d. Arguments: obs (np.array): array of observations fcst (np.array): array of forecasts N (int): Resample this many times interval (verif.interval.Interval): compute score for this interval f_interval (verif.interval.Interval): Use this interval for forecasts. If None, then use the same interval for obs and forecasts. Returns: float: The score """ [a, b, c, d] = self._compute_abcd(obs, fcst, interval, f_interval) # Resample n = a + b + c + d np.random.seed(1) value = 0 for i in range(0, N): aa = np.random.binomial(n, 1.0*a/n) bb = np.random.binomial(n, 1.0*b/n) cc = np.random.binomial(n, 1.0*c/n) dd = np.random.binomial(n, 1.0*d/n) value = value + self.compute_from_abcd(aa, bb, cc, dd) value = value / N return value def label(self, variable): return self.name class A(Contingency): name = "Hit" description = "Hit" def compute_from_abcd(self, a, b, c, d): return 1.0 * a / (a + b + c + d) class B(Contingency): name = "False alarm" description = "False alarm" def compute_from_abcd(self, a, b, c, d): return 1.0 * b / (a + b + c + d) class C(Contingency): name = "Miss" description = "Miss" def compute_from_abcd(self, a, b, c, d): return 1.0 * c / (a + b + c + d) class D(Contingency): name = "Correct rejection" description = "Correct rejection" def compute_from_abcd(self, a, b, c, d): return 1.0 * d / (a + b + c + d) class N(Contingency): name = "Total cases" description = "Total cases" max = None def compute_from_abcd(self, a, b, c, d): return a + b + c + d class Ets(Contingency): name = "Equitable threat score" description = "Equitable threat score" perfect_score = 1 orientation = 1 def compute_from_abcd(self, a, b, c, d): N = a + b + c + d ar = (a + b) / 1.0 / N * (a + c) if a + b + c - ar == 0: return np.nan return (a - ar) / 1.0 / (a + b + c - ar) def label(self, variable): return "ETS" class FcstRate(Contingency): name = "Forecast rate" description = "Fractions of forecasts (a + b)" perfect_score = None orientation = 0 def compute_from_abcd(self, a, b, c, d): return (a + b) / 1.0 / (a + b + c + d) class Dscore(Contingency): name = "Discimination" description = "Generalized discrimination score" perfect_score = 1 orientation = 1 reference = "Simon J. Mason and Andreas P. Weigel, 2009: A Generic Forecast Verification Framework for Administrative Purposes. Mon. Wea. Rev., 137, 331-349." max = 1 min = 0 def compute_from_abcd(self, a, b, c, d): N = a + b + c + d num = a*d + 0.5*(a*b + c*d) denom = (a + c) * (b + d) if denom == 0: return np.nan return num / denom class Threat(Contingency): name = "Threat score" description = "Threat score" perfect_score = 1 orientation = 1 def compute_from_abcd(self, a, b, c, d): if a + b + c == 0: return np.nan return a / 1.0 / (a + b + c) class Pc(Contingency): name = "Proportion correct" description = "Proportion correct" perfect_score = 1 orientation = 1 def compute_from_abcd(self, a, b, c, d): return (a + d) / 1.0 / (a + b + c + d) class Edi(Contingency): name = "Extremal dependency index" description = "Extremal dependency index" perfect_score = 1 orientation = 1 reference = "Christopher A. T. Ferro and David B. Stephenson, 2011: Extremal Dependence Indices: Improved Verification Measures for Deterministic Forecasts of Rare Binary Events. Wea. Forecasting, 26, 699-713." def compute_from_abcd(self, a, b, c, d): N = a + b + c + d if b + d == 0 or a + c == 0: return np.nan F = b / 1.0 / (b + d) H = a / 1.0 / (a + c) if H == 0 or F == 0: return np.nan denom = (np.log(H) + np.log(F)) if denom == 0: return np.nan return (np.log(F) - np.log(H)) / denom def label(self, variable): return "EDI" class Sedi(Contingency): name = "Symmetric extremal dependency index" description = "Symmetric extremal dependency index" perfect_score = 1 orientation = 1 reference = Edi.reference def compute_from_abcd(self, a, b, c, d): N = a + b + c + d if b + d == 0 or a + c == 0: return np.nan F = b / 1.0 / (b + d) H = a / 1.0 / (a + c) if F == 0 or F == 1 or H == 0 or H == 1: return np.nan denom = np.log(F) + np.log(H) + np.log(1 - F) + np.log(1 - H) if denom == 0: return np.nan num = np.log(F) - np.log(H) - np.log(1 - F) + np.log(1 - H) return num / denom def label(self, variable): return "SEDI" class Eds(Contingency): name = "Extreme dependency score" description = "Extreme dependency score" min = None perfect_score = 1 orientation = 1 reference = "Stephenson, D. B., B. Casati, C. A. T. Ferro, and C. A. Wilson, 2008: The extreme dependency score: A non-vanishing measure for forecasts of rare events. Meteor. Appl., 15, 41-50." def compute_from_abcd(self, a, b, c, d): N = a + b + c + d if a + c == 0: return np.nan H = a / 1.0 / (a + c) p = (a + c) / 1.0 / N if H == 0 or p == 0: return np.nan denom = (np.log(p) + np.log(H)) if denom == 0: return np.nan return (np.log(p) - np.log(H)) / denom def label(self, variable): return "EDS" class Seds(Contingency): name = "Symmetric extreme dependency score" description = "Symmetric extreme dependency score" min = None perfect_score = 1 orientation = 1 def compute_from_abcd(self, a, b, c, d): N = a + b + c + d if a + c == 0: return np.nan H = a / 1.0 / (a + c) p = (a + c) / 1.0 / N q = (a + b) / 1.0 / N if q == 0 or H == 0: return np.nan denom = np.log(p) + np.log(H) if denom == 0: return np.nan return (np.log(q) - np.log(H)) / (np.log(p) + np.log(H)) def label(self, variable): return "SEDS" class BiasFreq(Contingency): name = "Bias frequency" description = "Bias frequency (number of fcsts / number of obs)" max = None perfect_score = 1 orientation = 0 def compute_from_abcd(self, a, b, c, d): if a + c == 0: return np.nan return 1.0 * (a + b) / (a + c) class Hss(Contingency): max = None description = "Heidke skill score" perfect_score = 1 orientation = 1 def compute_from_abcd(self, a, b, c, d): denom = ((a + c) * (c + d) + (a + b) * (b + d)) if denom == 0: return np.nan return 2.0 * (a * d - b * c) / denom class BaseRate(Contingency): name = "Base rate" description = "Base rate: Fraction of observations (a + c)" perfect_score = None orientation = 0 def compute_from_abcd(self, a, b, c, d): if a + b + c + d == 0: return np.nan return (a + c) / 1.0 / (a + b + c + d) class Or(Contingency): name = "Odds ratio" description = "Odds ratio" max = None perfect_score = None # Should be infinity orientation = 1 def compute_from_abcd(self, a, b, c, d): if b * c == 0: return np.nan return (a * d) / 1.0 / (b * c) class Lor(Contingency): name = "Log odds ratio" description = "Log odds ratio" max = None perfect_score = None # Should be infinity orientation = 1 def compute_from_abcd(self, a, b, c, d): if a * d == 0 or b * c == 0: return np.nan return np.log((a * d) / 1.0 / (b * c)) class YulesQ(Contingency): name = "Yule's Q" description = "Yule's Q (Odds ratio skill score)" perfect_score = 1 orientation = 1 def compute_from_abcd(self, a, b, c, d): if a * d + b * c == 0: return np.nan return (a * d - b * c) / 1.0 / (a * d + b * c) class Kss(Contingency): name = "Hanssen-Kuiper skill score" description = "Hanssen-Kuiper skill score" perfect_score = 1 orientation = 1 reference = "Hanssen , A., W. Kuipers, 1965: On the relationship between the frequency of rain and various meteorological parameters. - Meded. Verh. 81, 2-15." def compute_from_abcd(self, a, b, c, d): if (a + c) * (b + d) == 0: return np.nan return (a * d - b * c) * 1.0 / ((a + c) * (b + d)) class Hit(Contingency): name = "Hit rate" description = "Hit rate (a.k.a. probability of detection)" perfect_score = 1 orientation = 1 def compute_from_abcd(self, a, b, c, d): if a + c == 0: return np.nan return a / 1.0 / (a + c) class Miss(Contingency): name = "Miss rate" description = "Miss rate" perfect_score = 0 orientation = -1 def compute_from_abcd(self, a, b, c, d): if a + c == 0: return np.nan return c / 1.0 / (a + c) # Fraction of non-events that are forecasted as events class Fa(Contingency): name = "False alarm rate" description = "False alarm rate" perfect_score = 0 orientation = -1 def compute_from_abcd(self, a, b, c, d): if b + d == 0: return np.nan return b / 1.0 / (b + d) # Fraction of forecasted events that are false alarms class Far(Contingency): name = "False alarm ratio" description = "False alarm ratio" perfect_score = 0 orientation = -1 def compute_from_abcd(self, a, b, c, d): if a + b == 0: return np.nan return b / 1.0 / (a + b)
e188217cf5dcdf7b3d1b7887be7a21f67e80e4ab
544cfadc742536618168fc80a5bd81a35a5f2c99
/tools/treble/fetcher/fetcher_lib.py
0ec017318832788f675ab4ad2587b17824faa6f9
[ "Apache-2.0" ]
permissive
ZYHGOD-1/Aosp11
0400619993b559bf4380db2da0addfa9cccd698d
78a61ca023cbf1a0cecfef8b97df2b274ac3a988
refs/heads/main
2023-04-21T20:13:54.629813
2021-05-22T05:28:21
2021-05-22T05:28:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,512
py
"""Provides helper functions for fetching artifacts.""" import io import os import re import sys import sysconfig import time # This is a workaround to put '/usr/lib/python3.X' ahead of googleapiclient # Using embedded_launcher won't work since py3-cmd doesn't contain _ssl module. if sys.version_info.major == 3: sys.path.insert(0, os.path.dirname(sysconfig.get_paths()['purelib'])) # pylint: disable=import-error,g-bad-import-order,g-import-not-at-top import apiclient from googleapiclient.discovery import build from six.moves import http_client import httplib2 from oauth2client.service_account import ServiceAccountCredentials _SCOPE_URL = 'https://www.googleapis.com/auth/androidbuild.internal' _DEF_JSON_KEYFILE = '.config/gcloud/application_default_credentials.json' # 20 MB default chunk size -- used in Buildbot _DEFAULT_CHUNK_SIZE = 20 * 1024 * 1024 # HTTP errors -- used in Builbot _DEFAULT_MASKED_ERRORS = [404] _DEFAULT_RETRIED_ERRORS = [503] _DEFAULT_RETRIES = 10 def _create_http_from_p12(robot_credentials_file, robot_username): """Creates a credentialed HTTP object for requests. Args: robot_credentials_file: The path to the robot credentials file. robot_username: A string containing the username of the robot account. Returns: An authorized httplib2.Http object. """ try: credentials = ServiceAccountCredentials.from_p12_keyfile( service_account_email=robot_username, filename=robot_credentials_file, scopes=_SCOPE_URL) except AttributeError: raise ValueError('Machine lacks openssl or pycrypto support') http = httplib2.Http() return credentials.authorize(http) def _simple_execute(http_request, masked_errors=None, retried_errors=None, retry_delay_seconds=5, max_tries=_DEFAULT_RETRIES): """Execute http request and return None on specified errors. Args: http_request: the apiclient provided http request masked_errors: list of errors to return None on retried_errors: list of erros to retry the request on retry_delay_seconds: how many seconds to sleep before retrying max_tries: maximum number of attmpts to make request Returns: The result on success or None on masked errors. """ if not masked_errors: masked_errors = _DEFAULT_MASKED_ERRORS if not retried_errors: retried_errors = _DEFAULT_RETRIED_ERRORS last_error = None for _ in range(max_tries): try: return http_request.execute() except http_client.errors.HttpError as e: last_error = e if e.resp.status in masked_errors: return None elif e.resp.status in retried_errors: time.sleep(retry_delay_seconds) else: # Server Error is server error raise e # We've gone through the max_retries, raise the last error raise last_error # pylint: disable=raising-bad-type def create_client(http): """Creates an Android build api client from an authorized http object. Args: http: An authorized httplib2.Http object. Returns: An authorized android build api client. """ return build(serviceName='androidbuildinternal', version='v2beta1', http=http) def create_client_from_json_keyfile(json_keyfile_name=None): """Creates an Android build api client from a json keyfile. Args: json_keyfile_name: The location of the keyfile, if None is provided use default location. Returns: An authorized android build api client. """ if not json_keyfile_name: json_keyfile_name = os.path.join(os.getenv('HOME'), _DEF_JSON_KEYFILE) credentials = ServiceAccountCredentials.from_json_keyfile_name( filename=json_keyfile_name, scopes=_SCOPE_URL) http = httplib2.Http() credentials.authorize(http) return create_client(http) def create_client_from_p12(robot_credentials_file, robot_username): """Creates an Android build api client from a config file. Args: robot_credentials_file: The path to the robot credentials file. robot_username: A string containing the username of the robot account. Returns: An authorized android build api client. """ http = _create_http_from_p12(robot_credentials_file, robot_username) return create_client(http) def fetch_artifact(client, build_id, target, resource_id, dest): """Fetches an artifact. Args: client: An authorized android build api client. build_id: AB build id target: the target name to download from resource_id: the resource id of the artifact dest: path to store the artifact """ out_dir = os.path.dirname(dest) if not os.path.exists(out_dir): os.makedirs(out_dir) dl_req = client.buildartifact().get_media( buildId=build_id, target=target, attemptId='latest', resourceId=resource_id) print('Fetching %s to %s...' % (resource_id, dest)) with io.FileIO(dest, mode='wb') as fh: downloader = apiclient.http.MediaIoBaseDownload( fh, dl_req, chunksize=_DEFAULT_CHUNK_SIZE) done = False while not done: status, done = downloader.next_chunk(num_retries=_DEFAULT_RETRIES) print('Fetching...' + str(status.progress() * 100)) print('Done Fetching %s to %s' % (resource_id, dest)) def get_build_list(client, **kwargs): """Get a list of builds from the android build api that matches parameters. Args: client: An authorized android build api client. **kwargs: keyworded arguments to pass to build api. Returns: Response from build api. """ build_request = client.build().list(**kwargs) return _simple_execute(build_request) def list_artifacts(client, regex, **kwargs): """List artifacts from the android build api that matches parameters. Args: client: An authorized android build api client. regex: Regular expression pattern to match artifact name. **kwargs: keyworded arguments to pass to buildartifact.list api. Returns: List of matching artifact names. """ matching_artifacts = [] kwargs.setdefault('attemptId', 'latest') regex = re.compile(regex) req = client.buildartifact().list(**kwargs) while req: result = _simple_execute(req) if result and 'artifacts' in result: for a in result['artifacts']: if regex.match(a['name']): matching_artifacts.append(a['name']) req = client.buildartifact().list_next(req, result) return matching_artifacts def fetch_artifacts(client, out_dir, target, pattern, build_id): """Fetches target files artifacts matching patterns. Args: client: An authorized instance of an android build api client for making requests. out_dir: The directory to store the fetched artifacts to. target: The target name to download from. pattern: A regex pattern to match to artifacts filename. build_id: The Android Build id. """ if not os.path.exists(out_dir): os.makedirs(out_dir) # Build a list of needed artifacts artifacts = list_artifacts( client=client, regex=pattern, buildId=build_id, target=target) for artifact in artifacts: fetch_artifact( client=client, build_id=build_id, target=target, resource_id=artifact, dest=os.path.join(out_dir, artifact)) def get_latest_build_id(client, branch, target): """Get the latest build id. Args: client: An authorized instance of an android build api client for making requests. branch: The branch to download from target: The target name to download from. Returns: The build id. """ build_response = get_build_list( client=client, branch=branch, target=target, maxResults=1, successful=True, buildType='submitted') if not build_response: raise ValueError('Unable to determine latest build ID!') return build_response['builds'][0]['buildId'] def fetch_latest_artifacts(client, out_dir, target, pattern, branch): """Fetches target files artifacts matching patterns from the latest build. Args: client: An authorized instance of an android build api client for making requests. out_dir: The directory to store the fetched artifacts to. target: The target name to download from. pattern: A regex pattern to match to artifacts filename branch: The branch to download from """ build_id = get_latest_build_id( client=client, branch=branch, target=target) fetch_artifacts(client, out_dir, target, pattern, build_id)
15a60453aa5419b4fa377688c031c2632596a4f9
7ce479cac0a14d924159db9c784e3325b8f0bce7
/schemaorgschemas/Thing/MedicalEntity/MedicalProcedure/__init__.py
cbefd8704afe1d477dfc83e65cb81ce50f18686e
[]
no_license
EvelineAndreea/AGRe
1f0c27237eb047a60bbcfb8d73e3157035406409
b952125896a82741f6617c259dd4060954583180
refs/heads/master
2020-04-08T16:08:11.517166
2018-11-28T07:15:56
2018-11-28T07:15:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,059
py
# -*- coding: utf-8 -*- from schemaorgschemas.Thing import potentialActionProp, nameProp, sameAsProp, imageProp, urlProp, mainEntityOfPageProp, additionalTypeProp, alternateNameProp, descriptionProp from schemaorgschemas.Thing.MedicalEntity import codeProp, relevantSpecialtyProp, studyProp, guidelineProp, recognizingAuthorityProp, medicineSystemProp from schemaorgschemas.djangoschema import SchemaObject, SchemaProperty, SchemaEnumProperty, SCHEMA_ORG from django.conf import settings class MedicalProcedureSchema(SchemaObject): """Schema Mixin for MedicalProcedure Usage: place after django model in class definition, schema will return the schema.org url for the object A process of care used in either a diagnostic, therapeutic, or palliative capacity that relies on invasive (surgical), non-invasive, or percutaneous techniques. """ def __init__(self): self.schema = 'MedicalProcedure' class followupProp(SchemaProperty): """ SchemaField for followup Usage: Include in SchemaObject SchemaFields as your_django_field = followupProp() schema.org description:Typical or recommended followup care after the procedure is performed. prop_schema returns just the property without url# format_as is used by app templatetags based upon schema.org datatype """ _prop_schema = 'followup' _expected_schema = None _enum = False _format_as = "TextField" class preparationProp(SchemaProperty): """ SchemaField for preparation Usage: Include in SchemaObject SchemaFields as your_django_field = preparationProp() schema.org description:Typical preparation that a patient must undergo before having the procedure performed. prop_schema returns just the property without url# format_as is used by app templatetags based upon schema.org datatype """ _prop_schema = 'preparation' _expected_schema = None _enum = False _format_as = "TextField" class procedureTypeProp(SchemaProperty): """ SchemaField for procedureType Usage: Include in SchemaObject SchemaFields as your_django_field = procedureTypeProp() schema.org description:The type of procedure, for example Surgical, Noninvasive, or Percutaneous. prop_schema returns just the property without url# format_as is used by app templatetags based upon schema.org datatype used to reference MedicalProcedureType""" _prop_schema = 'procedureType' _expected_schema = 'MedicalProcedureType' _enum = False _format_as = "ForeignKey" class howPerformedProp(SchemaProperty): """ SchemaField for howPerformed Usage: Include in SchemaObject SchemaFields as your_django_field = howPerformedProp() schema.org description:How the procedure is performed. prop_schema returns just the property without url# format_as is used by app templatetags based upon schema.org datatype """ _prop_schema = 'howPerformed' _expected_schema = None _enum = False _format_as = "TextField" # schema.org version 2.0
222a8516170dbdfd60052c5217c8dbe791724e6b
a6df74bc7c139734bd9ce9f48d51e08fdc7d7efb
/article/migrations/0016_auto_20210412_1456.py
34b4c21151d60a7d9f4aa95d47c0410f17c749cc
[]
no_license
Erlan1998/python_group_7_homework_68_Erlan_Kurbanaliev
5a7f210e51f1998e5d52cdeb42538f2786af3f9f
fdc92be2c5187c78fecdc713f58e0e3e9fc62cb1
refs/heads/master
2023-05-03T17:01:59.066596
2021-05-26T13:28:41
2021-05-26T13:28:41
368,165,221
0
0
null
null
null
null
UTF-8
Python
false
false
495
py
# Generated by Django 3.1.6 on 2021-04-12 14:56 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('article', '0015_auto_20210412_1444'), ] operations = [ migrations.AlterModelOptions( name='article', options={'permissions': [('сan_have_piece_of_pizza', 'Может съесть кусочек пиццы')], 'verbose_name': 'Статья', 'verbose_name_plural': 'Статьи'}, ), ]
3f6f9421f822fd2a774361edb18fd8c12c87027d
b58b175263f275e15a1b56bf1b0914db0f35ffc8
/testcase/testcase_lan.py
8d4326cbd823f38fc4d2cbf52a1cb50582dc55ed
[]
no_license
zeewii/BHU
aa9ff900a4bb6adb368081509b9f9222479f7742
1f3c4f634b44845f7a4f84535ff4904de4efc634
refs/heads/master
2021-01-09T21:49:01.534541
2015-09-30T09:21:28
2015-09-30T09:21:28
43,213,971
0
0
null
null
null
null
UTF-8
Python
false
false
2,828
py
#coding=utf-8 #描述:该模块为测试lan模块 #作者:曾祥卫 import unittest from selenium import webdriver import time,os,commands from selenium.webdriver.common.action_chains import ActionChains from selenium.common.exceptions import NoSuchElementException from selenium.common.exceptions import NoAlertPresentException from login import login_control from data import data from network.interface import interface_control from connect import ssh from publicControl import public_control from network.interface.lan import lan_business from network.interface import interface_business class TestLan(unittest.TestCase): def setUp(self): self.driver = webdriver.Firefox() #将浏览器最大化 self.driver.maximize_window() #使用默认ip登录lan页面 lan_business.goin_default_lan(self) def test_054_055_IP_netmask(self): u"""修改LAN IP和A,B,C类子网掩码""" #把4次修改LAN IP和子网掩码后client ping修改后ip的值取出 result = lan_business.step_100msh0054_100msh0055(self) print result #如果4次都为0则通过,否则不通过 assert result == [0,0,0,0],u"测试LAN IP和A,B,C类子网掩码失败" print u"测试LAN IP和A,B,C类子网掩码成功" def test_056_custom_netmask(self): u"""lan自定义掩码设置""" result = lan_business.step_100msh0056(self) print result #如果4次都为1则通过,否则不通过 assert result == [1,1,1,1],u"测试lan自定义掩码设置失败" print u"测试lan自定义掩码设置成功" def test_057_broadcast(self): u"""lan广播地址配置有效性测试""" result = lan_business.step_100msh0057(self) print result #如果2次都为1则通过,否则不通过 assert result == [1,1],u"测试lan广播地址配置有效性失败" print u"测试lan广播地址配置有效性成功" def test_059_startip(self): u"""IP地址池默认起始值检查""" result = lan_business.step_100msh0059(self) print result #如果IP地址池默认起始值为100则通过,否则不通过 assert result == '100',u"测试IP地址池默认起始值失败" print u"测试IP地址池默认起始值成功" def test_067_068_abnormal_input(self): u"""lan异常输入测试""" result = lan_business.step_100msh0067_100msh0068(self) print result #如果4次都为1则通过,否则不通过 assert result == [1,1,1,1],u"测试lan异常输入测试失败" print u"lan测试异常输入测试成功" #退出清理工作 def tearDown(self): self.driver.quit() if __name__=='__main__': unittest.main() __author__ = 'zeng'
5a65c3db8f5241c487aab78f930d7ec197529388
5a4d5ee624b375ece06fda1467afe18beb69c14b
/Algorithm/SW_Expert/1-46.py
e2fcfc033cbfedd0121723aaeb2c5ba1ecc91913
[]
no_license
Knightofcydonia51/TIL
cd10dab949659bc827118ee42b25d926336dce23
78d7e8617f4abed9932a557c12e68bd950f8230d
refs/heads/master
2022-12-26T00:10:06.262200
2022-05-26T01:12:32
2022-05-26T01:12:32
195,938,010
0
0
null
2022-12-16T01:03:09
2019-07-09T05:22:49
Python
UTF-8
Python
false
false
218
py
def score(text): result=list(map(lambda x: 4 if x=='A' else 3 if x=='B' else 2 if x=='C' else 1 ,text)) return sum(result) print(score('ADCBBBBCABBCBDACBDCAACDDDCAABABDBCBCBDBDBDDABBAAAAAAADADBDBCBDABADCADC'))
bd692ef3d3cce53cc175de340df496d1c8586914
eb518a18d8055400c85d1b2f714fe9d4d654b941
/compare_segworm/_old/head_tail_manual_switched.py
6948c7b9e0ebe75f72f883facddf4243954e34e8
[]
no_license
ver228/single-worm-analysis
c755709354025f629f7c774749394743c7b9a46b
8d0a442fb93ad25aa30743f6c31f883639524a4d
refs/heads/master
2021-09-14T11:31:17.761390
2018-05-12T23:00:54
2018-05-12T23:00:54
79,457,317
0
0
null
null
null
null
UTF-8
Python
false
false
13,602
py
# -*- coding: utf-8 -*- """ Created on Thu Feb 11 22:01:59 2016 @author: ajaver """ import h5py import tables import os import numpy as np import matplotlib.pylab as plt from scipy.io import loadmat import glob import os import pandas as pd from MWTracker.featuresAnalysis.obtainFeaturesHelper import WormFromTable from MWTracker.featuresAnalysis.obtainFeatures import getMicronsPerPixel, getFPS good_files_str = '''/Users/ajaver/Desktop/Videos/single_worm/switched_sample/unc-116 (e2310)III on food L_2010_07_29__14_56___3___8.hdf5 /Users/ajaver/Desktop/Videos/single_worm/switched_sample/osm-9 (ky10) on food R_2010_06_15__14_57_24___8___8.hdf5 /Users/ajaver/Desktop/Videos/single_worm/switched_sample/unc-108 (n501)I on food L_2009_12_10__14_02_38___2___9.hdf5 /Users/ajaver/Desktop/Videos/single_worm/switched_sample/unc-103 (e1597)II on food R_2010_08_06__15_41_28___8___11.hdf5 /Users/ajaver/Desktop/Videos/single_worm/switched_sample/flp-25 (gk1016)III on food L_2010_01_12__13_07_15___4___8.hdf5 /Users/ajaver/Desktop/Videos/single_worm/switched_sample/egl-6 (n592)X on food L_2010_05_11__14_51_15___7___8.hdf5 /Users/ajaver/Desktop/Videos/single_worm/switched_sample/egl-14 (n549)X on food L_2010_07_15__16_20___3___14.hdf5 /Users/ajaver/Desktop/Videos/single_worm/switched_sample/flp-6 (ok3056)V on food R_2010_01_14__11_35___3___4.hdf5 /Users/ajaver/Desktop/Videos/single_worm/switched_sample/gar-2 (ok250)III on food R_2010_07_22__11_23_27___1___3.hdf5 /Users/ajaver/Desktop/Videos/single_worm/switched_sample/N2 on food R_2011_05_24__13_03_48___7___6.hdf5 /Users/ajaver/Desktop/Videos/single_worm/switched_sample/vab-7 (e1562)III on food L_2011_10_13__11_49_40___1___2.hdf5 /Users/ajaver/Desktop/Videos/single_worm/switched_sample/flp-25 (gk1016)III on food R_2010_01_12__13_06_48___2___8.hdf5 /Users/ajaver/Desktop/Videos/single_worm/switched_sample/egl-6 (n592)X on food R_2010_05_13__15_47___3___13.hdf5 /Users/ajaver/Desktop/Videos/single_worm/switched_sample/N2 on food L_2010_11_26__16_25_46___6___13.hdf5 /Users/ajaver/Desktop/Videos/single_worm/switched_sample/flp-16 (ok3085) on food L_2010_01_11__12_35_14___7___4.hdf5 /Users/ajaver/Desktop/Videos/single_worm/switched_sample/flr-1 (ut11) on food L_2010_04_09__15_53_02___1___14.hdf5 /Users/ajaver/Desktop/Videos/single_worm/switched_sample/egl-32 (n155)I on food l_2010_05_11__16_50_11___7___13.hdf5 /Users/ajaver/Desktop/Videos/single_worm/switched_sample/egl-1 (n487)V on food R_2010_07_15__11_47_56___1___4.hdf5 /Users/ajaver/Desktop/Videos/single_worm/switched_sample/daf-5 (e1386)II on food L_2010_07_22__14_46_33__8.hdf5 /Users/ajaver/Desktop/Videos/single_worm/switched_sample/rab-3 (cy250) on food L_2011_08_04__11_10_43___2___3.hdf5 /Users/ajaver/Desktop/Videos/single_worm/switched_sample/acr-2 (ok1887) on food r_2010_02_19__14_43_43___8___13.hdf5 /Users/ajaver/Desktop/Videos/single_worm/switched_sample/egl-27 (ok151)II on food R_2010_09_24__12_55___3___6.hdf5 /Users/ajaver/Desktop/Videos/single_worm/switched_sample/egl-32 (n155)I on food R_2010_05_13__15_03_22___1___11.hdf5 /Users/ajaver/Desktop/Videos/single_worm/switched_sample/unc-16 (e109) on food L_2009_12_11__12_21___3___2.hdf5 /Users/ajaver/Desktop/Videos/single_worm/switched_sample/unc-63 (ok1075) on food L_2010_04_16__12_57_13___8___8.hdf5 /Users/ajaver/Desktop/Videos/single_worm/switched_sample/egl-12 (n602)V on food L_2010_07_16__12_05_00___1___6.hdf5 /Users/ajaver/Desktop/Videos/single_worm/switched_sample/gpa-8 (pk435)V on food L_2010_03_11__10_25_35___8___2.hdf5 /Users/ajaver/Desktop/Videos/single_worm/switched_sample/unc-79 (e1068)III on food L_2010_04_13__15_39_23___8___14.hdf5 /Users/ajaver/Desktop/Videos/single_worm/switched_sample/egl-46 (n1127)V on food L_2010_08_06__16_02_11___7___13.hdf5 /Users/ajaver/Desktop/Videos/single_worm/switched_sample/egl-8 (v488) on food R_2011_09_20__13_33_10___7___7.hdf5 /Users/ajaver/Desktop/Videos/single_worm/switched_sample/N2 on food L_2010_11_09__15_36_39___1___8.hdf5 /Users/ajaver/Desktop/Videos/single_worm/switched_sample/unc-60 (e273)V on food L_2010_04_15__13_07_43__9.hdf5 /Users/ajaver/Desktop/Videos/single_worm/switched_sample/asic-1 (ok415) on food R_2010_06_15__11_26_21___2___3.hdf5''' partial_files_str = '''/Users/ajaver/Desktop/Videos/single_worm/switched_sample/unc-116 (e2310)III on food L_2010_07_29__14_56___3___8.hdf5 15401-15415 /Users/ajaver/Desktop/Videos/single_worm/switched_sample/unc-101 (e1265) on food L_2010_09_23__12_37_31___8___6.hdf5 19804-19806, 19819-19830, 19886-19893, 19904-19907, 19921-19931, 19938-19938, 19945-19945, 19985-19986, 20055-20055 /Users/ajaver/Desktop/Videos/single_worm/switched_sample/egl-27 (ok151)II on food L_2010_08_05__14_44_24___2___11.hdf5 14045-14045, 14173-14184, 14226-14226, 14298-14298, 14333-14334, 14344-14344, 14378-14378 /Users/ajaver/Desktop/Videos/single_worm/switched_sample/trp-1 (sy691) on food R_2010_04_21__14_59_17___8___10.hdf5 12231-12231, 12242-12243, 12250-12273, 12285-12285, 12295-12299, 12306-12306, 12331-12346, 12421-12457, 12464-12469, 12479-12480, 12664-12664, 12677-12701, 12830-12888, 12895-12923, 12930-12931, /Users/ajaver/Desktop/Videos/single_worm/switched_sample/unc-104 (e1265)III on food R_2011_10_18__15_39___4___10.hdf5 2608-3747, 3755-5270 /Users/ajaver/Desktop/Videos/single_worm/switched_sample/unc-105 (ok1432) on food L_2010_07_06__11_44_23___2___6.hdf5 1812-1819, 1826-1832 /Users/ajaver/Desktop/Videos/single_worm/switched_sample/acr-15 (ok1214)X on food L_2010_02_24__15_45_04___8___14.hdf5 250-411, 419-424, 700-700, 793-799, 808-811, 1012-1018, 1032-1032, 18761-18814 /Users/ajaver/Desktop/Videos/single_worm/switched_sample/unc-101 (e1265) on food R_2010_09_24__11_35___3___2.hdf5 810-810, 18597-18597, 18608-18608, 23978-23982, 23988-23993 /Users/ajaver/Desktop/Videos/single_worm/switched_sample/unc-38 (e264)I on food L_2010_08_19__12_34_15___1___6.hdf5 7480-7582, 7590-7590, 7596-7596, 7603-7607, 7617-7643, 7652-7652, 7663-7722, 7733-7736, 7806-7963 /Users/ajaver/Desktop/Videos/single_worm/switched_sample/unc-76 (e911)V on food L_2010_04_14__11_22_30___8___5.hdf5 12445-12445, 12455-12459, 12475-12316, 12242-13344, 13354-13362, 13368-15598, 18411-18411, 18510-18510 /Users/ajaver/Desktop/Videos/single_worm/switched_sample/unc-76 (e911)V on food R_2010_04_13__11_06_24___4___3.hdf5 3240-3249, 3258-3265, 3286-3294, 3328-3332, 18547-18547, 18585-18589 /Users/ajaver/Desktop/Videos/single_worm/switched_sample/unc-101 (e1265) on food L_2010_09_17__16_04_15___1___8.hdf5 20530-20530, 20536-23004 ''' bad_track_files_str = '''/Users/ajaver/Desktop/Videos/single_worm/switched_sample/unc-32 (e189) on food L_2009_12_09__15_57_51___2___13.hdf5 /Users/ajaver/Desktop/Videos/single_worm/switched_sample/acr-21 (ok1314)III on food L_2010_02_24__14_45_13__11.hdf5 /Users/ajaver/Desktop/Videos/single_worm/switched_sample/unc-17 (e245) on food R_2010_04_16__14_27_23___2___8.hdf5''' wrong_files_str = '''/Users/ajaver/Desktop/Videos/single_worm/switched_sample/unc-1 (e1598)X on food R_2010_04_14__11_58_21___2___7.hdf5 /Users/ajaver/Desktop/Videos/single_worm/switched_sample/unc-18 (e81)X on food R_2011_08_09__12_33_45___8___7.hdf5''' partial_wrong_files_str ='''/Users/ajaver/Desktop/Videos/single_worm/switched_sample/unc-18 (e81)X on food R_2011_08_24__10_24_18__2.hdf5 17709-17735, 17743-17758, 17772-17772, 17782-17788, 17795-17795, 17801-17801''' good_files = good_files_str.split('\n') bad_track_files = bad_track_files_str.split('\n') wrong_files = wrong_files_str.split('\n') def read_partial_files(f_str): dd = f_str.split('\n') index_dict = {} fnames = [] for ii in range(0, len(dd),2 ): fname = dd[ii] indexes_str = dd[ii+1] indexes = [tuple(map(int, x.split('-'))) for x in indexes_str.split(', ') if x] index_dict[fname] = indexes fnames.append(fname) return fnames, index_dict partial_files, bad_index_dict = read_partial_files(partial_files_str) wrong_partial_files, good_index_dict = read_partial_files(partial_wrong_files_str) files = bad_track_files + partial_files + wrong_partial_files+ wrong_files + good_files all_dat = [] for mask_id, masked_image_file in enumerate(files): dd = masked_image_file[:-5] segworm_feat_file = dd + '_features.mat' skeletons_file = dd + '_skeletons.hdf5' features_file = dd + '_features.hdf5' if not os.path.exists(features_file): continue print(mask_id, masked_image_file) #read data from the new sekeltons skeletons = np.zeros(0) #just to be sure i am not using a skeleton for another file with tables.File(features_file, 'r') as fid: #if '/features_means' in fid and \ #fid.get_node('/features_means').attrs['has_finished'] and \ #fid.get_node('/features_timeseries').shape[0]>0: skeletons = fid.get_node('/skeletons')[:] if skeletons.size > 0: frame_range = fid.get_node('/features_events/worm_1')._v_attrs['frame_range'] #pad the beginign with np.nan to have the same reference as segworm (time 0) skeletons = np.pad(skeletons, [(frame_range[0],0), (0,0), (0,0)], 'constant', constant_values=np.nan) #else: # continue with tables.File(skeletons_file, 'r') as fid: timestamp_raw = fid.get_node('/timestamp/raw')[:].astype(np.int) #read data from the old skeletons fvars = loadmat(segworm_feat_file, struct_as_record=False, squeeze_me=True) micronsPerPixels_x = fvars['info'].video.resolution.micronsPerPixels.x micronsPerPixels_y = fvars['info'].video.resolution.micronsPerPixels.y segworm_x = -fvars['worm'].posture.skeleton.x.T segworm_y = -fvars['worm'].posture.skeleton.y.T segworm = np.stack((segworm_x,segworm_y), axis=2) #get the total number of skeletons tot_skel = np.sum(~np.isnan(skeletons[:,0,0])) tot_seg = np.sum(~np.isnan(segworm[:,0,0])) #correct in case the data has different size shape max_n_skel = min(segworm.shape[0], skeletons.shape[0]) skeletons = skeletons[:max_n_skel] segworm = segworm[:max_n_skel] #shift the skeletons coordinate system to one that diminushes the errors the most. seg_shift = np.nanmedian(skeletons-segworm, axis = (0,1)) segworm += seg_shift #print('S', seg_shift) #%% R_ori = np.sum(np.sqrt(np.sum((skeletons-segworm)**2, axis=2)), axis=1) R_inv = np.sum(np.sqrt(np.sum((skeletons[:,::-1,:]-segworm)**2, axis=2)), axis=1) bad_ind = np.isnan(R_ori) ht_mismatch = np.argmin((R_ori, R_inv), axis =0) ht_mismatch[bad_ind] = 0 #%% bad_vec = np.zeros(skeletons.shape[0], np.bool) if masked_image_file in bad_index_dict: bad_indexes = bad_index_dict[masked_image_file] for bad_index in bad_indexes: bad_timestamp = timestamp_raw[bad_index[0]:bad_index[1]+1] bad_vec[bad_timestamp] = True #make false the once without skeletons to avoid double counting bad_vec[np.isnan(skeletons[:,0,0])] = False elif masked_image_file in good_index_dict: good_indexes = good_index_dict[masked_image_file] bad_vec = ~np.isnan(skeletons[:,0,0]) for good_index in good_indexes: good_timestamp = timestamp_raw[good_index[0]:good_index[1]+1] bad_vec[good_timestamp] = False elif masked_image_file in wrong_files: bad_vec = ~np.isnan(skeletons[:,0,0]) else: tot_bad_skel = 0 tot_bad_skel = sum(bad_vec) good_ind = ~bad_ind tot_common = np.sum(good_ind) #%% new1old0 = np.sum(ht_mismatch & ~bad_vec & good_ind) new0old1 = np.sum(ht_mismatch & bad_vec & good_ind) new1old1 = np.sum(~ht_mismatch & ~bad_vec & good_ind) new0old0 = np.sum(~ht_mismatch & bad_vec & good_ind) #%% all_dat.append((tot_skel, tot_seg, tot_bad_skel, tot_common, new1old0, new0old1, new1old1, new0old0)) #%% if False: w_xlim = w_ylim = (-10, skeletons.shape[0]+10) plt.figure() plt.subplot(2,1,1) plt.plot(skeletons[:,1,1], 'b') plt.plot(segworm[:,1,1], 'r') plt.xlim(w_ylim) plt.ylabel('Y coord') plt.subplot(2,1,2) plt.plot(skeletons[:,1,0], 'b') plt.plot(segworm[:,1,0], 'r') plt.xlim(w_xlim) plt.ylabel('X coord') plt.xlabel('Frame Number') #%% tot_skel, tot_seg, tot_bad_skel, tot_common, new1old0, new0old1, new1old1, new0old0 = zip(*all_dat) only_seg = tuple(x-y for x,y in zip(tot_seg, tot_common)) only_skel = tuple(x-y for x,y in zip(tot_skel, tot_common)) #%% #%% tot_skels = sum(tot_skel) tot_segs = sum(tot_seg) tot_commons = sum(tot_common) tot_union = tot_skels + tot_segs - tot_commons frac_only_seg = (tot_skels - tot_commons) / tot_union frac_only_skel = (tot_segs - tot_commons) / tot_union frac_mutual = tot_commons / tot_union #%% frac_skel_bad = sum(tot_bad_skel)/tot_skels #%% skel_bad_common =1-(sum(new1old0) + sum(new1old1))/tot_commons seg_bad_common = 1-(sum(new0old1) + sum(new1old1))/tot_commons #%% main_dir = '/Users/ajaver/Desktop/Videos/single_worm/switched_sample/' all_files = [os.path.join(main_dir, x) for x in os.listdir(main_dir) if not '_features' in x and not '_skeletons' in x and not x.startswith('.')] print([x for x in all_files if x not in files]) #%% bad_old = [(x+y)/z for x,y,z in zip(new1old0, new0old0, tot_common)] bad_new = [(x+y)/z for x,y,z in zip(new0old1, new0old0, tot_common)] plt.figure() plt.plot(bad_old, 'sr') plt.plot(bad_new, 'og')
c2a6c7801f3547946b38492ef118dd975aae1772
e6c17803c9f60dbeafa7e866d7e108a3239d799d
/what_the_cluster/GapStat.py
1f928a08083bccde57f61c9a8b280bc201d89c3b
[]
no_license
idc9/what_the_cluster
e6cf04730e224625a0bce21f7a9730a4984d54bd
50f024e214cf6f4f4f976ac104d50a0c9a7a6d94
refs/heads/master
2020-03-11T17:46:27.297370
2018-09-19T21:53:59
2018-09-19T21:53:59
130,156,780
1
0
null
null
null
null
UTF-8
Python
false
false
16,107
py
from math import sqrt import matplotlib.pyplot as plt import numpy as np import pandas as pd from sklearn.externals import joblib from scipy.sparse import issparse from what_the_cluster.gapstat_utils import get_pooled_wcss, estimate_n_clusters from what_the_cluster.reference_dists import sample_svd_null, sample_uniform_null from what_the_cluster.utils import _is_strictly_increasing, _count_none, svd_wrapper from what_the_cluster.clusterers import get_clusterer # TODO: implement seeds # TODO: give clusterer the option to return additional data # TODO: give user the ability to input pre-sampled reference distributions class GapStat(object): def __init__(self, clusterer='kmeans', clusterer_kwargs={}, cluster_sizes=list(range(1, 11)), ref_dist='uniform', B=10, gap_est_method='Tibs2001SEmax'): """ For details see Estimating the Number of Clusters in a Data Set via the Gap Statistic by R. Tibshirani, G. Walther and T. Hastie, 2001. Parameters ---------- clusterer (str, function): a function which computes clusters. If clusterer is a string, the will used one of the pre-implemented clustering algorithms from clusterers.py. Available options include ['kmeans'] If clusterer is a function then it should accpet two argumets: (X, n_clusters) where X is the data set to cluster and n_clusters is the number of desired clusters to estimate. This function should return a list of estimated clusters for each observation. clusterer_kwargs (None, dict): dict of key word arguments for the clusterer function. See the documentation for the orignal functions for available arguments (linked to in clusterers.py) Warning: these are only applied for the pre-implemented clusterers i.e. if clusterer is a string. cluster_sizes (list): list of n_clusters to evaluate. Must be strictly increasing. ref_dist (str): which null reference distribution to use. Either ['uniform', 'svd']. 'uniform' will draw uniform smaples from a box which has the same range of the data. 'PCA' will use the prinicpal components to better adapt the shape of the reference distribution to the observed data set. See (Tibshirani et al, 2001) for details. B (int): number of samples of null reference set to draw to estimated the E log(W) gap_est_method (str): how to select the local max using the gap statistic. Currently one of ['firstmax', 'globalmax', 'Tibs2001SEmax']. See estimate_n_clusters() for details. """ assert ref_dist in ['uniform', 'svd'] assert _is_strictly_increasing(cluster_sizes) self.ref_dist = ref_dist self.B = B self.cluster_sizes = cluster_sizes self.gap_est_method = gap_est_method if callable(clusterer): # there might be an issue with python 3.x for x <2 # see https://stackoverflow.com/questions/624926/how-do-i-detect-whether-a-python-variable-is-a-function self.clusterer_name = 'custom' self.clusterer = clusterer if clusterer_kwargs is not None: # TODO: make this a proper Warning print("WARNING: clusterer_kwargs is only use for pre-implemented clusterers") else: self.clusterer_name = clusterer if clusterer == 'custom': # this means we are loading a saved version of this object # and we didn't save the clusterer funciton which should be # saved separately self.clusterer = None else: self.clusterer = get_clusterer(clusterer, clusterer_kwargs) # only store this in case we save this object to disk self.clusterer_kwargs = clusterer_kwargs # these attributes will be set later # self.X = None # observed data # self.U = None # U, D, V are SVD of X # self.D = None # self.V = None # self.obs_cluster_labels = None # self.obs_wcss = None # self.null_wcss_samples = None # self.est_n_clusters = None # self.possible_n_clusters = None # self.metadata = {} def get_params(self): return {'clusterer': self.clusterer, 'clusterer_kwargs': self.clusterer_kwargs, 'cluster_sizes': self.cluster_sizes, 'ref_dist': self.ref_dist, 'B': self.B, 'gap_est_method': self.gap_est_method} def fit(self, X, cluster_labels=None, U=None, D=None, V=None): """ Estimates the number of clusters using the gap statistic. Parameters ---------- X (matrix): the observed data with observations on the rows. cluster_labels (None or matrix, observations x len(cluster_sizes)): matrix containing the observed cluster labels on the columns for each value of n_clusters. If None then will uses clusterer to estimate the number of clusters using the provided clusterer U, D, V: the precomputed SVD of X see set_svd_decomposition() for details. These are only used if ref_dist = 'svd'. If they are not provided then will compute them. """ if type(X) == pd.DataFrame: self.var_names = np.array(X.columns) else: self.var_names = np.array(range(X.shape[1])) if not issparse(X): X = np.array(X) if cluster_labels is None: cluster_labels = self.compute_obs_clusters(X) assert cluster_labels.shape == (X.shape[0], len(self.cluster_sizes)) if self.ref_dist == 'svd': if _count_none(U, D, V) == 3: U, D, V = svd_wrapper(X) elif _count_none(U, D, V) != 0: raise ValueError('U, D, V must all be provided or be set to None') self.obs_wcss = self.compute_obs_wcss(X, cluster_labels) self.null_wcss_samples = self.sample_ref_null_wcss(X, U=U, D=D, V=V) self.compute_n_cluster_estimate(method=self.gap_est_method) return self @property def est_cluster_memberships(self): """ Returns the estimated cluster memberships """ assert self.est_n_clusters is not None est_cluster_size_ind = np.where( np.array(self.cluster_sizes) == self.est_n_clusters)[0][0] return self.obs_cluster_labels[:, est_cluster_size_ind] def compute_obs_clusters(self, X): obs_cluster_labels = np.zeros((X.shape[0], len(self.cluster_sizes))) for i, n_clusters in enumerate(self.cluster_sizes): obs_cluster_labels[:, i] = self.clusterer(X, n_clusters) return obs_cluster_labels def compute_obs_wcss(self, X, obs_cluster_labels): """ Computes the within class sum of squres for the observed clusters. """ n_cluster_sizes = len(self.cluster_sizes) obs_wcss = np.zeros(n_cluster_sizes) for j in range(n_cluster_sizes): # make sure the number of unique cluster labels is equal to # the preported number of clusters # TODO: we might not want this restrictin assert len(set(obs_cluster_labels[:, j])) \ == self.cluster_sizes[j] obs_wcss[j] = get_pooled_wcss(X, obs_cluster_labels[:, j]) return obs_wcss def sample_null_reference(self, X, U=None, D=None, V=None): if self.ref_dist == 'uniform': return sample_uniform_null(X) elif self.ref_dist == 'svd': return sample_svd_null(X, U, D, V) def sample_ref_null_wcss(self, X, U=None, D=None, V=None): null_wcss_samples = np.zeros((len(self.cluster_sizes), self.B)) for b in range(self.B): # sample null reference distribution X_null = self.sample_null_reference(X, U=U, D=D, V=V) # cluster X_null for the specified n_clusters for i, n_clusters in enumerate(self.cluster_sizes): # cluster. null sample null_cluster_labels = self.clusterer(X_null, n_clusters) null_wcss_samples[i, b] = get_pooled_wcss(X_null, null_cluster_labels) return null_wcss_samples @property def E_log_null_wcss_est(self): """ Estimate of the expected log(WCSS) of the null reference distribution """ assert self.null_wcss_samples is not None return np.log(self.null_wcss_samples).mean(axis=1) @property def E_log_null_wcss_est_sd(self): """ Standard deviation of the estimated expected log(WCSS) from the null distribuiton """ assert self.null_wcss_samples is not None return np.std(np.log(self.null_wcss_samples), axis=1) @property def log_obs_wcss(self): """ log(WCSS) of the observed cluseters """ assert self.obs_wcss is not None return np.log(self.obs_wcss) @property def gap(self): """ Returns the gap statistic i.e. E*(log(WCSS_null)) - log(WCSS_obs) where E* means the estimated expected value """ assert self.obs_wcss is not None return self.E_log_null_wcss_est - self.log_obs_wcss @property def adj_factor(self): return sqrt(1.0 + (1.0/self.B)) def compute_n_cluster_estimate(self, method=None): """ Parameters ---------- method (str): which method to use to estimate the number of clusters. Currently one of ['firstmax', 'globalmax', 'Tibs2001SEmax'] firstmax: finds the fist local max of f globalmax: finds the global max of f Tibs2001SEmax: uses the method detailed in (Tibshirani et al, 2001) i.e. the first k (smallest number of clusters) such that f[k] >= f[k + 1] - se[k + 1] * se_adj_factor return_possibilities (bool): whether or not to also return the other possible estimates Output ------ est_n_clusters, possibilities est_n_clusters: the estimated number of clustesr possibilities: local maxima of the given method """ if method is None: method = self.gap_est_method est_n_clusters, possibilities = \ estimate_n_clusters(cluster_sizes=self.cluster_sizes, f=self.gap, se=self.E_log_null_wcss_est_sd, se_adj_factor=self.adj_factor, method=method) self.gap_est_method = method self.est_n_clusters = est_n_clusters self.possible_n_clusters = possibilities def plot_wcss_curves(self): # plot observed log(WCSS) plt.plot(self.cluster_sizes, self.log_obs_wcss, marker="$O$", color='blue', ls='solid', label='obs') # plot the expected log(WCSS) of the null references plt.plot(self.cluster_sizes, self.E_log_null_wcss_est, marker='$E$', color='red', ls='dashed', label='E null') plt.xticks(self.cluster_sizes) plt.xlabel('number of clusters') plt.ylabel('log(WCSS)') plt.legend() def plot_gap(self, errorbars=True, include_est=True, include_possibilities=False): if errorbars: # TODO: should we use s_adj for error bars? plt.errorbar(self.cluster_sizes, self.gap, color='black', yerr=self.E_log_null_wcss_est_sd) else: plt.plot(self.cluster_sizes, self.gap, color='black', marker='x') plt.xticks(self.cluster_sizes) plt.xlabel('number of clusters') plt.ylabel('gap') # maybe include the estimated numer of clusters if include_est: plt.axvline(x=self.est_n_clusters, color='red', label='estimated {} clusters'. format(self.est_n_clusters)) # maybe include other possible estimates if include_possibilities: label = 'possibility' for n in self.possible_n_clusters: if n == self.est_n_clusters: continue plt.axvline(x=n, color='blue', ls='dashed', lw=1, label=label) label = '' # HACK: get only one 'possibility' label to show up plt.legend() def save(self, fname, compress=True, include_data=False): # save_dict = {'ref_dist': self.ref_dist, # 'B': self.B, # 'cluster_sizes': self.cluster_sizes, # 'gap_est_method': self.gap_est_method, # 'clusterer_name': self.clusterer_name, # 'clusterer_kwargs': self.clusterer_kwargs, # 'obs_cluster_labels': self.obs_cluster_labels, # 'obs_wcss': self.obs_wcss, # 'null_wcss_samples': self.null_wcss_samples, # 'est_n_clusters': self.est_n_clusters, # 'possible_n_clusters': self.possible_n_clusters, # 'metadata': self.metadata} # if include_data: # save_dict['X'] = self.X # save_dict['U'] = self.U # save_dict['D'] = self.D # save_dict['V'] = self.V # else: # save_dict['X'] = None # save_dict['U'] = None # save_dict['D'] = None # save_dict['V'] = None joblib.dump(self, filename=fname, compress=compress) # @classmethod # def load_from_dict(cls, load_dict): # # initialize class # GS = cls(clusterer=load_dict['clusterer_name'], # clusterer_kwargs=load_dict['clusterer_kwargs'], # cluster_sizes=load_dict['cluster_sizes'], # ref_dist=load_dict['ref_dist'], # B=load_dict['B'], # gap_est_method=load_dict['gap_est_method']) # GS.obs_cluster_labels = load_dict['obs_cluster_labels'] # GS.obs_wcss = load_dict['obs_wcss'] # GS.null_wcss_samples = load_dict['null_wcss_samples'] # GS.est_n_clusters = load_dict['est_n_clusters'] # GS.possible_n_clusters = load_dict['possible_n_clusters'] # GS.X = load_dict['X'] # GS.U = load_dict['U'] # GS.D = load_dict['D'] # GS.V = load_dict['B'] # GS.metadata = load_dict['metadata'] # return GS @classmethod def load(cls, fname): # load_dict = joblib.load(fname) # return cls.load_from_dict(load_dict) return joblib.load(fname) @classmethod def from_precomputed_wcss(cls, cluster_sizes, obs_wcss, null_wcss_samples, **kwargs): """ Initializes GatStat object form precomputed obs_wcss and null_wcss_smaples. """ assert len(obs_wcss) == len(cluster_sizes) assert null_wcss_samples.shape[0] == len(cluster_sizes) GS = cls(cluster_sizes=cluster_sizes, **kwargs) GS.obs_wcss = obs_wcss GS.null_wcss_samples = null_wcss_samples GS.B = null_wcss_samples.shape[1] # NOTE: B may be differnt GS.compute_n_cluster_estimate() return GS
7cc5e26b3b002ea59b7a91392cf6ad2b4d9042bb
12b5584956797fcb0f48e7971bc074ae13a37489
/pySpatialTools/release.py
b4439a5b0eb2c44ff32c36629289ad36af5e241a
[ "MIT" ]
permissive
tgquintela/pySpatialTools
a0ef5b032310aa1c140e805f4ee8c4a40fd2d10e
e028008f9750521bf7d311f7cd3323c88d621ea4
refs/heads/master
2020-05-21T22:09:08.858084
2017-02-10T11:18:41
2017-02-10T11:18:41
39,067,763
8
0
null
null
null
null
UTF-8
Python
false
false
6,919
py
"""Release data for pySpatialTools. The information of the version is in the version.py file. """ from __future__ import absolute_import import os import sys import time import datetime basedir = os.path.abspath(os.path.split(__file__)[0]) ## Quantify the version MAJOR = 0 MINOR = 0 MICRO = 0 ISRELEASED = False VERSION = '%d.%d.%d' % (MAJOR, MINOR, MICRO) QUALIFIER = '' def write_version_py(filename=None): cnt = """\ version = '%s' """ if not filename: filename = os.path.join( os.path.dirname(__file__), 'pySpatialTools', 'version.py') a = open(filename, 'w') try: a.write(cnt % (version)) finally: a.close() def write_versionfile(): """Creates a static file containing version information.""" versionfile = os.path.join(basedir, 'version.py') text = '''""" Version information for pySpatialTools, created during installation by setup.py. Do not add this file to the repository. """ import datetime version = %(version)r date = %(date)r # Development version dev = %(dev)r # Format: (name, major, minor, micro, revision) version_info = %(version_info)r # Format: a 'datetime.datetime' instance date_info = %(date_info)r # Format: (vcs, vcs_tuple) vcs_info = %(vcs_info)r ''' # Try to update all information date, date_info, version, version_info, vcs_info = get_info(dynamic=True) def writefile(): fh = open(versionfile, 'w') subs = { 'dev': dev, 'version': version, 'version_info': version_info, 'date': date, 'date_info': date_info, 'vcs_info': vcs_info } fh.write(text % subs) fh.close() ## Mercurial? Change that if vcs_info[0] == 'mercurial': # Then, we want to update version.py. writefile() else: if os.path.isfile(versionfile): # This is *good*, and the most likely place users will be when # running setup.py. We do not want to overwrite version.py. # Grab the version so that setup can use it. sys.path.insert(0, basedir) from version import version del sys.path[0] else: # Then we write a new file. writefile() return version def get_revision(): """Returns revision and vcs information, dynamically obtained.""" vcs, revision, tag = None, None, None hgdir = os.path.join(basedir, '..', '.hg') gitdir = os.path.join(basedir, '..', '.git') if os.path.isdir(gitdir): vcs = 'git' # For now, we are not bothering with revision and tag. vcs_info = (vcs, (revision, tag)) return revision, vcs_info def get_info(dynamic=True): ## Date information date_info = datetime.datetime.now() date = time.asctime(date_info.timetuple()) revision, version, version_info, vcs_info = None, None, None, None import_failed = False dynamic_failed = False if dynamic: revision, vcs_info = get_revision() if revision is None: dynamic_failed = True if dynamic_failed or not dynamic: # All info should come from version.py. If it does not exist, then # no vcs information will be provided. sys.path.insert(0, basedir) try: from version import date, date_info, version, version_info,\ vcs_info except ImportError: import_failed = True vcs_info = (None, (None, None)) else: revision = vcs_info[1][0] del sys.path[0] if import_failed or (dynamic and not dynamic_failed): # We are here if: # we failed to determine static versioning info, or # we successfully obtained dynamic revision info version = ''.join([str(major), '.', str(minor), '.', str(micro)]) if dev: version += '.dev_' + date_info.strftime("%Y%m%d%H%M%S") version_info = (name, major, minor, micro, revision) return date, date_info, version, version_info, vcs_info ## Version information name = 'pySpatialTools' major = "0" minor = "0" micro = "0" ## Declare current release as a development release. ## Change to False before tagging a release; then change back. dev = True description = """Python package for studying spatial irregular heterogenous data.""" long_description = """ This package is built in order to provide prototyping tools in python to deal with spatial data in python and model spatial-derived relations between different elements in a system. In some systems, due to the huge amount of data, the complexity of their topology their local nature or because other practical reasons we are forced to use only local information for model the system properties and dynamics. pySpatialTools is useful for complex topological systems with different type of spatial data elements and feature data elements in which we are not able to study alls at once because of the data size. pySpatialTools could be not recommendable for treating some specific problems with homogeneous and/or regular data which could be treated with other python packages, as for example computational linguistics (nltk), computer vision or grid data (scipy.ndimage and openCV) or others. """ ## Main author author = 'T. Gonzalez Quintela', author_email = '[email protected]', license = 'MIT' authors = {'tgquintela': ('T. Gonzalez Quintela', '[email protected]')} maintainer = "" maintainer_email = "" url = '' download_url = '' platforms = ['Linux', 'Mac OSX', 'Windows', 'Unix'] keywords = ['math', 'data analysis', 'Mathematics', 'spatial networks', 'spatial correlations', 'framework', 'social sciences', 'spatial analysis', 'spatial ecology'] classifiers = [ # How mature is this project? Common values are # 3 - Alpha # 4 - Beta # 5 - Production/Stable 'Development Status :: 3 - Alpha', # Indicate who your project is intended for 'Intended Audience :: Developers', 'Intended Audience :: Science/Research', # Pick your license as you wish (should match "license" above) 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', # Specify the Python versions you support here 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', # Topic information 'Topic :: Software Development :: Build Tools', 'Topic :: Software Development :: Libraries :: Python Modules', 'Topic :: Scientific/Engineering :: Sociology', 'Topic :: Scientific/Engineering :: Data Analysis', 'Topic :: Scientific/Engineering :: Information Analysis', 'Topic :: Scientific/Engineering :: Mathematics'] date, date_info, version, version_info, vcs_info = get_info() if __name__ == '__main__': # Write versionfile for nightly snapshots. write_versionfile()
645b5682e9763727540ac5d791536bf21623922f
62e58c051128baef9452e7e0eb0b5a83367add26
/x12/5020/309005020.py
83361578777dc5a5345e3f1329482955522de273
[]
no_license
dougvanhorn/bots-grammars
2eb6c0a6b5231c14a6faf194b932aa614809076c
09db18d9d9bd9d92cefbf00f1c0de1c590fe3d0d
refs/heads/master
2021-05-16T12:55:58.022904
2019-05-17T15:22:23
2019-05-17T15:22:23
105,274,633
0
0
null
2017-09-29T13:21:21
2017-09-29T13:21:21
null
UTF-8
Python
false
false
1,711
py
from bots.botsconfig import * from records005020 import recorddefs syntax = { 'version' : '00403', #version of ISA to send 'functionalgroup' : 'AQ', } structure = [ {ID: 'ST', MIN: 1, MAX: 1, LEVEL: [ {ID: 'M10', MIN: 1, MAX: 1}, {ID: 'VEH', MIN: 0, MAX: 10}, {ID: 'CII', MIN: 0, MAX: 3}, {ID: 'NM1', MIN: 0, MAX: 999, LEVEL: [ {ID: 'DMG', MIN: 0, MAX: 1}, {ID: 'DMA', MIN: 0, MAX: 1}, {ID: 'REF', MIN: 0, MAX: 10}, {ID: 'N3', MIN: 0, MAX: 2}, {ID: 'N4', MIN: 0, MAX: 1}, ]}, {ID: 'P4', MIN: 1, MAX: 20, LEVEL: [ {ID: 'LX', MIN: 1, MAX: 9999, LEVEL: [ {ID: 'M13', MIN: 0, MAX: 1}, {ID: 'M11', MIN: 0, MAX: 1}, {ID: 'N9', MIN: 0, MAX: 999}, {ID: 'N1', MIN: 0, MAX: 20, LEVEL: [ {ID: 'N3', MIN: 0, MAX: 2}, {ID: 'N4', MIN: 0, MAX: 1}, {ID: 'DTM', MIN: 0, MAX: 1}, {ID: 'PER', MIN: 0, MAX: 1}, {ID: 'X1', MIN: 0, MAX: 1}, ]}, {ID: 'M12', MIN: 0, MAX: 1, LEVEL: [ {ID: 'R4', MIN: 0, MAX: 10}, ]}, {ID: 'VID', MIN: 0, MAX: 999, LEVEL: [ {ID: 'M7', MIN: 0, MAX: 5}, {ID: 'N10', MIN: 0, MAX: 999, LEVEL: [ {ID: 'VC', MIN: 0, MAX: 999}, {ID: 'MAN', MIN: 0, MAX: 999}, {ID: 'H1', MIN: 0, MAX: 99, LEVEL: [ {ID: 'H2', MIN: 0, MAX: 99}, ]}, ]}, ]}, ]}, ]}, {ID: 'SE', MIN: 1, MAX: 1}, ]} ]
3fa94711deee1501fffaea2ebd96a02444740ebb
f576f0ea3725d54bd2551883901b25b863fe6688
/sdk/iothub/azure-mgmt-iothub/azure/mgmt/iothub/v2021_03_03_preview/aio/operations/_private_endpoint_connections_operations.py
9539dfaa9da4998ba5e5dbec5e4b63fc87b7dedd
[ "LicenseRef-scancode-generic-cla", "MIT", "LGPL-2.1-or-later" ]
permissive
Azure/azure-sdk-for-python
02e3838e53a33d8ba27e9bcc22bd84e790e4ca7c
c2ca191e736bb06bfbbbc9493e8325763ba990bb
refs/heads/main
2023-09-06T09:30:13.135012
2023-09-06T01:08:06
2023-09-06T01:08:06
4,127,088
4,046
2,755
MIT
2023-09-14T21:48:49
2012-04-24T16:46:12
Python
UTF-8
Python
false
false
27,952
py
# pylint: disable=too-many-lines # coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import sys from typing import Any, Callable, Dict, IO, List, Optional, TypeVar, Union, cast, overload from azure.core.exceptions import ( ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, ResourceNotModifiedError, map_error, ) from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.core.rest import HttpRequest from azure.core.tracing.decorator_async import distributed_trace_async from azure.core.utils import case_insensitive_dict from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models as _models from ..._vendor import _convert_request from ...operations._private_endpoint_connections_operations import ( build_delete_request, build_get_request, build_list_request, build_update_request, ) if sys.version_info >= (3, 8): from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports else: from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class PrivateEndpointConnectionsOperations: """ .. warning:: **DO NOT** instantiate this class directly. Instead, you should access the following operations through :class:`~azure.mgmt.iothub.v2021_03_03_preview.aio.IotHubClient`'s :attr:`private_endpoint_connections` attribute. """ models = _models def __init__(self, *args, **kwargs) -> None: input_args = list(args) self._client = input_args.pop(0) if input_args else kwargs.pop("client") self._config = input_args.pop(0) if input_args else kwargs.pop("config") self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") @distributed_trace_async async def list( self, resource_group_name: str, resource_name: str, **kwargs: Any ) -> List[_models.PrivateEndpointConnection]: """List private endpoint connections. List private endpoint connection properties. :param resource_group_name: The name of the resource group that contains the IoT hub. Required. :type resource_group_name: str :param resource_name: The name of the IoT hub. Required. :type resource_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: list of PrivateEndpointConnection or the result of cls(response) :rtype: list[~azure.mgmt.iothub.v2021_03_03_preview.models.PrivateEndpointConnection] :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-03-03-preview"] = kwargs.pop( "api_version", _params.pop("api-version", "2021-03-03-preview") ) cls: ClsType[List[_models.PrivateEndpointConnection]] = kwargs.pop("cls", None) request = build_list_request( resource_group_name=resource_group_name, resource_name=resource_name, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.list.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=_stream, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorDetails, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize("[PrivateEndpointConnection]", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized list.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Devices/iotHubs/{resourceName}/privateEndpointConnections" } @distributed_trace_async async def get( self, resource_group_name: str, resource_name: str, private_endpoint_connection_name: str, **kwargs: Any ) -> _models.PrivateEndpointConnection: """Get private endpoint connection. Get private endpoint connection properties. :param resource_group_name: The name of the resource group that contains the IoT hub. Required. :type resource_group_name: str :param resource_name: The name of the IoT hub. Required. :type resource_name: str :param private_endpoint_connection_name: The name of the private endpoint connection. Required. :type private_endpoint_connection_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: PrivateEndpointConnection or the result of cls(response) :rtype: ~azure.mgmt.iothub.v2021_03_03_preview.models.PrivateEndpointConnection :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-03-03-preview"] = kwargs.pop( "api_version", _params.pop("api-version", "2021-03-03-preview") ) cls: ClsType[_models.PrivateEndpointConnection] = kwargs.pop("cls", None) request = build_get_request( resource_group_name=resource_group_name, resource_name=resource_name, private_endpoint_connection_name=private_endpoint_connection_name, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.get.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=_stream, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorDetails, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize("PrivateEndpointConnection", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Devices/iotHubs/{resourceName}/privateEndpointConnections/{privateEndpointConnectionName}" } async def _update_initial( self, resource_group_name: str, resource_name: str, private_endpoint_connection_name: str, private_endpoint_connection: Union[_models.PrivateEndpointConnection, IO], **kwargs: Any ) -> _models.PrivateEndpointConnection: error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-03-03-preview"] = kwargs.pop( "api_version", _params.pop("api-version", "2021-03-03-preview") ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.PrivateEndpointConnection] = kwargs.pop("cls", None) content_type = content_type or "application/json" _json = None _content = None if isinstance(private_endpoint_connection, (IO, bytes)): _content = private_endpoint_connection else: _json = self._serialize.body(private_endpoint_connection, "PrivateEndpointConnection") request = build_update_request( resource_group_name=resource_group_name, resource_name=resource_name, private_endpoint_connection_name=private_endpoint_connection_name, subscription_id=self._config.subscription_id, api_version=api_version, content_type=content_type, json=_json, content=_content, template_url=self._update_initial.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=_stream, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorDetails, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize("PrivateEndpointConnection", pipeline_response) if response.status_code == 201: deserialized = self._deserialize("PrivateEndpointConnection", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) # type: ignore return deserialized # type: ignore _update_initial.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Devices/iotHubs/{resourceName}/privateEndpointConnections/{privateEndpointConnectionName}" } @overload async def begin_update( self, resource_group_name: str, resource_name: str, private_endpoint_connection_name: str, private_endpoint_connection: _models.PrivateEndpointConnection, *, content_type: str = "application/json", **kwargs: Any ) -> AsyncLROPoller[_models.PrivateEndpointConnection]: """Update private endpoint connection. Update the status of a private endpoint connection with the specified name. :param resource_group_name: The name of the resource group that contains the IoT hub. Required. :type resource_group_name: str :param resource_name: The name of the IoT hub. Required. :type resource_name: str :param private_endpoint_connection_name: The name of the private endpoint connection. Required. :type private_endpoint_connection_name: str :param private_endpoint_connection: The private endpoint connection with updated properties. Required. :type private_endpoint_connection: ~azure.mgmt.iothub.v2021_03_03_preview.models.PrivateEndpointConnection :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either PrivateEndpointConnection or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.iothub.v2021_03_03_preview.models.PrivateEndpointConnection] :raises ~azure.core.exceptions.HttpResponseError: """ @overload async def begin_update( self, resource_group_name: str, resource_name: str, private_endpoint_connection_name: str, private_endpoint_connection: IO, *, content_type: str = "application/json", **kwargs: Any ) -> AsyncLROPoller[_models.PrivateEndpointConnection]: """Update private endpoint connection. Update the status of a private endpoint connection with the specified name. :param resource_group_name: The name of the resource group that contains the IoT hub. Required. :type resource_group_name: str :param resource_name: The name of the IoT hub. Required. :type resource_name: str :param private_endpoint_connection_name: The name of the private endpoint connection. Required. :type private_endpoint_connection_name: str :param private_endpoint_connection: The private endpoint connection with updated properties. Required. :type private_endpoint_connection: IO :keyword content_type: Body Parameter content-type. Content type parameter for binary body. Default value is "application/json". :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either PrivateEndpointConnection or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.iothub.v2021_03_03_preview.models.PrivateEndpointConnection] :raises ~azure.core.exceptions.HttpResponseError: """ @distributed_trace_async async def begin_update( self, resource_group_name: str, resource_name: str, private_endpoint_connection_name: str, private_endpoint_connection: Union[_models.PrivateEndpointConnection, IO], **kwargs: Any ) -> AsyncLROPoller[_models.PrivateEndpointConnection]: """Update private endpoint connection. Update the status of a private endpoint connection with the specified name. :param resource_group_name: The name of the resource group that contains the IoT hub. Required. :type resource_group_name: str :param resource_name: The name of the IoT hub. Required. :type resource_name: str :param private_endpoint_connection_name: The name of the private endpoint connection. Required. :type private_endpoint_connection_name: str :param private_endpoint_connection: The private endpoint connection with updated properties. Is either a PrivateEndpointConnection type or a IO type. Required. :type private_endpoint_connection: ~azure.mgmt.iothub.v2021_03_03_preview.models.PrivateEndpointConnection or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either PrivateEndpointConnection or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.iothub.v2021_03_03_preview.models.PrivateEndpointConnection] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-03-03-preview"] = kwargs.pop( "api_version", _params.pop("api-version", "2021-03-03-preview") ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.PrivateEndpointConnection] = kwargs.pop("cls", None) polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) cont_token: Optional[str] = kwargs.pop("continuation_token", None) if cont_token is None: raw_result = await self._update_initial( resource_group_name=resource_group_name, resource_name=resource_name, private_endpoint_connection_name=private_endpoint_connection_name, private_endpoint_connection=private_endpoint_connection, api_version=api_version, content_type=content_type, cls=lambda x, y, z: x, headers=_headers, params=_params, **kwargs ) kwargs.pop("error_map", None) def get_long_running_output(pipeline_response): deserialized = self._deserialize("PrivateEndpointConnection", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method: AsyncPollingMethod = cast(AsyncPollingMethod, AsyncARMPolling(lro_delay, **kwargs)) elif polling is False: polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output, ) return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore begin_update.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Devices/iotHubs/{resourceName}/privateEndpointConnections/{privateEndpointConnectionName}" } async def _delete_initial( self, resource_group_name: str, resource_name: str, private_endpoint_connection_name: str, **kwargs: Any ) -> Optional[_models.PrivateEndpointConnection]: error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-03-03-preview"] = kwargs.pop( "api_version", _params.pop("api-version", "2021-03-03-preview") ) cls: ClsType[Optional[_models.PrivateEndpointConnection]] = kwargs.pop("cls", None) request = build_delete_request( resource_group_name=resource_group_name, resource_name=resource_name, private_endpoint_connection_name=private_endpoint_connection_name, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self._delete_initial.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=_stream, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorDetails, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize("PrivateEndpointConnection", pipeline_response) if response.status_code == 202: deserialized = self._deserialize("PrivateEndpointConnection", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _delete_initial.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Devices/iotHubs/{resourceName}/privateEndpointConnections/{privateEndpointConnectionName}" } @distributed_trace_async async def begin_delete( self, resource_group_name: str, resource_name: str, private_endpoint_connection_name: str, **kwargs: Any ) -> AsyncLROPoller[_models.PrivateEndpointConnection]: """Delete private endpoint connection. Delete private endpoint connection with the specified name. :param resource_group_name: The name of the resource group that contains the IoT hub. Required. :type resource_group_name: str :param resource_name: The name of the IoT hub. Required. :type resource_name: str :param private_endpoint_connection_name: The name of the private endpoint connection. Required. :type private_endpoint_connection_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either PrivateEndpointConnection or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.iothub.v2021_03_03_preview.models.PrivateEndpointConnection] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-03-03-preview"] = kwargs.pop( "api_version", _params.pop("api-version", "2021-03-03-preview") ) cls: ClsType[_models.PrivateEndpointConnection] = kwargs.pop("cls", None) polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) cont_token: Optional[str] = kwargs.pop("continuation_token", None) if cont_token is None: raw_result = await self._delete_initial( resource_group_name=resource_group_name, resource_name=resource_name, private_endpoint_connection_name=private_endpoint_connection_name, api_version=api_version, cls=lambda x, y, z: x, headers=_headers, params=_params, **kwargs ) kwargs.pop("error_map", None) def get_long_running_output(pipeline_response): deserialized = self._deserialize("PrivateEndpointConnection", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method: AsyncPollingMethod = cast(AsyncPollingMethod, AsyncARMPolling(lro_delay, **kwargs)) elif polling is False: polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output, ) return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore begin_delete.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Devices/iotHubs/{resourceName}/privateEndpointConnections/{privateEndpointConnectionName}" }
10bcb6a6cca24a31397972415ea766cbddfa555c
523f8f5febbbfeb6d42183f2bbeebc36f98eadb5
/147_best.py
3d1e8b37f5da10cd271490da0e35045823c72455
[]
no_license
saleed/LeetCode
655f82fdfcc3000400f49388e97fc0560f356af0
48b43999fb7e2ed82d922e1f64ac76f8fabe4baa
refs/heads/master
2022-06-15T21:54:56.223204
2022-05-09T14:05:50
2022-05-09T14:05:50
209,430,056
2
0
null
null
null
null
UTF-8
Python
false
false
614
py
# Definition for singly-linked list. # class ListNode(object): # def __init__(self, val=0, next=None): # self.val = val # self.next = next class Solution(object): def insertionSortList(self, head): """ :type head: ListNode :rtype: ListNode """ if head==None: return None l=ListNode(0) p=head while p!=None: q=l while q.next!=None and q.next.val<p.val : q=q.next np=p.next p.next=q.next q.next=p p=np return l.next
ffbba23a3c4c45c2d06645337aa75f9d54d24f4c
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_243/ch161_2020_06_15_19_33_27_198209.py
f921b1b82956792ae479cd3fccf38b2e9021b5f4
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
267
py
def PiWallis(num): numerador=1 denominador=2 i=0 multi = 1 while i < num: multi *= numerador/denominador if i%2 == 0: denominador += 2 else: numerador += 2 i+=1 return multi
17443d48e14b9c51e3399739df9833c81a42bef8
886436fe7993aa2913e339ebe70b0eddfacac44c
/build/lib/armin/api/share/utils.py
e68eddb20a572579f23515d616640d6bb6bc3c91
[]
no_license
singajeet/armin
581793cac1ac3b1ab638d274b356965ee5d76750
99f61a0ce0f2d5c587002ddf8d2843e83d9538d3
refs/heads/master
2021-04-28T07:15:42.509397
2018-03-19T17:30:09
2018-03-19T17:30:09
122,219,698
0
0
null
null
null
null
UTF-8
Python
false
false
1,957
py
""" .. module:: source_driver :platform: Unix, Windows :synopsis: A default implementation of source system driver """ from typing import Type, Dict, Any import pathlib from armin.api.share.constants import N, F, V from tinydb import TinyDB, Query def get_meta_table(meta_repo_details:Type[Dict]): """Returns the table from meta repo based on details passed as args """ __db_path = meta_repo_details[N.DB_URI] if __db_path.find('~') >= 0: __db_path = pathlib.Path(__db_path).expanduser() else: __db_path = pathlib.Path(__db_path).absolute() __meta_db = TinyDB(__db_path) if __meta_db is None: return (F.FAILED, 'Unable to create instance of TinyDB') __source_sys_meta_table = __meta_db\ .table(meta_repo_details[N.META_TABLE]) if __source_sys_meta_table is None: return (F.FAILED, 'Inconsistent meta repo. Can not find source\ system details table - %s' % meta_repo_details[N.META_TABLE]) else: return (F.SUCCESS, __source_sys_meta_table) def connect_to_meta(meta_repo_details:Type[Dict], name:str) -> (Type[F], Any): """Connect to metadata database using the details provided asparameters in the constructor Args: meta_repo_details (Dict): Repository details for making connection and query name (str): Name of the item that needs to be queried Returns: status (Tuple): Returns flag Success or Failed and details in case of failure and table record in case of success """ __record = None (status, result_obj) = get_meta_table(meta_repo_details) if status == F.SUCCESS: __source_sys_meta_table = result_obj __record = __source_sys_meta_table\ .get(Query()[N.NAME] == name) else: return (status, result_obj) if __record is not None: return (F.SUCCESS, __record) return (F.FAILED, 'Record not found in meta repo')
44ad04a59f6f8b2df27bfda02eaab12a2aa8d256
06a045819cf99c7059afde40dca12cf9d3eb5f81
/pandas/tests/indexing/test_at.py
01315647c464b7573433bf36515371ffed05e411
[ "BSD-3-Clause" ]
permissive
MarcoGorelli/pandas
b9882c6ac1e4bc753819b7bc7c8b567964efd275
86a4ee01c7899ef454d35b95cde11e9593921c9d
refs/heads/main
2023-08-22T12:35:45.122152
2023-05-04T22:11:07
2023-05-04T22:11:07
164,618,359
4
1
BSD-3-Clause
2023-05-05T09:02:23
2019-01-08T09:55:54
Python
UTF-8
Python
false
false
7,983
py
from datetime import ( datetime, timezone, ) import numpy as np import pytest from pandas.errors import InvalidIndexError from pandas import ( CategoricalDtype, CategoricalIndex, DataFrame, DatetimeIndex, MultiIndex, Series, Timestamp, ) import pandas._testing as tm def test_at_timezone(): # https://github.com/pandas-dev/pandas/issues/33544 result = DataFrame({"foo": [datetime(2000, 1, 1)]}) result.at[0, "foo"] = datetime(2000, 1, 2, tzinfo=timezone.utc) expected = DataFrame( {"foo": [datetime(2000, 1, 2, tzinfo=timezone.utc)]}, dtype=object ) tm.assert_frame_equal(result, expected) def test_selection_methods_of_assigned_col(): # GH 29282 df = DataFrame(data={"a": [1, 2, 3], "b": [4, 5, 6]}) df2 = DataFrame(data={"c": [7, 8, 9]}, index=[2, 1, 0]) df["c"] = df2["c"] df.at[1, "c"] = 11 result = df expected = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [9, 11, 7]}) tm.assert_frame_equal(result, expected) result = df.at[1, "c"] assert result == 11 result = df["c"] expected = Series([9, 11, 7], name="c") tm.assert_series_equal(result, expected) result = df[["c"]] expected = DataFrame({"c": [9, 11, 7]}) tm.assert_frame_equal(result, expected) class TestAtSetItem: def test_at_setitem_item_cache_cleared(self): # GH#22372 Note the multi-step construction is necessary to trigger # the original bug. pandas/issues/22372#issuecomment-413345309 df = DataFrame(index=[0]) df["x"] = 1 df["cost"] = 2 # accessing df["cost"] adds "cost" to the _item_cache df["cost"] # This loc[[0]] lookup used to call _consolidate_inplace at the # BlockManager level, which failed to clear the _item_cache df.loc[[0]] df.at[0, "x"] = 4 df.at[0, "cost"] = 789 expected = DataFrame({"x": [4], "cost": 789}, index=[0]) tm.assert_frame_equal(df, expected) # And in particular, check that the _item_cache has updated correctly. tm.assert_series_equal(df["cost"], expected["cost"]) def test_at_setitem_mixed_index_assignment(self): # GH#19860 ser = Series([1, 2, 3, 4, 5], index=["a", "b", "c", 1, 2]) ser.at["a"] = 11 assert ser.iat[0] == 11 ser.at[1] = 22 assert ser.iat[3] == 22 def test_at_setitem_categorical_missing(self): df = DataFrame( index=range(3), columns=range(3), dtype=CategoricalDtype(["foo", "bar"]) ) df.at[1, 1] = "foo" expected = DataFrame( [ [np.nan, np.nan, np.nan], [np.nan, "foo", np.nan], [np.nan, np.nan, np.nan], ], dtype=CategoricalDtype(["foo", "bar"]), ) tm.assert_frame_equal(df, expected) def test_at_setitem_multiindex(self): df = DataFrame( np.zeros((3, 2), dtype="int64"), columns=MultiIndex.from_tuples([("a", 0), ("a", 1)]), ) df.at[0, "a"] = 10 expected = DataFrame( [[10, 10], [0, 0], [0, 0]], columns=MultiIndex.from_tuples([("a", 0), ("a", 1)]), ) tm.assert_frame_equal(df, expected) @pytest.mark.parametrize("row", (Timestamp("2019-01-01"), "2019-01-01")) def test_at_datetime_index(self, row): # Set float64 dtype to avoid upcast when setting .5 df = DataFrame( data=[[1] * 2], index=DatetimeIndex(data=["2019-01-01", "2019-01-02"]) ).astype({0: "float64"}) expected = DataFrame( data=[[0.5, 1], [1.0, 1]], index=DatetimeIndex(data=["2019-01-01", "2019-01-02"]), ) df.at[row, 0] = 0.5 tm.assert_frame_equal(df, expected) class TestAtSetItemWithExpansion: def test_at_setitem_expansion_series_dt64tz_value(self, tz_naive_fixture): # GH#25506 ts = Timestamp("2017-08-05 00:00:00+0100", tz=tz_naive_fixture) result = Series(ts) result.at[1] = ts expected = Series([ts, ts]) tm.assert_series_equal(result, expected) class TestAtWithDuplicates: def test_at_with_duplicate_axes_requires_scalar_lookup(self): # GH#33041 check that falling back to loc doesn't allow non-scalar # args to slip in arr = np.random.randn(6).reshape(3, 2) df = DataFrame(arr, columns=["A", "A"]) msg = "Invalid call for scalar access" with pytest.raises(ValueError, match=msg): df.at[[1, 2]] with pytest.raises(ValueError, match=msg): df.at[1, ["A"]] with pytest.raises(ValueError, match=msg): df.at[:, "A"] with pytest.raises(ValueError, match=msg): df.at[[1, 2]] = 1 with pytest.raises(ValueError, match=msg): df.at[1, ["A"]] = 1 with pytest.raises(ValueError, match=msg): df.at[:, "A"] = 1 class TestAtErrors: # TODO: De-duplicate/parametrize # test_at_series_raises_key_error2, test_at_frame_raises_key_error2 def test_at_series_raises_key_error(self, indexer_al): # GH#31724 .at should match .loc ser = Series([1, 2, 3], index=[3, 2, 1]) result = indexer_al(ser)[1] assert result == 3 with pytest.raises(KeyError, match="a"): indexer_al(ser)["a"] def test_at_frame_raises_key_error(self, indexer_al): # GH#31724 .at should match .loc df = DataFrame({0: [1, 2, 3]}, index=[3, 2, 1]) result = indexer_al(df)[1, 0] assert result == 3 with pytest.raises(KeyError, match="a"): indexer_al(df)["a", 0] with pytest.raises(KeyError, match="a"): indexer_al(df)[1, "a"] def test_at_series_raises_key_error2(self, indexer_al): # at should not fallback # GH#7814 # GH#31724 .at should match .loc ser = Series([1, 2, 3], index=list("abc")) result = indexer_al(ser)["a"] assert result == 1 with pytest.raises(KeyError, match="^0$"): indexer_al(ser)[0] def test_at_frame_raises_key_error2(self, indexer_al): # GH#31724 .at should match .loc df = DataFrame({"A": [1, 2, 3]}, index=list("abc")) result = indexer_al(df)["a", "A"] assert result == 1 with pytest.raises(KeyError, match="^0$"): indexer_al(df)["a", 0] def test_at_frame_multiple_columns(self): # GH#48296 - at shouldn't modify multiple columns df = DataFrame({"a": [1, 2], "b": [3, 4]}) new_row = [6, 7] with pytest.raises( InvalidIndexError, match=f"You can only assign a scalar value not a \\{type(new_row)}", ): df.at[5] = new_row def test_at_getitem_mixed_index_no_fallback(self): # GH#19860 ser = Series([1, 2, 3, 4, 5], index=["a", "b", "c", 1, 2]) with pytest.raises(KeyError, match="^0$"): ser.at[0] with pytest.raises(KeyError, match="^4$"): ser.at[4] def test_at_categorical_integers(self): # CategoricalIndex with integer categories that don't happen to match # the Categorical's codes ci = CategoricalIndex([3, 4]) arr = np.arange(4).reshape(2, 2) frame = DataFrame(arr, index=ci) for df in [frame, frame.T]: for key in [0, 1]: with pytest.raises(KeyError, match=str(key)): df.at[key, key] def test_at_applied_for_rows(self): # GH#48729 .at should raise InvalidIndexError when assigning rows df = DataFrame(index=["a"], columns=["col1", "col2"]) new_row = [123, 15] with pytest.raises( InvalidIndexError, match=f"You can only assign a scalar value not a \\{type(new_row)}", ): df.at["a"] = new_row
3730426a331bcc75745f9af0cdfc8efaf059a9b9
8eab8ab725c2132bb8d090cdb2d23a5f71945249
/virt/Lib/site-packages/numpy/array_api/tests/test_elementwise_functions.py
b2fb44e766f8adfc368d988bd7d17c2ac418b386
[ "GPL-3.0-only", "BSD-3-Clause-Open-MPI", "GPL-3.0-or-later", "GCC-exception-3.1", "BSD-3-Clause", "MIT" ]
permissive
JoaoSevergnini/metalpy
6c88a413a82bc25edd9308b8490a76fae8dd76ca
c2d0098a309b6ce8c756ff840bfb53fb291747b6
refs/heads/main
2023-04-18T17:25:26.474485
2022-09-18T20:44:45
2022-09-18T20:44:45
474,773,752
3
1
MIT
2022-11-03T20:07:50
2022-03-27T22:21:01
Python
UTF-8
Python
false
false
3,619
py
from inspect import getfullargspec from numpy.testing import assert_raises from .. import asarray, _elementwise_functions from .._elementwise_functions import bitwise_left_shift, bitwise_right_shift from .._dtypes import ( _dtype_categories, _boolean_dtypes, _floating_dtypes, _integer_dtypes, ) def nargs(func): return len(getfullargspec(func).args) def test_function_types(): # Test that every function accepts only the required input types. We only # test the negative cases here (error). The positive cases are tested in # the array API test suite. elementwise_function_input_types = { "abs": "numeric", "acos": "floating-point", "acosh": "floating-point", "add": "numeric", "asin": "floating-point", "asinh": "floating-point", "atan": "floating-point", "atan2": "floating-point", "atanh": "floating-point", "bitwise_and": "integer or boolean", "bitwise_invert": "integer or boolean", "bitwise_left_shift": "integer", "bitwise_or": "integer or boolean", "bitwise_right_shift": "integer", "bitwise_xor": "integer or boolean", "ceil": "numeric", "cos": "floating-point", "cosh": "floating-point", "divide": "floating-point", "equal": "all", "exp": "floating-point", "expm1": "floating-point", "floor": "numeric", "floor_divide": "numeric", "greater": "numeric", "greater_equal": "numeric", "isfinite": "numeric", "isinf": "numeric", "isnan": "numeric", "less": "numeric", "less_equal": "numeric", "log": "floating-point", "logaddexp": "floating-point", "log10": "floating-point", "log1p": "floating-point", "log2": "floating-point", "logical_and": "boolean", "logical_not": "boolean", "logical_or": "boolean", "logical_xor": "boolean", "multiply": "numeric", "negative": "numeric", "not_equal": "all", "positive": "numeric", "pow": "numeric", "remainder": "numeric", "round": "numeric", "sign": "numeric", "sin": "floating-point", "sinh": "floating-point", "sqrt": "floating-point", "square": "numeric", "subtract": "numeric", "tan": "floating-point", "tanh": "floating-point", "trunc": "numeric", } def _array_vals(): for d in _integer_dtypes: yield asarray(1, dtype=d) for d in _boolean_dtypes: yield asarray(False, dtype=d) for d in _floating_dtypes: yield asarray(1.0, dtype=d) for x in _array_vals(): for func_name, types in elementwise_function_input_types.items(): dtypes = _dtype_categories[types] func = getattr(_elementwise_functions, func_name) if nargs(func) == 2: for y in _array_vals(): if x.dtype not in dtypes or y.dtype not in dtypes: assert_raises(TypeError, lambda: func(x, y)) else: if x.dtype not in dtypes: assert_raises(TypeError, lambda: func(x)) def test_bitwise_shift_error(): # bitwise shift functions should raise when the second argument is negative assert_raises( ValueError, lambda: bitwise_left_shift(asarray([1, 1]), asarray([1, -1])) ) assert_raises( ValueError, lambda: bitwise_right_shift(asarray([1, 1]), asarray([1, -1])) )
0dcf4b6b5bcf74c86dfbcba79e56758e85c90377
08c7844a2bd2d94d16e851ce78109a7f33ffc53f
/config.py
58407e73518f4329eb385d50488e096f33660915
[]
no_license
jreiher2003/menu-app
dd5bd4a44688f43086f6a284684ebafff74daf2a
cc93f6a41539ab00b2d85bae21ee308987c93afe
refs/heads/master
2021-01-10T09:26:51.673657
2015-11-17T19:11:25
2015-11-17T19:11:25
46,355,082
0
0
null
null
null
null
UTF-8
Python
false
false
300
py
WTF_CSRF_ENABLED = True SECRET_KEY = 'you-will-never-guess' import os basedir = os.path.abspath(os.path.dirname(__file__)) SQLALCHEMY_TRACK_MODIFICATIONS = True SQLALCHEMY_DATABASE_URI = 'sqlite:///' + os.path.join(basedir, 'menu.db') SQLALCHEMY_MIGRATE_REPO = os.path.join(basedir, 'db_repository')
b517f0bb5ca6346a38ef4745c26d781ed5b2d2cd
e83f2198cb765f048398e6485f138cf4e172199f
/src/pywaz/sprite/__init__.py
2b4fa577eabb5f9d7b1f852d71ca2119cee7f2c3
[]
no_license
giginet/MachiMatch
6d1c2cb2a77323043e8e04e90df5d5e1d8e010d5
69b0e788f75966bf6e2fbfaba19e66da5ce22415
refs/heads/master
2021-01-13T01:36:19.399768
2011-12-25T02:40:10
2011-12-25T02:40:10
1,630,776
1
1
null
null
null
null
UTF-8
Python
false
false
2,221
py
import pygame from pygame.sprite import Sprite class _Mixin(object): def draw(self, surface): for sprite in self.sprites(): if isinstance(sprite, Sprite): sprite.draw(surface) else: surface.blit(sprite.image, sprite.rect) class _Mixin2(object): def draw(self, surface): spritedict = self.spritedict surface_blit = surface.blit dirty = self.lostsprites self.lostsprites = [] dirty_append = dirty.append for s in self.sprites(): r = spritedict[s] if isinstance(s, Sprite): newrect = s.draw(surface) else: newrect = surface_blit(s.image, s.rect) if r is 0: dirty_append(newrect) else: if newrect and newrect.colliderect(r): dirty_append(newrect.union(r)) elif newrect: dirty_append(newrect) dirty_append(r) spritedict[s] = newrect return dirty # group ----------------------------------------------------------------------------------- # # Notice: # The order of inheritation is IMPORTANT # class Group(_Mixin, pygame.sprite.Group): pass class RenderUpdates(_Mixin2, pygame.sprite.RenderUpdates): pass class OrderedUpdates(_Mixin2, pygame.sprite.OrderedUpdates): pass class LayeredUpdates(_Mixin2, pygame.sprite.LayeredUpdates): pass # collide --------------------------------------------------------------------------------- # # Notice: # Only `collide_rect` and `spritecollide` is modified # from pygame.sprite import collide_rect_ratio from pygame.sprite import collide_circle, collide_circle_ratio from pygame.sprite import collide_mask from pygame.sprite import groupcollide, spritecollideany def collide_rect(left, right): u"""collision detection between two sprites, using `colrect` of each sprite""" return left.coltest_rect.colliderect(right.coltest_rect) def spritecollide(sprite, group, dokill, collided = None): if collided is None: collided = collide_rect return pygame.sprite.spritecollide(sprite, group, dokill, collided)
5e7eae6b648b87e1195f66e8de1baf28ed5cc3b4
176088b355fd48f89aa377d1358bc54fd5d9d35d
/backend/task_category/migrations/0001_initial.py
9093194c12138f4db006dc787f9880e94c74f40c
[]
no_license
crowdbotics-apps/fashion-by-genesis-18024
bbf2c78adaefcaf5297b208a23d291ec8c7b0f0f
a725add80913c3ecb4f9e049baa3c78c8de3ffbd
refs/heads/master
2022-10-26T19:09:33.359374
2020-06-11T18:21:20
2020-06-11T18:21:20
271,617,523
0
0
null
null
null
null
UTF-8
Python
false
false
1,239
py
# Generated by Django 2.2.13 on 2020-06-11 18:20 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Category', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255)), ('icon', models.URLField()), ('description', models.TextField(blank=True, null=True)), ('is_recurring', models.BooleanField(blank=True, null=True)), ], ), migrations.CreateModel( name='Subcategory', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255)), ('description', models.TextField(blank=True, null=True)), ('category', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='subcategory_category', to='task_category.Category')), ], ), ]
5b93c2a71b7fe9860423932a99487ea380b7ad1b
e7307703a08ccdc0615bfa3b7a963a2ba2e9e732
/bots/courses_bot/data_models/student_profile.py
8f2b9d06af726a5cb4e8919a976c563d36878473
[]
no_license
liyocee/cs_course_bot
7817c43975c56aeb6edf31d28d9a7f553d107c26
93354ade3713293bf31a494a75bd11c3229814a8
refs/heads/master
2023-05-24T23:29:34.309303
2020-03-15T14:37:15
2020-03-15T14:37:15
246,835,877
0
0
null
2023-05-22T22:42:22
2020-03-12T13:03:32
Python
UTF-8
Python
false
false
707
py
from enum import Enum from typing import Optional from botbuilder.schema import Attachment from .course_unit import CourseUnit class StudentProfile: def __init__( self, name: str = None, admission_number: str = None, course_unit: CourseUnit = None, picture: Attachment = None ): self.name: Optional[str] = name self.admission_number: Optional[str] = admission_number self.course_unit: Optional[CourseUnit] = course_unit self.picture: Optional[Attachment] = picture class StudentProfileAttributes(Enum): NAME = "name" ADMISSION_NUMBER = "admission_number" COURSE_UNIT = "course_unit" PICTURE = "picture"