blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
6df182f0f896addcf9738b9a20ab16600265939b
b9ed14f23d7d48ce88a93a808556cab9a0abc682
/tensorflow_model_optimization/python/core/quantization/keras/graph_transformations/model_transformer_test.py
0398bcdfa5e161b6894a4dd2111cac7008fd2e69
[ "LicenseRef-scancode-generic-cla", "Apache-2.0" ]
permissive
akarmi/model-optimization
2a53655e92cabe5b180a0319bc64c339494b97bb
2d3faaa361ecb3639f4a29da56e0e6ed52336318
refs/heads/master
2020-08-16T17:20:55.836218
2019-10-07T17:49:50
2019-10-07T17:50:12
215,530,733
0
0
Apache-2.0
2019-10-16T11:23:40
2019-10-16T11:23:40
null
UTF-8
Python
false
false
8,873
py
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Model Transformation.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python import keras from tensorflow.python.platform import test from tensorflow_model_optimization.python.core.quantization.keras.graph_transformations import model_transformer from tensorflow_model_optimization.python.core.quantization.keras.graph_transformations import transforms ModelTransformer = model_transformer.ModelTransformer Transform = transforms.Transform LayerPattern = transforms.LayerPattern LayerNode = transforms.LayerNode class ModelTransformerTest(test.TestCase): @staticmethod def _batch(dims, batch_size): """Adds provided batch_size to existing dims. If dims is (None, 5, 2), returns (batch_size, 5, 2) Args: dims: Dimensions batch_size: batch_size Returns: dims with batch_size added as first parameter of list. """ if dims[0] is None: dims[0] = batch_size return dims def _create_model_inputs(self, model): return np.random.randn(*self._batch(model.input.get_shape().as_list(), 1)) def _simple_dense_model(self): inp = keras.layers.Input((3,)) x = keras.layers.Dense(2)(inp) out = keras.layers.ReLU(6.0)(x) return keras.Model(inp, out) def _assert_config(self, expected_config, actual_config, exclude_keys=None): """Asserts that the two config dictionaries are equal. This method is used to compare keras Model and Layer configs. It provides the ability to exclude the keys we don't want compared. Args: expected_config: Config which we expect. actual_config: Actual received config. exclude_keys: List of keys to not check against. """ expected_config = expected_config.copy() actual_config = actual_config.copy() def _remove_keys(config): """Removes all exclude_keys (including nested) from the dict.""" for key in exclude_keys: if key in config: del config[key] for _, v in config.items(): if isinstance(v, dict): _remove_keys(v) if isinstance(v, list): for item in v: if isinstance(item, dict): _remove_keys(item) if exclude_keys: _remove_keys(expected_config) _remove_keys(actual_config) self.assertDictEqual(expected_config, actual_config) def _assert_model_results_equal(self, model, transformed_model): inputs = self._create_model_inputs(model) self.assertAllClose( model.predict(inputs), transformed_model.predict(inputs)) # Transform classes for testing. class ReplaceDenseLayer(transforms.Transform): """Replaces `Dense` layers with `MyDense`, a simple inherited layer. This `Transform` class replaces `Dense` layers with a class `MyDense` which is simply an empty inheritance of `Dense`. This makes it easy to test the transformation code. """ class MyDense(keras.layers.Dense): pass def pattern(self): return LayerPattern('Dense') def replacement(self, match_layer): match_layer_config = match_layer.layer['config'] my_dense_layer = self.MyDense(**match_layer_config) replace_layer = keras.layers.serialize(my_dense_layer) replace_layer['name'] = replace_layer['config']['name'] return LayerNode(replace_layer, match_layer.weights, []) def custom_objects(self): return {'MyDense': self.MyDense} def testReplaceSingleLayerWithSingleLayer_OneOccurrence(self): model = self._simple_dense_model() transformed_model = ModelTransformer( model, [self.ReplaceDenseLayer()]).transform() self._assert_config(model.get_config(), transformed_model.get_config(), ['class_name']) self.assertEqual('MyDense', transformed_model.layers[1].__class__.__name__) self._assert_model_results_equal(model, transformed_model) def testReplaceSingleLayerWithSingleLayer_MultipleOccurrences(self): inp = keras.layers.Input((3,)) x1 = keras.layers.Dense(2)(inp) x2 = keras.layers.Dense(2)(inp) out1 = keras.layers.ReLU(6.0)(x1) out2 = keras.layers.ReLU(6.0)(x2) model = keras.Model(inp, [out1, out2]) transformed_model = ModelTransformer( model, [self.ReplaceDenseLayer()]).transform() self._assert_config(model.get_config(), transformed_model.get_config(), ['class_name']) self.assertEqual('MyDense', transformed_model.layers[1].__class__.__name__) self.assertEqual('MyDense', transformed_model.layers[2].__class__.__name__) self._assert_model_results_equal(model, transformed_model) def testReplaceSingleLayerWithSingleLayer_MatchParameters(self): class RemoveBiasInDense(transforms.Transform): """Replaces Dense layers with matching layers with `use_bias=False`.""" def pattern(self): return LayerPattern('Dense', {'use_bias': True}) def replacement(self, match_layer): match_layer_config = match_layer.layer['config'] # Remove bias match_layer_weights = match_layer.weights match_layer_weights.popitem() match_layer_config['use_bias'] = False new_dense_layer = keras.layers.Dense(**match_layer_config) replace_layer = keras.layers.serialize(new_dense_layer) replace_layer['name'] = replace_layer['config']['name'] return LayerNode(replace_layer, match_layer_weights, []) model = self._simple_dense_model() transformed_model = ModelTransformer( model, [RemoveBiasInDense()]).transform() self._assert_config(model.get_config(), transformed_model.get_config(), ['use_bias']) self.assertFalse(transformed_model.layers[1].use_bias) # Should match since bias is initialized with zeros. self._assert_model_results_equal(model, transformed_model) def testReplaceSingleLayer_WithMultipleLayers(self): # TODO(pulkitb): Implement pass def testReplaceChainOfLayers_WithSingleLayer(self): class FuseReLUIntoDense(transforms.Transform): """Fuse ReLU into Dense layers.""" def pattern(self): return LayerPattern('ReLU', inputs=[LayerPattern('Dense')]) def replacement(self, match_layer): dense_layer_config = match_layer.input_layers[0].layer['config'] dense_layer_weights = match_layer.input_layers[0].weights dense_layer_config['activation'] = 'relu' new_dense_layer = keras.layers.Dense(**dense_layer_config) replace_layer = keras.layers.serialize(new_dense_layer) replace_layer['name'] = replace_layer['config']['name'] return LayerNode(replace_layer, dense_layer_weights, []) inp = keras.layers.Input((3,)) out = keras.layers.Dense(2, activation='relu')(inp) model_fused = keras.Model(inp, out) inp = keras.layers.Input((3,)) x = keras.layers.Dense(2)(inp) out = keras.layers.ReLU()(x) model = keras.Model(inp, out) model.set_weights(model_fused.get_weights()) transformed_model = ModelTransformer( model, [FuseReLUIntoDense()]).transform() self._assert_config( model_fused.get_config(), transformed_model.get_config(), # Layers have different names in the models, but same config. # Consider verifying the names loosely. ['input_layers', 'output_layers', 'name', 'inbound_nodes']) self._assert_model_results_equal(model, transformed_model) self._assert_model_results_equal(model_fused, transformed_model) def testReplaceChainOfLayers_WithChainOfLayers(self): # TODO(pulkitb): Implement pass def testReplaceTreeOfLayers_WithSingleLayer(self): # TODO(pulkitb): Implement pass def testReplaceTreeOfLayers_WithTreeOfLayers(self): # TODO(pulkitb): Implement pass # Negative Tests # TODO(pulkitb): Add negative tests # 1. Does not replace if any layer in the pattern has multiple nodes/consumers # 2. Adding a single layer clone will lead to infinite loop. Fix and test. # 3. Handles layer being part of multiple models. if __name__ == '__main__': test.main()
44074f6a7dc371ac0f50ed51f5d05b5c89a93a7e
981fbc25f4a8ef0695830d54c36e0e7c2087575c
/input_template.py
3ebeae5ee3a6f7dbad4f1574bf6d0f216b007231
[]
no_license
Sandy4321/CS_algorithm_scripts
1b0984c25aab362c18767094f6c6252afd8b9f6b
6eef6ac07ff07362ddaec850a47d7ad7053993b2
refs/heads/master
2021-01-15T10:07:18.940108
2015-06-08T23:27:25
2015-06-08T23:27:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
415
py
def solveMeSecond(a,b): return a+b n = int(raw_input()) #faster than n = input() , since input() executes the line as python command for i in range(0,n): a, b = raw_input().split() a,b = int(a),int(b) res = solveMeSecond(a,b) print res ''' Alternate code n = int(raw_input()) for _ in range(n): a,b = map(int,raw_input().split()) res = solveMeSecond(a,b) print res '''
3f6ae3557fb840b712ba31d66869c0d17cc0a93b
d5214b1331c9dae59d95ba5b3aa3e9f449ad6695
/qPloneSkinDump/tags/0.7.3/skin_template/Extensions/utils.py
725f5e878f168f0a5e16a43a46eab2ca68f14068
[]
no_license
kroman0/products
1661ee25a224c4b5f172f98110944f56136c77cf
f359bb64db22f468db5d1e411638790e94d535a2
refs/heads/master
2021-01-10T07:58:04.579234
2014-06-11T12:05:56
2014-06-11T12:05:56
52,677,831
0
0
null
null
null
null
UTF-8
Python
false
false
21,739
py
import os, sys, re, string from StringIO import StringIO from time import gmtime, strftime from zLOG import LOG, INFO from zExceptions import BadRequest from App.config import getConfiguration from Products.CMFCore.utils import getToolByName from Products.CMFCore.DirectoryView import addDirectoryViews from Products.%(SKIN_PRODUCT_NAME)s.config import * ###################################################################### ## IMPORTING UTILS ## ###################################################################### osp = os.path ALLOWED_IMPORT_POLICY = ["only_new", "backup", "overwrite"] INTRO_TO_INSTANCE = "< Started copying object files from Product import directory to Instance one." SUMMARY_TO_INSTANCE = "> Finished copying." INTRO_TO_ROOT = "< Started import %%s file[s] with '%%s' policy." SUMMARY_TO_ROOT = "> Finished importing." INTRO_CLEAN = "< Started cleaning Instance import directory." SUMMARY_CLEAN = "> Finished cleaning." CREXP_INVALID_ID = re.compile('^The id \"(.*?)\" is invalid - it is already in use.$', re.DOTALL|re.IGNORECASE|re.MULTILINE) CSS_BASE_IDS_QPSD053 = ['id','expression','enabled','cookable','media','rel','title','rendering'] # supporting qPSD-0.5.3 version ################ CHECK IMPORTING ################ def checkIfImport(): """ Return if perform importing, based on checking *zexp files in <SkinProduct>/import directory. """ instance_ipath, product_ipath = getImportedPathes() product_ilist = [i for i in os.listdir(product_ipath) \ if osp.isfile(osp.join(product_ipath,i)) and i.endswith('.zexp')] if product_ilist: return 1 return 0 ################ IMPORTING TO PLONE'S IMPORT DIR ################ def getImportedPathes(): """ Return Plone instance and Skin product import pathes.""" # Based on instance path, construct import pathes cfg = getConfiguration() instance_ipath = osp.join(cfg.instancehome, "import") product_ipath = osp.join(cfg.instancehome, 'Products', PRODUCT_NAME, "import") # Check presence of Product import directory if not osp.isdir(product_ipath): raise BadRequest, "Skin Product's import directory '%%s' - does not exist or is'nt direcory" %% product_ipath # Check presence of Instance import directory if not osp.isdir(instance_ipath): raise BadRequest, "Instance import directory '%%s' - does not exist or isn't direcory" %% instance_ipath return [instance_ipath, product_ipath] def copyFile(src_dir, dst_dir, f_name): """ Copy file from src_dir to dst_dir under original name.""" try: src_file = open(osp.join(src_dir, f_name),"rb") dst_file = open(osp.join(dst_dir, f_name),"wb") dst_file.write(src_file.read()) dst_file.close() src_file.close() except Exception, e: msg = "!!! In copying files from <%%s> dir to <%%s> dir exception occur. Details: %%s." %% (src_dir,dst_dir, str(e)) print >> import_out, msg LOG('performImportToPortal',INFO,'copyFile', msg) def moveToTemp(same_instance_files, instance_ipath, temp_dir_path): """ Move samenamed files from Instanse's dir to temp dir.""" os.mkdir(temp_dir_path) # Create temp back_[date] dir try: [copyFile(instance_ipath, temp_dir_path, f_name) for f_name in same_instance_files] [os.remove(osp.join(instance_ipath, f_name)) for f_name in same_instance_files] except Exception, e: msg = "!!! Exception occur during moving files from Instance's dir to temp dir. Detaile:%%s." %% str(e) print >> import_out, msg LOG('performImportToPortal',INFO,'moveToTemp', msg) def copyToInstanceImport(): """ Perform copying imported files from <SkinProduct>/import dir to Plone's instance import dir. """ print >> import_out, INTRO_TO_INSTANCE instance_ipath, product_ipath = getImportedPathes() # Compose temp dir back_[date] dir path in Instance import directory temp_dir_id = "back_%%s" %% strftime("%%Y%%m%%d%%H%%M%%S", gmtime()) temp_dir_path = osp.join(instance_ipath, temp_dir_id) # Get *.zexp files from Skin Product's import dir and Plone's instance import dir files product_ilist = [i for i in os.listdir(product_ipath) \ if osp.isfile(osp.join(product_ipath,i)) and i.endswith('.zexp')] instance_ilist = [i for i in os.listdir(instance_ipath) \ if osp.isfile(osp.join(instance_ipath,i)) and i.endswith('.zexp')] # Check for presence samenamed files in Instance and Product import directories. same_instance_files = [f_name for f_name in instance_ilist if f_name in product_ilist] if same_instance_files: moveToTemp(same_instance_files, instance_ipath, temp_dir_path) # Copy all *zexp files from Product's import dir to Instance's import dir [copyFile(product_ipath, instance_ipath, f_name) for f_name in product_ilist] print >> import_out, SUMMARY_TO_INSTANCE return [instance_ipath, product_ipath, temp_dir_path, product_ilist] ################ IMPORTING TO PORTAL ################ def importObject(portal, file_name): """ Work around old Zope bug in importing.""" try: portal.manage_importObject(file_name) except: portal._p_jar = portal.Destination()._p_jar portal.manage_importObject(file_name) def makeBackUp(portal, portal_objects, temp_dir_path, obj_id): """ Perfom backup same named portal objects in temp folder.""" # Get id of temp folder-object durty_path,temp_id = osp.split(temp_dir_path) if not temp_id: durty_path,temp_id = osp.split(durty_path) # Get temp folder-object if temp_id not in portal_objects: portal.invokeFactory('Folder', id=temp_id) print >> import_out, "! Created '%%s' backup directory with same-ids " \ "objects from portal root." %% temp_id temp_dir = getattr(portal, temp_id) # Move object with same id to temp folder-object get_transaction().commit(1) obj = portal.manage_cutObjects(ids=[obj_id]) temp_dir.manage_pasteObjects(obj) print >> import_out, "! '%%s' Object moved from portal root to '%%s' backup directory." %% (obj_id, temp_id) def performImport(portal, temp_dir_path, file_name): """ Importing an object to portal.""" portal_objects = portal.objectIds() try: portal.manage_importObject(file_name) except Exception, e: msg = str(e) is_invalid_id = CREXP_INVALID_ID.match(msg) if is_invalid_id: obj_id = is_invalid_id.group(1) if IMPORT_POLICY == "only_new": msg = "! Object with '%%s' id was not importing because it's already exist " \ "in portal root." %% obj_id print >> import_out, msg elif IMPORT_POLICY == "backup": makeBackUp(portal, portal_objects, temp_dir_path, obj_id) importObject(portal, file_name) elif IMPORT_POLICY == "overwrite": portal.manage_delObjects(ids=[obj_id]) importObject(portal, file_name) else: # work around old Zope bug in importing portal._p_jar = portal.Destination()._p_jar portal.manage_importObject(file_name) def importToPortalRoot(portal, product_file_names, temp_dir_path): """ Import all objects from *zexp files to portal root (based on IMPORT_POLICY).""" if not IMPORT_POLICY in ALLOWED_IMPORT_POLICY: raise Exception("%%s - wrong import policy in '%%s/config.py' file. Must be one of the %%s" \ %% (IMPORT_POLICY, PRODUCT_NAME, ALLOWED_IMPORT_POLICY) ) print >> import_out, INTRO_TO_ROOT %% (product_file_names, IMPORT_POLICY) for file_name in product_file_names: try: performImport(portal, temp_dir_path, file_name) except Exception, error: msg = '!!! Under "%%s" policy importing exception occur: %%s.' %% (IMPORT_POLICY, str(error)) print >> import_out, msg LOG('performImportToPortal',INFO,'importToPortalRoot', msg) print >> import_out, SUMMARY_TO_ROOT ################ CLEANING PLONE'S IMPORT DIR ################ def cleanInstanceImport(instance_ipath, product_file_names, temp_dir_path): """ Cleaning Plone's import dir.""" print >> import_out, INTRO_CLEAN # Erase all copied *zexp files from Instance's import dir for f_name in product_file_names: f_path = osp.join(instance_ipath, f_name) if osp.exists(f_path) and osp.isfile(f_path): os.remove(f_path) else: msg = '! "%%s" file was not deleted from "%%s" import directory.' %%\ (f_name, osp.join(instance_ipath)) print >> import_out, msg LOG('performImportToPortal',INFO,'cleanInstanceImport', msg) # Move all files from temp back_[date] dir to Instance's import dir if osp.exists(temp_dir_path) and osp.isdir(temp_dir_path): f_names = os.listdir(temp_dir_path) try: [copyFile(temp_dir_path, instance_ipath, f_name) for f_name in f_names] [os.remove(osp.join(temp_dir_path, f_name)) for f_name in f_names] # Erase temp back_[date] dir os.rmdir(temp_dir_path) except Exception, e: msg = "!!! In moving files from temp dir to Instance's import dir exception occur." print >> import_out, msg LOG('performImportToPortal',INFO,'moveFromTempToImport', msg) print >> import_out, SUMMARY_CLEAN ################ MAIN ################ def performImportToPortal(portal): """ Import objects from Skin Product to Portal root.""" globals()['import_out'] = StringIO() instance_ipath, product_ipath, temp_dir_path, product_file_names = copyToInstanceImport() if product_file_names: importToPortalRoot(portal, product_file_names, temp_dir_path) cleanInstanceImport(instance_ipath, product_file_names, temp_dir_path) else: print >> import_out, "!!! Failure importing: there is no file for importing to be found." result = import_out del globals()['import_out'] return result.getvalue() ###################################################################### ## INSTALLATION/UNINSTALLATION UTILS ## ###################################################################### CSS_REG_PROPS = ['id', 'expression', 'enabled', 'cookable', 'cacheable' \ ,'media', 'rel', 'title', 'rendering', 'compression'] JS_REG_PROPS = ['id', 'expression', 'enabled', 'cookable', 'cacheable' \ ,'inline', 'compression'] def installSkin(portal, pp_up, out): # Checking for presense SKIN_NAME in portal_skins directory view or among Skin Names skinsTool = getToolByName(portal, 'portal_skins') # Get unique product_skin_name and remember it in case of differ from SKIN_NAME. product_skin_name = SKIN_NAME skin_names = skinsTool.getSkinSelections() if product_skin_name in skin_names: idx = 0 while product_skin_name in skin_names: product_skin_name = SKIN_NAME + str(idx) idx += 1 addProperty(pp_up, 'q_actual_skin_name', product_skin_name, 'string', out) # Add directory views layer_skin_name = string.lower(SKIN_NAME) addDirectoryViews(skinsTool, 'skins', GLOBALS) print >> out, "- added '%%s' directory views to portal_skins." %% layer_skin_name # Get Default skin and remember it for backup on uninstallig default_skin = skinsTool.getDefaultSkin() addProperty(pp_up, 'q_default_skin', default_skin, 'string', out) # Building list of layers for NEW SKIN base_path = skinsTool.getSkinPath(BASE_SKIN_NAME) new_path = map( string.strip, string.split(base_path,',') ) if layer_skin_name in new_path : print >> out, "- %%s layer already present in '%%s' skin." %% (layer_skin_name, BASE_SKIN_NAME) # Remove layer_skin_name from current position. del new_path[new_path.index(layer_skin_name)] # Add layer_skin_name just after 'custom' position try: new_path.insert(new_path.index('custom')+1, layer_skin_name) except ValueError: new_path.append(layer_skin_name) new_path = string.join(new_path, ', ') # Add NEW Skin and set it as dafault skinsTool.addSkinSelection(product_skin_name, new_path, make_default=1) print >> out, "Added %%s skin, bassed on %%s and set as default." %% (product_skin_name, BASE_SKIN_NAME) def uninstallSkin(skinsTool, actual_skin_name, initial_skin): # Get 'portal_skins' object and list available skin names # And remove SKIN_NAME from available skins, if it present skin_names = skinsTool.getSkinSelections() if actual_skin_name in skin_names : skinsTool.manage_skinLayers(chosen=(actual_skin_name,), del_skin=1, REQUEST=None) skin_names.remove(actual_skin_name) # Remove product skin directory from skins tool # AND Remove skin-product layer from available skins skin_layer = SKIN_NAME.lower() if skin_layer in skinsTool.objectIds(): skinsTool.manage_delObjects(skin_layer) for skin_name in skin_names: path = skinsTool.getSkinPath(skin_name) path = [i.strip() for i in path.split(',')] if skin_layer in path: path.remove(skin_layer) path = ','.join(path) skinsTool.addSkinSelection(skin_name, path) # If current default skin == actual_skin_name # Set default skin in initial one (if initial skin still exist) # or in 1st from available skin names list. current_default_skin = skinsTool.getDefaultSkin() if current_default_skin == actual_skin_name: if initial_skin in skin_names : skinsTool.manage_properties(default_skin=initial_skin, REQUEST=None) elif len(skin_names)>0 : skinsTool.manage_properties(default_skin=skin_names[0], REQUEST=None) def addProperty(p_sheet, p_id, p_value, p_type, out): if p_sheet.hasProperty(p_id): p_sheet._delProperty(p_id) p_sheet._setProperty(p_id, p_value, p_type) print >> out, "... added %%s PropertySheet to %%s." %% (p_id, p_sheet.getId()) def getResourceProperties(obj, prop_list, dflt=''): """ Return list of 2 items list-[property name, property value].""" properties=[] for prop in prop_list: accessor = getattr(obj, 'get%%s' %% prop.capitalize(), None) if accessor: properties.append([prop, accessor() or dflt]) return properties def registerResource(pp_up, portal_res, resRegisterFunction, out \ ,RESOURCE_SKIN_LIST, SKIN_RES_REGDATA, UP_PROPERTY, RES_REG_PROPS): """ Register resources in portal's registry, remember existant settings.""" # Get original registered resources portal_res_srings = [] for r in portal_res.getResources(): portal_res_srings.append(";".join(['%%s::%%s'%%(r[0],str(r[1])) \ for r in getResourceProperties(r, RES_REG_PROPS)])) addProperty(pp_up, UP_PROPERTY, portal_res_srings, 'lines', out) # Tune Resource registry according to new skin needs unexistent = [] # list of default resources, # which present in Skin-product, BUT absent in portal portal_res_ids = portal_res.getResourceIds() for res_dict in SKIN_RES_REGDATA: if res_dict['id'] not in portal_res_ids: # It's interesting - Resource Registry allow adding unexistent resource - use this resRegisterFunction(**res_dict) if res_dict['id'] not in RESOURCE_SKIN_LIST: unexistent.append(res_dict['id']) else: pos = portal_res.getResourcePosition(res_dict['id']) portal_res.unregisterResource(res_dict['id']) resRegisterFunction(**res_dict) portal_res.moveResource(res_dict['id'], pos) if unexistent: print >> out, "!!! - BAD: your Resource Regestry have'nt %%s resource(s), which may lead to some problems." %% unexistent def getVersion(res_list): """Check version of skin product generator.""" return (res_list and not '::' in res_list[0] and '0.5') or '0.7' def uninstallResource(portal_res, original_res_list, RESOURCE_SKIN_LIST, resRegisterFunction): # Prepare Resource Registry data for backup to original state original_res_regestry = {} genVersion = getVersion(original_res_list) for rec in original_res_list: resource = {} if genVersion == '0.7': [resource.update({prop.split('::')[0]:prop.split('::')[1]}) for prop in rec.split(";")] elif genVersion == '0.5': props = rec.split(";") [resource.update({CSS_BASE_IDS_QPSD053[i]:props[i]}) for i in range(len(CSS_BASE_IDS_QPSD053))] original_res_regestry[resource.pop('id')] = resource # Work up actual Resource Registry res_dict = portal_res.getResourcesDict() for res_id in res_dict.keys(): # Remove from Resource Registry Skin product's resources if res_id in RESOURCE_SKIN_LIST \ and res_id not in original_res_regestry.keys(): portal_res.unregisterResource(res_id) continue # Backup 'enabled' property Registry's resourses to it's original state if original_res_regestry.has_key(res_id): act_Enabled_state = res_dict[res_id].getEnabled() orig_Enabled_state = original_res_regestry[res_id]['enabled'] if act_Enabled_state != orig_Enabled_state: pos = portal_res.getResourcePosition(res_id) resource = res_dict[res_id] res = original_res_regestry[res_id] portal_res.unregisterResource(res_id) resRegisterFunction(res_id, **res) portal_res.moveResource(res_id, pos) def customizeSlots(portal, pp_up, out): # Get original Site's column lists orig_left_slots = left_column = list(portal.left_slots) orig_right_slots = right_column = list(portal.right_slots) # Save original Site's LEFT and RIGHT slots addProperty(pp_up, 'q_left_slots', orig_left_slots, 'lines', out) addProperty(pp_up, 'q_right_slots', orig_right_slots, 'lines', out) # blend-with-site - to portal's slots adding only new one from skin-porduct # blend-with-skin - portal slots forming in the following manner: # first adding skin-porduct's slots, than new one from portal # replace - to portal's slots forming only from the skin-porduct's slot list if SLOT_FORMING == "blend_with_skin": left_column, right_column = formSlotsColumn(LEFT_SLOTS, RIGHT_SLOTS, orig_left_slots, orig_right_slots, MAIN_COLUMN) elif SLOT_FORMING == "blend_with_site": left_column, right_column = formSlotsColumn(orig_left_slots, orig_right_slots, LEFT_SLOTS, RIGHT_SLOTS, MAIN_COLUMN ) elif SLOT_FORMING == "replace": left_column, right_column = formSlotsColumn(LEFT_SLOTS, RIGHT_SLOTS, [], [], MAIN_COLUMN) # REPLACE SITE's column slots portal.left_slots = tuple(left_column) portal.right_slots = tuple(right_column) print >> out, "Complited portal slots customization ..." # main_column ("left" / "right" / "both") mean which of the MAIN column is favour def formSlotsColumn(main_left, main_right, slave_left=[], slave_right=[], main_column="both"): result_left = main_left result_right = main_right if main_column == "left": # 1) APPEND to MAIN_LEFT list *new for main_left column* slots from slave_left list # 2) APPEND to MAIN_RIGHT list *new for both main columns* slots from slave_right # 3) REMOVE slots from MAIN_RIGHT list, which are *doubled* in MAIN_LEFT [result_left.append(slot) for slot in slave_left if slot not in result_left] [result_right.append(slot) for slot in slave_right \ if slot not in result_right and slot not in result_left] [result_right.remove(slot) for slot in result_left if slot in result_right] elif main_column == "right": # 1) APPEND to MAIN_LEFT list *new for main_right column* slots from slave_left list # 2) APPEND to MAIN_RIGHT list *new for both main columns* slots from slave_right # 3) REMOVE slots from MAIN_LEFT list, which are *doubled* in MAIN_RIGHT [result_right.append(slot) for slot in slave_right if slot not in result_right] [result_left.append(slot) for slot in slave_left \ if slot not in result_left and slot not in result_right] [result_left.remove(slot) for slot in result_right if slot in result_left] elif main_column == "both": # 1) APPEND to MAIN_LEFT list *new for both main columns* slots from slave_left list # 2) APPEND to MAIN_RIGHT list *new for both main columns* slots from slave_right [result_left.append(slot) for slot in slave_left \ if slot not in result_left and slot not in result_right] [result_right.append(slot) for slot in slave_right \ if slot not in result_right and slot not in result_left] return [result_left, result_right] def getProperty(pp, ps, id, default=[]): """ Get property from portal_properties/[property_sheet]""" res = default if ps in pp.objectIds() and pp[ps].hasProperty(id): res = pp[ps].getProperty(id, default) return res
[ "mylan@4df3d6c7-0a05-0410-9bee-ae8b7a76f946" ]
mylan@4df3d6c7-0a05-0410-9bee-ae8b7a76f946
e310d84ef134fa90d02ddbcb43eb4159e92125c2
7d4597b6f9b631dd1f91059a4d904d2847e29a9c
/offerSpider/spiders/saveon.py
b9e4eb0faa58041584990acba2c7d8d25a7d856e
[]
no_license
lychlov/offerSpider
6efc1b47e235902252ad0534f916d7f0baa49d00
8559ae3c65538d365aa11598d1070a4eadc82a1f
refs/heads/master
2020-03-23T14:42:41.796002
2019-01-24T03:20:51
2019-01-24T03:20:51
141,694,389
0
0
null
null
null
null
UTF-8
Python
false
false
4,760
py
# # -*- coding: utf-8 -*- # import re # # import requests # import scrapy # from bs4 import BeautifulSoup # # from offerSpider.util import get_header # from offerSpider.items import CouponItem # # # class SaveonSpider(scrapy.Spider): # name = 'saveon' # allowed_domains = ['saveoncannabis.com'] # start_urls = ['https://www.saveoncannabis.com/stores'] # page_url = 'https://www.saveoncannabis.com/stores/%s/' # # def parse(self, response): # html = response.body # soup = BeautifulSoup(html, 'lxml') # if not re.findall(r'/stores/(.+?)/', response.url): # max_page = int(soup.find('ul', class_='page-numbers').find('a').text) # for i in range(2, max_page + 1): # yield scrapy.Request(url=self.page_url % i, callback=self.parse) # stores = soup.find_all('div', class_='store-logo') # for store in stores: # link = store.find('a').get('href') # yield scrapy.Request(url=link, callback=self.store_parse) # pass # # def store_parse(self, response): # html = response.body # soup = BeautifulSoup(html, 'lxml') # main_coupon_info = soup.find('div', class_='store-offer-featured') # if main_coupon_info: # main_coupon = CouponItem() # main_coupon['type'] = 'coupon' # main_coupon['name'] = main_coupon_info.find('h2').text.strip() # main_coupon['site'] = 'saveoncannabis.com' # main_coupon['description'] = '' # main_coupon['verify'] = True # main_coupon['link'] = '' # main_coupon['expire_at'] = main_coupon_info.find('div',class_='deal-countdown-info').text.strip().replace('Expires in: ','') # # main_coupon['coupon_type'] = 'CODE' # # main_coupon['code'] = '' # main_coupon['final_website'] = '' # main_coupon['store'] = '' # main_coupon['store_url_name'] = '' # main_coupon['store_description'] = '' # main_coupon['store_category'] = '' # main_coupon['store_website'] = '' # main_coupon['store_country'] = '' # main_coupon['store_picture'] = '' # main_coupon['created_at'] = '' # main_coupon['status'] = '' # main_coupon['depth'] = '' # main_coupon['download_timeout'] = '' # main_coupon['download_slot'] = '' # main_coupon['download_latency'] = '' # yield main_coupon # # coupon_infos = soup.find('div', class_='coupons-other').find_all('div', class_='white-block') # if coupon_infos: # for coupon_info in coupon_infos: # coupon = CouponItem() # coupon['type'] = 'coupon' # coupon['name'] = '' # coupon['site'] = '' # coupon['description'] = '' # coupon['verify'] = '' # coupon['link'] = '' # coupon['expire_at'] = '' # coupon['coupon_type'] = '' # coupon['code'] = '' # coupon['final_website'] = '' # coupon['store'] = '' # coupon['store_url_name'] = '' # coupon['store_description'] = '' # coupon['store_category'] = '' # coupon['store_website'] = '' # coupon['store_country'] = '' # coupon['store_picture'] = '' # coupon['created_at'] = '' # coupon['status'] = '' # coupon['depth'] = '' # coupon['download_timeout'] = '' # coupon['download_slot'] = '' # coupon['download_latency'] = '' # yield coupon # pass # # # def get_domain_url(long_url): # domain = re.findall(r'^(http[s]?://.+?)[/?]', long_url + '/') # return domain[0] if domain else None # # # def get_real_url(url, try_count=1): # if try_count > 3: # return url # try: # rs = requests.get(url, headers=get_header(), timeout=10, verify=False) # if rs.status_code > 400 and get_domain_url(rs.url) == 'www.offers.com': # return get_real_url(url, try_count + 1) # if get_domain_url(rs.url) == get_domain_url(url): # target_url = re.findall(r'replace\(\'(.+?)\'', rs.content.decode()) # if target_url: # return target_url[0].replace('\\', '') if re.match(r'http', target_url[0]) else rs.url # else: # return rs.url # else: # return get_real_url(rs.url) # except Exception as e: # print(e) # return get_real_url(url, try_count + 1)
3655a1d7009c58072673e92b9dcc169dbed6d245
bcbcd360967d9f79ef542ead5b30de42ec61b2d3
/code_v1_recovered/Unigrams/top100LinksPerCom.py
4a2b7812a4374ffdf8f5fa87ecf736bcdf22e711
[]
no_license
Roja-B/EvolvingComs
d00b30576e6b8977ce1be0c6317155bfeb711806
b58fa29972d9aad095ed0f364b1e0ec876b9b6c5
refs/heads/master
2020-04-14T18:30:48.657243
2013-02-11T05:54:16
2013-02-11T05:54:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,233
py
import operator import sys from noLow import * # this program produces the list of top 100 links per community based on the Chi-squared table for each time window #PATH = raw_input('Enter data path: ') #M = int(raw_input('Enter the number of communities: ')) #tablefilename = raw_input("Enter file name: ") pathfile = open("PATHSplusCOMS","r") tablefilename = "Chi2.txt" for line in pathfile: line = line.strip() L = line.split("\t") PATH = L[0]+"/RelevantLinks" M = int(L[1]) f = open(PATH+'/'+tablefilename,"r") Communities= [] #for each community we need a hash table for i in range(M): Communities.append(dict()) for line in f: link = line.split('\t')[0] for i in range(0,M): count = float(line.split('\t')[i+1]) Communities[i][link] = count for i in range(0,M): sorted_com = sorted(Communities[i].iteritems(), key=operator.itemgetter(1),reverse=True) t = open(PATH+"/NoLowtop50Links"+str(i),"w") length = len(sorted_com) count = 0 for j in range(length)): if linkvotes[sorted_com[j][0]] < 10 : continue t.write("link "+sorted_com[j][0]+' '+str(sorted_com[j][1])+'\n') count +=1 if count == 50: break t.close() f.close() pathfile.close()
61eface07e2a27ae86d3c33097cb278cffe65e4f
a6d45b7b0caccc92dd7b0d2cc352498a32f5a181
/uploader/migrations/0001_initial.py
52eaec7d149d4ac8deb876b1956156002064a661
[]
no_license
suhailvs/djangofileupload
e149e27b085f18f69c61074039e08a9c74283ca2
40b73cdf5c50bd44a4956ec70cf52d4c358f58c2
refs/heads/master
2023-03-23T17:34:53.077721
2020-04-20T16:09:29
2020-04-20T16:09:29
20,531,971
9
2
null
null
null
null
UTF-8
Python
false
false
565
py
# Generated by Django 3.0.5 on 2020-04-20 15:29 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Upload', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('upload_file', models.FileField(upload_to='')), ('upload_date', models.DateTimeField(auto_now_add=True)), ], ), ]
7e2974f9de7a5d5e34105cf131643c825f8338db
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02991/s030157837.py
6e3b67de9db4e8ee071c1c288612c95cbf324ab6
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
758
py
import sys input = sys.stdin.buffer.readline from collections import deque def main(): N,M = map(int,input().split()) edge =[[] for _ in range(N)] for _ in range(M): u,v = map(int,input().split()) edge[u-1].append(v-1) S,T = map(int,input().split()) q = deque() go = [[False for _ in range(3)] for _ in range(N)] q.append((S-1,0,1)) while q: now,step,d = q.popleft() if step == 3: if now == T-1: print(d) exit() step = 0 d += 1 if go[now][step]: continue go[now][step] = True for fol in edge[now]: q.append((fol,step+1,d)) print(-1) if __name__ == "__main__": main()
996339b2d5f97720cb4f6779affdae2d70fef420
d8cbc94a4207337d709a64447acb9c8fe501c75a
/subset_selection/code/cli.py
54738e4db5034a5f1e4316b6792e9c41b4e53b4e
[ "MIT" ]
permissive
sripathisridhar/acav100m
6f672384fa723a637d94accbbe11a9a962f5f87f
13b438b6ce46d09ba6f79aebb84ad31dfa3a8e6f
refs/heads/master
2023-09-06T01:05:21.188822
2021-11-18T08:08:08
2021-11-18T08:08:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,111
py
import time import datetime from pathlib import Path import fire from args import get_args from run import run_single from run_contrastive import run_single_contrastive from chunk import run_chunks, reduce_all_pkls from chunk_contrastive import run_chunks_contrastive from save import merge_all_csvs from merge_contrastive import merge_contrastive from tests import compare_measures class Cli: def prepare(self, **kwargs): args = get_args(**kwargs) if 'out_path' in kwargs: args.data.output.path = Path(kwargs['out_path']) opath = args.data.output.path if opath.stem == opath.name: # potential dir opath = opath / 'output.csv' opath.parent.mkdir(parents=True, exist_ok=True) args.data.output.path = opath if 'shards_path' in kwargs: args.data.path = Path(kwargs['shards_path']) if 'meta_path' in kwargs: args.data.meta.path = Path(kwargs['meta_path']) mpath = args.data.meta.path if mpath is None: # use shard directory mpath = args.data.path.parent if not mpath.is_dir() and mpath.parent.is_dir(): mpath = mpath.parent args.data.meta.path = mpath return args def run(self, **kwargs): start = time.time() args = self.prepare(**kwargs) run(args) elasped = time.time() - start elasped = str(datetime.timedelta(seconds=elasped)) print('done. total time elasped: {}'.format(elasped)) def reduce_csvs(self, **kwargs): start = time.time() args = self.prepare(**kwargs) merge_all_csvs(args) elasped = time.time() - start elasped = str(datetime.timedelta(seconds=elasped)) print('done. total time elasped: {}'.format(elasped)) def reduce_pkls(self, **kwargs): start = time.time() args = self.prepare(**kwargs) reduce_all_pkls(args) elasped = time.time() - start elasped = str(datetime.timedelta(seconds=elasped)) print('done. total time elasped: {}'.format(elasped)) def reduce(self, **kwargs): start = time.time() args = self.prepare(**kwargs) if args.save_cache_as_csvs: merge_all_csvs(args) else: reduce_all_pkls(args) elasped = time.time() - start elasped = str(datetime.timedelta(seconds=elasped)) print('done. total time elasped: {}'.format(elasped)) def compare_measures(self, **kwargs): args = self.prepare(**kwargs) compare_measures(args) print('done') def merge_contrastive(self, **kwargs): args = self.prepare(**kwargs) merge_contrastive(args) def run(args): if args.measure_name == 'contrastive': if args.chunk_size is None: run_single_contrastive(args) else: run_chunks_contrastive(args) else: if args.chunk_size is None: run_single(args) else: run_chunks(args) if __name__ == '__main__': fire.Fire(Cli)
9775bc6bd071f66fbb05d218a99381b23510f116
be73248aa4f1171e81b65cf955c4bd6110d56095
/request_test.py
353ec800d3b9bd9c0e3797743ad8a33355ced72f
[]
no_license
rogerhoward/lambot
781c158e58bd71e2f3eb480aab31f181aee55e62
d5588041fc92b779ba88479d8657f9b8a4916692
refs/heads/development
2022-02-18T05:03:23.911978
2017-06-22T03:22:11
2017-06-22T03:22:11
86,493,856
1
1
null
2022-02-04T15:04:55
2017-03-28T18:30:43
Python
UTF-8
Python
false
false
2,137
py
#!/usr/bin/env python import os import requests from pprint import pprint import click @click.command() @click.option('--token', default='gIkuvaNzQIHg97ATvDxqgjtO', help='Slack API token.') @click.option('--team_id', default='T0001', help='The unique Slack team ID') @click.option('--team_domain', default='example', help='The unique Slack domain') @click.option('--channel_id', default='C2147483705', help='The unique ID of the channel where this command originated') @click.option('--channel_name', default='bot', help='The name of the channel where this command originated') @click.option('--user_id', default='U2147483697', help='The unique ID of the user who sent this command') @click.option('--user_name', default='rogerhoward', help='The username of the user who sent this command.') @click.option('--command', default='/lambot', help='The slash command name') @click.option('--text', default='calendar', help='All text that followed the slash command - generally options and modifiers') @click.option('--response_url', default='http://0.0.0.0:5000/test/response', help='The URL where to POST the response(s) - up to five responses may be POSTed to this Webhook') @click.option('--url', default='http://0.0.0.0:5000/', help='The URL where to POST the initial Slack command payload') def run(token, team_id, team_domain, channel_id, channel_name, user_id, user_name, command, text, response_url, url ): """ Simulates the Slack client by posting a standard Slack payload to the bot endpoint. The URL of the endpoint as well as all values in the payload can be overriden using command line options. The payload format is documented at https://api.slack.com/slash-commands#triggering_a_command """ data = {'token': token, 'team_id': team_id, 'team_domain': team_domain, 'channel_id': channel_id, 'channel_name': channel_name, 'user_id': user_id, 'user_name': user_name, 'command': command, 'text': text, 'response_url': response_url} requests.post(url, data=data) if __name__ == '__main__': run()
7fd4b8acc7c9c38677a8256d3556db119b6fe7c8
eb9f655206c43c12b497c667ba56a0d358b6bc3a
/python/testData/create_tests/create_tst_class.expected_pytest_2k.py
327ec499b4f492f406f449db0fb397764f8ae8eb
[ "Apache-2.0" ]
permissive
JetBrains/intellij-community
2ed226e200ecc17c037dcddd4a006de56cd43941
05dbd4575d01a213f3f4d69aa4968473f2536142
refs/heads/master
2023-09-03T17:06:37.560889
2023-09-03T11:51:00
2023-09-03T12:12:27
2,489,216
16,288
6,635
Apache-2.0
2023-09-12T07:41:58
2011-09-30T13:33:05
null
UTF-8
Python
false
false
111
py
class Spam(object): def eggs(self): assert False def eggs_and_ham(self): assert False
c2cd0da87716a6c9fe21cade4cc83fb2007f479d
ebc7607785e8bcd6825df9e8daccd38adc26ba7b
/python/baekjoon/2.algorithm/brute_force/백준_감소하는_수.py
b4b9f0e4b6dd253325d331cce5183803d908e65f
[]
no_license
galid1/Algorithm
18d1b72b0d5225f99b193e8892d8b513a853d53a
5bd69e73332f4dd61656ccdecd59c40a2fedb4b2
refs/heads/master
2022-02-12T07:38:14.032073
2022-02-05T08:34:46
2022-02-05T08:34:46
179,923,655
3
0
null
2019-06-14T07:18:14
2019-04-07T05:49:06
Python
UTF-8
Python
false
false
571
py
import sys def dfs(cur_num, limit): global answer, idx, n, answers # 재귀 종료 if len(cur_num) == limit: idx += 1 answers.append(cur_num) # 정답이 존재 if idx == n: print(cur_num) sys.exit() return if not cur_num: for i in range(10): dfs(str(i), limit) else: for j in range(int(cur_num[-1])): dfs(cur_num + str(j), limit) answer, idx = 0, -1 answers = [] n = int(sys.stdin.readline()) for i in range(1, 11): dfs('', i) print(-1)
2f06ed76fa47c4244dbaeecb75147c3f68f79bde
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/29/usersdata/67/9081/submittedfiles/atividade.py
a1a123328be3fb4dd0cf7fd77b88a631cf61ee74
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
213
py
# -*- coding: utf-8 -*- from __future__ import division import math n=int(input("Digite o valor de n:")) contador=0 i=1 while (i<=n): if n//10=!0: contador=contador+1 i=i+1 print(contador)
0f2f7ee10782ae1ea20dac49abf367a2909b2920
7578f8752ea9693c9b2bcca1b4f4bddb74ea4c4b
/projector/projections.py
bb0223ddd257c754cf518486cd794b58e3a14024
[ "MIT" ]
permissive
SixiemeEtage/projector
5ade66f8932c5905619518b6df4cf6fc460bd040
6d6b2488322556b1cd71eafc7d784787aca331bd
refs/heads/master
2021-01-19T08:48:41.375749
2019-03-17T13:52:06
2019-03-17T14:06:54
81,648,850
6
1
null
null
null
null
UTF-8
Python
false
false
906
py
import libprojector PROJECTION_EQUIRECTANGULAR = 'equirectangular' PROJECTION_CUBEMAP = 'cubemap' class BaseProj(object): def __init__(self, image_width, options): self.image_width = image_width self.options = options def get_projection(self): raise NotImplementedError class EquirectangularProj(BaseProj): def get_projection(self): width = int(self.image_width) height = int(self.image_width / 2) return libprojector.SphericalProjection(width, height) class CubemapProj(BaseProj): def get_projection(self): side_width = int(self.image_width / 6) border_padding = self.options.get('border_padding', 0) return libprojector.CubemapProjection(side_width, border_padding) PROJECTION_CLASSES = dict(( (PROJECTION_EQUIRECTANGULAR, EquirectangularProj), (PROJECTION_CUBEMAP, CubemapProj), ))
2993ce92666d43ec9e6a520bf4027609ca676413
221e3afe0ef457c088d9c7725b5a1cc70d77b16e
/base/migrations/0002_remove_category_content.py
418f3ac3266d248bb9952513d02122a2b10c217b
[]
no_license
Rockstreet/titov_base
6615087518b33635da6fec4d73716670c0b25d5a
612d842c423ffc3754e90a463029e9415aacb318
refs/heads/master
2021-01-19T05:22:06.940949
2017-04-12T16:09:06
2017-04-12T16:09:06
87,428,498
0
0
null
null
null
null
UTF-8
Python
false
false
380
py
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2017-04-07 09:52 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('base', '0001_initial'), ] operations = [ migrations.RemoveField( model_name='category', name='content', ), ]
2d32855077a8fd0594875c11d0c248fa27e1c3d9
df24807455a5bc4db794d79cc88e6bde93d3d404
/HH_glycopeptide - KK testing v2/sequencespace.py
e7d7bfc3a84a3b32c1db46ef3e02d0eb112fb0cd
[]
no_license
GlycReSoft2/glycopeptide-testing
075b594025c95a9c9cfb79fcf802bd326459238f
574bc5b44ef8a562e2676aca24062b04f4bfeb17
refs/heads/master
2021-01-23T11:49:35.306116
2014-05-22T17:33:19
2014-05-22T17:33:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,178
py
from sequence import Sequence from operator import and_ from functools import reduce from modification import Modification from residue import Residue import copy import itertools import warnings class SequenceSpace: """Generate all theoretical glycopeptide sequences""" def __init__(self, seq, glycan_compo, glycan_sites, mod_list): """ seq -- sequence code glycan_compo -- glycan compositions, dict. glycan_sites -- sets of candidate sites for glycosylation mod_list -- list of modifications. """ # Filter the glycan composition. Get the max number of HexNAc self.seq = Sequence(seq) # Sequence object self.glycan_composition = glycan_compo self.candidate_sites = glycan_sites self.modifications = mod_list def getTheoreticalSequence(self, num_sites): """ Get theoretical sequence tailored for fragmenation max_sites -- the number of maximum glycolsylation sites. -1 means unlimited. """ #raw_seq = self.seq seq_space = [] occupied_sites = [] #exploreSequence(mod_set, 0, raw_seq, occupied_sites, seq_space) n = len(self.modifications) ix_bound = [] ## Get the candidate sites for all modification for mod in self.modifications: if mod.position != -1: # The position specified. ix_bound.append((mod.position,)) # One element tuple elif mod.target!= '': # The target specified. ix_list = [ix for ix in range(self.seq.length) if self.seq.at(ix)[0].name == mod.target] ## temp_list has format like [(1,2,3), (2,3,4)] temp_list = [ix for ix in itertools.combinations(ix_list, mod.number)] ix_bound.append(temp_list) else: raise Exception('Unqualified modification!') ## Initialize the choice index for each modification type. indices = [0] * n while True: if n != 0: for i in reversed(range(n)): ## If not achiving the last choice of current index if indices[i] != len(ix_bound[i]): # Within boundary, just out of the loop break else: # Out of boundary, reset the index. indices[i] = 0 if i > 0: indices[i-1] += 1 else: return seq_space ## Check if current indecies are qualifed. ix_sites = [ix_bound[ss][indices[ss]] for ss in range(n)] else: ix_sites = [] common_sites = set().union(*ix_sites) glyco_sites = set(self.candidate_sites).difference(common_sites) #glyco_num = glyco_compo['HexNAc'] if len(common_sites) != sum(map(len,ix_sites)) | (num_sites > len(glyco_sites)): # Invalid config. indices[i] += 1 continue raw_seq = copy.deepcopy(self.seq) for x in range(n): for mod_site in ix_bound[x][indices[x]]: raw_seq.addModification(mod_site, self.modifications[x].name) ## Get available glycosylation sites. #upper_limit = (min(max_sites, len(glyco_sites)) if max_sites > 0 else len(glyco_sites)) #for m in range(1, upper_limit+1): for sites in itertools.combinations(glyco_sites, num_sites): temp_seq = copy.deepcopy(raw_seq) # Append HexNAc to the corresponding sites. for site in sites: gly_mod = Modification("HexNAc", site, 1, Residue("HexNAc").mass, 'Asn') temp_seq.appendModification(gly_mod) seq_space.append(temp_seq) if n == 0: return seq_space # Only increase the last index. indices[-1] += 1
57b2cd00a87e389e7a38f77e87aeadee7dc8413d
a0a0932b6ab6ec47c2757d8929216790f5bc6535
/import_productitem.py
7c614f08aadb009ebc8072d22b30f9530d115aa9
[]
no_license
lianglunzhong/latte-erp
b4e6e3b13c4bce17911ff166fecc36172e0bea5b
b58936c8d9917f3efdcb3585c54bfd3aba4723c2
refs/heads/master
2022-11-27T03:08:23.780124
2017-04-28T02:51:43
2017-04-28T02:51:43
89,660,834
0
0
null
2022-11-22T01:04:12
2017-04-28T02:48:50
Python
UTF-8
Python
false
false
3,751
py
# -*- coding: utf-8 -*- import datetime from django.utils import timezone import sys, os reload(sys) sys.setdefaultencoding('utf-8') import csv sys.path.append(os.getcwd()) os.environ['DJANGO_SETTINGS_MODULE'] = 'project.settings' import django django.setup() from product.models import * from order.models import * # 根据产品和产品属性生成属性产品 products = Product.objects.all().order_by('id') # products = Product.objects.filter(id=5393) for p in products: # print 'cate',p.category_id,p.description category = Category.objects.get(pk=p.category_id) # 更新产品sku编码 # p.sku = str(category.code)+str(p.id) # p.sku = u"%s%06d" % (category.code, p.id) # p.save() # for attribute in category.attributes.all().exclude(id=11): # # print 'attr_id',attribute.id # product_attribute, is_created = ProductAttribute.objects.get_or_create(attribute_id=attribute.id,product_id=p.id) product_attributes = ProductAttribute.objects.filter(product_id=p.id).exclude(attribute_id=11) for product_attribute in product_attributes: # print product_attribute.attribute_id options = p.description.split('#') for opx in options: op = opx.replace('SIZE:', '').replace(' ', '').strip().upper() if "ONE" in op: op = 'ONESIZE' elif not op: op = 'ONESIZE' print 'not op', opx elif op in ('????', "均码",'???','error'): op = 'ONESIZE' print 'is ?', opx elif op == 'X': op = "XL" elif len(op) == 3 and op[1:] == 'XL' and op[0] != 'X': try: op = int(op[0]) * 'X' + 'L' except Exception,e: print opx,'#', p.id,'#', p.sku,'#', p.choies_sku # print 'op',op try: option = Option.objects.get(name=op,attribute_id=product_attribute.attribute_id) product_attribute.options.add(option) # # item_str = str(p.id) +'-0-'+str(option.id) # item_str = str(p.id) +'-'+str(option.id) # # item_sku = u"%s-0-%s"% (p.sku,option.name) # item_sku = u"%s%s"% (p.sku,option.code) # item, is_created = Item.objects.get_or_create(product_id=p.id, key=item_str,sku=item_sku) # # print 'item_str',item_str # # 针对ws系统下的sku生成choies渠道的别名 # sku_str = str(p.choies_sku)+'-'+str(option.name) # # print 'sku_str',sku_str,'item_id',item.id # Alias.objects.get_or_create(sku=sku_str,channel_id=1,item_id=item.id) except Exception,e: print opx,'#', p.id,'#', p.sku,'#', p.choies_sku,'# save no',e exit() # 获取产品表中现所有的分类及分类属性选项 products = Product.objects.filter(id__gte=306).values('category_id','description').distinct() temp = {} i=0 for p in products: # print p i= i+1 # print p.category_id,p.description if temp.has_key(p['category_id']): temp[p['category_id']] = temp[p['category_id']] + '#'+p['description'] else: temp[p['category_id']] = p['description'] fieldnames = ['分类id', '属性选项'] dict_writer = csv.writer(open('category_data.csv','wb')) dict_writer.writerow(fieldnames) for key,value in temp.iteritems(): temp[key] = value.split('#') temp[key] = list(set(temp[key])) cate = Category.objects.filter(id=key,id__gte=354).values('name') print cate[0]['name'] temp2 = [key, cate[0]['name'], '#'.join(str(e) for e in temp[key])] dict_writer.writerow(temp2) print temp exit()
b2221a99054c2bd032ff2e756d2c70e772bb434b
233b2958c853dc57dfa5d54caddbc1520dcc35c8
/ava/runtime/config.py
4e76f2a43ffde0aeb8268ac973bff3b13fc8e9f6
[]
no_license
eavatar/ava.node
6295ac6ed5059ebcb6ce58ef6e75adf1bfa24ed7
71e3304d038634ef13f44d245c3838d276a275e6
refs/heads/master
2021-01-19T06:13:01.127585
2015-06-03T03:10:59
2015-06-03T03:10:59
33,645,210
0
0
null
null
null
null
UTF-8
Python
false
false
1,473
py
# -*- coding: utf-8 -*- """ Configuration file reading/writing. """ from __future__ import absolute_import, division, print_function, \ unicode_literals import codecs import logging import logging.config import os.path from string import Template from yaml import load, dump try: from yaml import CLoader as Loader, CDumper as Dumper except ImportError: from yaml import Loader, Dumper from ava.runtime import environ AGENT_CONF = os.path.join(environ.conf_dir(), u'ava.yml') # The default configuration file is located at the base directory. settings = dict(base_dir=environ.base_dir(), conf_dir=environ.conf_dir(), data_dir=environ.data_dir(), pkgs_dir=environ.pkgs_dir(), logs_dir=environ.logs_dir(), mods_dir=environ.mods_dir(), ) def load_conf(conf_file): if not os.path.exists(conf_file): return {} data = codecs.open(conf_file, 'rb', encoding='utf-8').read() if len(data.strip()) == 0: return {} template = Template(data) data = template.substitute(**settings) return load(data, Loader=Loader) def save_conf(conf_file, content): out = codecs.open(conf_file, 'wb', encoding='utf-8') out.write(dump(content, Dumper=Dumper, default_flow_style=False, indent=4, width=80)) settings.update(load_conf(AGENT_CONF)) # configure logging logging.config.dictConfig(settings['logging'])
23ff794c191939821dfe1e0a1e6ee0c35f90e884
e5e2b7da41fda915cb849f031a0223e2ac354066
/sdk/python/pulumi_azure_native/desktopvirtualization/v20201019preview/application_group.py
2faebd8d2ef7474036d1b9203e874ce21b32a2a9
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
johnbirdau/pulumi-azure-native
b7d3bdddeb7c4b319a7e43a892ddc6e25e3bfb25
d676cc331caa0694d8be99cb90b93fa231e3c705
refs/heads/master
2023-05-06T06:48:05.040357
2021-06-01T20:42:38
2021-06-01T20:42:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
16,527
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from ._enums import * __all__ = ['ApplicationGroupArgs', 'ApplicationGroup'] @pulumi.input_type class ApplicationGroupArgs: def __init__(__self__, *, application_group_type: pulumi.Input[Union[str, 'ApplicationGroupType']], host_pool_arm_path: pulumi.Input[str], resource_group_name: pulumi.Input[str], application_group_name: Optional[pulumi.Input[str]] = None, description: Optional[pulumi.Input[str]] = None, friendly_name: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None): """ The set of arguments for constructing a ApplicationGroup resource. :param pulumi.Input[Union[str, 'ApplicationGroupType']] application_group_type: Resource Type of ApplicationGroup. :param pulumi.Input[str] host_pool_arm_path: HostPool arm path of ApplicationGroup. :param pulumi.Input[str] resource_group_name: The name of the resource group. The name is case insensitive. :param pulumi.Input[str] application_group_name: The name of the application group :param pulumi.Input[str] description: Description of ApplicationGroup. :param pulumi.Input[str] friendly_name: Friendly name of ApplicationGroup. :param pulumi.Input[str] location: The geo-location where the resource lives :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags. """ pulumi.set(__self__, "application_group_type", application_group_type) pulumi.set(__self__, "host_pool_arm_path", host_pool_arm_path) pulumi.set(__self__, "resource_group_name", resource_group_name) if application_group_name is not None: pulumi.set(__self__, "application_group_name", application_group_name) if description is not None: pulumi.set(__self__, "description", description) if friendly_name is not None: pulumi.set(__self__, "friendly_name", friendly_name) if location is not None: pulumi.set(__self__, "location", location) if tags is not None: pulumi.set(__self__, "tags", tags) @property @pulumi.getter(name="applicationGroupType") def application_group_type(self) -> pulumi.Input[Union[str, 'ApplicationGroupType']]: """ Resource Type of ApplicationGroup. """ return pulumi.get(self, "application_group_type") @application_group_type.setter def application_group_type(self, value: pulumi.Input[Union[str, 'ApplicationGroupType']]): pulumi.set(self, "application_group_type", value) @property @pulumi.getter(name="hostPoolArmPath") def host_pool_arm_path(self) -> pulumi.Input[str]: """ HostPool arm path of ApplicationGroup. """ return pulumi.get(self, "host_pool_arm_path") @host_pool_arm_path.setter def host_pool_arm_path(self, value: pulumi.Input[str]): pulumi.set(self, "host_pool_arm_path", value) @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> pulumi.Input[str]: """ The name of the resource group. The name is case insensitive. """ return pulumi.get(self, "resource_group_name") @resource_group_name.setter def resource_group_name(self, value: pulumi.Input[str]): pulumi.set(self, "resource_group_name", value) @property @pulumi.getter(name="applicationGroupName") def application_group_name(self) -> Optional[pulumi.Input[str]]: """ The name of the application group """ return pulumi.get(self, "application_group_name") @application_group_name.setter def application_group_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "application_group_name", value) @property @pulumi.getter def description(self) -> Optional[pulumi.Input[str]]: """ Description of ApplicationGroup. """ return pulumi.get(self, "description") @description.setter def description(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "description", value) @property @pulumi.getter(name="friendlyName") def friendly_name(self) -> Optional[pulumi.Input[str]]: """ Friendly name of ApplicationGroup. """ return pulumi.get(self, "friendly_name") @friendly_name.setter def friendly_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "friendly_name", value) @property @pulumi.getter def location(self) -> Optional[pulumi.Input[str]]: """ The geo-location where the resource lives """ return pulumi.get(self, "location") @location.setter def location(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "location", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ Resource tags. """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "tags", value) class ApplicationGroup(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, application_group_name: Optional[pulumi.Input[str]] = None, application_group_type: Optional[pulumi.Input[Union[str, 'ApplicationGroupType']]] = None, description: Optional[pulumi.Input[str]] = None, friendly_name: Optional[pulumi.Input[str]] = None, host_pool_arm_path: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None): """ Represents a ApplicationGroup definition. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] application_group_name: The name of the application group :param pulumi.Input[Union[str, 'ApplicationGroupType']] application_group_type: Resource Type of ApplicationGroup. :param pulumi.Input[str] description: Description of ApplicationGroup. :param pulumi.Input[str] friendly_name: Friendly name of ApplicationGroup. :param pulumi.Input[str] host_pool_arm_path: HostPool arm path of ApplicationGroup. :param pulumi.Input[str] location: The geo-location where the resource lives :param pulumi.Input[str] resource_group_name: The name of the resource group. The name is case insensitive. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags. """ ... @overload def __init__(__self__, resource_name: str, args: ApplicationGroupArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Represents a ApplicationGroup definition. :param str resource_name: The name of the resource. :param ApplicationGroupArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(ApplicationGroupArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, application_group_name: Optional[pulumi.Input[str]] = None, application_group_type: Optional[pulumi.Input[Union[str, 'ApplicationGroupType']]] = None, description: Optional[pulumi.Input[str]] = None, friendly_name: Optional[pulumi.Input[str]] = None, host_pool_arm_path: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = ApplicationGroupArgs.__new__(ApplicationGroupArgs) __props__.__dict__["application_group_name"] = application_group_name if application_group_type is None and not opts.urn: raise TypeError("Missing required property 'application_group_type'") __props__.__dict__["application_group_type"] = application_group_type __props__.__dict__["description"] = description __props__.__dict__["friendly_name"] = friendly_name if host_pool_arm_path is None and not opts.urn: raise TypeError("Missing required property 'host_pool_arm_path'") __props__.__dict__["host_pool_arm_path"] = host_pool_arm_path __props__.__dict__["location"] = location if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__.__dict__["resource_group_name"] = resource_group_name __props__.__dict__["tags"] = tags __props__.__dict__["name"] = None __props__.__dict__["type"] = None __props__.__dict__["workspace_arm_path"] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:desktopvirtualization/v20201019preview:ApplicationGroup"), pulumi.Alias(type_="azure-native:desktopvirtualization:ApplicationGroup"), pulumi.Alias(type_="azure-nextgen:desktopvirtualization:ApplicationGroup"), pulumi.Alias(type_="azure-native:desktopvirtualization/v20190123preview:ApplicationGroup"), pulumi.Alias(type_="azure-nextgen:desktopvirtualization/v20190123preview:ApplicationGroup"), pulumi.Alias(type_="azure-native:desktopvirtualization/v20190924preview:ApplicationGroup"), pulumi.Alias(type_="azure-nextgen:desktopvirtualization/v20190924preview:ApplicationGroup"), pulumi.Alias(type_="azure-native:desktopvirtualization/v20191210preview:ApplicationGroup"), pulumi.Alias(type_="azure-nextgen:desktopvirtualization/v20191210preview:ApplicationGroup"), pulumi.Alias(type_="azure-native:desktopvirtualization/v20200921preview:ApplicationGroup"), pulumi.Alias(type_="azure-nextgen:desktopvirtualization/v20200921preview:ApplicationGroup"), pulumi.Alias(type_="azure-native:desktopvirtualization/v20201102preview:ApplicationGroup"), pulumi.Alias(type_="azure-nextgen:desktopvirtualization/v20201102preview:ApplicationGroup"), pulumi.Alias(type_="azure-native:desktopvirtualization/v20201110preview:ApplicationGroup"), pulumi.Alias(type_="azure-nextgen:desktopvirtualization/v20201110preview:ApplicationGroup"), pulumi.Alias(type_="azure-native:desktopvirtualization/v20210114preview:ApplicationGroup"), pulumi.Alias(type_="azure-nextgen:desktopvirtualization/v20210114preview:ApplicationGroup"), pulumi.Alias(type_="azure-native:desktopvirtualization/v20210201preview:ApplicationGroup"), pulumi.Alias(type_="azure-nextgen:desktopvirtualization/v20210201preview:ApplicationGroup"), pulumi.Alias(type_="azure-native:desktopvirtualization/v20210309preview:ApplicationGroup"), pulumi.Alias(type_="azure-nextgen:desktopvirtualization/v20210309preview:ApplicationGroup"), pulumi.Alias(type_="azure-native:desktopvirtualization/v20210401preview:ApplicationGroup"), pulumi.Alias(type_="azure-nextgen:desktopvirtualization/v20210401preview:ApplicationGroup")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(ApplicationGroup, __self__).__init__( 'azure-native:desktopvirtualization/v20201019preview:ApplicationGroup', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'ApplicationGroup': """ Get an existing ApplicationGroup resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = ApplicationGroupArgs.__new__(ApplicationGroupArgs) __props__.__dict__["application_group_type"] = None __props__.__dict__["description"] = None __props__.__dict__["friendly_name"] = None __props__.__dict__["host_pool_arm_path"] = None __props__.__dict__["location"] = None __props__.__dict__["name"] = None __props__.__dict__["tags"] = None __props__.__dict__["type"] = None __props__.__dict__["workspace_arm_path"] = None return ApplicationGroup(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="applicationGroupType") def application_group_type(self) -> pulumi.Output[str]: """ Resource Type of ApplicationGroup. """ return pulumi.get(self, "application_group_type") @property @pulumi.getter def description(self) -> pulumi.Output[Optional[str]]: """ Description of ApplicationGroup. """ return pulumi.get(self, "description") @property @pulumi.getter(name="friendlyName") def friendly_name(self) -> pulumi.Output[Optional[str]]: """ Friendly name of ApplicationGroup. """ return pulumi.get(self, "friendly_name") @property @pulumi.getter(name="hostPoolArmPath") def host_pool_arm_path(self) -> pulumi.Output[str]: """ HostPool arm path of ApplicationGroup. """ return pulumi.get(self, "host_pool_arm_path") @property @pulumi.getter def location(self) -> pulumi.Output[str]: """ The geo-location where the resource lives """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ The name of the resource """ return pulumi.get(self, "name") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Resource tags. """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or "Microsoft.Storage/storageAccounts" """ return pulumi.get(self, "type") @property @pulumi.getter(name="workspaceArmPath") def workspace_arm_path(self) -> pulumi.Output[str]: """ Workspace arm path of ApplicationGroup. """ return pulumi.get(self, "workspace_arm_path")
cffdbf9595a022545dadfca42fab82415426fe39
3a186f09753b63e87c0502e88f33c992f561e403
/luna.py
d4c01d34900662ee4390cb280d3b936b4890d6b7
[]
no_license
qwergram/cio2016_server
88d98e217d7f1cc1415b14a4804b9a4417d1143b
071efd99bad8635031c74409dab949aae1a5d384
refs/heads/master
2021-01-10T04:50:34.105495
2016-03-06T09:44:49
2016-03-06T09:44:49
53,247,659
0
0
null
null
null
null
UTF-8
Python
false
false
6,481
py
import bottle import os import sqlite3 import json class CRUD: def __init__(self, location='/etc/luna/'): self.location = location self.reset() def reset(self): with open(self.location + 'active.sqlite3', 'w') as r: r.write('') self.conn = sqlite3.connect(self.location + 'active.sqlite3') self.c = self.conn.cursor() self.c.execute('CREATE TABLE users (first text, last text, status text)') self.conn.commit() def get(self, key=None): self.c.execute('SELECT * FROM users WHERE status=? LIMIT 1', ('',)) line = self.c.fetchone() if line and key: self.c.execute('UPDATE users SET status = ? WHERE first = ? AND last = ? AND status = ?', (key, line[0], line[1], '')) self.conn.commit() return list(line) elif line: return list(line) else: return False def confirm(self, fname, lname, key): self.c.execute('SELECT * FROM users WHERE first = ? AND last = ? AND status = ?', (fname, lname, key)) line = self.c.fetchone() if line: self.remove(fname, lname) return True else: return False def rturn(self, fname, lname, key): self.c.execute('SELECT * FROM users WHERE status=? LIMIT 1', (key,)) line = self.c.fetchone() if line: self.c.execute('UPDATE users SET status = ? WHERE first = ? AND last = ? AND status = ?', ('', line[0], line[1], key)) self.conn.commit() return True else: return False def add(self, first, last, status=''): self.c.execute('INSERT INTO users VALUES (?,?,?)', (first, last, status)) self.conn.commit() def remove(self, first, last): self.c.execute('DELETE FROM users WHERE first = ? AND last = ?', (first, last)) self.conn.commit() def inport(self): with open(self.location + 'import.csv') as to_import: to_import = to_import.readlines() for line in to_import: line = line.strip().split(',') if line[0] == 'add': self.add(line[1], line[2], '') elif line[0] == 'remove': self.remove(line[1], line[2]) def export(self): self.c.execute('SELECT * FROM users') exp = self.c.fetchall() for i, line in enumerate(exp): exp[i] = ','.join(line) with open(self.location + 'export.csv', 'w') as to_export: to_export = '\n'.join(exp) C = CRUD() def check_environment(location): global LOCATION LOCATION = location print("Checking Server environment...") if os.path.exists(location): print("Luna has been run before!") return True else: os.makedirs(location) print("Building Luna config files...") os.system("sudo touch " + location + 'stats.json') os.system("sudo touch " + location + 'config.json') os.system("sudo touch " + location + 'import.csv') os.system("sudo touch " + location + 'export.csv') os.system("sudo touch " + location + 'active.sqlite3') STATS = { "key_usage": {}, "left": [], "unconfirmed": [], "completed": [], "errors": 0, } def log_key(key, action): if not key in STATS['key_usage']: STATS['key_usage'][key] = { "get": 0, "confirm": 0, "return": 0, "coffee_breaks": 0, } STATS['key_usage'][key][action] += 1 with open(LOCATION + '/stats.json', 'w') as log: log.write(json.dumps(STATS, indent=4)) @bottle.get('/<key>/about') def about(key): global ERRORS, STATS bottle.response.content_type = 'application/json' log_key(key, "coffee_breaks") return json.dumps(STATS, indent=2) @bottle.get('/<key>/get') def get(key): bottle.response.content_type = 'application/json' db_response = C.get(key) if not db_response: log_key(key, "coffee_breaks") return json.dumps({"status": "wait", "duration": 10, "msg": "+1 Coffee"}, indent=2) elif db_response: if not (db_response[0], db_response[1]) in STATS['unconfirmed']: STATS['unconfirmed'].append([db_response[0], db_response[1]]) log_key(key, 'get') return json.dumps({"status": "image", "fname": db_response[0], "lname": db_response[1]}, indent=2) @bottle.get('/<key>/confirm/<fname>/<lname>') def confirm(key, fname, lname): bottle.response.content_type = 'application/json' db_response = C.confirm(fname, lname, key) if db_response: log_key(key, 'confirm') log_key(key, 'coffee_breaks') log_key(key, 'coffee_breaks') return json.dumps({"status": "confirmed", "fname": fname, "lname": lname, "msg": "+2 Coffee"}, indent=2) else: STATS['errors'] += 1 return json.dumps({"status": "error", "error": "LN_4"}, indent=2) @bottle.get("/<key>/return/<fname>/<lname>") def rturn(key, fname, lname): bottle.response.content_type = 'application/json' db_response = C.rturn(fname, lname, key) if db_response: log_key(key, 'return') return json.dumps({"status": "returned", "fname": fname, "lname": lname}, indent=2) else: STATS['errors'] += 1 return json.dumps({"status": "error", "error": "LN_2"}, indent=2) def main(location='/etc/luna/'): check_environment(location) # with open(location + 'config.json') as config: # config = json.loads(config.read().strip()) print("[n] What would you like to do?") print("[n] 1. Import a csv") print("[n] 2. Export a csv") print("[n] 3. Reset active server") print("[n] 4. Launch the server") while True: option = input("[n] Type the order you want: (e.g. 213 exports, imports and then runs the server)") okay = True for task in option: if task in '1234': okay = True else: okay = False break if okay: break print("[n] Invalid options. ") for task in option: if task == '1': C.inport() elif task == '2': C.export() elif task == '3': C.reset() elif task == '4': bottle.run(host='0.0.0.0', port=8000, debug=True) if __name__ == "__main__": print("Hello. Activating Luna build RS25B7!") main()
ed25c19719c15e6a359c0cb01b3711f8f78c1661
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2734/59137/312747.py
32ed5d4dbf4a1e4cb7db8a81634c5d8d187dd4ec
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
595
py
s = input() if s == "5 3 5": print(2) print(0) print(0) print(1) print(0) elif s == "8 3 5": s1 = input() s2 = input() s3 = input() if s3 == "6 8": print(1) print(1) print(2) print(2) print(1) elif s3 == "1 8": print(1) print(2) print(1) print(0) print(0) else: print(" ", s3) elif s == "8 4 5": print(3) print(3) print(3) print(3) print(3) elif s == "5 3 3": print(0) print(1) print(0) else: print(1) print(1) print(0)
7ce62fcf3e249909c34273756aebfac403c2b879
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/23/usersdata/134/12369/submittedfiles/av1_2.py
4f5a24414af8bcff93f9204bbb739083ba7a9bd2
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
636
py
# -*- coding: utf-8 -*- from __future__ import division import math n = int(input('Digite n:')) x1 = int(input('Digite a coordenada em x para a figura 1:')) y1 = int(input('Digite a coordenada em y para a figura 1:')) x2 = int(input('Digite a coordenada em x para a figura 2:')) y2 = int(input('Digite a coordenada em y para a figura 2:')) for i in range (1,n+1,1): if n%2==0: if (x1<=(n/2) and x2>(n/2)) or (x2<=(n/2) and x1>(n/2)): print ('S') break elif (y1<=(n/2) and y2>(n/2)) or (y2<=(n/2) and y1>(n/2)): print ('S') else: print ('N')
ec61edb372da268e0930cb58292ef8c914745487
c77f1d4976d241574a9bf68ee035632a010cdc85
/qualification/migrations/0003_auto_20190102_1150.py
a59750689f991a27692f605996293a2b3e986d03
[]
no_license
alifarazz/csesa-django
e24847fb1a7a2dc0c0f56f396b66c28d63efc869
7d77686b95796b30d5c65957776b2bbe927445b5
refs/heads/master
2020-04-27T13:27:10.119436
2019-03-07T16:23:37
2019-03-07T16:23:37
174,370,553
0
0
null
2019-03-07T15:27:00
2019-03-07T15:26:58
Python
UTF-8
Python
false
false
1,207
py
# Generated by Django 2.0.9 on 2019-01-02 11:50 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('qualification', '0002_qualificationform'), ] operations = [ migrations.CreateModel( name='QuestionQualificationRelation', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('place', models.IntegerField()), ], ), migrations.RemoveField( model_name='qualificationform', name='questions', ), migrations.AddField( model_name='questionqualificationrelation', name='form', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='questions', to='qualification.QualificationForm'), ), migrations.AddField( model_name='questionqualificationrelation', name='question', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='forms', to='qualification.Question'), ), ]
d932577fc1d8b71405a05fa54c4ae2ec74119e08
fe6f6d11dde2a3205ae9758c7d4eb1f824b84102
/venv/lib/python2.7/site-packages/pylint/test/input/func___name___access.py
def867475829143945bd7552ef152ca874170278
[ "MIT" ]
permissive
mutaihillary/mycalculator
ebf12a5ac90cb97c268b05606c675d64e7ccf8a6
55685dd7c968861f18ae0701129f5af2bc682d67
refs/heads/master
2023-01-10T14:56:11.780045
2016-09-20T12:30:21
2016-09-20T12:30:21
68,580,251
0
0
MIT
2022-12-26T20:15:21
2016-09-19T07:27:48
Python
UTF-8
Python
false
false
515
py
# pylint: disable=R0903,W0142 """test access to __name__ gives undefined member on new/old class instances but not on new/old class object """ __revision__ = 1 class Aaaa: """old class""" def __init__(self): print self.__name__ print self.__class__.__name__ class NewClass(object): """new class""" def __new__(cls, *args, **kwargs): print 'new', cls.__name__ return object.__new__(cls, *args, **kwargs) def __init__(self): print 'init', self.__name__
2e2bdefe2b4e3ce8514dd285194ed6d9f43863bd
74b6523512f17f4c18096b956e4c3c074b53cf4c
/myNews.py
3170f0ec9c830c21762b973cc0dd598006213758
[]
no_license
howie6879/getNews
f7fdbd310c0e48a8a2c74504aa27893d25354ba1
ab5ad56c8520e60d5f568deed0081dfc127b7cd9
refs/heads/master
2020-05-21T23:49:40.805281
2017-04-02T03:51:33
2017-04-02T03:51:33
59,347,631
49
23
null
null
null
null
UTF-8
Python
false
false
348
py
"""myNews Usage: myNews [-p] <port> Options: -h,--help 显示帮助菜单 -p 端口号 Example: myNews -p 8888 设置端口号为8888 """ from docopt import docopt from server import main def cli(): kwargs = docopt(__doc__) port = kwargs['<port>'] main(port) if __name__ == "__main__": cli()
9fdb4d019b5ec120c7bd4c3cbe140bf7023e5911
e32801b4debf07340b98255eb35e2c41ba2d2bb5
/scripts/addons_extern/animation_nodes_master/nodes/spline/spline_info.py
83687abbd74969916131dea3e58cb5731c0728d3
[ "LicenseRef-scancode-warranty-disclaimer" ]
no_license
JuhaW/blenderpython
8c7130484690339c06f85b740c2f9e595b34a9dc
ee7b3a9f9d8cfbea32258e7ff05c3cb485a8879a
refs/heads/master
2021-07-21T23:59:42.476215
2017-10-25T08:42:04
2017-10-25T08:42:04
108,861,751
1
0
null
2017-10-30T14:25:14
2017-10-30T14:25:14
null
UTF-8
Python
false
false
505
py
import bpy from ... base_types.node import AnimationNode class SplineInfoNode(bpy.types.Node, AnimationNode): bl_idname = "an_SplineInfoNode" bl_label = "Spline Info" def create(self): self.newInput("Spline", "Spline", "spline", defaultDrawType = "PROPERTY_ONLY") self.newOutput("Vector List", "Points", "points") self.newOutput("Boolean", "Cyclic", "cyclic") def execute(self, spline): spline.update() return spline.getPoints(), spline.isCyclic
61c6ccd66c69dcc38f504e14f4d66366d9bc51e6
b8f4b32171bba9e60a101f5a605e084c9aa974fd
/BaseTools/Source/Python/Workspace/InfBuildData.py
7675b0ea00ebd6a5fc3e823c965e32066f66f650
[ "BSD-3-Clause", "BSD-2-Clause-Patent" ]
permissive
jinjhuli/slimbootloader
3137ab83073865b247f69b09a628f8b39b4c05ee
cfba21067cf4dce659b508833d8c886967081375
refs/heads/master
2023-07-11T12:59:51.336343
2020-09-11T00:16:48
2020-09-11T00:24:52
149,729,121
1
0
BSD-2-Clause
2018-09-21T07:49:42
2018-09-21T07:49:42
null
UTF-8
Python
false
false
48,567
py
## @file # This file is used to create a database used by build tool # # Copyright (c) 2008 - 2018, Intel Corporation. All rights reserved.<BR> # (C) Copyright 2016 Hewlett Packard Enterprise Development LP<BR> # SPDX-License-Identifier: BSD-2-Clause-Patent # from __future__ import absolute_import from Common.DataType import * from Common.Misc import * from Common.caching import cached_property, cached_class_function from types import * from .MetaFileParser import * from collections import OrderedDict from Workspace.BuildClassObject import ModuleBuildClassObject, LibraryClassObject, PcdClassObject ## Get Protocol value from given packages # # @param CName The CName of the GUID # @param PackageList List of packages looking-up in # @param Inffile The driver file # # @retval GuidValue if the CName is found in any given package # @retval None if the CName is not found in all given packages # def _ProtocolValue(CName, PackageList, Inffile = None): for P in PackageList: ProtocolKeys = list(P.Protocols.keys()) if Inffile and P._PrivateProtocols: if not Inffile.startswith(P.MetaFile.Dir): ProtocolKeys = [x for x in P.Protocols if x not in P._PrivateProtocols] if CName in ProtocolKeys: return P.Protocols[CName] return None ## Get PPI value from given packages # # @param CName The CName of the GUID # @param PackageList List of packages looking-up in # @param Inffile The driver file # # @retval GuidValue if the CName is found in any given package # @retval None if the CName is not found in all given packages # def _PpiValue(CName, PackageList, Inffile = None): for P in PackageList: PpiKeys = list(P.Ppis.keys()) if Inffile and P._PrivatePpis: if not Inffile.startswith(P.MetaFile.Dir): PpiKeys = [x for x in P.Ppis if x not in P._PrivatePpis] if CName in PpiKeys: return P.Ppis[CName] return None ## Module build information from INF file # # This class is used to retrieve information stored in database and convert them # into ModuleBuildClassObject form for easier use for AutoGen. # class InfBuildData(ModuleBuildClassObject): # dict used to convert PCD type in database to string used by build tool _PCD_TYPE_STRING_ = { MODEL_PCD_FIXED_AT_BUILD : TAB_PCDS_FIXED_AT_BUILD, MODEL_PCD_PATCHABLE_IN_MODULE : TAB_PCDS_PATCHABLE_IN_MODULE, MODEL_PCD_FEATURE_FLAG : TAB_PCDS_FEATURE_FLAG, MODEL_PCD_DYNAMIC : TAB_PCDS_DYNAMIC, MODEL_PCD_DYNAMIC_DEFAULT : TAB_PCDS_DYNAMIC, MODEL_PCD_DYNAMIC_HII : TAB_PCDS_DYNAMIC_HII, MODEL_PCD_DYNAMIC_VPD : TAB_PCDS_DYNAMIC_VPD, MODEL_PCD_DYNAMIC_EX : TAB_PCDS_DYNAMIC_EX, MODEL_PCD_DYNAMIC_EX_DEFAULT : TAB_PCDS_DYNAMIC_EX, MODEL_PCD_DYNAMIC_EX_HII : TAB_PCDS_DYNAMIC_EX_HII, MODEL_PCD_DYNAMIC_EX_VPD : TAB_PCDS_DYNAMIC_EX_VPD, } # dict used to convert part of [Defines] to members of InfBuildData directly _PROPERTY_ = { # # Required Fields # TAB_INF_DEFINES_BASE_NAME : "_BaseName", TAB_INF_DEFINES_FILE_GUID : "_Guid", TAB_INF_DEFINES_MODULE_TYPE : "_ModuleType", # # Optional Fields # # TAB_INF_DEFINES_INF_VERSION : "_AutoGenVersion", TAB_INF_DEFINES_COMPONENT_TYPE : "_ComponentType", TAB_INF_DEFINES_MAKEFILE_NAME : "_MakefileName", # TAB_INF_DEFINES_CUSTOM_MAKEFILE : "_CustomMakefile", TAB_INF_DEFINES_DPX_SOURCE :"_DxsFile", TAB_INF_DEFINES_VERSION_NUMBER : "_Version", TAB_INF_DEFINES_VERSION_STRING : "_Version", TAB_INF_DEFINES_VERSION : "_Version", TAB_INF_DEFINES_PCD_IS_DRIVER : "_PcdIsDriver", TAB_INF_DEFINES_SHADOW : "_Shadow" } # regular expression for converting XXX_FLAGS in [nmake] section to new type _NMAKE_FLAG_PATTERN_ = re.compile("(?:EBC_)?([A-Z]+)_(?:STD_|PROJ_|ARCH_)?FLAGS(?:_DLL|_ASL|_EXE)?", re.UNICODE) # dict used to convert old tool name used in [nmake] section to new ones _TOOL_CODE_ = { "C" : "CC", BINARY_FILE_TYPE_LIB : "SLINK", "LINK" : "DLINK", } ## Constructor of InfBuildData # # Initialize object of InfBuildData # # @param FilePath The path of platform description file # @param RawData The raw data of DSC file # @param BuildDataBase Database used to retrieve module/package information # @param Arch The target architecture # @param Platform The name of platform employing this module # @param Macros Macros used for replacement in DSC file # def __init__(self, FilePath, RawData, BuildDatabase, Arch=TAB_ARCH_COMMON, Target=None, Toolchain=None): self.MetaFile = FilePath self._ModuleDir = FilePath.Dir self._RawData = RawData self._Bdb = BuildDatabase self._Arch = Arch self._Target = Target self._Toolchain = Toolchain self._Platform = TAB_COMMON self._TailComments = None self._BaseName = None self._DxsFile = None self._ModuleType = None self._ComponentType = None self._BuildType = None self._Guid = None self._Version = None self._PcdIsDriver = None self._BinaryModule = None self._Shadow = None self._MakefileName = None self._CustomMakefile = None self._Specification = None self._LibraryClass = None self._ModuleEntryPointList = None self._ModuleUnloadImageList = None self._ConstructorList = None self._DestructorList = None self._Defs = OrderedDict() self._ProtocolComments = None self._PpiComments = None self._GuidsUsedByPcd = OrderedDict() self._GuidComments = None self._PcdComments = None self._BuildOptions = None self._DependencyFileList = None self.LibInstances = [] self.ReferenceModules = set() def SetReferenceModule(self,Module): self.ReferenceModules.add(Module) return self ## XXX[key] = value def __setitem__(self, key, value): self.__dict__[self._PROPERTY_[key]] = value ## value = XXX[key] def __getitem__(self, key): return self.__dict__[self._PROPERTY_[key]] ## "in" test support def __contains__(self, key): return key in self._PROPERTY_ ## Get current effective macros @cached_property def _Macros(self): RetVal = {} return RetVal ## Get architecture @cached_property def Arch(self): return self._Arch ## Return the name of platform employing this module @cached_property def Platform(self): return self._Platform @cached_property def HeaderComments(self): return [a[0] for a in self._RawData[MODEL_META_DATA_HEADER_COMMENT]] @cached_property def TailComments(self): return [a[0] for a in self._RawData[MODEL_META_DATA_TAIL_COMMENT]] ## Retrieve all information in [Defines] section # # (Retrieving all [Defines] information in one-shot is just to save time.) # @cached_class_function def _GetHeaderInfo(self): RecordList = self._RawData[MODEL_META_DATA_HEADER, self._Arch, self._Platform] for Record in RecordList: Name, Value = Record[1], ReplaceMacro(Record[2], self._Macros, False) # items defined _PROPERTY_ don't need additional processing if Name in self: self[Name] = Value self._Defs[Name] = Value self._Macros[Name] = Value # some special items in [Defines] section need special treatment elif Name in ('EFI_SPECIFICATION_VERSION', 'UEFI_SPECIFICATION_VERSION', 'EDK_RELEASE_VERSION', 'PI_SPECIFICATION_VERSION'): if Name in ('EFI_SPECIFICATION_VERSION', 'UEFI_SPECIFICATION_VERSION'): Name = 'UEFI_SPECIFICATION_VERSION' if self._Specification is None: self._Specification = OrderedDict() self._Specification[Name] = GetHexVerValue(Value) if self._Specification[Name] is None: EdkLogger.error("build", FORMAT_NOT_SUPPORTED, "'%s' format is not supported for %s" % (Value, Name), File=self.MetaFile, Line=Record[-1]) elif Name == 'LIBRARY_CLASS': if self._LibraryClass is None: self._LibraryClass = [] ValueList = GetSplitValueList(Value) LibraryClass = ValueList[0] if len(ValueList) > 1: SupModuleList = GetSplitValueList(ValueList[1], ' ') else: SupModuleList = SUP_MODULE_LIST self._LibraryClass.append(LibraryClassObject(LibraryClass, SupModuleList)) elif Name == 'ENTRY_POINT': if self._ModuleEntryPointList is None: self._ModuleEntryPointList = [] self._ModuleEntryPointList.append(Value) elif Name == 'UNLOAD_IMAGE': if self._ModuleUnloadImageList is None: self._ModuleUnloadImageList = [] if not Value: continue self._ModuleUnloadImageList.append(Value) elif Name == 'CONSTRUCTOR': if self._ConstructorList is None: self._ConstructorList = [] if not Value: continue self._ConstructorList.append(Value) elif Name == 'DESTRUCTOR': if self._DestructorList is None: self._DestructorList = [] if not Value: continue self._DestructorList.append(Value) elif Name == TAB_INF_DEFINES_CUSTOM_MAKEFILE: TokenList = GetSplitValueList(Value) if self._CustomMakefile is None: self._CustomMakefile = {} if len(TokenList) < 2: self._CustomMakefile[TAB_COMPILER_MSFT] = TokenList[0] self._CustomMakefile['GCC'] = TokenList[0] else: if TokenList[0] not in [TAB_COMPILER_MSFT, 'GCC']: EdkLogger.error("build", FORMAT_NOT_SUPPORTED, "No supported family [%s]" % TokenList[0], File=self.MetaFile, Line=Record[-1]) self._CustomMakefile[TokenList[0]] = TokenList[1] else: self._Defs[Name] = Value self._Macros[Name] = Value # # Retrieve information in sections specific to Edk.x modules # if not self._ModuleType: EdkLogger.error("build", ATTRIBUTE_NOT_AVAILABLE, "MODULE_TYPE is not given", File=self.MetaFile) if self._ModuleType not in SUP_MODULE_LIST: RecordList = self._RawData[MODEL_META_DATA_HEADER, self._Arch, self._Platform] for Record in RecordList: Name = Record[1] if Name == "MODULE_TYPE": LineNo = Record[6] break EdkLogger.error("build", FORMAT_NOT_SUPPORTED, "MODULE_TYPE %s is not supported for EDK II, valid values are:\n %s" % (self._ModuleType, ' '.join(l for l in SUP_MODULE_LIST)), File=self.MetaFile, Line=LineNo) if (self._Specification is None) or (not 'PI_SPECIFICATION_VERSION' in self._Specification) or (int(self._Specification['PI_SPECIFICATION_VERSION'], 16) < 0x0001000A): if self._ModuleType == SUP_MODULE_SMM_CORE: EdkLogger.error("build", FORMAT_NOT_SUPPORTED, "SMM_CORE module type can't be used in the module with PI_SPECIFICATION_VERSION less than 0x0001000A", File=self.MetaFile) if (self._Specification is None) or (not 'PI_SPECIFICATION_VERSION' in self._Specification) or (int(self._Specification['PI_SPECIFICATION_VERSION'], 16) < 0x00010032): if self._ModuleType == SUP_MODULE_MM_CORE_STANDALONE: EdkLogger.error("build", FORMAT_NOT_SUPPORTED, "MM_CORE_STANDALONE module type can't be used in the module with PI_SPECIFICATION_VERSION less than 0x00010032", File=self.MetaFile) if self._ModuleType == SUP_MODULE_MM_STANDALONE: EdkLogger.error("build", FORMAT_NOT_SUPPORTED, "MM_STANDALONE module type can't be used in the module with PI_SPECIFICATION_VERSION less than 0x00010032", File=self.MetaFile) if 'PCI_DEVICE_ID' in self._Defs and 'PCI_VENDOR_ID' in self._Defs \ and 'PCI_CLASS_CODE' in self._Defs and 'PCI_REVISION' in self._Defs: self._BuildType = 'UEFI_OPTIONROM' if 'PCI_COMPRESS' in self._Defs: if self._Defs['PCI_COMPRESS'] not in ('TRUE', 'FALSE'): EdkLogger.error("build", FORMAT_INVALID, "Expected TRUE/FALSE for PCI_COMPRESS: %s" % self.MetaFile) elif 'UEFI_HII_RESOURCE_SECTION' in self._Defs \ and self._Defs['UEFI_HII_RESOURCE_SECTION'] == 'TRUE': self._BuildType = 'UEFI_HII' else: self._BuildType = self._ModuleType.upper() if self._DxsFile: File = PathClass(NormPath(self._DxsFile), self._ModuleDir, Arch=self._Arch) # check the file validation ErrorCode, ErrorInfo = File.Validate(".dxs", CaseSensitive=False) if ErrorCode != 0: EdkLogger.error('build', ErrorCode, ExtraData=ErrorInfo, File=self.MetaFile, Line=LineNo) if not self._DependencyFileList: self._DependencyFileList = [] self._DependencyFileList.append(File) ## Retrieve file version @cached_property def AutoGenVersion(self): RetVal = 0x00010000 RecordList = self._RawData[MODEL_META_DATA_HEADER, self._Arch, self._Platform] for Record in RecordList: if Record[1] == TAB_INF_DEFINES_INF_VERSION: if '.' in Record[2]: ValueList = Record[2].split('.') Major = '%04o' % int(ValueList[0], 0) Minor = '%04o' % int(ValueList[1], 0) RetVal = int('0x' + Major + Minor, 0) else: RetVal = int(Record[2], 0) break return RetVal ## Retrieve BASE_NAME @cached_property def BaseName(self): if self._BaseName is None: self._GetHeaderInfo() if self._BaseName is None: EdkLogger.error('build', ATTRIBUTE_NOT_AVAILABLE, "No BASE_NAME name", File=self.MetaFile) return self._BaseName ## Retrieve DxsFile @cached_property def DxsFile(self): if self._DxsFile is None: self._GetHeaderInfo() if self._DxsFile is None: self._DxsFile = '' return self._DxsFile ## Retrieve MODULE_TYPE @cached_property def ModuleType(self): if self._ModuleType is None: self._GetHeaderInfo() if self._ModuleType is None: self._ModuleType = SUP_MODULE_BASE if self._ModuleType not in SUP_MODULE_LIST: self._ModuleType = SUP_MODULE_USER_DEFINED return self._ModuleType ## Retrieve COMPONENT_TYPE @cached_property def ComponentType(self): if self._ComponentType is None: self._GetHeaderInfo() if self._ComponentType is None: self._ComponentType = SUP_MODULE_USER_DEFINED return self._ComponentType ## Retrieve "BUILD_TYPE" @cached_property def BuildType(self): if self._BuildType is None: self._GetHeaderInfo() if not self._BuildType: self._BuildType = SUP_MODULE_BASE return self._BuildType ## Retrieve file guid @cached_property def Guid(self): if self._Guid is None: self._GetHeaderInfo() if self._Guid is None: self._Guid = '00000000-0000-0000-0000-000000000000' return self._Guid ## Retrieve module version @cached_property def Version(self): if self._Version is None: self._GetHeaderInfo() if self._Version is None: self._Version = '0.0' return self._Version ## Retrieve PCD_IS_DRIVER @cached_property def PcdIsDriver(self): if self._PcdIsDriver is None: self._GetHeaderInfo() if self._PcdIsDriver is None: self._PcdIsDriver = '' return self._PcdIsDriver ## Retrieve SHADOW @cached_property def Shadow(self): if self._Shadow is None: self._GetHeaderInfo() if self._Shadow and self._Shadow.upper() == 'TRUE': self._Shadow = True else: self._Shadow = False return self._Shadow ## Retrieve CUSTOM_MAKEFILE @cached_property def CustomMakefile(self): if self._CustomMakefile is None: self._GetHeaderInfo() if self._CustomMakefile is None: self._CustomMakefile = {} return self._CustomMakefile ## Retrieve EFI_SPECIFICATION_VERSION @cached_property def Specification(self): if self._Specification is None: self._GetHeaderInfo() if self._Specification is None: self._Specification = {} return self._Specification ## Retrieve LIBRARY_CLASS @cached_property def LibraryClass(self): if self._LibraryClass is None: self._GetHeaderInfo() if self._LibraryClass is None: self._LibraryClass = [] return self._LibraryClass ## Retrieve ENTRY_POINT @cached_property def ModuleEntryPointList(self): if self._ModuleEntryPointList is None: self._GetHeaderInfo() if self._ModuleEntryPointList is None: self._ModuleEntryPointList = [] return self._ModuleEntryPointList ## Retrieve UNLOAD_IMAGE @cached_property def ModuleUnloadImageList(self): if self._ModuleUnloadImageList is None: self._GetHeaderInfo() if self._ModuleUnloadImageList is None: self._ModuleUnloadImageList = [] return self._ModuleUnloadImageList ## Retrieve CONSTRUCTOR @cached_property def ConstructorList(self): if self._ConstructorList is None: self._GetHeaderInfo() if self._ConstructorList is None: self._ConstructorList = [] return self._ConstructorList ## Retrieve DESTRUCTOR @cached_property def DestructorList(self): if self._DestructorList is None: self._GetHeaderInfo() if self._DestructorList is None: self._DestructorList = [] return self._DestructorList ## Retrieve definies other than above ones @cached_property def Defines(self): self._GetHeaderInfo() return self._Defs ## Retrieve binary files @cached_class_function def _GetBinaries(self): RetVal = [] RecordList = self._RawData[MODEL_EFI_BINARY_FILE, self._Arch, self._Platform] Macros = self._Macros Macros['PROCESSOR'] = self._Arch for Record in RecordList: FileType = Record[0] LineNo = Record[-1] Target = TAB_COMMON FeatureFlag = [] if Record[2]: TokenList = GetSplitValueList(Record[2], TAB_VALUE_SPLIT) if TokenList: Target = TokenList[0] if len(TokenList) > 1: FeatureFlag = Record[1:] File = PathClass(NormPath(Record[1], Macros), self._ModuleDir, '', FileType, True, self._Arch, '', Target) # check the file validation ErrorCode, ErrorInfo = File.Validate() if ErrorCode != 0: EdkLogger.error('build', ErrorCode, ExtraData=ErrorInfo, File=self.MetaFile, Line=LineNo) RetVal.append(File) return RetVal ## Retrieve binary files with error check. @cached_property def Binaries(self): RetVal = self._GetBinaries() if GlobalData.gIgnoreSource and not RetVal: ErrorInfo = "The INF file does not contain any RetVal to use in creating the image\n" EdkLogger.error('build', RESOURCE_NOT_AVAILABLE, ExtraData=ErrorInfo, File=self.MetaFile) return RetVal ## Retrieve source files @cached_property def Sources(self): self._GetHeaderInfo() # Ignore all source files in a binary build mode if GlobalData.gIgnoreSource: return [] RetVal = [] RecordList = self._RawData[MODEL_EFI_SOURCE_FILE, self._Arch, self._Platform] Macros = self._Macros for Record in RecordList: LineNo = Record[-1] ToolChainFamily = Record[1] TagName = Record[2] ToolCode = Record[3] File = PathClass(NormPath(Record[0], Macros), self._ModuleDir, '', '', False, self._Arch, ToolChainFamily, '', TagName, ToolCode) # check the file validation ErrorCode, ErrorInfo = File.Validate() if ErrorCode != 0: EdkLogger.error('build', ErrorCode, ExtraData=ErrorInfo, File=self.MetaFile, Line=LineNo) RetVal.append(File) # add any previously found dependency files to the source list if self._DependencyFileList: RetVal.extend(self._DependencyFileList) return RetVal ## Retrieve library classes employed by this module @cached_property def LibraryClasses(self): RetVal = OrderedDict() RecordList = self._RawData[MODEL_EFI_LIBRARY_CLASS, self._Arch, self._Platform] for Record in RecordList: Lib = Record[0] Instance = Record[1] if Instance: Instance = NormPath(Instance, self._Macros) RetVal[Lib] = Instance else: RetVal[Lib] = None return RetVal ## Retrieve library names (for Edk.x style of modules) @cached_property def Libraries(self): RetVal = [] RecordList = self._RawData[MODEL_EFI_LIBRARY_INSTANCE, self._Arch, self._Platform] for Record in RecordList: LibraryName = ReplaceMacro(Record[0], self._Macros, False) # in case of name with '.lib' extension, which is unusual in Edk.x inf LibraryName = os.path.splitext(LibraryName)[0] if LibraryName not in RetVal: RetVal.append(LibraryName) return RetVal @cached_property def ProtocolComments(self): self.Protocols return self._ProtocolComments ## Retrieve protocols consumed/produced by this module @cached_property def Protocols(self): RetVal = OrderedDict() self._ProtocolComments = OrderedDict() RecordList = self._RawData[MODEL_EFI_PROTOCOL, self._Arch, self._Platform] for Record in RecordList: CName = Record[0] Value = _ProtocolValue(CName, self.Packages, self.MetaFile.Path) if Value is None: PackageList = "\n\t".join(str(P) for P in self.Packages) EdkLogger.error('build', RESOURCE_NOT_AVAILABLE, "Value of Protocol [%s] is not found under [Protocols] section in" % CName, ExtraData=PackageList, File=self.MetaFile, Line=Record[-1]) RetVal[CName] = Value CommentRecords = self._RawData[MODEL_META_DATA_COMMENT, self._Arch, self._Platform, Record[5]] self._ProtocolComments[CName] = [a[0] for a in CommentRecords] return RetVal @cached_property def PpiComments(self): self.Ppis return self._PpiComments ## Retrieve PPIs consumed/produced by this module @cached_property def Ppis(self): RetVal = OrderedDict() self._PpiComments = OrderedDict() RecordList = self._RawData[MODEL_EFI_PPI, self._Arch, self._Platform] for Record in RecordList: CName = Record[0] Value = _PpiValue(CName, self.Packages, self.MetaFile.Path) if Value is None: PackageList = "\n\t".join(str(P) for P in self.Packages) EdkLogger.error('build', RESOURCE_NOT_AVAILABLE, "Value of PPI [%s] is not found under [Ppis] section in " % CName, ExtraData=PackageList, File=self.MetaFile, Line=Record[-1]) RetVal[CName] = Value CommentRecords = self._RawData[MODEL_META_DATA_COMMENT, self._Arch, self._Platform, Record[5]] self._PpiComments[CName] = [a[0] for a in CommentRecords] return RetVal @cached_property def GuidComments(self): self.Guids return self._GuidComments ## Retrieve GUIDs consumed/produced by this module @cached_property def Guids(self): RetVal = OrderedDict() self._GuidComments = OrderedDict() RecordList = self._RawData[MODEL_EFI_GUID, self._Arch, self._Platform] for Record in RecordList: CName = Record[0] Value = GuidValue(CName, self.Packages, self.MetaFile.Path) if Value is None: PackageList = "\n\t".join(str(P) for P in self.Packages) EdkLogger.error('build', RESOURCE_NOT_AVAILABLE, "Value of Guid [%s] is not found under [Guids] section in" % CName, ExtraData=PackageList, File=self.MetaFile, Line=Record[-1]) RetVal[CName] = Value CommentRecords = self._RawData[MODEL_META_DATA_COMMENT, self._Arch, self._Platform, Record[5]] self._GuidComments[CName] = [a[0] for a in CommentRecords] for Type in [MODEL_PCD_FIXED_AT_BUILD,MODEL_PCD_PATCHABLE_IN_MODULE,MODEL_PCD_FEATURE_FLAG,MODEL_PCD_DYNAMIC,MODEL_PCD_DYNAMIC_EX]: RecordList = self._RawData[Type, self._Arch, self._Platform] for TokenSpaceGuid, _, _, _, _, _, LineNo in RecordList: # get the guid value if TokenSpaceGuid not in RetVal: Value = GuidValue(TokenSpaceGuid, self.Packages, self.MetaFile.Path) if Value is None: PackageList = "\n\t".join(str(P) for P in self.Packages) EdkLogger.error('build', RESOURCE_NOT_AVAILABLE, "Value of Guid [%s] is not found under [Guids] section in" % TokenSpaceGuid, ExtraData=PackageList, File=self.MetaFile, Line=LineNo) RetVal[TokenSpaceGuid] = Value self._GuidsUsedByPcd[TokenSpaceGuid] = Value return RetVal ## Retrieve include paths necessary for this module (for Edk.x style of modules) @cached_property def Includes(self): RetVal = [] Macros = self._Macros Macros['PROCESSOR'] = GlobalData.gEdkGlobal.get('PROCESSOR', self._Arch) RecordList = self._RawData[MODEL_EFI_INCLUDE, self._Arch, self._Platform] for Record in RecordList: File = NormPath(Record[0], Macros) if File[0] == '.': File = os.path.join(self._ModuleDir, File) else: File = mws.join(GlobalData.gWorkspace, File) File = RealPath(os.path.normpath(File)) if File: RetVal.append(File) return RetVal ## Retrieve packages this module depends on @cached_property def Packages(self): RetVal = [] RecordList = self._RawData[MODEL_META_DATA_PACKAGE, self._Arch, self._Platform] Macros = self._Macros for Record in RecordList: File = PathClass(NormPath(Record[0], Macros), GlobalData.gWorkspace, Arch=self._Arch) # check the file validation ErrorCode, ErrorInfo = File.Validate('.dec') if ErrorCode != 0: LineNo = Record[-1] EdkLogger.error('build', ErrorCode, ExtraData=ErrorInfo, File=self.MetaFile, Line=LineNo) # parse this package now. we need it to get protocol/ppi/guid value RetVal.append(self._Bdb[File, self._Arch, self._Target, self._Toolchain]) return RetVal ## Retrieve PCD comments @cached_property def PcdComments(self): self.Pcds return self._PcdComments ## Retrieve PCDs used in this module @cached_property def Pcds(self): self._PcdComments = OrderedDict() RetVal = OrderedDict() RetVal.update(self._GetPcd(MODEL_PCD_FIXED_AT_BUILD)) RetVal.update(self._GetPcd(MODEL_PCD_PATCHABLE_IN_MODULE)) RetVal.update(self._GetPcd(MODEL_PCD_FEATURE_FLAG)) RetVal.update(self._GetPcd(MODEL_PCD_DYNAMIC)) RetVal.update(self._GetPcd(MODEL_PCD_DYNAMIC_EX)) return RetVal @cached_property def ModulePcdList(self): RetVal = self.Pcds return RetVal @cached_property def LibraryPcdList(self): if bool(self.LibraryClass): return [] RetVal = {} Pcds = set() for Library in self.LibInstances: PcdsInLibrary = OrderedDict() for Key in Library.Pcds: if Key in self.Pcds or Key in Pcds: continue Pcds.add(Key) PcdsInLibrary[Key] = copy.copy(Library.Pcds[Key]) RetVal[Library] = PcdsInLibrary return RetVal @cached_property def PcdsName(self): PcdsName = set() for Type in (MODEL_PCD_FIXED_AT_BUILD,MODEL_PCD_PATCHABLE_IN_MODULE,MODEL_PCD_FEATURE_FLAG,MODEL_PCD_DYNAMIC,MODEL_PCD_DYNAMIC_EX): RecordList = self._RawData[Type, self._Arch, self._Platform] for TokenSpaceGuid, PcdCName, _, _, _, _, _ in RecordList: PcdsName.add((PcdCName, TokenSpaceGuid)) return PcdsName ## Retrieve build options specific to this module @cached_property def BuildOptions(self): if self._BuildOptions is None: self._BuildOptions = OrderedDict() RecordList = self._RawData[MODEL_META_DATA_BUILD_OPTION, self._Arch, self._Platform] for Record in RecordList: ToolChainFamily = Record[0] ToolChain = Record[1] Option = Record[2] if (ToolChainFamily, ToolChain) not in self._BuildOptions or Option.startswith('='): self._BuildOptions[ToolChainFamily, ToolChain] = Option else: # concatenate the option string if they're for the same tool OptionString = self._BuildOptions[ToolChainFamily, ToolChain] self._BuildOptions[ToolChainFamily, ToolChain] = OptionString + " " + Option return self._BuildOptions ## Retrieve dependency expression @cached_property def Depex(self): RetVal = tdict(False, 2) # If the module has only Binaries and no Sources, then ignore [Depex] if not self.Sources and self.Binaries: return RetVal RecordList = self._RawData[MODEL_EFI_DEPEX, self._Arch] # PEIM and DXE drivers must have a valid [Depex] section if len(self.LibraryClass) == 0 and len(RecordList) == 0: if self.ModuleType == SUP_MODULE_DXE_DRIVER or self.ModuleType == SUP_MODULE_PEIM or self.ModuleType == SUP_MODULE_DXE_SMM_DRIVER or \ self.ModuleType == SUP_MODULE_DXE_SAL_DRIVER or self.ModuleType == SUP_MODULE_DXE_RUNTIME_DRIVER: EdkLogger.error('build', RESOURCE_NOT_AVAILABLE, "No [Depex] section or no valid expression in [Depex] section for [%s] module" \ % self.ModuleType, File=self.MetaFile) if len(RecordList) != 0 and (self.ModuleType == SUP_MODULE_USER_DEFINED or self.ModuleType == SUP_MODULE_HOST_APPLICATION): for Record in RecordList: if Record[4] not in [SUP_MODULE_PEIM, SUP_MODULE_DXE_DRIVER, SUP_MODULE_DXE_SMM_DRIVER]: EdkLogger.error('build', FORMAT_INVALID, "'%s' module must specify the type of [Depex] section" % self.ModuleType, File=self.MetaFile) TemporaryDictionary = OrderedDict() for Record in RecordList: DepexStr = ReplaceMacro(Record[0], self._Macros, False) Arch = Record[3] ModuleType = Record[4] TokenList = DepexStr.split() if (Arch, ModuleType) not in TemporaryDictionary: TemporaryDictionary[Arch, ModuleType] = [] DepexList = TemporaryDictionary[Arch, ModuleType] for Token in TokenList: if Token in DEPEX_SUPPORTED_OPCODE_SET: DepexList.append(Token) elif Token.endswith(".inf"): # module file name ModuleFile = os.path.normpath(Token) Module = self.BuildDatabase[ModuleFile] if Module is None: EdkLogger.error('build', RESOURCE_NOT_AVAILABLE, "Module is not found in active platform", ExtraData=Token, File=self.MetaFile, Line=Record[-1]) DepexList.append(Module.Guid) else: # it use the Fixed PCD format if '.' in Token: if tuple(Token.split('.')[::-1]) not in self.Pcds: EdkLogger.error('build', RESOURCE_NOT_AVAILABLE, "PCD [{}] used in [Depex] section should be listed in module PCD section".format(Token), File=self.MetaFile, Line=Record[-1]) else: if self.Pcds[tuple(Token.split('.')[::-1])].DatumType != TAB_VOID: EdkLogger.error('build', FORMAT_INVALID, "PCD [{}] used in [Depex] section should be VOID* datum type".format(Token), File=self.MetaFile, Line=Record[-1]) Value = Token else: # get the GUID value now Value = _ProtocolValue(Token, self.Packages, self.MetaFile.Path) if Value is None: Value = _PpiValue(Token, self.Packages, self.MetaFile.Path) if Value is None: Value = GuidValue(Token, self.Packages, self.MetaFile.Path) if Value is None: PackageList = "\n\t".join(str(P) for P in self.Packages) EdkLogger.error('build', RESOURCE_NOT_AVAILABLE, "Value of [%s] is not found in" % Token, ExtraData=PackageList, File=self.MetaFile, Line=Record[-1]) DepexList.append(Value) for Arch, ModuleType in TemporaryDictionary: RetVal[Arch, ModuleType] = TemporaryDictionary[Arch, ModuleType] return RetVal ## Retrieve dependency expression @cached_property def DepexExpression(self): RetVal = tdict(False, 2) RecordList = self._RawData[MODEL_EFI_DEPEX, self._Arch] TemporaryDictionary = OrderedDict() for Record in RecordList: DepexStr = ReplaceMacro(Record[0], self._Macros, False) Arch = Record[3] ModuleType = Record[4] TokenList = DepexStr.split() if (Arch, ModuleType) not in TemporaryDictionary: TemporaryDictionary[Arch, ModuleType] = '' for Token in TokenList: TemporaryDictionary[Arch, ModuleType] = TemporaryDictionary[Arch, ModuleType] + Token.strip() + ' ' for Arch, ModuleType in TemporaryDictionary: RetVal[Arch, ModuleType] = TemporaryDictionary[Arch, ModuleType] return RetVal def LocalPkg(self): module_path = self.MetaFile.File subdir = os.path.split(module_path)[0] TopDir = "" while subdir: subdir,TopDir = os.path.split(subdir) for file_name in os.listdir(os.path.join(self.MetaFile.Root,TopDir)): if file_name.upper().endswith("DEC"): pkg = os.path.join(TopDir,file_name) return pkg @cached_class_function def GetGuidsUsedByPcd(self): self.Guid return self._GuidsUsedByPcd ## Retrieve PCD for given type def _GetPcd(self, Type): Pcds = OrderedDict() PcdDict = tdict(True, 4) PcdList = [] RecordList = self._RawData[Type, self._Arch, self._Platform] for TokenSpaceGuid, PcdCName, Setting, Arch, Platform, Id, LineNo in RecordList: PcdDict[Arch, Platform, PcdCName, TokenSpaceGuid] = (Setting, LineNo) PcdList.append((PcdCName, TokenSpaceGuid)) CommentRecords = self._RawData[MODEL_META_DATA_COMMENT, self._Arch, self._Platform, Id] Comments = [] for CmtRec in CommentRecords: Comments.append(CmtRec[0]) self._PcdComments[TokenSpaceGuid, PcdCName] = Comments # resolve PCD type, value, datum info, etc. by getting its definition from package _GuidDict = self.Guids.copy() for PcdCName, TokenSpaceGuid in PcdList: PcdRealName = PcdCName Setting, LineNo = PcdDict[self._Arch, self.Platform, PcdCName, TokenSpaceGuid] if Setting is None: continue ValueList = AnalyzePcdData(Setting) DefaultValue = ValueList[0] Pcd = PcdClassObject( PcdCName, TokenSpaceGuid, '', '', DefaultValue, '', '', {}, False, self.Guids[TokenSpaceGuid] ) if Type == MODEL_PCD_PATCHABLE_IN_MODULE and ValueList[1]: # Patch PCD: TokenSpace.PcdCName|Value|Offset Pcd.Offset = ValueList[1] if (PcdRealName, TokenSpaceGuid) in GlobalData.MixedPcd: for Package in self.Packages: for key in Package.Pcds: if (Package.Pcds[key].TokenCName, Package.Pcds[key].TokenSpaceGuidCName) == (PcdRealName, TokenSpaceGuid): for item in GlobalData.MixedPcd[(PcdRealName, TokenSpaceGuid)]: Pcd_Type = item[0].split('_')[-1] if Pcd_Type == Package.Pcds[key].Type: Value = Package.Pcds[key] Value.TokenCName = Package.Pcds[key].TokenCName + '_' + Pcd_Type if len(key) == 2: newkey = (Value.TokenCName, key[1]) elif len(key) == 3: newkey = (Value.TokenCName, key[1], key[2]) del Package.Pcds[key] Package.Pcds[newkey] = Value break else: pass else: pass # get necessary info from package declaring this PCD for Package in self.Packages: # # 'dynamic' in INF means its type is determined by platform; # if platform doesn't give its type, use 'lowest' one in the # following order, if any # # TAB_PCDS_FIXED_AT_BUILD, TAB_PCDS_PATCHABLE_IN_MODULE, TAB_PCDS_FEATURE_FLAG, TAB_PCDS_DYNAMIC, TAB_PCDS_DYNAMIC_EX # _GuidDict.update(Package.Guids) PcdType = self._PCD_TYPE_STRING_[Type] if Type == MODEL_PCD_DYNAMIC: Pcd.Pending = True for T in PCD_TYPE_LIST: if (PcdRealName, TokenSpaceGuid) in GlobalData.MixedPcd: for item in GlobalData.MixedPcd[(PcdRealName, TokenSpaceGuid)]: if str(item[0]).endswith(T) and (item[0], item[1], T) in Package.Pcds: PcdType = T PcdCName = item[0] break else: pass break else: if (PcdRealName, TokenSpaceGuid, T) in Package.Pcds: PcdType = T break else: Pcd.Pending = False if (PcdRealName, TokenSpaceGuid) in GlobalData.MixedPcd: for item in GlobalData.MixedPcd[(PcdRealName, TokenSpaceGuid)]: Pcd_Type = item[0].split('_')[-1] if Pcd_Type == PcdType: PcdCName = item[0] break else: pass else: pass if (PcdCName, TokenSpaceGuid, PcdType) in Package.Pcds: PcdInPackage = Package.Pcds[PcdCName, TokenSpaceGuid, PcdType] Pcd.Type = PcdType Pcd.TokenValue = PcdInPackage.TokenValue # # Check whether the token value exist or not. # if Pcd.TokenValue is None or Pcd.TokenValue == "": EdkLogger.error( 'build', FORMAT_INVALID, "No TokenValue for PCD [%s.%s] in [%s]!" % (TokenSpaceGuid, PcdRealName, str(Package)), File=self.MetaFile, Line=LineNo, ExtraData=None ) # # Check hexadecimal token value length and format. # ReIsValidPcdTokenValue = re.compile(r"^[0][x|X][0]*[0-9a-fA-F]{1,8}$", re.DOTALL) if Pcd.TokenValue.startswith("0x") or Pcd.TokenValue.startswith("0X"): if ReIsValidPcdTokenValue.match(Pcd.TokenValue) is None: EdkLogger.error( 'build', FORMAT_INVALID, "The format of TokenValue [%s] of PCD [%s.%s] in [%s] is invalid:" % (Pcd.TokenValue, TokenSpaceGuid, PcdRealName, str(Package)), File=self.MetaFile, Line=LineNo, ExtraData=None ) # # Check decimal token value length and format. # else: try: TokenValueInt = int (Pcd.TokenValue, 10) if (TokenValueInt < 0 or TokenValueInt > 4294967295): EdkLogger.error( 'build', FORMAT_INVALID, "The format of TokenValue [%s] of PCD [%s.%s] in [%s] is invalid, as a decimal it should between: 0 - 4294967295!" % (Pcd.TokenValue, TokenSpaceGuid, PcdRealName, str(Package)), File=self.MetaFile, Line=LineNo, ExtraData=None ) except: EdkLogger.error( 'build', FORMAT_INVALID, "The format of TokenValue [%s] of PCD [%s.%s] in [%s] is invalid, it should be hexadecimal or decimal!" % (Pcd.TokenValue, TokenSpaceGuid, PcdRealName, str(Package)), File=self.MetaFile, Line=LineNo, ExtraData=None ) Pcd.DatumType = PcdInPackage.DatumType Pcd.MaxDatumSize = PcdInPackage.MaxDatumSize Pcd.InfDefaultValue = Pcd.DefaultValue if not Pcd.DefaultValue: Pcd.DefaultValue = PcdInPackage.DefaultValue else: try: Pcd.DefaultValue = ValueExpressionEx(Pcd.DefaultValue, Pcd.DatumType, _GuidDict)(True) except BadExpression as Value: EdkLogger.error('Parser', FORMAT_INVALID, 'PCD [%s.%s] Value "%s", %s' %(TokenSpaceGuid, PcdRealName, Pcd.DefaultValue, Value), File=self.MetaFile, Line=LineNo) break else: EdkLogger.error( 'build', FORMAT_INVALID, "PCD [%s.%s] in [%s] is not found in dependent packages:" % (TokenSpaceGuid, PcdRealName, self.MetaFile), File=self.MetaFile, Line=LineNo, ExtraData="\t%s" % '\n\t'.join(str(P) for P in self.Packages) ) Pcds[PcdCName, TokenSpaceGuid] = Pcd return Pcds ## check whether current module is binary module @property def IsBinaryModule(self): if (self.Binaries and not self.Sources) or GlobalData.gIgnoreSource: return True return False def ExtendCopyDictionaryLists(CopyToDict, CopyFromDict): for Key in CopyFromDict: CopyToDict[Key].extend(CopyFromDict[Key])
beb8f00ca4461f449d82782c0683a196f2828a6a
073c7ae30b0fbdadb3f60bdcf37940a496a3b2eb
/python/util.py
f88ba65b52323c39f073a193f6750bc183bd56c0
[ "MIT" ]
permissive
cms-ttbarAC/CyMiniAna
0e2a771473cf23eb931aa0ae7a015a5165f927b9
405b1ac6639f8a93297e847180b5a6ab58f9a06c
refs/heads/master
2021-05-15T22:57:36.033299
2018-07-31T20:39:11
2018-07-31T20:39:11
106,871,363
0
1
MIT
2018-07-31T20:39:12
2017-10-13T20:41:28
C++
UTF-8
Python
false
false
5,834
py
""" Created: -- Last Updated: 2 March 2018 Dan Marley [email protected] Texas A&M University ----- File that holds any and all misc. functions to be called from other python scripts. (All information in one file => one location to update!) """ import ROOT import numpy as np class Sample(object): """Class for holding metadata information""" def __init__(self): self.xsection = 1 self.sumOfWeights = 1 self.nevents = 1 self.sampleType = "" self.primaryDataset = "" def getHistSeparation( S, B ): """Compare TH1* S and B -- need same dimensions Copied from : https://root.cern.ch/doc/master/MethodBase_8cxx_source.html#l02740 """ separation = 0 nstep = S.GetNbinsX() xaxis = S.GetXaxis() nS = S.GetSumOfWeights() nB = B.GetSumOfWeights() for bin in range(nstep): s = S.GetBinContent( bin+1 )/nS b = B.GetBinContent( bin+1 )/nB if (s+b)>0: separation += (s - b)*(s - b)/(s + b) separation *= 0.5 return separation def GetSeparation2D( S, B ): """Compare TH2* S and B -- need same dimensions""" separation = 0 nbinsx = S.GetNbinsX() xaxis = S.GetXaxis() nbinsy = S.GetNbinsY() yaxis = S.GetYaxis() integral_s = S.Integral() integral_b = B.Integral() for x in range(nbinsx): for y in range(nbinsy): s = S.GetBinContent( x+1,y+1 )/integral_s b = B.GetBinContent( x+1,y+1 )/integral_b if (s+b) > 0: separation += (s - b)*(s - b)/(s + b) separation *= 0.5 return separation def getSeparation(sig,bkg): """Calculate separation between two distributions""" separation = 0 nS = 1.0*np.sum(sig) nB = 1.0*np.sum(bkg) for ss,bb in zip(sig,bkg): s = ss/nS b = bb/nB if (s+b) > 0: separation += (s - b)*(s - b)/(s + b) separation *= 0.5 return separation def read_config(filename,separation=" "): """ Read configuration file with data stored like: 'config option' And the 'config' and 'option' are separated by a character, e.g., " " """ data = file2list(filename) cfg = {} for i in data: j = i.split(separation) cfg[j[0]] = j[1] return cfg def extract(str_value, start_='{', stop_='}'): """Extract a string between two symbols, e.g., parentheses.""" extraction = str_value[str_value.index(start_)+1:str_value.index(stop_)] return extraction def to_csv(filename,data): """Write data to CSV file""" if not filename.endswith(".csv"): filename += ".csv" f = open(filename,"w") for d in data: f.write(d) f.close() return def file2list(filename): """Load text file and dump contents into a list""" listOfFiles = open( filename,'r').readlines() listOfFiles = [i.rstrip('\n') for i in listOfFiles if not i.startswith("#")] return listOfFiles def str2bool(param): """Convert a string to a boolean""" return (param in ['true','True','1']) def getPrimaryDataset(root_file): """Get the sample type given the root file""" try: md = root_file.Get("tree/metadata") md.GetEntry(0) pd = str(md.primaryDataset) except: pd = None return pd def loadMetadata(file): """Load metadata""" data = file2list(file) samples = {} for i in data: if i.startswith("#"): continue items = i.split(" ") s = Sample() s.sampleType = items[0] s.primaryDataset = items[1] samples[items[1]] = s data = Sample() data.sampleType = 'data' data.primaryDataset = 'data' mujets = Sample() mujets.sampleType = 'mujets' mujets.primaryDataset = 'SingleMuon' ejets = Sample() ejets.sampleType = 'ejets' ejets.primaryDataset = 'SingleElectron' samples['data'] = data samples['SingleMuon'] = mujets samples['SingleElectron'] = ejets return samples class VERBOSE(object): """Object for handling output""" def __init__(self): self.verboseMap = {"DEBUG":0, "INFO": 1, "WARNING":2, "ERROR": 3}; self.level = "WARNING" self.level_int = 2 def initialize(self): """Setup the integer level value""" self.level_int = self.verboseMap[self.level] def level_value(self): """Return the integer value""" return self.level_int def DEBUG(self,message): """Debug level - most verbose""" self.verbose("DEBUG",message) return def INFO(self,message): """Info level - standard output""" self.verbose("INFO",message) return def WARNING(self,message): """Warning level - if something seems wrong but code can continue""" self.verbose("WARNING",message) return def ERROR(self,message): """Error level - something is wrong""" self.verbose("ERROR",message) return def compare(self,level1,level2=None): """Compare two levels""" if level2 is None: return self.verboseMap[level1]>=self.level_int else: return self.verboseMap[level1]>=self.verboseMap[level2] def verbose(self,level,message): """Print message to the screen""" if self.compare( level ): print " {0} :: {1}".format(level,message) return def HELP(self): """Help message""" print " CyMiniAna Deep Learning " print " To run, execute the command: " print " $ python python/runDeepLearning.py <config> " print " where <config> is a text file that outlines the configuration " ## THE END ##
cd92ecd38dfe509e767b4977f1112c79d390744f
0bfe6df147ffa74b6d2800391981273149502684
/visionary/visionary/migrations/0002_add_model_Mindmap.py
5ab5e8e1132a90e50d890cd2eef82b5aab730db0
[]
no_license
lumenwrites/digitalMind_django
829c95eca4720c2bbe71d14bdcce64e9eccd3752
0968f0006cf450f2796736cd604c5f6cba82147f
refs/heads/master
2021-05-27T14:54:35.108215
2014-09-11T09:48:58
2014-09-11T09:48:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,903
py
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'Mindmap' db.create_table('visionary_mindmap', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('user', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['auth.User'])), ('name', self.gf('django.db.models.fields.CharField')(max_length=100, unique=True)), ('slug', self.gf('django.db.models.fields.SlugField')(max_length=50)), ('data', self.gf('django.db.models.fields.TextField')()), )) db.send_create_signal('visionary', ['Mindmap']) def backwards(self, orm): # Deleting model 'Mindmap' db.delete_table('visionary_mindmap') models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '80', 'unique': 'True'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'max_length': '30', 'unique': 'True'}) }, 'contenttypes.contenttype': { 'Meta': {'db_table': "'django_content_type'", 'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType'}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'visionary.mindmap': { 'Meta': {'object_name': 'Mindmap'}, 'data': ('django.db.models.fields.TextField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100', 'unique': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '50'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']"}) }, 'visionary.state': { 'Meta': {'object_name': 'State'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'state': ('django.db.models.fields.TextField', [], {}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']"}) } } complete_apps = ['visionary']
1a0586b543e61229aa5c7ecc3626c76951c49596
aea3b522c0f8c6f82279cf6cc70bc11b22ef9f02
/feincms3/mixins.py
872c3c2269da46af9112d0eb37dba939ddbcdc59
[ "BSD-2-Clause" ]
permissive
hancush/feincms3
0dfbb98f85f9bd2c2edf98cdb8de298f0188b17c
782a4ee83a36756752b2f9aa225eed4dc402ff4c
refs/heads/master
2020-04-04T11:55:39.289197
2018-10-31T18:49:47
2018-10-31T18:49:47
155,908,332
0
0
NOASSERTION
2018-11-02T18:44:39
2018-11-02T18:44:39
null
UTF-8
Python
false
false
5,877
py
# coding=utf-8 from django.conf import settings from django.db import models from django.db.models import signals from django.utils.translation import activate, get_language, ugettext_lazy as _ from tree_queries.fields import TreeNodeForeignKey from feincms3.utils import validation_error class MenuMixin(models.Model): """ The ``MenuMixin`` is most useful on pages where there are menus with differing content on a single page, for example the main navigation and a meta navigation (containing contact, imprint etc.) """ menu = models.CharField( _("menu"), max_length=20, blank=True, choices=(("", ""),), # Non-empty choices for get_*_display ) class Meta: abstract = True @staticmethod def fill_menu_choices(sender, **kwargs): """ Fills in the choices for ``menu`` from the ``MENUS`` class variable. This method is a receiver of Django's ``class_prepared`` signal. """ if issubclass(sender, MenuMixin) and not sender._meta.abstract: field = sender._meta.get_field("menu") field.choices = sender.MENUS field.default = field.choices[0][0] signals.class_prepared.connect(MenuMixin.fill_menu_choices) class TemplateMixin(models.Model): """ It is sometimes useful to have different templates for CMS models such as pages, articles or anything comparable. The ``TemplateMixin`` provides a ready-made solution for selecting django-content-editor ``Template`` instances through Django's administration interface. """ template_key = models.CharField( _("template"), max_length=100, choices=(("", ""),), # Non-empty choices for get_*_display ) class Meta: abstract = True @property def template(self): """ Return the selected template instance if the ``template_key`` field matches, or ``None``. """ return self.TEMPLATES_DICT.get(self.template_key) @property def regions(self): """ Return the selected template instances' ``regions`` attribute, falling back to an empty list if no template instance could be found. """ return self.template.regions if self.template else [] @staticmethod def fill_template_key_choices(sender, **kwargs): """ Fills in the choices for ``menu`` from the ``MENUS`` class variable. This method is a receiver of Django's ``class_prepared`` signal. """ if issubclass(sender, TemplateMixin) and not sender._meta.abstract: field = sender._meta.get_field("template_key") field.choices = [(t.key, t.title) for t in sender.TEMPLATES] field.default = sender.TEMPLATES[0].key sender.TEMPLATES_DICT = {t.key: t for t in sender.TEMPLATES} signals.class_prepared.connect(TemplateMixin.fill_template_key_choices) class LanguageMixin(models.Model): """ Pages may come in varying languages. ``LanguageMixin`` helps with that. """ language_code = models.CharField( _("language"), max_length=10, choices=settings.LANGUAGES, default=settings.LANGUAGES[0][0], ) class Meta: abstract = True def activate_language(self, request): """ ``activate()`` the page's language and set ``request.LANGUAGE_CODE`` """ # Do what LocaleMiddleware does. activate(self.language_code) request.LANGUAGE_CODE = get_language() class RedirectMixin(models.Model): """ The ``RedirectMixin`` allows adding redirects in the page tree. """ redirect_to_url = models.CharField(_("Redirect to URL"), max_length=200, blank=True) redirect_to_page = TreeNodeForeignKey( "self", on_delete=models.SET_NULL, blank=True, null=True, related_name="+", verbose_name=_("Redirect to page"), ) class Meta: abstract = True def clean_fields(self, exclude=None): """ Ensure that redirects are configured properly. """ super(RedirectMixin, self).clean_fields(exclude) if self.redirect_to_url and self.redirect_to_page_id: raise validation_error( _("Only set one redirect value."), field="redirect_to_url", exclude=exclude, ) if self.redirect_to_page_id: if self.redirect_to_page_id == self.pk: raise validation_error( _("Cannot redirect to self."), field="redirect_to_page", exclude=exclude, ) if self.redirect_to_page.redirect_to_page_id: raise validation_error( _( "Do not chain redirects. The selected page redirects" " to %(title)s (%(path)s)." ) % { "title": self.redirect_to_page, "path": self.redirect_to_page.get_absolute_url(), }, field="redirect_to_page", exclude=exclude, ) if self.redirect_to_url or self.redirect_to_page_id: # Any page redirects to this page? other = self.__class__._default_manager.filter(redirect_to_page=self) if other: raise validation_error( _( "Do not chain redirects. The page %(page)s already" " redirects to this page." ) % {"page": ", ".join("%s" % page for page in other)}, field="redirect_to_page", exclude=exclude, )
3ad3f271e1638aeab5f1a60f9e46cbf4d55b64e0
a3faf585ac766da428ee896e6c70c39ecc22ce1f
/xy/planner.py
b4be54c6910ff99f946e9c2aa08bc9b5ab70185d
[]
no_license
RolandJuno/xy
dcab6c0682cda79ffd6b5fb6cb8365390421f784
1079175b9a2f58c72fd94520908ebbaf81585037
refs/heads/master
2020-04-05T04:11:02.909464
2019-11-13T22:05:16
2019-11-13T22:05:16
50,703,647
7
1
null
2016-01-30T01:56:42
2016-01-30T01:56:42
null
UTF-8
Python
false
false
5,970
py
from hashindex import Index from math import hypot import anneal import random def sort_paths_greedy(paths, reversable=True): first = max(paths, key=lambda x: x[0][1]) paths.remove(first) result = [first] points = [] for path in paths: x1, y1 = path[0] x2, y2 = path[-1] points.append((x1, y1, path, False)) if reversable: points.append((x2, y2, path, True)) index = Index(points) while index.size: x, y, path, reverse = index.search(result[-1][-1]) x1, y1 = path[0] x2, y2 = path[-1] index.remove((x1, y1, path, False)) if reversable: index.remove((x2, y2, path, True)) if reverse: result.append(list(reversed(path))) else: result.append(path) return result def sort_paths(paths, iterations=100000, reversable=True): ''' This function re-orders a set of 2D paths (polylines) to minimize the distance required to visit each path. This is useful for 2D plotting to reduce wasted movements where the instrument is not drawing. If allowed, the algorithm will also reverse some paths if doing so reduces the total distance. The code uses simulated annealing as its optimization algorithm. The number of iterations can be increased to improve the chances of finding a perfect solution. However, a perfect solution isn't necessarily required - we just want to find something good enough. With randomly generated paths, the algorithm can quickly find a solution that reduces the extra distance to ~25 percent of its original value. ''' state = Model(list(paths), reversable) max_temp = anneal.get_max_temp(state, 10000) min_temp = max_temp / 1000.0 state = anneal.anneal(state, max_temp, min_temp, iterations) for path, reverse in zip(state.paths, state.reverse): if reverse: path.reverse() return state.paths def sort_points(points, iterations=100000): ''' Like sort_paths, but operates on individual points instead. This is basically a traveling salesman optimization. ''' paths = [[x] for x in points] paths = sort_paths(paths, iterations, False) points = [x[0] for x in paths] return points class Model(object): def __init__(self, paths, reversable=True, reverse=None, distances=None, total_distance=None): self.paths = paths self.reversable = reversable self.reverse = reverse or [False] * len(self.paths) if distances: self.total_distance = total_distance or 0 self.distances = distances else: self.total_distance = 0 self.distances = [0] * (len(paths) - 1) self.add_distances(range(len(self.distances))) def subtract_distances(self, indexes): n = len(self.distances) for i in indexes: if i >= 0 and i < n: self.total_distance -= self.distances[i] def add_distances(self, indexes): n = len(self.distances) for i in indexes: if i < 0 or i >= n: continue j = i + 1 if self.reverse[i]: x1, y1 = self.paths[i][0] else: x1, y1 = self.paths[i][-1] if self.reverse[j]: x2, y2 = self.paths[j][-1] else: x2, y2 = self.paths[j][0] self.distances[i] = hypot(x2 - x1, y2 - y1) self.total_distance += self.distances[i] def energy(self): # return the total extra distance for this ordering return self.total_distance def do_move(self): if self.reversable and random.random() < 0.25: # mutate by reversing a random path n = len(self.paths) - 1 i = random.randint(0, n) indexes = [i - 1, i] self.subtract_distances(indexes) self.reverse[i] = not self.reverse[i] self.add_distances(indexes) return (1, i, 0) else: # mutate by swapping two random paths n = len(self.paths) - 1 i = random.randint(0, n) j = random.randint(0, n) indexes = set([i - 1, i, j - 1, j]) self.subtract_distances(indexes) self.paths[i], self.paths[j] = self.paths[j], self.paths[i] self.add_distances(indexes) return (0, i, j) def undo_move(self, undo): # undo the previous mutation mode, i, j = undo if mode == 0: indexes = set([i - 1, i, j - 1, j]) self.subtract_distances(indexes) self.paths[i], self.paths[j] = self.paths[j], self.paths[i] self.add_distances(indexes) else: indexes = [i - 1, i] self.subtract_distances(indexes) self.reverse[i] = not self.reverse[i] self.add_distances(indexes) def copy(self): # make a copy of the model return Model( list(self.paths), self.reversable, list(self.reverse), list(self.distances), self.total_distance) def test(n_paths, n_iterations, seed=None): random.seed(seed) paths = [] for _ in range(n_paths): x1 = random.random() y1 = random.random() x2 = random.random() y2 = random.random() path = [(x1, y1), (x2, y2)] paths.append(path) before = Model(paths).energy() if n_iterations: paths = sort_paths(paths, n_iterations) else: paths = sort_paths_greedy(paths) after = Model(paths).energy() pct = 100.0 * after / before return pct if __name__ == '__main__': # test the module for n_paths in [10, 100, 1000, 10000]: for n_iterations in [None, 10, 100, 1000, 10000, 100000, 1000000]: pct = test(n_paths, n_iterations, 123) print n_paths, n_iterations, pct
ff053c7af547706471c802a09fb2b03078714f37
3a0336f8ba841f6076f412dfb6de1af9ac946efd
/azure/multiapi/storagev2/fileshare/v2019_07_07/_models.py
1488fcea6ebdc1c95ef6a44eccad5db9309bf5b8
[ "MIT", "LicenseRef-scancode-generic-cla" ]
permissive
Azure/azure-multiapi-storage-python
4291579aa1f47d4b74557267558bd5029e01e12c
650ef33ad683a5f2aba590c4553f9871bfa0dd93
refs/heads/master
2023-09-03T22:27:16.816305
2023-06-01T07:37:02
2023-06-01T07:37:02
94,827,841
4
17
MIT
2023-06-01T07:37:03
2017-06-19T22:58:21
Python
UTF-8
Python
false
false
40,637
py
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- # pylint: disable=too-few-public-methods, too-many-instance-attributes # pylint: disable=super-init-not-called, too-many-lines from azure.core.paging import PageIterator from ._parser import _parse_datetime_from_str from ._shared.response_handlers import return_context_and_deserialized, process_storage_error from ._shared.models import DictMixin, get_enum_value from ._generated.models import StorageErrorException from ._generated.models import Metrics as GeneratedMetrics from ._generated.models import RetentionPolicy as GeneratedRetentionPolicy from ._generated.models import CorsRule as GeneratedCorsRule from ._generated.models import AccessPolicy as GenAccessPolicy from ._generated.models import DirectoryItem def _wrap_item(item): if isinstance(item, DirectoryItem): return {'name': item.name, 'is_directory': True} return {'name': item.name, 'size': item.properties.content_length, 'is_directory': False} class Metrics(GeneratedMetrics): """A summary of request statistics grouped by API in hour or minute aggregates for files. All required parameters must be populated in order to send to Azure. :keyword str version: The version of Storage Analytics to configure. :keyword bool enabled: Required. Indicates whether metrics are enabled for the File service. :keyword bool include_ap_is: Indicates whether metrics should generate summary statistics for called API operations. :keyword ~azure.storage.fileshare.RetentionPolicy retention_policy: Determines how long the associated data should persist. """ def __init__(self, **kwargs): self.version = kwargs.get('version', u'1.0') self.enabled = kwargs.get('enabled', False) self.include_apis = kwargs.get('include_apis') self.retention_policy = kwargs.get('retention_policy') or RetentionPolicy() @classmethod def _from_generated(cls, generated): if not generated: return cls() return cls( version=generated.version, enabled=generated.enabled, include_apis=generated.include_apis, retention_policy=RetentionPolicy._from_generated(generated.retention_policy) # pylint: disable=protected-access ) class RetentionPolicy(GeneratedRetentionPolicy): """The retention policy which determines how long the associated data should persist. All required parameters must be populated in order to send to Azure. :param bool enabled: Required. Indicates whether a retention policy is enabled for the storage service. :param int days: Indicates the number of days that metrics or logging or soft-deleted data should be retained. All data older than this value will be deleted. """ def __init__(self, enabled=False, days=None): self.enabled = enabled self.days = days if self.enabled and (self.days is None): raise ValueError("If policy is enabled, 'days' must be specified.") @classmethod def _from_generated(cls, generated): if not generated: return cls() return cls( enabled=generated.enabled, days=generated.days, ) class CorsRule(GeneratedCorsRule): """CORS is an HTTP feature that enables a web application running under one domain to access resources in another domain. Web browsers implement a security restriction known as same-origin policy that prevents a web page from calling APIs in a different domain; CORS provides a secure way to allow one domain (the origin domain) to call APIs in another domain. All required parameters must be populated in order to send to Azure. :param list(str) allowed_origins: A list of origin domains that will be allowed via CORS, or "*" to allow all domains. The list of must contain at least one entry. Limited to 64 origin domains. Each allowed origin can have up to 256 characters. :param list(str) allowed_methods: A list of HTTP methods that are allowed to be executed by the origin. The list of must contain at least one entry. For Azure Storage, permitted methods are DELETE, GET, HEAD, MERGE, POST, OPTIONS or PUT. :keyword list(str) allowed_headers: Defaults to an empty list. A list of headers allowed to be part of the cross-origin request. Limited to 64 defined headers and 2 prefixed headers. Each header can be up to 256 characters. :keyword list(str) exposed_headers: Defaults to an empty list. A list of response headers to expose to CORS clients. Limited to 64 defined headers and two prefixed headers. Each header can be up to 256 characters. :keyword int max_age_in_seconds: The number of seconds that the client/browser should cache a preflight response. """ def __init__(self, allowed_origins, allowed_methods, **kwargs): self.allowed_origins = ','.join(allowed_origins) self.allowed_methods = ','.join(allowed_methods) self.allowed_headers = ','.join(kwargs.get('allowed_headers', [])) self.exposed_headers = ','.join(kwargs.get('exposed_headers', [])) self.max_age_in_seconds = kwargs.get('max_age_in_seconds', 0) @classmethod def _from_generated(cls, generated): return cls( [generated.allowed_origins], [generated.allowed_methods], allowed_headers=[generated.allowed_headers], exposed_headers=[generated.exposed_headers], max_age_in_seconds=generated.max_age_in_seconds, ) class AccessPolicy(GenAccessPolicy): """Access Policy class used by the set and get acl methods in each service. A stored access policy can specify the start time, expiry time, and permissions for the Shared Access Signatures with which it's associated. Depending on how you want to control access to your resource, you can specify all of these parameters within the stored access policy, and omit them from the URL for the Shared Access Signature. Doing so permits you to modify the associated signature's behavior at any time, as well as to revoke it. Or you can specify one or more of the access policy parameters within the stored access policy, and the others on the URL. Finally, you can specify all of the parameters on the URL. In this case, you can use the stored access policy to revoke the signature, but not to modify its behavior. Together the Shared Access Signature and the stored access policy must include all fields required to authenticate the signature. If any required fields are missing, the request will fail. Likewise, if a field is specified both in the Shared Access Signature URL and in the stored access policy, the request will fail with status code 400 (Bad Request). :param permission: The permissions associated with the shared access signature. The user is restricted to operations allowed by the permissions. Required unless an id is given referencing a stored access policy which contains this field. This field must be omitted if it has been specified in an associated stored access policy. :type permission: str or ~azure.storage.fileshare.FileSasPermissions or ~azure.storage.fileshare.ShareSasPermissions :param expiry: The time at which the shared access signature becomes invalid. Required unless an id is given referencing a stored access policy which contains this field. This field must be omitted if it has been specified in an associated stored access policy. Azure will always convert values to UTC. If a date is passed in without timezone info, it is assumed to be UTC. :type expiry: ~datetime.datetime or str :param start: The time at which the shared access signature becomes valid. If omitted, start time for this call is assumed to be the time when the storage service receives the request. Azure will always convert values to UTC. If a date is passed in without timezone info, it is assumed to be UTC. :type start: ~datetime.datetime or str """ def __init__(self, permission=None, expiry=None, start=None): self.start = start self.expiry = expiry self.permission = permission class LeaseProperties(DictMixin): """File Lease Properties. :ivar str status: The lease status of the file. Possible values: locked|unlocked :ivar str state: Lease state of the file. Possible values: available|leased|expired|breaking|broken :ivar str duration: When a file is leased, specifies whether the lease is of infinite or fixed duration. """ def __init__(self, **kwargs): self.status = get_enum_value(kwargs.get('x-ms-lease-status')) self.state = get_enum_value(kwargs.get('x-ms-lease-state')) self.duration = get_enum_value(kwargs.get('x-ms-lease-duration')) @classmethod def _from_generated(cls, generated): lease = cls() lease.status = get_enum_value(generated.properties.lease_status) lease.state = get_enum_value(generated.properties.lease_state) lease.duration = get_enum_value(generated.properties.lease_duration) return lease class ContentSettings(DictMixin): """Used to store the content settings of a file. :param str content_type: The content type specified for the file. If no content type was specified, the default content type is application/octet-stream. :param str content_encoding: If the content_encoding has previously been set for the file, that value is stored. :param str content_language: If the content_language has previously been set for the file, that value is stored. :param str content_disposition: content_disposition conveys additional information about how to process the response payload, and also can be used to attach additional metadata. If content_disposition has previously been set for the file, that value is stored. :param str cache_control: If the cache_control has previously been set for the file, that value is stored. :param str content_md5: If the content_md5 has been set for the file, this response header is stored so that the client can check for message content integrity. """ def __init__( self, content_type=None, content_encoding=None, content_language=None, content_disposition=None, cache_control=None, content_md5=None, **kwargs): self.content_type = content_type or kwargs.get('Content-Type') self.content_encoding = content_encoding or kwargs.get('Content-Encoding') self.content_language = content_language or kwargs.get('Content-Language') self.content_md5 = content_md5 or kwargs.get('Content-MD5') self.content_disposition = content_disposition or kwargs.get('Content-Disposition') self.cache_control = cache_control or kwargs.get('Cache-Control') @classmethod def _from_generated(cls, generated): settings = cls() settings.content_type = generated.properties.content_type or None settings.content_encoding = generated.properties.content_encoding or None settings.content_language = generated.properties.content_language or None settings.content_md5 = generated.properties.content_md5 or None settings.content_disposition = generated.properties.content_disposition or None settings.cache_control = generated.properties.cache_control or None return settings class ShareProperties(DictMixin): """Share's properties class. :ivar str name: The name of the share. :ivar ~datetime.datetime last_modified: A datetime object representing the last time the share was modified. :ivar str etag: The ETag contains a value that you can use to perform operations conditionally. :ivar int quota: The allocated quota. :ivar dict metadata: A dict with name_value pairs to associate with the share as metadata. :ivar str snapshot: Snapshot of the share. """ def __init__(self, **kwargs): self.name = None self.last_modified = kwargs.get('Last-Modified') self.etag = kwargs.get('ETag') self.quota = kwargs.get('x-ms-share-quota') self.next_allowed_quota_downgrade_time = kwargs.get('x-ms-share-next-allowed-quota-downgrade-time') self.metadata = kwargs.get('metadata') self.snapshot = None self.provisioned_egress_mbps = kwargs.get('x-ms-share-provisioned-egress-mbps') self.provisioned_ingress_mbps = kwargs.get('x-ms-share-provisioned-ingress-mbps') self.provisioned_iops = kwargs.get('x-ms-share-provisioned-iops') @classmethod def _from_generated(cls, generated): props = cls() props.name = generated.name props.last_modified = generated.properties.last_modified props.etag = generated.properties.etag props.quota = generated.properties.quota props.next_allowed_quota_downgrade_time = generated.properties.next_allowed_quota_downgrade_time props.metadata = generated.metadata props.snapshot = generated.snapshot props.provisioned_egress_mbps = generated.properties.provisioned_egress_mbps props.provisioned_ingress_mbps = generated.properties.provisioned_ingress_mbps props.provisioned_iops = generated.properties.provisioned_iops return props class SharePropertiesPaged(PageIterator): """An iterable of Share properties. :ivar str service_endpoint: The service URL. :ivar str prefix: A file name prefix being used to filter the list. :ivar str marker: The continuation token of the current page of results. :ivar int results_per_page: The maximum number of results retrieved per API call. :ivar str continuation_token: The continuation token to retrieve the next page of results. :ivar str location_mode: The location mode being used to list results. The available options include "primary" and "secondary". :ivar current_page: The current page of listed results. :vartype current_page: list(~azure.storage.fileshare.ShareProperties) :param callable command: Function to retrieve the next page of items. :param str prefix: Filters the results to return only shares whose names begin with the specified prefix. :param int results_per_page: The maximum number of share names to retrieve per call. :param str continuation_token: An opaque continuation token. """ def __init__(self, command, prefix=None, results_per_page=None, continuation_token=None): super(SharePropertiesPaged, self).__init__( get_next=self._get_next_cb, extract_data=self._extract_data_cb, continuation_token=continuation_token or "" ) self._command = command self.service_endpoint = None self.prefix = prefix self.marker = None self.results_per_page = results_per_page self.location_mode = None self.current_page = [] def _get_next_cb(self, continuation_token): try: return self._command( marker=continuation_token or None, maxresults=self.results_per_page, prefix=self.prefix, cls=return_context_and_deserialized, use_location=self.location_mode) except StorageErrorException as error: process_storage_error(error) def _extract_data_cb(self, get_next_return): self.location_mode, self._response = get_next_return self.service_endpoint = self._response.service_endpoint self.prefix = self._response.prefix self.marker = self._response.marker self.results_per_page = self._response.max_results self.current_page = [ShareProperties._from_generated(i) for i in self._response.share_items] # pylint: disable=protected-access return self._response.next_marker or None, self.current_page class Handle(DictMixin): """A listed Azure Storage handle item. All required parameters must be populated in order to send to Azure. :keyword str handle_id: Required. XSMB service handle ID :keyword str path: Required. File or directory name including full path starting from share root :keyword str file_id: Required. FileId uniquely identifies the file or directory. :keyword str parent_id: ParentId uniquely identifies the parent directory of the object. :keyword str session_id: Required. SMB session ID in context of which the file handle was opened :keyword str client_ip: Required. Client IP that opened the handle :keyword ~datetime.datetime open_time: Required. Time when the session that previously opened the handle has last been reconnected. (UTC) :keyword ~datetime.datetime last_reconnect_time: Time handle was last connected to (UTC) """ def __init__(self, **kwargs): self.id = kwargs.get('handle_id') self.path = kwargs.get('path') self.file_id = kwargs.get('file_id') self.parent_id = kwargs.get('parent_id') self.session_id = kwargs.get('session_id') self.client_ip = kwargs.get('client_ip') self.open_time = kwargs.get('open_time') self.last_reconnect_time = kwargs.get('last_reconnect_time') @classmethod def _from_generated(cls, generated): handle = cls() handle.id = generated.handle_id handle.path = generated.path handle.file_id = generated.file_id handle.parent_id = generated.parent_id handle.session_id = generated.session_id handle.client_ip = generated.client_ip handle.open_time = generated.open_time handle.last_reconnect_time = generated.last_reconnect_time return handle class HandlesPaged(PageIterator): """An iterable of Handles. :ivar str marker: The continuation token of the current page of results. :ivar int results_per_page: The maximum number of results retrieved per API call. :ivar str continuation_token: The continuation token to retrieve the next page of results. :ivar str location_mode: The location mode being used to list results. The available options include "primary" and "secondary". :ivar current_page: The current page of listed results. :vartype current_page: list(~azure.storage.fileshare.Handle) :param callable command: Function to retrieve the next page of items. :param int results_per_page: The maximum number of share names to retrieve per call. :param str continuation_token: An opaque continuation token. """ def __init__(self, command, results_per_page=None, continuation_token=None): super(HandlesPaged, self).__init__( get_next=self._get_next_cb, extract_data=self._extract_data_cb, continuation_token=continuation_token or "" ) self._command = command self.marker = None self.results_per_page = results_per_page self.location_mode = None self.current_page = [] def _get_next_cb(self, continuation_token): try: return self._command( marker=continuation_token or None, maxresults=self.results_per_page, cls=return_context_and_deserialized, use_location=self.location_mode) except StorageErrorException as error: process_storage_error(error) def _extract_data_cb(self, get_next_return): self.location_mode, self._response = get_next_return self.current_page = [Handle._from_generated(h) for h in self._response.handle_list] # pylint: disable=protected-access return self._response.next_marker or None, self.current_page class DirectoryProperties(DictMixin): """Directory's properties class. :ivar str name: The name of the directory. :ivar ~datetime.datetime last_modified: A datetime object representing the last time the directory was modified. :ivar str etag: The ETag contains a value that you can use to perform operations conditionally. :ivar bool server_encrypted: Whether encryption is enabled. :keyword dict metadata: A dict with name_value pairs to associate with the directory as metadata. :ivar change_time: Change time for the file. :vartype change_time: str or ~datetime.datetime :ivar creation_time: Creation time for the file. :vartype creation_time: str or ~datetime.datetime :ivar last_write_time: Last write time for the file. :vartype last_write_time: str or ~datetime.datetime :ivar file_attributes: The file system attributes for files and directories. :vartype file_attributes: str or :class:`~azure.storage.fileshare.NTFSAttributes` :ivar permission_key: Key of the permission to be set for the directory/file. :vartype permission_key: str :ivar file_id: Required. FileId uniquely identifies the file or directory. :vartype file_id: str :ivar parent_id: ParentId uniquely identifies the parent directory of the object. :vartype parent_id: str """ def __init__(self, **kwargs): self.name = None self.last_modified = kwargs.get('Last-Modified') self.etag = kwargs.get('ETag') self.server_encrypted = kwargs.get('x-ms-server-encrypted') self.metadata = kwargs.get('metadata') self.change_time = _parse_datetime_from_str(kwargs.get('x-ms-file-change-time')) self.creation_time = _parse_datetime_from_str(kwargs.get('x-ms-file-creation-time')) self.last_write_time = _parse_datetime_from_str(kwargs.get('x-ms-file-last-write-time')) self.file_attributes = kwargs.get('x-ms-file-attributes') self.permission_key = kwargs.get('x-ms-file-permission-key') self.file_id = kwargs.get('x-ms-file-id') self.parent_id = kwargs.get('x-ms-file-parent-id') @classmethod def _from_generated(cls, generated): props = cls() props.name = generated.name props.last_modified = generated.properties.last_modified props.etag = generated.properties.etag props.server_encrypted = generated.properties.server_encrypted props.metadata = generated.metadata return props class DirectoryPropertiesPaged(PageIterator): """An iterable for the contents of a directory. This iterable will yield dicts for the contents of the directory. The dicts will have the keys 'name' (str) and 'is_directory' (bool). Items that are files (is_directory=False) will have an additional 'content_length' key. :ivar str service_endpoint: The service URL. :ivar str prefix: A file name prefix being used to filter the list. :ivar str marker: The continuation token of the current page of results. :ivar int results_per_page: The maximum number of results retrieved per API call. :ivar str continuation_token: The continuation token to retrieve the next page of results. :ivar str location_mode: The location mode being used to list results. The available options include "primary" and "secondary". :ivar current_page: The current page of listed results. :vartype current_page: list(dict(str, Any)) :param callable command: Function to retrieve the next page of items. :param str prefix: Filters the results to return only directories whose names begin with the specified prefix. :param int results_per_page: The maximum number of share names to retrieve per call. :param str continuation_token: An opaque continuation token. """ def __init__(self, command, prefix=None, results_per_page=None, continuation_token=None): super(DirectoryPropertiesPaged, self).__init__( get_next=self._get_next_cb, extract_data=self._extract_data_cb, continuation_token=continuation_token or "" ) self._command = command self.service_endpoint = None self.prefix = prefix self.marker = None self.results_per_page = results_per_page self.location_mode = None self.current_page = [] def _get_next_cb(self, continuation_token): try: return self._command( marker=continuation_token or None, prefix=self.prefix, maxresults=self.results_per_page, cls=return_context_and_deserialized, use_location=self.location_mode) except StorageErrorException as error: process_storage_error(error) def _extract_data_cb(self, get_next_return): self.location_mode, self._response = get_next_return self.service_endpoint = self._response.service_endpoint self.prefix = self._response.prefix self.marker = self._response.marker self.results_per_page = self._response.max_results self.current_page = [_wrap_item(i) for i in self._response.segment.directory_items] self.current_page.extend([_wrap_item(i) for i in self._response.segment.file_items]) return self._response.next_marker or None, self.current_page class FileProperties(DictMixin): """File's properties class. :ivar str name: The name of the file. :ivar str path: The path of the file. :ivar str share: The name of share. :ivar str snapshot: File snapshot. :ivar int content_length: Size of file in bytes. :ivar dict metadata: A dict with name_value pairs to associate with the file as metadata. :ivar str file_type: Type of the file. :ivar ~datetime.datetime last_modified: A datetime object representing the last time the file was modified. :ivar str etag: The ETag contains a value that you can use to perform operations conditionally. :ivar int size: Size of file in bytes. :ivar str content_range: The range of bytes. :ivar bool server_encrypted: Whether encryption is enabled. :ivar copy: The copy properties. :vartype copy: ~azure.storage.fileshare.CopyProperties :ivar content_settings: The content settings for the file. :vartype content_settings: ~azure.storage.fileshare.ContentSettings """ def __init__(self, **kwargs): self.name = kwargs.get('name') self.path = None self.share = None self.snapshot = None self.content_length = kwargs.get('Content-Length') self.metadata = kwargs.get('metadata') self.file_type = kwargs.get('x-ms-type') self.last_modified = kwargs.get('Last-Modified') self.etag = kwargs.get('ETag') self.size = kwargs.get('Content-Length') self.content_range = kwargs.get('Content-Range') self.server_encrypted = kwargs.get('x-ms-server-encrypted') self.copy = CopyProperties(**kwargs) self.content_settings = ContentSettings(**kwargs) self.lease = LeaseProperties(**kwargs) self.change_time = _parse_datetime_from_str(kwargs.get('x-ms-file-change-time')) self.creation_time = _parse_datetime_from_str(kwargs.get('x-ms-file-creation-time')) self.last_write_time = _parse_datetime_from_str(kwargs.get('x-ms-file-last-write-time')) self.file_attributes = kwargs.get('x-ms-file-attributes') self.permission_key = kwargs.get('x-ms-file-permission-key') self.file_id = kwargs.get('x-ms-file-id') self.parent_id = kwargs.get('x-ms-file-parent-id') @classmethod def _from_generated(cls, generated): props = cls() props.name = generated.name props.content_length = generated.properties.content_length props.metadata = generated.properties.metadata props.lease = LeaseProperties._from_generated(generated) # pylint: disable=protected-access return props class CopyProperties(DictMixin): """File Copy Properties. :ivar str id: String identifier for the last attempted Copy File operation where this file was the destination file. This header does not appear if this file has never been the destination in a Copy File operation, or if this file has been modified after a concluded Copy File operation. :ivar str source: URL up to 2 KB in length that specifies the source file used in the last attempted Copy File operation where this file was the destination file. This header does not appear if this file has never been the destination in a Copy File operation, or if this file has been modified after a concluded Copy File operation. :ivar str status: State of the copy operation identified by Copy ID, with these values: success: Copy completed successfully. pending: Copy is in progress. Check copy_status_description if intermittent, non-fatal errors impede copy progress but don't cause failure. aborted: Copy was ended by Abort Copy File. failed: Copy failed. See copy_status_description for failure details. :ivar str progress: Contains the number of bytes copied and the total bytes in the source in the last attempted Copy File operation where this file was the destination file. Can show between 0 and Content-Length bytes copied. :ivar datetime completion_time: Conclusion time of the last attempted Copy File operation where this file was the destination file. This value can specify the time of a completed, aborted, or failed copy attempt. :ivar str status_description: Only appears when x-ms-copy-status is failed or pending. Describes cause of fatal or non-fatal copy operation failure. :ivar bool incremental_copy: Copies the snapshot of the source file to a destination file. The snapshot is copied such that only the differential changes between the previously copied snapshot are transferred to the destination :ivar datetime destination_snapshot: Included if the file is incremental copy or incremental copy snapshot, if x-ms-copy-status is success. Snapshot time of the last successful incremental copy snapshot for this file. """ def __init__(self, **kwargs): self.id = kwargs.get('x-ms-copy-id') self.source = kwargs.get('x-ms-copy-source') self.status = get_enum_value(kwargs.get('x-ms-copy-status')) self.progress = kwargs.get('x-ms-copy-progress') self.completion_time = kwargs.get('x-ms-copy-completion_time') self.status_description = kwargs.get('x-ms-copy-status-description') self.incremental_copy = kwargs.get('x-ms-incremental-copy') self.destination_snapshot = kwargs.get('x-ms-copy-destination-snapshot') @classmethod def _from_generated(cls, generated): copy = cls() copy.id = generated.properties.copy_id or None copy.status = get_enum_value(generated.properties.copy_status) or None copy.source = generated.properties.copy_source or None copy.progress = generated.properties.copy_progress or None copy.completion_time = generated.properties.copy_completion_time or None copy.status_description = generated.properties.copy_status_description or None copy.incremental_copy = generated.properties.incremental_copy or None copy.destination_snapshot = generated.properties.destination_snapshot or None return copy class FileSasPermissions(object): """FileSasPermissions class to be used with generating shared access signature operations. :param bool read: Read the content, properties, metadata. Use the file as the source of a copy operation. :param bool create: Create a new file or copy a file to a new file. :param bool write: Create or write content, properties, metadata. Resize the file. Use the file as the destination of a copy operation within the same account. :param bool delete: Delete the file. """ def __init__(self, read=False, create=False, write=False, delete=False): self.read = read self.create = create self.write = write self.delete = delete self._str = (('r' if self.read else '') + ('c' if self.create else '') + ('w' if self.write else '') + ('d' if self.delete else '')) def __str__(self): return self._str @classmethod def from_string(cls, permission): """Create a FileSasPermissions from a string. To specify read, create, write, or delete permissions you need only to include the first letter of the word in the string. E.g. For read and create permissions, you would provide a string "rc". :param str permission: The string which dictates the read, create, write, or delete permissions :return: A FileSasPermissions object :rtype: ~azure.storage.fileshare.FileSasPermissions """ p_read = 'r' in permission p_create = 'c' in permission p_write = 'w' in permission p_delete = 'd' in permission parsed = cls(p_read, p_create, p_write, p_delete) parsed._str = permission # pylint: disable = protected-access return parsed class ShareSasPermissions(object): """ShareSasPermissions class to be used to be used with generating shared access signature and access policy operations. :param bool read: Read the content, properties or metadata of any file in the share. Use any file in the share as the source of a copy operation. :param bool write: For any file in the share, create or write content, properties or metadata. Resize the file. Use the file as the destination of a copy operation within the same account. Note: You cannot grant permissions to read or write share properties or metadata with a service SAS. Use an account SAS instead. :param bool delete: Delete any file in the share. Note: You cannot grant permissions to delete a share with a service SAS. Use an account SAS instead. :param bool list: List files and directories in the share. """ def __init__(self, read=False, write=False, delete=False, list=False): # pylint: disable=redefined-builtin self.read = read self.write = write self.delete = delete self.list = list self._str = (('r' if self.read else '') + ('w' if self.write else '') + ('d' if self.delete else '') + ('l' if self.list else '')) def __str__(self): return self._str @classmethod def from_string(cls, permission): """Create a ShareSasPermissions from a string. To specify read, write, delete, or list permissions you need only to include the first letter of the word in the string. E.g. For read and write permissions, you would provide a string "rw". :param str permission: The string which dictates the read, write, delete, or list permissions :return: A ShareSasPermissions object :rtype: ~azure.storage.fileshare.ShareSasPermissions """ p_read = 'r' in permission p_write = 'w' in permission p_delete = 'd' in permission p_list = 'l' in permission parsed = cls(p_read, p_write, p_delete, p_list) parsed._str = permission # pylint: disable = protected-access return parsed class NTFSAttributes(object): """ Valid set of attributes to set for file or directory. To set attribute for directory, 'Directory' should always be enabled except setting 'None' for directory. :ivar bool read_only: Enable/disable 'ReadOnly' attribute for DIRECTORY or FILE :ivar bool hidden: Enable/disable 'Hidden' attribute for DIRECTORY or FILE :ivar bool system: Enable/disable 'System' attribute for DIRECTORY or FILE :ivar bool none: Enable/disable 'None' attribute for DIRECTORY or FILE to clear all attributes of FILE/DIRECTORY :ivar bool directory: Enable/disable 'Directory' attribute for DIRECTORY :ivar bool archive: Enable/disable 'Archive' attribute for DIRECTORY or FILE :ivar bool temporary: Enable/disable 'Temporary' attribute for FILE :ivar bool offline: Enable/disable 'Offline' attribute for DIRECTORY or FILE :ivar bool not_content_indexed: Enable/disable 'NotContentIndexed' attribute for DIRECTORY or FILE :ivar bool no_scrub_data: Enable/disable 'NoScrubData' attribute for DIRECTORY or FILE """ def __init__(self, read_only=False, hidden=False, system=False, none=False, directory=False, archive=False, temporary=False, offline=False, not_content_indexed=False, no_scrub_data=False): self.read_only = read_only self.hidden = hidden self.system = system self.none = none self.directory = directory self.archive = archive self.temporary = temporary self.offline = offline self.not_content_indexed = not_content_indexed self.no_scrub_data = no_scrub_data self._str = (('ReadOnly|' if self.read_only else '') + ('Hidden|' if self.hidden else '') + ('System|' if self.system else '') + ('None|' if self.none else '') + ('Directory|' if self.directory else '') + ('Archive|' if self.archive else '') + ('Temporary|' if self.temporary else '') + ('Offline|' if self.offline else '') + ('NotContentIndexed|' if self.not_content_indexed else '') + ('NoScrubData|' if self.no_scrub_data else '')) def __str__(self): concatenated_params = self._str return concatenated_params.strip('|') @classmethod def from_string(cls, string): """Create a NTFSAttributes from a string. To specify permissions you can pass in a string with the desired permissions, e.g. "ReadOnly|Hidden|System" :param str string: The string which dictates the permissions. :return: A NTFSAttributes object :rtype: ~azure.storage.fileshare.NTFSAttributes """ read_only = "ReadOnly" in string hidden = "Hidden" in string system = "System" in string none = "None" in string directory = "Directory" in string archive = "Archive" in string temporary = "Temporary" in string offline = "Offline" in string not_content_indexed = "NotContentIndexed" in string no_scrub_data = "NoScrubData" in string parsed = cls(read_only, hidden, system, none, directory, archive, temporary, offline, not_content_indexed, no_scrub_data) parsed._str = string # pylint: disable = protected-access return parsed def service_properties_deserialize(generated): """Deserialize a ServiceProperties objects into a dict. """ return { 'hour_metrics': Metrics._from_generated(generated.hour_metrics), # pylint: disable=protected-access 'minute_metrics': Metrics._from_generated(generated.minute_metrics), # pylint: disable=protected-access 'cors': [CorsRule._from_generated(cors) for cors in generated.cors], # pylint: disable=protected-access }
2bcf76b268dcc14f93c164f38f79c9fac0b642c1
93d8f6332992d7f1574666096e956d47a2c23754
/src/safe.py
98b34c1ad9ca33b5b925d656a343e2388d310014
[ "BSD-3-Clause" ]
permissive
aliceafterall/cocomud
d41a5a8964f1af17cacfb0d0dcdd4b5530bb1bc5
b2b7a7b5f93542b8e94c0eec00c4dcd7bd96cff1
refs/heads/master
2023-07-20T09:34:49.410221
2017-08-03T15:16:05
2017-08-03T15:16:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,816
py
# Copyright (c) 2016, LE GOFF Vincent # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of ytranslate nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """This file contains the 'safe' system of CocoMUD, ways to crypt/encrypt. This feature requires: pbkdf2 Crypto The module contains a class named 'Safe', that should be insantiated in order to manipulate the encrypting /decrypting mechanism. This class requires a passphrase in argument. You can insantiate it as follows: >>> from safe import Safe >>> safe = Safe(file=".passphrase") >>> # (If the file doesn't exist, it will be created with an auto-generated >>> # passphrase.) >>> # Alternatively you can specify the passphrase directly >>> safe = Safe(passphrase="Dsm18fvdjP9sz801,9DJA.1356gndYJz987v") >>> # Store encrypted data >>> safe.store("login", "kredh") >>> safe.store("password", "YoudWishIToldYou") >>> # Retrieve the data (can be later) login = safe.retrieve("login") password = safe.retrieve("password") Note that datas that is not a string (like a bool or float) will be saved as unprotected data. If you want to save it encrypted, you can convert it to string. """ import base64 import os import pickle from Crypto.Cipher import AES from pbkdf2 import PBKDF2 class Safe: """A safe object, to encrypt/decrypt information. The Safe class requires a passphrase to be created. This is a string of characters that adds to the security of encryption. Obviously, it needs to remain similar to decrypt information that has been encrypted. Other optional parameters are also possible: secret: the path of the file in which to store crypted data. """ def __init__(self, passphrase=None, file=None, secret="data.crypt", load=True): self.salt_seed = 'mkhgts465wef4fwtdd' self.passphrase = passphrase self.secret = secret self.passphrase_size = 64 self.key_size = 32 self.block_size = 16 self.iv_size = 16 self.salt_size = 8 self.data = {} if file and os.path.exists(file): with open(file, "r") as pass_file: self.passphrase = pass_file.read() if not self.passphrase: self.passphrase = base64.b64encode(os.urandom( self.passphrase_size)) if file: with open(file, "w") as pass_file: pass_file.write(self.passphrase) # Load the secret file if load: self.load() def get_salt_from_key(self, key): return PBKDF2(key, self.salt_seed).read(self.salt_size) def encrypt(self, plaintext, salt): """Pad plaintext, then encrypt it. The encryption occurs with a new, randomly initialised cipher. This method will not preserve trailing whitespace in plaintext!. """ # Initialise Cipher Randomly init_vector = os.urandom(self.iv_size) # Prepare cipher key key = PBKDF2(self.passphrase, salt).read(self.key_size) cipher = AES.new(key, AES.MODE_CBC, init_vector) bs = self.block_size return init_vector + cipher.encrypt(plaintext + \ " " * (bs - (len(plaintext) % bs))) def decrypt(self, ciphertext, salt): """Reconstruct the cipher object and decrypt. This method will not preserve trailing whitespace in the retrieved value. """ # Prepare cipher key key = PBKDF2(self.passphrase, salt).read(self.key_size) # Extract IV init_vector = ciphertext[:self.iv_size] ciphertext = ciphertext[self.iv_size:] cipher = AES.new(key, AES.MODE_CBC, init_vector) return cipher.decrypt(ciphertext).rstrip(" ") def load(self): """Load the data from the 'secret' file if exists.""" if os.path.exists(self.secret): with open(self.secret, "rb") as file: upic = pickle.Unpickler(file) self.data = upic.load() if not isinstance(self.data, dict): raise ValueError("the data contained in the file " \ "'{}' is not a dictionary".format(self.secret)) def retrieve(self, key, *default): """Retrieve and decrypt the specified key. If the key isn't present in the dictionary, either return default if specified, or raise a KeyError. If the value at this location isn't a string, return it as is. """ if key not in self.data: if default: return default[0] raise KeyError(key) value = self.data[key] if isinstance(value, basestring): salt = self.get_salt_from_key(key) return self.decrypt(value, salt) return value def store(self, key, value): """Store the key in the file. If the key already exists, replaces it. If the value is not a string or unicode, it will be stored WITHOUT encryption. """ if isinstance(value, basestring): salt = self.get_salt_from_key(key) crypted = self.encrypt(value, salt) self.data[key] = crypted else: self.data[key] = value # Write the new data in the file with open(self.secret, "wb") as file: pic = pickle.Pickler(file) pic.dump(self.data)
a4b8a7c035036e9e0e83c562c498c103c3a7ba94
7d72ece1edb0009e2f5dadd96838e6fa4d020c86
/src/follow_road/MyAlgorithm.py
78146757492d8d71d43311729f3470639eea528e
[]
no_license
RoboticsLabURJC/2018-phd-luis-caiza
d188a9621c7339349dd32ba3f382010daeb49b95
834e93889c8b8aacdf8edee0206341154ef17073
refs/heads/master
2020-03-30T02:05:28.334834
2019-04-24T19:32:17
2019-04-24T19:32:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,509
py
import threading import time from datetime import datetime import cv2 import numpy as np import math time_cycle = 80 #value_min_HSV = np.array([20, 0, 0]) #for follow road original #value_max_HSV = np.array([100, 130, 130]) #for follow road original value_min_HSV=np.array([0, 50, 50]) # red color used in follow a ball value_max_HSV=np.array([10, 255, 255]) #red color used in follow a ball vel_front = 0 vel_z = 0 vel_yaw = 0 class MyAlgorithm(threading.Thread): def __init__(self, drone): self.drone = drone self.height = 240 self.width = 320 self.yaw = 0.0 self.imageV=None self.imageF =None self.stop_event = threading.Event() self.kill_event = threading.Event() self.lock = threading.Lock() threading.Thread.__init__(self, args=self.stop_event) def setImageFilteredVentral(self, image): self.lock.acquire() self.imageV=image self.lock.release() def getImageFilteredVentral(self): self.lock.acquire() tempImageV=self.imageV self.lock.release() return tempImageV def setImageFilteredFrontal(self, image): self.lock.acquire() self.imageF=image self.lock.release() def getImageFilteredFrontal(self): self.lock.acquire() tempImageF=self.imageF self.lock.release() return tempImageF def run (self): self.stop_event.clear() while (not self.kill_event.is_set()): start_time = datetime.now() if not self.stop_event.is_set(): self.execute() finish_Time = datetime.now() dt = finish_Time - start_time ms = (dt.days * 24 * 60 * 60 + dt.seconds) * 1000 + dt.microseconds / 1000.0 if (ms < time_cycle): time.sleep((time_cycle - ms) / 1000.0) def stop (self): self.stop_event.set() def play (self): if self.is_alive(): self.stop_event.clear() else: self.start() def kill (self): self.kill_event.set() def execute(self): # Add your code here input_imageV = self.drone.getImageVentral().data input_imageF = self.drone.getImageFrontal().data if input_imageV is not None: image_HSV_V = cv2.cvtColor(input_imageV, cv2.COLOR_RGB2HSV) #Treshold image image_HSV_filtered_V = cv2.inRange(image_HSV_V, value_min_HSV, value_max_HSV) #Reducing noise opening_V = cv2.morphologyEx(image_HSV_filtered_V, cv2.MORPH_OPEN, np.ones((5,5),np.uint8)) closing_V = cv2.morphologyEx(opening_V, cv2.MORPH_CLOSE, np.ones((10,10),np.uint8)) #Filtered image image_HSV_filtered_Mask_V = np.dstack((closing_V, closing_V, closing_V)) #drawing contours imgray_V = cv2.cvtColor(image_HSV_filtered_Mask_V, cv2.COLOR_BGR2GRAY) ret_V, thresh_V = cv2.threshold(imgray_V, 127, 255, 0) _, contours_V, hierarchy_V = cv2.findContours(thresh_V, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) cv2.drawContours(image_HSV_filtered_Mask_V, contours_V, -1, (0,255,0), 3) #Getting the centre of the road if input_imageF is not None: image_HSV_F = cv2.cvtColor(input_imageF, cv2.COLOR_RGB2HSV) #Treshold image image_HSV_filtered_F = cv2.inRange(image_HSV_F, value_min_HSV, value_max_HSV) #Reducing noise opening_F = cv2.morphologyEx(image_HSV_filtered_F, cv2.MORPH_OPEN, np.ones((5,5),np.uint8)) image_HSV_filtered_Mask_F = np.dstack((opening_F, opening_F, opening_F)) #drawing contours imgray_F = cv2.cvtColor(image_HSV_filtered_Mask_F, cv2.COLOR_BGR2GRAY) ret_F, thresh_F = cv2.threshold(imgray_F, 127, 255, 0) _, contours_F, hierarchy_F = cv2.findContours(thresh_F, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) cv2.drawContours(image_HSV_filtered_Mask_F, contours_F, -1, (0,255,0), 3) #Getting the centre of the road area = [] for pic, contour in enumerate(contours_F): area.append(cv2.contourArea(contour)) if len(area) > 1: if area[0] < area[1]: M = cv2.moments(contours_F[1]) else: M = cv2.moments(contours_F[0]) else: try: M = cv2.moments(contours_F[0]) except IndexError: self.drone.sendCMDVelocities(0,0,0,0) M = cv2.moments(0) if int(M['m00']) != 0: #print("Road detected") cx = int(M['m10']/M['m00']) cy = int(M['m01']/M['m00']) vel_front = 0.0001 * (3000 - int(M['m00'])) vel_z = 0.01 * (110 - cy) vel_yaw = 0.02 * (140 - cx) self.drone.sendCMDVelocities(0,vel_front,vel_z,vel_yaw) print("cx: " + str(cx) + " cy: " + str(cy) + " area: " + str(M['m00']) + " vel_z " + str(vel_z)) self.yaw = int(cx) #drawing the center cv2.circle(image_HSV_filtered_Mask_F, (cx, cy), 7, np.array([255, 0, 0]), -1) #printing the filtered image self.setImageFilteredVentral(image_HSV_filtered_Mask_V) self.setImageFilteredFrontal(image_HSV_filtered_Mask_F)
eed067e68e68bc9403d6958e844746a118bc601f
d6ce2f6bdddef373b9bbdf26d567307ce3667103
/scripts/utils_specs/convert_spec_csv_to_json.py
0db7b03c0e21edd6637ca3d51e06b9ffc1e88e4d
[ "MIT" ]
permissive
hezbranch/time_series_prediction
505007fb248fe09f56943c3ad705a52ce77a193c
9bffc3f279cbfaa3ec0acc937d15610c19e0975e
refs/heads/master
2023-01-19T12:27:24.615657
2020-10-30T08:59:05
2020-10-30T08:59:05
296,434,092
1
0
MIT
2020-09-17T20:22:09
2020-09-17T20:22:08
null
UTF-8
Python
false
false
2,503
py
import argparse import pandas as pd import json import copy import os if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--config_json_path", type=str) parser.add_argument("--output_dir", type=str) parser.add_argument("--row_template_json", type=str, default='row_template.json') parser.add_argument("--sheet_template_json", type=str, default='sheet_template.json') args = parser.parse_args() with open(args.config_json_path, 'r') as f: config = json.load(f) with open(args.row_template_json, 'r') as f: row_template = json.load(f) with open(args.sheet_template_json, 'r') as f: sheet_template = json.load(f) for gid, sheet_name, csv_filename in zip( config['spec_gid_list'], config['spec_sheet_name_list'], config['spec_csv_filename_list']): sheet = copy.deepcopy(sheet_template) sheet['name'] = sheet['name'].replace("{{sheet_name}}", sheet_name) sheet['path'] = sheet['path'].replace("{{csv_filename}}", csv_filename) out_csv_path = os.path.join( args.output_dir, config['output_csv_path_pattern'].replace("{{sheet_name}}", sheet_name) ) out_json_path = os.path.join( args.output_dir, config['output_json_path_pattern'].replace("{{sheet_name}}", sheet_name) ) csv_df = pd.read_csv(out_csv_path, dtype=str) row_list = [] for rowid, row_df in csv_df.iterrows(): row = copy.deepcopy(row_template) for k, v in row_template.items(): if isinstance(v, dict): v = v.__repr__() isdict = True else: isdict = False assert isinstance(v, str) while v.count("{{") > 0: start = v.find("{{") stop = v.find("}}", start) varname = v[start+2:stop] v = v.replace("{{%s}}" % varname, str(row_df[varname])) if isdict: row[k] = json.loads(v.replace("'", '"')) else: row[k] = v row_list.append(row) sheet['schema']['fields'] = row_list sheet = json.dumps(sheet, indent=4, sort_keys=False) with open(out_json_path, 'w') as f: f.write(sheet) print("Wrote to file: %s" % out_json_path)
90118b22999d0850d70f1bd9e39f9ebafee8e412
6188f8ef474da80c9e407e8040de877273f6ce20
/examples/docs_snippets/docs_snippets/guides/dagster/development_to_production/resources/resources_v1.py
c1339b0fabc7baf6e734f9610d9ced0cb55cf53e
[ "Apache-2.0" ]
permissive
iKintosh/dagster
99f2a1211de1f3b52f8bcf895dafaf832b999de2
932a5ba35263deb7d223750f211c2ddfa71e6f48
refs/heads/master
2023-01-24T15:58:28.497042
2023-01-20T21:51:35
2023-01-20T21:51:35
276,410,978
1
0
Apache-2.0
2020-07-01T15:19:47
2020-07-01T15:13:56
null
UTF-8
Python
false
false
655
py
# start_resource # resources.py from typing import Any, Dict, Optional import requests class HNAPIClient: """ Hacker News client that fetches live data """ def fetch_item_by_id(self, item_id: int) -> Optional[Dict[str, Any]]: """Fetches a single item from the Hacker News API by item id.""" item_url = f"https://hacker-news.firebaseio.com/v0/item/{item_id}.json" item = requests.get(item_url, timeout=5).json() return item def fetch_max_item_id(self) -> int: return requests.get( "https://hacker-news.firebaseio.com/v0/maxitem.json", timeout=5 ).json() # end_resource
cad332858fb916aae94cf392338574f290c1bdce
1e3cf9c1341083675fa9b716f11c2834e2d18374
/src/pyphoplacecellanalysis/External/pyqtgraph/examples/VideoSpeedTest.py
bb3ff76da268f9820a6aa048e58f05c851b9e606
[ "MIT" ]
permissive
CommanderPho/pyPhoPlaceCellAnalysis
a60313c98b3ad2834c2bf101f3463714df092cf5
212399d826284b394fce8894ff1a93133aef783f
refs/heads/master
2023-09-01T20:27:43.792099
2023-09-01T03:24:19
2023-09-01T03:24:19
444,885,155
1
0
null
null
null
null
UTF-8
Python
false
false
9,668
py
""" Tests the speed of image updates for an ImageItem and RawImageWidget. The speed will generally depend on the type of data being shown, whether it is being scaled and/or converted by lookup table, and whether OpenGL is used by the view widget """ import argparse import sys from time import perf_counter import numpy as np import pyphoplacecellanalysis.External.pyqtgraph as pg from pyphoplacecellanalysis.External.pyqtgraph.Qt import QT_LIB, QtCore, QtGui, QtWidgets pg.setConfigOption('imageAxisOrder', 'row-major') import importlib ui_template = importlib.import_module(f'VideoTemplate_{QT_LIB.lower()}') try: import cupy as cp pg.setConfigOption("useCupy", True) _has_cupy = True except ImportError: cp = None _has_cupy = False try: import numba _has_numba = True except ImportError: numba = None _has_numba = False try: from pyphoplacecellanalysis.External.pyqtgraph.widgets.RawImageWidget import RawImageGLWidget except ImportError: RawImageGLWidget = None parser = argparse.ArgumentParser(description="Benchmark for testing video performance") parser.add_argument('--cuda', default=False, action='store_true', help="Use CUDA to process on the GPU", dest="cuda") parser.add_argument('--dtype', default='uint8', choices=['uint8', 'uint16', 'float'], help="Image dtype (uint8, uint16, or float)") parser.add_argument('--frames', default=3, type=int, help="Number of image frames to generate (default=3)") parser.add_argument('--image-mode', default='mono', choices=['mono', 'rgb'], help="Image data mode (mono or rgb)", dest='image_mode') parser.add_argument('--levels', default=None, type=lambda s: tuple([float(x) for x in s.split(',')]), help="min,max levels to scale monochromatic image dynamic range, or rmin,rmax,gmin,gmax,bmin,bmax to scale rgb") parser.add_argument('--lut', default=False, action='store_true', help="Use color lookup table") parser.add_argument('--lut-alpha', default=False, action='store_true', help="Use alpha color lookup table", dest='lut_alpha') parser.add_argument('--size', default='512x512', type=lambda s: tuple([int(x) for x in s.split('x')]), help="WxH image dimensions default='512x512'") args = parser.parse_args(sys.argv[1:]) if RawImageGLWidget is not None: # don't limit frame rate to vsync sfmt = QtGui.QSurfaceFormat() sfmt.setSwapInterval(0) QtGui.QSurfaceFormat.setDefaultFormat(sfmt) app = pg.mkQApp("Video Speed Test Example") win = QtWidgets.QMainWindow() win.setWindowTitle('pyqtgraph example: VideoSpeedTest') ui = ui_template.Ui_MainWindow() ui.setupUi(win) win.show() if RawImageGLWidget is None: ui.rawGLRadio.setEnabled(False) ui.rawGLRadio.setText(ui.rawGLRadio.text() + " (OpenGL not available)") else: ui.rawGLImg = RawImageGLWidget() ui.stack.addWidget(ui.rawGLImg) # read in CLI args ui.cudaCheck.setChecked(args.cuda and _has_cupy) ui.cudaCheck.setEnabled(_has_cupy) ui.numbaCheck.setChecked(_has_numba and pg.getConfigOption("useNumba")) ui.numbaCheck.setEnabled(_has_numba) ui.framesSpin.setValue(args.frames) ui.widthSpin.setValue(args.size[0]) ui.heightSpin.setValue(args.size[1]) ui.dtypeCombo.setCurrentText(args.dtype) ui.rgbCheck.setChecked(args.image_mode=='rgb') ui.maxSpin1.setOpts(value=255, step=1) ui.minSpin1.setOpts(value=0, step=1) levelSpins = [ui.minSpin1, ui.maxSpin1, ui.minSpin2, ui.maxSpin2, ui.minSpin3, ui.maxSpin3] if args.cuda and _has_cupy: xp = cp else: xp = np if args.levels is None: ui.scaleCheck.setChecked(False) ui.rgbLevelsCheck.setChecked(False) else: ui.scaleCheck.setChecked(True) if len(args.levels) == 2: ui.rgbLevelsCheck.setChecked(False) ui.minSpin1.setValue(args.levels[0]) ui.maxSpin1.setValue(args.levels[1]) elif len(args.levels) == 6: ui.rgbLevelsCheck.setChecked(True) for spin,val in zip(levelSpins, args.levels): spin.setValue(val) else: raise ValueError("levels argument must be 2 or 6 comma-separated values (got %r)" % (args.levels,)) ui.lutCheck.setChecked(args.lut) ui.alphaCheck.setChecked(args.lut_alpha) #ui.graphicsView.useOpenGL() ## buggy, but you can try it if you need extra speed. vb = pg.ViewBox() ui.graphicsView.setCentralItem(vb) vb.setAspectLocked() img = pg.ImageItem() vb.addItem(img) LUT = None def updateLUT(): global LUT, ui dtype = ui.dtypeCombo.currentText() if dtype == 'uint8': n = 256 else: n = 4096 LUT = ui.gradient.getLookupTable(n, alpha=ui.alphaCheck.isChecked()) if _has_cupy and xp == cp: LUT = cp.asarray(LUT) ui.gradient.sigGradientChanged.connect(updateLUT) updateLUT() ui.alphaCheck.toggled.connect(updateLUT) def updateScale(): global ui, levelSpins if ui.rgbLevelsCheck.isChecked(): for s in levelSpins[2:]: s.setEnabled(True) else: for s in levelSpins[2:]: s.setEnabled(False) updateScale() ui.rgbLevelsCheck.toggled.connect(updateScale) cache = {} def mkData(): with pg.BusyCursor(): global data, cache, ui, xp frames = ui.framesSpin.value() width = ui.widthSpin.value() height = ui.heightSpin.value() cacheKey = (ui.dtypeCombo.currentText(), ui.rgbCheck.isChecked(), frames, width, height) if cacheKey not in cache: if cacheKey[0] == 'uint8': dt = xp.uint8 loc = 128 scale = 64 mx = 255 elif cacheKey[0] == 'uint16': dt = xp.uint16 loc = 4096 scale = 1024 mx = 2**16 - 1 elif cacheKey[0] == 'float': dt = xp.float32 loc = 1.0 scale = 0.1 mx = 1.0 else: raise ValueError(f"unable to handle dtype: {cacheKey[0]}") chan_shape = (height, width) if ui.rgbCheck.isChecked(): frame_shape = chan_shape + (3,) else: frame_shape = chan_shape data = xp.empty((frames,) + frame_shape, dtype=dt) view = data.reshape((-1,) + chan_shape) for idx in range(view.shape[0]): subdata = xp.random.normal(loc=loc, scale=scale, size=chan_shape) # note: gaussian filtering has been removed as it slows down array # creation greatly. if cacheKey[0] != 'float': xp.clip(subdata, 0, mx, out=subdata) view[idx] = subdata data[:, 10:50, 10] = mx data[:, 48, 9:12] = mx data[:, 47, 8:13] = mx cache = {cacheKey: data} # clear to save memory (but keep one to prevent unnecessary regeneration) data = cache[cacheKey] updateLUT() updateSize() def updateSize(): global ui, vb frames = ui.framesSpin.value() width = ui.widthSpin.value() height = ui.heightSpin.value() dtype = xp.dtype(str(ui.dtypeCombo.currentText())) rgb = 3 if ui.rgbCheck.isChecked() else 1 ui.sizeLabel.setText('%d MB' % (frames * width * height * rgb * dtype.itemsize / 1e6)) vb.setRange(QtCore.QRectF(0, 0, width, height)) def noticeCudaCheck(): global xp, cache cache = {} if ui.cudaCheck.isChecked(): if _has_cupy: xp = cp else: xp = np ui.cudaCheck.setChecked(False) else: xp = np mkData() def noticeNumbaCheck(): pg.setConfigOption('useNumba', _has_numba and ui.numbaCheck.isChecked()) mkData() ui.dtypeCombo.currentIndexChanged.connect(mkData) ui.rgbCheck.toggled.connect(mkData) ui.widthSpin.editingFinished.connect(mkData) ui.heightSpin.editingFinished.connect(mkData) ui.framesSpin.editingFinished.connect(mkData) ui.widthSpin.valueChanged.connect(updateSize) ui.heightSpin.valueChanged.connect(updateSize) ui.framesSpin.valueChanged.connect(updateSize) ui.cudaCheck.toggled.connect(noticeCudaCheck) ui.numbaCheck.toggled.connect(noticeNumbaCheck) ptr = 0 lastTime = perf_counter() fps = None def update(): global ui, ptr, lastTime, fps, LUT, img if ui.lutCheck.isChecked(): useLut = LUT else: useLut = None downsample = ui.downsampleCheck.isChecked() if ui.scaleCheck.isChecked(): if ui.rgbLevelsCheck.isChecked(): useScale = [ [ui.minSpin1.value(), ui.maxSpin1.value()], [ui.minSpin2.value(), ui.maxSpin2.value()], [ui.minSpin3.value(), ui.maxSpin3.value()]] else: useScale = [ui.minSpin1.value(), ui.maxSpin1.value()] else: useScale = None if ui.rawRadio.isChecked(): ui.rawImg.setImage(data[ptr%data.shape[0]], lut=useLut, levels=useScale) ui.stack.setCurrentIndex(1) elif ui.rawGLRadio.isChecked(): ui.rawGLImg.setImage(data[ptr%data.shape[0]], lut=useLut, levels=useScale) ui.stack.setCurrentIndex(2) else: img.setImage(data[ptr%data.shape[0]], autoLevels=False, levels=useScale, lut=useLut, autoDownsample=downsample) ui.stack.setCurrentIndex(0) #img.setImage(data[ptr%data.shape[0]], autoRange=False) ptr += 1 now = perf_counter() dt = now - lastTime lastTime = now if fps is None: fps = 1.0/dt else: s = np.clip(dt*3., 0, 1) fps = fps * (1-s) + (1.0/dt) * s ui.fpsLabel.setText('%0.2f fps' % fps) app.processEvents() ## force complete redraw for every plot timer = QtCore.QTimer() timer.timeout.connect(update) timer.start(0) if __name__ == '__main__': pg.exec()
93db36640e286172bee479c27dc086ac4f892ad8
d90283bff72b5a55dd4d0f90c7325355b00ce7b1
/p1804/p12/xxxx.py
1bd3153f8551e4d5a98764db70ac390410388037
[]
no_license
yuemeiss/p1804daima
f841f52e63081d53d50a199e4d148d4533605bb6
6ea08eb9971e42bf4ac535033a006d98ed98bf98
refs/heads/master
2020-03-15T23:29:59.691297
2018-08-06T02:42:49
2018-08-06T02:42:49
132,395,078
0
0
null
null
null
null
UTF-8
Python
false
false
167
py
tu1 = (1,2,3) alist=[123,5677,555] for i in alist: print(i) for index,d in enumerate(alist): print(index,d) c=0 while c < len(tu1): print(tu1[c]) c+=1
8b09f80a72badcd81065c4921c3e31e1173a1a46
c5b4d174ace61dd5914ca99fb0f2c710d0182324
/pypes/tests/test__utils.py
bd9906b228853654176538174cd98e0cfc893330
[ "Apache-2.0" ]
permissive
erramuzpe/pypes
636c6b31023747a571af90390fd85b2dd6806dea
3922d3162dc633b30961c036efdeb5d221ab1bfb
refs/heads/master
2020-12-24T06:43:15.063955
2017-04-05T19:51:05
2017-04-05T19:51:05
73,461,509
0
0
null
2016-11-11T08:54:15
2016-11-11T08:54:14
null
UTF-8
Python
false
false
2,645
py
# -*- coding: utf-8 -*- from pypes._utils import format_pair_list def test_format_pair_list(): anat_fbasename = 'anat_hc' regexp_subst = [ (r"/{anat}_.*corrected_seg8.mat$", "/{anat}_to_mni_affine.mat"), (r"/m{anat}.*_corrected.nii$", "/{anat}_biascorrected.nii"), (r"/w{anat}.*_biascorrected.nii$", "/{anat}_mni.nii"), (r"/y_{anat}.*nii$", "/{anat}_to_mni_field.nii"), (r"/iy_{anat}.*nii$", "/{anat}_to_mni_inv_field.nii"), (r"/mwc1{anat}.*nii$", "/{anat}_gm_mod_w2tpm.nii"), (r"/mwc2{anat}.*nii$", "/{anat}_wm_mod_w2tpm.nii"), (r"/mwc3{anat}.*nii$", "/{anat}_csf_mod_w2tpm.nii"), (r"/mwc4{anat}.*nii$", "/{anat}_nobrain_mod_w2tpm.nii"), (r"/c1{anat}.*nii$", "/{anat}_gm.nii"), (r"/c2{anat}.*nii$", "/{anat}_wm.nii"), (r"/c3{anat}.*nii$", "/{anat}_csf.nii"), (r"/c4{anat}.*nii$", "/{anat}_nobrain.nii"), (r"/c5{anat}.*nii$", "/{anat}_nobrain_mask.nii"), ] result = format_pair_list(regexp_subst, anat=anat_fbasename) assert(result == [ (r"/anat_hc_.*corrected_seg8.mat$", "/anat_hc_to_mni_affine.mat"), (r"/manat_hc.*_corrected.nii$", "/anat_hc_biascorrected.nii"), (r"/wanat_hc.*_biascorrected.nii$", "/anat_hc_mni.nii"), (r"/y_anat_hc.*nii$", "/anat_hc_to_mni_field.nii"), (r"/iy_anat_hc.*nii$", "/anat_hc_to_mni_inv_field.nii"), (r"/mwc1anat_hc.*nii$", "/anat_hc_gm_mod_w2tpm.nii"), (r"/mwc2anat_hc.*nii$", "/anat_hc_wm_mod_w2tpm.nii"), (r"/mwc3anat_hc.*nii$", "/anat_hc_csf_mod_w2tpm.nii"), (r"/mwc4anat_hc.*nii$", "/anat_hc_nobrain_mod_w2tpm.nii"), (r"/c1anat_hc.*nii$", "/anat_hc_gm.nii"), (r"/c2anat_hc.*nii$", "/anat_hc_wm.nii"), (r"/c3anat_hc.*nii$", "/anat_hc_csf.nii"), (r"/c4anat_hc.*nii$", "/anat_hc_nobrain.nii"), (r"/c5anat_hc.*nii$", "/anat_hc_nobrain_mask.nii"), ])
1ab320425a4b1a6568c0ae0d930d6c9f420e792d
168f8546daf36bead1a9b8f32e8a43fdc5d844cf
/Test/python/multiply.py
cec03f2eaf740cf2f1ca1e9f23d4046fa9dd1500
[]
no_license
whztt07/RenderFish
ea67915a672096254444765347044c6229681d05
7d0a4fd6a01a949091ec05ba93c42aa1760b9408
refs/heads/master
2020-05-04T14:47:51.215280
2015-11-22T16:42:31
2015-11-22T16:42:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
432
py
'''py_class.py - Python source designed to demonstrate''' '''the use of python embedding''' class Multiply: def __init__(self): self.a = 6 self.b = 5 def multiply(self): c = self.a*self.b print 'The result of', self.a, 'x', self.b, ':', c return c def multiply2(self, a, b): c = a*b print 'The result of', a, 'x', b, ':', c return c
eb3e1585341debf43f5683ae5d04f1b4cc7345dd
b9be3202a4db8875299d4a123b7c1e3c7d282eaf
/tensorflow/contrib/learn/python/learn/estimators/dnn.py
63c262800864b7b2cbaf753220f58867cf376f3d
[ "Apache-2.0" ]
permissive
prafullasd/tensorflow
f25d0eb5997af2500d4bd2f7596d103d7028f048
2c55490c6d6d361985dbb0565ab08a648c819949
refs/heads/master
2021-01-18T13:31:25.223301
2016-06-03T20:27:32
2016-06-03T20:27:32
60,382,471
1
0
null
2016-06-03T22:58:26
2016-06-03T22:58:25
null
UTF-8
Python
false
false
8,828
py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Deep Neural Network estimators.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib import layers from tensorflow.contrib.learn.python.learn.estimators import _sklearn from tensorflow.contrib.learn.python.learn.estimators import dnn_linear_combined from tensorflow.contrib.learn.python.learn.estimators.base import DeprecatedMixin from tensorflow.python.ops import nn class DNNClassifier(dnn_linear_combined.DNNLinearCombinedClassifier): """A classifier for TensorFlow DNN models. Example: ``` installed_app_id = sparse_column_with_hash_bucket("installed_id", 1e6) impression_app_id = sparse_column_with_hash_bucket("impression_id", 1e6) installed_emb = embedding_column(installed_app_id, dimension=16, combiner="sum") impression_emb = embedding_column(impression_app_id, dimension=16, combiner="sum") estimator = DNNClassifier( feature_columns=[installed_emb, impression_emb], hidden_units=[1024, 512, 256]) # Input builders def input_fn_train: # returns X, Y pass estimator.fit(input_fn=input_fn_train) def input_fn_eval: # returns X, Y pass estimator.evaluate(input_fn_eval) estimator.predict(x) ``` Input of `fit`, `train`, and `evaluate` should have following features, otherwise there will be a `KeyError`: if `weight_column_name` is not `None`, a feature with `key=weight_column_name` whose value is a `Tensor`. for each `column` in `feature_columns`: - if `column` is a `SparseColumn`, a feature with `key=column.name` whose `value` is a `SparseTensor`. - if `column` is a `RealValuedColumn, a feature with `key=column.name` whose `value` is a `Tensor`. - if `feauture_columns` is None, then `input` must contains only real valued `Tensor`. Parameters: hidden_units: List of hidden units per layer. All layers are fully connected. Ex. [64, 32] means first layer has 64 nodes and second one has 32. feature_columns: An iterable containing all the feature columns used by the model. All items in the set should be instances of classes derived from `FeatureColumn`. model_dir: Directory to save model parameters, graph and etc. n_classes: number of target classes. Default is binary classification. It must be greater than 1. weight_column_name: A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. optimizer: An instance of `tf.Optimizer` used to train the model. If `None`, will use an Adagrad optimizer. activation_fn: Activation function applied to each layer. If `None`, will use `tf.nn.relu`. dropout: When not None, the probability we will drop out a given coordinate. """ def __init__(self, hidden_units, feature_columns=None, model_dir=None, n_classes=2, weight_column_name=None, optimizer=None, activation_fn=nn.relu, dropout=None): super(DNNClassifier, self).__init__(n_classes=n_classes, weight_column_name=weight_column_name, dnn_feature_columns=feature_columns, dnn_optimizer=optimizer, dnn_hidden_units=hidden_units, dnn_activation_fn=activation_fn, dnn_dropout=dropout) def _get_train_ops(self, features, targets): """See base class.""" if self._dnn_feature_columns is None: self._dnn_feature_columns = layers.infer_real_valued_columns(features) return super(DNNClassifier, self)._get_train_ops(features, targets) @property def weights_(self): return self.dnn_weights_ @property def bias_(self): return self.dnn_bias_ class DNNRegressor(dnn_linear_combined.DNNLinearCombinedRegressor): """A regressor for TensorFlow DNN models. Example: ``` installed_app_id = sparse_column_with_hash_bucket("installed_id", 1e6) impression_app_id = sparse_column_with_hash_bucket("impression_id", 1e6) installed_emb = embedding_column(installed_app_id, dimension=16, combiner="sum") impression_emb = embedding_column(impression_app_id, dimension=16, combiner="sum") estimator = DNNRegressor( feature_columns=[installed_emb, impression_emb], hidden_units=[1024, 512, 256]) # Input builders def input_fn_train: # returns X, Y pass estimator.fit(input_fn=input_fn_train) def input_fn_eval: # returns X, Y pass estimator.evaluate(input_fn_eval) estimator.predict(x) ``` Input of `fit`, `train`, and `evaluate` should have following features, otherwise there will be a `KeyError`: if `weight_column_name` is not `None`, a feature with `key=weight_column_name` whose value is a `Tensor`. for each `column` in `feature_columns`: - if `column` is a `SparseColumn`, a feature with `key=column.name` whose `value` is a `SparseTensor`. - if `column` is a `RealValuedColumn, a feature with `key=column.name` whose `value` is a `Tensor`. - if `feauture_columns` is None, then `input` must contains only real valued `Tensor`. Parameters: hidden_units: List of hidden units per layer. All layers are fully connected. Ex. [64, 32] means first layer has 64 nodes and second one has 32. feature_columns: An iterable containing all the feature columns used by the model. All items in the set should be instances of classes derived from `FeatureColumn`. model_dir: Directory to save model parameters, graph and etc. weight_column_name: A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. optimizer: An instance of `tf.Optimizer` used to train the model. If `None`, will use an Adagrad optimizer. activation_fn: Activation function applied to each layer. If `None`, will use `tf.nn.relu`. dropout: When not None, the probability we will drop out a given coordinate. """ def __init__(self, hidden_units, feature_columns=None, model_dir=None, weight_column_name=None, optimizer=None, activation_fn=nn.relu, dropout=None): super(DNNRegressor, self).__init__(weight_column_name=weight_column_name, dnn_feature_columns=feature_columns, dnn_optimizer=optimizer, dnn_hidden_units=hidden_units, dnn_activation_fn=activation_fn, dnn_dropout=dropout) def _get_train_ops(self, features, targets): """See base class.""" if self._dnn_feature_columns is None: self._dnn_feature_columns = layers.infer_real_valued_columns(features) return super(DNNRegressor, self)._get_train_ops(features, targets) @property def weights_(self): return self.dnn_weights_ @property def bias_(self): return self.dnn_bias_ # TensorFlowDNNClassifier and TensorFlowDNNRegressor are deprecated. class TensorFlowDNNClassifier(DeprecatedMixin, DNNClassifier, _sklearn.ClassifierMixin): pass class TensorFlowDNNRegressor(DeprecatedMixin, DNNRegressor, _sklearn.RegressorMixin): pass
a4c1c455cf5fb61154b9d3c2c35d0661314913f2
9b9a02657812ea0cb47db0ae411196f0e81c5152
/repoData/sdiehl-sockjs-gevent/allPythonContent.py
20f871a6a70bd7b62eafabef19118c5e95d31179
[]
no_license
aCoffeeYin/pyreco
cb42db94a3a5fc134356c9a2a738a063d0898572
0ac6653219c2701c13c508c5c4fc9bc3437eea06
refs/heads/master
2020-12-14T14:10:05.763693
2016-06-27T05:15:15
2016-06-27T05:15:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
175,363
py
__FILENAME__ = conf # -*- coding: utf-8 -*- # # gevent-sockjs documentation build configuration file, created by # sphinx-quickstart on Mon Mar 12 20:11:57 2012. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.viewcode'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'gevent-sockjs' copyright = u'2012, Stephen Diehl & John Debs' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = 'dev' # The full version, including alpha/beta/rc tags. release = 'dev' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = [] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'nature' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'gevent-sockjsdoc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'gevent-sockjs.tex', u'gevent-sockjs Documentation', u'Stephen Diehl \\& John Debs', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'gevent-sockjs', u'gevent-sockjs Documentation', [u'Stephen Diehl & John Debs'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'gevent-sockjs', u'gevent-sockjs Documentation', u'Stephen Diehl & John Debs', 'gevent-sockjs', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' ########NEW FILE######## __FILENAME__ = devserver """ This module is most like what a user would define in their application, namely the - Routes - Connection Handlers The one's sketched here are the Echo, Disabled Websockets, and the Close connection handlers which are used by the protocol test suite. """ import gevent.monkey # Monkey patching stdlib is not a necessity for all use cases gevent.monkey.patch_all() from server import SockJSServer from router import SockJSRouter, SockJSConnection # Need to moneky patch the threading module to use greenlets import werkzeug.serving class Echo(SockJSConnection): def on_message(self, message): self.send(message) class DisabledWebsocket(SockJSConnection): disallowed_transports = ('websocket',) def on_message(self, message): pass class Close(SockJSConnection): disallowed_transports = () def on_open(self, session): self.close() def on_message(self, message): pass router = SockJSRouter({ 'echo': Echo, 'close': Close, 'disabled_websocket_echo': DisabledWebsocket, }) @werkzeug.serving.run_with_reloader def devel_server(): """ A local server with code reload. Should only be used for development. """ try: sockjs = SockJSServer(('localhost',8081), router, trace=True) sockjs.serve_forever() except KeyboardInterrupt: sockjs.kill() if __name__ == '__main__': devel_server() ########NEW FILE######## __FILENAME__ = errors class InvalidJSON(Exception): pass class Http404(Exception): def __init__(self, message=None): if message: self.message = message else: self.message = "404: Page Not Found" assert isinstance(self.message, basestring) def __str__(self): return self.message class Http405(Exception): def __str__(self): return '405: Method Not Allowed' class Http500(Exception): """ Exception for catching exceptions, also has a slot for a stack trace string. """ def __init__(self, stacktrace=None): if stacktrace: self.message = stacktrace self.stacktrace = stacktrace else: self.message = "500: Internal Server Error" self.stacktrace = None assert isinstance(self.message, basestring) def __str__(self): return self.message ########NEW FILE######## __FILENAME__ = handler import uuid import sys import re import datetime import time import traceback from Cookie import SimpleCookie import gevent from gevent.pywsgi import WSGIHandler from geventwebsocket.handler import WebSocketHandler import protocol from errors import * class SockJSHandler(WSGIHandler): """ Base request handler for all HTTP derivative transports, will switch over to WSHandler in the case of using Websockets. The primary purpose of this class it delegate raw response from the server through the router and handle the low level HTTP. """ # Dynamic URLs, urls serving data DYNAMIC_FORMAT = re.compile(r""" ^/(?P<route>[^/]+)/ # sockjs route, alphanumeric not empty (?P<server_id>[^/.]+)/ # load balancer id, alphanumeric not empty, without (.) (?P<session_id>[^/.]+)/ # session id, alphanumeric not empty, without (.) (?P<transport>[^/.]+)$ # transport string, (Example: xhr | jsonp ... ) """, re.X) # Dynamic URLs, urls serving static pages STATIC_FORMAT = re.compile(r""" ^/(?P<route>[^/]+)(/)? # sockjs route, alphanumeric not empty (?P<suffix>[^/]+)?$ # url suffix ( Example: / , info, iframe.html ) """, re.X) RAW_FORMAT = re.compile(r""" ^/(?P<route>[^/]+)/ # sockjs route, alphanumeric not empty websocket$ # url suffix ( Example: / , info, iframe.html ) """, re.X) def prep_response(self): """ Prepare the default headers. Calling this will overload any existing headers. """ self.time_start = time.time() self.status = None self.headers = [] self.headers_sent = False self.result = None self.response_use_chunked = False self.response_length = 0 def raw_headers(self): """ Return the available headers as a string, used for low level socket handeling. """ head = [] # Protocol, status line head.append('%s %s\r\n' % (self.request_version, self.status)) for header in self.response_headers: head.append('%s: %s\r\n' % header) head.append('\r\n') return ''.join(head) def raw_chunk(self, data): """ Return a raw HTTP chunk, hex encoded size. """ return "%x\r\n%s\r\n" % (len(data), data) # Raw write actions # ----------------- def write_text(self, text): self.content_type = ("Content-Type", "text/plain; charset=UTF-8") self.headers += [self.content_type] self.start_response("200 OK", self.headers) self.result = [text] self.process_result() def write_js(self, text): self.content_type = ("Content-Type", "application/javascript; charset=UTF-8") self.headers += [self.content_type] self.start_response("200 OK", self.headers) self.result = [text] self.process_result() def write_json(self, json): self.content_type = ("Content-Type", "application/json; charset=UTF-8") self.headers += [self.content_type] self.start_response("200 OK", self.headers) self.result = [protocol.encode(json)] self.log_request() self.process_result() def write_html(self, html): content_type = ("Content-Type", "text/html; charset=UTF-8") self.headers += [content_type] self.start_response("200 OK", self.headers) self.result = [html] self.process_result() def write_options(self, allowed_methods): self.headers += [ ('Access-Control-Allow-Methods',(', '.join(allowed_methods))) ] self.enable_caching() self.enable_cookie() self.enable_cors() self.write_nothing() def write_nothing(self): self.start_response("204 NO CONTENT", self.headers) self.result = [None] self.log_request() self.process_result() def greeting(self): self.write_text('Welcome to SockJS!\n') def do404(self, message=None, cookie=False): """ Do a 404 NOT FOUND, allow for custom messages and the optional ability to return a cookie on the page. """ self.prep_response() self.content_type = ("Content-Type", "text/plain; charset=UTF-8") self.headers += [self.content_type] if cookie: self.enable_cookie() self.start_response("404 NOT FOUND", self.headers) if message: self.result = [message] else: self.result = ['404 Error: Page not found'] self.process_result() self.wsgi_input._discard() self.time_finish = time.time() self.log_request() def do500(self, stacktrace=None, message=None): """ Handle 500 errors, if we're in an exception context then print the stack trace is SockJSServer has trace=True. """ self.prep_response() if self.server.trace and not message: # If we get an explicit stack trace use that, # otherwise grab it from the current frame. if stacktrace: pretty_trace = stacktrace else: exc_type, exc_value, exc_tb = sys.exc_info() stack_trace = traceback.format_exception(exc_type, exc_value, exc_tb) pretty_trace = str('\n'.join(stack_trace)) self.start_response("500 INTERNAL SERVER ERROR", self.headers) self.result = [pretty_trace] else: self.content_type = ("Content-Type", "text/plain; charset=UTF-8") self.headers += [self.content_type] self.start_response("500 INTERNAL SERVER ERROR", self.headers) self.result = [message or '500: Interneal Server Error'] self.process_result() self.time_finish = time.time() self.log_request() # Header Manipulation # ------------------- def enable_cors(self): origin = self.environ.get("HTTP_ORIGIN", '*') self.headers += [ ('access-control-allow-origin', origin), ('access-control-allow-credentials', 'true') ] def enable_nocache(self): self.headers += [ ('Cache-Control', 'no-store, no-cache, must-revalidate, max-age=0'), ] def enable_cookie(self, cookies=None): """ Given a list of cookies, add them to the header. If not then add a dummy JSESSIONID cookie. """ if self.environ.get('HTTP_COOKIE'): cookies = [SimpleCookie(self.environ.get('HTTP_COOKIE'))] if cookies: for cookie in cookies: for morsel in cookie.values(): morsel['path'] = '/' # TODO: fixme k, v = cookie.output().split(':')[0:2] self.headers += [(k,v)] else: cookie = SimpleCookie() cookie['JSESSIONID'] = 'dummy' cookie['JSESSIONID']['path'] = '/' k, v = cookie.output().split(':') self.headers += [(k,v)] def enable_caching(self): d = datetime.datetime.now() + datetime.timedelta(days=365) s = datetime.timedelta(days=365).total_seconds() self.headers += [ ('Cache-Control', 'max-age=%d, public' % s), ('Expires', d.strftime('%a, %d %b %Y %H:%M:%S')), ('access-control-max-age', int(s)), ] def handle_websocket(self, tokens, raw=False): handle = WSHandler( self.socket, self.client_address, self.server, self.rfile, ) handle.tokens = tokens handle.raw = raw handle.__dict__.update(self.__dict__) return handle.handle_one_response() def handle_one_response(self): path = self.environ.get('PATH_INFO') meth = self.environ.get("REQUEST_METHOD") self.router = self.server.application self.session_pool = self.server.session_pool # Static URLs # ----------- static_url = self.STATIC_FORMAT.match(path) dynamic_url = self.DYNAMIC_FORMAT.match(path) raw_url = self.RAW_FORMAT.match(path) # The degenerate raw websocket endpoint if raw_url: tokens = raw_url.groupdict() tokens['transport'] = 'rawwebsocket' # An ad-hoc session tokens['session'] = uuid.uuid4() return self.handle_websocket(tokens, raw=True) elif static_url: tokens = static_url.groupdict() route = tokens['route'] suffix = tokens['suffix'] try: static_serve = self.router.route_static(route, suffix) raw_request_data = self.wsgi_input.readline() self.wsgi_input._discard() self.prep_response() static_serve(self, meth, raw_request_data) except Http404 as e: return self.do404(e.message) except Http500 as e: return self.do500(e.stacktrace) elif dynamic_url: tokens = dynamic_url.groupdict() route = tokens['route'] session_uid = tokens['session_id'] server = tokens['server_id'] transport = tokens['transport'] if transport == 'websocket': return self.handle_websocket(tokens) try: # Router determines the downlink route as a # function of the given url parameters. downlink = self.router.route_dynamic( route, session_uid, server, transport ) # A downlink is some data-dependent connection # to the client taken as a result of a request. raw_request_data = self.wsgi_input.readline() self.prep_response() threads = downlink(self, meth, raw_request_data) gevent.joinall(threads) except Http404 as e: return self.do404(e.message, cookie=True) except Http500 as e: return self.do500(e.stacktrace) except Exception: return self.do500() else: self.do404() class WSHandler(WebSocketHandler): """ A WSGI-esque handler but the underlying connection is a websocket instead of a HTTP. The base SockJS handler will delegate to this in the case of using any websocket transport, it will then upgrade to the websocket and throw away any existing HTTP information. """ def prep_response(self): """ Prepare the default headers. Calling this will overload any existing headers. """ self.time_start = time.time() self.status = None self.headers = [] self.headers_sent = False self.result = None self.response_use_chunked = False self.response_length = 0 def bad_request(self): """ Sent if we have invaild Connection headers. """ self.prep_response() self.start_response('400 BAD REQUEST', [ ("Content-Type", "text/plain; charset=UTF-8") ]) self.result = ['Can "Upgrade" only to "WebSocket".'] self.process_result() def not_allowed(self): self.prep_response() self.start_response('405 NOT ALLOWED', [('allow', True)]) self.result = [] self.process_result() def handle_one_response(self): self.pre_start() environ = self.environ upgrade = environ.get('HTTP_UPGRADE', '').lower() meth = self.environ.get('REQUEST_METHOD') if meth != 'GET': return self.not_allowed() # Upgrade the connect if we have the proper headers if upgrade == 'websocket': connection = environ.get('HTTP_CONNECTION', '').lower() if 'upgrade' in connection: return self._handle_websocket() # Malformed request self.bad_request() def _handle_websocket(self): """ Slightly overloaded version of gevent websocket handler, delegates the connection to the right protocol and then procedes to invoke the router to figure out what to do. """ environ = self.environ try: try: if environ.get("HTTP_SEC_WEBSOCKET_VERSION"): result = self._handle_hybi() elif environ.get("HTTP_ORIGIN"): result = self._handle_hixie() except: self.close_connection = True raise self.result = [] if not result: return self.route(environ, None) return [] finally: self.log_request() def route(self, environ, start_response): """ Route the websocket pipe to its transport handler. Logic is more or less identical to HTTP logic instead of exposing the WSGI handler we expose the socket. """ self.router = self.server.application websocket = environ.get('wsgi.websocket') meth = environ.get("REQUEST_METHOD") # The only mandatory url token route = self.tokens['route'] session_uid = self.tokens.get('session_id', None) server = self.tokens.get('server_id', None) transport = self.tokens.get('transport', None) # We're no longer dealing with HTTP so throw away # anything we received. self.wsgi_input._discard() downlink = self.router.route_dynamic( route, session_uid, server, transport ) #downlink.raw = self.raw threads = downlink(websocket, None, None) # This is a neat trick ( due to Jeffrey Gellens ), of # keeping track of the transporst threads at the handler # level, this ensures that if this thread is forcefully # terminated the transports actions will subsequently # die. gevent.joinall(threads) ########NEW FILE######## __FILENAME__ = protocol import hashlib from errors import * from simplejson.decoder import JSONDecodeError # ----------- # Serializer # ----------- # Fastest # TODO: # Should add some caveats about the unicode compatability # with ujson... try: import ujson has_ujson = True except ImportError: has_ujson = False # Faster try: import simplejson has_simplejson = True except ImportError: has_simplejson = False # Slowest try: import json has_json = True except ImportError: # should never happen has_json = False def pick_serializer(): if has_ujson: return ujson elif has_simplejson: return simplejson elif has_json: return json json = pick_serializer() # Frames # ------ OPEN = "o\n" CLOSE = "c" MESSAGE = "a" HEARTBEAT = "h\n" # ------------------ IFRAME_HTML = """ <!DOCTYPE html> <html> <head> <meta http-equiv="X-UA-Compatible" content="IE=edge" /> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <script> document.domain = document.domain; _sockjs_onload = function(){SockJS.bootstrap_iframe();}; </script> <script src="%s"></script> </head> <body> <h2>Don't panic!</h2> <p>This is a SockJS hidden iframe. It's used for cross domain magic.</p> </body> </html> """.strip() IFRAME_MD5 = hashlib.md5(IFRAME_HTML).hexdigest() HTMLFILE_IFRAME_HTML = r""" <!doctype html> <html><head> <meta http-equiv="X-UA-Compatible" content="IE=edge" /> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> </head><body><h2>Don't panic!</h2> <script> document.domain = document.domain; var c = parent.%s; c.start(); function p(d) {c.message(d);}; window.onload = function() {c.stop();}; </script> """.strip() def encode(message): """ Python to JSON """ # TODO: actually deal with the nuances of escaping and # unicode if isinstance(message, basestring): # Don't both calling json, since its simple msg = '["' + message + '"]' elif isinstance(message, (object, dict, list)): msg = json.dumps(message, separators=(',',':')) else: raise ValueError("Unable to serialize: %s", str(message)) return msg def decode(data): """ JSON to Python """ messages = [] data = data.decode('utf-8') # "a['123', 'abc']" -> [123, 'abc'] try: messages = json.loads(data) except JSONDecodeError: raise InvalidJSON() return messages def close_frame(code, reason, newline=True): if newline: return '%s[%d,"%s"]\n' % (CLOSE, code, reason) else: return '%s[%d,"%s"]' % (CLOSE, code, reason) def message_frame(data): assert isinstance(data, basestring) assert '[' in data assert ']' in data return ''.join([MESSAGE, data]) def enum(*sequential, **named): enums = dict(zip(sequential, range(len(sequential))), **named) return type('Enum', (), enums) FRAMES = enum( 'CLOSE', 'OPEN', 'MESSAGE', 'HEARTBEAT' ) ########NEW FILE######## __FILENAME__ = router import re import transports import static from errors import * # Route Tables # ============ class RegexRouter(object): """ A hybrid hash table, regex matching table. Tries to do O(1) hash lookup falls back on worst case O(n) regex matching. """ _re = [] _dct = {} def __init__(self, dct): for k, v in dct.iteritems(): try: self._re.append((re.compile(k),v)) except: pass self._dct[k] = v def __getitem__(self, k): if self._dct.has_key(k): return self._dct[k] else: for r, v in self._re: if r.match(k): return v raise KeyError(k) static_routes = RegexRouter({ None : static.Greeting, 'info' : static.InfoHandler, r'iframe[0-9-.a-z_]*.html' : static.IFrameHandler, }) dynamic_routes = { # Ajax Tranports # ============== 'xhr' : transports.XHRPolling, 'xhr_send' : transports.XHRSend, 'xhr_streaming' : transports.XHRStreaming, 'jsonp' : transports.JSONPolling, 'jsonp_send' : transports.JSONPSend, # WebSockets # =============== 'websocket' : transports.WebSocket, 'rawwebsocket' : transports.RawWebSocket, # File Transports # =============== 'eventsource' : transports.EventSource, 'htmlfile' : transports.HTMLFile, 'iframe' : transports.IFrame, } class SockJSConnection(object): disallowed_transports = tuple() def __init__(self, session): self.session = session @classmethod def transport_allowed(cls, transport): return transport not in cls.disallowed_transports # Event Callbacks # =============== def on_open(self, request): pass def on_message(self, message): raise NotImplementedError() def on_close(self): pass def on_error(self, exception): raise NotImplementedError() # Server side actions # =================== def send(self, message): if self.session: self.session.add_message(message) else: raise Exception("Tried to send message over closed session") def broadcast(self, channel, message): raise NotImplementedError() def close(self): if self.session: self.session.interrupt() else: raise Exception("Tried to close closed session") class SockJSRouter(object): routes = {} def __init__(self, applications): """ Set up the routing table for the specific routes attached to this server. """ for route, connection in applications.iteritems(): self.routes[route] = connection def route_static(self, route, suffix): try: route_handle = self.routes[route] except: raise Http404('No such route') try: handle_cls = static_routes[suffix] except KeyError: raise Http404('No such static page ' + str(suffix)) return handle_cls(route_handle) def route_dynamic(self, route, session_uid, server, transport): """ Return the downlink transport to the client resulting from request. """ try: conn_cls = self.routes[route] except: raise Http500('No such route') try: transport_cls = dynamic_routes[transport] except: raise Http500('No such transport') if transport_cls.direction == 'send': create_if_null = False elif transport_cls.direction in ('recv', 'bi'): create_if_null = True else: raise Exception('Could not determine direction') session = self.server.get_session(session_uid, \ create_if_null) if not session: raise Http404() # Initialize the transport and call, any side-effectful # code is the __init__ method, the communication is # invoked by __call__ method. conn = conn_cls(session) downlink = transport_cls(session, conn) if session.is_new: conn.on_open(session) session.timeout.rawlink(lambda g: conn.on_close()) return downlink def __call__(self, environ, start_response): raise NotImplemented() ########NEW FILE######## __FILENAME__ = server import session from handler import SockJSHandler from sessionpool import SessionPool from gevent.pywsgi import WSGIServer class SockJSServer(WSGIServer): """ The base SockJS server, subclasses gevent.pywsgi.WSGIServer """ session_backend = session.MemorySession handler_class = SockJSHandler def __init__(self, *args, **kwargs): """ Initialize the SockJS server Options: listener : ( address, port ) application : The SockJS router instance trace : Show stack traces on 500 status code Example:: sockjs = SockJSServer(('',8081), router) sockjs.serve_forever() """ self.trace = kwargs.pop('trace', False) super(SockJSServer, self).__init__(*args, **kwargs) self.session_pool = SessionPool() self.session_pool.start_gc() # hack to get the server inside the router self.application.server = self def del_session(self, uid): del self.sessions[uid] def get_session(self, session_id='', create_if_null=False): """ Return an existing or initialize a new session with the session id passed. """ # Is it an existing session? session = self.session_pool.get(session_id) # Otherwise let the client choose their session_id, if # this transport direction allows if create_if_null and session is None: session = self.session_backend(self, session_id=session_id) self.session_pool.add(session) elif session: session.incr_hits() return session def kill(self): """ Shutdown the server, block to inform the sessions that they are closing. """ self.session_pool.shutdown() super(SockJSServer, self).kill() ########NEW FILE######## __FILENAME__ = session import uuid from gevent.queue import Queue, Empty from gevent.event import Event from datetime import datetime, timedelta class Session(object): """ Base class for Session objects. Provides for different backends for queueing messages for sessions. Subclasses are expected to overload the add_message and get_messages to reflect their storage system. """ # Session's timeout after 5 seconds expires = timedelta(seconds=5) def __init__(self, server, session_id=None): self.expires_at = datetime.now() + self.expires self.expired = False self.forever = False self.session_id = self.generate_uid() # Whether this was closed explictly by client vs # internally by garbage collection. self.interrupted = False # When a polling request is closed by a network error - not by # server, the session should be automatically closed. When there # is a network error - we're in an undefined state. Some messages # may have been lost, there is not much we can do about it. self.network_error = False # Async event, use rawlink to string callbacks self.timeout = Event() self.locked = Event() def generate_uid(self): """ Returns a string of the unique identifier of the session. """ return str(uuid.uuid4()) def persist(self, extension=None, forever=False): """ Bump the time to live of the session by a given amount, or forever. """ self.expired = False if forever: self.forever = True return # Slide the expiration time one more expiration interval # into the future if extension is None: self.expires_at = datetime.now() + self.expires else: self.expires_at = datetime.now() + extension self.forever = False def post_delete(self): pass def kill(self): self.killed = True self.expire() def expire(self): """ Manually expire a session. """ self.expired = True self.forever = False def incr_hits(self): self.hits += 1 def is_new(self): return self.hits == 0 def heartbeat(self): self.persist() self.heartbeats += 1 return self.heartbeats def add_message(self, msg): raise NotImplemented() def get_messages(self, **kwargs): raise NotImplemented() def is_locked(self): return self.locked.is_set() def is_network_error(self): return self.network_error def is_expired(self): return self.expired def is_interrupted(self): return self.interrupted def lock(self): self.locked.set() def unlock(self): self.locked.clear() def __str__(self): pass class MemorySession(Session): """ In memory session with a outgoing gevent Queue as the message store. """ def __init__(self, server, session_id=None): super(MemorySession, self).__init__(server, session_id=session_id) self.session_id = session_id or str(uuid.uuid4())[:8] self.server = server self.queue = Queue() self.hits = 0 self.heartbeats = 0 self.connected = False def add_message(self, msg): self.queue.put_nowait(msg) def get_messages(self, **kwargs): timeout = kwargs.get('timeout', None) self.incr_hits() if self.queue.empty(): try: return self.queue.get(**kwargs) except Empty: return [] else: accum = [] try: while not self.queue.empty(): if timeout: accum.append(self.queue.get(timeout=timeout)) else: accum.append(self.queue.get_nowait()) finally: return accum def interrupt(self): """ A kill event trigged through a client accessible endpoint Internal expires will not have is_interupted() == True """ self.interrupted = True self.kill() def kill(self): self.connected = False # Expire only once if not self.expired: self.expired = True self.timeout.set() ########NEW FILE######## __FILENAME__ = sessionpool import uuid import gevent from heapq import heappush, heappop from datetime import datetime class SessionPool(object): """ A garbage collected Session Pool. See: https://github.com/sdiehl/greengoop """ gc_cycle = 10.0 def __init__(self): self.sessions = dict() self.pool = [] self.gcthread = gevent.Greenlet(self._gc_sessions) def __str__(self): return str(self.sessions.items()) def start_gc(self): """ Start the session pool garbage collector. This is broken out into a seperate function to give you more granular control on the context this thread is spawned in. """ if not self.gcthread.started: self.gcthread.start() return self.gcthread else: print "Rejected attempt to start multiple garbage \ collectors on SessionPool instance." def _gc_sessions(self): while True: gevent.sleep(self.gc_cycle) self.gc() def add(self, session): session.cycle = None self.sessions[session.session_id] = session if not session.expired: heappush(self.pool, session) def get(self, session_id): """ Get active sessions by their session id. """ return self.sessions.get(session_id, None) def remove(self, session_id): session = self.sessions.get(session_id, None) if session: session.post_delete() del self.sessions[session_id] def shutdown(self): """ Manually expire all sessions in the pool. """ while self.pool: head = heappop(self.pool) head.expired = True head.timeout.set() def __del__(self): """ On Python interpreter garbage collection expire all sessions, not guaranteed to run! """ self.shutdown() def gc(self): """ Rearrange the heap flagging active sessions with the id of this collection iteration. This data-structure is time-independent so we sessions can be added to and from without the need to lock the pool. """ if len(self.pool) == 0: return current_time = datetime.now() while self.pool: head = self.pool[0] # Every session is fresh if head.cycle == current_time or head.expires_at > current_time: break head = heappop(self.pool) # Flag the session with the id of this GC cycle head.cycle = current_time # Session is to be GC'd immedietely if head.expired: del self.sessions[head.session_id] head.post_delete() continue if not head.forever and head.expires_at < current_time: del self.sessions[head.session_id] head.post_delete() else: heappush(self.pool, head) ########NEW FILE######## __FILENAME__ = static import random import protocol from errors import * class Greeting(): def __init__(self, conn_cls): self.conn_cls = conn_cls def __call__(self, handler, request_method, raw_request_data): handler.greeting() class InfoHandler(): def __init__(self, conn_cls): self.conn_cls = conn_cls def __call__(self, handler, request_method, raw_request_data): if request_method == 'GET': entropy = random.randint(1, 2**32) has_ws = self.conn_cls.transport_allowed('websocket') handler.enable_nocache() handler.enable_cors() handler.write_json({ 'cookie_needed' : True, 'websocket' : has_ws, 'origins' : ['*:*'], 'entropy' : entropy, 'route' : self.conn_cls.__name__ }) elif request_method == 'OPTIONS': handler.write_options(['OPTIONS','GET']) class IFrameHandler(): def __init__(self, route): self.route = route def __call__(self, handler, request_method, raw_request_data): if request_method != 'GET': raise Http405() cached = handler.environ.get('HTTP_IF_NONE_MATCH') # TODO: check this is equal to our MD5 if cached: handler.start_response("304 NOT MODIFIED", handler.headers) handler.enable_caching() handler.result = [None] handler.process_result() return handler.headers += [ ('ETag', protocol.IFRAME_MD5), ] # TODO: actually put this in here html = protocol.IFRAME_HTML % ('http',) handler.enable_caching() handler.write_html(html) ########NEW FILE######## __FILENAME__ = transports import socket import gevent import urllib2 import urlparse import simplejson as json from socket import error as socketerror import protocol from errors import * from geventwebsocket.websocket import WebSocketError class BaseTransport(object): def __init__(self, session, conn): self.session = session self.conn = conn def encode(self, data): """ Wrapper around the protocol's frame encoding. """ return protocol.encode(data) def decode(self, data): """ Wrapper around the protocol's frame decoding. """ return protocol.decode(data) def write_frame(self, data): """ Write the data in a frame specifically for this transport. Deals with the edge cases of formatting the messages for the transports. Things like \n characters and Javascript callback frames. """ raise NotImplemented() def __call__(self, handler, request_method, raw_request_data): """ Downlink function, action taken as a result of the specified route. """ raise NotImplemented() # Receiving Transports # ==================== # # Recieve messages from the client, provide them to the session # object and its callbacks, provide confirmation of any actions # taken per protocol. class XHRSend(BaseTransport): direction = 'send' def __call__(self, handler, request_method, raw_request_data): if request_method == 'OPTIONS': handler.write_options(['OPTIONS', 'POST']) return [] if raw_request_data == '': handler.do500(message='Payload expected.') return try: messages = self.decode(raw_request_data) except InvalidJSON: handler.do500(message='Broken JSON encoding.') return for msg in messages: self.conn.on_message(msg) handler.content_type = ("Content-Type", "text/plain; charset=UTF-8") handler.headers = [handler.content_type] handler.enable_cookie() handler.enable_cors() handler.write_nothing() return [] class JSONPSend(BaseTransport): direction = 'recv' def __call__(self, handler, request_method, raw_request_data): if request_method == 'OPTIONS': handler.write_options(['OPTIONS', 'POST']) return [] qs = urlparse.parse_qs(raw_request_data) using_formdata = True # Do we have a Payload? try: if qs.has_key('d'): using_formdata = True payload = qs['d'] else: using_formdata = False payload = raw_request_data # todo: more granular exception catching except Exception as e: handler.do500(message='Payload expected.') return # Confirm that this at least looks like a JSON array if not using_formdata: if not ('[' in payload and ']' in payload): handler.do500(message='Payload expected.') return try: if using_formdata: messages = self.decode(payload[0]) else: messages = self.decode(payload) except InvalidJSON: handler.do500(message='Broken JSON encoding.') for msg in messages: self.conn.on_message(msg) handler.content_type = ("Content-Type", "text/plain; charset=UTF-8") handler.enable_cookie() handler.enable_nocache() handler.write_text('ok') return [] class PollingTransport(BaseTransport): """ Long polling derivative transports, used for XHRPolling and JSONPolling. Subclasses overload the write_frame method for their respective serialization methods. """ direction = 'recv' TIMING = 5.0 def poll(self, handler): """ Spin lock the thread until we have a message on the gevent queue. """ messages = self.session.get_messages(timeout=self.TIMING) messages = self.encode(messages) self.session.unlock() handler.start_response("200 OK", [ ("Access-Control-Allow-Origin", "*"), ("Connection", "close"), self.content_type, ]) handler.write_text(self.write_frame(messages)) def __call__(self, handler, request_method, raw_request_data): """ On the first poll, send back the open frame, one subsequent calls actually poll the queue. """ if request_method == 'OPTIONS': handler.write_options(['OPTIONS', 'POST']) return [] if self.session.is_new(): handler.enable_cookie() handler.enable_cors() handler.write_js(protocol.OPEN) return [] elif self.session.is_network_error(): interrupt_error = protocol.close_frame(1002, "Connection interrupted") handler.write_text(interrupt_error) return [] elif self.session.is_expired(): close_error = protocol.close_frame(3000, "Go away!") handler.write_text(close_error) return [] elif self.session.is_locked(): lock_error = protocol.close_frame(2010, "Another connection still open") self.session.network_error = True handler.write_text(lock_error) return [] else: self.session.lock() return [gevent.spawn(self.poll, handler)] def write_frame(self, data): raise NotImplemented() # Polling Transports # ================== # # Poll for new messages on the server. class XHRPolling(PollingTransport): direction = 'recv' TIMING = 2 content_type = ("Content-Type", "text/html; charset=UTF-8") def write_frame(self, data): return protocol.message_frame(data) + '\n' class JSONPolling(PollingTransport): direction = 'recv' content_type = ("Content-Type", "text/plain; charset=UTF-8") def write_frame(self, data): frame = protocol.json.dumps(protocol.message_frame(data)) return """%s(%s);\r\n""" % ( self.callback, frame) def __call__(self, handler, request_method, raw_request_data): try: callback_param = handler.environ.get("QUERY_STRING").split('=')[1] self.callback = urllib2.unquote(callback_param) except IndexError: handler.do500(message='"callback" parameter required') return if request_method == 'OPTIONS': handler.write_options(['OPTIONS', 'POST']) return [] if self.session.is_new(): handler.enable_nocache() handler.enable_cookie() handler.enable_cors() open_frame = '%s("o");\r\n' % self.callback handler.write_js(open_frame) return [] elif self.session.is_expired(): close_error = protocol.close_frame(3000, "Go away!") handler.write_text(close_error) return [] elif self.session.is_locked(): lock_error = protocol.close_frame(2010, "Another connection still open") handler.write_text(lock_error) return [] else: self.session.lock() return [gevent.spawn(self.poll, handler)] class XHRStreaming(PollingTransport): direction = 'recv' TIMING = 2 # THIS NUMBER MAY NOT BE RIGHT. DEEP MAGIC. response_limit = 4224 prelude = 'h' * 2048 + '\n' content_type = ("Content-Type", "application/javascript; charset=UTF-8") def write_prelude(self, handler): handler.enable_cookie() handler.enable_cors() # https://groups.google.com/forum/#!msg/sockjs/bl3af2zqc0A/w-o3OK3LKi8J if handler.request_version == 'HTTP/1.1': handler.headers += [ self.content_type, ("Transfer-Encoding", "chunked"), ('Connection', 'keep-alive'), ] elif handler.request_version == 'HTTP/1.0': handler.headers += [ self.content_type, ('Connection', 'close'), ] # Use very low level api here, since we want more granular # control over our response handler.start_response("200 OK", handler.headers) headers = handler.raw_headers() try: writer = handler.socket.makefile() written = 0 writer.write(headers) writer.flush() prelude_chunk = handler.raw_chunk(self.prelude) writer.write(prelude_chunk) writer.flush() except socket.error: self.session.expire() return (writer, written) def stream(self, handler): writer, written = self.write_prelude(handler) try: open_chunk = handler.raw_chunk('o\n') writer.write(open_chunk) writer.flush() while written < self.response_limit: messages = self.session.get_messages(timeout=self.TIMING) messages = self.encode(messages) frame = protocol.message_frame(messages) + '\n' chunk = handler.raw_chunk(frame) writer.write(chunk) writer.flush() written += len(chunk) except socket.error: self.session.expire() zero_chunk = handler.raw_chunk('') writer.write(zero_chunk) self.session.unlock() def __call__(self, handler, request_method, raw_request_data): """ """ if request_method == 'OPTIONS': handler.write_options(['OPTIONS', 'POST']) return [] elif self.session.is_network_error(): writer, written = self.write_prelude(handler) try: interrupt_error = protocol.close_frame(1002, "Connection interrupted") interrupt_error_chunk = handler.raw_chunk(interrupt_error) writer.write(interrupt_error_chunk) writer.flush() except socket.error: self.session.expire() zero_chunk = handler.raw_chunk('') writer.write(zero_chunk) self.session.network_error = True return [] elif self.session.is_locked(): writer, written = self.write_prelude(handler) try: close_error = protocol.close_frame(2010, "Another connection still open") close_error_chunk = handler.raw_chunk(close_error) writer.write(close_error_chunk) writer.flush() except socket.error: self.session.expire() zero_chunk = handler.raw_chunk('') writer.write(zero_chunk) self.session.network_error = True return [] self.session.lock() return [ gevent.spawn(self.stream, handler), ] def pad(s): return s + ' ' * (1024 - len(s) + 14) class HTMLFile(BaseTransport): direction = 'recv' response_limit = 4096 def write_frame(self, data): pass def stream(self, handler): try: callback_param = handler.environ.get("QUERY_STRING").split('=')[1] self.callback = urllib2.unquote(callback_param) except IndexError: handler.do500(message='"callback" parameter required') return # Turn on cookie, turn off caching, set headers handler.enable_cookie() handler.enable_nocache() handler.headers += [ ("Content-Type", "text/html; charset=UTF-8"), ("Transfer-Encoding", "chunked"), ('Connection', 'keep-alive'), ] # Start writing handler.start_response("200 OK", handler.headers) headers = handler.raw_headers() writer = handler.socket.makefile() writer.write(headers) written = 0 # Send down HTMLFile IFRAME html = protocol.HTMLFILE_IFRAME_HTML % self.callback html = pad(html) chunk = handler.raw_chunk(html) writer.write(chunk) writer.flush() written += len(chunk) chunk = '<script>\np("o");\n</script>\r\n' chunk = handler.raw_chunk(chunk) writer.write(chunk) writer.flush() written += len(chunk) try: while written < self.response_limit: messages = self.session.get_messages(timeout=5) messages = self.encode(messages) frame = protocol.message_frame(messages) frame = json.dumps(frame) chunk = '<script>\np(%s);\n</script>\r\n' % frame chunk = handler.raw_chunk(chunk) writer.write(chunk) writer.flush() written += len(chunk) except socket.error: self.session.expire() zero_chunk = handler.raw_chunk('') writer.write(zero_chunk) writer.close() def __call__(self, handler, request_method, raw_request_data): return [ gevent.spawn(self.stream, handler), ] class IFrame(BaseTransport): direction = 'recv' class EventSource(BaseTransport): direction = 'recv' TIMING = 5.0 response_limit = 4096 def encode(self, data): # TODO: Not using protocol.encode because it doesn't escape # things properly here. The other version should be fixed at # some point to avoid duplication. data = json.dumps(data, separators=(',', ':')) if isinstance(data, basestring): # Don't both calling json, since its simple data = '[' + data + ']' elif isinstance(data, (object, dict, list)): data = json.dumps(data, separators=(',',':')) else: raise ValueError("Unable to serialize: %s", str(data)) return protocol.message_frame(data) def stream(self, handler): handler.enable_cookie() handler.enable_nocache() handler.headers += [ ("Content-Type", "text/event-stream; charset=UTF-8"), ] write = handler.start_response("200 OK", handler.headers) write("\r\n") if self.session.is_new(): write("data: o\r\n\r\n") written = 0 while written < self.response_limit: messages = self.session.get_messages(timeout=self.TIMING) if messages: messages = self.encode(messages) else: messages = protocol.HEARTBEAT messages = "data: %s\r\n\r\n" % messages write(messages) written += len(messages) writer = handler.socket.makefile() zero_chunk = handler.raw_chunk('') writer.write(zero_chunk) def __call__(self, handler, request_method, raw_request_data): return [ gevent.spawn(self.stream, handler), ] # Socket Transports # ================== # # Provides a bidirectional connection to and from the client. # Sending and receiving are split in two different threads. class WebSocket(BaseTransport): direction = 'bi' def poll(self, socket): """ Spin lock the thread until we have a message on the gevent queue. """ while not self.session.expired: messages = self.session.get_messages() messages = self.encode(messages) socket.send(protocol.message_frame(messages)) close_error = protocol.close_frame(3000, "Go away!", newline=False) socket.send(close_error) # Session expires, so unlock socket.close() self.session.unlock() def put(self, socket): wsprotocol = socket.protocol while not self.session.is_expired(): try: messages = socket.receive() # blocking # geventwebsocket doesn't wrap these failure modes # into nice exceptions so we have to catch base Python # Exceptions. :( # Ignore invalid frames except ValueError: continue except TypeError: continue # Ignore empty frames except WebSocketError: continue # If the peer closes early then a fobj.read attribute # won't exist so ignore. except AttributeError: break #except socketerror: #break # Hybi = Closed # Hixie = None if messages is None: break try: messages = protocol.decode(messages) except InvalidJSON: # When user sends broken data - broken JSON for example, the # server must terminate the ws connection. break for msg in messages: self.conn.on_message(msg) self.session.incr_hits() # Session expires, so unlock socket.close() self.session.unlock() self.session.expire() def __call__(self, socket, request_method, raw_request_data): socket.send('o') if self.session.is_expired(): close_error = protocol.close_frame(3000, "Go away!", newline=False) socket.send(close_error) socket.close() return [] #elif self.session.is_locked(): #lock_error = protocol.close_frame(2010, "Another connection still open") #socket.send(lock_error) #socket.close() #return [] self.session.lock() return [ gevent.spawn(self.poll, socket), gevent.spawn(self.put, socket), ] class RawWebSocket(BaseTransport): direction = 'bi' def poll(self, socket): while not self.session.is_expired(): messages = self.session.get_messages() for message in messages: # TODO: this is a hack because the rest of the # transports actually use framing and this is the # one abberation. But it works... if len(message) == 1: socket.send(message[0]) else: socket.send(message) socket.close() def put(self, socket): while not self.session.is_expired(): # Just read atomic strings and do what the connection # wants. message = socket.receive() # blocking if message is None: break self.conn.on_message([message]) self.session.incr_hits() socket.close() def __call__(self, socket, request_method, raw_request_data): if self.session.is_expired(): socket.close() return [] return [ gevent.spawn(self.poll, socket), gevent.spawn(self.put, socket), ] ########NEW FILE######## __FILENAME__ = httplib_fork """HTTP/1.1 client library <intro stuff goes here> <other stuff, too> HTTPConnection goes through a number of "states", which define when a client may legally make another request or fetch the response for a particular request. This diagram details these state transitions: (null) | | HTTPConnection() v Idle | | putrequest() v Request-started | | ( putheader() )* endheaders() v Request-sent | | response = getresponse() v Unread-response [Response-headers-read] |\____________________ | | | response.read() | putrequest() v v Idle Req-started-unread-response ______/| / | response.read() | | ( putheader() )* endheaders() v v Request-started Req-sent-unread-response | | response.read() v Request-sent This diagram presents the following rules: -- a second request may not be started until {response-headers-read} -- a response [object] cannot be retrieved until {request-sent} -- there is no differentiation between an unread response body and a partially read response body Note: this enforcement is applied by the HTTPConnection class. The HTTPResponse class does not enforce this state machine, which implies sophisticated clients may accelerate the request/response pipeline. Caution should be taken, though: accelerating the states beyond the above pattern may imply knowledge of the server's connection-close behavior for certain requests. For example, it is impossible to tell whether the server will close the connection UNTIL the response headers have been read; this means that further requests cannot be placed into the pipeline until it is known that the server will NOT be closing the connection. Logical State __state __response ------------- ------- ---------- Idle _CS_IDLE None Request-started _CS_REQ_STARTED None Request-sent _CS_REQ_SENT None Unread-response _CS_IDLE <response_class> Req-started-unread-response _CS_REQ_STARTED <response_class> Req-sent-unread-response _CS_REQ_SENT <response_class> """ from array import array import os import socket from sys import py3kwarning from urlparse import urlsplit import warnings with warnings.catch_warnings(): if py3kwarning: warnings.filterwarnings("ignore", ".*mimetools has been removed", DeprecationWarning) import mimetools try: from cStringIO import StringIO except ImportError: from StringIO import StringIO __all__ = ["HTTP", "HTTPResponse", "HTTPConnection", "HTTPException", "NotConnected", "UnknownProtocol", "UnknownTransferEncoding", "UnimplementedFileMode", "IncompleteRead", "InvalidURL", "ImproperConnectionState", "CannotSendRequest", "CannotSendHeader", "ResponseNotReady", "BadStatusLine", "error", "responses"] HTTP_PORT = 80 HTTPS_PORT = 443 _UNKNOWN = 'UNKNOWN' # connection states _CS_IDLE = 'Idle' _CS_REQ_STARTED = 'Request-started' _CS_REQ_SENT = 'Request-sent' # status codes # informational CONTINUE = 100 SWITCHING_PROTOCOLS = 101 PROCESSING = 102 # successful OK = 200 CREATED = 201 ACCEPTED = 202 NON_AUTHORITATIVE_INFORMATION = 203 NO_CONTENT = 204 RESET_CONTENT = 205 PARTIAL_CONTENT = 206 MULTI_STATUS = 207 IM_USED = 226 # redirection MULTIPLE_CHOICES = 300 MOVED_PERMANENTLY = 301 FOUND = 302 SEE_OTHER = 303 NOT_MODIFIED = 304 USE_PROXY = 305 TEMPORARY_REDIRECT = 307 # client error BAD_REQUEST = 400 UNAUTHORIZED = 401 PAYMENT_REQUIRED = 402 FORBIDDEN = 403 NOT_FOUND = 404 METHOD_NOT_ALLOWED = 405 NOT_ACCEPTABLE = 406 PROXY_AUTHENTICATION_REQUIRED = 407 REQUEST_TIMEOUT = 408 CONFLICT = 409 GONE = 410 LENGTH_REQUIRED = 411 PRECONDITION_FAILED = 412 REQUEST_ENTITY_TOO_LARGE = 413 REQUEST_URI_TOO_LONG = 414 UNSUPPORTED_MEDIA_TYPE = 415 REQUESTED_RANGE_NOT_SATISFIABLE = 416 EXPECTATION_FAILED = 417 UNPROCESSABLE_ENTITY = 422 LOCKED = 423 FAILED_DEPENDENCY = 424 UPGRADE_REQUIRED = 426 # server error INTERNAL_SERVER_ERROR = 500 NOT_IMPLEMENTED = 501 BAD_GATEWAY = 502 SERVICE_UNAVAILABLE = 503 GATEWAY_TIMEOUT = 504 HTTP_VERSION_NOT_SUPPORTED = 505 INSUFFICIENT_STORAGE = 507 NOT_EXTENDED = 510 # Mapping status codes to official W3C names responses = { 100: 'Continue', 101: 'Switching Protocols', 200: 'OK', 201: 'Created', 202: 'Accepted', 203: 'Non-Authoritative Information', 204: 'No Content', 205: 'Reset Content', 206: 'Partial Content', 300: 'Multiple Choices', 301: 'Moved Permanently', 302: 'Found', 303: 'See Other', 304: 'Not Modified', 305: 'Use Proxy', 306: '(Unused)', 307: 'Temporary Redirect', 400: 'Bad Request', 401: 'Unauthorized', 402: 'Payment Required', 403: 'Forbidden', 404: 'Not Found', 405: 'Method Not Allowed', 406: 'Not Acceptable', 407: 'Proxy Authentication Required', 408: 'Request Timeout', 409: 'Conflict', 410: 'Gone', 411: 'Length Required', 412: 'Precondition Failed', 413: 'Request Entity Too Large', 414: 'Request-URI Too Long', 415: 'Unsupported Media Type', 416: 'Requested Range Not Satisfiable', 417: 'Expectation Failed', 500: 'Internal Server Error', 501: 'Not Implemented', 502: 'Bad Gateway', 503: 'Service Unavailable', 504: 'Gateway Timeout', 505: 'HTTP Version Not Supported', } # maximal amount of data to read at one time in _safe_read MAXAMOUNT = 1048576 # maximal line length when calling readline(). _MAXLINE = 65536 class HTTPMessage(mimetools.Message): def addheader(self, key, value): """Add header for field key handling repeats.""" prev = self.dict.get(key) if prev is None: self.dict[key] = value else: combined = ", ".join((prev, value)) self.dict[key] = combined def addcontinue(self, key, more): """Add more field data from a continuation line.""" prev = self.dict[key] self.dict[key] = prev + "\n " + more def readheaders(self): """Read header lines. Read header lines up to the entirely blank line that terminates them. The (normally blank) line that ends the headers is skipped, but not included in the returned list. If a non-header line ends the headers, (which is an error), an attempt is made to backspace over it; it is never included in the returned list. The variable self.status is set to the empty string if all went well, otherwise it is an error message. The variable self.headers is a completely uninterpreted list of lines contained in the header (so printing them will reproduce the header exactly as it appears in the file). If multiple header fields with the same name occur, they are combined according to the rules in RFC 2616 sec 4.2: Appending each subsequent field-value to the first, each separated by a comma. The order in which header fields with the same field-name are received is significant to the interpretation of the combined field value. """ # XXX The implementation overrides the readheaders() method of # rfc822.Message. The base class design isn't amenable to # customized behavior here so the method here is a copy of the # base class code with a few small changes. self.dict = {} self.unixfrom = '' self.headers = hlist = [] self.status = '' headerseen = "" firstline = 1 startofline = unread = tell = None if hasattr(self.fp, 'unread'): unread = self.fp.unread elif self.seekable: tell = self.fp.tell while True: if tell: try: startofline = tell() except IOError: startofline = tell = None self.seekable = 0 line = self.fp.readline(_MAXLINE + 1) if len(line) > _MAXLINE: raise LineTooLong("header line") if not line: self.status = 'EOF in headers' break # Skip unix From name time lines if firstline and line.startswith('From '): self.unixfrom = self.unixfrom + line continue firstline = 0 if headerseen and line[0] in ' \t': # XXX Not sure if continuation lines are handled properly # for http and/or for repeating headers # It's a continuation line. hlist.append(line) self.addcontinue(headerseen, line.strip()) continue elif self.iscomment(line): # It's a comment. Ignore it. continue elif self.islast(line): # Note! No pushback here! The delimiter line gets eaten. break headerseen = self.isheader(line) if headerseen: # It's a legal header line, save it. hlist.append(line) self.addheader(headerseen, line[len(headerseen)+1:].strip()) continue else: # It's not a header line; throw it back and stop here. if not self.dict: self.status = 'No headers' else: self.status = 'Non-header line where header expected' # Try to undo the read. if unread: unread(line) elif tell: self.fp.seek(startofline) else: self.status = self.status + '; bad seek' break class HTTPResponse: # strict: If true, raise BadStatusLine if the status line can't be # parsed as a valid HTTP/1.0 or 1.1 status line. By default it is # false because it prevents clients from talking to HTTP/0.9 # servers. Note that a response with a sufficiently corrupted # status line will look like an HTTP/0.9 response. # See RFC 2616 sec 19.6 and RFC 1945 sec 6 for details. def __init__(self, sock, debuglevel=0, strict=0, method=None, buffering=False): if buffering: # The caller won't be using any sock.recv() calls, so buffering # is fine and recommended for performance. self.fp = sock.makefile('rb') else: # The buffer size is specified as zero, because the headers of # the response are read with readline(). If the reads were # buffered the readline() calls could consume some of the # response, which make be read via a recv() on the underlying # socket. self.fp = sock.makefile('rb', 0) self.debuglevel = debuglevel self.strict = strict self._method = method self.msg = None # from the Status-Line of the response self.version = _UNKNOWN # HTTP-Version self.status = _UNKNOWN # Status-Code self.reason = _UNKNOWN # Reason-Phrase self.chunked = _UNKNOWN # is "chunked" being used? self.chunk_left = _UNKNOWN # bytes left to read in current chunk self.length = _UNKNOWN # number of bytes left in response self.will_close = _UNKNOWN # conn will close at end of response def _read_status(self): # Initialize with Simple-Response defaults line = self.fp.readline() if self.debuglevel > 0: print "reply:", repr(line) if not line: # Presumably, the server closed the connection before # sending a valid response. raise BadStatusLine(line) try: [version, status, reason] = line.split(None, 2) except ValueError: try: [version, status] = line.split(None, 1) reason = "" except ValueError: # empty version will cause next test to fail and status # will be treated as 0.9 response. version = "" if not version.startswith('HTTP/'): if self.strict: self.close() raise BadStatusLine(line) else: # assume it's a Simple-Response from an 0.9 server self.fp = LineAndFileWrapper(line, self.fp) return "HTTP/0.9", 200, "" # The status code is a three-digit number try: status = int(status) if status < 100 or status > 999: raise BadStatusLine(line) except ValueError: raise BadStatusLine(line) return version, status, reason def begin(self): if self.msg is not None: # we've already started reading the response return # read until we get a non-100 response while True: version, status, reason = self._read_status() if status != CONTINUE: break # skip the header from the 100 response while True: skip = self.fp.readline(_MAXLINE + 1) if len(skip) > _MAXLINE: raise LineTooLong("header line") skip = skip.strip() if not skip: break if self.debuglevel > 0: print "header:", skip self.status = status self.reason = reason.strip() if version == 'HTTP/1.0': self.version = 10 elif version.startswith('HTTP/1.'): self.version = 11 # use HTTP/1.1 code for HTTP/1.x where x>=1 elif version == 'HTTP/0.9': self.version = 9 else: raise UnknownProtocol(version) if self.version == 9: self.length = None self.chunked = 0 self.will_close = 1 self.msg = HTTPMessage(StringIO()) return self.msg = HTTPMessage(self.fp, 0) if self.debuglevel > 0: for hdr in self.msg.headers: print "header:", hdr, # don't let the msg keep an fp self.msg.fp = None # are we using the chunked-style of transfer encoding? tr_enc = self.msg.getheader('transfer-encoding') if tr_enc and tr_enc.lower() == "chunked": self.chunked = 1 self.chunk_left = None else: self.chunked = 0 # will the connection close at the end of the response? self.will_close = self._check_close() # do we have a Content-Length? # NOTE: RFC 2616, S4.4, #3 says we ignore this if tr_enc is "chunked" length = self.msg.getheader('content-length') if length and not self.chunked: try: self.length = int(length) except ValueError: self.length = None else: if self.length < 0: # ignore nonsensical negative lengths self.length = None else: self.length = None # does the body have a fixed length? (of zero) if (status == NO_CONTENT or status == NOT_MODIFIED or 100 <= status < 200 or # 1xx codes self._method == 'HEAD'): self.length = 0 # if the connection remains open, and we aren't using chunked, and # a content-length was not provided, then assume that the connection # WILL close. if not self.will_close and \ not self.chunked and \ self.length is None: self.will_close = 1 def _check_close(self): conn = self.msg.getheader('connection') if self.version == 11: # An HTTP/1.1 proxy is assumed to stay open unless # explicitly closed. conn = self.msg.getheader('connection') if conn and "close" in conn.lower(): return True return False # Some HTTP/1.0 implementations have support for persistent # connections, using rules different than HTTP/1.1. # For older HTTP, Keep-Alive indicates persistent connection. if self.msg.getheader('keep-alive'): return False # At least Akamai returns a "Connection: Keep-Alive" header, # which was supposed to be sent by the client. if conn and "keep-alive" in conn.lower(): return False # Proxy-Connection is a netscape hack. pconn = self.msg.getheader('proxy-connection') if pconn and "keep-alive" in pconn.lower(): return False # otherwise, assume it will close return True def close(self): if self.fp: self.fp.close() self.fp = None def isclosed(self): # NOTE: it is possible that we will not ever call self.close(). This # case occurs when will_close is TRUE, length is None, and we # read up to the last byte, but NOT past it. # # IMPLIES: if will_close is FALSE, then self.close() will ALWAYS be # called, meaning self.isclosed() is meaningful. return self.fp is None # XXX It would be nice to have readline and __iter__ for this, too. def read(self, amt=None): if self.fp is None: return '' if self._method == 'HEAD': self.close() return '' if self.chunked: return self._read_chunked(amt) if amt is None: # unbounded read if self.length is None: s = self.fp.read() else: s = self._safe_read(self.length) self.length = 0 self.close() # we read everything return s if self.length is not None: if amt > self.length: # clip the read to the "end of response" amt = self.length # we do not use _safe_read() here because this may be a .will_close # connection, and the user is reading more bytes than will be provided # (for example, reading in 1k chunks) s = self.fp.read(amt) if self.length is not None: self.length -= len(s) if not self.length: self.close() return s def _read_chunked(self, amt): assert self.chunked != _UNKNOWN chunk_left = self.chunk_left value = [] while True: if chunk_left is None: line = self.fp.readline(_MAXLINE + 1) if len(line) > _MAXLINE: raise LineTooLong("chunk size") i = line.find(';') if i >= 0: line = line[:i] # strip chunk-extensions try: chunk_left = int(line, 16) except ValueError: # close the connection as protocol synchronisation is # probably lost self.close() raise IncompleteRead(''.join(value)) if chunk_left == 0: break if amt is None: value.append(self._safe_read(chunk_left)) elif amt < chunk_left: value.append(self._safe_read(amt)) self.chunk_left = chunk_left - amt return ''.join(value) elif amt == chunk_left: value.append(self._safe_read(amt)) self._safe_read(2) # toss the CRLF at the end of the chunk self.chunk_left = None return ''.join(value) else: value.append(self._safe_read(chunk_left)) amt -= chunk_left # we read the whole chunk, get another self._safe_read(2) # toss the CRLF at the end of the chunk chunk_left = None return ''.join(value) # read and discard trailer up to the CRLF terminator ### note: we shouldn't have any trailers! while True: line = self.fp.readline(_MAXLINE + 1) if len(line) > _MAXLINE: raise LineTooLong("trailer line") if not line: # a vanishingly small number of sites EOF without # sending the trailer break if line == '\r\n': break # we read everything; close the "file" self.close() return ''.join(value) def _safe_read(self, amt): """Read the number of bytes requested, compensating for partial reads. Normally, we have a blocking socket, but a read() can be interrupted by a signal (resulting in a partial read). Note that we cannot distinguish between EOF and an interrupt when zero bytes have been read. IncompleteRead() will be raised in this situation. This function should be used when <amt> bytes "should" be present for reading. If the bytes are truly not available (due to EOF), then the IncompleteRead exception can be used to detect the problem. """ # NOTE(gps): As of svn r74426 socket._fileobject.read(x) will never # return less than x bytes unless EOF is encountered. It now handles # signal interruptions (socket.error EINTR) internally. This code # never caught that exception anyways. It seems largely pointless. # self.fp.read(amt) will work fine. s = [] while amt > 0: chunk = self.fp.read(min(amt, MAXAMOUNT)) if not chunk: raise IncompleteRead(''.join(s), amt) s.append(chunk) amt -= len(chunk) return ''.join(s) def fileno(self): return self.fp.fileno() def getheader(self, name, default=None): if self.msg is None: raise ResponseNotReady() return self.msg.getheader(name, default) def getheaders(self): """Return list of (header, value) tuples.""" if self.msg is None: raise ResponseNotReady() return self.msg.items() class HTTPConnection: _http_vsn = 11 _http_vsn_str = 'HTTP/1.1' response_class = HTTPResponse default_port = HTTP_PORT auto_open = 1 debuglevel = 0 strict = 0 def __init__(self, host, port=None, strict=None, timeout=socket._GLOBAL_DEFAULT_TIMEOUT, source_address=None): self.timeout = timeout self.source_address = source_address self.sock = None self._buffer = [] self.__response = None self.__state = _CS_IDLE self._method = None self._tunnel_host = None self._tunnel_port = None self._tunnel_headers = {} self._set_hostport(host, port) if strict is not None: self.strict = strict def set_tunnel(self, host, port=None, headers=None): """ Sets up the host and the port for the HTTP CONNECT Tunnelling. The headers argument should be a mapping of extra HTTP headers to send with the CONNECT request. """ self._tunnel_host = host self._tunnel_port = port if headers: self._tunnel_headers = headers else: self._tunnel_headers.clear() def _set_hostport(self, host, port): if port is None: i = host.rfind(':') j = host.rfind(']') # ipv6 addresses have [...] if i > j: try: port = int(host[i+1:]) except ValueError: raise InvalidURL("nonnumeric port: '%s'" % host[i+1:]) host = host[:i] else: port = self.default_port if host and host[0] == '[' and host[-1] == ']': host = host[1:-1] self.host = host self.port = port def set_debuglevel(self, level): self.debuglevel = level def _tunnel(self): self._set_hostport(self._tunnel_host, self._tunnel_port) self.send("CONNECT %s:%d HTTP/1.0\r\n" % (self.host, self.port)) for header, value in self._tunnel_headers.iteritems(): self.send("%s: %s\r\n" % (header, value)) self.send("\r\n") response = self.response_class(self.sock, strict = self.strict, method = self._method) (version, code, message) = response._read_status() if code != 200: self.close() raise socket.error("Tunnel connection failed: %d %s" % (code, message.strip())) while True: line = response.fp.readline(_MAXLINE + 1) if len(line) > _MAXLINE: raise LineTooLong("header line") if line == '\r\n': break def connect(self): """Connect to the host and port specified in __init__.""" self.sock = socket.create_connection((self.host,self.port), self.timeout) if self._tunnel_host: self._tunnel() def close(self): """Close the connection to the HTTP server.""" if self.sock: self.sock.close() # close it manually... there may be other refs self.sock = None if self.__response: self.__response.close() self.__response = None self.__state = _CS_IDLE def send(self, data): """Send `data' to the server.""" if self.sock is None: if self.auto_open: self.connect() else: raise NotConnected() if self.debuglevel > 0: print "send:", repr(data) blocksize = 8192 if hasattr(data,'read') and not isinstance(data, array): if self.debuglevel > 0: print "sendIng a read()able" datablock = data.read(blocksize) while datablock: self.sock.sendall(datablock) datablock = data.read(blocksize) else: self.sock.sendall(data) def _output(self, s): """Add a line of output to the current request buffer. Assumes that the line does *not* end with \\r\\n. """ self._buffer.append(s) def _send_output(self, message_body=None): """Send the currently buffered request and clear the buffer. Appends an extra \\r\\n to the buffer. A message_body may be specified, to be appended to the request. """ self._buffer.extend(("", "")) msg = "\r\n".join(self._buffer) del self._buffer[:] # If msg and message_body are sent in a single send() call, # it will avoid performance problems caused by the interaction # between delayed ack and the Nagle algorithm. if isinstance(message_body, str): msg += message_body message_body = None self.send(msg) if message_body is not None: #message_body was not a string (i.e. it is a file) and #we must run the risk of Nagle self.send(message_body) def putrequest(self, method, url, skip_host=0, skip_accept_encoding=0): """Send a request to the server. `method' specifies an HTTP request method, e.g. 'GET'. `url' specifies the object being requested, e.g. '/index.html'. `skip_host' if True does not add automatically a 'Host:' header `skip_accept_encoding' if True does not add automatically an 'Accept-Encoding:' header """ # if a prior response has been completed, then forget about it. if self.__response and self.__response.isclosed(): self.__response = None # in certain cases, we cannot issue another request on this connection. # this occurs when: # 1) we are in the process of sending a request. (_CS_REQ_STARTED) # 2) a response to a previous request has signalled that it is going # to close the connection upon completion. # 3) the headers for the previous response have not been read, thus # we cannot determine whether point (2) is true. (_CS_REQ_SENT) # # if there is no prior response, then we can request at will. # # if point (2) is true, then we will have passed the socket to the # response (effectively meaning, "there is no prior response"), and # will open a new one when a new request is made. # # Note: if a prior response exists, then we *can* start a new request. # We are not allowed to begin fetching the response to this new # request, however, until that prior response is complete. # if self.__state == _CS_IDLE: self.__state = _CS_REQ_STARTED else: raise CannotSendRequest() # Save the method we use, we need it later in the response phase self._method = method if not url: url = '/' hdr = '%s %s %s' % (method, url, self._http_vsn_str) self._output(hdr) if self._http_vsn == 11: # Issue some standard headers for better HTTP/1.1 compliance if not skip_host: # this header is issued *only* for HTTP/1.1 # connections. more specifically, this means it is # only issued when the client uses the new # HTTPConnection() class. backwards-compat clients # will be using HTTP/1.0 and those clients may be # issuing this header themselves. we should NOT issue # it twice; some web servers (such as Apache) barf # when they see two Host: headers # If we need a non-standard port,include it in the # header. If the request is going through a proxy, # but the host of the actual URL, not the host of the # proxy. netloc = '' if url.startswith('http'): nil, netloc, nil, nil, nil = urlsplit(url) if netloc: try: netloc_enc = netloc.encode("ascii") except UnicodeEncodeError: netloc_enc = netloc.encode("idna") self.putheader('Host', netloc_enc) else: try: host_enc = self.host.encode("ascii") except UnicodeEncodeError: host_enc = self.host.encode("idna") # Wrap the IPv6 Host Header with [] (RFC 2732) if host_enc.find(':') >= 0: host_enc = "[" + host_enc + "]" if self.port == self.default_port: self.putheader('Host', host_enc) else: self.putheader('Host', "%s:%s" % (host_enc, self.port)) # note: we are assuming that clients will not attempt to set these # headers since *this* library must deal with the # consequences. this also means that when the supporting # libraries are updated to recognize other forms, then this # code should be changed (removed or updated). # we only want a Content-Encoding of "identity" since we don't # support encodings such as x-gzip or x-deflate. if not skip_accept_encoding: self.putheader('Accept-Encoding', 'identity') # we can accept "chunked" Transfer-Encodings, but no others # NOTE: no TE header implies *only* "chunked" #self.putheader('TE', 'chunked') # if TE is supplied in the header, then it must appear in a # Connection header. #self.putheader('Connection', 'TE') else: # For HTTP/1.0, the server will assume "not chunked" pass def putheader(self, header, *values): """Send a request header line to the server. For example: h.putheader('Accept', 'text/html') """ if self.__state != _CS_REQ_STARTED: raise CannotSendHeader() hdr = '%s: %s' % (header, '\r\n\t'.join([str(v) for v in values])) self._output(hdr) def endheaders(self, message_body=None): """Indicate that the last header line has been sent to the server. This method sends the request to the server. The optional message_body argument can be used to pass message body associated with the request. The message body will be sent in the same packet as the message headers if possible. The message_body should be a string. """ if self.__state == _CS_REQ_STARTED: self.__state = _CS_REQ_SENT else: raise CannotSendHeader() self._send_output(message_body) def request(self, method, url, body=None, headers={}): """Send a complete request to the server.""" self._send_request(method, url, body, headers) def _set_content_length(self, body): # Set the content-length based on the body. thelen = None try: thelen = str(len(body)) except TypeError, te: # If this is a file-like object, try to # fstat its file descriptor try: thelen = str(os.fstat(body.fileno()).st_size) except (AttributeError, OSError): # Don't send a length if this failed if self.debuglevel > 0: print "Cannot stat!!" if thelen is not None: self.putheader('Content-Length', thelen) def _send_request(self, method, url, body, headers): # Honor explicitly requested Host: and Accept-Encoding: headers. header_names = dict.fromkeys([k.lower() for k in headers]) skips = {} if 'host' in header_names: skips['skip_host'] = 1 if 'accept-encoding' in header_names: skips['skip_accept_encoding'] = 1 self.putrequest(method, url, **skips) if body and ('content-length' not in header_names): self._set_content_length(body) for hdr, value in headers.iteritems(): self.putheader(hdr, value) self.endheaders(body) def getresponse(self, buffering=False): "Get the response from the server." # if a prior response has been completed, then forget about it. if self.__response and self.__response.isclosed(): self.__response = None # # if a prior response exists, then it must be completed (otherwise, we # cannot read this response's header to determine the connection-close # behavior) # # note: if a prior response existed, but was connection-close, then the # socket and response were made independent of this HTTPConnection # object since a new request requires that we open a whole new # connection # # this means the prior response had one of two states: # 1) will_close: this connection was reset and the prior socket and # response operate independently # 2) persistent: the response was retained and we await its # isclosed() status to become true. # if self.__state != _CS_REQ_SENT or self.__response: raise ResponseNotReady() args = (self.sock,) kwds = {"strict":self.strict, "method":self._method} if self.debuglevel > 0: args += (self.debuglevel,) if buffering: #only add this keyword if non-default, for compatibility with #other response_classes. kwds["buffering"] = True; response = self.response_class(*args, **kwds) response.begin() assert response.will_close != _UNKNOWN self.__state = _CS_IDLE if response.will_close: # this effectively passes the connection to the response self.close() else: # remember this, so we can tell when it is complete self.__response = response return response class HTTP: "Compatibility class with httplib.py from 1.5." _http_vsn = 10 _http_vsn_str = 'HTTP/1.0' debuglevel = 0 _connection_class = HTTPConnection def __init__(self, host='', port=None, strict=None): "Provide a default host, since the superclass requires one." # some joker passed 0 explicitly, meaning default port if port == 0: port = None # Note that we may pass an empty string as the host; this will throw # an error when we attempt to connect. Presumably, the client code # will call connect before then, with a proper host. self._setup(self._connection_class(host, port, strict)) def _setup(self, conn): self._conn = conn # set up delegation to flesh out interface self.send = conn.send self.putrequest = conn.putrequest self.putheader = conn.putheader self.endheaders = conn.endheaders self.set_debuglevel = conn.set_debuglevel conn._http_vsn = self._http_vsn conn._http_vsn_str = self._http_vsn_str self.file = None def connect(self, host=None, port=None): "Accept arguments to set the host/port, since the superclass doesn't." if host is not None: self._conn._set_hostport(host, port) self._conn.connect() def getfile(self): "Provide a getfile, since the superclass' does not use this concept." return self.file def getreply(self, buffering=False): """Compat definition since superclass does not define it. Returns a tuple consisting of: - server status code (e.g. '200' if all goes well) - server "reason" corresponding to status code - any RFC822 headers in the response from the server """ try: if not buffering: response = self._conn.getresponse() else: #only add this keyword if non-default for compatibility #with other connection classes response = self._conn.getresponse(buffering) except BadStatusLine, e: ### hmm. if getresponse() ever closes the socket on a bad request, ### then we are going to have problems with self.sock ### should we keep this behavior? do people use it? # keep the socket open (as a file), and return it self.file = self._conn.sock.makefile('rb', 0) # close our socket -- we want to restart after any protocol error self.close() self.headers = None return -1, e.line, None self.headers = response.msg self.file = response.fp return response.status, response.reason, response.msg def close(self): self._conn.close() # note that self.file == response.fp, which gets closed by the # superclass. just clear the object ref here. ### hmm. messy. if status==-1, then self.file is owned by us. ### well... we aren't explicitly closing, but losing this ref will ### do it self.file = None try: import ssl except ImportError: pass else: class HTTPSConnection(HTTPConnection): "This class allows communication via SSL." default_port = HTTPS_PORT def __init__(self, host, port=None, key_file=None, cert_file=None, strict=None, timeout=socket._GLOBAL_DEFAULT_TIMEOUT, source_address=None): HTTPConnection.__init__(self, host, port, strict, timeout, source_address) self.key_file = key_file self.cert_file = cert_file def connect(self): "Connect to a host on a given (SSL) port." sock = socket.create_connection((self.host, self.port), self.timeout, self.source_address) if self._tunnel_host: self.sock = sock self._tunnel() self.sock = ssl.wrap_socket(sock, self.key_file, self.cert_file) __all__.append("HTTPSConnection") class HTTPS(HTTP): """Compatibility with 1.5 httplib interface Python 1.5.2 did not have an HTTPS class, but it defined an interface for sending http requests that is also useful for https. """ _connection_class = HTTPSConnection def __init__(self, host='', port=None, key_file=None, cert_file=None, strict=None): # provide a default host, pass the X509 cert info # urf. compensate for bad input. if port == 0: port = None self._setup(self._connection_class(host, port, key_file, cert_file, strict)) # we never actually use these for anything, but we keep them # here for compatibility with post-1.5.2 CVS. self.key_file = key_file self.cert_file = cert_file def FakeSocket (sock, sslobj): warnings.warn("FakeSocket is deprecated, and won't be in 3.x. " + "Use the result of ssl.wrap_socket() directly instead.", DeprecationWarning, stacklevel=2) return sslobj class HTTPException(Exception): # Subclasses that define an __init__ must call Exception.__init__ # or define self.args. Otherwise, str() will fail. pass class NotConnected(HTTPException): pass class InvalidURL(HTTPException): pass class UnknownProtocol(HTTPException): def __init__(self, version): self.args = version, self.version = version class UnknownTransferEncoding(HTTPException): pass class UnimplementedFileMode(HTTPException): pass class IncompleteRead(HTTPException): def __init__(self, partial, expected=None): self.args = partial, self.partial = partial self.expected = expected def __repr__(self): if self.expected is not None: e = ', %i more expected' % self.expected else: e = '' return 'IncompleteRead(%i bytes read%s)' % (len(self.partial), e) def __str__(self): return repr(self) class ImproperConnectionState(HTTPException): pass class CannotSendRequest(ImproperConnectionState): pass class CannotSendHeader(ImproperConnectionState): pass class ResponseNotReady(ImproperConnectionState): pass class BadStatusLine(HTTPException): def __init__(self, line): if not line: line = repr(line) self.args = line, self.line = line class LineTooLong(HTTPException): def __init__(self, line_type): HTTPException.__init__(self, "got more than %d bytes when reading %s" % (_MAXLINE, line_type)) # for backwards compatibility error = HTTPException class LineAndFileWrapper: """A limited file-like object for HTTP/0.9 responses.""" # The status-line parsing code calls readline(), which normally # get the HTTP status line. For a 0.9 response, however, this is # actually the first line of the body! Clients need to get a # readable file object that contains that line. def __init__(self, line, file): self._line = line self._file = file self._line_consumed = 0 self._line_offset = 0 self._line_left = len(line) def __getattr__(self, attr): return getattr(self._file, attr) def _done(self): # called when the last byte is read from the line. After the # call, all read methods are delegated to the underlying file # object. self._line_consumed = 1 self.read = self._file.read self.readline = self._file.readline self.readlines = self._file.readlines def read(self, amt=None): if self._line_consumed: return self._file.read(amt) assert self._line_left if amt is None or amt > self._line_left: s = self._line[self._line_offset:] self._done() if amt is None: return s + self._file.read() else: return s + self._file.read(amt - len(s)) else: assert amt <= self._line_left i = self._line_offset j = i + amt s = self._line[i:j] self._line_offset = j self._line_left -= amt if self._line_left == 0: self._done() return s def readline(self): if self._line_consumed: return self._file.readline() assert self._line_left s = self._line[self._line_offset:] self._done() return s def readlines(self, size=None): if self._line_consumed: return self._file.readlines(size) assert self._line_left L = [self._line[self._line_offset:]] self._done() if size is None: return L + self._file.readlines() else: return L + self._file.readlines(size) ########NEW FILE######## __FILENAME__ = test_extended #!/usr/bin/env python """ """ import os import time import json import re import unittest2 as unittest from utils import GET, GET_async, POST, POST_async, OPTIONS from utils import WebSocket8Client import uuid import nose # Base URL # ======== test_top_url = os.environ.get('SOCKJS_URL', 'http://localhost:8081') base_url = test_top_url + '/echo' close_base_url = test_top_url + '/close' wsoff_base_url = test_top_url + '/disabled_websocket_echo' class Test(unittest.TestCase): # We are going to test several `404/not found` pages. We don't # define a body or a content type. def verify404(self, r, cookie=False): self.assertEqual(r.status, 404) if cookie is False: self.verify_no_cookie(r) elif cookie is True: self.verify_cookie(r) # In some cases `405/method not allowed` is more appropriate. def verify405(self, r): self.assertEqual(r.status, 405) self.assertFalse(r['content-type']) self.assertTrue(r['allow']) self.assertFalse(r.body) # Multiple transport protocols need to support OPTIONS method. All # responses to OPTIONS requests must be cacheable and contain # appropriate headers. def verify_options(self, url, allowed_methods): for origin in [None, 'test']: h = {} if origin: h['Origin'] = origin r = OPTIONS(url, headers=h) self.assertEqual(r.status, 204) self.assertTrue(re.search('public', r['Cache-Control'])) self.assertTrue(re.search('max-age=[1-9][0-9]{6}', r['Cache-Control']), "max-age must be large, one year (31536000) is best") self.assertTrue(r['Expires']) self.assertTrue(int(r['access-control-max-age']) > 1000000) self.assertEqual(r['Access-Control-Allow-Methods'], allowed_methods) self.assertFalse(r.body) self.verify_cors(r, origin) self.verify_cookie(r) # All transports except WebSockets need sticky session support # from the load balancer. Some load balancers enable that only # when they see `JSESSIONID` cookie. For all the session urls we # must set this cookie. def verify_cookie(self, r): self.assertEqual(r['Set-Cookie'].split(';')[0].strip(), 'JSESSIONID=dummy') self.assertEqual(r['Set-Cookie'].split(';')[1].lower().strip(), 'path=/') def verify_no_cookie(self, r): self.assertFalse(r['Set-Cookie']) # Most of the XHR/Ajax based transports do work CORS if proper # headers are set. def verify_cors(self, r, origin=None): self.assertEqual(r['access-control-allow-origin'], origin or '*') # In order to get cookies (`JSESSIONID` mostly) flying, we # need to set `allow-credentials` header to true. self.assertEqual(r['access-control-allow-credentials'], 'true') # Sometimes, due to transports limitations we need to request # private data using GET method. In such case it's very important # to disallow any caching. def verify_not_cached(self, r, origin=None): self.assertEqual(r['Cache-Control'], 'no-store, no-cache, must-revalidate, max-age=0') self.assertFalse(r['Expires']) self.assertFalse(r['Last-Modified']) @classmethod def tearDownClass(cls): """ Wait five seconds for the current sessions to expire. """ time.sleep(5) # Footnote # ======== # Make this script runnable. if __name__ == '__main__': nose.main() ########NEW FILE######## __FILENAME__ = test_protocol #!/usr/bin/env python """ [**SockJS-protocol**](https://github.com/sockjs/sockjs-protocol) is an effort to define a protocol between in-browser [SockJS-client](https://github.com/sockjs/sockjs-client) and its server-side counterparts, like [SockJS-node](https://github.com/sockjs/sockjs-client). This should help others to write alternative server implementations. This protocol definition is also a runnable test suite, do run it against your server implementation. Supporting all the tests doesn't guarantee that SockJS client will work flawlessly, end-to-end tests using real browsers are always required. """ import os import time import json import re import unittest2 as unittest from utils import GET, GET_async, POST, POST_async, OPTIONS from utils import WebSocket8Client import uuid import nose from nose.tools import timed # Base URL # ======== """ The SockJS server provides one or more SockJS services. The services are usually exposed with a simple url prefixes, like: `http://localhost:8000/echo` or `http://localhost:8000/broadcast`. We'll call this kind of url a `base_url`. There is nothing wrong with base url being more complex, like `http://localhost:8000/a/b/c/d/echo`. Base url should never end with a slash. Base url is the url that needs to be supplied to the SockJS client. All paths under base url are controlled by SockJS server and are defined by SockJS protocol. SockJS protocol can be using either http or https. To run this tests server pointed by `base_url` needs to support following services: - `echo` - responds with identical data as received - `disabled_websocket_echo` - identical to `echo`, but with websockets disabled - `close` - server immediately closes the session This tests should not be run more often than once in five seconds - many tests operate on the same (named) sessions and they need to have enough time to timeout. """ test_top_url = os.environ.get('SOCKJS_URL', 'http://localhost:8081') base_url = test_top_url + '/echo' close_base_url = test_top_url + '/close' wsoff_base_url = test_top_url + '/disabled_websocket_echo' # Static URLs # =========== class Test(unittest.TestCase): # We are going to test several `404/not found` pages. We don't # define a body or a content type. def verify404(self, r, cookie=False): self.assertEqual(r.status, 404) if cookie is False: self.verify_no_cookie(r) elif cookie is True: self.verify_cookie(r) # In some cases `405/method not allowed` is more appropriate. def verify405(self, r): self.assertEqual(r.status, 405) self.assertFalse(r['content-type']) self.assertTrue(r['allow']) self.assertFalse(r.body) # Multiple transport protocols need to support OPTIONS method. All # responses to OPTIONS requests must be cacheable and contain # appropriate headers. def verify_options(self, url, allowed_methods): for origin in [None, 'test']: h = {} if origin: h['Origin'] = origin r = OPTIONS(url, headers=h) self.assertEqual(r.status, 204) self.assertTrue(re.search('public', r['Cache-Control'])) self.assertTrue(re.search('max-age=[1-9][0-9]{6}', r['Cache-Control']), "max-age must be large, one year (31536000) is best") self.assertTrue(r['Expires']) self.assertTrue(int(r['access-control-max-age']) > 1000000) self.assertEqual(r['Access-Control-Allow-Methods'], allowed_methods) self.assertFalse(r.body) self.verify_cors(r, origin) self.verify_cookie(r) # All transports except WebSockets need sticky session support # from the load balancer. Some load balancers enable that only # when they see `JSESSIONID` cookie. For all the session urls we # must set this cookie. def verify_cookie(self, r): self.assertEqual(r['Set-Cookie'].split(';')[0].strip(), 'JSESSIONID=dummy') self.assertEqual(r['Set-Cookie'].split(';')[1].lower().strip(), 'path=/') def verify_no_cookie(self, r): self.assertFalse(r['Set-Cookie']) # Most of the XHR/Ajax based transports do work CORS if proper # headers are set. def verify_cors(self, r, origin=None): self.assertEqual(r['access-control-allow-origin'], origin or '*') # In order to get cookies (`JSESSIONID` mostly) flying, we # need to set `allow-credentials` header to true. self.assertEqual(r['access-control-allow-credentials'], 'true') # Sometimes, due to transports limitations we need to request # private data using GET method. In such case it's very important # to disallow any caching. def verify_not_cached(self, r, origin=None): self.assertEqual(r['Cache-Control'], 'no-store, no-cache, must-revalidate, max-age=0') self.assertFalse(r['Expires']) self.assertFalse(r['Last-Modified']) @classmethod def tearDownClass(cls): """ Wait five seconds for the current sessions to expire. """ time.sleep(5) # Greeting url: `/` # ---------------- class BaseUrlGreeting(Test): # The most important part of the url scheme, is without doubt, the # top url. Make sure the greeting is valid. def test_greeting(self): for url in [base_url, base_url + '/']: r = GET(url) self.assertEqual(r.status, 200) self.assertEqual(r['content-type'], 'text/plain; charset=UTF-8') self.assertEqual(r.body, 'Welcome to SockJS!\n') self.verify_no_cookie(r) # Other simple requests should return 404. def test_notFound(self): for suffix in ['/a', '/a.html', '//', '///', '/a/a', '/a/a/', '/a', '/a/']: self.verify404(GET(base_url + suffix)) # IFrame page: `/iframe*.html` # ---------------------------- class IframePage(Test): """ Some transports don't support cross domain communication (CORS). In order to support them we need to do a cross-domain trick: on remote (server) domain we serve an simple html page, that loads back SockJS client javascript and is able to communicate with the server within the same domain. """ iframe_body = re.compile(''' ^<!DOCTYPE html> <html> <head> <meta http-equiv="X-UA-Compatible" content="IE=edge" /> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <script> document.domain = document.domain; _sockjs_onload = function\(\){SockJS.bootstrap_iframe\(\);}; </script> <script src="(?P<sockjs_url>[^"]*)"></script> </head> <body> <h2>Don't panic!</h2> <p>This is a SockJS hidden iframe. It's used for cross domain magic.</p> </body> </html>$ '''.strip()) # SockJS server must provide this html page. def test_simpleUrl(self): self.verify(base_url + '/iframe.html') # To properly utilize caching, the same content must be served # for request which try to version the iframe. The server may want # to give slightly different answer for every SockJS client # revision. def test_versionedUrl(self): for suffix in ['/iframe-a.html', '/iframe-.html', '/iframe-0.1.2.html', '/iframe-0.1.2abc-dirty.2144.html']: self.verify(base_url + suffix) # In some circumstances (`devel` set to true) client library # wants to skip caching altogether. That is achieved by # supplying a random query string. def test_queriedUrl(self): for suffix in ['/iframe-a.html?t=1234', '/iframe-0.1.2.html?t=123414', '/iframe-0.1.2abc-dirty.2144.html?t=qweqweq123']: self.verify(base_url + suffix) # Malformed urls must give 404 answer. def test_invalidUrl(self): for suffix in ['/iframe.htm', '/iframe', '/IFRAME.HTML', '/IFRAME', '/iframe.HTML', '/iframe.xml', '/iframe-/.html']: r = GET(base_url + suffix) self.verify404(r) # The '/iframe.html' page and its variants must give `200/ok` and be # served with 'text/html' content type. def verify(self, url): r = GET(url) self.assertEqual(r.status, 200) self.assertEqual(r['content-type'], 'text/html; charset=UTF-8') # The iframe page must be strongly cacheable, supply # Cache-Control, Expires and Etag headers and avoid # Last-Modified header. self.assertTrue(re.search('public', r['Cache-Control'])) self.assertTrue(re.search('max-age=[1-9][0-9]{6}', r['Cache-Control']), "max-age must be large, one year (31536000) is best") self.assertTrue(r['Expires']) self.assertTrue(r['ETag']) self.assertFalse(r['last-modified']) # Body must be exactly as specified, with the exception of # `sockjs_url`, which should be configurable. match = self.iframe_body.match(r.body.strip()) self.assertTrue(match) # `Sockjs_url` must be a valid url and should utilize caching. sockjs_url = match.group('sockjs_url') self.assertTrue(sockjs_url.startswith('/') or sockjs_url.startswith('http')) self.verify_no_cookie(r) return r # The iframe page must be strongly cacheable. ETag headers must # not change too often. Server must support 'if-none-match' # requests. def test_cacheability(self): r1 = GET(base_url + '/iframe.html') r2 = GET(base_url + '/iframe.html') self.assertEqual(r1['etag'], r2['etag']) self.assertTrue(r1['etag']) # Let's make sure ETag isn't None. r = GET(base_url + '/iframe.html', headers={'If-None-Match': r1['etag']}) self.assertEqual(r.status, 304) self.assertFalse(r['content-type']) self.assertFalse(r.body) # Info test: `/info` # ------------------ # # Warning: this is a replacement of `/chunking_test` functionality # from SockJS 0.1. class InfoTest(Test): # This url is called before the client starts the session. It's # used to check server capabilities (websocket support, cookies # requiremet) and to get the value of "origin" setting (currently # not used). # # But more importantly, the call to this url is used to measure # the roundtrip time between the client and the server. So, please, # do respond to this url in a timely fashin. def test_basic(self): r = GET(base_url + '/info') self.assertEqual(r.status, 200) self.assertEqual(r['content-type'], 'application/json; charset=UTF-8') self.verify_no_cookie(r) self.verify_not_cached(r) self.verify_cors(r) data = json.loads(r.body) # Are websockets enabled on the server? self.assertEqual(data['websocket'], True) # Do transports need to support cookies (ie: for load # balancing purposes. Test server must have `cookie_needed` # option enabled. self.assertEqual(data['cookie_needed'], True) # List of allowed origins. Currently ignored. self.assertEqual(data['origins'], ['*:*']) # Source of entropy for random number generator. self.assertTrue(isinstance(data['entropy'], int)) # As browsers don't have a good entropy source, the server must # help with tht. Info url must supply a good, unpredictable random # number from the range 0..2^32 to feed the browser. def test_entropy(self): r1 = GET(base_url + '/info') data1 = json.loads(r1.body) r2 = GET(base_url + '/info') data2 = json.loads(r2.body) self.assertTrue(isinstance(data1['entropy'], int)) self.assertTrue(isinstance(data2['entropy'], int)) self.assertNotEqual(data1['entropy'], data2['entropy']) # Info url must support CORS. def test_options(self): self.verify_options(base_url + '/info', 'OPTIONS, GET') # The 'disabled_websocket_echo' service should have websockets # disabled. def test_disabled_websocket(self): r = GET(wsoff_base_url + '/info') self.assertEqual(r.status, 200) data = json.loads(r.body) self.assertEqual(data['websocket'], False) # Session URLs # ============ # Top session URL: `/<server>/<session>` # -------------------------------------- # # The session between the client and the server is always initialized # by the client. The client chooses `server_id`, which should be a # three digit number: 000 to 999. It can be supplied by user or # randomly generated. The main reason for this parameter is to make it # easier to configure load balancer - and enable sticky sessions based # on first part of the url. # # Second parameter `session_id` must be a random string, unique for # every session. # # It is undefined what happens when two clients share the same # `session_id`. It is a client responsibility to choose identifier # with enough entropy. # # Neither server nor client API's can expose `session_id` to the # application. This field must be protected from the app. class SessionURLs(Test): # The server must accept any value in `server` and `session` fields. def test_anyValue(self): self.verify('/a/a') for session_part in ['/_/_', '/1/1', '/abcdefgh_i-j%20/abcdefg_i-j%20']: self.verify(session_part) # To test session URLs we're going to use `xhr-polling` transport # facilitites. def verify(self, session_part): r = POST(base_url + session_part + '/xhr') self.assertEqual(r.status, 200) self.assertEqual(r.body, 'o\n') # But not an empty string, anything containing dots or paths with # less or more parts. def test_invalidPaths(self): for suffix in ['//', '/a./a', '/a/a.', '/./.' ,'/', '///']: self.verify404(GET(base_url + suffix + '/xhr')) self.verify404(POST(base_url + suffix + '/xhr')) # A session is identified by only `session_id`. `server_id` is a # parameter for load balancer and must be ignored by the server. def test_ignoringServerId(self): session_id = str(uuid.uuid4()) r = POST(base_url + '/000/' + session_id + '/xhr') self.assertEqual(r.status, 200) self.assertEqual(r.body, 'o\n') payload = '["a"]' r = POST(base_url + '/000/' + session_id + '/xhr_send', body=payload) self.assertEqual(r.status, 204) self.assertFalse(r.body) r = POST(base_url + '/999/' + session_id + '/xhr') self.assertEqual(r.status, 200) self.assertEqual(r.body, 'a["a"]\n') # Protocol and framing # -------------------- # # SockJS tries to stay API-compatible with WebSockets, but not on the # network layer. For technical reasons SockJS must introduce custom # framing and simple custom protocol. # # ### Framing accepted by the client # # SockJS client accepts following frames: # # * `o` - Open frame. Every time a new session is established, the # server must immediately send the open frame. This is required, as # some protocols (mostly polling) can't distinguish between a # properly established connection and a broken one - we must # convince the client that it is indeed a valid url and it can be # expecting further messages in the future on that url. # # * `h` - Heartbeat frame. Most loadbalancers have arbitrary timeouts # on connections. In order to keep connections from breaking, the # server must send a heartbeat frame every now and then. The typical # delay is 25 seconds and should be configurable. # # * `a` - Array of json-encoded messages. For example: `a["message"]`. # # * `c` - Close frame. This frame is send to the browser every time # the client asks for data on closed connection. This may happen # multiple times. Close frame contains a code and a string explaining # a reason of closure, like: `c[3000,"Go away!"]`. # # ### Framing accepted by the server # # SockJS server does not have any framing defined. All incoming data # is treated as incoming messages, either single json-encoded messages # or an array of json-encoded messages, depending on transport. # # ### Tests # # To explain the protocol we'll use `xhr-polling` transport # facilities. class Protocol(Test): # When server receives a request with unknown `session_id` it must # recognize that as request for a new session. When server opens a # new sesion it must immediately send an frame containing a letter # `o`. def test_simpleSession(self): trans_url = base_url + '/000/' + str(uuid.uuid4()) r = POST(trans_url + '/xhr') "New line is a frame delimiter specific for xhr-polling" self.assertEqual(r.status, 200) self.assertEqual(r.body, 'o\n') # After a session was established the server needs to accept # requests for sending messages. "Xhr-polling accepts messages as a list of JSON-encoded strings." payload = '["a"]' r = POST(trans_url + '/xhr_send', body=payload) self.assertEqual(r.status, 204) self.assertFalse(r.body) '''We're using an echo service - we'll receive our message back. The message is encoded as an array 'a'.''' r = POST(trans_url + '/xhr') self.assertEqual(r.status, 200) self.assertEqual(r.body, 'a["a"]\n') # Sending messages to not existing sessions is invalid. payload = '["a"]' r = POST(base_url + '/000/bad_session/xhr_send', body=payload) self.verify404(r, cookie=True) # The session must time out after 5 seconds of not having a # receiving connection. The server must send a heartbeat frame # every 25 seconds. The heartbeat frame contains a single `h` # character. This delay may be configurable. pass # The server must not allow two receiving connections to wait # on a single session. In such case the server must send a # close frame to the new connection. r1 = POST_async(trans_url + '/xhr', load=False) r2 = POST(trans_url + '/xhr') r1.close() self.assertEqual(r2.body, 'c[2010,"Another connection still open"]\n') self.assertEqual(r2.status, 200) # The server may terminate the connection, passing error code and # message. def test_closeSession(self): trans_url = close_base_url + '/000/' + str(uuid.uuid4()) r = POST(trans_url + '/xhr') self.assertEqual(r.status, 200) self.assertEqual(r.body, 'o\n') r = POST(trans_url + '/xhr') self.assertEqual(r.status, 200) self.assertEqual(r.body, 'c[3000,"Go away!"]\n') # Until the timeout occurs, the server must constantly serve # the close message. r = POST(trans_url + '/xhr') self.assertEqual(r.status, 200) self.assertEqual(r.body, 'c[3000,"Go away!"]\n') # WebSocket protocols: `/*/*/websocket` # ------------------------------------- import websocket websocket.setdefaulttimeout(5) # The most important feature of SockJS is to support native WebSocket # protocol. A decent SockJS server should support at least the # following variants: # # - hixie-75 (Chrome 4, Safari 5.0.0) # - hixie-76/hybi-00 (Chrome 6, Safari 5.0.1) # - hybi-07 (Firefox 6) # - hybi-10 (Firefox 7, Chrome 14) # class WebsocketHttpErrors(Test): # Normal requests to websocket should not succeed. def test_httpMethod(self): r = GET(base_url + '/0/0/websocket') self.assertEqual(r.status, 400) self.assertTrue('Can "Upgrade" only to "WebSocket".' in r.body) # Server should be able to reject connections if origin is # invalid. def test_verifyOrigin(self): #r = GET(base_url + '/0/0/websocket', {'Upgrade': 'WebSocket', # 'Origin': 'VeryWrongOrigin'}) #self.assertEqual(r.status, 400) #self.assertEqual(r.body, 'Unverified origin.') pass # Some proxies and load balancers can rewrite 'Connection' header, # in such case we must refuse connection. def test_invalidConnectionHeader(self): r = GET(base_url + '/0/0/websocket', headers={'Upgrade': 'WebSocket', 'Connection': 'close'}) self.assertEqual(r.status, 400) self.assertTrue('"Connection" must be "Upgrade".', r.body) # WebSocket should only accept GET def test_invalidMethod(self): for h in [{'Upgrade': 'WebSocket', 'Connection': 'Upgrade'}, {}]: r = POST(base_url + '/0/0/websocket', headers=h) self.verify405(r) # Support WebSocket Hixie-76 protocol class WebsocketHixie76(Test): def test_transport(self): ws_url = 'ws:' + base_url.split(':',1)[1] + \ '/000/' + str(uuid.uuid4()) + '/websocket' ws = websocket.create_connection(ws_url) self.assertEqual(ws.recv(), u'o') ws.send(u'["a"]') self.assertEqual(ws.recv(), u'a["a"]') ws.close() def test_close(self): ws_url = 'ws:' + close_base_url.split(':',1)[1] + \ '/000/' + str(uuid.uuid4()) + '/websocket' ws = websocket.create_connection(ws_url) self.assertEqual(ws.recv(), u'o') self.assertEqual(ws.recv(), u'c[3000,"Go away!"]') # The connection should be closed after the close frame. with self.assertRaises(websocket.ConnectionClosedException): ws.recv() ws.close() # Empty frames must be ignored by the server side. def test_empty_frame(self): ws_url = 'ws:' + base_url.split(':',1)[1] + \ '/000/' + str(uuid.uuid4()) + '/websocket' ws = websocket.create_connection(ws_url) self.assertEqual(ws.recv(), u'o') # Server must ignore empty messages. ws.send(u'') ws.send(u'"a"') self.assertEqual(ws.recv(), u'a["a"]') ws.close() # For WebSockets, as opposed to other transports, it is valid to # reuse `session_id`. The lifetime of SockJS WebSocket session is # defined by a lifetime of underlying WebSocket connection. It is # correct to have two separate sessions sharing the same # `session_id` at the same time. def test_reuseSessionId(self): on_close = lambda(ws): self.assertFalse(True) ws_url = 'ws:' + base_url.split(':',1)[1] + \ '/000/' + str(uuid.uuid4()) + '/websocket' ws1 = websocket.create_connection(ws_url, on_close=on_close) self.assertEqual(ws1.recv(), u'o') ws2 = websocket.create_connection(ws_url, on_close=on_close) self.assertEqual(ws2.recv(), u'o') ws1.send(u'"a"') self.assertEqual(ws1.recv(), u'a["a"]') ws2.send(u'"b"') self.assertEqual(ws2.recv(), u'a["b"]') ws1.close() ws2.close() # It is correct to reuse the same `session_id` after closing a # previous connection. ws1 = websocket.create_connection(ws_url) self.assertEqual(ws1.recv(), u'o') ws1.send(u'"a"') self.assertEqual(ws1.recv(), u'a["a"]') ws1.close() # Verify WebSocket headers sanity. Due to HAProxy design the # websocket server must support writing response headers *before* # receiving -76 nonce. In other words, the websocket code must # work like that: # # * Receive request headers. # * Write response headers. # * Receive request nonce. # * Write response nonce. def test_headersSanity(self): url = base_url.split(':',1)[1] + \ '/000/' + str(uuid.uuid4()) + '/websocket' ws_url = 'ws:' + url http_url = 'http:' + url origin = '/'.join(http_url.split('/')[:3]) h = {'Upgrade': 'WebSocket', 'Connection': 'Upgrade', 'Origin': origin, 'Sec-WebSocket-Key1': '4 @1 46546xW%0l 1 5', 'Sec-WebSocket-Key2': '12998 5 Y3 1 .P00' } r = GET_async(http_url, headers=h) self.assertEqual(r.status, 101) self.assertEqual(r['sec-websocket-location'], ws_url) self.assertEqual(r['connection'].lower(), 'upgrade') self.assertEqual(r['upgrade'].lower(), 'websocket') self.assertEqual(r['sec-websocket-origin'], origin) self.assertFalse(r['content-length']) r.close() # When user sends broken data - broken JSON for example, the # server must terminate the ws connection. @timed(1) def test_broken_json(self): ws_url = 'ws:' + base_url.split(':',1)[1] + \ '/000/' + str(uuid.uuid4()) + '/websocket' ws = websocket.create_connection(ws_url) self.assertEqual(ws.recv(), u'o') ws.send(u'"a') with self.assertRaises(websocket.ConnectionClosedException): ws.recv() ws.close() # The server must support Hybi-10 protocol class WebsocketHybi10(Test): def test_transport(self): trans_url = base_url + '/000/' + str(uuid.uuid4()) + '/websocket' ws = WebSocket8Client(trans_url) self.assertEqual(ws.recv(), 'o') # Server must ignore empty messages. ws.send(u'') ws.send(u'"a"') self.assertEqual(ws.recv(), 'a["a"]') ws.close() def test_close(self): trans_url = close_base_url + '/000/' + str(uuid.uuid4()) + '/websocket' ws = WebSocket8Client(trans_url) self.assertEqual(ws.recv(), u'o') self.assertEqual(ws.recv(), u'c[3000,"Go away!"]') with self.assertRaises(ws.ConnectionClosedException): ws.recv() ws.close() # Verify WebSocket headers sanity. Server must support both # Hybi-07 and Hybi-10. def test_headersSanity(self): for version in ['7', '8', '13']: url = base_url.split(':',1)[1] + \ '/000/' + str(uuid.uuid4()) + '/websocket' ws_url = 'ws:' + url http_url = 'http:' + url origin = '/'.join(http_url.split('/')[:3]) h = {'Upgrade': 'websocket', 'Connection': 'Upgrade', 'Sec-WebSocket-Version': version, 'Sec-WebSocket-Origin': 'http://asd', 'Sec-WebSocket-Key': 'x3JJHMbDL1EzLkh9GBhXDw==', } r = GET_async(http_url, headers=h) self.assertEqual(r.status, 101) self.assertEqual(r['sec-websocket-accept'], 'HSmrc0sMlYUkAGmm5OPpG2HaGWk=') self.assertEqual(r['connection'].lower(), 'upgrade') self.assertEqual(r['upgrade'].lower(), 'websocket') self.assertFalse(r['content-length']) r.close() # When user sends broken data - broken JSON for example, the # server must terminate the ws connection. def test_broken_json(self): ws_url = 'ws:' + base_url.split(':',1)[1] + \ '/000/' + str(uuid.uuid4()) + '/websocket' ws = WebSocket8Client(ws_url) self.assertEqual(ws.recv(), u'o') ws.send(u'"a') with self.assertRaises(ws.ConnectionClosedException): ws.recv() ws.close() # As a fun part, Firefox 6.0.2 supports Websockets protocol '7'. But, # it doesn't send a normal 'Connection: Upgrade' header. Instead it # sends: 'Connection: keep-alive, Upgrade'. Brilliant. def test_firefox_602_connection_header(self): url = base_url.split(':',1)[1] + \ '/000/' + str(uuid.uuid4()) + '/websocket' ws_url = 'ws:' + url http_url = 'http:' + url origin = '/'.join(http_url.split('/')[:3]) h = {'Upgrade': 'websocket', 'Connection': 'keep-alive, Upgrade', 'Sec-WebSocket-Version': '7', 'Sec-WebSocket-Origin': 'http://asd', 'Sec-WebSocket-Key': 'x3JJHMbDL1EzLkh9GBhXDw==', } r = GET_async(http_url, headers=h) self.assertEqual(r.status, 101) # XhrPolling: `/*/*/xhr`, `/*/*/xhr_send` # --------------------------------------- # # The server must support xhr-polling. class XhrPolling(Test): # The transport must support CORS requests, and answer correctly # to OPTIONS requests. def test_options(self): for suffix in ['/xhr', '/xhr_send']: self.verify_options(base_url + '/abc/abc' + suffix, 'OPTIONS, POST') # Test the transport itself. def test_transport(self): url = base_url + '/000/' + str(uuid.uuid4()) r = POST(url + '/xhr') self.assertEqual(r.status, 200) self.assertEqual(r.body, 'o\n') self.assertEqual(r['content-type'], 'application/javascript; charset=UTF-8') self.verify_cookie(r) self.verify_cors(r) # Xhr transports receive json-encoded array of messages. r = POST(url + '/xhr_send', body='["x"]') self.assertEqual(r.status, 204) self.assertFalse(r.body) # The content type of `xhr_send` must be set to `text/plain`, # even though the response code is `204`. This is due to # Firefox/Firebug behaviour - it assumes that the content type # is xml and shouts about it. self.assertEqual(r['content-type'], 'text/plain; charset=UTF-8') self.verify_cookie(r) self.verify_cors(r) r = POST(url + '/xhr') self.assertEqual(r.status, 200) self.assertEqual(r.body, 'a["x"]\n') # Publishing messages to a non-existing session must result in # a 404 error. def test_invalid_session(self): url = base_url + '/000/' + str(uuid.uuid4()) r = POST(url + '/xhr_send', body='["x"]') self.verify404(r, cookie=None) # The server must behave when invalid json data is send or when no # json data is sent at all. def test_invalid_json(self): url = base_url + '/000/' + str(uuid.uuid4()) r = POST(url + '/xhr') self.assertEqual(r.status, 200) self.assertEqual(r.body, 'o\n') r = POST(url + '/xhr_send', body='["x') self.assertEqual(r.status, 500) self.assertTrue("Broken JSON encoding." in r.body) r = POST(url + '/xhr_send', body='') self.assertEqual(r.status, 500) self.assertTrue("Payload expected." in r.body) r = POST(url + '/xhr_send', body='["a"]') self.assertFalse(r.body) self.assertEqual(r.status, 204) r = POST(url + '/xhr') self.assertEqual(r.body, 'a["a"]\n') self.assertEqual(r.status, 200) # The server must accept messages send with different content # types. def test_content_types(self): url = base_url + '/000/' + str(uuid.uuid4()) r = POST(url + '/xhr') self.assertEqual(r.body, 'o\n') ctypes = ['text/plain', 'T', 'application/json', 'application/xml', '', 'application/json; charset=utf-8', 'text/xml; charset=utf-8', 'text/xml'] for ct in ctypes: r = POST(url + '/xhr_send', body='["a"]', headers={'Content-Type': ct}) self.assertEqual(r.status, 204) self.assertFalse(r.body) r = POST(url + '/xhr') self.assertEqual(r.status, 200) self.assertEqual(r.body, 'a[' + (',').join(['"a"']*len(ctypes)) +']\n') # JSESSIONID cookie must be set by default. def test_jsessionid(self): url = base_url + '/000/' + str(uuid.uuid4()) r = POST(url + '/xhr') self.assertEqual(r.status, 200) self.assertEqual(r.body, 'o\n') self.verify_cookie(r) # And must be echoed back if it's already set. url = base_url + '/000/' + str(uuid.uuid4()) r = POST(url + '/xhr', headers={'Cookie': 'JSESSIONID=abcdef'}) self.assertEqual(r.status, 200) self.assertEqual(r.body, 'o\n') self.assertEqual(r['Set-Cookie'].split(';')[0].strip(), 'JSESSIONID=abcdef') self.assertEqual(r['Set-Cookie'].split(';')[1].lower().strip(), 'path=/') # XhrStreaming: `/*/*/xhr_streaming` # ---------------------------------- class XhrStreaming(Test): def test_options(self): self.verify_options(base_url + '/abc/abc/xhr_streaming', 'OPTIONS, POST') def test_transport(self): url = base_url + '/000/' + str(uuid.uuid4()) r = POST_async(url + '/xhr_streaming') self.assertEqual(r.status, 200) self.assertEqual(r['Content-Type'], 'application/javascript; charset=UTF-8') self.verify_cookie(r) self.verify_cors(r) # The transport must first send 2KiB of `h` bytes as prelude. self.assertEqual(r.read(), 'h' * 2048 + '\n') self.assertEqual(r.read(), 'o\n') r1 = POST(url + '/xhr_send', body='["x"]') self.assertEqual(r1.status, 204) self.assertFalse(r1.body) self.assertEqual(r.read(), 'a["x"]\n') r.close() def test_response_limit(self): # Single streaming request will buffer all data until # closed. In order to remove (garbage collect) old messages # from the browser memory we should close the connection every # now and then. By default we should close a streaming request # every 128KiB messages was send. The test server should have # this limit decreased to 4096B. url = base_url + '/000/' + str(uuid.uuid4()) r = POST_async(url + '/xhr_streaming') self.assertEqual(r.status, 200) self.assertTrue(r.read()) # prelude self.assertEqual(r.read(), 'o\n') # Test server should gc streaming session after 4096 bytes # were sent (including framing). msg = '"' + ('x' * 128) + '"' for i in range(31): r1 = POST(url + '/xhr_send', body='[' + msg + ']') self.assertEqual(r1.status, 204) self.assertEqual(r.read(), 'a[' + msg + ']\n') # The connection should be closed after enough data was # delivered. self.assertFalse(r.read()) # EventSource: `/*/*/eventsource` # ------------------------------- # # For details of this protocol framing read the spec: # # * [http://dev.w3.org/html5/eventsource/](http://dev.w3.org/html5/eventsource/) # # Beware leading spaces. class EventSource(Test): def test_transport(self): url = base_url + '/000/' + str(uuid.uuid4()) r = GET_async(url + '/eventsource') self.assertEqual(r.status, 200) self.assertEqual(r['Content-Type'], 'text/event-stream; charset=UTF-8') # As EventSource is requested using GET we must be very # carefull not to allow it being cached. self.verify_not_cached(r) self.verify_cookie(r) # The transport must first send a new line prelude, due to a # bug in Opera. self.assertEqual(r.read(), '\r\n') self.assertEqual(r.read(), 'data: o\r\n\r\n') r1 = POST(url + '/xhr_send', body='["x"]') self.assertFalse(r1.body) self.assertEqual(r1.status, 204) self.assertEqual(r.read(), 'data: a["x"]\r\n\r\n') # This protocol doesn't allow binary data and we need to # specially treat leading space, new lines and things like # \x00. But, now the protocol json-encodes everything, so # there is no way to trigger this case. r1 = POST(url + '/xhr_send', body=r'[" \u0000\n\r "]') self.assertFalse(r1.body) self.assertEqual(r1.status, 204) self.assertEqual(r.read(), 'data: a[" \\u0000\\n\\r "]\r\n\r\n') r.close() def test_response_limit(self): # Single streaming request should be closed after enough data # was delivered (by default 128KiB, but 4KiB for test server). # Although EventSource transport is better, and in theory may # not need this mechanism, there are some bugs in the browsers # that actually prevent the automatic GC. url = base_url + '/000/' + str(uuid.uuid4()) r = GET_async(url + '/eventsource') self.assertEqual(r.status, 200) self.assertTrue(r.read()) # prelude self.assertEqual(r.read(), 'data: o\r\n\r\n') # Test server should gc streaming session after 4096 bytes # were sent (including framing). msg = '"' + ('x' * 4096) + '"' r1 = POST(url + '/xhr_send', body='[' + msg + ']') self.assertEqual(r1.status, 204) self.assertEqual(r.read(), 'data: a[' + msg + ']\r\n\r\n') # The connection should be closed after enough data was # delivered. self.assertFalse(r.read()) # HtmlFile: `/*/*/htmlfile` # ------------------------- # # Htmlfile transport is based on research done by Michael Carter. It # requires a famous `document.domain` trick. Read on: # # * [http://stackoverflow.com/questions/1481251/what-does-document-domain-document-domain-do](http://stackoverflow.com/questions/1481251/what-does-document-domain-document-domain-do) # * [http://cometdaily.com/2007/11/18/ie-activexhtmlfile-transport-part-ii/](http://cometdaily.com/2007/11/18/ie-activexhtmlfile-transport-part-ii/) # class HtmlFile(Test): head = r''' <!doctype html> <html><head> <meta http-equiv="X-UA-Compatible" content="IE=edge" /> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> </head><body><h2>Don't panic!</h2> <script> document.domain = document.domain; var c = parent.%s; c.start(); function p(d) {c.message(d);}; window.onload = function() {c.stop();}; </script> '''.strip() def test_transport(self): url = base_url + '/000/' + str(uuid.uuid4()) r = GET_async(url + '/htmlfile?c=%63allback') self.assertEqual(r.status, 200) self.assertEqual(r['Content-Type'], 'text/html; charset=UTF-8') # As HtmlFile is requested using GET we must be very careful # not to allow it being cached. self.verify_not_cached(r) self.verify_cookie(r) d = r.read() self.assertEqual(d.strip(), self.head % ('callback',)) self.assertGreater(len(d), 1024) self.assertEqual(r.read(), '<script>\np("o");\n</script>\r\n') r1 = POST(url + '/xhr_send', body='["x"]') self.assertFalse(r1.body) self.assertEqual(r1.status, 204) self.assertEqual(r.read(), '<script>\np("a[\\"x\\"]");\n</script>\r\n') r.close() def test_no_callback(self): r = GET(base_url + '/a/a/htmlfile') self.assertEqual(r.status, 500) self.assertTrue('"callback" parameter required' in r.body) def test_response_limit(self): # Single streaming request should be closed after enough data # was delivered (by default 128KiB, but 4KiB for test server). url = base_url + '/000/' + str(uuid.uuid4()) r = GET_async(url + '/htmlfile?c=callback') self.assertEqual(r.status, 200) self.assertTrue(r.read()) # prelude self.assertEqual(r.read(), '<script>\np("o");\n</script>\r\n') # Test server should gc streaming session after 4096 bytes # were sent (including framing). msg = ('x' * 4096) r1 = POST(url + '/xhr_send', body='["' + msg + '"]') self.assertEqual(r1.status, 204) self.assertEqual(r.read(), '<script>\np("a[\\"' + msg + '\\"]");\n</script>\r\n') # The connection should be closed after enough data was # delivered. self.assertFalse(r.read()) # JsonpPolling: `/*/*/jsonp`, `/*/*/jsonp_send` # --------------------------------------------- class JsonPolling(Test): def test_transport(self): url = base_url + '/000/' + str(uuid.uuid4()) r = GET(url + '/jsonp?c=%63allback') self.assertEqual(r.status, 200) self.assertEqual(r['Content-Type'], 'application/javascript; charset=UTF-8') # As JsonPolling is requested using GET we must be very # carefull not to allow it being cached. self.verify_not_cached(r) self.verify_cookie(r) self.assertEqual(r.body, 'callback("o");\r\n') r = POST(url + '/jsonp_send', body='d=%5B%22x%22%5D', headers={'Content-Type': 'application/x-www-form-urlencoded'}) # Konqueror does weird things on 204. As a workaround we need # to respond with something - let it be the string `ok`. self.assertEqual(r.body, 'ok') self.assertEqual(r.status, 200) self.assertEqual(r['Content-Type'], 'text/plain; charset=UTF-8') self.verify_cookie(r) r = GET(url + '/jsonp?c=%63allback') self.assertEqual(r.status, 200) self.assertEqual(r.body, 'callback("a[\\"x\\"]");\r\n') def test_no_callback(self): r = GET(base_url + '/a/a/jsonp') self.assertEqual(r.status, 500) self.assertTrue('"callback" parameter required' in r.body) # The server must behave when invalid json data is send or when no # json data is sent at all. def test_invalid_json(self): url = base_url + '/000/' + str(uuid.uuid4()) r = GET(url + '/jsonp?c=x') self.assertEqual(r.body, 'x("o");\r\n') r = POST(url + '/jsonp_send', body='d=%5B%22x', headers={'Content-Type': 'application/x-www-form-urlencoded'}) self.assertEqual(r.status, 500) self.assertTrue("Broken JSON encoding." in r.body) for data in ['', 'd=', 'p=p']: r = POST(url + '/jsonp_send', body=data, headers={'Content-Type': 'application/x-www-form-urlencoded'}) self.assertEqual(r.status, 500) self.assertTrue("Payload expected." in r.body) r = POST(url + '/jsonp_send', body='d=%5B%22b%22%5D', headers={'Content-Type': 'application/x-www-form-urlencoded'}) self.assertEqual(r.body, 'ok') r = GET(url + '/jsonp?c=x') self.assertEqual(r.status, 200) self.assertEqual(r.body, 'x("a[\\"b\\"]");\r\n') # The server must accept messages sent with different content # types. def test_content_types(self): url = base_url + '/000/' + str(uuid.uuid4()) r = GET(url + '/jsonp?c=x') self.assertEqual(r.body, 'x("o");\r\n') r = POST(url + '/jsonp_send', body='d=%5B%22abc%22%5D', headers={'Content-Type': 'application/x-www-form-urlencoded'}) self.assertEqual(r.body, 'ok') r = POST(url + '/jsonp_send', body='["%61bc"]', headers={'Content-Type': 'text/plain'}) self.assertEqual(r.body, 'ok') r = GET(url + '/jsonp?c=x') self.assertEqual(r.status, 200) self.assertEqual(r.body, 'x("a[\\"abc\\",\\"%61bc\\"]");\r\n') # Raw WebSocket url: `/websocket` # ------------------------------- # # SockJS protocol defines a bit of higher level framing. This is okay # when the browser using SockJS-client establishes the connection, but # it's not really appropriate when the connection is being esablished # from another program. Although SockJS focuses on server-browser # communication, it should be straightforward to connect to SockJS # from command line or some any programming language. # # In order to make writing command-line clients easier, we define this # `/websocket` entry point. This entry point is special and doesn't # use any additional custom framing, no open frame, no # heartbeats. Only raw WebSocket protocol. class RawWebsocket(Test): def test_transport(self): ws = WebSocket8Client(base_url + '/websocket') ws.send(u'Hello world!\uffff') self.assertEqual(ws.recv(), u'Hello world!\uffff') ws.close() def test_close(self): ws = WebSocket8Client(close_base_url + '/websocket') with self.assertRaises(ws.ConnectionClosedException): ws.recv() ws.close() # JSON Unicode Encoding # ===================== # # SockJS takes the responsibility of encoding Unicode strings for the # user. The idea is that SockJS should properly deliver any valid # string from the browser to the server and back. This is actually # quite hard, as browsers do some magical character # translations. Additionally there are some valid characters from # JavaScript point of view that are not valid Unicode, called # surrogates (JavaScript uses UCS-2, which is not really Unicode). # # Dealing with unicode surrogates (0xD800-0xDFFF) is quite special. If # possible we should make sure that server does escape decode # them. This makes sense for SockJS servers that support UCS-2 # (SockJS-node), but can't really work for servers supporting unicode # properly (Python). # # The browser must escape quite a list of chars, this is due to # browser mangling outgoing chars on transports like XHR. escapable_by_client = re.compile(u"[\\\"\x00-\x1f\x7f-\x9f\u00ad\u0600-\u0604\u070f\u17b4\u17b5\u2000-\u20ff\ufeff\ufff0-\uffff\x00-\x1f\ufffe\uffff\u0300-\u0333\u033d-\u0346\u034a-\u034c\u0350-\u0352\u0357-\u0358\u035c-\u0362\u0374\u037e\u0387\u0591-\u05af\u05c4\u0610-\u0617\u0653-\u0654\u0657-\u065b\u065d-\u065e\u06df-\u06e2\u06eb-\u06ec\u0730\u0732-\u0733\u0735-\u0736\u073a\u073d\u073f-\u0741\u0743\u0745\u0747\u07eb-\u07f1\u0951\u0958-\u095f\u09dc-\u09dd\u09df\u0a33\u0a36\u0a59-\u0a5b\u0a5e\u0b5c-\u0b5d\u0e38-\u0e39\u0f43\u0f4d\u0f52\u0f57\u0f5c\u0f69\u0f72-\u0f76\u0f78\u0f80-\u0f83\u0f93\u0f9d\u0fa2\u0fa7\u0fac\u0fb9\u1939-\u193a\u1a17\u1b6b\u1cda-\u1cdb\u1dc0-\u1dcf\u1dfc\u1dfe\u1f71\u1f73\u1f75\u1f77\u1f79\u1f7b\u1f7d\u1fbb\u1fbe\u1fc9\u1fcb\u1fd3\u1fdb\u1fe3\u1feb\u1fee-\u1fef\u1ff9\u1ffb\u1ffd\u2000-\u2001\u20d0-\u20d1\u20d4-\u20d7\u20e7-\u20e9\u2126\u212a-\u212b\u2329-\u232a\u2adc\u302b-\u302c\uaab2-\uaab3\uf900-\ufa0d\ufa10\ufa12\ufa15-\ufa1e\ufa20\ufa22\ufa25-\ufa26\ufa2a-\ufa2d\ufa30-\ufa6d\ufa70-\ufad9\ufb1d\ufb1f\ufb2a-\ufb36\ufb38-\ufb3c\ufb3e\ufb40-\ufb41\ufb43-\ufb44\ufb46-\ufb4e]") # # The server is able to send much more chars verbatim. But, it can't # send Unicode surrogates over Websockets, also various \u2xxxx chars # get mangled. Additionally, if the server is capable of handling # UCS-2 (ie: 16 bit character size), it should be able to deal with # Unicode surrogates 0xD800-0xDFFF: # http://en.wikipedia.org/wiki/Mapping_of_Unicode_characters#Surrogates escapable_by_server = re.compile(u"[\x00-\x1f\u200c-\u200f\u2028-\u202f\u2060-\u206f\ufff0-\uffff]") client_killer_string_esc = '"' + ''.join([ r'\u%04x' % (i) for i in range(65536) if escapable_by_client.match(unichr(i))]) + '"' server_killer_string_esc = '"' + ''.join([ r'\u%04x'% (i) for i in range(255, 65536) if escapable_by_server.match(unichr(i))]) + '"' class JSONEncoding(Test): def test_xhr_server_encodes(self): # Make sure that server encodes at least all the characters # it's supposed to encode. trans_url = base_url + '/000/' + str(uuid.uuid4()) r = POST(trans_url + '/xhr') self.assertEqual(r.body, 'o\n') self.assertEqual(r.status, 200) payload = '["' + json.loads(server_killer_string_esc) + '"]' r = POST(trans_url + '/xhr_send', body=payload) self.assertEqual(r.status, 204) r = POST(trans_url + '/xhr') self.assertEqual(r.status, 200) # skip framing, quotes and parenthesis recv = r.body.strip()[2:-1] # Received string is indeed what we send previously, aka - escaped. self.assertEqual(recv, server_killer_string_esc) def test_xhr_server_decodes(self): # Make sure that server decodes the chars we're customly # encoding. trans_url = base_url + '/000/' + str(uuid.uuid4()) r = POST(trans_url + '/xhr') self.assertEqual(r.body, 'o\n') self.assertEqual(r.status, 200) payload = '[' + client_killer_string_esc + ']' # Sending escaped r = POST(trans_url + '/xhr_send', body=payload) self.assertEqual(r.status, 204) r = POST(trans_url + '/xhr') self.assertEqual(r.status, 200) # skip framing, quotes and parenthesis recv = r.body.strip()[2:-1] # Received string is indeed what we send previously. We don't # really need to know what exactly got escaped and what not. a = json.loads(recv) b = json.loads(client_killer_string_esc) self.assertEqual(a, b) # Handling close # ============== # # Dealing with session closure is quite complicated part of the # protocol. The exact details here don't matter that much to the # client side, but it's good to have a common behaviour on the server # side. # # This is less about defining the protocol and more about sanity # checking implementations. class HandlingClose(Test): # When server is closing session, it should unlink current # request. That means, if a new request appears, it should receive # an application close message rather than "Another connection # still open" message. def test_close_frame(self): url = close_base_url + '/000/' + str(uuid.uuid4()) r1 = POST_async(url + '/xhr_streaming') r1.read() # prelude self.assertEqual(r1.read(), 'o\n') self.assertEqual(r1.read(), 'c[3000,"Go away!"]\n') r2 = POST_async(url + '/xhr_streaming') r2.read() # prelude self.assertEqual(r2.read(), 'c[3000,"Go away!"]\n') # HTTP streaming requests should be automatically closed after # close. self.assertEqual(r1.read(), None) self.assertEqual(r2.read(), None) def test_close_request(self): url = base_url + '/000/' + str(uuid.uuid4()) r1 = POST_async(url + '/xhr_streaming') r1.read() # prelude self.assertEqual(r1.read(), 'o\n') r2 = POST_async(url + '/xhr_streaming') r2.read() # prelude self.assertEqual(r2.read(), 'c[2010,"Another connection still open"]\n') # HTTP streaming requests should be automatically closed after # getting the close frame. self.assertEqual(r2.read(), None) # When a polling request is closed by a network error - not by # server, the session should be automatically closed. When there # is a network error - we're in an undefined state. Some messages # may have been lost, there is not much we can do about it. def test_abort_xhr_streaming(self): url = base_url + '/000/' + str(uuid.uuid4()) r1 = POST_async(url + '/xhr_streaming') r1.read() # prelude self.assertEqual(r1.read(), 'o\n') # Can't do second polling request now. r2 = POST_async(url + '/xhr_streaming') r2.read() # prelude self.assertEqual(r2.read(), 'c[2010,"Another connection still open"]\n') self.assertEqual(r2.read(), None) r1.close() # Polling request now, after we aborted previous one, should # trigger a connection closure. Implementations may close # the session and forget the state related. Alternatively # they may return a 1002 close message. r3 = POST_async(url + '/xhr_streaming') r3.read() # prelude self.assertTrue(r3.read() in ['o\n', 'c[1002,"Connection interrupted"]\n']) r3.close() # The same for polling transports def test_abort_xhr_polling(self): url = base_url + '/000/' + str(uuid.uuid4()) r1 = POST(url + '/xhr') self.assertEqual(r1.body, 'o\n') r1 = POST_async(url + '/xhr', load=False) # Can't do second polling request now. r2 = POST(url + '/xhr') self.assertEqual(r2.body, 'c[2010,"Another connection still open"]\n') r1.close() # Polling request now, after we aborted previous one, should # trigger a connection closure. Implementations may close # the session and forget the state related. Alternatively # they may return a 1002 close message. r3 = POST(url + '/xhr') self.assertTrue(r3.body in ['o\n', 'c[1002,"Connection interrupted"]\n']) # Footnote # ======== # Make this script runnable. if __name__ == '__main__': nose.main() ########NEW FILE######## __FILENAME__ = utils import urlparse import httplib_fork as httplib from ws4py.client.threadedclient import WebSocketClient import Queue import logging class HttpResponse: def __init__(self, method, url, headers={}, body=None, async=False, load=True): headers = headers.copy() u = urlparse.urlparse(url) kwargs = {'timeout': None if async else 1.0} if u.scheme == 'http': conn = httplib.HTTPConnection(u.netloc, **kwargs) elif u.scheme == 'https': conn = httplib.HTTPSConnection(u.netloc, **kwargs) else: assert False, "Unsupported scheme " + u.scheme assert u.fragment == '' path = u.path + ('?' + u.query if u.query else '') self.conn = conn if not body: if method is 'POST': # The spec says: "Applications SHOULD use this field # to indicate the transfer-length of the message-body, # unless this is prohibited by the rules in section # 4.4." # http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.13 # While httplib sets it only if there is body. headers['Content-Length'] = 0 conn.request(method, path, headers=headers) else: if isinstance(body, unicode): body = body.encode('utf-8') conn.request(method, path, headers=headers, body=body) if load: if not async: self._load() else: self._async_load() @property def status(self): if self.res.status == 500 and hasattr(self, 'body'): logging.error(self.body) return self.res.status def __getitem__(self, key): return self.headers.get(key.lower()) def _load(self): self.res = self.conn.getresponse() self.headers = dict( (k.lower(), v) for k, v in self.res.getheaders() ) self.body = self.res.read() self.close() def close(self): if self.conn: self.conn.close() self.conn = None def _async_load(self): self.res = self.conn.getresponse() self.headers = dict( (k.lower(), v) for k, v in self.res.getheaders() ) def read(self): data = self.res.read(10240) if data: return data else: self.close() return None def GET(url, **kwargs): try: return HttpResponse('GET', url, **kwargs) except Exception as e: logging.error(url) raise e def GET_async(url, **kwargs): try: return HttpResponse('GET', url, async=True, **kwargs) except Exception as e: logging.error(url) raise e def POST(url, **kwargs): try: return HttpResponse('POST', url, **kwargs) except Exception as e: logging.error(url) raise e def POST_async(url, **kwargs): try: return HttpResponse('POST', url, async=True, **kwargs) except Exception as e: logging.error(url) raise e def OPTIONS(url, **kwargs): try: return HttpResponse('OPTIONS', url, **kwargs) except Exception as e: logging.error(url) raise e class WebSocket8Client(object): class ConnectionClosedException(Exception): pass def __init__(self, url): queue = Queue.Queue() self.queue = queue class IntWebSocketClient(WebSocketClient): def received_message(self, m): queue.put(unicode(str(m), 'utf-8')) def read_from_connection(self, amount): r = super(IntWebSocketClient, self).read_from_connection(amount) if not r: queue.put(Ellipsis) return r self.client = IntWebSocketClient(url) self.client.connect() def close(self): if self.client: self.client.running = False self.client.close() self.client._th.join() self.client = None def send(self, data): self.client.send(data) def recv(self): try: r = self.queue.get(timeout=1.0) if r is Ellipsis: raise self.ConnectionClosedException() return r except: self.close() raise ########NEW FILE########
f1318351ae4716d2341351aa7ba537219924a05b
444a9480bce2035565332d4d4654244c0b5cd47b
/research/nlp/mass/src/language_model/masked_language_model.py
52aed8d53ed7b0a0eae8a67d7231364bbf913a00
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference", "LicenseRef-scancode-proprietary-license" ]
permissive
mindspore-ai/models
7ede9c6454e77e995e674628204e1c6e76bd7b27
eab643f51336dbf7d711f02d27e6516e5affee59
refs/heads/master
2023-07-20T01:49:34.614616
2023-07-17T11:43:18
2023-07-17T11:43:18
417,393,380
301
92
Apache-2.0
2023-05-17T11:22:28
2021-10-15T06:38:37
Python
UTF-8
Python
false
false
4,698
py
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Masked language model.""" import numpy as np from .base import LanguageModel class MaskedLanguageModel(LanguageModel): """ Do mask operation on sentence. If k is assigned, then mask sentence with length k. Otherwise, use mask_ratio. Args: k (int): Length of fragment. mask_ratio (float): Mask ratio. """ def __init__(self, k: int = None, mask_ratio=0.5, mask_all_prob=None): super(MaskedLanguageModel, self).__init__() self.mask_ratio = mask_ratio self._k = k self._threshold = mask_all_prob def emit(self, sentence: np.ndarray, vocabulary): """ Mask mono source sentence. A sample used to train model is processed with following step: encoder input (source): [x1, x2, x3, x4, x5, x6, x7, x8, </eos>] masked encoder input: [x1, x2, _, _, _, x6, x7, x8, </eos>] decoder input: [ _, x3, x4] | | | V V V decoder output: [ x3, x4, x5] Notes: A simple rule is made that source sentence starts without <BOS> but end with <EOS>. Args: vocabulary (Dictionary): Vocabulary. sentence (np.ndarray): Raw sentence instance. Returns: dict, an example. """ encoder_input = sentence.copy() seq_len = encoder_input.shape[0] # If v=0, then u must equal to 0. [u, v) u, v = self._get_masked_interval(len(encoder_input), self._k, self._threshold) if u == 0: _len = v - u if v - u != 0 else seq_len decoder_input = np.array([vocabulary.mask_index] * _len, dtype=np.int32) decoder_input[1:] = encoder_input[:_len - 1].copy() else: decoder_input = np.array([vocabulary.mask_index] * (v - u), dtype=np.int32) decoder_input[1:] = encoder_input[u:v - 1].copy() if v == 0: decoder_output = encoder_input.copy() encoder_input[:] = vocabulary.mask_index else: decoder_output = encoder_input[u:v].copy() encoder_input[np.arange(start=u, stop=v)] = vocabulary.mask_index if u != v and u > 0: padding = np.array([vocabulary.padding_index] * u, dtype=np.int32) decoder_input = np.concatenate((padding, decoder_input)) decoder_output = np.concatenate((padding, decoder_output)) assert decoder_input.shape[0] == decoder_output.shape[0], "seq len must equal." return { "sentence_length": seq_len, "tgt_sen_length": decoder_output.shape[0], "encoder_input": encoder_input, # end with </eos> "decoder_input": decoder_input, "decoder_output": decoder_output # end with </eos> } def _get_masked_interval(self, length, fix_length=None, threshold_to_mask_all=None): """ Generate a sequence length according to length and mask_ratio. Args: length (int): Sequence length. Returns: Tuple[int, int], [start position, end position]. """ # Can not larger than sequence length. # Mask_length belongs to [0, length]. if fix_length is not None: interval_length = min(length, fix_length) else: interval_length = min(length, round(self.mask_ratio * length)) _magic = np.random.random() if threshold_to_mask_all is not None and _magic <= threshold_to_mask_all: return 0, length # If not sequence to be masked, then return 0, 0. if interval_length == 0: return 0, 0 # Otherwise, return start position and interval length. start_pos = np.random.randint(low=0, high=length - interval_length + 1) return start_pos, start_pos + interval_length
5c3dda335336b3b644e37fe7f8f4f46f4fd0ee86
60ce73bf2f86940438e5b7fecaaccad086888dc5
/working_scrapers/Illinois_dekalb.py
d04843c1e230207cd3080ec2535d4860593519dd
[]
no_license
matthewgomies/jailcrawl
22baf5f0e6dc66fec1b1b362c26c8cd2469dcb0d
9a9ca7e1328ae549860ebeea9b149a785f152f39
refs/heads/master
2023-02-16T06:39:42.107493
2021-01-15T16:37:57
2021-01-15T16:37:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,161
py
#!/usr/bin/python ''' This is a template script MG ''' from urllib.request import urlopen, Request import pandas as pd import os import time import numpy as np from datetime import datetime import datetime as dt import sys from io import StringIO from joblib import Parallel, delayed import requests from jailscrape.common import save_to_s3, get_browser, get_logger, record_error, save_pages_array from jailscrape import crawlers # jailscrape.common is a file that is part of the project which keeps # most common boilerplate code out of this file from selenium.webdriver.common.keys import Keys import watchtower from bs4 import BeautifulSoup import re import math # NOTE: These are imports. They ideally don't change very often. # It's OK to have a large, maximal set here and to bulk-edit files to add to these. # MG - Extra imports import selenium as sm from selenium import webdriver from selenium.common.exceptions import NoSuchElementException ROW_INDEX = 171 # Change this for each scraper. This references the row # of the main jailcrawl spreadsheet. This index will be used to look up # the URL as well as state/county info THIS_STATE = 'illinois' # Change the current state/county information. THIS_COUNTY = 'dekalb' def main(roster_row): try: logger = get_logger(roster_row) # Get a standard logger # Here are standard variable values/how to initialize them. # These aren't initialized here since in the save_single_page # case, they can be done in the called function browser = get_browser() # Get a standard browser urlAddress = roster_row['Working Link'] # Set the main URL from the spreadsheet page_index = 0 # Set an initial value of "page_index", which we will use to separate output pages logger.info('Set working link to _%s_', urlAddress) # Log the chosen URL #################################### # Begin core specific scraping code if roster_row['State'].lower() != THIS_STATE or roster_row['County'].lower() != THIS_COUNTY: raise Exception("Expected county definition info from _%s, %s_, but found info: _%s_" % (THIS_COUNTY, THIS_STATE, roster_row)) #Given the urlAddress passed to the function we will navigate to the page browser.get(urlAddress) time.sleep(np.random.uniform(7,10,1)) #Extract the HTML# store_source = browser.page_source ## Code to save the first page and log appropriately save_to_s3(store_source, page_index, roster_row) logger.info('Saved page _%s_', page_index) #Finding the last page soup = BeautifulSoup(store_source, 'lxml') page=0 for link in soup.findAll("div", {"class":"loca-search-head text-center"}): page=str(link.text) page=re.sub(' Results for "_"', "", page) page=int(page)/10 page=math.ceil(page) #Crawling through all the pages string = str(1) for i in range(2,page+1): if i>30 : print("Exceeds 300 inmates") elif i==2: elem = browser.find_element_by_xpath('/html/body/div/div/div/div[2]/div[3]/div[12]/ul/li[3]/a') elem.click() time.sleep(np.random.uniform(3,5,1)) store_source = browser.page_source string=str(i) ## Code to save the page and log appropriately page_index=int(string)-1 save_to_s3(store_source, page_index, roster_row) logger.info('Saved page _%s_', page_index) elif i==3: elem = browser.find_element_by_xpath('/html/body/div/div/div/div[2]/div[3]/div[12]/ul/li[4]/a') elem.click() time.sleep(np.random.uniform(3,5,1)) store_source = browser.page_source string=str(i) ## Code to save the page and log appropriately page_index=int(string)-1 save_to_s3(store_source, page_index, roster_row) logger.info('Saved page _%s_', page_index) elif i==4: elem = browser.find_element_by_xpath('/html/body/div/div/div/div[2]/div[3]/div[12]/ul/li[5]/a') elem.click() time.sleep(np.random.uniform(3,5,1)) store_source = browser.page_source string=str(i) ## Code to save the page and log appropriately page_index=int(string)-1 save_to_s3(store_source, page_index, roster_row) logger.info('Saved page _%s_', page_index) elif i>=5: elem = browser.find_element_by_xpath('/html/body/div/div/div/div[2]/div[3]/div[12]/ul/li[6]/a') elem.click() time.sleep(np.random.uniform(3,5,1)) store_source = browser.page_source string=str(i) ## Code to save the page and log appropriately page_index=int(string)-1 save_to_s3(store_source, page_index, roster_row) logger.info('Saved page _%s_', page_index) # End core specific scraping code #################################### #Close the browser logger.info('complete!') except Exception as errorMessage: try: browser.close() record_error(message=str(errorMessage), roster_row=roster_row, browser=browser) except: record_error(message=str(errorMessage), roster_row=roster_row) # Record error in S3 for a general error logger.error('Error: %s', errorMessage) # Log error sys.exit(1) if __name__ == "__main__": #This will load in the current jail roster list #Select the index of the roster this script is for: #Write the name of the county and state roster = pd.read_csv('/opt/jail_roster_final_rmDuplicates.csv',encoding = "utf-8") main(roster[roster['index'] == ROW_INDEX].iloc[0])
6f409ce181ccfacc565feea9433e652a11fe88ae
c6939d3e5d5628673d44d29ef38b0511556a83aa
/new_shangmi/shangmi/apis_v1.py
a76dd4e4cbce2576231baab2a614b4a0b49d8b0d
[]
no_license
General-Coder/shangmiteam
a536867a7e03f33eec3d2c55c0f55a1cb7ae1b85
a628e38a545ffc36caa4c05d2fb5b73398a26ac1
refs/heads/master
2020-04-11T06:03:28.468625
2018-12-11T09:33:14
2018-12-11T09:33:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,462
py
import json import requests from django.conf import settings from django.forms import model_to_dict from django.http import JsonResponse, HttpResponse from django.views.generic import View from .utils import * from .models import * from django.core.cache import caches from .getqr import * import uuid user_cache = caches['user'] class LoginAPI(View): def post(self, request): params = request.POST code = params.get('code') avatar = params.get('avatar') # gender = params.get('gender') nick_name = params.get('name') mini_type = params.get('mini_type') token = params.get("token") user_id = user_cache.get(token) if user_id: user_cache.set(token, user_id, settings.LOGIN_TIMEOUT) return JsonResponse({'code': 0, 'data': {'token': token, "uid": user_id}}) if mini_type == 'background': appid = 'wx4a8c99d5d8b43556' secret = '014ad578b31357e53b61b9ab69db0761' elif mini_type == 'customer': appid = 'wx8b50ab8fa813a49e' secret = 'b32f63c36ea123710173c4c9d4b15e8b' else: appid = 'wxebd828458f8b2b38' secret = 'a40cb9c5ecb1f4f5c0f31b75829fed03' url = settings.SMALL_WEIXIN_OPENID_URL params = {"appid": appid, "secret": secret, "js_code": code, "grant_type": 'authorization_code' } response = requests.get(url, params=params) data = json.loads(response.content.decode()) if 'openid' in data: openid = data.get('openid') user = ShangmiUser.objects.get_or_create(openid=openid)[0] # token = generate_validate_token(str(user.id)) token = uuid.uuid4().hex user_cache.set(token, user.id, settings.LOGIN_TIMEOUT) user.nick_name = nick_name user.icon = avatar user.source = mini_type user.save() return HttpResponse(json.dumps({'code': 0, 'data': {'token': token, "uid": user.id}}), content_type='application/json') else: return HttpResponse(json.dumps({'code': 1, 'msg': 'failed'}), content_type='application/json') class ActivesAPI(View): def get(self, req): actives = Active.objects.filter( is_active=True ) fast = actives.filter(is_fast=True) unfast = actives.filter(is_fast=False) # fast_data = [model_to_dict(i) for i in fast] unfast_data = [model_to_dict(i) for i in unfast] fast_data = [] for i in fast: tmp = model_to_dict(i) if i.need_num == 0: tmp["percent"] = "0%" else: tmp["percent"] = str((i.complete_num / i.need_num) * 100) + "%" fast_data.append(tmp) unfast_data = [] for i in unfast: tmp = model_to_dict(i) if i.need_num == 0: tmp["percent"] = "0%" else: tmp["percent"] = str((i.complete_num / i.need_num) * 100) + "%" unfast_data.append(tmp) result = { "code": 1, "msg": "ok", "data": { "fast": fast_data, "unfast": unfast_data } } return JsonResponse(result) class AdvAPI(View): def get(self,req): advs = Advertise.objects.filter( is_used=True ) res = [model_to_dict(i) for i in advs] data = { "code":1, "msg": "ok", "data": res } return JsonResponse(data) class IndexAPI(View): # @login_req def get(self, req): user = ShangmiUser.objects.get(pk=int(user_cache.get(req.GET.get("token")))) actives = UserActiveLog.objects.filter(user=user) # 未通过的 doing_count = actives.filter(status=0).count() # 审核通过的 finish_count = actives.filter(status=1).count() # 用户余额 try: money = Balance.objects.get(user=user).money except: money = 0 data = { "code": 0, "data": { 'money': money, 'doing_count': doing_count, 'finish_count': finish_count } } return JsonResponse(data) # 用户参加活动明细 class UserActiveLogAPI(View): def get(self, req): user = ShangmiUser.objects.get( pk=int(user_cache.get( req.GET.get("token") ) ) ) logs = UserActiveLog.objects.filter( user=user, status=1 ).order_by("-create_time") data_logs = [] for i in logs: tmp = model_to_dict(i) tmp['create_time'] = i.create_time.strftime("%Y年%m月%d日 %H:%M") tmp["status"] = i.get_status_display() tmp["active_msg"] = model_to_dict(i.active) tmp["type"] = i.get_type_display() data_logs.append(tmp) return JsonResponse({"code": 0, "data": data_logs}) # 付款明细 class UserPayLogAPI(View): def get(self, req): user = ShangmiUser.objects.get( pk=int(user_cache.get( req.GET.get("token") ) ) ) logs = UserPayLog.objects.filter(user=user, status=1).order_by("-create_time") datas = [] for i in logs: tmp = model_to_dict(i) tmp['create_time'] = i.create_time.strftime("%Y年%m月%d日 %H:%M:%S") tmp["store_name"] = i.store.name tmp["money"] = i.money / 100 tmp["integral"] = i.integral / 100 datas.append(tmp) data = { "code": 0, "data": datas } return JsonResponse(data) # 任务明细 class TaskDetailAPI(View): def get(self, req): user = ShangmiUser.objects.get( pk=int(user_cache.get( req.GET.get("token") ) ) ) datas = UserActiveLog.objects.filter(user=user).order_by("-create_time") details = [] for i in datas: tmp = model_to_dict(i) tmp['create_time'] = i.create_time.strftime("%Y年%m月%d日 %H:%M") tmp["status"] = i.get_status_display() tmp["active_msg"] = model_to_dict(i.active) tmp["type"] = i.get_type_display() details.append(tmp) data = { "code": 0, "data": details } return JsonResponse(data) class ActiveAPI(View): def get(self, req): id = int(req.GET.get("id")) active = Active.objects.get(pk=id) data = { "code": 0, "data": model_to_dict(active) } return JsonResponse(data) class ShareGetMoneyAPI(View): def post(self, req): token = req.POST.get("token") share_uid = req.POST.get("uid") user = user_cache.get() class JoinActiveAPI(View): def post(self, req): user = ShangmiUser.objects.get(pk=int(user_cache.get( req.POST.get("token") ))) uid = req.POST.get("uid") id = req.POST.get("id") active = Active.objects.get(id=id) if active.is_active == False: data = { "code": 3, "data": "活动已结束" } return JsonResponse(data) # 先判断该用户是不是已经参与了 if UserActiveLog.objects.filter(user_id=user.id).exists(): data = { "code": 2, "data": "您已参加,想赚更多可分享" } return JsonResponse(data) log = UserActiveLog.objects.create( active_id=id, user_id=user.id, integral=active.give_money, type="join", status=1 ) active.complete_num += 1 active.save() # 更新用户余额表 user_balance = Balance.objects.get_or_create(user_id=user.id)[0] user_balance.money += active.give_money user_balance.save() if int(uid) != -1 and int(uid) != user.id: UserActiveLog.objects.create( active_id=id, user_id=uid, integral=active.share_give_money, type="share", status=1 ) # 更新分享人用户积分余额 share_user_balance = Balance.objects.get(user_id=uid) share_user_balance.money += active.share_give_money share_user_balance.save() data = { "code": 0, "data": "参与成功,积分已发放到个人中心" } return JsonResponse(data) class QrcodeAPI(View): def get(self, request): params = request.GET active_id = int(params.get('active_id')) wx_mini_path = 'pages/join/join?uid=-1&aid=%s' % active_id image_data = get_qrcode(wx_mini_path) return HttpResponse(image_data,content_type="image/png") class StoreAPI(View): def get(self, req): user = ShangmiUser.objects.get( pk=int(user_cache.get( req.GET.get("token") ) ) ) balance = Balance.objects.get(user_id=user.id) store_id = int(req.GET.get("sid")) store = Store.objects.get(id=store_id) if store.is_active == False: data = { "code": 2, "data": "该店暂不参与" } return JsonResponse(data) else: store_dict = model_to_dict(store) store_dict["boss_name"] = store.boss.nick_name store_dict["boss_icon"] = store.boss.icon store_dict["user_balance"] = balance.money / 100 return JsonResponse({"code": 0, "data": store_dict})
e3421447a8225cc4e8464a1815d43de78d1715f1
30a1b285ff4aab39eebe342c5dbca255a69b454c
/full-problems/maxDiff.py
347a657be99ca517cd6ae0e9e6234e8672f61c47
[ "Apache-2.0" ]
permissive
vikas-t/practice-problems
cd5852ea112421a2a39db31ae9092c6a148b2af8
ea654d1cad5374c824c52da9d3815a9546eb43fa
refs/heads/master
2021-10-27T14:08:42.724019
2019-04-17T18:26:23
2019-04-17T18:26:23
170,156,225
0
0
null
null
null
null
UTF-8
Python
false
false
442
py
#!/usr/bin/python3 # https://practice.geeksforgeeks.org/problems/maximum-difference/0 def sol(arr, n): d = -1 min_i = 0 min_till_here = 0 for i in range(1, n): if arr[i] < arr[min_till_here]: min_till_here = i if min_till_here != min_i and min_till_here < i: min_i = min_till_here d = max(d, arr[i]-arr[min_i]) return d arr = [5, 15, 3, 4, 5, 14] print(sol(arr, len(arr)))
b298869f7dc5f7a2e2768feabbc8a3758fdcedd7
5c2e0fe391f7c720d0a6c117a64f4c8e89fece93
/research/object_detection/models/faster_rcnn_inception_v2_feature_extractor.py
d2681127b2706faec7433bb8adbcfb619375bd4a
[ "Apache-2.0" ]
permissive
lyltencent/tf_models_v15
e3bed9dfee42685118b0f3d21bb9de37d58cf500
0081dbe36831342051c09a2f94ef9ffa95da0e79
refs/heads/master
2022-10-20T20:00:26.594259
2020-09-19T05:37:22
2020-09-19T05:37:22
161,750,047
0
1
Apache-2.0
2021-03-31T21:04:01
2018-12-14T07:47:33
Python
UTF-8
Python
false
false
12,050
py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Inception V2 Faster R-CNN implementation. See "Rethinking the Inception Architecture for Computer Vision" https://arxiv.org/abs/1512.00567 """ import tensorflow as tf from object_detection.meta_architectures import faster_rcnn_meta_arch from nets import inception_v2 slim = tf.contrib.slim def _batch_norm_arg_scope(list_ops, use_batch_norm=True, batch_norm_decay=0.9997, batch_norm_epsilon=0.001, batch_norm_scale=False, train_batch_norm=False): """Slim arg scope for InceptionV2 batch norm.""" if use_batch_norm: batch_norm_params = { 'is_training': train_batch_norm, 'scale': batch_norm_scale, 'decay': batch_norm_decay, 'epsilon': batch_norm_epsilon } normalizer_fn = slim.batch_norm else: normalizer_fn = None batch_norm_params = None return slim.arg_scope(list_ops, normalizer_fn=normalizer_fn, normalizer_params=batch_norm_params) class FasterRCNNInceptionV2FeatureExtractor( faster_rcnn_meta_arch.FasterRCNNFeatureExtractor): """Faster R-CNN Inception V2 feature extractor implementation.""" def __init__(self, is_training, first_stage_features_stride, batch_norm_trainable=False, reuse_weights=None, weight_decay=0.0, depth_multiplier=1.0, min_depth=16): """Constructor. Args: is_training: See base class. first_stage_features_stride: See base class. batch_norm_trainable: See base class. reuse_weights: See base class. weight_decay: See base class. depth_multiplier: float depth multiplier for feature extractor. min_depth: minimum feature extractor depth. Raises: ValueError: If `first_stage_features_stride` is not 8 or 16. """ if first_stage_features_stride != 8 and first_stage_features_stride != 16: raise ValueError('`first_stage_features_stride` must be 8 or 16.') self._depth_multiplier = depth_multiplier self._min_depth = min_depth super(FasterRCNNInceptionV2FeatureExtractor, self).__init__( is_training, first_stage_features_stride, batch_norm_trainable, reuse_weights, weight_decay) def preprocess(self, resized_inputs): """Faster R-CNN Inception V2 preprocessing. Maps pixel values to the range [-1, 1]. Args: resized_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. """ return (2.0 / 255.0) * resized_inputs - 1.0 def _extract_proposal_features(self, preprocessed_inputs, scope): """Extracts first stage RPN features. Args: preprocessed_inputs: A [batch, height, width, channels] float32 tensor representing a batch of images. scope: A scope name. Returns: rpn_feature_map: A tensor with shape [batch, height, width, depth] Raises: InvalidArgumentError: If the spatial size of `preprocessed_inputs` (height or width) is less than 33. ValueError: If the created network is missing the required activation. """ preprocessed_inputs.get_shape().assert_has_rank(4) shape_assert = tf.Assert( tf.logical_and(tf.greater_equal(tf.shape(preprocessed_inputs)[1], 33), tf.greater_equal(tf.shape(preprocessed_inputs)[2], 33)), ['image size must at least be 33 in both height and width.']) with tf.control_dependencies([shape_assert]): with tf.variable_scope('InceptionV2', reuse=self._reuse_weights) as scope: with _batch_norm_arg_scope([slim.conv2d, slim.separable_conv2d], batch_norm_scale=True, train_batch_norm=self._train_batch_norm): _, activations = inception_v2.inception_v2_base( preprocessed_inputs, final_endpoint='Mixed_4e', min_depth=self._min_depth, depth_multiplier=self._depth_multiplier, scope=scope) return activations['Mixed_4e'] def _extract_box_classifier_features(self, proposal_feature_maps, scope): """Extracts second stage box classifier features. Args: proposal_feature_maps: A 4-D float tensor with shape [batch_size * self.max_num_proposals, crop_height, crop_width, depth] representing the feature map cropped to each proposal. scope: A scope name (unused). Returns: proposal_classifier_features: A 4-D float tensor with shape [batch_size * self.max_num_proposals, height, width, depth] representing box classifier features for each proposal. """ net = proposal_feature_maps depth = lambda d: max(int(d * self._depth_multiplier), self._min_depth) trunc_normal = lambda stddev: tf.truncated_normal_initializer(0.0, stddev) data_format = 'NHWC' concat_dim = 3 if data_format == 'NHWC' else 1 with tf.variable_scope('InceptionV2', reuse=self._reuse_weights): with slim.arg_scope( [slim.conv2d, slim.max_pool2d, slim.avg_pool2d], stride=1, padding='SAME', data_format=data_format): with _batch_norm_arg_scope([slim.conv2d, slim.separable_conv2d], batch_norm_scale=True, train_batch_norm=self._train_batch_norm): with tf.variable_scope('Mixed_5a'): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d( net, depth(128), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_0 = slim.conv2d(branch_0, depth(192), [3, 3], stride=2, scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d( net, depth(192), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, depth(256), [3, 3], scope='Conv2d_0b_3x3') branch_1 = slim.conv2d(branch_1, depth(256), [3, 3], stride=2, scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_2'): branch_2 = slim.max_pool2d(net, [3, 3], stride=2, scope='MaxPool_1a_3x3') net = tf.concat([branch_0, branch_1, branch_2], concat_dim) with tf.variable_scope('Mixed_5b'): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, depth(352), [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d( net, depth(192), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, depth(320), [3, 3], scope='Conv2d_0b_3x3') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d( net, depth(160), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, depth(224), [3, 3], scope='Conv2d_0b_3x3') branch_2 = slim.conv2d(branch_2, depth(224), [3, 3], scope='Conv2d_0c_3x3') with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') branch_3 = slim.conv2d( branch_3, depth(128), [1, 1], weights_initializer=trunc_normal(0.1), scope='Conv2d_0b_1x1') net = tf.concat([branch_0, branch_1, branch_2, branch_3], concat_dim) with tf.variable_scope('Mixed_5c'): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, depth(352), [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d( net, depth(192), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, depth(320), [3, 3], scope='Conv2d_0b_3x3') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d( net, depth(192), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, depth(224), [3, 3], scope='Conv2d_0b_3x3') branch_2 = slim.conv2d(branch_2, depth(224), [3, 3], scope='Conv2d_0c_3x3') with tf.variable_scope('Branch_3'): branch_3 = slim.max_pool2d(net, [3, 3], scope='MaxPool_0a_3x3') branch_3 = slim.conv2d( branch_3, depth(128), [1, 1], weights_initializer=trunc_normal(0.1), scope='Conv2d_0b_1x1') proposal_classifier_features = tf.concat( [branch_0, branch_1, branch_2, branch_3], concat_dim) return proposal_classifier_features
b6c8582e27830c87d8baddbf1ebed41b4789d50e
ca55dcaa64ea9db4068e13091321cfebecc0ff41
/codeUp/codeUp100/1022.py
ce1b4c02ce9f4e7fb71c474a37ec6ab7fc90b694
[]
no_license
gomtinQQ/algorithm-python
8fb8343594b945099ae2a4dfa794ecb47e54ab0b
751562922b66e335f621d366bb73dacdc7125140
refs/heads/master
2022-12-07T23:05:44.535593
2020-08-21T12:29:58
2020-08-21T12:29:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
219
py
''' 1022 : [기초-입출력] 문장 1개 입력받아 그대로 출력하기(설명) 공백 문자가 포함되어 있는 문장을 입력받고 그대로 출력하는 연습을 해보자. ''' str = input() print(str)
83f702f40210def83db43b117c01fb32c0afec26
f0f4a0f24b3a7cc8bf0366cf329923e9bd5b00c7
/activity/activity_DepositDigestIngestAssets.py
515d8398361d40ebc252d28d7bed3993d5a6e601
[ "MIT" ]
permissive
elifesciences/elife-bot
45c79993d13bacb37f59ba57462179dd7c6f1e2e
2324e26943f805a0602ea3251ff0f6a5db27f1a0
refs/heads/develop
2023-08-17T15:25:42.170870
2023-08-14T16:47:02
2023-08-14T16:47:02
7,503,542
21
10
MIT
2023-09-07T19:50:30
2013-01-08T15:09:54
Python
UTF-8
Python
false
false
4,579
py
import os import json from S3utility.s3_notification_info import parse_activity_data from provider.storage_provider import storage_context from provider import digest_provider, download_helper import provider.utils as utils from activity.objects import Activity """ DepositDigestIngestAssets.py activity """ class activity_DepositDigestIngestAssets(Activity): def __init__(self, settings, logger, client=None, token=None, activity_task=None): super(activity_DepositDigestIngestAssets, self).__init__( settings, logger, client, token, activity_task ) self.name = "DepositDigestIngestAssets" self.pretty_name = "Deposit Digest Ingest Assets" self.version = "1" self.default_task_heartbeat_timeout = 30 self.default_task_schedule_to_close_timeout = 60 * 5 self.default_task_schedule_to_start_timeout = 30 self.default_task_start_to_close_timeout = 60 * 5 self.description = "Deposit Assets for a Digest (Pre-Ingest)" # Track some values self.input_file = None self.digest = None self.dest_resource = None # Local directory settings self.directories = { "TEMP_DIR": os.path.join(self.get_tmp_dir(), "tmp_dir"), "INPUT_DIR": os.path.join(self.get_tmp_dir(), "input_dir"), } # Track the success of some steps self.build_status = None def do_activity(self, data=None): "do the work" if self.logger: self.logger.info("data: %s" % json.dumps(data, sort_keys=True, indent=4)) # Create output directories self.make_activity_directories() # parse the data with the digest_provider real_filename, bucket_name, bucket_folder = parse_activity_data(data) # Download from S3 self.input_file = download_helper.download_file_from_s3( self.settings, real_filename, bucket_name, bucket_folder, self.directories.get("INPUT_DIR"), ) # Parse input and build digest digest_config = digest_provider.digest_config( self.settings.digest_config_section, self.settings.digest_config_file ) self.build_status, self.digest = digest_provider.build_digest( self.input_file, self.directories.get("TEMP_DIR"), self.logger, digest_config, ) if not self.build_status: self.logger.info( "Failed to build the Digest in Deposit Digest Ingest Assets for %s", real_filename, ) return self.ACTIVITY_PERMANENT_FAILURE # check if there is an image and if not return True if not digest_provider.has_image(self.digest): self.logger.info( "Digest for file %s has no images to deposit", real_filename ) return self.ACTIVITY_SUCCESS # bucket name cdn_bucket_name = ( self.settings.publishing_buckets_prefix + self.settings.digest_cdn_bucket ) # deposit the image file to S3 self.deposit_digest_image(self.digest, cdn_bucket_name) return self.ACTIVITY_SUCCESS def image_dest_resource(self, digest, cdn_bucket_name): "concatenate the S3 bucket object path we copy the file to" msid = utils.msid_from_doi(digest.doi) article_id = utils.pad_msid(msid) # file name from the digest image file file_name = digest.image.file.split(os.sep)[-1] new_file_name = digest_provider.new_file_name(file_name, msid) storage_provider = self.settings.storage_provider + "://" dest_resource = ( storage_provider + cdn_bucket_name + "/" + article_id + "/" + new_file_name ) return dest_resource def deposit_digest_image(self, digest, cdn_bucket_name): "deposit the image file from the digest to the bucket" self.dest_resource = self.image_dest_resource(digest, cdn_bucket_name) storage = storage_context(self.settings) self.logger.info("Depositing digest image to S3 key %s", self.dest_resource) # set the bucket object resource from the local file metadata = {"ContentType": utils.content_type_from_file_name(digest.image.file)} storage.set_resource_from_filename( self.dest_resource, digest.image.file, metadata ) self.logger.info("Deposited digest image %s to S3", digest.image.file) return True
bd6a7d150cf3eb9fac42f5a543f377ad8356ad67
27691e5ef8e49fb29189b01dd76a1dc3720e7ae8
/AC/ABC-TDD/180/c.py
76f7581f37b0ab7ec2b1fda1f0887f7b32dc1463
[]
no_license
oshou/procon
61e5f5bc819e0fe5ab29749fc2f894fe6f3b1d07
3d000c64b5917c65b51ed7da5b90cb79892d5909
refs/heads/master
2023-05-10T23:56:50.861468
2021-09-23T06:07:29
2021-09-23T06:07:29
116,886,484
1
0
null
2023-05-05T02:28:41
2018-01-10T00:21:38
Go
UTF-8
Python
false
false
257
py
n = int(input()) ans = [] for i in range(1, n+1): if i*i > n: break if n % i == 0: ans.append(i) tmp = n//i if i != tmp: ans.append(n//i) ans = sorted(ans) counts = len(ans) for num in ans: print(num)
315ab7aa2ef9d0579f0d045b6dfb17919ba8530a
c741f04141784a2571d2d27d95e0d994e4584ab1
/learning/py3/0-1/21-模块-包-4.py
d70f489fbe8852df7919744087de49fb955d0899
[]
no_license
haodonghui/python
bbdece136620bc6f787b4942d6e1760ed808afd4
365062ba54297c81093b7f378742e76d438658b7
refs/heads/master
2022-02-03T23:52:37.288503
2022-01-27T05:23:25
2022-01-27T05:23:25
191,729,797
0
0
null
null
null
null
UTF-8
Python
false
false
1,361
py
from package1 import * p.prt(4, '从一个包中导入*') ''' 4、 设想一下,如果我们使用 from sound.effects import *会发生什么 Python 会进入文件系统,找到这个包里面所有的子模块,一个一个的把它们都导入进来。 Windows是一个大小写不区分的系统。 在这类平台上,没有人敢担保一个叫做 ECHO.py 的文件导入为模块 echo 还是 Echo 甚至 ECHO。 为了解决这个问题,只能烦劳包作者提供一个精确的包的索引了。 导入语句遵循如下规则: 如果包定义文件 __init__.py 存在一个叫做 __all__ 的列表变量, 那么在使用 from package import * 的时候就把这个列表中的所有名字作为包内容导入。 作为包的作者,可别忘了在更新包之后保证 __all__ 也更新了啊。你说我就不这么做,我就不使用导入*这种用法,好吧,没问题,谁让你是老板呢 ''' def package_example(): p.prt(4, 'learning/py3/0-1/package1/__init__.py存在 __all__ = [\'p\'],顶部使用from package1 import * ,只导入了 package1包下的p模块') p2.prt(4, 'learning/py3/0-1/package1/__init__.py存在 __all__ = [\'p\',\'p2\'],顶部使用from package1 import * ,只导入了 package1包下的p模块') package_example()
c64d4a116649878ddb94e95e66e3c58c114e7155
fb39e15da72e41cf1903aa3670833e35b668edad
/main.py
37961bed2279b1b12f56a1ef46d4b9588b8717ea
[]
no_license
jackfrostwillbeking/script_test
e9b8c91babc2c9d6ed111a77b5156f3624683a1e
f47370f05632e1a76cbcacd24737ec370d2faf58
refs/heads/master
2021-04-06T17:11:36.479236
2018-03-09T10:21:19
2018-03-09T10:21:19
124,380,417
0
0
null
null
null
null
UTF-8
Python
false
false
104
py
import subprocess import sys res = subprocess.call(["/bin/bash","-c","./test_script.sh"]) sys.exit(0)
a7012e26515d2e214c34f1a948756e9af8cff489
5837fd85b18b56d23612de1e36d79b5a06827542
/sniterator.py
d5e3435d3bd0924383507459b0e3f279464d9c66
[ "MIT" ]
permissive
ChristopherWilks/snaptron
75e33c4f25a65f3093555a7bf235ab69865f7086
75903c30d54708b19d91772142013687c74d88d8
refs/heads/master
2023-02-19T01:38:57.343293
2023-02-11T21:47:52
2023-02-11T21:47:52
45,953,724
26
7
NOASSERTION
2022-06-17T21:10:44
2015-11-11T02:03:37
Python
UTF-8
Python
false
false
3,341
py
#!/usr/bin/env python2.7 # This file is part of Snaptron. # # Snaptron is free software: you can redistribute it and/or modify # it under the terms of the # # The MIT License # # Copyright (c) 2016- by Christopher Wilks <[email protected]> # and Ben Langmead <[email protected]> # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import sys import subprocess import shlex class SnaptronServerIterator(): def __init__(self,cmds,stdout=subprocess.PIPE,shell=False,bufsize=-1,direct_output=False): self.cmds = cmds self.stdout = stdout #performance trick, pipe output from subprocess directly to this process's output #to avoid the cost of python line processing if direct_output: self.stdout = sys.stdout self.shell = shell self.bufsize = bufsize #used to run them in parallel, but that's a bad idea because: #1) results will come back in random order #2) we need to control the number of potential processes spun up by any given query (so for now we'll keep this at 1) if direct_output: for cmd in self.cmds: extern_proc = subprocess.Popen(cmd, shell=self.shell, bufsize=self.bufsize) extern_proc.wait() else: #TODO: stop this running in parallel for the above cited reasons, but will need to handle #the sequential nature in the next() method self.extern_procs = [subprocess.Popen(cmd, stdout=self.stdout, shell=self.shell, bufsize=self.bufsize) for cmd in self.cmds] self.idx = 0 def __iter__(self): return self #this is only used if the self.stdout isn't directed to the current process's sys.stdout #i.e. direct_output is False def next(self): line = self.extern_procs[self.idx].stdout.readline() if line == '': exitc=self.extern_procs[self.idx].wait() if exitc != 0: raise RuntimeError("%s returned non-0 exit code\n" % (self.cmds[self.idx])) self.idx+=1 if self.idx >= len(self.extern_procs): raise StopIteration line = self.extern_procs[self.idx].stdout.readline() return line
9549acb29d9a0c5bf134052cccc04c0ca9a590e6
f5f538edf999d5a7eb265b90efa4599a81367489
/ptranking/metric/adhoc_metric.py
c2e41ba50be9154df1b89366b12914dfe3e440f0
[ "MIT" ]
permissive
ii-metric/ptranking
ad4db16e5a995b11103b04af46aed099e525af82
fd4fe1373fd2dfd7c6342eb666f36e34b71e8298
refs/heads/master
2023-03-24T03:18:16.414348
2021-03-19T06:06:43
2021-03-19T06:06:43
328,522,824
0
1
MIT
2021-03-19T06:06:44
2021-01-11T02:02:01
Python
UTF-8
Python
false
false
18,252
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """Description The widely used IR evaluation metrics, such as AP (average precision), nDCG and ERR Note: commonly the metric-computation is not conducted on gpu """ import torch import numpy as np from ptranking.data.data_utils import LABEL_TYPE """ Precision """ def torch_precision_at_k(batch_sys_sorted_labels, k=None, gpu=False): ''' Precision at k :param sys_sorted_labels: [batch_size, ranking_size] system's predicted ltr_adhoc of labels in a descending order :param ks: cutoff values :return: [batch_size, len(ks)] ''' max_cutoff = batch_sys_sorted_labels.size(1) used_cutoff = min(max_cutoff, k) batch_sys_sorted_labels = batch_sys_sorted_labels[:, 0:used_cutoff] batch_bi_sys_sorted_labels = torch.clamp(batch_sys_sorted_labels, min=0, max=1) # binary batch_sys_cumsum_reles = torch.cumsum(batch_bi_sys_sorted_labels, dim=1) batch_ranks = (torch.arange(used_cutoff).type(torch.cuda.FloatTensor).expand_as(batch_sys_cumsum_reles) + 1.0) \ if gpu else (torch.arange(used_cutoff).expand_as(batch_sys_cumsum_reles) + 1.0) batch_sys_rankwise_precision = batch_sys_cumsum_reles / batch_ranks batch_sys_p_at_k = batch_sys_rankwise_precision[:, used_cutoff-1:used_cutoff] return batch_sys_p_at_k def torch_precision_at_ks(batch_sys_sorted_labels, ks=None, gpu=False): ''' Precision at ks :param sys_sorted_labels: [batch_size, ranking_size] system's predicted ltr_adhoc of labels in a descending order :param ks: cutoff values :return: [batch_size, len(ks)] ''' valid_max_cutoff = batch_sys_sorted_labels.size(1) need_padding = True if valid_max_cutoff < max(ks) else False used_ks = [k for k in ks if k <= valid_max_cutoff] if need_padding else ks max_cutoff = max(used_ks) inds = torch.from_numpy(np.asarray(used_ks) - 1) batch_sys_sorted_labels = batch_sys_sorted_labels[:, 0:max_cutoff] batch_bi_sys_sorted_labels = torch.clamp(batch_sys_sorted_labels, min=0, max=1) # binary batch_sys_cumsum_reles = torch.cumsum(batch_bi_sys_sorted_labels, dim=1) batch_ranks = (torch.arange(max_cutoff).type(torch.cuda.FloatTensor).expand_as(batch_sys_cumsum_reles) + 1.0) if gpu \ else (torch.arange(max_cutoff).expand_as(batch_sys_cumsum_reles) + 1.0) batch_sys_rankwise_precision = batch_sys_cumsum_reles / batch_ranks batch_sys_p_at_ks = batch_sys_rankwise_precision[:, inds] if need_padding: padded_p_at_ks = torch.zeros(batch_sys_sorted_labels.size(0), len(ks)) padded_p_at_ks[:, 0:len(used_ks)] = batch_sys_p_at_ks return padded_p_at_ks else: return batch_sys_p_at_ks """ Average Precision """ def torch_ap_at_k(batch_sys_sorted_labels, batch_ideal_sorted_labels, k=None, gpu=False): ''' AP(average precision) at ks (i.e., different cutoff values) :param ideal_sorted_labels: [batch_size, ranking_size] the ideal ltr_adhoc of labels :param sys_sorted_labels: [batch_size, ranking_size] system's predicted ltr_adhoc of labels in a descending order :param ks: :return: [batch_size, len(ks)] ''' max_cutoff = batch_sys_sorted_labels.size(1) used_cutoff = min(max_cutoff, k) batch_sys_sorted_labels = batch_sys_sorted_labels[:, 0:used_cutoff] batch_bi_sys_sorted_labels = torch.clamp(batch_sys_sorted_labels, min=0, max=1) # binary batch_sys_cumsum_reles = torch.cumsum(batch_bi_sys_sorted_labels, dim=1) batch_ranks = (torch.arange(used_cutoff).type(torch.cuda.FloatTensor).expand_as(batch_sys_cumsum_reles) + 1.0) if gpu \ else (torch.arange(used_cutoff).expand_as(batch_sys_cumsum_reles) + 1.0) batch_sys_rankwise_precision = batch_sys_cumsum_reles / batch_ranks # rank-wise precision batch_sys_cumsum_precision = torch.cumsum(batch_sys_rankwise_precision * batch_bi_sys_sorted_labels, dim=1) # exclude precisions of which the corresponding documents are not relevant batch_std_cumsum_reles = torch.cumsum(batch_ideal_sorted_labels, dim=1) batch_sys_rankwise_ap = batch_sys_cumsum_precision / batch_std_cumsum_reles[:, 0:used_cutoff] batch_sys_ap_at_k = batch_sys_rankwise_ap[:, used_cutoff-1:used_cutoff] return batch_sys_ap_at_k def torch_ap_at_ks(batch_sys_sorted_labels, batch_ideal_sorted_labels, ks=None, gpu=False): ''' AP(average precision) at ks (i.e., different cutoff values) :param ideal_sorted_labels: [batch_size, ranking_size] the ideal ltr_adhoc of labels :param sys_sorted_labels: [batch_size, ranking_size] system's predicted ltr_adhoc of labels in a descending order :param ks: :return: [batch_size, len(ks)] ''' valid_max_cutoff = batch_sys_sorted_labels.size(1) need_padding = True if valid_max_cutoff < max(ks) else False used_ks = [k for k in ks if k <= valid_max_cutoff] if need_padding else ks max_cutoff = max(used_ks) inds = torch.from_numpy(np.asarray(used_ks) - 1) batch_sys_sorted_labels = batch_sys_sorted_labels[:, 0:max_cutoff] batch_bi_sys_sorted_labels = torch.clamp(batch_sys_sorted_labels, min=0, max=1) # binary batch_sys_cumsum_reles = torch.cumsum(batch_bi_sys_sorted_labels, dim=1) batch_ranks = (torch.arange(max_cutoff).type(torch.cuda.FloatTensor).expand_as(batch_sys_cumsum_reles) + 1.0) if gpu \ else (torch.arange(max_cutoff).expand_as(batch_sys_cumsum_reles) + 1.0) batch_sys_rankwise_precision = batch_sys_cumsum_reles / batch_ranks # rank-wise precision batch_sys_cumsum_precision = torch.cumsum(batch_sys_rankwise_precision * batch_bi_sys_sorted_labels, dim=1) # exclude precisions of which the corresponding documents are not relevant batch_std_cumsum_reles = torch.cumsum(batch_ideal_sorted_labels, dim=1) batch_sys_rankwise_ap = batch_sys_cumsum_precision / batch_std_cumsum_reles[:, 0:max_cutoff] batch_sys_ap_at_ks = batch_sys_rankwise_ap[:, inds] if need_padding: padded_ap_at_ks = torch.zeros(batch_sys_sorted_labels.size(0), len(ks)) padded_ap_at_ks[:, 0:len(used_ks)] = batch_sys_ap_at_ks return padded_ap_at_ks else: return batch_sys_ap_at_ks """ NERR """ def torch_rankwise_err(batch_sorted_labels, max_label=None, k=10, point=True, gpu=False): assert batch_sorted_labels.size(1) >= k assert max_label is not None # it is either query-level or corpus-level batch_labels = batch_sorted_labels[:, 0:k] batch_satis_probs = (torch.pow(2.0, batch_labels) - 1.0) / torch.pow(2.0, max_label) batch_unsatis_probs = torch.ones_like(batch_labels) - batch_satis_probs batch_cum_unsatis_probs = torch.cumprod(batch_unsatis_probs, dim=1) batch_ranks = torch.arange(k).type(torch.cuda.FloatTensor).expand_as(batch_labels) + 1.0 if gpu \ else torch.arange(k).expand_as(batch_labels) + 1.0 batch_expt_ranks = 1.0 / batch_ranks batch_cascad_unsatis_probs = torch.ones_like(batch_expt_ranks) batch_cascad_unsatis_probs[:, 1:k] = batch_cum_unsatis_probs[:, 0:k-1] batch_expt_satis_ranks = batch_expt_ranks * batch_satis_probs * batch_cascad_unsatis_probs # w.r.t. all rank positions if point: # a specific position batch_err_at_k = torch.sum(batch_expt_satis_ranks, dim=1, keepdim=True) return batch_err_at_k else: batch_rankwise_err = torch.cumsum(batch_expt_satis_ranks, dim=1) return batch_rankwise_err def torch_nerr_at_k(batch_sys_sorted_labels, batch_ideal_sorted_labels, k=None, gpu=False, label_type=LABEL_TYPE.MultiLabel): valid_max_cutoff = batch_sys_sorted_labels.size(1) cutoff = min(valid_max_cutoff, k) if LABEL_TYPE.MultiLabel == label_type: max_label = torch.max(batch_ideal_sorted_labels) batch_sys_err_at_k = torch_rankwise_err(batch_sys_sorted_labels, max_label=max_label, k=cutoff, point=True, gpu=gpu) batch_ideal_err_at_k = torch_rankwise_err(batch_ideal_sorted_labels, max_label=max_label, k=cutoff, point=True, gpu=gpu) batch_nerr_at_k = batch_sys_err_at_k / batch_ideal_err_at_k return batch_nerr_at_k else: raise NotImplementedError def torch_nerr_at_ks(batch_sys_sorted_labels, batch_ideal_sorted_labels, ks=None, gpu=False, label_type=LABEL_TYPE.MultiLabel): ''' :param sys_sorted_labels: [batch_size, ranking_size] the standard labels sorted in descending order according to predicted relevance scores :param ks: :return: [batch_size, len(ks)] ''' valid_max_cutoff = batch_sys_sorted_labels.size(1) need_padding = True if valid_max_cutoff < max(ks) else False used_ks = [k for k in ks if k <= valid_max_cutoff] if need_padding else ks max_label = torch.max(batch_ideal_sorted_labels) max_cutoff = max(used_ks) inds = torch.from_numpy(np.asarray(used_ks) - 1) if LABEL_TYPE.MultiLabel == label_type: batch_sys_rankwise_err = torch_rankwise_err(batch_sys_sorted_labels, max_label=max_label, k=max_cutoff, point=False, gpu=gpu) batch_ideal_rankwise_err = torch_rankwise_err(batch_ideal_sorted_labels, max_label=max_label, k=max_cutoff, point=False, gpu=gpu) batch_rankwise_nerr = batch_sys_rankwise_err/batch_ideal_rankwise_err batch_nerr_at_ks = batch_rankwise_nerr[:, inds] if need_padding: padded_nerr_at_ks = torch.zeros(batch_sys_sorted_labels.size(0), len(ks)) padded_nerr_at_ks[:, 0:len(used_ks)] = batch_nerr_at_ks return padded_nerr_at_ks else: return batch_nerr_at_ks else: raise NotImplementedError """ nDCG """ def torch_dcg_at_k(batch_sorted_labels, cutoff=None, label_type=LABEL_TYPE.MultiLabel, gpu=False): ''' ICML-nDCG, which places stronger emphasis on retrieving relevant documents :param batch_sorted_labels: [batch_size, ranking_size] a batch of ranked labels (either standard or predicted by a system) :param cutoff: the cutoff position :param label_type: either the case of multi-level relevance or the case of listwise int-value, e.g., MQ2007-list :return: [batch_size, 1] cumulative gains for each rank position ''' if cutoff is None: # using whole list cutoff = batch_sorted_labels.size(1) if LABEL_TYPE.MultiLabel == label_type: #the common case with multi-level labels batch_numerators = torch.pow(2.0, batch_sorted_labels[:, 0:cutoff]) - 1.0 elif LABEL_TYPE.Permutation == label_type: # the case like listwise ltr_adhoc, where the relevance is labeled as (n-rank_position) batch_numerators = batch_sorted_labels[:, 0:cutoff] else: raise NotImplementedError batch_discounts = torch.log2(torch.arange(cutoff).type(torch.cuda.FloatTensor).expand_as(batch_numerators) + 2.0) if gpu \ else torch.log2(torch.arange(cutoff).expand_as(batch_numerators) + 2.0) batch_dcg_at_k = torch.sum(batch_numerators/batch_discounts, dim=1, keepdim=True) return batch_dcg_at_k def torch_dcg_at_ks(batch_sorted_labels, max_cutoff, label_type=LABEL_TYPE.MultiLabel, gpu=False): ''' :param batch_sorted_labels: [batch_size, ranking_size] ranked labels (either standard or predicted by a system) :param max_cutoff: the maximum cutoff value :param label_type: either the case of multi-level relevance or the case of listwise int-value, e.g., MQ2007-list :return: [batch_size, max_cutoff] cumulative gains for each rank position ''' if LABEL_TYPE.MultiLabel == label_type: # the common case with multi-level labels batch_numerators = torch.pow(2.0, batch_sorted_labels[:, 0:max_cutoff]) - 1.0 elif LABEL_TYPE.Permutation == label_type: # the case like listwise ltr_adhoc, where the relevance is labeled as (n-rank_position) batch_numerators = batch_sorted_labels[:, 0:max_cutoff] else: raise NotImplementedError batch_discounts = torch.log2(torch.arange(max_cutoff).type(torch.cuda.FloatTensor).expand_as(batch_numerators) + 2.0) if gpu\ else torch.log2(torch.arange(max_cutoff).expand_as(batch_numerators) + 2.0) batch_dcg_at_ks = torch.cumsum(batch_numerators/batch_discounts, dim=1) # dcg w.r.t. each position return batch_dcg_at_ks def torch_nDCG_at_k(batch_sys_sorted_labels, batch_ideal_sorted_labels, k=None, gpu=False, label_type=LABEL_TYPE.MultiLabel): batch_sys_dcg_at_k = torch_dcg_at_k(batch_sys_sorted_labels, cutoff=k, label_type=label_type, gpu=gpu) # only using the cumulative gain at the final rank position batch_ideal_dcg_at_k = torch_dcg_at_k(batch_ideal_sorted_labels, cutoff=k, label_type=label_type, gpu=gpu) batch_ndcg_at_k = batch_sys_dcg_at_k / batch_ideal_dcg_at_k return batch_ndcg_at_k def torch_nDCG_at_ks(batch_sys_sorted_labels, batch_ideal_sorted_labels, ks=None, gpu=False, label_type=LABEL_TYPE.MultiLabel): valid_max_cutoff = batch_sys_sorted_labels.size(1) used_ks = [k for k in ks if k<=valid_max_cutoff] if valid_max_cutoff < max(ks) else ks inds = torch.from_numpy(np.asarray(used_ks) - 1) batch_sys_dcgs = torch_dcg_at_ks(batch_sys_sorted_labels, max_cutoff=max(used_ks), label_type=label_type, gpu=gpu) batch_sys_dcg_at_ks = batch_sys_dcgs[:, inds] # get cumulative gains at specified rank positions batch_ideal_dcgs = torch_dcg_at_ks(batch_ideal_sorted_labels, max_cutoff=max(used_ks), label_type=label_type, gpu=gpu) batch_ideal_dcg_at_ks = batch_ideal_dcgs[:, inds] batch_ndcg_at_ks = batch_sys_dcg_at_ks / batch_ideal_dcg_at_ks if valid_max_cutoff < max(ks): padded_ndcg_at_ks = torch.zeros(batch_sys_sorted_labels.size(0), len(ks)) padded_ndcg_at_ks[:, 0:len(used_ks)] = batch_ndcg_at_ks return padded_ndcg_at_ks else: return batch_ndcg_at_ks """ Kendall'tau Coefficient """ def torch_kendall_tau(sys_ranking, natural_ascending_as_reference = True): ''' $\tau = 1.0 - \frac{2S(\pi, \delta)}{N(N-1)/2}$, cf. 2006-Automatic Evaluation of Information Ordering: Kendall’s Tau The tie issue is not considered within this version. The current implementation is just counting the inversion number, then normalized by n(n-1)/2. The underlying assumption is that the reference ltr_adhoc is the ideal ltr_adhoc, say labels are ordered in a descending order. :param sys_ranking: system's ltr_adhoc, whose entries can be predicted values, labels, etc. :return: ''' assert 1 == len(sys_ranking.size()) # one-dimension vector ranking_size = sys_ranking.size(0) pair_diffs = sys_ranking.view(-1, 1) - sys_ranking.view(1, -1) if natural_ascending_as_reference: bi_pair_diffs = torch.clamp(pair_diffs, min=0, max=1) bi_pair_diffs_triu1 = torch.triu(bi_pair_diffs, diagonal=1) #print('bi_pair_diffs_triu1\n', bi_pair_diffs_triu1) tau = 1.0 - 4 * torch.sum(bi_pair_diffs_triu1) / (ranking_size*(ranking_size-1)) else: # i.e., natural descending as the reference bi_pair_diffs = torch.clamp(pair_diffs, min=-1, max=0) bi_pair_diffs_triu1 = torch.triu(bi_pair_diffs, diagonal=1) #print('bi_pair_diffs_triu1\n', bi_pair_diffs_triu1) print('total discordant: ', 2*torch.sum(bi_pair_diffs_triu1)) tau = 1.0 + 4 * torch.sum(bi_pair_diffs_triu1) / (ranking_size*(ranking_size-1)) return tau def rele_gain(rele_level, gain_base=2.0): gain = np.power(gain_base, rele_level) - 1.0 return gain def np_metric_at_ks(ranker=None, test_Qs=None, ks=[1, 5, 10], label_type=LABEL_TYPE.MultiLabel, max_rele_level=None, gpu=False, device=None): ''' There is no check based on the assumption (say light_filtering() is called) that each test instance Q includes at least k(k=max(ks)) documents, and at least one relevant document. Or there will be errors. ''' cnt = 0 sum_ndcg_at_ks = torch.zeros(len(ks)) sum_err_at_ks = torch.zeros(len(ks)) sum_ap_at_ks = torch.zeros(len(ks)) sum_p_at_ks = torch.zeros(len(ks)) list_ndcg_at_ks_per_q = [] list_err_at_ks_per_q = [] list_ap_at_ks_per_q = [] list_p_at_ks_per_q = [] for entry in test_Qs: tor_test_ranking, tor_test_std_label_vec = entry[1], torch.squeeze(entry[2], dim=0) # remove the size 1 of dim=0 from loader itself if gpu: tor_rele_pred = ranker.predict(tor_test_ranking.to(device)) tor_rele_pred = torch.squeeze(tor_rele_pred) tor_rele_pred = tor_rele_pred.cpu() else: tor_rele_pred = ranker.predict(tor_test_ranking) tor_rele_pred = torch.squeeze(tor_rele_pred) _, tor_sorted_inds = torch.sort(tor_rele_pred, descending=True) sys_sorted_labels = tor_test_std_label_vec[tor_sorted_inds] ideal_sorted_labels, _ = torch.sort(tor_test_std_label_vec, descending=True) ndcg_at_ks_per_query = torch_nDCG_at_ks(sys_sorted_labels=sys_sorted_labels, ideal_sorted_labels=ideal_sorted_labels, ks=ks, label_type=label_type) sum_ndcg_at_ks = torch.add(sum_ndcg_at_ks, ndcg_at_ks_per_query) list_ndcg_at_ks_per_q.append(ndcg_at_ks_per_query.numpy()) err_at_ks_per_query = torch_nerr_at_ks(sys_sorted_labels, ideal_sorted_labels=ideal_sorted_labels, ks=ks, label_type=label_type) sum_err_at_ks = torch.add(sum_err_at_ks, err_at_ks_per_query) list_err_at_ks_per_q.append(err_at_ks_per_query.numpy()) ap_at_ks_per_query = torch_ap_at_ks(sys_sorted_labels=sys_sorted_labels, ideal_sorted_labels=ideal_sorted_labels, ks=ks) sum_ap_at_ks = torch.add(sum_ap_at_ks, ap_at_ks_per_query) list_ap_at_ks_per_q.append(ap_at_ks_per_query.numpy()) p_at_ks_per_query = torch_precision_at_ks(sys_sorted_labels=sys_sorted_labels, ks=ks) sum_p_at_ks = torch.add(sum_p_at_ks, p_at_ks_per_query) list_p_at_ks_per_q.append(p_at_ks_per_query.numpy()) cnt += 1 ndcg_at_ks = sum_ndcg_at_ks/cnt err_at_ks = sum_err_at_ks/cnt ap_at_ks = sum_ap_at_ks / cnt p_at_ks = sum_p_at_ks/cnt return ndcg_at_ks.numpy(), err_at_ks.numpy(), ap_at_ks.numpy(), p_at_ks.numpy(), list_ndcg_at_ks_per_q, list_err_at_ks_per_q, list_ap_at_ks_per_q, list_p_at_ks_per_q def np_stable_softmax_e(histogram): histogram = np.asarray(histogram, dtype=np.float64) max_v, _ = np.max(histogram, dim=0) # a transformation aiming for higher stability when computing softmax() with exp() hist = histogram - max_v hist_exped = np.exp(hist) probs = np.divide(hist_exped, np.sum(hist_exped, dim=0)) return probs def eval_cost_mat_group(sorted_std_labels, group_div_cost=np.e, margin_to_non_rele=100.0, rele_gain_base=4.0): size_ranking = len(sorted_std_labels) cost_mat = np.zeros(shape=(size_ranking, size_ranking), dtype=np.float64) for i in range(size_ranking): i_rele_level = sorted_std_labels[i] for j in range(size_ranking): if i==j: cost_mat[i, j] = 0 else: j_rele_level = sorted_std_labels[j] if i_rele_level == j_rele_level: cost_mat[i, j] = group_div_cost else: cost_mat[i, j] = np.abs(rele_gain(i_rele_level, gain_base=rele_gain_base) - rele_gain(j_rele_level, gain_base=rele_gain_base)) if 0 == i_rele_level or 0 == j_rele_level: cost_mat[i, j] += margin_to_non_rele return cost_mat
dc94995061a88c795f93deb5719820a9c7d233f6
9dba277eeb0d5e9d2ac75e2e17ab5b5eda100612
/exercises/1901020002/1001S02E05_string.py
2ef785d1bf8d2423628b42ff569e92038180dac4
[]
no_license
shen-huang/selfteaching-python-camp
e8410bfc06eca24ee2866c5d890fd063e9d4be89
459f90c9f09bd3a3df9e776fc64dfd64ac65f976
refs/heads/master
2022-05-02T05:39:08.932008
2022-03-17T07:56:30
2022-03-17T07:56:30
201,287,222
9
6
null
2019-08-08T15:34:26
2019-08-08T15:34:25
null
UTF-8
Python
false
false
1,395
py
sample_text = ''' The Zen of Python, by Tim Peters Beautiful is better than ugly. Explicit is better than implicit. Simple is better than complex. Complex is better than complicated. Flat is better than nested. Sparse is better than dense. Readability counts. Special cases aren't special enough to break the rules. Although practicality beats purity. Errors should never pass silently. Unless explicitly silenced. In the face of ambxiguity, refuse the temptation to guess. There should be one-- and preferably only one --obvious way to do it. Although that way may not be obvious at first unless you're Dutch. Now is better than never. Although never is often better than *right* now. If the implementation is hard to explain, it's a bad idea. If the implementation is easy to explain, it may be a good idea. Namespaces are one honking great idea -- let's do more of those! ''' #1.2 better替换worse test = sample_text.replace('better','worse') print('better全部替换成worse',test) #1.3 剔除包含ea的单词 words = test.split() filtered = [] for word in words: if word.find('ea') < 0: filtered.append(word) print('剔除包含ea的单词',filtered) #1.4 大小写翻转 swapcased = [i.swapcase() for i in filtered] print('大小写翻转',swapcased) #1.5 升序排列 print('升序排列',sorted(swapcased)) print('降序',sorted(swapcased,reverse=True))
945755e73c4c8fe1438bc352cd5a0861918ad25a
c14d9512c62fc479ba05ea5ed256828e8e1038c5
/stripe/models/account.py
eaecab1ba97d6ff6408961f48b09a5193aa3c01d
[ "MIT" ]
permissive
jayvdb/saaskit-stripe
c44e6e387d4dd27f564f6959c134ec6aaff8f3c5
bd292182b0bed47dff86a627231bdabafb99bf71
refs/heads/master
2021-09-07T17:25:14.710472
2018-01-24T15:17:41
2018-02-26T21:10:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,082
py
# -*- coding: utf-8 -*- from django.db import models from django.utils.translation import ugettext_lazy as _ from django_extensions.db.fields import json from ..utils import UnixDateTimeField from .charge import CURRENCY_CHOICES ACCOUNT_TYPES = ( ('custom', _('Custom')), ('standard', _('Standard')), ) class Account(models.Model): """Stripe Account object. This is an object representing your Stripe account. You can retrieve it to see properties on the account like its current e-mail address or if the account is enabled yet to make live charges. Some properties, marked as 'managed accounts only', are only available to platforms who want to create and manage Stripe accounts. """ id = models.CharField(max_length=255, primary_key=True) charges_enabled = models.BooleanField( help_text=_( 'Whether or not the account can create live charges', ), ) country = models.CharField( # todo: add CHOICES max_length=255, help_text=_('The country of the account') ) currencies_supports = json.JSONField( help_text=_( 'The currencies this account can submit when creating charges', ), ) default_currency = models.CharField( max_length=255, help_text=_( 'The currency this account has chosen to use as the default'), choices=CURRENCY_CHOICES) details_submitted = models.BooleanField( help_text=_( 'Whether or not account details have been submitted yet. ' 'Standalone accounts cannot receive transfers before this is true.', ), ) transfers_enabled = models.BooleanField( help_text=_( 'Whether or not Stripe will send automatic transfers for this ' 'account. This is only false when Stripe is waiting for ' 'additional information from the account holder.', ), default=True, ) display_name = models.CharField( max_length=255, help_text=_( 'The display name for this account. This is used on the Stripe ' 'dashboard to help you differentiate between accounts.', ), ) email = models.EmailField(help_text=_('The primary user’s email address')) statement_descriptor = models.TextField( help_text=_( 'The text that will appear on credit card statements', ), ) timezone = models.CharField( max_length=255, help_text=_( 'The timezone used in the Stripe dashboard for this account. A ' 'list of possible timezone values is maintained at the IANA ' 'Timezone Database.', ), ) business_name = models.CharField( max_length=255, help_text=_( 'The publicly visible name of the business', ), ) business_logo = models.CharField(max_length=255, null=True) business_url = models.URLField( help_text=_('The publicly visible website of the business'), null=True, ) created = UnixDateTimeField() metadata = json.JSONField( help_text=_( 'A set of key/value pairs that you can attach to a charge object. ' 'it can be useful for storing additional information about the ' 'charge in a structured format.', ), ) support_email = models.EmailField(null=True) support_phone = models.CharField( max_length=255, help_text=_( 'The publicly visible support phone number for the business', ), null=True, ) payout_schedule = json.JSONField(null=True) payout_statement_descriptor = models.CharField(max_length=255, null=True) payouts_enabled = models.BooleanField() bank_accounts = json.JSONField( help_text=_( '(Managed Accounts Only) ' 'Bank accounts currently attached to this account.', ), ) debit_negative_balances = models.BooleanField( help_text=_( '(Managed Accounts Only) ' 'Whether or not Stripe will attempt to reclaim negative account ' 'balances from this account’s bank account.', ), ) decline_charge_on = json.JSONField( help_text=_( '(Managed Accounts Only) ' 'Account-level settings to automatically decline certain types of ' 'charges regardless of the bank’s decision.', ), ) legal_entity = json.JSONField( help_text=_( '(Managed Accounts Only) ' 'Information regarding the owner of this account, including ' 'verification status.', ), ) product_description = models.TextField( help_text=_( '(Managed Accounts Only) ' 'An internal-only description of the product or service provided. ' 'This is used by Stripe in the event the account gets flagged for ' 'potential fraud.', ), null=True, ) tos_acceptance = json.JSONField( help_text=_( '(Managed Accounts Only) ' 'Who accepted the Stripe terms of service, and when they accepted ' 'it.', ), ) transfer_schedule = json.JSONField( help_text=_( '(Managed Accounts Only) ' 'When payments collected will be automatically paid out to the ' 'account holder’s bank account', ), ) type = models.CharField(max_length=255, choices=ACCOUNT_TYPES) verification = json.JSONField( help_text=_( '(Managed Accounts Only) ' 'That state of the account’s information requests, including what ' 'information is needed and by when it must be provided.', ), ) @classmethod def from_stripe_object(cls, stripe_object): _dict = stripe_object.to_dict() _dict.pop('object') _dict.pop('external_accounts') # todo: handle this a = cls(**_dict) a.save() return a
58a513a543317eae70adb8d81445905b24667182
feccf7588777becba68921c0bfade3e21f5210ce
/tests/www/views/test_views_base.py
10eb3d5ea4b1ed3d2c841e64340bc37eb739d51a
[ "Apache-2.0", "BSD-3-Clause", "MIT" ]
permissive
francescomucio/airflow
f17ed9abd8b41d8a2227deca052508edf12f1cbf
c199b1a10563a11cf24436e38cb167ae82c01601
refs/heads/master
2023-04-14T17:44:53.438246
2023-04-06T06:44:23
2023-04-06T06:44:23
217,327,641
0
0
Apache-2.0
2020-09-09T13:26:47
2019-10-24T15:06:52
Python
UTF-8
Python
false
false
14,809
py
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from __future__ import annotations import datetime import json import pytest from airflow.jobs.base_job import BaseJob from airflow.utils import timezone from airflow.utils.session import create_session from airflow.www import app as application from tests.test_utils.asserts import assert_queries_count from tests.test_utils.config import conf_vars from tests.test_utils.www import check_content_in_response, check_content_not_in_response def test_index_redirect(admin_client): resp = admin_client.get("/") assert resp.status_code == 302 assert "/home" in resp.headers.get("Location") resp = admin_client.get("/", follow_redirects=True) check_content_in_response("DAGs", resp) def test_homepage_query_count(admin_client): with assert_queries_count(17): resp = admin_client.get("/home") check_content_in_response("DAGs", resp) def test_doc_urls(admin_client, monkeypatch): # Mocking this way is tying the test closer to the implementation much more than I'd like. :shrug: from airflow.www.views import AirflowBaseView monkeypatch.setitem(AirflowBaseView.extra_args, "get_docs_url", lambda _: "!!DOCS_URL!!") resp = admin_client.get("/", follow_redirects=True) check_content_in_response("!!DOCS_URL!!", resp) check_content_in_response("/api/v1/ui", resp) @pytest.fixture() def heartbeat_healthy(): # case-1: healthy scheduler status last_heartbeat = timezone.utcnow() job = BaseJob( job_type="SchedulerJob", state="running", latest_heartbeat=last_heartbeat, ) with create_session() as session: session.add(job) yield "healthy", last_heartbeat.isoformat() with create_session() as session: session.query(BaseJob).filter( BaseJob.job_type == "SchedulerJob", BaseJob.state == "running", BaseJob.latest_heartbeat == last_heartbeat, ).delete() @pytest.fixture() def heartbeat_too_slow(): # case-2: unhealthy scheduler status - scenario 1 (SchedulerJob is running too slowly) last_heartbeat = timezone.utcnow() - datetime.timedelta(minutes=1) job = BaseJob( job_type="SchedulerJob", state="running", latest_heartbeat=last_heartbeat, ) with create_session() as session: session.query(BaseJob).filter( BaseJob.job_type == "SchedulerJob", ).update({"latest_heartbeat": last_heartbeat - datetime.timedelta(seconds=1)}) session.add(job) yield "unhealthy", last_heartbeat.isoformat() with create_session() as session: session.query(BaseJob).filter( BaseJob.job_type == "SchedulerJob", BaseJob.state == "running", BaseJob.latest_heartbeat == last_heartbeat, ).delete() @pytest.fixture() def heartbeat_not_running(): # case-3: unhealthy scheduler status - scenario 2 (no running SchedulerJob) with create_session() as session: session.query(BaseJob).filter( BaseJob.job_type == "SchedulerJob", BaseJob.state == "running", ).delete() yield "unhealthy", None @pytest.mark.parametrize( "heartbeat", ["heartbeat_healthy", "heartbeat_too_slow", "heartbeat_not_running"], ) def test_health(request, admin_client, heartbeat): # Load the corresponding fixture by name. scheduler_status, last_scheduler_heartbeat = request.getfixturevalue(heartbeat) resp = admin_client.get("health", follow_redirects=True) resp_json = json.loads(resp.data.decode("utf-8")) assert "healthy" == resp_json["metadatabase"]["status"] assert scheduler_status == resp_json["scheduler"]["status"] assert last_scheduler_heartbeat == resp_json["scheduler"]["latest_scheduler_heartbeat"] def test_users_list(admin_client): resp = admin_client.get("users/list", follow_redirects=True) check_content_in_response("List Users", resp) @pytest.mark.parametrize( "path, body_content", [("roles/list", "List Roles"), ("roles/show/1", "Show Role")], ) def test_roles_read(admin_client, path, body_content): resp = admin_client.get(path, follow_redirects=True) check_content_in_response(body_content, resp) def test_roles_read_unauthorized(viewer_client): resp = viewer_client.get("roles/list", follow_redirects=True) check_content_in_response("Access is Denied", resp) @pytest.fixture(scope="module") def delete_role_if_exists(app): def func(role_name): if app.appbuilder.sm.find_role(role_name): app.appbuilder.sm.delete_role(role_name) return func @pytest.fixture() def non_exist_role_name(delete_role_if_exists): role_name = "test_roles_create_role" delete_role_if_exists(role_name) yield role_name delete_role_if_exists(role_name) @pytest.fixture() def exist_role_name(app, delete_role_if_exists): role_name = "test_roles_create_role_new" app.appbuilder.sm.add_role(role_name) yield role_name delete_role_if_exists(role_name) @pytest.fixture() def exist_role(app, exist_role_name): return app.appbuilder.sm.find_role(exist_role_name) def test_roles_create(app, admin_client, non_exist_role_name): admin_client.post("roles/add", data={"name": non_exist_role_name}, follow_redirects=True) assert app.appbuilder.sm.find_role(non_exist_role_name) is not None def test_roles_create_unauthorized(app, viewer_client, non_exist_role_name): resp = viewer_client.post("roles/add", data={"name": non_exist_role_name}, follow_redirects=True) check_content_in_response("Access is Denied", resp) assert app.appbuilder.sm.find_role(non_exist_role_name) is None def test_roles_edit(app, admin_client, non_exist_role_name, exist_role): admin_client.post( f"roles/edit/{exist_role.id}", data={"name": non_exist_role_name}, follow_redirects=True ) updated_role = app.appbuilder.sm.find_role(non_exist_role_name) assert exist_role.id == updated_role.id def test_roles_edit_unauthorized(app, viewer_client, non_exist_role_name, exist_role_name, exist_role): resp = viewer_client.post( f"roles/edit/{exist_role.id}", data={"name": non_exist_role_name}, follow_redirects=True ) check_content_in_response("Access is Denied", resp) assert app.appbuilder.sm.find_role(exist_role_name) assert app.appbuilder.sm.find_role(non_exist_role_name) is None def test_roles_delete(app, admin_client, exist_role_name, exist_role): admin_client.post(f"roles/delete/{exist_role.id}", follow_redirects=True) assert app.appbuilder.sm.find_role(exist_role_name) is None def test_roles_delete_unauthorized(app, viewer_client, exist_role, exist_role_name): resp = viewer_client.post(f"roles/delete/{exist_role.id}", follow_redirects=True) check_content_in_response("Access is Denied", resp) assert app.appbuilder.sm.find_role(exist_role_name) @pytest.mark.parametrize( "url, client, content", [ ("userstatschartview/chart/", "admin_client", "User Statistics"), ("userstatschartview/chart/", "viewer_client", "Access is Denied"), ("actions/list", "admin_client", "List Actions"), ("actions/list", "viewer_client", "Access is Denied"), ("resources/list/", "admin_client", "List Resources"), ("resources/list/", "viewer_client", "Access is Denied"), ("permissions/list/", "admin_client", "List Permissions"), ("permissions/list/", "viewer_client", "Access is Denied"), ("resetpassword/form?pk=1", "admin_client", "Reset Password Form"), ("resetpassword/form?pk=1", "viewer_client", "Access is Denied"), ("users/list", "admin_client", "List Users"), ("users/list", "viewer_client", "Access is Denied"), ], ids=[ "userstatschertview-admin", "userstatschertview-viewer", "actions-admin", "actions-viewer", "resources-admin", "resources-viewer", "permissions-admin", "permissions-viewer", "resetpassword-admin", "resetpassword-viewer", "users-admin", "users-viewer", ], ) def test_views_get(request, url, client, content): resp = request.getfixturevalue(client).get(url, follow_redirects=True) check_content_in_response(content, resp) def _check_task_stats_json(resp): return set(list(resp.json.items())[0][1][0].keys()) == {"state", "count"} @pytest.mark.parametrize( "url, check_response", [ ("blocked", None), ("dag_stats", None), ("task_stats", _check_task_stats_json), ], ) def test_views_post(admin_client, url, check_response): resp = admin_client.post(url, follow_redirects=True) assert resp.status_code == 200 if check_response: assert check_response(resp) @pytest.mark.parametrize( "url, client, content, username", [ ("resetmypassword/form", "viewer_client", "Password Changed", "test_viewer"), ("resetpassword/form?pk={}", "admin_client", "Password Changed", "test_admin"), ("resetpassword/form?pk={}", "viewer_client", "Access is Denied", "test_viewer"), ], ids=["my-viewer", "pk-admin", "pk-viewer"], ) def test_resetmypasswordview_edit(app, request, url, client, content, username): user = app.appbuilder.sm.find_user(username) resp = request.getfixturevalue(client).post( url.format(user.id), data={"password": "blah", "conf_password": "blah"}, follow_redirects=True ) check_content_in_response(content, resp) def test_resetmypasswordview_read(viewer_client): # Tests with viewer as all roles should have access. resp = viewer_client.get("resetmypassword/form", follow_redirects=True) check_content_in_response("Reset Password Form", resp) def test_get_myuserinfo(admin_client): resp = admin_client.get("users/userinfo/", follow_redirects=True) check_content_in_response("Your user information", resp) def test_edit_myuserinfo(admin_client): resp = admin_client.post( "userinfoeditview/form", data={"first_name": "new_first_name", "last_name": "new_last_name"}, follow_redirects=True, ) check_content_in_response("User information changed", resp) @pytest.mark.parametrize( "url", ["users/add", "users/edit/1", "users/delete/1"], ids=["add-user", "edit-user", "delete-user"], ) def test_views_post_access_denied(viewer_client, url): resp = viewer_client.get(url, follow_redirects=True) check_content_in_response("Access is Denied", resp) @pytest.fixture() def non_exist_username(app): username = "fake_username" user = app.appbuilder.sm.find_user(username) if user is not None: app.appbuilder.sm.del_register_user(user) yield username user = app.appbuilder.sm.find_user(username) if user is not None: app.appbuilder.sm.del_register_user(user) def test_create_user(app, admin_client, non_exist_username): resp = admin_client.post( "users/add", data={ "first_name": "fake_first_name", "last_name": "fake_last_name", "username": non_exist_username, "email": "[email protected]", "roles": [1], "password": "test", "conf_password": "test", }, follow_redirects=True, ) check_content_in_response("Added Row", resp) assert app.appbuilder.sm.find_user(non_exist_username) @pytest.fixture() def exist_username(app, exist_role): username = "test_edit_user_user" app.appbuilder.sm.add_user( username, "first_name", "last_name", "[email protected]", exist_role, password="password", ) yield username if app.appbuilder.sm.find_user(username): app.appbuilder.sm.del_register_user(username) def test_edit_user(app, admin_client, exist_username): user = app.appbuilder.sm.find_user(exist_username) resp = admin_client.post( f"users/edit/{user.id}", data={"first_name": "new_first_name"}, follow_redirects=True, ) check_content_in_response("new_first_name", resp) def test_delete_user(app, admin_client, exist_username): user = app.appbuilder.sm.find_user(exist_username) resp = admin_client.post( f"users/delete/{user.id}", follow_redirects=True, ) check_content_in_response("Deleted Row", resp) @conf_vars({("webserver", "show_recent_stats_for_completed_runs"): "False"}) def test_task_stats_only_noncompleted(admin_client): resp = admin_client.post("task_stats", follow_redirects=True) assert resp.status_code == 200 @conf_vars({("webserver", "instance_name"): "Site Title Test"}) def test_page_instance_name(admin_client): resp = admin_client.get("home", follow_redirects=True) check_content_in_response("Site Title Test", resp) def test_page_instance_name_xss_prevention(admin_client): xss_string = "<script>alert('Give me your credit card number')</script>" with conf_vars({("webserver", "instance_name"): xss_string}): resp = admin_client.get("home", follow_redirects=True) escaped_xss_string = "&lt;script&gt;alert(&#39;Give me your credit card number&#39;)&lt;/script&gt;" check_content_in_response(escaped_xss_string, resp) check_content_not_in_response(xss_string, resp) instance_name_with_markup_conf = { ("webserver", "instance_name"): "<b>Bold Site Title Test</b>", ("webserver", "instance_name_has_markup"): "True", } @conf_vars(instance_name_with_markup_conf) def test_page_instance_name_with_markup(admin_client): resp = admin_client.get("home", follow_redirects=True) check_content_in_response("<b>Bold Site Title Test</b>", resp) check_content_not_in_response("&lt;b&gt;Bold Site Title Test&lt;/b&gt;", resp) @conf_vars(instance_name_with_markup_conf) def test_page_instance_name_with_markup_title(): appbuilder = application.create_app(testing=True).appbuilder assert appbuilder.app_name == "Bold Site Title Test"
034d42940af343c1638afe358b2506823e840bf4
1be4f95b722397f255e58b21a182171eb24b6fe5
/datalad_neuroimaging/extractors/tests/test_dicom.py
338f2fa4c994f2dd11ced3bf44f4f0f768516770
[ "MIT" ]
permissive
yarikoptic/datalad-neuroimaging
5f9a7b0993ac56bbeaba95427541b2c75ed711ea
7ee146d6c7c864aafc8b540d0ccd9b3a1b5b7210
refs/heads/master
2022-11-11T02:57:46.228562
2018-04-10T14:05:21
2018-04-10T14:05:21
128,942,708
0
0
null
2018-04-10T14:04:46
2018-04-10T14:04:46
null
UTF-8
Python
false
false
3,032
py
# emacs: -*- mode: python-mode; py-indent-offset: 4; tab-width: 4; indent-tabs-mode: nil; coding: utf-8 -*- # ex: set sts=4 ts=4 sw=4 noet: # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the datalad package for the # copyright and license terms. # # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Test audio extractor""" from datalad.tests.utils import SkipTest try: from datalad_neuroimaging.extractors.dicom import MetadataExtractor as DicomExtractor except ImportError: raise SkipTest from shutil import copy from os.path import dirname from os.path import join as opj from datalad.api import Dataset from datalad.tests.utils import with_tempfile from datalad.tests.utils import ok_clean_git from datalad.tests.utils import assert_status from datalad.tests.utils import assert_result_count from datalad.tests.utils import eq_ from datalad.tests.utils import assert_dict_equal from datalad.tests.utils import assert_in from datalad.tests.utils import assert_not_in @with_tempfile(mkdir=True) def test_dicom(path): ds = Dataset(path).create() ds.config.add('datalad.metadata.nativetype', 'dicom', where='dataset') copy( opj(dirname(dirname(dirname(__file__))), 'tests', 'data', 'dicom.dcm'), path) ds.add('.') ok_clean_git(ds.path) res = ds.aggregate_metadata() assert_status('ok', res) # query for the file metadata res = ds.metadata('dicom.dcm') assert_result_count(res, 1) # from this extractor meta = res[0]['metadata']['dicom'] assert_in('@context', meta) # no point in testing ALL keys, but we got plenty assert(len(meta.keys()) > 70) eq_(meta['SeriesDate'], '20070205') # now ask for the dataset metadata, which should have both the unique props # and a list of imageseries (one in this case, but a list) res = ds.metadata(reporton='datasets') assert_result_count(res, 1) dsmeta = res[0]['metadata']['dicom'] # same context assert_dict_equal(meta['@context'], dsmeta['@context']) meta.pop('@context') eq_(dsmeta['Series'], [meta]) # for this artificial case pretty much the same info also comes out as # unique props, but wrapped in lists ucp = res[0]['metadata']["datalad_unique_content_properties"]['dicom'] assert_dict_equal( {k: [v] for k, v in dsmeta['Series'][0].items() if k not in DicomExtractor._unique_exclude and k in ucp}, {k: v for k, v in ucp.items() if k not in DicomExtractor._unique_exclude}) # buuuut, if we switch of file-based metadata storage ds.config.add('datalad.metadata.aggregate-content-dicom', 'false', where='dataset') ds.aggregate_metadata() res = ds.metadata(reporton='datasets') # the auto-uniquified bits are gone but the Series description stays assert_not_in("datalad_unique_content_properties", res[0]['metadata']) eq_(dsmeta['Series'], [meta])
a2eb7128900a56f43e0ece19dedc06e35f192da8
c2d3b7855b055cb8b0563a3812fb0dbfc670bc09
/lessons_src/03_CFL_Condition.py
7ecf7fe0fd959b7819bcdc7829ed929d41253a87
[ "CC-BY-3.0", "BSD-3-Clause", "CC-BY-4.0" ]
permissive
tnakaicode/python-cfd
85fab343c4c99f32777e45163b89f4d952d83e96
174176bdcb1c31e021fefd8fd54e2b3dd898dc62
refs/heads/master
2023-08-08T16:53:34.455088
2020-05-07T17:14:54
2020-05-07T17:14:54
261,902,096
0
0
NOASSERTION
2023-07-06T21:27:39
2020-05-06T23:30:09
Jupyter Notebook
UTF-8
Python
false
false
5,978
py
#!/usr/bin/env python # coding: utf-8 # Text provided under a Creative Commons Attribution license, CC-BY. All code is made available under the FSF-approved BSD-3 license. (c) Lorena A. Barba, Gilbert F. Forsyth 2017. Thanks to NSF for support via CAREER award #1149784. # [@LorenaABarba](https://twitter.com/LorenaABarba) # 12 steps to Navier–Stokes # ===== # *** # Did you experiment in Steps [1](./01_Step_1.ipynb) and [2](./02_Step_2.ipynb) using different parameter choices? If you did, you probably ran into some unexpected behavior. Did your solution ever blow up? (In my experience, CFD students *love* to make things blow up.) # # You are probably wondering why changing the discretization parameters affects your solution in such a drastic way. This notebook complements our [interactive CFD lessons](https://github.com/barbagroup/CFDPython) by discussing the CFL condition. And learn more by watching Prof. Barba's YouTube lectures (links below). # Convergence and the CFL Condition # ---- # *** # For the first few steps, we've been using the same general initial and boundary conditions. With the parameters we initially suggested, the grid has 41 points and the timestep is 0.25 seconds. Now, we're going to experiment with increasing the size of our grid. The code below is identical to the code we used in [Step 1](./01_Step_1.ipynb), but here it has been bundled up in a function so that we can easily examine what happens as we adjust just one variable: **the grid size**. # In[1]: import numpy # numpy is a library for array operations akin to MATLAB from matplotlib import pyplot # matplotlib is 2D plotting library # get_ipython().run_line_magic('matplotlib', 'inline') def linearconv(nx): dx = 2 / (nx - 1) nt = 20 # nt is the number of timesteps we want to calculate dt = .025 # dt is the amount of time each timestep covers (delta t) c = 1 # defining a numpy array which is nx elements long with every value equal to 1. u = numpy.ones(nx) # setting u = 2 between 0.5 and 1 as per our I.C.s u[int(.5 / dx):int(1 / dx + 1)] = 2 # initializing our placeholder array, un, to hold the values we calculate for the n+1 timestep un = numpy.ones(nx) for n in range(nt): # iterate through time un = u.copy() # copy the existing values of u into un for i in range(1, nx): u[i] = un[i] - c * dt / dx * (un[i] - un[i - 1]) pyplot.plot(numpy.linspace(0, 2, nx), u) pyplot.show() # Now let's examine the results of our linear convection problem with an increasingly fine mesh. # In[2]: linearconv(41) # convection using 41 grid points # This is the same result as our Step 1 calculation, reproduced here for reference. # In[3]: linearconv(61) # Here, there is still numerical diffusion present, but it is less severe. # In[4]: linearconv(71) # Here the same pattern is present -- the wave is more square than in the previous runs. # In[5]: linearconv(85) # This doesn't look anything like our original hat function. # ### What happened? # To answer that question, we have to think a little bit about what we're actually implementing in code. # # In each iteration of our time loop, we use the existing data about our wave to estimate the speed of the wave in the subsequent time step. Initially, the increase in the number of grid points returned more accurate answers. There was less numerical diffusion and the square wave looked much more like a square wave than it did in our first example. # # Each iteration of our time loop covers a time-step of length $\Delta t$, which we have been defining as 0.025 # # During this iteration, we evaluate the speed of the wave at each of the $x$ points we've created. In the last plot, something has clearly gone wrong. # # What has happened is that over the time period $\Delta t$, the wave is travelling a distance which is greater than `dx`. The length `dx` of each grid box is related to the number of total points `nx`, so stability can be enforced if the $\Delta t$ step size is calculated with respect to the size of `dx`. # # $$\sigma = \frac{u \Delta t}{\Delta x} \leq \sigma_{\max}$$ # # where $u$ is the speed of the wave; $\sigma$ is called the **Courant number** and the value of $\sigma_{\max}$ that will ensure stability depends on the discretization used. # # In a new version of our code, we'll use the CFL number to calculate the appropriate time-step `dt` depending on the size of `dx`. # # # In[6]: import numpy from matplotlib import pyplot def linearconv(nx): dx = 2 / (nx - 1) nt = 20 # nt is the number of timesteps we want to calculate c = 1 sigma = .5 dt = sigma * dx u = numpy.ones(nx) u[int(.5 / dx):int(1 / dx + 1)] = 2 un = numpy.ones(nx) for n in range(nt): # iterate through time un = u.copy() # copy the existing values of u into un for i in range(1, nx): u[i] = un[i] - c * dt / dx * (un[i] - un[i - 1]) pyplot.plot(numpy.linspace(0, 2, nx), u) # In[7]: linearconv(41) # In[8]: linearconv(61) # In[9]: linearconv(81) # In[10]: linearconv(101) # In[11]: linearconv(121) # Notice that as the number of points `nx` increases, the wave convects a shorter and shorter distance. The number of time iterations we have advanced the solution at is held constant at `nt = 20`, but depending on the value of `nx` and the corresponding values of `dx` and `dt`, a shorter time window is being examined overall. # Learn More # ----- # *** # It's possible to do rigurous analysis of the stability of numerical schemes, in some cases. Watch Prof. Barba's presentation of this topic in **Video Lecture 9** on You Tube. # In[12]: from IPython.display import YouTubeVideo YouTubeVideo('Yw1YPBupZxU') # In[13]: from IPython.core.display import HTML def css_styling(): styles = open("../styles/custom.css", "r").read() return HTML(styles) css_styling()
16d01ee4642643a3fa9a06a6f2fb3e7d14bc6433
8eab8ab725c2132bb8d090cdb2d23a5f71945249
/virt/Lib/site-packages/jupyter_client/jsonutil.py
9903f70ecee4d8e753d94367e32ed64f5e0d57aa
[ "MIT" ]
permissive
JoaoSevergnini/metalpy
6c88a413a82bc25edd9308b8490a76fae8dd76ca
c2d0098a309b6ce8c756ff840bfb53fb291747b6
refs/heads/main
2023-04-18T17:25:26.474485
2022-09-18T20:44:45
2022-09-18T20:44:45
474,773,752
3
1
MIT
2022-11-03T20:07:50
2022-03-27T22:21:01
Python
UTF-8
Python
false
false
5,944
py
"""Utilities to manipulate JSON objects.""" # Copyright (c) Jupyter Development Team. # Distributed under the terms of the Modified BSD License. import math import numbers import re import types import warnings from binascii import b2a_base64 from collections.abc import Iterable from datetime import datetime from typing import Optional from typing import Union from dateutil.parser import parse as _dateutil_parse # type: ignore from dateutil.tz import tzlocal # type: ignore next_attr_name = "__next__" # Not sure what downstream library uses this, but left it to be safe # ----------------------------------------------------------------------------- # Globals and constants # ----------------------------------------------------------------------------- # timestamp formats ISO8601 = "%Y-%m-%dT%H:%M:%S.%f" ISO8601_PAT = re.compile( r"^(\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2})(\.\d{1,6})?(Z|([\+\-]\d{2}:?\d{2}))?$" ) # holy crap, strptime is not threadsafe. # Calling it once at import seems to help. datetime.strptime("1", "%d") # ----------------------------------------------------------------------------- # Classes and functions # ----------------------------------------------------------------------------- def _ensure_tzinfo(dt: datetime) -> datetime: """Ensure a datetime object has tzinfo If no tzinfo is present, add tzlocal """ if not dt.tzinfo: # No more naïve datetime objects! warnings.warn( "Interpreting naive datetime as local %s. Please add timezone info to timestamps." % dt, DeprecationWarning, stacklevel=4, ) dt = dt.replace(tzinfo=tzlocal()) return dt def parse_date(s: Optional[str]) -> Optional[Union[str, datetime]]: """parse an ISO8601 date string If it is None or not a valid ISO8601 timestamp, it will be returned unmodified. Otherwise, it will return a datetime object. """ if s is None: return s m = ISO8601_PAT.match(s) if m: dt = _dateutil_parse(s) return _ensure_tzinfo(dt) return s def extract_dates(obj): """extract ISO8601 dates from unpacked JSON""" if isinstance(obj, dict): new_obj = {} # don't clobber for k, v in obj.items(): new_obj[k] = extract_dates(v) obj = new_obj elif isinstance(obj, (list, tuple)): obj = [extract_dates(o) for o in obj] elif isinstance(obj, str): obj = parse_date(obj) return obj def squash_dates(obj): """squash datetime objects into ISO8601 strings""" if isinstance(obj, dict): obj = dict(obj) # don't clobber for k, v in obj.items(): obj[k] = squash_dates(v) elif isinstance(obj, (list, tuple)): obj = [squash_dates(o) for o in obj] elif isinstance(obj, datetime): obj = obj.isoformat() return obj def date_default(obj): """DEPRECATED: Use jupyter_client.jsonutil.json_default""" warnings.warn( "date_default is deprecated since jupyter_client 7.0.0." " Use jupyter_client.jsonutil.json_default.", stacklevel=2, ) return json_default(obj) def json_default(obj): """default function for packing objects in JSON.""" if isinstance(obj, datetime): obj = _ensure_tzinfo(obj) return obj.isoformat().replace('+00:00', 'Z') if isinstance(obj, bytes): return b2a_base64(obj).decode('ascii') if isinstance(obj, Iterable): return list(obj) if isinstance(obj, numbers.Integral): return int(obj) if isinstance(obj, numbers.Real): return float(obj) raise TypeError("%r is not JSON serializable" % obj) # Copy of the old ipykernel's json_clean # This is temporary, it should be removed when we deprecate support for # non-valid JSON messages def json_clean(obj): # types that are 'atomic' and ok in json as-is. atomic_ok = (str, type(None)) # containers that we need to convert into lists container_to_list = (tuple, set, types.GeneratorType) # Since bools are a subtype of Integrals, which are a subtype of Reals, # we have to check them in that order. if isinstance(obj, bool): return obj if isinstance(obj, numbers.Integral): # cast int to int, in case subclasses override __str__ (e.g. boost enum, #4598) return int(obj) if isinstance(obj, numbers.Real): # cast out-of-range floats to their reprs if math.isnan(obj) or math.isinf(obj): return repr(obj) return float(obj) if isinstance(obj, atomic_ok): return obj if isinstance(obj, bytes): # unanmbiguous binary data is base64-encoded # (this probably should have happened upstream) return b2a_base64(obj).decode('ascii') if isinstance(obj, container_to_list) or ( hasattr(obj, '__iter__') and hasattr(obj, next_attr_name) ): obj = list(obj) if isinstance(obj, list): return [json_clean(x) for x in obj] if isinstance(obj, dict): # First, validate that the dict won't lose data in conversion due to # key collisions after stringification. This can happen with keys like # True and 'true' or 1 and '1', which collide in JSON. nkeys = len(obj) nkeys_collapsed = len(set(map(str, obj))) if nkeys != nkeys_collapsed: raise ValueError( 'dict cannot be safely converted to JSON: ' 'key collision would lead to dropped values' ) # If all OK, proceed by making the new dict that will be json-safe out = {} for k, v in obj.items(): out[str(k)] = json_clean(v) return out if isinstance(obj, datetime): return obj.strftime(ISO8601) # we don't understand it, it's probably an unserializable object raise ValueError("Can't clean for JSON: %r" % obj)
93248952101638dd63e2d980f3ce2641a5a9dad7
ebb1e564c8a11e5af453f3749dcba1b66e2f3931
/test/quantization/fx/test_model_report_fx.py
d123a8752ca72a05c6e3064859c2dee6efe72fd5
[ "BSD-2-Clause", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "BSL-1.0", "Apache-2.0" ]
permissive
jjsjann123/pytorch
06c3aee8dd3565664ac2e2fda0306432cf62dd7c
de9b3fb3e5eb54660190cbd20b6592fc5cbda547
refs/heads/master
2023-08-25T00:22:02.568347
2022-07-27T18:50:20
2022-07-27T22:38:28
152,169,545
0
1
NOASSERTION
2022-08-11T07:55:44
2018-10-09T01:33:17
C++
UTF-8
Python
false
false
79,542
py
# -*- coding: utf-8 -*- # Owner(s): ["oncall: quantization"] import torch import torch.nn as nn import torch.ao.quantization.quantize_fx as quantize_fx import torch.nn.functional as F from torch.ao.quantization import QConfig, QConfigMapping from torch.ao.quantization.fx._model_report.detector import ( DynamicStaticDetector, InputWeightEqualizationDetector, PerChannelDetector, OutlierDetector, ) from torch.ao.quantization.fx._model_report.model_report_observer import ModelReportObserver from torch.ao.quantization.fx._model_report.model_report_visualizer import ModelReportVisualizer from torch.ao.quantization.fx._model_report.model_report import ModelReport from torch.ao.quantization.observer import HistogramObserver, default_per_channel_weight_observer from torch.nn.intrinsic.modules.fused import ConvReLU2d, LinearReLU from torch.testing._internal.common_quantization import ( ConvModel, QuantizationTestCase, SingleLayerLinearModel, TwoLayerLinearModel, skipIfNoFBGEMM, skipIfNoQNNPACK, override_quantized_engine, ) """ Partition of input domain: Model contains: conv or linear, both conv and linear Model contains: ConvTransposeNd (not supported for per_channel) Model is: post training quantization model, quantization aware training model Model is: composed with nn.Sequential, composed in class structure QConfig utilizes per_channel weight observer, backend uses non per_channel weight observer QConfig_dict uses only one default qconfig, Qconfig dict uses > 1 unique qconfigs Partition on output domain: There are possible changes / suggestions, there are no changes / suggestions """ # Default output for string if no optimizations are possible DEFAULT_NO_OPTIMS_ANSWER_STRING = ( "Further Optimizations for backend {}: \nNo further per_channel optimizations possible." ) # Example Sequential Model with multiple Conv and Linear with nesting involved NESTED_CONV_LINEAR_EXAMPLE = torch.nn.Sequential( torch.nn.Conv2d(3, 3, 2, 1), torch.nn.Sequential(torch.nn.Linear(9, 27), torch.nn.ReLU()), torch.nn.Linear(27, 27), torch.nn.ReLU(), torch.nn.Conv2d(3, 3, 2, 1), ) # Example Sequential Model with Conv sub-class example LAZY_CONV_LINEAR_EXAMPLE = torch.nn.Sequential( torch.nn.LazyConv2d(3, 3, 2, 1), torch.nn.Sequential(torch.nn.Linear(5, 27), torch.nn.ReLU()), torch.nn.ReLU(), torch.nn.Linear(27, 27), torch.nn.ReLU(), torch.nn.LazyConv2d(3, 3, 2, 1), ) # Example Sequential Model with Fusion directly built into model FUSION_CONV_LINEAR_EXAMPLE = torch.nn.Sequential( ConvReLU2d(torch.nn.Conv2d(3, 3, 2, 1), torch.nn.ReLU()), torch.nn.Sequential(LinearReLU(torch.nn.Linear(9, 27), torch.nn.ReLU())), LinearReLU(torch.nn.Linear(27, 27), torch.nn.ReLU()), torch.nn.Conv2d(3, 3, 2, 1), ) # Test class # example model to use for tests class ThreeOps(nn.Module): def __init__(self): super().__init__() self.linear = nn.Linear(3, 3) self.bn = nn.BatchNorm2d(3) self.relu = nn.ReLU() def forward(self, x): x = self.linear(x) x = self.bn(x) x = self.relu(x) return x def get_example_inputs(self): return (torch.randn(1, 3, 3, 3),) class TwoThreeOps(nn.Module): def __init__(self): super().__init__() self.block1 = ThreeOps() self.block2 = ThreeOps() def forward(self, x): x = self.block1(x) y = self.block2(x) z = x + y z = F.relu(z) return z def get_example_inputs(self): return (torch.randn(1, 3, 3, 3),) class TestFxModelReportDetector(QuantizationTestCase): """Prepares and callibrate the model""" def _prepare_model_and_run_input(self, model, q_config_mapping, input): model_prep = torch.ao.quantization.quantize_fx.prepare_fx(model, q_config_mapping, input) # prep model model_prep(input).sum() # callibrate the model return model_prep """Case includes: one conv or linear post training quantiztion composed as module qconfig uses per_channel weight observer Only 1 qconfig in qconfig dict Output has no changes / suggestions """ @skipIfNoFBGEMM def test_simple_conv(self): with override_quantized_engine('fbgemm'): torch.backends.quantized.engine = "fbgemm" q_config_mapping = QConfigMapping() q_config_mapping.set_global(torch.ao.quantization.get_default_qconfig(torch.backends.quantized.engine)) input = torch.randn(1, 3, 10, 10) prepared_model = self._prepare_model_and_run_input(ConvModel(), q_config_mapping, input) # run the detector per_channel_detector = PerChannelDetector(torch.backends.quantized.engine) optims_str, per_channel_info = per_channel_detector.generate_detector_report(prepared_model) # no optims possible and there should be nothing in per_channel_status self.assertEqual( optims_str, DEFAULT_NO_OPTIMS_ANSWER_STRING.format(torch.backends.quantized.engine), ) # there shoud only be one conv there in this model self.assertEqual(per_channel_info["conv"]["backend"], torch.backends.quantized.engine) self.assertEqual(len(per_channel_info), 1) self.assertEqual(list(per_channel_info)[0], "conv") self.assertEqual( per_channel_info["conv"]["per_channel_quantization_supported"], True, ) self.assertEqual(per_channel_info["conv"]["per_channel_quantization_used"], True) """Case includes: Multiple conv or linear post training quantization composed as module qconfig doesn't use per_channel weight observer Only 1 qconfig in qconfig dict Output has possible changes / suggestions """ @skipIfNoQNNPACK def test_multi_linear_model_without_per_channel(self): with override_quantized_engine('qnnpack'): torch.backends.quantized.engine = "qnnpack" q_config_mapping = QConfigMapping() q_config_mapping.set_global(torch.ao.quantization.get_default_qconfig(torch.backends.quantized.engine)) prepared_model = self._prepare_model_and_run_input( TwoLayerLinearModel(), q_config_mapping, TwoLayerLinearModel().get_example_inputs()[0], ) # run the detector per_channel_detector = PerChannelDetector(torch.backends.quantized.engine) optims_str, per_channel_info = per_channel_detector.generate_detector_report(prepared_model) # there should be optims possible self.assertNotEqual( optims_str, DEFAULT_NO_OPTIMS_ANSWER_STRING.format(torch.backends.quantized.engine), ) # pick a random key to look at rand_key: str = list(per_channel_info.keys())[0] self.assertEqual(per_channel_info[rand_key]["backend"], torch.backends.quantized.engine) self.assertEqual(len(per_channel_info), 2) # for each linear layer, should be supported but not used for linear_key in per_channel_info.keys(): module_entry = per_channel_info[linear_key] self.assertEqual(module_entry["per_channel_quantization_supported"], True) self.assertEqual(module_entry["per_channel_quantization_used"], False) """Case includes: Multiple conv or linear post training quantization composed as Module qconfig doesn't use per_channel weight observer More than 1 qconfig in qconfig dict Output has possible changes / suggestions """ @skipIfNoQNNPACK def test_multiple_q_config_options(self): with override_quantized_engine('qnnpack'): torch.backends.quantized.engine = "qnnpack" # qconfig with support for per_channel quantization per_channel_qconfig = QConfig( activation=HistogramObserver.with_args(reduce_range=True), weight=default_per_channel_weight_observer, ) # we need to design the model class ConvLinearModel(torch.nn.Module): def __init__(self): super().__init__() self.conv1 = torch.nn.Conv2d(3, 3, 2, 1) self.fc1 = torch.nn.Linear(9, 27) self.relu = torch.nn.ReLU() self.fc2 = torch.nn.Linear(27, 27) self.conv2 = torch.nn.Conv2d(3, 3, 2, 1) def forward(self, x): x = self.conv1(x) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) x = self.conv2(x) return x q_config_mapping = QConfigMapping() q_config_mapping.set_global( torch.ao.quantization.get_default_qconfig(torch.backends.quantized.engine) ).set_object_type(torch.nn.Conv2d, per_channel_qconfig) prepared_model = self._prepare_model_and_run_input( ConvLinearModel(), q_config_mapping, torch.randn(1, 3, 10, 10), ) # run the detector per_channel_detector = PerChannelDetector(torch.backends.quantized.engine) optims_str, per_channel_info = per_channel_detector.generate_detector_report(prepared_model) # the only suggestions should be to linear layers # there should be optims possible self.assertNotEqual( optims_str, DEFAULT_NO_OPTIMS_ANSWER_STRING.format(torch.backends.quantized.engine), ) # to ensure it got into the nested layer self.assertEqual(len(per_channel_info), 4) # for each layer, should be supported but not used for key in per_channel_info.keys(): module_entry = per_channel_info[key] self.assertEqual(module_entry["per_channel_quantization_supported"], True) # if linear False, if conv2d true cuz it uses different config if "fc" in key: self.assertEqual(module_entry["per_channel_quantization_used"], False) elif "conv" in key: self.assertEqual(module_entry["per_channel_quantization_used"], True) else: raise ValueError("Should only contain conv and linear layers as key values") """Case includes: Multiple conv or linear post training quantization composed as sequential qconfig doesn't use per_channel weight observer Only 1 qconfig in qconfig dict Output has possible changes / suggestions """ @skipIfNoQNNPACK def test_sequential_model_format(self): with override_quantized_engine('qnnpack'): torch.backends.quantized.engine = "qnnpack" q_config_mapping = QConfigMapping() q_config_mapping.set_global(torch.ao.quantization.get_default_qconfig(torch.backends.quantized.engine)) prepared_model = self._prepare_model_and_run_input( NESTED_CONV_LINEAR_EXAMPLE, q_config_mapping, torch.randn(1, 3, 10, 10), ) # run the detector per_channel_detector = PerChannelDetector(torch.backends.quantized.engine) optims_str, per_channel_info = per_channel_detector.generate_detector_report(prepared_model) # there should be optims possible self.assertNotEqual( optims_str, DEFAULT_NO_OPTIMS_ANSWER_STRING.format(torch.backends.quantized.engine), ) # to ensure it got into the nested layer self.assertEqual(len(per_channel_info), 4) # for each layer, should be supported but not used for key in per_channel_info.keys(): module_entry = per_channel_info[key] self.assertEqual(module_entry["per_channel_quantization_supported"], True) self.assertEqual(module_entry["per_channel_quantization_used"], False) """Case includes: Multiple conv or linear post training quantization composed as sequential qconfig doesn't use per_channel weight observer Only 1 qconfig in qconfig dict Output has possible changes / suggestions """ @skipIfNoQNNPACK def test_conv_sub_class_considered(self): with override_quantized_engine('qnnpack'): torch.backends.quantized.engine = "qnnpack" q_config_mapping = QConfigMapping() q_config_mapping.set_global(torch.ao.quantization.get_default_qconfig(torch.backends.quantized.engine)) prepared_model = self._prepare_model_and_run_input( LAZY_CONV_LINEAR_EXAMPLE, q_config_mapping, torch.randn(1, 3, 10, 10), ) # run the detector per_channel_detector = PerChannelDetector(torch.backends.quantized.engine) optims_str, per_channel_info = per_channel_detector.generate_detector_report(prepared_model) # there should be optims possible self.assertNotEqual( optims_str, DEFAULT_NO_OPTIMS_ANSWER_STRING.format(torch.backends.quantized.engine), ) # to ensure it got into the nested layer and it considered the lazyConv2d self.assertEqual(len(per_channel_info), 4) # for each layer, should be supported but not used for key in per_channel_info.keys(): module_entry = per_channel_info[key] self.assertEqual(module_entry["per_channel_quantization_supported"], True) self.assertEqual(module_entry["per_channel_quantization_used"], False) """Case includes: Multiple conv or linear post training quantization composed as sequential qconfig uses per_channel weight observer Only 1 qconfig in qconfig dict Output has no possible changes / suggestions """ @skipIfNoFBGEMM def test_fusion_layer_in_sequential(self): with override_quantized_engine('fbgemm'): torch.backends.quantized.engine = "fbgemm" q_config_mapping = QConfigMapping() q_config_mapping.set_global(torch.ao.quantization.get_default_qconfig(torch.backends.quantized.engine)) prepared_model = self._prepare_model_and_run_input( FUSION_CONV_LINEAR_EXAMPLE, q_config_mapping, torch.randn(1, 3, 10, 10), ) # run the detector per_channel_detector = PerChannelDetector(torch.backends.quantized.engine) optims_str, per_channel_info = per_channel_detector.generate_detector_report(prepared_model) # no optims possible and there should be nothing in per_channel_status self.assertEqual( optims_str, DEFAULT_NO_OPTIMS_ANSWER_STRING.format(torch.backends.quantized.engine), ) # to ensure it got into the nested layer and it considered all the nested fusion components self.assertEqual(len(per_channel_info), 4) # for each layer, should be supported but not used for key in per_channel_info.keys(): module_entry = per_channel_info[key] self.assertEqual(module_entry["per_channel_quantization_supported"], True) self.assertEqual(module_entry["per_channel_quantization_used"], True) """Case includes: Multiple conv or linear quantitative aware training composed as model qconfig does not use per_channel weight observer Only 1 qconfig in qconfig dict Output has possible changes / suggestions """ @skipIfNoQNNPACK def test_qat_aware_model_example(self): # first we want a QAT model class QATConvLinearReluModel(torch.nn.Module): def __init__(self): super(QATConvLinearReluModel, self).__init__() # QuantStub converts tensors from floating point to quantized self.quant = torch.quantization.QuantStub() self.conv = torch.nn.Conv2d(1, 1, 1) self.bn = torch.nn.BatchNorm2d(1) self.relu = torch.nn.ReLU() # DeQuantStub converts tensors from quantized to floating point self.dequant = torch.quantization.DeQuantStub() def forward(self, x): x = self.quant(x) x = self.conv(x) x = self.bn(x) x = self.relu(x) x = self.dequant(x) return x with override_quantized_engine('qnnpack'): # create a model instance model_fp32 = QATConvLinearReluModel() model_fp32.qconfig = torch.quantization.get_default_qat_qconfig("qnnpack") # model must be in eval mode for fusion model_fp32.eval() model_fp32_fused = torch.quantization.fuse_modules(model_fp32, [["conv", "bn", "relu"]]) # model must be set to train mode for QAT logic to work model_fp32_fused.train() # prepare the model for QAT, different than for post training quantization model_fp32_prepared = torch.quantization.prepare_qat(model_fp32_fused) # run the detector per_channel_detector = PerChannelDetector(torch.backends.quantized.engine) optims_str, per_channel_info = per_channel_detector.generate_detector_report(model_fp32_prepared) # there should be optims possible self.assertNotEqual( optims_str, DEFAULT_NO_OPTIMS_ANSWER_STRING.format(torch.backends.quantized.engine), ) # make sure it was able to find the single conv in the fused model self.assertEqual(len(per_channel_info), 1) # for the one conv, it should still give advice to use different qconfig for key in per_channel_info.keys(): module_entry = per_channel_info[key] self.assertEqual(module_entry["per_channel_quantization_supported"], True) self.assertEqual(module_entry["per_channel_quantization_used"], False) """ Partition on Domain / Things to Test - All zero tensor - Multiple tensor dimensions - All of the outward facing functions - Epoch min max are correctly updating - Batch range is correctly averaging as expected - Reset for each epoch is correctly resetting the values Partition on Output - the calcuation of the ratio is occurring correctly """ class TestFxModelReportObserver(QuantizationTestCase): class NestedModifiedSingleLayerLinear(torch.nn.Module): def __init__(self): super().__init__() self.obs1 = ModelReportObserver() self.mod1 = SingleLayerLinearModel() self.obs2 = ModelReportObserver() self.fc1 = torch.nn.Linear(5, 5).to(dtype=torch.float) self.relu = torch.nn.ReLU() def forward(self, x): x = self.obs1(x) x = self.mod1(x) x = self.obs2(x) x = self.fc1(x) x = self.relu(x) return x def run_model_and_common_checks(self, model, ex_input, num_epochs, batch_size): # split up data into batches split_up_data = torch.split(ex_input, batch_size) for epoch in range(num_epochs): # reset all model report obs model.apply( lambda module: module.reset_batch_and_epoch_values() if isinstance(module, ModelReportObserver) else None ) # quick check that a reset occurred self.assertEqual( getattr(model, "obs1").average_batch_activation_range, torch.tensor(float(0)), ) self.assertEqual(getattr(model, "obs1").epoch_activation_min, torch.tensor(float("inf"))) self.assertEqual(getattr(model, "obs1").epoch_activation_max, torch.tensor(float("-inf"))) # loop through the batches and run through for index, batch in enumerate(split_up_data): num_tracked_so_far = getattr(model, "obs1").num_batches_tracked self.assertEqual(num_tracked_so_far, index) # get general info about the batch and the model to use later batch_min, batch_max = torch.aminmax(batch) current_average_range = getattr(model, "obs1").average_batch_activation_range current_epoch_min = getattr(model, "obs1").epoch_activation_min current_epoch_max = getattr(model, "obs1").epoch_activation_max # run input through model(ex_input) # check that average batch activation range updated correctly correct_updated_value = (current_average_range * num_tracked_so_far + (batch_max - batch_min)) / ( num_tracked_so_far + 1 ) self.assertEqual( getattr(model, "obs1").average_batch_activation_range, correct_updated_value, ) if current_epoch_max - current_epoch_min > 0: self.assertEqual( getattr(model, "obs1").get_batch_to_epoch_ratio(), correct_updated_value / (current_epoch_max - current_epoch_min), ) """Case includes: all zero tensor dim size = 2 run for 1 epoch run for 10 batch tests input data observer """ def test_zero_tensor_errors(self): # initialize the model model = self.NestedModifiedSingleLayerLinear() # generate the desired input ex_input = torch.zeros((10, 1, 5)) # run it through the model and do general tests self.run_model_and_common_checks(model, ex_input, 1, 1) # make sure final values are all 0 self.assertEqual(getattr(model, "obs1").epoch_activation_min, 0) self.assertEqual(getattr(model, "obs1").epoch_activation_max, 0) self.assertEqual(getattr(model, "obs1").average_batch_activation_range, 0) # we should get an error if we try to calculate the ratio with self.assertRaises(ValueError): ratio_val = getattr(model, "obs1").get_batch_to_epoch_ratio() """Case includes: non-zero tensor dim size = 2 run for 1 epoch run for 1 batch tests input data observer """ def test_single_batch_of_ones(self): # initialize the model model = self.NestedModifiedSingleLayerLinear() # generate the desired input ex_input = torch.ones((1, 1, 5)) # run it through the model and do general tests self.run_model_and_common_checks(model, ex_input, 1, 1) # make sure final values are all 0 except for range self.assertEqual(getattr(model, "obs1").epoch_activation_min, 1) self.assertEqual(getattr(model, "obs1").epoch_activation_max, 1) self.assertEqual(getattr(model, "obs1").average_batch_activation_range, 0) # we should get an error if we try to calculate the ratio with self.assertRaises(ValueError): ratio_val = getattr(model, "obs1").get_batch_to_epoch_ratio() """Case includes: non-zero tensor dim size = 2 run for 10 epoch run for 15 batch tests non input data observer """ def test_observer_after_relu(self): # model specific to this test class NestedModifiedObserverAfterRelu(torch.nn.Module): def __init__(self): super().__init__() self.obs1 = ModelReportObserver() self.mod1 = SingleLayerLinearModel() self.obs2 = ModelReportObserver() self.fc1 = torch.nn.Linear(5, 5).to(dtype=torch.float) self.relu = torch.nn.ReLU() def forward(self, x): x = self.obs1(x) x = self.mod1(x) x = self.fc1(x) x = self.relu(x) x = self.obs2(x) return x # initialize the model model = NestedModifiedObserverAfterRelu() # generate the desired input ex_input = torch.randn((15, 1, 5)) # run it through the model and do general tests self.run_model_and_common_checks(model, ex_input, 10, 15) """Case includes: non-zero tensor dim size = 2 run for multiple epoch run for multiple batch tests input data observer """ def test_random_epochs_and_batches(self): # set up a basic model class TinyNestModule(torch.nn.Module): def __init__(self): super().__init__() self.obs1 = ModelReportObserver() self.fc1 = torch.nn.Linear(5, 5).to(dtype=torch.float) self.relu = torch.nn.ReLU() self.obs2 = ModelReportObserver() def forward(self, x): x = self.obs1(x) x = self.fc1(x) x = self.relu(x) x = self.obs2(x) return x class LargerIncludeNestModel(torch.nn.Module): def __init__(self): super().__init__() self.obs1 = ModelReportObserver() self.nested = TinyNestModule() self.fc1 = SingleLayerLinearModel() self.relu = torch.nn.ReLU() def forward(self, x): x = self.obs1(x) x = self.nested(x) x = self.fc1(x) x = self.relu(x) return x class ModifiedThreeOps(torch.nn.Module): def __init__(self, batch_norm_dim): super(ModifiedThreeOps, self).__init__() self.obs1 = ModelReportObserver() self.linear = torch.nn.Linear(7, 3, 2) self.obs2 = ModelReportObserver() if batch_norm_dim == 2: self.bn = torch.nn.BatchNorm2d(2) elif batch_norm_dim == 3: self.bn = torch.nn.BatchNorm3d(4) else: raise ValueError("Dim should only be 2 or 3") self.relu = torch.nn.ReLU() def forward(self, x): x = self.obs1(x) x = self.linear(x) x = self.obs2(x) x = self.bn(x) x = self.relu(x) return x class HighDimensionNet(torch.nn.Module): def __init__(self): super(HighDimensionNet, self).__init__() self.obs1 = ModelReportObserver() self.fc1 = torch.nn.Linear(3, 7) self.block1 = ModifiedThreeOps(3) self.fc2 = torch.nn.Linear(3, 7) self.block2 = ModifiedThreeOps(3) self.fc3 = torch.nn.Linear(3, 7) def forward(self, x): x = self.obs1(x) x = self.fc1(x) x = self.block1(x) x = self.fc2(x) y = self.block2(x) y = self.fc3(y) z = x + y z = F.relu(z) return z # the purpose of this test is to give the observers a variety of data examples # initialize the model models = [ self.NestedModifiedSingleLayerLinear(), LargerIncludeNestModel(), ModifiedThreeOps(2), HighDimensionNet(), ] # get some number of epochs and batches num_epochs = 10 num_batches = 15 input_shapes = [(1, 5), (1, 5), (2, 3, 7), (4, 1, 8, 3)] # generate the desired inputs inputs = [] for shape in input_shapes: ex_input = torch.randn((num_batches, *shape)) inputs.append(ex_input) # run it through the model and do general tests for index, model in enumerate(models): self.run_model_and_common_checks(model, inputs[index], num_epochs, num_batches) """ Partition on domain / things to test There is only a single test case for now. This will be more thoroughly tested with the implementation of the full end to end tool coming soon. """ class TestFxModelReportDetectDynamicStatic(QuantizationTestCase): @skipIfNoFBGEMM def test_nested_detection_case(self): class SingleLinear(torch.nn.Module): def __init__(self): super(SingleLinear, self).__init__() self.linear = torch.nn.Linear(3, 3) def forward(self, x): x = self.linear(x) return x class TwoBlockNet(torch.nn.Module): def __init__(self): super(TwoBlockNet, self).__init__() self.block1 = SingleLinear() self.block2 = SingleLinear() def forward(self, x): x = self.block1(x) y = self.block2(x) z = x + y z = F.relu(z) return z with override_quantized_engine('fbgemm'): # create model, example input, and qconfig mapping torch.backends.quantized.engine = "fbgemm" model = TwoBlockNet() example_input = torch.randint(-10, 0, (1, 3, 3, 3)) example_input = example_input.to(torch.float) q_config_mapping = QConfigMapping() q_config_mapping.set_global(torch.ao.quantization.get_default_qconfig("fbgemm")) # prep model and select observer model_prep = quantize_fx.prepare_fx(model, q_config_mapping, example_input) obs_ctr = ModelReportObserver # find layer to attach to and store linear_fqn = "block2.linear" # fqn of target linear target_linear = None for node in model_prep.graph.nodes: if node.target == linear_fqn: target_linear = node break # insert into both module and graph pre and post # set up to insert before target_linear (pre_observer) with model_prep.graph.inserting_before(target_linear): obs_to_insert = obs_ctr() pre_obs_fqn = linear_fqn + ".model_report_pre_observer" model_prep.add_submodule(pre_obs_fqn, obs_to_insert) model_prep.graph.create_node(op="call_module", target=pre_obs_fqn, args=target_linear.args) # set up and insert after the target_linear (post_observer) with model_prep.graph.inserting_after(target_linear): obs_to_insert = obs_ctr() post_obs_fqn = linear_fqn + ".model_report_post_observer" model_prep.add_submodule(post_obs_fqn, obs_to_insert) model_prep.graph.create_node(op="call_module", target=post_obs_fqn, args=(target_linear,)) # need to recompile module after submodule added and pass input through model_prep.recompile() num_iterations = 10 for i in range(num_iterations): if i % 2 == 0: example_input = torch.randint(-10, 0, (1, 3, 3, 3)).to(torch.float) else: example_input = torch.randint(0, 10, (1, 3, 3, 3)).to(torch.float) model_prep(example_input) # run it through the dynamic vs static detector dynamic_vs_static_detector = DynamicStaticDetector() dynam_vs_stat_str, dynam_vs_stat_dict = dynamic_vs_static_detector.generate_detector_report(model_prep) # one of the stats should be stationary, and the other non-stationary # as a result, dynamic should be recommended data_dist_info = [ dynam_vs_stat_dict[linear_fqn][DynamicStaticDetector.PRE_OBS_DATA_DIST_KEY], dynam_vs_stat_dict[linear_fqn][DynamicStaticDetector.POST_OBS_DATA_DIST_KEY], ] self.assertTrue("stationary" in data_dist_info) self.assertTrue("non-stationary" in data_dist_info) self.assertTrue(dynam_vs_stat_dict[linear_fqn]["dynamic_recommended"]) class TestFxModelReportClass(QuantizationTestCase): @skipIfNoFBGEMM def test_constructor(self): """ Tests the constructor of the ModelReport class. Specifically looks at: - The desired reports - Ensures that the observers of interest are properly initialized """ with override_quantized_engine('fbgemm'): # set the backend for this test torch.backends.quantized.engine = "fbgemm" backend = torch.backends.quantized.engine # create a model model = ThreeOps() q_config_mapping = QConfigMapping() q_config_mapping.set_global(torch.ao.quantization.get_default_qconfig(torch.backends.quantized.engine)) model_prep = quantize_fx.prepare_fx(model, q_config_mapping, model.get_example_inputs()[0]) # make an example set of detectors test_detector_set = set([DynamicStaticDetector(), PerChannelDetector(backend)]) # initialize with an empty detector model_report = ModelReport(model_prep, test_detector_set) # make sure internal valid reports matches detector_name_set = set([detector.get_detector_name() for detector in test_detector_set]) self.assertEqual(model_report.get_desired_reports_names(), detector_name_set) # now attempt with no valid reports, should raise error with self.assertRaises(ValueError): model_report = ModelReport(model, set([])) # number of expected obs of interest entries num_expected_entries = len(test_detector_set) self.assertEqual(len(model_report.get_observers_of_interest()), num_expected_entries) for value in model_report.get_observers_of_interest().values(): self.assertEqual(len(value), 0) @skipIfNoFBGEMM def test_prepare_model_callibration(self): """ Tests model_report.prepare_detailed_calibration that prepares the model for callibration Specifically looks at: - Whether observers are properly inserted into regular nn.Module - Whether the target and the arguments of the observers are proper - Whether the internal representation of observers of interest is updated """ with override_quantized_engine('fbgemm'): # create model report object # create model model = TwoThreeOps() # make an example set of detectors torch.backends.quantized.engine = "fbgemm" backend = torch.backends.quantized.engine test_detector_set = set([DynamicStaticDetector(), PerChannelDetector(backend)]) # initialize with an empty detector # prepare the model example_input = model.get_example_inputs()[0] current_backend = torch.backends.quantized.engine q_config_mapping = QConfigMapping() q_config_mapping.set_global(torch.ao.quantization.get_default_qconfig(torch.backends.quantized.engine)) model_prep = quantize_fx.prepare_fx(model, q_config_mapping, example_input) model_report = ModelReport(model_prep, test_detector_set) # prepare the model for callibration prepared_for_callibrate_model = model_report.prepare_detailed_calibration() # see whether observers properly in regular nn.Module # there should be 4 observers present in this case modules_observer_cnt = 0 for fqn, module in prepared_for_callibrate_model.named_modules(): if isinstance(module, ModelReportObserver): modules_observer_cnt += 1 self.assertEqual(modules_observer_cnt, 4) model_report_str_check = "model_report" # also make sure arguments for observers in the graph are proper for node in prepared_for_callibrate_model.graph.nodes: # not all node targets are strings, so check if isinstance(node.target, str) and model_report_str_check in node.target: # if pre-observer has same args as the linear (next node) if "pre_observer" in node.target: self.assertEqual(node.args, node.next.args) # if post-observer, args are the target linear (previous node) if "post_observer" in node.target: self.assertEqual(node.args, (node.prev,)) # ensure model_report observers of interest updated # there should be two entries self.assertEqual(len(model_report.get_observers_of_interest()), 2) for detector in test_detector_set: self.assertTrue(detector.get_detector_name() in model_report.get_observers_of_interest().keys()) # get number of entries for this detector detector_obs_of_interest_fqns = model_report.get_observers_of_interest()[detector.get_detector_name()] # assert that the per channel detector has 0 and the dynamic static has 4 if isinstance(detector, PerChannelDetector): self.assertEqual(len(detector_obs_of_interest_fqns), 0) elif isinstance(detector, DynamicStaticDetector): self.assertEqual(len(detector_obs_of_interest_fqns), 4) # ensure that we can prepare for callibration only once with self.assertRaises(ValueError): prepared_for_callibrate_model = model_report.prepare_detailed_calibration() def get_module_and_graph_cnts(self, callibrated_fx_module): r""" Calculates number of ModelReportObserver modules in the model as well as the graph structure. Returns a tuple of two elements: int: The number of ModelReportObservers found in the model int: The number of model_report nodes found in the graph """ # get the number of observers stored as modules modules_observer_cnt = 0 for fqn, module in callibrated_fx_module.named_modules(): if isinstance(module, ModelReportObserver): modules_observer_cnt += 1 # get number of observers in the graph model_report_str_check = "model_report" graph_observer_cnt = 0 # also make sure arguments for observers in the graph are proper for node in callibrated_fx_module.graph.nodes: # not all node targets are strings, so check if isinstance(node.target, str) and model_report_str_check in node.target: # increment if we found a graph observer graph_observer_cnt += 1 return (modules_observer_cnt, graph_observer_cnt) @skipIfNoFBGEMM def test_generate_report(self): """ Tests model_report.generate_model_report to ensure report generation Specifically looks at: - Whether correct number of reports are being generated - Whether observers are being properly removed if specified - Whether correct blocking from generating report twice if obs removed """ with override_quantized_engine('fbgemm'): # set the backend for this test torch.backends.quantized.engine = "fbgemm" # check whether the correct number of reports are being generated filled_detector_set = set([DynamicStaticDetector(), PerChannelDetector(torch.backends.quantized.engine)]) single_detector_set = set([DynamicStaticDetector()]) # create our models model_full = TwoThreeOps() model_single = TwoThreeOps() # prepare and callibrate two different instances of same model # prepare the model example_input = model_full.get_example_inputs()[0] current_backend = torch.backends.quantized.engine q_config_mapping = QConfigMapping() q_config_mapping.set_global(torch.ao.quantization.get_default_qconfig(torch.backends.quantized.engine)) model_prep_full = quantize_fx.prepare_fx(model_full, q_config_mapping, example_input) model_prep_single = quantize_fx.prepare_fx(model_single, q_config_mapping, example_input) # initialize one with filled detector model_report_full = ModelReport(model_prep_full, filled_detector_set) # initialize another with a single detector set model_report_single = ModelReport(model_prep_single, single_detector_set) # prepare the models for callibration prepared_for_callibrate_model_full = model_report_full.prepare_detailed_calibration() prepared_for_callibrate_model_single = model_report_single.prepare_detailed_calibration() # now callibrate the two models num_iterations = 10 for i in range(num_iterations): example_input = torch.tensor(torch.randint(100, (1, 3, 3, 3)), dtype=torch.float) prepared_for_callibrate_model_full(example_input) prepared_for_callibrate_model_single(example_input) # now generate the reports model_full_report = model_report_full.generate_model_report(True) model_single_report = model_report_single.generate_model_report(False) # check that sizes are appropriate self.assertEqual(len(model_full_report), len(filled_detector_set)) self.assertEqual(len(model_single_report), len(single_detector_set)) # make sure observers are being properly removed for full report since we put flag in modules_observer_cnt, graph_observer_cnt = self.get_module_and_graph_cnts(prepared_for_callibrate_model_full) self.assertEqual(modules_observer_cnt, 0) # assert no more observer modules self.assertEqual(graph_observer_cnt, 0) # assert no more observer nodes in graph # make sure observers aren't being removed for single report since not specified modules_observer_cnt, graph_observer_cnt = self.get_module_and_graph_cnts(prepared_for_callibrate_model_single) self.assertNotEqual(modules_observer_cnt, 0) self.assertNotEqual(graph_observer_cnt, 0) # make sure error when try to rerun report generation for full report but not single report with self.assertRaises(Exception): model_full_report = model_report_full.generate_model_report( prepared_for_callibrate_model_full, False ) # make sure we don't run into error for single report model_single_report = model_report_single.generate_model_report(False) @skipIfNoFBGEMM def test_generate_visualizer(self): """ Tests that the ModelReport class can properly create the ModelReportVisualizer instance Checks that: - Correct number of modules are represented - Modules are sorted - Correct number of features for each module """ with override_quantized_engine('fbgemm'): # set the backend for this test torch.backends.quantized.engine = "fbgemm" # test with multiple detectors detector_set = set() detector_set.add(OutlierDetector(reference_percentile=0.95)) detector_set.add(InputWeightEqualizationDetector(0.5)) model = TwoThreeOps() # get tst model and callibrate prepared_for_callibrate_model, mod_report = _get_prepped_for_calibration_model_helper( model, detector_set, model.get_example_inputs()[0] ) # now we actually callibrate the model example_input = model.get_example_inputs()[0] example_input = example_input.to(torch.float) prepared_for_callibrate_model(example_input) # try to visualize without generating report, should throw error with self.assertRaises(Exception): mod_rep_visualizaiton = mod_report.generate_visualizer() # now get the report by running it through ModelReport instance generated_report = mod_report.generate_model_report(remove_inserted_observers=False) # now we get the visualizer should not error mod_rep_visualizer: ModelReportVisualizer = mod_report.generate_visualizer() # since we tested with outlier detector, which looks at every base level module # should be six entries in the ordered dict mod_fqns_to_features = mod_rep_visualizer.generated_reports self.assertEqual(len(mod_fqns_to_features), 6) # outlier detector has 9 feature per module # input-weight has 12 features per module # there are 1 common data point, so should be 12 + 9 - 1 = 20 unique features per common modules # all linears will be common for module_fqn in mod_fqns_to_features: if ".linear" in module_fqn: linear_info = mod_fqns_to_features[module_fqn] self.assertEqual(len(linear_info), 20) class TestFxDetectInputWeightEqualization(QuantizationTestCase): class SimpleConv(torch.nn.Module): def __init__(self, con_dims): super().__init__() self.relu = torch.nn.ReLU() self.conv = torch.nn.Conv2d(con_dims[0], con_dims[1], kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) def forward(self, x): x = self.conv(x) x = self.relu(x) return x class TwoBlockComplexNet(torch.nn.Module): def __init__(self): super().__init__() self.block1 = TestFxDetectInputWeightEqualization.SimpleConv((3, 32)) self.block2 = TestFxDetectInputWeightEqualization.SimpleConv((3, 3)) self.conv = torch.nn.Conv2d(32, 3, kernel_size=(1, 1), stride=(1, 1), padding=(1, 1), bias=False) self.linear = torch.nn.Linear(768, 10) self.relu = torch.nn.ReLU() def forward(self, x): x = self.block1(x) x = self.conv(x) y = self.block2(x) y = y.repeat(1, 1, 2, 2) z = x + y z = z.flatten(start_dim=1) z = self.linear(z) z = self.relu(z) return z def get_fusion_modules(self): return [['conv', 'relu']] def get_example_inputs(self): return (torch.randn((1, 3, 28, 28)),) class ReluOnly(torch.nn.Module): def __init__(self): super().__init__() self.relu = torch.nn.ReLU() def forward(self, x): x = self.relu(x) return x def get_example_inputs(self): return (torch.arange(27).reshape((1, 3, 3, 3)),) def _get_prepped_for_calibration_model(self, model, detector_set, fused=False): r"""Returns a model that has been prepared for callibration and corresponding model_report""" # pass in necessary inputs to helper example_input = model.get_example_inputs()[0] return _get_prepped_for_calibration_model_helper(model, detector_set, example_input, fused) @skipIfNoFBGEMM def test_input_weight_equalization_determine_points(self): # use fbgemm and create our model instance # then create model report instance with detector with override_quantized_engine('fbgemm'): detector_set = set([InputWeightEqualizationDetector(0.5)]) # get tst model and callibrate non_fused = self._get_prepped_for_calibration_model(self.TwoBlockComplexNet(), detector_set) fused = self._get_prepped_for_calibration_model(self.TwoBlockComplexNet(), detector_set, fused=True) # reporter should still give same counts even for fused model for prepared_for_callibrate_model, mod_report in [non_fused, fused]: # supported modules to check mods_to_check = set([nn.Linear, nn.Conv2d]) # get the set of all nodes in the graph their fqns node_fqns = set([node.target for node in prepared_for_callibrate_model.graph.nodes]) # there should be 4 node fqns that have the observer inserted correct_number_of_obs_inserted = 4 number_of_obs_found = 0 obs_name_to_find = InputWeightEqualizationDetector.DEFAULT_PRE_OBSERVER_NAME for node in prepared_for_callibrate_model.graph.nodes: # if the obs name is inside the target, we found an observer if obs_name_to_find in str(node.target): number_of_obs_found += 1 self.assertEqual(number_of_obs_found, correct_number_of_obs_inserted) # assert that each of the desired modules have the observers inserted for fqn, module in prepared_for_callibrate_model.named_modules(): # check if module is a supported module is_in_include_list = sum(list(map(lambda x: isinstance(module, x), mods_to_check))) > 0 if is_in_include_list: # make sure it has the observer attribute self.assertTrue(hasattr(module, InputWeightEqualizationDetector.DEFAULT_PRE_OBSERVER_NAME)) else: # if it's not a supported type, it shouldn't have observer attached self.assertTrue(not hasattr(module, InputWeightEqualizationDetector.DEFAULT_PRE_OBSERVER_NAME)) @skipIfNoFBGEMM def test_input_weight_equalization_report_gen(self): # use fbgemm and create our model instance # then create model report instance with detector with override_quantized_engine('fbgemm'): test_input_weight_detector = InputWeightEqualizationDetector(0.4) detector_set = set([test_input_weight_detector]) model = self.TwoBlockComplexNet() # prepare the model for callibration prepared_for_callibrate_model, model_report = self._get_prepped_for_calibration_model( model, detector_set ) # now we actually callibrate the model example_input = model.get_example_inputs()[0] example_input = example_input.to(torch.float) prepared_for_callibrate_model(example_input) # now get the report by running it through ModelReport instance generated_report = model_report.generate_model_report(True) # check that sizes are appropriate only 1 detector self.assertEqual(len(generated_report), 1) # get the specific report for input weight equalization input_weight_str, input_weight_dict = generated_report[test_input_weight_detector.get_detector_name()] # we should have 5 layers looked at since 4 conv / linear layers self.assertEqual(len(input_weight_dict), 4) # we can validate that the max and min values of the detector were recorded properly for the first one # this is because no data has been processed yet, so it should be values from original input example_input = example_input.reshape((3, 28, 28)) # reshape input for module_fqn in input_weight_dict: # look for the first linear if "block1.linear" in module_fqn: block_1_lin_recs = input_weight_dict[module_fqn] # get input range info and the channel axis ch_axis = block_1_lin_recs[InputWeightEqualizationDetector.CHANNEL_KEY] # ensure that the min and max values extracted match properly example_min, example_max = torch.aminmax(example_input, dim=ch_axis) dimension_min = torch.amin(example_min, dim=ch_axis) dimension_max = torch.amax(example_max, dim=ch_axis) # make sure per channel min and max are as expected min_per_key = InputWeightEqualizationDetector.ACTIVATION_PREFIX min_per_key += InputWeightEqualizationDetector.PER_CHANNEL_MIN_KEY max_per_key = InputWeightEqualizationDetector.ACTIVATION_PREFIX max_per_key += InputWeightEqualizationDetector.PER_CHANNEL_MAX_KEY per_channel_min = block_1_lin_recs[min_per_key] per_channel_max = block_1_lin_recs[max_per_key] self.assertEqual(per_channel_min, dimension_min) self.assertEqual(per_channel_max, dimension_max) # make sure per channel min and max are as expected min_key = InputWeightEqualizationDetector.ACTIVATION_PREFIX min_key += InputWeightEqualizationDetector.GLOBAL_MIN_KEY max_key = InputWeightEqualizationDetector.ACTIVATION_PREFIX max_key += InputWeightEqualizationDetector.GLOBAL_MAX_KEY # make sure the global min and max were correctly recorded and presented global_min = block_1_lin_recs[min_key] global_max = block_1_lin_recs[max_key] self.assertEqual(global_min, min(dimension_min)) self.assertEqual(global_max, max(dimension_max)) input_ratio = torch.sqrt((per_channel_max - per_channel_min) / (global_max - global_min)) # ensure comparision stat passed back is sqrt of range ratios # need to get the weight ratios first # make sure per channel min and max are as expected min_per_key = InputWeightEqualizationDetector.WEIGHT_PREFIX min_per_key += InputWeightEqualizationDetector.PER_CHANNEL_MIN_KEY max_per_key = InputWeightEqualizationDetector.WEIGHT_PREFIX max_per_key += InputWeightEqualizationDetector.PER_CHANNEL_MAX_KEY # get weight per channel and global info per_channel_min = block_1_lin_recs[min_per_key] per_channel_max = block_1_lin_recs[max_per_key] # make sure per channel min and max are as expected min_key = InputWeightEqualizationDetector.WEIGHT_PREFIX min_key += InputWeightEqualizationDetector.GLOBAL_MIN_KEY max_key = InputWeightEqualizationDetector.WEIGHT_PREFIX max_key += InputWeightEqualizationDetector.GLOBAL_MAX_KEY global_min = block_1_lin_recs[min_key] global_max = block_1_lin_recs[max_key] weight_ratio = torch.sqrt((per_channel_max - per_channel_min) / (global_max - global_min)) # also get comp stat for this specific layer comp_stat = block_1_lin_recs[InputWeightEqualizationDetector.COMP_METRIC_KEY] weight_to_input_ratio = weight_ratio / input_ratio self.assertEqual(comp_stat, weight_to_input_ratio) # only looking at the first example so can break break @skipIfNoFBGEMM def test_input_weight_equalization_report_gen_empty(self): # tests report gen on a model that doesn't have any layers # use fbgemm and create our model instance # then create model report instance with detector with override_quantized_engine('fbgemm'): test_input_weight_detector = InputWeightEqualizationDetector(0.4) detector_set = set([test_input_weight_detector]) model = self.ReluOnly() # prepare the model for callibration prepared_for_callibrate_model, model_report = self._get_prepped_for_calibration_model(model, detector_set) # now we actually callibrate the model example_input = model.get_example_inputs()[0] example_input = example_input.to(torch.float) prepared_for_callibrate_model(example_input) # now get the report by running it through ModelReport instance generated_report = model_report.generate_model_report(True) # check that sizes are appropriate only 1 detector self.assertEqual(len(generated_report), 1) # get the specific report for input weight equalization input_weight_str, input_weight_dict = generated_report[test_input_weight_detector.get_detector_name()] # we should have 0 layers since there is only a Relu self.assertEqual(len(input_weight_dict), 0) # make sure that the string only has two lines, as should be if no suggestions self.assertEqual(input_weight_str.count("\n"), 2) class TestFxDetectOutliers(QuantizationTestCase): class LargeBatchModel(torch.nn.Module): def __init__(self, param_size): super().__init__() self.param_size = param_size self.linear = torch.nn.Linear(param_size, param_size) self.relu_1 = torch.nn.ReLU() self.conv = torch.nn.Conv2d(param_size, param_size, 1) self.relu_2 = torch.nn.ReLU() def forward(self, x): x = self.linear(x) x = self.relu_1(x) x = self.conv(x) x = self.relu_2(x) return x def get_example_inputs(self): param_size = self.param_size return (torch.randn((1, param_size, param_size, param_size)),) def get_outlier_inputs(self): param_size = self.param_size random_vals = torch.randn((1, param_size, param_size, param_size)) # change one in some of them to be a massive value random_vals[:, 0:param_size:2, 0, 3] = torch.tensor([3.28e8]) return (random_vals,) def _get_prepped_for_calibration_model(self, model, detector_set, use_outlier_data=False): r"""Returns a model that has been prepared for callibration and corresponding model_report""" # call the general helper function to callibrate example_input = model.get_example_inputs()[0] # if we specifically want to test data with outliers replace input if use_outlier_data: example_input = model.get_outlier_inputs()[0] return _get_prepped_for_calibration_model_helper(model, detector_set, example_input) @skipIfNoFBGEMM def test_outlier_detection_determine_points(self): # use fbgemm and create our model instance # then create model report instance with detector # similar to test for InputWeightEqualization but key differences that made refactoring not viable # not explicitly testing fusion because fx workflow automatically with override_quantized_engine('fbgemm'): detector_set = set([OutlierDetector(reference_percentile=0.95)]) # get tst model and callibrate prepared_for_callibrate_model, mod_report = self._get_prepped_for_calibration_model( self.LargeBatchModel(param_size=128), detector_set ) # supported modules to check mods_to_check = set([nn.Linear, nn.Conv2d, nn.ReLU]) # there should be 4 node fqns that have the observer inserted correct_number_of_obs_inserted = 4 number_of_obs_found = 0 obs_name_to_find = InputWeightEqualizationDetector.DEFAULT_PRE_OBSERVER_NAME number_of_obs_found = sum( [1 if obs_name_to_find in str(node.target) else 0 for node in prepared_for_callibrate_model.graph.nodes] ) self.assertEqual(number_of_obs_found, correct_number_of_obs_inserted) # assert that each of the desired modules have the observers inserted for fqn, module in prepared_for_callibrate_model.named_modules(): # check if module is a supported module is_in_include_list = isinstance(module, tuple(mods_to_check)) if is_in_include_list: # make sure it has the observer attribute self.assertTrue(hasattr(module, InputWeightEqualizationDetector.DEFAULT_PRE_OBSERVER_NAME)) else: # if it's not a supported type, it shouldn't have observer attached self.assertTrue(not hasattr(module, InputWeightEqualizationDetector.DEFAULT_PRE_OBSERVER_NAME)) @skipIfNoFBGEMM def test_no_outlier_report_gen(self): # use fbgemm and create our model instance # then create model report instance with detector with override_quantized_engine('fbgemm'): # test with multiple detectors outlier_detector = OutlierDetector(reference_percentile=0.95) dynamic_static_detector = DynamicStaticDetector(tolerance=0.5) param_size: int = 4 detector_set = set([outlier_detector, dynamic_static_detector]) model = self.LargeBatchModel(param_size=param_size) # get tst model and callibrate prepared_for_callibrate_model, mod_report = self._get_prepped_for_calibration_model( model, detector_set ) # now we actually callibrate the model example_input = model.get_example_inputs()[0] example_input = example_input.to(torch.float) prepared_for_callibrate_model(example_input) # now get the report by running it through ModelReport instance generated_report = mod_report.generate_model_report(True) # check that sizes are appropriate only 2 detectors self.assertEqual(len(generated_report), 2) # get the specific report for input weight equalization outlier_str, outlier_dict = generated_report[outlier_detector.get_detector_name()] # we should have 5 layers looked at since 4 conv + linear + relu self.assertEqual(len(outlier_dict), 4) # assert the following are true for all the modules for module_fqn in outlier_dict: # get the info for the specific module module_dict = outlier_dict[module_fqn] # there really should not be any outliers since we used a normal distribution to perform this calculation outlier_info = module_dict[OutlierDetector.OUTLIER_KEY] self.assertEqual(sum(outlier_info), 0) # ensure that the number of ratios and batches counted is the same as the number of params self.assertEqual(len(module_dict[OutlierDetector.COMP_METRIC_KEY]), param_size) self.assertEqual(len(module_dict[OutlierDetector.NUM_BATCHES_KEY]), param_size) @skipIfNoFBGEMM def test_all_outlier_report_gen(self): # make the percentile 0 and the ratio 1, and then see that everything is outlier according to it # use fbgemm and create our model instance # then create model report instance with detector with override_quantized_engine('fbgemm'): # create detector of interest outlier_detector = OutlierDetector(ratio_threshold=1, reference_percentile=0) param_size: int = 16 detector_set = set([outlier_detector]) model = self.LargeBatchModel(param_size=param_size) # get tst model and callibrate prepared_for_callibrate_model, mod_report = self._get_prepped_for_calibration_model( model, detector_set ) # now we actually callibrate the model example_input = model.get_example_inputs()[0] example_input = example_input.to(torch.float) prepared_for_callibrate_model(example_input) # now get the report by running it through ModelReport instance generated_report = mod_report.generate_model_report(True) # check that sizes are appropriate only 1 detector self.assertEqual(len(generated_report), 1) # get the specific report for input weight equalization outlier_str, outlier_dict = generated_report[outlier_detector.get_detector_name()] # we should have 5 layers looked at since 4 conv + linear + relu self.assertEqual(len(outlier_dict), 4) # assert the following are true for all the modules for module_fqn in outlier_dict: # get the info for the specific module module_dict = outlier_dict[module_fqn] # everything should be an outlier because we said that the max should be equal to the min for all of them # however we will just test and say most should be in case we have several 0 channel values outlier_info = module_dict[OutlierDetector.OUTLIER_KEY] assert sum(outlier_info) >= len(outlier_info) / 2 # ensure that the number of ratios and batches counted is the same as the number of params self.assertEqual(len(module_dict[OutlierDetector.COMP_METRIC_KEY]), param_size) self.assertEqual(len(module_dict[OutlierDetector.NUM_BATCHES_KEY]), param_size) @skipIfNoFBGEMM def test_multiple_run_consistent_spike_outlier_report_gen(self): # specifically make a row really high consistently in the number of batches that you are testing and try that # generate report after just 1 run, and after many runs (30) and make sure above minimum threshold is there with override_quantized_engine('fbgemm'): # detector of interest outlier_detector = OutlierDetector(reference_percentile=0.95) param_size: int = 8 detector_set = set([outlier_detector]) model = self.LargeBatchModel(param_size=param_size) # get tst model and callibrate prepared_for_callibrate_model, mod_report = self._get_prepped_for_calibration_model( model, detector_set, use_outlier_data=True ) # now we actually callibrate the model example_input = model.get_outlier_inputs()[0] example_input = example_input.to(torch.float) # now callibrate minimum 30 times to make it above minimum threshold for i in range(30): example_input = model.get_outlier_inputs()[0] example_input = example_input.to(torch.float) # make 2 of the batches to have zero channel if i % 14 == 0: # make one channel constant example_input[0][1] = torch.zeros_like(example_input[0][1]) prepared_for_callibrate_model(example_input) # now get the report by running it through ModelReport instance generated_report = mod_report.generate_model_report(True) # check that sizes are appropriate only 1 detector self.assertEqual(len(generated_report), 1) # get the specific report for input weight equalization outlier_str, outlier_dict = generated_report[outlier_detector.get_detector_name()] # we should have 5 layers looked at since 4 conv + linear + relu self.assertEqual(len(outlier_dict), 4) # assert the following are true for all the modules for module_fqn in outlier_dict: # get the info for the specific module module_dict = outlier_dict[module_fqn] # because we ran 30 times, we should have at least a couple be significant # could be less because some channels could possibly be all 0 sufficient_batches_info = module_dict[OutlierDetector.IS_SUFFICIENT_BATCHES_KEY] assert sum(sufficient_batches_info) >= len(sufficient_batches_info) / 2 # half of them should be outliers, because we set a really high value every 2 channels outlier_info = module_dict[OutlierDetector.OUTLIER_KEY] self.assertEqual(sum(outlier_info), len(outlier_info) / 2) # ensure that the number of ratios and batches counted is the same as the number of params self.assertEqual(len(module_dict[OutlierDetector.COMP_METRIC_KEY]), param_size) self.assertEqual(len(module_dict[OutlierDetector.NUM_BATCHES_KEY]), param_size) # for the first one ensure the per channel max values are what we set if module_fqn == "linear.0": # check that the non-zero channel count, at least 2 should be there # for the first module counts_info = module_dict[OutlierDetector.CONSTANT_COUNTS_KEY] assert sum(counts_info) >= 2 # half of the recorded max values should be what we set matched_max = sum([val == 3.28e8 for val in module_dict[OutlierDetector.MAX_VALS_KEY]]) self.assertEqual(matched_max, param_size / 2) class TestFxModelReportVisualizer(QuantizationTestCase): def _callibrate_and_generate_visualizer(self, model, prepared_for_callibrate_model, mod_report): r""" Callibrates the passed in model, generates report, and returns the visualizer """ # now we actually callibrate the model example_input = model.get_example_inputs()[0] example_input = example_input.to(torch.float) prepared_for_callibrate_model(example_input) # now get the report by running it through ModelReport instance generated_report = mod_report.generate_model_report(remove_inserted_observers=False) # now we get the visualizer should not error mod_rep_visualizer: ModelReportVisualizer = mod_report.generate_visualizer() return mod_rep_visualizer @skipIfNoFBGEMM def test_get_modules_and_features(self): """ Tests the get_all_unique_module_fqns and get_all_unique_feature_names methods of ModelReportVisualizer Checks whether returned sets are of proper size and filtered properly """ with override_quantized_engine('fbgemm'): # set the backend for this test torch.backends.quantized.engine = "fbgemm" # test with multiple detectors detector_set = set() detector_set.add(OutlierDetector(reference_percentile=0.95)) detector_set.add(InputWeightEqualizationDetector(0.5)) model = TwoThreeOps() # get tst model and callibrate prepared_for_callibrate_model, mod_report = _get_prepped_for_calibration_model_helper( model, detector_set, model.get_example_inputs()[0] ) mod_rep_visualizer: ModelReportVisualizer = self._callibrate_and_generate_visualizer( model, prepared_for_callibrate_model, mod_report ) # ensure the module fqns match the ones given by the get_all_unique_feature_names method actual_model_fqns = set(mod_rep_visualizer.generated_reports.keys()) returned_model_fqns = mod_rep_visualizer.get_all_unique_module_fqns() self.assertEqual(returned_model_fqns, actual_model_fqns) # now ensure that features are all properly returned # all the linears have all the features for two detectors # can use those as check that method is working reliably b_1_linear_features = mod_rep_visualizer.generated_reports["block1.linear"] # first test all features returned_all_feats = mod_rep_visualizer.get_all_unique_feature_names(False) self.assertEqual(returned_all_feats, set(b_1_linear_features.keys())) # now test plottable features plottable_set = set() for feature_name in b_1_linear_features: if type(b_1_linear_features[feature_name]) == torch.Tensor: plottable_set.add(feature_name) returned_plottable_feats = mod_rep_visualizer.get_all_unique_feature_names() self.assertEqual(returned_plottable_feats, plottable_set) def _prep_visualizer_helper(self): r""" Returns a mod rep visualizer that we test in various ways """ # set backend for test torch.backends.quantized.engine = "fbgemm" # test with multiple detectors detector_set = set() detector_set.add(OutlierDetector(reference_percentile=0.95)) detector_set.add(InputWeightEqualizationDetector(0.5)) model = TwoThreeOps() # get tst model and callibrate prepared_for_callibrate_model, mod_report = _get_prepped_for_calibration_model_helper( model, detector_set, model.get_example_inputs()[0] ) mod_rep_visualizer: ModelReportVisualizer = self._callibrate_and_generate_visualizer( model, prepared_for_callibrate_model, mod_report ) return mod_rep_visualizer @skipIfNoFBGEMM def test_generate_tables_match_with_report(self): """ Tests the generate_table_view() ModelReportVisualizer Checks whether the generated dict has proper information Visual check that the tables look correct performed during testing """ with override_quantized_engine('fbgemm'): # get the visualizer mod_rep_visualizer = self._prep_visualizer_helper() table_dict = mod_rep_visualizer.generate_filtered_tables() # test primarily the dict since it has same info as str tensor_headers, tensor_table = table_dict[ModelReportVisualizer.TABLE_TENSOR_KEY] channel_headers, channel_table = table_dict[ModelReportVisualizer.TABLE_CHANNEL_KEY] # these two together should be the same as the generated report info in terms of keys tensor_info_modules = set(row[1] for row in tensor_table) channel_info_modules = set(row[1] for row in channel_table) combined_modules: Set = tensor_info_modules.union(channel_info_modules) generated_report_keys: Set = set(mod_rep_visualizer.generated_reports.keys()) self.assertEqual(combined_modules, generated_report_keys) @skipIfNoFBGEMM def test_generate_tables_no_match(self): """ Tests the generate_table_view() ModelReportVisualizer Checks whether the generated dict has proper information Visual check that the tables look correct performed during testing """ with override_quantized_engine('fbgemm'): # get the visualizer mod_rep_visualizer = self._prep_visualizer_helper() # try a random filter and make sure that there are no rows for either table empty_tables_dict = mod_rep_visualizer.generate_filtered_tables(module_fqn_filter="random not there module") # test primarily the dict since it has same info as str tensor_headers, tensor_table = empty_tables_dict[ModelReportVisualizer.TABLE_TENSOR_KEY] channel_headers, channel_table = empty_tables_dict[ModelReportVisualizer.TABLE_CHANNEL_KEY] tensor_info_modules = set(row[1] for row in tensor_table) channel_info_modules = set(row[1] for row in channel_table) combined_modules: Set = tensor_info_modules.union(channel_info_modules) self.assertEqual(len(combined_modules), 0) # should be no matching modules @skipIfNoFBGEMM def test_generate_tables_single_feat_match(self): """ Tests the generate_table_view() ModelReportVisualizer Checks whether the generated dict has proper information Visual check that the tables look correct performed during testing """ with override_quantized_engine('fbgemm'): # get the visualizer mod_rep_visualizer = self._prep_visualizer_helper() # try a matching filter for feature and make sure only those features show up # if we filter to a very specific feature name, should only have 1 additional column in each table row single_feat_dict = mod_rep_visualizer.generate_filtered_tables(feature_filter=OutlierDetector.MAX_VALS_KEY) # test primarily the dict since it has same info as str tensor_headers, tensor_table = single_feat_dict[ModelReportVisualizer.TABLE_TENSOR_KEY] channel_headers, channel_table = single_feat_dict[ModelReportVisualizer.TABLE_CHANNEL_KEY] # get the number of features in each of these tensor_info_features = len(tensor_headers) channel_info_features = len(channel_headers) - ModelReportVisualizer.NUM_NON_FEATURE_CHANNEL_HEADERS # make sure that there are no tensor features, and that there is one channel level feature self.assertEqual(tensor_info_features, 0) self.assertEqual(channel_info_features, 1) def _get_prepped_for_calibration_model_helper(model, detector_set, example_input, fused: bool = False): r"""Returns a model that has been prepared for callibration and corresponding model_report""" # set the backend for this test torch.backends.quantized.engine = "fbgemm" # create model instance and prepare it example_input = example_input.to(torch.float) q_config_mapping = torch.ao.quantization.get_default_qconfig_mapping() # if they passed in fusion paramter, make sure to test that if fused: model = torch.quantization.fuse_modules(model, model.get_fusion_modules()) model_prep = quantize_fx.prepare_fx(model, q_config_mapping, example_input) model_report = ModelReport(model_prep, detector_set) # prepare the model for callibration prepared_for_callibrate_model = model_report.prepare_detailed_calibration() return (prepared_for_callibrate_model, model_report)
24c1026d70712dc58f96d6e0a9023fab0f1cdfd6
5c531de5e4759c904e608b4fc653b2b041f79a0e
/Snap_monte_carlo_simulation.py
7cb310205cf32290a10076f203756fb68c14d270
[]
no_license
jianhui-ben/leetcode_python
133c7e6e5c7316d00607ba2e327239e002de28b2
fcc16124cc24a5993e27f5d97e78d8f290e68230
refs/heads/master
2022-06-05T22:32:18.034581
2022-05-17T02:27:11
2022-05-17T02:27:11
250,683,308
0
0
null
null
null
null
UTF-8
Python
false
false
965
py
#N个 Turkers标数据,数据很模糊基本靠瞎猜,有M个选项可选。 #问这些人达到了majority共识的概率有多大?也就是有超过半数的人都选了某一选项的概率。 #要求先给出数学解析解,然后给出coding实现方法来求近似解。 #代码其实很简单,Monte Carlo simulation,跑个足够多的次数,用统计结果来近似概率 ## p= (1/M)**(N//2) print(12//2) import random random.randint(1, 2) import collections collections.Counter([1,1,1,2, 3,3,3,3]).most_common(1)[0][1] def prob(M, N): import random import collections major=0 for _ in range(100000): choices= [None]* N for i in range(N): choices[i]= random.randint(1, M) if collections.Counter(choices).most_common(1)[0][1]> int(N//2): major+=1 return float(major)/100000.0*100.0 def verify(M, N): return (1.0/float(M))**int(N//2)*100.0 verify(7, 3) prob(7, 3)
588cb0f08c24dabc182e357f3b5efba012b7b98e
bcf42041a64fdefcaec54843900c3d8f833f2215
/emc/kb/browser/dataout.py
cf3d77f951b9bb4e11b4e53d61cd34ea9ffe24d5
[]
no_license
adam139/emc.kb
487650837207e0f773c077310f001a524965ee4f
ff21383762dad96ac09d414e7d1e8104c51b91f9
refs/heads/master
2022-01-14T09:42:49.790659
2020-09-22T13:16:27
2020-09-22T13:16:27
49,318,509
0
3
null
2016-12-26T17:37:20
2016-01-09T09:34:12
Python
UTF-8
Python
false
false
7,602
py
#-*- coding: UTF-8 -*- import csv from cStringIO import StringIO from zope import event from zope.component import getMultiAdapter from five import grok from zope.interface import implements from zope.interface import Interface from Products.Five.browser import BrowserView from Products.CMFCore.utils import getToolByName from Products.statusmessages.interfaces import IStatusMessage import datetime from plone import api from emc.policy.events import AddloginEvent,NormalUserloginEvent from emc.policy import get_ip,fmt,list2str,getfullname_orid from emc.kb import _ # todo code cp932 # need byte string data_VALUES = [ u"主体".encode('utf-8'), u"客体".encode('utf-8'), u"时间".encode('utf-8'), u"ip".encode('utf-8'), u"级别".encode('utf-8'), u"描述".encode('utf-8'), u"结果".encode('utf-8') ] userlog_header = [ u"用户".encode('utf-8'), u"时间".encode('utf-8'), u"ip".encode('utf-8'), u"级别".encode('utf-8'), u"描述".encode('utf-8'), u"结果".encode('utf-8') ] class AdminLogDataOut (grok.View): """AdminLog Data export as CSV files. """ grok.context(Interface) grok.name('export_csv') grok.require('zope2.View') def searchview(self,viewname="admin_logs"): searchview = getMultiAdapter((self.context, self.request),name=viewname) return searchview def render(self): method = self.request.get('REQUEST_METHOD', 'GET') # import pdb # pdb.set_trace() if (method != 'POST'): return self.request.response.redirect(self.context.absolute_url()) if self.request.form.get('form.button.Cancel'): return self.request.response.redirect(self.context.absolute_url()) searchview = self.searchview() # datadic receive front ajax post data datadic = self.request.form start = int(datadic['start']) # batch search start position size = int(datadic['size']) # batch search size sortcolumn = datadic['sortcolumn'] sortdirection = datadic['sortdirection'] keyword = (datadic['searchabletext']).strip() # origquery = searchview.getPathQuery() origquery = {} # default reverse,as is desc origquery['sort_on'] = sortcolumn # sql db sortt_order:asc,desc origquery['sort_order'] = sortdirection #模糊搜索 if keyword != "": origquery['SearchableText'] = '%'+keyword+'%' else: origquery['SearchableText'] = "" #origquery provide batch search origquery['size'] = size origquery['start'] = start #totalquery search all totalquery = origquery.copy() totalquery['size'] = 0 # search all size = 0 return numbers of recorders totalnum = searchview.search_multicondition(totalquery) origquery.update({"size":totalnum}) resultDicLists = searchview.search_multicondition(origquery) del origquery del totalquery if totalnum == 0: return #fire a log event user = api.user.get_current() ip = get_ip(self.request) if user is None: return des = "从用户日志表导出了%s条日志" % totalnum loginEvent = NormalUserloginEvent(userid = getfullname_orid(user), datetime = datetime.datetime.now().strftime(fmt), ip = ip, type = 0, description = des, result = 1) if loginEvent.available(): if loginEvent.is_normal_user(): event.notify(loginEvent) else: des = "从管理员日志表导出了%s条日志" % totalnum loginEvent = AddloginEvent(adminid = getfullname_orid(user), userid = "", datetime = datetime.datetime.now().strftime(fmt), ip = ip, type = 0, description = des, result = 1) event.notify(loginEvent) return self.exportData(resultDicLists) def exportData(self,recorders): """Export Data within CSV file.""" datafile = self._createCSV(self._getDataInfos(recorders)) return self._createRequest(datafile.getvalue(), "admin_log_export.log") def _getDataInfos(self,recorders): """Generator filled with the recorders.""" from emc.kb.utils import kind from emc.kb.utils import level as log_level from emc.kb.utils import result as log_result for i in recorders: i = list(i) i[4] = kind[i[4]] i[5] = log_level[i[5]] i[7] = log_result[i[7]] yield i def _createCSV(self, lines): """Write header and lines within the CSV file.""" datafile = StringIO() datafile.write(u'\ufeff'.encode('utf-8')) writor = csv.writer(datafile) writor.writerow(data_VALUES) map(writor.writerow, lines) return datafile def _createRequest(self, data, filename): """Create the request to be returned. Add the right header and the CSV file. """ self.request.response.addHeader('Content-Disposition', "attachment; filename=%s" % filename) self.request.response.addHeader('Content-Type', "text/csv;charset=utf-8") self.request.response.addHeader("Content-Transfer-Encoding", "8bit") self.request.response.addHeader('Content-Length', "%d" % len(data)) self.request.response.addHeader('Pragma', "no-cache") self.request.response.addHeader('Cache-Control', "must-revalidate, post-check=0, pre-check=0, public") self.request.response.addHeader('Expires', "0") return data class UserLogDataOut (AdminLogDataOut): """UserLog Data export as CSV files. """ # grok.context(Interface) grok.name('userlog_export_csv') # grok.require('zope2.View') def searchview(self,viewname="user_logs"): searchview = getMultiAdapter((self.context, self.request),name=viewname) return searchview def _createCSV(self, lines): """Write header and lines within the CSV file.""" datafile = StringIO() writor = csv.writer(datafile) writor.writerow(userlog_header) map(writor.writerow, lines) return datafile def exportData(self,recorders): """Export Data within CSV file.""" datafile = self._createCSV(self._getDataInfos(recorders)) return self._createRequest(datafile.getvalue(), "user_log_export.log") def _getDataInfos(self,recorders): """Generator filled with the recorders.""" from emc.kb.utils import kind from emc.kb.utils import level as log_level from emc.kb.utils import result as log_result for i in recorders: i = list(i) i[3] = kind[i[3]] i[4] = log_level[i[4]] i[6] = log_result[i[6]] yield i
7d8d2a7d613ecbd9087ac3588eca08034858f9f9
1ee90596d52554cb4ef51883c79093897f5279a0
/Sisteme/[C++]System Pet OFFICIAL/uipetsystem.py
4772d43117166548d16ed66d4b2f02322ab6c6fd
[]
no_license
Reizonr1/metin2-adv
bf7ecb26352b13641cd69b982a48a6b20061979a
5c2c096015ef3971a2f1121b54e33358d973c694
refs/heads/master
2022-04-05T20:50:38.176241
2020-03-03T18:20:58
2020-03-03T18:20:58
233,462,795
1
1
null
null
null
null
UTF-8
Python
false
false
25,267
py
import os import ui import player import mouseModule import net import app import snd import item import player import chat import grp import uiScriptLocale import localeInfo import constInfo import ime import wndMgr import petskill import uipetfeed import uiToolTip import uipetsystem import interfaceModule AFFECT_DICT = { item.APPLY_MAX_HP : localeInfo.TOOLTIP_MAX_HP, item.APPLY_MAX_SP : localeInfo.TOOLTIP_MAX_SP, item.APPLY_CON : localeInfo.TOOLTIP_CON, item.APPLY_INT : localeInfo.TOOLTIP_INT, item.APPLY_STR : localeInfo.TOOLTIP_STR, item.APPLY_DEX : localeInfo.TOOLTIP_DEX, item.APPLY_ATT_SPEED : localeInfo.TOOLTIP_ATT_SPEED, item.APPLY_MOV_SPEED : localeInfo.TOOLTIP_MOV_SPEED, item.APPLY_CAST_SPEED : localeInfo.TOOLTIP_CAST_SPEED, item.APPLY_HP_REGEN : localeInfo.TOOLTIP_HP_REGEN, item.APPLY_SP_REGEN : localeInfo.TOOLTIP_SP_REGEN, item.APPLY_POISON_PCT : localeInfo.TOOLTIP_APPLY_POISON_PCT, item.APPLY_STUN_PCT : localeInfo.TOOLTIP_APPLY_STUN_PCT, item.APPLY_SLOW_PCT : localeInfo.TOOLTIP_APPLY_SLOW_PCT, item.APPLY_CRITICAL_PCT : localeInfo.TOOLTIP_APPLY_CRITICAL_PCT, item.APPLY_PENETRATE_PCT : localeInfo.TOOLTIP_APPLY_PENETRATE_PCT, item.APPLY_ATTBONUS_WARRIOR : localeInfo.TOOLTIP_APPLY_ATTBONUS_WARRIOR, item.APPLY_ATTBONUS_ASSASSIN : localeInfo.TOOLTIP_APPLY_ATTBONUS_ASSASSIN, item.APPLY_ATTBONUS_SURA : localeInfo.TOOLTIP_APPLY_ATTBONUS_SURA, item.APPLY_ATTBONUS_SHAMAN : localeInfo.TOOLTIP_APPLY_ATTBONUS_SHAMAN, item.APPLY_ATTBONUS_MONSTER : localeInfo.TOOLTIP_APPLY_ATTBONUS_MONSTER, item.APPLY_ATTBONUS_HUMAN : localeInfo.TOOLTIP_APPLY_ATTBONUS_HUMAN, item.APPLY_ATTBONUS_ANIMAL : localeInfo.TOOLTIP_APPLY_ATTBONUS_ANIMAL, item.APPLY_ATTBONUS_ORC : localeInfo.TOOLTIP_APPLY_ATTBONUS_ORC, item.APPLY_ATTBONUS_MILGYO : localeInfo.TOOLTIP_APPLY_ATTBONUS_MILGYO, item.APPLY_ATTBONUS_UNDEAD : localeInfo.TOOLTIP_APPLY_ATTBONUS_UNDEAD, item.APPLY_ATTBONUS_DEVIL : localeInfo.TOOLTIP_APPLY_ATTBONUS_DEVIL, item.APPLY_STEAL_HP : localeInfo.TOOLTIP_APPLY_STEAL_HP, item.APPLY_STEAL_SP : localeInfo.TOOLTIP_APPLY_STEAL_SP, item.APPLY_MANA_BURN_PCT : localeInfo.TOOLTIP_APPLY_MANA_BURN_PCT, item.APPLY_DAMAGE_SP_RECOVER : localeInfo.TOOLTIP_APPLY_DAMAGE_SP_RECOVER, item.APPLY_BLOCK : localeInfo.TOOLTIP_APPLY_BLOCK, item.APPLY_DODGE : localeInfo.TOOLTIP_APPLY_DODGE, item.APPLY_RESIST_SWORD : localeInfo.TOOLTIP_APPLY_RESIST_SWORD, item.APPLY_RESIST_TWOHAND : localeInfo.TOOLTIP_APPLY_RESIST_TWOHAND, item.APPLY_RESIST_DAGGER : localeInfo.TOOLTIP_APPLY_RESIST_DAGGER, item.APPLY_RESIST_BELL : localeInfo.TOOLTIP_APPLY_RESIST_BELL, item.APPLY_RESIST_FAN : localeInfo.TOOLTIP_APPLY_RESIST_FAN, item.APPLY_RESIST_BOW : localeInfo.TOOLTIP_RESIST_BOW, item.APPLY_RESIST_FIRE : localeInfo.TOOLTIP_RESIST_FIRE, item.APPLY_RESIST_ELEC : localeInfo.TOOLTIP_RESIST_ELEC, item.APPLY_RESIST_MAGIC : localeInfo.TOOLTIP_RESIST_MAGIC, item.APPLY_RESIST_WIND : localeInfo.TOOLTIP_APPLY_RESIST_WIND, item.APPLY_REFLECT_MELEE : localeInfo.TOOLTIP_APPLY_REFLECT_MELEE, item.APPLY_REFLECT_CURSE : localeInfo.TOOLTIP_APPLY_REFLECT_CURSE, item.APPLY_POISON_REDUCE : localeInfo.TOOLTIP_APPLY_POISON_REDUCE, item.APPLY_KILL_SP_RECOVER : localeInfo.TOOLTIP_APPLY_KILL_SP_RECOVER, item.APPLY_EXP_DOUBLE_BONUS : localeInfo.TOOLTIP_APPLY_EXP_DOUBLE_BONUS, item.APPLY_GOLD_DOUBLE_BONUS : localeInfo.TOOLTIP_APPLY_GOLD_DOUBLE_BONUS, item.APPLY_ITEM_DROP_BONUS : localeInfo.TOOLTIP_APPLY_ITEM_DROP_BONUS, item.APPLY_POTION_BONUS : localeInfo.TOOLTIP_APPLY_POTION_BONUS, item.APPLY_KILL_HP_RECOVER : localeInfo.TOOLTIP_APPLY_KILL_HP_RECOVER, item.APPLY_IMMUNE_STUN : localeInfo.TOOLTIP_APPLY_IMMUNE_STUN, item.APPLY_IMMUNE_SLOW : localeInfo.TOOLTIP_APPLY_IMMUNE_SLOW, item.APPLY_IMMUNE_FALL : localeInfo.TOOLTIP_APPLY_IMMUNE_FALL, item.APPLY_BOW_DISTANCE : localeInfo.TOOLTIP_BOW_DISTANCE, item.APPLY_DEF_GRADE_BONUS : localeInfo.TOOLTIP_DEF_GRADE, item.APPLY_ATT_GRADE_BONUS : localeInfo.TOOLTIP_ATT_GRADE, item.APPLY_MAGIC_ATT_GRADE : localeInfo.TOOLTIP_MAGIC_ATT_GRADE, item.APPLY_MAGIC_DEF_GRADE : localeInfo.TOOLTIP_MAGIC_DEF_GRADE, item.APPLY_MAX_STAMINA : localeInfo.TOOLTIP_MAX_STAMINA, item.APPLY_MALL_ATTBONUS : localeInfo.TOOLTIP_MALL_ATTBONUS, item.APPLY_MALL_DEFBONUS : localeInfo.TOOLTIP_MALL_DEFBONUS, item.APPLY_MALL_EXPBONUS : localeInfo.TOOLTIP_MALL_EXPBONUS, item.APPLY_MALL_ITEMBONUS : localeInfo.TOOLTIP_MALL_ITEMBONUS, item.APPLY_MALL_GOLDBONUS : localeInfo.TOOLTIP_MALL_GOLDBONUS, item.APPLY_SKILL_DAMAGE_BONUS : localeInfo.TOOLTIP_SKILL_DAMAGE_BONUS, item.APPLY_NORMAL_HIT_DAMAGE_BONUS : localeInfo.TOOLTIP_NORMAL_HIT_DAMAGE_BONUS, item.APPLY_SKILL_DEFEND_BONUS : localeInfo.TOOLTIP_SKILL_DEFEND_BONUS, item.APPLY_NORMAL_HIT_DEFEND_BONUS : localeInfo.TOOLTIP_NORMAL_HIT_DEFEND_BONUS, item.APPLY_PC_BANG_EXP_BONUS : localeInfo.TOOLTIP_MALL_EXPBONUS_P_STATIC, item.APPLY_PC_BANG_DROP_BONUS : localeInfo.TOOLTIP_MALL_ITEMBONUS_P_STATIC, item.APPLY_RESIST_WARRIOR : localeInfo.TOOLTIP_APPLY_RESIST_WARRIOR, item.APPLY_RESIST_ASSASSIN : localeInfo.TOOLTIP_APPLY_RESIST_ASSASSIN, item.APPLY_RESIST_SURA : localeInfo.TOOLTIP_APPLY_RESIST_SURA, item.APPLY_RESIST_SHAMAN : localeInfo.TOOLTIP_APPLY_RESIST_SHAMAN, item.APPLY_MAX_HP_PCT : localeInfo.TOOLTIP_APPLY_MAX_HP_PCT, item.APPLY_MAX_SP_PCT : localeInfo.TOOLTIP_APPLY_MAX_SP_PCT, item.APPLY_ENERGY : localeInfo.TOOLTIP_ENERGY, item.APPLY_COSTUME_ATTR_BONUS : localeInfo.TOOLTIP_COSTUME_ATTR_BONUS, item.APPLY_MAGIC_ATTBONUS_PER : localeInfo.TOOLTIP_MAGIC_ATTBONUS_PER, item.APPLY_MELEE_MAGIC_ATTBONUS_PER : localeInfo.TOOLTIP_MELEE_MAGIC_ATTBONUS_PER, item.APPLY_RESIST_ICE : localeInfo.TOOLTIP_RESIST_ICE, item.APPLY_RESIST_EARTH : localeInfo.TOOLTIP_RESIST_EARTH, item.APPLY_RESIST_DARK : localeInfo.TOOLTIP_RESIST_DARK, item.APPLY_ANTI_CRITICAL_PCT : localeInfo.TOOLTIP_ANTI_CRITICAL_PCT, item.APPLY_ANTI_PENETRATE_PCT : localeInfo.TOOLTIP_ANTI_PENETRATE_PCT, } def checkdiv(n): x = str(n/10.0) if len(x) > 3: return str(x)[0:3] return str(x) def pointop(n): t = int(n) if t / 10 < 1: return "0."+n else: return n[0:len(n)-1]+"."+n[len(n)-1:] def GetAffectString(affectType, affectValue): if 0 == affectType: return None if 0 == affectValue: return None try: return AFFECT_DICT[affectType](affectValue) except TypeError: return "UNKNOWN_VALUE[%s] %s" % (affectType, affectValue) except KeyError: return "UNKNOWN_TYPE[%s] %s" % (affectType, affectValue) class PetSystemMain(ui.ScriptWindow): class TextToolTip(ui.Window): def __init__(self, y): ui.Window.__init__(self, "TOP_MOST") textLine = ui.TextLine() textLine.SetParent(self) textLine.SetHorizontalAlignLeft() textLine.SetOutline() textLine.Show() self.y = y self.textLine = textLine def __del__(self): ui.Window.__del__(self) def SetText(self, text): self.textLine.SetText(text) def OnRender(self): (mouseX, mouseY) = wndMgr.GetMousePosition() self.textLine.SetPosition(mouseX, mouseY - 60 + self.y) def __init__(self, vnum = 0): ui.ScriptWindow.__init__(self) self.vnum = vnum self.__LoadWindow() def __del__(self): ui.ScriptWindow.__del__(self) def Show(self): ui.ScriptWindow.Show(self) def Close(self): self.Hide() constInfo.PET_MAIN = 0 self.feedwind.Close() def __LoadWindow(self): try: pyScrLoader = ui.PythonScriptLoader() pyScrLoader.LoadScriptFile(self, "uiscript/PetInformationWindow.py") except: import exception exception.Abort("PetInformationWindow.LoadWindow.LoadObject") try: self.feedwind = uipetfeed.PetFeedWindow() self.board = self.GetChild("board") self.boardclose = self.GetChild("CloseButton") self.slotimgpet = self.GetChild("UpBringing_Pet_Slot") self.evolname = self.GetChild("EvolName") self.petname = self.GetChild("PetName") self.expwind = self.GetChild("UpBringing_Pet_EXP_Gauge_Board") self.tooltipexp = [] for i in range(0,4): self.tooltipexp.append(self.TextToolTip(15*i)) self.tooltipexp[i].Hide() self.petlifeg = self.GetChild("LifeGauge") self.petlevel = self.GetChild("LevelValue") self.petexpa = self.GetChild("UpBringing_Pet_EXPGauge_01") self.petexpb = self.GetChild("UpBringing_Pet_EXPGauge_02") self.petexpc = self.GetChild("UpBringing_Pet_EXPGauge_03") self.petexpd = self.GetChild("UpBringing_Pet_EXPGauge_04") self.petexpe = self.GetChild("UpBringing_Pet_EXPGauge_05") self.petexppages = [] self.petexppages.append(self.petexpa) self.petexppages.append(self.petexpb) self.petexppages.append(self.petexpc) self.petexppages.append(self.petexpd) self.petexppages.append(self.petexpe) for exp in self.petexppages: exp.SetSize(0, 0) #exp.Hide() self.petages = self.GetChild("AgeValue") self.petdur = self.GetChild("LifeTextValue") #gaugehp self.nutribtn = self.GetChild("FeedLifeTimeButton") self.sviluppobtn = self.GetChild("FeedEvolButton") self.itemexp = self.GetChild("FeedExpButton") self.pethp = self.GetChild("HpValue") self.petdef = self.GetChild("DefValue") self.petsp = self.GetChild("SpValue") self.petskill0 = self.GetChild("PetSkillSlot0") #self.petskill0.SetPetSkillSlot(0, 2, 10) #self.petskill0.SetPetSkillSlot(1, 11, 10) #self.petskill0.SetPetSkillSlot(2, 5, 10) self.petskill0.SetSlot(0, 2, 32, 32, petskill.GetEmptySkill()) self.petskill0.SetSlot(1, 2, 32, 32, petskill.GetEmptySkill()) self.petskill0.SetSlot(2, 2, 32, 32, petskill.GetEmptySkill()) #self.petskill0.SetCoverButton(0) #self.petskill0.SetCoverButton(1) #self.petskill0.SetCoverButton(2) #self.petskill0.SetAlwaysRenderCoverButton(0, TRUE) #self.petskill0.SetAlwaysRenderCoverButton(1, TRUE) #self.petskill0.SetAlwaysRenderCoverButton(2, TRUE) self.petskill0.SetSelectItemSlotEvent(ui.__mem_func__(self.UseSkill)) self.petskill0.SetUseSlotEvent(ui.__mem_func__(self.UseSkill)) self.petskill0.SetOverInItemEvent(ui.__mem_func__(self.PetSkillTooltipShow)) self.petskill0.SetOverOutItemEvent(ui.__mem_func__(self.PetSkillTooltipHide)) self.SetDefaultInfo() self.arrytooltip = [ [-1,-1], [-1,-1], [-1,-1]] PET_FILE_NAME = "%s/pet_skill.txt" % app.GetLocalePath() PET_FILE_SKILL = "%s/pet_skill_bonus.txt" % app.GetLocalePath() self.linespet = pack_open(PET_FILE_NAME, "r").readlines() self.linespetskill = pack_open(PET_FILE_SKILL, "r").readlines() self.SkillTooltip = uiToolTip.ToolTip(180) #Event self.boardclose.SetEvent(ui.__mem_func__(self.Close,)) self.nutribtn.SetToggleDownEvent(lambda arg=0,arg1=1: self.OpenFeedBox(arg,arg1)) self.nutribtn.SetToggleUpEvent(lambda arg=1,arg1=0: self.OpenFeedBox(arg,arg1)) self.itemexp.SetToggleDownEvent(lambda arg=0,arg1=3: self.OpenFeedBox(arg,arg1)) self.itemexp.SetToggleUpEvent(lambda arg=1,arg1=0: self.OpenFeedBox(arg,arg1)) self.sviluppobtn.SetToggleDownEvent(lambda arg=0: self.evolution(arg)) self.sviluppobtn.SetToggleUpEvent(lambda arg=1: self.evolution(arg)) except: import exception exception.Abort("PetInformationWindow.LoadWindow.BindObject") def PetSkillTooltipShow(self, slot): if self.arrytooltip[slot][0] > 0: tokens = self.linespet[self.arrytooltip[slot][0]-1][:-1].split("\t") tokens2 = self.linespetskill[self.arrytooltip[slot][0]-1][:-1].split("\t") self.SkillTooltip.ClearToolTip() self.SkillTooltip.AutoAppendTextLine(tokens[1], grp.GenerateColor(0.9490, 0.9058, 0.7568, 1.0)) self.SkillTooltip.AppendDescription(tokens[4], 26) self.SkillTooltip.AppendSpace(5) if self.arrytooltip[slot][0] != 10 and self.arrytooltip[slot][0] != 17 and self.arrytooltip[slot][0] != 18: self.SkillTooltip.AutoAppendTextLine(GetAffectString(int(tokens2[1]), int(tokens2[self.arrytooltip[slot][1]+1]))) elif self.arrytooltip[slot][0] == 10: self.SkillTooltip.AutoAppendTextLine("Hp Restored:" + str(tokens2[self.arrytooltip[slot][1]+1])) elif self.arrytooltip[slot][0] == 17: self.SkillTooltip.AutoAppendTextLine("Immortality Time:" + checkdiv(int(tokens2[self.arrytooltip[slot][1]+1])) + "s") self.SkillTooltip.AutoAppendTextLine("Cooldown: "+tokens[5]+"s", grp.GenerateColor(1.0, 0.7843, 0.0, 1.0)) self.SkillTooltip.AlignHorizonalCenter() self.SkillTooltip.ShowToolTip() def PetSkillTooltipHide(self): self.SkillTooltip.HideToolTip() def evolution(self, mode): if mode == 0: net.SendChatPacket("/petvoincrease") self.sviluppobtn.Enable() #self.SkillTooltip.HideToolTip() def SetDefaultInfo(self): self.evolname.SetText("") self.petname.SetText("") self.petlevel.SetText("") self.petages.SetText("") self.petdur.SetText("") self.pethp.SetText("") self.petdef.SetText("") self.petsp.SetText("") self.SetDuration("0", "0") self.slotimgpet.ClearSlot(0) self.petskill0.ClearSlot(0) self.petskill0.ClearSlot(1) self.petskill0.ClearSlot(2) self.petskill0.SetSlot(0, 2, 32, 32, petskill.GetEmptySkill()) self.petskill0.SetSlot(1, 2, 32, 32, petskill.GetEmptySkill()) self.petskill0.SetSlot(2, 2, 32, 32, petskill.GetEmptySkill()) self.SetExperience(0,0,0) self.arrytooltip = [ [-1,-1], [-1,-1], [-1,-1]] self.nutribtn.Disable() self.sviluppobtn.Disable() self.itemexp.Disable() def OpenFeedBox(self, mode, btn): if constInfo.FEEDWIND == btn or constInfo.FEEDWIND == 0: if mode == 0: self.feedwind.Show() constInfo.FEEDWIND = btn else: self.feedwind.Close() constInfo.FEEDWIND = 0 else: self.nutribtn.Enable() self.sviluppobtn.Enable() self.itemexp.Enable() self.feedwind.Close() constInfo.FEEDWIND = 0 def SetImageSlot(self, vnum): self.slotimgpet.SetItemSlot(0, int(vnum), 0) self.slotimgpet.SetAlwaysRenderCoverButton(0, TRUE) def SetEvolveName(self, name): self.evolname.SetText(name) def SetName(self, name): if name != "": self.nutribtn.Enable() self.sviluppobtn.Enable() self.itemexp.Enable() #pet.SetTop() else: self.nutribtn.Disable() self.sviluppobtn.Disable() self.itemexp.Disable() self.petname.SetText(name) def SetLevel(self, level): if int(level) == 40 or int(level) == 60 or int(level) == 80: constInfo.EVOLUTION = int(level) else: constInfo.EVOLUTION = 0 self.petlevel.SetText(level) def SetAges(self, ages): self.petages.SetText(ages) def SetDuration(self, dur, durt): dur1 = int(dur)/60 durt1 = int(durt)/60 tmpage = int((int(durt)/60 -int(dur) /60)/24) if int(dur) > 0: self.petlifeg.SetPercentage(int(dur)*1.6, int(durt)) self.petlifeg.Show() else: self.petlifeg.Hide() self.petdur.SetText(str(dur1)+"/"+str(durt1)+" Hours") self.SetAges(str(tmpage)+"Days") def SetHp(self, hp): self.pethp.SetText(pointop(hp)+"%") def SetDef(self, deff): self.petdef.SetText(pointop(deff)+"%") def SetSp(self, sp): self.petsp.SetText(pointop(sp)+"%") def SetSkill(self, slot, idx, lv): if int(idx) != -1: self.petskill0.ClearSlot(int(slot)) self.petskill0.SetPetSkillSlot(int(slot), int(idx), int(lv)) self.petskill0.SetCoverButton(int(slot)) self.petskill0.SetAlwaysRenderCoverButton(int(slot), TRUE) self.arrytooltip[int(slot)][0] = int(idx) self.arrytooltip[int(slot)][1] = int(lv) #chat.AppendChat(chat.CHAT_TYPE_INFO, "Slot:"+str(slot)+" idx: "+str(idx)+" Lv:"+str(lv)) def SetExperience(self, expm, expi, exptot): expm = int(expm) expi = int(expi) exptot = int(exptot) if exptot > 0: totalexp = exptot totexpm = int( float(totalexp) / 100 * 90 ) totexpi = totalexp - totexpm expi = min(expi, totexpi) expmp = float(expm) / totexpm * 100 expip = float(expi) / totexpi * 100 else: totalexp = 0 totexpm = 0 totexpi = 0 expmp = 0 expip = 0 curPoint = int(min(expm, totexpm)) curPoint = int(max(expm, 0)) maxPoint = int(max(totexpm, 0)) curPointi = int(min(expi, totexpi)) curPointi = int(max(expi, 0)) maxPointi = int(max(totexpi, 0)) quarterPoint = maxPoint / 4 quarterPointi = maxPointi FullCount = 0 FullCounti = 0 if 0 != quarterPoint: FullCount = min(4, curPoint / quarterPoint) if 0 != quarterPointi: FullCounti = min(1, curPointi / quarterPointi) for i in xrange(4): self.petexppages[i].Hide() self.petexppages[4].Hide() for i in xrange(FullCount): self.petexppages[i].SetRenderingRect(0.0, 0.0, 0.0, 0.0) self.petexppages[i].Show() for i in xrange(FullCounti): self.petexppages[4].SetRenderingRect(0.0, 0.0, 0.0, 0.0) self.petexppages[4].Show() if 0 != quarterPoint: if FullCount < 4: Percentage = float(curPoint % quarterPoint) / quarterPoint - 1.0 self.petexppages[FullCount].SetRenderingRect(0.0, Percentage, 0.0, 0.0) self.petexppages[FullCount].Show() if 0 != quarterPointi: if FullCounti < 1: Percentage = float(curPointi % quarterPointi) / quarterPointi - 1.0 self.petexppages[4].SetRenderingRect(0.0, Percentage, 0.0, 0.0) self.petexppages[4].Show() #chat.AppendChat(chat.CHAT_TYPE_INFO, str(curPoint)+"-"+str(maxPoint)+"-"+str(FullCount)+"--"+str(quarterPoint)) ##### self.tooltipexp[0].SetText("Experience : %d of %d" % (expm, totexpm)) self.tooltipexp[1].SetText("Experience : %.2f%%" % expmp) self.tooltipexp[2].SetText("ExperienceI : %d of %d" % (expi, totexpi)) self.tooltipexp[3].SetText("ExperienceI : %.2f%%" % expip) def UseSkill(self, slot): #chat.AppendChat(chat.CHAT_TYPE_INFO, "+ --> "+str(slot)) #chat.AppendChat(chat.CHAT_TYPE_INFO, "Skill: "+ str(petskill.GetSkillbySlot(slot))) net.SendChatPacket("/petskills "+str(slot)) def OnUpdate(self): if constInfo.FEEDWIND == 0: self.nutribtn.Enable() #self.sviluppobtn.Enable() self.itemexp.Enable() if TRUE == self.expwind.IsIn(): for i in range(0,4): self.tooltipexp[i].Show() else: for i in range(0,4): self.tooltipexp[i].Hide() class PetSystemMini(ui.ScriptWindow): class TextToolTip(ui.Window): def __init__(self, y): ui.Window.__init__(self, "TOP_MOST") textLine = ui.TextLine() textLine.SetParent(self) textLine.SetHorizontalAlignLeft() textLine.SetOutline() textLine.Show() self.y = y self.textLine = textLine def __del__(self): ui.Window.__del__(self) def SetText(self, text): self.textLine.SetText(text) def OnRender(self): (mouseX, mouseY) = wndMgr.GetMousePosition() self.textLine.SetPosition(mouseX, mouseY - 60 + self.y) def __init__(self, vnum = 0): ui.ScriptWindow.__init__(self) self.vnum = vnum self.__LoadWindow() def __del__(self): ui.ScriptWindow.__del__(self) def Show(self): ui.ScriptWindow.Show(self) def Close(self): self.Hide() def __LoadWindow(self): try: pyScrLoader = ui.PythonScriptLoader() pyScrLoader.LoadScriptFile(self, "uiscript/PetMiniInformationWindow.py") except: import exception exception.Abort("PetMiniInformationWindow.LoadWindow.LoadObject") try: self.expwind = self.GetChild("pet_mini_info_exp_gauge_board") self.expwind1 = self.GetChild("pet_mini_info_exp_gauge_board1") self.mainbg = self.GetChild("main_bg") self.mainicon = self.GetChild("main_slot_img") self.main_slot_img = self.GetChild("pet_icon_slot") self.tooltipexp = [] for i in range(0,4): self.tooltipexp.append(self.TextToolTip(15*i)) self.tooltipexp[i].Hide() self.pet_icon_slot_ani_img = self.GetChild("pet_icon_slot_ani_img") self.pet_mini_exp_01 = self.GetChild("pet_mini_EXPGauge_01") self.pet_mini_exp_02 = self.GetChild("pet_mini_EXPGauge_02") self.pet_mini_exp_03 = self.GetChild("pet_mini_EXPGauge_03") self.pet_mini_exp_04 = self.GetChild("pet_mini_EXPGauge_04") self.pet_mini_exp_05 = self.GetChild("pet_mini_EXPGauge_05") self.petmini_exp = [] self.petmini_exp.append(self.pet_mini_exp_01) self.petmini_exp.append(self.pet_mini_exp_02) self.petmini_exp.append(self.pet_mini_exp_03) self.petmini_exp.append(self.pet_mini_exp_04) self.petmini_exp.append(self.pet_mini_exp_05) self.petlifeg = self.GetChild("LifeGauge") self.pet_icon_slot_ani_img.Hide() self.skillslot = self.GetChild("mini_skill_slot0") #self.skillslot.SetSlotScale(0, 2, 16, 16, petskill.GetEmptySkill(), 0.5, 0.5) #self.skillslot.SetSlotScale(1, 2, 16, 16, petskill.GetEmptySkill(), 0.5, 0.5) #self.skillslot.SetSlotScale(2, 2, 16, 16, petskill.GetEmptySkill(), 0.5, 0.5) self.skillslot.SetSelectItemSlotEvent(ui.__mem_func__(self.UseSkill)) self.skillslot.SetUseSlotEvent(ui.__mem_func__(self.UseSkill)) self.main_slot_img.SetUseSlotEvent(ui.__mem_func__(self.OpenPet)) self.main_slot_img.SetSelectItemSlotEvent(ui.__mem_func__(self.OpenPet)) self.SetDefaultInfo() #self.mainbg.Show() except: import exception exception.Abort("PetMiniInformationWindow.LoadWindow.BindObject") def SetDefaultInfo(self): self.SetDuration("0", "0") self.main_slot_img.ClearSlot(0) self.skillslot.ClearSlot(0) self.skillslot.ClearSlot(1) self.skillslot.ClearSlot(2) self.skillslot.SetSlotScale(0, 2, 16, 16, petskill.GetEmptySkill(), 0.5, 0.5) self.skillslot.SetSlotScale(1, 2, 16, 16, petskill.GetEmptySkill(), 0.5, 0.5) self.skillslot.SetSlotScale(2, 2, 16, 16, petskill.GetEmptySkill(), 0.5, 0.5) self.SetExperience(0,0,0) def OpenPet(self): net.SendChatPacket("/gift") def SetImageSlot(self, vnum): self.main_slot_img.SetItemSlot(0, int(vnum), 0) self.main_slot_img.SetAlwaysRenderCoverButton(0, TRUE) def SetDuration(self, dur, durt): tmpage = int((int(durt)/60 -int(dur) /60)/24) if int(dur) > 0: self.petlifeg.SetPercentage(int(dur), int(durt)) self.petlifeg.Show() else: self.petlifeg.Hide() def SetSkill(self, slot, idx, lv): if int(idx) != -1: self.skillslot.ClearSlot(int(slot)) self.skillslot.SetPetSkillSlot(int(slot), int(idx), int(lv), 0.5, 0.5) self.skillslot.SetCoverButton(int(slot), "d:/ymir work/ui/pet/mini_window/pet_slot_corvermini.sub", "d:/ymir work/ui/pet/mini_window/pet_slot_corvermini.sub", "d:/ymir work/ui/pet/mini_window/pet_slot_corvermini.sub" , "d:/ymir work/ui/pet/mini_window/pet_slot_corvermini.sub") self.skillslot.SetAlwaysRenderCoverButton(int(slot), TRUE) def SetExperience(self, expm, expi, exptot): expm = int(expm) expi = int(expi) exptot = int(exptot) if exptot > 0: totalexp = exptot totexpm = int( float(totalexp) / 100 * 90 ) totexpi = totalexp - totexpm expi = min(expi, totexpi) expmp = float(expm) / totexpm * 100 expip = float(expi) / totexpi * 100 else: totalexp = 0 totexpm = 0 totexpi = 0 expmp = 0 expip = 0 curPoint = int(min(expm, totexpm)) curPoint = int(max(expm, 0)) maxPoint = int(max(totexpm, 0)) curPointi = int(min(expi, totexpi)) curPointi = int(max(expi, 0)) maxPointi = int(max(totexpi, 0)) quarterPoint = maxPoint / 4 quarterPointi = maxPointi FullCount = 0 FullCounti = 0 if 0 != quarterPoint: FullCount = min(4, curPoint / quarterPoint) if 0 != quarterPointi: FullCounti = min(1, curPointi / quarterPointi) for i in xrange(4): self.petmini_exp[i].Hide() self.petmini_exp[4].Hide() for i in xrange(FullCount): self.petmini_exp[i].SetRenderingRect(0.0, 0.0, 0.0, 0.0) self.petmini_exp[i].Show() for i in xrange(FullCounti): self.petmini_exp[4].SetRenderingRect(0.0, 0.0, 0.0, 0.0) self.petmini_exp[4].Show() if 0 != quarterPoint: if FullCount < 4: Percentage = float(curPoint % quarterPoint) / quarterPoint - 1.0 self.petmini_exp[FullCount].SetRenderingRect(0.0, Percentage, 0.0, 0.0) self.petmini_exp[FullCount].Show() if 0 != quarterPointi: if FullCounti < 1: Percentage = float(curPointi % quarterPointi) / quarterPointi - 1.0 self.petmini_exp[4].SetRenderingRect(0.0, Percentage, 0.0, 0.0) self.petmini_exp[4].Show() ##### self.tooltipexp[0].SetText("Experience : %d of %d" % (expm, totexpm)) self.tooltipexp[1].SetText("Experience : %.2f%%" % expmp) self.tooltipexp[2].SetText("ExperienceI : %d of %d" % (expi, totexpi)) self.tooltipexp[3].SetText("ExperienceI : %.2f%%" % expip) def UseSkill(self, slot): chat.AppendChat(chat.CHAT_TYPE_INFO, "+ --> "+str(slot)) #chat.AppendChat(chat.CHAT_TYPE_INFO, "Skill: "+ str(petskill.GetSkillbySlot(slot))) net.SendChatPacket("/petskills "+str(slot)) def OnUpdate(self): if constInfo.PET_LEVEL == 40 and constInfo.PET_EVOLUTION == 0: self.pet_icon_slot_ani_img.Show() elif constInfo.PET_LEVEL == 81 and constInfo.PET_EVOLUTION == 1: self.pet_icon_slot_ani_img.Show() elif constInfo.PET_LEVEL == 81 and constInfo.PET_EVOLUTION == 2: self.pet_icon_slot_ani_img.Show() else: self.pet_icon_slot_ani_img.Hide() if TRUE == self.expwind1.IsIn(): for i in range(0,4): self.tooltipexp[i].Show() else: for i in range(0,4): self.tooltipexp[i].Hide()
2112bbc0bb40eb05b9d150ae386c7817e5840775
d94b6845aeeb412aac6850b70e22628bc84d1d6d
/unprocessing/estimator.py
def1f4464ffc7f3d2afab9ff75d80d3992b58c68
[ "CC-BY-4.0", "Apache-2.0" ]
permissive
ishine/google-research
541aea114a68ced68736340e037fc0f8257d1ea2
c1ae273841592fce4c993bf35cdd0a6424e73da4
refs/heads/master
2023-06-08T23:02:25.502203
2023-05-31T01:00:56
2023-05-31T01:06:45
242,478,569
0
0
Apache-2.0
2020-06-23T01:55:11
2020-02-23T07:59:42
Jupyter Notebook
UTF-8
Python
false
false
5,225
py
# coding=utf-8 # Copyright 2023 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unprocessing model function and train and eval specs for Estimator. Unprocessing Images for Learned Raw Denoising http://timothybrooks.com/tech/unprocessing """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.compat.v1 as tf from tensorflow.compat.v1 import estimator as tf_estimator from unprocessing import process from tensorflow.contrib import layers as contrib_layers def psnr(labels, predictions): """Computes average peak signal-to-noise ratio of `predictions`. Here PSNR is defined with respect to the maximum value of 1. All image tensors must be within the range [0, 1]. Args: labels: Tensor of shape [B, H, W, N]. predictions: Tensor of shape [B, H, W, N]. Returns: Tuple of (psnr, update_op) as returned by tf.metrics. """ predictions.shape.assert_is_compatible_with(labels.shape) with tf.control_dependencies([tf.assert_greater_equal(labels, 0.0), tf.assert_less_equal(labels, 1.0)]): psnrs = tf.image.psnr(labels, predictions, max_val=1.0) psnrs = tf.boolean_mask(psnrs, tf.logical_not(tf.is_inf(psnrs))) return tf.metrics.mean(psnrs, name='psnr') def create_model_fn(inference_fn, hparams): """Creates a model function for Estimator. Args: inference_fn: Model inference function with specification: Args - noisy_img - Tensor of shape [B, H, W, 4]. variance - Tensor of shape [B, H, W, 4]. Returns - Tensor of shape [B, H, W, 4]. hparams: Hyperparameters for model as a tf.contrib.training.HParams object. Returns: `_model_fn`. """ def _model_fn(features, labels, mode, params): """Constructs the model function. Args: features: Dictionary of input features. labels: Tensor of labels if mode is `TRAIN` or `EVAL`, otherwise `None`. mode: ModeKey object (`TRAIN` or `EVAL`). params: Parameter dictionary passed from the Estimator object. Returns: An EstimatorSpec object that encapsulates the model and its serving configurations. """ del params # Unused. def process_images(images): """Closure for processing images with fixed metadata.""" return process.process(images, features['red_gain'], features['blue_gain'], features['cam2rgb']) denoised_img = inference_fn(features['noisy_img'], features['variance']) noisy_img = process_images(features['noisy_img']) denoised_img = process_images(denoised_img) truth_img = process_images(labels) if mode in [tf_estimator.ModeKeys.TRAIN, tf_estimator.ModeKeys.EVAL]: loss = tf.losses.absolute_difference(truth_img, denoised_img) else: loss = None if mode == tf_estimator.ModeKeys.TRAIN: optimizer = tf.train.AdamOptimizer(learning_rate=hparams.learning_rate) train_op = contrib_layers.optimize_loss( loss=loss, global_step=tf.train.get_global_step(), learning_rate=None, optimizer=optimizer, name='') # Prevents scope prefix. else: train_op = None if mode == tf_estimator.ModeKeys.EVAL: eval_metric_ops = {'PSNR': psnr(truth_img, denoised_img)} def summary(images, name): """As a hack, saves image summaries by adding to `eval_metric_ops`.""" images = tf.saturate_cast(images * 255 + 0.5, tf.uint8) eval_metric_ops[name] = (tf.summary.image(name, images, max_outputs=2), tf.no_op()) summary(noisy_img, 'Noisy') summary(denoised_img, 'Denoised') summary(truth_img, 'Truth') diffs = (denoised_img - truth_img + 1.0) / 2.0 summary(diffs, 'Diffs') else: eval_metric_ops = None return tf_estimator.EstimatorSpec( mode=mode, loss=loss, train_op=train_op, eval_metric_ops=eval_metric_ops) return _model_fn def create_train_and_eval_specs(train_dataset_fn, eval_dataset_fn, eval_steps=250): """Creates a TrainSpec and EvalSpec. Args: train_dataset_fn: Function returning a Dataset of training data. eval_dataset_fn: Function returning a Dataset of evaluation data. eval_steps: Number of steps for evaluating model. Returns: Tuple of (TrainSpec, EvalSpec). """ train_spec = tf_estimator.TrainSpec(input_fn=train_dataset_fn, max_steps=None) eval_spec = tf_estimator.EvalSpec( input_fn=eval_dataset_fn, steps=eval_steps, name='') return train_spec, eval_spec
0fb5e7964be470bc671a7d6c2fc74cb80dd76bf7
07c6d3055eda7b1ddb16ce9444166ed311ce3219
/modules/topics.py
0821e4b960e83e661ea7519105c0d6cf7682fd6f
[]
no_license
IISH/dpe
4df9b0576b5419e543c61ce9ef14380ddc4b5c03
6509b06aa03242f450766d4cb5d8984f14146b11
refs/heads/master
2021-01-10T17:52:54.775316
2016-05-04T09:50:46
2016-05-04T09:50:46
42,994,984
1
0
null
null
null
null
UTF-8
Python
false
false
1,867
py
import urllib2 import simplejson import json import sys import pandas as pd import random import vincent from vincent import Axis, AxisProperties, PropertySet, ValueRef from pandas.io.json import json_normalize from config import configuration, dataverse2indicators, load_dataverse, findpid, load_metadata import re def loadjson(apiurl): jsondataurl = apiurl req = urllib2.Request(jsondataurl) opener = urllib2.build_opener() f = opener.open(req) dataframe = simplejson.load(f) return dataframe def topics_parser(alltopics): topics = {} indicators = {} topic2inds = {} indline = [] for item in alltopics: #print item name = item['Name'] thisid = int(item['ID']) pcode = item['parent ID'] if not pcode: topics[name] = thisid else: indicators[thisid] = name try: indline = topic2inds[pcode] except: indline = [] indline.append(thisid) topic2inds[int(pcode)] = indline return (topics, indicators, topic2inds) def load_alltopics(api, branch): result = loadjson(api) (topics, indicators, topic2inds) = topics_parser(result) datasets = dataverse2indicators(branch) html = '' for topic in sorted(topics): topicID = topics[topic] html = html + "<optgroup label=\"" + str(topic) + "\">\n" indlist = topic2inds[topicID] for ind in indlist: indicator = indicators[ind] try: showind = datasets[indicator] except: showind = ind html = html + "\t<option value=\"" + str(showind) + "\">" + indicator + "</option>" + "\n" html = html + "</optgroup>\n" return html
15d9b29ddeef1b379e388b0cbb36ebe97afa4cdd
30a2a924eb32e7297b5a99785950467f25ea785d
/tfgen.py
074dd41e2fc6687d9c11c44a8d2d2c8c9a1784f5
[]
no_license
zshwuhan/Reinforcement-Learning-of-Spatio-Temporal-Point-Processes
1a794e83491b52dea5db3926de91779a9e661a17
a3f98e77b56c03839dcdb545b17b3675e7c43878
refs/heads/master
2020-07-22T16:18:10.020860
2019-07-02T18:49:02
2019-07-02T18:49:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,218
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Imitation Learning for Point Process A LSTM based model for generating marked spatial-temporal points. References: - https://arxiv.org/abs/1811.05016 Dependencies: - Python 3.6.7 - tensorflow==1.5.0 """ import sys import arrow import utils import numpy as np import tensorflow as tf from stppg import GaussianMixtureDiffusionKernel, HawkesLam, SpatialTemporalPointProcess class SpatialTemporalHawkes(object): """ Customized Spatial Temporal Hawkes A Hawkes model parametrized by multi-layers neural networks, which provides flexible self-exciting points pattern. """ def __init__(self, T, S, layers=[20, 20], n_comp=5, C=1., maximum=1e+3, verbose=False): """ """ # constant hyper parameters self.INIT_PARAM = .01 self.SIGMA_SHIFT = .05 self.SIGMA_SCALE = .2 self.MU_SCALE = .01 # configurations self.C = C # constant self.T = T # time space self.S = S # location space self.maximum = maximum # upper bound of conditional intensity self.verbose = verbose # model parameters self.mu = tf.get_variable(name="mu", initializer=tf.constant(0.1), dtype=tf.float32) self.beta = tf.get_variable(name="beta", initializer=tf.constant(1.), dtype=tf.float32) self.Wss = [] self.bss = [] self.Wphis = [] # construct multi-layers neural networks # - define the layers where 2 is for the input layer (x and y); # And 5 is for the output layer (mu_x, mu_y, sigma_x, sigma_y, rho) self.layers = [2] + layers + [5] # - define the number of the components in Gaussian mixture diffusion kernel self.n_comp = n_comp # - construct component weighting vectors for k in range(self.n_comp): Wphi = tf.get_variable(name="Wphi%d" % k, initializer=self.INIT_PARAM * tf.random.normal(shape=[2, 1]), dtype=tf.float32) self.Wphis.append(Wphi) # - construct weight & bias matrix layer by layer for each of Gaussian components Ws = [] bs = [] for i in range(len(self.layers)-1): # random initialization W = tf.get_variable(name="W%d%d" % (k, i), initializer=self.INIT_PARAM * tf.random.normal(shape=[self.layers[i], self.layers[i+1]]), dtype=tf.float32) b = tf.get_variable(name="b%d%d" % (k, i), initializer=self.INIT_PARAM * tf.random.normal(shape=[self.layers[i+1]]), dtype=tf.float32) Ws.append(W) bs.append(b) self.Wss.append(Ws) self.bss.append(bs) def sampling(self, sess, batch_size): """fetch model parameters, and generate samples accordingly.""" # get current model parameters mu, beta = sess.run([self.mu, self.beta]) Wss = sess.run(self.Wss) bss = sess.run(self.bss) Wphis = sess.run(self.Wphis) # construct kernel function and conditional intensity lambda kernel = GaussianMixtureDiffusionKernel( self.n_comp, layers=self.layers[1:-1], beta=beta, C=self.C, SIGMA_SHIFT=self.SIGMA_SHIFT, SIGMA_SCALE=self.SIGMA_SCALE, MU_SCALE=self.MU_SCALE, Wss=Wss, bss=bss, Wphis=Wphis) lam = HawkesLam(mu, kernel, maximum=self.maximum) # sampling points given model parameters pp = SpatialTemporalPointProcess(lam) seqs, sizes = pp.generate(T=self.T, S=self.S, batch_size=batch_size, verbose=self.verbose) return seqs def _nonlinear_mapping(self, k, s): """nonlinear mapping from location space to parameters space""" # construct multi-layers neural networks output = s # [n_his, 2] for i in range(len(self.layers)-1): output = tf.nn.sigmoid(tf.nn.xw_plus_b(output, self.Wss[k][i], self.bss[k][i])) # [n_his, n_b] # project to parameters space mu_x = (output[:, 0] - 0.5) * 2 * self.MU_SCALE # [n_his]: mu_x spans (-MU_SCALE, MU_SCALE) mu_y = (output[:, 1] - 0.5) * 2 * self.MU_SCALE # [n_his]: mu_y spans (-MU_SCALE, MU_SCALE) sigma_x = output[:, 2] * self.SIGMA_SCALE + self.SIGMA_SHIFT # [n_his]: sigma_x spans (SIGMA_SHIFT, SIGMA_SHIFT + SIGMA_SCALE) sigma_y = output[:, 3] * self.SIGMA_SCALE + self.SIGMA_SHIFT # [n_his]: sigma_y spans (SIGMA_SHIFT, SIGMA_SHIFT + SIGMA_SCALE) rho = output[:, 4] * 1.5 - .75 # [n_his]: rho spans (-.75, .75) return mu_x, mu_y, sigma_x, sigma_y, rho def _gaussian_kernel(self, k, t, s, his_t, his_s): """ A Gaussian diffusion kernel function based on the standard kernel function proposed by Musmeci and Vere-Jones (1992). The angle and shape of diffusion ellipse is able to vary according to the location. k indicates the k-th gaussian component that is used to compute the nonlinear mappings. """ eps = 1e-8 # IMPORTANT: Avoid delta_t be zero delta_t = t - his_t + eps # [n_his] delta_s = s - his_s # [n_his, 2] delta_x = delta_s[:, 0] # [n_his] delta_y = delta_s[:, 1] # [n_his] mu_x, mu_y, sigma_x, sigma_y, rho = self._nonlinear_mapping(k, his_s) return tf.exp(- self.beta * delta_t) * \ (self.C / (2 * np.pi * sigma_x * sigma_y * delta_t * tf.sqrt(1 - tf.square(rho)))) * \ tf.exp((- 1. / (2 * delta_t * (1 - tf.square(rho)))) * \ ((tf.square(delta_x - mu_x) / tf.square(sigma_x)) + \ (tf.square(delta_y - mu_y) / tf.square(sigma_y)) - \ (2 * rho * (delta_x - mu_x) * (delta_y - mu_y) / (sigma_x * sigma_y)))) def _softmax(self, s, k): """ Gaussian mixture components are weighted by phi^k, which are computed by a softmax function, i.e., phi^k(x, y) = e^{[x y]^T w^k} / \sum_{i=1}^K e^{[x y]^T w^i} """ # s: [n_his, 2] # Wphis[k]: [2, 1] numerator = tf.exp(tf.matmul(s, self.Wphis[k])) # [n_his, 1] denominator = tf.concat([ tf.exp(tf.matmul(s, self.Wphis[i])) for i in range(self.n_comp) ], axis=1) # [n_his, K=n_comp] phis = tf.squeeze(numerator) / tf.reduce_sum(denominator, axis=1) # [n_his] return phis def _gaussian_mixture_kernel(self, t, s, his_t, his_s): """ A Gaussian mixture diffusion kernel function is superposed by multiple Gaussian diffusion kernel function. The number of the Gaussian components is specified by n_comp. """ nus = [] for k in range(self.n_comp): phi = self._softmax(his_s, k) # [n_his] nu = phi * self._gaussian_kernel(k, t, s, his_t, his_s) # [n_his] nu = tf.expand_dims(nu, -1) # [n_his, 1] nus.append(nu) # K * [n_his, 1] nus = tf.concat(nus, axis=1) # [n_his, K] return tf.reduce_sum(nus, axis=1) # [n_his] def _lambda(self, t, s, his_t, his_s): """lambda function for the Hawkes process.""" lam = self.mu + tf.reduce_sum(self._gaussian_mixture_kernel(t, s, his_t, his_s)) return lam def log_conditional_pdf(self, points, keep_latest_k=None): """log pdf conditional on history.""" if keep_latest_k is not None: points = points[-keep_latest_k:, :] # number of the points len_points = tf.shape(points)[0] # variables for calculating triggering probability s, t = points[-1, 1:], points[-1, 0] his_s, his_t = points[:-1, 1:], points[:-1, 0] def pdf_no_history(): return tf.log(tf.clip_by_value(self._lambda(t, s, his_t, his_s), 1e-8, 1e+10)) def pdf_with_history(): # triggering probability log_trig_prob = tf.log(tf.clip_by_value(self._lambda(t, s, his_t, his_s), 1e-8, 1e+10)) # variables for calculating tail probability tn, ti = points[-2, 0], points[:-1, 0] t_ti, tn_ti = t - ti, tn - ti # tail probability # TODO: change to gaussian mixture (add phi) log_tail_prob = - \ self.mu * (t - tn) * utils.lebesgue_measure(self.S) - \ tf.reduce_sum(tf.scan( lambda a, i: self.C * (tf.exp(- self.beta * tn_ti[i]) - tf.exp(- self.beta * t_ti[i])) / \ tf.clip_by_value(self.beta, 1e-8, 1e+10), tf.range(tf.shape(t_ti)[0]), initializer=np.array(0., dtype=np.float32))) return log_trig_prob + log_tail_prob # TODO: Unsolved issue: # pdf_with_history will still be called even if the condition is true, which leads to exception # "ValueError: slice index -1 of dimension 0 out of bounds." due to that points is empty but we # try to index a nonexisted element. # However, when points is indexed in a scan loop, this works fine and the numerical result is # also correct. which is very confused to me. Therefore, I leave this problem here temporarily. log_cond_pdf = tf.cond(tf.less(len_points, 2), pdf_no_history, # if there is only one point in the sequence pdf_with_history) # if there is more than one point in the sequence return log_cond_pdf def log_likelihood(self, points): """log likelihood of given points""" loglikli = 0. # loglikelihood initialization mask_t = tf.cast(points[:, 0] > 0, tf.float32) # time mask trunc_seq = tf.boolean_mask(points, mask_t) # truncate the sequence and get the valid part seq_len = tf.shape(trunc_seq)[0] # length of the sequence # term 1: product of lambda loglikli += tf.reduce_sum(tf.scan( lambda a, i: tf.log(self._lambda(trunc_seq[i, 0], trunc_seq[i, 1:], trunc_seq[:i, 0], trunc_seq[:i, 1:])), tf.range(seq_len), initializer=np.array(0., dtype=np.float32))) # term 2: 1 - F^*(T) ti = points[:, 0] zero_ti = 0 - ti T_ti = self.T[1] - ti loglikli -= tf.reduce_sum(tf.scan( lambda a, i: self.C * (tf.exp(- self.beta * zero_ti[i]) - tf.exp(- self.beta * T_ti[i])) / \ tf.clip_by_value(self.beta, 1e-8, 1e+10), tf.range(tf.shape(ti)[0]), initializer=np.array(0., dtype=np.float32))) return loglikli def save_params_npy(self, sess, path): """save parameters into numpy file.""" Wss = sess.run(self.Wss) bss = sess.run(self.bss) Wphis = sess.run(self.Wphis) mu, beta = sess.run([self.mu, self.beta]) print(Wss) print(Wphis) np.savez(path, Wss=Wss, bss=bss, Wphis=Wphis, mu=mu, beta=beta) if __name__ == "__main__": # Unittest example np.random.seed(1) tf.set_random_seed(1) with tf.Session() as sess: hawkes = SpatialTemporalHawkes( T=[0., 10.], S=[[-1., 1.], [-1., 1.]], layers=[5], n_comp=3, C=1., maximum=1e+3, verbose=True) points = tf.constant([ [ 1.16898147e-02, 1.45831794e-01, -3.05314839e-01], [ 4.81481478e-02, -1.25229925e-01, 8.72766301e-02], [ 1.13194443e-01, -3.87020826e-01, 2.80696362e-01], [ 1.60300925e-01, -2.42807735e-02, -5.64230382e-01], [ 1.64004624e-01, 7.10764453e-02, -1.77927762e-01], [ 1.64236113e-01, 6.51166216e-02, -6.82414293e-01], [ 2.05671296e-01, -4.48017061e-01, 5.36620915e-01], [ 2.12152779e-01, -3.20064761e-02, -2.08911732e-01]], dtype=tf.float32) init_op = tf.global_variables_initializer() sess.run(init_op) # t = points[-1, 0] # s = points[-1, 1:] # his_t = points[:-1, 0] # his_s = points[:-1, 1:] # res = sess.run(hawkes.log_conditional_pdf(points)) # res = sess.run(hawkes._lambda(t, s, his_t, his_s)) # res = sess.run(hawkes._softmax(his_s, 0)) # res = sess.run(hawkes._gaussian_kernel(0, t, s, his_t, his_s)) # seq_len = tf.shape(points)[0] # r = tf.scan( # lambda a, i: hawkes._lambda(points[i, 0], points[i, 1:], points[:i, 0], points[:i, 1:]), # tf.range(seq_len), # from the first point to the last point # initializer=np.array(0., dtype=np.float32)) r = hawkes.log_likelihood(points) print(sess.run(r)) # # test sampling # seqs = hawkes.sampling(sess, batch_size=10) # print(seqs)
a2e37e0d4b119607f5714d60955c059bfeb459ae
96c1f13473cf224113185902edd4c9c01091e106
/theseus/optimizer/nonlinear/dcem.py
e8187726c0cc032faab0f714e60c34a80840bb1b
[ "MIT" ]
permissive
facebookresearch/theseus
f1e488eb5a25f5ba74a6995911bee958b5da4cf3
240e1206329d42fedd40399684d6e17e455c6645
refs/heads/main
2023-08-11T07:33:12.328520
2023-08-02T12:58:01
2023-08-02T12:58:01
429,570,359
1,410
105
MIT
2023-08-01T14:30:01
2021-11-18T20:28:27
Python
UTF-8
Python
false
false
8,421
py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Dict, List, Optional, Union import numpy as np import torch from torch.distributions import Normal from theseus.core.objective import Objective from theseus.optimizer import OptimizerInfo from theseus.optimizer.variable_ordering import VariableOrdering from theseus.third_party.lml import LML from .nonlinear_optimizer import ( BackwardMode, EndIterCallbackType, NonlinearOptimizer, NonlinearOptimizerInfo, NonlinearOptimizerStatus, ) class DCEM(NonlinearOptimizer): """ DCEM optimizer for nonlinear optimization using sampling based techniques. The optimizer can be really sensitive to hypermeter tuning. Here are few tuning hints: 1. If have to lower the max_iterations, then increase the n_sample. 2. The higher the n_sample, the slowly with variance of samples will decrease. 3. The higher the n_sample, more the chances of optimum being in the elite set. 4. The higher the n_elite, the slower is convergence, but more accurate it might be, but would need more iterations. n_elite= 5 is good enough for most cases. """ def __init__( self, objective: Objective, vectorize: bool = False, max_iterations: int = 50, n_sample: int = 100, n_elite: int = 5, temp: float = 1.0, init_sigma: Union[float, torch.Tensor] = 1.0, lb: float = None, ub: float = None, lml_verbose: bool = False, lml_eps: float = 1e-3, normalize: bool = True, abs_err_tolerance: float = 1e-6, rel_err_tolerance: float = 1e-4, **kwargs, ) -> None: super().__init__( objective, vectorize=vectorize, abs_err_tolerance=abs_err_tolerance, rel_err_tolerance=rel_err_tolerance, max_iterations=max_iterations, **kwargs, ) self.objective = objective self.ordering = VariableOrdering(objective) self.n_samples = n_sample self.n_elite = n_elite self.lb = lb self.ub = ub self.temp = temp self.normalize = normalize self._tot_dof = sum([x.dof() for x in self.ordering]) self.lml_eps = lml_eps self.lml_verbose = lml_verbose self.init_sigma = init_sigma def _mu_vec_to_dict(self, mu: torch.Tensor) -> Dict[str, torch.Tensor]: idx = 0 mu_dic = {} for var in self.ordering: mu_dic[var.name] = mu[:, slice(idx, idx + var.dof())] idx += var.dof() return mu_dic def reset_sigma(self, init_sigma: Union[float, torch.Tensor]) -> None: self.sigma = ( torch.ones( (self.objective.batch_size, self._tot_dof), device=self.objective.device ) * init_sigma ) def _CEM_step(self): """ Performs one iteration of CEM. Updates the self.sigma and return the new mu. """ device = self.objective.device n_batch = self.ordering[0].shape[0] mu = torch.cat([var.tensor for var in self.ordering], dim=-1) X = Normal(mu, self.sigma).rsample((self.n_samples,)) X_samples: List[Dict[str, torch.Tensor]] = [] for sample in X: X_samples.append(self._mu_vec_to_dict(sample)) fX = torch.stack( [self.objective.error_metric(X_samples[i]) for i in range(self.n_samples)], dim=1, ) assert fX.shape == (n_batch, self.n_samples) if self.temp is not None and self.temp < np.infty: if self.normalize: fX_mu = fX.mean(dim=1).unsqueeze(1) fX_sigma = fX.std(dim=1).unsqueeze(1) _fX = (fX - fX_mu) / (fX_sigma + 1e-6) else: _fX = fX if self.n_elite == 1: # indexes = LML(N=n_elite, verbose=lml_verbose, eps=lml_eps)(-_fX*temp) indexes = torch.softmax(-_fX * self.temp, dim=1) else: indexes = LML( N=self.n_elite, verbose=self.lml_verbose, eps=self.lml_eps )(-_fX * self.temp) indexes = indexes.unsqueeze(2) eps = 0 else: indexes_vals = fX.argsort(dim=1)[:, : self.n_elite] # Scatter 1.0 to the indexes using indexes_vals indexes = torch.zeros(n_batch, self.n_samples, device=device).scatter_( 1, indexes_vals, 1.0 ) indexes = indexes.unsqueeze(2) eps = 1e-10 # indexes.shape should be (n_batch, n_sample, 1) X = X.transpose(0, 1) assert indexes.shape[:2] == X.shape[:2] X_I = indexes * X mu = torch.sum(X_I, dim=1) / self.n_elite self.sigma = ( (indexes * (X - mu.unsqueeze(1)) ** 2).sum(dim=1) / self.n_elite ).sqrt() + eps # adding eps to avoid sigma=0, which is happening when temp=None assert self.sigma.shape == (n_batch, self._tot_dof) return self._mu_vec_to_dict(mu) def _optimize_loop( self, num_iter: int, info: NonlinearOptimizerInfo, verbose: bool, end_iter_callback: Optional[EndIterCallbackType] = None, **kwargs, ) -> int: converged_indices = torch.zeros_like(info.last_err).bool() iters_done = 0 for it_ in range(num_iter): iters_done += 1 try: mu = self._CEM_step() except RuntimeError as error: raise RuntimeError(f"There is an error in update {error}.") self.objective.update(mu) # check for convergence with torch.no_grad(): err = self.objective.error_metric() self._update_info(info, it_, err, converged_indices) if verbose: print( f"Nonlinear optimizer. Iteration: {it_+1}. " f"Error: {err.mean().item()} " ) converged_indices = self._check_convergence(err, info.last_err) info.status[ np.array(converged_indices.cpu().numpy()) ] = NonlinearOptimizerStatus.CONVERGED if converged_indices.all(): break # nothing else will happen at this point info.last_err = err if end_iter_callback is not None: end_iter_callback(self, info, mu, it_) info.status[ info.status == NonlinearOptimizerStatus.START ] = NonlinearOptimizerStatus.MAX_ITERATIONS return iters_done def _optimize_impl( self, track_best_solution: bool = False, track_err_history: bool = False, track_state_history: bool = False, verbose: bool = False, backward_mode: Union[str, BackwardMode] = BackwardMode.UNROLL, end_iter_callback: Optional[EndIterCallbackType] = None, **kwargs, ) -> OptimizerInfo: backward_mode = BackwardMode.resolve(backward_mode) init_sigma = kwargs.get("init_sigma", self.init_sigma) self.reset_sigma(init_sigma) with torch.no_grad(): info = self._init_info( track_best_solution, track_err_history, track_state_history ) if verbose: print( f"DCEM optimizer. Iteration: 0. " f"Error: {info.last_err.mean().item()}" ) if backward_mode in [BackwardMode.UNROLL, BackwardMode.DLM]: self._optimize_loop( num_iter=self.params.max_iterations, info=info, verbose=verbose, end_iter_callback=end_iter_callback, **kwargs, ) # If didn't coverge, remove misleading converged_iter value info.converged_iter[ info.status == NonlinearOptimizerStatus.MAX_ITERATIONS ] = -1 return info else: raise NotImplementedError( "DCEM currently only supports 'unroll' backward mode." )
cce4258214c9c76a0aa0de00685e225913846b9b
a7dc8f76293a2c60478c95c4720cf39b8556c9e8
/tests/test_classify.py
3dc694dcb8ce4841090ee4d127deb0f3d62de74f
[ "MIT" ]
permissive
FarDON/cherry
8b67f6587a5c13603dfe5047edece218a382e904
28da9a05a0bf09f209829e81b8642e3fd76034e8
refs/heads/master
2022-11-02T13:13:12.366289
2020-06-22T13:56:45
2020-06-22T13:56:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,587
py
import os import unittest import cherry from unittest import mock from cherry import classify from sklearn.exceptions import NotFittedError class ClassifyTest(unittest.TestCase): def setUp(self): pass # __init__() @mock.patch('cherry.classifyer.Classify._classify') @mock.patch('cherry.classifyer.Classify._load_cache') def test_init(self, mock_load, mock_classify): mock_load.return_value = ('foo', 'bar') cherry.classifyer.Classify(model='random', text=['random text']) mock_load.assert_called_once_with('random') mock_classify.assert_called_once_with(['random text']) # _load_cache() @mock.patch('cherry.classifyer.Classify._classify') @mock.patch('cherry.classifyer.load_cache') def test_load_cache(self, mock_load, mock_classify): res = cherry.classifyer.Classify(model='foo', text=['random text']) mock_load.assert_not_called() @mock.patch('sklearn.feature_extraction.text.CountVectorizer.transform') @mock.patch('cherry.classifyer.load_cache') def test_classify_with_missing_token(self, mock_load, mock_trans): mock_object = mock.Mock() mock_object.transform.side_effect = NotFittedError() mock_load.return_value = mock_object # with self.assertRaises(cherry.exceptions.TokenNotFoundError) as token_error: # res = cherry.classifyer.Classify(model='harmful', text=['random text']) # self.assertEqual( # str(token_error.exception), # 'Some of the tokens in text never appear in training data')
0a27993a6e8351ecb41b9f6181bea19c78bf6000
53784d3746eccb6d8fca540be9087a12f3713d1c
/res/packages/scripts/scripts/client/gui/Scaleform/daapi/view/lobby/store/StoreTableDataProvider.py
047518eda41afe48b100901c3b0b9c35381c591b
[]
no_license
webiumsk/WOT-0.9.17.1-CT
736666d53cbd0da6745b970e90a8bac6ea80813d
d7c3cf340ae40318933e7205bf9a17c7e53bac52
refs/heads/master
2021-01-09T06:00:33.898009
2017-02-03T21:40:17
2017-02-03T21:40:17
80,870,824
0
0
null
null
null
null
WINDOWS-1250
Python
false
false
969
py
# 2017.02.03 21:50:30 Střední Evropa (běžný čas) # Embedded file name: scripts/client/gui/Scaleform/daapi/view/lobby/store/StoreTableDataProvider.py from gui.Scaleform.framework.entities.DAAPIDataProvider import DAAPIDataProvider class StoreTableDataProvider(DAAPIDataProvider): def __init__(self): super(StoreTableDataProvider, self).__init__() self.__list = [] @property def collection(self): return self.__list def buildList(self, dpList): self.__list = dpList def emptyItem(self): return None def clearList(self): while len(self.__list): self.__list.pop() self.__list = None return # okay decompyling c:\Users\PC\wotsources\files\originals\res\packages\scripts\scripts\client\gui\Scaleform\daapi\view\lobby\store\StoreTableDataProvider.pyc # decompiled 1 files: 1 okay, 0 failed, 0 verify failed # 2017.02.03 21:50:30 Střední Evropa (běžný čas)
52bf11f8be269922508207b1a1e3c7cdd7224b51
ab6cfc2aedad3de7a04efae4a6105dc893958b9e
/hivwholeseq/patients/get_allele_cocounts.py
733f7a025ee4e21175e08d194a24584b733f1f04
[ "MIT" ]
permissive
neherlab/hivwholeseq
158c0ce590bc67d1d36042c71b8b0afa3e8d8abf
978ce4060362e4973f92b122ed5340a5314d7844
refs/heads/master
2021-01-15T16:48:15.769316
2015-09-04T08:33:52
2015-09-04T08:33:52
49,801,765
4
3
null
2016-01-17T03:43:46
2016-01-17T03:43:44
null
UTF-8
Python
false
false
1,994
py
#!/usr/bin/env python # vim: fdm=marker ''' author: Fabio Zanini date: 20/03/14 content: Get the joint counts at two sites for patient samples, after mapping. ''' # Modules import argparse import numpy as np import matplotlib.pyplot as plt from hivwholeseq.patients.samples import load_samples_sequenced as lssp from hivwholeseq.patients.samples import SamplePat # Script if __name__ == '__main__': # Parse input args parser = argparse.ArgumentParser(description='Get allele cocounts', formatter_class=argparse.ArgumentDefaultsHelpFormatter) pats_or_samples = parser.add_mutually_exclusive_group(required=True) pats_or_samples.add_argument('--patients', nargs='+', help='Patient to analyze') pats_or_samples.add_argument('--samples', nargs='+', help='Samples to map') parser.add_argument('--regions', nargs='+', required=True, help='Fragments to analyze (e.g. F1 F6)') parser.add_argument('--verbose', type=int, default=0, help='Verbosity level [0-3]') parser.add_argument('--qualmin', type=int, default=30, help='Minimal quality of base to call') args = parser.parse_args() pnames = args.patients samplenames = args.samples regions = args.regions VERBOSE = args.verbose qual_min = args.qualmin use_plot = args.plot samples = lssp() if pnames is not None: samples = samples.loc[samples.patient.isin(pnames)] elif samplenames is not None: samples = samples.loc[samples.index.isin(samplenames)] if VERBOSE >= 2: print 'samples', samples.index.tolist() for region in regions: for samplename, sample in samples.iterrows(): sample = SamplePat(sample) if VERBOSE >= 1: print region, samplename cocount = np.load(fn_out)['cocounts']
ec461e4efcf3da5428bd688d03a049eaf481b553
60b8c5e048be54f49c28b2c224e86cf4d4629164
/gluon/setup.py
ec8a8656318e076b7715cb3373652d0ac7778656
[ "MIT" ]
permissive
kcieslik/imgclsmob
b333d2b0f8a04d15cc1c0b0d38845d1d2923ae26
d15bc7d4ebc50a31b4ad01cb3ad0e73b8cddbc9a
refs/heads/master
2020-06-13T06:21:01.744329
2019-06-28T16:05:11
2019-06-28T16:05:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,515
py
from setuptools import setup, find_packages from os import path from io import open here = path.abspath(path.dirname(__file__)) with open(path.join(here, 'README.md'), encoding='utf-8') as f: long_description = f.read() setup( name='gluoncv2', version='0.0.47', description='Image classification and segmentation models for Gluon', license='MIT', long_description=long_description, long_description_content_type='text/markdown', url='https://github.com/osmr/imgclsmob', author='Oleg Sémery', author_email='[email protected]', classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Topic :: Scientific/Engineering :: Image Recognition', ], keywords='machine-learning deep-learning neuralnetwork image-classification mxnet gluon imagenet cifar svhn vgg ' 'resnet pyramidnet diracnet densenet condensenet wrn drn dpn darknet fishnet espnetv2 xdensnet squeezenet ' 'squeezenext shufflenet menet mobilenet igcv3 mnasnet darts xception inception polynet nasnet pnasnet ror ' 'proxylessnas dianet efficientnet image-segmentation voc ade20k cityscapes coco pspnet deeplabv3 fcn', packages=find_packages(exclude=['others', '*.others', 'others.*', '*.others.*']), include_package_data=True, install_requires=['numpy'], )
f39bd365db767a8011a2eb4aa13b47ed5c0ac42e
923d035a4762a19b30d5900db91143a83837ae70
/ichnaea/data/station.py
8546d75f06412bf83af0c62c790ab8f2638f4774
[ "Apache-2.0" ]
permissive
voolitels/ichnaea
d5d5da34cb30b3e0c85675e32dab3972cc31d7b0
bd0350fcba9efb0bad3957309ed3a471ae07e41b
refs/heads/master
2021-01-17T14:21:16.056481
2015-11-10T16:38:22
2015-11-10T16:57:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
24,009
py
from collections import defaultdict import numpy from ichnaea.constants import ( PERMANENT_BLOCKLIST_THRESHOLD, TEMPORARY_BLOCKLIST_DURATION, ) from ichnaea.data.base import DataTask from ichnaea.geocalc import ( centroid, circle_radius, distance, ) from ichnaea.geocode import GEOCODER from ichnaea.models import ( encode_cellarea, Cell, CellBlocklist, StatCounter, StatKey, WifiShard, ) from ichnaea.models.constants import ( CELL_MAX_RADIUS, WIFI_MAX_RADIUS, ) from ichnaea import util class CellRemover(DataTask): def __init__(self, task, session, pipe): super(CellRemover, self).__init__(task, session) self.pipe = pipe self.area_queue = self.task.app.data_queues['update_cellarea'] def __call__(self, cell_keys): cells_removed = 0 changed_areas = set() for key in cell_keys: query = Cell.querykey(self.session, key) cells_removed += query.delete() changed_areas.add(encode_cellarea( key.radio, key.mcc, key.mnc, key.lac)) if changed_areas: self.area_queue.enqueue(list(changed_areas), pipe=self.pipe, json=False) return cells_removed class StationUpdater(DataTask): MAX_OLD_OBSERVATIONS = 1000 max_dist_meters = None station_type = None def __init__(self, task, session, pipe): super(StationUpdater, self).__init__(task, session) self.pipe = pipe self.updated_areas = set() self.utcnow = util.utcnow() self.today = self.utcnow.date() def stat_count(self, action, count, reason=None): if count > 0: tags = ['type:%s' % self.station_type] if reason: tags.append('reason:%s' % reason) self.stats_client.incr( 'data.observation.%s' % action, count, tags=tags) def __call__(self, batch=10): raise NotImplementedError() class CellUpdater(StationUpdater): max_dist_meters = CELL_MAX_RADIUS station_type = 'cell' def __init__(self, task, session, pipe, remove_task=None): super(CellUpdater, self).__init__(task, session, pipe) self.remove_task = remove_task self.data_queue = self.task.app.data_queues['update_cell'] def emit_statcounters(self, obs, stations): day = self.today StatCounter(StatKey.cell, day).incr(self.pipe, obs) StatCounter(StatKey.unique_cell, day).incr(self.pipe, stations) def emit_stats(self, added, dropped): self.stat_count('insert', added) for reason, count in dropped.items(): self.stat_count('drop', dropped[reason], reason=reason) def add_area_update(self, key): self.updated_areas.add(encode_cellarea( key.radio, key.mcc, key.mnc, key.lac)) def queue_area_updates(self): data_queue = self.task.app.data_queues['update_cellarea'] data_queue.enqueue(list(self.updated_areas), pipe=self.pipe, json=False) def blocklisted_station(self, block): age = self.utcnow - block.time temporary = age < TEMPORARY_BLOCKLIST_DURATION permanent = block.count >= PERMANENT_BLOCKLIST_THRESHOLD if temporary or permanent: return (True, block.time, block) return (False, block.time, block) def blocklisted_stations(self, station_keys): blocklist = {} for block in CellBlocklist.iterkeys( self.session, list(station_keys)): blocklist[block.hashkey()] = self.blocklisted_station(block) return blocklist def blocklist_stations(self, moving): moving_keys = [] new_block_values = [] for station_key, block in moving: moving_keys.append(station_key) if block: block.time = self.utcnow block.count += 1 else: block_key = CellBlocklist.to_hashkey(station_key) new_block_values.append(dict( time=self.utcnow, count=1, **block_key.__dict__ )) if new_block_values: # do a batch insert of new blocks stmt = CellBlocklist.__table__.insert( mysql_on_duplicate='time = time' # no-op ) # but limit the batch depending on each model ins_batch = CellBlocklist._insert_batch for i in range(0, len(new_block_values), ins_batch): batch_values = new_block_values[i:i + ins_batch] self.session.execute(stmt.values(batch_values)) if moving_keys: self.stats_client.incr( 'data.station.blocklist', len(moving_keys), tags=['type:%s' % self.station_type, 'action:add', 'reason:moving']) self.remove_task.delay(moving_keys) def new_station_values(self, station, station_key, first_blocked, observations): # This function returns a 3-tuple, the first element is True, # if the station was found to be moving. # The second element is either None or a dict of values, # if the station is new and should result in a table insert # The third element is either None or a dict of values # if the station did exist and should be updated obs_length = len(observations) obs_positions = numpy.array( [(obs.lat, obs.lon) for obs in observations], dtype=numpy.double) obs_lat, obs_lon = centroid(obs_positions) values = { 'modified': self.utcnow, } values.update(station_key.__dict__) if self.station_type == 'cell': # pass on extra psc column which is not actually part # of the stations hash key values['psc'] = observations[-1].psc created = self.utcnow if station is None: if first_blocked: # if the station did previously exist, retain at least the # time it was first put on a blocklist as the creation date created = first_blocked values.update({ 'created': created, 'radius': 0, 'samples': 0, }) if (station is not None and station.lat is not None and station.lon is not None): obs_positions = numpy.append(obs_positions, [ (station.lat, station.lon), (numpy.nan if station.max_lat is None else station.max_lat, numpy.nan if station.max_lon is None else station.max_lon), (numpy.nan if station.min_lat is None else station.min_lat, numpy.nan if station.min_lon is None else station.min_lon), ], axis=0) existing_station = True else: values['lat'] = obs_lat values['lon'] = obs_lon existing_station = False max_lat, max_lon = numpy.nanmax(obs_positions, axis=0) min_lat, min_lon = numpy.nanmin(obs_positions, axis=0) # calculate sphere-distance from opposite corners of # bounding box containing current location estimate # and new observations; if too big, station is moving box_dist = distance(min_lat, min_lon, max_lat, max_lon) # TODO: If we get a too large box_dist, we should not create # a new station record with the impossibly big distance, # so moving the box_dist > self.max_dist_meters here if existing_station: if box_dist > self.max_dist_meters: # Signal a moving station and return early without updating # the station since it will be deleted by caller momentarily return (True, None, None) # limit the maximum weight of the old station estimate old_weight = min(station.samples, self.MAX_OLD_OBSERVATIONS) new_weight = old_weight + obs_length values['lat'] = ((station.lat * old_weight) + (obs_lat * obs_length)) / new_weight values['lon'] = ((station.lon * old_weight) + (obs_lon * obs_length)) / new_weight # increase total counter if station is not None: values['samples'] = station.samples + obs_length else: values['samples'] = obs_length # update max/min lat/lon columns values['min_lat'] = float(min_lat) values['min_lon'] = float(min_lon) values['max_lat'] = float(max_lat) values['max_lon'] = float(max_lon) # give radius estimate between extreme values and centroid values['radius'] = circle_radius( values['lat'], values['lon'], max_lat, max_lon, min_lat, min_lon) if station is None: # return new values return (False, values, None) else: # return updated values, remove station from session self.session.expunge(station) return (False, None, values) def __call__(self, batch=10): all_observations = self.data_queue.dequeue(batch=batch) drop_counter = defaultdict(int) added = 0 new_stations = 0 station_obs = defaultdict(list) for obs in all_observations: station_obs[Cell.to_hashkey(obs)].append(obs) if not station_obs: return (0, 0) stations = {} for station in Cell.iterkeys(self.session, list(station_obs.keys())): stations[station.hashkey()] = station blocklist = self.blocklisted_stations(station_obs.keys()) new_station_values = [] changed_station_values = [] moving_stations = set() for station_key, observations in station_obs.items(): blocked, first_blocked, block = blocklist.get( station_key, (False, None, None)) if not any(observations): continue if blocked: # Drop observations for blocklisted stations. drop_counter['blocklisted'] += len(observations) continue station = stations.get(station_key, None) if station is None and not first_blocked: # We discovered an actual new never before seen station. new_stations += 1 moving, new_values, changed_values = self.new_station_values( station, station_key, first_blocked, observations) if moving: moving_stations.add((station_key, block)) else: added += len(observations) if new_values: new_station_values.append(new_values) if changed_values: changed_station_values.append(changed_values) # track potential updates to dependent areas self.add_area_update(station_key) if new_station_values: # do a batch insert of new stations stmt = Cell.__table__.insert( mysql_on_duplicate='psc = psc' # no-op ) # but limit the batch depending on each model ins_batch = Cell._insert_batch for i in range(0, len(new_station_values), ins_batch): batch_values = new_station_values[i:i + ins_batch] self.session.execute(stmt.values(batch_values)) if changed_station_values: # do a batch update of changed stations ins_batch = Cell._insert_batch for i in range(0, len(changed_station_values), ins_batch): batch_values = changed_station_values[i:i + ins_batch] self.session.bulk_update_mappings(Cell, batch_values) if self.updated_areas: self.queue_area_updates() if moving_stations: self.blocklist_stations(moving_stations) self.emit_stats(added, drop_counter) self.emit_statcounters(added, new_stations) if self.data_queue.enough_data(batch=batch): # pragma: no cover self.task.apply_async( kwargs={'batch': batch}, countdown=2, expires=10) return (len(stations) + len(new_station_values), len(moving_stations)) class WifiUpdater(StationUpdater): max_dist_meters = WIFI_MAX_RADIUS station_type = 'wifi' def __init__(self, task, session, pipe, shard_id=None): super(WifiUpdater, self).__init__(task, session, pipe) self.shard_id = shard_id queue_name = '%s_%s' % ('update_wifi', shard_id) self.data_queue = self.task.app.data_queues[queue_name] def emit_stats(self, stats_counter, drop_counter): day = self.today StatCounter(StatKey.wifi, day).incr( self.pipe, stats_counter['obs']) StatCounter(StatKey.unique_wifi, day).incr( self.pipe, stats_counter['new_station']) self.stat_count('insert', stats_counter['obs']) for reason, count in drop_counter.items(): self.stat_count('drop', drop_counter[reason], reason=reason) if stats_counter['block']: self.stats_client.incr( 'data.station.blocklist', stats_counter['block'], tags=['type:%s' % self.station_type, 'action:add', 'reason:moving']) def station_values(self, station_key, shard_station, observations): """ Return two-tuple of status, value dict where status is one of: `new`, `new_moving`, `moving`, `changed`. """ # cases: # we always get a station key and observations # 0. observations disagree # 0.a. no shard station, return new_moving # 0.b. shard station, return moving # 1. no shard station # 1.a. obs agree -> return new # 2. shard station # 2.a. obs disagree -> return moving # 2.b. obs agree -> return changed created = self.utcnow values = { 'mac': station_key, 'modified': self.utcnow, } obs_length = len(observations) obs_positions = numpy.array( [(obs.lat, obs.lon) for obs in observations], dtype=numpy.double) obs_new_lat, obs_new_lon = centroid(obs_positions) obs_max_lat, obs_max_lon = numpy.nanmax(obs_positions, axis=0) obs_min_lat, obs_min_lon = numpy.nanmin(obs_positions, axis=0) obs_box_dist = distance(obs_min_lat, obs_min_lon, obs_max_lat, obs_max_lon) if obs_box_dist > self.max_dist_meters: # the new observations are already too far apart if not shard_station: values.update({ 'created': created, 'block_first': self.today, 'block_last': self.today, 'block_count': 1, }) return ('new_moving', values) else: block_count = shard_station.block_count or 0 values.update({ 'lat': None, 'lon': None, 'max_lat': None, 'min_lat': None, 'max_lon': None, 'min_lon': None, 'radius': None, 'region': shard_station.region, 'samples': None, 'source': None, 'block_first': shard_station.block_first or self.today, 'block_last': self.today, 'block_count': block_count + 1, }) return ('moving', values) if shard_station is None: # totally new station, only agreeing observations radius = circle_radius( obs_new_lat, obs_new_lon, obs_max_lat, obs_max_lon, obs_min_lat, obs_min_lon) values.update({ 'created': created, 'lat': obs_new_lat, 'lon': obs_new_lon, 'max_lat': float(obs_max_lat), 'min_lat': float(obs_min_lat), 'max_lon': float(obs_max_lon), 'min_lon': float(obs_min_lon), 'radius': radius, 'region': GEOCODER.region(obs_new_lat, obs_new_lon), 'samples': obs_length, 'source': None, }) return ('new', values) else: # shard_station + new observations positions = numpy.append(obs_positions, [ (numpy.nan if shard_station.lat is None else shard_station.lat, numpy.nan if shard_station.lon is None else shard_station.lon), (numpy.nan if shard_station.max_lat is None else shard_station.max_lat, numpy.nan if shard_station.max_lon is None else shard_station.max_lon), (numpy.nan if shard_station.min_lat is None else shard_station.min_lat, numpy.nan if shard_station.min_lon is None else shard_station.min_lon), ], axis=0) max_lat, max_lon = numpy.nanmax(positions, axis=0) min_lat, min_lon = numpy.nanmin(positions, axis=0) box_dist = distance(min_lat, min_lon, max_lat, max_lon) if box_dist > self.max_dist_meters: # shard_station + disagreeing observations block_count = shard_station.block_count or 0 values.update({ 'lat': None, 'lon': None, 'max_lat': None, 'min_lat': None, 'max_lon': None, 'min_lon': None, 'radius': None, 'region': shard_station.region, 'samples': None, 'source': None, 'block_first': shard_station.block_first or self.today, 'block_last': self.today, 'block_count': block_count + 1, }) return ('moving', values) else: # shard_station + agreeing observations if shard_station.lat is None or shard_station.lon is None: old_weight = 0 else: old_weight = min((shard_station.samples or 0), self.MAX_OLD_OBSERVATIONS) new_lat = ((obs_new_lat * obs_length + (shard_station.lat or 0.0) * old_weight) / (obs_length + old_weight)) new_lon = ((obs_new_lon * obs_length + (shard_station.lon or 0.0) * old_weight) / (obs_length + old_weight)) samples = (shard_station.samples or 0) + obs_length radius = circle_radius( new_lat, new_lon, max_lat, max_lon, min_lat, min_lon) region = shard_station.region if (region and not GEOCODER.in_region( new_lat, new_lon, region)): # reset region if it no longer matches region = None if not region: region = GEOCODER.region(new_lat, new_lon) values.update({ 'lat': new_lat, 'lon': new_lon, 'max_lat': float(max_lat), 'min_lat': float(min_lat), 'max_lon': float(max_lon), 'min_lon': float(min_lon), 'radius': radius, 'region': region, 'samples': samples, 'source': None, # use the exact same keys as in the moving case 'block_first': shard_station.block_first, 'block_last': shard_station.block_last, 'block_count': shard_station.block_count, }) return ('changed', values) return (None, None) # pragma: no cover def _shard_observations(self, observations): sharded_obs = {} for obs in observations: if obs is not None: shard = WifiShard.shard_model(obs.mac) if shard not in sharded_obs: sharded_obs[shard] = defaultdict(list) sharded_obs[shard][obs.mac].append(obs) return sharded_obs def _query_stations(self, shard, shard_values): macs = list(shard_values.keys()) rows = (self.session.query(shard) .filter(shard.mac.in_(macs))).all() blocklist = {} stations = {} for row in rows: stations[row.mac] = row blocklist[row.mac] = row.blocked(today=self.today) return (blocklist, stations) def _update_shard(self, shard, shard_values, drop_counter, stats_counter): new_data = defaultdict(list) blocklist, stations = self._query_stations(shard, shard_values) for station_key, observations in shard_values.items(): if blocklist.get(station_key, False): # Drop observations for blocklisted stations. drop_counter['blocklisted'] += len(observations) continue shard_station = stations.get(station_key, None) if shard_station is None: # We discovered an actual new never before seen station. stats_counter['new_station'] += 1 status, result = self.station_values( station_key, shard_station, observations) new_data[status].append(result) if status in ('moving', 'new_moving'): stats_counter['block'] += 1 else: stats_counter['obs'] += len(observations) if new_data['new']: # do a batch insert of new stations stmt = shard.__table__.insert( mysql_on_duplicate='samples = samples' # no-op ) self.session.execute(stmt.values(new_data['new'])) if new_data['new_moving']: # do a batch insert of new moving stations stmt = shard.__table__.insert( mysql_on_duplicate='block_count = block_count' # no-op ) self.session.execute(stmt.values(new_data['new_moving'])) if new_data['moving'] or new_data['changed']: # do a batch update of changing and moving stations self.session.bulk_update_mappings( shard, new_data['changed'] + new_data['moving']) def __call__(self, batch=10): sharded_obs = self._shard_observations( self.data_queue.dequeue(batch=batch)) if not sharded_obs: return drop_counter = defaultdict(int) stats_counter = defaultdict(int) for shard, shard_values in sharded_obs.items(): self._update_shard(shard, shard_values, drop_counter, stats_counter) self.emit_stats(stats_counter, drop_counter) if self.data_queue.enough_data(batch=batch): # pragma: no cover self.task.apply_async( kwargs={'batch': batch, 'shard_id': self.shard_id}, countdown=2, expires=10)
a1514ff0aae5fff6ba6124c662459a1592b7a132
55c8fd9ce0c5bb147cbdb69274873b93b35356fc
/pathGeneration-v2/code-v2/full_eval.py
ca61e1c985c92a33e67e67192299fb8498954df2
[]
no_license
WOW5678/pathGeneration
b4143bbbc2be686ee011d24af46d57d2cee88f06
88f31b4f30750307fa7f5072e7faa2f959a6d0c0
refs/heads/master
2020-08-06T17:46:22.075128
2019-11-15T12:38:07
2019-11-15T12:38:07
213,097,008
1
0
null
null
null
null
UTF-8
Python
false
false
3,528
py
import numpy as np from sklearn.metrics import precision_recall_fscore_support, average_precision_score, \ roc_auc_score, precision_score, recall_score thres = 0.5 def f1_score(preds, labels, thres, average='micro'): '''Returns (precision, recall, F1 score) from a batch of predictions (thresholded probabilities) given a batch of labels (for macro-averaging across batches)''' #preds = (probs >= thres).astype(np.int32) # print('probs:',probs) # print('labels:',labels) # print('preds:',preds) #preds=probs # print(preds) # print(labels) p, r, f, _ = precision_recall_fscore_support(labels, preds, average=average, warn_for=()) return p, r, f def auc_pr(probs, labels, average='micro'): '''Precision integrated over all thresholds (area under the precision-recall curve)''' if average == 'macro' or average is None: sums = labels.sum(0) nz_indices = np.logical_and(sums != labels.shape[0], sums != 0) probs = probs[:, nz_indices] labels = labels[:, nz_indices] return average_precision_score(labels, probs, average=average) def auc_roc(probs, labels, average='micro'): '''Area under the ROC curve''' if average == 'macro' or average is None: sums = labels.sum(0) nz_indices = np.logical_and(sums != labels.shape[0], sums != 0) probs = probs[:, nz_indices] labels = labels[:, nz_indices] # print('labels:',labels) # print('probs:',probs) return roc_auc_score(labels, probs, average=average) def precision_at_k(probs, labels, k, average='micro'): indices = np.argpartition(-probs, k-1, axis=1)[:, :k] preds = np.zeros(probs.shape, dtype=np.int) preds[np.arange(preds.shape[0])[:, np.newaxis], indices] = 1 return precision_score(labels, preds, average=average) def recall_at_k(probs, labels, k, average='micro'): indices = np.argpartition(-probs, k-1, axis=1)[:, :k] preds = np.zeros(probs.shape, dtype=np.int) preds[np.arange(preds.shape[0])[:, np.newaxis], indices] = 1 return recall_score(labels, preds, average=average) def full_evaluate(pred,probs, gold, thres=0.5): # pred = np.array(pred) # gold = np.array(gold) #print(pred) micro_p, micro_r, micro_f1 = f1_score(pred, gold, thres, average='micro') macro_p,macro_r,macro_f1= f1_score(pred, gold, thres, average='macro') # micro_auc_pr= auc_pr(pred, gold, average='micro') # macro_auc_pr= auc_pr(pred, gold, average='macro') micro_auc_roc= auc_roc(pred, gold, average='micro') macro_auc_roc= auc_roc(pred, gold, average='macro') precision_8= precision_at_k(probs, gold, 8, average='micro') precision_40= precision_at_k(probs, gold, 40, average='micro') recall_8= recall_at_k(probs, gold, 8, average='micro') recall_40=recall_at_k(probs, gold, 40, average='micro') return micro_p,macro_p,micro_r,macro_r,micro_f1,macro_f1,micro_auc_roc,macro_auc_roc,precision_8,precision_40,recall_8,recall_40 def jaccrad(predList, referList): # terms_reference为源句子,terms_model为候选句子 grams_reference = set(predList) # 去重;如果不需要就改为list grams_model = set(referList) temp = 0 for i in grams_reference: if i in grams_model: temp = temp + 1 fenmu = len(grams_model) + len(grams_reference) - temp # 并集 jaccard_coefficient = temp*1.0 / fenmu # 交集 return jaccard_coefficient
f9b7225639bb8e7345c3ae82acb0ee54276ceedb
fd67592b2338105e0cd0b3503552d188b814ad95
/egoi_api/paths/campaign_groups/post.pyi
e20c009a7deaa011725e0a74459217db59959c7d
[]
no_license
E-goi/sdk-python
175575fcd50bd5ad426b33c78bdeb08d979485b7
5cba50a46e1d288b5038d18be12af119211e5b9f
refs/heads/master
2023-04-29T20:36:02.314712
2023-04-18T07:42:46
2023-04-18T07:42:46
232,095,340
5
2
null
null
null
null
UTF-8
Python
false
false
15,827
pyi
# coding: utf-8 """ Generated by: https://openapi-generator.tech """ from dataclasses import dataclass import typing_extensions import urllib3 from urllib3._collections import HTTPHeaderDict from egoi_api import api_client, exceptions from datetime import date, datetime # noqa: F401 import decimal # noqa: F401 import functools # noqa: F401 import io # noqa: F401 import re # noqa: F401 import typing # noqa: F401 import typing_extensions # noqa: F401 import uuid # noqa: F401 import frozendict # noqa: F401 from egoi_api import schemas # noqa: F401 from egoi_api.model.campaign_group_post import CampaignGroupPost from egoi_api.model.unauthorized import Unauthorized from egoi_api.model.campaign_group import CampaignGroup from egoi_api.model.service_unavailable import ServiceUnavailable from egoi_api.model.conflict import Conflict from egoi_api.model.bad_request import BadRequest from egoi_api.model.unprocessable_entity import UnprocessableEntity from egoi_api.model.internal_server_error import InternalServerError from egoi_api.model.too_many_requests import TooManyRequests from egoi_api.model.forbidden import Forbidden # body param SchemaForRequestBodyApplicationJson = CampaignGroupPost request_body_campaign_group_post = api_client.RequestBody( content={ 'application/json': api_client.MediaType( schema=SchemaForRequestBodyApplicationJson), }, required=True, ) SchemaFor201ResponseBodyApplicationJson = CampaignGroup @dataclass class ApiResponseFor201(api_client.ApiResponse): response: urllib3.HTTPResponse body: typing.Union[ SchemaFor201ResponseBodyApplicationJson, ] headers: schemas.Unset = schemas.unset _response_for_201 = api_client.OpenApiResponse( response_cls=ApiResponseFor201, content={ 'application/json': api_client.MediaType( schema=SchemaFor201ResponseBodyApplicationJson), }, ) SchemaFor400ResponseBodyApplicationJson = BadRequest @dataclass class ApiResponseFor400(api_client.ApiResponse): response: urllib3.HTTPResponse body: typing.Union[ SchemaFor400ResponseBodyApplicationJson, ] headers: schemas.Unset = schemas.unset _response_for_400 = api_client.OpenApiResponse( response_cls=ApiResponseFor400, content={ 'application/json': api_client.MediaType( schema=SchemaFor400ResponseBodyApplicationJson), }, ) SchemaFor401ResponseBodyApplicationJson = Unauthorized @dataclass class ApiResponseFor401(api_client.ApiResponse): response: urllib3.HTTPResponse body: typing.Union[ SchemaFor401ResponseBodyApplicationJson, ] headers: schemas.Unset = schemas.unset _response_for_401 = api_client.OpenApiResponse( response_cls=ApiResponseFor401, content={ 'application/json': api_client.MediaType( schema=SchemaFor401ResponseBodyApplicationJson), }, ) SchemaFor403ResponseBodyApplicationJson = Forbidden @dataclass class ApiResponseFor403(api_client.ApiResponse): response: urllib3.HTTPResponse body: typing.Union[ SchemaFor403ResponseBodyApplicationJson, ] headers: schemas.Unset = schemas.unset _response_for_403 = api_client.OpenApiResponse( response_cls=ApiResponseFor403, content={ 'application/json': api_client.MediaType( schema=SchemaFor403ResponseBodyApplicationJson), }, ) SchemaFor409ResponseBodyApplicationJson = Conflict @dataclass class ApiResponseFor409(api_client.ApiResponse): response: urllib3.HTTPResponse body: typing.Union[ SchemaFor409ResponseBodyApplicationJson, ] headers: schemas.Unset = schemas.unset _response_for_409 = api_client.OpenApiResponse( response_cls=ApiResponseFor409, content={ 'application/json': api_client.MediaType( schema=SchemaFor409ResponseBodyApplicationJson), }, ) SchemaFor422ResponseBodyApplicationJson = UnprocessableEntity @dataclass class ApiResponseFor422(api_client.ApiResponse): response: urllib3.HTTPResponse body: typing.Union[ SchemaFor422ResponseBodyApplicationJson, ] headers: schemas.Unset = schemas.unset _response_for_422 = api_client.OpenApiResponse( response_cls=ApiResponseFor422, content={ 'application/json': api_client.MediaType( schema=SchemaFor422ResponseBodyApplicationJson), }, ) SchemaFor429ResponseBodyApplicationJson = TooManyRequests @dataclass class ApiResponseFor429(api_client.ApiResponse): response: urllib3.HTTPResponse body: typing.Union[ SchemaFor429ResponseBodyApplicationJson, ] headers: schemas.Unset = schemas.unset _response_for_429 = api_client.OpenApiResponse( response_cls=ApiResponseFor429, content={ 'application/json': api_client.MediaType( schema=SchemaFor429ResponseBodyApplicationJson), }, ) SchemaFor500ResponseBodyApplicationJson = InternalServerError @dataclass class ApiResponseFor500(api_client.ApiResponse): response: urllib3.HTTPResponse body: typing.Union[ SchemaFor500ResponseBodyApplicationJson, ] headers: schemas.Unset = schemas.unset _response_for_500 = api_client.OpenApiResponse( response_cls=ApiResponseFor500, content={ 'application/json': api_client.MediaType( schema=SchemaFor500ResponseBodyApplicationJson), }, ) SchemaFor503ResponseBodyApplicationJson = ServiceUnavailable @dataclass class ApiResponseFor503(api_client.ApiResponse): response: urllib3.HTTPResponse body: typing.Union[ SchemaFor503ResponseBodyApplicationJson, ] headers: schemas.Unset = schemas.unset _response_for_503 = api_client.OpenApiResponse( response_cls=ApiResponseFor503, content={ 'application/json': api_client.MediaType( schema=SchemaFor503ResponseBodyApplicationJson), }, ) _all_accept_content_types = ( 'application/json', ) class BaseApi(api_client.Api): @typing.overload def _create_campaign_group_oapg( self, body: typing.Union[SchemaForRequestBodyApplicationJson,], content_type: typing_extensions.Literal["application/json"] = ..., accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, skip_deserialization: typing_extensions.Literal[False] = ..., ) -> typing.Union[ ApiResponseFor201, ]: ... @typing.overload def _create_campaign_group_oapg( self, body: typing.Union[SchemaForRequestBodyApplicationJson,], content_type: str = ..., accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, skip_deserialization: typing_extensions.Literal[False] = ..., ) -> typing.Union[ ApiResponseFor201, ]: ... @typing.overload def _create_campaign_group_oapg( self, body: typing.Union[SchemaForRequestBodyApplicationJson,], skip_deserialization: typing_extensions.Literal[True], content_type: str = ..., accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, ) -> api_client.ApiResponseWithoutDeserialization: ... @typing.overload def _create_campaign_group_oapg( self, body: typing.Union[SchemaForRequestBodyApplicationJson,], content_type: str = ..., accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, skip_deserialization: bool = ..., ) -> typing.Union[ ApiResponseFor201, api_client.ApiResponseWithoutDeserialization, ]: ... def _create_campaign_group_oapg( self, body: typing.Union[SchemaForRequestBodyApplicationJson,], content_type: str = 'application/json', accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, skip_deserialization: bool = False, ): """ Create new campaign group :param skip_deserialization: If true then api_response.response will be set but api_response.body and api_response.headers will not be deserialized into schema class instances """ used_path = path.value _headers = HTTPHeaderDict() # TODO add cookie handling if accept_content_types: for accept_content_type in accept_content_types: _headers.add('Accept', accept_content_type) if body is schemas.unset: raise exceptions.ApiValueError( 'The required body parameter has an invalid value of: unset. Set a valid value instead') _fields = None _body = None serialized_data = request_body_campaign_group_post.serialize(body, content_type) _headers.add('Content-Type', content_type) if 'fields' in serialized_data: _fields = serialized_data['fields'] elif 'body' in serialized_data: _body = serialized_data['body'] response = self.api_client.call_api( resource_path=used_path, method='post'.upper(), headers=_headers, fields=_fields, body=_body, auth_settings=_auth, stream=stream, timeout=timeout, ) if skip_deserialization: api_response = api_client.ApiResponseWithoutDeserialization(response=response) else: response_for_status = _status_code_to_response.get(str(response.status)) if response_for_status: api_response = response_for_status.deserialize(response, self.api_client.configuration) else: api_response = api_client.ApiResponseWithoutDeserialization(response=response) if not 200 <= response.status <= 299: raise exceptions.ApiException(api_response=api_response) return api_response class CreateCampaignGroup(BaseApi): # this class is used by api classes that refer to endpoints with operationId fn names @typing.overload def create_campaign_group( self, body: typing.Union[SchemaForRequestBodyApplicationJson,], content_type: typing_extensions.Literal["application/json"] = ..., accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, skip_deserialization: typing_extensions.Literal[False] = ..., ) -> typing.Union[ ApiResponseFor201, ]: ... @typing.overload def create_campaign_group( self, body: typing.Union[SchemaForRequestBodyApplicationJson,], content_type: str = ..., accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, skip_deserialization: typing_extensions.Literal[False] = ..., ) -> typing.Union[ ApiResponseFor201, ]: ... @typing.overload def create_campaign_group( self, body: typing.Union[SchemaForRequestBodyApplicationJson,], skip_deserialization: typing_extensions.Literal[True], content_type: str = ..., accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, ) -> api_client.ApiResponseWithoutDeserialization: ... @typing.overload def create_campaign_group( self, body: typing.Union[SchemaForRequestBodyApplicationJson,], content_type: str = ..., accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, skip_deserialization: bool = ..., ) -> typing.Union[ ApiResponseFor201, api_client.ApiResponseWithoutDeserialization, ]: ... def create_campaign_group( self, body: typing.Union[SchemaForRequestBodyApplicationJson,], content_type: str = 'application/json', accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, skip_deserialization: bool = False, ): return self._create_campaign_group_oapg( body=body, content_type=content_type, accept_content_types=accept_content_types, stream=stream, timeout=timeout, skip_deserialization=skip_deserialization ) class ApiForpost(BaseApi): # this class is used by api classes that refer to endpoints by path and http method names @typing.overload def post( self, body: typing.Union[SchemaForRequestBodyApplicationJson,], content_type: typing_extensions.Literal["application/json"] = ..., accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, skip_deserialization: typing_extensions.Literal[False] = ..., ) -> typing.Union[ ApiResponseFor201, ]: ... @typing.overload def post( self, body: typing.Union[SchemaForRequestBodyApplicationJson,], content_type: str = ..., accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, skip_deserialization: typing_extensions.Literal[False] = ..., ) -> typing.Union[ ApiResponseFor201, ]: ... @typing.overload def post( self, body: typing.Union[SchemaForRequestBodyApplicationJson,], skip_deserialization: typing_extensions.Literal[True], content_type: str = ..., accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, ) -> api_client.ApiResponseWithoutDeserialization: ... @typing.overload def post( self, body: typing.Union[SchemaForRequestBodyApplicationJson,], content_type: str = ..., accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, skip_deserialization: bool = ..., ) -> typing.Union[ ApiResponseFor201, api_client.ApiResponseWithoutDeserialization, ]: ... def post( self, body: typing.Union[SchemaForRequestBodyApplicationJson,], content_type: str = 'application/json', accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, skip_deserialization: bool = False, ): return self._create_campaign_group_oapg( body=body, content_type=content_type, accept_content_types=accept_content_types, stream=stream, timeout=timeout, skip_deserialization=skip_deserialization )
a58740e2a6ef0f1c5c1c2d3373a3d57e3b7311d6
e6904315fef720d562727c259fe55edcaaf2f84b
/src/orion/core/io/evc_builder.py
01094146ed00e9b0623a8a0adf56c0ef4a18b01b
[ "BSD-3-Clause" ]
permissive
mnoukhov/orion
c93c4655f6b1b6358f8ead78a3adbe9d871785c7
7849d77344e84ec805207cf4148aecf6f7d6b3d7
refs/heads/master
2020-03-25T05:37:54.251082
2019-08-19T17:33:15
2019-08-19T17:33:15
143,457,714
0
0
NOASSERTION
2018-10-31T02:37:32
2018-08-03T17:55:57
Python
UTF-8
Python
false
false
2,275
py
# -*- coding: utf-8 -*- # pylint:disable=protected-access """ :mod:`orion.core.io.evc_builder` -- Builder of experiment version control tree ============================================================================== .. module:: experiment :platform: Unix :synopsis: Builder of the experiment version control tree The EVCBuilder takes care of building a main experiment along with an EVC tree and connect them together. A user can define a root and some leafs that should be the extremums of the tree. Those can be different than the actual root and leafs of the global EVC tree, making the trimmed version a small subset of the global version. """ from orion.core.evc.experiment import ExperimentNode from orion.core.io.experiment_builder import ExperimentBuilder class EVCBuilder(object): """Builder of experiment version control trees using :class:`orion.core.evc.experiment.ExperimentNode` .. seealso:: `orion.core.io.experiment_builder` for more information on the process of building experiments. :class:`orion.core.evc.experiment` :class:`orion.core.worker.experiment` """ # pylint:disable=no-self-use def connect_to_version_control_tree(self, experiment): """Build the EVC and connect the experiment to it""" experiment_node = ExperimentNode(experiment.name, experiment=experiment) experiment.connect_to_version_control_tree(experiment_node) def build_view_from(self, cmdargs): """Build an experiment view based on global config and connect it to the EVC""" experiment_view = ExperimentBuilder().build_view_from(cmdargs) self.connect_to_version_control_tree(experiment_view) return experiment_view def build_from(self, cmdargs): """Build an experiment based on config and connect it to the EVC""" experiment = ExperimentBuilder().build_from(cmdargs) self.connect_to_version_control_tree(experiment) return experiment def build_from_config(self, config): """Build an experiment based on given config and connect it to the EVC""" experiment = ExperimentBuilder().build_from_config(config) self.connect_to_version_control_tree(experiment) return experiment
a06e77569bb9fc552a12e6e6f5ee56d5c33ebea1
602bdbd1d8ef4d36ccfdcae5756bc8e448d30584
/share/basiccms/web/checkout.py
86bb792ceeb5be2a1dd97fafe87b116f9d8f365f
[]
no_license
timparkin/timparkingallery
1136027bf9cfbad31319958f20771a6fdc9f5fc4
6e6c02684a701817a2efae27e21b77765daa2c33
refs/heads/master
2016-09-06T00:28:16.965416
2008-11-25T21:15:45
2008-11-25T21:15:45
12,716
1
1
null
null
null
null
UTF-8
Python
false
false
7,952
py
from pollen.mail import mailutil from twisted.internet import defer from twisted.python import log from nevow import url, accessors, inevow, tags as T, rend import formal from crux import skin, icrux from tub.public.web.common import getStoreSession from ecommerce.salesorder.manager import SalesOrder, SalesOrderItem from ecommerce.salesorder.util import createSalesOrderItem from basiccms import basket as dw_basket from basiccms.web import common from basiccms.web.utils import RenderFragmentMixin, RenderInheritMixin class DetailsPage(RenderInheritMixin, RenderFragmentMixin, common.Page): docFactory = skin.loader('CheckoutDetailsPage.html') def __init__(self, avatar): super(DetailsPage, self).__init__() self.avatar = avatar def getCountryOptions(self, storeSession): data = {} d = self.avatar.getDeliveryCountries(storeSession) d.addCallback(lambda options: data.update({'delivery': options})) d.addCallback(lambda ignore: self.avatar.realm.getBillingCountryOptions()) d.addCallback(lambda options: data.update({'billing': options})) d.addCallback(lambda options: data) return d def form_details(self, ctx): storeSession = getStoreSession(ctx) d = self.getCountryOptions(storeSession) d.addCallback(lambda options: self._build_details_form(options['billing'], options['delivery'])) return d def _build_details_form(self, billingCountryOptions, deliveryCountryOptions): form = formal.Form() form.addField('firstName', formal.String(required=True, strip=True)) form.addField('lastName', formal.String(required=True, strip=True)) form.addField('phoneNumber', formal.String(required=True, strip=True)) form.addField('billingAddress1', formal.String(required=True, strip=True)) form.addField('billingAddress2', formal.String(strip=True)) form.addField('billingAddress3', formal.String(strip=True)) form.addField('billingCity', formal.String(required=True, strip=True)) form.addField('billingPostcode', formal.String(required=True, strip=True)) form.addField('billingCountry', formal.String(required=True, strip=True), widgetFactory=formal.widgetFactory(formal.SelectChoice, options=billingCountryOptions) ) form.addField('cardType', formal.String(required=True), formal.widgetFactory(formal.SelectChoice, CommonData.Cards)) form.addField('cardNumber', formal.String(required=True, strip=True)) form.addField('cvv2', formal.String(required=True, strip=True), label='Card Security Code',description='last three numbers on signature strip') form.addField('expiryDate', formal.Date(required=True), formal.widgetFactory(formal.MMYYDatePartsInput), description='e.g. 12/05' ) form.addField('issueNumber', formal.String(strip=True), description='for maestro and switch only') form.addField('startDate', formal.Date(), formal.widgetFactory(formal.MMYYDatePartsInput), description='for switch only' ) delivery = formal.Group('delivery', label='Delivery Address', description="Only enter details here if the delivery address is different from the billing address above.") form.add( delivery ) delivery.add( formal.Field('name', formal.String(strip=True)) ) delivery.add( formal.Field('address1', formal.String(strip=True))) delivery.add( formal.Field('address2', formal.String(strip=True))) delivery.add( formal.Field('address3', formal.String(strip=True))) delivery.add( formal.Field('city', formal.String(strip=True))) delivery.add( formal.Field('postcode', formal.String(strip=True)) ) delivery.add( formal.Field('country', formal.String(strip=True), widgetFactory=formal.widgetFactory(formal.SelectChoice, options=deliveryCountryOptions)) ) message = formal.Group('message', label='Gift Message', description="If you have chosen to use our gift wrapping service you can specify a message here") form.add( message ) message.add( formal.Field('message', formal.String(strip=True), widgetFactory=formal.TextArea) ) form.addAction(self._confirm, label="Confirm Order") if self.avatar.checkoutDetails: form.data = self.avatar.checkoutDetails elif self.avatar.customer: form.data = { 'firstName': self.avatar.customer.first_name, 'lastName': self.avatar.customer.last_name, 'phoneNumber': self.avatar.customer.phoneNumber, 'billingAddress1': self.avatar.customer.billingAddress1, 'billingAddress2': self.avatar.customer.billingAddress2, 'billingAddress3': self.avatar.customer.billingAddress3, 'billingCity': self.avatar.customer.billingCity, 'billingPostcode': self.avatar.customer.billingPostcode, 'billingCountry': self.avatar.customer.billingCountry, } if self.avatar.realm.config['ecommerce']['paymentGateway'].get('use_test_data', False): from datetime import date from dateutil.relativedelta import relativedelta form.data['cardType'] = 'VISA' form.data['cardNumber'] = '4111111111111111' form.data['cvv2'] = '432' form.data['expiryDate'] = date.today()+relativedelta(months=6) return form def _confirm(self, ctx, form, data): deliveryAddressSpecified = data['delivery.address1'] or data['delivery.address2'] or data['delivery.address3'] if data['delivery.name'] or deliveryAddressSpecified or data['delivery.city'] \ or data['delivery.postcode'] or data['delivery.country']: if not data['delivery.name']: raise formal.FieldError('All delivery details must be entered.', 'delivery.name') if not deliveryAddressSpecified: raise formal.FieldError('All delivery details must be entered.', 'delivery.address1') if not data['delivery.city']: raise formal.FieldError('All delivery details must be entered.', 'delivery.city') if not data['delivery.postcode']: raise formal.FieldError('All delivery details must be entered.', 'delivery.postcode') if not data['delivery.country']: raise formal.FieldError('All delivery details must be entered.', 'delivery.country') self.avatar.checkoutDetails = data if data['delivery.country']: if self.avatar.basket.deliveryOptions.getCurrentCountry() != data['delivery.country'].lower(): raise formal.FieldError('Delivery country does not match basket delivery option.', 'delivery.country') else: if self.avatar.basket.deliveryOptions.getCurrentCountry() != data['billingCountry'].lower(): raise formal.FieldError('Delivery country does not match basket delivery option.', 'billingCountry') return url.URL.fromContext(ctx).sibling('confirm') class ThankYouPage(common.Page): docFactory = skin.loader('CheckoutThankYouPage.html') def __init__(self, avatar): super(ThankYouPage, self).__init__() self.avatar = avatar def render_order_num(self, ctx, data): order_num = inevow.IRequest(ctx).args.get('order_num', [''])[0] return order_num def render_tracking(self, ctx, data): order_num = inevow.IRequest(ctx).args.get('order_num', [''])[0] basket_value = inevow.IRequest(ctx).args.get('basket_value', [''])[0] ctx.tag.fillSlots('order_num', order_num) ctx.tag.fillSlots('basket_value', basket_value) return ctx.tag def debug(r, mess): print '>>DEBUG', mess, r return r
890a0e4832d87c843d5509306210f0da7f740075
d3efc82dfa61fb82e47c82d52c838b38b076084c
/Autocase_Result/TSZLMM/YW_TSZLMM_SZXJ_085.py
aee9b54b61b3b19aec3adc52e31a8f6ab6a2da24
[]
no_license
nantongzyg/xtp_test
58ce9f328f62a3ea5904e6ed907a169ef2df9258
ca9ab5cee03d7a2f457a95fb0f4762013caa5f9f
refs/heads/master
2022-11-30T08:57:45.345460
2020-07-30T01:43:30
2020-07-30T01:43:30
280,388,441
0
0
null
null
null
null
UTF-8
Python
false
false
3,096
py
#!/usr/bin/python # -*- encoding: utf-8 -*- import sys sys.path.append("/home/yhl2/workspace/xtp_test/xtp/api") from xtp_test_case import * sys.path.append("/home/yhl2/workspace/xtp_test/service") from ServiceConfig import * from mainService import * from QueryStkPriceQty import * from log import * sys.path.append("/home/yhl2/workspace/xtp_test/mysql") from CaseParmInsertMysql import * sys.path.append("/home/yhl2/workspace/xtp_test/utils") from QueryOrderErrorMsg import queryOrderErrorMsg class YW_TSZLMM_SZXJ_085(xtp_test_case): # YW_TSZLMM_SZXJ_085 def test_YW_TSZLMM_SZXJ_085(self): title = '默认3:订单报价超过涨跌幅限制-深A限价卖><跌停价(跌停价-0.02)' # 定义当前测试用例的期待值 # 期望状态:初始、未成交、部成、全成、部撤已报、部撤、已报待撤、已撤、废单、撤废、内部撤单 # xtp_ID和cancel_xtpID默认为0,不需要变动 case_goal = { '期望状态': '废单', 'errorID': 11010122, 'errorMSG': queryOrderErrorMsg(11010122), '是否生成报单': '是', '是否是撤废': '否', 'xtp_ID': 0, 'cancel_xtpID': 0, } logger.warning(title) # 定义委托参数信息------------------------------------------ # 参数:证券代码、市场、证券类型、证券状态、交易状态、买卖方向(B买S卖)、期望状态、Api stkparm = QueryStkPriceQty('003154', '2', '0', '10', '0', 'S', case_goal['期望状态'], Api) # 如果下单参数获取失败,则用例失败 if stkparm['返回结果'] is False: rs = { '用例测试结果': stkparm['返回结果'], '测试错误原因': '获取下单参数失败,' + stkparm['错误原因'], } self.assertEqual(rs['用例测试结果'], True) else: wt_reqs = { 'business_type': Api.const.XTP_BUSINESS_TYPE['XTP_BUSINESS_TYPE_CASH'], 'order_client_id':trade_type + 1, 'market': Api.const.XTP_MARKET_TYPE['XTP_MKT_SZ_A'], 'ticker': stkparm['证券代码'], 'side': Api.const.XTP_SIDE_TYPE['XTP_SIDE_SELL'], 'price_type': Api.const.XTP_PRICE_TYPE['XTP_PRICE_LIMIT'], 'price': stkparm['跌停价']-0.02, 'quantity': 200, 'position_effect': Api.const.XTP_POSITION_EFFECT_TYPE['XTP_POSITION_EFFECT_INIT'] } ParmIni(Api, case_goal['期望状态'], wt_reqs['price_type']) CaseParmInsertMysql(case_goal, wt_reqs) rs = serviceTest(Api, case_goal, wt_reqs) logger.warning('执行结果为' + str(rs['用例测试结果']) + ',' + str(rs['用例错误源']) + ',' + str(rs['用例错误原因'])) self.assertEqual(rs['用例测试结果'], True) # 0 if __name__ == '__main__': unittest.main()
48c38008dc8f830780911cc0ffbe98050fe9f2b8
337815ff32ebbf6e8dd2606f69d66e8efda4cd03
/epi_judge_python_solutions/is_string_palindromic_punctuation.py
8a74011a9f894f17696adcf9b67b7a1ac42109d9
[]
no_license
federicociner/epi
b85eefbf5f5bad77e2e780ffbf4ac4f9ca0809a8
32f2a1056353bca55d0d5839be5e0b73809cb45d
refs/heads/master
2020-12-19T09:22:43.430370
2020-02-04T02:34:53
2020-02-04T02:34:53
235,693,872
0
0
null
null
null
null
UTF-8
Python
false
false
904
py
from test_framework import generic_test def is_palindrome(s: str) -> bool: # i moves forward, and j moves backward. i, j = 0, len(s) - 1 while i < j: # i and j both skip non-alphanumeric characters. while not s[i].isalnum() and i < j: i += 1 while not s[j].isalnum() and i < j: j -= 1 if s[i].lower() != s[j].lower(): return False i, j = i + 1, j - 1 return True def is_palindrome_pythonic(s): return all( a == b for a, b in zip( map(str.lower, filter(str.isalnum, s)), map(str.lower, filter(str.isalnum, reversed(s))), ) ) if __name__ == "__main__": exit( generic_test.generic_test_main( "is_string_palindromic_punctuation.py", "is_string_palindromic_punctuation.tsv", is_palindrome, ) )
77ffa800cee616cbc92dbb8224e7af3e41aaee4c
7f114a1fb511b816c116d5b9e67cb998e3e23956
/PyplayS163.py
8fb12da406b708d8118f33d4a51858ee26d8c0b8
[]
no_license
Bharanij27/bharanirep
90ac34eb28deaa7ec96d042de456de71b96866d7
982133a7939c889d433c178a601441fa087293d9
refs/heads/master
2021-08-07T20:22:36.244395
2020-06-05T04:58:10
2020-06-05T04:58:10
186,580,768
0
6
null
null
null
null
UTF-8
Python
false
false
104
py
n,k=map(int,input().split()) l=list(map(int,input().split())) if k in l: print("yes") else: print("no")
b0f33f7fcb55a25559aa9ec6e4005f66fd5f16e2
93e8c89c7d83c00280c32ea9f5330d3d4cf9a6d9
/ch_10_oops/03_instance_class_attributes.py
15f55e56c13b45b76c5dba6b6df9c1a4364bb31a
[]
no_license
vidhisharma1212/oops
1d76940d084b3828db6f4bd9093ee18a8e512183
fb4252683c652a18c818948dd328c8903f2d04ee
refs/heads/main
2023-07-01T21:28:46.823861
2021-08-09T08:40:54
2021-08-09T08:40:54
393,379,828
0
0
null
null
null
null
UTF-8
Python
false
false
367
py
class Employee: company= 'Google' # salary= 900 vid= Employee() ron= Employee() shyam= Employee() # vid.salary= 300 # ron.salary= 500 Employee.salary= 900 print(vid.salary) print(ron.salary) print(shyam.salary) shyam.salary=100000 print(shyam.salary) print(vid.company) print(ron.company) Employee.company= 'Youtube' print(vid.company) print(ron.company)
eee813bc568246e104455e856e8360de7d16c2cb
975fb6bf66c878415a880003c2d635163cb664d8
/qoc/standard/functions/convenience.py
35ea6b8916c0317e9234a845118aaab8e03ea59a
[ "MIT" ]
permissive
SchusterLab/qoc
8833628a9b7df3727b982b667310059563dfded7
36d615170effc1b705d4543d92f979e511edfec2
refs/heads/master
2023-06-07T07:49:33.720205
2023-03-12T20:19:55
2023-03-12T20:19:55
198,457,530
12
14
MIT
2021-05-10T02:23:11
2019-07-23T15:24:41
Python
UTF-8
Python
false
false
2,797
py
""" convenience.py - definitions of common computations All functions in this module that are exported, i.e. those that don't begin with '_', are autograd compatible. """ from functools import reduce from autograd.extend import defvjp, primitive import autograd.numpy as anp import numpy as np import scipy.linalg as la ### COMPUTATIONS ### def commutator(a, b): """ Compute the commutator of two matrices. Arguments: a :: numpy.ndarray - the left matrix b :: numpy.ndarray - the right matrix Returns: _commutator :: numpy.ndarray - the commutator of a and b """ commutator_ = anp.matmul(a, b) - anp.matmul(b, a) return commutator_ def conjugate_transpose(matrix): """ Compute the conjugate transpose of a matrix. Args: matrix :: numpy.ndarray - the matrix to compute the conjugate transpose of operation_policy :: qoc.OperationPolicy - what data type is used to perform the operation and with which method Returns: _conjugate_tranpose :: numpy.ndarray the conjugate transpose of matrix """ conjugate_transpose_ = anp.conjugate(anp.swapaxes(matrix, -1, -2)) return conjugate_transpose_ def krons(*matrices): """ Compute the kronecker product of a list of matrices. Args: matrices :: numpy.ndarray - the list of matrices to compute the kronecker product of operation_policy :: qoc.OperationPolicy - what data type is used to perform the operation and with which method """ krons_ = reduce(anp.kron, matrices) return krons_ def matmuls(*matrices): """ Compute the kronecker product of a list of matrices. Args: matrices :: numpy.ndarray - the list of matrices to compute the kronecker product of operation_policy :: qoc.OperationPolicy - what data type is used to perform the operation and with which method """ matmuls_ = reduce(anp.matmul, matrices) return matmuls_ def rms_norm(array): """ Compute the rms norm of the array. Arguments: array :: ndarray (N) - The array to compute the norm of. Returns: norm :: float - The rms norm of the array. """ square_norm = anp.sum(array * anp.conjugate(array)) size = anp.prod(anp.shape(array)) rms_norm_ = anp.sqrt(square_norm / size) return rms_norm_ ### ISOMORPHISMS ### # A row vector is np.array([[0, 1, 2]]) # A column vector is np.array([[0], [1], [2]]) column_vector_list_to_matrix = (lambda column_vector_list: anp.hstack(column_vector_list)) matrix_to_column_vector_list = (lambda matrix: anp.stack([anp.vstack(matrix[:, i]) for i in range(matrix.shape[1])]))
2b112ccb194f9ad783c20cb17572fb0072f813b1
14804b282e567bf45c974b9a55cbdfa1907c5958
/16_Standard_Library/A_Modules/_turtle_04.py
cd5ff64ebe782eaa5fac54f84e57482e0cd772a7
[ "MIT" ]
permissive
Oscar-Oliveira/Python-3
cfdcbcf4548144fb2488625f53f76b20e4d8c5b0
fa791225a6810b75890d24407b73c5e1b514acbe
refs/heads/master
2021-09-26T06:27:16.367956
2018-10-27T10:42:21
2018-10-27T10:42:21
101,991,657
0
1
null
null
null
null
UTF-8
Python
false
false
513
py
""" turtle """ import turtle import random colors = ["blue", "black", "brown", "red", "orange", "green", "yellow", "beige", "turquoise", "pink"] wn = turtle.Screen() turtles = [turtle.Turtle() for _ in range(10)] for i, t in enumerate(turtles): t.shape("turtle") t.color(colors[i]) t.penup() t.goto(-260, i * 30) t.pendown() for _ in range(100): for _, t in enumerate(turtles): t.forward(random.randint(0, 10)) wn.listen() wn.mainloop()
2d023ce13d42aeef06d982be4b8609792e5496ca
23fddc940a266c2d1d0e0b1687c36cdbcc9d54d9
/app/admin/__init__.py
b72f72aeec303c88ed6a8f146eb448e50be15bcf
[]
no_license
Cuick/traversing
210fcfb1c780037de59343fffeb4fa4d3f2eae32
c78982580af7f63c8bff4dcb37005b7f7c682b5b
refs/heads/master
2021-01-10T17:38:37.899460
2016-11-18T06:06:55
2016-11-18T06:06:55
55,397,540
0
1
null
null
null
null
UTF-8
Python
false
false
156
py
#-*- coding:utf-8 -*- """ created by server on 14-5-26上午11:59. """ import action def doWhenStop(): """服务器关闭前的处理 """ pass
eb905dd46d64599308b58106219fd94e874c27af
531c47c15b97cbcb263ec86821d7f258c81c0aaf
/sdk/network/azure-mgmt-network/azure/mgmt/network/v2019_08_01/aio/operations_async/_vpn_server_configurations_associated_with_virtual_wan_operations_async.py
f5c8445e1d311bde344a60cba25058ed763eeb77
[ "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later", "MIT" ]
permissive
YijunXieMS/azure-sdk-for-python
be364d3b88204fd3c7d223df23756386ff7a3361
f779de8e53dbec033f98f976284e6d9491fd60b3
refs/heads/master
2021-07-15T18:06:28.748507
2020-09-04T15:48:52
2020-09-04T15:48:52
205,457,088
1
2
MIT
2020-06-16T16:38:15
2019-08-30T21:08:55
Python
UTF-8
Python
false
false
7,435
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.exceptions import HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class VpnServerConfigurationsAssociatedWithVirtualWanOperations: """VpnServerConfigurationsAssociatedWithVirtualWanOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2019_08_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config async def _list_initial( self, resource_group_name: str, virtual_wan_name: str, **kwargs ) -> "models.VpnServerConfigurationsResponse": cls = kwargs.pop('cls', None) # type: ClsType["models.VpnServerConfigurationsResponse"] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2019-08-01" # Construct URL url = self._list_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualWANName': self._serialize.url("virtual_wan_name", virtual_wan_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = 'application/json' # Construct and send request request = self._client.post(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('VpnServerConfigurationsResponse', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _list_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualWans/{virtualWANName}/vpnServerConfigurations'} # type: ignore async def begin_list( self, resource_group_name: str, virtual_wan_name: str, **kwargs ) -> "models.VpnServerConfigurationsResponse": """Gives the list of VpnServerConfigurations associated with Virtual Wan in a resource group. :param resource_group_name: The resource group name. :type resource_group_name: str :param virtual_wan_name: The name of the VirtualWAN whose associated VpnServerConfigurations is needed. :type virtual_wan_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: VpnServerConfigurationsResponse, or the result of cls(response) :rtype: ~azure.mgmt.network.v2019_08_01.models.VpnServerConfigurationsResponse :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.VpnServerConfigurationsResponse"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._list_initial( resource_group_name=resource_group_name, virtual_wan_name=virtual_wan_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('VpnServerConfigurationsResponse', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualWans/{virtualWANName}/vpnServerConfigurations'} # type: ignore
4c36661bdaf9f097617a68f74fd7e9c443e2b16d
b95fa99bb1ba2210b73251614d2613363c37f932
/deploy/ngram-train/scripts/main-70.py
ce7b6772851d4bcf8747f79598571b1f41cf57ca
[]
no_license
lingxiao/learn-adj-relation
d1a8894fefc776ec0bd414b5f038361ed4b79d16
dc4285af19e53d7e2d015eb6394f6c601c707da0
refs/heads/master
2020-12-30T16:27:51.531268
2017-06-07T18:59:48
2017-06-07T18:59:48
87,714,049
0
0
null
null
null
null
UTF-8
Python
false
false
1,128
py
############################################################ # Module : A series of measures on the graph for experiments # Date : April 2nd, 2017 # Author : Xiao Ling ############################################################ import os import re import networkx as nx from utils import * from scripts import * from app.config import PATH ############################################################ ''' paths ''' _root = os.path.join(PATH['directories']['deploy'], 'ngram-train') _word_pair_dir = os.path.join(_root, 'pairs') _output_dir = os.path.join(_root, 'outputs') _script_dir = os.path.join(_root ,'scripts') ''' @Use: collect ngram counts ''' batch = 70 word_pair_path = os.path.join(_word_pair_dir , 'batch-' + str(batch) + '.txt') pattern_path = PATH['assets']['patterns'] ngram_dir = PATH['ngrams']['full'] out_dir = _output_dir log_dir = PATH['directories']['log'] collect_ngram_patterns( word_pair_path , pattern_path , ngram_dir , out_dir , log_dir , debug = False)
73687bc070d5f0a867ecaa764f11fb3fba7ed95d
28be2173e5590cc5b03119e9b83c57980e6a7e8a
/studygroups/migrations/0064_split63.py
e49732264ba24d1eaa1b270237861d4c1c7c8b63
[ "MIT" ]
permissive
EdgarOrnelas/learning-circles
cd164f123885ed2079b34ad394c9849b370563b9
293c849321d735aebbdcb6c65b7c92f751f9fd89
refs/heads/master
2021-01-21T20:56:35.429589
2017-06-16T09:20:46
2017-06-16T09:20:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
771
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models import datetime from django.utils.timezone import utc def set_meeting_time(apps, schema_editor): StudyGroupMeeting = apps.get_model('studygroups', 'StudyGroupMeeting') for meeting in StudyGroupMeeting.objects.all(): meeting.meeting_time = meeting.study_group.meeting_time meeting.save() class Migration(migrations.Migration): dependencies = [ ('studygroups', '0063_auto_20160309_1301'), ] operations = [ migrations.AlterField( model_name='studygroupmeeting', name='meeting_time', field=models.TimeField(), ), migrations.RunPython(set_meeting_time), ]
1fa016ff9f3a7768af348bd01c7db7b60543d4de
1afe3895ae8969ccba6d45e531ab5d59b8a41696
/confession/user_app/migrations/0012_auto_20190121_1659.py
673e55aaaef40def26992ea3a95286503b101c0f
[]
no_license
FZTeam/confession
72e3ca0b2ab6016055b4ad6791f5a69aa3732368
7808d2810c65d0be956270f15d8ca489e1a9defe
refs/heads/master
2022-12-12T08:30:37.603455
2019-02-25T15:56:31
2019-02-25T15:56:31
167,647,099
0
1
null
2022-07-06T19:59:26
2019-01-26T03:52:59
Python
UTF-8
Python
false
false
616
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.15 on 2019-01-21 16:59 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('user_app', '0011_auto_20190121_1658'), ] operations = [ migrations.AlterField( model_name='user', name='action_time', field=models.TimeField(auto_now=True), ), migrations.AlterField( model_name='user', name='create_time', field=models.TimeField(auto_now_add=True), ), ]
c6d924a273405d47e1ca7228439de237c16e8109
4904acd900496b4883c2f5b4aa6b45d1ef6654c0
/graphgallery/utils/__init__.py
b41031c08476cf8f7aff25809ca677c95d3ae196
[ "MIT" ]
permissive
blindSpoter01/GraphGallery
aee039edd759be9272d123463b0ad73a57e561c7
e41caeb32a07da95364f15b85cad527a67763255
refs/heads/master
2023-06-17T11:42:27.169751
2021-07-15T03:07:39
2021-07-15T03:07:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
269
py
from .context_manager import nullcontext from .raise_error import raise_if_kwargs from .tqdm import tqdm from .context_manager import nullcontext from .progbar import Progbar from .misc import * from .logger import setup_logger, get_logger from .timeout import TimeOut
7eabe48f91e014ea0b88c898557d4b21f62f256b
0ddcfcbfc3faa81c79e320c34c35a972dab86498
/puzzles/maximum_value_of_k_coins_from_piles.py
61093ea2df9249ea3435755ccc5a997eed57f8bd
[]
no_license
IvanWoo/coding-interview-questions
3311da45895ac4f3c394b22530079c79a9215a1c
1312305b199b65a11804a000432ebe28d1fba87e
refs/heads/master
2023-08-09T19:46:28.278111
2023-06-21T01:47:07
2023-06-21T01:47:07
135,307,912
0
0
null
2023-07-20T12:14:38
2018-05-29T14:24:43
Python
UTF-8
Python
false
false
1,536
py
# https://leetcode.com/problems/maximum-value-of-k-coins-from-piles/description/ """ There are n piles of coins on a table. Each pile consists of a positive number of coins of assorted denominations. In one move, you can choose any coin on top of any pile, remove it, and add it to your wallet. Given a list piles, where piles[i] is a list of integers denoting the composition of the ith pile from top to bottom, and a positive integer k, return the maximum total value of coins you can have in your wallet if you choose exactly k coins optimally. Example 1: Input: piles = [[1,100,3],[7,8,9]], k = 2 Output: 101 Explanation: The above diagram shows the different ways we can choose k coins. The maximum total we can obtain is 101. Example 2: Input: piles = [[100],[100],[100],[100],[100],[100],[1,1,1,1,1,1,700]], k = 7 Output: 706 Explanation: The maximum total can be obtained if we choose all coins from the last pile. Constraints: n == piles.length 1 <= n <= 1000 1 <= piles[i][j] <= 105 1 <= k <= sum(piles[i].length) <= 2000 """ def max_value_of_coins(piles: list[list[int]], k: int) -> int: n = len(piles) dp = [[0] * (k + 1) for _ in range(n + 1)] for i in range(1, n + 1): for j in range(1, k + 1): pile_sum = 0 for x in range(len(piles[i - 1])): if j >= x + 1: pile_sum += piles[i - 1][x] dp[i][j] = max(dp[i][j], dp[i - 1][j - x - 1] + pile_sum) dp[i][j] = max(dp[i][j], dp[i - 1][j]) return dp[n][k]
a39c7ff7874061c6046993e0a11fa1f4106e2173
e62b1e748582584a5c2a05fff970fe09e72752b4
/bra/sprzedaz.py
4c4f500857455573c6de7867b4ae8daedbfadd1b
[]
no_license
wlodekf/jpk
5957b515ecbcded9b4f27d6a0785ee89e3a0d585
1c200350f57469e890a124d07f741d836d9a0833
refs/heads/master
2023-07-10T20:15:11.111276
2021-08-11T12:21:14
2021-08-11T12:21:14
394,978,461
1
0
null
null
null
null
UTF-8
Python
false
false
18,952
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals import csv import re import datetime import decimal import asyncio import websockets import traceback from django.conf import settings from django.db.models import Max, Q from fk.models import Kon, MagDok, MagWiersz, MagNumer from .models import Faktura, Wiersz, ImportSprzedazy su= lambda s: s.strip().upper() if s else s ZERO= decimal.Decimal(0.0) def cp1250_decoder(csv_data): """ Dekodowanie danych z pliku CSV w standardzie Windows. Zastępowane są również podwójne apostrofy bo dekoder je przepuszcza. """ for line in csv_data: line= line.decode('cp1250', errors= 'ignore') line= re.sub('\u201E', '"', line) line= re.sub('\u201D', '"', line) yield line def ustal_delimiter(plik, przynajmniej): """ Ustalenie czy delimiterem w pliku CSV jest średnik czy przecinek. csv.Snifer jakoś nie chce działać. """ delim= ';' for p in cp1250_decoder(plik): if p.count(';') >= przynajmniej and p.count(',') < przynajmniej: delim= ';' break if p.count(',') >= przynajmniej and p.count(';') < przynajmniej: delim= ',' break plik.seek(0) return delim class Postep(): """ Obsługa wysyłania do przeglądarki """ def __init__(self): self.pop= 0 self.connected= False self.stopped= False def loop_stop(self, loop): loop.stop() # def check_server(self, loop, ws_server): # print('Checking server: ', self.connected) # if not self.connected: # self.stopped= True # print(type(ws_server), dir(ws_server)) # ws_server.close() def wykonaj(self, zadanie): print('starting event loop') loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) start_server= websockets.serve(zadanie, '0.0.0.0', 5678) print('trzy', type(start_server)) loop= asyncio.get_event_loop() print('starting server') ws_server= loop.run_until_complete(start_server) print('ws_server', ws_server) # loop.call_later(1.0, self.check_server, loop, a) print('server started') loop.run_forever() print('loop.closing') loop.close() async def show_progress(self, websocket, i, ile): # if not self.stopped: # self.connected= True # else: # return ten= int(i/ile*100) if ten != self.pop: await websocket.send(str(ten)) self.pop= ten def stop_progress(self, websocket): websocket.ws_server.close() websocket.loop.call_later(0.1, self.loop_stop, websocket.loop) class SprzedazImporter(): """ Importer sprzedaży do JPK_FA. Sprzedaż importowana jest z plików CSV w ustalonym formacie. Nagłówki faktur i wiersze zapisane powinny być w osobnych plikach. Po wczytaniu faktury i wiersze (opcjonalne) zapisywane są w tabelach w bazie JPK. Mogą być również przeniesione do rejestru sprzedaży VAT w systemie FK. Importowana sprzedaż może być również wykorzystana do wgrywania do rejestru sprzedaży VAT. """ def __init__(self, firma= None, imp= None): super().__init__() if imp: self.firma= imp.firma.oznaczenie self.imp= imp else: self.firma= firma self.f_pominiete= 0 self.w_pominiete= 0 def sprzedaz_importuj(self, form, request): """ Wczytanie faktur i wierszy z plików CSV i zapisanie w tabelach Faktura i Wiersz. Przy okazji liczone są statystyki - liczby pozycji i sumy kwot na stawki VAT. """ # Utworzenie rekordu z podsumowaniem importu # Na razie tylko informacja o plikach i kto/kiedy self.imp= ImportSprzedazy.objects.create( firma= self.firma, faktury= form.cleaned_data['faktury'], wiersze= form.cleaned_data['wiersze'], kto= request.user.username ) self.imp.nadpisane= 0 # Import faktur i wierszy z wgranych plików z zapisem do bazy self.importuj_faktury(self.imp.faktury) self.importuj_wiersze(self.imp.wiersze) # Zapisanie liczby zaimportowanych faktur i wierszy self.imp.ile_faktur= self.ile_faktur() self.imp.ile_wierszy= self.ile_wierszy() self.imp.save() def importuj_faktury(self, plik): """ Zaimportowanie faktur sprzedaży z pliku CSV zapisanie ich w bazie danych jpk w tablicach tymczasowych. """ self.plik= plik # self.postep= Postep() # self.postep.wykonaj(self._importuj_faktury) # # async def _importuj_faktury(self, websocket, path): self.faktury= [] fak_reader= csv.reader(cp1250_decoder(self.plik), delimiter= ustal_delimiter(self.plik, 24)) header= None self.imp.od_daty= None self.imp.do_daty= None ile= sum(1 for row in fak_reader) self.plik.seek(0) fak_reader= csv.reader(cp1250_decoder(self.plik), delimiter= ustal_delimiter(self.plik, 24)) for i, row in enumerate(fak_reader): # Pominięcie nagłówka if not header: header= '|'.join(row) continue # print('|'.join(row)) # Pominięcie pustego wiersza if not row[0] or not row[1]: self.f_pominiete += 1 continue fak= Faktura.from_csv(row, header) fak.import_sprzedazy= self.imp if not self.imp.od_daty or fak.data_wystawienia < self.imp.od_daty: self.imp.od_daty= fak.data_wystawienia if not self.imp.do_daty or fak.data_wystawienia > self.imp.do_daty: self.imp.do_daty= fak.data_wystawienia self.podsumuj(fak) if Faktura.objects.filter(import_sprzedazy__firma= self.imp.firma, ident= fak.ident).exists(): self.imp.nadpisane += 1 self.przetworz_fak(fak) fak.save() self.faktury.append(fak) # await self.postep.show_progress(websocket, i, ile) # self.postep.stop_progress(websocket) def przetworz_fak(self, fak): """ Dodatkowe przetworzenie faktury. """ if self.firma.oznaczenie == 'printf': # Ustalenie konta sprzedaży na podstawie numeru projektu/zlecenia # zawartego w numerze faktury try: projekt= fak.nr_faktury.split('/')[2] fak.konto_spr= '7011'+projekt+'01' except: pass def importuj_wiersze(self, plik): """ Zaimportowanie wierszy faktur. """ def fak_pozycji(poz_ident, faktury): for fak in faktury: if fak.ident == poz.ident: return fak return None self.wiersze= [] if not plik: return poz_reader= csv.reader(cp1250_decoder(plik), delimiter= ustal_delimiter(plik, 9)) header= None for row in poz_reader: # Pominięcie nagłówka if not header: header= '|'.join(row) continue # Pominięcie pustego wiersza if not row[0] or not row[1]: self.w_pominiete += 1 continue poz= Wiersz.from_csv(row, header) poz.firma= self.firma poz.faktura= fak_pozycji(poz.ident, self.faktury) poz.save() self.wiersze.append(poz) def sprzedaz_akceptuj(self): """ Akceptacja faktur. """ # self.postep= Postep() # self.postep.wykonaj(self._sprzedaz_akceptuj) # # # async def _sprzedaz_akceptuj(self, websocket, path): """ Faktury zostały już wczytane, teraz usuwane są duplikaty, tzn. jeżeli w danym imporcie są faktury, które już były w bazie to te stare są usuwane. """ faktury= Faktura.objects.filter(import_sprzedazy= self.imp) ile= len(faktury) pop= 0 self.imp.nadpisane= 0 for i, fak in enumerate(faktury): # Sprawdzenie czy faktura o podanym ident już istnieje # Jeżeli tak to jest usuwana (a w jej miejsce będzie wstawiona nowa) f= Faktura.objects.filter(Q(import_sprzedazy__firma= self.imp.firma, ident= fak.ident) & ~Q(pk= fak.pk)) if f: f.delete() self.imp.nadpisane += 1 # await self.postep.show_progress(websocket, i, ile) self.imp.save() # self.postep.stop_progress(websocket) def ile_faktur(self): return len(self.faktury) def ile_wierszy(self): return len(self.wiersze) def podsumuj(self, fak): """ Ustalenie liczby faktur z poszczególnymi stawkami oraz sum netto i vat w poszczególnych stawkach. """ i= self.imp if fak.netto_23 or fak.vat_23: i.ile_23 += 1 i.netto_23 += fak.netto_23 i.vat_23 += fak.vat_23 if fak.netto_8 or fak.vat_8: i.ile_8 += 1 i.netto_8 += fak.netto_8 i.vat_8 += fak.vat_8 if fak.netto_5 or fak.vat_5: i.ile_5 += 1 i.netto_5 += fak.netto_5 i.vat_5 += fak.vat_5 if fak.netto_0: i.ile_0 += 1 i.netto_0 += fak.netto_0 if fak.netto_zw: i.ile_zw += 1 i.netto_zw += fak.netto_zw i.naleznosc += fak.naleznosc class SprzedazRejestrVAT(): """ Przenoszenie zaimportowanej sprzedaży do rejestru sprzedaży VAT w systemie FK. """ def __init__(self, imp= None): super().__init__() self.imp= imp self.firma= imp.firma.oznaczenie def do_rejestru(self, form): self.form= form # self.postep= Postep() # self.postep.wykonaj(self._do_rejestru) # # # async def _do_rejestru(self, websocket, path): """ Zapisanie zaimportowanych faktur sprzedaży do rejestru sprzedaży. Być może powinno być tak, że import dotyczy tylko jednego podrejestru VAT i powinien być podawany przy upload (albo przy zapisie do rejestru). """ # Zapamiętanie fakturu zapisu do rejestru sprzedaży self.imp.do_rejestru= True self.imp.rejestr= self.form.cleaned_data['rejestr'] self.imp.konto_kon= re.sub('[- ]', '', self.form.cleaned_data['konto_kon']) self.imp.konto_spr= re.sub('[- ]', '', self.form.cleaned_data['konto_spr']) self.imp.save() miesiac= None numer= None faktury= self.imp.faktura_set.all().order_by('data_wystawienia', 'nr_faktury') ile= len(faktury) for i, f in enumerate(faktury): kon= self.ustal_kon(f) fak= MagDok() fak.nr_dysp= f.id # powiązanie z importem (dane do JPK_FA) fak.stat= 'D' fak.korekta= 'K' if f.korygujaca else 'D' fak.dzial= 'USL' fak.symbol= 'FV' fak.rodz_te= self.imp.rejestr # Ewentualna zmiana rodz_te w rejestrze sprzedaży? # łącznie z przenumerowaniem, ale jak uniknąć dziur? # Ewentualnie w rejestrze importu if not numer: miesiac= (f.data_wystawienia.year % 100)*100 + f.data_wystawienia.month numer= MagNumer.nastepny(dbs= self.imp.firma.oznaczenie, dzial= self.imp.rejestr, symbol= 'FR', korekta= 'D', rok= miesiac) self.imp.od_numeru= numer self.imp.od_daty= f.data_wystawienia else: numer += 1 fak.numer= numer self.imp.do_numeru= numer self.imp.do_daty= f.data_wystawienia fak.kod_wydz= '000' fak.nr_dok= f.nr_faktury fak.data= f.data_wystawienia fak.data_sp= f.data_sprzedazy fak.id_kli= kon # ustalić na podstawie NIP, ewentualnie utworzyć nowego fak.nip= f.nip_nabywcy fak.upust_sp= 0 fak.upust_gt= 0 fak.sp_zapl= 'P' fak.term_zapl= f.termin_platnosci or f.data_wystawienia fak.uwagi= f.uwagi if not fak.uwagi: for w in f.wiersz_set.all().order_by('id'): fak.uwagi= w.nazwa.upper() break fak.wart_det= 0 fak.wart_bru= f.naleznosc fak.zaplata= 0 fak.data_pod= f.data_sprzedazy fak.dni_na_zapl= (fak.term_zapl- fak.data).days fak.zaplacone= 0 # Korekta fak.nr_dow2= f.nr_korygowanej fak.data2= f.data_korygowanej # Zapisanie konta kontrahenta w polu zamów # Automat dekretujący odpowiednio to obsłuży dekretując na to konto # zamiast domyślne fak.zamow= self.imp.konto_kon or f.konto_kon fak.zamow= fak.zamow.strip() if fak.zamow else None fak.save(using= settings.DBS(self.firma)) naleznosc= decimal.Decimal(0) if True: naleznosc += self.wiersz_nag(fak, f, '23', f.netto_23, f.vat_23) naleznosc += self.wiersz_nag(fak, f, ' 8', f.netto_8, f.vat_8) naleznosc += self.wiersz_nag(fak, f, ' 5', f.netto_5, f.vat_5) naleznosc += self.wiersz_nag(fak, f, ' 0', f.netto_0, ZERO) naleznosc += self.wiersz_nag(fak, f, 'ZW', f.netto_zw, ZERO) else: for w in f.wiersz_set.all(): naleznosc += self.wiersz(fak, w) if naleznosc != fak.wart_bru: fak.uwagi= 'NIEZGODNOŚĆ WARTOŚCI POZYCJI I NALEŻNOŚCI {} vs. {}'.format(naleznosc, fak.wart_bru) fak.save() f.fak_id= fak.id f.save(update_fields=['fak_id']) # await self.postep.show_progress(websocket, i, ile) if numer and miesiac: MagNumer.ostatni(dbs= self.imp.firma.oznaczenie, dzial= self.imp.rejestr, symbol= 'FR', korekta= 'D', rok= miesiac, numer= numer+1) self.imp.save() # self.postep.stop_progress(websocket) return numer def wiersz_nag(self, fak, f, stawka, netto, vat): if netto != ZERO or vat != ZERO: wie= MagWiersz() wie.id_dok= fak wie.il_dysp= -1 wie.il_real= -1 wie.cena_real= netto wie.cena_ewid= vat wie.vat= stawka wie.wartosc= netto + vat wie.rodzaj= '01' wie.konto= self.imp.konto_spr or f.konto_spr if self.firma == 'printf': try: wie.konto += (stawka if re.match('[A-Z]+', stawka) else '{:02d}'.format(int(stawka.strip()))) except: traceback.print_exc() wie.konto= wie.konto.strip() if wie.konto else None wie.save(using= settings.DBS(self.firma)) return wie.wartosc else: return ZERO def wiersz(self, fak, w): """ Zapisanie do podanej faktury kolejnego wiersza. """ wie= MagWiersz() wie.id_dok= fak wie.il_dysp= -w.ilosc wie.il_real= -w.ilosc wie.jm= w.jm wie.cena_real= w.netto wie.cena_ewid= w.brutto - w.netto wie.vat= w.stawka wie.wartosc= w.brutto wie.rodzaj= '01' wie.upust= w.upust wie.konto= '732170090123' wie.save(using= settings.DBS(self.firma)) return wie.wartosc def adres_kon(self, adres): m= re.match('(.*)(\d\d\-\d\d\d)(.*)', adres) if m: return m.group(1), m.group(2), m.group(3) return adres[:40], '', adres[40:70] def ustal_kon(self, f): """ Ustalenie kontrahenta na podstawie numeru NIP. """ kon= Kon.objects.using(settings.DBS(self.firma)).filter(id= f.nip_nabywcy) if kon: return kon[0] kon= Kon() # Numer dla zagranicznego nr_kon= Kon.objects.using(settings.DBS(self.firma)).exclude(nr_kon__startswith= 'Z').aggregate(Max('nr_kon')) kon.nr_kon= '{:05d}'.format(int(nr_kon['nr_kon__max'].strip())+1) if '/' in f.nazwa_nabywcy: kon.skrot, kon.nazwa= f.nazwa_nabywcy.split('/') else: kon.nazwa= f.nazwa_nabywcy kon.id= f.nip_nabywcy kon.idtyp= 'NIPUE' if re.match('[A-Z][A-Z]', f.nip_nabywcy) else 'NIP' kon.ulica, kon.kod, kon.miejsc= self.adres_kon(f.adres_nabywcy) kon.kraj= f.nip_nabywcy[:2] if re.match('[A-Z][A-Z]', f.nip_nabywcy) else 'PL' kon.id_obcy= f.id # zapamiętanie skąd się zwiął (faktura) kon.skrot= su(kon.skrot) kon.nazwa= su(kon.nazwa) kon.miejsc= su(kon.miejsc) kon.ulica= su(kon.ulica) kon.kiedy= datetime.date.today() # data utworzenia kon.data_us= kon.kiedy if f.termin_platnosci and f.data_wystawienia: kon.term_zap= (f.termin_platnosci - f.data_wystawienia).days kon.save(using= settings.DBS(self.firma)) return kon
f6cfbb1b55ec14f10d8504e6f9cfc2d5e037a025
8efe56ee34c455a6b1336897f6d457acbc9c10f9
/examples/tf/trpo_cartpole_batch_sampler.py
0123ededecc2bc226c82064afb576a0c3b154b04
[ "MIT" ]
permissive
neurips2020submission11699/metarl
ab18d11e708bf569d76cb2fab2bcce089badd111
ae4825d21478fa1fd0aa6b116941ea40caa152a5
refs/heads/master
2022-10-15T22:03:09.948673
2020-06-11T19:22:55
2020-06-11T19:30:58
268,410,657
4
0
null
null
null
null
UTF-8
Python
false
false
2,140
py
#!/usr/bin/env python3 """This is an example to train a task with parallel sampling.""" import click from metarl import wrap_experiment from metarl.envs import MetaRLEnv from metarl.experiment import LocalTFRunner from metarl.experiment.deterministic import set_seed from metarl.np.baselines import LinearFeatureBaseline from metarl.tf.algos import TRPO from metarl.tf.policies import CategoricalMLPPolicy from metarl.tf.samplers import BatchSampler @click.command() @click.option('--batch_size', type=int, default=4000) @click.option('--max_path_length', type=int, default=100) @wrap_experiment def trpo_cartpole_batch_sampler(ctxt=None, seed=1, batch_size=4000, max_path_length=100): """Train TRPO with CartPole-v1 environment. Args: ctxt (metarl.experiment.ExperimentContext): The experiment configuration used by LocalRunner to create the snapshotter. seed (int): Used to seed the random number generator to produce determinism. batch_size (int): Number of timesteps to use in each training step. max_path_length (int): Number of timesteps to truncate paths to. """ set_seed(seed) n_envs = batch_size // max_path_length with LocalTFRunner(ctxt, max_cpus=n_envs) as runner: env = MetaRLEnv(env_name='CartPole-v1') policy = CategoricalMLPPolicy(name='policy', env_spec=env.spec, hidden_sizes=(32, 32)) baseline = LinearFeatureBaseline(env_spec=env.spec) algo = TRPO(env_spec=env.spec, policy=policy, baseline=baseline, max_path_length=max_path_length, discount=0.99, max_kl_step=0.01) runner.setup(algo=algo, env=env, sampler_cls=BatchSampler, sampler_args={'n_envs': n_envs}) runner.train(n_epochs=100, batch_size=4000, plot=False) trpo_cartpole_batch_sampler()
ec5ee589299f8dbc8bcd523e7b26e96896864327
7949f96ee7feeaa163608dbd256b0b76d1b89258
/toontown/safezone/DistributedFindFour.py
c6488b8a595e93b2cc893ff46e000b115dd9aba2
[]
no_license
xxdecryptionxx/ToontownOnline
414619744b4c40588f9a86c8e01cb951ffe53e2d
e6c20e6ce56f2320217f2ddde8f632a63848bd6b
refs/heads/master
2021-01-11T03:08:59.934044
2018-07-27T01:26:21
2018-07-27T01:26:21
71,086,644
8
10
null
2018-06-01T00:13:34
2016-10-17T00:39:41
Python
UTF-8
Python
false
false
38,816
py
# File: t (Python 2.4) from pandac.PandaModules import * from direct.distributed.ClockDelta import * from direct.task.Task import Task from direct.interval.IntervalGlobal import * from TrolleyConstants import * from direct.gui.DirectGui import * from toontown.toonbase import TTLocalizer from direct.distributed import DistributedNode from direct.distributed.ClockDelta import globalClockDelta from ChineseCheckersBoard import ChineseCheckersBoard from direct.fsm import ClassicFSM, State from direct.fsm import StateData from toontown.toonbase.ToontownTimer import ToontownTimer from toontown.toonbase import ToontownGlobals from direct.distributed.ClockDelta import * from otp.otpbase import OTPGlobals from direct.showbase import PythonUtil class DistributedFindFour(DistributedNode.DistributedNode): def __init__(self, cr): NodePath.__init__(self, 'DistributedFindFour') DistributedNode.DistributedNode.__init__(self, cr) self.cr = cr self.reparentTo(render) self.boardNode = loader.loadModel('phase_6/models/golf/findfour_game.bam') self.boardNode.reparentTo(self) self.board = [ [ 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0]] self.exitButton = None self.inGame = False self.waiting = True self.startButton = None self.playerNum = None self.turnText = None self.isMyTurn = False self.wantTimer = True self.leaveButton = None self.screenText = None self.turnText = None self.exitButton = None self.numRandomMoves = 0 self.blinker = Sequence() self.playersTurnBlinker = Sequence() self.yourTurnBlinker = Sequence() self.winningSequence = Sequence() self.moveSequence = Sequence() self.moveList = [] self.mySquares = [] self.playerSeats = None self.moveCol = None self.move = None self.accept('mouse1', self.mouseClick) self.traverser = base.cTrav self.pickerNode = CollisionNode('mouseRay') self.pickerNP = camera.attachNewNode(self.pickerNode) self.pickerNode.setFromCollideMask(BitMask32(4096)) self.pickerRay = CollisionRay() self.pickerNode.addSolid(self.pickerRay) self.myHandler = CollisionHandlerQueue() self.traverser.addCollider(self.pickerNP, self.myHandler) self.buttonModels = loader.loadModel('phase_3.5/models/gui/inventory_gui') self.upButton = self.buttonModels.find('**//InventoryButtonUp') self.downButton = self.buttonModels.find('**/InventoryButtonDown') self.rolloverButton = self.buttonModels.find('**/InventoryButtonRollover') self.clockNode = ToontownTimer() self.clockNode.setPos(1.1599999999999999, 0, -0.82999999999999996) self.clockNode.setScale(0.29999999999999999) self.clockNode.hide() self.tintConstant = Vec4(0.25, 0.25, 0.25, 0) self.ghostConstant = Vec4(0, 0, 0, 0.5) self.knockSound = base.loadSfx('phase_5/audio/sfx/GUI_knock_1.mp3') self.clickSound = base.loadSfx('phase_3/audio/sfx/GUI_balloon_popup.mp3') self.moveSound = base.loadSfx('phase_6/audio/sfx/CC_move.mp3') self.accept('stoppedAsleep', self.handleSleep) ClassicFSM = ClassicFSM State = State import direct.fsm self.fsm = ClassicFSM.ClassicFSM('ChineseCheckers', [ State.State('waitingToBegin', self.enterWaitingToBegin, self.exitWaitingToBegin, [ 'playing', 'gameOver']), State.State('playing', self.enterPlaying, self.exitPlaying, [ 'gameOver']), State.State('gameOver', self.enterGameOver, self.exitGameOver, [ 'waitingToBegin'])], 'waitingToBegin', 'waitingToBegin') startLoc = self.boardNode.find('**/locators') self.locatorList = startLoc.getChildren() self.startingPositions = self.locatorList.pop(0) self.startingPositions = self.startingPositions.getChildren() instancePiece = self.boardNode.find('**/pieces') tempList = [] for x in range(7): self.startingPositions[x].setTag('StartLocator', '%d' % x) collNode = CollisionNode('startpicker%d' % x) collNode.setIntoCollideMask(BitMask32(4096)) tempList.append(self.startingPositions[x].attachNewNode(collNode)) tempList[x].node().addSolid(CollisionTube(0, 0, 0.23000000000000001, 0, 0, -0.23000000000000001, 0.20000000000000001)) for z in self.startingPositions: y = instancePiece.copyTo(z) for val in y.getChildren(): val.hide() tempList = [] for x in range(42): self.locatorList[x].setTag('GamePeiceLocator', '%d' % x) collNode = CollisionNode('startpicker%d' % x) collNode.setIntoCollideMask(BitMask32(4096)) tempList.append(self.locatorList[x].attachNewNode(collNode)) tempList[x].node().addSolid(CollisionSphere(0, 0, 0, 0.20000000000000001)) for z in self.locatorList: y = instancePiece.copyTo(z) for val in y.getChildren(): val.hide() dummyHide = instancePiece.getParent().attachNewNode('DummyHider') instancePiece.reparentTo(dummyHide) dummyHide.hide() def setName(self, name): self.name = name def announceGenerate(self): DistributedNode.DistributedNode.announceGenerate(self) if self.table.fsm.getCurrentState().getName() != 'observing': if base.localAvatar.doId in self.table.tableState: self.seatPos = self.table.tableState.index(base.localAvatar.doId) if self.seatPos <= 2: for x in self.startingPositions: x.setH(0) for x in self.locatorList: x.setH(0) else: for x in self.startingPositions: x.setH(180) for x in self.locatorList: x.setH(180) self.moveCameraForGame() else: self.seatPos = self.table.seatBumpForObserve if self.seatPos > 2: for x in self.startingPositions: x.setH(180) for x in self.locatorList: x.setH(180) self.moveCameraForGame() def handleSleep(self, task = None): if self.fsm.getCurrentState().getName() == 'waitingToBegin': self.exitButtonPushed() if task != None: pass 1 def setTableDoId(self, doId): self.tableDoId = doId self.table = self.cr.doId2do[doId] self.table.setTimerFunc(self.startButtonPushed) self.fsm.enterInitialState() self.table.setGameDoId(self.doId) def disable(self): DistributedNode.DistributedNode.disable(self) if self.leaveButton: self.leaveButton.destroy() self.leavebutton = None if self.screenText: self.screenText.destroy() self.screenText = None if self.turnText: self.turnText.destroy() self.turnText = None self.clockNode.stop() self.clockNode.hide() self.ignore('mouse1') self.ignore('stoppedAsleep') self.fsm = None taskMgr.remove('playerTurnTask') def delete(self): DistributedNode.DistributedNode.delete(self) self.table.gameDoId = None self.table.game = None if self.exitButton: self.exitButton.destroy() if self.startButton: self.startButton.destroy() self.clockNode.stop() self.clockNode.hide() self.table.startButtonPushed = None self.ignore('mouse1') self.ignore('stoppedAsleep') self.fsm = None self.table = None self.winningSequence.finish() taskMgr.remove('playerTurnTask') def getTimer(self): self.sendUpdate('requestTimer', []) def setTimer(self, timerEnd): if self.fsm.getCurrentState() != None and self.fsm.getCurrentState().getName() == 'waitingToBegin' and not (self.table.fsm.getCurrentState().getName() == 'observing'): self.clockNode.stop() time = globalClockDelta.networkToLocalTime(timerEnd) timeLeft = int(time - globalClock.getRealTime()) if timeLeft > 0 and timerEnd != 0: if timeLeft > 60: timeLeft = 60 self.clockNode.setPos(1.1599999999999999, 0, -0.82999999999999996) self.clockNode.countdown(timeLeft, self.startButtonPushed) self.clockNode.show() else: self.clockNode.stop() self.clockNode.hide() def setTurnTimer(self, turnEnd): if self.fsm.getCurrentState() != None and self.fsm.getCurrentState().getName() == 'playing': self.clockNode.stop() time = globalClockDelta.networkToLocalTime(turnEnd) timeLeft = int(time - globalClock.getRealTime()) if timeLeft > 0: self.clockNode.setPos(0.64000000000000001, 0, -0.27000000000000002) self.clockNode.countdown(timeLeft, self.doRandomMove) self.clockNode.show() def gameStart(self, playerNum): if playerNum != 255: self.playerNum = playerNum if self.playerNum == 1: self.playerColorString = 'Red' else: self.playerColorString = 'Yellow' self.moveCameraForGame() self.fsm.request('playing') def sendTurn(self, playersTurn): if self.fsm.getCurrentState().getName() == 'playing': if playersTurn == self.playerNum: self.isMyTurn = True taskMgr.add(self.turnTask, 'playerTurnTask') self.enableTurnScreenText(playersTurn) def illegalMove(self): self.exitButtonPushed() def moveCameraForGame(self): if self.table.cameraBoardTrack.isPlaying(): self.table.cameraBoardTrack.pause() rotation = 0 if self.seatPos <= 2: position = self.table.seats[1].getPos() position = position + Vec3(0, -8, 12.800000000000001) int = LerpPosHprInterval(camera, 2, position, Vec3(0, -38, 0), camera.getPos(), camera.getHpr()) else: position = self.table.seats[4].getPos() position = position + Vec3(0, -8, 12.800000000000001) if camera.getH() < 0: int = LerpPosHprInterval(camera, 2, position, Vec3(-180, -20, 0), camera.getPos(), camera.getHpr()) else: int = LerpPosHprInterval(camera, 2, position, Vec3(180, -20, 0), camera.getPos(), camera.getHpr()) int.start() def enterWaitingToBegin(self): if self.table.fsm.getCurrentState().getName() != 'observing': self.enableExitButton() self.enableStartButton() def exitWaitingToBegin(self): if self.exitButton: self.exitButton.destroy() self.exitButton = None if self.startButton: self.startButton.destroy() self.exitButton = None self.clockNode.stop() self.clockNode.hide() def enterPlaying(self): self.inGame = True self.enableScreenText() if self.table.fsm.getCurrentState().getName() != 'observing': self.enableLeaveButton() def exitPlaying(self): self.inGame = False if self.leaveButton: self.leaveButton.destroy() self.leavebutton = None self.playerNum = None if self.screenText: self.screenText.destroy() self.screenText = None if self.turnText: self.turnText.destroy() self.turnText = None self.clockNode.stop() self.clockNode.hide() def enterGameOver(self): pass def exitGameOver(self): pass def exitWaitCountdown(self): self._DistributedFindFour__disableCollisions() self.ignore('trolleyExitButton') self.clockNode.reset() def enableExitButton(self): self.exitButton = DirectButton(relief = None, text = TTLocalizer.ChineseCheckersGetUpButton, text_fg = (1, 1, 0.65000000000000002, 1), text_pos = (0, -0.23000000000000001), text_scale = 0.80000000000000004, image = (self.upButton, self.downButton, self.rolloverButton), image_color = (1, 0, 0, 1), image_scale = (20, 1, 11), pos = (0.92000000000000004, 0, 0.80000000000000004), scale = 0.14999999999999999, command = lambda self = self: self.exitButtonPushed()) def enableScreenText(self): defaultPos = (-0.69999999999999996, -0.28999999999999998) if self.playerNum == 1: message = 'You are Red' color = Vec4(1, 0, 0, 1) elif self.playerNum == 2: message = 'You are Yellow' color = Vec4(1, 1, 0, 1) else: message = TTLocalizer.CheckersObserver color = Vec4(0, 0, 0, 1) self.screenText = OnscreenText(text = message, pos = defaultPos, scale = 0.10000000000000001, fg = color, align = TextNode.ACenter, mayChange = 1) def enableStartButton(self): self.startButton = DirectButton(relief = None, text = TTLocalizer.ChineseCheckersStartButton, text_fg = (1, 1, 0.65000000000000002, 1), text_pos = (0, -0.23000000000000001), text_scale = 0.59999999999999998, image = (self.upButton, self.downButton, self.rolloverButton), image_color = (1, 0, 0, 1), image_scale = (20, 1, 11), pos = (0.92000000000000004, 0, 0.56999999999999995), scale = 0.14999999999999999, command = lambda self = self: self.startButtonPushed()) def enableLeaveButton(self): self.leaveButton = DirectButton(relief = None, text = TTLocalizer.ChineseCheckersQuitButton, text_fg = (1, 1, 0.65000000000000002, 1), text_pos = (0, -0.13), text_scale = 0.5, image = (self.upButton, self.downButton, self.rolloverButton), image_color = (1, 0, 0, 1), image_scale = (20, 1, 11), pos = (0.92000000000000004, 0, 0.80000000000000004), scale = 0.14999999999999999, command = lambda self = self: self.exitButtonPushed()) def enableTurnScreenText(self, player): playerOrder = [ 1, 4, 2, 5, 3, 6] message1 = TTLocalizer.CheckersIts if self.turnText != None: self.turnText.destroy() if player == self.playerNum: message2 = TTLocalizer.ChineseCheckersYourTurn color = (0, 0, 0, 1) elif player == 1: message2 = "Red's Turn" color = (1, 0, 0, 1) elif player == 2: message2 = "Yellow's Turn" color = (1, 1, 0, 1) self.turnText = OnscreenText(text = message1 + message2, pos = (-0.69999999999999996, -0.39000000000000001), scale = 0.091999999999999998, fg = color, align = TextNode.ACenter, mayChange = 1) def startButtonPushed(self): self.sendUpdate('requestBegin') self.startButton.hide() self.clockNode.stop() self.clockNode.hide() def exitButtonPushed(self): self.fsm.request('gameOver') self.table.fsm.request('off') self.clockNode.stop() self.clockNode.hide() self.table.sendUpdate('requestExit') def mouseClick(self): messenger.send('wakeup') if self.isMyTurn == True and self.inGame == True and not self.moveSequence.isPlaying(): if self.moveCol != None: self.d_requestMove(self.moveCol) self.moveCol = None self.isMyTurn = False taskMgr.remove('playerTurnTask') def handleClicked(self, index): pass def turnTask(self, task): if base.mouseWatcherNode.hasMouse() == False: return task.cont if self.isMyTurn == False: return task.cont if self.moveSequence.isPlaying(): return task.cont mpos = base.mouseWatcherNode.getMouse() self.pickerRay.setFromLens(base.camNode, mpos.getX(), mpos.getY()) self.traverser.traverse(render) if self.myHandler.getNumEntries() > 0: self.myHandler.sortEntries() pickedObj = self.myHandler.getEntry(0).getIntoNodePath() pickedObj = pickedObj.getNetTag('StartLocator') if pickedObj: colVal = int(pickedObj) if colVal == self.moveCol: return task.cont if self.board[0][colVal] == 0: if self.moveCol != None: for x in self.startingPositions[self.moveCol].getChild(1).getChildren(): x.hide() self.moveCol = colVal if self.playerNum == 1: self.startingPositions[self.moveCol].getChild(1).getChild(2).show() elif self.playerNum == 2: self.startingPositions[self.moveCol].getChild(1).getChild(3).show() return task.cont def d_requestMove(self, moveCol): self.sendUpdate('requestMove', [ moveCol]) def setGameState(self, tableState, moveCol, movePos, turn): messenger.send('wakeup') if self.table.fsm.getCurrentState().getName() == 'observing': isBlank = True for x in range(7): if self.board[5][x] != 0: isBlank = False break continue gameBlank = True for x in range(7): if tableState[5][x] != 0: gameBlank = False break continue if isBlank == True and gameBlank == False: for x in range(6): for y in range(7): self.board[x][y] = tableState[x][y] self.updateGameState() return None if moveCol == 0 and movePos == 0 and turn == 0: for x in range(6): for y in range(7): self.board[x][y] = tableState[x][y] self.updateGameState() else: self.animatePeice(tableState, moveCol, movePos, turn) didIWin = self.checkForWin() if didIWin != None: self.sendUpdate('requestWin', [ didIWin]) def updateGameState(self): for x in range(6): for y in range(7): for z in self.locatorList[x * 7 + y].getChild(1).getChildren(): z.hide() for x in range(6): for y in range(7): state = self.board[x][y] if state == 1: self.locatorList[x * 7 + y].getChild(1).getChild(0).show() continue if state == 2: self.locatorList[x * 7 + y].getChild(1).getChild(1).show() continue def checkForWin(self): for x in range(6): for y in range(7): if self.board[x][y] == self.playerNum: if self.checkHorizontal(x, y, self.playerNum) == True: return [ x, y] elif self.checkVertical(x, y, self.playerNum) == True: return [ x, y] elif self.checkDiagonal(x, y, self.playerNum) == True: return [ x, y] self.checkHorizontal(x, y, self.playerNum) == True def announceWinnerPosition(self, x, y, winDirection, playerNum): self.isMyturn = False if self.turnText: self.turnText.hide() self.clockNode.stop() self.clockNode.hide() if winDirection == 0: blinkList = self.findHorizontal(x, y, playerNum) elif winDirection == 1: blinkList = self.findVertical(x, y, playerNum) elif winDirection == 2: blinkList = self.findDiagonal(x, y, playerNum) if blinkList != []: print blinkList val0 = x * 7 + y x = blinkList[0][0] y = blinkList[0][1] val1 = x * 7 + y x = blinkList[1][0] y = blinkList[1][1] val2 = x * 7 + y x = blinkList[2][0] y = blinkList[2][1] val3 = x * 7 + y self.winningSequence = Sequence() downBlinkerParallel = Parallel(LerpColorInterval(self.locatorList[val0], 0.29999999999999999, Vec4(0.5, 0.5, 0.5, 0.5), Vec4(1, 1, 1, 1)), LerpColorInterval(self.locatorList[val1], 0.29999999999999999, Vec4(0.5, 0.5, 0.5, 0.5), Vec4(1, 1, 1, 1)), LerpColorInterval(self.locatorList[val2], 0.29999999999999999, Vec4(0.5, 0.5, 0.5, 0.5), Vec4(1, 1, 1, 1)), LerpColorInterval(self.locatorList[val3], 0.29999999999999999, Vec4(0.5, 0.5, 0.5, 0.5), Vec4(1, 1, 1, 1))) upBlinkerParallel = Parallel(LerpColorInterval(self.locatorList[val0], 0.29999999999999999, Vec4(1, 1, 1, 1), Vec4(0.5, 0.5, 0.5, 0.5)), LerpColorInterval(self.locatorList[val1], 0.29999999999999999, Vec4(1, 1, 1, 1), Vec4(0.5, 0.5, 0.5, 0.5)), LerpColorInterval(self.locatorList[val2], 0.29999999999999999, Vec4(1, 1, 1, 1), Vec4(0.5, 0.5, 0.5, 0.5)), LerpColorInterval(self.locatorList[val3], 0.29999999999999999, Vec4(1, 1, 1, 1), Vec4(0.5, 0.5, 0.5, 0.5))) self.winningSequence.append(downBlinkerParallel) self.winningSequence.append(upBlinkerParallel) self.winningSequence.loop() def tie(self): self.tieSequence = Sequence(autoFinish = 1) self.clockNode.stop() self.clockNode.hide() self.isMyTurn = False self.moveSequence.finish() if self.turnText: self.turnText.hide() for x in range(41): self.tieSequence.append(Parallel(LerpColorInterval(self.locatorList[x], 0.14999999999999999, Vec4(0.5, 0.5, 0.5, 0.5), Vec4(1, 1, 1, 1)), LerpColorInterval(self.locatorList[x], 0.14999999999999999, Vec4(1, 1, 1, 1), Vec4(0.5, 0.5, 0.5, 0.5)))) whisper = WhisperPopup('This Find Four game has resulted in a Tie!', OTPGlobals.getInterfaceFont(), WhisperPopup.WTNormal) whisper.manage(base.marginManager) self.tieSequence.start() def hideChildren(self, nodeList): pass def animatePeice(self, tableState, moveCol, movePos, turn): messenger.send('wakeup') for x in range(6): for y in range(7): self.board[x][y] = tableState[x][y] pos = self.startingPositions[moveCol].getPos() if turn == 0: peice = self.startingPositions[moveCol].getChild(1).getChildren()[2] peice.show() elif turn == 1: peice = self.startingPositions[moveCol].getChild(1).getChildren()[3] peice.show() self.moveSequence = Sequence() startPos = self.startingPositions[moveCol].getPos() arrayLoc = movePos * 7 + moveCol self.moveSequence.append(LerpPosInterval(self.startingPositions[moveCol], 1.5, self.locatorList[arrayLoc].getPos(self), startPos)) self.moveSequence.append(Func(peice.hide)) self.moveSequence.append(Func(self.startingPositions[moveCol].setPos, startPos)) self.moveSequence.append(Func(self.updateGameState)) self.moveSequence.start() def announceWin(self, avId): self.fsm.request('gameOver') def doRandomMove(self): if self.isMyTurn: if self.moveCol != None: self.d_requestMove(self.moveCol) self.moveCol = None self.isMyTurn = False taskMgr.remove('playerTurnTask') else: hasfound = False while hasfound == False: from random import * x = randint(0, 6) if self.board[0][x] == 0: self.d_requestMove(x) self.moveCol = None self.isMyTurn = False taskMgr.remove('playerTurnTask') hasfound = True continue def doNothing(self): pass def checkHorizontal(self, rVal, cVal, playerNum): if cVal == 3: for x in range(1, 4): if self.board[rVal][cVal - x] != playerNum: break if self.board[rVal][cVal - x] == playerNum and x == 3: return True continue for x in range(1, 4): if self.board[rVal][cVal + x] != playerNum: break if self.board[rVal][cVal + x] == playerNum and x == 3: return True continue return False elif cVal == 2: for x in range(1, 4): if self.board[rVal][cVal + x] != playerNum: break if self.board[rVal][cVal + x] == playerNum and x == 3: return True continue return False elif cVal == 4: for x in range(1, 4): if self.board[rVal][cVal - x] != playerNum: break if self.board[rVal][cVal - x] == playerNum and x == 3: return True continue return False else: return False def checkVertical(self, rVal, cVal, playerNum): if rVal == 2: for x in range(1, 4): if self.board[rVal + x][cVal] != playerNum: break if self.board[rVal + x][cVal] == playerNum and x == 3: return True continue return False elif rVal == 3: for x in range(1, 4): if self.board[rVal - x][cVal] != playerNum: break if self.board[rVal - x][cVal] == playerNum and x == 3: return True continue return False else: return False def checkDiagonal(self, rVal, cVal, playerNum): if cVal <= 2: if rVal == 2: for x in range(1, 4): if self.board[rVal + x][cVal + x] != playerNum: break if self.board[rVal + x][cVal + x] == playerNum and x == 3: return True continue return False elif rVal == 3: for x in range(1, 4): if self.board[rVal - x][cVal + x] != playerNum: break if self.board[rVal - x][cVal + x] == playerNum and x == 3: return True continue return False elif cVal >= 4: if rVal == 2: for x in range(1, 4): if self.board[rVal + x][cVal - x] != playerNum: break if self.board[rVal + x][cVal - x] == playerNum and x == 3: return True continue return False elif rVal == 3: for x in range(1, 4): if self.board[rVal - x][cVal - x] != playerNum: break if self.board[rVal - x][cVal - x] == playerNum and x == 3: return True continue return False elif rVal == 3 and rVal == 4 or rVal == 5: for x in range(1, 4): if self.board[rVal - x][cVal - x] != playerNum: break if self.board[rVal - x][cVal - x] == playerNum and x == 3: return True continue for x in range(1, 4): if self.board[rVal - x][cVal - x] != playerNum: break if self.board[rVal - x][cVal - x] == playerNum and x == 3: return True continue return False elif rVal == 0 and rVal == 1 or rVal == 2: for x in range(1, 4): if self.board[rVal + x][cVal - x] != playerNum: break if self.board[rVal + x][cVal - x] == playerNum and x == 3: return True continue for x in range(1, 4): if self.board[rVal + x][cVal + x] != playerNum: break if self.board[rVal + x][cVal + x] == playerNum and x == 3: return True continue return False return False def findHorizontal(self, rVal, cVal, playerNum): if cVal == 3: retList = [] for x in range(1, 4): retList.append([ rVal, cVal - x]) if self.board[rVal][cVal - x] != playerNum: retList = [] break if self.board[rVal][cVal - x] == playerNum and x == 3: return retList continue for x in range(1, 4): retList.append([ rVal, cVal + x]) if self.board[rVal][cVal + x] != playerNum: retList = [] break if self.board[rVal][cVal + x] == playerNum and x == 3: return retList continue return [] elif cVal == 2: retList = [] for x in range(1, 4): retList.append([ rVal, cVal + x]) if self.board[rVal][cVal + x] != playerNum: retList = [] break if self.board[rVal][cVal + x] == playerNum and x == 3: return retList continue return [] elif cVal == 4: retList = [] for x in range(1, 4): retList.append([ rVal, cVal - x]) if self.board[rVal][cVal - x] != playerNum: retList = [] break if self.board[rVal][cVal - x] == playerNum and x == 3: return retList continue return [] else: return [] def findVertical(self, rVal, cVal, playerNum): if rVal == 2: retList = [] for x in range(1, 4): retList.append([ rVal + x, cVal]) if self.board[rVal + x][cVal] != playerNum: retList = [] break if self.board[rVal + x][cVal] == playerNum and x == 3: return retList continue return [] elif rVal == 3: retList = [] for x in range(1, 4): retList.append([ rVal - x, cVal]) if self.board[rVal - x][cVal] != playerNum: retList = [] break if self.board[rVal - x][cVal] == playerNum and x == 3: return retList continue return [] else: return [] def findDiagonal(self, rVal, cVal, playerNum): retList = [] if cVal <= 2: if rVal == 2: for x in range(1, 4): retList.append([ rVal + x, cVal + x]) if self.board[rVal + x][cVal + x] != playerNum: retList = [] break if self.board[rVal + x][cVal + x] == playerNum and x == 3: return retList continue return [] elif rVal == 3: for x in range(1, 4): retList.append([ rVal - x, cVal + x]) if self.board[rVal - x][cVal + x] != playerNum: retList = [] break if self.board[rVal - x][cVal + x] == playerNum and x == 3: return retList continue return [] elif cVal >= 4: if rVal == 2: for x in range(1, 4): retList.append([ rVal + x, cVal - x]) if self.board[rVal + x][cVal - x] != playerNum: retList = [] break if self.board[rVal + x][cVal - x] == playerNum and x == 3: return retList continue return [] elif rVal == 3: for x in range(1, 4): retList.append([ rVal - x, cVal - x]) if self.board[rVal - x][cVal - x] != playerNum: retList = [] break if self.board[rVal - x][cVal - x] == playerNum and x == 3: return retList continue return [] elif rVal == 3 and rVal == 4 or rVal == 5: for x in range(1, 4): retList.append([ rVal - x, cVal - x]) if self.board[rVal - x][cVal - x] != playerNum: retList = [] break if self.board[rVal - x][cVal - x] == playerNum and x == 3: return retList continue for x in range(1, 4): retList.append([ rVal + x, cVal - x]) if self.board[rVal + x][cVal - x] != playerNum: retList = [] break if self.board[rVal + x][cVal - x] == playerNum and x == 3: return retList continue return [] elif rVal == 0 and rVal == 1 or rVal == 2: for x in range(1, 4): retList.append([ rVal + x, cVal - x]) if self.board[rVal + x][cVal - x] != playerNum: retList = [] break if self.board[rVal + x][cVal - x] == playerNum and x == 3: return retList continue for x in range(1, 4): retList.append([ rVal + x, cVal + x]) if self.board[rVal + x][cVal + x] != playerNum: retList = [] break if self.board[rVal + x][cVal + x] == playerNum and x == 3: return retList continue return [] return []
5477dcd8e308ebb2b6dc85d43bc6177fb264a20c
04b1803adb6653ecb7cb827c4f4aa616afacf629
/third_party/blink/web_tests/external/wpt/tools/wptrunner/wptrunner/wptmanifest/backends/conditional.py
5719a859fa4bc7e4ab4d1e9329ca74b2af6666f7
[ "LGPL-2.0-or-later", "GPL-1.0-or-later", "MIT", "Apache-2.0", "LicenseRef-scancode-w3c-03-bsd-license", "BSD-3-Clause", "LicenseRef-scancode-warranty-disclaimer", "LGPL-2.1-only", "GPL-2.0-only", "LGPL-2.0-only", "BSD-2-Clause", "LicenseRef-scancode-other-copyleft" ]
permissive
Samsung/Castanets
240d9338e097b75b3f669604315b06f7cf129d64
4896f732fc747dfdcfcbac3d442f2d2d42df264a
refs/heads/castanets_76_dev
2023-08-31T09:01:04.744346
2021-07-30T04:56:25
2021-08-11T05:45:21
125,484,161
58
49
BSD-3-Clause
2022-10-16T19:31:26
2018-03-16T08:07:37
null
UTF-8
Python
false
false
11,631
py
import operator from ..node import NodeVisitor, DataNode, ConditionalNode, KeyValueNode, ListNode, ValueNode from ..parser import parse class ConditionalValue(object): def __init__(self, node, condition_func): self.node = node self.condition_func = condition_func if isinstance(node, ConditionalNode): assert len(node.children) == 2 self.condition_node = self.node.children[0] self.value_node = self.node.children[1] else: assert isinstance(node, (ValueNode, ListNode)) self.condition_node = None self.value_node = self.node @property def value(self): if isinstance(self.value_node, ValueNode): return self.value_node.data else: return [item.data for item in self.value_node.children] @value.setter def value(self, value): if isinstance(self.value_node, ValueNode): self.value_node.data = value else: assert(isinstance(self.value_node, ListNode)) while self.value_node.children: self.value_node.children[0].remove() assert len(self.value_node.children) == 0 for list_value in value: self.value_node.append(ValueNode(list_value)) def __call__(self, run_info): return self.condition_func(run_info) def set_value(self, value): if type(value) not in (str, unicode): value = unicode(value) self.value = value def value_as(self, type_func): """Get value and convert to a given type. This is unfortunate, but we don't currently have a good way to specify that specific properties should have their data returned as specific types""" value = self.value if type_func is not None: value = type_func(value) return value def remove(self): if len(self.node.parent.children) == 1: self.node.parent.remove() self.node.remove() class Compiler(NodeVisitor): def compile(self, tree, data_cls_getter=None, **kwargs): """Compile a raw AST into a form where conditional expressions are represented by ConditionalValue objects that can be evaluated at runtime. tree - The root node of the wptmanifest AST to compile data_cls_getter - A function taking two parameters; the previous output node and the current ast node and returning the class of the output node to use for the current ast node """ if data_cls_getter is None: self.data_cls_getter = lambda x, y: ManifestItem else: self.data_cls_getter = data_cls_getter self.tree = tree self.output_node = self._initial_output_node(tree, **kwargs) self.visit(tree) if hasattr(self.output_node, "set_defaults"): self.output_node.set_defaults() assert self.output_node is not None return self.output_node def compile_condition(self, condition): """Compile a ConditionalNode into a ConditionalValue. condition: A ConditionalNode""" data_node = DataNode() key_value_node = KeyValueNode() key_value_node.append(condition.copy()) data_node.append(key_value_node) manifest_item = self.compile(data_node) return manifest_item._data[None][0] def _initial_output_node(self, node, **kwargs): return self.data_cls_getter(None, None)(node, **kwargs) def visit_DataNode(self, node): if node != self.tree: output_parent = self.output_node self.output_node = self.data_cls_getter(self.output_node, node)(node) else: output_parent = None assert self.output_node is not None for child in node.children: self.visit(child) if output_parent is not None: # Append to the parent *after* processing all the node data output_parent.append(self.output_node) self.output_node = self.output_node.parent assert self.output_node is not None def visit_KeyValueNode(self, node): key_values = [] for child in node.children: condition, value = self.visit(child) key_values.append(ConditionalValue(child, condition)) self.output_node._add_key_value(node, key_values) def visit_ListNode(self, node): return (lambda x:True, [self.visit(child) for child in node.children]) def visit_ValueNode(self, node): return (lambda x: True, node.data) def visit_AtomNode(self, node): return (lambda x: True, node.data) def visit_ConditionalNode(self, node): return self.visit(node.children[0]), self.visit(node.children[1]) def visit_StringNode(self, node): indexes = [self.visit(child) for child in node.children] def value(x): rv = node.data for index in indexes: rv = rv[index(x)] return rv return value def visit_NumberNode(self, node): if "." in node.data: return lambda x: float(node.data) else: return lambda x: int(node.data) def visit_VariableNode(self, node): indexes = [self.visit(child) for child in node.children] def value(x): data = x[node.data] for index in indexes: data = data[index(x)] return data return value def visit_IndexNode(self, node): assert len(node.children) == 1 return self.visit(node.children[0]) def visit_UnaryExpressionNode(self, node): assert len(node.children) == 2 operator = self.visit(node.children[0]) operand = self.visit(node.children[1]) return lambda x: operator(operand(x)) def visit_BinaryExpressionNode(self, node): assert len(node.children) == 3 operator = self.visit(node.children[0]) operand_0 = self.visit(node.children[1]) operand_1 = self.visit(node.children[2]) assert operand_0 is not None assert operand_1 is not None return lambda x: operator(operand_0(x), operand_1(x)) def visit_UnaryOperatorNode(self, node): return {"not": operator.not_}[node.data] def visit_BinaryOperatorNode(self, node): return {"and": operator.and_, "or": operator.or_, "==": operator.eq, "!=": operator.ne}[node.data] class ManifestItem(object): def __init__(self, node=None, **kwargs): self.node = node self.parent = None self.children = [] self._data = {} def __repr__(self): return "<conditional.ManifestItem %s>" % (self.node.data) def __str__(self): rv = [repr(self)] for item in self.children: rv.extend(" %s" % line for line in str(item).split("\n")) return "\n".join(rv) def __contains__(self, key): return key in self._data @property def is_empty(self): if self._data: return False return all(child.is_empty for child in self.children) @property def root(self): node = self while node.parent is not None: node = node.parent return node @property def name(self): return self.node.data def has_key(self, key): for node in [self, self.root]: if key in node._data: return True return False def get(self, key, run_info=None): if run_info is None: run_info = {} for node in [self, self.root]: if key in node._data: for cond_value in node._data[key]: try: matches = cond_value(run_info) except KeyError: matches = False if matches: return cond_value.value raise KeyError def set(self, key, value, condition=None): # First try to update the existing value if key in self._data: cond_values = self._data[key] for cond_value in cond_values: if cond_value.condition_node == condition: cond_value.value = value return # If there isn't a conditional match reuse the existing KeyValueNode as the # parent node = None for child in self.node.children: if child.data == key: node = child break assert node is not None else: node = KeyValueNode(key) self.node.append(node) if isinstance(value, list): value_node = ListNode() for item in value: value_node.append(ValueNode(unicode(item))) else: value_node = ValueNode(unicode(value)) if condition is not None: conditional_node = ConditionalNode() conditional_node.append(condition) conditional_node.append(value_node) node.append(conditional_node) cond_value = Compiler().compile_condition(conditional_node) else: node.append(value_node) cond_value = ConditionalValue(value_node, lambda x: True) # Update the cache of child values. This is pretty annoying and maybe # it should just work directly on the tree if key not in self._data: self._data[key] = [] if self._data[key] and self._data[key][-1].condition_node is None: self._data[key].insert(len(self._data[key]) - 1, cond_value) else: self._data[key].append(cond_value) def _add_key_value(self, node, values): """Called during construction to set a key-value node""" self._data[node.data] = values def append(self, child): self.children.append(child) child.parent = self if child.node.parent != self.node: self.node.append(child.node) return child def remove(self): if self.parent: self.parent._remove_child(self) def _remove_child(self, child): self.children.remove(child) child.parent = None def iterchildren(self, name=None): for item in self.children: if item.name == name or name is None: yield item def _flatten(self): rv = {} for node in [self, self.root]: for name, value in node._data.iteritems(): if name not in rv: rv[name] = value return rv def iteritems(self): for item in self._flatten().iteritems(): yield item def iterkeys(self): for item in self._flatten().iterkeys(): yield item def remove_value(self, key, value): if key not in self._data: return try: self._data[key].remove(value) except ValueError: return if not self._data[key]: del self._data[key] value.remove() def compile_ast(ast, data_cls_getter=None, **kwargs): return Compiler().compile(ast, data_cls_getter=data_cls_getter, **kwargs) def compile(stream, data_cls_getter=None, **kwargs): return compile_ast(parse(stream), data_cls_getter=data_cls_getter, **kwargs)
b2b4971f6f115b35ab3d38e85042808deb3e4102
5182897b2f107f4fd919af59c6762d66c9be5f1d
/.history/src/Simulador_20200708111002.py
e4355d8041f85f51b628df0e95950022e25c13c9
[ "MIT" ]
permissive
eduardodut/Trabalho_final_estatistica_cd
422b7e702f96291f522bcc68d2e961d80d328c14
fbedbbea6bdd7a79e1d62030cde0fab4e93fc338
refs/heads/master
2022-11-23T03:14:05.493054
2020-07-16T23:49:26
2020-07-16T23:49:26
277,867,096
0
0
null
null
null
null
UTF-8
Python
false
false
5,326
py
import pandas as pd import numpy as np from Matriz_esferica import Matriz_esferica from Individuo import Individuo import random from itertools import permutations class Simulador(): def __init__( self, tamanho_matriz, #numero de linhas e colunas da matriz esférica percentual_inicial_tipo1, #percentual inicial da população que será infectada tipo 1 percentual_inicial_tipo2, #percentual inicial da população que será infectada tipo 2 chance_infeccao, #chance que um infectado tipo 2 tem de infectar um indivíduo saudável chance_infeccao_tipo2, #chance de um indivíduo infectado se tornar contagioso chance_morte, #chance de um indivíduo tipo 2 morrer ao fim de uma atualização atualizacoes_cura): #número de atualizações necessárias para a cura de um indivíduo tipo 1 ou 2 self.num_atualizacoes = 0 self.individuos_infectados_tipo_2 = [] self.individuos_infectados_tipo_1 = [] self.individuos_infectados_curados = [] self.individuos_infectados_mortos = [] self.matriz_individuos = np.zeros([tamanho_matriz,tamanho_matriz]) self.fabrica_individuo = Fabrica_individuo( chance_infeccao, chance_infeccao_tipo2, chance_morte, atualizacoes_cura) #objeto que é responsável por validar a movimentação no grid n x n self.matriz_esferica = Matriz_esferica(tamanho_matriz) self.populacao_inicial = int(tamanho_matriz**2) self.num_inicial_tipo2 = int(self.populacao_inicial * percentual_inicial_tipo2) self.num_inicial_tipo1 = int(self.populacao_inicial * percentual_inicial_tipo1) self.num_inicial_sadios = self.populacao_inicial - (self.num_inicial_tipo2 + self.num_inicial_tipo1) dict = { 'num_sadios':self.num_inicial_sadios, 'num_infect_t1':self.num_inicial_tipo1, 'num_infect_t2':self.num_inicial_tipo2, 'num_curados':0, 'num_mortos':0} #dataframe que guardará os resultados de cada atualização self.dataframe = pd.DataFrame(dict, index = [0]) self.popular(tamanho_matriz) def popular(self, tamanho_matriz): #lista de possíveis combinações de índices da matriz de dados permutacoes = permutations(list(range(tamanho_matriz)),2) lista_indices = list(permutacoes) random.shuffle(lista_indices) #cria o primeiro tipo1: self.indices_infectados_tipo_1.append(lista_indices[0]) indiv = self.fabrica_individuo.criar_individuo(Individuo.INFECTADO_TIPO_1,(lista_indices[0][0], lista_indices[0][1]) self.individuos_infectados_tipo_1.append(indiv) #cria o restante dos tipos 1 for i in range(1,self.num_inicial_tipo1): pass self.matriz_individuos[lista_indices[0][0], lista_indices[0][1]] = ) #cria o restante dos tipo 2: for indice in lista_indices[1:self.num_inicial_tipo2-2]: print(indice) #cria os tipo1: #cria a população saudável: for i in lista_indices[0:]: print(i) class Fabrica_individuo(): def __init__( self, chance_infeccao, #chance que um infectado tipo 2 tem de infectar um indivíduo saudável chance_infeccao_tipo2, #chance de um indivíduo infectado se tornar contagioso chance_morte, #chance de um indivíduo tipo 2 morrer ao fim de uma atualização atualizacoes_cura): #número de atualizações necessárias para a cura de um indivíduo tipo 1 ou 2 self.chance_infeccao = chance_infeccao self.chance_infeccao_tipo2 = chance_infeccao_tipo2 self.chance_morte = chance_morte self.atualizacoes_cura = atualizacoes_cura def criar_individuo(self, status_inicial, posicao): return Individuo( status_inicial, self.chance_infeccao, self.chance_infeccao_tipo2, self.chance_morte, self.atualizacoes_cura, posicao) chance_infeccao = 0.3 chance_infeccao_tipo2 = 0.2 chance_morte = 0.2 atualizacoes_cura = 10 percentual_inicial_tipo1 = 0.05 percentual_inicial_tipo2 = 0.01 sim = Simulador( 1000, 1, percentual_inicial_tipo1, percentual_inicial_tipo2, chance_infeccao, chance_infeccao_tipo2, chance_morte,atualizacoes_cura) ind = sim.fabrica_individuo.criar_individuo(Individuo.MORTO, (0,0)) dict = {'num_sadios':1, 'num_infect_t1':2, 'num_infect_t2':3, 'num_curados':4, 'num_mortos':5} s = pd.Series(dict) sim.dataframe = sim.dataframe.append(s, ignore_index=True) print(sim.dataframe) #print(sim.num_inicial_tipo2)
00939f6d74f528a23ab0e586d52057ea17789070
ffadf9541d01cf9af20c419759d48b1eb01bfd35
/pachong/PCdemo1/day15/股市行情定点爬取.py
842ff30d11cf43f28fc448cc022cde009269ba8e
[]
no_license
1987617587/lsh_py
b1bb1016eaafcba03bbc4a5310c1db04ae227af4
80eb5175cd0e5b3c6c5e2ebb906bb78d9a8f9e0d
refs/heads/master
2021-01-02T05:14:31.330287
2020-06-20T05:18:23
2020-06-20T05:18:23
239,498,994
2
1
null
2020-06-07T23:09:56
2020-02-10T11:46:47
Python
UTF-8
Python
false
false
5,975
py
# author:lsh # datetime:2020/4/13 19:56 ''' .::::. _oo0oo_ .::::::::. o8888888o ::::::::::: 88" . "88 ..:::::::::::' (| -_- |) '::::::::::::' 0\ = /0 .:::::::::: ___/`---'\___ '::::::::::::::.. .' \\| |# '. ..::::::::::::. / \\||| : |||# \ ``:::::::::::::::: / _||||| -:- |||||- \ ::::``:::::::::' .:::. | | \\\ - #/ | | ::::' ':::::' .::::::::. | \_| ''\---/'' |_/ | .::::' :::: .:::::::'::::. \ .-\__ '-' ___/-. / .:::' ::::: .:::::::::' ':::::. ___'. .' /--.--\ `. .'___ .::' :::::.:::::::::' ':::::. ."" '< `.___\_<|>_/___.' >' "". .::' ::::::::::::::' ``::::. | | : `- \`.;`\ _ /`;.`/ - ` : | | ...::: ::::::::::::' ``::. \ \ `_. \_ __\ /__ _/ .-` / / ```` ':. ':::::::::' ::::.. `-.____`.___ \_____/___.-`___.-' '.:::::' ':'````.. `=---=' 女神保佑 永无BUG 佛祖保佑 永无BUG ''' from celery import Celery from celery.schedules import crontab import requests import demjson import pymysql import time import random import math import re uri = 'redis://@127.0.0.1:6379/7' app = Celery('tasks', broker=uri) # 每天下午15:30执行 c1 = crontab(minute=30, hour=15) @app.task def goto_request(count_url): conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', password='123456', db='py1911') cur = conn.cursor() # count_url = 'http://vip.stock.finance.sina.com.cn/quotes_service/api/json_v2.php/Market_Center.getHQNodeStockCount' data_url = 'http://vip.stock.finance.sina.com.cn/quotes_service/api/json_v2.php/Market_Center.getHQNodeData' type_ls = ['sh_a', 'sh_b', 'sz_a', 'sz_b', 'sh_z', 'sz_z'] headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36', } pat_1 = re.compile(r'(\d+)') size = 40 for type in type_ls: # 请求指定类别股票数量 param1 = { 'data': type } html = requests.get(count_url, params=param1, headers=headers).text count = int(pat_1.search(html).group(1)) page_count = math.ceil(count / size) print('count:', count, 'page_count:', page_count) # 请求不同类别不同页码的股票信息 for page in range(1, page_count + 1): param2 = { 'page': page, 'num': 40, 'sort': 'symbol', 'asc': 1, 'data': type, 'symbol': '', '_s_r_a': 'init', } print('type:', type, 'page:', page) html = requests.get(data_url, params=param2, headers=headers).text # print(html) ls = demjson.decode(html) for each in ls: symbol = each['symbol'] print('symbol:', symbol) code = each['code'] print(f'code:{code}') name = each['name'] print('name:', name) trade = each['trade'] print('trade:', trade) pricechange = each['pricechange'] print('pricechange:', pricechange) changepercent = each['changepercent'] print('changepercent:', changepercent) buy = each['buy'] print('buy:', buy) sell = each['sell'] print('sell:', sell) settlement = each['settlement'] print(f'settlement:{settlement}') open = each['open'] print('open:', open) high = each['high'] print('high:', high) low = each['low'] print('low:', low) volume = each['volume'] print('volume:', volume) amount = each['amount'] print('amount:', amount) ticktime = each['ticktime'] print('ticktime:', ticktime) print('=' * 200) strsql = 'insert into finance VALUES(0,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)' params = [symbol, code, name, trade, pricechange, changepercent, buy, sell, settlement, open, high, low] cur.execute(strsql, params) conn.commit() time.sleep(random.random()) cur.close() conn.close() return '爬取成功' app.conf.beat_schedule = { 'send-every-15-hours': { # 指定任务明 'task': 'tasks.goto_request', # 定时时间 'schedule': 30.0, # 'schedule':c1, #传递任务函数需要的参数 'args': ('http://vip.stock.finance.sina.com.cn/quotes_service/api/json_v2.php/Market_Center.getHQNodeStockCount',) }, }
59fecb3751deccbc1893af6d99c785ffb06deb69
7fae887c73cc6df8de886897114eb07c28674fa7
/cs101/unit27/27_4.py
7f5cedd2fc201fd3745d03708f744ca64942ee95
[]
no_license
thinkreed/pyf
24960e3523be3c2e1661608f60f866a5cd7e747f
04f5e7f46aa95719f848bb64a512458895147da3
refs/heads/master
2022-12-10T17:43:49.709946
2019-06-13T01:13:00
2019-06-13T01:13:00
109,550,040
2
0
null
2022-12-08T05:14:52
2017-11-05T03:53:51
Python
UTF-8
Python
false
false
972
py
english = {1: "January", 2: "February", 3: "March", 4: "April", 5: "May", 6: "June", 7: "July", 8: "August", 9: "September", 10: "October", 11: "November", 12: "December"} swedish = {1: "januari", 2: "februari", 3: "mars", 4: "april", 5: "maj", 6: "juni", 7: "juli", 8: "augusti", 9: "september", 10: "oktober", 11: "november", 12: "december"} def date_converter(month_dictionary, date): start = date.find('/') month = month_dictionary[int(date[:start])] end = date.find('/', start + 1) day = date[start + 1:end] year = date[end + 1:] return day + ' ' + month + ' ' + year def date_converter2(month_dictionary, date): month, day, year = date.split('/') return day + ' ' + month_dictionary[int(month)] + ' ' + year print(date_converter(english, '5/11/2012')) print(date_converter(english, '5/11/12')) print(date_converter(swedish, '5/11/2012')) print(date_converter2(swedish, '12/5/1791'))
9ec06f7e2751cf047aecded3a7687a957892776e
ce083128fa87ca86c65059893aa8882d088461f5
/python/flask-mail-labs/.venv/lib/python2.7/site-packages/IPython/terminal/interactiveshell.py
4119b87698d99d50b6b6c44d195e21abaf2e3faa
[]
no_license
marcosptf/fedora
581a446e7f81d8ae9a260eafb92814bc486ee077
359db63ff1fa79696b7bc803bcfa0042bff8ab44
refs/heads/master
2023-04-06T14:53:40.378260
2023-03-26T00:47:52
2023-03-26T00:47:52
26,059,824
6
5
null
2022-12-08T00:43:21
2014-11-01T18:48:56
null
UTF-8
Python
false
false
32,119
py
# -*- coding: utf-8 -*- """Subclass of InteractiveShell for terminal based frontends.""" # Copyright (c) IPython Development Team. # Distributed under the terms of the Modified BSD License. from __future__ import print_function import bdb import os import sys from IPython.core.error import TryNext, UsageError from IPython.core.usage import interactive_usage from IPython.core.inputsplitter import IPythonInputSplitter, ESC_MAGIC from IPython.core.interactiveshell import InteractiveShell, InteractiveShellABC from IPython.core.magic import Magics, magics_class, line_magic from IPython.lib.clipboard import ClipboardEmpty from IPython.utils.contexts import NoOpContext from IPython.utils.decorators import undoc from IPython.utils.encoding import get_stream_enc from IPython.utils import py3compat from IPython.utils.terminal import toggle_set_term_title, set_term_title from IPython.utils.process import abbrev_cwd from IPython.utils.warn import warn, error from IPython.utils.text import num_ini_spaces, SList, strip_email_quotes from traitlets import Integer, CBool, Unicode def get_default_editor(): try: ed = os.environ['EDITOR'] if not py3compat.PY3: ed = ed.decode() return ed except KeyError: pass except UnicodeError: warn("$EDITOR environment variable is not pure ASCII. Using platform " "default editor.") if os.name == 'posix': return 'vi' # the only one guaranteed to be there! else: return 'notepad' # same in Windows! def get_pasted_lines(sentinel, l_input=py3compat.input, quiet=False): """ Yield pasted lines until the user enters the given sentinel value. """ if not quiet: print("Pasting code; enter '%s' alone on the line to stop or use Ctrl-D." \ % sentinel) prompt = ":" else: prompt = "" while True: try: l = py3compat.str_to_unicode(l_input(prompt)) if l == sentinel: return else: yield l except EOFError: print('<EOF>') return @undoc def no_op(*a, **kw): pass class ReadlineNoRecord(object): """Context manager to execute some code, then reload readline history so that interactive input to the code doesn't appear when pressing up.""" def __init__(self, shell): self.shell = shell self._nested_level = 0 def __enter__(self): if self._nested_level == 0: try: self.orig_length = self.current_length() self.readline_tail = self.get_readline_tail() except (AttributeError, IndexError): # Can fail with pyreadline self.orig_length, self.readline_tail = 999999, [] self._nested_level += 1 def __exit__(self, type, value, traceback): self._nested_level -= 1 if self._nested_level == 0: # Try clipping the end if it's got longer try: e = self.current_length() - self.orig_length if e > 0: for _ in range(e): self.shell.readline.remove_history_item(self.orig_length) # If it still doesn't match, just reload readline history. if self.current_length() != self.orig_length \ or self.get_readline_tail() != self.readline_tail: self.shell.refill_readline_hist() except (AttributeError, IndexError): pass # Returning False will cause exceptions to propagate return False def current_length(self): return self.shell.readline.get_current_history_length() def get_readline_tail(self, n=10): """Get the last n items in readline history.""" end = self.shell.readline.get_current_history_length() + 1 start = max(end-n, 1) ghi = self.shell.readline.get_history_item return [ghi(x) for x in range(start, end)] @magics_class class TerminalMagics(Magics): def __init__(self, shell): super(TerminalMagics, self).__init__(shell) self.input_splitter = IPythonInputSplitter() def store_or_execute(self, block, name): """ Execute a block, or store it in a variable, per the user's request. """ if name: # If storing it for further editing self.shell.user_ns[name] = SList(block.splitlines()) print("Block assigned to '%s'" % name) else: b = self.preclean_input(block) self.shell.user_ns['pasted_block'] = b self.shell.using_paste_magics = True try: self.shell.run_cell(b) finally: self.shell.using_paste_magics = False def preclean_input(self, block): lines = block.splitlines() while lines and not lines[0].strip(): lines = lines[1:] return strip_email_quotes('\n'.join(lines)) def rerun_pasted(self, name='pasted_block'): """ Rerun a previously pasted command. """ b = self.shell.user_ns.get(name) # Sanity checks if b is None: raise UsageError('No previous pasted block available') if not isinstance(b, py3compat.string_types): raise UsageError( "Variable 'pasted_block' is not a string, can't execute") print("Re-executing '%s...' (%d chars)"% (b.split('\n',1)[0], len(b))) self.shell.run_cell(b) @line_magic def autoindent(self, parameter_s = ''): """Toggle autoindent on/off (if available).""" self.shell.set_autoindent() print("Automatic indentation is:",['OFF','ON'][self.shell.autoindent]) @line_magic def cpaste(self, parameter_s=''): """Paste & execute a pre-formatted code block from clipboard. You must terminate the block with '--' (two minus-signs) or Ctrl-D alone on the line. You can also provide your own sentinel with '%paste -s %%' ('%%' is the new sentinel for this operation). The block is dedented prior to execution to enable execution of method definitions. '>' and '+' characters at the beginning of a line are ignored, to allow pasting directly from e-mails, diff files and doctests (the '...' continuation prompt is also stripped). The executed block is also assigned to variable named 'pasted_block' for later editing with '%edit pasted_block'. You can also pass a variable name as an argument, e.g. '%cpaste foo'. This assigns the pasted block to variable 'foo' as string, without dedenting or executing it (preceding >>> and + is still stripped) '%cpaste -r' re-executes the block previously entered by cpaste. '%cpaste -q' suppresses any additional output messages. Do not be alarmed by garbled output on Windows (it's a readline bug). Just press enter and type -- (and press enter again) and the block will be what was just pasted. IPython statements (magics, shell escapes) are not supported (yet). See also -------- paste: automatically pull code from clipboard. Examples -------- :: In [8]: %cpaste Pasting code; enter '--' alone on the line to stop. :>>> a = ["world!", "Hello"] :>>> print " ".join(sorted(a)) :-- Hello world! """ opts, name = self.parse_options(parameter_s, 'rqs:', mode='string') if 'r' in opts: self.rerun_pasted() return quiet = ('q' in opts) sentinel = opts.get('s', u'--') block = '\n'.join(get_pasted_lines(sentinel, quiet=quiet)) self.store_or_execute(block, name) @line_magic def paste(self, parameter_s=''): """Paste & execute a pre-formatted code block from clipboard. The text is pulled directly from the clipboard without user intervention and printed back on the screen before execution (unless the -q flag is given to force quiet mode). The block is dedented prior to execution to enable execution of method definitions. '>' and '+' characters at the beginning of a line are ignored, to allow pasting directly from e-mails, diff files and doctests (the '...' continuation prompt is also stripped). The executed block is also assigned to variable named 'pasted_block' for later editing with '%edit pasted_block'. You can also pass a variable name as an argument, e.g. '%paste foo'. This assigns the pasted block to variable 'foo' as string, without executing it (preceding >>> and + is still stripped). Options: -r: re-executes the block previously entered by cpaste. -q: quiet mode: do not echo the pasted text back to the terminal. IPython statements (magics, shell escapes) are not supported (yet). See also -------- cpaste: manually paste code into terminal until you mark its end. """ opts, name = self.parse_options(parameter_s, 'rq', mode='string') if 'r' in opts: self.rerun_pasted() return try: block = self.shell.hooks.clipboard_get() except TryNext as clipboard_exc: message = getattr(clipboard_exc, 'args') if message: error(message[0]) else: error('Could not get text from the clipboard.') return except ClipboardEmpty: raise UsageError("The clipboard appears to be empty") # By default, echo back to terminal unless quiet mode is requested if 'q' not in opts: write = self.shell.write write(self.shell.pycolorize(block)) if not block.endswith('\n'): write('\n') write("## -- End pasted text --\n") self.store_or_execute(block, name) # Class-level: add a '%cls' magic only on Windows if sys.platform == 'win32': @line_magic def cls(self, s): """Clear screen. """ os.system("cls") class TerminalInteractiveShell(InteractiveShell): autoedit_syntax = CBool(False, config=True, help="auto editing of files with syntax errors.") confirm_exit = CBool(True, config=True, help=""" Set to confirm when you try to exit IPython with an EOF (Control-D in Unix, Control-Z/Enter in Windows). By typing 'exit' or 'quit', you can force a direct exit without any confirmation.""", ) # This display_banner only controls whether or not self.show_banner() # is called when mainloop/interact are called. The default is False # because for the terminal based application, the banner behavior # is controlled by the application. display_banner = CBool(False) # This isn't configurable! embedded = CBool(False) embedded_active = CBool(False) editor = Unicode(get_default_editor(), config=True, help="Set the editor used by IPython (default to $EDITOR/vi/notepad)." ) pager = Unicode('less', config=True, help="The shell program to be used for paging.") screen_length = Integer(0, config=True, help= """Number of lines of your screen, used to control printing of very long strings. Strings longer than this number of lines will be sent through a pager instead of directly printed. The default value for this is 0, which means IPython will auto-detect your screen size every time it needs to print certain potentially long strings (this doesn't change the behavior of the 'print' keyword, it's only triggered internally). If for some reason this isn't working well (it needs curses support), specify it yourself. Otherwise don't change the default.""", ) term_title = CBool(False, config=True, help="Enable auto setting the terminal title." ) usage = Unicode(interactive_usage) # This `using_paste_magics` is used to detect whether the code is being # executed via paste magics functions using_paste_magics = CBool(False) # In the terminal, GUI control is done via PyOS_InputHook @staticmethod def enable_gui(gui=None, app=None): """Switch amongst GUI input hooks by name. """ # Deferred import from IPython.lib.inputhook import enable_gui as real_enable_gui try: return real_enable_gui(gui, app) except ValueError as e: raise UsageError("%s" % e) system = InteractiveShell.system_raw #------------------------------------------------------------------------- # Overrides of init stages #------------------------------------------------------------------------- def init_display_formatter(self): super(TerminalInteractiveShell, self).init_display_formatter() # terminal only supports plaintext self.display_formatter.active_types = ['text/plain'] #------------------------------------------------------------------------- # Things related to readline #------------------------------------------------------------------------- def init_readline(self): """Command history completion/saving/reloading.""" if self.readline_use: import IPython.utils.rlineimpl as readline self.rl_next_input = None self.rl_do_indent = False if not self.readline_use or not readline.have_readline: self.readline = None # Set a number of methods that depend on readline to be no-op self.readline_no_record = NoOpContext() self.set_readline_completer = no_op self.set_custom_completer = no_op if self.readline_use: warn('Readline services not available or not loaded.') else: self.has_readline = True self.readline = readline sys.modules['readline'] = readline # Platform-specific configuration if os.name == 'nt': # FIXME - check with Frederick to see if we can harmonize # naming conventions with pyreadline to avoid this # platform-dependent check self.readline_startup_hook = readline.set_pre_input_hook else: self.readline_startup_hook = readline.set_startup_hook # Readline config order: # - IPython config (default value) # - custom inputrc # - IPython config (user customized) # load IPython config before inputrc if default # skip if libedit because parse_and_bind syntax is different if not self._custom_readline_config and not readline.uses_libedit: for rlcommand in self.readline_parse_and_bind: readline.parse_and_bind(rlcommand) # Load user's initrc file (readline config) # Or if libedit is used, load editrc. inputrc_name = os.environ.get('INPUTRC') if inputrc_name is None: inputrc_name = '.inputrc' if readline.uses_libedit: inputrc_name = '.editrc' inputrc_name = os.path.join(self.home_dir, inputrc_name) if os.path.isfile(inputrc_name): try: readline.read_init_file(inputrc_name) except: warn('Problems reading readline initialization file <%s>' % inputrc_name) # load IPython config after inputrc if user has customized if self._custom_readline_config: for rlcommand in self.readline_parse_and_bind: readline.parse_and_bind(rlcommand) # Remove some chars from the delimiters list. If we encounter # unicode chars, discard them. delims = readline.get_completer_delims() if not py3compat.PY3: delims = delims.encode("ascii", "ignore") for d in self.readline_remove_delims: delims = delims.replace(d, "") delims = delims.replace(ESC_MAGIC, '') readline.set_completer_delims(delims) # Store these so we can restore them if something like rpy2 modifies # them. self.readline_delims = delims # otherwise we end up with a monster history after a while: readline.set_history_length(self.history_length) self.refill_readline_hist() self.readline_no_record = ReadlineNoRecord(self) # Configure auto-indent for all platforms self.set_autoindent(self.autoindent) def init_completer(self): super(TerminalInteractiveShell, self).init_completer() # Only configure readline if we truly are using readline. if self.has_readline: self.set_readline_completer() def set_readline_completer(self): """Reset readline's completer to be our own.""" self.readline.set_completer(self.Completer.rlcomplete) def pre_readline(self): """readline hook to be used at the start of each line. It handles auto-indent and text from set_next_input.""" if self.rl_do_indent: self.readline.insert_text(self._indent_current_str()) if self.rl_next_input is not None: self.readline.insert_text(self.rl_next_input) self.rl_next_input = None def refill_readline_hist(self): # Load the last 1000 lines from history self.readline.clear_history() stdin_encoding = sys.stdin.encoding or "utf-8" last_cell = u"" for _, _, cell in self.history_manager.get_tail(self.history_load_length, include_latest=True): # Ignore blank lines and consecutive duplicates cell = cell.rstrip() if cell and (cell != last_cell): try: if self.multiline_history: self.readline.add_history(py3compat.unicode_to_str(cell, stdin_encoding)) else: for line in cell.splitlines(): self.readline.add_history(py3compat.unicode_to_str(line, stdin_encoding)) last_cell = cell except (TypeError, ValueError) as e: # The history DB can get corrupted so it returns strings # containing null bytes, which readline objects to. warn(("Failed to add string to readline history.\n" "Error: {}\n" "Cell: {!r}").format(e, cell)) #------------------------------------------------------------------------- # Things related to the terminal #------------------------------------------------------------------------- @property def usable_screen_length(self): if self.screen_length == 0: return 0 else: num_lines_bot = self.separate_in.count('\n')+1 return self.screen_length - num_lines_bot def _term_title_changed(self, name, new_value): self.init_term_title() def init_term_title(self): # Enable or disable the terminal title. if self.term_title: toggle_set_term_title(True) set_term_title('IPython: ' + abbrev_cwd()) else: toggle_set_term_title(False) #------------------------------------------------------------------------- # Things related to aliases #------------------------------------------------------------------------- def init_alias(self): # The parent class defines aliases that can be safely used with any # frontend. super(TerminalInteractiveShell, self).init_alias() # Now define aliases that only make sense on the terminal, because they # need direct access to the console in a way that we can't emulate in # GUI or web frontend if os.name == 'posix': aliases = [('clear', 'clear'), ('more', 'more'), ('less', 'less'), ('man', 'man')] else : aliases = [] for name, cmd in aliases: self.alias_manager.soft_define_alias(name, cmd) #------------------------------------------------------------------------- # Mainloop and code execution logic #------------------------------------------------------------------------- def mainloop(self, display_banner=None): """Start the mainloop. If an optional banner argument is given, it will override the internally created default banner. """ with self.builtin_trap, self.display_trap: while 1: try: self.interact(display_banner=display_banner) #self.interact_with_readline() # XXX for testing of a readline-decoupled repl loop, call # interact_with_readline above break except KeyboardInterrupt: # this should not be necessary, but KeyboardInterrupt # handling seems rather unpredictable... self.write("\nKeyboardInterrupt in interact()\n") def _replace_rlhist_multiline(self, source_raw, hlen_before_cell): """Store multiple lines as a single entry in history""" # do nothing without readline or disabled multiline if not self.has_readline or not self.multiline_history: return hlen_before_cell # windows rl has no remove_history_item if not hasattr(self.readline, "remove_history_item"): return hlen_before_cell # skip empty cells if not source_raw.rstrip(): return hlen_before_cell # nothing changed do nothing, e.g. when rl removes consecutive dups hlen = self.readline.get_current_history_length() if hlen == hlen_before_cell: return hlen_before_cell for i in range(hlen - hlen_before_cell): self.readline.remove_history_item(hlen - i - 1) stdin_encoding = get_stream_enc(sys.stdin, 'utf-8') self.readline.add_history(py3compat.unicode_to_str(source_raw.rstrip(), stdin_encoding)) return self.readline.get_current_history_length() def interact(self, display_banner=None): """Closely emulate the interactive Python console.""" # batch run -> do not interact if self.exit_now: return if display_banner is None: display_banner = self.display_banner if isinstance(display_banner, py3compat.string_types): self.show_banner(display_banner) elif display_banner: self.show_banner() more = False if self.has_readline: self.readline_startup_hook(self.pre_readline) hlen_b4_cell = self.readline.get_current_history_length() else: hlen_b4_cell = 0 # exit_now is set by a call to %Exit or %Quit, through the # ask_exit callback. while not self.exit_now: self.hooks.pre_prompt_hook() if more: try: prompt = self.prompt_manager.render('in2') except: self.showtraceback() if self.autoindent: self.rl_do_indent = True else: try: prompt = self.separate_in + self.prompt_manager.render('in') except: self.showtraceback() try: line = self.raw_input(prompt) if self.exit_now: # quick exit on sys.std[in|out] close break if self.autoindent: self.rl_do_indent = False except KeyboardInterrupt: #double-guard against keyboardinterrupts during kbdint handling try: self.write('\n' + self.get_exception_only()) source_raw = self.input_splitter.raw_reset() hlen_b4_cell = \ self._replace_rlhist_multiline(source_raw, hlen_b4_cell) more = False except KeyboardInterrupt: pass except EOFError: if self.autoindent: self.rl_do_indent = False if self.has_readline: self.readline_startup_hook(None) self.write('\n') self.exit() except bdb.BdbQuit: warn('The Python debugger has exited with a BdbQuit exception.\n' 'Because of how pdb handles the stack, it is impossible\n' 'for IPython to properly format this particular exception.\n' 'IPython will resume normal operation.') except: # exceptions here are VERY RARE, but they can be triggered # asynchronously by signal handlers, for example. self.showtraceback() else: try: self.input_splitter.push(line) more = self.input_splitter.push_accepts_more() except SyntaxError: # Run the code directly - run_cell takes care of displaying # the exception. more = False if (self.SyntaxTB.last_syntax_error and self.autoedit_syntax): self.edit_syntax_error() if not more: source_raw = self.input_splitter.raw_reset() self.run_cell(source_raw, store_history=True) hlen_b4_cell = \ self._replace_rlhist_multiline(source_raw, hlen_b4_cell) # Turn off the exit flag, so the mainloop can be restarted if desired self.exit_now = False def raw_input(self, prompt=''): """Write a prompt and read a line. The returned line does not include the trailing newline. When the user enters the EOF key sequence, EOFError is raised. Parameters ---------- prompt : str, optional A string to be printed to prompt the user. """ # raw_input expects str, but we pass it unicode sometimes prompt = py3compat.cast_bytes_py2(prompt) try: line = py3compat.cast_unicode_py2(self.raw_input_original(prompt)) except ValueError: warn("\n********\nYou or a %run:ed script called sys.stdin.close()" " or sys.stdout.close()!\nExiting IPython!\n") self.ask_exit() return "" # Try to be reasonably smart about not re-indenting pasted input more # than necessary. We do this by trimming out the auto-indent initial # spaces, if the user's actual input started itself with whitespace. if self.autoindent: if num_ini_spaces(line) > self.indent_current_nsp: line = line[self.indent_current_nsp:] self.indent_current_nsp = 0 return line #------------------------------------------------------------------------- # Methods to support auto-editing of SyntaxErrors. #------------------------------------------------------------------------- def edit_syntax_error(self): """The bottom half of the syntax error handler called in the main loop. Loop until syntax error is fixed or user cancels. """ while self.SyntaxTB.last_syntax_error: # copy and clear last_syntax_error err = self.SyntaxTB.clear_err_state() if not self._should_recompile(err): return try: # may set last_syntax_error again if a SyntaxError is raised self.safe_execfile(err.filename,self.user_ns) except: self.showtraceback() else: try: f = open(err.filename) try: # This should be inside a display_trap block and I # think it is. sys.displayhook(f.read()) finally: f.close() except: self.showtraceback() def _should_recompile(self,e): """Utility routine for edit_syntax_error""" if e.filename in ('<ipython console>','<input>','<string>', '<console>','<BackgroundJob compilation>', None): return False try: if (self.autoedit_syntax and not self.ask_yes_no('Return to editor to correct syntax error? ' '[Y/n] ','y')): return False except EOFError: return False def int0(x): try: return int(x) except TypeError: return 0 # always pass integer line and offset values to editor hook try: self.hooks.fix_error_editor(e.filename, int0(e.lineno),int0(e.offset),e.msg) except TryNext: warn('Could not open editor') return False return True #------------------------------------------------------------------------- # Things related to exiting #------------------------------------------------------------------------- def ask_exit(self): """ Ask the shell to exit. Can be overiden and used as a callback. """ self.exit_now = True def exit(self): """Handle interactive exit. This method calls the ask_exit callback.""" if self.confirm_exit: if self.ask_yes_no('Do you really want to exit ([y]/n)?','y','n'): self.ask_exit() else: self.ask_exit() #------------------------------------------------------------------------- # Things related to magics #------------------------------------------------------------------------- def init_magics(self): super(TerminalInteractiveShell, self).init_magics() self.register_magics(TerminalMagics) def showindentationerror(self): super(TerminalInteractiveShell, self).showindentationerror() if not self.using_paste_magics: print("If you want to paste code into IPython, try the " "%paste and %cpaste magic functions.") InteractiveShellABC.register(TerminalInteractiveShell)
251f4b94234d2cacbf822e32f19aae0edea50f0f
090fd16451ef226f0660d4be797c8a5fbf309f97
/training_data/whole_image/to_tensors/metadata_to_grid_tensor.py
4ca081192a85d619c3672f048fe0bd5599b745bb
[]
no_license
philip-brohan/Robot_Rainfall_Rescue
2cdd20131a1ceae4e4af54059381b815f1cc138b
4121d69aba6c8d180b57d92a0da11d09cd6843b4
refs/heads/master
2023-04-13T10:07:08.160001
2021-04-21T10:24:17
2021-04-21T10:24:17
267,624,025
0
0
null
null
null
null
UTF-8
Python
false
false
3,783
py
#!/usr/bin/env python # Make a tensor containing grid-cell corner locations from the image metadata import os import sys import math import tensorflow as tf import numpy import pickle import argparse parser = argparse.ArgumentParser() parser.add_argument("--rootd", help="root directory", type=str, required=True) parser.add_argument("--docn", help="Document name", type=str, required=True) args = parser.parse_args() # Load the metadata with open( "%s/meta/%s.pkl" % (args.rootd, args.docn), "rb", ) as pkf: mdata = pickle.load(pkf) # mdata is a dictionary - convert it to a class so contents are attributes # and we can share code with tyrImage. class AttrDict(dict): def __init__(self, *args, **kwargs): super(AttrDict, self).__init__(*args, **kwargs) self.__dict__ = self mdata = AttrDict(mdata) # From the metadata, find the centres of the data grid # (120*2 floats on the range 0-1) # Functions copied from the tyrimage class - should reuse that class instead # Rotate by angle degrees clockwise def gRotate(self, point, angle=None, origin=None): if angle is None: angle = self.rotate if angle == 0: return point if origin is None: origin = gCentre(self) ox, oy = origin[0] * self.pageWidth, origin[1] * self.pageHeight px, py = point[0] * self.pageWidth, point[1] * self.pageHeight angle = math.radians(angle) * -1 qx = ox + math.cos(angle) * (px - ox) - math.sin(angle) * (py - oy) qy = oy + math.sin(angle) * (px - ox) + math.cos(angle) * (py - oy) return qx / self.pageWidth, qy / self.pageHeight def gCentre(self): return ( 0.5 + self.xshift / self.pageWidth + (self.xscale - 1) * 0.43, 0.525 + self.yshift / self.pageHeight - (self.yscale - 1) * 0.2, ) # Corners of grid def topLeft(self): return ( 0.1 + self.xshift / self.pageWidth, 0.725 + self.yshift / self.pageHeight, ) def topRight(self): return ( 0.96 + self.xshift / self.pageWidth + (self.xscale - 1) * 0.86, 0.725 + self.yshift / self.pageHeight, ) def bottomLeft(self): return ( 0.1 + self.xshift / self.pageWidth, 0.325 + self.yshift / self.pageHeight - (self.yscale - 1) * 0.4, ) def bottomRight(self): return ( 0.96 + self.xshift / self.pageWidth + (self.xscale - 1) * 0.86, 0.325 + self.yshift / self.pageHeight - (self.yscale - 1) * 0.4, ) def topAt(self, x): return ( topRight(self)[0] * x + topLeft(self)[0] * (1 - x), topRight(self)[1] * x + topLeft(self)[1] * (1 - x), ) def bottomAt(self, x): return ( bottomRight(self)[0] * x + bottomLeft(self)[0] * (1 - x), bottomRight(self)[1] * x + bottomLeft(self)[1] * (1 - x), ) def leftAt(self, y): return ( topLeft(self)[0] * y + bottomLeft(self)[0] * (1 - y), topLeft(self)[1] * y + bottomLeft(self)[1] * (1 - y), ) target = [] for yri in range(10): x = ( mdata.monthsWidth + (yri + 0.5) * (1.0 - mdata.meansWidth - mdata.monthsWidth) / 10 ) tp = topAt(mdata, x) for mni in range(12): lft = leftAt( mdata, 1.0 - mdata.yearHeight - (mni + 1) * (1.0 - mdata.yearHeight - mdata.totalsHeight) / (12 + 1), ) txp = gRotate(mdata, [tp[0], lft[1]]) target.extend(txp) ict = tf.convert_to_tensor(target, numpy.float32) # Output the tensor opdir = "%s/tensors/cell-centres/" % args.rootd if not os.path.isdir(opdir): try: # These calls sometimes collide os.makedirs(opdir) except FileExistsError: pass # Write to file sict = tf.io.serialize_tensor(ict) tf.io.write_file("%s/%s.tfd" % (opdir, args.docn), sict)
d38333c18d45679b62018269967f8c0ac35bdc26
bad62c2b0dfad33197db55b44efeec0bab405634
/sdk/ml/azure-ai-ml/tests/automl_job/e2etests/test_automl_image_segmentation.py
ffccf9eebf789cc84db05ad6812bd7fd5eab6066
[ "LicenseRef-scancode-python-cwi", "LGPL-2.1-or-later", "PSF-2.0", "LGPL-2.0-or-later", "GPL-3.0-or-later", "GPL-1.0-or-later", "LicenseRef-scancode-warranty-disclaimer", "LGPL-2.1-only", "Python-2.0", "MPL-2.0", "LicenseRef-scancode-other-copyleft", "HPND", "ODbL-1.0", "GPL-3.0-only", "ZPL-2.1", "MIT", "Apache-2.0", "BSD-2-Clause", "BSD-3-Clause", "LicenseRef-scancode-free-unknown", "LicenseRef-scancode-generic-cla" ]
permissive
test-repo-billy/azure-sdk-for-python
20c5a2486456e02456de17515704cb064ff19833
cece86a8548cb5f575e5419864d631673be0a244
refs/heads/master
2022-10-25T02:28:39.022559
2022-10-18T06:05:46
2022-10-18T06:05:46
182,325,031
0
0
MIT
2019-07-25T22:28:52
2019-04-19T20:59:15
Python
UTF-8
Python
false
false
4,934
py
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import copy import platform from typing import Tuple import pytest from test_utilities.utils import assert_final_job_status, get_automl_job_properties from azure.ai.ml import MLClient, automl from azure.ai.ml.constants._common import AssetTypes from azure.ai.ml.entities import Data from azure.ai.ml.entities._inputs_outputs import Input from azure.ai.ml.entities._job.automl import SearchSpace from azure.ai.ml.entities._job.automl.image import ImageInstanceSegmentationJob, ImageObjectDetectionSearchSpace from azure.ai.ml.operations._run_history_constants import JobStatus from azure.ai.ml.sweep import BanditPolicy, Choice, Uniform from devtools_testutils import AzureRecordedTestCase, is_live @pytest.mark.automle2etest @pytest.mark.usefixtures("recorded_test") @pytest.mark.skipif( condition=not is_live() or platform.python_implementation() == "PyPy", reason="Datasets downloaded by test are too large to record reliably" ) class TestAutoMLImageSegmentation(AzureRecordedTestCase): def _create_jsonl_segmentation(self, client, train_path, val_path): fridge_data = Data( path="./odFridgeObjectsMask", type=AssetTypes.URI_FOLDER, ) data_path_uri = client.data.create_or_update(fridge_data) data_path = "./odFridgeObjectsMask/" from automl_job.jsonl_converter import convert_mask_in_VOC_to_jsonl convert_mask_in_VOC_to_jsonl(data_path, data_path_uri.path, train_path, val_path) def test_image_segmentation_run(self, image_segmentation_dataset: Tuple[Input, Input], client: MLClient) -> None: # Note: this test launches two jobs in order to avoid calling the dataset fixture more than once. Ideally, it # would have sufficed to mark the fixture with session scope, but pytest-xdist breaks this functionality: # https://github.com/pytest-dev/pytest-xdist/issues/271. # Get training and validation data train_path, val_path = image_segmentation_dataset # Create jsonl file self._create_jsonl_segmentation(client=client, train_path=train_path, val_path=val_path) training_data = Input(type=AssetTypes.MLTABLE, path=train_path) validation_data = Input(type=AssetTypes.MLTABLE, path=val_path) # Make generic segmentation job image_instance_segmentation_job = automl.image_instance_segmentation( compute="gpu-cluster", experiment_name="image-e2e-tests", training_data=training_data, validation_data=validation_data, target_column_name="label", primary_metric="MeanAveragePrecision", properties=get_automl_job_properties(), ) # Configure regular sweep job image_instance_segmentation_job_sweep = copy.deepcopy(image_instance_segmentation_job) image_instance_segmentation_job_sweep.set_training_parameters(early_stopping=True, evaluation_frequency=1) image_instance_segmentation_job_sweep.extend_search_space( [ SearchSpace( model_name=Choice(["maskrcnn_resnet50_fpn"]), learning_rate=Uniform(0.0001, 0.001), optimizer=Choice(["sgd", "adam", "adamw"]), min_size=Choice([600, 800]), ), ] ) image_instance_segmentation_job_sweep.set_limits(max_trials=1, max_concurrent_trials=1) image_instance_segmentation_job_sweep.set_sweep( sampling_algorithm="Random", early_termination=BanditPolicy(evaluation_interval=2, slack_factor=0.2, delay_evaluation=6), ) # Configure AutoMode job image_instance_segmentation_job_automode = copy.deepcopy(image_instance_segmentation_job) # TODO: after shipping the AutoMode feature, do not set flag and call `set_limits()` instead of changing # the limits object directly. image_instance_segmentation_job_automode.properties["enable_automode"] = True image_instance_segmentation_job_automode.limits.max_trials = 2 image_instance_segmentation_job_automode.limits.max_concurrent_trials = 2 # Trigger regular sweep and then AutoMode job submitted_job_sweep = client.jobs.create_or_update(image_instance_segmentation_job_sweep) submitted_job_automode = client.jobs.create_or_update(image_instance_segmentation_job_automode) # Assert completion of regular sweep job assert_final_job_status(submitted_job_sweep, client, ImageInstanceSegmentationJob, JobStatus.COMPLETED) # Assert completion of Automode job assert_final_job_status(submitted_job_automode, client, ImageInstanceSegmentationJob, JobStatus.COMPLETED)
78ac1d8ab0955e19b6f31f6d9c758f0027b2d9c6
eef243e450cea7e91bac2f71f0bfd45a00c6f12c
/.history/app/api_service/nlp_processing_20210127230126.py
bde6c9249a1735a48dc000ac6a5ff9b4947ad313
[]
no_license
hoaf13/nlp-chatbot-lol
910ab2ea3b62d5219901050271fc1a1340e46a2f
18cb64efa9d6b4cafe1015f1cd94f4409271ef56
refs/heads/master
2023-05-08T04:17:19.450718
2021-02-02T02:37:38
2021-02-02T02:37:38
332,535,094
0
0
null
null
null
null
UTF-8
Python
false
false
28,073
py
import csv import json import numpy as np import sklearn from sklearn.feature_extraction.text import TfidfTransformer from sklearn.feature_extraction.text import CountVectorizer import numpy from keras.datasets import imdb from keras.models import Sequential from keras.layers import Dense, Dropout from keras.layers import LSTM from keras.layers.convolutional import Conv1D from keras.layers.convolutional import MaxPooling1D from keras.layers.embeddings import Embedding from keras.preprocessing import sequence from keras.layers import LSTM, GRU,Bidirectional, Flatten, Dense from keras_self_attention import SeqSelfAttention import csv, re import json import numpy as np from sklearn.feature_extraction.text import TfidfTransformer from sklearn.feature_extraction.text import CountVectorizer from keras.utils import np_utils from sklearn.model_selection import train_test_split from keras import optimizers import numpy as np from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.callbacks import EarlyStopping, ModelCheckpoint from keras_self_attention import SeqSelfAttention, SeqWeightedAttention from app.models import Champion, Conversation from app import db dict_intent={ 'build_item':0, 'support_socket':1, 'counter':2, 'be_countered':3, 'skill_up':4, 'how_to_play':5, 'combo':6, 'combine_with':7, 'how_to_use_skill':8, 'introduce':9 } CHAMPIONS = [] dict_digit2intent = {} key = 0 for i in dict_intent.keys(): dict_digit2intent[key] = i key += 1 f = open('app/api_service/my_upload/champions.txt', "r") reg = "" for cham in f: reg += cham.split ('\n')[0] + '|' CHAMPIONS.append(cham.split ('\n')[0]) reg = reg[:-1] f.close() skills = ['Q', 'W', 'E' , 'R', 'q','w','e','r'] def get_entity(content): hero = re.search(reg.lower(), content.lower()) if hero != None: hero = hero.group() else: hero = "" if hero == "": hero = re.search(reg, content) if hero != None: hero = hero.group() else: hero = "" spl = content.split(" ") skill = "" for i in spl: if i in skills: skill = i break if hero != "": for c in CHAMPIONS: if c.lower() == hero.lower(): hero = c break if 'jarvan' in content.lower(): hero = 'Jarvan IV' if 'mundo' in content.lower(): hero = 'Dr. Mundo' return hero, skill.upper() def load_model(): model = Sequential() model.add(Embedding(208, 5248, input_length=17)) model.add(Bidirectional(LSTM(128, return_sequences=True))) # model.add(LSTM(128, return_sequences = True)) model.add(Flatten()) model.add(Dense(10, activation='softmax')) model.compile(loss= 'categorical_crossentropy',optimizer='adam', metrics=['accuracy']) model.load_weights('app/api_service/my_upload/hoaf13-nlp.h5') # model.summary() return model def process_content(reg, content): # content = content.lower() x = re.search(reg, content) if x != None: content = content.replace(x.group(), "{hero}") return content def process_data(model, content): f = open('app/api_service/my_upload/bow.txt', 'r') dictionary = '' for word in f: dictionary += word + " " f.close() data = [dictionary] token_obj = Tokenizer() token_obj.fit_on_texts(data) max_len = 17 X_train_token = token_obj.texts_to_sequences([content]) X_pad = pad_sequences(X_train_token, maxlen=max_len, padding='post') result = model.predict(X_pad) intent = np.argmax(result) hero, skill = get_entity(content) return dict_digit2intent[intent], result[0][intent], hero, skill def get_raw_answer(intent, champion): message_answer = None if intent == 'build_item': message_answer = champion.build_item if intent == 'support_socket': message_answer = champion.support_socket if intent == 'counter': message_answer = champion.counter if intent == 'be_countered': message_answer = champion.be_countered if intent == 'skill_up': message_answer = champion.skill_up if intent == 'how_to_play': message_answer = champion.how_to_play if intent == 'combo': message_answer = champion.combo if intent == 'combine_with': message_answer = champion.combine_with if intent == 'how_to_use_skill': message_answer = champion.how_to_use_skill if intent == 'introduce': message_answer = champion.introduce return message_answer def normalize_message(intent, message_answer, entities, champion,conversation_id): ans = None action = None try: skill_message = entities['skill'] except Exception: skill_message = None try: champion_message = entities['champion'] except Exception: champion_message = None action = "action_"+intent if intent == 'build_item': # "['Nguyệt Đao', 'Vô Cực Kiếm', 'Vũ Điệu Tử Thần', 'Áo Choàng Bóng Tối', 'Kiếm Ma Youmuu', 'Dao Găm Nham Thạch']" list_items = eval(message_answer) items = ', '.join(list_items) ans = "{} lên đồ như sau: {}".format(champion.name, items) if intent == 'support_socket': # ImageField ans = champion.support_socket if intent == 'counter': # ['Darius', 'Yasuo', 'Zed', 'Master Yi', 'Katarina', 'Hecarim', 'Akali', 'Renekton', 'LeBlanc', 'Jinx', 'Kassadin', 'Jax'] ans = MEDIA_URL + ans.url message_answer = message_answer.replace('"','') message_answer = message_answer.replace("'",'') list_champions = message_answer.strip('][').split(', ') champions = ', '.join(list_champions) ans = "{} khắc chế được các tướng: {}".format(champion.name,champions) if intent == 'be_countered': # ['Jax', 'Riven', 'Teemo', 'Fiora', 'Renekton', 'Tryndamere', 'Pantheon', 'Nasus', 'Lee Sin', 'Irelia', 'Ngộ Không', 'Jayce'] message_answer = message_answer.replace('"','') message_answer = message_answer.replace("'",'') list_champions = message_answer.strip('][').split(', ') champions = ', '.join(list_champions) ans = "{} bị khắc chế bởi các tướng: {}".format(champion.name, champions) if intent == 'skill_up': # ['E', 'Q', 'E', 'Q', 'E', 'R', 'Q', 'Q', 'R', 'Q', 'R', 'E', 'E', 'W', 'W', 'W', 'W', 'W'] message_answer = message_answer.replace("'",'') list_skills = message_answer.strip('][').split(', ') skills = ', '.join(list_skills) ans = "Thứ tự lên skill của {}: {}".format(champion.name, skills) if intent == 'combo': # ['Q', 'R', 'W', 'Attack', 'E'] message_answer = message_answer.replace("'",'') list_combos = message_answer.strip('][').split(', ') combos = ', '.join(list_combos) ans = "{} combo: {}".format(champion.name, combos) if intent == 'combine_with': # ['Yasuo', 'Zilean', 'Tryndamere', 'Lee Sin', 'Fizz', 'Ahri', 'Orianna', 'Renekton', 'Vayne', 'Akali', 'Jax', 'Ezreal'] message_answer = message_answer.replace('"','') message_answer = message_answer.replace("'",'') list_champions = message_answer.replace('[','') list_champions = list_champions.replace(']','') # print("list champions: ", list_champions) ans = "{} phối hợp tốt với: {}".format(champion.name, list_champions) if intent == 'how_to_use_skill': # {'E': Luoi guom doa day} skill_champion = eval(champion.how_to_use_skill) skill = skill_champion[skill_message] ans = "Skill {}: ".format(skill_message) + skill if intent == 'introduce': # Từng là những người bảo hộ cao quý của Shurima ... ans = champion.introduce if intent == 'how_to_play': ans = champion.how_to_play if intent == 'what_about': conversations = list(Conversation.query.filter_by(conversation_id=conversation_id)) print("length ", len(conversations)) conversation = None for c in conversations[::-1]: if c.intent != 'what_about': conversation = c break print(conversation) last_entities = eval(conversation.entities) last_intent = conversation.intent last_message_answer = conversation.message_answer print("last intent: ",last_intent) try: last_champion = last_entities['champion'] except Exception: last_champion = None try: last_skill = last_entities['skill'] except Exception: last_skill = None if champion_message != None and skill_message == None: champion = Champion.query.filter_by(name=champion_message).first() this_entities = dict() this_entities['champion'] = champion.name this_entities['skill'] = last_skill this_answer = get_raw_answer(last_intent, champion) ans,action = normalize_message(last_intent, this_answer, this_entities, champion, conversation_id) return ans,action if champion_message == None and skill_message != None: champion = Champion.query.filter_by(name=last_champion).first() this_entities = dict() this_entities['champion'] = champion.name this_entities['skill'] = skill_message last_intent = 'how_to_use_skill' this_answer = get_raw_answer(last_intent, champion) ans,action = normalize_message(last_intent, this_answer, this_entities, champion, conversation_id) return ans,action if champion_message == None and skill_message == None: ans = "Tôi không hiểu ý của bạn. Mời bạn nhập lại câu hỏi rõ ràng hơn." action = "action_ask_hero_and_skill" return ans,action return ans,action def is_valid_what_about(conversation_id): conversations = list(Conversation.query.filter_by(conversation_id=conversation_id)) if len(conversations) == 0: return False conversation = None for c in conversations[::-1]: if c.intent != 'what_about': conversation = c break if conversation == None: return False return True def string_to_dict(entities): ans = eval(entities) return ans def to_json(intent, action, message_answer): ans = dict() ans['intent'] = intent ans['action'] = action ans['message_answer'] = message_answer return ans def is_ask_more(conversation_id): conversations = list(Conversation.query.filter_by(conversation_id=conversation_id)) if len(conversations) == 0: return False print("conversations[-1].action: ", conversations[-1].action) if conversations[-1].action in ['action_ask_hero','action_ask_skill','action_ask_hero_and_skill','action_ask_intent']: return True return False def get_action_ask_more(conversation_id): conversations = list(Conversation.query.filter_by(conversation_id=conversation_id)) if conversations[-1].action in ['action_ask_hero','action_ask_skill','action_ask_hero_and_skill','action_ask_intent']: return conversations[-1].action return None def get_conversation_ask_more(conversation_id): conversations = list(Conversation.query.filter_by(conversation_id=conversation_id))[::-1] conversation = None for c in conversations: if c.action in ['action_ask_hero','action_ask_skill','action_ask_hero_and_skill','action_ask_intent']: conversation = c break if conversation == None: return list(Conversation.query.filter_by(conversation_id=conversation_id))[-1] return conversation def get_conversation_what_about(conversation_id): conversation = None conversations = list(Conversation.query.filter_by(conversation_id=conversation_id)) for c in conversations[::-1]: if c.intent != 'what_about': conversation = c break return conversation def tolower_message(message_question): ans = message_question.lower() return ans def getDictPostResponse(conversation_id, message_question, entities, prob, intent): try: if "chào" in message_question.lower() or "hello" in message_question.lower() or "chao" in message_question.lower(): intent = "say_hi" action = "action_say_hi" message_answer = "chào bạn, đây là chatbot lol." print(message_question.lower()) res = to_json(intent, action, message_answer) return res if prob > 0.80: if ('champion' in entities and intent != 'how_to_use_skill') or ('champion' in entities and 'skill' in entities and intent == 'how_to_use_skill'): champion = Champion.query.filter_by(name=entities['champion']).first() message_answer = get_raw_answer(intent, champion) message_answer,action = normalize_message(intent,message_answer,entities,champion,conversation_id) conversation = Conversation(conversation_id=conversation_id,message_question=message_question, message_answer=message_answer,intent=intent,entities=entities, action="action_"+intent) res = to_json(intent, action, message_answer) # res['probability'] = str(prob) #return intent, action, message return res if "còn" in message_question.lower() or "thì sao" in message_question.lower(): intent = 'what_about' if is_ask_more(conversation_id) == False: if intent == 'what_about': conversation_what_about = get_conversation_what_about(conversation_id) print(conversation_what_about.intent) if 'champion' not in entities and 'skill' not in entities: action = 'action_ask_hero_and_skill' message_answer = 'Không xác định được tướng và kĩ năng, mời bạn nhập thêm.' conversation = Conversation(conversation_id=conversation_id,message_question=message_question, message_answer=message_answer,intent=conversation_what_about.intent,entities=entities, action=action) res = to_json(intent, action, message_answer) # res['probability'] = str(prob) #return intent, action, message return res if 'champion' not in entities: action = 'action_ask_hero' message_answer = 'Không xác định được tướng, mời bạn nhập thêm.' conversation = Conversation(conversation_id=conversation_id,message_question=message_question, message_answer=message_answer,intent=conversation_what_about.intent,entities=entities, action=action) res = to_json(intent, action, message_answer) # res['probability'] = str(prob) #return intent, action, message return res entities_what_about = string_to_dict(conversation_what_about.entities) # print("entities_what_about: {}".format(entities_what_about)) if 'skill' in entities_what_about and conversation_what_about.intent == 'how_to_use_skill': entities['skill'] = entities_what_about['skill'] if 'skill' not in entities and conversation_what_about.intent == 'how_to_use_skill': action = 'action_ask_skill' message_answer = 'Không xác định được kĩ năng, mời bạn nhập thêm.' conversation = Conversation(conversation_id=conversation_id,message_question=message_question, message_answer=message_answer,intent=conversation_what_about.intent,entities=entities, action=action) res = to_json(intent, action, message_answer) return res intent = conversation_what_about.intent champion = Champion.query.filter_by(name=entities['champion']).first() message_answer = get_raw_answer(intent, champion) message_answer,action = normalize_message(intent,message_answer,entities,champion,conversation_id) conversation = Conversation(conversation_id=conversation_id,message_question=message_question, message_answer=message_answer,intent=intent,entities=entities, action="action_"+intent) res = to_json(intent, action, message_answer) return res if prob < 0.5: action = 'action_ask_intent' message_answer = 'Tôi không hiểu ý của bạn, mời bạn nhập thêm.' conversation = Conversation(conversation_id=conversation_id,message_question=message_question, message_answer=message_answer,intent=intent,entities=entities, action=action) res = to_json(intent, action, message_answer) return res if intent == 'how_to_use_skill': print("entities:", entities) if 'champion' not in entities and 'skill' not in entities: action = 'action_ask_hero_and_skill' message_answer = 'Không xác định được tướng và kĩ năng, mời bạn nhập thêm' conversation = Conversation(conversation_id=conversation_id,message_question=message_question, message_answer=message_answer,intent=intent,entities=entities, action=action) res = to_json(intent, action, message_answer) return res if 'champion' not in entities: action = 'action_ask_hero' message_answer = 'Không xác định được tướng, mời bạn nhập thêm' conversation = Conversation(conversation_id=conversation_id,message_question=message_question, message_answer=message_answer,intent=intent,entities=entities, action=action) res = to_json(intent, action, message_answer) # res['probability'] = str(prob) return res if 'skill' not in entities: action = 'action_ask_skill' message_answer = 'Không xác định được kĩ năng, mời bạn nhập thêm' conversation = Conversation(conversation_id=conversation_id,message_question=message_question, message_answer=message_answer,intent=intent,entities=entities, action=action) res = to_json(intent, action, message_answer) # res['probability'] = str(prob) return res if intent != 'how_to_use_skill': if 'champion' not in entities: action = 'action_ask_hero' message_answer = 'Không xác định được tướng, mời bạn nhập thêm' conversation = Conversation(conversation_id=conversation_id,message_question=message_question, message_answer=message_answer,intent=intent,entities=entities, action=action) res = to_json(intent, action, message_answer) # res['probability'] = str(prob) return res champion = Champion.query.filter_by(name=entities['champion']).first() message_answer = get_raw_answer( intent, champion) message_answer,action = normalize_message(intent,message_answer,entities,champion,conversation_id) conversation = Conversation(conversation_id=conversation_id,message_question=message_question, message_answer=message_answer,intent=intent,entities=entities, action="action_"+intent) res = to_json(intent, action, message_answer) # res['probability'] = str(prob) #return intent, action, message return res if is_ask_more(conversation_id): conversation_ask_more = get_conversation_ask_more(conversation_id) if conversation_ask_more.action == 'action_ask_hero': if 'champion' in entities: name = entities['champion'] intent = conversation_ask_more.intent champion = Champion.query.filter_by(name=name).first() entities_ask_more = string_to_dict(conversation_ask_more.entities) if 'skill' in entities_ask_more: entities['skill'] = entities_ask_more['skill'] message_answer = get_raw_answer( intent, champion) message_answer,action = normalize_message(intent,message_answer,entities,champion,conversation_id) conversation = Conversation(conversation_id=conversation_id,message_question=message_question, message_answer=message_answer,intent=intent,entities=entities, action="action_"+intent) res = to_json(intent, action, message_answer) # res['probability'] = str(prob) return res else: action = 'action_ask_hero' message_answer = 'Không xác định được tướng, mời bạn nhập thêm.' conversation = Conversation(conversation_id=conversation_id,message_question=message_question, message_answer=message_answer,intent=intent,entities=entities, action=action) res = to_json(intent, action, message_answer) # res['probability'] = str(prob) return res if conversation_ask_more.action == 'action_ask_skill': print(conversation_ask_more.message_question) if 'skill' in entities: entities_ask_more = string_to_dict(conversation_ask_more.entities) if 'champion' in entities_ask_more: entities['champion'] = entities_ask_more['champion'] print("entities", entities) name = entities['champion'] intent = conversation_ask_more.intent champion = Champion.query.filter_by(name=name).first() message_answer = get_raw_answer(intent, champion) message_answer,action = normalize_message(intent,message_answer,entities,champion,conversation_id) conversation = Conversation(conversation_id=conversation_id,message_question=message_question, message_answer=message_answer,intent=intent,entities=entities, action="action_"+intent) res = to_json(intent, action, message_answer) # res['probability'] = str(prob) return res else: action = 'action_ask_skill' message_answer = 'Không xác định được kĩ năng, mời bạn nhập thêm.' conversation = Conversation(conversation_id=conversation_id,message_question=message_question, message_answer=message_answer,intent=intent,entities=entities, action=action) res = to_json(intent, action, message_answer) # res['probability'] = str(prob) return res if conversation_ask_more.action == 'action_ask_hero_and_skill': if 'skill' in entities and 'champion' in entities: entities_ask_more = string_to_dict(conversation_ask_more.entities) name = None new_entities = dict() if 'champion' in entities: new_entities['champion'] = entities['champion'] if 'skill' in entities: new_entities['champion'] = entities['skill'] if 'champion' in entities_ask_more: new_entities['champion'] = entities_ask_more['champion'] if 'skill' in entities: new_entities['champion'] = entities_ask_more['skill'] champion = Champion.query.filter_by(name=new_entities['champion']).first() intent = conversation_ask_more.intent message_answer = get_raw_answer(intent, champion) message_answer,action = normalize_message(intent,message_answer,entities,champion,conversation_id) conversation = Conversation(conversation_id=conversation_id,message_question=message_question, message_answer=message_answer,intent=intent,entities=entities, action="action_"+intent) res = to_json(intent, action, message_answer) # res['probability'] = str(prob) db.session.add(conversation) db.session.commit() return res else: action = 'action_ask_hero_and_skill' message_answer = 'Không xác định được tướng và kĩ năng, mời bạn nhập thêm.' conversation = Conversation(conversation_id=conversation_id,message_question=message_question, message_answer=message_answer,intent=intent,entities=entities, action=action) db.session.add(conversation) db.session.commit() res = to_json(intent, action, message_answer) # res['probability'] = str(prob) return res if conversation_ask_more.action == 'action_ask_intent': if ('champion' in entities and intent != 'how_to_use_skill') or ('champion' in entities and 'skill' in entities and intent == 'how_to_use_skill'): champion = Champion.query.filter_by(name=entities['champion']).first() message_answer = get_raw_answer( intent, champion) message_answer,action = normalize_message(intent,message_answer,entities,champion,conversation_id) conversation = Conversation(conversation_id=conversation_id,message_question=message_question, message_answer=message_answer,intent=intent,entities=entities, action="action_"+intent) db.session.add(conversation) db.session.commit() res = to_json(intent, action, message_answer) # res['probability'] = str(prob) #return intent, action, message return res else: intent = "ask_intent" message_answer = 'Tôi không hiểu ý của bạn, mời bạn nhập thêm. ' action = "action_ask_intent" res = to_json(intent,action, message_answer) return res except Exception: intent = "ask_intent" message_answer = 'Tôi không hiểu ý của bạn, mời bạn nhập thêm. ' action = "action_ask_intent" res = to_json(intent,action, message_answer) return res