blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
d1e1ea3ca62fa8c7eee1ea56bcf21143db9db802
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03962/s618919847.py
7c3073e9045ef040a154ec5d8acb94554d03edf5
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
514
py
import sys import math from functools import reduce import bisect def getN(): return int(input()) def getNM(): return map(int, input().split()) def getList(): return list(map(int, input().split())) def input(): return sys.stdin.readline().rstrip() # input = sys.stdin.buffer.readline def index(a, x): i = bisect.bisect_left(a, x) if i != len(a) and a[i] == x: return i return False ############# # MAIN CODE # ############# a, b, c = getNM() print(len({a, b, c}))
92275752bbea081287f13884cac8c5b556fa1fd2
5c58587ebfbf56192b3dc6ed6f43bc002c8e2cff
/payments/migrations/0026_auto_20180906_1023.py
bb3127132c77be7ffde946ce16ac96b8870c7008
[]
no_license
hossamelneily/nexchange
fb9a812cfc72ac00b90cf64d6669a8129c2d2d4b
6d69274cd3808989abe2f5276feb772d1f0fa8b4
refs/heads/release
2022-12-13T09:20:47.297943
2019-02-12T08:20:34
2019-02-12T08:20:34
210,064,740
1
2
null
2022-12-09T00:54:01
2019-09-21T23:19:34
Python
UTF-8
Python
false
false
4,388
py
# Generated by Django 2.0.7 on 2018-09-06 10:23 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('core', '0066_remove_transactionprice_type'), ('payments', '0025_auto_20180822_1537'), ] operations = [ migrations.CreateModel( name='Bank', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_on', models.DateTimeField(auto_now_add=True)), ('modified_on', models.DateTimeField(auto_now=True)), ('name', models.CharField(blank=True, max_length=255, null=True)), ('website', models.URLField(blank=True, null=True)), ('phone', models.CharField(blank=True, max_length=50, null=True)), ('country', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.DO_NOTHING, to='core.Country')), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='BankBin', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_on', models.DateTimeField(auto_now_add=True)), ('modified_on', models.DateTimeField(auto_now=True)), ('bin', models.CharField(default=None, max_length=15, unique=True)), ('checked_external', models.BooleanField(default=False)), ('bank', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.DO_NOTHING, to='payments.Bank')), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='CardCompany', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_on', models.DateTimeField(auto_now_add=True)), ('modified_on', models.DateTimeField(auto_now=True)), ('name', models.CharField(blank=True, max_length=255, null=True)), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='CardLevel', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_on', models.DateTimeField(auto_now_add=True)), ('modified_on', models.DateTimeField(auto_now=True)), ('name', models.CharField(blank=True, max_length=255, null=True)), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='CardType', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_on', models.DateTimeField(auto_now_add=True)), ('modified_on', models.DateTimeField(auto_now=True)), ('name', models.CharField(blank=True, max_length=255, null=True)), ], options={ 'abstract': False, }, ), migrations.AddField( model_name='bankbin', name='card_company', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.DO_NOTHING, to='payments.CardCompany'), ), migrations.AddField( model_name='bankbin', name='card_level', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.DO_NOTHING, to='payments.CardLevel'), ), migrations.AddField( model_name='bankbin', name='card_type', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.DO_NOTHING, to='payments.CardType'), ), migrations.AddField( model_name='paymentpreference', name='bank_bin', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.DO_NOTHING, to='payments.BankBin'), ), ]
549275e873f106430ed837c7a06752d2258c7bdc
66a672f802a1d59efaffb9b11dc2f508ccd024e6
/parse_LN_to_JSON_old.py
76896c08c8d5f0e0acfb96e9d2a426415a0207d4
[ "Apache-2.0" ]
permissive
dallascard/LN_tools
3b7af1a6b064f5b7dc540a04d4fae1a0b2e8f805
66be00f1fd11517f7bbf2949cc70f9552f3af4f4
refs/heads/master
2021-01-12T16:02:17.130400
2019-10-26T00:05:00
2019-10-26T00:05:00
71,923,543
1
0
null
null
null
null
UTF-8
Python
false
false
18,161
py
""" parse_LN.py Parse a single file or a directory of raw files from Lexis-Nexis, which come as text files containing a block of news articles concatenated into one file. Objective is to split articles into individual files and extract relevant information In general, the articles have: a source (newspaper name) a well-defined date sometimes a title after the date some possible top tags, including author (byline) and length some paragraphs of text (usually) many possible end tags (some of which include relvance percentages) a copyright (usually) Also, all tags will (usually) be in the form 'TAG: content' Unfortunately, there is a lot that can go wrong, including missing sections, broken lines, unusually formats, strangely converted characters, and randomly copied text. We do the best we can. """ # import modules from optparse import OptionParser from os import path, makedirs from json import dump from unicodedata import normalize import codecs import re import glob # This function writes an individual article to a text file, unchanged # Yes, it works purely on global variables... def write_text_file(): if doc.has_key(u'CASE_ID'): output_file_name = output_dir + '/' + prefix + str(doc[u'CASE_ID']) + '.txt' output_file = codecs.open(output_file_name, mode='w', encoding='utf-8') output_file.writelines(output_text) output_file.close() # This function writes a parsed version of an article as a JSON object # It too relies on global variables... def write_json_file(): # assume we have a dictionary named doc # it should have a case_id if doc.has_key(u'CASE_ID'): # get the top tags, and put them in a dictionary top = {} for t in top_tags: # split the tag into TAG and TEXT (at the colon) index = t.find(':') tag = t[:index] text = t[index+1:] # strip off whitespace text = text.lstrip() top[tag] = text # store the top tags and anything else from the top section which didn't fit top[u'TOP_MISC'] = top_misc doc[u'TOP'] = top # store the paragraphs of body text in BODY doc[u'BODY'] = paragraphs # get the bottom tags and put them in a dictionary, as with top tags bottom = {} for t in end_tags: index = t.find(':') tag = t[:index] text = t[index+1:] text = text.lstrip() bottom[tag] = text bottom[u'BOTTOM_MISC'] = end_misc doc[u'BOTTOM'] = bottom # output the overall dictionary as a json file output_file_name = json_dir + '/' + prefix + str(doc[u'CASE_ID']) + '.json' output_file = codecs.open(output_file_name, mode='w', encoding='utf-8') dump(doc, output_file, ensure_ascii=False, indent=2) output_file.close() # Tags used at the top and bottom of L-N files TOP_TAGS = [u'BYLINE:', u'DATELINE:', u'HIGHLIGHT:', u'LENGTH:', u'SECTION:', u'SOURCE:', u'E-mail:', ] END_TAGS = [u'CATEGORY:', u'CHART:', u'CITY:', u'COMPANY:', u'CORRECTION-DATE:', u'COUNTRY:', u'CUTLINE:', u'DISTRIBUTION:', u'DOCUMENT-TYPE:', u'ENHANCEMENT:', u'GEOGRAPHIC:', u'GRAPHIC:', u'INDUSTRY:', u'JOURNAL-CODE:', u'LANGUAGE:', u'LOAD-DATE:', u'NOTES:', u'ORGANIZATION:', u'PERSON:', u'PHOTO:', u'PHOTOS:', u'PUBLICATION-TYPE:', u'SERIES:', u'STATE:', u'SUBJECT:', u'TICKER:', u'TYPE:', u'URL:'] MONTHS = {u'january':1, u'february':2, u'march':3, u'april':4, u'may':5, u'june':6, u'july':7, u'august':8, u'september':9, u'october':10, u'november':11, u'december':12} # set up an options parser usage = 'usage %prog [options] (must specify -f OR -d)' parser = OptionParser(usage=usage) parser.add_option('-f', help='read in FILE', metavar='FILE') parser.add_option('-d', help='read in in ALL files in INDIR', metavar='INDIR') parser.add_option('-o', help='output individual files to DIR', metavar='DIR', default='./temp/text/') parser.add_option('-j', help='output individal xml files to JDIR', metavar='JDIR', default='./temp/json/') parser.add_option('-p', help='prefix for output text files [default = %default]', metavar='PRE', default='prefx.0-') parser.add_option("-w", action="store_true", dest="write_files", default=False, help="Write individual .txt files [default = %default]") (options, args) = parser.parse_args() case_id = 0 # unique id for each article (doc) total_expected_docs = 0 # total numbe of artcles we expect to get from all L-N files total_docs_found = 0 # running count of listed numbers of docs tag_counts = {} # counts of how many times we see each tag first_tag_counts = {} # counts of how any times we see each tag as the first tag # If the output directories do not exist, create them output_dir = options.o if not path.exists(output_dir): makedirs(output_dir) json_dir = options.j if not path.exists(json_dir): makedirs(json_dir) # get the prefix to use when naming files prefix = options.p # get a list of files to parse, either a single file, or all files in a directory files = [] input_file_name = options.f if input_file_name == None: input_dir = options.d if path.exists(input_dir): files = glob.glob(input_dir + '/*') else: files = [input_file_name] print "Found", len(files), "files." # sort the files and parse them one by one files.sort() for f in files: # open the next file, and read it in input_file_name = f name_parts = input_file_name.split('/') orig_file_name = name_parts[-1] # open with utf-8-sig encoding to eat the unicode label input_file = codecs.open(input_file_name, encoding='utf-8-sig') input_text = input_file.read() input_file.close() # split the text into individual lines lines = input_text.split('\r\n') doc = {} # store the article we are working on as a dictionary doc_count = 0 # count of how many articles we have found doc_num = 0 # document number in the original L-N file expected_docs = 0 # the number of articles we expect to find in this L-N file # process each line, one at a time for line in lines: # first, normalize the unicode (to get rid of things like \xa0) orig_line = line line = normalize('NFKD', line) # start off looking for new document (each of which is marked as below) # also, store the numbers from this pattern as groups for use below match = re.search(u'([0-9]+) of ([0-9]+) DOCUMENTS', line) # if we find a new article if match: # first, save the article we are currently working on if doc_num > 0: if options.write_files: # write the original file as a text file, unmodified write_text_file() # also write the (parsed) article as a json object write_json_file() # now move on to the new artcle # check to see if the document numbering within the L-N file is consisent # (i.e. the next document should be numbered one higher than the last) if int(match.group(1)) != doc_num + 1: print "Missed document after " + input_file_name + ' ' + str(doc_num) # if this is the first article in the L-N file, get the expected number of docs if expected_docs == 0: expected_docs = int(match.group(2)) total_expected_docs += expected_docs elif (expected_docs != int(match.group(2))): print "Discrepant document counts after", input_file_name, str(doc_num-1) # get the document number from the original L-N file doc_num = int(match.group(1)) # assign a new, unique, case id case_id += 1 # add one to the number of documents we've seen doc_count += 1 # start a new document as a dictionary doc = {} # store what we know so far doc[u'CASE_ID'] = case_id # unique identifier doc[u'ORIG_FILE'] = orig_file_name # filename of the original L-N file doc[u'ORIG_ID'] = doc_num # document number in the L-N file current = u'' # current stores the block we are currently working on output_text = [] # a list of lines to write to the text file top_tags = [] # a list of top tags paragraphs = [] # a list of body paragraphs end_tags = [] # a list of end tags top_misc = u'' # things we can't parse from the top of the article end_misc = u'' # things we can't parse from the bottom of the article have_length = False have_section = False # once we've started working on a document... elif (doc_num > 0): match = False # check if thee's anything on this line if (line != u''): # if so, strip the whitespace and add the current line to our working line temp = line.lstrip() temp = temp.rstrip() current += temp + ' ' # if not, process the line(s) we've been working on... elif (current != u''): current = current.rstrip() # first check to see if this looks like a tag tag_match = re.search(u'^([A-Z]+[-]?[A-Z]+:)', current) if tag_match: tag = tag_match.group(1) # if we find a tag, see if it's a top tag if (tag in TOP_TAGS) and (len(paragraphs) == 0): if tag == u'LENGTH:': if have_length == False: top_tags.append(current) have_length = True match = True elif tag == u'SECTION:': if have_section == False: top_tags.append(current) have_section = True match = True else: top_tags.append(current) match = True # then see if it's a bottom tag elif (tag in END_TAGS) and ((len(paragraphs)>0) or have_section or have_length): # deal with it as an end tag: end_tags.append(current) match = True # if it's not a tag, but we already have end tags, continue with the end if match == False and len(end_tags) > 0: # deal with this as bottom matter # pick up the copyright if it's there pattern = re.search(u'^Copyright ', current) if pattern: if not doc.has_key(u'COPYRIGHT'): doc[u'COPYRIGHT'] = current # otherwise, else: # sometimes the end tags get split over multiple lines # i.e., if this text contains '(#%)' pattern = re.search(u'\([0-9]+%\)', current) if pattern: end_tags[-1] += ' ' + current # or if the last tag was just a tag with no content elif end_tags[-1] in END_TAGS: end_tags[-1] += ' ' + current # not foolproof... store the rest in misc else: end_misc += current + u' ** ' match = True # then, check if it could be a date for the artcle if match == False and not doc.has_key(u'DATE'): date_match = re.search('^([a-zA-Z]*).?\s*(\d\d?).*\s*(\d\d\d\d).*', current) month_yyyy_match = re.search('^([a-zA-Z]*).?\s*(\d\d\d\d).*', current) if date_match: month_name = date_match.group(1) month_name = month_name.lower() day = date_match.group(2) year = date_match.group(3) if MONTHS.has_key(month_name): month = MONTHS[month_name] doc[u'DATE'] = current doc[u'MONTH'] = int(month) doc[u'DAY'] = int(day) doc[u'YEAR'] = int(year) # also store the date in the format YYYYMMDD fulldate = year + str(month).zfill(2) + day.zfill(2) doc[u'FULLDATE'] = fulldate match = True # try an alternate date format elif month_yyyy_match: month_name = month_yyyy_match.group(1) month_name = month_name.lower() year = month_yyyy_match.group(2) if MONTHS.has_key(month_name): doc[u'DATE'] = current month = MONTHS[month_name] doc[u'MONTH'] = int(month) doc[u'YEAR'] = int(year) match = True # if its not a tag or date, and we don't have end tags if match == False: # check if we have any top tags if len(top_tags) == 0: # if not, check if we have a date if not doc.has_key(u'DATE'): # if not, assume this is a part of the source source = current.lower() source = re.sub('^the', '', source, 1) source = source.lstrip() if doc.has_key(u'SOURCE'): doc[u'SOURCE'] = doc[u'SOURCE'] + u'; ' + source else: doc[u'SOURCE'] = source match = True # if we do have top tags, assume this is a title else: # assuming we don't already have a title if not doc.has_key(u'TITLE'): doc[u'TITLE'] = current match = True # don't move onto the body until we at least one tag if (match == False) and (have_length == False) and (have_section == False): top_misc += current + u' ** ' match = True # in all other cases, assume this is part of the body if match == False: # Try to deal with paragraphs that have been split over mutiple lines # By default, assume we'll just append the current working line # to the body append = True # if we have at least one paragraph if len(paragraphs) > 0: # Look at the end of the last paragraph and the start of # this one to see if a line has been split. # First, try to join hyperlinks, email addresses and # hyphenated words that have been split if re.search(u'[/@-]$', paragraphs[-1]): if re.search(u'^[a-z]', current): paragraphs[-1] = paragraphs[-1] + u'' + current append = False # Also search for the symbols at the start of the next line elif re.search(u'^[/@]', current): paragraphs[-1] = paragraphs[-1] + 'u' + current append = False # Finally, try to join sentences that have been split # i.e. the last paagraph doesn't end with an end character elif not re.search(u'[\.\"\'?!:_]$', paragraphs[-1]): # and the next paragraph doesn't start with a start symbol. if not re.search(u'^[A-Z"\'>*-\.\(0-9=\$%_]|(http)|(www)', current): paragraphs[-1] = paragraphs[-1] + u' ' + current append = False # in all other cases, just add the input as a new paragraph if (append == True): paragraphs.append(current) # start a new working line current = u'' output_text.append(orig_line + u'\r\n') total_docs_found += doc_count # once we reach the end of the file, output the current document # and then go to the next file if doc_num > 0: if options.write_files: write_text_file() write_json_file() # print a summary for the L-N file print 'Processed', orig_file_name + ': ', 'Expected:', expected_docs, ' Found:', doc_count # and print a final summary of everything print 'Total number of documents expected: ' + str(total_expected_docs) print 'Total number of documents found: ' + str(total_docs_found)
7b10bae824de4ead5ffbb387b689114066ec431d
5d304c6ec0f01edee73e3b612f84307060c0da54
/letter_combinations_of_a_phone_number.py
089f3c0c2377b7e620e80a61fbd5b12517d716e8
[]
no_license
xartisan/leetcode-solutions-in-python
cfa06b9e02f7ec0446cf6b71df4ea46caa359adc
7e3929a4b5bd0344f93373979c9d1acc4ae192a7
refs/heads/master
2020-03-14T17:10:07.957089
2018-07-29T10:11:01
2018-07-29T10:11:01
131,713,447
1
0
null
null
null
null
UTF-8
Python
false
false
499
py
class Solution: def letterCombinations(self, digits): """ :type digits: str :rtype: List[str] """ keys = ["", "", "abc", "def", "ghi", "jkl", "mno", "pqrs", "tuv", "wxyz"] rv = [] for d in digits: d = int(d) tmp = [] for c in keys[d]: if rv: tmp.extend(s + c for s in rv) else: tmp.append(c) rv = tmp return rv
d3f0f22a9f875992c367e7fce63ee8366b08f220
5254c3a7e94666264120f26c87734ad053c54541
/Revision de Pares/Semana N°5/Caso 2/05-0-gin-fileparse.py-vir-2020-09-08_19.44.49.py
c1df151428fe518671cc730320bf9ea5a29de07f
[]
no_license
ccollado7/UNSAM---Python
425eb29a2df8777e9f892b08cc250bce9b2b0b8c
f2d0e7b3f64efa8d03f9aa4707c90e992683672d
refs/heads/master
2023-03-21T17:42:27.210599
2021-03-09T13:06:45
2021-03-09T13:06:45
286,613,172
0
0
null
null
null
null
UTF-8
Python
false
false
2,352
py
#fileparse.py import csv def parse_csv(nombre_archivo, select = None, types = None, has_headers=True): ''' Parsea un archivo CSV en una lista de registros. Se puede seleccionar sólo un subconjunto de las columnas, determinando el parámetro select, que debe ser una lista de nombres de las columnas a considerar. ''' with open(nombre_archivo) as f: filas = csv.reader(f) if has_headers: # Lee los encabezados del archivo encabezados = next(filas) if select: # Si se indicó un selector de columnas, # buscar los índices de las columnas especificadas. # Y en ese caso achicar el conjunto de encabezados para diccionarios indices = [encabezados.index(nombre_columna) for nombre_columna in select] encabezados = select else: indices = [] registros = [] for fila in filas: if not fila: # Saltear filas vacías continue # Filtrar la fila si se especificaron columnas if indices: if types: fila = [tipo(fila[index]) for index,tipo in zip(indices,types)] else: fila = [fila[index] for index in indices] # Armar el diccionario registro = dict(zip(encabezados, fila)) registros.append(registro) else: registros = [] for fila in filas: if not fila: # Saltear filas vacías continue if types: fila = [tipo(elem) for tipo,elem in (zip(types, fila))] # Agregar la tupla registro = tuple(fila) registros.append(registro) return registros #%% camion_1 = parse_csv('camion.csv', types=[str, int, float]) print(camion_1) #%% camion_2 = parse_csv('camion.csv', types=[str, str, str]) print(camion_2) #%% camion_3 = parse_csv('camion.csv', select = ['nombre', 'cajones'], types=[str, int]) print(camion_3) #%% camion_4 = parse_csv('camion.csv', types=[str, str, float]) print(camion_4) #%% camion_5 = parse_csv('camion.csv', types=[str, int, str]) print(camion_5)
7cd784758941fdaddfc4f4813a364aa657bacadf
7f108151d95b49bdcaec90e7b1978859f603d962
/source/map/map_image.py
c1a0ef2173b42c8f51487752622362033c7b2077
[]
no_license
thydungeonsean/Shinar
205b20bf47ace29dde14ef2822449ee31ceeeca0
5bbb42aafe4ea1f54a69649a242241c3ca96926c
refs/heads/master
2021-04-29T10:08:17.300934
2017-04-04T12:06:48
2017-04-04T12:06:48
77,847,893
1
0
null
null
null
null
UTF-8
Python
false
false
9,839
py
from ..constants import * import pygame import os from ..images.image import Image class MapImageGenerator(object): instance = None @classmethod def get_instance(cls): if cls.instance is not None: return cls.instance else: cls.instance = cls() return cls.instance """ The image generator will scan through a map, and compile dither tile / wall tile combos as needed. It will store them in dither_patterns or wall patterns to be reused. dither_sets will hold recolored images based on the patterns as needed. """ def __init__(self): self.tile_images = self.init_tile_images() self.dither_gen = DitherImageGenerator() self.dither_patterns = {} # self.wall_patterns = {} self.dither_sets = { 1: {}, 2: {}, 3: {} } # init methods def init_tile_images(self): tile_images = { 0: MapTileImage('desert'), 1: MapTileImage('plain'), 2: MapTileImage('fertile'), 3: MapTileImage('river') } return tile_images def generate_image(self, map): mw = map.w * TILEW mh = map.h * TILEH map_image = pygame.Surface((mw, mh)) for y in range(map.h): for x in range(map.w): tile_id = map.map[x][y] if tile_id not in self.tile_images.keys(): tile_id = 0 img = self.tile_images[tile_id] img.position((x, y)) img.draw(map_image) dithered_edge_maps = self.get_dithered_edges(map) for k in (1, 2, 3): edge_map = dithered_edge_maps[k] for x, y in edge_map.keys(): img = self.get_dither_image(k, edge_map[(x, y)]) img.position((x, y)) img.draw(map_image) return map_image def get_dithered_edges(self, map): dithered_ids = (1, 2, 3) dither_points = { 1: [], 2: [], 3: [] } for y in range(map.h): for x in range(map.w): value = map.map[x][y] if value in dithered_ids: dither_points[value].append((x, y)) plain_dithered_edge = self.get_dithered_edge(map, dither_points[1], 0) fertile_dithered_edge = self.get_dithered_edge(map, dither_points[2], 1) river_dithered_edge = self.get_dithered_edge(map, dither_points[3], 2) #river_dithered_edge = self.get_dithered_edge(map, dither_points[2], 3) return {1: plain_dithered_edge, 2: fertile_dithered_edge, 3: river_dithered_edge} def get_dithered_edge(self, map, points, cover_terrain): dither = {} visited = set() for x, y in points: adj = map.get_adj((x, y), diag=True) for ax, ay in adj: if map.map[ax][ay] == cover_terrain and (ax, ay) not in visited: visited.add((ax, ay)) dither[(ax, ay)] = self.get_dither_value(map, map.map[x][y], (ax, ay)) return dither def get_dither_value(self, map, cover_type, (x, y)): edge_coords = ((x-1, y-1), (x, y-1), (x+1, y-1), (x+1, y), (x+1, y+1), (x, y+1), (x-1, y+1), (x-1, y)) i = 0 value = set() for ex, ey in edge_coords: if map.is_on_map((ex, ey)) and map.map[ex][ey] == cover_type: value.add(i) i += 1 value = list(value) value.sort() return tuple(value) def get_dither_image(self, terrain, dither_value): dither_set = self.dither_sets[terrain] if dither_value in dither_set.keys(): return dither_set[dither_value] if dither_value in self.dither_patterns.keys(): img = self.dither_gen.recolor_pattern(self.dither_patterns[dither_value], terrain) dither_set[dither_value] = img return img else: pattern = self.dither_gen.generate_pattern(dither_value) self.dither_patterns[dither_value] = pattern img = self.dither_gen.recolor_pattern(pattern, terrain) dither_set[dither_value] = img return img class DitherImageGenerator(object): color_key = { 1: PLAIN_BROWN, 2: FERTILE_GREEN, 3: RIVER_BLUE #3: PLAIN_BROWN # 1: RED, 2: RED, 3: RED } dither_key = { 'a': (0, 0), 'b': (TILEW, 0), 'c': (TILEW*2, 0), 'd': (0, TILEH), 'e': (TILEW, TILEH), 'f': (TILEW*2, TILEH), 'g': (0, TILEH*2), 'h': (TILEW, TILEH*2) } def __init__(self): self.dither_tileset = TileImage('dither', colorkey=WHITE) def generate_pattern(self, d_value): d_img = TileImage(colorkey=WHITE) image_instructions = self.parse_dither_value(d_value) for d_id, pos in image_instructions: self.add_dither_segment(d_img, d_id, pos) return d_img def recolor_pattern(self, pattern, terrain): img = TileImage(colorkey=WHITE) pattern.draw(img) color = DitherImageGenerator.color_key[terrain] img.recolor(BLACK, color) return img def parse_dither_value(self, value): parsed = set() card = {1, 3, 5, 7} diag = {0, 2, 4, 6} cardinals = [] for e in value: if e in card: cardinals.append(e) if len(cardinals) < 3: for e in value: # checking for outer diagonal corners if e in diag and self.corner_is_isolate(value, e): parsed.add(('b', e)) elif len(cardinals) == 4: parsed = [('d', 1), ('d', 3), ('d', 5), ('d', 7), ('c', 0), ('c', 2), ('c', 4), ('c', 6)] return parsed for e in cardinals: # check for solid edges if self.edge_is_isolate(value, e): parsed.add(('a', e)) else: parsed.add(('d', e)) if self.edge_has_one_adj(value, e, 2): end, connector = self.get_corner_values(value, e) parsed.add(('e', end)) parsed.add(('c', connector)) else: adj = self.get_adj_edges(e, 1) for ae in adj: parsed.add(('c', ae)) return list(parsed) def get_adj_edges(self, e, step): raw_adj = (e + step, e - step) adj = [] for ae in raw_adj: if ae < 0: adj.append(ae + 8) elif ae > 7: adj.append(ae - 8) else: adj.append(ae) return adj def get_corner_values(self, value, e): corners = self.get_adj_edges(e, 1) end = None connector = None for corner in corners: if self.edge_has_one_adj(value, corner, 1): end = corner else: connector = corner return end, connector def corner_is_isolate(self, value, e): adj = self.get_adj_edges(e, 1) for ae in adj: if ae in value: return False return True def edge_is_isolate(self, value, e): adj = self.get_adj_edges(e, 2) for ae in adj: if ae in value: return False return True def edge_has_one_adj(self, value, e, step): adj = self.get_adj_edges(e, step) num = 0 for ae in adj: if ae in value: num += 1 if num < 2: return True else: return False def add_dither_segment(self, d_img, d_id, pos): if d_id in ('a', 'b', 'c', 'd'): self.add_rotated_img(d_img, d_id, pos) else: # d_id is 'e' if pos == 0: self.add_rotated_img(d_img, 'e', 0) elif pos == 2: self.add_rotated_img(d_img, 'f', 0) elif pos == 4: self.add_rotated_img(d_img, 'g', 0) elif pos == 6: self.add_rotated_img(d_img, 'h', 0) def add_rotated_img(self, d_img, d_id, pos): ang_dict = {0: 0, 1: 0, 2: -90, 3: -90, 4: 180, 5: 180, 6: 90, 7: 90} img = pygame.Surface((TILEW, TILEH)) img.fill(WHITE) img.set_colorkey(WHITE) x, y = DitherImageGenerator.dither_key[d_id] img.blit(self.dither_tileset.image, (0, 0), (x, y, TILEW, TILEH)) img = pygame.transform.rotate(img, ang_dict[pos]) d_img.blit(img, img.get_rect()) class TileImage(Image): def __init__(self, imagename=None, colorkey=None): Image.__init__(self, imagename, colorkey) def position(self, (x, y)): self.rect.topleft = ((x * TILEW) + self.x_offset, (y * TILEH) + self.y_offset) class MapTileImage(TileImage): def __init__(self, imagename=None): Image.__init__(self, imagename)
77646e2ec0616be8c2082741e2ca6efa9902dd3a
ef457162d79be971f52ee96b1891764a2d230e8b
/demo.py
0b61466993849c1bffa5dd4056ad7be10ebc7073
[]
no_license
LuoJiaji/modularCNN
f2239f6b4ed378fede4401f6e90d9b1d5acc8c70
b8591c3924abeccaebfad56289a185f904da8608
refs/heads/master
2020-06-18T12:57:59.192061
2019-07-11T13:20:08
2019-07-11T13:20:08
196,309,757
0
0
null
null
null
null
UTF-8
Python
false
false
5,242
py
import random import numpy as np import matplotlib.pyplot as plt from keras.datasets import mnist from keras.preprocessing import image from keras.models import Model, load_model from keras.layers import Input, Flatten, Dense, Dropout, Lambda from keras.layers.convolutional import Conv2D from keras.layers.pooling import MaxPooling2D from keras.optimizers import RMSprop, SGD from keras.utils.vis_utils import plot_model (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 x_test = np.expand_dims(x_test, axis = 3) def get_random_batch(x, y, l, batchsize): ind_p = np.where(y_train == l)[0] ind_n = np.where(y_train != l)[0] x_batch = [] y_batch = [] l_p = len(ind_p) l_n = len(ind_n) for i in range(int(batchsize/2)): ind = random.randrange(l_p) x_batch.append(x[ind_p[ind]]) y_batch.append(1) # print(y[ind_p[ind]]) ind = random.randrange(l_n) x_batch.append(x[ind_n[ind]]) y_batch.append(0) # print(y[ind_n[ind]]) x_batch = np.array(x_batch) y_batch = np.array(y_batch) y_batch = y_batch.astype('float32') return x_batch, y_batch x_batch, y_batch = get_random_batch(x_train, y_train, 0, 128) input_shape = (28,28,1) input_data = Input(shape=input_shape) x = Conv2D(32, (3, 3), activation='relu', padding='same', name='block1_conv1')(input_data) x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x) x = Conv2D(32, (3, 3), activation='relu', padding='same', name='block1_conv2')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x) x = Flatten(name='flatten')(x) x = Dense(128, activation='relu', name='fc1')(x) x = Dense(1, activation='sigmoid', name='fc2')(x) model = Model(input_data, x) #model.compile(optimizer='rmsprop', loss='mse', metrics=['accuracy']) model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy']) #i=3 for i in range(10): input_shape = (28,28,1) input_data = Input(shape=input_shape) x = Conv2D(32, (3, 3), activation='relu', padding='same', name='block1_conv1')(input_data) x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x) x = Conv2D(32, (3, 3), activation='relu', padding='same', name='block1_conv2')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x) x = Flatten(name='flatten')(x) x = Dense(128, activation='relu', name='fc1')(x) x = Dense(1, activation='sigmoid', name='fc2')(x) model = Model(input_data, x) model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy']) for it in range(5000): x_batch, y_batch = get_random_batch(x_train, y_train, i, 256) x_batch = np.expand_dims(x_batch, axis = 3) train_loss, train_acc = model.train_on_batch(x_batch, y_batch) if it % 100 == 0: print('i:', i, 'it:', it, 'loss', train_loss, 'acc', train_acc) model.save('./models/ModularCNN_' + str(i) + '.h5') # 单个模型测试 i=9 model = load_model('./models/ModularCNN_9.h5') test_label = np.copy(y_test) test_label[np.where(y_test == i)] = 1 test_label[np.where(y_test != i)] = 0 #x_test = np.expand_dims(x_test, axis = 3) pre = model.predict(x_test) pre = pre[:,0] pre[np.where(pre < 0.2)] = 0 pre[np.where(pre >= 0.2)] = 1 acc = np.mean(pre == test_label) # 整合模型,综合测试 input_shape = (28,28,1) input_data = Input(shape=input_shape) model_0 = load_model('./models/ModularCNN_0.h5') model_1 = load_model('./models/ModularCNN_1.h5') model_2 = load_model('./models/ModularCNN_2.h5') model_3 = load_model('./models/ModularCNN_3.h5') model_4 = load_model('./models/ModularCNN_4.h5') model_5 = load_model('./models/ModularCNN_5.h5') model_6 = load_model('./models/ModularCNN_6.h5') model_7 = load_model('./models/ModularCNN_7.h5') model_8 = load_model('./models/ModularCNN_8.h5') model_9 = load_model('./models/ModularCNN_9.h5') output_0 = model_0(input_data) output_1 = model_1(input_data) output_2 = model_2(input_data) output_3 = model_3(input_data) output_4 = model_4(input_data) output_5 = model_5(input_data) output_6 = model_6(input_data) output_7 = model_7(input_data) output_8 = model_8(input_data) output_9 = model_9(input_data) model = Model(inputs = input_data, outputs=[output_0, output_1, output_2, output_3, output_4, output_5, output_6, output_7, output_8, output_9]) #plot_model(model, to_file='./models_visualization/modularCNN.pdf',show_shapes=True) #plot_model(model, to_file='./models_visualization/modularCNN.png',show_shapes=True) pre = model.predict(x_test) pre = np.array(pre) pre = np.squeeze(pre) pre = pre.T pre = np.argmax(pre, axis = 1) acc = np.mean(pre == y_test) ## 未知数据测试 img = image.load_img('./dataset/img/G/Q2Fsdmlub0hhbmQudHRm.png', target_size=(28, 28)) img = image.img_to_array(img) img = img/255 img = img[:,:,0] plt.imshow(img) img = np.expand_dims(img, axis=0) img = np.expand_dims(img, axis=3) pre = model.predict(img) pre = np.array(pre) pre = np.squeeze(pre) img_rand = np.random.rand(1,28,28,1) pre = model.predict(img) pre = np.array(pre) pre = np.squeeze(pre)
613558e1f0a6f4199d62e2feae12a2ba06b09eba
66e45a2760db8a1fc580689586806c2e3cce0517
/pymontecarlo/options/model/base.py
8951f563fdc581a862298aeec9784c0e6a2631d2
[]
no_license
arooney/pymontecarlo
4b5b65c88737de6fac867135bc05a175c8114e48
d2abbb3e9d3bb903ffec6dd56472470e15928b46
refs/heads/master
2020-12-02T18:01:42.525323
2017-05-19T16:44:30
2017-05-19T16:44:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
649
py
""" Base models. """ # Standard library modules. import abc import enum # Third party modules. # Local modules. from pymontecarlo.options.base import Option # Globals and constants variables. class ModelMeta(enum.EnumMeta, abc.ABCMeta): pass class Model(Option, enum.Enum, metaclass=ModelMeta): def __init__(self, fullname, reference=''): self.fullname = fullname self.reference = reference def __eq__(self, other): # NOTE: Must be implemented from Option, # but should only used equality from Enum return enum.Enum.__eq__(self, other) def __str__(self): return self.fullname
bbb0e5789cc95e133b10dc78292d1330aa319f50
09d349155446f2f32519cfc7deb7f79b1138a158
/kraft/actions.py
d7a5fba1e5bcf34353359243e9c51f253c87c7e3
[]
no_license
marcin-/pardususer.de
632d7fb4c5a9252dbcf82711a5da126523d3b8e8
1d4bb1d1f9da113cf2b8cbcc6b544ec9b9616862
refs/heads/master
2016-09-05T23:22:38.726769
2012-10-08T20:40:39
2012-10-08T20:40:39
6,114,809
2
2
null
null
null
null
UTF-8
Python
false
false
810
py
#!/usr/bin/python # -*- coding: utf-8 -*- from pisi.actionsapi import cmaketools from pisi.actionsapi import pisitools from pisi.actionsapi import shelltools from pisi.actionsapi import get def setup(): shelltools.makedirs("build") shelltools.cd("build") cmaketools.configure("-DCMAKE_INSTALL_PREFIX=/usr \ -DCMAKE_BUILD_TYPE=Release \ -DCMAKE_CXX_FLAGS_RELEASE:STRING='-DNDEBUG -DQT_NO_DEBUG' \ -DCMAKE_C_FLAGS_RELEASE:STRING='-DNDEBUG'", sourceDir="..") def build(): shelltools.cd("build") cmaketools.make() def install(): shelltools.cd("build") cmaketools.install() shelltools.cd("..") pisitools.dodoc("TODO", "Changes.txt", "INSTALL", "README", "COPYING", "Releasenotes.txt", "AUTHORS")
5005cb8e54066070f254014fede0db6ecb90ed09
b6df7cda5c23cda304fcc0af1450ac3c27a224c1
/nlp/preprocessing.py
441402923997d2e7d7041d50ca10938068282e69
[]
no_license
vieira-rafael/py-search
88ee167fa1949414cc4f3c98d33f8ecec1ce756d
b8c6dccc58d72af35e4d4631f21178296f610b8a
refs/heads/master
2021-01-21T04:59:36.220510
2016-06-20T01:45:34
2016-06-20T01:45:34
54,433,313
2
4
null
null
null
null
UTF-8
Python
false
false
287
py
class PreProcessing: def __init__(self): stopwords = ["and","del","from","not","while","as","elif","global","or","with","assert","else","if","pass","yield","break","except","import","print","class","exec","in","raise","continue","finally","is","return","def","for","lambda","try"];
d425739853edd3970661241960467b810be5829e
ab5731ae6e190a9b44b1cddbd11af89277302de9
/read_json/data_json.py
686c168a2ed574d935bcf65b3bbd202919f755d4
[]
no_license
MachineLP/py_workSpace
e532781aab51c54a87602c387acd3199f9a75140
7937f3706e8d2d8a0e25ba0648bee6d1fcb27234
refs/heads/master
2021-08-29T02:56:02.415509
2021-08-23T10:38:59
2021-08-23T10:38:59
117,516,956
22
18
null
null
null
null
UTF-8
Python
false
false
607
py
# -*- coding: utf-8 -*- """ Created on 2017 10.17 @author: liupeng """ import sys import numpy as np import json as js class load_image_from_json(object): def __init__(self, json_file): self.json_file = json_file def __del__(self): pass def js_load(self): f = open(self.json_file, 'r') js_data = js.load(f) return js_data if __name__ == "__main__": all_data = load_image_from_json('0(6015).json').js_load() for data in all_data: print (data['image_id']) print (data['keypoint']['human1'])
b35422cbf3d8501bfd9d006f2035134b3d022010
327a8fe2743bde7f49b19914e4d62091cb7c79d6
/upload/wsgi.py
d97d7643e5921ed05ee7ec9f48320185ec321262
[ "MIT" ]
permissive
danrneal/raft-drf-exercise
3de78d115e02a3739911feb30e1b96f482b873e0
f62d2f05cd085f7a8d9b89f4ecee2c76feb4b47e
refs/heads/main
2023-08-03T17:04:14.583022
2021-09-22T19:53:08
2021-09-22T19:53:08
312,690,985
0
0
MIT
2021-09-22T19:53:09
2020-11-13T21:47:48
Python
UTF-8
Python
false
false
389
py
""" WSGI config for upload project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'upload.settings') application = get_wsgi_application()
d87050e9f0620d49c9b7e96014c4fa531605ba4a
64ab5b65afdf8d950c4b56ad2259133b95fc2fec
/zeus/migrations/e373a7bffa18_unique_build_failures.py
c118ddf8f86aee0ea630a9b38be70d3beae61969
[ "Apache-2.0" ]
permissive
getsentry/zeus
3e88895443b23278fdb4c25121422ee214630512
6d4a490c19ebe406b551641a022ca08f26c21fcb
refs/heads/master
2023-09-01T14:20:11.396306
2021-04-30T17:08:33
2021-04-30T17:08:33
96,131,433
222
27
Apache-2.0
2022-06-01T03:17:16
2017-07-03T16:39:35
Python
UTF-8
Python
false
false
897
py
"""unique_build_failures Revision ID: e373a7bffa18 Revises: 54bbb66a65a6 Create Date: 2020-03-13 09:25:38.492704 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = "e373a7bffa18" down_revision = "54bbb66a65a6" branch_labels = () depends_on = None def upgrade(): # first we clean up duplicate rows connection = op.get_bind() connection.execute( """ DELETE FROM failurereason a USING failurereason b WHERE a.id > b.id AND a.reason = b.reason AND a.build_id = b.build_id """ ) op.create_index( "unq_failurereason_buildonly", "failurereason", ["build_id", "reason"], unique=True, postgresql_where=sa.text("job_id IS NULL"), ) def downgrade(): op.drop_index("unq_failurereason_buildonly", table_name="failurereason")
a1ebf96d93a3e1ae78d6189b078630bb4fcf8d52
7f90f49237b30e404161b4670233d023efb7b43b
/第二章 python核心/HX02_linux系统编程/01进程/test/jc10_子进程多种方式小结.py
a42c62f02979b3b07ae8548d92ebb3d3b86fd1b6
[]
no_license
FangyangJz/Black_Horse_Python_Code
c5e93415109699cc42ffeae683f422da80176350
34f6c929484de7e223a4bcd020bc241bb7201a3d
refs/heads/master
2020-03-23T01:52:42.069393
2018-07-14T12:05:12
2018-07-14T12:05:12
140,942,688
2
0
null
null
null
null
UTF-8
Python
false
false
451
py
# !/usr/bin/env python # -*- coding:utf-8 -*- # author: Fangyang time:2018/3/31 # (1) fork, 只用于linux (不推荐) ret = os.fork() if ret == 0: # 子进程 else: # 父进程 # (2) Process(target=xxx), 还有一个 class Xxx(Process): p1 = Process(target=func) p1.start() # 主进程也能干点活 # (3) pool (推荐) pool = Pool(3) pool.apply_async(xxxx) # 主进程一般用来等待, 不干活, 真正的任务在子进程中执行
ac4b87c2ef8d46c4149984f849a04f5e20b3fc0e
600df3590cce1fe49b9a96e9ca5b5242884a2a70
/third_party/catapult/telemetry/telemetry/timeline/sample.py
806f60fafa2635a581485698ceee0eed38121471
[ "LGPL-2.0-or-later", "GPL-1.0-or-later", "MIT", "Apache-2.0", "BSD-3-Clause" ]
permissive
metux/chromium-suckless
efd087ba4f4070a6caac5bfbfb0f7a4e2f3c438a
72a05af97787001756bae2511b7985e61498c965
refs/heads/orig
2022-12-04T23:53:58.681218
2017-04-30T10:59:06
2017-04-30T23:35:58
89,884,931
5
3
BSD-3-Clause
2022-11-23T20:52:53
2017-05-01T00:09:08
null
UTF-8
Python
false
false
713
py
# Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import telemetry.timeline.event as timeline_event class Sample(timeline_event.TimelineEvent): """A Sample represents a sample taken at an instant in time plus parameters associated with that sample. NOTE: The Sample class implements the same interface as Slice. These must be kept in sync. All time units are stored in milliseconds. """ def __init__(self, parent_thread, category, name, timestamp, args=None): super(Sample, self).__init__( category, name, timestamp, 0, args=args) self.parent_thread = parent_thread
a0d9c35a415b9dd7d28d35a0995ae5dc81209c6a
4dd1d8fa59e20061e2c12e540fc52b1b305e575b
/source/sims/s89/plt-exact-sol.py
0d82396776954a630e3f77a1be11e7c2991767ef
[ "MIT" ]
permissive
ammarhakim/ammar-simjournal
f63521906a97d55ab290a5960d94758139944c89
5019f4723e20db80a20db6f2bd454c2fd3241412
refs/heads/master
2023-06-08T08:18:11.722779
2023-06-02T15:06:43
2023-06-02T15:06:43
204,050,516
3
3
null
2022-02-01T16:53:13
2019-08-23T18:28:44
Lua
UTF-8
Python
false
false
765
py
import pylab import tables import math import numpy def exactSol(a, b, X): c0 = -(1/2.0 + a/12.0 + b/30.0) c1 = 0.0 return X**2/2 + a*X**4/12 + b*X**6/30 + c0*X + c1 fh = tables.openFile("s89-poisson-o3-1d_phi.h5") q = fh.root.StructGridField nx, nc = q.shape Xf = pylab.linspace(0, 1, nx) qe = q[:,0] dx = Xf[1]-Xf[0] Xm = pylab.linspace(0.5*dx, 1-0.5*dx, nx-1) qm = q[:-1,1] a = 2.0 b = -12.0 Xhr = pylab.linspace(0, 1, 101) fhr = exactSol(a, b, Xhr) # make plot comparing exact to numerical solution pylab.plot(Xhr, fhr, '-r', Xf, qe, 'ok', Xm, qm, 'ok') # compute error fex_e = exactSol(a, b, Xf) fex_m = exactSol(a, b, Xm) error = (numpy.abs(fex_e-qe).sum() + numpy.abs(fex_m-qm).sum())/(nx+nx-1); print "%g %g" % (dx, error) pylab.show()
5d892f45bb5ed49a45551cf2fc71ed94bdb0fec8
91365d8ef539a9952f048e1fef03b6f76a0ccf60
/test/inductor/test_torchinductor.py
53d0bc4f376ee0abfd531abf66ebe0ea8c747a09
[ "BSD-2-Clause", "LicenseRef-scancode-secret-labs-2011", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "BSL-1.0", "Apache-2.0" ]
permissive
ppwwyyxx/pytorch
6e68cd816e8197e298c50d7f0e82cc97aff4dbdf
2883cb464810611c5de37b2ca06771582ddf5f83
refs/heads/master
2023-08-10T00:39:48.165007
2023-06-07T01:51:59
2023-06-07T01:51:59
160,557,191
3
3
NOASSERTION
2018-12-05T17:53:38
2018-12-05T17:53:37
null
UTF-8
Python
false
false
208,514
py
# Owner(s): ["module: inductor"] import contextlib import copy import dataclasses import functools import importlib import itertools import math import os import random import subprocess import sys import time import typing import unittest import weakref from typing import Tuple from unittest.mock import patch import numpy as np import torch import torch._dynamo import torch.nn as nn from torch._dispatch.python import enable_python_dispatcher from torch._dynamo.testing import rand_strided, same from torch._inductor.codegen.common import DataTypePropagation, OptimizationContext from torch._inductor.utils import run_and_get_code, run_and_get_triton_code from torch.fx.experimental.proxy_tensor import make_fx from torch.nn import functional as F from torch.testing import make_tensor from torch.testing._internal.common_cuda import SM80OrLater from torch.testing._internal.common_device_type import _has_sufficient_memory from torch.testing._internal.common_dtype import all_types from torch.testing._internal.common_utils import ( DeterministicGuard, IS_CI, IS_MACOS, IS_WINDOWS, IS_X86, skipIfRocm, TEST_WITH_ASAN, TestCase as TorchTestCase, ) from torch.utils._python_dispatch import TorchDispatchMode from torch.utils._pytree import tree_flatten, tree_unflatten if IS_WINDOWS and IS_CI: sys.stderr.write( "Windows CI does not have necessary dependencies for test_torchinductor yet\n" ) if __name__ == "__main__": sys.exit(0) raise unittest.SkipTest("requires sympy/functorch/filelock") importlib.import_module("functorch") importlib.import_module("filelock") from torch._inductor import config, test_operators from torch._inductor.compile_fx import compile_fx, compile_fx_inner from torch._inductor.utils import has_torchvision_roi_align from torch.testing._internal.common_utils import slowTest from torch.testing._internal.inductor_utils import HAS_CPU, HAS_CUDA HAS_MULTIGPU = HAS_CUDA and torch.cuda.device_count() >= 2 HAS_AVX2 = "fbgemm" in torch.backends.quantized.supported_engines aten = torch.ops.aten requires_cuda = functools.partial(unittest.skipIf, not HAS_CUDA, "requires cuda") requires_multigpu = functools.partial( unittest.skipIf, not HAS_MULTIGPU, "requires multiple cuda devices" ) skip_if_x86_mac = functools.partial( unittest.skipIf, IS_MACOS and IS_X86, "Does not work on x86 Mac" ) vec_dtypes = [torch.float, torch.bfloat16] def run_fw_bw_and_get_code(fn): def run_with_backward(): result = fn() result.sum().backward() return result return run_and_get_code(run_with_backward) class TestCase(TorchTestCase): @classmethod def setUpClass(cls): super().setUpClass() cls._stack = contextlib.ExitStack() cls._stack.enter_context( config.patch( { "debug": True, "debug_index_asserts": True, "cpp.min_chunk_size": 1, "triton.autotune_pointwise": False, # too slow "implicit_fallbacks": False, "generate_intermediate_hooks": True, } ) ) @classmethod def tearDownClass(cls): cls._stack.close() super().tearDownClass() def setUp(self): torch._dynamo.reset() super().setUp() self._start = time.perf_counter() def tearDown(self): super().tearDown() torch._dynamo.reset() if os.environ.get("ERROR_ON_SLOW") == "1": elapsed = time.perf_counter() - self._start assert elapsed < 120 class ToTuple(torch.nn.Module): def forward(self, x): return (x,) @dataclasses.dataclass class InputGen: n: int device: str def dense(self): return torch.randn((self.n, self.n), device=self.device) def transposed(self): return self.dense().transpose(0, 1) def strided(self): return torch.randn((self.n * 2, self.n * 3), device=self.device)[ self.n :, self.n :: 2 ] def broadcast1(self): return torch.randn((self.n,), device=self.device) def broadcast2(self): return torch.randn((1, self.n, 1), device=self.device) def broadcast3(self): return torch.randn((1,), device=self.device) def double(self): return torch.randn((self.n, self.n), device=self.device, dtype=torch.double) def int(self): return torch.arange(self.n, device=self.device, dtype=torch.int32) def compute_grads(args, kwrags, results, grads): def gather_leaf_tensors(args, kwargs): args, _ = tree_flatten(args) kwargs, _ = tree_flatten(kwargs) args = args + kwargs leaf_tensors = [ arg for arg in args if isinstance(arg, torch.Tensor) and arg.requires_grad ] return leaf_tensors flat_results, _ = tree_flatten(results) flat_diff_results = [r for r in flat_results if r.requires_grad] assert len(flat_diff_results) > 0 leaf_tensors = gather_leaf_tensors(args, kwrags) assert len(leaf_tensors) > 0 return torch.autograd.grad( flat_diff_results, leaf_tensors, grads, allow_unused=True, retain_graph=True, ) def clone_preserve_strides(x, device=None): if not isinstance(x, torch.Tensor): return x buffer = torch.as_strided( x, (x.untyped_storage().size() // x.element_size(),), (1,), 0 ) if not device: buffer = buffer.clone() else: buffer = buffer.to(device, copy=True) out = torch.as_strided(buffer, x.size(), x.stride(), x.storage_offset()) return out @patch.object(config, "debug", True) def run_and_get_cpp_code(fn, *args, **kwargs): torch._dynamo.reset() import io import logging log_capture_string = io.StringIO() ch = logging.StreamHandler(log_capture_string) from torch._inductor.graph import output_code_log output_code_log.addHandler(ch) prev_level = output_code_log.level output_code_log.setLevel(logging.DEBUG) fn(*args, **kwargs) s = log_capture_string.getvalue() output_code_log.setLevel(prev_level) output_code_log.removeHandler(ch) return s def check_model( self: TestCase, model, example_inputs, kwargs=None, *, atol=None, rtol=None, check_lowp=True, exact_dtype=True, nopython=True, copy_to_cuda=True, reference_in_float=True, assert_equal=True, check_gradient=False, ): kwargs = kwargs or {} torch._dynamo.reset() ref_inputs = [clone_preserve_strides(x) for x in example_inputs] ref_kwargs = kwargs has_lowp_args = False original_lowp_dtype = torch.half if reference_in_float: # check_lowp is ignored here, it's kept just to be able to call `common` with extra arg def upcast_fn(x): nonlocal has_lowp_args if isinstance(x, torch.Tensor) and ( x.dtype == torch.float16 or x.dtype == torch.bfloat16 ): has_lowp_args = True return x.float() else: return x def get_original_lowp_dtype(example_inputs): dtypes = [x.dtype for x in example_inputs if isinstance(x, torch.Tensor)] dtype_set = set(dtypes) return dtype_set.pop() if len(dtype_set) == 1 else torch.half ref_inputs = list(map(upcast_fn, example_inputs)) ref_kwargs = {k: upcast_fn(v) for k, v in kwargs.items()} if has_lowp_args: original_lowp_dtype = get_original_lowp_dtype(example_inputs) if hasattr(model, "to"): model = model.to(torch.float) torch.manual_seed(0) correct = model(*ref_inputs, **ref_kwargs) # downcast the model back if needed if reference_in_float and has_lowp_args: if hasattr(model, "to"): model = model.to(original_lowp_dtype) torch._inductor.metrics.reset() called = False def compile_fx_wrapper(model_, example_inputs_): nonlocal called called = True return compile_fx(model_, example_inputs_) def run(*ex, **kwargs): return model(*ex, **kwargs) run = torch._dynamo.optimize(compile_fx_wrapper, nopython=nopython)(run) torch.manual_seed(0) actual = run(*example_inputs, **kwargs) # if not called: # exp = torch._dynamo.explain(run, *example_inputs) # print("Explain:", exp[0]) # for graph in exp[2]: # print("Graph", graph) assert called, "Ran graph without calling compile_fx" assert type(actual) == type(correct) correct_flat, correct_spec = tree_flatten(correct) actual_flat, _ = tree_flatten(actual) if reference_in_float: correct_flat = tuple( y.to(x.dtype) if isinstance(y, torch.Tensor) and y.dtype.is_floating_point else y for x, y in zip(actual_flat, correct_flat) ) correct = tree_unflatten(correct_flat, correct_spec) if assert_equal: self.assertEqual( actual, correct, atol=atol, rtol=rtol, equal_nan=True, exact_dtype=exact_dtype, ) # In case of input mutations, check that inputs are the same self.assertEqual( ref_inputs, example_inputs, atol=atol, rtol=rtol, equal_nan=True, # our testing sometimes uses higher precision inputs for the reference exact_dtype=False, ) else: for correct_val, actual_val in zip(correct_flat, actual_flat): if isinstance(correct_val, torch.Tensor): assert correct_val.device == actual_val.device assert correct_val.size() == actual_val.size() assert correct_val.stride() == actual_val.stride() assert correct_val.layout == actual_val.layout if exact_dtype: assert correct_val.dtype == actual_val.dtype if check_gradient: # generate random unit norm gradients grads = [ torch.rand(r.shape, device=r.device, dtype=r.dtype) for r in correct_flat if r.requires_grad ] for g in grads: g /= g.norm() correct_grad = compute_grads(ref_inputs, ref_kwargs, correct, grads) flat_grads, _ = tree_flatten(correct_grad) all_none_grads = all(x is None for x in flat_grads) if all_none_grads: # See Note [Detaching inputs that never need gradients] # There are a handful of ops that can return None gradients, into of zero gradients. # If all inputs to an AOTAutograd graph are supposed to get None gradients, # AOTAutograd will end up forcing all of the outputs of the forward to not require grad. # There's no easy fix to this (see the note above), although one option is to # force any derivative formulas in core to return tensors of zeros instead of None. flat_results, _ = tree_flatten(actual) results_that_require_grad = [ x for x in flat_results if isinstance(x, torch.Tensor) and x.requires_grad ] self.assertEqual(len(results_that_require_grad), 0) else: actual_grad = compute_grads(example_inputs, kwargs, actual, grads) self.assertEqual( actual_grad, correct_grad, atol=atol, rtol=rtol, equal_nan=True, exact_dtype=exact_dtype, ) torch._dynamo.reset() @torch._inductor.config.patch("triton.cudagraphs", False) def check_model_cuda( self: TestCase, model, example_inputs, kwargs=None, *, atol=None, rtol=None, check_lowp=True, exact_dtype=True, nopython=True, copy_to_cuda=True, reference_in_float=True, assert_equal=True, check_gradient=False, ): kwargs = kwargs or {} if hasattr(model, "to"): model = model.to("cuda") if copy_to_cuda: example_inputs = tuple( clone_preserve_strides(x, device="cuda") for x in example_inputs ) check_model( self, model, example_inputs, kwargs, atol=atol, rtol=rtol, exact_dtype=exact_dtype, nopython=nopython, reference_in_float=reference_in_float, assert_equal=assert_equal, check_gradient=check_gradient, ) if check_lowp: def downcast_fn(x): if not isinstance(x, torch.Tensor) or not x.dtype == torch.float: return x return torch.empty_strided( x.size(), x.stride(), device="cuda", dtype=torch.half ).copy_(x) example_inputs = list(map(downcast_fn, example_inputs)) if hasattr(model, "to"): model = model.to(torch.half) if rtol is not None: rtol = max(2e-3, rtol) check_model( self, model, example_inputs, kwargs, atol=atol, rtol=rtol, exact_dtype=exact_dtype, nopython=nopython, reference_in_float=reference_in_float, assert_equal=assert_equal, check_gradient=check_gradient, ) def _run_and_assert_no_indirect_indexing(test_case, func, *args, **kwargs): result, source_codes = run_and_get_code(func, *args, **kwargs) for code in source_codes: for line in code.split("\n"): stmt = None # Find indexing expressions if ".load(" in line: stmt = line.split(".load")[-1] elif "tl.store" in line: stmt = line.split(".store")[-1] stmt = ",".join(stmt.split(",")[:-2]) # Remove store value and mask elif ".store" in line: stmt = line.split(".store")[-1] elif "[" in line: stmt = line.split("[")[-1].split("]")[0] if stmt is None: continue # indirect indexing involves a `tmp` variable test_case.assertTrue( "tmp" not in stmt, msg=f"Found indirect indexing in statement '{stmt}' from code:\n{code}", ) return result class SweepInputs2: input_gen_types1 = [ "dense", "transposed", "strided", "broadcast1", "broadcast2", "broadcast3", "double", "int", ] input_gen_types2 = input_gen_types1 gen = None @staticmethod def kernel(a, b): return (a + b,) @classmethod def gen_template(cls, name1, name2): def test(self): check_model( self, cls.kernel, ( getattr(cls.gen, name1)(), getattr(cls.gen, name2)(), ), ) test.__name__ = f"test_{cls.gen.device}_{name1}_{name2}" setattr(cls, test.__name__, test) @classmethod def populate(cls): for name1 in cls.input_gen_types1: for name2 in cls.input_gen_types2: cls.gen_template(name1, name2) class CommonTemplate: def test_bool(self): def fn(a, b): return ( a + b, a * b, a & b, a | b, a ^ b, torch.logical_and(a, b), torch.logical_or(a, b), torch.logical_not(a), torch.sign(b), ) self.common( fn, ( torch.tensor([True, False, True, False]), torch.tensor([False, False, True, True]), ), ) def test_add_const_int(self): def fn(a): return (a + 1, torch.add(a, 1, alpha=2)) self.common(fn, (torch.randn(32),)) def test_add_const_float(self): def fn(a): return (a + 1.5,) self.common(fn, (torch.randn(32),)) def test_add_inplace_permuted(self): def fn(x, y): return x.add_(y) x = torch.ones([2, 12, 13, 17]).transpose(1, 2) y = torch.randn([2, 13, 1, 17]) self.common(fn, (x, y)) def test_concat_add_inplace(self): def fn(x, y, z): return torch.cat([x, y], dim=1).add_(z) x = torch.randn([2, 12, 14, 14]) y = torch.randn([2, 12, 14, 14]) z = torch.randn([2, 24, 14, 14]) self.common(fn, (x, y, z)) def test_abs(self): def fn(a): return (a / (torch.abs(a) + 1),) self.common(fn, (torch.randn(17),)) def test_sgn(self): def fn(a): return torch.sgn(a), torch.sgn(a + 1) - 1 self.common(fn, [torch.linspace(-10, 10, 41)]) def test_randn_generator(self): def fn(a, generator): torch.randn([20, 20], generator=generator, device=a.device) self.common(fn, (torch.linspace(-10, 10, 41), None)) # generator not yet supported in dynamo with self.assertRaisesRegex(torch._dynamo.exc.Unsupported, "Generator"): self.common(fn, (torch.linspace(-10, 10, 41), torch.Generator(self.device))) def test_sgn_extremal(self): def fn(a): return (torch.sgn(a),) self.common(fn, [torch.tensor([np.nan, np.inf, -np.inf, 0])]) def test_max_min(self): def fn(a, b): return (torch.maximum(a, b), torch.minimum(a, b)) self.common(fn, (torch.randn(8), torch.randn(8))) t1 = torch.randn(8) t1[0] = float("nan") t2 = torch.randn(8) t2[1] = float("nan") self.common(fn, (t1, t2)) def test_neg_max_uint8(self): # https://github.com/pytorch/pytorch/issues/93380 def fn(a, b): c = torch.neg(a) return torch.maximum(b, c) a = torch.randint(256, (1,), dtype=torch.uint8) b = torch.randint(256, (8390,), dtype=torch.uint8) self.common(fn, (a, b)) def test_compar(self): def fn(x): return x.gt(3.5), x.ge(3.5), x.eq(3.5), x.le(2.5), x.lt(3.5), x.ne(3.5) a = torch.tensor([3]) self.common(fn, (a,)) def test_horizonal_fusion1(self): def fn(a, b, c): return (a + b, a - c, b * c) self.common( fn, (torch.randn(8, 16, 16), torch.randn(8, 16, 16), torch.randn(1, 16, 1)) ) def test_horizonal_fusion2(self): def fn(a, b, c): return a + 1, b + 2, c + 3 self.common(fn, (torch.randn(8, 16, 8), torch.randn(8, 16), torch.randn(16, 8))) def test_vertical_fusion1(self): def fn(sa, ct, p): # From torchbench.pyhpc_equation_of_state v17 = -3.087032500374211e-7 v18 = -1.988366587925593e-8 v19 = -1.061519070296458e-11 v20 = 1.550932729220080e-10 t15 = v19 * ct t19 = v17 + ct * (v18 + t15) + v20 * sa t20 = 1.0 / t19 t128 = t19 * p return t20 + t128 self.common( fn, ( torch.randn(204, 204, 26), torch.randn(204, 204, 26), torch.randn(26), ), ) self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) def test_forced_buffer_realize(self): # Test torch._test_inductor_realize forces a buffer to be realized def fn(a): b = test_operators.realize(a * 2) return (b * 2,) self.common(fn, (torch.randn(10),)) self.assertEqual(torch._inductor.metrics.ir_nodes_pre_fusion, 2) def test_scheduler_vertical_fusion1(self): realize = test_operators.realize def fn(sa, ct, p): # From torchbench.pyhpc_equation_of_state v17 = -3.087032500374211e-7 v18 = -1.988366587925593e-8 v19 = -1.061519070296458e-11 v20 = 1.550932729220080e-10 t15 = realize(v19 * ct) t19 = realize(v17 + ct * (v18 + t15) + v20 * sa) t20 = realize(1.0 / t19) t128 = realize(t19 * p) return t20 + t128 self.common( fn, ( torch.randn(204, 204, 26), torch.randn(204, 204, 26), torch.randn(26), ), ) self.assertEqual(torch._inductor.metrics.ir_nodes_pre_fusion, 5) self.assertEqual( torch._inductor.metrics.generated_kernel_count, 1 if self.device == "cuda" else 3, ) def test_index_propagation(self): def flip(x): i = torch.arange(x.size(0) - 1, -1, -1, device=x.device) return x[i] x = torch.randn(8, device=self.device) flip_opt = torch._dynamo.optimize("inductor")(flip) expect = flip(x) actual = _run_and_assert_no_indirect_indexing(self, flip_opt, x) self.assertEqual(expect, actual) def test_index_propagation_floordiv(self): def repeat_interleave(x, n): # e.g. x=[1, 2, 3], n=2 => returns [1, 1, 2, 2, 3, 3] i = torch.arange(x.shape[0] * n, device=x.device) return x[i // n] x = torch.randn(8, device=self.device) repeat_interleave_opt = torch._dynamo.optimize("inductor")(repeat_interleave) # this should be collapsed to direct indexing actual = _run_and_assert_no_indirect_indexing(self, repeat_interleave_opt, x, 3) expect = torch.repeat_interleave(x, 3) self.assertEqual(expect, actual) self.assertEqual(actual, repeat_interleave(x, 3)) def test_index_propagation_remainder(self): def repeat(x, n): # e.g. x=[1, 2, 3], n=2 => returns [1, 2, 3, 1, 2, 3] i = torch.arange(x.shape[0] * n, device=x.device) return x[i % x.shape[0]] x = torch.randn(8, device=self.device) repeat_opt = torch._dynamo.optimize("inductor")(repeat) # this should be collapsed to direct indexing actual = _run_and_assert_no_indirect_indexing(self, repeat_opt, x, 3) expect = x.repeat(3) self.assertEqual(expect, actual) self.assertEqual(actual, repeat(x, 3)) def test_computed_buffer_inlining(self): def flip(x): idx = torch.arange(x.size(0) - 1, -1, -1, device=x.device) return x[idx], idx flip_opt = torch._dynamo.optimize("inductor")(flip) x = torch.randn(8, device=self.device) expect = flip(x) actual = _run_and_assert_no_indirect_indexing(self, flip_opt, x) self.assertEqual(expect, actual) def test_sum1(self): def fn(a, b): return ((a + b).sum(-1),) self.common(fn, (torch.randn(8, 8), torch.randn(8, 8))) def test_sum2(self): def fn(a, b): return ((a + b).sum([1, 2]), (a + b).sum(-1)) self.common(fn, (torch.randn(8, 9, 3, 21), torch.randn(8, 9, 3, 21))) def test_sum3(self): def fn(a, b): r1 = a + b r2 = r1.sum(-1) r3 = torch.squeeze(b) + 10 return (r1, r2, r3) # Mismatched elements: 2 / 10 (20.0%) # Greatest absolute difference: 0.0029296875 at index (8,) (up to 1e-05 allowed) # Greatest relative difference: 0.0017482517482517483 at index (6,) (up to 0.001 allowed) self.common(fn, (torch.randn(10, 10), torch.randn(1, 10)), atol=1e-5, rtol=2e-3) def test_sum4(self): def fn(a): b = a + 1 c = b.sum(-1) d = c + 3 e = d.sum(-1) f = e + 5 return (f, e, d, c, b) self.common(fn, (torch.randn(1, 16, 8, 8),)) def test_sum5(self): def fn(a): b = a + 1 c = b.sum(-1) d = c + 3 e = d.sum(-1) f = e + 5 return (f,) self.common(fn, (torch.randn(1, 17, 8, 9),)) def test_reduction1(self): def fn(a): return (a.sum(), a.max(), a.min(), a.argmax(), a.argmin()) self.common(fn, (torch.tensor([float("-inf"), 0.0, float("inf")]),)) @skip_if_x86_mac() def test_reduction2(self): def fn(a): # FIXME: a.argmax return (a.sum(), a.max(), a.min(), a.argmin()) self.common(fn, (torch.full((4,), float("inf")),)) @skip_if_x86_mac() def test_reduction3(self): def fn(a): # FIXME: a.argmin return (a.sum(), a.max(), a.min(), a.argmax()) self.common(fn, (torch.full((4,), float("-inf")),)) def test_reduction4(self): if self.device == "cpu": raise unittest.SkipTest("Non-deterministic CPU results") def fn(a): return (a.argmax(-1), a.argmin(-1)) inputs = (torch.ones(128), torch.ones(4, 4, 1)) for i in inputs: self.common(fn, (i,)) @config.patch(unroll_reductions_threshold=1) def test_reduction5(self): if self.device == "cpu": raise unittest.SkipTest("Non-deterministic CPU results") def fn(a): return (a.sum(), a.max(), a.min(), a.argmax()) self.common(fn, (torch.full((4,), float("-inf")),)) def test_prod(self): def fn(a): return a.prod(0), a.prod(1), a.prod() self.common(fn, (torch.rand((10, 10)),)) self.common(fn, (torch.rand((1, 2050)),)) def test_unroll_small_reduction(self): def fn(x): val1, index1 = x.min(-1) val2, index2 = x.max(-1) return ( val1, index1, val2, index2, x.sum(-1), (x > 1).any(-1), (x > 0).all(-1), x.argmin(-1), x.argmax(-1), x.amin(-1), x.amax(-1), x.aminmax(), ) with config.patch(unroll_reductions_threshold=8): # small sized reductions will get unrolled self.common(fn, (torch.randn(8, 3),)) torch._dynamo.reset() with config.patch(unroll_reductions_threshold=1): # make sure things also work if they aren't unrolled self.common(fn, (torch.randn(8, 3),)) def test_multilayer_low_prec(self): # fp16 nyi for cpu if self.device == "cpu": raise unittest.SkipTest("requires CUDA") def fn(a): return torch.mean(a) self.common(fn, ((torch.rand((10, 3, 352, 352), dtype=torch.float16),))) def test_expanded_reduction(self): if self.device == "cpu": raise unittest.SkipTest( "https://github.com/pytorch/torchdynamo/issues/1697" ) def fn(x, y): z = x * y return z.sum((0, 1)) self.common(fn, (torch.randn(2, 197, 256), torch.randn(2, 1, 256))) def test_min_max_reduction(self): def fn(a, b): return ( (a + b).max(), (a + b).min(), torch.amax(a + 1, keepdim=True), torch.amin(b + 1, keepdim=True), ) dtypes = [torch.float, torch.float16] if not (self.device == "cuda" and not SM80OrLater): dtypes += [torch.bfloat16] for dtype in dtypes: self.common(fn, (torch.randn(8, 8).to(dtype), torch.randn(8, 8).to(dtype))) def test_min_max_reduction_nan(self): def fn(a): return (torch.max(a), torch.min(a)) t1 = torch.randn(32) t1[16] = float("nan") self.common(fn, (t1,)) def test_fmin_fmax(self): def fn(a, b): return ( torch.fmin(a, b), torch.fmax(a, b), torch.fmax(a + 1, torch.tensor(0.0)), ) self.common( fn, ( torch.tensor( [-10.0, 10.0, float("nan"), float("nan"), float("nan"), 3, 4] ), torch.tensor( [float("nan"), float("nan"), -10.0, 10.0, float("nan"), 4, 3] ), ), ) def test_sum_int(self): def fn(x): return 2 * x.sum(-1) + x.sum() dtypes = torch.bool, torch.uint8, torch.int inps = [torch.randint(2, (64,), dtype=dtype) for dtype in dtypes] for i in inps: self.common(fn, (i,), check_lowp=False) def test_sum_dtype(self): def fn(x): return x * x.sum(-1, dtype=torch.double) + x.sum(dtype=torch.double) self.common(fn, (torch.ones(32, 32) * 70,)) def test_clamp(self): def fn(a, b): return (a.clamp(-0.1, 0.1), b.clamp(0), torch.clamp(a + b, max=0)) self.common(fn, (torch.randn(8, 8), torch.randn(8, 8))) def test_clamp_type_promotion(self): def fn(a): b = torch.tensor(1.0, dtype=torch.double, device=self.device) c = torch.full((4,), 2, device=self.device) return a.clamp(min=b, max=c) self.common(fn, (torch.randint(4, (4,)),)) def test_arange1(self): def fn(x): rng1 = torch.arange(8 * 8, dtype=torch.float32, device=x.device).view(8, 8) rng2 = torch.arange(10, 18, device=x.device) tmp = x * rng1 return tmp, tmp + rng2 self.common(fn, (torch.randn(8, 8),)) def test_arange2(self): def fn(x): rng1 = torch.arange(8, device=x.device) return (x + rng1,) self.common(fn, (torch.randint(4, (8, 8)),), check_lowp=False) def test_arange3(self): def fn(x): return x + torch.ops.aten.arange.start_step( 0, 53, 4, dtype=torch.int64, device=x.device ) self.common(fn, (torch.randn(14),)) def test_arange4(self): def fn(x): return x - torch.arange(512, -512, -1.0, device=x.device) self.common(fn, (torch.randn(1024),)) def test_arange5(self): def fn(step, device): return torch.arange(512, -512, step, device=device) compiled_fn = torch._dynamo.optimize()(fn) # NOTE: use assertEqual to check dtypes which self.common doesn't do for step in (-1, -1.0): expect = fn(step, self.device) actual = compiled_fn(step, self.device) self.assertEqual(expect, actual) self.assertEqual(expect, actual) def test_arange6(self): def fn(x): return torch.arange(0.1, 8.0001, 1, dtype=x.dtype, device=x.device) # Test that float arguments are truncated to int when dtype is set explicitly make_arg = functools.partial(make_tensor, device="cpu", requires_grad=False) self.common(fn, (make_arg(1, dtype=torch.float32),)) self.common(fn, (make_arg(1, dtype=torch.int64),)) def test_linspace1(self): def fn(x): return torch.linspace(0.125, 0.875, 7, device=x.device) + x self.common(fn, (torch.randn(1, 7),)) def test_linspace2(self): def fn(x): return torch.linspace(0, 2, 1, device=x.device) + x self.common(fn, (torch.randn(1, 1),)) def test_linspace3(self): def fn(x): return torch.linspace(0, 2, 0, device=x.device) self.common(fn, (torch.Tensor([]),)) def test_tensor1(self): def fn(x): return torch.tensor([1], device=x.device) + x, torch.tensor( 5, device=x.device ) self.common(fn, (torch.randn(10),)) def test_tensor2(self): def fn(x): return torch.tensor(list(range(2, 40, 2)), device=x.device) + x self.common(fn, (torch.randn(1),)) def test_tensor3(self): def fn(x): return ( torch.tensor([], device=x.device), torch.tensor([1, 2], device=x.device) + 1, torch.tensor([1, 2, 3], device=x.device) + 2, torch.tensor([1, 2, 3, 4], device=x.device) + x, ) self.common(fn, [torch.randn(4)]) def test_views1(self): def fn1(x, y): return (x.view(size2) + y,) def fn2(x, y): return ((x + 1).view(size2) + y,) views = [ ([5 * 7], [5, 7]), ([2 * 3 * 4 * 5 * 6 * 7], [2, 3, 4, 5, 6, 7]), ([2 * 3, 4, 5, 6 * 7], [2, 3, 4, 5, 6, 7]), ([10 * 5, 20], [10, 5, 20]), ([1, 10, 1], [10]), ([10, 1, 10, 1, 10], [10, 100]), ([2, 2, 2, 2], [4, 4]), ] for size1, size2 in views: self.common(fn1, (torch.randn(size1), torch.randn(size2))) self.common(fn2, (torch.randn(size1), torch.randn(size2))) for size2, size1 in views: self.common(fn1, (torch.randn(size1), torch.randn(size2))) self.common(fn2, (torch.randn(size1), torch.randn(size2))) def test_views2(self): def fn1(x): return (x.view(size2) + 1,) def fn2(x): return ((x * 2).view(size2) + 1,) for size1, size2 in [ ([2, 2, 2, 2], [4, -1]), ([10, 1, 10, 1, 10], [-1, 100]), ([10 * 5, 20], [10, -1, 20]), ]: self.common(fn1, (torch.randn(size1),)) self.common(fn2, (torch.randn(size1),)) def test_views3(self): # example taken from hf_BigBird def forward(arg1, arg2): index = torch.ops.aten.index(arg1, [arg2]) view_1 = torch.ops.aten.view(index, [1, 2232, 64]) view_2 = torch.ops.aten.view(view_1, [1, 12, 62, 192]) return view_2 self.common( forward, ( rand_strided((64, 64), (64, 1), torch.float32), rand_strided((2232,), (1,), torch.int64), ), ) def test_views4(self): # example taken from hf_BigBird def forward(arg1, arg2): arg1 = arg1.index_select(0, arg2) arg1 = torch.ops.aten.view(arg1, [2, 3, 4, 5, 5]) arg1 = torch.ops.aten.view(arg1, [2, 3, 2, 10, -1]) return arg1 self.common( forward, ( torch.randn(12, 5, 5), torch.randint(0, 11, (24,)), ), ) def test_views5(self): # tensor with shape 0 in any dimension def forward(x): y = x[:, 4:] return y.view(len(y), -1, 4) self.common( forward, (torch.randn(4, 4, 4, 4),), ) def test_views6(self): def forward(x): x = torch.ops.aten.relu(x) s = torch.ops.aten.slice(x, 0, 0, 9223372036854775807) s = torch.ops.aten.slice(s, 1, 0, 9223372036854775807) s = torch.ops.aten.slice(s, 3, 0, 0) y = torch.ops.aten.view(s, [4, 2, -1]) return y self.common( forward, (torch.randn(4, 2, 4, 4),), ) def test_relu(self): def fn(a, b): return (torch.relu(a), torch.relu(a + b) / 10) self.common(fn, (torch.randn(8, 8), torch.randn(8, 8))) def test_exp(self): def fn(a, b): return (torch.exp(a), torch.exp(a + b)) self.common(fn, (torch.randn(8, 8), torch.randn(8, 8))) def test_exp2(self): def fn(a, b): return (torch.exp2(a), torch.exp2(a + b), torch.pow(2, -torch.abs(a - b))) self.common(fn, (torch.randn(8, 8), torch.randn(8, 8))) def test_sigmoid(self): def fn(a, b): return (torch.sigmoid(a), torch.sigmoid(a + b)) self.common(fn, (torch.randn(8, 8), torch.randn(8, 8))) def test_round(self): def fn(a, b): return torch.round(a), torch.round(b + 1), torch.round(a, decimals=2) # without manual_seed, there is some chance this test fails due to: # https://github.com/openai/triton/issues/530 torch.manual_seed(0) # with *100 we are always getting a number exactly at .5 which we don't do right in half self.common(fn, (torch.randn(8, 8) * 100, torch.randn(8, 8) * 10)) def test_round_correctness(self): if self.device == "cuda": raise unittest.SkipTest("need to debug tl.libdevice on A100/V100") def fn(a): return torch.round(a) self.common( fn, [torch.arange(-10, 10, 0.1, dtype=torch.float64)], check_lowp=False, ) def test_silu(self): def fn(a): return (torch.nn.functional.silu(a),) self.common(fn, (torch.randn(8, 8),)) # TODO(voz): Re-enable this test ASAP https://github.com/pytorch/pytorch/issues/82763 @unittest.skip("Skipping due to op bugs") def test_nan_to_num(self): def fn(a): return ( torch.nan_to_num(a), torch.nan_to_num(a, nan=3.0), torch.nan_to_num(a, nan=None), torch.nan_to_num(a, posinf=4.0), torch.nan_to_num(a, neginf=5.0), torch.nan_to_num(a, nan=3.0, posinf=4.0, neginf=5.0), ) self.common( fn, (torch.tensor((float("nan"), float("inf"), float("-inf"), 1.0)),), check_lowp=False, # a much more elaborate test is required to match finfo max's for float and half ) def test_div1(self): def fn(a, b): return ( aten.div(a, b, rounding_mode=None), aten.div(a, b, rounding_mode="floor"), aten.div(a, b, rounding_mode="trunc"), a / b, a // b, ) self.common(fn, (torch.randn(8, 8) * 100, torch.randn(8, 8) * 100)) def test_div2(self): def fn(a, b): return ( aten.div(a, b, rounding_mode=None), aten.div(a, b, rounding_mode="floor"), aten.div(a, b, rounding_mode="trunc"), a / b, a // b, ) self.common(fn, (torch.randint(-100, 100, [8, 8]), 100 * torch.randn(8, 8))) def test_div3(self): def fn(a, b): return ( aten.div(a, b, rounding_mode=None), aten.div(a, b, rounding_mode="floor"), aten.div(a, b, rounding_mode="trunc"), a / b, a // b, ) a = torch.randint(1, 100, [8, 8]) self.common(fn, (a * 2, a)) def test_div4(self): def fn(a, b): return ( aten.div(a, b, rounding_mode=None), aten.div(a, b, rounding_mode="floor"), aten.div(a, b, rounding_mode="trunc"), a / b, a // b, ) self.common( fn, (torch.randint(-100, 0, [8, 8]), torch.randint(1, 10, [8, 8])), ) def test_div5(self): def fn(a, b): return ( aten.div(a, b, rounding_mode=None), aten.div(a, b, rounding_mode="floor"), aten.div(a, b, rounding_mode="trunc"), a / b, a // b, ) # divide a scalar self.common(fn, (torch.randint(-100, 0, [8, 8]), 16)) def test_div6(self): def fn(a, b): return ( aten.div(a, b, rounding_mode=None), aten.div(a, b, rounding_mode="floor"), aten.div(a, b, rounding_mode="trunc"), a / b, a // b, ) # treat boolean as integer self.common( fn, (torch.ones([8, 8], dtype=torch.bool), torch.randint(-100, -1, [8, 8])), ) def test_div7(self): def fn(a, b): return ( aten.div(a, b, rounding_mode=None), aten.div(a, b, rounding_mode="floor"), aten.div(a, b, rounding_mode="trunc"), a / b, a // b, ) self.common( fn, ( torch.randint(2**32, 2**40, [100, 100]), torch.randint(-10, -1, [100, 100]), ), ) def test_div8(self): def fn(a, b): return ( aten.div(a, b, rounding_mode=None), aten.div(a, b, rounding_mode="floor"), aten.div(a, b, rounding_mode="trunc"), a / b, a // b, ) self.common(fn, (1024, 100)) def test_div_zero_dim(self): def fn(a, b): return ( aten.div(a, b, rounding_mode=None), aten.div(a, b, rounding_mode="floor"), aten.div(a, b, rounding_mode="trunc"), a / b, a // b, ) for dtype in (torch.float32, torch.int64): self.common( fn, ( make_tensor(10, device="cpu", dtype=dtype), make_tensor((), device="cpu", dtype=dtype, exclude_zero=True), ), ) self.common( fn, ( make_tensor((), device="cpu", dtype=dtype), make_tensor(10, device="cpu", dtype=dtype, exclude_zero=True), ), ) def test_div_prim(self): def fn(a, b): return (torch.ops.prims.div(a, b),) for dtype in (torch.float32, torch.int64): self.common( fn, ( make_tensor(100, device="cpu", dtype=dtype), make_tensor(100, device="cpu", dtype=dtype, exclude_zero=True), ), ) def test_both_scalars(self): def fn(a, b): return ( aten.add(a, b), aten.add(b, a), aten.sub(a, b), aten.sub(b, a), aten.mul(a, b), aten.mul(b, a), ) self.common(fn, (4, 3.3), reference_in_float=False) def test_sum_keepdims(self): def fn(a, b): return (torch.sum(a + b, -1, keepdim=True),) self.common(fn, (torch.randn(8, 8), torch.randn(8, 8))) def test_large_tensor_reduction(self): if not _has_sufficient_memory(self.device, 4.5 * 1024**3): # 4.5 GiB raise unittest.SkipTest("insufficient memory") if self.device == "cpu": raise unittest.SkipTest("Fails on CPU") # Test 64-bit indexing works correctly def fn(a): return torch.max(a) t = torch.ones(2**32, dtype=torch.int8, device=self.device) t[-1] = 2 # self.common OOMs here because it copies inputs to check for mutations compiled_fn = torch._dynamo.optimize()(fn) actual = compiled_fn(t) expect = torch.tensor(2, dtype=torch.int8, device=self.device) self.assertEqual(actual, expect) def test_large_broadcast_reduction(self): if self.device == "cpu": raise unittest.SkipTest("Fails on CPU") # Test 64-bit indexing works correctly when inputs are less than 32-bit # but intermediate tensors require 64-bit indexing def fn(a, b): return torch.max(a + b) t1 = torch.ones(1, 2**16, dtype=torch.int8, device=self.device) t2 = torch.ones(2**16, 1, dtype=torch.int8, device=self.device) t1[-1, -1] = 2 t2[-1, -1] = 2 # self.common OOMs here because it copies inputs to check for mutations compiled_fn = torch._dynamo.optimize()(fn) actual = compiled_fn(t1, t2) expect = torch.tensor(4, dtype=torch.int8, device=self.device) self.assertEqual(actual, expect) def test_large_pointwise(self): if not _has_sufficient_memory(self.device, 2 * (2**31 + 1)): raise unittest.SkipTest("insufficient memory") def fn(a): return a + 1 t = torch.ones(2**31 + 1, dtype=torch.int8, device=self.device) compiled_fn = torch._dynamo.optimize()(fn) actual = compiled_fn(t) # Can't use assertEqual as it expands broadcasted inputs del t if torch.device(self.device).type == "cuda": torch.cuda.empty_cache() self.assertTrue((actual == 2).all()) def test_large_offset_pointwise(self): # Test 64-bit indexing is used when input views a tensor that can be # indexed with 32-bit strides but the storage offset pushes it over # INT_MAX if not _has_sufficient_memory(self.device, (2**31 + 1) + (2**30 + 1)): raise unittest.SkipTest("insufficient memory") def fn(a): return a + 4 t = torch.ones(2**31 + 1, dtype=torch.int8, device=self.device) t[2**30 :] = 0 compiled_fn = torch._dynamo.optimize()(fn) actual = compiled_fn(t[2**30 :]) self.assertTrue((actual == 4).all()) def test_large_strided_reduction(self): # Test 64-bit indexing is used when input numel is less than INT_MAX # but stride calculations go above INT_MAX if not _has_sufficient_memory(self.device, 2**31 + 2): raise unittest.SkipTest("insufficient memory") def fn(a): return torch.max(a) storage = torch.ones(2**31 + 1, dtype=torch.int8, device=self.device) view = storage[::32] view[-1] = 2 compiled_fn = torch._dynamo.optimize()(fn) actual = compiled_fn(view) expect = torch.tensor(2, dtype=torch.int8, device=self.device) self.assertEqual(actual, expect) def test_softmax(self): def fn(a, b): return (torch.softmax(a + b, -1), torch.softmax(a, 0), torch.softmax(b, 1)) self.common(fn, (torch.randn(8, 8), torch.randn(8, 8))) def test_log_softmax(self): def fn(a, b): return (F.log_softmax(a + b, -1), F.log_softmax(a, 0), F.log_softmax(b, 1)) self.common(fn, (torch.randn(8, 8), torch.randn(8, 8))) def test_transpose(self): def fn(a, b): return ( torch.t(a) + b, torch.transpose(b * 2, 0, 1) + 10, ) self.common(fn, (torch.randn(8, 8), torch.randn(8, 8))) def test_permute1(self): def fn(a): return ( torch.permute(a + 1, [2, 1, 4, 0, 3]) + 2, torch.permute(a, [2, 1, 4, 0, 3]) + 2, ) self.common(fn, (torch.randn(2, 2, 2, 2, 2),)) def test_permute2(self): def fn(a): a = a.unfold(0, 2, 1) a = torch.unsqueeze(a, 1) a = torch.permute(a, [0, 2, 3, -3]) return (a,) self.common(fn, (torch.randn(4, 4),)) def test_expand(self): def fn(a): return ( (a + 1).expand(3, 4, 2, 3, 2) + 2, a.expand(2, 1, 2, 3, 2) + 2, ), a.expand(2, -1, 5, -1) self.common(fn, (torch.randn(2, 1, 2),)) def test_squeeze1(self): def fn(a): return ((a + 1).squeeze() + 2, a.squeeze() + 2) self.common(fn, (torch.randn(1, 2, 1, 2, 2, 1, 1),)) def test_squeeze2(self): def fn(a): return ((a + 1).squeeze(-1).squeeze(2) + 2, a.squeeze(0) + 2) self.common(fn, (torch.randn(1, 2, 1, 2, 2, 2, 1),)) def test_simplify_loops(self): def fn(a, b): return a + b self.common( fn, ( torch.randn(2, 3, 4, 5, 6), torch.randn(4, 2, 3, 5, 6).permute(1, 2, 0, 3, 4), ), ) def test_unsqueeze(self): def fn(a): return ( torch.unsqueeze(a + 1, -1) + 2, torch.unsqueeze(a, 2) + 2, torch.unsqueeze(a + 1, 0) + 2, torch.unsqueeze(a, -2) + 2, ) self.common( fn, ( torch.randn( 2, 2, 2, 2, ), ), ) def test_unsqueeze_inplace(self): def fn(a): tmp1 = a + 1 aten.unsqueeze_(tmp1, 2) tmp2 = aten.unsqueeze_(a + 1, 0) + 2 return (tmp1, tmp2) self.common( fn, ( torch.randn( 2, 2, 2, 2, ), ), ) def test_addmm(self): def fn(a, b, c): return (torch.addmm(a + 1, b + 2, c + 3) + 4,) self.common( fn, ( torch.randn(8, 8), torch.randn(8, 8), torch.randn(8, 8), ), ) # https://github.com/pytorch/pytorch/issues/98979 @unittest.skipIf(HAS_CUDA, "cuda failed for float64 linear") def test_linear_float64(self): mod = torch.nn.Sequential(torch.nn.Linear(8, 16).to(torch.float64)).eval() with torch.no_grad(): self.common(mod, (torch.randn(2, 8).to(torch.float64),)) def test_linear1(self): mod = torch.nn.Sequential( torch.nn.Linear(8, 16), torch.nn.Sigmoid(), ToTuple(), ) self.common(mod, (torch.randn(2, 8),)) def test_linear2(self): mod = torch.nn.Sequential( torch.nn.Linear(8, 8), torch.nn.ReLU(), torch.nn.Linear(8, 8), torch.nn.ReLU(), torch.nn.Linear(8, 8), torch.nn.ReLU(), torch.nn.Linear(8, 8), torch.nn.ReLU(), ) self.common(mod, (torch.randn(2, 8),)) def test_bmm1(self): def fn(a, b): return ( torch.bmm(a, b), torch.bmm(a + 1, b + 2) + 3, ) self.common( fn, ( torch.randn(2, 8, 8), torch.randn(2, 8, 8), ), check_lowp=False, ) self.common( fn, ( torch.randn(1, 16, 8), torch.randn(1, 8, 10), ), check_lowp=False, ) def test_bmm2(self): def fn(a, b): return torch.bmm(a.permute(0, 2, 1), b) self.common( fn, ( torch.randn(1, 8, 8), torch.randn(1, 8, 8), ), check_lowp=False, ) def test_scalar_input(self): def fn(x, y): a = torch.div(x, y, rounding_mode="floor") return a self.common(fn, [torch.randint(5, (1, 8)), 5400]) def test_shape_prop_torch_ones(self): class Model(torch.nn.Module): def forward(self, attention_scores): extended_attention_mask = torch.ones( 8, 1, 1, 512, device=attention_scores.device ) attention_scores = attention_scores + extended_attention_mask return attention_scores mod = Model().eval() with torch.no_grad(): self.common( mod, (torch.randn(8, 12, 512, 512),), ) @slowTest def test_conv_bn_fuse(self): # For gpu path, there is an accuracy issue if self.device == "cuda": raise unittest.SkipTest("only support cpu conv bn test") input_shapes = {1: (112,), 2: (112, 112), 3: (55, 55, 55)} conv_modules = {1: torch.nn.Conv1d, 2: torch.nn.Conv2d, 3: torch.nn.Conv3d} bn_modules = { 1: torch.nn.BatchNorm1d, 2: torch.nn.BatchNorm2d, 3: torch.nn.BatchNorm3d, } options = itertools.product( [1, 2, 3], [True, False], [1, 3], [1, 2], [1, 4], ) for ( dim, bias, kernel_size, dilation, groups, ) in options: oC = 32 * groups iC = 3 * groups x_shape = (1, iC) + input_shapes[dim] mod = torch.nn.Sequential( conv_modules[dim]( iC, oC, kernel_size=kernel_size, dilation=dilation, groups=groups, bias=bias, ), bn_modules[dim](oC), ).eval() test_memory_format = [torch.contiguous_format] # TODO: GPU path doesn't support channels_last now. if not HAS_CUDA and dim > 1: channels_last = ( torch.channels_last if dim == 2 else torch.channels_last_3d ) test_memory_format.append(channels_last) for memory_format in test_memory_format: v = torch.randn(x_shape, dtype=torch.float32).to( memory_format=memory_format ) with torch.no_grad(): self.common( mod, (v,), ) def test_conv_functional_bn_fuse(self): # For gpu path, there is an accuracy issue if self.device == "cuda": raise unittest.SkipTest("only support cpu conv bn test") # Define a BatchNorm using functional BN. class BatchNorm(torch.nn.BatchNorm2d): def __init__( self, num_features, eps=1e-5, momentum=0.1, affine=True, track_running_stats=True, device=None, dtype=None, ): factory_kwargs = {"device": device, "dtype": dtype} super().__init__( num_features, eps=eps, momentum=momentum, affine=affine, track_running_stats=track_running_stats, **factory_kwargs, ) def forward(self, x): if self.momentum is None: exponential_average_factor = 0.0 else: exponential_average_factor = self.momentum if self.training and self.track_running_stats: # TODO: if statement only here to tell the jit to skip emitting this when it is None if self.num_batches_tracked is not None: # type: ignore[has-type] self.num_batches_tracked = self.num_batches_tracked + 1 # type: ignore[has-type] if self.momentum is None: # use cumulative moving average exponential_average_factor = 1.0 / float( self.num_batches_tracked ) else: # use exponential moving average exponential_average_factor = self.momentum if self.training: bn_training = True else: bn_training = (self.running_mean is None) and ( self.running_var is None ) x = F.batch_norm( x, # If buffers are not to be tracked, ensure that they won't be updated self.running_mean if not self.training or self.track_running_stats else None, self.running_var if not self.training or self.track_running_stats else None, self.weight, self.bias, bn_training, exponential_average_factor, self.eps, ) return x v = torch.randn(1, 3, 556, 56, dtype=torch.float32) mod = torch.nn.Sequential( torch.nn.Conv2d( 3, 64, kernel_size=3, dilation=1, groups=1, bias=True, ), BatchNorm(64), ).eval() with torch.no_grad(): self.common( mod, (v,), ) def test_upsample_cat_conv(self): if self.device == "cuda": raise unittest.SkipTest("only support cpu upsample_cat_conv test") class M(torch.nn.Module): def __init__( self, **kwargs, ): super().__init__() self.upsample = torch.nn.UpsamplingNearest2d(scale_factor=2) self.conv = torch.nn.Conv2d( 8, 5, kernel_size=1, padding=0, stride=1, dilation=1, **kwargs, ) def forward(self, x, y): x = self.upsample(x) z = torch.cat([x, y], dim=1) z = self.conv(z) return z v1 = torch.randn([8, 2, 12, 26]) v2 = torch.randn([8, 6, 24, 52]) with torch.no_grad(): self.common( M().eval(), (v1, v2), ) def test_aliased_buffer_reuse(self): def fn(x, y): x = 2 * x y = 2 * y c = torch.cat([x, y], dim=-1) d = 1 + c m = torch.mm(d, d) return m[:, :2] + x self.common(fn, (torch.randn(4, 2), torch.randn(4, 2)), check_lowp=False) def test_view_detach(self): def fn(a): return a[0].detach() self.common( fn, (torch.randn([4, 4], requires_grad=True),), ) def test_gather1(self): def fn(a, b): return ( torch.gather(a.expand([4, 5, 10, 6]), 3, b + 1), torch.gather(a.expand([4, 5, 10, 6]), -1, b + 1), ) self.common( fn, ( torch.randn([1, 1, 10, 6]), torch.randint(5, [4, 5, 10, 1], dtype=torch.int64), ), ) def test_gather2(self): # 0d tensor def fn(a, b): return torch.gather(a, 0, b) + torch.gather(a, -1, b) x = torch.tensor(123) y = torch.tensor(0) self.assertEqual(fn(x, y), x + x) def test_gather3(self): def fn(a, b): return torch.gather(a, 1, b, sparse_grad=True) self.common( fn, ( torch.randn([4, 5, 10, 6], requires_grad=True), torch.randint(5, [4, 5, 10, 1], dtype=torch.int64), ), ) def test_slice1(self): def fn(a): return ( a[:, :10, 0] + a[:, 10:, 0], (a + 1)[:, :10, 0] + (a + 1)[:, 10:, 0], a[:, -30:, 0], # negative index out of range a[:, :-30, 0], # negative index out of range ) self.common( fn, (torch.randn([2, 20, 2]),), ) def test_slice2(self): def fn(a): return ( a[:-1, ::2, -1] + a[-1:, 1::2, -2], (a + 1)[:-1, ::2, -1] + (a + 2)[-1:, 1::2, -2], ) self.common( fn, (torch.randn([2, 20, 2]),), ) def test_split_with_sizes(self): def fn(a, sizes): return [t + 1.0 for t in torch.split(a * 2.0, sizes, -1)] self.common(fn, (torch.randn(2, 2, 10), [3, 3, 4])) self.common(fn, (torch.randn(2, 2, 10), [4, 3, 3])) self.common(fn, (torch.randn(2, 2, 10), [1, 2, 3, 4])) def test_split_with_sizes_failed(self): @torch._dynamo.optimize("inductor") def fn(a): return torch.split(a, [2, 1, 1], dim=1) with self.assertRaisesRegex(RuntimeError, ""): fn(torch.randn(1, 5)) def test_inductor_assert(self): @torch._dynamo.optimize("inductor", dynamic=True) def fn(a): assert a.shape[0] >= 2 and a.shape[1] >= 4 return a.cos() inp = torch.randn(2, 4, 6) torch._dynamo.mark_dynamic(inp, 0) torch._dynamo.mark_dynamic(inp, 1) self.assertEqual(fn(inp), inp.cos()) def test_split(self): def fn(a): t = torch.split(a, 3, -1) return (t[0], t[1], t[2], t[3]) def fn2(a): return fn(a + 1) self.common( fn, (torch.randn([2, 2, 10]),), ) self.common( fn2, (torch.randn([2, 2, 10]),), ) def test_to_dtype(self): def fn(a, b): return ( aten._to_copy(a, dtype=6), aten._to_copy(b + 1, dtype=6), aten.to(b, torch.float64), aten.to(b, torch.bool), ) self.common( fn, ( torch.randn([2, 2, 10]), torch.randn([2, 2, 10], dtype=torch.float64), ), ) @requires_cuda() def test_to_device(self): def fn(a): if a.device.type == "cpu": return aten._to_copy(a, device=torch.device("cuda"), dtype=6, layout=0) else: return aten._to_copy(a, device=torch.device("cpu"), dtype=6, layout=0) self.common( fn, (torch.randn([2, 2, 10]),), ) def test_to_memory_format(self): def fn(a, memory_format): return a.to(memory_format=memory_format) self.common( fn, (torch.randn([2, 2, 10, 10]), torch.channels_last), ) self.common( fn, ( torch.randn([2, 2, 10, 10]).to(memory_format=torch.channels_last), torch.contiguous_format, ), ) @requires_cuda() def test_to_device_constant(self): def fn(a): d1 = a.device.type if d1 == "cpu": d2 = "cuda" else: d2 = "cpu" const1 = torch.as_tensor(list(range(64)), device=d2) return ( torch.arange(10, device=d2).to(d1) + a, const1.to(d1), (const1 + 1).to(d1), ) self.common( fn, (torch.randn([10]),), ) @requires_cuda() def test_multi_device(self): def fn(x): x = x + 1 x = x + 2 x = x.cuda() x = x + 3 x = x + 4 x = x.cpu() x = x + 5 x = x + 6 x = x.cuda() x = x + 7 x = x + 8 x = x.cpu() x = x + 9 x = x + 10 return x self.common( fn, (torch.randn([2, 2, 10]),), check_lowp=False, # cpu doesn't understand fp16, and there are explicit .cpu() calls ) @requires_multigpu() def test_multi_gpu_device(self): # TODO: https://github.com/pytorch/pytorch/issues/92627 x = torch.rand([4], device="cuda") def fn(x, y): r = torch.ops.aten.div(x, y) r = r.to("cuda:1") return 2 * r self.common(fn, (torch.randn(4), torch.randn(4)), check_lowp=False) @skipIfRocm @requires_multigpu() def test_multi_gpu_recompile_on_index(self): torch.set_float32_matmul_precision("high") def gemm(x, y): return x @ y failed_guard = None def fail(guard): nonlocal failed_guard failed_guard = guard gemm_opt = torch._dynamo.optimize("inductor", guard_fail_fn=fail)(gemm) x0 = torch.randn(1024, 1024, device="cuda:0") y0 = torch.randn(1024, 1024, device="cuda:0") gemm_opt(x0, y0) x1 = torch.randn(1024, 1024, device="cuda:1") y1 = torch.randn(1024, 1024, device="cuda:1") gemm_opt(x1, y1) self.assertTrue(failed_guard is not None) self.assertTrue( "tensor 'L['x']' Tensor device index mismatch. Expected device index to be" in failed_guard.reason ) def test_unbind(self): def fn(a): return torch.unbind(a), torch.unbind(a, -1) self.common( fn, (torch.randn([4, 4, 4]),), ) @skipIfRocm def test_convolution1(self): m = torch.nn.Sequential( torch.nn.Conv2d(5, 6, [3, 3]), torch.nn.ReLU(), ToTuple(), ) self.common( m, (torch.randn([2, 5, 16, 16]),), # Mismatched elements: 10 / 2352 (0.4%) # Greatest absolute difference: 5.7220458984375e-05 at index (0, 3, 12, 12) (up to 1e-05 allowed) # Greatest relative difference: 0.06512477175897748 at index (0, 4, 11, 9) (up to 0.001 allowed) atol=6e-5, rtol=0.001, ) def test_convolution2(self): def fn(x, w, b): # transposed conv return (aten.convolution(x, w, b, [4], [0], [1], True, [0], 1),) self.common( fn, ( torch.randn([2, 32, 90]), torch.randn([32, 16, 8]), torch.randn([16]), ), check_lowp=False, ) @skipIfRocm def test_convolution3(self): # Test stride or padding or dilation is 1 element list. m = torch.nn.Sequential( torch.nn.Conv2d(5, 6, [3, 3], stride=[1], padding=[0], dilation=[1]), torch.nn.ReLU(), ToTuple(), ) self.common( m, (torch.randn([2, 5, 16, 16]),), atol=6e-5, rtol=0.001, ) def test_conv2d_channels_last(self): if self.device == "cuda": raise unittest.SkipTest("only support cpu conv2d channels_last") m = torch.nn.Sequential( torch.nn.Conv2d(3, 3, 1, 1), ToTuple(), ) # only weight is channels_last self.common( m.to(memory_format=torch.channels_last), (torch.randn([2, 3, 16, 16]),), check_lowp=False, ) # only activation is channels_last self.common( m, (torch.randn([2, 3, 16, 16]).to(memory_format=torch.channels_last),), check_lowp=False, ) # activation and weight are all channels_last self.common( m.to(memory_format=torch.channels_last), (torch.randn([2, 3, 16, 16]).to(memory_format=torch.channels_last),), check_lowp=False, ) def test_conv2d_backward_channels_last(self): def fn(grad_output, inp, weight): convolution_backward_8 = torch.ops.aten.convolution_backward.default( grad_output, inp, weight, [320], [1, 1], [0, 0], [1, 1], False, [0, 0], 1, [True, True, True], ) return convolution_backward_8 # only weight is channels_last self.common( fn, ( torch.randn([2, 320, 8, 8]), torch.randn([2, 2048, 8, 8]), torch.randn([320, 2048, 1, 1]).to(memory_format=torch.channels_last), ), check_lowp=False, ) def test_conv3d_channels_last(self): if self.device == "cuda": raise unittest.SkipTest("only support cpu conv3d channels_last") m = torch.nn.Sequential( torch.nn.Conv3d(3, 3, 1, 1), ToTuple(), ) # only weight is channels_last self.common( m.to(memory_format=torch.channels_last_3d), (torch.randn([2, 3, 16, 16, 16]),), ) # only activation is channels_last self.common( m, (torch.randn([2, 3, 16, 16, 16]).to(memory_format=torch.channels_last_3d),), ) # activation and weight are all channels_last self.common( m.to(memory_format=torch.channels_last_3d), (torch.randn([2, 3, 16, 16, 16]).to(memory_format=torch.channels_last_3d),), ) def test_adaptive_avg_pool2d1(self): def fn(x): return aten._adaptive_avg_pool2d(x, (6, 6)), aten._adaptive_avg_pool2d( x + 1, (2, 5) ) self.common( fn, (torch.randn(2, 4, 16, 16),), check_lowp=False, ) # lowering to avg_pool2d case self.common( fn, (torch.randn(2, 4, 3, 3),), ) # no-op case self.common( fn, (torch.randn(2, 4, 6, 6),), ) def test_adaptive_avg_pool2d2(self): # Big kernel size, use fallback def fn(x): return aten._adaptive_avg_pool2d(x, (4, 4)) torch._inductor.metrics.generated_kernel_count = 0 self.common( fn, (torch.randn(2, 4, 21, 21),), check_lowp=False, ) self.assertEqual(torch._inductor.metrics.generated_kernel_count, 0) def test_adaptive_avg_pool2d_low_prec(self): class Model(torch.nn.Module): def __init__(self): super(Model, self).__init__() self.avgpool = torch.nn.AdaptiveAvgPool2d((1, 1)) def forward(self, x): x = self.avgpool(x) return x mod = Model() for dtype in [torch.half, torch.bfloat16]: x = torch.randn(4, 3, 7, 7).to(dtype=dtype) opt_mod = torch.compile(mod) res = opt_mod(x) expected = mod(x) self.assertTrue(torch.allclose(res, expected)) def test_max_pool2d1(self): def fn(x): return aten.max_pool2d_with_indices(x, [3, 3], [2, 2]) self.common( fn, (torch.randn(2, 4, 16, 16),), ) def test_max_pool2d2(self): def fn(x): return aten.max_pool2d_with_indices(x, [3, 3], [2, 2]) self.common( fn, (torch.randn([16, 64, 55, 55]),), ) def test_max_pool2d3(self): def fn(x): # with padding return ( aten.max_pool2d_with_indices(x, [3, 3], [2, 2], [1, 1]), aten.max_pool2d_with_indices( x, [ 3, ], [ 2, ], [ 1, ], ), ) self.common( fn, (-torch.arange(1 * 8 * 8, dtype=torch.float32).view(1, 1, 8, 8),), ) def test_max_pool2d4(self): def fn(x): # with padding return aten.max_pool2d_with_indices(x, [3, 3], [2, 2], [0, 0], [1, 1], True) self.common( fn, (torch.randn([2, 8, 111, 111]),), ) def test_max_pool2d5(self): def fn(x): return aten.max_pool2d_with_indices(x, [3, 3], []) self.common( fn, (torch.randn([16, 64, 55, 55]),), ) def test_max_pool2d6(self): # Too big kernel size, use fallback def fn(x): return aten.max_pool2d_with_indices(x, [13, 13], []) torch._inductor.metrics.generated_kernel_count = 0 self.common( fn, (torch.randn([16, 64, 55, 55]),), ) self.assertEqual(torch._inductor.metrics.generated_kernel_count, 0) # From https://github.com/pytorch/pytorch/issues/94775 def test_max_pool2d7(self): # ceil mode turns on def fn(x): return torch.nn.functional.max_pool2d( x, 1, stride=(2, 2), padding=0, ceil_mode=True ) self.common( fn, (torch.randn([1, 1, 6, 7]),), ) # From https://github.com/pytorch/pytorch/issues/93384 def test_max_pool2d8(self): # dialtion is not 1, use fallback def fn(x): return aten.max_pool2d_with_indices(x, [3, 2], [2, 1], [1, 1], [1, 2]) torch._inductor.metrics.generated_kernel_count = 0 self.common( fn, (torch.randn([2, 2, 3, 6]),), ) self.assertEqual(torch._inductor.metrics.generated_kernel_count, 0) def test_avg_pool2d1(self): def fn(x): return aten.avg_pool2d(x, [3, 3], [2, 2]) self.common( fn, (torch.randn(2, 4, 16, 16),), ) def test_avg_pool2d2(self): def fn(x): return aten.avg_pool2d(x, [3, 3], [2, 2]) self.common( fn, (torch.randn([16, 64, 55, 55]),), ) def test_avg_pool2d3(self): def fn(x): return ( aten.avg_pool2d(x, [3, 3], [2, 2], [1, 1]), aten.avg_pool2d( x, [ 3, ], [ 2, ], [ 1, ], ), ) self.common( fn, (-torch.arange(1 * 8 * 8, dtype=torch.float32).view(1, 1, 8, 8),), ) def test_avg_pool2d4(self): def fn(x): return aten.avg_pool2d(x, [3, 3], [2, 2], [0, 0], True) self.common( fn, (torch.randn([2, 8, 111, 111]),), ) def test_avg_pool2d5(self): def fn(x): return aten.avg_pool2d(x, [3, 3], [2, 2], [1, 1], count_include_pad=False) self.common( fn, (-torch.arange(1 * 8 * 8, dtype=torch.float32).view(1, 1, 8, 8),), ) def test_avg_pool2d6(self): def fn(x): return aten.avg_pool2d(x, [3, 3], [2, 2], [1, 1], divisor_override=3) self.common( fn, (-torch.arange(1 * 8 * 8, dtype=torch.float32).view(1, 1, 8, 8),), ) def test_avg_pool2d7(self): # Large kernel size, use fallback def fn(x): return aten.avg_pool2d(x, [13, 13], [1, 1], [0, 0]) torch._inductor.metrics.generated_kernel_count = 0 self.common( fn, (-torch.arange(1 * 24 * 24, dtype=torch.float32).view(1, 1, 24, 24),), ) self.assertEqual(torch._inductor.metrics.generated_kernel_count, 0) def test_avg_pool2d8(self): # https://github.com/pytorch/pytorch/issues/100987 def fn(x): return aten.avg_pool2d( x, kernel_size=3, stride=2, padding=1, ceil_mode=True ) self.common( fn, (torch.randn(1, 3, 6, 6),), ) def test_alexnet_prefix(self): def forward(arg6, arg7, arg16): convolution = torch.ops.aten.convolution( arg16, arg7, arg6, [4, 4], [2, 2], [1, 1], False, [0, 0], 1 ) relu = torch.ops.aten.relu(convolution) max_pool2d_with_indices = torch.ops.aten.max_pool2d_with_indices( relu, [3, 3], [2, 2] ) getitem = max_pool2d_with_indices[0] return (getitem,) self.common( forward, ( rand_strided((64,), (1,), torch.float32, "cpu"), rand_strided((64, 3, 11, 11), (363, 121, 11, 1), torch.float32, "cpu"), rand_strided( (16, 3, 224, 224), (150528, 50176, 224, 1), torch.float32, "cpu" ), ), # Mismatched elements: 127 / 746496 (0.0%) # Greatest absolute difference: 0.0009765625 at index (1, 62, 7, 16) (up to 1e-05 allowed) # Greatest relative difference: 0.05187467899332306 at index (14, 18, 11, 0) (up to 0.001 allowed) atol=1e-3, rtol=0.001, ) def test_elu(self): def fn(x): return aten.elu(x, 1.6732632423543772, 1.0507009873554805) + 2, aten.elu( x + 1, 2, 3, 4 ) self.common( fn, (torch.randn([16, 16]),), ) def test_tan(self): def fn(x): return aten.tan(x) + 2, aten.tan(x + 1) self.common( fn, (torch.randn([16, 16]),), ) def test_tanh(self): def fn(x): return aten.tanh(x) + 2, aten.tanh(x + 1) self.common( fn, (torch.randn([16, 16]),), ) def test_lgamma(self): def fn(x): return aten.lgamma(x) + 2, aten.cos(x + 1) self.common( fn, (torch.randn([16, 16]),), ) def test_cos(self): def fn(x): return aten.cos(x) + 2, aten.cos(x + 1) self.common( fn, (torch.randn([16, 16]),), ) def test_sin(self): def fn(x): return aten.sin(x) + 2, aten.sin(x + 1) self.common( fn, (torch.randn([16, 16]),), ) def test_repeat(self): def fn(x): return ( x.repeat(2, 2, 3, 1), x.repeat(8, 1, 1, 1), x.repeat(2, 1, 1, 1, 1, 1), ) self.common( fn, (torch.randn([1, 2, 4, 8]),), ) def test_repeat_interleave(self): def fn(x): return ( x.repeat_interleave(2), x.repeat_interleave(3, dim=0), x.repeat_interleave(x.size(1), dim=1), ) self.common( fn, (torch.randn([1, 2, 4, 8]),), ) def test_embedding(self): m = torch.nn.Sequential( torch.nn.Embedding(10, 4, padding_idx=0), torch.nn.ReLU(), ToTuple(), ) self.common( m, (torch.randint(10, [2, 8]),), ) def test_mean(self): def fn(x): return ( x.mean(), x.mean(-1), torch.mean(x, -2, keepdim=True), x.mean([0, 1]), ) self.common( fn, (torch.randn([1, 2, 4, 8]),), ) def test_var_mean(self): def fn(x): return ( *torch.var_mean(x, -1), *torch.var_mean(x, [1, 3]), ) self.common( fn, (torch.randn([1, 2, 4, 8]),), ) @config.patch(pick_loop_orders=True) def test_transposed_propagates(self): @torch._dynamo.optimize("inductor", nopython=True) def fn(x, y): return x + y a = torch.randn(1, 4, 4, 4, device=self.device).permute(0, 2, 3, 1) b = torch.randn(4, 4, 4, device=self.device).permute(1, 2, 0) c = fn(a, b) self.assertEqual(a.stride(), c.stride()) self.assertEqual(c.stride()[2], 1) def test_std(self): def fn(x): return ( torch.var(x, True), torch.var(x, False), torch.var(x, -1, True), torch.var(x, -1, False), torch.std(x, False), torch.std(x, [0, 1], True), torch.std(x, [0, 1], False), torch.std(x, -2, True, keepdim=True), ) self.common( fn, (torch.randn([2, 4, 4, 8]),), ) def test_embedding_bag(self): def fn(w, i, o): return aten._embedding_bag(w, i, o, False, 0, False, None) self.common( fn, (torch.randn([10, 4]), torch.randint(10, [8]), torch.tensor([0, 2, 6])), ) def test_batch_norm_2d(self): m = torch.nn.Sequential( torch.nn.BatchNorm2d(10), torch.nn.ReLU(), ) m.eval() self.common(m, (torch.randn([2, 10, 8, 8]),), check_lowp=False) self.common( m, (torch.randn([3, 10, 16, 16]),), check_lowp=False, # too painful to match types of bn model ) def test_layer_norm(self): m = torch.nn.Sequential( torch.nn.LayerNorm(32), torch.nn.ReLU(), ) m.eval() self.common(m, (torch.randn([16, 32]),), check_lowp=False) if self.device != "cpu": self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) def test_transpose_add(self): def fn(a, b): return a.t() + b self.common( fn, (torch.randn([16, 32]), torch.randn([32, 16])), check_lowp=False ) if self.device != "cpu": self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) @patch.object(config.triton, "persistent_reductions", True) def test_softmax_one_kernel_persist(self): def fn(x): dim = 1 x_max = torch.amax(x, dim, keepdim=True) unnormalized = torch.exp(x - x_max) result = unnormalized / torch.sum(unnormalized, dim, keepdim=True) return result self.common(fn, (torch.randn([16, 32]),), check_lowp=False) if self.device != "cpu": self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) @patch.object(config.triton, "persistent_reductions", False) def test_softmax_one_kernel_loop(self): def fn(x): x_max = torch.amax(x, 1, keepdim=True) unnormalized = torch.exp(x - x_max) result = unnormalized / torch.sum(unnormalized, 1, keepdim=True) return result self.common(fn, (torch.randn([16, 32]),), check_lowp=False) if self.device != "cpu": self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) def test_complex_fallback(self): def fn(x): return x * x + 10 self.common( fn, (torch.randn([1, 2, 4, 8]).to(dtype=torch.complex64),), ) self.assertEqual(torch._inductor.metrics.generated_kernel_count, 0) class ToComplex(nn.Module): def forward(self, x): return (x + x + 12).to(torch.complex64) self.common(ToComplex(), (torch.rand([1, 2, 4, 8]),), check_lowp=False) if self.device != "cpu": self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) def test_view_as_complex(self): class Repro(torch.nn.Module): def __init__(self): super().__init__() def forward(self, view_2): clone = torch.ops.aten.clone.default( view_2, memory_format=torch.contiguous_format ) view_2 = None view_as_complex = torch.ops.aten.view_as_complex.default(clone) clone = None return (view_as_complex,) inp = torch.empty_strided((128, 64, 12, 32, 2), (1, 98304, 8192, 256, 128)).to( self.device ) mod = Repro() o1 = mod(inp) o2 = torch.compile(mod)(inp) self.assertEqual(o1, o2) def test_cauchy(self): def fn(x, y): return torch.sum(1 / (torch.unsqueeze(x, -1) - y)) self.common( fn, ( torch.randn(32), torch.randn(32), ), # Absolute difference: 0.0003662109375 (up to 0.0001 allowed) # Relative difference: 1.8804297408767818e-05 (up to 1e-05 allowed) atol=5 * 1e-4, rtol=5 * 1e-5, check_lowp=False, ) if self.device != "cpu": self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) def test_gather_scatter(self): def fn(node_feat, edge_index): src_node_feat = node_feat[edge_index[0]] dst_node_feat = node_feat[edge_index[1]] edge_feat = src_node_feat - dst_node_feat + 1 new_node_feat = torch.zeros_like(node_feat) new_node_feat.scatter_add_( 0, edge_index[1].unsqueeze(-1).expand_as(edge_feat), edge_feat ) return new_node_feat num_nodes = 16 num_features = 32 node_feat = torch.randn(num_nodes, num_features) edge_index = torch.randint(0, num_nodes, size=(2, num_nodes * 5)) self.common( fn, ( node_feat, edge_index, ), check_lowp=False, ) if self.device != "cpu": self.assertEqual(torch._inductor.metrics.generated_kernel_count, 2) @config.patch(max_fusion_size=1) def test_no_mega_fusion_during_lowering(self): n = 50 def fn(*args): x = args[0] for i in range(n): x = torch.add(x, args[i]) return x self.common( fn, [torch.randn(64) for _ in range(n)], check_lowp=False, ) print("-->", torch._inductor.metrics.generated_kernel_count) if self.device != "cpu": self.assertTrue(torch._inductor.metrics.generated_kernel_count > 1) def test_move_arange(self): def fn(x): return torch.arange(len(x), device="cpu").to(x.device) + x self.common(fn, (torch.randn([32]),), check_lowp=False) # if we have a copy there will be more than 1 kernel self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) def test_leaky_relu(self): def fn(x): return aten.leaky_relu(x, 0.2) + 2, aten.leaky_relu(x + 1) self.common( fn, (torch.randn([16, 16]),), ) def test_gelu(self): def fn(x): return aten.gelu(x) + 2, aten.gelu(x + 1) self.common( fn, (torch.randn([16, 16]),), ) def test_clone(self): def fn(x): return aten.clone(x) + 2, aten.clone(x + 1) self.common( fn, (torch.randn([16, 16]),), ) def test_masked_fill(self): def fn(mask, value): return aten.masked_fill(value, mask, -10000.0) + 2, aten.masked_fill( value / 2.0, torch.logical_not(mask), 667 ) self.common( fn, ( torch.randint(0, 1, [1, 16], dtype=torch.bool), torch.randn([16, 16]), ), ) def test_masked_fill_promotion(self): def fn(mask, value): return aten.masked_fill(value, mask, torch.tensor(3.5)) opt_fn = torch._dynamo.optimize("inductor")(fn) for inp in ( torch.randn( [16, 16], dtype=torch.float16 if self.device == "cuda" else torch.float32, device=self.device, ), torch.randint(16, (16, 16), device=self.device), ): inputs = ( torch.randint(0, 1, [1, 16], dtype=torch.bool, device=self.device), inp, ) self.assertEqual(fn(*inputs), opt_fn(*inputs)) def test_fill1(self): def fn(x): tmp = torch.ones_like(x) return tmp, aten.fill.Scalar(tmp, 2) self.common( fn, (torch.randn([16, 16]),), ) def test_fill2(self): def fn(x): tmp = torch.ones_like(x) return tmp, aten.fill.Tensor(tmp, torch.tensor(3.0)) self.common( fn, (torch.randn([16, 16]),), ) def test_pow1(self): def fn(x): return [aten.pow(x, e) for e in range(-8, 9)] self.common( fn, (torch.randn([16, 16]),), ) def test_pow2(self): def fn(x): return aten.pow(1000, x), aten.pow(x, 1000) self.common( fn, # TODO: Remove dtype once https://github.com/pytorch/pytorch/issues/94010 is fixed ( torch.randn( [16, 16], dtype=torch.float64 if self.device == "cpu" else torch.float32, ), ), # Mismatched elements: 9 / 256 (3.5%) # Greatest absolute difference: 2.491354329061828e+28 at index (6, 6) (up to 1e-05 allowed) # Greatest relative difference: 2.9793410720160818e-05 at index (4, 5) (up to 1.3e-06 allowed) atol=1e-5, rtol=3e-05, ) def test_pow3(self): # power of 0.5 is special-cased, arbitrary power would still produce triton codegen error def fn(x): z = torch.tensor(0.123, device=self.device) w = z + x return torch.pow(w, 0.5) opt = torch._dynamo.optimize("inductor")(fn) input = torch.rand(()) self.assertTrue(same(opt(input), fn(input))) def test_pow_int(self): def fn(x, y): return torch.pow(x, 0x57), torch.pow(x, y) for dtype in (torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64): intmax = torch.iinfo(dtype).max make_arg = functools.partial( make_tensor, dtype=dtype, device="cpu", requires_grad=False ) self.common( fn, ( make_arg(16, 16), make_arg(16, 16, high=intmax), ), ) def test_glu(self): def fn(x): return aten.glu(x, -1), aten.glu(x, 1), aten.glu(x, 2) self.common( fn, (torch.randn([8, 16, 8, 8]),), ) def test_cat(self): def fn(a): tmp = a * 2 return ( torch.cat((a, a[:, :4] + 1, a + 2), -1), torch.cat((tmp, tmp), 0), torch.cat((tmp, tmp.double()), 0), ) self.common( fn, (torch.randn([8, 16]),), ) self.common( fn, (torch.randn([1, 3, 3, 16]).to(memory_format=torch.channels_last),), ) def test_cat_upcasting(self): def fn(arg4_1, slice_7): cat_1 = aten.cat.default([arg4_1, slice_7], 1) return (cat_1,) self.common( fn, ( torch.randn([8, 16], dtype=torch.float32), torch.randn([8, 20], dtype=torch.float16), ), ) def test_cat_extern_kernel(self): def fn(x1, x2, x3, x4): x = torch.mm(x2, x3) s = torch.narrow(x, 1, 0, 100) x = torch.mm(s, x4) c = torch.cat((x, x1), 1) return (c,) self.common( fn, ( torch.randn(256, 256), torch.randn(256, 1024), torch.randn(1024, 1600), torch.randn(100, 256), ), check_lowp=False, # accuracy issues with relatively large matmuls ) def test_cat_of_loops_and_extern_kernel(self): class M(torch.nn.Module): def __init__( self, **kwargs, ): super().__init__() self.conv = torch.nn.Conv2d( 64, 5, 1, **kwargs, ) self.max_pool2d = torch.nn.MaxPool2d(2) def forward(self, x, y): x1 = self.conv(x) y1 = self.max_pool2d(y) return torch.cat([x1, y1], 1) mod = M() opt_mod = torch._dynamo.optimize("inductor")(mod) memory_format = torch.channels_last inputs = ( torch.randn([1, 64, 16, 16]).to(memory_format=memory_format), torch.randn([1, 64, 32, 32]).to(memory_format=memory_format), ) y = mod(*inputs) opt_y = opt_mod(*inputs) self.assertEqual(y, opt_y) self.assertEqual(y.stride(), opt_y.stride()) def test_cat_inplace(self): def fn(x): rt = torch.cat([x]) v = x.sin_() return rt # can't use self.common because input is modified inplace inp = torch.ones(2) opt_fn = torch.compile(fn) res = opt_fn(inp.clone()) expected = fn(inp.clone()) self.assertEqual(res, expected) def test_stack(self): def fn(a, b): return torch.stack( [ a.expand(12, 16), b.expand(12, 16), ], 2, ) self.common(fn, (torch.randn([1, 16]), torch.randn([12, 1]))) def test_hardtanh(self): def fn(x): return F.hardtanh(x), F.hardtanh(x + 1), F.hardtanh(x - 1) self.common( fn, (torch.randn([64]),), ) def test_hardsigmoid(self): def fn(x): return F.hardsigmoid(x), F.hardsigmoid(x + 3), F.hardsigmoid(x - 3) self.common( fn, (torch.randn([64]),), ) def test_hardswish(self): def fn(x): return F.hardswish(x), F.hardswish(x + 3), F.hardswish(x - 3) self.common( fn, (torch.randn([64]),), ) def test_rsqrt(self): def fn(x): return torch.rsqrt(x), torch.rsqrt(x + 1) - 2 self.common( fn, (torch.randn([64]),), ) def test_expm1(self): def fn(x): return torch.expm1(x), torch.expm1(x) * 2 for dtype in (torch.float16, torch.float, torch.double, torch.int, torch.int64): self.common( fn, (torch.randn([64]).to(dtype=dtype),), ) self.common( fn, (torch.arange(-1e-5, 1e-5, 1e-7).to(dtype=dtype),), ) def test_log1p(self): def fn(x): return torch.log1p(x), torch.log1p(x) * 2 for dtype in (torch.float16, torch.float, torch.double, torch.int, torch.int64): self.common( fn, (torch.randn([64]).to(dtype=dtype),), ) self.common( fn, (torch.arange(-1e-5, 1e-5, 1e-7).to(dtype=dtype),), ) def test_flip(self): def fn(x): return torch.flip(x, (-1,)), torch.flip(x, (0, 2)) - 2 self.common( fn, (torch.randn([1, 2, 6, 6]),), ) def test_signbit(self): def fn(x): return torch.signbit(x), ~torch.signbit(-x) & 1 self.common( fn, (torch.randn([1, 2, 6, 6]),), ) def test_sign_dtype(self): def fn(x): y = torch.sign(x) return torch.tanh(y) self.common(fn, (torch.randn([1, 2, 6, 6]),)) def test_fmod(self): def fn(a, b): return torch.fmod(a, b), torch.fmod(3.0 * a, b) - 2.0 shape = [1, 2, 6, 6] self.common(fn, (torch.randn(shape), torch.randn(shape))) def test_fmod_zero_dim(self): def fn(a, b): return (torch.fmod(a, b),) self.common( fn, ( make_tensor(10, device="cpu", dtype=torch.float32), make_tensor((), device="cpu", dtype=torch.float32), ), ) self.common( fn, ( make_tensor((), device="cpu", dtype=torch.float32), make_tensor(10, device="cpu", dtype=torch.float32), ), ) def test_log2(self): def fn(x): return torch.log2(x), torch.log2(x + 1) - 2 self.common( fn, (torch.randn([64]) + 10,), ) def test_logsumexp(self): def fn(x): return torch.logsumexp(x, -1), torch.logsumexp(x, 0) - 2 self.common( fn, (torch.randn([8, 8]) + 10,), ) def test_log_fp64(self): def fn(x): return torch.log(x), torch.log2(x) self.common( fn, (torch.randn([1024], dtype=torch.float64) + 10,), ) def test_bitwise(self): def fn(x, y): return ( torch.bitwise_not(x), torch.bitwise_or(x, y), torch.bitwise_xor(x, y), torch.bitwise_and(x, y), ) self.common( fn, ( torch.randint(0, 2**30, [64], dtype=torch.int32), torch.randint(0, 2**30, [64], dtype=torch.int32), ), ) def test_bitwise2(self): # again with bool types def fn(x, y): return ( torch.bitwise_not(x), torch.bitwise_or(x, y), torch.bitwise_xor(x, y), torch.bitwise_and(x, y), ) self.common( fn, ( torch.randint(0, 2, (2, 20), dtype=torch.bool), torch.randint(0, 2, (2, 20), dtype=torch.bool), ), ) def test_bitwise3(self): # Repro for https://github.com/pytorch/pytorch/issues/97968 def fn(x, y): return ( torch.max(torch.bitwise_and(x, y), y), torch.clamp_max(torch.bitwise_or(x, y), y), torch.clamp_min(torch.bitwise_xor(x, y), y), ) self.common( fn, ( torch.rand([5, 10, 1]).to(torch.int8), torch.rand([10, 1]).to(torch.int8), ), ) def test_inf(self): def fn(a): return a + float("inf"), a + float("-inf"), a * -float("inf") self.common(fn, (torch.randn(8),)) def test_remainder(self): def fn(a, b): return ( torch.remainder(a, b), torch.remainder(a + 1, b - 1), torch.remainder(a - 1, b + 1), ) self.common(fn, (torch.randn(64), torch.randn(64))) def test_zeros(self): def fn(a): return ( a + 1, torch.zeros( (1, 8, 64, 64), dtype=torch.float32, device=a.device, ), torch.zeros( 1, 8, 64, 64, dtype=torch.float32, device=a.device, ), torch.zeros(2, 3, names=None), a + torch.ones(8, device=a.device), torch.full((2, 3), 3.1416, device=a.device), ) self.common(fn, (torch.randn(8),)) def test_new_ones(self): def fn(a): return ( aten.new_ones( a, [], device=a.device, dtype=6, layout=0, pin_memory=False ), aten.new_zeros( a, [], device=a.device, dtype=6, layout=0, pin_memory=False ), ) self.common(fn, (torch.randn(8),)) def test_full_like(self): def fn(a): return torch.full_like(a, 7.777) - 1 self.common(fn, (torch.randn(8),)) def test_full_truncation(self): def fn(a): return a + torch.full_like(a, 7.777) for dtype in all_types(): self.common(fn, (make_tensor(8, dtype=dtype, device="cpu"),)) def test_index1(self): def fn(a, b, c): return aten.index(a, [b, c]) self.common( fn, ( torch.randn(8, 8, 12), torch.tensor([0, 0, 2, 2], dtype=torch.int64), torch.tensor([3, 4, 4, 3], dtype=torch.int64), ), ) self.common( fn, ( torch.randn(8, 8, 12), torch.tensor([[0, 0, 2, 2]], dtype=torch.int64), torch.tensor([[3], [4], [4], [3]], dtype=torch.int64), ), ) def test_index2(self): def fn(a, b): return ( aten.index(a, [b]), aten.index(a, [None, b]), ) self.common( fn, ( torch.randn(8, 8, 8), torch.tensor([[0, 0, 2, 2]], dtype=torch.int64), ), ) def test_index3(self): def fn(x, ia, ib): return (x[:, ia, None, ib, 0],) self.common( fn, ( torch.randn(3, 4, 4, 4, 3), torch.tensor([0, 2, 1], dtype=torch.int64), torch.tensor([0, 2, 1], dtype=torch.int64), ), ) def test_output_strides(self): def fn(x): y = x.permute(0, 2, 3, 1).contiguous() torch._dynamo.graph_break() return y.view(-1, 4) inp = torch.rand([4, 4, 4, 4], device=self.device) fn_opt = torch._dynamo.optimize("inductor")(fn) self.assertEqual(fn(inp), fn_opt(inp)) self.assertEqual(fn(inp).stride(), fn_opt(inp).stride()) # no redundant copy def foo(x): return x[0:2:2].T[3:].squeeze(0) foo_opt = torch._dynamo.optimize("inductor")(foo) out = foo_opt(inp) self.assertEqual(inp.storage(), out.storage()) def test_index_select(self): def fn(a, b): return ( torch.index_select(a, 0, b), torch.index_select(a, 1, b), torch.index_select(torch.index_select(a, 2, b), 1, b), ) for ind_dtype in (torch.int32, torch.int64): self.common( fn, ( torch.randn(8, 8, 8), torch.tensor([0, 0, 2, 1], dtype=ind_dtype), ), ) @skipIfRocm def test_cudnn_rnn(self): if self.device == "cpu": raise unittest.SkipTest("requires CUDA") def fn( a0, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12, b13, b14, b15, a3, a4, a5, ): a1 = [ b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12, b13, b14, b15, ] return aten._cudnn_rnn( a0, a1, 4, a3, a4, a5, 2, 2048, 0, 2, False, 0.0, False, True, [], None, ) self.common( fn, ( torch.randn([92, 8, 2048]), torch.randn([8192, 2048]), torch.randn([8192, 2048]), torch.randn([8192]), torch.randn([8192]), torch.randn([8192, 2048]), torch.randn([8192, 2048]), torch.randn([8192]), torch.randn([8192]), torch.randn([8192, 4096]), torch.randn([8192, 2048]), torch.randn([8192]), torch.randn([8192]), torch.randn([8192, 4096]), torch.randn([8192, 2048]), torch.randn([8192]), torch.randn([8192]), torch.randn([167837696]), torch.randn([4, 8, 2048]), torch.randn([4, 8, 2048]), ), check_lowp=False, # difference in rnn is too large between half and float inputs ) def test_upsample_nearest1d(self): def fn(a): return ( aten.upsample_nearest1d(a, [74], None), aten.upsample_nearest1d(a, [70], None), aten.upsample_nearest1d(a, [45], None), aten.upsample_nearest1d(a, [36], None), aten.upsample_nearest1d(a, None, [2.0]), ) self.common(fn, (torch.randn([2, 4, 37]),)) def test_upsample_nearest2d(self): def fn(a): return ( aten.upsample_nearest2d(a, [74, 76]), aten.upsample_nearest2d(a, [70, 75]), aten.upsample_nearest2d(a, [45, 74]), aten.upsample_nearest2d(a, [36, 39]), aten.upsample_nearest2d(a, None, [2.0, 2.0]), ) self.common(fn, (torch.randn([2, 4, 37, 38]),)) def test_upsample_nearest3d(self): def fn(a): return ( aten.upsample_nearest3d(a, [74, 76, 78], None), aten.upsample_nearest3d(a, [70, 75, 80], None), aten.upsample_nearest3d(a, [45, 74, 103], None), aten.upsample_nearest3d(a, [36, 39, 40], None), aten.upsample_nearest3d(a, None, [2.0, 2.0, 2.0]), ) self.common(fn, (torch.randn([2, 4, 37, 38, 39]),)) def test_upsample_nearest2d_backward(self): func = torch.ops.aten.upsample_nearest2d_backward def fn(a): return ( func(a, output_size=[6, 12], input_size=[3, 3, 3, 6]), func(a, output_size=[6, 12], input_size=[3, 3, 4, 5]), func(a, output_size=[6, 12], input_size=[3, 3, 2, 8]), func(a, output_size=[6, 12], input_size=[3, 3, 2, 8]), func(a, output_size=[6, 12], input_size=[3, 3, 4, 7]), ) self.common(fn, (torch.randn([3, 3, 6, 12]),)) @skip_if_x86_mac() def test_upsample_bilinear2d_a(self): def fn(a): return ( aten.upsample_bilinear2d(a, [45, 45], False, None), aten.upsample_bilinear2d(a, None, True, [2.0, 2.0]), ) self.common(fn, (torch.randn([2, 4, 37, 38]),), atol=2.5e-5, rtol=1.3e-6) def test_upsample_bilinear2d_b(self): def fn(a): return aten.upsample_bilinear2d(a, None, True, [2.0, 2.0]) self.common( fn, [ torch.randn([1, 2, 40, 59]), ], atol=2.5e-5, rtol=1.3e-6, ) def test_reflection_pad2d(self): def fn(a): return ( aten.reflection_pad2d(a, [1, 1, 1, 1]), aten.reflection_pad2d(a, [1, 2, 3, 4]), ) self.common( fn, (torch.randint(0, 999, size=[1, 1, 8, 8], dtype=torch.float32),) ) def test_reflection_pad2d_backward(self): def template(size, padding): def fn(grad_output, x): return aten.reflection_pad2d_backward(grad_output, x, padding) x = torch.randint(0, 999, size=size, dtype=torch.float32) result = aten.reflection_pad2d(x, padding) grad_output = torch.randn_like(result) self.common(fn, (grad_output, x)) template([1, 1, 8, 8], [0, 0, 0, 0]) template([1, 1, 8, 8], [1, 1, 1, 1]) template([1, 1, 8, 8], [1, 2, 3, 4]) template([1, 1, 8, 8], [0, -1, 2, 2]) template([1, 1, 8, 8], [-1, 0, 2, 2]) template([1, 1, 8, 8], [2, 2, 0, -1]) template([1, 1, 8, 8], [2, 2, -1, 0]) def test_grid_sampler_2d(self): def fn(a, b): return ( aten.grid_sampler_2d(a, b, 0, 0, True), aten.grid_sampler_2d(a, b, 0, 1, False), ) self.common( fn, ( torch.randn([4, 3, 352, 352], dtype=torch.float32), torch.rand([4, 352, 352, 2], dtype=torch.float32) * 2 - 1, ), check_lowp=False, # Mismatched elements: 154697 / 1486848 (10.4%) # Greatest absolute difference: 0.0001976490020751953 at index (0, 0, 101, 243) (up to 1e-05 allowed) # Greatest relative difference: 7.332530120481928 at index (1, 1, 258, 301) (up to 1.3e-06 allowed) atol=0.0002, rtol=1.3e-06, ) def test_upsample_bicubic2d(self): def fn(a): return ( aten.upsample_bicubic2d(a, (128, 128), True), aten.upsample_bicubic2d(a, (128, 256), False), ) # Mismatched elements: 10 / 196608 (0.0%) # Greatest absolute difference: 1.3869255781173706e-05 at index (2, 1, 88, 65) (up to 1e-05 allowed) # Greatest relative difference: 0.0033082996811011046 at index (3, 1, 88, 91) (up to 1.3e-06 allowed) self.common( fn, (torch.randn([4, 3, 64, 32], dtype=torch.float32),), atol=2e-5, rtol=1e-3, ) def test_sort(self): def fn(a): return torch.sort(a) self.common( fn, (torch.randint(0, 999, size=[1, 1, 8, 8], dtype=torch.float32),) ) def test_topk(self): def fn(a): return torch.topk(a, 2, -1) self.common( fn, (torch.randint(0, 999, size=[1, 1, 8, 8], dtype=torch.float32),) ) def test_long_tensor(self): def fn(a): return ( torch.LongTensor([294]).to(a.device) - a, torch.as_tensor([295]).to(a.device) + a, ) self.common(fn, (torch.randint(0, 999, size=[8, 8]),)) def test_constant_pad_1d(self): def fn(a): return ( aten.constant_pad_nd(a, [0, 1], 6.0), aten.constant_pad_nd(a, [2, 3], 99.0), ) self.common(fn, (torch.randint(0, 999, size=[2, 16, 31], dtype=torch.float32),)) def test_constant_pad_fill_dtype(self): def fn(a, b): return ( aten.constant_pad_nd(a, (1, 1), 1.0) & b, aten.constant_pad_nd(a, (1, 1), 0.0) & b, ) self.common( fn, (torch.randint(2, (4,), dtype=torch.bool), torch.ones(6, dtype=torch.bool)), ) def test_constant_pad_2d(self): def fn(a): return ( aten.constant_pad_nd(a, [1, 1, 1, 1], 6.0), aten.constant_pad_nd(a, [1, 2, 3, 4], 99.0), ) self.common( fn, (torch.randint(0, 999, size=[1, 1, 8, 8], dtype=torch.float32),) ) def test_constant_pad_3d(self): def fn(a): return ( aten.constant_pad_nd(a, [1, 2, 3, 4, 5, 6], 6.0), aten.constant_pad_nd(a, [0, 0, 3, 4, 0, 0], 6.0), ) self.common( fn, (torch.randint(0, 999, size=[2, 4, 4, 4], dtype=torch.float32),) ) def test_constant_pad_float64(self): # Repro for https://github.com/pytorch/pytorch/issues/93351 def fn(input): v1 = torch.nn.functional.pad(input, pad=(1, 0)) return torch.gt(v1, input) x = torch.rand([1, 2, 2, 1], dtype=torch.float64) self.common(fn, (x,)) def test_constant_pad_nd_inplace(self): def fn(a): return aten.constant_pad_nd(a, [0, 0]) x = torch.randn([2], device=self.device) fn_compiled = torch.compile(fn) y = fn_compiled(x) self.assertTrue(y is not x) def test_l1_loss(self): def fn(a, b): return torch.nn.functional.l1_loss(a, b), torch.nn.functional.mse_loss(a, b) self.common( fn, ( torch.randn([2, 3, 16, 16]), torch.randn([2, 3, 16, 16]), ), check_lowp=False, ) def test_triu(self): def fn(a): return aten.triu(a, 1), aten.triu(a, 0), aten.triu(a, 2) self.common(fn, (torch.randn([2, 10, 10]),)) def test_no_op_reduction(self): def fn(a): return a.sum(-1), torch.amax(a + 1, 1, keepdim=True) self.common(fn, (torch.randn([8, 1, 1]),)) def test_inplace_add(self): @torch._dynamo.optimize("inductor") def fn(x, y): return x.add_(y) inputs = ( rand_strided((4, 4), (4, 1), device=self.device), rand_strided((4, 4), (4, 1), device=self.device), ) inp_clone = inputs[0].clone() out = fn(*inputs) self.assertTrue(same(out, inp_clone + inputs[1])) self.assertTrue(out is inputs[0]) # The following 2 tests are meant to check the logic that drops # xmask from triton load/store if xnumel = 1 @requires_cuda() def test_single_elem(self): def fn(a): b = a + 1 return (b,) self.common(fn, (torch.randn(1),)) @requires_cuda() def test_single_elem_indirect(self): def fn(a, b): c = a[b] + 1 return (c,) a = torch.randn(1) b = (torch.tensor([0], dtype=torch.int64),) self.common(fn, (a, b)) # This test is meant to check for issues from the logic # that drops xmask from trito load/store if XBLOCK divides xnumel @requires_cuda() def test_xblock_divides_xnumel(self): def fn(a): b = a + 1 return (b,) # assumption is that XBLOCK is always a divisor of 1024 # so xmask will be dropped iff xnumel is multiple of 1024 self.common(fn, (torch.randn(1024),)) self.common(fn, (torch.randn(1025),)) def test_inplace_mixed_dtype_ops(self): @torch._dynamo.optimize("inductor") def fn(x, y): z = x + y.float() w = z.add_(y) return w.mul_(y) inputs = ( rand_strided((4, 4), (4, 1), device=self.device, dtype=torch.float), rand_strided((4, 4), (4, 1), device=self.device, dtype=torch.double), ) out = fn(*inputs) out_eager = (inputs[0] + inputs[1].float()).add_(inputs[1]).mul_(inputs[1]) self.assertTrue(same(out, out_eager)) @config.patch( {"triton.unique_kernel_names": True, "triton.descriptive_names": False} ) def test_kernel_names(self): @torch._dynamo.optimize("inductor") def fn(x): return 2 * x inputs = (rand_strided((8,), (1,), device=self.device),) self.assertTrue(same(fn(*inputs), 2 * inputs[0])) @config.patch({"triton.cudagraphs": True if not torch.version.hip else False}) def test_strided_inputs(self): @torch._dynamo.optimize("inductor") def fn(x, y): return x + y inputs = ( rand_strided((8, 16), (32, 2), device=self.device), rand_strided((8, 16), (16, 1), device=self.device), ) self.assertTrue(same(fn(*inputs), inputs[0] + inputs[1])) @config.patch({"triton.cudagraphs": True if not torch.version.hip else False}) def test_input_mutation1(self): def fn(a): b = a + 1 a.copy_(b) c = a + 2 return a * b / c arg1 = torch.randn(64, device=self.device) arg2 = arg1.clone() arg3 = torch.randn(64, device=self.device) arg4 = arg3.clone() correct1 = fn(arg1) correct2 = fn(arg3) opt_fn = torch._dynamo.optimize_assert(compile_fx)(fn) actual1 = opt_fn(arg2) actual2 = opt_fn(arg4) self.assertTrue(same(actual1, correct1)) self.assertTrue(same(actual2, correct2)) self.assertTrue(same(arg1, arg2)) self.assertTrue(same(arg3, arg4)) def test_input_mutation2(self): def fn(a): b = a + 1 a.view(64).copy_(torch.tensor([66.0], device=a.device)) c = a + 2 return b, c # NOTE: this test fails when none of the inputs require grad. # That seems like an inductor bug. arg1 = torch.randn([1, 64], device=self.device).requires_grad_(True).add(1) arg2 = arg1.clone() correct1 = fn(arg1) opt_fn = torch._dynamo.optimize_assert(compile_fx)(fn) actual1 = opt_fn(arg2) self.assertTrue(same(actual1, correct1)) self.assertTrue(same(arg1, arg2)) def test_input_mutation3(self): def fn(a): a += 1 a *= 2 aten.sigmoid_(a) a = a.view(64) a += 3 a *= 4 aten.relu_(a) return a arg1 = torch.randn([1, 64], device=self.device) arg2 = arg1.clone() correct1 = fn(arg1) opt_fn = torch._dynamo.optimize_assert(compile_fx)(fn) actual1 = opt_fn(arg2) self.assertTrue(same(actual1, correct1)) self.assertTrue(same(arg1, arg2)) def test_input_mutation4(self): def fn(a): torch.relu_(a) return a arg1 = torch.randn([1, 64], device=self.device) arg2 = arg1.clone() correct1 = fn(arg1) opt_fn = torch._dynamo.optimize_assert(compile_fx)(fn) actual1 = opt_fn(arg2) self.assertTrue(same(actual1, correct1)) self.assertTrue(same(arg1, arg2)) def test_slice_mutation1(self): def fn(a): x = torch.zeros_like(a) b = x + 1 x[:, 3] = 3.0 c = torch.clone(x) x[4, :] = 4.0 d = x + 1 return x, b, c, d self.common(fn, (torch.randn([8, 8]),)) def test_slice_mutation2(self): def fn(a): a[:, 20:40] = a[:, 20:40] + 1 a[:, 2:11] = a[:, 1:10] + 2 arg1 = torch.randn([1, 64], device=self.device) arg2 = arg1.clone() fn(arg1) opt_fn = torch._dynamo.optimize_assert(compile_fx)(fn) opt_fn(arg2) # TODO, fix: See https://github.com/pytorch/pytorch/issues/94693 if self.device != "cpu": self.assertTrue(same(arg1, arg2)) def test_indirect_load_broadcast(self): def fn(in_ptr0, in_ptr1, in_ptr2): return torch.gather(in_ptr1, 0, in_ptr2) + in_ptr0 arg190 = rand_strided((32, 21), (1, 32), device=self.device, dtype=torch.int64) arg190.fill_(0) arg111 = rand_strided( (9521, 512), (512, 1), device=self.device, dtype=torch.float32 ) self.common( fn, ( torch.randn(32, 1), arg111, arg190, ), ) @unittest.skipIf(not has_torchvision_roi_align(), "requires torchvision") def test_roi_align(self): def fn(a, b): return torch.ops.torchvision.roi_align(a, b, 0.25, 7, 7, 2, False) self.common(fn, (torch.zeros([4, 256, 296, 304]), torch.zeros([2292, 5]))) def test_nll_loss_forward(self): def fn(a, b): return aten.nll_loss_forward(a, b, None, 1, -100) labels = ( torch.zeros([5], dtype=torch.int64), torch.tensor([-100, -100, 3, -100, -100], dtype=torch.int64), ) inps = (torch.randn(5, 5), torch.randn(5, 5)) for a, b in zip(inps, labels): self.common( fn, (a, b), ) def test_nll_loss_backward(self): def fn(a, b, c): return aten.nll_loss_backward( a, b, c, None, 1, -100, torch.tensor(1.0, device=self.device) ) labels = ( torch.zeros([5], dtype=torch.int64), torch.tensor([-100, -100, 3, -100, -100], dtype=torch.int64), ) inps = (torch.randn(5, 5), torch.randn(5, 5)) grad_outs = (torch.randn(()), torch.randn(())) for a, b, c in zip(grad_outs, inps, labels): self.common( fn, (a, b, c), ) def test_isinf(self): def fn(x): return x.isinf(), x.isnan() self.common( fn, [torch.tensor([1, float("inf"), 2, float("-inf"), float("nan")])] ) self.common( fn, [ torch.tensor( [1, float("inf"), 2, float("-inf"), float("nan")], dtype=torch.float64, ) ], ) def test_isinf2(self): def fn(x): y = torch.tensor( [1, float("inf"), 2, float("-inf"), float("nan")], device=self.device ) return x == y self.common( fn, (torch.tensor([1, float("inf"), 2, float("-inf"), float("nan")]),) ) def test_any(self): def fn(x): return ( x.any(-1), x.isinf().any(), torch.all(x.isinf(), dim=0), torch.all(torch.logical_not(x.isinf())), ) self.common(fn, [-torch.rand(64)]) tmp = torch.randn(16, 8) tmp[1, 1] = float("inf") self.common(fn, [tmp]) def test_inplace_activations(self): def fn(x): a = aten.hardswish_(x + 1) b = aten.hardtanh_(x + 1) c = aten.leaky_relu_(x + 1) d = aten.silu_(x + 1) e = aten.log1p(x + 1) f = aten.masked_fill_(x + 1, torch.zeros_like(x, dtype=torch.bool), 99.0) h = aten.masked_fill_(x + 1, torch.ones_like(x, dtype=torch.bool), 99.0) return (a, b, c, d, e, f, h) self.common(fn, [torch.randn(64) * 10]) def test_baddbmm(self): def fn(a, b, c, beta): return aten.baddbmm(a, b, c, beta=beta) b = torch.randn(6, 128, 64) c = torch.randn(6, 64, 100) options = itertools.product( [torch.randn(6, 1, 100), torch.randn(6, 1, 100).fill_(torch.nan)], [0.0, 1.0], ) for a, beta in options: self.common( fn, [a, b, c, beta], # Mismatched elements: 1212 / 76800 (1.6%) # Greatest absolute difference: 0.001953125 at index (0, 0, 93) (up to 1e-05 allowed) # Greatest relative difference: 1.0 at index (3, 19, 4) (up to 0.001 allowed) atol=0.002, rtol=0.001, ) @config.patch({"triton.max_tiles": 2}) def test_fuse_tiled(self): def fn(a, b, c): return a + b, c + 1 self.common( fn, [torch.randn(128, 1), torch.randn(1, 128), torch.randn(128, 128)] ) def test_expand_as(self): def fn(a, b): return aten.expand_as(a, b), aten.expand_as(a + 1, b + 1) + 1 self.common( fn, [ torch.randn(6, 1, 100), torch.randn(6, 128, 100), ], ) def test_index_put1(self): def fn(a, b, c): return ( torch.index_put(a, [b], c), torch.index_put_(a + 1, [b + 1], c + 1) + 1, ) self.common( fn, [ torch.randn([800, 256, 7, 7]), torch.randperm(601), torch.randn([601, 256, 7, 7]), ], ) self.common( fn, [torch.randn(1024, 4, 2), torch.arange(4), torch.randn(4, 1, 1)] ) def test_index_put2(self): def fn(a, b, c): return torch.index_put(a, [b], c, True) self.common( fn, [ torch.randn([100, 256, 7, 7]), torch.randint(0, 100, size=[600], dtype=torch.int64), torch.randn([600, 256, 7, 7]), ], # workaround for https://github.com/openai/triton/issues/558 check_lowp=False, ) def test_index_put3(self): def fn(a, b, c): torch.ops.aten.index_put_(a, (None, b, None), c) a1 = a + 1 torch.ops.aten.index_put_(a1, (None, b + 1, None), c + 1) return (a, a1) self.common( fn, [ torch.randn([1024, 4, 2]), torch.arange(3), torch.randn([1024, 1, 2]), ], ) def test_index_put4(self): # a, b[0] are not broadcastable # https://github.com/pytorch/pytorch/issues/97104 def fn(a, b, c): return torch.index_put(a, [b], c) self.common( fn, [ torch.rand([8, 2]), torch.rand([8]) > 0.5, torch.rand([]), ], ) def test_index_put_as_masked_fill(self): def fn(a, b, c, d): a = a.clone() torch.ops.aten.index_put_(a, [b], c, d) return a self.common( fn, ( torch.randn([1024, 4, 2]), torch.randn([1024, 4, 2]) > 0, torch.randn([]), False, ), ) self.common( fn, ( torch.randn([1024, 4, 2]), torch.randn([1024, 4, 2]) > 0, torch.randn([]), True, ), ) def test_index_put_fallback1(self): def fn(a, b, c, d): a = a.clone() torch.ops.aten.index_put_(a, [b], c, d) return a self.common( fn, ( torch.randn([3]), torch.as_tensor([True, True, False]), torch.randn([2]), False, ), ) self.common( fn, ( torch.randn([3]), torch.as_tensor([True, True, False]), torch.randn([2]), True, ), ) def test_index_put_fallback2(self): def fn(a, b, c, d, e): a = a.clone() torch.ops.aten.index_put_(a, [None, b, c], d, e) return a self.common( fn, ( torch.randn([1, 2, 3]), torch.as_tensor([0, 1]), torch.as_tensor([True, True, False]), torch.randn([]), False, ), ) self.common( fn, ( torch.randn([1, 2, 3]), torch.as_tensor([0, 1]), torch.as_tensor([True, True, False]), torch.randn([]), True, ), ) def test_index_put_deterministic_fallback(self): with DeterministicGuard(True): def fn(a, b, c): return torch.index_put(a, [b], c, True) self.common( fn, [ torch.randn([100, 32]), torch.randint(0, 100, size=[600], dtype=torch.int64), torch.randn([600, 32]), ], check_lowp=False, ) def test_index_put_index(self): def fn(ind, x, src): y = torch.ops.aten.index_put.default(x, [ind], src) return torch.ops.aten.index.Tensor(y, [ind]) args = [torch.tensor([1], dtype=torch.int64), torch.randn(8, 4), torch.randn(4)] self.common(fn, args) @config.patch(fallback_random=True) def test_bernoulli1(self): def fn(a): b = torch.empty_like(a) return aten.bernoulli_(b), b self.common( fn, [ torch.randn([100]), ], ) def test_bernoulli2(self): def fn(a): return aten.bernoulli(a) self.common( fn, [torch.tensor([1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0])], ) def test_narrow(self): def fn(x): return ( aten.narrow(x, 1, 10, 16), aten.narrow(x + 2, 0, 10, 16) + 1, aten.narrow_copy(x, 1, 10, 16), ) self.common(fn, [torch.randn(64, 64)]) def test_as_strided(self): def fn(x): return ( aten.as_strided(x, (8, 8, 64), (8 * 64, 64, 1), 0), aten.as_strided(x + 1, (8, 8, 64), (8 * 64, 64, 1), 0) + 2, ) def fn_channels_last(x): return ( aten.as_strided( x, (8, 384, 2, 20, 12), (153600, 1, 61440, 384, 7680), 0 ), aten.as_strided( x + 1, (8, 384, 2, 20, 12), (153600, 1, 61440, 384, 7680), 0 ) + 2, ) self.common(fn, [torch.randn(64, 64)]) self.common( fn_channels_last, [torch.randn(8, 384, 20, 20).to(memory_format=torch.channels_last)], ) def test_as_strided_scatter(self): def fn(a, b): return aten.as_strided_scatter( a * 8 + 10, b * 2 - 4, size=(a.shape[0], a.shape[1] // 2), stride=(a.shape[1], 2), storage_offset=0, ) self.common(fn, [torch.randn(10, 1024), torch.randn(10, 512)]) def test_select_scatter(self): def fn(x, a, b): return ( aten.select_scatter(x, a, 1, 0), aten.select_scatter(x, b, 0, 1), ) self.common( fn, [ torch.randn(8, 197, 38), torch.randn(8, 38), torch.randn(197, 38), ], ) def test_slice_scatter(self): def fn(x, a): return ( aten.slice_scatter(x, a, 2, 10, -10), aten.slice_scatter(x, a[:, :, :40], 2, 10, -10, 2), ) self.common( fn, [ torch.randn(4, 8, 100), torch.randn(4, 8, 80), ], ) def test_slice_scatter2(self): def fn(a, b): return aten.slice_scatter(a, b, 0, 0, 9223372036854775807) self.common( fn, [ torch.randn([8, 197, 384]), torch.randn([8, 197, 384]), ], ) def test_scatter1(self): def fn(a, dim, index, b): return aten.scatter(a, dim, index, b) self.common( fn, [ torch.zeros(2, 3), -1, torch.tensor([[0]]), torch.ones(2, 3), ], ) def test_scatter2(self): if self.device == "cuda": raise unittest.SkipTest("unstable on sm86") def fn(a, dim, index, b): return aten.scatter.reduce(a, dim, index, b, reduce="add") self.common( fn, [ torch.zeros(64, 512), 0, torch.zeros((64, 512), dtype=torch.int64), torch.ones(64, 512), ], ) def test_scatter3(self): def fn(a, dim, index, b): return aten.scatter(a, dim, index, b, reduce="add") self.common( fn, [ torch.randn(5, 29, 13), 2, torch.tensor([[[3, 5, 7, 9]]]), 0.8, # src can be a scalar ], # Mismatched elements: 1 / 1885 (0.1%) # Greatest absolute difference: 0.00018310546875 at index (0, 0, 3) (up to 1e-05 allowed) # Greatest relative difference: 0.0022371364653243847 at index (0, 0, 3) (up to 0.001 allowed) atol=2e-4, rtol=1e-3, ) def test_scatter4(self): def fn(x, ind, src): return torch.scatter(x, 0, ind, src) for deterministic in [False, True]: with DeterministicGuard(deterministic): self.common( fn, [ torch.randn(196, 992), torch.randint(196, (1, 992)), torch.randn(1, 992), ], ) def test_scatter5(self): def fn(a, dim, index, b, reduce): a = a.clone() a.scatter_(dim, index, b, reduce=reduce) a1 = a + 1.0 a1.scatter_(dim, index, b, reduce=reduce) return (a, a1) for reduce in ["add", "multiply"]: self.common( fn, [ torch.ones((4, 5)), 0, torch.tensor([[1], [2], [3]], dtype=torch.int64), torch.randn(4, 5), reduce, ], ) def test_scatter6(self): def fn(a, dim, index, b): return aten.scatter(a, dim, index, b) for deterministic in [False, True]: with DeterministicGuard(deterministic): self.common( fn, [ torch.randn(5, 8, 13), 2, torch.tensor([[[3, 5, 7, 9]]]), 0.8, # src can be a scalar ], ) @unittest.skip("Flaky test, needs debugging") def test_scatter_add1(self): def fn(a, dim, index, b): return aten.scatter_add(a, dim, index, b) self.common( fn, [ torch.randn(2, 3), 0, torch.tensor([[0]]), torch.randn(2, 3), ], ) def test_scatter_add2(self): def fn(a, dim, index, b): return aten.scatter_add(a, dim, index, b) self.common( fn, [ torch.randn(2, 3), 0, torch.tensor([[0, 0, 0], [1, 1, 1]]), torch.randn(2, 3), ], ) def test_scatter_add3(self): def fn(a, dim, index, b): return aten.scatter_add(a, dim, index, b) for deterministic in [False, True]: with DeterministicGuard(deterministic): self.common( fn, [ torch.randn(5, 29, 13), 2, torch.tensor([[[3, 5, 7, 9]]]), torch.randn(1, 1, 10), ], ) def test_scatter_reduce1(self): def fn(a, dim, index, b): return aten.scatter_reduce(a, dim, index, b, "sum") self.common( fn, [ torch.randn(5, 29, 13), 2, torch.tensor([[[3, 5, 7, 9]]]), torch.randn(1, 1, 10), ], ) def test_scatter_reduce2(self): def fn(a, dim, index, b): return aten.scatter_reduce(a, dim, index, b, "sum", include_self=False) self.common( fn, [ torch.randn(2, 3), 0, torch.zeros((2, 3), dtype=torch.int64), torch.randn(2, 3), ], ) def test_scatter_reduce3(self): def fn(a, dim, index, b, reduce): a = a.clone() a.scatter_reduce_(dim, index, b, reduce=reduce) a1 = a + 1.0 a1.scatter_reduce_(dim, index, b, reduce=reduce) return (a, a1) for reduce in ["sum", "prod"]: self.common( fn, [ torch.ones((4, 5)), 0, torch.tensor([[1], [2], [3]], dtype=torch.int64), torch.randn(4, 5), reduce, ], ) # issue #1150 def test_dense_mask_index(self): if self.device == "cpu": raise unittest.SkipTest( "https://github.com/pytorch/torchdynamo/issues/1697" ) def fn(x, y): y = torch.ops.aten.select.int(y, 0, 2) z = x * y return z.sum() self.common(fn, [torch.randn(102400), torch.randn(3)]) def test_empty1(self): def fn(): return torch.empty((1, 128, 128)) self.common(fn, [], assert_equal=False) def test_empty2(self): def fn(): return aten.empty((1, 128, 128)) self.common(fn, [], assert_equal=False) def test_new_empty(self): def fn(a): return aten.new_empty(a, [1, 128, 128]) self.common(fn, [torch.randn(55)], assert_equal=False) def test_empty_strided(self): def fn(): return aten.empty_strided([1, 128, 128], [16384, 128, 1]) self.common(fn, [], assert_equal=False) def test_new_empty_strided(self): def fn(a): return aten.new_empty_strided(a, [1, 128, 128], [16384, 128, 1]) self.common(fn, [torch.randn(55)], assert_equal=False) def test_dropout_trivial_0(self): def fn1(a): return torch.nn.functional.dropout(a, 0.0, True) + a self.common(fn1, [torch.randn(55)]) def test_dropout_trivial_1(self): def fn2(a): return torch.nn.functional.dropout(a, 1.0, True) + a self.common(fn2, [torch.randn(55)]) @config.patch({"triton.cudagraphs": True}) def test_dropout(self): random.seed(1234) torch.manual_seed(1234) @torch._dynamo.optimize("inductor") def fn1(a): return torch.nn.functional.dropout(a) x = torch.ones(1000, device=self.device, dtype=torch.float32) result1 = fn1(x) self.assertTrue(400 < result1.nonzero().shape[0] < 600) self.assertTrue(0.9 < result1.mean().item() < 1.1) random.seed(1234) torch.manual_seed(1234) @torch._dynamo.optimize("inductor") def fn2(a): return torch.nn.functional.dropout(a, 0.5, True) result2 = fn2(x) self.assertTrue(400 < result2.nonzero().shape[0] < 600) self.assertTrue(0.9 < result2.mean().item() < 1.1) def test_dropout_deterministic(self): @torch._dynamo.optimize("inductor") def fn(a): return torch.nn.functional.dropout(a, 0.55, True) for cg in [False, True] if not torch.version.hip else [False]: with patch.object(config.triton, "cudagraphs", cg): torch._dynamo.reset() x = torch.ones(1024, device=self.device, dtype=torch.float32) torch.manual_seed(1234) a0 = fn(x).clone() a1 = fn(x).clone() a2 = fn(x).clone() torch.manual_seed(1234) b0 = fn(x).clone() b1 = fn(x).clone() b2 = fn(x).clone() # same seed, same values self.assertTrue(torch.allclose(a0, b0)) self.assertTrue(torch.allclose(a1, b1)) self.assertTrue(torch.allclose(a2, b2)) # different calls, different values self.assertFalse(torch.allclose(a0, a1)) self.assertFalse(torch.allclose(a1, a2)) def test_rand_like_deterministic(self): @torch._dynamo.optimize("inductor") def fn(a): return torch.rand_like(a), torch.rand_like(a) x = torch.ones(1024, device=self.device, dtype=torch.float32) torch.manual_seed(1234) a0 = fn(x)[0].clone() a1 = fn(x)[0].clone() a2 = fn(x)[0].clone() torch.manual_seed(1234) b0 = fn(x)[0].clone() b1 = fn(x)[0].clone() b2 = fn(x)[0].clone() # same seed, same values self.assertTrue(torch.allclose(a0, b0)) self.assertTrue(torch.allclose(a1, b1)) self.assertTrue(torch.allclose(a2, b2)) # different calls, different values self.assertFalse(torch.allclose(a0, a1)) self.assertFalse(torch.allclose(a1, a2)) c, d = fn(x) self.assertFalse(torch.allclose(c, d)) self.assertTrue((c >= 0).all()) self.assertTrue((c < 1).all()) self.assertTrue((d >= 0).all()) self.assertTrue((d < 1).all()) @patch.object(torch._functorch.config, "functionalize_rng_ops", True) def test_philox_rand(self): if self.device == "cpu": raise unittest.SkipTest( "functionalization of rng ops supported only on CUDA" ) @torch._dynamo.optimize("inductor") def fn(x): a = torch.rand_like(x) * x a = torch.rand_like(x) * a return a def check(x): torch.manual_seed(123) a = fn(x) torch.manual_seed(1234) b = fn(x) torch.manual_seed(123) c = fn(x) # same seed, same values self.assertTrue(torch.allclose(a, c)) # different calls, different values self.assertFalse(torch.allclose(a, b)) check(torch.ones(1024, device=self.device, dtype=torch.float32)) self.assertEqual(torch.cuda._get_rng_state_offset(), 2048) # Check non-multiple of 4 numel check(torch.ones(3, device=self.device, dtype=torch.float32)) self.assertEqual(torch.cuda._get_rng_state_offset(), 8) def test_randn_like_empty(self): class Model(torch.nn.Module): def __init__( self, ): super().__init__() def forward(self, v1: torch.Tensor): vx = v1.min(dim=1).values v2 = torch.randn_like(vx) return v2 model = Model() x = torch.rand(10, 3, 0) self.common(model, (x,)) def test_randint(self): @torch.compile(fullgraph=True) def fn(x): return ( torch.randint(10, [1024], device=x.device), torch.randint(-4, 7, [1024], dtype=torch.int32, device=x.device), torch.randint_like(x, 2**50), ) torch.manual_seed(12345) a0, b0, c0 = fn(torch.zeros([40, 40], device=self.device)) self.assertEqual(a0.shape, [1024]) self.assertEqual(b0.shape, [1024]) self.assertEqual(c0.shape, [40, 40]) torch.manual_seed(12345) a1, b1, c1 = fn(torch.zeros([40, 40], device=self.device)) self.assertEqual(a0, a1) self.assertEqual(b0, b1) self.assertEqual(c0, c1) self.assertEqual(a0.min(), 0) self.assertEqual(a0.max(), 9) self.assertEqual(b0.min(), -4) self.assertEqual(b0.max(), 6) self.assertGreaterEqual(c0.min(), 0) self.assertGreater(c0.max(), 2**40) self.assertLess(c0.max(), 2**50) @config.patch(fallback_random=True) def test_like_rands(self): def fn(x): return torch.rand_like(x), torch.randn_like(x) self.common(fn, [torch.zeros([20, 20])]) def test_like_rands2(self): # rand_like with kwargs `device` of str type d = self.device assert isinstance(d, str) @torch.compile def fn(x): return torch.rand_like(x, device=d) x = torch.ones(10, device=self.device, dtype=torch.float32) a0 = fn(x).clone() a1 = fn(x).clone() self.assertFalse(torch.allclose(a0, a1)) @requires_cuda() def test_like_rands3(self): # rand_like with `device` which is different from `x.device` def test_like_rands_on_different_device(device1, device2): @torch.compile def fn(x, device): return torch.rand_like(x, device=device) x = torch.ones(10, device=device1, dtype=torch.float32) return fn(x, device2).clone() a0 = test_like_rands_on_different_device("cpu", "cuda") a1 = test_like_rands_on_different_device("cuda", "cpu") self.assertTrue(a0.device.type == "cuda") self.assertTrue(a1.device.type == "cpu") def test_max_pool2d_with_indices_backward(self): def fn(a, b, c): return aten.max_pool2d_with_indices_backward( a, b, [2, 2], [2, 2], [0, 0], [1, 1], False, c ) x = torch.randn([2, 4, 18, 14]) result, indices = aten.max_pool2d_with_indices( x, [2, 2], [2, 2], [0, 0], [1, 1], False, ) self.common( fn, [ torch.randn_like(result), x, indices, ], ) def test_max_pool2d_with_indices_backward2(self): def fn(a, b, c): return aten.max_pool2d_with_indices_backward( a, b, [3, 3], [2, 2], [1, 1], [1, 1], True, c ) x = torch.randn([2, 4, 40, 56]) result, indices = aten.max_pool2d_with_indices( x, [3, 3], [2, 2], [1, 1], [1, 1], True, ) self.common( fn, [ torch.randn_like(result), x, indices, ], ) # From https://github.com/pytorch/torchdynamo/issues/1200 def test_max_pool2d_with_indices_backward3(self): def fn(a, b, c): return aten.max_pool2d_with_indices_backward( a, b, [1, 1], [2, 2], [0, 0], [1, 1], False, c ) x = torch.randn([32, 256, 37, 38]) result, indices = aten.max_pool2d_with_indices( x, [1, 1], [2, 2], 0, 1, False, ) self.common( fn, [ torch.randn_like(result), x, indices, ], ) # From https://github.com/pytorch/torchdynamo/issues/1352 def test_max_pool2d_with_indices_backward4(self): def fn(a, b, c): return aten.max_pool2d_with_indices_backward( a, b, [5, 5], [1, 1], [2, 2], [1, 1], False, c ) torch._inductor.metrics.generated_kernel_count = 0 x = torch.randn([2, 64, 3, 4]) result, indices = aten.max_pool2d_with_indices( x, [5, 5], [1, 1], 2, 1, False, ) self.common( fn, [ torch.randn_like(result), x, indices, ], ) self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) def test_max_pool2d_with_indices_backward5(self): # Window size is too big. Should fallback def fn(a, b, c): return aten.max_pool2d_with_indices_backward( a, b, [13, 13], [1, 1], [2, 2], [1, 1], False, c ) torch._inductor.metrics.generated_kernel_count = 0 x = torch.randn([2, 64, 20, 20]) result, indices = aten.max_pool2d_with_indices( x, [13, 13], [1, 1], 2, 1, False, ) self.common( fn, [ torch.randn_like(result), x, indices, ], ) self.assertEqual(torch._inductor.metrics.generated_kernel_count, 0) # From https://github.com/pytorch/pytorch/issues/93384 def test_max_pool2d_with_indices_backward6(self): # dilation is not 1. Should fallback def fn(a, b, c): return aten.max_pool2d_with_indices_backward( a, b, [3, 2], [2, 1], [1, 1], [1, 2], False, c ) torch._inductor.metrics.generated_kernel_count = 0 x = torch.randn([2, 2, 3, 6]) result, indices = aten.max_pool2d_with_indices( x, [3, 2], [2, 1], [1, 1], [1, 2], False, ) self.common( fn, [ torch.randn_like(result), x, indices, ], ) self.assertEqual(torch._inductor.metrics.generated_kernel_count, 0) def test_issue102546(self): def fn(x): return x.mean(0) self.common(fn, [torch.rand(())]) def test_avg_pool2d_backward(self): def fn(a, b): return aten.avg_pool2d_backward( a, b, [2, 2], [2, 2], [0, 0], True, False, None, ) self.common( fn, [ torch.randn([2, 4, 7, 7]), torch.randn([2, 4, 14, 14]), ], ) @skipIfRocm def test_avg_pool2d_backward2(self): def fn(a, b): return aten.avg_pool2d_backward( a, b, [3, 3], [1, 1], [1, 1], True, False, None, ) self.common( fn, [ torch.randn([1, 1, 20, 15]), torch.randn([1, 1, 20, 15]), ], ) def test_avg_pool2d_backward3(self): def fn(a, b): return aten.avg_pool2d_backward( a, b, [1, 1], [2, 2], [0, 0], False, False, None, ) torch._inductor.metrics.generated_kernel_count = 0 self.common( fn, [ torch.randn([1, 2016, 11, 11]), torch.randn([1, 2016, 21, 21]), ], ) self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) def test_avg_pool2d_backward4(self): def fn(a, b): return aten.avg_pool2d_backward( a, b, [13, 13], [1, 1], [0, 0], True, False, None, ) torch._inductor.metrics.generated_kernel_count = 0 self.common( fn, [ torch.randn([1, 16, 12, 12]), torch.randn([1, 16, 24, 24]), ], check_lowp=False, ) self.assertEqual(torch._inductor.metrics.generated_kernel_count, 0) @config.patch(search_autotune_cache=False) def test_mm_views(self): def fn(a, b): return torch.mm(a.view(32, 32), b.view(32, 32)) self.common( fn, ( torch.randn([32, 32]).transpose(0, 1), torch.randn([1, 32, 32]).transpose(0, 1), ), check_lowp=False, ) expected_kernel = 0 # codegen mm kernel from template self.assertEqual( torch._inductor.metrics.generated_kernel_count, expected_kernel ) @torch._dynamo.config.patch(dynamic_shapes=True) @torch._dynamo.config.patch(assume_static_by_default=False) def test_dtype_sympy_expr(self): torch._inductor.metrics.disable_cpp_wrapper = 0 @torch._dynamo.optimize_assert("inductor") def fn(a): y = a[..., :-1, :].contiguous() return y result = fn(torch.randn([1, 2, 16, 4]).requires_grad_()) result.sum().backward() expected_disable_cpp_wrapper = 0 self.assertEqual( torch._inductor.metrics.disable_cpp_wrapper, expected_disable_cpp_wrapper ) def test_dropout2(self): n = 100000 weight = torch.ones( n, device=self.device, dtype=torch.float32, requires_grad=True ) ones = torch.ones(n, device=self.device, dtype=torch.float32) @torch._dynamo.optimize_assert("inductor") def run(x, train=True): return F.dropout(x * weight, 0.33, train) def check(r, g): rmean = r.mean().item() gmean = g.mean().item() rcount = len(r.nonzero()) gcount = len(g.nonzero()) # dropped elements should match self.assertTrue(same(r.nonzero(), g.nonzero())) self.assertEqual(rcount, gcount) # dropped should be close to 0.33 self.assertGreater(rcount, 0.64 * n) self.assertGreater(0.68 * n, rcount) self.assertAlmostEqual(rmean, gmean) self.assertAlmostEqual(rmean, 1.0, places=2) r1 = run(ones, train=False) r1.sum().backward() g1 = weight.grad.clone() # eval mode should be all ones self.assertTrue(same(r1, torch.ones_like(r1))) self.assertTrue(same(g1, torch.ones_like(g1))) torch.manual_seed(1234) weight.grad.zero_() r2, (fw_code, bw_code) = run_fw_bw_and_get_code(lambda: run(ones)) if self.device == "cuda": self.assertEqual(fw_code.count("tl.rand"), 1) self.assertEqual(bw_code.count("tl.rand"), 0) g2 = weight.grad.clone() check(r2, g2) torch.manual_seed(1234) weight.grad.zero_() r3 = run(ones) r3.sum().backward() g3 = weight.grad.clone() check(r3, g3) # second run is same result as first self.assertTrue(same(r2, r3)) self.assertTrue(same(g2, g3)) @config.patch(search_autotune_cache=False) def test_dropout3(self): m = torch.nn.Sequential( torch.nn.Linear(32, 32, bias=False), torch.nn.Dropout(), torch.nn.Linear(32, 32, bias=False), torch.nn.Dropout(), ).to(self.device) @torch._dynamo.optimize_assert("inductor") def run(x): return m(x) torch._inductor.metrics.generated_kernel_count = 0 result, (fw_code, bw_code) = run_fw_bw_and_get_code( lambda: run(torch.randn([8, 32], device=self.device)) ) if self.device == "cuda": self.assertEqual(fw_code.count("tl.rand"), 1) self.assertEqual(bw_code.count("tl.rand"), 0) expected_kernel = 4 else: expected_kernel = 6 self.assertEqual( torch._inductor.metrics.generated_kernel_count, expected_kernel ) def test_randint_kernel_count(self): @torch._dynamo.optimize_assert("inductor") def fn1(): random_tensor1 = torch.randint(10, [32], device=self.device) random_tensor2 = torch.randint(10, [32], device=self.device) random_tensor3 = torch.randint(10, [32], device=self.device) return random_tensor1, random_tensor2, random_tensor3 _, source_codes = run_and_get_code(fn1) if self.device == "cuda": self.assertEqual(len(source_codes), 1) self.assertEqual(source_codes[0].count("async_compile.triton"), 1) def test_roll(self): def fn(a): return ( aten.roll(a, [-3, 10], [1, 2]), aten.roll(a, [5]), ) self.common( fn, [ torch.randn([2, 56, 56, 16]), ], ) def test_argmax_min_int32(self): # https://github.com/pytorch/pytorch/issues/94055 def fn(a, b): c = a.argmax(3) return torch.min(b, c) a = torch.rand(3, 4, 2, 1).int() b = torch.rand(2, 2, 1, 4, 1).int() self.common(fn, (a, b)) def test_argmax_argmin1(self): def fn(x): return (aten.argmax(x), aten.argmin(x)) self.common( fn, [ torch.randn([8, 256, 256]), ], ) def test_argmax_argmin2(self): def fn(x): return ( aten.argmax(x, 0), aten.argmin(x, 0), aten.argmax(x, 1), aten.argmin(x, 1), ) self.common(fn, (torch.randn([144, 144]),)) def test_argmax_argmin_with_duplicates(self): def fn(x): return ( aten.argmax(x, 0), aten.argmin(x, 0), aten.argmax(x, 1), aten.argmin(x, 1), ) # Unrolled reduction t1 = torch.randint(2, size=(6, 6)) self.common(fn, (t1,)) # Persistent reduction t1 = torch.randint(8, size=(32, 32)) self.common(fn, (t1,)) # Non-persistent reduction t1 = torch.randint(8, size=(1028, 1028)) self.common(fn, (t1,)) def test_argmax_argmin_with_nan(self): def fn(x): return ( aten.argmax(x, 0), aten.argmin(x, 0), aten.argmax(x, 1), aten.argmin(x, 1), ) if self.device == "cpu": raise unittest.SkipTest("broken on CPU") # Unrolled reduction t1 = torch.randn((6, 6)) t1[:, 1] = float("nan") t1[:, 3] = float("nan") self.common(fn, (t1,)) # Persistent reduction t1 = torch.randn((32, 32)) t1[:, 4] = float("nan") t1[:, 8] = float("nan") self.common(fn, (t1,)) # Non-persistent reduction t1 = torch.randn((1028, 1028)) t1[:, 40] = float("nan") t1[:, 100] = float("nan") self.common(fn, (t1,)) def test_conv_backward(self): def fn(rank4_inps, rank3_inps, rank5_inps): out1 = aten.convolution_backward( *rank4_inps, [C], [1, 1], [0, 0], [1, 1], False, [0, 0], 1, [True, True, True], ) out2 = aten.convolution_backward( *rank4_inps, [C], [1, 1], [0, 0], [1, 1], False, [0, 0], 1, [True, False, False], ) out3 = aten.convolution_backward( *rank3_inps, [C], [1], [0], [1], False, [0], 1, [True, True, True], ) out4 = aten.convolution_backward( *rank5_inps, [C], [1, 1, 1], [0, 0, 0], [1, 1, 1], False, [0, 0, 0], 1, [True, True, True], ) return (out1, out2, out3, out4) B = 3 C = 4 H = 5 grad_out = torch.randn(B, C, H - 2, H - 2, H - 2) inp = torch.randn(B, C, H, H, H) weight = torch.randn(C, C, 3, 3, 3) def shrink_rank(x, rank): res = x while res.dim() > rank: res = torch.select(res, -1, 0) return res.contiguous() rank4_inps = [shrink_rank(x, 4) for x in [grad_out, inp, weight]] rank3_inps = [shrink_rank(x, 4) for x in [grad_out, inp, weight]] rank5_inps = [shrink_rank(x, 5) for x in [grad_out, inp, weight]] with torch.backends.cudnn.flags(enabled=True, allow_tf32=False): self.common( fn, [rank4_inps, rank3_inps, rank5_inps], ) @unittest.skip( """ FIXME: In the case of having equally max/min elements, our implementation returns the last index instead of the first one """ ) def test_argmax_argmin3(self): def fn(x): return ( aten.argmax(x, 0), aten.argmin(x, 0), aten.argmax(x, -1), aten.argmin(x, -1), ) self.common( fn, [torch.randint(0, 5, [10, 10])], ) def test_vdd_clamp(self): def fn(x): return torch.clamp_min(x, 3) self.common( fn, [ torch.randn([16], requires_grad=True) * 10, ], ) def test_tmp_not_defined_issue1(self): def forward( primals_3, primals_4, add_tensor, convert_element_type_default, div_default, reciprocal_default, ): var_default = torch.ops.aten.var( convert_element_type_default, [2], correction=0 ) sub_tensor = torch.ops.aten.sub.Tensor(add_tensor, div_default) mul_tensor_1 = torch.ops.aten.mul.Tensor(sub_tensor, reciprocal_default) mul_tensor_2 = torch.ops.aten.mul.Tensor(mul_tensor_1, primals_3) add_tensor_2 = torch.ops.aten.add.Tensor(mul_tensor_2, primals_4) convert_element_type_default_1 = add_tensor_2.to(dtype=torch.float32) convert_element_type_default_2 = convert_element_type_default_1.to( dtype=torch.float32 ) var_default_1 = torch.ops.aten.var( convert_element_type_default_2, [2], correction=0 ) broadcast_in_dim_default_2 = var_default_1.reshape(1, 512, 1) sum_default_1 = convert_element_type_default_2.sum(2) add_tensor_3 = torch.ops.aten.add.Tensor(broadcast_in_dim_default_2, 1e-05) return (var_default, sum_default_1, add_tensor_3) inps = [ (torch.Size([1024]), torch.float32), (torch.Size([1024]), torch.float32), (torch.Size([1, 512, 1024]), torch.float32), (torch.Size([1, 512, 1024]), torch.float32), (torch.Size([1, 512, 1]), torch.float32), (torch.Size([1, 512, 1]), torch.float32), ] inps = [torch.randn(shape, dtype=dtype) for (shape, dtype) in inps] self.common(forward, inps, atol=1e-05, rtol=2e-05) @unittest.skipIf( TEST_WITH_ASAN or os.environ.get("BUILD_ENVIRONMENT", "").startswith("parallelnative"), "TODO: debug this with asan", ) def test_tmp_not_defined_issue2(self): def forward(arg38_1, arg81_1, getitem_17, new_zeros_default_4): div_tensor_7 = torch.ops.aten.div.Tensor(getitem_17, arg81_1) mul_tensor_24 = torch.ops.aten.mul.Tensor(div_tensor_7, arg38_1) sum_default_7 = torch.ops.aten.sum.default(mul_tensor_24) return (new_zeros_default_4, sum_default_7) # TODO: Remove once https://github.com/pytorch/pytorch/issues/94017 is resolved dtype = torch.float64 if self.device == "cpu" else torch.float32 args = [ ((1, 88, 40, 40), (140800, 1600, 40, 1), dtype), ((), (), dtype), ((1, 88, 40, 40), (140800, 1600, 40, 1), dtype), ((3,), (1,), dtype), ] args = [ rand_strided(shape, stride, dtype).requires_grad_(True).add(1) for shape, stride, dtype in args ] self.common(forward, args) def test_misaligned_address_issue1(self): def forward(sub_tensor_1, unsqueeze_default): gather_default = torch.ops.aten.gather.default( sub_tensor_1, 1, unsqueeze_default ) return gather_default args = [ ((1, 1000), (1000, 1), torch.float32), ((1, 1), (1, 1), torch.int64), ] args = [rand_strided(shape, stride, dtype) for shape, stride, dtype in args] self.common(forward, args) def test_invalid_operand_issue1(self): def forward(arg0_1, arg1_1, arg3_1, squeeze, view_1, slice_1): slice_scatter = torch.ops.aten.slice_scatter.default( slice_1, arg3_1, 1, 1, 9223372036854775807 ) slice_scatter_1 = torch.ops.aten.slice_scatter.default( arg1_1, slice_scatter, 0, 0, 9223372036854775807 ) slice_2 = torch.ops.aten.slice.Tensor( slice_scatter_1, 0, 0, 9223372036854775807 ) select_scatter = torch.ops.aten.select_scatter.default( slice_2, squeeze, 1, 0 ) slice_scatter_2 = torch.ops.aten.slice_scatter.default( slice_scatter_1, select_scatter, 0, 0, 9223372036854775807 ) view = torch.ops.aten.view.default(slice_scatter_2, [-1, 128]) embedding = torch.ops.aten.embedding.default(arg0_1, view, 1) return [embedding, view_1] args = [ ((50005, 768), (768, 1), torch.float32), ((8, 128), (128, 1), torch.int64), ((8, 127), (127, 1), torch.int64), ((8,), (1,), torch.int64), ((1024,), (1,), torch.int64), ((8, 128), (128, 1), torch.int64), ] args = [rand_strided(shape, stride, dtype) for shape, stride, dtype in args] self.common(forward, args) def test_sizehint_issue1(self): def forward(x): return torch.nn.functional.unfold( x, kernel_size=[4, 4], dilation=1, padding=0, stride=[4, 4] ) args = [((2, 24, 56, 56), (75264, 3136, 56, 1), torch.float32, False)] args = [ rand_strided(sh, st, dt).requires_grad_(rg) for (sh, st, dt, rg) in args ] self.common(forward, args) def test_zero_dim_reductions(self): for kd in [True, False]: inps0 = (torch.zeros(2, 0, device=self.device, dtype=torch.float16), 1, kd) failed_ops = [aten.argmin, aten.argmax, aten.max, aten.min] for fo in failed_ops: with self.assertRaisesRegex( IndexError, "Expected reduction dim 1 to have non-zero size" ): mod = make_fx(fo)(*inps0) _ = compile_fx_inner(mod, inps0) pass_ops = [ lambda *x: fn(*x) for fn in [aten.sum, aten.prod, aten.any, aten.all] ] for po in pass_ops: compiled = torch._dynamo.optimize("inductor")(po) expected = po(*inps0) actual = compiled(*inps0) self.assertTrue(torch.allclose(actual, expected, atol=1e-3, rtol=1e-3)) def test_lerp(self): # non-contiguous inputs for lerp def fn0(i0, i1): x1 = i0.transpose(-2, -3) return torch.lerp(i1, x1, 70000) # contiguous inputs for lerp def fn1(i0, i1): return torch.lerp(i1, i0, 70000) def compare(fn, inputs): compiled = torch._dynamo.optimize("inductor")(fn) expected = fn(*inputs) actual = compiled(*inputs) self.assertEqual(expected, actual) self.assertEqual(expected.stride(), actual.stride()) compare(fn0, [torch.rand(10, 3, 10), torch.rand(3, 10, 10)]) compare(fn1, [torch.rand(3, 10, 10), torch.rand(3, 10, 10)]) def test_unspec_inputs(self): if self.device == "cpu": raise unittest.SkipTest("segfault with CPU backend") def fn(x, y): return x + y, x * y, x / y opt = torch._dynamo.optimize("inductor")(fn) dtypes = [ torch.float16, torch.bfloat16, torch.float32, torch.float64, torch.int32, torch.int64, ] for d in dtypes: inputs = ( rand_strided((2, 3), (3, 1), dtype=torch.float32, device="cuda"), rand_strided((), (), dtype=d, device="cpu"), ) self.assertTrue(same(opt(*inputs), fn(*inputs))) inputs = (inputs[1], inputs[0]) self.assertTrue(same(opt(*inputs), fn(*inputs))) def test_list_clearing(self): if self.device == "cpu": contexts = [contextlib.nullcontext] else: contexts = [ contextlib.nullcontext, lambda: config.patch( {"triton.cudagraphs": True if not torch.version.hip else False} ), ] for context in contexts: with context(): inps = [ torch.rand([5, 5]).to(self.device), torch.rand([5, 5]).to(self.device), ] inp_refs = [weakref.ref(inp) for inp in inps] def fn(x, y): a = x + y return (a @ a,) fn_fx = make_fx(fn)(inps[0], inps[1]) fn_compiled = compile_fx_inner(fn_fx, inps) test_self = self matmul_seen = False class TestRefMode(TorchDispatchMode): def __torch_dispatch__(self, func, types, args=(), kwargs=None): kwargs = kwargs if kwargs else {} nonlocal inps nonlocal inp_refs nonlocal test_self nonlocal matmul_seen # by matmul, inputs should be deallocated if func is aten.mm.out: matmul_seen = True test_self.assertEqual(len(inps), 0) test_self.assertIsNone(inp_refs[0]()) test_self.assertIsNone(inp_refs[1]()) return func(*args, **kwargs) with TestRefMode(): fn_compiled(inps) # do an extra run to make sure we are deallocating on warmup and record if self.device == "cuda": inps.extend( [ torch.rand([5, 5]).to(self.device), torch.rand([5, 5]).to(self.device), ] ) inp_refs.extend([weakref.ref(inp) for inp in inps]) matmul_seen = False with TestRefMode(): fn_compiled(inps) # for some reason, TorchDispatch doesnt capture the # cuda mm call (even without cudagraphs) if self.device == "cpu": self.assertTrue(matmul_seen) else: self.assertEqual(len(inps), 0) def test_dtype_mismatch_issue(self): def fn(x): attn = torch.nn.functional.pad(x, [0, 1]) return attn.softmax(dim=-1) x = torch.rand(128, 32, 63) res_ref = fn(x) res = torch._dynamo.optimize("inductor")(fn)(x) self.assertEqual(res, res_ref) def test_kwargs(self): if self.device == "cuda": raise unittest.SkipTest("histogramdd only supports cpu") def fn(x, y): return torch.histogramdd( x, bins=[3, 3], weight=y, ) self.common( fn, [torch.randn((4, 2)), torch.randn((4))], ) @requires_cuda() @skipIfRocm @torch._inductor.config.patch("shape_padding", True) def test_shape_padding(self): if torch._dynamo.config.dynamic_shapes: raise unittest.SkipTest("dynamic shapes do not support padding") dtypes = [ torch.float16, torch.float32, ] b, m, n, k = 7, 11, 13, 15 def gen(*shape, dtype=torch.float32): return torch.randn(*shape, device="cuda", dtype=dtype) / k + 1.0 for dtype in dtypes: x = gen(m, k, dtype=dtype) y = gen(k, n, dtype=dtype) z = gen(n, dtype=dtype) self.common(lambda x, y: torch.mm(x, y), (x, y)) self.common(lambda x, y: torch.matmul(x, y), (x, y)) self.common(lambda x, y, z: torch.addmm(z, x, y), (x, y, z)) for dtype in dtypes: x = gen(b, m, k, dtype=dtype) y = gen(b, k, n, dtype=dtype) z = gen(n, dtype=dtype) self.common(lambda x, y: torch.bmm(x, y), (x, y)) self.common(lambda x, y: torch.matmul(x, y), (x, y)) self.common(lambda x, y, z: torch.baddbmm(z, x, y), (x, y, z)) @torch._dynamo.config.patch(dynamic_shapes=True) def test_int_input_dynamic_shapes(self): @torch.compile(dynamic=True) def fn(x, i): y = x * i return y # Constant must not get matched as constant self.common(fn, [torch.randn(3, 1, 1, 1, 1), 9132]) @torch._dynamo.config.patch(dynamic_shapes=True) def test_sqrt_dynamic_shapes(self): # TIMM convit_base model: https://github.com/pytorch/pytorch/issues/97877. # TODO: support cuda path. if self.device == "cuda": raise unittest.SkipTest("sqrt dynamic shapes only supports cpu") class Model(torch.nn.Module): def __init__(self): super(Model, self).__init__() def forward(self, x): B, N, C = x.shape return self.get_rel_indices(N) def get_rel_indices(self, num_patches: int) -> torch.Tensor: img_size = int(num_patches**0.5) ind = torch.arange(img_size) return ind self.common( Model(), [ torch.randn(8, 4, 4), ], ) @torch._dynamo.config.patch(dynamic_shapes=True) def test_index_dynamic_shapes(self): if self.device == "cuda": raise unittest.SkipTest("index dynamic shapes only supports cpu") # Repro from vision_maskrcnn def fn(arg0_1): unsqueeze = arg0_1.unsqueeze(0) sym_size = arg0_1.size(1) ceil = math.ceil(sym_size * 1.8735363483428955) iota = torch.ops.prims.iota.default( ceil, start=0, step=1, dtype=torch.int64, device="cpu", requires_grad=False, ) convert_element_type_1 = iota.to(torch.float32) sym_size_1 = arg0_1.size(2) floor_1 = math.floor(sym_size_1 * 1.8735363483428955) ceil_1 = math.ceil(floor_1) iota_1 = torch.ops.prims.iota.default( ceil_1, start=0, step=1, dtype=torch.int64, device="cpu", requires_grad=False, ) convert_element_type_3 = iota_1.to(torch.float32) sub_2 = (convert_element_type_1 + 0.5) * (sym_size / ceil) - 0.5 clamp_min = sub_2.clamp_min(0.0) sub_3 = (convert_element_type_3 + 0.5) * (sym_size_1 / floor_1) - 0.5 clamp_min_1 = sub_3.clamp_min(0.0) convert_element_type_4 = clamp_min.to(torch.int64) sub_4 = sym_size - 1 clamp_max = clamp_min.ceil().clamp_max(sub_4) convert_element_type_5 = clamp_max.to(torch.int64) convert_element_type_6 = clamp_min_1.to(torch.int64) unsqueeze_2 = convert_element_type_4.unsqueeze(1) index = torch.ops.aten.index.Tensor( unsqueeze, [None, None, unsqueeze_2, convert_element_type_6] ) index_1 = torch.ops.aten.index.Tensor( unsqueeze, [ None, None, convert_element_type_5.unsqueeze(1), convert_element_type_6, ], ) sub_6 = clamp_min.unsqueeze(1) - unsqueeze_2 mul_10 = (index * (1.0 - sub_6) + index_1 * (sub_6)) * ( 1.0 - (clamp_min_1 - convert_element_type_6) ) select = torch.ops.aten.select.int(mul_10, 0, 0) return (select,) x = torch.randn(15, 20, 3) self.common( fn, [x], ) @config.patch(profiler_mark_wrapper_call=True) def test_profiler_mark_wrapper_call(self): from torch.profiler import profile @torch._dynamo.optimize("inductor", nopython=True) def fn(a, b): return a + b a = torch.rand((100,)) b = torch.rand((100,)) with profile() as prof: fn(a, b) assert any( "inductor_wrapper_call" in e.name for e in prof.profiler.function_events ) @unittest.skipIf(IS_X86 and not HAS_AVX2, "Requires AVX2") def test_pixel_shuffle_channels_last(self): def fn(x): x = torch.nn.functional.pixel_shuffle(x, 2) x = torch.nn.functional.relu(x) return x self.common( fn, (torch.randn(1, 16, 64, 72).to(memory_format=torch.channels_last),), ) def test_where_broadcast(self): # https://github.com/pytorch/pytorch/issues/93374 def fn(x, p1, p0): o = torch.where(x, p1, p0) return o # https://github.com/pytorch/pytorch/issues/94725 class Repro(torch.nn.Module): def __init__(self): super().__init__() self.register_buffer( "_tensor_constant0", torch.randn([], dtype=torch.float32) ) def forward(self, arg0_1, arg1_1): convert_element_type = torch.ops.prims.convert_element_type.default( arg1_1, torch.bool ) bitwise_not = torch.ops.aten.bitwise_not.default(convert_element_type) _tensor_constant0 = self._tensor_constant0 lift_fresh_copy = torch.ops.aten.lift_fresh_copy.default( _tensor_constant0 ) where = torch.ops.aten.where.self(bitwise_not, lift_fresh_copy, arg0_1) return (where, bitwise_not) self.common( fn, (torch.tensor([[True]]), torch.rand(13, 7, 3), torch.rand(1, 1)), ) if not torch._dynamo.config.dynamic_shapes: args = [ torch.randn(1, 4, 64, 64), torch.zeros(1, 1, 64, 64, dtype=torch.uint8), ] args[1][:, :, :32, :32] = 1 eager_args = [x.clone() for x in args] eager_mod = Repro() mod = make_fx(eager_mod, tracing_mode="real")(*args) compiled = compile_fx_inner(mod, args) inductor_out = compiled(args) eager_out = eager_mod(*eager_args) self.assertEqual(inductor_out, eager_out) def test_where_with_logical_op(self): def fn_and(x, y): return torch.where(torch.logical_and(x, y), 1.0, 0.0) def fn_or(x, y): return torch.where(torch.logical_or(x, y), 1.0, 0.0) self.common( fn_and, (torch.randn(32), torch.randn(32)), ) self.common( fn_or, (torch.randn(32), torch.randn(32)), ) def test_inplace_where_pointwise(self): # https://github.com/pytorch/pytorch/issues/96446 def fn(a, b): a[0] = 2 return a * b self.common(fn, (torch.rand(1), torch.rand(2))) def test_view_on_aliased(self): # https://github.com/pytorch/pytorch/issues/96728 def fn1(a, b): a = a.max(0).values c = torch.cat((a, b)) c = c.round() b >= a[0] # noqa: B015 return c some_const = torch.tensor(6324) def fn2(): a = torch.tensor([[0.6324]]) ret = torch.cat((a, a), dim=0) some_const >= a[0] # noqa: B015 return ret self.common(fn1, (torch.tensor([[4.0]]), torch.tensor([5.0]))) self.common(fn2, ()) def test_argmax_to_float(self): # https://github.com/pytorch/pytorch/issues/97127 def fn(): a = torch.zeros([2, 2]) b = a.argmax(0) return b.float().mean() self.common(fn, ()) def test_const_int32_to_float(self): # https://github.com/pytorch/pytorch/issues/97124 def fn(): a = torch.zeros([1, 2], dtype=torch.int32) a = a + a b = a.to(dtype=torch.float32) return b * 0.8 self.common(fn, ()) def test_getitem(self): out_features = ["p3", "p4", "p5", "p6", "p7"] in_feature = "p5" def fn(a): return a[out_features.index(in_feature)] for dynamic_shapes in [True, False]: with torch._dynamo.config.patch(dynamic_shapes=dynamic_shapes): torch._dynamo.reset() x = [ torch.rand([1, 256, 100, 152]), torch.rand([1, 256, 50, 76]), torch.rand([1, 256, 25, 38]), ] opt_fn = torch._dynamo.optimize("inductor")(fn) same(fn(x), opt_fn(x)) def test_pad_view(self): def fn(a): y = torch.nn.functional.pad(a, (0, 0, 0, 1)) y = y.view(*y.size()[:-2], y.size(-1), y.size(-2)) return y for dynamic_shapes in [True, False]: with torch._dynamo.config.patch(dynamic_shapes=dynamic_shapes): torch._dynamo.reset() x = torch.rand(48, 3, 512, 512) opt_fn = torch._dynamo.optimize("inductor")(fn) same(fn(x), opt_fn(x)) def test_data_type_propogation(self): _graph: torch.fx.Graph = torch.fx.Graph() ops: torch.fx.Node = _graph.create_node("placeholder", "ops") get_index: torch.fx.Node = _graph.create_node( "call_module", "get_index", args=("index0",) ) c1: torch.fx.Node = _graph.create_node( "call_method", "constant", args=( ops, get_index, torch.bfloat16, ), ) c2: torch.fx.Node = _graph.create_node( "call_method", "constant", args=( ops, get_index, torch.float, ), ) add: torch.fx.Node = _graph.create_node( "call_method", "add", args=( ops, c1, c2, ), ) eq: torch.fx.Node = _graph.create_node( "call_method", "eq", args=( ops, add, add, ), ) argmin: torch.fx.Node = _graph.create_node( "call_method", "reduction", args=( ops, "buf", torch.int64, torch.int64, "argmin", get_index, add, ), ) any: torch.fx.Node = _graph.create_node( "call_method", "reduction", args=( ops, "buf", torch.bool, torch.bool, "any", get_index, add, ), ) bitwise_not: torch.fx.Node = _graph.create_node( "call_method", "bitwise_not", args=( ops, argmin, ), ) bitwise_or: torch.fx.Node = _graph.create_node( "call_method", "bitwise_or", args=( ops, eq, any, ), ) bitwise_left_shift: torch.fx.Node = _graph.create_node( "call_method", "bitwise_left_shift", args=( ops, argmin, bitwise_not, ), ) DataTypePropagation.propagate_graph(_graph) def get_data_type(node: torch.fx.Node): if OptimizationContext.key in node.meta: return node.meta[OptimizationContext.key].dtype else: return None self.assertEqual(get_data_type(ops), None) self.assertEqual(get_data_type(c1), torch.bfloat16) self.assertEqual(get_data_type(c2), torch.float) self.assertEqual(get_data_type(add), torch.float) self.assertEqual(get_data_type(eq), torch.bool) self.assertEqual(get_data_type(argmin), torch.int64) self.assertEqual(get_data_type(any), torch.bool) self.assertEqual(get_data_type(bitwise_not), torch.int64) self.assertEqual(get_data_type(bitwise_or), torch.bool) self.assertEqual(get_data_type(bitwise_left_shift), torch.int64) def test_AllenaiLongformerBase_repro(self): def fn(query, scores, window_overlap): batch_size, seq_len, num_heads, _ = query.size() chunks_count = torch.div(seq_len, window_overlap, rounding_mode="trunc") - 1 diagonal_attention_scores = scores.new_zeros( ( batch_size * num_heads, chunks_count + 1, window_overlap, window_overlap * 2 + 1, ) ) diagonal_attention_scores[:, :-1, :, window_overlap:] = scores[ :, :, :window_overlap, : window_overlap + 1 ] input_tensor = diagonal_attention_scores.view( batch_size, num_heads, seq_len, 2 * window_overlap + 1 ).transpose(2, 1) beginning_input = input_tensor[:, :window_overlap, :, : window_overlap + 1] input_tensor[:, :window_overlap, :, : window_overlap + 1] = torch.full_like( beginning_input, -float("inf") ) return input_tensor for dynamic_shapes in [True, False]: with torch._dynamo.config.patch(dynamic_shapes=dynamic_shapes): torch._dynamo.reset() args = [ ((4, 1024, 12, 64), (768, 3072, 64, 1), torch.float32, "cpu"), ((48, 3, 512, 513), (787968, 262656, 513, 1), torch.float32, "cpu"), ] args = [rand_strided(sh, st, dt, dev) for (sh, st, dt, dev) in args] opt_fn = torch._dynamo.optimize("inductor")(fn) same(fn(*args, 256), opt_fn(*args, 256)) def test_cumsum_pattern_matcher_issue(self): def fn(input_ids) -> torch.Tensor: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) batch_size, seq_length = input_shape past_key_values_length = 0 mask_seq_length = past_key_values_length + seq_length attention_mask = torch.ones(batch_size, mask_seq_length) attention_mask = attention_mask.long() return torch.cumsum(attention_mask, dim=1) for dynamic_shapes in [True, False]: with torch._dynamo.config.patch(dynamic_shapes=dynamic_shapes): torch._dynamo.reset() x = torch.randn(2, 2) opt = torch._dynamo.optimize("inductor")(fn) res = opt(x) ref = fn(x) self.assertEqual(res, ref, atol=0, rtol=0) def test_slice(self): def fn(a, b): return torch.ops.aten.slice.Tensor(a, 0, 0, -b) for dynamic_shapes in [True, False]: with torch._dynamo.config.patch(dynamic_shapes=dynamic_shapes): torch._dynamo.reset() x = torch.rand(48, 3, 512, 512) opt_fn = torch._dynamo.optimize("inductor")(fn) same(fn(x, 2), opt_fn(x, 2)) def test_inplace_resize_as(self): def fn(x, y): x.resize_as_(y) return x x = torch.randn(2, 3) y = torch.randn(200, 300) x_clone = x.clone() opt_fn = torch._dynamo.optimize("inductor")(fn) same(fn(x, y), opt_fn(x_clone, y)) def test_erfc(self): def fn(x): return torch.erfc(x) self.common(fn, (torch.randn(8, 8),)) def test_erfinv(self): def fn(x): return torch.erfinv(x) # domain for erfinv is (-1, 1) x = torch.empty(8, 8).uniform_(-1, 1) self.common(fn, (x,)) def test_uint(self): def fn(z): x = torch.tensor(5, device=z.device, dtype=torch.uint8) y = torch.neg(x) return x < y self.common(fn, (torch.randn(26),)) @skipIfRocm def test_scaled_dot_product_efficient_attention(self): if self.device == "cpu": raise unittest.SkipTest("requires CUDA") def fn(q, k, v, compute_log_sumexp): return aten._scaled_dot_product_efficient_attention( q, k, v, compute_log_sumexp ) self.common( fn, ( torch.randn(4, 4, 36, 36), torch.randn(4, 4, 36, 36), torch.randn(4, 4, 36, 36), False, ), check_lowp=False, ) @dataclasses.dataclass class TestFailure: suffixes: Tuple[str] is_skip: bool = False __test__: bool = False def copy_tests(my_cls, other_cls, suffix, test_failures=None): # noqa: B902 for name, value in my_cls.__dict__.items(): if name.startswith("test_"): # You cannot copy functions in Python, so we use closures here to # create objects with different ids. Otherwise, unittest.skip # would modify all methods sharing the same object id. Also, by # using a default argument, we create a copy instead of a # reference. Otherwise, we would lose access to the value. @functools.wraps(value) def new_test(self, value=value): return value(self) # Copy __dict__ which may contain test metadata new_test.__dict__ = copy.deepcopy(value.__dict__) tf = test_failures and test_failures.get(name) if tf is not None and suffix in tf.suffixes: skip_func = ( unittest.skip("Skipped!") if tf.is_skip else unittest.expectedFailure ) new_test = skip_func(new_test) setattr(other_cls, f"{name}_{suffix}", new_test) if HAS_CPU and not torch.backends.mps.is_available(): class SweepInputsCpuTest(SweepInputs2, TestCase): gen = InputGen(10, "cpu") SweepInputsCpuTest.populate() class CpuTests(TestCase): common = check_model device = "cpu" copy_tests(CommonTemplate, CpuTests, "cpu") if HAS_CUDA and not TEST_WITH_ASAN: class SweepInputsCudaTest(SweepInputs2, TestCase): gen = InputGen(10, "cuda") SweepInputsCudaTest.populate() class CudaTests(TestCase): common = check_model_cuda device = "cuda" copy_tests(CommonTemplate, CudaTests, "cuda") class TritonCodeGenTests(TestCase): from torch._inductor.triton_heuristics import CachingAutotuner class NoOpCompilerBackend: def __init__(self): self.example_args = None self.model = None def noop_backend( self, model_: torch.fx.GraphModule, example_inputs_: typing.List[torch.Tensor], ): """ The Noop backend does not compile the fx graph it is given. Instead, it transforms the fx graph so that its functions are aten operations. It then saves this graph. """ from torch._functorch.aot_autograd import Interpreter from torch._inductor.decomposition import select_decomp_table from torch._subclasses import FakeTensorMode fake_mode = FakeTensorMode() def interpret(*args, **kwargs): return Interpreter(model_).run(*args[0:], **kwargs) fake_flat_tensor_args = [ fake_mode.from_tensor(x) for x in example_inputs_ ] fw_module = make_fx(interpret, select_decomp_table())( *fake_flat_tensor_args ) self.model = fw_module self.example_args = fake_flat_tensor_args return lambda x: example_inputs_ def get_kernels(self, fn, args) -> typing.List[CachingAutotuner]: from torch._inductor.debug import DebugContext from torch._inductor.graph import GraphLowering from torch._inductor.virtualized import V cxt = TritonCodeGenTests.NoOpCompilerBackend() torch._dynamo.optimize(backend=cxt.noop_backend)(fn)(*args) graph = GraphLowering(cxt.model) graph.num_static_inputs = 0 kernels = [] with V.set_graph_handler(graph), V.set_debug_handler(DebugContext()): graph.run(*(cxt.example_args)) mod = graph.compile_to_module() for val in mod.__dict__.values(): if isinstance( val, torch._inductor.triton_heuristics.CachingAutotuner ): kernels.append(val) return kernels def test_divisibile_by_16_covers_numel_args(self): torch._dynamo.reset() def fn(a: torch.Tensor) -> torch.Tensor: return torch.sum(a) kernels = self.get_kernels(fn, [torch.randn([256, 256], device="cuda")]) self.assertTrue(len(kernels) == 2, "SUM should result in two kernels") # kernel0 reduces from 256 to (xnumel=8, rnumel=8192), which means it reduces 256 by 256 into an array of # size 8 by accumulating 8192 elements at once note that rnumel is equal to 512 * 16, so rnumel which is # at slot 3 should be in the divisible by 16 descriptor arguments_that_are_divisible_by_16_in_kernel0 = ( kernels[0].meta["configs"][0].divisible_by_16 ) self.assertEqual(arguments_that_are_divisible_by_16_in_kernel0, (0, 1, 3)) # kernel1 reduces from 8 elements to a single scalar. arguments_that_are_divisible_by_16_in_kernel1 = ( kernels[1].meta["configs"][0].divisible_by_16 ) self.assertEqual(arguments_that_are_divisible_by_16_in_kernel1, (0, 1)) torch._dynamo.reset() def test_optimize_indexing_dtype(self): def fn(x: torch.Tensor) -> torch.Tensor: return aten.upsample_bilinear2d.vec(x, None, True, [2.0, 2.0]) fn_opt = torch._dynamo.optimize("inductor")(fn) inps = [torch.randn(2, 4, 16, 16, device="cuda")] code = run_and_get_triton_code(fn_opt, *inps) self.assertTrue("to(tl.int32)" in code) self.assertFalse("to(tl.int64)" in code) self.assertEqual(fn_opt(*inps), fn(*inps)) # See https://github.com/pytorch/pytorch/issues/100348 def test_inductor_detach_view(self): def fn(x: torch.Tensor) -> torch.Tensor: a = x * 2 return a, a.detach() fn_opt = torch._dynamo.optimize("inductor")(fn) inp = torch.ones(2, 2, requires_grad=True, device="cuda") inp_ref = inp.clone().detach().requires_grad_(True) out_ref = fn(inp_ref) out = fn_opt(inp) out_ref[0].sum().backward() out[0].sum().backward() self.assertEqual(inp.grad, inp_ref.grad) def test_not_materialize_pointwise_reduction(self): def fn(a, b): return (a - b).sum(dim=-1).amax(dim=-1) N = 16 K = 7 fn_opt = torch._dynamo.optimize("inductor")(fn) inps = [ torch.randn(N, 1, K, device="cuda"), torch.randn(1, N, K, device="cuda"), ] code = run_and_get_triton_code(fn_opt, *inps) self.assertEqual(code.count("tl.store"), 1) self.assertTrue("out_ptr1" in code) self.assertFalse("out_ptr0" in code) self.assertEqual(fn_opt(*inps), fn(*inps)) # Disable constant propagation, so we isolate value range analysis @patch.object(config, "constant_and_index_propagation", False) def test_cant_optimize_compute(self): def ones(): return torch.ones([4], device="cuda") def suffix(inp): return (inp.to(torch.int64) + 1).to(torch.float64) ten = torch.rand([4], device="cuda") for foo in ( lambda x: x + 2147483657, lambda x: torch.where(x < 0, ones(), ones() - 2) * (-(2 ** (40))), lambda x: x + ten, lambda x: x + ten.sum(), ): def fn(): return suffix(foo(ones())) fn_opt = torch._dynamo.optimize("inductor")(fn) code = run_and_get_triton_code(fn_opt) # this cannot be optimized away, value too large self.assertTrue("to(tl.int64)" in code) self.assertEqual(fn_opt(), fn()) # Disable constant propagation, so we isolate value range analysis @patch.object(config, "constant_and_index_propagation", False) def test_optimize_compute(self): def ones(): return torch.ones([4], device="cuda") def suffix(inp): return (inp.to(torch.int64) + 1).to(torch.float64) for foo in ( lambda x: x + 500, lambda x: torch.where(x < 0, ones(), ones() - 2) * (-(2 ** (20))), lambda x: x / 30, ): def fn(): return suffix(foo(ones())) fn_opt = torch._dynamo.optimize("inductor")(fn) code = run_and_get_triton_code(fn_opt) # this can be optimized away, value too large self.assertTrue("to(tl.int64)" not in code) self.assertTrue("to(tl.int32)" in code) self.assertEqual(fn_opt(), fn()) # Disable index propagation, so the indirect indexing isn't optimized away @patch.object(config, "constant_and_index_propagation", False) def test_computed_indirect_mask(self): def fn(x, n): tmp = torch.arange(n, device=x.device) return x[tmp] + 1 x = torch.randn(8, device="cuda") fn_opt = torch.compile(fn) code = run_and_get_triton_code(fn_opt, x, 8) # load should be masked self.assertTrue("tl.load(in_ptr0 + (tmp0), xmask)" in code) self.assertEqual(fn(x, 8), fn_opt(x, 8)) def test_kernel_names_descriptive(self): @torch._dynamo.optimize("inductor") def fn1(x): return x.cos().sin() @torch._dynamo.optimize("inductor") def fn2(x): x = torch.mm(x, x) x = torch.softmax(x, dim=1) return x mod = nn.Sequential( nn.Linear(4, 4), nn.LayerNorm(4), nn.ReLU(), ).cuda() @torch._dynamo.optimize("inductor") def fn3(x): return mod(x) func_and_kernel_aten = [ (fn1, "triton_poi_fused_cos_sin", (torch.randn(8, device="cuda"),)), (fn2, "triton_poi_fused__softmax", (torch.randn(4, 4, device="cuda"),)), ( fn3, "triton_poi_fused_native_layer_norm_relu", (torch.randn(4, 4, device="cuda"),), ), ] func_and_kernel_torch = [ (fn1, "triton_poi_fused_cos_sin", (torch.randn(8, device="cuda"),)), (fn2, "triton_poi_fused_softmax", (torch.randn(4, 4, device="cuda"),)), ( fn3, "triton_poi_fused_LayerNorm_ReLU", (torch.randn(4, 4, device="cuda"),), ), ] def test_funcs(func_and_kernel): with torch.no_grad(): for fn, kernel_name, inps in func_and_kernel: code = run_and_get_triton_code(fn, *inps) if kernel_name not in code: print(code) self.assertTrue(kernel_name in code) test_funcs(func_and_kernel_aten) patch.object(config.triton, "descriptive_names", "torch")(test_funcs)( func_and_kernel_torch ) @patch.object(config, "profile_bandwidth", True) def test_bandwidth_profiler(self): @torch._dynamo.optimize("inductor") def fn(x): x = x.cos() x = x.cos() x = torch.mm(x, x) x = x.sin() x = x.relu() return x inp = torch.randn(4, 4, device="cuda") code = run_and_get_triton_code(fn, inp) fn(inp) self.assertTrue("start_graph" in code) self.assertTrue("end_graph" in code) def test_split_op_with_sym(self): def fn(x: torch.Tensor) -> torch.Tensor: # split(tensor, sympy.Integer), split(tensor, sympy.Expr) return torch.split(x, x.shape[0]), torch.split(x, x.shape[0] // 2) for dynamic_shapes in [True, False]: with torch._dynamo.config.patch(dynamic_shapes=dynamic_shapes): torch._dynamo.reset() fn_opt = torch._dynamo.optimize("inductor", dynamic=dynamic_shapes)( fn ) inps = torch.randn([5, 5]) fn_opt(inps) @skipIfRocm def test_indirect_device_assert(self): dir_path = os.path.dirname(os.path.realpath(__file__)) test_path = os.path.join(dir_path, "indirect_assert_helper.py") fns = ("first_arg", "store", "second_arg", "same_pm_one", "same_pp_one") for fn, ndims, dyn_shape in itertools.product(fns, (2, 3), (True, False)): proc = subprocess.Popen( [ sys.executable, test_path, fn, str(ndims), str(dyn_shape), "False", ], stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) stderr = proc.communicate()[1] self.assertTrue( any( "index out of bounds" in err.decode("utf-8") for err in stderr.splitlines() ), f"{fn}, {ndims}, {dyn_shape}, False", ) proc = subprocess.Popen( [sys.executable, test_path, "first_arg", "2", "False", "True"], stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) stderr = proc.communicate()[1] self.assertTrue( any( "index out of bounds" in err.decode("utf-8") for err in stderr.splitlines() ), "first_arg 2 False True", ) class RNNTest(TestCase): class Model(torch.nn.Module): def __init__(self): super().__init__() self.gru = torch.nn.GRU(16, 16, batch_first=True) def forward(self, x): return self.gru(x) def test_rnn_compile_safe(self): device = torch.device("cuda") model = RNNTest.Model().to(device) model = torch._dynamo.optimize("inductor")(model) x = torch.rand(1024, 20, 16).to(device) model(x) if HAS_CPU: class TestFull(TestCase): def test_full_dtype(self): pytypes = ( bool, int, float, # TODO: Triton's JITFunction._type_of has no support for complex # complex, ) dtypes = ( torch.bool, torch.int32, torch.int64, torch.float32, torch.float64, None, # torch.complex64, # torch.complex128, ) def fn(pytype, dtype): if pytype is bool: fill_value = True elif pytype is int: fill_value = 42 elif pytype is float: fill_value = 42.0 else: raise AssertionError(f"Unexpected Python type: {pytype}") return torch.full( (4, 6), fill_value, dtype=dtype, device=torch.device("cpu") ) fn_opt = torch._dynamo.optimize("inductor")(fn) for pytype, dtype in itertools.product(pytypes, dtypes): with enable_python_dispatcher(): with torch.no_grad(): ret_opt = fn_opt(pytype, dtype) self.assertEqual(ret_opt, fn(pytype, dtype)) if __name__ == "__main__": from torch._dynamo.test_case import run_tests if HAS_CPU or HAS_CUDA: run_tests(needs="filelock")
11674a3f0d3e56f5156c92dbc2833e200511d2f2
a38180435ac5786185c0aa48891c0aed0ab9d72b
/S4/S4 Library/simulation/situations/complex/single_job_situation.py
567ee8821eebf3d57e66f878dfe22edeb8aac7d7
[ "CC-BY-4.0" ]
permissive
NeonOcean/Environment
e190b6b09dd5dbecba0a38c497c01f84c6f9dc7d
ca658cf66e8fd6866c22a4a0136d415705b36d26
refs/heads/master
2022-12-03T13:17:00.100440
2021-01-09T23:26:55
2021-01-09T23:26:55
178,096,522
1
1
CC-BY-4.0
2022-11-22T20:24:59
2019-03-28T00:38:17
Python
UTF-8
Python
false
false
1,366
py
from role.role_state import RoleState from sims4.tuning.tunable import TunableTuple from situations.situation import Situation from situations.situation_complex import SituationComplexCommon, SituationState, SituationStateData from situations.situation_job import SituationJob class SingleJobSituation(SituationComplexCommon): INSTANCE_TUNABLES = {'job': TunableTuple(description='\n The job and role which the career Sim is placed into.\n ', situation_job=SituationJob.TunableReference(description='\n A reference to a SituationJob that can be performed at this Situation.\n '), role_state=RoleState.TunableReference(description='\n A role state the Sim assigned to the job will perform.\n '))} REMOVE_INSTANCE_TUNABLES = Situation.NON_USER_FACING_REMOVE_INSTANCE_TUNABLES @classmethod def _states(cls): return (SituationStateData(1, SingleJobSituationState),) @classmethod def _get_tuned_job_and_default_role_state_tuples(cls): return [(cls.job.situation_job, cls.job.role_state)] @classmethod def default_job(cls): return cls.job.situation_job def start_situation(self): super().start_situation() self._change_state(SingleJobSituationState()) class SingleJobSituationState(SituationState): pass
c88bbd34f0f67cb174f84f0b4cff4aa4f6cd855c
3969f8402eaa015eb850e041e3dede4978ab9a4c
/pkg/eventlet-0.12.1/tests/patcher_psycopg_test.py
80988e51fdde3eb2a4aa7f68b40ee7bb7f24f738
[ "MIT" ]
permissive
seewindcn/pycocos2d
e333bf8ae29d8244e6540ed3d39d76d4002e2908
b88c8c5df127f9bf82f62c8b4365f4babcdee105
refs/heads/master
2023-03-07T10:07:47.167364
2013-06-03T10:45:19
2013-06-03T10:45:19
9,958,133
18
7
null
2013-05-14T03:57:47
2013-05-09T11:43:46
C
UTF-8
Python
false
false
1,811
py
import os from tests import patcher_test, skip_unless from tests import get_database_auth from tests.db_pool_test import postgres_requirement psycopg_test_file = """ import os import sys import eventlet eventlet.monkey_patch() from eventlet import patcher if not patcher.is_monkey_patched('psycopg'): print "Psycopg not monkeypatched" sys.exit(0) count = [0] def tick(totalseconds, persecond): for i in xrange(totalseconds*persecond): count[0] += 1 eventlet.sleep(1.0/persecond) dsn = os.environ['PSYCOPG_TEST_DSN'] import psycopg2 def fetch(num, secs): conn = psycopg2.connect(dsn) cur = conn.cursor() for i in range(num): cur.execute("select pg_sleep(%s)", (secs,)) f = eventlet.spawn(fetch, 2, 1) t = eventlet.spawn(tick, 2, 100) f.wait() assert count[0] > 100, count[0] print "done" """ class PatchingPsycopg(patcher_test.ProcessBase): @skip_unless(postgres_requirement) def test_psycopg_patched(self): if 'PSYCOPG_TEST_DSN' not in os.environ: # construct a non-json dsn for the subprocess psycopg_auth = get_database_auth()['psycopg2'] if isinstance(psycopg_auth,str): dsn = psycopg_auth else: dsn = " ".join(["%s=%s" % (k,v) for k,v, in psycopg_auth.iteritems()]) os.environ['PSYCOPG_TEST_DSN'] = dsn self.write_to_tempfile("psycopg_patcher", psycopg_test_file) output, lines = self.launch_subprocess('psycopg_patcher.py') if lines[0].startswith('Psycopg not monkeypatched'): print "Can't test psycopg2 patching; it's not installed." return # if there's anything wrong with the test program it'll have a stack trace self.assert_(lines[0].startswith('done'), output)
[ "none@none" ]
none@none
35553d9c5dd5cafe84cfa94fd0c31fdeb3e4b8b7
4fc1037af17efa358be6cd886fcfd67c5272e93e
/httpx/_main.py
7bd6b90846ee1d61fc636a7c077b09bbec5b947f
[ "BSD-3-Clause" ]
permissive
hugovk/httpx
d7e9f6bd463c22f454f31f4065babb53427bd73f
43a1c1c8269cf56a016891aead091acbc3408e81
refs/heads/master
2023-01-09T08:55:42.929163
2022-03-08T10:53:15
2022-03-08T10:53:15
203,822,426
0
0
BSD-3-Clause
2023-09-11T10:32:59
2019-08-22T15:26:18
Python
UTF-8
Python
false
false
15,506
py
import functools import json import sys import typing import click import httpcore import pygments.lexers import pygments.util import rich.console import rich.markup import rich.progress import rich.syntax import rich.table from ._client import Client from ._exceptions import RequestError from ._models import Response from ._status_codes import codes def print_help() -> None: console = rich.console.Console() console.print("[bold]HTTPX :butterfly:", justify="center") console.print() console.print("A next generation HTTP client.", justify="center") console.print() console.print( "Usage: [bold]httpx[/bold] [cyan]<URL> [OPTIONS][/cyan] ", justify="left" ) console.print() table = rich.table.Table.grid(padding=1, pad_edge=True) table.add_column("Parameter", no_wrap=True, justify="left", style="bold") table.add_column("Description") table.add_row( "-m, --method [cyan]METHOD", "Request method, such as GET, POST, PUT, PATCH, DELETE, OPTIONS, HEAD.\n" "[Default: GET, or POST if a request body is included]", ) table.add_row( "-p, --params [cyan]<NAME VALUE> ...", "Query parameters to include in the request URL.", ) table.add_row( "-c, --content [cyan]TEXT", "Byte content to include in the request body." ) table.add_row( "-d, --data [cyan]<NAME VALUE> ...", "Form data to include in the request body." ) table.add_row( "-f, --files [cyan]<NAME FILENAME> ...", "Form files to include in the request body.", ) table.add_row("-j, --json [cyan]TEXT", "JSON data to include in the request body.") table.add_row( "-h, --headers [cyan]<NAME VALUE> ...", "Include additional HTTP headers in the request.", ) table.add_row( "--cookies [cyan]<NAME VALUE> ...", "Cookies to include in the request." ) table.add_row( "--auth [cyan]<USER PASS>", "Username and password to include in the request. Specify '-' for the password to use " "a password prompt. Note that using --verbose/-v will expose the Authorization " "header, including the password encoding in a trivially reversible format.", ) table.add_row( "--proxy [cyan]URL", "Send the request via a proxy. Should be the URL giving the proxy address.", ) table.add_row( "--timeout [cyan]FLOAT", "Timeout value to use for network operations, such as establishing the connection, " "reading some data, etc... [Default: 5.0]", ) table.add_row("--follow-redirects", "Automatically follow redirects.") table.add_row("--no-verify", "Disable SSL verification.") table.add_row( "--http2", "Send the request using HTTP/2, if the remote server supports it." ) table.add_row( "--download [cyan]FILE", "Save the response content as a file, rather than displaying it.", ) table.add_row("-v, --verbose", "Verbose output. Show request as well as response.") table.add_row("--help", "Show this message and exit.") console.print(table) def get_lexer_for_response(response: Response) -> str: content_type = response.headers.get("Content-Type") if content_type is not None: mime_type, _, _ = content_type.partition(";") try: return pygments.lexers.get_lexer_for_mimetype(mime_type.strip()).name except pygments.util.ClassNotFound: # pragma: nocover pass return "" # pragma: nocover def format_request_headers(request: httpcore.Request, http2: bool = False) -> str: version = "HTTP/2" if http2 else "HTTP/1.1" headers = [ (name.lower() if http2 else name, value) for name, value in request.headers ] method = request.method.decode("ascii") target = request.url.target.decode("ascii") lines = [f"{method} {target} {version}"] + [ f"{name.decode('ascii')}: {value.decode('ascii')}" for name, value in headers ] return "\n".join(lines) def format_response_headers( http_version: bytes, status: int, reason_phrase: typing.Optional[bytes], headers: typing.List[typing.Tuple[bytes, bytes]], ) -> str: version = http_version.decode("ascii") reason = ( codes.get_reason_phrase(status) if reason_phrase is None else reason_phrase.decode("ascii") ) lines = [f"{version} {status} {reason}"] + [ f"{name.decode('ascii')}: {value.decode('ascii')}" for name, value in headers ] return "\n".join(lines) def print_request_headers(request: httpcore.Request, http2: bool = False) -> None: console = rich.console.Console() http_text = format_request_headers(request, http2=http2) syntax = rich.syntax.Syntax(http_text, "http", theme="ansi_dark", word_wrap=True) console.print(syntax) syntax = rich.syntax.Syntax("", "http", theme="ansi_dark", word_wrap=True) console.print(syntax) def print_response_headers( http_version: bytes, status: int, reason_phrase: typing.Optional[bytes], headers: typing.List[typing.Tuple[bytes, bytes]], ) -> None: console = rich.console.Console() http_text = format_response_headers(http_version, status, reason_phrase, headers) syntax = rich.syntax.Syntax(http_text, "http", theme="ansi_dark", word_wrap=True) console.print(syntax) syntax = rich.syntax.Syntax("", "http", theme="ansi_dark", word_wrap=True) console.print(syntax) def print_response(response: Response) -> None: console = rich.console.Console() lexer_name = get_lexer_for_response(response) if lexer_name: if lexer_name.lower() == "json": try: data = response.json() text = json.dumps(data, indent=4) except ValueError: # pragma: nocover text = response.text else: text = response.text syntax = rich.syntax.Syntax(text, lexer_name, theme="ansi_dark", word_wrap=True) console.print(syntax) else: console.print(f"<{len(response.content)} bytes of binary data>") def format_certificate(cert: dict) -> str: # pragma: nocover lines = [] for key, value in cert.items(): if isinstance(value, (list, tuple)): lines.append(f"* {key}:") for item in value: if key in ("subject", "issuer"): for sub_item in item: lines.append(f"* {sub_item[0]}: {sub_item[1]!r}") elif isinstance(item, tuple) and len(item) == 2: lines.append(f"* {item[0]}: {item[1]!r}") else: lines.append(f"* {item!r}") else: lines.append(f"* {key}: {value!r}") return "\n".join(lines) def trace(name: str, info: dict, verbose: bool = False) -> None: console = rich.console.Console() if name == "connection.connect_tcp.started" and verbose: host = info["host"] console.print(f"* Connecting to {host!r}") elif name == "connection.connect_tcp.complete" and verbose: stream = info["return_value"] server_addr = stream.get_extra_info("server_addr") console.print(f"* Connected to {server_addr[0]!r} on port {server_addr[1]}") elif name == "connection.start_tls.complete" and verbose: # pragma: nocover stream = info["return_value"] ssl_object = stream.get_extra_info("ssl_object") version = ssl_object.version() cipher = ssl_object.cipher() server_cert = ssl_object.getpeercert() alpn = ssl_object.selected_alpn_protocol() console.print(f"* SSL established using {version!r} / {cipher[0]!r}") console.print(f"* Selected ALPN protocol: {alpn!r}") if server_cert: console.print("* Server certificate:") console.print(format_certificate(server_cert)) elif name == "http11.send_request_headers.started" and verbose: request = info["request"] print_request_headers(request, http2=False) elif name == "http2.send_request_headers.started" and verbose: # pragma: nocover request = info["request"] print_request_headers(request, http2=True) elif name == "http11.receive_response_headers.complete": http_version, status, reason_phrase, headers = info["return_value"] print_response_headers(http_version, status, reason_phrase, headers) elif name == "http2.receive_response_headers.complete": # pragma: nocover status, headers = info["return_value"] http_version = b"HTTP/2" reason_phrase = None print_response_headers(http_version, status, reason_phrase, headers) def download_response(response: Response, download: typing.BinaryIO) -> None: console = rich.console.Console() console.print() content_length = response.headers.get("Content-Length") with rich.progress.Progress( "[progress.description]{task.description}", "[progress.percentage]{task.percentage:>3.0f}%", rich.progress.BarColumn(bar_width=None), rich.progress.DownloadColumn(), rich.progress.TransferSpeedColumn(), ) as progress: description = f"Downloading [bold]{rich.markup.escape(download.name)}" download_task = progress.add_task( description, total=int(content_length or 0), start=content_length is not None, ) for chunk in response.iter_bytes(): download.write(chunk) progress.update(download_task, completed=response.num_bytes_downloaded) def validate_json( ctx: click.Context, param: typing.Union[click.Option, click.Parameter], value: typing.Any, ) -> typing.Any: if value is None: return None try: return json.loads(value) except json.JSONDecodeError: # pragma: nocover raise click.BadParameter("Not valid JSON") def validate_auth( ctx: click.Context, param: typing.Union[click.Option, click.Parameter], value: typing.Any, ) -> typing.Any: if value == (None, None): return None username, password = value if password == "-": # pragma: nocover password = click.prompt("Password", hide_input=True) return (username, password) def handle_help( ctx: click.Context, param: typing.Union[click.Option, click.Parameter], value: typing.Any, ) -> None: if not value or ctx.resilient_parsing: return print_help() ctx.exit() @click.command(add_help_option=False) @click.argument("url", type=str) @click.option( "--method", "-m", "method", type=str, help=( "Request method, such as GET, POST, PUT, PATCH, DELETE, OPTIONS, HEAD. " "[Default: GET, or POST if a request body is included]" ), ) @click.option( "--params", "-p", "params", type=(str, str), multiple=True, help="Query parameters to include in the request URL.", ) @click.option( "--content", "-c", "content", type=str, help="Byte content to include in the request body.", ) @click.option( "--data", "-d", "data", type=(str, str), multiple=True, help="Form data to include in the request body.", ) @click.option( "--files", "-f", "files", type=(str, click.File(mode="rb")), multiple=True, help="Form files to include in the request body.", ) @click.option( "--json", "-j", "json", type=str, callback=validate_json, help="JSON data to include in the request body.", ) @click.option( "--headers", "-h", "headers", type=(str, str), multiple=True, help="Include additional HTTP headers in the request.", ) @click.option( "--cookies", "cookies", type=(str, str), multiple=True, help="Cookies to include in the request.", ) @click.option( "--auth", "auth", type=(str, str), default=(None, None), callback=validate_auth, help=( "Username and password to include in the request. " "Specify '-' for the password to use a password prompt. " "Note that using --verbose/-v will expose the Authorization header, " "including the password encoding in a trivially reversible format." ), ) @click.option( "--proxies", "proxies", type=str, default=None, help="Send the request via a proxy. Should be the URL giving the proxy address.", ) @click.option( "--timeout", "timeout", type=float, default=5.0, help=( "Timeout value to use for network operations, such as establishing the " "connection, reading some data, etc... [Default: 5.0]" ), ) @click.option( "--follow-redirects", "follow_redirects", is_flag=True, default=False, help="Automatically follow redirects.", ) @click.option( "--no-verify", "verify", is_flag=True, default=True, help="Disable SSL verification.", ) @click.option( "--http2", "http2", type=bool, is_flag=True, default=False, help="Send the request using HTTP/2, if the remote server supports it.", ) @click.option( "--download", type=click.File("wb"), help="Save the response content as a file, rather than displaying it.", ) @click.option( "--verbose", "-v", type=bool, is_flag=True, default=False, help="Verbose. Show request as well as response.", ) @click.option( "--help", is_flag=True, is_eager=True, expose_value=False, callback=handle_help, help="Show this message and exit.", ) def main( url: str, method: str, params: typing.List[typing.Tuple[str, str]], content: str, data: typing.List[typing.Tuple[str, str]], files: typing.List[typing.Tuple[str, click.File]], json: str, headers: typing.List[typing.Tuple[str, str]], cookies: typing.List[typing.Tuple[str, str]], auth: typing.Optional[typing.Tuple[str, str]], proxies: str, timeout: float, follow_redirects: bool, verify: bool, http2: bool, download: typing.Optional[typing.BinaryIO], verbose: bool, ) -> None: """ An HTTP command line client. Sends a request and displays the response. """ if not method: method = "POST" if content or data or files or json else "GET" try: with Client( proxies=proxies, timeout=timeout, verify=verify, http2=http2, ) as client: with client.stream( method, url, params=list(params), content=content, data=dict(data), files=files, # type: ignore json=json, headers=headers, cookies=dict(cookies), auth=auth, follow_redirects=follow_redirects, extensions={"trace": functools.partial(trace, verbose=verbose)}, ) as response: if download is not None: download_response(response, download) else: response.read() if response.content: print_response(response) except RequestError as exc: console = rich.console.Console() console.print(f"[red]{type(exc).__name__}[/red]: {exc}") sys.exit(1) sys.exit(0 if response.is_success else 1)
d58ae3c7d5f559290e4ad6aba0e009878635ebe6
625daac7e73b98935f9fe93e647eb809b48b712e
/Arcade/Intro/adjacentElementsProduct.py
07c848e4a7c18445ca0d1d6cf05d6044c620be21
[]
no_license
aleksaa01/codefights-codesignal
19b2d70779cc60f62511b6f88ae5d049451eac82
a57a5589ab2c9d9580ef44900ea986c826b23051
refs/heads/master
2022-03-15T04:46:40.356440
2019-12-08T15:41:37
2019-12-08T15:41:37
112,034,380
1
0
null
null
null
null
UTF-8
Python
false
false
473
py
def adjacentElementsProduct(arr): max_pair = arr[0]*arr[1] for i in range(1, len(arr)-1): if arr[i]*arr[i+1] > max_pair: max_pair = arr[i]*arr[i+1] return max_pair """ Given an array of integers, find the pair of adjacent elements that has the largest product and return that product. Example For inputArray = [3, 6, -2, -5, 7, 3], the output should be adjacentElementsProduct(inputArray) = 21. 7 and 3 produce the largest product. """
c6492508982755a4e1e8b20b63f7fa75931cdd05
fbd4ecf7046171c4e96267c5982c964db54578f5
/business/p201904/110111_2300/server.py
0872fb79fab8ceec11b2a306e6bc2a815aee5719
[]
no_license
Alvin2580du/alvin_py
6dddcfbfae214694e9f3dafd976101e681f2a66d
82d3e9808073f2145b039ccf464c526cb85274e3
refs/heads/master
2021-05-05T16:01:43.544783
2019-10-29T02:23:59
2019-10-29T02:23:59
117,328,713
12
2
null
2021-03-20T00:06:37
2018-01-13T08:51:49
Python
UTF-8
Python
false
false
3,200
py
import os.path import tornado.httpserver import tornado.ioloop import tornado.options import tornado.web from tornado.options import define, options import sys from gensim.models.word2vec import Word2Vec import numpy as np import jieba from sklearn.externals import joblib ports = sys.argv[1] define("port", default=ports, help="run on the given port", type=int) # 加载模型 imdb_w2v = Word2Vec.load('w2v_model.pkl') clf = joblib.load('svm_model.pkl') # 对每个句子的所有词向量取均值,来生成一个句子的vector def build_sentence_vector(text, size, imdb_w2v): vec = np.zeros(size).reshape((1, size)) count = 0. for word in text: try: vec += imdb_w2v[word].reshape((1, size)) count += 1. except KeyError: continue if count != 0: vec /= count return vec # 构建待预测句子的向量 def get_predict_vecs(words, n_dim=300): train_vecs = build_sentence_vector(words, n_dim, imdb_w2v) return train_vecs # 对单个句子进行情感判断 def svm_predict(string): words = jieba.lcut(string) words_vecs = get_predict_vecs(words) result = clf.predict(words_vecs) if int(result[0]) == 1: return "positive" else: return "negative" class IndexHandler(tornado.web.RequestHandler): def get(self): self.render("index.html") class UserHandler(tornado.web.RequestHandler): def post(self): message = self.get_argument("message") print("输入的句子是:{}".format(message)) res = svm_predict(message) self.render("message.html", message="{}的情感极性是:\n{}".format(message, res)) handlers = [ (r"/", IndexHandler), (r"/user", UserHandler) ] if __name__ == "__main__": """ 测试句子 坐牢,怎么可能轻易放过 把携程亲子园所有的老师全部全家处死一个不留 妈呀,光看视频就已经哭的不行,这些人还有没有人性啊,希望法律严惩,给家长们一个交代。 认错已经不是原谅的理由,必须严惩,孩子的伤害是无法弥补的 中国改改法律吧,就是因为他们以前这种幼师犯罪判个一两年就了事,才有这么多人更甚,最少十年以上,严重判死刑,看有几个还敢的 真应该给这些人判死刑啊 真的是心疼到无法呼吸!!!!!啊啊啊啊啊啊妈的比 没有职业道德就不用当幼师,承受不了孩子的吵闹各种调皮就不要当幼师,真的别当幼师,你都没爱心了,何必去当幼师,可怜的孩子遇见你真的是很可怜 打死都不可惜 我也是位母亲,看到这样的视频,真的是很揪心 简直不配做人!简直无法理解!谁招来的这畜生也得负责任吧!不,畜生都比她强! 这种人希望被国家拉黑 """ template_path = os.path.join(os.path.dirname(__file__), "template") tornado.options.parse_command_line() app = tornado.web.Application(handlers, template_path) http_server = tornado.httpserver.HTTPServer(app) http_server.listen(options.port) tornado.ioloop.IOLoop.instance().start()
f43b801df2a2396b5627c17b19e71a5d8c8eeef8
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_258/ch30_2019_03_10_21_05_56_563616.py
c59f95da9501a2311605f0176a60d8e35f2f4a9f
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
255
py
import math v=int(input('Qual a velocidade do lançamento? ')) a=int(input('Qual o ângulo do lançamento? ')) d=(v**2)*math.sin(2*math.degrees(a))/9.8 if d<96: print('Muito perto') elif d>104: print('Muito longe') else: print('Acertou!')
82de4cfcd9dd16a9de9e20740c96e2672531521a
4cbc8b81d197bc392d1b57856254300331b9738f
/python/apt.py
e87a96e500abda1744a02b482a2c973b8f718a19
[ "MIT" ]
permissive
vcatafesta/chili
87b9606f17cda645ba44cbf2bb4cc4637e18d211
5c734ac88454db76eb2f4e92c13364a5bbc7a93a
refs/heads/main
2023-09-01T01:39:09.457448
2023-08-29T21:23:28
2023-08-29T21:23:28
171,972,556
2
2
null
2019-02-22T01:38:49
2019-02-22T01:26:46
null
UTF-8
Python
false
false
15,595
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # License: MIT # #url = 'http://mazonos.com/packages/' # Official Repository url = 'http://localhost/packages/' # Official Repository #url = 'https://github.com/vcatafesta/ChiliOS/tree/master/' # Official Repository #filecsv = '/var/lib/fetch/database.db' # Repository package list filecsv = 'database.db' # Repository package list dircsv = '/var/lib/fetch/' # Folder for the .csv file dirlist = '/var/lib/banana/list/' # Folder for the .list file PRG = '.chi.zst' #PRG = '.mz' # Flags found = False done = False fi = "" rof = "" end = "" endef = "" next = "" #define PKG_FULLNAME = 0 PKG_ARCH = 1 PKG_BASE = 2 PKG_BASE_VERSION = 3 PKG_VERSION = 4 PKG_BUILD = 5 #Strings choose = '' textAnimate = '' please_connect = 'No route to server! Check your internet connection!' package_not_found = 'Package not found.' # Arrays switches = [ 's', 'search', 'i', 'install', 'r', 'remove', 'w', 'show', 'u', 'update', 'g', 'upgrade', 'c', 'checkdesc' ] modules = ['requests', 'requests_html', 'bs4', 'argparse', 'consolecolor', 'sty'] import sys import os import csv import threading import itertools import time import re for module in modules: try: __import__(module) except Exception as e: print('Installing modules...') os.system('pip3 install ' + str(module)) # os.system('clear') end import requests import requests_html import bs4 from urllib.request import urlopen from bs4 import BeautifulSoup from requests_html import HTMLSession from consolecolor import FontColor from consolecolor import Colors from sty import fg, bg, ef, rs, RgbFg fg.set_style('orange', RgbFg(255, 150, 50)) def version(): print(''' __ _ _ / _| ___| |_ ___| |__ Copyright (C) 2019-2020 Vilmar Catafesta <[email protected]> | |_ / _ \ __/ __| '_ \ | _| __/ || (__| | | | Este programa pode ser redistribuído livremente |_| \___|\__\___|_| |_| sob os termos da Licença Pública Geral GNU. fetch 1.00.00.20200817 ''') def check(): #Checks if the folder exists if not os.path.isdir(dircsv): os.mkdir(dircsv) print('Created folder ' + dircsv + '.') fi # Checks if the file exists if not os.path.isfile(filecsv): os.system('touch ' + filecsv) print('Created file ' + filecsv + '.') os.system('clear') update() fi def main(): try: sys.argv[1] except IndexError: usage() exit(1) else: global choose choose = str(sys.argv[1]) def usage(): print('erro: nenhuma operação especificada (use -h para obter ajuda)') def usage(): print('''uso: fetch <operação> [...] operações: fetch {-h --help} fetch {-V --version} fetch {-D --database} <opções> <pacote(s)> fetch {-F --files} [opções] [pacote(s)] fetch {-Q --query} [opções] [pacote(s)] fetch {-R --remove} [opções] <pacote(s)> fetch {-S --sync} [opções] [pacote(s)] fetch {-T --deptest} [opções] [pacote(s)] fetch {-U --upgrade} [opções] <arquivo(s)> use "fetch {-h --help}" com uma operação para ver as opções disponíveis ''') def internet_on(): try: response = urlopen(url, timeout=10) return True except: return False def animate(): for c in itertools.cycle(['|', '/', '-', '\\']): if done: break fi sys.stdout.write('\r' + textAnimate + c) sys.stdout.flush() time.sleep(0.1) next sys.stdout.write('\r' + textAnimate + 'complete! \n') def s(): search() def search(): global found if (len(sys.argv) >= 3): package = str(sys.argv[2]) else: package = None fi with open(filecsv, 'r') as f: csv_reader = csv.reader(f) count = 0 linepackage() for line in csv_reader: if package: if package in line[0]: count += 1 print("{}({:04d}) {}{:<30}{} {:<20} {:<40}".format(fg.green, count, fg.orange, line[0].replace(PRG, ''), fg.rs, line[1], line[4])) found = True fi else: count += 1 print("{}({:04d}) {}{:<30}{} {:<20} {:<40}".format(fg.green, count, fg.orange, line[0].replace(PRG, ''), fg.rs, line[1], line[4])) found = True fi next print('(' + str(count) + ') package(s) found.') if not found: print(package_not_found) fi end def linepackage(): print(fg.cyan + ' Package version fullname' + fg.rs) return def i(): install() def install(): if internet_on(): try: sys.argv[2] except IndexError: usage() exit(0) else: global found package = str(sys.argv[2]) links = [] packages = [] with open(filecsv, 'r') as f: csv_reader = csv.reader(f) count = 0 linepackage() for line in csv_reader: if package in line[0]: found = True count += 1 print("{}({:04d}) {}{:<30}{} {:<20} {:<40}".format(fg.green, count, fg.orange, line[0].replace(PRG, ''), fg.rs, line[1], line[4])) links.append(url + line[4]) packages.append(line[3]) fi next if found: pkgcount = packages.__len__() pkglist = '' for p in packages: pkglist += (p + ', ') next pkglist = pkglist[:-2] + '.' # print(str(pkgcount) + ' packages found: ' + pkglist.replace(PRG, '')) print() install = input(':: Continue installation? [Y/n] : ') if install == 'Y' or install == 'y': for p in range(pkgcount): cstr = 'curl' cstr += ' -#' cstr += ' -k' cstr += ' -o /tmp/' + packages[p] cstr += ' -O ' + links[p] os.system(cstr) os.system('(banana -i ' + '/tmp/' + packages[p] + '2>&1>/dev/null)') # os.system('rm ' + '/tmp/' + packages[p]) rof else: exit(0) fi else: # if not found print(package_not_found) fi end end else: print(please_connect) exit(0) fi def r(): remove() def remove(): try: sys.argv[2] except IndexError: usage() exit(0) else: global found onlyfiles = [f for f in os.listdir(dirlist) if os.path.isfile(os.path.join(dirlist, f))] r = re.compile(sys.argv[2] + '.*') newlist = list(filter(r.match, onlyfiles)) if newlist: found = True for pack in newlist: package = pack.replace('.list', '') remove = input('You like remove ' + package + '? [Y/n] : ') if remove == 'y' or remove == 'Y': os.system('banana remove ' + package + ' -y') else: exit(0) if not found: print(package_not_found) def w(): show() def show(): try: sys.argv[2] except IndexError: usage() exit(0) else: global found package = str(sys.argv[2]) with open(filecsv, 'r') as f: csv_reader = csv.reader(f) for line in csv_reader: if package in line[0]: found = True pkgname = line[0] version = line[1] internet = internet_on() lDesc = False if line[4]: if internet: r = requests.get(url + line[4] + '.desc' ) if not r.status_code == 404: lDesc = True text = r.text fi fi fi if not lDesc: maintainer = '(unknown)' desc = 'Description not available for this package!' if not internet: desc += '\n' + please_connect fi else: maintainer = (re.findall('maintainer.*', text)[0]).replace("'", '').replace('maintainer=', '').replace('"', '') desc = (re.findall('desc.*', text)[0]).replace("'", '').replace('desc=', '').replace('"', '') #desc = ((text.split('|')[2]).replace('#', '').replace('=', '').replace('desc"', ''))[:-2] fi print( fg.cyan + text + fg.rs ) # print('Package Name: ' + pkgname) # print('Version.....: ' + version) # print('Maintainer..: ' + maintainer) # print('Desc........: ' + desc) # print('#' * 70) fi next if not found: print(package_not_found) fi end end def u(): update() def pause( xVar ): os.system('clear') print( xVar ) resp = 'S' resp = input('Continuar [Y/n] : ') if resp == 'Y' or resp == 'y' or resp == 'S' or resp == 's': return fi exit(1) def update(): if internet_on(): global textAnimate global done if os.path.isfile(filecsv): os.system('rm ' + filecsv) fi result = requests.get(url) src = result.content soup = BeautifulSoup(src, 'html.parser') links = soup.find_all('a') ntotalpkg = 0 for link in links: if '../' in link.text: continue fi if '/' in link.text: urls = url + link.get('href') result = requests.get(urls) src = result.content soup = BeautifulSoup(src, 'html.parser') folders = soup.find_all('a') folder = link.text ncontapkg = 0 for l in folders: pkg = l.get('href') string = '' if l.text.endswith((PRG)): ncontapkg += 1 ntotalpkg += 1 string = pkg pkgsplit = splitpkg(pkg) with open(filecsv, 'a') as f: csv_writer = csv.writer(f) csv_writer.writerow([pkgsplit[PKG_BASE], pkgsplit[PKG_VERSION], pkgsplit[PKG_BUILD], string, folder+string]) end fi rof print("{}::{}Updating... {}({:04d}) {}packages in {}{}{}".format(fg.cyan, fg.rs, fg.cyan, ncontapkg, fg.red, fg.yellow, link.get('href'),fg.rs)) fi rof print('') print("{}({:04d}) {}packages{} in repo".format(fg.cyan, ntotalpkg, fg.red, fg.rs)) done = True else: print(please_connect) fi def splitpkg(cfilename): cfullname = cfilename pkg_arch = cfullname.replace('-any' + PRG,'') pkg_arch = pkg_arch.replace('-x86_64' + PRG,'') # pkg_arch = pkg_arch.replace(PRG,'') carch = cfullname.replace(PRG,'') csplit = pkg_arch.rsplit('-',2) cbase = csplit[0] cbase_version = cfilename.rsplit('-',1)[0] cbuild = csplit[2] cversion = csplit[1] cversion += '-' cversion += cbuild return( cfullname, carch, cbase, cbase_version, cversion, cbuild) def g(): upgrade() def upgrade(): print('Upgrading...') def c(): checkdesc() def checkdesc(): if internet_on(): update() global textAnimate global done found = False nodescs = [] textAnimate = 'Searching ' t = threading.Thread(target=animate) t.start() with open(filecsv, 'r') as f: csv_reader = csv.reader(f) for line in csv_reader: if line[2] == '': found = True nodescs.append(' ' + line[0] + line[1] + '.desc -> not found!') fi end done = True end if found: print('The following packages do not have the .desc file:') for n in nodescs: print(n) else: print('All packages are OK!') fi else: print(please_connect) exit(1) fi switches = [ 's', 'search', 'i', 'install', 'r', 'remove', 'w', 'show', 'u', 'update', 'g', 'upgrade', 'c', 'checkdesc' ] def indirect(i): switcher={ '-h':usage, '--help':usage, '-Sy':update, '-Sw':show, '-Si':install, '-Su':upgrade, '-R':remove, '-Q':search, '-V':version, '-f':lambda: 'force', '-y':lambda: 'auto' } func=switcher.get(i, lambda: 'invalid') return func() try: check() main() # if choose in switches: # functions = locals() # functions[choose]() # else: # usage() # print('Invalid \"' + choose + '\" operation!') indirect(sys.argv[1]) except KeyboardInterrupt: print('\n') exit(0) import sys import argparse #def main(): # parser = argparse.ArgumentParser(description='ChiliOS fetch') # (1) # parser.add_argument('-Sy', nargs='*', type=str, default='', required=False, help='Sync') #(2) # parser.add_argument('-Su', nargs='*', type=str, default='', required=False, help='Sync') #(2) # parser.add_argument('-f', dest='force', nargs='*', type=str, default='', required=False, help='Sync') #(2) # parser.add_argument('-y', dest='auto', nargs='*', type=str, default='', required=False, help='Sync') #(2) # args = parser.parse_args() #(3) # choose = 'Sy' # if choose in switches: # functions = locals() # pause( functions ) # functions['update']() # print("Sy={}".format(args.Sy)) # (4) # print("Su={}".format(args.Su)) # (4) # print(" f={}".format(args.force)) # (4) # print(" y={}".format(args.auto)) # (4) # return 0 if __name__ == '__main__': sys.exit(main())
1f66c2f28360a924a6ad07d2b8c8af414203518d
50f8d8975b1f17c4c6bcb9be29d4f0ed49cb42a5
/Week_04/lemonade-change.py
5e567df5df1217ba3921dd4a56cf9268dd95ae3f
[]
no_license
Jiangjao/-algorithm015
098491b7a9b80626c1d9e15a9125e4e460ee8668
a6969617f4cde1d948cb064c1078d4d510140758
refs/heads/master
2023-01-10T17:42:49.495871
2020-11-16T07:35:04
2020-11-16T07:35:04
289,441,446
0
0
null
null
null
null
UTF-8
Python
false
false
608
py
class Solution(object): def lemonadeChange(self, bills): """ :type bills: List[int] :rtype: bool """ five = ten = 0 for bill in bills: if bill == 5: five += 1 elif bill == 10: if not five: return False five -= 1 ten += 1 else: if ten and five: ten -= 1 five -= 1 elif five >= 3: five -= 3 else: return False return True
5f249cf5e48d2382470baa0a978bc3a0abafafc6
d2ca1ab6ed63983d1bd6497f26a63f0445451844
/2015/05/fc_2015_05_31.py
dc41dc9178467c3c8859ffc19ce4fdb301b45b7d
[ "MIT" ]
permissive
mfwarren/FreeCoding
96636367f4f4a53351535372c5691d7805199f23
58ac87f35ad2004a3514782556762ee0ed72c39a
refs/heads/master
2021-01-19T14:30:09.057354
2015-07-05T05:59:53
2015-07-05T05:59:53
24,469,988
0
0
null
null
null
null
UTF-8
Python
false
false
444
py
#!/usr/bin/env python3 # imports go here # # Free Coding session for 2015-05-31 # Written by Matt Warren # def factors(x): values = [] cursor = x i = 2 while i <= cursor: v = cursor / i if int(v) == v: cursor = v values.append(i) else: i += 1 return values if __name__ == '__main__': print(factors(302)) print(factors(304)) print(factors(30473456))
5229abb6be00316ff90cd09e352230cb2bc258fe
a2d5681a37be0d3b0753a0e979cb4fa7b0398f32
/indexedcorpus.py
84aa2ea572d830a6ae74aed8e35b0c416de90ad2
[]
no_license
stephenroller/class-nlp-project
f7c09281336985ac55d25e886e7aa180e2225580
0362ec1182dc6d3ab54990bbb097339e7bc386a0
refs/heads/master
2020-05-29T23:26:56.024802
2011-05-13T18:30:49
2011-05-13T18:30:49
1,606,152
3
0
null
null
null
null
UTF-8
Python
false
false
1,429
py
#!/usr/bin/evn python import sqlite3 import os from itertools import groupby from util import context_windows class IndexedCorpus(object): def __init__(self, indexfile, corpus_directory=''): self.indexfile = indexfile self.corpus_directory = corpus_directory self.conn = sqlite3.connect(indexfile) def get_unique_words(self): c = self.conn.cursor() c.execute('select word from words order by word'); for row in c: yield row[0] c.close() def get_contexts(self, query): c = self.conn.cursor() c.execute(''' SELECT F.filename, WA.pos FROM words AS W JOIN word_appearances as WA ON (W.id = WA.word) JOIN filenames AS F ON (WA.file = F.id) WHERE W.word = ? ORDER BY WA.file, WA.pos ''', [query] ) for filename, positions in groupby(c, lambda x: x[0]): f = open(os.path.join(self.corpus_directory, filename)) for filename, position in positions: f.seek(position) line = f.readline().strip() yield line f.close() c.close() def __len__(self): c = self.conn.cursor() c.execute('select count(*) from words'); for row in c: count = row[0] c.close() return count
72de8eb136efd770ba9db06215d9ea846c6dd7c9
ceb4ac75c40cd53f24d8f7e0a2f763de309bcfdb
/main4.py
24ac83b28e32c4c98c305c1e1b012cf1ea9f8cf3
[]
no_license
kevinelong/bo
c706d0771dbbf427a67d240f552eef4b7529b877
e08e2d0e07e240cab440733173578f627e0f25ec
refs/heads/master
2022-11-08T22:18:04.053714
2020-07-12T17:17:31
2020-07-12T17:17:31
279,112,257
0
0
null
null
null
null
UTF-8
Python
false
false
2,184
py
class Coordinate: def __init__(self, x, y): self.x = x self.y = y class Size: def __init__(self, width, height): self.width = width self.height = height class Box: def __init__(self, origin:Coordinate, box_size:Size): self.origin = origin self.size = box_size class Item: def __init__(self, name:str, location:Box): self.name = name self.location = location if location is not None else Box(Coordinate(0,0), Size(3,3)) def __str__(self): return f"{self.name} {self.location}" class World: def __init__(self): self.item_list = [] self.bounds = Box(Coordinate(-10,-10), Size(20,20)) def value_at(self,x,y): pixel = Item("",Box(Coordinate(x,y),Size(1,1))) for item in self.item_list: if self.have_collided(pixel,item): return item.name return "." def __str__(self): rows = [] origin = self.bounds.origin for r in range(0,self.bounds.size.height): row = [] for c in range(0,self.bounds.size.width): row.append(self.value_at(c + origin.x, r + origin.y)) rows.append(" ".join(row)) return "\n".join(rows) def add_item(self, item): self.item_list.append(item) def have_collided(self, item1, item2): if item1.location.origin.x + item1.location.size.width <= item2.location.origin.x: return False if item2.location.origin.x + item2.location.size.width <= item1.location.origin.x: return False if item1.location.origin.y + item1.location.size.width <= item2.location.origin.y: return False if item2.location.origin.y + item2.location.size.width <= item1.location.origin.y: return False return True def get_collisions(self): collisions = [] for item1 in self.item_list: for item2 in self.item_list: if item1 != item2 and (item2,item1) not in collisions: if self.have_collided(item1,item2): collisions.append((item1,item2)) return collisions debugging = True def log(text): if debugging: print(text) w = World() add_item = lambda item: w.add_item(item) get_collisions = lambda : w.get_collisions() # TESTS add_item(Item("A",Box(Coordinate(0,0), Size(3,3)))) add_item(Item("B",Box(Coordinate(-3,-3), Size(4,4)))) print(w) c = get_collisions() log(c) assert( len(c) == 1 )
54b883b64ef60b20fe3d570fc00563c41892ba76
0bc8d6abec44e1187499f93803f82514f2b53fc6
/Base/BaseReq1.py
fa5421d9d89f69e236d3949b433faf8e14ac7258
[]
no_license
IamBiJav/auto_http_api
932db2b4f2e1b67f2c0760806afd086494d92007
5a7ff01845e43d441fef8ae955b056085ab2dd10
refs/heads/master
2023-03-16T22:20:50.102610
2021-03-16T13:41:07
2021-03-16T13:41:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,054
py
import requests import json import ast from Base.BaseElementEnmu import Element from Base.BaseParams import BaseFuzzParams from Base.BaseStatistics import writeInfo class Config(object): def __init__(self, sessions): self.sessions = sessions def config_req(self, kw): app = {} header = {"Accept": "*/*", "Content-Type": "application/json;charset=utf-8"} for item in kw: url = "%s://%s" % (item["protocol"], item["url"]) print("==请求url:%s" % url) print("==请求参数:%s" % item["params"]) params = "{}" if item.get("params"): params = item.get("params") if item["method"] == "get": res = self.sessions.get(url, data=json.dumps(ast.literal_eval(params)), headers=header, verify=False) elif item["method"] == "post": res = self.sessions.post(url, data=json.dumps(ast.literal_eval(params)), headers=header, verify=False) else: print("现在只针post和ge方法进行了测试,其他方法请自行扩展") app["url"] = item["url"] app["method"] = item["method"] app["params"] = item["params"] app["code"] = str(res.status_code) app["msg"] = item["mark"] app["hope"] = item.get("hope", "") app["res"] = str(res.text) app["ress"] = res # 传给检查函数进行解析 print("==响应结果:%s=" % app["res"]) app["result"] = self.__check(app["hope"], app["ress"]) print("==响应码:%s=" % app["code"]) writeInfo(app, Element.INFO_FILE) def config_req_pict(self, kw, req=None): app = {} header = {"Accept": "*/*", "Content-Type": "application/json;charset=utf-8"} for item in kw: url = "%s://%s" % (item["protocol"], item["url"]) # 如果有参数才做模糊测试,没有做正向场景测试 if item.get("params"): print("进行逆向场景测试") params = BaseFuzzParams().param_fi(ast.literal_eval(item["params"])) for i in params: _info = "" if i.get("info", "null") != "null": _info = i.get("info", "参数正确") i.pop("info") if item["method"] == "get": res = self.sessions.get(url, data=json.dumps(i), headers=header) else: res = self.sessions.post(url, data=json.dumps(i), headers=header) app["url"] = item["url"] app["method"] = item["method"] app["params"] = str(i) app["code"] = str(res.status_code) app["msg"] = item["mark"] + "_" + _info # app["hope"] = item.get("hope", "") app["hope"] = "" app["res"] = str(res.text) app["result"] = "" print("请求url:%s" % url) print("请求参数:%s" % app["params"]) print("响应码:%s" % app["code"]) print("响应结果:%s" % app["res"]) writeInfo(app, Element.INFO_FILE) else: self.config_req(kw) def __check(self, hope, res): resp = json.dumps(json.loads(res.text), separators=(',', ':')) is_check = 0 # 0表示期望值不存在,没有进行检查;1成功;-1失败 hopes = hope.split("|") if len(hopes) and len(hope): is_check = 1 # 循环检查期望值是否在实际值中能找到 for j in hopes: if resp.find(j) == -1: is_check = -1 break if is_check == 0: return "未检查" elif is_check == 1: return "成功" else: return "失败"
9db0cb4a0ab5668893f4ed5fcb8d6a4515118cab
9b64f0f04707a3a18968fd8f8a3ace718cd597bc
/huaweicloud-sdk-smn/huaweicloudsdksmn/v2/model/list_topics_item.py
941aeb67db97af3db8459de64cdaa873c70458bf
[ "Apache-2.0" ]
permissive
jaminGH/huaweicloud-sdk-python-v3
eeecb3fb0f3396a475995df36d17095038615fba
83ee0e4543c6b74eb0898079c3d8dd1c52c3e16b
refs/heads/master
2023-06-18T11:49:13.958677
2021-07-16T07:57:47
2021-07-16T07:57:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,993
py
# coding: utf-8 import re import six class ListTopicsItem: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'topic_urn': 'str', 'name': 'str', 'display_name': 'str', 'push_policy': 'int', 'enterprise_project_id': 'str' } attribute_map = { 'topic_urn': 'topic_urn', 'name': 'name', 'display_name': 'display_name', 'push_policy': 'push_policy', 'enterprise_project_id': 'enterprise_project_id' } def __init__(self, topic_urn=None, name=None, display_name=None, push_policy=None, enterprise_project_id=None): """ListTopicsItem - a model defined in huaweicloud sdk""" self._topic_urn = None self._name = None self._display_name = None self._push_policy = None self._enterprise_project_id = None self.discriminator = None self.topic_urn = topic_urn self.name = name self.display_name = display_name self.push_policy = push_policy self.enterprise_project_id = enterprise_project_id @property def topic_urn(self): """Gets the topic_urn of this ListTopicsItem. Topic的唯一的资源标识。 :return: The topic_urn of this ListTopicsItem. :rtype: str """ return self._topic_urn @topic_urn.setter def topic_urn(self, topic_urn): """Sets the topic_urn of this ListTopicsItem. Topic的唯一的资源标识。 :param topic_urn: The topic_urn of this ListTopicsItem. :type: str """ self._topic_urn = topic_urn @property def name(self): """Gets the name of this ListTopicsItem. 创建topic的名字。 :return: The name of this ListTopicsItem. :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this ListTopicsItem. 创建topic的名字。 :param name: The name of this ListTopicsItem. :type: str """ self._name = name @property def display_name(self): """Gets the display_name of this ListTopicsItem. Topic的显示名,推送邮件消息时,作为邮件发件人显示。 :return: The display_name of this ListTopicsItem. :rtype: str """ return self._display_name @display_name.setter def display_name(self, display_name): """Sets the display_name of this ListTopicsItem. Topic的显示名,推送邮件消息时,作为邮件发件人显示。 :param display_name: The display_name of this ListTopicsItem. :type: str """ self._display_name = display_name @property def push_policy(self): """Gets the push_policy of this ListTopicsItem. 消息推送的策略,该属性目前不支持修改,后续将支持修改。0表示发送失败,保留到失败队列,1表示直接丢弃发送失败的消息。 :return: The push_policy of this ListTopicsItem. :rtype: int """ return self._push_policy @push_policy.setter def push_policy(self, push_policy): """Sets the push_policy of this ListTopicsItem. 消息推送的策略,该属性目前不支持修改,后续将支持修改。0表示发送失败,保留到失败队列,1表示直接丢弃发送失败的消息。 :param push_policy: The push_policy of this ListTopicsItem. :type: int """ self._push_policy = push_policy @property def enterprise_project_id(self): """Gets the enterprise_project_id of this ListTopicsItem. 企业项目ID。 :return: The enterprise_project_id of this ListTopicsItem. :rtype: str """ return self._enterprise_project_id @enterprise_project_id.setter def enterprise_project_id(self, enterprise_project_id): """Sets the enterprise_project_id of this ListTopicsItem. 企业项目ID。 :param enterprise_project_id: The enterprise_project_id of this ListTopicsItem. :type: str """ self._enterprise_project_id = enterprise_project_id def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): import simplejson as json return json.dumps(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ListTopicsItem): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
7f7621b29075cba866d4c2b7508de19821719201
2c6bc39f2adf3731109519bfaf8a3a24ae913834
/admin/admin/settings.py
60c38e44516af552aee83c9bf875de446377cff1
[]
no_license
aliensmart/django-admin
a1289e1a01d64b416f64db1ed435ba23f4c2b8ca
0732358e4ace57abbf621df66c75b85219226d07
refs/heads/master
2022-09-01T15:28:54.664846
2020-05-20T20:34:54
2020-05-20T20:34:54
265,679,957
0
0
null
null
null
null
UTF-8
Python
false
false
3,085
py
""" Django settings for admin project. Generated by 'django-admin startproject' using Django 3.0.6. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'y*wb35kj$9zpphxs5r)@*t)mer@+zc#6fol0ho29$#cis8r*ai' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'admin.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'admin.wsgi.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATIC_URL = '/static/'
07cab7f377e53810bca7f3ea6fd25e8f93c45bf2
ae7884af1ec3965b7c0eec22edad6b74f78b7ba6
/server/src/uds/core/workers/stats_collector.py
23a2506832f5b1b824b8e41f3fa32e05c785c451
[]
no_license
glyptodon/openuds
f4eefa319a3ead827dad999d24e5ee3854d1345d
3908c875d30ec332490fc8c049bb537e10f10d08
refs/heads/master
2021-07-12T20:58:49.281242
2021-03-05T22:42:55
2021-03-05T22:42:55
62,921,174
0
1
null
2016-07-08T22:33:44
2016-07-08T22:33:44
null
UTF-8
Python
false
false
4,456
py
# -*- coding: utf-8 -*- # # Copyright (c) 2013-2020 Virtual Cable S.L.U. # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of Virtual Cable S.L. nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ @author: Adolfo Gómez, dkmaster at dkmon dot com """ import logging import typing from uds.models import ServicePool, Authenticator from uds.core.util.state import State from uds.core.util.stats import counters from uds.core.managers import statsManager from uds.core.jobs import Job logger = logging.getLogger(__name__) class DeployedServiceStatsCollector(Job): """ This Job is responsible for collecting stats for every deployed service every ten minutes """ frecuency = 599 # Once every ten minutes, 601 is prime, 599 also is prime friendly_name = 'Deployed Service Stats' def run(self): logger.debug('Starting Deployed service stats collector') servicePoolsToCheck: typing.Iterable[ServicePool] = ServicePool.objects.filter( state=State.ACTIVE ).iterator() for servicePool in servicePoolsToCheck: try: fltr = servicePool.assignedUserServices().exclude( state__in=State.INFO_STATES ) assigned = fltr.count() inUse = fltr.filter(in_use=True).count() counters.addCounter(servicePool, counters.CT_ASSIGNED, assigned) counters.addCounter(servicePool, counters.CT_INUSE, inUse) except Exception: logger.exception( 'Getting counters for service pool %s', servicePool.name ) for auth in Authenticator.objects.all(): fltr = auth.users.filter(userServices__isnull=False).exclude( userServices__state__in=State.INFO_STATES ) users = auth.users.all().count() users_with_service = fltr.distinct().count() number_assigned_services = fltr.count() counters.addCounter(auth, counters.CT_AUTH_USERS, users) counters.addCounter( auth, counters.CT_AUTH_SERVICES, number_assigned_services ) counters.addCounter( auth, counters.CT_AUTH_USERS_WITH_SERVICES, users_with_service ) logger.debug('Done Deployed service stats collector') class StatsCleaner(Job): """ This Job is responsible of housekeeping of stats tables. This is done by: * Deleting all records * Optimize table """ frecuency = 3600 * 24 * 15 # Ejecuted just once every 15 days friendly_name = 'Statistic housekeeping' def run(self): logger.debug('Starting statistics cleanup') try: statsManager().cleanupCounters() except Exception: logger.exception('Cleaning up counters') try: statsManager().cleanupEvents() except Exception: logger.exception('Cleaning up events') logger.debug('Done statistics cleanup')
115c7c7c5a07a0ed5e1214fc406d01cf55ee2eef
f1267f4a0fae414f16b2429a5c3b1cbd42df8794
/lib/Daemon.py
dded7072b2770aaa31cf9b096453386af2a21d63
[]
no_license
oraant/learn_zabbix_odbm
3ff3b0318e802ebff9603c8daefdf67cda772b94
35a010b5dc0a8bc2989b4d3618f795b08a637063
refs/heads/master
2020-12-24T05:46:10.358982
2016-03-21T10:25:29
2016-03-21T10:25:29
73,452,172
0
0
null
null
null
null
UTF-8
Python
false
false
1,800
py
# coding:utf-8 import sys,os class Daemon: def __init__(self,stdin='/dev/null',stdout='/dev/null', stderr='dev/null'): '''初始化,指定标准输入输出文件''' self.stdin = stdin self.stdout = stdout self.stderr = stderr def daemonize(self): '''Fork当前进程为守护进程,重定向标准文件描述符''' #Perform first fork. try: pid = os.fork() if pid > 0: sys.exit(0) #first parent out except OSError, e: sys.stderr.write("fork #1 failed: (%d) %s\n" %(e.errno, e.strerror)) sys.exit(1) #从母体环境脱离,更改路径,更改默认权限,以及创建新的SESSION(为了摆脱控制终端,防止响应原SESSION的sighup,sigint等信号) os.chdir("/") os.umask(0) os.setsid() #执行第二次fork,防止建立了新SESSION的进程(已成为无终端的会话领导)打开新的终端。 try: pid = os.fork() if pid > 0: sys.exit(0) #second parent out except OSError, e: sys.stderr.write("fork #2 failed: (%d) %s]n" %(e.errno,e.strerror)) sys.exit(1) #进程已经是守护进程了,重定向标准文件描述符 for f in sys.stdout, sys.stderr: f.flush() si = file(self.stdin, 'r') so = file(self.stdout,'a+') se = file(self.stderr,'a+',0) os.dup2(si.fileno(), sys.stdin.fileno()) os.dup2(so.fileno(), sys.stdout.fileno()) os.dup2(se.fileno(), sys.stderr.fileno()) if __name__ == '__main__': logfile = sys.argv[1] d = Daemon('/dev/null',logfile,logfile) d.daemonize() while(True): pass
1258f388ef158ca0387123f39fb49abe83baedb8
bc01e1d158e7d8f28451a7e108afb8ec4cb7d5d4
/sage/src/sage/interfaces/giac.py
a144910f149d64f01f0c0f4ac473b19e74454a0b
[]
no_license
bopopescu/geosci
28792bda1ec1f06e23ba8dcb313769b98f793dad
0d9eacbf74e2acffefde93e39f8bcbec745cdaba
refs/heads/master
2021-09-22T17:47:20.194233
2018-09-12T22:19:36
2018-09-12T22:19:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
36,943
py
r""" Interface to Giac (adapted by F. Han from William Stein and Gregg Musiker maple's interface) You must have the optional Giac interpreter installed and available as the command ``giac`` in your PATH in order to use this interface. You need a giac version supporting "giac --sage" ( roughly after 0.9.1 ). In this case you do not have to install any optional Sage packages. If giac is not already installed, you can download binaries or sources or spkg (follow the sources link) from the homepage: Homepage <http://www-fourier.ujf-grenoble.fr/~parisse/giac.html> Type ``giac.[tab]`` for a list of all the functions available from your Giac install. Type ``giac.[tab]?`` for Giac's help about a given function. Type ``giac(...)`` to create a new Giac object, and ``giac.eval(...)`` to run a string using Giac (and get the result back as a string). If the giac spkg is installed, you should find the full html documentation there:: $SAGE_LOCAL/share/giac/doc/en/cascmd_local/index.html EXAMPLES:: sage: giac('3 * 5') # optional - giac 15 sage: giac.eval('ifactor(2005)') # optional - giac '5*401' sage: giac.ifactor(2005) # optional - giac 2005 sage: l=giac.ifactors(2005) ; l; l[2] # optional - giac [5,1,401,1] 401 sage: giac.fsolve('x^2=cos(x)+4', 'x','0..5') # optional - giac [1.9140206190... sage: giac.factor('x^5 - y^5') # optional - giac (x-y)*(x^4+x^3*y+x^2*y^2+x*y^3+y^4) sage: R.<x,y>=QQ[];f=(x+y)^5;f2=giac(f);(f-f2).normal() #optional - giac 0 sage: x,y=giac('x,y'); giac.int(y/(cos(2*x)+cos(x)),x) #random; optional - giac y*2*((-(tan(x/2)))/6+(-2*1/6/sqrt(3))*ln(abs(6*tan(x/2)-2*sqrt(3))/abs(6*tan(x/2)+2*sqrt(3)))) If the string "error" (case insensitive) occurs in the output of anything from Giac, a RuntimeError exception is raised. Tutorial -------- AUTHORS: - Gregg Musiker (2006-02-02): initial version. (adapted to giac by F.Han) This tutorial is based on the Maple Tutorial for number theory from http://www.math.mun.ca/~drideout/m3370/numtheory.html. There are several ways to use the Giac Interface in Sage. We will discuss two of those ways in this tutorial. #. If you have a giac expression such as :: factor( (x^5-1)); We can write that in sage as :: sage: giac('factor(x^5-1)') # optional - giac (x-1)*(x^4+x^3+x^2+x+1) Notice, there is no need to use a semicolon. #. Since Sage is written in Python, we can also import giac commands and write our scripts in a pythonic way. For example, ``factor()`` is a giac command, so we can also factor in Sage using :: sage: giac('(x^5-1)').factor() # optional - giac (x-1)*(x^4+x^3+x^2+x+1) where ``expression.command()`` means the same thing as ``command(expression)`` in Giac. We will use this second type of syntax whenever possible, resorting to the first when needed. :: sage: giac('(x^12-1)/(x-1)').normal() # optional - giac x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1 The normal command will reduce a rational function to the lowest terms. In giac, simplify is slower than normal because it tries more sophisticated simplifications (ex algebraic extensions) The factor command will factor a polynomial with rational coefficients into irreducible factors over the ring of integers (if your default configuration of giac (cf .xcasrc) has not allowed square roots). So for example, :: sage: giac('(x^12-1)').factor( ) # optional - giac (x-1)*(x+1)*(x^2+1)*(x^2-x+1)*(x^2+x+1)*(x^4-x^2+1) :: sage: giac('(x^28-1)').factor( ) # optional - giac (x-1)*(x+1)*(x^2+1)*(x^6-x^5+x^4-x^3+x^2-x+1)*(x^6+x^5+x^4+x^3+x^2+x+1)*(x^12-x^10+x^8-x^6+x^4-x^2+1) Another important feature of giac is its online help. We can access this through sage as well. After reading the description of the command, you can press q to immediately get back to your original prompt. Incidentally you can always get into a giac console by the command. :: sage: giac.console() # not tested sage: !giac # not tested Note that the above two commands are slightly different, and the first is preferred. For example, for help on the giac command factors, we type :: sage: giac.help('factors') # not tested :: sage: alpha = giac((1+sqrt(5))/2) # optional - giac sage: beta = giac(1-sqrt(5))/2 # optional - giac sage: f19 = alpha^19 - beta^19/sqrt(5) # optional - giac sage: f19 # optional - giac (sqrt(5)/2+1/2)^19-((-sqrt(5)+1)/2)^19/sqrt(5) sage: (f19-(5778*sqrt(5)+33825)/5).normal() # optional - giac 0 Let's say we want to write a giac program now that squares a number if it is positive and cubes it if it is negative. In giac, that would look like :: mysqcu := proc(x) if x > 0 then x^2; else x^3; fi; end; In Sage, we write :: sage: mysqcu = giac('proc(x) if x > 0 then x^2 else x^3 fi end') # optional - giac sage: mysqcu(5) # optional - giac 25 sage: mysqcu(-5) # optional - giac -125 More complicated programs should be put in a separate file and loaded. """ ############################################################################# # Copyright (C) 2005 William Stein <[email protected]> # # Distributed under the terms of the GNU General Public License (GPL) # # http://www.gnu.org/licenses/ ############################################################################# from __future__ import print_function import os from sage.interfaces.expect import Expect, ExpectElement, ExpectFunction, FunctionElement, gc_disabled from sage.interfaces.tab_completion import ExtraTabCompletion import pexpect from sage.env import DOT_SAGE from sage.misc.pager import pager COMMANDS_CACHE = '%s/giac_commandlist_cache.sobj'%DOT_SAGE class Giac(Expect): r""" Interface to the Giac interpreter. You must have the optional Giac interpreter installed and available as the command ``giac`` in your PATH in order to use this interface. Try the command: print(giac._install_hints()) for more informations on giac installation. Type ``giac.[tab]`` for a list of all the functions available from your Giac install. Type ``giac.[tab]?`` for Giac's help about a given function. Type ``giac(...)`` to create a new Giac object. Full html documentation for giac is avaible from your giac installation at ``$PREFIX``/share/giac/doc/en/cascmd_en/index.html EXAMPLES: Any Giac instruction can be evaluated as a string by the giac command. You can access the giac functions by adding the ``giac.`` prefix to the usual Giac name. :: sage: l=giac('normal((y+sqrt(2))^4)'); l # optional - giac y^4+4*sqrt(2)*y^3+12*y^2+8*sqrt(2)*y+4 sage: f=giac('(u,v)->{ if (u<v){ [u,v] } else { [v,u] }}');f(1,2),f(3,1) # optional - giac ([1,2], [1,3]) The output of the giac command is a Giac object, and it can be used for another giac command. :: sage: l.factors() #optional - giac [y+sqrt(2),4] sage: giac('(x^12-1)').factor( ) # optional - giac (x-1)*(x+1)*(x^2+1)*(x^2-x+1)*(x^2+x+1)*(x^4-x^2+1) sage: giac('assume(y>0)'); giac('y^2=3').solve('y') #optional - giac y ...[sqrt(3)] You can create some Giac elements and avoid many quotes like this: :: sage: x,y,z=giac('x,y,z');type(y) # optional - giac <class 'sage.interfaces.giac.GiacElement'> sage: I1=(1/(cos(2*y)+cos(y))).integral(y,0,pi/4).simplify() #optional - giac sage: (I1-((-2*ln((sqrt(3)-3*tan(1/8*pi))/(sqrt(3)+3*tan(1/8*pi)))*sqrt(3)-3*tan(1/8*pi))/9)).normal() # optional - giac 0 sage: ((y+z*sqrt(5))*(y-sqrt(5)*z)).normal() # optional - giac y^2-5*z^2 Polynomials or elements of SR can be evaluated directly by the giac interface. :: sage: R.<a,b>=QQ[];f=(2+a+b);p=giac.gcd(f^3+5*f^5,f^2+f^5);p;R(p); #optional - giac a^2+2*a*b+4*a+b^2+4*b+4 a^2 + 2*a*b + b^2 + 4*a + 4*b + 4 Variable names in python and giac are independant. :: sage: a=sqrt(2);giac('Digits:=30;a:=5');a,giac('a'),giac(a),giac(a).evalf() # optional - giac 30 (sqrt(2), 5, sqrt(2), 1.41421356237309504880168872421) """ def __init__(self, maxread=None, script_subdirectory=None, server=None, server_tmpdir=None, logfile=None): """ Create an instance of the Giac interpreter. EXAMPLES:: sage: giac == loads(dumps(giac)) # optional - giac True """ Expect.__init__(self, name = 'giac', prompt = '[0-9]*>> ', command = "giac --sage", init_code= ['maple_mode(0);I:=i;'], # coercion could be broken in maple_mode script_subdirectory = script_subdirectory, restart_on_ctrlc = False, server = server, server_tmpdir = server_tmpdir, verbose_start = False, logfile = logfile, eval_using_file_cutoff=1000) def _function_class(self): """ EXAMPLES:: sage: giac._function_class() # optional - giac <class 'sage.interfaces.giac.GiacFunction'> :: sage: type(giac.diff) # optional - giac <class 'sage.interfaces.giac.GiacFunction'> """ return GiacFunction def _keyboard_interrupt(self): """ The pexepect interface for giac has a very poor support of keyboard interruptions. """ print("Interrupting %s..." % self) self._expect.sendline(chr(3)) # send ctrl-c self._expect.expect(self._prompt) # self._expect.expect(self._prompt) raise RuntimeError("Ctrl-c pressed while running %s"%self) def __reduce__(self): """ EXAMPLES:: sage: giac.__reduce__() (<function reduce_load_Giac at 0x...>, ()) sage: f, args = _ sage: f(*args) Giac """ return reduce_load_Giac, tuple([]) def _read_in_file_command(self, filename): r""" Returns the string used to read filename into Giac. EXAMPLES:: sage: giac._read_in_file_command('test') # optional - giac 'read "test"' :: sage: filename = tmp_filename() # optional - giac sage: f = open(filename,'w') # optional - giac sage: f.write('xx := 22;\n') # optional - giac sage: f.close() # optional - giac sage: giac.read(filename) # optional - giac sage: giac.get('xx').strip() # optional - giac '22' """ return 'read "%s"'%filename def _quit_string(self): """ EXAMPLES:: sage: giac._quit_string() # optional - giac '@d' :: sage: m = Giac() # optional - giac sage: a = m(2) # optional - giac sage: m.is_running() # optional - giac True sage: m.quit() # optional - giac sage: m.is_running() # optional - giac False """ return '@d' def _install_hints(self): """ Hints for installing Giac on your computer. EXAMPLES:: sage: print(giac._install_hints()) In order... """ return r""" In order to use the Giac interface you need to have Giac installed and have a program called "giac" in your PATH. You need a giac version supporting "giac --sage" ( roughly after 0.9.1 of march 2011). Some giac instructions and the help's langage depend of you LANG variable. To obtain inline help for giac commands, you also need to have the program "cas_help" in your PATH. If giac is not already installed, you can download binaries or sources or a spkg ( for the spkg follow the sources link) from the homepage: Homepage http://www-fourier.ujf-grenoble.fr/~parisse/giac.html Full html documentation for giac is avaible from your giac installation at: ``$PREFIX``/share/giac/doc/en/cascmd_en/index.html If you got giac from the spkg then ``$PREFIX`` is ``$SAGE_LOCAL`` """ def expect(self): """ Returns the pexpect object for this Giac session. EXAMPLES:: sage: m = Giac() # optional - giac sage: m.expect() is None # optional - giac True sage: m._start() # optional - giac sage: m.expect() # optional - giac Giac with PID ... running .../giac --sage sage: m.quit() # optional - giac """ return self._expect def console(self): """ Spawn a new Giac command-line session. EXAMPLES:: sage: giac_console() # not tested - giac ... Homepage http://www-fourier.ujf-grenoble.fr/~parisse/giac.html Released under the GPL license 3.0 or above See http://www.gnu.org for license details ------------------------------------------------- Press CTRL and D simultaneously to finish session Type ?commandname for help 0>> """ giac_console() def completions(self, s): """ Return all commands that complete the command starting with the string s. EXAMPLES:: sage: c = giac.completions('cas') # optional - giac sage: 'cas_setup' in c # optional - giac True """ if self._expect is None: self._start() E = self._expect E.sendline('%s%s%s'%(s,chr(63),chr(13))) t = E.timeout E.timeout=0.3 # since some things have no completion try: E.expect('----') except pexpect.TIMEOUT: E.timeout = t return [] E.timeout = t v = E.before E.expect(self._prompt) E.expect(self._prompt) return v.split()[1:] def _commands(self): """ Return list of all commands defined in Giac. EXAMPLES:: sage: c = giac._commands() # optional - giac sage: len(c) > 100 # optional - giac True sage: 'Psi' in c # optional - giac True """ try: v = sum([self.completions(chr(65+n)) for n in range(26)], []) + \ sum([self.completions(chr(97+n)) for n in range(26)], []) except RuntimeError: print("\n" * 3) print("*" * 70) print("WARNING: You do not have a working version of Giac installed!") print("*" * 70) v = [] v.sort() return v def _tab_completion(self, verbose=True, use_disk_cache=True): """ Returns a list of all the commands defined in Giac and optionally (per default) store them to disk. EXAMPLES:: sage: c = giac._tab_completion(use_disk_cache=False, verbose=False) # optional - giac sage: len(c) > 100 # optional - giac True sage: 'factors' in c # optional - giac True """ try: return self.__tab_completion except AttributeError: import sage.misc.persist if use_disk_cache: try: self.__tab_completion = sage.misc.persist.load(COMMANDS_CACHE) return self.__tab_completion except IOError: pass if verbose: print("\nBuilding Giac command completion list (this takes") print("a few seconds only the first time you do it).") print("To force rebuild later, delete %s." % COMMANDS_CACHE) v = self._commands() self.__tab_completion = v if len(v) > 200: # Giac is actually installed. sage.misc.persist.save(v, COMMANDS_CACHE) return v def cputime(self, t=None): r""" Returns the amount of CPU time that the Giac session has used. If ``t`` is not None, then it returns the difference between the current CPU time and ``t``. EXAMPLES:: sage: t = giac.cputime() # optional - giac sage: t # random; optional - giac 0.02 sage: x = giac('x') # optional - giac sage: giac.diff(x^2, x) # optional - giac 2*x sage: giac.cputime(t) # random; optional - giac 0.0 """ if t is None: return float(self('time()')) else: return float(self('time() - %s'%float(t))) def _eval_line(self, line, allow_use_file=True, wait_for_prompt=True, restart_if_needed=False): """ EXAMPLES:: sage: giac._eval_line('2+2') # optional - giac '4' sage: A=matrix([range(280)]) # optional - giac sage: GA=giac(A) # optional - giac """ with gc_disabled(): z = Expect._eval_line(self, line, allow_use_file=allow_use_file, wait_for_prompt=wait_for_prompt) if z.lower().find("error") != -1: raise RuntimeError("An error occurred running a Giac command:\nINPUT:\n%s\nOUTPUT:\n%s"%(line, z)) return z def eval(self, code, strip=True, **kwds): r""" Send the code x to the Giac interpreter. Remark: To enable multi-lines codes in the notebook magic mode: ``%giac``, the ``\n`` are removed before sending the code to giac. INPUT: - code -- str - strip -- Default is True and removes ``\n`` EXAMPLES:: sage: giac.eval("2+2;\n3") #optional - giac '4,3' sage: giac.eval("2+2;\n3",False) # optional - giac '4\n3' sage: s='g(x):={\nx+1;\nx+2;\n}' # optional - giac sage: giac(s) # optional - giac (x)->{ x+1; x+2; } sage: giac.g(5) # optional - giac 7 """ #we remove \n to enable multiline code in the notebook magic mode %giac if strip: code = code.replace("\n","").strip() ans = Expect.eval(self, code, strip=strip, **kwds).strip() return ans def set(self, var, value): """ Set the variable var to the given value. EXAMPLES:: sage: giac.set('xx', '2') # optional - giac sage: giac.get('xx') # optional - giac '2' """ cmd = '%s:=%s:;'%(var,value) #if giac is not in maple mode ( maple_mode(0)) out = self.eval(cmd) if out.find("error") != -1: raise TypeError("Error executing code in Giac\nCODE:\n\t%s\nGiac ERROR:\n\t%s"%(cmd, out)) def get(self, var): """ Get the value of the variable var. EXAMPLES:: sage: giac.set('xx', '2') # optional - giac sage: giac.get('xx') # optional - giac '2' """ s = self.eval('%s'%var) return s def _object_class(self): """ Returns the class of GiacElements. EXAMPLES:: sage: giac._object_class() <class 'sage.interfaces.giac.GiacElement'> :: sage: m = giac(2) # optional - giac sage: type(m) # optional - giac <class 'sage.interfaces.giac.GiacElement'> """ return GiacElement def _function_element_class(self): """ Returns the GiacFunctionElement class. EXAMPLES:: sage: giac._function_element_class() <class 'sage.interfaces.giac.GiacFunctionElement'> :: sage: two = giac(2) # optional - giac sage: type(two.gcd) # optional - giac <class 'sage.interfaces.giac.GiacFunctionElement'> """ return GiacFunctionElement def _equality_symbol(self): """ Returns the symbol used for equality testing in Giac. EXAMPLES:: sage: giac._equality_symbol() # optional - giac '==' sage: giac(2) == giac(2) # optional - giac True """ return '==' def _true_symbol(self): """ Returns the symbol used for truth in Giac. EXAMPLES:: sage: giac._true_symbol() '1' :: sage: giac(2) == giac(2) # optional - giac True """ return '1' def _assign_symbol(self): """ Returns the symbol used for assignment in Giac. EXAMPLES:: sage: giac._assign_symbol() ':=' """ return ":=" def _help(self, str): r""" Returns the Giac help on ``str``. EXAMPLES:: sage: giac._help('gcd') # not tested ; output may vary (LANG) "...gcd - greatest common divisor of polynomials... """ return os.popen('cas_help %s'%str).read() # return os.popen('echo "?%s" | giac'%str).read() def help(self, str): """ Display Giac help about str. This is the same as typing "?str" in the Giac console. INPUT: - ``str`` - a string to search for in the giac help system EXAMPLES:: sage: giac.help('Psi') # not tested - depends of giac and $LANG Psi(a,n)=nth-derivative of the function DiGamma (=ln@Gamma) at point a (Psi(a,0)=Psi(a))... """ pager()(self._help(str)) def clear(self, var): """ Clear the variable named var. EXAMPLES:: sage: giac.set('xx', '2') # optional - giac sage: giac.get('xx') # optional - giac '2' sage: giac.clear('xx') # optional - giac sage: giac.get('xx') # optional - giac 'xx' """ self.eval('purge(%s)'%var) def version(self): """ Wrapper for giac's version(). EXAMPLES:: sage: giac.version() # optional - giac "giac... """ return giac('version()') class GiacFunction(ExpectFunction): def _sage_doc_(self): """ Returns the Giac help for this function. This gets called when doing "?" on self. EXAMPLES:: sage: giac.gcd._sage_doc_() # not tested ; output may vary LANG "gcd - greatest common divisor of polynomials... """ M = self._parent return M._help(self._name) class GiacFunctionElement(FunctionElement): def _sage_doc_(self): """ Returns the Giac help for this function. This gets called when doing "?" on self. EXAMPLES:: sage: two = giac(2) # optional - giac sage: two.gcd._sage_doc_() # not tested; output may vary LANG "...gcd - greatest common divisor of polynomials... """ return self._obj.parent()._help(self._name) class GiacElement(ExpectElement): def __float__(self): """ Returns a floating point version of self. EXAMPLES:: sage: float(giac(1/2)) # optional - giac 0.5 sage: type(_) # optional - giac <type 'float'> """ return float(giac.eval('evalf(%s)' % self.name())) def unapply(self, var): """ Creates a Giac function in the given arguments from a Giac symbol. EXAMPLES:: sage: f=giac('y^3+1+t') # optional - giac sage: g=(f.unapply('y,t')) # optional - giac sage: g # optional - giac (y,t)->y^3+1+t sage: g(1,2) # optional - giac 4 """ return giac('unapply(%s,%s)'%(self,var)) def __hash__(self): """ Returns a integer representing the hash of self. These examples are optional, and require Giac to be installed. You don't need to install any Sage packages for this. EXAMPLES:: sage: m = giac('x^2+y^2') # optional - giac sage: hash(m) # random; optional - giac 4614285348919569149 """ return hash(giac.eval('string(%s);'%self.name())) def __cmp__(self, other): """ Compare equality between self and other, using giac. These examples are optional, and require Giac to be installed. You don't need to install any Sage packages for this. EXAMPLES:: sage: a = giac(5) # optional - giac sage: b = giac(5) # optional - giac sage: a == b # optional - giac True sage: a == 5 # optional - giac True :: sage: c = giac(3) # optional - giac sage: a == c # optional - giac False sage: a < c # optional - giac False sage: a < 6 # optional - giac True sage: c <= a # optional - giac True :: TESTS:: sage: x = var('x') # optional - giac sage: t = giac((x+1)^2) # optional - giac sage: u = giac(x^2+2*x+1) # optional - giac sage: u == t # optional - giac False """ P = self.parent() if P.eval("evalb(%s %s %s)"%(self.name(), P._equality_symbol(), other.name())) == P._true_symbol(): return 0 # (to be tested with giac). Maple does not allow comparing objects of different types and # it raises an error in this case. # We catch the error, and return True for < try: if P.eval("evalb(%s %s %s)"%(self.name(), P._lessthan_symbol(), other.name())) == P._true_symbol(): return -1 except RuntimeError as e: msg = str(e) if 'is not valid' in msg and 'to < or <=' in msg: if (hash(str(self)) < hash(str(other))): return -1 else: return 1 else: raise RuntimeError(e) if P.eval("evalb(%s %s %s)"%(self.name(), P._greaterthan_symbol(), other.name())) == P._true_symbol(): return 1 # everything is supposed to be comparable in Python, so we define # the comparison thus when no comparable in interfaced system. if (hash(self) < hash(other)): return -1 else: return 1 def _tab_completion(self): """ EXAMPLES:: sage: a = giac(2) # optional - giac sage: 'sin' in a._tab_completion() # optional - giac True """ return self.parent()._tab_completion() def __len__(self): """ EXAMPLES:: sage: len(giac([1,2,3])) # optional - giac 3 """ return int(self.size()) def __iter__(self): """ EXAMPLES:: sage: l = giac([1,2,3]) # optional - giac sage: list(iter(l)) # optional - giac [1, 2, 3] """ for i in range(len(self)): # zero-indexed if giac is maple_mode(0) yield self[i] def __del__(self): """ Note that clearing object is pointless since it wastes time. (Ex: otherwise doing a=0 after a = (giac('x+y+z')^40).normal() is very slow ) EXAMPLES:: sage: a = giac(2) # optional - giac sage: a.__del__() # optional - giac sage: a # optional - giac 2 sage: del a # optional - giac sage: a Traceback (most recent call last): ... NameError: name 'a' is not defined """ return def __repr__(self): """ Return a string representation of self. These examples are optional, and require Giac to be installed. You don't need to install any Sage packages for this. EXAMPLES:: sage: x = var('x') sage: giac(x) # optional - giac x sage: giac(5) # optional - giac 5 sage: M = matrix(QQ,2,range(4)) # optional - giac sage: giac(M) # optional - giac [[0,1],[2,3]] """ self._check_valid() return self.parent().get(self._name) def _latex_(self): r""" You can output Giac expressions in latex. EXAMPLES:: sage: print(latex(giac('(x^4 - y)/(y^2-3*x)'))) # optional - giac "\frac{(x^{4}-y)}{(y^{2}-3\cdot x)}" """ return self.parent().eval('latex(%s)'%self.name()) def _matrix_(self, R): r""" Return matrix over the (Sage) ring R determined by self, where self should be a Giac matrix. Warning: It is slow, don't convert big matrices. EXAMPLES:: sage: R.<x,y>=QQ[] # optional - giac sage: M=giac('matrix(4,4,(k,l)->(x^k-y^l))'); M # optional - giac matrix[[0,1-y,1-y^2,1-y^3],[x-1,x-y,x-y^2,x-y^3],[x^2-1,x^2-y,x^2-y^2,x^2-y^3],[x^3-1,x^3-y,x^3-y^2,x^3-y^3]] sage: M.eigenvals() # random; optional - giac 0,0,(x^3+x^2+x-y^3-y^2-y+sqrt(x^6+2*x^5+3*x^4-14*x^3*y^3+2*x^3*y^2+2*x^3*y+6*x^3+2*x^2*y^3-14*x^2*y^2+2*x^2*y+5*x^2+2*x*y^3+2*x*y^2-14*x*y+4*x+y^6+2*y^5+3*y^4+6*y^3+5*y^2+4*y-12))/2,(x^3+x^2+x-y^3-y^2-y-sqrt(x^6+2*x^5+3*x^4-14*x^3*y^3+2*x^3*y^2+2*x^3*y+6*x^3+2*x^2*y^3-14*x^2*y^2+2*x^2*y+5*x^2+2*x*y^3+2*x*y^2-14*x*y+4*x+y^6+2*y^5+3*y^4+6*y^3+5*y^2+4*y-12))/2 sage: Z=matrix(R,M);Z # optional - giac [ 0 -y + 1 -y^2 + 1 -y^3 + 1] [ x - 1 x - y -y^2 + x -y^3 + x] [ x^2 - 1 x^2 - y x^2 - y^2 -y^3 + x^2] [ x^3 - 1 x^3 - y x^3 - y^2 x^3 - y^3] sage: parent(Z) # optional - giac Full MatrixSpace of 4 by 4 dense matrices over Multivariate Polynomial Ring in x, y over Rational Field """ v = self.dim() n = int(v[0]) m = int(v[1]) from sage.matrix.matrix_space import MatrixSpace M = MatrixSpace(R, n, m) entries = [[R(self[r, c]) for c in range(m)] for r in range(n)] return M(entries) def _sage_(self): r""" Convert a giac expression back to a Sage expression. This currently does not implement a parser for the Giac output language, therefore only very simple expressions will convert successfully. Warning: List conversion is slow. EXAMPLE:: sage: m = giac('x^2 + 5*y') # optional - giac sage: m.sage() # optional - giac x^2 + 5*y :: sage: m = giac('sin(2*sqrt(1-x^2)) * (1 - cos(1/x))^2') # optional - giac sage: m.trigexpand().sage() # optional - giac 2*cos(sqrt(-x^2 + 1))*cos(1/x)^2*sin(sqrt(-x^2 + 1)) - 4*cos(sqrt(-x^2 + 1))*cos(1/x)*sin(sqrt(-x^2 + 1)) + 2*cos(sqrt(-x^2 + 1))*sin(sqrt(-x^2 + 1)) """ result = repr(self) if str(self.type()) != 'DOM_LIST' : try: from sage.symbolic.all import SR return SR(result) except Exception: raise NotImplementedError("Unable to parse Giac output: %s" % result) else: return [entry.sage() for entry in self] def integral(self, var='x', min=None, max=None): r""" Return the integral of self with respect to the variable x. INPUT: - ``var`` - variable - ``min`` - default: None - ``max`` - default: None Returns the definite integral if xmin is not None, otherwise returns an indefinite integral. EXAMPLES:: sage: y=giac('y');f=(sin(2*y)/y).integral(y).simplify(); f # optional - giac Si(2*y) sage: f.diff(y).simplify() # optional - giac sin(2*y)/y :: sage: f = giac('exp(x^2)').integral('x',0,1) ; f # optional - giac 1.46265174... sage: x,y=giac('x'),giac('y');integrate(cos(x+y),'x=0..pi').simplify() # optional - giac -2*sin(y) """ if min is None: return giac('int(%s,%s)'%(self.name(),var)) else: if max is None: raise ValueError("neither or both of min/max must be specified.") return giac('int(%s,%s,%s,%s)'%(self.name(),var,giac(min),giac(max))) integrate=integral def sum(self, var, min=None, max=None): r""" Return the sum of self with respect to the variable x. INPUT: - ``var`` - variable - ``min`` - default: None - ``max`` - default: None Returns the definite integral if xmin is not None, otherwise returns an indefinite integral. EXAMPLES:: sage: giac('1/(1+k^2)').sum('k',-oo,+infinity).simplify() # optional - giac (pi*exp(pi)^2+pi)/(exp(pi)^2-1) """ if min is None: return giac('sum(%s,%s)'%(self.name(),var)) else: if max is None: raise ValueError("neither or both of min/max must be specified.") return giac('sum(%s,%s,%s,%s)'%(self.name(),var,giac(min),giac(max))) # An instance giac = Giac() def reduce_load_Giac(): """ Returns the giac object created in sage.interfaces.giac. EXAMPLES:: sage: from sage.interfaces.giac import reduce_load_Giac sage: reduce_load_Giac() Giac """ return giac def giac_console(): """ Spawn a new Giac command-line session. EXAMPLES:: sage: giac.console() # not tested - giac ... Homepage http://www-fourier.ujf-grenoble.fr/~parisse/giac.html Released under the GPL license 3.0 or above See http://www.gnu.org for license details ------------------------------------------------- Press CTRL and D simultaneously to finish session Type ?commandname for help """ from sage.repl.rich_output.display_manager import get_display_manager if not get_display_manager().is_in_terminal(): raise RuntimeError('Can use the console only in the terminal. Try %%giac magics instead.') os.system('giac') def __doctest_cleanup(): """ EXAMPLES:: sage: from sage.interfaces.giac import __doctest_cleanup sage: m = giac(2) # optional - giac sage: giac.is_running() # optional - giac True sage: __doctest_cleanup() sage: giac.is_running() False """ import sage.interfaces.quit sage.interfaces.quit.expect_quitall()
[ "valber@HPC" ]
valber@HPC
f41facc51474c9c8b75bdf9eb8cbff2452c343ac
f409f0b5be2bccdc76041a308b28964b00565c2b
/untitled/urls.py
93f59be44255ae6fefe35db65a6c61417a4d3618
[]
no_license
yingliufengpeng/demo_django_blog
b9df1e9176ffd66fe9cf6b8fcbad34092aaa8c53
27b3e88ebc7e84f8b4d2a8844abd35104bec2bdb
refs/heads/master
2021-01-17T07:50:52.081607
2017-06-26T18:48:56
2017-06-26T18:48:56
95,317,444
0
0
null
null
null
null
UTF-8
Python
false
false
1,704
py
"""untitled URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.8/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Add an import: from blog import urls as blog_urls 2. Add a URL to urlpatterns: url(r'^blog/', include(blog_urls)) """ from django.conf.urls import include, url from django.contrib import admin from django.conf import settings from django.views import static from demo import views urlpatterns = [ url(r'^admin/', include(admin.site.urls)), url(r"^uploads/(?P<path>.*)$", static.serve, {"document_root": settings.MEDIA_ROOT}), url(r"^login/", views.login, name='login'), url(r"^logout/", views.logout, name='logout'), url(r"^register/", views.register, name='register'), url(r"^index/", views.index, name='index'), url(r"^home/", views.home, name='home'), url(r"^article/", views.article, name='article'), url(r"^add_article/", views.add_article, name='add_article'), url(r"^upload_img/", views.upload_img, name='upload_img'), url(r"^article_ajax_add/", views.article_ajax_add, name='article_ajax_add'), url(r"^modify_article/", views.modify_article, name='modify_article'), url(r"^article_ajax_modify/", views.article_ajax_modify, name='article_ajax_modify'), url(r"^article_ajax_delete/", views.article_ajax_delete, name='article_ajax_delete'), ]
c2113be94bd6ef86abbc7380563b0a18cabd088f
f45cc0049cd6c3a2b25de0e9bbc80c25c113a356
/LeetCode/动态规划法(dp)/背包问题/474. 一和零.py
ee1171e6057672507a105886d84a225938f263c0
[]
no_license
yiming1012/MyLeetCode
4a387d024969bfd1cdccd4f581051a6e4104891a
e43ee86c5a8cdb808da09b4b6138e10275abadb5
refs/heads/master
2023-06-17T06:43:13.854862
2021-07-15T08:54:07
2021-07-15T08:54:07
261,663,876
2
0
null
null
null
null
UTF-8
Python
false
false
2,788
py
""" 474. 一和零 给你一个二进制字符串数组 strs 和两个整数 m 和 n 。 请你找出并返回 strs 的最大子集的大小,该子集中 最多 有 m 个 0 和 n 个 1 。 如果 x 的所有元素也是 y 的元素,集合 x 是集合 y 的 子集 。   示例 1: 输入:strs = ["10", "0001", "111001", "1", "0"], m = 5, n = 3 输出:4 解释:最多有 5 个 0 和 3 个 1 的最大子集是 {"10","0001","1","0"} ,因此答案是 4 。 其他满足题意但较小的子集包括 {"0001","1"} 和 {"10","1","0"} 。{"111001"} 不满足题意,因为它含 4 个 1 ,大于 n 的值 3 。 示例 2: 输入:strs = ["10", "0", "1"], m = 1, n = 1 输出:2 解释:最大的子集是 {"0", "1"} ,所以答案是 2 。   提示: 1 <= strs.length <= 600 1 <= strs[i].length <= 100 strs[i] 仅由 '0' 和 '1' 组成 1 <= m, n <= 100 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/ones-and-zeroes 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。 """ from typing import List class Solution: def findMaxForm1(self, strs: List[str], m: int, n: int) -> int: """ 三维dp @param strs: @param m: @param n: @return: """ size = len(strs) # dp[i][j][k]:表示前i个字符串构成j个0,k个1的最大子集 dp = [[[0] * (n + 1) for _ in range(m + 1)] for _ in range(size + 1)] for i in range(1, size + 1): zero = strs[i - 1].count('0') one = strs[i - 1].count('1') for j in range(m + 1): for k in range(n + 1): # 这里需要从前往后赋值 dp[i][j][k] = dp[i - 1][j][k] if j >= zero and k >= one: dp[i][j][k] = max(dp[i - 1][j][k], dp[i - 1][j - zero][k - one] + 1) return dp[-1][-1][-1] def findMaxForm2(self, strs: List[str], m: int, n: int) -> int: """ 二维 @param strs: @param m: @param n: @return: """ size = len(strs) # dp[i][j][k]:表示前i个字符串构成j个0,k个1的最大子集 dp = [[0] * (n + 1) for _ in range(m + 1)] for i in range(1, size + 1): zero = strs[i - 1].count('0') one = strs[i - 1].count('1') for j in range(m, zero - 1, -1): for k in range(n, one - 1, -1): dp[j][k] = max(dp[j][k], dp[j - zero][k - one] + 1) return dp[-1][-1] if __name__ == '__main__': strs = ["10", "0001", "111001", "1", "0"] m = 5 n = 3 print(Solution().findMaxForm1(strs, m, n)) print(Solution().findMaxForm2(strs, m, n))
56f16db5640a5744b67e7f88a950990ad72782a6
21b0b4c27193898207751c91b8b2ed168a1b1638
/py/py_0383_divisibility_comparison_between_factorials.py
6e66399ac758ee89f0245e09912ace51ce300130
[ "MIT" ]
permissive
lcsm29/project-euler
67560a4e66968f1671a3d7ecf2dda6c956893dca
fab794ece5aa7a11fc7c2177f26250f40a5b1447
refs/heads/main
2023-07-04T11:45:24.374841
2021-08-07T08:20:41
2021-08-07T08:20:41
371,808,781
0
0
null
null
null
null
UTF-8
Python
false
false
605
py
# Solution of; # Project Euler Problem 383: Divisibility comparison between factorials # https://projecteuler.net/problem=383 # # Let f5(n) be the largest integer x for which 5x divides n. For example, # f5(625000) = 7. Let T5(n) be the number of integers i which satisfy # f5((2·i-1)!) < 2·f5(i!) and 1 ≤ i ≤ n. It can be verified that T5(103) = 68 # and T5(109) = 2408210. Find T5(1018). # # by lcsm29 http://github.com/lcsm29/project-euler import timed def dummy(n): pass if __name__ == '__main__': n = 1000 i = 10000 prob_id = 383 timed.caller(dummy, n, i, prob_id)
da31943f12cab72657cccbf301ca3e51137991fa
6b29d66ba7927129b68bc00db769f0edf1babaea
/SoftLayer/CLI/mq/endpoints_list.py
179663919c224900057d00eea255084ae140b781
[ "MIT" ]
permissive
tdurden82/softlayer-python
65f42923c347a164995dfc267829721032de261d
0eed20fa4adedd3228d91d929bb8befb1e445e49
refs/heads/master
2021-01-17T10:01:48.087450
2015-10-19T18:38:53
2015-10-19T18:38:53
46,301,339
0
1
null
null
null
null
UTF-8
Python
false
false
699
py
"""List SoftLayer Message Queue Endpoints.""" # :license: MIT, see LICENSE for more details. import SoftLayer from SoftLayer.CLI import environment from SoftLayer.CLI import formatting import click @click.command() @environment.pass_env def cli(env): """List SoftLayer Message Queue Endpoints.""" manager = SoftLayer.MessagingManager(env.client) regions = manager.get_endpoints() table = formatting.Table(['name', 'public', 'private']) for region, endpoints in regions.items(): table.add_row([ region, endpoints.get('public') or formatting.blank(), endpoints.get('private') or formatting.blank(), ]) env.fout(table)
92916397d8bf8d6741c6ac3a5ea1959e5458d171
4d87e41fa51a3f777512982553b9bf4f32325c2f
/Scripts/pip3-script.py
7e22278ba12539d9a302792add86e495297ccf05
[]
no_license
Leno1993/RecommendSystem
75bc8a045abbd83a127133cac80feb3149ce2802
c97126126e86dd309804aa7b5da8df62b6491472
refs/heads/master
2020-05-09T12:59:28.410270
2019-03-24T13:53:48
2019-03-24T13:53:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
386
py
#!D:\PycharmWorkSpace\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'pip==9.0.1','console_scripts','pip3' __requires__ = 'pip==9.0.1' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==9.0.1', 'console_scripts', 'pip3')() )
6cd99aa856870945383ad551d176b967727db0ba
4851d160a423b4a65e81a75d5b4de5218de958ee
/Pig Sursurunga.py
cd4d4594217fdde6c6d1df1dd137ceb730f8f010
[]
no_license
LarisaOvchinnikova/python_codewars
519508e5626303dcead5ecb839c6d9b53cb3c764
5399f4be17e4972e61be74831703a82ce9badffd
refs/heads/master
2023-05-05T14:52:02.100435
2021-05-25T18:36:51
2021-05-25T18:36:51
319,399,343
1
0
null
null
null
null
UTF-8
Python
false
false
655
py
https://www.codewars.com/kata/5536aba6e4609cc6a600003d import re def sursurungal(txt): arr = re.split(r'(\W+)', txt) res = [] i = 0 while i < len(arr): if arr[i].isdigit(): n = int(arr[i]) if n in [0,1]: res.append(f"{arr[i]} {arr[i+2]}") else: word = arr[i+2] word = word[:-1] if n == 2: res.append(f"{n} bu{word}") if 3<=n<=9: res.append(f"{n} {word}zo") if n>=10: res.append(f"{n} ga{word}ga") i+=3 else: res.append(arr[i]) i+=1 return "".join(res)
8865db146159f578256de4ca7df771ec7049b312
d2f4eb41c95e35a21c257554efbaf18a557d4f4a
/KneiborsClassfier.py
9ebdbadd0a59fb28173de4d19d2b21347c5b7885
[ "Apache-2.0" ]
permissive
madcow2021/Insect_Identification
1d7fbf5ce4a5d72d4994e5af2078701787eb08b4
ae9e30c09f47b343664b3cb18e893fedcd84b335
refs/heads/master
2022-02-03T22:31:17.108726
2019-06-05T01:34:46
2019-06-05T01:34:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,355
py
# coding=utf-8 import pandas as pd # 创建特征列表 column_names = ['P_rect', 'P_extend', 'P_spherical', 'P_leaf', 'P_circle', 'Species'] # column_names = ['P_rect', 'P_extend', 'P_spherical', 'P_leaf', 'P_circle','P_complecate', 'Species'] data = pd.read_csv('data/data.csv', names=column_names) # print data.shape # 这个功能快要被抛弃了,分割训练和测试集 from sklearn.cross_validation import train_test_split X_train, X_test, Y_train, Y_test = train_test_split(data[column_names[0:5]], data[column_names[5]], test_size=0.25, random_state=33) # print Y_train.value_counts() # print Y_test.value_counts() # 数据整理,但是整形的,需要注意 # from sklearn.preprocessing import StandardScaler # ss = StandardScaler() # X_train = ss.fit_transform(X_train) # X_test = ss.transform(X_test) from sklearn.neighbors import KNeighborsClassifier knc = KNeighborsClassifier() knc.fit(X_train, Y_train) knc_y_predict = knc.predict(X_test) from sklearn.metrics import classification_report print "LR 精确度:" + str(knc.score(X_test, Y_test)) print classification_report(Y_test, knc_y_predict, target_names=[ 'fly','wo','jingui','zhang','zhizhu']) # 保存训练结果,供后面直接使用 from sklearn.externals import joblib joblib.dump(knc,'model/knc.model')
cd0dd0ac210bbca6c8922fd1b4b55b90ea0ad896
d94b6845aeeb412aac6850b70e22628bc84d1d6d
/gfsa/model/end_to_end_stack.py
0dcad41dab30b003212c181acf40bf2de50d6b57
[ "CC-BY-4.0", "Apache-2.0" ]
permissive
ishine/google-research
541aea114a68ced68736340e037fc0f8257d1ea2
c1ae273841592fce4c993bf35cdd0a6424e73da4
refs/heads/master
2023-06-08T23:02:25.502203
2023-05-31T01:00:56
2023-05-31T01:06:45
242,478,569
0
0
Apache-2.0
2020-06-23T01:55:11
2020-02-23T07:59:42
Jupyter Notebook
UTF-8
Python
false
false
16,457
py
# coding=utf-8 # Copyright 2023 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Model components for an end-to-end-trainable graph/automaton hybrid. The components defined in this module share a common interface (input graph, node embeddings, edge embeddings) -> (node embeddings, edge embeddings) which allows them to be composed with each other. Note that most components either modify node embeddings or edge embeddings but not both. Also note that the output edge embeddings are allowed to be of a different size; in particular, the components that add new edge types use SharedGraphContext.edges_are_embedded to determine how to modify the edge embeddings. """ from typing import Dict, List, Optional, Tuple import dataclasses import flax import gin import jax import jax.numpy as jnp from gfsa import automaton_builder from gfsa import jax_util from gfsa.datasets import graph_bundle from gfsa.model import automaton_layer from gfsa.model import edge_supervision_models from gfsa.model import graph_layers from gfsa.model import model_util from gfsa.model import side_outputs # TODO(ddjohnson) Move common layers out of `edge_supervision_models`. # Flax adds name keyword arguments. # pylint: disable=unexpected-keyword-arg NodeAndEdgeEmbeddings = Tuple[jax_util.NDArray, jax_util.NDArray] @dataclasses.dataclass class SharedGraphContext: """Shared information about the input graph. Attributes: bundle: The input graph. static_metadata: Padded size of the graph. edge_types_to_indices: Mapping from string edge names to edge type indices. builder: Automaton builder associated with this graph. edges_are_embedded: Whether the "edge_embeddings" represent edge types that are embedded into vectors (True), or just edge type adjacency matrices that are concatenated together. """ bundle: graph_bundle.GraphBundle static_metadata: automaton_builder.EncodedGraphMetadata edge_types_to_indices: Dict[str, int] builder: automaton_builder.AutomatonBuilder edges_are_embedded: bool def _add_edges(old_edge_array, new_edge_types, edges_are_embedded, add_reverse = True): """Helper function to add edges of a new edge type. If edges_are_embedded=True, we assume `old_edge_dim` is an embedding matrix; the new edges are embedded and then added into this matrix. Otherwise, we assume `old_edge_dim` is a stacked set of adjacency matrices, and concatenate the new types. Args: old_edge_array: <float32[num_nodes, num_nodes, old_edge_dim]> new_edge_types: <float32[num_nodes, num_nodes, new_edge_types]>, which should be between 0 and 1, one for each added edge type. edges_are_embedded: Whether edge types are embedded. add_reverse: Whether to add reverse edges as well with a different type. Returns: <float32[num_nodes, num_nodes, output_edge_dim]>, where output_edge_dim = old_edge_dim if edges_are_embedded=True, and otherwise output_edge_dim = old_edge_dim + new_edge_types """ if add_reverse: new_edge_types = jnp.concatenate( [new_edge_types, new_edge_types.transpose((1, 0, 2))], -1) if edges_are_embedded: # Project the outputs into new edge embeddings. # (No bias is used so that an absorbing probability of 0 produces no change # in the edge embeddings.) new_edge_type_embeddings = flax.deprecated.nn.Dense( new_edge_types, features=old_edge_array.shape[-1], bias=False, name="new_edge_type_embeddings") output_edge_array = old_edge_array + new_edge_type_embeddings else: # Concatenate new embedding. output_edge_array = jnp.concatenate([old_edge_array, new_edge_types], axis=-1) return output_edge_array def _shared_automaton_logic( graph_context, node_embeddings, edge_embeddings, variant_weights): """Helper function for shared automaton logic.""" # Run the automaton. edge_weights = automaton_layer.FiniteStateGraphAutomaton( encoded_graph=graph_context.bundle.automaton_graph, variant_weights=variant_weights, dynamic_metadata=graph_context.bundle.graph_metadata, static_metadata=graph_context.static_metadata, builder=graph_context.builder) return (node_embeddings, _add_edges(edge_embeddings, edge_weights.transpose([1, 2, 0]), graph_context.edges_are_embedded)) @flax.deprecated.nn.module @gin.configurable def variantless_automaton( graph_context, node_embeddings, edge_embeddings): """Runs an automaton without variants. Args: graph_context: Input graph for this example. node_embeddings: Current node embeddings, as <float32[num_nodes, node_embedding_dim]> edge_embeddings: Current edge embeddings, as <float32[num_nodes, num_nodes, edge_embedding_dim]> Returns: New node and edge embeddings. Node embeddings will not be modified. Edge embeddings will be modified by adding a new edge type (either embedded or concatenated based on graph_context.edges_are_embedded). """ return _shared_automaton_logic( graph_context, node_embeddings, edge_embeddings, variant_weights=None) @flax.deprecated.nn.module @gin.configurable def edge_variant_automaton( graph_context, node_embeddings, edge_embeddings, variant_edge_types = gin.REQUIRED): """Runs an automaton with variants based on edges in the input graph. Args: graph_context: Input graph for this example. node_embeddings: Current node embeddings, as <float32[num_nodes, node_embedding_dim]> edge_embeddings: Current edge embeddings, as <float32[num_nodes, num_nodes, edge_embedding_dim]> variant_edge_types: List of edge types used as variants. Returns: New node and edge embeddings. Node embeddings will not be modified. Edge embeddings will be modified by adding a new edge type (either embedded or concatenated based on graph_context.edges_are_embedded). """ # Set up variants from edge types. variant_edge_type_indices = [ graph_context.edge_types_to_indices[type_str] for type_str in variant_edge_types ] num_edge_types = len(graph_context.edge_types_to_indices) variant_weights = edge_supervision_models.variants_from_edges( graph_context.bundle, graph_context.static_metadata, variant_edge_type_indices, num_edge_types) return _shared_automaton_logic(graph_context, node_embeddings, edge_embeddings, variant_weights) @flax.deprecated.nn.module @gin.configurable def embedding_variant_automaton( graph_context, node_embeddings, edge_embeddings, num_variants = gin.REQUIRED): """Runs an automaton with variants based on node embeddings. Args: graph_context: Input graph for this example. node_embeddings: Current node embeddings, as <float32[num_nodes, node_embedding_dim]> edge_embeddings: Current edge embeddings, as <float32[num_nodes, num_nodes, edge_embedding_dim]> num_variants: How many variants to use. Returns: New node and edge embeddings. Node embeddings will not be modified. Edge embeddings will be modified by adding a new edge type (either embedded or concatenated based on graph_context.edges_are_embedded). """ if num_variants <= 1: raise ValueError( "Must have at least one variant to use embedding_variant_automaton.") # Generate variants using a pairwise readout of the node embeddings. variant_logits = graph_layers.BilinearPairwiseReadout( node_embeddings, num_variants, name="variant_logits") variant_logits = side_outputs.encourage_discrete_logits( variant_logits, distribution_type="categorical", name="variant_logits") variant_weights = jax.nn.softmax(variant_logits) return _shared_automaton_logic(graph_context, node_embeddings, edge_embeddings, variant_weights) @flax.deprecated.nn.module @gin.configurable def nri_encoder_readout( graph_context, node_embeddings, edge_embeddings, num_edge_types = gin.REQUIRED): """Modifies edge embeddings using an NRI encoder. Note that we use a sigmoid rather than a softmax, because we don't necessarily want to enforce having exactly one edge type per pair of nodes. Args: graph_context: Input graph for this example. node_embeddings: Current node embeddings, as <float32[num_nodes, node_embedding_dim]> edge_embeddings: Current edge embeddings, as <float32[num_nodes, num_nodes, edge_embedding_dim]> num_edge_types: How many edge types to produce. Returns: New node and edge embeddings. Node embeddings will not be modified. Edge embeddings will be modified by adding a new edge type (either embedded or concatenated based on graph_context.edges_are_embedded). """ # Run the NRI readout layer. logits = graph_layers.NRIReadout( node_embeddings=node_embeddings, readout_dim=num_edge_types) new_edge_weights = jax.nn.sigmoid(logits) mask = ( jnp.arange(new_edge_weights.shape[0]) < graph_context.bundle.graph_metadata.num_nodes) new_edge_weights = jnp.where(mask[:, None, None], new_edge_weights, jnp.zeros_like(new_edge_weights)) return (node_embeddings, _add_edges(edge_embeddings, new_edge_weights, graph_context.edges_are_embedded)) class UniformRandomWalk(flax.deprecated.nn.Module): """Adds edges according to a uniform random walk along the graph.""" @gin.configurable("UniformRandomWalk") def apply( self, graph_context, node_embeddings, edge_embeddings, forward_edge_types = gin.REQUIRED, reverse_edge_types = gin.REQUIRED, walk_length_log2 = gin.REQUIRED, ): """Modifies edge embeddings using a uniform random walk. Uses an efficient repeated-squaring technique to compute the absorbing distribution. Args: graph_context: Input graph for this example. node_embeddings: Current node embeddings, as <float32[num_nodes, node_embedding_dim]> edge_embeddings: Current edge embeddings, as <float32[num_nodes, num_nodes, edge_embedding_dim]> forward_edge_types: Edge types to use in the forward direction. As a list of lists to allow configuring groups of edges in config files; this will be flattened before use. reverse_edge_types: Edge types to use in the reverse direction. Note that reversed edge types are given a separate embedding from forward edge types; undirected edges should be represented by adding two edges in opposite directions and then only using `forward_edge_types`. Also a list of lists, as above. walk_length_log2: Base-2 logarithm of maximum walk length; this determines how many times we will square the transition matrix (doubling the walk length). Returns: New node and edge embeddings. Node embeddings will not be modified. Edge embeddings will be modified by adding a new edge type (either embedded or concatenated based on graph_context.edges_are_embedded). """ num_nodes = node_embeddings.shape[0] # pylint: disable=g-complex-comprehension forward_edge_type_indices = [ graph_context.edge_types_to_indices[type_str] for group in forward_edge_types for type_str in group ] reverse_edge_type_indices = [ graph_context.edge_types_to_indices[type_str] for group in reverse_edge_types for type_str in group ] # pylint: enable=g-complex-comprehension adjacency = graph_layers.edge_mask( edges=graph_context.bundle.edges, num_nodes=num_nodes, num_edge_types=len(graph_context.edge_types_to_indices), forward_edge_type_indices=forward_edge_type_indices, reverse_edge_type_indices=reverse_edge_type_indices) adjacency = jnp.maximum(adjacency, jnp.eye(num_nodes)) absorbing_logit = self.param( "absorbing_logit", shape=(), initializer=lambda *_: jax.scipy.special.logit(0.1)) absorbing_prob = jax.nn.sigmoid(absorbing_logit) nonabsorbing_prob = jax.nn.sigmoid(-absorbing_logit) walk_matrix = nonabsorbing_prob * adjacency / jnp.sum( adjacency, axis=1, keepdims=True) # A, I # A^2, A + I # (A^2)^2 = A^4, (A + I)A^2 + (A + I) = A^3 + A^2 + A + I # ... def step(state, _): nth_power, nth_partial_sum = state return (nth_power @ nth_power, nth_power @ nth_partial_sum + nth_partial_sum), None (_, partial_sum), _ = jax.lax.scan( step, (walk_matrix, jnp.eye(num_nodes)), None, length=walk_length_log2) approx_visits = absorbing_prob * partial_sum logits = model_util.safe_logit(approx_visits) logits = model_util.ScaleAndShift(logits) edge_weights = jax.nn.sigmoid(logits) return (node_embeddings, _add_edges(edge_embeddings, edge_weights[:, :, None], graph_context.edges_are_embedded)) @flax.deprecated.nn.module def ggnn_adapter(graph_context, node_embeddings, edge_embeddings): """Adapter function to run GGNN steps. Args: graph_context: Input graph for this example. node_embeddings: Current node embeddings, as <float32[num_nodes, node_embedding_dim]> edge_embeddings: Current edge embeddings, as <float32[num_nodes, num_nodes, edge_embedding_dim]> Returns: New node and edge embeddings. Node embeddings are processed by a GGNN, and edge embeddings are returned unchanged. """ del graph_context return ( edge_supervision_models.ggnn_steps(node_embeddings, edge_embeddings), edge_embeddings, ) @flax.deprecated.nn.module def transformer_adapter( graph_context, node_embeddings, edge_embeddings): """Adapter function to run transformer blocks. Args: graph_context: Input graph for this example. node_embeddings: Current node embeddings, as <float32[num_nodes, node_embedding_dim]> edge_embeddings: Current edge embeddings, as <float32[num_nodes, num_nodes, edge_embedding_dim]> Returns: New node and edge embeddings. Node embeddings are processed by a transformer, and edge embeddings are returned unchanged. """ return ( edge_supervision_models.transformer_steps( node_embeddings, edge_embeddings, neighbor_mask=None, num_real_nodes_per_graph=( graph_context.bundle.graph_metadata.num_nodes), mask_to_neighbors=False), edge_embeddings, ) @flax.deprecated.nn.module def nri_adapter(graph_context, node_embeddings, edge_embeddings): """Adapter function to run NRI blocks. Args: graph_context: Input graph for this example. node_embeddings: Current node embeddings, as <float32[num_nodes, node_embedding_dim]> edge_embeddings: Current edge embeddings, as <float32[num_nodes, num_nodes, edge_embedding_dim]> Returns: New node and edge embeddings. Node embeddings are processed by a NRI-style model, and edge embeddings are returned unchanged. """ return ( edge_supervision_models.nri_steps( node_embeddings, edge_embeddings, num_real_nodes_per_graph=( graph_context.bundle.graph_metadata.num_nodes)), edge_embeddings, ) ALL_COMPONENTS = { "variantless_automaton": variantless_automaton, "edge_variant_automaton": edge_variant_automaton, "embedding_variant_automaton": embedding_variant_automaton, "nri_encoder_readout": nri_encoder_readout, "ggnn_adapter": ggnn_adapter, "transformer_adapter": transformer_adapter, "nri_adapter": nri_adapter, "UniformRandomWalk": UniformRandomWalk, }
cea43589a7bb31e1bf0c658d9ea1813573b2e2bc
ab67bf011764b6c0b6803cd44985a5a2ad3f2593
/udpsocket.py
2b222871dc47eb1b8e436bd7d76fd4d52cdb877e
[]
no_license
pr0logas/streamSockets
cba0616ead596bf331eda4f54b6112a212e462fc
3f759509dfcb556d3b6a25f11c9f512fb7be430b
refs/heads/master
2022-11-25T06:09:17.503818
2020-07-27T13:53:15
2020-07-27T13:53:15
285,097,509
0
0
null
null
null
null
UTF-8
Python
false
false
1,970
py
import socket import os, sys, time from time import sleep MCAST_GRP = '10.10.10.10' MCAST_PORT = 9004 MULTICAST_TTL = 10 bytes_size_to_process = 1024 time_between_data_seconds = 5 time_between_packets_float = 0.0055 def startSocket(): s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, socket.IPPROTO_UDP) s.setsockopt(socket.IPPROTO_IP, socket.IP_MULTICAST_TTL, MULTICAST_TTL) def sendDataOverSocket(data, sleeptime): if data: bytes_size_to_process = sys.getsizeof(data) #print("Serving UDP multicast data to: " + str(MCAST_GRP) + ":" + str(MCAST_PORT) + " " + # str(bytes_size_to_process) + " bytes" + # " (file size: " + str(os.stat('channels/currentFile.ts').st_size) + ")") s.sendto(data, (MCAST_GRP, MCAST_PORT)) sleep(sleeptime) def adjustTimeForNewData(start, end, sleeptime): result = (time_between_data_seconds - (end-start)) if result < 0: print("No sleep needed we are {} seconds late to stream the data!".format(result) + " Next sleep: " + str(sleeptime)) else: print("Sleeping for {} Waiting for next data...".format(result) + " Next sleep: " + str(sleeptime)) while True: starttime = time.time() with open("channels/currentFile.ts", "rb", buffering=1) as f: byte = f.read(bytes_size_to_process) expectedPackets = os.stat('channels/currentFile.ts').st_size / bytes_size_to_process print(expectedPackets) sleepTime = (time_between_data_seconds / expectedPackets) - 0.000120256 sendDataOverSocket(byte, sleepTime) while byte: byte = f.read(bytes_size_to_process) sendDataOverSocket(byte, sleepTime) f.close() endtime = time.time() adjustTimeForNewData(starttime, endtime, sleepTime) #sleep(time_between_packets_float)
4ca7dd8882f263f5749f1eecebddf59f13b12871
0969f7c85e5ae0a19982077d6bb702c41b2b1e1f
/nets/mobilenet/mobilenet_v2.py
02f5fa0510270fecc4ea3bd20c7f4da25bad20b1
[ "MIT" ]
permissive
353622088/tianchi
544e49bb6720c4978188cdbddd88a0ebe9f5669c
e1f378e5fd783eb4cfbfaf8ecdd944b8fcfdd733
refs/heads/master
2020-04-19T09:06:35.946147
2019-01-30T09:30:05
2019-01-30T09:30:05
168,099,897
0
0
null
null
null
null
UTF-8
Python
false
false
7,434
py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Implementation of Mobilenet V2. Architecture: https://arxiv.org/abs/1801.04381 The base model gives 72.2% accuracy on ImageNet, with 300MMadds, 3.4 M parameters. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import tensorflow as tf from nets.mobilenet import conv_blocks as ops from nets.mobilenet import mobilenet as lib import functools slim = tf.contrib.slim op = lib.op expand_input = ops.expand_input_by_factor # pyformat: disable # Architecture: https://arxiv.org/abs/1801.04381 V2_DEF = dict( defaults={ # Note: these parameters of batch norm affect the architecture # that's why they are here and not in training_scope. (slim.batch_norm,): {'center': True, 'scale': True}, (slim.conv2d, slim.fully_connected, slim.separable_conv2d): { 'normalizer_fn': slim.batch_norm, 'activation_fn': tf.nn.relu6 }, (ops.expanded_conv,): { 'expansion_size': expand_input(6), 'split_expansion': 1, 'normalizer_fn': slim.batch_norm, 'residual': True }, (slim.conv2d, slim.separable_conv2d): {'padding': 'SAME'} }, spec=[ op(slim.conv2d, stride=2, num_outputs=32, kernel_size=[3, 3]), op(ops.expanded_conv, expansion_size=expand_input(1, divisible_by=1), num_outputs=16), op(ops.expanded_conv, stride=2, num_outputs=24), op(ops.expanded_conv, stride=1, num_outputs=24), op(ops.expanded_conv, stride=2, num_outputs=32), op(ops.expanded_conv, stride=1, num_outputs=32), op(ops.expanded_conv, stride=1, num_outputs=32), op(ops.expanded_conv, stride=2, num_outputs=64), op(ops.expanded_conv, stride=1, num_outputs=64), op(ops.expanded_conv, stride=1, num_outputs=64), op(ops.expanded_conv, stride=1, num_outputs=64), op(ops.expanded_conv, stride=1, num_outputs=96), op(ops.expanded_conv, stride=1, num_outputs=96), op(ops.expanded_conv, stride=1, num_outputs=96), op(ops.expanded_conv, stride=2, num_outputs=160), op(ops.expanded_conv, stride=1, num_outputs=160), op(ops.expanded_conv, stride=1, num_outputs=160), op(ops.expanded_conv, stride=1, num_outputs=320), op(slim.conv2d, stride=1, kernel_size=[1, 1], num_outputs=1280) ], ) # pyformat: enable @slim.add_arg_scope def mobilenet(input_tensor, num_classes=1001, depth_multiplier=1.0, scope='MobilenetV2', conv_defs=None, finegrain_classification_mode=False, min_depth=None, divisible_by=None, **kwargs): """Creates mobilenet V2 network. Inference mode is created by default. To create training use training_scope below. with tf.contrib.slim.arg_scope(mobilenet_v2.training_scope()): logits, endpoints = mobilenet_v2.mobilenet(input_tensor) Args: input_tensor: The input tensor num_classes: number of classes depth_multiplier: The multiplier applied to scale number of channels in each layer. Note: this is called depth multiplier in the paper but the name is kept for consistency with slim's model builder. scope: Scope of the operator conv_defs: Allows to override default conv def. finegrain_classification_mode: When set to True, the model will keep the last layer large even for small multipliers. Following https://arxiv.org/abs/1801.04381 suggests that it improves performance for ImageNet-type of problems. *Note* ignored if final_endpoint makes the builder exit earlier. min_depth: If provided, will ensure that all layers will have that many channels after application of depth multiplier. divisible_by: If provided will ensure that all layers # channels will be divisible by this number. **kwargs: passed directly to mobilenet.mobilenet: prediction_fn- what prediction function to use. reuse-: whether to reuse variables (if reuse set to true, scope must be given). Returns: logits/endpoints pair Raises: ValueError: On invalid arguments """ if conv_defs is None: conv_defs = V2_DEF if 'multiplier' in kwargs: raise ValueError('mobilenetv2 doesn\'t support generic ' 'multiplier parameter use "depth_multiplier" instead.') if finegrain_classification_mode: conv_defs = copy.deepcopy(conv_defs) if depth_multiplier < 1: conv_defs['spec'][-1].params['num_outputs'] /= depth_multiplier depth_args = {} # NB: do not set depth_args unless they are provided to avoid overriding # whatever default depth_multiplier might have thanks to arg_scope. if min_depth is not None: depth_args['min_depth'] = min_depth if divisible_by is not None: depth_args['divisible_by'] = divisible_by with slim.arg_scope((lib.depth_multiplier,), **depth_args): return lib.mobilenet( input_tensor, num_classes=num_classes, conv_defs=conv_defs, scope=scope, multiplier=depth_multiplier, **kwargs) def wrapped_partial(func, *args, **kwargs): partial_func = functools.partial(func, *args, **kwargs) functools.update_wrapper(partial_func, func) return partial_func mobilenet_v2_100 = wrapped_partial(mobilenet, depth_multiplier=1.00) mobilenet_v2_140 = wrapped_partial(mobilenet, depth_multiplier=1.40) @slim.add_arg_scope def mobilenet_base(input_tensor, depth_multiplier=1.0, **kwargs): """Creates base of the mobilenet (no pooling and no logits) .""" return mobilenet(input_tensor, depth_multiplier=depth_multiplier, base_only=True, **kwargs) def training_scope(**kwargs): """Defines MobilenetV2 training scope. Usage: with tf.contrib.slim.arg_scope(mobilenet_v2.training_scope()): logits, endpoints = mobilenet_v2.mobilenet(input_tensor) with slim. Args: **kwargs: Passed to mobilenet.training_scope. The following parameters are supported: weight_decay- The weight decay to use for regularizing the model. stddev- Standard deviation for initialization, if negative uses xavier. dropout_keep_prob- dropout keep probability bn_decay- decay for the batch norm moving averages. Returns: An `arg_scope` to use for the mobilenet v2 model. """ return lib.training_scope(**kwargs) __all__ = ['training_scope', 'mobilenet_base', 'mobilenet', 'V2_DEF']
e74010a40ad06fe82916fea9a7e6c222b087a685
cb83b02ead1cb77c87e117118f7e5cd3ecf46ba1
/sistema_plantilla/settings/settings.py
6652e9955e4d55b35976610917e962c7d8b0c985
[]
no_license
danielhuamani/sistema-plantilla-saas
f834d90157b3d0ab1724fe7d3be5e9224cf753ae
8802a4b429fdce9ce433539684b52e2177042c35
refs/heads/master
2020-12-11T01:48:45.313743
2016-01-18T16:10:24
2016-01-18T16:10:24
48,857,325
0
0
null
null
null
null
UTF-8
Python
false
false
2,996
py
""" Django settings for settings project. Generated by 'django-admin startproject' using Django 1.8.2. For more information on this file, see https://docs.djangoproject.com/en/1.8/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.8/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) from os.path import dirname, join, realpath BASE_DIR = dirname(dirname(realpath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.8/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'vhgbr0j26ii9t4juw%_z)_^wm8st_#1$8zrj4yq7!5b)7-@554' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'apps.productos', 'apps.clientes', 'apps.configuracion', 'apps.theme', 'apps.theme_admin', 'debug_toolbar', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'django.middleware.security.SecurityMiddleware', ) ROOT_URLCONF = 'settings.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': (join(BASE_DIR, 'templates'),), 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', 'django.template.context_processors.static', ], }, }, ] WSGI_APPLICATION = 'settings.wsgi.application' # Database # https://docs.djangoproject.com/en/1.8/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': join(BASE_DIR, 'db.sqlite3'), } } # Internationalization # https://docs.djangoproject.com/en/1.8/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.8/howto/static-files/ MEDIA_ROOT = join(BASE_DIR, 'media') MEDIA_URL = '/media/' STATIC_ROOT = '' STATIC_URL = '/static/' STATICFILES_DIRS = ( join(BASE_DIR, 'static'), )
80793db4fcb6d003bcd7f9d86fe4acae5bc1a6c0
781e2692049e87a4256320c76e82a19be257a05d
/all_data/exercism_data/python/bob/6ae12eacdae24553a91c0270cb101e66.py
5d6e3848a1fa367f700bac002a2b381e701f99cc
[]
no_license
itsolutionscorp/AutoStyle-Clustering
54bde86fe6dbad35b568b38cfcb14c5ffaab51b0
be0e2f635a7558f56c61bc0b36c6146b01d1e6e6
refs/heads/master
2020-12-11T07:27:19.291038
2016-03-16T03:18:00
2016-03-16T03:18:42
59,454,921
4
0
null
2016-05-23T05:40:56
2016-05-23T05:40:56
null
UTF-8
Python
false
false
281
py
# # Skeleton file for the Python "Bob" exercise. # def hey(what): if what is None or what.strip() == "": return "Fine. Be that way!" if what.isupper(): return "Whoa, chill out!" if what.endswith("?") or what.endswith(" "): return "Sure." return "Whatever."
89e0353d4de23f2ac613d436afbbec0a40354e19
e8ef02248600525a114c9ed9a6098e95d8007063
/qtlab/scripts/sal/ff_powersweep.py
7966c043a04204757185031af05d8a6ff6e2df04
[]
no_license
mgely/papyllon
ac264e202298728f6ca69d566c1fe45a9de0dc1c
490c756da8f08c971864dcd983ea82c944bc8c85
refs/heads/master
2021-01-10T06:28:17.250944
2016-02-26T13:49:21
2016-02-26T13:49:21
46,259,620
0
0
null
null
null
null
UTF-8
Python
false
false
3,120
py
#prepare environment import qt import visa import numpy as np from numpy import pi, random, arange, size, array, sin, cos, diff, absolute,zeros, sign,ceil,sqrt,absolute from time import time, sleep, localtime, strftime execfile('metagen.py') #Check and load instrument plugins instlist = qt.instruments.get_instrument_names() print "installed instruments: "+" ".join(instlist) #install the drivers no check if 'med' not in instlist: med = qt.instruments.create('med','med') #if 'adwin' not in instlist: # adwin= qt.instruments.create('adwin', 'ADwin_DAC',address=0x255) if 'ff' not in instlist: ff=visa.instrument('TCPIP0::192.168.1.151::inst0::INSTR') instlist = qt.instruments.get_instrument_names() print "Available instruments: "+" ".join(instlist) #measurement information stored in manual in MED instrument #med.set_device('ShunDevice') #med.set_setup('BF_4, conversion is 1uA/V') #med.set_user('Shun') qt.mstart() spyview_process(reset=True) #clear old meta-settings filename = 'EOS8_C_FF' data = qt.Data(name=filename) data.add_coordinate('Probe Frequency [MHz]') data.add_coordinate('Voltage [uA]') data.add_value('S21 [abs]') data.add_value('S21 [rad]') #data.create_file() data.create_file(name=filename, datadirs='D:\\data\\Sal\\EOS8_C\\temp_powersweep') data.copy_file('FF_powersweep.py') kHz = 1e3 MHz = 1e6 GHz = 1e9 ####Settings: #Current temperature # 18mK ## 10dB on VNA out ## miteq on the input port 2 ## I to V conversion 100uA/1Volt ## ######### Variables for NA pinit=-45 bw=30 f_start=5.272*GHz f_stop=5.372*GHz f_pts=401 ##hanger_f0=5900.59*MHz ##hanger_span=1000*kHz ##f1_start=hanger_f0-hanger_span/2 ##f1_stop=hanger_f0+hanger_span/2 ### Variables for field #v_start=0 #v_stop=1.5 #v_pts=1501 ### Variables for power p_start = -45 p_stop =0 p_pts =10 ### Preparing NA ff.write('INST:SEL "NA";*OPC?') ff.write('FREQ:STOP '+str(f_stop)+'\n') ff.write('FREQ:STAR '+str (f_start)+'\n') ff.write('BWID '+str(bw)+'\n') ff.write('SOUR:POW '+str(pinit)+'\n') ff.write('SWE:POIN '+str(f_pts)+'\n') ff.write('CALC:PAR:DEF S21 \r') ### Prepare ADWIN for current sweep #adwin.start_process() ########### making lists of values to be measured ########### f_list=np.linspace(f_start,f_stop,f_pts) #v_list=np.linspace(v_start,v_stop,v_pts) p_list = np.linspace(p_start,p_stop,p_pts) ################################################## qt.msleep(0.1) for p in p_list: print 'current power '+str(p)+' power' ff.write('SOUR:POW ' +str(p)+'\n') print ff.ask('SOUR:POW?') #adwin.set_DAC_2(v) qt.msleep(2) #setting tarce 1 ff.write('INIT \r') qt.msleep(15) ff.write('CALC:FORM MLOG \r') qt.msleep(2) trace_mlog = eval(ff.ask('CALC:DATA:FDAT? \r')) qt.msleep(2) ff.write('CALC:FORM PHAS \r') qt.msleep(2) trace_phase = eval(ff.ask('CALC:DATA:FDAT? \r')) v_dummy=np.linspace(p,p,len(f_list)) data.add_data_point(v_dummy,f_list,trace_mlog, np.gradient(np.unwrap(np.deg2rad(trace_phase),np.pi))) data.new_block() spyview_process(data,f_start,f_stop,p) qt.msleep(0.01) data.close_file() qt.mend()
eddb1083f72d566a9ba78588b02c0de1582230e7
8cb101991346bd6403cfaca88b0445f917e52254
/tuneuptechnology/tickets.py
d5ccf178b5ba56d3c933e59ce7abdad16b3a0163
[ "MIT", "Python-2.0" ]
permissive
TrendingTechnology/tuneuptechnology-python
a06742fbf404fb1afc525ccf1d432c4c374866f1
479bbece1722f7e233dbc0f7642205e1afa971c1
refs/heads/main
2023-06-08T17:26:41.108769
2021-06-22T02:15:45
2021-06-22T02:15:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,201
py
class Tickets(): def __init__(self, base_url, make_http_request): self.base_url = base_url self.make_http_request = make_http_request def create(self, data): """Create a ticket based on the data passed""" endpoint = f'{self.base_url}/tickets' response = self.make_http_request('post', endpoint, data) return response def all(self): """Retrieve all tickets""" endpoint = f'{self.base_url}/tickets' response = self.make_http_request('get', endpoint) return response def retrieve(self, id): """Retrieve a single ticket""" endpoint = f'{self.base_url}/tickets/{id}' response = self.make_http_request('get', endpoint) return response def update(self, id, data): """Update a ticket with the passed params""" endpoint = f'{self.base_url}/tickets/{id}' response = self.make_http_request('patch', endpoint, data) return response def delete(self, id): """Delete a ticket with the ID passed""" endpoint = f'{self.base_url}/tickets/{id}' response = self.make_http_request('delete', endpoint) return response
3ba4d9a3323a8bb7a9dd944f28bff4943cd98968
266947fd84eed629ed0c21f6d91134239512afd9
/BeginnerContest_B/061.py
8605568528a2b38ba911c5cdf7aae2aba95aad32
[]
no_license
SkiMsyk/AtCoder
c86adeec4fa470ec14c1be7400c9fc8b3fb301cd
8102b99cf0fb6d7fa304edb942d21cf7016cba7d
refs/heads/master
2022-09-03T01:23:10.748038
2022-08-15T01:19:55
2022-08-15T01:19:55
239,656,752
0
0
null
null
null
null
UTF-8
Python
false
false
173
py
N, M = map(int, input().split()) res = [0]*N for _ in range(M): a, b = map(int, input().split()) res[a-1] += 1 res[b-1] += 1 for _ in range(N): print(res[_])
3740b278f395768c4a255c2166677022992d93a9
85574bab97569bae7368dc4e2d2aa73c73743a9b
/DSPFromGroundUp/Python/016RunningSumV2/main.py
9bf1bb6d344340923a786a4e595a379f76fda9cf
[]
no_license
saradhimpardha/UdemyDSPFromGroundUpOnARMProcessors
3c0fcd7272e892f222871dc412fc214851477aea
576d4a38992533ed0733278d6b4b6444db58706b
refs/heads/main
2023-05-04T15:45:30.184864
2021-05-28T14:40:46
2021-05-28T14:40:46
458,248,148
1
0
null
null
null
null
UTF-8
Python
false
false
922
py
# # Imports # from matplotlib import pyplot as plt from matplotlib import style import mysignals as sigs # # Global variables # # # Private functions # # def calc_running_sum(sig_src_arr,sig_dest_arr): for x in range(len(sig_dest_arr)): sig_dest_arr[x] = 0 for x in range(len(sig_src_arr)): sig_dest_arr[x] = sig_dest_arr[x-1]+sig_src_arr[x] # # main # if __name__ == "__main__": output_signal =[None]*320 calc_running_sum(sigs.InputSignal_1kHz_15kHz,output_signal) # style.use('ggplot') #style.use('dark_background') f,plt_arr = plt.subplots(2,sharex=True) f.suptitle("Running Sum") plt_arr[0].plot(sigs.InputSignal_1kHz_15kHz,color='red') plt_arr[0].set_title("Input Signal") plt_arr[1].plot(output_signal,color ='magenta') plt_arr[1].set_title("Output Signal") plt.show()
0751238896833b73c9818850c8150c8aff389c4b
f4b74154a7e50a9cfd325b45046b6c86c1682847
/src/settings.py
ccb98801ea3144dc52ce825ead5c542150f3330b
[]
no_license
toxicOxygen/personal_website-
826225a979ef0e62aaddf9730d1fd5d533400310
1826ef3de43fc4d162a509f48a1f90392ac136e5
refs/heads/master
2021-09-23T09:28:51.103637
2020-03-30T02:12:58
2020-03-30T02:12:58
251,178,977
0
0
null
2021-09-22T18:54:41
2020-03-30T02:13:38
HTML
UTF-8
Python
false
false
3,619
py
""" Django settings for src project. Generated by 'django-admin startproject' using Django 3.0.4. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ import os # import django_heroku # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '=$%2g7+8uw(qd3##ayde181009u=1$40xpz=aqg4#)5&80oji7' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['*'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'widget_tweaks', 'js_projects', 'pages' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'src.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR,'templates'),], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'src.wsgi.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = [os.path.join(BASE_DIR,'static'),] STATIC_ROOT = os.path.join(BASE_DIR,'staticfiles') MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR,'media') EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend' EMAIL_HOST = 'smtp.gmail.com' EMAIL_HOST_USER = '[email protected]' EMAIL_HOST_PASSWORD = 'uksoiwcaeargewci' EMAIL_PORT = 587 EMAIL_USE_TLS = True # django_heroku.settings(locals())
27cb43ce03426ae33a2a613a5b551d5332371f3c
4a995ce459f42c372d548eb397e95a7793b8b965
/cursoshandler/models.py
fe22f8853dc98344edddb248959e587b5692a3c5
[]
no_license
astandre/chatbot-system
edb1d1835fe61a2140bad53e7f68ce2bc724018a
99aab3e1e63a05bd475c5af8733b8c771d5e69f5
refs/heads/master
2022-12-12T01:37:13.498987
2018-10-13T23:03:03
2018-10-13T23:03:03
145,641,189
0
0
null
2022-12-08T02:47:10
2018-08-22T01:49:28
Python
UTF-8
Python
false
false
2,784
py
from neomodel import * from neomodel import install_all_labels, remove_all_labels # remove_all_labels() # install_all_labels() # clear_neo4j_database(db) # TODO set label and help_text class Curso(StructuredNode): uid = UniqueIdProperty() nombre = StringProperty(required=True, unique_index=True) cod = StringProperty(unique=True, required=True) descripcion = StringProperty(required=False) pre_requisitos = StringProperty(required=False) edicion = StringProperty(required=False) oferta = StringProperty(required=False) tematica = StringProperty(required=False) fecha_inscripcion = DateProperty(default_now=True) fecha_inicio = DateProperty(default_now=True) esfuerzo_estimado = StringProperty(default=0) duracion = StringProperty(required=False) link = StringProperty(default="http://opencampus.utpl.edu.ec/") INSTITUCIONES = { "U": "UTPL", "O": "Otro", } institucion = StringProperty(choices=INSTITUCIONES, default="U") archivado = BooleanProperty(default=False) docente = RelationshipTo('Docente', 'HAS_A_DOCENTE', cardinality=OneOrMore) competencia = RelationshipTo('Competencia', 'HAS_A_COMPETENCIA', cardinality=OneOrMore) reto = RelationshipTo('Reto', 'HAS_A_RETO', cardinality=OneOrMore) contenido = RelationshipTo('Contenido', 'HAS_A_CONTENIDO', cardinality=OneOrMore) sinonimo = RelationshipTo('Sinonimo', 'HAS_A_SINONIMO', cardinality=OneOrMore) class Docente(StructuredNode): uid = UniqueIdProperty() nombre = StringProperty(unique_index=True, required=True) N_ACADEMICO = { "TN": "Nivel Técnico", "CN": "Tercer Nivel", "T": "Cuarto Nivel", } nivel_academico = StringProperty(default="T", choices=N_ACADEMICO) email = EmailProperty(required=False) resumen = StringProperty(required=False) curso = RelationshipTo('Curso', 'TEACHES', cardinality=OneOrMore) class Competencia(StructuredNode): competencia = StringProperty(unique=True, required=True) curso = RelationshipTo(Curso, 'IS_FROM', cardinality=OneOrMore) class Reto(StructuredNode): titulo_reto = StringProperty(unique=True, required=True) fecha_inicio = DateTimeProperty(default_now=True) fecha_fin = DateTimeProperty(default_now=True) descripcion = StringProperty(required=False) curso = RelationshipTo(Curso, 'IS_FROM', cardinality=OneOrMore) class Contenido(StructuredNode): orden = StringProperty(required=True) contenido = StringProperty(unique=True, required=True) curso = RelationshipTo(Curso, 'IS_FROM', cardinality=OneOrMore) class Sinonimo(StructuredNode): sinonimo = StringProperty(required=True, unique_index=True) curso = RelationshipTo(Curso, 'IS_FROM', cardinality=OneOrMore)
45da61cb3415eb8e07c8366c7b8f0ed58e3c101e
982539edb302b6bee5dd9285e9de00ad866b4cfd
/Tongji/Mode/PlatUserConf.py
0128446c9127bba03b5fb549b02ac0e89e624e1b
[]
no_license
chennqqi/OpenSaaSProj
2149a2066c607636ce2106801be2cb722cc0934d
0f861a61d1bd1499599207a70a8e180930d96573
refs/heads/master
2020-04-04T16:14:08.943396
2017-06-01T06:50:32
2017-06-01T06:50:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,183
py
# -*- coding: utf-8 -*- from datetime import date from pony.orm import * def define_user_conf(db): class Plat_user_conf(db.Entity): id = PrimaryKey(int, sql_type="int(20)", auto=True) tm = Optional(date) ver = Optional(str) pub = Optional(str) nameid = Optional(str) vshow = Optional(str) vtype = Optional(str) return Plat_user_conf if __name__ == "__main__": a = Database() define_user_conf(a) a.bind("mysql", host="outjhkj01.mysql.rds.aliyuncs.com", port=3306, user="jhkj", passwd="jhkj_jhkj", db="saas_meta") a.generate_mapping(create_tables=True) b = Database() define_user_conf(b) b.bind("mysql", host="outjhkj01.mysql.rds.aliyuncs.com", port=3306, user="jhkj", passwd="jhkj_jhkj", db="guaengdemo") a.disconnect() b.disconnect() b.generate_mapping(create_tables=True) # db.drop_table("plat_event") # tester = Plat_event() # b = Database() # setDB(b) # db.bind("mysql", host="outjhkj01.mysql.rds.aliyuncs.com", port=3306, user="jhkj", passwd="jhkj_jhkj", db="guaengdemo") # db.generate_mapping(create_tables=True) # tester = Plat_event()
94b48fd60ae2a1848557d45847013a281ca0bb72
5a52ccea88f90dd4f1acc2819997fce0dd5ffb7d
/alipay/aop/api/domain/VoucherAvailableOutItemInfo.py
d0133f8f8df9195637a3cad5457d1610e907a92c
[ "Apache-2.0" ]
permissive
alipay/alipay-sdk-python-all
8bd20882852ffeb70a6e929038bf88ff1d1eff1c
1fad300587c9e7e099747305ba9077d4cd7afde9
refs/heads/master
2023-08-27T21:35:01.778771
2023-08-23T07:12:26
2023-08-23T07:12:26
133,338,689
247
70
Apache-2.0
2023-04-25T04:54:02
2018-05-14T09:40:54
Python
UTF-8
Python
false
false
1,440
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class VoucherAvailableOutItemInfo(object): def __init__(self): self._item_app_id = None self._out_item_id = None @property def item_app_id(self): return self._item_app_id @item_app_id.setter def item_app_id(self, value): self._item_app_id = value @property def out_item_id(self): return self._out_item_id @out_item_id.setter def out_item_id(self, value): self._out_item_id = value def to_alipay_dict(self): params = dict() if self.item_app_id: if hasattr(self.item_app_id, 'to_alipay_dict'): params['item_app_id'] = self.item_app_id.to_alipay_dict() else: params['item_app_id'] = self.item_app_id if self.out_item_id: if hasattr(self.out_item_id, 'to_alipay_dict'): params['out_item_id'] = self.out_item_id.to_alipay_dict() else: params['out_item_id'] = self.out_item_id return params @staticmethod def from_alipay_dict(d): if not d: return None o = VoucherAvailableOutItemInfo() if 'item_app_id' in d: o.item_app_id = d['item_app_id'] if 'out_item_id' in d: o.out_item_id = d['out_item_id'] return o
bcf1581afef31e7569bc8ef68a094cb8fad143ea
70f5f279e051360310f95be895320d8fa6cd8d93
/extraPackages/matplotlib-3.0.2/examples/userdemo/connectionstyle_demo.py
1ea2bf5fe8fd2ff9ac9da4674adfb762654d93bd
[ "BSD-3-Clause" ]
permissive
spacetime314/python3_ios
4b16ab3e81c31213b3db1e1eb00230621b0a7dc8
e149f1bc2e50046c8810f83dae7739a8dea939ee
refs/heads/master
2020-05-09T20:39:14.980041
2019-04-08T15:07:53
2019-04-08T15:07:53
181,415,024
2
0
BSD-3-Clause
2019-04-15T05:00:14
2019-04-15T05:00:12
null
UTF-8
Python
false
false
1,845
py
""" ==================== Connectionstyle Demo ==================== """ import matplotlib.pyplot as plt fig, axs = plt.subplots(3, 5, figsize=(8, 4.8)) x1, y1 = 0.3, 0.3 x2, y2 = 0.7, 0.7 def demo_con_style(ax, connectionstyle, label=None): x1, y1 = 0.3, 0.2 x2, y2 = 0.8, 0.6 ax.plot([x1, x2], [y1, y2], ".") ax.annotate("", xy=(x1, y1), xycoords='data', xytext=(x2, y2), textcoords='data', arrowprops=dict(arrowstyle="->", color="0.5", shrinkA=5, shrinkB=5, patchA=None, patchB=None, connectionstyle=connectionstyle, ), ) ax.text(.05, .95, connectionstyle.replace(",", ",\n"), transform=ax.transAxes, ha="left", va="top") demo_con_style(axs[0, 0], "angle3,angleA=90,angleB=0") demo_con_style(axs[1, 0], "angle3,angleA=0,angleB=90") demo_con_style(axs[0, 1], "arc3,rad=0.") demo_con_style(axs[1, 1], "arc3,rad=0.3") demo_con_style(axs[2, 1], "arc3,rad=-0.3") demo_con_style(axs[0, 2], "angle,angleA=-90,angleB=180,rad=0") demo_con_style(axs[1, 2], "angle,angleA=-90,angleB=180,rad=5") demo_con_style(axs[2, 2], "angle,angleA=-90,angleB=10,rad=5") demo_con_style(axs[0, 3], "arc,angleA=-90,angleB=0,armA=30,armB=30,rad=0") demo_con_style(axs[1, 3], "arc,angleA=-90,angleB=0,armA=30,armB=30,rad=5") demo_con_style(axs[2, 3], "arc,angleA=-90,angleB=0,armA=0,armB=40,rad=0") demo_con_style(axs[0, 4], "bar,fraction=0.3") demo_con_style(axs[1, 4], "bar,fraction=-0.3") demo_con_style(axs[2, 4], "bar,angle=180,fraction=-0.2") for ax in axs.flat: ax.set(xlim=(0, 1), ylim=(0, 1), xticks=[], yticks=[], aspect=1) fig.tight_layout(pad=0) plt.show()
7d2794d66c8af7463d80b6feb07f0a139da4daf6
6f54ce52f08806075f0445e7dd206baae96ebdca
/IssueTracker/controllers/default.py
f6f0ad38bfb5a2d5fa0f37f28e66d7e27f9f3aff
[ "BSD-3-Clause" ]
permissive
ykanggit/web2py-appliances
a93d318a214aa5b3e5cd6b47b642f2c12addba46
5ca7a04d5403f04aad9e90e99e10dbc05a08a50a
refs/heads/master
2022-05-06T08:55:11.089350
2022-04-14T19:25:02
2022-04-14T19:25:02
49,680,074
0
0
null
2016-01-14T22:41:45
2016-01-14T22:41:45
null
UTF-8
Python
false
false
7,707
py
# -*- coding: utf-8 -*- def index(): return dict(message=T('Hello World')) def projects(): #COLUMNS=('project.name','project.author','project.repo','project.license') FIELDS=(db.project.id,db.project.name,db.project.created_by,db.project.manager,db.project.phase,db.project.repo) LINKS=[lambda row: A('Subprojects',_href=URL('projects',args=row.id)), lambda row: A('Issues',_href=URL('issues',args=row.id)), lambda row: A('Team',_href=URL('teams',args=row.id)) ] def check(row): return ((row.created_by == auth.user_id)|(row.manager == auth.user_id)) if (request.args(0)): query = (db.project.super_project==request.args(0)) #name = 'The subprojects of: '+ str(db(db.project.id==request.args(0)).select(db.project.name)).lstrip('project.name ') else: query = db.project #name = 'Project directory' grid = SQLFORM.grid(query,editable=check,deletable=check, fields = FIELDS,links=LINKS) return dict(grid=grid)#name=name) def teams(): def check(row): return (row.team_lead == auth.user_id) if (request.args(0)): query = (db.team.assigned_projects==request.args(0)) else: query = db.team grid=SQLFORM.grid(query,editable=check,deletable=check) return dict(grid=grid) @auth.requires_membership('manager') def roles(): manager_id = db(db.auth_group.role == 'manager').select().first().id query = (db.auth_membership.group_id == manager_id) grid = SQLFORM.grid(query,editable=False) return dict(grid=grid) def issues(): project = db.project(request.args(0)) or redirect(URL('projects')) status = request.args(2) #TODO- show issues of the subprojects query = (db.issue.project == project.id)&(db.issue.is_last==True) if (request.args(1)): query = query&(db.issue.super_issue==request.args(1)) if not status or status=='Open': query = query&(db.issue.status.belongs(['New','Assigned','Accepted','Started'])) elif status=='Closed': query = query&(db.issue.status.belongs( ['Fixed','Verified','Invalid','Duplicate','WontFix','Done'])) elif status!='All': query = query&(db.issue.status==status) """comment""" from gluon.utils import web2py_uuid db.issue.project.default = project.id db.issue.uuid.default = web2py_uuid() db.issue.is_last.default = True db.issue.owner.default = project.created_by.email db.issue.description.default = DESCRIPTION db.issue.labels.represent = lambda v,r: ', '.join(v or []) if not auth.user or not ( auth.user.id == project.created_by or \ auth.user.email in (project.members_email or [])): db.issue.owner.writable = False db.issue.status.writable = False FIELDS=(db.issue.id,db.issue.uuid,db.issue.status,db.issue.summary,db.issue.created_on,db.issue.author,db.issue.labels,) LINKS=[lambda row: A('Details',_href=URL('issue',args=row.uuid)), lambda row: A('Sub-issues',_href=URL('issues',args=[project.id,row.id])), lambda row2:A('Assignment',_href=URL('assign',args=row2.id)), lambda row3: A('Escalate', _href=URL('escalate',args=row3.id))] grid = SQLFORM.grid(query, fields = FIELDS,links=LINKS, details=False,editable=False, deletable=project.created_on==auth.user_id, create=auth.user_id,args=[project.id], oncreate=lambda form:do_mail([db.issue(form.vars.id)])) return dict(grid=grid, project=project) def issue(): last = db(db.issue.uuid==request.args(0))\ (db.issue.is_last==True).select().first() project = db.project(last.project) or redirect(URL('projects')) if auth.user: db.issue.status.default = last.status db.issue.summary.default = last.summary db.issue.project.default = last.project db.issue.uuid.default = last.uuid db.issue.is_last.default = True db.issue.owner.default = last.owner db.issue.labels.default = last.labels if not (auth.user.id == project.created_by or \ auth.user.email == last.owner or \ auth.user.email in (project.members_email or [])): db.issue.owner.default = project.created_by db.issue.owner.writable = False db.issue.status.writable = False form = SQLFORM(db.issue) if form.process().accepted: last.update_record(is_last=False) else: form = DIV('login to comment') items = db(db.issue.uuid==request.args(0)).select( orderby=db.issue.created_on) if isinstance(form,FORM) and form.accepted: do_mail(items) return dict(project=project,form=form,items=items,last=last) @auth.requires_membership('manager') def assign(): from datetime import datetime if (request.args(0)): query= (db.issue_assignment.issue==request.args(0)) else: query=(db.issue_assignment) FIELDS=(db.issue_assignment.issue,db.issue_assignment.assigned_by,\ db.issue_assignment.assigned_to,db.issue_assignment.assigned_date) db.issue_assignment.assigned_by.default='%(first_name)s %(last_name)s' % auth.user db.issue_assignment.assigned_by.writable=False db.issue_assignment.assigned_date.default=datetime.now() db.issue_assignment.assigned_date.writable=False grid=SQLFORM.grid(query) return dict(grid=grid) @auth.requires_membership('manager') def escalate(): issueID=request.args(0) reference_project= db(db.issue.id==issueID).select().first() super_proj = db(db.project.id==reference_project.project).select(db.project.super_project).first() query = (db.issue.id==issueID) if super_proj.super_project == None: message = "Already a top level project" else: db(query).update(project=super_proj.super_project) message= "The issue has been escalated" session.flash = message redirect(URL('projects')) return dict() def user(): """ exposes: http://..../[app]/default/user/login http://..../[app]/default/user/logout http://..../[app]/default/user/register http://..../[app]/default/user/profile http://..../[app]/default/user/retrieve_password http://..../[app]/default/user/change_password use @auth.requires_login() @auth.requires_membership('group name') @auth.requires_permission('read','table name',record_id) to decorate functions that need access control """ return dict(form=auth()) def download(): """ allows downloading of uploaded files http://..../[app]/default/download/[filename] """ return response.download(request,db) def call(): """ exposes services. for example: http://..../[app]/default/call/jsonrpc decorate with @services.jsonrpc the functions to expose supports xml, json, xmlrpc, jsonrpc, amfrpc, rss, csv """ return service() @auth.requires_signature() def data(): """ http://..../[app]/default/data/tables http://..../[app]/default/data/create/[table] http://..../[app]/default/data/read/[table]/[id] http://..../[app]/default/data/update/[table]/[id] http://..../[app]/default/data/delete/[table]/[id] http://..../[app]/default/data/select/[table] http://..../[app]/default/data/search/[table] but URLs bust be signed, i.e. linked with A('table',_href=URL('data/tables',user_signature=True)) or with the signed load operator LOAD('default','data.load',args='tables',ajax=True,user_signature=True) """ return dict(form=crud())
52327f791bad53af1e5f123f7f1b3f296bffe0bb
dc940e2aa628eff693af36584cfad935990ebe7d
/v3.1.0/tool/SaveBookInfoToMySqlTool.py
c32721874dd569c804662a6f57f96fbcb50f3b77
[]
no_license
520wsl/getXs8Novels
865572ea488e0bf3d4e21664eb576237b6dd18be
ecf6d0bc5dfdbe4b5c3e8a9aac313bf7abce614b
refs/heads/master
2020-04-18T00:59:56.777416
2019-02-15T08:52:11
2019-02-15T08:52:11
167,101,111
0
0
null
null
null
null
UTF-8
Python
false
false
2,620
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ __title__ = '书籍数据存储工具类' __author__ = 'Mad Dragon' __mtime__ = '2019/1/24' # 我不懂什么叫年少轻狂,只知道胜者为王               ┏┓      ┏┓             ┏┛┻━━━┛┻┓             ┃      ☃      ┃             ┃  ┳┛  ┗┳  ┃             ┃      ┻      ┃             ┗━┓      ┏━┛                 ┃      ┗━━━┓                 ┃  神兽保佑    ┣┓                 ┃ 永无BUG!   ┏┛                 ┗┓┓┏━┳┓┏┛                   ┃┫┫  ┃┫┫                   ┗┻┛  ┗┻┛ """ import time import moment from tool.GetBookInfoTool import GetBookInfoTool from public.DataTool import DataTool from public.Logger import Logger from public.MySqlTool import MySqlTool class SaveBookInfoToMySqlToo(): def __init__(self, second, logger, getBookInfoToo, mySql, dataToo): self.b_second = second self.m_saveText = "INSERT INTO `links` (`url`,article) VALUES (%s, %s) ON DUPLICATE KEY UPDATE article = VALUES (article), nex = nex+1" self.getBookInfoToo = getBookInfoToo self.dataToo = dataToo self.mySql = mySql self.logger = logger def saveText(self, link): time.sleep(self.b_second) content = self.getBookInfoToo.getTxtInfo(link) if len(content) <= 0: return False self.logger.debug('书籍 [ %s ] 文章存储' % (link)) return self.mySql.batchAdd(sql=self.m_saveText, data_info=[(link, content)]) def saveCatalog(self,bookId): jsonData = self.getBookInfoToo.getCatalogInfo(bookId=bookId) self.logger.debug(jsonData) if __name__ == '__main__': b_title = 'GetBookInfoToo' b_second = 1 b_timeStr = moment.now().format('YYYY-MM-DD-HH-mm-ss') dataToo = DataTool(logName=b_title, second=b_second, timeStr=b_timeStr) logger = Logger(logname=dataToo.initLogName(), loglevel=1, logger=b_title).getlog() mySql = MySqlTool(logName=dataToo.initLogName()) getBookInfoToo = GetBookInfoTool(second=b_second, dataToo=dataToo, logger=logger) saveBookInfoToMySqlToo = SaveBookInfoToMySqlToo(second=b_second, logger=logger, getBookInfoToo=getBookInfoToo, mySql=mySql, dataToo=dataToo)
2e4d4ad192fac1e61c9f8874b8b0b4a41791f5d5
487ce91881032c1de16e35ed8bc187d6034205f7
/codes/CodeJamCrawler/16_0_4/Areseye/D_a.py
e133bb845631ab5660737f81985ed9f3e3c0f065
[]
no_license
DaHuO/Supergraph
9cd26d8c5a081803015d93cf5f2674009e92ef7e
c88059dc66297af577ad2b8afa4e0ac0ad622915
refs/heads/master
2021-06-14T16:07:52.405091
2016-08-21T13:39:13
2016-08-21T13:39:13
49,829,508
2
0
null
2021-03-19T21:55:46
2016-01-17T18:23:00
Python
UTF-8
Python
false
false
585
py
#encoding:utf8 import os import pdb def solve(K,C,S): ret = [1,] gap = K**(C-1) cur = 1 for i in range(0,K-1): cur += gap ret.append(cur) return ret; if __name__ == '__main__': with open('d.in','r') as fin: for ind,line in enumerate(fin): if ind is 0: T = int(line) else: strnum = line.split(' ') param = map(int,strnum) res = solve(*param) resstr = map(str,res) print 'Case #{}: {}'.format(ind,' '.join(resstr))
b4f6555d72c6cacb9fa6eab225aff4ab94ddd2b0
77d93431ca903d7f97d0eaa1b46a98fc1b372f33
/yugires/yugiscrapper.py
5963d5449b223deede8380f9c5ca07ffd6a40b3c
[ "MIT" ]
permissive
DanielLSM/yugioh-high-res
160ce52b8e0959add9d82b0595aa3f64ccc24689
bc0cb2149f967fee46f58bdeed8ea089214f2290
refs/heads/main
2023-06-06T02:23:32.827861
2021-06-29T16:07:54
2021-06-29T16:07:54
381,405,623
0
0
null
null
null
null
UTF-8
Python
false
false
86
py
from tools impor database_endpoint = 'https://db.ygoprodeck.com/api/v7/cardinfo.php'
6b688c2274d062b107eef215f2f6857853970569
1333357d463006bb6540fb6f68f140c383d4e676
/data/data_clean.py
3bcfe42405065c6c3c2b46f2e42f29c6764ba91d
[]
no_license
markWJJ/classifynetwork
ced1ff5eaa9e1c7e9e6440e08e6744070689a305
d65f22486434fdfbdce38d063e176eb31c5d7354
refs/heads/master
2023-01-09T03:12:01.540254
2018-09-17T07:50:02
2018-09-17T07:50:02
149,088,397
0
1
null
2022-12-21T03:34:27
2018-09-17T07:48:54
Python
UTF-8
Python
false
false
8,090
py
# -*- coding: UTF-8 -*- import re from collections import OrderedDict import jieba import codecs from hanziconv import HanziConv import os import string import json import jieba.posseg as pseg import numpy as np FH_NUM = ( (u"0", u"0"), (u"1", u"1"), (u"2", u"2"), (u"3", u"3"), (u"4", u"4"), (u"5", u"5"), (u"6", u"6"), (u"7", u"7"), (u"8", u"8"), (u"9", u"9"), ) FH_NUM = dict(FH_NUM) FH_ALPHA = ( (u"a", u"a"), (u"b", u"b"), (u"c", u"c"), (u"d", u"d"), (u"e", u"e"), (u"f", u"f"), (u"g", u"g"), (u"h", u"h"), (u"i", u"i"), (u"j", u"j"), (u"k", u"k"), (u"l", u"l"), (u"m", u"m"), (u"n", u"n"), (u"o", u"o"), (u"p", u"p"), (u"q", u"q"), (u"r", u"r"), (u"s", u"s"), (u"t", u"t"), (u"u", u"u"), (u"v", u"v"), (u"w", u"w"), (u"x", u"x"), (u"y", u"y"), (u"z", u"z"), (u"A", u"A"), (u"B", u"B"), (u"C", u"C"), (u"D", u"D"), (u"E", u"E"), (u"F", u"F"), (u"G", u"G"), (u"H", u"H"), (u"I", u"I"), (u"J", u"J"), (u"K", u"K"), (u"L", u"L"), (u"M", u"M"), (u"N", u"N"), (u"O", u"O"), (u"P", u"P"), (u"Q", u"Q"), (u"R", u"R"), (u"S", u"S"), (u"T", u"T"), (u"U", u"U"), (u"V", u"V"), (u"W", u"W"), (u"X", u"X"), (u"Y", u"Y"), (u"Z", u"Z"), ) FH_ALPHA = dict(FH_ALPHA) NUM = ( (u"一", "1"), (u"二" ,"2"), (u"三", "3"), (u"四", "4"), (u"五", "5"), (u"六", "6"), (u"七", "7"), (u"八", "8"), (u"九", "9"), (u"零", "0"), (u"十", "10") ) NUM = dict(NUM) CH_PUNCTUATION = u"["#$%&',:;@[\]^_`{|}~⦅⦆「」、 、〃〈〉《》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏﹑﹔·!?。。]" EN_PUNCTUATION = u"['!#$%&\'()*+,-/:;<=>?@[\\]^_`{|}~']" sub_dicit = {u"老师好":"", u"老师":u"", u"你好":u"", u"您好":u"", u"请问":u"", u"请":u"", u"谢谢":u"", u"&quot":u""} class DataCleaner(object): def __init__(self, params_path): self.params_path = params_path self.read_word() self.read_synonym_word() self.read_non_words() def read_non_words(self): word_path = self.params_path.get("non_words", "") print("----non word path----", word_path) if os.path.exists(word_path): with codecs.open(word_path, "r", "utf-8") as f: self.non_word = f.read().splitlines() else: self.non_word = None print(self.non_word,"----non word----") def calculate_non_word(self, input_string): non_cnt = 0 if self.non_word: word_cut = list(jieba.cut(input_string)) for word in self.non_word: if word in word_cut: non_cnt += 1 if np.mod(non_cnt, 2) == 0: return 0 else: return 1 def synthom_replacement(self, input_string): cut_word_list = list(jieba.cut(input_string)) normalized_word_list = cut_word_list for index, word in enumerate(cut_word_list): if word in self.synonym_dict: normalized_word_list[index] = self.synonym_dict[word] return "".join(normalized_word_list) def remove_stop_word(self, input_string): cut_word_list = list(jieba.cut(input_string)) normalized_word_list = [] for word in cut_word_list: if word in self.stop_word: continue else: normalized_word_list.append(word) return "".join(normalized_word_list) def remove_symbol(self, input_string): cn_text = re.sub(CH_PUNCTUATION, "", input_string) en_text = re.sub(EN_PUNCTUATION, "", cn_text) return en_text def poc_clean(self, input_string): tmp = self.upper2lower(input_string) tmp = self.tra2sim(tmp) tmp = self.full2half(tmp) if self.synonym_dict: tmp = self.synthom_replacement(tmp) if self.stop_word: nonstop_text = self.remove_stop_word(tmp) if len(nonstop_text) >= 1: tmp = nonstop_text non_symbol_text = self.remove_symbol(tmp) if len(non_symbol_text) >= 1: tmp = non_symbol_text char_pattern = re.compile(u"[\u4e00-\u9fa5,0-9,a-z,A-Z]+") tmp = "".join(char_pattern.findall(tmp)) output = "" for token in tmp: if len(token) >= 1: output += token return output def clean(self, input_string): tmp = self.upper2lower(input_string) tmp = self.tra2sim(tmp) tmp = self.full2half(tmp) return tmp def read_word(self): word_path = self.params_path.get("stop_word", "") if os.path.exists(word_path): with codecs.open(word_path, "r", "utf-8") as f: self.stop_word = f.read().splitlines() else: print("not exiting params_path".format(word_path)) self.stop_word = None def read_synonym_word(self): self.synonym_dict = {} synonym_path = self.params_path.get("synthom_path", "") if os.path.exists(synonym_path): with codecs.open(synonym_path, "r", "utf-8") as f: data = f.read().splitlines() for item in data: content = item.split() self.synonym_dict[content[0]] = content[1] print(content[0], content[1]) else: self.synonym_dict = None def synonym_word_mapping(self): self.synonym2standard = OrderedDict() for key in self.synonym_dict: for item in self.synonym_dict[key]: self.synonym2standard[item] = key def upper2lower(self, input_string): return input_string.lower() def subtoken(self, input_string): tmp_string = input_string for key in sub_dicit: tmp_string = re.sub(key, sub_dicit[key], tmp_string) return tmp_string def lower2upper(self, input_string): return input_string.upper() def replace_phrase(input_string, phrase_dict): s = input_string for key in phrase_dict.keys(): s = re.sub(key, phrase_dict[key], s) return s def tra2sim(self, input_string): s = HanziConv.toSimplified(input_string) return s def full2half(self, input_string): s = "" for uchar in input_string: if uchar in FH_NUM: half_char = FH_NUM[uchar] if uchar in FH_ALPHA: half_char = FH_ALPHA[uchar] if uchar in NUM: half_char = NUM[uchar] else: half_char = uchar s += half_char return s def detect_en(self, input_string, en_pattern=re.compile(u'[\u4e00-\u9fa5]'), alphabet_pattern=re.compile(u"[a-cA-C]")): s = [] for var in en_pattern.split(input_string.decode("utf-8")): if len(var) > 1: """ if len(var) >= 1 it is a word or sentence """ s.append(var) elif len(var) == 1: """ if len(var) == 1 it may be a alphabet and usually it is a choice for a given question """ tmp_var = alphabet_pattern.findall(var) if len(tmp_var) == 1: s.append(self.upper2lower(var)) return s def detect_ch(self, input_string, ch_pattern = re.compile(u"[\u4e00-\u9fa5]+")): s = ch_pattern.findall(input_string.decode("utf-8")) s = " ".join(s) return s def sentence_segmentation(self, input_string, symbol_pattern=re.compile(CH_PUNCTUATION)): """ based on CH_PUNCTUATION to segment sentence """ return symbol_pattern.split(input_string.decode("utf-8"))
ac9bc264069f3b02a22624cafb6308e8ec8ae4bf
79e19819aec49b500825f82a7de149eb6a0ba81d
/leetcode/303.py
f778311ff580a2a44b295e3a1440ef7bab29626f
[]
no_license
seoyeonhwng/algorithm
635e5dc4a2e9e1c50dc0c75d9a2a334110bb8e26
90406ee75de69996e666ea505ff5d9045c2ad941
refs/heads/master
2023-05-03T16:51:48.454619
2021-05-26T00:54:40
2021-05-26T00:54:40
297,548,218
0
0
null
null
null
null
UTF-8
Python
false
false
558
py
class NumArray: def __init__(self, nums: List[int]): self.nums = nums if nums: self.memo() def memo(self): self.dp = [0] * len(self.nums) self.dp[0] = self.nums[0] for i in range(1, len(self.nums)): self.dp[i] = self.dp[i-1] + self.nums[i] def sumRange(self, i: int, j: int) -> int: return self.dp[j] - self.dp[i-1] if i > 0 else self.dp[j] # Your NumArray object will be instantiated and called as such: # obj = NumArray(nums) # param_1 = obj.sumRange(i,j)
723c8b2001a43c9aa112cd5eba3a02f98544b6f5
58ade65dffc7cbe103d93d7c769096a20d9f9815
/src/smach_based_introspection_framework/online_part/data_collection/StoreVectorToRedisProc.py
d94e5e8102adc6af5a29654d7877be2d0b34a276
[ "BSD-3-Clause" ]
permissive
birlrobotics/smach_based_introspection_framework
2cff69ecec030a5b5046dea99f9e15105f52361b
f16742339cddfc86effba4dbf6e5062304704b89
refs/heads/master
2021-05-09T12:02:26.946473
2019-05-29T02:46:47
2019-05-29T02:46:47
119,001,821
7
1
null
2018-07-05T04:58:40
2018-01-26T03:37:58
Python
UTF-8
Python
false
false
1,512
py
import multiprocessing from ConvertTagTopicToInterestedVectorProc import ( data_frame_idx, smach_state_idx, data_header_idx, ) class StoreVectorToRedisProc(multiprocessing.Process): def __init__( self, com_queue, node_name="StoreVectorToRedisProc_node", ): multiprocessing.Process.__init__(self) self.com_queue = com_queue self.node_name = node_name def run(self): import rospy rospy.init_node(self.node_name, anonymous=True) try: import redis import Queue r = redis.Redis(host='localhost', port=6379, db=0) rospy.loginfo('delete key \"tag_multimodal_msgs\": %s'%r.delete("tag_multimodal_msgs")) while not rospy.is_shutdown(): try: latest_data_tuple = self.com_queue.get(timeout=1) except Queue.Empty: continue except KeyboardInterrupt: break data_frame = latest_data_tuple[data_frame_idx] smach_state = latest_data_tuple[smach_state_idx] data_header = latest_data_tuple[data_header_idx] score = data_header.stamp.to_sec() value = data_frame r.zadd("tag_multimodal_msgs", value, score) except Exception as e: rospy.logerr("StoreVectorToRedisProc error: %s"%e) rospy.loginfo("StoreVectorToRedisProc exits")
7b5ebbb6b02299b7f47b6077cba156000ceeb9c3
8efe9a6c9489d798b5f5b610eb531d86924a1548
/src/wix/urls.py
c74a0f134076e607c3999dbed8538b6643de2a2f
[]
no_license
MarekBiczysko/naklisze_public
e8e6f7e61cdb83b74ea68862b40c061c0253767b
e53c0e8fefffbcfc3a8859976eb7b81cf6270847
refs/heads/master
2022-12-12T02:27:09.824803
2019-07-23T10:54:47
2019-07-23T10:54:47
198,410,666
0
0
null
2022-12-08T01:03:08
2019-07-23T10:46:57
Python
UTF-8
Python
false
false
288
py
from django.views.generic import RedirectView from django.conf.urls import url from .views import wix_page urlpatterns = [ # url(r'^$', RedirectView.as_view(url='https://biczysko.wix.com/foto')), url(r'^$', wix_page, name='wix'), url(r'^', RedirectView.as_view(url='/')), ]
61abe84b1c8861332157ee57244832fe731b1498
f9bcdd8fe51e94b884752574229bc592a84be6bd
/python/315_Count_of_Smaller_Numbers_After_Self.py
33e899cb414d1e0faa68834085f58c7d725813e5
[]
no_license
HankerZheng/LeetCode-Problems
cf46a24444cfc3e6bcff38c10a5bb5945e410b5b
d308e0e41c288f23a846b8505e572943d30b1392
refs/heads/master
2021-01-12T17:49:40.072069
2017-08-17T04:37:20
2017-08-17T04:37:20
69,397,987
2
0
null
null
null
null
UTF-8
Python
false
false
1,656
py
# You are given an integer array nums and you have to return a new counts array. The counts array has the property where counts[i] is the number of smaller elements to the right of nums[i]. # Example: # Given nums = [5, 2, 6, 1] # To the right of 5 there are 2 smaller elements (2 and 1). # To the right of 2 there is only 1 smaller element (1). # To the right of 6 there is 1 smaller element (1). # To the right of 1 there is 0 smaller element. # Return the array [2, 1, 1, 0]. class TreeNode(object): def __init__(self, val): self.val = val self.left = None self.right = None self.smallerCnt = 0 self.selfCnt = 1 def insert(self, val): cnt = 0 tmp = self while tmp: if val < tmp.val: tmp.smallerCnt += 1 if not tmp.left: tmp.left = TreeNode(val) break tmp = tmp.left elif val > tmp.val: cnt += tmp.smallerCnt + tmp.selfCnt if not tmp.right: tmp.right = TreeNode(val) break tmp = tmp.right else: tmp.selfCnt += 1 cnt += tmp.smallerCnt break return cnt class Solution(object): def countSmaller(self, nums): """ :type nums: List[int] :rtype: List[int] """ if len(nums) <= 1: return [0] * len(nums) ans = [0] dataTree = TreeNode(nums[-1]) for num in nums[-2::-1]: ans.insert(0,dataTree.insert(num)) return ans
688bac0891c7135030e8bf35d07f7a9518baae31
c5d87c7f25e3fe9b17c1e88993b0ed6831e52acb
/Socket/GPS_Server_Test/GPS_Server_testData.py
2d6e0b37aa0f879b89e87aa831bf512762c6fe1c
[]
no_license
GIS90/python_base_use
e55d55f9df505dac45ddd332fb65dcd08e8e531f
7166ca85975bb7c56a5fbb6b723fd8300c4dd5d1
refs/heads/master
2020-04-02T08:33:49.461307
2018-10-23T03:33:41
2018-10-23T03:33:41
154,249,857
1
1
null
null
null
null
UTF-8
Python
false
false
1,941
py
# -*- coding: utf-8 -*- """ ------------------------------------------------ describe: this tool be used to ------------------------------------------------ """ import SocketServer import codecs import datetime import os import threading from SocketServer import BaseRequestHandler SOCKET_DATA_MAX = 16 * 1024 * 1024 FORMMAT = "%Y%m%d%H%M%S" def __get_cur_folder(): # if getattr(sys, "frozen", False): return os.path.dirname(os.path.abspath(__file__)) # else: # cur_folder = os.path.dirname(inspect.getfile(inspect.currentframe())) # return os.path.abspath(cur_folder) _cur_folder = __get_cur_folder() _gps_file_folder = os.path.abspath(os.path.join(_cur_folder, "liveGPS")) if not os.path.exists(_gps_file_folder): os.makedirs(_gps_file_folder) class TCPRequestHandler(BaseRequestHandler): """ The RequestHandler class for my server. It is instantiated once per connection to the server, and must override the handle method to implement communication to the client. """ def setup(self): BaseRequestHandler.setup(self) def handle(self): while True: try: data = self.request.recv(SOCKET_DATA_MAX).strip() if data: print data gps_file_name = "gps.dat" gps_file = os.path.join(_gps_file_folder, gps_file_name) gps = codecs.open(gps_file, 'wb', 'utf-8') gps.write(data) gps.close() except Exception as e: print e.message if __name__ == "__main__": host = "" port = 1991 addr = (host, port) print "Server start ......" # It use to server = SocketServer.ThreadingTCPServer(addr, TCPRequestHandler) server.allow_reuse_address = True server.serve_forever()
7e45a200414423d396becba56436abd46f1d731e
66862c422fda8b0de8c4a6f9d24eced028805283
/slambook2/3rdparty/opencv-3.3.0/samples/python/floodfill.py
1b988d3763ef61c3f84e1e5039da4e6540f9914f
[ "MIT", "BSD-3-Clause" ]
permissive
zhh2005757/slambook2_in_Docker
57ed4af958b730e6f767cd202717e28144107cdb
f0e71327d196cdad3b3c10d96eacdf95240d528b
refs/heads/main
2023-09-01T03:26:37.542232
2021-10-27T11:45:47
2021-10-27T11:45:47
416,666,234
17
6
MIT
2021-10-13T09:51:00
2021-10-13T09:12:15
null
UTF-8
Python
false
false
2,007
py
#!/usr/bin/env python ''' Floodfill sample. Usage: floodfill.py [<image>] Click on the image to set seed point Keys: f - toggle floating range c - toggle 4/8 connectivity ESC - exit ''' # Python 2/3 compatibility from __future__ import print_function import numpy as np import cv2 if __name__ == '__main__': import sys try: fn = sys.argv[1] except: fn = '../data/fruits.jpg' print(__doc__) img = cv2.imread(fn, True) if img is None: print('Failed to load image file:', fn) sys.exit(1) h, w = img.shape[:2] mask = np.zeros((h+2, w+2), np.uint8) seed_pt = None fixed_range = True connectivity = 4 def update(dummy=None): if seed_pt is None: cv2.imshow('floodfill', img) return flooded = img.copy() mask[:] = 0 lo = cv2.getTrackbarPos('lo', 'floodfill') hi = cv2.getTrackbarPos('hi', 'floodfill') flags = connectivity if fixed_range: flags |= cv2.FLOODFILL_FIXED_RANGE cv2.floodFill(flooded, mask, seed_pt, (255, 255, 255), (lo,)*3, (hi,)*3, flags) cv2.circle(flooded, seed_pt, 2, (0, 0, 255), -1) cv2.imshow('floodfill', flooded) def onmouse(event, x, y, flags, param): global seed_pt if flags & cv2.EVENT_FLAG_LBUTTON: seed_pt = x, y update() update() cv2.setMouseCallback('floodfill', onmouse) cv2.createTrackbar('lo', 'floodfill', 20, 255, update) cv2.createTrackbar('hi', 'floodfill', 20, 255, update) while True: ch = cv2.waitKey() if ch == 27: break if ch == ord('f'): fixed_range = not fixed_range print('using %s range' % ('floating', 'fixed')[fixed_range]) update() if ch == ord('c'): connectivity = 12-connectivity print('connectivity =', connectivity) update() cv2.destroyAllWindows()
fe547b0d6f92c919781366e3a1059ab975ea9b14
725abfa74e3800622837e60615dc15c6e91442c0
/venv/Lib/site-packages/django/contrib/messages/storage/session.py
7dbd24a8da5c105a8955f5695fe53d22b05df70b
[]
no_license
Malak-Abdallah/TODOlist
4840e2e0a27e6499ae6b37524bb3e58455d08bfb
fd35754e8eac9b262fae17ec16ad9fb510a12f5d
refs/heads/master
2023-07-16T11:38:48.759232
2021-08-31T09:43:11
2021-08-31T09:43:11
401,600,246
0
0
null
null
null
null
UTF-8
Python
false
false
1,669
py
import json from django.contrib.messages.storage.base import BaseStorage from django.contrib.messages.storage.cookie import MessageDecoder, MessageEncoder class SessionStorage(BaseStorage): """ Store messages in the session (that is, django.contrib.sessions). """ session_key = "_messages" def __init__(self, request, *args, **kwargs): assert hasattr(request, "session"), ( "The session-based temporary " "message storage requires session middleware to be installed, " "and come before the message middleware in the " "MIDDLEWARE list." ) super().__init__(request, *args, **kwargs) def _get(self, *args, **kwargs): """ Retrieve a list of messages from the request's session. This storage always stores everything it is given, so return True for the all_retrieved flag. """ return ( self.deserialize_messages(self.request.session.get(self.session_key)), True, ) def _store(self, messages, response, *args, **kwargs): """ Store a list of messages to the request's session. """ if messages: self.request.session[self.session_key] = self.serialize_messages(messages) else: self.request.session.pop(self.session_key, None) return [] def serialize_messages(self, messages): encoder = MessageEncoder() return encoder.encode(messages) def deserialize_messages(self, data): if data and isinstance(data, str): return json.loads(data, cls=MessageDecoder) return data
8770db87586708d0a54dd67e1a2975ec6317d52b
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2772/8317/301956.py
b1c4c2bd1a959d947400f88d06dd30c9659cc1b4
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
123
py
def solve(): num = int(input()) for _ in range(num): n = int(input()) print(pow(n, 1/3)) solve()
0c49b984bf9f2ac8bae5046c1f435df4c90cd46f
2e682fd72e3feaa70e3f7bf2a3b83c50d783ec02
/PyTorch/contrib/cv/detection/SSD/mmdet/models/builder.py
05efb838ed26ce7d0c12f1cdf8a678b15d583bdd
[ "Apache-2.0", "BSD-2-Clause", "MIT", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "LicenseRef-scancode-unknown-license-reference", "GPL-1.0-or-later" ]
permissive
Ascend/ModelZoo-PyTorch
4c89414b9e2582cef9926d4670108a090c839d2d
92acc188d3a0f634de58463b6676e70df83ef808
refs/heads/master
2023-07-19T12:40:00.512853
2023-07-17T02:48:18
2023-07-17T02:48:18
483,502,469
23
6
Apache-2.0
2022-10-15T09:29:12
2022-04-20T04:11:18
Python
UTF-8
Python
false
false
2,225
py
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from mmcv.utils import Registry, build_from_cfg from torch import nn BACKBONES = Registry('backbone') NECKS = Registry('neck') ROI_EXTRACTORS = Registry('roi_extractor') SHARED_HEADS = Registry('shared_head') HEADS = Registry('head') LOSSES = Registry('loss') DETECTORS = Registry('detector') def build(cfg, registry, default_args=None): """Build a module. Args: cfg (dict, list[dict]): The config of modules, is is either a dict or a list of configs. registry (:obj:`Registry`): A registry the module belongs to. default_args (dict, optional): Default arguments to build the module. Defaults to None. Returns: nn.Module: A built nn module. """ if isinstance(cfg, list): modules = [ build_from_cfg(cfg_, registry, default_args) for cfg_ in cfg ] return nn.Sequential(*modules) else: return build_from_cfg(cfg, registry, default_args) def build_backbone(cfg): """Build backbone.""" return build(cfg, BACKBONES) def build_neck(cfg): """Build neck.""" return build(cfg, NECKS) def build_roi_extractor(cfg): """Build roi extractor.""" return build(cfg, ROI_EXTRACTORS) def build_shared_head(cfg): """Build shared head.""" return build(cfg, SHARED_HEADS) def build_head(cfg): """Build head.""" return build(cfg, HEADS) def build_loss(cfg): """Build loss.""" return build(cfg, LOSSES) def build_detector(cfg, train_cfg=None, test_cfg=None): """Build detector.""" return build(cfg, DETECTORS, dict(train_cfg=train_cfg, test_cfg=test_cfg))
de953e1a133d796d7c348777274fe9a4eb25f67e
ddb7916c3962713471044f03bd76414581dbf801
/Myadmin/templatetags/get_table_rela_name.py
57099dd00e91e49ac1775475fd5f2fe0ad581a24
[]
no_license
so1so2so/SuperCrm
92949819ea2200edd818bfafce8fd2c5ca99076a
ba17faa55b13a611fc579006994af6f0f836764b
refs/heads/master
2020-03-06T18:24:11.238838
2018-05-08T13:42:27
2018-05-08T13:42:27
127,006,380
0
0
null
null
null
null
UTF-8
Python
false
false
10,845
py
#!/usr/bin/env python # _*_ coding:utf-8 _*_ from django import template from django.utils.safestring import mark_safe register = template.Library() @register.simple_tag def get_rela_name(table_obj): table_name = table_obj.model._meta.verbose_name_plural or table_obj.verbose_name if not table_name: table_name = table_obj.model._meta.model_mame return table_name @register.simple_tag def get_chinese_name(table_obj): if hasattr(table_obj._meta, 'verbose_name_plural'): return table_obj._meta.verbose_name_plural elif hasattr(table_obj._meta, 'verbose_name'): return table_obj._meta.verbose_name else: return table_obj._meta.model_mame @register.simple_tag def build_table_row(request, one_obj_django, obj_all_model_and_display): row_ele = "" for index, filed in enumerate(obj_all_model_and_display.list_display): field_obj = one_obj_django._meta.get_field(filed) if field_obj.choices: # choices type column_data = getattr(one_obj_django, "get_%s_display" % filed)() else: column_data = getattr(one_obj_django, filed) if type(column_data).__name__ == 'datetime': column_data = column_data.strftime("%Y-%m-%d %H:%M:%S") if type(field_obj).__name__ == "ManyToManyField": all_date = getattr(field_obj, 'get_choices')()[1:] for choice_item in all_date: if str(choice_item[0]) == one_obj_django: pass if index == 0: # add <a></a> tag column_data = "<a href='{request_path}/{obj_id}/change' target='_self'>{date}</a>".format( request_path=request.path, obj_id=one_obj_django.id, date=column_data, ) row_ele += "<td>%s</td>" % column_data # print row_ele return mark_safe(row_ele) @register.simple_tag def render_page_ele(loop_counter, query_sets, filter_condtions, order, search): filters = '' for k, v in filter_condtions.items(): filters += "&%s=%s" % (k, v) if not order: order = '' if not search: search = '' if loop_counter < 3 or loop_counter > query_sets.paginator.num_pages - 2: # 显示前2页,或者最后2页 ele_class = "" if query_sets.number == loop_counter: ele_class = "active" ele = '''<li class="%s"><a href="?page=%s%s&o=%s&q=%s">%s</a></li>''' % ( ele_class, loop_counter, filters, order, search, loop_counter) return mark_safe(ele) if abs(query_sets.number - loop_counter) <= 1: ele_class = "" if query_sets.number == loop_counter: ele_class = "active" ele = '''<li class="%s"><a href="?page=%s%s">%s</a></li>''' % (ele_class, loop_counter, filters, loop_counter) return mark_safe(ele) return '' @register.simple_tag def render_filter_ele(condtion, obj_all_model_and_display, filter_condtions): select_ele = '''<select class="form-control" name='%s' ><option value=''>----</option>''' % condtion # 拿到每一个需要filter的值 field_obj = obj_all_model_and_display.model._meta.get_field(condtion) if field_obj.choices: selected = '' # 这个循环会循环所有的choices ((0, '已报名'), (1, '未报名'), (2, '已退学'), (3, '其他')) for choice_item in field_obj.choices: # 判断filter_condtions这个字典 {u'source': u'1', u'consultant': u'2'} # print("choice", choice_item, filter_condtions.get(condtion), type(filter_condtions.get(condtion))) # 如果前端传递来的值的 if filter_condtions.get(condtion) == str(choice_item[0]): selected = "selected" select_ele += '''<option value='%s' %s>%s</option>''' % (choice_item[0], selected, choice_item[1]) selected = '' if type(field_obj).__name__ == "ForeignKey": selected = '' for choice_item in field_obj.get_choices()[1:]: if filter_condtions.get(condtion) == str(choice_item[0]): selected = "selected" select_ele += '''<option value='%s' %s>%s</option>''' % (choice_item[0], selected, choice_item[1]) selected = '' if type(field_obj).__name__ == "ManyToManyField": selected = '' for choice_item in field_obj.get_choices()[1:]: # print filter_condtions.get(condtion) if filter_condtions.get(condtion) == str(choice_item[0]): selected = "selected" select_ele += '''<option value='%s' %s>%s</option>''' % (choice_item[0], selected, choice_item[1]) selected = '' select_ele += "</select>" return mark_safe(select_ele) @register.simple_tag def change_order(column): if column.startswith("-"): column = column.strip("-") else: column = "-%s" % column return column @register.simple_tag def get_all_m2m_list(obj_all_model_and_display, field, form_obj): """ :param obj_all_model_and_display: :param field: :param form_obj: :return: 返还m2m所有待选数据 """ # models.Customer.tags.rel.to.objects.all() # obj_all_model_and_display.model=models.Customer # print obj_all_model_and_display.model if hasattr(obj_all_model_and_display.model, field.name): field_all_obj = getattr(obj_all_model_and_display.model, field.name).rel.to.objects.all() # print field_all_obj # 相当于field_obj =models.Customer.tags. # 类似 getattr(d,'tags').rel.to.objects.all() # print field_all_obj.intersection(field_select_obj) # "返还全部的减去待选的" if hasattr(form_obj.instance, field.name): field_select_obj = getattr(form_obj.instance, field.name).all() return field_all_obj.difference(field_select_obj) else: return field_all_obj # return (field_select_obj|field_all_obj).distinct() @register.simple_tag def print_obj_(obj): return obj.instance @register.simple_tag def get_select_m2m_list(form_obj, field): """ :param form_obj: :param field: :return: {{ form_obj.instance.tags.all }} form_obj= new_model_form(instance=table_obj) 返还已选择的 """ if hasattr(form_obj.instance, field.name): field_select_obj = getattr(form_obj.instance, field.name) return field_select_obj.all() else: return "" def recursive_related_objs_lookup(objs): print "objs", objs # model_name = objs[0]._meta.model_name ul_ele = "<ul>" for obj in objs: li_ele = '''<li> %s: %s </li>''' % (obj._meta.verbose_name, obj.__unicode__().strip("<>")) ul_ele += li_ele # for local many to many # print("------- obj._meta.local_many_to_many", obj._meta.local_many_to_many) for m2m_field in obj._meta.local_many_to_many: # 把所有跟这个对象直接关联的m2m字段取出来了 sub_ul_ele = "<ul>" m2m_field_obj = getattr(obj, m2m_field.name) # getattr(customer, 'tags') for o in m2m_field_obj.select_related(): # customer.tags.select_related() li_ele = '''<li> %s: %s </li>''' % (m2m_field.verbose_name, o.__unicode__().strip("<>")) sub_ul_ele += li_ele sub_ul_ele += "</ul>" ul_ele += sub_ul_ele # 最终跟最外层的ul相拼接 for related_obj in obj._meta.related_objects: if 'ManyToManyRel' in related_obj.__repr__(): if hasattr(obj, related_obj.get_accessor_name()): # hassattr(customer,'enrollment_set') accessor_obj = getattr(obj, related_obj.get_accessor_name()) print("-------ManyToManyRel", accessor_obj, related_obj.get_accessor_name()) # 上面accessor_obj 相当于 customer.enrollment_set if hasattr(accessor_obj, 'select_related'): # slect_related() == all() target_objs = accessor_obj.select_related() # .filter(**filter_coditions) # target_objs 相当于 customer.enrollment_set.all() sub_ul_ele = "<ul style='color:red'>" for o in target_objs: li_ele = '''<li> %s: %s </li>''' % (o._meta.verbose_name, o.__unicode__().strip("<>")) sub_ul_ele += li_ele sub_ul_ele += "</ul>" ul_ele += sub_ul_ele elif hasattr(obj, related_obj.get_accessor_name()): # hassattr(customer,'enrollment_set') accessor_obj = getattr(obj, related_obj.get_accessor_name()) # 上面accessor_obj 相当于 customer.enrollment_set if hasattr(accessor_obj, 'select_related'): # slect_related() == all() target_objs = accessor_obj.select_related() # .filter(**filter_coditions) # target_objs 相当于 customer.enrollment_set.all() else: print("one to one i guess:", accessor_obj) target_objs = accessor_obj if len(target_objs) > 0: # print("\033[31;1mdeeper layer lookup -------\033[0m") # nodes = recursive_related_objs_lookup(target_objs,model_name) nodes = recursive_related_objs_lookup(target_objs) ul_ele += nodes ul_ele += "</ul>" return ul_ele @register.simple_tag def display_obj_related(objs): '''把对象及所有相关联的数据取出来''' # objs = [objs] # fake # if objs: # model_class = objs[0]._meta.model # <class 'crm.models.Customer'> # mode_name = objs[0]._meta.model_name # customer return mark_safe(recursive_related_objs_lookup(objs)) @register.simple_tag def display_no_exist(one_obj_django, filed,table_name): return mark_safe('''<a href="%s/%s/%s">点击报名</a>''' % (str(table_name),one_obj_django.id, filed)) @register.simple_tag def get_filed_chinese_name(column, obj_all_model_and_display): """ models.Customer._meta.get_field('tags').verbose_name :param column: :param obj_all_model_and_display: :return: """ # print obj_all_model_and_display.model._meta.get_field('tags').verbose_name chinese_chinses_obj = obj_all_model_and_display.model._meta.get_field(column) return chinese_chinses_obj.verbose_name @register.simple_tag def get_types(stra): print stra.dispaly_name return type(stra) @register.simple_tag def get_action_verbose_name(admin_class,action): if hasattr(admin_class,action): action_func = getattr(admin_class,action) return action_func.display_name if hasattr(action_func,'display_name') else action
d06ab34fea0bac11e8aa864a35184490730e2a5a
02b495111594a367405b2bfbf220e38da3a5f7b0
/devel/lib/python2.7/dist-packages/brics_actuator/msg/_JointValue.py
0723b3357a381bbe1f9fbd1dbb79f58932d32bef
[ "BSD-2-Clause" ]
permissive
Ashuditya/Rebellious-Cowards
3f7c6afd314e4bf2ffb72b99ecf58be23f309e97
56ec395147f2fc59a26669a74a04fe02227bc7b7
refs/heads/master
2023-01-24T10:57:47.533839
2020-10-01T15:58:07
2020-10-01T15:58:07
218,202,193
0
3
BSD-2-Clause
2020-10-01T17:07:44
2019-10-29T04:09:46
Makefile
UTF-8
Python
false
false
6,583
py
# This Python file uses the following encoding: utf-8 """autogenerated by genpy from brics_actuator/JointValue.msg. Do not edit.""" import sys python3 = True if sys.hexversion > 0x03000000 else False import genpy import struct import genpy class JointValue(genpy.Message): _md5sum = "c8dad5a006889ad7de711a684999f0c6" _type = "brics_actuator/JointValue" _has_header = False #flag to mark the presence of a Header object _full_text = """time timeStamp #time of the data string joint_uri string unit #if empy expects si units, you can use boost::unit float64 value """ __slots__ = ['timeStamp','joint_uri','unit','value'] _slot_types = ['time','string','string','float64'] def __init__(self, *args, **kwds): """ Constructor. Any message fields that are implicitly/explicitly set to None will be assigned a default value. The recommend use is keyword arguments as this is more robust to future message changes. You cannot mix in-order arguments and keyword arguments. The available fields are: timeStamp,joint_uri,unit,value :param args: complete set of field values, in .msg order :param kwds: use keyword arguments corresponding to message field names to set specific fields. """ if args or kwds: super(JointValue, self).__init__(*args, **kwds) #message fields cannot be None, assign default values for those that are if self.timeStamp is None: self.timeStamp = genpy.Time() if self.joint_uri is None: self.joint_uri = '' if self.unit is None: self.unit = '' if self.value is None: self.value = 0. else: self.timeStamp = genpy.Time() self.joint_uri = '' self.unit = '' self.value = 0. def _get_types(self): """ internal API method """ return self._slot_types def serialize(self, buff): """ serialize message into buffer :param buff: buffer, ``StringIO`` """ try: _x = self buff.write(_get_struct_2I().pack(_x.timeStamp.secs, _x.timeStamp.nsecs)) _x = self.joint_uri length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self.unit length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) buff.write(_get_struct_d().pack(self.value)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize(self, str): """ unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str`` """ try: if self.timeStamp is None: self.timeStamp = genpy.Time() end = 0 _x = self start = end end += 8 (_x.timeStamp.secs, _x.timeStamp.nsecs,) = _get_struct_2I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.joint_uri = str[start:end].decode('utf-8') else: self.joint_uri = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.unit = str[start:end].decode('utf-8') else: self.unit = str[start:end] start = end end += 8 (self.value,) = _get_struct_d().unpack(str[start:end]) self.timeStamp.canon() return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill def serialize_numpy(self, buff, numpy): """ serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module """ try: _x = self buff.write(_get_struct_2I().pack(_x.timeStamp.secs, _x.timeStamp.nsecs)) _x = self.joint_uri length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self.unit length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) buff.write(_get_struct_d().pack(self.value)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize_numpy(self, str, numpy): """ unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module """ try: if self.timeStamp is None: self.timeStamp = genpy.Time() end = 0 _x = self start = end end += 8 (_x.timeStamp.secs, _x.timeStamp.nsecs,) = _get_struct_2I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.joint_uri = str[start:end].decode('utf-8') else: self.joint_uri = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.unit = str[start:end].decode('utf-8') else: self.unit = str[start:end] start = end end += 8 (self.value,) = _get_struct_d().unpack(str[start:end]) self.timeStamp.canon() return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill _struct_I = genpy.struct_I def _get_struct_I(): global _struct_I return _struct_I _struct_2I = None def _get_struct_2I(): global _struct_2I if _struct_2I is None: _struct_2I = struct.Struct("<2I") return _struct_2I _struct_d = None def _get_struct_d(): global _struct_d if _struct_d is None: _struct_d = struct.Struct("<d") return _struct_d
f32e61acab543b074d8350bb2c926e937628cbb7
97f285b6f8016a8d1d2d675fffb771df3c9e37b9
/study/algorithms/sorting/selection_sort.py
b1177b6f5b9e1b1dd7feb0d3974b2999b7447124
[]
no_license
oskomorokhov/python
ef5408499840465d18852954aee9de460d0e7250
8909396c4200bd2fca19d3f216ed5f484fb2192a
refs/heads/master
2021-05-14T09:27:25.413163
2019-12-12T21:00:05
2019-12-12T21:00:05
116,327,306
0
0
null
null
null
null
UTF-8
Python
false
false
1,256
py
# selection sort def ssort(lst): """ The algorithm divides the input list into two parts: the sublist of items already sorted, which is built up from left to right at the front (left) of the list, and the sublist of items remaining to be sorted that occupy the rest of the list. Initially, the sorted sublist is empty and the unsorted sublist is the entire input list. The algorithm proceeds by finding the smallest (or largest, depending on sorting order) element in the unsorted sublist, exchanging (swapping) it with the leftmost unsorted element (putting it in sorted order), and moving the sublist boundaries one element to the right. """ pivot = 0 while pivot < len(lst): current_min = lst[pivot] new_min = None for num in lst[pivot+1:]: if num < current_min: current_min = new_min = num if new_min: lst[lst.index(new_min) ], lst[pivot] = lst[pivot], lst[lst.index(new_min)] pivot += 1 return lst if __name__ == '__main__': print("original list", [3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48]) print(ssort([3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48]))
8ca1e09fb7ee173a14faeb5049dd0aa0737a9ba0
eff2fc11905f6118dcd70050392f168cd7aea086
/leetcode/40_combination_sum_ii/solution1.py
df0fa9abba6a73cfa6548fd39c14982c906e75fb
[]
no_license
algobot76/leetcode-python
28f1e1107fa941a3b40006f074eec6231e674ac1
ec8bff8978d6915bfdf187c760b97ee70f7515af
refs/heads/master
2021-07-05T17:06:40.581977
2020-09-19T22:02:38
2020-09-19T22:02:38
199,255,699
0
0
null
null
null
null
UTF-8
Python
false
false
737
py
class Solution: def combinationSum2(self, candidates, target): candidates.sort() combs = [] self.dfs(candidates, target, 0, [], combs) return combs def dfs(self, candidates, target, start, comb, combs): if target < 0: return if target == 0: return combs.append(list(comb)) prev = 0 while start < len(candidates) and candidates[start] <= target: if prev != candidates[start]: comb.append(candidates[start]) self.dfs(candidates, target - candidates[start], start + 1, comb, combs) comb.pop() prev = candidates[start] start += 1
0703e5f22212b00ffaf7e02dd00eeaa7b1966ce3
cc578cec7c485e2c1060fd075ccc08eb18124345
/cs15211/TopKFrequentWords.py
7733837228f8d83367a4b89021aa264f1154d5e3
[ "Apache-2.0" ]
permissive
JulyKikuAkita/PythonPrac
18e36bfad934a6112f727b4906a5e4b784182354
0ba027d9b8bc7c80bc89ce2da3543ce7a49a403c
refs/heads/master
2021-01-21T16:49:01.482561
2019-02-07T06:15:29
2019-02-07T06:15:29
91,907,704
1
1
Apache-2.0
2019-02-07T06:15:30
2017-05-20T18:12:53
Python
UTF-8
Python
false
false
5,923
py
__source__ = 'https://leetcode.com/problems/top-k-frequent-words/' # Time: O() # Space: O() # # Description: Leetcode # 692. Top K Frequent Words # # Given a non-empty list of words, return the k most frequent elements. # # Your answer should be sorted by frequency from highest to lowest. # If two words have the same frequency, then the word with the lower alphabetical order comes first. # # Example 1: # Input: ["i", "love", "leetcode", "i", "love", "coding"], k = 2 # Output: ["i", "love"] # Explanation: "i" and "love" are the two most frequent words. # Note that "i" comes before "love" due to a lower alphabetical order. # Example 2: # Input: ["the", "day", "is", "sunny", "the", "the", "the", "sunny", "is", "is"], k = 4 # Output: ["the", "is", "sunny", "day"] # Explanation: "the", "is", "sunny" and "day" are the four most frequent words, # with the number of occurrence being 4, 3, 2 and 1 respectively. # Note: # You may assume k is always valid, 1 <= k <= number of unique elements. # Input words contain only lowercase letters. # Follow up: # Try to solve it in O(n log k) time and O(n) extra space. # import heapq import unittest import collections # # Approach #1: Sorting [Accepted] # Time Complexity: O(NlogN), where N is the length of words. # We count the frequency of each word in O(N) time, then we sort the given words in O(NlogN) time. # # Space Complexity: O(N), the space used to store our candidates. class Solution(object): def topKFrequent(self, words, k): """ :type words: List[str] :type k: int :rtype: List[str] """ count = collections.Counter(words) candidates = count.keys() candidates.sort(key = lambda w: (-count[w], w)) return candidates[:k] # In Python, we improve this to O(N+klogN): our heapq.heapify operation and counting operations are O(N), # and each of kk heapq.heappop operations are O(logN). # Space Complexity: O(N)O(N), the space used to store our count. class Solution2(object): def topKFrequent(self, words, k): """ :type words: List[str] :type k: int :rtype: List[str] """ count = collections.Counter(words) heap = [(-freq, word) for word, freq in count.items()] heapq.heapify(heap) return [heapq.heappop(heap)[1] for _ in xrange(k)] class TestMethods(unittest.TestCase): def test_Local(self): self.assertEqual(1, 1) if __name__ == '__main__': unittest.main() Java = ''' # Thought: https://leetcode.com/problems/top-k-frequent-words/solution/ # Approach #1: Sorting [Accepted] # 68ms 11.37% class Solution { public List<String> topKFrequent(String[] words, int k) { Map<String, Integer> count = new HashMap<>(); for (String word: words) { count.put(word, count.getOrDefault(word, 0) + 1); } List<String> candidates = new ArrayList(count.keySet()); Collections.sort(candidates, (w1, w2) -> count.get(w1).equals(count.get(w2))? w1.compareTo(w2) : count.get(w2) - count.get(w1)); //if w1 - w2, // sorting in increasing order, thus return least frequent words return candidates.subList(0, k); } } # Approach #2: Heap [Accepted] PQ # 11ms 99.80% # Time Complexity: O(Nlogk), where N is the length of words. # We count the frequency of each word in O(N) time, then we add N words to the heap, # each in O(logk) time. Finally, we pop from the heap up to k times. As k <= N, this is O(Nlogk) in total. /* Lambda expression https://www.mkyong.com/java8/java-8-lambda-comparator-example/ */ # 13ms 81.92% class Solution { public List<String> topKFrequent(String[] words, int k) { List<String> res = new ArrayList<>(); Map<String, Integer> map = new HashMap<>(); for (String word: words) { map.put(word, map.getOrDefault(word, 0) + 1); } PriorityQueue<Map.Entry<String, Integer>> pq = new PriorityQueue<>(new Checker()); for (Map.Entry<String, Integer> entry : map.entrySet()) { pq.offer(entry); if (pq.size() > k) pq.poll(); } while (pq.size() != 0) { res.add(0, pq.poll().getKey()); } return res; } } class Checker implements Comparator<Map.Entry<String, Integer>> { public int compare(Map.Entry<String, Integer> o1, Map.Entry<String, Integer> o2) { if (o1.getValue() == o2.getValue()) { return o2.getKey().compareTo(o1.getKey()); } else { return o1.getValue() - o2.getValue(); } } } # 10ms 99.34% class Solution { private class Point implements Comparable<Point> { private String str; private int count; public Point(String str) { this.str = str; this.count = 1; } @Override public int hashCode() { return str.hashCode(); } @Override public int compareTo(Point b) { if(count != b.count) { return b.count - count; } else { return str.compareTo(b.str); } } public void addCount() { count++; } public String getStr() { return str; } } public List<String> topKFrequent(String[] words, int k) { Map<String, Point> map = new HashMap<>(); for(String word: words) { if(map.containsKey(word)) { map.get(word).addCount(); } else map.put(word, new Point(word)); } PriorityQueue<Point> pq = new PriorityQueue<>(map.values()); int count = 0; List<String> res = new ArrayList<>(); while(!pq.isEmpty() && count < k) { res.add(pq.poll().getStr()); count++; } return res; } } '''
01651216a026d86c1a68fac21316efefe8e285b4
6b05bddf2e294c8e1b39846aecadfa06b4ff805d
/kubevirt/models/v1_secret_volume_source.py
a4149f175fdbc18ed8d07833b30451edf27ea370
[ "Apache-2.0" ]
permissive
kubevirt/client-python
5ca82fe55d48c07f62796d2bed3605a7c189922c
235fe17f58d41165010be7e4122cb67bdc866fe7
refs/heads/master
2023-09-03T12:25:27.272479
2023-08-17T00:33:31
2023-08-17T00:33:31
105,017,761
29
25
Apache-2.0
2022-10-20T13:52:10
2017-09-27T12:51:32
Python
UTF-8
Python
false
false
5,318
py
# coding: utf-8 """ KubeVirt API This is KubeVirt API an add-on for Kubernetes. OpenAPI spec version: 1.0.0 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class V1SecretVolumeSource(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'optional': 'bool', 'secret_name': 'str', 'volume_label': 'str' } attribute_map = { 'optional': 'optional', 'secret_name': 'secretName', 'volume_label': 'volumeLabel' } def __init__(self, optional=None, secret_name=None, volume_label=None): """ V1SecretVolumeSource - a model defined in Swagger """ self._optional = None self._secret_name = None self._volume_label = None if optional is not None: self.optional = optional if secret_name is not None: self.secret_name = secret_name if volume_label is not None: self.volume_label = volume_label @property def optional(self): """ Gets the optional of this V1SecretVolumeSource. Specify whether the Secret or it's keys must be defined :return: The optional of this V1SecretVolumeSource. :rtype: bool """ return self._optional @optional.setter def optional(self, optional): """ Sets the optional of this V1SecretVolumeSource. Specify whether the Secret or it's keys must be defined :param optional: The optional of this V1SecretVolumeSource. :type: bool """ self._optional = optional @property def secret_name(self): """ Gets the secret_name of this V1SecretVolumeSource. Name of the secret in the pod's namespace to use. More info: https://kubernetes.io/docs/concepts/storage/volumes#secret :return: The secret_name of this V1SecretVolumeSource. :rtype: str """ return self._secret_name @secret_name.setter def secret_name(self, secret_name): """ Sets the secret_name of this V1SecretVolumeSource. Name of the secret in the pod's namespace to use. More info: https://kubernetes.io/docs/concepts/storage/volumes#secret :param secret_name: The secret_name of this V1SecretVolumeSource. :type: str """ self._secret_name = secret_name @property def volume_label(self): """ Gets the volume_label of this V1SecretVolumeSource. The volume label of the resulting disk inside the VMI. Different bootstrapping mechanisms require different values. Typical values are \"cidata\" (cloud-init), \"config-2\" (cloud-init) or \"OEMDRV\" (kickstart). :return: The volume_label of this V1SecretVolumeSource. :rtype: str """ return self._volume_label @volume_label.setter def volume_label(self, volume_label): """ Sets the volume_label of this V1SecretVolumeSource. The volume label of the resulting disk inside the VMI. Different bootstrapping mechanisms require different values. Typical values are \"cidata\" (cloud-init), \"config-2\" (cloud-init) or \"OEMDRV\" (kickstart). :param volume_label: The volume_label of this V1SecretVolumeSource. :type: str """ self._volume_label = volume_label def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, V1SecretVolumeSource): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
08777ef56a0df912e73d6c15c9f138bd8b2e87c3
f4434c85e3814b6347f8f8099c081ed4af5678a5
/sdk/textanalytics/azure-ai-textanalytics/samples/async_samples/sample_recognize_pii_entities_async.py
7c580718d21294e4c46f62a5a71fbf2a0867ba92
[ "LicenseRef-scancode-generic-cla", "MIT", "LGPL-2.1-or-later" ]
permissive
yunhaoling/azure-sdk-for-python
5da12a174a37672ac6ed8e3c1f863cb77010a506
c4eb0ca1aadb76ad892114230473034830116362
refs/heads/master
2022-06-11T01:17:39.636461
2020-12-08T17:42:08
2020-12-08T17:42:08
177,675,796
1
0
MIT
2020-03-31T20:35:17
2019-03-25T22:43:40
Python
UTF-8
Python
false
false
4,031
py
# coding: utf-8 # ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- """ FILE: sample_recognize_pii_entities_async.py DESCRIPTION: This sample demonstrates how to recognize personally identifiable information in a batch of documents. The endpoint recognize_pii_entities is only available for API version v3.1-preview and up. In this sample, we will be working for a company that handles loan payments. To follow privacy guidelines, we need to redact all of our information before we make it public. USAGE: python sample_recognize_pii_entities_async.py Set the environment variables with your own values before running the sample: 1) AZURE_TEXT_ANALYTICS_ENDPOINT - the endpoint to your Cognitive Services resource. 2) AZURE_TEXT_ANALYTICS_KEY - your Text Analytics subscription key """ import os import asyncio class RecognizePiiEntitiesSampleAsync(object): async def recognize_pii_entities_async(self): print( "In this sample we will be going through our customer's loan payment information and redacting " "all PII (personally identifable information) before storing this information on our public website. " "I'm also looking to explicitly extract the SSN information, so I can update my database with SSNs for " "our customers" ) # [START recognize_pii_entities_async] from azure.core.credentials import AzureKeyCredential from azure.ai.textanalytics.aio import TextAnalyticsClient endpoint = os.environ["AZURE_TEXT_ANALYTICS_ENDPOINT"] key = os.environ["AZURE_TEXT_ANALYTICS_KEY"] text_analytics_client = TextAnalyticsClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) documents = [ """Parker Doe has repaid all of their loans as of 2020-04-25. Their SSN is 859-98-0987. To contact them, use their phone number 555-555-5555. They are originally from Brazil and have Brazilian CPF number 998.214.865-68""" ] async with text_analytics_client: result = await text_analytics_client.recognize_pii_entities(documents) docs = [doc for doc in result if not doc.is_error] print( "Let's compare the original document with the documents after redaction. " "I also want to comb through all of the entities that got redacted" ) for idx, doc in enumerate(docs): print("Document text: {}".format(documents[idx])) print("Redacted document text: {}".format(doc.redacted_text)) for entity in doc.entities: print("...Entity '{}' with category '{}' got redacted".format( entity.text, entity.category )) # [END recognize_pii_entities_async] print("All of the information that I expect to be redacted is!") print( "Now I want to explicitly extract SSN information to add to my user SSN database. " "I also want to be fairly confident that what I'm storing is an SSN, so let's also " "ensure that we're > 60% positive the entity is a SSN" ) ssns = [] for doc in docs: for entity in doc.entities: if entity.category == 'U.S. Social Security Number (SSN)' and entity.confidence_score >= 0.6: ssns.append(entity.text) print("We have extracted the following SSNs as well: '{}'".format( "', '".join(ssns) )) async def main(): sample = RecognizePiiEntitiesSampleAsync() await sample.recognize_pii_entities_async() if __name__ == '__main__': loop = asyncio.get_event_loop() loop.run_until_complete(main())
414558f8f2f2f959546e50c46144100f193f178d
6d429c1bc185fc8180fc69f1d49fd781e9a90748
/appuser/codemanager.py
98381f12400d2cfb23c1cb65a163547d03f84290
[]
no_license
FirayMa/store
6bc5d350da4170d0ef87d25748635cd1a32aa717
542a955451f78f9f904010383b1c661e2fbef471
refs/heads/master
2023-05-28T05:33:13.867339
2017-09-07T01:00:30
2017-09-07T01:00:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,766
py
from django.db import models import pdb import random import string from django.conf import settings from common.e_mail import EmailEx class CodeManager(models.Manager): """ 验证码的manager """ email = EmailEx() def send_code(self, email): result={} if not self.email.EMAIL_REGEX.match(email): result['status'] = 1 result['msg'] = '电子邮件格式不正确' else: code = ''.join(random.choice(string.ascii_lowercase + string.digits) for i in range(4)) Subject = settings.PROJECTNAME+'注册邮箱验证' content = '您好, 欢迎您注册, 欢迎加入我们, 您的邮箱验证码是: ' + code try: self.email.send_text_email(Subject, content, email) try: verify_code = self.model.objects.get(email__exact = email, type ='0') verify_code.code = code verify_code.save() except self.model.DoesNotExist: verify_code = self.model(email=email, code=code, type ='0') verify_code.save() result['status'] = 2 result['msg'] = '验证码已发至您的邮箱中, 请到邮箱中查看您的验证码!' except Exception as e: result['status'] = 3 result['msg'] = '发送邮件的过程中发生错误: '+ str(e) return result def veirfy_code(self, code, email): try: verify_code = self.model.objects.get(email__exact = email, code =code) return True except self.model.DoesNotExist: return False
90103b4dfe92fcefbca7e03b61049dfd4b387ab2
cc0c0f99a5cf563ff52a76f2ac17cdad09d22f01
/venv/Lib/site-packages/itk/itkBinaryMask3DMeshSourcePython.py
9b1e3354b60a4ae82b8bc30de79fa59d8b65a3ec
[]
no_license
Marxss/carck_detect_system
9c0d338bde322b4c7304fd0addb524d8697c8a7b
d2480f2108052af8af0aa5265a5239c309885043
refs/heads/master
2022-04-15T23:34:20.988335
2020-03-29T16:24:00
2020-03-29T16:24:00
214,625,168
0
0
null
null
null
null
UTF-8
Python
false
false
96,779
py
# This file was automatically generated by SWIG (http://www.swig.org). # Version 3.0.8 # # Do not make changes to this file unless you know what you are doing--modify # the SWIG interface file instead. from sys import version_info if version_info >= (3, 0, 0): new_instancemethod = lambda func, inst, cls: _itkBinaryMask3DMeshSourcePython.SWIG_PyInstanceMethod_New(func) else: from new import instancemethod as new_instancemethod if version_info >= (2, 6, 0): def swig_import_helper(): from os.path import dirname import imp fp = None try: fp, pathname, description = imp.find_module('_itkBinaryMask3DMeshSourcePython', [dirname(__file__)]) except ImportError: import _itkBinaryMask3DMeshSourcePython return _itkBinaryMask3DMeshSourcePython if fp is not None: try: _mod = imp.load_module('_itkBinaryMask3DMeshSourcePython', fp, pathname, description) finally: fp.close() return _mod _itkBinaryMask3DMeshSourcePython = swig_import_helper() del swig_import_helper else: import _itkBinaryMask3DMeshSourcePython del version_info try: _swig_property = property except NameError: pass # Python < 2.2 doesn't have 'property'. def _swig_setattr_nondynamic(self, class_type, name, value, static=1): if (name == "thisown"): return self.this.own(value) if (name == "this"): if type(value).__name__ == 'SwigPyObject': self.__dict__[name] = value return method = class_type.__swig_setmethods__.get(name, None) if method: return method(self, value) if (not static): object.__setattr__(self, name, value) else: raise AttributeError("You cannot add attributes to %s" % self) def _swig_setattr(self, class_type, name, value): return _swig_setattr_nondynamic(self, class_type, name, value, 0) def _swig_getattr_nondynamic(self, class_type, name, static=1): if (name == "thisown"): return self.this.own() method = class_type.__swig_getmethods__.get(name, None) if method: return method(self) if (not static): return object.__getattr__(self, name) else: raise AttributeError(name) def _swig_getattr(self, class_type, name): return _swig_getattr_nondynamic(self, class_type, name, 0) def _swig_repr(self): try: strthis = "proxy of " + self.this.__repr__() except Exception: strthis = "" return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,) try: _object = object _newclass = 1 except AttributeError: class _object: pass _newclass = 0 def _swig_setattr_nondynamic_method(set): def set_attr(self, name, value): if (name == "thisown"): return self.this.own(value) if hasattr(self, name) or (name == "this"): set(self, name, value) else: raise AttributeError("You cannot add attributes to %s" % self) return set_attr import itkImageToMeshFilterPython import itkMeshBasePython import itkBoundingBoxPython import itkMapContainerPython import ITKCommonBasePython import pyBasePython import itkVectorPython import vnl_vectorPython import vnl_matrixPython import stdcomplexPython import vnl_vector_refPython import itkFixedArrayPython import itkPointPython import itkVectorContainerPython import itkOffsetPython import itkSizePython import itkContinuousIndexPython import itkIndexPython import itkMatrixPython import vnl_matrix_fixedPython import itkCovariantVectorPython import itkPointSetPython import itkArrayPython import itkImagePython import itkSymmetricSecondRankTensorPython import itkImageRegionPython import itkRGBPixelPython import itkRGBAPixelPython import itkMeshSourcePython def itkBinaryMask3DMeshSourceIUS3MD3_New(): return itkBinaryMask3DMeshSourceIUS3MD3.New() def itkBinaryMask3DMeshSourceIUS3MF3_New(): return itkBinaryMask3DMeshSourceIUS3MF3.New() def itkBinaryMask3DMeshSourceIUS3MUS3_New(): return itkBinaryMask3DMeshSourceIUS3MUS3.New() def itkBinaryMask3DMeshSourceIUS3MUC3_New(): return itkBinaryMask3DMeshSourceIUS3MUC3.New() def itkBinaryMask3DMeshSourceIUS3MSS3_New(): return itkBinaryMask3DMeshSourceIUS3MSS3.New() def itkBinaryMask3DMeshSourceIUC3MD3_New(): return itkBinaryMask3DMeshSourceIUC3MD3.New() def itkBinaryMask3DMeshSourceIUC3MF3_New(): return itkBinaryMask3DMeshSourceIUC3MF3.New() def itkBinaryMask3DMeshSourceIUC3MUS3_New(): return itkBinaryMask3DMeshSourceIUC3MUS3.New() def itkBinaryMask3DMeshSourceIUC3MUC3_New(): return itkBinaryMask3DMeshSourceIUC3MUC3.New() def itkBinaryMask3DMeshSourceIUC3MSS3_New(): return itkBinaryMask3DMeshSourceIUC3MSS3.New() def itkBinaryMask3DMeshSourceISS3MD3_New(): return itkBinaryMask3DMeshSourceISS3MD3.New() def itkBinaryMask3DMeshSourceISS3MF3_New(): return itkBinaryMask3DMeshSourceISS3MF3.New() def itkBinaryMask3DMeshSourceISS3MUS3_New(): return itkBinaryMask3DMeshSourceISS3MUS3.New() def itkBinaryMask3DMeshSourceISS3MUC3_New(): return itkBinaryMask3DMeshSourceISS3MUC3.New() def itkBinaryMask3DMeshSourceISS3MSS3_New(): return itkBinaryMask3DMeshSourceISS3MSS3.New() class itkBinaryMask3DMeshSourceISS3MD3(itkImageToMeshFilterPython.itkImageToMeshFilterISS3MD3): """Proxy of C++ itkBinaryMask3DMeshSourceISS3MD3 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkBinaryMask3DMeshSourceISS3MD3_Pointer": """__New_orig__() -> itkBinaryMask3DMeshSourceISS3MD3_Pointer""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MD3___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkBinaryMask3DMeshSourceISS3MD3_Pointer": """Clone(itkBinaryMask3DMeshSourceISS3MD3 self) -> itkBinaryMask3DMeshSourceISS3MD3_Pointer""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MD3_Clone(self) def SetObjectValue(self, _arg: 'short const') -> "void": """SetObjectValue(itkBinaryMask3DMeshSourceISS3MD3 self, short const _arg)""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MD3_SetObjectValue(self, _arg) def GetNumberOfNodes(self) -> "unsigned long long": """GetNumberOfNodes(itkBinaryMask3DMeshSourceISS3MD3 self) -> unsigned long long""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MD3_GetNumberOfNodes(self) def GetNumberOfCells(self) -> "unsigned long long": """GetNumberOfCells(itkBinaryMask3DMeshSourceISS3MD3 self) -> unsigned long long""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MD3_GetNumberOfCells(self) def SetInput(self, inputImage: 'itkImageSS3') -> "void": """SetInput(itkBinaryMask3DMeshSourceISS3MD3 self, itkImageSS3 inputImage)""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MD3_SetInput(self, inputImage) def SetRegionOfInterest(self, iRegion: 'itkImageRegion3') -> "void": """SetRegionOfInterest(itkBinaryMask3DMeshSourceISS3MD3 self, itkImageRegion3 iRegion)""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MD3_SetRegionOfInterest(self, iRegion) def GetRegionOfInterest(self) -> "itkImageRegion3 const &": """GetRegionOfInterest(itkBinaryMask3DMeshSourceISS3MD3 self) -> itkImageRegion3""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MD3_GetRegionOfInterest(self) __swig_destroy__ = _itkBinaryMask3DMeshSourcePython.delete_itkBinaryMask3DMeshSourceISS3MD3 def cast(obj: 'itkLightObject') -> "itkBinaryMask3DMeshSourceISS3MD3 *": """cast(itkLightObject obj) -> itkBinaryMask3DMeshSourceISS3MD3""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MD3_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkBinaryMask3DMeshSourceISS3MD3 Create a new object of the class itkBinaryMask3DMeshSourceISS3MD3 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkBinaryMask3DMeshSourceISS3MD3.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkBinaryMask3DMeshSourceISS3MD3.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkBinaryMask3DMeshSourceISS3MD3.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) itkBinaryMask3DMeshSourceISS3MD3.Clone = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MD3_Clone, None, itkBinaryMask3DMeshSourceISS3MD3) itkBinaryMask3DMeshSourceISS3MD3.SetObjectValue = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MD3_SetObjectValue, None, itkBinaryMask3DMeshSourceISS3MD3) itkBinaryMask3DMeshSourceISS3MD3.GetNumberOfNodes = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MD3_GetNumberOfNodes, None, itkBinaryMask3DMeshSourceISS3MD3) itkBinaryMask3DMeshSourceISS3MD3.GetNumberOfCells = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MD3_GetNumberOfCells, None, itkBinaryMask3DMeshSourceISS3MD3) itkBinaryMask3DMeshSourceISS3MD3.SetInput = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MD3_SetInput, None, itkBinaryMask3DMeshSourceISS3MD3) itkBinaryMask3DMeshSourceISS3MD3.SetRegionOfInterest = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MD3_SetRegionOfInterest, None, itkBinaryMask3DMeshSourceISS3MD3) itkBinaryMask3DMeshSourceISS3MD3.GetRegionOfInterest = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MD3_GetRegionOfInterest, None, itkBinaryMask3DMeshSourceISS3MD3) itkBinaryMask3DMeshSourceISS3MD3_swigregister = _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MD3_swigregister itkBinaryMask3DMeshSourceISS3MD3_swigregister(itkBinaryMask3DMeshSourceISS3MD3) def itkBinaryMask3DMeshSourceISS3MD3___New_orig__() -> "itkBinaryMask3DMeshSourceISS3MD3_Pointer": """itkBinaryMask3DMeshSourceISS3MD3___New_orig__() -> itkBinaryMask3DMeshSourceISS3MD3_Pointer""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MD3___New_orig__() def itkBinaryMask3DMeshSourceISS3MD3_cast(obj: 'itkLightObject') -> "itkBinaryMask3DMeshSourceISS3MD3 *": """itkBinaryMask3DMeshSourceISS3MD3_cast(itkLightObject obj) -> itkBinaryMask3DMeshSourceISS3MD3""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MD3_cast(obj) class itkBinaryMask3DMeshSourceISS3MF3(itkImageToMeshFilterPython.itkImageToMeshFilterISS3MF3): """Proxy of C++ itkBinaryMask3DMeshSourceISS3MF3 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkBinaryMask3DMeshSourceISS3MF3_Pointer": """__New_orig__() -> itkBinaryMask3DMeshSourceISS3MF3_Pointer""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MF3___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkBinaryMask3DMeshSourceISS3MF3_Pointer": """Clone(itkBinaryMask3DMeshSourceISS3MF3 self) -> itkBinaryMask3DMeshSourceISS3MF3_Pointer""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MF3_Clone(self) def SetObjectValue(self, _arg: 'short const') -> "void": """SetObjectValue(itkBinaryMask3DMeshSourceISS3MF3 self, short const _arg)""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MF3_SetObjectValue(self, _arg) def GetNumberOfNodes(self) -> "unsigned long long": """GetNumberOfNodes(itkBinaryMask3DMeshSourceISS3MF3 self) -> unsigned long long""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MF3_GetNumberOfNodes(self) def GetNumberOfCells(self) -> "unsigned long long": """GetNumberOfCells(itkBinaryMask3DMeshSourceISS3MF3 self) -> unsigned long long""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MF3_GetNumberOfCells(self) def SetInput(self, inputImage: 'itkImageSS3') -> "void": """SetInput(itkBinaryMask3DMeshSourceISS3MF3 self, itkImageSS3 inputImage)""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MF3_SetInput(self, inputImage) def SetRegionOfInterest(self, iRegion: 'itkImageRegion3') -> "void": """SetRegionOfInterest(itkBinaryMask3DMeshSourceISS3MF3 self, itkImageRegion3 iRegion)""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MF3_SetRegionOfInterest(self, iRegion) def GetRegionOfInterest(self) -> "itkImageRegion3 const &": """GetRegionOfInterest(itkBinaryMask3DMeshSourceISS3MF3 self) -> itkImageRegion3""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MF3_GetRegionOfInterest(self) __swig_destroy__ = _itkBinaryMask3DMeshSourcePython.delete_itkBinaryMask3DMeshSourceISS3MF3 def cast(obj: 'itkLightObject') -> "itkBinaryMask3DMeshSourceISS3MF3 *": """cast(itkLightObject obj) -> itkBinaryMask3DMeshSourceISS3MF3""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MF3_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkBinaryMask3DMeshSourceISS3MF3 Create a new object of the class itkBinaryMask3DMeshSourceISS3MF3 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkBinaryMask3DMeshSourceISS3MF3.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkBinaryMask3DMeshSourceISS3MF3.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkBinaryMask3DMeshSourceISS3MF3.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) itkBinaryMask3DMeshSourceISS3MF3.Clone = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MF3_Clone, None, itkBinaryMask3DMeshSourceISS3MF3) itkBinaryMask3DMeshSourceISS3MF3.SetObjectValue = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MF3_SetObjectValue, None, itkBinaryMask3DMeshSourceISS3MF3) itkBinaryMask3DMeshSourceISS3MF3.GetNumberOfNodes = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MF3_GetNumberOfNodes, None, itkBinaryMask3DMeshSourceISS3MF3) itkBinaryMask3DMeshSourceISS3MF3.GetNumberOfCells = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MF3_GetNumberOfCells, None, itkBinaryMask3DMeshSourceISS3MF3) itkBinaryMask3DMeshSourceISS3MF3.SetInput = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MF3_SetInput, None, itkBinaryMask3DMeshSourceISS3MF3) itkBinaryMask3DMeshSourceISS3MF3.SetRegionOfInterest = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MF3_SetRegionOfInterest, None, itkBinaryMask3DMeshSourceISS3MF3) itkBinaryMask3DMeshSourceISS3MF3.GetRegionOfInterest = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MF3_GetRegionOfInterest, None, itkBinaryMask3DMeshSourceISS3MF3) itkBinaryMask3DMeshSourceISS3MF3_swigregister = _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MF3_swigregister itkBinaryMask3DMeshSourceISS3MF3_swigregister(itkBinaryMask3DMeshSourceISS3MF3) def itkBinaryMask3DMeshSourceISS3MF3___New_orig__() -> "itkBinaryMask3DMeshSourceISS3MF3_Pointer": """itkBinaryMask3DMeshSourceISS3MF3___New_orig__() -> itkBinaryMask3DMeshSourceISS3MF3_Pointer""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MF3___New_orig__() def itkBinaryMask3DMeshSourceISS3MF3_cast(obj: 'itkLightObject') -> "itkBinaryMask3DMeshSourceISS3MF3 *": """itkBinaryMask3DMeshSourceISS3MF3_cast(itkLightObject obj) -> itkBinaryMask3DMeshSourceISS3MF3""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MF3_cast(obj) class itkBinaryMask3DMeshSourceISS3MSS3(itkImageToMeshFilterPython.itkImageToMeshFilterISS3MSS3): """Proxy of C++ itkBinaryMask3DMeshSourceISS3MSS3 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkBinaryMask3DMeshSourceISS3MSS3_Pointer": """__New_orig__() -> itkBinaryMask3DMeshSourceISS3MSS3_Pointer""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MSS3___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkBinaryMask3DMeshSourceISS3MSS3_Pointer": """Clone(itkBinaryMask3DMeshSourceISS3MSS3 self) -> itkBinaryMask3DMeshSourceISS3MSS3_Pointer""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MSS3_Clone(self) def SetObjectValue(self, _arg: 'short const') -> "void": """SetObjectValue(itkBinaryMask3DMeshSourceISS3MSS3 self, short const _arg)""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MSS3_SetObjectValue(self, _arg) def GetNumberOfNodes(self) -> "unsigned long long": """GetNumberOfNodes(itkBinaryMask3DMeshSourceISS3MSS3 self) -> unsigned long long""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MSS3_GetNumberOfNodes(self) def GetNumberOfCells(self) -> "unsigned long long": """GetNumberOfCells(itkBinaryMask3DMeshSourceISS3MSS3 self) -> unsigned long long""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MSS3_GetNumberOfCells(self) def SetInput(self, inputImage: 'itkImageSS3') -> "void": """SetInput(itkBinaryMask3DMeshSourceISS3MSS3 self, itkImageSS3 inputImage)""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MSS3_SetInput(self, inputImage) def SetRegionOfInterest(self, iRegion: 'itkImageRegion3') -> "void": """SetRegionOfInterest(itkBinaryMask3DMeshSourceISS3MSS3 self, itkImageRegion3 iRegion)""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MSS3_SetRegionOfInterest(self, iRegion) def GetRegionOfInterest(self) -> "itkImageRegion3 const &": """GetRegionOfInterest(itkBinaryMask3DMeshSourceISS3MSS3 self) -> itkImageRegion3""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MSS3_GetRegionOfInterest(self) __swig_destroy__ = _itkBinaryMask3DMeshSourcePython.delete_itkBinaryMask3DMeshSourceISS3MSS3 def cast(obj: 'itkLightObject') -> "itkBinaryMask3DMeshSourceISS3MSS3 *": """cast(itkLightObject obj) -> itkBinaryMask3DMeshSourceISS3MSS3""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MSS3_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkBinaryMask3DMeshSourceISS3MSS3 Create a new object of the class itkBinaryMask3DMeshSourceISS3MSS3 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkBinaryMask3DMeshSourceISS3MSS3.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkBinaryMask3DMeshSourceISS3MSS3.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkBinaryMask3DMeshSourceISS3MSS3.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) itkBinaryMask3DMeshSourceISS3MSS3.Clone = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MSS3_Clone, None, itkBinaryMask3DMeshSourceISS3MSS3) itkBinaryMask3DMeshSourceISS3MSS3.SetObjectValue = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MSS3_SetObjectValue, None, itkBinaryMask3DMeshSourceISS3MSS3) itkBinaryMask3DMeshSourceISS3MSS3.GetNumberOfNodes = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MSS3_GetNumberOfNodes, None, itkBinaryMask3DMeshSourceISS3MSS3) itkBinaryMask3DMeshSourceISS3MSS3.GetNumberOfCells = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MSS3_GetNumberOfCells, None, itkBinaryMask3DMeshSourceISS3MSS3) itkBinaryMask3DMeshSourceISS3MSS3.SetInput = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MSS3_SetInput, None, itkBinaryMask3DMeshSourceISS3MSS3) itkBinaryMask3DMeshSourceISS3MSS3.SetRegionOfInterest = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MSS3_SetRegionOfInterest, None, itkBinaryMask3DMeshSourceISS3MSS3) itkBinaryMask3DMeshSourceISS3MSS3.GetRegionOfInterest = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MSS3_GetRegionOfInterest, None, itkBinaryMask3DMeshSourceISS3MSS3) itkBinaryMask3DMeshSourceISS3MSS3_swigregister = _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MSS3_swigregister itkBinaryMask3DMeshSourceISS3MSS3_swigregister(itkBinaryMask3DMeshSourceISS3MSS3) def itkBinaryMask3DMeshSourceISS3MSS3___New_orig__() -> "itkBinaryMask3DMeshSourceISS3MSS3_Pointer": """itkBinaryMask3DMeshSourceISS3MSS3___New_orig__() -> itkBinaryMask3DMeshSourceISS3MSS3_Pointer""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MSS3___New_orig__() def itkBinaryMask3DMeshSourceISS3MSS3_cast(obj: 'itkLightObject') -> "itkBinaryMask3DMeshSourceISS3MSS3 *": """itkBinaryMask3DMeshSourceISS3MSS3_cast(itkLightObject obj) -> itkBinaryMask3DMeshSourceISS3MSS3""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MSS3_cast(obj) class itkBinaryMask3DMeshSourceISS3MUC3(itkImageToMeshFilterPython.itkImageToMeshFilterISS3MUC3): """Proxy of C++ itkBinaryMask3DMeshSourceISS3MUC3 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkBinaryMask3DMeshSourceISS3MUC3_Pointer": """__New_orig__() -> itkBinaryMask3DMeshSourceISS3MUC3_Pointer""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MUC3___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkBinaryMask3DMeshSourceISS3MUC3_Pointer": """Clone(itkBinaryMask3DMeshSourceISS3MUC3 self) -> itkBinaryMask3DMeshSourceISS3MUC3_Pointer""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MUC3_Clone(self) def SetObjectValue(self, _arg: 'short const') -> "void": """SetObjectValue(itkBinaryMask3DMeshSourceISS3MUC3 self, short const _arg)""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MUC3_SetObjectValue(self, _arg) def GetNumberOfNodes(self) -> "unsigned long long": """GetNumberOfNodes(itkBinaryMask3DMeshSourceISS3MUC3 self) -> unsigned long long""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MUC3_GetNumberOfNodes(self) def GetNumberOfCells(self) -> "unsigned long long": """GetNumberOfCells(itkBinaryMask3DMeshSourceISS3MUC3 self) -> unsigned long long""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MUC3_GetNumberOfCells(self) def SetInput(self, inputImage: 'itkImageSS3') -> "void": """SetInput(itkBinaryMask3DMeshSourceISS3MUC3 self, itkImageSS3 inputImage)""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MUC3_SetInput(self, inputImage) def SetRegionOfInterest(self, iRegion: 'itkImageRegion3') -> "void": """SetRegionOfInterest(itkBinaryMask3DMeshSourceISS3MUC3 self, itkImageRegion3 iRegion)""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MUC3_SetRegionOfInterest(self, iRegion) def GetRegionOfInterest(self) -> "itkImageRegion3 const &": """GetRegionOfInterest(itkBinaryMask3DMeshSourceISS3MUC3 self) -> itkImageRegion3""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MUC3_GetRegionOfInterest(self) __swig_destroy__ = _itkBinaryMask3DMeshSourcePython.delete_itkBinaryMask3DMeshSourceISS3MUC3 def cast(obj: 'itkLightObject') -> "itkBinaryMask3DMeshSourceISS3MUC3 *": """cast(itkLightObject obj) -> itkBinaryMask3DMeshSourceISS3MUC3""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MUC3_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkBinaryMask3DMeshSourceISS3MUC3 Create a new object of the class itkBinaryMask3DMeshSourceISS3MUC3 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkBinaryMask3DMeshSourceISS3MUC3.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkBinaryMask3DMeshSourceISS3MUC3.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkBinaryMask3DMeshSourceISS3MUC3.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) itkBinaryMask3DMeshSourceISS3MUC3.Clone = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MUC3_Clone, None, itkBinaryMask3DMeshSourceISS3MUC3) itkBinaryMask3DMeshSourceISS3MUC3.SetObjectValue = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MUC3_SetObjectValue, None, itkBinaryMask3DMeshSourceISS3MUC3) itkBinaryMask3DMeshSourceISS3MUC3.GetNumberOfNodes = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MUC3_GetNumberOfNodes, None, itkBinaryMask3DMeshSourceISS3MUC3) itkBinaryMask3DMeshSourceISS3MUC3.GetNumberOfCells = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MUC3_GetNumberOfCells, None, itkBinaryMask3DMeshSourceISS3MUC3) itkBinaryMask3DMeshSourceISS3MUC3.SetInput = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MUC3_SetInput, None, itkBinaryMask3DMeshSourceISS3MUC3) itkBinaryMask3DMeshSourceISS3MUC3.SetRegionOfInterest = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MUC3_SetRegionOfInterest, None, itkBinaryMask3DMeshSourceISS3MUC3) itkBinaryMask3DMeshSourceISS3MUC3.GetRegionOfInterest = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MUC3_GetRegionOfInterest, None, itkBinaryMask3DMeshSourceISS3MUC3) itkBinaryMask3DMeshSourceISS3MUC3_swigregister = _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MUC3_swigregister itkBinaryMask3DMeshSourceISS3MUC3_swigregister(itkBinaryMask3DMeshSourceISS3MUC3) def itkBinaryMask3DMeshSourceISS3MUC3___New_orig__() -> "itkBinaryMask3DMeshSourceISS3MUC3_Pointer": """itkBinaryMask3DMeshSourceISS3MUC3___New_orig__() -> itkBinaryMask3DMeshSourceISS3MUC3_Pointer""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MUC3___New_orig__() def itkBinaryMask3DMeshSourceISS3MUC3_cast(obj: 'itkLightObject') -> "itkBinaryMask3DMeshSourceISS3MUC3 *": """itkBinaryMask3DMeshSourceISS3MUC3_cast(itkLightObject obj) -> itkBinaryMask3DMeshSourceISS3MUC3""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MUC3_cast(obj) class itkBinaryMask3DMeshSourceISS3MUS3(itkImageToMeshFilterPython.itkImageToMeshFilterISS3MUS3): """Proxy of C++ itkBinaryMask3DMeshSourceISS3MUS3 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkBinaryMask3DMeshSourceISS3MUS3_Pointer": """__New_orig__() -> itkBinaryMask3DMeshSourceISS3MUS3_Pointer""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MUS3___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkBinaryMask3DMeshSourceISS3MUS3_Pointer": """Clone(itkBinaryMask3DMeshSourceISS3MUS3 self) -> itkBinaryMask3DMeshSourceISS3MUS3_Pointer""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MUS3_Clone(self) def SetObjectValue(self, _arg: 'short const') -> "void": """SetObjectValue(itkBinaryMask3DMeshSourceISS3MUS3 self, short const _arg)""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MUS3_SetObjectValue(self, _arg) def GetNumberOfNodes(self) -> "unsigned long long": """GetNumberOfNodes(itkBinaryMask3DMeshSourceISS3MUS3 self) -> unsigned long long""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MUS3_GetNumberOfNodes(self) def GetNumberOfCells(self) -> "unsigned long long": """GetNumberOfCells(itkBinaryMask3DMeshSourceISS3MUS3 self) -> unsigned long long""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MUS3_GetNumberOfCells(self) def SetInput(self, inputImage: 'itkImageSS3') -> "void": """SetInput(itkBinaryMask3DMeshSourceISS3MUS3 self, itkImageSS3 inputImage)""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MUS3_SetInput(self, inputImage) def SetRegionOfInterest(self, iRegion: 'itkImageRegion3') -> "void": """SetRegionOfInterest(itkBinaryMask3DMeshSourceISS3MUS3 self, itkImageRegion3 iRegion)""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MUS3_SetRegionOfInterest(self, iRegion) def GetRegionOfInterest(self) -> "itkImageRegion3 const &": """GetRegionOfInterest(itkBinaryMask3DMeshSourceISS3MUS3 self) -> itkImageRegion3""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MUS3_GetRegionOfInterest(self) __swig_destroy__ = _itkBinaryMask3DMeshSourcePython.delete_itkBinaryMask3DMeshSourceISS3MUS3 def cast(obj: 'itkLightObject') -> "itkBinaryMask3DMeshSourceISS3MUS3 *": """cast(itkLightObject obj) -> itkBinaryMask3DMeshSourceISS3MUS3""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MUS3_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkBinaryMask3DMeshSourceISS3MUS3 Create a new object of the class itkBinaryMask3DMeshSourceISS3MUS3 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkBinaryMask3DMeshSourceISS3MUS3.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkBinaryMask3DMeshSourceISS3MUS3.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkBinaryMask3DMeshSourceISS3MUS3.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) itkBinaryMask3DMeshSourceISS3MUS3.Clone = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MUS3_Clone, None, itkBinaryMask3DMeshSourceISS3MUS3) itkBinaryMask3DMeshSourceISS3MUS3.SetObjectValue = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MUS3_SetObjectValue, None, itkBinaryMask3DMeshSourceISS3MUS3) itkBinaryMask3DMeshSourceISS3MUS3.GetNumberOfNodes = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MUS3_GetNumberOfNodes, None, itkBinaryMask3DMeshSourceISS3MUS3) itkBinaryMask3DMeshSourceISS3MUS3.GetNumberOfCells = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MUS3_GetNumberOfCells, None, itkBinaryMask3DMeshSourceISS3MUS3) itkBinaryMask3DMeshSourceISS3MUS3.SetInput = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MUS3_SetInput, None, itkBinaryMask3DMeshSourceISS3MUS3) itkBinaryMask3DMeshSourceISS3MUS3.SetRegionOfInterest = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MUS3_SetRegionOfInterest, None, itkBinaryMask3DMeshSourceISS3MUS3) itkBinaryMask3DMeshSourceISS3MUS3.GetRegionOfInterest = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MUS3_GetRegionOfInterest, None, itkBinaryMask3DMeshSourceISS3MUS3) itkBinaryMask3DMeshSourceISS3MUS3_swigregister = _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MUS3_swigregister itkBinaryMask3DMeshSourceISS3MUS3_swigregister(itkBinaryMask3DMeshSourceISS3MUS3) def itkBinaryMask3DMeshSourceISS3MUS3___New_orig__() -> "itkBinaryMask3DMeshSourceISS3MUS3_Pointer": """itkBinaryMask3DMeshSourceISS3MUS3___New_orig__() -> itkBinaryMask3DMeshSourceISS3MUS3_Pointer""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MUS3___New_orig__() def itkBinaryMask3DMeshSourceISS3MUS3_cast(obj: 'itkLightObject') -> "itkBinaryMask3DMeshSourceISS3MUS3 *": """itkBinaryMask3DMeshSourceISS3MUS3_cast(itkLightObject obj) -> itkBinaryMask3DMeshSourceISS3MUS3""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceISS3MUS3_cast(obj) class itkBinaryMask3DMeshSourceIUC3MD3(itkImageToMeshFilterPython.itkImageToMeshFilterIUC3MD3): """Proxy of C++ itkBinaryMask3DMeshSourceIUC3MD3 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkBinaryMask3DMeshSourceIUC3MD3_Pointer": """__New_orig__() -> itkBinaryMask3DMeshSourceIUC3MD3_Pointer""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MD3___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkBinaryMask3DMeshSourceIUC3MD3_Pointer": """Clone(itkBinaryMask3DMeshSourceIUC3MD3 self) -> itkBinaryMask3DMeshSourceIUC3MD3_Pointer""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MD3_Clone(self) def SetObjectValue(self, _arg: 'unsigned char const') -> "void": """SetObjectValue(itkBinaryMask3DMeshSourceIUC3MD3 self, unsigned char const _arg)""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MD3_SetObjectValue(self, _arg) def GetNumberOfNodes(self) -> "unsigned long long": """GetNumberOfNodes(itkBinaryMask3DMeshSourceIUC3MD3 self) -> unsigned long long""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MD3_GetNumberOfNodes(self) def GetNumberOfCells(self) -> "unsigned long long": """GetNumberOfCells(itkBinaryMask3DMeshSourceIUC3MD3 self) -> unsigned long long""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MD3_GetNumberOfCells(self) def SetInput(self, inputImage: 'itkImageUC3') -> "void": """SetInput(itkBinaryMask3DMeshSourceIUC3MD3 self, itkImageUC3 inputImage)""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MD3_SetInput(self, inputImage) def SetRegionOfInterest(self, iRegion: 'itkImageRegion3') -> "void": """SetRegionOfInterest(itkBinaryMask3DMeshSourceIUC3MD3 self, itkImageRegion3 iRegion)""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MD3_SetRegionOfInterest(self, iRegion) def GetRegionOfInterest(self) -> "itkImageRegion3 const &": """GetRegionOfInterest(itkBinaryMask3DMeshSourceIUC3MD3 self) -> itkImageRegion3""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MD3_GetRegionOfInterest(self) __swig_destroy__ = _itkBinaryMask3DMeshSourcePython.delete_itkBinaryMask3DMeshSourceIUC3MD3 def cast(obj: 'itkLightObject') -> "itkBinaryMask3DMeshSourceIUC3MD3 *": """cast(itkLightObject obj) -> itkBinaryMask3DMeshSourceIUC3MD3""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MD3_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkBinaryMask3DMeshSourceIUC3MD3 Create a new object of the class itkBinaryMask3DMeshSourceIUC3MD3 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkBinaryMask3DMeshSourceIUC3MD3.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkBinaryMask3DMeshSourceIUC3MD3.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkBinaryMask3DMeshSourceIUC3MD3.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) itkBinaryMask3DMeshSourceIUC3MD3.Clone = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MD3_Clone, None, itkBinaryMask3DMeshSourceIUC3MD3) itkBinaryMask3DMeshSourceIUC3MD3.SetObjectValue = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MD3_SetObjectValue, None, itkBinaryMask3DMeshSourceIUC3MD3) itkBinaryMask3DMeshSourceIUC3MD3.GetNumberOfNodes = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MD3_GetNumberOfNodes, None, itkBinaryMask3DMeshSourceIUC3MD3) itkBinaryMask3DMeshSourceIUC3MD3.GetNumberOfCells = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MD3_GetNumberOfCells, None, itkBinaryMask3DMeshSourceIUC3MD3) itkBinaryMask3DMeshSourceIUC3MD3.SetInput = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MD3_SetInput, None, itkBinaryMask3DMeshSourceIUC3MD3) itkBinaryMask3DMeshSourceIUC3MD3.SetRegionOfInterest = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MD3_SetRegionOfInterest, None, itkBinaryMask3DMeshSourceIUC3MD3) itkBinaryMask3DMeshSourceIUC3MD3.GetRegionOfInterest = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MD3_GetRegionOfInterest, None, itkBinaryMask3DMeshSourceIUC3MD3) itkBinaryMask3DMeshSourceIUC3MD3_swigregister = _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MD3_swigregister itkBinaryMask3DMeshSourceIUC3MD3_swigregister(itkBinaryMask3DMeshSourceIUC3MD3) def itkBinaryMask3DMeshSourceIUC3MD3___New_orig__() -> "itkBinaryMask3DMeshSourceIUC3MD3_Pointer": """itkBinaryMask3DMeshSourceIUC3MD3___New_orig__() -> itkBinaryMask3DMeshSourceIUC3MD3_Pointer""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MD3___New_orig__() def itkBinaryMask3DMeshSourceIUC3MD3_cast(obj: 'itkLightObject') -> "itkBinaryMask3DMeshSourceIUC3MD3 *": """itkBinaryMask3DMeshSourceIUC3MD3_cast(itkLightObject obj) -> itkBinaryMask3DMeshSourceIUC3MD3""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MD3_cast(obj) class itkBinaryMask3DMeshSourceIUC3MF3(itkImageToMeshFilterPython.itkImageToMeshFilterIUC3MF3): """Proxy of C++ itkBinaryMask3DMeshSourceIUC3MF3 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkBinaryMask3DMeshSourceIUC3MF3_Pointer": """__New_orig__() -> itkBinaryMask3DMeshSourceIUC3MF3_Pointer""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MF3___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkBinaryMask3DMeshSourceIUC3MF3_Pointer": """Clone(itkBinaryMask3DMeshSourceIUC3MF3 self) -> itkBinaryMask3DMeshSourceIUC3MF3_Pointer""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MF3_Clone(self) def SetObjectValue(self, _arg: 'unsigned char const') -> "void": """SetObjectValue(itkBinaryMask3DMeshSourceIUC3MF3 self, unsigned char const _arg)""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MF3_SetObjectValue(self, _arg) def GetNumberOfNodes(self) -> "unsigned long long": """GetNumberOfNodes(itkBinaryMask3DMeshSourceIUC3MF3 self) -> unsigned long long""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MF3_GetNumberOfNodes(self) def GetNumberOfCells(self) -> "unsigned long long": """GetNumberOfCells(itkBinaryMask3DMeshSourceIUC3MF3 self) -> unsigned long long""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MF3_GetNumberOfCells(self) def SetInput(self, inputImage: 'itkImageUC3') -> "void": """SetInput(itkBinaryMask3DMeshSourceIUC3MF3 self, itkImageUC3 inputImage)""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MF3_SetInput(self, inputImage) def SetRegionOfInterest(self, iRegion: 'itkImageRegion3') -> "void": """SetRegionOfInterest(itkBinaryMask3DMeshSourceIUC3MF3 self, itkImageRegion3 iRegion)""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MF3_SetRegionOfInterest(self, iRegion) def GetRegionOfInterest(self) -> "itkImageRegion3 const &": """GetRegionOfInterest(itkBinaryMask3DMeshSourceIUC3MF3 self) -> itkImageRegion3""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MF3_GetRegionOfInterest(self) __swig_destroy__ = _itkBinaryMask3DMeshSourcePython.delete_itkBinaryMask3DMeshSourceIUC3MF3 def cast(obj: 'itkLightObject') -> "itkBinaryMask3DMeshSourceIUC3MF3 *": """cast(itkLightObject obj) -> itkBinaryMask3DMeshSourceIUC3MF3""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MF3_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkBinaryMask3DMeshSourceIUC3MF3 Create a new object of the class itkBinaryMask3DMeshSourceIUC3MF3 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkBinaryMask3DMeshSourceIUC3MF3.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkBinaryMask3DMeshSourceIUC3MF3.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkBinaryMask3DMeshSourceIUC3MF3.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) itkBinaryMask3DMeshSourceIUC3MF3.Clone = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MF3_Clone, None, itkBinaryMask3DMeshSourceIUC3MF3) itkBinaryMask3DMeshSourceIUC3MF3.SetObjectValue = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MF3_SetObjectValue, None, itkBinaryMask3DMeshSourceIUC3MF3) itkBinaryMask3DMeshSourceIUC3MF3.GetNumberOfNodes = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MF3_GetNumberOfNodes, None, itkBinaryMask3DMeshSourceIUC3MF3) itkBinaryMask3DMeshSourceIUC3MF3.GetNumberOfCells = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MF3_GetNumberOfCells, None, itkBinaryMask3DMeshSourceIUC3MF3) itkBinaryMask3DMeshSourceIUC3MF3.SetInput = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MF3_SetInput, None, itkBinaryMask3DMeshSourceIUC3MF3) itkBinaryMask3DMeshSourceIUC3MF3.SetRegionOfInterest = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MF3_SetRegionOfInterest, None, itkBinaryMask3DMeshSourceIUC3MF3) itkBinaryMask3DMeshSourceIUC3MF3.GetRegionOfInterest = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MF3_GetRegionOfInterest, None, itkBinaryMask3DMeshSourceIUC3MF3) itkBinaryMask3DMeshSourceIUC3MF3_swigregister = _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MF3_swigregister itkBinaryMask3DMeshSourceIUC3MF3_swigregister(itkBinaryMask3DMeshSourceIUC3MF3) def itkBinaryMask3DMeshSourceIUC3MF3___New_orig__() -> "itkBinaryMask3DMeshSourceIUC3MF3_Pointer": """itkBinaryMask3DMeshSourceIUC3MF3___New_orig__() -> itkBinaryMask3DMeshSourceIUC3MF3_Pointer""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MF3___New_orig__() def itkBinaryMask3DMeshSourceIUC3MF3_cast(obj: 'itkLightObject') -> "itkBinaryMask3DMeshSourceIUC3MF3 *": """itkBinaryMask3DMeshSourceIUC3MF3_cast(itkLightObject obj) -> itkBinaryMask3DMeshSourceIUC3MF3""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MF3_cast(obj) class itkBinaryMask3DMeshSourceIUC3MSS3(itkImageToMeshFilterPython.itkImageToMeshFilterIUC3MSS3): """Proxy of C++ itkBinaryMask3DMeshSourceIUC3MSS3 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkBinaryMask3DMeshSourceIUC3MSS3_Pointer": """__New_orig__() -> itkBinaryMask3DMeshSourceIUC3MSS3_Pointer""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MSS3___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkBinaryMask3DMeshSourceIUC3MSS3_Pointer": """Clone(itkBinaryMask3DMeshSourceIUC3MSS3 self) -> itkBinaryMask3DMeshSourceIUC3MSS3_Pointer""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MSS3_Clone(self) def SetObjectValue(self, _arg: 'unsigned char const') -> "void": """SetObjectValue(itkBinaryMask3DMeshSourceIUC3MSS3 self, unsigned char const _arg)""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MSS3_SetObjectValue(self, _arg) def GetNumberOfNodes(self) -> "unsigned long long": """GetNumberOfNodes(itkBinaryMask3DMeshSourceIUC3MSS3 self) -> unsigned long long""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MSS3_GetNumberOfNodes(self) def GetNumberOfCells(self) -> "unsigned long long": """GetNumberOfCells(itkBinaryMask3DMeshSourceIUC3MSS3 self) -> unsigned long long""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MSS3_GetNumberOfCells(self) def SetInput(self, inputImage: 'itkImageUC3') -> "void": """SetInput(itkBinaryMask3DMeshSourceIUC3MSS3 self, itkImageUC3 inputImage)""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MSS3_SetInput(self, inputImage) def SetRegionOfInterest(self, iRegion: 'itkImageRegion3') -> "void": """SetRegionOfInterest(itkBinaryMask3DMeshSourceIUC3MSS3 self, itkImageRegion3 iRegion)""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MSS3_SetRegionOfInterest(self, iRegion) def GetRegionOfInterest(self) -> "itkImageRegion3 const &": """GetRegionOfInterest(itkBinaryMask3DMeshSourceIUC3MSS3 self) -> itkImageRegion3""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MSS3_GetRegionOfInterest(self) __swig_destroy__ = _itkBinaryMask3DMeshSourcePython.delete_itkBinaryMask3DMeshSourceIUC3MSS3 def cast(obj: 'itkLightObject') -> "itkBinaryMask3DMeshSourceIUC3MSS3 *": """cast(itkLightObject obj) -> itkBinaryMask3DMeshSourceIUC3MSS3""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MSS3_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkBinaryMask3DMeshSourceIUC3MSS3 Create a new object of the class itkBinaryMask3DMeshSourceIUC3MSS3 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkBinaryMask3DMeshSourceIUC3MSS3.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkBinaryMask3DMeshSourceIUC3MSS3.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkBinaryMask3DMeshSourceIUC3MSS3.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) itkBinaryMask3DMeshSourceIUC3MSS3.Clone = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MSS3_Clone, None, itkBinaryMask3DMeshSourceIUC3MSS3) itkBinaryMask3DMeshSourceIUC3MSS3.SetObjectValue = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MSS3_SetObjectValue, None, itkBinaryMask3DMeshSourceIUC3MSS3) itkBinaryMask3DMeshSourceIUC3MSS3.GetNumberOfNodes = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MSS3_GetNumberOfNodes, None, itkBinaryMask3DMeshSourceIUC3MSS3) itkBinaryMask3DMeshSourceIUC3MSS3.GetNumberOfCells = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MSS3_GetNumberOfCells, None, itkBinaryMask3DMeshSourceIUC3MSS3) itkBinaryMask3DMeshSourceIUC3MSS3.SetInput = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MSS3_SetInput, None, itkBinaryMask3DMeshSourceIUC3MSS3) itkBinaryMask3DMeshSourceIUC3MSS3.SetRegionOfInterest = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MSS3_SetRegionOfInterest, None, itkBinaryMask3DMeshSourceIUC3MSS3) itkBinaryMask3DMeshSourceIUC3MSS3.GetRegionOfInterest = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MSS3_GetRegionOfInterest, None, itkBinaryMask3DMeshSourceIUC3MSS3) itkBinaryMask3DMeshSourceIUC3MSS3_swigregister = _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MSS3_swigregister itkBinaryMask3DMeshSourceIUC3MSS3_swigregister(itkBinaryMask3DMeshSourceIUC3MSS3) def itkBinaryMask3DMeshSourceIUC3MSS3___New_orig__() -> "itkBinaryMask3DMeshSourceIUC3MSS3_Pointer": """itkBinaryMask3DMeshSourceIUC3MSS3___New_orig__() -> itkBinaryMask3DMeshSourceIUC3MSS3_Pointer""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MSS3___New_orig__() def itkBinaryMask3DMeshSourceIUC3MSS3_cast(obj: 'itkLightObject') -> "itkBinaryMask3DMeshSourceIUC3MSS3 *": """itkBinaryMask3DMeshSourceIUC3MSS3_cast(itkLightObject obj) -> itkBinaryMask3DMeshSourceIUC3MSS3""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MSS3_cast(obj) class itkBinaryMask3DMeshSourceIUC3MUC3(itkImageToMeshFilterPython.itkImageToMeshFilterIUC3MUC3): """Proxy of C++ itkBinaryMask3DMeshSourceIUC3MUC3 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkBinaryMask3DMeshSourceIUC3MUC3_Pointer": """__New_orig__() -> itkBinaryMask3DMeshSourceIUC3MUC3_Pointer""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MUC3___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkBinaryMask3DMeshSourceIUC3MUC3_Pointer": """Clone(itkBinaryMask3DMeshSourceIUC3MUC3 self) -> itkBinaryMask3DMeshSourceIUC3MUC3_Pointer""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MUC3_Clone(self) def SetObjectValue(self, _arg: 'unsigned char const') -> "void": """SetObjectValue(itkBinaryMask3DMeshSourceIUC3MUC3 self, unsigned char const _arg)""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MUC3_SetObjectValue(self, _arg) def GetNumberOfNodes(self) -> "unsigned long long": """GetNumberOfNodes(itkBinaryMask3DMeshSourceIUC3MUC3 self) -> unsigned long long""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MUC3_GetNumberOfNodes(self) def GetNumberOfCells(self) -> "unsigned long long": """GetNumberOfCells(itkBinaryMask3DMeshSourceIUC3MUC3 self) -> unsigned long long""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MUC3_GetNumberOfCells(self) def SetInput(self, inputImage: 'itkImageUC3') -> "void": """SetInput(itkBinaryMask3DMeshSourceIUC3MUC3 self, itkImageUC3 inputImage)""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MUC3_SetInput(self, inputImage) def SetRegionOfInterest(self, iRegion: 'itkImageRegion3') -> "void": """SetRegionOfInterest(itkBinaryMask3DMeshSourceIUC3MUC3 self, itkImageRegion3 iRegion)""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MUC3_SetRegionOfInterest(self, iRegion) def GetRegionOfInterest(self) -> "itkImageRegion3 const &": """GetRegionOfInterest(itkBinaryMask3DMeshSourceIUC3MUC3 self) -> itkImageRegion3""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MUC3_GetRegionOfInterest(self) __swig_destroy__ = _itkBinaryMask3DMeshSourcePython.delete_itkBinaryMask3DMeshSourceIUC3MUC3 def cast(obj: 'itkLightObject') -> "itkBinaryMask3DMeshSourceIUC3MUC3 *": """cast(itkLightObject obj) -> itkBinaryMask3DMeshSourceIUC3MUC3""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MUC3_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkBinaryMask3DMeshSourceIUC3MUC3 Create a new object of the class itkBinaryMask3DMeshSourceIUC3MUC3 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkBinaryMask3DMeshSourceIUC3MUC3.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkBinaryMask3DMeshSourceIUC3MUC3.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkBinaryMask3DMeshSourceIUC3MUC3.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) itkBinaryMask3DMeshSourceIUC3MUC3.Clone = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MUC3_Clone, None, itkBinaryMask3DMeshSourceIUC3MUC3) itkBinaryMask3DMeshSourceIUC3MUC3.SetObjectValue = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MUC3_SetObjectValue, None, itkBinaryMask3DMeshSourceIUC3MUC3) itkBinaryMask3DMeshSourceIUC3MUC3.GetNumberOfNodes = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MUC3_GetNumberOfNodes, None, itkBinaryMask3DMeshSourceIUC3MUC3) itkBinaryMask3DMeshSourceIUC3MUC3.GetNumberOfCells = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MUC3_GetNumberOfCells, None, itkBinaryMask3DMeshSourceIUC3MUC3) itkBinaryMask3DMeshSourceIUC3MUC3.SetInput = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MUC3_SetInput, None, itkBinaryMask3DMeshSourceIUC3MUC3) itkBinaryMask3DMeshSourceIUC3MUC3.SetRegionOfInterest = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MUC3_SetRegionOfInterest, None, itkBinaryMask3DMeshSourceIUC3MUC3) itkBinaryMask3DMeshSourceIUC3MUC3.GetRegionOfInterest = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MUC3_GetRegionOfInterest, None, itkBinaryMask3DMeshSourceIUC3MUC3) itkBinaryMask3DMeshSourceIUC3MUC3_swigregister = _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MUC3_swigregister itkBinaryMask3DMeshSourceIUC3MUC3_swigregister(itkBinaryMask3DMeshSourceIUC3MUC3) def itkBinaryMask3DMeshSourceIUC3MUC3___New_orig__() -> "itkBinaryMask3DMeshSourceIUC3MUC3_Pointer": """itkBinaryMask3DMeshSourceIUC3MUC3___New_orig__() -> itkBinaryMask3DMeshSourceIUC3MUC3_Pointer""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MUC3___New_orig__() def itkBinaryMask3DMeshSourceIUC3MUC3_cast(obj: 'itkLightObject') -> "itkBinaryMask3DMeshSourceIUC3MUC3 *": """itkBinaryMask3DMeshSourceIUC3MUC3_cast(itkLightObject obj) -> itkBinaryMask3DMeshSourceIUC3MUC3""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MUC3_cast(obj) class itkBinaryMask3DMeshSourceIUC3MUS3(itkImageToMeshFilterPython.itkImageToMeshFilterIUC3MUS3): """Proxy of C++ itkBinaryMask3DMeshSourceIUC3MUS3 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkBinaryMask3DMeshSourceIUC3MUS3_Pointer": """__New_orig__() -> itkBinaryMask3DMeshSourceIUC3MUS3_Pointer""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MUS3___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkBinaryMask3DMeshSourceIUC3MUS3_Pointer": """Clone(itkBinaryMask3DMeshSourceIUC3MUS3 self) -> itkBinaryMask3DMeshSourceIUC3MUS3_Pointer""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MUS3_Clone(self) def SetObjectValue(self, _arg: 'unsigned char const') -> "void": """SetObjectValue(itkBinaryMask3DMeshSourceIUC3MUS3 self, unsigned char const _arg)""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MUS3_SetObjectValue(self, _arg) def GetNumberOfNodes(self) -> "unsigned long long": """GetNumberOfNodes(itkBinaryMask3DMeshSourceIUC3MUS3 self) -> unsigned long long""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MUS3_GetNumberOfNodes(self) def GetNumberOfCells(self) -> "unsigned long long": """GetNumberOfCells(itkBinaryMask3DMeshSourceIUC3MUS3 self) -> unsigned long long""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MUS3_GetNumberOfCells(self) def SetInput(self, inputImage: 'itkImageUC3') -> "void": """SetInput(itkBinaryMask3DMeshSourceIUC3MUS3 self, itkImageUC3 inputImage)""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MUS3_SetInput(self, inputImage) def SetRegionOfInterest(self, iRegion: 'itkImageRegion3') -> "void": """SetRegionOfInterest(itkBinaryMask3DMeshSourceIUC3MUS3 self, itkImageRegion3 iRegion)""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MUS3_SetRegionOfInterest(self, iRegion) def GetRegionOfInterest(self) -> "itkImageRegion3 const &": """GetRegionOfInterest(itkBinaryMask3DMeshSourceIUC3MUS3 self) -> itkImageRegion3""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MUS3_GetRegionOfInterest(self) __swig_destroy__ = _itkBinaryMask3DMeshSourcePython.delete_itkBinaryMask3DMeshSourceIUC3MUS3 def cast(obj: 'itkLightObject') -> "itkBinaryMask3DMeshSourceIUC3MUS3 *": """cast(itkLightObject obj) -> itkBinaryMask3DMeshSourceIUC3MUS3""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MUS3_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkBinaryMask3DMeshSourceIUC3MUS3 Create a new object of the class itkBinaryMask3DMeshSourceIUC3MUS3 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkBinaryMask3DMeshSourceIUC3MUS3.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkBinaryMask3DMeshSourceIUC3MUS3.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkBinaryMask3DMeshSourceIUC3MUS3.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) itkBinaryMask3DMeshSourceIUC3MUS3.Clone = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MUS3_Clone, None, itkBinaryMask3DMeshSourceIUC3MUS3) itkBinaryMask3DMeshSourceIUC3MUS3.SetObjectValue = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MUS3_SetObjectValue, None, itkBinaryMask3DMeshSourceIUC3MUS3) itkBinaryMask3DMeshSourceIUC3MUS3.GetNumberOfNodes = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MUS3_GetNumberOfNodes, None, itkBinaryMask3DMeshSourceIUC3MUS3) itkBinaryMask3DMeshSourceIUC3MUS3.GetNumberOfCells = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MUS3_GetNumberOfCells, None, itkBinaryMask3DMeshSourceIUC3MUS3) itkBinaryMask3DMeshSourceIUC3MUS3.SetInput = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MUS3_SetInput, None, itkBinaryMask3DMeshSourceIUC3MUS3) itkBinaryMask3DMeshSourceIUC3MUS3.SetRegionOfInterest = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MUS3_SetRegionOfInterest, None, itkBinaryMask3DMeshSourceIUC3MUS3) itkBinaryMask3DMeshSourceIUC3MUS3.GetRegionOfInterest = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MUS3_GetRegionOfInterest, None, itkBinaryMask3DMeshSourceIUC3MUS3) itkBinaryMask3DMeshSourceIUC3MUS3_swigregister = _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MUS3_swigregister itkBinaryMask3DMeshSourceIUC3MUS3_swigregister(itkBinaryMask3DMeshSourceIUC3MUS3) def itkBinaryMask3DMeshSourceIUC3MUS3___New_orig__() -> "itkBinaryMask3DMeshSourceIUC3MUS3_Pointer": """itkBinaryMask3DMeshSourceIUC3MUS3___New_orig__() -> itkBinaryMask3DMeshSourceIUC3MUS3_Pointer""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MUS3___New_orig__() def itkBinaryMask3DMeshSourceIUC3MUS3_cast(obj: 'itkLightObject') -> "itkBinaryMask3DMeshSourceIUC3MUS3 *": """itkBinaryMask3DMeshSourceIUC3MUS3_cast(itkLightObject obj) -> itkBinaryMask3DMeshSourceIUC3MUS3""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUC3MUS3_cast(obj) class itkBinaryMask3DMeshSourceIUS3MD3(itkImageToMeshFilterPython.itkImageToMeshFilterIUS3MD3): """Proxy of C++ itkBinaryMask3DMeshSourceIUS3MD3 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkBinaryMask3DMeshSourceIUS3MD3_Pointer": """__New_orig__() -> itkBinaryMask3DMeshSourceIUS3MD3_Pointer""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MD3___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkBinaryMask3DMeshSourceIUS3MD3_Pointer": """Clone(itkBinaryMask3DMeshSourceIUS3MD3 self) -> itkBinaryMask3DMeshSourceIUS3MD3_Pointer""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MD3_Clone(self) def SetObjectValue(self, _arg: 'unsigned short const') -> "void": """SetObjectValue(itkBinaryMask3DMeshSourceIUS3MD3 self, unsigned short const _arg)""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MD3_SetObjectValue(self, _arg) def GetNumberOfNodes(self) -> "unsigned long long": """GetNumberOfNodes(itkBinaryMask3DMeshSourceIUS3MD3 self) -> unsigned long long""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MD3_GetNumberOfNodes(self) def GetNumberOfCells(self) -> "unsigned long long": """GetNumberOfCells(itkBinaryMask3DMeshSourceIUS3MD3 self) -> unsigned long long""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MD3_GetNumberOfCells(self) def SetInput(self, inputImage: 'itkImageUS3') -> "void": """SetInput(itkBinaryMask3DMeshSourceIUS3MD3 self, itkImageUS3 inputImage)""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MD3_SetInput(self, inputImage) def SetRegionOfInterest(self, iRegion: 'itkImageRegion3') -> "void": """SetRegionOfInterest(itkBinaryMask3DMeshSourceIUS3MD3 self, itkImageRegion3 iRegion)""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MD3_SetRegionOfInterest(self, iRegion) def GetRegionOfInterest(self) -> "itkImageRegion3 const &": """GetRegionOfInterest(itkBinaryMask3DMeshSourceIUS3MD3 self) -> itkImageRegion3""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MD3_GetRegionOfInterest(self) __swig_destroy__ = _itkBinaryMask3DMeshSourcePython.delete_itkBinaryMask3DMeshSourceIUS3MD3 def cast(obj: 'itkLightObject') -> "itkBinaryMask3DMeshSourceIUS3MD3 *": """cast(itkLightObject obj) -> itkBinaryMask3DMeshSourceIUS3MD3""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MD3_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkBinaryMask3DMeshSourceIUS3MD3 Create a new object of the class itkBinaryMask3DMeshSourceIUS3MD3 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkBinaryMask3DMeshSourceIUS3MD3.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkBinaryMask3DMeshSourceIUS3MD3.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkBinaryMask3DMeshSourceIUS3MD3.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) itkBinaryMask3DMeshSourceIUS3MD3.Clone = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MD3_Clone, None, itkBinaryMask3DMeshSourceIUS3MD3) itkBinaryMask3DMeshSourceIUS3MD3.SetObjectValue = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MD3_SetObjectValue, None, itkBinaryMask3DMeshSourceIUS3MD3) itkBinaryMask3DMeshSourceIUS3MD3.GetNumberOfNodes = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MD3_GetNumberOfNodes, None, itkBinaryMask3DMeshSourceIUS3MD3) itkBinaryMask3DMeshSourceIUS3MD3.GetNumberOfCells = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MD3_GetNumberOfCells, None, itkBinaryMask3DMeshSourceIUS3MD3) itkBinaryMask3DMeshSourceIUS3MD3.SetInput = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MD3_SetInput, None, itkBinaryMask3DMeshSourceIUS3MD3) itkBinaryMask3DMeshSourceIUS3MD3.SetRegionOfInterest = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MD3_SetRegionOfInterest, None, itkBinaryMask3DMeshSourceIUS3MD3) itkBinaryMask3DMeshSourceIUS3MD3.GetRegionOfInterest = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MD3_GetRegionOfInterest, None, itkBinaryMask3DMeshSourceIUS3MD3) itkBinaryMask3DMeshSourceIUS3MD3_swigregister = _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MD3_swigregister itkBinaryMask3DMeshSourceIUS3MD3_swigregister(itkBinaryMask3DMeshSourceIUS3MD3) def itkBinaryMask3DMeshSourceIUS3MD3___New_orig__() -> "itkBinaryMask3DMeshSourceIUS3MD3_Pointer": """itkBinaryMask3DMeshSourceIUS3MD3___New_orig__() -> itkBinaryMask3DMeshSourceIUS3MD3_Pointer""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MD3___New_orig__() def itkBinaryMask3DMeshSourceIUS3MD3_cast(obj: 'itkLightObject') -> "itkBinaryMask3DMeshSourceIUS3MD3 *": """itkBinaryMask3DMeshSourceIUS3MD3_cast(itkLightObject obj) -> itkBinaryMask3DMeshSourceIUS3MD3""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MD3_cast(obj) class itkBinaryMask3DMeshSourceIUS3MF3(itkImageToMeshFilterPython.itkImageToMeshFilterIUS3MF3): """Proxy of C++ itkBinaryMask3DMeshSourceIUS3MF3 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkBinaryMask3DMeshSourceIUS3MF3_Pointer": """__New_orig__() -> itkBinaryMask3DMeshSourceIUS3MF3_Pointer""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MF3___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkBinaryMask3DMeshSourceIUS3MF3_Pointer": """Clone(itkBinaryMask3DMeshSourceIUS3MF3 self) -> itkBinaryMask3DMeshSourceIUS3MF3_Pointer""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MF3_Clone(self) def SetObjectValue(self, _arg: 'unsigned short const') -> "void": """SetObjectValue(itkBinaryMask3DMeshSourceIUS3MF3 self, unsigned short const _arg)""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MF3_SetObjectValue(self, _arg) def GetNumberOfNodes(self) -> "unsigned long long": """GetNumberOfNodes(itkBinaryMask3DMeshSourceIUS3MF3 self) -> unsigned long long""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MF3_GetNumberOfNodes(self) def GetNumberOfCells(self) -> "unsigned long long": """GetNumberOfCells(itkBinaryMask3DMeshSourceIUS3MF3 self) -> unsigned long long""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MF3_GetNumberOfCells(self) def SetInput(self, inputImage: 'itkImageUS3') -> "void": """SetInput(itkBinaryMask3DMeshSourceIUS3MF3 self, itkImageUS3 inputImage)""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MF3_SetInput(self, inputImage) def SetRegionOfInterest(self, iRegion: 'itkImageRegion3') -> "void": """SetRegionOfInterest(itkBinaryMask3DMeshSourceIUS3MF3 self, itkImageRegion3 iRegion)""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MF3_SetRegionOfInterest(self, iRegion) def GetRegionOfInterest(self) -> "itkImageRegion3 const &": """GetRegionOfInterest(itkBinaryMask3DMeshSourceIUS3MF3 self) -> itkImageRegion3""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MF3_GetRegionOfInterest(self) __swig_destroy__ = _itkBinaryMask3DMeshSourcePython.delete_itkBinaryMask3DMeshSourceIUS3MF3 def cast(obj: 'itkLightObject') -> "itkBinaryMask3DMeshSourceIUS3MF3 *": """cast(itkLightObject obj) -> itkBinaryMask3DMeshSourceIUS3MF3""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MF3_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkBinaryMask3DMeshSourceIUS3MF3 Create a new object of the class itkBinaryMask3DMeshSourceIUS3MF3 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkBinaryMask3DMeshSourceIUS3MF3.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkBinaryMask3DMeshSourceIUS3MF3.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkBinaryMask3DMeshSourceIUS3MF3.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) itkBinaryMask3DMeshSourceIUS3MF3.Clone = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MF3_Clone, None, itkBinaryMask3DMeshSourceIUS3MF3) itkBinaryMask3DMeshSourceIUS3MF3.SetObjectValue = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MF3_SetObjectValue, None, itkBinaryMask3DMeshSourceIUS3MF3) itkBinaryMask3DMeshSourceIUS3MF3.GetNumberOfNodes = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MF3_GetNumberOfNodes, None, itkBinaryMask3DMeshSourceIUS3MF3) itkBinaryMask3DMeshSourceIUS3MF3.GetNumberOfCells = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MF3_GetNumberOfCells, None, itkBinaryMask3DMeshSourceIUS3MF3) itkBinaryMask3DMeshSourceIUS3MF3.SetInput = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MF3_SetInput, None, itkBinaryMask3DMeshSourceIUS3MF3) itkBinaryMask3DMeshSourceIUS3MF3.SetRegionOfInterest = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MF3_SetRegionOfInterest, None, itkBinaryMask3DMeshSourceIUS3MF3) itkBinaryMask3DMeshSourceIUS3MF3.GetRegionOfInterest = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MF3_GetRegionOfInterest, None, itkBinaryMask3DMeshSourceIUS3MF3) itkBinaryMask3DMeshSourceIUS3MF3_swigregister = _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MF3_swigregister itkBinaryMask3DMeshSourceIUS3MF3_swigregister(itkBinaryMask3DMeshSourceIUS3MF3) def itkBinaryMask3DMeshSourceIUS3MF3___New_orig__() -> "itkBinaryMask3DMeshSourceIUS3MF3_Pointer": """itkBinaryMask3DMeshSourceIUS3MF3___New_orig__() -> itkBinaryMask3DMeshSourceIUS3MF3_Pointer""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MF3___New_orig__() def itkBinaryMask3DMeshSourceIUS3MF3_cast(obj: 'itkLightObject') -> "itkBinaryMask3DMeshSourceIUS3MF3 *": """itkBinaryMask3DMeshSourceIUS3MF3_cast(itkLightObject obj) -> itkBinaryMask3DMeshSourceIUS3MF3""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MF3_cast(obj) class itkBinaryMask3DMeshSourceIUS3MSS3(itkImageToMeshFilterPython.itkImageToMeshFilterIUS3MSS3): """Proxy of C++ itkBinaryMask3DMeshSourceIUS3MSS3 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkBinaryMask3DMeshSourceIUS3MSS3_Pointer": """__New_orig__() -> itkBinaryMask3DMeshSourceIUS3MSS3_Pointer""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MSS3___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkBinaryMask3DMeshSourceIUS3MSS3_Pointer": """Clone(itkBinaryMask3DMeshSourceIUS3MSS3 self) -> itkBinaryMask3DMeshSourceIUS3MSS3_Pointer""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MSS3_Clone(self) def SetObjectValue(self, _arg: 'unsigned short const') -> "void": """SetObjectValue(itkBinaryMask3DMeshSourceIUS3MSS3 self, unsigned short const _arg)""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MSS3_SetObjectValue(self, _arg) def GetNumberOfNodes(self) -> "unsigned long long": """GetNumberOfNodes(itkBinaryMask3DMeshSourceIUS3MSS3 self) -> unsigned long long""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MSS3_GetNumberOfNodes(self) def GetNumberOfCells(self) -> "unsigned long long": """GetNumberOfCells(itkBinaryMask3DMeshSourceIUS3MSS3 self) -> unsigned long long""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MSS3_GetNumberOfCells(self) def SetInput(self, inputImage: 'itkImageUS3') -> "void": """SetInput(itkBinaryMask3DMeshSourceIUS3MSS3 self, itkImageUS3 inputImage)""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MSS3_SetInput(self, inputImage) def SetRegionOfInterest(self, iRegion: 'itkImageRegion3') -> "void": """SetRegionOfInterest(itkBinaryMask3DMeshSourceIUS3MSS3 self, itkImageRegion3 iRegion)""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MSS3_SetRegionOfInterest(self, iRegion) def GetRegionOfInterest(self) -> "itkImageRegion3 const &": """GetRegionOfInterest(itkBinaryMask3DMeshSourceIUS3MSS3 self) -> itkImageRegion3""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MSS3_GetRegionOfInterest(self) __swig_destroy__ = _itkBinaryMask3DMeshSourcePython.delete_itkBinaryMask3DMeshSourceIUS3MSS3 def cast(obj: 'itkLightObject') -> "itkBinaryMask3DMeshSourceIUS3MSS3 *": """cast(itkLightObject obj) -> itkBinaryMask3DMeshSourceIUS3MSS3""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MSS3_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkBinaryMask3DMeshSourceIUS3MSS3 Create a new object of the class itkBinaryMask3DMeshSourceIUS3MSS3 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkBinaryMask3DMeshSourceIUS3MSS3.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkBinaryMask3DMeshSourceIUS3MSS3.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkBinaryMask3DMeshSourceIUS3MSS3.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) itkBinaryMask3DMeshSourceIUS3MSS3.Clone = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MSS3_Clone, None, itkBinaryMask3DMeshSourceIUS3MSS3) itkBinaryMask3DMeshSourceIUS3MSS3.SetObjectValue = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MSS3_SetObjectValue, None, itkBinaryMask3DMeshSourceIUS3MSS3) itkBinaryMask3DMeshSourceIUS3MSS3.GetNumberOfNodes = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MSS3_GetNumberOfNodes, None, itkBinaryMask3DMeshSourceIUS3MSS3) itkBinaryMask3DMeshSourceIUS3MSS3.GetNumberOfCells = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MSS3_GetNumberOfCells, None, itkBinaryMask3DMeshSourceIUS3MSS3) itkBinaryMask3DMeshSourceIUS3MSS3.SetInput = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MSS3_SetInput, None, itkBinaryMask3DMeshSourceIUS3MSS3) itkBinaryMask3DMeshSourceIUS3MSS3.SetRegionOfInterest = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MSS3_SetRegionOfInterest, None, itkBinaryMask3DMeshSourceIUS3MSS3) itkBinaryMask3DMeshSourceIUS3MSS3.GetRegionOfInterest = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MSS3_GetRegionOfInterest, None, itkBinaryMask3DMeshSourceIUS3MSS3) itkBinaryMask3DMeshSourceIUS3MSS3_swigregister = _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MSS3_swigregister itkBinaryMask3DMeshSourceIUS3MSS3_swigregister(itkBinaryMask3DMeshSourceIUS3MSS3) def itkBinaryMask3DMeshSourceIUS3MSS3___New_orig__() -> "itkBinaryMask3DMeshSourceIUS3MSS3_Pointer": """itkBinaryMask3DMeshSourceIUS3MSS3___New_orig__() -> itkBinaryMask3DMeshSourceIUS3MSS3_Pointer""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MSS3___New_orig__() def itkBinaryMask3DMeshSourceIUS3MSS3_cast(obj: 'itkLightObject') -> "itkBinaryMask3DMeshSourceIUS3MSS3 *": """itkBinaryMask3DMeshSourceIUS3MSS3_cast(itkLightObject obj) -> itkBinaryMask3DMeshSourceIUS3MSS3""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MSS3_cast(obj) class itkBinaryMask3DMeshSourceIUS3MUC3(itkImageToMeshFilterPython.itkImageToMeshFilterIUS3MUC3): """Proxy of C++ itkBinaryMask3DMeshSourceIUS3MUC3 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkBinaryMask3DMeshSourceIUS3MUC3_Pointer": """__New_orig__() -> itkBinaryMask3DMeshSourceIUS3MUC3_Pointer""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MUC3___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkBinaryMask3DMeshSourceIUS3MUC3_Pointer": """Clone(itkBinaryMask3DMeshSourceIUS3MUC3 self) -> itkBinaryMask3DMeshSourceIUS3MUC3_Pointer""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MUC3_Clone(self) def SetObjectValue(self, _arg: 'unsigned short const') -> "void": """SetObjectValue(itkBinaryMask3DMeshSourceIUS3MUC3 self, unsigned short const _arg)""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MUC3_SetObjectValue(self, _arg) def GetNumberOfNodes(self) -> "unsigned long long": """GetNumberOfNodes(itkBinaryMask3DMeshSourceIUS3MUC3 self) -> unsigned long long""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MUC3_GetNumberOfNodes(self) def GetNumberOfCells(self) -> "unsigned long long": """GetNumberOfCells(itkBinaryMask3DMeshSourceIUS3MUC3 self) -> unsigned long long""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MUC3_GetNumberOfCells(self) def SetInput(self, inputImage: 'itkImageUS3') -> "void": """SetInput(itkBinaryMask3DMeshSourceIUS3MUC3 self, itkImageUS3 inputImage)""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MUC3_SetInput(self, inputImage) def SetRegionOfInterest(self, iRegion: 'itkImageRegion3') -> "void": """SetRegionOfInterest(itkBinaryMask3DMeshSourceIUS3MUC3 self, itkImageRegion3 iRegion)""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MUC3_SetRegionOfInterest(self, iRegion) def GetRegionOfInterest(self) -> "itkImageRegion3 const &": """GetRegionOfInterest(itkBinaryMask3DMeshSourceIUS3MUC3 self) -> itkImageRegion3""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MUC3_GetRegionOfInterest(self) __swig_destroy__ = _itkBinaryMask3DMeshSourcePython.delete_itkBinaryMask3DMeshSourceIUS3MUC3 def cast(obj: 'itkLightObject') -> "itkBinaryMask3DMeshSourceIUS3MUC3 *": """cast(itkLightObject obj) -> itkBinaryMask3DMeshSourceIUS3MUC3""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MUC3_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkBinaryMask3DMeshSourceIUS3MUC3 Create a new object of the class itkBinaryMask3DMeshSourceIUS3MUC3 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkBinaryMask3DMeshSourceIUS3MUC3.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkBinaryMask3DMeshSourceIUS3MUC3.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkBinaryMask3DMeshSourceIUS3MUC3.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) itkBinaryMask3DMeshSourceIUS3MUC3.Clone = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MUC3_Clone, None, itkBinaryMask3DMeshSourceIUS3MUC3) itkBinaryMask3DMeshSourceIUS3MUC3.SetObjectValue = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MUC3_SetObjectValue, None, itkBinaryMask3DMeshSourceIUS3MUC3) itkBinaryMask3DMeshSourceIUS3MUC3.GetNumberOfNodes = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MUC3_GetNumberOfNodes, None, itkBinaryMask3DMeshSourceIUS3MUC3) itkBinaryMask3DMeshSourceIUS3MUC3.GetNumberOfCells = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MUC3_GetNumberOfCells, None, itkBinaryMask3DMeshSourceIUS3MUC3) itkBinaryMask3DMeshSourceIUS3MUC3.SetInput = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MUC3_SetInput, None, itkBinaryMask3DMeshSourceIUS3MUC3) itkBinaryMask3DMeshSourceIUS3MUC3.SetRegionOfInterest = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MUC3_SetRegionOfInterest, None, itkBinaryMask3DMeshSourceIUS3MUC3) itkBinaryMask3DMeshSourceIUS3MUC3.GetRegionOfInterest = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MUC3_GetRegionOfInterest, None, itkBinaryMask3DMeshSourceIUS3MUC3) itkBinaryMask3DMeshSourceIUS3MUC3_swigregister = _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MUC3_swigregister itkBinaryMask3DMeshSourceIUS3MUC3_swigregister(itkBinaryMask3DMeshSourceIUS3MUC3) def itkBinaryMask3DMeshSourceIUS3MUC3___New_orig__() -> "itkBinaryMask3DMeshSourceIUS3MUC3_Pointer": """itkBinaryMask3DMeshSourceIUS3MUC3___New_orig__() -> itkBinaryMask3DMeshSourceIUS3MUC3_Pointer""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MUC3___New_orig__() def itkBinaryMask3DMeshSourceIUS3MUC3_cast(obj: 'itkLightObject') -> "itkBinaryMask3DMeshSourceIUS3MUC3 *": """itkBinaryMask3DMeshSourceIUS3MUC3_cast(itkLightObject obj) -> itkBinaryMask3DMeshSourceIUS3MUC3""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MUC3_cast(obj) class itkBinaryMask3DMeshSourceIUS3MUS3(itkImageToMeshFilterPython.itkImageToMeshFilterIUS3MUS3): """Proxy of C++ itkBinaryMask3DMeshSourceIUS3MUS3 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkBinaryMask3DMeshSourceIUS3MUS3_Pointer": """__New_orig__() -> itkBinaryMask3DMeshSourceIUS3MUS3_Pointer""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MUS3___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkBinaryMask3DMeshSourceIUS3MUS3_Pointer": """Clone(itkBinaryMask3DMeshSourceIUS3MUS3 self) -> itkBinaryMask3DMeshSourceIUS3MUS3_Pointer""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MUS3_Clone(self) def SetObjectValue(self, _arg: 'unsigned short const') -> "void": """SetObjectValue(itkBinaryMask3DMeshSourceIUS3MUS3 self, unsigned short const _arg)""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MUS3_SetObjectValue(self, _arg) def GetNumberOfNodes(self) -> "unsigned long long": """GetNumberOfNodes(itkBinaryMask3DMeshSourceIUS3MUS3 self) -> unsigned long long""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MUS3_GetNumberOfNodes(self) def GetNumberOfCells(self) -> "unsigned long long": """GetNumberOfCells(itkBinaryMask3DMeshSourceIUS3MUS3 self) -> unsigned long long""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MUS3_GetNumberOfCells(self) def SetInput(self, inputImage: 'itkImageUS3') -> "void": """SetInput(itkBinaryMask3DMeshSourceIUS3MUS3 self, itkImageUS3 inputImage)""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MUS3_SetInput(self, inputImage) def SetRegionOfInterest(self, iRegion: 'itkImageRegion3') -> "void": """SetRegionOfInterest(itkBinaryMask3DMeshSourceIUS3MUS3 self, itkImageRegion3 iRegion)""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MUS3_SetRegionOfInterest(self, iRegion) def GetRegionOfInterest(self) -> "itkImageRegion3 const &": """GetRegionOfInterest(itkBinaryMask3DMeshSourceIUS3MUS3 self) -> itkImageRegion3""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MUS3_GetRegionOfInterest(self) __swig_destroy__ = _itkBinaryMask3DMeshSourcePython.delete_itkBinaryMask3DMeshSourceIUS3MUS3 def cast(obj: 'itkLightObject') -> "itkBinaryMask3DMeshSourceIUS3MUS3 *": """cast(itkLightObject obj) -> itkBinaryMask3DMeshSourceIUS3MUS3""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MUS3_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkBinaryMask3DMeshSourceIUS3MUS3 Create a new object of the class itkBinaryMask3DMeshSourceIUS3MUS3 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkBinaryMask3DMeshSourceIUS3MUS3.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkBinaryMask3DMeshSourceIUS3MUS3.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkBinaryMask3DMeshSourceIUS3MUS3.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) itkBinaryMask3DMeshSourceIUS3MUS3.Clone = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MUS3_Clone, None, itkBinaryMask3DMeshSourceIUS3MUS3) itkBinaryMask3DMeshSourceIUS3MUS3.SetObjectValue = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MUS3_SetObjectValue, None, itkBinaryMask3DMeshSourceIUS3MUS3) itkBinaryMask3DMeshSourceIUS3MUS3.GetNumberOfNodes = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MUS3_GetNumberOfNodes, None, itkBinaryMask3DMeshSourceIUS3MUS3) itkBinaryMask3DMeshSourceIUS3MUS3.GetNumberOfCells = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MUS3_GetNumberOfCells, None, itkBinaryMask3DMeshSourceIUS3MUS3) itkBinaryMask3DMeshSourceIUS3MUS3.SetInput = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MUS3_SetInput, None, itkBinaryMask3DMeshSourceIUS3MUS3) itkBinaryMask3DMeshSourceIUS3MUS3.SetRegionOfInterest = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MUS3_SetRegionOfInterest, None, itkBinaryMask3DMeshSourceIUS3MUS3) itkBinaryMask3DMeshSourceIUS3MUS3.GetRegionOfInterest = new_instancemethod(_itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MUS3_GetRegionOfInterest, None, itkBinaryMask3DMeshSourceIUS3MUS3) itkBinaryMask3DMeshSourceIUS3MUS3_swigregister = _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MUS3_swigregister itkBinaryMask3DMeshSourceIUS3MUS3_swigregister(itkBinaryMask3DMeshSourceIUS3MUS3) def itkBinaryMask3DMeshSourceIUS3MUS3___New_orig__() -> "itkBinaryMask3DMeshSourceIUS3MUS3_Pointer": """itkBinaryMask3DMeshSourceIUS3MUS3___New_orig__() -> itkBinaryMask3DMeshSourceIUS3MUS3_Pointer""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MUS3___New_orig__() def itkBinaryMask3DMeshSourceIUS3MUS3_cast(obj: 'itkLightObject') -> "itkBinaryMask3DMeshSourceIUS3MUS3 *": """itkBinaryMask3DMeshSourceIUS3MUS3_cast(itkLightObject obj) -> itkBinaryMask3DMeshSourceIUS3MUS3""" return _itkBinaryMask3DMeshSourcePython.itkBinaryMask3DMeshSourceIUS3MUS3_cast(obj) def binary_mask3_d_mesh_source(*args, **kwargs): """Procedural interface for BinaryMask3DMeshSource""" import itk instance = itk.BinaryMask3DMeshSource.New(*args, **kwargs) return instance.__internal_call__() def binary_mask3_d_mesh_source_init_docstring(): import itk import itkTemplate if isinstance(itk.BinaryMask3DMeshSource, itkTemplate.itkTemplate): binary_mask3_d_mesh_source.__doc__ = itk.BinaryMask3DMeshSource.values()[0].__doc__ else: binary_mask3_d_mesh_source.__doc__ = itk.BinaryMask3DMeshSource.__doc__
cbfdc2132564815458464e1f64c86110d7b3e056
db3d4aa39bc6b3f521ba21afbfedd8164a68e4d5
/asgiref/conformance_async.py
5aeeeeacffef2d0bc4747777b7306d1a0c04b24e
[ "BSD-3-Clause" ]
permissive
EdwardBetts/asgiref
808c55b5089d9c9d8ae33583b0a1728a6313f930
0ad52409735109a85238b5b068c77c0f4e60e59e
refs/heads/master
2021-01-21T22:19:00.404420
2017-08-23T03:33:56
2017-08-23T03:33:56
102,147,619
0
0
null
2017-09-01T19:45:30
2017-09-01T19:45:30
null
UTF-8
Python
false
false
743
py
import asyncio def test_receive_async(self): """ Tests that the asynchronous receive() method works. """ # Make sure we can run asyncio code self.skip_if_no_extension("async") try: import asyncio except ImportError: raise unittest.SkipTest("No asyncio") # Test that receive works self.loop = asyncio.new_event_loop() asyncio.set_event_loop(None) @asyncio.coroutine def test(): self.channel_layer.send("test_async", {"is it": "working"}) channel, message = yield from self.channel_layer.receive_async(["test_async"]) self.assertEqual(channel, "test_async") self.assertEqual(message, {"is it": "working"}) self.loop.run_until_complete(test())
de6ff1b606ca0939e9cc25ea37d7b88e7f76c315
b9b19792e1890b56679dc167fb99f9612af477f7
/deeppy/graph/nodes.py
17893ad9ede4ed472d8bf3fcd5e5d7a6a94a5bf0
[ "MIT" ]
permissive
fullstackenviormentss/deeppy_experimental
7990674a8eda0655671940d3baf25256af8a384b
dc06e294e37a30340c7d02ac12c4d00653baf96c
refs/heads/master
2020-03-18T22:01:01.964338
2015-08-25T18:15:28
2015-08-25T18:15:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
667
py
from ..base import Model, ParamMixin, PickleMixin, PhaseMixin class Node(PhaseMixin, PickleMixin): def _setup(self, **shapes): pass def fprop(self, **arrays): pass def bprop(self, **arrays): pass def out_shapes(self, **shapes): pass class SupervisedBatch(Node): def __init__(self): self.name = 'input' pass def _setup(self, x_shape, y_shape): pass def fprop(self, x, y): return {'samples': x, 'labels': y} def bprop(self, samples_grad, labels_grad): pass def out_shapes(self, x_shape, y_shape): return {'samples': x_shape, 'labels': y_shape}
98809dfea4ff4dba9a3ba0d6f49603d5b7cd8938
f1d67722dcd4c2209eedc0a61e5ea0ee27c95470
/examples/farmer/farmer_ama.py
00a79662b473eef48f1d277a7ec361a36bbfb408
[]
no_license
wangcj05/mpi-sppy
08204019b466da5e0812b16dd5cb53da1bdbd793
42aff4c11dc42fcba8a9520da00e48c6e9ab7d85
refs/heads/main
2023-08-25T04:36:58.606490
2021-11-01T21:40:14
2021-11-01T21:40:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
951
py
# Copyright 2021 by B. Knueven, D. Mildebrath, C. Muir, J-P Watson, and D.L. Woodruff # This software is distributed under the 3-clause BSD License. """ An example of using amalgomator and solving directly the EF To execute this: python farmer_ama.py --num-scens=10 --crops-multiplier=3 --farmer-with-integer WARNING: num-scens must be specified ! """ import mpisppy.utils.amalgomator as amalgomator def main(): solution_files = {"first_stage_solution":"farmer_first_stage.csv", } ama_options = {"EF-2stage": True, # We are solving directly the EF "write_solution":solution_files} #The module can be a local file ama = amalgomator.from_module("afarmer", ama_options) ama.run() print("first_stage_solution=", ama.first_stage_solution) print("inner bound=", ama.best_inner_bound) print("outer bound=", ama.best_outer_bound) if __name__ == "__main__": main()
4ede039a5f8e824cee79fba2efaf8cbcedf0a1bc
11195ea809c363f834f3fb31eb7de26437e2eb53
/course3/reachability.py
a1a09b13ad880b57067f789a2d3918fe4ab64d7b
[ "MIT" ]
permissive
ropable/algorithmic_toolbox
e8d517dbc00541ef10fdc8c3e586194ebbd1b30b
b4dcf4fda19c394da2baa6eced0732bf50585237
refs/heads/master
2021-09-09T12:15:37.378207
2018-03-16T01:58:41
2018-03-16T01:58:41
110,786,531
1
0
null
null
null
null
UTF-8
Python
false
false
1,117
py
# python3 import sys def reach(adj, x, y): # Determine if x can reach y by exploring all of the nodes that x can reach. visited = [False] * len(adj) # List of all the edges, and whether they have been visited. return explore(adj, x, y, visited) def explore(adj, x, y, visited): # Explore each edge pair. if x == y: # Nodes are the same: we've reached y. return 1 visited[x] = True for i in range(len(adj[x])): if not visited[adj[x][i]]: # Recurse into each node of the pair. if explore(adj, adj[x][i], y, visited): return 1 return 0 if __name__ == '__main__': input = sys.stdin.read() data = list(map(int, input.split())) n, m = data[0:2] # No. of vertices and edges. data = data[2:] edges = list(zip(data[0:(2 * m):2], data[1:(2 * m):2])) x, y = data[2 * m:] # u and v - is there a path between these? x, y = x - 1, y - 1 # They are zero-indexed. adj = [[] for _ in range(n)] for (a, b) in edges: adj[a - 1].append(b - 1) adj[b - 1].append(a - 1) print(reach(adj, x, y))
f4a6ff61bd09f097e3f78db368e0296793dad68d
f1e9f557c5d724dcabbfa17903de93bb82767e35
/py_opencv_playrtsp.py
48961e3539f940982eb4128f70fc2a9f5ce1a858
[]
no_license
gregsheu/python
e5e9ff83dc0ce90541591e726c940e8a1f71a3d4
4a77295d58a522974ee85b201ab99cdbe410fd08
refs/heads/master
2023-08-18T08:30:15.611727
2023-08-08T06:55:44
2023-08-08T06:55:44
181,270,205
0
0
null
null
null
null
UTF-8
Python
false
false
261
py
import cv2 import ffmpeg import time vcap = cv2.VideoCapture("rtsp://admin:[email protected]:554/cam/realmonitor?channel=1&subtype=0") while(1): ret, frame = vcap.read() print(frame.tobytes()) cv2.imshow('channel2', frame) cv2.waitKey(1)
2daa7490a61cc2719677837eea96644bd3d7879a
83de24182a7af33c43ee340b57755e73275149ae
/aliyun-python-sdk-vod/aliyunsdkvod/request/v20170321/ListDynamicImageRequest.py
ebe94cb925af50eeef533e6e56955b712cd79567
[ "Apache-2.0" ]
permissive
aliyun/aliyun-openapi-python-sdk
4436ca6c57190ceadbc80f0b1c35b1ab13c00c7f
83fd547946fd6772cf26f338d9653f4316c81d3c
refs/heads/master
2023-08-04T12:32:57.028821
2023-08-04T06:00:29
2023-08-04T06:00:29
39,558,861
1,080
721
NOASSERTION
2023-09-14T08:51:06
2015-07-23T09:39:45
Python
UTF-8
Python
false
false
1,447
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkvod.endpoint import endpoint_data class ListDynamicImageRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'vod', '2017-03-21', 'ListDynamicImage','vod') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_VideoId(self): # String return self.get_query_params().get('VideoId') def set_VideoId(self, VideoId): # String self.add_query_param('VideoId', VideoId)
c78e0f7af5816b19efcea2334f9803e925c03c0c
d25eebb25595c25b73fdc64447f7cf5998204b0d
/gtkApi/ReportEditor.py
ca6d3ae8746a0c2d9fb7a526f2f18423739f3bc5
[]
no_license
BackupTheBerlios/baseui
a3867c0cc4aa30cf2a7b0dcaf9dbeec68dc5ef0b
a8296aa42f0de42c18f7dfb5d20966bad695709b
refs/heads/master
2021-01-15T22:28:52.114731
2012-12-05T16:31:03
2012-12-05T16:31:03
39,894,612
1
1
null
null
null
null
UTF-8
Python
false
false
1,685
py
#!/usr/bin/env python # -*- coding: iso-8859-1 -*- #=============================================================================== # ReportEditor module. # by Mark Muzenhardt, published under LGPL-License. #=============================================================================== import pygtk pygtk.require('2.0') import gtk class ReportEditor: def __init__(self): window = gtk.Window(gtk.WINDOW_TOPLEVEL) window.set_title("Translation Editor") window.connect("destroy", lambda w: gtk.main_quit()) vbox = gtk.VBox() window.add(vbox) toolbar = gtk.Toolbar() vbox.pack_start(toolbar, expand=False, fill=True) button_print = gtk.Button('Druck') button_print.connect("clicked", self.on_button_print_clicked) toolbar.add(button_print) button_backward = gtk.Button('<-') toolbar.add(button_backward) button_forward = gtk.Button('->') toolbar.add(button_forward) button_cancel = gtk.Button('Abbruch') button_cancel.connect("clicked", lambda w: gtk.main_quit()) toolbar.add(button_cancel) label = gtk.Label('NIIX') vbox.add(label) window.show_all() # This methods are doing the initial -------------------------------------- def on_button_print_clicked(self, widget=None, data=None): pass # Start the GTK mainloop ------------------------------------------------------ def main(): gtk.main() return 0 if __name__ == "__main__": ReportEditor() main()
[ "devnull@localhost" ]
devnull@localhost
462a7046e8a050379388b4c55914328f5e45deca
a34df0359b8aa5ef03c010fe91229e4cbb765d1f
/Step X/twilio/rest/studio/v1/flow/engagement/__init__.py
fe27c9983cdfb3ea2a9b071aeb5806fec9df053a
[ "Unlicense" ]
permissive
wrestlerdude/QuackathonRubeGoldberg2019
f881d6c131ca8349946d01be29ff4ad272e11159
fdaafb79add30a3de075fa0ab9c7c88900081f65
refs/heads/master
2020-04-20T11:52:01.937292
2019-02-04T18:10:54
2019-02-04T18:10:54
168,828,471
1
0
Unlicense
2019-02-02T21:50:33
2019-02-02T12:16:32
PHP
UTF-8
Python
false
false
16,098
py
# coding=utf-8 """ This code was generated by \ / _ _ _| _ _ | (_)\/(_)(_|\/| |(/_ v1.0.0 / / """ from twilio.base import deserialize from twilio.base import serialize from twilio.base import values from twilio.base.instance_context import InstanceContext from twilio.base.instance_resource import InstanceResource from twilio.base.list_resource import ListResource from twilio.base.page import Page from twilio.rest.studio.v1.flow.engagement.engagement_context import EngagementContextList from twilio.rest.studio.v1.flow.engagement.step import StepList class EngagementList(ListResource): """ """ def __init__(self, version, flow_sid): """ Initialize the EngagementList :param Version version: Version that contains the resource :param flow_sid: Flow Sid. :returns: twilio.rest.studio.v1.flow.engagement.EngagementList :rtype: twilio.rest.studio.v1.flow.engagement.EngagementList """ super(EngagementList, self).__init__(version) # Path Solution self._solution = {'flow_sid': flow_sid, } self._uri = '/Flows/{flow_sid}/Engagements'.format(**self._solution) def stream(self, limit=None, page_size=None): """ Streams EngagementInstance records from the API as a generator stream. This operation lazily loads records as efficiently as possible until the limit is reached. The results are returned as a generator, so this operation is memory efficient. :param int limit: Upper limit for the number of records to return. stream() guarantees to never return more than limit. Default is no limit :param int page_size: Number of records to fetch per request, when not set will use the default value of 50 records. If no page_size is defined but a limit is defined, stream() will attempt to read the limit with the most efficient page size, i.e. min(limit, 1000) :returns: Generator that will yield up to limit results :rtype: list[twilio.rest.studio.v1.flow.engagement.EngagementInstance] """ limits = self._version.read_limits(limit, page_size) page = self.page(page_size=limits['page_size'], ) return self._version.stream(page, limits['limit'], limits['page_limit']) def list(self, limit=None, page_size=None): """ Lists EngagementInstance records from the API as a list. Unlike stream(), this operation is eager and will load `limit` records into memory before returning. :param int limit: Upper limit for the number of records to return. list() guarantees never to return more than limit. Default is no limit :param int page_size: Number of records to fetch per request, when not set will use the default value of 50 records. If no page_size is defined but a limit is defined, list() will attempt to read the limit with the most efficient page size, i.e. min(limit, 1000) :returns: Generator that will yield up to limit results :rtype: list[twilio.rest.studio.v1.flow.engagement.EngagementInstance] """ return list(self.stream(limit=limit, page_size=page_size, )) def page(self, page_token=values.unset, page_number=values.unset, page_size=values.unset): """ Retrieve a single page of EngagementInstance records from the API. Request is executed immediately :param str page_token: PageToken provided by the API :param int page_number: Page Number, this value is simply for client state :param int page_size: Number of records to return, defaults to 50 :returns: Page of EngagementInstance :rtype: twilio.rest.studio.v1.flow.engagement.EngagementPage """ params = values.of({'PageToken': page_token, 'Page': page_number, 'PageSize': page_size, }) response = self._version.page( 'GET', self._uri, params=params, ) return EngagementPage(self._version, response, self._solution) def get_page(self, target_url): """ Retrieve a specific page of EngagementInstance records from the API. Request is executed immediately :param str target_url: API-generated URL for the requested results page :returns: Page of EngagementInstance :rtype: twilio.rest.studio.v1.flow.engagement.EngagementPage """ response = self._version.domain.twilio.request( 'GET', target_url, ) return EngagementPage(self._version, response, self._solution) def create(self, to, from_, parameters=values.unset): """ Create a new EngagementInstance :param unicode to: The Contact phone number to start a Studio Flow Engagement. :param unicode from_: The Twilio phone number to send messages or initiate calls from during the Flow Engagement. :param dict parameters: JSON data that will be added to your flow's context and can accessed as variables inside your flow. :returns: Newly created EngagementInstance :rtype: twilio.rest.studio.v1.flow.engagement.EngagementInstance """ data = values.of({'To': to, 'From': from_, 'Parameters': serialize.object(parameters), }) payload = self._version.create( 'POST', self._uri, data=data, ) return EngagementInstance(self._version, payload, flow_sid=self._solution['flow_sid'], ) def get(self, sid): """ Constructs a EngagementContext :param sid: Engagement Sid. :returns: twilio.rest.studio.v1.flow.engagement.EngagementContext :rtype: twilio.rest.studio.v1.flow.engagement.EngagementContext """ return EngagementContext(self._version, flow_sid=self._solution['flow_sid'], sid=sid, ) def __call__(self, sid): """ Constructs a EngagementContext :param sid: Engagement Sid. :returns: twilio.rest.studio.v1.flow.engagement.EngagementContext :rtype: twilio.rest.studio.v1.flow.engagement.EngagementContext """ return EngagementContext(self._version, flow_sid=self._solution['flow_sid'], sid=sid, ) def __repr__(self): """ Provide a friendly representation :returns: Machine friendly representation :rtype: str """ return '<Twilio.Studio.V1.EngagementList>' class EngagementPage(Page): """ """ def __init__(self, version, response, solution): """ Initialize the EngagementPage :param Version version: Version that contains the resource :param Response response: Response from the API :param flow_sid: Flow Sid. :returns: twilio.rest.studio.v1.flow.engagement.EngagementPage :rtype: twilio.rest.studio.v1.flow.engagement.EngagementPage """ super(EngagementPage, self).__init__(version, response) # Path Solution self._solution = solution def get_instance(self, payload): """ Build an instance of EngagementInstance :param dict payload: Payload response from the API :returns: twilio.rest.studio.v1.flow.engagement.EngagementInstance :rtype: twilio.rest.studio.v1.flow.engagement.EngagementInstance """ return EngagementInstance(self._version, payload, flow_sid=self._solution['flow_sid'], ) def __repr__(self): """ Provide a friendly representation :returns: Machine friendly representation :rtype: str """ return '<Twilio.Studio.V1.EngagementPage>' class EngagementContext(InstanceContext): """ """ def __init__(self, version, flow_sid, sid): """ Initialize the EngagementContext :param Version version: Version that contains the resource :param flow_sid: Flow Sid. :param sid: Engagement Sid. :returns: twilio.rest.studio.v1.flow.engagement.EngagementContext :rtype: twilio.rest.studio.v1.flow.engagement.EngagementContext """ super(EngagementContext, self).__init__(version) # Path Solution self._solution = {'flow_sid': flow_sid, 'sid': sid, } self._uri = '/Flows/{flow_sid}/Engagements/{sid}'.format(**self._solution) # Dependents self._steps = None self._engagement_context = None def fetch(self): """ Fetch a EngagementInstance :returns: Fetched EngagementInstance :rtype: twilio.rest.studio.v1.flow.engagement.EngagementInstance """ params = values.of({}) payload = self._version.fetch( 'GET', self._uri, params=params, ) return EngagementInstance( self._version, payload, flow_sid=self._solution['flow_sid'], sid=self._solution['sid'], ) def delete(self): """ Deletes the EngagementInstance :returns: True if delete succeeds, False otherwise :rtype: bool """ return self._version.delete('delete', self._uri) @property def steps(self): """ Access the steps :returns: twilio.rest.studio.v1.flow.engagement.step.StepList :rtype: twilio.rest.studio.v1.flow.engagement.step.StepList """ if self._steps is None: self._steps = StepList( self._version, flow_sid=self._solution['flow_sid'], engagement_sid=self._solution['sid'], ) return self._steps @property def engagement_context(self): """ Access the engagement_context :returns: twilio.rest.studio.v1.flow.engagement.engagement_context.EngagementContextList :rtype: twilio.rest.studio.v1.flow.engagement.engagement_context.EngagementContextList """ if self._engagement_context is None: self._engagement_context = EngagementContextList( self._version, flow_sid=self._solution['flow_sid'], engagement_sid=self._solution['sid'], ) return self._engagement_context def __repr__(self): """ Provide a friendly representation :returns: Machine friendly representation :rtype: str """ context = ' '.join('{}={}'.format(k, v) for k, v in self._solution.items()) return '<Twilio.Studio.V1.EngagementContext {}>'.format(context) class EngagementInstance(InstanceResource): """ """ class Status(object): ACTIVE = "active" ENDED = "ended" def __init__(self, version, payload, flow_sid, sid=None): """ Initialize the EngagementInstance :returns: twilio.rest.studio.v1.flow.engagement.EngagementInstance :rtype: twilio.rest.studio.v1.flow.engagement.EngagementInstance """ super(EngagementInstance, self).__init__(version) # Marshaled Properties self._properties = { 'sid': payload['sid'], 'account_sid': payload['account_sid'], 'flow_sid': payload['flow_sid'], 'contact_sid': payload['contact_sid'], 'contact_channel_address': payload['contact_channel_address'], 'context': payload['context'], 'status': payload['status'], 'date_created': deserialize.iso8601_datetime(payload['date_created']), 'date_updated': deserialize.iso8601_datetime(payload['date_updated']), 'url': payload['url'], 'links': payload['links'], } # Context self._context = None self._solution = {'flow_sid': flow_sid, 'sid': sid or self._properties['sid'], } @property def _proxy(self): """ Generate an instance context for the instance, the context is capable of performing various actions. All instance actions are proxied to the context :returns: EngagementContext for this EngagementInstance :rtype: twilio.rest.studio.v1.flow.engagement.EngagementContext """ if self._context is None: self._context = EngagementContext( self._version, flow_sid=self._solution['flow_sid'], sid=self._solution['sid'], ) return self._context @property def sid(self): """ :returns: A string that uniquely identifies this Engagement. :rtype: unicode """ return self._properties['sid'] @property def account_sid(self): """ :returns: Account Sid. :rtype: unicode """ return self._properties['account_sid'] @property def flow_sid(self): """ :returns: Flow Sid. :rtype: unicode """ return self._properties['flow_sid'] @property def contact_sid(self): """ :returns: Contact Sid. :rtype: unicode """ return self._properties['contact_sid'] @property def contact_channel_address(self): """ :returns: The phone number, SIP address or Client identifier that triggered this Engagement. :rtype: unicode """ return self._properties['contact_channel_address'] @property def context(self): """ :returns: Flow state. :rtype: dict """ return self._properties['context'] @property def status(self): """ :returns: The Status of this Engagement :rtype: EngagementInstance.Status """ return self._properties['status'] @property def date_created(self): """ :returns: The date this Engagement was created :rtype: datetime """ return self._properties['date_created'] @property def date_updated(self): """ :returns: The date this Engagement was updated :rtype: datetime """ return self._properties['date_updated'] @property def url(self): """ :returns: The URL of this resource. :rtype: unicode """ return self._properties['url'] @property def links(self): """ :returns: Nested resource URLs. :rtype: unicode """ return self._properties['links'] def fetch(self): """ Fetch a EngagementInstance :returns: Fetched EngagementInstance :rtype: twilio.rest.studio.v1.flow.engagement.EngagementInstance """ return self._proxy.fetch() def delete(self): """ Deletes the EngagementInstance :returns: True if delete succeeds, False otherwise :rtype: bool """ return self._proxy.delete() @property def steps(self): """ Access the steps :returns: twilio.rest.studio.v1.flow.engagement.step.StepList :rtype: twilio.rest.studio.v1.flow.engagement.step.StepList """ return self._proxy.steps @property def engagement_context(self): """ Access the engagement_context :returns: twilio.rest.studio.v1.flow.engagement.engagement_context.EngagementContextList :rtype: twilio.rest.studio.v1.flow.engagement.engagement_context.EngagementContextList """ return self._proxy.engagement_context def __repr__(self): """ Provide a friendly representation :returns: Machine friendly representation :rtype: str """ context = ' '.join('{}={}'.format(k, v) for k, v in self._solution.items()) return '<Twilio.Studio.V1.EngagementInstance {}>'.format(context)
97dc0dee0ef8ce0ada8c9102b035a98d5717adee
e0045eec29aab56212c00f9293a21eb3b4b9fe53
/account_voucher/__manifest__.py
34480401b13ad5043af7067acd03109289d910d1
[]
no_license
tamam001/ALWAFI_P1
a3a9268081b9befc668a5f51c29ce5119434cc21
402ea8687c607fbcb5ba762c2020ebc4ee98e705
refs/heads/master
2020-05-18T08:16:50.583264
2019-04-30T14:43:46
2019-04-30T14:43:46
184,268,686
0
0
null
null
null
null
UTF-8
Python
false
false
1,459
py
# -*- coding: utf-8 -*- # Part of ALWAFI. See LICENSE file for full copyright and licensing details. { 'name' : 'Sale & Purchase Vouchers', 'version' : '1.0', 'summary': 'Manage your debts and credits thanks to simple sale/purchase receipts', 'description': """ TODO old description: Invoicing & Payments by Accounting Voucher & Receipts ===================================================== The specific and easy-to-use Invoicing system in ALWAFI allows you to keep track of your accounting, even when you are not an accountant. It provides an easy way to follow up on your vendors and customers. You could use this simplified accounting in case you work with an (external) account to keep your books, and you still want to keep track of payments. The Invoicing system includes receipts and vouchers (an easy way to keep track of sales and purchases). It also offers you an easy method of registering payments, without having to encode complete abstracts of account. This module manages: * Voucher Entry * Voucher Receipt [Sales & Purchase] * Voucher Payment [Customer & Vendors] """, 'category': 'Accounting', 'sequence': 20, 'depends' : ['account'], 'demo' : [], 'data' : [ 'security/ir.model.access.csv', 'views/account_voucher_views.xml', 'security/account_voucher_security.xml', 'data/account_voucher_data.xml', ], 'auto_install': False, 'installable': True, }
b56d4fe821cd8462bbda70acd89752b0fbce8a74
7c91f92d2d82e0d9fd85af09f9d18226c747f7fa
/rhoci/forms/test.py
bb9d6fe3cf671e23e1b037366251aa9886986d9a
[ "Apache-2.0" ]
permissive
bregman-arie/rhoci
5488afe8d884cb72a3475eef68ebc54944b45453
bae1f1d737a12ede50d263a6496faf2b698515b5
refs/heads/master
2023-02-25T10:53:01.642377
2022-12-10T14:37:40
2022-12-10T14:37:40
90,493,854
12
8
Apache-2.0
2023-02-16T07:11:11
2017-05-06T22:06:20
CSS
UTF-8
Python
false
false
1,117
py
# Copyright 2019 Arie Bregman # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from flask_wtf import FlaskForm from wtforms import BooleanField from wtforms import StringField from wtforms import SubmitField class TestSearch(FlaskForm): class_name = StringField('class name') test_name = StringField('test name') status = StringField('status') failed_since = StringField('failed since') skipped_message = StringField('skipped message') stdout = StringField('stdout') stderr = StringField('stderr') skipped = BooleanField() submit = SubmitField('Search')
0fa2b8c8ec819233bc34543f46cd4fd13fe8509b
7d75018c3d8e2ac85ea0f5bbaf52ce5eae9761ca
/project/gohelp/settings.py
3bfa30ab59e9abf68240589b9a17501126484713
[]
no_license
AVS18/sdp-sem5
fff484331d9b588558b928e557a974f05652adcb
238dcc7dfe50dda9678383590a43b23bbcd99553
refs/heads/main
2023-01-14T01:01:18.297711
2020-11-14T13:43:55
2020-11-14T13:43:55
288,098,284
1
0
null
null
null
null
UTF-8
Python
false
false
3,850
py
""" Django settings for gohelp project. Generated by 'django-admin startproject' using Django 3.1.2. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '6-rp4=_omlx$ya3@dms@a8jnpamp#$dl^y(bx!0ptji47ag!qk' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'base', 'worker', 'customer', 'storages' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'gohelp.urls' AUTH_USER_MODEL = 'base.User' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': ['templates'], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'gohelp.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'NAME': 'gohelp', 'USER': 'postgres', 'PASSWORD': 'kamakshi@1234', 'HOST': 'localhost' } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ import os STATIC_URL = '/static/' STATICFILES_DIRS = [ os.path.join(BASE_DIR,'static'), ] STATIC_ROOT = os.path.join(BASE_DIR, 'assets') AWS_ACCESS_KEY_ID = 'replace the credentials' AWS_SECRET_ACCESS_KEY = "replace the credentials" AWS_STORAGE_BUCKET_NAME = "gohelp" AWS_S3_REGION_NAME = 'ap-south-1' AWS_S3_FILE_OVERWRITE = False AWS_DEFAULT_ACL = None DEFAULT_FILE_STORAGE = 'storages.backends.s3boto3.S3Boto3Storage' EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend' EMAIL_HOST = 'smtp.gmail.com' EMAIL_PORT = 587 EMAIL_HOST_USER='[email protected]' EMAIL_HOST_PASSWORD='aditya12345' EMAIL_USE_TLS = True
4443aa6863038875ca5ad3372f122475c4993118
f576f0ea3725d54bd2551883901b25b863fe6688
/sdk/monitor/azure-mgmt-monitor/azure/mgmt/monitor/v2015_04_01/aio/_monitor_management_client.py
5640ee566505865cb91ec42008e9408f5e7a74d8
[ "MIT", "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later" ]
permissive
Azure/azure-sdk-for-python
02e3838e53a33d8ba27e9bcc22bd84e790e4ca7c
c2ca191e736bb06bfbbbc9493e8325763ba990bb
refs/heads/main
2023-09-06T09:30:13.135012
2023-09-06T01:08:06
2023-09-06T01:08:06
4,127,088
4,046
2,755
MIT
2023-09-14T21:48:49
2012-04-24T16:46:12
Python
UTF-8
Python
false
false
5,526
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from copy import deepcopy from typing import Any, Awaitable, TYPE_CHECKING from azure.core.rest import AsyncHttpResponse, HttpRequest from azure.mgmt.core import AsyncARMPipelineClient from .. import models as _models from ..._serialization import Deserializer, Serializer from ._configuration import MonitorManagementClientConfiguration from .operations import ( ActivityLogsOperations, AlertRulesOperations, AutoscaleSettingsOperations, EventCategoriesOperations, Operations, TenantActivityLogsOperations, ) if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from azure.core.credentials_async import AsyncTokenCredential class MonitorManagementClient: # pylint: disable=client-accepts-api-version-keyword """Monitor Management Client. :ivar activity_logs: ActivityLogsOperations operations :vartype activity_logs: azure.mgmt.monitor.v2015_04_01.aio.operations.ActivityLogsOperations :ivar autoscale_settings: AutoscaleSettingsOperations operations :vartype autoscale_settings: azure.mgmt.monitor.v2015_04_01.aio.operations.AutoscaleSettingsOperations :ivar event_categories: EventCategoriesOperations operations :vartype event_categories: azure.mgmt.monitor.v2015_04_01.aio.operations.EventCategoriesOperations :ivar operations: Operations operations :vartype operations: azure.mgmt.monitor.v2015_04_01.aio.operations.Operations :ivar tenant_activity_logs: TenantActivityLogsOperations operations :vartype tenant_activity_logs: azure.mgmt.monitor.v2015_04_01.aio.operations.TenantActivityLogsOperations :ivar alert_rules: AlertRulesOperations operations :vartype alert_rules: azure.mgmt.monitor.v2015_04_01.aio.operations.AlertRulesOperations :param credential: Credential needed for the client to connect to Azure. Required. :type credential: ~azure.core.credentials_async.AsyncTokenCredential :param subscription_id: The ID of the target subscription. Required. :type subscription_id: str :param base_url: Service URL. Default value is "https://management.azure.com". :type base_url: str """ def __init__( self, credential: "AsyncTokenCredential", subscription_id: str, base_url: str = "https://management.azure.com", **kwargs: Any ) -> None: self._config = MonitorManagementClientConfiguration( credential=credential, subscription_id=subscription_id, **kwargs ) self._client: AsyncARMPipelineClient = AsyncARMPipelineClient(base_url=base_url, config=self._config, **kwargs) client_models = {k: v for k, v in _models.__dict__.items() if isinstance(v, type)} self._serialize = Serializer(client_models) self._deserialize = Deserializer(client_models) self._serialize.client_side_validation = False self.activity_logs = ActivityLogsOperations(self._client, self._config, self._serialize, self._deserialize) self.autoscale_settings = AutoscaleSettingsOperations( self._client, self._config, self._serialize, self._deserialize ) self.event_categories = EventCategoriesOperations( self._client, self._config, self._serialize, self._deserialize ) self.operations = Operations(self._client, self._config, self._serialize, self._deserialize) self.tenant_activity_logs = TenantActivityLogsOperations( self._client, self._config, self._serialize, self._deserialize ) self.alert_rules = AlertRulesOperations(self._client, self._config, self._serialize, self._deserialize) def _send_request(self, request: HttpRequest, **kwargs: Any) -> Awaitable[AsyncHttpResponse]: """Runs the network request through the client's chained policies. >>> from azure.core.rest import HttpRequest >>> request = HttpRequest("GET", "https://www.example.org/") <HttpRequest [GET], url: 'https://www.example.org/'> >>> response = await client._send_request(request) <AsyncHttpResponse: 200 OK> For more information on this code flow, see https://aka.ms/azsdk/dpcodegen/python/send_request :param request: The network request you want to make. Required. :type request: ~azure.core.rest.HttpRequest :keyword bool stream: Whether the response payload will be streamed. Defaults to False. :return: The response of your network call. Does not do error handling on your response. :rtype: ~azure.core.rest.AsyncHttpResponse """ request_copy = deepcopy(request) request_copy.url = self._client.format_url(request_copy.url) return self._client.send_request(request_copy, **kwargs) async def close(self) -> None: await self._client.close() async def __aenter__(self) -> "MonitorManagementClient": await self._client.__aenter__() return self async def __aexit__(self, *exc_details: Any) -> None: await self._client.__aexit__(*exc_details)
712dba93a2621c8f100b375020d6fe1a26b33587
155cfef4bb35d20bc574f63f3443039bfcc1ab7e
/srcs/mahjong/admin/admin/admin.py
dae8ebe48a3a7b3d835c15ac939a653d4622e62b
[]
no_license
rolllyroman/fish_web
3116481a6a16484283f428eb7c98ecea7cee99d4
eb5a05ea3d56c7d9f599009e8ab6f4cb322e9023
refs/heads/master
2020-03-28T01:08:57.346228
2018-09-06T03:34:05
2018-09-06T03:34:05
147,480,922
0
0
null
null
null
null
UTF-8
Python
false
false
840
py
#-*- coding:utf-8 -*- #!/usr/bin/python """ Author:$Author$ Date:$Date$ Revision:$Revision$ Description: 后台APP应用入口 """ from bottle import Bottle from common.install_plugin import install_redis_plugin,install_session_plugin admin_app = Bottle() install_redis_plugin(admin_app) install_session_plugin(admin_app) import admin_index import admin_auth #会员模块 import admin_member # 数据统计模块 import admin_statistics # 个人信息模块 import admin_self # 代理模块 import admin_agent # 用户权限模块 import admin_power #游戏模块 import admin_game #订单模块 import admin_order #商品模块 import admin_goods #系统设置 import admin_setting #消息设置 import admin_notic #捕鱼模块 import admin_fish #福利模块 import admin_benefit ''' 金币场模块 ''' import admin_gold
d34c789dde64b5b39999009db01b1063b4be7c34
2b42b40ae2e84b438146003bf231532973f1081d
/spec/mgm4458015.3.spec
e9ca614706903a6b3dabcb4a519425f93b2f6d24
[]
no_license
MG-RAST/mtf
0ea0ebd0c0eb18ec6711e30de7cc336bdae7215a
e2ddb3b145068f22808ef43e2bbbbaeec7abccff
refs/heads/master
2020-05-20T15:32:04.334532
2012-03-05T09:51:49
2012-03-05T09:51:49
3,625,755
0
1
null
null
null
null
UTF-8
Python
false
false
14,311
spec
{ "id": "mgm4458015.3", "metadata": { "mgm4458015.3.metadata.json": { "format": "json", "provider": "metagenomics.anl.gov" } }, "providers": { "metagenomics.anl.gov": { "files": { "100.preprocess.info": { "compression": null, "description": null, "size": 736, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4458015.3/file/100.preprocess.info" }, "100.preprocess.passed.fna.gz": { "compression": "gzip", "description": null, "size": 862581, "type": "fasta", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4458015.3/file/100.preprocess.passed.fna.gz" }, "100.preprocess.passed.fna.stats": { "compression": null, "description": null, "size": 311, "type": "fasta", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4458015.3/file/100.preprocess.passed.fna.stats" }, "100.preprocess.removed.fna.gz": { "compression": "gzip", "description": null, "size": 33579, "type": "fasta", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4458015.3/file/100.preprocess.removed.fna.gz" }, "100.preprocess.removed.fna.stats": { "compression": null, "description": null, "size": 306, "type": "fasta", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4458015.3/file/100.preprocess.removed.fna.stats" }, "205.screen.h_sapiens_asm.info": { "compression": null, "description": null, "size": 450, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4458015.3/file/205.screen.h_sapiens_asm.info" }, "299.screen.info": { "compression": null, "description": null, "size": 410, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4458015.3/file/299.screen.info" }, "299.screen.passed.fna.gcs": { "compression": null, "description": null, "size": 1675, "type": "fasta", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4458015.3/file/299.screen.passed.fna.gcs" }, "299.screen.passed.fna.gz": { "compression": "gzip", "description": null, "size": 532230, "type": "fasta", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4458015.3/file/299.screen.passed.fna.gz" }, "299.screen.passed.fna.lens": { "compression": null, "description": null, "size": 392, "type": "fasta", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4458015.3/file/299.screen.passed.fna.lens" }, "299.screen.passed.fna.stats": { "compression": null, "description": null, "size": 311, "type": "fasta", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4458015.3/file/299.screen.passed.fna.stats" }, "440.cluster.rna97.fna.gz": { "compression": "gzip", "description": null, "size": 23712, "type": "fasta", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4458015.3/file/440.cluster.rna97.fna.gz" }, "440.cluster.rna97.fna.stats": { "compression": null, "description": null, "size": 309, "type": "fasta", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4458015.3/file/440.cluster.rna97.fna.stats" }, "440.cluster.rna97.info": { "compression": null, "description": null, "size": 947, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4458015.3/file/440.cluster.rna97.info" }, "440.cluster.rna97.mapping": { "compression": null, "description": null, "size": 1217940, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4458015.3/file/440.cluster.rna97.mapping" }, "440.cluster.rna97.mapping.stats": { "compression": null, "description": null, "size": 49, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4458015.3/file/440.cluster.rna97.mapping.stats" }, "450.rna.expand.lca.gz": { "compression": "gzip", "description": null, "size": 122822, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4458015.3/file/450.rna.expand.lca.gz" }, "450.rna.expand.rna.gz": { "compression": "gzip", "description": null, "size": 46050, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4458015.3/file/450.rna.expand.rna.gz" }, "450.rna.sims.filter.gz": { "compression": "gzip", "description": null, "size": 26663, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4458015.3/file/450.rna.sims.filter.gz" }, "450.rna.sims.gz": { "compression": "gzip", "description": null, "size": 277435, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4458015.3/file/450.rna.sims.gz" }, "900.abundance.function.gz": { "compression": "gzip", "description": null, "size": 6684, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4458015.3/file/900.abundance.function.gz" }, "900.abundance.lca.gz": { "compression": "gzip", "description": null, "size": 5341, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4458015.3/file/900.abundance.lca.gz" }, "900.abundance.md5.gz": { "compression": "gzip", "description": null, "size": 11391, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4458015.3/file/900.abundance.md5.gz" }, "900.abundance.ontology.gz": { "compression": "gzip", "description": null, "size": 43, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4458015.3/file/900.abundance.ontology.gz" }, "900.abundance.organism.gz": { "compression": "gzip", "description": null, "size": 15601, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4458015.3/file/900.abundance.organism.gz" }, "900.loadDB.sims.filter.seq": { "compression": null, "description": null, "size": 12182568, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4458015.3/file/900.loadDB.sims.filter.seq" }, "900.loadDB.source.stats": { "compression": null, "description": null, "size": 98, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4458015.3/file/900.loadDB.source.stats" }, "999.done.COG.stats": { "compression": null, "description": null, "size": 1, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4458015.3/file/999.done.COG.stats" }, "999.done.KO.stats": { "compression": null, "description": null, "size": 1, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4458015.3/file/999.done.KO.stats" }, "999.done.NOG.stats": { "compression": null, "description": null, "size": 1, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4458015.3/file/999.done.NOG.stats" }, "999.done.Subsystems.stats": { "compression": null, "description": null, "size": 1, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4458015.3/file/999.done.Subsystems.stats" }, "999.done.class.stats": { "compression": null, "description": null, "size": 376, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4458015.3/file/999.done.class.stats" }, "999.done.domain.stats": { "compression": null, "description": null, "size": 28, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4458015.3/file/999.done.domain.stats" }, "999.done.family.stats": { "compression": null, "description": null, "size": 800, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4458015.3/file/999.done.family.stats" }, "999.done.genus.stats": { "compression": null, "description": null, "size": 1298, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4458015.3/file/999.done.genus.stats" }, "999.done.order.stats": { "compression": null, "description": null, "size": 422, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4458015.3/file/999.done.order.stats" }, "999.done.phylum.stats": { "compression": null, "description": null, "size": 193, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4458015.3/file/999.done.phylum.stats" }, "999.done.rarefaction.stats": { "compression": null, "description": null, "size": 22871, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4458015.3/file/999.done.rarefaction.stats" }, "999.done.sims.stats": { "compression": null, "description": null, "size": 79, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4458015.3/file/999.done.sims.stats" }, "999.done.species.stats": { "compression": null, "description": null, "size": 4675, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4458015.3/file/999.done.species.stats" } }, "id": "mgm4458015.3", "provider": "metagenomics.anl.gov", "providerId": "mgm4458015.3" } }, "raw": { "mgm4458015.3.fna.gz": { "compression": "gzip", "format": "fasta", "provider": "metagenomics.anl.gov", "url": "http://api.metagenomics.anl.gov/reads/mgm4458015.3" } } }
0565aa6f020b9a0cec1aadb20a7b89e216fe928b
f0d0ea29240c53b6ce1c4b06095b528ece02fdd7
/core/championship.py
d714983cb55b99879f051866efec7695e0065120
[]
no_license
zhifuliu/dianjing
477529ccd6159329e1bc121aeb2ff328ee499f4a
7b3f6d58f5bc0738651d8d72c9a24df4ade0ed36
refs/heads/master
2020-03-21T09:10:28.343268
2017-03-24T03:06:24
2017-03-24T03:06:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
41,317
py
# -*- coding: utf-8 -*- """ Author: Wang Chao <[email protected]> Filename: championship Date Created: 2016-12-09 15:13 Description: """ import random import arrow import itertools import requests from django.conf import settings from dianjing.exception import GameException from core.mongo import ( MongoChampionship, MongoChampionshipFormationWay1, MongoChampionshipFormationWay2, MongoChampionshipFormationWay3, MongoChampionshipGroup, MongoChampionshipLevel, MongoChampionHistory, MongoCharacter, ) from core.plunder import PlunderFormation, Plunder, is_npc from core.vip import VIP from core.club import Club, get_club_property from core.mail import MailManager from core.resource import ResourceClassification from core.match import ClubMatch, MatchRecord from core.winning import WinningChampionship from utils.message import MessagePipe, MessageFactory from utils.functional import make_string_id, make_time_of_today, get_start_time_of_today from utils.operation_log import OperationLog from config import ( GlobalConfig, ConfigErrorMessage, ConfigChampionBet, ConfigChampionRankReward, ConfigChampionScoreReward, ConfigChampionWinScore, ConfigPlunderNPC, ConfigNPCFormation, ) from protomsg.common_pb2 import ACT_INIT, ACT_UPDATE from protomsg.championship_pb2 import ( CHAMPION_LEVEL_1, CHAMPION_LEVEL_2, CHAMPION_LEVEL_4, CHAMPION_LEVEL_8, CHAMPION_LEVEL_16, ChampionFormationNotify, ChampionGroupNotify, ChampionLevelNotify, ChampionNotify, ChampionClub as MsgChampionClub, ) from protomsg.match_pb2 import ClubMatchServerSideRequest, ClubMatchServerSideResponse from protomsg.plunder_pb2 import PlunderFormation as MsgPlunderFormation from protomsg.formation_pb2 import FORMATION_SLOT_USE from protomsg.leaderboard_pb2 import LeaderboardChampionshipNotify # XX强 进阶顺序 LEVEL_SEQ = [16, 8, 4, 2, 1] LEVEL_NEXT_TABLE = { 16: 8, 8: 4, 4: 2, 2: 1, } LEVEL_PREVIOUS_TABLE = {v: k for k, v in LEVEL_NEXT_TABLE.iteritems()} # 小组赛比赛时间 GROUP_MATCH_TIME = [ [14, 0], [15, 0], [16, 0], [17, 0], [18, 0], [19, 0], ] # GROUP_MATCH_TIME = [ # [16, 5], # [16, 7], # [16, 9], # [16, 11], # [16, 13], # [16, 15], # ] LEVEL_MATCH_TIMES_TO_HOUR_MINUTE_TABLE = { 16: [19, 30], 8: [20, 0], 4: [20, 30], 2: [21, 0], } # LEVEL_MATCH_TIMES_TO_HOUR_MINUTE_TABLE = { # 16: [16, 20], # 8: [16, 25], # 4: [16, 30], # 2: [16, 35], # } # 开战前几分钟不能调整阵型和下注 MINUTES_LIMIT_FOR_FORMATION_AND_BET = 10 # [[(hour, minute), (hour, minute)] ...] # 每个元素是两个 h, m 的组合 # 表示 在他们之间 的时间 是禁止的 TIME_LIMIT = [] for __h, __m in itertools.chain(GROUP_MATCH_TIME, LEVEL_MATCH_TIMES_TO_HOUR_MINUTE_TABLE.values()): __m1 = __m - MINUTES_LIMIT_FOR_FORMATION_AND_BET if __m1 < 0: __m1 += 60 __h1 = __h - 1 assert __h1 >= 0 else: __h1 = __h TIME_LIMIT.append(((__h1, __m1), (__h, __m))) # 提前几分钟开打 MATCH_AHEAD_MINUTE = 1 # 允许报名 周几 APPLY_WEEKDAY = [ # 0, # 星期一 1, # 星期二 # 2, # 星期三 3, # 星期四 # 4, # 星期五 5, # 星期六 # 6, # 星期日 ] # 允许报名时间范围 hour, minute APPLY_TIME_RANGE = [(8, 0), (13, 30)] MATCH_SERVER_REQ_HEADERS = {'NMVC_APIRequest': 'StartCombat'} AUTO_APPLY_VIP_LEVEL = GlobalConfig.value("CHAMPIONSHIP_AUTO_APPLY_VIP_LEVEL") APPLY_CLUB_LEVEL_LIMIT = GlobalConfig.value("CHAMPIONSHIP_APPLY_LEVEL_LIMIT") def find_level_match_at(lv): today = get_start_time_of_today() weekday = today.weekday() days_shift = 0 while True: if weekday in APPLY_WEEKDAY: break weekday -= 1 if weekday < 0: weekday = 6 days_shift += 1 if days_shift >= 7: raise RuntimeError("ChampionshipLevel find match at error!") that_day = today.replace(days=-days_shift) prev_lv = LEVEL_PREVIOUS_TABLE[lv] hour, minute = LEVEL_MATCH_TIMES_TO_HOUR_MINUTE_TABLE[prev_lv] that_day = that_day.replace(hour=hour) that_day = that_day.replace(minute=minute) return that_day def make_pairs_from_flat_list(items): pairs = [] for i in range(0, len(items) - 1, 2): pairs.append((items[i], items[i + 1])) return pairs def check_club_level(silence=True): def deco(fun): def wrap(self, *args, **kwargs): """ :type self: Championship """ if self.club_level < APPLY_CLUB_LEVEL_LIMIT: if silence: return raise GameException(ConfigErrorMessage.get_error_id("CLUB_LEVEL_NOT_ENOUGH")) return fun(self, *args, **kwargs) return wrap return deco def check_time_limit(fun): def wrap(self, *args, **kwargs): now = arrow.utcnow().to(settings.TIME_ZONE) for (_h1, _m1), (_h2, _m2) in TIME_LIMIT: if _h1 <= now.hour <= _h2 and _m1 <= now.minute < _m2: raise GameException(ConfigErrorMessage.get_error_id("CHAMPIONSHIP_FORMATION_FORBIDDEN")) return fun(self, *args, **kwargs) return wrap class ChampionshipFormationWay1(PlunderFormation): __slots__ = [] MONGO_COLLECTION = MongoChampionshipFormationWay1 class ChampionshipFormationWay2(PlunderFormation): __slots__ = [] MONGO_COLLECTION = MongoChampionshipFormationWay2 class ChampionshipFormationWay3(PlunderFormation): __slots__ = [] MONGO_COLLECTION = MongoChampionshipFormationWay3 WAY_MAP = { 1: ChampionshipFormationWay1, 2: ChampionshipFormationWay2, 3: ChampionshipFormationWay3, } # 报名前清理上一次残留信息 def before_apply(server_id): MongoChampionshipLevel.db(server_id).drop() MongoChampionship.db(server_id).update_many( {}, {'$set': { 'bet': {}, 'has_bet': False }} ) basic_notify = make_common_basic_notify_msg(server_id) basic_data = MessageFactory.pack(basic_notify) level_notify = ChampionshipLevel(server_id).make_protomsg() level_data = MessageFactory.pack(level_notify) char_ids = OperationLog.get_recent_action_char_ids(server_id) for cid in char_ids: mp = MessagePipe(cid) mp.put(data=basic_data) mp.put(data=level_data) # 取历史前N def get_history_top_clubs(server_id): doc = MongoChampionHistory.db(server_id).find_one( {'_id': MongoChampionHistory.DOC_ID} ) if not doc: return [] clubs = [] for i in doc['member_ids']: clubs.append((i, doc['info'][i]['name'], doc['info'][i]['flag'])) return clubs # 公共相同的 ChampionNotify, applied, bet 就每个角色自己设置 def make_common_basic_notify_msg(server_id): notify = ChampionNotify() notify.applied = False for lv in LEVEL_SEQ: notify_bet = notify.bet.add() notify_bet.level = lv # no bet info top_clubs = get_history_top_clubs(server_id) for i, name, flag in top_clubs: notify_top_club = notify.top_clubs.add() notify_top_club.id = i notify_top_club.name = name notify_top_club.flag = flag return notify # 空的group消息 def make_empty_group_notify_msg(): notify = ChampionGroupNotify() notify.my_score = 0 notify.my_rank = 0 return notify # 清空championship # NOTE 这个方法用不上 def totally_reset(server_id, send_notify=False): MongoChampionship.db(server_id).update_many( {}, {'$set': { 'applied': False, 'bet': {}, 'has_bet': False, }} ) MongoChampionshipGroup.db(server_id).drop() MongoChampionshipLevel.db(server_id).drop() if send_notify: basic_notify = make_common_basic_notify_msg(server_id) basic_data = MessageFactory.pack(basic_notify) group_notify = make_empty_group_notify_msg() group_data = MessageFactory.pack(group_notify) level_notify = ChampionshipLevel(server_id).make_protomsg() level_data = MessageFactory.pack(level_notify) char_ids = OperationLog.get_recent_action_char_ids(server_id) for cid in char_ids: mp = MessagePipe(cid) mp.put(data=basic_data) mp.put(data=group_data) mp.put(data=level_data) def make_plunder_formation_msg(club, way_id): """ :type club: core.abstract.AbstractClub :type way_id: int """ msg = MsgPlunderFormation() msg.way = way_id power = 0 for index, s in enumerate(club.formation_staffs): power += s.power msg_slot = msg.formation.add() msg_slot.slot_id = index + 1 msg_slot.status = FORMATION_SLOT_USE msg_slot.staff_id = s.id msg_slot.unit_id = s.unit.id msg_slot.position = s.formation_position msg_slot.staff_oid = s.oid msg_slot.policy = 1 msg.power = power return msg class Match(object): __slots__ = ['server_id', 'id_one', 'info_one', 'id_two', 'info_two'] def __init__(self, server_id, id_one, info_one, id_two, info_two): self.server_id = server_id self.id_one = id_one self.info_one = info_one self.id_two = id_two self.info_two = info_two def make_3_way_clubs(self, _id, _info): """ :rtype: list[core.abstract.AbstractClub] """ clubs = [] skill_sequences = [] if is_npc(_id): for i in range(1, 4): npc_id = _info['ways_npc'][i - 1] club = ConfigNPCFormation.get(npc_id) club.id = _id club.name = _info['name'] club.flag = _info['flag'] clubs.append(club) skill_sequences.append({}) else: cs = Championship(self.server_id, int(_id)) for i in range(1, 4): way = cs.get_way_object(i) club = Club(self.server_id, int(_id), load_staffs=False) club.formation_staffs = way.formation_staffs clubs.append(club) skill_sequences.append(way.get_skill_sequence()) return clubs, skill_sequences def start(self): def one_way_match(_club_one, _club_two, _skill_sequence_one, _skill_sequence_two): _match = ClubMatch(_club_one, _club_two, 3, _skill_sequence_one, _skill_sequence_two) _msg = _match.start(auto_load_staffs=False, check_empty=False) _msg.key = "" _msg.map_name = GlobalConfig.value_string("MATCH_MAP_CHAMPIONSHIP") _req = ClubMatchServerSideRequest() _req.match.MergeFrom(_msg) _data = _req.SerializeToString() _res = requests.post(match_server_url, headers=MATCH_SERVER_REQ_HEADERS, data=_data) response = ClubMatchServerSideResponse() response.ParseFromString(_res.content) if response.star > 0: _win = 1 else: _win = 0 return _win, _msg.SerializeToString(), response.record host, port = random.choice(settings.MATCH_SERVERS) match_server_url = 'http://{0}:{1}/'.format(host, port) one_clubs, one_skill_sequences = self.make_3_way_clubs(self.id_one, self.info_one) two_clubs, two_skill_sequences = self.make_3_way_clubs(self.id_two, self.info_two) # [one_wins, record_ids] one_wins = [] info_sets = [] for i in range(3): club_one = one_clubs[i] club_two = two_clubs[i] win, club_match, record = one_way_match( one_clubs[i], two_clubs[i], one_skill_sequences[i], two_skill_sequences[i] ) one_wins.append(win) info_sets.append((club_one.id, club_two.id, club_match, record)) record_ids = MatchRecord.batch_create(self.server_id, info_sets) return one_wins, record_ids class Championship(object): __slots__ = ['server_id', 'char_id', 'doc', 'club_level'] def __init__(self, server_id, char_id): self.server_id = server_id self.char_id = char_id self.doc = MongoChampionship.db(self.server_id).find_one({'_id': self.char_id}) if not self.doc: self.doc = MongoChampionship.document() self.doc['_id'] = self.char_id MongoChampionship.db(self.server_id).insert_one(self.doc) self.club_level = get_club_property(self.server_id, self.char_id, 'level') @check_club_level(silence=True) def try_initialize(self, send_notify=True): if self.doc['active']: return # 从 掠夺阵型 拷贝 p = Plunder(self.server_id, self.char_id) for i in [1, 2, 3]: way = p.get_way_object(i) doc = way.get_or_create_doc() WAY_MAP[i].MONGO_COLLECTION.db(self.server_id).delete_one({'_id': self.char_id}) WAY_MAP[i].MONGO_COLLECTION.db(self.server_id).insert_one(doc) self.doc['active'] = True MongoChampionship.db(self.server_id).update_one( {'_id': self.char_id}, {'$set': { 'active': True }} ) if send_notify: self.send_notify() def is_applied(self): # vip 自动apply if self.doc['applied']: return True if self.club_level < APPLY_CLUB_LEVEL_LIMIT: return False if VIP(self.server_id, self.char_id).level < AUTO_APPLY_VIP_LEVEL: return False return True @check_club_level(silence=False) def apply_in(self): now = arrow.utcnow().to(settings.TIME_ZONE) if now.weekday() not in APPLY_WEEKDAY: raise GameException(ConfigErrorMessage.get_error_id("CHAMPIONSHIP_APPLY_NOT_OPEN")) range_start = make_time_of_today(APPLY_TIME_RANGE[0][0], APPLY_TIME_RANGE[0][1]) range_end = make_time_of_today(APPLY_TIME_RANGE[1][0], APPLY_TIME_RANGE[1][1]) if now < range_start or now >= range_end: raise GameException(ConfigErrorMessage.get_error_id("CHAMPIONSHIP_APPLY_NOT_OPEN")) if self.is_applied(): raise GameException(ConfigErrorMessage.get_error_id("CHAMPIONSHIP_ALREADY_APPLIED")) self.doc['applied'] = True MongoChampionship.db(self.server_id).update_one( {'_id': self.char_id}, {'$set': { 'applied': True }} ) self.send_basic_notify() @check_time_limit @check_club_level(silence=False) def bet(self, club_id, bet_id): cl = ChampionshipLevel(self.server_id) lv = cl.get_current_level() if lv == 1: raise GameException(ConfigErrorMessage.get_error_id("INVALID_OPERATE")) if str(lv) in self.doc['bet']: raise GameException(ConfigErrorMessage.get_error_id("CHAMPIONSHIP_ALREADY_BET")) if club_id not in cl.doc['levels'].get(str(lv), {}).get('member_ids', []): raise GameException(ConfigErrorMessage.get_error_id("INVALID_OPERATE")) config = ConfigChampionBet.get(bet_id) if not config: raise GameException(ConfigErrorMessage.get_error_id("INVALID_OPERATE")) if config.level != lv: raise GameException(ConfigErrorMessage.get_error_id("INVALID_OPERATE")) rc = ResourceClassification.classify(config.cost) rc.check_exist(self.server_id, self.char_id) rc.remove(self.server_id, self.char_id, message="Champion.bet:{0}".format(bet_id)) bet_info = { 'club_id': club_id, 'bet_id': bet_id } self.doc['bet'][str(lv)] = bet_info self.doc['has_bet'] = True MongoChampionship.db(self.server_id).update_one( {'_id': self.char_id}, {'$set': { 'bet.{0}'.format(lv): bet_info, 'has_bet': True, }} ) self.send_basic_notify() def get_way_object(self, way_id): """ :rtype: PlunderFormation """ try: way_class = WAY_MAP[way_id] except KeyError: raise GameException(ConfigErrorMessage.get_error_id("INVALID_OPERATE")) return way_class(self.server_id, self.char_id, way_id) def find_way_id_by_staff_id(self, staff_id): for i in [1, 2, 3]: if self.get_way_object(i).is_staff_in_formation(staff_id): return i return 0 def find_way_id_by_unit_id(self, unit_id): for i in [1, 2, 3]: if self.get_way_object(i).is_unit_in_formation(unit_id): return i return 0 @check_time_limit @check_club_level(silence=False) def set_staff(self, way_id, slot_id, staff_id): way_list = [1, 2, 3] if way_id not in way_list: raise GameException(ConfigErrorMessage.get_error_id("INVALID_OPERATE")) if slot_id not in [1, 2, 3]: raise GameException(ConfigErrorMessage.get_error_id("INVALID_OPERATE")) way_list.remove(way_id) for i in way_list: w = self.get_way_object(i) w.try_unset_staff(staff_id) w = self.get_way_object(way_id) w.set_staff(slot_id, staff_id) self.send_formation_notify() @check_time_limit @check_club_level(silence=False) def set_unit(self, way_id, slot_id, unit_id): if slot_id not in [1, 2, 3]: raise GameException(ConfigErrorMessage.get_error_id("INVALID_OPERATE")) w = self.get_way_object(way_id) w.set_unit(slot_id, unit_id) self.send_formation_notify() @check_time_limit @check_club_level(silence=False) def set_position(self, way_id, formation_slots): my_way = self.get_way_object(way_id) my_way.sync_slots(formation_slots) self.send_formation_notify() @check_time_limit @check_club_level(silence=False) def skill_sequence_set_staff(self, way_id, seq_id, index, staff_id): w = self.get_way_object(way_id) w.skill_sequence_set_staff(seq_id, index, staff_id) self.send_formation_notify() @check_club_level(silence=False) def sync_group(self): cg = ChampionshipGroup(self.server_id) cg.find_by_char_id(self.char_id) group_msg = cg.make_protomsg() MessagePipe(self.char_id).put(msg=group_msg) @check_club_level(silence=False) def sync_level(self): cl = ChampionshipLevel(self.server_id) current_lv = cl.doc['current_level'] level_msg = cl.make_protomsg(level=current_lv) MessagePipe(self.char_id).put(msg=level_msg) @check_club_level(silence=True) def send_notify(self): self.send_basic_notify() self.send_formation_notify() cg = ChampionshipGroup(self.server_id) cg.find_by_char_id(self.char_id) group_msg = cg.make_protomsg() MessagePipe(self.char_id).put(msg=group_msg) cl = ChampionshipLevel(self.server_id) level_msg = cl.make_protomsg() MessagePipe(self.char_id).put(msg=level_msg) def send_basic_notify(self, basic_notify=None): if not basic_notify: basic_notify = make_common_basic_notify_msg(self.server_id) basic_notify.applied = self.is_applied() for bet in basic_notify.bet: bet_info = self.doc['bet'].get(str(bet.level), {}) if bet_info: bet.bet_for = bet_info['club_id'] bet.bet_id = bet_info['bet_id'] MessagePipe(self.char_id).put(msg=basic_notify) @check_club_level(silence=True) def send_formation_notify(self): notify = ChampionFormationNotify() for i in [1, 2, 3]: notify_way = notify.formation.add() w = self.get_way_object(i) notify_way.MergeFrom(w.make_protobuf()) MessagePipe(self.char_id).put(msg=notify) class ChampionshipGroup(object): __slots__ = ['server_id', 'group_id', 'doc', '_char_id', '_member_ids', '_info'] def __init__(self, server_id): self.server_id = server_id self.group_id = None self.doc = None # 只有在 find_by_char_id 并且找到group的清空下,才填充 _char_id self._char_id = None # 这两个仅仅是初始化group的适合保存信息的, # 后面查询到的数据,这两个并不填充 self._member_ids = [] self._info = {} def find_by_char_id(self, char_id): self.doc = MongoChampionshipGroup.db(self.server_id).find_one( {'member_ids': str(char_id)} ) if self.doc: self.group_id = self.doc['_id'] self._char_id = char_id def find_by_group_id(self, group_id): self.doc = MongoChampionshipGroup.db(self.server_id).find_one( {'_id': group_id} ) if self.doc: self.group_id = group_id @classmethod def new(cls, server_id): obj = cls(server_id) obj.group_id = make_string_id() return obj def add_club(self, club_id, club_info): self._member_ids.append(club_id) self._info[club_id] = club_info def finish(self): doc = MongoChampionshipGroup.document() doc['_id'] = self.group_id doc['member_ids'] = self._member_ids doc['info'] = self._info doc['scores'] = {i: 0 for i in self._member_ids} doc['logs'] = {i: [] for i in self._member_ids} doc['match_times'] = 1 MongoChampionshipGroup.db(self.server_id).insert_one(doc) def get_scores_sorted(self): if not self.doc: return [] scores = self.doc['scores'].items() scores.sort(key=lambda item: item[1], reverse=True) return scores def get_top_two(self): scores = self.get_scores_sorted() return [scores[0][0], scores[1][0]] def start_match(self): match_times = self.doc['match_times'] if match_times == 7: return match_times hour, minute = GROUP_MATCH_TIME[match_times - 1] match_at = make_time_of_today(hour, minute).timestamp scores = self.get_scores_sorted() pairs = make_pairs_from_flat_list(scores) for (id_one, _), (id_two, _) in pairs: info_one = self.doc['info'][id_one] info_two = self.doc['info'][id_two] m = Match(self.server_id, id_one, info_one, id_two, info_two) one_way_wins, record_ids = m.start() two_way_wins = [1 - _w for _w in one_way_wins] one_way_wins_count = len([_w for _w in one_way_wins if _w == 1]) two_way_wins_count = len([_w for _w in two_way_wins if _w == 1]) one_got_score = ConfigChampionWinScore.get(one_way_wins_count).score two_got_score = ConfigChampionWinScore.get(two_way_wins_count).score self.doc['scores'][id_one] += one_got_score self.doc['scores'][id_two] += two_got_score one_name = self.doc['info'][id_one]['name'] two_name = self.doc['info'][id_two]['name'] one_log = self.make_match_log(match_at, two_name, one_got_score, one_way_wins, record_ids) two_log = self.make_match_log(match_at, one_name, two_got_score, two_way_wins, record_ids) self.doc['logs'][id_one].append(one_log) self.doc['logs'][id_two].append(two_log) self.send_score_reward_mail(id_one, self.doc['scores'][id_one]) self.send_score_reward_mail(id_two, self.doc['scores'][id_two]) self.doc['match_times'] += 1 MongoChampionshipGroup.db(self.server_id).update_one( {'_id': self.group_id}, {'$set': { 'scores': self.doc['scores'], 'logs': self.doc['logs'], 'match_times': self.doc['match_times'], }} ) return self.doc['match_times'] def send_score_reward_mail(self, club_id, score): if is_npc(club_id): return config = ConfigChampionScoreReward.get(score) if not config: return rc = ResourceClassification.classify(config.reward) attachment = rc.to_json() m = MailManager(self.server_id, int(club_id)) m.add(config.mail_title, config.mail_content, attachment=attachment) @staticmethod def make_match_log(match_at, target_name, got_score, way_wins, record_ids): doc = MongoChampionshipGroup.document_match_log() doc['timestamp'] = match_at doc['target_name'] = target_name doc['got_score'] = got_score doc['way_wins'] = way_wins doc['record_ids'] = record_ids return doc def make_clubs_msg(self, scores=None): msgs = [] if not scores: scores = self.get_scores_sorted() for index, (club_id, score) in enumerate(scores): rank = index + 1 if rank >= 10: # 只发前10名 break msg = MsgChampionClub() msg.id = club_id msg.name = self.doc['info'][club_id]['name'] msg.flag = self.doc['info'][club_id]['flag'] msg.rank = rank msg.score = score msgs.append(msg) return msgs def make_protomsg(self): if not self.doc: return make_empty_group_notify_msg() my_score = 0 my_rank = 0 scores = self.get_scores_sorted() for _index, (_id, _score) in enumerate(scores): if _id == str(self._char_id): my_score = _score my_rank = _index + 1 break notify = ChampionGroupNotify() notify.my_score = my_score notify.my_rank = my_rank clubs = self.make_clubs_msg(scores=scores) for c in clubs: notify_club = notify.clubs.add() notify_club.MergeFrom(c) for log in self.doc['logs'][str(self._char_id)]: notify_log = notify.logs.add() notify_log.timestamp = log['timestamp'] notify_log.target_name = log['target_name'] notify_log.got_score = log['got_score'] notify_log.way_wins.extend(log['way_wins']) notify_log.match_record_ids.extend(log['record_ids']) match_times = self.doc['match_times'] if match_times > 6: notify.next_match_at = 0 else: hour, minute = GROUP_MATCH_TIME[match_times - 1] notify.next_match_at = make_time_of_today(hour, minute).timestamp pairs = make_pairs_from_flat_list(scores) for (id_one, _), (id_two, _) in pairs: if id_one == str(self._char_id): notify.next_target.id = id_two notify.next_target.name = self.doc['info'][id_two]['name'] notify.next_target.flag = self.doc['info'][id_two]['flag'] elif id_two == str(self._char_id): notify.next_target.id = id_one notify.next_target.name = self.doc['info'][id_one]['name'] notify.next_target.flag = self.doc['info'][id_one]['flag'] return notify class ChampionshipGroupManager(object): @classmethod def find_all_groups(cls, server_id): """ :rtype: list[ChampionshipGroup] """ groups = [] """:type: list[ChampionshipGroup]""" group_docs = MongoChampionshipGroup.db(server_id).find({}) for doc in group_docs: g = ChampionshipGroup(server_id) g.group_id = doc['_id'] g.doc = doc groups.append(g) return groups @classmethod def find_applied_clubs(cls, server_id): docs = MongoChampionship.db(server_id).find( {'applied': True}, {'_id': 1} ) club_ids = [doc['_id'] for doc in docs] club_ids = set(club_ids) vip_ids = VIP.query_char_ids(server_id, min_level=AUTO_APPLY_VIP_LEVEL) if vip_ids: club_docs = MongoCharacter.db(server_id).find( {'_id': {'$in': vip_ids}}, {'level': 1} ) for doc in club_docs: if doc['level'] >= APPLY_CLUB_LEVEL_LIMIT: club_ids.add(doc['_id']) return list(club_ids) @classmethod def assign_to_groups(cls, server_id, club_ids): club_amount = len(club_ids) if club_amount < 32: need_npc_amount = 32 - club_amount else: if club_amount % 2 == 0: need_npc_amount = 0 else: need_npc_amount = 1 info = {} if club_ids: club_docs = MongoCharacter.db(server_id).find( {'_id': {'$in': club_ids}}, {'name': 1, 'flag': 1} ) club_info = {doc['_id']: doc for doc in club_docs} for i in club_ids: info[str(i)] = { 'name': club_info[i]['name'], 'flag': club_info[i]['flag'], } for i in range(need_npc_amount): npc_doc = ConfigPlunderNPC.get(2).to_simple_doc() npc_id = npc_doc.pop('id') info[npc_id] = npc_doc ids = info.keys() random.shuffle(ids) # 把这些ids 随机分配到8个 group 中 groups = [] """:type: list[ChampionshipGroup]""" for i in range(8): g = ChampionshipGroup.new(server_id) groups.append(g) g_index = 0 while True: try: _id = ids.pop(0) except IndexError: break groups[g_index].add_club(_id, info[_id]) g_index += 1 if g_index >= 8: g_index = 0 for g in groups: g.finish() char_ids = OperationLog.get_recent_action_char_ids(server_id) for cid in char_ids: g = ChampionshipGroup(server_id) g.find_by_char_id(cid) msg = g.make_protomsg() MessagePipe(cid).put(msg=msg) @classmethod def start_match(cls, server_id): groups = cls.find_all_groups(server_id) if not groups: return 0 match_times = 0 for g in groups: match_times = g.start_match() if match_times == 7: # 小组赛打完了 # 其实这个drop没必要,不过以防万一 MongoChampionshipLevel.db(server_id).drop() cl = ChampionshipLevel(server_id) cl.initialize() level_notify = cl.make_protomsg() level_data = MessageFactory.pack(level_notify) char_ids = OperationLog.get_recent_action_char_ids(server_id) for cid in char_ids: MessagePipe(cid).put(data=level_data) return match_times - 1 class ChampionshipLevel(object): __slots__ = ['server_id', 'doc'] def __init__(self, server_id): self.server_id = server_id self.doc = MongoChampionshipLevel.db(self.server_id).find_one( {'_id': MongoChampionshipLevel.DOC_ID} ) if not self.doc: self.doc = MongoChampionshipLevel.document() MongoChampionshipLevel.db(self.server_id).insert_one(self.doc) def initialize(self): # 16强初始化 groups = ChampionshipGroupManager.find_all_groups(self.server_id) info = {} tops = [] way_wins = {} record_ids = {} for g in groups: id_one, id_two = g.get_top_two() info[id_one] = g.doc['info'][id_one] info[id_two] = g.doc['info'][id_two] tops.append((id_one, id_two)) way_wins[id_one] = g.doc['logs'][id_one][-1]['way_wins'] record_ids[id_one] = g.doc['logs'][id_one][-1]['record_ids'] way_wins[id_two] = g.doc['logs'][id_two][-1]['way_wins'] record_ids[id_two] = g.doc['logs'][id_two][-1]['record_ids'] # 1~4组第一名 vs 5~8组第二名 # 1~4组第二名 vs 5~8组第一名 member_ids = [] for i in range(4): member_ids.append(tops[i][0]) member_ids.append(tops[i + 4][1]) for i in range(4): member_ids.append(tops[i][1]) member_ids.append(tops[i + 4][0]) self.doc['info'] = info self.save(16, member_ids, way_wins, record_ids, info=info) def get_current_level(self): return self.doc['current_level'] def save(self, level, member_ids, way_wins, record_ids, info=None): level_doc = MongoChampionshipLevel.document_level() level_doc['member_ids'] = member_ids level_doc['way_wins'] = way_wins level_doc['record_ids'] = record_ids self.doc['levels'][str(level)] = level_doc self.doc['current_level'] = level updater = { 'levels.{0}'.format(level): level_doc, 'current_level': level, } if info: updater['info'] = info MongoChampionshipLevel.db(self.server_id).update_one( {'_id': MongoChampionshipLevel.DOC_ID}, {'$set': updater} ) self.send_rank_reward_mail(level) def send_rank_reward_mail(self, level): config = ConfigChampionRankReward.get(level) member_ids = self.doc['levels'][str(level)]['member_ids'] rc = ResourceClassification.classify(config.reward) attachment = rc.to_json() for m in member_ids: if is_npc(m): continue m = MailManager(self.server_id, int(m)) m.add(config.mail_title, config.mail_content, attachment=attachment) def send_bet_reward_mail(self, level, win_ids): # 找到所有bet的玩家,然后遍历 docs = MongoChampionship.db(self.server_id).find({'has_bet': True}) for doc in docs: bet_info = doc['bet'].get(str(level), {}) if not bet_info: continue config = ConfigChampionBet.get(bet_info['bet_id']) if bet_info['club_id'] in win_ids: m_title = config.win_mail_title m_content = config.win_mail_content m_reward = config.win_reward else: m_title = config.lose_mail_title m_content = config.lose_mail_content m_reward = config.lose_reward rc = ResourceClassification.classify(m_reward) attachment = rc.to_json() m = MailManager(self.server_id, doc['_id']) m.add(m_title, m_content, attachment=attachment) def start_match(self): if not self.doc['levels']: return 0 lv = self.doc['current_level'] if lv == 1: return None next_level = LEVEL_NEXT_TABLE[lv] member_ids = self.doc['levels'][str(lv)]['member_ids'] pairs = make_pairs_from_flat_list(member_ids) win_ids = [] lose_ids = [] way_wins = {} record_ids = {} for id_one, id_two in pairs: info_one = self.doc['info'][id_one] info_two = self.doc['info'][id_two] m = Match(self.server_id, id_one, info_one, id_two, info_two) one_way_wins, one_record_ids = m.start() two_way_wins = [1 - _w for _w in one_way_wins] one_way_wins_count = len([_w for _w in one_way_wins if _w == 1]) if one_way_wins_count >= 2: win_ids.append(id_one) lose_ids.append(id_two) way_wins[id_one] = one_way_wins record_ids[id_one] = one_record_ids else: win_ids.append(id_two) lose_ids.append(id_one) way_wins[id_two] = two_way_wins record_ids[id_two] = one_record_ids self.save(next_level, win_ids, way_wins, record_ids) # 发送下注邮件 self.send_bet_reward_mail(lv, win_ids) if next_level == 1: self.after_final_match() return lv def after_final_match(self): # 已经打完了,但还要得出第三四名,并记录前四名 level_4_member_ids = self.doc['levels']['4']['member_ids'][:] level_2_member_ids = self.doc['levels']['2']['member_ids'][:] for i in level_2_member_ids: level_4_member_ids.remove(i) id_one = level_4_member_ids[0] id_two = level_4_member_ids[1] info_one = self.doc['info'][id_one] info_two = self.doc['info'][id_two] m = Match(self.server_id, id_one, info_one, id_two, info_two) one_way_wins, one_record_ids = m.start() # two_way_wins = [1 - _w for _w in one_way_wins] one_way_wins_count = len([_w for _w in one_way_wins if _w == 1]) if one_way_wins_count >= 2: third = id_one fourth = id_two else: third = id_two fourth = id_one first = self.doc['levels']['1']['member_ids'][0] level_2_member_ids.remove(first) second = level_2_member_ids[0] first_info = self.doc['info'][first] second_info = self.doc['info'][second] third_info = self.doc['info'][third] fourth_info = self.doc['info'][fourth] MongoChampionHistory.db(self.server_id).drop() history_doc = MongoChampionHistory.document() history_doc['member_ids'] = [first, second, third, fourth] history_doc['info'] = { first: first_info, second: second_info, third: third_info, fourth: fourth_info, } MongoChampionHistory.db(self.server_id).insert_one(history_doc) # 清空小组赛 MongoChampionshipGroup.db(self.server_id).drop() group_notify = make_empty_group_notify_msg() group_data = MessageFactory.pack(group_notify) # 清空玩家的报名标识 MongoChampionship.db(self.server_id).update_many( {}, {'$set': { 'applied': False }} ) char_ids = OperationLog.get_recent_action_char_ids(self.server_id) basic_notify = make_common_basic_notify_msg(self.server_id) for _cid in char_ids: MessagePipe(_cid).put(data=group_data) Championship(self.server_id, _cid).send_basic_notify(basic_notify=basic_notify) # 设置winning winning_notify = LeaderboardChampionshipNotify() winning_notify.session = "" for __id, __info in [(first, first_info), (second, second_info), (third, third_info)]: __match = Match(self.server_id, None, None, None, None) __clubs, __skill_sequence = __match.make_3_way_clubs(__id, __info) winning_notify_club = winning_notify.clubs.add() winning_notify_club.club.MergeFrom(__clubs[0].make_protomsg()) for __way_id in [1, 2, 3]: winning_notify_club_formation = winning_notify_club.formation.add() winning_notify_club_formation.MergeFrom(make_plunder_formation_msg(__clubs[__way_id - 1], __way_id)) WinningChampionship(self.server_id, None).set_to_common(winning_notify) def make_protomsg(self, level=None): if level: levels = [level] act = ACT_UPDATE else: levels = [CHAMPION_LEVEL_16, CHAMPION_LEVEL_8, CHAMPION_LEVEL_4, CHAMPION_LEVEL_2, CHAMPION_LEVEL_1] act = ACT_INIT notify = ChampionLevelNotify() notify.act = act if act == ACT_INIT: level16 = self.doc['levels'].get('16', {}) if level16: for i in level16['member_ids']: notify_club = notify.clubs.add() notify_club.id = i notify_club.name = self.doc['info'][i]['name'] notify_club.flag = self.doc['info'][i]['flag'] for lv in levels: notify_level = notify.levels.add() notify_level.level = lv this_level = self.doc['levels'].get(str(lv), {}) if this_level: for _mid in this_level['member_ids']: notify_level_club = notify_level.clubs.add() notify_level_club.id = _mid notify_level_club.way_wins.extend(this_level['way_wins'][str(_mid)]) notify_level_club.match_record_ids.extend(this_level['record_ids'][str(_mid)]) if lv == 16: notify_level.match_at = 0 else: notify_level.match_at = find_level_match_at(lv).timestamp return notify
911744a0becf71a9d8142dc9e796c3949f6243a8
26c0f80688f75a188097a232c229a73c8e7cc6ed
/user/migrations/0016_auto_20210511_1700.py
c17235302b993169c5ae1b568f59d2271a6b2144
[]
no_license
creep1g/DjangoWebstore
8207d7ea53c478fb7e5745e1c6ae6699102b5df5
bd27340b86bf2289b8c14216462d932ccdf4986d
refs/heads/main
2023-05-06T09:50:04.846489
2021-05-28T14:40:40
2021-05-28T14:40:40
371,730,158
0
0
null
null
null
null
UTF-8
Python
false
false
444
py
# Generated by Django 3.2 on 2021-05-11 17:00 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('user', '0015_auto_20210511_1655'), ] operations = [ migrations.AlterField( model_name='profile', name='searches', field=models.ManyToManyField(null=True, to='user.SearchHistory'), ), ]
31c63484ece90ef1a58d4d8a1c917875e71e42ba
0729bc2e2236fadb8fb2eac8b30534d939a45b2e
/DistAnnot/Annot/tests.py
e0c741e72f672231d4fd71b9ee91a723a70a444e
[]
no_license
JudoWill/pyMutF
8ecdc24fbb2efe2a0a721aab164a2b060de11832
aaf41ab41eb897c10a721c62913bb49c79f2cefc
refs/heads/master
2021-01-16T20:34:06.705933
2010-10-11T16:55:08
2010-10-11T16:55:08
710,208
8
1
null
null
null
null
UTF-8
Python
false
false
535
py
""" This file demonstrates two different styles of tests (one doctest and one unittest). These will both pass when you run "manage.py test". Replace these with more appropriate tests for your application. """ from django.test import TestCase from django.core.urlresolvers import reverse from DistAnnot.Interaction.models import * from forms import AnnotForm, InteractionEffectForm from django.forms.formsets import formset_factory class SimpleTest(TestCase): fixtures = ['Interaction.simple_data.yaml']
ba0f8b5d3e6818f96a7f42132ea32967e054c957
2f330fc050de11676ab46b963b7878882e9b6614
/memsource_cli/models/create_analyse_list_async_dto.py
0679fd3b864b9449bd836de3615a6545e4f4fed0
[ "Apache-2.0" ]
permissive
zerodayz/memsource-cli-client
609f48c18a2b6daaa639d4cb8a61da43763b5143
c2574f1467539a49e6637c874e88d75c7ef789b3
refs/heads/master
2020-08-01T12:43:06.497982
2019-09-30T11:14:13
2019-09-30T11:14:13
210,999,654
1
0
null
null
null
null
UTF-8
Python
false
false
22,872
py
# coding: utf-8 """ Memsource REST API Welcome to Memsource's API documentation. To view our legacy APIs please [visit our documentation](https://wiki.memsource.com/wiki/Memsource_API) and for more information about our new APIs, [visit our blog](https://www.memsource.com/blog/2017/10/24/introducing-rest-apis-qa-with-the-memsource-api-team/). If you have any questions, please contact [Memsource Support](<mailto:[email protected]>). # noqa: E501 OpenAPI spec version: Latest Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from memsource_cli.models.id_reference import IdReference # noqa: F401,E501 from memsource_cli.models.uid_reference import UidReference # noqa: F401,E501 class CreateAnalyseListAsyncDto(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'jobs': 'list[UidReference]', 'type': 'str', 'include_fuzzy_repetitions': 'bool', 'include_confirmed_segments': 'bool', 'include_numbers': 'bool', 'include_locked_segments': 'bool', 'count_source_units': 'bool', 'include_trans_memory': 'bool', 'include_non_translatables': 'bool', 'include_machine_translation_matches': 'bool', 'trans_memory_post_editing': 'bool', 'non_translatable_post_editing': 'bool', 'machine_translate_post_editing': 'bool', 'name': 'str', 'net_rate_scheme': 'IdReference', 'compare_workflow_level': 'int', 'use_project_analysis_settings': 'bool', 'callback_url': 'str' } attribute_map = { 'jobs': 'jobs', 'type': 'type', 'include_fuzzy_repetitions': 'includeFuzzyRepetitions', 'include_confirmed_segments': 'includeConfirmedSegments', 'include_numbers': 'includeNumbers', 'include_locked_segments': 'includeLockedSegments', 'count_source_units': 'countSourceUnits', 'include_trans_memory': 'includeTransMemory', 'include_non_translatables': 'includeNonTranslatables', 'include_machine_translation_matches': 'includeMachineTranslationMatches', 'trans_memory_post_editing': 'transMemoryPostEditing', 'non_translatable_post_editing': 'nonTranslatablePostEditing', 'machine_translate_post_editing': 'machineTranslatePostEditing', 'name': 'name', 'net_rate_scheme': 'netRateScheme', 'compare_workflow_level': 'compareWorkflowLevel', 'use_project_analysis_settings': 'useProjectAnalysisSettings', 'callback_url': 'callbackUrl' } def __init__(self, jobs=None, type=None, include_fuzzy_repetitions=None, include_confirmed_segments=None, include_numbers=None, include_locked_segments=None, count_source_units=None, include_trans_memory=None, include_non_translatables=None, include_machine_translation_matches=None, trans_memory_post_editing=None, non_translatable_post_editing=None, machine_translate_post_editing=None, name=None, net_rate_scheme=None, compare_workflow_level=None, use_project_analysis_settings=None, callback_url=None): # noqa: E501 """CreateAnalyseListAsyncDto - a model defined in Swagger""" # noqa: E501 self._jobs = None self._type = None self._include_fuzzy_repetitions = None self._include_confirmed_segments = None self._include_numbers = None self._include_locked_segments = None self._count_source_units = None self._include_trans_memory = None self._include_non_translatables = None self._include_machine_translation_matches = None self._trans_memory_post_editing = None self._non_translatable_post_editing = None self._machine_translate_post_editing = None self._name = None self._net_rate_scheme = None self._compare_workflow_level = None self._use_project_analysis_settings = None self._callback_url = None self.discriminator = None self.jobs = jobs if type is not None: self.type = type if include_fuzzy_repetitions is not None: self.include_fuzzy_repetitions = include_fuzzy_repetitions if include_confirmed_segments is not None: self.include_confirmed_segments = include_confirmed_segments if include_numbers is not None: self.include_numbers = include_numbers if include_locked_segments is not None: self.include_locked_segments = include_locked_segments if count_source_units is not None: self.count_source_units = count_source_units if include_trans_memory is not None: self.include_trans_memory = include_trans_memory if include_non_translatables is not None: self.include_non_translatables = include_non_translatables if include_machine_translation_matches is not None: self.include_machine_translation_matches = include_machine_translation_matches if trans_memory_post_editing is not None: self.trans_memory_post_editing = trans_memory_post_editing if non_translatable_post_editing is not None: self.non_translatable_post_editing = non_translatable_post_editing if machine_translate_post_editing is not None: self.machine_translate_post_editing = machine_translate_post_editing if name is not None: self.name = name if net_rate_scheme is not None: self.net_rate_scheme = net_rate_scheme if compare_workflow_level is not None: self.compare_workflow_level = compare_workflow_level if use_project_analysis_settings is not None: self.use_project_analysis_settings = use_project_analysis_settings if callback_url is not None: self.callback_url = callback_url @property def jobs(self): """Gets the jobs of this CreateAnalyseListAsyncDto. # noqa: E501 :return: The jobs of this CreateAnalyseListAsyncDto. # noqa: E501 :rtype: list[UidReference] """ return self._jobs @jobs.setter def jobs(self, jobs): """Sets the jobs of this CreateAnalyseListAsyncDto. :param jobs: The jobs of this CreateAnalyseListAsyncDto. # noqa: E501 :type: list[UidReference] """ if jobs is None: raise ValueError("Invalid value for `jobs`, must not be `None`") # noqa: E501 self._jobs = jobs @property def type(self): """Gets the type of this CreateAnalyseListAsyncDto. # noqa: E501 default: PreAnalyse # noqa: E501 :return: The type of this CreateAnalyseListAsyncDto. # noqa: E501 :rtype: str """ return self._type @type.setter def type(self, type): """Sets the type of this CreateAnalyseListAsyncDto. default: PreAnalyse # noqa: E501 :param type: The type of this CreateAnalyseListAsyncDto. # noqa: E501 :type: str """ allowed_values = ["PreAnalyse", "PostAnalyse", "Compare"] # noqa: E501 if type not in allowed_values: raise ValueError( "Invalid value for `type` ({0}), must be one of {1}" # noqa: E501 .format(type, allowed_values) ) self._type = type @property def include_fuzzy_repetitions(self): """Gets the include_fuzzy_repetitions of this CreateAnalyseListAsyncDto. # noqa: E501 Default: true # noqa: E501 :return: The include_fuzzy_repetitions of this CreateAnalyseListAsyncDto. # noqa: E501 :rtype: bool """ return self._include_fuzzy_repetitions @include_fuzzy_repetitions.setter def include_fuzzy_repetitions(self, include_fuzzy_repetitions): """Sets the include_fuzzy_repetitions of this CreateAnalyseListAsyncDto. Default: true # noqa: E501 :param include_fuzzy_repetitions: The include_fuzzy_repetitions of this CreateAnalyseListAsyncDto. # noqa: E501 :type: bool """ self._include_fuzzy_repetitions = include_fuzzy_repetitions @property def include_confirmed_segments(self): """Gets the include_confirmed_segments of this CreateAnalyseListAsyncDto. # noqa: E501 Default: true # noqa: E501 :return: The include_confirmed_segments of this CreateAnalyseListAsyncDto. # noqa: E501 :rtype: bool """ return self._include_confirmed_segments @include_confirmed_segments.setter def include_confirmed_segments(self, include_confirmed_segments): """Sets the include_confirmed_segments of this CreateAnalyseListAsyncDto. Default: true # noqa: E501 :param include_confirmed_segments: The include_confirmed_segments of this CreateAnalyseListAsyncDto. # noqa: E501 :type: bool """ self._include_confirmed_segments = include_confirmed_segments @property def include_numbers(self): """Gets the include_numbers of this CreateAnalyseListAsyncDto. # noqa: E501 Default: true # noqa: E501 :return: The include_numbers of this CreateAnalyseListAsyncDto. # noqa: E501 :rtype: bool """ return self._include_numbers @include_numbers.setter def include_numbers(self, include_numbers): """Sets the include_numbers of this CreateAnalyseListAsyncDto. Default: true # noqa: E501 :param include_numbers: The include_numbers of this CreateAnalyseListAsyncDto. # noqa: E501 :type: bool """ self._include_numbers = include_numbers @property def include_locked_segments(self): """Gets the include_locked_segments of this CreateAnalyseListAsyncDto. # noqa: E501 Default: true # noqa: E501 :return: The include_locked_segments of this CreateAnalyseListAsyncDto. # noqa: E501 :rtype: bool """ return self._include_locked_segments @include_locked_segments.setter def include_locked_segments(self, include_locked_segments): """Sets the include_locked_segments of this CreateAnalyseListAsyncDto. Default: true # noqa: E501 :param include_locked_segments: The include_locked_segments of this CreateAnalyseListAsyncDto. # noqa: E501 :type: bool """ self._include_locked_segments = include_locked_segments @property def count_source_units(self): """Gets the count_source_units of this CreateAnalyseListAsyncDto. # noqa: E501 Default: true # noqa: E501 :return: The count_source_units of this CreateAnalyseListAsyncDto. # noqa: E501 :rtype: bool """ return self._count_source_units @count_source_units.setter def count_source_units(self, count_source_units): """Sets the count_source_units of this CreateAnalyseListAsyncDto. Default: true # noqa: E501 :param count_source_units: The count_source_units of this CreateAnalyseListAsyncDto. # noqa: E501 :type: bool """ self._count_source_units = count_source_units @property def include_trans_memory(self): """Gets the include_trans_memory of this CreateAnalyseListAsyncDto. # noqa: E501 Default: true # noqa: E501 :return: The include_trans_memory of this CreateAnalyseListAsyncDto. # noqa: E501 :rtype: bool """ return self._include_trans_memory @include_trans_memory.setter def include_trans_memory(self, include_trans_memory): """Sets the include_trans_memory of this CreateAnalyseListAsyncDto. Default: true # noqa: E501 :param include_trans_memory: The include_trans_memory of this CreateAnalyseListAsyncDto. # noqa: E501 :type: bool """ self._include_trans_memory = include_trans_memory @property def include_non_translatables(self): """Gets the include_non_translatables of this CreateAnalyseListAsyncDto. # noqa: E501 Default: false. Works only for type=PreAnalyse. # noqa: E501 :return: The include_non_translatables of this CreateAnalyseListAsyncDto. # noqa: E501 :rtype: bool """ return self._include_non_translatables @include_non_translatables.setter def include_non_translatables(self, include_non_translatables): """Sets the include_non_translatables of this CreateAnalyseListAsyncDto. Default: false. Works only for type=PreAnalyse. # noqa: E501 :param include_non_translatables: The include_non_translatables of this CreateAnalyseListAsyncDto. # noqa: E501 :type: bool """ self._include_non_translatables = include_non_translatables @property def include_machine_translation_matches(self): """Gets the include_machine_translation_matches of this CreateAnalyseListAsyncDto. # noqa: E501 Default: false. Works only for type=PreAnalyse. # noqa: E501 :return: The include_machine_translation_matches of this CreateAnalyseListAsyncDto. # noqa: E501 :rtype: bool """ return self._include_machine_translation_matches @include_machine_translation_matches.setter def include_machine_translation_matches(self, include_machine_translation_matches): """Sets the include_machine_translation_matches of this CreateAnalyseListAsyncDto. Default: false. Works only for type=PreAnalyse. # noqa: E501 :param include_machine_translation_matches: The include_machine_translation_matches of this CreateAnalyseListAsyncDto. # noqa: E501 :type: bool """ self._include_machine_translation_matches = include_machine_translation_matches @property def trans_memory_post_editing(self): """Gets the trans_memory_post_editing of this CreateAnalyseListAsyncDto. # noqa: E501 Default: false. Works only for type=PostAnalyse. # noqa: E501 :return: The trans_memory_post_editing of this CreateAnalyseListAsyncDto. # noqa: E501 :rtype: bool """ return self._trans_memory_post_editing @trans_memory_post_editing.setter def trans_memory_post_editing(self, trans_memory_post_editing): """Sets the trans_memory_post_editing of this CreateAnalyseListAsyncDto. Default: false. Works only for type=PostAnalyse. # noqa: E501 :param trans_memory_post_editing: The trans_memory_post_editing of this CreateAnalyseListAsyncDto. # noqa: E501 :type: bool """ self._trans_memory_post_editing = trans_memory_post_editing @property def non_translatable_post_editing(self): """Gets the non_translatable_post_editing of this CreateAnalyseListAsyncDto. # noqa: E501 Default: false. Works only for type=PostAnalyse. # noqa: E501 :return: The non_translatable_post_editing of this CreateAnalyseListAsyncDto. # noqa: E501 :rtype: bool """ return self._non_translatable_post_editing @non_translatable_post_editing.setter def non_translatable_post_editing(self, non_translatable_post_editing): """Sets the non_translatable_post_editing of this CreateAnalyseListAsyncDto. Default: false. Works only for type=PostAnalyse. # noqa: E501 :param non_translatable_post_editing: The non_translatable_post_editing of this CreateAnalyseListAsyncDto. # noqa: E501 :type: bool """ self._non_translatable_post_editing = non_translatable_post_editing @property def machine_translate_post_editing(self): """Gets the machine_translate_post_editing of this CreateAnalyseListAsyncDto. # noqa: E501 Default: false. Works only for type=PostAnalyse. # noqa: E501 :return: The machine_translate_post_editing of this CreateAnalyseListAsyncDto. # noqa: E501 :rtype: bool """ return self._machine_translate_post_editing @machine_translate_post_editing.setter def machine_translate_post_editing(self, machine_translate_post_editing): """Sets the machine_translate_post_editing of this CreateAnalyseListAsyncDto. Default: false. Works only for type=PostAnalyse. # noqa: E501 :param machine_translate_post_editing: The machine_translate_post_editing of this CreateAnalyseListAsyncDto. # noqa: E501 :type: bool """ self._machine_translate_post_editing = machine_translate_post_editing @property def name(self): """Gets the name of this CreateAnalyseListAsyncDto. # noqa: E501 :return: The name of this CreateAnalyseListAsyncDto. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this CreateAnalyseListAsyncDto. :param name: The name of this CreateAnalyseListAsyncDto. # noqa: E501 :type: str """ if name is not None and len(name) > 255: raise ValueError("Invalid value for `name`, length must be less than or equal to `255`") # noqa: E501 if name is not None and len(name) < 0: raise ValueError("Invalid value for `name`, length must be greater than or equal to `0`") # noqa: E501 self._name = name @property def net_rate_scheme(self): """Gets the net_rate_scheme of this CreateAnalyseListAsyncDto. # noqa: E501 :return: The net_rate_scheme of this CreateAnalyseListAsyncDto. # noqa: E501 :rtype: IdReference """ return self._net_rate_scheme @net_rate_scheme.setter def net_rate_scheme(self, net_rate_scheme): """Sets the net_rate_scheme of this CreateAnalyseListAsyncDto. :param net_rate_scheme: The net_rate_scheme of this CreateAnalyseListAsyncDto. # noqa: E501 :type: IdReference """ self._net_rate_scheme = net_rate_scheme @property def compare_workflow_level(self): """Gets the compare_workflow_level of this CreateAnalyseListAsyncDto. # noqa: E501 Required for type=Compare # noqa: E501 :return: The compare_workflow_level of this CreateAnalyseListAsyncDto. # noqa: E501 :rtype: int """ return self._compare_workflow_level @compare_workflow_level.setter def compare_workflow_level(self, compare_workflow_level): """Sets the compare_workflow_level of this CreateAnalyseListAsyncDto. Required for type=Compare # noqa: E501 :param compare_workflow_level: The compare_workflow_level of this CreateAnalyseListAsyncDto. # noqa: E501 :type: int """ if compare_workflow_level is not None and compare_workflow_level > 15: # noqa: E501 raise ValueError("Invalid value for `compare_workflow_level`, must be a value less than or equal to `15`") # noqa: E501 if compare_workflow_level is not None and compare_workflow_level < 1: # noqa: E501 raise ValueError("Invalid value for `compare_workflow_level`, must be a value greater than or equal to `1`") # noqa: E501 self._compare_workflow_level = compare_workflow_level @property def use_project_analysis_settings(self): """Gets the use_project_analysis_settings of this CreateAnalyseListAsyncDto. # noqa: E501 Default: false. Use default project settings. Will be overwritten with setting sent in the API call. # noqa: E501 :return: The use_project_analysis_settings of this CreateAnalyseListAsyncDto. # noqa: E501 :rtype: bool """ return self._use_project_analysis_settings @use_project_analysis_settings.setter def use_project_analysis_settings(self, use_project_analysis_settings): """Sets the use_project_analysis_settings of this CreateAnalyseListAsyncDto. Default: false. Use default project settings. Will be overwritten with setting sent in the API call. # noqa: E501 :param use_project_analysis_settings: The use_project_analysis_settings of this CreateAnalyseListAsyncDto. # noqa: E501 :type: bool """ self._use_project_analysis_settings = use_project_analysis_settings @property def callback_url(self): """Gets the callback_url of this CreateAnalyseListAsyncDto. # noqa: E501 :return: The callback_url of this CreateAnalyseListAsyncDto. # noqa: E501 :rtype: str """ return self._callback_url @callback_url.setter def callback_url(self, callback_url): """Sets the callback_url of this CreateAnalyseListAsyncDto. :param callback_url: The callback_url of this CreateAnalyseListAsyncDto. # noqa: E501 :type: str """ self._callback_url = callback_url def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(CreateAnalyseListAsyncDto, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, CreateAnalyseListAsyncDto): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
37321511f55b483428e71701554e9e17bf1df771
98c6ea9c884152e8340605a706efefbea6170be5
/examples/data/Assignment_7/hrnali002/question1.py
bddd72a0b19d90ef62d339aa08a5e015b73c2dc2
[]
no_license
MrHamdulay/csc3-capstone
479d659e1dcd28040e83ebd9e3374d0ccc0c6817
6f0fa0fa1555ceb1b0fb33f25e9694e68b6a53d2
refs/heads/master
2021-03-12T21:55:57.781339
2014-09-22T02:22:22
2014-09-22T02:22:22
22,372,174
0
0
null
null
null
null
UTF-8
Python
false
false
593
py
"""A program to print a list with not duplicated words Alison Hoernle HRNALI002 27 April 2014""" # get input and convert to a list list = [] strings = input("Enter strings (end with DONE):\n") while strings != "DONE": list.append(strings) strings = input() print() print("Unique list:") # create an empty string and then go through list. Add each word to empty string and if in string already then don't print that word again counted_words = '' for string in list: if string in counted_words: continue else: print(string) counted_words += string
f3a2ad5c32de8876caeae5f5f9095fdd0ef824c5
400c569b19d003d0b9d1b31bc1b698ae510cbc46
/Celestial classification/models.py
d4b60dffc8e997aebb887787f6bf21975ed96fb3
[]
no_license
as950118/dacon
05a203ab36375a69549ac39ba3b02a90431c860a
a1489a55a7a53a755d6cf50081522bd7c1c48b4f
refs/heads/master
2021-02-13T20:06:38.169482
2020-03-03T19:51:51
2020-03-03T19:51:51
244,727,899
0
0
null
null
null
null
UTF-8
Python
false
false
2,054
py
import pandas as pd from sklearn.model_selection import train_test_split from catboost import CatBoostClassifier from lightgbm import LGBMClassifier from xgboost import XGBClassifier from data_processing import DataProcessing random_seed = 0 train_data_path = "./data/train.csv" test_data_path = "./data/test.csv" sample_submission_data_path = "./data/sample_submission.csv" data_processing = DataProcessing(train_data_path, test_data_path, sample_submission_data_path) train_data, test_data, sample_submission_data = data_processing.load_file() x_train, x_valid, y_train, y_valid = data_processing.set_data(train_data, test_data) ''' # catboost cat_clf = CatBoostClassifier(iterations = 20000, random_state = random_seed, task_type="GPU") cat_clf.fit(x_train, y_train, eval_set = [(x_train, y_train), (x_valid, y_valid)]) cat_pred = cat_clf.predict_proba(test_data) submission = pd.DataFrame(data=cat_pred, columns=sample_submission_data.columns, index=sample_submission_data.index) submission.to_csv('./results/cat_boost2.csv', index=True) ''' # lgbm #lgbm_clf = LGBMClassifier(n_estimators = 1000, n_jobs=-1, random_state = random_seed, device = 'gpu') lgbm_clf = LGBMClassifier(n_estimators = 1000, n_jobs=-1, random_state = random_seed) lgbm_clf.fit(x_train, y_train, eval_set = [(x_train, y_train), (x_valid, y_valid)]) lgbm_pred = lgbm_clf.predict_proba(test_data) submission = pd.DataFrame(data=lgbm_pred, columns=sample_submission_data.columns, index=sample_submission_data.index) submission.to_csv('./results/light_gbm2.csv', index=True) # xgboost #xgb_clf = XGBClassifier(n_estimators = 1000, n_jobs=-1, random_state=random_seed, tree_method='gpu_exact') xgb_clf = XGBClassifier(n_estimators = 1000, n_jobs=-1, random_state=random_seed) xgb_clf.fit(x_train, y_train, eval_set = [(x_train, y_train), (x_valid, y_valid)]) xgb_pred = xgb_clf.predict_proba(test_data) submission = pd.DataFrame(data=xgb_pred, columns=sample_submission_data.columns, index=sample_submission_data.index) submission.to_csv('./results/xg_boost2.csv', index=True)
3994ec01676f94e3b0ed9d34c4e51522f1548082
6b3ec47ee410a7d2ed2102cc5bcfa13c7a6342e2
/bin/easy_install-3.6
5d6f8c4e10d68c760d508456eeaaa31b7e59754b
[]
no_license
makkar-nishant123/Refermeframework
fddb912304bdb4ffe3e169fda2d60b4171d8b6c1
a152f42f6ab63c037bf3f117aa5be1ceb3a1d178
refs/heads/master
2020-05-15T23:29:18.684101
2019-04-28T17:31:22
2019-04-28T17:31:22
182,555,118
0
0
null
null
null
null
UTF-8
Python
false
false
460
6
#!/Users/nishantmakkar/PycharmProjects/RefermeFramework/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==40.8.0','console_scripts','easy_install-3.6' __requires__ = 'setuptools==40.8.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==40.8.0', 'console_scripts', 'easy_install-3.6')() )
f529c2813ffd27be60a2c246cf2853fcf650896f
78912badbaa634d84a93ac03872f18b3f14092a0
/photosorter-readbuckets.py
21e4410b93a348af18e57021e9ae46609456fa81
[]
no_license
mperry8889/photosorter
fc556054ce2af1a50c91c585c80eb6d65ff23f4f
d20c7a51a6e0e7aef4e4eb9260a344d54c52e539
refs/heads/master
2021-05-29T06:55:32.482767
2011-05-08T17:04:59
2011-05-08T17:04:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
442
py
#!/usr/bin/env python from photosorter import PhotoSorter from photosorter import Bucket from photosorter import Photo if __name__ == "__main__": p = PhotoSorter() for bucket in p.buckets: for state in ["during", "after", "before", "unknown", "unsorted"]: for photo in getattr(bucket, state): print "%s %s %s %s %s" % (state, bucket.year, photo.filename, photo.rotation, photo.flip_horizontal)
[ "none@none" ]
none@none