blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
f4a65671dde5f682aab0a747b66e2ba2cdc09f88
c9d4d4c78703d009da11999e4e59b6a168a454a2
/examples/Machine Learning In Action/reducer.py
67e8edacbbd3347055d42c21781c0208b8451281
[ "MIT" ]
permissive
AkiraKane/Python
23df49d7f7ae0f375e0b4ccfe4e1b6a077b1a52b
12e2dcb9a61e9ab0fc5706e4a902c48e6aeada30
refs/heads/master
2020-12-11T07:20:01.524438
2015-11-07T12:42:22
2015-11-07T12:42:22
47,440,128
1
0
null
2015-12-05T03:15:52
2015-12-05T03:15:51
null
UTF-8
Python
false
false
1,139
py
''' ------------------------------------------------------------------------- Book: Machine Learning In Action # Lesson: MapReduce - reducer # Author: Kelly Chan # Date: Feb 3 2014 ------------------------------------------------------------------------- ''' import sys from numpy import mat, mean, power def dataLoad(dataFile): for line in dataFile: yield line.rstrip() # creating a list of lines from dataFile data = dataLoad(sys.stdin) # spliting data lines into separte items and storing in list of lists mapperOut = [line.split('\t') for line in data] # accumulating total number of samples, overall sum and overall sum squared accumulateN = 0.0 accumulateSum = 0.0 accumulateSumSquared = 0.0 for instance in mapperOut: thisN = float(instance[0]) accumulateN += thisN accumulateSum += thisN * float(instance[1]) accumulateSumSquared += thisN * float(instance[2]) # calculating means mean = accumulateSum / accumulateN meanSq = accumulateSumSquared / accumulateN # printing size, mean, mean squared print "%d\t%f\t%f" % (accumulateN, mean, meanSq) print >> sys.stderr, "report: still alive"
574db95533b5d034f658f9a51a1f0232059e0a1b
7c1b599c5b5be0ec5ad142e52e5c15a7c9c8ea12
/venv/Lib/site-packages/tensorflow/contrib/quantize/python/fold_batch_norms.py
61c90dba7d4a688497fdac4d4ba0332fa1d94cd3
[]
no_license
namtran98/NSTAR---MuddHacks
88d602a0847bb923088c7f0be6d5c2980b11a36d
cbc04873e1f02cb6b62a7b77c5c44eb4e9422ab8
refs/heads/master
2020-04-21T19:41:49.889253
2019-02-09T01:02:37
2019-02-09T01:02:37
169,816,481
0
0
null
null
null
null
UTF-8
Python
false
false
40,924
py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Logic to fold batch norm into preceding convolution or FC layers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import re from tensorflow.contrib import graph_editor from tensorflow.contrib.quantize.python import common from tensorflow.contrib.quantize.python import graph_matcher from tensorflow.contrib.quantize.python import input_to_ops from tensorflow.core.framework import attr_value_pb2 from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.layers import utils from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn from tensorflow.python.ops import nn_ops from tensorflow.python.ops import variable_scope from tensorflow.python.util import compat def FoldBatchNorms(graph, is_training, freeze_batch_norm_delay=None): """Finds batch norm layers and folds them into preceding layers. Folding only affects the following layers: Conv2D, fully connected, depthwise convolution. Args: graph: Graph to walk and modify. is_training: Bool, true if training. freeze_batch_norm_delay: How many steps to wait before freezing moving mean and variance and using them for batch normalization. This value is used only when is_training is True. Raises: ValueError: When batch norm folding fails. """ _FoldFusedBatchNorms( graph, is_training, freeze_batch_norm_delay=freeze_batch_norm_delay) _FoldUnfusedBatchNorms( graph, is_training=is_training, freeze_batch_norm_delay=freeze_batch_norm_delay) def _FoldFusedBatchNorms(graph, is_training, freeze_batch_norm_delay): """Finds fused batch norm layers and folds them into preceding layers. Folding only affects the following layers: Conv2D, fully connected, depthwise convolution. Args: graph: Graph to walk and modify. is_training: Bool, true if training. freeze_batch_norm_delay: How many steps to wait before freezing moving mean and variance and using them for batch normalization. Raises: ValueError: When batch norm folding fails. """ for match in _FindFusedBatchNorms(graph): scope, sep, _ = match.layer_op.name.rpartition('/') # Make sure new ops are added to `graph` and put on the same device as # `bn_op`. The '/' (i.e. `sep`) ensures that we reuse the existing scope # named `scope`. Otherwise, TF creates a unique scope whose name starts with # `scope`. with graph.as_default(), graph.name_scope(scope + sep): with graph.name_scope(scope + sep + 'BatchNorm_Fold' + sep): # new weights = old weights * gamma / sqrt(variance + epsilon) # new biases = -mean * gamma / sqrt(variance + epsilon) + beta multiplier_tensor = match.gamma_tensor * math_ops.rsqrt( match.variance_tensor + match.bn_op.get_attr('epsilon')) bias_tensor = math_ops.subtract( match.beta_tensor, match.mean_tensor * multiplier_tensor, name='bias') correction_scale, correction_recip, correction_offset = None, None, None if is_training: correction_scale, correction_recip, correction_offset = ( _ComputeBatchNormCorrections( context='', match=match, freeze_batch_norm_delay=freeze_batch_norm_delay, fused_batch_norm=True)) # The shape of depthwise weights is different, so we need to reshape the # multiplier_tensor to ensure that the scaled_weight_tensor has the # expected shape. weights = match.weight_tensor if match.layer_op.type == 'DepthwiseConv2dNative': new_shape = [ match.weight_tensor.get_shape().as_list()[2], match.weight_tensor.get_shape().as_list()[3] ] multiplier_tensor = array_ops.reshape( multiplier_tensor, new_shape, name='scale_reshape') if correction_scale is not None: correction_scale = array_ops.reshape( correction_scale, new_shape, name='correction_reshape') if correction_scale is not None: weights = math_ops.multiply( correction_scale, weights, name='correction_mult') scaled_weight_tensor = math_ops.multiply( weights, multiplier_tensor, name='mul_fold') new_layer_tensor = _CloneWithNewOperands( match.layer_op, match.input_tensor, scaled_weight_tensor, match.batch_to_space_op) if correction_recip is not None: new_layer_tensor = math_ops.multiply( correction_recip, new_layer_tensor, name='post_conv_mul') new_layer_tensor = math_ops.add(new_layer_tensor, (correction_offset), 'correction_add') bias_add_tensor = math_ops.add( new_layer_tensor, bias_tensor, name='add_fold') nodes_modified_count = graph_editor.reroute_ts(bias_add_tensor, match.output_tensor) if nodes_modified_count == 0: raise ValueError('Folding batch norms failed, %s had no outputs.' % match.output_tensor.name) def _FindFusedBatchNorms(graph): """Finds all ops and tensors related to found FusedBatchNorms. Args: graph: Graph to inspect. Yields: _FusedBatchNormMatches. """ input_pattern = graph_matcher.OpTypePattern('*') # In practice, the weight pattern can match a Variable or a SpaceToBatchND # operation that follows a variable for atrous convolutions. weight_pattern = graph_matcher.OpTypePattern('*') gamma_pattern = graph_matcher.OpTypePattern('*') beta_pattern = graph_matcher.OpTypePattern('*') mean_pattern = graph_matcher.OpTypePattern('*') variance_pattern = graph_matcher.OpTypePattern('*') moving_average_pattern = graph_matcher.OpTypePattern('*') bn_decay_pattern = graph_matcher.OpTypePattern('*') layer_pattern = graph_matcher.OpTypePattern( 'Conv2D|DepthwiseConv2dNative|MatMul', inputs=[input_pattern, weight_pattern]) batch_to_space_pattern = graph_matcher.OpTypePattern( 'BatchToSpaceND', inputs=[ layer_pattern, graph_matcher.OpTypePattern('*'), graph_matcher.OpTypePattern('*') ]) layer_output_pattern = graph_matcher.OneofPattern( [layer_pattern, batch_to_space_pattern]) # MatMul has a Reshape between it and FusedBatchNorm. matmul_reshape_pattern = graph_matcher.OpTypePattern( 'Reshape', inputs=[layer_output_pattern, graph_matcher.OpTypePattern('*')]) batch_norm_pattern = graph_matcher.OpTypePattern( 'FusedBatchNorm', inputs=[ graph_matcher.OneofPattern( [matmul_reshape_pattern, layer_output_pattern]), gamma_pattern, beta_pattern, mean_pattern, variance_pattern ]) matmul_bn_output_reshape_pattern = graph_matcher.OpTypePattern( 'Reshape', inputs=[batch_norm_pattern, graph_matcher.OpTypePattern('*')]) bn_matcher = graph_matcher.GraphMatcher( graph_matcher.OneofPattern( [matmul_bn_output_reshape_pattern, batch_norm_pattern])) moving_average_sub_pattern = graph_matcher.OpTypePattern( 'Sub', inputs=[moving_average_pattern, batch_norm_pattern]) moving_average_mul_pattern = graph_matcher.OpTypePattern( 'Mul', inputs=[moving_average_sub_pattern, bn_decay_pattern]) moving_avg_mul_matcher = graph_matcher.GraphMatcher( moving_average_mul_pattern) for match_result in bn_matcher.match_graph(graph): moving_mean_tensor = None moving_variance_tensor = None bn_decay_mean_tensor = None bn_decay_var_tensor = None batch_to_space_op = None layer_op = match_result.get_op(layer_pattern) layer_tensor = match_result.get_tensor(layer_pattern) bn_op = match_result.get_op(batch_norm_pattern) batch_epsilon = bn_op.get_attr('epsilon') # In the MatMul case, the output of batch norm is reshaped back into a # 2D tensor, so the output_tensor is the output of the Reshape op. output_tensor = bn_op.outputs[0] if layer_op.type == 'MatMul': output_reshape_op = match_result.get_op(matmul_bn_output_reshape_pattern) # If the matcher didn't match matmul_bn_output_reshape, there will be # another match for this 'MatMul' later, so we can skip this one. if output_reshape_op is None: continue output_tensor = output_reshape_op.outputs[0] # Ensure that the output tensor has consumers, otherwise this is a dangling # node and not a match. if not output_tensor.consumers(): continue batch_to_space_op = match_result.get_op(batch_to_space_pattern) input_tensor = match_result.get_tensor(input_pattern) weight_tensor = match_result.get_tensor(weight_pattern) gamma_tensor = match_result.get_tensor(gamma_pattern) beta_tensor = match_result.get_tensor(beta_pattern) # FusedBatchNorm in training is different from that in inference. It takes # empty 'mean' and empty 'variance', and produces the mean and the variance # of the batch. Therefore, when is_training is true, mean_tensor and # variance_tensor point to 1st and 2nd (0-based) output of bn_op, # respectively; when is_training is false, they point to bn_op's inputs. is_training = bn_op.get_attr('is_training') if is_training: # FusedBatchNormGrad doesn't compute gradients of the batch_mean and # batch_variance outputs, so we need to substitute our own custom # gradient. # TODO(suharshs, raghuramank): Find a way to avoid needing this hack. # pylint: disable=protected-access bn_op._set_attr( '_gradient_op_type', attr_value_pb2.AttrValue(s=compat.as_bytes('FoldFusedBatchNormGrad'))) # pylint: enable=protected-access mean_tensor = bn_op.outputs[1] # The batch variance used during forward and backward prop is biased, # i.e it is calculated as: V=sum(x(k)-mu)^2/N. For the moving average # calculation, the variance is corrected by the term N/N-1 (Bessel's # correction). The variance tensor read from FuseBatchNorm has Bessel's # correction applied, so we undo it here. scope, sep, _ = bn_op.name.rpartition('/') g = ops.get_default_graph() with g.as_default(), g.name_scope(scope + sep): n = math_ops.cast( array_ops.size(layer_tensor) / array_ops.size(mean_tensor), dtypes.float32) variance_tensor = math_ops.multiply( bn_op.outputs[2], (n - 1) / n, name='Undo_Bessel_Correction') # TODO(suharshs): Find a way to get rid of this inner match. for mul_match_result in moving_avg_mul_matcher.match_graph(graph): sub_op = mul_match_result.get_op(moving_average_sub_pattern) if sub_op.inputs[1].name == bn_op.outputs[1].name: # During training: Batch Mean is bn_op.outputs[1] moving_mean_tensor = sub_op.inputs[0] bn_decay_mean_tensor = mul_match_result.get_tensor(bn_decay_pattern) if sub_op.inputs[1].name == bn_op.outputs[2].name: # During training: Batch Var is bn_op.outputs[2] moving_variance_tensor = sub_op.inputs[0] bn_decay_var_tensor = mul_match_result.get_tensor(bn_decay_pattern) else: mean_tensor = match_result.get_tensor(mean_pattern) variance_tensor = match_result.get_tensor(variance_pattern) yield _BatchNormMatch( layer_op=layer_op, bn_op=bn_op, output_tensor=output_tensor, input_tensor=input_tensor, weight_tensor=weight_tensor, gamma_tensor=gamma_tensor, beta_tensor=beta_tensor, mean_tensor=mean_tensor, variance_tensor=variance_tensor, moving_mean_tensor=moving_mean_tensor, moving_variance_tensor=moving_variance_tensor, bn_decay_mean_tensor=bn_decay_mean_tensor, bn_decay_var_tensor=bn_decay_var_tensor, batch_epsilon=batch_epsilon, batch_to_space_op=batch_to_space_op) def _ComputeBatchNormCorrections(context, match, freeze_batch_norm_delay, fused_batch_norm): """Computes batch norm correction params. Before batch normalization is frozen: We use batch statistics for batch norm. correction_scale = sigma_b/sigma_mv correction_recip = 1/correction_scale correction_offset = 0 After batch normalization is frozen: correction_scale = sigma_b/sigma_mv correction_recip = 1 correction_offset = gamma*(mu_b/sigma_b-mu_mv/sigma_mv). Batch norm is frozen if global_step > bn_freeze_delay. The corrections ensure that: a) The weights are quantized after scaling by gamma/sigma_mv. This enables smoother training as the scaling on the weights changes slowly, rather than jump across mini-batches b) Changing the values of the corrections allows for one to switch between using batch statistics to using moving mean and average, without requiring changes to batch_norm Args: context: The scope under which we look for batch norm params match: Object containing required batch norm tensors for correction computation. freeze_batch_norm_delay: Delay in steps at which computation switches from regular batch norm to frozen mean and variance. fused_batch_norm: Bool, true if fused batch norm is used. Returns: A tuple of correction_scale, correction_recip, correction_offset """ g = ops.get_default_graph() prefix = '' if not context else context + '/' with g.name_scope(prefix + 'batch_norm_correction'): recip_sigma_mv = math_ops.rsqrt( match.moving_variance_tensor + match.batch_epsilon) recip_sigma = math_ops.rsqrt(match.variance_tensor + match.batch_epsilon) correction_scale = math_ops.divide( recip_sigma_mv, recip_sigma, name='scale_compute') correction_scale = array_ops.identity( correction_scale, name='correction_scale') correction_recip = math_ops.reciprocal( correction_scale, name='reciprocal_compute') correction_offset = math_ops.multiply( match.gamma_tensor, match.mean_tensor * recip_sigma - match.moving_mean_tensor * recip_sigma_mv, name='offset_compute') if freeze_batch_norm_delay is not None: use_mv_avg = math_ops.greater_equal( common.CreateOrGetQuantizationStep(), freeze_batch_norm_delay, name='use_moving_average') else: use_mv_avg = False bn_decay_zero = 0.0 bn_decay_mean_consumers = list(match.bn_decay_mean_tensor.consumers()) bn_decay_var_consumers = list(match.bn_decay_mean_tensor.consumers()) bn_decay_mean_out = utils.smart_cond( use_mv_avg, lambda: bn_decay_zero, lambda: match.bn_decay_mean_tensor, name='freeze_moving_mean') graph_editor.reroute_ts( [bn_decay_mean_out], [match.bn_decay_mean_tensor], can_modify=bn_decay_mean_consumers) bn_decay_var_consumers = list(match.bn_decay_var_tensor.consumers()) bn_decay_var_out = utils.smart_cond( use_mv_avg, lambda: bn_decay_zero, lambda: match.bn_decay_var_tensor, name='freeze_moving_var') graph_editor.reroute_ts( [bn_decay_var_out], [match.bn_decay_var_tensor], can_modify=bn_decay_var_consumers) correction_recip = utils.smart_cond( use_mv_avg, lambda: array_ops.ones(correction_scale.shape), lambda: correction_recip, name='correction_recip') correction_offset = utils.smart_cond( use_mv_avg, lambda: correction_offset, lambda: array_ops.zeros(correction_offset.shape), name='correction_offset') return correction_scale, correction_recip, correction_offset def _CloneWithNewOperands(layer_op, input_tensor, weight_tensor, batch_to_space_op): """Clones layer_op with input_tensor and weight_tensor as new inputs.""" new_layer_name = layer_op.name.split('/')[-1] + '_Fold' if layer_op.type == 'Conv2D': return nn_ops.conv2d( input_tensor, weight_tensor, strides=layer_op.get_attr('strides'), padding=layer_op.get_attr('padding'), use_cudnn_on_gpu=layer_op.get_attr('use_cudnn_on_gpu'), data_format=layer_op.get_attr('data_format'), name=new_layer_name) elif layer_op.type == 'MatMul': return math_ops.matmul( input_tensor, weight_tensor, transpose_a=layer_op.get_attr('transpose_a'), transpose_b=layer_op.get_attr('transpose_b'), name=new_layer_name) elif layer_op.type == 'DepthwiseConv2dNative': conv = nn.depthwise_conv2d( input_tensor, weight_tensor, rate=layer_op.get_attr('dilations'), strides=layer_op.get_attr('strides'), padding=layer_op.get_attr('padding'), name=new_layer_name) # Copy the batch to space operation if we have a atrous convolution. if batch_to_space_op: batch_to_space_op = layer_op.outputs[0].consumers()[0] # TODO(suharshs): It's hard to make this name match with the unfused name. # Restructure this code to not rely on scope at all. new_batch_to_space_name = batch_to_space_op.name.split('/')[-1] + '_Fold' conv = array_ops.batch_to_space_nd( conv, batch_to_space_op.inputs[1], batch_to_space_op.inputs[2], name=new_batch_to_space_name) return conv else: raise ValueError('Cannot handle operation of type: %s' % layer_op.type) @ops.RegisterGradient('FoldFusedBatchNormGrad') def _FoldFusedBatchNormGrad(op, unused_grad_y, grad_mean, grad_var, unused_1, unused_2): x = op.inputs[0] n = math_ops.cast( array_ops.size(x) / array_ops.size(grad_mean), dtypes.float32) dmean_dx = grad_mean / n dvar_dx = 2 * grad_var * (x - op.outputs[1]) / (n - 1) return (dmean_dx + dvar_dx), None, None, None, None def _FoldUnfusedBatchNorms(graph, is_training, freeze_batch_norm_delay): """Finds unfused batch norm layers and folds them into preceding layers. Folding only affects the following layers: Conv2D, fully connected, depthwise convolution. Args: graph: Graph to walk and modify. is_training: Bool, True if training. freeze_batch_norm_delay: How many steps to wait before freezing moving mean and variance and using them for batch normalization. Raises: ValueError: When batch norm folding fails. """ input_to_ops_map = input_to_ops.InputToOps(graph) for bn in common.BatchNormGroups(graph): has_scaling = _HasScaling(graph, input_to_ops_map, bn) if not _IsValidUnfusedBatchNorm(graph, bn): continue # The mangling code intimately depends on BatchNorm node's internals. original_op, folded_op = _CreateFoldedOp( graph, bn, has_scaling=has_scaling, freeze_batch_norm_delay=freeze_batch_norm_delay, is_training=is_training) activation = common.GetEndpointActivationOp(graph, bn) if activation: nodes_modified_count = graph_editor.reroute_ts([folded_op.outputs[0]], [original_op.outputs[0]], can_modify=[activation]) if nodes_modified_count != 1: raise ValueError('Unexpected inputs to op: %s' % activation.name) continue # Treat consumer ops in bypass modules differently since they have Add # operations instead of Relu* above. add_bypass_ctx = re.search(r'^(.*)/([^/]+)', bn).group(1) add_bypass = graph.get_operation_by_name(add_bypass_ctx + '/Add') nodes_modified_count = graph_editor.reroute_ts([folded_op.outputs[0]], [original_op.outputs[0]], can_modify=[add_bypass]) if nodes_modified_count != 1: raise ValueError('Unexpected inputs to op: %s' % add_bypass.name) def _IsValidUnfusedBatchNorm(graph, context): """Checks that the output of the unfused batch norm has consumers.""" add_shift = graph.get_operation_by_name( context + '/BatchNorm/batchnorm_1/add_1') # Ensure that the output tensor of batch norm has consumers, otherwise this # is a dangling node and not a match. return bool(add_shift.outputs[0].consumers()) def _FindMatchingTensor(graph, match_pattern, scope): """Finds best match of ops matching match_pattern with scope. Example: _FindMatchingTensor(graph,'/BatchNorm/moments/Squeeze', 'MobilenetV1/MobilenetV1/Conv2d_0/') returns: Tensor('MobilenetV1/Conv2d_0/BatchNorm/moments/Squeeze') Args: graph: Graph to inspect. match_pattern: Part of the name of the op that we need to match, should be present in the op's name scope: The scope of the op. All the elements of the scope need not be present in the op's name. Returns: Tensor from graph that provides the best match to the match_pattern and scope """ oplist = graph.get_operations() split_context = set(scope.split('/')) match_dict = {} for op in oplist: if op.name.endswith(match_pattern): split_name = op.name.split('/') num_matches = len(set(split_name) & split_context) if num_matches > 0: match_dict[op.name] = num_matches # match_dict contains matching op names from graph with values being # number of matches to scope. We pick the key with the most matches if match_dict: max_key = max(match_dict, key=match_dict.get) return graph.get_tensor_by_name(max_key + ':0') else: return None def _GetBatchNormParams(graph, context, has_scaling): """Extracts relevant tensors for folding batch norms. Args: graph: Graph to inspect. context: The scope under which we look for batch norm params has_scaling: Bool that specifies if scaling is done as part of batch norm. Returns: _BatchNormMatch containing all required batch norm parameters. """ gamma_tensor = None batch_mean_tensor = None batch_variance_tensor = None moving_mean_tensor = None moving_variance_tensor = None batch_epsilon = None bn_decay_mean_tensor = None bn_decay_var_tensor = None # TODO(raghuramank) This code relies on string matching and needs to be # updated if unfused batch norm continues to be widely used # Matching variable names is brittle and relies on scoping # conventions. Fused batch norm folding is more robust. Support for unfused # batch norms will be deprecated as we move forward. Fused batch norms allow # for faster training and should be used whenever possible. # context contains part of the names of the tensors we are interested in: # For MobilenetV1, the context has repetitions: # MobilenetV1/MobilenetV1/Conv2d_3_depthwise # when the moving_mean tensor has the name: # MobilenetV1/Conv2d_3_depthwise/BatchNorm/moving_mean/read # To pick the correct variable name, it is necessary to ignore the repeating # header. # For MobilenetV2, this problem does not exist: # The context is: MobilenetV2/expanded_conv_3/depthwise # and the names of the tensors start with a single MobilenetV2 # The moving mean for example, has the name: # MobilenetV2/expanded_conv_3/depthwise/BatchNorm/moving_mean/read # We identify the best match for an op by checking for # 1. The suffix of the op is exactly matched # 2. Maximum number of matches with the context.The matching # score is given by the number of parts of context (split by /) that # are present in the parts of the tensor name (again split by /). # For example: scope= MobilenetV2/MobilenetV2/expanded_conv_3 and # op.name = MobilenetV2/expanded_conv_3/depthwise/BatchNorm/moving_mean/read # will have 2 matches,scope with a different conv layer will have one match. op_suffix_mean = '/BatchNorm/moments/Squeeze' op_suffix_variance = '/BatchNorm/moments/Squeeze_1' op_suffix_epsilon = '/BatchNorm/batchnorm_1/add/y' op_suffix_bn_decay_mean = '/BatchNorm/AssignMovingAvg/decay' op_suffix_bn_decay_var = '/BatchNorm/AssignMovingAvg_1/decay' if variable_scope.get_variable_scope().use_resource: op_suffix_gamma = '/BatchNorm/gamma/Read/ReadVariableOp' op_suffix_moving_variance = ( '/BatchNorm/moving_variance/Read/ReadVariableOp') op_suffix_moving_mean = ('/BatchNorm/moving_mean/Read/ReadVariableOp') else: op_suffix_gamma = '/BatchNorm/gamma' op_suffix_moving_variance = '/BatchNorm/moving_variance/read' op_suffix_moving_mean = '/BatchNorm/moving_mean/read' # Parse through list of ops to find relevant ops batch_mean_tensor = _FindMatchingTensor(graph, op_suffix_mean, context) batch_variance_tensor = _FindMatchingTensor(graph, op_suffix_variance, context) moving_mean_tensor = _FindMatchingTensor(graph, op_suffix_moving_mean, context) moving_variance_tensor = _FindMatchingTensor(graph, op_suffix_moving_variance, context) batch_epsilon = _FindMatchingTensor(graph, op_suffix_epsilon, context) bn_decay_mean_tensor = _FindMatchingTensor(graph, op_suffix_bn_decay_mean, context) bn_decay_var_tensor = _FindMatchingTensor(graph, op_suffix_bn_decay_var, context) if batch_mean_tensor is None and moving_mean_tensor is None: ValueError('Error folding unfused batch norms') if has_scaling: gamma_tensor = _FindMatchingTensor(graph, op_suffix_gamma, context) if not has_scaling: gamma_tensor = array_ops.ones(moving_mean_tensor.shape) return _BatchNormMatch( layer_op=None, bn_op=None, output_tensor=None, input_tensor=None, weight_tensor=None, gamma_tensor=gamma_tensor, beta_tensor=None, mean_tensor=batch_mean_tensor, variance_tensor=batch_variance_tensor, moving_mean_tensor=moving_mean_tensor, moving_variance_tensor=moving_variance_tensor, bn_decay_mean_tensor=bn_decay_mean_tensor, bn_decay_var_tensor=bn_decay_var_tensor, batch_epsilon=batch_epsilon, batch_to_space_op=None) def _CreateFoldedOp(graph, context, has_scaling, freeze_batch_norm_delay, is_training): """Folds in batch norm layer into preceding convolution or FC layer. Creates 3 new nodes, connects their inputs and adds them to the graph: mul is cloned into mul_fold, Conv2D or MatMul, or DepthwiseConv2d is cloned into respective *_Fold, add is cloned into add_fold. Args: graph: Graph to modify. context: String, batch norm context, i.e. node into which BatchNorm is nested. has_scaling: Whether the batch norm has scaling enabled. freeze_batch_norm_delay: How many steps to wait before freezing moving mean and variance and using them for batch normalization. is_training: Bool, true if training. Raises: ValueError: When operation type is not supported, or input and output tensor shapes mismatch for created operations: mul_fold, add_fold. Returns: A pair of Operations, the first is the original consumer node of the batch norm (../BatchNorm/batchnorm_1/add_1), the second is the consumer node of the folded graph (add_fold). """ mul_scale_name = 'mul_1' if has_scaling else 'mul' mul_scale = graph.get_operation_by_name(context + '/BatchNorm/batchnorm_1/' + mul_scale_name) op_below = mul_scale.inputs[0].op # Skip over the BatchToSpace operation in the case of atrous convolutions. batch_to_space_op = None if op_below.type == 'BatchToSpaceND': batch_to_space_op = op_below op_below = op_below.inputs[0].op weights = op_below.inputs[1] match = _GetBatchNormParams( graph=graph, context=context, has_scaling=has_scaling) correction_scale, correction_recip, correction_offset = None, None, None if is_training: correction_scale, correction_recip, correction_offset = ( _ComputeBatchNormCorrections( context=context, match=match, freeze_batch_norm_delay=freeze_batch_norm_delay, fused_batch_norm=False)) # Special handling for weights of depthwise convolution. if op_below.type == 'DepthwiseConv2dNative': new_shape = [ weights.get_shape().as_list()[2], weights.get_shape().as_list()[3] ] scale_name = 'mul' if has_scaling else 'Rsqrt' scale = graph.get_operation_by_name( context + '/BatchNorm/batchnorm_1/' + scale_name) scale = array_ops.reshape(scale.outputs[0], new_shape, context + '/scale_reshape') if correction_scale is not None: correction_scale = array_ops.reshape(correction_scale, new_shape, context + '/correction_reshape') with ops.device(mul_scale.device): weights = math_ops.multiply(correction_scale, weights, context + '/correction_mult') mul_fold = _CloneOp(mul_scale, context + '/mul_fold', [(0, weights), (1, scale)]) elif op_below.type in ['Conv2D', 'MatMul']: if correction_scale is not None: with ops.device(mul_scale.device): weights = math_ops.multiply(correction_scale, weights, context + '/correction_mult') mul_fold = _CloneOp(mul_scale, context + '/mul_fold', [(0, weights)]) else: raise ValueError('Cannot handle operation of type: %s' % op_below.type) _AssertShapesMatch('mul_fold', mul_fold.inputs[0], mul_fold.outputs[0]) conv_or_fc_folded = _CloneOp(op_below, op_below.name + '_Fold', [(1, mul_fold.outputs[0])]) add_shift = graph.get_operation_by_name( context + '/BatchNorm/batchnorm_1/add_1') corrected_output = conv_or_fc_folded.outputs[0] # Copy the batch to space operation if we have a atrous convolution. if batch_to_space_op: corrected_output = array_ops.batch_to_space_nd( corrected_output, batch_to_space_op.inputs[1], batch_to_space_op.inputs[2], name=batch_to_space_op.name + '_Fold') if correction_offset is not None: with ops.device(conv_or_fc_folded.device): corrected_output = math_ops.multiply(correction_recip, corrected_output, context + '/post_conv_mul') corrected_output = math_ops.add(corrected_output, (correction_offset), context + '/correction_add') add_fold = _CloneOp(add_shift, context + '/add_fold', [(0, corrected_output)]) _AssertShapesMatch('add_fold', add_fold.inputs[0], add_fold.outputs[0]) return add_shift, add_fold def _CloneOp(op, new_name, new_inputs): """Clones a given op, replaces its name and some of its inputs. Args: op: Operation to modify. new_name: String, a new name to set on cloned op. new_inputs: A list of tuples (idx, tensor), each input with corresponding index will be replaced by the given Tensor in the cloned op. Returns: Operation, the cloned op. Raises: TypeError: When Operation type is not supported. ValueError: When input shapes are incompatible. """ inputs = list(op.inputs) for new_input in new_inputs: inputs[new_input[0]] = new_input[1] return _OP_CLONER.Clone(op, inputs, new_name) class _OpCloner(object): """Helper class that clones tf.Operations based on their type.""" def __init__(self): self.op_type_to_action = { 'Mul': self._CloneMul, 'Add': self._CloneAdd, 'Conv2D': self._CloneConv2d, 'DepthwiseConv2dNative': self._CloneDepthwiseConv2d, 'MatMul': self._CloneMatMul, } def _CloneMul(self, op, inputs, new_name): del op # Unused. return math_ops.multiply(inputs[0], inputs[1], name=new_name).op def _CloneAdd(self, op, inputs, new_name): del op # Unused. return math_ops.add(inputs[0], inputs[1], name=new_name).op def _CloneConv2d(self, op, inputs, new_name): input_tensor = inputs[0] weights = inputs[1] self._AssertConvShapes(op.name, input_tensor, weights) return nn_ops.conv2d( input_tensor, weights, strides=op.get_attr('strides'), padding=op.get_attr('padding'), use_cudnn_on_gpu=op.get_attr('use_cudnn_on_gpu'), data_format=op.get_attr('data_format'), name=new_name).op def _CloneDepthwiseConv2d(self, op, inputs, new_name): input_tensor = inputs[0] weights = inputs[1] self._AssertConvShapes(op.name, input_tensor, weights) return nn.depthwise_conv2d( input_tensor, weights, strides=op.get_attr('strides'), padding=op.get_attr('padding'), name=new_name).op def _CloneMatMul(self, op, inputs, new_name): weights = inputs[0] input_tensor = inputs[1] self._AssertFCShapes(op.name, weights, input_tensor) return math_ops.matmul( weights, input_tensor, transpose_a=op.get_attr('transpose_a'), transpose_b=op.get_attr('transpose_b'), name=new_name).op def Clone(self, op, inputs, new_name): try: return self.op_type_to_action[op.type](op, inputs, new_name) except KeyError: raise TypeError('Unsupported operation type: %s' % op.type) def _AssertConvShapes(self, op_name, input_tensor, weights): """Makes sure that convolution inputs have compatible shapes. Args: op_name: Operation name, only used in error message. input_tensor: Input that is convolved. weights: Weights of the convolution filter. Raises: ValueError: When input shapes are incompatible. """ input_shape = input_tensor.get_shape() weights_shape = weights.get_shape() if (len(input_shape) != 4 or len(weights_shape) != 4 or input_shape[3] != weights_shape[2]): raise ValueError('Incompatible shapes for op %s inputs: %s and %s' % (op_name, input_shape, weights_shape)) def _AssertFCShapes(self, op_name, weights, input_tensor): """Makes sure that FC layer inputs have compatible shapes. Args: op_name: Operation name, only used in error message. weights: Weights used in FC layer. input_tensor: Input into FC layer. Raises: ValueError: When input shapes are incompatible. """ weights_shape = weights.get_shape() input_shape = input_tensor.get_shape() if (len(weights_shape) != 2 or len(input_shape) != 2 or weights_shape[1] != input_shape[0]): raise ValueError('Incompatible shapes for op %s inputs: %s and %s' % (op_name, weights_shape, input_shape)) _OP_CLONER = _OpCloner() def _AssertShapesMatch(op_name, in_tensor, out_tensor): """Makes sure that shapes of input and output tensors are compatible. Args: op_name: String, operation name, only used in error message. in_tensor: Tensor, input tensor. out_tensor: Tensor, output tensor. Raises: ValueError: When input and output tensors have different shapes. """ in_shape = in_tensor.get_shape() out_shape = out_tensor.get_shape() if not in_shape.is_compatible_with(out_shape): raise ValueError('%s should not change tensor shape: input %s, ' 'output %s' % (op_name, in_shape, out_shape)) def _HasScaling(graph, input_to_ops_map, bn): r"""Checks if batch norm has scaling enabled. Difference between batch norm with scaling and without is that with scaling: Rsqrt -> mul -> mul_1 \-> mul_2 where mul multiplies gamma by inverse square root of EMA of batch variance, mul_1 multiplies output of mul with output from the base operation (convolution, FC or depthwise convolution), mul_2 multiplies output of mul with EMA of batch mean, and without scaling: Rsqrt -> mul \-> mul_1 where mul multiplies the inverse square root of EMA of batch variance with output from the base operation, mul_1 multiplies inverse square root of EMA of batch variance with EMA of batch mean. Args: graph: Graph to inspect. input_to_ops_map: InputToOps object containing mapping from tensor's name to ops that take it as input. bn: Batch norm layer prefix string. Returns: A boolean indicating whether this batch norm layer has scaling enabled. """ rsqrt_op = graph.get_operation_by_name(bn + '/BatchNorm/batchnorm_1/Rsqrt') rsqrt_consumers = input_to_ops_map.ConsumerOperations(rsqrt_op) return sum(1 for op in rsqrt_consumers if op.type == 'Mul') == 1 class _BatchNormMatch(object): """Contains all information related to a found Fused/UnfusedBatchNorm.""" def __init__(self, layer_op, bn_op, output_tensor, input_tensor, weight_tensor, gamma_tensor, beta_tensor, mean_tensor, variance_tensor, moving_mean_tensor, moving_variance_tensor, bn_decay_mean_tensor, bn_decay_var_tensor, batch_epsilon, batch_to_space_op): self._layer_op = layer_op self._bn_op = bn_op self._output_tensor = output_tensor self._input_tensor = input_tensor self._weight_tensor = weight_tensor self._gamma_tensor = gamma_tensor self._beta_tensor = beta_tensor self._mean_tensor = mean_tensor self._variance_tensor = variance_tensor self._moving_mean_tensor = moving_mean_tensor self._moving_variance_tensor = moving_variance_tensor self._bn_decay_mean_tensor = bn_decay_mean_tensor self._bn_decay_var_tensor = bn_decay_var_tensor self._batch_epsilon = batch_epsilon self._batch_to_space_op = batch_to_space_op @property def layer_op(self): return self._layer_op @property def bn_op(self): return self._bn_op @property def output_tensor(self): return self._output_tensor @property def input_tensor(self): return self._input_tensor @property def weight_tensor(self): return self._weight_tensor @property def gamma_tensor(self): return self._gamma_tensor @property def beta_tensor(self): return self._beta_tensor @property def mean_tensor(self): return self._mean_tensor @property def variance_tensor(self): return self._variance_tensor @property def moving_mean_tensor(self): return self._moving_mean_tensor @property def moving_variance_tensor(self): return self._moving_variance_tensor @property def batch_epsilon(self): return self._batch_epsilon @property def bn_decay_mean_tensor(self): return self._bn_decay_mean_tensor @property def bn_decay_var_tensor(self): return self._bn_decay_var_tensor @property def batch_to_space_op(self): return self._batch_to_space_op
4e55efc281a0895900555be7d28d0cb370371a1e
21c098079d2724ffbd3f6cb01c7919c1f59f7875
/src/aioquic/about.py
82cd8f33d65dcbf2397d12c83c651cc899e91556
[ "BSD-3-Clause" ]
permissive
MattyHsueh/aioquic
f9c54717b3acdb84bc8f963a5e8bd5f969ebeb4b
2163f2d0940edd2a91a3773fb7cb061031fe87fa
refs/heads/master
2022-09-01T12:33:23.987233
2020-05-29T05:57:37
2020-05-29T05:57:37
263,517,328
1
0
BSD-3-Clause
2020-05-13T03:39:45
2020-05-13T03:39:44
null
UTF-8
Python
false
false
227
py
__author__ = "Jeremy Lainé" __email__ = "[email protected]" __license__ = "BSD" __summary__ = "An implementation of QUIC and HTTP/3" __title__ = "aioquic" __uri__ = "https://github.com/aiortc/aioquic" __version__ = "0.8.7"
ad83730199dd2c78f435dea6eee07e6fd00b8033
c8adae98cd1c2614c1bacc59ecf52fb7e45ce481
/0x1F-pascal_triangle/0-pascal_triangle.py
92a551bac2bdfd2d51644f8f5a6ef858cc8ca0fc
[]
no_license
OctopusHugz/holbertonschool-interview
a75f1a9fe72227e46db1005796cc98fa10f1fd2f
546f659ca128118438200ae1515096407bb438de
refs/heads/master
2023-07-15T07:34:45.713801
2021-08-25T20:29:50
2021-08-25T20:29:50
319,363,351
0
0
null
null
null
null
UTF-8
Python
false
false
510
py
#!/usr/bin/python3 """ This module implements a pascal triangle algorithm """ def pascal_triangle(n): """ Returns a list of lists of integers representing the Pascal's triangle of n """ triangle = [] for num in range(n): row = [] for val in range(num + 1): if val == 0 or val == num: row.append(1) continue row.append(triangle[num - 1][val - 1] + triangle[num - 1][val]) triangle.append(row) return triangle
ac5c1a1bf8e0c61d8642c34763349393db9297ab
4e8674d7c83254aba7f2d327f16d5ad202a189b6
/src/select_timeout.py
e4c1fdb5f764751985134229c1ae1f4e1ed59f15
[]
no_license
raysmith619/dots
0f5e34b17675cfb0903a20eda86493d37676b500
c44ff3ebf57ec73c6fd8b7898cbc186668f83915
refs/heads/master
2021-06-17T02:34:48.850425
2021-04-27T13:54:24
2021-04-27T13:54:24
205,397,035
1
0
null
null
null
null
UTF-8
Python
false
false
119
py
# select_timeout.py class SelectTimeout(Exception): """Base class for exceptions in this module.""" pass
7da12be20b0cf7f6dfdaf4b6ed1e6a7b1fb4459c
62e58c051128baef9452e7e0eb0b5a83367add26
/x12/6030/195006030.py
daab00096a42ba5ffccaf8a09c37c82a9d3352cd
[]
no_license
dougvanhorn/bots-grammars
2eb6c0a6b5231c14a6faf194b932aa614809076c
09db18d9d9bd9d92cefbf00f1c0de1c590fe3d0d
refs/heads/master
2021-05-16T12:55:58.022904
2019-05-17T15:22:23
2019-05-17T15:22:23
105,274,633
0
0
null
2017-09-29T13:21:21
2017-09-29T13:21:21
null
UTF-8
Python
false
false
2,476
py
from bots.botsconfig import * from records006030 import recorddefs syntax = { 'version': '00603', 'functionalgroup': 'LA', } structure = [ {ID: 'ST', MIN: 1, MAX: 1, LEVEL: [ {ID: 'BGN', MIN: 1, MAX: 1}, {ID: 'DTM', MIN: 0, MAX: 99999}, {ID: 'QTY', MIN: 0, MAX: 99999}, {ID: 'PWK', MIN: 0, MAX: 99999}, {ID: 'CRC', MIN: 0, MAX: 99999, LEVEL: [ {ID: 'NTE', MIN: 0, MAX: 99999}, ]}, {ID: 'AMT', MIN: 0, MAX: 99999, LEVEL: [ {ID: 'MSG', MIN: 0, MAX: 99999}, ]}, {ID: 'N1', MIN: 0, MAX: 99999, LEVEL: [ {ID: 'N2', MIN: 0, MAX: 3}, {ID: 'N3', MIN: 0, MAX: 2}, {ID: 'N4', MIN: 0, MAX: 1}, {ID: 'PER', MIN: 0, MAX: 5}, {ID: 'QTY', MIN: 0, MAX: 99999}, {ID: 'MEA', MIN: 0, MAX: 99999}, {ID: 'NTE', MIN: 0, MAX: 99999}, {ID: 'REF', MIN: 0, MAX: 99999, LEVEL: [ {ID: 'DTM', MIN: 0, MAX: 99999}, {ID: 'MSG', MIN: 0, MAX: 99999}, ]}, {ID: 'CRC', MIN: 0, MAX: 99999, LEVEL: [ {ID: 'REF', MIN: 0, MAX: 99999}, ]}, {ID: 'LM', MIN: 0, MAX: 99999, LEVEL: [ {ID: 'LQ', MIN: 1, MAX: 99999}, {ID: 'QTY', MIN: 0, MAX: 99999}, {ID: 'MSG', MIN: 0, MAX: 99999}, ]}, ]}, {ID: 'PO1', MIN: 0, MAX: 99999, LEVEL: [ {ID: 'QTY', MIN: 0, MAX: 99999}, {ID: 'MEA', MIN: 0, MAX: 99999, LEVEL: [ {ID: 'LIE', MIN: 0, MAX: 99999}, ]}, {ID: 'REF', MIN: 0, MAX: 99999, LEVEL: [ {ID: 'LIE', MIN: 0, MAX: 99999}, ]}, {ID: 'LM', MIN: 0, MAX: 99999, LEVEL: [ {ID: 'LQ', MIN: 1, MAX: 99999}, {ID: 'MEA', MIN: 0, MAX: 99999}, {ID: 'MSG', MIN: 0, MAX: 99999}, ]}, {ID: 'N1', MIN: 0, MAX: 99999, LEVEL: [ {ID: 'N2', MIN: 0, MAX: 3}, {ID: 'N3', MIN: 0, MAX: 2}, {ID: 'N4', MIN: 0, MAX: 1}, ]}, {ID: 'CRC', MIN: 0, MAX: 99999, LEVEL: [ {ID: 'REF', MIN: 0, MAX: 99999}, {ID: 'DTM', MIN: 0, MAX: 99999}, {ID: 'LM', MIN: 0, MAX: 99999, LEVEL: [ {ID: 'LQ', MIN: 1, MAX: 99999}, ]}, {ID: 'N1', MIN: 0, MAX: 99999, LEVEL: [ {ID: 'N2', MIN: 0, MAX: 3}, {ID: 'N3', MIN: 0, MAX: 2}, {ID: 'N4', MIN: 0, MAX: 1}, ]}, ]}, ]}, {ID: 'SE', MIN: 1, MAX: 1}, ]} ]
788d714d928080162d37b7236fd6f219b53d2324
ad59072be6c46c98782d8c04df97023a1cc6161c
/DL12-10-transfer-add-category.py
356bc4124d6c2eb230a7631f4c8b09aa920c17f7
[]
no_license
cyrilvincent/ML
67c6bda2016bc70168bd197fe58eabc8dc3bfb00
42d11fad9b8b6ea3aba3d4173cb3bbdf7bbd638f
refs/heads/master
2023-05-25T00:36:49.561860
2023-05-24T14:14:04
2023-05-24T14:14:04
191,420,219
0
0
null
null
null
null
UTF-8
Python
false
false
1,240
py
import tensorflow.keras as keras model = keras.models.load_model('data/dogsvscats/vgg16model-small.h5') newModel = keras.models.Sequential() for layer in model.layers[:-1]: newModel.add(layer) layer.trainable = False newModel.add(keras.layers.Dense(3, name="dense3")) newModel.add(keras.layers.Activation('softmax')) newModel.summary() newModel.compile(loss='categorical_crossentropy', optimizer="rmsprop", metrics=['accuracy']) trainset = keras.preprocessing.image.ImageDataGenerator(rescale=1. / 255, validation_split=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True) batchSize = 16 trainGenerator = trainset.flow_from_directory( 'data/dogsvscats/small/train', target_size=(224, 224), subset='training', class_mode="categorical", batch_size=batchSize) validationGenerator = trainset.flow_from_directory( 'data/dogsvscats/small/train', target_size=(224, 224), class_mode="categorical", subset = 'validation', batch_size=batchSize) newModel.fit( trainGenerator, epochs=30, validation_data=validationGenerator, ) newModel.save('data/dogsvscats/vgg16model-cows.h5')
72bbbcb0b7231deff3c7aea39bd3d33ec372d704
91d1a6968b90d9d461e9a2ece12b465486e3ccc2
/robomaker_write_f/world-export-job_create.py
9d9bc5bc86ab9a791055102b84c3526c3069944b
[]
no_license
lxtxl/aws_cli
c31fc994c9a4296d6bac851e680d5adbf7e93481
aaf35df1b7509abf5601d3f09ff1fece482facda
refs/heads/master
2023-02-06T09:00:33.088379
2020-12-27T13:38:45
2020-12-27T13:38:45
318,686,394
0
0
null
null
null
null
UTF-8
Python
false
false
800
py
#!/usr/bin/python # -*- codding: utf-8 -*- import os import sys sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) from common.execute_command import write_parameter # url : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/describe-instances.html if __name__ == '__main__': """ cancel-world-export-job : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/robomaker/cancel-world-export-job.html describe-world-export-job : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/robomaker/describe-world-export-job.html list-world-export-jobs : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/robomaker/list-world-export-jobs.html """ write_parameter("robomaker", "create-world-export-job")
cb50763a06562ed90a40194ed8ec0b365a2b6258
7278b31ebd6362bebf6986c2f3eca89d87201eb2
/apgl/graph/test/MatrixGraphTest.py
9ebf6bb8a71f60542fbfdb6dbe402a64a68a40d8
[]
no_license
malcolmreynolds/APGL
c19827b1b834d3491d98a751c91838177aedc29e
1703510cbb51ec6df0efe1de850cd48ef7004b00
refs/heads/master
2020-12-25T05:52:45.826947
2013-03-26T12:30:00
2013-03-26T12:30:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
78,752
py
from apgl.graph.VertexList import VertexList from apgl.graph.GeneralVertexList import GeneralVertexList from apgl.generator.BarabasiAlbertGenerator import BarabasiAlbertGenerator from apgl.util.PathDefaults import PathDefaults import numpy import os import logging import pickle import numpy.testing as nptst """ A class which encapsulates common tests for classes than inherit from AbtractMatrixGraph. """ class MatrixGraphTest(): def initialise(self): numpy.set_printoptions(suppress = True) numpy.random.seed(21) self.numVertices = 6 self.numFeatures = 1 self.vList = VertexList(self.numVertices, self.numFeatures) self.graph = self.GraphType(self.vList) self.graph.addEdge(0, 1, 1) self.graph.addEdge(1, 3, 1) self.graph.addEdge(0, 2, 2) self.graph.addEdge(2, 3, 5) self.graph.addEdge(0, 4, 1) self.graph.addEdge(3, 4, 1) self.graph2 = self.GraphType(self.vList, False) self.graph2.addEdge(0, 1, 1) self.graph2.addEdge(1, 3, 1) self.graph2.addEdge(0, 2, 2) self.graph2.addEdge(2, 3, 5) self.graph2.addEdge(0, 4, 1) self.graph2.addEdge(3, 4, 1) def testAddEdge(self): self.graph.addEdge(1, 5, 2) self.assertEquals(self.graph.getEdge(1,5), 2) self.assertEquals(self.graph.getEdge(5,1), 2) self.assertEquals(self.graph.getEdge(2,5), None) self.assertRaises(ValueError, self.graph.addEdge, 1, 3, 0) def testAddEdges(self): numVertices = 5 numFeatures = 1 vList = VertexList(numVertices, numFeatures) vList.setVertices(numpy.random.rand(numVertices, numFeatures)) graph = self.GraphType(vList) edgeIndexArray = numpy.array([[1,2], [2,3]]) graph.addEdges(edgeIndexArray) self.assertEquals(graph.getEdge(1, 2), 1) self.assertEquals(graph.getEdge(3, 2), 1) self.assertEquals(graph.getEdge(2, 3), 1) self.assertEquals(graph.getEdge(2, 1), 1) self.assertEquals(graph.getNumEdges(), 2) graph = self.GraphType(vList, False) graph.addEdges(edgeIndexArray) self.assertEquals(graph.getNumEdges(), 2) self.assertEquals(graph.getEdge(1, 2), 1) self.assertEquals(graph.getEdge(2, 3), 1) edgeValues = numpy.array([0.1, 0.2]) graph.addEdges(edgeIndexArray, edgeValues) self.assertEquals(graph.getEdge(1, 2), 0.1) self.assertEquals(graph.getEdge(2, 3), 0.2) graph = self.GraphType(vList) graph.addEdges(edgeIndexArray, edgeValues) self.assertEquals(graph.getEdge(1, 2), 0.1) self.assertEquals(graph.getEdge(2, 3), 0.2) self.assertEquals(graph.getEdge(2, 1), 0.1) self.assertEquals(graph.getEdge(3, 2), 0.2) edgeValues = numpy.array([0.1, 0.0]) self.assertRaises(ValueError, graph.addEdges, edgeIndexArray, edgeValues) def testRemoveEdge(self): self.graph.addEdge(1, 5, 2) self.assertEquals(self.graph.getEdge(1,5), 2) self.assertEquals(self.graph.getEdge(5,1), 2) self.graph.removeEdge(1,5) self.assertEquals(self.graph.getEdge(1,5), None) self.assertEquals(self.graph.getEdge(5,2), None) def testNeighbours(self): numVertices = 10 numFeatures = 3 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList) graph.addEdge(1, 5, 2) graph.addEdge(1, 3, 5) graph.addEdge(1, 9, 1) graph.addEdge(2, 3, 2) self.assertTrue((numpy.sort(graph.neighbours(1)) == numpy.array([3,5,9])).all()) self.assertTrue((graph.neighbours(2) == numpy.array([3])).all()) self.assertTrue((numpy.sort(graph.neighbours(3)) == numpy.array([1,2])).all()) self.assertTrue((graph.neighbours(4) == numpy.array([])).all()) #Test this function for directed graphs graph = self.GraphType(vList, False) graph.addEdge(1, 5, 2) graph.addEdge(1, 3, 5) graph.addEdge(9, 1, 1) graph.addEdge(2, 3, 2) self.assertTrue((numpy.sort(graph.neighbours(1)) == numpy.array([3,5])).all()) self.assertTrue((graph.neighbours(2) == numpy.array([3])).all()) self.assertTrue((graph.neighbours(3) == numpy.array([])).all()) self.assertTrue((graph.neighbours(9) == numpy.array([1])).all()) def testNeighbourOf(self): numVertices = 10 numFeatures = 3 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList) graph.addEdge(1, 5, 2) graph.addEdge(1, 3, 5) graph.addEdge(1, 9, 1) graph.addEdge(2, 3, 2) self.assertTrue((graph.neighbourOf(1) == numpy.array([3,5,9])).all()) self.assertTrue((graph.neighbourOf(2) == numpy.array([3])).all()) self.assertTrue((graph.neighbourOf(3) == numpy.array([1,2])).all()) self.assertTrue((graph.neighbourOf(4) == numpy.array([])).all()) #Test this function for directed graphs graph = self.GraphType(vList, False) graph.addEdge(1, 5, 2) graph.addEdge(1, 3, 5) graph.addEdge(9, 1, 1) graph.addEdge(2, 3, 2) self.assertTrue((graph.neighbourOf(1) == numpy.array([9])).all()) self.assertTrue((graph.neighbourOf(2) == numpy.array([])).all()) self.assertTrue((graph.neighbourOf(3) == numpy.array([1, 2])).all()) self.assertTrue((graph.neighbourOf(9) == numpy.array([])).all()) def testClusteringCoefficient(self): numVertices = 3 numFeatures = 1 vList = VertexList(numVertices, numFeatures) #1st graph - take 3 nodes in a line graph = self.GraphType(vList) graph.addEdge(0, 1, 2) graph.addEdge(1, 2, 5) self.assertEqual(graph.clusteringCoefficient(), 0) #Now, form a triangle graph.addEdge(0, 2, 5) self.assertEqual(graph.clusteringCoefficient(), 1) #2nd Graph - taken from Newman numVertices = 5 numFeatures = 1 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList) graph.addEdge(0, 1, 2) graph.addEdge(0, 2, 2) graph.addEdge(1, 2, 2) graph.addEdge(2, 3, 2) graph.addEdge(2, 4, 2) self.assertEqual(graph.clusteringCoefficient(), float(3)/8) #3rd graph - has no edges numVertices = 5 numFeatures = 1 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList) self.assertEqual(graph.clusteringCoefficient(), 0.0) def testDegreeDistribution(self): numVertices = 5 numFeatures = 1 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList) self.assertTrue((graph.degreeDistribution() == numpy.array([])).all()) graph.addEdge(0, 1, 2) graph.addEdge(0, 2, 2) graph.addEdge(1, 2, 2) graph.addEdge(2, 3, 2) graph.addEdge(2, 4, 2) self.assertTrue((graph.degreeDistribution() == numpy.array([0, 2, 2, 0, 1])).all()) #Try empty graph numVertices = 5 numFeatures = 1 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList) self.assertTrue((graph.degreeDistribution() == numpy.array([5])).all()) #Try a star like graph numVertices = 5 numFeatures = 1 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList) graph.addEdge(0, 0, 2) graph.addEdge(0, 1, 2) graph.addEdge(0, 2, 2) graph.addEdge(0, 3, 2) graph.addEdge(0, 4, 2) self.assertTrue((graph.degreeDistribution() == numpy.array([0, 4, 0, 0, 0, 1])).all()) #Test obtaining a subgraph and then the degree distribution subGraph = graph.subgraph([0,1,2,3]) #logging.debug(subGraph.degreeDistribution()) def testDijkstrasAlgorithm(self): numVertices = 5 numFeatures = 1 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList) graph.addEdge(0, 1, 5) graph.addEdge(1, 2, 2) graph.addEdge(1, 3, 2) graph.addEdge(2, 4, 2) self.assertTrue((graph.dijkstrasAlgorithm(0) == numpy.array([0, 1, 2, 2, 3])).all()) self.assertTrue((graph.dijkstrasAlgorithm(1) == numpy.array([1, 0, 1, 1, 2])).all()) self.assertTrue((graph.dijkstrasAlgorithm(2) == numpy.array([2, 1, 0, 2, 1])).all()) self.assertTrue((graph.dijkstrasAlgorithm(3) == numpy.array([2, 1, 2, 0, 3])).all()) self.assertTrue((graph.dijkstrasAlgorithm(4) == numpy.array([3, 2, 1, 3, 0])).all()) #Test case which found a bug self.assertTrue((self.graph.dijkstrasAlgorithm(2, self.graph.adjacencyList()) == numpy.array([2,3,0,4,3, float('inf')])).all()) #Test a graph which has an isolated node numVertices = 5 numFeatures = 1 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList) graph.addEdge(0, 1, 5) graph.addEdge(1, 2, 2) graph.addEdge(1, 3, 2) self.assertTrue((graph.dijkstrasAlgorithm(0) == numpy.array([0, 1, 2, 2, numpy.inf])).all()) #Test a graph in a ring numVertices = 5 numFeatures = 1 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList) graph.addEdge(0, 1, 5) graph.addEdge(1, 2, 2) graph.addEdge(2, 3, 2) graph.addEdge(3, 4, 2) graph.addEdge(4, 0, 2) self.assertTrue((graph.dijkstrasAlgorithm(0) == numpy.array([0, 1, 2, 2, 1])).all()) def testGeodesicDistance(self): numVertices = 5 numFeatures = 1 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList) graph.addEdge(0, 1, 5) graph.addEdge(1, 2, 2) graph.addEdge(2, 3, 2) graph.addEdge(3, 4, 2) graph.addEdge(4, 0, 2) P = graph.floydWarshall() self.assertEquals(graph.geodesicDistance(), 37/15.0) self.assertEquals(graph.geodesicDistance(P), 37/15.0) #Test a string of vertices numVertices = 5 numFeatures = 1 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList) graph.addEdge(0, 1, 1) graph.addEdge(1, 2, 1) graph.addEdge(2, 3, 1) graph.addEdge(3, 4, 1) P = graph.floydWarshall() self.assertEquals(graph.geodesicDistance(), 4.0/3) self.assertEquals(graph.geodesicDistance(P), 4.0/3) #Test case with isolated node numVertices = 5 numFeatures = 1 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList) graph.addEdge(0, 1, 1) graph.addEdge(1, 2, 1) graph.addEdge(2, 3, 1) P = graph.floydWarshall() self.assertEquals(graph.geodesicDistance(), 2.0/3) self.assertEquals(graph.geodesicDistance(P), 2.0/3) #Test directed graph numVertices = 5 numFeatures = 1 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList, False) graph.addEdge(0, 1, 1) graph.addEdge(1, 2, 1) P = graph.floydWarshall() self.assertEquals(graph.geodesicDistance(), 4.0/25) self.assertEquals(graph.geodesicDistance(P), 4.0/25) def testHopCount(self): numVertices = 10 numFeatures = 0 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList) graph.addEdge(0, 1) graph.addEdge(0, 2) graph.addEdge(0, 3) self.assertTrue((graph.hopCount() == numpy.array([10, 16, 22])).all()) graph.addEdge(0, 4) self.assertTrue((graph.hopCount() == numpy.array([10, 18, 30])).all()) graph.addEdge(4, 5) self.assertTrue((graph.hopCount() == numpy.array([10, 20, 34, 40])).all()) #Test case where we pass in P matrix P = graph.floydWarshall() self.assertTrue((graph.hopCount(P) == numpy.array([10, 20, 34, 40])).all()) #Test a directed graph numVertices = 10 numFeatures = 0 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList, False) graph.addEdge(0, 1) graph.addEdge(0, 2, 0.1) graph.addEdge(0, 3) self.assertTrue((graph.hopCount() == numpy.array([10, 13])).all()) P = graph.floydWarshall(False) self.assertTrue((graph.hopCount(P) == numpy.array([10, 13])).all()) #Test empty graph and zero graph graph = self.GraphType(vList, True) self.assertTrue((graph.hopCount() == numpy.array([numVertices])).all()) vList = VertexList(0, 0) graph = self.GraphType(vList, True) self.assertTrue((graph.hopCount() == numpy.array([])).all()) def testHarmonicGeodesicDistance(self): numVertices = 5 numFeatures = 1 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList) graph.addEdge(0, 1, 1) graph.addEdge(1, 2, 1) graph.addEdge(2, 3, 1) graph.addEdge(3, 4, 1) graph.addEdge(4, 0, 1) self.assertEquals(graph.harmonicGeodesicDistance(), 2.0) P = graph.floydWarshall(True) self.assertEquals(graph.harmonicGeodesicDistance(P), 2.0) #Test a string of vertices numVertices = 5 numFeatures = 1 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList) graph.addEdge(0, 1, 1) graph.addEdge(1, 2, 1) graph.addEdge(2, 3, 1) graph.addEdge(3, 4, 1) self.assertAlmostEquals(graph.harmonicGeodesicDistance(), 180/77.0, places=5) P = graph.floydWarshall(True) self.assertAlmostEquals(graph.harmonicGeodesicDistance(P), 180/77.0, places=5) #Test case with isolated node numVertices = 5 numFeatures = 1 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList) graph.addEdge(0, 1, 1) graph.addEdge(1, 2, 1) graph.addEdge(2, 3, 1) self.assertAlmostEquals(graph.harmonicGeodesicDistance(), 45/13.0, places=5) P = graph.floydWarshall(True) self.assertAlmostEquals(graph.harmonicGeodesicDistance(P), 45/13.0, places=5) #Totally empty graph graph = self.GraphType(vList) self.assertEquals(graph.harmonicGeodesicDistance(), float('inf')) #Test use of indices graph = self.GraphType(vList) graph.addEdge(0, 1, 1) graph.addEdge(1, 2, 1) graph.addEdge(2, 3, 1) graph.addEdge(3, 4, 1) P = graph.floydWarshall(True) inds = [0, 4] self.assertEquals(graph.harmonicGeodesicDistance(vertexInds=inds), 12.0) #Test directed graph graph = self.GraphType(vList, False) graph.addEdge(0, 1, 1) graph.addEdge(1, 2, 1) graph.addEdge(2, 3, 1) graph.addEdge(3, 4, 1) P = graph.floydWarshall(True) self.assertAlmostEquals(graph.harmonicGeodesicDistance(P), 300/77.0, places=5) def testGetAllEdges(self): numVertices = 5 numFeatures = 1 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList) graph.addEdge(0, 1, 5) graph.addEdge(1, 2, 2) graph.addEdge(2, 3, 2) graph.addEdge(2, 2, 2) edges = graph.getAllEdges() self.assertEquals(edges.shape[0], 4) self.assertTrue((edges[0, :]== numpy.array([1,0])).all()) self.assertTrue((edges[1, :]== numpy.array([2,1])).all()) self.assertTrue((edges[2, :]== numpy.array([2,2])).all()) self.assertTrue((edges[3, :]== numpy.array([3,2])).all()) #Test a directed graph graph = self.GraphType(vList, False) graph.addEdge(0, 1, 5) graph.addEdge(1, 2, 2) graph.addEdge(2, 3, 2) graph.addEdge(2, 2, 2) graph.addEdge(2, 1, 2) edges = graph.getAllEdges() self.assertEquals(edges.shape[0], 5) self.assertTrue((edges[0, :]== numpy.array([0,1])).all()) self.assertTrue((edges[1, :]== numpy.array([1,2])).all()) self.assertTrue((edges[2, :]== numpy.array([2,1])).all()) self.assertTrue((edges[3, :]== numpy.array([2,2])).all()) self.assertTrue((edges[4, :]== numpy.array([2,3])).all()) #Test graph with no edges graph = self.GraphType(vList) edges = graph.getAllEdges() self.assertEquals(edges.shape, (0, 2)) def testGetNumEdges(self): numVertices = 10 numFeatures = 3 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList) graph.addEdge(0, 1, 1) self.assertEquals(graph.getNumEdges(), 1) graph.addEdge(3, 4, 1) graph.addEdge(3, 4, 1) self.assertEquals(graph.getNumEdges(), 2) graph.addEdge(5, 5, 1) self.assertEquals(graph.getNumEdges(), 3) graph.addEdge(8, 8, 1) graph.addEdge(8, 8, 1) self.assertEquals(graph.getNumEdges(), 4) #Now test directed graphs graph = self.GraphType(vList, False) graph.addEdge(0, 1, 1) self.assertEquals(graph.getNumEdges(), 1) graph.addEdge(3, 4, 1) graph.addEdge(3, 4, 1) self.assertEquals(graph.getNumEdges(), 2) graph.addEdge(5, 5, 1) self.assertEquals(graph.getNumEdges(), 3) graph.addEdge(8, 8, 1) graph.addEdge(8, 8, 1) self.assertEquals(graph.getNumEdges(), 4) def testGetNumVertices(self): numVertices = 10 numFeatures = 3 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList) self.assertEquals(graph.getNumVertices(), numVertices) def testGetEdge(self): numVertices = 10 numFeatures = 3 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList) graph.addEdge(2, 5, 1) graph.addEdge(4, 8, 34) self.assertEquals(graph.getEdge(2, 5), 1) self.assertEquals(graph.getEdge(5, 2), 1) self.assertEquals(graph.getEdge(4, 8), 34) self.assertEquals(graph.getEdge(8, 4), 34) self.assertEquals(graph.getEdge(4, 4), None) def testGetVertex(self): numVertices = 10 numFeatures = 3 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList) graph.setVertex(1, numpy.array([4, 5, 2])) self.assertRaises(ValueError, graph.setVertex, -1, numpy.array([4, 5, 2])) self.assertRaises(ValueError, graph.setVertex, 11, numpy.array([4, 5, 2])) self.assertRaises(ValueError, graph.setVertex, 2, numpy.array([4, 5, 2, 8])) self.assertRaises(ValueError, graph.setVertex, 2, numpy.array([4, 5])) self.assertTrue((graph.getVertex(1) == numpy.array([4, 5, 2])).all()) self.assertTrue((graph.getVertex(0) == numpy.array([0, 0, 0])).all()) def testSetVertex(self): numVertices = 10 numFeatures = 3 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList) graph.setVertex(1, numpy.array([4, 5, 2])) self.assertTrue((graph.getVertex(1) == numpy.array([4, 5, 2])).all()) self.assertTrue((graph.getVertex(0) == numpy.array([0, 0, 0])).all()) graph.setVertex(1, numpy.array([8, 3, 1])) self.assertTrue((graph.getVertex(1) == numpy.array([8, 3, 1])).all()) def testIsUndirected(self): numVertices = 10 numFeatures = 3 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList, True) self.assertEquals(graph.isUndirected(), True) graph = self.GraphType(vList, False) self.assertEquals(graph.isUndirected(), False) def testGetAllVertexIds(self): numVertices = 10 numFeatures = 3 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList) self.assertTrue((graph.getAllVertexIds() == numpy.array(list(range(0, numVertices)))).all()) def testSubgraph(self): numVertices = 10 numFeatures = 3 vList = VertexList(numVertices, numFeatures) vertices = numpy.random.rand(numVertices, numFeatures) vList.setVertices(vertices) graph = self.GraphType(vList) graph.addEdge(0, 1) graph.addEdge(0, 2) graph.addEdge(0, 3) graph.addEdge(2, 1) graph.addEdge(2, 5) graph.addEdge(2, 6) graph.addEdge(6, 9) subgraph = graph.subgraph([0,1,2,3]) self.assertEquals(subgraph.getNumVertices(), 4) self.assertEquals(subgraph.getVertexList().getNumFeatures(), numFeatures) self.assertTrue((subgraph.getVertexList().getVertices(list(range(0, 4))) == vertices[list(range(0,4)), :]).all()) self.assertEquals(subgraph.getNumEdges(), 4) self.assertTrue(subgraph.getEdge(0, 1) == 1) self.assertTrue(subgraph.getEdge(0, 2) == 1) self.assertTrue(subgraph.getEdge(0, 3) == 1) self.assertTrue(subgraph.getEdge(2, 1) == 1) subgraph = graph.subgraph([1,2,5,6]) self.assertEquals(subgraph.getNumVertices(), 4) self.assertEquals(subgraph.getVertexList().getNumFeatures(), numFeatures) self.assertEquals(subgraph.getNumEdges(), 3) self.assertTrue((subgraph.getVertexList().getVertices([0,1,2,3]) == vertices[[1,2,5,6], :]).all()) self.assertTrue(subgraph.getEdge(0, 1) == 1) self.assertTrue(subgraph.getEdge(1, 2) == 1) self.assertTrue(subgraph.getEdge(1, 3) == 1) #Test case of directed graph numVertices = 10 numFeatures = 3 vList = VertexList(numVertices, numFeatures) vertices = numpy.random.rand(numVertices, numFeatures) vList.setVertices(vertices) graph = self.GraphType(vList, False) graph.addEdge(0, 1) graph.addEdge(0, 2) graph.addEdge(0, 3) graph.addEdge(2, 1) graph.addEdge(2, 5) graph.addEdge(2, 6) graph.addEdge(6, 9) subgraph = graph.subgraph([0,1,2,3]) self.assertEquals(subgraph.isUndirected(), False) self.assertEquals(subgraph.getNumVertices(), 4) self.assertEquals(subgraph.getVertexList().getNumFeatures(), numFeatures) self.assertTrue((subgraph.getVertexList().getVertices(list(range(0, 4))) == vertices[list(range(0,4)), :]).all()) self.assertEquals(subgraph.getNumEdges(), 4) self.assertTrue(subgraph.getEdge(0, 1) == 1) self.assertTrue(subgraph.getEdge(0, 2) == 1) self.assertTrue(subgraph.getEdge(0, 3) == 1) self.assertTrue(subgraph.getEdge(2, 1) == 1) subgraph = graph.subgraph([1,2,5,6]) self.assertEquals(subgraph.getNumVertices(), 4) self.assertEquals(subgraph.getVertexList().getNumFeatures(), numFeatures) self.assertEquals(subgraph.getNumEdges(), 3) self.assertTrue((subgraph.getVertexList().getVertices([0,1,2,3]) == vertices[[1,2,5,6], :]).all()) self.assertTrue(subgraph.getEdge(1, 0) == 1) self.assertTrue(subgraph.getEdge(1, 2) == 1) self.assertTrue(subgraph.getEdge(1, 3) == 1) subgraph = graph.subgraph([]) def testAdd(self): numVertices = 5 numFeatures = 3 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList, False) graph.addEdge(0, 1) graph.addEdge(0, 2) graph.addEdge(0, 3) graph.addEdge(2, 1) graph2 = self.GraphType(vList, False) graph2.addEdge(3, 2) graph2.addEdge(0, 4) graph2.addEdge(1, 3) graph2.addEdge(2, 1) newGraph = graph.add(graph2) #Check old graph is the same self.assertEquals(graph.getEdge(0,1) , 1) self.assertEquals(graph.getEdge(0,2) , 1) self.assertEquals(graph.getEdge(0,3) , 1) self.assertEquals(graph.getEdge(2,1) , 1) self.assertEquals(newGraph.getEdge(0,1) , 1) self.assertEquals(newGraph.getEdge(0,2) , 1) self.assertEquals(newGraph.getEdge(3,2) , 1) self.assertEquals(newGraph.getEdge(2,1) , 2) #Test edge addition of different sized graphs vList2 = VertexList(numVertices-1, numFeatures) graph2 = self.GraphType(vList2, False) graph2.addEdge(3, 2) self.assertRaises(ValueError, graph.add, graph2) def testMultiply(self): numVertices = 5 numFeatures = 3 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList, False) graph.addEdge(0, 1) graph.addEdge(0, 2) graph.addEdge(0, 3) graph.addEdge(2, 1, 2) graph2 = self.GraphType(vList, False) graph2.addEdge(3, 2) graph2.addEdge(0, 4) graph2.addEdge(1, 3) graph2.addEdge(2, 1, 3) newGraph = graph.multiply(graph2) #Test old graph is the same self.assertEquals(graph.getEdge(0,1) , 1) self.assertEquals(graph.getEdge(0,2) , 1) self.assertEquals(graph.getEdge(0,3) , 1) self.assertEquals(graph.getEdge(2,1) , 2) self.assertEquals(newGraph.getNumEdges() , 1) self.assertEquals(newGraph.getEdge(0,1) , None) self.assertEquals(newGraph.getEdge(0,2) , None) self.assertEquals(newGraph.getEdge(3,2) , None) self.assertEquals(newGraph.getEdge(2,1) , 6) #Test edge multiplication of different sized graphs vList2 = VertexList(numVertices-1, numFeatures) graph2 = self.GraphType(vList2, False) graph2.addEdge(3, 2) self.assertRaises(ValueError, graph.multiply, graph2) def testCopy(self): numVertices = 5 numFeatures = 3 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList, False) graph.addEdge(0, 1) graph.addEdge(0, 2) graph.addEdge(0, 3) graph.addEdge(2, 1) graph2 = graph.copy() graph2.addEdge(3, 4) self.assertEquals(graph2.getEdge(3, 4), 1) self.assertEquals(graph.getEdge(3, 4), None) def testDensity(self): numVertices = 5 numFeatures = 3 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList, False) self.assertEquals(graph.density(), 0) graph.addEdge(3, 4) self.assertEquals(graph.density(), float(1)/20) graph = self.GraphType(vList, True) self.assertEquals(graph.density(), 0) graph.addEdge(3, 4) self.assertEquals(graph.density(), float(1)/10) def testDepthFirstSearch(self): numVertices = 10 numFeatures = 0 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList) graph.addEdge(0, 1) graph.addEdge(1, 2) graph.addEdge(1, 3) graph.addEdge(2, 6) graph.addEdge(4, 5) self.assertEquals(graph.depthFirstSearch(0), [0,1,2,6,3]) self.assertEquals(graph.depthFirstSearch(1), [1,0,2,6,3]) self.assertEquals(graph.depthFirstSearch(6), [6,2,1,0,3]) self.assertEquals(graph.depthFirstSearch(4), [4, 5]) self.assertEquals(graph.depthFirstSearch(5), [5, 4]) self.assertEquals(graph.depthFirstSearch(7), [7]) def testBreadthFirstSearch(self): numVertices = 10 numFeatures = 0 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList) graph.addEdge(0, 1) graph.addEdge(0, 7) graph.addEdge(7, 8) graph.addEdge(7, 9) graph.addEdge(1, 2) graph.addEdge(1, 3) graph.addEdge(2, 6) graph.addEdge(4, 5) self.assertEquals(graph.breadthFirstSearch(0), [0,1, 7,2,3,8,9,6]) self.assertEquals(graph.breadthFirstSearch(1), [1,0,2,3,7,6,8,9]) self.assertEquals(graph.breadthFirstSearch(6), [6, 2,1,0,3,7,8,9]) self.assertEquals(graph.breadthFirstSearch(4), [4, 5]) self.assertEquals(graph.breadthFirstSearch(5), [5, 4]) self.assertEquals(graph.breadthFirstSearch(7), [7, 0, 8, 9, 1, 2, 3, 6]) def testDiameter(self): numVertices = 10 numFeatures = 1 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList, True) graph.addEdge(0, 1) graph.addEdge(1, 2) graph.addEdge(1, 3) self.assertEquals(graph.diameter(), 2) graph.addEdge(3, 2) self.assertEquals(graph.diameter(), 2) graph.addEdge(3, 4) self.assertEquals(graph.diameter(), 3) graph.addEdge(4, 5) self.assertEquals(graph.diameter(), 4) graph.addEdge(0, 5) self.assertEquals(graph.diameter(), 3) P = graph.floydWarshall(False) self.assertEquals(graph.diameter(P=P), 3) #Now try directed graphs graph = self.GraphType(vList, False) graph.addEdge(0, 1) graph.addEdge(1, 2) graph.addEdge(1, 3) self.assertEquals(graph.diameter(), 2) graph.addEdge(4, 3) self.assertEquals(graph.diameter(), 2) graph.addEdge(5, 4) graph.addEdge(6, 5) self.assertEquals(graph.diameter(), 3) graph.addEdge(6, 6) self.assertEquals(graph.diameter(), 3) P = graph.floydWarshall(False) self.assertEquals(graph.diameter(P=P), 3) #Test on graph with no edges graph = self.GraphType(vList, False) self.assertEquals(graph.diameter(), 0) #Now, test graphs with weights graph = self.GraphType(vList, True) graph.addEdge(0, 1, 0.1) graph.addEdge(1, 2, 0.5) graph.addEdge(1, 3, 0.9) self.assertAlmostEqual(graph.diameter(True), 1.4, places=7) P = graph.floydWarshall(True) self.assertAlmostEquals(graph.diameter(True, P=P), 1.4, places=7) def testEffectiveDiameter(self): numVertices = 10 numFeatures = 1 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList, True) graph.addEdge(1, 4) graph.addEdge(0, 1) graph.addEdge(1, 2) graph.addEdge(1, 3) self.assertEquals(graph.diameter(), 2) self.assertEquals(graph.effectiveDiameter(1.0), 2) self.assertEquals(graph.effectiveDiameter(0.5), 2) P = graph.floydWarshall(False) self.assertEquals(graph.effectiveDiameter(1.0, P=P), 2) self.assertEquals(graph.effectiveDiameter(0.5, P=P), 2) graph = self.GraphType(vList, False) graph.addEdge(0, 1) graph.addEdge(2, 3) graph.addEdge(4, 5) graph.addEdge(5, 6) graph.addEdge(7, 8) graph.addEdge(8, 9) self.assertEquals(graph.effectiveDiameter(1.0), 2) self.assertEquals(graph.effectiveDiameter(0.75), 1) self.assertEquals(graph.effectiveDiameter(0.5), 1) P = graph.floydWarshall(False) self.assertEquals(graph.effectiveDiameter(1.0, P=P), 2) self.assertEquals(graph.effectiveDiameter(0.75, P=P), 1) self.assertEquals(graph.effectiveDiameter(0.5, P=P), 1) #Test on a disconnected graph graph = self.GraphType(vList, True) self.assertEquals(graph.effectiveDiameter(1.0), 0) self.assertEquals(graph.effectiveDiameter(0.75), 0) self.assertEquals(graph.effectiveDiameter(0.5), 0) self.assertEquals(graph.effectiveDiameter(0.1), 0) P = graph.floydWarshall(False) self.assertEquals(graph.effectiveDiameter(1.0, P=P), 0) self.assertEquals(graph.effectiveDiameter(0.75, P=P), 0) self.assertEquals(graph.effectiveDiameter(0.5, P=P), 0) self.assertEquals(graph.effectiveDiameter(0.1, P=P), 0) graph = self.GraphType(vList, False) self.assertEquals(graph.effectiveDiameter(1.0), 0) self.assertEquals(graph.effectiveDiameter(0.75), 0) self.assertEquals(graph.effectiveDiameter(0.5), 0) self.assertEquals(graph.effectiveDiameter(0.1), 0) P = graph.floydWarshall(False) self.assertEquals(graph.effectiveDiameter(1.0, P=P), 0) self.assertEquals(graph.effectiveDiameter(0.75, P=P), 0) self.assertEquals(graph.effectiveDiameter(0.5, P=P), 0) self.assertEquals(graph.effectiveDiameter(0.1, P=P), 0) #Test on graph with 1 edge graph = self.GraphType(vList, True) graph.addEdge(0, 0) self.assertEquals(graph.effectiveDiameter(1.0), 0) self.assertEquals(graph.effectiveDiameter(0.75), 0) self.assertEquals(graph.effectiveDiameter(0.5), 0) self.assertEquals(graph.effectiveDiameter(0.1), 0) P = graph.floydWarshall(False) self.assertEquals(graph.effectiveDiameter(1.0, P=P), 0) self.assertEquals(graph.effectiveDiameter(0.75, P=P), 0) self.assertEquals(graph.effectiveDiameter(0.5, P=P), 0) self.assertEquals(graph.effectiveDiameter(0.1, P=P), 0) def testFindComponents(self): numVertices = 10 numFeatures = 0 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList) graph.addEdge(0, 1) graph.addEdge(1, 2) graph.addEdge(1, 3) graph.addEdge(2, 6) graph.addEdge(4, 5) self.assertEquals(graph.findConnectedComponents()[0], [0,1,2,3,6]) self.assertEquals(graph.findConnectedComponents()[1], [4, 5]) graph = self.GraphType(vList, False) self.assertRaises(ValueError, graph.findConnectedComponents) #This doesn't seem to be a conclusive test def testFitPowerLaw(self): numVertices = 1000 numFeatures = 0 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList, True) ell = 2 m = 2 generator = BarabasiAlbertGenerator(ell, m) graph = generator.generate(graph) #logging.debug(graph.degreeDistribution()) alpha, ks, xmin = graph.fitPowerLaw() self.assertAlmostEquals(alpha, 3.0, places=0) def testFloydWarshall(self): P = self.graph.floydWarshall() P2 = numpy.zeros((self.numVertices, self.numVertices)) P2[0, :] = numpy.array([0, 1, 2, 2, 1, numpy.inf]) P2[1, :] = numpy.array([1, 0, 3, 1, 2, numpy.inf]) P2[2, :] = numpy.array([2, 3, 0, 4, 3, numpy.inf]) P2[3, :] = numpy.array([2, 1, 4, 0, 1, numpy.inf]) P2[4, :] = numpy.array([1, 2, 3, 1, 0, numpy.inf]) P2[5, :] = numpy.array([numpy.inf, numpy.inf, numpy.inf, numpy.inf, numpy.inf, 0]) self.assertTrue((P == P2).all()) #Now test the directed graph P = self.graph2.floydWarshall() P2 = numpy.zeros((self.numVertices, self.numVertices)) P2[0, :] = numpy.array([0, 1, 2, 2, 1, numpy.inf]) P2[1, :] = numpy.array([numpy.inf, 0, numpy.inf, 1, 2, numpy.inf]) P2[2, :] = numpy.array([numpy.inf, numpy.inf, 0, 5, 6, numpy.inf]) P2[3, :] = numpy.array([numpy.inf, numpy.inf, numpy.inf, 0, 1, numpy.inf]) P2[4, :] = numpy.array([numpy.inf, numpy.inf, numpy.inf, numpy.inf, 0, numpy.inf]) P2[5, :] = numpy.array([numpy.inf, numpy.inf, numpy.inf, numpy.inf, numpy.inf, 0]) self.assertTrue((P == P2).all()) def testFindAllDistances(self): P = self.graph.findAllDistances() P2 = numpy.zeros((self.numVertices, self.numVertices)) P2[0, :] = numpy.array([0, 1, 2, 2, 1, numpy.inf]) P2[1, :] = numpy.array([1, 0, 3, 1, 2, numpy.inf]) P2[2, :] = numpy.array([2, 3, 0, 4, 3, numpy.inf]) P2[3, :] = numpy.array([2, 1, 4, 0, 1, numpy.inf]) P2[4, :] = numpy.array([1, 2, 3, 1, 0, numpy.inf]) P2[5, :] = numpy.array([numpy.inf, numpy.inf, numpy.inf, numpy.inf, numpy.inf, 0]) self.assertTrue((P == P2).all()) #Now test the directed graph P = self.graph2.findAllDistances() P2 = numpy.zeros((self.numVertices, self.numVertices)) P2[0, :] = numpy.array([0, 1, 2, 2, 1, numpy.inf]) P2[1, :] = numpy.array([numpy.inf, 0, numpy.inf, 1, 2, numpy.inf]) P2[2, :] = numpy.array([numpy.inf, numpy.inf, 0, 5, 6, numpy.inf]) P2[3, :] = numpy.array([numpy.inf, numpy.inf, numpy.inf, 0, 1, numpy.inf]) P2[4, :] = numpy.array([numpy.inf, numpy.inf, numpy.inf, numpy.inf, 0, numpy.inf]) P2[5, :] = numpy.array([numpy.inf, numpy.inf, numpy.inf, numpy.inf, numpy.inf, 0]) self.assertTrue((P == P2).all()) def testEgoGraph(self): numVertices = 6 numFeatures = 3 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList, True) graph.addEdge(0, 1) graph.addEdge(0, 2) graph.addEdge(0, 3) graph.addEdge(2, 1) graph.addEdge(2, 3) graph.addEdge(4, 1) egoGraph = graph.egoGraph(0) self.assertTrue(egoGraph.getNumVertices() == 4) self.assertTrue(egoGraph.getNumEdges() == 5) self.assertEquals(egoGraph.getEdge(0,1), 1) self.assertEquals(egoGraph.getEdge(0,2), 1) self.assertEquals(egoGraph.getEdge(0,3), 1) self.assertEquals(egoGraph.getEdge(2,1), 1) self.assertEquals(egoGraph.getEdge(2,3), 1) egoGraph = graph.egoGraph(4) self.assertTrue(egoGraph.getNumVertices() == 2) self.assertTrue(egoGraph.getNumEdges() == 1) self.assertEquals(egoGraph.getEdge(1,0), 1) egoGraph = graph.egoGraph(3) self.assertTrue(egoGraph.getNumVertices() == 3) self.assertTrue(egoGraph.getNumEdges() == 3) self.assertEquals(egoGraph.getEdge(0,2), 1) self.assertEquals(egoGraph.getEdge(0,1), 1) self.assertEquals(egoGraph.getEdge(2,1), 1) egoGraph = graph.egoGraph(5) self.assertTrue(egoGraph.getNumVertices() == 1) self.assertTrue(egoGraph.getNumEdges() == 0) def testStr(self): logging.debug((self.graph)) def testRemoveAllEdges(self): numVertices = 6 numFeatures = 3 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList, True) graph.addEdge(0, 1) graph.addEdge(0, 2) graph.addEdge(0, 3) graph.addEdge(2, 1) graph.addEdge(2, 3) graph.addEdge(4, 1) self.assertEquals(graph.getNumEdges(), 6) graph.removeAllEdges() self.assertTrue(graph.getEdge(0,1) == None) self.assertEquals(graph.getNumEdges(), 0) def testAdjacencyMatrix(self): numVertices = 3 numFeatures = 1 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList, False) graph.addEdge(0, 1, 0.5) graph.addEdge(2, 1, 0.2) graph.addEdge(1, 1, 0.1) A = graph.adjacencyMatrix() W = graph.getWeightMatrix() W2 = numpy.zeros((numVertices, numVertices)) A2 = numpy.zeros((numVertices, numVertices)) W2[0,1]= 0.5 W2[2,1]= 0.2 W2[1,1]= 0.1 A2[0,1]= 1 A2[2,1]= 1 A2[1,1]= 1 self.assertTrue((W == W2).all()) self.assertTrue((A == A2).all()) def testComplement(self): numVertices = 10 numFeatures = 1 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList) graph3 = graph.complement() self.assertTrue(graph3.isUndirected()) self.assertEquals(graph3.getNumEdges(), (numVertices**2 + numVertices)/2) graph.addEdge(0, 1, 0.1) graph.addEdge(2, 1, 0.2) graph.addEdge(4, 2, 0.5) graph.addEdge(6, 7, 0.9) graph.addEdge(3, 3, 1.1) graph2 = graph.complement() self.assertTrue(graph2.isUndirected()) self.assertEquals(graph2.getEdge(0, 1), None) self.assertEquals(graph2.getEdge(2, 1), None) self.assertEquals(graph2.getEdge(4, 2), None) self.assertEquals(graph2.getEdge(6, 7), None) self.assertEquals(graph2.getEdge(3, 3), None) self.assertEquals(graph2.getEdge(0,0), 1) self.assertEquals(graph2.getNumEdges(), 50) #Now test on directed graphs vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList, False) graph3 = graph.complement() self.assertEquals(graph3.getNumEdges(), numVertices**2) graph.addEdge(0, 1, 0.1) graph.addEdge(2, 1, 0.2) graph.addEdge(4, 2, 0.5) graph.addEdge(6, 7, 0.9) graph.addEdge(3, 3, 1.1) graph2 = graph.complement() self.assertFalse(graph2.isUndirected()) self.assertEquals(graph2.getEdge(0, 1), None) self.assertEquals(graph2.getEdge(2, 1), None) self.assertEquals(graph2.getEdge(4, 2), None) self.assertEquals(graph2.getEdge(6, 7), None) self.assertEquals(graph2.getEdge(3, 3), None) self.assertEquals(graph2.getEdge(0,0), 1) self.assertEquals(graph2.getEdge(1,0), 1) self.assertEquals(graph2.getNumEdges(), 95) def testFindTrees(self): numVertices = 10 numFeatures = 1 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList, False) graph.addEdge(0, 1, 1) graph.addEdge(0, 2, 1) graph.addEdge(1, 3, 1) graph.addEdge(4, 5, 1) graph.addEdge(6, 7, 1) trees = graph.findTrees() self.assertEquals(trees[0], [0,1,2,3]) self.assertEquals(trees[1], [6,7]) self.assertEquals(trees[2], [4,5]) self.assertEquals(trees[3], [9]) self.assertEquals(trees[4], [8]) #Make sure the output tree sizes are in order graph = self.GraphType(vList, False) graph.addEdge(1, 2, 1) graph.addEdge(3, 4, 1) graph.addEdge(3, 5, 1) graph.addEdge(6, 7, 1) graph.addEdge(6, 8, 1) graph.addEdge(8, 9, 1) trees = graph.findTrees() self.assertEquals(set(trees[0]), set([6,7,8,9])) self.assertEquals(trees[1], [3,4,5]) self.assertEquals(trees[2], [1,2]) self.assertEquals(trees[3], [0]) #Test on size 1 graph numVertices = 1 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList, False) trees = graph.findTrees() self.assertEquals([len(x) for x in trees], [1]) def testSetWeightMatrix(self): numVertices = 5 numFeatures = 1 vList = VertexList(numVertices, numFeatures) vList.setVertices(numpy.random.rand(numVertices, numFeatures)) graph = self.GraphType(vList) graph.addEdge(0, 1) graph.addEdge(0, 2) W = numpy.zeros((numVertices, numVertices)) W[1, 1] = 1 W[2, 1] = 1 W[1, 2] = 1 graph.setWeightMatrix(W) self.assertTrue((graph.getAllEdges() == numpy.array([[1, 1], [2, 1]])).all()) W[1, 3] = 1 self.assertRaises(ValueError, graph.setWeightMatrix, W) W = numpy.zeros((numVertices, numVertices+1)) self.assertRaises(ValueError, graph.setWeightMatrix, W) #Now, see if it works for undirected graphs graph = self.GraphType(vList, False) W = numpy.zeros((numVertices, numVertices)) W[1, 0] = 1 W[3, 1] = 1 W[1, 3] = 1 graph.setWeightMatrix(W) self.assertTrue((graph.getAllEdges() == numpy.array([[1, 0], [1,3], [3, 1]])).all()) def testGetNumDirEdges(self): numVertices = 10 numFeatures = 1 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList) graph.addEdge(0, 1, 0.1) graph.addEdge(1, 2, 0.1) self.assertTrue(graph.getNumDirEdges() == 4) graph.addEdge(1, 1) self.assertTrue(graph.getNumDirEdges() == 5) graph = self.GraphType(vList, False) graph.addEdge(0, 1) graph.addEdge(1, 2) self.assertTrue(graph.getNumDirEdges() == 2) graph.addEdge(1, 1) self.assertTrue(graph.getNumDirEdges() == 3) def testOutDegreeSequence(self): numVertices = 10 numFeatures = 1 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList) graph.addEdge(0, 1, 0.1) graph.addEdge(1, 2, 0.2) graph.addEdge(1, 5) self.assertTrue((graph.outDegreeSequence() == numpy.array([1, 3, 1, 0,0,1,0,0,0,0])).all() ) vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList, False) graph.addEdge(0, 1) graph.addEdge(1, 2) graph.addEdge(1, 5) graph.addEdge(3, 3) self.assertTrue((graph.outDegreeSequence() == numpy.array([1, 2, 0, 1,0,0,0,0,0,0])).all() ) def testInDegreeSequence(self): numVertices = 10 numFeatures = 1 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList) graph.addEdge(0, 1) graph.addEdge(1, 2) graph.addEdge(1, 5) self.assertTrue((graph.inDegreeSequence() == numpy.array([1, 3, 1, 0,0,1,0,0,0,0])).all() ) vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList, False) graph.addEdge(0, 1, 0.1) graph.addEdge(1, 2, 0.2) graph.addEdge(1, 5) graph.addEdge(2, 1) graph.addEdge(3, 3) self.assertTrue((graph.inDegreeSequence() == numpy.array([0, 2, 1, 1,0,1,0,0,0,0])).all() ) def testInDegreeDistribution(self): numVertices = 5 numFeatures = 1 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList) self.assertTrue((graph.inDegreeDistribution() == numpy.array([])).all()) graph.addEdge(0, 1, 2) graph.addEdge(0, 2, 2) graph.addEdge(1, 2, 2) graph.addEdge(2, 3, 2) graph.addEdge(2, 4, 2) self.assertTrue((graph.inDegreeDistribution() == numpy.array([0, 2, 2, 0, 1])).all()) #Try empty graph numVertices = 5 numFeatures = 1 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList) self.assertTrue((graph.inDegreeDistribution() == numpy.array([5])).all()) #Try a star like graph numVertices = 5 numFeatures = 1 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList) graph.addEdge(0, 0, 2) graph.addEdge(0, 1, 2) graph.addEdge(0, 2, 2) graph.addEdge(0, 3, 2) graph.addEdge(0, 4, 2) self.assertTrue((graph.inDegreeDistribution() == numpy.array([0, 4, 0, 0, 0, 1])).all()) #Ought to try a directed graph vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList, False) self.assertTrue((graph.inDegreeDistribution() == numpy.array([])).all()) graph.addEdge(0, 1, 2) graph.addEdge(0, 2, 2) graph.addEdge(1, 2, 2) graph.addEdge(2, 3, 2) graph.addEdge(2, 4, 2) self.assertTrue((graph.inDegreeDistribution() == numpy.array([1, 3, 1])).all()) def testGeneralVertexList(self): #Very brief test to make sure sparse graph works with general vertex lists numVertices = 10 vList = GeneralVertexList(numVertices) vList.setVertex(0, "a") vList.setVertex(1, "b") vList.setVertex(5, "c") graph = self.GraphType(vList) graph.addEdge(0, 1) graph.addEdge(1, 2) graph.addEdge(1, 5) def testFromNetworkXGraph(self): try: import networkx except ImportError as error: logging.debug(error) return nxGraph = networkx.Graph() nxGraph.graph["VListType"] = GeneralVertexList #nxGraph.graph["numFeatures"] = 2 #nxGraph.add_node(0) nxGraph.add_edge(0, 1) nxGraph.add_edge(1, 2) nxGraph.add_edge(1, 3) graph = self.GraphType.fromNetworkXGraph(nxGraph) self.assertTrue(graph.getNumVertices() == 4) self.assertTrue(graph.isUndirected() == True) self.assertTrue(graph.getNumEdges() == 3) self.assertTrue(graph.getEdge(0, 1) == 1) self.assertTrue(graph.getEdge(1, 2) == 1) self.assertTrue(graph.getEdge(1, 3) == 1) #Try directed graphs nxGraph = networkx.DiGraph() nxGraph.graph["VListType"] = GeneralVertexList #nxGraph.add_node(0) nxGraph.add_edge(0, 1) nxGraph.add_edge(1, 2) nxGraph.add_edge(1, 3) graph = self.GraphType.fromNetworkXGraph(nxGraph) self.assertTrue(graph.getNumVertices() == 4) self.assertTrue(graph.isUndirected() == False) self.assertTrue(graph.getNumEdges() == 3) self.assertTrue(graph.getEdge(0, 1) == 1) self.assertTrue(graph.getEdge(1, 2) == 1) self.assertTrue(graph.getEdge(1, 3) == 1) #Using a multigraph should fail nxGraph = networkx.MultiGraph() self.assertRaises(ValueError, self.GraphType.fromNetworkXGraph, nxGraph) #Test node labels nxGraph = networkx.DiGraph() nxGraph.graph["VListType"] = GeneralVertexList nxGraph.add_node("a", label="abc") nxGraph.add_node("b", label="i") nxGraph.add_node("c", label="am") nxGraph.add_node("d", label="here") nxGraph.add_edge("a", "b") nxGraph.add_edge("b", "c") nxGraph.add_edge("b", "d") graph = self.GraphType.fromNetworkXGraph(nxGraph) nodeDict = {} for i in range(len(nxGraph.nodes())): nodeDict[nxGraph.nodes()[i]] = i self.assertTrue(graph.getNumVertices() == 4) self.assertTrue(graph.isUndirected() == False) self.assertTrue(graph.getNumEdges() == 3) self.assertTrue(graph.getEdge(nodeDict["a"], nodeDict["b"]) == 1) self.assertTrue(graph.getEdge(nodeDict["b"], nodeDict["c"]) == 1) self.assertTrue(graph.getEdge(nodeDict["b"], nodeDict["d"]) == 1) self.assertTrue(graph.getVertex(0) == "abc") self.assertTrue(graph.getVertex(1) == "am") self.assertTrue(graph.getVertex(2) == "i") self.assertTrue(graph.getVertex(3) == "here") #Test in conjunction with toNetworkXGraph numVertices = 10 numFeatures = 2 vList = VertexList(numVertices, numFeatures) vList.setVertices(numpy.random.rand(numVertices, numFeatures)) graph = self.GraphType(vList) graph.addEdge(0, 1) graph.addEdge(0, 5) graph.addEdge(2, 5) graph.addEdge(3, 4) nxGraph = graph.toNetworkXGraph() graph2 = self.GraphType.fromNetworkXGraph(nxGraph) tol = 10**-6 self.assertTrue(numpy.linalg.norm(graph.getVertexList().getVertices(list(range(numVertices))) -graph2.getVertexList().getVertices(list(range(numVertices)))) < tol) self.assertEquals(graph.getNumEdges(), graph2.getNumEdges()) for i in range(numVertices): for j in range(numVertices): self.assertEquals(graph.getEdge(i, j), graph2.getEdge(i, j)) #Use a GeneralVertexList numVertices = 10 vList = GeneralVertexList(numVertices) for i in range(numVertices): vList.setVertex(i, "s" + str(i)) graph = self.GraphType(vList) graph.addEdge(0, 1) graph.addEdge(0, 5) graph.addEdge(2, 5) graph.addEdge(3, 4) nxGraph = graph.toNetworkXGraph() graph2 = self.GraphType.fromNetworkXGraph(nxGraph) for i in range(numVertices): self.assertEquals(graph.getVertex(i), graph2.getVertex(i)) self.assertEquals(graph.getNumEdges(), graph2.getNumEdges()) for i in range(numVertices): for j in range(numVertices): self.assertEquals(graph.getEdge(i, j), graph2.getEdge(i, j)) def testDiameter2(self): numVertices = 10 numFeatures = 1 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList, True) graph.addEdge(0, 1) graph.addEdge(1, 2) graph.addEdge(1, 3) self.assertEquals(graph.diameter2(), 2) graph.addEdge(3, 2) self.assertEquals(graph.diameter2(), 2) graph.addEdge(3, 4) self.assertEquals(graph.diameter2(), 3) graph.addEdge(4, 5) self.assertEquals(graph.diameter2(), 4) graph.addEdge(0, 5) self.assertEquals(graph.diameter2(), 3) #Now try directed graphs graph = self.GraphType(vList, False) graph.addEdge(0, 1) graph.addEdge(1, 2) graph.addEdge(1, 3) self.assertEquals(graph.diameter2(), 2) graph.addEdge(4, 3) self.assertEquals(graph.diameter2(), 2) graph.addEdge(5, 4) graph.addEdge(6, 5) self.assertEquals(graph.diameter2(), 3) graph.addEdge(6, 6) self.assertEquals(graph.diameter2(), 3) #Test on graph with no edges graph = self.GraphType(vList, False) self.assertEquals(graph.diameter2(), 0) def testLaplacianMatrix(self): numVertices = 10 numFeatures = 1 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList, True) graph.addEdge(0, 1) graph.addEdge(1, 2) graph.addEdge(1, 3) L = numpy.zeros((numVertices, numVertices)) A = graph.adjacencyMatrix() for i in range(numVertices): for j in range(numVertices): if i == j: L[i, j] = numpy.sum(A[i, :]) elif A[i, j] != 0: L[i, j] = -1 else: L[i, j] = 0 self.assertTrue((L == graph.laplacianMatrix() ).all()) def testLoad(self): try: numVertices = 10 numFeatures = 1 vList = VertexList(numVertices, numFeatures) vList.setVertices(numpy.random.rand(numVertices, numFeatures)) graph = self.GraphType(vList, True) graph.addEdge(0, 1, 0.1) graph.addEdge(1, 2, 0.2) graph.addEdge(1, 3, 0.3) tempDir = PathDefaults.getTempDir() tempFile = tempDir + "testGraph" graph.save(tempFile) dataDir = PathDefaults.getDataDir() os.chdir(dataDir) currentPath = os.getcwd() graph2 = self.GraphType.load(tempFile) #Make sure save doesn't change the path self.assertEquals(os.getcwd(), currentPath) self.assertEquals(graph.getNumVertices(), graph.getNumVertices()) self.assertEquals(graph.getNumEdges(), graph.getNumEdges()) self.assertTrue(graph2.isUndirected() == True) self.assertTrue((graph.getVertexList().getVertices(list(range(numVertices))) == graph2.getVertexList().getVertices(list(range(numVertices)))).all()) self.assertTrue((graph.getAllEdges() == graph2.getAllEdges()).all()) self.assertTrue(graph2.getEdge(0, 1) == 0.1) self.assertTrue(graph2.getEdge(1, 2) == 0.2) self.assertTrue(graph2.getEdge(1, 3) == 0.3) #Test if loading of old-style graph files works testDir = PathDefaults.getDataDir() + "test/" graphFilename = testDir + "fd" graph = self.GraphType.load(graphFilename) self.assertEquals(graph.getEdge(1, 1), 1) self.assertEquals(graph.getEdge(2, 2), 1) self.assertEquals(graph.getNumVertices(), 10) except IOError as e: logging.warn(e) pass except OSError as e: logging.warn(e) pass def testMaxEigenvector(self): tol = 10**-6 numVertices = 5 numFeatures = 0 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList, False) graph.addEdge(0, 1) graph.addEdge(1, 2, 0.1) graph.addEdge(2, 0) v = graph.maxEigenvector() W = graph.getWeightMatrix() lmbda, U = numpy.linalg.eig(W) i = numpy.argmax(lmbda) self.assertTrue(numpy.linalg.norm(U[:, i] - v) < tol) def testMaxProductPaths(self): numVertices = 6 numFeatures = 1 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList) graph.addEdge(0, 1, 0.1) graph.addEdge(1, 3, 0.1) graph.addEdge(0, 2, 0.2) graph.addEdge(2, 3, 0.5) graph.addEdge(0, 4, 0.1) graph.addEdge(3, 4, 0.1) P = graph.maxProductPaths() P2 = numpy.zeros((numVertices, numVertices)) P2[0, :] = numpy.array([0.04, 0.1, 0.2, 0.1, 0.1, 0]) P2[1, :] = numpy.array([0.1, 0.01, 0.05, 0.1, 0.01, 0]) P2[2, :] = numpy.array([0.2, 0.05, 0.25, 0.5, 0.05, 0]) P2[3, :] = numpy.array([0.1, 0.1, 0.5, 0.25, 0.1, 0]) P2[4, :] = numpy.array([0.1, 0.01, 0.05, 0.1, 0.01, 0]) P2[5, :] = numpy.array([0,0,0,0,0,0]) self.assertAlmostEquals(numpy.linalg.norm(P - P2), 0, places=6) #Now test on a directed graph graph = self.GraphType(vList, False) graph.addEdge(0, 1, 0.1) graph.addEdge(1, 3, 0.1) graph.addEdge(0, 2, 0.2) graph.addEdge(2, 3, 0.5) graph.addEdge(0, 4, 0.1) graph.addEdge(3, 4, 0.1) P = graph.maxProductPaths() P2 = numpy.zeros((numVertices, numVertices)) P2[0, :] = numpy.array([0, 0.1, 0.2, 0.1, 0.1, 0]) P2[1, :] = numpy.array([0, 0, 0, 0.1, 0.01, 0]) P2[2, :] = numpy.array([0, 0, 0, 0.5, 0.05, 0]) P2[3, :] = numpy.array([0, 0, 0, 0, 0.1, 0]) P2[4, :] = numpy.array([0,0,0,0,0,0]) P2[5, :] = numpy.array([0,0,0,0,0,0]) self.assertAlmostEquals(numpy.linalg.norm(P - P2), 0, places=6) def testMaybeIsomorphicWith(self): numVertices = 6 numFeatures = 1 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList, True) graph.addEdge(0, 1, 0.1) graph.addEdge(1, 3, 0.1) graph.addEdge(0, 2, 0.2) graph.addEdge(2, 3, 0.5) graph.addEdge(0, 4, 0.1) graph.addEdge(3, 4, 0.1) graph2 = self.GraphType(vList, True) graph2.addEdge(0, 1, 0.1) graph2.addEdge(1, 3, 0.1) graph2.addEdge(0, 2, 0.2) graph2.addEdge(2, 3, 0.5) graph2.addEdge(0, 4, 0.1) graph2.addEdge(3, 4, 0.1) graph2.addEdge(4, 5, 0.1) graph3 = self.GraphType(vList, True) graph3.addEdge(2, 4, 0.1) graph3.addEdge(4, 5, 0.1) graph3.addEdge(2, 1, 0.2) graph3.addEdge(1, 5, 0.5) graph3.addEdge(2, 0, 0.1) graph3.addEdge(5, 0, 0.1) self.assertTrue(graph.maybeIsomorphicWith(graph)) self.assertFalse(graph.maybeIsomorphicWith(graph2)) self.assertTrue(graph.maybeIsomorphicWith(graph3)) def testSave(self): try: numVertices = 10 numFeatures = 1 vList = VertexList(numVertices, numFeatures) vList.setVertices(numpy.random.rand(numVertices, numFeatures)) graph = self.GraphType(vList, False) graph.addEdge(0, 1, 0.1) graph.addEdge(1, 2, 0.2) graph.addEdge(1, 3, 0.3) dataDir = PathDefaults.getDataDir() os.chdir(dataDir) tempDir = PathDefaults.getTempDir() currentPath = os.getcwd() graph.save(tempDir + "testGraph") #Make sure save doesn't change the path self.assertEquals(os.getcwd(), currentPath) except IOError as e: logging.warn(e) pass except OSError as e: logging.warn(e) pass def testSetVertices(self): numVertices = 10 numFeatures = 1 vList = VertexList(numVertices, numFeatures) vList.setVertices(numpy.random.rand(numVertices, numFeatures)) graph = self.GraphType(vList, False) X = numpy.random.rand(numVertices, numFeatures) vertexIndices =list(range(0, numVertices)) graph.setVertices(vertexIndices, X) vertexIndices2 = graph.getAllVertexIds() vertices2 = graph.getVertices(vertexIndices2) self.assertEquals(vertexIndices, vertexIndices2) self.assertTrue((X == vertices2).all()) def testToNetworkXGraph(self): try: import networkx except ImportError as error: logging.debug(error) return numVertices = 10 numFeatures = 3 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList) graph.addEdge(5, 1, 4) graph.addEdge(5, 2, 2) graph.addEdge(2, 7, 4) graph.addEdge(1, 9, 6) graph2 = self.GraphType(vList, False) graph2.addEdge(5, 1, 4) graph2.addEdge(5, 2, 2) graph2.addEdge(2, 7, 4) graph2.addEdge(1, 9, 6) networkXGraph = graph.toNetworkXGraph() self.assertEquals(networkXGraph.get_edge_data(5, 1), {'value' : 4.0}) self.assertEquals(networkXGraph.get_edge_data(5, 2), {'value' : 2.0}) self.assertEquals(networkXGraph.get_edge_data(2, 7), {'value' : 4.0}) self.assertEquals(networkXGraph.get_edge_data(1, 9), {'value' : 6.0}) self.assertEquals(networkXGraph.get_edge_data(9, 1), {'value' : 6.0}) vertexIndexList = [] for i in networkXGraph.__iter__(): vertexIndexList.append(i) vertexIndexList.sort() self.assertTrue(vertexIndexList == list(range(numVertices))) self.assertTrue(networkXGraph.edges() == [(1, 9), (1, 5), (2, 5), (2, 7)]) self.assertTrue(type(networkXGraph) == networkx.Graph) #Now we test the case where we have a directed graph networkXGraph = graph2.toNetworkXGraph() self.assertEquals(networkXGraph.get_edge_data(5, 1), {'value' : 4.0}) self.assertEquals(networkXGraph.get_edge_data(5, 2), {'value' : 2.0}) self.assertEquals(networkXGraph.get_edge_data(2, 7), {'value' : 4.0}) self.assertEquals(networkXGraph.get_edge_data(1, 9), {'value' : 6.0}) self.assertFalse(networkXGraph.has_edge(9, 1)) vertexIndexList = [] for i in networkXGraph.__iter__(): vertexIndexList.append(i) vertexIndexList.sort() self.assertTrue(vertexIndexList == list(range(numVertices))) self.assertTrue(networkXGraph.edges() == [(1, 9), (2, 7), (5, 1), (5, 2)]) self.assertTrue(type(networkXGraph) == networkx.DiGraph) #Test a graph with no edges numVertices = 10 numFeatures = 3 vList = VertexList(numVertices, numFeatures) vList.setVertices(numpy.random.rand(numVertices, numFeatures)) graph = self.GraphType(vList) networkXGraph = graph.toNetworkXGraph() self.assertTrue(networkXGraph.order() == numVertices) self.assertTrue(networkXGraph.size() == 0) self.assertTrue((networkXGraph.nodes(data=True)[0][1]['label'] ==graph.getVertex(0)).all()) def testTriangleSequence(self): tol = 10**-6 numVertices = 5 numFeatures = 0 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList, True) seq = graph.triangleSequence() self.assertTrue(numpy.linalg.norm(seq - numpy.array([0, 0, 0, 0, 0])) < tol) graph.addEdge(0, 1) graph.addEdge(0, 2, 0.1) graph.addEdge(1, 2) seq = graph.triangleSequence() self.assertTrue(numpy.linalg.norm(seq - numpy.array([2, 2, 2, 0, 0])) < tol) graph.addEdge(2, 3) graph.addEdge(3, 0, -0.3) seq = graph.triangleSequence() self.assertTrue(numpy.linalg.norm(seq - numpy.array([4, 2, 4, 2, 0])) < tol) graph.removeAllEdges() graph.addEdge(0, 0) seq = graph.triangleSequence() self.assertTrue(numpy.linalg.norm(seq - numpy.array([0, 0, 0, 0, 0])) < tol) #Test on directed graphs graph = self.GraphType(vList, False) graph.addEdge(0, 1) graph.addEdge(1, 2, 0.1) graph.addEdge(2, 0) seq = graph.triangleSequence() self.assertTrue(numpy.linalg.norm(seq - numpy.array([1, 1, 1, 0, 0])) < tol) graph.addEdge(0, 3) graph.addEdge(3, 4, 0.1) graph.addEdge(4, 0) seq = graph.triangleSequence() self.assertTrue(numpy.linalg.norm(seq - numpy.array([2, 1, 1, 1, 1])) < tol) def testUnion(self): numVertices = 10 numFeatures = 0 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList, True) graph.addEdge(0, 1, 0.1) graph.addEdge(5, 2, 0.1) graph.addEdge(6, 0, 0.1) graph2 = self.GraphType(vList, True) graph2.addEdge(0, 2, 0.1) graph2.addEdge(5, 3, 0.1) graph2.addEdge(5, 2, 0.1) newGraph = graph.union(graph2) #Test original graph is the same self.assertEquals(graph.getEdge(0, 1), 0.1) self.assertEquals(graph.getEdge(5, 2), 0.1) self.assertEquals(graph.getEdge(6, 0), 0.1) self.assertEquals(newGraph.getNumEdges(), 5) self.assertEquals(newGraph.getEdge(0, 1), 1) self.assertEquals(newGraph.getEdge(5, 2), 1) self.assertEquals(newGraph.getEdge(6, 0), 1) self.assertEquals(newGraph.getEdge(0, 2), 1) self.assertEquals(newGraph.getEdge(5, 3), 1) #Test union of graph 2 with itself newGraph = graph2.union(graph2) self.assertEquals(newGraph.getNumEdges(), 3) self.assertEquals(newGraph.getEdge(0, 2), 1) self.assertEquals(newGraph.getEdge(5, 3), 1) self.assertEquals(newGraph.getEdge(5, 2), 1) def testIntersect(self): numVertices = 10 numFeatures = 0 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList, True) graph.addEdge(0, 1, 0.1) graph.addEdge(5, 2, 0.1) graph.addEdge(6, 0, 0.1) graph2 = self.GraphType(vList, True) graph2.addEdge(0, 2, 0.1) graph2.addEdge(5, 3, 0.1) graph2.addEdge(5, 2, 0.1) newGraph = graph.intersect(graph2) #Test old graph is the same self.assertEquals(graph.getEdge(0, 1), 0.1) self.assertEquals(graph.getEdge(5, 2), 0.1) self.assertEquals(graph.getEdge(6, 0), 0.1) self.assertEquals(newGraph.getNumEdges(), 1) self.assertEquals(newGraph.getEdge(5, 2), 1) #Test intersect of graph 2 with itself newGraph = graph2.intersect(graph2) self.assertEquals(newGraph.getNumEdges(), 3) self.assertEquals(newGraph.getEdge(0, 2), 1) self.assertEquals(newGraph.getEdge(5, 3), 1) self.assertEquals(newGraph.getEdge(5, 2), 1) def testIsTree(self): numVertices = 3 numFeatures = 0 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList, False) graph.addEdge(0, 1) self.assertFalse(graph.isTree()) graph.addEdge(0, 2) self.assertTrue(graph.isTree()) graph.addEdge(2, 0) self.assertFalse(graph.isTree()) graph = self.GraphType(vList, True) self.assertRaises(ValueError, graph.isTree) #Try a bigger graph numVertices = 6 numFeatures = 0 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList, False) graph.addEdge(0, 1) graph.addEdge(0, 2) graph.addEdge(0, 3) graph.addEdge(0, 4) graph.addEdge(0, 5) self.assertTrue(graph.isTree()) graph.removeEdge(0, 5) graph.addEdge(1, 5) self.assertTrue(graph.isTree()) #Try 1 node graph numVertices = 1 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList, False) self.assertTrue(graph.isTree()) def testBetweenness(self): tol = 10**-6 numVertices = 5 numFeatures = 0 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList, True) graph.addEdge(0, 1) graph.addEdge(1, 2, 0.1) graph.addEdge(2, 3, 0.1) graph.addEdge(0, 3, 0.1) #logging.debug(graph.betweenness()) def testSetVertexList(self): numVertices = 5 numFeatures = 1 vList = VertexList(numVertices, numFeatures) vList.setVertices(numpy.random.rand(numVertices, numFeatures)) graph = self.GraphType(vList, False) graph.addEdge(0, 1, 0.1) graph.addEdge(1, 2, 0.2) self.assertTrue((graph.getVertex(0) == vList.getVertex(0)).all()) self.assertTrue((graph.getVertex(1) == vList.getVertex(1)).all()) self.assertTrue((graph.getVertex(2) == vList.getVertex(2)).all()) vList2 = VertexList(numVertices, numFeatures+2) vList2.setVertices(numpy.random.rand(numVertices, numFeatures+2)) graph.setVertexList(vList2) self.assertTrue((graph.getVertex(0) == vList2.getVertex(0)).all()) self.assertTrue((graph.getVertex(1) == vList2.getVertex(1)).all()) self.assertTrue((graph.getVertex(2) == vList2.getVertex(2)).all()) vList3 = VertexList(numVertices+1, numFeatures) self.assertRaises(ValueError, graph.setVertexList, vList3) def testNormalisedLaplacianSym(self): numVertices = 10 numFeatures = 0 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList) graph.addEdge(0, 1) graph.addEdge(0, 2) graph.addEdge(0, 9) graph.addEdge(1, 1) graph.addEdge(1, 5) L = graph.normalisedLaplacianSym() W = graph.getWeightMatrix() L2 = numpy.zeros((numVertices, numVertices)) d = graph.outDegreeSequence() for i in range(numVertices): for j in range(numVertices): if d[i] != 0 and d[j]!= 0: Wij = W[i, j]/(numpy.sqrt(d[i]*d[j])) else: Wij = 0 if i == j: L2[i, j] = 1 - Wij else: L2[i, j] = -Wij tol = 10**-6 self.assertTrue(numpy.linalg.norm(L2 - L) < tol) def testNormalisedLaplacianRw(self): numVertices = 10 numFeatures = 0 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList) graph.addEdge(0, 1) graph.addEdge(0, 2) graph.addEdge(0, 9) graph.addEdge(1, 1) graph.addEdge(1, 5) L = graph.normalisedLaplacianRw() W = graph.getWeightMatrix() L2 = numpy.zeros((numVertices, numVertices)) d = graph.outDegreeSequence() for i in range(numVertices): for j in range(numVertices): if d[i] != 0 and d[j]!= 0: Wij = W[i, j]/(d[i]) else: Wij = 0 if i == j: L2[i, j] = 1 - Wij else: L2[i, j] = -Wij tol = 10**-6 self.assertTrue(numpy.linalg.norm(L2 - L) < tol) def testSetDiff(self): numVertices = 10 numFeatures = 0 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList, True) graph.addEdge(0, 1, 0.1) graph.addEdge(5, 2, 0.1) graph.addEdge(6, 0, 0.1) graph.addEdge(6, 1, 0.1) graph2 = self.GraphType(vList, True) graph2.addEdge(0, 1, 0.1) graph2.addEdge(5, 3, 0.1) graph2.addEdge(5, 2, 0.1) newGraph = graph.setDiff(graph2) #Test old graph is the same self.assertEquals(graph.getEdge(0, 1), 0.1) self.assertEquals(graph.getEdge(5, 2), 0.1) self.assertEquals(graph.getEdge(6, 0), 0.1) self.assertEquals(graph.getEdge(6, 1), 0.1) self.assertEquals(newGraph.getNumEdges(), 2) self.assertEquals(newGraph.getEdge(6, 0), 1) self.assertEquals(newGraph.getEdge(6, 1), 1) #Test setdiff of graph 2 with itself newGraph = graph2.setDiff(graph2) self.assertEquals(newGraph.getNumEdges(), 0) def testIncidenceMatrix(self): numVertices = 5 numFeatures = 0 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList, True) graph.addEdge(0, 1, 0.1) graph.addEdge(1, 2, 0.1) graph.addEdge(3, 0, 0.1) graph.addEdge(4, 1, 0.1) X = graph.incidenceMatrix().todense() L = X.dot(X.T) L2 = graph.laplacianMatrix() #In the case of undirected graphs we get the laplacian self.assertTrue((L==L2).all()) #Directed graph - we get something different graph = self.GraphType(vList, False) graph.addEdge(0, 1, 0.1) graph.addEdge(1, 2, 0.1) graph.addEdge(3, 0, 0.1) graph.addEdge(4, 1, 0.1) X = graph.incidenceMatrix().todense() L = X.dot(X.T) L2 = graph.laplacianMatrix() def testDegreeSequence(self): numVertices = 5 numFeatures = 0 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList, True) graph.addEdge(0, 1, 0.1) graph.addEdge(1, 2, 0.1) graph.addEdge(3, 0, 0.1) graph.addEdge(4, 1, 0.1) self.assertTrue((graph.degreeSequence() == [2, 3, 1, 1, 1]).all()) #Now add a self edge graph.addEdge(0, 0) self.assertTrue((graph.degreeSequence() == [4, 3, 1, 1, 1]).all()) graph.addEdge(1, 1) self.assertTrue((graph.degreeSequence() == [4, 5, 1, 1, 1]).all()) def testAdjacencyList(self): numVertices = 5 numFeatures = 0 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList, True) graph.addEdge(0, 1, 0.1) graph.addEdge(1, 2, 0.2) graph.addEdge(3, 0, 0.3) graph.addEdge(4, 1, 0.4) L, W = graph.adjacencyList() for i in range(numVertices): self.assertTrue((L[i]==numpy.sort(graph.neighbours(i))).all()) self.assertTrue(W[0][0] == 0.1) self.assertTrue(W[0][1] == 0.3) self.assertTrue(W[4][0] == 0.4) #Now use just adjacencies L, W = graph.adjacencyList(False) for i in range(numVertices): self.assertTrue((L[i]==numpy.sort(graph.neighbours(i))).all()) self.assertTrue(W[0][0] == 1) self.assertTrue(W[0][1] == 1) self.assertTrue(W[4][0] == 1) def testGetItem(self): numVertices = 5 graph = self.GraphType(GeneralVertexList(numVertices)) graph.addEdge(1, 1, 0.1) graph.addEdge(1, 3, 0.5) graph.addEdge(2, 4, 1) graph.addEdge(2, 3, 2) graph.setVertex(0, "abc") self.assertEquals(graph[1,1], 0.1) self.assertEquals(graph[1,3], 0.5) def testSetItem(self): numVertices = 5 graph = self.GraphType(GeneralVertexList(numVertices)) graph.addEdge(1, 1, 0.1) graph.addEdge(1, 3, 0.5) self.assertEquals(graph[1,3], 0.5) graph[1, 3] = 2 self.assertEquals(graph[1,3], 2) def testToIGraph(self): try: import igraph except ImportError as error: logging.debug(error) return numVertices = 7 graph = self.GraphType(GeneralVertexList(numVertices)) graph.addEdge(1, 1, 0.1) graph.addEdge(1, 3, 0.5) graph.addEdge(1, 5, 0.5) graph.addEdge(3, 5, 0.5) graph.addEdge(5, 6, 0.1) graph.setVertex(1, "a") graph.setVertex(2, "b") graph.setVertex(3, "c") igraph = graph.toIGraph() self.assertEquals(len(igraph.vs), graph.getNumVertices()) self.assertEquals(len(igraph.es), graph.getNumEdges()) self.assertEquals(igraph.vs["label"][1], "a") self.assertEquals(igraph.vs["label"][2], "b") self.assertEquals(igraph.vs["label"][3], "c") edges = igraph.get_edgelist() i = 0 for e in edges: self.assertTrue(graph.getEdge(e[0], e[1]) == igraph.es[i]["value"]) i += 1 def testPickle(self): numVertices = 10 numFeatures = 1 vList = VertexList(numVertices, numFeatures) graph = self.GraphType(vList) graph[0, 0] = 1 graph[3, 5] = 0.1 graph.setVertex(0, numpy.array([12.3])) output = pickle.dumps(graph) newGraph = pickle.loads(output) graph[2, 2] = 1 self.assertEquals(newGraph[0, 0], 1) self.assertEquals(newGraph[3, 5], 0.1) self.assertEquals(newGraph[2, 2], 0.0) self.assertEquals(newGraph.getNumEdges(), 2) self.assertEquals(newGraph.getNumVertices(), numVertices) self.assertEquals(newGraph.isUndirected(), True) self.assertEquals(graph[0, 0], 1) self.assertEquals(graph[3, 5], 0.1) self.assertEquals(graph[2, 2], 1) self.assertEquals(graph.getNumEdges(), 3) self.assertEquals(graph.getNumVertices(), numVertices) self.assertEquals(graph.isUndirected(), True) for i in range(numVertices): nptst.assert_array_equal(graph.getVertex(i), newGraph.getVertex(i)) def testToDictGraph(self): dictGraph = self.graph.toDictGraph() edges = self.graph.getAllEdges() edges = numpy.array(edges, numpy.int) for i in range(edges.shape[0]): self.assertEquals(dictGraph[edges[i, 0], edges[i, 1]], self.graph[int(edges[i, 0]), int(edges[i, 1])]) dictGraph2 = self.graph2.toDictGraph() edges2 = self.graph2.getAllEdges() for i in range(edges2.shape[0]): self.assertEquals(dictGraph2[edges2[i, 0], edges2[i, 1]], self.graph[int(edges2[i, 0]), int(edges2[i, 1])])
b586baa8d46a591e777d5a5235059c44e5991d32
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2773/60662/287216.py
fd60f99029185c3b352f686730065a2f640c4b78
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
1,176
py
matrix = [] for i in range(0, 4): s = input() if 0 < i < 4: temp = list(map(int, s.strip(' [],').split(','))) matrix.append(temp) a = len(matrix) dic = {} nums_max = 1 if a == 0: nums_max = 0 else: b = len(matrix[0]) for i in range(a): for j in range(b): dic[(i, j)] = matrix[i][j] v = dic.keys() nums1 = [[1 for i in range(b)] for j in range(a)] dic = sorted(dic.items(), key=lambda x: x[1]) for k in dic: i = k[0][0] j = k[0][1] if (i + 1, j) in v and matrix[i + 1][j] < matrix[i][j] and nums1[i][j] < nums1[i + 1][j] + 1: nums1[i][j] = nums1[i + 1][j] + 1 if (i, j + 1) in v and matrix[i][j + 1] < matrix[i][j] and nums1[i][j] < nums1[i][j + 1] + 1: nums1[i][j] = nums1[i][j + 1] + 1 if (i - 1, j) in v and matrix[i - 1][j] < matrix[i][j] and nums1[i][j] < nums1[i - 1][j] + 1: nums1[i][j] = nums1[i - 1][j] + 1 if (i, j - 1) in v and matrix[i][j - 1] < matrix[i][j] and nums1[i][j] < nums1[i][j - 1] + 1: nums1[i][j] = nums1[i][j - 1] + 1 nums_max = max(nums_max, nums1[i][j]) print(nums_max)
d149f7fc4838a57eb5d387bf9dd33399983d202b
e40a882c3717b3982db0fbc7ae42430746636ff0
/dvalib/yolo/test_yolo.py
e2274640d2ca3e97769741d4a88bb08caeb74ff6
[]
no_license
longchuan1985/DeepVideoAnalytics
7dbe4bb9aab3ce15bc5bbcffcd3dbcea7157bea4
4264239ad6f9b23e450f90671c0120511c971678
refs/heads/master
2021-01-23T04:14:12.516312
2017-05-31T07:48:01
2017-05-31T07:48:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,046
py
#! /usr/bin/env python """Run a YOLO_v2 style detection model on test images.""" import argparse import colorsys import imghdr import os import random import numpy as np from keras import backend as K from keras.models import load_model from PIL import Image from yad2k.models.keras_yolo import yolo_eval, yolo_head def _main(): args = { 'anchors_path': 'model_data/yolo_anchors.txt', 'classes_path': 'model_data/coco_classes.txt', 'test_path': 'images', 'output_path': 'images/out', 'score_threshold': 0.3, 'iou': 0.5, } model_path = os.path.expanduser(args['model_path']) anchors_path = os.path.expanduser(args['anchors_path']) classes_path = os.path.expanduser(args['classes_path']) test_path = os.path.expanduser(args['test_path']) output_path = os.path.expanduser(args['output_path']) if not os.path.exists(output_path): print('Creating output path {}'.format(output_path)) os.mkdir(output_path) sess = K.get_session() with open(classes_path) as f: class_names = f.readlines() class_names = [c.strip() for c in class_names] with open(anchors_path) as f: anchors = f.readline() anchors = [float(x) for x in anchors.split(',')] anchors = np.array(anchors).reshape(-1, 2) yolo_model = load_model(model_path) num_classes = len(class_names) num_anchors = len(anchors) # TODO: Assumes dim ordering is channel last model_output_channels = yolo_model.layers[-1].output_shape[-1] assert model_output_channels == num_anchors * (num_classes + 5), \ 'Mismatch between model and given anchor and class sizes. ' \ 'Specify matching anchors and classes with --anchors_path and ' \ '--classes_path flags.' print('{} model, anchors, and classes loaded.'.format(model_path)) # Check if model is fully convolutional, assuming channel last order. model_image_size = yolo_model.layers[0].input_shape[1:3] is_fixed_size = model_image_size != (None, None) hsv_tuples = [(x / len(class_names), 1., 1.)for x in range(len(class_names))] colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples)) colors = list(map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),colors)) random.seed(10101) # Fixed seed for consistent colors across runs. random.shuffle(colors) # Shuffle colors to decorrelate adjacent classes. random.seed(None) # Reset seed to default. yolo_outputs = yolo_head(yolo_model.output, anchors, len(class_names)) input_image_shape = K.placeholder(shape=(2, )) boxes, scores, classes = yolo_eval(yolo_outputs,input_image_shape,score_threshold=args['score_threshold'],iou_threshold=args['iou_threshold']) for image_file in os.listdir(test_path): try: image_type = imghdr.what(os.path.join(test_path, image_file)) if not image_type: continue except: continue image = Image.open(os.path.join(test_path, image_file)) if is_fixed_size: # TODO: When resizing we can use minibatch input. resized_image = image.resize( tuple(reversed(model_image_size)), Image.BICUBIC) image_data = np.array(resized_image, dtype='float32') else: # Due to skip connection + max pooling in YOLO_v2, inputs must have # width and height as multiples of 32. new_image_size = (image.width - (image.width % 32), image.height - (image.height % 32)) resized_image = image.resize(new_image_size, Image.BICUBIC) image_data = np.array(resized_image, dtype='float32') print(image_data.shape) image_data /= 255. image_data = np.expand_dims(image_data, 0) # Add batch dimension. out_boxes, out_scores, out_classes = sess.run( [boxes, scores, classes], feed_dict={ yolo_model.input: image_data, input_image_shape: [image.size[1], image.size[0]], K.learning_phase(): 0 }) print('Found {} boxes for {}'.format(len(out_boxes), image_file)) thickness = (image.size[0] + image.size[1]) // 300 for i, c in reversed(list(enumerate(out_classes))): predicted_class = class_names[c] box = out_boxes[i] score = out_scores[i] label = '{} {:.2f}'.format(predicted_class, score) top, left, bottom, right = box top = max(0, np.floor(top + 0.5).astype('int32')) left = max(0, np.floor(left + 0.5).astype('int32')) bottom = min(image.size[1], np.floor(bottom + 0.5).astype('int32')) right = min(image.size[0], np.floor(right + 0.5).astype('int32')) print(label, (left, top), (right, bottom)) image.save(os.path.join(output_path, image_file), quality=90) sess.close() if __name__ == '__main__': _main(parser.parse_args())
880f93512f34e2e80dc747776e6ed3b406dd4715
0d14a4be28107b9487c16fde5865f661c34f3595
/examples/common_features/species_2.py
f1c19320ad83c6dcd28d3f54c607a253cde10f4a
[ "MIT" ]
permissive
lamyj/sycomore
729780544e5ac3940e47493c205797556c7f81b8
d0335f1b8b26facb2a0581de6c19e6e999517599
refs/heads/master
2023-09-01T18:02:56.062085
2023-08-06T16:06:53
2023-08-06T16:06:53
199,385,133
22
4
null
null
null
null
UTF-8
Python
false
false
445
py
import sycomore from sycomore.units import * species = sycomore.Species(1000*ms, 100*ms) # Assign the diffusion coefficient as a scalar species.D = 3*um**2/s # The diffusion coefficient is stored on the diagonal of the tensor print(species.D[0,0]) # Assign the diffusion coefficient as a tensor species.D = [ [3*um**2/s, 0*um**2/s, 0*um**2/s], [0*um**2/s, 2*um**2/s, 0*um**2/s], [0*um**2/s, 0*um**2/s, 1*um**2/s]] print(species.D)
be591fb5e2d1805a2ef27f18908ad61e4fb28266
6dfba71133c5b93cef5b944dcfb50d6eebceca26
/src/acsf_feat.py
604fa9e5091700a7964e38ab3b336f034d10358e
[]
no_license
matsuken92/molecular
67b223be7be604cdf907dcd66b9948faf9119433
759a697070efaac681aff89f645ff2a6a79f0b78
refs/heads/master
2022-02-18T01:41:01.674199
2019-08-29T04:01:25
2019-08-29T04:01:25
190,421,154
0
0
null
null
null
null
UTF-8
Python
false
false
2,377
py
# 基本ライブラリ import pandas as pd import pandas.io.sql as psql import numpy as np import numpy.random as rd import gc import multiprocessing as mp import os import sys import pickle from collections import defaultdict from glob import glob import math from datetime import datetime as dt from pathlib import Path import scipy.stats as st import re import shutil from tqdm import tqdm_notebook as tqdm import datetime from dscribe.descriptors import ACSF from dscribe.core.system import System sys.path.append('..') from lib.line_notif import send_message from lib.utils import matrics_rotate from lib.utils import reduce_mem_usage, current_time, unpickle, to_pickle SYMBOL=['H', 'C', 'N', 'O', 'F'] ACSF_GENERATOR = ACSF( species = SYMBOL, rcut = 6.0, g2_params=[[1, 1], [1, 2], [1, 3]], g4_params=[[1, 1, 1], [1, 2, 1], [1, 1, -1], [1, 2, -1]], ) def get_scsf(data): ret_list = [] for molecule_name in data["mol_names"]: df = gb_structure.get_group(molecule_name) df = df.sort_values(['atom_index'], ascending=True) a = df.atom.values.tolist() xyz = df[['x','y','z']].values atom = System(symbols=a, positions=xyz) acsf = ACSF_GENERATOR.create(atom) acsf_df = pd.DataFrame(acsf) acsf_df.columns = [f"acsf_{c}" for c in range(acsf_df.shape[1])] acsf_df = pd.concat([df[["molecule_name", "atom_index"]].reset_index(drop=True), acsf_df.reset_index(drop=True)], axis=1) ret_list.append(acsf_df) return pd.concat(ret_list, axis=0) print("loading structures") structures = pd.read_csv("../input/structures.csv") molecule_names = np.sort(structures.molecule_name.unique()) gb_structure = structures.groupby("molecule_name") n_split = mp.cpu_count() unit = np.ceil(len(molecule_names) / n_split).astype(int) indexer = [[unit * (i), unit * (i + 1)] for i in range(n_split)] split_mol_names = [] for idx in indexer: split_mol_names.append(molecule_names[idx[0]:idx[1]]) mp_data = [{"mol_names": m} for m in split_mol_names] print("start multiprocessing") num_workers = mp.cpu_count() with mp.Pool(num_workers) as executor: features_chunk = executor.map(get_scsf, mp_data) df = pd.concat(features_chunk) to_pickle("../processed/v003/acsf_feat.pkl", df) #df.to_csv("../processed/v003/acsf_feat.csv") print("finished.")
198c683ce8f8d6109e25e666ec663c387887bcf4
7c66bba92b484e5fa6ee282ef39f2c26875ca775
/auto_login/weibo_auto_login.py
adbac7ea6274fa21e0b7a49a1bb7cc6022b031ae
[]
no_license
KqSMea8/PythonTools
a5ac17182b2689a706180dc349d59c2484d3984c
7279570b82fecbf59b71aa6b58ef975e90c660df
refs/heads/master
2020-04-13T04:19:19.209243
2018-12-24T05:13:12
2018-12-24T05:13:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,876
py
#!/usr/bin/env python # encoding: utf-8 """ @version: 1.0 @author: ‘yuxuecheng‘ @contact: [email protected] @software: PyCharm Community Edition @file: weibo_auto_login.py @time: 26/10/2017 09:49 """ import sys import urllib import urllib2 import cookielib import base64 import re import json import rsa import binascii import logging import time import os import traceback # import requests # from bs4 import BeautifulSoup # 新浪微博的模拟登陆 class WeiboLogin(object): def __init__(self): # 获取一个保存cookies的对象 # self.cj = cookielib.CookieJar() self.cj = cookielib.LWPCookieJar() def enable_cookies(self): # 将一个保存cookies对象和一个HTTP的cookie的处理器绑定 cookie_support = urllib2.HTTPCookieProcessor(self.cj) # 创建一个opener,设置一个handler用于处理http的url打开 opener = urllib2.build_opener(cookie_support, urllib2.HTTPHandler) # 安装opener,此后调用urlopen()时会使用安装过的opener对象 urllib2.install_opener(opener) @staticmethod def get_server_data(): """ 预登陆获得 servertime, nonce, pubkey, rsakv :return: """ # url = 'http://login.sina.com.cn/sso/prelogin.php?entry=weibo&callback=sinaSSOController.preloginCallBack&su=ZW5nbGFuZHNldSU0MDE2My5jb20%3D&rsakt=mod&checkpin=1&client=ssologin.js(v1.4.18)&_=1442991685270' prelogin_url_format = "https://login.sina.com.cn/sso/prelogin.php?entry=weibo&callback=sinaSSOController.preloginCallBack&su=&rsakt=mod&client=ssologin.js(v1.4.19)&_=%d" cur_time = int((time.time() * 1000)) prelogin_url = prelogin_url_format % cur_time data = urllib2.urlopen(prelogin_url).read() try: json_data = re.search(r'(\(.*\))', data).group(0) data = json.loads(json_data[1:-1]) server_time = str(data['servertime']) nonce = data['nonce'] pubkey = data['pubkey'] rsakv = data['rsakv'] return server_time, nonce, pubkey, rsakv except: logging.error('Get severtime error!') return None @staticmethod def get_password(password, servertime, nonce, pubkey): """ 获取加密后的密码 :param password: :param servertime: :param nonce: :param pubkey: :return: """ rsa_publickey = int(pubkey, 16) key = rsa.PublicKey(rsa_publickey, 65537) # 创建公钥 message = str(servertime) + '\t' + str(nonce) + '\n' + str(password) # 拼接明文js加密文件中得到 password = rsa.encrypt(message, key) # 加密 password = binascii.b2a_hex(password) # 将加密信息转换为16进制。 return password @staticmethod def get_username(user_name): """ 获取加密后的用户名 :param user_name: :return: """ user_name = urllib.quote(user_name) user_name = base64.encodestring(user_name)[:-1] return user_name @staticmethod def get_form_data( user_name, password, servertime, nonce, pubkey, rsakv ): """ 获取需要提交的表单数据 :param user_name: :param password: :param servertime: :param nonce: :param pubkey: :param rsakv: :return: """ user_name = WeiboLogin.get_username(user_name) psw = WeiboLogin.get_password(password, servertime, nonce, pubkey) form_data = { 'entry': 'weibo', 'gateway': '1', 'from': '', 'savestate': '7', 'useticket': '1', 'pagerefer': 'http://weibo.com/p/1005052679342531/home?from=page_100505&mod=TAB&pids=plc_main', 'vsnf': '1', 'su': user_name, 'service': 'miniblog', 'servertime': servertime, 'nonce': nonce, 'pwencode': 'rsa2', 'rsakv': rsakv, 'sp': psw, 'sr': '1366*768', 'encoding': 'UTF-8', 'prelt': '115', 'url': 'http://weibo.com/ajaxlogin.php?framelogin=1&callback=parent.sinaSSOController.feedBackUrlCallBack', 'returntype': 'META' } form_data = urllib.urlencode(form_data) return form_data # 登陆函数 def login(self, username, password): self.enable_cookies() url = 'https://login.sina.com.cn/sso/login.php?client=ssologin.js(v1.4.19)' servertime, nonce, pubkey, rsakv = WeiboLogin.get_server_data() formData = WeiboLogin.get_form_data(username, password, servertime, nonce, pubkey, rsakv) headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 6.3; WOW64; rv:41.0) Gecko/20100101 Firefox/41.0'} req = urllib2.Request( url=url, data=formData, headers=headers ) result = urllib2.urlopen(req) text = result.read() logging.info("login data: %s" % text.decode("gb2312")) # 还没完!!!这边有一个重定位网址,包含在脚本中,获取到之后才能真正地登陆 try: url_data = re.search(r'(\(.*\))', text).group(0) login_url = url_data[2:-2] logging.info("login_url: %s" % login_url) login_req = urllib2.Request( url=login_url, headers=headers ) # 由于之前的绑定,cookies信息会直接写入 urllib2.urlopen(login_req) logging.info("Login success!") except urllib2.URLError as urle: traceback.print_exc(urle) logging.error('Login error! Error message: %s' % urle.message) return -1 except Exception as e: logging.error(e) return -1 # 访问主页,把主页写入到文件中 # url = 'http://weibo.com/u/2679342531/home?topnav=1&wvr=6' url = 'http://www.weibo.com/linusyuno1/home?wvr=5&lf=reg' request = urllib2.Request(url) response = urllib2.urlopen(request) logging.info(response.headers.dict) text = response.read() filename = os.getcwd() + os.path.sep + "weibo.html" fp_raw = open(filename, "w+") fp_raw.write(text) fp_raw.close() logging.info(text.decode("gbk")) if __name__ == "__main__": init_logging("weibo") logging.info(u'新浪微博模拟登陆:') # username = raw_input(u'用户名:') # password = raw_input(u'密码:') username = "[email protected]" password = "yuxc870704" weibologin = WeiboLogin() weibologin.login(username, password) filename = os.getcwd() + os.path.sep + 'cookie.txt' weibologin.cj.save(filename)
847889e16e3bd3550569db29c5361a86553d6bf7
f4b60f5e49baf60976987946c20a8ebca4880602
/lib64/python2.7/site-packages/acimodel-1.3_2j-py2.7.egg/cobra/modelimpl/ident/contextelement.py
b380cc640393755a40695dbc4560e4f854377a06
[]
no_license
cqbomb/qytang_aci
12e508d54d9f774b537c33563762e694783d6ba8
a7fab9d6cda7fadcc995672e55c0ef7e7187696e
refs/heads/master
2022-12-21T13:30:05.240231
2018-12-04T01:46:53
2018-12-04T01:46:53
159,911,666
0
0
null
2022-12-07T23:53:02
2018-12-01T05:17:50
Python
UTF-8
Python
false
false
4,121
py
# coding=UTF-8 # ********************************************************************** # Copyright (c) 2013-2016 Cisco Systems, Inc. All rights reserved # written by zen warriors, do not modify! # ********************************************************************** from cobra.mit.meta import ClassMeta from cobra.mit.meta import StatsClassMeta from cobra.mit.meta import CounterMeta from cobra.mit.meta import PropMeta from cobra.mit.meta import Category from cobra.mit.meta import SourceRelationMeta from cobra.mit.meta import NamedSourceRelationMeta from cobra.mit.meta import TargetRelationMeta from cobra.mit.meta import DeploymentPathMeta, DeploymentCategory from cobra.model.category import MoCategory, PropCategory, CounterCategory from cobra.mit.mo import Mo # ################################################## class ContextElement(Mo): """ The identity context element. """ meta = ClassMeta("cobra.model.ident.ContextElement") meta.moClassName = "identContextElement" meta.rnFormat = "id-[%(eDn)s]" meta.category = MoCategory.REGULAR meta.label = "None" meta.writeAccessMask = 0x1 meta.readAccessMask = 0x1 meta.isDomainable = False meta.isReadOnly = True meta.isConfigurable = False meta.isDeletable = False meta.isContextRoot = False meta.parentClasses.add("cobra.model.ident.Context") meta.rnPrefixes = [ ('id-', True), ] prop = PropMeta("str", "childAction", "childAction", 4, PropCategory.CHILD_ACTION) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("deleteAll", "deleteall", 16384) prop._addConstant("deleteNonPresent", "deletenonpresent", 8192) prop._addConstant("ignore", "ignore", 4096) meta.props.add("childAction", prop) prop = PropMeta("str", "dn", "dn", 1, PropCategory.DN) prop.label = "None" prop.isDn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("dn", prop) prop = PropMeta("str", "eDn", "eDn", 347, PropCategory.REGULAR) prop.label = "Element DN" prop.isConfig = True prop.isAdmin = True prop.isCreateOnly = True prop.isNaming = True meta.props.add("eDn", prop) prop = PropMeta("str", "lcOwn", "lcOwn", 9, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "local" prop._addConstant("implicit", "implicit", 4) prop._addConstant("local", "local", 0) prop._addConstant("policy", "policy", 1) prop._addConstant("replica", "replica", 2) prop._addConstant("resolveOnBehalf", "resolvedonbehalf", 3) meta.props.add("lcOwn", prop) prop = PropMeta("str", "modTs", "modTs", 7, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "never" prop._addConstant("never", "never", 0) meta.props.add("modTs", prop) prop = PropMeta("str", "rn", "rn", 2, PropCategory.RN) prop.label = "None" prop.isRn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("rn", prop) prop = PropMeta("str", "sDn", "sDn", 348, PropCategory.REGULAR) prop.label = "Segment DN" prop.isImplicit = True prop.isAdmin = True meta.props.add("sDn", prop) prop = PropMeta("str", "status", "status", 3, PropCategory.STATUS) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("created", "created", 2) prop._addConstant("deleted", "deleted", 8) prop._addConstant("modified", "modified", 4) meta.props.add("status", prop) meta.namingProps.append(getattr(meta.props, "eDn")) getattr(meta.props, "eDn").needDelimiter = True def __init__(self, parentMoOrDn, eDn, markDirty=True, **creationProps): namingVals = [eDn] Mo.__init__(self, parentMoOrDn, markDirty, *namingVals, **creationProps) # End of package file # ##################################################
9a0e63c5b5b8525ef929e64c55a91bb636cdfab2
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/Cases/2938/.mooctest/answer.py
8566383381c158a21b1b6cefb037db2930fa8950
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
449
py
#include<bits/stdc++.h>//头文件 using namespace std; string a[100];//定义要排序的字符串数组 stringstream ss;//百度一下,你就知道 int main(){ for(int i=1;i<=100;i++){//开始存入1-1000的数 ss<<i; ss>>a[i-1]; ss.str("");//清空缓存 ss.clear();//充值(重置)状态 } sort(a,a+100);//排序 for(int i=0;i<100;i++) cout<<a[i]<<endl;//输出 return 0;//完美结束 }
8885b77cdd0914bc461b0303e7c24a2db6ac1e80
2be8a9f06d4003d12c0a727fb83d284c31a53050
/HoudiniHotBox17.0/lib/Cd_Material.py
78316d6bcb22180bb4bd80f79268dcbe13118016
[]
no_license
LiuLiangFx/SmileHotBOX
7551d9578b2defe612950cb8e3bffdb85024cede
8bd8eac69b3c2a9824b9aa4488ca77789bea8d85
refs/heads/master
2021-01-01T10:22:26.959731
2020-02-09T03:16:32
2020-02-09T03:16:32
239,236,801
0
0
null
2020-02-09T02:47:18
2020-02-09T02:47:18
null
UTF-8
Python
false
false
1,494
py
import hou class Cd_Material: def __init__(self): self.pane=hou.ui.paneTabOfType(hou.paneTabType.NetworkEditor) self.node= hou.selectedNodes()[0] fl=open('material.txt', 'w') fl.write(self.node.path()) fl.close() def run(self): if self.node.type().name() == "material" and self.node.parm("shop_materialpath1").eval() == "": self.pane.cd("/shop") elif self.node.type().name() == "material" and self.node.parm("shop_materialpath1").eval() != "": try: mNode = hou.node(self.node.parm("shop_materialpath1").eval()) mNode.allowEditingOfContents() self.pane.cd(mNode.path()) except: self.pane.cd("/shop") if self.node.type().name() == "geo" and self.node.parm("shop_materialpath").eval() == "": self.pane.cd("/shop") elif self.node.type().name() == "geo" and self.node.parm("shop_materialpath").eval() != "": try: mNode = hou.node(self.node.parm("shop_materialpath").eval()) mNode.allowEditingOfContents() self.pane.cd(mNode.path()) except: self.pane.cd("/shop") a= Cd_Material() a.run()
82d781cf2b96438286ea7fd29e2c1490e21df986
6191bad7750404bc0bcaec43a8dea51b52980f04
/Seção_07/Collections/deque.py
b4b481fd5e7d3175e21b72433dcb6f37509d11ff
[]
no_license
Lehcs-py/guppe
abfbab21c1b158b39251fa6234a4a98ce5f31c2a
2ff007bce88e065e6d3020971efd397ec7f7084b
refs/heads/main
2023-02-26T18:43:06.052699
2021-02-07T18:22:53
2021-02-07T18:22:53
330,180,078
0
0
null
null
null
null
UTF-8
Python
false
false
182
py
from collections import deque deq = deque('LEHCS') print(deq) deq.append('A') print(deq) deq.appendleft('D') print(deq) print(deq.pop()) print(deq) print(deq.popleft()) print(deq)
438033b0dd31378c6fc09ace40f3c3bee1d9bafe
e5b4ed93d6666e195e96a265d3e7cfe4243a7300
/hunter/hunter.py
0914e6258d70bb3bcec304a85ffabec2451f20d3
[]
no_license
Spider251/python
934f5b8b923c2b61186a6df8445957290e5c4c74
8b1931f862e1d5c29fed9af624bcac94c1d25755
refs/heads/master
2020-04-05T11:58:04.558098
2018-11-09T12:06:06
2018-11-09T12:06:06
156,852,553
0
0
null
null
null
null
UTF-8
Python
false
false
1,098
py
''' 实现猎人的功能 需要传入的参数:1.所有人员的字典 ''' # person 所有角色共有的属性 # survival 所有人员存活情况{1:0,2:1...} 键1代表角色号码,值0为死亡,1为存活 class hunter: def __init__(self,survival): self.survival = survival def fun(self): for i in self.survival: if i == 2: if self.survival[i] == 1: pass elif self.survival[i] == 0: print("猎人已经死亡") self.say() def say(self): while True: a = input("杀人Y/放弃N:") if a == 'N': print("结束") elif a == 'Y': print("请选择要带走的角色:",end="") for i in self.survival: if i != 2: print(i,end=" ") print() a = input("杀死:") print(a,"已死") break if __name__ == '__main__': a = {1:0,2:0,3:1} hunter = hunter(a) hunter.fun()
1fc8cb941330ce78d411f3edb862796a171a89fc
e77b92df446f0afed18a923846944b5fd3596bf9
/Inflearn_algo/section7_dfs_bfs/pro1_maxScore_re.py
7feac790f2615b319b2bc54fde9f4010284f4fdd
[]
no_license
sds1vrk/Algo_Study
e40ca8eb348d1fc6f88d883b26195b9ee6f35b2e
fbbc21bb06bb5dc08927b899ddc20e6cde9f0319
refs/heads/main
2023-06-27T05:49:15.351644
2021-08-01T12:43:06
2021-08-01T12:43:06
356,512,348
0
0
null
null
null
null
UTF-8
Python
false
false
635
py
# 최대 점수 구하기 (DFS) # 문제를 푼다, 안푼다라는 개념으로 가야됨 import sys sys.stdin=open("input.txt","r") n,m=map(int,input().split()) ss=[] tt=[] for i in range(n): a,b=map(int,input().split()) ss.append(a) tt.append(b) max_score=-1 def dfs(l,s,t): global max_score # 가지치기 t가 m을 넘으면 더이상 할 필요 없음 if t>m: return if l==n: if s>max_score: max_score=s else : # 1번 문제를 푼다 dfs(l+1,s+ss[l],t+tt[l]) # 문제를 풀지 않는다 dfs(l+1,s,t) dfs(0,0,0) print(max_score)
3674de65b0e09eba8a92b497cf4a7530fb460826
d53bc632503254ca0d5099fe457c02c07212a131
/cookieproject1/cookieproject1/wsgi.py
0e0d958b3a4961808057c49586b4e5768c75d831
[]
no_license
srikar1993/django
ba8428f6e1162cc40f2d034126e7baf29eb62edc
2199d5d94accc7bce5b3fac4a4b7b1444e39b35f
refs/heads/master
2023-07-14T21:10:52.654992
2021-08-26T06:37:04
2021-08-26T06:37:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
405
py
""" WSGI config for cookieproject1 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'cookieproject1.settings') application = get_wsgi_application()
eb6f175b0c5788c950623020ee524b875e28fc23
bafd37fdbaf76d5d7dabd9c07985969b3924f9c8
/example_client/example.py
9671da3b0660af7e0bb9fe806d6331467f1918ae
[ "Apache-2.0" ]
permissive
k24dizzle/nagios_registration
2c1c95c7c871ee8ed31de46d555c812f2c0f41c8
be18dbadd2c08def81e795e4afe2fe2cf41775cf
refs/heads/master
2020-03-08T11:54:30.569982
2015-07-16T18:01:07
2015-07-16T18:01:07
128,111,583
1
0
null
2018-04-04T19:32:53
2018-04-04T19:32:52
null
UTF-8
Python
false
false
3,263
py
import oauth2 import json ### # # This script will create 2 hosts, and add them to a host group. # It will then create a service, and assign that service to both hosts. # It will then deploy a new nagios configuration file. # ### consumer_key = "OAUTH_KEY" consumer_secret = "OAUTH_SECRET" registration_server = "http://localhost:8000" ### # # You can create a consumer key and secret on the nagios_registration # server with a django management command: # # python manage.py create_consumer # ### consumer = oauth2.Consumer(key=consumer_key, secret=consumer_secret) client = oauth2.Client(consumer) # Variables used by the actual requests below hostname1 = "example app host" address1 = "127.0.0.1" hostname2 = "second app host" address2 = "127.0.0.2" groupname = "example_app_servers" alias = "Example App Servers" base_service = "24x7-active-service" service_description = "Disk Usage" check_command = "check_remote!disk_check.py!98!99" # End of settings, now just making requests to the server # Create the 2 hosts client.request("%s/api/v1/host" % (registration_server), method='POST', body=json.dumps({"name": hostname1, "address": address1}), headers={"Content-Type": "application/json"}) client.request("%s/api/v1/host" % (registration_server), method='POST', body=json.dumps({"name": hostname2, "address": address2}), headers={"Content-Type": "application/json"}) # Create the hostgroup client.request("%s/api/v1/hostgroup" % (registration_server), method='POST', body=json.dumps({"name": groupname, "alias": alias}), headers={"Content-Type": "application/json"}) # Add the hosts to the hostgroup client.request("%s/api/v1/hostgroup" % (registration_server), method='PATCH', body=json.dumps({"group": groupname, "host": hostname1}), headers={"Content-Type": "application/json"}) client.request("%s/api/v1/hostgroup" % (registration_server), method='PATCH', body=json.dumps({"group": groupname, "host": hostname2}), headers={"Content-Type": "application/json"}) # Create a service client.request("%s/api/v1/service" % (registration_server), method='POST', body=json.dumps({"base_service": base_service, "description": service_description, "check_command": check_command}), headers={"Content-Type": "application/json"}) # Add the service to the 2 hosts client.request("%s/api/v1/service" % (registration_server), method='PATCH', body=json.dumps({"service": service_description, "host": hostname1}), headers={"Content-Type": "application/json"}) client.request("%s/api/v1/service" % (registration_server), method='PATCH', body=json.dumps({"service": service_description, "host": hostname2}), headers={"Content-Type": "application/json"}) # Deploy the changes client.request("%s/api/v1/deploy" % (registration_server), method="POST") print "Done!"
05546c27ea40660996b98f84d8a1a0f04a42c288
85bf9a13bf62c1f074894d134c23dd992ae8688c
/problems/p317/Solution.py
6d55e5a066806320f5503f718d38b8fa74f2166f
[]
no_license
pololee/oj-leetcode
4cca3d309b2c9931d15d3cec4b07b5d9d22733ef
78a8b27ee108ba93aa7b659665976112f48fc2c2
refs/heads/master
2020-06-21T02:15:26.882273
2020-02-06T04:56:21
2020-02-06T04:56:21
197,320,113
0
0
null
2020-02-06T04:56:23
2019-07-17T05:20:02
Python
UTF-8
Python
false
false
2,336
py
import collections import sys class Solution: DIRECTIONS = [(1, 0), (0, 1), (-1, 0), (0, -1)] def shortestDistance(self, grid): """ :type grid: List[List[int]] :rtype: int """ if not grid: return 0 row_size = len(grid) col_size = len(grid[0]) distance = [[0 for _ in range(col_size)] for _ in range(row_size)] reaches = [[0 for _ in range(col_size)] for _ in range(row_size)] num_of_buildings = 0 for i in range(row_size): for j in range(col_size): if grid[i][j] == 1: num_of_buildings += 1 self.bfs(grid, distance, reaches, i, j) shortest = sys.maxsize for i in range(row_size): for j in range(col_size): if grid[i][j] == 0 and reaches[i][j] == num_of_buildings: shortest = min(shortest, distance[i][j]) if shortest == sys.maxsize: return -1 return shortest def bfs(self, grid, distance, reaches, istart, jstart): row_size = len(grid) col_size = len(grid[0]) visited = [[False for _ in range(col_size)] for _ in range(row_size)] queue = collections.deque() queue.append((istart, jstart)) visited[istart][jstart] = True level = 0 while queue: size = len(queue) for _ in range(size): row, col = queue.popleft() if grid[row][col] == 0: distance[row][col] += level reaches[row][col] += 1 for drow, dcol in self.DIRECTIONS: new_row = row + drow new_col = col + dcol if new_row >= 0 and new_row < row_size and new_col >= 0 and new_col < col_size and grid[new_row][new_col] == 0 and not visited[new_row][new_col]: visited[new_row][new_col] = True queue.append((new_row, new_col)) level += 1 def main(): test = [[1, 0, 2, 0, 1], [0, 0, 0, 0, 0], [0, 0, 1, 0, 0]] sol = Solution() print(sol.shortestDistance(test)) if __name__ == '__main__': main()
acbbec5e9fde66dc1ec45b08c53724a5018010e7
e3365bc8fa7da2753c248c2b8a5c5e16aef84d9f
/indices/tenderli.py
28ba6f38f41106cd5c55dcedcbdf538f5a5cc99c
[]
no_license
psdh/WhatsintheVector
e8aabacc054a88b4cb25303548980af9a10c12a8
a24168d068d9c69dc7a0fd13f606c080ae82e2a6
refs/heads/master
2021-01-25T10:34:22.651619
2015-09-23T11:54:06
2015-09-23T11:54:06
42,749,205
2
3
null
2015-09-23T11:54:07
2015-09-18T22:06:38
Python
UTF-8
Python
false
false
835
py
ii = [('GodwWSL2.py', 4), ('FerrSDO3.py', 3), ('WilbRLW.py', 1), ('WilbRLW4.py', 2), ('AubePRP2.py', 1), ('CookGHP.py', 1), ('KembFJ1.py', 2), ('WilbRLW5.py', 2), ('TennAP.py', 1), ('BailJD2.py', 3), ('WilbRLW2.py', 1), ('LyttELD.py', 3), ('CoopJBT2.py', 1), ('GrimSLE.py', 1), ('AinsWRR3.py', 2), ('RoscTTI2.py', 2), ('ClarGE.py', 8), ('LandWPA.py', 2), ('GilmCRS.py', 3), ('AinsWRR.py', 1), ('MedwTAI.py', 1), ('LandWPA2.py', 2), ('FerrSDO2.py', 7), ('TalfTIT.py', 1), ('CoopJBT.py', 3), ('SoutRD2.py', 1), ('WheeJPT.py', 3), ('HowiWRL2.py', 1), ('BailJD3.py', 3), ('MereHHB.py', 1), ('HogaGMM.py', 2), ('MartHRW.py', 1), ('DequTKM.py', 1), ('KembFJ2.py', 2), ('AinsWRR2.py', 1), ('ClarGE3.py', 2), ('RogeSIP.py', 2), ('DibdTRL.py', 2), ('HogaGMM2.py', 1), ('MartHSI.py', 1), ('BowrJMM3.py', 1), ('ClarGE4.py', 2), ('AdamJOA.py', 1)]
4120d60565a39b46cd5b6d64ed972b8c46931722
5a298ece5b17e6e993d50a855027f265e115e2bd
/utilities/filter_data.py
99687a7e234137d21978c275dd56b29a9d74c2f1
[]
no_license
hvk3/IR_project
86b8a1176f6a8ed541f179f1c541eb139dde0295
ae6deea2276f0a76bfa23482fd1b7a4c1f039264
refs/heads/master
2021-10-16T17:33:11.258479
2019-02-12T08:45:51
2019-02-12T08:45:51
118,168,898
0
0
null
null
null
null
UTF-8
Python
false
false
569
py
from pymongo import MongoClient from langdetect import detect from tqdm import tqdm client = MongoClient() db = client.youtube8m ds_1 = db.iteration3 ds_2 = db.iteration4 ds_2.remove() print("Before:", ds_1.find().count()) for record in tqdm(ds_1.find()): title = record['metadata']['title'] description = record['metadata']['description'] # if len(description) > 0 and len(title) > 0: # ds_2.insert_one(record) try: if detect(description) == 'en': #3: title, #4: description ds_2.insert_one(record) except: continue print("After:", ds_2.find().count())
87466cd291f6c19586b503ef7109c6a64acf8ca6
39157a854806af4db51b986adf5096bd342bacdb
/fuzznumpy/main.py
68c4295fe915c1b180f9319956c9abc08d8c52e3
[]
no_license
xcainiao/fuzzing
b6b43550f7a5c05595a180d111d9ec03e4710293
5cadbe3e1bcc9090a68b1006cb5b6b76db990ae1
refs/heads/master
2020-03-30T01:51:59.811511
2018-09-27T14:25:05
2018-09-27T14:25:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
410
py
import fuzz import numpy as np from ctypes import CDLL test = CDLL("c/test.so") test.init() fuzz.init() while 1: func = fuzz.generate() # func = """import numpy\nnumpy.half(-1).choose(numpy.void(1), numpy.broadcast_arrays((1,)))""" test.copybuff(func) try: exec(func, {"np":np}) except Exception as e: # print e continue print func fuzz.register(func)
1df190b393e91b1201a3c30b120bc9a49a40a1b8
65329299fca8dcf2e204132624d9b0f8f8f39af7
/napalm_yang/models/openconfig/network_instances/network_instance/protocols/protocol/ospfv2/areas/area/lsdb/lsa_types/lsa_type/lsas/lsa/opaque_lsa/router_information/tlvs/tlv/segment_routing_sid_label_range/__init__.py
e65b58e4df63d726184cc67034cd38bbeac27625
[ "Apache-2.0" ]
permissive
darylturner/napalm-yang
bf30420e22d8926efdc0705165ed0441545cdacf
b14946b884ad2019b896ee151285900c89653f44
refs/heads/master
2021-05-14T12:17:37.424659
2017-11-17T07:32:49
2017-11-17T07:32:49
116,404,171
0
0
null
2018-01-05T16:21:37
2018-01-05T16:21:36
null
UTF-8
Python
false
false
9,972
py
from operator import attrgetter from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType from pyangbind.lib.yangtypes import YANGBool, YANGListType, YANGDynClass, ReferenceType from pyangbind.lib.base import PybindBase from decimal import Decimal from bitarray import bitarray import __builtin__ import tlvs class segment_routing_sid_label_range(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module openconfig-network-instance - based on the path /network-instances/network-instance/protocols/protocol/ospfv2/areas/area/lsdb/lsa-types/lsa-type/lsas/lsa/opaque-lsa/router-information/tlvs/tlv/segment-routing-sid-label-range. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: The Segment Identifier (SID) or label ranges that are supported by the local system for Segment Routing """ __slots__ = ('_pybind_generated_by', '_path_helper', '_yang_name', '_extmethods', '__tlvs',) _yang_name = 'segment-routing-sid-label-range' _pybind_generated_by = 'container' def __init__(self, *args, **kwargs): self._path_helper = False self._extmethods = False self.__tlvs = YANGDynClass(base=tlvs.tlvs, is_container='container', yang_name="tlvs", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='container', is_config=False) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path()+[self._yang_name] else: return [u'network-instances', u'network-instance', u'protocols', u'protocol', u'ospfv2', u'areas', u'area', u'lsdb', u'lsa-types', u'lsa-type', u'lsas', u'lsa', u'opaque-lsa', u'router-information', u'tlvs', u'tlv', u'segment-routing-sid-label-range'] def _get_tlvs(self): """ Getter method for tlvs, mapped from YANG variable /network_instances/network_instance/protocols/protocol/ospfv2/areas/area/lsdb/lsa_types/lsa_type/lsas/lsa/opaque_lsa/router_information/tlvs/tlv/segment_routing_sid_label_range/tlvs (container) YANG Description: Sub-TLVs of the SID/Label range TLV of the RI LSA """ return self.__tlvs def _set_tlvs(self, v, load=False): """ Setter method for tlvs, mapped from YANG variable /network_instances/network_instance/protocols/protocol/ospfv2/areas/area/lsdb/lsa_types/lsa_type/lsas/lsa/opaque_lsa/router_information/tlvs/tlv/segment_routing_sid_label_range/tlvs (container) If this variable is read-only (config: false) in the source YANG file, then _set_tlvs is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_tlvs() directly. YANG Description: Sub-TLVs of the SID/Label range TLV of the RI LSA """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=tlvs.tlvs, is_container='container', yang_name="tlvs", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='container', is_config=False) except (TypeError, ValueError): raise ValueError({ 'error-string': """tlvs must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=tlvs.tlvs, is_container='container', yang_name="tlvs", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='container', is_config=False)""", }) self.__tlvs = t if hasattr(self, '_set'): self._set() def _unset_tlvs(self): self.__tlvs = YANGDynClass(base=tlvs.tlvs, is_container='container', yang_name="tlvs", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='container', is_config=False) tlvs = __builtin__.property(_get_tlvs) _pyangbind_elements = {'tlvs': tlvs, } import tlvs class segment_routing_sid_label_range(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module openconfig-network-instance-l2 - based on the path /network-instances/network-instance/protocols/protocol/ospfv2/areas/area/lsdb/lsa-types/lsa-type/lsas/lsa/opaque-lsa/router-information/tlvs/tlv/segment-routing-sid-label-range. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: The Segment Identifier (SID) or label ranges that are supported by the local system for Segment Routing """ __slots__ = ('_pybind_generated_by', '_path_helper', '_yang_name', '_extmethods', '__tlvs',) _yang_name = 'segment-routing-sid-label-range' _pybind_generated_by = 'container' def __init__(self, *args, **kwargs): self._path_helper = False self._extmethods = False self.__tlvs = YANGDynClass(base=tlvs.tlvs, is_container='container', yang_name="tlvs", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='container', is_config=False) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path()+[self._yang_name] else: return [u'network-instances', u'network-instance', u'protocols', u'protocol', u'ospfv2', u'areas', u'area', u'lsdb', u'lsa-types', u'lsa-type', u'lsas', u'lsa', u'opaque-lsa', u'router-information', u'tlvs', u'tlv', u'segment-routing-sid-label-range'] def _get_tlvs(self): """ Getter method for tlvs, mapped from YANG variable /network_instances/network_instance/protocols/protocol/ospfv2/areas/area/lsdb/lsa_types/lsa_type/lsas/lsa/opaque_lsa/router_information/tlvs/tlv/segment_routing_sid_label_range/tlvs (container) YANG Description: Sub-TLVs of the SID/Label range TLV of the RI LSA """ return self.__tlvs def _set_tlvs(self, v, load=False): """ Setter method for tlvs, mapped from YANG variable /network_instances/network_instance/protocols/protocol/ospfv2/areas/area/lsdb/lsa_types/lsa_type/lsas/lsa/opaque_lsa/router_information/tlvs/tlv/segment_routing_sid_label_range/tlvs (container) If this variable is read-only (config: false) in the source YANG file, then _set_tlvs is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_tlvs() directly. YANG Description: Sub-TLVs of the SID/Label range TLV of the RI LSA """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=tlvs.tlvs, is_container='container', yang_name="tlvs", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='container', is_config=False) except (TypeError, ValueError): raise ValueError({ 'error-string': """tlvs must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=tlvs.tlvs, is_container='container', yang_name="tlvs", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='container', is_config=False)""", }) self.__tlvs = t if hasattr(self, '_set'): self._set() def _unset_tlvs(self): self.__tlvs = YANGDynClass(base=tlvs.tlvs, is_container='container', yang_name="tlvs", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='container', is_config=False) tlvs = __builtin__.property(_get_tlvs) _pyangbind_elements = {'tlvs': tlvs, }
d33d903e7de59d03eac8b1c9b2af624e056b3328
b8faf65ea23a2d8b119b9522a0aa182e9f51d8b1
/vmraid/website/doctype/social_link_settings/social_link_settings.py
35954b6ce718f192fa921627f23f3e2a83b1b277
[ "MIT" ]
permissive
vmraid/vmraid
a52868c57b1999a8d648441eb9cd05815204345d
3c2e2a952003ba7ea2cf13673b9e79e127f4166e
refs/heads/main
2022-07-29T18:59:28.585133
2022-04-22T08:02:52
2022-04-22T08:02:52
372,473,120
0
0
null
null
null
null
UTF-8
Python
false
false
215
py
# -*- coding: utf-8 -*- # Copyright (c) 2020, VMRaid Technologies and contributors # License: MIT. See LICENSE # import vmraid from vmraid.model.document import Document class SocialLinkSettings(Document): pass
f819a142bd8930f08e51e57ed6af15a211801e81
4bcae7ca3aed842d647d9112547522cffa805d51
/0674.最长连续递增序列.py
43854333b238384701a6a84adb3ed71f0d9e3655
[]
no_license
SLKyrim/vscode-leetcode
fd5a163f801661db0dfae1d4fdfa07b79fdb82b6
65a271c05258f447d3e56755726f02179780eb8a
refs/heads/master
2021-07-03T03:15:28.883786
2021-02-23T06:19:18
2021-02-23T06:19:18
226,062,540
2
0
null
null
null
null
UTF-8
Python
false
false
1,286
py
# # @lc app=leetcode.cn id=674 lang=python3 # # [674] 最长连续递增序列 # # https://leetcode-cn.com/problems/longest-continuous-increasing-subsequence/description/ # # algorithms # Easy (45.18%) # Likes: 89 # Dislikes: 0 # Total Accepted: 30.7K # Total Submissions: 68K # Testcase Example: '[1,3,5,4,7]' # # 给定一个未经排序的整数数组,找到最长且连续的的递增序列,并返回该序列的长度。 # # # # 示例 1: # # 输入: [1,3,5,4,7] # 输出: 3 # 解释: 最长连续递增序列是 [1,3,5], 长度为3。 # 尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为5和7在原数组里被4隔开。 # # # 示例 2: # # 输入: [2,2,2,2,2] # 输出: 1 # 解释: 最长连续递增序列是 [2], 长度为1。 # # # # # 注意:数组长度不会超过10000。 # # # @lc code=start class Solution: def findLengthOfLCIS(self, nums: List[int]) -> int: res = 0 n = len(nums) if n == 0: return 0 if n == 1: return 1 cnt = 1 for i in range(1, n): if nums[i] > nums[i-1]: cnt += 1 else: res = max(res, cnt) cnt = 1 return max(res, cnt) # @lc code=end
b26dfc2cc4ffb4aa822cac635d3e83c1522e9304
04b3a30ca30c3a9cc459b06fe1842a500dd5ab51
/addresss/views.py
06c24539f8cc82d589e80f97797e2431e41d5162
[]
no_license
rahulsayon/Final-Ecommerce
17b7830e44ab86b7513f48d80fc1bb7f12c36516
ca0c860653ec1b80f0a3f012e338ecc2189019ac
refs/heads/master
2022-12-11T01:12:03.500783
2020-09-13T20:09:40
2020-09-13T20:09:40
295,228,975
0
0
null
null
null
null
UTF-8
Python
false
false
2,454
py
from django.shortcuts import render from .forms import AddressForm from django.shortcuts import redirect from billing.models import BillingProfile from django.utils.http import is_safe_url from addresss.models import Address # Create your views here. def checkout_address_create_view(request): form = AddressForm(request.POST or None) context = { "form" : form } next_ = request.GET.get('next') next_post = request.POST.get('next') redirect_path = next_ or next_post or None if form.is_valid(): print(form.cleaned_data) instance = form.save(commit=False) billing_profile , billing_profile_created = BillingProfile.objects.new_or_get(request) if billing_profile is not None: address_type = request.POST.get('address_type' , 'shipping') print("billinf profile" , billing_profile) instance.billing_profile = billing_profile instance.address_type = request.POST.get('address_type' , 'shipping') instance.save() request.session[address_type + "_address_id"] = instance.id print(address_type +"_address_id") else: print("error") return redirect("cart:checkout") if is_safe_url(redirect_path , request.get_host()): return redirect(redirect_path) else: return redirect("cart:checkout") return redirect("cart:checkout") def checkout_address_reuse_view(request): if request.user.is_authenticated: context = {} next_ = request.GET.get('next') next_post = request.POST.get('next') redirect_path = next_ or next_post or None if request.method == "POST": print(request.POST) shipping_address = request.POST.get('shipping_address', None) address_type = request.POST.get('address_type', 'shipping') billing_profile, billing_profile_created = BillingProfile.objects.new_or_get(request) if shipping_address is not None: qs = Address.objects.filter(billing_profile=billing_profile, id=shipping_address) if qs.exists(): request.session[address_type + "_address_id"] = shipping_address if is_safe_url(redirect_path, request.get_host()): return redirect(redirect_path) return redirect("cart:checkout")
a75d04852aca116b804d4a5aa819b764cddff608
5d9636dcae2471d700da5583cfc0359644c7322d
/pugsley/auth/routes.py
78e16175c4ac581d44b4ba571f9a66b393c72966
[ "MIT" ]
permissive
kfields/pugsley-lite
93a4c7c334fd9b4f3ab68acc565b1f29a4a31b99
9fdd4868895b38fb81855952f19bdf9cca1635b3
refs/heads/master
2023-01-24T18:29:15.338112
2019-08-11T20:33:30
2019-08-11T20:33:30
179,791,236
1
0
MIT
2023-01-09T22:22:33
2019-04-06T05:09:26
CSS
UTF-8
Python
false
false
4,521
py
from flask import render_template, redirect, url_for, flash, request, jsonify from werkzeug.urls import url_parse from flask_login import login_user, logout_user, current_user from flask_babel import _ from pugsley import db from pugsley.jwt import encode_auth_token from pugsley.auth import bp from pugsley.auth.forms import LoginForm, RegistrationForm, \ ResetPasswordRequestForm, ResetPasswordForm from pugsley.models.users import User from pugsley.auth.emails import send_password_reset_email @bp.route('/login', methods=['GET', 'POST']) def login(): if current_user.is_authenticated: return redirect(url_for('main.index')) form = LoginForm() if form.validate_on_submit(): email = form.email.data if '@' in email: user = User.query.filter_by(email=form.email.data).first() else: user = User.query.filter_by(username=form.email.data).first() if user is None or not user.check_password(form.password.data): flash(_('Invalid email or password')) return redirect(url_for('auth.login')) login_user(user, remember=form.remember_me.data) next_page = request.args.get('next') if not next_page or url_parse(next_page).netloc != '': next_page = url_for('main.index') return redirect(next_page) # return render_template('login.html', title=_('Log In'), form=form) return render_template('layouts/auth-default.html', content=render_template( 'pages/login.html', form=form ) ) @bp.route('/logout') def logout(): logout_user() return redirect(url_for('main.index')) @bp.route('/register', methods=['GET', 'POST']) def register(): if current_user.is_authenticated: return redirect(url_for('main.index')) form = RegistrationForm() if form.validate_on_submit(): # user = User(first_name=form.first_name.data, last_name=form.last_name.data, username=form.username.data, email=form.email.data) user = User(username=form.email.data, email=form.email.data) user.set_password(form.password.data) db.session.add(user) db.session.commit() flash(_('Congratulations, you are now a registered user!')) return redirect(url_for('auth.login')) # return render_template('register.html', title=_('Register'), form=form) return render_template('layouts/auth-default.html', content=render_template( 'pages/register.html', form=form ) ) @bp.route('/reset_password_request', methods=['GET', 'POST']) def reset_password_request(): if current_user.is_authenticated: return redirect(url_for('main.index')) form = ResetPasswordRequestForm() if form.validate_on_submit(): user = User.query.filter_by(email=form.email.data).first() if user: send_password_reset_email(user) flash( _('Check your email for the instructions to reset your password')) return redirect(url_for('auth.login')) return render_template('reset_password_request.html', title=_('Reset Password'), form=form) @bp.route('/reset_password/<token>', methods=['GET', 'POST']) def reset_password(token): if current_user.is_authenticated: return redirect(url_for('main.index')) user = User.verify_reset_password_token(token) if not user: return redirect(url_for('main.index')) form = ResetPasswordForm() if form.validate_on_submit(): user.set_password(form.password.data) db.session.commit() flash(_('Your password has been reset.')) return redirect(url_for('auth.login')) return render_template('reset_password.html', form=form) @bp.route('/token', methods=['POST']) def token(): if not request.is_json: return jsonify({"msg": "Missing JSON in request"}), 400 username = request.json.get('username', None) password = request.json.get('password', None) if not username: return jsonify({"msg": "Missing username parameter"}), 400 if not password: return jsonify({"msg": "Missing password parameter"}), 400 user = User.query.filter_by(username=username).first() if user is None or not user.check_password(password): return jsonify({"msg": "Bad username or password"}), 401 # Identity can be any data that is json serializable access_token = encode_auth_token(sub=username, id=user.id) print(access_token) return jsonify({"token": access_token.decode('utf-8')}), 200
d8982a501517e741145cac724e03b59326021d7d
09e5cfe06e437989a2ccf2aeecb9c73eb998a36c
/modules/dxtbx/command_line/print_header.py
0927cef0df1adb502a68d0f8709b4377dcad155a
[ "BSD-3-Clause" ]
permissive
jorgediazjr/dials-dev20191018
b81b19653624cee39207b7cefb8dfcb2e99b79eb
77d66c719b5746f37af51ad593e2941ed6fbba17
refs/heads/master
2020-08-21T02:48:54.719532
2020-01-25T01:41:37
2020-01-25T01:41:37
216,089,955
0
1
BSD-3-Clause
2020-01-25T01:41:39
2019-10-18T19:03:17
Python
UTF-8
Python
false
false
1,633
py
from __future__ import absolute_import, division, print_function import sys from scitbx.array_family import flex from dxtbx.format.FormatMultiImage import FormatMultiImage from dxtbx.format.Registry import Registry def print_header(): # this will do the lookup for every frame - this is strictly not needed # if all frames are from the same instrument for arg in sys.argv[1:]: print("=== %s ===" % arg) format_class = Registry.find(arg) print("Using header reader: %s" % format_class.__name__) i = format_class(arg) beam = i.get_beam() goniometer = i.get_goniometer() detector = i.get_detector() scan = i.get_scan() if beam is None: print("No beam model found") else: print(beam) if detector is None: print("No detector model found") else: print(detector) if goniometer is None: print("No goniometer model found") else: print(goniometer) if scan is None: print("No scan model found") else: print(scan) if not issubclass(format_class, FormatMultiImage): try: raw_data = i.get_raw_data() if not isinstance(raw_data, tuple): raw_data = (raw_data,) d = [p.as_1d() for p in raw_data] print("Total Counts: %d" % sum([flex.sum(p.select(p >= 0)) for p in d])) except AttributeError: print("Could not read image data") if __name__ == "__main__": print_header()
1c930c629d264c1b02af2492b5b962be70f570d9
d6589ff7cf647af56938a9598f9e2e674c0ae6b5
/nlp-automl-20191111/setup.py
7541638ca97742a773686465bb0c04174993e7bc
[ "Apache-2.0" ]
permissive
hazho/alibabacloud-python-sdk
55028a0605b1509941269867a043f8408fa8c296
cddd32154bb8c12e50772fec55429a9a97f3efd9
refs/heads/master
2023-07-01T17:51:57.893326
2021-08-02T08:55:22
2021-08-02T08:55:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,647
py
# -*- coding: utf-8 -*- """ Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import os from setuptools import setup, find_packages """ setup module for alibabacloud_nlp-automl20191111. Created on 30/12/2020 @author: Alibaba Cloud SDK """ PACKAGE = "alibabacloud_nlp_automl20191111" NAME = "alibabacloud_nlp-automl20191111" or "alibabacloud-package" DESCRIPTION = "Alibaba Cloud nlp-automl (20191111) SDK Library for Python" AUTHOR = "Alibaba Cloud SDK" AUTHOR_EMAIL = "[email protected]" URL = "https://github.com/aliyun/alibabacloud-python-sdk" VERSION = __import__(PACKAGE).__version__ REQUIRES = [ "alibabacloud_tea_util>=0.3.1, <1.0.0", "alibabacloud_tea_openapi>=0.1.0, <1.0.0", "alibabacloud_openapi_util>=0.0.3, <1.0.0", "alibabacloud_endpoint_util>=0.0.3, <1.0.0" ] LONG_DESCRIPTION = '' if os.path.exists('./README.md'): with open("README.md", encoding='utf-8') as fp: LONG_DESCRIPTION = fp.read() setup( name=NAME, version=VERSION, description=DESCRIPTION, long_description=LONG_DESCRIPTION, long_description_content_type='text/markdown', author=AUTHOR, author_email=AUTHOR_EMAIL, license="Apache License 2.0", url=URL, keywords=["alibabacloud","nlp","automl20191111"], packages=find_packages(exclude=["tests*"]), include_package_data=True, platforms="any", install_requires=REQUIRES, python_requires=">=3.6", classifiers=( "Development Status :: 4 - Beta", "Intended Audience :: Developers", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', "Topic :: Software Development" ) )
48692f6bb82436458dcda51926e85f92d86ed1ad
589b5eedb71d83c15d44fedf60c8075542324370
/project/stock_project/alpha_model/alpha_factor/ARAPIncomeTTM.py
605a216d31fef56f1a88b39a3a9a2b23dfa799dd
[]
no_license
rlcjj/quant
4c2be8a8686679ceb675660cb37fad554230e0d4
c07e8f0f6e1580ae29c78c1998a53774a15a67e1
refs/heads/master
2020-03-31T07:15:48.111511
2018-08-27T05:29:00
2018-08-27T05:29:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,685
py
import pandas as pd from quant.stock.stock import Stock from quant.stock.date import Date from quant.stock.stock_factor_operate import StockFactorOperate def ARAPIncomeTTM(beg_date, end_date): """ 因子说明:(预收账款 + 应付账款) / 营业总收入 TTM 最近一期财报 实时更新 若有一个为负值 结果为负值 """ # param ################################################################################# factor_name = 'ARAPIncomeTTM' ipo_num = 90 # read data ################################################################################# income = Stock().get_factor_h5("OperatingIncome", None, "primary_mfc") advance = Stock().get_factor_h5("AdvanceReceipts", None, "primary_mfc") payable = Stock().get_factor_h5("AccountsPayable", None, "primary_mfc") # data precessing ################################################################################# [advance, payable, income] = Stock().make_same_index_columns([advance, payable, income]) add = advance.add(payable) ratio = add.div(income) ratio = StockFactorOperate().change_quarter_to_daily_with_report_date(ratio, beg_date, end_date) res = ratio.T.dropna(how='all').T # save data ############################################################################# Stock().write_factor_h5(res, factor_name, "alpha_dfc") return res ############################################################################# if __name__ == '__main__': from datetime import datetime beg_date = '2004-01-01' end_date = datetime.today() data = ARAPIncomeTTM(beg_date, end_date) print(data)
ba5fe81af0632687c14d963ae372ba1b8ee5503f
a8750439f200e4efc11715df797489f30e9828c6
/CodeForces/EC_46_2_C_1.py
8ee3122998960e839a22312f1db953f98a96581f
[]
no_license
rajlath/rkl_codes
f657174305dc85c3fa07a6fff1c7c31cfe6e2f89
d4bcee3df2f501349feed7a26ef9828573aff873
refs/heads/master
2023-02-21T10:16:35.800612
2021-01-27T11:43:34
2021-01-27T11:43:34
110,989,354
0
0
null
null
null
null
UTF-8
Python
false
false
310
py
n = int(input()) a = [] for i in range(n): l, r = [int(x) for x in input().split()] a.append([l, 1]) a.append([r+1, -1]) a = sorted(a) ans = [0] * (n + 1) idx = 0 for i in range(len(a) - 1): idx += a[i][1] ans[idx] += a[i+1][0] - a[i][0] for i in range(1, n+1): print(ans[i], end = " ")
9b05b73cd5f0370491f151c54c36a981422be0f9
16b567ed93c10287f7b9e90ddc819512aadbcaf5
/filters/stopwords_filter.py
c69ebfd10592f81b4efc0b75d78a5a7c9c1a54df
[]
no_license
Rigel772/python-keyword-density
b3bdfb70e06e53264be7507e4111a923b40ea51a
c3a4469360de3d7c02dd9b8de2dc7eac45a3253a
refs/heads/master
2020-05-19T11:28:23.854324
2018-11-02T13:22:51
2018-11-02T13:22:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
647
py
#-*- coding: utf-8 -*- import os.path from .base_filter import BaseFilter class StopwordsFilter(BaseFilter): def __init__(self, country): super(StopwordsFilter, self).__init__() self.country = country stopword_fname = '%s.txt' % self.country folder_name = os.path.dirname(__file__) self.fname = os.path.join(folder_name, 'stopwords', stopword_fname) with open(self.fname, 'rb') as f: self.stopwords = {l.strip().decode('utf8') for l in f if l} def predicate(self, tok): """Returns True if tok not in stopwords else False""" return tok not in self.stopwords
e638da845ef167b11b3122f120cd0e44acefa0de
e93c6e93f612bca7f192adf539b4f489ad114ab5
/m01_basics/l_07_nested_data.py
6739ccff73e049c4db47923a80292b1b7f11a800
[ "MIT" ]
permissive
be1iever/python-52-weeks
8d57a10af9c0f5309ba21a9503a8fdf4bd82840c
185d8b3147c6bfb069d58e4933b74792081bf8f2
refs/heads/main
2023-08-19T08:21:45.330447
2021-09-21T15:00:28
2021-09-21T15:00:28
409,847,518
1
0
MIT
2021-09-24T05:51:14
2021-09-24T05:51:13
null
UTF-8
Python
false
false
2,506
py
from pprint import pprint from random import choice import copy from util.create_utils import create_network device = { "name": "r3-L-n7", "vendor": "cisco", "model": "catalyst 2960", "os": "ios", "interfaces": [ ] } print("\n\n----- device with no interfaces --------------------") for key, value in device.items(): print(f"{key:>16s} : {value}") interfaces = list() for index in range(0, 8): interface = { "name": "g/0/0/" + str(index), "speed": choice(["10", "100", "1000"]) } interfaces.append(interface) device["interfaces"] = interfaces print("\n\n----- device with interfaces --------------------") for key, value in device.items(): if key != "interfaces": print(f"{key:>16s} : {value}") else: print(f"{key:>16s} :") for interface in device["interfaces"]: print(f"\t\t\t\t\t{interface}") print() print("\n\n----- device with interfaces using pprint--------------------") pprint(device) print("\n\n----- network with devices and interfaces --------------------") network = create_network(num_devices=4, num_subnets=4) pprint(network) print("\n----- information about network --------------------") print(f"-- number of subnets: {len(network['subnets'])}") print(f"-- list of subnets: {network['subnets'].keys()}") print(f"-- list of subnets w/o extraneous: {', '.join(network['subnets'])}") print("\n----- network and devices nicely formatted --------------------") for subnet_address, subnet in network["subnets"].items(): print(f"\n-- subnet: {subnet_address}") for device in subnet["devices"]: print(f" |-- device: {device['name']:8} {device['ip']:10} {device['vendor']:>10} : {device['os']}") print("\n\n----- remember assignment vs shallow copy vs deep copy --------------------") print(" modify 'network' only, and see if assign/copy/deepcopy versions reflect that change") network_assign = network network["subnets"]["10.0.1.0"]["devices"][0]["name"] = "different name assigned" print(f" --- network == network_assign : {network==network_assign}") network_copy = copy.copy(network) network["subnets"]["10.0.1.0"]["devices"][0]["name"] = "another different name, copy this time" print(f" --- network == network_copy : {network==network_copy}") network_deepcopy = copy.deepcopy(network) network["subnets"]["10.0.1.0"]["devices"][0]["name"] = "this time with deep copy" print(f" --- network == network_deepcopy : {network==network_deepcopy}")
ce2469650940b0fa5dfceaad6a4836793f0f23b9
30fd01dbae99721069d936d5daa6a8050488a248
/hacker/FirefoxSQLite.py
7da8415a2e85749f5c5b4f1f6d446bc2933e030b
[]
no_license
chenshuo666/mypython
6b334ad42b117c2750129028e82037643d99ab6a
3cfcf49f2d6cc3733d244cc7eb212a4dba6a439a
refs/heads/master
2020-03-10T04:04:35.530485
2018-04-17T04:02:16
2018-04-17T04:02:16
129,182,623
0
0
null
null
null
null
UTF-8
Python
false
false
3,999
py
#!/usr/bin/python # coding=utf-8 import re import optparse import os import sqlite3 # 解析打印downloads.sqlite文件的内容,输出浏览器下载的相关信息 def printDownloads(downloadDB): conn = sqlite3.connect(downloadDB) c = conn.cursor() c.execute('SELECT name, source, datetime(endTime/1000000, \'unixepoch\') FROM moz_downloads;') print('\n[*] --- Files Downloaded --- ') for row in c: print('[+] File: ' + str(row[0]) + ' from source: ' + str(row[1]) + ' at: ' + str(row[2])) # 解析打印cookies.sqlite文件的内容,输出cookie相关信息 def printCookies(cookiesDB): try: conn = sqlite3.connect(cookiesDB) c = conn.cursor() c.execute('SELECT host, name, value FROM moz_cookies') print('\n[*] -- Found Cookies --') for row in c: host = str(row[0]) name = str(row[1]) value = str(row[2]) print('[+] Host: ' + host + ', Cookie: ' + name + ', Value: ' + value) except Exception as e: if 'encrypted' in str(e): print('\n[*] Error reading your cookies database.') print('[*] Upgrade your Python-Sqlite3 Library') # 解析打印places.sqlite文件的内容,输出历史记录 def printHistory(placesDB): try: conn = sqlite3.connect(placesDB) c = conn.cursor() c.execute("SELECT url, datetime(visit_date/1000000, 'unixepoch') FROM moz_places, moz_historyvisits WHERE visit_count > 0 AND moz_places.id==moz_historyvisits.place_id;") print('\n[*] -- Found History --') for row in c: url = str(row[0]) date = str(row[1]) print('[+] ' + date + ' - Visited: ' + url) except Exception as e: if 'encrypted' in str(e): print('\n[*] Error reading your places database.') print('[*] Upgrade your Python-Sqlite3 Library') exit(0) # 解析打印places.sqlite文件的内容,输出百度的搜索记录 def printBaidu(placesDB): conn = sqlite3.connect(placesDB) c = conn.cursor() c.execute( "SELECT url, datetime(visit_date/1000000, 'unixepoch') FROM moz_places, moz_historyvisits WHERE visit_count > 0 AND moz_places.id==moz_historyvisits.place_id;") print('\n[*] -- Found Baidu --') for row in c: url = str(row[0]) date = str(row[1]) if 'baidu' in url.lower(): r = re.findall(r'wd=.*?\&', url) if r: search = r[0].split('&')[0] search = search.replace('wd=', '').replace('+', ' ') print('[+] ' + date + ' - Searched For: ' + search) def main(): parser = optparse.OptionParser("[*]Usage: firefoxParse.py -p <firefox profile path> ") #C:\Users\用户名\AppData\Roaming\Mozilla\Firefox\Profiles\e28nsous.default,SQLite缓存的地址 parser.add_option('-p', dest='pathName', type='string', help='specify skype profile path') (options, args) = parser.parse_args() pathName = options.pathName if pathName == None: print(parser.usage) exit(0) elif os.path.isdir(pathName) == False: print('[!] Path Does Not Exist: ' + pathName) exit(0) else: downloadDB = os.path.join(pathName, 'downloads.sqlite') if os.path.isfile(downloadDB): printDownloads(downloadDB) else: print('[!] Downloads Db does not exist: ' + downloadDB) cookiesDB = os.path.join(pathName, 'cookies.sqlite') if os.path.isfile(cookiesDB): pass printCookies(cookiesDB) else: print('[!] Cookies Db does not exist:' + cookiesDB) placesDB = os.path.join(pathName, 'places.sqlite') if os.path.isfile(placesDB): printHistory(placesDB) printBaidu(placesDB) else: print('[!] PlacesDb does not exist: ' + placesDB) if __name__ == '__main__': main()
086f919dc5d77d92ce256911cf93cd83d411d684
e5f194129752f3f89eed53478416d2c92cde0259
/.cache/Microsoft/Python Language Server/stubs.v4/PW5N1gWcYNUaFmNEjFpBbn4_TkxeV53eiQaZBrpg6xw=/python3.pyi
8befe0f027be53bb4d55f3d4c9c1399a04b4cd3d
[]
no_license
stepin-s/st
1677fc25cb42c36afd76d2e3a48a1c0a5daf1b93
b4cf346a446d57210197ee7f6f809cbc0a5b8799
refs/heads/master
2023-07-27T17:37:39.268414
2021-05-25T12:08:10
2021-05-25T12:08:10
405,090,749
0
0
null
null
null
null
UTF-8
Python
false
false
230,782
pyi
class NotImplementedType(object): __class__ = NotImplementedType def __init__(self, *args, **kwargs): pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None def __reduce__(self): return ''; return () def __repr__(self): 'Return repr(self).' return '' @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class object: 'The base class of the class hierarchy.\n\nWhen called, it accepts no arguments and returns a new featureless\ninstance that has no instance attributes and cannot be given any.\n' __class__ = object def __delattr__(self, name): 'Implement delattr(self, name).' return None def __dir__(self): 'Default dir() implementation.' return [''] def __eq__(self, value): 'Return self==value.' return False def __format__(self, format_spec): 'Default object formatter.' return '' def __ge__(self, value): 'Return self>=value.' return False def __getattribute__(self, name): 'Return getattr(self, name).' pass def __gt__(self, value): 'Return self>value.' return False def __hash__(self): 'Return hash(self).' return 0 def __init__(self): 'The base class of the class hierarchy.\n\nWhen called, it accepts no arguments and returns a new featureless\ninstance that has no instance attributes and cannot be given any.\n' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None def __le__(self, value): 'Return self<=value.' return False def __lt__(self, value): 'Return self<value.' return False def __ne__(self, value): 'Return self!=value.' return False def __reduce__(self): 'Helper for pickle.' return ''; return () def __reduce_ex__(self, protocol): 'Helper for pickle.' return ''; return () def __repr__(self): 'Return repr(self).' return '' def __setattr__(self, name, value): 'Implement setattr(self, name, value).' return None def __sizeof__(self): 'Size of object in memory, in bytes.' return 0 def __str__(self): 'Return str(self).' return '' @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False __Object__ = object class type(object): "type(object_or_name, bases, dict)\ntype(object) -> the object's type\ntype(name, bases, dict) -> a new type" __base__ = object __bases__ = () __basicsize__ = 880 def __call__(self, *args, **kwargs): 'Call self as a function.' return cls() __class__ = type def __delattr__(self, name): 'Implement delattr(self, name).' return None __dict__ = {} __dictoffset__ = 264 def __dir__(self): 'Specialized __dir__ implementation for types.' return [''] __flags__ = 2148291584 def __getattribute__(self, name): 'Return getattr(self, name).' pass def __init__(self, object_or_name, bases, dict): "type(object_or_name, bases, dict)\ntype(object) -> the object's type\ntype(name, bases, dict) -> a new type" pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None def __instancecheck__(self, instance): 'Check if an object is an instance.' return False __itemsize__ = 40 __mro__ = () __name__ = 'type' @classmethod def __prepare__(cls, name, bases, **kwds): '__prepare__() -> dict\nused to create the namespace for the class statement' return None __qualname__ = 'type' def __repr__(self): 'Return repr(self).' return '' def __setattr__(self, name, value): 'Implement setattr(self, name, value).' return None def __sizeof__(self): 'Return memory consumption of the type object.' return 0 def __subclasscheck__(self, subclass): 'Check if a class is a subclass.' return False def __subclasses__(self): 'Return a list of immediate subclasses.' return (cls,) @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False __text_signature__ = None __weakrefoffset__ = 368 def mro(self): "Return a type's method resolution order." return [__Type__()] __Type__ = type class int(object): "int([x]) -> integer\nint(x, base=10) -> integer\n\nConvert a number or string to an integer, or return 0 if no arguments\nare given. If x is a number, return x.__int__(). For floating point\nnumbers, this truncates towards zero.\n\nIf x is not a number or if base is given, then x must be a string,\nbytes, or bytearray instance representing an integer literal in the\ngiven base. The literal can be preceded by '+' or '-' and be surrounded\nby whitespace. The base defaults to 10. Valid bases are 0 and 2-36.\nBase 0 means to interpret the base from the string as an integer literal.\n>>> int('0b100', base=0)\n4" def __abs__(self): 'abs(self)' return int() def __add__(self, value): 'Return self+value.' return int() def __and__(self, value): 'Return self&value.' return int() def __bool__(self): 'self != 0' return False def __ceil__(self): 'Ceiling of an Integral returns itself.' return int() __class__ = int def __divmod__(self, value): 'Return divmod(self, value).' return (0, 0) def __eq__(self, value): 'Return self==value.' return False def __float__(self): 'float(self)' return 0.0 def __floor__(self): 'Flooring an Integral returns itself.' return int() def __floordiv__(self, value): 'Return self//value.' return 0 def __format__(self, format_spec): return '' def __ge__(self, value): 'Return self>=value.' return False def __getattribute__(self, name): 'Return getattr(self, name).' pass def __getnewargs__(self): return () def __gt__(self, value): 'Return self>value.' return False def __hash__(self): 'Return hash(self).' return 0 def __index__(self): 'Return self converted to an integer, if self is suitable for use as an index into a list.' return 0 def __init__(self, x, base=10): "int([x]) -> integer\nint(x, base=10) -> integer\n\nConvert a number or string to an integer, or return 0 if no arguments\nare given. If x is a number, return x.__int__(). For floating point\nnumbers, this truncates towards zero.\n\nIf x is not a number or if base is given, then x must be a string,\nbytes, or bytearray instance representing an integer literal in the\ngiven base. The literal can be preceded by '+' or '-' and be surrounded\nby whitespace. The base defaults to 10. Valid bases are 0 and 2-36.\nBase 0 means to interpret the base from the string as an integer literal.\n>>> int('0b100', base=0)\n4" pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None def __int__(self): 'int(self)' return 0 def __invert__(self): '~self' return int() def __le__(self, value): 'Return self<=value.' return False def __lshift__(self, value): 'Return self<<value.' return int() def __lt__(self, value): 'Return self<value.' return False def __mod__(self, value): 'Return self%value.' return int() def __mul__(self, value): 'Return self*value.' return int() def __ne__(self, value): 'Return self!=value.' return False def __neg__(self): '-self' return int() def __or__(self, value): 'Return self|value.' return int() def __pos__(self): '+self' return int() def __pow__(self, value, mod): 'Return pow(self, value, mod).' return int() def __radd__(self, value): 'Return value+self.' return int() def __rand__(self, value): 'Return value&self.' return int() def __rdivmod__(self, value): 'Return divmod(value, self).' return (0, 0) def __repr__(self): 'Return repr(self).' return '' def __rfloordiv__(self, value): 'Return value//self.' return int() def __rlshift__(self, value): 'Return value<<self.' return int() def __rmod__(self, value): 'Return value%self.' return int() def __rmul__(self, value): 'Return value*self.' return int() def __ror__(self, value): 'Return value|self.' return int() def __round__(self, ndigits=0): 'Rounding an Integral returns itself.\nRounding with an ndigits argument also returns an integer.' return int() def __rpow__(self, value, mod): 'Return pow(value, self, mod).' return int() def __rrshift__(self, value): 'Return value>>self.' return int() def __rshift__(self, value): 'Return self>>value.' return int() def __rsub__(self, value): 'Return value-self.' return int() def __rtruediv__(self, value): 'Return value/self.' return int() def __rxor__(self, value): 'Return value^self.' return int() def __sizeof__(self): 'Returns size in memory, in bytes.' return 0 def __sub__(self, value): 'Return self-value.' return int() @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False def __truediv__(self, value): 'Return self/value.' return __Float__() def __trunc__(self): 'Truncating an Integral returns itself.' return int() def __xor__(self, value): 'Return self^value.' return int() def as_integer_ratio(self): 'Return integer ratio.\n\nReturn a pair of integers, whose ratio is exactly equal to the original int\nand with a positive denominator.\n\n>>> (10).as_integer_ratio()\n(10, 1)\n>>> (-10).as_integer_ratio()\n(-10, 1)\n>>> (0).as_integer_ratio()\n(0, 1)' pass def bit_length(self): "Number of bits necessary to represent self in binary.\n\n>>> bin(37)\n'0b100101'\n>>> (37).bit_length()\n6" return 0 def conjugate(self): 'Returns self, the complex conjugate of any int.' return __Complex__() @property def denominator(self): 'the denominator of a rational number in lowest terms' pass @classmethod def from_bytes(cls, type, bytes, byteorder): "Return the integer represented by the given array of bytes.\n\n bytes\n Holds the array of bytes to convert. The argument must either\n support the buffer protocol or be an iterable object producing bytes.\n Bytes and bytearray are examples of built-in objects that support the\n buffer protocol.\n byteorder\n The byte order used to represent the integer. If byteorder is 'big',\n the most significant byte is at the beginning of the byte array. If\n byteorder is 'little', the most significant byte is at the end of the\n byte array. To request the native byte order of the host system, use\n `sys.byteorder' as the byte order value.\n signed\n Indicates whether two's complement is used to represent the integer." return 0 @property def imag(self): 'the imaginary part of a complex number' pass @property def numerator(self): 'the numerator of a rational number in lowest terms' pass @property def real(self): 'the real part of a complex number' pass def to_bytes(self, length, byteorder): "Return an array of bytes representing an integer.\n\n length\n Length of bytes object to use. An OverflowError is raised if the\n integer is not representable with the given number of bytes.\n byteorder\n The byte order used to represent the integer. If byteorder is 'big',\n the most significant byte is at the beginning of the byte array. If\n byteorder is 'little', the most significant byte is at the end of the\n byte array. To request the native byte order of the host system, use\n `sys.byteorder' as the byte order value.\n signed\n Determines whether two's complement is used to represent the integer.\n If signed is False and a negative integer is given, an OverflowError\n is raised." return b'' __Int__ = int class bool(int): 'bool(x) -> bool\n\nReturns True when the argument x is true, False otherwise.\nThe builtins True and False are the only two instances of the class bool.\nThe class bool is a subclass of the class int, and cannot be subclassed.' def __and__(self, value): 'Return self&value.' return bool() __class__ = bool def __init__(self, x): 'bool(x) -> bool\n\nReturns True when the argument x is true, False otherwise.\nThe builtins True and False are the only two instances of the class bool.\nThe class bool is a subclass of the class int, and cannot be subclassed.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None def __or__(self, value): 'Return self|value.' return bool() def __rand__(self, value): 'Return value&self.' return bool() def __repr__(self): 'Return repr(self).' return '' def __ror__(self, value): 'Return value|self.' return bool() def __rxor__(self, value): 'Return value^self.' return bool() @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False def __xor__(self, value): 'Return self^value.' return bool() @classmethod def from_bytes(cls, type, bytes, byteorder): "Return the integer represented by the given array of bytes.\n\n bytes\n Holds the array of bytes to convert. The argument must either\n support the buffer protocol or be an iterable object producing bytes.\n Bytes and bytearray are examples of built-in objects that support the\n buffer protocol.\n byteorder\n The byte order used to represent the integer. If byteorder is 'big',\n the most significant byte is at the beginning of the byte array. If\n byteorder is 'little', the most significant byte is at the end of the\n byte array. To request the native byte order of the host system, use\n `sys.byteorder' as the byte order value.\n signed\n Indicates whether two's complement is used to represent the integer." return False __Bool__ = bool __Long__ = __Int__ class float(object): 'Convert a string or number to a floating point number, if possible.' def __abs__(self): 'abs(self)' return float() def __add__(self, value): 'Return self+value.' return float() def __bool__(self): 'self != 0' return False __class__ = float def __divmod__(self, value): 'Return divmod(self, value).' return (0, 0) def __eq__(self, value): 'Return self==value.' return False def __float__(self): 'float(self)' return 0.0 def __floordiv__(self, value): 'Return self//value.' return 0 def __format__(self, format_spec): 'Formats the float according to format_spec.' return '' def __ge__(self, value): 'Return self>=value.' return False def __getattribute__(self, name): 'Return getattr(self, name).' pass @classmethod def __getformat__(cls, type, typestr): "You probably don't want to use this function.\n\n typestr\n Must be 'double' or 'float'.\n\nIt exists mainly to be used in Python's test suite.\n\nThis function returns whichever of 'unknown', 'IEEE, big-endian' or 'IEEE,\nlittle-endian' best describes the format of floating point numbers used by the\nC type named by typestr." return '' def __getnewargs__(self): return () def __gt__(self, value): 'Return self>value.' return False def __hash__(self): 'Return hash(self).' return 0 def __init__(self, *args, **kwargs): 'Convert a string or number to a floating point number, if possible.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None def __int__(self): 'int(self)' return 0 def __le__(self, value): 'Return self<=value.' return False def __lt__(self, value): 'Return self<value.' return False def __mod__(self, value): 'Return self%value.' return float() def __mul__(self, value): 'Return self*value.' return float() def __ne__(self, value): 'Return self!=value.' return False def __neg__(self): '-self' return float() def __pos__(self): '+self' return float() def __pow__(self, value, mod): 'Return pow(self, value, mod).' return float() def __radd__(self, value): 'Return value+self.' return float() def __rdivmod__(self, value): 'Return divmod(value, self).' return (0, 0) def __repr__(self): 'Return repr(self).' return '' def __rfloordiv__(self, value): 'Return value//self.' return float() def __rmod__(self, value): 'Return value%self.' return float() def __rmul__(self, value): 'Return value*self.' return float() def __round__(self, ndigits): 'Return the Integral closest to x, rounding half toward even.\n\nWhen an argument is passed, work like built-in round(x, ndigits).' return float() def __rpow__(self, value, mod): 'Return pow(value, self, mod).' return float() def __rsub__(self, value): 'Return value-self.' return float() def __rtruediv__(self, value): 'Return value/self.' return float() @classmethod def __set_format__(cls, type, typestr, fmt): "You probably don't want to use this function.\n\n typestr\n Must be 'double' or 'float'.\n fmt\n Must be one of 'unknown', 'IEEE, big-endian' or 'IEEE, little-endian',\n and in addition can only be one of the latter two if it appears to\n match the underlying C reality.\n\nIt exists mainly to be used in Python's test suite.\n\nOverride the automatic determination of C-level floating point type.\nThis affects how floats are converted to and from binary strings." pass def __sub__(self, value): 'Return self-value.' return float() @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False def __truediv__(self, value): 'Return self/value.' return __Float__() def __trunc__(self): 'Return the Integral closest to x between 0 and x.' return float() def as_integer_ratio(self): 'Return integer ratio.\n\nReturn a pair of integers, whose ratio is exactly equal to the original float\nand with a positive denominator.\n\nRaise OverflowError on infinities and a ValueError on NaNs.\n\n>>> (10.0).as_integer_ratio()\n(10, 1)\n>>> (0.0).as_integer_ratio()\n(0, 1)\n>>> (-.25).as_integer_ratio()\n(-1, 4)' return (0, 0) def conjugate(self): 'Return self, the complex conjugate of any float.' return __Complex__() @classmethod def fromhex(cls, type, string): "Create a floating-point number from a hexadecimal string.\n\n>>> float.fromhex('0x1.ffffp10')\n2047.984375\n>>> float.fromhex('-0x1p-1074')\n-5e-324" return 0.0 def hex(self): "Return a hexadecimal representation of a floating-point number.\n\n>>> (-0.1).hex()\n'-0x1.999999999999ap-4'\n>>> 3.14159.hex()\n'0x1.921f9f01b866ep+1'" return '' @property def imag(self): 'the imaginary part of a complex number' pass def is_integer(self): 'Return True if the float is an integer.' return False @property def real(self): 'the real part of a complex number' pass __Float__ = float class complex(object): 'Create a complex number from a real part and an optional imaginary part.\n\nThis is equivalent to (real + imag*1j) where imag defaults to 0.' def __abs__(self): 'abs(self)' return complex() def __add__(self, value): 'Return self+value.' return complex() def __bool__(self): 'self != 0' return False __class__ = complex def __divmod__(self, value): 'Return divmod(self, value).' return (0, 0) def __eq__(self, value): 'Return self==value.' return False def __float__(self): 'float(self)' return 0.0 def __floordiv__(self, value): 'Return self//value.' return 0 def __format__(self, format_spec): 'complex.__format__() -> str\n\nConvert to a string according to format_spec.' return '' def __ge__(self, value): 'Return self>=value.' return False def __getattribute__(self, name): 'Return getattr(self, name).' pass def __getnewargs__(self): return () def __gt__(self, value): 'Return self>value.' return False def __hash__(self): 'Return hash(self).' return 0 def __init__(self, *args, **kwargs): 'Create a complex number from a real part and an optional imaginary part.\n\nThis is equivalent to (real + imag*1j) where imag defaults to 0.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None def __int__(self): 'int(self)' return 0 def __le__(self, value): 'Return self<=value.' return False def __lt__(self, value): 'Return self<value.' return False def __mod__(self, value): 'Return self%value.' return complex() def __mul__(self, value): 'Return self*value.' return complex() def __ne__(self, value): 'Return self!=value.' return False def __neg__(self): '-self' return complex() def __pos__(self): '+self' return complex() def __pow__(self, value, mod): 'Return pow(self, value, mod).' return complex() def __radd__(self, value): 'Return value+self.' return complex() def __rdivmod__(self, value): 'Return divmod(value, self).' return (0, 0) def __repr__(self): 'Return repr(self).' return '' def __rfloordiv__(self, value): 'Return value//self.' return complex() def __rmod__(self, value): 'Return value%self.' return complex() def __rmul__(self, value): 'Return value*self.' return complex() def __rpow__(self, value, mod): 'Return pow(value, self, mod).' return complex() def __rsub__(self, value): 'Return value-self.' return complex() def __rtruediv__(self, value): 'Return value/self.' return complex() def __sub__(self, value): 'Return self-value.' return complex() @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False def __truediv__(self, value): 'Return self/value.' return __Float__() def conjugate(self): 'complex.conjugate() -> complex\n\nReturn the complex conjugate of its argument. (3-4j).conjugate() == 3+4j.' return __Complex__() @property def imag(self): 'the imaginary part of a complex number' pass @property def real(self): 'the real part of a complex number' pass __Complex__ = complex class tuple(object): "Built-in immutable sequence.\n\nIf no argument is given, the constructor returns an empty tuple.\nIf iterable is specified the tuple is initialized from iterable's items.\n\nIf the argument is a tuple, the return value is the same object." def __add__(self, value): 'Return self+value.' return tuple() __class__ = tuple def __contains__(self, key): 'Return key in self.' return False def __eq__(self, value): 'Return self==value.' return False def __ge__(self, value): 'Return self>=value.' return False def __getattribute__(self, name): 'Return getattr(self, name).' pass def __getitem__(self, key): 'Return self[key].' pass def __getnewargs__(self): return () def __gt__(self, value): 'Return self>value.' return False def __hash__(self): 'Return hash(self).' return 0 def __init__(self, *args, **kwargs): "Built-in immutable sequence.\n\nIf no argument is given, the constructor returns an empty tuple.\nIf iterable is specified the tuple is initialized from iterable's items.\n\nIf the argument is a tuple, the return value is the same object." pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None def __iter__(self): 'Implement iter(self).' return __TupleIterator__() def __le__(self, value): 'Return self<=value.' return False def __len__(self): 'Return len(self).' return 0 def __lt__(self, value): 'Return self<value.' return False def __mul__(self, value): 'Return self*value.' return tuple() def __ne__(self, value): 'Return self!=value.' return False def __repr__(self): 'Return repr(self).' return '' def __rmul__(self, value): 'Return value*self.' return tuple() @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False def count(self, value): 'Return number of occurrences of value.' return 0 def index(self, value, start, stop): 'Return first index of value.\n\nRaises ValueError if the value is not present.' return 0 __Tuple__ = tuple class list(object): 'Built-in mutable sequence.\n\nIf no argument is given, the constructor creates a new empty list.\nThe argument must be an iterable if specified.' def __add__(self, value): 'Return self+value.' return list() __class__ = list def __contains__(self, key): 'Return key in self.' return False def __delitem__(self, key): 'Delete self[key].' return None def __eq__(self, value): 'Return self==value.' return False def __ge__(self, value): 'Return self>=value.' return False def __getattribute__(self, name): 'Return getattr(self, name).' pass def __getitem__(self, index): 'x.__getitem__(y) <==> x[y]' pass def __gt__(self, value): 'Return self>value.' return False __hash__ = None def __iadd__(self, value): 'Implement self+=value.' return None def __imul__(self, value): 'Implement self*=value.' return None def __init__(self, *args, **kwargs): 'Built-in mutable sequence.\n\nIf no argument is given, the constructor creates a new empty list.\nThe argument must be an iterable if specified.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None def __iter__(self): 'Implement iter(self).' return __ListIterator__() def __le__(self, value): 'Return self<=value.' return False def __len__(self): 'Return len(self).' return 0 def __lt__(self, value): 'Return self<value.' return False def __mul__(self, value): 'Return self*value.' return list() def __ne__(self, value): 'Return self!=value.' return False def __repr__(self): 'Return repr(self).' return '' def __reversed__(self): 'Return a reverse iterator over the list.' return __ListIterator__() def __rmul__(self, value): 'Return value*self.' return list() def __setitem__(self, key, value): 'Set self[key] to value.' return None def __sizeof__(self): 'Return the size of the list in memory, in bytes.' return 0 @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False def append(self, object): 'Append object to the end of the list.' return None def clear(self): 'Remove all items from list.' return None def copy(self): 'Return a shallow copy of the list.' return list() def count(self, value): 'Return number of occurrences of value.' return 0 def extend(self, iterable): 'Extend list by appending elements from the iterable.' return None def index(self, value, start, stop): 'Return first index of value.\n\nRaises ValueError if the value is not present.' return 0 def insert(self, index, object): 'Insert object before index.' return None def pop(self, index): 'Remove and return item at index (default last).\n\nRaises IndexError if list is empty or index is out of range.' return self[0] def remove(self, value): 'Remove first occurrence of value.\n\nRaises ValueError if the value is not present.' return None def reverse(self): 'Reverse *IN PLACE*.' return None def sort(self): 'Sort the list in ascending order and return None.\n\nThe sort is in-place (i.e. the list itself is modified) and stable (i.e. the\norder of two equal elements is maintained).\n\nIf a key function is given, apply it once to each list item and sort them,\nascending or descending, according to their function values.\n\nThe reverse flag can be set to sort in descending order.' return None __List__ = list class dict(object): "dict() -> new empty dictionary\ndict(mapping) -> new dictionary initialized from a mapping object's\n (key, value) pairs\ndict(iterable) -> new dictionary initialized as if via:\n d = {}\n for k, v in iterable:\n d[k] = v\ndict(**kwargs) -> new dictionary initialized with the name=value pairs\n in the keyword argument list. For example: dict(one=1, two=2)" __class__ = dict def __contains__(self, key): 'True if the dictionary has the specified key, else False.' return False def __delitem__(self, key): 'Delete self[key].' return None def __eq__(self, value): 'Return self==value.' return False def __ge__(self, value): 'Return self>=value.' return False def __getattribute__(self, name): 'Return getattr(self, name).' pass def __getitem__(self, key): 'x.__getitem__(y) <==> x[y]' pass def __gt__(self, value): 'Return self>value.' return False __hash__ = None def __init__(self, iterable): "dict() -> new empty dictionary\ndict(mapping) -> new dictionary initialized from a mapping object's\n (key, value) pairs\ndict(iterable) -> new dictionary initialized as if via:\n d = {}\n for k, v in iterable:\n d[k] = v\ndict(**kwargs) -> new dictionary initialized with the name=value pairs\n in the keyword argument list. For example: dict(one=1, two=2)" pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None def __iter__(self): 'Implement iter(self).' return __DictKeys__() def __le__(self, value): 'Return self<=value.' return False def __len__(self): 'Return len(self).' return 0 def __lt__(self, value): 'Return self<value.' return False def __ne__(self, value): 'Return self!=value.' return False def __repr__(self): 'Return repr(self).' return '' def __reversed__(self): 'Return a reverse iterator over the dict keys.' pass def __setitem__(self, key, value): 'Set self[key] to value.' return None def __sizeof__(self): 'D.__sizeof__() -> size of D in memory, in bytes' return 0 @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False def clear(self): 'D.clear() -> None. Remove all items from D.' return None def copy(self): 'D.copy() -> a shallow copy of D' return dict() @classmethod def fromkeys(cls, type, iterable, value): 'Create a new dictionary with keys from iterable and values set to value.' return {} def get(self, key, default): 'Return the value for key if key is in the dictionary, else default.' return self[0] def items(self): "D.items() -> a set-like object providing a view on D's items" return __DictItems__() def keys(self): "D.keys() -> a set-like object providing a view on D's keys" return __DictKeys__() def pop(self, k, d=None): 'D.pop(k[,d]) -> v, remove specified key and return the corresponding value.\nIf key is not found, d is returned if given, otherwise KeyError is raised' return self.keys()[0] def popitem(self): 'Remove and return a (key, value) pair as a 2-tuple.\n\nPairs are returned in LIFO (last-in, first-out) order.\nRaises KeyError if the dict is empty.' return self.items()[0] def setdefault(self, key, default): 'Insert key with a value of default if key is not in the dictionary.\n\nReturn the value for key if key is in the dictionary, else default.' return self[0] def update(self, d): 'D.update([E, ]**F) -> None. Update D from dict/iterable E and F.\nIf E is present and has a .keys() method, then does: for k in E: D[k] = E[k]\nIf E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v\nIn either case, this is followed by: for k in F: D[k] = F[k]' return None def values(self): "D.values() -> an object providing a view on D's values" return __DictValues__() __Dict__ = dict class set(object): 'set() -> new empty set object\nset(iterable) -> new set object\n\nBuild an unordered collection of unique elements.' def __and__(self, value): 'Return self&value.' return set() __class__ = set def __contains__(self, value): 'x.__contains__(y) <==> y in x.' return False def __eq__(self, value): 'Return self==value.' return False def __ge__(self, value): 'Return self>=value.' return False def __getattribute__(self, name): 'Return getattr(self, name).' pass def __gt__(self, value): 'Return self>value.' return False __hash__ = None def __iand__(self, value): 'Return self&=value.' return None def __init__(self, iterable): 'set() -> new empty set object\nset(iterable) -> new set object\n\nBuild an unordered collection of unique elements.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None def __ior__(self, value): 'Return self|=value.' return None def __isub__(self, value): 'Return self-=value.' return None def __iter__(self): 'Implement iter(self).' return __SetIterator__() def __ixor__(self, value): 'Return self^=value.' return None def __le__(self, value): 'Return self<=value.' return False def __len__(self): 'Return len(self).' return 0 def __lt__(self, value): 'Return self<value.' return False def __ne__(self, value): 'Return self!=value.' return False def __or__(self, value): 'Return self|value.' return set() def __rand__(self, value): 'Return value&self.' return set() def __reduce__(self): 'Return state information for pickling.' return ''; return () def __repr__(self): 'Return repr(self).' return '' def __ror__(self, value): 'Return value|self.' return set() def __rsub__(self, value): 'Return value-self.' return set() def __rxor__(self, value): 'Return value^self.' return set() def __sizeof__(self): 'S.__sizeof__() -> size of S in memory, in bytes' return 0 def __sub__(self, value): 'Return self-value.' return set() @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False def __xor__(self, value): 'Return self^value.' return set() def add(self, value): 'Add an element to a set.\n\nThis has no effect if the element is already present.' return None def clear(self): 'Remove all elements from this set.' return None def copy(self): 'Return a shallow copy of a set.' return set() def difference(self, other): 'Return the difference of two or more sets as a new set.\n\n(i.e. all elements that are in this set but not the others.)' return set() def difference_update(self, *others): 'Remove all elements of another set from this set.' return None def discard(self, elem): 'Remove an element from a set if it is a member.\n\nIf the element is not a member, do nothing.' return None def intersection(self, other): 'Return the intersection of two sets as a new set.\n\n(i.e. all elements that are in both sets.)' return set() def intersection_update(self, *others): 'Update a set with the intersection of itself and another.' return None def isdisjoint(self, other): 'Return True if two sets have a null intersection.' return False def issubset(self, other): 'Report whether another set contains this set.' return False def issuperset(self, other): 'Report whether this set contains another set.' return False def pop(self): 'Remove and return an arbitrary set element.\nRaises KeyError if the set is empty.' pass def remove(self, elem): 'Remove an element from a set; it must be a member.\n\nIf the element is not a member, raise a KeyError.' return None def symmetric_difference(self, other): 'Return the symmetric difference of two sets as a new set.\n\n(i.e. all elements that are in exactly one of the sets.)' return set() def symmetric_difference_update(self, *others): 'Update a set with the symmetric difference of itself and another.' return None def union(self, *others): 'Return the union of sets as a new set.\n\n(i.e. all elements that are in either set.)' return set() def update(self, *others): 'Update a set with the union of itself and others.' return None __Set__ = set class frozenset(object): 'frozenset() -> empty frozenset object\nfrozenset(iterable) -> frozenset object\n\nBuild an immutable unordered collection of unique elements.' def __and__(self, value): 'Return self&value.' return frozenset() __class__ = frozenset def __contains__(self, value): 'x.__contains__(y) <==> y in x.' return False def __eq__(self, value): 'Return self==value.' return False def __ge__(self, value): 'Return self>=value.' return False def __getattribute__(self, name): 'Return getattr(self, name).' pass def __gt__(self, value): 'Return self>value.' return False def __hash__(self): 'Return hash(self).' return 0 def __init__(self, iterable): 'frozenset() -> empty frozenset object\nfrozenset(iterable) -> frozenset object\n\nBuild an immutable unordered collection of unique elements.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None def __iter__(self): 'Implement iter(self).' return __SetIterator__() def __le__(self, value): 'Return self<=value.' return False def __len__(self): 'Return len(self).' return 0 def __lt__(self, value): 'Return self<value.' return False def __ne__(self, value): 'Return self!=value.' return False def __or__(self, value): 'Return self|value.' return frozenset() def __rand__(self, value): 'Return value&self.' return frozenset() def __reduce__(self): 'Return state information for pickling.' return ''; return () def __repr__(self): 'Return repr(self).' return '' def __ror__(self, value): 'Return value|self.' return frozenset() def __rsub__(self, value): 'Return value-self.' return frozenset() def __rxor__(self, value): 'Return value^self.' return frozenset() def __sizeof__(self): 'S.__sizeof__() -> size of S in memory, in bytes' return 0 def __sub__(self, value): 'Return self-value.' return frozenset() @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False def __xor__(self, value): 'Return self^value.' return frozenset() def copy(self): 'Return a shallow copy of a set.' return frozenset() def difference(self, other): 'Return the difference of two or more sets as a new set.\n\n(i.e. all elements that are in this set but not the others.)' return frozenset() def intersection(self, other): 'Return the intersection of two sets as a new set.\n\n(i.e. all elements that are in both sets.)' return frozenset() def isdisjoint(self, other): 'Return True if two sets have a null intersection.' return False def issubset(self, other): 'Report whether another set contains this set.' return False def issuperset(self, other): 'Report whether this set contains another set.' return False def symmetric_difference(self, other): 'Return the symmetric difference of two sets as a new set.\n\n(i.e. all elements that are in exactly one of the sets.)' return frozenset() def union(self, *others): 'Return the union of sets as a new set.\n\n(i.e. all elements that are in either set.)' return frozenset() __FrozenSet__ = frozenset class bytes(object): 'bytes(iterable_of_ints) -> bytes\nbytes(string, encoding[, errors]) -> bytes\nbytes(bytes_or_buffer) -> immutable copy of bytes_or_buffer\nbytes(int) -> bytes object of size given by the parameter initialized with null bytes\nbytes() -> empty bytes object\n\nConstruct an immutable array of bytes from:\n - an iterable yielding integers in range(256)\n - a text string encoded using the specified encoding\n - any object implementing the buffer API.\n - an integer' def __add__(self, value): 'Return self+value.' return bytes() __class__ = bytes def __contains__(self, key): 'Return key in self.' return False def __eq__(self, value): 'Return self==value.' return False def __ge__(self, value): 'Return self>=value.' return False def __getattribute__(self, name): 'Return getattr(self, name).' pass def __getitem__(self, key): 'Return self[key].' return bytes() def __getnewargs__(self): return () def __gt__(self, value): 'Return self>value.' return False def __hash__(self): 'Return hash(self).' return 0 def __init__(self, string, encoding, errors=None): 'bytes(iterable_of_ints) -> bytes\nbytes(string, encoding[, errors]) -> bytes\nbytes(bytes_or_buffer) -> immutable copy of bytes_or_buffer\nbytes(int) -> bytes object of size given by the parameter initialized with null bytes\nbytes() -> empty bytes object\n\nConstruct an immutable array of bytes from:\n - an iterable yielding integers in range(256)\n - a text string encoded using the specified encoding\n - any object implementing the buffer API.\n - an integer' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None def __iter__(self): 'Implement iter(self).' return __BytesIterator__() def __le__(self, value): 'Return self<=value.' return False def __len__(self): 'Return len(self).' return 0 def __lt__(self, value): 'Return self<value.' return False def __mod__(self, value): 'Return self%value.' return bytes() def __mul__(self, value): 'Return self*value.' return bytes() def __ne__(self, value): 'Return self!=value.' return False def __repr__(self): 'Return repr(self).' return '' def __rmod__(self, value): 'Return value%self.' return bytes() def __rmul__(self, value): 'Return value*self.' return bytes() def __str__(self): 'Return str(self).' return '' @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False def capitalize(self): 'B.capitalize() -> copy of B\n\nReturn a copy of B with only its first character capitalized (ASCII)\nand the rest lower-cased.' return bytes() def center(self, width, fillchar): 'Return a centered string of length width.\n\nPadding is done using the specified fill character.' return bytes() def count(self, sub, start=0, end=-1): 'B.count(sub[, start[, end]]) -> int\n\nReturn the number of non-overlapping occurrences of subsection sub in\nbytes B[start:end]. Optional arguments start and end are interpreted\nas in slice notation.' return 0 def decode(self, encoding, errors): "Decode the bytes using the codec registered for encoding.\n\n encoding\n The encoding with which to decode the bytes.\n errors\n The error handling scheme to use for the handling of decoding errors.\n The default is 'strict' meaning that decoding errors raise a\n UnicodeDecodeError. Other possible values are 'ignore' and 'replace'\n as well as any other name registered with codecs.register_error that\n can handle UnicodeDecodeErrors." return '' def endswith(self, suffix, start=0, end=-1): 'B.endswith(suffix[, start[, end]]) -> bool\n\nReturn True if B ends with the specified suffix, False otherwise.\nWith optional start, test B beginning at that position.\nWith optional end, stop comparing B at that position.\nsuffix can also be a tuple of bytes to try.' return False def expandtabs(self, tabsize): 'Return a copy where all tab characters are expanded using spaces.\n\nIf tabsize is not given, a tab size of 8 characters is assumed.' return bytes() def find(self, sub, start=0, end=-1): 'B.find(sub[, start[, end]]) -> int\n\nReturn the lowest index in B where subsection sub is found,\nsuch that sub is contained within B[start,end]. Optional\narguments start and end are interpreted as in slice notation.\n\nReturn -1 on failure.' return 0 @classmethod def fromhex(cls, type, string): "Create a bytes object from a string of hexadecimal numbers.\n\nSpaces between two numbers are accepted.\nExample: bytes.fromhex('B9 01EF') -> b'\\\\xb9\\\\x01\\\\xef'." return b'' def hex(self): "Create a str of hexadecimal numbers from a bytes object.\n\n sep\n An optional single character or byte to separate hex bytes.\n bytes_per_sep\n How many bytes between separators. Positive values count from the\n right, negative values count from the left.\n\nExample:\n>>> value = b'\\xb9\\x01\\xef'\n>>> value.hex()\n'b901ef'\n>>> value.hex(':')\n'b9:01:ef'\n>>> value.hex(':', 2)\n'b9:01ef'\n>>> value.hex(':', -2)\n'b901:ef'" return '' def index(self, sub, start=0, end=-1): 'B.index(sub[, start[, end]]) -> int\n\nReturn the lowest index in B where subsection sub is found,\nsuch that sub is contained within B[start,end]. Optional\narguments start and end are interpreted as in slice notation.\n\nRaises ValueError when the subsection is not found.' return 0 def isalnum(self): 'B.isalnum() -> bool\n\nReturn True if all characters in B are alphanumeric\nand there is at least one character in B, False otherwise.' return False def isalpha(self): 'B.isalpha() -> bool\n\nReturn True if all characters in B are alphabetic\nand there is at least one character in B, False otherwise.' return False def isascii(self): 'B.isascii() -> bool\n\nReturn True if B is empty or all characters in B are ASCII,\nFalse otherwise.' return True def isdigit(self): 'B.isdigit() -> bool\n\nReturn True if all characters in B are digits\nand there is at least one character in B, False otherwise.' return False def islower(self): 'B.islower() -> bool\n\nReturn True if all cased characters in B are lowercase and there is\nat least one cased character in B, False otherwise.' return False def isspace(self): 'B.isspace() -> bool\n\nReturn True if all characters in B are whitespace\nand there is at least one character in B, False otherwise.' return False def istitle(self): 'B.istitle() -> bool\n\nReturn True if B is a titlecased string and there is at least one\ncharacter in B, i.e. uppercase characters may only follow uncased\ncharacters and lowercase characters only cased ones. Return False\notherwise.' return False def isupper(self): 'B.isupper() -> bool\n\nReturn True if all cased characters in B are uppercase and there is\nat least one cased character in B, False otherwise.' return False def join(self, iterable_of_bytes): "Concatenate any number of bytes objects.\n\nThe bytes whose method is called is inserted in between each pair.\n\nThe result is returned as a new bytes object.\n\nExample: b'.'.join([b'ab', b'pq', b'rs']) -> b'ab.pq.rs'." return b'' def ljust(self, width, fillchar): 'Return a left-justified string of length width.\n\nPadding is done using the specified fill character.' return bytes() def lower(self): 'B.lower() -> copy of B\n\nReturn a copy of B with all ASCII characters converted to lowercase.' return bytes() def lstrip(self, bytes): 'Strip leading bytes contained in the argument.\n\nIf the argument is omitted or None, strip leading ASCII whitespace.' return bytes() @classmethod def maketrans(cls, frm, to): 'Return a translation table useable for the bytes or bytearray translate method.\n\nThe returned table will be one where each byte in frm is mapped to the byte at\nthe same position in to.\n\nThe bytes objects frm and to must be of the same length.' return b'' def partition(self, sep): 'Partition the bytes into three parts using the given separator.\n\nThis will search for the separator sep in the bytes. If the separator is found,\nreturns a 3-tuple containing the part before the separator, the separator\nitself, and the part after it.\n\nIf the separator is not found, returns a 3-tuple containing the original bytes\nobject and two empty bytes objects.' return (bytes(), bytes(), bytes()) def replace(self, old, new, count): 'Return a copy with all occurrences of substring old replaced by new.\n\n count\n Maximum number of occurrences to replace.\n -1 (the default value) means replace all occurrences.\n\nIf the optional argument count is given, only the first count occurrences are\nreplaced.' return bytes() def rfind(self, sub, start=0, end=-1): 'B.rfind(sub[, start[, end]]) -> int\n\nReturn the highest index in B where subsection sub is found,\nsuch that sub is contained within B[start,end]. Optional\narguments start and end are interpreted as in slice notation.\n\nReturn -1 on failure.' return 0 def rindex(self, sub, start=0, end=-1): 'B.rindex(sub[, start[, end]]) -> int\n\nReturn the highest index in B where subsection sub is found,\nsuch that sub is contained within B[start,end]. Optional\narguments start and end are interpreted as in slice notation.\n\nRaise ValueError when the subsection is not found.' return 0 def rjust(self, width, fillchar): 'Return a right-justified string of length width.\n\nPadding is done using the specified fill character.' return bytes() def rpartition(self, sep): 'Partition the bytes into three parts using the given separator.\n\nThis will search for the separator sep in the bytes, starting at the end. If\nthe separator is found, returns a 3-tuple containing the part before the\nseparator, the separator itself, and the part after it.\n\nIf the separator is not found, returns a 3-tuple containing two empty bytes\nobjects and the original bytes object.' return (bytes(), bytes(), bytes()) def rsplit(self, sep, maxsplit): 'Return a list of the sections in the bytes, using sep as the delimiter.\n\n sep\n The delimiter according which to split the bytes.\n None (the default value) means split on ASCII whitespace characters\n (space, tab, return, newline, formfeed, vertical tab).\n maxsplit\n Maximum number of splits to do.\n -1 (the default value) means no limit.\n\nSplitting is done starting at the end of the bytes and working to the front.' return [bytes()] def rstrip(self, bytes): 'Strip trailing bytes contained in the argument.\n\nIf the argument is omitted or None, strip trailing ASCII whitespace.' return bytes() def split(self, sep, maxsplit): 'Return a list of the sections in the bytes, using sep as the delimiter.\n\n sep\n The delimiter according which to split the bytes.\n None (the default value) means split on ASCII whitespace characters\n (space, tab, return, newline, formfeed, vertical tab).\n maxsplit\n Maximum number of splits to do.\n -1 (the default value) means no limit.' return [bytes()] def splitlines(self, keepends): 'Return a list of the lines in the bytes, breaking at line boundaries.\n\nLine breaks are not included in the resulting list unless keepends is given and\ntrue.' return [self()] def startswith(self, prefix, start=0, end=-1): 'B.startswith(prefix[, start[, end]]) -> bool\n\nReturn True if B starts with the specified prefix, False otherwise.\nWith optional start, test B beginning at that position.\nWith optional end, stop comparing B at that position.\nprefix can also be a tuple of bytes to try.' return False def strip(self, bytes): 'Strip leading and trailing bytes contained in the argument.\n\nIf the argument is omitted or None, strip leading and trailing ASCII whitespace.' return bytes() def swapcase(self): 'B.swapcase() -> copy of B\n\nReturn a copy of B with uppercase ASCII characters converted\nto lowercase ASCII and vice versa.' return bytes() def title(self): 'B.title() -> copy of B\n\nReturn a titlecased version of B, i.e. ASCII words start with uppercase\ncharacters, all remaining cased characters have lowercase.' return bytes() def translate(self, table, delete): 'Return a copy with each character mapped by the given translation table.\n\n table\n Translation table, which must be a bytes object of length 256.\n\nAll characters occurring in the optional argument delete are removed.\nThe remaining characters are mapped through the given translation table.' return bytes() def upper(self): 'B.upper() -> copy of B\n\nReturn a copy of B with all ASCII characters converted to uppercase.' return bytes() def zfill(self, width): 'Pad a numeric string with zeros on the left, to fill a field of the given width.\n\nThe original string is never truncated.' return bytes() __Bytes__ = bytes class bytes_iterator(object): __class__ = bytes_iterator def __getattribute__(self, name): 'Return getattr(self, name).' pass def __init__(self, *args, **kwargs): pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None def __iter__(self): 'Implement iter(self).' return bytes_iterator() def __length_hint__(self): 'Private method returning an estimate of len(list(it)).' return 0 def __next__(self): 'Implement next(self).' return 0 def __reduce__(self): 'Return state information for pickling.' return ''; return () def __setstate__(self, state): 'Set state information for unpickling.' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False __BytesIterator__ = bytes_iterator class str(object): "str(object='') -> str\nstr(bytes_or_buffer[, encoding[, errors]]) -> str\n\nCreate a new string object from the given object. If encoding or\nerrors is specified, then the object must expose a data buffer\nthat will be decoded using the given encoding and error handler.\nOtherwise, returns the result of object.__str__() (if defined)\nor repr(object).\nencoding defaults to sys.getdefaultencoding().\nerrors defaults to 'strict'." def __add__(self, value): 'Return self+value.' return str() __class__ = str def __contains__(self, key): 'Return key in self.' return False def __eq__(self, value): 'Return self==value.' return False def __format__(self, format_spec): 'Return a formatted version of the string as described by format_spec.' return '' def __ge__(self, value): 'Return self>=value.' return False def __getattribute__(self, name): 'Return getattr(self, name).' pass def __getitem__(self, key): 'Return self[key].' return str() def __getnewargs__(self): return () def __gt__(self, value): 'Return self>value.' return False def __hash__(self): 'Return hash(self).' return 0 def __init__(self, bytes_or_buffer, encoding=None, errors=None): "str(object='') -> str\nstr(bytes_or_buffer[, encoding[, errors]]) -> str\n\nCreate a new string object from the given object. If encoding or\nerrors is specified, then the object must expose a data buffer\nthat will be decoded using the given encoding and error handler.\nOtherwise, returns the result of object.__str__() (if defined)\nor repr(object).\nencoding defaults to sys.getdefaultencoding().\nerrors defaults to 'strict'." pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None def __iter__(self): 'Implement iter(self).' return __UnicodeIterator__() def __le__(self, value): 'Return self<=value.' return False def __len__(self): 'Return len(self).' return 0 def __lt__(self, value): 'Return self<value.' return False def __mod__(self, value): 'Return self%value.' return str() def __mul__(self, value): 'Return self*value.' return str() def __ne__(self, value): 'Return self!=value.' return False def __repr__(self): 'Return repr(self).' return '' def __rmod__(self, value): 'Return value%self.' return str() def __rmul__(self, value): 'Return value*self.' return str() def __sizeof__(self): 'Return the size of the string in memory, in bytes.' return 0 def __str__(self): 'Return str(self).' return '' @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False def capitalize(self): 'Return a capitalized version of the string.\n\nMore specifically, make the first character have upper case and the rest lower\ncase.' return str() def casefold(self): 'Return a version of the string suitable for caseless comparisons.' return str() def center(self, width, fillchar): 'Return a centered string of length width.\n\nPadding is done using the specified fill character (default is a space).' return str() def count(self, sub, start=0, end=-1): 'S.count(sub[, start[, end]]) -> int\n\nReturn the number of non-overlapping occurrences of substring sub in\nstring S[start:end]. Optional arguments start and end are\ninterpreted as in slice notation.' return 0 def encode(self, encoding, errors): "Encode the string using the codec registered for encoding.\n\n encoding\n The encoding in which to encode the string.\n errors\n The error handling scheme to use for encoding errors.\n The default is 'strict' meaning that encoding errors raise a\n UnicodeEncodeError. Other possible values are 'ignore', 'replace' and\n 'xmlcharrefreplace' as well as any other name registered with\n codecs.register_error that can handle UnicodeEncodeErrors." return b'' def endswith(self, suffix, start=0, end=-1): 'S.endswith(suffix[, start[, end]]) -> bool\n\nReturn True if S ends with the specified suffix, False otherwise.\nWith optional start, test S beginning at that position.\nWith optional end, stop comparing S at that position.\nsuffix can also be a tuple of strings to try.' return False def expandtabs(self, tabsize): 'Return a copy where all tab characters are expanded using spaces.\n\nIf tabsize is not given, a tab size of 8 characters is assumed.' return str() def find(self, sub, start=0, end=-1): 'S.find(sub[, start[, end]]) -> int\n\nReturn the lowest index in S where substring sub is found,\nsuch that sub is contained within S[start:end]. Optional\narguments start and end are interpreted as in slice notation.\n\nReturn -1 on failure.' return 0 def format(self, *args, **kwargs): "S.format(*args, **kwargs) -> str\n\nReturn a formatted version of S, using substitutions from args and kwargs.\nThe substitutions are identified by braces ('{' and '}')." return str() def format_map(self, mapping): "S.format_map(mapping) -> str\n\nReturn a formatted version of S, using substitutions from mapping.\nThe substitutions are identified by braces ('{' and '}')." return str() def index(self, sub, start=0, end=-1): 'S.index(sub[, start[, end]]) -> int\n\nReturn the lowest index in S where substring sub is found,\nsuch that sub is contained within S[start:end]. Optional\narguments start and end are interpreted as in slice notation.\n\nRaises ValueError when the substring is not found.' return 0 def isalnum(self): 'Return True if the string is an alpha-numeric string, False otherwise.\n\nA string is alpha-numeric if all characters in the string are alpha-numeric and\nthere is at least one character in the string.' return False def isalpha(self): 'Return True if the string is an alphabetic string, False otherwise.\n\nA string is alphabetic if all characters in the string are alphabetic and there\nis at least one character in the string.' return False def isascii(self): 'Return True if all characters in the string are ASCII, False otherwise.\n\nASCII characters have code points in the range U+0000-U+007F.\nEmpty string is ASCII too.' pass def isdecimal(self): 'Return True if the string is a decimal string, False otherwise.\n\nA string is a decimal string if all characters in the string are decimal and\nthere is at least one character in the string.' return False def isdigit(self): 'Return True if the string is a digit string, False otherwise.\n\nA string is a digit string if all characters in the string are digits and there\nis at least one character in the string.' return False def isidentifier(self): 'Return True if the string is a valid Python identifier, False otherwise.\n\nCall keyword.iskeyword(s) to test whether string s is a reserved identifier,\nsuch as "def" or "class".' return False def islower(self): 'Return True if the string is a lowercase string, False otherwise.\n\nA string is lowercase if all cased characters in the string are lowercase and\nthere is at least one cased character in the string.' return False def isnumeric(self): 'Return True if the string is a numeric string, False otherwise.\n\nA string is numeric if all characters in the string are numeric and there is at\nleast one character in the string.' return False def isprintable(self): 'Return True if the string is printable, False otherwise.\n\nA string is printable if all of its characters are considered printable in\nrepr() or if it is empty.' return False def isspace(self): 'Return True if the string is a whitespace string, False otherwise.\n\nA string is whitespace if all characters in the string are whitespace and there\nis at least one character in the string.' return False def istitle(self): 'Return True if the string is a title-cased string, False otherwise.\n\nIn a title-cased string, upper- and title-case characters may only\nfollow uncased characters and lowercase characters only cased ones.' return False def isupper(self): 'Return True if the string is an uppercase string, False otherwise.\n\nA string is uppercase if all cased characters in the string are uppercase and\nthere is at least one cased character in the string.' return False def join(self, iterable): "Concatenate any number of strings.\n\nThe string whose method is called is inserted in between each given string.\nThe result is returned as a new string.\n\nExample: '.'.join(['ab', 'pq', 'rs']) -> 'ab.pq.rs'" return '' def ljust(self, width, fillchar): 'Return a left-justified string of length width.\n\nPadding is done using the specified fill character (default is a space).' return str() def lower(self): 'Return a copy of the string converted to lowercase.' return str() def lstrip(self, chars): 'Return a copy of the string with leading whitespace removed.\n\nIf chars is given and not None, remove characters in chars instead.' return str() @classmethod def maketrans(x, y, z): 'Return a translation table usable for str.translate().\n\nIf there is only one argument, it must be a dictionary mapping Unicode\nordinals (integers) or characters to Unicode ordinals, strings or None.\nCharacter keys will be then converted to ordinals.\nIf there are two arguments, they must be strings of equal length, and\nin the resulting dictionary, each character in x will be mapped to the\ncharacter at the same position in y. If there is a third argument, it\nmust be a string, whose characters will be mapped to None in the result.' return {} def partition(self, sep): 'Partition the string into three parts using the given separator.\n\nThis will search for the separator in the string. If the separator is found,\nreturns a 3-tuple containing the part before the separator, the separator\nitself, and the part after it.\n\nIf the separator is not found, returns a 3-tuple containing the original string\nand two empty strings.' return (str(), str(), str()) def replace(self, old, new, count): 'Return a copy with all occurrences of substring old replaced by new.\n\n count\n Maximum number of occurrences to replace.\n -1 (the default value) means replace all occurrences.\n\nIf the optional argument count is given, only the first count occurrences are\nreplaced.' return str() def rfind(self, sub, start=0, end=-1): 'S.rfind(sub[, start[, end]]) -> int\n\nReturn the highest index in S where substring sub is found,\nsuch that sub is contained within S[start:end]. Optional\narguments start and end are interpreted as in slice notation.\n\nReturn -1 on failure.' return 0 def rindex(self, sub, start=0, end=-1): 'S.rindex(sub[, start[, end]]) -> int\n\nReturn the highest index in S where substring sub is found,\nsuch that sub is contained within S[start:end]. Optional\narguments start and end are interpreted as in slice notation.\n\nRaises ValueError when the substring is not found.' return 0 def rjust(self, width, fillchar): 'Return a right-justified string of length width.\n\nPadding is done using the specified fill character (default is a space).' return str() def rpartition(self, sep): 'Partition the string into three parts using the given separator.\n\nThis will search for the separator in the string, starting at the end. If\nthe separator is found, returns a 3-tuple containing the part before the\nseparator, the separator itself, and the part after it.\n\nIf the separator is not found, returns a 3-tuple containing two empty strings\nand the original string.' return (str(), str(), str()) def rsplit(self, sep, maxsplit): 'Return a list of the words in the string, using sep as the delimiter string.\n\n sep\n The delimiter according which to split the string.\n None (the default value) means split according to any whitespace,\n and discard empty strings from the result.\n maxsplit\n Maximum number of splits to do.\n -1 (the default value) means no limit.\n\nSplits are done starting at the end of the string and working to the front.' return [str()] def rstrip(self, chars): 'Return a copy of the string with trailing whitespace removed.\n\nIf chars is given and not None, remove characters in chars instead.' return str() def split(self, sep, maxsplit): 'Return a list of the words in the string, using sep as the delimiter string.\n\n sep\n The delimiter according which to split the string.\n None (the default value) means split according to any whitespace,\n and discard empty strings from the result.\n maxsplit\n Maximum number of splits to do.\n -1 (the default value) means no limit.' return [str()] def splitlines(self, keepends): 'Return a list of the lines in the string, breaking at line boundaries.\n\nLine breaks are not included in the resulting list unless keepends is given and\ntrue.' return [self()] def startswith(self, prefix, start=0, end=-1): 'S.startswith(prefix[, start[, end]]) -> bool\n\nReturn True if S starts with the specified prefix, False otherwise.\nWith optional start, test S beginning at that position.\nWith optional end, stop comparing S at that position.\nprefix can also be a tuple of strings to try.' return False def strip(self, chars): 'Return a copy of the string with leading and trailing whitespace removed.\n\nIf chars is given and not None, remove characters in chars instead.' return str() def swapcase(self): 'Convert uppercase characters to lowercase and lowercase characters to uppercase.' return str() def title(self): 'Return a version of the string where each word is titlecased.\n\nMore specifically, words start with uppercased characters and all remaining\ncased characters have lower case.' return str() def translate(self, table): 'Replace each character in the string using the given translation table.\n\n table\n Translation table, which must be a mapping of Unicode ordinals to\n Unicode ordinals, strings, or None.\n\nThe table must implement lookup/indexing via __getitem__, for instance a\ndictionary or list. If this operation raises LookupError, the character is\nleft untouched. Characters mapped to None are deleted.' return str() def upper(self): 'Return a copy of the string converted to uppercase.' return str() def zfill(self, width): 'Pad a numeric string with zeros on the left, to fill a field of the given width.\n\nThe string is never truncated.' return str() __Unicode__ = str class str_iterator(object): __class__ = str_iterator def __getattribute__(self, name): 'Return getattr(self, name).' pass def __init__(self, *args, **kwargs): pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None def __iter__(self): 'Implement iter(self).' return str_iterator() def __length_hint__(self): 'Private method returning an estimate of len(list(it)).' return 0 def __next__(self): 'Implement next(self).' return __Unicode__() def __reduce__(self): 'Return state information for pickling.' return ''; return () def __setstate__(self, state): 'Set state information for unpickling.' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False __UnicodeIterator__ = str_iterator __Str__ = __Unicode__ __StrIterator__ = __UnicodeIterator__ class module(object): 'Create a module object.\n\nThe name must be a string; the optional doc argument can have any type.' __class__ = module def __delattr__(self, name): 'Implement delattr(self, name).' return None __dict__ = {} def __dir__(self): '__dir__() -> list\nspecialized dir() implementation' return [''] def __getattribute__(self, name): 'Return getattr(self, name).' pass def __init__(self, *args, **kwargs): 'Create a module object.\n\nThe name must be a string; the optional doc argument can have any type.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None def __repr__(self): 'Return repr(self).' return '' def __setattr__(self, name, value): 'Implement setattr(self, name, value).' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False __Module__ = module class function(object): 'Create a function object.\n\n code\n a code object\n globals\n the globals dictionary\n name\n a string that overrides the name from the code object\n argdefs\n a tuple that specifies the default argument values\n closure\n a tuple that supplies the bindings for free variables' @property def __annotations__(self): return {} def __call__(self, *args, **kwargs): 'Call self as a function.' pass __class__ = function @property def __closure__(self): pass @property def __code__(self): return object() @property def __defaults__(self): pass __dict__ = {} def __get__(self, instance, owner): 'Return an attribute of instance, which is of type owner.' return function() @property def __globals__(self): return {} def __init__(self, *args, **kwargs): 'Create a function object.\n\n code\n a code object\n globals\n the globals dictionary\n name\n a string that overrides the name from the code object\n argdefs\n a tuple that specifies the default argument values\n closure\n a tuple that supplies the bindings for free variables' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @property def __kwdefaults__(self): pass __name__ = 'function' __qualname__ = 'function' def __repr__(self): 'Return repr(self).' return '' @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False __Function__ = function class wrapper_descriptor(object): def __call__(self, *args, **kwargs): 'Call self as a function.' pass __class__ = wrapper_descriptor def __get__(self, instance, owner): 'Return an attribute of instance, which is of type owner.' return wrapper_descriptor() def __getattribute__(self, name): 'Return getattr(self, name).' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None __name__ = 'wrapper_descriptor' @property def __objclass__(self): pass __qualname__ = 'wrapper_descriptor' def __reduce__(self): return ''; return () def __repr__(self): 'Return repr(self).' return '' @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False __text_signature__ = None __BuiltinMethodDescriptor__ = wrapper_descriptor class builtin_function_or_method(object): def __call__(self, *args, **kwargs): 'Call self as a function.' pass __class__ = builtin_function_or_method def __eq__(self, value): 'Return self==value.' return False def __ge__(self, value): 'Return self>=value.' return False def __getattribute__(self, name): 'Return getattr(self, name).' pass def __gt__(self, value): 'Return self>value.' return False def __hash__(self): 'Return hash(self).' return 0 @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None def __le__(self, value): 'Return self<=value.' return False def __lt__(self, value): 'Return self<value.' return False __name__ = 'builtin_function_or_method' def __ne__(self, value): 'Return self!=value.' return False __qualname__ = 'builtin_function_or_method' def __reduce__(self): return ''; return () def __repr__(self): 'Return repr(self).' return '' @property def __self__(self): pass @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False __text_signature__ = None __BuiltinFunction__ = builtin_function_or_method class generator(object): __class__ = generator def __del__(self): return None def __getattribute__(self, name): 'Return getattr(self, name).' pass def __init__(self, *args, **kwargs): pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None def __iter__(self): 'Implement iter(self).' return generator() __name__ = 'generator' def __next__(self): 'Implement next(self).' pass __qualname__ = 'generator' def __repr__(self): 'Return repr(self).' return '' @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False def close(self): 'close() -> raise GeneratorExit inside generator.' return None @property def gi_code(self): pass @property def gi_frame(self): pass @property def gi_running(self): pass @property def gi_yieldfrom(self): 'object being iterated by yield from, or None' pass def send(self, value): "send(arg) -> send 'arg' into generator,\nreturn next yielded value or raise StopIteration." return self.__next__() def throw(self, type, value=None, traceback=None): 'throw(typ[,val[,tb]]) -> raise exception in generator,\nreturn next yielded value or raise StopIteration.' return None __Generator__ = generator class property(object): 'Property attribute.\n\n fget\n function to be used for getting an attribute value\n fset\n function to be used for setting an attribute value\n fdel\n function to be used for del\'ing an attribute\n doc\n docstring\n\nTypical use is to define a managed attribute x:\n\nclass C(object):\n def getx(self): return self._x\n def setx(self, value): self._x = value\n def delx(self): del self._x\n x = property(getx, setx, delx, "I\'m the \'x\' property.")\n\nDecorators make defining new properties or modifying existing ones easy:\n\nclass C(object):\n @property\n def x(self):\n "I am the \'x\' property."\n return self._x\n @x.setter\n def x(self, value):\n self._x = value\n @x.deleter\n def x(self):\n del self._x' __class__ = property def __delete__(self, instance): 'Delete an attribute of instance.' return None def __get__(self, instance, owner): 'Return an attribute of instance, which is of type owner.' return property() def __getattribute__(self, name): 'Return getattr(self, name).' pass def __init__(self, *args, **kwargs): 'Property attribute.\n\n fget\n function to be used for getting an attribute value\n fset\n function to be used for setting an attribute value\n fdel\n function to be used for del\'ing an attribute\n doc\n docstring\n\nTypical use is to define a managed attribute x:\n\nclass C(object):\n def getx(self): return self._x\n def setx(self, value): self._x = value\n def delx(self): del self._x\n x = property(getx, setx, delx, "I\'m the \'x\' property.")\n\nDecorators make defining new properties or modifying existing ones easy:\n\nclass C(object):\n @property\n def x(self):\n "I am the \'x\' property."\n return self._x\n @x.setter\n def x(self, value):\n self._x = value\n @x.deleter\n def x(self):\n del self._x' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @property def __isabstractmethod__(self): pass def __set__(self, instance, value): 'Set an attribute of instance to value.' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False def deleter(self, func): 'Descriptor to change the deleter on a property.' return func @property def fdel(self): pass @property def fget(self): pass @property def fset(self): pass def getter(self, func): 'Descriptor to change the getter on a property.' return func def setter(self, func): 'Descriptor to change the setter on a property.' return func __Property__ = property class classmethod(object): 'classmethod(function) -> method\n\nConvert a function to be a class method.\n\nA class method receives the class as implicit first argument,\njust like an instance method receives the instance.\nTo declare a class method, use this idiom:\n\n class C:\n @classmethod\n def f(cls, arg1, arg2, ...):\n ...\n\nIt can be called either on the class (e.g. C.f()) or on an instance\n(e.g. C().f()). The instance is ignored except for its class.\nIf a class method is called for a derived class, the derived class\nobject is passed as the implied first argument.\n\nClass methods are different than C++ or Java static methods.\nIf you want those, see the staticmethod builtin.' __class__ = classmethod __dict__ = {} @property def __func__(self): pass def __get__(self, instance, owner): 'Return an attribute of instance, which is of type owner.' return classmethod() def __init__(self, function): 'classmethod(function) -> method\n\nConvert a function to be a class method.\n\nA class method receives the class as implicit first argument,\njust like an instance method receives the instance.\nTo declare a class method, use this idiom:\n\n class C:\n @classmethod\n def f(cls, arg1, arg2, ...):\n ...\n\nIt can be called either on the class (e.g. C.f()) or on an instance\n(e.g. C().f()). The instance is ignored except for its class.\nIf a class method is called for a derived class, the derived class\nobject is passed as the implied first argument.\n\nClass methods are different than C++ or Java static methods.\nIf you want those, see the staticmethod builtin.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @property def __isabstractmethod__(self): pass @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False __ClassMethod__ = classmethod class staticmethod(object): 'staticmethod(function) -> method\n\nConvert a function to be a static method.\n\nA static method does not receive an implicit first argument.\nTo declare a static method, use this idiom:\n\n class C:\n @staticmethod\n def f(arg1, arg2, ...):\n ...\n\nIt can be called either on the class (e.g. C.f()) or on an instance\n(e.g. C().f()). Both the class and the instance are ignored, and\nneither is passed implicitly as the first argument to the method.\n\nStatic methods in Python are similar to those found in Java or C++.\nFor a more advanced concept, see the classmethod builtin.' __class__ = staticmethod __dict__ = {} @property def __func__(self): pass def __get__(self, instance, owner): 'Return an attribute of instance, which is of type owner.' return staticmethod() def __init__(self, function): 'staticmethod(function) -> method\n\nConvert a function to be a static method.\n\nA static method does not receive an implicit first argument.\nTo declare a static method, use this idiom:\n\n class C:\n @staticmethod\n def f(arg1, arg2, ...):\n ...\n\nIt can be called either on the class (e.g. C.f()) or on an instance\n(e.g. C().f()). Both the class and the instance are ignored, and\nneither is passed implicitly as the first argument to the method.\n\nStatic methods in Python are similar to those found in Java or C++.\nFor a more advanced concept, see the classmethod builtin.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @property def __isabstractmethod__(self): pass @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False __StaticMethod__ = staticmethod class ellipsis(object): __class__ = ellipsis def __getattribute__(self, name): 'Return getattr(self, name).' pass def __init__(self, *args, **kwargs): pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None def __reduce__(self): return ''; return () def __repr__(self): 'Return repr(self).' return '' @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False __Ellipsis__ = ellipsis class tuple_iterator(object): __class__ = tuple_iterator def __getattribute__(self, name): 'Return getattr(self, name).' pass def __init__(self, *args, **kwargs): pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None def __iter__(self): 'Implement iter(self).' return tuple_iterator() def __length_hint__(self): 'Private method returning an estimate of len(list(it)).' return 0 def __next__(self): 'Implement next(self).' pass def __reduce__(self): 'Return state information for pickling.' return ''; return () def __setstate__(self, state): 'Set state information for unpickling.' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False __TupleIterator__ = tuple_iterator class list_iterator(object): __class__ = list_iterator def __getattribute__(self, name): 'Return getattr(self, name).' pass def __init__(self, *args, **kwargs): pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None def __iter__(self): 'Implement iter(self).' return list_iterator() def __length_hint__(self): 'Private method returning an estimate of len(list(it)).' return 0 def __next__(self): 'Implement next(self).' pass def __reduce__(self): 'Return state information for pickling.' return ''; return () def __setstate__(self, state): 'Set state information for unpickling.' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False __ListIterator__ = list_iterator class dict_keys(object): def __and__(self, value): 'Return self&value.' return dict_keys() __class__ = dict_keys def __contains__(self, key): 'Return key in self.' return False def __eq__(self, value): 'Return self==value.' return False def __ge__(self, value): 'Return self>=value.' return False def __getattribute__(self, name): 'Return getattr(self, name).' pass def __gt__(self, value): 'Return self>value.' return False __hash__ = None def __init__(self, *args, **kwargs): pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None def __iter__(self): 'Implement iter(self).' return dict_keys() def __le__(self, value): 'Return self<=value.' return False def __len__(self): 'Return len(self).' return 0 def __lt__(self, value): 'Return self<value.' return False def __ne__(self, value): 'Return self!=value.' return False def __or__(self, value): 'Return self|value.' return dict_keys() def __rand__(self, value): 'Return value&self.' return dict_keys() def __repr__(self): 'Return repr(self).' return '' def __reversed__(self): 'Return a reverse iterator over the dict keys.' pass def __ror__(self, value): 'Return value|self.' return dict_keys() def __rsub__(self, value): 'Return value-self.' return dict_keys() def __rxor__(self, value): 'Return value^self.' return dict_keys() def __sub__(self, value): 'Return self-value.' return dict_keys() @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False def __xor__(self, value): 'Return self^value.' return dict_keys() def isdisjoint(self, other): 'Return True if the view and the given iterable have a null intersection.' return False __DictKeys__ = dict_keys class dict_values(object): __class__ = dict_values def __getattribute__(self, name): 'Return getattr(self, name).' pass def __init__(self, *args, **kwargs): pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None def __iter__(self): 'Implement iter(self).' return dict_values() def __len__(self): 'Return len(self).' return 0 def __repr__(self): 'Return repr(self).' return '' def __reversed__(self): 'Return a reverse iterator over the dict values.' pass @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False __DictValues__ = dict_values class dict_items(object): def __and__(self, value): 'Return self&value.' return dict_items() __class__ = dict_items def __contains__(self, key): 'Return key in self.' return False def __eq__(self, value): 'Return self==value.' return False def __ge__(self, value): 'Return self>=value.' return False def __getattribute__(self, name): 'Return getattr(self, name).' pass def __gt__(self, value): 'Return self>value.' return False __hash__ = None def __init__(self, *args, **kwargs): pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None def __iter__(self): 'Implement iter(self).' return dict_items() def __le__(self, value): 'Return self<=value.' return False def __len__(self): 'Return len(self).' return 0 def __lt__(self, value): 'Return self<value.' return False def __ne__(self, value): 'Return self!=value.' return False def __or__(self, value): 'Return self|value.' return dict_items() def __rand__(self, value): 'Return value&self.' return dict_items() def __repr__(self): 'Return repr(self).' return '' def __reversed__(self): 'Return a reverse iterator over the dict items.' pass def __ror__(self, value): 'Return value|self.' return dict_items() def __rsub__(self, value): 'Return value-self.' return dict_items() def __rxor__(self, value): 'Return value^self.' return dict_items() def __sub__(self, value): 'Return self-value.' return dict_items() @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False def __xor__(self, value): 'Return self^value.' return dict_items() def isdisjoint(self, other): 'Return True if the view and the given iterable have a null intersection.' return False __DictItems__ = dict_items class set_iterator(object): __class__ = set_iterator def __getattribute__(self, name): 'Return getattr(self, name).' pass def __init__(self, *args, **kwargs): pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None def __iter__(self): 'Implement iter(self).' return set_iterator() def __length_hint__(self): 'Private method returning an estimate of len(list(it)).' return 0 def __next__(self): 'Implement next(self).' pass def __reduce__(self): 'Return state information for pickling.' return ''; return () @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False __SetIterator__ = set_iterator class callable_iterator(object): __class__ = callable_iterator def __getattribute__(self, name): 'Return getattr(self, name).' pass def __init__(self, *args, **kwargs): pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None def __iter__(self): 'Implement iter(self).' return callable_iterator() def __next__(self): 'Implement next(self).' pass def __reduce__(self): 'Return state information for pickling.' return ''; return () @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False __CallableIterator__ = callable_iterator __builtin_module_names__ = "_abc,_ast,_bisect,_blake2,_codecs,_collections,_csv,_datetime,_elementtree,_functools,_heapq,_imp,_io,_locale,_md5,_operator,_pickle,_posixsubprocess,_random,_sha1,_sha256,_sha3,_sha512,_signal,_socket,_sre,_stat,_statistics,_string,_struct,_symtable,_thread,_tracemalloc,_warnings,_weakref,array,atexit,binascii,builtins,cmath,errno,faulthandler,fcntl,gc,grp,itertools,marshal,math,posix,pwd,pyexpat,select,spwd,sys,syslog,time,unicodedata,xxsubtype,zlib" class ArithmeticError(Exception): 'Base class for arithmetic errors.' __class__ = ArithmeticError __dict__ = {} def __init__(self, *args, **kwargs): 'Base class for arithmetic errors.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class AssertionError(Exception): 'Assertion failed.' __class__ = AssertionError __dict__ = {} def __init__(self, *args, **kwargs): 'Assertion failed.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class AttributeError(Exception): 'Attribute not found.' __class__ = AttributeError __dict__ = {} def __init__(self, *args, **kwargs): 'Attribute not found.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class BaseException(object): 'Common base class for all exceptions' @property def __cause__(self): 'exception cause' pass __class__ = BaseException @property def __context__(self): 'exception context' pass def __delattr__(self, name): 'Implement delattr(self, name).' return None __dict__ = {} def __getattribute__(self, name): 'Return getattr(self, name).' pass def __init__(self, *args, **kwargs): 'Common base class for all exceptions' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None def __reduce__(self): return ''; return () def __repr__(self): 'Return repr(self).' return '' def __setattr__(self, name, value): 'Implement setattr(self, name, value).' return None def __setstate__(self, state): return None def __str__(self): 'Return str(self).' return '' @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False @property def __suppress_context__(self): pass @property def __traceback__(self): pass @property def args(self): pass def with_traceback(self): 'Exception.with_traceback(tb) --\n set self.__traceback__ to tb and return self.' pass class BlockingIOError(OSError): 'I/O operation would block.' __class__ = BlockingIOError __dict__ = {} def __init__(self, *args, **kwargs): 'I/O operation would block.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class BrokenPipeError(ConnectionError): 'Broken pipe.' __class__ = BrokenPipeError __dict__ = {} def __init__(self, *args, **kwargs): 'Broken pipe.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class BufferError(Exception): 'Buffer error.' __class__ = BufferError __dict__ = {} def __init__(self, *args, **kwargs): 'Buffer error.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class BytesWarning(Warning): 'Base class for warnings about bytes and buffer related problems, mostly\nrelated to conversion from str or comparing to str.' __class__ = BytesWarning __dict__ = {} def __init__(self, *args, **kwargs): 'Base class for warnings about bytes and buffer related problems, mostly\nrelated to conversion from str or comparing to str.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class ChildProcessError(OSError): 'Child process error.' __class__ = ChildProcessError __dict__ = {} def __init__(self, *args, **kwargs): 'Child process error.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class ConnectionAbortedError(ConnectionError): 'Connection aborted.' __class__ = ConnectionAbortedError __dict__ = {} def __init__(self, *args, **kwargs): 'Connection aborted.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class ConnectionError(OSError): 'Connection error.' __class__ = ConnectionError __dict__ = {} def __init__(self, *args, **kwargs): 'Connection error.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class ConnectionRefusedError(ConnectionError): 'Connection refused.' __class__ = ConnectionRefusedError __dict__ = {} def __init__(self, *args, **kwargs): 'Connection refused.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class ConnectionResetError(ConnectionError): 'Connection reset.' __class__ = ConnectionResetError __dict__ = {} def __init__(self, *args, **kwargs): 'Connection reset.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class DeprecationWarning(Warning): 'Base class for warnings about deprecated features.' __class__ = DeprecationWarning __dict__ = {} def __init__(self, *args, **kwargs): 'Base class for warnings about deprecated features.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class EOFError(Exception): 'Read beyond end of file.' __class__ = EOFError __dict__ = {} def __init__(self, *args, **kwargs): 'Read beyond end of file.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False Ellipsis = ellipsis() EnvironmentError = OSError class Exception(BaseException): 'Common base class for all non-exit exceptions.' __class__ = Exception __dict__ = {} def __init__(self, *args, **kwargs): 'Common base class for all non-exit exceptions.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class FileExistsError(OSError): 'File already exists.' __class__ = FileExistsError __dict__ = {} def __init__(self, *args, **kwargs): 'File already exists.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class FileNotFoundError(OSError): 'File not found.' __class__ = FileNotFoundError __dict__ = {} def __init__(self, *args, **kwargs): 'File not found.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class FloatingPointError(ArithmeticError): 'Floating point operation failed.' __class__ = FloatingPointError __dict__ = {} def __init__(self, *args, **kwargs): 'Floating point operation failed.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class FutureWarning(Warning): 'Base class for warnings about constructs that will change semantically\nin the future.' __class__ = FutureWarning __dict__ = {} def __init__(self, *args, **kwargs): 'Base class for warnings about constructs that will change semantically\nin the future.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class GeneratorExit(BaseException): 'Request that a generator exit.' __class__ = GeneratorExit __dict__ = {} def __init__(self, *args, **kwargs): 'Request that a generator exit.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False IOError = OSError class ImportError(Exception): "Import can't find module, or can't find name in module." __class__ = ImportError __dict__ = {} def __init__(self, *args, **kwargs): "Import can't find module, or can't find name in module." pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None def __reduce__(self): return ''; return () def __str__(self): 'Return str(self).' return '' @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False @property def msg(self): 'exception message' pass @property def name(self): 'module name' pass @property def path(self): 'module path' pass class ImportWarning(Warning): 'Base class for warnings about probable mistakes in module imports' __class__ = ImportWarning __dict__ = {} def __init__(self, *args, **kwargs): 'Base class for warnings about probable mistakes in module imports' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class IndentationError(SyntaxError): 'Improper indentation.' __class__ = IndentationError __dict__ = {} def __init__(self, *args, **kwargs): 'Improper indentation.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class IndexError(LookupError): 'Sequence index out of range.' __class__ = IndexError __dict__ = {} def __init__(self, *args, **kwargs): 'Sequence index out of range.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class InterruptedError(OSError): 'Interrupted by signal.' __class__ = InterruptedError __dict__ = {} def __init__(self, *args, **kwargs): 'Interrupted by signal.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class IsADirectoryError(OSError): "Operation doesn't work on directories." __class__ = IsADirectoryError __dict__ = {} def __init__(self, *args, **kwargs): "Operation doesn't work on directories." pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class KeyError(LookupError): 'Mapping key not found.' __class__ = KeyError __dict__ = {} def __init__(self, *args, **kwargs): 'Mapping key not found.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None def __str__(self): 'Return str(self).' return '' @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class KeyboardInterrupt(BaseException): 'Program interrupted by user.' __class__ = KeyboardInterrupt __dict__ = {} def __init__(self, *args, **kwargs): 'Program interrupted by user.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class LookupError(Exception): 'Base class for lookup errors.' __class__ = LookupError __dict__ = {} def __init__(self, *args, **kwargs): 'Base class for lookup errors.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class MemoryError(Exception): 'Out of memory.' __class__ = MemoryError __dict__ = {} def __init__(self, *args, **kwargs): 'Out of memory.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class ModuleNotFoundError(ImportError): 'Module not found.' __class__ = ModuleNotFoundError __dict__ = {} def __init__(self, *args, **kwargs): 'Module not found.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class NameError(Exception): 'Name not found globally.' __class__ = NameError __dict__ = {} def __init__(self, *args, **kwargs): 'Name not found globally.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class NotADirectoryError(OSError): 'Operation only works on directories.' __class__ = NotADirectoryError __dict__ = {} def __init__(self, *args, **kwargs): 'Operation only works on directories.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False NotImplemented = NotImplementedType() class NotImplementedError(RuntimeError): "Method or function hasn't been implemented yet." __class__ = NotImplementedError __dict__ = {} def __init__(self, *args, **kwargs): "Method or function hasn't been implemented yet." pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class OSError(Exception): 'Base class for I/O related errors.' __class__ = OSError __dict__ = {} def __init__(self, *args, **kwargs): 'Base class for I/O related errors.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None def __reduce__(self): return ''; return () def __str__(self): 'Return str(self).' return '' @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False @property def characters_written(self): pass @property def errno(self): 'POSIX exception code' pass @property def filename(self): 'exception filename' pass @property def filename2(self): 'second exception filename' pass @property def strerror(self): 'exception strerror' pass class OverflowError(ArithmeticError): 'Result too large to be represented.' __class__ = OverflowError __dict__ = {} def __init__(self, *args, **kwargs): 'Result too large to be represented.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class PendingDeprecationWarning(Warning): 'Base class for warnings about features which will be deprecated\nin the future.' __class__ = PendingDeprecationWarning __dict__ = {} def __init__(self, *args, **kwargs): 'Base class for warnings about features which will be deprecated\nin the future.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class PermissionError(OSError): 'Not enough permissions.' __class__ = PermissionError __dict__ = {} def __init__(self, *args, **kwargs): 'Not enough permissions.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class ProcessLookupError(OSError): 'Process not found.' __class__ = ProcessLookupError __dict__ = {} def __init__(self, *args, **kwargs): 'Process not found.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class RecursionError(RuntimeError): 'Recursion limit exceeded.' __class__ = RecursionError __dict__ = {} def __init__(self, *args, **kwargs): 'Recursion limit exceeded.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class ReferenceError(Exception): 'Weak ref proxy used after referent went away.' __class__ = ReferenceError __dict__ = {} def __init__(self, *args, **kwargs): 'Weak ref proxy used after referent went away.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class ResourceWarning(Warning): 'Base class for warnings about resource usage.' __class__ = ResourceWarning __dict__ = {} def __init__(self, *args, **kwargs): 'Base class for warnings about resource usage.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class RuntimeError(Exception): 'Unspecified run-time error.' __class__ = RuntimeError __dict__ = {} def __init__(self, *args, **kwargs): 'Unspecified run-time error.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class RuntimeWarning(Warning): 'Base class for warnings about dubious runtime behavior.' __class__ = RuntimeWarning __dict__ = {} def __init__(self, *args, **kwargs): 'Base class for warnings about dubious runtime behavior.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class StopAsyncIteration(Exception): 'Signal the end from iterator.__anext__().' __class__ = StopAsyncIteration __dict__ = {} def __init__(self): 'Signal the end from iterator.__anext__().' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class StopIteration(Exception): 'Signal the end from iterator.__next__().' __class__ = StopIteration __dict__ = {} def __init__(self): 'Signal the end from iterator.__next__().' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False @property def value(self): 'generator return value' pass class SyntaxError(Exception): 'Invalid syntax.' __class__ = SyntaxError __dict__ = {} def __init__(self, *args, **kwargs): 'Invalid syntax.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None def __str__(self): 'Return str(self).' return '' @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False @property def filename(self): 'exception filename' pass @property def lineno(self): 'exception lineno' pass @property def msg(self): 'exception msg' pass @property def offset(self): 'exception offset' pass @property def print_file_and_line(self): 'exception print_file_and_line' pass @property def text(self): 'exception text' pass class SyntaxWarning(Warning): 'Base class for warnings about dubious syntax.' __class__ = SyntaxWarning __dict__ = {} def __init__(self, *args, **kwargs): 'Base class for warnings about dubious syntax.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class SystemError(Exception): 'Internal error in the Python interpreter.\n\nPlease report this to the Python maintainer, along with the traceback,\nthe Python version, and the hardware/OS platform and version.' __class__ = SystemError __dict__ = {} def __init__(self, *args, **kwargs): 'Internal error in the Python interpreter.\n\nPlease report this to the Python maintainer, along with the traceback,\nthe Python version, and the hardware/OS platform and version.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class SystemExit(BaseException): 'Request to exit from the interpreter.' __class__ = SystemExit __dict__ = {} def __init__(self, *args, **kwargs): 'Request to exit from the interpreter.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False @property def code(self): 'exception code' pass class TabError(IndentationError): 'Improper mixture of spaces and tabs.' __class__ = TabError __dict__ = {} def __init__(self, *args, **kwargs): 'Improper mixture of spaces and tabs.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class TimeoutError(OSError): 'Timeout expired.' __class__ = TimeoutError __dict__ = {} def __init__(self, *args, **kwargs): 'Timeout expired.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class TypeError(Exception): 'Inappropriate argument type.' __class__ = TypeError __dict__ = {} def __init__(self, *args, **kwargs): 'Inappropriate argument type.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class UnboundLocalError(NameError): 'Local name referenced but not bound to a value.' __class__ = UnboundLocalError __dict__ = {} def __init__(self, *args, **kwargs): 'Local name referenced but not bound to a value.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class UnicodeDecodeError(UnicodeError): 'Unicode decoding error.' __class__ = UnicodeDecodeError __dict__ = {} def __init__(self, *args, **kwargs): 'Unicode decoding error.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None def __str__(self): 'Return str(self).' return '' @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False @property def encoding(self): 'exception encoding' pass @property def end(self): 'exception end' pass @property def object(self): 'exception object' pass @property def reason(self): 'exception reason' pass @property def start(self): 'exception start' pass class UnicodeEncodeError(UnicodeError): 'Unicode encoding error.' __class__ = UnicodeEncodeError __dict__ = {} def __init__(self, *args, **kwargs): 'Unicode encoding error.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None def __str__(self): 'Return str(self).' return '' @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False @property def encoding(self): 'exception encoding' pass @property def end(self): 'exception end' pass @property def object(self): 'exception object' pass @property def reason(self): 'exception reason' pass @property def start(self): 'exception start' pass class UnicodeError(ValueError): 'Unicode related error.' __class__ = UnicodeError __dict__ = {} def __init__(self, *args, **kwargs): 'Unicode related error.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class UnicodeTranslateError(UnicodeError): 'Unicode translation error.' __class__ = UnicodeTranslateError __dict__ = {} def __init__(self, *args, **kwargs): 'Unicode translation error.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None def __str__(self): 'Return str(self).' return '' @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False @property def encoding(self): 'exception encoding' pass @property def end(self): 'exception end' pass @property def object(self): 'exception object' pass @property def reason(self): 'exception reason' pass @property def start(self): 'exception start' pass class UnicodeWarning(Warning): 'Base class for warnings about Unicode related problems, mostly\nrelated to conversion problems.' __class__ = UnicodeWarning __dict__ = {} def __init__(self, *args, **kwargs): 'Base class for warnings about Unicode related problems, mostly\nrelated to conversion problems.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class UserWarning(Warning): 'Base class for warnings generated by user code.' __class__ = UserWarning __dict__ = {} def __init__(self, *args, **kwargs): 'Base class for warnings generated by user code.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class ValueError(Exception): 'Inappropriate argument value (of correct type).' __class__ = ValueError __dict__ = {} def __init__(self, ofcorrecttype): 'Inappropriate argument value (of correct type).' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class Warning(Exception): 'Base class for warning categories.' __class__ = Warning __dict__ = {} def __init__(self, *args, **kwargs): 'Base class for warning categories.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False class ZeroDivisionError(ArithmeticError): 'Second argument to a division or modulo operation was zero.' __class__ = ZeroDivisionError __dict__ = {} def __init__(self, *args, **kwargs): 'Second argument to a division or modulo operation was zero.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False def __build_class__(func, name, *bases, metaclass=None, **kwds): '__build_class__(func, name, /, *bases, [metaclass], **kwds) -> class\n\nInternal helper function used by the class statement.' pass __doc__ = "Built-in functions, exceptions, and other objects.\n\nNoteworthy: None is the `nil' object; Ellipsis represents `...' in slices." def __import__(name, globals=None, locals=None, fromlist=(), level=0): "__import__(name, globals=None, locals=None, fromlist=(), level=0) -> module\n\nImport a module. Because this function is meant for use by the Python\ninterpreter and not for general use, it is better to use\nimportlib.import_module() to programmatically import a module.\n\nThe globals argument is only used to determine the context;\nthey are not modified. The locals argument is unused. The fromlist\nshould be a list of names to emulate ``from name import ...'', or an\nempty list to emulate ``import name''.\nWhen importing a module from a package, note that __import__('A.B', ...)\nreturns package A when fromlist is empty, but its submodule B when\nfromlist is not empty. The level argument is used to determine whether to\nperform absolute or relative imports: 0 is absolute, while a positive number\nis the number of parent directories to search relative to the current module." pass __name__ = 'builtins' __package__ = '' def abs(x): 'Return the absolute value of the argument.' pass def all(iterable): 'Return True if bool(x) is True for all values x in the iterable.\n\nIf the iterable is empty, return True.' return False def any(iterable): 'Return True if bool(x) is True for any x in the iterable.\n\nIf the iterable is empty, return False.' return False def ascii(obj): 'Return an ASCII-only representation of an object.\n\nAs repr(), return a string containing a printable representation of an\nobject, but escape the non-ASCII characters in the string returned by\nrepr() using \\\\x, \\\\u or \\\\U escapes. This generates a string similar\nto that returned by repr() in Python 2.' return '' def bin(number): "Return the binary representation of an integer.\n\n >>> bin(2796202)\n '0b1010101010101010101010'" return '' def breakpoint(*args, **kws): 'breakpoint(*args, **kws)\n\nCall sys.breakpointhook(*args, **kws). sys.breakpointhook() must accept\nwhatever arguments are passed.\n\nBy default, this drops you into the pdb debugger.' pass class bytearray(object): 'bytearray(iterable_of_ints) -> bytearray\nbytearray(string, encoding[, errors]) -> bytearray\nbytearray(bytes_or_buffer) -> mutable copy of bytes_or_buffer\nbytearray(int) -> bytes array of size given by the parameter initialized with null bytes\nbytearray() -> empty bytes array\n\nConstruct a mutable bytearray object from:\n - an iterable yielding integers in range(256)\n - a text string encoded using the specified encoding\n - a bytes or a buffer object\n - any object implementing the buffer API.\n - an integer' def __add__(self, value): 'Return self+value.' return bytearray() def __alloc__(self): 'B.__alloc__() -> int\n\nReturn the number of bytes actually allocated.' return 1 __class__ = bytearray def __contains__(self, key): 'Return key in self.' return False def __delitem__(self, key): 'Delete self[key].' return None def __eq__(self, value): 'Return self==value.' return False def __ge__(self, value): 'Return self>=value.' return False def __getattribute__(self, name): 'Return getattr(self, name).' pass def __getitem__(self, key): 'Return self[key].' pass def __gt__(self, value): 'Return self>value.' return False __hash__ = None def __iadd__(self, value): 'Implement self+=value.' return None def __imul__(self, value): 'Implement self*=value.' return None def __init__(self, string, encoding, errors=None): 'bytearray(iterable_of_ints) -> bytearray\nbytearray(string, encoding[, errors]) -> bytearray\nbytearray(bytes_or_buffer) -> mutable copy of bytes_or_buffer\nbytearray(int) -> bytes array of size given by the parameter initialized with null bytes\nbytearray() -> empty bytes array\n\nConstruct a mutable bytearray object from:\n - an iterable yielding integers in range(256)\n - a text string encoded using the specified encoding\n - a bytes or a buffer object\n - any object implementing the buffer API.\n - an integer' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None def __iter__(self): 'Implement iter(self).' return bytearray() def __le__(self, value): 'Return self<=value.' return False def __len__(self): 'Return len(self).' return 0 def __lt__(self, value): 'Return self<value.' return False def __mod__(self, value): 'Return self%value.' return bytearray() def __mul__(self, value): 'Return self*value.' return bytearray() def __ne__(self, value): 'Return self!=value.' return False def __reduce__(self): 'Return state information for pickling.' return ''; return () def __reduce_ex__(self, proto): 'Return state information for pickling.' return ''; return () def __repr__(self): 'Return repr(self).' return '' def __rmod__(self, value): 'Return value%self.' return bytearray() def __rmul__(self, value): 'Return value*self.' return bytearray() def __setitem__(self, key, value): 'Set self[key] to value.' return None def __sizeof__(self): 'Returns the size of the bytearray object in memory, in bytes.' return 0 def __str__(self): 'Return str(self).' return '' @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False def append(self, item): 'Append a single item to the end of the bytearray.\n\n item\n The item to be appended.' pass def capitalize(self): 'B.capitalize() -> copy of B\n\nReturn a copy of B with only its first character capitalized (ASCII)\nand the rest lower-cased.' return bytearray() def center(self, width, fillchar): 'Return a centered string of length width.\n\nPadding is done using the specified fill character.' return bytearray() def clear(self): 'Remove all items from the bytearray.' return None def copy(self): 'Return a copy of B.' return bytearray() def count(self, x): 'B.count(sub[, start[, end]]) -> int\n\nReturn the number of non-overlapping occurrences of subsection sub in\nbytes B[start:end]. Optional arguments start and end are interpreted\nas in slice notation.' return 0 def decode(self, encoding, errors): "Decode the bytearray using the codec registered for encoding.\n\n encoding\n The encoding with which to decode the bytearray.\n errors\n The error handling scheme to use for the handling of decoding errors.\n The default is 'strict' meaning that decoding errors raise a\n UnicodeDecodeError. Other possible values are 'ignore' and 'replace'\n as well as any other name registered with codecs.register_error that\n can handle UnicodeDecodeErrors." pass def endswith(self, suffix, start=0, end=-1): 'B.endswith(suffix[, start[, end]]) -> bool\n\nReturn True if B ends with the specified suffix, False otherwise.\nWith optional start, test B beginning at that position.\nWith optional end, stop comparing B at that position.\nsuffix can also be a tuple of bytes to try.' return False def expandtabs(self, tabsize): 'Return a copy where all tab characters are expanded using spaces.\n\nIf tabsize is not given, a tab size of 8 characters is assumed.' return bytearray() def extend(self, iterable_of_ints): 'Append all the items from the iterator or sequence to the end of the bytearray.\n\n iterable_of_ints\n The iterable of items to append.' pass def find(self, sub, start=0, end=-1): 'B.find(sub[, start[, end]]) -> int\n\nReturn the lowest index in B where subsection sub is found,\nsuch that sub is contained within B[start,end]. Optional\narguments start and end are interpreted as in slice notation.\n\nReturn -1 on failure.' return 0 @classmethod def fromhex(cls, type, string): "Create a bytearray object from a string of hexadecimal numbers.\n\nSpaces between two numbers are accepted.\nExample: bytearray.fromhex('B9 01EF') -> bytearray(b'\\\\xb9\\\\x01\\\\xef')" pass def hex(self): "Create a str of hexadecimal numbers from a bytearray object.\n\n sep\n An optional single character or byte to separate hex bytes.\n bytes_per_sep\n How many bytes between separators. Positive values count from the\n right, negative values count from the left.\n\nExample:\n>>> value = bytearray([0xb9, 0x01, 0xef])\n>>> value.hex()\n'b901ef'\n>>> value.hex(':')\n'b9:01:ef'\n>>> value.hex(':', 2)\n'b9:01ef'\n>>> value.hex(':', -2)\n'b901:ef'" return '' def index(self, v): 'B.index(sub[, start[, end]]) -> int\n\nReturn the lowest index in B where subsection sub is found,\nsuch that sub is contained within B[start,end]. Optional\narguments start and end are interpreted as in slice notation.\n\nRaises ValueError when the subsection is not found.' return 0 def insert(self, index, item): 'Insert a single item into the bytearray before the given index.\n\n index\n The index where the value is to be inserted.\n item\n The item to be inserted.' pass def isalnum(self): 'B.isalnum() -> bool\n\nReturn True if all characters in B are alphanumeric\nand there is at least one character in B, False otherwise.' return False def isalpha(self): 'B.isalpha() -> bool\n\nReturn True if all characters in B are alphabetic\nand there is at least one character in B, False otherwise.' return False def isascii(self): 'B.isascii() -> bool\n\nReturn True if B is empty or all characters in B are ASCII,\nFalse otherwise.' return True def isdigit(self): 'B.isdigit() -> bool\n\nReturn True if all characters in B are digits\nand there is at least one character in B, False otherwise.' return False def islower(self): 'B.islower() -> bool\n\nReturn True if all cased characters in B are lowercase and there is\nat least one cased character in B, False otherwise.' return False def isspace(self): 'B.isspace() -> bool\n\nReturn True if all characters in B are whitespace\nand there is at least one character in B, False otherwise.' return False def istitle(self): 'B.istitle() -> bool\n\nReturn True if B is a titlecased string and there is at least one\ncharacter in B, i.e. uppercase characters may only follow uncased\ncharacters and lowercase characters only cased ones. Return False\notherwise.' return False def isupper(self): 'B.isupper() -> bool\n\nReturn True if all cased characters in B are uppercase and there is\nat least one cased character in B, False otherwise.' return False def join(self, iterable_of_bytes): 'Concatenate any number of bytes/bytearray objects.\n\nThe bytearray whose method is called is inserted in between each pair.\n\nThe result is returned as a new bytearray object.' pass def ljust(self, width, fillchar): 'Return a left-justified string of length width.\n\nPadding is done using the specified fill character.' return bytearray() def lower(self): 'B.lower() -> copy of B\n\nReturn a copy of B with all ASCII characters converted to lowercase.' return bytearray() def lstrip(self, bytes): 'Strip leading bytes contained in the argument.\n\nIf the argument is omitted or None, strip leading ASCII whitespace.' return bytearray() @classmethod def maketrans(cls, frm, to): 'Return a translation table useable for the bytes or bytearray translate method.\n\nThe returned table will be one where each byte in frm is mapped to the byte at\nthe same position in to.\n\nThe bytes objects frm and to must be of the same length.' pass def partition(self, sep): 'Partition the bytearray into three parts using the given separator.\n\nThis will search for the separator sep in the bytearray. If the separator is\nfound, returns a 3-tuple containing the part before the separator, the\nseparator itself, and the part after it as new bytearray objects.\n\nIf the separator is not found, returns a 3-tuple containing the copy of the\noriginal bytearray object and two empty bytearray objects.' return (bytearray(), bytearray(), bytearray()) def pop(self, index): 'Remove and return a single item from B.\n\n index\n The index from where to remove the item.\n -1 (the default value) means remove the last item.\n\nIf no index argument is given, will pop the last item.' pass def remove(self, value): 'Remove the first occurrence of a value in the bytearray.\n\n value\n The value to remove.' return None def replace(self, old, new, count): 'Return a copy with all occurrences of substring old replaced by new.\n\n count\n Maximum number of occurrences to replace.\n -1 (the default value) means replace all occurrences.\n\nIf the optional argument count is given, only the first count occurrences are\nreplaced.' return bytearray() def reverse(self): 'Reverse the order of the values in B in place.' pass def rfind(self, sub, start=0, end=-1): 'B.rfind(sub[, start[, end]]) -> int\n\nReturn the highest index in B where subsection sub is found,\nsuch that sub is contained within B[start,end]. Optional\narguments start and end are interpreted as in slice notation.\n\nReturn -1 on failure.' return 0 def rindex(self, sub, start=0, end=-1): 'B.rindex(sub[, start[, end]]) -> int\n\nReturn the highest index in B where subsection sub is found,\nsuch that sub is contained within B[start,end]. Optional\narguments start and end are interpreted as in slice notation.\n\nRaise ValueError when the subsection is not found.' return 0 def rjust(self, width, fillchar): 'Return a right-justified string of length width.\n\nPadding is done using the specified fill character.' return bytearray() def rpartition(self, sep): 'Partition the bytearray into three parts using the given separator.\n\nThis will search for the separator sep in the bytearray, starting at the end.\nIf the separator is found, returns a 3-tuple containing the part before the\nseparator, the separator itself, and the part after it as new bytearray\nobjects.\n\nIf the separator is not found, returns a 3-tuple containing two empty bytearray\nobjects and the copy of the original bytearray object.' return (bytearray(), bytearray(), bytearray()) def rsplit(self, sep, maxsplit): 'Return a list of the sections in the bytearray, using sep as the delimiter.\n\n sep\n The delimiter according which to split the bytearray.\n None (the default value) means split on ASCII whitespace characters\n (space, tab, return, newline, formfeed, vertical tab).\n maxsplit\n Maximum number of splits to do.\n -1 (the default value) means no limit.\n\nSplitting is done starting at the end of the bytearray and working to the front.' return [bytearray()] def rstrip(self, bytes): 'Strip trailing bytes contained in the argument.\n\nIf the argument is omitted or None, strip trailing ASCII whitespace.' return bytearray() def split(self, sep, maxsplit): 'Return a list of the sections in the bytearray, using sep as the delimiter.\n\n sep\n The delimiter according which to split the bytearray.\n None (the default value) means split on ASCII whitespace characters\n (space, tab, return, newline, formfeed, vertical tab).\n maxsplit\n Maximum number of splits to do.\n -1 (the default value) means no limit.' return [bytearray()] def splitlines(self, keepends): 'Return a list of the lines in the bytearray, breaking at line boundaries.\n\nLine breaks are not included in the resulting list unless keepends is given and\ntrue.' return [self()] def startswith(self, prefix, start=0, end=-1): 'B.startswith(prefix[, start[, end]]) -> bool\n\nReturn True if B starts with the specified prefix, False otherwise.\nWith optional start, test B beginning at that position.\nWith optional end, stop comparing B at that position.\nprefix can also be a tuple of bytes to try.' return False def strip(self, bytes): 'Strip leading and trailing bytes contained in the argument.\n\nIf the argument is omitted or None, strip leading and trailing ASCII whitespace.' return bytearray() def swapcase(self): 'B.swapcase() -> copy of B\n\nReturn a copy of B with uppercase ASCII characters converted\nto lowercase ASCII and vice versa.' return bytearray() def title(self): 'B.title() -> copy of B\n\nReturn a titlecased version of B, i.e. ASCII words start with uppercase\ncharacters, all remaining cased characters have lowercase.' return bytearray() def translate(self, table, delete): 'Return a copy with each character mapped by the given translation table.\n\n table\n Translation table, which must be a bytes object of length 256.\n\nAll characters occurring in the optional argument delete are removed.\nThe remaining characters are mapped through the given translation table.' pass def upper(self): 'B.upper() -> copy of B\n\nReturn a copy of B with all ASCII characters converted to uppercase.' return bytearray() def zfill(self, width): 'Pad a numeric string with zeros on the left, to fill a field of the given width.\n\nThe original string is never truncated.' return bytearray() def callable(obj): 'Return whether the object is callable (i.e., some kind of function).\n\nNote that classes are callable, as are instances of classes with a\n__call__() method.' return False def chr(i): 'Return a Unicode string of one character with ordinal i; 0 <= i <= 0x10ffff.' return '' def compile(source, filename, mode, flags, dont_inherit, optimize): "Compile source into a code object that can be executed by exec() or eval().\n\nThe source code may represent a Python module, statement or expression.\nThe filename will be used for run-time error messages.\nThe mode must be 'exec' to compile a module, 'single' to compile a\nsingle (interactive) statement, or 'eval' to compile an expression.\nThe flags argument, if present, controls which future statements influence\nthe compilation of the code.\nThe dont_inherit argument, if true, stops the compilation inheriting\nthe effects of any future statements in effect in the code calling\ncompile; if absent or false these statements do influence the compilation,\nin addition to any features explicitly specified." pass def copyright(self): 'interactive prompt objects for printing the license text, a list of\n contributors and the copyright notice.' pass def credits(self): 'interactive prompt objects for printing the license text, a list of\n contributors and the copyright notice.' pass def delattr(obj, name): "Deletes the named attribute from the given object.\n\ndelattr(x, 'y') is equivalent to ``del x.y''" pass def dir(object=None): "dir([object]) -> list of strings\n\nIf called without an argument, return the names in the current scope.\nElse, return an alphabetized list of names comprising (some of) the attributes\nof the given object, and of attributes reachable from it.\nIf the object supplies a method named __dir__, it will be used; otherwise\nthe default dir() logic is used and returns:\n for a module object: the module's attributes.\n for a class object: its attributes, and recursively the attributes\n of its bases.\n for any other object: its attributes, its class's attributes, and\n recursively the attributes of its class's base classes." return list() def divmod(x, y): 'Return the tuple (x//y, x%y). Invariant: div*y + mod == x.' return (0, 0) class enumerate(object): 'Return an enumerate object.\n\n iterable\n an object supporting iteration\n\nThe enumerate object yields pairs containing a count (from start, which\ndefaults to zero) and a value yielded by the iterable argument.\n\nenumerate is useful for obtaining an indexed list:\n (0, seq[0]), (1, seq[1]), (2, seq[2]), ...' __class__ = enumerate def __getattribute__(self, name): 'Return getattr(self, name).' pass def __init__(self, *args, **kwargs): 'Return an enumerate object.\n\n iterable\n an object supporting iteration\n\nThe enumerate object yields pairs containing a count (from start, which\ndefaults to zero) and a value yielded by the iterable argument.\n\nenumerate is useful for obtaining an indexed list:\n (0, seq[0]), (1, seq[1]), (2, seq[2]), ...' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None def __iter__(self): 'Implement iter(self).' return enumerate() def __next__(self): 'Implement next(self).' pass def __reduce__(self): 'Return state information for pickling.' return ''; return () @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False def eval(source, globals, locals): 'Evaluate the given source in the context of globals and locals.\n\nThe source may be a string representing a Python expression\nor a code object as returned by compile().\nThe globals must be a dictionary and locals can be any mapping,\ndefaulting to the current globals and locals.\nIf only globals is given, locals defaults to it.' pass def exec(source, globals, locals): 'Execute the given source in the context of globals and locals.\n\nThe source may be a string representing one or more Python statements\nor a code object as returned by compile().\nThe globals must be a dictionary and locals can be any mapping,\ndefaulting to the current globals and locals.\nIf only globals is given, locals defaults to it.' pass def exit(self, code): pass class filter(object): 'filter(function or None, iterable) --> filter object\n\nReturn an iterator yielding those items of iterable for which function(item)\nis true. If function is None, return the items that are true.' __class__ = filter def __getattribute__(self, name): 'Return getattr(self, name).' pass def __init__(self, functionorNone, iterable): 'filter(function or None, iterable) --> filter object\n\nReturn an iterator yielding those items of iterable for which function(item)\nis true. If function is None, return the items that are true.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None def __iter__(self): 'Implement iter(self).' return filter() def __next__(self): 'Implement next(self).' pass def __reduce__(self): 'Return state information for pickling.' return ''; return () @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False def format(value, format_spec): "Return value.__format__(format_spec)\n\nformat_spec defaults to the empty string.\nSee the Format Specification Mini-Language section of help('FORMATTING') for\ndetails." return '' def getattr(object, name, default=None): "getattr(object, name[, default]) -> value\n\nGet a named attribute from an object; getattr(x, 'y') is equivalent to x.y.\nWhen a default argument is given, it is returned when the attribute doesn't\nexist; without it, an exception is raised in that case." pass def globals(): "Return the dictionary containing the current scope's global variables.\n\nNOTE: Updates to this dictionary *will* affect name lookups in the current\nglobal scope and vice-versa." return __Dict__() def hasattr(obj, name): 'Return whether the object has an attribute with the given name.\n\nThis is done by calling getattr(obj, name) and catching AttributeError.' return False def hash(obj): 'Return the hash value for the given object.\n\nTwo objects that compare equal must also have the same hash value, but the\nreverse is not necessarily true.' return 0 def help(self, *args, **kwds): "Define the builtin 'help'.\n\n This is a wrapper around pydoc.help that provides a helpful message\n when 'help' is typed at the Python interactive prompt.\n\n Calling help() at the Python prompt starts an interactive help session.\n Calling help(thing) prints help for the python object 'thing'.\n " pass def hex(number): "Return the hexadecimal representation of an integer.\n\n >>> hex(12648430)\n '0xc0ffee'" return '' def id(obj): "Return the identity of an object.\n\nThis is guaranteed to be unique among simultaneously existing objects.\n(CPython uses the object's memory address.)" return 0 def input(prompt): 'Read a string from standard input. The trailing newline is stripped.\n\nThe prompt string, if given, is printed to standard output without a\ntrailing newline before reading input.\n\nIf the user hits EOF (*nix: Ctrl-D, Windows: Ctrl-Z+Return), raise EOFError.\nOn *nix systems, readline is used if available.' return '' def isinstance(obj, class_or_tuple): 'Return whether an object is an instance of a class or of a subclass thereof.\n\nA tuple, as in ``isinstance(x, (A, B, ...))``, may be given as the target to\ncheck against. This is equivalent to ``isinstance(x, A) or isinstance(x, B)\nor ...`` etc.' pass def issubclass(cls, class_or_tuple): "Return whether 'cls' is a derived from another class or is the same class.\n\nA tuple, as in ``issubclass(x, (A, B, ...))``, may be given as the target to\ncheck against. This is equivalent to ``issubclass(x, A) or issubclass(x, B)\nor ...`` etc." pass def iter(callable, sentinel): 'iter(iterable) -> iterator\niter(callable, sentinel) -> iterator\n\nGet an iterator from an object. In the first form, the argument must\nsupply its own iterator, or be a sequence.\nIn the second form, the callable is called until it returns the sentinel.' pass def len(obj): 'Return the number of items in a container.' return 0 def license(self): 'interactive prompt objects for printing the license text, a list of\n contributors and the copyright notice.' pass def locals(): "Return a dictionary containing the current scope's local variables.\n\nNOTE: Whether or not updates to this dictionary will affect name lookups in\nthe local scope and vice-versa is *implementation dependent* and not\ncovered by any backwards compatibility guarantees." return __Dict__() class map(object): 'map(func, *iterables) --> map object\n\nMake an iterator that computes the function using arguments from\neach of the iterables. Stops when the shortest iterable is exhausted.' __class__ = map def __getattribute__(self, name): 'Return getattr(self, name).' pass def __init__(self, func, *iterables): 'map(func, *iterables) --> map object\n\nMake an iterator that computes the function using arguments from\neach of the iterables. Stops when the shortest iterable is exhausted.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None def __iter__(self): 'Implement iter(self).' return map() def __next__(self): 'Implement next(self).' pass def __reduce__(self): 'Return state information for pickling.' return ''; return () @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False def max(iterable, *, default=obj, key=func): 'max(iterable, *[, default=obj, key=func]) -> value\nmax(arg1, arg2, *args, *[, key=func]) -> value\n\nWith a single iterable argument, return its biggest item. The\ndefault keyword-only argument specifies an object to return if\nthe provided iterable is empty.\nWith two or more arguments, return the largest argument.' pass class memoryview(object): 'Create a new memoryview object which references the given object.' __class__ = memoryview def __delitem__(self, key): 'Delete self[key].' return None def __enter__(self): return self def __eq__(self, value): 'Return self==value.' return False def __exit__(self): pass def __ge__(self, value): 'Return self>=value.' return False def __getattribute__(self, name): 'Return getattr(self, name).' pass def __getitem__(self, key): 'Return self[key].' pass def __gt__(self, value): 'Return self>value.' return False def __hash__(self): 'Return hash(self).' return 0 def __init__(self, *args, **kwargs): 'Create a new memoryview object which references the given object.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None def __le__(self, value): 'Return self<=value.' return False def __len__(self): 'Return len(self).' return 0 def __lt__(self, value): 'Return self<value.' return False def __ne__(self, value): 'Return self!=value.' return False def __repr__(self): 'Return repr(self).' return '' def __setitem__(self, key, value): 'Set self[key] to value.' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False @property def c_contiguous(self): 'A bool indicating whether the memory is C contiguous.' pass def cast(self, format): 'Cast a memoryview to a new format or shape.' pass @property def contiguous(self): 'A bool indicating whether the memory is contiguous.' pass @property def f_contiguous(self): 'A bool indicating whether the memory is Fortran contiguous.' pass @property def format(self): 'A string containing the format (in struct module style)\n for each element in the view.' return '' def hex(self): "Return the data in the buffer as a str of hexadecimal numbers.\n\n sep\n An optional single character or byte to separate hex bytes.\n bytes_per_sep\n How many bytes between separators. Positive values count from the\n right, negative values count from the left.\n\nExample:\n>>> value = memoryview(b'\\xb9\\x01\\xef')\n>>> value.hex()\n'b901ef'\n>>> value.hex(':')\n'b9:01:ef'\n>>> value.hex(':', 2)\n'b9:01ef'\n>>> value.hex(':', -2)\n'b901:ef'" return '' @property def itemsize(self): 'The size in bytes of each element of the memoryview.' pass @property def nbytes(self): 'The amount of space in bytes that the array would use in\n a contiguous representation.' pass @property def ndim(self): 'An integer indicating how many dimensions of a multi-dimensional\n array the memory represents.' pass @property def obj(self): 'The underlying object of the memoryview.' pass @property def readonly(self): 'A bool indicating whether the memory is read only.' pass def release(self): 'Release the underlying buffer exposed by the memoryview object.' pass @property def shape(self): 'A tuple of ndim integers giving the shape of the memory\n as an N-dimensional array.' pass @property def strides(self): 'A tuple of ndim integers giving the size in bytes to access\n each element for each dimension of the array.' pass @property def suboffsets(self): 'A tuple of integers used internally for PIL-style arrays.' pass def tobytes(self, order): "Return the data in the buffer as a byte string. Order can be {'C', 'F', 'A'}.\nWhen order is 'C' or 'F', the data of the original array is converted to C or\nFortran order. For contiguous views, 'A' returns an exact copy of the physical\nmemory. In particular, in-memory Fortran order is preserved. For non-contiguous\nviews, the data is converted to C first. order=None is the same as order='C'." pass def tolist(self): 'Return the data in the buffer as a list of elements.' pass def toreadonly(self): 'Return a readonly version of the memoryview.' pass def min(iterable, *, default=obj, key=func): 'min(iterable, *[, default=obj, key=func]) -> value\nmin(arg1, arg2, *args, *[, key=func]) -> value\n\nWith a single iterable argument, return its smallest item. The\ndefault keyword-only argument specifies an object to return if\nthe provided iterable is empty.\nWith two or more arguments, return the smallest argument.' pass def next(iterator, default=None): 'next(iterator[, default])\n\nReturn the next item from the iterator. If default is given and the iterator\nis exhausted, it is returned instead of raising StopIteration.' pass def oct(number): "Return the octal representation of an integer.\n\n >>> oct(342391)\n '0o1234567'" return '' def open(file, mode, buffering, encoding, errors, newline, closefd, opener): 'Open file and return a stream. Raise OSError upon failure.\n\nfile is either a text or byte string giving the name (and the path\nif the file isn\'t in the current working directory) of the file to\nbe opened or an integer file descriptor of the file to be\nwrapped. (If a file descriptor is given, it is closed when the\nreturned I/O object is closed, unless closefd is set to False.)\n\nmode is an optional string that specifies the mode in which the file\nis opened. It defaults to \'r\' which means open for reading in text\nmode. Other common values are \'w\' for writing (truncating the file if\nit already exists), \'x\' for creating and writing to a new file, and\n\'a\' for appending (which on some Unix systems, means that all writes\nappend to the end of the file regardless of the current seek position).\nIn text mode, if encoding is not specified the encoding used is platform\ndependent: locale.getpreferredencoding(False) is called to get the\ncurrent locale encoding. (For reading and writing raw bytes use binary\nmode and leave encoding unspecified.) The available modes are:\n\n========= ===============================================================\nCharacter Meaning\n--------- ---------------------------------------------------------------\n\'r\' open for reading (default)\n\'w\' open for writing, truncating the file first\n\'x\' create a new file and open it for writing\n\'a\' open for writing, appending to the end of the file if it exists\n\'b\' binary mode\n\'t\' text mode (default)\n\'+\' open a disk file for updating (reading and writing)\n\'U\' universal newline mode (deprecated)\n========= ===============================================================\n\nThe default mode is \'rt\' (open for reading text). For binary random\naccess, the mode \'w+b\' opens and truncates the file to 0 bytes, while\n\'r+b\' opens the file without truncation. The \'x\' mode implies \'w\' and\nraises an `FileExistsError` if the file already exists.\n\nPython distinguishes between files opened in binary and text modes,\neven when the underlying operating system doesn\'t. Files opened in\nbinary mode (appending \'b\' to the mode argument) return contents as\nbytes objects without any decoding. In text mode (the default, or when\n\'t\' is appended to the mode argument), the contents of the file are\nreturned as strings, the bytes having been first decoded using a\nplatform-dependent encoding or using the specified encoding if given.\n\n\'U\' mode is deprecated and will raise an exception in future versions\nof Python. It has no effect in Python 3. Use newline to control\nuniversal newlines mode.\n\nbuffering is an optional integer used to set the buffering policy.\nPass 0 to switch buffering off (only allowed in binary mode), 1 to select\nline buffering (only usable in text mode), and an integer > 1 to indicate\nthe size of a fixed-size chunk buffer. When no buffering argument is\ngiven, the default buffering policy works as follows:\n\n* Binary files are buffered in fixed-size chunks; the size of the buffer\n is chosen using a heuristic trying to determine the underlying device\'s\n "block size" and falling back on `io.DEFAULT_BUFFER_SIZE`.\n On many systems, the buffer will typically be 4096 or 8192 bytes long.\n\n* "Interactive" text files (files for which isatty() returns True)\n use line buffering. Other text files use the policy described above\n for binary files.\n\nencoding is the name of the encoding used to decode or encode the\nfile. This should only be used in text mode. The default encoding is\nplatform dependent, but any encoding supported by Python can be\npassed. See the codecs module for the list of supported encodings.\n\nerrors is an optional string that specifies how encoding errors are to\nbe handled---this argument should not be used in binary mode. Pass\n\'strict\' to raise a ValueError exception if there is an encoding error\n(the default of None has the same effect), or pass \'ignore\' to ignore\nerrors. (Note that ignoring encoding errors can lead to data loss.)\nSee the documentation for codecs.register or run \'help(codecs.Codec)\'\nfor a list of the permitted encoding error strings.\n\nnewline controls how universal newlines works (it only applies to text\nmode). It can be None, \'\', \'\\n\', \'\\r\', and \'\\r\\n\'. It works as\nfollows:\n\n* On input, if newline is None, universal newlines mode is\n enabled. Lines in the input can end in \'\\n\', \'\\r\', or \'\\r\\n\', and\n these are translated into \'\\n\' before being returned to the\n caller. If it is \'\', universal newline mode is enabled, but line\n endings are returned to the caller untranslated. If it has any of\n the other legal values, input lines are only terminated by the given\n string, and the line ending is returned to the caller untranslated.\n\n* On output, if newline is None, any \'\\n\' characters written are\n translated to the system default line separator, os.linesep. If\n newline is \'\' or \'\\n\', no translation takes place. If newline is any\n of the other legal values, any \'\\n\' characters written are translated\n to the given string.\n\nIf closefd is False, the underlying file descriptor will be kept open\nwhen the file is closed. This does not work when a file name is given\nand must be True in that case.\n\nA custom opener can be used by passing a callable as *opener*. The\nunderlying file descriptor for the file object is then obtained by\ncalling *opener* with (*file*, *flags*). *opener* must return an open\nfile descriptor (passing os.open as *opener* results in functionality\nsimilar to passing None).\n\nopen() returns a file object whose type depends on the mode, and\nthrough which the standard file operations such as reading and writing\nare performed. When open() is used to open a file in a text mode (\'w\',\n\'r\', \'wt\', \'rt\', etc.), it returns a TextIOWrapper. When used to open\na file in a binary mode, the returned class varies: in read binary\nmode, it returns a BufferedReader; in write binary and append binary\nmodes, it returns a BufferedWriter, and in read/write mode, it returns\na BufferedRandom.\n\nIt is also possible to use a string or bytearray as a file for both\nreading and writing. For strings StringIO can be used like a file\nopened in a text mode, and for bytes a BytesIO can be used like a file\nopened in a binary mode.' pass def ord(c): 'Return the Unicode code point for a one-character string.' pass def pow(base, exp, mod): 'Equivalent to base**exp with 2 arguments or base**exp % mod with 3 arguments\n\nSome types, such as ints, are able to use a more efficient algorithm when\ninvoked using the three argument form.' pass def print(): "print(value, ..., sep=' ', end='\\n', file=sys.stdout, flush=False)\n\nPrints the values to a stream, or to sys.stdout by default.\nOptional keyword arguments:\nfile: a file-like object (stream); defaults to the current sys.stdout.\nsep: string inserted between values, default a space.\nend: string appended after the last value, default a newline.\nflush: whether to forcibly flush the stream." pass def quit(self, code): pass class range(object): 'range(stop) -> range object\nrange(start, stop[, step]) -> range object\n\nReturn an object that produces a sequence of integers from start (inclusive)\nto stop (exclusive) by step. range(i, j) produces i, i+1, i+2, ..., j-1.\nstart defaults to 0, and stop is omitted! range(4) produces 0, 1, 2, 3.\nThese are exactly the valid indices for a list of 4 elements.\nWhen step is given, it specifies the increment (or decrement).' def __bool__(self): 'self != 0' return False __class__ = range def __contains__(self, key): 'Return key in self.' return False def __eq__(self, value): 'Return self==value.' return False def __ge__(self, value): 'Return self>=value.' return False def __getattribute__(self, name): 'Return getattr(self, name).' pass def __getitem__(self, key): 'Return self[key].' pass def __gt__(self, value): 'Return self>value.' return False def __hash__(self): 'Return hash(self).' return 0 def __init__(self, start, stop, step=None): 'range(stop) -> range object\nrange(start, stop[, step]) -> range object\n\nReturn an object that produces a sequence of integers from start (inclusive)\nto stop (exclusive) by step. range(i, j) produces i, i+1, i+2, ..., j-1.\nstart defaults to 0, and stop is omitted! range(4) produces 0, 1, 2, 3.\nThese are exactly the valid indices for a list of 4 elements.\nWhen step is given, it specifies the increment (or decrement).' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None def __iter__(self): 'Implement iter(self).' return range() def __le__(self, value): 'Return self<=value.' return False def __len__(self): 'Return len(self).' return 0 def __lt__(self, value): 'Return self<value.' return False def __ne__(self, value): 'Return self!=value.' return False def __reduce__(self): return ''; return () def __repr__(self): 'Return repr(self).' return '' def __reversed__(self): 'Return a reverse iterator.' pass @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False def count(self, x): 'rangeobject.count(value) -> integer -- return number of occurrences of value' return 0 def index(self, v): 'rangeobject.index(value) -> integer -- return index of value.\nRaise ValueError if the value is not present.' return 0 @property def start(self): pass @property def step(self): pass @property def stop(self): pass def repr(obj): 'Return the canonical string representation of the object.\n\nFor many object types, including most builtins, eval(repr(obj)) == obj.' return '' class reversed(object): 'Return a reverse iterator over the values of the given sequence.' __class__ = reversed def __getattribute__(self, name): 'Return getattr(self, name).' pass def __init__(self, *args, **kwargs): 'Return a reverse iterator over the values of the given sequence.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None def __iter__(self): 'Implement iter(self).' return reversed() def __length_hint__(self): 'Private method returning an estimate of len(list(it)).' return 0 def __next__(self): 'Implement next(self).' pass def __reduce__(self): 'Return state information for pickling.' return ''; return () def __setstate__(self, state): 'Set state information for unpickling.' return None @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False def round(number, ndigits): 'Round a number to a given precision in decimal digits.\n\nThe return value is an integer if ndigits is omitted or None. Otherwise\nthe return value has the same type as the number. ndigits may be negative.' return 0.0 def setattr(obj, name, value): "Sets the named attribute on the given object to the specified value.\n\nsetattr(x, 'y', v) is equivalent to ``x.y = v''" pass class slice(object): 'slice(stop)\nslice(start, stop[, step])\n\nCreate a slice object. This is used for extended slicing (e.g. a[0:10:2]).' __class__ = slice def __eq__(self, value): 'Return self==value.' return False def __ge__(self, value): 'Return self>=value.' return False def __getattribute__(self, name): 'Return getattr(self, name).' pass def __gt__(self, value): 'Return self>value.' return False __hash__ = None def __init__(self, start, stop, step=None): 'slice(stop)\nslice(start, stop[, step])\n\nCreate a slice object. This is used for extended slicing (e.g. a[0:10:2]).' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None def __le__(self, value): 'Return self<=value.' return False def __lt__(self, value): 'Return self<value.' return False def __ne__(self, value): 'Return self!=value.' return False def __reduce__(self): 'Return state information for pickling.' return ''; return () def __repr__(self): 'Return repr(self).' return '' @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False def indices(self): 'S.indices(len) -> (start, stop, stride)\n\nAssuming a sequence of length len, calculate the start and stop\nindices, and the stride length of the extended slice described by\nS. Out of bounds indices are clipped in a manner consistent with the\nhandling of normal slices.' return tuple() @property def start(self): pass @property def step(self): pass @property def stop(self): pass def sorted(iterable): 'Return a new list containing all items from the iterable in ascending order.\n\nA custom key function can be supplied to customize the sort order, and the\nreverse flag can be set to request the result in descending order.' return __List__() def sum(iterable, start): "Return the sum of a 'start' value (default: 0) plus an iterable of numbers\n\nWhen the iterable is empty, return the start value.\nThis function is intended specifically for use with numeric values and may\nreject non-numeric types." pass class super(object): 'super() -> same as super(__class__, <first argument>)\nsuper(type) -> unbound super object\nsuper(type, obj) -> bound super object; requires isinstance(obj, type)\nsuper(type, type2) -> bound super object; requires issubclass(type2, type)\nTypical use to call a cooperative superclass method:\nclass C(B):\n def meth(self, arg):\n super().meth(arg)\nThis works for class methods too:\nclass C(B):\n @classmethod\n def cmeth(cls, arg):\n super().cmeth(arg)\n' __class__ = super def __get__(self, instance, owner): 'Return an attribute of instance, which is of type owner.' return super() def __getattribute__(self, name): 'Return getattr(self, name).' pass def __init__(self, type, type2): 'super() -> same as super(__class__, <first argument>)\nsuper(type) -> unbound super object\nsuper(type, obj) -> bound super object; requires isinstance(obj, type)\nsuper(type, type2) -> bound super object; requires issubclass(type2, type)\nTypical use to call a cooperative superclass method:\nclass C(B):\n def meth(self, arg):\n super().meth(arg)\nThis works for class methods too:\nclass C(B):\n @classmethod\n def cmeth(cls, arg):\n super().cmeth(arg)\n' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None def __repr__(self): 'Return repr(self).' return '' @property def __self__(self): 'the instance invoking super(); may be None' pass @property def __self_class__(self): 'the type of the instance invoking super(); may be None' pass @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False @property def __thisclass__(self): 'the class invoking super()' pass def vars(object=None): 'vars([object]) -> dictionary\n\nWithout arguments, equivalent to locals().\nWith an argument, equivalent to object.__dict__.' return dict() class zip(object): 'zip(*iterables) --> zip object\n\nReturn a zip object whose .__next__() method returns a tuple where\nthe i-th element comes from the i-th iterable argument. The .__next__()\nmethod continues until the shortest iterable in the argument sequence\nis exhausted and then it raises StopIteration.' __class__ = zip def __getattribute__(self, name): 'Return getattr(self, name).' pass def __init__(self, *iterables): 'zip(*iterables) --> zip object\n\nReturn a zip object whose .__next__() method returns a tuple where\nthe i-th element comes from the i-th iterable argument. The .__next__()\nmethod continues until the shortest iterable in the argument sequence\nis exhausted and then it raises StopIteration.' pass @classmethod def __init_subclass__(cls): 'This method is called when a class is subclassed.\n\nThe default implementation does nothing. It may be\noverridden to extend subclasses.\n' return None def __iter__(self): 'Implement iter(self).' return zip() def __next__(self): 'Implement next(self).' pass def __reduce__(self): 'Return state information for pickling.' return ''; return () @classmethod def __subclasshook__(cls, subclass): 'Abstract classes can override this to customize issubclass().\n\nThis is invoked early on by abc.ABCMeta.__subclasscheck__().\nIt should return True, False or NotImplemented. If it returns\nNotImplemented, the normal algorithm is used. Otherwise, it\noverrides the normal algorithm (and the outcome is cached).\n' return False
7e39d9636d8d51231c8e255ea73707f11e4c337e
56ffce29f0d27f83206e11870d95982c38524aae
/apweb/site/view/session_test.py
a77c127ed42f7fbac3078f43a773ba651e4786d4
[]
no_license
adamandpaul/apweb
cce365085e2ee58cfbc31544c5a7414e67ad56b4
b1bb81fa7d7b39f19e187462aa3447ff482b46af
refs/heads/master
2022-10-19T02:09:52.437906
2021-05-21T06:10:08
2021-05-21T06:10:08
201,398,036
0
3
null
2022-09-21T21:39:41
2019-08-09T05:41:06
Python
UTF-8
Python
false
false
691
py
# -*- coding:utf-8 -*- from . import session from unittest import TestCase from unittest.mock import MagicMock from unittest.mock import patch class TestSessionView(TestCase): def setUp(self): self.request = MagicMock() self.context = MagicMock() self.view = session.SessionView(self.context, self.request) @patch("apweb.site.view.session.UserView") def test_user(self, UserView): self.assertEqual(self.view.user, UserView.return_value.info_manage) UserView.assert_called_with(self.request.user, self.request) def test_info(self): self.view.__dict__["user"] = "foo" self.assertEqual(self.view.info["user"], "foo")
99bc5f810433c2c56027c7cadd2f629bb37f2406
7f33d68323240d66e610e5a89efc516915a11a96
/manage.py
cd6b58f7934e4cd956b6d3cad8298609c08f1d21
[ "Apache-2.0" ]
permissive
dbca-wa/observations
100df2765ef0f6f62aaf45fc13fbb4af4395f519
48b2ad17afa9f0019524cb22a9a0bba74850b87f
refs/heads/master
2021-05-31T16:29:30.906717
2016-04-06T02:42:05
2016-04-06T02:42:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
297
py
#!/usr/bin/env python import os import sys import confy confy.read_environment_file() if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "incredibus.settings") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
c538fb5cbdac74431e65498c5bb4964e8dcd47c5
63768dc92cde5515a96d774a32facb461a3bf6e9
/jacket/compute/cloud/vm_mode.py
7ca85fbd53edb92822a9d5b0385735b37fb28c03
[ "Apache-2.0" ]
permissive
ljZM33nd/jacket
6fe9156f6f5789e5c24425afa7ce9237c302673d
d7ad3147fcb43131098c2a5210847634ff5fb325
refs/heads/master
2023-04-16T11:02:01.153751
2016-11-15T02:48:12
2016-11-15T02:48:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,212
py
# Copyright 2012 Red Hat, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Possible vm modes for instances. Compute instance vm modes represent the host/guest ABI used for the virtual machine / container. Individual hypervisors may support multiple different vm modes per host. Available vm modes for a hypervisor driver may also vary according to the architecture it is running on. The 'vm_mode' parameter can be set against an instance to choose what sort of VM to boot. """ from jacket.compute import exception HVM = "hvm" # Native ABI (aka fully virtualized) XEN = "xen" # Xen 3.0 paravirtualized UML = "uml" # User Mode Linux paravirtualized EXE = "exe" # Executables in containers ALL = [HVM, XEN, UML, EXE] def get_from_instance(instance): """Get the vm mode for an instance :param instance: instance object to query :returns: canonicalized vm mode for the instance """ mode = instance.vm_mode return canonicalize(mode) def is_valid(name): """Check if a string is a valid vm mode :param name: vm mode name to validate :returns: True if @name is valid """ return name in ALL def canonicalize(mode): """Canonicalize the vm mode :param name: vm mode name to canonicalize :returns: a canonical vm mode name """ if mode is None: return None mode = mode.lower() # For compatibility with pre-Folsom deployments if mode == "pv": mode = XEN if mode == "hv": mode = HVM if mode == "baremetal": mode = HVM if not is_valid(mode): raise exception.InvalidVirtualMachineMode(vmmode=mode) return mode
8beeae688c7148ebe2715f0ca83ccfd8f6ce9996
6b9084d234c87d7597f97ec95808e13f599bf9a1
/data/tracking/sampler/SiamFC/_deprecated/sampler.py
db5571b4db36b29aa180d356235ddcd410d4e57c
[]
no_license
LitingLin/ubiquitous-happiness
4b46234ce0cb29c4d27b00ec5a60d3eeb52c26fc
aae2d764e136ca4a36c054212b361dd7e8b22cba
refs/heads/main
2023-07-13T19:51:32.227633
2021-08-03T16:02:03
2021-08-03T16:02:03
316,664,903
1
0
null
null
null
null
UTF-8
Python
false
false
6,797
py
import numpy as np from Dataset.SOT.Storage.MemoryMapped.dataset import SingleObjectTrackingDataset_MemoryMapped from Dataset.MOT.Storage.MemoryMapped.dataset import MultipleObjectTrackingDataset_MemoryMapped from Dataset.DET.Storage.MemoryMapped.dataset import DetectionDataset_MemoryMapped from data.tracking.sampler._sampler.sequence.SiamFC.DET import \ do_sampling_in_detection_dataset_image, get_one_random_sample_in_detection_dataset_image from data.tracking.sampler._sampler.sequence.SiamFC.SOT import \ do_sampling_in_single_object_tracking_dataset_sequence, \ do_negative_sampling_in_single_object_tracking_dataset_sequence, \ get_one_random_sample_in_single_object_tracking_dataset_sequence from data.tracking.sampler._sampler.sequence.SiamFC.MOT import \ do_sampling_in_multiple_object_tracking_dataset_sequence, \ do_negative_sampling_in_multiple_object_tracking_dataset_sequence, \ get_one_random_sample_in_multiple_object_tracking_dataset_sequence from data.tracking.sampler.SiamFC.type import SiamesePairSamplingMethod class SOTTrackingSiameseIterableDatasetSampler: def __init__(self, datasets, negative_sample_ratio, enforce_fine_positive_sample, sampling_method: SiamesePairSamplingMethod, datasets_sampling_parameters=None, datasets_sampling_weight=None, data_processor=None): self.datasets = datasets self.dataset_lengths = [len(dataset) for dataset in datasets] self.datasets_sampling_weight = datasets_sampling_weight self.negative_sample_ratio = negative_sample_ratio self.enforce_fine_positive_sample = enforce_fine_positive_sample raise NotImplementedError self.sampling_method = sampling_method self.data_processor = data_processor self.datasets_sampling_parameters = datasets_sampling_parameters self.current_index_of_dataset = None self.current_index_of_sequence = None self.current_is_sampling_positive_sample = None def move_next(self, rng_engine: np.random.Generator): index_of_dataset = rng_engine.choice(np.arange(len(self.datasets)), p=self.datasets_sampling_weight) if self.negative_sample_ratio == 0: is_negative = False else: is_negative = rng_engine.random() < self.negative_sample_ratio index_of_sequence = rng_engine.integers(0, self.dataset_lengths[index_of_dataset]) self.current_index_of_dataset = index_of_dataset self.current_is_sampling_positive_sample = not is_negative self.current_index_of_sequence = index_of_sequence def _pick_random_object_as_negative_sample(self, rng_engine: np.random.Generator): index_of_dataset = rng_engine.choice(np.arange(len(self.datasets)), p=self.datasets_sampling_weight) dataset = self.datasets[index_of_dataset] index_of_sequence = rng_engine.integers(0, len(dataset)) sequence = dataset[index_of_sequence] if isinstance(dataset, DetectionDataset_MemoryMapped): data = get_one_random_sample_in_detection_dataset_image(sequence, rng_engine) elif isinstance(dataset, SingleObjectTrackingDataset_MemoryMapped): data = get_one_random_sample_in_single_object_tracking_dataset_sequence(sequence, rng_engine) elif isinstance(dataset, MultipleObjectTrackingDataset_MemoryMapped): data = get_one_random_sample_in_multiple_object_tracking_dataset_sequence(sequence, rng_engine) else: raise NotImplementedError return data def do_sampling(self, rng_engine: np.random.Generator): dataset = self.datasets[self.current_index_of_dataset] sequence = dataset[self.current_index_of_sequence] frame_range = 100 if self.datasets_sampling_parameters is not None: sampling_parameter = self.datasets_sampling_parameters[self.current_index_of_dataset] if 'frame_range' in sampling_parameter: frame_range = sampling_parameter['frame_range'] if isinstance(dataset, (SingleObjectTrackingDataset_MemoryMapped, MultipleObjectTrackingDataset_MemoryMapped)): if sequence.has_fps(): fps = sequence.get_fps() frame_range = int(round(fps / 30 * frame_range)) if self.current_is_sampling_positive_sample: if isinstance(dataset, DetectionDataset_MemoryMapped): z_image, z_bbox = do_sampling_in_detection_dataset_image(sequence, rng_engine) data = (z_image, z_bbox, z_image, z_bbox, True) elif isinstance(dataset, (SingleObjectTrackingDataset_MemoryMapped, MultipleObjectTrackingDataset_MemoryMapped)): if isinstance(dataset, SingleObjectTrackingDataset_MemoryMapped): sampled_data, is_positive = do_sampling_in_single_object_tracking_dataset_sequence(sequence, frame_range, rng_engine) else: sampled_data, is_positive = do_sampling_in_multiple_object_tracking_dataset_sequence(sequence, frame_range, rng_engine) if is_positive == 0: data = (sampled_data[0][0], sampled_data[0][1], sampled_data[0][0], sampled_data[0][1], True) else: data = (sampled_data[0][0], sampled_data[0][1], sampled_data[1][0], sampled_data[1][1], is_positive == 1) else: raise NotImplementedError else: if isinstance(dataset, DetectionDataset_MemoryMapped): z_image, z_bbox = do_sampling_in_detection_dataset_image(sequence, rng_engine) x_image, x_bbox = self._pick_random_object_as_negative_sample(rng_engine) data = (z_image, z_bbox, x_image, x_bbox, False) elif isinstance(dataset, (SingleObjectTrackingDataset_MemoryMapped, MultipleObjectTrackingDataset_MemoryMapped)): if isinstance(dataset, SingleObjectTrackingDataset_MemoryMapped): sampled_data = do_negative_sampling_in_single_object_tracking_dataset_sequence(sequence, frame_range, rng_engine) else: sampled_data = do_negative_sampling_in_multiple_object_tracking_dataset_sequence(sequence, frame_range, rng_engine) if len(sampled_data) == 1: x_image, x_bbox = self._pick_random_object_as_negative_sample(rng_engine) data = (sampled_data[0][0], sampled_data[0][1], x_image, x_bbox, False) else: data = (sampled_data[0][0], sampled_data[0][1], sampled_data[1][0], sampled_data[1][1], False) else: raise NotImplementedError if self.data_processor is not None: data = self.data_processor(*data) return data
7b67372b80781dbc722821dd0e9e4fccabe7148f
2ad9a73cb3e2da46fb15ae56a6dee11407fe8845
/ports/kodi/addons/plugin.video.transistortv/scrapers/premiumizev2_scraper.py
69c8e67f70be1ddef948a478838c26a63220c567
[]
no_license
hpduong/retropie_configs
cde596b35897a3faeedefabd742fc15820d58255
ed4e39146e5bebc0212dcef91108541a128d9325
refs/heads/master
2021-07-12T15:46:17.589357
2018-11-11T19:10:54
2018-11-11T19:10:54
157,111,040
1
2
null
2020-07-24T03:43:29
2018-11-11T18:59:52
Python
UTF-8
Python
false
false
9,637
py
""" SALTS XBMC Addon Copyright (C) 2014 tknorris This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ import re import kodi import log_utils # @UnusedImport from transistortv_lib import scraper_utils from transistortv_lib.utils2 import i18n from transistortv_lib.constants import FORCE_NO_MATCH from transistortv_lib.constants import VIDEO_TYPES from transistortv_lib.constants import QUALITIES from transistortv_lib.constants import DELIM import scraper logger = log_utils.Logger.get_logger() VIDEO_EXT = ['MKV', 'AVI', 'MP4'] MIN_MEG = 100 LIST_URL = '/api/transfer/list' FOLDER_URL = '/api/folder/list' BROWSE_URL = '/api/torrent/browse' class Scraper(scraper.Scraper): base_url = '' base_name = 'Premiumize.me' def __init__(self, timeout=scraper.DEFAULT_TIMEOUT): self.timeout = timeout if kodi.get_setting('%s-use_https' % (self.__class__.base_name)) == 'true': scheme = 'https' prefix = 'www' else: scheme = 'http' prefix = 'http' base_url = kodi.get_setting('%s-base_url' % (self.__class__.base_name)) self.base_url = scheme + '://' + prefix + '.' + base_url self.username = kodi.get_setting('%s-username' % (self.__class__.base_name)) self.password = kodi.get_setting('%s-password' % (self.__class__.base_name)) @classmethod def provides(cls): return frozenset([VIDEO_TYPES.MOVIE, VIDEO_TYPES.EPISODE, VIDEO_TYPES.SEASON]) @classmethod def get_name(cls): return 'Premiumize.V2' def get_sources(self, video): hosters = [] source_url = self.get_url(video) if not source_url or source_url == FORCE_NO_MATCH: return hosters for stream in self.__get_videos(source_url, video): if video.video_type == VIDEO_TYPES.EPISODE and not scraper_utils.release_check(video, stream['name']): continue host = scraper_utils.get_direct_hostname(self, stream['url']) hoster = {'multi-part': False, 'class': self, 'views': None, 'url': stream['url'], 'rating': None, 'host': host, 'quality': stream['quality'], 'direct': True} if 'size' in stream: hoster['size'] = scraper_utils.format_size(stream['size']) if 'name' in stream: hoster['extra'] = stream['name'] hosters.append(hoster) return hosters def __get_videos(self, source_url, video): videos = [] query = scraper_utils.parse_query(source_url) if 'hash' in query: url = scraper_utils.urljoin(self.base_url, BROWSE_URL) js_data = self._http_get(url, params={'hash': query['hash']}, cache_limit=1) if 'content' in js_data: videos = self.__get_videos2(js_data['content'], video) return videos def __get_videos2(self, content, video): videos = [] for key in content: item = content[key] if item['type'].lower() == 'dir': videos += self.__get_videos2(item['children'], video) else: if item['ext'].upper() in VIDEO_EXT and ('size' not in item or int(item['size']) > (MIN_MEG * 1024 * 1024)): temp_video = {'name': item['name'], 'url': item['url'], 'size': item['size']} temp_video['quality'] = self.__get_quality(item, video) videos.append(temp_video) if 'transcoded' in item and item['transcoded']: transcode = item['transcoded'] name = '(Transcode) %s' % (item['name']) temp_video = {'name': name, 'url': transcode['url']} temp_video['quality'] = self.__get_quality(transcode, video) if 'size' in transcode: temp_video['size'] = transcode['size'] videos.append(temp_video) return videos def __get_quality(self, item, video): if item.get('width'): return scraper_utils.width_get_quality(item['width']) elif item.get('height'): return scraper_utils.height_get_quality(item['height']) elif 'name' in item: if video.video_type == VIDEO_TYPES.MOVIE: meta = scraper_utils.parse_movie_link(item['name']) else: meta = scraper_utils.parse_episode_link(item['name']) return scraper_utils.height_get_quality(meta['height']) else: return QUALITIES.HIGH def get_url(self, video): url = super(self.__class__, self).get_url(video) # check each torrent to see if it's an episode if there is no season url if url is None and video.video_type == VIDEO_TYPES.EPISODE: if not scraper_utils.force_title(video): for item in self.__get_torrents(): if scraper_utils.release_check(video, item['name']): return 'hash=%s' % (item['hash']) return url def _get_episode_url(self, season_url, video): query = scraper_utils.parse_query(season_url) if 'hash' in query: for stream in self.__get_videos(season_url, video): if scraper_utils.release_check(video, stream['name']): return season_url def __get_torrents(self, folder_id=None): torrents = [] url = scraper_utils.urljoin(self.base_url, FOLDER_URL) if folder_id is not None: url += '?id=%s' % (folder_id) js_data = self._http_get(url, cache_limit=.001) if 'content' in js_data: for item in js_data['content']: if item['type'] == 'folder': torrents += self.__get_torrents(item['id']) elif item['type'] == 'torrent': torrents.append(item) return torrents def search(self, video_type, title, year, season=''): results = [] norm_title = scraper_utils.normalize_title(title) for item in self.__get_torrents(): if title or year or season: is_season = re.search('(.*?{delim}season{delim}+(\d+)){delim}?(.*)'.format(delim=DELIM), item['name'], re.I) if (not is_season and video_type == VIDEO_TYPES.SEASON) or (is_season and video_type == VIDEO_TYPES.MOVIE): continue if re.search('{delim}S\d+E\d+{delim}'.format(delim=DELIM), item['name'], re.I): continue # skip episodes if video_type == VIDEO_TYPES.SEASON: match_title, match_season, extra = is_season.groups() if season and int(match_season) != int(season): continue match_year = '' match_title = re.sub(DELIM, ' ', match_title) else: match = re.search('(.*?)\(?(\d{4})\)?(.*)', item['name']) if match: match_title, match_year, extra = match.groups() else: match_title, match_year, extra = item['name'], '', '' else: match_title, match_year, extra = item['name'], '', '' match_title = match_title.strip() extra = extra.strip() if norm_title in scraper_utils.normalize_title(match_title) and (not year or not match_year or year == match_year): result_title = match_title if extra: result_title += ' [%s]' % (extra) result = {'title': result_title, 'year': match_year, 'url': 'hash=%s' % (item['hash'])} results.append(result) return results @classmethod def get_settings(cls): name = cls.get_name() settings = [ ' <setting id="%s-enable" type="bool" label="%s %s" default="true" visible="true"/>' % (name, name, i18n('enabled')), ' <setting id="%s-sub_check" type="bool" label=" %s" default="false" visible="eq(-1,true)"/>' % (name, i18n('page_existence')), ] return settings def _http_get(self, url, params=None, data=None, allow_redirect=True, cache_limit=8): if not self.username or not self.password: return {} if data is None: data = {} data.update({'customer_id': self.username, 'pin': self.password}) result = super(self.__class__, self)._http_get(url, params=params, data=data, allow_redirect=allow_redirect, cache_limit=cache_limit) js_result = scraper_utils.parse_json(result, url) if 'status' in js_result and js_result['status'] == 'error': logger.log('Premiumize V2 Scraper Error: %s - (%s)' % (url, js_result.get('message', 'Unknown Error')), log_utils.LOGWARNING) js_result = {} return js_result
bc0c564fc708099ee3a1ee9245efc66093f51371
52cb25dca22292fce4d3907cc370098d7a57fcc2
/BAEKJOON/스택/1874_스택 수열.py
cd390374565cc30f00a17f883e2ac40791b3a1f1
[]
no_license
shjang1013/Algorithm
c4fc4c52cbbd3b7ecf063c716f600d1dbfc40d1a
33f2caa6339afc6fc53ea872691145effbce0309
refs/heads/master
2022-09-16T12:02:53.146884
2022-08-31T16:29:04
2022-08-31T16:29:04
227,843,135
1
0
null
null
null
null
UTF-8
Python
false
false
564
py
# 1부터 n까지의 수를 스택에 넣었다가 뽑아 늘어놓음으로써, 하나의 수열을 만들 수 있다. # [1,2,3,4,5,6,7,8] => [4,3,6,8,7,5,2,1] import sys N = int(input()) stack = [] op = [] count = 1 temp = True for i in range(N): n = int(sys.stdin.readline()) while count <= n: stack.append(count) op.append("+") count += 1 if stack[-1] == n: stack.pop() op.append("-") else: temp = False break if temp == False: print("NO") else: print('\n'.join(op))
bc7d8ecba2ea3d08d1b0d03ab497311104f63738
ff93e108a358a40d71b426bb9615587dfcab4d03
/Python_Basic/9_Class/class_basics_1.py
626a48139eb7a1d686767ec3a31ac348d0fbd5a3
[]
no_license
soumya9988/Python_Machine_Learning_Basics
074ff0e8e55fd925ca50e0f9b56dba76fc93d187
3711bc8e618123420985d01304e13051d9fb13e0
refs/heads/master
2020-03-31T14:31:49.217429
2019-11-16T21:55:54
2019-11-16T21:55:54
152,298,905
0
0
null
null
null
null
UTF-8
Python
false
false
3,299
py
class Menu: def __init__(self, name, items, start_time, end_time): self.name = name self.items = items self.start_time = start_time self.end_time = end_time def __repr__(self): return '{} menu available from {} to {}'.format(self.name, self.start_time, self.end_time) def calculate_bill(self, purchased_items): sum_of_items = 0 for item in purchased_items: if item in self.items: sum_of_items += self.items[item] return sum_of_items class Franchise: def __init__(self, address, menus): self.address = address self.menus = menus def __repr__(self): return self.address def available_menus(self, time): available = [] for menu in self.menus: if menu.start_time <= time and \ menu.end_time >= time: available.append(menu.name) return available class Business: def __init__(self, name, franchises): self.name = name self.franchises = franchises items = {'pancakes': 7.50, 'waffles': 9.00, 'burger': 11.00, 'home fries': 4.50, 'coffee': 1.50, 'espresso': 3.00, 'tea': 1.00, 'mimosa': 10.50, 'orange juice': 3.50} eb_items = {'salumeria plate': 8.00, 'salad and breadsticks (serves 2, no refills)': 14.00, 'pizza with quattro formaggi': 9.00, 'duck ragu': 17.50, 'mushroom ravioli (vegan)': 13.50, 'coffee': 1.50, 'espresso': 3.00, } d_items = {'crostini with eggplant caponata': 13.00, 'ceaser salad': 16.00, 'pizza with quattro formaggi': 11.00, 'duck ragu': 19.50, 'mushroom ravioli (vegan)': 13.50, 'coffee': 2.00, 'espresso': 3.00, } k_items = {'chicken nuggets': 6.50, 'fusilli with wild mushrooms': 12.00, 'apple juice': 3.00 } brunch = Menu('brunch', items, 11.00, 16.00) early_bird = Menu('early_bird', eb_items, 15.00, 18.00) dinner = Menu('dinner', d_items, 17.00, 23.00) kids = Menu('kids', k_items, 11.00, 21.00) print(brunch) print(early_bird) print(dinner) print(kids) purchased = ['pancakes', 'home fries', 'coffee'] cost = brunch.calculate_bill(purchased) print('Cost of brunch purchased: ', cost) cost_eb = early_bird.calculate_bill(['mushroom ravioli (vegan)', 'salumeria plate']) print('Cost of early bird purchased: ', cost_eb) flagship_store = Franchise("1232 West End Road", [brunch, dinner, kids, early_bird]) new_installment = Franchise("12 East Mulberry Street", [brunch, dinner, kids, early_bird]) print('You can choose from the following menus at 12 pm: ', new_installment.available_menus(12.00)) print('You can choose from the following menus at 5 pm: ', new_installment.available_menus(17.00)) arepas_menu = {'arepa pabellon': 7.00, 'pernil arepa': 8.50, 'guayanes arepa': 8.00, 'jamon arepa': 7.50} arepas_place = Franchise("189 Fitzgerald Avenue", arepas_menu) arepas_business = Business("Take a' Arepa", arepas_place) print(arepas_place)
9efe909c265f82499d2be6a904c8fd902fed2bcb
19236d9e966cf5bafbe5479d613a175211e1dd37
/cohesity_management_sdk/models/google_cloud_credentials.py
7e3886d7a27110ac94aca21b0b5ecde8f814ff97
[ "MIT" ]
permissive
hemanshu-cohesity/management-sdk-python
236c44fbd9604809027f8ddd0ae6c36e4e727615
07c5adee58810979780679065250d82b4b2cdaab
refs/heads/master
2020-04-29T23:22:08.909550
2019-04-10T02:42:16
2019-04-10T02:42:16
176,474,523
0
0
NOASSERTION
2019-03-19T09:27:14
2019-03-19T09:27:12
null
UTF-8
Python
false
false
3,125
py
# -*- coding: utf-8 -*- # Copyright 2019 Cohesity Inc. class GoogleCloudCredentials(object): """Implementation of the 'Google Cloud Credentials.' model. Specifies the cloud credentials to connect to a Google service account. Attributes: client_email_address (string): Specifies the client email address used to access Google Cloud Storage. client_private_key (string): Specifies the private key used to access Google Cloud Storage that is generated when the service account is created. project_id (string): Specifies the project id of an existing Google Cloud project to store objects. tier_type (TierType2Enum): Specifies the storage class of GCP. GoogleTierType specifies the storage class for Google. 'kGoogleStandard' indicates a tier type of Google properties. 'kGoogleNearline' indicates a tier type of Google properties that is not accessed frequently. 'kGoogleColdline' indicates a tier type of Google properties that is rarely accessed. 'kGoogleRegional' indicates a tier type of Google properties that stores frequently accessed data in the same region. 'kGoogleMultiRegional' indicates a tier type of Google properties that is frequently accessed ("hot" objects) around the world. """ # Create a mapping from Model property names to API property names _names = { "client_email_address":'clientEmailAddress', "client_private_key":'clientPrivateKey', "project_id":'projectId', "tier_type":'tierType' } def __init__(self, client_email_address=None, client_private_key=None, project_id=None, tier_type=None): """Constructor for the GoogleCloudCredentials class""" # Initialize members of the class self.client_email_address = client_email_address self.client_private_key = client_private_key self.project_id = project_id self.tier_type = tier_type @classmethod def from_dictionary(cls, dictionary): """Creates an instance of this model from a dictionary Args: dictionary (dictionary): A dictionary representation of the object as obtained from the deserialization of the server's response. The keys MUST match property names in the API description. Returns: object: An instance of this structure class. """ if dictionary is None: return None # Extract variables from the dictionary client_email_address = dictionary.get('clientEmailAddress') client_private_key = dictionary.get('clientPrivateKey') project_id = dictionary.get('projectId') tier_type = dictionary.get('tierType') # Return an object of this model return cls(client_email_address, client_private_key, project_id, tier_type)
7932c0ccbe52f6dff8961451ec9518ed9b1d0ba0
c0d5b7f8e48a26c6ddc63c76c43ab5b397c00028
/piccolo/apps/user/piccolo_app.py
c01ee635f12d335e6a45650fda81dbfe9fab4925
[ "MIT" ]
permissive
aminalaee/piccolo
f6c5e5e1c128568f7ccb9ad1dfb4746acedae262
af8d2d45294dcd84f4f9b6028752aa45b699ec15
refs/heads/master
2023-07-14T09:44:04.160116
2021-07-11T22:56:27
2021-07-11T22:56:27
386,398,401
0
0
MIT
2021-07-15T19:32:50
2021-07-15T19:08:17
null
UTF-8
Python
false
false
729
py
import os from piccolo.conf.apps import AppConfig, Command from .commands.change_password import change_password from .commands.change_permissions import change_permissions from .commands.create import create from .tables import BaseUser CURRENT_DIRECTORY = os.path.dirname(os.path.abspath(__file__)) APP_CONFIG = AppConfig( app_name="user", migrations_folder_path=os.path.join( CURRENT_DIRECTORY, "piccolo_migrations" ), table_classes=[BaseUser], migration_dependencies=[], commands=[ Command(callable=create, aliases=["new"]), Command(callable=change_password, aliases=["password", "pass"]), Command(callable=change_permissions, aliases=["perm", "perms"]), ], )
db2cdc19635349844c5e850f4b577b0118d4ae0e
29a4c1e436bc90deaaf7711e468154597fc379b7
/modules/trigonometric/doc/fast_sind.py
46fee4678b0eeccbe7f58327e5d8b321d06b825f
[ "BSL-1.0" ]
permissive
brycelelbach/nt2
31bdde2338ebcaa24bb76f542bd0778a620f8e7c
73d7e8dd390fa4c8d251c6451acdae65def70e0b
refs/heads/master
2021-01-17T12:41:35.021457
2011-04-03T17:37:15
2011-04-03T17:37:15
1,263,345
1
0
null
null
null
null
UTF-8
Python
false
false
2,873
py
[ ## this file was manually modified by jt { 'functor' : { 'arity' : '1', 'call_types' : [], 'ret_arity' : '0', 'rturn' : { 'default' : 'typename boost::result_of<nt2::meta::floating(T)>::type', }, 'simd_types' : ['real_convert_'], 'special' : ['trigonometric'], 'type_defs' : [], 'types' : ['real_', 'unsigned_int_', 'signed_int_'], }, 'info' : 'manually modified', 'unit' : { 'global_header' : { 'first_stamp' : 'created by jt the 11/02/2011', 'included' : ['#include <nt2/toolbox/trigonometric/include/constants.hpp>', '#include <nt2/include/functions/sind.hpp>'], 'notes' : [], 'stamp' : 'modified by jt the 11/02/2011', }, 'ranges' : { 'default' : [['T(-45)', 'T(45)']], 'unsigned_int_' : [['0', 'T(45)']], }, 'specific_values' : { 'default' : { 'nt2::Zero<T>()' : {'result' : 'nt2::Zero<r_t>()','ulp_thresh' : '0.5',}, 'nt2::_45<T>()' : {'result' : 'nt2::Sqrt_2o_2<r_t>()','ulp_thresh' : '0.5',}, }, 'real_' : { '-nt2::_180<T>()' : {'result' : 'nt2::Nan<r_t>()','ulp_thresh' : '0.5',}, '-nt2::_45<T>()' : {'result' : '-nt2::Sqrt_2o_2<r_t>()','ulp_thresh' : '0.5',}, '-nt2::_90<T>()' : {'result' : 'nt2::Nan<r_t>()','ulp_thresh' : '0.5',}, 'nt2::Inf<T>()' : {'result' : 'nt2::Nan<r_t>()','ulp_thresh' : '0.5',}, 'nt2::Minf<T>()' : {'result' : 'nt2::Nan<r_t>()','ulp_thresh' : '0.5',}, 'nt2::Nan<T>()' : {'result' : 'nt2::Nan<r_t>()','ulp_thresh' : '0.5',}, 'nt2::Zero<T>()' : {'result' : 'nt2::Zero<r_t>()','ulp_thresh' : '0.5',}, 'nt2::_180<T>()' : {'result' : 'nt2::Nan<r_t>()','ulp_thresh' : '0.5',}, 'nt2::_45<T>()' : {'result' : 'nt2::Sqrt_2o_2<r_t>()','ulp_thresh' : '0.5',}, 'nt2::_90<T>()' : {'result' : 'nt2::Nan<r_t>()','ulp_thresh' : '0.5',}, }, 'signed_int_' : { '-nt2::_45<T>()' : {'result' : '-nt2::Sqrt_2o_2<r_t>()','ulp_thresh' : '0.5',}, 'nt2::Zero<T>()' : {'result' : 'nt2::Zero<r_t>()','ulp_thresh' : '0.5',}, 'nt2::_45<T>()' : {'result' : 'nt2::Sqrt_2o_2<r_t>()','ulp_thresh' : '0.5',}, }, }, 'verif_test' : { 'property_call' : { 'real_' : ['nt2::fast_sind(a0)'], }, 'property_value' : { 'real_' : ['nt2::sind(a0)'], }, 'ulp_thresh' : { 'real_' : ['1.0'], }, }, }, }, ]
a937f5d7fc87c0d7d50c3d34d25169594f08b310
3ef70fe63acaa665e2b163f30f1abd0a592231c1
/stackoverflow/venv/lib/python3.6/site-packages/twisted/protocols/haproxy/_v1parser.py
b17099f3cc388868573fb479110f29e78e8bce65
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
wistbean/learn_python3_spider
14914b63691ac032955ba1adc29ad64976d80e15
40861791ec4ed3bbd14b07875af25cc740f76920
refs/heads/master
2023-08-16T05:42:27.208302
2023-03-30T17:03:58
2023-03-30T17:03:58
179,152,420
14,403
3,556
MIT
2022-05-20T14:08:34
2019-04-02T20:19:54
Python
UTF-8
Python
false
false
4,326
py
# -*- test-case-name: twisted.protocols.haproxy.test.test_v1parser -*- # Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ IProxyParser implementation for version one of the PROXY protocol. """ from zope.interface import implementer from twisted.internet import address from ._exceptions import ( convertError, InvalidProxyHeader, InvalidNetworkProtocol, MissingAddressData ) from . import _info from . import _interfaces @implementer(_interfaces.IProxyParser) class V1Parser(object): """ PROXY protocol version one header parser. Version one of the PROXY protocol is a human readable format represented by a single, newline delimited binary string that contains all of the relevant source and destination data. """ PROXYSTR = b'PROXY' UNKNOWN_PROTO = b'UNKNOWN' TCP4_PROTO = b'TCP4' TCP6_PROTO = b'TCP6' ALLOWED_NET_PROTOS = ( TCP4_PROTO, TCP6_PROTO, UNKNOWN_PROTO, ) NEWLINE = b'\r\n' def __init__(self): self.buffer = b'' def feed(self, data): """ Consume a chunk of data and attempt to parse it. @param data: A bytestring. @type data: L{bytes} @return: A two-tuple containing, in order, a L{_interfaces.IProxyInfo} and any bytes fed to the parser that followed the end of the header. Both of these values are None until a complete header is parsed. @raises InvalidProxyHeader: If the bytes fed to the parser create an invalid PROXY header. """ self.buffer += data if len(self.buffer) > 107 and self.NEWLINE not in self.buffer: raise InvalidProxyHeader() lines = (self.buffer).split(self.NEWLINE, 1) if not len(lines) > 1: return (None, None) self.buffer = b'' remaining = lines.pop() header = lines.pop() info = self.parse(header) return (info, remaining) @classmethod def parse(cls, line): """ Parse a bytestring as a full PROXY protocol header line. @param line: A bytestring that represents a valid HAProxy PROXY protocol header line. @type line: bytes @return: A L{_interfaces.IProxyInfo} containing the parsed data. @raises InvalidProxyHeader: If the bytestring does not represent a valid PROXY header. @raises InvalidNetworkProtocol: When no protocol can be parsed or is not one of the allowed values. @raises MissingAddressData: When the protocol is TCP* but the header does not contain a complete set of addresses and ports. """ originalLine = line proxyStr = None networkProtocol = None sourceAddr = None sourcePort = None destAddr = None destPort = None with convertError(ValueError, InvalidProxyHeader): proxyStr, line = line.split(b' ', 1) if proxyStr != cls.PROXYSTR: raise InvalidProxyHeader() with convertError(ValueError, InvalidNetworkProtocol): networkProtocol, line = line.split(b' ', 1) if networkProtocol not in cls.ALLOWED_NET_PROTOS: raise InvalidNetworkProtocol() if networkProtocol == cls.UNKNOWN_PROTO: return _info.ProxyInfo(originalLine, None, None) with convertError(ValueError, MissingAddressData): sourceAddr, line = line.split(b' ', 1) with convertError(ValueError, MissingAddressData): destAddr, line = line.split(b' ', 1) with convertError(ValueError, MissingAddressData): sourcePort, line = line.split(b' ', 1) with convertError(ValueError, MissingAddressData): destPort = line.split(b' ')[0] if networkProtocol == cls.TCP4_PROTO: return _info.ProxyInfo( originalLine, address.IPv4Address('TCP', sourceAddr, int(sourcePort)), address.IPv4Address('TCP', destAddr, int(destPort)), ) return _info.ProxyInfo( originalLine, address.IPv6Address('TCP', sourceAddr, int(sourcePort)), address.IPv6Address('TCP', destAddr, int(destPort)), )
60bd09afebd2a97319aa608a6ee44a7fd37b29a0
53bd30eee243a73bf19921739454a177a8bab127
/excapp/migrations/0002_datahistory.py
31da2844c89998a546d9f612985ee6253eeef234
[]
no_license
kirigaikabuto/bck
61697fbe2edd7e4f5b866628a368693a05f6dad9
2b17f8c5d438248d73aaf9dbebd3d5dea827a42d
refs/heads/master
2021-02-04T01:20:06.470527
2021-01-04T15:24:13
2021-01-04T15:24:13
243,593,240
0
0
null
2020-06-06T01:30:15
2020-02-27T18:55:15
Python
UTF-8
Python
false
false
745
py
# Generated by Django 2.2.10 on 2020-11-24 18:51 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('excapp', '0001_initial'), ] operations = [ migrations.CreateModel( name='DataHistory', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('child', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='child', to='excapp.Data')), ('parent', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='parent', to='excapp.Data')), ], ), ]
095a21f6e7e82a88a8fae7ce3fa8b0c6adccd2dd
dd7cd2d6f613cb7ed1fd1fb917cb351e19db46dd
/week8/codingbat/list-1/make_pi.py
009f45f2d14784488bdf27cd4bd54aa591d2318f
[]
no_license
ashkeyevli/webdevelopment
0da187b25f669ff00c2de9662d5d28cde6ad270c
57f32b384af80780f2578f109357c9451c7fc840
refs/heads/master
2023-01-24T03:14:08.574052
2020-04-18T02:19:08
2020-04-18T02:19:08
239,058,404
1
0
null
2023-01-07T15:29:57
2020-02-08T02:40:35
Python
UTF-8
Python
false
false
32
py
def make_pi(): return [3,1,4]
f9b7ee977762ae5cc9961537a33f3dde790fefac
d24a6e0be809ae3af8bc8daa6dacfc1789d38a84
/ABC/ABC251-300/ABC261/B.py
82b39fd3459c8526f81da79d543af2d50a7983b2
[]
no_license
k-harada/AtCoder
5d8004ce41c5fc6ad6ef90480ef847eaddeea179
02b0a6c92a05c6858b87cb22623ce877c1039f8f
refs/heads/master
2023-08-21T18:55:53.644331
2023-08-05T14:21:25
2023-08-05T14:21:25
184,904,794
9
0
null
2023-05-22T16:29:18
2019-05-04T14:24:18
Python
UTF-8
Python
false
false
547
py
def solve(n, a): for i in range(n - 1): for j in range(i + 1, n): ij = a[i][j] ji = a[j][i] if ij == ji == "D": continue elif ij == "W" and ji == "L": continue elif ij == "L" and ji == "W": continue else: return "incorrect" return "correct" def main(): n = int(input()) a = [list(input()) for _ in range(n)] res = solve(n, a) print(res) if __name__ == "__main__": main()
604783e523d181a3faade46c376579c5a709636a
26cc5db81f589bf04c1d6f5e69d4727466af3f5f
/server/api/__init__.py
93a582e7ee0efeb1854e5a3d351c63126c4d386d
[ "MIT" ]
permissive
CSCDP/family-context-api
1c7f6834d2e004dc48622dde68b2f3fc9157ee99
ac3415cdc1ef649c10c85012a2bb2b24ab1d009e
refs/heads/master
2023-01-08T23:33:20.980857
2021-02-18T11:14:03
2021-02-18T11:14:03
213,444,879
3
1
MIT
2022-12-12T08:53:24
2019-10-07T17:26:44
Python
UTF-8
Python
false
false
48
py
from .auth_controller import check_cookie_auth
b19e296e14053d689e9995c0c3db2c31aae5ef6f
1c3fb3c990bd07259c1701c709a28ec45cd0c748
/services/core-api/app/api/exports/response_models.py
487ed88be6d03eb97e804a09afb57dc551a1dd8e
[ "Apache-2.0" ]
permissive
usingtechnology/mds
f973106232f73f773bb4bb57737094dd32b1bd3c
c9c542f729df21511ee46e184ea752bad0b7d10c
refs/heads/master
2022-04-13T07:56:59.060216
2020-03-21T22:43:05
2020-03-21T22:43:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,537
py
from app.extensions import api from flask_restplus import fields from app.api.mines.response_models import MINE_TENURE_TYPE_CODE_MODEL, MINE_COMMODITY_CODE_MODEL, MINE_DISTURBANCE_CODE_MODEL, MINE_STATUS_CODE_MODEL, MINE_REGION_OPTION, MINE_REPORT_DEFINITION_CATEGORIES, MINE_REPORT_DEFINITION_MODEL, MINE_REPORT_SUBMISSION_STATUS from app.api.mines.permits.response_models import PERMIT_STATUS_CODE_MODEL from app.api.compliance.response_models import COMPLIANCE_ARTICLE_MODEL from app.api.incidents.response_models import MINE_INCIDENT_CATEGORY_MODEL, MINE_INCIDENT_DETERMINATION_TYPE_MODEL, MINE_INCIDENT_STATUS_CODE_MODEL, MINE_INCIDENT_DOCUMENT_TYPE_CODE_MODEL, MINE_INCIDENT_FOLLOWUP_INVESTIGATION_TYPE_MODEL from app.api.parties.response_models import MINE_PARTY_APPT_TYPE_MODEL, SUB_DIVISION_CODE_MODEL from app.api.variances.response_models import VARIANCE_APPLICATION_STATUS_CODE, VARIANCE_DOCUMENT_CATEGORY_CODE from app.api.now_applications.response_models import NOW_APPLICATION_DOCUMENT_TYPE_MODEL, NOW_APPLICATION_REVIEW_TYPES, NOW_APPLICATION_TYPES, UNIT_TYPES, NOW_ACTIVITY_TYPES, NOW_APPLICATION_STATUS_CODES, UNDERGROUND_EXPLORATION_TYPES, NOW_APPLICATION_PERMIT_TYPES, NOW_APPLICATION_REVIEW_TYPES, APPLICATION_PROGRESS_STATUS_CODES STATIC_CONTENT_MODEL = api.model( 'StaticContentModel', { 'mineDisturbanceOptions': fields.List(fields.Nested(MINE_DISTURBANCE_CODE_MODEL), attribute='MineDisturbanceCode'), 'mineCommodityOptions': fields.List(fields.Nested(MINE_COMMODITY_CODE_MODEL), attribute='MineCommodityCode'), 'mineStatusOptions': fields.List(fields.Nested(MINE_STATUS_CODE_MODEL), attribute='MineStatusXref'), 'mineRegionOptions': fields.List(fields.Nested(MINE_REGION_OPTION), attribute='MineRegionCode'), 'mineTenureTypes': fields.List(fields.Nested(MINE_TENURE_TYPE_CODE_MODEL), attribute='MineTenureTypeCode'), 'permitStatusCodes': fields.List(fields.Nested(PERMIT_STATUS_CODE_MODEL), attribute='PermitStatusCode'), 'incidentDocumentTypeOptions': fields.List( fields.Nested(MINE_INCIDENT_DOCUMENT_TYPE_CODE_MODEL), attribute='MineIncidentDocumentTypeCode'), 'incidentFollowupActionOptions': fields.List( fields.Nested(MINE_INCIDENT_FOLLOWUP_INVESTIGATION_TYPE_MODEL), attribute='MineIncidentFollowupInvestigationType'), 'incidentDeterminationOptions': fields.List( fields.Nested(MINE_INCIDENT_DETERMINATION_TYPE_MODEL), attribute='MineIncidentDeterminationType'), 'incidentStatusCodeOptions': fields.List( fields.Nested(MINE_INCIDENT_STATUS_CODE_MODEL), attribute='MineIncidentStatusCode'), 'incidentCategoryCodeOptions': fields.List(fields.Nested(MINE_INCIDENT_CATEGORY_MODEL), attribute='MineIncidentCategory'), 'provinceOptions': fields.List(fields.Nested(SUB_DIVISION_CODE_MODEL), attribute='SubDivisionCode'), 'complianceCodes': fields.List(fields.Nested(COMPLIANCE_ARTICLE_MODEL), attribute='ComplianceArticle'), 'varianceStatusOptions': fields.List( fields.Nested(VARIANCE_APPLICATION_STATUS_CODE), attribute='VarianceApplicationStatusCode'), 'varianceDocumentCategoryOptions': fields.List( fields.Nested(VARIANCE_DOCUMENT_CATEGORY_CODE), attribute='VarianceDocumentCategoryCode'), 'mineReportDefinitionOptions': fields.List(fields.Nested(MINE_REPORT_DEFINITION_MODEL), attribute='MineReportDefinition'), 'mineReportStatusOptions': fields.List( fields.Nested(MINE_REPORT_SUBMISSION_STATUS), attribute='MineReportSubmissionStatusCode'), 'mineReportCategoryOptions': fields.List( fields.Nested(MINE_REPORT_DEFINITION_CATEGORIES), attribute='MineReportCategory'), 'noticeOfWorkActivityTypeOptions': fields.List(fields.Nested(NOW_ACTIVITY_TYPES), attribute='ActivityType'), 'noticeOfWorkUnitTypeOptions': fields.List(fields.Nested(UNIT_TYPES), attribute='UnitType'), 'noticeOfWorkApplicationTypeOptions': fields.List(fields.Nested(NOW_APPLICATION_TYPES), attribute='NOWApplicationType'), 'noticeOfWorkApplicationStatusOptions': fields.List(fields.Nested(NOW_APPLICATION_STATUS_CODES), attribute='NOWApplicationStatus'), 'noticeOfWorkApplicationDocumentTypeOptions': fields.List( fields.Nested(NOW_APPLICATION_DOCUMENT_TYPE_MODEL), attribute='NOWApplicationDocumentType'), 'noticeOfWorkUndergroundExplorationTypeOptions': fields.List( fields.Nested(UNDERGROUND_EXPLORATION_TYPES), attribute='UndergroundExplorationType'), 'noticeOfWorkApplicationProgressStatusCodeOptions': fields.List( fields.Nested(APPLICATION_PROGRESS_STATUS_CODES), attribute='NOWApplicationProgressStatus'), 'noticeOfWorkApplicationPermitTypeOptions': fields.List( fields.Nested(NOW_APPLICATION_PERMIT_TYPES), attribute='NOWApplicationPermitType'), 'noticeOfWorkApplicationReviewOptions': fields.List( fields.Nested(NOW_APPLICATION_REVIEW_TYPES), attribute='NOWApplicationReviewType'), 'partyRelationshipTypes': fields.List( fields.Nested(MINE_PARTY_APPT_TYPE_MODEL), attribute='MinePartyAppointmentType') })
3c46e5cd8e2c42fe17964f81fddb273c2e6424fc
debc9ddbb577ed68e907cfdb85e0f2c801fdc8af
/rx/linq/observable/onerrorresumenext.py
490579fe1b84b19f1004b2c54d19d968ec1a33e2
[ "Apache-2.0" ]
permissive
pstiasny/RxPY
370eefc733de1241c1eac0dcdf8fa10780f71072
2bcf25ecbce1fbcd49d119bd73375572fbf9df5a
refs/heads/master
2021-01-09T20:01:18.664034
2014-07-27T22:19:39
2014-07-27T22:19:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,487
py
from six import add_metaclass from rx.observable import Observable from rx.anonymousobservable import AnonymousObservable from rx.disposables import CompositeDisposable, SingleAssignmentDisposable, \ SerialDisposable from rx.concurrency import immediate_scheduler from rx.internal import ExtensionMethod @add_metaclass(ExtensionMethod) class ObservableOnErrorResumeNext(Observable): def __init__(self, subscribe): self.on_error_resume_next = self.__on_error_resume_next def __on_error_resume_next(self, second): """Continues an observable sequence that is terminated normally or by an exception with the next observable sequence. Keyword arguments: second -- Second observable sequence used to produce results after the first sequence terminates. Returns an observable sequence that concatenates the first and second sequence, even if the first sequence terminates exceptionally. """ if not second: raise Exception('Second observable is required') return Observable.on_error_resume_next([self, second]) @classmethod def on_error_resume_next(cls, *args): """Continues an observable sequence that is terminated normally or by an exception with the next observable sequence. 1 - res = Observable.on_error_resume_next(xs, ys, zs) 2 - res = Observable.on_error_resume_next([xs, ys, zs]) Returns an observable sequence that concatenates the source sequences, even if a sequence terminates exceptionally. """ if args and isinstance(args[0], list): sources = args[0] else: sources = list(args) def subscribe(observer): subscription = SerialDisposable() pos = [0] def action(this, state=None): if pos[0] < len(sources): current = sources[pos[0]] pos[0] += 1 d = SingleAssignmentDisposable() subscription.disposable = d d.disposable = current.subscribe(observer.on_next, lambda ex: this(), lambda: this()) else: observer.on_completed() cancelable = immediate_scheduler.schedule_recursive(action) return CompositeDisposable(subscription, cancelable) return AnonymousObservable(subscribe)
0f8e34d48b3d1c84947d5930430793223a87c3ef
5b1e3abd07c4c048e429e0c58c2319e947ab8ffa
/lbforum/__init__.py
9107c2bfe8fffe679cdfee154b7e961e9f59fd29
[ "BSD-3-Clause" ]
permissive
MechanisM/LBForum
bdd84890faf28a5a7343fe4c8f3029a0423a9e69
5be3aedbba5c4974abc10c8bde245502e7484681
refs/heads/master
2021-01-16T23:14:48.432494
2011-08-05T13:57:43
2011-08-05T13:57:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
24
py
__version__ = '0.9.13'
b6ebbb47ce8ed3feb705ac92c37cae8fce6f828d
842184bc3c73bef3dd5c2ab523eb33f34b7809ea
/ledger_processor/test_ledger_processor.py
0f1549e715a92ae4a28e218d752a9cddb2608f8c
[]
no_license
fawkesley/h-work-simulation
1cb51515fcb57d1f12c13178b049c4e7f8d1702d
3f150d773a73a2dc2646e7b9c102f298e26cb936
refs/heads/master
2021-05-29T22:12:30.148431
2015-06-12T16:53:32
2015-06-13T07:51:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,060
py
import datetime from decimal import Decimal from os.path import dirname, join as pjoin from nose.tools import assert_equal, assert_raises from .ledger_processor import LedgerProcessor EXAMPLE_LEDGER_FILENAME = pjoin(dirname(__file__), 'example_ledger.csv') TEST_CASES = [ ('john', datetime.date(2015, 1, 16), Decimal('0.00')), ('mary', datetime.date(2015, 1, 16), Decimal('0.00')), ('supermarket', datetime.date(2015, 1, 16), Decimal('0.00')), ('insurance', datetime.date(2015, 1, 16), Decimal('0.00')), ('mary', datetime.date(2015, 1, 17), Decimal('125.00')), ('john', datetime.date(2015, 1, 17), Decimal('-125.00')), ('john', datetime.date(2015, 1, 18), Decimal('-145.00')), ('supermarket', datetime.date(2015, 1, 18), Decimal('20.00')), ('mary', datetime.date(2015, 1, 18), Decimal('25.00')), ('insurance', datetime.date(2015, 1, 18), Decimal('100.00')), ] def test_get_balance(): for account, test_date, expected_balance in TEST_CASES: yield _assert_balance_equal, account, test_date, expected_balance def _assert_balance_equal(account, test_date, expected_balance): with open(EXAMPLE_LEDGER_FILENAME, 'r') as f: ledger = LedgerProcessor(f) got_balance = ledger.get_balance(account, test_date) assert_equal(expected_balance, got_balance) def test_get_all_balances(): with open(EXAMPLE_LEDGER_FILENAME, 'r') as f: ledger = LedgerProcessor(f) final_balances = ledger.get_all_balances(datetime.date(2015, 1, 18)) expected_final_balances = { 'john': Decimal('-145.00'), 'mary': Decimal('25.00'), 'supermarket': Decimal('20.00'), 'insurance': Decimal('100.00'), } assert_equal(expected_final_balances, final_balances) def test_ledger_cant_be_used_twice(): with open(EXAMPLE_LEDGER_FILENAME, 'r') as f: ledger = LedgerProcessor(f) def use_ledger(): ledger.get_all_balances(datetime.date(2015, 1, 18)) use_ledger() assert_raises(RuntimeError, use_ledger)
6aa3828a32163e80c8d12eaeda888341881c4a0d
f26322b62be667711ca13f3ea73d89b79011459b
/py/models/__init__.py
b4d9c72fe94e27e7ca8052d7c88a8308c3887b88
[ "Apache-2.0" ]
permissive
zjZSTU/SPP-net
c37c3dcd05bd5fb04cf7ef7efda4ac7dfdc5f89d
e42166dddd37b9493a5aacef18303aa850b21be7
refs/heads/master
2022-07-09T22:46:16.254859
2020-04-04T15:09:19
2020-04-04T15:09:19
250,167,176
3
2
Apache-2.0
2022-06-22T01:36:06
2020-03-26T05:12:56
Python
UTF-8
Python
false
false
109
py
# -*- coding: utf-8 -*- """ @date: 2020/3/26 下午4:20 @file: __init__.py.py @author: zj @description: """
d4fdbed76383d85a2fa0b5a4b0e41628313a2037
080bbe77da955b3917435c25fc63b90b0f3c724e
/botorch/test_functions/multi_objective.py
5ea244ee18797620b86ffb02739a044648f09561
[ "MIT" ]
permissive
irinaespejo/botorch
3d15d962ff0f5bb34fbd11b2eb7549db755af705
e4dcf603fdaf83f0e5f8b9b392f943c89dfff7eb
refs/heads/master
2023-07-11T18:02:11.853790
2021-08-19T15:57:21
2021-08-19T15:58:12
316,017,084
0
0
MIT
2020-11-25T18:02:11
2020-11-25T18:02:09
null
UTF-8
Python
false
false
25,982
py
#! /usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Multi-objective optimization benchmark problems. References .. [Deb2005dtlz] K. Deb, L. Thiele, M. Laumanns, E. Zitzler, A. Abraham, L. Jain, R. Goldberg. "Scalable test problems for evolutionary multi-objective optimization" in Evolutionary Multiobjective Optimization, London, U.K.: Springer-Verlag, pp. 105-145, 2005. .. [Deb2005robust] K. Deb, H. Gupta. "Searching for Robust Pareto-Optimal Solutions in Multi-objective Optimization" in Evolutionary Multi-Criterion Optimization, Springer-Berlin, pp. 150-164, 2005. .. [GarridoMerchan2020] E. C. Garrido-Merch ́an and D. Hern ́andez-Lobato. Parallel Predictive Entropy Search for Multi-objective Bayesian Optimization with Constraints. arXiv e-prints, arXiv:2004.00601, Apr. 2020. .. [Gelbart2014] Michael A. Gelbart, Jasper Snoek, and Ryan P. Adams. 2014. Bayesian optimization with unknown constraints. In Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence (UAI’14). AUAI Press, Arlington, Virginia, USA, 250–259. .. [Oszycka1995] A. Osyczka, S. Kundu. 1995. A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm. In Structural Optimization 10. 94–99. .. [Tanabe2020] Ryoji Tanabe, Hisao Ishibuchi, An easy-to-use real-world multi-objective optimization problem suite, Applied Soft Computing,Volume 89, 2020. .. [Yang2019a] K. Yang, M. Emmerich, A. Deutz, and T. Bäck. 2019. "Multi-Objective Bayesian Global Optimization using expected hypervolume improvement gradient" in Swarm and evolutionary computation 44, pp. 945--956, 2019. .. [Zitzler2000] E. Zitzler, K. Deb, and L. Thiele, “Comparison of multiobjective evolutionary algorithms: Empirical results,” Evol. Comput., vol. 8, no. 2, pp. 173–195, 2000. """ from __future__ import annotations import math from abc import ABC, abstractmethod from typing import Optional import torch from botorch.test_functions.base import ( ConstrainedBaseTestProblem, MultiObjectiveTestProblem, ) from botorch.test_functions.synthetic import Branin from botorch.utils.sampling import sample_hypersphere, sample_simplex from botorch.utils.transforms import unnormalize from scipy.special import gamma from torch import Tensor class BraninCurrin(MultiObjectiveTestProblem): r"""Two objective problem composed of the Branin and Currin functions. Branin (rescaled): f(x) = ( 15*x_1 - 5.1 * (15 * x_0 - 5) ** 2 / (4 * pi ** 2) + 5 * (15 * x_0 - 5) / pi - 5 ) ** 2 + (10 - 10 / (8 * pi)) * cos(15 * x_0 - 5)) Currin: f(x) = (1 - exp(-1 / (2 * x_1))) * ( 2300 * x_0 ** 3 + 1900 * x_0 ** 2 + 2092 * x_0 + 60 ) / 100 * x_0 ** 3 + 500 * x_0 ** 2 + 4 * x_0 + 20 """ dim = 2 num_objectives = 2 _bounds = [(0.0, 1.0), (0.0, 1.0)] _ref_point = [18.0, 6.0] _max_hv = 59.36011874867746 # this is approximated using NSGA-II def __init__(self, noise_std: Optional[float] = None, negate: bool = False) -> None: r"""Constructor for Branin-Currin. Args: noise_std: Standard deviation of the observation noise. negate: If True, negate the objectives. """ super().__init__(noise_std=noise_std, negate=negate) self._branin = Branin() def _rescaled_branin(self, X: Tensor) -> Tensor: # return to Branin bounds x_0 = 15 * X[..., 0] - 5 x_1 = 15 * X[..., 1] return self._branin(torch.stack([x_0, x_1], dim=-1)) @staticmethod def _currin(X: Tensor) -> Tensor: x_0 = X[..., 0] x_1 = X[..., 1] factor1 = 1 - torch.exp(-1 / (2 * x_1)) numer = 2300 * x_0.pow(3) + 1900 * x_0.pow(2) + 2092 * x_0 + 60 denom = 100 * x_0.pow(3) + 500 * x_0.pow(2) + 4 * x_0 + 20 return factor1 * numer / denom def evaluate_true(self, X: Tensor) -> Tensor: # branin rescaled with inputsto [0,1]^2 branin = self._rescaled_branin(X=X) currin = self._currin(X=X) return torch.stack([branin, currin], dim=-1) class DH(MultiObjectiveTestProblem, ABC): r"""Base class for DH problems for robust multi-objective optimization. In their paper, [Deb2005robust]_ consider these problems under a mean-robustness setting, and use uniformly distributed input perturbations from the box with edge lengths `delta_0 = delta`, `delta_i = 2 * delta, i > 0`, with `delta` ranging up to `0.01` for DH1 and DH2, and `delta = 0.03` for DH3 and DH4. These are d-dimensional problems with two objectives: f_0(x) = x_0 f_1(x) = h(x) + g(x) * S(x) for DH1 and DH2 f_1(x) = h(x) * (g(x) + S(x)) for DH3 and DH4 The goal is to minimize both objectives. See [Deb2005robust]_ for more details on DH. The reference points were set using `infer_reference_point`. """ num_objectives = 2 _ref_point: float = [1.1, 1.1] _x_1_lb: float _area_under_curve: float _min_dim: int def __init__( self, dim: int, noise_std: Optional[float] = None, negate: bool = False, ) -> None: if dim < self._min_dim: raise ValueError(f"dim must be >= {self._min_dim}, but got dim={dim}!") self.dim = dim self._bounds = [(0.0, 1.0), (self._x_1_lb, 1.0)] + [ (-1.0, 1.0) for _ in range(dim - 2) ] # max_hv is the area of the box minus the area of the curve formed by the PF. self._max_hv = self._ref_point[0] * self._ref_point[1] - self._area_under_curve super().__init__(noise_std=noise_std, negate=negate) @abstractmethod def _h(self, X: Tensor) -> Tensor: pass # pragma: no cover @abstractmethod def _g(self, X: Tensor) -> Tensor: pass # pragma: no cover @abstractmethod def _S(self, X: Tensor) -> Tensor: pass # pragma: no cover class DH1(DH): r"""DH1 test problem. d-dimensional problem evaluated on `[0, 1] x [-1, 1]^{d-1}`: f_0(x) = x_0 f_1(x) = h(x_0) + g(x) * S(x_0) h(x_0) = 1 - x_0^2 g(x) = \sum_{i=1}^{d-1} (10 + x_i^2 - 10 * cos(4 * pi * x_i)) S(x_0) = alpha / (0.2 + x_0) + beta * x_0^2 where alpha = 1 and beta = 1. The Pareto front corresponds to the equation `f_1 = 1 - f_0^2`, and it is found at `x_i = 0` for `i > 0` and any value of `x_0` in `(0, 1]`. """ alpha = 1.0 beta = 1.0 _x_1_lb = -1.0 _area_under_curve = 2.0 / 3.0 _min_dim = 2 def _h(self, X: Tensor) -> Tensor: return 1 - X[..., 0].pow(2) def _g(self, X: Tensor) -> Tensor: x_1_to = X[..., 1:] return torch.sum( 10 + x_1_to.pow(2) - 10 * torch.cos(4 * math.pi * x_1_to), dim=-1, ) def _S(self, X: Tensor) -> Tensor: x_0 = X[..., 0] return self.alpha / (0.2 + x_0) + self.beta * x_0.pow(2) def evaluate_true(self, X: Tensor) -> Tensor: f_0 = X[..., 0] # This may encounter 0 / 0, which we set to 0. f_1 = self._h(X) + torch.nan_to_num(self._g(X) * self._S(X)) return torch.stack([f_0, f_1], dim=-1) class DH2(DH1): r"""DH2 test problem. This is identical to DH1 except for having `beta = 10.0`. """ beta = 10.0 class DH3(DH): r"""DH3 test problem. d-dimensional problem evaluated on `[0, 1]^2 x [-1, 1]^{d-2}`: f_0(x) = x_0 f_1(x) = h(x_1) * (g(x) + S(x_0)) h(x_1) = 2 - 0.8 * exp(-((x_1 - 0.35) / 0.25)^2) - exp(-((x_1 - 0.85) / 0.03)^2) g(x) = \sum_{i=2}^{d-1} (50 * x_i^2) S(x_0) = 1 - sqrt(x_0) The Pareto front is found at `x_i = 0` for `i > 1`. There's a local and a global Pareto front, which are found at `x_1 = 0.35` and `x_1 = 0.85`, respectively. The approximate relationships between the objectives at local and global Pareto fronts are given by `f_1 = 1.2 (1 - sqrt(f_0))` and `f_1 = 1 - f_0`, respectively. The specific values on the Pareto fronts can be found by varying `x_0`. """ _x_1_lb = 0.0 _area_under_curve = 0.328449169794718 _min_dim = 3 @staticmethod def _exp_args(x: Tensor) -> Tensor: exp_arg_1 = -((x - 0.35) / 0.25).pow(2) exp_arg_2 = -((x - 0.85) / 0.03).pow(2) return exp_arg_1, exp_arg_2 def _h(self, X: Tensor) -> Tensor: exp_arg_1, exp_arg_2 = self._exp_args(X[..., 1]) return 2 - 0.8 * torch.exp(exp_arg_1) - torch.exp(exp_arg_2) def _g(self, X: Tensor) -> Tensor: return 50 * X[..., 2:].pow(2).sum(dim=-1) def _S(self, X: Tensor) -> Tensor: return 1 - X[..., 0].sqrt() def evaluate_true(self, X: Tensor) -> Tensor: f_0 = X[..., 0] f_1 = self._h(X) * (self._g(X) + self._S(X)) return torch.stack([f_0, f_1], dim=-1) class DH4(DH3): r"""DH4 test problem. This is similar to DH3 except that it is evaluated on `[0, 1] x [-0.15, 1] x [-1, 1]^{d-2}` and: h(x_0, x_1) = 2 - x_0 - 0.8 * exp(-((x_0 + x_1 - 0.35) / 0.25)^2) - exp(-((x_0 + x_1 - 0.85) / 0.03)^2) The Pareto front is found at `x_i = 0` for `i > 2`, with the local one being near `x_0 + x_1 = 0.35` and the global one near `x_0 + x_1 = 0.85`. """ _x_1_lb = -0.15 _area_under_curve = 0.22845 def _h(self, X: Tensor) -> Tensor: exp_arg_1, exp_arg_2 = self._exp_args(X[..., :2].sum(dim=-1)) return 2 - X[..., 0] - 0.8 * torch.exp(exp_arg_1) - torch.exp(exp_arg_2) class DTLZ(MultiObjectiveTestProblem): r"""Base class for DTLZ problems. See [Deb2005dtlz]_ for more details on DTLZ. """ def __init__( self, dim: int, num_objectives: int = 2, noise_std: Optional[float] = None, negate: bool = False, ) -> None: if dim <= num_objectives: raise ValueError( f"dim must be > num_objectives, but got {dim} and {num_objectives}." ) self.num_objectives = num_objectives self.dim = dim self.k = self.dim - self.num_objectives + 1 self._bounds = [(0.0, 1.0) for _ in range(self.dim)] self._ref_point = [self._ref_val for _ in range(num_objectives)] super().__init__(noise_std=noise_std, negate=negate) class DTLZ1(DTLZ): r"""DLTZ1 test problem. d-dimensional problem evaluated on `[0, 1]^d`: f_0(x) = 0.5 * x_0 * (1 + g(x)) f_1(x) = 0.5 * (1 - x_0) * (1 + g(x)) g(x) = 100 * \sum_{i=m}^{d-1} ( k + (x_i - 0.5)^2 - cos(20 * pi * (x_i - 0.5)) ) where k = d - m + 1. The pareto front is given by the line (or hyperplane) \sum_i f_i(x) = 0.5. The goal is to minimize both objectives. The reference point comes from [Yang2019]_. """ _ref_val = 400.0 @property def _max_hv(self) -> float: return self._ref_val ** self.num_objectives - 1 / 2 ** self.num_objectives def evaluate_true(self, X: Tensor) -> Tensor: X_m = X[..., -self.k :] X_m_minus_half = X_m - 0.5 sum_term = ( X_m_minus_half.pow(2) - torch.cos(20 * math.pi * X_m_minus_half) ).sum(dim=-1) g_X_m = 100 * (self.k + sum_term) g_X_m_term = 0.5 * (1 + g_X_m) fs = [] for i in range(self.num_objectives): idx = self.num_objectives - 1 - i f_i = g_X_m_term * X[..., :idx].prod(dim=-1) if i > 0: f_i *= 1 - X[..., idx] fs.append(f_i) return torch.stack(fs, dim=-1) def gen_pareto_front(self, n: int) -> Tensor: r"""Generate `n` pareto optimal points. The pareto points randomly sampled from the hyperplane sum_i f(x_i) = 0.5. """ f_X = 0.5 * sample_simplex( n=n, d=self.num_objectives, qmc=True, dtype=self.ref_point.dtype, device=self.ref_point.device, ) if self.negate: f_X *= -1 return f_X class DTLZ2(DTLZ): r"""DLTZ2 test problem. d-dimensional problem evaluated on `[0, 1]^d`: f_0(x) = (1 + g(x)) * cos(x_0 * pi / 2) f_1(x) = (1 + g(x)) * sin(x_0 * pi / 2) g(x) = \sum_{i=m}^{d-1} (x_i - 0.5)^2 The pareto front is given by the unit hypersphere \sum{i} f_i^2 = 1. Note: the pareto front is completely concave. The goal is to minimize both objectives. """ _ref_val = 1.1 @property def _max_hv(self) -> float: # hypercube - volume of hypersphere in R^d such that all coordinates are # positive hypercube_vol = self._ref_val ** self.num_objectives pos_hypersphere_vol = ( math.pi ** (self.num_objectives / 2) / gamma(self.num_objectives / 2 + 1) / 2 ** self.num_objectives ) return hypercube_vol - pos_hypersphere_vol def evaluate_true(self, X: Tensor) -> Tensor: X_m = X[..., -self.k :] g_X = (X_m - 0.5).pow(2).sum(dim=-1) g_X_plus1 = 1 + g_X fs = [] pi_over_2 = math.pi / 2 for i in range(self.num_objectives): idx = self.num_objectives - 1 - i f_i = g_X_plus1.clone() f_i *= torch.cos(X[..., :idx] * pi_over_2).prod(dim=-1) if i > 0: f_i *= torch.sin(X[..., idx] * pi_over_2) fs.append(f_i) return torch.stack(fs, dim=-1) def gen_pareto_front(self, n: int) -> Tensor: r"""Generate `n` pareto optimal points. The pareto points are randomly sampled from the hypersphere's positive section. """ f_X = sample_hypersphere( n=n, d=self.num_objectives, dtype=self.ref_point.dtype, device=self.ref_point.device, qmc=True, ).abs() if self.negate: f_X *= -1 return f_X class VehicleSafety(MultiObjectiveTestProblem): r"""Optimize Vehicle crash-worthiness. See [Tanabe2020]_ for details. The reference point is 1.1 * the nadir point from approximate front provided by [Tanabe2020]_. The maximum hypervolume is computed using the approximate pareto front from [Tanabe2020]_. """ _ref_point = [1864.72022, 11.81993945, 0.2903999384] _max_hv = 246.81607081187002 _bounds = [(1.0, 3.0)] * 5 dim = 5 num_objectives = 3 def evaluate_true(self, X: Tensor) -> Tensor: X1, X2, X3, X4, X5 = torch.split(X, 1, -1) f1 = ( 1640.2823 + 2.3573285 * X1 + 2.3220035 * X2 + 4.5688768 * X3 + 7.7213633 * X4 + 4.4559504 * X5 ) f2 = ( 6.5856 + 1.15 * X1 - 1.0427 * X2 + 0.9738 * X3 + 0.8364 * X4 - 0.3695 * X1 * X4 + 0.0861 * X1 * X5 + 0.3628 * X2 * X4 - 0.1106 * X1.pow(2) - 0.3437 * X3.pow(2) + 0.1764 * X4.pow(2) ) f3 = ( -0.0551 + 0.0181 * X1 + 0.1024 * X2 + 0.0421 * X3 - 0.0073 * X1 * X2 + 0.024 * X2 * X3 - 0.0118 * X2 * X4 - 0.0204 * X3 * X4 - 0.008 * X3 * X5 - 0.0241 * X2.pow(2) + 0.0109 * X4.pow(2) ) f_X = torch.cat([f1, f2, f3], dim=-1) return f_X class ZDT(MultiObjectiveTestProblem): r"""Base class for ZDT problems. See [Zitzler2000]_ for more details on ZDT. """ _ref_point = [11.0, 11.0] def __init__( self, dim: int, num_objectives: int = 2, noise_std: Optional[float] = None, negate: bool = False, ) -> None: if num_objectives != 2: raise NotImplementedError( f"{type(self).__name__} currently only supports 2 objectives." ) if dim < num_objectives: raise ValueError( f"dim must be >= num_objectives, but got {dim} and {num_objectives}" ) self.num_objectives = num_objectives self.dim = dim self._bounds = [(0.0, 1.0) for _ in range(self.dim)] super().__init__(noise_std=noise_std, negate=negate) @staticmethod def _g(X: Tensor) -> Tensor: return 1 + 9 * X[..., 1:].mean(dim=-1) class ZDT1(ZDT): r"""ZDT1 test problem. d-dimensional problem evaluated on `[0, 1]^d`: f_0(x) = x_0 f_1(x) = g(x) * (1 - sqrt(x_0 / g(x)) g(x) = 1 + 9 / (d - 1) * \sum_{i=1}^{d-1} x_i The reference point comes from [Yang2019a]_. The pareto front is convex. """ _max_hv = 120 + 2 / 3 def evaluate_true(self, X: Tensor) -> Tensor: f_0 = X[..., 0] g = self._g(X=X) f_1 = g * (1 - (f_0 / g).sqrt()) return torch.stack([f_0, f_1], dim=-1) def gen_pareto_front(self, n: int) -> Tensor: f_0 = torch.linspace( 0, 1, n, dtype=self.bounds.dtype, device=self.bounds.device ) f_1 = 1 - f_0.sqrt() f_X = torch.stack([f_0, f_1], dim=-1) if self.negate: f_X *= -1 return f_X class ZDT2(ZDT): r"""ZDT2 test problem. d-dimensional problem evaluated on `[0, 1]^d`: f_0(x) = x_0 f_1(x) = g(x) * (1 - (x_0 / g(x))^2) g(x) = 1 + 9 / (d - 1) * \sum_{i=1}^{d-1} x_i The reference point comes from [Yang2019a]_. The pareto front is concave. """ _max_hv = 120 + 1 / 3 def evaluate_true(self, X: Tensor) -> Tensor: f_0 = X[..., 0] g = self._g(X=X) f_1 = g * (1 - (f_0 / g).pow(2)) return torch.stack([f_0, f_1], dim=-1) def gen_pareto_front(self, n: int) -> Tensor: f_0 = torch.linspace( 0, 1, n, dtype=self.bounds.dtype, device=self.bounds.device ) f_1 = 1 - f_0.pow(2) f_X = torch.stack([f_0, f_1], dim=-1) if self.negate: f_X *= -1 return f_X class ZDT3(ZDT): r"""ZDT3 test problem. d-dimensional problem evaluated on `[0, 1]^d`: f_0(x) = x_0 f_1(x) = 1 - sqrt(x_0 / g(x)) - x_0 / g * sin(10 * pi * x_0) g(x) = 1 + 9 / (d - 1) * \sum_{i=1}^{d-1} x_i The reference point comes from [Yang2019a]_. The pareto front consists of several discontinuous convex parts. """ _max_hv = 128.77811613069076060 _parts = [ # this interval includes both end points [0, 0.0830015349], # this interval includes only the right end points [0.1822287280, 0.2577623634], [0.4093136748, 0.4538821041], [0.6183967944, 0.6525117038], [0.8233317983, 0.8518328654], ] # nugget to make sure linspace returns elements within the specified range _eps = 1e-6 def evaluate_true(self, X: Tensor) -> Tensor: f_0 = X[..., 0] g = self._g(X=X) f_1 = 1 - (f_0 / g).sqrt() - f_0 / g * torch.sin(10 * math.pi * f_0) return torch.stack([f_0, f_1], dim=-1) def gen_pareto_front(self, n: int) -> Tensor: n_parts = len(self._parts) n_per_part = torch.full( torch.Size([n_parts]), n // n_parts, dtype=torch.long, device=self.bounds.device, ) left_over = n % n_parts n_per_part[:left_over] += 1 f_0s = [] for i, p in enumerate(self._parts): left, right = p f_0s.append( torch.linspace( left + self._eps, right - self._eps, n_per_part[i], dtype=self.bounds.dtype, device=self.bounds.device, ) ) f_0 = torch.cat(f_0s, dim=0) f_1 = 1 - f_0.sqrt() - f_0 * torch.sin(10 * math.pi * f_0) f_X = torch.stack([f_0, f_1], dim=-1) if self.negate: f_X *= -1 return f_X # ------ Constrained Multi-Objective Test Problems ----- # class BNH(MultiObjectiveTestProblem, ConstrainedBaseTestProblem): r"""The constrained BNH problem. See [GarridoMerchan2020]_ for more details on this problem. Note that this is a minimization problem. """ dim = 2 num_objectives = 2 num_constraints = 2 _bounds = [(0.0, 5.0), (0.0, 3.0)] _ref_point = [0.0, 0.0] # TODO: Determine proper reference point def evaluate_true(self, X: Tensor) -> Tensor: return torch.stack( [4.0 * (X ** 2).sum(dim=-1), ((X - 5.0) ** 2).sum(dim=-1)], dim=-1 ) def evaluate_slack_true(self, X: Tensor) -> Tensor: c1 = 25.0 - (X[..., 0] - 5.0) ** 2 - X[..., 1] ** 2 c2 = (X[..., 0] - 8.0) ** 2 + (X[..., 1] + 3.0) ** 2 - 7.7 return torch.stack([c1, c2], dim=-1) class SRN(MultiObjectiveTestProblem, ConstrainedBaseTestProblem): r"""The constrained SRN problem. See [GarridoMerchan2020]_ for more details on this problem. Note that this is a minimization problem. """ dim = 2 num_objectives = 2 num_constraints = 2 _bounds = [(-20.0, 20.0), (-20.0, 20.0)] _ref_point = [0.0, 0.0] # TODO: Determine proper reference point def evaluate_true(self, X: Tensor) -> Tensor: obj1 = 2.0 + ((X - 2.0) ** 2).sum(dim=-1) obj2 = 9.0 * X[..., 0] - (X[..., 1] - 1.0) ** 2 return torch.stack([obj1, obj2], dim=-1) def evaluate_slack_true(self, X: Tensor) -> Tensor: c1 = 225.0 - ((X ** 2) ** 2).sum(dim=-1) c2 = -10.0 - X[..., 0] + 3 * X[..., 1] return torch.stack([c1, c2], dim=-1) class CONSTR(MultiObjectiveTestProblem, ConstrainedBaseTestProblem): r"""The constrained CONSTR problem. See [GarridoMerchan2020]_ for more details on this problem. Note that this is a minimization problem. """ dim = 2 num_objectives = 2 num_constraints = 2 _bounds = [(0.1, 10.0), (0.0, 5.0)] _ref_point = [10.0, 10.0] def evaluate_true(self, X: Tensor) -> Tensor: obj1 = X[..., 0] obj2 = (1.0 + X[..., 1]) / X[..., 0] return torch.stack([obj1, obj2], dim=-1) def evaluate_slack_true(self, X: Tensor) -> Tensor: c1 = 9.0 * X[..., 0] + X[..., 1] - 6.0 c2 = 9.0 * X[..., 0] - X[..., 1] - 1.0 return torch.stack([c1, c2], dim=-1) class ConstrainedBraninCurrin(BraninCurrin, ConstrainedBaseTestProblem): r"""Constrained Branin Currin Function. This uses the disk constraint from [Gelbart2014]_. """ dim = 2 num_objectives = 2 num_constraints = 1 _bounds = [(0.0, 1.0), (0.0, 1.0)] _con_bounds = [(-5.0, 10.0), (0.0, 15.0)] _ref_point = [80.0, 12.0] _max_hv = 608.4004237022673 # from NSGA-II with 90k evaluations def __init__(self, noise_std: Optional[float] = None, negate: bool = False) -> None: super().__init__(noise_std=noise_std, negate=negate) con_bounds = torch.tensor(self._con_bounds, dtype=torch.float).transpose(-1, -2) self.register_buffer("con_bounds", con_bounds) def evaluate_slack_true(self, X: Tensor) -> Tensor: X_tf = unnormalize(X, self.con_bounds) return 50 - (X_tf[..., 0:1] - 2.5).pow(2) - (X_tf[..., 1:2] - 7.5).pow(2) class C2DTLZ2(DTLZ2, ConstrainedBaseTestProblem): num_constraints = 1 _r = 0.2 # approximate from nsga-ii, TODO: replace with analytic _max_hv = 0.3996406303723544 def evaluate_slack_true(self, X: Tensor) -> Tensor: if X.ndim > 2: raise NotImplementedError("Batch X is not supported.") f_X = self.evaluate_true(X) term1 = (f_X - 1).pow(2) mask = ~(torch.eye(f_X.shape[-1], device=f_X.device).bool()) indices = torch.arange(f_X.shape[1], device=f_X.device).repeat(f_X.shape[1], 1) indexer = indices[mask].view(f_X.shape[1], f_X.shape[-1] - 1) term2_inner = ( f_X.unsqueeze(1) .expand(f_X.shape[0], f_X.shape[-1], f_X.shape[-1]) .gather(dim=-1, index=indexer.repeat(f_X.shape[0], 1, 1)) ) term2 = (term2_inner.pow(2) - self._r ** 2).sum(dim=-1) min1 = (term1 + term2).min(dim=-1).values min2 = ((f_X - 1 / math.sqrt(f_X.shape[-1])).pow(2) - self._r ** 2).sum(dim=-1) return -torch.min(min1, min2).unsqueeze(-1) class OSY(MultiObjectiveTestProblem, ConstrainedBaseTestProblem): r""" The OSY test problem from [Oszycka1995]_. Implementation from https://github.com/msu-coinlab/pymoo/blob/master/pymoo/problems/multi/osy.py Note that this implementation assumes minimization, so please choose negate=True. """ dim = 6 num_constraints = 6 num_objectives = 2 _bounds = [ (0.0, 10.0), (0.0, 10.0), (1.0, 5.0), (0.0, 6.0), (1.0, 5.0), (0.0, 10.0), ] _ref_point = [-75.0, 75.0] def evaluate_true(self, X: Tensor) -> Tensor: f1 = -( 25 * (X[..., 0] - 2) ** 2 + (X[..., 1] - 2) ** 2 + (X[..., 2] - 1) ** 2 + (X[..., 3] - 4) ** 2 + (X[..., 4] - 1) ** 2 ) f2 = (X ** 2).sum(-1) return torch.stack([f1, f2], dim=-1) def evaluate_slack_true(self, X: Tensor) -> Tensor: g1 = X[..., 0] + X[..., 1] - 2.0 g2 = 6.0 - X[..., 0] - X[..., 1] g3 = 2.0 - X[..., 1] + X[..., 0] g4 = 2.0 - X[..., 0] + 3.0 * X[..., 1] g5 = 4.0 - (X[..., 2] - 3.0) ** 2 - X[..., 3] g6 = (X[..., 4] - 3.0) ** 2 + X[..., 5] - 4.0 return torch.stack([g1, g2, g3, g4, g5, g6], dim=-1)
4b8524cc460faabc41efc6e9ca0584712bb5bfd6
ab69c2e3e4ec895fc533a4d37768aab517f86722
/tests/structures/test_comparisons.py
995b3acc05d605970a8217e4e74851e623881818
[ "BSD-3-Clause", "MIT" ]
permissive
pranavmodx/batavia
9cf7d7528cb88b16d5b33b64481281b60e84cbec
084d78eb553f21c787009e1141638e810fcc654f
refs/heads/master
2020-08-07T19:08:36.105839
2019-10-08T06:32:23
2019-10-08T06:32:23
213,560,529
1
0
NOASSERTION
2019-10-08T06:01:52
2019-10-08T06:01:50
null
UTF-8
Python
false
false
5,319
py
from ..utils import TranspileTestCase class ComparisonTests(TranspileTestCase): def test_is(self): self.assertCodeExecution(""" x = 1 if x is 1: print('Correct') else: print('Incorrect') print('Done.') """) self.assertCodeExecution(""" x = 1 if x is 5: print('Incorrect') else: print('Correct') print('Done.') """) self.assertCodeExecution(""" x = None if x is None: print('Correct') else: print('Incorrect') print('Done.') """) self.assertCodeExecution(""" x = 1 if x is None: print('Incorrect') else: print('Correct') print('Done.') """) def test_is_not(self): self.assertCodeExecution(""" x = 1 if x is not 5: print('Correct') else: print('Incorrect') print('Done.') """) self.assertCodeExecution(""" x = 1 if x is not 1: print('Correct') else: print('Incorrect') print('Done.') """) self.assertCodeExecution(""" x = 1 if x is not None: print('Correct') else: print('Incorrect') print('Done.') """) self.assertCodeExecution(""" x = None if x is not None: print('Incorrect') else: print('Correct') print('Done.') """) def test_lt(self): self.assertCodeExecution(""" x = 1 if x < 5: print('Correct') else: print('Incorrect') print('Done.') """) self.assertCodeExecution(""" x = 5 if x < 5: print('Incorrect') else: print('Correct') print('Done.') """) self.assertCodeExecution(""" x = 10 if x < 5: print('Correct') else: print('Incorrect') print('Done.') """) def test_le(self): self.assertCodeExecution(""" x = 1 if x <= 5: print('Correct') else: print('Incorrect') print('Done.') """) self.assertCodeExecution(""" x = 5 if x <= 5: print('Correct') else: print('Incorrect') print('Done.') """) self.assertCodeExecution(""" x = 10 if x <= 5: print('Correct') else: print('Incorrect') print('Done.') """) def test_gt(self): self.assertCodeExecution(""" x = 10 if x > 5: print('Correct') else: print('Incorrect') print('Done.') """) self.assertCodeExecution(""" x = 5 if x > 5: print('Incorrect') else: print('Correct') print('Done.') """) self.assertCodeExecution(""" x = 1 if x > 5: print('Correct') else: print('Incorrect') print('Done.') """) def test_ge(self): self.assertCodeExecution(""" x = 10 if x >= 5: print('Correct') else: print('Incorrect') print('Done.') """) self.assertCodeExecution(""" x = 5 if x >= 5: print('Correct') else: print('Incorrect') print('Done.') """) self.assertCodeExecution(""" x = 1 if x >= 5: print('Correct') else: print('Incorrect') print('Done.') """) def test_eq(self): self.assertCodeExecution(""" x = 10 if x == 5: print('Correct') else: print('Incorrect') print('Done.') """) self.assertCodeExecution(""" x = 5 if x == 5: print('Correct') else: print('Incorrect') print('Done.') """) def test_ne(self): self.assertCodeExecution(""" x = 5 if x == 5: print('Correct') else: print('Incorrect') print('Done.') """) self.assertCodeExecution(""" x = 10 if x == 5: print('Correct') else: print('Incorrect') print('Done.') """)
eda77b3fb111fdadddce59be538af5500de1b8e4
e9abcb6021cc6fcc15ef2258f09812492b4e093d
/ironic/drivers/modules/pxe_auto_deploy.py
e710fc477b8a458092f3fcfad209f81f16a14b57
[ "Apache-2.0" ]
permissive
ericxiett/ironic-customized
e6df6a62840ae34180b8004c98ac56790462408b
3a2ad13969e1497889a0c3be80f9f5f671ff4d1b
refs/heads/master
2020-07-16T08:29:03.447845
2019-09-02T01:31:58
2019-09-02T01:31:58
205,754,554
0
0
null
null
null
null
UTF-8
Python
false
false
9,371
py
import os import socket from shutil import rmtree import jinja2 import time from oslo_log import log from oslo_utils import fileutils from ironic_lib import utils as ironic_utils from ironic.common import exception, pxe_utils, boot_devices, states from ironic.common import utils from ironic.common.i18n import _, _LE, _LI, _LW from ironic.common.pxe_utils import get_root_dir from ironic.conductor import task_manager from ironic.conductor import utils as manager_utils from ironic.conf import CONF from ironic.drivers import base from ironic.drivers.modules import deploy_utils LOG = log.getLogger(__name__) REQUIRED_PROPERTIES = ['user_kernel', 'user_ramdisk', 'management_ip', 'management_netmask', 'management_gateway'] PXE_CFG_DIR_NAME = 'pxelinux.cfg' HOSTNAME_PREFIX = 'Host-' AUTO_FILE_DIR = "/var/www/html/auto/" class PXEAutoDeploy(base.DeployInterface): def __init__(self): pass def clean_up(self, task): extra_info = task.node.extra pxe_boot_interface_mac = extra_info.get('boot_detailed').get('pxe_interface') pxe_boot_interface_mac.replace('-', ':') for port in task.ports: if port.address == pxe_boot_interface_mac: client_id = port.extra.get('client-id') ironic_utils.unlink_without_raise(self._get_pxe_mac_path(port.address, client_id=client_id)) pxe_config_file_path = pxe_utils.get_pxe_config_file_path(task.node.uuid) fileutils.delete_if_exists(pxe_config_file_path) if os.path.exists(os.path.join(CONF.pxe.tftp_root, task.node.uuid)): rmtree(os.path.join(CONF.pxe.tftp_root, task.node.uuid)) auto_file_name = task.node.uuid + '_auto.cfg' fileutils.delete_if_exists(AUTO_FILE_DIR + auto_file_name) @task_manager.require_exclusive_lock def deploy(self, task): manager_utils.node_power_action(task, states.REBOOT) return states.DEPLOYWAIT def get_properties(self): pass @task_manager.require_exclusive_lock def prepare(self, task): # No need to update dhcp with standalone mode self._create_auto_config(task) self._create_pxe_config(task) deploy_utils.try_set_boot_device(task, boot_devices.PXE) def _create_auto_config(self, task): auto_info = {} managemenet_ip = task.node.instance_info.get('management_ip') auto_info['management_ip'] = managemenet_ip auto_info['management_netmask'] = \ task.node.instance_info.get('management_netmask') auto_info['management_gateway'] = \ task.node.instance_info.get('management_gateway') auto_info['hostname'] = \ HOSTNAME_PREFIX + managemenet_ip.replace('.', '-') auto_info['os_ver'] = \ task.node.instance_info.get('os_ver') auto_info['server_ip'] = CONF.my_ip extra_info = task.node.extra pxe_boot_interface_mac = self._get_boot_interface_mac(task) for nic in extra_info.get('nic_detailed'): address = nic.get('mac_address') LOG.info('address: %s', address) if nic.get('mac_address') == pxe_boot_interface_mac: auto_info['management_port'] = nic.get('name') break fileutils.ensure_tree(AUTO_FILE_DIR) auto_file_name = task.node.uuid + '_auto.cfg' auto_file_path = AUTO_FILE_DIR + auto_file_name tmpl_path, tmpl_file = os.path.split(CONF.pxe_auto.pxe_auto_template) env = jinja2.Environment(loader=jinja2.FileSystemLoader(tmpl_path)) template = env.get_template(tmpl_file) auto_info = template.render({'auto_info': auto_info, 'server_ip': CONF.my_ip, 'repo_server_ip': CONF.pxe_auto.repo_server, 'UUID': task.node.uuid, }) utils.write_to_file(auto_file_path, auto_info) def _get_boot_interface_mac(self, task): extra_info = task.node.extra # pxe_interface like '01-6c-92-bf-0c-9c-d9'. '01-' is not needed. pxe_interface = extra_info.get('boot_detailed').get('pxe_interface')[3:] return pxe_interface.replace('-', ':') def _create_pxe_config(self, task): pxe_options = self._build_pxe_options(task.node) pxe_config_template = CONF.pxe.pxe_config_template node_uuid = task.node.uuid root_dir = CONF.pxe.tftp_root fileutils.ensure_tree(os.path.join(root_dir, node_uuid)) fileutils.ensure_tree(os.path.join(root_dir, PXE_CFG_DIR_NAME)) pxe_config_file_path = pxe_utils.get_pxe_config_file_path(node_uuid) tmpl_path, tmpl_file = os.path.split(pxe_config_template) env = jinja2.Environment(loader=jinja2.FileSystemLoader(tmpl_path)) template = env.get_template(tmpl_file) pxe_config = template.render({'pxe_options': pxe_options, 'server_ip': CONF.my_ip, 'UUID': node_uuid, }) utils.write_to_file(pxe_config_file_path, pxe_config) self._link_mac_pxe_configs(task) def _get_pxe_mac_path(self, mac, delimiter='-', client_id=None): """Convert a MAC address into a PXE config file name. :param mac: A MAC address string in the format xx:xx:xx:xx:xx:xx. :param delimiter: The MAC address delimiter. Defaults to dash ('-'). :param client_id: client_id indicate InfiniBand port. Defaults is None (Ethernet) :returns: the path to the config file. """ mac_file_name = mac.replace(':', delimiter).lower() if not CONF.pxe.ipxe_enabled: hw_type = '01-' if client_id: hw_type = '20-' mac_file_name = hw_type + mac_file_name return os.path.join(get_root_dir(), PXE_CFG_DIR_NAME, mac_file_name) def _link_mac_pxe_configs(self, task): def create_link(mac_path): ironic_utils.unlink_without_raise(mac_path) relative_source_path = os.path.relpath( pxe_config_file_path, os.path.dirname(mac_path)) utils.create_link_without_raise(relative_source_path, mac_path) pxe_config_file_path = pxe_utils.get_pxe_config_file_path(task.node.uuid) pxe_boot_interface_mac = self._get_boot_interface_mac(task) LOG.info("pxe_boot_interface_mac: %s", pxe_boot_interface_mac) for port in task.ports: LOG.info("port.address: %s", port.address) if port.address == pxe_boot_interface_mac: client_id = port.extra.get('client-id') create_link(self._get_pxe_mac_path(port.address, client_id=client_id)) def _build_pxe_options(self, node): pxe_info = {} root_dir = pxe_utils.get_root_dir() for label in ('user_kernel', 'user_ramdisk'): pxe_info[label] = \ os.path.join(root_dir, node.instance_info.get(label)) return pxe_info def take_over(self, task): pass def tear_down(self, task): manager_utils.node_power_action(task, states.POWER_OFF) def validate(self, task): info = task.node.instance_info for item in REQUIRED_PROPERTIES: if not info.get(item): error_msg = _("Cannot validate driver deploy. Some parameters were missing" " in node's instance_info") exc_msg = _("%(error_msg)s. Missing are: %(missing_info)s") raise exception.MissingParameterValue( exc_msg % {'error_msg': error_msg, 'missing_info': item}) def pxeauto(self, task, data): task.upgrade_lock() node = task.node LOG.info('Pxeauto info for node %(node)s with ' 'progress info %(data)s', {'node': node.uuid, 'data': data}) # Parse progress info title = data['Title'] progress = float(data['InstallProgress']) * 100 LOG.info('data[\'InstallProgress\']: %s', data['InstallProgress']) LOG.info('progress: %f', progress) if progress == 60: task.process_event('resume') LOG.info('resume...') if progress == 100: deploy_utils.try_set_boot_device(task, boot_devices.DISK) manager_utils.node_power_action(task, states.REBOOT) ret = self.check_conn(node.instance_info.get('management_ip'), 22) if ret == 'success': task.process_event('done') LOG.info(_LI('Deployment to node %s done'), task.node.uuid) def check_conn(self, address, port): sock = socket.socket() frequency = 0 while True: try: sock.connect((address, port)) LOG.info("Connected to %s on port %s", address, port) return "success" except socket.error, e: LOG.info("Connection to %s on port %s failed: %s," " already wait: %s s", address, port, e, frequency*3) frequency += 1 time.sleep(3)
4d73f1009f9545a495de388d2b5332138d8fc0d7
237162607427106ae9564670d47427a62356861f
/users/migrations/0040_auto_20190426_1040.py
477aac69c7a6db31f52e331f91b20015a89d3272
[]
no_license
pitipund/basecore
8648c1f4fa37b6e6075fd710ca422fe159ba930e
a0c20cec1e17dd0eb6abcaaa7d2623e38b60318b
refs/heads/master
2020-09-13T20:16:02.622903
2019-11-20T09:07:15
2019-11-20T09:07:15
221,885,342
0
0
null
null
null
null
UTF-8
Python
false
false
524
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.13 on 2019-04-26 10:40 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('users', '0039_applicationdefaultrole'), ] operations = [ migrations.AlterModelOptions( name='applicationdefaultrole', options={'ordering': ('id',), 'verbose_name': 'Application Default Role', 'verbose_name_plural': 'Application Default Roles'}, ), ]
f8fd4511a108b8fa1fb60b90cb489e7232eb676d
9e988c0dfbea15cd23a3de860cb0c88c3dcdbd97
/sdBs/AllRun/galex_j032139.63+472718.83/sdB_galex_j032139.63+472718.83_coadd.py
7700527b519c981826539b80b5486dc86e5c9e84
[]
no_license
tboudreaux/SummerSTScICode
73b2e5839b10c0bf733808f4316d34be91c5a3bd
4dd1ffbb09e0a599257d21872f9d62b5420028b0
refs/heads/master
2021-01-20T18:07:44.723496
2016-08-08T16:49:53
2016-08-08T16:49:53
65,221,159
0
0
null
null
null
null
UTF-8
Python
false
false
489
py
from gPhoton.gMap import gMap def main(): gMap(band="NUV", skypos=[50.415125,47.455231], skyrange=[0.0333333333333,0.0333333333333], stepsz = 30., cntfile="/data2/fleming/GPHOTON_OUTPUT/LIGHTCURVES/sdBs/sdB_galex_j032139.63+472718.83/sdB_galex_j032139.63+472718.83_movie_count.fits", cntcoaddfile="/data2/fleming/GPHOTON_OUTPUT/LIGHTCURVES/sdB/sdB_galex_j032139.63+472718.83/sdB_galex_j032139.63+472718.83_count_coadd.fits", overwrite=True, verbose=3) if __name__ == "__main__": main()
63093190ee20e10698bd99dcea94ccf5d076a006
04803c70bb97012b7d500a177ac0240fb2ddbe38
/1heptane/pdep/network4267_1.py
8a706002eeed10a53d67be4e75593936ac4c0251
[]
no_license
shenghuiqin/chpd
735e0415f6688d88579fc935459c1b0f53596d1d
396ba54629036e3f2be0b3fabe09b78c90d56939
refs/heads/master
2023-03-01T23:29:02.118150
2019-10-05T04:02:23
2019-10-05T04:02:23
192,084,217
0
0
null
2019-06-18T18:33:13
2019-06-15T13:52:28
HTML
UTF-8
Python
false
false
69,142
py
species( label = 'C=C([CH]C)C(=C)[CH]C(24182)', structure = SMILES('[CH2]C(=CC)C([CH2])=CC'), E0 = (249.687,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([325,375,415,465,420,450,1700,1750,2750,2770,2790,2810,2830,2850,1350,1400,1450,1500,700,800,1000,1100,1350,1400,900,1100,3000,3033.33,3066.67,3100,415,465,780,850,1435,1475,900,1100,2995,3025,975,1000,1300,1375,400,500,1630,1680,180],'cm^-1')), HinderedRotor(inertia=(0.735277,'amu*angstrom^2'), symmetry=1, barrier=(16.9055,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.0632434,'amu*angstrom^2'), symmetry=1, barrier=(29.514,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.737545,'amu*angstrom^2'), symmetry=1, barrier=(16.9576,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.732781,'amu*angstrom^2'), symmetry=1, barrier=(16.8481,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.739219,'amu*angstrom^2'), symmetry=1, barrier=(16.9961,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (108.181,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[-0.384005,0.0840749,-5.09991e-05,5.50851e-09,4.14197e-12,30198.9,28.4131], Tmin=(100,'K'), Tmax=(1039.09,'K')), NASAPolynomial(coeffs=[18.1326,0.0354522,-1.35159e-05,2.44392e-09,-1.69358e-13,25127.7,-67.5143], Tmin=(1039.09,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(249.687,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(461.453,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-Cds(Cds-Cds)Cs) + group(Cds-Cds(Cds-Cds)Cs) + group(Cds-CdsCsH) + group(Cds-CdsCsH) + radical(Allyl_P) + radical(Allyl_P)"""), ) species( label = 'CH3CHCCH2(18175)', structure = SMILES('C=C=CC'), E0 = (145.615,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([2950,3100,1380,975,1025,1650,540,610,2055,2750,2800,2850,1350,1500,750,1050,1375,1000,3010,987.5,1337.5,450,1655],'cm^-1')), HinderedRotor(inertia=(0.759584,'amu*angstrom^2'), symmetry=1, barrier=(17.4643,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (54.0904,'amu'), collisionModel = TransportData(shapeIndex=2, epsilon=(2996.71,'J/mol'), sigma=(5.18551,'angstroms'), dipoleMoment=(0,'C*m'), polarizability=(0,'angstroms^3'), rotrelaxcollnum=0, comment="""Epsilon & sigma estimated with Tc=468.08 K, Pc=48.77 bar (from Joback method)"""), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[2.74635,0.0218189,8.22353e-06,-2.14768e-08,8.55624e-12,17563.6,12.7381], Tmin=(100,'K'), Tmax=(1025.6,'K')), NASAPolynomial(coeffs=[6.82078,0.0192338,-7.45622e-06,1.36536e-09,-9.53195e-14,16028,-10.4333], Tmin=(1025.6,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(145.615,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(228.648,'J/(mol*K)'), label="""CH3CHCCH2""", comment="""Thermo library: DFT_QCI_thermo"""), ) species( label = '[CH2]C1([CH]C)CC1=CC(25275)', structure = SMILES('[CH2]C1([CH]C)CC1=CC'), E0 = (462.221,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (108.181,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.263258,0.0692237,-2.26363e-05,-1.35463e-08,8.13734e-12,55737.7,31.4039], Tmin=(100,'K'), Tmax=(1105.46,'K')), NASAPolynomial(coeffs=[15.171,0.0400578,-1.66801e-05,3.13624e-09,-2.2049e-13,50927.8,-48.8594], Tmin=(1105.46,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(462.221,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(465.61,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)CsCsCs) + group(Cs-CsCsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-CsHHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsCs) + group(Cds-CdsCsH) + ring(Methylene_cyclopropane) + radical(Neopentyl) + radical(Cs_S)"""), ) species( label = 'C=[C][CH]C(18176)', structure = SMILES('[CH2][C]=CC'), E0 = (361.056,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([1685,370,2750,2800,2850,1350,1500,750,1050,1375,1000,3000,3100,440,815,1455,1000,3010,987.5,1337.5,450,1655],'cm^-1')), HinderedRotor(inertia=(0.352622,'amu*angstrom^2'), symmetry=1, barrier=(8.10748,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.828631,'amu*angstrom^2'), symmetry=1, barrier=(19.0519,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (54.0904,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[2.42015,0.030446,-1.69076e-05,4.64684e-09,-5.12013e-13,43485.7,14.8304], Tmin=(100,'K'), Tmax=(2065.83,'K')), NASAPolynomial(coeffs=[10.7464,0.014324,-5.20136e-06,8.69079e-10,-5.48385e-14,40045.6,-31.3799], Tmin=(2065.83,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(361.056,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(274.378,'J/(mol*K)'), comment="""Thermo library: DFT_QCI_thermo + radical(Cds_S) + radical(Allyl_P)"""), ) species( label = '[CH2]C(=CC)C(C)=[C]C(25412)', structure = SMILES('[CH2]C(=CC)C(C)=[C]C'), E0 = (336.03,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([325,375,415,465,420,450,1700,1750,1685,370,2750,2762.5,2775,2787.5,2800,2812.5,2825,2837.5,2850,1350,1380,1410,1440,1470,1500,700,750,800,1000,1050,1100,1350,1375,1400,900,1000,1100,3000,3100,440,815,1455,1000,3010,987.5,1337.5,450,1655,222.04],'cm^-1')), HinderedRotor(inertia=(0.395973,'amu*angstrom^2'), symmetry=1, barrier=(13.8694,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.396086,'amu*angstrom^2'), symmetry=1, barrier=(13.8683,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.395737,'amu*angstrom^2'), symmetry=1, barrier=(13.8691,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.395039,'amu*angstrom^2'), symmetry=1, barrier=(13.8689,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.395901,'amu*angstrom^2'), symmetry=1, barrier=(13.8689,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (108.181,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[-0.116365,0.0876489,-7.20737e-05,3.21805e-08,-5.96317e-12,40565.5,28.3373], Tmin=(100,'K'), Tmax=(1264.63,'K')), NASAPolynomial(coeffs=[14.5979,0.041109,-1.68732e-05,3.08148e-09,-2.10818e-13,36843.8,-46.1055], Tmin=(1264.63,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(336.03,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(461.453,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-Cds(Cds-Cds)Cs) + group(Cds-Cds(Cds-Cds)Cs) + group(Cds-CdsCsH) + group(Cds-CdsCsH) + radical(Cds_S) + radical(Allyl_P)"""), ) species( label = '[CH2]C(=[C]C)C(C)=CC(25413)', structure = SMILES('[CH2]C(=[C]C)C(C)=CC'), E0 = (336.03,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([325,375,415,465,420,450,1700,1750,1685,370,2750,2762.5,2775,2787.5,2800,2812.5,2825,2837.5,2850,1350,1380,1410,1440,1470,1500,700,750,800,1000,1050,1100,1350,1375,1400,900,1000,1100,3000,3100,440,815,1455,1000,3010,987.5,1337.5,450,1655,222.04],'cm^-1')), HinderedRotor(inertia=(0.395973,'amu*angstrom^2'), symmetry=1, barrier=(13.8694,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.396086,'amu*angstrom^2'), symmetry=1, barrier=(13.8683,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.395737,'amu*angstrom^2'), symmetry=1, barrier=(13.8691,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.395039,'amu*angstrom^2'), symmetry=1, barrier=(13.8689,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.395901,'amu*angstrom^2'), symmetry=1, barrier=(13.8689,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (108.181,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[-0.116365,0.0876489,-7.20737e-05,3.21805e-08,-5.96317e-12,40565.5,28.3373], Tmin=(100,'K'), Tmax=(1264.63,'K')), NASAPolynomial(coeffs=[14.5979,0.041109,-1.68732e-05,3.08148e-09,-2.10818e-13,36843.8,-46.1055], Tmin=(1264.63,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(336.03,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(461.453,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-Cds(Cds-Cds)Cs) + group(Cds-Cds(Cds-Cds)Cs) + group(Cds-CdsCsH) + group(Cds-CdsCsH) + radical(Allyl_P) + radical(Cds_S)"""), ) species( label = '[CH2]C(=CC)[C](C)C=C(24605)', structure = SMILES('[CH2]C=C(C)C([CH2])=CC'), E0 = (216.244,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([325,375,415,465,420,450,1700,1750,2750,2770,2790,2810,2830,2850,1350,1400,1450,1500,700,800,1000,1100,1350,1400,900,1100,3000,3033.33,3066.67,3100,415,465,780,850,1435,1475,900,1100,2995,3025,975,1000,1300,1375,400,500,1630,1680,180],'cm^-1')), HinderedRotor(inertia=(0.712083,'amu*angstrom^2'), symmetry=1, barrier=(16.3722,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.555659,'amu*angstrom^2'), symmetry=1, barrier=(96.3851,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.0202512,'amu*angstrom^2'), symmetry=1, barrier=(16.3711,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.712008,'amu*angstrom^2'), symmetry=1, barrier=(16.3705,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(4.19211,'amu*angstrom^2'), symmetry=1, barrier=(96.3849,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (108.181,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[-0.0883175,0.0775021,-3.58132e-05,-7.55711e-09,8.27771e-12,26166.1,29.3215], Tmin=(100,'K'), Tmax=(1017.17,'K')), NASAPolynomial(coeffs=[16.4341,0.0376674,-1.41425e-05,2.53759e-09,-1.75328e-13,21504.4,-57.0638], Tmin=(1017.17,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(216.244,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(461.453,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-Cds(Cds-Cds)Cs) + group(Cds-Cds(Cds-Cds)Cs) + group(Cds-CdsCsH) + group(Cds-CdsCsH) + radical(Allyl_P) + radical(C=CC=CCJ)"""), ) species( label = '[CH2][C](C=C)C(C)=CC(24606)', structure = SMILES('[CH2]C=C([CH2])C(C)=CC'), E0 = (216.244,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (108.181,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[-0.0883175,0.0775021,-3.58132e-05,-7.55711e-09,8.27771e-12,26166.1,29.3215], Tmin=(100,'K'), Tmax=(1017.17,'K')), NASAPolynomial(coeffs=[16.4341,0.0376674,-1.41425e-05,2.53759e-09,-1.75328e-13,21504.4,-57.0638], Tmin=(1017.17,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(216.244,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(461.453,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-Cds(Cds-Cds)Cs) + group(Cds-Cds(Cds-Cds)Cs) + group(Cds-CdsCsH) + group(Cds-CdsCsH) + radical(Allyl_P) + radical(C=CC=CCJ)"""), ) species( label = '[CH2]C(=CC)[C]1CC1C(25414)', structure = SMILES('[CH2]C(=CC)[C]1CC1C'), E0 = (289.9,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (108.181,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.71289,0.0520158,3.84829e-05,-8.55933e-08,3.61457e-11,35003.5,26.4903], Tmin=(100,'K'), Tmax=(968.714,'K')), NASAPolynomial(coeffs=[16.7686,0.0352996,-1.24057e-05,2.26286e-09,-1.62921e-13,29566.5,-62.466], Tmin=(968.714,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(289.9,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(465.61,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsCsH) + group(Cs-(Cds-Cds)CsCsH) + group(Cs-CsCsHH) + group(Cs-CsHHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsCs) + group(Cds-CdsCsH) + ring(Cyclopropane) + radical(Allyl_T) + radical(Allyl_P)"""), ) species( label = '[CH2][C]1C(=CC)CC1C(25415)', structure = SMILES('[CH2]C1=C([CH]C)CC1C'), E0 = (304.572,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (108.181,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.583091,0.0531885,4.0938e-05,-9.08388e-08,3.83549e-11,36774.2,26.4705], Tmin=(100,'K'), Tmax=(972.301,'K')), NASAPolynomial(coeffs=[18.2947,0.0339462,-1.21014e-05,2.24934e-09,-1.64353e-13,30795.4,-71.5147], Tmin=(972.301,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(304.572,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(465.61,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)CsCsH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-CsHHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsCs) + group(Cds-CdsCsCs) + ring(Cyclobutene) + radical(Allyl_P) + radical(Allyl_S)"""), ) species( label = 'CH2(S)(23)', structure = SMILES('[CH2]'), E0 = (419.862,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([1369.36,2789.41,2993.36],'cm^-1')), ], spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (14.0266,'amu'), collisionModel = TransportData(shapeIndex=2, epsilon=(1197.29,'J/mol'), sigma=(3.8,'angstroms'), dipoleMoment=(0,'C*m'), polarizability=(0,'angstroms^3'), rotrelaxcollnum=0.0, comment="""GRI-Mech"""), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[4.19195,-0.00230793,8.0509e-06,-6.60123e-09,1.95638e-12,50484.3,-0.754589], Tmin=(200,'K'), Tmax=(1000,'K')), NASAPolynomial(coeffs=[2.28556,0.00460255,-1.97412e-06,4.09548e-10,-3.34695e-14,50922.4,8.67684], Tmin=(1000,'K'), Tmax=(3000,'K'))], Tmin=(200,'K'), Tmax=(3000,'K'), E0=(419.862,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(58.2013,'J/(mol*K)'), label="""CH2(S)""", comment="""Thermo library: Klippenstein_Glarborg2016"""), ) species( label = '[CH2]C(=C)C([CH2])=CC(25416)', structure = SMILES('[CH2]C(=C)C([CH2])=CC'), E0 = (285.713,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([325,375,415,465,420,450,1700,1750,2950,3100,1380,975,1025,1650,2750,2800,2850,1350,1500,750,1050,1375,1000,3000,3033.33,3066.67,3100,415,465,780,850,1435,1475,900,1100,3010,987.5,1337.5,450,1655,311.383],'cm^-1')), HinderedRotor(inertia=(0.327475,'amu*angstrom^2'), symmetry=1, barrier=(22.5291,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.327466,'amu*angstrom^2'), symmetry=1, barrier=(22.5294,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.327318,'amu*angstrom^2'), symmetry=1, barrier=(22.5272,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.327483,'amu*angstrom^2'), symmetry=1, barrier=(22.5297,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (94.1543,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.335271,0.0676667,-2.76626e-05,-1.62749e-08,1.21982e-11,34506.8,24.024], Tmin=(100,'K'), Tmax=(980.594,'K')), NASAPolynomial(coeffs=[17.5531,0.0266059,-9.47854e-06,1.70194e-09,-1.19937e-13,29727.4,-65.8563], Tmin=(980.594,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(285.713,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(390.78,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-Cds(Cds-Cds)Cs) + group(Cds-Cds(Cds-Cds)Cs) + group(Cds-CdsCsH) + group(Cds-CdsHH) + radical(Allyl_P) + radical(Allyl_P)"""), ) species( label = 'C=C([CH]C)C[C]=CC(24184)', structure = SMILES('[CH2]C(=CC)C[C]=CC'), E0 = (366.985,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([2995,3025,975,1000,1300,1375,400,500,1630,1680,2750,2770,2790,2810,2830,2850,1350,1400,1450,1500,700,800,1000,1100,1350,1400,900,1100,1685,370,350,440,435,1725,2750,2850,1437.5,1250,1305,750,350,3000,3100,440,815,1455,1000,180,579.702],'cm^-1')), HinderedRotor(inertia=(0.147406,'amu*angstrom^2'), symmetry=1, barrier=(3.38916,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.64226,'amu*angstrom^2'), symmetry=1, barrier=(14.7668,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.64164,'amu*angstrom^2'), symmetry=1, barrier=(14.7526,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.643937,'amu*angstrom^2'), symmetry=1, barrier=(14.8054,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.145327,'amu*angstrom^2'), symmetry=1, barrier=(3.34136,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (108.181,'amu'), collisionModel = TransportData(shapeIndex=2, epsilon=(3683.66,'J/mol'), sigma=(6.4482,'angstroms'), dipoleMoment=(0,'C*m'), polarizability=(0,'angstroms^3'), rotrelaxcollnum=0, comment="""Epsilon & sigma estimated with Tc=575.38 K, Pc=31.18 bar (from Joback method)"""), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.29648,0.0786067,-5.42868e-05,1.96375e-08,-2.97459e-12,44273.2,31.2372], Tmin=(100,'K'), Tmax=(1490.43,'K')), NASAPolynomial(coeffs=[13.9025,0.0420909,-1.75363e-05,3.199e-09,-2.17227e-13,40217.5,-39.8334], Tmin=(1490.43,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(366.985,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(461.453,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)(Cds-Cds)HH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsCs) + group(Cds-CdsCsH) + group(Cds-CdsCsH) + group(Cds-CdsCsH) + radical(Cds_S) + radical(Allyl_P)"""), ) species( label = 'CC=C1CCC1=CC(25269)', structure = SMILES('CC=C1CCC1=CC'), E0 = (114.107,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (108.181,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.677799,0.0585738,5.80411e-06,-4.1598e-08,1.78951e-11,13856,25.5085], Tmin=(100,'K'), Tmax=(1034.79,'K')), NASAPolynomial(coeffs=[13.4814,0.0415234,-1.65073e-05,3.07348e-09,-2.16896e-13,9469.28,-45.0922], Tmin=(1034.79,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(114.107,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(473.925,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)CsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-Cds(Cds-Cds)Cs) + group(Cds-Cds(Cds-Cds)Cs) + group(Cds-CdsCsH) + group(Cds-CdsCsH) + ring(12methylenecyclobutane)"""), ) species( label = 'CH2(19)', structure = SMILES('[CH2]'), E0 = (381.563,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([1032.72,2936.3,3459],'cm^-1')), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (14.0266,'amu'), collisionModel = TransportData(shapeIndex=2, epsilon=(1197.29,'J/mol'), sigma=(3.8,'angstroms'), dipoleMoment=(0,'C*m'), polarizability=(0,'angstroms^3'), rotrelaxcollnum=0.0, comment="""GRI-Mech"""), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[3.8328,0.000224446,4.68033e-06,-6.04743e-09,2.59009e-12,45920.8,1.40666], Tmin=(200,'K'), Tmax=(1000,'K')), NASAPolynomial(coeffs=[3.16229,0.00281798,-7.56235e-07,5.05446e-11,5.65236e-15,46099.1,4.77656], Tmin=(1000,'K'), Tmax=(3000,'K'))], Tmin=(200,'K'), Tmax=(3000,'K'), E0=(381.563,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(58.2013,'J/(mol*K)'), label="""CH2""", comment="""Thermo library: Klippenstein_Glarborg2016"""), ) species( label = '[CH2]C([C]=CC)=CC(25417)', structure = SMILES('[CH2]C([C]=CC)=CC'), E0 = (334.774,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([350,440,435,1725,1685,370,2750,2770,2790,2810,2830,2850,1350,1400,1450,1500,700,800,1000,1100,1350,1400,900,1100,3000,3100,440,815,1455,1000,2995,3025,975,1000,1300,1375,400,500,1630,1680,180],'cm^-1')), HinderedRotor(inertia=(0.7606,'amu*angstrom^2'), symmetry=1, barrier=(17.4877,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.760854,'amu*angstrom^2'), symmetry=1, barrier=(17.4935,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.760586,'amu*angstrom^2'), symmetry=1, barrier=(17.4874,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(2.15146,'amu*angstrom^2'), symmetry=1, barrier=(49.4663,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (94.1543,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.352604,0.0734369,-5.91187e-05,2.57941e-08,-4.60694e-12,40400.9,25.1788], Tmin=(100,'K'), Tmax=(1327.42,'K')), NASAPolynomial(coeffs=[14.2321,0.0316126,-1.18565e-05,2.05761e-09,-1.36512e-13,36716.1,-45.7131], Tmin=(1327.42,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(334.774,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(390.78,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-Cds(Cds-Cds)Cs) + group(Cds-CdsCsH) + group(Cds-CdsCsH) + group(Cds-Cds(Cds-Cds)H) + radical(C=CJC=C) + radical(Allyl_P)"""), ) species( label = '[CH2]C1([CH]C)C(=C)C1C(25296)', structure = SMILES('[CH2]C1([CH]C)C(=C)C1C'), E0 = (466.494,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (108.181,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.29276,0.0655305,-4.50464e-06,-3.74661e-08,1.7759e-11,56253.7,30.0992], Tmin=(100,'K'), Tmax=(1027.4,'K')), NASAPolynomial(coeffs=[16.6435,0.0372633,-1.49065e-05,2.81296e-09,-2.01072e-13,51026,-58.316], Tmin=(1027.4,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(466.494,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(465.61,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)CsCsCs) + group(Cs-(Cds-Cds)CsCsH) + group(Cs-CsCsHH) + group(Cs-CsHHH) + group(Cs-CsHHH) + group(Cs-CsHHH) + group(Cds-CdsCsCs) + group(Cds-CdsHH) + ring(Methylene_cyclopropane) + radical(Neopentyl) + radical(Cs_S)"""), ) species( label = 'H(3)', structure = SMILES('[H]'), E0 = (211.792,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (1.00794,'amu'), collisionModel = TransportData(shapeIndex=0, epsilon=(1205.6,'J/mol'), sigma=(2.05,'angstroms'), dipoleMoment=(0,'C*m'), polarizability=(0,'angstroms^3'), rotrelaxcollnum=0.0, comment="""GRI-Mech"""), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[2.5,9.24385e-15,-1.3678e-17,6.66185e-21,-1.00107e-24,25472.7,-0.459566], Tmin=(100,'K'), Tmax=(3459.6,'K')), NASAPolynomial(coeffs=[2.5,9.20456e-12,-3.58608e-15,6.15199e-19,-3.92042e-23,25472.7,-0.459566], Tmin=(3459.6,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(211.792,'kJ/mol'), Cp0=(20.7862,'J/(mol*K)'), CpInf=(20.7862,'J/(mol*K)'), label="""H""", comment="""Thermo library: BurkeH2O2"""), ) species( label = '[CH2]C(=CC)C(=C)C=C(24604)', structure = SMILES('[CH2]C(=CC)C(=C)C=C'), E0 = (242.677,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([325,375,415,465,420,450,1700,1750,2950,3000,3050,3100,1330,1430,900,1050,1000,1050,1600,1700,2750,2800,2850,1350,1500,750,1050,1375,1000,3000,3100,440,815,1455,1000,2995,3025,975,1000,1300,1375,400,500,1630,1680,181.962,683.313],'cm^-1')), HinderedRotor(inertia=(0.669842,'amu*angstrom^2'), symmetry=1, barrier=(19.1337,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.0582339,'amu*angstrom^2'), symmetry=1, barrier=(19.1767,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.83204,'amu*angstrom^2'), symmetry=1, barrier=(19.1302,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(4.52237,'amu*angstrom^2'), symmetry=1, barrier=(104.569,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 2, opticalIsomers = 1, molecularWeight = (107.173,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.293043,0.0682771,-2.00337e-05,-2.05401e-08,1.21516e-11,29332.3,27.0261], Tmin=(100,'K'), Tmax=(1018.57,'K')), NASAPolynomial(coeffs=[15.7386,0.0358123,-1.37404e-05,2.51366e-09,-1.76142e-13,24723.4,-54.9529], Tmin=(1018.57,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(242.677,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(440.667,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-Cds(Cds-Cds)Cs) + group(Cds-Cds(Cds-Cds)(Cds-Cds)) + group(Cds-CdsCsH) + group(Cds-Cds(Cds-Cds)H) + group(Cds-CdsHH) + group(Cds-CdsHH) + radical(Allyl_P)"""), ) species( label = '[CH2]CC(=C)C([CH2])=CC(25418)', structure = SMILES('[CH2]CC(=C)C([CH2])=CC'), E0 = (316.814,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([3010,987.5,1337.5,450,1655,2750,2800,2850,1350,1500,750,1050,1375,1000,2950,3100,1380,975,1025,1650,325,375,415,465,420,450,1700,1750,2750,2850,1437.5,1250,1305,750,350,3000,3033.33,3066.67,3100,415,465,780,850,1435,1475,900,1100,180,180],'cm^-1')), HinderedRotor(inertia=(0.0368535,'amu*angstrom^2'), symmetry=1, barrier=(17.9864,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.00736317,'amu*angstrom^2'), symmetry=1, barrier=(3.60618,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.781153,'amu*angstrom^2'), symmetry=1, barrier=(17.9602,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.779478,'amu*angstrom^2'), symmetry=1, barrier=(17.9217,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.781104,'amu*angstrom^2'), symmetry=1, barrier=(17.9591,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (108.181,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[-0.348925,0.0836004,-5.1879e-05,7.14877e-09,3.44908e-12,38270.9,31.5928], Tmin=(100,'K'), Tmax=(1044.14,'K')), NASAPolynomial(coeffs=[17.9255,0.0352115,-1.34219e-05,2.42456e-09,-1.67785e-13,33276.3,-63.0036], Tmin=(1044.14,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(316.814,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(461.453,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-Cds(Cds-Cds)Cs) + group(Cds-Cds(Cds-Cds)Cs) + group(Cds-CdsCsH) + group(Cds-CdsHH) + radical(RCCJ) + radical(Allyl_P)"""), ) species( label = '[CH]=C(CC)C([CH2])=CC(25419)', structure = SMILES('[CH]=C(CC)C([CH2])=CC'), E0 = (358.664,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([3120,650,792.5,1650,3010,987.5,1337.5,450,1655,2750,2770,2790,2810,2830,2850,1350,1400,1450,1500,700,800,1000,1100,1350,1400,900,1100,325,375,415,465,420,450,1700,1750,2750,2850,1437.5,1250,1305,750,350,3000,3100,440,815,1455,1000,180],'cm^-1')), HinderedRotor(inertia=(0.701639,'amu*angstrom^2'), symmetry=1, barrier=(16.1321,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.344302,'amu*angstrom^2'), symmetry=1, barrier=(16.1602,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.0492932,'amu*angstrom^2'), symmetry=1, barrier=(16.1378,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.702005,'amu*angstrom^2'), symmetry=1, barrier=(16.1405,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.702379,'amu*angstrom^2'), symmetry=1, barrier=(16.1491,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (108.181,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[-0.468616,0.0864938,-5.84569e-05,1.27697e-08,1.75707e-12,43308.4,30.6389], Tmin=(100,'K'), Tmax=(1047.28,'K')), NASAPolynomial(coeffs=[18.4195,0.034593,-1.31104e-05,2.35762e-09,-1.62637e-13,38242.2,-66.6572], Tmin=(1047.28,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(358.664,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(461.453,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-Cds(Cds-Cds)Cs) + group(Cds-Cds(Cds-Cds)Cs) + group(Cds-CdsCsH) + group(Cds-CdsHH) + radical(Allyl_P) + radical(Cds_P)"""), ) species( label = '[CH2]C(=[C]C)C(=C)CC(25420)', structure = SMILES('[CH2]C(=[C]C)C(=C)CC'), E0 = (349.41,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([1685,370,2750,2770,2790,2810,2830,2850,1350,1400,1450,1500,700,800,1000,1100,1350,1400,900,1100,2950,3100,1380,975,1025,1650,325,375,415,465,420,450,1700,1750,2750,2850,1437.5,1250,1305,750,350,3000,3100,440,815,1455,1000,180,180],'cm^-1')), HinderedRotor(inertia=(0.159905,'amu*angstrom^2'), symmetry=1, barrier=(15.9368,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.693159,'amu*angstrom^2'), symmetry=1, barrier=(15.9371,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.693127,'amu*angstrom^2'), symmetry=1, barrier=(15.9364,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.693165,'amu*angstrom^2'), symmetry=1, barrier=(15.9372,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.0150632,'amu*angstrom^2'), symmetry=1, barrier=(15.9371,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (108.181,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[-0.583231,0.089245,-7.16619e-05,3.00631e-08,-5.07891e-12,42198.9,31.1306], Tmin=(100,'K'), Tmax=(1412.15,'K')), NASAPolynomial(coeffs=[19.0319,0.0336833,-1.2643e-05,2.20036e-09,-1.46165e-13,36659.1,-70.2702], Tmin=(1412.15,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(349.41,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(461.453,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-Cds(Cds-Cds)Cs) + group(Cds-Cds(Cds-Cds)Cs) + group(Cds-CdsCsH) + group(Cds-CdsHH) + radical(Allyl_P) + radical(Cds_S)"""), ) species( label = '[CH]=C([CH]C)C(C)=CC(25421)', structure = SMILES('[CH]C(=CC)C(C)=CC'), E0 = (317.373,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([325,375,415,465,420,450,1700,1750,2750,2762.5,2775,2787.5,2800,2812.5,2825,2837.5,2850,1350,1380,1410,1440,1470,1500,700,750,800,1000,1050,1100,1350,1375,1400,900,1000,1100,2995,3025,975,1000,1300,1375,400,500,1630,1680,200,800,1200,1600],'cm^-1')), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (108.181,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[-0.247945,0.0873521,-6.16843e-05,2.31486e-08,-3.62747e-12,38328.8,29.1665], Tmin=(100,'K'), Tmax=(1460.93,'K')), NASAPolynomial(coeffs=[15.297,0.0447902,-1.7984e-05,3.20673e-09,-2.14924e-13,33786.8,-51.7212], Tmin=(1460.93,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(317.373,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(461.453,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-Cds(Cds-Cds)Cs) + group(Cds-Cds(Cds-Cds)Cs) + group(Cds-CdsCsH) + group(Cds-CdsCsH) + radical(AllylJ2_triplet)"""), ) species( label = '[CH2][C](C=C)C(=C)CC(24623)', structure = SMILES('[CH2]C(C=C)=C([CH2])CC'), E0 = (228.159,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (108.181,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[-0.0497728,0.0733281,-1.6094e-05,-3.35123e-08,1.88363e-11,27601.1,30.4448], Tmin=(100,'K'), Tmax=(975.095,'K')), NASAPolynomial(coeffs=[18.3695,0.0342638,-1.21408e-05,2.16747e-09,-1.52112e-13,22274,-66.8493], Tmin=(975.095,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(228.159,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(461.453,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsCs) + group(Cds-Cds(Cds-Cds)Cs) + group(Cds-Cds(Cds-Cds)H) + group(Cds-CdsHH) + radical(C=CC=CCJ) + radical(Allyl_P)"""), ) species( label = 'C[CH][C]1CCC1=CC(25422)', structure = SMILES('C[CH]C1CCC=1[CH]C'), E0 = (303.292,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (108.181,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.788866,0.0500701,4.22235e-05,-8.64809e-08,3.53174e-11,36611.5,25.2586], Tmin=(100,'K'), Tmax=(987.239,'K')), NASAPolynomial(coeffs=[16.2187,0.0373502,-1.4111e-05,2.65357e-09,-1.92503e-13,31138.2,-61.2734], Tmin=(987.239,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(303.292,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(465.61,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)CsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-CsHHH) + group(Cds-CdsCsCs) + group(Cds-CdsCsCs) + ring(Cyclobutene) + radical(Allyl_S) + radical(Allyl_S)"""), ) species( label = '[CH2][C]1C(=C)C(C)C1C(25423)', structure = SMILES('[CH2]C1=C([CH2])C(C)C1C'), E0 = (305.852,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (108.181,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.377097,0.0563026,3.9705e-05,-9.53284e-08,4.14811e-11,36937,26.2973], Tmin=(100,'K'), Tmax=(959.735,'K')), NASAPolynomial(coeffs=[20.4056,0.0304853,-1.006e-05,1.83774e-09,-1.35603e-13,30437.2,-83.3398], Tmin=(959.735,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(305.852,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(465.61,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)CsCsH) + group(Cs-(Cds-Cds)CsCsH) + group(Cs-CsHHH) + group(Cs-CsHHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsCs) + group(Cds-CdsCsCs) + ring(Cyclobutene) + radical(Allyl_P) + radical(Allyl_P)"""), ) species( label = 'C=CC(=C)C(C)=CC(24616)', structure = SMILES('C=CC(=C)C(C)=CC'), E0 = (91.1774,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (108.181,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.236638,0.0713806,-3.04205e-05,-5.26762e-09,5.54498e-12,11111.2,26.9518], Tmin=(100,'K'), Tmax=(1093.32,'K')), NASAPolynomial(coeffs=[14.1536,0.040705,-1.6104e-05,2.93544e-09,-2.02595e-13,6858.32,-46.9636], Tmin=(1093.32,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(91.1774,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(465.61,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-Cds(Cds-Cds)Cs) + group(Cds-Cds(Cds-Cds)(Cds-Cds)) + group(Cds-CdsCsH) + group(Cds-Cds(Cds-Cds)H) + group(Cds-CdsHH) + group(Cds-CdsHH)"""), ) species( label = 'C=[C]C(C)C(=C)[CH]C(24183)', structure = SMILES('[CH2]C(=CC)C(C)[C]=C'), E0 = (369.44,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([1685,370,3010,987.5,1337.5,450,1655,2750,2770,2790,2810,2830,2850,1350,1400,1450,1500,700,800,1000,1100,1350,1400,900,1100,2950,3100,1380,975,1025,1650,1380,1390,370,380,2900,435,350,440,435,1725,3000,3100,440,815,1455,1000,345.333,347.343],'cm^-1')), HinderedRotor(inertia=(0.119405,'amu*angstrom^2'), symmetry=1, barrier=(9.93037,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.281457,'amu*angstrom^2'), symmetry=1, barrier=(24.022,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.116909,'amu*angstrom^2'), symmetry=1, barrier=(9.94809,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.117447,'amu*angstrom^2'), symmetry=1, barrier=(9.9744,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.116555,'amu*angstrom^2'), symmetry=1, barrier=(9.93684,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (108.181,'amu'), collisionModel = TransportData(shapeIndex=2, epsilon=(3625.33,'J/mol'), sigma=(6.4092,'angstroms'), dipoleMoment=(0,'C*m'), polarizability=(0,'angstroms^3'), rotrelaxcollnum=0, comment="""Epsilon & sigma estimated with Tc=566.27 K, Pc=31.24 bar (from Joback method)"""), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.299693,0.0839308,-6.74533e-05,3.06742e-08,-6.02582e-12,44564.4,29.0122], Tmin=(100,'K'), Tmax=(1163.73,'K')), NASAPolynomial(coeffs=[10.857,0.0476425,-2.06788e-05,3.8782e-09,-2.69295e-13,42107.3,-23.5217], Tmin=(1163.73,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(369.44,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(461.453,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)(Cds-Cds)CsH) + group(Cs-CsHHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsCs) + group(Cds-CdsCsH) + group(Cds-CdsCsH) + group(Cds-CdsHH) + radical(Allyl_P) + radical(Cds_S)"""), ) species( label = 'C=C1C(=CC)CC1C(25265)', structure = SMILES('C=C1C(=CC)CC1C'), E0 = (118.381,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (108.181,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.689924,0.0550304,2.3689e-05,-6.56265e-08,2.77602e-11,14372.8,24.9628], Tmin=(100,'K'), Tmax=(993.204,'K')), NASAPolynomial(coeffs=[15.3775,0.0380508,-1.43595e-05,2.66472e-09,-1.90565e-13,9375.16,-56.2678], Tmin=(993.204,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(118.381,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(473.925,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)CsCsH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-Cds(Cds-Cds)Cs) + group(Cds-Cds(Cds-Cds)Cs) + group(Cds-CdsCsH) + group(Cds-CdsHH) + ring(12methylenecyclobutane)"""), ) species( label = 'CHCH3(T)(95)', structure = SMILES('[CH]C'), E0 = (343.893,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([2750,2800,2850,1350,1500,750,1050,1375,1000,592.414,4000],'cm^-1')), HinderedRotor(inertia=(0.00438699,'amu*angstrom^2'), symmetry=1, barrier=(26.7685,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (28.0532,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[3.82363,-0.000909515,3.2138e-05,-3.7348e-08,1.3309e-11,41371.4,7.10948], Tmin=(100,'K'), Tmax=(960.812,'K')), NASAPolynomial(coeffs=[4.30487,0.00943069,-3.27559e-06,5.95121e-10,-4.27307e-14,40709.1,1.84202], Tmin=(960.812,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(343.893,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(128.874,'J/(mol*K)'), label="""CHCH3(T)""", comment="""Thermo library: DFT_QCI_thermo"""), ) species( label = '[CH2]C([C]=C)=CC(24774)', structure = SMILES('[CH2]C([C]=C)=CC'), E0 = (370.8,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([1685,370,2750,2800,2850,1350,1500,750,1050,1375,1000,3010,987.5,1337.5,450,1655,2950,3100,1380,975,1025,1650,350,440,435,1725,3000,3100,440,815,1455,1000,180],'cm^-1')), HinderedRotor(inertia=(1.17315,'amu*angstrom^2'), symmetry=1, barrier=(26.9731,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(1.17496,'amu*angstrom^2'), symmetry=1, barrier=(27.0146,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(1.1727,'amu*angstrom^2'), symmetry=1, barrier=(26.9626,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (80.1277,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[1.0818,0.0569416,-3.56598e-05,4.1841e-09,3.20998e-12,44708.4,20.7527], Tmin=(100,'K'), Tmax=(982.69,'K')), NASAPolynomial(coeffs=[12.9204,0.0239405,-8.46845e-06,1.46434e-09,-9.91425e-14,41648.3,-39.886], Tmin=(982.69,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(370.8,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(320.107,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-Cds(Cds-Cds)Cs) + group(Cds-CdsCsH) + group(Cds-Cds(Cds-Cds)H) + group(Cds-CdsHH) + radical(C=CJC=C) + radical(Allyl_P)"""), ) species( label = '[CH]=C([CH]C)C(=C)CC(25424)', structure = SMILES('[CH]C(=CC)C(=C)CC'), E0 = (330.753,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([2750,2850,1437.5,1250,1305,750,350,2950,3100,1380,975,1025,1650,3010,987.5,1337.5,450,1655,2750,2770,2790,2810,2830,2850,1350,1400,1450,1500,700,800,1000,1100,1350,1400,900,1100,325,375,415,465,420,450,1700,1750,200,800,1066.67,1333.33,1600],'cm^-1')), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (108.181,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[-0.442166,0.0858934,-5.1432e-05,9.5936e-09,1.54315e-12,39950.3,30.9724], Tmin=(100,'K'), Tmax=(1106.5,'K')), NASAPolynomial(coeffs=[16.3579,0.0427111,-1.66841e-05,2.99222e-09,-2.04007e-13,35158.1,-56.633], Tmin=(1106.5,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(330.753,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(461.453,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-Cds(Cds-Cds)Cs) + group(Cds-Cds(Cds-Cds)Cs) + group(Cds-CdsCsH) + group(Cds-CdsHH) + radical(AllylJ2_triplet)"""), ) species( label = 'C=CC(=C)C(=C)CC(24630)', structure = SMILES('C=CC(=C)C(=C)CC'), E0 = (104.558,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (108.181,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.296747,0.0670054,-1.0269e-05,-3.13536e-08,1.59568e-11,12721.3,27.8384], Tmin=(100,'K'), Tmax=(1010.3,'K')), NASAPolynomial(coeffs=[15.6889,0.0379462,-1.44599e-05,2.64736e-09,-1.86033e-13,7984.11,-54.6302], Tmin=(1010.3,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(104.558,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(465.61,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cds-Cds(Cds-Cds)Cs) + group(Cds-Cds(Cds-Cds)(Cds-Cds)) + group(Cds-Cds(Cds-Cds)H) + group(Cds-CdsHH) + group(Cds-CdsHH) + group(Cds-CdsHH)"""), ) species( label = 'C=C1C(=C)C(C)C1C(25274)', structure = SMILES('C=C1C(=C)C(C)C1C'), E0 = (122.654,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (108.181,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.691732,0.0515838,4.13669e-05,-8.96066e-08,3.77135e-11,14890,23.0693], Tmin=(100,'K'), Tmax=(969.873,'K')), NASAPolynomial(coeffs=[17.4573,0.0342784,-1.20439e-05,2.21718e-09,-1.61071e-13,9199.74,-69.8715], Tmin=(969.873,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(122.654,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(473.925,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)CsCsH) + group(Cs-(Cds-Cds)CsCsH) + group(Cs-CsHHH) + group(Cs-CsHHH) + group(Cds-Cds(Cds-Cds)Cs) + group(Cds-Cds(Cds-Cds)Cs) + group(Cds-CdsHH) + group(Cds-CdsHH) + ring(12methylenecyclobutane)"""), ) species( label = 'N2', structure = SMILES('N#N'), E0 = (-8.69489,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (28.0135,'amu'), collisionModel = TransportData(shapeIndex=1, epsilon=(810.913,'J/mol'), sigma=(3.621,'angstroms'), dipoleMoment=(0,'C*m'), polarizability=(1.76,'angstroms^3'), rotrelaxcollnum=4.0, comment="""PrimaryTransportLibrary"""), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[3.61263,-0.00100893,2.49898e-06,-1.43376e-09,2.58636e-13,-1051.1,2.6527], Tmin=(100,'K'), Tmax=(1817.04,'K')), NASAPolynomial(coeffs=[2.9759,0.00164141,-7.19722e-07,1.25378e-10,-7.91526e-15,-1025.84,5.53757], Tmin=(1817.04,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(-8.69489,'kJ/mol'), Cp0=(29.1007,'J/(mol*K)'), CpInf=(37.4151,'J/(mol*K)'), label="""N2""", comment="""Thermo library: BurkeH2O2"""), ) species( label = 'Ne', structure = SMILES('[Ne]'), E0 = (-6.19738,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (20.1797,'amu'), collisionModel = TransportData(shapeIndex=0, epsilon=(1235.53,'J/mol'), sigma=(3.758e-10,'m'), dipoleMoment=(0,'C*m'), polarizability=(0,'angstroms^3'), rotrelaxcollnum=0, comment="""Epsilon & sigma estimated with fixed Lennard Jones Parameters. This is the fallback method! Try improving transport databases!"""), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[2.5,0,0,0,0,-745.375,3.35532], Tmin=(200,'K'), Tmax=(1000,'K')), NASAPolynomial(coeffs=[2.5,0,0,0,0,-745.375,3.35532], Tmin=(1000,'K'), Tmax=(6000,'K'))], Tmin=(200,'K'), Tmax=(6000,'K'), E0=(-6.19738,'kJ/mol'), Cp0=(20.7862,'J/(mol*K)'), CpInf=(20.7862,'J/(mol*K)'), label="""Ne""", comment="""Thermo library: primaryThermoLibrary"""), ) transitionState( label = 'TS1', E0 = (291.23,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS2', E0 = (462.221,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS3', E0 = (538.699,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS4', E0 = (497.951,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS5', E0 = (380.338,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS6', E0 = (399.474,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS7', E0 = (350.103,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS8', E0 = (722.113,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS9', E0 = (343.259,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS10', E0 = (380.132,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS11', E0 = (705.575,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS12', E0 = (537.022,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS13', E0 = (257.971,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS14', E0 = (716.337,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS15', E0 = (466.494,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS16', E0 = (454.469,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS17', E0 = (430.619,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS18', E0 = (503.849,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS19', E0 = (393.718,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS20', E0 = (361.682,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS21', E0 = (350.103,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS22', E0 = (380.132,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS23', E0 = (375.044,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS24', E0 = (274.66,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS25', E0 = (463.915,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS26', E0 = (257.971,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS27', E0 = (714.692,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS28', E0 = (375.062,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS29', E0 = (258.055,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS30', E0 = (257.971,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) reaction( label = 'reaction1', reactants = ['C=C([CH]C)C(=C)[CH]C(24182)'], products = ['CH3CHCCH2(18175)', 'CH3CHCCH2(18175)'], transitionState = 'TS1', kinetics = Arrhenius(A=(5e+12,'s^-1'), n=0, Ea=(41.5431,'kJ/mol'), T0=(1,'K'), Tmin=(300,'K'), Tmax=(1500,'K'), comment="""Exact match found for rate rule [RJJ] Euclidian distance = 0 family: 1,4_Linear_birad_scission Ea raised from 0.0 to 41.5 kJ/mol to match endothermicity of reaction."""), ) reaction( label = 'reaction2', reactants = ['C=C([CH]C)C(=C)[CH]C(24182)'], products = ['[CH2]C1([CH]C)CC1=CC(25275)'], transitionState = 'TS2', kinetics = Arrhenius(A=(3.36e+09,'s^-1'), n=0.84, Ea=(212.534,'kJ/mol'), T0=(1,'K'), Tmin=(300,'K'), Tmax=(2500,'K'), comment="""Estimated using template [R4_S_D;doublebond_intra_HNd;radadd_intra_cs2H] for rate rule [R4_S_(Cd)_D;doublebond_intra_HNd;radadd_intra_cs2H] Euclidian distance = 2.0 Multiplied by reaction path degeneracy 2.0 family: Intra_R_Add_Exocyclic Ea raised from 210.2 to 212.5 kJ/mol to match endothermicity of reaction."""), ) reaction( label = 'reaction3', reactants = ['CH3CHCCH2(18175)', 'C=[C][CH]C(18176)'], products = ['C=C([CH]C)C(=C)[CH]C(24182)'], transitionState = 'TS3', kinetics = Arrhenius(A=(0.00086947,'m^3/(mol*s)'), n=2.67356, Ea=(32.0272,'kJ/mol'), T0=(1,'K'), comment="""Estimated using an average for rate rule [Ca_Cds-HH;CJ] Euclidian distance = 0 family: R_Addition_MultipleBond"""), ) reaction( label = 'reaction4', reactants = ['[CH2]C(=CC)C(C)=[C]C(25412)'], products = ['C=C([CH]C)C(=C)[CH]C(24182)'], transitionState = 'TS4', kinetics = Arrhenius(A=(7.74e+09,'s^-1'), n=1.08, Ea=(161.921,'kJ/mol'), T0=(1,'K'), Tmin=(300,'K'), Tmax=(1500,'K'), comment="""From training reaction 198 used for R3H_DS;Cd_rad_out_Cs;Cs_H_out_2H Exact match found for rate rule [R3H_DS;Cd_rad_out_Cs;Cs_H_out_2H] Euclidian distance = 0 Multiplied by reaction path degeneracy 3.0 family: intra_H_migration"""), ) reaction( label = 'reaction5', reactants = ['[CH2]C(=[C]C)C(C)=CC(25413)'], products = ['C=C([CH]C)C(=C)[CH]C(24182)'], transitionState = 'TS5', kinetics = Arrhenius(A=(111300,'s^-1'), n=2.23, Ea=(44.3086,'kJ/mol'), T0=(1,'K'), comment="""Estimated using template [R4H_DSS;Cd_rad_out_single;Cs_H_out] for rate rule [R4H_DSS;Cd_rad_out_Cs;Cs_H_out_2H] Euclidian distance = 2.2360679775 Multiplied by reaction path degeneracy 3.0 family: intra_H_migration"""), ) reaction( label = 'reaction6', reactants = ['C=C([CH]C)C(=C)[CH]C(24182)'], products = ['[CH2]C(=CC)[C](C)C=C(24605)'], transitionState = 'TS6', kinetics = Arrhenius(A=(1.6e+06,'s^-1'), n=1.81, Ea=(149.787,'kJ/mol'), T0=(1,'K'), comment="""From training reaction 101 used for R4H_SDS;C_rad_out_2H;Cs_H_out_2H Exact match found for rate rule [R4H_SDS;C_rad_out_2H;Cs_H_out_2H] Euclidian distance = 0 Multiplied by reaction path degeneracy 6.0 family: intra_H_migration"""), ) reaction( label = 'reaction7', reactants = ['C=C([CH]C)C(=C)[CH]C(24182)'], products = ['[CH2][C](C=C)C(C)=CC(24606)'], transitionState = 'TS7', kinetics = Arrhenius(A=(6.66e+06,'s^-1'), n=1.64, Ea=(100.416,'kJ/mol'), T0=(1,'K'), comment="""From training reaction 96 used for R5H_SS(D)MS;C_rad_out_2H;Cs_H_out_2H Exact match found for rate rule [R5H_SS(D)MS;C_rad_out_2H;Cs_H_out_2H] Euclidian distance = 0 Multiplied by reaction path degeneracy 6.0 family: intra_H_migration"""), ) reaction( label = 'reaction8', reactants = ['C=[C][CH]C(18176)', 'C=[C][CH]C(18176)'], products = ['C=C([CH]C)C(=C)[CH]C(24182)'], transitionState = 'TS8', kinetics = Arrhenius(A=(3.73038e+06,'m^3/(mol*s)'), n=0.027223, Ea=(0,'kJ/mol'), T0=(1,'K'), comment="""Estimated using an average for rate rule [Y_rad;Y_rad] Euclidian distance = 0 family: R_Recombination Ea raised from -14.4 to 0 kJ/mol."""), ) reaction( label = 'reaction9', reactants = ['C=C([CH]C)C(=C)[CH]C(24182)'], products = ['[CH2]C(=CC)[C]1CC1C(25414)'], transitionState = 'TS9', kinetics = Arrhenius(A=(7.36786e+12,'s^-1'), n=-0.105173, Ea=(93.5715,'kJ/mol'), T0=(1,'K'), Tmin=(303.03,'K'), Tmax=(2000,'K'), comment="""Estimated using template [R3_D;doublebond_intra;radadd_intra_cs2H] for rate rule [R3_D;doublebond_intra_secDe_HNd;radadd_intra_cs2H] Euclidian distance = 2.0 Multiplied by reaction path degeneracy 2.0 family: Intra_R_Add_Endocyclic"""), ) reaction( label = 'reaction10', reactants = ['C=C([CH]C)C(=C)[CH]C(24182)'], products = ['[CH2][C]1C(=CC)CC1C(25415)'], transitionState = 'TS10', kinetics = Arrhenius(A=(6.43734e+08,'s^-1'), n=0.926191, Ea=(130.445,'kJ/mol'), T0=(1,'K'), comment="""Estimated using an average for rate rule [R4_S_D;doublebond_intra;radadd_intra_cs2H] Euclidian distance = 0 Multiplied by reaction path degeneracy 2.0 family: Intra_R_Add_Endocyclic"""), ) reaction( label = 'reaction11', reactants = ['CH2(S)(23)', '[CH2]C(=C)C([CH2])=CC(25416)'], products = ['C=C([CH]C)C(=C)[CH]C(24182)'], transitionState = 'TS11', kinetics = Arrhenius(A=(7.94e+13,'cm^3/(mol*s)','*|/',0.25), n=-0.324, Ea=(0,'kJ/mol'), T0=(1,'K'), comment="""From training reaction 4 used for carbene;Cd_pri Exact match found for rate rule [carbene;Cd_pri] Euclidian distance = 0 Multiplied by reaction path degeneracy 4.0 family: 1,2_Insertion_carbene Ea raised from -3.9 to 0 kJ/mol."""), ) reaction( label = 'reaction23', reactants = ['C=C([CH]C)C[C]=CC(24184)'], products = ['C=C([CH]C)C(=C)[CH]C(24182)'], transitionState = 'TS12', kinetics = Arrhenius(A=(1.74842e+09,'s^-1'), n=1.084, Ea=(170.038,'kJ/mol'), T0=(1,'K'), comment="""Estimated using average of templates [cCsCJ;CdsJ;C] + [cCs(-HH)CJ;CJ;C] for rate rule [cCs(-HH)CJ;CdsJ;C] Euclidian distance = 1.0 family: 1,2_shiftC"""), ) reaction( label = 'reaction13', reactants = ['C=C([CH]C)C(=C)[CH]C(24182)'], products = ['CC=C1CCC1=CC(25269)'], transitionState = 'TS13', kinetics = Arrhenius(A=(1.62e+12,'s^-1'), n=-0.305, Ea=(8.28432,'kJ/mol'), T0=(1,'K'), Tmin=(600,'K'), Tmax=(2000,'K'), comment="""From training reaction 2 used for R4_SSS;C_rad_out_2H;Cpri_rad_out_2H Exact match found for rate rule [R4_SSS;C_rad_out_2H;Cpri_rad_out_2H] Euclidian distance = 0 family: Birad_recombination"""), ) reaction( label = 'reaction14', reactants = ['CH2(19)', '[CH2]C([C]=CC)=CC(25417)'], products = ['C=C([CH]C)C(=C)[CH]C(24182)'], transitionState = 'TS14', kinetics = Arrhenius(A=(1.06732e+06,'m^3/(mol*s)'), n=0.472793, Ea=(0,'kJ/mol'), T0=(1,'K'), comment="""Estimated using template [Y_rad;Birad] for rate rule [Cd_rad/OneDe;Birad] Euclidian distance = 3.0 family: Birad_R_Recombination Ea raised from -3.5 to 0 kJ/mol."""), ) reaction( label = 'reaction15', reactants = ['C=C([CH]C)C(=C)[CH]C(24182)'], products = ['[CH2]C1([CH]C)C(=C)C1C(25296)'], transitionState = 'TS15', kinetics = Arrhenius(A=(6.72658e+10,'s^-1'), n=0.535608, Ea=(216.807,'kJ/mol'), T0=(1,'K'), comment="""Estimated using average of templates [R4_S_D;doublebond_intra;radadd_intra_csHNd] + [R4_S_D;doublebond_intra_HNd;radadd_intra_cs] for rate rule [R4_S_(Cd)_D;doublebond_intra_HNd;radadd_intra_csHNd] Euclidian distance = 2.2360679775 Multiplied by reaction path degeneracy 2.0 family: Intra_R_Add_Exocyclic Ea raised from 214.2 to 216.8 kJ/mol to match endothermicity of reaction."""), ) reaction( label = 'reaction16', reactants = ['H(3)', '[CH2]C(=CC)C(=C)C=C(24604)'], products = ['C=C([CH]C)C(=C)[CH]C(24182)'], transitionState = 'TS16', kinetics = Arrhenius(A=(2.31e+08,'cm^3/(mol*s)'), n=1.64, Ea=(0,'kJ/mol'), T0=(1,'K'), Tmin=(300,'K'), Tmax=(1500,'K'), comment="""From training reaction 2544 used for Cds-HH_Cds-CdH;HJ Exact match found for rate rule [Cds-HH_Cds-CdH;HJ] Euclidian distance = 0 family: R_Addition_MultipleBond Ea raised from -2.0 to 0 kJ/mol."""), ) reaction( label = 'reaction17', reactants = ['[CH2]CC(=C)C([CH2])=CC(25418)'], products = ['C=C([CH]C)C(=C)[CH]C(24182)'], transitionState = 'TS17', kinetics = Arrhenius(A=(1.72e+06,'s^-1'), n=1.99, Ea=(113.805,'kJ/mol'), T0=(1,'K'), comment="""From training reaction 84 used for R2H_S;C_rad_out_2H;Cs_H_out_H/Cd Exact match found for rate rule [R2H_S;C_rad_out_2H;Cs_H_out_H/Cd] Euclidian distance = 0 Multiplied by reaction path degeneracy 2.0 family: intra_H_migration"""), ) reaction( label = 'reaction18', reactants = ['[CH]=C(CC)C([CH2])=CC(25419)'], products = ['C=C([CH]C)C(=C)[CH]C(24182)'], transitionState = 'TS18', kinetics = Arrhenius(A=(1.846e+10,'s^-1'), n=0.74, Ea=(145.185,'kJ/mol'), T0=(1,'K'), Tmin=(300,'K'), Tmax=(1500,'K'), comment="""From training reaction 194 used for R3H_DS;Cd_rad_out_singleH;Cs_H_out_H/NonDeC Exact match found for rate rule [R3H_DS;Cd_rad_out_singleH;Cs_H_out_H/NonDeC] Euclidian distance = 0 Multiplied by reaction path degeneracy 2.0 family: intra_H_migration"""), ) reaction( label = 'reaction19', reactants = ['[CH2]C(=[C]C)C(=C)CC(25420)'], products = ['C=C([CH]C)C(=C)[CH]C(24182)'], transitionState = 'TS19', kinetics = Arrhenius(A=(74200,'s^-1'), n=2.23, Ea=(44.3086,'kJ/mol'), T0=(1,'K'), comment="""Estimated using template [R4H_DSS;Cd_rad_out_single;Cs_H_out_1H] for rate rule [R4H_DSS;Cd_rad_out_Cs;Cs_H_out_H/NonDeC] Euclidian distance = 2.2360679775 Multiplied by reaction path degeneracy 2.0 family: intra_H_migration"""), ) reaction( label = 'reaction20', reactants = ['[CH]=C([CH]C)C(C)=CC(25421)'], products = ['C=C([CH]C)C(=C)[CH]C(24182)'], transitionState = 'TS20', kinetics = Arrhenius(A=(111300,'s^-1'), n=2.23, Ea=(44.3086,'kJ/mol'), T0=(1,'K'), comment="""Estimated using template [R4H_DSS;Cd_rad_out_singleH;Cs_H_out] for rate rule [R4H_DSS;Cd_rad_out_singleH;Cs_H_out_2H] Euclidian distance = 1.0 Multiplied by reaction path degeneracy 3.0 family: intra_H_migration"""), ) reaction( label = 'reaction21', reactants = ['C=C([CH]C)C(=C)[CH]C(24182)'], products = ['[CH2][C](C=C)C(=C)CC(24623)'], transitionState = 'TS21', kinetics = Arrhenius(A=(6.66e+06,'s^-1'), n=1.64, Ea=(100.416,'kJ/mol'), T0=(1,'K'), comment="""Estimated using template [R5H_SS(D)MS;C_rad_out_single;Cs_H_out_2H] for rate rule [R5H_SS(D)MS;C_rad_out_H/NonDeC;Cs_H_out_2H] Euclidian distance = 2.0 Multiplied by reaction path degeneracy 6.0 family: intra_H_migration"""), ) reaction( label = 'reaction22', reactants = ['C=C([CH]C)C(=C)[CH]C(24182)'], products = ['C[CH][C]1CCC1=CC(25422)'], transitionState = 'TS22', kinetics = Arrhenius(A=(3.21867e+08,'s^-1'), n=0.926191, Ea=(130.445,'kJ/mol'), T0=(1,'K'), comment="""Estimated using an average for rate rule [R4_S_D;doublebond_intra;radadd_intra_cs2H] Euclidian distance = 0 family: Intra_R_Add_Endocyclic"""), ) reaction( label = 'reaction23', reactants = ['C=C([CH]C)C(=C)[CH]C(24182)'], products = ['[CH2][C]1C(=C)C(C)C1C(25423)'], transitionState = 'TS23', kinetics = Arrhenius(A=(5.16207e+08,'s^-1'), n=0.911389, Ea=(125.357,'kJ/mol'), T0=(1,'K'), comment="""Estimated using an average for rate rule [R4_S_D;doublebond_intra;radadd_intra_csHCs] Euclidian distance = 0 family: Intra_R_Add_Endocyclic"""), ) reaction( label = 'reaction24', reactants = ['C=C([CH]C)C(=C)[CH]C(24182)'], products = ['C=CC(=C)C(C)=CC(24616)'], transitionState = 'TS24', kinetics = Arrhenius(A=(1.27566e+10,'s^-1'), n=0.137, Ea=(24.9733,'kJ/mol'), T0=(1,'K'), comment="""Estimated using template [R5;Y_rad;XH_Rrad] for rate rule [R5radEndo;Y_rad;XH_Rrad] Euclidian distance = 1.0 Multiplied by reaction path degeneracy 6.0 family: Intra_Disproportionation"""), ) reaction( label = 'reaction24', reactants = ['C=[C]C(C)C(=C)[CH]C(24183)'], products = ['C=C([CH]C)C(=C)[CH]C(24182)'], transitionState = 'TS25', kinetics = Arrhenius(A=(8.66e+11,'s^-1'), n=0.438, Ea=(94.4747,'kJ/mol'), T0=(1,'K'), comment="""From training reaction 5 used for cCs(-HC)CJ;CdsJ;C Exact match found for rate rule [cCs(-HC)CJ;CdsJ;C] Euclidian distance = 0 family: 1,2_shiftC"""), ) reaction( label = 'reaction26', reactants = ['C=C([CH]C)C(=C)[CH]C(24182)'], products = ['C=C1C(=CC)CC1C(25265)'], transitionState = 'TS26', kinetics = Arrhenius(A=(3.24e+12,'s^-1'), n=-0.305, Ea=(8.28432,'kJ/mol'), T0=(1,'K'), Tmin=(600,'K'), Tmax=(2000,'K'), comment="""Estimated using template [R4_SSS;C_rad_out_2H;Cpri_rad_out_single] for rate rule [R4_SSS;C_rad_out_2H;Cpri_rad_out_H/NonDeC] Euclidian distance = 2.0 Multiplied by reaction path degeneracy 2.0 family: Birad_recombination"""), ) reaction( label = 'reaction27', reactants = ['CHCH3(T)(95)', '[CH2]C([C]=C)=CC(24774)'], products = ['C=C([CH]C)C(=C)[CH]C(24182)'], transitionState = 'TS27', kinetics = Arrhenius(A=(1.06732e+06,'m^3/(mol*s)'), n=0.472793, Ea=(0,'kJ/mol'), T0=(1,'K'), comment="""Estimated using template [Y_rad;Birad] for rate rule [Cd_rad/OneDe;Birad] Euclidian distance = 3.0 family: Birad_R_Recombination Ea raised from -3.5 to 0 kJ/mol."""), ) reaction( label = 'reaction28', reactants = ['[CH]=C([CH]C)C(=C)CC(25424)'], products = ['C=C([CH]C)C(=C)[CH]C(24182)'], transitionState = 'TS28', kinetics = Arrhenius(A=(74200,'s^-1'), n=2.23, Ea=(44.3086,'kJ/mol'), T0=(1,'K'), comment="""Estimated using template [R4H_DSS;Cd_rad_out_singleH;Cs_H_out_1H] for rate rule [R4H_DSS;Cd_rad_out_singleH;Cs_H_out_H/NonDeC] Euclidian distance = 1.0 Multiplied by reaction path degeneracy 2.0 family: intra_H_migration"""), ) reaction( label = 'reaction29', reactants = ['C=C([CH]C)C(=C)[CH]C(24182)'], products = ['C=CC(=C)C(=C)CC(24630)'], transitionState = 'TS29', kinetics = Arrhenius(A=(1.926e+10,'s^-1'), n=0.137, Ea=(8.368,'kJ/mol'), T0=(1,'K'), Tmin=(300,'K'), Tmax=(1500,'K'), comment="""Estimated using template [R5;Y_rad_NDe;XH_Rrad] for rate rule [R5radEndo;Y_rad_NDe;XH_Rrad] Euclidian distance = 1.0 Multiplied by reaction path degeneracy 6.0 family: Intra_Disproportionation"""), ) reaction( label = 'reaction30', reactants = ['C=C([CH]C)C(=C)[CH]C(24182)'], products = ['C=C1C(=C)C(C)C1C(25274)'], transitionState = 'TS30', kinetics = Arrhenius(A=(1.62e+12,'s^-1'), n=-0.305, Ea=(8.28432,'kJ/mol'), T0=(1,'K'), comment="""Estimated using template [R4_SSS;C_rad_out_single;Cpri_rad_out_single] for rate rule [R4_SSS;C_rad_out_H/NonDeC;Cpri_rad_out_H/NonDeC] Euclidian distance = 2.82842712475 family: Birad_recombination"""), ) network( label = '4267', isomers = [ 'C=C([CH]C)C(=C)[CH]C(24182)', ], reactants = [ ('CH3CHCCH2(18175)', 'CH3CHCCH2(18175)'), ], bathGas = { 'N2': 0.5, 'Ne': 0.5, }, ) pressureDependence( label = '4267', Tmin = (300,'K'), Tmax = (2000,'K'), Tcount = 8, Tlist = ([302.47,323.145,369.86,455.987,609.649,885.262,1353.64,1896.74],'K'), Pmin = (0.01,'bar'), Pmax = (100,'bar'), Pcount = 5, Plist = ([0.0125282,0.0667467,1,14.982,79.8202],'bar'), maximumGrainSize = (0.5,'kcal/mol'), minimumGrainCount = 250, method = 'modified strong collision', interpolationModel = ('Chebyshev', 6, 4), activeKRotor = True, activeJRotor = True, rmgmode = True, )
a7c12c0c81879fc2ae0d9f7d163beeef16b99619
4b70a23e74a332c54e70fe33c9b0fe79bb328d85
/WGB/tests.py
150266ac3a772eb5520f7750260a12777f21311c
[]
no_license
tevawolf/wgb
3b095897cbdc9b71c4b233f6b755f65f2693d582
f30be8575b03f24bf797b305e34b7fda866fa0c0
refs/heads/master
2022-12-10T23:18:04.175394
2021-01-29T06:40:01
2021-01-29T06:40:01
159,421,804
0
0
null
null
null
null
UTF-8
Python
false
false
400
py
from django.test import TestCase from . import models class UserAccountTests(TestCase): def test_blank_icon(self): account = models.UserAccount() account.username = 'test' account.password = 'test' account.nickname = 'test' account.save() saved = models.UserAccount.objects.get(username='test') self.assertEqual(saved.username, 'test')
700fa75fb3bd427c2ace99115edf7c741cc1a10c
9449368b4a4100f1ef6dd0f4a845faad6f1161a4
/models/Qaw_reactnet_18_bf.py
658a6b782cca02444f3726bafd5009b17e234335
[ "MIT" ]
permissive
TrendingTechnology/BNN_NoBN
b6a770fb176a9881d22ccea20381084b4abc0bcc
d2777845d04449cabfcfc5ce72738e1e6287f633
refs/heads/main
2023-06-17T13:38:26.296326
2021-04-21T22:28:49
2021-04-21T22:28:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,526
py
''' React-birealnet-18(modified from resnet) BN setting: remove all BatchNorm layers Conv setting: replace conv2d with ScaledstdConv2d (add alpha beta each blocks) Binary setting: only activation are binarized ''' import torch import torch.nn as nn import torch.utils.model_zoo as model_zoo import torch.nn.functional as F from layers import * def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return ScaledStdConv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return ScaledStdConv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) def binaryconv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return HardBinaryScaledStdConv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1) def binaryconv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return HardBinaryScaledStdConv2d(in_planes, out_planes, kernel_size=1, stride=stride, padding=0) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, alpha, beta, stride=1, downsample=None): super(BasicBlock, self).__init__() self.alpha = alpha self.beta = beta self.move0 = LearnableBias(inplanes) self.binary_activation = BinaryActivation() self.binary_conv = binaryconv3x3(inplanes, planes, stride=stride) self.move1 = LearnableBias(planes) self.prelu = nn.PReLU(planes) self.move2 = LearnableBias(planes) self.downsample = downsample self.stride = stride def forward(self, x): residual = x x_in = x*self.beta out = self.move0(x_in) out = self.binary_activation(out) out = self.binary_conv(out) if self.downsample is not None: residual = self.downsample(x_in) out = out*self.alpha + residual out = self.move1(out) out = self.prelu(out) out = self.move2(out) return out class BiRealNet(nn.Module): def __init__(self, block, layers, imagenet=True, alpha=0.2, num_classes=1000): super(BiRealNet, self).__init__() self.inplanes = 64 if imagenet: self.conv1 = ScaledStdConv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) else: self.conv1 = ScaledStdConv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.maxpool = nn.Identity() expected_var = 1.0 self.layer1, expected_var = self._make_layer(block, 64, layers[0], alpha, expected_var) self.layer2, expected_var = self._make_layer(block, 128, layers[1], alpha, expected_var, stride=2) self.layer3, expected_var = self._make_layer(block, 256, layers[2], alpha, expected_var, stride=2) self.layer4, expected_var = self._make_layer(block, 512, layers[3], alpha, expected_var, stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes) def _make_layer(self, block, planes, blocks, alpha, expected_var, stride=1): beta = 1. / expected_var ** 0.5 downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.AvgPool2d(kernel_size=2, stride=stride), binaryconv1x1(self.inplanes, planes * block.expansion) ) # Reset expected var at a transition block expected_var = 1.0 layers = [] layers.append(block(self.inplanes, planes, alpha, beta, stride, downsample)) self.inplanes = planes * block.expansion for _ in range(1, blocks): beta = 1. / expected_var ** 0.5 layers.append(block(self.inplanes, planes, alpha, beta)) expected_var += alpha ** 2 return nn.Sequential(*layers), expected_var def forward(self, x): x = self.conv1(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x def birealnet18(pretrained=False, **kwargs): """Constructs a BiRealNet-18 model. """ model = BiRealNet(BasicBlock, [4, 4, 4, 4], **kwargs) return model
4d4dfa1fce2d0ec301b8527dca38e03ba0e4b365
e371a21cc31c0616da346e386fea411f39dd0f7b
/LAB04/02-CloudAlbum-Chalice/cloudalbum/chalicelib/config.py
525345eb14cc26298fa3b523b0b550141477e306
[ "MIT" ]
permissive
aws-kr-tnc/moving-to-serverless-renew
c0152763de822cea64a862cd395f4f940d2e4e03
312248c689a19ea9b589025c82f880593fc70f82
refs/heads/master
2023-03-21T19:59:23.717295
2022-03-12T15:38:59
2022-03-12T15:38:59
199,081,822
6
4
MIT
2023-03-07T10:02:25
2019-07-26T21:26:02
Python
UTF-8
Python
false
false
1,530
py
""" cloudalbum/chalicelib/cognito.py ~~~~~~~~~~~~~~~~~~~~~~~ Configurations for application. :description: CloudAlbum is a fully featured sample application for 'Moving to AWS serverless' training course :copyright: © 2019 written by Dayoungle Jun, Sungshik Jou. :license: MIT, see LICENSE for more details. """ import boto3 from chalice import CORSConfig from aws_parameter_store import AwsParameterStore def get_param_path(param_path): """ Retrieve all key:values in the Parameter Store. :param param_path: :return: """ region = boto3.session.Session().region_name store = AwsParameterStore(region) return store.get_parameters_dict(param_path) # store configuration values for Cloudalbum conf = get_param_path('/cloudalbum/') def get_param(param_name): """ This function reads a secure parameter from AWS' SSM service. The request must be passed a valid parameter name, as well as temporary credentials which can be used to access the parameter. The parameter's value is returned. """ # Create the SSM Client ssm = boto3.client('ssm') # Get the requested parameter response = ssm.get_parameters( Names=[param_name, ], WithDecryption=True ) # Store the credentials in a variable result = response['Parameters'][0]['Value'] return result cors_config = CORSConfig( allow_origin='*', allow_headers=['*'], max_age=600, expose_headers=['X-Special-Header'], allow_credentials=True )
eba0648acc9316ce39061499fa08bb07bd36bf3e
55c250525bd7198ac905b1f2f86d16a44f73e03a
/Python/Scripts/pyinstaller/PyInstaller/hooks/hook-PyQt5.QtQuickWidgets.py
5bfdb0b29bff0c35d055c5b3a918351177aeea00
[]
no_license
NateWeiler/Resources
213d18ba86f7cc9d845741b8571b9e2c2c6be916
bd4a8a82a3e83a381c97d19e5df42cbababfc66c
refs/heads/master
2023-09-03T17:50:31.937137
2023-08-28T23:50:57
2023-08-28T23:50:57
267,368,545
2
1
null
2022-09-08T15:20:18
2020-05-27T16:18:17
null
UTF-8
Python
false
false
129
py
version https://git-lfs.github.com/spec/v1 oid sha256:46db77cbf463b412fb237dd8420a2e12c39b4b5c5fd0cc8d34382ca45cfc9ae0 size 1992
6301edb7062fa45ed01d04ba326e978ab1a9c163
6fcfb638fa725b6d21083ec54e3609fc1b287d9e
/python/n1nj4sec_pupy/pupy-master/pupy/modules/screenshot.py
1a3055e23702c2b625f5306a537f0e3d8a04c751
[]
no_license
LiuFang816/SALSTM_py_data
6db258e51858aeff14af38898fef715b46980ac1
d494b3041069d377d6a7a9c296a14334f2fa5acc
refs/heads/master
2022-12-25T06:39:52.222097
2019-12-12T08:49:07
2019-12-12T08:49:07
227,546,525
10
7
null
2022-12-19T02:53:01
2019-12-12T07:29:39
Python
UTF-8
Python
false
false
3,976
py
# -*- coding: utf-8 -*- # -------------------------------------------------------------- # Copyright (c) 2015, Nicolas VERDIER ([email protected]) All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE # -------------------------------------------------------------- from pupylib.PupyModule import * from os import path import time import datetime import subprocess __class_name__="screenshoter" @config(cat="gather") class screenshoter(PupyModule): """ take a screenshot :) """ dependencies = ['mss', 'screenshot'] def init_argparse(self): self.arg_parser = PupyArgumentParser(prog='screenshot', description=self.__doc__) self.arg_parser.add_argument('-e', '--enum', action='store_true', help='enumerate screen') self.arg_parser.add_argument('-s', '--screen', type=int, default=None, help='take a screenshot on a specific screen (default all screen on one screenshot)') self.arg_parser.add_argument('-v', '--view', action='store_true', help='directly open the default image viewer on the screenshot for preview') def run(self, args): rscreenshot = self.client.conn.modules['screenshot'] if args.enum: self.rawlog('{:>2} {:>9} {:>9}\n'.format('IDX', 'SIZE', 'LEFT')) for i, screen in enumerate(rscreenshot.screens()): if not (screen['width'] and screen['height']): continue self.rawlog('{:>2}: {:>9} {:>9}\n'.format( i, '{}x{}'.format(screen['width'], screen['height']), '({}x{})'.format(screen['top'], screen['left']))) return screenshots, error = rscreenshot.screenshot(args.screen) if not screenshots: self.error(error) else: self.success('number of monitor detected: %s' % str(len(screenshots))) for screenshot in screenshots: filepath = path.join("data","screenshots","scr_"+self.client.short_name()+"_"+str(datetime.datetime.now()).replace(" ","_").replace(":","-")+".png") with open(filepath, 'w') as out: out.write(screenshot) # sleep used to be sure the file name will be different between 2 differents screenshots time.sleep(1) self.success(filepath) # if args.view: # viewer = config.get('default_viewers', 'image_viewer') # subprocess.Popen([viewer, output])
727d7ace2d7e5bb03b05240b8fb2e711a818186e
09e5cfe06e437989a2ccf2aeecb9c73eb998a36c
/modules/cctbx_project/xfel/ui/components/xfel_gui_controls.py
3d08fe4ffe7f49a0c8341e17313896eb3ca5a7db
[ "BSD-3-Clause", "BSD-3-Clause-LBNL" ]
permissive
jorgediazjr/dials-dev20191018
b81b19653624cee39207b7cefb8dfcb2e99b79eb
77d66c719b5746f37af51ad593e2941ed6fbba17
refs/heads/master
2020-08-21T02:48:54.719532
2020-01-25T01:41:37
2020-01-25T01:41:37
216,089,955
0
1
BSD-3-Clause
2020-01-25T01:41:39
2019-10-18T19:03:17
Python
UTF-8
Python
false
false
29,197
py
from __future__ import absolute_import, division, print_function import six ''' Author : Lyubimov, A.Y. Created : 06/03/2016 Last Changed: 06/03/2016 Description : XFEL UI Custom Widgets and Controls ''' import os import wx import wx.lib.agw.floatspin as fs from wxtbx import metallicbutton as mb # Platform-specific stuff # TODO: Will need to test this on Windows at some point if wx.Platform == '__WXGTK__': norm_font_size = 10 button_font_size = 12 LABEL_SIZE = 14 CAPTION_SIZE = 12 elif wx.Platform == '__WXMAC__': norm_font_size = 12 button_font_size = 14 LABEL_SIZE = 14 CAPTION_SIZE = 12 elif (wx.Platform == '__WXMSW__'): norm_font_size = 9 button_font_size = 11 LABEL_SIZE = 11 CAPTION_SIZE = 9 icons = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'icons/') # --------------------------------- Buttons ---------------------------------- # class GradButton(mb.MetallicButton): def __init__(self, parent, label='', bmp=None, size=wx.DefaultSize, style=mb.MB_STYLE_BOLD_LABEL, handler_function=None, user_data=None, start_color=(218, 218, 218), gradient_percent=0, highlight_color=(230, 230, 230), label_size=LABEL_SIZE, caption_size=CAPTION_SIZE, button_margin=4, disable_after_click=0) : if isinstance(bmp, str) : bmp = self.StandardBitmap(bmp) bmp_size = bmp.GetSize() if bmp_size > size[1]: size = (size[0], 1.5 * bmp_size[1]) mb.MetallicButton.__init__(self, parent=parent, label=label, bmp=bmp, size=size, style=style, name=str(user_data), start_color=start_color, gradient_percent=gradient_percent, highlight_color=highlight_color, label_size=label_size, caption_size=caption_size, button_margin=button_margin, disable_after_click=disable_after_click ) if handler_function is not None: self.bind_event(wx.EVT_BUTTON, handler_function) def StandardBitmap(img_name, size=None): img_path = img_name img = wx.Image(img_path, type=wx.BITMAP_TYPE_ANY, index=-1) if size is not None: (w, h) = size img.Rescale(w, h) bmp = img.ConvertToBitmap() return bmp class RunBlockButton(GradButton): def __init__(self, parent, block, size=wx.DefaultSize): self.block = block db = block.app self.rnum = block.rungroup_id self.first_run, self.last_run = block.get_first_and_last_runs() self.use_ids = db.params.facility.name not in ['lcls'] GradButton.__init__(self, parent=parent, label='', size=size) self.update_label() def update_label(self): if self.first_run is None: first = ' ...' else: if self.use_ids: first = self.first_run.id else: first = self.first_run.run if self.last_run is None: last = ' ...' else: last = ' - {}'.format(self.last_run.id if self.use_ids else self.last_run.run) self.block_label = '[{}] runs {}{}'.format(self.rnum, first, last) self.SetLabel(self.block_label) self.Refresh() class TagButton(GradButton): def __init__(self, parent, run, size=wx.DefaultSize): self.run = run self.tags = self.run.tags self.parent = parent GradButton.__init__(self, parent=parent, size=size) self.update_label() def update_label(self): label = ', '.join([i.name for i in self.tags]) self.SetLabel(label) self.SetFont(wx.Font(button_font_size, wx.DEFAULT, wx.NORMAL, wx.NORMAL)) self.Refresh() def change_tags(self): ''' Calls dialog with tag options for all runs; user will select tags for this specific run ''' all_tags = self.run.app.get_all_tags() all_tag_names = [t.name for t in all_tags] tag_dlg = wx.MultiChoiceDialog(self, message='Available sample tags', caption='Sample Tags', choices=all_tag_names) # Get indices of selected items (if any) and set them to checked local_tag_names = [i.name for i in self.tags] indices = [all_tag_names.index(i) for i in all_tag_names if i in local_tag_names] tag_dlg.SetSelections(indices) tag_dlg.Fit() if (tag_dlg.ShowModal() == wx.ID_OK): tag_indices = tag_dlg.GetSelections() self.tags = [i for i in all_tags if all_tags.index(i) in tag_indices] old_tags = self.run.tags old_tag_names = [t.name for t in old_tags] new_tag_names = [t.name for t in self.tags] for new_tag in self.tags: if new_tag.name not in old_tag_names: self.run.add_tag(new_tag) for old_tag in old_tags: if old_tag.name not in new_tag_names: self.run.remove_tag(old_tag) # re-synchronize, just in case self.tags = self.run.tags self.update_label() # --------------------------------- Controls --------------------------------- # class CtrlBase(wx.Panel): ''' Control panel base class ''' def __init__(self, parent, label_style='normal', content_style='normal', size=wx.DefaultSize): wx.Panel.__init__(self, parent=parent, id=wx.ID_ANY, size=size) if label_style == 'normal': self.font = wx.Font(norm_font_size, wx.DEFAULT, wx.NORMAL, wx.NORMAL) elif label_style == 'bold': self.font = wx.Font(norm_font_size, wx.DEFAULT, wx.NORMAL, wx.BOLD) elif label_style == 'italic': self.font = wx.Font(norm_font_size, wx.DEFAULT, wx.ITALIC, wx.NORMAL) elif label_style == 'italic_bold': self.font = wx.Font(norm_font_size, wx.DEFAULT, wx.ITALIC, wx.BOLD) if content_style == 'normal': self.cfont = wx.Font(norm_font_size, wx.DEFAULT, wx.NORMAL, wx.NORMAL) elif content_style == 'bold': self.cfont = wx.Font(norm_font_size, wx.DEFAULT, wx.NORMAL, wx.BOLD) elif content_style == 'italic': self.cfont = wx.Font(norm_font_size, wx.DEFAULT, wx.ITALIC, wx.NORMAL) elif content_style == 'italic_bold': self.cfont = wx.Font(norm_font_size, wx.DEFAULT, wx.ITALIC, wx.BOLD) class InputCtrl(CtrlBase): ''' Generic panel that will place a text control, with a label and an optional Browse / magnifying-glass buttons into a window''' def __init__(self, parent, label='', label_size=(100, -1), label_style='normal', button=False, value=''): CtrlBase.__init__(self, parent=parent, label_style=label_style) output_box = wx.FlexGridSizer(1, 4, 0, 10) self.txt = wx.StaticText(self, label=label, size=label_size) self.txt.SetFont(self.font) output_box.Add(self.txt) self.ctr = wx.TextCtrl(self) #, size=ctr_size) self.ctr.SetValue(value) output_box.Add(self.ctr, flag=wx.EXPAND) self.btn_browse = wx.Button(self, label='Browse...') self.btn_mag = wx.BitmapButton(self, bitmap=wx.Bitmap('{}/16x16/viewmag.png' ''.format(icons))) output_box.Add(self.btn_browse, flag=wx.RESERVE_SPACE_EVEN_IF_HIDDEN) output_box.Add(self.btn_mag, flag=wx.RESERVE_SPACE_EVEN_IF_HIDDEN) if not button: self.btn_browse.Hide() self.btn_mag.Hide() output_box.AddGrowableCol(1, 1) self.SetSizer(output_box) class TextCtrl(CtrlBase): ''' Generic panel placing only a text box''' def __init__(self, parent, ctrl_size=(200, -1), value=''): CtrlBase.__init__(self, parent=parent) output_box = wx.FlexGridSizer(1, 4, 0, 10) self.txt = wx.StaticText(self) self.txt.SetFont(self.font) output_box.Add(self.txt) self.ctr = wx.TextCtrl(self, size=ctrl_size) self.ctr.SetValue(value) output_box.Add(self.ctr, flag=wx.EXPAND) self.SetSizer(output_box) class TextButtonCtrl(CtrlBase): ''' Generic panel that will place a text control, with a label and an optional large button, and an optional bitmap button''' def __init__(self, parent, label='', label_size=(100, -1), label_style='normal', text_style=wx.TE_LEFT, ctrl_size=(200, -1), big_button=False, big_button_label='Browse...', big_button_size=wx.DefaultSize, ghost_button=True, value=''): CtrlBase.__init__(self, parent=parent, label_style=label_style) output_box = wx.FlexGridSizer(1, 4, 0, 10) self.txt = wx.StaticText(self, label=label, size=label_size) self.txt.SetFont(self.font) output_box.Add(self.txt) self.ctr = wx.TextCtrl(self, style=text_style, size=ctrl_size) self.ctr.SetValue(value) output_box.Add(self.ctr, flag=wx.EXPAND) self.btn_big = wx.Button(self, label=big_button_label, size=big_button_size) if ghost_button: output_box.Add(self.btn_big, flag=wx.RESERVE_SPACE_EVEN_IF_HIDDEN) else: output_box.Add(self.btn_big) if not big_button: self.btn_big.Hide() output_box.AddGrowableCol(1, 1) self.SetSizer(output_box) class TwoButtonCtrl(CtrlBase): ''' Generic panel that will place a text control, with a label and an optional large button, and an optional bitmap button''' def __init__(self, parent, label='', label_size=(100, -1), label_style='normal', text_style=wx.TE_LEFT, button1=False, button1_label='Browse...', button1_size=wx.DefaultSize, button2=False, button2_label='Default', button2_size=wx.DefaultSize, value=''): CtrlBase.__init__(self, parent=parent, label_style=label_style) output_box = wx.FlexGridSizer(1, 5, 0, 10) self.txt = wx.StaticText(self, label=label, size=label_size) self.txt.SetFont(self.font) output_box.Add(self.txt) self.ctr = wx.TextCtrl(self, style=text_style) self.ctr.SetValue(value) output_box.Add(self.ctr, flag=wx.EXPAND) if button1: self.button1 = wx.Button(self, label=button1_label, size=button1_size) output_box.Add(self.button1) if button2: self.button2 = wx.Button(self, label=button2_label, size=button2_size) output_box.Add(self.button2) output_box.AddGrowableCol(1, 1) self.SetSizer(output_box) class OptionCtrl(CtrlBase): ''' Generic panel will place a text control w/ label ''' def __init__(self, parent, items, label='', label_size=(100, -1), label_style='normal', sub_labels=[], ctrl_size=(300, -1)): CtrlBase.__init__(self, parent=parent, label_style=label_style) if label != '': opt_box = wx.FlexGridSizer(1, len(items) * 2 + 1, 0, 10) self.txt = wx.StaticText(self, label=label, size=label_size) self.txt.SetFont(self.font) opt_box.Add(self.txt, flag=wx.ALIGN_CENTER_VERTICAL) else: opt_box = wx.FlexGridSizer(1, len(items) * 2, 0, 10) for key, value in items: if sub_labels != []: sub_label = sub_labels[items.index((key, value))].decode('utf-8') else: sub_label = key if len(items) > 1: opt_label = wx.StaticText(self, id=wx.ID_ANY, label=sub_label) opt_box.Add(opt_label, flag=wx.ALIGN_CENTER_VERTICAL) item = wx.TextCtrl(self, id=wx.ID_ANY, size=ctrl_size, style=wx.TE_PROCESS_ENTER) item.SetValue(str(value)) opt_box.Add(item, flag=wx.ALIGN_CENTER_VERTICAL) self.__setattr__(key, item) self.SetSizer(opt_box) class VerticalOptionCtrl(CtrlBase): ''' Generic panel will place a text control w/ label in column''' def __init__(self, parent, items, label='', label_size=(100, -1), label_style='normal', sub_labels=[], ctrl_size=(300, -1)): CtrlBase.__init__(self, parent=parent, label_style=label_style) if label != '': opt_box = wx.FlexGridSizer(len(items) * 2 + 1, 2, 10, 10) self.txt = wx.StaticText(self, label=label, size=label_size) self.txt.SetFont(self.font) opt_box.Add(self.txt, flag=wx.ALIGN_CENTER_VERTICAL) opt_box.Add((0, 0)) else: opt_box = wx.FlexGridSizer(len(items) * 2, 2, 10, 10) for key, value in items: if sub_labels != []: sub_label = sub_labels[items.index((key, value))].decode('utf-8') else: sub_label = key if len(items) > 1: opt_label = wx.StaticText(self, id=wx.ID_ANY, label=sub_label) opt_box.Add(opt_label, flag=wx.ALIGN_CENTER_VERTICAL) item = wx.TextCtrl(self, id=wx.ID_ANY, size=ctrl_size, style=wx.TE_PROCESS_ENTER) item.SetValue(str(value)) opt_box.Add(item, flag=wx.ALIGN_CENTER_VERTICAL) self.__setattr__(key, item) self.SetSizer(opt_box) class IntFloatSpin(fs.FloatSpin): def GetValue(self): float_value = super(IntFloatSpin, self).GetValue() int_value = int(round(float_value)) return int_value class SpinCtrl(CtrlBase): ''' Generic panel will place a spin control w/ label ''' def __init__(self, parent, label='', label_size=(200, -1), label_style='normal', ctrl_size=(60, -1), ctrl_value='3', ctrl_max=10, ctrl_min=0, ctrl_step=1, ctrl_digits=0): CtrlBase.__init__(self, parent=parent, label_style=label_style) ctr_box = wx.FlexGridSizer(1, 3, 0, 10) self.txt = wx.StaticText(self, label=label.decode('utf-8'), size=label_size) self.txt.SetFont(self.font) floatspin_class = IntFloatSpin if ctrl_digits == 0 else fs.FloatSpin self.ctr = floatspin_class(self, value=ctrl_value, max_val=(ctrl_max), min_val=(ctrl_min), increment=ctrl_step, digits=ctrl_digits, size=ctrl_size) ctr_box.Add(self.txt, flag=wx.ALIGN_CENTER_VERTICAL) ctr_box.Add(self.ctr, flag=wx.ALIGN_CENTER_VERTICAL) self.SetSizer(ctr_box) class ChoiceCtrl(CtrlBase): ''' Generic panel will place a choice control w/ label ''' def __init__(self, parent, choices, label='', label_size=(200, -1), label_style='normal', ctrl_size=(100, -1)): CtrlBase.__init__(self, parent=parent, label_style=label_style) ctr_box = wx.FlexGridSizer(1, 3, 0, 10) self.txt = wx.StaticText(self, label=label, size=label_size) self.txt.SetFont(self.font) # Check if choices are tuples, extract data and assign to items if so if all(isinstance(i, tuple) for i in choices): items = [i[0] for i in choices] self.ctr = wx.Choice(self, size=ctrl_size, choices=items) for choice in choices: item_idx = self.ctr.FindString(choice[0]) self.ctr.SetClientData(item_idx, choice[1]) else: self.ctr = wx.Choice(self, size=ctrl_size, choices=choices) ctr_box.Add(self.txt, flag=wx.ALIGN_CENTER_VERTICAL) ctr_box.Add(self.ctr, flag=wx.ALIGN_CENTER_VERTICAL) self.SetSizer(ctr_box) class CheckListCtrl(CtrlBase): def __init__(self, parent, choices, label='', label_size=(200, -1), label_style='normal', ctrl_size=(150, -1), direction='horizontal'): CtrlBase.__init__(self, parent=parent, label_style=label_style) self.txt = wx.StaticText(self, label=label, size=label_size) self.txt.SetFont(self.font) self.ctr = wx.CheckListBox(self, size=ctrl_size, choices=choices) if label == '': ctr_box = wx.BoxSizer(wx.VERTICAL) else: if direction == 'horizontal': ctr_box = wx.FlexGridSizer(1, 2, 0, 10) elif direction == 'vertical': ctr_box = wx.FlexGridSizer(2, 1, 10, 0) ctr_box.Add(self.txt, flag=wx.ALIGN_CENTER_VERTICAL) ctr_box.Add(self.ctr, proportion=1, flag=wx.ALIGN_CENTER_VERTICAL | wx.EXPAND) self.SetSizer(ctr_box) class MultiChoiceCtrl(CtrlBase): ''' Generic panel with multiple choice controls / labels ''' def __init__(self, parent, items, label='', label_size=(200, -1), label_style='normal', ctrl_size=(100, -1)): CtrlBase.__init__(self, parent=parent, label_style=label_style) choice_box = wx.FlexGridSizer(1, len(items) * 2 + 1, 0, 10) self.txt = wx.StaticText(self, label=label, size=label_size) self.txt.SetFont(self.font) choice_box.Add(self.txt, flag=wx.ALIGN_CENTER_VERTICAL) for key, choices in six.iteritems(items): if len(items) > 1: ch_label =wx.StaticText(self, id=wx.ID_ANY, label=key) choice_box.Add(ch_label, flag=wx.ALIGN_CENTER_VERTICAL) item = wx.Choice(self, id=wx.ID_ANY, size=ctrl_size, choices=choices) choice_box.Add(item, flag=wx.ALIGN_CENTER_VERTICAL) self.__setattr__(key, item) self.SetSizer(choice_box) class TableCtrl(CtrlBase): ''' Generic panel will place a table w/ x and y labels Data must be a list of lists for multi-column tables ''' def __init__(self, parent, clabels=[], clabel_size=(200, -1), rlabels=[], rlabel_size=(200, -1), contents=[], label_style='normal', content_style='normal'): CtrlBase.__init__(self, parent=parent, label_style=label_style, content_style=content_style) nrows = len(rlabels) + 1 if len(clabels) == 0: ncols = 2 else: ncols = len(clabels) + 1 self.sizer = wx.FlexGridSizer(nrows, ncols, 10, 10) # add column labels (xlabels) if len(clabels) > 0: self.sizer.Add(wx.StaticText(self, label='')) for item in column_labels: clabel = wx.StaticText(self, label=i.decode('utf-8'), size=clabel_size) clabel.SetFont(self.font) self.sizer.Add(clabel) # add row labels and row contents for l in rlabels: row_label = wx.StaticText(self, label=l.decode('utf-8'), size=rlabel_size) row_label.SetFont(self.font) self.sizer.Add(row_label) # Add data to table c_index = rlabels.index(l) for item in contents[c_index]: cell = wx.StaticText(self, label=item.decode('utf-8')) cell.SetFont(self.cfont) self.sizer.Add(cell) self.SetSizer(self.sizer) class RadioCtrl(CtrlBase): '''Generic panel with multiple radio buttons.''' def __init__(self, parent, label='', label_size=(200, -1), label_style='normal', ctrl_size=(100, -1), direction='horizontal', items={}): CtrlBase.__init__(self, parent=parent, label_style=label_style) if direction == 'horizontal': radio_group = wx.FlexGridSizer(1, len(items) + 1, 0, 10) else: radio_group = wx.FlexGridSizer(len(items) + 1, 1, 0, 10) if label != '': self.txt = wx.StaticText(self, label=label, size=label_size) self.txt.SetFont(self.font) radio_group.Add(self.txt, flag=wx.ALIGN_CENTER_VERTICAL) for key, value in six.iteritems(items): button = wx.RadioButton(self, id=wx.ID_ANY, label=value) radio_group.Add(button) self.__setattr__(key, button) self.SetSizer(radio_group) # Use a mixin to support sorting by columns import wx.lib.mixins.listctrl as listmix class SortableListCtrl(wx.ListCtrl, listmix.ColumnSorterMixin): def __init__(self, parent, style=wx.LC_ICON): self.parent = parent self.sortable_mixin = listmix wx.ListCtrl.__init__(self, parent, style=style) def initialize_sortable_columns(self, n_col=0, itemDataMap={}): self.itemDataMap = itemDataMap self.sortable_mixin.ColumnSorterMixin.__init__(self, n_col) sortable_list = self.GetListCtrl() if sortable_list: sortable_list.Bind(wx.EVT_LIST_COL_CLICK, self.__OnColClick, sortable_list) def __OnColClick(self, e): self._col = e.GetColumn() self._colSortFlag[self._col] = int(not self._colSortFlag[self._col]) self.GetListCtrl().SortItems(self.GetColumnSorter()) self.OnSortOrderChanged() if hasattr(self.parent, 'onColClick'): self.parent.onColClick(e) def RestoreSortOrder(self, col, colSortFlag): self._col = col self._colSortFlag = colSortFlag self.GetListCtrl().SortItems(self.GetColumnSorter()) self.OnSortOrderChanged() def GetListCtrl(self): return self # ------------------------------- UI Elements -------------------------------- # class RunBlock(CtrlBase): def __init__(self, parent, block, label_style='normal', content_style='normal'): self.block = block CtrlBase.__init__(self, parent=parent, label_style=label_style, content_style=content_style) self.sizer = wx.FlexGridSizer(1, 2, 0, 5) self.new_runblock = RunBlockButton(self, size=(200, 30), block=block) # self.del_runblock = wx.BitmapButton(self, # bitmap=wx.Bitmap('{}/16x16/delete.png'.format(icons))) self.sizer.Add(self.new_runblock) # self.sizer.Add(self.del_runblock) self.SetSizer(self.sizer) class PHILBox(CtrlBase): def __init__(self, parent, btn_import=True, btn_import_size=(120, -1), btn_import_label='Import PHIL', btn_export=False, btn_export_size=(120, -1), btn_export_label='Export PHIL', btn_default=True, btn_default_size=(120, -1), btn_default_label='Default PHIL', ctr_size=(-1, 125), ctr_value='', label_style='normal', content_style='normal'): CtrlBase.__init__(self, parent=parent, label_style=label_style, content_style=content_style) self.sizer = wx.GridBagSizer(5, 5) self.SetSizer(self.sizer) self.ctr = wx.richtext.RichTextCtrl(self, size=ctr_size, style=wx.VSCROLL, value=ctr_value) span_counter = 0 if btn_import: self.btn_import = wx.Button(self, label=btn_import_label, size=btn_import_size) self.sizer.Add(self.btn_import, pos=(span_counter, 0)) span_counter += 1 if btn_export: self.btn_export = wx.Button(self, label=btn_export_label, size=btn_export_size) self.sizer.Add(self.btn_export, pos=(span_counter, 0)) span_counter += 1 if btn_default: self.btn_default = wx.Button(self, label=btn_default_label, size=btn_default_size) self.sizer.Add(self.btn_default, pos=(span_counter, 0)) span_counter += 1 if span_counter > 0: self.sizer.Add(self.ctr, pos=(0, 1), span=(span_counter + 1, 1), flag=wx.EXPAND) self.sizer.AddGrowableRow(span_counter) elif span_counter == 0: self.sizer = wx.BoxSizer(wx.VERTICAL) self.sizer.Add(self.ctr, 1, flag=wx.EXPAND) self.sizer.AddGrowableCol(1) class GaugeBar(CtrlBase): def __init__(self, parent, label='', label_size=(80, -1), label_style='normal', content_style='normal', gauge_size=(250, 15), button=False, button_label='View Stats', button_size=wx.DefaultSize, choice_box=True, choice_label='', choice_label_size=(120, -1), choice_size=(100, -1), choice_style='normal', choices=[], gauge_max=100): CtrlBase.__init__(self, parent=parent, label_style=label_style, content_style=content_style) self.sizer = wx.FlexGridSizer(1, 6, 0, 10) self.sizer.AddGrowableCol(3) self.bar = wx.Gauge(self, range=gauge_max, size=gauge_size) if choice_box: self.bins = ChoiceCtrl(self, label=choice_label, label_size=choice_label_size, label_style=choice_style, ctrl_size=choice_size, choices=choices) self.txt_iso = wx.StaticText(self, label=label, size=label_size) self.txt_max = wx.StaticText(self, label=str(gauge_max)) self.txt_min = wx.StaticText(self, label='0') self.sizer.Add(self.txt_iso) self.sizer.Add(self.txt_min) self.sizer.Add(self.bar) self.sizer.Add(self.txt_max) self.sizer.Add(self.bins) if button: self.btn = wx.Button(self, label=button_label, size=button_size) self.sizer.Add(self.btn, 1, wx.ALIGN_RIGHT | wx.ALIGN_CENTER) self.SetSizer(self.sizer) tp_EVT_STATUS_CHANGE = wx.NewEventType() EVT_STATUS_CHANGE = wx.PyEventBinder(tp_EVT_STATUS_CHANGE, 1) class StatusChange(wx.PyCommandEvent): ''' Send event when status light is updated ''' def __init__(self, etype, eid, status=None): wx.PyCommandEvent.__init__(self, etype, eid) self.status = status def GetValue(self): return self.status class SentinelStatus(CtrlBase): def __init__(self, parent, label='', label_size=(120, -1), label_style='normal', content_style='normal'): self.label = label self.label_size = label_size CtrlBase.__init__(self, parent=parent, label_style=label_style, content_style=content_style, size=(-1, 24)) bmp = wx.Bitmap('{}/16x16/led_off.png'.format(icons)) self.light = wx.StaticBitmap(self, -1, bmp) self.sizer = wx.FlexGridSizer(1, 2, 0, 10) self.sizer.Add(self.light) self.sizer.Add(wx.StaticText(self, label=self.label, size=self.label_size)) self.SetSizer(self.sizer) self.Bind(EVT_STATUS_CHANGE, self.onChangeStatus) def change_status(self, status): evt = StatusChange(tp_EVT_STATUS_CHANGE, -1, status) wx.PostEvent(self, evt) def onChangeStatus(self, evt): status = evt.GetValue() if status == 'on': bmp = wx.Bitmap('{}/16x16/led_on.png'.format(icons)) elif status == 'off': bmp = wx.Bitmap('{}/16x16/led_off.png'.format(icons)) elif status == 'idle': bmp = wx.Bitmap('{}/16x16/led_idle.png'.format(icons)) elif status == 'alert': bmp = wx.Bitmap('{}/16x16/led_alert.png'.format(icons)) self.light.SetBitmap(bmp) class IsoformInfoCtrl(CtrlBase): def __init__(self, parent, label_style='normal', content_style='normal'): CtrlBase.__init__(self, parent=parent, label_style=label_style, content_style=content_style) self.uc_values = None self.sizer = wx.FlexGridSizer(1, 9, 0, 10) self.sizer.AddGrowableCol(7) self.txt_iso = wx.StaticText(self, label='Isoform') self.txt_pg = wx.StaticText(self, label='Point Group') self.txt_num = wx.StaticText(self, label='No. Images') self.txt_uc = wx.StaticText(self, label='Unit Cell') self.ctr_iso = wx.TextCtrl(self, size=(30, -1), style=wx.TE_READONLY) self.ctr_pg = wx.TextCtrl(self, size=(50, -1), style=wx.TE_READONLY) self.ctr_num = wx.TextCtrl(self, size=(50, -1), style=wx.TE_READONLY) self.ctr_uc = wx.TextCtrl(self, size=(200, -1), style=wx.TE_READONLY) self.btn_hist = wx.Button(self, label='Histogram') self.sizer.Add(self.txt_iso, flag=wx.ALIGN_CENTER_VERTICAL) self.sizer.Add(self.ctr_iso, flag=wx.ALIGN_CENTER_VERTICAL) self.sizer.Add(self.txt_pg, flag=wx.ALIGN_CENTER_VERTICAL) self.sizer.Add(self.ctr_pg, flag=wx.ALIGN_CENTER_VERTICAL) self.sizer.Add(self.txt_num, flag=wx.ALIGN_CENTER_VERTICAL) self.sizer.Add(self.ctr_num, flag=wx.ALIGN_CENTER_VERTICAL) self.sizer.Add(self.txt_uc, flag=wx.ALIGN_CENTER_VERTICAL) self.sizer.Add(self.ctr_uc, flag=wx.EXPAND | wx.ALIGN_CENTER_VERTICAL) self.sizer.Add(self.btn_hist, flag=wx.ALIGN_CENTER_VERTICAL) self.Bind(wx.EVT_BUTTON, self.onClusterHistogram, self.btn_hist) self.SetSizer(self.sizer) def onClusterHistogram(self, e): if self.uc_values is not None: import xfel.ui.components.xfel_gui_plotter as pltr plotter = pltr.PopUpCharts() plotter.plot_uc_histogram(info_list=[self.uc_values], legend_list=[]) plotter.plt.show()
337d27c4666d08ff02e5ac3fb7470dae4cbe5a9c
2e682fd72e3feaa70e3f7bf2a3b83c50d783ec02
/PyTorch/contrib/cv/detection/SSD/mmdet/models/roi_heads/point_rend_roi_head.py
3642628ea91a376a39ce5e5813e50509d0ea712a
[ "Apache-2.0", "BSD-2-Clause", "MIT", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "LicenseRef-scancode-unknown-license-reference", "GPL-1.0-or-later" ]
permissive
Ascend/ModelZoo-PyTorch
4c89414b9e2582cef9926d4670108a090c839d2d
92acc188d3a0f634de58463b6676e70df83ef808
refs/heads/master
2023-07-19T12:40:00.512853
2023-07-17T02:48:18
2023-07-17T02:48:18
483,502,469
23
6
Apache-2.0
2022-10-15T09:29:12
2022-04-20T04:11:18
Python
UTF-8
Python
false
false
10,905
py
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Modified from https://github.com/facebookresearch/detectron2/tree/master/projects/PointRend # noqa import torch import torch.nn.functional as F from mmcv.ops import point_sample, rel_roi_point_to_rel_img_point from mmdet.core import bbox2roi, bbox_mapping, merge_aug_masks from .. import builder from ..builder import HEADS from .standard_roi_head import StandardRoIHead @HEADS.register_module() class PointRendRoIHead(StandardRoIHead): """`PointRend <https://arxiv.org/abs/1912.08193>`_.""" def __init__(self, point_head, *args, **kwargs): super().__init__(*args, **kwargs) assert self.with_bbox and self.with_mask self.init_point_head(point_head) def init_point_head(self, point_head): """Initialize ``point_head``""" self.point_head = builder.build_head(point_head) def init_weights(self, pretrained): """Initialize the weights in head. Args: pretrained (str, optional): Path to pre-trained weights. """ super().init_weights(pretrained) self.point_head.init_weights() def _mask_forward_train(self, x, sampling_results, bbox_feats, gt_masks, img_metas): """Run forward function and calculate loss for mask head and point head in training.""" mask_results = super()._mask_forward_train(x, sampling_results, bbox_feats, gt_masks, img_metas) if mask_results['loss_mask'] is not None: loss_point = self._mask_point_forward_train( x, sampling_results, mask_results['mask_pred'], gt_masks, img_metas) mask_results['loss_mask'].update(loss_point) return mask_results def _mask_point_forward_train(self, x, sampling_results, mask_pred, gt_masks, img_metas): """Run forward function and calculate loss for point head in training.""" pos_labels = torch.cat([res.pos_gt_labels for res in sampling_results]) rel_roi_points = self.point_head.get_roi_rel_points_train( mask_pred, pos_labels, cfg=self.train_cfg) rois = bbox2roi([res.pos_bboxes for res in sampling_results]) fine_grained_point_feats = self._get_fine_grained_point_feats( x, rois, rel_roi_points, img_metas) coarse_point_feats = point_sample(mask_pred, rel_roi_points) mask_point_pred = self.point_head(fine_grained_point_feats, coarse_point_feats) mask_point_target = self.point_head.get_targets( rois, rel_roi_points, sampling_results, gt_masks, self.train_cfg) loss_mask_point = self.point_head.loss(mask_point_pred, mask_point_target, pos_labels) return loss_mask_point def _get_fine_grained_point_feats(self, x, rois, rel_roi_points, img_metas): """Sample fine grained feats from each level feature map and concatenate them together.""" num_imgs = len(img_metas) fine_grained_feats = [] for idx in range(self.mask_roi_extractor.num_inputs): feats = x[idx] spatial_scale = 1. / float( self.mask_roi_extractor.featmap_strides[idx]) point_feats = [] for batch_ind in range(num_imgs): # unravel batch dim feat = feats[batch_ind].unsqueeze(0) inds = (rois[:, 0].long() == batch_ind) if inds.any(): rel_img_points = rel_roi_point_to_rel_img_point( rois[inds], rel_roi_points[inds], feat.shape[2:], spatial_scale).unsqueeze(0) point_feat = point_sample(feat, rel_img_points) point_feat = point_feat.squeeze(0).transpose(0, 1) point_feats.append(point_feat) fine_grained_feats.append(torch.cat(point_feats, dim=0)) return torch.cat(fine_grained_feats, dim=1) def _mask_point_forward_test(self, x, rois, label_pred, mask_pred, img_metas): """Mask refining process with point head in testing.""" refined_mask_pred = mask_pred.clone() for subdivision_step in range(self.test_cfg.subdivision_steps): refined_mask_pred = F.interpolate( refined_mask_pred, scale_factor=self.test_cfg.scale_factor, mode='bilinear', align_corners=False) # If `subdivision_num_points` is larger or equal to the # resolution of the next step, then we can skip this step num_rois, channels, mask_height, mask_width = \ refined_mask_pred.shape if (self.test_cfg.subdivision_num_points >= self.test_cfg.scale_factor**2 * mask_height * mask_width and subdivision_step < self.test_cfg.subdivision_steps - 1): continue point_indices, rel_roi_points = \ self.point_head.get_roi_rel_points_test( refined_mask_pred, label_pred, cfg=self.test_cfg) fine_grained_point_feats = self._get_fine_grained_point_feats( x, rois, rel_roi_points, img_metas) coarse_point_feats = point_sample(mask_pred, rel_roi_points) mask_point_pred = self.point_head(fine_grained_point_feats, coarse_point_feats) point_indices = point_indices.unsqueeze(1).expand(-1, channels, -1) refined_mask_pred = refined_mask_pred.reshape( num_rois, channels, mask_height * mask_width) refined_mask_pred = refined_mask_pred.scatter_( 2, point_indices, mask_point_pred) refined_mask_pred = refined_mask_pred.view(num_rois, channels, mask_height, mask_width) return refined_mask_pred def simple_test_mask(self, x, img_metas, det_bboxes, det_labels, rescale=False): """Obtain mask prediction without augmentation.""" ori_shapes = tuple(meta['ori_shape'] for meta in img_metas) scale_factors = tuple(meta['scale_factor'] for meta in img_metas) num_imgs = len(det_bboxes) if all(det_bbox.shape[0] == 0 for det_bbox in det_bboxes): segm_results = [[[] for _ in range(self.mask_head.num_classes)] for _ in range(num_imgs)] else: # if det_bboxes is rescaled to the original image size, we need to # rescale it back to the testing scale to obtain RoIs. if rescale and not isinstance(scale_factors[0], float): scale_factors = [ torch.from_numpy(scale_factor).to(det_bboxes[0].device) for scale_factor in scale_factors ] _bboxes = [ det_bboxes[i][:, :4] * scale_factors[i] if rescale else det_bboxes[i][:, :4] for i in range(len(det_bboxes)) ] mask_rois = bbox2roi(_bboxes) mask_results = self._mask_forward(x, mask_rois) # split batch mask prediction back to each image mask_pred = mask_results['mask_pred'] num_mask_roi_per_img = [len(det_bbox) for det_bbox in det_bboxes] mask_preds = mask_pred.split(num_mask_roi_per_img, 0) mask_rois = mask_rois.split(num_mask_roi_per_img, 0) # apply mask post-processing to each image individually segm_results = [] for i in range(num_imgs): if det_bboxes[i].shape[0] == 0: segm_results.append( [[] for _ in range(self.mask_head.num_classes)]) else: x_i = [xx[[i]] for xx in x] mask_rois_i = mask_rois[i] mask_rois_i[:, 0] = 0 # TODO: remove this hack mask_pred_i = self._mask_point_forward_test( x_i, mask_rois_i, det_labels[i], mask_preds[i], [img_metas]) segm_result = self.mask_head.get_seg_masks( mask_pred_i, _bboxes[i], det_labels[i], self.test_cfg, ori_shapes[i], scale_factors[i], rescale) segm_results.append(segm_result) return segm_results def aug_test_mask(self, feats, img_metas, det_bboxes, det_labels): """Test for mask head with test time augmentation.""" if det_bboxes.shape[0] == 0: segm_result = [[] for _ in range(self.mask_head.num_classes)] else: aug_masks = [] for x, img_meta in zip(feats, img_metas): img_shape = img_meta[0]['img_shape'] scale_factor = img_meta[0]['scale_factor'] flip = img_meta[0]['flip'] _bboxes = bbox_mapping(det_bboxes[:, :4], img_shape, scale_factor, flip) mask_rois = bbox2roi([_bboxes]) mask_results = self._mask_forward(x, mask_rois) mask_results['mask_pred'] = self._mask_point_forward_test( x, mask_rois, det_labels, mask_results['mask_pred'], img_metas) # convert to numpy array to save memory aug_masks.append( mask_results['mask_pred'].sigmoid().cpu().numpy()) merged_masks = merge_aug_masks(aug_masks, img_metas, self.test_cfg) ori_shape = img_metas[0][0]['ori_shape'] segm_result = self.mask_head.get_seg_masks( merged_masks, det_bboxes, det_labels, self.test_cfg, ori_shape, scale_factor=1.0, rescale=False) return segm_result
a8639e979db7d895673d5f6b9e4d845b351e3782
dac57de9c28700ebacc25331d5ff04dec129b74b
/MxOnline/users/adminx.py
59f3b2e3d6b9d7bc1ab58c529d848aaef9f1bd53
[]
no_license
zmm064/Django-
08144522ef9afcc3d85c11faa848554282fc6fcd
1f8836ebb4902a738efc6c626ab10aa91fdde720
refs/heads/master
2021-08-09T03:00:01.049464
2017-11-12T01:52:34
2017-11-12T01:52:34
110,396,352
0
0
null
null
null
null
UTF-8
Python
false
false
931
py
import xadmin from xadmin import views from .models import EmailVerifyRecord, Banner class BaseSetting: enable_themes = True use_bootswatch = True class GlobalSettings: site_title = "慕学后台管理系统" site_footer = "慕学在线网" menu_style = "accordion" class EmailVerifyRecordAdmin: list_display = ['code', 'email', 'send_type', 'send_time'] list_filter = ['code', 'email', 'send_type', 'send_time'] search_fields = ['code', 'email', 'send_type'] class BannerAdmin: list_display = ['title', 'image', 'url', 'index', 'add_time'] list_filter = ['title', 'image', 'url', 'index', 'add_time'] search_fields = ['title', 'image', 'url', 'index'] xadmin.site.register(EmailVerifyRecord, EmailVerifyRecordAdmin) xadmin.site.register(Banner, BannerAdmin) xadmin.site.register(views.BaseAdminView, BaseSetting) xadmin.site.register(views.CommAdminView, GlobalSettings)
0b9fdfc19478cd3711fb29d2dcfef928d5c522aa
f67dec556fe0dddc0be1cf28c44964425ee38019
/venv/lib/python3.7/types.py
b685ab0b6897f18501ae1598f2ada4d95cbdb929
[]
no_license
AdamC66/July-18--Avoiding-Bugs-with-Linters
3b3a050227ee7865373adec6084a16fdc21334e7
1a5060efc23774941606b7c70a0ec56599f4ab39
refs/heads/master
2020-06-22T02:06:14.023492
2019-07-18T14:52:12
2019-07-18T14:52:12
197,469,940
0
0
null
null
null
null
UTF-8
Python
false
false
54
py
/home/oem/.pyenv/versions/3.7.3/lib/python3.7/types.py
463d4a3035c7536df43458eb4be4d53450af98d3
5fee6afe91711fbb1ca87845f502776fbfab7851
/examples/pymanopt_autograd_demo.py
1761abe78a82061ff7149582fca5d90df8e0d786
[ "MIT" ]
permissive
chenxofhit/pyprobml
f66ad4c1186f0ba22e520e14700ac0bd6fee400d
fe48d6111bd121e01cfbdefe3361a993fa14abe1
refs/heads/master
2021-01-24T09:39:29.828935
2016-09-17T03:34:59
2016-09-17T03:34:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
290
py
#https://github.com/pymanopt/pymanopt/blob/master/pymanopt/core/problem.py import autograd.numpy as np from pymanopt import Problem def cost(theta): return np.square(theta) problem = Problem(manifold=None, cost=cost, verbosity=1) print problem.cost(5) print problem.egrad(5.0)
eaca63e5e424fa56715f10e05ddfbe09b2ff2f4c
44064ed79f173ddca96174913910c1610992b7cb
/Second_Processing_app/temboo/Library/RunKeeper/Weight/UpdateEntry.py
e7d943997a26bf0fc309b517c6fea8f1ba7349e6
[]
no_license
dattasaurabh82/Final_thesis
440fb5e29ebc28dd64fe59ecd87f01494ed6d4e5
8edaea62f5987db026adfffb6b52b59b119f6375
refs/heads/master
2021-01-20T22:25:48.999100
2014-10-14T18:58:00
2014-10-14T18:58:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,005
py
# -*- coding: utf-8 -*- ############################################################################### # # UpdateEntry # Updates a weight entry in a user’s feed. # # Python version 2.6 # ############################################################################### from temboo.core.choreography import Choreography from temboo.core.choreography import InputSet from temboo.core.choreography import ResultSet from temboo.core.choreography import ChoreographyExecution import json class UpdateEntry(Choreography): def __init__(self, temboo_session): """ Create a new instance of the UpdateEntry Choreo. A TembooSession object, containing a valid set of Temboo credentials, must be supplied. """ Choreography.__init__(self, temboo_session, '/Library/RunKeeper/Weight/UpdateEntry') def new_input_set(self): return UpdateEntryInputSet() def _make_result_set(self, result, path): return UpdateEntryResultSet(result, path) def _make_execution(self, session, exec_id, path): return UpdateEntryChoreographyExecution(session, exec_id, path) class UpdateEntryInputSet(InputSet): """ An InputSet with methods appropriate for specifying the inputs to the UpdateEntry Choreo. The InputSet object is used to specify input parameters when executing this Choreo. """ def set_Entry(self, value): """ Set the value of the Entry input for this Choreo. ((required, json) A JSON string containing the key/value pairs for the fields to be updated in the weight entry. See documentation for formatting examples.) """ InputSet._set_input(self, 'Entry', value) def set_AccessToken(self, value): """ Set the value of the AccessToken input for this Choreo. ((required, string) The Access Token retrieved after the final step in the OAuth2 process.) """ InputSet._set_input(self, 'AccessToken', value) def set_EntryID(self, value): """ Set the value of the EntryID input for this Choreo. ((required, string) This can be the individual id of the weight entry, or you can pass the full uri for the entry as returned from the RetrieveEntries Choreo (i.e. /weight/24085455).) """ InputSet._set_input(self, 'EntryID', value) class UpdateEntryResultSet(ResultSet): """ A ResultSet with methods tailored to the values returned by the UpdateEntry Choreo. The ResultSet object is used to retrieve the results of a Choreo execution. """ def getJSONFromString(self, str): return json.loads(str) def get_Response(self): """ Retrieve the value for the "Response" output from this Choreo execution. ((json) The response from RunKeeper.) """ return self._output.get('Response', None) class UpdateEntryChoreographyExecution(ChoreographyExecution): def _make_result_set(self, response, path): return UpdateEntryResultSet(response, path)
6af51bf8cb1672b3a526dc92325dd61f00709985
63cbfedc2e6141ae12fc113a81e147e9b5769670
/Chapt 13/sample2.py
842aeb8880e4bceca85a07e275a5080323161ffd
[]
no_license
DamoM73/Learn-to-program-in-Python
82d5fdfbb456186d63aa8ae244e87bf96955ff86
44b6b9ffa81735739180dc2055e2e803f4526c79
refs/heads/master
2020-04-23T06:51:58.591548
2019-04-27T09:16:14
2019-04-27T09:16:14
170,988,387
0
0
null
null
null
null
UTF-8
Python
false
false
2,427
py
# Program name: Ch 13 Sample app 2 validate password aaaaa.py # Program askss use to login, then checks password # in this program password is "aaaaaa" from tkinter import * from tkinter import messagebox def submit(): password = entry_password.get() username = entry_username.get() messageAlert = Label(root, width = 30) messageAlert.grid(row = 3, column = 0, columnspan = 2, padx = 5, pady = 5) if password != "aaaaaa": messageAlert.config(text = "Password incorrect") entry_username.delete(0,"END") entry_password.delete(0,"END") entry_username.focus_set() else: messageAlert.config(text = "Password accepted") print("password accepted") print("Username: ", username) print("Password: ", password) messagebox.showinfo(title = "Password Ok", message = "Press OK to continue") root.destroy() # display a message box with a hint for password def hint(): messagebox.showinfo(title = "Password hint", message = "Hint: Try password aaaaaa") # create main window root = Tk() root.geometry("250x180") root.title("Login Screen") root.resizable(False,False) root.configure(background = "Light blue") # place a frame round labels and user entries frame_entry = Frame(root, bg = 'Light blue') frame_entry.grid(row = 0, column = 0, columnspan = 2, padx = 10, pady = 10) # place a frame around the buttons frame_buttons = Frame(root, bg = "Light blue") frame_buttons.grid(row = 2, column = 0, columnspan = 3, padx = 10 , pady = 10) # place the labels and text entry fields Label(frame_entry, text = "Enter username: ")\ .grid(row = 0, column = 0, padx = 5, pady = 5) entry_username = Entry(frame_entry, width = 15, bg = "white") entry_username.grid(row = 0, column = 1, padx = 5, pady = 5) Label(frame_entry, text = "Enter password: ")\ .grid(row = 1, column = 0, padx = 10, pady = 10) entry_password = Entry(frame_entry, width = 15, bg = "white", show = "*") entry_password.grid(row = 1, column = 1, padx = 5, pady = 5) # place the submit button submit_button = Button(frame_buttons, text = "Submit", width = 8, command = submit) submit_button.grid(row = 0, column = 0, padx = 5, pady = 5) # place the Hint button hint_button = Button(frame_buttons, text = "Hint", width = 15, command = hint) hint_button.grid(row = 0, column = 1, padx = 5, pady = 5) # run mainloop root.mainloop() print("carry on now...")
61809667b75b77ed0658b2764d8a6580eff27210
ba3231b25c60b73ca504cd788efa40d92cf9c037
/nitro-python-13.0.36/nssrc/com/citrix/netscaler/nitro/resource/config/lb/lbvserver_cachepolicy_binding.py
69f8f99dd0ca1e599fbfdbfaa6887a306492e901
[ "Apache-2.0", "Python-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
zhuweigh/vpx13
f6d559ae85341e56472e3592cbc67062dac34b93
b36caa3729d3ca5515fa725f2d91aeaabdb2daa9
refs/heads/master
2020-07-04T22:15:16.595728
2019-09-20T00:19:56
2019-09-20T00:19:56
202,435,307
0
0
null
null
null
null
UTF-8
Python
false
false
10,840
py
# # Copyright (c) 2008-2019 Citrix Systems, Inc. # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from nssrc.com.citrix.netscaler.nitro.resource.base.base_resource import base_resource from nssrc.com.citrix.netscaler.nitro.resource.base.base_resource import base_response from nssrc.com.citrix.netscaler.nitro.service.options import options from nssrc.com.citrix.netscaler.nitro.exception.nitro_exception import nitro_exception from nssrc.com.citrix.netscaler.nitro.util.nitro_util import nitro_util class lbvserver_cachepolicy_binding(base_resource) : """ Binding class showing the cachepolicy that can be bound to lbvserver. """ def __init__(self) : self._policyname = None self._priority = None self._gotopriorityexpression = None self._bindpoint = None self._invoke = None self._labeltype = None self._labelname = None self._name = None self.___count = None @property def priority(self) : r"""Priority. """ try : return self._priority except Exception as e: raise e @priority.setter def priority(self, priority) : r"""Priority. """ try : self._priority = priority except Exception as e: raise e @property def bindpoint(self) : r"""The bindpoint to which the policy is bound.<br/>Possible values = REQUEST, RESPONSE. """ try : return self._bindpoint except Exception as e: raise e @bindpoint.setter def bindpoint(self, bindpoint) : r"""The bindpoint to which the policy is bound.<br/>Possible values = REQUEST, RESPONSE """ try : self._bindpoint = bindpoint except Exception as e: raise e @property def policyname(self) : r"""Name of the policy bound to the LB vserver. """ try : return self._policyname except Exception as e: raise e @policyname.setter def policyname(self, policyname) : r"""Name of the policy bound to the LB vserver. """ try : self._policyname = policyname except Exception as e: raise e @property def labelname(self) : r"""Name of the label invoked. """ try : return self._labelname except Exception as e: raise e @labelname.setter def labelname(self, labelname) : r"""Name of the label invoked. """ try : self._labelname = labelname except Exception as e: raise e @property def name(self) : r"""Name for the virtual server. Must begin with an ASCII alphanumeric or underscore (_) character, and must contain only ASCII alphanumeric, underscore, hash (#), period (.), space, colon (:), at sign (@), equal sign (=), and hyphen (-) characters. Can be changed after the virtual server is created. CLI Users: If the name includes one or more spaces, enclose the name in double or single quotation marks (for example, "my vserver" or 'my vserver'). .<br/>Minimum length = 1. """ try : return self._name except Exception as e: raise e @name.setter def name(self, name) : r"""Name for the virtual server. Must begin with an ASCII alphanumeric or underscore (_) character, and must contain only ASCII alphanumeric, underscore, hash (#), period (.), space, colon (:), at sign (@), equal sign (=), and hyphen (-) characters. Can be changed after the virtual server is created. CLI Users: If the name includes one or more spaces, enclose the name in double or single quotation marks (for example, "my vserver" or 'my vserver'). .<br/>Minimum length = 1 """ try : self._name = name except Exception as e: raise e @property def gotopriorityexpression(self) : r"""Expression specifying the priority of the next policy which will get evaluated if the current policy rule evaluates to TRUE. """ try : return self._gotopriorityexpression except Exception as e: raise e @gotopriorityexpression.setter def gotopriorityexpression(self, gotopriorityexpression) : r"""Expression specifying the priority of the next policy which will get evaluated if the current policy rule evaluates to TRUE. """ try : self._gotopriorityexpression = gotopriorityexpression except Exception as e: raise e @property def invoke(self) : r"""Invoke policies bound to a virtual server or policy label. """ try : return self._invoke except Exception as e: raise e @invoke.setter def invoke(self, invoke) : r"""Invoke policies bound to a virtual server or policy label. """ try : self._invoke = invoke except Exception as e: raise e @property def labeltype(self) : r"""The invocation type.<br/>Possible values = reqvserver, resvserver, policylabel. """ try : return self._labeltype except Exception as e: raise e @labeltype.setter def labeltype(self, labeltype) : r"""The invocation type.<br/>Possible values = reqvserver, resvserver, policylabel """ try : self._labeltype = labeltype except Exception as e: raise e def _get_nitro_response(self, service, response) : r""" converts nitro response into object and returns the object array in case of get request. """ try : result = service.payload_formatter.string_to_resource(lbvserver_cachepolicy_binding_response, response, self.__class__.__name__) if(result.errorcode != 0) : if (result.errorcode == 444) : service.clear_session(self) if result.severity : if (result.severity == "ERROR") : raise nitro_exception(result.errorcode, str(result.message), str(result.severity)) else : raise nitro_exception(result.errorcode, str(result.message), str(result.severity)) return result.lbvserver_cachepolicy_binding except Exception as e : raise e def _get_object_name(self) : r""" Returns the value of object identifier argument """ try : if self.name is not None : return str(self.name) return None except Exception as e : raise e @classmethod def add(cls, client, resource) : try : if resource and type(resource) is not list : updateresource = lbvserver_cachepolicy_binding() updateresource.name = resource.name updateresource.policyname = resource.policyname updateresource.priority = resource.priority updateresource.gotopriorityexpression = resource.gotopriorityexpression updateresource.bindpoint = resource.bindpoint updateresource.invoke = resource.invoke updateresource.labeltype = resource.labeltype updateresource.labelname = resource.labelname return updateresource.update_resource(client) else : if resource and len(resource) > 0 : updateresources = [lbvserver_cachepolicy_binding() for _ in range(len(resource))] for i in range(len(resource)) : updateresources[i].name = resource[i].name updateresources[i].policyname = resource[i].policyname updateresources[i].priority = resource[i].priority updateresources[i].gotopriorityexpression = resource[i].gotopriorityexpression updateresources[i].bindpoint = resource[i].bindpoint updateresources[i].invoke = resource[i].invoke updateresources[i].labeltype = resource[i].labeltype updateresources[i].labelname = resource[i].labelname return cls.update_bulk_request(client, updateresources) except Exception as e : raise e @classmethod def delete(cls, client, resource) : try : if resource and type(resource) is not list : deleteresource = lbvserver_cachepolicy_binding() deleteresource.name = resource.name deleteresource.policyname = resource.policyname deleteresource.bindpoint = resource.bindpoint deleteresource.priority = resource.priority return deleteresource.delete_resource(client) else : if resource and len(resource) > 0 : deleteresources = [lbvserver_cachepolicy_binding() for _ in range(len(resource))] for i in range(len(resource)) : deleteresources[i].name = resource[i].name deleteresources[i].policyname = resource[i].policyname deleteresources[i].bindpoint = resource[i].bindpoint deleteresources[i].priority = resource[i].priority return cls.delete_bulk_request(client, deleteresources) except Exception as e : raise e @classmethod def get(cls, service, name="", option_="") : r""" Use this API to fetch lbvserver_cachepolicy_binding resources. """ try : if not name : obj = lbvserver_cachepolicy_binding() response = obj.get_resources(service, option_) else : obj = lbvserver_cachepolicy_binding() obj.name = name response = obj.get_resources(service) return response except Exception as e: raise e @classmethod def get_filtered(cls, service, name, filter_) : r""" Use this API to fetch filtered set of lbvserver_cachepolicy_binding resources. Filter string should be in JSON format.eg: "port:80,servicetype:HTTP". """ try : obj = lbvserver_cachepolicy_binding() obj.name = name option_ = options() option_.filter = filter_ response = obj.getfiltered(service, option_) return response except Exception as e: raise e @classmethod def count(cls, service, name) : r""" Use this API to count lbvserver_cachepolicy_binding resources configued on NetScaler. """ try : obj = lbvserver_cachepolicy_binding() obj.name = name option_ = options() option_.count = True response = obj.get_resources(service, option_) if response : return response[0].__dict__['___count'] return 0 except Exception as e: raise e @classmethod def count_filtered(cls, service, name, filter_) : r""" Use this API to count the filtered set of lbvserver_cachepolicy_binding resources. Filter string should be in JSON format.eg: "port:80,servicetype:HTTP". """ try : obj = lbvserver_cachepolicy_binding() obj.name = name option_ = options() option_.count = True option_.filter = filter_ response = obj.getfiltered(service, option_) if response : return response[0].__dict__['___count'] return 0 except Exception as e: raise e class Bindpoint: REQUEST = "REQUEST" RESPONSE = "RESPONSE" class Labeltype: reqvserver = "reqvserver" resvserver = "resvserver" policylabel = "policylabel" class lbvserver_cachepolicy_binding_response(base_response) : def __init__(self, length=1) : self.lbvserver_cachepolicy_binding = [] self.errorcode = 0 self.message = "" self.severity = "" self.sessionid = "" self.lbvserver_cachepolicy_binding = [lbvserver_cachepolicy_binding() for _ in range(length)]
d02c4a0793ee279dabe9c0b95d2105dcd9706e63
7b3743f052da9a74808b7d2145418ce5c3e1a477
/v2/api.thewatcher.io/api/models/saviors.py
89626aa29873222a92953c0510d71808dfbb67f1
[ "MIT" ]
permissive
quebecsti/kdm-manager
5547cbf8928d485c6449650dc77805877a67ee37
a5fcda27d04135429e43a21ac655e6f6acc7768e
refs/heads/master
2020-11-26T19:22:53.197651
2019-10-22T20:53:40
2019-10-22T20:53:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,129
py
#!/usr/bin/python2.7 from api.assets import saviors from api import Models import utils class Assets(Models.AssetCollection): def __init__(self, *args, **kwargs): self.root_module = saviors Models.AssetCollection.__init__(self, *args, **kwargs) def get_asset_by_color(self, color=None): """ This method will return an asset dictionary whose 'color' attrib matches the value of the 'color' kwarg. """ if color is None: msg = "get_asset_by_color() requires the 'color' kwarg!" self.logger.exception(msg) raise Exception(msg) output = None for d in self.get_dicts(): if d["color"] == color and output is None: output = d elif d["color"] == color and output is not None: msg = "Multiple savior asset dicts have the color '%s'. Did you rememeber to filter?" % color self.logger.exception(msg) raise Exception(msg) if output is None: msg = "No asset dict found for color '%s'!" % color return output
14940a0b39f1f7c4e8107e47cdc734cdf845df28
28bf7793cde66074ac6cbe2c76df92bd4803dab9
/answers/MridulMohanta/Day29/question1.py
bd0a470a4989c366aa27de5d8ad3952e877f35eb
[ "MIT" ]
permissive
Codechef-SRM-NCR-Chapter/30-DaysOfCode-March-2021
2dee33e057ba22092795a6ecc6686a9d31607c9d
66c7d85025481074c93cfda7853b145c88a30da4
refs/heads/main
2023-05-29T10:33:31.795738
2021-06-10T14:57:30
2021-06-10T14:57:30
348,153,476
22
135
MIT
2021-06-10T14:57:31
2021-03-15T23:37:26
Java
UTF-8
Python
false
false
534
py
a=[] b=[] x=int(input("Enter length of the two variables")) n=int(input("Enter test number")) y=0 for i in range(0,x): p=int(input("Enter element in a:")) a.append(p) q=int(input("Enter element in b:")) b.append(q) for i in range(x-1,-1,-1): for j in range(i,-1,-1): if ((a[i]+b[j])<=n): print (a[i]) print (b[j]) temp=b[j] b[j]=b[i] b[i]=temp y=y+1 break print (b) if ((x-1)<=y): print ("YES") else: print("NO")
fdfaf5133245d102f34dbb38f190dc97481a6095
bdc0b8809d52933c10f8eb77442bd0b4453f28f9
/build/std_msgs/rosidl_generator_py/std_msgs/msg/_header.py
9b81821f0602af102a642cfc19c4bb22e9f5e525
[]
no_license
ClaytonCalabrese/BuiltRos2Eloquent
967f688bbca746097016dbd34563716bd98379e3
76bca564bfd73ef73485e5c7c48274889032e408
refs/heads/master
2021-03-27T22:42:12.976367
2020-03-17T14:24:07
2020-03-17T14:24:07
247,810,969
1
0
null
null
null
null
UTF-8
Python
false
false
5,074
py
# generated from rosidl_generator_py/resource/_idl.py.em # with input from std_msgs:msg/Header.idl # generated code does not contain a copyright notice # Import statements for member types import rosidl_parser.definition # noqa: E402, I100 class Metaclass_Header(type): """Metaclass of message 'Header'.""" _CREATE_ROS_MESSAGE = None _CONVERT_FROM_PY = None _CONVERT_TO_PY = None _DESTROY_ROS_MESSAGE = None _TYPE_SUPPORT = None __constants = { } @classmethod def __import_type_support__(cls): try: from rosidl_generator_py import import_type_support module = import_type_support('std_msgs') except ImportError: import logging import traceback logger = logging.getLogger( 'std_msgs.msg.Header') logger.debug( 'Failed to import needed modules for type support:\n' + traceback.format_exc()) else: cls._CREATE_ROS_MESSAGE = module.create_ros_message_msg__msg__header cls._CONVERT_FROM_PY = module.convert_from_py_msg__msg__header cls._CONVERT_TO_PY = module.convert_to_py_msg__msg__header cls._TYPE_SUPPORT = module.type_support_msg__msg__header cls._DESTROY_ROS_MESSAGE = module.destroy_ros_message_msg__msg__header from builtin_interfaces.msg import Time if Time.__class__._TYPE_SUPPORT is None: Time.__class__.__import_type_support__() @classmethod def __prepare__(cls, name, bases, **kwargs): # list constant names here so that they appear in the help text of # the message class under "Data and other attributes defined here:" # as well as populate each message instance return { } class Header(metaclass=Metaclass_Header): """Message class 'Header'.""" __slots__ = [ '_stamp', '_frame_id', ] _fields_and_field_types = { 'stamp': 'builtin_interfaces/Time', 'frame_id': 'string', } SLOT_TYPES = ( rosidl_parser.definition.NamespacedType(['builtin_interfaces', 'msg'], 'Time'), # noqa: E501 rosidl_parser.definition.UnboundedString(), # noqa: E501 ) def __init__(self, **kwargs): assert all('_' + key in self.__slots__ for key in kwargs.keys()), \ 'Invalid arguments passed to constructor: %s' % \ ', '.join(sorted(k for k in kwargs.keys() if '_' + k not in self.__slots__)) from builtin_interfaces.msg import Time self.stamp = kwargs.get('stamp', Time()) self.frame_id = kwargs.get('frame_id', str()) def __repr__(self): typename = self.__class__.__module__.split('.') typename.pop() typename.append(self.__class__.__name__) args = [] for s, t in zip(self.__slots__, self.SLOT_TYPES): field = getattr(self, s) fieldstr = repr(field) # We use Python array type for fields that can be directly stored # in them, and "normal" sequences for everything else. If it is # a type that we store in an array, strip off the 'array' portion. if ( isinstance(t, rosidl_parser.definition.AbstractSequence) and isinstance(t.value_type, rosidl_parser.definition.BasicType) and t.value_type.typename in ['float', 'double', 'int8', 'uint8', 'int16', 'uint16', 'int32', 'uint32', 'int64', 'uint64'] ): if len(field) == 0: fieldstr = '[]' else: assert fieldstr.startswith('array(') prefix = "array('X', " suffix = ')' fieldstr = fieldstr[len(prefix):-len(suffix)] args.append(s[1:] + '=' + fieldstr) return '%s(%s)' % ('.'.join(typename), ', '.join(args)) def __eq__(self, other): if not isinstance(other, self.__class__): return False if self.stamp != other.stamp: return False if self.frame_id != other.frame_id: return False return True @classmethod def get_fields_and_field_types(cls): from copy import copy return copy(cls._fields_and_field_types) @property def stamp(self): """Message field 'stamp'.""" return self._stamp @stamp.setter def stamp(self, value): if __debug__: from builtin_interfaces.msg import Time assert \ isinstance(value, Time), \ "The 'stamp' field must be a sub message of type 'Time'" self._stamp = value @property def frame_id(self): """Message field 'frame_id'.""" return self._frame_id @frame_id.setter def frame_id(self, value): if __debug__: assert \ isinstance(value, str), \ "The 'frame_id' field must be of type 'str'" self._frame_id = value
76248405f1c00343fddef1efe2213d5897023cdc
51086c09f2c920d057db12e373a01b08571c4cbf
/pebble-sdk/SDKs/4.3/sdk-core/pebble/common/tools/inject_metadata.py
132a3d5457b902f386c30f11dc86721ecedec725
[]
no_license
JohnHoder/pebble-dev
66dc69258dfd009313c23ba5c2eb518aec257652
e9d95bd564ba6f58b539a1a68f21fe82b6d0992b
refs/heads/master
2022-11-23T17:32:26.573394
2018-12-26T03:17:37
2018-12-26T03:17:37
163,131,045
0
1
null
2022-10-31T10:03:38
2018-12-26T03:15:57
Python
UTF-8
Python
false
false
11,374
py
#!/usr/bin/env python from __future__ import with_statement from struct import pack, unpack import os import os.path import sys import time from subprocess import Popen, PIPE from shutil import copy2 from binascii import crc32 from struct import pack from pbpack import ResourcePack import stm32_crc # Pebble App Metadata Struct # These are offsets of the PebbleProcessInfo struct in src/fw/app_management/pebble_process_info.h HEADER_ADDR = 0x0 # 8 bytes STRUCT_VERSION_ADDR = 0x8 # 2 bytes SDK_VERSION_ADDR = 0xa # 2 bytes APP_VERSION_ADDR = 0xc # 2 bytes LOAD_SIZE_ADDR = 0xe # 2 bytes OFFSET_ADDR = 0x10 # 4 bytes CRC_ADDR = 0x14 # 4 bytes NAME_ADDR = 0x18 # 32 bytes COMPANY_ADDR = 0x38 # 32 bytes ICON_RES_ID_ADDR = 0x58 # 4 bytes JUMP_TABLE_ADDR = 0x5c # 4 bytes FLAGS_ADDR = 0x60 # 4 bytes NUM_RELOC_ENTRIES_ADDR = 0x64 # 4 bytes UUID_ADDR = 0x68 # 16 bytes RESOURCE_CRC_ADDR = 0x78 # 4 bytes RESOURCE_TIMESTAMP_ADDR = 0x7c # 4 bytes VIRTUAL_SIZE_ADDR = 0x80 # 2 bytes STRUCT_SIZE_BYTES = 0x82 # Pebble App Flags # These are PebbleAppFlags from src/fw/app_management/pebble_process_info.h PROCESS_INFO_STANDARD_APP = (0) PROCESS_INFO_WATCH_FACE = (1 << 0) PROCESS_INFO_VISIBILITY_HIDDEN = (1 << 1) PROCESS_INFO_VISIBILITY_SHOWN_ON_COMMUNICATION = (1 << 2) PROCESS_INFO_ALLOW_JS = (1 << 3) PROCESS_INFO_HAS_WORKER = (1 << 4) # Max app size, including the struct and reloc table # Note that even if the app is smaller than this, it still may be too big, as it needs to share this # space with applib/ which changes in size from release to release. MAX_APP_BINARY_SIZE = 0x10000 # This number is a rough estimate, but should not be less than the available space. # Currently, app_state uses up a small part of the app space. # See also APP_RAM in stm32f2xx_flash_fw.ld and APP in pebble_app.ld. MAX_APP_MEMORY_SIZE = 24 * 1024 # This number is a rough estimate, but should not be less than the available space. # Currently, worker_state uses up a small part of the worker space. # See also WORKER_RAM in stm32f2xx_flash_fw.ld MAX_WORKER_MEMORY_SIZE = 10 * 1024 ENTRY_PT_SYMBOL = 'main' JUMP_TABLE_ADDR_SYMBOL = 'pbl_table_addr' DEBUG = False class InvalidBinaryError(Exception): pass def inject_metadata(target_binary, target_elf, resources_file, timestamp, allow_js=False, has_worker=False): if target_binary[-4:] != '.bin': raise Exception("Invalid filename <%s>! The filename should end in .bin" % target_binary) def get_nm_output(elf_file): nm_process = Popen(['arm-none-eabi-nm', elf_file], stdout=PIPE) # Popen.communicate returns a tuple of (stdout, stderr) nm_output = nm_process.communicate()[0] if not nm_output: raise InvalidBinaryError() nm_output = [ line.split() for line in nm_output.splitlines() ] return nm_output def get_symbol_addr(nm_output, symbol): # nm output looks like the following... # # U _ITM_registerTMCloneTable # 00000084 t jump_to_pbl_function # U _Jv_RegisterClasses # 0000009c T main # 00000130 T memset # # We don't care about the lines that only have two columns, they're not functions. for sym in nm_output: if symbol == sym[-1] and len(sym) == 3: return int(sym[0], 16) raise Exception("Could not locate symbol <%s> in binary! Failed to inject app metadata" % (symbol)) def get_virtual_size(elf_file): """ returns the virtual size (static memory usage, .text + .data + .bss) in bytes """ readelf_bss_process = Popen("arm-none-eabi-readelf -S '%s'" % elf_file, shell=True, stdout=PIPE) readelf_bss_output = readelf_bss_process.communicate()[0] # readelf -S output looks like the following... # # [Nr] Name Type Addr Off Size ES Flg Lk Inf Al # [ 0] NULL 00000000 000000 000000 00 0 0 0 # [ 1] .header PROGBITS 00000000 008000 000082 00 A 0 0 1 # [ 2] .text PROGBITS 00000084 008084 0006be 00 AX 0 0 4 # [ 3] .rel.text REL 00000000 00b66c 0004d0 08 23 2 4 # [ 4] .data PROGBITS 00000744 008744 000004 00 WA 0 0 4 # [ 5] .bss NOBITS 00000748 008748 000054 00 WA 0 0 4 last_section_end_addr = 0 # Find the .bss section and calculate the size based on the end of the .bss section for line in readelf_bss_output.splitlines(): if len(line) < 10: continue # Carve off the first column, since it sometimes has a space in it which screws up the # split. Two leading spaces, a square bracket, 2 digits (with space padding), # a second square brack is 6 line = line[6:] columns = line.split() if len(columns) < 6: continue if columns[0] == '.bss': addr = int(columns[2], 16) size = int(columns[4], 16) last_section_end_addr = addr + size elif columns[0] == '.data' and last_section_end_addr == 0: addr = int(columns[2], 16) size = int(columns[4], 16) last_section_end_addr = addr + size if last_section_end_addr != 0: return last_section_end_addr sys.stderr.writeline("Failed to parse ELF sections while calculating the virtual size\n") sys.stderr.write(readelf_bss_output) raise Exception("Failed to parse ELF sections while calculating the virtual size") def get_relocate_entries(elf_file): """ returns a list of all the locations requiring an offset""" # TODO: insert link to the wiki page I'm about to write about PIC and relocatable values entries = [] # get the .data locations readelf_relocs_process = Popen(['arm-none-eabi-readelf', '-r', elf_file], stdout=PIPE) readelf_relocs_output = readelf_relocs_process.communicate()[0] lines = readelf_relocs_output.splitlines() i = 0 reading_section = False while i < len(lines): if not reading_section: # look for the next section if lines[i].startswith("Relocation section '.rel.data"): reading_section = True i += 1 # skip the column title section else: if len(lines[i]) == 0: # end of the section reading_section = False else: entries.append(int(lines[i].split(' ')[0], 16)) i += 1 # get any Global Offset Table (.got) entries readelf_relocs_process = Popen(['arm-none-eabi-readelf', '--sections', elf_file], stdout=PIPE) readelf_relocs_output = readelf_relocs_process.communicate()[0] lines = readelf_relocs_output.splitlines() for line in lines: # We shouldn't need to do anything with the Procedure Linkage Table since we don't # actually export functions if '.got' in line and '.got.plt' not in line: words = line.split(' ') while '' in words: words.remove('') section_label_idx = words.index('.got') addr = int(words[section_label_idx + 2], 16) length = int(words[section_label_idx + 4], 16) for i in range(addr, addr + length, 4): entries.append(i) break return entries nm_output = get_nm_output(target_elf) try: app_entry_address = get_symbol_addr(nm_output, ENTRY_PT_SYMBOL) except: raise Exception("Missing app entry point! Must be `int main(void) { ... }` ") jump_table_address = get_symbol_addr(nm_output, JUMP_TABLE_ADDR_SYMBOL) reloc_entries = get_relocate_entries(target_elf) statinfo = os.stat(target_binary) app_load_size = statinfo.st_size if resources_file is not None: with open(resources_file, 'rb') as f: pbpack = ResourcePack.deserialize(f, is_system=False) resource_crc = pbpack.get_content_crc() else: resource_crc = 0 if DEBUG: copy2(target_binary, target_binary + ".orig") with open(target_binary, 'r+b') as f: total_app_image_size = app_load_size + (len(reloc_entries) * 4) if total_app_image_size > MAX_APP_BINARY_SIZE: raise Exception("App image size is %u (app %u relocation table %u). Must be smaller " "than %u bytes" % (total_app_image_size, app_load_size, len(reloc_entries) * 4, MAX_APP_BINARY_SIZE)) def read_value_at_offset(offset, format_str, size): f.seek(offset) return unpack(format_str, f.read(size)) app_bin = f.read() app_crc = stm32_crc.crc32(app_bin[STRUCT_SIZE_BYTES:]) [app_flags] = read_value_at_offset(FLAGS_ADDR, '<L', 4) if allow_js: app_flags = app_flags | PROCESS_INFO_ALLOW_JS if has_worker: app_flags = app_flags | PROCESS_INFO_HAS_WORKER app_virtual_size = get_virtual_size(target_elf) struct_changes = { 'load_size' : app_load_size, 'entry_point' : "0x%08x" % app_entry_address, 'symbol_table' : "0x%08x" % jump_table_address, 'flags' : app_flags, 'crc' : "0x%08x" % app_crc, 'num_reloc_entries': "0x%08x" % len(reloc_entries), 'resource_crc' : "0x%08x" % resource_crc, 'timestamp' : timestamp, 'virtual_size': app_virtual_size } def write_value_at_offset(offset, format_str, value): f.seek(offset) f.write(pack(format_str, value)) write_value_at_offset(LOAD_SIZE_ADDR, '<H', app_load_size) write_value_at_offset(OFFSET_ADDR, '<L', app_entry_address) write_value_at_offset(CRC_ADDR, '<L', app_crc) write_value_at_offset(RESOURCE_CRC_ADDR, '<L', resource_crc) write_value_at_offset(RESOURCE_TIMESTAMP_ADDR, '<L', timestamp) write_value_at_offset(JUMP_TABLE_ADDR, '<L', jump_table_address) write_value_at_offset(FLAGS_ADDR, '<L', app_flags) write_value_at_offset(NUM_RELOC_ENTRIES_ADDR, '<L', len(reloc_entries)) write_value_at_offset(VIRTUAL_SIZE_ADDR, "<H", app_virtual_size) # Write the reloc_entries past the end of the binary. This expands the size of the binary, # but this new stuff won't actually be loaded into ram. f.seek(app_load_size) for entry in reloc_entries: f.write(pack('<L', entry)) f.flush() return struct_changes
0edb15c99b81287d2f5f4c1a226de09d6b692c6c
ce0a34a4a1f44cda31042e4294e6cef334392a37
/tests/test_gui_klgui.py
9c28eb7d7c5c47e2c9694da7f660414fd1c1df94
[ "GPL-3.0-only" ]
permissive
PhonologicalCorpusTools/CorpusTools
ba6644f90a9790d3f61d923b3b5622eaeaa24caa
314bd30be24b1cb7ee0c252a6529bbfe964056ad
refs/heads/master
2022-09-29T20:36:12.148289
2022-09-16T01:57:47
2022-09-16T01:57:47
18,848,568
108
24
BSD-3-Clause
2021-05-07T23:58:03
2014-04-16T17:14:55
Python
UTF-8
Python
false
false
188
py
from corpustools.gui.klgui import * def test_klgui(qtbot, specified_test_corpus, settings): dialog = KLDialog(None, settings,specified_test_corpus, True) qtbot.addWidget(dialog)
aec5cebc7c02dfa2d6a9bd26431eef3f3eb82c51
9870d2c6880fd3fa558c46e3bf160aae20c74157
/permuteUnique.py
f104cb1cf5024240cfeb1b15ac8dd83327f3196d
[]
no_license
Yigang0622/LeetCode
e7f7f115c6e730c486296ef2f1a3dd1a3fdca526
c873cd1ee70a2bdb54571bdd50733db9f6475e9e
refs/heads/master
2023-03-03T14:32:25.498633
2021-02-15T13:59:00
2021-02-15T13:59:00
281,423,565
1
0
null
null
null
null
UTF-8
Python
false
false
950
py
# LeetCode # permuteUnique # Created by Yigang Zhou on 2020/9/18. # Copyright © 2020 Yigang Zhou. All rights reserved. # 47. 全排列 II # https://leetcode-cn.com/problems/permutations-ii/ from typing import List class Solution: def permuteUnique(self, nums: List[int]) -> List[List[int]]: ans = [] visited = [0] * len(nums) nums.sort() self.dfs([], visited,0,nums,ans) return ans def dfs(self, current, visited, i, nums, ans): if i == len(nums): ans.append(current[:]) return for j, each in enumerate(nums): if visited[j] == 1 or (j > 0 and nums[j] == nums[j - 1] and visited[j - 1] == 0): continue visited[j] = 1 current.append(each) self.dfs(current, visited, i+1, nums, ans) visited[j] = 0 current.pop() nums = [1,1,2] r = Solution().permuteUnique(nums) print(r)
b74676e45149ad9bbe55f3f25d2e2048b5786119
930c207e245c320b108e9699bbbb036260a36d6a
/BRICK-RDFAlchemy/generatedCode/brick/brickschema/org/schema/_1_0_2/Brick/AHU_Heating_Demand_Setpoint.py
ec0c93fb165063c910beab5029a9309ddd5da42c
[]
no_license
InnovationSE/BRICK-Generated-By-OLGA
24d278f543471e1ce622f5f45d9e305790181fff
7874dfa450a8a2b6a6f9927c0f91f9c7d2abd4d2
refs/heads/master
2021-07-01T14:13:11.302860
2017-09-21T12:44:17
2017-09-21T12:44:17
104,251,784
1
0
null
null
null
null
UTF-8
Python
false
false
427
py
from rdflib import Namespace, Graph, Literal, RDF, URIRef from rdfalchemy.rdfSubject import rdfSubject from rdfalchemy import rdfSingle, rdfMultiple, rdfList from brick.brickschema.org.schema._1_0_2.Brick.Heating_Demand_Setpoint import Heating_Demand_Setpoint class AHU_Heating_Demand_Setpoint(Heating_Demand_Setpoint): rdf_type = Namespace('https://brickschema.org/schema/1.0.2/Brick#').AHU_Heating_Demand_Setpoint
570db6accc88fe50729a6579d12fd3b3c150c75c
65c3e7139829829dd1410228e17f85c285ab0706
/Aniyom Ebenezer/Phase 2/STRINGS/Day_29_Challenge_Solution/Question 8 Solution.py
d443f353ceb9d57814ceb49adf93228d5ddd05d5
[ "MIT" ]
permissive
eaniyom/python-challenge-solutions
167e9d897d0a72f1e264ff2fed0e4cc5541b0164
21f91e06421afe06b472d391429ee2138c918c38
refs/heads/master
2022-11-24T02:57:39.920755
2020-08-05T09:23:04
2020-08-05T09:23:04
277,686,791
1
0
MIT
2020-07-07T01:31:00
2020-07-07T01:30:59
null
UTF-8
Python
false
false
308
py
""" Write a Python program that takes a list of words and retuerns the length of the longest one. """ def longest_words(word_list): word_len = [] for n in word_list: word_len.append((len(n), n)) word_len.sort() return word_len[-1][1] print(longest_words(["PHP", "Python", "Backend"]))
28d5e3dae132663d27b2d5c4430019896f8b3eef
d094ba0c8a9b1217fbf014aa79a283a49aabe88c
/env/lib/python3.6/site-packages/sympy/combinatorics/free_groups.py
2150e670e4015d91706a458585d33802adc1eba1
[ "Apache-2.0" ]
permissive
Raniac/NEURO-LEARN
d9274e0baadd97bb02da54bdfcf6ca091fc1c703
3c3acc55de8ba741e673063378e6cbaf10b64c7a
refs/heads/master
2022-12-25T23:46:54.922237
2020-09-06T03:15:14
2020-09-06T03:15:14
182,013,100
9
2
Apache-2.0
2022-12-09T21:01:00
2019-04-18T03:57:00
CSS
UTF-8
Python
false
false
40,158
py
# -*- coding: utf-8 -*- from __future__ import print_function, division from sympy.core.basic import Basic from sympy.core.compatibility import is_sequence, as_int, string_types from sympy.core.expr import Expr from sympy.core.symbol import Symbol, symbols as _symbols from sympy.core.sympify import CantSympify from sympy.core import S from sympy.printing.defaults import DefaultPrinting from sympy.utilities import public from sympy.utilities.iterables import flatten from sympy.utilities.magic import pollute from sympy import sign @public def free_group(symbols): """Construct a free group returning ``(FreeGroup, (f_0, f_1, ..., f_(n-1))``. Parameters ---------- symbols : str, Symbol/Expr or sequence of str, Symbol/Expr (may be empty) Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> F, x, y, z = free_group("x, y, z") >>> F <free group on the generators (x, y, z)> >>> x**2*y**-1 x**2*y**-1 >>> type(_) <class 'sympy.combinatorics.free_groups.FreeGroupElement'> """ _free_group = FreeGroup(symbols) return (_free_group,) + tuple(_free_group.generators) @public def xfree_group(symbols): """Construct a free group returning ``(FreeGroup, (f_0, f_1, ..., f_(n-1)))``. Parameters ---------- symbols : str, Symbol/Expr or sequence of str, Symbol/Expr (may be empty) Examples ======== >>> from sympy.combinatorics.free_groups import xfree_group >>> F, (x, y, z) = xfree_group("x, y, z") >>> F <free group on the generators (x, y, z)> >>> y**2*x**-2*z**-1 y**2*x**-2*z**-1 >>> type(_) <class 'sympy.combinatorics.free_groups.FreeGroupElement'> """ _free_group = FreeGroup(symbols) return (_free_group, _free_group.generators) @public def vfree_group(symbols): """Construct a free group and inject ``f_0, f_1, ..., f_(n-1)`` as symbols into the global namespace. Parameters ---------- symbols : str, Symbol/Expr or sequence of str, Symbol/Expr (may be empty) Examples ======== >>> from sympy.combinatorics.free_groups import vfree_group >>> vfree_group("x, y, z") <free group on the generators (x, y, z)> >>> x**2*y**-2*z x**2*y**-2*z >>> type(_) <class 'sympy.combinatorics.free_groups.FreeGroupElement'> """ _free_group = FreeGroup(symbols) pollute([sym.name for sym in _free_group.symbols], _free_group.generators) return _free_group def _parse_symbols(symbols): if not symbols: return tuple() if isinstance(symbols, string_types): return _symbols(symbols, seq=True) elif isinstance(symbols, Expr or FreeGroupElement): return (symbols,) elif is_sequence(symbols): if all(isinstance(s, string_types) for s in symbols): return _symbols(symbols) elif all(isinstance(s, Expr) for s in symbols): return symbols raise ValueError("The type of `symbols` must be one of the following: " "a str, Symbol/Expr or a sequence of " "one of these types") ############################################################################## # FREE GROUP # ############################################################################## _free_group_cache = {} class FreeGroup(DefaultPrinting): """ Free group with finite or infinite number of generators. Its input API is that of a str, Symbol/Expr or a sequence of one of these types (which may be empty) References ========== [1] http://www.gap-system.org/Manuals/doc/ref/chap37.html [2] https://en.wikipedia.org/wiki/Free_group See Also ======== sympy.polys.rings.PolyRing """ is_associative = True is_group = True is_FreeGroup = True is_PermutationGroup = False relators = tuple() def __new__(cls, symbols): symbols = tuple(_parse_symbols(symbols)) rank = len(symbols) _hash = hash((cls.__name__, symbols, rank)) obj = _free_group_cache.get(_hash) if obj is None: obj = object.__new__(cls) obj._hash = _hash obj._rank = rank # dtype method is used to create new instances of FreeGroupElement obj.dtype = type("FreeGroupElement", (FreeGroupElement,), {"group": obj}) obj.symbols = symbols obj.generators = obj._generators() obj._gens_set = set(obj.generators) for symbol, generator in zip(obj.symbols, obj.generators): if isinstance(symbol, Symbol): name = symbol.name if hasattr(obj, name): setattr(obj, name, generator) _free_group_cache[_hash] = obj return obj def _generators(group): """Returns the generators of the FreeGroup. Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> F, x, y, z = free_group("x, y, z") >>> F.generators (x, y, z) """ gens = [] for sym in group.symbols: elm = ((sym, 1),) gens.append(group.dtype(elm)) return tuple(gens) def clone(self, symbols=None): return self.__class__(symbols or self.symbols) def __contains__(self, i): """Return True if ``i`` is contained in FreeGroup.""" if not isinstance(i, FreeGroupElement): return False group = i.group return self == group def __hash__(self): return self._hash def __len__(self): return self.rank def __str__(self): if self.rank > 30: str_form = "<free group with %s generators>" % self.rank else: str_form = "<free group on the generators " gens = self.generators str_form += str(gens) + ">" return str_form __repr__ = __str__ def __getitem__(self, index): symbols = self.symbols[index] return self.clone(symbols=symbols) def __eq__(self, other): """No ``FreeGroup`` is equal to any "other" ``FreeGroup``. """ return self is other def index(self, gen): """Return the index of the generator `gen` from ``(f_0, ..., f_(n-1))``. Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> F, x, y = free_group("x, y") >>> F.index(y) 1 >>> F.index(x) 0 """ if isinstance(gen, self.dtype): return self.generators.index(gen) else: raise ValueError("expected a generator of Free Group %s, got %s" % (self, gen)) def order(self): """Return the order of the free group. Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> F, x, y = free_group("x, y") >>> F.order() oo >>> free_group("")[0].order() 1 """ if self.rank == 0: return 1 else: return S.Infinity @property def elements(self): """ Return the elements of the free group. Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> (z,) = free_group("") >>> z.elements {<identity>} """ if self.rank == 0: # A set containing Identity element of `FreeGroup` self is returned return {self.identity} else: raise ValueError("Group contains infinitely many elements" ", hence can't be represented") @property def rank(self): r""" In group theory, the `rank` of a group `G`, denoted `G.rank`, can refer to the smallest cardinality of a generating set for G, that is \operatorname{rank}(G)=\min\{ |X|: X\subseteq G, \langle X\rangle =G\}. """ return self._rank @property def is_abelian(self): """Returns if the group is Abelian. Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> f, x, y, z = free_group("x y z") >>> f.is_abelian False """ if self.rank == 0 or self.rank == 1: return True else: return False @property def identity(self): """Returns the identity element of free group.""" return self.dtype() def contains(self, g): """Tests if Free Group element ``g`` belong to self, ``G``. In mathematical terms any linear combination of generators of a Free Group is contained in it. Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> f, x, y, z = free_group("x y z") >>> f.contains(x**3*y**2) True """ if not isinstance(g, FreeGroupElement): return False elif self != g.group: return False else: return True def center(self): """Returns the center of the free group `self`.""" return {self.identity} ############################################################################ # FreeGroupElement # ############################################################################ class FreeGroupElement(CantSympify, DefaultPrinting, tuple): """Used to create elements of FreeGroup. It can not be used directly to create a free group element. It is called by the `dtype` method of the `FreeGroup` class. """ is_assoc_word = True def new(self, init): return self.__class__(init) _hash = None def __hash__(self): _hash = self._hash if _hash is None: self._hash = _hash = hash((self.group, frozenset(tuple(self)))) return _hash def copy(self): return self.new(self) @property def is_identity(self): if self.array_form == tuple(): return True else: return False @property def array_form(self): """ SymPy provides two different internal kinds of representation of associative words. The first one is called the `array_form` which is a tuple containing `tuples` as its elements, where the size of each tuple is two. At the first position the tuple contains the `symbol-generator`, while at the second position of tuple contains the exponent of that generator at the position. Since elements (i.e. words) don't commute, the indexing of tuple makes that property to stay. The structure in ``array_form`` of ``FreeGroupElement`` is of form: ``( ( symbol_of_gen , exponent ), ( , ), ... ( , ) )`` Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> f, x, y, z = free_group("x y z") >>> (x*z).array_form ((x, 1), (z, 1)) >>> (x**2*z*y*x**2).array_form ((x, 2), (z, 1), (y, 1), (x, 2)) See Also ======== letter_repr """ return tuple(self) @property def letter_form(self): """ The letter representation of a ``FreeGroupElement`` is a tuple of generator symbols, with each entry corresponding to a group generator. Inverses of the generators are represented by negative generator symbols. Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> f, a, b, c, d = free_group("a b c d") >>> (a**3).letter_form (a, a, a) >>> (a**2*d**-2*a*b**-4).letter_form (a, a, -d, -d, a, -b, -b, -b, -b) >>> (a**-2*b**3*d).letter_form (-a, -a, b, b, b, d) See Also ======== array_form """ return tuple(flatten([(i,)*j if j > 0 else (-i,)*(-j) for i, j in self.array_form])) def __getitem__(self, i): group = self.group r = self.letter_form[i] if r.is_Symbol: return group.dtype(((r, 1),)) else: return group.dtype(((-r, -1),)) def index(self, gen): if len(gen) != 1: raise ValueError() return (self.letter_form).index(gen.letter_form[0]) @property def letter_form_elm(self): """ """ group = self.group r = self.letter_form return [group.dtype(((elm,1),)) if elm.is_Symbol \ else group.dtype(((-elm,-1),)) for elm in r] @property def ext_rep(self): """This is called the External Representation of ``FreeGroupElement`` """ return tuple(flatten(self.array_form)) def __contains__(self, gen): return gen.array_form[0][0] in tuple([r[0] for r in self.array_form]) def __str__(self): if self.is_identity: return "<identity>" symbols = self.group.symbols str_form = "" array_form = self.array_form for i in range(len(array_form)): if i == len(array_form) - 1: if array_form[i][1] == 1: str_form += str(array_form[i][0]) else: str_form += str(array_form[i][0]) + \ "**" + str(array_form[i][1]) else: if array_form[i][1] == 1: str_form += str(array_form[i][0]) + "*" else: str_form += str(array_form[i][0]) + \ "**" + str(array_form[i][1]) + "*" return str_form __repr__ = __str__ def __pow__(self, n): n = as_int(n) group = self.group if n == 0: return group.identity if n < 0: n = -n return (self.inverse())**n result = self for i in range(n - 1): result = result*self # this method can be improved instead of just returning the # multiplication of elements return result def __mul__(self, other): """Returns the product of elements belonging to the same ``FreeGroup``. Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> f, x, y, z = free_group("x y z") >>> x*y**2*y**-4 x*y**-2 >>> z*y**-2 z*y**-2 >>> x**2*y*y**-1*x**-2 <identity> """ group = self.group if not isinstance(other, group.dtype): raise TypeError("only FreeGroup elements of same FreeGroup can " "be multiplied") if self.is_identity: return other if other.is_identity: return self r = list(self.array_form + other.array_form) zero_mul_simp(r, len(self.array_form) - 1) return group.dtype(tuple(r)) def __div__(self, other): group = self.group if not isinstance(other, group.dtype): raise TypeError("only FreeGroup elements of same FreeGroup can " "be multiplied") return self*(other.inverse()) def __rdiv__(self, other): group = self.group if not isinstance(other, group.dtype): raise TypeError("only FreeGroup elements of same FreeGroup can " "be multiplied") return other*(self.inverse()) __truediv__ = __div__ __rtruediv__ = __rdiv__ def __add__(self, other): return NotImplemented def inverse(self): """ Returns the inverse of a ``FreeGroupElement`` element Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> f, x, y, z = free_group("x y z") >>> x.inverse() x**-1 >>> (x*y).inverse() y**-1*x**-1 """ group = self.group r = tuple([(i, -j) for i, j in self.array_form[::-1]]) return group.dtype(r) def order(self): """Find the order of a ``FreeGroupElement``. Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> f, x, y = free_group("x y") >>> (x**2*y*y**-1*x**-2).order() 1 """ if self.is_identity: return 1 else: return S.Infinity def commutator(self, other): """ Return the commutator of `self` and `x`: ``~x*~self*x*self`` """ group = self.group if not isinstance(other, group.dtype): raise ValueError("commutator of only FreeGroupElement of the same " "FreeGroup exists") else: return self.inverse()*other.inverse()*self*other def eliminate_words(self, words, _all=False, inverse=True): ''' Replace each subword from the dictionary `words` by words[subword]. If words is a list, replace the words by the identity. ''' again = True new = self if isinstance(words, dict): while again: again = False for sub in words: prev = new new = new.eliminate_word(sub, words[sub], _all=_all, inverse=inverse) if new != prev: again = True else: while again: again = False for sub in words: prev = new new = new.eliminate_word(sub, _all=_all, inverse=inverse) if new != prev: again = True return new def eliminate_word(self, gen, by=None, _all=False, inverse=True): """ For an associative word `self`, a subword `gen`, and an associative word `by` (identity by default), return the associative word obtained by replacing each occurrence of `gen` in `self` by `by`. If `_all = True`, the occurrences of `gen` that may appear after the first substitution will also be replaced and so on until no occurrences are found. This might not always terminate (e.g. `(x).eliminate_word(x, x**2, _all=True)`). Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> f, x, y = free_group("x y") >>> w = x**5*y*x**2*y**-4*x >>> w.eliminate_word( x, x**2 ) x**10*y*x**4*y**-4*x**2 >>> w.eliminate_word( x, y**-1 ) y**-11 >>> w.eliminate_word(x**5) y*x**2*y**-4*x >>> w.eliminate_word(x*y, y) x**4*y*x**2*y**-4*x See Also ======== substituted_word """ if by == None: by = self.group.identity if self.is_independent(gen) or gen == by: return self if gen == self: return by if gen**-1 == by: _all = False word = self l = len(gen) try: i = word.subword_index(gen) k = 1 except ValueError: if not inverse: return word try: i = word.subword_index(gen**-1) k = -1 except ValueError: return word word = word.subword(0, i)*by**k*word.subword(i+l, len(word)).eliminate_word(gen, by) if _all: return word.eliminate_word(gen, by, _all=True, inverse=inverse) else: return word def __len__(self): """ For an associative word `self`, returns the number of letters in it. Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> f, a, b = free_group("a b") >>> w = a**5*b*a**2*b**-4*a >>> len(w) 13 >>> len(a**17) 17 >>> len(w**0) 0 """ return sum(abs(j) for (i, j) in self) def __eq__(self, other): """ Two associative words are equal if they are words over the same alphabet and if they are sequences of the same letters. This is equivalent to saying that the external representations of the words are equal. There is no "universal" empty word, every alphabet has its own empty word. Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> f, swapnil0, swapnil1 = free_group("swapnil0 swapnil1") >>> f <free group on the generators (swapnil0, swapnil1)> >>> g, swap0, swap1 = free_group("swap0 swap1") >>> g <free group on the generators (swap0, swap1)> >>> swapnil0 == swapnil1 False >>> swapnil0*swapnil1 == swapnil1/swapnil1*swapnil0*swapnil1 True >>> swapnil0*swapnil1 == swapnil1*swapnil0 False >>> swapnil1**0 == swap0**0 False """ group = self.group if not isinstance(other, group.dtype): return False return tuple.__eq__(self, other) def __lt__(self, other): """ The ordering of associative words is defined by length and lexicography (this ordering is called short-lex ordering), that is, shorter words are smaller than longer words, and words of the same length are compared w.r.t. the lexicographical ordering induced by the ordering of generators. Generators are sorted according to the order in which they were created. If the generators are invertible then each generator `g` is larger than its inverse `g^{-1}`, and `g^{-1}` is larger than every generator that is smaller than `g`. Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> f, a, b = free_group("a b") >>> b < a False >>> a < a.inverse() False """ group = self.group if not isinstance(other, group.dtype): raise TypeError("only FreeGroup elements of same FreeGroup can " "be compared") l = len(self) m = len(other) # implement lenlex order if l < m: return True elif l > m: return False for i in range(l): a = self[i].array_form[0] b = other[i].array_form[0] p = group.symbols.index(a[0]) q = group.symbols.index(b[0]) if p < q: return True elif p > q: return False elif a[1] < b[1]: return True elif a[1] > b[1]: return False return False def __le__(self, other): return (self == other or self < other) def __gt__(self, other): """ Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> f, x, y, z = free_group("x y z") >>> y**2 > x**2 True >>> y*z > z*y False >>> x > x.inverse() True """ group = self.group if not isinstance(other, group.dtype): raise TypeError("only FreeGroup elements of same FreeGroup can " "be compared") return not self <= other def __ge__(self, other): return not self < other def exponent_sum(self, gen): """ For an associative word `self` and a generator or inverse of generator `gen`, ``exponent_sum`` returns the number of times `gen` appears in `self` minus the number of times its inverse appears in `self`. If neither `gen` nor its inverse occur in `self` then 0 is returned. Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> F, x, y = free_group("x, y") >>> w = x**2*y**3 >>> w.exponent_sum(x) 2 >>> w.exponent_sum(x**-1) -2 >>> w = x**2*y**4*x**-3 >>> w.exponent_sum(x) -1 See Also ======== generator_count """ if len(gen) != 1: raise ValueError("gen must be a generator or inverse of a generator") s = gen.array_form[0] return s[1]*sum([i[1] for i in self.array_form if i[0] == s[0]]) def generator_count(self, gen): """ For an associative word `self` and a generator `gen`, ``generator_count`` returns the multiplicity of generator `gen` in `self`. Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> F, x, y = free_group("x, y") >>> w = x**2*y**3 >>> w.generator_count(x) 2 >>> w = x**2*y**4*x**-3 >>> w.generator_count(x) 5 See Also ======== exponent_sum """ if len(gen) != 1 or gen.array_form[0][1] < 0: raise ValueError("gen must be a generator") s = gen.array_form[0] return s[1]*sum([abs(i[1]) for i in self.array_form if i[0] == s[0]]) def subword(self, from_i, to_j, strict=True): """ For an associative word `self` and two positive integers `from_i` and `to_j`, `subword` returns the subword of `self` that begins at position `from_i` and ends at `to_j - 1`, indexing is done with origin 0. Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> f, a, b = free_group("a b") >>> w = a**5*b*a**2*b**-4*a >>> w.subword(2, 6) a**3*b """ group = self.group if not strict: from_i = max(from_i, 0) to_j = min(len(self), to_j) if from_i < 0 or to_j > len(self): raise ValueError("`from_i`, `to_j` must be positive and no greater than " "the length of associative word") if to_j <= from_i: return group.identity else: letter_form = self.letter_form[from_i: to_j] array_form = letter_form_to_array_form(letter_form, group) return group.dtype(array_form) def subword_index(self, word, start = 0): ''' Find the index of `word` in `self`. Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> f, a, b = free_group("a b") >>> w = a**2*b*a*b**3 >>> w.subword_index(a*b*a*b) 1 ''' l = len(word) self_lf = self.letter_form word_lf = word.letter_form index = None for i in range(start,len(self_lf)-l+1): if self_lf[i:i+l] == word_lf: index = i break if index is not None: return index else: raise ValueError("The given word is not a subword of self") def is_dependent(self, word): """ Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> F, x, y = free_group("x, y") >>> (x**4*y**-3).is_dependent(x**4*y**-2) True >>> (x**2*y**-1).is_dependent(x*y) False >>> (x*y**2*x*y**2).is_dependent(x*y**2) True >>> (x**12).is_dependent(x**-4) True See Also ======== is_independent """ try: return self.subword_index(word) != None except ValueError: pass try: return self.subword_index(word**-1) != None except ValueError: return False def is_independent(self, word): """ See Also ======== is_dependent """ return not self.is_dependent(word) def contains_generators(self): """ Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> F, x, y, z = free_group("x, y, z") >>> (x**2*y**-1).contains_generators() {x, y} >>> (x**3*z).contains_generators() {x, z} """ group = self.group gens = set() for syllable in self.array_form: gens.add(group.dtype(((syllable[0], 1),))) return set(gens) def cyclic_subword(self, from_i, to_j): group = self.group l = len(self) letter_form = self.letter_form period1 = int(from_i/l) if from_i >= l: from_i -= l*period1 to_j -= l*period1 diff = to_j - from_i word = letter_form[from_i: to_j] period2 = int(to_j/l) - 1 word += letter_form*period2 + letter_form[:diff-l+from_i-l*period2] word = letter_form_to_array_form(word, group) return group.dtype(word) def cyclic_conjugates(self): """Returns a words which are cyclic to the word `self`. References ========== http://planetmath.org/cyclicpermutation Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> F, x, y = free_group("x, y") >>> w = x*y*x*y*x >>> w.cyclic_conjugates() {x*y*x**2*y, x**2*y*x*y, y*x*y*x**2, y*x**2*y*x, x*y*x*y*x} >>> s = x*y*x**2*y*x >>> s.cyclic_conjugates() {x**2*y*x**2*y, y*x**2*y*x**2, x*y*x**2*y*x} """ return {self.cyclic_subword(i, i+len(self)) for i in range(len(self))} def is_cyclic_conjugate(self, w): """ Checks whether words ``self``, ``w`` are cyclic conjugates. Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> F, x, y = free_group("x, y") >>> w1 = x**2*y**5 >>> w2 = x*y**5*x >>> w1.is_cyclic_conjugate(w2) True >>> w3 = x**-1*y**5*x**-1 >>> w3.is_cyclic_conjugate(w2) False """ l1 = len(self) l2 = len(w) if l1 != l2: return False w1 = self.identity_cyclic_reduction() w2 = w.identity_cyclic_reduction() letter1 = w1.letter_form letter2 = w2.letter_form str1 = ' '.join(map(str, letter1)) str2 = ' '.join(map(str, letter2)) if len(str1) != len(str2): return False return str1 in str2 + ' ' + str2 def number_syllables(self): """Returns the number of syllables of the associative word `self`. Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> f, swapnil0, swapnil1 = free_group("swapnil0 swapnil1") >>> (swapnil1**3*swapnil0*swapnil1**-1).number_syllables() 3 """ return len(self.array_form) def exponent_syllable(self, i): """ Returns the exponent of the `i`-th syllable of the associative word `self`. Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> f, a, b = free_group("a b") >>> w = a**5*b*a**2*b**-4*a >>> w.exponent_syllable( 2 ) 2 """ return self.array_form[i][1] def generator_syllable(self, i): """ Returns the symbol of the generator that is involved in the i-th syllable of the associative word `self`. Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> f, a, b = free_group("a b") >>> w = a**5*b*a**2*b**-4*a >>> w.generator_syllable( 3 ) b """ return self.array_form[i][0] def sub_syllables(self, from_i, to_j): """ `sub_syllables` returns the subword of the associative word `self` that consists of syllables from positions `from_to` to `to_j`, where `from_to` and `to_j` must be positive integers and indexing is done with origin 0. Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> f, a, b = free_group("a, b") >>> w = a**5*b*a**2*b**-4*a >>> w.sub_syllables(1, 2) b >>> w.sub_syllables(3, 3) <identity> """ if not isinstance(from_i, int) or not isinstance(to_j, int): raise ValueError("both arguments should be integers") group = self.group if to_j <= from_i: return group.identity else: r = tuple(self.array_form[from_i: to_j]) return group.dtype(r) def substituted_word(self, from_i, to_j, by): """ Returns the associative word obtained by replacing the subword of `self` that begins at position `from_i` and ends at position `to_j - 1` by the associative word `by`. `from_i` and `to_j` must be positive integers, indexing is done with origin 0. In other words, `w.substituted_word(w, from_i, to_j, by)` is the product of the three words: `w.subword(0, from_i)`, `by`, and `w.subword(to_j len(w))`. See Also ======== eliminate_word """ lw = len(self) if from_i >= to_j or from_i > lw or to_j > lw: raise ValueError("values should be within bounds") # otherwise there are four possibilities # first if from=1 and to=lw then if from_i == 0 and to_j == lw: return by elif from_i == 0: # second if from_i=1 (and to_j < lw) then return by*self.subword(to_j, lw) elif to_j == lw: # third if to_j=1 (and from_i > 1) then return self.subword(0, from_i)*by else: # finally return self.subword(0, from_i)*by*self.subword(to_j, lw) def is_cyclically_reduced(self): r"""Returns whether the word is cyclically reduced or not. A word is cyclically reduced if by forming the cycle of the word, the word is not reduced, i.e a word w = `a_1 ... a_n` is called cyclically reduced if `a_1 \ne a_n^{−1}`. Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> F, x, y = free_group("x, y") >>> (x**2*y**-1*x**-1).is_cyclically_reduced() False >>> (y*x**2*y**2).is_cyclically_reduced() True """ if not self: return True return self[0] != self[-1]**-1 def identity_cyclic_reduction(self): """Return a unique cyclically reduced version of the word. Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> F, x, y = free_group("x, y") >>> (x**2*y**2*x**-1).identity_cyclic_reduction() x*y**2 >>> (x**-3*y**-1*x**5).identity_cyclic_reduction() x**2*y**-1 References ========== http://planetmath.org/cyclicallyreduced """ word = self.copy() group = self.group while not word.is_cyclically_reduced(): exp1 = word.exponent_syllable(0) exp2 = word.exponent_syllable(-1) r = exp1 + exp2 if r == 0: rep = word.array_form[1: word.number_syllables() - 1] else: rep = ((word.generator_syllable(0), exp1 + exp2),) + \ word.array_form[1: word.number_syllables() - 1] word = group.dtype(rep) return word def cyclic_reduction(self, removed=False): """Return a cyclically reduced version of the word. Unlike `identity_cyclic_reduction`, this will not cyclically permute the reduced word - just remove the "unreduced" bits on either side of it. Compare the examples with those of `identity_cyclic_reduction`. When `removed` is `True`, return a tuple `(word, r)` where self `r` is such that before the reduction the word was either `r*word*r**-1`. Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> F, x, y = free_group("x, y") >>> (x**2*y**2*x**-1).cyclic_reduction() x*y**2 >>> (x**-3*y**-1*x**5).cyclic_reduction() y**-1*x**2 >>> (x**-3*y**-1*x**5).cyclic_reduction(removed=True) (y**-1*x**2, x**-3) """ word = self.copy() group = self.group g = self.group.identity while not word.is_cyclically_reduced(): exp1 = abs(word.exponent_syllable(0)) exp2 = abs(word.exponent_syllable(-1)) exp = min(exp1, exp2) start = word[0]**abs(exp) end = word[-1]**abs(exp) word = start**-1*word*end**-1 g = g*start if removed: return word, g return word def power_of(self, other): ''' Check if `self == other**n` for some integer n. Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> F, x, y = free_group("x, y") >>> ((x*y)**2).power_of(x*y) True >>> (x**-3*y**-2*x**3).power_of(x**-3*y*x**3) True ''' if self.is_identity: return True l = len(other) if l == 1: # self has to be a power of one generator gens = self.contains_generators() s = other in gens or other**-1 in gens return len(gens) == 1 and s # if self is not cyclically reduced and it is a power of other, # other isn't cyclically reduced and the parts removed during # their reduction must be equal reduced, r1 = self.cyclic_reduction(removed=True) if not r1.is_identity: other, r2 = other.cyclic_reduction(removed=True) if r1 == r2: return reduced.power_of(other) return False if len(self) < l or len(self) % l: return False prefix = self.subword(0, l) if prefix == other or prefix**-1 == other: rest = self.subword(l, len(self)) return rest.power_of(other) return False def letter_form_to_array_form(array_form, group): """ This method converts a list given with possible repetitions of elements in it. It returns a new list such that repetitions of consecutive elements is removed and replace with a tuple element of size two such that the first index contains `value` and the second index contains the number of consecutive repetitions of `value`. """ a = list(array_form[:]) new_array = [] n = 1 symbols = group.symbols for i in range(len(a)): if i == len(a) - 1: if a[i] == a[i - 1]: if (-a[i]) in symbols: new_array.append((-a[i], -n)) else: new_array.append((a[i], n)) else: if (-a[i]) in symbols: new_array.append((-a[i], -1)) else: new_array.append((a[i], 1)) return new_array elif a[i] == a[i + 1]: n += 1 else: if (-a[i]) in symbols: new_array.append((-a[i], -n)) else: new_array.append((a[i], n)) n = 1 def zero_mul_simp(l, index): """Used to combine two reduced words.""" while index >=0 and index < len(l) - 1 and l[index][0] == l[index + 1][0]: exp = l[index][1] + l[index + 1][1] base = l[index][0] l[index] = (base, exp) del l[index + 1] if l[index][1] == 0: del l[index] index -= 1
e4b140bd4a3681c4aff2b85b0c7660c38588549f
9c0eebdeb427db1ea1ce33987947e22b2c897440
/map.py
1925fc08dc7034e1f11acc9e148e356e5ec8fb80
[]
no_license
dkotenko/npuzz
6d52c2ca9d733c8d59450af65f89c8bbac938134
461a864659893ec8276fafe3e58f73d853d1e42c
refs/heads/main
2023-06-22T06:30:10.979771
2021-07-13T23:54:21
2021-07-13T23:54:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,075
py
from Printer import Printer import sys def parse_int(s): n = 0 try: n = int(s) except ValueError: s_value = s.strip() if s.strip() else '{empty value}' Printer.print_error_exit(f"map error: string {s_value} is not an integer") return n def validate_map(b): nums = [parse_int(s) for s in b.split("/")] dict_count = {i: nums.count(i) for i in nums} if max(dict_count.values()) > 1: [Printer.print_error(f'map error: duplicated number {key}') for key, val in dict_count if val > 1] sys.exit(1) if list(filter(lambda x: x >= len(nums) or x < 0, nums)): for n in nums: if n >= len(nums) or n < 1: Printer.print_error(f'map error: invalid number {n}: must be in range 0:{int(math.sqrt(nums))}') sys.exit(1) def parse_map(file_name): try: f = open(file_name) except FileNotFoundError: Printer.print_error_exit(f"there is no file {file_name}") with open(file_name, "r") as file: bb = '' line = file.readline() l_p = line.partition('#')[0] while not l_p: line = file.readline() l_p = line.partition("#")[0] size_matr = parse_int(l_p) line = file.readline() n_str = 1 while line: line = line.partition('#')[0] while not line: line = file.readline() line = line.partition("#")[0] plus = '/'.join(line.split()) bb += '/'.join(line.split()) bb += '/' # где конец строки нечего заменять =( line = file.readline() if (len(plus.split('/'))) != size_matr: Printer.print_error_exit(f"invalid map: invalid values number at row {n_str}") exit(0) n_str += 1 bb = bb[0: -1] if (n_str - 1) != size_matr: Printer.print_error_exit(f'invalid map: invalid rows number = {n_str - 1}') return bb
d58c5d69ac4d4936a7aeabe6f33219107db46479
56f5b2ea36a2258b8ca21e2a3af9a5c7a9df3c6e
/CMGTools/H2TauTau/prod/25aug_corrMC/up/mc/SUSYBBHToTauTau_M-1000_8TeV-pythia6-tauola/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/PAT_CMG_V5_16_0_1377467519/HTT_24Jul_newTES_manzoni_Up_Jobs/Job_7/run_cfg.py
ecd7e088550ddaf95adcd0944c067d9074645308
[]
no_license
rmanzoni/HTT
18e6b583f04c0a6ca10142d9da3dd4c850cddabc
a03b227073b2d4d8a2abe95367c014694588bf98
refs/heads/master
2016-09-06T05:55:52.602604
2014-02-20T16:35:34
2014-02-20T16:35:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,161
py
import FWCore.ParameterSet.Config as cms import os,sys sys.path.append('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/H2TauTau/prod/25aug_corrMC/up/mc/SUSYBBHToTauTau_M-1000_8TeV-pythia6-tauola/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/PAT_CMG_V5_16_0_1377467519/HTT_24Jul_newTES_manzoni_Up_Jobs') from base_cfg import * process.source = cms.Source("PoolSource", noEventSort = cms.untracked.bool(True), inputCommands = cms.untracked.vstring('keep *', 'drop cmgStructuredPFJets_cmgStructuredPFJetSel__PAT'), duplicateCheckMode = cms.untracked.string('noDuplicateCheck'), fileNames = cms.untracked.vstring('/store/cmst3/group/cmgtools/CMG/SUSYBBHToTauTau_M-1000_8TeV-pythia6-tauola/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/PAT_CMG_V5_16_0/cmgTuple_26_1_qK2.root', '/store/cmst3/group/cmgtools/CMG/SUSYBBHToTauTau_M-1000_8TeV-pythia6-tauola/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/PAT_CMG_V5_16_0/cmgTuple_27_1_vSH.root', '/store/cmst3/group/cmgtools/CMG/SUSYBBHToTauTau_M-1000_8TeV-pythia6-tauola/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/PAT_CMG_V5_16_0/cmgTuple_28_1_O6M.root') )
ecc3e6b8d119081e510084e3005d631f9d895d53
23c4f6d8a2a6b97077628c2a012b2b402c816d91
/LeetCode算法题/0190_颠倒二进制位/颠倒二进制.py
a253597ca1dc577aa84d9985492621b0937a38bc
[]
no_license
exueyuanAlgorithm/AlgorithmDemo
7ef6ff8104e8da5a81037795184115fb0ac8ca9a
d34d4b592d05e9e0e724d8834eaf9587a64c5034
refs/heads/master
2023-07-16T19:00:05.664780
2021-09-04T11:31:07
2021-09-04T11:31:07
277,327,574
0
0
null
null
null
null
UTF-8
Python
false
false
405
py
class Solution: def reverseBits(self, n: int) -> int: result_num = 0 for i in range(31): if n % 2 == 1: result_num = result_num + 1 << 1 else: result_num = result_num << 1 n = n >> 1 if n % 2 == 1: result_num += 1 return result_num solution = Solution() print(solution.reverseBits(0b111))
bcd1c2f1c3fdc0f2088fe69ccbcb0cb8fb88b0de
960dd60c263cea329e27584b03bb430b025fe05a
/venv/lib/python3.6/site-packages/bigquery/client.py
eedafc23b7799a04e4b141860937b508bc7d12ac
[]
no_license
RuchiBhardwaj/covid_pipeline
18b3c0ae5836487b150ad112d86e312544d19f9d
f21a98593383caed532b9e7178e70172984cd635
refs/heads/master
2022-12-04T09:02:47.076901
2020-06-08T14:12:18
2020-06-08T14:12:18
268,835,744
0
2
null
2022-11-27T19:32:17
2020-06-02T15:17:20
Python
UTF-8
Python
false
false
70,802
py
import calendar import json from logging import getLogger, NullHandler from collections import defaultdict from datetime import datetime, timedelta from hashlib import sha256 from io import StringIO from time import sleep, time from functools import reduce import six from bigquery.errors import (BigQueryTimeoutException, JobExecutingException, JobInsertException, UnfinishedQueryException) from googleapiclient.discovery import build, DISCOVERY_URI from googleapiclient.errors import HttpError from httplib2 import Http BIGQUERY_SCOPE = [ 'https://www.googleapis.com/auth/bigquery' ] BIGQUERY_SCOPE_READ_ONLY = [ 'https://www.googleapis.com/auth/bigquery.readonly' ] CACHE_TIMEOUT = timedelta(seconds=30) JOB_CREATE_IF_NEEDED = 'CREATE_IF_NEEDED' JOB_CREATE_NEVER = 'CREATE_NEVER' JOB_WRITE_TRUNCATE = 'WRITE_TRUNCATE' JOB_WRITE_APPEND = 'WRITE_APPEND' JOB_WRITE_EMPTY = 'WRITE_EMPTY' JOB_ENCODING_UTF_8 = 'UTF-8' JOB_ENCODING_ISO_8859_1 = 'ISO-8859-1' JOB_PRIORITY_INTERACTIVE = 'INTERACTIVE' JOB_PRIORITY_BATCH = 'BATCH' JOB_COMPRESSION_NONE = 'NONE' JOB_COMPRESSION_GZIP = 'GZIP' JOB_FORMAT_CSV = 'CSV' JOB_FORMAT_NEWLINE_DELIMITED_JSON = 'NEWLINE_DELIMITED_JSON' JOB_SOURCE_FORMAT_DATASTORE_BACKUP = 'DATASTORE_BACKUP' JOB_SOURCE_FORMAT_NEWLINE_DELIMITED_JSON = JOB_FORMAT_NEWLINE_DELIMITED_JSON JOB_SOURCE_FORMAT_CSV = JOB_FORMAT_CSV JOB_DESTINATION_FORMAT_AVRO = 'AVRO' JOB_DESTINATION_FORMAT_NEWLINE_DELIMITED_JSON = \ JOB_FORMAT_NEWLINE_DELIMITED_JSON JOB_DESTINATION_FORMAT_CSV = JOB_FORMAT_CSV logger = getLogger(__name__) logger.addHandler(NullHandler()) def get_client(project_id=None, credentials=None, service_url=None, service_account=None, private_key=None, private_key_file=None, json_key=None, json_key_file=None, readonly=True, swallow_results=True, num_retries=0): """Return a singleton instance of BigQueryClient. Either AssertionCredentials or a service account and private key combination need to be provided in order to authenticate requests to BigQuery. Parameters ---------- project_id : str, optional The BigQuery project id, required unless json_key or json_key_file is provided. credentials : oauth2client.client.SignedJwtAssertionCredentials, optional AssertionCredentials instance to authenticate requests to BigQuery (optional, must provide `service_account` and (`private_key` or `private_key_file`) or (`json_key` or `json_key_file`) if not included service_url : str, optional A URI string template pointing to the location of Google's API discovery service. Requires two parameters {api} and {apiVersion} that when filled in produce an absolute URI to the discovery document for that service. If not set then the default googleapiclient discovery URI is used. See `credentials` service_account : str, optional The Google API service account name. See `credentials` private_key : str, optional The private key associated with the service account in PKCS12 or PEM format. See `credentials` private_key_file : str, optional The name of the file containing the private key associated with the service account in PKCS12 or PEM format. See `credentials` json_key : dict, optional The JSON key associated with the service account. See `credentials` json_key_file : str, optional The name of the JSON key file associated with the service account. See `credentials`. readonly : bool Bool indicating if BigQuery access is read-only. Has no effect if credentials are provided. Default True. swallow_results : bool If set to False, then return the actual response value instead of converting to boolean. Default True. num_retries : int, optional The number of times to retry the request. Default 0 (no retry). Returns ------- BigQueryClient An instance of the BigQuery client. """ if not credentials: assert (service_account and (private_key or private_key_file)) or ( json_key or json_key_file), \ 'Must provide AssertionCredentials or service account and P12 key\ or JSON key' if not project_id: assert json_key or json_key_file, \ 'Must provide project_id unless json_key or json_key_file is\ provided' if service_url is None: service_url = DISCOVERY_URI scope = BIGQUERY_SCOPE_READ_ONLY if readonly else BIGQUERY_SCOPE if private_key_file: credentials = _credentials().from_p12_keyfile(service_account, private_key_file, scopes=scope) if private_key: try: if isinstance(private_key, basestring): private_key = private_key.decode('utf-8') except NameError: # python3 -- private_key is already unicode pass credentials = _credentials().from_p12_keyfile_buffer( service_account, StringIO(private_key), scopes=scope) if json_key_file: with open(json_key_file, 'r') as key_file: json_key = json.load(key_file) if json_key: credentials = _credentials().from_json_keyfile_dict(json_key, scopes=scope) if not project_id: project_id = json_key['project_id'] bq_service = _get_bq_service(credentials=credentials, service_url=service_url) return BigQueryClient(bq_service, project_id, swallow_results, num_retries) def get_projects(bq_service): """Given the BigQuery service, return data about all projects.""" projects_request = bq_service.projects().list().execute() projects = [] for project in projects_request.get('projects', []): project_data = { 'id': project['id'], 'name': project['friendlyName'] } projects.append(project_data) return projects def _get_bq_service(credentials=None, service_url=None): """Construct an authorized BigQuery service object.""" assert credentials, 'Must provide ServiceAccountCredentials' http = credentials.authorize(Http()) service = build( 'bigquery', 'v2', http=http, discoveryServiceUrl=service_url, cache_discovery=False ) return service def _credentials(): """Import and return SignedJwtAssertionCredentials class""" from oauth2client.service_account import ServiceAccountCredentials return ServiceAccountCredentials class BigQueryClient(object): def __init__(self, bq_service, project_id, swallow_results=True, num_retries=0): self.bigquery = bq_service self.project_id = project_id self.swallow_results = swallow_results self.num_retries = num_retries self.cache = {} def _get_project_id(self, project_id=None): """ Get new project_id Default is self.project_id, which is the project client authenticate to. A new project_id is specified when client wants to authenticate to 1 project, but run jobs in a different project. Parameters ---------- project_id : str BigQuery project_id Returns ------- project_id: BigQuery project_id """ if project_id is None: project_id = self.project_id return project_id def _submit_query_job(self, query_data): """ Submit a query job to BigQuery. This is similar to BigQueryClient.query, but gives the user direct access to the query method on the offical BigQuery python client. For fine-grained control over a query job, see: https://google-api-client-libraries.appspot.com/documentation/bigquery/v2/python/latest/bigquery_v2.jobs.html#query Parameters ---------- query_data query object as per "configuration.query" in https://cloud.google.com/bigquery/docs/reference/v2/jobs#configuration.query Returns ------- tuple job id and query results if query completed. If dry_run is True, job id will be None and results will be [cacheHit and totalBytesProcessed] if the query is valid or a dict containing the response if invalid. Raises ------ BigQueryTimeoutException On timeout """ logger.debug('Submitting query job: %s' % query_data) job_collection = self.bigquery.jobs() try: query_reply = job_collection.query( projectId=self.project_id, body=query_data).execute( num_retries=self.num_retries) except HttpError as e: if query_data.get("dryRun", False): return None, json.loads(e.content.decode('utf8')) raise job_id = query_reply['jobReference'].get('jobId') schema = query_reply.get('schema', {'fields': None})['fields'] rows = query_reply.get('rows', []) job_complete = query_reply.get('jobComplete', False) cache_hit = query_reply['cacheHit'] total_bytes_processed = query_reply['totalBytesProcessed'] # raise exceptions if it's not an async query # and job is not completed after timeout if not job_complete and query_data.get("timeoutMs", False): logger.error('BigQuery job %s timeout' % job_id) raise BigQueryTimeoutException() if query_data.get("dryRun", True): return job_id, [cache_hit, total_bytes_processed] return job_id, [self._transform_row(row, schema) for row in rows] def _get_job_reference(self, job_id): """ Get job reference from job_id For more details, see: https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#resource Parameters ---------- job_id: Id of the job Returns ------- job_reference: json of job_reference """ job_reference = { "projectId": self.project_id, "jobId": job_id } return job_reference def _insert_job(self, body_object): """ Submit a job to BigQuery Direct proxy to the insert() method of the offical BigQuery python client. Able to submit load, link, query, copy, or extract jobs. For more details, see: https://google-api-client-libraries.appspot.com/documentation/bigquery/v2/python/latest/bigquery_v2.jobs.html#insert Parameters ---------- body_object : body object passed to bigquery.jobs().insert() Returns ------- response of the bigquery.jobs().insert().execute() call Raises ------ BigQueryTimeoutException on timeout """ logger.debug('Submitting job: %s' % body_object) job_collection = self.bigquery.jobs() return job_collection.insert( projectId=self.project_id, body=body_object ).execute(num_retries=self.num_retries) def query(self, query, max_results=None, timeout=0, dry_run=False, use_legacy_sql=None, external_udf_uris=None): """Submit a query to BigQuery. Parameters ---------- query : str BigQuery query string max_results : int, optional The maximum number of rows to return per page of results. timeout : float, optional How long to wait for the query to complete, in seconds before the request times out and returns. dry_run : bool, optional If True, the query isn't actually run. A valid query will return cache hit, and total bytes processed, while an invalid one will return the same error message it would if it wasn't a dry run. use_legacy_sql : bool, optional. Default True. If False, the query will use BigQuery's standard SQL (https://cloud.google.com/bigquery/sql-reference/) external_udf_uris : list, optional Contains external UDF URIs. If given, URIs must be Google Cloud Storage and have .js extensions. Returns ------- tuple (job id, query results) if the query completed. If dry_run is True, job id will be None and results will be [cacheHit and totalBytesProcessed] if the query is valid or a ``dict`` containing the response if invalid. Raises ------ BigQueryTimeoutException on timeout """ logger.debug('Executing query: %s' % query) query_data = { 'query': query, 'timeoutMs': timeout * 1000, 'dryRun': dry_run, 'maxResults': max_results } if use_legacy_sql is not None: query_data['useLegacySql'] = use_legacy_sql if external_udf_uris: query_data['userDefinedFunctionResources'] = \ [ {'resourceUri': u} for u in external_udf_uris ] return self._submit_query_job(query_data) def get_query_schema(self, job_id): """Retrieve the schema of a query by job id. Parameters ---------- job_id : str The job_id that references a BigQuery query Returns ------- list A ``list`` of ``dict`` objects that represent the schema. """ query_reply = self.get_query_results(job_id, offset=0, limit=0) if not query_reply['jobComplete']: logger.warning('BigQuery job %s not complete' % job_id) raise UnfinishedQueryException() return query_reply['schema']['fields'] def get_table_schema(self, dataset, table, project_id=None): """Return the table schema. Parameters ---------- dataset : str The dataset containing the `table`. table : str The table to get the schema for project_id: str, optional The project of the dataset. Returns ------- list A ``list`` of ``dict`` objects that represent the table schema. If the table doesn't exist, None is returned. """ project_id = self._get_project_id(project_id) try: result = self.bigquery.tables().get( projectId=project_id, tableId=table, datasetId=dataset).execute(num_retries=self.num_retries) except HttpError as e: if int(e.resp['status']) == 404: logger.warn('Table %s.%s does not exist', dataset, table) return None raise return result['schema']['fields'] def check_job(self, job_id): """Return the state and number of results of a query by job id. Parameters ---------- job_id : str The job id of the query to check. Returns ------- tuple (``bool``, ``int``) Whether or not the query has completed and the total number of rows included in the query table if it has completed (else 0) """ query_reply = self.get_query_results(job_id, offset=0, limit=0) return (query_reply.get('jobComplete', False), int(query_reply.get('totalRows', 0))) def get_query_rows(self, job_id, offset=None, limit=None, timeout=0): """Retrieve a list of rows from a query table by job id. This method will append results from multiple pages together. If you want to manually page through results, you can use `get_query_results` method directly. Parameters ---------- job_id : str The job id that references a BigQuery query. offset : int, optional The offset of the rows to pull from BigQuery limit : int, optional The number of rows to retrieve from a query table. timeout : float, optional Timeout in seconds. Returns ------- list A ``list`` of ``dict`` objects that represent table rows. """ # Get query results query_reply = self.get_query_results(job_id, offset=offset, limit=limit, timeout=timeout) if not query_reply['jobComplete']: logger.warning('BigQuery job %s not complete' % job_id) raise UnfinishedQueryException() schema = query_reply["schema"]["fields"] rows = query_reply.get('rows', []) page_token = query_reply.get("pageToken") records = [self._transform_row(row, schema) for row in rows] # Append to records if there are multiple pages for query results while page_token and (not limit or len(records) < limit): query_reply = self.get_query_results( job_id, offset=offset, limit=limit, page_token=page_token, timeout=timeout) page_token = query_reply.get("pageToken") rows = query_reply.get('rows', []) records += [self._transform_row(row, schema) for row in rows] return records[:limit] if limit else records def check_dataset(self, dataset_id, project_id=None): """Check to see if a dataset exists. Parameters ---------- dataset_id : str Dataset unique id project_id: str, optional The project the dataset is in Returns ------- bool True if dataset at `dataset_id` exists, else Fasle """ dataset = self.get_dataset(dataset_id, project_id) return bool(dataset) def get_dataset(self, dataset_id, project_id=None): """Retrieve a dataset if it exists, otherwise return an empty dict. Parameters ---------- dataset_id : str Dataset unique id project_id: str, optional The project the dataset is in Returns ------- dict Contains dataset object if it exists, else empty """ project_id = self._get_project_id(project_id) try: dataset = self.bigquery.datasets().get( projectId=project_id, datasetId=dataset_id).execute( num_retries=self.num_retries) except HttpError: dataset = {} return dataset def check_table(self, dataset, table, project_id=None): """Check to see if a table exists. Parameters ---------- dataset : str The dataset to check table : str The name of the table project_id: str, optional The project the table is in Returns ------- bool True if table exists, else False """ table = self.get_table(dataset, table, project_id) return bool(table) def get_table(self, dataset, table, project_id=None): """ Retrieve a table if it exists, otherwise return an empty dict. Parameters ---------- dataset : str The dataset that the table is in table : str The name of the table project_id: str, optional The project that the table is in Returns ------- dict Containing the table object if it exists, else empty """ project_id = self._get_project_id(project_id) try: table = self.bigquery.tables().get( projectId=project_id, datasetId=dataset, tableId=table).execute(num_retries=self.num_retries) except HttpError: table = {} return table def create_table(self, dataset, table, schema, expiration_time=None, time_partitioning=False, project_id=None): """Create a new table in the dataset. Parameters ---------- dataset : str The dataset to create the table in table : str The name of the table to create schema : dict The table schema expiration_time : int or double, optional The expiry time in milliseconds since the epoch. time_partitioning : bool, optional Create a time partitioning. project_id: str, optional The project to create the table in Returns ------- Union[bool, dict] If the table was successfully created, or response from BigQuery if swallow_results is set to False """ project_id = self._get_project_id(project_id) body = { 'schema': {'fields': schema}, 'tableReference': { 'tableId': table, 'projectId': project_id, 'datasetId': dataset } } if expiration_time is not None: body['expirationTime'] = expiration_time if time_partitioning: body['timePartitioning'] = {'type': 'DAY'} try: table = self.bigquery.tables().insert( projectId=project_id, datasetId=dataset, body=body ).execute(num_retries=self.num_retries) if self.swallow_results: return True else: return table except HttpError as e: logger.error(('Cannot create table {0}.{1}.{2}\n' 'Http Error: {3}').format(project_id, dataset, table, e.content)) if self.swallow_results: return False else: return {} def update_table(self, dataset, table, schema, project_id=None): """Update an existing table in the dataset. Parameters ---------- dataset : str The dataset to update the table in table : str The name of the table to update schema : dict Table schema project_id: str, optional The project to update the table in Returns ------- Union[bool, dict] bool indicating if the table was successfully updated or not, or response from BigQuery if swallow_results is set to False. """ project_id = self._get_project_id(project_id) body = { 'schema': {'fields': schema}, 'tableReference': { 'tableId': table, 'projectId': project_id, 'datasetId': dataset } } try: result = self.bigquery.tables().update( projectId=project_id, tableId= table, datasetId=dataset, body=body ).execute(num_retries=self.num_retries) if self.swallow_results: return True else: return result except HttpError as e: logger.error(('Cannot update table {0}.{1}.{2}\n' 'Http Error: {3}').format(project_id, dataset, table, e.content)) if self.swallow_results: return False else: return {} def patch_table(self, dataset, table, schema, project_id=None): """Patch an existing table in the dataset. Parameters ---------- dataset : str The dataset to patch the table in table : str The name of the table to patch schema : dict The table schema project_id: str, optional The project to patch the table in Returns ------- Union[bool, dict] Bool indicating if the table was successfully patched or not, or response from BigQuery if swallow_results is set to False """ project_id = self._get_project_id(project_id) body = { 'schema': {'fields': schema}, } try: result = self.bigquery.tables().patch( projectId=project_id, datasetId=dataset, tableId=table, body=body ).execute(num_retries=self.num_retries) if self.swallow_results: return True else: return result except HttpError as e: logger.error(('Cannot patch table {0}.{1}.{2}\n' 'Http Error: {3}').format(project_id, dataset, table, e.content)) if self.swallow_results: return False else: return {} def create_view(self, dataset, view, query, use_legacy_sql=None, project_id=None): """Create a new view in the dataset. Parameters ---------- dataset : str The dataset to create the view in view : str The name of the view to create query : dict A query that BigQuery executes when the view is referenced. use_legacy_sql : bool, optional If False, the query will use BigQuery's standard SQL (https://cloud.google.com/bigquery/sql-reference/) project_id: str, optional The project to create the view in Returns ------- Union[bool, dict] bool indicating if the view was successfully created or not, or response from BigQuery if swallow_results is set to False. """ project_id = self._get_project_id(project_id) body = { 'tableReference': { 'tableId': view, 'projectId': project_id, 'datasetId': dataset }, 'view': { 'query': query } } if use_legacy_sql is not None: body['view']['useLegacySql'] = use_legacy_sql try: view = self.bigquery.tables().insert( projectId=project_id, datasetId=dataset, body=body ).execute(num_retries=self.num_retries) if self.swallow_results: return True else: return view except HttpError as e: logger.error(('Cannot create view {0}.{1}\n' 'Http Error: {2}').format(dataset, view, e.content)) if self.swallow_results: return False else: return {} def delete_table(self, dataset, table, project_id=None): """Delete a table from the dataset. Parameters ---------- dataset : str The dataset to delete the table from. table : str The name of the table to delete project_id: str, optional String id of the project Returns ------- Union[bool, dict] bool indicating if the table was successfully deleted or not, or response from BigQuery if swallow_results is set for False. """ project_id = self._get_project_id(project_id) try: response = self.bigquery.tables().delete( projectId=project_id, datasetId=dataset, tableId=table ).execute(num_retries=self.num_retries) if self.swallow_results: return True else: return response except HttpError as e: logger.error(('Cannot delete table {0}.{1}\n' 'Http Error: {2}').format(dataset, table, e.content)) if self.swallow_results: return False else: return {} def get_tables(self, dataset_id, app_id, start_time, end_time, project_id=None): """Retrieve a list of tables that are related to the given app id and are inside the range of start and end times. Parameters ---------- dataset_id : str The BigQuery dataset id to consider. app_id : str The appspot name start_time : Union[datetime, int] The datetime or unix time after which records will be fetched. end_time : Union[datetime, int] The datetime or unix time up to which records will be fetched. project_id: str, optional String id of the project Returns ------- list A ``list`` of table names. """ if isinstance(start_time, datetime): start_time = calendar.timegm(start_time.utctimetuple()) if isinstance(end_time, datetime): end_time = calendar.timegm(end_time.utctimetuple()) every_table = self._get_all_tables(dataset_id, project_id) app_tables = every_table.get(app_id, {}) return self._filter_tables_by_time(app_tables, start_time, end_time) def import_data_from_uris( self, source_uris, dataset, table, schema=None, job=None, source_format=None, create_disposition=None, write_disposition=None, encoding=None, ignore_unknown_values=None, max_bad_records=None, allow_jagged_rows=None, allow_quoted_newlines=None, field_delimiter=None, quote=None, skip_leading_rows=None, project_id=None, ): """ Imports data into a BigQuery table from cloud storage. Optional arguments that are not specified are determined by BigQuery as described: https://developers.google.com/bigquery/docs/reference/v2/jobs Parameters ---------- source_urls : list A ``list`` of ``str`` objects representing the urls on cloud storage of the form: gs://bucket/filename dataset : str String id of the dataset table : str String id of the table schema : list, optional Represents the BigQuery schema job : str, optional Identifies the job (a unique job id is automatically generated if not provided) source_format : str, optional One of the JOB_SOURCE_FORMAT_* constants create_disposition : str, optional One of the JOB_CREATE_* constants write_disposition : str, optional One of the JOB_WRITE_* constants encoding : str, optional One of the JOB_ENCODING_* constants ignore_unknown_values : bool, optional Whether or not to ignore unknown values max_bad_records : int, optional Maximum number of bad records allow_jagged_rows : bool, optional For csv only allow_quoted_newlines : bool, optional For csv only field_delimiter : str, optional For csv only quote : str, optional Quote character for csv only skip_leading_rows : int, optional For csv only project_id: str, optional String id of the project Returns ------- dict A BigQuery job response Raises ------ JobInsertException on http/auth failures or error in result """ source_uris = source_uris if isinstance(source_uris, list) \ else [source_uris] project_id = self._get_project_id(project_id) configuration = { "destinationTable": { "projectId": project_id, "tableId": table, "datasetId": dataset }, "sourceUris": source_uris, } if max_bad_records: configuration['maxBadRecords'] = max_bad_records if ignore_unknown_values: configuration['ignoreUnknownValues'] = ignore_unknown_values if create_disposition: configuration['createDisposition'] = create_disposition if write_disposition: configuration['writeDisposition'] = write_disposition if encoding: configuration['encoding'] = encoding if schema: configuration['schema'] = {'fields': schema} if source_format: configuration['sourceFormat'] = source_format if not job: hex = self._generate_hex_for_uris(source_uris) job = "{dataset}-{table}-{digest}".format( dataset=dataset, table=table, digest=hex ) if source_format == JOB_SOURCE_FORMAT_CSV: if field_delimiter: configuration['fieldDelimiter'] = field_delimiter if allow_jagged_rows: configuration['allowJaggedRows'] = allow_jagged_rows if allow_quoted_newlines: configuration['allowQuotedNewlines'] = allow_quoted_newlines if quote: configuration['quote'] = quote if skip_leading_rows: configuration['skipLeadingRows'] = skip_leading_rows elif field_delimiter or allow_jagged_rows \ or allow_quoted_newlines or quote or skip_leading_rows: all_values = dict(field_delimiter=field_delimiter, allow_jagged_rows=allow_jagged_rows, allow_quoted_newlines=allow_quoted_newlines, skip_leading_rows=skip_leading_rows, quote=quote) non_null_values = dict((k, v) for k, v in list(all_values.items()) if v) raise Exception("Parameters field_delimiter, allow_jagged_rows, " "allow_quoted_newlines, quote and " "skip_leading_rows are only allowed when " "source_format=JOB_SOURCE_FORMAT_CSV: %s" % non_null_values) body = { "configuration": { 'load': configuration }, "jobReference": self._get_job_reference(job) } logger.debug("Creating load job %s" % body) job_resource = self._insert_job(body) self._raise_insert_exception_if_error(job_resource) return job_resource def export_data_to_uris( self, destination_uris, dataset, table, job=None, compression=None, destination_format=None, print_header=None, field_delimiter=None, project_id=None, ): """ Export data from a BigQuery table to cloud storage. Optional arguments that are not specified are determined by BigQuery as described: https://developers.google.com/bigquery/docs/reference/v2/jobs Parameters ---------- destination_uris : Union[str, list] ``str`` or ``list`` of ``str`` objects representing the URIs on cloud storage of the form: gs://bucket/filename dataset : str String id of the dataset table : str String id of the table job : str, optional String identifying the job (a unique jobid is automatically generated if not provided) compression : str, optional One of the JOB_COMPRESSION_* constants destination_format : str, optional One of the JOB_DESTination_FORMAT_* constants print_header : bool, optional Whether or not to print the header field_delimiter : str, optional Character separating fields in delimited file project_id: str, optional String id of the project Returns ------- dict A BigQuery job resource Raises ------ JobInsertException On http/auth failures or error in result """ destination_uris = destination_uris \ if isinstance(destination_uris, list) else [destination_uris] project_id = self._get_project_id(project_id) configuration = { "sourceTable": { "projectId": project_id, "tableId": table, "datasetId": dataset }, "destinationUris": destination_uris, } if compression: configuration['compression'] = compression if destination_format: configuration['destinationFormat'] = destination_format if print_header is not None: configuration['printHeader'] = print_header if field_delimiter: configuration['fieldDelimiter'] = field_delimiter if not job: hex = self._generate_hex_for_uris(destination_uris) job = "{dataset}-{table}-{digest}".format( dataset=dataset, table=table, digest=hex ) body = { "configuration": { 'extract': configuration }, "jobReference": self._get_job_reference(job) } logger.info("Creating export job %s" % body) job_resource = self._insert_job(body) self._raise_insert_exception_if_error(job_resource) return job_resource def write_to_table( self, query, dataset=None, table=None, external_udf_uris=None, allow_large_results=None, use_query_cache=None, priority=None, create_disposition=None, write_disposition=None, use_legacy_sql=None, maximum_billing_tier=None, flatten=None, project_id=None, ): """ Write query result to table. If dataset or table is not provided, Bigquery will write the result to temporary table. Optional arguments that are not specified are determined by BigQuery as described: https://developers.google.com/bigquery/docs/reference/v2/jobs Parameters ---------- query : str BigQuery query string dataset : str, optional String id of the dataset table : str, optional String id of the table external_udf_uris : list, optional Contains external UDF URIs. If given, URIs must be Google Cloud Storage and have .js extensions. allow_large_results : bool, optional Whether or not to allow large results use_query_cache : bool, optional Whether or not to use query cache priority : str, optional One of the JOB_PRIORITY_* constants create_disposition : str, optional One of the JOB_CREATE_* constants write_disposition : str, optional One of the JOB_WRITE_* constants use_legacy_sql: bool, optional If False, the query will use BigQuery's standard SQL (https://cloud.google.com/bigquery/sql-reference/) maximum_billing_tier : integer, optional Limits the billing tier for this job. Queries that have resource usage beyond this tier will fail (without incurring a charge). If unspecified, this will be set to your project default. For more information, see https://cloud.google.com/bigquery/pricing#high-compute flatten : bool, optional Whether or not to flatten nested and repeated fields in query results project_id: str, optional String id of the project Returns ------- dict A BigQuery job resource Raises ------ JobInsertException On http/auth failures or error in result """ configuration = { "query": query, } project_id = self._get_project_id(project_id) if dataset and table: configuration['destinationTable'] = { "projectId": project_id, "tableId": table, "datasetId": dataset } if allow_large_results is not None: configuration['allowLargeResults'] = allow_large_results if flatten is not None: configuration['flattenResults'] = flatten if maximum_billing_tier is not None: configuration['maximumBillingTier'] = maximum_billing_tier if use_query_cache is not None: configuration['useQueryCache'] = use_query_cache if use_legacy_sql is not None: configuration['useLegacySql'] = use_legacy_sql if priority: configuration['priority'] = priority if create_disposition: configuration['createDisposition'] = create_disposition if write_disposition: configuration['writeDisposition'] = write_disposition if external_udf_uris: configuration['userDefinedFunctionResources'] = \ [ {'resourceUri': u} for u in external_udf_uris ] body = { "configuration": { 'query': configuration } } logger.info("Creating write to table job %s" % body) job_resource = self._insert_job(body) self._raise_insert_exception_if_error(job_resource) return job_resource def wait_for_job(self, job, interval=5, timeout=60): """ Waits until the job indicated by job_resource is done or has failed Parameters ---------- job : Union[dict, str] ``dict`` representing a BigQuery job resource, or a ``str`` representing the BigQuery job id interval : float, optional Polling interval in seconds, default = 5 timeout : float, optional Timeout in seconds, default = 60 Returns ------- dict Final state of the job resouce, as described here: https://developers.google.com/resources/api-libraries/documentation/bigquery/v2/python/latest/bigquery_v2.jobs.html#get Raises ------ Union[JobExecutingException, BigQueryTimeoutException] On http/auth failures or timeout """ complete = False job_id = str(job if isinstance(job, (six.binary_type, six.text_type, int)) else job['jobReference']['jobId']) job_resource = None start_time = time() elapsed_time = 0 while not (complete or elapsed_time > timeout): sleep(interval) request = self.bigquery.jobs().get(projectId=self.project_id, jobId=job_id) job_resource = request.execute(num_retries=self.num_retries) self._raise_executing_exception_if_error(job_resource) complete = job_resource.get('status').get('state') == u'DONE' elapsed_time = time() - start_time # raise exceptions if timeout if not complete: logger.error('BigQuery job %s timeout' % job_id) raise BigQueryTimeoutException() return job_resource def push_rows(self, dataset, table, rows, insert_id_key=None, skip_invalid_rows=None, ignore_unknown_values=None, template_suffix=None, project_id=None): """Upload rows to BigQuery table. Parameters ---------- dataset : str The dataset to upload to table : str The name of the table to insert rows into rows : list A ``list`` of rows (``dict`` objects) to add to the table insert_id_key : str, optional Key for insertId in row. You can use dot separated key for nested column. skip_invalid_rows : bool, optional Insert all valid rows of a request, even if invalid rows exist. ignore_unknown_values : bool, optional Accept rows that contain values that do not match the schema. template_suffix : str, optional Inserts the rows into an {table}{template_suffix}. If table {table}{template_suffix} doesn't exist, create from {table}. project_id: str, optional The project to upload to Returns ------- Union[bool, dict] bool indicating if insert succeeded or not, or response from BigQuery if swallow_results is set for False. """ project_id = self._get_project_id(project_id) table_data = self.bigquery.tabledata() rows_data = [] for row in rows: each_row = {} each_row["json"] = row if insert_id_key is not None: keys = insert_id_key.split('.') val = reduce(lambda d, key: d.get(key) if d else None, keys, row) if val is not None: each_row["insertId"] = val rows_data.append(each_row) data = { "kind": "bigquery#tableDataInsertAllRequest", "rows": rows_data } if skip_invalid_rows is not None: data['skipInvalidRows'] = skip_invalid_rows if ignore_unknown_values is not None: data['ignoreUnknownValues'] = ignore_unknown_values if template_suffix is not None: data['templateSuffix'] = template_suffix try: response = table_data.insertAll( projectId=project_id, datasetId=dataset, tableId=table, body=data ).execute(num_retries=self.num_retries) if response.get('insertErrors'): logger.error('BigQuery insert errors: %s' % response) if self.swallow_results: return False else: return response if self.swallow_results: return True else: return response except HttpError as e: logger.exception('Problem with BigQuery insertAll') if self.swallow_results: return False else: return { 'insertErrors': [{ 'errors': [{ 'reason': 'httperror', 'message': e }] }] } def get_all_tables(self, dataset_id, project_id=None): """Retrieve a list of tables for the dataset. Parameters ---------- dataset_id : str The dataset to retrieve table data for. project_id: str Unique ``str`` identifying the BigQuery project contains the dataset Returns ------- A ``list`` with all table names """ tables_data = self._get_all_tables_for_dataset(dataset_id, project_id) tables = [] for table in tables_data.get('tables', []): table_name = table.get('tableReference', {}).get('tableId') if table_name: tables.append(table_name) return tables def _get_all_tables(self, dataset_id, cache=False, project_id=None): """Retrieve the list of tables for dataset, that respect the formats: * appid_YYYY_MM * YYYY_MM_appid Parameters ---------- dataset_id : str The dataset to retrieve table names for cache : bool, optional To use cached value or not (default False). Timeout value equals CACHE_TIMEOUT. project_id: str Unique ``str`` identifying the BigQuery project contains the dataset Returns ------- dict A ``dict`` of app ids mapped to their table names """ do_fetch = True if cache and self.cache.get(dataset_id): time, result = self.cache.get(dataset_id) if datetime.now() - time < CACHE_TIMEOUT: do_fetch = False if do_fetch: result = self._get_all_tables_for_dataset(dataset_id, project_id) self.cache[dataset_id] = (datetime.now(), result) return self._parse_table_list_response(result) def _get_all_tables_for_dataset(self, dataset_id, project_id=None): """Retrieve a list of all tables for the dataset. Parameters ---------- dataset_id : str The dataset to retrieve table names for project_id: str Unique ``str`` identifying the BigQuery project contains the dataset Returns ------- dict A ``dict`` containing tables key with all tables """ project_id = self._get_project_id(project_id) result = self.bigquery.tables().list( projectId=project_id, datasetId=dataset_id).execute(num_retries=self.num_retries) page_token = result.get('nextPageToken') while page_token: res = self.bigquery.tables().list( projectId=project_id, datasetId=dataset_id, pageToken=page_token ).execute(num_retries=self.num_retries) page_token = res.get('nextPageToken') result['tables'] += res.get('tables', []) return result def _parse_table_list_response(self, list_response): """Parse the response received from calling list on tables. Parameters ---------- list_response The response found by calling list on a BigQuery table object. Returns ------- dict Dates referenced by table names """ tables = defaultdict(dict) for table in list_response.get('tables', []): table_ref = table.get('tableReference') if not table_ref: continue table_id = table_ref.get('tableId', '') year_month, app_id = self._parse_table_name(table_id) if not year_month: continue table_date = datetime.strptime(year_month, '%Y-%m') unix_seconds = calendar.timegm(table_date.timetuple()) tables[app_id].update({table_id: unix_seconds}) # Turn off defualting tables.default_factory = None return tables def _parse_table_name(self, table_id): """Parse a table name in the form of appid_YYYY_MM or YYYY_MM_appid and return a tuple consisting of YYYY-MM and the app id. Returns (None, None) in the event of a name like <desc>_YYYYMMDD_<int> Parameters ---------- table_id : str The table id as listed by BigQuery Returns ------- tuple (year/month, app id), or (None, None) if the table id cannot be parsed. """ # Prefix date attributes = table_id.split('_') year_month = "-".join(attributes[:2]) app_id = "-".join(attributes[2:]) # Check if date parsed correctly if year_month.count("-") == 1 and all( [num.isdigit() for num in year_month.split('-')]): return year_month, app_id # Postfix date attributes = table_id.split('_') year_month = "-".join(attributes[-2:]) app_id = "-".join(attributes[:-2]) # Check if date parsed correctly if year_month.count("-") == 1 and all( [num.isdigit() for num in year_month.split('-')]) and len(year_month) == 7: return year_month, app_id return None, None def _filter_tables_by_time(self, tables, start_time, end_time): """Filter a table dictionary and return table names based on the range of start and end times in unix seconds. Parameters ---------- tables : dict Dates referenced by table names start_time : int The unix time after which records will be fetched end_time : int The unix time up to which records will be fetched Returns ------- list Table names that are inside the time range """ return [table_name for (table_name, unix_seconds) in tables.items() if self._in_range(start_time, end_time, unix_seconds)] def _in_range(self, start_time, end_time, time): """Indicate if the given time falls inside of the given range. Parameters ---------- start_time : int The unix time for the start of the range end_time : int The unix time for the end of the range time : int The unix time to check Returns ------- bool True if the time falls within the range, False otherwise. """ ONE_MONTH = 2764800 # 32 days return start_time <= time <= end_time or \ time <= start_time <= time + ONE_MONTH or \ time <= end_time <= time + ONE_MONTH def get_query_results(self, job_id, offset=None, limit=None, page_token=None, timeout=0): """Execute the query job indicated by the given job id. This is direct mapping to bigquery api https://cloud.google.com/bigquery/docs/reference/v2/jobs/getQueryResults Parameters ---------- job_id : str The job id of the query to check offset : optional The index the result set should start at. limit : int, optional The maximum number of results to retrieve. page_token : optional Page token, returned by previous call, to request the next page of results. timeout : float, optional Timeout in seconds Returns ------- out The query reply """ job_collection = self.bigquery.jobs() return job_collection.getQueryResults( projectId=self.project_id, jobId=job_id, startIndex=offset, maxResults=limit, pageToken=page_token, timeoutMs=timeout * 1000).execute(num_retries=self.num_retries) def _transform_row(self, row, schema): """Apply the given schema to the given BigQuery data row. Parameters ---------- row A single BigQuery row to transform schema : list The BigQuery table schema to apply to the row, specifically the list of field dicts. Returns ------- dict Mapping schema to row """ log = {} # Match each schema column with its associated row value for index, col_dict in enumerate(schema): col_name = col_dict['name'] row_value = row['f'][index]['v'] if row_value is None: log[col_name] = None continue # Recurse on nested records if col_dict['type'] == 'RECORD': row_value = self._recurse_on_row(col_dict, row_value) # Otherwise just cast the value elif col_dict['type'] == 'INTEGER': row_value = int(row_value) elif col_dict['type'] == 'FLOAT': row_value = float(row_value) elif col_dict['type'] == 'BOOLEAN': row_value = row_value in ('True', 'true', 'TRUE') elif col_dict['type'] == 'TIMESTAMP': row_value = float(row_value) log[col_name] = row_value return log def _recurse_on_row(self, col_dict, nested_value): """Apply the schema specified by the given dict to the nested value by recursing on it. Parameters ---------- col_dict : dict The schema to apply to the nested value. nested_value : A value nested in a BigQuery row. Returns ------- Union[dict, list] ``dict`` or ``list`` of ``dict`` objects from applied schema. """ row_value = None # Multiple nested records if col_dict['mode'] == 'REPEATED' and isinstance(nested_value, list): row_value = [self._transform_row(record['v'], col_dict['fields']) for record in nested_value] # A single nested record else: row_value = self._transform_row(nested_value, col_dict['fields']) return row_value def _generate_hex_for_uris(self, uris): """Given uris, generate and return hex version of it Parameters ---------- uris : list Containing all uris Returns ------- str Hexed uris """ return sha256((":".join(uris) + str(time())).encode()).hexdigest() def _raise_insert_exception_if_error(self, job): error_http = job.get('error') if error_http: raise JobInsertException( "Error in export job API request: {0}".format(error_http)) # handle errorResult - API request is successful but error in result error_result = job.get('status').get('errorResult') if error_result: raise JobInsertException( "Reason:{reason}. Message:{message}".format(**error_result)) def _raise_executing_exception_if_error(self, job): error_http = job.get('error') if error_http: raise JobExecutingException( "Error in export job API request: {0}".format(error_http)) # handle errorResult - API request is successful but error in result error_result = job.get('status').get('errorResult') if error_result: raise JobExecutingException( "Reason:{reason}. Message:{message}".format(**error_result)) # # DataSet manipulation methods # def create_dataset(self, dataset_id, friendly_name=None, description=None, access=None, location=None, project_id=None): """Create a new BigQuery dataset. Parameters ---------- dataset_id : str Unique ``str`` identifying the dataset with the project (the referenceID of the dataset, not the integer id of the dataset) friendly_name: str, optional A human readable name description: str, optional Longer string providing a description access : list, optional Indicating access permissions (see https://developers.google.com/bigquery/docs/reference/v2/datasets#resource) location : str, optional Indicating where dataset should be stored: EU or US (see https://developers.google.com/bigquery/docs/reference/v2/datasets#resource) project_id: str Unique ``str`` identifying the BigQuery project contains the dataset Returns ------- Union[bool, dict] ``bool`` indicating if dataset was created or not, or response from BigQuery if swallow_results is set for False """ project_id = self._get_project_id(project_id) try: datasets = self.bigquery.datasets() dataset_data = self.dataset_resource(dataset_id, project_id=project_id, friendly_name=friendly_name, description=description, access=access, location=location ) response = datasets.insert(projectId=project_id, body=dataset_data).execute( num_retries=self.num_retries) if self.swallow_results: return True else: return response except HttpError as e: logger.error( 'Cannot create dataset {0}, {1}'.format(dataset_id, e)) if self.swallow_results: return False else: return {} def get_datasets(self, project_id=None): """List all datasets in the project. Parameters ---------- project_id: str Unique ``str`` identifying the BigQuery project contains the dataset Returns ------- list Dataset resources """ project_id = self._get_project_id(project_id) try: datasets = self.bigquery.datasets() request = datasets.list(projectId=project_id) result = request.execute(num_retries=self.num_retries) return result.get('datasets', []) except HttpError as e: logger.error("Cannot list datasets: {0}".format(e)) return None def delete_dataset(self, dataset_id, delete_contents=False, project_id=None): """Delete a BigQuery dataset. Parameters ---------- dataset_id : str Unique ``str`` identifying the dataset with the project (the referenceId of the dataset) Unique ``str`` identifying the BigQuery project contains the dataset delete_contents : bool, optional If True, forces the deletion of the dataset even when the dataset contains data (Default = False) project_id: str, optional Returns ------- Union[bool, dict[ ool indicating if the delete was successful or not, or response from BigQuery if swallow_results is set for False Raises ------- HttpError 404 when dataset with dataset_id does not exist """ project_id = self._get_project_id(project_id) try: datasets = self.bigquery.datasets() request = datasets.delete(projectId=project_id, datasetId=dataset_id, deleteContents=delete_contents) response = request.execute(num_retries=self.num_retries) if self.swallow_results: return True else: return response except HttpError as e: logger.error( 'Cannot delete dataset {0}: {1}'.format(dataset_id, e)) if self.swallow_results: return False else: return {} def update_dataset(self, dataset_id, friendly_name=None, description=None, access=None, project_id=None): """Updates information in an existing dataset. The update method replaces the entire dataset resource, whereas the patch method only replaces fields that are provided in the submitted dataset resource. Parameters ---------- dataset_id : str Unique ``str`` identifying the dataset with the project (the referencedId of the dataset) friendly_name : str, optional An optional descriptive name for the dataset. description : str, optional An optional description of the dataset. access : list, optional Indicating access permissions project_id: str, optional Unique ``str`` identifying the BigQuery project contains the dataset Returns ------- Union[bool, dict] ``bool`` indicating if the update was successful or not, or response from BigQuery if swallow_results is set for False. """ project_id = self._get_project_id(project_id) try: datasets = self.bigquery.datasets() body = self.dataset_resource(dataset_id, friendly_name=friendly_name, description=description, access=access, project_id=project_id) request = datasets.update(projectId=project_id, datasetId=dataset_id, body=body) response = request.execute(num_retries=self.num_retries) if self.swallow_results: return True else: return response except HttpError as e: logger.error( 'Cannot update dataset {0}: {1}'.format(dataset_id, e)) if self.swallow_results: return False else: return {} def patch_dataset(self, dataset_id, friendly_name=None, description=None, access=None, project_id=None): """Updates information in an existing dataset. The update method replaces the entire dataset resource, whereas the patch method only replaces fields that are provided in the submitted dataset resource. Parameters ---------- dataset_id : str Unique string idenfitying the dataset with the project (the referenceId of the dataset) friendly_name : str, optional An optional descriptive name for the dataset. description : str, optional An optional description of the dataset. access : list, optional Indicating access permissions. project_id: str, optional Unique ``str`` identifying the BigQuery project contains the dataset Returns ------- Union[bool, dict] ``bool`` indicating if the patch was successful or not, or response from BigQuery if swallow_results is set for False. """ project_id = self._get_project_id(project_id) try: datasets = self.bigquery.datasets() body = self.dataset_resource(dataset_id, friendly_name=friendly_name, description=description, access=access, project_id=project_id) request = datasets.patch(projectId=project_id, datasetId=dataset_id, body=body) response = request.execute(num_retries=self.num_retries) if self.swallow_results: return True else: return response except HttpError as e: logger.error('Cannot patch dataset {0}: {1}'.format(dataset_id, e)) if self.swallow_results: return False else: return {} def dataset_resource(self, ref_id, friendly_name=None, description=None, access=None, location=None, project_id=None): """See https://developers.google.com/bigquery/docs/reference/v2/datasets#resource Parameters ---------- ref_id : str Dataset id (the reference id, not the integer id) friendly_name : str, optional An optional descriptive name for the dataset description : str, optional An optional description for the dataset access : list, optional Indicating access permissions location: str, optional, 'EU' or 'US' An optional geographical location for the dataset(EU or US) project_id: str Unique ``str`` identifying the BigQuery project contains the dataset Returns ------- dict Representing BigQuery dataset resource """ project_id = self._get_project_id(project_id) data = { "datasetReference": { "datasetId": ref_id, "projectId": project_id } } if friendly_name: data["friendlyName"] = friendly_name if description: data["description"] = description if access: data["access"] = access if location: data["location"] = location return data @classmethod def schema_from_record(cls, record): """Given a dict representing a record instance to be inserted into BigQuery, calculate the schema. Parameters ---------- record : dict representing a record to be inserted into big query, where all keys are ``str`` objects (representing column names in the record) and all values are of type ``int``, ``str``, ``unicode``, ``float``, ``bool``, ``datetime``, or ``dict``. A ``dict`` value represents a record, and must conform to the same restrictions as record. Returns ------- list BigQuery schema Notes ----- Results are undefined if a different value type is provided for a repeated field: E.g. >>> { rfield: [ { x: 1}, {x: "a string"} ] } # undefined! """ from bigquery.schema_builder import schema_from_record return schema_from_record(record)
10b5605b4bccd6d1f948a4c6810b3e573adb67ae
a961aa04d7c7d18fd2ac7da8a8016bacfabc6e1b
/elevennote/src/notes/migrations/0007_auto_20200509_1450.py
38a6a80a43cd9fce7abbf51b8a93bfb99cfc98ae
[]
no_license
EgorovM/cs102
a4f6423f3e96064c68a9015118cd141a8a7eea14
0f72f9027dbcda510c67f815348a8ce58f76d857
refs/heads/master
2021-06-21T16:21:10.880523
2020-06-06T08:34:28
2020-06-06T08:34:28
214,231,423
0
1
null
2021-06-10T22:52:37
2019-10-10T16:24:08
JavaScript
UTF-8
Python
false
false
440
py
# Generated by Django 2.0.1 on 2020-05-09 14:50 from django.conf import settings from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('notes', '0006_note_shared'), ] operations = [ migrations.AlterField( model_name='note', name='shared', field=models.ManyToManyField(blank=True, to=settings.AUTH_USER_MODEL), ), ]
cde9c5c591a0868fda460d5f45c15e0897cb2d77
89c4a43a505df8fdf1f0d7386988c4896c2e631b
/google/ads/googleads/v6/services/services/gender_view_service/transports/base.py
c2715ba063f55d3fe0da66e820e30cd4ad4a3ba0
[ "Apache-2.0" ]
permissive
hurricanelennane/google-ads-python
a0a1fed690776a8bb2e81f637eb7eae10fb4992f
310a488b6fdad9d5beea8fa4b166edce779a2511
refs/heads/master
2023-07-04T03:07:53.344466
2021-07-16T19:06:36
2021-07-16T19:06:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,582
py
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import abc import typing import pkg_resources from google import auth from google.api_core import gapic_v1 # type: ignore from google.api_core import retry as retries # type: ignore from google.auth import credentials # type: ignore from google.ads.googleads.v6.resources.types import gender_view from google.ads.googleads.v6.services.types import gender_view_service try: DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo( gapic_version=pkg_resources.get_distribution("google-ads",).version, ) except pkg_resources.DistributionNotFound: DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo() class GenderViewServiceTransport(metaclass=abc.ABCMeta): """Abstract transport class for GenderViewService.""" AUTH_SCOPES = ("https://www.googleapis.com/auth/adwords",) def __init__( self, *, host: str = "googleads.googleapis.com", credentials: credentials.Credentials = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, ) -> None: """Instantiate the transport. Args: host (Optional[str]): The hostname to connect to. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. """ # Save the hostname. Default to port 443 (HTTPS) if none is specified. if ":" not in host: host += ":443" self._host = host # If no credentials are provided, then determine the appropriate # defaults. if credentials is None: credentials, _ = auth.default(scopes=self.AUTH_SCOPES) # Save the credentials. self._credentials = credentials # Lifted into its own function so it can be stubbed out during tests. self._prep_wrapped_messages(client_info) def _prep_wrapped_messages(self, client_info): # Precomputed wrapped methods self._wrapped_methods = { self.get_gender_view: gapic_v1.method.wrap_method( self.get_gender_view, default_timeout=None, client_info=client_info, ), } @property def get_gender_view( self, ) -> typing.Callable[ [gender_view_service.GetGenderViewRequest], gender_view.GenderView ]: raise NotImplementedError __all__ = ("GenderViewServiceTransport",)
0a86e75c70dcb21815b1a3f7ca3483db5fd939cc
707c6a7f3b3213c8a996967ede905aeb18a8c6d9
/solutions/Insert-Interval.py
d680a3144665d7fbb6a2e681c4be95c980267521
[]
no_license
Ziyilan/Pyleetcode
d35b9c2ae6c890dfd42804264b139bfddb8db563
81a9d98607b4ce554507d16763ee82f7dad49edd
refs/heads/master
2020-12-11T02:11:38.470153
2015-10-27T18:46:47
2015-10-27T18:46:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,486
py
""" Author: Jing (https://github.com/gnijuohz) Insert Interval: https://oj.leetcode.com/problems/insert-interval Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessary). You may assume that the intervals were initially sorted according to their start times. Example 1: Given intervals [1,3],[6,9], insert and merge [2,5] in as [1,5],[6,9]. Example 2: Given [1,2],[3,5],[6,7],[8,10],[12,16], insert and merge [4,9] in as [1,2],[3,10],[12,16]. This is because the new interval [4,9] overlaps with [3,5],[6,7],[8,10]. Tags Array, Sort, Show Similar Problems, (H) Merge Intervals """ # Definition for an interval. # class Interval: # def __init__(self, s=0, e=0): # self.start = s # self.end = e class Solution: # @param intervals, a list of Intervals # @param newInterval, a Interval # @return a list of Interval def insert(self, intervals, newInterval): intervals.append(newInterval) return self.merge(intervals) def merge(self, intervals): if not intervals or len(intervals) == 1: return intervals intervals = sorted(intervals, key=operator.attrgetter('start')) res = [intervals[0]] for i in range(1, len(intervals)): if intervals[i].start <= res[-1].end: res[-1].end = max(res[-1].end, intervals[i].end) else: res.append(intervals[i]) return res
fe49918b93bc0175098d4277f76f2d191bfbce49
5a69cab2b5ed410f944b57f3ec586b9c624a735c
/lib/demo_test/multi_platform_demo
0cd943b292114efcecb53e660e9883bb98850ba5
[ "Apache-2.0" ]
permissive
T3kton/architect
214a176dd5f9a9bc340d358d692e16a61f362ebe
3368a66c0c1836eca12dbc7af97f01d5ba13984a
refs/heads/master
2021-01-20T09:03:25.451300
2018-09-17T23:03:24
2018-09-17T23:03:24
90,217,916
0
2
Apache-2.0
2018-09-17T23:03:24
2017-05-04T03:29:18
Python
UTF-8
Python
false
false
2,211
#!/usr/bin/env python3 import os import django os.environ.setdefault( 'DJANGO_SETTINGS_MODULE', 'architect.settings' ) django.setup() from datetime import datetime, timezone, timedelta from architect.Contractor.models import Complex, BluePrint from architect.Plan.models import Plan, PlanComplex, PlanBluePrint, PlanTimeSeries from architect.TimeSeries.models import CostTS, AvailabilityTS, ReliabilityTS, RawTimeSeries print( 'Giving Blueprints their names...') for blueprint in BluePrint.objects.filter( name__isnull=True ): blueprint.name = blueprint.contractor_id blueprint.full_clean() blueprint.save() try: plan = Plan.objects.get( name='demo' ) except Plan.DoesNotExist: print( 'Creating the Plan...' ) plan = Plan( name='demo', description='demo', enabled=True ) plan.script = """ cut_off: 0 demo: weighted( *INDEX*, @count, ( 1 / *COST* ) ) #demo-web: above_inclusive( demo, cut_off ) #demo-ssh: below( demo, cut_off ) """ plan.config_values = {} plan.max_inflight = 10 plan.last_change = datetime.now( timezone.utc ) - timedelta( days=1 ) plan.can_build = True plan.can_destroy = True plan.full_clean() plan.save() ts = RawTimeSeries( metric='data.count' ) ts.full_clean() ts.save() pts = PlanTimeSeries( plan=plan, timeseries=ts, script_name='count' ) pts.full_clean() pts.save() print( 'setting up blueprint link...' ) blueprint = BluePrint.objects.get( name='demo-web' ) pb = PlanBluePrint( plan=plan, blueprint=blueprint ) pb.full_clean() pb.save() blueprint = BluePrint.objects.get( name='demo-ssh' ) pb = PlanBluePrint( plan=plan, blueprint=blueprint ) pb.full_clean() pb.save() print( 'Giving Complexes their tsnames, and setting up buckets...') for complex in Complex.objects.filter( tsname__isnull=True ): complex.tsname = complex.contractor_id complex.full_clean() complex.save() costts = CostTS( complex=complex ) costts.save() availts = AvailabilityTS( complex=complex ) availts.save() reliabts = ReliabilityTS( complex=complex ) reliabts.save() pc = PlanComplex( plan=plan, complex=complex ) pc.cost = costts pc.availability = availts pc.reliability = reliabts pc.full_clean() pc.save()
f4a5841f5d31f26e0da2530d937bbf5ce64db363
ac1bbabc7c1b3149711c416dd8b5f5969a0dbd04
/Programming Fundamentals/objects_and_classes/class.py
7289e5275a0ea25652981f2f7b0b49c310acc71b
[]
no_license
AssiaHristova/SoftUni-Software-Engineering
9e904221e50cad5b6c7953c81bc8b3b23c1e8d24
d4910098ed5aa19770d30a7d9cdf49f9aeaea165
refs/heads/main
2023-07-04T04:47:00.524677
2021-08-08T23:31:51
2021-08-08T23:31:51
324,847,727
1
0
null
2021-08-08T23:31:52
2020-12-27T20:58:01
Python
UTF-8
Python
false
false
701
py
class Class: def __init__(self, name): self.name = name self.students = [] self.grades = [] __students_count = 22 def add_student(self, name, grade): if len(self.students) < Class.__students_count: self.students.append(name) self.grades.append(grade) def get_average_grade(self): return sum(self.grades) / len(self.grades) def __repr__(self): return f"The students in {self.name}: {', '.join(self.students)}. Average grade: {Class.get_average_grade(self):.2f}" a_class = Class("11B") a_class.add_student("Peter", 4.80) a_class.add_student("George", 6.00) a_class.add_student("Amy", 3.50) print(a_class)
dda48464dce73f3af0af909f3571d348d3d0d84e
f8dd8d046100f1223713e047074f30c7ce5a59cd
/testing/epilogue/decorators.py
35dbdffbffc9e1b88e69fb384d455179a4f387c3
[]
no_license
dotslash227/98fitcortex
57aed99270799eff68fdff62db0b8c1d9aabd4a2
bd4002151e5def00c3dea1f5a1abfb06ba3e809a
refs/heads/master
2022-12-17T00:51:20.302948
2019-02-27T13:54:22
2019-02-27T13:54:22
197,362,824
0
0
null
2022-12-08T00:02:42
2019-07-17T09:55:14
HTML
UTF-8
Python
false
false
3,694
py
import functools import datetime from django.db import models def last_days(days = 6): today = datetime.datetime.today().date() while days >= 0: val = today - datetime.timedelta(days = days) days -= 1 yield val def last_weeks(weeks = 6): today = datetime.datetime.today().date() current_year , current_week , current_day = today.isocalendar() start_week = current_week year = current_year if start_week >= 6: while weeks >= 0: yield (year ,current_week) current_week -= 1 weeks -= 1 else: while weeks >= 0: yield (year , current_week) current_week -= 1 current_week = abs(52+current_week)%52 if current_week == 0: current_week = 52 year -= 1 weeks -= 1 def add_today(f): @functools.wraps(f) def wrapper(*args , **kwargs): kwargs['today'] = datetime.datetime.today().date() return f(*args , **kwargs) return wrapper def add_empty_day_in_week(defaults , days_range = 6): def decorator(f): @functools.wraps(f) def wrapper(*args , **kwargs): vals = f(*args , **kwargs) days = set(vals.values_list("date" , flat = True)) data = [] for e in last_days(days = days_range): if e not in days: d = { "date" : e, **defaults, } data.append(d) return data + list(vals) return wrapper return decorator def add_empty_weeks(defaults , sort = lambda x : (x['year'],x['week'])): def decorator(f): @functools.wraps(f) def wrapper(*args , **kwargs): weeks , data = f(*args , **kwargs) for y,w in last_weeks(): if (y,w) not in weeks: d = { "week" : w, "year" : y, **defaults } data.append(d) return sorted(data , key = sort) return wrapper return decorator def sorter(key , reverse = False): def decorator(f): @functools.wraps(f) def wrapper(*args , **kwargs): vals = f(*args , **kwargs) return sorted(vals , key = key , reverse = reverse) return wrapper return decorator def scale_field(field,goal): def decorator(fn): @functools.wraps(fn) def wrapper(*args , **kwargs): returned_value = fn(*args , **kwargs) field_values = (e.get(field) for e in returned_value) scaling_factor = 100/(max(goal ,max(field_values))) for e in returned_value: e['plotting_value'] = e.get(field , 0) * scaling_factor return returned_value return wrapper return decorator def weekly_average(field): def decorator(f): @functools.wraps(f) def wrapper(*args , **kwargs): vals = f(*args , **kwargs) weeks = set(vals.values_list("week" , flat = True) ) data = [] curr_week = datetime.datetime.now().isocalendar()[1] for e in range(curr_week - 6 , curr_week +1): if e not in weeks: data.append({ "week" : e, "avg" : 0 }) continue avg = vals.filter( week = e ).aggregate( avg = models.Sum(field) ) d = { "week" : e, "avg" : avg['avg'] } data.append(d) return data return wrapper return decorator def monthly_average(field): def decorator(f): @functools.wraps(f) def wrapper(self): vals = f(self) months = set(vals.values_list("month" , flat = True) ) data = [] for e in months: avg = vals.filter( month = e ).aggregate( avg = models.Avg(field) ) d = { "month" : e, "avg" : avg['avg'] } data.append(d) return data return wrapper return decorator def map_transform_queryset(iterable , *fields): def decorator(f): @functools.wraps(f) def mapper(*args , **kwargs): l = map(lambda x : functools.partial(x , *fields) , iterable) val = f(*args , **kwargs) d = {} for e in l: d.update(**e(val)) return d return mapper return decorator
3ac83d2ac2af4145c059505d5214c148e2fa8ab9
f80ef3a3cf859b13e8af8433af549b6b1043bf6e
/pyobjc-framework-MailKit/PyObjCTest/test_memessagedecoder.py
9ebaeafd6990e8c6d9d71d48d0c727eca4fb01ad
[ "MIT" ]
permissive
ronaldoussoren/pyobjc
29dc9ca0af838a56105a9ddd62fb38ec415f0b86
77b98382e52818690449111cd2e23cd469b53cf5
refs/heads/master
2023-09-01T05:15:21.814504
2023-06-13T20:00:17
2023-06-13T20:00:17
243,933,900
439
49
null
2023-06-25T02:49:07
2020-02-29T08:43:12
Python
UTF-8
Python
false
false
198
py
from PyObjCTools.TestSupport import TestCase import MailKit # noqa: F401 class TestMEMessageDecoder(TestCase): def test_protocols(self): self.assertProtocolExists("MEMessageDecoder")
ee62c946bacf7cf765e57fe18224aea84ff72185
2fcf361eb89f1f01fe4d677d4772ddaba89b06ad
/hydrus/HydrusGlobals.py
06ab47dbf5399492ca0bfda15b4892944f211c47
[ "WTFPL" ]
permissive
matjojo/hydrus
9f13f35e817bfe7e170ec7be22e18b64e393cb01
8f87206ea6ef242bc38235d7053bb33b5a785e68
refs/heads/master
2021-05-17T03:26:19.183503
2020-03-27T23:32:58
2020-03-27T23:32:58
250,597,596
0
0
NOASSERTION
2020-03-27T17:18:53
2020-03-27T17:18:52
null
UTF-8
Python
false
false
1,239
py
import threading controller = None client_controller = None server_controller = None test_controller = None view_shutdown = False model_shutdown = False no_daemons = False no_wal = False no_db_temp_files = False db_memory_journaling = False db_synchronous_override = None import_folders_running = False export_folders_running = False callto_report_mode = False db_report_mode = False db_profile_mode = False file_report_mode = False media_load_report_mode = False gui_report_mode = False shortcut_report_mode = False subprocess_report_mode = False subscription_report_mode = False hover_window_report_mode = False file_import_report_mode = False phash_generation_report_mode = False menu_profile_mode = False network_report_mode = False pubsub_report_mode = False pubsub_profile_mode = False ui_timer_profile_mode = False daemon_report_mode = False force_idle_mode = False no_page_limit_mode = False thumbnail_debug_mode = False currently_uploading_pending = False shutting_down_due_to_already_running = False do_idle_shutdown_work = False program_is_shutting_down = False shutdown_complete = False restart = False emergency_exit = False twisted_is_broke = False dirty_object_lock = threading.Lock() server_busy = threading.Lock()
f6ced2b4805a2ac25e3a6f5f5bc67b175ac0c922
69d3680f881833a0a4906ad708eac11401bc03c6
/python3/515. 在每个树行中找最大值.py
7f9663db2eb82e0576ad697414cd72b43c7432df
[]
no_license
menghuu/YALeetcode
21df4b5ea6cb0a249263b0ce2df37e7580477ddd
1959a884bb1cc9f2f1acb1ba6f413498ea0d1aca
refs/heads/master
2023-08-18T03:55:41.470428
2021-09-11T12:39:02
2021-09-11T12:39:02
269,104,152
1
0
null
null
null
null
UTF-8
Python
false
false
882
py
#! /usr/bin/env python # -*- coding: utf-8 -*- # vim:fenc=utf-8 # # Copyright © 2020 m <[email protected]> # # Distributed under terms of the MIT license. """ """ # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def largestValues(self, root: TreeNode) -> List[int]: if not root: return [] ans = [] level = [root] while level: l = len(level) m = float('-inf') for i in range(l): root = level[i] m = max(root.val, m) if root.left: level.append(root.left) if root.right: level.append(root.right) level = level[l:] ans.append(m) return ans