blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
6ccaf0b7923ddbcf05dbd74de253ca863a8a52de
57db61160494659af43ee255d1e6ab2af6617114
/ultron-api/contact/admin.py
92b8324a11994ac12b4367be09b970e401577cbe
[]
no_license
gloompi/ultron-studio
fc667d563467b386a8dec04a6079e7cdcfedc5a7
ec2ae8051644df2433b931c7e0228e75eaf20990
refs/heads/master
2023-06-25T19:22:45.119315
2019-12-08T05:53:02
2019-12-08T05:53:02
226,545,035
0
0
null
2023-06-10T00:22:15
2019-12-07T16:44:16
JavaScript
UTF-8
Python
false
false
205
py
from django.contrib import admin from .models import Contact class ContactAdmin(admin.ModelAdmin): list_display = ('id', 'title') # Register your models here. admin.site.register(Contact, ContactAdmin)
aca820fb2f94f242539ff4b7b1b2ab02fbc5a555
148072ce210ca4754ea4a37d83057e2cf2fdc5a1
/src/core/w3af/w3af/plugins/attack/db/sqlmap/tamper/charencode.py
6d1a46727fed80594ad45d9e5cbf3e7aa2e118f8
[]
no_license
ycc1746582381/webfuzzer
8d42fceb55c8682d6c18416b8e7b23f5e430c45f
0d9aa35c3218dc58f81c429cae0196e4c8b7d51b
refs/heads/master
2021-06-14T18:46:59.470232
2017-03-14T08:49:27
2017-03-14T08:49:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,491
py
#!/usr/bin/env python """ Copyright (c) 2006-2015 sqlmap developers (http://sqlmap.org/) See the file 'doc/COPYING' for copying permission """ import string from lib.core.enums import PRIORITY __priority__ = PRIORITY.LOWEST def dependencies(): pass def tamper(payload, **kwargs): """ Url-encodes all characters in a given payload (not processing already encoded) Tested against: * Microsoft SQL Server 2005 * MySQL 4, 5.0 and 5.5 * Oracle 10g * PostgreSQL 8.3, 8.4, 9.0 Notes: * Useful to bypass very weak web application firewalls that do not url-decode the request before processing it through their ruleset * The web server will anyway pass the url-decoded version behind, hence it should work against any DBMS >>> tamper('SELECT FIELD FROM%20TABLE') '%53%45%4C%45%43%54%20%46%49%45%4C%44%20%46%52%4F%4D%20%54%41%42%4C%45' """ retVal = payload if payload: retVal = "" i = 0 while i < len(payload): if payload[i] == '%' and (i < len(payload) - 2) and payload[i + 1:i + 2] in string.hexdigits and payload[ i + 2:i + 3] in string.hexdigits: retVal += payload[i:i + 3] i += 3 else: retVal += '%%%.2X' % ord(payload[i]) i += 1 return retVal
38b2275bab017121700f29468db3da539f3d450e
bab33c23fc02dc171395b34c5c88fcf83a95cb96
/test/Transforms/test_Transforms.py
ec1905520dfce9a46bb05990c38fae7639a0f5b3
[]
no_license
heliy/nornir-imageregistration
a623ad00c0c253bcc925306920824affaa414810
368bc245ef2c7be630f0cdc8c448adb62b797d5a
refs/heads/master
2020-05-07T16:59:02.268951
2018-02-27T01:22:57
2018-02-27T01:22:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
12,922
py
''' Created on Mar 18, 2013 @author: u0490822 ''' import os import unittest from nornir_imageregistration.transforms import * from nornir_imageregistration.transforms.rbftransform import \ RBFWithLinearCorrection import numpy as np ### MirrorTransformPoints### ### A simple four control point mapping on two 20x20 grids centered on 0,0### ### Fixed Space WarpedSpace ### # . . . . . . . . . . 2 . . . . . . . . . 3 . . . . . . . . . . . . . . . . . . . . . # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . # . . . . . . . . . . 0 . . . . . . . . . 1 1 . . . . . . . . . 0 . . . . . . . . . . # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . # . . . . . . . . . . . . . . . . . . . . . 3 . . . . . . . . . 2 . . . . . . . . . . # Coordinates are CY, CX, MY, MX MirrorTransformPoints = np.array([[0, 0, 0, 0], [0, 10, 0, -10], [10, 0, -10, 0], [10, 10, -10, -10]]) IdentityTransformPoints = np.array([[0, 0, 0, 0], [1, 0, 1, 0], [0, 1, 0, 1], [1, 1, 1, 1]]) # Translate points by (1,2) TranslateTransformPoints = np.array([[0, 0, 1, 2], [1, 0, 2, 2], [0, 1, 1, 3], [1, 1, 2, 3]]) # Used to test IsOffsetAtZero OffsetTransformPoints = np.array([[1, 1, 0, 0], [2, 1, 1, 0], [1, 2, 0, 1], [2, 2, 1, 1]]) def TransformCheck(test, transform, warpedPoint, fixedPoint): '''Ensures that a point can map to its expected transformed position and back again''' fp = transform.Transform(warpedPoint) test.assertTrue(np.array_equal(np.around(fp, 2), fixedPoint)) wp = transform.InverseTransform(fp) test.assertTrue(np.array_equal(np.around(wp, 2), warpedPoint)) def NearestFixedCheck(test, transform, fixedPoints, testPoints): '''Ensures that the nearest fixed point can be found for a test point''' distance, index = transform.NearestFixedPoint(testPoints) test.assertTrue(np.array_equal(np.around(transform.FixedPoints[index,:], 2), fixedPoints)) def NearestWarpedCheck(test, transform, warpedPoints, testPoints): '''Ensures that the nearest warped point can be found for a test point''' distance, index = transform.NearestWarpedPoint(testPoints) test.assertTrue(np.array_equal(np.around(transform.WarpedPoints[index,:], 2), warpedPoints)) class Test(unittest.TestCase): def testIdentity(self): T = meshwithrbffallback.MeshWithRBFFallback(IdentityTransformPoints) warpedPoint = np.array([[0, 0], [0.25, 0.25], [1, 1], [-1, -1]]) TransformCheck(self, T, warpedPoint, warpedPoint) def testTranslate(self): T = meshwithrbffallback.MeshWithRBFFallback(TranslateTransformPoints) warpedPoint = np.array([[1, 2], [1.25, 2.25], [2, 3], [0, 1]]) controlPoint = np.array([[0, 0], [0.25, 0.25], [1, 1], [-1, -1]]) TransformCheck(self, T, warpedPoint, controlPoint) def testTriangulation(self): # os.chdir('C:\\Buildscript\\Test\\Stos') # MToCStos = IrTools.IO.stosfile.StosFile.Load('27-26.stos') # CToVStos = IrTools.IO.stosfile.StosFile.Load('26-25.stos') # # # I'll need to make sure I remember to set the downsample factor when I warp the .mosaic files # (CToV, cw, ch) = IrTools.Transforms.factory.TransformFactory.LoadTransform(CToVStos.Transform) # (MToC, mw, mh) = IrTools.Transforms.factory.TransformFactory.LoadTransform(MToCStos.Transform) # # MToV = CToV.AddTransform(MToC) # # MToCStos.Transform = IrTools.Transforms.factory.TransformFactory.TransformToIRToolsGridString(MToC, mw, mh) # MToCStos.Save("27-26_Test.stos") # # MToVStos = copy.deepcopy(MToCStos) # MToVStos.ControlImageFullPath = CToVStos.ControlImageFullPath # MToVStos.Transform = IrTools.Transforms.factory.TransformFactory.TransformToIRToolsGridString(MToV, mw, mh) # MToVStos.ControlImageDim = CToVStos.ControlImageDim # MToVStos.MappedImageDim = MToCStos.MappedImageDim # # MToVStos.Save("27-25.stos") global MirrorTransformPoints T = triangulation.Triangulation(MirrorTransformPoints) self.assertEqual(len(T.FixedTriangles), 2) self.assertEqual(len(T.WarpedTriangles), 2) warpedPoint = np.array([[-5, -5]]) TransformCheck(self, T, warpedPoint, -warpedPoint) NearestFixedCheck(self, T, MirrorTransformPoints[:,0:2], MirrorTransformPoints[:,0:2] - 1) NearestWarpedCheck(self, T, MirrorTransformPoints[:,2:4], MirrorTransformPoints[:,2:4] - 1) # Add a point to the mirror transform, make sure it still works T.AddPoint([5.0, 5.0, -5.0, -5.0]) #Make sure the new point can be found correctly NearestFixedCheck(self, T, T.FixedPoints, T.FixedPoints - 1) NearestWarpedCheck(self, T, T.WarpedPoints, T.WarpedPoints - 1) #Add a duplicate and see what happens NumBefore = T.NumControlPoints T.AddPoint([5.0, 5.0, -5.0, -5.0]) NumAfter = T.NumControlPoints self.assertEqual(NumBefore, NumAfter) # We should have a new triangulation if we added a point self.assertTrue(len(T.FixedTriangles) > 2) self.assertTrue(len(T.WarpedTriangles) > 2) TransformCheck(self, T, warpedPoint, -warpedPoint) # Try points not on the transform points warpedPoints = np.array([[-2.0, -4.0], [-4.0, -2.0], [0.0, -9.0], [-9.0, 0.0]]) TransformCheck(self, T, warpedPoints, -warpedPoints) def testRBFTriangulation(self): # os.chdir('C:\\Buildscript\\Test\\Stos') # MToCStos = IrTools.IO.stosfile.StosFile.Load('27-26.stos') # CToVStos = IrTools.IO.stosfile.StosFile.Load('26-25.stos') # # # I'll need to make sure I remember to set the downsample factor when I warp the .mosaic files # (CToV, cw, ch) = IrTools.Transforms.factory.TransformFactory.LoadTransform(CToVStos.Transform) # (MToC, mw, mh) = IrTools.Transforms.factory.TransformFactory.LoadTransform(MToCStos.Transform) # # MToV = CToV.AddTransform(MToC) # # MToCStos.Transform = IrTools.Transforms.factory.TransformFactory.TransformToIRToolsGridString(MToC, mw, mh) # MToCStos.Save("27-26_Test.stos") # # MToVStos = copy.deepcopy(MToCStos) # MToVStos.ControlImageFullPath = CToVStos.ControlImageFullPath # MToVStos.Transform = IrTools.Transforms.factory.TransformFactory.TransformToIRToolsGridString(MToV, mw, mh) # MToVStos.ControlImageDim = CToVStos.ControlImageDim # MToVStos.MappedImageDim = MToCStos.MappedImageDim # # MToVStos.Save("27-25.stos") global MirrorTransformPoints T = RBFWithLinearCorrection(MirrorTransformPoints[:,2:4], MirrorTransformPoints[:,0:2]) self.assertEqual(len(T.FixedTriangles), 2) self.assertEqual(len(T.WarpedTriangles), 2) warpedPoint = np.array([[-5, -5]]) TransformCheck(self, T, warpedPoint, -warpedPoint) NearestFixedCheck(self, T, T.FixedPoints, T.FixedPoints - 1) NearestWarpedCheck(self, T, T.WarpedPoints, T.WarpedPoints - 1) # Add a point to the mirror transform, make sure it still works T.AddPoint([5.0, 5.0, -5.0, -5.0]) NearestFixedCheck(self, T, T.FixedPoints, T.FixedPoints - 1) NearestWarpedCheck(self, T, T.WarpedPoints, T.WarpedPoints - 1) #Add a duplicate and see what happens NumBefore = T.NumControlPoints T.AddPoint([5.0, 5.0, -5.0, -5.0]) NumAfter = T.NumControlPoints self.assertEqual(NumBefore, NumAfter) # We should have a new triangulation if we added a point self.assertTrue(len(T.FixedTriangles) > 2) self.assertTrue(len(T.WarpedTriangles) > 2) TransformCheck(self, T, warpedPoint, -warpedPoint) #Try removing a point # Try points not on the transform points warpedPoints = np.array([[-2.0, -4.0], [-4.0, -2.0], [0.0, -9.0], [-9.0, 0.0]]) TransformCheck(self, T, warpedPoints, -warpedPoints) T.AddPoints([[2.5,2.5,-2.5,-2.5], [7.5,7.5,-7.5,-7.5]]) TransformCheck(self, T, warpedPoints, -warpedPoints) def test_OriginAtZero(self): global IdentityTransformPoints global OffsetTransformPoints IdentityTransform = triangulation.Triangulation(IdentityTransformPoints) OffsetTransform = triangulation.Triangulation(OffsetTransformPoints) self.assertTrue(utils.IsOriginAtZero([IdentityTransform]), "Origin of identity transform is at zero") self.assertFalse(utils.IsOriginAtZero([OffsetTransform]), "Origin of Offset Transform is not at zero") self.assertTrue(utils.IsOriginAtZero([IdentityTransform, OffsetTransform]), "Origin of identity transform and offset transform is at zero") def test_bounds(self): global IdentityTransformPoints IdentityTransform = triangulation.Triangulation(IdentityTransformPoints) # print "Fixed Verts" # print T.FixedTriangles # print "\nWarped Verts" # print T.WarpedTriangles # # T.AddPoint([5, 5, -5, -5]) # print "\nPoint added" # print "Fixed Verts" # print T.FixedTriangles # print "\nWarped Verts" # print T.WarpedTriangles # # T.AddPoint([5, 5, 5, 5]) # print "\nDuplicate Point added" # print "Fixed Verts" # print T.FixedTriangles # print "\nWarped Verts" # print T.WarpedTriangles # # warpedPoint = [[-5, -5]] # fp = T.ViewTransform(warpedPoint) # print("__Transform " + str(warpedPoint) + " to " + str(fp)) # wp = T.InverseTransform(fp) # # T.UpdatePoint(3, [10, 15, -10, -15]) # print "\nPoint updated" # print "Fixed Verts" # print T.FixedTriangles # print "\nWarped Verts" # print T.WarpedTriangles # # warpedPoint = [[-9, -14]] # fp = T.ViewTransform(warpedPoint) # print("__Transform " + str(warpedPoint) + " to " + str(fp)) # wp = T.InverseTransform(fp) # # T.RemovePoint(1) # print "\nPoint removed" # print "Fixed Verts" # print T.FixedTriangles # print "\nWarped Verts" # print T.WarpedTriangles # # print "\nFixedPointsInRect" # print T.GetFixedPointsRect([-1, -1, 14, 4]) if __name__ == "__main__": # import sys;sys.argv = ['', 'Test.testName'] unittest.main()
89953cc562f5821db41a06a6c2c67cef8e4197ab
67cfe3567f0a961123c561538624be28044ec852
/backend/girltalk_15424/urls.py
d6ab5c8e6f4bb8b2bb8d6c9afad9be43542c8a78
[]
no_license
crowdbotics-apps/girltalk-15424
b732f7f6fc04fedd1acd99a2acfd129af71cc010
770efb300bc8297faea15e7b6a94c7a755fa8cf7
refs/heads/master
2023-02-04T02:55:52.708635
2020-04-04T05:21:02
2020-04-04T05:21:02
252,916,119
0
0
null
2023-01-26T16:28:35
2020-04-04T05:20:13
JavaScript
UTF-8
Python
false
false
1,914
py
"""girltalk_15424 URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from allauth.account.views import confirm_email from rest_framework import permissions from drf_yasg.views import get_schema_view from drf_yasg import openapi urlpatterns = [ path("", include("home.urls")), path("accounts/", include("allauth.urls")), path("api/v1/", include("home.api.v1.urls")), path("admin/", admin.site.urls), path("users/", include("users.urls", namespace="users")), path("rest-auth/", include("rest_auth.urls")), # Override email confirm to use allauth's HTML view instead of rest_auth's API view path("rest-auth/registration/account-confirm-email/<str:key>/", confirm_email), path("rest-auth/registration/", include("rest_auth.registration.urls")), ] admin.site.site_header = "Girltalk" admin.site.site_title = "Girltalk Admin Portal" admin.site.index_title = "Girltalk Admin" # swagger schema_view = get_schema_view( openapi.Info( title="Girltalk API", default_version="v1", description="API documentation for Girltalk App", ), public=True, permission_classes=(permissions.IsAuthenticated,), ) urlpatterns += [ path("api-docs/", schema_view.with_ui("swagger", cache_timeout=0), name="api_docs") ]
d1ca6c351122bf427bc8a5012370cfc1a2fa3cc8
6570bfdb26a41d99620debec5541e789b3c613f3
/Others/Mercari/binary.py
c7514cc5228a9257b4679b4b065a41dd9d90ea3f
[]
no_license
ameet-1997/Competitive_Coding
bc30f37ae034efe7bb63f71241792fc53c323a50
a9824430cf0458516ddd88655c1eca1f42ff3f0a
refs/heads/master
2021-05-10T14:07:15.209770
2018-01-22T19:22:13
2018-01-22T19:22:13
118,500,812
0
0
null
null
null
null
UTF-8
Python
false
false
45
py
n=input()+1 while'11'in bin(n):n+=1 print n
1dcceb03a81d2043094a05404cce1de425ad775d
4ff90da76cb447db065896a06573258a27fc8878
/itchat/components/login.py
709b8307350c9a7bc7e422e7fe610d2d585d68f0
[ "MIT" ]
permissive
wosenbo/ItChat
9455c79a57f7b5d5f03be86d652b428eb248299f
36a3a027bb8dc19f0ceb4b8a44e943a60b2286ef
refs/heads/master
2021-01-12T09:18:38.605240
2017-04-07T01:18:53
2017-04-07T01:18:53
76,820,262
0
0
null
2016-12-19T02:13:56
2016-12-19T02:13:56
null
UTF-8
Python
false
false
12,311
py
import os, sys, time, re, io import threading import json, xml.dom.minidom import copy, pickle, random import traceback, logging import requests from .. import config, utils from ..returnvalues import ReturnValue from .contact import update_local_chatrooms from .messages import produce_msg logger = logging.getLogger('itchat') def load_login(core): core.login = login core.get_QRuuid = get_QRuuid core.get_QR = get_QR core.check_login = check_login core.web_init = web_init core.show_mobile_login = show_mobile_login core.start_receiving = start_receiving core.get_msg = get_msg core.logout = logout def login(self, enableCmdQR=False, picDir=None, qrCallback=None, loginCallback=None, exitCallback=None): if self.alive: logger.debug('itchat has already logged in.') return while 1: for getCount in range(10): logger.info('Getting uuid of QR code.') while not self.get_QRuuid(): time.sleep(1) logger.info('Downloading QR code.') qrStorage = self.get_QR(enableCmdQR=enableCmdQR, picDir=picDir, qrCallback=qrCallback) if qrStorage: break elif 9 == getCount: logger.info('Failed to get QR code, please restart the program.') sys.exit() logger.info('Please scan the QR code to log in.') isLoggedIn = False while not isLoggedIn: status = self.check_login() if hasattr(qrCallback, '__call__'): qrCallback(uuid=self.uuid, status=status, qrcode=qrStorage.getvalue()) if status == '200': isLoggedIn = True elif status == '201': if isLoggedIn is not None: logger.info('Please press confirm on your phone.') isLoggedIn = None elif status != '408': break if isLoggedIn: break logger.info('Log in time out, reloading QR code') self.web_init() self.show_mobile_login() self.get_contact(True) if hasattr(loginCallback, '__call__'): r = loginCallback() else: utils.clear_screen() if os.path.exists(picDir or config.DEFAULT_QR): os.remove(picDir or config.DEFAULT_QR) logger.info('Login successfully as %s' % self.storageClass.nickName) self.start_receiving(exitCallback) def get_QRuuid(self): url = '%s/jslogin' % config.BASE_URL params = { 'appid' : 'wx782c26e4c19acffb', 'fun' : 'new', } headers = { 'User-Agent' : config.USER_AGENT } r = self.s.get(url, params=params, headers=headers) regx = r'window.QRLogin.code = (\d+); window.QRLogin.uuid = "(\S+?)";' data = re.search(regx, r.text) if data and data.group(1) == '200': self.uuid = data.group(2) return self.uuid def get_QR(self, uuid=None, enableCmdQR=False, picDir=None, qrCallback=None): uuid = uuid or self.uuid picDir = picDir or config.DEFAULT_QR url = '%s/qrcode/%s' % (config.BASE_URL, uuid) headers = { 'User-Agent' : config.USER_AGENT } try: r = self.s.get(url, stream=True, headers=headers) except: return False qrStorage = io.BytesIO(r.content) if hasattr(qrCallback, '__call__'): qrCallback(uuid=uuid, status='0', qrcode=qrStorage.getvalue()) else: with open(picDir, 'wb') as f: f.write(r.content) if enableCmdQR: utils.print_cmd_qr(picDir, enableCmdQR=enableCmdQR) else: utils.print_qr(picDir) return qrStorage def check_login(self, uuid=None): uuid = uuid or self.uuid url = '%s/cgi-bin/mmwebwx-bin/login' % config.BASE_URL localTime = int(time.time()) params = 'loginicon=true&uuid=%s&tip=0&r=%s&_=%s' % ( uuid, localTime / 1579, localTime) headers = { 'User-Agent' : config.USER_AGENT } r = self.s.get(url, params=params, headers=headers) regx = r'window.code=(\d+)' data = re.search(regx, r.text) if data and data.group(1) == '200': process_login_info(self, r.text) return '200' elif data: return data.group(1) else: return '400' def process_login_info(core, loginContent): ''' when finish login (scanning qrcode) * syncUrl and fileUploadingUrl will be fetched * deviceid and msgid will be generated * skey, wxsid, wxuin, pass_ticket will be fetched ''' regx = r'window.redirect_uri="(\S+)";' core.loginInfo['url'] = re.search(regx, loginContent).group(1) headers = { 'User-Agent' : config.USER_AGENT } r = core.s.get(core.loginInfo['url'], headers=headers, allow_redirects=False) core.loginInfo['url'] = core.loginInfo['url'][:core.loginInfo['url'].rfind('/')] for indexUrl, detailedUrl in ( ("wx2.qq.com" , ("file.wx2.qq.com", "webpush.wx2.qq.com")), ("wx8.qq.com" , ("file.wx8.qq.com", "webpush.wx8.qq.com")), ("qq.com" , ("file.wx.qq.com", "webpush.wx.qq.com")), ("web2.wechat.com" , ("file.web2.wechat.com", "webpush.web2.wechat.com")), ("wechat.com" , ("file.web.wechat.com", "webpush.web.wechat.com"))): fileUrl, syncUrl = ['https://%s/cgi-bin/mmwebwx-bin' % url for url in detailedUrl] if indexUrl in core.loginInfo['url']: core.loginInfo['fileUrl'], core.loginInfo['syncUrl'] = \ fileUrl, syncUrl break else: core.loginInfo['fileUrl'] = core.loginInfo['syncUrl'] = core.loginInfo['url'] core.loginInfo['deviceid'] = 'e' + repr(random.random())[2:17] core.loginInfo['msgid'] = int(time.time() * 1000) core.loginInfo['BaseRequest'] = {} for node in xml.dom.minidom.parseString(r.text).documentElement.childNodes: if node.nodeName == 'skey': core.loginInfo['skey'] = core.loginInfo['BaseRequest']['Skey'] = node.childNodes[0].data elif node.nodeName == 'wxsid': core.loginInfo['wxsid'] = core.loginInfo['BaseRequest']['Sid'] = node.childNodes[0].data elif node.nodeName == 'wxuin': core.loginInfo['wxuin'] = core.loginInfo['BaseRequest']['Uin'] = node.childNodes[0].data elif node.nodeName == 'pass_ticket': core.loginInfo['pass_ticket'] = core.loginInfo['BaseRequest']['DeviceID'] = node.childNodes[0].data def web_init(self): url = '%s/webwxinit?r=%s' % (self.loginInfo['url'], int(time.time())) data = { 'BaseRequest': self.loginInfo['BaseRequest'], } headers = { 'ContentType': 'application/json; charset=UTF-8', 'User-Agent' : config.USER_AGENT, } r = self.s.post(url, data=json.dumps(data), headers=headers) dic = json.loads(r.content.decode('utf-8', 'replace')) utils.emoji_formatter(dic['User'], 'NickName') self.loginInfo['InviteStartCount'] = int(dic['InviteStartCount']) self.loginInfo['User'] = utils.struct_friend_info(dic['User']) self.loginInfo['SyncKey'] = dic['SyncKey'] self.loginInfo['synckey'] = '|'.join(['%s_%s' % (item['Key'], item['Val']) for item in dic['SyncKey']['List']]) self.storageClass.userName = dic['User']['UserName'] self.storageClass.nickName = dic['User']['NickName'] self.memberList.append(dic['User']) return dic def show_mobile_login(self): url = '%s/webwxstatusnotify?lang=zh_CN&pass_ticket=%s' % ( self.loginInfo['url'], self.loginInfo['pass_ticket']) data = { 'BaseRequest' : self.loginInfo['BaseRequest'], 'Code' : 3, 'FromUserName' : self.storageClass.userName, 'ToUserName' : self.storageClass.userName, 'ClientMsgId' : int(time.time()), } headers = { 'ContentType': 'application/json; charset=UTF-8', 'User-Agent' : config.USER_AGENT, } r = self.s.post(url, data=json.dumps(data), headers=headers) return ReturnValue(rawResponse=r) def start_receiving(self, exitCallback=None, getReceivingFnOnly=False): self.alive = True def maintain_loop(): retryCount = 0 while self.alive: try: i = sync_check(self) if i is None: self.alive = False elif i == '0': continue else: msgList, contactList = self.get_msg() if contactList: chatroomList, otherList = [], [] for contact in contactList: if '@@' in contact['UserName']: chatroomList.append(contact) else: otherList.append(contact) chatroomMsg = update_local_chatrooms(self, chatroomList) self.msgList.put(chatroomMsg) if msgList: msgList = produce_msg(self, msgList) for msg in msgList: self.msgList.put(msg) retryCount = 0 except: retryCount += 1 logger.debug(traceback.format_exc()) if self.receivingRetryCount < retryCount: self.alive = False else: time.sleep(1) self.logout() if hasattr(exitCallback, '__call__'): exitCallback() else: logger.info('LOG OUT!') if getReceivingFnOnly: return maintain_loop else: maintainThread = threading.Thread(target=maintain_loop) maintainThread.setDaemon(True) maintainThread.start() def sync_check(self): url = '%s/synccheck' % self.loginInfo.get('syncUrl', self.loginInfo['url']) params = { 'r' : int(time.time() * 1000), 'skey' : self.loginInfo['skey'], 'sid' : self.loginInfo['wxsid'], 'uin' : self.loginInfo['wxuin'], 'deviceid' : self.loginInfo['deviceid'], 'synckey' : self.loginInfo['synckey'], '_' : int(time.time() * 1000),} headers = { 'User-Agent' : config.USER_AGENT } r = self.s.get(url, params=params, headers=headers) regx = r'window.synccheck={retcode:"(\d+)",selector:"(\d+)"}' pm = re.search(regx, r.text) if pm is None or pm.group(1) != '0': logger.debug('Unexpected sync check result: %s' % r.text) return None return pm.group(2) def get_msg(self): url = '%s/webwxsync?sid=%s&skey=%s&pass_ticket=%s' % ( self.loginInfo['url'], self.loginInfo['wxsid'], self.loginInfo['skey'],self.loginInfo['pass_ticket']) data = { 'BaseRequest' : self.loginInfo['BaseRequest'], 'SyncKey' : self.loginInfo['SyncKey'], 'rr' : ~int(time.time()), } headers = { 'ContentType': 'application/json; charset=UTF-8', 'User-Agent' : config.USER_AGENT } r = self.s.post(url, data=json.dumps(data), headers=headers) dic = json.loads(r.content.decode('utf-8', 'replace')) if dic['BaseResponse']['Ret'] != 0: return None, None self.loginInfo['SyncKey'] = dic['SyncCheckKey'] self.loginInfo['synckey'] = '|'.join(['%s_%s' % (item['Key'], item['Val']) for item in dic['SyncCheckKey']['List']]) return dic['AddMsgList'], dic['ModContactList'] def logout(self): if self.alive: url = '%s/webwxlogout' % self.loginInfo['url'] params = { 'redirect' : 1, 'type' : 1, 'skey' : self.loginInfo['skey'], } headers = { 'User-Agent' : config.USER_AGENT } self.s.get(url, params=params, headers=headers) self.alive = False self.s.cookies.clear() del self.chatroomList[:] del self.memberList[:] del self.mpList[:] return ReturnValue({'BaseResponse': { 'ErrMsg': 'logout successfully.', 'Ret': 0, }})
598e66cd794150397c8cf73002b440126b93541a
951fc0da7384b961726999e5451a10e2783462c4
/script.module.ATFTV/addon.py
08dc093ce00ace1411bebb0134af1dcc39de1c05
[]
no_license
vphuc81/MyRepository
eaf7b8531b2362f0e0de997a67b889bc114cd7c2
9bf8aca6de07fcd91bcec573f438f29e520eb87a
refs/heads/master
2022-01-02T15:07:35.821826
2021-12-24T05:57:58
2021-12-24T05:57:58
37,680,232
6
10
null
null
null
null
UTF-8
Python
false
false
7,622
py
# -*- coding: utf-8 -*- # # Copyright (C) 2016,2017,2018 RACC # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from __future__ import unicode_literals import sys import xbmc import xbmcgui import xbmcaddon import xbmcplugin from xbmcgui import ListItem from routing import Plugin import os import traceback import requests import requests_cache from datetime import timedelta from base64 import b64decode, urlsafe_b64encode from pyDes import des, PAD_PKCS5 try: from urllib.parse import quote_from_bytes as orig_quote except ImportError: from urllib import quote as orig_quote addon = xbmcaddon.Addon() plugin = Plugin() plugin.name = addon.getAddonInfo("name") user_agent = "Dalvik/2.1.0 (Linux; U; Android 5.1.1; AFTS Build/LVY48F)" player_user_agent = "mediaPlayerhttp/2.1 (Linux;Android 5.1) ExoPlayerLib/2.6.1" USER_DATA_DIR = xbmc.translatePath(addon.getAddonInfo("profile")).decode("utf-8") # !! CACHE_TIME = int(addon.getSetting("cache_time")) CACHE_FILE = os.path.join(USER_DATA_DIR, "cache") expire_after = timedelta(hours=CACHE_TIME) if not os.path.exists(USER_DATA_DIR): os.makedirs(USER_DATA_DIR) s = requests_cache.CachedSession(CACHE_FILE, allowable_methods="POST", expire_after=expire_after, old_data_on_error=True) s.hooks = {"response": lambda r, *args, **kwargs: r.raise_for_status()} s.headers.update({"User-Agent": "USER-AGENT-tvtap-APP-V2"}) token_url = "http://tvtap.net/tvtap1/index_new.php?case=get_channel_link_with_token_tvtap" list_url = "http://tvtap.net/tvtap1/index_new.php?case=get_all_channels" def quote(s, safe=""): return orig_quote(s.encode("utf-8"), safe.encode("utf-8")) @plugin.route("/") def root(): categories = { "01": "UK & USA Channels", "02": "Movies", "03": "Music", "04": "News", "05": "Sport", "06": "Documentary", "07": "Kids", "08": "Food", "09": "Religious", } list_items = [] for cat in categories.keys(): li = ListItem(categories[cat]) url = plugin.url_for(list_channels, cat_id=cat.lstrip("0")) list_items.append((url, li, True)) xbmcplugin.addSortMethod(plugin.handle, xbmcplugin.SORT_METHOD_LABEL) xbmcplugin.addDirectoryItems(plugin.handle, list_items) xbmcplugin.endOfDirectory(plugin.handle) @plugin.route("/list_channels/<cat_id>") def list_channels(cat_id=None): list_items = [] r = s.post(list_url, headers={"app-token": "9120163167c05aed85f30bf88495bd89"}, data={"username": "603803577"}, timeout=15) if "Could not connect" in r.content: s.cache.clear() ch = r.json() for c in ch["msg"]["channels"]: if c["cat_id"] == cat_id: image = "http://tvtap.net/tvtap1/{0}|User-Agent={1}".format(quote(c.get("img"), "/"), quote(user_agent)) li = ListItem(c["channel_name"].rstrip(".")) li.setProperty("IsPlayable", "true") li.setArt({"thumb": image, "icon": image}) li.setInfo(type="Video", infoLabels={"Title": c["channel_name"].rstrip("."), "mediatype": "video"}) try: li.setContentLookup(False) except AttributeError: pass url = plugin.url_for(play, ch_id=c["pk_id"]) list_items.append((url, li, False)) xbmcplugin.addSortMethod(plugin.handle, xbmcplugin.SORT_METHOD_LABEL) xbmcplugin.addDirectoryItems(plugin.handle, list_items) xbmcplugin.endOfDirectory(plugin.handle) @plugin.route("/play/<ch_id>/play.pvr") def play(ch_id): # 178.132.6.54 81.171.8.162 key = b"19087321" r = s.post(list_url, headers={"app-token": "9120163167c05aed85f30bf88495bd89"}, data={"username": "603803577"}, timeout=15) ch = r.json() for c in ch["msg"]["channels"]: if c["pk_id"] == ch_id: selected_channel = c break title = selected_channel.get("channel_name") image = "http://tvtap.net/tvtap1/{0}|User-Agent={1}".format(quote(c.get("img"), "/"), quote(user_agent)) with s.cache_disabled(): r = s.post(token_url, headers={"app-token": "9120163167c05aed85f30bf88495bd89"}, data={"channel_id": ch_id, "username": "603803577"}, timeout=15) links = [] for stream in r.json()["msg"]["channel"][0].keys(): if "stream" in stream or "chrome_cast" in stream: d = des(key) link = d.decrypt(b64decode(r.json()["msg"]["channel"][0][stream]), padmode=PAD_PKCS5) if link: link = link.decode("utf-8") if not link == "dummytext" and link not in links: links.append(link) if addon.getSetting("autoplay") == "true": link = links[0] else: dialog = xbmcgui.Dialog() ret = dialog.select("Choose Stream", links) link = links[ret] if link.startswith("http"): media_url = "{0}|User-Agent={1}".format(link, quote(player_user_agent)) else: media_url = link if "playlist.m3u8" in media_url: if addon.getSetting("inputstream") == "true": li = ListItem(title, path=media_url) li.setArt({"thumb": image, "icon": image}) li.setMimeType("application/vnd.apple.mpegurl") li.setProperty("inputstreamaddon", "inputstream.adaptive") li.setProperty("inputstream.adaptive.manifest_type", "hls") li.setProperty("inputstream.adaptive.stream_headers", media_url.split("|")[-1]) elif addon.getSetting("livestreamer") == "true": serverPath = os.path.join(xbmc.translatePath(addon.getAddonInfo("path")), "livestreamerXBMCLocalProxy.py") runs = 0 while not runs > 10: try: requests.get("http://127.0.0.1:19001/version") break except Exception: xbmc.executebuiltin("RunScript(" + serverPath + ")") runs += 1 xbmc.sleep(600) livestreamer_url = "http://127.0.0.1:19001/livestreamer/" + urlsafe_b64encode("hlsvariant://" + media_url) li = ListItem(title, path=livestreamer_url) li.setArt({"thumb": image, "icon": image}) li.setMimeType("video/x-mpegts") else: li = ListItem(title, path=media_url) li.setArt({"thumb": image, "icon": image}) li.setMimeType("application/vnd.apple.mpegurl") try: li.setContentLookup(False) except AttributeError: pass else: li = ListItem(title, path=media_url) li.setArt({"thumb": image, "icon": image}) xbmcplugin.setResolvedUrl(plugin.handle, True, li) if __name__ == "__main__": try: plugin.run(sys.argv) s.close() except requests.exceptions.RequestException as e: dialog = xbmcgui.Dialog() dialog.notification(plugin.name, str(e), xbmcgui.NOTIFICATION_ERROR) traceback.print_exc() xbmcplugin.endOfDirectory(plugin.handle, False)
3040be782248c917cdc83a55505739f977559922
bf2d010229aece071359662f4fef44e48ba57951
/dynamic_range_parallel_pipeline.py
6432414ec8f72d79b72df4a68b82b80d29b6a4bc
[]
no_license
Osrip/CriticalEvolution
b97398f74e2fc5b54c9ab92765b08ce3bf97257e
f77cae8acc626cb4c6d64d5a44fdf00310309c2e
refs/heads/master
2021-06-24T03:44:03.283017
2021-04-03T13:09:42
2021-04-03T13:09:42
215,332,038
1
0
null
null
null
null
UTF-8
Python
false
false
12,763
py
import os from multiprocessing import Pool import argparse import train import copy from automatic_plot_helper import detect_all_isings from automatic_plot_helper import load_isings_from_list from automatic_plot_helper import load_settings from automatic_plot_helper import all_sim_names_in_parallel_folder import time import ray from switch_season_repeat_plotting import plot_pipeline import pickle from run_combi import RunCombi import numpy as np def dynamic_pipeline_all_sims(folder_names, pipeline_settings): for folder_name in folder_names: sim_names = all_sim_names_in_parallel_folder(folder_name) if not pipeline_settings['parallelize_each_sim']: for i, sim_name in enumerate(sim_names): if pipeline_settings['only_plot_certain_num_of_simulations'] is None: dynamic_pipeline_one_sim(sim_name, pipeline_settings) elif pipeline_settings['only_plot_certain_num_of_simulations'] > i: dynamic_pipeline_one_sim(sim_name, pipeline_settings) else: all_sim_names = np.array([]) for folder_name in folder_names: sim_names = all_sim_names_in_parallel_folder(folder_name) all_sim_names = np.append(all_sim_names, sim_names) ray.init(num_cpus=pipeline_settings['cores']) if pipeline_settings['specify_memory_usage']: ray_funcs = [dynamic_pipeline_one_sim_remote_memory.remote(sim_name, pipeline_settings)for sim_name in all_sim_names] else: ray_funcs = [dynamic_pipeline_one_sim_remote.remote(sim_name, pipeline_settings)for sim_name in all_sim_names] ray.get(ray_funcs) ray.shutdown() @ray.remote def dynamic_pipeline_one_sim_remote(sim_name, pipeline_settings): original_settings = load_settings(sim_name) settings = create_settings_for_repeat(original_settings, sim_name, pipeline_settings) run_all_repeats(settings, original_settings, pipeline_settings) # Exact copy of run_repeat_remote but with specific memory usage. Memory usage par task!! @ray.remote(memory=1500 * 1024 * 1024) def dynamic_pipeline_one_sim_remote_memory(sim_name, pipeline_settings): original_settings = load_settings(sim_name) settings = create_settings_for_repeat(original_settings, sim_name, pipeline_settings) run_all_repeats(settings, original_settings, pipeline_settings) # Exact copy of run_repeat_remote but without ray.remote decorator def dynamic_pipeline_one_sim(sim_name, pipeline_settings): original_settings = load_settings(sim_name) settings = create_settings_for_repeat(original_settings, sim_name, pipeline_settings) run_all_repeats(settings, original_settings, pipeline_settings) def create_settings_for_repeat(settings, sim_name, pipeline_settings): # settings['TimeSteps'] = 5 if pipeline_settings['varying_parameter'] == 'time_steps': settings['random_time_steps'] = False elif pipeline_settings['varying_parameter'] == 'food': settings['random_food_seasons'] = False settings = copy.deepcopy(settings) complete_sim_folder = sim_name settings['loadfile'] = complete_sim_folder if pipeline_settings['load_last_generation']: settings['iter'] = detect_all_isings(complete_sim_folder)[-1] pipeline_settings['load_generation'] = detect_all_isings(complete_sim_folder)[-1] else: settings['iter'] = pipeline_settings['load_generation'] settings['LoadIsings'] = True settings['switch_off_evolution'] = True settings['save_data'] = False settings['switch_seasons_repeat_pipeline'] = True settings['dynamic_range_pipeline'] = True # Animations: settings['plot_generations'] = pipeline_settings['animation_for_repeats'] settings['repeat_pipeline_switched_boo'] = None settings['random_time_steps_power_law'] = False settings['commands_in_folder_name'] = False settings['plot_pipeline'] = False # switches off animation: settings['plot'] = False settings['save_energies_velocities_last_gen'] = False settings['compress_save_isings'] = pipeline_settings['compress_save_isings'] return settings def run_all_repeats(settings, original_settings, pipeline_settings): # WATCH OUT !!! PARAMETERS WITH "FOOD" IN THEM CAN ALSO BECOME TIME STEPS !!! if pipeline_settings['varying_parameter'] == 'time_steps': if not original_settings['random_time_steps']: original_mean_food_num = original_settings['TimeSteps'] else: original_mean_food_num = (settings['random_time_step_limits'][0] + settings['random_time_step_limits'][1]) / 2 # if original_settings['random_time_steps_power_law']: # print('!!! random_time_steps_power_law is not supported !!!') elif pipeline_settings['varying_parameter'] == 'food': if not original_settings['random_food_seasons']: original_mean_food_num = original_settings['food_num'] else: original_mean_food_num = (settings['rand_food_season_limits'][0] + settings['rand_food_season_limits'][1]) / 2 lowest_food_num = original_mean_food_num * (pipeline_settings['lowest_food_percent'] / 100.0) if lowest_food_num < 1: lowest_food_num = 1 highest_food_num = original_mean_food_num * (pipeline_settings['highest_food_percent'] / 100.0) resolution = pipeline_settings['resolution'] food_num_arr = l # Append food_num of original simulation if not already in list if not original_mean_food_num in food_num_arr: food_num_arr = np.append(food_num_arr, original_mean_food_num) food_num_arr = np.sort(food_num_arr) if pipeline_settings['parallelize_run_repeats']: ray.init(num_cpus=pipeline_settings['cores']) #, ignore_reinit_error=True ray_funcs = [run_repeat_remote.remote(food_num, settings, pipeline_settings, food_num_arr, original_mean_food_num) for food_num in food_num_arr] ray.get(ray_funcs) ray.shutdown() else: [run_repeat(food_num, settings, pipeline_settings, food_num_arr, original_mean_food_num) for food_num in food_num_arr] # run_repeat(20, settings, pipeline_settings) @ray.remote def run_repeat_remote(num_foods, settings, pipeline_settings, food_num_arr, original_mean_food_num): if pipeline_settings['varying_parameter'] == 'time_steps': settings['TimeSteps'] = num_foods # Activate saving of energies and velocities during life time for simulation with similar varying param as # original simulation and for largest varying param if num_foods == original_mean_food_num or num_foods == np.max(food_num_arr): settings['save_energies_velocities_last_gen'] = True print(num_foods) elif pipeline_settings['varying_parameter'] == 'food': settings['food_num'] = num_foods if pipeline_settings['varying_parameter'] == 'food': settings['dynamic_range_pipeline_save_name'] = '{}dynamic_range_run_foods_{}'.format(pipeline_settings['add_save_file_name'], num_foods) elif pipeline_settings['varying_parameter'] == 'time_steps': settings['dynamic_range_pipeline_save_name'] = '{}dynamic_range_run_time_step_{}'.format(pipeline_settings['add_save_file_name'], num_foods) Iterations = pipeline_settings['num_repeats'] train.run(settings, Iterations) # Exact copy of run_repeat_remote but without ray.remote decorator def run_repeat(num_foods, settings, pipeline_settings, food_num_arr, original_mean_food_num): if pipeline_settings['varying_parameter'] == 'time_steps': settings['TimeSteps'] = num_foods # Activate saving of energies and velocities during life time for simulation with similar varying param as # original simulation and for largest varying param if num_foods == original_mean_food_num or num_foods == np.max(food_num_arr): settings['save_energies_velocities_last_gen'] = True print(num_foods) elif pipeline_settings['varying_parameter'] == 'food': settings['food_num'] = num_foods if pipeline_settings['varying_parameter'] == 'food': settings['dynamic_range_pipeline_save_name'] = '{}dynamic_range_run_foods_{}'.format(pipeline_settings['add_save_file_name'], num_foods) elif pipeline_settings['varying_parameter'] == 'time_steps': settings['dynamic_range_pipeline_save_name'] = '{}dynamic_range_run_time_step_{}'.format(pipeline_settings['add_save_file_name'], num_foods) Iterations = pipeline_settings['num_repeats'] train.run(settings, Iterations) if __name__=='__main__': ''' BETTER NAME: FOOD or TIME STEP DENSITY RESPONSE CURVE This module explores the dynamic range of random food simulations: It expects a file with with random food season parameter active It then takes the last generation of that simulation and puts it into different environments with fixed amount of foods. There the organisms do not evolve but the experiment is repeated from scratch a given amount of times, which is defined by "num_repeats" to get statistically meaningful results. Cores should be about equal to the resolution, which should also be int ''' pipeline_settings = {} pipeline_settings['varying_parameter'] = 'time_steps' # 'food' pipeline_settings['cores'] = 58 pipeline_settings['num_repeats'] = 3 if pipeline_settings['varying_parameter'] == 'food': pipeline_settings['lowest_food_percent'] = 1 pipeline_settings['highest_food_percent'] = 1000 elif pipeline_settings['varying_parameter'] == 'time_steps': pipeline_settings['lowest_food_percent'] = 1 pipeline_settings['highest_food_percent'] = 2500 pipeline_settings['resolution'] = 40 # !!!!!!!! add_save_file_name has to be unique each run and must not be a substring of previous run !!!!!!!!! # !!!!!!!! otherwise runs are indistringuishible !!!!!!!!! pipeline_settings['add_save_file_name'] = 'res_40_3_repeats_gen_4000' #'resulotion_80_hugeres_3_repeats_gen_100' # 'resulotion_80_hugeres_3_repeats_last_gen' # list of repeats, that should be animated, keep in mind, that this Creates an animation for each REPEAT! # If no animations, just emtpy list, if an animation should be created f.e. [0] pipeline_settings['animation_for_repeats'] = [] # This loads last / highest generation from trained simulation pipeline_settings['load_last_generation'] = False # Otherwise specify generation, that shall be loaded, make sure thsi generation exists in all loaded simulations: pipeline_settings['load_generation'] = 4000 # The following command allows to only plot a certain number of simulations in each parallel simulations folder # If all simulations in those folders shall be plotted, set to None pipeline_settings['only_plot_certain_num_of_simulations'] = None # The following settings define the level of parallelization. Use 'parallelize_run_repeats' for low level # parallelization when plotting few simulations. use high level parallelization with 'parallelize_each_sim' when # plotting many simulations. Both does not work at the same time. 'parallelize_each_sim' particularly recommended # when varying time steps pipeline_settings['parallelize_each_sim'] = True pipeline_settings['parallelize_run_repeats'] = False # Specific memory usage per parallel task has to be specified in dynamic_pipeline_one_sim_remote_memory # only works for pipeline_settings['parallelize_each_sim'] = True pipeline_settings['specify_memory_usage'] = True pipeline_settings['compress_save_isings'] = True # folder_names = ['sim-20201022-184145_parallel_TEST_repeated'] # folder_names = ['sim-20201022-190553_parallel_b1_normal_seas_g4000_t2000', 'sim-20201022-190615_parallel_b10_normal_seas_g4000_t2000']#, 'sim-20201105-202455_parallel_b1_random_ts_2000_lim_100_3900', 'sim-20201105-202517_parallel_b10_random_ts_2000_lim_100_3900'] # folder_names = ['sim-20201026-224639_parallel_b1_fixed_4000ts_', 'sim-20201026-224709_parallel_b10_fixed_4000ts_', 'sim-20201022-190553_parallel_b1_normal_seas_g4000_t2000', 'sim-20201022-190615_parallel_b10_normal_seas_g4000_t2000', 'sim-20201026-224655_parallel_b1_random_100-7900ts_', 'sim-20201026-224722_parallel_b10_random_100-7900ts_', 'sim-20201105-202455_parallel_b1_random_ts_2000_lim_100_3900', 'sim-20201105-202517_parallel_b10_random_ts_2000_lim_100_3900'] folder_names = ['sim-20210206-122918_parallel_b1_normal_run_g4000_t2000_54_sims']#, 'sim-20201119-190204_parallel_b10_normal_run_g4000_t2000_54_sims'] dynamic_pipeline_all_sims(folder_names, pipeline_settings)
dac3f89e9ff6dcef5bdf7d2f7588c8933dd9afa1
c5291e50a3c72c885922378573a0ad423fcedf05
/elastic/MainApp/__init__.py
a45576712bb6d54a6826b931b0fc69c4e1e0d94d
[]
no_license
raghurammanyam/django-projects
bcc3ed6285882af437a2995514cef33760fb063e
dd20ae354f7f111a0176a1cc047c099bd23e9f05
refs/heads/master
2022-12-12T19:22:31.698114
2018-12-09T09:41:45
2018-12-09T09:41:45
137,443,359
0
0
null
2022-11-22T03:01:07
2018-06-15T05:08:15
Python
UTF-8
Python
false
false
51
py
#default_app_config = 'MainApp.apps.MainappConfig'
5eb44788937ca1fbf4a8a624dde9701a7a41231b
8ac22dadac75a6968209997eae693db312deeef3
/tenant_customer/__init__.py
108c3893fe1910b15d16abd89dfadfd2b7dfad02
[ "BSD-2-Clause" ]
permissive
smegurus/smegurus-django
9b7c420d35806850da7e3ce66cffccfbc263bea2
053973b5ff0b997c52bfaca8daf8e07db64a877c
refs/heads/master
2022-11-29T08:43:43.596459
2019-01-09T01:47:03
2019-01-09T01:47:03
159,753,141
1
0
BSD-4-Clause
2022-11-22T01:37:38
2018-11-30T01:52:03
HTML
UTF-8
Python
false
false
65
py
default_app_config = 'tenant_customer.apps.TenantCustomerConfig'
ec6aeb30c25573caf0925da3c3ed23837c47509c
c5347ba3bbd2f4f2c7eefa50b2be2cdef94fa8d1
/src/plugin/binkit/functions_match_viewer.py
e51dfe5ede3784977760930618561dbc7c858513
[]
no_license
ohjeongwook/binkit
ebc1d58db6ff6950a632cbc8f98ce7078475670f
cfd183d5fa2860f78071d35424d55cae8ca80e60
refs/heads/master
2022-12-23T16:43:59.812706
2020-10-05T01:34:57
2020-10-05T01:34:57
266,231,657
68
9
null
null
null
null
UTF-8
Python
false
false
9,088
py
import thread import traceback import idaapi import idc import ida_bytes from PyQt5 import QtGui, QtCore, QtWidgets from client import * from Queue import Queue from threading import Thread def sync_worker(queue): syncers = {} while True: commands = queue.get() queue.task_done() if not commands['md5'] in syncers or syncers[commands['md5']] == None: syncers[commands['md5']] = IDASessions.connect(commands['md5']) connection = syncers[commands['md5']] try: if connection: connection.root.run_commands(commands['list']) except: traceback.print_exc() del syncers[commands['md5']] class NumberSortModel(QtCore.QSortFilterProxyModel): def lessThan(self, left, right): if left.column() in (4, 5, 6): lvalue = int(left.data()) rvalue = int(right.data()) return lvalue < rvalue elif left.column() in (1, 3): lvalue = int(left.data(), 16) rvalue = int(right.data(), 16) return lvalue < rvalue else: return left < right class FunctionsMatchViewer(idaapi.PluginForm): def color_lines(self, start, end, color): address = idaapi.get_imagebase() + start while address < idaapi.get_imagebase() + end: idaapi.set_item_color(address, color) address += ida_bytes.get_item_size(address) def color_node(self, addresses, bg_color, frame_color = 0x000000): if len(addresses) <= 0: return func = idaapi.get_func(idaapi.get_imagebase() + addresses[0]) flowchart_ = idaapi.FlowChart(func) address_map = {} for address in addresses: address_map[idaapi.get_imagebase() + address] = 1 for code_block in flowchart_: if not code_block.start_ea in address_map: continue node_info = idaapi.node_info_t() node_info.bg_color = bg_color node_info.frame_color = frame_color idaapi.set_node_info(func.start_ea, code_block.id, node_info, idaapi.NIF_BG_COLOR | idaapi.NIF_FRAME_COLOR) def set_basic_blocks_color(self): for function_match in self.function_matches: self.matched_block_color_function_match(function_match) def tree_view_double_clicked_handler(self, ix): item = ix.data(QtCore.Qt.UserRole) idaapi.jumpto(idaapi.get_imagebase() + item.function_match[item.self_name]) commands = {'md5': item.peer_md5, 'list': []} commands['list'].append(({'name': 'jumpto', 'address': item.function_match[item.peer_name]})) self_basic_block_addresses = [] peer_basic_block_addresses = [] if 'matches' in item.function_match: for match_data in item.function_match['matches']: self_basic_block_addresses.append(match_data[self.self_name]) peer_basic_block_addresses.append(match_data[self.peer_name]) self.color_lines(match_data[self.self_name], match_data[self.self_name+'_end'], self.matched_block_color) commands['list'].append({'name': 'color_lines', 'start': match_data[self.peer_name], 'end': match_data[self.peer_name+'_end'], 'color': self.matched_block_color}) self.color_node(self_basic_block_addresses, self.matched_block_color) commands['list'].append({'name': 'color_node', 'addresses': peer_basic_block_addresses, 'bg_color': self.matched_block_color}) if 'unidentified_blocks' in item.function_match: self_basic_block_addresses = [] for basic_block in item.function_match['unidentified_blocks'][self.self_name+'s']: self_basic_block_addresses.append(basic_block['start']) self.color_lines(basic_block['start'], basic_block['end'], self.unidentified_block_color) self.color_node(self_basic_block_addresses, self.unidentified_block_color) peer_basic_block_addresses = [] for basic_block in item.function_match['unidentified_blocks'][self.peer_name+'s']: peer_basic_block_addresses.append(basic_block['start']) commands['list'].append({'name': 'color_lines', 'start': basic_block['start'], 'end': basic_block['end'], 'color': self.unidentified_block_color}) commands['list'].append({'name': 'color_node', 'addresses': peer_basic_block_addresses, 'bg_color': self.unidentified_block_color}) item.queue.put(commands) def count_blocks(self, function_match): matched_block_counts = 0 self_unidentified_block_counts = 0 peer_unidentified_block_counts = 0 if 'matches' in function_match: matched_block_counts = len(function_match['matches']) * 2 if 'unidentified_blocks' in function_match: self_unidentified_block_counts += len(function_match['unidentified_blocks'][self.self_name+'s']) peer_unidentified_block_counts += len(function_match['unidentified_blocks'][self.peer_name+'s']) counts = {} counts['matched_block_counts'] = matched_block_counts counts['self_unidentified_block_counts'] = self_unidentified_block_counts counts['peer_unidentified_block_counts'] = peer_unidentified_block_counts return counts def add_item(self, function_match): imagebase = idaapi.get_imagebase() self_address = imagebase + function_match[self.self_name] counts = self.count_blocks(function_match) root = self.model.invisibleRootItem() columns = [ QtGui.QStandardItem(idaapi.get_short_name(self_address)), QtGui.QStandardItem('%.8x' % self_address), QtGui.QStandardItem(function_match[self.peer_name+'_name']), QtGui.QStandardItem('%.8x' % function_match[self.peer_name]), QtGui.QStandardItem('%d' % counts['matched_block_counts']), QtGui.QStandardItem('%d' % counts['self_unidentified_block_counts']), QtGui.QStandardItem('%d' % counts['peer_unidentified_block_counts']) ] root.appendRow(columns) class Item: def __init__(self, **kwargs): self.__dict__.update(kwargs) item_data = Item( function_match = function_match, self_name = self.self_name, peer_name = self.peer_name, peer_md5 = self.peer_md5, queue = self.queue ) for column_item in columns: column_item.setData(item_data, QtCore.Qt.UserRole) def add_items(self, function_matches, self_name, peer_name, peer_md5, matched_block_color, unidentified_block_color): self.matched_block_color = matched_block_color self.unidentified_block_color = unidentified_block_color self.function_matches = function_matches self.self_name = self_name self.peer_name = peer_name self.peer_md5 = peer_md5 for function_match in self.function_matches: self.add_item(function_match) self.tree_view.setRootIsDecorated(False) self.tree_view.setColumnWidth(0, 100) self.tree_view.setColumnWidth(1, 50) self.tree_view.setColumnWidth(2, 100) self.tree_view.setColumnWidth(3, 50) self.tree_view.setColumnWidth(4, 30) self.tree_view.setColumnWidth(5, 30) self.tree_view.setColumnWidth(6, 30) def search_input_changed(self, text): self.proxy_model.setFilterWildcard(text) def OnCreate(self, form): self.parent = idaapi.PluginForm.FormToPyQtWidget(form) self.columns = ("Source", "Address", "Target", "Address", "Matched", "Removed", "Added") self.tree_view = QtWidgets.QTreeView() self.tree_view.setSortingEnabled(True) self.tree_view.setEditTriggers(QtWidgets.QAbstractItemView.NoEditTriggers) self.tree_view.doubleClicked.connect(self.tree_view_double_clicked_handler) self.item_map = {} self.model = QtGui.QStandardItemModel(self.tree_view) self.model.setHorizontalHeaderLabels(self.columns) self.proxy_model = NumberSortModel(self.tree_view) self.proxy_model.setSourceModel(self.model) self.tree_view.setModel(self.proxy_model) self.search_input = QtWidgets.QLineEdit() self.search_input.textChanged.connect(self.search_input_changed) layout = QtWidgets.QVBoxLayout() layout.addWidget(self.tree_view) layout.addWidget(self.search_input) self.parent.setLayout(layout) self.queue = Queue(maxsize=0) worker = Thread(target=sync_worker, args=(self.queue,)) worker.setDaemon(True) worker.start() def Show(self, title): return idaapi.PluginForm.Show(self, title, options = idaapi.PluginForm.FORM_PERSIST) if __name__ == "__main__": form = FunctionsMatchViewer() form.Show("Function Matches") form.AddTestItems()
bc687d5bb4cf86f031a3ecd8470bf3c53f0497b8
4fd3f6c6ce06199d554101f796c0f6fc7eca074f
/0x04-python-more_data_structures/4-only_diff_elements.py
383927b3db341ed3619e6a785f0868335cd45a56
[]
no_license
Joldiazch/holbertonschool-higher_level_programming
64f453aaf492b5473319a1b5e7e338bc7964fa7b
c9127882ffed3b72b2a517824770adafa63a9042
refs/heads/master
2020-09-29T03:12:47.497695
2020-05-15T04:05:13
2020-05-15T04:05:13
226,935,286
1
0
null
null
null
null
UTF-8
Python
false
false
98
py
#!/usr/bin/python3 def only_diff_elements(set_1, set_2): return set_1 - set_2 | set_2 - set_1
fc9d27bcb01c7fe4e3ef1115a053ef8ac3b732cd
1925c535d439d2d47e27ace779f08be0b2a75750
/microsoft/implement_rand10_with_rand7.py
0f89680adba0923d2798aa8ebf8bb297ca0fc640
[]
no_license
arthurDz/algorithm-studies
ee77d716041671c4b8bb757d8d96f3d10b6589f7
1e4d23dd0c40df34f58d71c7ca3e6491be732075
refs/heads/master
2023-04-27T12:17:06.209278
2021-04-30T20:16:18
2021-04-30T20:16:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
736
py
# Given a function rand7 which generates a uniform random integer in the range 1 to 7, write a function rand10 which generates a uniform random integer in the range 1 to 10. # Do NOT use system's Math.random(). # Example 1: # Input: 1 # Output: [7] # Example 2: # Input: 2 # Output: [8,4] # Example 3: # Input: 3 # Output: [8,1,10] # Note: # rand7 is predefined. # Each testcase has one argument: n, the number of times that rand10 is called. # Follow up: # What is the expected value for the number of calls to rand7() function? # Could you minimize the number of calls to rand7()? def rand10(self): temp = rand7() + (rand7() - 1) * 7 while temp > 10: temp = rand7() + (rand7() - 1) * 7 return temp
fc27042eaae21fea6ee015e954980fd672a2c584
ff6248be9573caec94bea0fa2b1e4b6bf0aa682b
/StudentProblem/10.21.11.40/8/1569575464.py
03f7325643668c7c922036efc5b29701c3522051
[]
no_license
LennartElbe/codeEvo
0e41b1a7705204e934ef71a5a28c047366c10f71
e89b329bc9edd37d5d9986f07ca8a63d50686882
refs/heads/master
2020-12-21T17:28:25.150352
2020-03-26T10:22:35
2020-03-26T10:22:35
236,498,032
0
0
null
null
null
null
UTF-8
Python
false
false
1,719
py
import functools import typing import string import random import pytest class Leaf0: def __init__ (self, value): self.value = value class Node0: def __init__ (self, left, right, value=None): self.value = value self.left = left self.right = right ## Lösung Teil 1. def Leaf(Leaf0): def __init__(self, *args): super().__init__(*args) def preorder(self) -> list: """ Returns a list of the leaf in preorder without any None values. """ return self.value def postorder(self) -> list: """ Returns a list of the leaf in postorder without any None values. """ return self.value class Node(Node0): def __init__(self, *args): super().__init__(*args) def preorder(self) -> list: """ Returns a list of the node in preorder without any None values. """ ls = [] if self.value: ls.append(self.value) if self.left: ls += self.left.preorder() if self.right: ls += self.right.preorder() return ls def postorder(self) -> list: """ Returns a list of the node in postorder without any None values. """ ls = [] if self.left: ls += self.left.preorder() if self.right: ls += self.right.preorder() if self.value: ls.append(self.value) return ls ###################################################################### ## Lösung Teil 2. def test_tree(): assert Node (Leaf(1), Leaf(2), 3).postorder() == [1, 2, 3] ######################################################################
7e4e28d2c13d17fdd64f8dd33933b84f8a9c95db
cbcdf195338307b0c9756549a9bffebf3890a657
/django-stubs/core/cache/backends/base.pyi
52f2910b56950d0d0b50af70cb6a198f97a8879f
[ "MIT" ]
permissive
mattbasta/django-stubs
bc482edf5c6cdf33b85005c2638484049c52851b
8978ad471f2cec0aa74256fe491e2e07887f1006
refs/heads/master
2020-04-27T08:38:22.694104
2019-03-06T09:05:08
2019-03-06T09:05:24
174,178,933
1
0
MIT
2019-03-06T16:18:01
2019-03-06T16:18:00
null
UTF-8
Python
false
false
2,590
pyi
from collections import OrderedDict from typing import Any, Callable, Dict, List, Optional, Union from django.core.exceptions import ImproperlyConfigured class InvalidCacheBackendError(ImproperlyConfigured): ... class CacheKeyWarning(RuntimeWarning): ... DEFAULT_TIMEOUT: Any MEMCACHE_MAX_KEY_LENGTH: int def default_key_func(key: Union[int, str], key_prefix: str, version: Union[int, str]) -> str: ... def get_key_func(key_func: Optional[Union[Callable, str]]) -> Callable: ... class BaseCache: default_timeout: int = ... key_prefix: str = ... version: int = ... key_func: Callable = ... def __init__(self, params: Dict[str, Optional[Union[Callable, Dict[str, int], int, str]]]) -> None: ... def get_backend_timeout(self, timeout: Any = ...) -> Optional[float]: ... def make_key(self, key: Union[int, str], version: Optional[Union[int, str]] = ...) -> str: ... def add(self, key: Any, value: Any, timeout: Any = ..., version: Optional[Any] = ...) -> None: ... def get(self, key: Any, default: Optional[Any] = ..., version: Optional[Any] = ...) -> Any: ... def set(self, key: Any, value: Any, timeout: Any = ..., version: Optional[Any] = ...) -> None: ... def touch(self, key: Any, timeout: Any = ..., version: Optional[Any] = ...) -> None: ... def delete(self, key: Any, version: Optional[Any] = ...) -> None: ... def get_many(self, keys: List[str], version: Optional[int] = ...) -> Dict[str, Union[int, str]]: ... def get_or_set( self, key: str, default: Optional[Union[Callable, int, str]], timeout: Any = ..., version: Optional[int] = ... ) -> Optional[Union[int, str]]: ... def has_key(self, key: Any, version: Optional[Any] = ...): ... def incr(self, key: str, delta: int = ..., version: Optional[int] = ...) -> int: ... def decr(self, key: str, delta: int = ..., version: Optional[int] = ...) -> int: ... def __contains__(self, key: str) -> bool: ... def set_many( self, data: Union[Dict[str, bytes], Dict[str, int], Dict[str, str], OrderedDict], timeout: Any = ..., version: Optional[Union[int, str]] = ..., ) -> List[Any]: ... def delete_many(self, keys: Union[Dict[str, str], List[str]], version: None = ...) -> None: ... def clear(self) -> None: ... def validate_key(self, key: str) -> None: ... def incr_version(self, key: str, delta: int = ..., version: Optional[int] = ...) -> int: ... def decr_version(self, key: str, delta: int = ..., version: Optional[int] = ...) -> int: ... def close(self, **kwargs: Any) -> None: ...
0165d25c1c0c68a71343c15d575f22e270017e69
e29734c2b3543a05a28b6bc460c3248ea37aaf5c
/apps/course/migrations/0015_auto_20190424_1717.py
36961cbabe8320fc898752c336f25bbec6d02e5d
[]
no_license
simida0755/PopularBlogs
fda6dbe06751dde013ba57f73c708fd7106a49ee
3a86989232206d0727223306c0e2d2c62d35fa9b
refs/heads/master
2020-05-21T15:54:09.853341
2019-05-13T02:15:28
2019-05-13T02:15:28
186,101,555
5
1
null
null
null
null
UTF-8
Python
false
false
434
py
# Generated by Django 2.0.2 on 2019-04-24 17:17 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('course', '0014_auto_20190424_1716'), ] operations = [ migrations.AlterField( model_name='course', name='image', field=models.ImageField(null=True, upload_to='courses/%Y/%m', verbose_name='封面图'), ), ]
82bbbe9b40505d1dc9a8185d84f30a264647c3a4
6c90a52d5be46fe4bd920acef07b2e53d2e4b42c
/runner.py
52b14e24661e02f9b9948a2cb41441de6ec05b45
[]
no_license
amoretti86/supervind
fb3f335f0400011af937fc0e5d29e98688ed885c
6444b88acf0c51e32b54206619cb6bcb438bdd26
refs/heads/master
2021-04-26T23:25:05.347404
2018-03-05T04:58:46
2018-03-05T04:58:46
123,989,516
0
0
null
2018-03-05T22:55:18
2018-03-05T22:55:18
null
UTF-8
Python
false
false
12,926
py
# Copyright 2018 Daniel Hernandez Diaz, Columbia University # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ============================================================================== import os import pickle import numpy as np import matplotlib matplotlib.use('Agg') import seaborn as sns import matplotlib.pyplot as plt import tensorflow as tf from code.LatEvModels import LocallyLinearEvolution from code.ObservationModels import PoissonObs, GaussianObs from code.Optimizer_VAEC import Optimizer_TS from code.datetools import addDateTime DTYPE = tf.float32 # CONFIGURATION RUN_MODE = 'train' # ['train', 'generate'] # DIRECTORIES, SAVE FILES, ETC LOCAL_ROOT = "./" LOCAL_DATA_DIR = "./data/" THIS_DATA_DIR = 'poisson_data_002/' LOCAL_RLT_DIR = "./rslts/" LOAD_CKPT_DIR = "" # TODO: SAVE_DATA_FILE = "datadict" SAVE_TO_VIND = False IS_PY2 = True # MODEL/OPTIMIZER ATTRIBUTES LAT_MOD_CLASS = 'llinear' GEN_MOD_CLASS = 'Poisson' # ['Gaussian', 'Poisson'] YDIM = 10 XDIM = 2 NNODES = 60 ALPHA = 0.3 INITRANGE_MUX = 0.3 INITRANGE_LAMBDAX = 2.0 INITRANGE_B = 3.0 INITRANGE_OUTY = 3.0 INIT_Q0 = 0.4 INIT_Q = 1.0 INITRANGE_GOUTMEAN = 0.03 INITRANGE_GOUTVAR = 1.0 INITBIAS_GOUTMEAN = 1.0 # TRAINING PARAMETERS LEARNING_RATE = 2e-3 # GENERATION PARAMETERS NTBINS = 30 NSAMPS = 100 DRAW_HEAT_MAPS = True flags = tf.app.flags flags.DEFINE_string('mode', RUN_MODE, "The mode in which to run. Can be ['train', 'generate']") flags.DEFINE_string('local_root', LOCAL_ROOT, "The root directory of supervind.") flags.DEFINE_string('local_data_dir', LOCAL_DATA_DIR, "The directory that stores all the datasets") flags.DEFINE_string('local_rlt_dir', LOCAL_RLT_DIR, "The directory that stores all the results") flags.DEFINE_string('this_data_dir', THIS_DATA_DIR, ("For the 'generate' mode, the directory that shall " "store this dataset")) flags.DEFINE_string('save_data_file', SAVE_DATA_FILE, ("For the 'generate' mode, the name of the file " "to store the data")) flags.DEFINE_string('load_data_file', LOAD_CKPT_DIR, ("For the 'train' mode, the directory storing " "`tf` checkpoints.")) flags.DEFINE_boolean('save_to_vind', SAVE_TO_VIND, ("Should the data be saved in a format that can be " "read by the old theano code")) flags.DEFINE_boolean('is_py2', IS_PY2, "Was the data pickled in python 2?") flags.DEFINE_integer('xDim', XDIM, "The dimensionality of the latent space") flags.DEFINE_integer('yDim', YDIM, "The dimensionality of the data") flags.DEFINE_string('lat_mod_class', LAT_MOD_CLASS, ("The evolution model class. Implemented " "['llinear']")) flags.DEFINE_string('gen_mod_class', GEN_MOD_CLASS, ("The generative model class. Implemented " "['Poisson, Gaussian']")) flags.DEFINE_float('alpha', ALPHA, ("The scale factor of the nonlinearity. This parameters " "works in conjunction with initrange_B")) flags.DEFINE_float('initrange_MuX', INITRANGE_MUX, ("Controls the initial ranges within " "which the latent space paths are contained. Bigger " "values here lead to bigger bounding box. It is im-" "portant to adjust this parameter so that the initial " "paths do not collapse nor blow up.")) flags.DEFINE_float('initrange_LambdaX', INITRANGE_LAMBDAX, ("Controls the initial ranges within " "which the latent space paths are contained. Roughly " "rangeX ~ 1/(Lambda + Q), so if Lambda very big, the " "range is reduced. If Lambda very small, then it defers " "to Q. Optimally Lambda ~ Q ~ 1.")) flags.DEFINE_float('initrange_B', INITRANGE_B, ("Controls the initial size of the nonlinearity. " "Works in conjunction with alpha")) flags.DEFINE_float('initrange_outY', INITRANGE_OUTY, ("Controls the initial range of the output of the " "generative network")) flags.DEFINE_float('init_Q0', INIT_Q0, ("Controls the initial spread of the starting points of the " "paths in latent space.")) flags.DEFINE_float('init_Q', INIT_Q, ("Controls the initial noise added to the paths in latent space. " "More importantly, it also controls the initial ranges within " "which the latent space paths are contained. Roughly rangeX ~ " "1/(Lambda + Q), so if Q is very big, the range is reduced. If " "Q is very small, then it defers to Lambda. Optimally " "Lambda ~ Q ~ 1.")) flags.DEFINE_float('initrange_Goutmean', INITRANGE_GOUTMEAN, "") flags.DEFINE_float('initrange_Goutvar', INITRANGE_GOUTVAR, "") flags.DEFINE_float('initbias_Goutmean', INITBIAS_GOUTMEAN, "") flags.DEFINE_float('learning_rate', LEARNING_RATE, "It's the learning rate, silly") flags.DEFINE_integer('genNsamps', NSAMPS, "The number of samples to generate") flags.DEFINE_integer('genNTbins', NTBINS, "The number of time bins in the generated data") flags.DEFINE_boolean('draw_heat_maps', DRAW_HEAT_MAPS, "Should I draw heat maps of your data?") params = tf.flags.FLAGS def write_option_file(path): """ Writes a file with the parameters that were used for this fit. Cuz - no doubt - you will forget Daniel Hernandez. """ params_list = sorted([param for param in dir(params) if param not in ['h', 'help', 'helpfull', 'helpshort']]) with open(path + 'params.txt', 'w') as option_file: for par in params_list: option_file.write(par + ' ' + str(getattr(params, par)) + '\n') def generate_fake_data(lat_mod_class, gen_mod_class, params, data_path=None, save_data_file=None, Nsamps=100, NTbins=30, write_params_file=False, draw_quiver=False, draw_heat_maps=True, savefigs=False): """ Generates synthetic data and possibly pickles it for later use. Maybe you would like to train a model? ;) Args: lat_mod_class: A string that is a key to the evolution model class. Currently 'llinear' -> `LocallyLinearEvolution` is implemented. gen_mod_class: A string that is a key to the observation model class. Currently 'Poisson' -> `PoissonObs` is implemented data_path: The local directory where the generated data should be stored. If None, don't store shit. save_data_file: The name of the file to hold your data Nsamps: Number of trials to generate NTbins: Number of time steps to run. xDim: The dimensions of the latent space. yDim: The dimensions of the data. write_params_file: Would you like the parameters with which this data has been generated to be saved to a separate txt file? """ print('Generating some fake data...!\n') lat_mod_classes = {'llinear' : LocallyLinearEvolution} gen_mod_classes = {'Poisson' : PoissonObs, 'Gaussian' : GaussianObs} evolution_class = lat_mod_classes[lat_mod_class] generator_class = gen_mod_classes[gen_mod_class] if data_path: if not type(save_data_file) is str: raise ValueError("`save_data_file` must be string (representing the name of your file) " "if you intend to save the data (`data_path` is not None)") if not os.path.exists(data_path): os.makedirs(data_path) if write_params_file: write_option_file(data_path) # Generate some fake data for training, validation and test graph = tf.Graph() with graph.as_default(): with tf.Session() as sess: xDim = params.xDim yDim = params.yDim if not Nsamps: Nsamps = params.genNsamps if not NTbins: NTbins = params.genNTbins X = tf.placeholder(DTYPE, shape=[None, None, xDim], name='X') Y = tf.placeholder(DTYPE, shape=[None, None, yDim], name='Y') latm = evolution_class(X, params) genm = generator_class(Y, X, params, latm, is_out_positive=True) Nsamps_train = int(4*Nsamps/5) valid_test = int(Nsamps/10) sess.run(tf.global_variables_initializer()) Ydata, Xdata = genm.sample_XY(sess, 'X:0', Nsamps=Nsamps, NTbins=NTbins, with_inflow=True) Ytrain, Xtrain = Ydata[:Nsamps_train], Xdata[:Nsamps_train] Yvalid, Xvalid = Ydata[Nsamps_train:-valid_test], Xdata[Nsamps_train:-valid_test] Ytest, Xtest = Ydata[valid_test:], Xdata[valid_test:] # If xDim == 2, draw a cool path plot if draw_quiver and xDim == 2: latm.plot_2Dquiver_paths(sess, Xdata, 'X:0', rlt_dir=data_path, with_inflow=True, savefig=savefigs) if draw_heat_maps: maxY = np.max(Ydata) for i in range(1): plt.figure() sns.heatmap(Ydata[i].T, yticklabels=False, vmax=maxY).get_figure() if savefigs: plt.savefig(data_path + "heat" + str(i) + ".png") else: plt.show() plt.pause(0.001) input('Press Enter to continue.') plt.close() if data_path: datadict = {'Ytrain' : Ytrain, 'Yvalid' : Yvalid, 'Xtrain' : Xtrain, 'Xvalid' : Xvalid, 'Ytest' : Ytest, 'Xtest' : Xtest} with open(data_path + save_data_file, 'wb+') as data_file: pickle.dump(datadict, data_file) if params.save_to_vind: with open(data_path + save_data_file + '_vind', 'wb+') as data_file: pickle.dump(datadict, data_file, protocol=2) return Ydata, Xdata def main(_): """ Launches this whole zingamajinga. """ data_path = params.local_data_dir + params.this_data_dir rlt_dir = params.local_rlt_dir + params.this_data_dir + addDateTime() + '/' if params.mode == 'generate': generate_fake_data(lat_mod_class=params.lat_mod_class, gen_mod_class=params.gen_mod_class, params=params, data_path=data_path, save_data_file=params.save_data_file, Nsamps=params.genNsamps, NTbins=params.genNTbins, write_params_file=True, draw_quiver=True, draw_heat_maps=True, savefigs=True) if params.mode == 'train': graph = tf.Graph() with graph.as_default(): sess = tf.Session(graph=graph) with sess.as_default(): with open(data_path+params.save_data_file, 'rb+') as f: # Set encoding='latin1' for python 2 pickled data datadict = pickle.load(f, encoding='latin1') if params.is_py2 else pickle.load(f) Ytrain = datadict['Ytrain'] Yvalid = datadict['Yvalid'] params.yDim = Ytrain.shape[-1] write_option_file(data_path) opt = Optimizer_TS(params) sess.run(tf.global_variables_initializer()) opt.train(sess, rlt_dir, Ytrain, Yvalid) if __name__ == '__main__': tf.app.run()
2b9bee86ebd1b08f2a0f0400abf395c09608c7e8
5de3f612df0dbda712b39403dbafb0617e597651
/build/pal_behaviour_msgs/catkin_generated/pkg.installspace.context.pc.py
8706a70930366093c2aaea8520ef1c40fd260a4a
[]
no_license
AdriiTrujillo/tiago_public_ws
1bd62d51c2eb694d07db83738f7bebd582d8126c
6eaeabd1ec177df837b81fd9f42887318128766b
refs/heads/main
2023-04-03T13:09:09.749190
2021-04-01T10:05:43
2021-04-01T10:05:43
350,026,041
0
0
null
null
null
null
UTF-8
Python
false
false
461
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "${prefix}/include".split(';') if "${prefix}/include" != "" else [] PROJECT_CATKIN_DEPENDS = "message_runtime;std_msgs;actionlib_msgs".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "pal_behaviour_msgs" PROJECT_SPACE_DIR = "/home/adrii/tiago_public_ws/install" PROJECT_VERSION = "0.13.2"
7a7b7ac0f8c14cc1a4756aa69a85c707f0d0cb51
2826bdf11463b199f20be351f514bcb16f35d04e
/.history/ftp_20210407055256.py
b44e9d312cd6276dfc7c23b78b965740f32bf6a1
[]
no_license
Roarcannotprogramming/Sec_Client_Server
9efdb7e4c3e729cd6b5052b0ca0e23c14459ebc0
38f491e0e643e372c546eca73f9cf16c36513568
refs/heads/master
2023-04-11T12:40:12.780834
2021-04-17T15:53:47
2021-04-17T15:53:47
353,070,974
0
0
null
null
null
null
UTF-8
Python
false
false
11,984
py
import socket, ssl, os, sys """ 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f 0x00 | version | hb | request | unused | path length | 0x04 | package length (1) | package length (2) | 0x08 | package length (3) | package length (4) | 0x0c | unused | unused | """ class ProtocalError(Exception): pass class FtpProtocol: MAGIC = b'v1me' # Requests GET_FILE_LIST = 1 GET_FILE = 2 POST_FILE = 3 GET_CWD = 4 CHANGE_CWD = 5 MAKE_DIR = 6 DEL_FILE = 7 TRANS_ERROR = 8 # Max length of single content is 16M CONTENT_MAX_LENGTH = 0xfffff0 HEADER_LEN = 0x10 BASE_PATH = '/FILES' def __init__(self, ssock, version=1): if version != 1: raise ProtocalError("Version error") if not isinstance(ssock, ssl.SSLSocket): raise ProtocalError("Socket type error") self.version = version self.ssock = ssock self.request = 0 self.hb = False self.root = b'' self.current_recv = b'' def get_file_list(self, path): assert(isinstance(path, bytes)) self.request = self.GET_FILE_LIST self.path = path self.path_len = len(path) self.content = b'' self.package_len = self.HEADER_LEN + self.path_len if self.path_len <= 0 or self.path_len >= 0x10000: raise ProtocalError("Path length error") self.__send(self.__pack()) def get_file(self, path): assert(isinstance(path, bytes)) self.request = self.GET_FILE self.path = path self.path_len = len(path) self.content = b'' self.package_len = self.HEADER_LEN + self.path_len if self.path_len <= 0 or self.path_len >= 0x10000: raise ProtocalError("Path length error") self.__send(self.__pack()) def post_file(self, path, file_path = None, file_content = None): if (file_path and file_content): raise ProtocalError("File must be unique") assert(isinstance(path, bytes)) self.request = self.POST_FILE self.path = path self.path_len = len(path) if self.path_len <= 0 or self.path_len >= 0x10000: raise ProtocalError("Path length error") if file_path: self.package_len = self.HEADER_LEN + self.path_len + os.path.getsize(file_path) self.content = b'' with open(file_path, 'rb') as f: self.__send(self.__pack()) while True: s = f.read(self.CONTENT_MAX_LENGTH) if not s: break self.__send(s) if file_content: self.package_len = self.HEADER_LEN + self.path_len + len(file_content) self.content = file_content self.__send(self.__pack()) def get_cwd(self): self.request = self.GET_CWD self.path = b'' self.path_len = 0 self.content = b'' self.package_len = self.HEADER_LEN + self.path_len self.__send(self.__pack()) def change_cwd(self, path): assert(isinstance(path, bytes)) self.request = self.CHANGE_CWD self.path = path self.path_len = len(path) self.content = b'' self.package_len = self.HEADER_LEN + self.path_len if self.path_len <= 0 or self.path_len >= 0x10000: raise ProtocalError("Path length error") self.__send(self.__pack()) def make_dir(self, path): assert(isinstance(path, bytes)) self.request = self.MAKE_DIR self.path = path self.path_len = len(path) self.content = b'' self.package_len = self.HEADER_LEN + self.path_len if self.path_len <= 0 or self.path_len >= 0x10000: raise ProtocalError("Path length error") self.__send(self.__pack()) def del_file(self, path): assert(isinstance(path, bytes)) self.request = self.DEL_FILE self.path = path self.path_len = len(path) self.content = b'' self.package_len = self.HEADER_LEN + self.path_len if self.path_len <= 0 or self.path_len >= 0x10000: raise ProtocalError("Path length error") self.__send(self.__pack()) def server_deal(self): while True: header = self.__recv(self.HEADER_LEN) self.version , self.hb, self.request, self.path_len, self.package_len = self.__check_format(header) if self.hb: self.path_len = 0 self.package_len = self.HEADER_LEN self.path = b'' self.content = b'' # return self.__send(self.__pack()) return 0 if self.request == self.GET_FILE_LIST: self.path = self.__recv(self.path_len) self.content = self.__recv(self.package_len - self.HEADER_LEN - self.path_len) try: p = self.__os_check_path(self.path) ls = '\n'.join(os.listdir(p)) self.content = ls return self.__send(self.__pack()) except Exception: self.content = 'Invalid path' self.request = self.TRANS_ERROR return self.__send(self.__pack()) if self.request == self.GET_FILE: self.path = self.__recv(self.path_len) self.content = self.__recv(self.package_len - self.HEADER_LEN - self.path_len) try: p = self.__os_check_path(self.path) with open(p, 'rb') as f: self.__send(self.__pack()) while True: s = f.read(self.CONTENT_MAX_LENGTH) if not s: break self.content = s self.__send(s) return 1 except Exception: self.content = 'Invalid path' self.request = self.TRANS_ERROR return self.__send(self.__pack()) if self.request == self.POST_FILE: self.path = self.__recv(self.path_len) # TODO self.content = self.__recv(self.package_len - self.HEADER_LEN - self.path) try: p = self.__os_check_path(self.path) with open(p, 'wb+') as f: f.write(self.content) self.content = b'' return self.__send(self.__pack()) except Exception: self.content = 'Invalid path' self.request = self.TRANS_ERROR return self.__send(self.__pack()) def __os_check_path(self, path): p = os.path.normpath(path) if p.startswith('..'): ProtocalError('Invalid path') return os.path.join(self.BASE_PATH, self.root, p) def __check_format(self, pack): version = pack[0] & 7 hb = (pack[0] >> 3) & 1 request = pack[0] >> 4 path_len = pack[2] + (pack[3] << 8) package_len = pack[4] + (pack[5] << 8) + (pack[6] << 16) + (pack[7] << 24) + (pack[8] << 32) + (pack[9] << 40) + (pack[10] << 48) + (pack[11] << 56) if version != 1: raise ProtocalError("Version error") if request not in range(1, 8): raise ProtocalError("Request error") if path_len < 0: raise ProtocalError("Path error") if package_len < 0: raise ProtocalError("Package error") return version, hb, request, path_len, package_len def __pack(self): self.path_len = len(self.path) self.package_len = self.HEADER_LEN + self.path_len + len(self.content) p = bytes([(self.version & 7) | (self.hb << 3) | (self.request << 4), 0, self.path_len & 0xff, (self.path_len >> 8) & 0xff, self.package_len & 0xff, (self.package_len >> 8) & 0xff, (self.package_len >> 16) & 0xff, (self.package_len >> 24) & 0xff, (self.package_len >> 32) & 0xff, (self.package_len >> 40) & 0xff, (self.package_len >> 48) & 0xff, (self.package_len >> 56) & 0xff, 0, 0, 0, 0]) p += self.path p += self.content return p def __send(self, pack): self.ssock.send(pack) """ print(pack) path_len = pack[2] + (pack[3] << 8) package_len = pack[4] + (pack[5] << 8) + (pack[6] << 16) + (pack[7] << 24) + (pack[8] << 32) + (pack[9] << 40) + (pack[10] << 48) + (pack[11] << 56) request = pack[0] >> 4 print("package_len: ", package_len) print("path_len: ", path_len) print("content_len: ", package_len - path_len - self.HEADER_LEN) print("path: ", pack[self.HEADER_LEN: self.HEADER_LEN + path_len]) print("content: ", pack[self.HEADER_LEN + path_len:]) """ return 1 def __recv(self, length): current_len = len(self.current_recv) while True: s = self.ssock.recv(length - current_len) current_len += len(s) self.current_recv = self.current_recv + s if current_len == length: current_len = 0 ss = self.current_recv self.current_recv = b'' return ss if current_len > length: raise ProtocalError("Length error") # FtpProtocol(0).post_file(b'/root/admin/user/pwn', b'CA.key') # client def client(): CA_FILE = "CA.crt" KEY_FILE = "Client.key" CERT_FILE = "Client.crt" context = ssl.SSLContext(ssl.PROTOCOL_TLS) context.check_hostname = False context.load_cert_chain(certfile=CERT_FILE, keyfile=KEY_FILE) context.load_verify_locations(CA_FILE) context.verify_mode = ssl.CERT_REQUIRED with socket.socket() as sock: with context.wrap_socket(sock, server_side=False) as ssock: ssock.connect(('127.0.0.1', 5678)) ftp = FtpProtocol(ssock) ftp.get_cwd() msg = ssock.recv(1024).decode("utf-8") print(f"receive msg from server : {msg}") ssock.close() def server(): CA_FILE = "CA.crt" KEY_FILE = "Server.key" CERT_FILE = "Server.crt" context = ssl.create_default_context(ssl.Purpose.CLIENT_AUTH) context.load_cert_chain(certfile=CERT_FILE, keyfile=KEY_FILE) context.load_verify_locations(CA_FILE) context.verify_mode = ssl.CERT_REQUIRED with socket.socket(socket.AF_INET, socket.SOCK_STREAM, 0) as sock: with context.wrap_socket(sock, server_side=True) as ssock: ssock.bind(('127.0.0.1', 5678)) ssock.listen(5) while True: client_socket, addr = ssock.accept() ftp = FtpProtocol(client_socket) ftp.server_deal() msg = client_socket.recv(1024).decode("utf-8") print(f"receive msg from client {addr}:{msg}") msg = f"yes , you have client_socketect with server.\r\n".encode("utf-8") client_socket.close() if __name__ == "__main__": if sys.argv[1] == "server": server() if sys.argv[1] == "client": client()
d156167ce165ac16bab92f480187ddf3da7430eb
f07a42f652f46106dee4749277d41c302e2b7406
/Data Set/bug-fixing-5/b2e3e8c0718142d4cb0387f46cd77c15b67cc1e9-<get_random_string>-bug.py
9b873176526ac647a2e151598420e0deb76c070d
[]
no_license
wsgan001/PyFPattern
e0fe06341cc5d51b3ad0fe29b84098d140ed54d1
cc347e32745f99c0cd95e79a18ddacc4574d7faa
refs/heads/main
2023-08-25T23:48:26.112133
2021-10-23T14:11:22
2021-10-23T14:11:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
182
py
def get_random_string(length=8, choices=(string.ascii_letters + string.digits)): '\n Generate random string\n ' return ''.join([choice(choices) for i in range(length)])
9d9bec682b8409ccc2d18ac3c64f1c22b5a01199
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2551/60603/312775.py
3038d6419acf664fc4ed2b489ef7cb65c0727f17
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
323
py
def change(a,b): for i in range(a-1,b): li[i]=0 if li[i]==1 else 1 def que(a,b): return sum(li[a-1:b]) n,m = [int(x) for x in input().split()] li = [0]*n for i in range(m): s = [int(x) for x in input().split()] if s[0]==0: change(s[1],s[2]) elif s[0]==1: print(que(s[1],s[2]))
b0b638794415687755cbdb2be2b4c90db79e1c55
bc2cdb1e438efaf67131e975ac4db80b4dc43385
/src/public/message/migrations/0003_pushmessage.py
a4cc7fb3829a923d5a18ec9f447e1971018bd4f1
[]
no_license
Shadow-linux/ops-for-study
cf4d55409ebc6f27d454bea60886cd154c994484
115b567948d25a64e423a6cdc89bc8337896afe2
refs/heads/master
2023-01-14T13:35:56.880896
2019-09-23T05:01:31
2019-09-23T05:01:31
209,781,758
2
0
null
2023-01-04T10:55:45
2019-09-20T12:08:11
Python
UTF-8
Python
false
false
1,062
py
# Generated by Django 2.0.1 on 2019-04-17 21:45 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('message', '0002_auto_20190416_1144'), ] operations = [ migrations.CreateModel( name='PushMessage', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(help_text='str; 标题', max_length=100)), ('content', models.TextField(help_text='str; 消息内容')), ('user_id_list', models.CharField(help_text='str; 用户ID', max_length=500)), ('send_type_list', models.CharField(help_text='str; 发送消息类型', max_length=500)), ('created', models.DateTimeField(auto_now_add=True, help_text='str; 创建时间')), ], options={ 'verbose_name': '消息推送', 'db_table': 'common_push_message', }, ), ]
4ee5c7635d1d388cb4d468d7dc04515ac9df2ccd
26d6c34df00a229dc85ad7326de6cb5672be7acc
/msgraph-cli-extensions/v1_0/personalcontacts_v1_0/azext_personalcontacts_v1_0/vendored_sdks/personalcontacts/aio/_personal_contacts.py
0c6cf4d05bbae3c59e563ab9a028bb2e8874efa7
[ "MIT" ]
permissive
BrianTJackett/msgraph-cli
87f92471f68f85e44872939d876b9ff5f0ae6b2c
78a4b1c73a23b85c070fed2fbca93758733f620e
refs/heads/main
2023-06-23T21:31:53.306655
2021-07-09T07:58:56
2021-07-09T07:58:56
386,993,555
0
0
NOASSERTION
2021-07-17T16:56:05
2021-07-17T16:56:05
null
UTF-8
Python
false
false
3,990
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, Optional, TYPE_CHECKING from azure.mgmt.core import AsyncARMPipelineClient from msrest import Deserializer, Serializer if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from azure.core.credentials_async import AsyncTokenCredential from ._configuration import PersonalContactsConfiguration from .operations import UsersOperations from .operations import UsersContactFoldersOperations from .operations import UsersContactFoldersContactsOperations from .operations import UsersContactsOperations from .. import models class PersonalContacts(object): """PersonalContacts. :ivar users: UsersOperations operations :vartype users: personal_contacts.aio.operations.UsersOperations :ivar users_contact_folders: UsersContactFoldersOperations operations :vartype users_contact_folders: personal_contacts.aio.operations.UsersContactFoldersOperations :ivar users_contact_folders_contacts: UsersContactFoldersContactsOperations operations :vartype users_contact_folders_contacts: personal_contacts.aio.operations.UsersContactFoldersContactsOperations :ivar users_contacts: UsersContactsOperations operations :vartype users_contacts: personal_contacts.aio.operations.UsersContactsOperations :param credential: Credential needed for the client to connect to Azure. :type credential: ~azure.core.credentials_async.AsyncTokenCredential :param top: Show only the first n items. :type top: int :param skip: Skip the first n items. :type skip: int :param search: Search items by search phrases. :type search: str :param filter: Filter items by property values. :type filter: str :param count: Include count of items. :type count: bool :param str base_url: Service URL """ def __init__( self, credential: "AsyncTokenCredential", top: Optional[int] = None, skip: Optional[int] = None, search: Optional[str] = None, filter: Optional[str] = None, count: Optional[bool] = None, base_url: Optional[str] = None, **kwargs: Any ) -> None: if not base_url: base_url = 'https://graph.microsoft.com/v1.0' self._config = PersonalContactsConfiguration(credential, top, skip, search, filter, count, **kwargs) self._client = AsyncARMPipelineClient(base_url=base_url, config=self._config, **kwargs) client_models = {k: v for k, v in models.__dict__.items() if isinstance(v, type)} self._serialize = Serializer(client_models) self._serialize.client_side_validation = False self._deserialize = Deserializer(client_models) self.users = UsersOperations( self._client, self._config, self._serialize, self._deserialize) self.users_contact_folders = UsersContactFoldersOperations( self._client, self._config, self._serialize, self._deserialize) self.users_contact_folders_contacts = UsersContactFoldersContactsOperations( self._client, self._config, self._serialize, self._deserialize) self.users_contacts = UsersContactsOperations( self._client, self._config, self._serialize, self._deserialize) async def close(self) -> None: await self._client.close() async def __aenter__(self) -> "PersonalContacts": await self._client.__aenter__() return self async def __aexit__(self, *exc_details) -> None: await self._client.__aexit__(*exc_details)
e742907f523101322df4966977e82fafc1446f34
2c4ad0e41e495b1be29ac54f3552f5a4bcfb8d8b
/apps/comments/views.py
0c004c9e007472a3dba19ad976acbe6ce31052d7
[]
no_license
buzzzzx/blogforzly
7de8f01e767e01f30d7dab8ffb2243484de24f4a
163a26c7518ed13c7f3a58cd12d455748b60ab6d
refs/heads/master
2022-03-09T14:43:00.098795
2019-08-06T13:13:08
2019-08-06T13:13:08
114,436,672
1
0
null
null
null
null
UTF-8
Python
false
false
1,032
py
from django.shortcuts import render, get_object_or_404, redirect from .models import Comment from .forms import CommentForm from blog.models import Post from utils.send_email import send # Create your views here. def post_comment(request, post_pk): post = get_object_or_404(Post, pk=post_pk) if request.method == 'POST': form = CommentForm(request.POST) if form.is_valid(): comment = form.save(commit=False) comment.post = post # comment.text = form.text comment.save() # send email send(flag=1, nickname=comment.name, semail=comment.email, text=comment.text, postname=comment.post.title) return redirect(post) else: comment_list = post.comment_set.all() context = { 'post': post, 'form': form, 'comment_list': comment_list } return render(request, 'blog/detail.html', context=context) return redirect(post)
1cdc2bcc69cfb9db96d5c781083c1bc817ff9f01
387cf5f72ed6679a4d9e04bddd16998a190c4caf
/problems/programmers/lv4/pgs-12983-wrong.py
69760552fe4acfa3898004c7c8b095f9f458bbe3
[]
no_license
CodyBuilder-dev/Algorithm-Coding-Test
db4ee1e7565fbcef3140192225167eff42ad5c02
cca5c4ba8bc31679ab00aceccfd8d9d39c232f72
refs/heads/master
2021-07-24T00:34:41.888289
2021-07-21T14:29:00
2021-07-21T14:29:00
219,123,221
1
0
null
null
null
null
UTF-8
Python
false
false
881
py
""" 제목 : 단어 퍼즐 아이디어 : 거스름돈과 비슷한 dp (1) DP 값 저장 - key는 strs의 i번재 단어까지 서서 t의 j번째를 만드는 것 - j번째 까지냐 vs j번째 만이냐 - value는 최소값 (2) 초기화 - dp[0][0] ~ dp[0][len(t)-1]는 초기화할 수 있음 (3) 점화식 - dp[i][j] 는, min(dp[i-1][j], dp[i][j-k] (k = strs에 담긴 원소들의 길이))인가? """ from math import inf def solution(strs, t): dp = [[inf]*len(t) for _ in range(len(strs))] for i in range(len(t)): print(strs[0]*(i+1)) dp[0][i] = t[:i+1].count(strs[0]*(i+1)) return dp # 테스트 케이스 print(solution(["ba","na","n","a"],"banana"),3) print(solution(["app","ap","p","l","e","ple","pp"],"apple"),2) print(solution(["ba","an","nan","ban","n"],"banana"),-1) print(solution(["bax","dxv","zxc"],"baobab")) print(solution)
5d86db5ca4849c4a3d056fe445f5af21bcb558e8
4c7fc810eb442b386969bf345b4dc6ef3152c783
/src/transformers/models/encoder_decoder/modeling_tf_encoder_decoder.py
c74865617cf76d513cfa10379dcd8d43d8b825e4
[ "Apache-2.0" ]
permissive
newcodevelop/transformers
fbcef5d703b12febf6e76e84e3f0493769fb9d37
e8d1bd7427021d2114ec159b2c90c6b1fcddeae7
refs/heads/main
2023-03-15T11:45:09.906184
2022-08-30T07:26:17
2022-08-30T07:26:17
254,360,734
0
1
Apache-2.0
2020-04-09T12:07:09
2020-04-09T12:07:08
null
UTF-8
Python
false
false
36,192
py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Classes to support TF Encoder-Decoder architectures""" import tempfile import warnings from typing import Optional import tensorflow as tf from ...configuration_utils import PretrainedConfig from ...modeling_tf_outputs import TFBaseModelOutput, TFSeq2SeqLMOutput from ...modeling_tf_utils import TFCausalLanguageModelingLoss, TFPreTrainedModel, get_initializer, unpack_inputs from ...tf_utils import shape_list from ...utils import ( DUMMY_INPUTS, ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ..auto.configuration_auto import AutoConfig from ..auto.modeling_tf_auto import TFAutoModel, TFAutoModelForCausalLM from .configuration_encoder_decoder import EncoderDecoderConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "EncoderDecoderConfig" DEPRECATION_WARNING = ( "Version v4.17.0 introduces a better way to train encoder-decoder models by computing the loss inside the" " encoder-decoder framework rather than in the decoder itself. You may observe training discrepancies if" " fine-tuning a model trained with versions anterior to 4.17.0. The decoder_input_ids are now created based on the" " labels, no need to pass them yourself anymore." ) ENCODER_DECODER_START_DOCSTRING = r""" This class can be used to initialize a sequence-to-sequence model with any pretrained autoencoding model as the encoder and any pretrained autoregressive model as the decoder. The encoder is loaded via [`~TFAutoModel.from_pretrained`] function and the decoder is loaded via [`~TFAutoModelForCausalLM.from_pretrained`] function. Cross-attention layers are automatically added to the decoder and should be fine-tuned on a downstream generative task, like summarization. The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation tasks was shown in [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. After such an Encoder Decoder model has been trained/fine-tuned, it can be saved/loaded just like any other models (see the examples for more information). This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. Parameters: config ([`EncoderDecoderConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ ENCODER_DECODER_INPUTS_DOCSTRING = r""" Args: input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`np.ndarray` or `tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). Provide for sequence to sequence training to the decoder. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. decoder_attention_mask (`np.ndarray` or `tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. encoder_outputs (`tuple(tuple(tf.Tensor)`, *optional*): This tuple must consist of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` (`tf.Tensor` of shape `({0}, hidden_size)`) is a tensor of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(tf.Tensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `({0})`. inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. decoder_inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. labels (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Labels for computing the masked language modeling loss for the decoder. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): If set to `True`, the model will return a [`~utils.Seq2SeqLMOutput`] instead of a plain tuple. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). kwargs (*optional*): Remaining dictionary of keyword arguments. Keyword arguments come in two flavors: - Without a prefix which will be input as `**encoder_kwargs` for the encoder forward function. - With a *decoder_* prefix which will be input as `**decoder_kwargs`` for the decoder forward function. """ def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int): if pad_token_id is None: raise ValueError("Make sure to set the pad_token_id attribute of the model's configuration.") pad_token_id = tf.cast(pad_token_id, input_ids.dtype) if decoder_start_token_id is None: raise ValueError("Make sure to set the decoder_start_token_id attribute of the model's configuration.") decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype) start_tokens = tf.fill((shape_list(input_ids)[0], 1), decoder_start_token_id) shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1) # replace possible -100 values in labels by `pad_token_id` shifted_input_ids = tf.where( shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids ) if tf.executing_eagerly(): # "Verify that `labels` has only positive values and -100" assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype)) # Make sure the assertion op is called by wrapping the result in an identity no-op with tf.control_dependencies([assert_gte0]): shifted_input_ids = tf.identity(shifted_input_ids) return shifted_input_ids @add_start_docstrings(ENCODER_DECODER_START_DOCSTRING) class TFEncoderDecoderModel(TFPreTrainedModel, TFCausalLanguageModelingLoss): r""" [`TFEncoderDecoderModel`] is a generic model class that will be instantiated as a transformer architecture with one of the base model classes of the library as encoder and another one as decoder when created with the [`~TFAutoModel.from_pretrained`] class method for the encoder and [`~TFAutoModelForCausalLM.from_pretrained`] class method for the decoder. """ config_class = EncoderDecoderConfig base_model_prefix = "encoder_decoder" load_weight_prefix = "tf_encoder_decoder_model" def __init__( self, config: Optional[PretrainedConfig] = None, encoder: Optional[TFPreTrainedModel] = None, decoder: Optional[TFPreTrainedModel] = None, ): if config is None and (encoder is None or decoder is None): raise ValueError("Either a configuration or an encoder and a decoder has to be provided.") if config is None: config = EncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config) else: if not isinstance(config, self.config_class): raise ValueError(f"config: {config} has to be of type {self.config_class}") if config.decoder.cross_attention_hidden_size is not None: if config.decoder.cross_attention_hidden_size != config.encoder.hidden_size: raise ValueError( "If `cross_attention_hidden_size` is specified in the decoder's configuration, it has to be equal" f" to the encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for" f" `config.decoder.cross_attention_hidden_size` and {config.encoder.hidden_size} for" " `config.encoder.hidden_size`." ) # initialize with config super().__init__(config) if encoder is None: encoder = TFAutoModel.from_config(config.encoder, name="encoder") if decoder is None: decoder = TFAutoModelForCausalLM.from_config(config.decoder, name="decoder") self.encoder = encoder self.decoder = decoder if self.encoder.config.to_dict() != self.config.encoder.to_dict(): logger.warning( f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:" f" {self.config.encoder}" ) if self.decoder.config.to_dict() != self.config.decoder.to_dict(): logger.warning( f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:" f" {self.config.decoder}" ) # make sure that the individual model's config refers to the shared config # so that the updates to the config will be synced self.encoder.config = self.config.encoder self.decoder.config = self.config.decoder # encoder outputs might need to be projected to different dimension for decoder if ( self.encoder.config.hidden_size != self.decoder.config.hidden_size and self.decoder.config.cross_attention_hidden_size is None ): self.enc_to_dec_proj = tf.keras.layers.Dense( units=self.decoder.config.hidden_size, kernel_initializer=get_initializer(config.encoder.initializer_range), name="enc_to_dec_proj", ) if self.encoder.get_output_embeddings() is not None: raise ValueError( f"The encoder {self.encoder} should not have a LM Head. Please use a model without LM Head" ) @property def dummy_inputs(self): """ Dummy inputs to build the network. Returns: `Dict[str, tf.Tensor]`: The dummy inputs. """ # Add `decoder_input_ids` because `self.decoder` requires it. input_ids = tf.constant(DUMMY_INPUTS) dummy = {"input_ids": input_ids, "decoder_input_ids": input_ids} return dummy def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder def get_input_embeddings(self): return self.encoder.get_input_embeddings() def get_output_embeddings(self): return self.decoder.get_output_embeddings() def set_output_embeddings(self, new_embeddings): return self.decoder.set_output_embeddings(new_embeddings) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): r""" Initializing *TFEncoderDecoderModel* from a pytorch checkpoint is not supported currently. If there are only pytorch checkpoints for a particular encoder-decoder model, a workaround is: ```python >>> # a workaround to load from pytorch checkpoint >>> from transformers import EncoderDecoderModel, TFEncoderDecoderModel >>> _model = EncoderDecoderModel.from_pretrained("patrickvonplaten/bert2bert-cnn_dailymail-fp16") >>> _model.encoder.save_pretrained("./encoder") >>> _model.decoder.save_pretrained("./decoder") >>> model = TFEncoderDecoderModel.from_encoder_decoder_pretrained( ... "./encoder", "./decoder", encoder_from_pt=True, decoder_from_pt=True ... ) >>> # This is only for copying some specific attributes of this particular model. >>> model.config = _model.config ``` Example: ```python >>> from transformers import TFEncoderDecoderModel >>> model = TFEncoderDecoderModel.from_pretrained("ydshieh/bert2bert-cnn_dailymail-fp16") ```""" from_pt = kwargs.pop("from_pt", False) if from_pt: raise ValueError( "Initializing `TFEncoderDecoderModel` from a pytorch checkpoint is not supported currently. Use a" " tensorflow checkpoint instead. If only the pytorch checkpoints are available, create the encoder and" " decoder models separately, and use them to initialize `TFEncoderDecoderModel`. Check" " `TFEncoderDecoderModel.from_encoder_decoder_pretrained()` for more details." ) return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) @classmethod def from_encoder_decoder_pretrained( cls, encoder_pretrained_model_name_or_path: str = None, decoder_pretrained_model_name_or_path: str = None, *model_args, **kwargs ) -> TFPreTrainedModel: r""" Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model checkpoints. Params: encoder_pretrained_model_name_or_path (`str`, *optional*): Information necessary to initiate the encoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`. - A path to a *directory* containing model weights saved using [`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *pytorch index checkpoint file* (e.g, `./pt_model/`). In this case, `encoder_from_pt` should be set to `True`. decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`): Information necessary to initiate the decoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`. - A path to a *directory* containing model weights saved using [`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *pytorch checkpoint file* (e.g, `./pt_model/`). In this case, `decoder_from_pt` should be set to `True`. model_args (remaining positional arguments, *optional*): All remaning positional arguments will be passed to the underlying model's `__init__` method. kwargs (remaining dictionary of keyword arguments, *optional*): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., `output_attentions=True`). - To update the encoder configuration, use the prefix *encoder_* for each configuration parameter. - To update the decoder configuration, use the prefix *decoder_* for each configuration parameter. - To update the parent model configuration, do not use a prefix for each configuration parameter. Behaves differently depending on whether a `config` is provided or automatically loaded. Example: ```python >>> from transformers import TFEncoderDecoderModel >>> # initialize a bert2gpt2 from two pretrained BERT models. Note that the cross-attention layers will be randomly initialized >>> model = TFEncoderDecoderModel.from_encoder_decoder_pretrained("bert-base-uncased", "gpt2") >>> # saving model after fine-tuning >>> model.save_pretrained("./bert2gpt2") >>> # load fine-tuned model >>> model = TFEncoderDecoderModel.from_pretrained("./bert2gpt2") ```""" kwargs_encoder = { argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_") } kwargs_decoder = { argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } # remove encoder, decoder kwargs from kwargs for key in kwargs_encoder.keys(): del kwargs["encoder_" + key] for key in kwargs_decoder.keys(): del kwargs["decoder_" + key] # Load and initialize the encoder and decoder # The distinction between encoder and decoder at the model level is made # by the value of the flag `is_decoder` that we need to set correctly. encoder = kwargs_encoder.pop("model", None) if encoder is None: if encoder_pretrained_model_name_or_path is None: raise ValueError( "If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_encoder: encoder_config = AutoConfig.from_pretrained(encoder_pretrained_model_name_or_path) if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True: logger.info( f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model " "from a decoder model. Cross-attention and casual mask are disabled." ) encoder_config.is_decoder = False encoder_config.add_cross_attention = False kwargs_encoder["config"] = encoder_config kwargs_encoder["name"] = "encoder" kwargs_encoder["load_weight_prefix"] = cls.load_weight_prefix encoder = TFAutoModel.from_pretrained(encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder) # This is necessary to make `from_pretrained` following `save_pretrained` work correctly if kwargs_encoder.get("from_pt", None): del kwargs_encoder["from_pt"] with tempfile.TemporaryDirectory() as tmp_dirname: encoder.save_pretrained(tmp_dirname) del encoder encoder = TFAutoModel.from_pretrained(tmp_dirname, *model_args, **kwargs_encoder) decoder = kwargs_decoder.pop("model", None) if decoder is None: if decoder_pretrained_model_name_or_path is None: raise ValueError( "If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_decoder: decoder_config = AutoConfig.from_pretrained(decoder_pretrained_model_name_or_path) if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False: logger.info( f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention" f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if" f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers." ) decoder_config.is_decoder = True decoder_config.add_cross_attention = True kwargs_decoder["config"] = decoder_config if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False: logger.warning( f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. " f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, " "make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` " "passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a " "`decoder_config` to `.from_encoder_decoder_pretrained(...)`" ) kwargs_decoder["name"] = "decoder" kwargs_decoder["load_weight_prefix"] = cls.load_weight_prefix decoder = TFAutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder) # This is necessary to make `from_pretrained` following `save_pretrained` work correctly if kwargs_decoder.get("from_pt", None): del kwargs_decoder["from_pt"] with tempfile.TemporaryDirectory() as tmp_dirname: decoder.save_pretrained(tmp_dirname) del decoder decoder = TFAutoModelForCausalLM.from_pretrained(tmp_dirname, **kwargs_decoder) # Make sure these 2 `tf.keras.Model` have fixed names so `from_pretrained` could load model weights correctly. if encoder.name != "encoder": raise ValueError("encoder model must be created with the name `encoder`.") if decoder.name != "decoder": raise ValueError("decoder model must be created with the name `decoder`.") # instantiate config with corresponding kwargs config = EncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs) return cls(encoder=encoder, decoder=decoder, config=config) @unpack_inputs @add_start_docstrings_to_model_forward(ENCODER_DECODER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, encoder_outputs=None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs, ): r""" Returns: Examples: ```python >>> from transformers import TFEncoderDecoderModel, BertTokenizer >>> # initialize a bert2gpt2 from a pretrained BERT and GPT2 models. Note that the cross-attention layers will be randomly initialized >>> model = TFEncoderDecoderModel.from_encoder_decoder_pretrained("bert-base-cased", "gpt2") >>> tokenizer = BertTokenizer.from_pretrained("bert-base-cased") >>> # forward >>> input_ids = tokenizer.encode( ... "Hello, my dog is cute", add_special_tokens=True, return_tensors="tf" ... ) # Batch size 1 >>> outputs = model(input_ids=input_ids, decoder_input_ids=input_ids) >>> # training >>> outputs = model(input_ids=input_ids, decoder_input_ids=input_ids, labels=input_ids) >>> loss, logits = outputs.loss, outputs.logits >>> # save and load from pretrained >>> model.save_pretrained("bert2gpt2") >>> model = TFEncoderDecoderModel.from_pretrained("bert2gpt2") >>> # generation >>> generated = model.generate(input_ids, decoder_start_token_id=model.config.decoder.bos_token_id) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")} kwargs_decoder = { argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } # Let the user be responsible for the expected format. if encoder_outputs is not None: if return_dict and not isinstance(encoder_outputs, ModelOutput): raise ValueError( "If `return_dict=True` and `encoder_outputs` is provided, it should be an instance of " f"`ModelOutput`. Got an instance {type(encoder_outputs)} for `encoder_outputs`." ) if encoder_outputs is None: encoder_inputs = { "input_ids": input_ids, "attention_mask": attention_mask, "inputs_embeds": inputs_embeds, "output_attentions": output_attentions, "output_hidden_states": output_hidden_states, "return_dict": return_dict, "training": training, } # Add arguments to encoder from `kwargs_encoder` encoder_inputs.update(kwargs_encoder) # Handle the case where the inputs are passed as a single dict which contains `labels`. # The `labels` shouldn't be passed to `self.encoder` below, because it is a based model without this # parameter (otherwise, an error occurs when `input_processing` is called inside `self.encoder.call()`). if "labels" in encoder_inputs: labels = encoder_inputs.pop("labels") # handle the init case where `dummy_inputs` returns a dict containing `decoder_input_ids`. if "decoder_input_ids" in encoder_inputs: decoder_input_ids = encoder_inputs.pop("decoder_input_ids") # handle the init case where `dummy_inputs` returns a dict containing `decoder_input_ids`. if "decoder_attention_mask" in encoder_inputs: decoder_attention_mask = encoder_inputs.pop("decoder_attention_mask") encoder_outputs = self.encoder(**encoder_inputs) encoder_hidden_states = encoder_outputs[0] # optionally project encoder_hidden_states if ( self.encoder.config.hidden_size != self.decoder.config.hidden_size and self.decoder.config.cross_attention_hidden_size is None ): encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states) if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None): decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) decoder_inputs = { "input_ids": decoder_input_ids, "attention_mask": decoder_attention_mask, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": attention_mask, "inputs_embeds": decoder_inputs_embeds, "output_attentions": output_attentions, "output_hidden_states": output_hidden_states, "use_cache": use_cache, "past_key_values": past_key_values, "return_dict": return_dict, "training": training, } # Add arguments to decoder from `kwargs_decoder` decoder_inputs.update(kwargs_decoder) decoder_outputs = self.decoder(**decoder_inputs) logits = decoder_outputs[0] # Compute loss independent from decoder (as some shift the logits inside them) loss = None if labels is not None: warnings.warn(DEPRECATION_WARNING, FutureWarning) loss = self.hf_compute_loss(labels, logits) if not return_dict: past_key_values = None if use_cache: past_key_values = decoder_outputs[1] # The starting index of the remaining elements in `decoder_outputs` start_index = sum([1 if x is not None else 0 for x in (loss, logits, past_key_values)]) if not isinstance(encoder_outputs, tuple): encoder_outputs = encoder_outputs.to_tuple() output = (loss, logits, past_key_values) + decoder_outputs[start_index:] + encoder_outputs output = tuple([x for x in output if x is not None]) return output return TFSeq2SeqLMOutput( loss=loss, logits=decoder_outputs.logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def serving_output(self, output): pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None cross_attns = ( tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions and output.cross_attentions is not None else None ) return TFSeq2SeqLMOutput( logits=output.logits, past_key_values=pkv, decoder_hidden_states=dec_hs, decoder_attentions=dec_attns, encoder_last_hidden_state=output.encoder_last_hidden_state, encoder_hidden_states=enc_hs, encoder_attentions=enc_attns, cross_attentions=cross_attns, ) def prepare_inputs_for_generation( self, input_ids, past=None, attention_mask=None, use_cache=None, encoder_outputs=None, **kwargs ): decoder_inputs = self.decoder.prepare_inputs_for_generation(input_ids, past=past) decoder_attention_mask = decoder_inputs["attention_mask"] if "attention_mask" in decoder_inputs else None past_key_values = decoder_inputs.get("past_key_values") if past_key_values is None: past_key_values = decoder_inputs.get("past") # e.g. on TF GPT2 input_dict = { "input_ids": None, # needs to be passed to make Keras.layer.__call__ happy "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "decoder_input_ids": decoder_inputs["input_ids"], # TODO (joao): the `TFBaseModelOutput` wrapper should not be needed after the generate refactor is complete "encoder_outputs": TFBaseModelOutput(last_hidden_state=encoder_outputs[0]), "past_key_values": past_key_values, "use_cache": use_cache, } return input_dict def prepare_decoder_input_ids_from_labels(self, labels: tf.Tensor): return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) def resize_token_embeddings(self, *args, **kwargs): raise NotImplementedError( "Resizing the embedding layers via the TFEncoderDecoderModel directly is not supported.Please use the" " respective methods of the wrapped objects (model.encoder.resize_token_embeddings(...) or" " model.decoder.resize_token_embeddings(...))" ) def _reorder_cache(self, past, beam_idx): # apply decoder cache reordering here return self.decoder._reorder_cache(past, beam_idx)
0e48b30a06104cba35625dfe97b6f03f276fffcb
c553f9d608c435cd7f19c9be0ef512307295a837
/daemin/greedy/실전문제/1.모험가길드.py
cfc80dc0c3cd461720a12db2077c822dd132f7b8
[]
no_license
Green0v0/Algorithm
2d089e7c016997c1fb5e1094ddeeb80cd1ce0485
ab9b387e63550ef1b5dfe0f851163b16fbd42c88
refs/heads/main
2023-05-24T05:37:17.125671
2021-06-16T05:35:52
2021-06-16T05:35:52
330,944,982
1
2
null
null
null
null
UTF-8
Python
false
false
1,317
py
# n = int(input()) # k = list(map(int,input().split(" "))) n= 5 data = [2,3,1,2,2] data.sort() # 원본 변경 / True 가 내림차순이다. result = 0 # 그룹 갯수 count = 0 # 모험가의 수 """ 1. 기본 로직은 공포도가 작은 탐험가 부터 (숫자가 작은) 그룹을 이뤄 나가는것이다. 2. count 에 일단 모험가를 1개 넣어주고 다음 모험가(i)가 1보다 작거나 같으면 그룹이 되어나간다. 3. 1보다 크다면 result(그룹)이 되지 못하고 반복문으로 올라가서 다음 모험가를 데리고 count 에 1을 더해준다. 4 . 그러면서 조건에 만족할때 그룹개수를 증가시킨다. """ for i in data: count +=1 if count >= i: # i가 크거나같으면 공포도에 따른 그룹 구성원이 안맞는데도 그룹을 이룬다. result +=1 count=0 print(result) # 첫번째 코드 실패 // # (4,3,2,2,2,1,1,1,1,1) 이 케이스를 입력했을때 4,3,2가 남으면 더이상 그룹이 될 수없는데 그냥 실행이된다. # # # while True: # m = min(k) # for _ in range(m): # k.pop() # 이부분이 문제임! pop을 하니까 마지막 4,3,2 에서 2때문에 pop을 두번해서 3까지 날려버림.. # count += 1 # if len(k)==0: # break # print(count)
00b204dd1c59a7f8d99f85a898d26452b44fb647
0cbd245ba67ada0dd04e8a61471b2bc2bbacdc47
/App09_RealEstate_DataMiner/app9.py
8c7df6853b363cbc8fa964ed55f68f41a46db523
[]
no_license
ptsouth97/pythonapps
7ed0a121f35669d0bb177d88ef9aa09828bea813
ee239a02c553fb9d2672f50a4b4c49b4ea4396f0
refs/heads/master
2021-01-12T04:31:31.687181
2017-02-05T21:07:42
2017-02-05T21:07:42
77,632,442
0
0
null
null
null
null
UTF-8
Python
false
false
2,577
py
import os import csv from data_types import Purchase import statistics def main(): print_header() filename = get_data_file() # print(filename) data = load_file(filename) query_data(data) def print_header(): print('------------------------') print(' Real Estate App') print('------------------------') print() def get_data_file(): base_folder = os.path.dirname(__file__) return os.path.join(base_folder, 'data', 'SacramentoRealEstateTransactions2008.csv') def load_file(filename): with open(filename, 'r', encoding='utf-8') as fin: reader = csv.DictReader(fin) purchases = [] for row in reader: # print(type(row), row) # print("Bed count: {}".format(row['beds'])) p = Purchase.create_from_dict(row) purchases.append(p) return purchases # print(purchases[0].__dict__) # header = fin.readline().strip() # reader = csv.reader(fin, delimiter=',') # for row in reader: # print(row) # beds = row[4] # def load_file_basic(filename): # with open(filename, 'r', encoding='utf-8') as fin: # header = fin.readline().strip() # print('found header: ' + header) # # lines = [] # for line in fin: # line_data = line.strip().split(',') # lines.append(line_data) # # print(lines[:5]) # def get_price(p): # return p.price def query_data(data): # if data was sorted by price: # data.sort(key=get_price) data.sort(key= lambda p: p.price) # most expensive house high_purchase = data[-1] print("The most expensive house is ${:,} with {} beds and {} baths".format(high_purchase.price, high_purchase.beds, high_purchase.baths)) # least expensive house low_purchase = data[0] print("The least expensive house is ${:,} with {} beds and {} baths".format(low_purchase.price, low_purchase.beds, low_purchase.baths)) # average price house # average price of 2 bedroom homes # prices = [] # for pur in data: # prices.append(pur.price) # LIST COMPREHENSIONS prices = [ p.price # projection or items for p in data # the set to process ] ave_price = statistics.mean(prices) print("The average home price is ${:,}".format(int(ave_price))) two_bed_homes = [ p for p in data # the set to process if p.beds == 2 # test condition ] ave_price = statistics.mean([p.price for p in two_bed_homes]) ave_baths = statistics.mean([p.baths for p in two_bed_homes]) ave_sqft = statistics.mean([p.sq__ft for p in two_bed_homes]) print("The average price of a 2-bedroom home is ${:,}, baths={}, sq ft={:,}".format(int(ave_price), round(ave_baths, 1), round( ave_sqft, 1))) if __name__ == '__main__': main()
caef56b59f3154376c50d4336649aec1100d0102
2f6d017dedc68588b2615d65c1e8ca8bcdd90446
/api/dynamic_tests_v2/cumsum.py
64fc792e50a19fb1e753faa601710dbef87b366e
[]
no_license
hysunflower/benchmark
70fc952a4eb1545208543627539d72e991cef78a
c14f99c15b4be9e11f56ea378ca15d9c3da23bab
refs/heads/master
2022-06-30T07:04:14.986050
2022-06-15T02:43:04
2022-06-15T02:43:04
224,449,279
1
0
null
2019-11-27T14:29:29
2019-11-27T14:29:29
null
UTF-8
Python
false
false
1,479
py
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from common_import import * class CumsumConfig(APIConfig): def __init__(self): super(CumsumConfig, self).__init__('cumsum') self.feed_spec = {"range": [-1, 1]} class PDCumsum(PaddleDynamicAPIBenchmarkBase): def build_graph(self, config): x = self.variable(name='x', shape=config.x_shape, dtype=config.x_dtype) result = paddle.cumsum(x=x, axis=config.axis) self.feed_list = [x] self.fetch_list = [result] class TorchCumsum(PytorchAPIBenchmarkBase): def build_graph(self, config): x = self.variable(name='x', shape=config.x_shape, dtype=config.x_dtype) result = torch.cumsum(x=x, axis=config.axis) self.feed_list = [x] self.fetch_list = [result] if __name__ == '__main__': test_main( pd_dy_obj=PDCumsum(), torch_obj=TorchCumsum(), config=CumsumConfig())
c83eadf7b9b9967c1507e6da8273883512787e28
13ea58f72fa96e2455609fb452b5f3b98e94f846
/sfepy/postprocess/plot_cmesh.py
4319e5a25f131980a112ea817a562980f7b29e29
[ "BSD-3-Clause" ]
permissive
vondrejc/sfepy
4284ee47979b89d9e504b72b91689a9ce0c3a5ec
8e427af699c4b2858eb096510057abb3ae7e28e8
refs/heads/master
2021-01-24T00:09:18.722674
2014-08-20T12:37:03
2014-08-20T14:25:56
12,810,199
0
2
null
null
null
null
UTF-8
Python
false
false
2,538
py
""" Functions to visualize the CMesh geometry and topology. """ import matplotlib.pyplot as plt from sfepy.postprocess.plot_dofs import _get_axes def plot_wireframe(ax, cmesh, color='k', show=False): """ Plot a finite element mesh as a wireframe using edges connectivity. """ coors = cmesh.coors dim = cmesh.dim edges = cmesh.get_conn(1, 0) ax = _get_axes(ax, dim) for edge_vertices in edges.indices.reshape((edges.num, 2)): cc = coors[edge_vertices] if dim == 3: ax.plot(cc[:, 0], cc[:, 1], cc[:, 2], color) else: ax.plot(cc[:, 0], cc[:, 1], color) if show: plt.show() return ax def plot_entities(ax, cmesh, edim, color='b', size=10, show=False): """ Plot mesh topology entities using scatter plot. """ coors = cmesh.get_centroids(edim) dim = cmesh.dim ax = _get_axes(ax, dim) if dim == 3: ax.scatter(coors[:, 0], coors[:, 1], coors[:, 2], s=size, c=color) else: ax.scatter(coors[:, 0], coors[:, 1], s=size, c=color) if show: plt.show() return ax def label_global_entities(ax, cmesh, edim, color='b', fontsize=10, show=False): """ Label mesh topology entities using global ids. """ coors = cmesh.get_centroids(edim) dim = cmesh.dim ax = _get_axes(ax, dim) for ii, cc in enumerate(coors): if dim == 3: ax.text(cc[0], cc[1], cc[2], ii, color=color, fontsize=fontsize) else: ax.text(cc[0], cc[1], ii, color=color, fontsize=fontsize) if show: plt.show() return ax def label_local_entities(ax, cmesh, edim, color='b', fontsize=10, show=False): """ Label mesh topology entities using cell-local ids. """ coors = cmesh.get_centroids(edim) dim = cmesh.dim centres = cmesh.get_centroids(dim) conn = cmesh.get_conn(dim, edim) off = conn.offsets ax = _get_axes(ax, dim) eps = 0.1 oeps = 1.0 - eps for ii in xrange(conn.num): for ic, ie in enumerate(conn.indices[off[ii]:off[ii+1]]): # Shift labels towards the cell centre. cc = oeps * coors[ie] + eps * centres[ii] if dim == 3: ax.text(cc[0], cc[1], cc[2], ic, color=color, fontsize=fontsize) else: ax.text(cc[0], cc[1], ic, color=color, fontsize=fontsize) if show: plt.show() return ax
83b6c3223a9ea60b7456b4e43317b1614cfe87e0
7ce05272d21c903abc85ebc74544009aacd80c82
/Advance_Python/Socket_Programming/socket_programs/client.py
cead5a5a2d925f83e46f72d6bbd4a1b3d48a2ce3
[]
no_license
sachinyadav3496/PythonInternBatch2018
8899a866f60a39b4c7eff4f5bc79ec2586833403
8e2610ad80c39ea747e8a6547ebe540e7b019a79
refs/heads/master
2021-06-26T09:18:58.178457
2020-10-03T09:49:32
2020-10-03T09:49:32
136,880,809
18
34
null
2020-10-03T09:49:33
2018-06-11T05:56:26
Jupyter Notebook
UTF-8
Python
false
false
670
py
import socket server_socket = socket.socket() host = socket.gethostbyname(socket.gethostname()) # Give server address if server is on differnt machine port = 12345 #port no on which server is listing server_socket.connect((host,port)) print("Got Connection from server at {}:{} ".format(host,port)) while True : smsg = server_socket.recv(1024) if smsg.decode().strip().lower() == 'bye' : print("Connection is Terminated by server") server_socket.close() break print("\t\t\tServer -> ",smsg.decode()) msg = input("client->") server_socket.send(msg.encode()) if msg == 'bye' : server_socket.close() break
a4ec925ffdf9afa9aff09c57049d796f503f32ea
524c168b1b7ab4644a612f692645ae56487dea8c
/fwork-backend/tina/projects/migrations/0013_auto_20141210_1040.py
ac9ab59da8ca199cb8221bccf33e483a8493f55f
[]
no_license
phamhongnhung2501/Taiga.Tina
b4fa730a9f9601e23ab19c6d937e7daf0386b1e2
8bc44de3a364ccd0e49e767b098589898dcabc10
refs/heads/master
2022-12-14T09:55:11.205228
2019-07-08T07:42:38
2019-07-08T07:42:38
195,760,755
0
0
null
2022-12-08T05:18:37
2019-07-08T07:39:32
Python
UTF-8
Python
false
false
995
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations from django.db import connection from tina.projects.userstories.models import * from tina.projects.tasks.models import * from tina.projects.issues.models import * from tina.projects.models import * def _fix_tags_model(tags_model): table_name = tags_model._meta.db_table query = "select id from (select id, unnest(tags) tag from %s) x where tag LIKE '%%,%%'"%(table_name) cursor = connection.cursor() cursor.execute(query) for row in cursor.fetchall(): id = row[0] instance = tags_model.objects.get(id=id) instance.tags = [tag.replace(",", "") for tag in instance.tags] instance.save() def fix_tags(apps, schema_editor): _fix_tags_model(Project) class Migration(migrations.Migration): dependencies = [ ('projects', '0012_auto_20141210_1009'), ] operations = [ migrations.RunPython(fix_tags), ]
46eb0092ec00ba666cc6bbdaa21bff606a02a170
6f594cc963795c69d8da3c30ca580c0405ef2d6e
/binaryTree/652FindDuplicateSubtrees.py
fbf0d850405b6d265b0194874f1be18bc6d4cea4
[]
no_license
lo-tp/leetcode
25933c5b25f64f881d43748d8b2763f69614a97f
4cc4d76c64e9d9aa3f53c5e9574e488c93e10a50
refs/heads/master
2022-09-07T20:32:58.487759
2022-09-05T03:39:50
2022-09-07T13:39:50
116,555,892
1
0
null
null
null
null
UTF-8
Python
false
false
2,259
py
from collections import defaultdict class Solution(object): def findDuplicateSubtrees(self, root): res, current, stack, data = [], '', [], defaultdict(lambda: 0) while stack or root: if root: stack.append((root, False, '')) root = root.left else: t, visited, left_str = stack.pop() if visited: current = '{} {} {}'.format(left_str, t.val, current) root = None if data[current] == 1: res.append(t) data[current] += 1 else: stack.append((t, True, current)) current = '' root = t.right return res def findDuplicateSubtrees(self, root): res, current, stack, data = [], '', [ (root, 0, '')], defaultdict(lambda: 0) while stack: root, flag, left_str = stack.pop() if not root: current += ' ' elif not flag: stack.append((root, 1, '')) stack.append((root.left, 0, '')) elif flag == 1: stack.append((root, 2, current)) stack.append((root.right, 0, '')) current = '' else: current = 'l{}-{}-{}r'.format(left_str, root.val, current) if data[current] == 1: res.append(root) data[current] += 1 return res def findDuplicateSubtrees(self, root): cur = None res, data, stack = [], defaultdict(lambda: 0), [(root, None, 0)] while stack: node, string, flag = stack.pop() if not node: cur = '#' elif not flag: stack.append((node, None, 1)) stack.append((node.left, None, 0)) elif flag == 1: stack.append((node, cur, 2)) stack.append((node.right, None, 0)) else: cur = '{},{},{}'.format(node.val, string, cur) data[cur] += 1 if data[cur] == 2: res.append(node) return res
9f238e46d438784023ea24f418acbc362d03107b
86813bf514f3e0257f92207f40a68443f08ee44b
/459 重复的子字符串/459 重复的子字符串.py
09445982e188b913bf7d0f47bd859239932d3471
[]
no_license
Aurora-yuan/Leetcode_Python3
4ce56679b48862c87addc8cd870cdd525c9d926c
720bb530850febc2aa67a56a7a0b3a85ab37f415
refs/heads/master
2021-07-12T13:23:19.399155
2020-10-21T03:14:36
2020-10-21T03:14:36
212,998,500
4
1
null
null
null
null
UTF-8
Python
false
false
415
py
#label: string difficulty: easy class Solution: def repeatedSubstringPattern(self, s: str) -> bool: n = len(s) for i in range(1,n//2+1): if n % i == 0: a = s[:i] j = i while j<n and s[j:j+i] == a: j += i if j == n: return True return False
1e9a225fe5733b7b760390bc1f1511e3d4fc2649
99697559d046cdd04dd9068bd518e4da4177aaa2
/Finish/H065_Valid_Number.py
887cc224b572e863ae805b6987920e3864f81620
[]
no_license
Azurisky/Leetcode
3e3621ef15f2774cfdfac8c3018e2e4701760c3b
8fa215fb0d5b2e8f6a863756c874d0bdb2cffa04
refs/heads/master
2020-03-18T22:46:35.780864
2018-10-07T05:45:30
2018-10-07T05:45:30
135,364,168
0
0
null
null
null
null
UTF-8
Python
false
false
904
py
class Solution: def isNumber(self, s): """ :type s: str :rtype: bool """ if not s: return False # strip the heading and tailing spaces of the string s = s.strip() i = 0 res = signs = eE = dot = False while i < len(s): if s[i].isdigit(): i += 1 res = signs = True elif s[i]=='.' and not dot: i += 1 dot = signs = True elif (s[i]=='e' or s[i]=='E') and (not eE) and res: i += 1 res = signs = False dot = eE = True elif (s[i]=='+' or s[i]=='-') and not res and not signs: i += 1 signs = True else: return False if res: return True return False
74ab53846c7f95d413948f7ff2c3a206fcf660ca
d3b7a7a922eb9999f22c99c0cc3908d7289ca27e
/tests/end-to-end.py
e965fe6cbdead05f32e481356524c7034165020e
[ "Apache-2.0" ]
permissive
g3l0o/plaso
b668203c2c7cf8799a1c12824ee1bdc8befd3980
ae29d853a6bcdd1530ce9320a3af7b3f122941ac
refs/heads/master
2020-12-25T20:31:08.928709
2016-07-22T20:00:33
2016-07-22T20:00:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
41,110
py
#!/usr/bin/python # -*- coding: utf-8 -*- """End-to-end test launcher.""" from __future__ import print_function import abc import argparse import difflib import logging import os import shutil import subprocess import sys import tempfile try: import ConfigParser as configparser except ImportError: import configparser # pylint: disable=import-error if sys.version_info[0] < 3: STRING_TYPES = (basestring, ) else: STRING_TYPES = (str, ) # Since os.path.abspath() uses the current working directory (cwd) # os.path.abspath(__file__) will point to a different location if # cwd has been changed. Hence we preserve the absolute location of __file__. __file__ = os.path.abspath(__file__) class TempDirectory(object): """Class that implements a temporary directory.""" def __init__(self): """Initializes a temporary directory object.""" super(TempDirectory, self).__init__() self.name = u'' def __enter__(self): """Make this work with the 'with' statement.""" self.name = tempfile.mkdtemp() return self.name def __exit__(self, unused_type, unused_value, unused_traceback): """Make this work with the 'with' statement.""" shutil.rmtree(self.name, True) class TestCase(object): """Class that defines the test case object interface. The test case defines what aspect of the plaso tools to test. A test definition is used to provide parameters for the test case so it can be easily run on different input files. Attributes: name (str): name of the test case. """ NAME = None def __init__( self, tools_path, test_sources_path, test_references_path, test_results_path, debug_output=False): """Initializes a test case object. Args: tools_path (str): path to the plaso tools. test_sources_path (str): path to the test sources. test_references_path (str): path to the test references. test_results_path (str): path to store test results. debug_output (Optional[bool]): True if debug output should be generated. """ super(TestCase, self).__init__() self._debug_output = debug_output self._log2timeline_path = None self._pinfo_path = None self._psort_path = None self._test_references_path = test_references_path self._test_results_path = test_results_path self._test_sources_path = test_sources_path self._tools_path = tools_path def _InitializeLog2TimelinePath(self): """Initializes the location of log2timeline.""" for filename in ( u'log2timeline.exe', u'log2timeline.sh', u'log2timeline.py'): self._log2timeline_path = os.path.join(self._tools_path, filename) if os.path.exists(self._log2timeline_path): break if self._log2timeline_path.endswith(u'.py'): self._log2timeline_path = u' '.join([ sys.executable, self._log2timeline_path]) def _InitializePinfoPath(self): """Initializes the location of pinfo.""" for filename in (u'pinfo.exe', u'pinfo.sh', u'pinfo.py'): self._pinfo_path = os.path.join(self._tools_path, filename) if os.path.exists(self._pinfo_path): break if self._pinfo_path.endswith(u'.py'): self._pinfo_path = u' '.join([sys.executable, self._pinfo_path]) def _InitializePsortPath(self): """Initializes the location of psort.""" for filename in (u'psort.exe', u'psort.sh', u'psort.py'): self._psort_path = os.path.join(self._tools_path, filename) if os.path.exists(self._psort_path): break if self._psort_path.endswith(u'.py'): self._psort_path = u' '.join([sys.executable, self._psort_path]) def _RunCommand(self, command): """Runs a command. Args: command (str): command to run. Returns: bool: True if the command ran successfully. """ exit_code = subprocess.call(command, shell=True) if exit_code != 0: logging.error(u'Running: "{0:s}" failed.'.format(command)) return False return True @abc.abstractmethod def ReadAttributes(self, test_definition_reader, test_definition): """Reads the test definition attributes into to the test definition. Args: test_definition_reader (TestDefinitionReader): test definition reader. test_definition (TestDefinition): test definition. Returns: bool: True if the read was successful. """ @abc.abstractmethod def Run(self, test_definition): """Runs the test case with the parameters specified by the test definition. Args: test_definition (TestDefinition): test definition. Returns: bool: True if the test ran successfully. """ class TestCasesManager(object): """Class that implements the test cases manager.""" _test_case_classes = {} _test_case_objects = {} @classmethod def DeregisterTestCase(cls, test_case_class): """Deregisters a test case class. The test case classes are identified based on their lower case name. Args: test_case_class (type): test case class. Raises: KeyError: if test case class is not set for the corresponding name. """ test_case_name = test_case_class.NAME.lower() if test_case_name not in cls._test_case_classes: raise KeyError( u'Formatter class not set for name: {0:s}.'.format( test_case_class.NAME)) del cls._test_case_classes[test_case_name] @classmethod def GetTestCaseObject( cls, name, tools_path, test_sources_path, test_references_path, test_results_path, debug_output=False): """Retrieves the test case object for a specific name. Args: name (str): name of the test case. tools_path (str): path to the plaso tools. test_sources_path (str): path to the test sources. test_references_path (str): path to the test references. test_results_path (str): path to store test results. debug_output (Optional[bool]): True if debug output should be generated. Returns: TestCase: test case or None if not available. """ name = name.lower() if name not in cls._test_case_objects: test_case_object = None if name in cls._test_case_classes: test_case_class = cls._test_case_classes[name] test_case_object = test_case_class( tools_path, test_sources_path, test_references_path, test_results_path, debug_output=debug_output) if not test_case_object: return cls._test_case_objects[name] = test_case_object return cls._test_case_objects[name] @classmethod def RegisterTestCase(cls, test_case_class): """Registers a test case class. The test case classes are identified based on their lower case name. Args: test_case_class (type): test case class. Raises: KeyError: if test case class is already set for the corresponding name. """ test_case_name = test_case_class.NAME.lower() if test_case_name in cls._test_case_classes: raise KeyError(( u'Formatter class already set for name: {0:s}.').format( test_case_class.NAME)) cls._test_case_classes[test_case_name] = test_case_class @classmethod def RegisterTestCases(cls, test_case_classes): """Registers test case classes. The test case classes are identified based on their lower case name. Args: test_case_classes (list[type]): test case classes. Raises: KeyError: if test case class is already set for the corresponding name. """ for test_case_class in test_case_classes: cls.RegisterTestCase(test_case_class) class TestDefinition(object): """Class that implements a test definition. Attributes: case (str): name of test case. name (str): name of the test. """ def __init__(self, name): """Initializes a test definition object. Args: name (str): name of the test. """ super(TestDefinition, self).__init__() self.case = u'' self.name = name class TestDefinitionReader(object): """Class that implements a test definition reader. The test definition reader reads tests definitions from a configuration file. """ def __init__( self, tools_path, test_sources_path, test_references_path, test_results_path, debug_output=False): """Initializes a test definition reader object. Args: tools_path (str): path to the plaso tools. test_sources_path (str): path to the test sources. test_references_path (str): path to the test references. test_results_path (str): path to store test results. debug_output (Optional[bool]): True if debug output should be generated. """ super(TestDefinitionReader, self).__init__() self._config_parser = None self._debug_output = debug_output self._test_references_path = test_references_path self._test_results_path = test_results_path self._test_sources_path = test_sources_path self._tools_path = tools_path def GetConfigValue(self, section_name, value_name): """Retrieves a value from the config parser. Args: section_name (str): name of the section that contains the value. value_name (str): the name of the value. Returns: object: value or None if the value does not exists. Raises: RuntimeError: if the configuration parser is not set. """ if not self._config_parser: raise RuntimeError(u'Missing configuration parser.') try: return self._config_parser.get(section_name, value_name).decode('utf-8') except configparser.NoOptionError: return def Read(self, file_object): """Reads test definitions. Args: file_object (file): a file-like object to read from. Yields: TestDefinition: end-to-end test definition. """ # TODO: replace by: # self._config_parser = configparser. ConfigParser(interpolation=None) self._config_parser = configparser.RawConfigParser() try: self._config_parser.readfp(file_object) for section_name in self._config_parser.sections(): test_definition = TestDefinition(section_name) test_definition.case = self.GetConfigValue(section_name, u'case') if not test_definition.case: logging.warning( u'Test case missing in test definition: {0:s}.'.format( section_name)) continue test_case = TestCasesManager.GetTestCaseObject( test_definition.case, self._tools_path, self._test_sources_path, self._test_references_path, self._test_results_path, debug_output=self._debug_output) if not test_case: logging.warning(u'Undefined test case: {0:s}'.format( test_definition.case)) continue if not test_case.ReadAttributes(self, test_definition): logging.warning( u'Unable to read attributes of test case: {0:s}'.format( test_definition.case)) continue yield test_definition finally: self._config_parser = None class TestLauncher(object): """Class that implements the test launcher. The test launcher reads the test definitions from a file, looks up the corresponding test cases in the test case manager and then runs the test case with the parameters specified in the test definition. """ def __init__( self, tools_path, test_sources_path, test_references_path, test_results_path, debug_output=False): """Initializes a test launcher object. Args: tools_path (str): path to the plaso tools. test_sources_path (str): path to the test sources. test_references_path (str): path to the test references. test_results_path (str): path to store test results. debug_output (Optional[bool]): True if debug output should be generated. """ super(TestLauncher, self).__init__() self._debug_output = debug_output self._test_definitions = [] self._test_references_path = test_references_path self._test_results_path = test_results_path self._test_sources_path = test_sources_path self._tools_path = tools_path def _RunTest(self, test_definition): """Runs the test. Args: test_definition (TestDefinition): test definition. Returns: A boolean value indicating the test ran successfully. """ test_case = TestCasesManager.GetTestCaseObject( test_definition.case, self._tools_path, self._test_sources_path, self._test_references_path, self._test_results_path) if not test_case: logging.error(u'Unsupported test case: {0:s}'.format( test_definition.case)) return False return test_case.Run(test_definition) def ReadDefinitions(self, configuration_file): """Reads the test definitions from the configuration file. Args: configuration_file (str): path of the configuration file. """ self._test_definitions = [] with open(configuration_file) as file_object: test_definition_reader = TestDefinitionReader( self._tools_path, self._test_sources_path, self._test_references_path, self._test_results_path) for test_definition in test_definition_reader.Read(file_object): self._test_definitions.append(test_definition) def RunTests(self): """Runs the tests. Returns: list[str]: names of the failed tests. """ # TODO: set up test environment failed_tests = [] for test_definition in self._test_definitions: if not self._RunTest(test_definition): failed_tests.append(test_definition.name) return failed_tests class ExtractAndOutputTestCase(TestCase): """Class that implements the extract and output test case. The extract and output test case runs log2timeline to extract data from a source, specified by the test definition. After the data has been extracted pinfo and psort are run to validate if the resulting storage file is readable. """ NAME = u'extract_and_output' def __init__( self, tools_path, test_sources_path, test_references_path, test_results_path, debug_output=False): """Initializes a test case object. Args: tools_path (str): path to the plaso tools. test_sources_path (str): path to the test sources. test_references_path (str): path to the test references. test_results_path (str): path to store test results. debug_output (Optional[bool]): True if debug output should be generated. """ super(ExtractAndOutputTestCase, self).__init__( tools_path, test_sources_path, test_references_path, test_results_path, debug_output=debug_output) self._InitializeLog2TimelinePath() self._InitializePinfoPath() self._InitializePsortPath() def _RunLog2Timeline( self, test_definition, temp_directory, storage_file, source_path): """Runs log2timeline with the parameters specified by the test definition. Args: test_definition (TestDefinition): test definition. temp_directory (str): name of a temporary directory. storage_file (str): path of the storage file. source_path (str): path of the source. Returns: bool: True if log2timeline ran successfully. """ extract_options = u'--status-view=none {0:s}'.format( u' '.join(test_definition.extract_options)) stdout_file = os.path.join( temp_directory, u'{0:s}-log2timeline.out'.format(test_definition.name)) stderr_file = os.path.join( temp_directory, u'{0:s}-log2timeline.err'.format(test_definition.name)) command = u'{0:s} {1:s} {2:s} {3:s} > {4:s} 2> {5:s}'.format( self._log2timeline_path, extract_options, storage_file, source_path, stdout_file, stderr_file) logging.info(u'Running: {0:s}'.format(command)) result = self._RunCommand(command) if self._debug_output: with open(stderr_file, 'rb') as file_object: output_data = file_object.read() print(output_data) if os.path.exists(storage_file): shutil.copy(storage_file, self._test_results_path) if os.path.exists(stdout_file): shutil.copy(stdout_file, self._test_results_path) if os.path.exists(stderr_file): shutil.copy(stderr_file, self._test_results_path) return result def _RunPinfo(self, test_definition, temp_directory, storage_file): """Runs pinfo on the storage file. Args: test_definition (TestDefinition): test definition. temp_directory (str): name of a temporary directory. storage_file (str): path of the storage file. Returns: bool: True if pinfo ran successfully. """ stdout_file = os.path.join( temp_directory, u'{0:s}-pinfo.out'.format(test_definition.name)) stderr_file = os.path.join( temp_directory, u'{0:s}-pinfo.err'.format(test_definition.name)) command = u'{0:s} {1:s} > {2:s} 2> {3:s}'.format( self._pinfo_path, storage_file, stdout_file, stderr_file) logging.info(u'Running: {0:s}'.format(command)) result = self._RunCommand(command) if self._debug_output: with open(stderr_file, 'rb') as file_object: output_data = file_object.read() print(output_data) if os.path.exists(stdout_file): shutil.copy(stdout_file, self._test_results_path) if os.path.exists(stderr_file): shutil.copy(stderr_file, self._test_results_path) return result def _RunPinfoCompare(self, test_definition, temp_directory, storage_file): """Runs pinfo --compare on the storage file and a reference storage file. Args: test_definition (TestDefinition): test definition. temp_directory (str): name of a temporary directory. storage_file (str): path of the storage file. Returns: bool: True if pinfo ran successfully. """ reference_storage_file = test_definition.reference_storage_file if self._test_references_path: reference_storage_file = os.path.join( self._test_references_path, reference_storage_file) if not os.path.exists(reference_storage_file): logging.error(u'No such reference storage file: {0:s}'.format( reference_storage_file)) return False stdout_file = os.path.join( temp_directory, u'{0:s}-compare-pinfo.out'.format(test_definition.name)) stderr_file = os.path.join( temp_directory, u'{0:s}-compare-pinfo.err'.format(test_definition.name)) command = u'{0:s} --compare {1:s} {2:s} > {3:s} 2> {4:s}'.format( self._pinfo_path, reference_storage_file, storage_file, stdout_file, stderr_file) logging.info(u'Running: {0:s}'.format(command)) result = self._RunCommand(command) if self._debug_output: with open(stderr_file, 'rb') as file_object: output_data = file_object.read() print(output_data) if os.path.exists(stdout_file): shutil.copy(stdout_file, self._test_results_path) if os.path.exists(stderr_file): shutil.copy(stderr_file, self._test_results_path) return result def _RunPsort(self, test_definition, temp_directory, storage_file): """Runs psort on a storage file. Args: test_definition (TestDefinition): test definition. temp_directory (str): name of a temporary directory. storage_file (str): path of the storage file. Returns: bool: True if psort ran successfully. """ stdout_file = os.path.join( temp_directory, u'{0:s}-psort.out'.format(test_definition.name)) stderr_file = os.path.join( temp_directory, u'{0:s}-psort.err'.format(test_definition.name)) command = u'{0:s} {1:s} > {2:s} 2> {3:s}'.format( self._psort_path, storage_file, stdout_file, stderr_file) logging.info(u'Running: {0:s}'.format(command)) result = self._RunCommand(command) if self._debug_output: with open(stderr_file, 'rb') as file_object: output_data = file_object.read() print(output_data) if os.path.exists(stdout_file): shutil.copy(stdout_file, self._test_results_path) if os.path.exists(stderr_file): shutil.copy(stderr_file, self._test_results_path) return result def ReadAttributes(self, test_definition_reader, test_definition): """Reads the test definition attributes into to the test definition. Args: test_definition_reader (TestDefinitionReader): test definition reader. test_definition (TestDefinition): test definition. Returns: bool: True if the read was successful. """ test_definition.extract_options = test_definition_reader.GetConfigValue( test_definition.name, u'extract_options') if test_definition.extract_options is None: test_definition.extract_options = [] elif isinstance(test_definition.extract_options, STRING_TYPES): test_definition.extract_options = test_definition.extract_options.split( u',') test_definition.reference_storage_file = ( test_definition_reader.GetConfigValue( test_definition.name, u'reference_storage_file')) test_definition.source = test_definition_reader.GetConfigValue( test_definition.name, u'source') return True def Run(self, test_definition): """Runs the test case with the parameters specified by the test definition. Args: test_definition (TestDefinition): test definition. Returns: bool: True if the test ran successfully. """ source_path = test_definition.source if self._test_sources_path: source_path = os.path.join(self._test_sources_path, source_path) if not os.path.exists(source_path): logging.error(u'No such source: {0:s}'.format(source_path)) return False with TempDirectory() as temp_directory: storage_file = os.path.join( temp_directory, u'{0:s}.plaso'.format(test_definition.name)) # Extract events with log2timeline. if not self._RunLog2Timeline( test_definition, temp_directory, storage_file, source_path): return False # Check if the resulting storage file can be read with pinfo. if not self._RunPinfo( test_definition, temp_directory, storage_file): return False # Compare storage file with a reference storage file. if test_definition.reference_storage_file: if not self._RunPinfoCompare( test_definition, temp_directory, storage_file): return False # Check if the resulting storage file can be read with psort. if not self._RunPsort( test_definition, temp_directory, storage_file): return False return True class ExtractAndTagTestCase(ExtractAndOutputTestCase): """Class that implements the extract and tag test case. The extract and tag test case runs log2timeline to extract data from a source, specified by the test definition. After the data has been extracted psort is run to tag events in the resulting storage file. """ NAME = u'extract_and_tag' def _RunPsortWithTaggingOptions( self, test_definition, temp_directory, storage_file): """Runs psort with the tagging options specified by the test definition. Args: test_definition (TestDefinition): test definition. temp_directory (str): name of a temporary directory. storage_file (str): path of the storage file. Returns: bool: True if psort ran successfully. """ # TODO: determine why --analysis=tagging fails. tagging_options = ( u'--analysis tagging --output-format=null ' u'--tagging-file {0:s}').format(test_definition.tagging_file) stdout_file = os.path.join( temp_directory, u'{0:s}-psort-tagging.out'.format(test_definition.name)) stderr_file = os.path.join( temp_directory, u'{0:s}-psort-tagging.err'.format(test_definition.name)) command = u'{0:s} {1:s} {2:s} > {3:s} 2> {4:s}'.format( self._psort_path, tagging_options, storage_file, stdout_file, stderr_file) logging.info(u'Running: {0:s}'.format(command)) result = self._RunCommand(command) if self._debug_output: with open(stderr_file, 'rb') as file_object: output_data = file_object.read() print(output_data) if os.path.exists(stdout_file): shutil.copy(stdout_file, self._test_results_path) if os.path.exists(stderr_file): shutil.copy(stderr_file, self._test_results_path) return result def ReadAttributes(self, test_definition_reader, test_definition): """Reads the test definition attributes into to the test definition. Args: test_definition_reader (TestDefinitionReader): test definition reader. test_definition (TestDefinition): test definition. Returns: bool: True if the read was successful. """ if not super(ExtractAndTagTestCase, self).ReadAttributes( test_definition_reader, test_definition): return False test_definition.tagging_file = test_definition_reader.GetConfigValue( test_definition.name, u'tagging_file') return True def Run(self, test_definition): """Runs the test case with the parameters specified by the test definition. Args: test_definition (TestDefinition): test definition. Returns: bool: True if the test ran successfully. """ source_path = test_definition.source if self._test_sources_path: source_path = os.path.join(self._test_sources_path, source_path) if not os.path.exists(source_path): logging.error(u'No such source: {0:s}'.format(source_path)) return False with TempDirectory() as temp_directory: storage_file = os.path.join( temp_directory, u'{0:s}.plaso'.format(test_definition.name)) # Extract events with log2timeline. if not self._RunLog2Timeline( test_definition, temp_directory, storage_file, source_path): return False # Add tags to the resulting storage file with psort. if not self._RunPsortWithTaggingOptions( test_definition, temp_directory, storage_file): return False # Check if the resulting storage file can be read with psort. if not self._RunPsort( test_definition, temp_directory, storage_file): return False return True class ImageExportTestCase(TestCase): """Class that implements the image export test case. The image export test case runs image_export to extract files from a storage media image, specified by the test definition. """ NAME = u'image_export' def __init__( self, tools_path, test_sources_path, test_references_path, test_results_path, debug_output=False): """Initializes a test case object. Args: tools_path (str): path to the plaso tools. test_sources_path (str): path to the test sources. test_references_path (str): path to the test references. test_results_path (str): path to store test results. debug_output (Optional[bool]): True if debug output should be generated. """ super(ImageExportTestCase, self).__init__( tools_path, test_sources_path, test_references_path, test_results_path, debug_output=debug_output) self._image_export_path = None self._InitializeImageExportPath() def _InitializeImageExportPath(self): """Initializes the location of image_export.""" for filename in ( u'image_export.exe', u'image_export.sh', u'image_export.py'): self._image_export_path = os.path.join(self._tools_path, filename) if os.path.exists(self._image_export_path): break if self._image_export_path.endswith(u'.py'): self._image_export_path = u' '.join([ sys.executable, self._image_export_path]) def _RunImageExport(self, test_definition, temp_directory, source_path): """Runs image_export on a storage media image. Args: test_definition (TestDefinition): test definition. temp_directory (str): name of a temporary directory. source_path (str): path of the source. Returns: bool: True if image_export ran successfully. """ output_file_path = os.path.join(temp_directory, u'export') output_options = [u'-w {0:s}'.format(output_file_path)] output_options = u' '.join(output_options) stdout_file = os.path.join( temp_directory, u'{0:s}-image_export.out'.format(test_definition.name)) stderr_file = os.path.join( temp_directory, u'{0:s}-image_export.err'.format(test_definition.name)) command = u'{0:s} {1:s} {2:s} > {3:s} 2> {4:s}'.format( self._image_export_path, output_options, source_path, stdout_file, stderr_file) logging.info(u'Running: {0:s}'.format(command)) result = self._RunCommand(command) if self._debug_output: with open(stderr_file, 'rb') as file_object: output_data = file_object.read() print(output_data) # TODO: hash the files. if os.path.exists(stdout_file): shutil.copy(stdout_file, self._test_results_path) if os.path.exists(stderr_file): shutil.copy(stderr_file, self._test_results_path) return result def ReadAttributes(self, test_definition_reader, test_definition): """Reads the test definition attributes into to the test definition. Args: test_definition_reader (TestDefinitionReader): test definition reader. test_definition (TestDefinition): test definition. Returns: bool: True if the read was successful. """ test_definition.filter_file = test_definition_reader.GetConfigValue( test_definition.name, u'filter_file') test_definition.source = test_definition_reader.GetConfigValue( test_definition.name, u'source') return True def Run(self, test_definition): """Runs the test case with the parameters specified by the test definition. Args: test_definition (TestDefinition): test definition. Returns: bool: True if the test ran successfully. """ source_path = test_definition.source if self._test_sources_path: source_path = os.path.join(self._test_sources_path, source_path) if not os.path.exists(source_path): logging.error(u'No such source: {0:s}'.format(source_path)) return False with TempDirectory() as temp_directory: # Extract files with image_export. if not self._RunImageExport( test_definition, temp_directory, source_path): return False return True class OutputTestCase(TestCase): """Class that implements the output test case. The output test case runs psort on a storage file to its various output formats. """ NAME = u'output' def __init__( self, tools_path, test_sources_path, test_references_path, test_results_path, debug_output=False): """Initializes a test case object. Args: tools_path (str): path to the plaso tools. test_sources_path (str): path to the test sources. test_references_path (str): path to the test references. test_results_path (str): path to store test results. debug_output (Optional[bool]): True if debug output should be generated. """ super(OutputTestCase, self).__init__( tools_path, test_sources_path, test_references_path, test_results_path, debug_output=debug_output) self._InitializePsortPath() def _CompareOutputFile(self, test_definition, temp_directory): """Compares the output file with a reference output file. Args: test_definition (TestDefinition): test definition. temp_directory (str): name of a temporary directory. Returns: bool: True if he output files are identical. """ if test_definition.output_format not in ( u'dynamic', u'json', u'json_line', u'l2tcsv', u'l2ttln', u'rawpy', u'tln'): logging.error(u'Unsuppored output format: {0:s}'.format( test_definition.output_format)) return False output_file_path = os.path.join(temp_directory, test_definition.output_file) # TODO: add support to compare output by SHA-256. result = False if test_definition.reference_output_file: reference_output_file_path = test_definition.reference_output_file if self._test_references_path: reference_output_file_path = os.path.join( self._test_references_path, reference_output_file_path) if not os.path.exists(reference_output_file_path): logging.error(u'No such reference output file: {0:s}'.format( reference_output_file_path)) return False with open(reference_output_file_path, 'r') as reference_output_file: with open(output_file_path, 'r') as output_file: differences = list(difflib.unified_diff( reference_output_file.readlines(), output_file.readlines(), fromfile=reference_output_file_path, tofile=output_file_path)) if not differences: result = True return result def _RunPsortWithOutputOptions( self, test_definition, temp_directory, storage_file): """Runs psort with the output options specified by the test definition. Args: test_definition (TestDefinition): test definition. temp_directory (str): name of a temporary directory. storage_file (str): path of the storage file. Returns: bool: True if psort ran successfully. """ output_options = test_definition.output_options if test_definition.output_format: output_options.append(u'-o {0:s}'.format(test_definition.output_format)) output_file_path = None if test_definition.output_file: output_file_path = os.path.join( temp_directory, test_definition.output_file) output_options.append(u'-w {0:s}'.format(output_file_path)) output_options = u' '.join(output_options) stdout_file = os.path.join( temp_directory, u'{0:s}-psort.out'.format(test_definition.name)) stderr_file = os.path.join( temp_directory, u'{0:s}-psort.err'.format(test_definition.name)) command = u'{0:s} {1:s} {2:s} > {3:s} 2> {4:s}'.format( self._psort_path, output_options, storage_file, stdout_file, stderr_file) logging.info(u'Running: {0:s}'.format(command)) result = self._RunCommand(command) if self._debug_output: with open(stderr_file, 'rb') as file_object: output_data = file_object.read() print(output_data) if output_file_path and os.path.exists(output_file_path): shutil.copy(output_file_path, self._test_results_path) if os.path.exists(stdout_file): shutil.copy(stdout_file, self._test_results_path) if os.path.exists(stderr_file): shutil.copy(stderr_file, self._test_results_path) return result def ReadAttributes(self, test_definition_reader, test_definition): """Reads the test definition attributes into to the test definition. Args: test_definition_reader (TestDefinitionReader): test definition reader. test_definition (TestDefinition): test definition. Returns: bool: True if the read was successful. """ test_definition.output_file = test_definition_reader.GetConfigValue( test_definition.name, u'output_file') test_definition.output_format = test_definition_reader.GetConfigValue( test_definition.name, u'output_format') test_definition.output_options = test_definition_reader.GetConfigValue( test_definition.name, u'output_options') if test_definition.output_options is None: test_definition.output_options = [] elif isinstance(test_definition.output_options, STRING_TYPES): test_definition.output_options = test_definition.output_options.split( u',') test_definition.reference_output_file = ( test_definition_reader.GetConfigValue( test_definition.name, u'reference_output_file')) test_definition.source = test_definition_reader.GetConfigValue( test_definition.name, u'source') return True def Run(self, test_definition): """Runs the test case with the parameters specified by the test definition. Args: test_definition (TestDefinition): test definition. Returns: bool: True if the test ran successfully. """ source_path = test_definition.source if self._test_sources_path: source_path = os.path.join(self._test_sources_path, source_path) if not os.path.exists(source_path): logging.error(u'No such source: {0:s}'.format(source_path)) return False with TempDirectory() as temp_directory: if not self._RunPsortWithOutputOptions( test_definition, temp_directory, source_path): return False # Compare output file with a reference output file. if test_definition.output_file and test_definition.reference_output_file: if not self._CompareOutputFile(test_definition, temp_directory): return False return True TestCasesManager.RegisterTestCases([ ExtractAndOutputTestCase, ExtractAndTagTestCase, ImageExportTestCase, OutputTestCase]) def Main(): """The main function.""" argument_parser = argparse.ArgumentParser( description=u'End-to-end test launcher.', add_help=False, formatter_class=argparse.RawDescriptionHelpFormatter) argument_parser.add_argument( u'-c', u'--config', dest=u'config_file', action=u'store', metavar=u'CONFIG_FILE', default=None, help=u'path of the test configuration file.') argument_parser.add_argument( u'--debug', dest=u'debug_output', action=u'store_true', default=False, help=u'enable debug output.') argument_parser.add_argument( u'-h', u'--help', action=u'help', help=u'show this help message and exit.') argument_parser.add_argument( u'--references-directory', u'--references_directory', action=u'store', metavar=u'DIRECTORY', dest=u'references_directory', type=str, default=None, help=( u'The location of the directory where the test references are ' u'stored.')) argument_parser.add_argument( u'--results-directory', u'--results_directory', action=u'store', metavar=u'DIRECTORY', dest=u'results_directory', type=str, default=None, help=( u'The location of the directory where to store the test results.')) argument_parser.add_argument( u'--sources-directory', u'--sources_directory', action=u'store', metavar=u'DIRECTORY', dest=u'sources_directory', type=str, default=None, help=( u'The location of the directory where the test sources are stored.')) argument_parser.add_argument( u'--tools-directory', u'--tools_directory', action=u'store', metavar=u'DIRECTORY', dest=u'tools_directory', type=str, default=None, help=u'The location of the plaso tools directory.') options = argument_parser.parse_args() if not options.config_file: options.config_file = os.path.dirname(__file__) options.config_file = os.path.dirname(options.config_file) options.config_file = os.path.join( options.config_file, u'config', u'end-to-end.ini') if not os.path.exists(options.config_file): print(u'No such config file: {0:s}.'.format(options.config_file)) print(u'') return False logging.basicConfig( format=u'[%(levelname)s] %(message)s', level=logging.INFO) tools_path = options.tools_directory if not tools_path: tools_path = os.path.join( os.path.dirname(os.path.dirname(__file__)), u'tools') test_sources_path = options.sources_directory if test_sources_path and not os.path.isdir(test_sources_path): print(u'No such sources directory: {0:s}.'.format(test_sources_path)) print(u'') return False test_references_path = options.references_directory if test_references_path and not os.path.isdir(test_references_path): print(u'No such references directory: {0:s}.'.format(test_references_path)) print(u'') return False test_results_path = options.results_directory if not test_results_path: test_results_path = os.getcwd() if not os.path.isdir(test_results_path): print(u'No such results directory: {0:s}.'.format(test_results_path)) print(u'') return False tests = [] with open(options.config_file) as file_object: test_definition_reader = TestDefinitionReader( tools_path, test_sources_path, test_references_path, test_results_path, debug_output=options.debug_output) for test_definition in test_definition_reader.Read(file_object): tests.append(test_definition) test_launcher = TestLauncher( tools_path, test_sources_path, test_references_path, test_results_path, debug_output=options.debug_output) test_launcher.ReadDefinitions(options.config_file) failed_tests = test_launcher.RunTests() if failed_tests: print(u'Failed tests:') for failed_test in failed_tests: print(u' {0:s}'.format(failed_test)) print(u'') return False return True if __name__ == '__main__': if not Main(): sys.exit(1) else: sys.exit(0)
a4687640887e3eaa056be17102156fb6c73301a5
71ef2ddc4a10c9f6be7b938dadbd25bb5accbe89
/bots/MyBot_alt2/MyBot_alt2.py
c5bd7445daa98e9422d2b37244815251b1dfaf0c
[]
no_license
NicoKNL/halite3
e06b72e68c102d5cf863b6efd7c2ef5b0c161ea2
60ccd9a36e13b447a481e242762379d38e71c1b1
refs/heads/master
2020-04-07T22:01:18.804779
2018-12-20T00:47:17
2018-12-20T00:47:17
158,751,122
0
0
null
null
null
null
UTF-8
Python
false
false
14,186
py
#!/usr/bin/env python3 # Python 3.6 # Import the Halite SDK, which will let you interact with the game. import hlt # This library contains constant values. from hlt import constants # This library contains direction metadata to better interface with the game. from hlt.positionals import Direction, Position # This library allows you to generate random numbers. # Logging allows you to save messages for yourself. This is required because the regular STDOUT # (# print statements) are reserved for the engine-bot communication. import logging """ <<<Game Begin>>> """ # This game object contains the initial game state. game = hlt.Game() # At this point "game" variable is populated with initial map data. # This is a good place to do computationally expensive start-up pre-processing. # As soon as you call "ready" function below, the 2 second per turn timer will start. game.ready("ALT2") # Now that your bot is initialized, save a message to yourself in the log file with some important information. # Here, you log here your id, which you can always fetch from the game object by using my_id. logging.info("Successfully created bot! My Player ID is {}.".format(game.my_id)) FILL_RATIO = 0.9 # For now we accept 80% fill rate INF = 99999999 directions = {"n": (0, -1), "e": (1, 0), "s": (0, 1), "w": (-1, 0)} ship_actions = {} ship_directions = {} def shipyard_cleanup(game_map, ship, shipyard): if ship in ship_actions.keys(): action = not ship_actions[ship] else: action = True ship_actions[ship] = action if ship in ship_directions.keys(): turn_in = ship_directions[ship] elif ship.position == shipyard.position: turn_in = False else: turn_in = False ship_directions[ship] = turn_in if action: if turn_in: target = shipyard.position else: target = ship.position max_value = game_map[target.x][target.y].w staying_value = max_value // 4 moving_cost = max_value // 10 if moving_cost < ship.halite_amount or moving_cost == 0: for d in directions.values(): pos = game_map.normalize(ship.position.directional_offset(d)) # logging.debug(f"pos: {pos} | {game_map.calculate_distance(ship.position, shipyard.position) <= 5} | {game_map[pos.x][pos.y].w}") if game_map.calculate_distance(pos, shipyard.position) <= 5: w = game_map[pos.x][pos.y].w if (w // 4) - moving_cost > staying_value and w > max_value: max_value = w target = pos if game_map.calculate_distance(ship.position, shipyard.position) == 5: ship_directions[ship] = True # Start turning in else: target = ship.position logging.debug(f"decision: {target}") return target def closest_cell_with_ratio_fill(game_map, ship): minimum = min(0.25 * game_map.max_halite, 4 * (constants.MAX_HALITE - ship.halite_amount)) logging.debug(f"res max: {game_map.max_halite} - minimum: {minimum}") current_offset = 1 found = False pos = ship.position target = None # Search with an expanding ring while not found and current_offset <= game_map.height: # possible max search range offsets = list(range(-current_offset, current_offset + 1)) offsets = [(x, y) for x in offsets for y in offsets] for offset in offsets: # # print(f"offset: {offset}") cell_pos = game_map.normalize(Position(pos.x - offset[0], pos.y - offset[1])) # print(f"cell_pos: {cell_pos}") cell = game_map[cell_pos] if not target and cell.halite_amount >= minimum: target = cell_pos found = True elif cell.halite_amount >= minimum and game_map.calculate_distance(ship.position, cell_pos) < game_map.calculate_distance(ship.position, target): target = cell_pos current_offset += 1 if not target: target = ship.position logging.info("target not found!") else: logging.info(f"target found!: {target}") return target def weighted_cleanup(game_map, ship, shipyard): minimum = 30 current_offset = 1 running_sum = 0 found = False targets = [] # Search with an expanding ring while not found and current_offset <= game_map.height: # possible max search range offsets = list(range(-current_offset, current_offset + 1)) offsets = [(x, y) for x in offsets for y in offsets] for offset in offsets: cell_pos = game_map.normalize(shipyard.position + Position(*offset)) # print(f"cell_pos: {cell_pos}") cell = game_map[cell_pos] if cell.halite_amount >= minimum and not cell.is_occupied: targets.append(cell_pos) if len(targets) > 3: found = True current_offset += 1 best_target = (None, INF) # For now best => closest for target in targets: distance = game_map.calculate_distance(ship.position, target) if distance < best_target[1]: best_target = (target, distance) return best_target[0] def dijkstra_a_to_b(game_map, source, target, offset=1): if source == target: return Direction.Still dx = abs(target.x - source.x) dy = abs(target.y - source.y) xdir = 1 if target.x > source.x else -1 ydir = 1 if target.y > source.y else -1 # Valid x and y positions in range if xdir == 1: rx = range(source.x - offset, target.x + offset + 1) else: rx = range(target.x - offset, source.x + offset + 1) if ydir == 1: ry = range(source.y - offset, target.y + offset + 1) else: ry = range(target.y - offset, source.y + offset + 1) # initialize distances distance_map = { source: { "distance": 0, "previous": None} } queue = [source] for offset_x in range(-offset, dx + offset + 1): for offset_y in range(-offset, dy + offset + 1): if offset_x == 0 and offset_y == 0: continue x = source.x + offset_x * xdir y = source.y + offset_y * ydir position = Position(x, y) distance_map[position] = { "distance": INF * 32, "previouis": None } queue.append(position) # Dijkstra # Calculating the cheapest path to each respective node in the grid while len(queue): # Take the item in the queue with the lowest distance and remove it from the queue node = sorted(queue, key=lambda position: distance_map[position]["distance"])[0] queue.pop(queue.index(node)) # For each neighbouring position for pos in node.get_surrounding_cardinals(): pos = game_map.normalize(pos) # Ensure position is in normalized coordinates # validate cell is within search bounds if pos.x in rx and pos.y in ry: neighbour = game_map[pos] # Calculate the cost of traveling to that neighbour if game_map[pos].is_occupied: neighbour_weight = INF else: neighbour_weight = neighbour.halite_amount # neighbour_weight = neighbour.halite_amount if not game_map[pos].is_occupied else INF # logging.debug(f"Neighbour: {pos} | {neighbour_weight} | occupied: {game_map[pos].is_occupied} | ship id {game_map[pos].ship}") # Calculate the distance of the path to the neighbour dist_to_neighbour = distance_map[node]["distance"] + neighbour_weight # If path is shorter than any other current path to that neighbour, then we update the path to that node if dist_to_neighbour < distance_map[pos]["distance"]: distance_map[pos]["distance"] = dist_to_neighbour distance_map[pos]["previous"] = node # Traverse from the target to the source by following all "previous" nodes that we calculated path_node = target while path_node != source: prev_path_node = distance_map[path_node]["previous"] if prev_path_node == source: for d in Direction.get_all_cardinals(): #.values(): if game_map.normalize(source.directional_offset(d)) == path_node: return d path_node = prev_path_node def safe_greedy_move(game_map, source, target): safe_moves = [] # Evaluate if standing still is safe if game_map.position_is_safe(source): safe_moves.append(Direction.Still) # Evaluate if any of the cardinal directions are safe for direction in Direction.get_all_cardinals(): new_position = game_map.normalize(source.directional_offset(direction)) if game_map.position_is_safe(new_position): safe_moves.append(direction) # The scenario where we are fucked if not safe_moves: return Direction.Still # Else we greedily check which move brings us closest to our target closest_to_target = (None, INF) for direction in safe_moves: position = game_map.normalize(source.directional_offset(direction)) distance = game_map.calculate_distance(position, target) if distance < closest_to_target[1]: closest_to_target = (direction, distance) # Returns direction return closest_to_target[0] """ <<<Game Loop>>> """ while True: # This loop handles each turn of the game. The game object changes every turn, and you refresh that state by # running update_frame(). game.update_frame() me = game.me game_map = game.game_map # A command queue holds all the commands you will run this turn. You build this list up and submit it at the # end of the turn. ship_queue = me.get_ships() command_queue = [] new_ship_positions = [] ship_position_map = [] # (ship, target) # First we check if we are at the end of the game and the ship needs to start coming home ship_queue_tmp = [] for ship in ship_queue: if ship.should_turn_in(game_map, game.turn_number) and ship.can_move(game_map[ship]): target = me.shipyard.position new_dir = dijkstra_a_to_b(game_map, ship.position, target) # Final check if the move is actually safe as Dijkstra can result in an unsafe move when 1 unit away from target new_position = game_map.normalize(ship.position.directional_offset(new_dir)) if not game_map.position_is_safe(new_position): new_dir = safe_greedy_move(game_map, ship.position, target) new_position = game_map.normalize(ship.position.directional_offset(new_dir)) # Already move the ship in the game map to help prevent collisions logging.debug(f"SHIP {ship.id} WANTS TO MOVE: {ship.position} - {new_dir}") game_map[ship].mark_safe() game_map[new_position].mark_unsafe(ship) # And finally add the command to the queue command_queue.append(ship.move(new_dir)) else: ship_queue_tmp.append(ship) ship_queue = ship_queue_tmp # Evaluated all the ships that can't move ship_queue_tmp = [] for ship in ship_queue: current_cell = game_map[ship] if not ship.can_move(current_cell): new_dir = Direction.Still command_queue.append(ship.move(new_dir)) else: ship_queue_tmp.append(ship) ship_queue = ship_queue_tmp # Then evaluate all ships that don't want to move and are in a safe spot ship_queue_tmp = [] for ship in ship_queue: current_cell = game_map[ship] logging.debug(f"SHOULD MOVE: {not ship.should_move(current_cell)} | {game_map.position_is_safe(current_cell)}") if not ship.should_move(current_cell) and not game_map.enemy_is_close(current_cell): new_dir = Direction.Still logging.debug(f"SHIP {ship.id} WANTS TO STAY: {ship.position} - {new_dir}") command_queue.append(ship.move(new_dir)) else: ship_queue_tmp.append(ship) ship_queue = ship_queue_tmp # Finally start resolving all ships that CAN move, and want or should move for ship in ship_queue: current_cell = game_map[ship] if ship.halite_amount >= FILL_RATIO * constants.MAX_HALITE: # Case: We need to turn in our halite target = me.shipyard.position else: # Case: Gather more resources target = weighted_cleanup(game_map, ship, me.shipyard) new_dir = dijkstra_a_to_b(game_map, ship.position, target) # Final check if the move is actually safe as Dijkstra can result in an unsafe move when 1 unit away from target new_position = game_map.normalize(ship.position.directional_offset(new_dir)) if not game_map.position_is_safe(new_position): new_dir = safe_greedy_move(game_map, ship.position, target) new_position = game_map.normalize(ship.position.directional_offset(new_dir)) # Already move the ship in the game map to help prevent collisions logging.debug(f"SHIP {ship.id} WANTS TO MOVE: {ship.position} - {new_dir}") game_map[ship].mark_safe() game_map[new_position].mark_unsafe(ship) # And finally add the command to the queue command_queue.append(ship.move(new_dir)) # Spawning a ship if game.turn_number <= constants.MAX_TURNS - 150 and me.halite_amount >= constants.SHIP_COST and not game_map[me.shipyard].is_occupied and game_map.total_halite / max(game_map.ship_count, 1) > 4000 and game_map.ship_count < 50: command_queue.append(me.shipyard.spawn()) # if game.turn_number > 10: # time.sleep(2) # Sending moves to end the turn game.end_turn(command_queue)
d5417d605f2204782ab1b6dd38bcb7262adc6354
99ae6372a5a5518543f9863a33ab21218a3a0768
/tests/test-all.py
31554599186717cf11032773e371545ac5143bde
[]
no_license
DANS-KNAW/parthenos-widget
7b3578a37402069e99da8eaf0d8cf52f32c12231
b549b76b7f16f1338cd80c6af7952963b3a8dd63
refs/heads/master
2022-07-17T23:07:25.238193
2021-11-03T08:36:55
2021-11-03T08:36:55
84,067,894
0
3
null
2021-11-03T08:36:55
2017-03-06T11:56:28
JavaScript
UTF-8
Python
false
false
684
py
#!/usr/bin/python from __future__ import print_function, absolute_import import sys import os sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '../'))) #import pytest from tests.config import MATRIX from parthenos.core.datatojson import * import uuid import httpretty import requests import pandas as pd import simplejson import json if __name__ == '__main__': print ('%s' % contents(0)) print ('%s' % gettopics("SOCIAL SCIENCE")) print ('%s' % gettopics("LANGUAGE STUDIES")) # print ('%s' % policies(4)) # (df, fairtest) = fair(4) # print ('%s' % fairtest) # x = fairfilter(df, fairtest, 'fair') # print ('%s' % x.to_html())
c00bff8a97f2f0cd605b081aab99214bd019e9fd
fe42f1c1eefb2069eda1dd98821ba6049fb4f01a
/ML/P3DataAnalysisPandas/P4Combining.py
30cbbcdbd467feed161647f9dcf1775382909e7d
[]
no_license
hvn2001/LearnPython
c1b13f6685e6e62b3c9b612e88e624925f43eb6e
323595df8d69e84873f74819a36b5eb36b017773
refs/heads/master
2021-03-30T06:26:55.110963
2020-04-10T16:13:36
2020-04-10T16:13:36
248,025,126
0
0
null
null
null
null
UTF-8
Python
false
false
1,906
py
import pandas as pd print('------A. Concatenation------') df1 = pd.DataFrame({'c1': [1, 2], 'c2': [3, 4]}, index=['r1', 'r2']) df2 = pd.DataFrame({'c1': [5, 6], 'c2': [7, 8]}, index=['r1', 'r2']) df3 = pd.DataFrame({'c1': [5, 6], 'c2': [7, 8]}) concat = pd.concat([df1, df2], axis=1) print('{}\n'.format(concat)) ''' c1 c2 c1 c2 r1 1 3 5 7 r2 2 4 6 8 ''' concat = pd.concat([df2, df1, df3]) print('{}\n'.format(concat)) ''' c1 c2 r1 5 7 r2 6 8 r1 1 3 r2 2 4 0 5 7 1 6 8 ''' concat = pd.concat([df1, df3], axis=1) print('{}\n'.format(concat)) ''' c1 c2 c1 c2 r1 1.0 3.0 NaN NaN r2 2.0 4.0 NaN NaN 0 NaN NaN 5.0 7.0 1 NaN NaN 6.0 8.0 ''' print('------B. Merging------') mlb_df1 = pd.DataFrame({'name': ['john doe', 'al smith', 'sam black', 'john doe'], 'pos': ['1B', 'C', 'P', '2B'], 'year': [2000, 2004, 2008, 2003]}) mlb_df2 = pd.DataFrame({'name': ['john doe', 'al smith', 'jack lee'], 'year': [2000, 2004, 2012], 'rbi': [80, 100, 12]}) print('{}\n'.format(mlb_df1)) ''' name pos year 0 john doe 1B 2000 1 al smith C 2004 2 sam black P 2008 3 john doe 2B 2003 ''' print('{}\n'.format(mlb_df2)) ''' name rbi year 0 john doe 80 2000 1 al smith 100 2004 2 jack lee 12 2012 ''' mlb_merged = pd.merge(mlb_df1, mlb_df2) print('{}\n'.format(mlb_merged)) ''' name pos year rbi 0 john doe 1B 2000 80 1 al smith C 2004 100 ''' print('------Ex: ------') def concat_rows(df1, df2): row_concat = pd.concat([df1, df2]) return row_concat def concat_cols(df1, df2): col_concat = pd.concat([df1, df2], axis=1) return col_concat def merge_dfs(df1, df2): merged_df = pd.merge(df1, df2) return merged_df
40c1b8c3ff03082a68e3d906964553c4da5afa44
0985dfc7b53f6bb80a6ee9c7b9cad4d7c31d2013
/dform/admin.py
bcef11df218893cdb425e1167f9e615755c14996
[ "MIT" ]
permissive
yonghuming/django-dform
6f237020573f5e5a5e1d8ed1a58ed5b944f31aef
3a8cb2ee61b5ea4719e6fc3bfb9ede66f468831e
refs/heads/master
2021-01-17T06:30:52.467715
2015-10-21T19:22:03
2015-10-21T19:22:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,128
py
from django.contrib import admin from django.core.urlresolvers import reverse, NoReverseMatch from awl.admintools import make_admin_obj_mixin from awl.rankedmodel.admintools import admin_link_move_up, admin_link_move_down from .fields import FIELD_CHOICES_DICT from .models import (Survey, SurveyVersion, Question, QuestionOrder, Answer, AnswerGroup) # ============================================================================ def _questions_link(version, show_reorder=True): num_q = Question.objects.filter(survey_versions=version).count() if num_q == 0: return '' plural = '' if num_q > 1: plural = 's' show = reverse('admin:dform_question_changelist') reorder = reverse('admin:dform_questionorder_changelist') urls = [ '<a href="%s?survey_versions__id=%s">%s Question%s</a>' % (show, version.id, num_q, plural) ] if show_reorder: urls.append( '<a href="%s?survey_version__id=%s">Reorder</a>' % (reorder, version.id) ) return '&nbsp;|&nbsp'.join(urls) def _answers_link(version): num_a = Answer.objects.filter(answer_group__survey_version=version).count() if num_a == 0: return '' plural = '' if num_a > 1: plural = 's' link = reverse('admin:dform_answer_changelist') url = '<a href="%s?survey_version__id=%s">%s Answer%s</a>' % (link, version.id, num_a, plural) return url # ============================================================================ # Surveys # ============================================================================ @admin.register(Survey) class SurveyAdmin(admin.ModelAdmin): list_display = ('id', 'name', 'version_num', 'show_actions', 'show_versions', 'show_questions', 'show_answers') def version_num(self, obj): return '%s' % obj.latest_version.version_num version_num.short_description = 'Latest Version' def show_actions(self, obj): actions = [] if obj.latest_version.is_editable(): url = reverse('dform-edit-survey', args=(obj.latest_version.id,)) actions.append('<a href="%s">Edit Survey</a>' % url) else: url = reverse('dform-new-version', args=(obj.id,)) actions.append('<a href="%s">New Version</a>' % url) try: url = reverse('dform-sample-survey', args=(obj.latest_version.id,)) actions.append('<a href="%s">View Sample</a>' % url) except NoReverseMatch: # sample-survey view isn't guaranteed to be there pass try: url = reverse('dform-survey', args=(obj.latest_version.id,)) actions.append('<a href="%s">Answer Survey</a>' % url) except NoReverseMatch: # survey view isn't guaranteed to be there pass return ', '.join(actions) show_actions.short_description = 'Actions' show_actions.allow_tags = True def show_versions(self, obj): num_v = SurveyVersion.objects.filter(survey=obj).count() link = reverse('admin:dform_surveyversion_changelist') url = '<a href="%s?survey__id=%s">%s Versions</a>' % (link, obj.id, num_v) return url show_versions.short_description = 'Versions' show_versions.allow_tags = True def show_questions(self, obj): return _questions_link(obj.latest_version) show_questions.short_description = 'Questions' show_questions.allow_tags = True def show_answers(self, obj): return _answers_link(obj.latest_version) show_answers.short_description = 'Answers' show_answers.allow_tags = True mixin = make_admin_obj_mixin('SurveyVersionMixin') mixin.add_obj_link('show_survey', 'survey') @admin.register(SurveyVersion) class SurveyVersionAdmin(admin.ModelAdmin, mixin): list_display = ('id', 'show_survey', 'version_num', 'show_actions', 'show_questions', 'show_answers') def show_actions(self, obj): actions = [] if obj.is_editable(): url = reverse('dform-edit-survey', args=(obj.id,)) actions.append('<a href="%s">Edit Survey</a>' % url) try: url = reverse('dform-sample-survey', args=(obj.id,)) actions.append('<a href="%s">View Sample</a>' % url) except NoReverseMatch: # view sample isn't guaranteed to be there pass try: url = reverse('dform-survey', args=(obj.id,)) actions.append('<a href="%s">Answer Survey</a>' % url) except NoReverseMatch: # survey view isn't guaranteed to be there pass return ', '.join(actions) show_actions.short_description = 'Actions' show_actions.allow_tags = True def show_questions(self, obj): return _questions_link(obj) show_questions.short_description = 'Questions' show_questions.allow_tags = True def show_answers(self, obj): return _answers_link(obj) show_answers.short_description = 'Answers' show_answers.allow_tags = True # ============================================================================ # Questions # ============================================================================ @admin.register(Question) class QuestionAdmin(admin.ModelAdmin): list_display = ('id', 'text', 'field_key', 'required', 'show_reorder', 'show_answers') def show_reorder(self, obj): link = reverse('admin:dform_questionorder_changelist') url = '<a href="%s?survey_version__id=%s">Reorder</a>' % (link, obj.survey.latest_version.id) return url show_reorder.short_description = 'Reorder' show_reorder.allow_tags = True def show_answers(self, obj): num_a = Answer.objects.filter(question=obj).count() if num_a == 0: return '' plural = '' if num_a > 1: plural = 's' link = reverse('admin:dform_answer_changelist') url = '<a href="%s?question__id=%s">%s Answer%s</a>' % (link, obj.id, num_a, plural) return url show_answers.short_description = 'Answers' show_answers.allow_tags = True @admin.register(QuestionOrder) class QuestionOrderAdmin(admin.ModelAdmin): list_display = ('id', 'survey_version', 'show_text', 'move_up', 'move_down') def show_text(self, obj): return obj.question.text show_text.short_description = 'Question Text' def move_up(self, obj): return admin_link_move_up(obj, 'Up') move_up.allow_tags = True move_up.short_description = 'Move Up' def move_down(self, obj): return admin_link_move_down(obj, 'Down') move_down.allow_tags = True move_down.short_description = 'Move Down' # ============================================================================ # Answers # ============================================================================ mixin = make_admin_obj_mixin('AnswerMixin') mixin.add_obj_link('show_group', 'answer_group', display='AnswerGroup.id={{obj.id}}') mixin.add_obj_link('show_question', 'question', display='Question.id={{obj.id}}') @admin.register(Answer) class AnswerAdmin(admin.ModelAdmin, mixin): list_display = ('id', 'show_group', 'show_question', 'show_text', 'show_field_key', 'value') def show_text(self, obj): return obj.question.text show_text.short_description = 'Question Text' def show_field_key(self, obj): return FIELD_CHOICES_DICT[obj.question.field_key] show_field_key.short_description = 'Field Key' mixin = make_admin_obj_mixin('AnswerGroupMixin') mixin.add_obj_link('show_data', 'group_data') mixin.add_obj_link('show_version', 'survey_version', display='SurveyVersion.id={{obj.id}}') @admin.register(AnswerGroup) class AnswerGroupAdmin(admin.ModelAdmin, mixin): list_display = ('id', 'updated', 'show_version', 'show_data', 'show_questions', 'show_answers', 'show_actions') def show_questions(self, obj): return _questions_link(obj.survey_version, False) show_questions.short_description = 'Questions' show_questions.allow_tags = True def show_answers(self, obj): num_a = Answer.objects.filter(answer_group=obj).count() if num_a == 0: return '' plural = '' if num_a > 1: plural = 's' link = reverse('admin:dform_answer_changelist') url = '<a href="%s?answer_group__id=%s">%s Answer%s</a>' % (link, obj.id, num_a, plural) return url show_answers.short_description = 'Answers' show_answers.allow_tags = True def show_actions(self, obj): try: url = reverse('dform-survey-with-answers', args=( obj.survey_version.id, obj.id)) return '<a href="%s">Change Answers</a>' % url except NoReverseMatch: # view survey-with-answers isn't guaranteed to be there return '' show_actions.short_description = 'Actions' show_actions.allow_tags = True
b3e5a17f360ef8e8b663ce5a0ab75242da5653b7
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/synthetic/coverage-big-2633.py
5aadfd5c6ad8f97ff1c98cd44fa7abe439d9a7dd
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
13,350
py
count:int = 0 count2:int = 0 count3:int = 0 count4:int = 0 count5:int = 0 def foo(s: str) -> int: return len(s) def foo2(s: str, s2: str) -> int: return len(s) def foo3(s: str, s2: str, s3: str) -> int: return len(s) def foo4(s: str, s2: str, s3: str, s4: str) -> int: return len(s) def foo5(s: str, s2: str, s3: str, s4: str, s5: str) -> int: return len(s) class bar(object): p: bool = True def baz(self:"bar", xx: [int]) -> str: global count x:int = 0 y:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" class bar2(object): p: bool = True p2: bool = True def baz(self:"bar2", xx: [int]) -> str: global count x:int = 0 y:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz2(self:"bar2", xx: [int], xx2: [int]) -> str: global count x:int = 0 x2:int = 0 y:int = 1 y2:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" class bar3(object): p: bool = True p2: bool = True p3: bool = True def baz(self:"bar3", xx: [int]) -> str: global count x:int = 0 y:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz2(self:"bar3", xx: [int], xx2: [int]) -> str: global count x:int = 0 x2:int = 0 y:int = 1 y2:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz3(self:"bar3", xx: [int], xx2: [int], xx3: [int]) -> str: global count x:int = 0 x2:int = 0 x3:int = 0 y:int = 1 y2:int = 1 y3:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 def qux3(y: int, y2: int, y3: int) -> object: nonlocal x nonlocal x2 nonlocal x3 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" class bar4(object): p: bool = True p2: bool = True p3: bool = True p4: bool = True def baz(self:"bar4", xx: [int]) -> str: global count x:int = 0 y:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz2(self:"bar4", xx: [int], xx2: [int]) -> str: global count x:int = 0 x2:int = 0 y:int = 1 y2:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz3(self:"bar4", xx: [int], xx2: [int], xx3: [int]) -> str: global count x:int = 0 x2:int = 0 x3:int = 0 y:int = 1 y2:int = 1 y3:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 def qux3(y: int, y2: int, y3: int) -> object: nonlocal x nonlocal x2 nonlocal x3 if x > y: $ID = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz4(self:"bar4", xx: [int], xx2: [int], xx3: [int], xx4: [int]) -> str: global count x:int = 0 x2:int = 0 x3:int = 0 x4:int = 0 y:int = 1 y2:int = 1 y3:int = 1 y4:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 def qux3(y: int, y2: int, y3: int) -> object: nonlocal x nonlocal x2 nonlocal x3 if x > y: x = -1 def qux4(y: int, y2: int, y3: int, y4: int) -> object: nonlocal x nonlocal x2 nonlocal x3 nonlocal x4 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" class bar5(object): p: bool = True p2: bool = True p3: bool = True p4: bool = True p5: bool = True def baz(self:"bar5", xx: [int]) -> str: global count x:int = 0 y:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz2(self:"bar5", xx: [int], xx2: [int]) -> str: global count x:int = 0 x2:int = 0 y:int = 1 y2:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz3(self:"bar5", xx: [int], xx2: [int], xx3: [int]) -> str: global count x:int = 0 x2:int = 0 x3:int = 0 y:int = 1 y2:int = 1 y3:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 def qux3(y: int, y2: int, y3: int) -> object: nonlocal x nonlocal x2 nonlocal x3 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz4(self:"bar5", xx: [int], xx2: [int], xx3: [int], xx4: [int]) -> str: global count x:int = 0 x2:int = 0 x3:int = 0 x4:int = 0 y:int = 1 y2:int = 1 y3:int = 1 y4:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 def qux3(y: int, y2: int, y3: int) -> object: nonlocal x nonlocal x2 nonlocal x3 if x > y: x = -1 def qux4(y: int, y2: int, y3: int, y4: int) -> object: nonlocal x nonlocal x2 nonlocal x3 nonlocal x4 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz5(self:"bar5", xx: [int], xx2: [int], xx3: [int], xx4: [int], xx5: [int]) -> str: global count x:int = 0 x2:int = 0 x3:int = 0 x4:int = 0 x5:int = 0 y:int = 1 y2:int = 1 y3:int = 1 y4:int = 1 y5:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 def qux3(y: int, y2: int, y3: int) -> object: nonlocal x nonlocal x2 nonlocal x3 if x > y: x = -1 def qux4(y: int, y2: int, y3: int, y4: int) -> object: nonlocal x nonlocal x2 nonlocal x3 nonlocal x4 if x > y: x = -1 def qux5(y: int, y2: int, y3: int, y4: int, y5: int) -> object: nonlocal x nonlocal x2 nonlocal x3 nonlocal x4 nonlocal x5 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" print(bar().baz([1,2]))
25a67c4819e5f76e8597007afbef568d28dcd9f0
63c8b9227a6b3178d918769042ecb060acc557be
/symphony/cli/pyinventory/graphql/add_service_endpoint_mutation.py
4f7d20fa43ca5e0c5407290c9053e8a3f6f0fe27
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
snwfdhmp/magma
7c4898db68d2668fd39ed25f73bb9a2bc5959066
8b3ff20a2717337a83c8ef531fa773a851d2e54d
refs/heads/master
2020-12-06T09:06:25.806497
2020-01-07T18:27:09
2020-01-07T18:28:51
232,418,366
1
0
NOASSERTION
2020-01-07T21:12:28
2020-01-07T21:12:27
null
UTF-8
Python
false
false
3,003
py
#!/usr/bin/env python3 # @generated AUTOGENERATED file. Do not Change! from dataclasses import dataclass, field from datetime import datetime from enum import Enum from functools import partial from typing import Any, Callable, List, Mapping, Optional from dataclasses_json import dataclass_json from marshmallow import fields as marshmallow_fields from .datetime_utils import fromisoformat DATETIME_FIELD = field( metadata={ "dataclasses_json": { "encoder": datetime.isoformat, "decoder": fromisoformat, "mm_field": marshmallow_fields.DateTime(format="iso"), } } ) def enum_field(enum_type): def encode_enum(value): return value.value def decode_enum(t, value): return t(value) return field( metadata={ "dataclasses_json": { "encoder": encode_enum, "decoder": partial(decode_enum, enum_type), } } ) class ServiceEndpointRole(Enum): CONSUMER = "CONSUMER" PROVIDER = "PROVIDER" @dataclass_json @dataclass class AddServiceEndpointInput: id: str portId: str role: ServiceEndpointRole = enum_field(ServiceEndpointRole) @dataclass_json @dataclass class AddServiceEndpointMutation: __QUERY__ = """ mutation AddServiceEndpointMutation($input: AddServiceEndpointInput!) { addServiceEndpoint(input: $input) { id name externalId customer { id name externalId } endpoints { id port { id } role } links { id } } } """ @dataclass_json @dataclass class AddServiceEndpointMutationData: @dataclass_json @dataclass class Service: @dataclass_json @dataclass class Customer: id: str name: str externalId: Optional[str] = None @dataclass_json @dataclass class ServiceEndpoint: @dataclass_json @dataclass class EquipmentPort: id: str id: str port: EquipmentPort role: ServiceEndpointRole = enum_field(ServiceEndpointRole) @dataclass_json @dataclass class Link: id: str id: str name: str endpoints: List[ServiceEndpoint] links: List[Link] externalId: Optional[str] = None customer: Optional[Customer] = None addServiceEndpoint: Optional[Service] = None data: Optional[AddServiceEndpointMutationData] = None errors: Any = None @classmethod # fmt: off def execute(cls, client, input: AddServiceEndpointInput): # fmt: off variables = {"input": input} response_text = client.call(cls.__QUERY__, variables=variables) return cls.from_json(response_text).data
28e11970a757421df8a3c2d034a2856bde5b414f
93582aa46c835b66a2117bf24178fd80236af89d
/setup.py
e2eaee39d2b4d1cd674afe84307252167e1f9eba
[]
no_license
collective/collective.leadmedia
0fbe4e03421fcec6f026a80de80c4af28d2f218e
5fb3749861fd21859ae84686dc29f877859de45b
refs/heads/master
2023-08-24T01:19:19.470625
2019-07-23T13:30:53
2019-07-23T13:30:53
26,549,930
0
0
null
null
null
null
UTF-8
Python
false
false
1,061
py
from setuptools import setup, find_packages import os version = '0.1' setup(name='collective.leadmedia', version=version, description="Adds a slideshow to any dexterity folderish type.", long_description=open("README.rst").read(), classifiers=[ "Framework :: Plone", "Programming Language :: Python", ], keywords='Plone', author='Andre Goncalves', author_email='[email protected]', url='https://github.com/collective/collective.leadmedia', download_url='https://github.com/collective/collective.leadmedia/tarball/0.1', license='GPL', packages=find_packages(exclude=['ez_setup']), namespace_packages=['collective'], include_package_data=True, zip_safe=False, install_requires=[ 'setuptools', # -*- Extra requirements: -*- ], entry_points=""" # -*- Entry points: -*- [z3c.autoinclude.plugin] target = plone """, setup_requires=["PasteScript"], paster_plugins=["ZopeSkel"], )
326168d8de06212813ef98b555650a25305f7aab
fff561e0e4f351d85d038cf87569c23280622157
/cmsplugin_cascade/generic/cms_plugins.py
3eaaf072f99d2b3a564045fc617a550d4bb910eb
[ "MIT" ]
permissive
schacki/djangocms-cascade
9d3e9176e54c7cca619fdc6917c38b1588bc7c88
2809f701a1cfa17a53539fac4d9dadaa5ebe40b7
refs/heads/master
2021-01-20T22:02:42.959467
2015-12-23T19:31:07
2015-12-23T19:31:07
42,931,185
0
0
null
2015-09-22T12:02:53
2015-09-22T12:02:52
null
UTF-8
Python
false
false
1,881
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.forms import widgets from django.utils.html import format_html from django.utils.translation import ugettext_lazy as _ from cms.plugin_pool import plugin_pool from cmsplugin_cascade.fields import PartialFormField from cmsplugin_cascade.plugin_base import CascadePluginBase from cmsplugin_cascade.mixins import TransparentMixin class SimpleWrapperPlugin(TransparentMixin, CascadePluginBase): name = _("Simple Wrapper") parent_classes = None require_parent = False allow_children = True alien_child_classes = True TAG_CHOICES = tuple((cls, _("<{}> – Element").format(cls)) for cls in ('div', 'span', 'section', 'article',)) + (('naked', _("Naked Wrapper")),) glossary_fields = ( PartialFormField('tag_type', widgets.Select(choices=TAG_CHOICES), label=_("HTML element tag"), help_text=_('Choose a tag type for this HTML element.') ), ) @classmethod def get_identifier(cls, instance): identifier = super(SimpleWrapperPlugin, cls).get_identifier(instance) tag_name = dict(cls.TAG_CHOICES).get(instance.glossary.get('tag_type')) if tag_name: return format_html('{0}{1}', identifier, tag_name) return identifier def get_render_template(self, context, instance, placeholder): if instance.glossary.get('tag_type') == 'naked': return 'cascade/generic/naked.html' return 'cascade/generic/wrapper.html' plugin_pool.register_plugin(SimpleWrapperPlugin) class HorizontalRulePlugin(CascadePluginBase): name = _("Horizontal Rule") parent_classes = None allow_children = False tag_type = 'hr' render_template = 'cascade/generic/single.html' glossary_fields = () plugin_pool.register_plugin(HorizontalRulePlugin)
0f60ebe14d9d2799e58cc2c5c412340c48ead03d
727f1bc2205c88577b419cf0036c029b8c6f7766
/out-bin/py/google/fhir/seqex/bundle_to_seqex_test.runfiles/pypi__nose_1_3_7/nose/case.py
cd5661e50fd58f7d63994967189c34fdb7209d2c
[ "Apache-2.0" ]
permissive
rasalt/fhir
55cf78feed3596a3101b86f9e9bbf6652c6ed4ad
d49883cc4d4986e11ca66058d5a327691e6e048a
refs/heads/master
2020-04-13T00:16:54.050913
2019-01-15T14:22:15
2019-01-15T14:22:15
160,260,223
0
0
Apache-2.0
2018-12-03T22:07:01
2018-12-03T22:07:01
null
UTF-8
Python
false
false
115
py
/home/rkharwar/.cache/bazel/_bazel_rkharwar/c4bcd65252c8f8250f091ba96375f9a5/external/pypi__nose_1_3_7/nose/case.py
311b3d5d01adbf281ec2f810b8579072154079d4
a32c2ee4e6b2b1c6f8db02320c4bd50b17940af5
/modules/YiXinNotSlot/YiXinRegister3.8/YiXinRegister.py
d216ecbed0ac33026d944068a185a506a142af16
[]
no_license
wszg5/studyGit
93d670884d4cba7445c4df3a5def8085e5bf9ac0
bebfc90bc38689990c2ddf52e5a2f7a02649ea00
refs/heads/master
2020-04-05T02:55:17.367722
2018-11-07T06:01:03
2018-11-07T06:01:03
156,494,390
2
2
null
null
null
null
UTF-8
Python
false
false
9,553
py
# coding:utf-8 import colorsys import os import random import string from PIL import Image from imageCode import imageCode from slot import Slot from smsCode import smsCode from uiautomator import Device from Repo import * from zservice import ZDevice class YiXinRegister: def __init__(self): self.repo = Repo() self.type = 'yixin' def GenPassword(self, numOfNum=4, numOfLetter=4): # 选中numOfNum个数字 slcNum = [random.choice( string.digits ) for i in range( numOfNum )] # 选中numOfLetter个字母 slcLetter = [random.choice( string.lowercase ) for i in range( numOfLetter )] slcChar = slcLetter + slcNum genPwd = ''.join( [i for i in slcChar] ) return genPwd def register(self, d, z, args, password): str = d.info # 获取屏幕大小等信息 height = str["displayHeight"] width = str["displayWidth"] z.toast("开始注册") d.server.adb.cmd( "shell", "pm clear im.yixin" ).communicate( ) # 清除缓存 d.server.adb.cmd( "shell", "am start -n im.yixin/.activity.WelcomeActivity" ).communicate( ) # 拉起易信 <<<<<<< HEAD z.sleep( 10 ) ======= z.sleep( 18 ) >>>>>>> afe1e0af91f2a33f2ae5bdf0300d90ce5cc22551 z.heartbeat( ) if d( text='很抱歉,“易信”已停止运行。' ).exists: d( text='确定' ).click( ) return 'fail' if d( text='注册' ).exists: d( text='注册' ).click() z.sleep( 2 ) self.scode = smsCode(d.server.adb.device_serial()) while True: material_cate_id = args['repo_material_id'] # material_time_limit = args['material_time_limit'] nicknameLsit = self.repo.GetMaterial(material_cate_id, 0, 1) if len( nicknameLsit ) == 0: d.server.adb.cmd( "shell", "am broadcast -a com.zunyun.zime.toast --es msg \"素材库%s号仓库为空\"" % material_cate_id ).communicate( ) else: break nickname = nicknameLsit[0]['content'] while True: z.heartbeat() z.toast(u'开始获取手机号') while True: if d(resourceId='im.yixin:id/register_phone_number_edittext').exists: d(resourceId='im.yixin:id/register_phone_number_edittext').click.bottomright() number_cate_id = args['repo_number_id'] # number_time_limit = int(args['number_time_limit']) # 号码提取时间间隔 exist_numbers = self.repo.GetNumber(number_cate_id, 0, 1, 'exist') remain = 1 - len(exist_numbers) normal_numbers = self.repo.GetNumber(number_cate_id, 0, remain, 'normal') numbers = exist_numbers + normal_numbers if len(numbers) == 0: d.server.adb.cmd("shell", "am broadcast -a com.zunyun.zime.toast --es msg \"电话号码%s号仓库为空\"" % number_cate_id).communicate() else: break number = numbers[0]["number"] if d(resourceId='im.yixin:id/register_phone_number_edittext').exists: d(resourceId='im.yixin:id/register_phone_number_edittext').click() try: PhoneNumber = self.scode.GetPhoneNumber(self.scode.WECHAT_REGISTER, number) # 获取接码平台手机号码 except: PhoneNumber = None # PhoneNumber = self.scode.GetPhoneNumber(self.scode.WECHAT_REGISTER) # 获取接码平台手机号码 if PhoneNumber is None: z.toast(u'讯码查不无此号,重新获取') continue else: z.toast(u'成功获取到手机号') z.input(PhoneNumber) if not d( text='中国', resourceId='im.yixin:id/tv_register_country' ).exists: d( resourceId='im.yixin:id/tv_register_country' ).click( ) z.sleep( 1 ) while True: if d( text='中国' ).exists: d( text='中国' ).click( ) break else: d.swipe( width / 2, height * 6 / 7, width / 2, height / 7 ) if d(text='下一步').exists: d(text='下一步').click() z.sleep(8) z.heartbeat() if d(text='为了验证身份,我们将会发送短信验证码到你的手机').exists: d(resourceId='im.yixin:id/register_phone_number_edittext').click.bottomright() # 清空输入框 self.scode.defriendPhoneNumber(PhoneNumber, self.scode.WECHAT_REGISTER) continue if d(textContains='验证码短信已发送至').exists: break try: code = self.scode.GetVertifyCode(PhoneNumber, self.scode.WECHAT_REGISTER, 4) # 获取接码验证码 self.scode.defriendPhoneNumber(PhoneNumber, self.scode.WECHAT_REGISTER) except: self.scode.defriendPhoneNumber(PhoneNumber, self.scode.WECHAT_REGISTER) code = '' if code == '': z.toast( PhoneNumber + '手机号,获取不到验证码' ) return "fail" z.input(code[0]) z.input(code[1]) z.input(code[2]) z.input(code[3]) if d(resourceId='im.yixin:id/register_username_edittext').exists: d(resourceId='im.yixin:id/register_username_edittext').click() z.input(nickname) if d(resourceId='im.yixin:id/register_password_edittext').exists: d( resourceId='im.yixin:id/register_password_edittext' ).click() z.input(password) if d(text='下一步').exists: d(text='下一步').click() z.sleep(3) if d(text='进入易信',resourceId='im.yixin:id/btn_register_start').exists: d(text='进入易信',resourceId='im.yixin:id/btn_register_start').click() z.sleep(20) <<<<<<< HEAD ======= if d(text='完善信息').exists: d( index=1 ).click() z.sleep(1) ageArray = ['00后', '95后', '90后', '85后'] age = ageArray[random.randint(0, 3)] if d(text=age).exists: d(text=age).click() if d(text='开启易信').exists: d(text='开启易信').click() z.sleep( 20 ) >>>>>>> afe1e0af91f2a33f2ae5bdf0300d90ce5cc22551 # d.server.adb.cmd( "shell", "am force-stop im.yixin" ).communicate( ) # 强制停止 # d.server.adb.cmd( "shell", "am start -n im.yixin/.activity.WelcomeActivity" ).communicate( ) # 拉起易信 z.heartbeat() if d( text='立即更新' ).exists: d(text='下次再说').click() <<<<<<< HEAD if d(text='消息').exists and d(text='电话').exists and d(text='发现').exists: z.toast( u'注册成功' ) ======= if d(text='好友').exists and d(text='我').exists and d(text='发现').exists: z.toast( u'注册成功' ) d(text='我').click() >>>>>>> afe1e0af91f2a33f2ae5bdf0300d90ce5cc22551 return PhoneNumber else: z.toast( u'注册失败,重新注册' ) return "fail" def action(self, d, z, args): while True: z.toast( "正在ping网络是否通畅" ) while True: ping = d.server.adb.cmd( "shell", "ping -c 3 baidu.com" ).communicate( ) print(ping) if 'icmp_seq' and 'bytes from' and 'time' in ping[0]: <<<<<<< HEAD z.toast( "开始执行:易信注册模块 有卡槽" ) ======= z.toast( "开始执行:易信注册模块 无卡槽" ) >>>>>>> afe1e0af91f2a33f2ae5bdf0300d90ce5cc22551 break z.sleep( 2 ) z.generate_serial( "im.yixin" ) # 随机生成手机特征码 z.toast( "随机生成手机特征码" ) saveCate = args['repo_account_id'] password = self.GenPassword( ) register_result = self.register( d, z, args, password ) if register_result == "fail": continue else: # 入库 featureCodeInfo = z.get_serial( "im.yixin" ) self.repo.RegisterAccount( register_result, password, "", saveCate, "using", featureCodeInfo ) break if (args['time_delay']): z.sleep( int( args['time_delay'] ) ) def getPluginClass(): return YiXinRegister if __name__ == "__main__": import sys reload(sys) sys.setdefaultencoding("utf-8") clazz = getPluginClass() o = clazz() d = Device("HT54VSK01061") z = ZDevice("HT54VSK01061") d.server.adb.cmd("shell", "ime set com.zunyun.qk/.ZImeService").communicate() args = {"repo_account_id": "279", "repo_number_id": "123", "repo_material_id": "139", "slot_time_limit": "2", "time_delay": "3"}; o.action(d, z, args) # slot = Slot(d.server.adb.device_serial(),'yixin') # slot.clear(1) # slot.clear(2) # d.server.adb.cmd( "shell", "pm clear im.yixin" ).communicate( ) # 清除缓存 # slot.restore( 1 ) # d.server.adb.cmd( "shell", "am start -n im.yixin/.activity.WelcomeActivity" ).communicate() # 拉起易信
d1961e74a2e79af96908d797e62f8c02b98f3feb
6e68ef0a53ce48da79b4906d85fc9785deee4ca5
/Reverse/urls.py
393afb2306b734c2dd1c0ad59846b0a9bf76a76c
[]
no_license
shubhamkharose/CODEDAEMON
e3ed8050b5c43ec146c6d253d06121fc37cdb2d4
6df7af35c51f5f54b2e2167e3d64d163c9a688f9
refs/heads/master
2021-04-06T00:58:01.515828
2018-03-15T11:04:31
2018-03-15T11:04:31
125,353,062
1
4
null
2019-10-28T04:03:58
2018-03-15T10:48:53
JavaScript
UTF-8
Python
false
false
930
py
"""website URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url from . import views app_name = 'Reverse' ''' app_name is added bcoz name of ''' urlpatterns = [ url (r'^check/(?P<problem_name>[0-9A-Za-z_]+)/$',views.check,name='check'), url (r'^(?P<problem_name>[0-9A-Za-z_]+)/$',views.index,name='index'), ]
67175736189e77eb4d95c43ea91bc66748416e04
8a55b9000920b75f937073c043249090c13b04b1
/mlcomp/utils/config.py
b036f3030ec955ff17b4b4b841ebe710cec54587
[ "MIT" ]
permissive
jingmouren/mlcomp
209f43296325387447549d1d206ffaeab5739d8e
3fd251429be3892903ab6b3361bcd69c6ea9eeff
refs/heads/master
2020-07-10T04:31:26.928425
2019-08-22T10:07:07
2019-08-22T10:07:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,573
py
from collections import defaultdict from typing import List import os import json import albumentations as A from mlcomp import DATA_FOLDER from mlcomp.utils.io import yaml_load from mlcomp.utils.misc import dict_flatten, dict_unflatten class Config(dict): @property def data_folder(self): return os.path.join(DATA_FOLDER, self['info']['project']) @staticmethod def from_json(config: str): return Config(json.loads(config)) @staticmethod def from_yaml(config: str): return Config(yaml_load(config)) def merge_dicts_smart(target: dict, source: dict, sep='/'): target_flatten = dict_flatten(target) mapping = defaultdict(list) for k, v in target_flatten.items(): parts = k.split(sep) for i in range(len(parts) - 1, -1, -1): key = sep.join(parts[i:]) mapping[key].append(k) for k, v in source.items(): assert len(mapping[k]) == 1, f'ambiguous mapping for {k}' key = mapping[k][0] target_flatten[key] = v return dict_unflatten(target_flatten) def parse_albu(configs: List[dict]): res = [] for config in configs: assert 'name' in config, f'name is required in {config}' config = config.copy() name = config.pop('name') if name == 'Compose': items = config.pop('items') aug = A.Compose(parse_albu(items), **config) else: aug = getattr(A, name)(**config) res.append(aug) return res __all__ = ['Config', 'merge_dicts_smart', 'parse_albu']
b75bd97af0d87c71caf404ca4aed646d76e18dca
2ef27655cd1deb9de4074249e559269abd334fa1
/6 kyu/Decipher Student Messages.py
cbe021ef697c6a0afe2e18953a1c584352271249
[]
no_license
sieczkah/Codewars_KATA
c7606b9a88693e2550af0ef55808f34c00e77b73
68d5d4a133a015e49bcdbff29ee45e3baefcd652
refs/heads/main
2023-05-06T03:59:01.403765
2021-05-24T19:36:34
2021-05-24T19:36:34
334,698,441
1
0
null
null
null
null
UTF-8
Python
false
false
354
py
"""https://www.codewars.com/kata/5a1a144f8ba914bbe800003f/train/python""" def decipher_message(message): lng = int(len(message) ** 0.5) # the coding square is always perfect so we need to know the lenght words = [message[i::lng] for i in range(lng)] # in 5x5 we take every 5th letter in 6x6 we take every 6th... return ''.join(words)
959ee0746b95977a7b889b6b12e476719844568f
7516dfcd3d2e012d98fa3aec45aafe0e2c64ffe1
/py/utest/utest_fsoci.py
d3c0f7ac8809b0c7282c29600f364a91671f08a5
[]
no_license
ReiMatsuzaki/naewdy2
64e1c06a7eca228811c83e49eed57c9502ba1c2e
10f0110417b6d2699a688c64cdf39df0ef6d06c2
refs/heads/master
2021-03-16T10:12:02.856923
2018-03-15T03:30:00
2018-03-15T03:30:00
115,374,229
0
0
null
null
null
null
UTF-8
Python
false
false
910
py
import unittest from numpy import sqrt from naewdy2.fsoci import * class TestFsoci(unittest.TestCase): def test_sign_ai(self): self.assertAlmostEqual(0, sign_ai([1,2,3], 4)) self.assertAlmostEqual(1, sign_ai([1,2,3], 3)) self.assertAlmostEqual(-1, sign_ai([1,2,3], 2)) self.assertAlmostEqual(1, sign_ai([1,2,3], 1)) def test_aiaj(self): self.assertAlmostEqual(1, aiaj([1,2,3], 1, 1, [1,2,3])) self.assertAlmostEqual(0, aiaj([1,2,3], 4, 1, [1,2,3])) self.assertAlmostEqual(1, aiaj([1,2,4], 4, 3, [1,2,3])) self.assertAlmostEqual(-1, aiaj([1,3,4], 4, 2, [1,2,3])) def test_eij(self): self.assertAlmostEqual(sqrt(2.0), eij([1,2,3], [1,2,3], 1, 1, [1,2,3], [1,2,3])) if __name__ == '__main__': unittest.main()
c6887a8ffe4aaa0df0666ed9ab5b8c601c225868
941ace80571b53f53ab4e1f44d7b3ee9300e6a84
/chapter02/lxml_example.py
3bf1a23c01ccdd4989a11da724357915b61829e3
[ "MIT" ]
permissive
qigezai/python-scrap
81d3855caba095cab36f204a6b74c55f43cb7f15
3a9ad37a94008a8071b84e64d90c46f59580cca0
refs/heads/master
2021-10-10T06:26:18.023662
2019-01-07T14:46:19
2019-01-07T14:46:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
443
py
#!/usr/bin/python2.7 # -*- coding:utf-8 -*- # Author: NetworkRanger # Date: 2019/1/5 下午4:50 import urllib2 import lxml.html def scrape(html): tree = lxml.html.fromstring(html) td = tree.cssselect('tr#places_neighbours__row > td.w2p_fw')[0] area = td.text_content() return area if __name__ == '__main__': html = urllib2.urlopen('http://example.webscraping.com/view/United-Kingdom-239').read() print scrape(html)
10c3a4d5e3d2f35da492858f8236fd8081029116
3d19e1a316de4d6d96471c64332fff7acfaf1308
/Users/R/robertionita/bookyfy.py
9069f400e7f3e52096364d8732181bcdb8bb1ad9
[]
no_license
BerilBBJ/scraperwiki-scraper-vault
4e98837ac3b1cc3a3edb01b8954ed00f341c8fcc
65ea6a943cc348a9caf3782b900b36446f7e137d
refs/heads/master
2021-12-02T23:55:58.481210
2013-09-30T17:02:59
2013-09-30T17:02:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,311
py
# bestsellers from the kindle book store import scraperwiki import lxml.html import time import re for x in range(1,6): html = scraperwiki.scrape("http://www.amazon.com/Best-Sellers-Kindle-Store-eBooks/zgbs/digital-text/154606011/ref=zg_bs_154606011_pg_" + str(x) + "?_encoding=UTF8&pg=" + str(x)) root = lxml.html.fromstring(html) pos = 0 for el in root.cssselect("div.zg_itemImmersion"): title = el.cssselect("div.zg_title a")[0].text_content() link = el.cssselect("div.zg_title a")[0].attrib['href'].rstrip('\n') # Strip newline characters, funky shit happens if you don't #rank = el.cssselect("span.zg_rankNumber")[0].text_content() price = el.cssselect("strong.price")[0].text_content() #release = el.cssselect("div.zg_releaseDate")[0].text_content() author = el.cssselect("div.zg_byline")[0].text_content() days_in_list = el.cssselect("td.zg_daysInList")[0].text_content() pos += 1 booklink = scraperwiki.scrape(link) bookpage = lxml.html.fromstring(booklink) def get_rank(bookpage): ## For each book detail page, select the body element for scraping wizardy for el in bookpage.cssselect("body"): ## Scraping rank rank = el.cssselect("li#SalesRank b")[0].tail ## Extract rank number from book page using regex re1='.*?' # Non-greedy match on filler re2='(\\d+)' # Integer Number 1 rg = re.compile(re1+re2,re.IGNORECASE|re.DOTALL) m = rg.search(rank) if m: rank=m.group(1) #print "("+int1+")"+"\n" print "Rank of book:" print rank #print lxml.html.tostring(rank) return rank rank = get_rank(bookpage) print rank record = {"Title" : title, "Author" : author, "Link" : link, "Ranking" : get_rank(bookpage), "Price" : price, "sdate" : time.strftime( "%Y-%m-%d" ) } scraperwiki.sqlite.save(unique_keys=["sdate"], data=record)
dbddf5f34bf33ff7cb4facd928b2c338fa2e36bc
9e988c0dfbea15cd23a3de860cb0c88c3dcdbd97
/sdBs/AllRun/galex_j20204+0704/sdB_GALEX_J20204+0704_lc.py
9e2b035b6d7b472d8473d414942cee17af805004
[]
no_license
tboudreaux/SummerSTScICode
73b2e5839b10c0bf733808f4316d34be91c5a3bd
4dd1ffbb09e0a599257d21872f9d62b5420028b0
refs/heads/master
2021-01-20T18:07:44.723496
2016-08-08T16:49:53
2016-08-08T16:49:53
65,221,159
0
0
null
null
null
null
UTF-8
Python
false
false
355
py
from gPhoton.gAperture import gAperture def main(): gAperture(band="NUV", skypos=[305.1135,7.070683], stepsz=30., csvfile="/data2/fleming/GPHOTON_OUTPU/LIGHTCURVES/sdBs/sdB_GALEX_J20204+0704 /sdB_GALEX_J20204+0704_lc.csv", maxgap=1000., overwrite=True, radius=0.00555556, annulus=[0.005972227,0.0103888972], verbose=3) if __name__ == "__main__": main()
808ee195b759a16cb41071c38fd23df333d355a7
c25b4125b76654452fc2d5cc2f0f7a47643df177
/setup.py
bfee8ef032e3226e132a395cb98d6a4c1d1398ae
[ "MIT" ]
permissive
dfjsdkfj/grparks
416b7fdd68a533573c5f4bb53dd7bf748a80c221
365717804fafb27c6e3d65322b6fd6b2a9315aa7
refs/heads/master
2020-12-24T09:02:01.982187
2016-02-02T20:40:06
2016-02-02T20:40:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
989
py
#!/usr/bin/env python """ Setup script for ParkFinder. """ import setuptools from parks import __project__, __version__ import os if os.path.exists('README.rst'): README = open('README.rst').read() else: README = "" # a placeholder, readme is generated on release CHANGES = open('CHANGES.md').read() setuptools.setup( name=__project__, version=__version__, description="Find and validate park data on OpenStreetMap.", url='https://github.com/friendlycode/gr-parks', author='Jace Browning', author_email='[email protected]', packages=setuptools.find_packages(), entry_points={'console_scripts': []}, long_description=(README + '\n' + CHANGES), license='MIT', classifiers=[ 'Development Status :: 1 - Planning', 'Natural Language :: English', 'Operating System :: OS Independent', 'Programming Language :: Python :: 3.4', ], install_requires=open('requirements.txt').readlines(), )
0f9135810627817d11f44817e880b6272d23f56a
3b50605ffe45c412ee33de1ad0cadce2c5a25ca2
/python/paddle/fluid/tests/unittests/test_parallel_executor_inference_feed_partial_data.py
bd5b2c77983b93933e91520ae3ae0520e160ed9f
[ "Apache-2.0" ]
permissive
Superjomn/Paddle
f5f4072cf75ac9ecb0ff528876ee264b14bbf8d1
7a0b0dab8e58b6a3b28b3b82c43d55c9bd3d4188
refs/heads/develop
2023-02-04T20:27:54.244843
2023-01-26T15:31:14
2023-01-26T15:31:14
66,896,049
4
1
Apache-2.0
2023-04-14T02:29:52
2016-08-30T01:45:54
C++
UTF-8
Python
false
false
8,965
py
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle import paddle.fluid as fluid import paddle.nn.functional as F class TestInferencePartialFeed(unittest.TestCase): def setUp(self): self.iterations = 10 self.size = 10 def run_network(self, places, use_split, has_persistable): startup_prog = fluid.Program() main_prog = fluid.Program() with fluid.program_guard(main_prog, startup_prog): x = fluid.data(name='x', shape=[None, self.size], dtype='float32') y = fluid.data(name='y', shape=[None, self.size], dtype='float32') if has_persistable: lr = fluid.data(name='lr', shape=[1], dtype='float32') lr.persistable = True else: lr = fluid.data(name='lr', shape=[None], dtype='float32') relu_x = F.relu(x) relu_y = F.relu(y) relu_lr = F.relu(lr) exe = fluid.Executor(places[0]) exe.run(startup_prog) prog = fluid.CompiledProgram(main_prog).with_data_parallel( places=places ) gen_random = lambda shape: np.random.uniform( low=-1.0, high=1.0, size=shape ).astype('float32') assert_result = lambda feed, result: np.testing.assert_array_equal( np.maximum(0, feed), result ) def assert_merged_unmerged(merged, unmerged): unmerged = np.concatenate(unmerged, axis=0) np.testing.assert_array_equal(merged, unmerged) def feed_split_test(): for place_num in range(1, len(places) * 3): x_np = gen_random([place_num, self.size]) y_np = gen_random([place_num, self.size]) if not lr.persistable or place_num <= len(places): lr_np = gen_random([place_num]) else: lr_np = gen_random([1]) feed = {x.name: x_np, y.name: y_np, lr.name: lr_np} fetch_list = [relu_x, relu_y, relu_lr] relu_x_np, relu_y_np, relu_lr_np = exe.run( prog, feed=feed, fetch_list=fetch_list, return_merged=True ) ( relu_x_np_unmerged, relu_y_np_unmerged, relu_lr_np_unmerged, ) = exe.run( prog, feed=feed, fetch_list=fetch_list, return_merged=False ) assert_merged_unmerged(relu_x_np, relu_x_np_unmerged) assert_merged_unmerged(relu_y_np, relu_y_np_unmerged) assert_merged_unmerged(relu_lr_np, relu_lr_np_unmerged) assert_result(x_np, relu_x_np) assert_result(y_np, relu_y_np) if not lr.persistable or place_num <= len(places): assert_result(lr_np, relu_lr_np) else: expected_relu_lr_np = max(lr_np[0], 0) self.assertTrue(np.all(expected_relu_lr_np == relu_lr_np)) def feed_list_test(): for place_num in range(1, len(places) + 1): x_np_list = [] y_np_list = [] lr_np_list = [] feed_list = [] for _ in range(place_num): x_np = gen_random([1, self.size]) y_np = gen_random([1, self.size]) lr_np = gen_random([1]) x_np_list.append(x_np) y_np_list.append(y_np) lr_np_list.append(lr_np) feed_list.append( {x.name: x_np, y.name: y_np, lr.name: lr_np} ) fetch_list = [relu_x, relu_y, relu_lr] relu_x_np, relu_y_np, relu_lr_np = exe.run( prog, feed=feed_list, fetch_list=fetch_list, return_merged=True, ) ( relu_x_np_unmerged, relu_y_np_unmerged, relu_lr_np_unmerged, ) = exe.run( prog, feed=feed_list, fetch_list=fetch_list, return_merged=False, ) assert_merged_unmerged(relu_x_np, relu_x_np_unmerged) assert_merged_unmerged(relu_y_np, relu_y_np_unmerged) assert_merged_unmerged(relu_lr_np, relu_lr_np_unmerged) x_np = np.concatenate(x_np_list) y_np = np.concatenate(y_np_list) lr_np = np.concatenate(lr_np_list) assert_result(x_np, relu_x_np) assert_result(y_np, relu_y_np) assert_result(lr_np, relu_lr_np) for _ in range(self.iterations): if use_split: feed_split_test() else: feed_list_test() def test_main(self): places = [fluid.cpu_places(4)] if fluid.is_compiled_with_cuda(): places.append(fluid.cuda_places()) for p in places: for has_persistable in [False, True]: for use_split in [False, True]: self.run_network( p, use_split=use_split, has_persistable=has_persistable ) class TestInferencePartialFeedUsingDataLoader(unittest.TestCase): def setUp(self): self.epoch_num = 3 self.batch_num = 101 # a prime number self.batch_size = 32 def create_reader(self): def __impl__(): for _ in range(self.batch_num): yield np.random.random([self.batch_size, 1]).astype('float32'), return __impl__ def run_network(self, iterable, use_cuda, drop_last): x = fluid.data(shape=[None, 1], name='x', dtype='float32') places = fluid.cuda_places() if use_cuda else fluid.cpu_places(4) loader = fluid.io.DataLoader.from_generator( feed_list=[x], capacity=16, iterable=iterable, drop_last=drop_last ) y = paddle.static.nn.fc(x, size=10) loss = paddle.mean(y) exe = fluid.Executor(places[0]) exe.run(fluid.default_startup_program()) prog = fluid.CompiledProgram( fluid.default_main_program() ).with_data_parallel(places=places, loss_name=loss.name) loader.set_batch_generator( self.create_reader(), places=places if iterable else None ) for _ in range(self.epoch_num): actual_batch_num = 0 if loader.iterable: for feed_data in loader(): (x_data,) = exe.run(prog, feed=feed_data, fetch_list=[x]) self.assertEqual(x_data.shape[0] % self.batch_size, 0) self.assertTrue(x_data.shape[0] != 0) actual_batch_num += int(x_data.shape[0] / self.batch_size) else: loader.start() try: while True: (x_data,) = exe.run(prog, fetch_list=[x]) self.assertEqual(x_data.shape[0] % self.batch_size, 0) self.assertTrue(x_data.shape[0] != 0) actual_batch_num += int( x_data.shape[0] / self.batch_size ) except fluid.core.EOFException: loader.reset() if not drop_last or len(places) == 1: self.assertEqual(self.batch_num, actual_batch_num) else: self.assertGreater(self.batch_num, actual_batch_num) def test_main(self): use_cuda_list = ( [False, True] if fluid.is_compiled_with_cuda() else [False] ) iterable_list = [False, True] drop_last_list = [False, True] for iterable in iterable_list: for use_cuda in use_cuda_list: for drop_last in drop_last_list: with fluid.program_guard(fluid.Program(), fluid.Program()): with fluid.scope_guard(fluid.Scope()): self.run_network(iterable, use_cuda, drop_last) if __name__ == '__main__': unittest.main()
ba2090eb36670814f7650ef6ffa2e6fb27f37fb5
692654b45228d813c8dc4c9ade0a6836cd2e7f17
/other_tools/check_token.py
2904c24fc086dd871cd4ade0faf53c78feebc2da
[]
no_license
sunary/nlp
dd67dce0a2001670efe0e1dc5f5ef7b014845982
a9fa796118d51dd80cc9525d50247632caa00b7f
refs/heads/master
2021-01-22T10:02:44.975681
2017-05-20T08:43:23
2017-05-20T08:43:23
43,935,102
3
3
null
null
null
null
UTF-8
Python
false
false
2,720
py
__author__ = 'sunary' class CheckToken(): def __init__(self): self.checker_token = [] self.black_token = [] def set_checker(self, checker): self.checker_token = checker def add_token(self, token): ''' add token to the sorted list of token Args: token: the token need to be added ''' if self.black_token: position = self._find(token) if token != self.black_token[position]: self.black_token[position + 1:position + 1] = [token] else: self.black_token.append(token) pass def _find(self, token): if not token: return 0 left_position = 0 right_position = len(self.black_token) - 1 mid_position= (left_position + right_position)/2 mid_value = self.black_token[mid_position] while left_position <= right_position: if token < mid_value: right_position = mid_position - 1 else: left_position = mid_position + 1 mid_position = (left_position + right_position)/2 mid_value = self.black_token[mid_position] return left_position - 1 def check_token(self): ''' check any token in the sorted list of tokens is in the list Returns: bool: True if any token is in the list Examples: >>> set_checker([1, 2, 3, 4, 5, 6]) >>> add_token([2, 3]) >>> check_token() True >>> add_token([3, 4, 6]) False ''' for i in range(len(self.checker_token)): len_token = 1 while True: list_token = self.checker_token[i: i + len_token] position = self._find(list_token) + 1 if self.black_token[position - 1] == list_token: del self.black_token[position - 1] if position >= len(self.black_token) or len_token > len(self.black_token[position]) or len_token > len(list_token) or\ self.black_token[position][len_token - 1] != list_token[len_token - 1]: break len_token += 1 return False if __name__ == '__main__': check_token = CheckToken() check_token.set_checker([1, 2, 3, 2, 2, 4, 45, 46, 4, 45, 52, 1, 21, 4, 5, 3, 4, 5, 1, 2]) check_token.add_token([1, 2]) check_token.add_token([5, 2]) check_token.add_token([3, 4, 1]) check_token.add_token([3, 4]) check_token.add_token([2, 2]) print check_token.black_token check_token.check_token() print check_token.black_token
cc33910210b5a0f0c332798673e332c4b8cb7eb7
f8aa7306eeea9d2eafc400392acbdff931306e57
/tests/test_cli.py
abf9c2f77d6c6a7a256664301c1113bc18566435
[ "Apache-2.0" ]
permissive
b-jazz/warehouse
929d1a0e7b4de3fd0596ff8334bda31ab5856bdc
8c5414d709c6fd04c1b013ded680057a7def0833
refs/heads/master
2020-12-26T00:34:54.053900
2014-03-08T20:30:25
2014-03-08T20:30:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,425
py
# Copyright 2013 Donald Stufft # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function from __future__ import unicode_literals import pretend import werkzeug.serving from warehouse.cli import ServeCommand from warehouse.serving import WSGIRequestHandler def test_serve(monkeypatch): run_simple = pretend.call_recorder( lambda *a, **kw: None, ) monkeypatch.setattr(werkzeug.serving, "run_simple", run_simple) host, port, app, use_reloader, use_debugger = ( pretend.stub() for x in range(5) ) ServeCommand()( app, host, port, reloader=use_reloader, debugger=use_debugger, ) assert run_simple.calls == [ pretend.call( host, port, app, use_reloader=use_reloader, use_debugger=use_debugger, request_handler=WSGIRequestHandler, ), ]
93250100f4dea25b292e8471b70ae83b71cce42f
e582d60b7996faf7b87c6d857613e63581d415b9
/elliot/recommender/visual_recommenders/VNPR/visual_neural_personalized_ranking_model.py
858a318f1ec3594cc6a9eef6e489659da71b7b15
[]
no_license
Abdel57Grota/Reenvisioning-the-comparison-between-Neural-Collaborative-Filtering-and-Matrix-Factorization
d6e51c32094550789673846acdf9891557b790c1
2a2b0148e881cf8ba45c48ad9d42f52421585284
refs/heads/main
2023-09-03T09:47:41.894117
2021-11-09T09:17:35
2021-11-09T09:17:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,024
py
""" Module description: """ __version__ = '0.1' __author__ = 'Vito Walter Anelli, Claudio Pomo, Daniele Malitesta, Felice Antonio Merra' __email__ = '[email protected], [email protected], [email protected], [email protected]' import os import numpy as np import tensorflow as tf from tensorflow import keras os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' tf.random.set_seed(0) class VNPRModel(keras.Model): def __init__(self, num_users, num_items, embed_mf_size, l_w, mlp_hidden_size, dropout, learning_rate=0.01, emb_image=None, name="VNPR", **kwargs): super().__init__(name=name, **kwargs) tf.random.set_seed(42) self.num_users = num_users self.num_items = num_items self.embed_mf_size = embed_mf_size self.l_w = l_w self.mlp_hidden_size = mlp_hidden_size self.dropout = dropout self.initializer = tf.initializers.GlorotUniform() self.user_mf_embedding = keras.layers.Embedding(input_dim=self.num_users, output_dim=self.embed_mf_size, embeddings_initializer=self.initializer, name='U_MF', dtype=tf.float32) self.item_mf_embedding_1 = keras.layers.Embedding(input_dim=self.num_items, output_dim=self.embed_mf_size, embeddings_initializer=self.initializer, name='I_MF_1', dtype=tf.float32) self.item_mf_embedding_2 = keras.layers.Embedding(input_dim=self.num_items, output_dim=self.embed_mf_size, embeddings_initializer=self.initializer, name='I_MF_2', dtype=tf.float32) self.emb_image = emb_image self.F = tf.Variable( self.emb_image, dtype=tf.float32, trainable=False) self.mlp_layers_1 = keras.Sequential() for units in mlp_hidden_size: # We can have a deeper MLP. In the paper is directly to 1 self.mlp_layers_1.add(keras.layers.Dropout(dropout)) self.mlp_layers_1.add(keras.layers.Dense(units, activation='relu')) self.mlp_layers_2 = keras.Sequential() for units in mlp_hidden_size: # We can have a deeper MLP. In the paper is directly to 1 self.mlp_layers_2.add(keras.layers.Dropout(dropout)) self.mlp_layers_2.add(keras.layers.Dense(units, activation='relu')) self.optimizer = tf.optimizers.Adam(learning_rate) @tf.function def call(self, inputs, training=None, mask=None): user, item1, item2 = inputs user_mf_e = self.user_mf_embedding(user) item_mf_e_1 = self.item_mf_embedding_1(item1) item_mf_e_2 = self.item_mf_embedding_2(item2) feature_e_1 = tf.nn.embedding_lookup(self.F, item1) feature_e_2 = tf.nn.embedding_lookup(self.F, item2) embedding_input_1 = tf.concat([user_mf_e * item_mf_e_1, feature_e_1], axis=2) # [batch_size, embedding_size] mlp_output_1 = self.mlp_layers_1(embedding_input_1) # [batch_size, 1] embedding_input_2 = tf.concat([user_mf_e * item_mf_e_2, feature_e_2], axis=2) mlp_output_2 = self.mlp_layers_2(embedding_input_2) # [batch_size, 1] return tf.squeeze(mlp_output_1), tf.squeeze(mlp_output_2), user_mf_e, item_mf_e_1, item_mf_e_2 @tf.function def train_step(self, batch): with tf.GradientTape() as tape: user, pos, neg = batch # Clean Inference mlp_output_1, mlp_output_2, user_mf_e, item_mf_e_1, item_mf_e_2 = self.call(inputs=(user, pos, neg), training=True) difference = tf.clip_by_value(mlp_output_1 - mlp_output_2, -80.0, 1e8) loss = tf.reduce_sum(tf.nn.softplus(-difference)) # Regularization Component reg_loss = self.l_w * tf.reduce_sum([tf.nn.l2_loss(user_mf_e), tf.nn.l2_loss(item_mf_e_1), tf.nn.l2_loss(item_mf_e_2)]) # Loss to be optimized loss += reg_loss grads = tape.gradient(loss, self.trainable_variables) self.optimizer.apply_gradients(zip(grads, self.trainable_variables)) return loss @tf.function def predict(self, inputs, training=False, **kwargs): """ Get full predictions on the whole users/items matrix. Returns: The matrix of predicted values. """ u, i = inputs output_1, output_2, _, _, _ = self.call(inputs=(u, i, i), training=training) return (output_1 + output_2) * 0.5 @tf.function def get_recs(self, inputs, training=False, **kwargs): """ Get full predictions on the whole users/items matrix. Returns: The matrix of predicted values. """ user, item = inputs user_mf_e = self.user_mf_embedding(user) item_mf_e_1 = self.item_mf_embedding_1(item) item_mf_e_2 = self.item_mf_embedding_2(item) feature_e = tf.nn.embedding_lookup(self.F, item) mf_output_1 = tf.concat([user_mf_e * item_mf_e_1, feature_e], axis=2) # [batch_size, embedding_size] mf_output_2 = tf.concat([user_mf_e * item_mf_e_2, feature_e], axis=2) # [batch_size, embedding_size] mlp_output_1 = self.mlp_layers_1(mf_output_1) # [batch_size, 1] mlp_output_2 = self.mlp_layers_2(mf_output_2) # [batch_size, 1] return tf.squeeze((mlp_output_1+mlp_output_2)/2) @tf.function def get_top_k(self, preds, train_mask, k=100): return tf.nn.top_k(tf.where(train_mask, preds, -np.inf), k=k, sorted=True)
a0e4d0fc0edadaf6b668bd6570f6c2ba34a2fc9e
a09740e643d6277ada23c82d8e87853a1cd1a9e5
/Z_ALL_FILE/Py/omdf5.py
b033ff3d43a5953248d534cd87fd3b5182354496
[ "Apache-2.0" ]
permissive
FuckBrains/omEngin
c5fb011887c8b272f9951df3880a879456f202e8
b8c04a5c2c12ffc3d0b67c2ceba9e5741d3f9195
refs/heads/main
2023-03-20T18:27:53.409976
2021-03-14T15:50:11
2021-03-14T15:50:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
374
py
import pandas as pd dates=['April-10', 'April-11', 'April-12', 'April-13','April-14','April-16'] income1=[10,20,10,15,10,12] income2=[20,30,10,5,40,13] df=pd.DataFrame({"Date":dates, "Income_1":income1, "Income_2":income2}) print(df.apply(lambda row: "Total income in "+ row["Date"]+ " is:"+str(row["Income_1"]+row["Income_2"]),axis=1))
2068d1710140295cd665f7971b3655a7f2367e15
f0592d39eaf5f8bcbe46c4b16f6fa631be48887f
/tests/contrib/autoguide/test_hessian.py
f26a124db03826f7d6b1f111d1e4ca602e1d5ab1
[ "MIT" ]
permissive
wsgharvey/pyro
0bfc762a20c4bcbbe30e61adbcc2c33e32effdb5
5c3ef54050d9ad566e5965174d4ad51bd37e55dd
refs/heads/dev
2021-05-06T18:57:58.458691
2018-10-10T01:48:52
2018-10-10T01:48:52
111,995,379
0
0
null
2017-11-25T10:33:12
2017-11-25T10:33:12
null
UTF-8
Python
false
false
827
py
from __future__ import absolute_import, division, print_function import torch import pyro.distributions as dist from pyro.contrib.autoguide import _hessian from tests.common import assert_equal def test_mvn(): tmp = torch.randn(3, 10) cov = torch.matmul(tmp, tmp.t()) mvn = dist.MultivariateNormal(cov.new_zeros(3), cov) x = torch.randn(3, requires_grad=True) y = mvn.log_prob(x) assert_equal(_hessian(y, x), -mvn.precision_matrix) def test_multi_variables(): x = torch.randn(3, requires_grad=True) z = torch.randn(3, requires_grad=True) y = (x ** 2 * z + z ** 3).sum() H = _hessian(y, (x, z)) Hxx = (2 * z).diag() Hxz = (2 * x).diag() Hzz = (6 * z).diag() target_H = torch.cat([torch.cat([Hxx, Hxz]), torch.cat([Hxz, Hzz])], dim=1) assert_equal(H, target_H)
745e078af6fac62e8b7d0448a12d31bb21a01a17
b1bc2e54f8cd35c9abb6fc4adb35b386c12fe6b4
/toontown/src/testenv/dayNight.py
195043c0675c5a8b4e4d78951c90f5ecf6c3de4e
[]
no_license
satire6/Anesidora
da3a44e2a49b85252b87b612b435fb4970469583
0e7bfc1fe29fd595df0b982e40f94c30befb1ec7
refs/heads/master
2022-12-16T20:05:13.167119
2020-09-11T16:58:04
2020-09-11T17:02:06
294,751,966
89
32
null
null
null
null
UTF-8
Python
false
false
8,266
py
from pandac.PandaModules import * from direct.interval.IntervalGlobal import * dayMusic = loader.loadMusic("phase_4/audio/bgm/TC_nbrhood.mid") # dayMusic = loader.loadMusic("phase_8/audio/bgm/TB_nbrhood.mid") # base.cr.playGame.hood.loader.snow.cleanup() nightMusic = loader.loadMusic("phase_8/audio/bgm/DL_nbrhood.mid") # Load up some sfx birdSfx1 = loader.loadSfx("phase_8/audio/sfx/SZ_DG_bird_01.mp3") birdSfx2 = loader.loadSfx("phase_8/audio/sfx/SZ_DG_bird_02.mp3") birdSfx3 = loader.loadSfx("phase_8/audio/sfx/SZ_DG_bird_03.mp3") cricket1 = loader.loadSfx("/c/soundelux/Estate_Cricket_1.mp3") cricket2 = loader.loadSfx("/c/soundelux/Estate_Cricket_2.mp3") rooster = loader.loadSfx("/c/soundelux/Estate_rooster.mp3") # No more tt birds chirping taskMgr.remove("TT-birds") # Get rid of the sky that comes with TT central taskMgr.remove("skyTrack") base.cr.playGame.hood.sky.hide() base.cr.playGame.hood.loader.music.stop() # Load up our own sky models nightSky = loader.loadModel("phase_8/models/props/DL_sky") nightSky.setScale(0.8) nightSky.setTransparency(1) nightSky.setBin("background", 102) daySky = loader.loadModel("phase_3.5/models/props/TT_sky") daySky.setBin("background", 100) dayCloud1 = daySky.find("**/cloud1") dayCloud2 = daySky.find("**/cloud2") dayCloud1.setBin("background", 101) dayCloud2.setBin("background", 101) dawnSky = loader.loadModel("phase_6/models/props/MM_sky") dawnSky.setScale(0.8) dawnSky.setTransparency(1) dawnSky.setBin("background", 102 pe = PolylightEffect.make() brightness = 1.25 darkness = 0.8 pe.setWeight(brightness) base.localAvatar.node().setEffect(pe) for sky in (nightSky, daySky, dawnSky): sky.reparentTo(camera) sky.setZ(0.0) sky.setHpr(0.0, 0.0, 0.0) ce = CompassEffect.make(NodePath(), CompassEffect.PRot | CompassEffect.PZ) sky.node().setEffect(ce) sky.setDepthTest(0) sky.setDepthWrite(0) # Color scale defines dawnColor = Vec4(1,0.8,0.4,1) dayColor = Vec4(1,1,1,1) duskColor = Vec4(0.8,0.4,0.7,1) nightColor = Vec4(0.3,0.3,0.5,1) onAlpha = Vec4(1,1,1,1) offAlpha = Vec4(1,1,1,0) # Geom of the hood geom = base.cr.playGame.hood.loader.geom # List of butterflies butterflies = base.cr.doFindAll("DistributedButterfly") # List of lamps and glow discs oneLights = geom.findAllMatches("**/prop_post_one_light_DNARoot") threeLights = geom.findAllMatches("**/prop_post_three_light_DNARoot") lamps = oneLights + threeLights discs = [] # List of NodePaths of PolylightNodes polylights = [] lightIndex = 0 for lamp in oneLights: lamp.setColorScale(1,1,1,1,1) disc = loader.loadModel("phase_3.5/models/props/glow") # Add PolylightNodes lightIndex += 1 plNode = PolylightNode("pl" + str(lightIndex)) plNode.setRadius(20) #plNode.setPos(0,0,2) plNode.setColor(1.0,0.8,0.4) plNode.setFlickerType(PolylightNode.FSIN) plNode.setFreq(6.0) plNode.setOffset(-0.5) plNodePath = NodePath(plNode) polylights.append(plNodePath) base.localAvatar.node().setEffect(base.localAvatar.node().getEffect(PolylightEffect.getClassType()).addLight(plNodePath)) # A glow around the lamp light bulb disc.setBillboardPointEye() disc.setPos(0.2,-1,10) disc.setScale(8) disc.setColorScale(1,1,0.8,0.25,1) disc.setTransparency(1) disc.reparentTo(lamp.find("**/p13")) #disc.node().setEffect(pe) discs.append(disc) # A glow on the floor disc = loader.loadModel("phase_3.5/models/props/glow") disc.setPos(0,0,0.025) disc.setHpr(0,90,0) disc.setScale(14) disc.setColorScale(1,1,0.8,0.25,1) disc.setTransparency(1) disc.reparentTo(lamp.find("**/p13")) plNodePath.reparentTo(disc) disc.node().setEffect(pe) discs.append(disc) for lamp in threeLights: lamp.setColorScale(1,1,1,1,1) disc = loader.loadModel("phase_3.5/models/props/glow") # Add PolylightNodes lightIndex += 1 plNode = PolylightNode("pl" + str(lightIndex)) plNode.setRadius(20) plNode.setColor(1.0,1.0,1.0) plNode.setFlickerType(PolylightNode.FRANDOM) #plNode.setFreq(6.0) plNode.setOffset(-0.5) plNode.setScale(0.2) plNode.setAttenuation(PolylightNode.AQUADRATIC) plNodePath = NodePath(plNode) polylights.append(plNodePath) base.localAvatar.node().setEffect(base.localAvatar.node().getEffect(PolylightEffect.getClassType()).addLight(plNodePath)) disc.setBillboardPointEye() disc.setPos(0,-1,10) disc.setScale(10) disc.setColorScale(1,1,0.8,0.25,1) disc.setTransparency(1) disc.reparentTo(lamp.find("**/p23")) plNodePath.reparentTo(disc) #disc.node().setEffect(pe) discs.append(disc) # A glow on the floor disc = loader.loadModel("phase_3.5/models/props/glow") disc.setPos(0,0,0.025) disc.setHpr(0,90,0) disc.setScale(14) disc.setColorScale(1,1,0.8,0.2,1) disc.setTransparency(1) disc.reparentTo(lamp.find("**/p23")) #disc.node().setEffect(pe) discs.append(disc) def makeNight(): for lamp in lamps: lamp.setColorScale(1,1,1,1,1) for disc in discs: disc.show() base.playSfx(cricket1, volume=0.3) dayMusic.stop() base.playMusic(nightMusic, volume=0.5) for b in butterflies: b.butterflyNode.hide() def makeDay(): for lamp in lamps: lamp.clearColorScale() for disc in discs: disc.hide() base.playSfx(rooster, volume=0.2) nightMusic.stop() base.playMusic(dayMusic, volume=0.7) for b in butterflies: b.butterflyNode.show() def lerpDaySkyFunc(color): daySky.setColorScale(color, 1) def lerpDawnSkyFunc(color): dawnSky.setColorScale(color, 1) def lerpNightSkyFunc(color): nightSky.setColorScale(color, 1) def lerpLightWeightFunc(weight): base.localAvatar.node().setEffect(base.localAvatar.node().getEffect(PolylightEffect.getClassType()).setWeight(weight)) # Change this to change the day/night cycle length t = 120.0 tSeg = t / 10.0 dayMusic.stop() nightMusic.stop() nightSky.setColorScale(onAlpha) daySky.setColorScale(offAlpha) dawnSky.setColorScale(offAlpha) render.setColorScale(nightColor) i = Parallel(Sequence(Parallel(LerpColorScaleInterval(render, tSeg, dawnColor), LerpFunctionInterval(lerpLightWeightFunc, duration=tSeg, toData=darkness, fromData=brightness), LerpFunctionInterval(lerpNightSkyFunc, duration=tSeg, toData=offAlpha, fromData=onAlpha), LerpFunctionInterval(lerpDawnSkyFunc, duration=tSeg, toData=onAlpha, fromData=offAlpha), ), Func(makeDay), Wait(tSeg), Parallel(LerpFunctionInterval(lerpDawnSkyFunc, duration=tSeg, toData=offAlpha, fromData=onAlpha), LerpFunctionInterval(lerpDaySkyFunc, duration=tSeg, toData=dayColor, fromData=offAlpha), LerpColorScaleInterval(render, tSeg, dayColor), ), Func(base.playSfx, birdSfx1, 0, 1, 0.3), Wait(tSeg), Func(base.playSfx, birdSfx2, 0, 1, 0.3), Parallel(LerpFunctionInterval(lerpDaySkyFunc, duration=tSeg, toData=duskColor, fromData=dayColor), LerpColorScaleInterval(render, tSeg, duskColor), LerpFunctionInterval(lerpLightWeightFunc, duration=tSeg, toData=brightness, fromData=darkness), ), Func(makeNight), Parallel(LerpFunctionInterval(lerpDaySkyFunc, duration=tSeg, toData=offAlpha, fromData=duskColor), LerpFunctionInterval(lerpNightSkyFunc, duration=tSeg, toData=onAlpha, fromData=offAlpha), LerpColorScaleInterval(render, tSeg, nightColor), ), Func(base.playSfx, cricket2, 0, 1, 0.2), Wait(tSeg), Func(base.playSfx, cricket1, 0, 1, 0.2), Wait(tSeg), ), ) i.loop() """ # To undo i.finish() render.clearColorScale() dayMusic.stop() nightMusic.stop() """
81fb67bfbbafced31af6e9a8ec85def9ce72c428
4b8b0be0588f9e5249729f165b72a6b38324837d
/glycresoft_ms2_classification/prediction_tools/__init__.py
52e2cd4a029490a37c2b53ed85f7619bf145d4ca
[]
no_license
GlycReSoft2/embed_tandem_ms_classifier
5e2f569f2b74f2f14f1c1c0cede32de99c150890
0495f2234562a9c5dd02d545800c077df2305387
refs/heads/master
2020-06-02T09:32:55.457664
2015-06-20T21:30:19
2015-06-20T21:30:19
22,615,207
0
0
null
null
null
null
UTF-8
Python
false
false
461
py
try: from data_processing import prepare_model_file from data_processing import save_model_file from data_processing import call_by_coverage from data_processing import determine_ambiguity from data_processing import PredictionResults from data_processing import convert_csv_to_nested from classifier_definitions import * except ImportError: print("Unable to import parts of prediction_tools") from .constants import constants
b85a73a1586c716e42c86755109e4360e6d2a396
b6068ad0383967f40cf338b6005d728edb1b647f
/DeepQNet/RL_brain.py
1135e8eef781148a2f60be8b5d72d07114b31255
[]
no_license
WOW5678/ReinforcementLearning
8d0962232e7f4d9ea88e990f9bca98dad86f0ef0
5a8e1624fbecc5d39ca17ab2613a6555fe3d937f
refs/heads/master
2020-03-30T07:32:02.576419
2019-11-22T03:27:03
2019-11-22T03:27:03
150,946,581
3
2
null
null
null
null
UTF-8
Python
false
false
9,352
py
# -*- coding:utf-8 -*- ''' Create time: 2018/11/11 16:50 @Author: 大丫头 ''' """ This part of code is the DQN brain, which is a brain of the agent. All decisions are made in here. Using Tensorflow to build the neural network. View more on my tutorial page: https://morvanzhou.github.io/tutorials/ Using: Tensorflow: 1.0 gym: 0.7.3 """ import numpy as np import pandas as pd import tensorflow as tf np.random.seed(1) tf.set_random_seed(1) # Deep Q Network off-policy class DeepQNetwork: def __init__( self, n_actions, n_features, learning_rate=0.01, reward_decay=0.9, # 回报折扣率 e_greedy=0.9, #控制随机策略,0.9的概率选择概率的行为,0.1的概率进行随机选择行为 replace_target_iter=300, # 控制多少步进行target_net的更新 memory_size=500, batch_size=32, e_greedy_increment=None, output_graph=False, ): self.n_actions = n_actions self.n_features = n_features self.lr = learning_rate self.gamma = reward_decay self.epsilon_max = e_greedy self.replace_target_iter = replace_target_iter self.memory_size = memory_size self.batch_size = batch_size self.epsilon_increment = e_greedy_increment self.epsilon = 0 if e_greedy_increment is not None else self.epsilon_max # total learning step self.learn_step_counter = 0 # initialize zero memory [s, a, r, s_] self.memory = np.zeros((self.memory_size, n_features * 2 + 2)) # consist of [target_net, evaluate_net] self._build_net() t_params = tf.get_collection('target_net_params') e_params = tf.get_collection('eval_net_params') #target_net参数的更新操作 self.replace_target_op = [tf.assign(t, e) for t, e in zip(t_params, e_params)] self.sess = tf.Session() if output_graph: # $ tensorboard --logdir=logs # tf.train.SummaryWriter soon be deprecated, use following tf.summary.FileWriter("logs/", self.sess.graph) self.sess.run(tf.global_variables_initializer()) self.cost_his = [] def _build_net(self): # ------------------ build evaluate_net ------------------ self.s = tf.placeholder(tf.float32, [None, self.n_features], name='s') # input self.q_target = tf.placeholder(tf.float32, [None, self.n_actions], name='Q_target') # for calculating loss with tf.variable_scope('eval_net'): # c_names(collections_names) are the collections to store variables c_names, n_l1, w_initializer, b_initializer = \ ['eval_net_params', tf.GraphKeys.GLOBAL_VARIABLES], 10, \ tf.random_normal_initializer(0., 0.3), tf.constant_initializer(0.1) # config of layers # first layer. collections is used later when assign to target net with tf.variable_scope('l1'): w1 = tf.get_variable('w1', [self.n_features, n_l1], initializer=w_initializer, collections=c_names) b1 = tf.get_variable('b1', [1, n_l1], initializer=b_initializer, collections=c_names) l1 = tf.nn.relu(tf.matmul(self.s, w1) + b1) # second layer. collections is used later when assign to target net with tf.variable_scope('l2'): w2 = tf.get_variable('w2', [n_l1, self.n_actions], initializer=w_initializer, collections=c_names) b2 = tf.get_variable('b2', [1, self.n_actions], initializer=b_initializer, collections=c_names) self.q_eval = tf.matmul(l1, w2) + b2 with tf.variable_scope('loss'): self.loss = tf.reduce_mean(tf.squared_difference(self.q_target, self.q_eval)) with tf.variable_scope('train'): self._train_op = tf.train.RMSPropOptimizer(self.lr).minimize(self.loss) # ------------------ build target_net ------------------ self.s_ = tf.placeholder(tf.float32, [None, self.n_features], name='s_') # input with tf.variable_scope('target_net'): # c_names(collections_names) are the collections to store variables c_names = ['target_net_params', tf.GraphKeys.GLOBAL_VARIABLES] # first layer. collections is used later when assign to target net with tf.variable_scope('l1'): w1 = tf.get_variable('w1', [self.n_features, n_l1], initializer=w_initializer, collections=c_names) b1 = tf.get_variable('b1', [1, n_l1], initializer=b_initializer, collections=c_names) l1 = tf.nn.relu(tf.matmul(self.s_, w1) + b1) # second layer. collections is used later when assign to target net with tf.variable_scope('l2'): w2 = tf.get_variable('w2', [n_l1, self.n_actions], initializer=w_initializer, collections=c_names) b2 = tf.get_variable('b2', [1, self.n_actions], initializer=b_initializer, collections=c_names) self.q_next = tf.matmul(l1, w2) + b2 # 保存每个epsoid的原状态,行为,回报,新状态值 def store_transition(self, s, a, r, s_): if not hasattr(self, 'memory_counter'): self.memory_counter = 0 #hstack 不改变行数,再列数上进行拼接 transition = np.hstack((s, [a, r], s_)) # replace the old memory with new memory index = self.memory_counter % self.memory_size self.memory[index, :] = transition self.memory_counter += 1 #根据状态值选择action def choose_action(self, observation): # to have batch dimension when feed into tf placeholder observation = observation[np.newaxis, :] if np.random.uniform() < self.epsilon: #选value最大的action # forward feed the observation and get q value for every actions actions_value = self.sess.run(self.q_eval, feed_dict={self.s: observation}) action = np.argmax(actions_value) else: # 随机策略 进行aciton的随机选择 action = np.random.randint(0, self.n_actions) return action # 进行参数的学习 def learn(self): # check to replace target parameters # 当步数达到了replace_target_iter之后 就进行target_net参数的更新 if self.learn_step_counter % self.replace_target_iter == 0: self.sess.run(self.replace_target_op) print('\ntarget_params_replaced\n') # sample batch memory from all memory if self.memory_counter > self.memory_size: sample_index = np.random.choice(self.memory_size, size=self.batch_size) else: sample_index = np.random.choice(self.memory_counter, size=self.batch_size) batch_memory = self.memory[sample_index, :] q_next, q_eval = self.sess.run( [self.q_next, self.q_eval], feed_dict={ self.s_: batch_memory[:, -self.n_features:], # fixed params self.s: batch_memory[:, :self.n_features], # newest params }) # change q_target w.r.t q_eval's action #???目的是什么呢?每太懂 q_target = q_eval.copy() batch_index = np.arange(self.batch_size, dtype=np.int32) eval_act_index = batch_memory[:, self.n_features].astype(int) reward = batch_memory[:, self.n_features + 1] #更新q_value表格 q_target[batch_index, eval_act_index] = reward + self.gamma * np.max(q_next, axis=1) """ For example in this batch I have 2 samples and 3 actions: q_eval = [[1, 2, 3], [4, 5, 6]] q_target = q_eval = [[1, 2, 3], [4, 5, 6]] Then change q_target with the real q_target value w.r.t the q_eval's action. For example in: sample 0, I took action 0, and the max q_target value is -1; sample 1, I took action 2, and the max q_target value is -2: q_target = [[-1, 2, 3], [4, 5, -2]] So the (q_target - q_eval) becomes: [[(-1)-(1), 0, 0], [0, 0, (-2)-(6)]] We then backpropagate this error w.r.t the corresponding action to network, leave other action as error=0 cause we didn't choose it. """ # train eval network _, self.cost = self.sess.run([self._train_op, self.loss], feed_dict={self.s: batch_memory[:, :self.n_features], self.q_target: q_target}) self.cost_his.append(self.cost) # increasing epsilon self.epsilon = self.epsilon + self.epsilon_increment if self.epsilon < self.epsilon_max else self.epsilon_max self.learn_step_counter += 1 def plot_cost(self): import matplotlib.pyplot as plt plt.plot(np.arange(len(self.cost_his)), self.cost_his) plt.ylabel('Cost') plt.xlabel('training steps') plt.show()
49a442b058c1eb081db28a321b0d5020c9dec449
a622e8b295d799b7b9125e2b15243b8bdae1dc09
/1908/190826/미로문제/미로문제.py
58c26cc2d9d42d035507cc03d22855d8235c45a4
[]
no_license
otterji/algorithms
3a36c04bacc22c46f1ee220b3b129cda876db797
ebd0ade0cd1de8e489d015aa0b2833afeab3898e
refs/heads/master
2020-11-26T02:48:13.299848
2020-04-11T12:09:41
2020-04-11T12:09:41
228,942,526
0
0
null
null
null
null
UTF-8
Python
false
false
1,465
py
# 시작점과 끝점의 위치가 항상 1행은 아님. 중간일수도 있음. 제일 먼저 시작점 위치 찾기 # DFS로 풀어도됨 # 백트래킹으로 풀어도됨 # 도착할 수 있는지 여부 찾기 import sys sys.stdin = open("input.txt", "r") T = int(input()) for tc in range(1, T+1): N = int(input()) miro = [list(map(int,input())) for _ in range(N)] for i in range(N): for j in range(N): if miro[i][j] == 2: start = (i, j) break stack = [] visited = [] dx = [0, 0, -1, 1] # 좌 우 dy = [-1, 1, 0, 0] # 상 하 def DFS(miro, s, g): x, y = s, g stack.append((x, y)) while stack: x = stack[-1][0] y = stack[-1][1] for i in range(4): if 0 <= dx[i] + x <= N-1 and 0 <= dy[i] + y <= N-1: # 범위 안에 있으면 if miro[dx[i] + x][dy[i] + y] == 3: return 1 if miro[dx[i] + x][dy[i] + y] == 0 and (dx[i] + x, dy[i] + y) not in visited: x = dx[i] + x y = dy[i] + y stack.append((x, y)) visited.append((x, y)) break # 얘를 안하니까 값이 안나오네 else: stack.pop() return 0 result = DFS(miro, start[0], start[1]) print('#{} {}'.format(tc, result))
7ca887133d33000f514b699d46925d3b00acac17
762742b3c5cb5706e93e12dbdc3f8c46fc65f0db
/Packs/OpenPhish/Integrations/OpenPhish_v2/OpenPhish_v2_test.py
7ceb301f00593b3b7e14527d6a35493b28e8f30c
[ "MIT" ]
permissive
EmersonElectricCo/content
018f95f7fe7de13819e093a3661587a18407e348
82c82bbee7d428f0b14991a88c67672e2c02f5af
refs/heads/master
2021-06-17T04:54:22.938033
2021-05-06T16:39:59
2021-05-06T16:39:59
161,693,191
2
0
MIT
2018-12-18T15:16:49
2018-12-13T20:47:26
Python
UTF-8
Python
false
false
10,139
py
from datetime import datetime import pytest import OpenPhish_v2 import demistomock as demisto from OpenPhish_v2 import ( Client, _is_reload_needed, remove_backslash, reload_command, status_command, url_command, ) from freezegun import freeze_time from test_data.api_raw import RAW_DATA MOCK_URL = "http://openphish.com" MOCK_DELIVERED_MESSAGE = {} DBOT_KEY = "DBotScore(val.Indicator && val.Indicator == obj.Indicator && val.Vendor == obj.Vendor && val.Type == obj.Type)" RELOADED_DATA = [ (Client(MOCK_URL, True, False, 2), {}, True), # case no data in memory ( Client(MOCK_URL, True, False, 2), {"list": []}, True, ), # case no timestamp and list is emtpy ( Client(MOCK_URL, True, False, 2), { "list": [ "hxxp://www.niccakorea.com/board/index.html", "hxxp://lloyds.settlemypayee.uk", "hxxp://whatsapp-chat02.zzux.com", "hxxp://dd0ddddddcuser.ey.r.appspot.com", ], "timestamp": None, }, True, ), # case no timestamp ( Client(MOCK_URL, True, False, 1), { "list": [ "hxxp://www.niccakorea.com/board/index.html", "hxxp://lloyds.settlemypayee.uk", "hxxp://whatsapp-chat02.zzux.com", "hxxp://dd0ddddddcuser.ey.r.appspot.com", ], "timestamp": 1601542800000, }, # datetime(2020, 10, 1, 10, 00, 00, 0) - timedelta(hours=1) True, ), ( Client(MOCK_URL, True, False, 2), { "list": [ "hxxp://www.niccakorea.com/board/index.html", "hxxp://lloyds.settlemypayee.uk", "hxxp://whatsapp-chat02.zzux.com", "hxxp://dd0ddddddcuser.ey.r.appspot.com", ], "timestamp": 1601542800000, }, # datetime(2020, 10, 1, 10, 00, 00, 0) - timedelta(hours=1) False, ), ( Client(MOCK_URL, True, False, 0.5), { "list": [ "hxxp://www.niccakorea.com/board/index.html", "hxxp://lloyds.settlemypayee.uk", "hxxp://whatsapp-chat02.zzux.com", "hxxp://dd0ddddddcuser.ey.r.appspot.com", ], "timestamp": 1601542800000, }, # datetime(2020, 10, 1, 10, 00, 00, 0) - timedelta(hours=1) True, ), ] @pytest.mark.parametrize("client,data,output", RELOADED_DATA) def test_is_reload_needed(mocker, client, data, output): """ Given: - data as IntegrationContext When: - reload command was required Then: - Returns False if last reload occurred in the past fetch_interval_hours. True otherwise """ with freeze_time(datetime(2020, 10, 1, 10, 00, 00, 0)): assert _is_reload_needed(client, data) == output LINKS = [("goo.co/", "goo.co"), ("goo.co", "goo.co")] @pytest.mark.parametrize("url, expected_result", LINKS) def test_remove_backslash(url: str, expected_result: str): """ Given: - string representing url When: - saving data from to the integration context or checking a specific url Then: - checks the url format is without a backslash as last character """ assert remove_backslash(url) == expected_result def test_reload_command(mocker): """ When: - reloading data from to the api to integration context Then: - checks if the reloading finished successfully """ mock_data_from_api = RAW_DATA mocker.patch.object(Client, "http_request", return_value=mock_data_from_api) mocker.patch.object(demisto, "setIntegrationContext") client = Client( url=MOCK_URL, use_ssl=False, use_proxy=False, fetch_interval_hours=1 ) status = reload_command(client) assert ( status.readable_output == "Database was updated successfully to the integration context." ) STANDARD_NOT_LOADED_MSG = "OpenPhish Database Status\nDatabase not loaded.\n" STANDARD_4_LOADED_MSG = ( "OpenPhish Database Status\n" "Total **4** URLs loaded.\n" "Last load time **Thu Oct 01 2020 06:00:00 (UTC)**\n" ) CONTEXT_MOCK_WITH_STATUS = [ ({}, STANDARD_NOT_LOADED_MSG), # case no data in memory ( {"list": [], "timestamp": "1601532000000"}, STANDARD_NOT_LOADED_MSG, ), # case no timestamp and list is emtpy ( { "list": [ "hxxp://www.niccakorea.com/board/index.html", "hxxp://lloyds.settlemypayee.uk", "hxxp://whatsapp-chat02.zzux.com", "hxxp://dd0ddddddcuser.ey.r.appspot.com", ], "timestamp": "1601532000000", }, # datetime(2020, 10, 1, 10, 00, 00, 0) - timedelta(hours=1)} STANDARD_4_LOADED_MSG, ), ] @pytest.mark.parametrize("data,expected_result", CONTEXT_MOCK_WITH_STATUS) @freeze_time("1993-06-17 11:00:00 GMT") def test_status_command(mocker, data, expected_result): """ Given: - Integration context When: - After status command Then: - Returns number of loaded urls if data was loaded. - Otherwise, returns Database not loaded. """ client = Client(MOCK_URL, True, False, 1) mocker.patch.object(demisto, "getIntegrationContext", return_value=data) status = status_command(client) assert status.readable_output == expected_result CONTEXT_MOCK_WITH_URL = [ ( {"url": "hxxp://lloyds.settlemypayee.uk"}, { "list": [ "hxxp://www.niccakorea.com/board/index.html", "hxxp://lloyds.settlemypayee.uk", "hxxp://whatsapp-chat02.zzux.com", "hxxp://dd0ddddddcuser.ey.r.appspot.com", ], "timestamp": "1601532000000", }, [ { "URL": [ { "Data": "hxxp://lloyds.settlemypayee.uk", "Malicious": { "Vendor": "OpenPhish", "Description": "Match found in OpenPhish database", }, } ], "DBOTSCORE": [ { "Indicator": "hxxp://lloyds.settlemypayee.uk", "Type": "url", "Vendor": "OpenPhish", "Score": 3, } ], } ], ), ( {"url": "hxxp://goo.co"}, { "list": [ "hxxp://www.niccakorea.com/board/index.html", "hxxp://lloyds.settlemypayee.uk", "hxxp://whatsapp-chat02.zzux.com", "hxxp://dd0ddddddcuser.ey.r.appspot.com", ], "timestamp": "1601532000000", }, [ { "URL": [{"Data": "hxxp://goo.co"}], "DBOTSCORE": [ { "Indicator": "hxxp://goo.co", "Type": "url", "Vendor": "OpenPhish", "Score": 0, } ], } ], ), ( {"url": "hxxp://whatsapp-chat02.zzux.com,hxxp://lloyds.settlemypayee.uk"}, { "list": [ "hxxp://www.niccakorea.com/board/index.html", "hxxp://lloyds.settlemypayee.uk", "hxxp://whatsapp-chat02.zzux.com", "hxxp://dd0ddddddcuser.ey.r.appspot.com", ], "timestamp": "1601532000000", }, [ { "URL": [ { "Data": "hxxp://whatsapp-chat02.zzux.com", "Malicious": { "Vendor": "OpenPhish", "Description": "Match found in OpenPhish database", }, } ], "DBOTSCORE": [ { "Indicator": "hxxp://whatsapp-chat02.zzux.com", "Score": 3, "Type": "url", "Vendor": "OpenPhish", } ], }, { "URL": [ { "Data": "hxxp://lloyds.settlemypayee.uk", "Malicious": { "Vendor": "OpenPhish", "Description": "Match found in OpenPhish database", }, } ], "DBOTSCORE": [ { "Indicator": "hxxp://lloyds.settlemypayee.uk", "Score": 3, "Type": "url", "Vendor": "OpenPhish", } ], }, ], ), ] @pytest.mark.parametrize("url,context,expected_results", CONTEXT_MOCK_WITH_URL) def test_url_command(mocker, url, context, expected_results): """ Given: - a url When: - mocking the integration context data, runnig url_command Then: - validating whether the url is malicious (in integration context) """ mocker.patch.object( demisto, "getIntegrationContext", return_value=context, ) mocker.patch.object(OpenPhish_v2, "_is_reload_needed", return_value=False) client = Client(MOCK_URL, True, False, 1) results = url_command(client, **url) assert len(results) >= 1 for i in range(len(results)): output = results[i].to_context().get("EntryContext", {}) assert output.get( "URL(val.Data && val.Data == obj.Data)", [] ) == expected_results[i].get("URL") assert output.get(DBOT_KEY, []) == expected_results[i].get("DBOTSCORE")
e6a351cca118db0b1b7aa38308e588865881e958
bc441bb06b8948288f110af63feda4e798f30225
/cmdb_sdk/api/instance/import_instance_with_csv_pb2.py
61e3fc2fbb658d75940052b5048131ef784e637a
[ "Apache-2.0" ]
permissive
easyopsapis/easyops-api-python
23204f8846a332c30f5f3ff627bf220940137b6b
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
refs/heads/master
2020-06-26T23:38:27.308803
2020-06-16T07:25:41
2020-06-16T07:25:41
199,773,131
5
0
null
null
null
null
UTF-8
Python
false
true
9,094
py
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: import_instance_with_csv.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.protobuf import struct_pb2 as google_dot_protobuf_dot_struct__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='import_instance_with_csv.proto', package='instance', syntax='proto3', serialized_options=None, serialized_pb=_b('\n\x1eimport_instance_with_csv.proto\x12\x08instance\x1a\x1cgoogle/protobuf/struct.proto\"\xe9\x01\n\x1dImportInstanceWithCsvResponse\x12\x14\n\x0cinsert_count\x18\x01 \x01(\x05\x12\x14\n\x0cupdate_count\x18\x02 \x01(\x05\x12\x14\n\x0c\x66\x61iled_count\x18\x03 \x01(\x05\x12:\n\x04\x64\x61ta\x18\x04 \x03(\x0b\x32,.instance.ImportInstanceWithCsvResponse.Data\x1aJ\n\x04\x44\x61ta\x12\x0c\n\x04\x63ode\x18\x01 \x01(\x05\x12\r\n\x05\x65rror\x18\x02 \x01(\t\x12%\n\x04\x64\x61ta\x18\x03 \x03(\x0b\x32\x17.google.protobuf.Struct\"\x8f\x01\n$ImportInstanceWithCsvResponseWrapper\x12\x0c\n\x04\x63ode\x18\x01 \x01(\x05\x12\x13\n\x0b\x63odeExplain\x18\x02 \x01(\t\x12\r\n\x05\x65rror\x18\x03 \x01(\t\x12\x35\n\x04\x64\x61ta\x18\x04 \x01(\x0b\x32\'.instance.ImportInstanceWithCsvResponseb\x06proto3') , dependencies=[google_dot_protobuf_dot_struct__pb2.DESCRIPTOR,]) _IMPORTINSTANCEWITHCSVRESPONSE_DATA = _descriptor.Descriptor( name='Data', full_name='instance.ImportInstanceWithCsvResponse.Data', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='code', full_name='instance.ImportInstanceWithCsvResponse.Data.code', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='error', full_name='instance.ImportInstanceWithCsvResponse.Data.error', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='data', full_name='instance.ImportInstanceWithCsvResponse.Data.data', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=234, serialized_end=308, ) _IMPORTINSTANCEWITHCSVRESPONSE = _descriptor.Descriptor( name='ImportInstanceWithCsvResponse', full_name='instance.ImportInstanceWithCsvResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='insert_count', full_name='instance.ImportInstanceWithCsvResponse.insert_count', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='update_count', full_name='instance.ImportInstanceWithCsvResponse.update_count', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='failed_count', full_name='instance.ImportInstanceWithCsvResponse.failed_count', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='data', full_name='instance.ImportInstanceWithCsvResponse.data', index=3, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_IMPORTINSTANCEWITHCSVRESPONSE_DATA, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=75, serialized_end=308, ) _IMPORTINSTANCEWITHCSVRESPONSEWRAPPER = _descriptor.Descriptor( name='ImportInstanceWithCsvResponseWrapper', full_name='instance.ImportInstanceWithCsvResponseWrapper', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='code', full_name='instance.ImportInstanceWithCsvResponseWrapper.code', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='codeExplain', full_name='instance.ImportInstanceWithCsvResponseWrapper.codeExplain', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='error', full_name='instance.ImportInstanceWithCsvResponseWrapper.error', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='data', full_name='instance.ImportInstanceWithCsvResponseWrapper.data', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=311, serialized_end=454, ) _IMPORTINSTANCEWITHCSVRESPONSE_DATA.fields_by_name['data'].message_type = google_dot_protobuf_dot_struct__pb2._STRUCT _IMPORTINSTANCEWITHCSVRESPONSE_DATA.containing_type = _IMPORTINSTANCEWITHCSVRESPONSE _IMPORTINSTANCEWITHCSVRESPONSE.fields_by_name['data'].message_type = _IMPORTINSTANCEWITHCSVRESPONSE_DATA _IMPORTINSTANCEWITHCSVRESPONSEWRAPPER.fields_by_name['data'].message_type = _IMPORTINSTANCEWITHCSVRESPONSE DESCRIPTOR.message_types_by_name['ImportInstanceWithCsvResponse'] = _IMPORTINSTANCEWITHCSVRESPONSE DESCRIPTOR.message_types_by_name['ImportInstanceWithCsvResponseWrapper'] = _IMPORTINSTANCEWITHCSVRESPONSEWRAPPER _sym_db.RegisterFileDescriptor(DESCRIPTOR) ImportInstanceWithCsvResponse = _reflection.GeneratedProtocolMessageType('ImportInstanceWithCsvResponse', (_message.Message,), { 'Data' : _reflection.GeneratedProtocolMessageType('Data', (_message.Message,), { 'DESCRIPTOR' : _IMPORTINSTANCEWITHCSVRESPONSE_DATA, '__module__' : 'import_instance_with_csv_pb2' # @@protoc_insertion_point(class_scope:instance.ImportInstanceWithCsvResponse.Data) }) , 'DESCRIPTOR' : _IMPORTINSTANCEWITHCSVRESPONSE, '__module__' : 'import_instance_with_csv_pb2' # @@protoc_insertion_point(class_scope:instance.ImportInstanceWithCsvResponse) }) _sym_db.RegisterMessage(ImportInstanceWithCsvResponse) _sym_db.RegisterMessage(ImportInstanceWithCsvResponse.Data) ImportInstanceWithCsvResponseWrapper = _reflection.GeneratedProtocolMessageType('ImportInstanceWithCsvResponseWrapper', (_message.Message,), { 'DESCRIPTOR' : _IMPORTINSTANCEWITHCSVRESPONSEWRAPPER, '__module__' : 'import_instance_with_csv_pb2' # @@protoc_insertion_point(class_scope:instance.ImportInstanceWithCsvResponseWrapper) }) _sym_db.RegisterMessage(ImportInstanceWithCsvResponseWrapper) # @@protoc_insertion_point(module_scope)
9f811d0e5fca8f23ad4e3fe6e2188485c4722a37
7ee8a3bc4fbe8e094a4acf0bc7dd58899a5f4d3e
/src/djnext_example/artist/migrations/0001_initial.py
47c807a90b452b75770bc42c2fff12d3e484a197
[]
no_license
yourlabs/djnext
95798acf66fb3b507ea701cce31e40f1bcdf2b1d
76516e2d76495300385223265878b5d30641c965
refs/heads/master
2023-02-09T06:40:07.051724
2018-05-13T21:37:24
2018-05-13T21:37:24
133,148,115
36
5
null
2023-01-26T03:23:41
2018-05-12T13:20:29
Python
UTF-8
Python
false
false
561
py
# Generated by Django 2.0.4 on 2018-05-12 17:14 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Artist', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100)), ], options={ 'ordering': ['name'], }, ), ]
34b64673ff08d394dce6f7563327c1fdc93549b7
256746f29f9995accd4fee35b9b8981264ca2e37
/Ch06/2017-9-25.py
7d2a5f71b389e7ec916d60249be31ee662dff0f2
[]
no_license
Vagacoder/Python_for_everyone
adadd55561b2200d461afbc1752157ad7326698e
b2a1d1dcbc3cce5499ecc68447e1a04a8e59dc66
refs/heads/master
2021-06-22T00:26:02.169461
2019-05-25T16:06:04
2019-05-25T16:06:04
114,508,951
0
0
null
null
null
null
UTF-8
Python
false
false
671
py
##Ch06 R6.5 from random import * count = 0 value = [] while count<10: randomNumber = randint(1,10) while randomNumber in value: randomNumber = randint(1, 10) value.append(randomNumber) count += 1 print (value) ##Ch06 R6.6 from random import * count = 0 value = [] while count<10: randomNumber = randint(1,100) while randomNumber in value: randomNumber = randint(1, 100) value.append(randomNumber) count += 1 print (value) max = value[0] min = value[0] for i in value: if i > max: max = i if i < min: min = i print("Max is: %d" %max) print("Min is: %d" %min)
57e6299d4c59ae36b3a95d328a5793886a62834a
d6f7ac9541ec803db6f3b528030f6dd94bf2c1fe
/bootcamp_module09/core/tests/test_student_59.py
9836fc05f38771dec8e001f19bb7483049077493
[ "BSD-3-Clause" ]
permissive
poloxu/bisb-bootcamp-2021-module09
c6182abf2b04621e79cec21102da23aabd4fb307
46c146e2ffdeebf3b95abcd8fe382f982ce67cb6
refs/heads/master
2023-07-29T23:22:22.874853
2021-09-17T16:59:55
2021-09-17T16:59:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
757
py
from bootcamp_module09.core.student_59 import count_substring # noqa def test_count_substring_single(): test_string = "CGCTAGCGT" test_substring = "TAG" expected_count = 1 observed_count = count_substring(test_string, test_substring) assert expected_count == observed_count def test_count_substring_repeated(): test_string = "AGCTAGCAGT" test_substring = "AGC" expected_count = 2 observed_count = count_substring(test_string, test_substring) assert expected_count == observed_count def test_count_substring_none(): test_string = "AGTCCCCTAGA" test_substring = "AAA" expected_count = 0 observed_count = count_substring(test_string, test_substring) assert expected_count == observed_count
1c87a0e2825e26309b4244af6a2ee779071d0f2c
8015f1c62a2cb4efd21aa8938336913bf8117868
/bamap/ba3962.pngMap.py
48a92f7f1c037ff2bf416b51ebe1915236974ca6
[]
no_license
GamerNoTitle/Beepers-and-OLED
675b5e3c179df0f0e27b42bf594c43860d03b9af
afe1340e5394ae96bda5f9022a8a66824368091e
refs/heads/master
2020-04-20T00:09:47.122471
2019-04-29T04:59:35
2019-04-29T04:59:35
168,515,579
4
2
null
null
null
null
UTF-8
Python
false
false
8,468
py
ba3962.pngMap = [ '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111101100100011111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111010000000000111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111110000000000000011111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111110000000000000010011111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111000000000000000001111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111000000000000000000111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111000000000000000001011111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111100000000000000000011111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111010000000000000010011111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111000000000000111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111100000000000001111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111110000000000000111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111000000000000000011111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111100000000000001111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111000000000000001011111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111000000000000000011111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111100000000000000011111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111100000000000000011111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111000000000000000011111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111000000000000000011111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111000000000000000011111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111000000000000000011111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111001000000000000000000000000011111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111010000000000000000000000000000000111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111000000000000000000000000000000000000000000111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111100000000000000000000000000000000000000000000011111111111111111111111111111111111111111', '11111111111111111111111111111111111111100000000000000000000000000000000000000000000000001111111111111111111111111111111111111111', '11111111111111111111111111111111111111000000000000000000000000000000000000000000000000000111111111111111111111111111111111111111', '11111111111111111111111111111111111100000000000000000011000000000000000111000000000000000011111111111111111111111111111111111111', '11111111111111111111111111111111111110000000000000001111000000000000000111100000000000000001111111111111111111111111111111111111', ]
4a1d6bf2ad0501abe44630ea764ba4fb0f30dd56
09e57dd1374713f06b70d7b37a580130d9bbab0d
/data/cirq_new/cirq_program/startCirq_pragma227.py
2ebfa1038e0dd1e6ab87822f17605f3c0fadb833
[ "BSD-3-Clause" ]
permissive
UCLA-SEAL/QDiff
ad53650034897abb5941e74539e3aee8edb600ab
d968cbc47fe926b7f88b4adf10490f1edd6f8819
refs/heads/main
2023-08-05T04:52:24.961998
2021-09-19T02:56:16
2021-09-19T02:56:16
405,159,939
2
0
null
null
null
null
UTF-8
Python
false
false
2,536
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 5/15/20 4:49 PM # @File : grover.py # qubit number=4 # total number=14 import cirq import cirq.google as cg from typing import Optional import sys from math import log2 import numpy as np class Opty(cirq.PointOptimizer): def optimization_at( self, circuit: 'cirq.Circuit', index: int, op: 'cirq.Operation' ) -> Optional[cirq.PointOptimizationSummary]: if (isinstance(op, cirq.ops.GateOperation) and isinstance(op.gate, cirq.CZPowGate)): return cirq.PointOptimizationSummary( clear_span=1, clear_qubits=op.qubits, new_operations=[ cirq.CZ(*op.qubits), cirq.X.on_each(*op.qubits), cirq.X.on_each(*op.qubits), ] ) #thatsNoCode def make_circuit(n: int, input_qubit): c = cirq.Circuit() # circuit begin c.append(cirq.H.on(input_qubit[0])) # number=1 c.append(cirq.H.on(input_qubit[1])) # number=2 c.append(cirq.H.on(input_qubit[1])) # number=7 c.append(cirq.X.on(input_qubit[1])) # number=10 c.append(cirq.H.on(input_qubit[2])) # number=3 c.append(cirq.H.on(input_qubit[3])) # number=4 c.append(cirq.H.on(input_qubit[0])) # number=11 c.append(cirq.CZ.on(input_qubit[3],input_qubit[0])) # number=12 c.append(cirq.H.on(input_qubit[0])) # number=13 c.append(cirq.CNOT.on(input_qubit[3],input_qubit[0])) # number=6 c.append(cirq.SWAP.on(input_qubit[1],input_qubit[0])) # number=8 c.append(cirq.SWAP.on(input_qubit[1],input_qubit[0])) # number=9 # circuit end c.append(cirq.measure(*input_qubit, key='result')) return c def bitstring(bits): return ''.join(str(int(b)) for b in bits) if __name__ == '__main__': qubit_count = 4 input_qubits = [cirq.GridQubit(i, 0) for i in range(qubit_count)] circuit = make_circuit(qubit_count,input_qubits) circuit = cg.optimized_for_sycamore(circuit, optimizer_type='sqrt_iswap') circuit_sample_count =2820 simulator = cirq.Simulator() result = simulator.run(circuit, repetitions=circuit_sample_count) frequencies = result.histogram(key='result', fold_func=bitstring) writefile = open("../data/startCirq_pragma227.csv","w+") print(format(frequencies),file=writefile) print("results end", file=writefile) print(circuit.__len__(), file=writefile) print(circuit,file=writefile) writefile.close()
e7dd7163634a0bbdb9a9cad543458590b2bb5119
955f9d3fb34af54de2f046d17bbac11c1474819e
/abc174/c.py
8d677e68c2c1a02bfe30bd9fe642311a51a3f835
[]
no_license
shimewtr/AtCoderPracticePython
5bb4c28119fced2d111bd1810e0e290f25b6a191
f3c22ec1f7a36a27848070c5c6ca4e1717b04ac6
refs/heads/master
2023-01-12T17:28:44.770138
2020-11-19T22:50:22
2020-11-19T22:50:22
204,830,292
0
0
null
null
null
null
UTF-8
Python
false
false
1,279
py
import sys from io import StringIO import unittest import logging logging.basicConfig(level=logging.DEBUG) def resolve(): k = int(input()) if k % 2 == 0: print(-1) else: ans = 1 check = True while (check): tmp = 0 for i in range(ans): tmp += 7 * 10 ** i if tmp % k == 0: print(ans) break ans += 1 class TestClass(unittest.TestCase): def assertIO(self, input, output): stdout, stdin = sys.stdout, sys.stdin sys.stdout, sys.stdin = StringIO(), StringIO(input) resolve() sys.stdout.seek(0) out = sys.stdout.read()[:-1] sys.stdout, sys.stdin = stdout, stdin self.assertEqual(out, output) def test_input_1(self): print("test_input_1") input = """101""" output = """4""" self.assertIO(input, output) def test_input_2(self): print("test_input_2") input = """2""" output = """-1""" self.assertIO(input, output) def test_input_3(self): print("test_input_3") input = """999983""" output = """999982""" self.assertIO(input, output) if __name__ == "__main__": unittest.main()
1ea03400ca87f6315d33824b3426b6fb0d74d1c5
4589a9ea76e458793ad78059839b81d365f433de
/athena_automation/athenataf/tests/configuration/system/admin/delete_test_scenarios/DeleteTestScenarios.py
8914ef5a124a3da9001bacaf87ea36bba1885e95
[]
no_license
cash2one/reautomation_handoff
5e2c4c432d8f658d1b57211782744bd0b56c52f6
7ef83572d659db35036189eb394f99de1369db5a
refs/heads/master
2020-05-22T17:56:33.214080
2015-07-13T07:51:18
2015-07-13T07:51:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,105
py
import logging logger = logging.getLogger('athenataf') from athenataf.lib.functionality.test.ConfigurationTest import ConfigurationTest class DeleteTestScenarios(ConfigurationTest): ''' Test class for System Admin DeleteTestScenarios. ''' def test_ath_11329_delete_view_only_guest_registration_only_non_default_values(self): conf = self.config.config_vars self.take_s1_snapshot() system_page = self.LeftPanel.go_to_system_page() system_page.go_to_admin_tab() system_page.view_only_non_default_values(conf.viewonly,conf.viewonly,conf.viewonly) system_page._save_settings() system_page.go_to_admin_tab() system_page.guest_registration_only_non_default_values(conf.guest_username,conf.guest_password,conf.guest_password) system_page._save_settings() self.take_s2_snapshot() system_page.go_to_admin_tab() system_page.restore_view_only_default_values() system_page.go_to_admin_tab() system_page.restore_guest_registration_only_default_values() self.take_s3_snapshot() self.assert_s1_s2_diff(0) self.assert_s1_s3_diff() self.clear()
fd2b4017602792ace836e55c845558ba791a3588
8afb5afd38548c631f6f9536846039ef6cb297b9
/_PYTHON/DATA_STRUC_PYTHON_NOTES/python-prac/mini-scripts/python_Generate_Random_Number.txt.py
98b69a5707be5d3b566f616421eb1f62442fefe9
[ "MIT" ]
permissive
bgoonz/UsefulResourceRepo2.0
d87588ffd668bb498f7787b896cc7b20d83ce0ad
2cb4b45dd14a230aa0e800042e893f8dfb23beda
refs/heads/master
2023-03-17T01:22:05.254751
2022-08-11T03:18:22
2022-08-11T03:18:22
382,628,698
10
12
MIT
2022-10-10T14:13:54
2021-07-03T13:58:52
null
UTF-8
Python
false
false
60
py
from numpy import random x = random.randint(100) print(x)
8ab3069b9a328363bbbfd0ad67638a4ac549183c
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_116/770.py
c1b36eac52d21c7e378886958c50e72ea92b665e
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,196
py
# Solver for Tic-Tac-Toe-Tomek game import numpy as np fin = open('A-large.in') fout = open('testout_large.txt', 'w') def CheckWinner(A, player_char, not_player_char): # Check if X wins Acopy = A Acopy = np.where(Acopy=='.', 0, Acopy) Acopy = np.where(Acopy==not_player_char,0,Acopy) Acopy = np.where(Acopy=='T',1,Acopy) Acopy = np.where(Acopy==player_char,1,Acopy) Acopy = np.array(Acopy, dtype=int) # print(Acopy) if max(np.sum(Acopy,0))==4 or max(np.sum(Acopy,1))==4 or np.trace(Acopy)==4 or sum(Acopy[[0,1,2,3], [3,2,1,0]])==4: return(True) else: return(False) T = int(fin.readline().rstrip('\n')) for j in range(1,T+1,1): board = [] line = fin.readline() while line != '\n' and line != '': board.append(list(line.strip('\n'))) line = fin.readline() # CheckWinner(array) # print(board) matboard = np.array(board) if CheckWinner(matboard, 'X', 'O'): fout.write('Case #%d: X won\n' %j) elif CheckWinner(matboard, 'O', 'X'): fout.write('Case #%d: O won\n' %j) elif np.in1d(['.'], matboard).all(): fout.write('Case #%d: Game has not completed\n' %j) else: fout.write('Case #%d: Draw\n' %j) fin.close() fout.close()
6264a0b4aebc98ab2fd8d75d31f9861aece0fde2
59de7788673ade984b9c9fbc33664a7cbdba67d3
/res/scripts/client/gui/scaleform/daapi/view/meta/fortchoicedivisionwindowmeta.py
12eb657baafa06583d6ac8fb7bce9fbd90dcdb1c
[]
no_license
webiumsk/WOT-0.9.15-CT
3fa24ab37a6c91b7073034afb2f355efa5b7fe36
fbd194fbaa6bdece51c7a68fc35bbb5257948341
refs/heads/master
2020-12-24T21:27:23.175774
2016-05-01T13:47:44
2016-05-01T13:47:44
57,600,180
0
0
null
null
null
null
WINDOWS-1250
Python
false
false
1,202
py
# 2016.05.01 15:22:42 Střední Evropa (letní čas) # Embedded file name: scripts/client/gui/Scaleform/daapi/view/meta/FortChoiceDivisionWindowMeta.py from gui.Scaleform.framework.entities.abstract.AbstractWindowView import AbstractWindowView class FortChoiceDivisionWindowMeta(AbstractWindowView): """ DO NOT MODIFY! Generated with yaml. __author__ = 'yaml_processor' @extends AbstractWindowView null """ def selectedDivision(self, divisionID): """ :param divisionID: :return : """ self._printOverrideError('selectedDivision') def changedDivision(self, divisionID): """ :param divisionID: :return : """ self._printOverrideError('changedDivision') def as_setDataS(self, data): """ :param data: :return : """ if self._isDAAPIInited(): return self.flashObject.as_setData(data) # okay decompyling c:\Users\PC\wotsources\files\originals\res\scripts\client\gui\scaleform\daapi\view\meta\fortchoicedivisionwindowmeta.pyc # decompiled 1 files: 1 okay, 0 failed, 0 verify failed # 2016.05.01 15:22:42 Střední Evropa (letní čas)
285a2caa90b61ae628ae8b0c2b62c3ae736ac74f
aace5cbeeb567b017984898297192ea6b5c5993f
/文件操作/csv/03pd按照列写入csv文件.py
67d0d5a2673a07fd7481e0836c2853236a6457af
[ "MIT" ]
permissive
Litao439420999/Spider
4eb27fc332b9a97c9917c236c3653809c2229ac3
47d70ec92936b8bea87c641df47ea30e5dde86a1
refs/heads/master
2023-03-24T19:02:22.857250
2021-03-14T02:07:59
2021-03-14T02:07:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
813
py
''' Description: 参考:https://blog.csdn.net/weixin_43245453/article/details/90054820?utm_medium=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-4.control&depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-4.control Author: HCQ Company(School): UCAS Email: [email protected] Date: 2021-01-16 21:40:14 LastEditTime: 2021-01-16 21:48:25 FilePath: /Spider/文件操作/csv/03pd按照列写入csv文件.py ''' import pandas as pd #a和b的长度必须保持一致,否则报错 a = [x for x in range(5)] b = [x for x in range(5,10)] #字典中的key值即为csv中列名 dataframe = pd.DataFrame({'a_name':a,'b_name':b}) #将DataFrame存储为csv,index表示是否显示行名,default=True dataframe.to_csv(r"03保存test.csv",index=False, sep=',')
0846ce23d72a96dd3abeb6c06cb588f10a9f6824
24dabf63ba445fa4df205b5c9bbe89f9d7230527
/transfer_learning/tools/double_iterator.py
244733768081f4b153ad922e06ce30643145c6df
[]
no_license
marco-willi/hco-experiments
e51ea5581eefb4fc3b46fb4337b9f04eb52640fb
7f3076b476e3311ed22d2db37c6d075e43d0d61f
refs/heads/master
2021-01-22T04:09:37.706108
2018-01-03T20:44:46
2018-01-03T20:44:46
92,433,439
1
0
null
2017-08-21T03:49:27
2017-05-25T18:40:03
Python
UTF-8
Python
false
false
2,987
py
""" Double Iterator - Outer (slower) ImageGenerator that serves large batches of data that just fit into memory - Inner (numpy) ImageGenerator that serves smaller batches of data """ # import modules from keras.preprocessing.image import ImageDataGenerator from keras.preprocessing.image import Iterator class DoubleIterator(Iterator): """ Outer / Inner data generators to optimize image serving - batch_size: int the number of images returned by the Iterator - outer_generator: Iterator that returns images typically ImageDataGenerator.flow_from_directory() """ def __init__(self, outer_generator, batch_size, seed=None, inner_shuffle=True): self.outer_generator = outer_generator self.batch_size = batch_size self.n_on_stack = 0 self.inner = None self.n = outer_generator.n self.seed = seed self.inner_shuffle = inner_shuffle def next(self): """ Get next batch """ if (self.n_on_stack == 0) or (self.inner is None): # get next batch of outer generator X_outer, y_outer = self.outer_generator.next() # calculate stack size for inner generator self.n_on_stack = (self.outer_generator.batch_size // self.batch_size) # Create inner data generator (no data agumentation - this is # done by the outer generator) self.inner = ImageDataGenerator().flow( X_outer, y_outer, batch_size=self.batch_size, seed=self.seed, shuffle=self.inner_shuffle) # get next batch X_inner, y_inner = self.inner.next() self.n_on_stack -= 1 # print("N on stack: %s, batches_seen: %s" % # (self.n_on_stack, self.outer_generator.total_batches_seen)) return X_inner, y_inner if __name__ == '__main__': from config.config import cfg_path path = cfg_path['images'] + 'train/' datagen_train = ImageDataGenerator( rescale=1./255, featurewise_center=False, featurewise_std_normalization=False, horizontal_flip=True, zoom_range=[0.9, 1]) train_generator = datagen_train.flow_from_directory( path, target_size=(150, 150), color_mode='rgb', batch_size=500, class_mode='sparse', seed=123) train_generator.batch_index train_generator.total_batches_seen train_generator.batch_size // 32 31 * 32 tt = DoubleIterator(train_generator, 32) batch_x, batch_y = tt.next() batch_x2, batch_y2 = tt.next() import numpy as np np.array_equal(batch_x, batch_x2) batch_x.shape 3200 // 32 import time for i in range(0, 100): time_s = time.time() X, y = tt.next() time_elapsed = time.time() - time_s print("Iteration %s took %s s" % (i, time_elapsed))
f46483143cee2b1cfa802c56d800dd7312457b50
14e19bcaaf917924e7bb78e4f7e6b42662ff5164
/fancy_month01/day17_fancy/day17_teacher/demo05.py
5e119a78d204ea68d697a808609411ce80758693
[]
no_license
Lzffancy/Aid_study
5b3538443ca0ad1107a83ef237459b035fef70d0
4ba5e5045371490d68459edd1f0a94963e0295b1
refs/heads/master
2023-02-22T19:11:00.867446
2021-01-25T13:01:35
2021-01-25T13:01:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
467
py
""" 闭包 三大要素: 有外有内 内使用外 外返回内 字面思想: 封闭内存空间 作用: 外部函数栈帧执行后,不释放. 等待内部函数重复使用 """ def func01(): a = 100 def func02(): print(a) return func02 # 返回但没有执行内部函数. # 调用外部函数,得到内部函数 res = func01() res() res()
511a610b4208faf06340813b7dc036f4cefe122c
67971c2c66bce8e9746810592f71a33fcbbeb260
/tests/test_database/test_playlist.py
cd1653bbcdf1c25933f2071b41dce51c388a761b
[ "MIT" ]
permissive
holing/LinDouFm
78ade890c974b967ba3102cf93c31dee1bfcde09
463618599e2f3111c7fc2dd251940e9c4981b40b
refs/heads/master
2021-01-17T03:39:53.758021
2015-01-18T14:13:36
2015-01-18T14:13:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,809
py
# coding:utf-8 from database.playlist import playlist from database.music import music_model from database.channel import channel_model from tests.test_database.test_music import get_test_music def test_playlist(): #添加测试频道 channel_name = u"test_channel_name" channel_uuid = u"mk_test_douban-cid" channel = channel_model.add_channel(channel_name, channel_uuid) assert len(playlist.get_music_by_channel(channel, 20)) == 0 #添加测试音乐 music_information = get_test_music() new_music_list = [] for i in range(20): music_information[u"cover"].seek(0) music_information[u"audio"].seek(0) music_information[u"uuid"] += unicode(i) music = music_model.add_music(music_information[u"title"], music_information[u"artist"], music_information[u"album"] , music_information[u"company"], music_information[u"public_time"], music_information[u"kbps"], music_information[u"cover"], music_information[u"audio"], music_information[u"uuid"]) new_music_list.append(music.key) #往测试频道中添加测试音乐信息 channel_model.update_channel(channel, music_list=new_music_list) channel = channel_model.get_channel(key=channel.key)[0] assert len(playlist.get_music_by_channel(channel, 30)) == 20 assert len(playlist.get_music_by_channel(channel, 20)) == 20 assert len(playlist.get_music_by_channel(channel, 10)) == 10 #删除 channel_model.delete_channel(channel) music_list = music_model.get_music(title=music_information[u"title"]) for music in music_list: music_model.delete_music(music)
[ "root@ubuntu.(none)" ]
root@ubuntu.(none)
63463a703612e5da4d3698590f690f700b1e48e0
7f57c12349eb4046c40c48acb35b0f0a51a344f6
/2015/RotateList_v0.py
cc1c94e88855fbce957c86bc6277c56718a5008b
[]
no_license
everbird/leetcode-py
0a1135952a93b93c02dcb9766a45e481337f1131
b093920748012cddb77258b1900c6c177579bff8
refs/heads/master
2022-12-13T07:53:31.895212
2022-12-10T00:48:39
2022-12-10T00:48:39
11,116,752
2
0
null
null
null
null
UTF-8
Python
false
false
1,120
py
#!/usr/bin/env python # encoding: utf-8 # Definition for singly-linked list. class ListNode: def __init__(self, x): self.val = x self.next = None def print_l(head): if head: print head.val if head.next: print_l(head.next) class Solution: # @param {ListNode} head # @param {integer} k # @return {ListNode} def rotateRight(self, head, k): if not head: return if not head.next: return head l = 1 tail = head while tail.next: tail = tail.next l += 1 k %= l if k == 0: return head t = head for i in range(l - k - 1): t = t.next new_head = t.next t.next = None tail.next = head return new_head if __name__ == '__main__': s = Solution() head = n1 = ListNode(1) n2 = ListNode(2) n3 = ListNode(3) n4 = ListNode(4) n5 = ListNode(5) n1.next = n2 n2.next = n3 n3.next = n4 n4.next = n5 h = s.rotateRight(head, 5) print_l(h)
8a7a2e55befff55fa7322db16f944dccb8bddcb3
f33b30743110532ddae286ba1b34993e61669ab7
/Optimal Division.py
171cb2effb649a0cb56f16ae0f104dba31b07f47
[]
no_license
c940606/leetcode
fe9dcee7a5daa4d52999d5f53253dd6dd33c348b
631df2ce6892a6fbb3e435f57e90d85f8200d125
refs/heads/master
2021-07-10T14:01:26.164966
2020-08-16T10:46:16
2020-08-16T10:46:16
186,588,449
3
0
null
null
null
null
UTF-8
Python
false
false
430
py
class Solution(object): def optimalDivision(self, nums): """ :type nums: List[int] :rtype: str """ n = len(nums) if n == 0: return if n == 1: return nums[0] if n == 2: return str(nums[0]) + "/" + str(nums[1]) res = str(nums[0]) res += "/" res += "(" + str(nums[1]) for i in range(2,n): res += "/"+str(nums[i]) res += ")" return res a = Solution() print(a.optimalDivision([1000,100,10,2]))
7b2653c28ca84b62142d0978452bfbd4823f4d88
e28fad299c396ff153e5df666443e335a033b657
/mms/stories/views.py
183a6686c66e73e2b676c20eb9843e75bcd8bf7c
[]
no_license
easherma/mms_django
387b179ab74bf4447fa7acefa6ac84f0423edb1f
1ae30ae8bc30550dce19e288ae43759a8155f8ad
refs/heads/master
2021-01-10T18:08:01.586356
2017-01-12T20:44:09
2017-01-12T20:44:09
71,917,502
0
0
null
2017-02-20T19:08:29
2016-10-25T16:36:14
HTML
UTF-8
Python
false
false
2,896
py
from django.contrib.auth.models import User from stories.models import Story, Submission, Waypoint from stories.serializers import StorySerializer, UserSerializer, SubmissionSerializer, WaypointSerializer from rest_framework import viewsets from rest_framework.renderers import TemplateHTMLRenderer from rest_framework.response import Response from rest_framework.views import APIView from rest_framework import generics from rest_framework.decorators import detail_route, list_route from rest_framework.renderers import JSONRenderer from django.utils.six import BytesIO from rest_framework.parsers import JSONParser import geojson import json def waypoint_to_geojson(waypoint, properties): geometry= waypoint['geom'] #[f.name for f in models.Waypoint._meta.get_fields()] feature = geojson.Feature(geometry=geometry, properties=properties) return feature class StoryViewSet(viewsets.ModelViewSet): queryset = Story.objects.all() serializer_class = StorySerializer @detail_route() def waypoints(self, request, pk=None): #serializer = WaypointSerializer story = self.get_object() submissions = story.submissions.all() #waypoints = [] for submission in submissions: #waypoints = submission.waypoints features = [] for waypoint in submission.waypoints.values(): geom = geojson.loads(waypoint['geom']) #should return just the props we need properties = waypoint #geom['properties'] = properties feature = geojson.Feature(geometry=geom, properties=properties) features.append(feature) waypoints = geojson.FeatureCollection(features) return Response(waypoints) @detail_route() def users(self, request, pk=None): story = self.get_object() pk = self.kwargs['pk'] queryset = User.objects.filter(submission=story.pk) #get to return Response(queryset.values()) class WaypointsByStory(viewsets.ModelViewSet): serializer_class = WaypointSerializer storyname = 'My First Story' queryset = Waypoint.objects.filter(submission__story__name='My First Story').select_related('submission') #these are pretty much useless class UserViewSet(viewsets.ModelViewSet): queryset = User.objects.all() serializer_class = UserSerializer class SubmissionViewSet(viewsets.ModelViewSet): queryset = Submission.objects.all() serializer_class = SubmissionSerializer class WaypointViewSet(viewsets.ModelViewSet): queryset = Waypoint.objects.all() serializer_class = WaypointSerializer class StoryList(APIView): renderer_classes = (TemplateHTMLRenderer,) template_name = 'stories_list.html' def get(self, request): queryset = Story.objects.all() return Response({'stories': queryset})
d39c7fb78ac2d32f16918615fb0f8dadb4a8b9d1
7af9841dfdeb7192cee9f5bc5ae24ebabeeebdcc
/project/admin.py
06b0a54f6791eeb4a8343c0af355c73e99ad51a5
[]
no_license
dimansion/bepy
513d1d6b8c6f679ce97f46741b50b73dabf20484
dd92999b9fb0d65e9479372718409785a8d26d26
refs/heads/master
2020-06-28T11:27:02.204255
2016-11-14T11:26:32
2016-11-14T11:26:32
67,694,755
0
0
null
null
null
null
UTF-8
Python
false
false
560
py
from django.contrib import admin from project.models import Page, Content class ContentInline(admin.TabularInline): model = Content prepopulated_fields = {'slug':('name',)} class PageAdmin(admin.ModelAdmin): list_display = ('title', 'published_date',) prepopulated_fields = {'slug':('title',)} inlines = [ContentInline] # class ContentAdmin(admin.ModelAdmin): # list_display = ('name', 'lesson',) # prepopulated_fields = {'slug':('name',)} admin.site.register(Page, PageAdmin) # admin.site.register(Content, ContentAdmin)
8810e20c0d4928a9c3b0dbf23ef6590ec448b754
128d593efd591dc83a3aef2d4bfad39e73ee637e
/python_code/complete/no128
a8958da736adcb09069e0cf51a44cd9584ed2446
[]
no_license
jwan/ProjectEuler
93be87d89cc58516d503dd5ed53bdbd706748cda
65aec4f87b8899db6bad94a36412a28a4b4527e9
refs/heads/master
2021-01-17T08:21:46.654529
2011-05-02T23:11:35
2011-05-02T23:11:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,574
#!/usr/bin/env python # 1 --> (2,3,4,5,6,7) # [1] 1 # [2,...,7] 6 # [8,...,19] 12 # [20,...,37] 18 # [38,...,61] 24 # f(k) = 3k^2 - 3k + 1 # f(k) = elements before layer k if k > 0 #Layer 0 # 1 -- (1,1) -- (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) # Layer 1 # 2 -- (2,1) -- (1,1), (2,2),(2,6), (3,1),(3,2),(3,12) C # 3 -- (2,2) -- (1,1), (2,1),(2,3), (3,2),(3,3),(3,4) C # 4 -- (2,3) -- (1,1), (2,2),(2,4), (3,4),(3,5),(3,6) C # 5 -- (2,4) -- (1,1), (2,3),(2,5), (3,6),(3,7),(3,8) C # 6 -- (2,5) -- (1,1), (2,4),(2,6), (3,8),(3,9),(3,10) C # 7 -- (2,6) -- (1,1), (2,5),(2,1), (3,10),(3,11),(3,12) C # Layer 2 # 8 -- (3,1) -- (2,1), (3,2),(3,12),(4,1),(4,2),(4,18) C # 9 -- (3,2) -- (2,1),(2,2),(3,1),(3,3), (4,2),(4,3) # 10 -- (3,3) -- (2,2), (3,2),(3,4), (4,3),(4,4),(4,5) C # 11 -- (3,4) -- (2,2),(2,3),(3,3),(3,5), (4,5),(4,6) # 12 -- (3,5) -- (2,3), (3,4),(3,6), (4,6),(4,7),(4,8) C # 13 -- (3,6) -- (2,3),(2,4) # 14 -- (3,7) -- (2,4) # 15 -- (3,8) -- (2,4),(2,5) # 16 -- (3,9) -- (2,5) # 17 -- (3,10) -- (2,5),(2,6) # 18 -- (3,11) -- (2,6) # 19 -- (3,12) -- (2,6),(2,1) # 20 -- (4,1) -- (3,)(4,)(5,) # 21 -- (4,2) --(3,1)(3,2) # 22 -- (4,3) -- (3,2)(3,3) # 22 -- (4,4) -- # (n, k) is corner if k % (n - 1) == 1 # A corner is adjacent to 1 block of lower class, 2 of same, and 3 of higher # the 2 of same will always be (n, k - 1 *wrap*), (n, k + 1 *wrap*) # (n,1) will always be (n-1,1),(n,0),(n,2),(n+1,0),(n+1,1),(n+1,2) # Both the n-1 and n+1 grouping will start where the previous one left off # Only the corners and the final non-corner have a chance at 3 primes # This is because if we are not either, then they are next to 2 consec. #'s, # which give a diff. of 1, the other two pairs will give differences that differ # by one, so at most 1 of each can be prime ############################## # Case1, k neq 1, corner ############################## # The corner (n, k) is adjacent to # (n-1, (k-1)/(n-1)*(n-2) + 1), (n,k-1), (n,k+1)--> don't matter if not end piece, # (n+1, (k-1)/(n-1)*n), (n+1, (k-1)/(n-1)*n + 1), (n+1, (k-1)/(n-1)*n + 2), # 3*(n - 1)*(n - 2) + 1 + k vs. # 3*(n - 2)*(n - 3) + 1 + (k - 1)/(n - 1)*(n - 2) + 1, # 3*(n - 1)*(n - 2) + k,3*(n - 1)*(n - 2) + 2 + k, # 3*n*(n - 1) + 1 + (k - 1)/(n - 1)*n, 3*n*(n - 1) + 1 + (k - 1)/(n - 1)*n + 1, # 3*n*(n - 1) + 1 + (k - 1)/(n - 1)*n + 2 # Diffs # 6*(n - 2) + (k - 1)/(n - 1), # 1,1, # 6*(n - 1) + (k - 1)/(n - 1) - 1, # 6*(n - 1) + (k - 1)/(n - 1), # 6*(n - 1) + (k - 1)/(n - 1) + 1, # Only way it can be 3 is if # c1=6*(n - 2) + (k - 1)/(n - 1), # c2=6*(n - 1) + (k - 1)/(n - 1) - 1, # c3=6*(n - 1) + (k - 1)/(n - 1) + 1, # But if n > 2, c1 prime implies (k-1)/(n-1) == 1,5 mod 6 # implies c2 == 0,4 mod 6, c3 == 0,2 mod 6, so it is never possible # for n > 2 # For n = 1, 1 works # For n = 2, of 3,4,5,6,7 none work ############################## # Case2, k = 1 ############################## # The corner (n, 1) is adjacent to # (n-1, 1), (n,6*(n-1)), (n,2)--> don't matter if not end piece, # (n+1, 6*n), (n+1, 1), (n+1, 2), # 3*(n - 1)*(n - 2) + 2 vs. # 3*(n - 2)*(n - 3) + 2, # 3*(n - 1)*(n - 2) + 1 + 6*(n - 1),3*(n - 1)*(n - 2) + 3, # 3*n*(n - 1) + 1 + 6*n, 3*n*(n - 1) + 2, # 3*n*(n - 1) + 3 # Diffs # 6*(n - 2), # 6*(n - 1) - 1,1 # 6*(2*n - 1) - 1, 6*(n - 1), # 6*(n - 1) + 1 # c1=6*(n - 1) - 1 # c2=6*(2*n - 1) - 1 # c3=6*(n - 1) + 1 # Start at n = 3 (cases 1 and 2 already done, special cases) ############################## # Case3 ############################## # The one outlier is the final piece (n, 6*(n - 1)) # When n > 2, this is not 1 mod n - 1, hence not a corner # This is adjacent to (n,1),(n,6*n-7),(n-1,1),(n-1,6*(n-2)), # (n+1,6*n),(n+1,6*n-1) # 3*(n - 1)*(n - 2) + 1 + 6*(n-1) vs. # 3*(n - 1)*(n - 2) + 1 + 1, 3*(n - 1)*(n - 2) + 6*(n - 1), # 3*(n - 2)*(n - 3) + 1 + 1, 3*(n - 2)*(n - 3) + 1 + 6*(n-2), # 3*n*(n - 1) + 1 + 6*n, 3*n*(n - 1) + 6*n # Diffs # 6*(n - 1) - 1, 1, # 6*(2*n - 3) - 1, 6*(n - 1), # 6*n, 6*n - 1 # c1=6*(n - 1) - 1 # c2=6*(2*n - 3) - 1 # c3=6*n - 1 # Start at n = 3 (cases 1 and 2 already done, special cases) from python_code.decorators import euler_timer from python_code.functions import sieve # 3*(n - 1)*(n - 2) + 2: # c1=6*(n - 1) - 1 = 6*n - 7 # c2=6*(2*n - 1) - 1=12*n - 7 # c3=6*(n - 1) + 1=6*n - 5 # 3*(n - 1)*(n - 2) + 1 + 6*(n-1): # c1=6*(n - 1) - 1=6*n - 7 # c2=6*(2*n - 3) - 1=12*n - 19 # c3=6*n - 1=6*n - 1 # in the first two layers only 1 and 2 do as we wish # from there, first = 8, last = 19 and we can increment # first by 6*(layer - 1) and last by 6*layer # The first corner will be FC(layer) = 3*(layer - 1)*(layer - 2) + 2 # it only has PD = 3 if # (6*layer - 7), (6*layer - 5) and (12*layer - 7) are prime # The last corner will be # LC(layer) = 3*(layer - 1)*(layer - 2) + 1 + 6*(layer - 1) # it only has PD = 3 if # (6*layer - 7), (6*layer - 1) and (12*layer - 19) are prime # Instead of carrying out costly multiplications, we can increment # these by 6 and 12 respectively, similarly # FC(L + 1) - FC(L) = 6*(L - 1) # LC(L + 1) - LC(L) = 6*L # So we can increment these as well @euler_timer(128) def main(): TOTAL = 2000 MAX_n = 10**6 PRIMES = sieve(MAX_n) # Constant, rather than linear lookup prime_bools = [False]*(MAX_n + 1) for prime in PRIMES: prime_bools[prime] = True count = 2 current = 2 layer = 3 first_corner = 8 # Value of first corner in layer last_corner = 19 # Value of last corner in layer six_shared = 11 # prime candidate shared by both corners, # with a difference of 6 six_first = 13 # prime candidate for first corner, diff 6 six_last = 17 # prime candidate for last corner, diff 6 twelve_first = 29 # prime candidate for first corner, diff 12 twelve_last = 17 # prime candidate for last corner, diff 12 while count < TOTAL: if twelve_first > MAX_n: raise Exception("Primes not large enough") if prime_bools[six_shared]: if prime_bools[six_first] and prime_bools[twelve_first]: current = first_corner count += 1 if count < TOTAL: if prime_bools[six_last] and prime_bools[twelve_last]: current = last_corner count += 1 six_shared, six_last = six_last, six_last + 6 six_first += 6 twelve_last, twelve_first = twelve_first, twelve_first + 12 first_corner += 6*(layer - 1) last_corner += 6*layer layer += 1 print current if __name__ == "__main__": main()
1c0718148e9e9ebb9bdd52de8a5d00b60b6504b5
29c58b3bec6ac0fcdb3070efc118600ee92004da
/test/test_email_html_dto.py
92e5827bb8e4596c35ee57d8c9ef29da4ca517f5
[ "MIT" ]
permissive
mailslurp/mailslurp-client-python
a2b5a0545206714bd4462ae517f242852b52aaf9
5c9a7cfdd5ea8bf671928023e7263847353d92c4
refs/heads/master
2023-06-23T00:41:36.257212
2023-06-14T10:10:14
2023-06-14T10:10:14
204,662,133
8
0
null
null
null
null
UTF-8
Python
false
false
1,824
py
# coding: utf-8 """ MailSlurp API MailSlurp is an API for sending and receiving emails from dynamically allocated email addresses. It's designed for developers and QA teams to test applications, process inbound emails, send templated notifications, attachments, and more. ## Resources - [Homepage](https://www.mailslurp.com) - Get an [API KEY](https://app.mailslurp.com/sign-up/) - Generated [SDK Clients](https://docs.mailslurp.com/) - [Examples](https://github.com/mailslurp/examples) repository # noqa: E501 The version of the OpenAPI document: 6.5.2 Contact: [email protected] Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import datetime import mailslurp_client from mailslurp_client.models.email_html_dto import EmailHtmlDto # noqa: E501 from mailslurp_client.rest import ApiException class TestEmailHtmlDto(unittest.TestCase): """EmailHtmlDto unit test stubs""" def setUp(self): pass def tearDown(self): pass def make_instance(self, include_optional): """Test EmailHtmlDto include_option is a boolean, when False only required params are included, when True both required and optional params are included """ # model = mailslurp_client.models.email_html_dto.EmailHtmlDto() # noqa: E501 if include_optional : return EmailHtmlDto( subject = '0', body = '0' ) else : return EmailHtmlDto( ) def testEmailHtmlDto(self): """Test EmailHtmlDto""" inst_req_only = self.make_instance(include_optional=False) inst_req_and_optional = self.make_instance(include_optional=True) if __name__ == '__main__': unittest.main()
6d04d8977bbb04374efd4d17378fdc14d5da1a84
a721e4ca65b79ce725c7b5b43539c963a3b55290
/Halloween_Sale.py
ce32b629161728b86e99fa33e4cc4101e5a4e754
[]
no_license
joydas65/Hackerrank-Problems
0832d7cfd1de7e5df4dba76326ede735edc9afea
a16b3b0ebb65e7597f8f6417047da4d415a818c7
refs/heads/master
2022-06-21T12:47:55.241409
2022-06-18T18:21:08
2022-06-18T18:21:08
159,071,834
9
0
null
null
null
null
UTF-8
Python
false
false
254
py
p,d,m,s = map(int, input().split()) ans = 0 while s >= p: ans += 1 if p <= m: s -= p elif p > m: s -= p p -= d if p <= m: p = m print(ans)
d06f68298b85070352f8aed0d2e30edf7ed61d84
4a5caabe31670ab44fe5097df3971d434fc9ca3f
/kgpy/optics/coordinate/decenter.py
d5438c129063ab4f46b7d9b63e6badcb0be0e0d5
[]
no_license
ngoldsworth/kgpy
c61d64d39a4da011ad7a42566dbeb6ef88266dea
d751fca7f6cc6e762fdc954113f55d407055349d
refs/heads/master
2022-11-27T14:25:01.972415
2020-07-30T23:24:10
2020-07-30T23:24:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,157
py
import dataclasses import numpy as np from astropy import units as u import kgpy.mixin __all__ = ['Decenter'] @dataclasses.dataclass class Decenter(kgpy.mixin.Broadcastable): x: u.Quantity = 0 * u.mm y: u.Quantity = 0 * u.mm @classmethod def promote(cls, value: 'Decenter'): return cls(value.x, value.y) @property def config_broadcast(self): return np.broadcast( super().config_broadcast, self.x, self.y, ) def __invert__(self): return type(self)( -self.x, -self.y, ) def __call__(self, value: u.Quantity, inverse: bool = False, num_extra_dims: int = 0) -> u.Quantity: value = value.copy() sh = list(self.x.shape) sh[~1:~1] = [1] * num_extra_dims x = self.x.reshape(sh) y = self.y.reshape(sh) if not inverse: value[..., 0] += x value[..., 1] += y else: value[..., 0] -= x value[..., 1] -= y return value def copy(self): return Decenter( x=self.x, y=self.y, )
efacad244c5ae011bae81166d0c9355ca56c784c
430a146307fd1f64781a91ab60e79b45a231da28
/l10n/admin.py
347fd6f73abc0b496fa0697dde92dcc90646fdff
[ "BSD-2-Clause", "MIT" ]
permissive
rsalmaso/django-fluo-l10n
61455df2154538db665a9414285a85b7538c81c6
e7b298748a4461407cffe4987a4453db6722c53a
refs/heads/master
2021-01-18T23:56:46.507679
2016-01-03T14:34:37
2016-01-03T14:34:37
48,949,291
0
0
null
null
null
null
UTF-8
Python
false
false
1,689
py
# -*- coding: utf-8 -*- # Copyright (C) 2007-2016, Raffaele Salmaso <[email protected]> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from __future__ import absolute_import, division, print_function, unicode_literals from fluo import admin from .models import Country, AdministrativeArea class AdministrativeAreaInline(admin.TabularInline): model = AdministrativeArea extra = 1 class CountryAdmin(admin.ModelAdmin): list_display = ('printable_name', 'iso2_code', 'iso3_code',) list_filter = ('continent', 'status') search_fields = ('name', 'iso2_code', 'iso3_code') inlines = [AdministrativeAreaInline] admin.site.register(Country, CountryAdmin)
e2ff82125ca55f866ce113b6933b903002731bc8
70280955a5382d73e58395eba78c119a400f4ce7
/asakatsu/0609/4.py
9f554c1b35208567493334073d67e3034afea623
[]
no_license
cohock13/atcoder
a7d0e26a10a4e58690347a2e36839c2f503a79ba
d268aa68fc96203eab94d021bd158cf84bdb00bc
refs/heads/master
2021-01-03T00:41:31.055553
2020-10-27T12:28:06
2020-10-27T12:28:06
239,839,477
0
0
null
null
null
null
UTF-8
Python
false
false
874
py
H,W = map(int,input().split()) m = [list(map(int,input().split())) for _ in range(H)] ans = [] for i in range(H): if i%2 == 0:##左->右 for j in range(W): if m[i][j]%2: if j == W-1: if i != H-1: ans.append((i+1,j+1,i+2,j+1)) m[i+1][j] += 1 else: ans.append((i+1,j+1,i+1,j+2)) m[i][j+1] += 1 else:##右->左 for j in reversed(range(W)): if m[i][j]%2: if j == 0: if i != H-1: ans.append((i+1,j+1,i+2,j+1)) m[i+1][j] += 1 else: ans.append((i+1,j+1,i+1,j)) m[i][j-1] += 1 print(len(ans)) for i in ans: print(*i)
76dea297ed9137e442997eb9ab7a890747ca3906
bf076ab3f9dd5c1860474665be646f89937f1a7f
/settings.py
9acef3e24318d42f1f56f72b921037982218e7f2
[ "MIT" ]
permissive
telminov/sonm-cdn-dns
f66f16fed0c67ed6f862410777f0c0fc3c87b27f
960395f2e7f8d79b5dd2623919ccf89e964fe4ac
refs/heads/master
2020-03-26T21:12:38.279423
2018-09-04T07:58:01
2018-09-04T07:58:01
145,374,340
0
0
MIT
2018-09-04T07:58:02
2018-08-20T06:16:27
Python
UTF-8
Python
false
false
156
py
NODE_MANAGER_URL = 'http://node-manager.cdn.sonm.soft-way.biz' NODE_MANAGER_TOKEN = '123' CDN_DOMAIN = 'cdn-sonm.soft-way.biz.' IP_STACK_ACCESS_KEY = '123'
ed8971e2218caea9e25d1d713f2f26676d439af4
672b6ac4700056d6f648ae52b6e58590ea1944b7
/ch8code/equal.py
36ff9125ab4400b04a58d3afdbf37ee5580673f9
[]
no_license
CodedQuen/NumPy-Beginner-s-Guide
1715de85dae1aea856a613462b132eb2e463170e
8946c33ac02d61d310bd4b9095cd814add75d7d1
refs/heads/master
2022-11-06T10:37:23.821207
2020-06-27T03:19:19
2020-06-27T03:19:19
275,289,940
0
0
null
null
null
null
UTF-8
Python
false
false
79
py
import numpy as np print "Equal?", np.testing.assert_equal((1, 2), (1, 3))
20d0368ac8cbfbff2bd5fb04603008994795b7ad
721406d87f5086cfa0ab8335a936ece839ab2451
/.venv/lib/python3.8/site-packages/opencensus/metrics/export/metric.py
658a27e45125376833965c07c6c3db599f5498f8
[ "MIT" ]
permissive
MarkusMeyer13/graph-teams-presence
661296b763fe9e204fe1e057e8bd6ff215ab3936
c302b79248f31623a1b209e098afc4f85d96228d
refs/heads/main
2023-07-09T03:34:57.344692
2021-07-29T07:16:45
2021-07-29T07:16:45
389,268,821
0
0
MIT
2021-07-29T07:16:46
2021-07-25T05:23:08
Python
UTF-8
Python
false
false
3,224
py
# Copyright 2018, OpenCensus Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from opencensus.metrics.export import metric_descriptor class Metric(object): """A collection of time series data and label metadata. This class implements the spec for v1 Metrics as of opencensus-proto release v0.1.0. See opencensus-proto for details: https://github.com/census-instrumentation/opencensus-proto/blob/v0.1.0/src/opencensus/proto/metrics/v1/metrics.proto#L35 Defines a Metric which has one or more timeseries. :type descriptor: class: '~opencensus.metrics.export.metric_descriptor.MetricDescriptor' :param descriptor: The metric's descriptor. :type timeseries: list(:class: '~opencensus.metrics.export.time_series.TimeSeries') :param timeseries: One or more timeseries for a single metric, where each timeseries has one or more points. """ # noqa def __init__(self, descriptor, time_series): if not time_series: raise ValueError("time_series must not be empty or null") if descriptor is None: raise ValueError("descriptor must not be null") self._time_series = time_series self._descriptor = descriptor self._check_type() def __repr__(self): return ('{}(time_series={}, descriptor.name="{}")' .format( type(self).__name__, "<{} TimeSeries>".format(len(self.time_series)), self.descriptor.name, )) @property def time_series(self): return self._time_series @property def descriptor(self): return self._descriptor def _check_type(self): """Check that point value types match the descriptor type.""" check_type = metric_descriptor.MetricDescriptorType.to_type_class( self.descriptor.type) for ts in self.time_series: if not ts.check_points_type(check_type): raise ValueError("Invalid point value type") def _check_start_timestamp(self): """Check that starting timestamp exists for cumulative metrics.""" if self.descriptor.type in ( metric_descriptor.MetricDescriptorType.CUMULATIVE_INT64, metric_descriptor.MetricDescriptorType.CUMULATIVE_DOUBLE, metric_descriptor.MetricDescriptorType.CUMULATIVE_DISTRIBUTION, ): for ts in self.time_series: if ts.start_timestamp is None: raise ValueError("time_series.start_timestamp must exist " "for cumulative metrics")
dea8529b2857b268b43b97008302392c88a6f157
f82757475ea13965581c2147ff57123b361c5d62
/gi-stubs/repository/GtkSource/StyleSchemeChooserButtonClass.py
ee48a3e369d5c26602de032c6f2bf718a121d7bc
[]
no_license
ttys3/pygobject-stubs
9b15d1b473db06f47e5ffba5ad0a31d6d1becb57
d0e6e93399212aada4386d2ce80344eb9a31db48
refs/heads/master
2022-09-23T12:58:44.526554
2020-06-06T04:15:00
2020-06-06T04:15:00
269,693,287
8
2
null
2020-06-05T15:57:54
2020-06-05T15:57:54
null
UTF-8
Python
false
false
4,893
py
# encoding: utf-8 # module gi.repository.GtkSource # from /usr/lib64/girepository-1.0/GtkSource-3.0.typelib # by generator 1.147 """ An object which wraps an introspection typelib. This wrapping creates a python module like representation of the typelib using gi repository as a foundation. Accessing attributes of the module will dynamically pull them in and create wrappers for the members. These members are then cached on this introspection module. """ # imports import gi as __gi import gi.overrides.GObject as __gi_overrides_GObject import gi.overrides.Gtk as __gi_overrides_Gtk import gi.repository.GObject as __gi_repository_GObject import gi.repository.Gtk as __gi_repository_Gtk import gobject as __gobject class StyleSchemeChooserButtonClass(__gi.Struct): """ :Constructors: :: StyleSchemeChooserButtonClass() """ def __delattr__(self, *args, **kwargs): # real signature unknown """ Implement delattr(self, name). """ pass def __dir__(self, *args, **kwargs): # real signature unknown """ Default dir() implementation. """ pass def __eq__(self, *args, **kwargs): # real signature unknown """ Return self==value. """ pass def __format__(self, *args, **kwargs): # real signature unknown """ Default object formatter. """ pass def __getattribute__(self, *args, **kwargs): # real signature unknown """ Return getattr(self, name). """ pass def __ge__(self, *args, **kwargs): # real signature unknown """ Return self>=value. """ pass def __gt__(self, *args, **kwargs): # real signature unknown """ Return self>value. """ pass def __hash__(self, *args, **kwargs): # real signature unknown """ Return hash(self). """ pass def __init_subclass__(self, *args, **kwargs): # real signature unknown """ This method is called when a class is subclassed. The default implementation does nothing. It may be overridden to extend subclasses. """ pass def __init__(self): # real signature unknown; restored from __doc__ pass def __le__(self, *args, **kwargs): # real signature unknown """ Return self<=value. """ pass def __lt__(self, *args, **kwargs): # real signature unknown """ Return self<value. """ pass @staticmethod # known case of __new__ def __new__(*args, **kwargs): # real signature unknown """ Create and return a new object. See help(type) for accurate signature. """ pass def __ne__(self, *args, **kwargs): # real signature unknown """ Return self!=value. """ pass def __reduce_ex__(self, *args, **kwargs): # real signature unknown """ Helper for pickle. """ pass def __reduce__(self, *args, **kwargs): # real signature unknown """ Helper for pickle. """ pass def __repr__(self, *args, **kwargs): # real signature unknown """ Return repr(self). """ pass def __setattr__(self, *args, **kwargs): # real signature unknown """ Implement setattr(self, name, value). """ pass def __sizeof__(self, *args, **kwargs): # real signature unknown """ Size of object in memory, in bytes. """ pass def __str__(self, *args, **kwargs): # real signature unknown """ Return str(self). """ pass def __subclasshook__(self, *args, **kwargs): # real signature unknown """ Abstract classes can override this to customize issubclass(). This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached). """ pass def __weakref__(self, *args, **kwargs): # real signature unknown pass padding = property(lambda self: object(), lambda self, v: None, lambda self: None) # default parent = property(lambda self: object(), lambda self, v: None, lambda self: None) # default __class__ = None # (!) real value is "<class 'gi.types.StructMeta'>" __dict__ = None # (!) real value is "mappingproxy({'__info__': StructInfo(StyleSchemeChooserButtonClass), '__module__': 'gi.repository.GtkSource', '__gtype__': <GType void (4)>, '__dict__': <attribute '__dict__' of 'StyleSchemeChooserButtonClass' objects>, '__weakref__': <attribute '__weakref__' of 'StyleSchemeChooserButtonClass' objects>, '__doc__': None, 'parent': <property object at 0x7f77ca6ecb80>, 'padding': <property object at 0x7f77ca6ecc70>})" __gtype__ = None # (!) real value is '<GType void (4)>' __info__ = StructInfo(StyleSchemeChooserButtonClass)
979c07a99a4de6deead71a30be7e764a1d398bd8
f900a9f48fe24c6a581bcb28ad1885cfe5743f80
/Chapter_11/test_name_function.py
1f6c6b10bf1eed5b8cf64f797faded06b16b0b93
[]
no_license
Anjali-225/PythonCrashCourse
76e63415e789f38cee019cd3ea155261ae2e8398
f9b9649fe0b758c04861dad4d88058d48837a365
refs/heads/master
2022-12-03T21:35:07.428613
2020-08-18T11:42:58
2020-08-18T11:42:58
288,430,981
0
0
null
null
null
null
UTF-8
Python
false
false
613
py
import unittest from name_function import get_formatted_name class NamesTestCase(unittest.TestCase): """Tests for 'name_function.py'.""" def test_first_last_name(self): """Do names like 'Janis Joplin' work?""" formatted_name = get_formatted_name('janis', 'joplin') self.assertEqual(formatted_name, 'Janis Joplin') def test_first_last_middle_name(self): """Do names like 'Wolfgang Amadeus Mozart' work?""" formatted_name = get_formatted_name('wolfgang', 'mozart', 'amadeus') self.assertEqual(formatted_name, 'Wolfgang Amadeus Mozart') if __name__ == '__main__': unittest.main()
df3287e337b27feb9ec0bb40be295e9b74ceef18
56243d3bf67d8bc7770ab5d12e2ef812e69196de
/setup.py
2b0c2bbc8e7dd85974ea6e4e24c97eba9dac99fd
[ "MIT" ]
permissive
William-Lake/comparing_lists
a48542bb9c2d8a0de701d2d01b049664ff02e7c0
d9d53c89d4a36b1843bc536655cf8831afd4a2d4
refs/heads/master
2020-04-02T15:40:44.574432
2019-01-30T18:34:56
2019-01-30T18:34:56
154,578,261
0
0
null
null
null
null
UTF-8
Python
false
false
1,528
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """The setup script.""" from setuptools import setup, find_packages with open('README.rst') as readme_file: readme = readme_file.read() with open('HISTORY.rst') as history_file: history = history_file.read() requirements = [ ] setup_requirements = [ ] test_requirements = [ ] setup( author="William Lake", author_email='N/A', classifiers=[ 'Development Status :: 2 - Pre-Alpha', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Natural Language :: English', "Programming Language :: Python :: 2", 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', ], description="A small python utility program I wrote for the rare instances where I just need to compare two lists of data.", install_requires=requirements, license="MIT license", long_description=readme + '\n\n' + history, include_package_data=True, keywords='comparing_lists', name='comparing_lists', packages=find_packages(include=['comparing_lists']), setup_requires=setup_requirements, test_suite='tests', tests_require=test_requirements, url='https://github.com/William-Lake/comparing_lists', version='0.1.0', zip_safe=False, )
[ "noreply" ]
noreply
4d352b30c38ee5240aa74ad3e2bd79c7693bfa0a
c50e7eb190802d7849c0d0cea02fb4d2f0021777
/src/notification-hub/azext_notification_hub/vendored_sdks/notificationhubs/models/notification_hubs_management_client_enums.py
f97b28ab81f5bed1408323aa284ef1b8c81d6704
[ "LicenseRef-scancode-generic-cla", "MIT" ]
permissive
Azure/azure-cli-extensions
c1615b19930bba7166c282918f166cd40ff6609c
b8c2cf97e991adf0c0a207d810316b8f4686dc29
refs/heads/main
2023-08-24T12:40:15.528432
2023-08-24T09:17:25
2023-08-24T09:17:25
106,580,024
336
1,226
MIT
2023-09-14T10:48:57
2017-10-11T16:27:31
Python
UTF-8
Python
false
false
789
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from enum import Enum class SkuName(str, Enum): free = "Free" basic = "Basic" standard = "Standard" class NamespaceType(str, Enum): messaging = "Messaging" notification_hub = "NotificationHub" class AccessRights(str, Enum): manage = "Manage" send = "Send" listen = "Listen"
49db302c96c35f528c5f252b1a2f9596dea8b8ad
63f9a0d150cbef75f4e6e8246dc7ecac3f3b6d09
/python/ray/serve/examples/echo_full.py
9639f1a258d95e7009d0f3ab0520bc1ed59235a0
[ "Apache-2.0", "MIT" ]
permissive
ray-project/maze-raylit
79f0a5af9fe4bdc13a2d5b3919da867ed5439aab
a03cd14a50d87d58effea1d749391af530d7609c
refs/heads/master
2023-01-23T04:23:35.178501
2020-12-04T22:34:14
2020-12-04T22:34:14
318,274,659
5
0
Apache-2.0
2020-12-04T22:34:15
2020-12-03T17:47:58
Python
UTF-8
Python
false
false
1,465
py
import time import requests import ray import ray.serve as serve # initialize ray serve system. ray.init(num_cpus=10) client = serve.start() # a backend can be a function or class. # it can be made to be invoked from web as well as python. def echo_v1(flask_request): response = flask_request.args.get("response", "web") return response client.create_backend("echo:v1", echo_v1) # An endpoint is associated with an HTTP path and traffic to the endpoint # will be serviced by the echo:v1 backend. client.create_endpoint("my_endpoint", backend="echo:v1", route="/echo") print(requests.get("http://127.0.0.1:8000/echo", timeout=0.5).text) # The service will be reachable from http print(ray.get(client.get_handle("my_endpoint").remote(response="hello"))) # as well as within the ray system. # We can also add a new backend and split the traffic. def echo_v2(flask_request): # magic, only from web. return "something new" client.create_backend("echo:v2", echo_v2) # The two backend will now split the traffic 50%-50%. client.set_traffic("my_endpoint", {"echo:v1": 0.5, "echo:v2": 0.5}) # Observe requests are now split between two backends. for _ in range(10): print(requests.get("http://127.0.0.1:8000/echo").text) time.sleep(0.2) # You can also change number of replicas for each backend independently. client.update_backend_config("echo:v1", {"num_replicas": 2}) client.update_backend_config("echo:v2", {"num_replicas": 2})
98413f87180c601da3d941fbf79ed8b5fb9d4e36
d2a2546165b3db6295a3f21972dda8ab9aab7846
/src/vehicles/road_thief_supplies.py
41875538a6ae4bb32f8ce3800c922d8d5fd5e778
[]
no_license
andythenorth/road-hog
bab12b133dd674f0e6d7ae87498675f8da96b982
1800d57d4ce904e7041f24646c393b37903d9466
refs/heads/main
2022-09-26T19:57:31.006800
2022-09-17T10:09:37
2022-09-17T10:09:37
214,848,659
1
2
null
null
null
null
UTF-8
Python
false
false
542
py
from road_vehicle import SuppliesHauler, DieselRoadVehicle consist = SuppliesHauler(id='road_thief_supplies', base_numeric_id=560, name='Road Thief', power=720, vehicle_life=40, intro_date=1989) consist.add_unit(type=DieselRoadVehicle, capacity=0, vehicle_length=7, always_use_same_spriterow=True) consist.add_unit(capacity=45, vehicle_length=7)
81a57cd8a99f18eced67a63639f21d53f756df5d
9d30115d59ed821a5c7aecf2318b5e0ed22c9676
/src/codewars/python/8kyu/binary_addition.py
c09a98f894ac53f951b41e2efa477772038c98b0
[]
no_license
garigari-kun/til
02c7bf05274d1077b454e1f7d4a7355849441524
b71f36a66045ab7da7f4a97f7e18de2aaa05f493
refs/heads/master
2020-04-16T02:13:45.727909
2018-12-16T01:26:40
2018-12-16T01:26:40
56,369,670
0
0
null
null
null
null
UTF-8
Python
false
false
311
py
""" 7kyu Binary Addition Implement a function that adds two numbers together and returns their sum in binary. The conversion can be done before, or after the addition. The binary number returned should be a string. """ def add_binary(a,b): answer = a + b binary = bin(answer)[2:] return binary