blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
503cbc78d9f6e0910d577259e1c733d92a4a3a30
2eff2b24d5b6f5dffc42c9cbde6102ec9317502f
/src/Calculator.py
8893fae57e0cb5134c33ea8b75b81954ec9c8cbf
[]
no_license
JakobKallestad/Python-Kattis
599a14e71a8d5c52aae779b8db3d35f0e4d01e88
51656964e79cc861e53f574785aacb213ef10b46
refs/heads/master
2022-10-24T23:12:45.599813
2021-12-08T12:31:54
2021-12-08T12:31:54
156,881,692
2
1
null
2022-10-02T12:36:57
2018-11-09T15:34:09
Python
UTF-8
Python
false
false
147
py
while True: try: line = input() result = eval(line) print("{:.2f}".format(result)) except EOFError: break
5e502e6a8f31e345307af4c6bcc63e0a2132c326
4dbaea97b6b6ba4f94f8996b60734888b163f69a
/LeetCode/48.py
c4d4841c02151f4c9dd1b1d227a3fef532cd49d0
[]
no_license
Ph0en1xGSeek/ACM
099954dedfccd6e87767acb5d39780d04932fc63
b6730843ab0455ac72b857c0dff1094df0ae40f5
refs/heads/master
2022-10-25T09:15:41.614817
2022-10-04T12:17:11
2022-10-04T12:17:11
63,936,497
2
0
null
null
null
null
UTF-8
Python
false
false
667
py
class Solution: def rotate(self, matrix): """ :type matrix: List[List[int]] :rtype: void Do not return anything, modify matrix in-place instead. """ matrix_len = len(matrix) for i in range(matrix_len // 2): for j in range(matrix_len - matrix_len // 2): tmp = matrix[i][j] matrix[i][j] = matrix[matrix_len - j - 1][i] matrix[matrix_len - j - 1][i] = matrix[matrix_len - i - 1][matrix_len - j - 1] matrix[matrix_len - i - 1][matrix_len - j - 1] = matrix[j][matrix_len - i - 1] matrix[j][matrix_len - i - 1] = tmp
d41c16e629b4e5deaf26083d8fcecd79a433675b
7f4191f0e12a70d465b15762ce83b57b4976d448
/Chapter8/Xtreme_InjectCrawler/XtremeWebAPP/xtreme_server/migrations/0006_initial.py
27e52ef1bae65d1cc75b98e05ce6a9b297056084
[]
no_license
PacktPublishing/Hands-On-Penetration-Testing-with-Python
33f72df57b9158e002f78330c1242e1fde777898
7b11c8e63e4ac350ba138161f60f7ce4c08ed7cd
refs/heads/master
2023-02-06T04:52:12.475428
2023-01-30T10:03:47
2023-01-30T10:03:47
131,272,051
79
40
null
null
null
null
UTF-8
Python
false
false
12,669
py
# -*- coding: utf-8 -*- from south.utils import datetime_utils as datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'Project' db.create_table(u'xtreme_server_project', ( ('project_name', self.gf('django.db.models.fields.CharField')(max_length=50, primary_key=True)), ('start_url', self.gf('django.db.models.fields.URLField')(max_length=200)), ('query_url', self.gf('django.db.models.fields.URLField')(max_length=200)), ('allowed_extensions', self.gf('django.db.models.fields.TextField')()), ('allowed_protocols', self.gf('django.db.models.fields.TextField')()), ('consider_only', self.gf('django.db.models.fields.TextField')()), ('exclude_fields', self.gf('django.db.models.fields.TextField')()), ('status', self.gf('django.db.models.fields.CharField')(default='Not Set', max_length=50)), ('login_url', self.gf('django.db.models.fields.URLField')(max_length=200)), ('logout_url', self.gf('django.db.models.fields.URLField')(max_length=200)), ('username', self.gf('django.db.models.fields.TextField')()), ('password', self.gf('django.db.models.fields.TextField')()), ('username_field', self.gf('django.db.models.fields.TextField')(default='Not Set')), ('password_field', self.gf('django.db.models.fields.TextField')(default='Not Set')), ('auth_mode', self.gf('django.db.models.fields.TextField')()), )) db.send_create_signal(u'xtreme_server', ['Project']) # Adding model 'Page' db.create_table(u'xtreme_server_page', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('URL', self.gf('django.db.models.fields.URLField')(max_length=200)), ('content', self.gf('django.db.models.fields.TextField')(blank=True)), ('visited', self.gf('django.db.models.fields.BooleanField')(default=False)), ('auth_visited', self.gf('django.db.models.fields.BooleanField')(default=False)), ('status_code', self.gf('django.db.models.fields.CharField')(max_length=256, blank=True)), ('connection_details', self.gf('django.db.models.fields.TextField')(blank=True)), ('project', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['xtreme_server.Project'])), ('page_found_on', self.gf('django.db.models.fields.URLField')(max_length=200, blank=True)), )) db.send_create_signal(u'xtreme_server', ['Page']) # Adding model 'Form' db.create_table(u'xtreme_server_form', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('project', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['xtreme_server.Project'])), ('form_found_on', self.gf('django.db.models.fields.URLField')(max_length=200)), ('form_name', self.gf('django.db.models.fields.CharField')(max_length=512, blank=True)), ('form_method', self.gf('django.db.models.fields.CharField')(default='GET', max_length=10)), ('form_action', self.gf('django.db.models.fields.URLField')(max_length=200, blank=True)), ('form_content', self.gf('django.db.models.fields.TextField')(blank=True)), ('auth_visited', self.gf('django.db.models.fields.BooleanField')(default=False)), ('input_field_list', self.gf('django.db.models.fields.TextField')(blank=True)), )) db.send_create_signal(u'xtreme_server', ['Form']) # Adding model 'InputField' db.create_table(u'xtreme_server_inputfield', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('form', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['xtreme_server.Form'])), ('input_type', self.gf('django.db.models.fields.CharField')(default='input', max_length=256, blank=True)), )) db.send_create_signal(u'xtreme_server', ['InputField']) # Adding model 'Vulnerability' db.create_table(u'xtreme_server_vulnerability', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('form', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['xtreme_server.Form'])), ('details', self.gf('django.db.models.fields.TextField')(blank=True)), )) db.send_create_signal(u'xtreme_server', ['Vulnerability']) # Adding model 'Settings' db.create_table(u'xtreme_server_settings', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('allowed_extensions', self.gf('django.db.models.fields.TextField')()), ('allowed_protocols', self.gf('django.db.models.fields.TextField')()), ('consider_only', self.gf('django.db.models.fields.TextField')()), ('exclude_fields', self.gf('django.db.models.fields.TextField')()), ('username', self.gf('django.db.models.fields.TextField')()), ('password', self.gf('django.db.models.fields.TextField')()), ('auth_mode', self.gf('django.db.models.fields.TextField')()), )) db.send_create_signal(u'xtreme_server', ['Settings']) # Adding model 'LearntModel' db.create_table(u'xtreme_server_learntmodel', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('project', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['xtreme_server.Project'])), ('page', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['xtreme_server.Page'])), ('form', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['xtreme_server.Form'])), ('query_id', self.gf('django.db.models.fields.TextField')()), ('learnt_model', self.gf('django.db.models.fields.TextField')(blank=True)), )) db.send_create_signal(u'xtreme_server', ['LearntModel']) def backwards(self, orm): # Deleting model 'Project' db.delete_table(u'xtreme_server_project') # Deleting model 'Page' db.delete_table(u'xtreme_server_page') # Deleting model 'Form' db.delete_table(u'xtreme_server_form') # Deleting model 'InputField' db.delete_table(u'xtreme_server_inputfield') # Deleting model 'Vulnerability' db.delete_table(u'xtreme_server_vulnerability') # Deleting model 'Settings' db.delete_table(u'xtreme_server_settings') # Deleting model 'LearntModel' db.delete_table(u'xtreme_server_learntmodel') models = { u'xtreme_server.form': { 'Meta': {'object_name': 'Form'}, 'auth_visited': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'form_action': ('django.db.models.fields.URLField', [], {'max_length': '200', 'blank': 'True'}), 'form_content': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'form_found_on': ('django.db.models.fields.URLField', [], {'max_length': '200'}), 'form_method': ('django.db.models.fields.CharField', [], {'default': "'GET'", 'max_length': '10'}), 'form_name': ('django.db.models.fields.CharField', [], {'max_length': '512', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'input_field_list': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'project': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['xtreme_server.Project']"}) }, u'xtreme_server.inputfield': { 'Meta': {'object_name': 'InputField'}, 'form': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['xtreme_server.Form']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'input_type': ('django.db.models.fields.CharField', [], {'default': "'input'", 'max_length': '256', 'blank': 'True'}) }, u'xtreme_server.learntmodel': { 'Meta': {'object_name': 'LearntModel'}, 'form': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['xtreme_server.Form']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'learnt_model': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'page': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['xtreme_server.Page']"}), 'project': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['xtreme_server.Project']"}), 'query_id': ('django.db.models.fields.TextField', [], {}) }, u'xtreme_server.page': { 'Meta': {'object_name': 'Page'}, 'URL': ('django.db.models.fields.URLField', [], {'max_length': '200'}), 'auth_visited': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'connection_details': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'content': ('django.db.models.fields.TextField', [], {'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'page_found_on': ('django.db.models.fields.URLField', [], {'max_length': '200', 'blank': 'True'}), 'project': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['xtreme_server.Project']"}), 'status_code': ('django.db.models.fields.CharField', [], {'max_length': '256', 'blank': 'True'}), 'visited': ('django.db.models.fields.BooleanField', [], {'default': 'False'}) }, u'xtreme_server.project': { 'Meta': {'object_name': 'Project'}, 'allowed_extensions': ('django.db.models.fields.TextField', [], {}), 'allowed_protocols': ('django.db.models.fields.TextField', [], {}), 'auth_mode': ('django.db.models.fields.TextField', [], {}), 'consider_only': ('django.db.models.fields.TextField', [], {}), 'exclude_fields': ('django.db.models.fields.TextField', [], {}), 'login_url': ('django.db.models.fields.URLField', [], {'max_length': '200'}), 'logout_url': ('django.db.models.fields.URLField', [], {'max_length': '200'}), 'password': ('django.db.models.fields.TextField', [], {}), 'password_field': ('django.db.models.fields.TextField', [], {'default': "'Not Set'"}), 'project_name': ('django.db.models.fields.CharField', [], {'max_length': '50', 'primary_key': 'True'}), 'query_url': ('django.db.models.fields.URLField', [], {'max_length': '200'}), 'start_url': ('django.db.models.fields.URLField', [], {'max_length': '200'}), 'status': ('django.db.models.fields.CharField', [], {'default': "'Not Set'", 'max_length': '50'}), 'username': ('django.db.models.fields.TextField', [], {}), 'username_field': ('django.db.models.fields.TextField', [], {'default': "'Not Set'"}) }, u'xtreme_server.settings': { 'Meta': {'object_name': 'Settings'}, 'allowed_extensions': ('django.db.models.fields.TextField', [], {}), 'allowed_protocols': ('django.db.models.fields.TextField', [], {}), 'auth_mode': ('django.db.models.fields.TextField', [], {}), 'consider_only': ('django.db.models.fields.TextField', [], {}), 'exclude_fields': ('django.db.models.fields.TextField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'password': ('django.db.models.fields.TextField', [], {}), 'username': ('django.db.models.fields.TextField', [], {}) }, u'xtreme_server.vulnerability': { 'Meta': {'object_name': 'Vulnerability'}, 'details': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'form': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['xtreme_server.Form']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) } } complete_apps = ['xtreme_server']
2751437f81253f6762b521912bf1187f9551bfb7
bfdab27f224d9cac02e319fe55b53172fbf8d1a2
/motion_editor_core/data/atlas_old/motions/drive_pull_right.py
a5356f2535ecc1d9343c53befe481a534536d151
[]
no_license
tu-darmstadt-ros-pkg/motion_editor
c18294b4f035f737ff33d1dcbdfa87d4bb4e6f71
178a7564b18420748e1ca4413849a44965823655
refs/heads/master
2020-04-06T12:37:30.763325
2016-09-15T14:11:48
2016-09-15T14:11:48
35,028,245
2
3
null
2015-05-05T13:20:27
2015-05-04T10:18:22
Python
UTF-8
Python
false
false
2,338
py
{ 'drive_pull_right': { 'l_arm': [], 'l_leg': [], 'r_arm': [ { 'duration': 1.0, 'name': u'vm_arm_r_retract_up', 'positions': [ -0.2258, -0.5361, 3.1416, -2.3456, -0.3547, -1.5618], 'starttime': 0.0}, { 'duration': 1.0, 'name': u'vm_arm_r_retract_up_up', 'positions': [ -0.2258, -1.2716, 3.1416, -2.3562, -0.3547, -1.5618], 'starttime': 1.0}, { 'duration': 1.0, 'name': u'vm_arm_r_retract_up_right', 'positions': [ -0.2258, -1.2716, 3.1416, -1.4144, -0.3547, -0.759], 'starttime': 2.0}, { 'duration': 1.0, 'name': u'vm_arm_r_retract_down', 'positions': [ -0.2258, 1.3963, 3.1416, -1.4144, -0.3547, -0.759], 'starttime': 3.0}], 'r_leg': [], 'torso': []}}
7e7db89059aa6482d6801ca06d86ca389c337e25
4ca821475c57437bb0adb39291d3121d305905d8
/models/research/swivel/vecs.py
61a2b7a852dd4c1a577d240c1c990423ddcbb77c
[ "Apache-2.0" ]
permissive
yefcion/ShipRec
4a1a893b2fd50d34a66547caa230238b0bf386de
c74a676b545d42be453729505d52e172d76bea88
refs/heads/master
2021-09-17T04:49:47.330770
2018-06-28T02:25:50
2018-06-28T02:25:50
112,176,613
0
1
null
null
null
null
UTF-8
Python
false
false
3,226
py
# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import mmap import numpy as np import os from six import string_types class Vecs(object): def __init__(self, vocab_filename, rows_filename, cols_filename=None): """Initializes the vectors from a text vocabulary and binary data.""" with open(vocab_filename, 'r') as lines: self.vocab = [line.split()[0] for line in lines] self.word_to_idx = {word: idx for idx, word in enumerate(self.vocab)} n = len(self.vocab) with open(rows_filename, 'r') as rows_fh: rows_fh.seek(0, os.SEEK_END) size = rows_fh.tell() # Make sure that the file size seems reasonable. if size % (4 * n) != 0: raise IOError( 'unexpected file size for binary vector file %s' % rows_filename) # Memory map the rows. dim = size / (4 * n) rows_mm = mmap.mmap(rows_fh.fileno(), 0, prot=mmap.PROT_READ) rows = np.matrix( np.frombuffer(rows_mm, dtype=np.float32).reshape(n, dim)) # If column vectors were specified, then open them and add them to the # row vectors. if cols_filename: with open(cols_filename, 'r') as cols_fh: cols_mm = mmap.mmap(cols_fh.fileno(), 0, prot=mmap.PROT_READ) cols_fh.seek(0, os.SEEK_END) if cols_fh.tell() != size: raise IOError('row and column vector files have different sizes') cols = np.matrix( np.frombuffer(cols_mm, dtype=np.float32).reshape(n, dim)) rows += cols cols_mm.close() # Normalize so that dot products are just cosine similarity. self.vecs = rows / np.linalg.norm(rows, axis=1).reshape(n, 1) rows_mm.close() def similarity(self, word1, word2): """Computes the similarity of two tokens.""" idx1 = self.word_to_idx.get(word1) idx2 = self.word_to_idx.get(word2) if not idx1 or not idx2: return None return float(self.vecs[idx1] * self.vecs[idx2].transpose()) def neighbors(self, query): """Returns the nearest neighbors to the query (a word or vector).""" if isinstance(query, string_types): idx = self.word_to_idx.get(query) if idx is None: return None query = self.vecs[idx] neighbors = self.vecs * query.transpose() return sorted( zip(self.vocab, neighbors.flat), key=lambda kv: kv[1], reverse=True) def lookup(self, word): """Returns the embedding for a token, or None if no embedding exists.""" idx = self.word_to_idx.get(word) return None if idx is None else self.vecs[idx]
f9bcb3dcc1970423f97e39ba9072f214fd2b4bf9
a2a14995c95e024644623ea26add2f27d186ea16
/go.py
dff7c109c90a18c87abe03834f8ab27f33530049
[ "MIT" ]
permissive
swdevbali/lit
89db51ae912770ac4030a3c491ad775a68b95a4b
dbc01ee8e4e600a0a43e49ffd18873653cc3f7cc
refs/heads/master
2021-01-21T00:25:50.001045
2013-02-16T13:52:50
2013-02-16T13:52:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,447
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import windows as winutils from datetime import datetime from utils import Query from PyQt4.QtCore import ( Qt, QAbstractListModel, QMutex, QMutexLocker ) import itertools import logging from lcs import lcs NAME_LIMIT = 42 class Task(object): def __init__(self, hwnd, query, usetime): self.hwnd = hwnd self.query = query self.usetime = usetime def use(self): self.usetime = datetime.now() @property def digest(self): if len(self.name) > NAME_LIMIT: shortname = self.name[:NAME_LIMIT - 3] + '...' else: shortname = self.name if self.filename: return '%s (%s)' % (shortname, self.filename) else: return shortname @property def title(self): return self.name @property def fullname(self): if self.filename: return self.title + self.filename else: return self.title @property def filename(self): if not hasattr(self, '_filename'): self._filename = winutils.get_app_name(self.hwnd) return self._filename @property def name(self): return winutils.window_title(self.hwnd) @property def icon(self): if not hasattr(self, '_icon'): self._icon = winutils.get_window_icon(self.hwnd) return self._icon class WindowModel(QAbstractListModel): NAME_ROLE = Qt.DisplayRole HWND_ROLE = Qt.UserRole def __init__(self, items): self.super.__init__() self.items = items @property def super(self): return super(WindowModel, self) def rowCount(self, parent): return len(self.items) def columnCount(self, parent): return 1 def data(self, index, role): if not index.isValid(): return None if role == Qt.TextAlignmentRole: return int(Qt.AlignLeft | Qt.AlignVCenter) elif role == Qt.DisplayRole: return self.items[index.row()].digest elif role == Qt.DecorationRole: return self.items[index.row()].icon elif role == Qt.UserRole: return self.items[index.row()].hwnd else: return None class Go(object): def __init__(self, worker, client): self.tasks = {} self.mutex = QMutex() self.worker = worker self.client = client @property def name(self): return 'g' def lit(self, query, upper_bound, finished, *args, **kargs): self.worker.do( make=lambda: WindowModel( self.sorted_active_runnable( query, winutils.top_level_windows() )[:upper_bound] ), catch=finished, main=True ) def sorted_active_runnable(self, query, hwnds): with QMutexLocker(self.mutex): # update query and collect active ones self._refresh_tasks(hwnds, query) active_tasks = [self.tasks[h] for h in hwnds] # sort by last use if not query: return sorted(active_tasks, key=lambda t: t.usetime, reverse=True) titles = [task.fullname.lower() for task in active_tasks] def f(task, title): return task.query.distance_to(title) ds = [f(task, title) * (10 ** len(query)) for task, title in zip(active_tasks, titles)] best = ds[0] for i in itertools.takewhile(lambda i: ds[i] == best, range(len(ds))): ds[i] -= len(lcs(query, titles[i])) #return sorted(active_tasks, key=f) return [task for i, task in sorted(enumerate(active_tasks), key=lambda i: ds[i[0]])] def _refresh_tasks(self, hwnds, query=None): for hwnd in hwnds: if not hwnd in self.tasks: self.tasks[hwnd] = Task( hwnd=hwnd, usetime=datetime.now(), query=Query( text='' if query is None else query, insertion_cost=1, first_insertion_cost=50, prepend_first_insertion_cost=5, append_first_insertion_cost=10, deletion_cost=100, substitution_cost=100, transposition_cost=10 ) ) elif not query is None: self.tasks[hwnd].query.update(query.lower()) def update_usetime(self, hwnd): """Update with one time delay.""" if hasattr(self, 'after_select') and self.after_select: self.after_select() self.after_select = self.tasks[hwnd].use def select(self, content, index): # check content type if not isinstance(content, WindowModel): logging.info('wrong content type {}'.format(type(content))) return for hwnd in winutils.top_level_windows(): if content.data(index, WindowModel.HWND_ROLE) == hwnd: self._refresh_tasks([hwnd]) self.client.goto(hwnd=hwnd) self.update_usetime(hwnd) return # remove invalid tasks del self.tasks[content.data(index, WindowModel.HWND_ROLE)]
0659d7826f012a4a77173ff1cd94f53a96dcf0ad
1db2e2238b4ef9c1b6ca3b99508693ee254d6904
/develop/align_atoms/make_alignment.py
e2c2c5a27921bc05091c8e561cda56f058e951c7
[]
no_license
pgreisen/pythonscripts
8674e08095f76edf08ef2059300349218079724c
0aadf8f96d19b306c1bc44a772e766a06fe3408b
refs/heads/master
2021-07-06T23:54:57.774342
2021-06-08T19:36:36
2021-06-08T19:36:36
22,017,192
3
0
null
null
null
null
UTF-8
Python
false
false
3,251
py
import os,shutil,sys from translate_rotate import * class pdbfile: # Requires floating point number # Returns floating point with correct # number of digits for pdb def set_number_digits(self,number): return '%.3f' %number def set_length_digit(self,number): lngth = len(number) if lngth == 7: return ' '+number if lngth == 6: return ' '+number if lngth == 5: return ' '+number if lngth == 4: return ' '+number else: return number # Method to get data from each rotamer def get_data_to_align(self,filename): tmp_chi = open(filename,'r') atoms = ['ZN1','ZN2','O5','O1'] dic = {} for line in tmp_chi: tmp = line.split() if tmp[2] in atoms: dic[tmp[2]] = line wrt = open('tmp.pdb','w') wrt.write(str(dic['ZN2'])) wrt.write(str(dic['ZN1'])) wrt.write(str(dic['O5'])) wrt.write(str(dic['O1'])) wrt.close() # took directory with conformations of ligand ensemble # if we generate the ensemble after the alignment this is not # necessary # Returns a list with transformed coordinates def get_aligned_coor(self,path,VIZ,templateFile,crystal_coor): RMSD_TRESHOLD = 0.8 obj = align_to_substrate() files = os.listdir(path) outfile = [] # Reading data from crystal structure where one wants # the alignment from cry_data,atom_names = obj.get_data(crystal_coor) for fl in files: ph = path+'/'+fl rd = open(ph,'r') # Hvad indeholder denne file og hvor er den genereret # Filen indeholder data fra modellen, altsaa de data # som vi har lavet for vores model system self.get_data_to_align(ph) fname = 'tmp.pdb' # her faar vi navne sub_data,atom_names = obj.get_data(fname) # Superimpose substrate data in crystal structure # getting the translation and rotation matrix t_m, r_m = obj.get_rotate_translate(sub_data,cry_data) # Getting the transformed coordinates nw = obj.get_transformed_coor(sub_data,cry_data) rmsd_align = obj.get_rmsd(nw,cry_data) print 'rmsd_align',rmsd_align print 'rmsd ', rmsd_align if rmsd_align < RMSD_TRESHOLD: # We transform the original data sub,at = obj.get_data(ph) # The transformed coordinates # what is their construction t_c = dot(sub,r_m)+t_m # Writing the coordinates # Files name of coordinates is # Writing to a file called superimposed.pdb obj.write_pdb(at,t_c) # Rosetta naming convention file which is generated # earlier. # File for rosetta with the correct naming # I/O of file sp_file = open('superimposed.pdb','r') rosetta = open(templateFile,'r') fileOne = sp_file.readlines() fileTwo = rosetta.readlines() rosetta.close() # Variable to count line number in other file # used to insert at the right line ct = 0 for i in fileTwo: ln = fileOne[ct].split() # A very temporary fix for the number greater 100 x = self.set_number_digits(float(ln[6])) y = self.set_number_digits(float(ln[7])) z = self.set_number_digits(float(ln[8])) x = self.set_length_digit(x) y = self.set_length_digit(y) z = self.set_length_digit(z) i = str(i[0:30])+x+y+z+str(i[55:81]) outfile.append(i) ct = ct +1 outfile.append(VIZ) return outfile
226c4d09fa5cdc1ca4d9713500b37dcc362f0d99
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_142/671.py
10347da035e5343026f9408225894450ce90b99c
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,367
py
def parseString(word): dico = [] c = word[0] cpt = 0 for i in xrange(len(word)): if c != word[i]: dico.append((word[i-1],cpt)) cpt = 1 c = word[i] else: cpt += 1 c = word[i] dico.append((word[len(word)-1],cpt)) return dico def checkSize(tab): occ = len(tab[0]) for i in xrange(len(tab)): if occ != len(tab[i]): return False return True def checkLetter(tab): sent = tab[0] for i in xrange(len(tab)): for j in xrange(len(tab[i])): if sent[j][0] != tab[i][j][0]: return False return True def findInterval(tab): cpt = 0 for i in xrange(len(tab[0])): t_max = 0 t_min = 10000 for j in xrange(len(tab)): if tab[j][i][1] > t_max: t_max = tab[j][i][1] if tab[j][i][1] < t_min: t_min = tab[j][i][1] cpt += (t_max - t_min) return cpt ###################################################### #### MAIN :) ###################################################### nb_case = int(raw_input()) for i in xrange(nb_case): nb_row = int(raw_input()) res = [] for j in xrange(nb_row): res.append(parseString(str(raw_input()))) if checkSize(res): if checkLetter(res): print("Case #%d: %d" % (i+1,findInterval(res))) else: print("Case #%d: Fegla Won" % (i+1)) else: print("Case #%d: Fegla Won" % (i+1))
d01277bf95b44d3ea01150d8c57d628e1b8f6eb4
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2180/60671/249029.py
9b092ed28dbaf417cbff0c51b1ee7e7e1ab2000a
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
339
py
s1=input() s2=input() list1=[] list2=[] for x in range(len(s1)): for i in range(len(s1) - x): list1.append(s1[i:i + x + 1]) for x in range(len(s2)): for i in range(len(s2) - x): list2.append(s2[i:i + x + 1]) list1.sort() list2.sort() count=0 for mem in list1: if(mem in list2): count+=1 print(10,end='')
e0beeb0e7fa4d5516f5433f69c91e40e77eabe06
659f10ae3ad036bbb6293b0cd585a4be2bc2dcc9
/containers/migrations/0005_auto__add_field_container_meta.py
7d9c7a532d2fabdceeeb662c0217c38e40611106
[ "LicenseRef-scancode-warranty-disclaimer", "Apache-2.0" ]
permissive
newrelic/shipyard
e58649adf46b65e30ea93307c53b064abc4495dc
e4e990583a646b77e7e1767682e1ecf94c278fb8
refs/heads/master
2023-07-22T11:47:31.472994
2013-09-27T19:13:37
2013-09-27T19:13:37
12,735,507
3
2
null
2023-07-06T03:58:58
2013-09-10T17:08:31
Python
UTF-8
Python
false
false
5,101
py
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'Container.meta' db.add_column(u'containers_container', 'meta', self.gf('django.db.models.fields.TextField')(null=True, blank=True), keep_default=False) def backwards(self, orm): # Deleting field 'Container.meta' db.delete_column(u'containers_container', 'meta') models = { u'auth.group': { 'Meta': {'object_name': 'Group'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, u'auth.permission': { 'Meta': {'ordering': "(u'content_type__app_label', u'content_type__model', u'codename')", 'unique_together': "((u'content_type', u'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, u'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, u'containers.container': { 'Meta': {'object_name': 'Container'}, 'container_id': ('django.db.models.fields.CharField', [], {'max_length': '96', 'null': 'True', 'blank': 'True'}), 'host': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['containers.Host']", 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'meta': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['auth.User']", 'null': 'True', 'blank': 'True'}) }, u'containers.host': { 'Meta': {'object_name': 'Host'}, 'enabled': ('django.db.models.fields.NullBooleanField', [], {'default': 'True', 'null': 'True', 'blank': 'True'}), 'hostname': ('django.db.models.fields.CharField', [], {'max_length': '128', 'unique': 'True', 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '64', 'unique': 'True', 'null': 'True', 'blank': 'True'}), 'port': ('django.db.models.fields.SmallIntegerField', [], {'default': '4243', 'null': 'True', 'blank': 'True'}) }, u'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) } } complete_apps = ['containers']
f2bd9de4477cbf1af26d5d888aac1a5feddc1061
52b7ce215acacee6b3021793f36a3f3eba7196e0
/tdi/util.py
c409d6e869390f41c5195340a1d18630d02548c9
[ "Apache-2.0" ]
permissive
AvdN/tdi
2829c545bdf08148db2a4d2d848ea731b920d2e3
5617ec1b1d9553fee537c55ae9e0eef8553fd101
refs/heads/master
2020-12-30T23:08:23.816115
2013-10-14T20:57:01
2013-10-14T20:57:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
18,696
py
# -*- coding: ascii -*- u""" :Copyright: Copyright 2006 - 2013 Andr\xe9 Malo or his licensors, as applicable :License: Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ================ Misc Utilities ================ Misc utilities. """ __author__ = u"Andr\xe9 Malo" __docformat__ = "restructuredtext en" import collections as _collections import imp as _imp import inspect as _inspect import operator as _op import os as _os import re as _re import sys as _sys import types as _types from tdi import _exceptions DependencyCycle = _exceptions.DependencyCycle def _make_parse_content_type(): """ Make content type parser :Return: parse_content_type :Rtype: ``callable`` """ # These are a bit more lenient than RFC 2045. tokenres = r'[^\000-\040()<>@,;:\\"/[\]?=]+' qcontent = r'[^\000\\"]' qsres = r'"%(qc)s*(?:\\"%(qc)s*)*"' % {'qc': qcontent} valueres = r'(?:%(token)s|%(quoted-string)s)' % { 'token': tokenres, 'quoted-string': qsres, } typere = _re.compile( r'\s*([^;/\s]+/[^;/\s]+)((?:\s*;\s*%(key)s\s*=\s*%(val)s)*)\s*$' % {'key': tokenres, 'val': valueres,} ) pairre = _re.compile(r'\s*;\s*(%(key)s)\s*=\s*(%(val)s)' % { 'key': tokenres, 'val': valueres }) stripre = _re.compile(r'\r?\n') def parse_content_type(value): # pylint: disable = W0621 """ Parse a content type :Warning: comments are not recognized (yet?) :Parameters: `value` : ``basestring`` The value to parse - must be ascii compatible :Return: The parsed header (``(value, {key, [value, value, ...]})``) or ``None`` :Rtype: ``tuple`` """ try: if isinstance(value, unicode): value.encode('ascii') else: value.decode('ascii') except (AttributeError, UnicodeError): return None match = typere.match(value) if not match: return None parsed = (match.group(1).lower(), {}) match = match.group(2) if match: for key, val in pairre.findall(match): if val[:1] == '"': val = stripre.sub(r'', val[1:-1]).replace(r'\"', '"') parsed[1].setdefault(key.lower(), []).append(val) return parsed return parse_content_type parse_content_type = _make_parse_content_type() class Version(tuple): """ Represents the package version :IVariables: `major` : ``int`` The major version number `minor` : ``int`` The minor version number `patch` : ``int`` The patch level version number `is_dev` : ``bool`` Is it a development version? `revision` : ``int`` SVN Revision """ def __new__(cls, versionstring, is_dev, revision): """ Construction :Parameters: `versionstring` : ``str`` The numbered version string (like ``"1.1.0"``) It should contain at least three dot separated numbers `is_dev` : ``bool`` Is it a development version? `revision` : ``int`` SVN Revision :Return: New version instance :Rtype: `version` """ # pylint: disable = W0613 tup = [] versionstring = versionstring.strip() if versionstring: for item in versionstring.split('.'): try: item = int(item) except ValueError: pass tup.append(item) while len(tup) < 3: tup.append(0) return tuple.__new__(cls, tup) def __init__(self, versionstring, is_dev, revision): """ Initialization :Parameters: `versionstring` : ``str`` The numbered version string (like ``1.1.0``) It should contain at least three dot separated numbers `is_dev` : ``bool`` Is it a development version? `revision` : ``int`` SVN Revision """ # pylint: disable = W0613 super(Version, self).__init__() self.major, self.minor, self.patch = self[:3] self.is_dev = bool(is_dev) self.revision = int(revision) def __repr__(self): """ Create a development string representation :Return: The string representation :Rtype: ``str`` """ return "%s.%s(%r, is_dev=%r, revision=%r)" % ( self.__class__.__module__, self.__class__.__name__, ".".join(map(str, self)), self.is_dev, self.revision, ) def __str__(self): """ Create a version like string representation :Return: The string representation :Rtype: ``str`` """ return "%s%s" % ( ".".join(map(str, self)), ("", "-dev-r%d" % self.revision)[self.is_dev], ) def __unicode__(self): """ Create a version like unicode representation :Return: The unicode representation :Rtype: ``unicode`` """ return str(self).decode('ascii') def find_public(space): """ Determine all public names in space :Parameters: `space` : ``dict`` Name space to inspect :Return: List of public names :Rtype: ``list`` """ if space.has_key('__all__'): return list(space['__all__']) return [key for key in space.keys() if not key.startswith('_')] def Property(func): # pylint: disable = C0103 """ Property with improved docs handling :Parameters: `func` : ``callable`` The function providing the property parameters. It takes no arguments as returns a dict containing the keyword arguments to be defined for ``property``. The documentation is taken out the function by default, but can be overridden in the returned dict. :Return: The requested property :Rtype: ``property`` """ kwargs = func() kwargs.setdefault('doc', func.__doc__) kwargs = kwargs.get return property( fget=kwargs('fget'), fset=kwargs('fset'), fdel=kwargs('fdel'), doc=kwargs('doc'), ) def decorating(decorated, extra=None): """ Create decorator for designating decorators. :Parameters: `decorated` : function Function to decorate `extra` : ``dict`` Dict of consumed keyword parameters (not existing in the originally decorated function), mapping to their defaults. If omitted or ``None``, no extra keyword parameters are consumed. The arguments must be consumed by the actual decorator function. :Return: Decorator :Rtype: ``callable`` """ # pylint: disable = R0912 def flat_names(args): """ Create flat list of argument names """ for arg in args: if isinstance(arg, basestring): yield arg else: for arg in flat_names(arg): yield arg name = decorated.__name__ try: dargspec = argspec = _inspect.getargspec(decorated) except TypeError: dargspec = argspec = ([], 'args', 'kwargs', None) if extra: keys = extra.keys() argspec[0].extend(keys) defaults = list(argspec[3] or ()) for key in keys: defaults.append(extra[key]) argspec = (argspec[0], argspec[1], argspec[2], defaults) # assign a name for the proxy function. # Make sure it's not already used for something else (function # name or argument) counter, proxy_name = -1, 'proxy' names = dict.fromkeys(flat_names(argspec[0])) names[name] = None while proxy_name in names: counter += 1 proxy_name = 'proxy%s' % counter def inner(decorator): """ Actual decorator """ # Compile wrapper function space = {proxy_name: decorator} if argspec[3]: kwnames = argspec[0][-len(argspec[3]):] else: kwnames = None passed = _inspect.formatargspec(argspec[0], argspec[1], argspec[2], kwnames, formatvalue=lambda value: '=' + value ) # pylint: disable = W0122 exec "def %s%s: return %s%s" % ( name, _inspect.formatargspec(*argspec), proxy_name, passed ) in space wrapper = space[name] wrapper.__dict__ = decorated.__dict__ wrapper.__doc__ = decorated.__doc__ if extra and decorated.__doc__ is not None: if not decorated.__doc__.startswith('%s(' % name): wrapper.__doc__ = "%s%s\n\n%s" % ( name, _inspect.formatargspec(*dargspec), decorated.__doc__, ) return wrapper return inner class Deprecator(object): """ Deprecation proxy class The class basically emits a deprecation warning on access. :IVariables: `__todeprecate` : any Object to deprecate `__warn` : ``callable`` Warn function """ def __new__(cls, todeprecate, message=None): """ Construct :Parameters: `todeprecate` : any Object to deprecate `message` : ``str`` Custom message. If omitted or ``None``, a default message is generated. :Return: Deprecator instance :Rtype: `Deprecator` """ # pylint: disable = W0613 if type(todeprecate) is _types.MethodType: call = cls(todeprecate.im_func, message=message) @decorating(todeprecate.im_func) def func(*args, **kwargs): """ Wrapper to build a new method """ return call(*args, **kwargs) # pylint: disable = E1102 return _types.MethodType(func, None, todeprecate.im_class) elif cls == Deprecator and callable(todeprecate): res = CallableDeprecator(todeprecate, message=message) if type(todeprecate) is _types.FunctionType: res = decorating(todeprecate)(res) return res return object.__new__(cls) def __init__(self, todeprecate, message=None): """ Initialization :Parameters: `todeprecate` : any Object to deprecate `message` : ``str`` Custom message. If omitted or ``None``, a default message is generated. """ self.__todeprecate = todeprecate if message is None: if type(todeprecate) is _types.FunctionType: name = todeprecate.__name__ else: name = todeprecate.__class__.__name__ message = "%s.%s is deprecated." % (todeprecate.__module__, name) if _os.environ.get('EPYDOC_INSPECTOR') == '1': def warn(): """ Dummy to not clutter epydoc output """ pass else: def warn(): """ Emit the message """ _exceptions.DeprecationWarning.emit(message, stacklevel=3) self.__warn = warn def __getattr__(self, name): """ Get attribute with deprecation warning """ self.__warn() return getattr(self.__todeprecate, name) def __iter__(self): """ Get iterator with deprecation warning """ self.__warn() return iter(self.__todeprecate) class CallableDeprecator(Deprecator): """ Callable proxy deprecation class """ def __call__(self, *args, **kwargs): """ Call with deprecation warning """ self._Deprecator__warn() return self._Deprecator__todeprecate(*args, **kwargs) def load_dotted(name): """ Load a dotted name The dotted name can be anything, which is passively resolvable (i.e. without the invocation of a class to get their attributes or the like). For example, `name` could be 'tdi.util.load_dotted' and would return this very function. It's assumed that the first part of the `name` is always is a module. :Parameters: `name` : ``str`` The dotted name to load :Return: The loaded object :Rtype: any :Exceptions: - `ImportError` : A module in the path could not be loaded """ components = name.split('.') path = [components.pop(0)] obj = __import__(path[0]) while components: comp = components.pop(0) path.append(comp) try: obj = getattr(obj, comp) except AttributeError: __import__('.'.join(path)) try: obj = getattr(obj, comp) except AttributeError: raise ImportError('.'.join(path)) return obj def make_dotted(name): """ Generate a dotted module :Parameters: `name` : ``str`` Fully qualified module name (like ``tdi.util``) :Return: The module object of the last part and the information whether the last part was newly added (``(module, bool)``) :Rtype: ``tuple`` :Exceptions: - `ImportError` : The module name was horribly invalid """ sofar, parts = [], name.split('.') oldmod = None for part in parts: if not part: raise ImportError("Invalid module name %r" % (name,)) partname = ".".join(sofar + [part]) try: fresh, mod = False, load_dotted(partname) except ImportError: mod = _imp.new_module(partname) mod.__path__ = [] fresh = mod == _sys.modules.setdefault(partname, mod) if oldmod is not None: setattr(oldmod, part, mod) oldmod = mod sofar.append(part) return mod, fresh class DependencyGraph(object): """ Dependency Graph Container This is a simple directed acyclic graph. The graph starts empty, and new nodes (and edges) are added using the `add` method. If the newly added create a cycle, an exception is thrown. Finally, the graph is resolved using the `resolve` method. The method will return topologically ordered nodes and destroy the graph. The topological order is *stable*, meaning, the same graph will always produce the same output. :IVariables: `_outgoing` : ``dict`` Mapping of outgoing nodes (node -> set(outgoing neighbours)) `_incoming` : ``dict`` Mapping of incoming nodes (node -> set(incoming neighbours)) """ __slots__ = ('_outgoing', '_incoming') def __init__(self): """ Initialization """ self._outgoing = {} self._incoming = {} def add(self, start, end): """ Add a new nodes with edge to the graph The edge is directed from `start` to `end`. :Parameters: `start` : ``str`` Node `end` : ``str`` Node """ outgoing, incoming = self._outgoing, self._incoming if start not in outgoing: outgoing[start] = set() outgoing[start].add(end) if end not in incoming: incoming[end] = set() incoming[end].add(start) self._check_cycle(end) def resolve(self): """ Resolve graph and return nodes in topological order The graph is defined by outgoing and incoming dicts (mapping nodes to their outgoing or incoming neighbours). The graph is destroyed in the process. :Return: Sorted node list. The output is stable, because nodes on the same level are sorted alphabetically. Furthermore all leave nodes are put at the end. :Rtype: ``list`` """ result, outgoing, incoming = [], self._outgoing, self._incoming roots = list(set(outgoing.iterkeys()) - set(incoming.iterkeys())) leaves = set(incoming.iterkeys()) - set(outgoing.iterkeys()) roots.sort() # ensure stable output roots = _collections.deque(roots) roots_push, roots_pop = roots.appendleft, roots.pop result_push, opop, ipop = result.append, outgoing.pop, incoming.pop while roots: node = roots_pop() if node not in leaves: result_push(node) children = list(opop(node, ())) children.sort() # ensure stable output for child in children: parents = incoming[child] parents.remove(node) if not parents: roots_push(child) ipop(child) if outgoing or incoming: raise AssertionError("Graph not resolved (this is a bug).") leaves = list(leaves) leaves.sort() # ensure stable output return result + leaves def _check_cycle(self, node): """ Find a cycle containing `node` This assumes, that there's no other possible cycle in the graph. This assumption is valid, because the graph is checked whenever a new edge is added. :Parameters: `node` : ``str`` Node which may be part of a cycle. :Exceptions: - `DependencyCycle` : Raised, if there is, indeed, a cycle in the graph. The cycling nodes are passed as a list to the exception. """ # run a DFS for each child node until we find # a) a leaf (then backtrack) # b) node (cycle) outgoing = self._outgoing if node in outgoing: iter_ = iter stack = [(node, iter_(outgoing[node]).next)] exhausted, push, pop = StopIteration, stack.append, stack.pop while stack: try: child = stack[-1][1]() except exhausted: pop() else: if child == node: raise DependencyCycle(map(_op.itemgetter(0), stack)) elif child in outgoing: push((child, iter_(outgoing[child]).next))
03da3037aa5075dd5cc26a9b6f22f10ac33ea3dc
3cc8af76b1fd487eea86610d7a07f477afeab048
/setup.py
da827dc7ffda6b32ae816d398f0fb9cec5e512e5
[ "Apache-2.0", "CC-BY-NC-SA-4.0" ]
permissive
expresschen/HanLP
20ff6d03b01b508e4395ea3532e8af712e065ebf
24b48966e90dfafa1faa65765eb6f35e19cac801
refs/heads/doc-zh
2023-07-13T10:16:30.231114
2020-02-15T17:19:28
2021-08-24T02:15:49
401,305,599
1
0
Apache-2.0
2021-08-30T10:37:28
2021-08-30T10:37:27
null
UTF-8
Python
false
false
1,990
py
# -*- coding:utf-8 -*- # Author: hankcs # Date: 2019-12-28 19:26 from os.path import abspath, join, dirname from setuptools import find_packages, setup this_dir = abspath(dirname(__file__)) with open(join(this_dir, 'README.md'), encoding='utf-8') as file: long_description = file.read() version = {} with open(join(this_dir, "hanlp", "version.py")) as fp: exec(fp.read(), version) setup( name='hanlp', version=version['__version__'], description='HanLP: Han Language Processing', long_description=long_description, long_description_content_type="text/markdown", url='https://github.com/hankcs/HanLP', author='hankcs', author_email='[email protected]', license='Apache License 2.0', classifiers=[ 'Intended Audience :: Science/Research', 'Intended Audience :: Developers', "Development Status :: 3 - Alpha", 'Operating System :: OS Independent', "License :: OSI Approved :: Apache Software License", 'Programming Language :: Python :: 3 :: Only', 'Topic :: Scientific/Engineering :: Artificial Intelligence', "Topic :: Text Processing :: Linguistic" ], keywords='corpus,machine-learning,NLU,NLP', packages=find_packages(exclude=['docs', 'tests*']), include_package_data=True, install_requires=[ 'termcolor', 'pynvml', 'alnlp', 'toposort==1.5', 'transformers>=4.1.1', 'sentencepiece>=0.1.91' 'torch>=1.6.0', 'hanlp-common>=0.0.9', 'hanlp-trie>=0.0.2', 'hanlp-downloader', ], extras_require={ 'full': [ 'fasttext==0.9.1', 'tensorflow==2.3.0', 'bert-for-tf2==0.14.6', 'py-params==0.9.7', 'params-flow==0.8.2', 'penman==0.6.2', ], }, python_requires='>=3.6', # entry_points={ # 'console_scripts': [ # 'hanlp=pyhanlp.main:main', # ], # }, )
4c5824d086f61db8d6a64e10bf494165a522f574
187a6558f3c7cb6234164677a2bda2e73c26eaaf
/jdcloud_sdk/services/ag/models/UpdateStepAsRuleSpec.py
defba859f89b925fee619a7ec0fa42170e4f650c
[ "Apache-2.0" ]
permissive
jdcloud-api/jdcloud-sdk-python
4d2db584acc2620b7a866af82d21658cdd7cc227
3d1c50ed9117304d3b77a21babe899f939ae91cd
refs/heads/master
2023-09-04T02:51:08.335168
2023-08-30T12:00:25
2023-08-30T12:00:25
126,276,169
18
36
Apache-2.0
2023-09-07T06:54:49
2018-03-22T03:47:02
Python
UTF-8
Python
false
false
1,341
py
# coding=utf8 # Copyright 2018 JDCLOUD.COM # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # NOTE: This class is auto generated by the jdcloud code generator program. class UpdateStepAsRuleSpec(object): def __init__(self, adjustmentType=None, stepAdjustments=None): """ :param adjustmentType: (Optional) 伸缩调整方式,取值范围:[`Number`,`Percentage`,`Total`] - `Number`:增加或减少指定数量的实例 - `Percentage`:增加或减少指定百分比的实例 - `Total`:将当前伸缩组的实例数量调整到指定数量 如果修改了参数 `adjustmentType`,则参数 `stepAdjustments` 也必须传,否则报错 :param stepAdjustments: (Optional) 步进调整策略数组 """ self.adjustmentType = adjustmentType self.stepAdjustments = stepAdjustments
84191deb0a80f8875e115aa3f5eae0046025e1d7
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p04031/s251975826.py
5d8d02c8d8407057ca16c1bec6857fff705531e1
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
400
py
import math import collections import fractions import itertools import functools import operator def solve(): n = int(input()) a = list(map(int, input().split())) cost = [] for i in range(-100, 101): ramen = 0 for j in range(n): ramen += abs(a[j]-i)**2 cost.append(ramen) print(min(cost)) return 0 if __name__ == "__main__": solve()
f95f8a329e6279fc0ee59df351c887432ee6fec1
93736e8d0d5517eb73af91eeda6e9b0f4b07439e
/Python/Intro_Python/exercise3.py
e85c0cc0eae27917d1839cebdafb0e37e1cd146e
[]
no_license
aayushgupta97/TTN
0de1a5d3a25d7399d68a81ea51f17233f81029e0
324466cbdf0a9b0953dd4ae574bd0b3f753c4fd7
refs/heads/master
2020-04-21T12:18:25.721602
2019-04-15T11:09:13
2019-04-15T11:09:13
169,557,867
0
0
null
null
null
null
UTF-8
Python
false
false
1,564
py
from abc import ABC, abstractmethod class Box(ABC): def add(self, *items): raise NotImplementedError() def empty(self): raise NotImplementedError() def count(self): raise NotImplementedError() class Item(): def __init__(self, name, value): self.name = name self.value = value class ListBox(Box): def __init__(self): self._items = [] def add(self, *items): self._items.extend(items) def empty(self): items = self._items self._items = [] return items def count(self): return len(self._items) # class DictBox(Box): # def __init__(self): # self._items = {} # def add(self, *items): # self._items.update(dict((i.name, i) for i in items)) # def empty(self): # items = list(self._items.values()) # self._items = {} # return items # def count(self): # return len(self._items) # #repack # def repack_boxes(*boxes): # items = [] # for box in boxes: # items.extend(box.empty()) # while items: # for box in boxes: # try: # box.add(items.pop()) # except IndexError: # break # box1 = ListBox() # box1.add(Item(str(i), i) for i in range(20)) # box2 = ListBox() # box2.add(Item(str(i), i) for i in range(9)) # # box3 = DictBox() # # box3.add(Item(str(i), i) for i in range(5)) # repack_boxes(box1, box2) #, box2, box3 # print(box1.count()) # print(box2.count()) # # print(box3.count())
f2e9d1fa4f806aa5430bcc405d3ed2f4ea3e94d2
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03165/s926838179.py
74a1ba1007c89e718147b0b4242828dcbc0a88f7
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
594
py
s = input() t = input() dp = [[0]*(len(t)+1) for _ in range(len(s)+1)] for i in range(len(s)): for j in range(len(t)): if s[i]==t[j]: dp[i+1][j+1] = dp[i][j]+1 else: if dp[i+1][j] < dp[i][j+1]: dp[i+1][j+1] = dp[i][j+1] else: dp[i+1][j+1] = dp[i+1][j] i = len(s)-1 j = len(t)-1 ans = '' while i>=0 and j>=0: if s[i]==t[j]: ans += t[j] i -= 1 j -= 1 else: if dp[i][j+1]>dp[i+1][j]: i -= 1 else: j -= 1 print(ans[::-1])
e91848d3129b01eeac17497f4be7ff57f9e5a2d5
215cafb0a79338a2a268c19629f07df20cf68f76
/venv/bin/pip-3.8
6de21cb3dcc8b330bf64648feb3896c8b6bb5f2d
[]
no_license
safwanvk/erp
c95741c5873ebaa53a8a96093928745e02000be9
d4e427dbb6b71eb9aa6e2d15a039e2e669c53cbe
refs/heads/master
2022-12-08T12:38:36.817514
2020-08-16T15:10:55
2020-08-16T15:10:55
287,913,687
0
0
null
null
null
null
UTF-8
Python
false
false
262
8
#!/home/safwan/Desktop/projects/erp-pro/erp/venv/bin/python # -*- coding: utf-8 -*- import re import sys from pip._internal.cli.main import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
9f2833105773edd29e1268cc3705ad9ff9dc2a1c
98be00ee32971cade82d10c067aff532c3394a62
/Competitions/Xtreme/xplore.py
f6e47c98fc808d7cc0c5fe1f897956f31365aa4a
[]
no_license
vigneshhari/Competitive_solutions
5ab34933ea8d84eab67bdef9bb9e4562f6b90782
7a35e1386e5cff71cb5746b6797ccc0f03ceb3f4
refs/heads/master
2023-01-11T02:53:01.456863
2022-12-29T13:50:03
2022-12-29T13:50:03
115,146,700
4
2
null
2019-10-26T09:15:03
2017-12-22T20:03:51
Python
UTF-8
Python
false
false
4,010
py
import json from collections import defaultdict authors_citations = defaultdict(list) for i in range(input()): data = raw_input() temp = json.loads(data) citation_count = temp["citing_paper_count"] for i in temp["authors"]["authors"]: authors_citations[i["full_name"]].append(citation_count) answers = defaultdict(list) for i in authors_citations: values = authors_citations[i] values.sort() length = len(values) out = 0 for j in range(length): if( length - j >= values[j] ): out = values[j] else: if(values[j] > length - j and length - j > out ): out = length - j answers[out].append(i) temp = sorted(answers.keys()) temp = temp[::-1] for i in temp: for k in sorted(answers[i]): print k , i """ 10 {"authors": {"authors": [{"author_order": 1,"affiliation": "","full_name": "Echo"}, {"author_order": 2,"affiliation": "","full_name": "Bravo"}, {"author_order": 3,"affiliation": "","full_name": "Alfa"}]},"title": "Article Title 1","article_number": "1","publication_title": "Publication Title 1","publication_number": "7","citing_paper_count": 9,"publisher": "IEEE"} {"authors": {"authors": [{"author_order": 1,"affiliation": "","full_name": "Charlie"}, {"author_order": 2,"affiliation": "","full_name": "Bravo"}]},"title": "Article Title 2","article_number": "2","publication_title": "Publication Title 1","publication_number": "7","citing_paper_count": 9,"publisher": "IEEE"} {"authors": {"authors": [{"author_order": 1,"affiliation": "","full_name": "Echo"}, {"author_order": 2,"affiliation": "","full_name": "Delta"}, {"author_order": 3,"affiliation": "","full_name": "Alfa"}, {"author_order": 4,"affiliation": "","full_name": "Charlie"}]},"title": "Article Title 3","article_number": "3","publication_title": "Publication Title 1","publication_number": "7","citing_paper_count": 4,"publisher": "IEEE"} {"authors": {"authors": [{"author_order": 1,"affiliation": "","full_name": "Charlie"}]},"title": "Article Title 4","article_number": "4","publication_title": "Publication Title 1","publication_number": "7","citing_paper_count": 9,"publisher": "IEEE"} {"authors": {"authors": [{"author_order": 1,"affiliation": "","full_name": "Charlie"}, {"author_order": 2,"affiliation": "","full_name": "Echo"}, {"author_order": 3,"affiliation": "","full_name": "Alfa"}]},"title": "Article Title 5","article_number": "5","publication_title": "Publication Title 1","publication_number": "7","citing_paper_count": 5,"publisher": "IEEE"} {"authors": {"authors": [{"author_order": 1,"affiliation": "","full_name": "Charlie"}, {"author_order": 2,"affiliation": "","full_name": "Echo"}]},"title": "Article Title 6","article_number": "6","publication_title": "Publication Title 1","publication_number": "7","citing_paper_count": 6,"publisher": "IEEE"} {"authors": {"authors": [{"author_order": 1,"affiliation": "","full_name": "Delta"}]},"title": "Article Title 7","article_number": "7","publication_title": "Publication Title 1","publication_number": "7","citing_paper_count": 4,"publisher": "IEEE"} {"authors": {"authors": [{"author_order": 1,"affiliation": "","full_name": "Charlie"}]},"title": "Article Title 8","article_number": "8","publication_title": "Publication Title 1","publication_number": "7","citing_paper_count": 9,"publisher": "IEEE"} {"authors": {"authors": [{"author_order": 1,"affiliation": "","full_name": "Delta"}, {"author_order": 2,"affiliation": "","full_name": "Charlie"}]},"title": "Article Title 9","article_number": "9","publication_title": "Publication Title 1","publication_number": "7","citing_paper_count": 4,"publisher": "IEEE"} {"authors": {"authors": [{"author_order": 1,"affiliation": "","full_name": "Bravo"}, {"author_order": 2,"affiliation": "","full_name": "Echo"}]},"title": "Article Title 10","article_number": "10","publication_title": "Publication Title 1","publication_number": "7","citing_paper_count": 6,"publisher": "IEEE"} """ # Solved Completely
6d57c6855dd53ede783641ec65bed681aa69e10a
1196fe960947b4a7d6bba5df6cdfc7010bb118fb
/examples/apikeys/apikeys.py
8b921f815ddb9dc3eea6e33e1ad7b042f43026be
[ "MIT" ]
permissive
Nextdoor/sendgrid-python
a4afe5cda9015c7cf6a3a1303785fda05e844277
a7c834b6391775b796969ef65a3ef259ccabf0f0
refs/heads/master
2021-01-22T11:12:08.221546
2016-04-22T21:20:07
2016-04-22T21:20:07
56,885,507
0
0
null
2016-04-22T21:11:50
2016-04-22T21:11:49
null
UTF-8
Python
false
false
1,657
py
import sendgrid import json import os sg = sendgrid.SendGridAPIClient(apikey='YOUR_SENDGRID_API_KEY') # You can also store your API key an .env variable 'SENDGRID_API_KEY' ################################################## # List all API Keys belonging to the authenticated user # # GET /api_keys # response = sg.client.api_keys.get() print(response.status_code) print(response.response_body) print(response.response_headers) ################################################## # Update the name & scopes of an API Key # # PUT /api_keys/{api_key_id} # data = {'sample': 'data'} api_key_id = "test_url_param" response = sg.client.api_keys._(api_key_id).put(request_body=data) print(response.status_code) print(response.response_body) print(response.response_headers) ################################################## # Update API keys # # PATCH /api_keys/{api_key_id} # data = {'sample': 'data'} api_key_id = "test_url_param" response = sg.client.api_keys._(api_key_id).patch(request_body=data) print(response.status_code) print(response.response_body) print(response.response_headers) ################################################## # Get an existing API Key # # GET /api_keys/{api_key_id} # api_key_id = "test_url_param" response = sg.client.api_keys._(api_key_id).get() print(response.status_code) print(response.response_body) print(response.response_headers) ################################################## # Delete API keys # # DELETE /api_keys/{api_key_id} # api_key_id = "test_url_param" response = sg.client.api_keys._(api_key_id).delete() print(response.status_code) print(response.response_body) print(response.response_headers)
df55ffe5751d160215654f44ca59df406536a410
c03edd979ad6fd4a8abd155e3e63bcefbd93d5c2
/Image/band_stats.py
7b83630a66a15155d6b74a944ca88a2b17ef34e5
[ "MIT" ]
permissive
xiangtaoxu/earthengine-py-examples
538dafc88a22a351b762ba02df09db583df955bb
76ae8e071a71b343f5e464077afa5b0ed2f9314c
refs/heads/master
2022-11-03T03:16:11.933616
2020-06-12T15:47:52
2020-06-12T15:47:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,987
py
import ee import geemap # Create a map centered at (lat, lon). Map = geemap.Map(center=[40, -100], zoom=4) # get highest value def maxValue(img, scale=30): max_value = img.reduceRegion(**{ 'reducer': ee.Reducer.max(), 'geometry': img.geometry(), 'scale': scale, 'maxPixels': 1e9 }) return max_value # get lowest value def minValue(img, scale=30): min_value = img.reduceRegion(**{ 'reducer': ee.Reducer.min(), 'geometry': img.geometry(), 'scale': scale, 'maxPixels': 1e9 }) return min_value # get mean value def meanValue(img, scale=30): mean_value = img.reduceRegion(**{ 'reducer': ee.Reducer.mean(), 'geometry': img.geometry(), 'scale': scale, 'maxPixels': 1e9 }) return mean_value # get standard deviation def stdValue(img, scale=30): std_value = img.reduceRegion(**{ 'reducer': ee.Reducer.stdDev(), 'geometry': img.geometry(), 'scale': scale, 'maxPixels': 1e9 }) return std_value dataset = ee.Image('USGS/NED') dem = dataset.select('elevation') # dem = ee.Image('srtm90_v4') vis_params = {'min': 0, 'max': 3000} Map.addLayer(dem, vis_params, 'NED', False) roi = ee.Geometry.Polygon( [[[-120.18204899532924, 38.53481618819663], [-120.18204899532924, 36.54889033300136], [-116.75431462032924, 36.54889033300136], [-116.75431462032924, 38.53481618819663]]]) image = dem.clip(roi) Map.centerObject(image, 9) Map.addLayer(image, vis_params, 'DEM') scale = image.projection().nominalScale() print("Resolution: ", scale.getInfo()) scale = 30 print("Minimum value: ", minValue(image, scale).get('elevation').getInfo()) print("Maximum value: ", maxValue(image, scale).get('elevation').getInfo()) print("Average value: ", meanValue(image, scale).get('elevation').getInfo()) print("Standard deviation: ", stdValue(image, scale).get('elevation').getInfo()) # Display the map. Map
9242782550ab6ddf1a26238b272e633e1ed1d3c8
c342c8b9b2437d6474b9ae7da154ba47c6fc447c
/src/data/memory_store.py
81d6cb406f3ba13f5011c2669584a64d0cdc0b4a
[]
no_license
nezaj/menu-api
0d5118f3a1392f85e51700b5e8ac234bac605518
bcf759b91893bf72821323c41f963923d9184e68
refs/heads/master
2021-01-10T07:09:15.664561
2015-11-16T21:28:45
2015-11-16T21:28:45
44,832,757
0
0
null
null
null
null
UTF-8
Python
false
false
2,572
py
""" Store implementation using in-memory data """ import json import os from .store_interface import StoreInterface class MemoryStore(object): __implements__ = (StoreInterface, ) def __init__(self, data_dir): self.data_dir = data_dir self.data = self._load_data(data_dir) def _load_data(self, data_dir): """ Loads data from directory defined in settings. We expect there can be multiple collections of data and that each collection lives in its own subdirectory. As a result, we go through each directory and load it's data into it's own key. """ data = {} for d in os.listdir(data_dir): subd = os.path.join(data_dir, d) if os.path.isdir(subd): data[d] = self._load_json_files(subd) return data def _load_json_files(self, data_dir): """ Return a dictionary representing a collection of json from the given data directory. We iterate through each json file and load it's data. We then key the data in each file by the id defined in the file itself. """ collection = {} for item in os.listdir(data_dir): df = os.path.join(data_dir, item) if df.endswith(".json"): jd = self._load_json_file(df) d_id, d_meta = self._process_json(jd) collection[d_id] = d_meta return collection @staticmethod def _load_json_file(f): with open(f) as jf: jd = json.load(jf) return jd @staticmethod def _process_json(jd): jd_id = jd["id"] return jd_id, jd def create_item(self, collection_id, params): c = self.data[collection_id] item_id, item = self._process_json(params) c[item_id] = item return item def delete_item(self, collection_id, item_id): collection = self.get_collection(collection_id) item = self.get_item(collection_id, item_id) if collection and item: del collection[item_id] return item def get_collection(self, collection_id): return self.data.get(collection_id) def get_item(self, collection_id, item_id): collection = self.get_collection(collection_id) if collection: return collection.get(item_id) def update_item(self, collection_id, item_id, params): item = self.get_item(collection_id, item_id) if item: item.update(params) return item
7ebec6c0a7924a9438dc5a473cc822f219125df8
402ed5374ab189c8599b56864c5ce066f34b26c6
/tests/test_pdf_normal.py
e1fa17bd053bb3771266064aae86ee311b5c241c
[ "BSD-3-Clause" ]
permissive
kailiu77/zfit
db354e9c3eb4a41274af5363834fe231823c6d66
8bddb0ed3a0d76fde0aa2cdbf74434b0ee0ae8bb
refs/heads/master
2020-10-01T23:49:55.751825
2019-12-06T15:48:47
2019-12-06T15:48:47
227,650,723
1
0
BSD-3-Clause
2019-12-12T16:33:54
2019-12-12T16:33:53
null
UTF-8
Python
false
false
2,899
py
# Copyright (c) 2019 zfit import numpy as np import pytest import tensorflow as tf import zfit from zfit import Parameter from zfit.models.dist_tfp import Gauss from zfit.core.testing import setup_function, teardown_function, tester mu1_true = 1. mu2_true = 2. mu3_true = 0.6 sigma1_true = 1.4 sigma2_true = 2.3 sigma3_true = 1.8 test_values = np.random.uniform(low=-3, high=5, size=100) norm_range1 = (-4., 2.) obs1 = 'obs1' limits1 = zfit.Space(obs=obs1, limits=(-0.3, 1.5)) def create_gauss(): mu1 = Parameter("mu1a", mu1_true) mu2 = Parameter("mu2a", mu2_true) mu3 = Parameter("mu3a", mu3_true) sigma1 = Parameter("sigma1a", sigma1_true) sigma2 = Parameter("sigma2a", sigma2_true) sigma3 = Parameter("sigma3a", sigma3_true) gauss1 = Gauss(mu=mu1, sigma=sigma1, obs=obs1, name="gauss1a") normal1 = Gauss(mu=mu1, sigma=sigma1, obs=obs1, name="normal1a") gauss2 = Gauss(mu=mu2, sigma=sigma2, obs=obs1, name="gauss2a") normal2 = Gauss(mu=mu2, sigma=sigma2, obs=obs1, name="normal2a") gauss3 = Gauss(mu=mu3, sigma=sigma3, obs=obs1, name="gauss3a") normal3 = Gauss(mu=mu3, sigma=sigma3, obs=obs1, name="normal3a") return gauss1, gauss2, gauss3, normal1, normal2, normal3 # gauss1, gauss2, gauss3, normal1, normal2, normal3 = create_gauss() def test_gauss1(): gauss1, gauss2, gauss3, normal1, normal2, normal3 = create_gauss() probs1 = gauss1.pdf(x=test_values, norm_range=norm_range1) probs1_tfp = normal1.pdf(x=test_values, norm_range=norm_range1) probs1 = zfit.run(probs1) probs1_tfp = zfit.run(probs1_tfp) np.testing.assert_allclose(probs1, probs1_tfp, rtol=1e-2) probs1_unnorm = gauss1.pdf(x=test_values, norm_range=False) probs1_tfp_unnorm = normal1.pdf(x=test_values, norm_range=False) probs1_unnorm = zfit.run(probs1_unnorm) probs1_tfp_unnorm = zfit.run(probs1_tfp_unnorm) assert not np.allclose(probs1_tfp, probs1_tfp_unnorm, rtol=1e-2) assert not np.allclose(probs1, probs1_unnorm, rtol=1e-2) # np.testing.assert_allclose(probs1_unnorm, probs1_tfp_unnorm, rtol=1e-2) def test_truncated_gauss(): high = 2. low = -0.5 truncated_gauss = zfit.pdf.TruncatedGauss(mu=1, sigma=2, low=low, high=high, obs=limits1) gauss = zfit.pdf.Gauss(mu=1., sigma=2, obs=limits1) probs_truncated = truncated_gauss.pdf(test_values) probs_gauss = gauss.pdf(test_values) probs_truncated_np, probs_gauss_np = zfit.run([probs_truncated, probs_gauss]) bool_index_inside = np.logical_and(low < test_values, test_values < high) inside_probs_truncated = probs_truncated_np[bool_index_inside] outside_probs_truncated = probs_truncated_np[np.logical_not(bool_index_inside)] inside_probs_gauss = probs_gauss_np[bool_index_inside] assert inside_probs_gauss == pytest.approx(inside_probs_truncated, rel=1e-3) assert all(0 == outside_probs_truncated)
3e70f5bce473ccd4c866c43a7f594f03af071dca
f569978afb27e72bf6a88438aa622b8c50cbc61b
/douyin_open/EnterprisePersonaPersonaCreate/api/__init__.py
d436a85b96fd99e2b5e5d7a6b654b4348bb48850
[]
no_license
strangebank/swagger-petstore-perl
4834409d6225b8a09b8195128d74a9b10ef1484a
49dfc229e2e897cdb15cbf969121713162154f28
refs/heads/master
2023-01-05T10:21:33.518937
2020-11-05T04:33:16
2020-11-05T04:33:16
310,189,316
1
0
null
null
null
null
UTF-8
Python
false
false
208
py
from __future__ import absolute_import # flake8: noqa # import apis into api package from douyin_open.EnterprisePersonaPersonaCreate.api.enterprise_im_persona_create_api import EnterpriseImPersonaCreateApi
d44f23bdc3a2ebd7b826cebb9d784a04528b90e6
5af277b5819d74e61374d1d78c303ac93c831cf5
/tabnet/experiment_covertype.py
c00ea76b7c9058be7df642fae0d69184a435f921
[ "Apache-2.0" ]
permissive
Ayoob7/google-research
a2d215afb31513bd59bc989e09f54667fe45704e
727ec399ad17b4dd1f71ce69a26fc3b0371d9fa7
refs/heads/master
2022-11-11T03:10:53.216693
2020-06-26T17:13:45
2020-06-26T17:13:45
275,205,856
2
0
Apache-2.0
2020-06-26T16:58:19
2020-06-26T16:58:18
null
UTF-8
Python
false
false
6,699
py
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Experiment to train and evaluate the TabNet model on Forest Covertype.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from absl import app import data_helper_covertype import numpy as np import tabnet_model import tensorflow as tf # Run Tensorflow on GPU 0 os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = "0" # Training parameters TRAIN_FILE = "data/train_covertype.csv" VAL_FILE = "data/val_covertype.csv" TEST_FILE = "data/test_covertype.csv" MAX_STEPS = 1000000 DISPLAY_STEP = 5000 VAL_STEP = 10000 SAVE_STEP = 40000 INIT_LEARNING_RATE = 0.02 DECAY_EVERY = 500 DECAY_RATE = 0.95 BATCH_SIZE = 16384 SPARSITY_LOSS_WEIGHT = 0.0001 GRADIENT_THRESH = 2000.0 SEED = 1 def main(unused_argv): # Fix random seeds tf.set_random_seed(SEED) np.random.seed(SEED) # Define the TabNet model tabnet_forest_covertype = tabnet_model.TabNet( columns=data_helper_covertype.get_columns(), num_features=data_helper_covertype.NUM_FEATURES, feature_dim=128, output_dim=64, num_decision_steps=6, relaxation_factor=1.5, batch_momentum=0.7, virtual_batch_size=512, num_classes=data_helper_covertype.NUM_CLASSES) column_names = sorted(data_helper_covertype.FEATURE_COLUMNS) print( "Ordered column names, corresponding to the indexing in Tensorboard visualization" ) for fi in range(len(column_names)): print(str(fi) + " : " + column_names[fi]) # Input sampling train_batch = data_helper_covertype.input_fn( TRAIN_FILE, num_epochs=100000, shuffle=True, batch_size=BATCH_SIZE) val_batch = data_helper_covertype.input_fn( VAL_FILE, num_epochs=10000, shuffle=False, batch_size=data_helper_covertype.N_VAL_SAMPLES) test_batch = data_helper_covertype.input_fn( TEST_FILE, num_epochs=10000, shuffle=False, batch_size=data_helper_covertype.N_TEST_SAMPLES) train_iter = train_batch.make_initializable_iterator() val_iter = val_batch.make_initializable_iterator() test_iter = test_batch.make_initializable_iterator() feature_train_batch, label_train_batch = train_iter.get_next() feature_val_batch, label_val_batch = val_iter.get_next() feature_test_batch, label_test_batch = test_iter.get_next() # Define the model and losses encoded_train_batch, total_entropy = tabnet_forest_covertype.encoder( feature_train_batch, reuse=False, is_training=True) logits_orig_batch, _ = tabnet_forest_covertype.classify( encoded_train_batch, reuse=False) softmax_orig_key_op = tf.reduce_mean( tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logits_orig_batch, labels=label_train_batch)) train_loss_op = softmax_orig_key_op + SPARSITY_LOSS_WEIGHT * total_entropy tf.summary.scalar("Total loss", train_loss_op) # Optimization step global_step = tf.train.get_or_create_global_step() learning_rate = tf.train.exponential_decay( INIT_LEARNING_RATE, global_step=global_step, decay_steps=DECAY_EVERY, decay_rate=DECAY_RATE) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): gvs = optimizer.compute_gradients(train_loss_op) capped_gvs = [(tf.clip_by_value(grad, -GRADIENT_THRESH, GRADIENT_THRESH), var) for grad, var in gvs] train_op = optimizer.apply_gradients(capped_gvs, global_step=global_step) # Model evaluation # Validation performance encoded_val_batch, _ = tabnet_forest_covertype.encoder( feature_val_batch, reuse=True, is_training=False) _, prediction_val = tabnet_forest_covertype.classify( encoded_val_batch, reuse=True) predicted_labels = tf.cast(tf.argmax(prediction_val, 1), dtype=tf.int32) val_eq_op = tf.equal(predicted_labels, label_val_batch) val_acc_op = tf.reduce_mean(tf.cast(val_eq_op, dtype=tf.float32)) tf.summary.scalar("Val accuracy", val_acc_op) # Test performance encoded_test_batch, _ = tabnet_forest_covertype.encoder( feature_test_batch, reuse=True, is_training=False) _, prediction_test = tabnet_forest_covertype.classify( encoded_test_batch, reuse=True) predicted_labels = tf.cast(tf.argmax(prediction_test, 1), dtype=tf.int32) test_eq_op = tf.equal(predicted_labels, label_test_batch) test_acc_op = tf.reduce_mean(tf.cast(test_eq_op, dtype=tf.float32)) tf.summary.scalar("Test accuracy", test_acc_op) # Training setup model_name = "tabnet_forest_covertype_model" init = tf.initialize_all_variables() init_local = tf.local_variables_initializer() init_table = tf.tables_initializer(name="Initialize_all_tables") saver = tf.train.Saver() summaries = tf.summary.merge_all() with tf.Session() as sess: summary_writer = tf.summary.FileWriter("./tflog/" + model_name, sess.graph) sess.run(init) sess.run(init_local) sess.run(init_table) sess.run(train_iter.initializer) sess.run(val_iter.initializer) sess.run(test_iter.initializer) for step in range(1, MAX_STEPS + 1): if step % DISPLAY_STEP == 0: _, train_loss, merged_summary = sess.run( [train_op, train_loss_op, summaries]) summary_writer.add_summary(merged_summary, step) print("Step " + str(step) + " , Training Loss = " + "{:.4f}".format(train_loss)) else: _ = sess.run(train_op) if step % VAL_STEP == 0: feed_arr = [ vars()["summaries"], vars()["val_acc_op"], vars()["test_acc_op"] ] val_arr = sess.run(feed_arr) merged_summary = val_arr[0] val_acc = val_arr[1] print("Step " + str(step) + " , Val Accuracy = " + "{:.4f}".format(val_acc)) summary_writer.add_summary(merged_summary, step) if step % SAVE_STEP == 0: saver.save(sess, "./checkpoints/" + model_name + ".ckpt") if __name__ == "__main__": app.run(main)
7d8af894f2c76cc47cf868d00ed53d834dc11006
138f2550bb088a0597e1e71124d9ae32b1fe59c9
/xbrr/edinet/reader/element_schema.py
b78030ff98b2a4b89b4ca5131bc6e0a11deb5645
[ "MIT" ]
permissive
chakki-works/xbrr
9009539e1821c3d9c815f694eb52158ccbbeeb78
a9783acbb6c23eb0be0e1fbfb47e5b0b0e2cbfb8
refs/heads/master
2022-07-22T22:30:17.054418
2021-06-16T13:27:40
2021-06-16T13:27:40
182,622,738
23
5
MIT
2022-07-15T18:42:36
2019-04-22T04:26:21
Python
UTF-8
Python
false
false
1,947
py
from xbrr.base.reader.base_element_schema import BaseElementSchema class ElementSchema(BaseElementSchema): def __init__(self, name="", reference="", label="", alias="", abstract="", data_type="", period_type="", balance=""): super().__init__() self.name = name self.reference = reference self.label = label self.alias = alias self.abstract = abstract self.data_type = data_type self.period_type = period_type self.balance = balance def set_alias(self, alias): self.alias = alias return self @classmethod def create_from_reference(cls, reader, reference, label_kind="", label_verbose=False): name = reference.split("#")[-1] label = "" abstract = "" data_type = "" period_type = "" balance = "" if reader.xbrl_dir: _def = reader.read_by_link(reference) if label_kind is not None: label = _def.label(label_kind, label_verbose) xsd = _def.xsd abstract = xsd["abstract"] data_type = xsd["type"] if "xbrli:periodType" in xsd.attrs: period_type = xsd["xbrli:periodType"] if "xbrli:balance" in xsd.attrs: balance = xsd["xbrli:balance"] instance = cls(name=name, reference=reference, label=label, abstract=abstract, data_type=data_type, period_type=period_type, balance=balance) return instance def to_dict(self): return { "name": self.name, "reference": self.reference, "label": self.label, "abstract": self.abstract, "data_type": self.data_type, "period_type": self.period_type, "balance": self.balance }
bb394288997b3ae09c3bf5e93b767c0a5aa8fcdb
7ad616ab89e9b67bd27df2df3c8ca7487c5e4564
/ood/4_stack_overflow.py
102433a9d98dbc8f0d47c4101d2b370291a90a1b
[]
no_license
zihuaweng/algorithm-snacks
cd7643c7d80d0bcb680336231214c1700fe74cc9
aa3d88f861bb8b0aceb7ef6c6d05523f54202d77
refs/heads/master
2023-01-13T11:03:04.395542
2020-11-10T04:42:41
2020-11-10T04:42:41
149,380,311
1
1
null
null
null
null
UTF-8
Python
false
false
3,997
py
#!/usr/bin/env python3 # coding: utf-8 class QuestionStatus(Enum): OPEN, CLOSED, ON_HOLD, DELETED = 1, 2, 3, 4 class QuestionClosingRemark(Enum): DUPLICATE, OFF_TOPIC, TOO_BROAD, NOT_CONSTRUCTIVE, NOT_A_REAL_QUESTION, PRIMARILY_OPINION_BASED = 1, 2, 3, 4, 5, 6 class AccountStatus(Enum): ACTIVE, CLOSED, CANCELED, BLACKLISTED, BLOCKED = 1, 2, 3, 4, 5 # For simplicity, we are not defining getter and setter functions. The reader can # assume that all class attributes are private and accessed through their respective # public getter methods and modified only through their public methods function. class Account: def __init__(self, id, password, name, address, email, phone, status=AccountStatus.Active): self.__id = id self.__password = password self.__name = name self.__address = address self.__email = email self.__phone = phone self.__status = status self.__reputation = 0 def reset_password(self): None class Member: def __init__(self, account): self.__account = account self.__badges = [] def get_reputation(self): return self.__account.get_reputation() def get_email(self): return self.__account.get_email() def create_question(self, question): None def create_tag(self, tag): None class Admin(Member): def block_member(self, member): None def unblock_member(self, member): None class Moderator(Member): def close_question(self, question): None def undelete_question(self, question): None class Badge: def __init__(self, name, description): self.__name = name self.__description = description class Tag: def __init__(self, name, description): self.__name = name self.__description = description self.__daily_asked_frequency = 0 self.__weekly_asked_frequency = 0 # import datetime class Notification: def __init__(self, id, content): self.__notification_id = id self.__created_on = datetime.datetime.now() self.__content = content def send_notification(self): None import datetime class Photo: def __init__(self, id, path, member): self.__photo_id = id self.__photo_path = path self.__creation_date = datetime.datetime.now() self.__creating_member = member def delete(self): None # import datetime class Bounty: def __init__(self, reputation, expiry): self.__reputation = reputation self.__expiry = expiry def modify_reputation(self, reputation): None from abc import ABC, abstractmethod class Search(ABC): def search(self, query): None import datetime class Question(Search): def __init__(self, title, description, bounty, asking_member): self.__title = title self.__description = description self.__view_count = 0 self.__vote_count = 0 self.__creation_time = datetime.datetime.now() self.__update_time = datetime.datetime.now() self.__status = QuestionStatus.OPEN self.__closing_remark = QuestionClosingRemark.DUPLICATE self.__bounty = bounty self.__asking_member = asking_member self.__photos = [] self.__comments = [] self.__answers = [] def close(self): None def undelete(self): None def add_comment(self, comment): None def add_bounty(self, bounty): None def search(self, query): # return all questions containing the string query in their title or description. None class Comment: def __init__(self, text, member): self.__text = text self.__creation_time = datetime.datetime.now() self.__flag_count = 0 self.__vote_count = 0 self.__asking_member = member def increment_vote_count(self): None class Answer: def __init__(self, text, member): self.__answer_text = text self.__accepted = False self.__vote_count = 0 self.__flag_count = 0 self.__creation_time = datetime.datetime.now() self.__creating_member = member self.__photos = [] def increment_vote_count(self): None
b208e49da531e72d4264b91f912ebd1523d749d6
731c3f2f85f6002725322eedc0b2c8b5e74f610e
/0-jakc/jakc_hr/__openerp__.py
2df1fff1bd5ba0cb87ac4230b96c9fe3ed3e6001
[]
no_license
babarlhr/project-0021
1ac824657f893c8f25d6eb3b839051f350d7cc9d
e30b8a9f5d2147d3ca5b56b69ec5dbd22f712a91
refs/heads/master
2021-09-22T15:45:47.431000
2018-09-11T14:59:49
2018-09-11T14:59:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
398
py
# -*- coding: utf-8 -*- { 'name': 'Jakc Labs - HR Enhancement', 'version': '9.0.0.1.0', 'category': 'General', 'license': 'AGPL-3', 'summary': 'HR Enchancement', 'author': "Jakc Labs", 'website': 'http://www.jakc-labs.com/', 'depends': [ 'hr' ], 'data': [ 'views/jakc_hr_view.xml', ], 'installable': True, 'application': True, }
91b6b76a311bc1f86fdb741e4608f8220dbde146
30d61ce0b728f31a830db6b6b1954a32551990b2
/src/gui_config/custom/sr_source_mode_tab.py
b2a24e0a0387ec82695aca2a32af5633db14603c
[ "MIT" ]
permissive
hgiesel/anki_set_randomizer
6755dc8489b703887c55a5427bbbdab858f58a65
1a9a22480eb6c0e7f421dc08d36d14920e43dd3e
refs/heads/master
2022-08-24T05:45:13.339132
2020-01-15T17:04:26
2020-01-30T13:56:50
197,258,760
5
0
MIT
2022-07-20T17:28:42
2019-07-16T19:56:27
JavaScript
UTF-8
Python
false
false
1,391
py
from aqt.qt import QWidget from ...lib.config import deserialize_source_mode, deserialize_cloze_options, deserialize_occlusion_options from ..sr_source_mode_tab_ui import Ui_SRSourceModeTab class SRSourceModeTab(QWidget): def __init__(self): super().__init__() self.ui = Ui_SRSourceModeTab() self.ui.setupUi(self) def setupUi(self, source_mode): cloze_options = source_mode.cloze_options self.ui.clozeShortcutsEnabledCheckBox.setChecked(cloze_options.shortcuts_enabled) self.ui.clozeVsPrefixLineEdit.setText(cloze_options.vs_prefix) self.ui.clozeOpenDelimLineEdit.setText(cloze_options.open_delim) self.ui.clozeCloseDelimLineEdit.setText(cloze_options.close_delim) def exportClozeOptions(self): return deserialize_cloze_options({ 'shortcutsEnabled': self.ui.clozeShortcutsEnabledCheckBox.isChecked(), 'vsPrefix': self.ui.clozeVsPrefixLineEdit.text(), 'openDelim': self.ui.clozeOpenDelimLineEdit.text(), 'closeDelim': self.ui.clozeCloseDelimLineEdit.text(), }) def exportOcclusionOptions(self): return deserialize_occlusion_options({}) def exportData(self): return deserialize_source_mode({ 'clozeOptions': self.exportClozeOptions(), 'occlusionOptions': self.exportOcclusionOptions(), })
223bd273f49b7e533b590ec4dc1f9394ef62d3c7
bfbe642d689b5595fc7a8e8ae97462c863ba267a
/bin/Python27/Lib/site-packages/OMPython/OMTypedParser.py
a0e4c90b6d536f97341c456f18de90f519d82e80
[ "MIT", "LicenseRef-scancode-other-permissive" ]
permissive
mcanthony/meta-core
0c0a8cde1669f749a4880aca6f816d28742a9c68
3844cce391c1e6be053572810bad2b8405a9839b
refs/heads/master
2020-12-26T03:11:11.338182
2015-11-04T22:58:13
2015-11-04T22:58:13
45,806,011
1
0
null
2015-11-09T00:34:22
2015-11-09T00:34:22
null
UTF-8
Python
false
false
4,041
py
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = "Martin Sjölund" __license__ = """ This file is part of OpenModelica. Copyright (c) 1998-CurrentYear, Open Source Modelica Consortium (OSMC), c/o Linköpings universitet, Department of Computer and Information Science, SE-58183 Linköping, Sweden. All rights reserved. THIS PROGRAM IS PROVIDED UNDER THE TERMS OF THE BSD NEW LICENSE OR THE GPL VERSION 3 LICENSE OR THE OSMC PUBLIC LICENSE (OSMC-PL) VERSION 1.2. ANY USE, REPRODUCTION OR DISTRIBUTION OF THIS PROGRAM CONSTITUTES RECIPIENT'S ACCEPTANCE OF THE OSMC PUBLIC LICENSE OR THE GPL VERSION 3, ACCORDING TO RECIPIENTS CHOICE. The OpenModelica software and the OSMC (Open Source Modelica Consortium) Public License (OSMC-PL) are obtained from OSMC, either from the above address, from the URLs: http://www.openmodelica.org or http://www.ida.liu.se/projects/OpenModelica, and in the OpenModelica distribution. GNU version 3 is obtained from: http://www.gnu.org/copyleft/gpl.html. The New BSD License is obtained from: http://www.opensource.org/licenses/BSD-3-Clause. This program is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, EXCEPT AS EXPRESSLY SET FORTH IN THE BY RECIPIENT SELECTED SUBSIDIARY LICENSE CONDITIONS OF OSMC-PL. Author : Anand Kalaiarasi Ganeson, [email protected], 2012-03-19 Version: 1.0 """ __status__ = "Prototype" __maintainer__ = "https://openmodelica.org" from pyparsing import * import sys def convertNumbers(s,l,toks): n = toks[0] try: return int(n) except ValueError, ve: return float(n) def convertString(s,s2): return s2[0].replace("\\\"",'"') def convertDict(d): return dict(d[0]) def convertTuple(t): return tuple(t[0]) omcRecord = Forward() omcValue = Forward() TRUE = Keyword("true").setParseAction( replaceWith(True) ) FALSE = Keyword("false").setParseAction( replaceWith(False) ) NONE = (Keyword("NONE") + Suppress("(") + Suppress(")") ).setParseAction( replaceWith(None) ) SOME = (Suppress( Keyword("SOME") ) + Suppress("(") + omcValue + Suppress(")") ) omcString = QuotedString(quoteChar='"',escChar='\\', multiline = True).setParseAction( convertString ) omcNumber = Combine( Optional('-') + ( '0' | Word('123456789',nums) ) + Optional( '.' + Word(nums) ) + Optional( Word('eE',exact=1) + Word(nums+'+-',nums) ) ) ident = Word(alphas+"_",alphanums+"_") | Combine( "'" + Word(alphanums+"!#$%&()*+,-./:;<>=?@[]^{}|~ ") + "'" ) fqident = Forward() fqident << ( (ident + "." + fqident) | ident ) omcValues = delimitedList( omcValue ) omcTuple = Group( Suppress('(') + Optional(omcValues) + Suppress(')') ).setParseAction(convertTuple) omcArray = Group( Suppress('{') + Optional(omcValues) + Suppress('}') ).setParseAction(convertTuple) omcValue << ( omcString | omcNumber | omcRecord | omcArray | omcTuple | SOME | TRUE | FALSE | NONE | Combine(fqident) ) recordMember = delimitedList( Group( ident + Suppress('=') + omcValue ) ) omcRecord << Group( Suppress('record') + Suppress( ident ) + Dict( recordMember ) + Suppress('end') + Suppress( ident ) + Suppress(';') ).setParseAction(convertDict) omcGrammar = omcValue + StringEnd() omcNumber.setParseAction( convertNumbers ) def parseString(string): return omcGrammar.parseString(string)[0] if __name__ == "__main__": testdata = """ (1.0,{{1,true,3},{"4\\" ",5.9,6,NONE ( )},record ABC startTime = ErrorLevel.warning, 'stop*Time' = SOME(1.0) end ABC;}) """ expected = (1.0, ((1, True, 3), ('4"\n', 5.9, 6, None), {"'stop*Time'": 1.0, 'startTime': 'ErrorLevel.warning'})) results = parseString(testdata) if results <> expected: print "Results:",results print "Expected:",expected print "Failed" sys.exit(1) print "Matches expected output", print type(results),repr(results)
6ddbc8154053d1a105be3ce47e7b58a27e253eb8
de479d4a8af0e070b2bcae4186b15a8eb74971fb
/cn/iceknc/study/k_python_mini_web/__init__.py
2c29f9732decc87fd29a825cf08dd49ab11e8eb8
[]
no_license
iceknc/python_study_note
1d8f6e38be57e4dc41a661c0a84d6ee223c5a878
730a35890b77ecca3d267fc875a68e96febdaa85
refs/heads/master
2020-05-19T18:44:55.957392
2019-09-27T01:15:54
2019-09-27T01:15:54
185,160,232
0
0
null
null
null
null
UTF-8
Python
false
false
152
py
# -*- coding: utf-8 -*- # @Author: 徐志鹏 # @Date : 2019/5/29 # @Desc : def main(): pass if __name__ == "__main__": main()
f66be245d49c0500c212fbf3f7565976f9419b1f
80755ce68bf894bfa7c7cec50051b18a6069c552
/nkamg_malware/collector/samples/file_monitor.py
0d59cd857a599c427bd46b6fa686fa151a915729
[ "Apache-2.0" ]
permissive
NKQiuKF/malware_update
6538c9308dd7b476b687fca4ea120209207257bc
a875b5011fee2486da5618e01da61d730d6ac0dd
refs/heads/master
2022-10-17T09:08:34.605641
2019-09-02T09:00:45
2019-09-02T09:00:45
205,817,190
0
0
null
2022-10-06T18:33:50
2019-09-02T08:59:47
JavaScript
UTF-8
Python
false
false
2,497
py
#!/usr/bin/env python # -*- coding: utf-8 -*- #Nankai University Information Security #QiuKF [email protected] #get file results at fixed time #create processed.csv at sub dirctories #create Total_File_Data.csv at /collection from multiprocessing import Process,Pool import os import pandas as pd import time import sys sys.path.append('../core/') from setting import SAMPLES_PATH #samples_path='/data/malware/' def merge_file(): data = {"sha256":[],"type":[]} total_df=pd.DataFrame(data) chr=['0','1','2','3','4','5','6','7','8','9','a','b','c','d','e','f'] for first in chr: sub_dir_list=make_file_dir(first) for each in sub_dir_list: sub_pd=pd.read_csv(SAMPLES_PATH+each+'processed.csv') total=[total_df,sub_pd] total_df=pd.concat(total) print 'concat '+each+'processed.csv' total_df.to_csv('Total_File_Data.csv',index=False) def exe_file(first_dir): count=0 #print 'test' print 'Run task %s (%s)...' % (first_dir, os.getpid()) child_dir=make_file_dir(first_dir) #print child_dir for each_dir in child_dir: data = {"sha256":[],"type":[]} processed_df=pd.DataFrame(data) all_files=os.listdir(SAMPLES_PATH+each_dir) for each_file in all_files: file_command = os.popen('file ' +SAMPLES_PATH+each_dir+each_file) #print 'file ' +SAMPLES_PATH+each_dir+each_file read_data= file_command.read() tmp=read_data[read_data.index(':') + 2 : read_data.index('\n')] #print tmp processed_df.loc[len(processed_df)]=[each_file,tmp] processed_df.to_csv(SAMPLES_PATH+each_dir+'processed.csv',index=False) print 'created '+SAMPLES_PATH+each_dir+'processed.csv' def make_file_dir(first): ret=[] chr_list=['0','1','2','3','4','5','6','7','8','9','a','b','c','d','e','f'] tmp='' for second in chr_list: two='/'+second for third in chr_list: three=two+'/'+third+'/' ret.append(first+three) #print len(ret) #print ret return ret def main(): #print SAMPLES_PATH print('Parent process %s.' %os.getpid()) #dic_list=make_file_dir() first_dic=['0','1','2','3','4','5','6','7','8','9','a','b','c','d','e','f'] p=Pool(16) for each in first_dic: #print each p.apply_async(exe_file,args=(each,)) p.close() p.join() print 'start merging file results...' merge_file() #is_apk('1.apk') #is_apk(base_path+'three') if __name__=='__main__': while True: main() time.sleep(36000)
8d77c1ca5725c5efe3918715e630d4c0b280af6f
cf803d382d6e0bc7492d787e91a695a2fda944b8
/model.py
a1971dd66b502e9a7ab9cad39d075165745a907a
[ "BSD-2-Clause" ]
permissive
parenthetical-e/fmri
d676d524cf1606f098864c5bf9e98607674db1ab
32c5571d8767684ec6586320e85485cd89ed9327
refs/heads/master
2021-01-02T22:17:28.243141
2020-04-07T06:07:26
2020-04-07T06:07:26
3,848,746
4
1
null
null
null
null
UTF-8
Python
false
false
1,361
py
""" A set of functions for creating or maipulating files needed for design matrices, both in spm and python. """ def spm_onsets(trialfile='', durations=3, recode=None): """ Map <trialfile> (a 1d csv) into onset/TR time which is determind by <durations> (which can be an int if every trial had the same length in the model or a list if not). If <recode> is a dict of the form {1:1,2:1,3:1} where the key is the current code in trialfile and value is what you would like that one to be recoded as. In this example, 1,2,3 all become 1. Any value without a key, but with an entry in trialfile is silently left as is. """ import csv fs = open(trialfile, 'r') trials = csv.reader(fs).next() fs.close() if isinstance(durations, int): tmp = [durations, ] * len(trials) elif isinstance(duration,(list,tuple)): pass else: raise TypeError('<durations> must be an int, list or tuple.') if recode != None: print('Recoding....') [rtrials.extend(recode.get(t)) for t in trials] # mMap the trialfile data into TR/onset time. onsets = [] for t,d in zip(trials,durations): onsets.extend([t,] + [0,]*(d-1)) ## if t = 2 and d = 3 then [t,] + [0,]*(d-1) ## should give the list: [2 0 0] return onsets,durations
4906a33c2bde49d3d89e48c0aa86f333a1aef478
1602b8f6f40e27269a6d9fe42dbc720a5127b175
/fleet/category.py
9b756897fb0f2b29b020ab0444a68c1526aa3707
[]
no_license
mit-jp/fleet-model
a9f581c2cb56196a13e2db8ef883c1f8b61b2682
2c1b293299741a076384114572dc74a988bb8581
refs/heads/master
2020-04-11T01:30:26.634473
2017-01-29T04:08:31
2017-01-29T04:08:31
32,412,401
1
1
null
null
null
null
UTF-8
Python
false
false
1,201
py
class Category: """Rudimentary ordered tree data structure for vehicle classes.""" _parent = None _children = [] _label = '' def __init__(self, label, children=dict(), parent=None): self._parent = parent self._label = label try: self._children = list([Category(k, v, self) for k, v in children.items()]) except AttributeError: pass def __str__(self): return self._label def children(self): return list(map(str, self._children)) def parent(self): return str(self._parent) def nodes(self): return sum([child.nodes() for child in self._children], [self._label]) def leaves(self, root): if len(self._children) == 0: return self._label else: return sum([child.leaves() for child in self._children], []) def find(self, label): """Return the subtree with *label* at its head.""" if label == self._label: return self for child in self._children: result = child.find(label) if result: return result return None
87e8b16a2d83845e4d137ca080069e56f6a1690d
6fcfb638fa725b6d21083ec54e3609fc1b287d9e
/python/awentzonline_keras-rtst/keras-rtst-master/keras_rtst/models/style_xfer.py
d88c20d29b26ef489cc52a716031330e201234f5
[]
no_license
LiuFang816/SALSTM_py_data
6db258e51858aeff14af38898fef715b46980ac1
d494b3041069d377d6a7a9c296a14334f2fa5acc
refs/heads/master
2022-12-25T06:39:52.222097
2019-12-12T08:49:07
2019-12-12T08:49:07
227,546,525
10
7
null
2022-12-19T02:53:01
2019-12-12T07:29:39
Python
UTF-8
Python
false
false
5,226
py
'''Texture Network for style transfer.''' import time import keras_vgg_buddy import numpy as np from keras import activations from keras import backend as K from keras.layers import advanced_activations from keras.layers.core import Layer from keras.layers.convolutional import AveragePooling2D from keras.models import Graph from keras.optimizers import Adam from .base import create_res_texture_net, create_sequential_texture_net, dumb_objective from .regularizers import ( AnalogyRegularizer, FeatureContentRegularizer, FeatureStyleRegularizer, MRFRegularizer, TVRegularizer) def make_model(args, style_img=None): model = Graph() model.add_input('content', batch_input_shape=(args.batch_size, 3, args.max_height, args.max_width)) try: # if it's a standard activation then just keep the string activations.get(args.activation) activation = args.activation except: # otherwise we need to look up the class in advanced activations (e.g. LeakyReLU) activation = getattr(advanced_activations, args.activation, 'activation function') if args.sequential_model: texnet = create_sequential_texture_net(args.max_height, args.max_width, activation=activation, num_res_filters=args.num_res_filters, num_inner_blocks=args.num_blocks) else: texnet = create_res_texture_net(args.max_height, args.max_width, activation=activation, num_res_filters=args.num_res_filters, num_res_blocks=args.num_blocks) # add the texture net to the model model.add_node(texnet, 'texnet', 'content') model.add_output('texture_rgb', 'texnet') # hook up the training network stuff if args.train: model.add_node(Layer(), 'vgg_concat', inputs=['texnet', 'content'], concat_axis=0) # add VGG and the constraints keras_vgg_buddy.add_vgg_to_graph(model, 'vgg_concat', pool_mode=args.pool_mode, trainable=False, weights_path=args.vgg_weights) # add the regularizers for the various feature layers vgg = keras_vgg_buddy.VGG16(args.max_height, args.max_width, pool_mode=args.pool_mode, weights_path=args.vgg_weights) print('computing static features') feature_layers = set() if args.style_weight: feature_layers.update(args.style_layers) if args.content_weight: feature_layers.update(args.content_layers) if args.mrf_weight: feature_layers.update(args.mrf_layers) if args.analogy_weight: feature_layers.update(args.analogy_layers) style_features = vgg.get_features(np.expand_dims(style_img, 0), feature_layers) regularizers = [] if args.style_weight != 0.0: for layer_name in args.style_layers: layer = model.nodes[layer_name] style_regularizer = FeatureStyleRegularizer( target=style_features[layer_name], weight=args.style_weight / len(args.style_layers)) style_regularizer.set_layer(layer) regularizers.append(style_regularizer) if args.content_weight != 0.0: for layer_name in args.content_layers: layer = model.nodes[layer_name] content_regularizer = FeatureContentRegularizer( weight=args.content_weight / len(args.content_layers)) content_regularizer.set_layer(layer) regularizers.append(content_regularizer) if args.mrf_weight != 0.0: for layer_name in args.mrf_layers: layer = model.nodes[layer_name] mrf_regularizer = MRFRegularizer( K.variable(style_features[layer_name]), weight=args.mrf_weight / len(args.mrf_layers)) mrf_regularizer.set_layer(layer) regularizers.append(mrf_regularizer) if args.analogy_weight != 0.0: style_map_img = keras_vgg_buddy.load_and_preprocess_image(args.style_map_image_path, width=args.max_width, square=True) style_map_features = vgg.get_features(np.expand_dims(style_map_img, 0), args.analogy_layers) for layer_name in args.analogy_layers: layer = model.nodes[layer_name] analogy_regularizer = AnalogyRegularizer( style_map_features[layer_name], style_features[layer_name], weight=args.analogy_weight / len(args.analogy_layers)) analogy_regularizer.set_layer(layer) regularizers.append(analogy_regularizer) if args.tv_weight != 0.0: tv_regularizer = TVRegularizer(weight=args.tv_weight) tv_regularizer.set_layer(model.nodes['texnet']) regularizers.append(tv_regularizer) setattr(model.nodes['vgg_concat'], 'regularizers', regularizers) # Gotta put em somewhere? print('compiling') start_compile = time.time() adam = Adam(lr=args.learn_rate, beta_1=0.7) model.compile(optimizer=adam, loss=dict(texture_rgb=dumb_objective)) print('Compiled model in {:.2f}'.format(time.time() - start_compile)) return model
366ad807aedcc7af54f5060dcaa12dc46f0f7613
4beb10c8a8023f4945c996a1487ec1b3968cb5da
/f5_lbaas_dashboard/enabled/_1480_project_loadbalancersv2_panel.py
d89ef94a631dd6c077b8bc716031d61c12c3ef69
[ "Apache-2.0" ]
permissive
F5Networks/f5-lbaas-dashboard
7aebb669a27d8ebdc9feaa7f088f9158fb157046
62cb1dfbb87c94bdcb3f53f6ec2ab0004ac43d54
refs/heads/master
2023-03-28T01:59:58.666570
2022-09-27T01:16:34
2022-09-27T01:16:34
147,327,541
0
0
Apache-2.0
2022-09-27T01:16:37
2018-09-04T10:15:51
JavaScript
UTF-8
Python
false
false
993
py
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # The slug of the panel to be added to HORIZON_CONFIG. Required. PANEL = 'loadbalancersv2' # The slug of the dashboard the PANEL associated with. Required. PANEL_DASHBOARD = 'project' # The slug of the panel group the PANEL is associated with. PANEL_GROUP = 'network' # Python panel class of the PANEL to be added. ADD_PANEL = ( 'f5_lbaas_dashboard.dashboards.project.loadbalancersv2.panel' '.LoadBalancersUI')
f0708c24fd6f6ad48737cffa37907961622cd1ca
911e7b25961067339c31957ff41ebdb3c355d948
/_utils/python/libs_my_test/test_http_util2.py
bce813fa41030ee2228f882b54d33f586e0f1d73
[]
no_license
qlong2012/notes-1
c93efcc9a70f786929ef7e4c053e266e2bf354ad
78913e8235845d4a94dd19f730d607df754da7fe
refs/heads/master
2020-05-20T01:05:04.678662
2019-04-25T10:06:37
2019-04-25T10:06:53
185,303,355
1
0
null
2019-05-07T02:10:14
2019-05-07T02:10:14
null
UTF-8
Python
false
false
17,681
py
#!python # -*- coding:utf-8 -*- """ 公用函数(http请求处理) http_util2.py 的测试 Created on 2019/3/14 Updated on 2019/3/14 @author: Holemar 依赖第三方库: tornado==3.1.1 通过用线程启动一个 tornado 服务器来测试 http 请求 (使用 mock 的方式需要很了解 urllib 库,暂没那功力,做不到) todo:测试 压缩 和 线程 时,使用读取日志的方式,不太精确。后续需优化 """ import os import logging import unittest import threading import __init__ from libs_my import http_util2 as http_util from libs_my import str_util, tornado_util # 用 Filter 类获取日志信息 NOW_LOG_RECORD = [] class TestFilter(logging.Filter): def filter(self, record): global NOW_LOG_RECORD NOW_LOG_RECORD.append(record) # 把 Filter 获取到的日志信息传递出去,供测试使用 return True http_util.logger.addFilter(TestFilter()) class TestHttpUtil(unittest.TestCase): @classmethod def setUpClass(cls): """测试这个类前的初始化动作""" super(TestHttpUtil, cls).setUpClass() # 启动请求接收线程 cls.port = tornado_util.get_port() cls.web = tornado_util.run(cls.port, worker='tornado', threads=True) @classmethod def tearDownClass(cls): """测试这个类所有函数后的结束动作""" super(TestHttpUtil, cls).tearDownClass() cls.web._Thread__stop() # 停掉web线程 # GET 测试 def test_get(self): url = 'http://127.0.0.1:%d/test_get' % self.port param_url = url + '?a=11&b=22&c=%E5%93%88&d=%E5%93%88&e=' result = '{"use_time": "0.0003", "reason": "\u8bbf\u95ee\u6210\u529f", "version": "2.0.0", "result": 0}' @tornado_util.fn(url=r"/test_get/?", method='get') def get_test_get(self, **kwargs): if self.request.body: return {"result": -1, "reason":'这是POST请求,请求方式有误!'} if (self.get_argument('a', '') == '11' and self.get_argument('b', '') == '22' and self.get_argument('c', '') == u'哈' and self.get_argument('d', '') == u'哈' and self.get_argument('e', '') == ''): return result else: return kwargs # 普通请求,原样返回 res = http_util.get(param_url) assert isinstance(res, basestring) assert res == result # 参数转换 res = http_util.get(url, {'a':11,'b':'22','c':'哈','d':u'哈','e':None}) assert isinstance(res, basestring) assert res == result res2 = http_util.get(url, {'b':'22','c':'哈','d':u'哈','e':0}) assert isinstance(res2, basestring) assert str_util.to_json(res2) == {'b':'22','c':u'哈','d':u'哈','e':'0'} # return_json 返回结果转换 res = http_util.get(param_url, return_json=True) assert isinstance(res, dict) assert res == {"use_time": "0.0003", "reason": u"访问成功", "version": "2.0.0", "result": 0} # POST 测试 def test_post(self): url = 'http://127.0.0.1:%d/test_post' % self.port param = {'a':11,'b':'22','c':'哈','d':u'哈','e':None} result = '{"use_time": "0.0003", "reason": "\u8bbf\u95ee\u6210\u529f", "version": "2.0.0", "result": 0}' @tornado_util.fn(url=r"/test_post/?", method='post') def get_test_post(self, **kwargs): if self.request.body is None: return {"result": -1, "reason":'这是GET请求,请求方式有误!'} if (self.get_argument('a', '') == '11' and self.get_argument('b', '') == '22' and self.get_argument('c', '') == u'哈' and self.get_argument('d', '') == u'哈' and self.get_argument('e', '') == ''): return result else: return kwargs # 无参数请求,原样返回 res = http_util.post(url) assert isinstance(res, basestring) assert res == "{}" # 参数转换 res = http_util.post(url, param) assert isinstance(res, basestring) assert res == result res2 = http_util.post(url, {'b':'22','c':'哈','d':u'哈','e':0}) assert isinstance(res2, basestring) assert str_util.to_json(res2) == {'b':'22','c':u'哈','d':u'哈','e':'0'} # return_json 返回结果转换 res = http_util.post(url, param, return_json=True) assert isinstance(res, dict) assert res == {"use_time": "0.0003", "reason": u"访问成功", "version": "2.0.0", "result": 0} # put,patch 请求 测试 def test_put_patch(self): url = 'http://127.0.0.1:%d/test_put_patch' % self.port param = {'a':11,'b':'22','c':'哈','d':u'哈','e':None} result = '{"use_time": "0.0003", "reason": "\u8bbf\u95ee\u6210\u529f", "version": "2.0.0", "result": 0}' methods = ['put','patch'] @tornado_util.fn(url=r"/test_put_patch/?", method=methods) def test_put_patch(self, **kwargs): if self.request.body is None: return {"result": -1, "reason":'这是GET请求,请求方式有误!'} if (self.get_argument('a', '') == '11' and self.get_argument('b', '') == '22' and self.get_argument('c', '') == u'哈' and self.get_argument('d', '') == u'哈' and self.get_argument('e', '') == ''): return result else: return kwargs for method in methods: fun = getattr(http_util, method) # 无参数请求,原样返回 res = fun(url) assert isinstance(res, basestring) assert res == "{}" # 参数转换 res = fun(url, param) assert isinstance(res, basestring) assert res == result res2 = fun(url, {'b':'22','c':'哈','d':u'哈','e':0}) assert isinstance(res2, basestring) assert str_util.to_json(res2) == {'b':'22','c':u'哈','d':u'哈','e':'0'} # return_json 返回结果转换 res = fun(url, param, return_json=True) assert isinstance(res, dict) assert res == {"use_time": "0.0003", "reason": u"访问成功", "version": "2.0.0", "result": 0} # get 请求,访问不了 res = http_util.get(url) assert isinstance(res, basestring) assert res == "<html><title>405: Method Not Allowed</title><body>405: Method Not Allowed</body></html>" # post 请求,访问不了 res = http_util.post(url) assert isinstance(res, basestring) assert res == "<html><title>405: Method Not Allowed</title><body>405: Method Not Allowed</body></html>" # delete,options 请求 测试 def test_delete_options(self): url = 'http://127.0.0.1:%d/test_delete_options' % self.port param_url = url + '?a=11&b=22&c=%E5%93%88&d=%E5%93%88&e=' result = '{"use_time": "0.0003", "reason": "\u8bbf\u95ee\u6210\u529f", "version": "2.0.0", "result": 0}' methods = ['delete','options'] @tornado_util.fn(url=r"/test_delete_options/?", method=methods) def test_delete_options(self, **kwargs): if self.request.body is None: return {"result": -1, "reason":'这是GET请求,请求方式有误!'} return result for method in methods: fun = getattr(http_util, method) # 普通请求,原样返回 res = fun(param_url) assert isinstance(res, basestring) assert res == result # get 请求,访问不了 res = http_util.get(param_url) assert isinstance(res, basestring) assert res == "<html><title>405: Method Not Allowed</title><body>405: Method Not Allowed</body></html>" # post 请求,访问不了 res = http_util.post(param_url) assert isinstance(res, basestring) assert res == "<html><title>405: Method Not Allowed</title><body>405: Method Not Allowed</body></html>" # 提交 json 测试 def test_send_json(self): url = 'http://127.0.0.1:%d/test_send_json' % self.port result = '{"use_time": "0.0003", "reason": "\u8bbf\u95ee\u6210\u529f", "version": "2.0.0", "result": 0}' @tornado_util.fn(url=r"/test_send_json/?", method='post') def test_send_json(self, **kwargs): if self.request.body is None: return {"result": -1, "reason":'这是GET请求,请求方式有误!'} return str_util.to_json(self.request.body) # 提交 json param = {'a':11,'b':'22','c':'哈','d':u'哈','e':None} res = http_util.post(url, param, send_json=True) assert isinstance(res, basestring) assert str_util.to_json(res) == param param2 = {'b':'22','c':'哈','d':u'哈','e':0} res2 = http_util.post(url, param2, send_json=True) assert isinstance(res2, basestring) assert str_util.to_json(res2) == param2 # gzip 压缩 def test_gzip(self): url = 'http://127.0.0.1:%d/test_gzip' % self.port result = '{"use_time": "0.0003", "reason": "\u8bbf\u95ee\u6210\u529f", "version": "2.0.0", "result": 0}' * 100 @tornado_util.fn(url=r"/test_gzip/?", gzip_length=10) def get_test_gzip(self, **kwargs): if self.request.headers.get("Accept-Encoding", "") in ('gzip', 'deflate'): return result else: return {"result": -1, "reason":'这是没有压缩的请求,请求方式有误!'} # get 请求 global NOW_LOG_RECORD NOW_LOG_RECORD = [] res = http_util.get(url, gzip=True) assert isinstance(res, basestring) assert res == result assert len(NOW_LOG_RECORD) >= 2 record = NOW_LOG_RECORD[-2] # 倒数第二条日志,正是解压日志 assert record is not None assert record.levelno == logging.INFO assert u'压缩请求' in record.msg assert record.method == 'GET' assert record.before_length # 有写入解压前长度 assert record.after_length # 有写入解压后长度 assert record.after_length == len(result) assert record.before_length < record.after_length # 解压后长度更长 # post 请求 NOW_LOG_RECORD = [] res = http_util.post(url, gzip=True) assert isinstance(res, basestring) assert res == result assert len(NOW_LOG_RECORD) >= 2 record = NOW_LOG_RECORD[-2] # 倒数第二条日志,正是解压日志 assert record is not None assert record.levelno == logging.INFO assert u'压缩请求' in record.msg assert record.method == 'POST' assert record.before_length # 有写入解压前长度 assert record.after_length # 有写入解压后长度 assert record.after_length == len(result) assert record.before_length < record.after_length # 解压后长度更长 # headers 设值 def test_headers(self): url = 'http://127.0.0.1:%d/test_headers/' % self.port token = 'dfwerwer1548hgjhfre35656' @tornado_util.fn(url=r"/test_headers/") def get_test_test_headers(self, **kwargs): if self.request.headers.get("Accept-Token", "") == token: return 111 else: return 222 # get 请求 res = http_util.get(url) assert isinstance(res, basestring) assert res == '222' res = http_util.get(url, headers={"Accept-Token":token}) assert isinstance(res, basestring) assert res == '111' # post 请求 res = http_util.post(url) assert isinstance(res, basestring) assert res == '222' res = http_util.post(url, headers={"Accept-Token":token}) assert isinstance(res, basestring) assert res == '111' # 出错测试 def test_error(self): # 设成默认异步请求 http_util.init(repeat_time=3) url = 'http://127.0.0.1:%d/test_error' % self.port global error_times error_times = 0 # 自定义一个出错页面 class _ExceptionHandler(tornado_util.RequestHandler): def get(self): global error_times error_times += 1 raise Exception('出错测试') post = get # 添加到请求地址列表 tornado_util.add_apps(r"/test_error/?", _ExceptionHandler) # GET 请求,返回 None res = http_util.get(url) assert res == '<html><title>500: Internal Server Error</title><body>500: Internal Server Error</body></html>' assert error_times == 3 # 请求次数 # POST 请求,返回 None error_times = 0 res = http_util.post(url) assert res == '<html><title>500: Internal Server Error</title><body>500: Internal Server Error</body></html>' assert error_times == 3 # 请求次数 # 改回默认值,避免影响其它测试 http_util.init(repeat_time=1) # 异步测试 def test_threads(self): # 设成默认异步请求 http_util.init(threads=True) url = 'http://127.0.0.1:%d/test_threads' % self.port result = '{"use_time": "0.0003", "reason": "\u8bbf\u95ee\u6210\u529f", "version": "2.0.0", "result": 0}' @tornado_util.fn(url=r"/test_threads/?") def get_test_threads(self, **kwargs): return result # 异步 GET 请求,返回线程 global NOW_LOG_RECORD NOW_LOG_RECORD = [] th1 = http_util.get(url) assert len(NOW_LOG_RECORD) == 0 # 通过日志查看有没有发启线程,因为发启线程肯定没有这么快打印日志 assert isinstance(th1, threading.Thread) th1.join() # 等待线程返回,以便检查日志 assert len(NOW_LOG_RECORD) >= 1 record = NOW_LOG_RECORD[0] assert record is not None assert record.levelno == logging.INFO assert record.method == 'GET' log_msg = record.getMessage() assert url in log_msg assert result in log_msg # 异步 POST 请求,返回线程 NOW_LOG_RECORD = [] th2 = http_util.post(url) assert len(NOW_LOG_RECORD) == 0 # 通过日志查看有没有发启线程,因为发启线程肯定没有这么快打印日志 assert isinstance(th2, threading.Thread) th2.join() # 等待线程返回,以便检查日志 assert len(NOW_LOG_RECORD) >= 1 record = NOW_LOG_RECORD[0] assert record is not None assert record.levelno == logging.INFO assert record.method == 'POST' log_msg = record.getMessage() assert url in log_msg assert result in log_msg # 改回默认值,避免影响其它测试 http_util.init(threads=False) # 参数转换 def test_url_encode(self): # 字典转请求参数 param1 = {'name' : '测试用户', 'password' : 123456} assert http_util.url_encode(param1) == 'password=123456&name=%E6%B5%8B%E8%AF%95%E7%94%A8%E6%88%B7' assert http_util.url_encode(param1, encode='gbk') == 'password=123456&name=%B2%E2%CA%D4%D3%C3%BB%A7' param2 = {'name' : '测试用户', 'password' : {u'哈':[1,2,'3',u'测试']}} assert http_util.url_encode(param2) == 'password=%7B%22%5Cu54c8%22%3A+%5B1%2C+2%2C+%223%22%2C+%22%5Cu6d4b%5Cu8bd5%22%5D%7D&name=%E6%B5%8B%E8%AF%95%E7%94%A8%E6%88%B7' # 请求参数转字典 assert str_util.deep_str(http_util.getRequestParams(http_util.url_encode(param1))) == str_util.deep_str(param1, all2str=True) assert str_util.deep_str(http_util.getRequestParams('http://xx.xx.com:8080/te?password=123456&name=%E6%B5%8B%E8%AF%95%E7%94%A8%E6%88%B7')) == str_util.deep_str(param1, all2str=True) assert str_util.deep_str(http_util.getRequestParams(http_util.url_encode(param2))) == {u'password': u'{"\\u54c8": [1, 2, "3", "\\u6d4b\\u8bd5"]}', u'name': u'测试用户'} # 请求方式测试 def test_method(self): url = 'http://127.0.0.1:%d/get_test_method/' % self.port # 定义处理各种请求方式的类 class MethodHandler(tornado_util.RequestHandler): def get(self): return self.finish('get') def post(self): return self.finish('post') def put(self): return self.finish('put') def delete(self): return self.finish('delete') def patch(self): return self.finish('patch') def options(self): return self.finish('options') tornado_util.add_apps(r"/get_test_method/", MethodHandler) # 测试请求 res = http_util.get(url) assert isinstance(res, basestring) and res == "get" res = http_util.post(url) assert isinstance(res, basestring) and res == "post" res = http_util.put(url) assert isinstance(res, basestring) and res == "put" res = http_util.delete(url) assert isinstance(res, basestring) and res == "delete" res = http_util.patch(url) assert isinstance(res, basestring) and res == "patch" res = http_util.options(url) assert isinstance(res, basestring) and res == "options" if __name__ == "__main__": unittest.main() # 执行所有 ''' # 执行指定函数 suite = unittest.TestSuite() suite.addTest(TestHttpUtil("test_send_json")) suite.addTest(TestHttpUtil("test_delete_options")) unittest.TextTestRunner().run(suite) '''
5bb9776224c4813a523963dc2805bc70a092fa60
40d5394eea0c1288fcdd57180a0141672cb198fa
/users/views.py
d8f37654f883f0bde0e2232915ec025e0a7e6ec4
[ "MIT" ]
permissive
mornicamwende/ranker
6c12b0297703ac559de84bb0b36396ec2738f970
107bcaad61bb5e726570a8250b55eb2e6245dc7a
refs/heads/master
2023-01-07T00:18:54.192155
2020-10-27T17:07:21
2020-10-27T17:07:21
306,592,259
0
0
null
null
null
null
UTF-8
Python
false
false
1,522
py
from django.shortcuts import render, redirect from django.contrib import messages from .models import Profile from django.contrib.auth.decorators import login_required from .forms import UserRegisterForm, UserUpdateForm, ProfileUpdateForm # Create your views here.. def register(request): if request.method =='POST': form = UserRegisterForm(request.POST) if form.is_valid(): form.save() # profile = UserProfile.objects.create(user=request.user) username = form.cleaned_data.get('username') messages.success(request, f' Your account has been created! You are now able to log in!') return redirect('login') else: form = UserRegisterForm() return render(request, 'users/register.html', {'form':form}) @login_required def profile(request): if request.method =='POST': u_form=UserUpdateForm(request.POST, instance=request.user) p_form=ProfileUpdateForm(request.POST, request.FILES, instance=request.user.profile) if u_form.is_valid() and p_form.is_valid(): u_form.save() p_form.save() messages.success(request, f' Your account has been updated!') return redirect('profile') else: u_form=UserUpdateForm(instance=request.user) p_form=ProfileUpdateForm(instance=request.user.profile) context={ 'u_form':u_form, 'p_form':p_form } return render(request, 'users/profile.html', context)
449e5f4d3e112507dc7540c319584658b70805eb
560df0c3f859ae2d4c279f4669f9ab8758c486fb
/old/Euler063.py
defeccb9479085d6e4df2722c16167b7442a9de6
[]
no_license
gronkyzog/Puzzles
0e7cdd7fa5ab8139d63a721cac5ee30e80728c7a
cdc145857f123a98f1323c95b5744d36ce50355f
refs/heads/master
2021-03-13T00:01:17.715403
2015-02-22T11:59:03
2015-02-22T11:59:03
17,100,928
0
0
null
null
null
null
UTF-8
Python
false
false
176
py
import math counter = 0 for p in range(1,1000): for n in range(1,1000): x = p**n z = len(str(x)) if z == n: counter +=1 print counter,p,n,x if z > n: break
b44c18c0337ef4ede7f2ee27dff0c56a32873a98
6b2a8dd202fdce77c971c412717e305e1caaac51
/solutions_5639104758808576_0/Python/hongkai/standing_ovation.py
85c7aaf75714250e3ffa80b7c69e7aa3067301b0
[]
no_license
alexandraback/datacollection
0bc67a9ace00abbc843f4912562f3a064992e0e9
076a7bc7693f3abf07bfdbdac838cb4ef65ccfcf
refs/heads/master
2021-01-24T18:27:24.417992
2017-05-23T09:23:38
2017-05-23T09:23:38
84,313,442
2
4
null
null
null
null
UTF-8
Python
false
false
378
py
fin = open("../../Downloads/A-small-attempt0 (1).in", "r") out = open("standing_ovation.out", "w") cases = int(fin.readline()) for i in range(cases): d, shy = fin.readline().split() min = 0 curr = 0 for x in shy: curr += int(x) curr -= 1 if curr < min: min = curr out.write("Case #%d: %d\n" % (i + 1, -min)) out.close()
97f78d057353db5df358e1e31bac1b98392279f5
646b0a41238b96748c7d879dd1bf81858651eb66
/archive/memd.archive/gulp/Potential.py
ac129df6be3cb0a4594a14181a7914d174181b84
[]
no_license
danse-inelastic/molDynamics
ded0298f8219064e086472299e1383d3dff2dac3
c8e0bfd9cb65bcfc238e7993b6e7550289d2b219
refs/heads/master
2021-01-01T19:42:29.904390
2015-05-03T17:27:38
2015-05-03T17:27:38
34,993,746
0
0
null
null
null
null
UTF-8
Python
false
false
2,489
py
#!/usr/bin/env python # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # Brandon Keith # California Institute of Technology # (C) 2005 All Rights Reserved All Rights Reserved # # {LicenseText} # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # from pyre.components.Component import Component #from molDynamics.gulp.forcefields.ForcefieldLoader import ForcefieldLoader from memd.gulp.forcefields.InputFile import InputFile class Potential(Component): '''This class serves as an API/interface for gulp potential construction.''' class Inventory(Component.Inventory): import pyre.inventory as inv dispersionInRecipSpace = inv.bool('dispersionInRecipSpace', default = False) dispersionInRecipSpace.meta['tip'] = '''whether to calculate dispersion forces partly in reciprocal space''' useInitialBondingOnly = inv.bool('useInitialBondingOnly', default = False) useInitialBondingOnly.meta['tip'] = '''instead of reassigning bonding based on every optimization or time step, use intial geometry only to assign bonding''' forcefield = inv.facility('forcefield', default=InputFile('gulpLibrary')) forcefield.meta['tip'] = 'a class containing forcefield types' #forcefield.meta['known_plugins'] = ['gulpLibrary','manualEntry'] moleculeIdentification = inv.str('moleculeIdentification', default = 'None') moleculeIdentification.meta['tip'] = '''identify molecules based on covalent radii and deal with intramolecular coulomb interactions''' moleculeIdentification.validator=inv.choice(['None','identify molecules; remove intramolecular Coulomb forces', 'identify molecules; retain intramolecular Coulomb forces']) def __init__(self, name='potential', facility='Potential'): Component.__init__(self, name, facility) self.i=self.inventory # def _configure(self): # Component._configure(self) # #self.sample = self.i.sample def identifyOptions( self, visitor): return visitor.writePotentialOptions(self) def identifyKeywords( self, visitor): return visitor.writePotentialKeywords(self) # version __id__ = "$Id$" # Generated automatically by PythonMill on Mon Apr 16 12:44:30 2007 # End of file
9450412ca95624708fe0ba54ba1780d0d0691d95
4c639c521834f4349ba2165e72c5857ddecee625
/acoustic_X_text_X_visual/AttComb_aXtXv/gender/attention_fusion_network/archived_models/archived_model_1_(MSE_best)/metrics.py
9b7d3a09c1cd9ee948834703374dc115f06d923e
[]
no_license
arbaazQureshi/attention_based_multimodal_fusion_for_estimating_depression
f4ea86746d9961fe4b9cf4f88f6cec604a201656
e4c57ac51c271c36c244c260b01a22fa1897ffcb
refs/heads/master
2020-05-19T22:48:03.665953
2019-05-06T19:34:31
2019-05-06T19:34:31
185,252,875
7
4
null
null
null
null
UTF-8
Python
false
false
1,110
py
import numpy as np import sklearn.metrics from load_data import load_development_data from load_model import load_model import os os.environ["CUDA_VISIBLE_DEVICES"]="1" if __name__ == "__main__": model = load_model() model.load_weights('optimal_weights.h5') dev_COVAREP_X_FORMANT, dev_facial_X_pose, dev_gaze_X_action, dev_transcript, dev_Y, dev_X_gender = load_development_data() model.compile(loss = 'mse', optimizer = 'adam', metrics = ['mean_absolute_error']) dev_Y_hat = model.predict([dev_COVAREP_X_FORMANT, dev_facial_X_pose, dev_gaze_X_action, dev_X_gender, dev_transcript]) dev_Y = np.array(dev_Y) dev_Y_hat = dev_Y_hat.reshape((dev_Y.shape[0],)) RMSE = np.sqrt(sklearn.metrics.mean_squared_error(dev_Y, dev_Y_hat)) MAE = sklearn.metrics.mean_absolute_error(dev_Y, dev_Y_hat) EVS = sklearn.metrics.explained_variance_score(dev_Y, dev_Y_hat) print('RMSE :', RMSE) print('MAE :', MAE) #print(np.std(dev_Y - dev_Y_hat)) print('EVS :', EVS) with open('regression_metrics.txt', 'w') as f: f.write('RMSE\t:\t' + str(RMSE) + '\nMAE\t\t:\t' + str(MAE) + '\nEVS\t\t:\t' + str(EVS))
a2453d90db22aca756d619b74b525d6186f4875d
699c7f26a91106a2fc79bb15299ce0cee532a2dd
/xrayspecprocessing/multi.combine.group.py
ff57d3b4c05ec312c219fc8fc8133076e2dafd82
[]
no_license
samconnolly/astro
70581a4d3f2086716aace3b5db65b74aaaa5df95
3731be313592c13dbb8af898e9734b98d83c0cc2
refs/heads/master
2020-04-06T03:40:27.454279
2014-03-12T14:36:34
2014-03-12T14:36:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,509
py
# multi.combine.group.py # Uses the HEADAS tool addspec and grppha to sum sets of spectra, assign their # summed background and response files and produce a grouped spectrum # Uses a text file of input spectra. Does so from output file from listbinmin.py # Sam Connolly 4/3/13 import os # ====================== PARAMATERS ============================================ # file route - directory containing spectra and spectrum list inroute = "/disks/raid/raid1/xray/raid/sdc1g08/NetData"\ +"/ngc1365/spectra/all/" outroute = "/disks/raid/raid1/xray/raid/sdc1g08/NetData"\ +"/ngc1365/spectra/summed/" # file names fname = "speclist.txt" outname = "13.14.25.summed" # Grouping command (e.g. "group min 15" for min of 15 counts per bin, # "group 25 150 4" to group channels 25-150 into groups of 4 # [Swift XRT has 1024 channels] ) groupcommand = 'group min 15' # overwrite existing files? overwrite = False # ============================================================================== # get current directory, to return to originaldir = os.getcwd() # change to directory of spectra os.chdir(inroute) #=============================================================================== # sum spectra #=============================================================================== # creat sum command sumcommand = "addspec " + fname + " " + outname + " qaddrmf = yes"\ + " qsubback = yes" + " clobber = " + str(overwrite) # add spectra os.system(sumcommand) #=============================================================================== # group spectra #=============================================================================== # file names spectrum = outname + ".pha" back = outname + ".bak" rmf = outname + ".rsp" output = outname + "_grp.pha" # overwriting or not if overwrite == True: over = '!' else: over = '' # generate grppha command gcommand = 'grppha ' + spectrum + ' ' + over + output + ' comm = "' + \ 'chkey BACKFILE ' + back + \ ' & chkey RESPFILE ' + rmf + \ ' & ' + groupcommand + ' & exit"' # execute command os.system(gcommand) # move files to output folder movecommand = "mv " + spectrum + " " + outroute \ + " & mv " + back + " " + outroute \ + " & mv " + rmf + " " + outroute\ + " & mv " + output + " " + outroute os.system(movecommand) #------------------------------------------------------------------------------- # switch back to original directory os.chdir(originaldir)
d3249edfbd3bfe038c605e6a6c80a59a783bba05
4bd5e9b67d98bfcc9611bd8b774c9ab9f4f4d446
/Python基础笔记/19/代码/2.协程.py
b87a5c7b38c3ac5ebbe4f72a39d93ec54e0ed60b
[]
no_license
zhenguo96/test1
fe21510aea7feb674e52fd7a86d4177666f841c5
0d8de7e73e7e635d26462a0bc53c773d999498be
refs/heads/master
2020-05-03T13:09:53.592103
2019-04-06T07:08:47
2019-04-06T07:08:47
178,646,627
0
0
null
null
null
null
UTF-8
Python
false
false
231
py
# 协程 def sub(): print("开始") x = yield print("x = ",x) y = yield x + 1 print("x = ", x, "y = ", y) yield x1 = sub() next(x1) print(x1.send(3)) x1.send(4)
2e6c96eebb6bfd7df53fac17a2a7426d3b7e2769
60eb98538025c61cf94a91f6c96f9ee81dcd3fdf
/monai/metrics/regression.py
044f99f1a540fd04348675877a6d73fce7eb1cd9
[ "Apache-2.0", "LicenseRef-scancode-free-unknown" ]
permissive
gagandaroach/MONAI
167e7746995d4b6136731881e22ad4df333b16a9
79b83d9fac41efae9b90ed2f9ad078d6d664bf64
refs/heads/master
2023-06-02T19:54:47.737846
2021-06-24T18:34:02
2021-06-24T18:34:02
270,741,899
0
0
Apache-2.0
2020-06-08T16:29:32
2020-06-08T16:29:31
null
UTF-8
Python
false
false
9,758
py
# Copyright 2020 - 2021 MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from abc import abstractmethod from functools import partial from typing import Any, Union import torch from monai.metrics.utils import do_metric_reduction from monai.utils import MetricReduction from .metric import CumulativeIterationMetric class RegressionMetric(CumulativeIterationMetric): """ Base class for regression metrics. Input `y_pred` is compared with ground truth `y`. Both `y_pred` and `y` are expected to be real-valued, where `y_pred` is output from a regression model. `y_preds` and `y` can be a list of channel-first Tensor (CHW[D]) or a batch-first Tensor (BCHW[D]). Args: reduction: {``"none"``, ``"mean"``, ``"sum"``, ``"mean_batch"``, ``"sum_batch"``, ``"mean_channel"``, ``"sum_channel"``} Define the mode to reduce computation result. Defaults to ``"mean"``. get_not_nans: whether to return the `not_nans` count, if True, aggregate() returns (metric, not_nans). Here `not_nans` count the number of not nans for the metric, thus its shape equals to the shape of the metric. """ def __init__( self, reduction: Union[MetricReduction, str] = MetricReduction.MEAN, get_not_nans: bool = False, ) -> None: super().__init__() self.reduction = reduction self.get_not_nans = get_not_nans def aggregate(self): # type: ignore data = self.get_buffer() if not isinstance(data, torch.Tensor): raise ValueError("the data to aggregate must be PyTorch Tensor.") f, not_nans = do_metric_reduction(data, self.reduction) return (f, not_nans) if self.get_not_nans else f def _check_shape(self, y_pred: torch.Tensor, y: torch.Tensor) -> None: if y_pred.shape != y.shape: raise ValueError( "y_pred and y shapes dont match, received y_pred: [{}] and y: [{}]".format(y_pred.shape, y.shape) ) # also check if there is atleast one non-batch dimension i.e. num_dims >= 2 if len(y_pred.shape) < 2: raise ValueError("either channel or spatial dimensions required, found only batch dimension") @abstractmethod def _compute_metric(self, y_pred: torch.Tensor, y: torch.Tensor) -> torch.Tensor: raise NotImplementedError(f"Subclass {self.__class__.__name__} must implement this method.") def _compute_tensor(self, y_pred: torch.Tensor, y: torch.Tensor): # type: ignore if not isinstance(y_pred, torch.Tensor) or not isinstance(y, torch.Tensor): raise ValueError("y_pred and y must be PyTorch Tensor.") self._check_shape(y_pred, y) return self._compute_metric(y_pred, y) class MSEMetric(RegressionMetric): r"""Compute Mean Squared Error between two tensors using function: .. math:: \operatorname {MSE}\left(Y, \hat{Y}\right) =\frac {1}{n}\sum _{i=1}^{n}\left(y_i-\hat{y_i} \right)^{2}. More info: https://en.wikipedia.org/wiki/Mean_squared_error Input `y_pred` is compared with ground truth `y`. Both `y_pred` and `y` are expected to be real-valued, where `y_pred` is output from a regression model. Args: reduction: {``"none"``, ``"mean"``, ``"sum"``, ``"mean_batch"``, ``"sum_batch"``, ``"mean_channel"``, ``"sum_channel"``} Define the mode to reduce computation result of 1 batch data. Defaults to ``"mean"``. get_not_nans: whether to return the `not_nans` count, if True, aggregate() returns (metric, not_nans). """ def __init__( self, reduction: Union[MetricReduction, str] = MetricReduction.MEAN, get_not_nans: bool = False, ) -> None: super().__init__(reduction=reduction, get_not_nans=get_not_nans) self.sq_func = partial(torch.pow, exponent=2.0) def _compute_metric(self, y_pred: torch.Tensor, y: torch.Tensor) -> torch.Tensor: y_pred = y_pred.float() y = y.float() mse_out = compute_mean_error_metrics(y_pred, y, func=self.sq_func) return mse_out class MAEMetric(RegressionMetric): r"""Compute Mean Absolute Error between two tensors using function: .. math:: \operatorname {MAE}\left(Y, \hat{Y}\right) =\frac {1}{n}\sum _{i=1}^{n}\left|y_i-\hat{y_i}\right|. More info: https://en.wikipedia.org/wiki/Mean_absolute_error Input `y_pred` is compared with ground truth `y`. Both `y_pred` and `y` are expected to be real-valued, where `y_pred` is output from a regression model. Args: reduction: {``"none"``, ``"mean"``, ``"sum"``, ``"mean_batch"``, ``"sum_batch"``, ``"mean_channel"``, ``"sum_channel"``} Define the mode to reduce computation result of 1 batch data. Defaults to ``"mean"``. get_not_nans: whether to return the `not_nans` count, if True, aggregate() returns (metric, not_nans). """ def __init__( self, reduction: Union[MetricReduction, str] = MetricReduction.MEAN, get_not_nans: bool = False, ) -> None: super().__init__(reduction=reduction, get_not_nans=get_not_nans) self.abs_func = torch.abs def _compute_metric(self, y_pred: torch.Tensor, y: torch.Tensor) -> torch.Tensor: y_pred = y_pred.float() y = y.float() mae_out = compute_mean_error_metrics(y_pred, y, func=self.abs_func) return mae_out class RMSEMetric(RegressionMetric): r"""Compute Root Mean Squared Error between two tensors using function: .. math:: \operatorname {RMSE}\left(Y, \hat{Y}\right) ={ \sqrt{ \frac {1}{n}\sum _{i=1}^{n}\left(y_i-\hat{y_i}\right)^2 } } \ = \sqrt {\operatorname{MSE}\left(Y, \hat{Y}\right)}. More info: https://en.wikipedia.org/wiki/Root-mean-square_deviation Input `y_pred` is compared with ground truth `y`. Both `y_pred` and `y` are expected to be real-valued, where `y_pred` is output from a regression model. Args: reduction: {``"none"``, ``"mean"``, ``"sum"``, ``"mean_batch"``, ``"sum_batch"``, ``"mean_channel"``, ``"sum_channel"``} Define the mode to reduce computation result of 1 batch data. Defaults to ``"mean"``. get_not_nans: whether to return the `not_nans` count, if True, aggregate() returns (metric, not_nans). """ def __init__( self, reduction: Union[MetricReduction, str] = MetricReduction.MEAN, get_not_nans: bool = False, ) -> None: super().__init__(reduction=reduction, get_not_nans=get_not_nans) self.sq_func = partial(torch.pow, exponent=2.0) def _compute_metric(self, y_pred: torch.Tensor, y: torch.Tensor) -> torch.Tensor: y_pred = y_pred.float() y = y.float() mse_out = compute_mean_error_metrics(y_pred, y, func=self.sq_func) rmse_out = torch.sqrt(mse_out) return rmse_out class PSNRMetric(RegressionMetric): r"""Compute Peak Signal To Noise Ratio between two tensors using function: .. math:: \operatorname{PSNR}\left(Y, \hat{Y}\right) = 20 \cdot \log_{10} \left({\mathit{MAX}}_Y\right) \ -10 \cdot \log_{10}\left(\operatorname{MSE\left(Y, \hat{Y}\right)}\right) More info: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio Help taken from: https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/ops/image_ops_impl.py line 4139 Input `y_pred` is compared with ground truth `y`. Both `y_pred` and `y` are expected to be real-valued, where `y_pred` is output from a regression model. Args: max_val: The dynamic range of the images/volumes (i.e., the difference between the maximum and the minimum allowed values e.g. 255 for a uint8 image). reduction: {``"none"``, ``"mean"``, ``"sum"``, ``"mean_batch"``, ``"sum_batch"``, ``"mean_channel"``, ``"sum_channel"``} Define the mode to reduce computation result of 1 batch data. Defaults to ``"mean"``. get_not_nans: whether to return the `not_nans` count, if True, aggregate() returns (metric, not_nans). """ def __init__( self, max_val: Union[int, float], reduction: Union[MetricReduction, str] = MetricReduction.MEAN, get_not_nans: bool = False, ) -> None: super().__init__(reduction=reduction, get_not_nans=get_not_nans) self.max_val = max_val self.sq_func = partial(torch.pow, exponent=2.0) def _compute_metric(self, y_pred: torch.Tensor, y: torch.Tensor) -> Any: y_pred = y_pred.float() y = y.float() mse_out = compute_mean_error_metrics(y_pred, y, func=self.sq_func) psnr_val = 20 * math.log10(self.max_val) - 10 * torch.log10(mse_out) return psnr_val def compute_mean_error_metrics(y_pred: torch.Tensor, y: torch.Tensor, func) -> torch.Tensor: # reducing in only channel + spatial dimensions (not batch) # reducion of batch handled inside __call__() using do_metric_reduction() in respective calling class flt = partial(torch.flatten, start_dim=1) error_metric = torch.mean(flt(func(y - y_pred)), dim=-1, keepdim=True) return error_metric
29d0e0ec5b2fe97cccdec9c22eb438321a537b2f
68405fe5bec0b374867f44effda2cba3b6c1ebaa
/src/wscript
f00c671bc10cc29f13fb109cbb091ca449571257
[]
no_license
unnonouno/oxelon
fce3dfd3d6d617d0268e34ed875e152989d60859
3686863b81db2dc23996cf305001e2ad56332086
refs/heads/master
2020-04-04T01:53:12.896018
2014-01-23T17:08:59
2014-01-23T17:08:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
51
def build(bld): bld.recurse(['oxelon', 'cmd'])
3260dc302f4391afe755256b44ea9ca140f33a0e
8ad8ee4e3a4e0e8ae0ed8e92c68cf122f5ba3723
/jk_en/jk_en/sendEmail.py
e87f6f678832966b752cbb243ab64a762fe3c534
[]
no_license
yangyangyanga/automatic_update
5b5065713853c4a1225142ece4ea39be1a05d011
53c1777cbb84e489b887f38e2745477d6b6f4604
refs/heads/master
2020-05-25T21:18:24.979779
2019-05-22T08:34:02
2019-05-22T08:34:02
187,996,951
0
0
null
null
null
null
UTF-8
Python
false
false
2,194
py
import smtplib from email.mime.text import MIMEText from email.header import Header from email.mime.multipart import MIMEMultipart import pymysql def sendEmail(subject='无标题',messageText='无内容'): # accepter = '[email protected]' accepter = "[email protected]" sender = "[email protected]" # 三个参数:第一个为文本内容,第二个 plain 设置文本格式,第三个 utf-8 设置编码 message = MIMEText(messageText, 'plain', 'utf-8') message['From'] = sender message['To'] = accepter #邮件标题subject subject = subject message['Subject'] = Header(subject, 'utf-8') try: smtp = smtplib.SMTP() smtp.connect('smtp.163.com', '25') smtp.login('[email protected]', 'cyh1995') smtp.sendmail(sender,accepter, message.as_string()) print("发送成功") smtp.quit() except smtplib.SMTPException as e: print(e, "发送失败") def SendEmailMain(): conn = pymysql.connect(host='172.16.10.71', port=3306, user='python_team', passwd='shiqiyu', db='hooli_school',charset="utf8") cursor = conn.cursor() #获取变化的学校数据 conn.ping(reconnect=True) sql = "select old_id,url_old,university,change_context from Label_content where old_id like 'e%' and change_context like '%1%' order by university" cursor.execute(sql) result = cursor.fetchall() conn.commit() sql2 = "select count(*),university from Label_content where change_context like '%1%' and old_id like 'e%' GROUP BY university" cursor.execute(sql2) conn.commit() result2=cursor.fetchall() # print(result) # print(result2) conn.close() sendemailschool=''.join(list(map(lambda x:x[1]+'有'+str(x[0])+'条专业发送变化'+'\n',result2))) sendemaillists=''.join(list(map(lambda x:'id为: '+x[0]+' 的专业'+x[3].replace('01','内容发生变化').replace('11','内容和标签发生变化').replace('10','标签发生变化')+' 学校: '+x[2]+' 链接为:'+x[1]+'\n',result))) messagetext=sendemailschool+'\n'+sendemaillists if messagetext!='\n': sendEmail(subject='英国变化邮件',messageText=messagetext) # SendEmailMain()
9a93a2420acc3eb462984f16192bf378b923dbf2
0f880fab72fe18a2e5c4718ba4bf78fbe800f988
/code/CityList.py
6dd00a6060c4d7c719719ac0c9f538ffcdc1ab89
[]
no_license
clwater/GetCityGeo
ce208abb69130b091acaf9ac77b194035d7d96d4
c82b922c25c07ace0245eaa20055bfe8290d7072
refs/heads/master
2021-01-19T17:33:09.171032
2017-08-24T16:23:00
2017-08-24T16:23:00
101,068,888
1
1
null
null
null
null
UTF-8
Python
false
false
3,244
py
#!/usr/bin/python # -*- coding: UTF-8 -*- import sys reload(sys) sys.setdefaultencoding( "utf-8" ) import requests import json , re import mysql.connector conn = mysql.connector.connect(user='root', password='root', database='Utils') def getCityGeo(cityname): url = 'http://ditu.amap.com/service/poiInfo?query_type=TQUERY&keywords=%s' % (cityname) html = requests.get(url).text print html if len(html) < len('{"status":"2","data":"Return Failure!"12312323}') : return -1 data = json.loads(html) cityList = [] try: searchList = data['data']['locres']['poi_list'] # searchList = data['data']['poi_list'] # city = searchList[0] # _city = {'level': '', 'child_station_count': city['child_station_count'], # 'adcode': city['adcode'], 'coords': '', 'address': city['address'], # 'ename': '', 'name': city['name'], 'longitude': city['longitude'], # 'latitude': city['latitude']} # return _city for city in searchList: _city = { 'level' : city['level'] , 'child_station_count' : city['child_station_count'], 'adcode': city['adcode'] , 'coords' : city['coords'] , 'address' : city['address'], 'ename' : city['ename'], 'name' : city['name'] , 'longitude' : city['longitude'], 'latitude': city['latitude']} return _city except Exception: return cityList def saveInfo(cityInfo , city): if cityInfo < 3: print city + 'not include' return print city try: print cityInfo['ename'] cursor = conn.cursor() tem = cityInfo['ename'] tem = str(tem).replace('\'' , '`') _sql = 'insert into CityGeo(ename , name , level , adcode ,child_station_count,coords , address , longitude ,latitude ) values (\'%s\',\'%s\',\'%s\',\'%s\',%s, \'%s\' ,\'%s\' ,\'%s\', \'%s\')' % ( tem, city, cityInfo['level'], cityInfo['adcode'], cityInfo['child_station_count'], # cityInfo['coords'] , "", cityInfo['address'] ,cityInfo['longitude'] ,cityInfo['latitude']) print(_sql) cursor.execute(_sql) conn.commit() except Exception: with open('errorcity' ,'a') as f: # print city f.write(city + '\n') print (city + 'error') def getCityListDB(): cursor = conn.cursor() _sql = 'SELECT `ChinaCity`.`cityName`,`ChinaCity`.`regionName` FROM `ChinaCity` WHERE `ChinaCity`.`cityName` != \'\' and id > 248' cursor.execute(_sql) cityList = cursor.fetchall() for city in cityList: if len(city) > 1: if '盟' in city[0]: temp = city[0] + city[1] else: temp = city[0] + u'市' + city[1] else: temp = city[0] + u'市' print temp saveInfo( getCityGeo(temp) , temp) def getCityListText(): with open('citylist' , 'r') as f: cityList = f.readlines() for city in cityList: city = city.strip() # city = city + '县' saveInfo(getCityGeo(city), city) getCityListText() # getCityListDB() # getCityGeo('北京')
b4b07278d2bdd76b4fcc168e8ca4a5e2f2b61686
4a027b32b1e2dfebd6d65c9e7afce1f2e93f16bc
/webblog/blog/admin.py
c103bbbe9137099f88f5d13d6b08262854240b18
[]
no_license
Jethet/DjangoProject-WebBlog
92aa2959349129b2ef192163ab5637dbd4099224
f64a79d889abe6a2d3caa9aa5350178d97b5c5eb
refs/heads/master
2020-05-29T23:32:53.154542
2020-02-11T21:59:24
2020-02-11T21:59:24
189,438,086
1
0
null
2020-02-11T21:59:25
2019-05-30T15:28:38
Python
UTF-8
Python
false
false
197
py
from django.contrib import admin # First import the model that you want to show up on the admin page: from .models import Post # Register your models on the admin page: admin.site.register(Post)
ce555ee518fcfbdb43e59334bdddd885f194b341
1a24def8879972f21d846ffb3813632070e1cf12
/Chapter08/0813exception-while-true.py
fa0b51fa722222322031c355be5fd5b499f32cbf
[]
no_license
mushahiroyuki/beginning-python
03bb78c8d3f678ce39662a44046a308c99f29916
4d761d165203dbbe3604173c404f70a3eb791fd8
refs/heads/master
2023-08-16T12:44:01.336731
2023-07-26T03:41:22
2023-07-26T03:41:22
238,684,870
5
4
null
2023-09-06T18:34:01
2020-02-06T12:33:26
Python
UTF-8
Python
false
false
397
py
#ファイル名 Chapter08/0813exception-while-true.py while True: try: x = int(input('最初の数を入れてください: ')) y = int(input('2番目の数を入れてください: ')) value = x / y print(f'{x}/{y}は{value}です。') except: print('入力が正しくありません。再度入力してください。') else: break
5b3cbdb9ee3124e0fee05d82c702f0c9e56923ec
fc77fc08e983385521f7073e160cf05b8484dc9d
/Music App/mapp/db_setup.py
7d68ace0c79aa6840b2127f24640c4be99f1da1e
[]
no_license
Icode4passion/Apps
e561a179147ab0f9bd074998f2b3e3a9bfedc539
51e5f2c9026a7f6a6efef33f4f54c9d7573a3070
refs/heads/master
2020-05-04T15:22:59.139023
2019-04-03T07:57:58
2019-04-03T07:57:58
179,238,161
0
0
null
null
null
null
UTF-8
Python
false
false
551
py
from sqlalchemy import create_engine from sqlalchemy.orm import scoped_session, sessionmaker from sqlalchemy.ext.declarative import declarative_base engine = create_engine('sqlite:///mymusic.db', convert_unicode=True) db_session = scoped_session(sessionmaker(autocommit=False, autoflush=False, bind=engine,)) Base = declarative_base() Base.query = db_session.query_property() def init_db(): import models Base.metadata.create_all(bind=engine)
6ef1afb8fd47c9869fbc831c11b4d24aacbf704c
9062c1b2b1715d4b5b34062dd52b6007fb2ca537
/tensorflow/python/ops/collective_ops_gpu_test.py
d12d6240cf97e1d80b16ed5dd9f5a36901f73d69
[ "Apache-2.0" ]
permissive
robotastic/tensorflow
54c4c7cbcde5e9d374897d5038a96eb5feff16aa
b88f9f60de706dbe78acf9189b9fa04bdc7a6836
refs/heads/master
2020-08-30T06:13:07.176029
2019-11-05T01:49:44
2019-11-05T01:49:44
218,283,699
2
1
Apache-2.0
2019-10-29T12:38:51
2019-10-29T12:38:50
null
UTF-8
Python
false
false
12,428
py
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Collective Operations that require GPU.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from tensorflow.core.protobuf import config_pb2 from tensorflow.python.eager import context from tensorflow.python.eager import def_function from tensorflow.python.framework import config from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import collective_ops from tensorflow.python.platform import test from tensorflow.python.platform import tf_logging as logging class CollectiveOpGPUTest(test.TestCase): def _configure(self, group_size, set_config_proto_nccl=True): """Set environment variables and return `ConfigProto` for NCCL execution.""" # Configure virtual GPU devices virtual_devices = [config_pb2.GPUOptions.Experimental.VirtualDevices( memory_limit_mb=([1 << 10] * group_size))] # 1 GB per virtual GPU gpu_options = config_pb2.GPUOptions( visible_device_list='0', experimental=config_pb2.GPUOptions.Experimental( virtual_devices=virtual_devices)) # Configure NCCL os.environ['NCCL_DEBUG'] = 'INFO' os.environ['NCCL_LAUNCH_MODE'] = 'PARALLEL' experimental = config_pb2.ConfigProto.Experimental() if set_config_proto_nccl: experimental.collective_nccl = True return config_pb2.ConfigProto(gpu_options=gpu_options, experimental=experimental) @test_util.run_deprecated_v1 def testBasicNcclAllReduce(self): inputs = [[0.1, 1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1], [0.3, 1.3, 2.3, 3.3, 4.3, 5.3, 6.3, 7.3]] expected = [0.2, 1.2, 2.2, 3.2, 4.2, 5.2, 6.2, 7.2] group_size = len(inputs) group_key = 1 instance_key = 1 devices = ['/GPU:{}'.format(i) for i in range(group_size)] with self.session(config=self._configure(group_size)) as sess: if not test_util.is_gpu_available(cuda_only=True): self.skipTest('No GPU available') collectives = [] for i in range(group_size): with ops.device(devices[i]): t = constant_op.constant(inputs[i]) collectives.append(collective_ops.all_reduce( t, group_size, group_key, instance_key, 'Add', 'Div')) results = sess.run(collectives) for result in results: self.assertAllClose(result, expected, rtol=1e-5, atol=1e-5) @test_util.run_deprecated_v1 def testInt32Error(self): inputs = [[0, 1], [2, 3]] group_size = len(inputs) group_key = 1 instance_key = 50 devices = ['/GPU:{}'.format(i) for i in range(group_size)] with self.session(config=self._configure(group_size)) as sess: if not test_util.is_gpu_available(cuda_only=True): self.skipTest('No GPU available') collectives = [] for i in range(group_size): with ops.device(devices[i]): t = constant_op.constant(inputs[i], dtype=dtypes.int32) collectives.append(collective_ops.all_reduce( t, group_size, group_key, instance_key, 'Add', 'Div')) with self.assertRaisesRegexp( errors.InternalError, 'does not support datatype DT_INT32 on DEVICE_GPU'): sess.run(collectives) @test_util.run_deprecated_v1 def testFp16Reduce(self): inputs = [[0.1, 1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1], [0.3, 1.3, 2.3, 3.3, 4.3, 5.3, 6.3, 7.3]] expected = [0.2, 1.2, 2.2, 3.2, 4.2, 5.2, 6.2, 7.2] group_size = len(inputs) group_key = 1 instance_key = 100 devices = ['/GPU:{}'.format(i) for i in range(group_size)] with self.session(config=self._configure(group_size)) as sess: if not test_util.is_gpu_available(cuda_only=True): self.skipTest('No GPU available') collectives = [] for i in range(group_size): with ops.device(devices[i]): t = constant_op.constant(inputs[i], dtype=dtypes.float16) collectives.append(collective_ops.all_reduce( t, group_size, group_key, instance_key, 'Add', 'Div')) results = sess.run(collectives) for result in results: logging.info('i {} result {} expected {}'.format(i, results[i], expected)) self.assertAllClose(result, expected, rtol=1e-3, atol=1e-3) @test_util.run_deprecated_v1 def testNcclHintAllReduce(self): inputs = [[0.1, 1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1], [0.3, 1.3, 2.3, 3.3, 4.3, 5.3, 6.3, 7.3]] expected = [0.2, 1.2, 2.2, 3.2, 4.2, 5.2, 6.2, 7.2] group_size = len(inputs) group_key = 1 instance_key = 1 devices = ['/GPU:{}'.format(i) for i in range(group_size)] with self.session( config=self._configure(group_size, set_config_proto_nccl=False)) as sess: if not test_util.is_gpu_available(cuda_only=True): self.skipTest('No GPU available') collectives = [] for i in range(group_size): with ops.device(devices[i]): t = constant_op.constant(inputs[i]) collectives.append(collective_ops.all_reduce( t, group_size, group_key, instance_key, 'Add', 'Div', communication_hint='nccl')) results = sess.run(collectives) for result in results: self.assertAllClose(result, expected, rtol=1e-5, atol=1e-5) @test_util.run_deprecated_v1 def testBasicNcclBroadcast(self): tensor_value = [0.1, 1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1] group_size = 2 group_key = 1 instance_key = 1 devices = ['/GPU:{}'.format(i) for i in range(group_size)] with self.session(config=self._configure(group_size)) as sess: if not test_util.is_gpu_available(cuda_only=True): self.skipTest('No GPU available') collectives = [] with ops.device(devices[0]): t = constant_op.constant(tensor_value) collectives.append(collective_ops.broadcast_send( t, t.shape, t.dtype, group_size, group_key, instance_key)) with ops.device(devices[1]): t = constant_op.constant(tensor_value) collectives.append(collective_ops.broadcast_recv( t.shape, t.dtype, group_size, group_key, instance_key)) results = sess.run(collectives) for result in results: self.assertAllClose(result, tensor_value, rtol=1e-5, atol=1e-5) @test_util.run_deprecated_v1 def testNcclBroadcastDoubleRecv(self): tensor_value = [0.1, 1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1] group_size = 2 group_key = 1 instance_key = 1 devices = ['/GPU:{}'.format(i) for i in range(group_size)] with self.session(config=self._configure(group_size)) as sess: if not test_util.is_gpu_available(cuda_only=True): self.skipTest('No GPU available') collectives = [] for device in devices: with ops.device(device): t = constant_op.constant(tensor_value) collectives.append(collective_ops.broadcast_recv( t.shape, t.dtype, group_size, group_key, instance_key)) with self.assertRaisesRegexp(errors.InternalError, 'found no source'): sess.run(collectives) @test_util.run_deprecated_v1 def testNcclBroadcastDoubleSend(self): tensor_value = [0.1, 1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1] group_size = 2 group_key = 1 instance_key = 1 devices = ['/GPU:{}'.format(i) for i in range(group_size)] with self.session(config=self._configure(group_size)) as sess: if not test_util.is_gpu_available(cuda_only=True): self.skipTest('No GPU available') collectives = [] for device in devices: with ops.device(device): t = constant_op.constant(tensor_value) collectives.append(collective_ops.broadcast_send( t, t.shape, t.dtype, group_size, group_key, instance_key)) with self.assertRaisesRegexp(errors.InternalError, 'already has source'): sess.run(collectives) @test_util.run_deprecated_v1 def testBasicNcclAllGather(self): inputs = [[0.1, 1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1], [0.3, 1.3, 2.3, 3.3, 4.3, 5.3, 6.3, 7.3]] expected = [0.1, 1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1, 0.3, 1.3, 2.3, 3.3, 4.3, 5.3, 6.3, 7.3] group_size = len(inputs) group_key = 1 instance_key = 1 devices = ['/GPU:{}'.format(i) for i in range(group_size)] with self.session(config=self._configure(group_size)) as sess: if not test_util.is_gpu_available(cuda_only=True): self.skipTest('No GPU available') collectives = [] for i in range(group_size): with ops.device(devices[i]): t = constant_op.constant(inputs[i]) collectives.append(collective_ops.all_gather(t, group_size, group_key, instance_key)) results = sess.run(collectives) for result in results: self.assertAllClose(result, expected, rtol=1e-5, atol=1e-5) @test_util.run_deprecated_v1 def testCollectiveDeviceMismatch(self): group_size = 2 group_key = 10 instance_key = 20 t0 = [1, 2, 3, 4] t1 = [5, 6, 7, 8] with self.session( config=self._configure(group_size, set_config_proto_nccl=False)) as sess: if not test_util.is_gpu_available(cuda_only=True): self.skipTest('No GPU available') with ops.device('/CPU:0'): in0 = constant_op.constant(t0) c0 = collective_ops.all_reduce(in0, group_size, group_key, instance_key, 'Add', 'Id') with ops.device('/GPU:0'): in1 = constant_op.constant(t1) c1 = collective_ops.all_reduce(in1, group_size, group_key, instance_key, 'Add', 'Id') run_options = config_pb2.RunOptions() run_options.experimental.collective_graph_key = 100 with self.assertRaisesRegexp(errors.InternalError, 'but that group has type'): sess.run([c0, c1], options=run_options) @test_util.run_v2_only def testCollectiveReduceMinMax(self): gpus = config.list_physical_devices('GPU') if len(gpus) != 1: self.skipTest('Expected 1 GPU but found {} GPUs'.format(len(gpus))) config.set_virtual_device_configuration(gpus[0], [ context.VirtualDeviceConfiguration(1024), context.VirtualDeviceConfiguration(1024) ]) context.ensure_initialized() @def_function.function def run_all_reduce(group_key, instance_key, merge_op): group_size = 2 t0 = [1., 20., 3., 40., 5.] t1 = [10., 2., 30., 4., 50.] os.environ['NCCL_DEBUG'] = 'INFO' os.environ['NCCL_LAUNCH_MODE'] = 'PARALLEL' with ops.device('/GPU:0'): in0 = constant_op.constant(t0) c0 = collective_ops.all_reduce( in0, group_size, group_key, instance_key, merge_op, final_op='Id', communication_hint='nccl') with ops.device('/GPU:1'): in1 = constant_op.constant(t1) c1 = collective_ops.all_reduce( in1, group_size, group_key, instance_key, merge_op, final_op='Id', communication_hint='nccl') return c0, c1 for combination in [('Max', [10., 20., 30., 40., 50.]), ('Min', [1., 2., 3., 4., 5.])]: merge_op = combination[0] results = run_all_reduce(group_key=10, instance_key=20, merge_op=merge_op) expected = combination[1] for result in results: self.assertAllClose(result, expected, rtol=1e-5, atol=1e-5) if __name__ == '__main__': test.main()
192f1edf5a7c689278a89613efd7f7460b9516b8
1f6a85330596eb86a55e631ce5a0a643e200e977
/muddery/server/typeclasses/script_room_interval.py
2048e8b16d3f7555894ca832a36db1eb0acbe74d
[ "BSD-3-Clause" ]
permissive
kwer8080/muddery
ba41765c6245d33978b431ef490f10873ca8615c
8b712eeb90cfee2d602aad4505a4929528d44afd
refs/heads/master
2022-12-02T14:27:22.363386
2020-08-16T03:51:12
2020-08-16T03:51:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,549
py
""" Scripts Scripts are powerful jacks-of-all-trades. They have no in-game existence and can be used to represent persistent game systems in some circumstances. Scripts can also have a time component that allows them to "fire" regularly or a limited number of times. There is generally no "tree" of Scripts inheriting from each other. Rather, each script tends to inherit from the base Script class and just overloads its hooks to have it perform its function. """ import time from evennia.scripts.scripts import DefaultScript from muddery.server.mappings.event_action_set import EVENT_ACTION_SET class ScriptRoomInterval(DefaultScript): """ This script triggers an event in a room at intervals. """ def at_script_creation(self): # Set default data. if not self.attributes.has("room"): self.db.room = None if not self.attributes.has("event_key"): self.db.event_key = "" if not self.attributes.has("action"): self.db.action = "" if not self.attributes.has("begin_message"): self.db.begin_message = "" if not self.attributes.has("end_message"): self.db.end_message = "" if not self.attributes.has("offline"): self.db.offline = False if not self.attributes.has("last_trigger_time"): self.db.last_trigger_time = 0 def set_action(self, room, event_key, action, offline, begin_message, end_message): """ Set action data. Args: event: (string) event's key. action: (string) action's key. """ self.db.room = room self.db.event_key = event_key self.db.action = action self.db.begin_message = begin_message self.db.end_message = end_message self.db.offline = offline self.db.last_trigger_time = 0 def at_start(self): """ Called every time the script is started. """ # The script will be unpaused when the server restarts. So pause it if the character is no online now. if self.db.begin_message: if self.obj: self.obj.msg(self.db.begin_message) # Offline intervals. if self.db.offline: last_time = self.db.last_trigger_time if last_time: current_time = time.time() times = int((current_time - last_time) / self.interval) if times > 0: self.db.last_trigger_time = current_time action = EVENT_ACTION_SET.get(self.db.action) if action and hasattr(action, "offline_func"): action.offline_func(self.db.event_key, self.obj, self.db.room, times) def at_repeat(self): """ Trigger events. """ if not self.obj.location: # The character's location is empty (maybe just login). return if self.obj.location != self.db.room: # The character has left the room. self.obj.scripts.delete(self) return # Do actions. if self.db.offline: self.db.last_trigger_time = time.time() func = EVENT_ACTION_SET.func(self.db.action) if func: func(self.db.event_key, self.obj, self.db.room) def at_stop(self): """ Called every time the script is stopped. """ if self.db.end_message: if self.obj: self.obj.msg(self.db.end_message)
cb72bed745489fd0e982e080dff5966200d993e3
eb9f655206c43c12b497c667ba56a0d358b6bc3a
/python/helpers/pydev/third_party/pep8/lib2to3/lib2to3/fixes/fix_intern.py
e7bb5052b4b5d9571da6b4b40941ddd27288a488
[ "Apache-2.0", "EPL-1.0" ]
permissive
JetBrains/intellij-community
2ed226e200ecc17c037dcddd4a006de56cd43941
05dbd4575d01a213f3f4d69aa4968473f2536142
refs/heads/master
2023-09-03T17:06:37.560889
2023-09-03T11:51:00
2023-09-03T12:12:27
2,489,216
16,288
6,635
Apache-2.0
2023-09-12T07:41:58
2011-09-30T13:33:05
null
UTF-8
Python
false
false
1,405
py
# Copyright 2006 Georg Brandl. # Licensed to PSF under a Contributor Agreement. """Fixer for intern(). intern(s) -> sys.intern(s)""" # Local imports from .. import pytree from .. import fixer_base from ..fixer_util import Name, Attr, touch_import class FixIntern(fixer_base.BaseFix): BM_compatible = True order = "pre" PATTERN = """ power< 'intern' trailer< lpar='(' ( not(arglist | argument<any '=' any>) obj=any | obj=arglist<(not argument<any '=' any>) any ','> ) rpar=')' > after=any* > """ def transform(self, node, results): syms = self.syms obj = results["obj"].clone() if obj.type == syms.arglist: newarglist = obj.clone() else: newarglist = pytree.Node(syms.arglist, [obj.clone()]) after = results["after"] if after: after = [n.clone() for n in after] new = pytree.Node(syms.power, Attr(Name(u"sys"), Name(u"intern")) + [pytree.Node(syms.trailer, [results["lpar"].clone(), newarglist, results["rpar"].clone()])] + after) new.prefix = node.prefix touch_import(None, u'sys', node) return new
deac4dc9c416a85a1b186d22b702e4fd17d953c0
436177bf038f9941f67e351796668700ffd1cef2
/venv/Lib/site-packages/sklearn/decomposition/_pca.py
01906b2b0cc5586c35abeabb5c496f37ee7c9cf0
[]
no_license
python019/matplotlib_simple
4359d35f174cd2946d96da4d086026661c3d1f9c
32e9a8e773f9423153d73811f69822f9567e6de4
refs/heads/main
2023-08-22T18:17:38.883274
2021-10-07T15:55:50
2021-10-07T15:55:50
380,471,961
29
0
null
null
null
null
UTF-8
Python
false
false
24,683
py
""" Principal Component Analysis. """ # Author: Alexandre Gramfort <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Denis A. Engemann <[email protected]> # Michael Eickenberg <[email protected]> # Giorgio Patrini <[email protected]> # # License: BSD 3 clause from math import log, sqrt import numbers import numpy as np from scipy import linalg from scipy.special import gammaln from scipy.sparse import issparse from scipy.sparse.linalg import svds from ._base import _BasePCA from ..utils import check_random_state from ..utils._arpack import _init_arpack_v0 from ..utils.extmath import fast_logdet, randomized_svd, svd_flip from ..utils.extmath import stable_cumsum from ..utils.validation import check_is_fitted from ..utils.validation import _deprecate_positional_args def _assess_dimension(spectrum, rank, n_samples): """Compute the log-likelihood of a rank ``rank`` dataset. The dataset is assumed to be embedded in gaussian noise of shape(n, dimf) having spectrum ``spectrum``. This implements the method of T. P. Minka. Parameters ---------- spectrum : ndarray of shape (n_features,) Data spectrum. rank : int Tested rank value. It should be strictly lower than n_features, otherwise the method isn't specified (division by zero in equation (31) from the paper). n_samples : int Number of samples. Returns ------- ll : float The log-likelihood. References ---------- This implements the method of `Thomas P. Minka: Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604 <https://proceedings.neurips.cc/paper/2000/file/7503cfacd12053d309b6bed5c89de212-Paper.pdf>`_ """ n_features = spectrum.shape[0] if not 1 <= rank < n_features: raise ValueError("the tested rank should be in [1, n_features - 1]") eps = 1e-15 if spectrum[rank - 1] < eps: # When the tested rank is associated with a small eigenvalue, there's # no point in computing the log-likelihood: it's going to be very # small and won't be the max anyway. Also, it can lead to numerical # issues below when computing pa, in particular in log((spectrum[i] - # spectrum[j]) because this will take the log of something very small. return -np.inf pu = -rank * log(2.) for i in range(1, rank + 1): pu += (gammaln((n_features - i + 1) / 2.) - log(np.pi) * (n_features - i + 1) / 2.) pl = np.sum(np.log(spectrum[:rank])) pl = -pl * n_samples / 2. v = max(eps, np.sum(spectrum[rank:]) / (n_features - rank)) pv = -np.log(v) * n_samples * (n_features - rank) / 2. m = n_features * rank - rank * (rank + 1.) / 2. pp = log(2. * np.pi) * (m + rank) / 2. pa = 0. spectrum_ = spectrum.copy() spectrum_[rank:n_features] = v for i in range(rank): for j in range(i + 1, len(spectrum)): pa += log((spectrum[i] - spectrum[j]) * (1. / spectrum_[j] - 1. / spectrum_[i])) + log(n_samples) ll = pu + pl + pv + pp - pa / 2. - rank * log(n_samples) / 2. return ll def _infer_dimension(spectrum, n_samples): """Infers the dimension of a dataset with a given spectrum. The returned value will be in [1, n_features - 1]. """ ll = np.empty_like(spectrum) ll[0] = -np.inf # we don't want to return n_components = 0 for rank in range(1, spectrum.shape[0]): ll[rank] = _assess_dimension(spectrum, rank, n_samples) return ll.argmax() class PCA(_BasePCA): """Principal component analysis (PCA). Linear dimensionality reduction using Singular Value Decomposition of the data to project it to a lower dimensional space. The input data is centered but not scaled for each feature before applying the SVD. It uses the LAPACK implementation of the full SVD or a randomized truncated SVD by the method of Halko et al. 2009, depending on the shape of the input data and the number of components to extract. It can also use the scipy.sparse.linalg ARPACK implementation of the truncated SVD. Notice that this class does not support sparse input. See :class:`TruncatedSVD` for an alternative with sparse data. Read more in the :ref:`User Guide <PCA>`. Parameters ---------- n_components : int, float or 'mle', default=None Number of components to keep. if n_components is not set all components are kept:: n_components == min(n_samples, n_features) If ``n_components == 'mle'`` and ``svd_solver == 'full'``, Minka's MLE is used to guess the dimension. Use of ``n_components == 'mle'`` will interpret ``svd_solver == 'auto'`` as ``svd_solver == 'full'``. If ``0 < n_components < 1`` and ``svd_solver == 'full'``, select the number of components such that the amount of variance that needs to be explained is greater than the percentage specified by n_components. If ``svd_solver == 'arpack'``, the number of components must be strictly less than the minimum of n_features and n_samples. Hence, the None case results in:: n_components == min(n_samples, n_features) - 1 copy : bool, default=True If False, data passed to fit are overwritten and running fit(X).transform(X) will not yield the expected results, use fit_transform(X) instead. whiten : bool, default=False When True (False by default) the `components_` vectors are multiplied by the square root of n_samples and then divided by the singular values to ensure uncorrelated outputs with unit component-wise variances. Whitening will remove some information from the transformed signal (the relative variance scales of the components) but can sometime improve the predictive accuracy of the downstream estimators by making their data respect some hard-wired assumptions. svd_solver : {'auto', 'full', 'arpack', 'randomized'}, default='auto' If auto : The solver is selected by a default policy based on `X.shape` and `n_components`: if the input data is larger than 500x500 and the number of components to extract is lower than 80% of the smallest dimension of the data, then the more efficient 'randomized' method is enabled. Otherwise the exact full SVD is computed and optionally truncated afterwards. If full : run exact full SVD calling the standard LAPACK solver via `scipy.linalg.svd` and select the components by postprocessing If arpack : run SVD truncated to n_components calling ARPACK solver via `scipy.sparse.linalg.svds`. It requires strictly 0 < n_components < min(X.shape) If randomized : run randomized SVD by the method of Halko et al. .. versionadded:: 0.18.0 tol : float, default=0.0 Tolerance for singular values computed by svd_solver == 'arpack'. Must be of range [0.0, infinity). .. versionadded:: 0.18.0 iterated_power : int or 'auto', default='auto' Number of iterations for the power method computed by svd_solver == 'randomized'. Must be of range [0, infinity). .. versionadded:: 0.18.0 random_state : int, RandomState instance or None, default=None Used when the 'arpack' or 'randomized' solvers are used. Pass an int for reproducible results across multiple function calls. See :term:`Glossary <random_state>`. .. versionadded:: 0.18.0 Attributes ---------- components_ : ndarray of shape (n_components, n_features) Principal axes in feature space, representing the directions of maximum variance in the data. The components are sorted by ``explained_variance_``. explained_variance_ : ndarray of shape (n_components,) The amount of variance explained by each of the selected components. The variance estimation uses `n_samples - 1` degrees of freedom. Equal to n_components largest eigenvalues of the covariance matrix of X. .. versionadded:: 0.18 explained_variance_ratio_ : ndarray of shape (n_components,) Percentage of variance explained by each of the selected components. If ``n_components`` is not set then all components are stored and the sum of the ratios is equal to 1.0. singular_values_ : ndarray of shape (n_components,) The singular values corresponding to each of the selected components. The singular values are equal to the 2-norms of the ``n_components`` variables in the lower-dimensional space. .. versionadded:: 0.19 mean_ : ndarray of shape (n_features,) Per-feature empirical mean, estimated from the training set. Equal to `X.mean(axis=0)`. n_components_ : int The estimated number of components. When n_components is set to 'mle' or a number between 0 and 1 (with svd_solver == 'full') this number is estimated from input data. Otherwise it equals the parameter n_components, or the lesser value of n_features and n_samples if n_components is None. n_features_ : int Number of features in the training data. n_samples_ : int Number of samples in the training data. noise_variance_ : float The estimated noise covariance following the Probabilistic PCA model from Tipping and Bishop 1999. See "Pattern Recognition and Machine Learning" by C. Bishop, 12.2.1 p. 574 or http://www.miketipping.com/papers/met-mppca.pdf. It is required to compute the estimated data covariance and score samples. Equal to the average of (min(n_features, n_samples) - n_components) smallest eigenvalues of the covariance matrix of X. See Also -------- KernelPCA : Kernel Principal Component Analysis. SparsePCA : Sparse Principal Component Analysis. TruncatedSVD : Dimensionality reduction using truncated SVD. IncrementalPCA : Incremental Principal Component Analysis. References ---------- For n_components == 'mle', this class uses the method from: `Minka, T. P.. "Automatic choice of dimensionality for PCA". In NIPS, pp. 598-604 <https://tminka.github.io/papers/pca/minka-pca.pdf>`_ Implements the probabilistic PCA model from: `Tipping, M. E., and Bishop, C. M. (1999). "Probabilistic principal component analysis". Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61(3), 611-622. <http://www.miketipping.com/papers/met-mppca.pdf>`_ via the score and score_samples methods. For svd_solver == 'arpack', refer to `scipy.sparse.linalg.svds`. For svd_solver == 'randomized', see: `Halko, N., Martinsson, P. G., and Tropp, J. A. (2011). "Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions". SIAM review, 53(2), 217-288. <https://doi.org/10.1137/090771806>`_ and also `Martinsson, P. G., Rokhlin, V., and Tygert, M. (2011). "A randomized algorithm for the decomposition of matrices". Applied and Computational Harmonic Analysis, 30(1), 47-68 <https://doi.org/10.1016/j.acha.2010.02.003>`_. Examples -------- >>> import numpy as np >>> from sklearn.decomposition import PCA >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> pca = PCA(n_components=2) >>> pca.fit(X) PCA(n_components=2) >>> print(pca.explained_variance_ratio_) [0.9924... 0.0075...] >>> print(pca.singular_values_) [6.30061... 0.54980...] >>> pca = PCA(n_components=2, svd_solver='full') >>> pca.fit(X) PCA(n_components=2, svd_solver='full') >>> print(pca.explained_variance_ratio_) [0.9924... 0.00755...] >>> print(pca.singular_values_) [6.30061... 0.54980...] >>> pca = PCA(n_components=1, svd_solver='arpack') >>> pca.fit(X) PCA(n_components=1, svd_solver='arpack') >>> print(pca.explained_variance_ratio_) [0.99244...] >>> print(pca.singular_values_) [6.30061...] """ @_deprecate_positional_args def __init__(self, n_components=None, *, copy=True, whiten=False, svd_solver='auto', tol=0.0, iterated_power='auto', random_state=None): self.n_components = n_components self.copy = copy self.whiten = whiten self.svd_solver = svd_solver self.tol = tol self.iterated_power = iterated_power self.random_state = random_state def fit(self, X, y=None): """Fit the model with X. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y : Ignored Returns ------- self : object Returns the instance itself. """ self._fit(X) return self def fit_transform(self, X, y=None): """Fit the model with X and apply the dimensionality reduction on X. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y : Ignored Returns ------- X_new : ndarray of shape (n_samples, n_components) Transformed values. Notes ----- This method returns a Fortran-ordered array. To convert it to a C-ordered array, use 'np.ascontiguousarray'. """ U, S, Vt = self._fit(X) U = U[:, :self.n_components_] if self.whiten: # X_new = X * V / S * sqrt(n_samples) = U * sqrt(n_samples) U *= sqrt(X.shape[0] - 1) else: # X_new = X * V = U * S * Vt * V = U * S U *= S[:self.n_components_] return U def _fit(self, X): """Dispatch to the right submethod depending on the chosen solver.""" # Raise an error for sparse input. # This is more informative than the generic one raised by check_array. if issparse(X): raise TypeError('PCA does not support sparse input. See ' 'TruncatedSVD for a possible alternative.') X = self._validate_data(X, dtype=[np.float64, np.float32], ensure_2d=True, copy=self.copy) # Handle n_components==None if self.n_components is None: if self.svd_solver != 'arpack': n_components = min(X.shape) else: n_components = min(X.shape) - 1 else: n_components = self.n_components # Handle svd_solver self._fit_svd_solver = self.svd_solver if self._fit_svd_solver == 'auto': # Small problem or n_components == 'mle', just call full PCA if max(X.shape) <= 500 or n_components == 'mle': self._fit_svd_solver = 'full' elif n_components >= 1 and n_components < .8 * min(X.shape): self._fit_svd_solver = 'randomized' # This is also the case of n_components in (0,1) else: self._fit_svd_solver = 'full' # Call different fits for either full or truncated SVD if self._fit_svd_solver == 'full': return self._fit_full(X, n_components) elif self._fit_svd_solver in ['arpack', 'randomized']: return self._fit_truncated(X, n_components, self._fit_svd_solver) else: raise ValueError("Unrecognized svd_solver='{0}'" "".format(self._fit_svd_solver)) def _fit_full(self, X, n_components): """Fit the model by computing full SVD on X.""" n_samples, n_features = X.shape if n_components == 'mle': if n_samples < n_features: raise ValueError("n_components='mle' is only supported " "if n_samples >= n_features") elif not 0 <= n_components <= min(n_samples, n_features): raise ValueError("n_components=%r must be between 0 and " "min(n_samples, n_features)=%r with " "svd_solver='full'" % (n_components, min(n_samples, n_features))) elif n_components >= 1: if not isinstance(n_components, numbers.Integral): raise ValueError("n_components=%r must be of type int " "when greater than or equal to 1, " "was of type=%r" % (n_components, type(n_components))) # Center data self.mean_ = np.mean(X, axis=0) X -= self.mean_ U, S, Vt = linalg.svd(X, full_matrices=False) # flip eigenvectors' sign to enforce deterministic output U, Vt = svd_flip(U, Vt) components_ = Vt # Get variance explained by singular values explained_variance_ = (S ** 2) / (n_samples - 1) total_var = explained_variance_.sum() explained_variance_ratio_ = explained_variance_ / total_var singular_values_ = S.copy() # Store the singular values. # Postprocess the number of components required if n_components == 'mle': n_components = \ _infer_dimension(explained_variance_, n_samples) elif 0 < n_components < 1.0: # number of components for which the cumulated explained # variance percentage is superior to the desired threshold # side='right' ensures that number of features selected # their variance is always greater than n_components float # passed. More discussion in issue: #15669 ratio_cumsum = stable_cumsum(explained_variance_ratio_) n_components = np.searchsorted(ratio_cumsum, n_components, side='right') + 1 # Compute noise covariance using Probabilistic PCA model # The sigma2 maximum likelihood (cf. eq. 12.46) if n_components < min(n_features, n_samples): self.noise_variance_ = explained_variance_[n_components:].mean() else: self.noise_variance_ = 0. self.n_samples_, self.n_features_ = n_samples, n_features self.components_ = components_[:n_components] self.n_components_ = n_components self.explained_variance_ = explained_variance_[:n_components] self.explained_variance_ratio_ = \ explained_variance_ratio_[:n_components] self.singular_values_ = singular_values_[:n_components] return U, S, Vt def _fit_truncated(self, X, n_components, svd_solver): """Fit the model by computing truncated SVD (by ARPACK or randomized) on X. """ n_samples, n_features = X.shape if isinstance(n_components, str): raise ValueError("n_components=%r cannot be a string " "with svd_solver='%s'" % (n_components, svd_solver)) elif not 1 <= n_components <= min(n_samples, n_features): raise ValueError("n_components=%r must be between 1 and " "min(n_samples, n_features)=%r with " "svd_solver='%s'" % (n_components, min(n_samples, n_features), svd_solver)) elif not isinstance(n_components, numbers.Integral): raise ValueError("n_components=%r must be of type int " "when greater than or equal to 1, was of type=%r" % (n_components, type(n_components))) elif svd_solver == 'arpack' and n_components == min(n_samples, n_features): raise ValueError("n_components=%r must be strictly less than " "min(n_samples, n_features)=%r with " "svd_solver='%s'" % (n_components, min(n_samples, n_features), svd_solver)) random_state = check_random_state(self.random_state) # Center data self.mean_ = np.mean(X, axis=0) X -= self.mean_ if svd_solver == 'arpack': v0 = _init_arpack_v0(min(X.shape), random_state) U, S, Vt = svds(X, k=n_components, tol=self.tol, v0=v0) # svds doesn't abide by scipy.linalg.svd/randomized_svd # conventions, so reverse its outputs. S = S[::-1] # flip eigenvectors' sign to enforce deterministic output U, Vt = svd_flip(U[:, ::-1], Vt[::-1]) elif svd_solver == 'randomized': # sign flipping is done inside U, S, Vt = randomized_svd(X, n_components=n_components, n_iter=self.iterated_power, flip_sign=True, random_state=random_state) self.n_samples_, self.n_features_ = n_samples, n_features self.components_ = Vt self.n_components_ = n_components # Get variance explained by singular values self.explained_variance_ = (S ** 2) / (n_samples - 1) total_var = np.var(X, ddof=1, axis=0) self.explained_variance_ratio_ = \ self.explained_variance_ / total_var.sum() self.singular_values_ = S.copy() # Store the singular values. if self.n_components_ < min(n_features, n_samples): self.noise_variance_ = (total_var.sum() - self.explained_variance_.sum()) self.noise_variance_ /= min(n_features, n_samples) - n_components else: self.noise_variance_ = 0. return U, S, Vt def score_samples(self, X): """Return the log-likelihood of each sample. See. "Pattern Recognition and Machine Learning" by C. Bishop, 12.2.1 p. 574 or http://www.miketipping.com/papers/met-mppca.pdf Parameters ---------- X : array-like of shape (n_samples, n_features) The data. Returns ------- ll : ndarray of shape (n_samples,) Log-likelihood of each sample under the current model. """ check_is_fitted(self) X = self._validate_data(X, dtype=[np.float64, np.float32], reset=False) Xr = X - self.mean_ n_features = X.shape[1] precision = self.get_precision() log_like = -.5 * (Xr * (np.dot(Xr, precision))).sum(axis=1) log_like -= .5 * (n_features * log(2. * np.pi) - fast_logdet(precision)) return log_like def score(self, X, y=None): """Return the average log-likelihood of all samples. See. "Pattern Recognition and Machine Learning" by C. Bishop, 12.2.1 p. 574 or http://www.miketipping.com/papers/met-mppca.pdf Parameters ---------- X : array-like of shape (n_samples, n_features) The data. y : Ignored Returns ------- ll : float Average log-likelihood of the samples under the current model. """ return np.mean(self.score_samples(X)) def _more_tags(self): return {'preserves_dtype': [np.float64, np.float32]}
6f64803b680f530118f50d12f840345200374827
001ca88155c90447ae3564bb51c503500d4fdcdd
/apps/christmas/migrations/0001_initial.py
2f33cc812b526ca9d65d097c3b32136603943187
[]
no_license
andre23arruda/cartas-de-natal
b7d5766b2806814dc7aaed1315b0d51d4aa53582
b704b28137256e9c52a7d716e462334928c9d2bd
refs/heads/main
2023-04-28T04:33:28.139797
2021-05-14T04:56:05
2021-05-14T04:56:05
367,122,010
0
0
null
null
null
null
UTF-8
Python
false
false
729
py
# Generated by Django 3.1.4 on 2021-05-13 03:00 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Letter', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50)), ('created_at', models.DateField(auto_now=True)), ('updated_at', models.DateField(auto_now_add=True)), ('title', models.CharField(max_length=100)), ('message', models.TextField()), ], ), ]
bd52bb1039bba3f6e62021f5e1b5035e90a422c1
7bc0075367290ff06565991e19033b13f0604f96
/Mundo 2/aula13/desafio047.py
531922ef5ea3d9c949fd2497d363dc2cbe2bf5db
[]
no_license
iamtheluiz/curso_em_video_python
298acd90e36473fbf797ba7bf85d729d0ca28407
aa4247b7d206771f9c9b08ad5d8585c3813ddaff
refs/heads/master
2020-04-12T16:17:51.672662
2019-01-22T00:10:41
2019-01-22T00:10:41
162,608,169
1
0
null
null
null
null
UTF-8
Python
false
false
268
py
# imports print(""" |******************| | Desafio047 | |******************| """) print("Números Pares de 1 até 50") result = "" for i in range(1, 51, 2): if i == 1: result += str(i + 1) else: result += ", "+str(i + 1) print(result)
5291f471b2d5e46a05cd5e2ec8fd990b3acf7711
33114a0f96406008da69adac757b271229fb81bf
/__init__.py
5488e89bfa7b2ba3c29c0da45814f981069162df
[]
no_license
ROB-Seismology/simpledb
9f1eaf3ad4cd2367a03b5e79931a18959e9a370d
4993dd472d1cb37023751ffca80e4dde7a6ad7fc
refs/heads/master
2021-06-24T12:13:34.309067
2020-10-20T10:30:34
2020-10-20T10:30:34
90,835,016
0
0
null
null
null
null
UTF-8
Python
false
false
1,309
py
""" Module providing basic read-write access to SQL databases. Currently supports MySQL, PostgreSQL and SQLite/SpatiaLite databases. Author: Kris Vanneste, Royal Observatory of Belgium """ from __future__ import absolute_import, division, print_function, unicode_literals ## Reloading mechanism try: reloading except NameError: ## Module is imported for the first time reloading = False else: ## Module is reloaded reloading = True try: ## Python 3 from importlib import reload except ImportError: ## Python 2 pass ## Import submodules ## base if not reloading: from . import base else: reload(base) from .base import (SQLDB, SQLRecord, build_sql_query) ## sqlite, depends on base if not reloading: from . import sqlite else: reload(sqlite) from .sqlite import (SQLiteDB, query_sqlite_db, query_sqlite_db_generic) __all__ = base.__all__ + sqlite.__all__ ## mysql, depends on base if not reloading: from . import mysql else: reload(mysql) if mysql.HAS_MYSQL: from .mysql import (MySQLDB, query_mysql_db, query_mysql_db_generic) __all__ += mysql.__all__ ## postgres, depends on base if not reloading: from . import postgres else: reload(postgres) if postgres.HAS_POSTGRES: from .postgres import (PgSQLDB, query_pgsql_db, query_pgsql_db_generic) __all__ += postgres.__all__
7f788150cb65d8a9dd0618a8bae8840a7efe7aac
b788f1f8bfa8949177e28dd4be436572162c418b
/regular expression.py
5622c6603c31b7c63a0a789938965fc66832786f
[]
no_license
KaziMotiour/pyhton-OOP
bc9506f3afe7686a7451de9a5448c759f3cdcbac
8e85cbe31809a11293fb90d6e39b2d0293cff9b5
refs/heads/master
2022-02-18T09:40:05.274955
2019-09-02T17:46:53
2019-09-02T17:46:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,184
py
import re def multi_find(text_patterns,phrase): for pat in test_patterns: print("Search for pattern {}".format(pat)) print(re.findall(pat,phrase)) print('\n') patterns = ['Team1', 'Team2'] text = "This is a starting! with Team1, 1234567, not to others arr arrr" # for pattern in patterns: # print("I'm searching for: "+pattern) # if re.search(pattern,text): # #if pattern in text: # print("Match") # else: # print("Not Match") # match = re.search('Team1',text) # print(match.start()) # textSplit = re.split('with', text) # print(textSplit) # print(re.findall('a', text)) # test_patterns = ['ar*'] # test_patterns = ['ar+'] # test_patterns = ['ar{2}'] # test_patterns = ['ar{1,2}'] # test_patterns = ['[^!>?]+'] # test_patterns = ['[a-z]+'] # show all the lowercase in text # test_patterns = ['[A-Z]+'] # show all the uppercase in text # test_patterns = [r'\d'] # show all the number in text # test_patterns = [r'\d+'] # show all the number in text # test_patterns = [r'\D+'] # show all the text except number in text test_patterns = [r'\w+'] # show all the text alpha numeric in text multi_find(test_patterns,text)
321383aac6ddb384a5de4743a8d8fba4a11a44cc
a6d36a861c156e9dd9c3f4733978f194bcc62c2c
/api/serializers.py
b284259aa9cd0eee350124e29334949953db0bd5
[]
no_license
wjaccck/upfile
091f3ba132748cef348ff8a9973eba009e5423fa
2721cc29ca394ddcf9f415e4fba7e2b422e87701
refs/heads/master
2021-01-01T04:30:18.024584
2016-05-26T02:25:51
2016-05-26T02:25:51
57,368,745
0
0
null
null
null
null
UTF-8
Python
false
false
1,960
py
from rest_framework import serializers from api.models import Up_file,Status,Azure_key,Dirs,Recode_dirs class Up_fileSerializer(serializers.ModelSerializer): status = serializers.SlugRelatedField(queryset=Status.objects.all(), slug_field='alias') base_dir = serializers.SlugRelatedField(queryset=Dirs.objects.all(), slug_field='name') class Meta: model = Up_file fields = ('url', 'id', 'base_dir','blob_name', 'blob_url','file_name', 'file_md5', 'file_location', 'department','status', 'modified_date', 'created_date') class StatusSerializer(serializers.ModelSerializer): class Meta: model = Status class Azure_keySerializer(serializers.ModelSerializer): class Meta: model = Azure_key class DirsSerializer(serializers.ModelSerializer): class Meta: model = Dirs class Recode_dirsSerializer(serializers.ModelSerializer): base_dir=serializers.SlugRelatedField(queryset=Dirs.objects.all(), slug_field='name') sub_dir = serializers.SlugRelatedField(queryset=Dirs.objects.all(), slug_field='name',many=True) sub_files=serializers.SerializerMethodField() class Meta: model = Recode_dirs fields = ('url', 'id', 'base_dir', 'sub_dir', 'sub_files') def get_sub_files(self,obj): base_dir=obj.base_dir result=[] for m in Up_file.objects.filter(base_dir=base_dir): status = m.status.alias if status == 'upload': sig = Azure_key.objects.get(name='azure').sig url = m.blob_url + '?' + sig else: url = '' data = {} data['status'] = status data['file'] = m.file_name data['url'] = url data['created_date']=m.created_date data['department']=m.department result.append(data) total={"total":len(result)} result.append(total) return result
6b307266c03ec45f6004645eac1d4985b1bfbb4c
d5a5ff1ed1f508c47e9506a552bf44844bcdc071
/payroll/apps.py
8313bd0aaa30a056f07efb95e1823ad6458d08af
[]
no_license
sintaxyzcorp/prometeus
5c9dc20e3c2f33ea6b257b850ff9505621302c47
2508603b6692023e0a9e40cb6cd1f08465a33f1c
refs/heads/master
2021-09-01T09:31:36.868784
2017-12-26T07:58:27
2017-12-26T07:58:27
113,787,842
0
1
null
2017-12-18T08:25:31
2017-12-10T22:16:28
JavaScript
UTF-8
Python
false
false
182
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.apps import AppConfig class PayrollConfig(AppConfig): name = 'payroll' verbose_name = 'Nomina'
da837fb82085ba56a201b6894220c72ba25ea444
38182d45f0b1f6228aeec03a876ee8213404d171
/questionnaire/admin.py
be8327b50af90b1628c99da556843bb64cf84a85
[]
no_license
alexzinoviev/MobileDoc
1283ec5cd52d27510e54f22522b9e1a01b65d8f8
66c22f1b8fe96ad5630c3d33bcc26e5d815f48db
refs/heads/master
2020-06-24T05:29:41.366198
2017-08-03T16:37:10
2017-08-03T16:37:10
96,920,344
0
0
null
null
null
null
UTF-8
Python
false
false
448
py
from django.contrib import admin from .models import Questionnaire # Register your models here. @admin.register(Questionnaire) class QuestionAdmin(admin.ModelAdmin): list_display = ('question', 'category') #admin.site.register(Questionnaire, QuestionAdmin) # @admin.register(Product) # class ProductAdmin(admin.ModelAdmin): # #pass # prepopulated_fields = {'slug': ('name',)} # list_display = ('name','desc', 'cost', 'active')
51f34c3e0287e316f0918f7bae364df3289de792
966ea314bcd64f40bfaea457f914fcedbe26426a
/March-week3/testconversion.py
be419779776866290ed22ba1214ccc83499f7eda
[]
no_license
vandanasen/Python-Projects
30caa85cf87ba712e1307b0441fed2d7fa9298a0
9b24a9f6af0374bb0d6a3a15c05099f49edfd581
refs/heads/master
2020-03-26T00:26:06.067905
2019-03-11T22:58:25
2019-03-11T22:58:25
144,320,263
1
0
null
null
null
null
UTF-8
Python
false
false
480
py
a_list=[1,1,2,3,3] a = tuple(a_list) print(a) b = list(a) print(len(b)) c = set(b) print(len(c)) d=list(c) print(len(d)) e=list(range(1, 11, 1)) print(e) dict = dict([(1,2),(3,4),(5,6),(7,8),(9,10)]) print(dict) t= tuple(list(dict.items())) print(t) v = tuple(dict.keys()) print(v) k = tuple(dict.values()) print(k) s = "antidisestablishmentarianism" print(s) s = sorted(s) print(s) s2="".join(s) print(s2) w = "the quick brown fox jumped over the lazy dog" w = w.split() print(w)
7f9cf2b44780a6c73735f0b55eb8a5f232bd2098
88e2c87d087e30dedda11cad8a2665e89f6ac32c
/tests/contrib/operators/test_opsgenie_alert_operator.py
1b4467bc5a523be4b00ce8c701d2f578da10ece5
[ "Apache-2.0", "BSD-3-Clause", "Python-2.0", "MIT", "BSD-2-Clause" ]
permissive
bigo-sg/airflow
690805b782d3490c5d01047203ee4766f9695cf0
e2933fc90d8fd9aeb61402f7a237778553762a17
refs/heads/master
2020-05-30T19:25:36.289802
2019-07-15T10:14:34
2019-07-15T10:14:34
189,924,188
2
1
Apache-2.0
2019-10-18T06:30:14
2019-06-03T02:50:51
Python
UTF-8
Python
false
false
4,788
py
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # import unittest from airflow import DAG, configuration from airflow.contrib.operators.opsgenie_alert_operator import OpsgenieAlertOperator from airflow.utils import timezone DEFAULT_DATE = timezone.datetime(2017, 1, 1) class TestOpsgenieAlertOperator(unittest.TestCase): _config = { 'message': 'An example alert message', 'alias': 'Life is too short for no alias', 'description': 'Every alert needs a description', 'responders': [ {'id': '4513b7ea-3b91-438f-b7e4-e3e54af9147c', 'type': 'team'}, {'name': 'NOC', 'type': 'team'}, {'id': 'bb4d9938-c3c2-455d-aaab-727aa701c0d8', 'type': 'user'}, {'username': '[email protected]', 'type': 'user'}, {'id': 'aee8a0de-c80f-4515-a232-501c0bc9d715', 'type': 'escalation'}, {'name': 'Nightwatch Escalation', 'type': 'escalation'}, {'id': '80564037-1984-4f38-b98e-8a1f662df552', 'type': 'schedule'}, {'name': 'First Responders Schedule', 'type': 'schedule'} ], 'visibleTo': [ {'id': '4513b7ea-3b91-438f-b7e4-e3e54af9147c', 'type': 'team'}, {'name': 'rocket_team', 'type': 'team'}, {'id': 'bb4d9938-c3c2-455d-aaab-727aa701c0d8', 'type': 'user'}, {'username': '[email protected]', 'type': 'user'} ], 'actions': ['Restart', 'AnExampleAction'], 'tags': ['OverwriteQuietHours', 'Critical'], 'details': {'key1': 'value1', 'key2': 'value2'}, 'entity': 'An example entity', 'source': 'Airflow', 'priority': 'P1', 'user': 'Jesse', 'note': 'Write this down' } expected_payload_dict = { 'message': _config['message'], 'alias': _config['alias'], 'description': _config['description'], 'responders': _config['responders'], 'visibleTo': _config['visibleTo'], 'actions': _config['actions'], 'tags': _config['tags'], 'details': _config['details'], 'entity': _config['entity'], 'source': _config['source'], 'priority': _config['priority'], 'user': _config['user'], 'note': _config['note'] } def setUp(self): configuration.load_test_config() args = { 'owner': 'airflow', 'start_date': DEFAULT_DATE } self.dag = DAG('test_dag_id', default_args=args) def test_build_opsgenie_payload(self): # Given / When operator = OpsgenieAlertOperator( task_id='opsgenie_alert_job', dag=self.dag, **self._config ) payload = operator._build_opsgenie_payload() # Then self.assertEqual(self.expected_payload_dict, payload) def test_properties(self): # Given / When operator = OpsgenieAlertOperator( task_id='opsgenie_alert_job', dag=self.dag, **self._config ) self.assertEqual('opsgenie_default', operator.opsgenie_conn_id) self.assertEqual(self._config['message'], operator.message) self.assertEqual(self._config['alias'], operator.alias) self.assertEqual(self._config['description'], operator.description) self.assertEqual(self._config['responders'], operator.responders) self.assertEqual(self._config['visibleTo'], operator.visibleTo) self.assertEqual(self._config['actions'], operator.actions) self.assertEqual(self._config['tags'], operator.tags) self.assertEqual(self._config['details'], operator.details) self.assertEqual(self._config['entity'], operator.entity) self.assertEqual(self._config['source'], operator.source) self.assertEqual(self._config['priority'], operator.priority) self.assertEqual(self._config['user'], operator.user) self.assertEqual(self._config['note'], operator.note) if __name__ == '__main__': unittest.main()
a0083cab532c5db426c3e4e1e0041d4f1d5ec536
0cfb5831a748ebd46e438e3ad7e7a09c1d196499
/com/chapter_09/section_04/task_9.4.5_importAllClass.py
92d4e7f85081ee09dbfc6731f3670ef472dcf5a0
[]
no_license
StevenGeGe/pythonFromIntroductionToPractice01
7cfe8cdb4bc5c0ddbe25b44976231d72d9e10108
9d2ba499056b30ded14180e6c4719ee48edd9772
refs/heads/master
2023-02-15T04:08:59.878711
2020-12-28T13:27:55
2020-12-28T13:27:55
310,980,820
0
0
null
null
null
null
UTF-8
Python
false
false
330
py
#!/usr/bin/python3 # -*- coding: utf-8 -*- # @Time : 2020/11/25 20:34 # @Author : Yong # @Email : [email protected] # @File : task_9.4.5_importAllClass.py # @Software: PyCharm # 导入模块中所有的类 # from module_name import * # 不推荐这样使用。 # 推荐使用:module_name.class_name 语法来访问类
babdbff65d7df7830fbc35159f977fcaebc87b48
7be7190aeceef43841274518d260bcd92e04e5a7
/Mahouo-Account/sever/app/__init__.py
a0d44f9b8c1ba491d8fa05edb03452397aa3f1ee
[]
no_license
weivis/Mahouo
078c440b41a686d355a49e3fc29175bc225dff2c
81fd6919a884b97cb53ac3e97f1e48d78ddd4e63
refs/heads/master
2020-04-20T16:56:44.813853
2019-02-03T18:47:11
2019-02-03T18:47:11
168,974,099
10
1
null
null
null
null
UTF-8
Python
false
false
956
py
__author__ = 'Ran' from flask import Flask # flask from flask_cache import Cache # cache from flask_login import LoginManager from flask_cors import * from flask_sqlalchemy import SQLAlchemy # sql from datetime import timedelta from app import config # config #实例化app app = Flask(__name__, template_folder='templates', #指定模板路径,可以是相对路径,也可以是绝对路径。 static_folder='static', #指定静态文件前缀,默认静态文件路径同前缀 ) #引入全局配置 app.config.from_object(config) app.permanent_session_lifetime = timedelta(days=7) #跨域密匙 app.secret_key = '\x12my\x0bVO\xeb\xf8\x18\x15\xc5_?\x91\xd7h\x06AC' #配置flasklogin login_manager = LoginManager() login_manager.session_protection = 'strong' login_manager.login_view = 'auth.account_login' login_manager.init_app(app=app) #绑定对象 db = SQLAlchemy(app) cache = Cache(app) cache.init_app(app)
703dc8683d7f928f96e719bf5febd0627d683364
9a9e0398f26cee9864d48c4618c0a482e5475e83
/Python/code/top_k_frequent_elements.py
1e0b45c6c2186a3d5aa1760acecb875e104754cb
[]
no_license
CNife/leetcode
92693c653bb41780ee431293286c3e909009e9b0
7cdd61692ecb52dd1613169e80b924dd39d35996
refs/heads/main
2021-06-22T21:22:12.997253
2021-03-18T07:07:15
2021-03-18T07:07:15
206,955,329
0
0
null
null
null
null
UTF-8
Python
false
false
677
py
from collections import defaultdict from heapq import heappush, heapreplace from typing import List, Tuple from leetcode import test, sorted_list def top_k_frequent(nums: List[int], k: int) -> List[int]: counter = defaultdict(lambda: 0) for num in nums: counter[num] += 1 heap: List[Tuple[int, int]] = [] for num, count in counter.items(): if len(heap) < k: heappush(heap, (count, num)) elif heap[0][0] < count: heapreplace(heap, (count, num)) return [t[1] for t in heap] test( top_k_frequent, [ ([1, 1, 1, 2, 2, 3], 2, [1, 2]), ([1], 1, [1]), ], map_func=sorted_list, )
9c68c1a48ea5e7f1c1e9b39fb95197c685595749
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02260/s279877008.py
38cfba9d040e317dbba645db4cba4794e44c61a4
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
601
py
input() num_list = raw_input().split() num_list = map(int, num_list) def selection_sort(num_list, count): for i in range(0, len(num_list)): minj = i for j in range(i, len(num_list)): if num_list[j] < num_list[minj]: minj = j temp = num_list[minj] if minj != i: num_list[minj] = num_list[i] num_list[i]= temp count += 1 i += 1 return count, num_list count = 0 count, num_list = selection_sort(num_list, count) num_list = map(str, num_list) print " ".join(num_list) print count
39b8c01806e7f01b801d077e55cdbe99b11dd5a9
0883188e1648f982e3a27bf0b89c4c09dac3d3ef
/nmigen/test/compat/test_fifo.py
bc6b81cdee56cf3921aa32628db05c3a8a6097be
[ "BSD-2-Clause" ]
permissive
pbsds/nmigen
b44c0b212ddd2d88a6641243efbb632baacb66f7
d964ba9cc45490b141c8c4c4c3d8add1a26a739d
refs/heads/master
2022-12-04T10:32:52.573521
2020-07-31T13:17:39
2020-07-31T18:41:59
286,076,534
0
0
BSD-2-Clause
2020-08-08T16:12:24
2020-08-08T16:12:23
null
UTF-8
Python
false
false
1,272
py
import unittest from itertools import count from ...compat import * from ...compat.genlib.fifo import SyncFIFO from .support import SimCase class SyncFIFOCase(SimCase, unittest.TestCase): class TestBench(Module): def __init__(self): self.submodules.dut = SyncFIFO(64, 2) self.sync += [ If(self.dut.we & self.dut.writable, self.dut.din[:32].eq(self.dut.din[:32] + 1), self.dut.din[32:].eq(self.dut.din[32:] + 2) ) ] def test_run_sequence(self): seq = list(range(20)) def gen(): for cycle in count(): # fire re and we at "random" yield self.tb.dut.we.eq(cycle % 2 == 0) yield self.tb.dut.re.eq(cycle % 3 == 0) # the output if valid must be correct if (yield self.tb.dut.readable) and (yield self.tb.dut.re): try: i = seq.pop(0) except IndexError: break self.assertEqual((yield self.tb.dut.dout[:32]), i) self.assertEqual((yield self.tb.dut.dout[32:]), i*2) yield self.run_with(gen())
0d6bf526fcc135ca7f156726c43622f99a0c3269
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_053/ch160_2020_06_19_19_49_19_966261.py
0eb7281b995c2be04327db8c79ad0fcf74f9446d
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
503
py
import math resultados = {} valores = [] i = 0 for x in range(91): # Aplica fórmula y = 4*x*(180 - x)/(40500 - x*(180 - x)) # Converte para rad x = x*math.pi/180 # Verifica diferença dif = abs(y - math.sin(x)) # Adiciona na lista de diferenças valores.append(dif) # Adiciona diferença com índice no dicionário resultados[i] = dif i += 1 for indice, diferenca in resultados.items(): if diferenca == max(valores): print(indice) break
cee5b8650269efe733b6f7b95dcc8366a0fa8d3b
ba919c512e131de90427b1a6bfd29e1d7a2e22c8
/debug/verification_test.py
a509b9d96a2cf195f0bfa7b8082cccaa8b3446a1
[]
no_license
qq183727918/influence
7d3b0106db55402630979b86455e4b82ebed2e98
75cb04453278d13dd82a6f319d6f9ecdfad5fb88
refs/heads/master
2023-01-22T23:00:51.979543
2020-12-08T11:12:12
2020-12-08T11:12:12
317,783,196
0
0
null
null
null
null
UTF-8
Python
false
false
1,078
py
# _*_ coding: UTF-8 _*_ # @Time : 2020/12/4 17:01 # @Author : LiuXiaoQiang # @Site : http:www.cdtest.cn/ # @File : verification_test.py # @Software : PyCharm def verification(): from PIL import Image # 转换灰度 # 使用路径导入图片 imgName = '13.png' im = Image.open(imgName) # 使用 byte 流导入图片 # im = Image.open(io.BytesIO(b)) # 转化到灰度图 imgry = im.convert('L') # 保存图像 imgry.save('gray-' + imgName) # 二值化降噪的过程 from PIL import Image, ImageEnhance, ImageFilter im = Image.open('../verification/gray-13.png') im = im.filter(ImageFilter.MedianFilter()) enhancer = ImageEnhance.Contrast(im) im = enhancer.enhance(2) im = im.convert('1') im.show() im.save('./1213.png') verification() from PIL import Image import pytesseract # pytesseract.pytesseract.tesseract_cmd = r'D:\Tools\tesseract\Tesseract-OCR/tesseract.exe' image = Image.open("../verification/gray-13.png") code = pytesseract.image_to_string(image, None) print(code)
05881bf793aa55eee51c75d99cdbe7a1085333a9
86fc644c327a8d6ea66fd045d94c7733c22df48c
/scripts/managed_cpe_services/customer/qos_service/policy_class_map_update/update_policy_class_map/update_policy_class_map.py
d79055588ad5e2c89764db215cca6b39ed2e3bd7
[]
no_license
lucabrasi83/anutacpedeployment
bfe703657fbcf0375c92bcbe7560051817f1a526
96de3a4fd4adbbc0d443620f0c53f397823a1cad
refs/heads/master
2021-09-24T16:44:05.305313
2018-10-12T02:41:18
2018-10-12T02:41:18
95,190,459
0
0
null
null
null
null
UTF-8
Python
false
false
6,843
py
# # This computer program is the confidential information and proprietary trade # secret of Anuta Networks, Inc. Possessions and use of this program must # conform strictly to the license agreement between the user and # Anuta Networks, Inc., and receipt or possession does not convey any rights # to divulge, reproduce, or allow others to use this program without specific # written authorization of Anuta Networks, Inc. # # Copyright (c) 2015-2016 Anuta Networks, Inc. All Rights Reserved. # # #DO NOT EDIT THIS FILE ITS AUTOGENERATED ONE #ALL THE CUSTOMIZATIONS REGARDING DATAPROCESSING SHOULD BE WRITTEN INTO service_customization.py FILE # """ Tree Structure of Handled XPATH: services | managed-cpe-services | customer | qos-service | policy-class-map-update | update-policy-class-map Schema Representation: /services/managed-cpe-services/customer/qos-service/policy-class-map-update/update-policy-class-map """ from servicemodel import util from servicemodel import yang from servicemodel import devicemgr from cpedeployment.cpedeployment_lib import getLocalObject from cpedeployment.cpedeployment_lib import getDeviceObject from cpedeployment.cpedeployment_lib import getCurrentObjectConfig from cpedeployment.cpedeployment_lib import ServiceModelContext from cpedeployment.cpedeployment_lib import getParentObject from cpedeployment.cpedeployment_lib import log import service_customization class UpdatePolicyClassMap(yang.AbstractYangServiceHandler): _instance = None def __init__(self): self.delete_pre_processor = service_customization.DeletePreProcessor() self.create_pre_processor = service_customization.CreatePreProcessor() def create(self, id, sdata): sdata.getSession().addYangSessionPreReserveProcessor(self.create_pre_processor) #Fetch Local Config Object config = getCurrentObjectConfig(id, sdata, 'update_policy_class_map') #Fetch Service Model Context Object smodelctx = None #Fetch Parent Object parentobj = None dev = [] devbindobjs={} inputdict = {} # START OF FETCHING THE LEAF PARAMETERS inputdict['name'] = config.get_field_value('name') inputdict['policy_name'] = config.get_field_value('policy_name') inputdict['update_profile'] = config.get_field_value('update_profile') inputdict['apply_to_sites'] = config.get_field_value('apply_to_sites') inputdict['apply_to_device_group'] = config.get_field_value('apply_to_device_group') inputdict['device_group'] = config.get_field_value('device_group') inputdict['class1'] = config.get_field_value('class') inputdict['packet_handling'] = config.get_field_value('packet_handling') inputdict['percentage'] = config.get_field_value('percentage') inputdict['queue_limit'] = config.get_field_value('queue_limit') inputdict['packets'] = config.get_field_value('packets') inputdict['qos_group'] = config.get_field_value('qos_group') inputdict['single_cpe_site'] = config.get_field_value('single_cpe_site') inputdict['single_cpe_sites'] = config.get_field_value('single_cpe_sites') if inputdict['single_cpe_sites'] is None: inputdict['single_cpe_sites'] = '[]' inputdict['dual_cpe_site'] = config.get_field_value('dual_cpe_site') inputdict['dual_cpe_sites'] = config.get_field_value('dual_cpe_sites') if inputdict['dual_cpe_sites'] is None: inputdict['dual_cpe_sites'] = '[]' inputdict['single_cpe_dual_wan_site'] = config.get_field_value('single_cpe_dual_wan_site') inputdict['single_cpe_dual_wan_sites'] = config.get_field_value('single_cpe_dual_wan_sites') if inputdict['single_cpe_dual_wan_sites'] is None: inputdict['single_cpe_dual_wan_sites'] = '[]' inputdict['triple_cpe_site'] = config.get_field_value('triple_cpe_site') inputdict['triple_cpe_sites'] = config.get_field_value('triple_cpe_sites') if inputdict.get('triple_cpe_sites') is None: inputdict['triple_cpe_sites'] = '[]' inputdict['dual_cpe_dual_wan_site'] = config.get_field_value('dual_cpe_dual_wan_site') inputdict['dual_cpe_dual_wan_sites'] = config.get_field_value('dual_cpe_dual_wan_sites') if inputdict.get('dual_cpe_dual_wan_sites') is None: inputdict['dual_cpe_dual_wan_sites'] = '[]' # END OF FETCHING THE LEAF PARAMETERS inputkeydict = {} # START OF FETCHING THE PARENT KEY LEAF PARAMETERS inputkeydict['managed_cpe_services_customer_name'] = sdata.getRcPath().split('/')[-4].split('=')[1] # END OF FETCHING THE PARENT KEY LEAF PARAMETERS #Use the custom methods to process the data service_customization.ServiceDataCustomization.process_service_create_data(smodelctx, sdata, dev, device=dev, parentobj=parentobj, inputdict=inputdict, config=config) def update(self, id, sdata): #Fetch Local Config Object config = getCurrentObjectConfig(id, sdata, 'update_policy_class_map') #Fetch Service Model Context Object smodelctx = None #Fetch Parent Object parentobj = None dev = [] #Use the custom method to process the data service_customization.ServiceDataCustomization.process_service_update_data(smodelctx, sdata, dev=dev, parentobj=parentobj, config=config) def delete(self, id, sdata): sdata.getSession().addYangSessionPreReserveProcessor(self.delete_pre_processor) #Fetch Local Config Object config = getCurrentObjectConfig(id, sdata, 'update_policy_class_map') #Fetch Service Model Context Object smodelctx = None #Fetch Parent Object parentobj = None dev = [] #Use the custom method to process the data service_customization.ServiceDataCustomization.process_service_delete_data(smodelctx, sdata, dev=dev, parentobj=parentobj, config=config) @staticmethod def getInstance(): if(UpdatePolicyClassMap._instance == None): UpdatePolicyClassMap._instance = UpdatePolicyClassMap() return UpdatePolicyClassMap._instance #def rollbackCreate(self, id, sdata): # log('rollback: id = %s, sdata = %s' % (id, sdata)) # self.delete(id,sdata)
b2df8f27cd5d4d14b5223a244f2bcd6cf2720ddc
f64aaa4b0f78774464033148290a13453c96528e
/generated/intermediate/ansible-module-rest/azure_rm_frontdoorroutingrule.py
f59ed875aad2cbda07790fb752d5abdc38e7cce3
[ "MIT" ]
permissive
audevbot/autorest.cli.debug
e8996270a6a931f243532f65782c7f8fbb1b55c6
a507fb6e2dd7826212537f27d583f203aac1c28f
refs/heads/master
2020-06-04T05:25:17.018993
2019-08-27T21:57:18
2019-08-27T21:57:18
191,876,321
0
0
MIT
2019-08-28T05:57:19
2019-06-14T04:35:39
Python
UTF-8
Python
false
false
16,885
py
#!/usr/bin/python # # Copyright (c) 2019 Zim Kalinowski, (@zikalino) # # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: azure_rm_frontdoorroutingrule version_added: '2.9' short_description: Manage Azure RoutingRule instance. description: - 'Create, update and delete instance of Azure RoutingRule.' options: resource_group: description: - Name of the Resource group within the Azure subscription. required: true type: str front_door_name: description: - Name of the Front Door which is globally unique. required: true type: str name: description: - Resource name. type: str id: description: - Resource ID. type: str frontend_endpoints: description: - Frontend endpoints associated with this rule type: list suboptions: id: description: - Resource ID. type: str accepted_protocols: description: - Protocol schemes to match for this rule type: list patterns_to_match: description: - The route patterns of the rule. type: list enabled_state: description: - >- Whether to enable use of this rule. Permitted values are 'Enabled' or 'Disabled' type: str route_configuration: description: - A reference to the routing configuration. type: dict resource_state: description: - Resource status. type: str type: description: - Resource type. type: str state: description: - Assert the state of the RoutingRule. - >- Use C(present) to create or update an RoutingRule and C(absent) to delete it. default: present choices: - absent - present extends_documentation_fragment: - azure author: - Zim Kalinowski (@zikalino) ''' EXAMPLES = ''' - name: Create or update specific Forwarding Routing Rule azure_rm_frontdoorroutingrule: resource_group: myResourceGroup front_door_name: myFrontDoor name: myRoutingRule routing_rule_parameters: name: routingRule1 properties: frontendEndpoints: - id: >- /subscriptions/{{ subscription_id }}/resourceGroups/{{ resource_group }}/providers/Microsoft.Network/frontDoors/{{ front_door_name }}/frontendEndpoints/{{ frontend_endpoint_name }} - id: >- /subscriptions/{{ subscription_id }}/resourceGroups/{{ resource_group }}/providers/Microsoft.Network/frontDoors/{{ front_door_name }}/frontendEndpoints/{{ frontend_endpoint_name }} acceptedProtocols: - Http patternsToMatch: - /* routeConfiguration: '@odata.type': '#Microsoft.Azure.FrontDoor.Models.FrontdoorForwardingConfiguration' backendPool: id: >- /subscriptions/{{ subscription_id }}/resourceGroups/{{ resource_group }}/providers/Microsoft.Network/frontDoors/{{ front_door_name }}/backendPools/{{ backend_pool_name }} enabledState: Enabled - name: Create or update specific Redirect Routing Rule azure_rm_frontdoorroutingrule: resource_group: myResourceGroup front_door_name: myFrontDoor name: myRoutingRule routing_rule_parameters: name: redirectRoutingRule1 properties: frontendEndpoints: - id: >- /subscriptions/{{ subscription_id }}/resourceGroups/{{ resource_group }}/providers/Microsoft.Network/frontDoors/{{ front_door_name }}/frontendEndpoints/{{ frontend_endpoint_name }} - id: >- /subscriptions/{{ subscription_id }}/resourceGroups/{{ resource_group }}/providers/Microsoft.Network/frontDoors/{{ front_door_name }}/frontendEndpoints/{{ frontend_endpoint_name }} acceptedProtocols: - Https patternsToMatch: - /* routeConfiguration: '@odata.type': '#Microsoft.Azure.FrontDoor.Models.FrontdoorRedirectConfiguration' redirectType: Moved redirectProtocol: HttpsOnly customHost: www.bing.com customPath: /api customFragment: fragment customQueryString: a=b enabledState: Enabled - name: Delete Routing Rule azure_rm_frontdoorroutingrule: resource_group: myResourceGroup front_door_name: myFrontDoor name: myRoutingRule state: absent ''' RETURN = ''' id: description: - Resource ID. returned: always type: str sample: null properties: description: - Properties of the Front Door Routing Rule returned: always type: dict sample: null contains: frontend_endpoints: description: - Frontend endpoints associated with this rule returned: always type: dict sample: null contains: id: description: - Resource ID. returned: always type: str sample: null accepted_protocols: description: - Protocol schemes to match for this rule returned: always type: str sample: null patterns_to_match: description: - The route patterns of the rule. returned: always type: str sample: null enabled_state: description: - >- Whether to enable use of this rule. Permitted values are 'Enabled' or 'Disabled' returned: always type: str sample: null route_configuration: description: - A reference to the routing configuration. returned: always type: dict sample: null resource_state: description: - Resource status. returned: always type: str sample: null name: description: - Resource name. returned: always type: str sample: null type: description: - Resource type. returned: always type: str sample: null ''' import time import json import re from ansible.module_utils.azure_rm_common_ext import AzureRMModuleBaseExt from ansible.module_utils.azure_rm_common_rest import GenericRestClient from copy import deepcopy try: from msrestazure.azure_exceptions import CloudError except ImportError: # this is handled in azure_rm_common pass class Actions: NoAction, Create, Update, Delete = range(4) class AzureRMRoutingRules(AzureRMModuleBaseExt): def __init__(self): self.module_arg_spec = dict( resource_group=dict( type='str', updatable=False, disposition='resourceGroupName', required=true ), front_door_name=dict( type='str', updatable=False, disposition='frontDoorName', required=true ), name=dict( type='str', updatable=False, disposition='routingRuleName', required=true ), id=dict( type='str', updatable=False, disposition='/' ), frontend_endpoints=dict( type='list', disposition='/properties/frontendEndpoints', options=dict( id=dict( type='str' ) ) ), accepted_protocols=dict( type='list', disposition='/properties/acceptedProtocols', choices=['Http', 'Https'] ), patterns_to_match=dict( type='list', disposition='/properties/patternsToMatch' ), enabled_state=dict( type='str', disposition='/properties/enabledState', choices=['Enabled', 'Disabled'] ), route_configuration=dict( type='dict', disposition='/properties/routeConfiguration' ), resource_state=dict( type='str', disposition='/properties/resourceState', choices=['Creating', 'Enabling', 'Enabled', 'Disabling', 'Disabled', 'Deleting'] ), name=dict( type='str', updatable=False, disposition='/' ), state=dict( type='str', default='present', choices=['present', 'absent'] ) ) self.resource_group = None self.front_door_name = None self.name = None self.type = None self.results = dict(changed=False) self.mgmt_client = None self.state = None self.url = None self.status_code = [200, 201, 202] self.to_do = Actions.NoAction self.body = {} self.query_parameters = {} self.query_parameters['api-version'] = '2019-04-01' self.header_parameters = {} self.header_parameters['Content-Type'] = 'application/json; charset=utf-8' super(AzureRMRoutingRules, self).__init__(derived_arg_spec=self.module_arg_spec, supports_check_mode=True, supports_tags=True) def exec_module(self, **kwargs): for key in list(self.module_arg_spec.keys()): if hasattr(self, key): setattr(self, key, kwargs[key]) elif kwargs[key] is not None: self.body[key] = kwargs[key] self.inflate_parameters(self.module_arg_spec, self.body, 0) old_response = None response = None self.mgmt_client = self.get_mgmt_svc_client(GenericRestClient, base_url=self._cloud_environment.endpoints.resource_manager) resource_group = self.get_resource_group(self.resource_group) self.url = ('/subscriptions' + '/{{ subscription_id }}' + '/resourceGroups' + '/{{ resource_group }}' + '/providers' + '/Microsoft.Network' + '/frontDoors' + '/{{ front_door_name }}' + '/routingRules' + '/{{ routing_rule_name }}') self.url = self.url.replace('{{ subscription_id }}', self.subscription_id) self.url = self.url.replace('{{ resource_group }}', self.resource_group) self.url = self.url.replace('{{ front_door_name }}', self.front_door_name) self.url = self.url.replace('{{ routing_rule_name }}', self.name) old_response = self.get_resource() if not old_response: self.log("RoutingRule instance doesn't exist") if self.state == 'absent': self.log("Old instance didn't exist") else: self.to_do = Actions.Create else: self.log('RoutingRule instance already exists') if self.state == 'absent': self.to_do = Actions.Delete else: modifiers = {} self.create_compare_modifiers(self.module_arg_spec, '', modifiers) self.results['modifiers'] = modifiers self.results['compare'] = [] self.create_compare_modifiers(self.module_arg_spec, '', modifiers) if not self.default_compare(modifiers, self.body, old_response, '', self.results): self.to_do = Actions.Update if (self.to_do == Actions.Create) or (self.to_do == Actions.Update): self.log('Need to Create / Update the RoutingRule instance') if self.check_mode: self.results['changed'] = True return self.results response = self.create_update_resource() # if not old_response: self.results['changed'] = True # else: # self.results['changed'] = old_response.__ne__(response) self.log('Creation / Update done') elif self.to_do == Actions.Delete: self.log('RoutingRule instance deleted') self.results['changed'] = True if self.check_mode: return self.results self.delete_resource() # make sure instance is actually deleted, for some Azure resources, instance is hanging around # for some time after deletion -- this should be really fixed in Azure while self.get_resource(): time.sleep(20) else: self.log('RoutingRule instance unchanged') self.results['changed'] = False response = old_response if response: self.results["id"] = response["id"] self.results["properties"] = response["properties"] self.results["name"] = response["name"] self.results["type"] = response["type"] return self.results def create_update_resource(self): # self.log('Creating / Updating the RoutingRule instance {0}'.format(self.)) try: response = self.mgmt_client.query(self.url, 'PUT', self.query_parameters, self.header_parameters, self.body, self.status_code, 600, 30) except CloudError as exc: self.log('Error attempting to create the RoutingRule instance.') self.fail('Error creating the RoutingRule instance: {0}'.format(str(exc))) try: response = json.loads(response.text) except Exception: response = {'text': response.text} pass return response def delete_resource(self): # self.log('Deleting the RoutingRule instance {0}'.format(self.)) try: response = self.mgmt_client.query(self.url, 'DELETE', self.query_parameters, self.header_parameters, None, self.status_code, 600, 30) except CloudError as e: self.log('Error attempting to delete the RoutingRule instance.') self.fail('Error deleting the RoutingRule instance: {0}'.format(str(e))) return True def get_resource(self): # self.log('Checking if the RoutingRule instance {0} is present'.format(self.)) found = False try: response = self.mgmt_client.query(self.url, 'GET', self.query_parameters, self.header_parameters, None, self.status_code, 600, 30) found = True self.log("Response : {0}".format(response)) # self.log("RoutingRule instance : {0} found".format(response.name)) except CloudError as e: self.log('Did not find the RoutingRule instance.') if found is True: return response return False def main(): AzureRMRoutingRules() if __name__ == '__main__': main()
a1d530110266afe81a9bbd327cde526441ccc73b
b79bce0cf363d2b6dd11371d378d78d48e973270
/tests/test_custom_multi_output_classification.py
d9959a3efafdab09cb105e8eec4ea79477e7dcfa
[ "Apache-2.0" ]
permissive
CharlotteSean/Kashgari
2d9338761b16d9804fb81ff92ce2ab1d256c80a7
ab9970ecf6c0164416bfbbec1378c690b0f00d76
refs/heads/master
2022-01-22T03:52:12.284458
2019-07-17T03:48:04
2019-07-17T03:48:04
197,900,673
2
0
Apache-2.0
2019-07-20T08:15:03
2019-07-20T08:15:03
null
UTF-8
Python
false
false
4,917
py
# encoding: utf-8 # author: BrikerMan # contact: [email protected] # blog: https://eliyar.biz # file: test_custom_multi_output_classification.py # time: 2019-05-22 13:36 import unittest import numpy as np import tensorflow as tf import kashgari from typing import Tuple, List, Optional, Dict, Any from kashgari.layers import L from kashgari.processors.classification_processor import ClassificationProcessor from kashgari.tasks.classification.base_model import BaseClassificationModel from kashgari.corpus import SMP2018ECDTCorpus from tensorflow.python.keras.utils import to_categorical train_x, train_y = SMP2018ECDTCorpus.load_data('valid') output_1_raw = np.random.randint(3, size=len(train_x)) output_2_raw = np.random.randint(3, size=len(train_x)) output_1 = to_categorical(output_1_raw, 3) output_2 = to_categorical(output_2_raw, 3) print(train_x[:5]) print(output_1[:5]) print(output_2[:5]) print(len(train_x)) print(output_1.shape) print(output_2.shape) class MultiOutputProcessor(ClassificationProcessor): def process_y_dataset(self, data: Tuple[List[List[str]], ...], maxlens: Optional[Tuple[int, ...]] = None, subset: Optional[List[int]] = None) -> Tuple[np.ndarray, ...]: # Data already converted to one-hot # Only need to get the subset result = [] for index, dataset in enumerate(data): if subset is not None: target = kashgari.utils.get_list_subset(dataset, subset) else: target = dataset result.append(np.array(target)) if len(result) == 1: return result[0] else: return tuple(result) def _build_label_dict(self, labels: List[str]): # Data already converted to one-hot # No need to build label dict self.label2idx = {1: 1, 0: 0} self.idx2label = dict([(value, key) for key, value in self.label2idx.items()]) self.dataset_info['label_count'] = len(self.label2idx) class MultiOutputModel(BaseClassificationModel): @classmethod def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]: return { 'layer_bi_lstm': { 'units': 256, 'return_sequences': False } } def build_model_arc(self): config = self.hyper_parameters embed_model = self.embedding.embed_model layer_bi_lstm = L.Bidirectional(L.LSTM(**config['layer_bi_lstm']), name='layer_bi_lstm') layer_output_1 = L.Dense(3, activation='sigmoid', name='layer_output_1') layer_output_2 = L.Dense(3, activation='sigmoid', name='layer_output_2') tensor = layer_bi_lstm(embed_model.output) output_tensor_1 = layer_output_1(tensor) output_tensor_2 = layer_output_2(tensor) self.tf_model = tf.keras.Model(embed_model.inputs, [output_tensor_1, output_tensor_2]) def predict(self, x_data, batch_size=None, debug_info=False, threshold=0.5): tensor = self.embedding.process_x_dataset(x_data) pred = self.tf_model.predict(tensor, batch_size=batch_size) output_1 = pred[0] output_2 = pred[1] output_1[output_1 >= threshold] = 1 output_1[output_1 < threshold] = 0 output_2[output_2 >= threshold] = 1 output_2[output_2 < threshold] = 0 return output_1, output_2 class TestCustomMultiOutputModel(unittest.TestCase): def test_build_and_fit(self): from kashgari.embeddings import BareEmbedding processor = MultiOutputProcessor() embedding = BareEmbedding(processor=processor) m = MultiOutputModel(embedding=embedding) m.build_model(train_x, (output_1, output_2)) m.fit(train_x, (output_1, output_2), epochs=2) res = m.predict(train_x[:10]) assert len(res) == 2 assert res[0].shape == (10, 3) def test_build_with_BERT_and_fit(self): from kashgari.embeddings import BERTEmbedding from tensorflow.python.keras.utils import get_file from kashgari.macros import DATA_PATH sample_bert_path = get_file('bert_sample_model', "http://s3.bmio.net/kashgari/bert_sample_model.tar.bz2", cache_dir=DATA_PATH, untar=True) processor = MultiOutputProcessor() embedding = BERTEmbedding( model_folder=sample_bert_path, processor=processor) m = MultiOutputModel(embedding=embedding) m.build_model(train_x, (output_1, output_2)) m.fit(train_x, (output_1, output_2), epochs=2) res = m.predict(train_x[:10]) assert len(res) == 2 assert res[0].shape == (10, 3)
b6db08130173918bab964091422606ec2957af39
a34ec07c3464369a88e68c9006fa1115f5b61e5f
/A_Basic/String/L0_1684_Count_the_Number_of_Consistent_Strings.py
802755735771f634df680bf789b44d5b52ac935f
[]
no_license
824zzy/Leetcode
9220f2fb13e03d601d2b471b5cfa0c2364dbdf41
93b7f4448a366a709214c271a570c3399f5fc4d3
refs/heads/master
2023-06-27T02:53:51.812177
2023-06-16T16:25:39
2023-06-16T16:25:39
69,733,624
14
3
null
2022-05-25T06:48:38
2016-10-01T10:56:07
Python
UTF-8
Python
false
false
213
py
class Solution: def countConsistentStrings(self, allowed: str, words: List[str]) -> int: ans = 0 for word in words: if all([w in allowed for w in word]): ans += 1 return ans
9207c9cab23edfac359cbc19c3db823e8b193cb9
84d2efd222fa190c8b3efcad083dcf2c7ab30047
/linRegNoSTD.py
34a9e45c64ae6545a196ca7279c57aa4acfd4220
[]
no_license
webclinic017/Capstone-2
aedfc8692647f2e84114da5b2e32856d0de80586
d476723f7893c7c5da14e24f28736a8f0ba7ff55
refs/heads/master
2023-01-23T06:44:36.868373
2020-12-03T19:44:51
2020-12-03T19:44:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
655
py
import pandas as pd import matplotlib.pyplot as plt import numpy as np import sklearn.linear_model from alpha_vantage.timeseries import TimeSeries api_key = '8FIYTT49ZEZT2GV5' ts = TimeSeries(key=api_key, output_format='pandas') data, meta_data = ts.get_daily_adjusted(symbol='SPY', outputsize = 'full') data = data.reset_index() data.plot(x = 'date', y = '4. close') data['date'] = data['date'].values.astype(float) X = np.c_[data['date']] Y = np.c_[data['4. close']] model = sklearn.linear_model.LinearRegression() model.fit(X, Y) date = [[1736208000000000000.0]] print(model.predict(date)) plt.show() #standard deviation
a7784cf4b12ea9bed917ce26508e4c63ce253b6c
12e42f4f34030b90c1841ece8d4efdd28925394f
/test/functional/wallet_scriptaddress2.py
1f6b0e35dc51989b468955669c9f87acde059877
[ "MIT" ]
permissive
GerardoTaboada/EducaCoin
46d8aa08dd4b3859e59b739713ced08ec0b8c510
c7f1be5dacd0a10464775c7eeb0eb799fc66cd43
refs/heads/master
2020-03-31T20:01:41.768383
2018-10-17T21:54:13
2018-10-17T21:54:13
152,522,009
2
1
null
null
null
null
UTF-8
Python
false
false
3,921
py
#!/usr/bin/env python3 # Copyright (c) 2015-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Test new Educacoin multisig prefix functionality. # from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * import decimal class ScriptAddress2Test(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 3 self.setup_clean_chain = False self.extra_args = [['-addresstype=legacy'], [], []] def setup_network(self, split=False): self.setup_nodes() connect_nodes(self.nodes[1], 0) connect_nodes(self.nodes[2], 0) self.sync_all() def run_test(self): cnt = self.nodes[0].getblockcount() # Mine some blocks self.nodes[1].generate(101) self.sync_all() if (self.nodes[0].getblockcount() != cnt + 101): raise AssertionError("Failed to mine 100 blocks") addr = self.nodes[0].getnewaddress() addr2 = self.nodes[0].getnewaddress() multisig_addr = self.nodes[0].addmultisigaddress(2, [addr, addr2], "multisigaccount")['address'] assert_equal(multisig_addr[0], 'Q') # Send to a new multisig address txid = self.nodes[1].sendtoaddress(multisig_addr, 1) block = self.nodes[1].generate(3) self.sync_all() tx = self.nodes[2].getrawtransaction(txid, 1) dest_addrs = [tx["vout"][0]['scriptPubKey']['addresses'][0], tx["vout"][1]['scriptPubKey']['addresses'][0]] assert(multisig_addr in dest_addrs) # Spend from the new multisig address addr3 = self.nodes[1].getnewaddress() txid = self.nodes[0].sendfrom("multisigaccount", addr3, 0.8) block = self.nodes[0].generate(2) self.sync_all() assert(self.nodes[0].getbalance("multisigaccount", 1) < 0.2) assert(self.nodes[1].listtransactions()[-1]['address'] == addr3) # Send to an old multisig address. The api addmultisigaddress # can only generate a new address so we manually compute # multisig_addr_old beforehand using an old client. priv_keys = ["cU7eeLPKzXeKMeZvnEJhvZZ3tLqVF3XGeo1BbM8dnbmV7pP3Qg89", "cTw7mRhSvTfzqCt6MFgBoTBqwBpYu2rWugisXcwjv4cAASh3iqPt"] addrs = ["mj6gNGRXPXrD69R5ApjcsDerZGrYKSfb6v", "mqET4JA3L7P7FoUjUP3F6m6YsLpCkyzzou"] self.nodes[0].importprivkey(priv_keys[0]) self.nodes[0].importprivkey(priv_keys[1]) multisig_addr_new = self.nodes[0].addmultisigaddress(2, addrs, "multisigaccount2")['address'] assert_equal(multisig_addr_new, 'QZ974ZrPrmqMmm1PSVp4m8YEgo3bCQZBbe') multisig_addr_old = "2N5nLwYz9qfnGdaFLpPn3gS6oYQbmLTWPjq" ## Let's send to the old address. We can then find it in the ## new address with the new client. So basically the old ## address and the new one are the same thing. txid = self.nodes[1].sendtoaddress(multisig_addr_old, 1) block = self.nodes[1].generate(1) self.sync_all() tx = self.nodes[2].getrawtransaction(txid, 1) dest_addrs = [tx["vout"][0]['scriptPubKey']['addresses'][0], tx["vout"][1]['scriptPubKey']['addresses'][0]] assert(multisig_addr_new in dest_addrs) assert(multisig_addr_old not in dest_addrs) # Spend from the new multisig address addr4 = self.nodes[1].getnewaddress() txid = self.nodes[0].sendfrom("multisigaccount2", addr4, 0.8) block = self.nodes[0].generate(2) self.sync_all() assert(self.nodes[0].getbalance("multisigaccount2", 1) < 0.2) assert(self.nodes[1].listtransactions()[-1]['address'] == addr4) if __name__ == '__main__': ScriptAddress2Test().main()
74096f3871ce295e10d08f00012c88bc032e9da1
f972e22df004b419d23b4b03d3c7e42e604a2e2b
/compute/wps/tasks/ophidia.py
830321413d5463dd764a9eed4384191c13d65a43
[]
no_license
OphidiaBigData/esgf-compute-wps
9ec663b1701f2336f08117a6fb0725d71adfe078
8dd26dde385fbe861c78e432e0954725d7bf9b18
refs/heads/master
2020-04-28T10:20:49.718253
2019-02-04T09:46:43
2019-02-04T09:46:43
175,198,536
0
0
null
2019-03-12T11:39:20
2019-03-12T11:39:19
null
UTF-8
Python
false
false
5,490
py
import json import os import uuid import cwt from celery.utils.log import get_task_logger from django.conf import settings from PyOphidia import client from wps import WPSError from wps.tasks import base __ALL__ = [ 'PROCESSES', 'oph_submit', ] logger = get_task_logger('wps.tasks.ophidia') PROCESSES = { 'Oph.max': 'max', 'Oph.min': 'min', 'Oph.avg': 'avg', 'Oph.sum': 'sum', 'Oph.std': 'std', 'Oph.var': 'var', } class OphidiaTask(object): def __init__(self, name, operator, on_error=None): self.name = name self.operator = operator self.on_error = on_error self.arguments = [] self.dependencies = [] def add_arguments(self, **kwargs): self.arguments.extend(['{}={}'.format(key, value) for key, value in kwargs.iteritems()]) def add_dependencies(self, *args): self.dependencies.extend(dict(task=x.name) for x in args) def to_dict(self): data = { 'name': self.name, 'operator': self.operator, 'arguments': self.arguments, } if self.on_error: data['on_error'] = self.on_error if self.dependencies: data['dependencies'] = self.dependencies return data class OphidiaWorkflow(object): def __init__(self, oph_client): self.oph_client = oph_client self.workflow = { 'name': 'ESGF WPS Workflow', 'author': 'ESGF WPS', 'abstract': 'Auto-generated abstract', 'exec_mode': 'sync', 'cwd': '/', 'ncores': '2', 'tasks': [] } def add_tasks(self, *args): self.workflow['tasks'].extend(args) def check_error(self): if self.oph_client.last_error is not None and self.oph_client.last_error != '': error = '{}\n'.format(self.oph_client.last_error) res = self.oph_client.deserialize_response() try: for x in res['response'][2]['objcontent']: for y in x['rowvalues']: error += '\t{}: {}\n'.format(y[-3], y[-1]) except IndexError: raise WPSError('Failed to parse last error from Ophidia') raise WPSError(error) def submit(self): self.check_error() self.oph_client.wsubmit(self.to_json()) def to_json(self): def default(o): if isinstance(o, OphidiaTask): return o.to_dict() return json.dumps(self.workflow, default=default, indent=4) @base.cwt_shared_task() def oph_submit(self, parent_variables, variables, domains, operation, user_id, job_id): self.PUBLISH = base.ALL proc = process.Process(self.request.id) proc.initialize(user_id, job_id) v, d, o = self.load(parent_variables, variables, domains, operation) oph_client = client.Client(settings.WPS_OPHIDIA_USER, settings.WPS_OPHIDIA_PASSWORD, settings.WPS_OPHIDIA_HOST, settings.WPS_OPHIDIA_PORT) workflow = OphidiaWorkflow(oph_client) workflow.check_error() cores = o.get_parameter('cores') if cores is None: cores = settings.WPS_OPHIDIA_DEFAULT_CORES else: cores = cores.values[0] axes = o.get_parameter('axes') if axes is not None: axes = axes.values[0] else: axes = 'time' proc.log('Connected to Ophidia backend, building workflow') container_task = OphidiaTask('create container', 'oph_createcontainer', on_error='skip') container_task.add_arguments(container='work') proc.log('Add container task') # only take the first input inp = o.inputs[0] import_task = OphidiaTask('import data', 'oph_importnc') import_task.add_arguments(container='work', measure=inp.var_name, src_path=inp.uri, ncores=cores, imp_dim=axes) import_task.add_dependencies(container_task) proc.log('Added import task') try: operator = PROCESSES[o.identifier] except KeyError: raise WPSError('Process "{name}" does not exist for Ophidia backend', name=o.identifier) if axes == 'time': reduce_task = OphidiaTask('reduce data', 'oph_reduce') reduce_task.add_arguments(operation=operator, ncores=cores) reduce_task.add_dependencies(import_task) proc.log('Added reduction task over implicit axis') else: reduce_task = OphidiaTask('reduce data', 'oph_reduce2') reduce_task.add_arguments(operation=operator, dim=axes, ncores=cores) reduce_task.add_dependencies(import_task) proc.log('Added reduction task over axes "{}"', axes) output_name = '{}'.format(uuid.uuid4()) export_task = OphidiaTask('export data', 'oph_exportnc2') export_task.add_arguments(output_path=settings.WPS_OPHIDIA_OUTPUT_PATH, output_name=output_name, ncores=cores, force='yes') export_task.add_dependencies(reduce_task) proc.log('Added export task') workflow.add_tasks(container_task, import_task, reduce_task, export_task) proc.log('Added tasks to workflow') workflow.submit() proc.log('Submitted workflow to Ophidia backend') workflow.check_error() proc.log('No errors reported by Ophidia') output_url = settings.WPS_OPHIDIA_OUTPUT_URL.format(output_path=settings.WPS_OPHIDIA_OUTPUT_PATH, output_name=output_name) output_var = cwt.Variable(output_url, inp.var_name, name=o.name) return {o.name: output_var.parameterize()}
1d299fc35a1f1aa5feca93086cb650a6d0e1c2f3
8842d6c864f12dc8853d22b8a986b01acdf0e446
/27_12_15_Nico3/LDA.pyx
c15e5a4eef6680c7665544e3191ce137506966f6
[]
no_license
yukkyo/ResearchSource
0d701aa09d3cfc5aae80a022445ecf14c42f0a07
db497d19aae41ea57d7d6dd245714a477a7a1d4c
refs/heads/master
2021-01-18T20:01:20.427148
2019-06-20T05:17:54
2019-06-20T05:17:54
24,621,316
0
0
null
null
null
null
UTF-8
Python
false
false
5,397
pyx
#!/usr/bin/env python # -*- coding: utf-8 -*- # cython: profile=True, boundscheck=False, wraparound=False from __future__ import division cimport cython from libc.stdlib cimport rand, RAND_MAX from libcpp.vector cimport vector from libc.math cimport log, exp from cpython.mem cimport PyMem_Malloc, PyMem_Realloc, PyMem_Free # Latent Dirichlet Allocation + collapsed Gibbs sampling # 全文書(約50万)に対してLDA(Collapsed Gibbs Sampling)を適用する # トピック-語彙分布行列の各値からBetaを引いて転置した語彙-トピック分布、perplexitiesを返す class LDA: @cython.cdivision(True) def __init__(self, r_n_topics, r_alpha, r_beta, raw_docs, r_V, r_iteration): print "init lda instance" self.n_topics = r_n_topics self.alpha = r_alpha # parameter of topics prior self.beta = r_beta # parameter of words prior self.V = r_V # size of vocabulary self.perps = [] self.iteration = r_iteration print "initalize topics" cdef vector[vector[int]] docs = raw_docs # self.docs = docs cdef int n_corpus, len_doc, m, n, new_z, v n_corpus = 0 cdef int n_topics_int = self.n_topics cdef int V_int = self.V cdef double n_topics = self.n_topics cdef double alpha = self.alpha cdef double beta = self.beta cdef double V = self.V cdef double Vbeta = V * beta n_topics_s = self.n_topics v2 = self.V # number of times topic z and word w co-occur cdef int max_docs = 1 max_docs = docs.size() # word count of each document and topic cdef vector[vector[double]] n_m_z n_m_z = vector[vector[double]](max_docs, vector[double](n_topics_int, alpha)) # word count of each topic and vocabulary cdef vector[vector[double]] n_z_t # n_z_t = vector[vector[double]](n_topics_int, vector[double](<int>V, beta)) n_z_t = vector[vector[double]](V_int, vector[double](n_topics_int, beta)) # word count of each topic cdef vector[double] n_z n_z = vector[double](n_topics_int, Vbeta) cdef vector[vector[int]] z_m_n cdef vector[int] z_n for m in xrange(max_docs): len_doc = docs[m].size() n_corpus += len_doc z_n.clear() for n in xrange(len_doc): v = docs[m][n] new_z = int((rand()/(RAND_MAX +1.)) * n_topics) z_n.push_back(new_z) n_m_z[m][new_z] += 1. n_z_t[v][new_z] += 1. n_z[new_z] += 1 z_m_n.push_back(z_n) print "end initialize topics" """learning once iteration""" print "inference start" cdef int j, ite, iteration iteration = self.iteration cdef vector[vector[double]] n_z_t_tmp cdef vector[double] n_m_z_m n_m_z_m.resize(n_topics_int) cdef vector[int] z_m_n_m cdef vector[double] p_z2 p_z2.resize(n_topics_int) cdef double p_z2j, u, perp # cdef long V = self.V cdef vector[int] docs_m cdef double n_z_j cdef vector[double] theta cdef double Kalpha = <double>n_topics * alpha cdef double log_per, tmp_logper, len_doc_kalpha print "calc first perp" n_z_t_tmp = n_z_t log_per = 0.0 for v in xrange(V_int): for j in xrange(n_topics_int): n_z_t_tmp[v][j] /= n_z[j] for m in xrange(max_docs): len_doc = docs[m].size() len_doc_kalpha = <double>len_doc + Kalpha theta = n_m_z[m] docs_m = docs[m] for j in xrange(n_topics_int): theta[j] = theta[j] / len_doc_kalpha for n in xrange(len_doc): v = docs_m[n] tmp_logper = 0.0 for j in xrange(n_topics_int): tmp_logper += (theta[j] * n_z_t_tmp[v][j]) log_per -= log(tmp_logper) theta.clear() n_z_t_tmp.clear() log_per /= <double>n_corpus perp = exp(log_per) print "perp: " + str(perp) self.perps.append(perp) for ite in xrange(iteration): print "ite: " + str(ite) # sampling each word in corpus for m in xrange(max_docs): len_doc = docs[m].size() n_m_z_m = n_m_z[m] z_m_n_m = z_m_n[m] for n in xrange(len_doc): v = docs[m][n] # discount for n-th word n with topic z z = z_m_n_m[n] n_m_z_m[z] -= 1 n_z_t[v][z] -= 1 n_z[z] -= 1 # sampling new_z for j in xrange(n_topics_int): p_z2j = n_z_t[v][j] * n_m_z_m[j] p_z2j /= n_z[j] if j != 0: p_z2j += p_z2[j-1] p_z2[j] = p_z2j u = (rand()/(RAND_MAX +1.)) u *= p_z2[n_topics_int - 1] new_z = n_topics_int - 1 for j in xrange(n_topics_int): if u < p_z2[j]: new_z = j break # set z the new topic and increment counters z_m_n_m[n] = new_z n_m_z_m[new_z] += 1 n_z_t[v][new_z] += 1 n_z[new_z] += 1 z_m_n[m] = z_m_n_m n_m_z[m] = n_m_z_m if (m + 1) % 100000 == 0: print "end docs: " + str(m + 1) print "calc perp" log_per = 0.0 n_z_t_tmp = n_z_t for v in xrange(V_int): for j in xrange(n_topics_int): n_z_t_tmp[v][j] /= n_z[j] for m in xrange(max_docs): len_doc = docs[m].size() len_doc_kalpha = <double>len_doc + Kalpha theta = n_m_z[m] docs_m = docs[m] for j in xrange(n_topics_int): theta[j] = theta[j] / len_doc_kalpha for n in xrange(len_doc): v = docs_m[n] tmp_logper = 0.0 for j in xrange(n_topics_int): tmp_logper += (theta[j] * n_z_t_tmp[v][j]) log_per -= log(tmp_logper) theta.clear() n_z_t_tmp.clear() log_per /= <double>n_corpus perp = exp(log_per) print "perp: " + str(perp) self.perps.append(perp) print "calc new alpha and beta" self.n_z_t = n_z_t self.z_m_n = z_m_n return
9fc5b6e12ba33400052ec9e08c251ff1626f1477
eb3683f9127befb9ef96d8eb801206cf7b84d6a7
/testing/test_programs/numpy/basic_numpy/arrays/stypy_test_files/numpy_array_broadcasting_4__type_data.py
99ec5d09a07932264cc57dd68828680219e497e5
[]
no_license
ComputationalReflection/stypy
61ec27333a12f76ac055d13f8969d3e0de172f88
be66ae846c82ac40ba7b48f9880d6e3990681a5b
refs/heads/master
2021-05-13T18:24:29.005894
2018-06-14T15:42:50
2018-06-14T15:42:50
116,855,812
2
0
null
null
null
null
UTF-8
Python
false
false
844
py
from testing.code_generation_testing.codegen_testing_common import instance_of_class_name test_types = { '__main__': { 'r4': instance_of_class_name("ndarray"), 'r5': instance_of_class_name("ndarray"), '__name__': instance_of_class_name("str"), 'r2': instance_of_class_name("ndarray"), 'r3': instance_of_class_name("ndarray"), '__builtins__': instance_of_class_name("module"), '__file__': instance_of_class_name("str"), '__package__': instance_of_class_name("NoneType"), 'r': instance_of_class_name("ndarray"), 'w': instance_of_class_name("ndarray"), 'v': instance_of_class_name("ndarray"), 'np': instance_of_class_name("module"), 'x': instance_of_class_name("ndarray"), '__doc__': instance_of_class_name("NoneType"), }, }
7c58362f81d2eebf86e77c4f52201dabd123be2d
e7b7cc34f77c71e61aa0fa05bcc62f54fc2fc0e1
/AlgorithmCodeTemplates/algorithm/sliding_window_examples.py
634c355c9efa3418e81eeafb9f04d218da1225cd
[]
no_license
sevenhe716/LeetCode
41d2ef18f5cb317858c9b69d00bcccb743cbdf48
4a1747b6497305f3821612d9c358a6795b1690da
refs/heads/master
2020-03-16T16:12:27.461172
2019-04-22T13:27:54
2019-04-22T13:27:54
130,221,784
0
0
null
null
null
null
UTF-8
Python
false
false
4,002
py
from collections import Counter from collections import defaultdict # [3] https://leetcode.com/problems/longest-substring-without-repeating-characters/ # variation with no pattern def lengthOfLongestSubstring(s): # create a default dict to maintain state counter = defaultdict(int) count, start, end, res = 0, 0, 0, 0 while end < len(s): counter[s[end]] += 1 if counter[s[end]] > 1: count += 1 end += 1 while count > 0: counter[s[start]] -= 1 if counter[s[start]] > 0: count -= 1 start += 1 res = max(res, end - start) return res # [76] https://leetcode.com/problems/minimum-window-substring/ # variation with finding minimum def minWindow(s: str, t: str) -> str: counter = Counter(t) count, start, end, res = len(t), 0, 0, [float('inf'), 0] while end < len(s): counter[s[end]] -= 1 # consider duplicate char in t if counter[s[end]] >= 0: count -= 1 end += 1 # valid in while while count == 0: # update minimum here, inner while loop if end - start < res[0]: res = (end - start, start) counter[s[start]] += 1 if counter[s[start]] > 0: count += 1 start += 1 return s[res[1]:res[0] + res[1]] if res[0] != float('inf') else '' # [904] https://leetcode.com/problems/fruit-into-baskets/ # variation with list def totalFruit(tree: 'List[int]') -> int: cnt = defaultdict(int) count, start, end, res = 0, 0, 0, 0 while end < len(tree): cnt[tree[end]] += 1 if cnt[tree[end]] == 1: count += 1 end += 1 while count > 2: cnt[tree[start]] -= 1 if cnt[tree[start]] == 0: count -= 1 start += 1 res = max(res, end - start) return res # [438] https://leetcode.com/problems/find-all-anagrams-in-a-string/ # variation with restrict between start and end def findAnagrams(s: str, p: str) -> 'List[int]': len_p, len_s = len(p), len(s) if len_p > len_s: return [] counter = Counter(p) count, start, end, res = len_p, 0, 0, [] while end < len_s: # only update counter when match char in p counter[s[end]] -= 1 if counter[s[end]] >= 0: count -= 1 end += 1 if count == 0: res.append(start) # not use a while, because restrict the length if end - start == len_p: counter[s[start]] += 1 # exclude char not in p, because always negative if counter[s[start]] > 0: count += 1 start += 1 return res # [30] https://leetcode.com/problems/substring-with-concatenation-of-all-words/ # variation with complex match policy def findSubstring(s: str, words: 'List[str]') -> 'List[int]': if not words: return [] word_len, res = len(words[0]), [] # start offset from 0 to word_len, and step is word_len for i in range(word_len): # reset state every epoch counter = Counter(words) start, end, count = i, i, len(words) while end < len(s): cur_word = s[end:end + word_len] # check is not necessary here, just for performance if cur_word in counter: counter[cur_word] -= 1 if counter[cur_word] >= 0: count -= 1 end += word_len if count == 0: res.append(start) # ensure consecutive words if end - start == word_len * len(words): cur_word = s[start:start + word_len] if cur_word in counter: counter[cur_word] += 1 if counter[cur_word] > 0: count += 1 start += word_len # the order is not necessary here return res
f52fb6152bba23a4c0a005ca2f666c5e95d07473
6d80ce7a1f44ddf5741fd190ddfe0d9be8e5f162
/data/lmdbMaker.py
0081b73ccebdd68d83571914b0342cb8bcb9817a
[ "MIT" ]
permissive
dun933/FudanOCR
dd8830ca4b8ebb08acd31326fcf5aa3c961886a0
fd79b679044ea23fd9eb30691453ed0805d2e98b
refs/heads/master
2021-04-03T19:50:47.646099
2020-03-16T08:43:59
2020-03-16T08:43:59
248,391,401
1
0
MIT
2020-03-19T02:23:11
2020-03-19T02:23:10
null
UTF-8
Python
false
false
6,516
py
#!/usr/bin/python # -*- coding: utf-8 -*- ''' Please execute the code with python2 ''' import os import lmdb import cv2 import numpy as np def checkImageIsValid(imageBin): if imageBin is None: return False try: imageBuf = np.fromstring(imageBin, dtype=np.uint8) img = cv2.imdecode(imageBuf, cv2.IMREAD_GRAYSCALE) imgH, imgW = img.shape[0], img.shape[1] if imgH * imgW == 0: return False except: print("Image is invalid!") return True def writeCache(env, cache): with env.begin(write=True) as txn: for k, v in cache.items(): txn.put(k, v) def createDataset(outputPath, imagePathList, labelList, lexiconList=None, checkValid=True): """ Create LMDB dataset for CRNN training. ARGS: outputPath : LMDB output path imagePathList : list of image path labelList : list of corresponding groundtruth texts lexiconList : (optional) list of lexicon lists checkValid : if true, check the validity of every image """ assert (len(imagePathList) == len(labelList)) nSamples = len(imagePathList) env = lmdb.open(outputPath, map_size=1099511627776) cache = {} cnt = 1 for i in range(nSamples): imagePath = imagePathList[i] label = labelList[i] if not os.path.exists(imagePath): print('%s does not exist' % imagePath) continue import codecs with open(imagePath, 'r') as f: imageBin = f.read() if checkValid: if not checkImageIsValid(imageBin): print('%s is not a valid image' % imagePath) continue imageKey = 'image-%09d' % cnt labelKey = 'label-%09d' % cnt cache[imageKey] = imageBin cache[labelKey] = label if lexiconList: lexiconKey = 'lexicon-%09d' % cnt cache[lexiconKey] = ' '.join(lexiconList[i]) if cnt % 1000 == 0: writeCache(env, cache) cache = {} print('Written %d / %d' % (cnt, nSamples)) cnt += 1 nSamples = cnt - 1 cache['num-samples'] = str(nSamples) writeCache(env, cache) print('Created dataset with %d samples' % nSamples) def read_image_label(image_directory, label_address): import os image_lis = os.listdir(image_directory) f = open(label_address) dict = {} i = 1 # 图片:目标记录 for line in f.readlines(): # TODO dict[line[10:].split(" ")[0]] = line.split(' ')[1].replace('\n', '').replace('\r', '') # arttrain-11.art/lsvttest10.lsvt12 ''' print(dict) i+=1 if i==14: break print(dict) ''' # print(dict) result1 = [] result2 = [] # TODO for image_path1 in image_lis: for image_path2 in os.listdir(image_directory + '/' + image_path1): try: # image_path = image_path.replace('.jpg','') # result1.append(image_directory+'/'+image_path1+'/'+image_path2) result2.append(dict[image_path1 + '/' + image_path2]) result1.append(image_directory + '/' + image_path1 + '/' + image_path2) except: # pass print("jianzhi") return result1, result2 def extract_result_from_xml(): import re f = open('../xml_test/word.xml', 'r') string = "" for line in f.readlines(): print(line) string += line print(string) # 记录文件路径 result1 = re.findall(r'file=\"(.*?)\"', string) for i in range(len(result1)): result1[i] = '/home/chenjingye/datasets/ICDAR2003/WordR/TrialTest/' + result1[i] print(result1) result2 = re.findall(r'tag=\"(.*?)\"', string) print(result2) return result1, result2 def ic15(): f = open('/home/chenjingye/datasets/ICDAR2015/Word_recognition/Challenge4_Test_Task3_GT.txt', 'r') result1 = [] result2 = [] for line in f.readlines(): # print(line) # print(line.split()) a, b = line.split(', ') print(a, b) result1.append( '/home/chenjingye/datasets/ICDAR2015/Word_recognition/ch4_test_word_images_gt/' + a.replace(',', '')) result2.append(b.replace("\"", "").replace('\r\n', '')) print(result1) print(result2) return result1, result2 def find_jpg(): import os root = "/mnt/sdb1/zifuzu/chenjingye/datasets/mnt/ramdisk/max/90kDICT32px" flag = True def findjpg(path, ret): """Finding the *.txt file in specify path""" filelist = os.listdir(path) for filename in filelist: # if len(ret) > 500000 : # return de_path = os.path.join(path, filename) if os.path.isfile(de_path): if de_path.endswith(".jpg"): # Specify to find the txt file. print(de_path) ret.append(de_path) # if len(ret) > 500000: # return else: findtxt(de_path, ret) ret = [] findtxt(root, ret) for path in ret: print(path) try: os.remove('./temp.txt') except: pass f = open('./temp.txt', 'a') for element in ret: f.write(element + '\n') f.close() def syn90(): import re f = open('./temp.txt', 'r') result1 = [] result2 = [] for line in f.readlines(): result1.append(line.replace('\n', '')) target = re.findall(r'_(.*?)_', line)[0] result2.append(target) return result1, result2 if __name__ == '__main__': ''' 将两个list传进createDataset函数 list1: 图片路径列表 list2: 图片标签列表 其中两个列表在相同位置 ''' imgList, labelList = ic15() print(imgList) print(labelList) print("The length of the list is ", len(imgList)) '''Input the address you want to generate the lmdb file.''' createDataset('/mnt/sdb1/zifuzu/chenjingye/datasets/syn90_train_500000data_lmdb', imgList, labelList)
25ea3ccf9694bbff46ace1ccdf8a44257540ba69
6fcfb638fa725b6d21083ec54e3609fc1b287d9e
/python/myfavouritekk_vdetlib/vdetlib-master/utils/log.py
331282eee61fb52e30ff5a83431ec74d430c69e0
[]
no_license
LiuFang816/SALSTM_py_data
6db258e51858aeff14af38898fef715b46980ac1
d494b3041069d377d6a7a9c296a14334f2fa5acc
refs/heads/master
2022-12-25T06:39:52.222097
2019-12-12T08:49:07
2019-12-12T08:49:07
227,546,525
10
7
null
2022-12-19T02:53:01
2019-12-12T07:29:39
Python
UTF-8
Python
false
false
175
py
#!/usr/bin/env python import logging logging.basicConfig( format='[%(asctime)s %(process)d %(filename)s:%(lineno)s %(levelname)s] %(message)s', level=logging.DEBUG)
e13fab0514aa87a22f4efac43760c2d877c23adb
64a99161204051f6f2abb9e8d88a5508952c0115
/examples/saveLoadV1/create_save.py
61f2ff9f7627dd79c32b0c968455c4711de7a2ad
[ "MIT" ]
permissive
suny-downstate-medical-center/netpyne
d1ba5a258ba63c8ad8b0fa91a6d8bbd99f2e8d28
9d08867205b776bbb467554c49df9d8aba57dcf2
refs/heads/development
2023-08-23T22:48:26.020812
2023-08-16T14:20:23
2023-08-16T14:20:23
48,733,333
18
18
MIT
2023-09-11T16:01:19
2015-12-29T07:12:08
Jupyter Notebook
UTF-8
Python
false
false
164
py
from netpyne import sim import params # Create network and save sim.create(netParams=params.netParams, simConfig=params.simConfig) sim.gatherData() sim.saveData()
46c205a3f435959086389638a9fd7fefd957308c
99fa82f29a5b50a5595985acc460a0afaa6099a8
/app/shopdj/sale/migrations/0004_invoice_total.py
a4f08cde3a2ed9f2afa42d4898d917d64e08dcca
[]
no_license
nnocturnnn/university_rep
a47cce9e29f96e9cc33293c76321e298e7628a4d
4a8cd42f53dd112640a37ad5ff815ecf09ce1c25
refs/heads/master
2023-04-20T09:44:24.144760
2021-05-11T16:16:07
2021-05-11T16:16:07
304,661,340
0
0
null
null
null
null
UTF-8
Python
false
false
380
py
# Generated by Django 3.0.5 on 2020-07-02 05:59 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('sale', '0003_auto_20200701_0535'), ] operations = [ migrations.AddField( model_name='invoice', name='total', field=models.IntegerField(default=0), ), ]
0d3dcd3a21ccefd0f1a1dfbce2f6cea60b4365f9
3ef70fe63acaa665e2b163f30f1abd0a592231c1
/stackoverflow/venv/lib/python3.6/site-packages/twisted/conch/test/test_checkers.py
4111f2169895e93fbeeaf8e2819916a1a8a017e1
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
wistbean/learn_python3_spider
14914b63691ac032955ba1adc29ad64976d80e15
40861791ec4ed3bbd14b07875af25cc740f76920
refs/heads/master
2023-08-16T05:42:27.208302
2023-03-30T17:03:58
2023-03-30T17:03:58
179,152,420
14,403
3,556
MIT
2022-05-20T14:08:34
2019-04-02T20:19:54
Python
UTF-8
Python
false
false
31,498
py
# Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ Tests for L{twisted.conch.checkers}. """ from __future__ import absolute_import, division try: import crypt except ImportError: cryptSkip = 'cannot run without crypt module' else: cryptSkip = None import os from collections import namedtuple from io import BytesIO from zope.interface.verify import verifyObject from twisted.python import util from twisted.python.compat import _b64encodebytes from twisted.python.failure import Failure from twisted.python.reflect import requireModule from twisted.trial.unittest import TestCase from twisted.python.filepath import FilePath from twisted.cred.checkers import InMemoryUsernamePasswordDatabaseDontUse from twisted.cred.credentials import UsernamePassword, IUsernamePassword, \ SSHPrivateKey, ISSHPrivateKey from twisted.cred.error import UnhandledCredentials, UnauthorizedLogin from twisted.python.fakepwd import UserDatabase, ShadowDatabase from twisted.test.test_process import MockOS if requireModule('cryptography') and requireModule('pyasn1'): dependencySkip = None from twisted.conch.ssh import keys from twisted.conch import checkers from twisted.conch.error import NotEnoughAuthentication, ValidPublicKey from twisted.conch.test import keydata else: dependencySkip = "can't run without cryptography and PyASN1" if getattr(os, 'geteuid', None) is None: euidSkip = "Cannot run without effective UIDs (questionable)" else: euidSkip = None class HelperTests(TestCase): """ Tests for helper functions L{verifyCryptedPassword}, L{_pwdGetByName} and L{_shadowGetByName}. """ skip = cryptSkip or dependencySkip def setUp(self): self.mockos = MockOS() def test_verifyCryptedPassword(self): """ L{verifyCryptedPassword} returns C{True} if the plaintext password passed to it matches the encrypted password passed to it. """ password = 'secret string' salt = 'salty' crypted = crypt.crypt(password, salt) self.assertTrue( checkers.verifyCryptedPassword(crypted, password), '%r supposed to be valid encrypted password for %r' % ( crypted, password)) def test_verifyCryptedPasswordMD5(self): """ L{verifyCryptedPassword} returns True if the provided cleartext password matches the provided MD5 password hash. """ password = 'password' salt = '$1$salt' crypted = crypt.crypt(password, salt) self.assertTrue( checkers.verifyCryptedPassword(crypted, password), '%r supposed to be valid encrypted password for %s' % ( crypted, password)) def test_refuteCryptedPassword(self): """ L{verifyCryptedPassword} returns C{False} if the plaintext password passed to it does not match the encrypted password passed to it. """ password = 'string secret' wrong = 'secret string' crypted = crypt.crypt(password, password) self.assertFalse( checkers.verifyCryptedPassword(crypted, wrong), '%r not supposed to be valid encrypted password for %s' % ( crypted, wrong)) def test_pwdGetByName(self): """ L{_pwdGetByName} returns a tuple of items from the UNIX /etc/passwd database if the L{pwd} module is present. """ userdb = UserDatabase() userdb.addUser( 'alice', 'secrit', 1, 2, 'first last', '/foo', '/bin/sh') self.patch(checkers, 'pwd', userdb) self.assertEqual( checkers._pwdGetByName('alice'), userdb.getpwnam('alice')) def test_pwdGetByNameWithoutPwd(self): """ If the C{pwd} module isn't present, L{_pwdGetByName} returns L{None}. """ self.patch(checkers, 'pwd', None) self.assertIsNone(checkers._pwdGetByName('alice')) def test_shadowGetByName(self): """ L{_shadowGetByName} returns a tuple of items from the UNIX /etc/shadow database if the L{spwd} is present. """ userdb = ShadowDatabase() userdb.addUser('bob', 'passphrase', 1, 2, 3, 4, 5, 6, 7) self.patch(checkers, 'spwd', userdb) self.mockos.euid = 2345 self.mockos.egid = 1234 self.patch(util, 'os', self.mockos) self.assertEqual( checkers._shadowGetByName('bob'), userdb.getspnam('bob')) self.assertEqual(self.mockos.seteuidCalls, [0, 2345]) self.assertEqual(self.mockos.setegidCalls, [0, 1234]) def test_shadowGetByNameWithoutSpwd(self): """ L{_shadowGetByName} returns L{None} if C{spwd} is not present. """ self.patch(checkers, 'spwd', None) self.assertIsNone(checkers._shadowGetByName('bob')) self.assertEqual(self.mockos.seteuidCalls, []) self.assertEqual(self.mockos.setegidCalls, []) class SSHPublicKeyDatabaseTests(TestCase): """ Tests for L{SSHPublicKeyDatabase}. """ skip = euidSkip or dependencySkip def setUp(self): self.checker = checkers.SSHPublicKeyDatabase() self.key1 = _b64encodebytes(b"foobar") self.key2 = _b64encodebytes(b"eggspam") self.content = (b"t1 " + self.key1 + b" foo\nt2 " + self.key2 + b" egg\n") self.mockos = MockOS() self.mockos.path = FilePath(self.mktemp()) self.mockos.path.makedirs() self.patch(util, 'os', self.mockos) self.sshDir = self.mockos.path.child('.ssh') self.sshDir.makedirs() userdb = UserDatabase() userdb.addUser( b'user', b'password', 1, 2, b'first last', self.mockos.path.path, b'/bin/shell') self.checker._userdb = userdb def test_deprecated(self): """ L{SSHPublicKeyDatabase} is deprecated as of version 15.0 """ warningsShown = self.flushWarnings( offendingFunctions=[self.setUp]) self.assertEqual(warningsShown[0]['category'], DeprecationWarning) self.assertEqual( warningsShown[0]['message'], "twisted.conch.checkers.SSHPublicKeyDatabase " "was deprecated in Twisted 15.0.0: Please use " "twisted.conch.checkers.SSHPublicKeyChecker, " "initialized with an instance of " "twisted.conch.checkers.UNIXAuthorizedKeysFiles instead.") self.assertEqual(len(warningsShown), 1) def _testCheckKey(self, filename): self.sshDir.child(filename).setContent(self.content) user = UsernamePassword(b"user", b"password") user.blob = b"foobar" self.assertTrue(self.checker.checkKey(user)) user.blob = b"eggspam" self.assertTrue(self.checker.checkKey(user)) user.blob = b"notallowed" self.assertFalse(self.checker.checkKey(user)) def test_checkKey(self): """ L{SSHPublicKeyDatabase.checkKey} should retrieve the content of the authorized_keys file and check the keys against that file. """ self._testCheckKey("authorized_keys") self.assertEqual(self.mockos.seteuidCalls, []) self.assertEqual(self.mockos.setegidCalls, []) def test_checkKey2(self): """ L{SSHPublicKeyDatabase.checkKey} should retrieve the content of the authorized_keys2 file and check the keys against that file. """ self._testCheckKey("authorized_keys2") self.assertEqual(self.mockos.seteuidCalls, []) self.assertEqual(self.mockos.setegidCalls, []) def test_checkKeyAsRoot(self): """ If the key file is readable, L{SSHPublicKeyDatabase.checkKey} should switch its uid/gid to the ones of the authenticated user. """ keyFile = self.sshDir.child("authorized_keys") keyFile.setContent(self.content) # Fake permission error by changing the mode keyFile.chmod(0o000) self.addCleanup(keyFile.chmod, 0o777) # And restore the right mode when seteuid is called savedSeteuid = self.mockos.seteuid def seteuid(euid): keyFile.chmod(0o777) return savedSeteuid(euid) self.mockos.euid = 2345 self.mockos.egid = 1234 self.patch(self.mockos, "seteuid", seteuid) self.patch(util, 'os', self.mockos) user = UsernamePassword(b"user", b"password") user.blob = b"foobar" self.assertTrue(self.checker.checkKey(user)) self.assertEqual(self.mockos.seteuidCalls, [0, 1, 0, 2345]) self.assertEqual(self.mockos.setegidCalls, [2, 1234]) def test_requestAvatarId(self): """ L{SSHPublicKeyDatabase.requestAvatarId} should return the avatar id passed in if its C{_checkKey} method returns True. """ def _checkKey(ignored): return True self.patch(self.checker, 'checkKey', _checkKey) credentials = SSHPrivateKey( b'test', b'ssh-rsa', keydata.publicRSA_openssh, b'foo', keys.Key.fromString(keydata.privateRSA_openssh).sign(b'foo')) d = self.checker.requestAvatarId(credentials) def _verify(avatarId): self.assertEqual(avatarId, b'test') return d.addCallback(_verify) def test_requestAvatarIdWithoutSignature(self): """ L{SSHPublicKeyDatabase.requestAvatarId} should raise L{ValidPublicKey} if the credentials represent a valid key without a signature. This tells the user that the key is valid for login, but does not actually allow that user to do so without a signature. """ def _checkKey(ignored): return True self.patch(self.checker, 'checkKey', _checkKey) credentials = SSHPrivateKey( b'test', b'ssh-rsa', keydata.publicRSA_openssh, None, None) d = self.checker.requestAvatarId(credentials) return self.assertFailure(d, ValidPublicKey) def test_requestAvatarIdInvalidKey(self): """ If L{SSHPublicKeyDatabase.checkKey} returns False, C{_cbRequestAvatarId} should raise L{UnauthorizedLogin}. """ def _checkKey(ignored): return False self.patch(self.checker, 'checkKey', _checkKey) d = self.checker.requestAvatarId(None); return self.assertFailure(d, UnauthorizedLogin) def test_requestAvatarIdInvalidSignature(self): """ Valid keys with invalid signatures should cause L{SSHPublicKeyDatabase.requestAvatarId} to return a {UnauthorizedLogin} failure """ def _checkKey(ignored): return True self.patch(self.checker, 'checkKey', _checkKey) credentials = SSHPrivateKey( b'test', b'ssh-rsa', keydata.publicRSA_openssh, b'foo', keys.Key.fromString(keydata.privateDSA_openssh).sign(b'foo')) d = self.checker.requestAvatarId(credentials) return self.assertFailure(d, UnauthorizedLogin) def test_requestAvatarIdNormalizeException(self): """ Exceptions raised while verifying the key should be normalized into an C{UnauthorizedLogin} failure. """ def _checkKey(ignored): return True self.patch(self.checker, 'checkKey', _checkKey) credentials = SSHPrivateKey(b'test', None, b'blob', b'sigData', b'sig') d = self.checker.requestAvatarId(credentials) def _verifyLoggedException(failure): errors = self.flushLoggedErrors(keys.BadKeyError) self.assertEqual(len(errors), 1) return failure d.addErrback(_verifyLoggedException) return self.assertFailure(d, UnauthorizedLogin) class SSHProtocolCheckerTests(TestCase): """ Tests for L{SSHProtocolChecker}. """ skip = dependencySkip def test_registerChecker(self): """ L{SSHProcotolChecker.registerChecker} should add the given checker to the list of registered checkers. """ checker = checkers.SSHProtocolChecker() self.assertEqual(checker.credentialInterfaces, []) checker.registerChecker(checkers.SSHPublicKeyDatabase(), ) self.assertEqual(checker.credentialInterfaces, [ISSHPrivateKey]) self.assertIsInstance(checker.checkers[ISSHPrivateKey], checkers.SSHPublicKeyDatabase) def test_registerCheckerWithInterface(self): """ If a specific interface is passed into L{SSHProtocolChecker.registerChecker}, that interface should be registered instead of what the checker specifies in credentialIntefaces. """ checker = checkers.SSHProtocolChecker() self.assertEqual(checker.credentialInterfaces, []) checker.registerChecker(checkers.SSHPublicKeyDatabase(), IUsernamePassword) self.assertEqual(checker.credentialInterfaces, [IUsernamePassword]) self.assertIsInstance(checker.checkers[IUsernamePassword], checkers.SSHPublicKeyDatabase) def test_requestAvatarId(self): """ L{SSHProtocolChecker.requestAvatarId} should defer to one if its registered checkers to authenticate a user. """ checker = checkers.SSHProtocolChecker() passwordDatabase = InMemoryUsernamePasswordDatabaseDontUse() passwordDatabase.addUser(b'test', b'test') checker.registerChecker(passwordDatabase) d = checker.requestAvatarId(UsernamePassword(b'test', b'test')) def _callback(avatarId): self.assertEqual(avatarId, b'test') return d.addCallback(_callback) def test_requestAvatarIdWithNotEnoughAuthentication(self): """ If the client indicates that it is never satisfied, by always returning False from _areDone, then L{SSHProtocolChecker} should raise L{NotEnoughAuthentication}. """ checker = checkers.SSHProtocolChecker() def _areDone(avatarId): return False self.patch(checker, 'areDone', _areDone) passwordDatabase = InMemoryUsernamePasswordDatabaseDontUse() passwordDatabase.addUser(b'test', b'test') checker.registerChecker(passwordDatabase) d = checker.requestAvatarId(UsernamePassword(b'test', b'test')) return self.assertFailure(d, NotEnoughAuthentication) def test_requestAvatarIdInvalidCredential(self): """ If the passed credentials aren't handled by any registered checker, L{SSHProtocolChecker} should raise L{UnhandledCredentials}. """ checker = checkers.SSHProtocolChecker() d = checker.requestAvatarId(UsernamePassword(b'test', b'test')) return self.assertFailure(d, UnhandledCredentials) def test_areDone(self): """ The default L{SSHProcotolChecker.areDone} should simply return True. """ self.assertTrue(checkers.SSHProtocolChecker().areDone(None)) class UNIXPasswordDatabaseTests(TestCase): """ Tests for L{UNIXPasswordDatabase}. """ skip = cryptSkip or dependencySkip def assertLoggedIn(self, d, username): """ Assert that the L{Deferred} passed in is called back with the value 'username'. This represents a valid login for this TestCase. NOTE: To work, this method's return value must be returned from the test method, or otherwise hooked up to the test machinery. @param d: a L{Deferred} from an L{IChecker.requestAvatarId} method. @type d: L{Deferred} @rtype: L{Deferred} """ result = [] d.addBoth(result.append) self.assertEqual(len(result), 1, "login incomplete") if isinstance(result[0], Failure): result[0].raiseException() self.assertEqual(result[0], username) def test_defaultCheckers(self): """ L{UNIXPasswordDatabase} with no arguments has checks the C{pwd} database and then the C{spwd} database. """ checker = checkers.UNIXPasswordDatabase() def crypted(username, password): salt = crypt.crypt(password, username) crypted = crypt.crypt(password, '$1$' + salt) return crypted pwd = UserDatabase() pwd.addUser('alice', crypted('alice', 'password'), 1, 2, 'foo', '/foo', '/bin/sh') # x and * are convention for "look elsewhere for the password" pwd.addUser('bob', 'x', 1, 2, 'bar', '/bar', '/bin/sh') spwd = ShadowDatabase() spwd.addUser('alice', 'wrong', 1, 2, 3, 4, 5, 6, 7) spwd.addUser('bob', crypted('bob', 'password'), 8, 9, 10, 11, 12, 13, 14) self.patch(checkers, 'pwd', pwd) self.patch(checkers, 'spwd', spwd) mockos = MockOS() self.patch(util, 'os', mockos) mockos.euid = 2345 mockos.egid = 1234 cred = UsernamePassword(b"alice", b"password") self.assertLoggedIn(checker.requestAvatarId(cred), b'alice') self.assertEqual(mockos.seteuidCalls, []) self.assertEqual(mockos.setegidCalls, []) cred.username = b"bob" self.assertLoggedIn(checker.requestAvatarId(cred), b'bob') self.assertEqual(mockos.seteuidCalls, [0, 2345]) self.assertEqual(mockos.setegidCalls, [0, 1234]) def assertUnauthorizedLogin(self, d): """ Asserts that the L{Deferred} passed in is erred back with an L{UnauthorizedLogin} L{Failure}. This reprsents an invalid login for this TestCase. NOTE: To work, this method's return value must be returned from the test method, or otherwise hooked up to the test machinery. @param d: a L{Deferred} from an L{IChecker.requestAvatarId} method. @type d: L{Deferred} @rtype: L{None} """ self.assertRaises( checkers.UnauthorizedLogin, self.assertLoggedIn, d, 'bogus value') def test_passInCheckers(self): """ L{UNIXPasswordDatabase} takes a list of functions to check for UNIX user information. """ password = crypt.crypt('secret', 'secret') userdb = UserDatabase() userdb.addUser('anybody', password, 1, 2, 'foo', '/bar', '/bin/sh') checker = checkers.UNIXPasswordDatabase([userdb.getpwnam]) self.assertLoggedIn( checker.requestAvatarId(UsernamePassword(b'anybody', b'secret')), b'anybody') def test_verifyPassword(self): """ If the encrypted password provided by the getpwnam function is valid (verified by the L{verifyCryptedPassword} function), we callback the C{requestAvatarId} L{Deferred} with the username. """ def verifyCryptedPassword(crypted, pw): return crypted == pw def getpwnam(username): return [username, username] self.patch(checkers, 'verifyCryptedPassword', verifyCryptedPassword) checker = checkers.UNIXPasswordDatabase([getpwnam]) credential = UsernamePassword(b'username', b'username') self.assertLoggedIn(checker.requestAvatarId(credential), b'username') def test_failOnKeyError(self): """ If the getpwnam function raises a KeyError, the login fails with an L{UnauthorizedLogin} exception. """ def getpwnam(username): raise KeyError(username) checker = checkers.UNIXPasswordDatabase([getpwnam]) credential = UsernamePassword(b'username', b'username') self.assertUnauthorizedLogin(checker.requestAvatarId(credential)) def test_failOnBadPassword(self): """ If the verifyCryptedPassword function doesn't verify the password, the login fails with an L{UnauthorizedLogin} exception. """ def verifyCryptedPassword(crypted, pw): return False def getpwnam(username): return [username, username] self.patch(checkers, 'verifyCryptedPassword', verifyCryptedPassword) checker = checkers.UNIXPasswordDatabase([getpwnam]) credential = UsernamePassword(b'username', b'username') self.assertUnauthorizedLogin(checker.requestAvatarId(credential)) def test_loopThroughFunctions(self): """ UNIXPasswordDatabase.requestAvatarId loops through each getpwnam function associated with it and returns a L{Deferred} which fires with the result of the first one which returns a value other than None. ones do not verify the password. """ def verifyCryptedPassword(crypted, pw): return crypted == pw def getpwnam1(username): return [username, 'not the password'] def getpwnam2(username): return [username, username] self.patch(checkers, 'verifyCryptedPassword', verifyCryptedPassword) checker = checkers.UNIXPasswordDatabase([getpwnam1, getpwnam2]) credential = UsernamePassword(b'username', b'username') self.assertLoggedIn(checker.requestAvatarId(credential), b'username') def test_failOnSpecial(self): """ If the password returned by any function is C{""}, C{"x"}, or C{"*"} it is not compared against the supplied password. Instead it is skipped. """ pwd = UserDatabase() pwd.addUser('alice', '', 1, 2, '', 'foo', 'bar') pwd.addUser('bob', 'x', 1, 2, '', 'foo', 'bar') pwd.addUser('carol', '*', 1, 2, '', 'foo', 'bar') self.patch(checkers, 'pwd', pwd) checker = checkers.UNIXPasswordDatabase([checkers._pwdGetByName]) cred = UsernamePassword(b'alice', b'') self.assertUnauthorizedLogin(checker.requestAvatarId(cred)) cred = UsernamePassword(b'bob', b'x') self.assertUnauthorizedLogin(checker.requestAvatarId(cred)) cred = UsernamePassword(b'carol', b'*') self.assertUnauthorizedLogin(checker.requestAvatarId(cred)) class AuthorizedKeyFileReaderTests(TestCase): """ Tests for L{checkers.readAuthorizedKeyFile} """ skip = dependencySkip def test_ignoresComments(self): """ L{checkers.readAuthorizedKeyFile} does not attempt to turn comments into keys """ fileobj = BytesIO(b'# this comment is ignored\n' b'this is not\n' b'# this is again\n' b'and this is not') result = checkers.readAuthorizedKeyFile(fileobj, lambda x: x) self.assertEqual([b'this is not', b'and this is not'], list(result)) def test_ignoresLeadingWhitespaceAndEmptyLines(self): """ L{checkers.readAuthorizedKeyFile} ignores leading whitespace in lines, as well as empty lines """ fileobj = BytesIO(b""" # ignore not ignored """) result = checkers.readAuthorizedKeyFile(fileobj, parseKey=lambda x: x) self.assertEqual([b'not ignored'], list(result)) def test_ignoresUnparsableKeys(self): """ L{checkers.readAuthorizedKeyFile} does not raise an exception when a key fails to parse (raises a L{twisted.conch.ssh.keys.BadKeyError}), but rather just keeps going """ def failOnSome(line): if line.startswith(b'f'): raise keys.BadKeyError('failed to parse') return line fileobj = BytesIO(b'failed key\ngood key') result = checkers.readAuthorizedKeyFile(fileobj, parseKey=failOnSome) self.assertEqual([b'good key'], list(result)) class InMemorySSHKeyDBTests(TestCase): """ Tests for L{checkers.InMemorySSHKeyDB} """ skip = dependencySkip def test_implementsInterface(self): """ L{checkers.InMemorySSHKeyDB} implements L{checkers.IAuthorizedKeysDB} """ keydb = checkers.InMemorySSHKeyDB({b'alice': [b'key']}) verifyObject(checkers.IAuthorizedKeysDB, keydb) def test_noKeysForUnauthorizedUser(self): """ If the user is not in the mapping provided to L{checkers.InMemorySSHKeyDB}, an empty iterator is returned by L{checkers.InMemorySSHKeyDB.getAuthorizedKeys} """ keydb = checkers.InMemorySSHKeyDB({b'alice': [b'keys']}) self.assertEqual([], list(keydb.getAuthorizedKeys(b'bob'))) def test_allKeysForAuthorizedUser(self): """ If the user is in the mapping provided to L{checkers.InMemorySSHKeyDB}, an iterator with all the keys is returned by L{checkers.InMemorySSHKeyDB.getAuthorizedKeys} """ keydb = checkers.InMemorySSHKeyDB({b'alice': [b'a', b'b']}) self.assertEqual([b'a', b'b'], list(keydb.getAuthorizedKeys(b'alice'))) class UNIXAuthorizedKeysFilesTests(TestCase): """ Tests for L{checkers.UNIXAuthorizedKeysFiles}. """ skip = dependencySkip def setUp(self): mockos = MockOS() mockos.path = FilePath(self.mktemp()) mockos.path.makedirs() self.userdb = UserDatabase() self.userdb.addUser(b'alice', b'password', 1, 2, b'alice lastname', mockos.path.path, b'/bin/shell') self.sshDir = mockos.path.child('.ssh') self.sshDir.makedirs() authorizedKeys = self.sshDir.child('authorized_keys') authorizedKeys.setContent(b'key 1\nkey 2') self.expectedKeys = [b'key 1', b'key 2'] def test_implementsInterface(self): """ L{checkers.UNIXAuthorizedKeysFiles} implements L{checkers.IAuthorizedKeysDB}. """ keydb = checkers.UNIXAuthorizedKeysFiles(self.userdb) verifyObject(checkers.IAuthorizedKeysDB, keydb) def test_noKeysForUnauthorizedUser(self): """ If the user is not in the user database provided to L{checkers.UNIXAuthorizedKeysFiles}, an empty iterator is returned by L{checkers.UNIXAuthorizedKeysFiles.getAuthorizedKeys}. """ keydb = checkers.UNIXAuthorizedKeysFiles(self.userdb, parseKey=lambda x: x) self.assertEqual([], list(keydb.getAuthorizedKeys('bob'))) def test_allKeysInAllAuthorizedFilesForAuthorizedUser(self): """ If the user is in the user database provided to L{checkers.UNIXAuthorizedKeysFiles}, an iterator with all the keys in C{~/.ssh/authorized_keys} and C{~/.ssh/authorized_keys2} is returned by L{checkers.UNIXAuthorizedKeysFiles.getAuthorizedKeys}. """ self.sshDir.child('authorized_keys2').setContent(b'key 3') keydb = checkers.UNIXAuthorizedKeysFiles(self.userdb, parseKey=lambda x: x) self.assertEqual(self.expectedKeys + [b'key 3'], list(keydb.getAuthorizedKeys(b'alice'))) def test_ignoresNonexistantFile(self): """ L{checkers.UNIXAuthorizedKeysFiles.getAuthorizedKeys} returns only the keys in C{~/.ssh/authorized_keys} and C{~/.ssh/authorized_keys2} if they exist. """ keydb = checkers.UNIXAuthorizedKeysFiles(self.userdb, parseKey=lambda x: x) self.assertEqual(self.expectedKeys, list(keydb.getAuthorizedKeys(b'alice'))) def test_ignoresUnreadableFile(self): """ L{checkers.UNIXAuthorizedKeysFiles.getAuthorizedKeys} returns only the keys in C{~/.ssh/authorized_keys} and C{~/.ssh/authorized_keys2} if they are readable. """ self.sshDir.child('authorized_keys2').makedirs() keydb = checkers.UNIXAuthorizedKeysFiles(self.userdb, parseKey=lambda x: x) self.assertEqual(self.expectedKeys, list(keydb.getAuthorizedKeys(b'alice'))) _KeyDB = namedtuple('KeyDB', ['getAuthorizedKeys']) class _DummyException(Exception): """ Fake exception to be used for testing. """ pass class SSHPublicKeyCheckerTests(TestCase): """ Tests for L{checkers.SSHPublicKeyChecker}. """ skip = dependencySkip def setUp(self): self.credentials = SSHPrivateKey( b'alice', b'ssh-rsa', keydata.publicRSA_openssh, b'foo', keys.Key.fromString(keydata.privateRSA_openssh).sign(b'foo')) self.keydb = _KeyDB(lambda _: [ keys.Key.fromString(keydata.publicRSA_openssh)]) self.checker = checkers.SSHPublicKeyChecker(self.keydb) def test_credentialsWithoutSignature(self): """ Calling L{checkers.SSHPublicKeyChecker.requestAvatarId} with credentials that do not have a signature fails with L{ValidPublicKey}. """ self.credentials.signature = None self.failureResultOf(self.checker.requestAvatarId(self.credentials), ValidPublicKey) def test_credentialsWithBadKey(self): """ Calling L{checkers.SSHPublicKeyChecker.requestAvatarId} with credentials that have a bad key fails with L{keys.BadKeyError}. """ self.credentials.blob = b'' self.failureResultOf(self.checker.requestAvatarId(self.credentials), keys.BadKeyError) def test_credentialsNoMatchingKey(self): """ If L{checkers.IAuthorizedKeysDB.getAuthorizedKeys} returns no keys that match the credentials, L{checkers.SSHPublicKeyChecker.requestAvatarId} fails with L{UnauthorizedLogin}. """ self.credentials.blob = keydata.publicDSA_openssh self.failureResultOf(self.checker.requestAvatarId(self.credentials), UnauthorizedLogin) def test_credentialsInvalidSignature(self): """ Calling L{checkers.SSHPublicKeyChecker.requestAvatarId} with credentials that are incorrectly signed fails with L{UnauthorizedLogin}. """ self.credentials.signature = ( keys.Key.fromString(keydata.privateDSA_openssh).sign(b'foo')) self.failureResultOf(self.checker.requestAvatarId(self.credentials), UnauthorizedLogin) def test_failureVerifyingKey(self): """ If L{keys.Key.verify} raises an exception, L{checkers.SSHPublicKeyChecker.requestAvatarId} fails with L{UnauthorizedLogin}. """ def fail(*args, **kwargs): raise _DummyException() self.patch(keys.Key, 'verify', fail) self.failureResultOf(self.checker.requestAvatarId(self.credentials), UnauthorizedLogin) self.flushLoggedErrors(_DummyException) def test_usernameReturnedOnSuccess(self): """ L{checker.SSHPublicKeyChecker.requestAvatarId}, if successful, callbacks with the username. """ d = self.checker.requestAvatarId(self.credentials) self.assertEqual(b'alice', self.successResultOf(d))
504b693788900fa8fe43fab87c1075ce5593cf3b
6f2675eee55b7ebc5adf9c2176ced8cb59fc64d4
/dataInterSrvKm/bak/20200113版本半接口半直连/billBoli600.py
729c1391bc030f8184f66d7eb48bc789ce7a4078
[]
no_license
wildmanwang/proDataInter
8c2b65fa96ad45b21165d997b1769a28e12fc42a
f5a1f1fb195c66bf586bd999465c7e3b16453369
refs/heads/master
2023-06-07T11:57:16.763251
2023-06-03T08:54:56
2023-06-03T08:54:56
157,559,747
0
0
null
null
null
null
UTF-8
Python
false
false
13,164
py
# -*- coding:utf-8 -*- """ """ __author__ = "Cliff.wang" from superBillDCB import SuperBillDCB from interMssql import MSSQL import time, json class BillBoli600(SuperBillDCB): def __init__(self, sett): super().__init__(sett) self.station = [1,2,3,4,5,6,7,8] # 可用基站 self.db = MSSQL(self.sett.serverHost, self.sett.serverUser, self.sett.serverPwd, self.sett.serverDb) def _getStation(self): """ 获取基站号 :return: """ rtnData = { "result":False, # 逻辑控制 True/False "dataString":"", # 字符串 "dataNumber":0, # 数字 "info":"", # 信息 "entities": {} } try: conn = self.db.GetConnect() cur = conn.cursor() if not cur: rtnData["info"] = "基础数据获取失败:{name}数据库[{db}]连接失败".format(name=self.sett.serverName, db=self.sett.serverDb) else: lsSql = "select sys_var_value from sys_t_system where sys_var_id = 'dcb_stationList'" cur.execute(lsSql) rsData = cur.fetchall() if len(rsData) > 0: staStr = rsData[0][0] else: staStr = "[]" staList = json.loads(staStr) if len(staList) == 0: rtnData["info"] = "基站繁忙,请稍后再试" else: rtnData["dataNumber"] = staList.pop(0) lsSql = "update sys_t_system set sys_var_value = '{value}' where sys_var_id = 'dcb_stationList'".format(value=json.dumps(staList)) cur.execute(lsSql) conn.commit() rtnData["result"] = True except Exception as e: rtnData["dataNumber"] = 0 rtnData["info"] = str(e) finally: conn.close() return rtnData def _putStation(self, station): """ 释放基站号 :param station: :return: """ rtnData = { "result":False, # 逻辑控制 True/False "dataString":"", # 字符串 "dataNumber":0, # 数字 "info":"", # 信息 "entities": {} } try: conn = self.db.GetConnect() cur = conn.cursor() if not cur: rtnData["info"] = "基础数据获取失败:{name}数据库[{db}]连接失败".format(name=self.sett.serverName, db=self.sett.serverDb) else: lsSql = "select sys_var_value from sys_t_system where sys_var_id = 'dcb_stationList'" cur.execute(lsSql) rsData = cur.fetchall() if len(rsData) > 0: staStr = rsData[0][0] staList = json.loads(staStr) staList.append(station) staList = list(set(staList)) staList.sort() lsSql = "update sys_t_system set sys_var_value = '{value}' where sys_var_id = 'dcb_stationList'".format(value=json.dumps(staList)) cur.execute(lsSql) conn.commit() rtnData["result"] = True else: rtnData["info"] = "获取基站参数失败" except Exception as e: rtnData["info"] = str(e) finally: conn.close() return rtnData def userLogin(self, data): """ 登录 :param data:{ "terminal":"", # 开台终端号(3位) "factory":"", # 出厂号(10位) "user":"", # 工号(4位) "password":"" # 密码(8位) } :return: """ rtnData = { "result":True, # 逻辑控制 True/False "dataString":"", # 字符串 "dataNumber":0, # 数字 "info":"", # 信息 "entities": {} } # 获取基站 rtnData = self._getStation() if rtnData["result"]: iStation = rtnData["dataNumber"] try: # 参数检查 if len(self.sett.softNumber) > 0: data["terminal"] = self.sett.softNumber elif "terminal" not in data: raise Exception("请传入参数:点菜宝编号") sTerminal = (data["terminal"] + chr(32) * 3)[:3] if len(self.sett.serialNumber) > 0: data["factory"] = self.sett.serialNumber elif "factory" not in data: raise Exception("请传入参数:点菜宝序列号") sFactory = ("0" * 10 + data["factory"])[-10:] if len(self.sett.loginUser) > 0: data["user"] = self.sett.loginUser data["password"] = self.sett.loginPassword elif "user" not in data: raise Exception("请传入参数:用户及密码") sUser = (data["user"] + chr(32) * 5)[:4] sPassword = (data["password"] + chr(32) * 8)[:8] # 生成开台请求数据 sCon = [] sCon.append("DL " + chr(32) + sTerminal) sCon.append(sFactory + chr(32) + sUser + chr(32) + sPassword) # sCon.append(sUser + chr(32) + sPassword) # 开台请求写入文件,并通知餐饮服务 if rtnData["result"]: rtnData = self._writeBusiData(iStation, sCon) # 获取执行结果 if rtnData["result"]: rtnData = self._readRtnData(iStation, "登录", sCon, 0, "", 1) except Exception as e: rtnData["result"] = False rtnData["info"] = str(e) finally: # 释放基站 if "iStation" in locals(): self._putStation(iStation) # 返回执行结果 return rtnData def billOpen(self, data): """ 开台 :param data:{ "terminal":"", # 开台终端号(3位) "table":"", # 桌台号(4位) "waiter":"", # 服务员号(5位) "guestNum":0, # 客人数量(2位) "factory":"" # 出厂号(后7/10位) } :return: """ rtnData = { "result":True, # 逻辑控制 True/False "dataString":"", # 字符串 "dataNumber":0, # 数字 "info":"", # 信息 "entities": {} } # 获取基站 rtnData = self._getStation() if rtnData["result"]: iStation = rtnData["dataNumber"] try: # 参数检查 if len(self.sett.softNumber) > 0: data["terminal"] = self.sett.softNumber elif "terminal" not in data: raise Exception("请传入参数:点菜宝编号") sTerminal = (data["terminal"] + chr(32) * 3)[:3] if "table" in data: sTable = (data["table"] + chr(32) * 4)[:4] else: rtnData["result"] = False rtnData["info"] = "请传入桌台号" if "waiter" in data: sWaiter = (data["waiter"] + chr(32) * 5)[:5] else: sWaiter = chr(32) * 5 if "guestNum" in data: sGuestNum = ("0" + str(int(data["guestNum"])))[-2:] else: sGuestNum = "01" if len(self.sett.serialNumber) > 0: data["factory"] = self.sett.serialNumber elif "factory" not in data: raise Exception("请传入参数:点菜宝序列号") sFactory = ("0" * 10 + data["factory"]) # 生成开台请求数据 if rtnData["result"]: sCon = [] sCon.append("KT " + chr(32) + sTerminal) sCon.append(sTable + chr(32) + sGuestNum + chr(32) + sWaiter + chr(32) + sFactory[-7:] + chr( 32) + time.strftime("%H:%M:%S")) # 开台请求,并获取反馈 if rtnData["result"]: rtnData = self._writeBusiData(iStation, sCon) # 获取执行结果 if rtnData["result"]: rtnData = self._readRtnData(iStation, "开台", sCon, 1, "开台成功", 1) except Exception as e: rtnData["result"] = False rtnData["info"] = str(e) finally: # 释放基站 if "iStation" in locals(): self._putStation(iStation) # 返回执行结果 return rtnData def billPut(self, data): """ 点菜 :param data:{ "terminal":"", # 开台终端号(3位) "table":"", # 桌台号+账单流水号(4+3=7位) "factory":"", # 出厂号(4+4+2=10位) "remark":"", # 整单备注(12位) "item":[{ "food":"", # 菜品号(5位) "qty":1, # 数量(4位) "made":"", # 做法(12位) "suit":"", # 套餐号(2位) "waitUp":0 # 等叫标志(1位) }] } :return: """ rtnData = { "result":False, # 逻辑控制 True/False "dataString":"", # 字符串 "dataNumber":0, # 数字 "info":"", # 信息 "entities": {} } # 获取基站 rtnData = self._getStation() if rtnData["result"]: iStation = rtnData["dataNumber"] try: # 参数检查 if len(self.sett.softNumber) > 0: data["terminal"] = self.sett.softNumber elif "terminal" not in data: raise Exception("请传入参数:点菜宝编号") sTerminal = (data["terminal"] + chr(32) * 3)[:3] if "table" in data: sTable = (data["table"] + chr(32) * 7)[:7] else: rtnData["result"] = False rtnData["info"] = "请传入桌台号" if len(self.sett.serialNumber) > 0: data["factory"] = self.sett.serialNumber elif "factory" not in data: raise Exception("请传入参数:点菜宝序列号") sFactory = ("0" * 10 + data["factory"]) if "remark" in data: sRemark = (data["remark"] + chr(32) * 12)[:12] else: sRemark = chr(32) * 12 sFlow = time.strftime("%H:%M:%S") # 生成开台请求数据 if rtnData["result"]: sCon = [] sCon.append("DC " + chr(32) + sTerminal) sCon.append(sTable + chr(32) + sFactory[:4] + chr(32) + chr(32) * 6 + sRemark + chr(32) + chr( 32) * 4 + sFlow + chr(32) + sFactory[4:8] + chr(32) + sFactory[8:10]) for line in data["item"]: sFood = (line["food"] + chr(32) * 5)[:5] sQty = (chr(32) * 4 + str(line["qty"]))[-4:] if "made" in line: sMade = (line["made"] + chr(32) * 12)[:12] else: sMade = chr(32) * 12 if "suit" in line: suit = (line["suit"] + chr(32) * 2)[:2] else: suit = chr(32) * 2 if "waitUp" in line: waitUp = (str(line["waitUp"]) + "0")[-1:] else: waitUp = "0" sCon.append( sTable + chr(32) + sFood + chr(32) + sQty + chr(32) + sMade + chr(32) + suit + chr(32) + waitUp) # 开台请求写入文件,并通知餐饮服务 if rtnData["result"]: rtnData = self._writeBusiData(iStation, sCon) # 获取执行结果 if rtnData["result"]: rtnData = self._readRtnData(iStation, "点菜", sCon, 1, "点菜成功", 1) except Exception as e: rtnData["result"] = False rtnData["info"] = str(e) finally: # 释放基站 if "iStation" in locals(): self._putStation(iStation) # 返回执行结果 return rtnData
080121153af9a45d9084cd5f5233cdfb821defe7
23af1e2b1f29be62926ed6a8e39b4462f07f5f2b
/atcoder.jp/abc086/abc086_b/Main.py
2caffef31e6e42003299d780de9ca6f6f538b840
[]
no_license
IKDrocket/Atcoder
8ef382577a377a8f35890b24a49f681f00f2f047
fc19379de2ddf62a61b67eda33bf8aa29d503685
refs/heads/main
2023-02-09T11:58:00.353304
2021-01-02T12:06:20
2021-01-02T12:06:20
318,876,174
0
0
null
null
null
null
UTF-8
Python
false
false
152
py
a,b = input().split() num = int(a+b) for i in range(1,10101): ans = i*i if num == ans: print("Yes") break else: print("No")
c31db9e2643724ed66331b721d6a77560de6209a
06167f625464c898ac95e752694a5931b9a55a55
/src/admission/migrations/0001_initial.py
bacece5228ade3f6e66d8337c4fae54aa72fdb6d
[]
no_license
nazmul629/school_management_system
16e2003b652b14174d6f59b4682ca366275f3207
d0ff759645d9ba8f88d2aa63dbc867e7713455ed
refs/heads/master
2021-06-19T18:06:56.539454
2019-04-20T12:35:24
2019-04-20T12:35:24
182,307,917
1
0
null
2021-03-20T08:15:23
2019-04-19T18:22:11
CSS
UTF-8
Python
false
false
1,699
py
# Generated by Django 2.0 on 2019-04-19 16:39 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='class_section', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('section', models.CharField(max_length=10, unique=True)), ], ), migrations.CreateModel( name='Schoolallclass', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('Class', models.IntegerField(unique=True)), ], ), migrations.CreateModel( name='StudentInfo', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('Student_name', models.CharField(max_length=50)), ('age', models.IntegerField()), ('gender', models.CharField(choices=[('m', 'Male'), ('f', 'Female')], max_length=10)), ('roll', models.IntegerField(unique=True)), ('fathers_name', models.CharField(max_length=50)), ('mothers_name', models.CharField(max_length=50)), ('address', models.TextField()), ('mobile', models.CharField(max_length=16)), ('Class', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='admission.Schoolallclass')), ], ), ]
6e7a8849b45d4e7ef435085fefc41204dd11f94a
bb150497a05203a718fb3630941231be9e3b6a32
/framework/e2e/jit/test_Maxout_0.py
34ed3c5b0baf796738184d4faee74db735487de9
[]
no_license
PaddlePaddle/PaddleTest
4fb3dec677f0f13f7f1003fd30df748bf0b5940d
bd3790ce72a2a26611b5eda3901651b5a809348f
refs/heads/develop
2023-09-06T04:23:39.181903
2023-09-04T11:17:50
2023-09-04T11:17:50
383,138,186
42
312
null
2023-09-13T11:13:35
2021-07-05T12:44:59
Python
UTF-8
Python
false
false
608
py
#!/bin/env python # -*- coding: utf-8 -*- # encoding=utf-8 vi:ts=4:sw=4:expandtab:ft=python """ test jit cases """ import os import sys sys.path.append(os.path.abspath(os.path.dirname(os.getcwd()))) sys.path.append(os.path.join(os.path.abspath(os.path.dirname(os.getcwd())), "utils")) from utils.yaml_loader import YamlLoader from jittrans import JitTrans yaml_path = os.path.join(os.path.abspath(os.path.dirname(os.getcwd())), "yaml", "nn.yml") yml = YamlLoader(yaml_path) def test_Maxout_0(): """test Maxout_0""" jit_case = JitTrans(case=yml.get_case_info("Maxout_0")) jit_case.jit_run()
0b923417f2c83d1b943f897a0e067b827cc724c3
f07a42f652f46106dee4749277d41c302e2b7406
/Data Set/bug-fixing-5/6d0b0f8338f7ffbc761ddc05cbdc620a99901074-<format_item>-fix.py
a42ce4e3bcf3cd32eb44b6e67fee46a95e4f787a
[]
no_license
wsgan001/PyFPattern
e0fe06341cc5d51b3ad0fe29b84098d140ed54d1
cc347e32745f99c0cd95e79a18ddacc4574d7faa
refs/heads/main
2023-08-25T23:48:26.112133
2021-10-23T14:11:22
2021-10-23T14:11:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,254
py
def format_item(self, item): d = item.as_dict() containers = d['containers'] ports = d['ip_address']['ports'] resource_group = d['id'].split('resourceGroups/')[1].split('/')[0] for port_index in range(len(ports)): ports[port_index] = ports[port_index]['port'] for container_index in range(len(containers)): old_container = containers[container_index] new_container = { 'name': old_container['name'], 'image': old_container['image'], 'memory': old_container['resources']['requests']['memory_in_gb'], 'cpu': old_container['resources']['requests']['cpu'], 'ports': [], } for port_index in range(len(old_container['ports'])): new_container['ports'].append(old_container['ports'][port_index]['port']) containers[container_index] = new_container d = { 'id': d['id'], 'resource_group': resource_group, 'name': d['name'], 'os_type': d['os_type'], 'ip_address': ('public' if (d['ip_address']['type'] == 'Public') else 'none'), 'ports': ports, 'location': d['location'], 'containers': containers, 'tags': d.get('tags', None), } return d
96fdbd1d69014c062a573ce6737c753189550b8e
2031771d8c226806a0b35c3579af990dd0747e64
/pyobjc-framework-CoreServices/PyObjCTest/test_textutils.py
2ff838ec467acf264133c95ae598c609539c4881
[ "MIT" ]
permissive
GreatFruitOmsk/pyobjc-mirror
a146b5363a5e39181f09761087fd854127c07c86
4f4cf0e4416ea67240633077e5665f5ed9724140
refs/heads/master
2018-12-22T12:38:52.382389
2018-11-12T09:54:18
2018-11-12T09:54:18
109,211,701
2
0
null
null
null
null
UTF-8
Python
false
false
1,648
py
from PyObjCTools.TestSupport import * import CoreServices class TestTextUtils (TestCase): def assert_not_wrapped(self, name): self.assertTrue(not hasattr(CoreServices, name), "%r exposed in bindings"%(name,)) def test_not_wrapped(self): self.assert_not_wrapped('ScriptRunStatus') self.assert_not_wrapped('BreakTable') self.assert_not_wrapped('NBreakTable') self.assert_not_wrapped('Munger') self.assert_not_wrapped('NewString') self.assert_not_wrapped('SetString') self.assert_not_wrapped('GetString') self.assert_not_wrapped('GetIndString') self.assert_not_wrapped('FindWordBreaks') self.assert_not_wrapped('LowercaseText') self.assert_not_wrapped('UppercaseText') self.assert_not_wrapped('StripDiacritics') self.assert_not_wrapped('UppercaseStripDiacritics') self.assert_not_wrapped('FindScriptRun') self.assert_not_wrapped('UpperString') self.assert_not_wrapped('upperstring') self.assert_not_wrapped('UprString') self.assert_not_wrapped('c2pstrcpy') self.assert_not_wrapped('p2cstrcpy') self.assert_not_wrapped('CopyPascalStringToC') self.assert_not_wrapped('CopyCStringToPascal') self.assert_not_wrapped('c2pstr') self.assert_not_wrapped('C2PStr') self.assert_not_wrapped('p2cst') self.assert_not_wrapped('P2CStr') self.assert_not_wrapped('p2cstr') self.assert_not_wrapped('c2pstr') self.assert_not_wrapped('C2PStr') self.assert_not_wrapped('P2CStr') if __name__ == "__main__": main()
7226b9cda9c338dffe84746f1f19fd9278d6e255
15e818aada2b18047fa895690bc1c2afda6d7273
/lib/python/h5log_loader.py
5cce0d76a64f14935c96f0fea66de17adea3cff0
[ "Apache-2.0" ]
permissive
ghomsy/makani
4ee34c4248fb0ac355f65aaed35718b1f5eabecf
818ae8b7119b200a28af6b3669a3045f30e0dc64
refs/heads/master
2023-01-11T18:46:21.939471
2020-11-10T00:23:31
2020-11-10T00:23:31
301,863,147
0
0
Apache-2.0
2020-11-10T00:23:32
2020-10-06T21:51:21
null
UTF-8
Python
false
false
27,053
py
# Copyright 2020 Makani Technologies LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Provides a more user friendly interface to Makani HDF5 logs. Typical use case: h5 = H5LogLoader() h5.Open(['file1.h5', 'file2.h5']) # Dictionary interface. plt.figure() t = h5.capture_time['FcA/FlightComputerSensor'] d = h5['FcA/FlightComputerSensor/aux/mag'] plt.plot(t, d) # Function call interface. plt.figure() for f in h5.GetFields(r'^Servo[^/]+/ServoStatus$'): t = h5.GetCaptureTime(f) d = h5.GetData(f + '/angle_measured') plt.plot(t, d, label=h5.GetNodeName(f)) plt.legend() """ # NOTICE: To ease analysis, please do not depend on the Makani repository! import collections import re import sys import h5py import numpy as np def PrintProgress(count, total, suffix=''): """Print a progress bar to stdout.""" bar_len = 60 filled_len = int(round(bar_len * count / float(total))) percent = 100.0 * count / float(total) bar = '=' * filled_len + '-' * (bar_len - filled_len) sys.stdout.write('[%s] % 4.1f%% ...%s\r' % (bar, percent, suffix)) if count == total: sys.stdout.write('\nDone!\n') sys.stdout.flush() def _H5BuildDtypeTree(dtype, prefix=''): """Recursively build an array of paths, starting from an HDF5 dtype.""" values = [str(prefix).lstrip('/')] if dtype.fields: for key, item in dtype.fields.iteritems(): values += _H5BuildDtypeTree(item[0].base, prefix + '/' + key) return values def _H5BuildGroupTree(group, prefix=''): """Recursively build an array of paths to each HDF5 dataset.""" values = [] for key, item in group.iteritems(): if isinstance(item, h5py.Dataset): values.append(str(prefix + '/' + key).lstrip('/')) elif isinstance(item, h5py.Group): values += _H5BuildGroupTree(item, prefix + '/' + key) return values def _H5BuildGroupAndDtypeTree(group, prefix=''): """Recursively build an array of paths, starting from an HDF5 group.""" values = [] for key, item in group.iteritems(): if isinstance(item, h5py.Dataset): values += _H5BuildDtypeTree(item.dtype.base, prefix + '/' + key) elif isinstance(item, h5py.Group): values += _H5BuildGroupAndDtypeTree(item, prefix + '/' + key) return values def _NormalizeFileNames(filenames): if filenames is None: filenames = [] elif not isinstance(filenames, list): filenames = [filenames] return filenames class _H5DataCache(object): """Provides a simple cache interface to H5*Cache classes.""" def __init__(self): self._data_cache = {} # Map path to cached data. def ClearCached(self): """Free cached memory.""" self._data_cache = {} def GetCached(self, path): """Get data and cache the result.""" data = self._data_cache.get(path) if data is None: data = self.GetData(path) self._data_cache[path] = data return np.copy(data) # Copy data to prevent changes to cached values. def GetData(self, path): # pylint: disable=unused-argument """Get data without caching the result.""" raise NotImplementedError class _H5DataLog(object): """Load HDF5 files.""" def __init__(self): # Abstract HDF5 interface to improve access performance. self._data_logs = [] # A list of HDF5 file objects. self._data_paths = {} # A mapping from path to HDF5 data path. def __del__(self): self.Close() def Open(self, filenames): """Open HDF5 log files. Args: filenames: A list of log HDF5 files, sorted in time. """ # Python's garbage collection does not always work well with HDF5 data # structures. Close all files before reopening them again. self.Close() # Load HDF5 files as read-only. self._data_logs = [h5py.File(f, 'r') for f in filenames] # Index HDF5 data structure to improve path lookup performance. paths = set() for d in self._data_logs: paths |= set(_H5BuildGroupAndDtypeTree(d)) self._data_paths = {self._GetShortPath(p): p for p in paths} def _GetShortPath(self, path): """Remove overly verbose prefixes.""" return path.replace('kAioNode', '').replace('kMessageType', '') def Save(self, filename, verbose=False): """Save data from all input files to a single, merged HDF5.""" with h5py.File(filename, 'w') as fp: # Build paths for each HDF5 dataset. paths = set() for d in self._data_logs: paths |= set(_H5BuildGroupTree(d)) dataset_paths = {self._GetShortPath(p): p for p in paths} dataset_count = len(dataset_paths) i = 0 for short_path, path in dataset_paths.iteritems(): fp.create_dataset(path, data=self.GetData(short_path)) i += 1 if verbose: PrintProgress(i, dataset_count, 'Concatenating HDF5 datasets') def Close(self): """Close all HDF5 log files and free associated memory.""" while self._data_logs: d = self._data_logs.pop() d.close() self.__init__() def GetData(self, path): """Load data from HDF5 structure as data[field 0][field 1] ... [field N].""" arrays = [] split_path = self._data_paths[path].split('/') for d in self._data_logs: try: for p in split_path: d = d[p] arrays.append(d) except KeyError: pass if len(arrays) == 1: return arrays[0] return np.concatenate(arrays, axis=0) def GetPathsRegex(self, re_match, re_sub=r'\g<0>'): """Get a list of paths matching the given regex pattern.""" expr = re.compile(re_match) paths = set() for path in self._data_paths: match = expr.match(path) if match: paths.add(match.expand(re_sub)) return sorted(list(paths)) class _H5AioTimeCache(_H5DataCache): """Load and cache local node time.""" def __init__(self, loader): super(_H5AioTimeCache, self).__init__() self._loader = loader self._aio_time_offset = collections.defaultdict(float) def GetData(self, path): """Get the local node time associated with the given path.""" path = self._loader.GetAioHeaderPath(path) data = self._loader.GetData(path + '/timestamp').astype(long) for i in np.where(np.diff(data) < 0)[0]: data[i + 1:] += 2**32 return data.astype(float) * 1e-6 - self._aio_time_offset[path] def GetOffset(self, path): """Get the local node time offset assicated with the given path.""" path = self._loader.GetAioHeaderPath(path) return self._aio_time_offset[path] def SetOffset(self, path, offset): """Set the local node time offset assicated with the given path.""" path = self._loader.GetAioHeaderPath(path) if path in self._data_cache: self._data_cache[path] += self._aio_time_offset[path] - offset self._aio_time_offset[path] = offset def ShiftOffset(self, path, delta): """Shift the local node time offset assicated with the given path.""" offset = self.GetOffset(path) + delta self.SetOffset(path, offset) class _H5CaptureTimeCache(_H5DataCache): """Load and cache capture time.""" def __init__(self, loader): super(_H5CaptureTimeCache, self).__init__() self._loader = loader self._capture_time_offset = 0 # Offset common to all datasets. def GetData(self, path): """Get the capture time associated with the given path.""" path = self._loader.GetCaptureHeaderPath(path) tv_sec = self._loader.GetData(path + '/tv_sec').astype(float) tv_usec = self._loader.GetData(path + '/tv_usec').astype(float) return tv_sec + tv_usec * 1e-6 - self._capture_time_offset def GetOffset(self): """Get the global capture time offset.""" return self._capture_time_offset def SetOffset(self, offset): """Set the global capture time offset.""" for t in self._data_cache.itervalues(): t += self._capture_time_offset - offset self._capture_time_offset = offset def ShiftOffset(self, delta): """Shift the global capture time offset.""" offset = self.GetOffset() + delta self.SetOffset(offset) class _H5GpsTimeCache(_H5DataCache): """Load and cache GPS time.""" def __init__(self, loader): super(_H5GpsTimeCache, self).__init__() self._loader = loader self._gps_time_offset = 0 # Offset common to all datasets. self._gps_time_cal = None # Calibration from capture time to GPS time. def GetData(self, path): """Get the GPS time associated with the given path.""" if self._gps_time_cal is None: t_cap = [] t_gps = [] loader = self._loader fields = loader.GetPathsRegex( r'^messages/[^/]+/NovAtelObservations/message$') for f in fields: time_status = loader.GetData(f + '/range/timestamp/time_status') time_of_week_ms = loader.GetData(f + '/range/timestamp/tow').astype(int) pps_latency_us = loader.GetData(f + '/pps_latency_usec').astype(int) # See NovAtel OEM6 docs for "GPS Reference Time Status" on page 35. i = np.where(time_status >= 100)[0] # Validate time-of-week range. gps_week_ms = 7 * 24 * 3600 * 1000 i = i[np.where(time_of_week_ms[i] < gps_week_ms)[0]] # Validate PPS latency range. i = i[np.where(0 < pps_latency_us[i])[0]] i = i[np.where(pps_latency_us[i] < 1000 * 1000)[0]] # Remove invalid indices. cap_time = loader.GetCaptureTime(f)[i] time_of_week_ms = time_of_week_ms[i] pps_latency_us = pps_latency_us[i] # Handle GPS week rollovers. for i in np.where(np.diff(time_of_week_ms) < 0)[0]: time_of_week_ms[i + 1:] += gps_week_ms # To communicate GPS time precisely, the GPS receiver provides a pulse # per second interrupt signal that occurs on the GPS time-of-week [ms] # second transition (i.e., when time-of-week % 1000 == 0). The GPS # receiver also transmits the time-of-week value in each message. We # can then relate the reception time of any message to the time of # validity by measuring the time between the PPS interrupt and message # reception. # Data D2 valid # PPS | Data D2 received PPS # | | | | # --D19!-D0-.-D1-.-D2-.-D3-. ... .-D18.-D19!-D0-.-D1-.-D2-- ... # | |-| Transport delay # |<--------->| PPS latency # transport_delay_us = pps_latency_us - (time_of_week_ms % 1000) * 1000 # Compute times. t_cap.append(cap_time) t_gps.append(time_of_week_ms * 1e-3 + transport_delay_us * 1e-6) t_cap = np.concatenate(t_cap) t_gps = np.concatenate(t_gps) # Reject outliers. Loop multiple times to improve estimate. for _ in range(3): # Compute linear fit coefficients: (gps_time) = m * (capture_time) + b. p = np.polyfit(t_cap, t_gps, 1) # Compute error in linear fit: (delta) = (measurement) - (estimate). delta = t_gps - np.polyval(p, t_cap) # Find data with error less than 3 sigma. i = np.where(np.abs(delta) < 3.0 * np.std(delta)) t_cap = t_cap[i] t_gps = t_gps[i] self._gps_time_cal = np.polyfit(t_cap, t_gps, 1) # Evaluate linear fit: (gps_time) = m * (capture_time) + b. return np.polyval( self._gps_time_cal, self._loader.GetCaptureTime(path)) - self._gps_time_offset def GetOffset(self): """Get the global GPS time offset.""" return self._gps_time_offset def SetOffset(self, offset): """Set the global GPS time offset.""" for t in self._data_cache.itervalues(): t += self._gps_time_offset - offset self._gps_time_offset = offset def ShiftOffset(self, delta): """Shift the global GPS time offset.""" offset = self.GetOffset() + delta self.SetOffset(offset) class H5DataLoader(object): """Load and cache log data.""" def __init__(self, filenames=None): self._filenames = _NormalizeFileNames(filenames) self._data_log = _H5DataLog() self._aio_time_cache = _H5AioTimeCache(self) self._capture_time_cache = _H5CaptureTimeCache(self) self._gps_time_cache = _H5GpsTimeCache(self) self._relative_time_cache = _H5CaptureTimeCache(self) def __enter__(self): self.Open(self._filenames) return self def __exit__(self, *unused_args): self.Close() def Open(self, filenames=None): """Open HDF5 log files. Args: filenames: A list of log HDF5 files, sorted in time. """ self.Close() if filenames is not None: self._filenames = _NormalizeFileNames(filenames) if self._filenames is not None: self._data_log.Open(self._filenames) if self._data_log.GetPathsRegex('^info/min_tv_[u]?sec'): min_sec = self._data_log.GetData('info/min_tv_sec').astype(float) min_usec = self._data_log.GetData('info/min_tv_usec').astype(float) offset = min_sec + min_usec * 1e-6 self._relative_time_cache.SetOffset(offset) def Save(self, filename, verbose=False): """Save data from all input files to a single, merged HDF5.""" self._data_log.Save(filename, verbose) def Close(self): """Close all HDF5 log files and free associated memory.""" self._data_log.Close() self._filenames = [] self.ClearCached() def ClearCached(self): """Free cached memory.""" for t in self.__dict__.values(): if isinstance(t, _H5DataCache): t.ClearCached() def GetData(self, path): """Get data associated with the given path.""" return self._data_log.GetData(path) def GetAioTime(self, path): """Get the local node time associated with the given path.""" return self._aio_time_cache.GetCached(self.GetAioHeaderPath(path)) def GetAioTimeOffset(self, path): """Get the local node time offset associated with the given path.""" return self._aio_time_cache.GetOffset(self.GetAioHeaderPath(path)) def SetAioTimeOffset(self, path, offset): """Set the local node time offset associated with the given path.""" self._aio_time_cache.SetOffset(self.GetAioHeaderPath(path), offset) def ShiftAioTimeOffset(self, path, delta): """Shift the local node time offset associated with the given path.""" self._aio_time_cache.ShiftOffset(self.GetAioHeaderPath(path), delta) def GetCaptureTime(self, path): """Get the capture time associated with the given path.""" return self._capture_time_cache.GetCached(self.GetCaptureHeaderPath(path)) def GetCaptureTimeOffset(self): """Get the global capture time offset.""" return self._capture_time_cache.GetOffset() def SetCaptureTimeOffset(self, offset): """Set the global capture time offset.""" self._capture_time_cache.SetOffset(offset) def ShiftCaptureTimeOffset(self, delta): """Shift the global capture time offset.""" self._capture_time_cache.ShiftOffset(delta) def GetGpsTime(self, path): """Get the GPS time associated with the given path.""" return self._gps_time_cache.GetCached(self.GetCaptureHeaderPath(path)) def GetGpsTimeOffset(self): """Get the global GPS time offset.""" return self._gps_time_cache.GetOffset() def SetGpsTimeOffset(self, offset): """Set the global GPS time offset.""" self._gps_time_cache.SetOffset(offset) def ShiftGpsTimeOffset(self, delta): """Shift the global GPS time offset.""" self._gps_time_cache.ShiftOffset(delta) def GetRelativeTime(self, path): """Get the relative time associated with the given path.""" return self._relative_time_cache.GetCached(self.GetCaptureHeaderPath(path)) def GetRelativeTimeOffset(self): """Get the global relative time offset.""" return self._relative_time_cache.GetOffset() def SetRelativeTimeOffset(self, offset): """Set the global relative time offset.""" self._relative_time_cache.SetOffset(offset) def ShiftRelativeTimeOffset(self, delta): """Shift the global relative time offset.""" self._relative_time_cache.ShiftOffset(delta) def GetAioHeaderPath(self, path): """Get the AioHeader base path from the given path.""" if not self.IsMessagePath(path): raise ValueError('Invalid path specified:', path) return '/'.join(path.split('/')[0:3] + ['aio_header']) def GetCaptureHeaderPath(self, path): """Get the CaptureHeader base path from the given path.""" if not self.IsMessagePath(path): raise ValueError('Invalid path specified:', path) return '/'.join(path.split('/')[0:3] + ['capture_header']) def IsNodePath(self, path): """Determine if the path contains a valid node path.""" return re.match(r'^messages/[^/]+(/.+)?$', path) def IsMessagePath(self, path): """Determine if the path contains a valid message path.""" return re.match(r'^messages/[^/]+/[^/]+(/.+)?$', path) def IsDataPath(self, path): """Determine if the path contains a valid data path.""" return re.match(r'^messages/[^/]+/[^/]+/message/.+$', path) def GetPathsRegex(self, re_match, re_sub=r'\g<0>'): """Get a list of paths matching the given regex pattern.""" return self._data_log.GetPathsRegex(re_match, re_sub) def GetNodeName(self, path): """Get the node name associated with the given path.""" if not self.IsNodePath(path): raise ValueError('Invalid path specified:', path) return path.split('/')[1] def GetMessageName(self, path): """Get the message name associated with the given path.""" if not self.IsMessagePath(path): raise ValueError('Invalid path specified:', path) return path.split('/')[2] def GetDataName(self, path): """Get the data field name associated with the given path.""" if not self.IsDataPath(path): raise ValueError('Invalid path specified:', path) return path.split('/', 4)[4:] @property def filenames(self): """Get HDF5 file names.""" return self._filenames class H5DataDict(object): """Creates a path abstraction to the H5DataLoader object.""" def __init__(self, loader, get_data_function, re_match_sub_dict): """Initialize the H5DataDict object. Args: loader: A H5DataLoader object. get_data_function: A H5DataLoader function to map self.GetData(). re_match_sub_dict: A dict mapping path regex pattern to substitution. """ self._loader = loader self._get_data_function = get_data_function self._re_match_sub_dict = re_match_sub_dict self._dict = {} def BuildDict(self): """Build the dictionary of data paths.""" self._dict = {} for re_match, re_sub in self._re_match_sub_dict.iteritems(): expr = re.compile(re_match) for path in self._loader.GetPathsRegex(expr): self._dict[expr.sub(re_sub, path)] = path def GetPathsRegex(self, pattern): """Get a list of paths matching the given regex pattern.""" expr = re.compile(pattern) return sorted([f for f in self._dict if expr.match(f)]) def GetPaths(self, prefix): """Get a list of paths with the given prefix.""" return self.GetPathsRegex(r'^(' + prefix + r')(/.+)?$') def GetSubpaths(self, prefix, recursive=False): """Get a list of subpaths of the given prefix.""" if recursive: return self.GetPathsRegex(r'^(' + prefix + r')/.+$') else: return self.GetPathsRegex(r'^(' + prefix + r')/[^/]+$') def GetData(self, path): """Get data associated with the given path.""" return self._get_data_function(self._dict[path]) def GetAioTime(self, path): """Get the local node time associated with the given path.""" return self._loader.GetAioTime(self._dict[path]) def GetAioTimeOffset(self, path): """Get the local node time offset associated with the given path.""" return self._loader.GetAioTimeOffset(self._dict[path]) def SetAioTimeOffset(self, path, offset): """Set the local node time offset associated with the given path.""" self._loader.SetAioTimeOffset(self._dict[path], offset) def ShiftAioTimeOffset(self, path, delta): """Shift the local node time offset associated with the given path.""" self._loader.ShiftAioTimeOffset(self._dict[path], delta) def GetCaptureTime(self, path): """Get the capture time associated with the given path.""" return self._loader.GetCaptureTime(self._dict[path]) def GetCaptureTimeOffset(self): """Get the global capture time offset.""" return self._loader.GetCaptureTimeOffset() def SetCaptureTimeOffset(self, offset): """Set the global capture time offset.""" self._loader.SetCaptureTimeOffset(offset) def ShiftCaptureTimeOffset(self, delta): """Shift the global capture time offset.""" self._loader.ShiftCaptureTimeOffset(delta) def GetGpsTime(self, path): """Get the GPS time associated with the given path.""" return self._loader.GetGpsTime(self._dict[path]) def GetGpsTimeOffset(self): """Get the global GPS time offset.""" return self._loader.GetGpsTimeOffset() def SetGpsTimeOffset(self, offset): """Set the global GPS time offset.""" self._loader.SetGpsTimeOffset(offset) def ShiftGpsTimeOffset(self, delta): """Shift the global GPS time offset.""" self._loader.ShiftGpsTimeOffset(delta) def GetRelativeTime(self, path): """Get the relative time associated with the given path.""" return self._loader.GetRelativeTime(self._dict[path]) def GetRelativeTimeOffset(self): """Get the global relative time offset.""" return self._loader.GetRelativeTimeOffset() def SetRelativeTimeOffset(self, offset): """Set the global relative time offset.""" self._loader.SetRelativeTimeOffset(offset) def ShiftRelativeTimeOffset(self, delta): """Shift the global relative time offset.""" self._loader.ShiftRelativeTimeOffset(delta) def GetNodeName(self, path): """Get the node name associated with the given path.""" return self._loader.GetNodeName(self._dict[path]) def GetMessageName(self, path): """Get the message name associated with the given path.""" return self._loader.GetMessageName(self._dict[path]) def GetDataName(self, path): """Get the data field name associated with the given path.""" return self._loader.GetDataName(self._dict[path]) def keys(self): # pylint: disable=invalid-name """Get all possible paths, used for dictionary self[] auto-completion.""" return sorted(self._dict.keys()) def __contains__(self, path): """Provide 'in' interface.""" return path in self._dict def __getitem__(self, path): """Provide self[] dictionary access to data.""" return self.GetData(path) class H5LogLoader(H5DataDict): """Abstract a HDF5 log files to simplify interface.""" def __init__(self, filenames=None): self._data_loader = H5DataLoader(filenames) super(H5LogLoader, self).__init__( self._data_loader, self._data_loader.GetData, { r'^messages/([^/]+/[^/]+)$': r'\1', r'^messages/([^/]+/[^/]+)/message/(.+)$': r'\1/\2', }) self._aio_header_dict = H5DataDict( self._data_loader, self._data_loader.GetData, { r'^messages/([^/]+/[^/]+)$': r'\1', r'^messages/([^/]+/[^/]+)/aio_header/(.+)$': r'\1/\2', }) self._aio_time_dict = H5DataDict( self._data_loader, self._data_loader.GetAioTime, {r'^messages/([^/]+/[^/]+)$': r'\1'}) self._bad_packets_dict = H5DataDict( self._data_loader, self._data_loader.GetData, {r'^bad_packets/(.+)$': r'\1'}) self._capture_header_dict = H5DataDict( self._data_loader, self._data_loader.GetData, { r'^messages/([^/]+/[^/]+)$': r'\1', r'^messages/([^/]+/[^/]+)/capture_header/(.+)$': r'\1/\2', }) self._capture_time_dict = H5DataDict( self._data_loader, self._data_loader.GetCaptureTime, {r'^messages/([^/]+/[^/]+)$': r'\1'}) self._gps_time_dict = H5DataDict( self._data_loader, self._data_loader.GetGpsTime, {r'^messages/([^/]+/[^/]+)$': r'\1'}) self._info_dict = H5DataDict( self._data_loader, self._data_loader.GetData, {r'^info/(.+)$': r'\1'}) self._relative_time_dict = H5DataDict( self._data_loader, self._data_loader.GetRelativeTime, {r'^messages/([^/]+/[^/]+)$': r'\1'}) self._param_dict = H5DataDict( self._data_loader, self._data_loader.GetData, {r'^parameters/(.+)$': r'\1'}) def __enter__(self): self.Open() return self def __exit__(self, *unused_args): self.Close() def Open(self, filenames=None): """Open HDF5 log files. Args: filenames: A list of log HDF5 files, sorted in time. """ self._data_loader.Open(filenames) self.BuildDict() def Save(self, filename, verbose=False): """Save data from all input files to a single, merged HDF5.""" self._data_loader.Save(filename, verbose) def Close(self): """Close all HDF5 log files and free associated memory.""" self._data_loader.Close() self.ClearCached() self.BuildDict() def ClearCached(self): """Free cached memory.""" self._data_loader.ClearCached() def BuildDict(self): """Build the dictionaries of data paths.""" super(H5LogLoader, self).BuildDict() for t in self.__dict__.values(): if isinstance(t, H5DataDict): t.BuildDict() def GetNodes(self): """Get a list of nodes found in the log file.""" pattern = r'^messages/([^/]+)/[^/]+/.+' return self._data_loader.GetPathsRegex(pattern, r'\1') def GetMessageTypes(self, node=r'[^/]+'): """Get a list of message types found in the log file.""" pattern = r'^messages/' + node + r'/([^/]+)/.+$' return self._data_loader.GetPathsRegex(pattern, r'\1') @property def filenames(self): """Get HDF5 file names.""" return self._data_loader.filenames @property def aio_header(self): return self._aio_header_dict @property def aio_time(self): return self._aio_time_dict @property def bad_packets(self): return self._bad_packets_dict @property def capture_header(self): return self._capture_header_dict @property def capture_time(self): return self._capture_time_dict @property def data(self): return self @property def gps_time(self): return self._gps_time_dict @property def info(self): return self._info_dict @property def param(self): return self._param_dict @property def relative_time(self): return self._relative_time_dict
fbeecaa4293179be24399fb4bb5c7eee64229141
50a8c057fd6d8cd0ec96ca9b79c9328432335650
/ubisqsh.py
e945ad61a8de0c5092e765f01c13e8f9f6c84a5b
[ "MIT" ]
permissive
KurSh/qc_modem_tools
ee804b566f83e30dde13e4aaf2f55e1a95c74fda
fce2f00e226f0fce82f064d218bf6adb70ea8647
refs/heads/master
2023-07-07T19:16:43.556182
2020-12-25T20:25:52
2020-12-25T20:25:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,643
py
#!/usr/bin/env python3 from struct import unpack import os,sys def parse_ubihdr(rf): curpos=rf.tell() magic = rf.read(4) if magic == b"UBI#": rf.seek(curpos+0x10) hdrsize = unpack(">I", rf.read(4))[0] blksize = unpack(">I", rf.read(4))[0] data = unpack(">I", rf.read(4))[0] rf.seek(curpos+0x3C) crc = unpack(">I", rf.read(4))[0] rf.seek(curpos) return [hdrsize,blksize,data,crc] def parse_ubihdr2(rf): curpos=rf.tell() magic = rf.read(4) if magic == b"UBI!": flag = unpack("<I", rf.read(4))[0] rf.seek(curpos+0xC) blk = unpack(">I", rf.read(4))[0] rf.seek(curpos + 0x3C) crc = unpack(">I", rf.read(4))[0] rf.seek(curpos) return [flag,blk,crc] def main(): if len(sys.argv)<2: print("Usage: ubisqsh.py <filename>") sys.exit() filename=sys.argv[1] with open(filename,'rb') as rf: with open(filename+".out","wb") as wf: pos=0 while pos<os.stat(filename).st_size: hdrsize,blksize,data,crc=parse_ubihdr(rf) rf.seek(pos+hdrsize) flag,blk,crc=parse_ubihdr2(rf) if flag&0xF000000==0: print(f"Blk %d Flag %x WR" %(blk,flag)) rf.seek(pos + blksize) rdata=rf.read(0x40000-blksize) wf.write(rdata) else: print(f"Blk %d Flag %x SK" %(blk,flag)) rf.seek(pos+0x40000) pos+=0x40000 print("Done.") if __name__=="__main__": main()
781782dc9fc9bab7ca93ae38f17db36d6e004b67
bae5f696b76af428fb5555c147c4f1bcff1bb62e
/metalearn/examples/evaluate_test_data_envs.py
1f25c6c717085714ed0519ac4b1425fe888f373f
[ "MIT" ]
permissive
cosmicBboy/ml-research
1e309f881f9810e7a82a262d625db5d684752705
04fd31f68e7a44152caf6eaaf66ab59f136dd8f5
refs/heads/master
2021-01-24T09:58:25.662826
2020-08-10T22:08:23
2020-08-10T22:08:23
123,030,133
8
4
MIT
2019-06-29T20:13:37
2018-02-26T21:03:02
Jupyter Notebook
UTF-8
Python
false
false
2,129
py
"""Evaluate controller after training.""" import joblib import pandas as pd import os import torch from pathlib import Path from metalearn.metalearn_controller import MetaLearnController from metalearn.inference.inference_engine import CASHInference from metalearn.task_environment import TaskEnvironment from metalearn.data_environments import openml_api, sklearn_classification build_path = Path(os.path.dirname(__file__)) / ".." / "floyd_outputs" / "225" controller = MetaLearnController.load(build_path / "controller_trial_0.pt") experiment_results = pd.read_csv( build_path / "rnn_metalearn_controller_experiment.csv") base_mlf_path = build_path / "metalearn_controller_mlfs_trial_0" # get top 10 best mlfs for each data env across all episodes. best_mlf_episodes = ( experiment_results .groupby("data_env_names") .apply(lambda df: ( df.sort_values("best_validation_scores", ascending=False).head(10))) ["episode"] .reset_index(level=1, drop=True) ) # a dict mapping datasets to the top 10 mlfs found for those datasets. best_mlfs = ( best_mlf_episodes.map( lambda x: joblib.load(base_mlf_path / ("best_mlf_episode_%d.pkl" % x))) .groupby("data_env_names") .apply(lambda x: list(x)) .to_dict() ) sklearn_data_envs = sklearn_classification.envs() openml_data_envs = openml_api.classification_envs() torch.manual_seed(10) task_env = TaskEnvironment( env_sources=["OPEN_ML", "SKLEARN"], test_set_config={"OPEN_ML": {"test_size": 0.8, "random_state": 100}}, random_state=100, enforce_limits=True, per_framework_time_limit=720, per_framework_memory_limit=10000, dataset_names=list(sklearn_data_envs.keys()), test_dataset_names=list(openml_data_envs.keys()), error_reward=0, target_types=["BINARY", "MULTICLASS"]) inference_engine = CASHInference(controller, task_env) # evaluate controller on test data environments train_env_results = inference_engine.evaluate_training_data_envs( n=1, datasets=sklearn_data_envs.keys(), verbose=True) test_env_results = inference_engine.evaluate_test_data_envs(n=50, verbose=True)
db4c205a1c301818753f25df685020906cb5d83c
7dccf283800b0b47aece8dc7f0c209f5fea527a2
/ROCC/fitted_Q_iteration/fitted_Q_agents.py
20ceb89aad9f568488536eed458b0c1b942392ae
[ "MIT" ]
permissive
ucl-cssb/ROCC
4e713f513a96390c64df23eb414d8a8e374431cb
e7491672bcafc0fac08fe750829e4fac2805d35a
refs/heads/master
2021-07-10T14:53:31.150305
2020-11-17T09:58:01
2020-11-17T09:58:01
218,557,979
13
1
null
2020-11-17T09:57:37
2019-10-30T15:20:47
Python
UTF-8
Python
false
false
10,912
py
import sys import os import numpy as np import tensorflow as tf import math import random from tensorflow import keras ''' import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F ''' import matplotlib.pyplot as plt class FittedQAgent(): ''' abstract class for the Torch and Keras implimentations, dont use directly ''' def get_action(self, state, explore_rate): ''' Choses action based on enivormental state, explore rate and current value estimates Parameters: state: environmental state explore_rate Returns: action ''' if np.random.random() < explore_rate: action = np.random.choice(range(self.layer_sizes[-1])) else: values = self.predict(state) self.values.append(values) action = np.argmax(values) assert action < self.n_actions, 'Invalid action' return action def get_inputs_targets(self): ''' gets fitted Q inputs and calculates targets for training the Q-network for episodic training ''' inputs = [] targets = [] # DO THIS WITH NUMPY TO MAKE IT FASTER for trajectory in self.memory: for transition in trajectory: # CHEKC TARGET IS BUILT CORRECTLY state, action, cost, next_state, done = transition inputs.append(state) # construct target values = self.predict(state) next_values = self.predict(next_state) assert len(values) == self.n_actions, 'neural network returning wrong number of values' assert len(next_values) == self.n_actions, 'neural network returning wrong number of values' #update the value for the taken action using cost function and current Q if not done: values[action] = cost + self.gamma*np.max(next_values) # could introduce step size here, maybe not needed for neural agent else: values[action] = cost targets.append(values) # shuffle inputs and target for IID inputs, targets = np.array(inputs), np.array(targets) randomize = np.arange(len(inputs)) np.random.shuffle(randomize) inputs = inputs[randomize] targets = targets[randomize] assert inputs.shape[1] == self.state_size, 'inputs to network wrong size' assert targets.shape[1] == self.n_actions, 'targets for network wrong size' return inputs, targets def fitted_Q_update(self, inputs = None, targets = None): ''' Uses a set of inputs and targets to update the Q network ''' if inputs is None and targets is None: inputs, targets = self.get_inputs_targets() # #tf.initialize_all_variables() # resinitialise netowrk without adding to tensorflow graph # try RMSprop and adam and maybe some from here https://arxiv.org/abs/1609.04747 self.reset_weights() history = self.fit(inputs, targets) #print('losses: ', history.history['loss'][0], history.history['loss'][-1]) return history def run_episode(self, env, explore_rate, tmax, train = True, remember = True): ''' Runs one fitted Q episode Parameters: env: the enirovment to train on and control explore_rate: explore rate for this episodes tmax: number of timesteps in the episode train: does the agent learn? remember: does the agent store eperience in its memory? Returns: env.sSol: time evolution of environmental states episode reward: total reward for this episode ''' # run trajectory with current policy and add to memory trajectory = [] actions = [] #self.values = [] state = env.get_state() episode_reward = 0 self.single_ep_reward = [] for i in range(tmax): action = self.get_action(state, explore_rate) actions.append(action) next_state, reward, done, info = env.step(action) #cost = -cost # as cartpole default returns a reward assert len(next_state) == self.state_size, 'env return state of wrong size' self.single_ep_reward.append(reward) if done: print(reward) # scale populations transition = (state, action, reward, next_state, done) state = next_state trajectory.append(transition) episode_reward += reward if done: break if remember: self.memory.append(trajectory) if train: self.actions = actions self.episode_lengths.append(i) self.episode_rewards.append(episode_reward) if len(self.memory[0]) * len(self.memory) < 100: #n_iters = 4 n_iters = 4 elif len(self.memory[0]) * len(self.memory) < 200: #n_iters = 5 n_iters = 5 else: n_iters = 10 #n_iters = 0 for _ in range(n_iters): self.fitted_Q_update() #env.plot_trajectory() #plt.show() return env.sSol, episode_reward def neural_fitted_Q(self, env, n_episodes, tmax): ''' runs a whole neural fitted Q experiment Parameters: env: environment to train on n_episodes: number of episodes tmax: timesteps in each episode ''' times = [] for i in range(n_episodes): print() print('EPISODE', i) # CONSTANT EXPLORE RATE OF 0.1 worked well explore_rate = self.get_rate(i, 0, 1, 2.5) #explore_rate = 0.1 #explore_rate = 0 print('explore_rate:', explore_rate) env.reset() trajectory, reward = self.run_episode(env, explore_rate, tmax) time = len(trajectory) print('Time: ', time) times.append(time) print(times) def plot_rewards(self): ''' Plots the total reward gained in each episode on a matplotlib figure ''' plt.figure(figsize = (16.0,12.0)) plt.plot(self.episode_rewards) def save_results(self, save_path): ''' saves numpy arrays of results of training ''' np.save(save_path + '/survival_times', self.episode_lengths) np.save(save_path + '/episode_rewards', self.episode_rewards) def get_rate(self, episode, MIN_LEARNING_RATE, MAX_LEARNING_RATE, denominator): ''' Calculates the logarithmically decreasing explore or learning rate Parameters: episode: the current episode MIN_LEARNING_RATE: the minimum possible step size MAX_LEARNING_RATE: maximum step size denominator: controls the rate of decay of the step size Returns: step_size: the Q-learning step size ''' # input validation if not 0 <= MIN_LEARNING_RATE <= 1: raise ValueError("MIN_LEARNING_RATE needs to be bewteen 0 and 1") if not 0 <= MAX_LEARNING_RATE <= 1: raise ValueError("MAX_LEARNING_RATE needs to be bewteen 0 and 1") if not 0 < denominator: raise ValueError("denominator needs to be above 0") rate = max(MIN_LEARNING_RATE, min(MAX_LEARNING_RATE, 1.0 - math.log10((episode+1)/denominator))) return rate class KerasFittedQAgent(FittedQAgent): def __init__(self, layer_sizes = [2,20,20,4]): self.memory = [] self.layer_sizes = layer_sizes self.network = self.initialise_network(layer_sizes) self.gamma = 0.9 self.state_size = layer_sizes[0] self.n_actions = layer_sizes[-1] self.episode_lengths = [] self.episode_rewards = [] self.single_ep_reward = [] self.total_loss = 0 self.values = [] def initialise_network(self, layer_sizes): ''' Creates Q network ''' tf.keras.backend.clear_session() initialiser = keras.initializers.RandomUniform(minval = -0.5, maxval = 0.5, seed = None) positive_initialiser = keras.initializers.RandomUniform(minval = 0., maxval = 0.35, seed = None) regulariser = keras.regularizers.l1_l2(l1=0.01, l2=0.01) network = keras.Sequential([ keras.layers.InputLayer([layer_sizes[0]]), keras.layers.Dense(layer_sizes[1], activation = tf.nn.relu), keras.layers.Dense(layer_sizes[2], activation = tf.nn.relu), keras.layers.Dense(layer_sizes[3]) # linear output layer ]) network.compile(optimizer = 'adam', loss = 'mean_squared_error') # TRY DIFFERENT OPTIMISERS return network def predict(self, state): ''' Predicts value estimates for each action base on currrent states ''' return self.network.predict(state.reshape(1,-1))[0] def fit(self, inputs, targets): ''' trains the Q network on a set of inputs and targets ''' history = self.network.fit(inputs, targets, epochs = 300, verbose = 0) # TRY DIFFERENT EPOCHS return history def reset_weights(model): ''' Reinitialises weights to random values ''' sess = tf.keras.backend.get_session() sess.run(tf.global_variables_initializer()) def save_network(self, save_path): ''' Saves current network weights ''' self.network.save(save_path + '/saved_network.h5') def save_network_tensorflow(self, save_path): ''' Saves current network weights using pure tensorflow, kerassaver seems to crash sometimes ''' saver = tf.train.Saver() sess = tf.keras.backend.get_session() path = saver.save(sess, save_path + "/saved/model.cpkt") def load_network_tensorflow(self, save_path): ''' Loads network weights from file using pure tensorflow, kerassaver seems to crash sometimes ''' saver = tf.train.Saver() sess = tf.keras.backend.get_session() saver.restore(sess, save_path +"/saved/model.cpkt") def load_network(self, load_path): #tested ''' Loads network weights from file ''' try: self.network = keras.models.load_model(load_path + '/saved_network.h5') # sometimes this crashes, apparently a bug in keras except: self.network.load_weights(load_path + '/saved_network.h5') # this requires model to be initialised exactly the same
5249a6811fad92b075afe3535e1eb24bef84ca78
f2befaae3840bafd181cc712108e3b64caf2696f
/app/portal/horizon/openstack_dashboard/dashboards/settings/user/panel.py
9b9781eb0b3ae92466380018fce619077f697488
[ "Apache-2.0", "LicenseRef-scancode-generic-cla" ]
permissive
F5Networks/f5-adcaas-openstack
17d5c408d421dcfe542002e1f850b2d9f29f1663
02bd8a606215c0fa08b926bac1b092b5e8b278df
refs/heads/master
2023-08-28T12:09:54.972191
2022-08-12T02:03:43
2022-08-12T02:03:43
164,592,273
4
23
Apache-2.0
2022-08-12T02:03:44
2019-01-08T07:40:35
Python
UTF-8
Python
false
false
863
py
# Copyright 2012 Nebula, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from django.utils.translation import ugettext_lazy as _ import horizon from openstack_dashboard.dashboards.settings import dashboard class UserPanel(horizon.Panel): name = _("User Settings") slug = 'user' dashboard.Settings.register(UserPanel)
f8e584f21699ce5bf51c3992ef099f5f3548d4d1
52fb627ec952bf647c625f9372581bff4764da76
/wo_websocket.py
71f69201f610ea526be8c98ac46edded4b559f1b
[]
no_license
syyunn/smpc-dl
b89071d277347e28979973e734b329f51020a6b0
41bd40ef7866062a53fb20bcff994c51f38f38d5
refs/heads/master
2020-08-06T00:17:01.474179
2019-10-05T16:39:14
2019-10-05T16:39:14
212,768,083
0
0
null
null
null
null
UTF-8
Python
false
false
5,515
py
import time import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms import syft as sy hook = sy.TorchHook(torch) class Arguments(): def __init__(self): self.batch_size = 64 self.test_batch_size = 64 self.epochs = 10 self.lr = 0.02 self.seed = 1 self.log_interval = 1 # Log info at each batch self.precision_fractional = 3 args = Arguments() _ = torch.manual_seed(args.seed) # simulation functions def connect_to_workers(n_workers): return [ sy.VirtualWorker(hook, id=f"worker{i+1}") for i in range(n_workers) ] def connect_to_crypto_provider(): return sy.VirtualWorker(hook, id="crypto_provider") workers = connect_to_workers(n_workers=2) crypto_provider = connect_to_crypto_provider() # We don't use the whole dataset for efficiency purpose, but feel free to increase these numbers n_train_items = 640 n_test_items = 640 def get_private_data_loaders(precision_fractional, workers, crypto_provider): def one_hot_of(index_tensor): """ Transform to one hot tensor Example: [0, 3, 9] => [[1., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 1., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 1.]] """ onehot_tensor = torch.zeros(*index_tensor.shape, 10) # 10 classes for MNIST onehot_tensor = onehot_tensor.scatter(1, index_tensor.view(-1, 1), 1) return onehot_tensor def secret_share(tensor): """ Transform to fixed precision and secret share a tensor """ return ( tensor .fix_precision(precision_fractional=precision_fractional) .share(*workers, crypto_provider=crypto_provider, requires_grad=True) ) transformation = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) train_loader = torch.utils.data.DataLoader( datasets.MNIST('../data', train=True, download=True, transform=transformation), batch_size=args.batch_size ) private_train_loader = [ (secret_share(data), secret_share(one_hot_of(target))) for i, (data, target) in enumerate(train_loader) if i < n_train_items / args.batch_size ] test_loader = torch.utils.data.DataLoader( datasets.MNIST('../data', train=False, download=True, transform=transformation), batch_size=args.test_batch_size ) private_test_loader = [ (secret_share(data), secret_share(target.float())) for i, (data, target) in enumerate(test_loader) if i < n_test_items / args.test_batch_size ] return private_train_loader, private_test_loader private_train_loader, private_test_loader = get_private_data_loaders( precision_fractional=args.precision_fractional, workers=workers, crypto_provider=crypto_provider) class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(28 * 28, 128) self.fc2 = nn.Linear(128, 64) self.fc3 = nn.Linear(64, 10) def forward(self, x): x = x.view(-1, 28 * 28) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x def train(args, model, private_train_loader, optimizer, epoch): model.train() for batch_idx, (data, target) in enumerate( private_train_loader): # <-- now it is a private dataset start_time = time.time() optimizer.zero_grad() output = model(data) # loss = F.nll_loss(output, target) <-- not possible here batch_size = output.shape[0] loss = ((output - target) ** 2).sum().refresh() / batch_size loss.backward() optimizer.step() if batch_idx % args.log_interval == 0: loss = loss.get().float_precision() print( 'Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tTime: {:.3f}s'.format( epoch, batch_idx * args.batch_size, len(private_train_loader) * args.batch_size, 100. * batch_idx / len(private_train_loader), loss.item(), time.time() - start_time)) def test(args, model, private_test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in private_test_loader: start_time = time.time() output = model(data) pred = output.argmax(dim=1) correct += pred.eq(target.view_as(pred)).sum() correct = correct.get().float_precision() print('\nTest set: Accuracy: {}/{} ({:.0f}%)\n'.format( correct.item(), len(private_test_loader) * args.test_batch_size, 100. * correct.item() / (len( private_test_loader) * args.test_batch_size))) model = Net() model = model.fix_precision().share(*workers, crypto_provider=crypto_provider, requires_grad=True) optimizer = optim.SGD(model.parameters(), lr=args.lr) optimizer = optimizer.fix_precision() for epoch in range(1, args.epochs + 1): train(args, model, private_train_loader, optimizer, epoch) test(args, model, private_test_loader)
60738160b15b49779d9eaf9e8d83139fd7afa508
6b2a8dd202fdce77c971c412717e305e1caaac51
/solutions_5636311922769920_0/Python/sleepingfire/d.py
ba96e3d60f9df7e644e9b38c0dc4523c1c6882bd
[]
no_license
alexandraback/datacollection
0bc67a9ace00abbc843f4912562f3a064992e0e9
076a7bc7693f3abf07bfdbdac838cb4ef65ccfcf
refs/heads/master
2021-01-24T18:27:24.417992
2017-05-23T09:23:38
2017-05-23T09:23:38
84,313,442
2
4
null
null
null
null
UTF-8
Python
false
false
988
py
import sys, os, math def main(K, C, S): minimum = math.ceil(K / C) if minimum > S: return "IMPOSSIBLE" cs = [1] * (C + 1) for i in range(1, C+1): cs[i] = C * cs[i-1] tiles = [] idx = 1 depth = 0 for k in range(1, math.ceil(K / C) * C + 1): idx = (idx - 1) * K + min(k, K) #print(k, depth, idx) depth += 1 if depth == C: tiles.append(idx) idx = 1 depth = 0 return tiles if __name__ == "__main__": in_path = "test.in" if len(sys.argv) == 1 else sys.argv[1] in_file = open(in_path, 'r') T = int(in_file.readline().rstrip()) for case_idx in range(T): K, C, S = [int(z) for z in in_file.readline().rstrip().split()] res = main(K, C, S) if isinstance(res, list): print("Case #{}: {}".format(case_idx + 1, " ".join([str(z) for z in res]))) else: print("Case #{}: {}".format(case_idx + 1, res))
a24387d89088254301d368ebf2e5e55d143a8c4c
0f0f8b3b027f412930ca1890b0666538358a2807
/dotop/addons/base/tests/test_translate.py
c61011c1179ece9a596ac5d562a30db71e6c1d7e
[]
no_license
konsoar/dotop_pos_v11
741bd5ca944dfd52eb886cab6f4b17b6d646e131
576c860917edd25661a72726d0729c769977f39a
refs/heads/master
2021-09-06T13:25:34.783729
2018-02-07T02:11:12
2018-02-07T02:11:12
111,168,355
0
0
null
null
null
null
UTF-8
Python
false
false
9,651
py
# -*- coding: utf-8 -*- # Part of dotop. See LICENSE file for full copyright and licensing details. import unittest from dotop.tools.translate import quote, unquote, xml_translate, html_translate from dotop.tests.common import TransactionCase class TranslationToolsTestCase(unittest.TestCase): def test_quote_unquote(self): def test_string(str): quoted = quote(str) #print "\n1:", repr(str) #print "2:", repr(quoted) unquoted = unquote("".join(quoted.split('"\n"'))) #print "3:", repr(unquoted) self.assertEquals(str, unquoted) test_string("""test \nall kinds\n \n o\r \\\\ nope\n\n" """) # The ones with 1+ backslashes directly followed by # a newline or literal N can fail... we would need a # state-machine parser to handle these, but this would # be much slower so it's better to avoid them at the moment self.assertRaises(AssertionError, quote, """test \nall kinds\n\no\r \\\\nope\n\n" """) def test_translate_xml_base(self): """ Test xml_translate() without formatting elements. """ terms = [] source = """<form string="Form stuff"> <h1>Blah blah blah</h1> Put some more text here <field name="foo"/> </form>""" result = xml_translate(terms.append, source) self.assertEquals(result, source) self.assertItemsEqual(terms, ['Form stuff', 'Blah blah blah', 'Put some more text here']) def test_translate_xml_text(self): """ Test xml_translate() on plain text. """ terms = [] source = "Blah blah blah" result = xml_translate(terms.append, source) self.assertEquals(result, source) self.assertItemsEqual(terms, [source]) def test_translate_xml_text_entity(self): """ Test xml_translate() on plain text with HTML escaped entities. """ terms = [] source = "Blah&amp;nbsp;blah&amp;nbsp;blah" result = xml_translate(terms.append, source) self.assertEquals(result, source) self.assertItemsEqual(terms, [source]) def test_translate_xml_inline1(self): """ Test xml_translate() with formatting elements. """ terms = [] source = """<form string="Form stuff"> <h1>Blah <i>blah</i> blah</h1> Put some <b>more text</b> here <field name="foo"/> </form>""" result = xml_translate(terms.append, source) self.assertEquals(result, source) self.assertItemsEqual(terms, ['Form stuff', 'Blah <i>blah</i> blah', 'Put some <b>more text</b> here']) def test_translate_xml_inline2(self): """ Test xml_translate() with formatting elements embedding other elements. """ terms = [] source = """<form string="Form stuff"> <b><h1>Blah <i>blah</i> blah</h1></b> Put <em>some <b>more text</b></em> here <field name="foo"/> </form>""" result = xml_translate(terms.append, source) self.assertEquals(result, source) self.assertItemsEqual(terms, ['Form stuff', 'Blah <i>blah</i> blah', 'Put <em>some <b>more text</b></em> here']) def test_translate_xml_inline3(self): """ Test xml_translate() with formatting elements without actual text. """ terms = [] source = """<form string="Form stuff"> <div> <span class="before"/> <h1>Blah blah blah</h1> <span class="after"> <i class="hack"/> </span> </div> </form>""" result = xml_translate(terms.append, source) self.assertEquals(result, source) self.assertItemsEqual(terms, ['Form stuff', 'Blah blah blah']) def test_translate_xml_t(self): """ Test xml_translate() with t-* attributes. """ terms = [] source = """<t t-name="stuff"> stuff before <span t-field="o.name"/> stuff after </t>""" result = xml_translate(terms.append, source) self.assertEquals(result, source) self.assertItemsEqual(terms, ['stuff before', 'stuff after']) def test_translate_xml_off(self): """ Test xml_translate() with attribute translate="off". """ terms = [] source = """<div> stuff before <div t-translation="off">Do not translate this</div> stuff after </div>""" result = xml_translate(terms.append, source) self.assertEquals(result, source) self.assertItemsEqual(terms, ['stuff before', 'stuff after']) def test_translate_xml_attribute(self): """ Test xml_translate() with <attribute> elements. """ terms = [] source = """<field name="foo" position="attributes"> <attribute name="string">Translate this</attribute> <attribute name="option">Do not translate this</attribute> </field>""" result = xml_translate(terms.append, source) self.assertEquals(result, source) self.assertItemsEqual(terms, ['Translate this']) def test_translate_xml_a(self): """ Test xml_translate() with <a> elements. """ terms = [] source = """<t t-name="stuff"> <ul class="nav navbar-nav"> <li> <a class="oe_menu_leaf" href="/web#menu_id=42&amp;action=54"> <span class="oe_menu_text">Blah</span> </a> </li> <li class="dropdown" id="menu_more_container" style="display: none;"> <a class="dropdown-toggle" data-toggle="dropdown" href="#">More <b class="caret"/></a> <ul class="dropdown-menu" id="menu_more"/> </li> </ul> </t>""" result = xml_translate(terms.append, source) self.assertEquals(result, source) self.assertItemsEqual(terms, ['<span class="oe_menu_text">Blah</span>', 'More <b class="caret"/>']) def test_translate_html(self): """ Test xml_translate() and html_translate() with <i> elements. """ source = """<i class="fa-check"></i>""" result = xml_translate(lambda term: term, source) self.assertEquals(result, """<i class="fa-check"/>""") result = html_translate(lambda term: term, source) self.assertEquals(result, source) class TestTranslation(TransactionCase): def setUp(self): super(TestTranslation, self).setUp() self.env['ir.translation'].load_module_terms(['base'], ['fr_FR']) self.customers = self.env['res.partner.category'].create({'name': 'Customers'}) self.env['ir.translation'].create({ 'type': 'model', 'name': 'res.partner.category,name', 'module':'base', 'lang': 'fr_FR', 'res_id': self.customers.id, 'value': 'Clients', 'state': 'translated', }) def test_101_create_translated_record(self): category = self.customers.with_context({}) self.assertEqual(category.name, 'Customers', "Error in basic name_get") category_fr = category.with_context({'lang': 'fr_FR'}) self.assertEqual(category_fr.name, 'Clients', "Translation not found") def test_102_duplicate_record(self): category = self.customers.with_context({'lang': 'fr_FR'}).copy() category_no = category.with_context({}) self.assertEqual(category_no.name, 'Customers', "Duplication did not set untranslated value") category_fr = category.with_context({'lang': 'fr_FR'}) self.assertEqual(category_fr.name, 'Clients', "Did not found translation for initial value") def test_103_duplicate_record_fr(self): category = self.customers.with_context({'lang': 'fr_FR'}).copy({'name': 'Clients (copie)'}) category_no = category.with_context({}) self.assertEqual(category_no.name, 'Customers', "Duplication erased original untranslated value") category_fr = category.with_context({'lang': 'fr_FR'}) self.assertEqual(category_fr.name, 'Clients (copie)', "Did not used default value for translated value") def test_104_orderby_translated_field(self): """ Test search ordered by a translated field. """ # create a category with a French translation padawans = self.env['res.partner.category'].create({'name': 'Padawans'}) padawans_fr = padawans.with_context(lang='fr_FR') padawans_fr.write({'name': 'Apprentis'}) # search for categories, and sort them by (translated) name categories = padawans_fr.search([('id', 'in', [self.customers.id, padawans.id])], order='name') self.assertEqual(categories.ids, [padawans.id, self.customers.id], "Search ordered by translated name should return Padawans (Apprentis) before Customers (Clients)")
[ "Administrator@20nuo003-PC" ]
Administrator@20nuo003-PC
b0e17c91d87c7d7e5fcc3f873986d920f6918c16
21a561ec0d40554a43dc5a6dfab0f4f62ddb615d
/canteen/base/__init__.py
aaae304df48bbcbcb386327709ca4b1e4a9c8d98
[ "MIT" ]
permissive
mindis/canteen
2745a0ebec696d1fbfcc6c4c69582711a4a7e8e6
a0cf38333417e879712394800a49eb9d0450f96f
refs/heads/master
2020-12-25T19:15:21.612088
2014-02-24T11:29:59
2014-02-24T11:29:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
479
py
# -*- coding: utf-8 -*- ''' canteen base ~~~~~~~~~~~~ :author: Sam Gammon <[email protected]> :copyright: (c) Keen IO, 2013 :license: This software makes use of the MIT Open Source License. A copy of this license is included as ``LICENSE.md`` in the root of the project. ''' # import all the things from .page import * from .logic import * from .handler import * __all__ = ( 'page', 'logic', 'handler', 'Page', 'Logic', 'Handler' )