blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
listlengths
1
1
author_id
stringlengths
1
132
1f0fd884caa02d3685d91a38f543a61d4f4c35fd
312a8fde11293cb142334a3860966ec1f75ac401
/timesketch/lib/analyzers/contrib/__init__.py
7c0d5d88fdd9c75789919c74eb42737eae4341a4
[ "Apache-2.0" ]
permissive
google/timesketch
f0fd09062a8a24bac581d2d4286d095d667d2f10
24f471b58ca4a87cb053961b5f05c07a544ca7b8
refs/heads/master
2023-08-31T21:48:19.602686
2023-08-31T11:24:17
2023-08-31T11:24:17
21,009,909
2,263
647
Apache-2.0
2023-09-14T14:08:07
2014-06-19T17:49:45
Python
UTF-8
Python
false
false
813
py
# Copyright 2022 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Contrib Analyzer module.""" from timesketch.lib.analyzers.contrib import bigquery_matcher from timesketch.lib.analyzers.contrib import misp_analyzer from timesketch.lib.analyzers.contrib import hashlookup_analyzer
abe8566f63107cd5f40e1645166a83765b1cfed1
f6b1db8c0503a292f6a1da31800269e0bb5f39bd
/web_flask/5-number_template.py
431a96556f0e1ae94db91f4d1e262f0713d039f8
[]
no_license
arleybri18/AirBnB_clone_v2
142883fde2629c7eb75dddc8e4375a9ca1714555
111cabf15cadba09f018b2fe359eec68495035dc
refs/heads/master
2020-07-07T03:44:31.456739
2019-09-09T15:16:55
2019-09-09T15:16:55
203,235,771
0
0
null
2019-08-19T19:21:54
2019-08-19T19:21:54
null
UTF-8
Python
false
false
1,069
py
#!/usr/bin/python3 """ Import flask class """ from flask import Flask, render_template app = Flask(__name__) @app.route('/') def hello(): """ Function to handle request """ return 'Hello HBNB!' @app.route('/hbnb') def hello_hbnb(): """ Function to handle request to path /hbnb """ return 'HBNB' @app.route('/c/<text>') def c_route(text): """ Function to handle request with a variable """ return 'C %s' % text.replace('_', ' ') @app.route('/python/') @app.route('/python/<text>') def python(text='is cool'): """ Function to handle request with a variable and data default """ return 'Python %s' % text.replace('_', ' ') @app.route('/number/<int:num>') def numbers(num): """ Function to handle request with a variable with specified type """ return '%d is a number' % num @app.route('/number_template/<int:num>') def numbers_temp(num): """ Function to handle request and render template""" return render_template('5-number.html', number=num) if __name__ == '__main__': app.run(host='0.0.0.0', port=5000)
178f94e8e5286eb5012579f4c8562e0b113ac483
5a1cb546cb5132cc98e8a08acc6233540bc2dd34
/forms.py
2ea5dd93c573fdf1bc0e5fea25e98bbc4f5492d8
[]
no_license
RitikaSingh02/ChitChat
75cf19e00ce6c12a35cc081e55c4e0b378ee3347
9575daf0e61ba2f20797dfadf6ba246470dafbe0
refs/heads/master
2023-05-23T21:21:25.138134
2021-06-20T19:00:43
2021-06-20T19:00:43
378,376,078
0
0
null
null
null
null
UTF-8
Python
false
false
1,741
py
from flask_wtf import FlaskForm from wtforms import StringField, PasswordField from wtforms.validators import InputRequired, Length, EqualTo, ValidationError from models import User def invalid_credentials(form, field): """ Username and password checker """ password = field.data username = form.username.data print(username, password) # Check username is invalid user_data = User.query.filter_by(username=username).first() if user_data is None: raise ValidationError("Username or password is incorrect") # Check password in invalid class RegistrationForm(FlaskForm): """ Registration form""" username = StringField('username', validators=[InputRequired(message="Username required"), Length( min=4, max=25, message="Username must be between 4 and 25 characters")]) password = PasswordField('password', validators=[InputRequired(message="Password required"), Length( min=4, max=25, message="Password must be between 4 and 25 characters")]) confirm_pswd = PasswordField('confirm_pswd', validators=[InputRequired( message="Password required"), EqualTo('password', message="Passwords must match")]) def validate_username(self, username): user_object = User.query.filter_by(username=username.data).first() if user_object: raise ValidationError( "Username already exists. Select a different username.") class LoginForm(FlaskForm): """ Login form """ username = StringField('username', validators=[ InputRequired(message="Username required")]) password = PasswordField('password', validators=[InputRequired( message="Password required"), invalid_credentials])
736e3c73364bb68691205bce0d3d43310bb53493
90419da201cd4948a27d3612f0b482c68026c96f
/sdk/python/pulumi_azure_nextgen/azuredata/v20200908preview/sql_managed_instance.py
8824bb87b76c7f442079127163d4a2a50cf216fa
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
test-wiz-sec/pulumi-azure-nextgen
cd4bee5d70cb0d332c04f16bb54e17d016d2adaf
20a695af0d020b34b0f1c336e1b69702755174cc
refs/heads/master
2023-06-08T02:35:52.639773
2020-11-06T22:39:06
2020-11-06T22:39:06
312,993,761
0
0
Apache-2.0
2023-06-02T06:47:28
2020-11-15T09:04:00
null
UTF-8
Python
false
false
8,761
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs __all__ = ['SqlManagedInstance'] class SqlManagedInstance(pulumi.CustomResource): def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, admin: Optional[pulumi.Input[str]] = None, data_controller_id: Optional[pulumi.Input[str]] = None, end_time: Optional[pulumi.Input[str]] = None, instance_endpoint: Optional[pulumi.Input[str]] = None, k8s_raw: Optional[Any] = None, last_uploaded_date: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, sql_managed_instance_name: Optional[pulumi.Input[str]] = None, start_time: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, v_core: Optional[pulumi.Input[str]] = None, __props__=None, __name__=None, __opts__=None): """ A SqlManagedInstance. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] admin: The instance admin user :param pulumi.Input[str] data_controller_id: null :param pulumi.Input[str] end_time: The instance end time :param pulumi.Input[str] instance_endpoint: The on premise instance endpoint :param Any k8s_raw: The raw kubernetes information :param pulumi.Input[str] last_uploaded_date: Last uploaded date from on premise cluster. Defaults to current date time :param pulumi.Input[str] location: The geo-location where the resource lives :param pulumi.Input[str] resource_group_name: The name of the Azure resource group :param pulumi.Input[str] sql_managed_instance_name: The name of SQL Managed Instances :param pulumi.Input[str] start_time: The instance start time :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags. :param pulumi.Input[str] v_core: The instance vCore """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['admin'] = admin __props__['data_controller_id'] = data_controller_id __props__['end_time'] = end_time __props__['instance_endpoint'] = instance_endpoint __props__['k8s_raw'] = k8s_raw __props__['last_uploaded_date'] = last_uploaded_date if location is None: raise TypeError("Missing required property 'location'") __props__['location'] = location if resource_group_name is None: raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name if sql_managed_instance_name is None: raise TypeError("Missing required property 'sql_managed_instance_name'") __props__['sql_managed_instance_name'] = sql_managed_instance_name __props__['start_time'] = start_time __props__['tags'] = tags __props__['v_core'] = v_core __props__['name'] = None __props__['system_data'] = None __props__['type'] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:azuredata/v20190724preview:SqlManagedInstance")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(SqlManagedInstance, __self__).__init__( 'azure-nextgen:azuredata/v20200908preview:SqlManagedInstance', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'SqlManagedInstance': """ Get an existing SqlManagedInstance resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() return SqlManagedInstance(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def admin(self) -> pulumi.Output[Optional[str]]: """ The instance admin user """ return pulumi.get(self, "admin") @property @pulumi.getter(name="dataControllerId") def data_controller_id(self) -> pulumi.Output[Optional[str]]: """ null """ return pulumi.get(self, "data_controller_id") @property @pulumi.getter(name="endTime") def end_time(self) -> pulumi.Output[Optional[str]]: """ The instance end time """ return pulumi.get(self, "end_time") @property @pulumi.getter(name="instanceEndpoint") def instance_endpoint(self) -> pulumi.Output[Optional[str]]: """ The on premise instance endpoint """ return pulumi.get(self, "instance_endpoint") @property @pulumi.getter(name="k8sRaw") def k8s_raw(self) -> pulumi.Output[Optional[Any]]: """ The raw kubernetes information """ return pulumi.get(self, "k8s_raw") @property @pulumi.getter(name="lastUploadedDate") def last_uploaded_date(self) -> pulumi.Output[Optional[str]]: """ Last uploaded date from on premise cluster. Defaults to current date time """ return pulumi.get(self, "last_uploaded_date") @property @pulumi.getter def location(self) -> pulumi.Output[str]: """ The geo-location where the resource lives """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ The name of the resource """ return pulumi.get(self, "name") @property @pulumi.getter(name="startTime") def start_time(self) -> pulumi.Output[Optional[str]]: """ The instance start time """ return pulumi.get(self, "start_time") @property @pulumi.getter(name="systemData") def system_data(self) -> pulumi.Output['outputs.SystemDataResponse']: """ Read only system data """ return pulumi.get(self, "system_data") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Resource tags. """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ The type of the resource. Ex- Microsoft.Compute/virtualMachines or Microsoft.Storage/storageAccounts. """ return pulumi.get(self, "type") @property @pulumi.getter(name="vCore") def v_core(self) -> pulumi.Output[Optional[str]]: """ The instance vCore """ return pulumi.get(self, "v_core") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
7ddbd53246a76a75ab59a084952c7bcf676d9df6
769843f3cb57b9a0e1c68d02637b881bd43a103b
/nanodet/model/arch/gfl.py
b39eb616f9a7f0d17203d726452db6c449690856
[]
no_license
CaptainEven/MyNanoDet
9de3165ff14140eeabb362e793d8903f93cfdf77
9f5e5835bff8854d8d8c0041a7b3288ab017d7b6
refs/heads/master
2023-02-11T13:12:59.651520
2021-01-06T06:52:11
2021-01-06T06:52:11
319,273,525
3
0
null
null
null
null
UTF-8
Python
false
false
524
py
from .one_stage import OneStage class GFL(OneStage): def __init__(self, backbone_cfg, fpn_cfg, head_cfg, ): """ :param backbone_cfg: :param fpn_cfg: :param head_cfg: """ super(GFL, self).__init__(backbone_cfg, fpn_cfg, head_cfg) def forward(self, x): x = self.backbone(x) x = self.fpn(x) x = self.head(x) return x
db47d5fc38a06024d4c392f065371e46135a7707
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03608/s871426346.py
ab335095f513950ba52948b0a955d92571997d3a
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
514
py
from scipy.sparse.csgraph import floyd_warshall import numpy as np from itertools import permutations, combinations n,m,R = map(int,input().split()) r=list(map(int,input().split())) for i in range(R): r[i]-=1 d = np.zeros((n,n)) # 入力 for i in range(m): a,b,c = map(int,input().split()) a,b = a-1, b-1 d[a,b] = c dist =floyd_warshall(d,directed=0).astype(int) ans=10**10 for v in permutations(r): tmp=0 for i in range(R-1): tmp+=dist[v[i],v[i+1]] ans=min(ans,tmp) print(ans)
8442183c9909a042b13be80ea1fe9cd51b162c5e
fb64776f71eb2a469395a39c3ff33635eb388357
/apps/accounts/tests/unit/services/test_session_service.py
18ae5c6a9b811a936437f0a623fdd3f5404cbe91
[ "MIT" ]
permissive
jimialex/django-wise
ec79d21c428fd1eea953362890051d2120e19f9e
3fdc01eabdff459b31e016f9f6d1cafc19c5a292
refs/heads/master
2023-04-30T20:59:51.625190
2021-05-10T06:55:40
2021-05-10T06:55:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,101
py
# -*- coding: utf-8 -*- import json import pytest import requests_mock from doubles import allow from google.oauth2 import id_token from rest_framework import status from apps.accounts.models import User from apps.accounts.api.error_codes import AccountsErrorCodes from apps.contrib.api.exceptions.base import APIBaseException from apps.accounts.services.user_service import UserService from apps.accounts.services.session_service import SessionService @pytest.mark.django_db class SessionServiceTests: @staticmethod def test_process_google_token(test_user): allow(id_token).verify_oauth2_token.and_return({ 'iss': SessionService.GOOGLE_ACCOUNTS_URL, }) allow(UserService).create_or_update_for_social_networks.and_return(test_user) user = SessionService.process_google_token('valid_token') assert user is not None assert isinstance(user, User) @staticmethod def test_process_google_token_invalid_issuer(): allow(id_token).verify_oauth2_token.and_return({ 'iss': 'https://any.server', }) with pytest.raises(APIBaseException) as exec_info: SessionService.process_google_token('valid_token') assert exec_info.value.detail.code == AccountsErrorCodes.INVALID_GOOGLE_TOKEN_ISSUER.code @staticmethod def test_process_google_token_invalid_token(): allow(id_token).verify_oauth2_token.and_raise(ValueError('Token Error')) with pytest.raises(APIBaseException) as exec_info: SessionService.process_google_token('valid_token') assert exec_info.value.detail.code == AccountsErrorCodes.INVALID_GOOGLE_TOKEN_ID.code @staticmethod def test_process_facebook_valid_access_token(test_user): allow(UserService).create_or_update_for_social_networks.and_return(test_user) access_token = 'valid_access_token' with requests_mock.mock() as mock: mock.get( SessionService.make_facebook_profile_url(access_token), text=json.dumps({ 'email': test_user.email, 'first_name': test_user.first_name, 'last_name': test_user.last_name, }), status_code=status.HTTP_200_OK, ) user = SessionService.process_facebook_token(access_token) assert user is not None assert isinstance(user, User) @staticmethod def test_process_facebook_token_invalid_access_token(): access_token = 'invalid_access_token' with requests_mock.mock() as mock: mock.get( SessionService.make_facebook_profile_url(access_token), text=json.dumps({'error': 'facebook_raised_error'}), status_code=status.HTTP_200_OK, ) with pytest.raises(APIBaseException) as exec_info: SessionService.process_facebook_token(access_token) assert exec_info.value.detail.code == AccountsErrorCodes.INVALID_FACEBOOK_ACCESS_TOKEN.code @staticmethod def test_process_facebook_token_invalid_access_token_from_format(test_user): access_token = 'invalid_access_token' with requests_mock.mock() as mock: mock.get( SessionService.make_facebook_profile_url(access_token), text='', status_code=status.HTTP_200_OK, ) with pytest.raises(APIBaseException) as exec_info: SessionService.process_facebook_token(access_token) assert exec_info.value.detail.code == AccountsErrorCodes.INVALID_FACEBOOK_ACCESS_TOKEN.code @staticmethod def test_make_user_session(test_user): session = SessionService.make_user_session(test_user) assert 'access_token' in session assert 'refresh_token' in session @staticmethod def test_validate_session(test_user): plain_password = 'new_password' test_user.set_password(plain_password) test_user.save() assert SessionService.validate_session(test_user, plain_password) @staticmethod def test_validate_session_invalid_credentials(test_user): with pytest.raises(APIBaseException) as exec_info: SessionService.validate_session(None, 'new_password') assert exec_info.value.detail.code == AccountsErrorCodes.INVALID_CREDENTIALS.code with pytest.raises(APIBaseException) as exec_info: SessionService.validate_session(test_user, 'new_password') assert exec_info.value.detail.code == AccountsErrorCodes.INVALID_CREDENTIALS.code @staticmethod def test_validate_session_inactive_account(test_user): plain_password = 'another_password' test_user.set_password(plain_password) test_user.is_active = False test_user.save() with pytest.raises(APIBaseException) as exec_info: SessionService.validate_session(test_user, plain_password) assert exec_info.value.detail.code == AccountsErrorCodes.INACTIVE_ACCOUNT.code
4699ac187da996ef09de31aa7def4cdc34852f34
d1ddb9e9e75d42986eba239550364cff3d8f5203
/google-cloud-sdk/lib/surface/help.py
0fc91d3eca0088a241bd20d9a83259c5cb961425
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
bopopescu/searchparty
8ecd702af0d610a7ad3a8df9c4d448f76f46c450
afdc2805cb1b77bd5ac9fdd1a76217f4841f0ea6
refs/heads/master
2022-11-19T14:44:55.421926
2017-07-28T14:55:43
2017-07-28T14:55:43
282,495,798
0
0
Apache-2.0
2020-07-25T17:48:53
2020-07-25T17:48:52
null
UTF-8
Python
false
false
1,379
py
# Copyright 2013 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A calliope command that prints help for another calliope command.""" from googlecloudsdk.calliope import base @base.ReleaseTracks(base.ReleaseTrack.GA) class Help(base.Command): """Prints detailed help messages for the specified commands. This command prints a detailed help message for the commands specified after the ``help'' operand. """ @staticmethod def Args(parser): parser.add_argument( 'command', nargs='*', help="""\ A sequence of group and command names with no flags. """) def Run(self, args): # --document=style=help to signal the metrics.Help() 'help' label in # actions.RenderDocumentAction().Action(). self.ExecuteCommandDoNotUse(args.command + ['--document=style=help']) return None
56d9545172d93dc81f00b75c4467ced42d10d46d
5e0de59693445ef463e8c6a8c05876aa9d975e9a
/student/views.py
cbd41d5ec89b0e3f8c2689c6ddd658b403c5ec6b
[]
no_license
ZhonggenLi/Student-Management-Web-
e511691f4d625e80b5f4460dce7c13788faffd14
f5a5c30d171a182abe660bccd2c407d3f6ccf7b4
refs/heads/master
2022-12-02T08:05:43.493136
2020-08-09T02:00:19
2020-08-09T02:00:19
285,771,013
0
3
null
null
null
null
UTF-8
Python
false
false
4,785
py
from django.shortcuts import render from django.http import HttpResponse from django.db import models from student.models import Student from django.views.decorators.csrf import csrf_exempt from django.shortcuts import redirect # Create your views here. @csrf_exempt def insert(request): if request.POST: post = request.POST new_student = Student( num = post["num"], name = post["name"], chinese = post["chinese"], math = post["math"], english = post["english"], physics = post["physics"], chemistry = post["chemistry"], allscore = int(post["chinese"])+int(post["math"])+int(post["english"])+int(post["physics"])+int(post["chemistry"])) new_student.save() return render(request, 'insert.html') def list(request): student_list = Student.objects.all() c = {"student_list": student_list, } return render(request, "list.html", c) def delete(request): delete_num = request.GET.get('delete_num') Student.objects.get(num = delete_num).delete() return render(request, "delete.html") def updateStudent(request): update_num = request.GET.get('update_num') update_student = Student.objects.get(num=update_num) a = {"update_student": update_student, } if request.POST: update_name = request.POST.get("name") update_chinese = request.POST.get("chinese") update_math = request.POST.get("math") update_english = request.POST.get("english") update_physics = request.POST.get("physics") update_chemistry = request.POST.get("chemistry") update_student.num = update_num update_student.name = update_name update_student.chinese = update_chinese update_student.math = update_math update_student.english = update_english update_student.physics = update_physics update_student.chemistry = update_chemistry update_student.allscore =int(update_chemistry)+int(update_physics)+int(update_english)+int(update_math)+int(update_chinese) update_student.save() return render(request, "update.html", a) def questu(request): stu = {} if request.POST: quename = request.POST.get("name") quenum = request.POST.get("num") if quename: student_list = Student.objects.filter(name = quename) stu = {"student_list": student_list, } elif quenum: student_list = Student.objects.filter(num = quenum) stu = {"student_list":student_list, } return render(request, "questu.html", stu) def sinsort(request): stu = {} if request.POST: proj = request.POST.get("proj") if proj == '1': stulist = Student.objects.order_by("-chinese") stu = {"stulist": stulist, "proj": proj, } elif proj == '2': stulist = Student.objects.order_by("-math") stu = {"stulist": stulist, "proj": proj, } elif proj == '3': stulist = Student.objects.order_by("-english") stu = {"stulist": stulist, "proj": proj, } elif proj == '4': stulist = Student.objects.order_by("-physics") stu = {"stulist": stulist, "proj": proj, } elif proj == '5': stulist = Student.objects.order_by("-chemistry") stu = {"stulist": stulist, "proj": proj, } elif proj == '6': stulist = Student.objects.order_by("-allscore") stu = {"stulist":stulist,"proj":proj, } return render(request, "sinsort.html", stu) def fraction(request): stu = {} if request.POST: score = request.POST.get("score") if score == '1': stulist = Student.objects.filter(allscore__gte=600) stulist = sorted(stulist, key=lambda x:x.allscore, reverse=True) stu = {"stulist": stulist, } elif score == '2': stulist = Student.objects.filter(allscore__gte=500, allscore__lt=600) stulist = sorted(stulist, key=lambda x: x.allscore, reverse=True) stu = {"stulist": stulist, } elif score == '3': stulist = Student.objects.filter(allscore__gte=400, allscore__lt=500) stulist = sorted(stulist, key=lambda x: x.allscore, reverse=True) stu = {"stulist": stulist, } elif score == '4': stulist = Student.objects.filter(allscore__gte=300, allscore__lt=400) stulist = sorted(stulist, key=lambda x: x.allscore, reverse=True) stu = {"stulist": stulist, } elif score == '5': stulist = Student.objects.filter(allscore__lte=300) stulist = sorted(stulist, key=lambda x: x.allscore, reverse=True) stu = {"stulist":stulist, } return render(request, "fraction.html", stu)
2c5e7974069afe82223007f602552e7aa63c0b86
f810836bea801f2fa85418ac7f5f5ffb0f3e0bda
/abc/abc107/B - Grid Compression.py
81b610852a92bc42137f84cad2c058bfd44c6c07
[]
no_license
cocoinit23/atcoder
0afac334233e5f8c75d447f6adf0ddf3942c3b2c
39f6f6f4cc893e794d99c514f2e5adc9009ee8ca
refs/heads/master
2022-08-29T06:01:22.443764
2022-07-29T07:20:05
2022-07-29T07:20:05
226,030,199
1
0
null
null
null
null
UTF-8
Python
false
false
332
py
h, w = map(int, input().split()) grid = [] for i in range(h): temp = list(input()) if set(temp) != {'.'}: grid.append(temp) transpose = [list(x) for x in zip(*grid)] ans = [] for l in transpose: if set(l) != {'.'}: ans.append(l) ans = [list(x) for x in zip(*ans)] for l in ans: print(''.join(l))
23d42de74d03b489f2e51fe784d08a6877779f89
6b7c93ee4dc224e3041cd3df8e1d8ab128144cb8
/dodo.py
27adb2c078501374359755278adfcebcf6302b9e
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
philip-luk-tangent-anim/doit-py
df915b88d7d3e9964f2d1463d3255ae9c415f2da
500731ce25e89f327d190b7b8b3fc02bbd71c0f1
refs/heads/master
2022-09-08T08:44:06.172002
2020-05-24T12:35:05
2020-05-24T12:35:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,271
py
import glob import subprocess from doitpy.pyflakes import Pyflakes from doitpy.coverage import PythonPackage, Coverage from doitpy.package import Package from doitpy import docs DOIT_CONFIG = {'default_tasks': ['pyflakes', 'test']} def task_pyflakes(): flakes = Pyflakes() yield flakes.tasks('*.py') yield flakes.tasks('doitpy/*.py') yield flakes.tasks('tests/**/*.py', exclude_paths=['tests/sample/flake_fail.py',]) def task_test(): """run unit-tests""" # XXX return {'actions': ['py.test tests']} def task_coverage(): cov = Coverage([PythonPackage('doitpy', test_path='tests')], config={'branch':False}) yield cov.all() yield cov.src() yield cov.by_module() def task_package(): """upload package to pypi""" pkg = Package() yield pkg.manifest_git() yield pkg.sdist() yield pkg.sdist_upload() def task_docs(): doc_files = glob.glob('doc/*.rst') + ['README.rst'] yield docs.spell(doc_files, 'doc/dictionary.txt') yield docs.sphinx('doc/', 'doc/_build/html/', task_dep=['spell']) yield docs.pythonhosted_upload('doc/_build/html/', task_dep=['sphinx']) ########################## from doit.tools import result_dep init_file = 'doitpy/__init__.py' def task_version(): """update version on <pkg-name>/__init__.py and doc/conf.py""" # get package version from setup.py # version must be set with a string literal using single/double quotes # but not triple-quotes. def version_str2tuple(string): parts = [] for part in string.split('.'): parts.append(part if not part.isdigit() else int(part)) return tuple(repr(x) for x in parts) def get_version(): #cmd = ("""awk 'match($0, /version[[:space:]]*=[[:space:]]*""" # r"""['\''"](.*)['\''"].*/, ary) {print ary[1]}' setup.py""") cmd = 'python setup.py --version' version_str = subprocess.check_output(cmd, shell=True, universal_newlines=True) version_str = version_str.strip() version_tuple = version_str2tuple(version_str) return { 'version': '.'.join(version_tuple[:2]), 'release': version_str, 'tuple': version_tuple, } yield { 'name': 'get_from_setup', 'file_dep': ['setup.py'], 'actions': [get_version], } sed = "sed --in-place --regexp-extended " yield { 'name': 'set_pkg', 'uptodate': [result_dep('version:get_from_setup')], 'getargs': {'version': ('version:get_from_setup', 'tuple')}, 'actions': [ sed + r"'s/(__version__ = )(.*)/\1%(version)s/' " + init_file], 'targets': [init_file] } doc_file = 'doc/conf.py' yield { 'name': 'set_doc', 'uptodate': [result_dep('version:get_from_setup')], 'getargs': { 'version': ('version:get_from_setup', 'version'), 'release': ('version:get_from_setup', 'release')}, 'actions': [ sed + r""" "s/(version = )(.*)/\1'%(version)s'/" """ + doc_file, sed + r""" "s/(release = )(.*)/\1'%(release)s'/" """ + doc_file, ] }
b98590e375b6fc48f66d64b21aa03c098ed29e85
c9d3b03512dc3b2d268d0e99560889226322487c
/ggH01j/cut_hww_7TeV/mH125bkg/shape.py
0fd39b064743c2b4a2496e9d1923046b12560d07
[]
no_license
latinos/DatacardsConfigurations
57f9d8707b3987de0491c66aa9533f9447cfb043
25827f8f8284d50d680ce1527e3b8c17c27d7c4a
refs/heads/master
2021-01-22T03:05:27.692914
2015-04-13T08:22:02
2015-04-13T08:22:02
14,419,053
0
1
null
null
null
null
UTF-8
Python
false
false
1,174
py
lumi=4.94 chans=['of_0j','of_1j', 'sf_0j', 'sf_1j'] # set of mc samples: 0j1j, vbf mcset='0j1j-mH125' dataset='Data2011' variable='mll' # remember, y:x selection='hww2011' # TTree::Draw style as in h(nx,xmin,xmax, ny,ymin,ymax) # shape range. can be an # - hard-coded label # - a tuple (nx,xmin,xmax) # - 2d tuple (nx,xmin,xmax,ny,ymin,ymax) # - 1d array ([x0,..,xn],) # - 2d array ([x0,..,xn],[y0,...,ym]) #range=(4,80,280,16,0,200) #range = ([80., 130., 180., 230., 280.],[0., 12.5, 25., 37.5, 50., 62.5, 75., 87.5, 100., 112.5, 125, 137.5, 150., 162.5, 175., 187.5, 200.]) # range = ([80., 130., 180., 280.],[0., 25., 37.5, 50., 62.5, 75., 87.5, 100., 112.5, 125, 140., 160., 190., 230., 310., 600.]) range = (1,0,200) tag='mll_hww' xlabel='m_{ll}' # rebin=10 rebin=1 # directories path_latino = '/shome/mtakahashi/HWW/Tree/ShapeAna/42x_494fb/tree_skim_wwmin/' path_dd = '/shome/mtakahashi/HWW/Data/dd/hww_2011_494fb/' #path_latino = '/afs/cern.ch/work/x/xjanssen/public/LatinoTrees/ShapeAnalysis/Tree/tree_skim_wwmin/' #path_dd = '/afs/cern.ch/user/m/maiko/work/private/Data/dd/hww_2012_195fb/' # other directories path_shape_raw='raw' path_shape_merged='merged'
3a2c6507f4c805423f50e8689b45a9aa9f1b7965
d554b1aa8b70fddf81da8988b4aaa43788fede88
/5 - Notebooks e Data/1 - Análises numéricas/Arquivos David/Atualizados/logDicas-master/data/2019-1/223/users/4342/codes/1764_1577.py
7620b15a0235fac3283e2333810c92277d214f4a
[]
no_license
JosephLevinthal/Research-projects
a3bc3ca3b09faad16f5cce5949a2279cf14742ba
60d5fd6eb864a5181f4321e7a992812f3c2139f9
refs/heads/master
2022-07-31T06:43:02.686109
2020-05-23T00:24:26
2020-05-23T00:24:26
266,199,309
1
0
null
null
null
null
UTF-8
Python
false
false
183
py
from numpy import * acel=array(eval(input("aceleracao:"))) vo=array(eval(input("velocidade inicial:"))) N=int(input("numero positivo?")) i=0 t=0 s=(((acel)*(t**2))/2)+ (vo*t) while()
c87505ef499af065bd826fc255a3323af1107f30
b503e79ccfca67c8114f5bd7a215f5ae993a0ba4
/airflow/security/permissions.py
983ebbd7f48ef4f41509dfb4a9f356808687fe2a
[ "Apache-2.0", "BSD-3-Clause", "Python-2.0", "MIT" ]
permissive
github/incubator-airflow
df1d9780f862ea1df8261ea6015dd50a4583f983
73f70e00b9fd294057f8ca6b714a85622f6d5dd5
refs/heads/gh-2.0.2
2023-07-29T18:08:43.140580
2022-09-14T18:23:42
2022-09-14T18:23:42
80,634,006
24
27
Apache-2.0
2023-04-18T04:24:36
2017-02-01T15:34:55
Python
UTF-8
Python
false
false
2,390
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # Resource Constants RESOURCE_ADMIN_MENU = "Admin" RESOURCE_AIRFLOW = "Airflow" RESOURCE_AUDIT_LOG = "Audit Logs" RESOURCE_BROWSE_MENU = "Browse" RESOURCE_DAG = "DAGs" RESOURCE_DAG_PREFIX = "DAG:" RESOURCE_DOCS_MENU = "Docs" RESOURCE_DOCS_LINK = "Documentation" RESOURCE_CONFIG = "Configurations" RESOURCE_CONNECTION = "Connections" RESOURCE_DAG_CODE = "DAG Code" RESOURCE_DAG_RUN = "DAG Runs" RESOURCE_IMPORT_ERROR = "ImportError" RESOURCE_JOB = "Jobs" RESOURCE_POOL = "Pools" RESOURCE_PLUGIN = "Plugins" RESOURCE_SLA_MISS = "SLA Misses" RESOURCE_TASK_INSTANCE = "Task Instances" RESOURCE_TASK_LOG = "Task Logs" RESOURCE_TASK_RESCHEDULE = "Task Reschedules" RESOURCE_VARIABLE = "Variables" RESOURCE_WEBSITE = "Website" RESOURCE_XCOM = "XComs" RESOURCE_USERINFO_EDIT_VIEW = "UserInfoEditView" RESOURCE_RESET_MY_PASSWORD_VIEW = "ResetMyPasswordView" RESOURCE_USER_DB_MODELVIEW = "UserDBModelView" RESOURCE_USER_OID_MODELVIEW = "UserOIDModelView" RESOURCE_USER_LDAP_MODELVIEW = "UserLDAPModelView" RESOURCE_USER_OAUTH_MODELVIEW = "UserOAuthModelView" RESOURCE_USER_REMOTEUSER_MODELVIEW = "UserRemoteUserModelView" # Action Constants ACTION_CAN_CREATE = "can_create" ACTION_CAN_READ = "can_read" ACTION_CAN_EDIT = "can_edit" ACTION_CAN_DELETE = "can_delete" ACTION_CAN_ACCESS_MENU = "menu_access" ACTION_CAN_THIS_FORM_GET = "can_this_form_get" ACTION_CAN_THIS_FORM_POST = "can_this_form_post" ACTION_RESETMYPASSWORD = "resetmypassword" ACTION_CAN_USERINFO = "can_userinfo" ACTION_USERINFOEDIT = "userinfoedit" DEPRECATED_ACTION_CAN_DAG_READ = "can_dag_read" DEPRECATED_ACTION_CAN_DAG_EDIT = "can_dag_edit"
dbbff8315c06c6efb75d5de5c32e6314eb711158
ecf2511642e0e8fb11616249b062a7c8a130d137
/src/python_files/points_class.py
dadf59288293c9da1f916d04059e19ca530a1227
[]
no_license
zaddan/apx_tool_chain
61abc9d6958ce17d9823ac7bf71ae3097f76decf
ef81dd6515f110d3c8a4b62a642d44d9a4327a79
refs/heads/master
2021-01-24T06:37:12.248020
2017-04-08T20:39:08
2017-04-08T20:39:08
40,195,826
0
0
null
null
null
null
UTF-8
Python
false
false
10,980
py
import copy import sys import math import numpy import settings import input_list from calc_psnr import * from inputs import * from extract_result_properties import * #**--------------------** #**--------------------** #----disclaimers::: SNR needs to modified when noise is Zero #**--------------------** #--------------------** class points: def __init__(self): self.image_accurate_psnr = {} self.image_accurate_psnr['Buildings.0007'] = 41.14 self.image_accurate_psnr['MtValley.0000'] = 39.67 self.image_accurate_psnr['Water.0004'] = 43.35 self.image_accurate_psnr ['GrassPlantsSky.0003'] = 40.34 self.image_accurate_psnr ['Flowers.0006'] = 39.67 self.image_accurate_psnr ['Buildings.0010'] = 41.14 self.image_accurate_psnr ['Misc.0003'] = 43.35 self.lOfError = [] self.lOfOperand = [] self.lOfAccurateValues = [] self.lOfRawValues = [] self.lOfOutput = [] self.dealingWithPics = False self.quality_is_set = False self.quality_calculatable = True self.input_number = -1 def set_input_number(self, inputNumber): self.input_number = inputNumber def set_dealing_with_pics(self, dealingWithPics): self.dealingWithPics = dealingWithPics def append_Output(self, output): self.lOfOutput.append(output) def get_lOf_output(self): assert (len(self.lOfOutput) > 0) return self.lOfOutput def get_input_number(self): assert ((self.input_number) >= 0) return self.input_number def append_error(self, error): self.lOfError.append(error) def set_energy(self, energy): self.energy = energy def set_raw_setUp(self, raw_setUp): self.raw_setUp = raw_setUp def set_setUp(self, setUp): self.setUp = setUp def set_setUp_number(self, setUpNumber): self.setUpNumber = setUpNumber def append_lOf_operand(self, operand): self.lOfOperand.append(operand) def append_accurate_values(self, value): self.lOfAccurateValues.append(value) def set_SNR(self, SNR): assert(not(1 == 2)) self.SNR = SNR def set_quality(self, quality_value): self.quality = abs(quality_value) self.quality_is_set = True def set_PSNR(self, PSNR): self.PSNR = PSNR def set_input_obj(self, inputObj): self.inputObj = inputObj def append_raw_values(self, rawValue): self.lOfRawValues.append(rawValue) def get_accurate_values(self): return self.accurateValues def get_lOfError(self): return self.lOfError def get_energy(self): return self.energy def get_setUp(self): return self.setUp def get_raw_setUp(self): return self.raw_setUp def get_setUp_number(self): return self.setUpNumber def get_lOf_operand(self, operand): return self.lOfOperand def get_accurate_values(self): return self.lOfAccurateValues def get_raw_values(self): assert(len(self.lOfRawValues)>0) return self.lOfRawValues def get_input_obj(self): return inputObj def get_dealing_with_pics(self): return self.dealingWithPics def calculate_PSNR(self, yourImageName="", originalImageName=""): refImage = self.inputObj.refImage noisyImage = self.inputObj.noisyImage self.PSNR = calculate_psnr(refImage, noisyImage) def calculate_quality(self,normalize, possibly_worse_case_result_quality, settings_obj, input_index): #---- calculate mean of accurate values if (settings_obj.error_mode == "image"): mean_of_acc_values = calculate_mean_acc_for_image(self.inputObj.refImage, self.inputObj.noisyImage) elif(settings_obj.error_mode == "nearest_neighbors_2d" and settings_obj.benchmark_name =="sift"): mean_of_acc_values = numpy.mean(map( lambda x: numpy.mean(x, axis=0)[:-1], self.lOfAccurateValues), axis=0) else: mean_of_acc_values = numpy.mean(map( lambda x: numpy.mean(x, axis=0), self.lOfAccurateValues),axis=0) #--- calculate mean of error values if (settings_obj.error_mode == "image"): mean_of_error_values = calculate_error_for_image(self.inputObj.refImage, self.inputObj.noisyImage) else: mean_of_error_values = numpy.mean(map( lambda x: numpy.mean(x, axis=0), self.lOfError), axis=0) #--- specific case of errorTest if (settings_obj.errorTest): print "---------------" print "Vector ass with mean of Acc Vals" print numpy.mean(self.lOfAccurateValues[0], axis=0) print "magnitued of mean of Acc Val" print mean_of_acc_values print "Vector ass with mean of Erro Vals" print numpy.mean(self.lOfError[0], axis=0) print "magnitued of mean of Error" print mean_of_error_values print "---------------" if (settings_obj.outputMode == "uniform"): #convert to a list for compatibility issues mean_of_error_values = [abs(float(mean_of_error_values))] mean_of_acc_values = [ abs(float(mean_of_acc_values))] #semi_sanity check (semi b/c it'll cause problems but it's not wrong perse some_element_zero = False for el in mean_of_acc_values: if el==0: print "****ERROR ***** acc_val can not be zero"#there is gonna be problems later on #if mean is zero, but technically there #there is nothing wrong with that some_element_zero = False sys.exit() # assert (not(mean_of_acc_values == 0)) #there is gonna be problems later on #if mean is zero, but technically there #there is nothing wrong with that # NSR= (mean_of_error_values/mean_of_acc_values) #divide the corresponding values for avg of errors and acc values if (settings_obj.DEBUG): print "mean of acc-val: " + str(mean_of_acc_values); print "mean of error-val: " + str(mean_of_error_values); print "mean of acc-val: " + str(mean_of_acc_values); print "mean of error-val: " + str(mean_of_error_values); NSR_will_be_zero = True for el in mean_of_error_values: if el != 0: NSR_will_be_zero = False break if (NSR_will_be_zero): for index,el in enumerate(mean_of_error_values): mean_of_error_values[index] = .00000000001 #--- here now #print "mean of err vals" + str(mean_of_error_values) #print "now printing error" #print self.lOfError # if (mean_of_error_values[0]) == 0: # mean_of_error_values[0] = .00000000000001 if not(some_element_zero): NSR_vector = np.divide(mean_of_error_values,mean_of_acc_values) #should be a vector NSR_vector_abs = map(lambda x: abs(x), NSR_vector) #should be a vector NSR = np.mean(NSR_vector_abs) #this should be a scalar number if(settings_obj.quality_mode == "psnr"): if not(mean_of_error_values[0] == 0): PSNR = 10*math.log10(((255*255)/ mean_of_error_values[0])) else: PSNR = 10000 #if (normalize and not(possibly_worse_case_result_quality == float("inf"))): # NSR = NSR#/possibly_worse_case_result_quality #NSR = NSR/possibly_worse_case_result_quality if (settings_obj.quality_mode == "snr"): if(mean_of_error_values[0]== .00000000001): self.quality = 10000 #print "the quality set is " + str(1/NSR) self.quality_is_set = True print "quality is" + str(self.quality) elif (some_element_zero): self.quality = 0 #print "the quality set is " + str(1/NSR) self.quality_is_set = True elif(NSR == 0): print "*******ERROR(kind of) noise is zero, make sure SNR is the right quality mode****" assert(1==0, "this scenario should never be allowed for NSR") self.quality_calculatable = False #self.SNR = mean_of_acc_values self.quality = abs(1/NSR) self.quality_is_set = True else: # print "goftam " + str(self.SNR) #self.SNR = 1/NSR self.quality = (abs(1/NSR))/input_list.lOf_accurate_points_quality[input_index] #print "the quality set is " + str(1/NSR) self.quality_is_set = True print "quality is" + str(self.quality) elif (settings_obj.quality_mode == "nsr"): self.quality = abs(NSR)/input_list.lOf_accurate_points_quality[input_index] self.quality_is_set = True elif (settings_obj.quality_mode == "psnr"): if not(settings_obj.error_mode == "image"): print "psnr is not defined for other applications but images. This is b/c\ at the moment I am simply using mean_of_error_values[0] and I am \ not sure if that would work if len(mean_of_error_values) > 0" # if not(self.inputObj.refImage_name[:-4] in self.image_accurate_psnr.keys()): # print "this image accurate PSNR for image: " + str(self.inputObj.refImage_name[:-4]) + " is not defined. add it to the list and set it's value to 1, so we can get it's accurate value" # sys.exit() self.quality = abs(PSNR/input_list.lOf_accurate_points_quality[input_index]) #self.image_accurate_psnr[self.inputObj.refImage_name[:-4]]) self.quality_is_set = True else: print "*****ERROR: this quality_mode: " + str(settings_obj.quality_mode) + " is not defined***" sys.exit(); def get_PSNR(self): return self.PSNR def get_SNR(self): assert(not(1==0)) #should never get here return self.SNR def get_quality(self): assert(self.quality_is_set) assert(self.quality >=0) return self.quality def set_varios_values(self, energy, quality, setup,raw_setup, input_number, setupNumber): self.set_energy(energy) self.set_quality(quality) self.set_setUp(setup) self.set_raw_setUp(raw_setup) self.set_input_number(input_number) self.set_setUp_number(setupNumber)
c2ae43c2b91dac46aa6f964347b09d8dd965258b
147d0863f4590649a90ea5f78c66974723a87247
/api/views.py
dd4ab9ddecab2559c7faf133dec1c6c30553d792
[]
no_license
jinchuika/ligabot
af5bd5443dc0df7d929e7b866869ba075c91db55
69544912e1ac46f281ba2fc78ff913d60d9a2a38
refs/heads/master
2021-01-20T12:50:32.894359
2017-05-08T14:07:47
2017-05-08T14:07:47
90,419,163
0
0
null
null
null
null
UTF-8
Python
false
false
2,365
py
from django.db.models import Q from .serializers import MatchSerializer, TableSerializer, CompetitionSerializer, FixtureSerializer, TeamSerializer from rest_framework import mixins, generics, viewsets from api.api_request import RequestHandler from api.models import Competition, Fixture, Team class TeamMatchListView(generics.ListAPIView): serializer_class = MatchSerializer def get_queryset(self): req = RequestHandler() return req.get_team_scores(self.kwargs['team_id']) class LeagueMatchListView(generics.ListAPIView): serializer_class = MatchSerializer def get_queryset(self): req = RequestHandler() return req.get_league_scores(self.kwargs['league_id']) class LeagueStandingListView(generics.ListAPIView): serializer_class = TableSerializer def get_queryset(self): req = RequestHandler() return req.get_standings(self.kwargs['league_id']) class CompetitionApiView(mixins.ListModelMixin, generics.GenericAPIView): serializer_class = CompetitionSerializer queryset = Competition.objects.all() def get(self, request, *args, **kwargs): return self.list(request, *args, **kwargs) class FixtureViewSet(viewsets.ReadOnlyModelViewSet): serializer_class = FixtureSerializer queryset = Fixture.objects.all() def get_queryset(self): queryset = Fixture.objects.all() competition_id = self.request.query_params.get('competition', None) team_id = self.request.query_params.get('team', None) home_id = self.request.query_params.get('home', None) away_id = self.request.query_params.get('away', None) if competition_id is not None: queryset = queryset.filter(competition__id=competition_id) if team_id is not None: queryset = queryset.filter(Q(home_team__id=team_id) | Q(away_team__id=team_id)) if home_id is not None: queryset = queryset.filter(home_team__id=home_id) if away_id is not None: queryset = queryset.filter(away_team__id=away_id) return queryset class CompetitionViewSet(viewsets.ReadOnlyModelViewSet): serializer_class = CompetitionSerializer queryset = Competition.objects.all() class TeamViewSet(viewsets.ReadOnlyModelViewSet): serializer_class = TeamSerializer queryset = Team.objects.all()
ce2c59b57ea5030b3747f41fc82eb48cbecb159b
d44cbbed1061299c733239c513bfa7f530d97be2
/adminalerts/tests/test_permissions.py
13f3d1ee56e0790799de2df81bc0c2806d155c80
[ "MIT" ]
permissive
raonyguimaraes/sodar_core
f6cb331b31476be595ff0d5a279b82f6871530ff
903eda944ed75aaf54b74d959ef634790c042e57
refs/heads/master
2022-07-24T20:00:33.442200
2020-04-24T14:03:47
2020-04-24T14:03:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,699
py
"""Tests for permissions in the adminalerts app""" from django.urls import reverse # Projectroles dependency from projectroles.tests.test_permissions import TestPermissionBase from adminalerts.tests.test_models import AdminAlertMixin class TestAdminAlertPermissions(AdminAlertMixin, TestPermissionBase): """Tests for AdminAlert views""" def setUp(self): # Create users self.superuser = self.make_user('superuser') self.superuser.is_superuser = True self.superuser.is_staff = True self.superuser.save() self.regular_user = self.make_user('regular_user') # No user self.anonymous = None # Create alert self.alert = self._make_alert( message='alert', user=self.superuser, description='description', active=True, ) def test_alert_create(self): """Test permissions for AdminAlert creation""" url = reverse('adminalerts:create') good_users = [self.superuser] bad_users = [self.anonymous, self.regular_user] self.assert_response(url, good_users, 200) self.assert_response(url, bad_users, 302) def test_alert_update(self): """Test permissions for AdminAlert updating""" url = reverse( 'adminalerts:update', kwargs={'adminalert': self.alert.sodar_uuid} ) good_users = [self.superuser] bad_users = [self.anonymous, self.regular_user] self.assert_response(url, good_users, 200) self.assert_response(url, bad_users, 302) def test_alert_delete(self): """Test permissions for AdminAlert deletion""" url = reverse( 'adminalerts:delete', kwargs={'adminalert': self.alert.sodar_uuid} ) good_users = [self.superuser] bad_users = [self.anonymous, self.regular_user] self.assert_response(url, good_users, 200) self.assert_response(url, bad_users, 302) def test_alert_list(self): """Test permissions for AdminAlert list""" url = reverse('adminalerts:list') good_users = [self.superuser] bad_users = [self.anonymous, self.regular_user] self.assert_response(url, good_users, 200) self.assert_response(url, bad_users, 302) def test_alert_detail(self): """Test permissions for AdminAlert details""" url = reverse( 'adminalerts:detail', kwargs={'adminalert': self.alert.sodar_uuid} ) good_users = [self.superuser, self.regular_user] bad_users = [self.anonymous] self.assert_response(url, good_users, 200) self.assert_response(url, bad_users, 302)
a58fb6876185be87b47b79b2b86347d8d57364b3
d15bdaddab59d1cfea76790004cbad3e5f0c2c55
/batkin/build_isolated/base_local_planner/catkin_generated/generate_cached_setup.py
a99877387161efbb0a4785123c2005e570c2c1ff
[]
no_license
gychen-n/robot
4265a1ff469d22550b6b537d1c81aa846ee7641a
0663a33aea2c2de9e3ac5863307619091e5b5959
refs/heads/main
2023-04-10T13:32:06.623682
2021-04-16T00:41:04
2021-04-16T00:41:04
358,431,232
0
0
null
null
null
null
UTF-8
Python
false
false
4,555
py
# -*- coding: utf-8 -*- from __future__ import print_function import os import stat import sys # find the import for catkin's python package - either from source space or from an installed underlay if os.path.exists(os.path.join('/opt/ros/kinetic/share/catkin/cmake', 'catkinConfig.cmake.in')): sys.path.insert(0, os.path.join('/opt/ros/kinetic/share/catkin/cmake', '..', 'python')) try: from catkin.environment_cache import generate_environment_script except ImportError: # search for catkin package in all workspaces and prepend to path for workspace in '/home/robot/batkin/devel_isolated/nav_core;/home/robot/batkin/devel_isolated/costmap_2d;/home/robot/batkin/devel_isolated/voxel_grid;/home/robot/batkin/devel_isolated/turtlebot_teleop;/home/robot/batkin/devel_isolated/turtlebot_rapps;/home/robot/batkin/devel_isolated/turtlebot_navigation;/home/robot/batkin/devel_isolated/turtlebot_follower;/home/robot/batkin/devel_isolated/turtlebot_description;/home/robot/batkin/devel_isolated/turtlebot_capabilities;/home/robot/batkin/devel_isolated/turtlebot_calibration;/home/robot/batkin/devel_isolated/turtlebot_bringup;/home/robot/batkin/devel_isolated/turtlebot_apps;/home/robot/batkin/devel_isolated/turtlebot_actions;/home/robot/batkin/devel_isolated/turtlebot;/home/robot/batkin/devel_isolated/tl740d;/home/robot/batkin/devel_isolated/stim;/home/robot/batkin/devel_isolated/stereo_image_proc;/home/robot/batkin/devel_isolated/spacenav_node;/home/robot/batkin/devel_isolated/slam_gmapping;/home/robot/batkin/devel_isolated/simulation_launch;/home/robot/batkin/devel_isolated/rviz_imu_plugin;/home/robot/batkin/devel_isolated/rslidar_sync;/home/robot/batkin/devel_isolated/rslidar_pointcloud;/home/robot/batkin/devel_isolated/rslidar_driver;/home/robot/batkin/devel_isolated/rslidar_msgs;/home/robot/batkin/devel_isolated/rslidar;/home/robot/batkin/devel_isolated/rbx1_apps;/home/robot/batkin/devel_isolated/ps3joy;/home/robot/batkin/devel_isolated/pointcloud_to_laserscan;/home/robot/batkin/devel_isolated/path_rviz_plugin;/home/robot/batkin/devel_isolated/path_server;/home/robot/batkin/devel_isolated/gmapping;/home/robot/batkin/devel_isolated/openslam_gmapping;/home/robot/batkin/devel_isolated/navigation;/home/robot/batkin/devel_isolated/map_server;/home/robot/batkin/devel_isolated/location_fusion;/home/robot/batkin/devel_isolated/joystick_drivers;/home/robot/batkin/devel_isolated/joy_to_twist;/home/robot/batkin/devel_isolated/joy;/home/robot/batkin/devel_isolated/image_view;/home/robot/batkin/devel_isolated/image_rotate;/home/robot/batkin/devel_isolated/image_publisher;/home/robot/batkin/devel_isolated/image_proc;/home/robot/batkin/devel_isolated/image_pipeline;/home/robot/batkin/devel_isolated/freenect_stack;/home/robot/batkin/devel_isolated/freenect_launch;/home/robot/batkin/devel_isolated/freenect_camera;/home/robot/batkin/devel_isolated/fake_localization;/home/robot/batkin/devel_isolated/depth_image_proc;/home/robot/batkin/devel_isolated/dashgo_driver;/home/robot/batkin/devel_isolated/cartographer_rviz;/home/robot/batkin/devel_isolated/cartographer_ros;/home/robot/batkin/devel_isolated/cartographer_ros_msgs;/home/robot/batkin/devel_isolated/camera_calibration;/home/robot/batkin/devel_isolated/autolabor_test_launch;/home/robot/batkin/devel_isolated/autolabor_simulation_object;/home/robot/batkin/devel_isolated/autolabor_simulation_stage;/home/robot/batkin/devel_isolated/autolabor_simulation_location;/home/robot/batkin/devel_isolated/autolabor_simulation_lidar;/home/robot/batkin/devel_isolated/autolabor_simulation_base;/home/robot/batkin/devel_isolated/autolabor_navigation_launch;/home/robot/batkin/devel_isolated/autolabor_keyboard_control;/home/robot/batkin/devel_isolated/autolabor_description;/home/robot/batkin/devel_isolated/ah100b;/home/robot/catkin_ws/devel;/opt/ros/kinetic'.split(';'): python_path = os.path.join(workspace, 'lib/python2.7/dist-packages') if os.path.isdir(os.path.join(python_path, 'catkin')): sys.path.insert(0, python_path) break from catkin.environment_cache import generate_environment_script code = generate_environment_script('/home/robot/batkin/devel_isolated/base_local_planner/env.sh') output_filename = '/home/robot/batkin/build_isolated/base_local_planner/catkin_generated/setup_cached.sh' with open(output_filename, 'w') as f: # print('Generate script for cached setup "%s"' % output_filename) f.write('\n'.join(code)) mode = os.stat(output_filename).st_mode os.chmod(output_filename, mode | stat.S_IXUSR)
beca6c6a6fdc8c07bf59fafda1a3c0a1f35f7377
f13acd0d707ea9ab0d2f2f010717b35adcee142f
/ABC/abc101-abc150/abc125/d.py
65d866fb02f012f8ac51ed868bc202f0c9c93fe5
[ "CC0-1.0", "LicenseRef-scancode-public-domain" ]
permissive
KATO-Hiro/AtCoder
126b9fe89fa3a7cffcbd1c29d42394e7d02fa7c7
bf43320bc1af606bfbd23c610b3432cddd1806b9
refs/heads/master
2023-08-18T20:06:42.876863
2023-08-17T23:45:21
2023-08-17T23:45:21
121,067,516
4
0
CC0-1.0
2023-09-14T21:59:38
2018-02-11T00:32:45
Python
UTF-8
Python
false
false
426
py
# -*- coding: utf-8 -*- def main(): n = int(input()) a = list(map(int, input().split())) minus_count = 0 abs_min = float('inf') ans = 0 for ai in a: if ai < 0: minus_count += 1 abs_min = min(abs_min, abs(ai)) ans += abs(ai) if minus_count % 2 == 1: ans -= abs_min * 2 print(ans) if __name__ == '__main__': main()
1c65e874cc500c5891439e350e89441caa59a097
14abe13bff2c346430ec7129c49a79ff4f52c5b0
/canteen_tests/test__main__.py
30b0a9135238a41d45d9bfcb92a8f477f5f1e761
[ "MIT" ]
permissive
ianjw11/canteen
9a3122deed73a545aa8cc0c51b6913e945e23e39
cfc4ef00ec67df97e08b57222ca16aa9f2659a3e
refs/heads/master
2021-01-21T02:41:11.139310
2014-07-09T15:59:05
2014-07-09T15:59:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
388
py
# -*- coding: utf-8 -*- ''' canteen: main tests ~~~~~~~~~~~~~~~~~~~ tests things at the top-level package main for canteen. :author: Sam Gammon <[email protected]> :copyright: (c) Sam Gammon, 2014 :license: This software makes use of the MIT Open Source License. A copy of this license is included as ``LICENSE.md`` in the root of the project. '''
3d2bd8ff970e7a9fa6ed06d06362d446b3f710cd
41dbb27af3a3ecabeb06e2fb45b3440bcc9d2b75
/client/migrations/0001_initial.py
8e69fdd04b310bf4d984b437435a5d02419dcaa0
[]
no_license
joypaulgmail/Dookan
4df83f37b7bcaff9052d5a09854d0bb344b9f05a
7febf471dd71cc6ce7ffabce134e1e37a11309f7
refs/heads/main
2023-03-02T04:10:19.611371
2021-02-09T11:45:32
2021-02-09T11:45:32
336,476,910
0
0
null
null
null
null
UTF-8
Python
false
false
2,240
py
# Generated by Django 3.1 on 2020-11-28 06:01 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='ClientDetail', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=60)), ('primary_contact', models.IntegerField()), ('secondary_contact', models.IntegerField()), ('address', models.TextField()), ('pin', models.IntegerField()), ('image', models.ImageField(upload_to='client/')), ('idproof', models.ImageField(upload_to='client/id')), ('password', models.CharField(max_length=50)), ('confirm_password', models.CharField(max_length=50)), ], options={ 'db_table': 'clientdetail', }, ), migrations.CreateModel( name='ClientInfo', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=60)), ('primary_contact', models.IntegerField()), ('secondary_contact', models.IntegerField()), ('address', models.TextField()), ('pin', models.IntegerField()), ('image', models.ImageField(upload_to='client/')), ('idproof', models.ImageField(upload_to='client/id')), ('password', models.CharField(max_length=50)), ('confirm_password', models.CharField(max_length=50)), ], ), migrations.CreateModel( name='detail', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=20)), ('roll', models.IntegerField()), ], options={ 'db_table': 'detail', }, ), ]
5138f623d82eed67afff76da96329637b5feec7f
853d4cec42071b76a80be38c58ffe0fbf9b9dc34
/venv/Lib/site-packages/pandas/tests/sparse/test_pivot.py
44a8194bd5813d75ac10e22e2c0fafc7a5de7834
[]
no_license
msainTesting/TwitterAnalysis
5e1646dbf40badf887a86e125ef30a9edaa622a4
b1204346508ba3e3922a52380ead5a8f7079726b
refs/heads/main
2023-08-28T08:29:28.924620
2021-11-04T12:36:30
2021-11-04T12:36:30
424,242,582
0
0
null
null
null
null
UTF-8
Python
false
false
2,369
py
import numpy as np import pytest import pandas as pd import pandas.util.testing as tm @pytest.mark.filterwarnings("ignore:Sparse:FutureWarning") @pytest.mark.filterwarnings("ignore:Series.to_sparse:FutureWarning") @pytest.mark.filterwarnings("ignore:DataFrame.to_sparse:FutureWarning") class TestPivotTable: def setup_method(self, method): rs = np.random.RandomState(0) self.dense = pd.DataFrame( { "A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"], "B": ["one", "one", "two", "three", "two", "two", "one", "three"], "C": rs.randn(8), "D": rs.randn(8), "E": [np.nan, np.nan, 1, 2, np.nan, 1, np.nan, np.nan], } ) self.sparse = self.dense.to_sparse() def test_pivot_table(self): res_sparse = pd.pivot_table(self.sparse, index="A", columns="B", values="C") res_dense = pd.pivot_table(self.dense, index="A", columns="B", values="C") tm.assert_frame_equal(res_sparse, res_dense) res_sparse = pd.pivot_table(self.sparse, index="A", columns="B", values="E") res_dense = pd.pivot_table(self.dense, index="A", columns="B", values="E") tm.assert_frame_equal(res_sparse, res_dense) res_sparse = pd.pivot_table( self.sparse, index="A", columns="B", values="E", aggfunc="mean" ) res_dense = pd.pivot_table( self.dense, index="A", columns="B", values="E", aggfunc="mean" ) tm.assert_frame_equal(res_sparse, res_dense) def test_pivot_table_with_nans(self): res_sparse = pd.pivot_table( self.sparse, index="A", columns="B", values="E", aggfunc="sum" ) res_dense = pd.pivot_table( self.dense, index="A", columns="B", values="E", aggfunc="sum" ) tm.assert_frame_equal(res_sparse, res_dense) def test_pivot_table_multi(self): res_sparse = pd.pivot_table( self.sparse, index="A", columns="B", values=["D", "E"] ) res_dense = pd.pivot_table( self.dense, index="A", columns="B", values=["D", "E"] ) res_dense = res_dense.apply(lambda x: x.astype("Sparse[float64]")) tm.assert_frame_equal(res_sparse, res_dense)
90f9d81e1ac37422b6bc4c3d5187d3f54eb2b54c
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_083/ch129_2020_04_01_17_04_56_778073.py
63194e8b169fab2b441de017db0cc2185bde9181
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
211
py
def verifica_quadrado_perfeito(n): i=1 y=1 while n>=i: y=n-i if y==0: return True else: return False i+=2 print(verifica_quadrado_perfeito(25))
a0e585c73ccd0f53b6602f193b8f888584358b58
0fd2b832673946c9ee532686a2a35bf2680f8408
/CybORG/CybORG/Shared/Actions/GlobalActions/ListGames.py
76795b71f41c8585e6fe71ad744f82fc4ac7f0bd
[ "MIT" ]
permissive
pvu1984/cage-challenge-2
4e57bad7bc30c7df2b90c2fabc8395a5f2a3e65c
e76722dcd79a6b7511e185cde34fac1e0b45720e
refs/heads/main
2023-09-02T15:11:32.072215
2021-11-12T02:33:19
2021-11-12T02:33:19
429,307,660
0
0
MIT
2021-11-18T05:27:36
2021-11-18T05:27:35
null
UTF-8
Python
false
false
477
py
# Copyright DST Group. Licensed under the MIT license. from CybORG.Shared import Observation from .GlobalAction import GlobalAction class ListGames(GlobalAction): """Get a list of all active games """ def emu_execute(self, team_server) -> Observation: self._log_info("Listing games") obs = Observation() game_ids = team_server.get_games_list() obs.set_success(True) obs.add_key_value("game_ids", game_ids) return obs
3a241204309bb872de8646ff5018a65a4c3b3f50
a97fb0584709e292a475defc8506eeb85bb24339
/source code/code/ch713.py
0b37f65b4505c1c49f2186b0ad00f91dad64d26c
[]
no_license
AAQ6291/PYCATCH
bd297858051042613739819ed70c535901569079
27ec4094be785810074be8b16ef84c85048065b5
refs/heads/master
2020-03-26T13:54:57.051016
2018-08-17T09:05:19
2018-08-17T09:05:19
144,963,014
0
0
null
null
null
null
UTF-8
Python
false
false
824
py
#!/usr/bin/env python #coding=utf-8 """ # 多載overloading觀念, 註解的這個區塊無法在Python裡正常運作. class Obj: def __init__(self): pass def func(self, x=0): print "func: x = %d ", x def func(self, x=0, y=x+x): print "func: x = %d, y = %d", x, y def func(self, y=0): print "func: y = %d ", y """ """ 我們可以改變觀念, 將上面的寫法改成下面的寫法, 將要傳入的參數都設定在__init__()函數內, 透過這個函數去接收使用者傳進來的值 """ class Obj: def __init__(self, x=0, y=0): self.x = x self.y = y self.printState() def printState(self): print "func: x = %d, y = %d", self.x, self.y # class overloading. obj1 = Obj(10) obj2 = Obj(10, 10+10) obj3 = Obj(y=30)
b59d95850094a8e35402245c52ec57944a360d0d
50948d4cb10dcb1cc9bc0355918478fb2841322a
/azure-mgmt-resource/azure/mgmt/resource/managedapplications/models/resource_py3.py
5de1d2d3bb943026662197eb95d8d4819b5633fb
[ "MIT" ]
permissive
xiafu-msft/azure-sdk-for-python
de9cd680b39962702b629a8e94726bb4ab261594
4d9560cfd519ee60667f3cc2f5295a58c18625db
refs/heads/master
2023-08-12T20:36:24.284497
2019-05-22T00:55:16
2019-05-22T00:55:16
187,986,993
1
0
MIT
2020-10-02T01:17:02
2019-05-22T07:33:46
Python
UTF-8
Python
false
false
1,617
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class Resource(Model): """Resource information. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Resource ID :vartype id: str :ivar name: Resource name :vartype name: str :ivar type: Resource type :vartype type: str :param location: Resource location :type location: str :param tags: Resource tags :type tags: dict[str, str] """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'location': {'key': 'location', 'type': 'str'}, 'tags': {'key': 'tags', 'type': '{str}'}, } def __init__(self, *, location: str=None, tags=None, **kwargs) -> None: super(Resource, self).__init__(**kwargs) self.id = None self.name = None self.type = None self.location = location self.tags = tags
632531ce3e51e510b87b765c03cfa5f6ea264d16
e1a78591c9702a7e61fbf076d78b59073ff33c37
/InternetSemLimites/core/tests/test_fame_view.py
e938694682951acc076cf431f78fd1435b7febff
[ "MIT" ]
permissive
sebshub/PublicAPI
eb26f22a34a7022bccd6aaecdfa0c35e5fdf4c7a
82677389430a30ad82be9fa81643431d9db24f0c
refs/heads/master
2021-01-19T19:06:40.791795
2016-04-14T22:18:43
2016-04-14T22:18:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,489
py
from django.shortcuts import resolve_url from django.test import TestCase from InternetSemLimites.core.models import Provider, State class TestGet(TestCase): def setUp(self): sc = State.objects.get(abbr='SC') go = State.objects.get(abbr='GO') props = {'name': 'Xpto', 'url': 'http://xp.to', 'source': 'http://twitter.com/xpto', 'category': Provider.FAME, 'other': 'Lorem ipsum', 'published': True} provider = Provider.objects.create(**props) provider.coverage = [sc, go] self.resp = self.client.get(resolve_url('fame')) def test_get(self): self.assertEqual(200, self.resp.status_code) def test_type(self): self.assertEqual('application/json', self.resp['Content-Type']) def test_contents(self): json_resp = self.resp.json() fame = json_resp['providers'] with self.subTest(): self.assertEqual(1, len(fame)) self.assertNotIn('hall-of-shame', json_resp) self.assertIn('headers', json_resp) self.assertEqual('Xpto', fame[0]['name']) self.assertEqual('http://xp.to', fame[0]['url']) self.assertEqual('http://twitter.com/xpto', fame[0]['source']) self.assertEqual(['GO', 'SC'], fame[0]['coverage']) self.assertEqual('F', fame[0]['category']) self.assertEqual('Lorem ipsum', fame[0]['other'])
049c15190f0142931a95e324dcc39ec13e781818
0e1e643e864bcb96cf06f14f4cb559b034e114d0
/Exps_7_v3/doc3d/Ablation4_ch016_ep003_7_10/Gather1_W_change_C_fix_2blk/ep0_test/pyr_0s/L5/step10_a.py
4ff6c76e23f16f7c54b25b5ca0b4b4c49fbd9a01
[]
no_license
KongBOy/kong_model2
33a94a9d2be5b0f28f9d479b3744e1d0e0ebd307
1af20b168ffccf0d5293a393a40a9fa9519410b2
refs/heads/master
2022-10-14T03:09:22.543998
2022-10-06T11:33:42
2022-10-06T11:33:42
242,080,692
3
0
null
null
null
null
UTF-8
Python
false
false
6,733
py
############################################################################################################################################################################################################# ############################################################################################################################################################################################################# ### 把 kong_model2 加入 sys.path import os code_exe_path = os.path.realpath(__file__) ### 目前執行 step10_b.py 的 path code_exe_path_element = code_exe_path.split("\\") ### 把 path 切分 等等 要找出 kong_model 在第幾層 code_dir = "\\".join(code_exe_path_element[:-1]) kong_layer = code_exe_path_element.index("kong_model2") ### 找出 kong_model2 在第幾層 kong_model2_dir = "\\".join(code_exe_path_element[:kong_layer + 1]) ### 定位出 kong_model2 的 dir import sys ### 把 kong_model2 加入 sys.path sys.path.append(kong_model2_dir) sys.path.append(code_dir) # print(__file__.split("\\")[-1]) # print(" code_exe_path:", code_exe_path) # print(" code_exe_path_element:", code_exe_path_element) # print(" code_dir:", code_dir) # print(" kong_layer:", kong_layer) # print(" kong_model2_dir:", kong_model2_dir) ############################################################################################################################################################################################################# kong_to_py_layer = len(code_exe_path_element) - 1 - kong_layer ### 中間 -1 是為了長度轉index # print(" kong_to_py_layer:", kong_to_py_layer) if (kong_to_py_layer == 0): template_dir = "" elif(kong_to_py_layer == 2): template_dir = code_exe_path_element[kong_layer + 1][0:] ### [7:] 是為了去掉 step1x_, 後來覺得好像改有意義的名字不去掉也行所以 改 0 elif(kong_to_py_layer == 3): template_dir = code_exe_path_element[kong_layer + 1][0:] + "/" + code_exe_path_element[kong_layer + 2][0:] ### [5:] 是為了去掉 mask_ ,前面的 mask_ 是為了python 的 module 不能 數字開頭, 隨便加的這樣子, 後來覺得 自動排的順序也可以接受, 所以 改0 elif(kong_to_py_layer > 3): template_dir = code_exe_path_element[kong_layer + 1][0:] + "/" + code_exe_path_element[kong_layer + 2][0:] + "/" + "/".join(code_exe_path_element[kong_layer + 3: -1]) # print(" template_dir:", template_dir) ### 舉例: template_dir: 7_mask_unet/5_os_book_and_paper_have_dtd_hdr_mix_bg_tv_s04_mae ############################################################################################################################################################################################################# exp_dir = template_dir ############################################################################################################################################################################################################# from step06_a_datas_obj import * from step09_0side_L5 import * from step10_a2_loss_info_obj import * from step10_b2_exp_builder import Exp_builder rm_paths = [path for path in sys.path if code_dir in path] for rm_path in rm_paths: sys.path.remove(rm_path) rm_moduless = [module for module in sys.modules if "step09" in module] for rm_module in rm_moduless: del sys.modules[rm_module] import Exps_7_v3.doc3d.Ablation4_ch016_ep003_7_10.I_w_M_to_W_pyr.pyr_0s.L5.step10_a as I_w_M_to_W_p20_pyr from Exps_7_v3.doc3d.Ablation4_ch016_ep003_7_10.W_w_M_to_C_pyr.pyr_2s.L5.step10_a import ch032_1side_6__2side_6__ep010 as W_w_M_to_C_p20_2s_L5_Mae_Sob_k09 ############################################################################################################################################################################################################# ''' exp_dir 是 決定 result_dir 的 "上一層"資料夾 名字喔! exp_dir要巢狀也沒問題~ 比如:exp_dir = "6_mask_unet/自己命的名字",那 result_dir 就都在: 6_mask_unet/自己命的名字/result_a 6_mask_unet/自己命的名字/result_b 6_mask_unet/自己命的名字/... ''' use_db_obj = type8_blender_kong_doc3d_v2 use_loss_obj = [mae_s001_sobel_k9_s001_loss_info_builder.set_loss_target("UNet_Wz").copy(), mae_s001_sobel_k9_s001_loss_info_builder.set_loss_target("UNet_Wy").copy(), mae_s001_sobel_k9_s001_loss_info_builder.set_loss_target("UNet_Wx").copy(), mae_s001_sobel_k9_s001_loss_info_builder.set_loss_target("UNet_Cx").copy(), mae_s001_sobel_k9_s001_loss_info_builder.set_loss_target("UNet_Cy").copy()] ### z, y, x 順序是看 step07_b_0b_Multi_UNet 來對應的喔 ############################################################# ### 為了resul_analyze畫空白的圖,建一個empty的 Exp_builder empty = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_0side_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_0side.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="為了resul_analyze畫空白的圖,建一個empty的 Exp_builder") ############################################################# ch032_0side = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_0side_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_0side.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_0side, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_0side") ############################################################# if(__name__ == "__main__"): print("build exps cost time:", time.time() - start_time) if len(sys.argv) < 2: ############################################################################################################ ### 直接按 F5 或打 python step10_b1_exp_obj_load_and_train_and_test.py,後面沒有接東西喔!才不會跑到下面給 step10_b_subprocss.py 用的程式碼~~~ ch032_0side.build().run() # print('no argument') sys.exit() ### 以下是給 step10_b_subprocess.py 用的,相當於cmd打 python step10_b1_exp_obj_load_and_train_and_test.py 某個exp.build().run() eval(sys.argv[1])
1acdfb1920626d1363c04b1ba023704c5c8ca65d
0676f6e4d3510a0305d29aa0b1fe740d538d3b63
/Python/FitPLine/InterpPline.py
6390298333cf36a43eb18f5776c4babdb66361c4
[ "LicenseRef-scancode-warranty-disclaimer" ]
no_license
pgolay/PG_Scripts
f70ffe7e5ca07acd6f4caedc9a9aec566542da7c
796704a7daa6ac222a40bb02afdb599f74a6b0d4
refs/heads/master
2021-01-19T16:53:41.525879
2017-02-07T18:26:10
2017-02-07T18:26:10
2,730,362
9
1
null
2016-12-30T17:58:08
2011-11-08T00:04:33
Python
UTF-8
Python
false
false
482
py
import Rhino import scriptcontext as sc import rhinoscriptsyntax as rs def Test(): pLineId = rs.GetObject("Select a polyline", 4, preselect=True) if pLineId is None: return pLineObj= sc.doc.Objects.Find(pLineId) rc, pLine = pLineObj.Geometry.TryGetPolyline() ang = Rhino.RhinoMath.ToRadians(30) x = pLine.BreakAtAngles(ang) for item in x: sc.doc.Objects.AddPolyline(item) pass if __name__ == "__main__": Test()
d031f9d17e6d7442b98764362e2808e3192189ab
25e627d2931b89eb53d7dad91b200c1c29fe0233
/code/lab_05_Important_Trick/sys_demo(3).py
0740b2d3d833b437ef0f896f320dcf4511a6b1a6
[]
no_license
tcano2003/ucsc-python-for-programmers
efb973b39dbff9a7d30505fecbd9afb1e4d54ae9
cc7fe1fb9f38f992464b5d86d92eb073e18e57d5
refs/heads/master
2020-03-26T22:13:29.256561
2018-08-26T14:54:08
2018-08-26T14:54:08
145,442,055
0
0
null
null
null
null
UTF-8
Python
false
false
718
py
#!/usr/bin/env python3 """Demonstrating the sys module.""" import sys def DemoOpenStreams(): """Demos stderr, stdout and stdin. Also sys.exit()""" sys.stderr.write('You can write to stderr.\n') print (>> sys.stderr, "You might like the >> syntax.") # look this up how to convert to Python 3 sys.stdout.write('A fancier way to write to stdout.\n') print ('Type something: ') text = sys.stdin.readline() print ('You said:', text) def DemoCommandLine(): """Shows the command line.""" print ('This program is named:', sys.argv[0]) #arg vector print ('The command line arguments are:', sys.argv[1:]) def main(): DemoCommandLine() DemoOpenStreams() main()
cc176a774c950fca1179196f76975994db0ffdf0
82042141439ae004fc38bb2ef6238f36ec6bb050
/accounting/tables.py
e59289b4a7eb9e31422231abdbecd07c0d90f405
[]
no_license
psteichen/clusil-intranet
2e9a2cf3b00692a4ef441ebf669af4e63945e9a2
5c028d33f6a8559af57a4eeb02fc0f612cb1b261
refs/heads/master
2021-07-13T15:40:06.464105
2020-06-30T19:51:00
2020-06-30T19:51:00
27,195,950
2
1
null
2021-06-10T20:06:47
2014-11-26T20:59:46
Python
UTF-8
Python
false
false
1,272
py
#coding=utf-8 from django.conf import settings from django.utils.safestring import mark_safe from django.utils.html import escape from django_tables2.tables import Table from django_tables2 import Column from cms.functions import visualiseDateTime from cms.tables import gen_table_actions from .models import Fee #table for visualisation via django_tables2 class InvoiceTable(Table): row_class = Column(visible=False, empty_values=()) #used to highlight some rows actions = Column(verbose_name='Actions',empty_values=()) def render_row_class(self, value, record): if record.paid: return 'success' def render_paid(self, value, record): if value and record.paid_date: #paid return mark_safe('<span class="glyphicon glyphicon-ok"></span>&nbsp;&nbsp;('+visualiseDateTime(record.paid_date)+')') else: return mark_safe('<span class="glyphicon glyphicon-remove"></span>') def render_actions(self, value, record): actions = settings.TEMPLATE_CONTENT['accounting']['actions']['table'] return gen_table_actions(actions,{'id':record.member.id,'year':record.year}) class Meta: model = Fee fields = ( 'year', 'member.gen_name', 'invoice', 'paid', 'actions', ) attrs = {"class": "table table-stripped"}
24c37b2731f76d1274c85d3269703a9dd52a74b7
b2913030cf1646310b08efaa57c2199bb08e37c9
/general/object_id/apero_astrometrics.py
8f21305a71d1f0d505c9856a0c692a251e7481f5
[ "MIT" ]
permissive
njcuk9999/apero-utils
6f5b5083537562a31573b5c4cc76908c5fe194b9
368d53182428ca8befcdd3e5c8ca054f61913711
refs/heads/master
2023-08-31T02:56:01.369406
2023-08-18T15:12:59
2023-08-18T15:12:59
238,777,509
3
5
MIT
2023-08-17T14:15:41
2020-02-06T20:24:49
Python
UTF-8
Python
false
false
5,169
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ # CODE NAME HERE # CODE DESCRIPTION HERE Created on 2021-11-10 at 16:04 @author: cook """ from astroquery.utils.tap.core import TapPlus from astroquery.simbad import Simbad import numpy as np from typing import Dict, List, Tuple import warnings from apero import lang from apero.base import base from apero.core import constants from apero.core.core import drs_log from apero.core.core import drs_database from apero.tools.module.database import manage_databases # ============================================================================= # Define variables # ============================================================================= __NAME__ = 'apero_astrometrics.py' __INSTRUMENT__ = 'None' __PACKAGE__ = base.__PACKAGE__ __version__ = base.__version__ __author__ = base.__author__ __date__ = base.__date__ __release__ = base.__release__ # get text entry instance textentry = lang.textentry # Get Logging function WLOG = drs_log.wlog # get the databases IndexDatabase = drs_database.IndexDatabase ObjectDatabase = drs_database.ObjectDatabase # simbad additional columns SIMBAD_COLUMNS = ['ids'] # ============================================================================= # Define functions # ============================================================================= def query_object(rawobjname): # set up the TapPlus class # simbad = TapPlus(url=URL) # execute the job # sjob = simbad.launch_job(QUERY.format(rawobjname)) # get the results # table = sjob.get_results() # get results with warnings.catch_warnings(record=True) as _: # add ids column for simbad_column in SIMBAD_COLUMNS: Simbad.add_votable_fields(simbad_column) # query simbad table = Simbad.query_object(rawobjname) return 0 def query_database(params, rawobjnames: List[str] ) -> List[str]: """ Find all objects in the object database and return list of unfound objects :param params: :param rawobjnames: :return: """ # --------------------------------------------------------------------- # get psuedo constants pconst = constants.pload() # --------------------------------------------------------------------- # Update the object database (recommended only for full reprocessing) # check that we have entries in the object database manage_databases.object_db_populated(params) # update the database if required if params['UPDATE_OBJ_DATABASE']: # log progress WLOG(params, '', textentry('40-503-00039')) # update database manage_databases.update_object_database(params, log=False) # --------------------------------------------------------------------- # print progress WLOG(params, '', 'Searching local object database for object names...') # load the object database after updating objdbm = ObjectDatabase(params) objdbm.load_db() # storage for output - assume none are found unfound = [] # loop around objects and find them in database for rawobjname in rawobjnames: # clean the object objname = pconst.DRS_OBJ_NAME(rawobjname) # find correct name in the database (via objname or aliases) correct_objname, found = objdbm.find_objname(pconst, objname) # deal with found / not found if found: msg = '\tObject: "{0}" found in database as "{1}"' margs = [rawobjname, correct_objname] WLOG(params, '', msg.format(*margs)) else: msg = '\tObject: "{0}" not found in database' margs = [rawobjname] WLOG(params, '', msg.format(*margs), colour='yellow') # add to unfound list unfound.append(rawobjname) # return the entry names and the found dictionary return unfound # ============================================================================= # Start of code # ============================================================================= # Main code here if __name__ == "__main__": # ---------------------------------------------------------------------- # get params params = constants.load() params.set('PID', 'None') params.set('UPDATE_OBJ_DATABASE', False) rawobjs = ['Gl699', 'Trappist1', 'Neil'] # ---------------------------------------------------------------------- # step 1: Is object in database? # ---------------------------------------------------------------------- # query local object database unfound_objs = query_database(params, rawobjs) # stop here if all objects found print('stop') # ---------------------------------------------------------------------- # step 2: if not in database see if we can find it in simbad # _ = query_object('Gl699') # ---------------------------------------------------------------------- # step 3: add to pending database if submitted # ============================================================================= # End of code # =============================================================================
957e9a83a0906447bcd7c0b17c13adc0c9d0a9e7
f338eb32c45d8d5d002a84798a7df7bb0403b3c4
/DQMOffline/Alignment/test/testMuAlDQM.py
dafae5c403d9e801584a14e97431e543ac40337d
[]
permissive
wouf/cmssw
0a8a8016e6bebc611f1277379e12bef130464afb
60da16aec83a0fc016cca9e2a5ed0768ba3b161c
refs/heads/CMSSW_7_3_X
2022-06-30T04:35:45.380754
2015-05-08T17:40:17
2015-05-08T17:40:17
463,028,972
0
0
Apache-2.0
2022-02-24T06:05:30
2022-02-24T06:05:26
null
UTF-8
Python
false
false
4,965
py
import os import FWCore.ParameterSet.Config as cms process = cms.Process("MuonAlignmentMonitor") process.load("FWCore.MessageLogger.MessageLogger_cfi") process.MessageLogger.cerr.FwkReport.reportEvery = 1000000 process.load("DQMOffline.Alignment.muonAlignment_cfi") process.load("DQMServices.Components.MEtoEDMConverter_cff") process.load("Configuration.StandardSequences.Geometry_cff") process.load("Configuration.StandardSequences.MagneticField_cff") # ideal geometry and interface process.load("Geometry.CMSCommonData.cmsIdealGeometryXML_cfi") process.load("Geometry.TrackerNumberingBuilder.trackerNumberingGeometry_cfi") process.load("Geometry.MuonNumbering.muonNumberingInitialization_cfi") process.load("Geometry.CommonDetUnit.bareGlobalTrackingGeometry_cfi") # reconstruction sequence for Cosmics process.load("Configuration.StandardSequences.ReconstructionCosmics_cff") process.load("TrackPropagation.SteppingHelixPropagator.SteppingHelixPropagator_cfi") #from DQMOffline.Alignment.input_cfi import source #process.source = source process.source = cms.Source("PoolSource", # fileNames = cms.untracked.vstring('/store/data/Commissioning08/Cosmics/ALCARECO/CRAFT_ALL_V4_StreamALCARECOMuAlCalIsolatedMu_step2_AlcaReco-v1/0008/001A49E8-93C3-DD11-9720-003048D15CFA.root') #fileNames = cms.untracked.vstring('/store/data/Commissioning08/Cosmics/ALCARECO/CRAFT_ALL_V9_StreamALCARECOMuAlStandAloneCosmics_225-v3/0008/4EE39297-01FF-DD11-82CF-003048678C9A.root') fileNames= cms.untracked.vstring('/store/data/Commissioning08/Cosmics/RAW-RECO/CRAFT_ALL_V11_227_Tosca090216_ReReco_FromTrackerPointing_v2/0006/F453F276-8421-DE11-ABFE-001731AF66A7.root') ) #process.muonAlignment.MuonCollection = "cosmicMuons" process.muonAlignment.MuonCollection = "ALCARECOMuAlStandAloneCosmics" #process.muonAlignment.MuonCollection = "ALCARECOMuAlCalIsolatedMu:StandAlone" #process.muonAlignment.MuonCollection = "ALCARECOMuAlCalIsolatedMu:SelectedMuons" process.muonAlignment.OutputMEsInRootFile = cms.bool(True) process.muonAlignment.doSummary= cms.untracked.bool(True) process.myDQM = cms.OutputModule("PoolOutputModule", outputCommands = cms.untracked.vstring('drop *','keep *_MEtoEDMConverter_*_MuonAlignmentMonitor'), SelectEvents = cms.untracked.PSet( SelectEvents = cms.vstring('p')), fileName = cms.untracked.string('dqm.root') ) #process.p = cms.Path(process.muonAlignment*process.MEtoEDMConverter) #process.load("DQMServices.Core.DQM_cfg") #process.dqmSaverMy = cms.EDFilter("DQMFileSaver", # convention=cms.untracked.string("Offline"), # workflow=cms.untracked.string("/Alignment/Muon/ALCARECOMuAlGlobalCosmics_v11_SAalgo"), # dirName=cms.untracked.string("."), # saveAtJobEnd=cms.untracked.bool(True), # forceRunNumber=cms.untracked.int32(1) # ) process.myTracks = cms.EDFilter("MyTrackSelector", # src = cms.InputTag("ALCARECOMuAlCalIsolatedMu:StandAlone"), src = cms.InputTag("ALCARECOMuAlStandAloneCosmics"), # src = cms.InputTag("cosmicMuons"), cut = cms.string("pt > 40"), filter = cms.bool(True) ) process.p = cms.Path( #process.myTracks * process.muonAlignment # *process.dqmSaverMy # *process.MEtoEDMConverter ) process.outpath = cms.EndPath(process.myDQM) from CondCore.DBCommon.CondDBSetup_cfi import * #process.load("Configuration.StandardSequences.FrontierConditions_GlobalTag_noesprefer_cff") process.load("Configuration.StandardSequences.FrontierConditions_GlobalTag_cff") if os.environ["CMS_PATH"] != "": del process.es_prefer_GlobalTag del process.SiStripPedestalsFakeESSource del process.siStripBadChannelFakeESSource del process.siStripBadFiberFakeESSource del process.DTFakeVDriftESProducer #process.prefer("GlobalTag") #process.prefer("GlobalTag") process.GlobalTag.globaltag = 'CRAFT_ALL_V11::All' process.myAlignment = cms.ESSource("PoolDBESSource",CondDBSetup, #connect = cms.string('sqlite_file:/afs/cern.ch/user/p/pablom/public/DBs/Alignments_CRAFT_ALL_V4_refitter.db'), #connect = cms.string('sqlite_file:/afs/cern.ch/cms/CAF/CMSALCA/ALCA_MUONALIGN/HWAlignment/AlignmentDB/AlignmentsNewEndcap.db'), connect = cms.string('sqlite_file:/afs/cern.ch/user/p/pivarski/public/CRAFTalignment4_NewTracker_xyphiz2_alignedonlyAPEs.db'), #DBParameters = CondCore.DBCommon.CondDBSetup_cfi.CondDBSetup.DBParameters, toGet = cms.VPSet( cms.PSet( record = cms.string('DTAlignmentRcd'), tag = cms.string('DTAlignmentRcd') ), cms.PSet( record = cms.string('DTAlignmentErrorRcd'), tag = cms.string('DTAlignmentErrorRcd') ), cms.PSet( record = cms.string('CSCAlignmentRcd'), tag = cms.string('CSCAlignmentRcd') ), cms.PSet( record = cms.string('CSCAlignmentErrorRcd'), tag = cms.string('CSCAlignmentErrorRcd') ) ) ) process.es_prefer_myAlignment = cms.ESPrefer("PoolDBESSource","myAlignment") #process.schedule = cms.Schedule(process.p,process.outpath)
be210f89568c29063428ef21602005c46b94af7c
e86d020f8ade86b86df6ad8590b4458a9d415491
/test-xooj/practice_infiltration/resource.py
54fa54208d6e269ffbafe87eff7295d066e7fde0
[ "BSD-2-Clause" ]
permissive
g842995907/guops-know
e4c3b2d47e345db80c27d3ba821a13e6bf7191c3
0df4609f3986c8c9ec68188d6304d033e24b24c2
refs/heads/master
2022-12-05T11:39:48.172661
2019-09-05T12:35:32
2019-09-05T12:35:32
202,976,887
1
4
null
2022-11-22T02:57:53
2019-08-18T08:10:05
JavaScript
UTF-8
Python
false
false
787
py
# -*- coding: utf-8 -*- from common_env.models import Env from practice import resource class PracticeInfiltrationTaskMeta(resource.SolvedBaseTask): subsidiary = [{ 'force': { 'create_user_id': None, 'last_edit_user_id': None, }, 'subsidiary': { 'category': { 'get': lambda self: self.category, 'set': lambda self, category: setattr(self, 'category', category), }, 'envs': { 'many_to_many': True, 'get': lambda self: self.envs.filter(env__status=Env.Status.TEMPLATE), 'set': lambda self, task_envs: self.envs.add(*task_envs), }, }, 'markdownfields': ['content', 'official_writeup'] }]
2b7af92bfdd54503386f5e94c97ca30500b26788
409c4d0dce72de987dff7c76857499fba8f8b7a0
/disargv.py
74cc21ae8cb5195e712dce1e98515d6ada50d2d1
[]
no_license
crystaleone/test
b4fece7fbc4e8ddd6186ea13245c62970c6d7038
4af3964bf6a657e888c7850f07a031440ba29e7a
refs/heads/master
2021-01-18T19:17:36.924170
2017-09-19T03:37:01
2017-09-19T03:37:01
86,895,858
0
0
null
null
null
null
UTF-8
Python
false
false
98
py
import sys l1 = sys.argv[0] l2 = sys.argv[1] l3 = sys.argv[2] l4 = sys.argv[3] print(l1,l2,l3,l4)
48cf24d2660484608ab2a4153721faff3b921745
61673ab9a42f7151de7337608c442fa6247f13bb
/tkinter/minimize - iconify/main.py
5f35a5d61c37b30d04da61f12bdcb2aa2ff74595
[ "MIT" ]
permissive
furas/python-examples
22d101670ecd667a29376d7c7d7d86f8ec71f6cf
95cb53b664f312e0830f010c0c96be94d4a4db90
refs/heads/master
2022-08-23T23:55:08.313936
2022-08-01T14:48:33
2022-08-01T14:48:33
45,575,296
176
91
MIT
2021-02-17T23:33:37
2015-11-04T23:54:32
Python
UTF-8
Python
false
false
648
py
#!/usr/bin/env python3 # date: 2020.06.27 import tkinter as tk root = tk.Tk() # button [X] minimize (iconify) the main window root.protocol("WM_DELETE_WINDOW", root.iconify) # key ESC minimize (iconify) the main window #root.bind('<Escape>', lambda event: root.destroy()) root.bind('<Escape>', lambda event: root.iconify()) # create a menu bar with an `Exit` and `Hide` menubar = tk.Menu(root) filemenu = tk.Menu(menubar, tearoff=0) filemenu.add_command(label="Hide", command=root.iconify) filemenu.add_command(label="Exit", command=root.destroy) menubar.add_cascade(label="File", menu=filemenu) root.config(menu=menubar) root.mainloop()
508ba345964380a61362afc629dea987c61c2b0c
c97ad9dbc96d151b5ef38a6d6dbac454d6e57576
/architectures/preprocessing.py
f15f66e3b153c6b3f0bbf3ec310c58605c37fd61
[ "BSD-3-Clause" ]
permissive
WangVictor/jets
75177ff68fad2eaf3274537afcee325d93ff1d5f
1f7209b4c026b63cad94aa8c93e2b8721b259b98
refs/heads/master
2021-07-14T05:39:54.983839
2017-10-17T20:48:01
2017-10-17T20:48:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,137
py
import numpy as np import copy import pickle import torch from torch.autograd import Variable # wrapping def wrap(y, dtype='float'): y_wrap = Variable(torch.from_numpy(y)) if dtype=='float': y_wrap = y_wrap.float() elif dtype == 'long': y_wrap = y_wrap.long() if torch.cuda.is_available(): y_wrap = y_wrap.cuda() return y_wrap def unwrap(y_wrap): if y_wrap.is_cuda: y = y_wrap.cpu().data.numpy() else: y = y_wrap.data.numpy() return y def wrap_X(X): X_wrap = copy.deepcopy(X) for jet in X_wrap: jet["content"] = wrap(jet["content"]) return X_wrap def unwrap_X(X_wrap): X_new = [] for jet in X_wrap: jet["content"] = unwrap(jet["content"]) X_new.append(jet) return X_new ''' def wrap(y, dtype='float'): y_wrap = Variable(torch.from_numpy(y)) if dtype=='float': y_wrap = y_wrap.float() elif dtype == 'long': y_wrap = y_wrap.long() if torch.cuda.is_available(): y_wrap = y_wrap.cuda() #y = y_wrap return y_wrap def unwrap(y): if y.is_cuda: y_unwrap = y.cpu().data.numpy() else: y_unwrap = y.data.numpy() return y_unwrap def wrap_X(X): for jet in X: jet['content'] = wrap(jet["content"]) #X = copy.copy(X_) #for i, (jet, jet_) in enumerate(X, X_): # jet['content'] = wrap(jet_["content"]) return X def unwrap_X(X): for jet in X: jet["content"] = unwrap(jet["content"]) return X ''' # Data loading related def load_from_pickle(filename, n_jets): jets = [] fd = open(filename, "rb") for i in range(n_jets): jet = pickle.load(fd) jets.append(jet) fd.close() return jets # Jet related def _pt(v): pz = v[2] p = (v[0:3] ** 2).sum() ** 0.5 eta = 0.5 * (np.log(p + pz) - np.log(p - pz)) pt = p / np.cosh(eta) return pt def permute_by_pt(jet, root_id=None): # ensure that the left sub-jet has always a larger pt than the right if root_id is None: root_id = jet["root_id"] if jet["tree"][root_id][0] != -1: left = jet["tree"][root_id][0] right = jet["tree"][root_id][1] pt_left = _pt(jet["content"][left]) pt_right = _pt(jet["content"][right]) if pt_left < pt_right: jet["tree"][root_id][0] = right jet["tree"][root_id][1] = left permute_by_pt(jet, left) permute_by_pt(jet, right) return jet def rewrite_content(jet): jet = copy.deepcopy(jet) if jet["content"].shape[1] == 5: pflow = jet["content"][:, 4].copy() content = jet["content"] tree = jet["tree"] def _rec(i): if tree[i, 0] == -1: pass else: _rec(tree[i, 0]) _rec(tree[i, 1]) c = content[tree[i, 0]] + content[tree[i, 1]] content[i] = c _rec(jet["root_id"]) if jet["content"].shape[1] == 5: jet["content"][:, 4] = pflow return jet def extract(jet, pflow=False): # per node feature extraction jet = copy.deepcopy(jet) s = jet["content"].shape if not pflow: content = np.zeros((s[0], 7)) else: # pflow value will be one-hot encoded content = np.zeros((s[0], 7+4)) for i in range(len(jet["content"])): px = jet["content"][i, 0] py = jet["content"][i, 1] pz = jet["content"][i, 2] p = (jet["content"][i, 0:3] ** 2).sum() ** 0.5 eta = 0.5 * (np.log(p + pz) - np.log(p - pz)) theta = 2 * np.arctan(np.exp(-eta)) pt = p / np.cosh(eta) phi = np.arctan2(py, px) content[i, 0] = p content[i, 1] = eta if np.isfinite(eta) else 0.0 content[i, 2] = phi content[i, 3] = jet["content"][i, 3] content[i, 4] = (jet["content"][i, 3] / jet["content"][jet["root_id"], 3]) content[i, 5] = pt if np.isfinite(pt) else 0.0 content[i, 6] = theta if np.isfinite(theta) else 0.0 if pflow: if jet["content"][i, 4] >= 0: content[i, 7+int(jet["content"][i, 4])] = 1.0 jet["content"] = content return jet def randomize(jet): # build a random tree jet = copy.deepcopy(jet) leaves = np.where(jet["tree"][:, 0] == -1)[0] nodes = [n for n in leaves] content = [jet["content"][n] for n in nodes] nodes = [i for i in range(len(nodes))] tree = [[-1, -1] for n in nodes] pool = [n for n in nodes] next_id = len(nodes) while len(pool) >= 2: i = np.random.randint(len(pool)) left = pool[i] del pool[i] j = np.random.randint(len(pool)) right = pool[j] del pool[j] nodes.append(next_id) c = (content[left] + content[right]) if len(c) == 5: c[-1] = -1 content.append(c) tree.append([left, right]) pool.append(next_id) next_id += 1 jet["content"] = np.array(content) jet["tree"] = np.array(tree).astype(int) jet["root_id"] = len(jet["tree"]) - 1 return jet def sequentialize_by_pt(jet, reverse=False): # transform the tree into a sequence ordered by pt jet = copy.deepcopy(jet) leaves = np.where(jet["tree"][:, 0] == -1)[0] nodes = [n for n in leaves] content = [jet["content"][n] for n in nodes] nodes = [i for i in range(len(nodes))] tree = [[-1, -1] for n in nodes] pool = sorted([n for n in nodes], key=lambda n: _pt(content[n]), reverse=reverse) next_id = len(pool) while len(pool) >= 2: right = pool[-1] left = pool[-2] del pool[-1] del pool[-1] nodes.append(next_id) c = (content[left] + content[right]) if len(c) == 5: c[-1] = -1 content.append(c) tree.append([left, right]) pool.append(next_id) next_id += 1 jet["content"] = np.array(content) jet["tree"] = np.array(tree).astype(int) jet["root_id"] = len(jet["tree"]) - 1 return jet
e42b386d67393c6af683599183132b972f57f57a
928c53ea78be51eaf05e63f149fb291ec48be73e
/Min_Steps_to_Make_Piles_Equal_Height.py
527f25bb619af81199021e028c3d6393516d14b4
[]
no_license
saurabhchris1/Algorithm-Pratice-Questions-LeetCode
35021d8fc082ecac65d7970d9f83f9be904fb333
ea4a7d6a78d86c8619f91a75594de8eea264bcca
refs/heads/master
2022-12-10T16:50:50.678365
2022-12-04T10:12:18
2022-12-04T10:12:18
219,918,074
5
2
null
null
null
null
UTF-8
Python
false
false
2,697
py
# Alexa is given n piles of equal or unequal heights. In one step, Alexa can remove any number # of boxes from the pile which has the maximum height and try to make it equal to the one which # is just lower than the maximum height of the stack. Determine the minimum number of steps # required to make all of the piles equal in height. # # Example 1: # # Input: piles = [5, 2, 1] # Output: 3 # Explanation: # Step 1: reducing 5 -> 2 [2, 2, 1] # Step 2: reducing 2 -> 1 [2, 1, 1] # Step 3: reducing 2 -> 1 [1, 1, 1] # So final number of steps required is 3. # # Let's take an example. # Input : [1, 1, 2, 2, 2, 3, 3, 3, 4, 4] # Output : 15 # After sorting in reverse, we have... # [4, 4, 3, 3, 3, 2, 2, 2, 1] --> (2 steps to transform the 4's) --> The 3's must wait for 2 numbers # before it to finish their reduction # [3, 3, 3, 3, 3, 2, 2, 2, 1] --> (5 steps to transform the 3's) --> The 2's must wait for 5 numbers # before it to finish their reduction # [2, 2, 2, 2, 2, 2, 2, 2, 1] --> (8 steps to transform the 2's) --> The 1's must wait for 8 numbers # before it to finish their reduction # [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] # # Why did we sort in reverse? Because we want to process the maximum / largest number(s) first, which # is what the question wants. At each step, we can only reduce the largest number(s) to the value of # the 2nd-largest number(s) # # The main idea throughout the algorithm is that - Every time I meet a different number in the # reverse-sorted array, I have to count how many numbers came before it. This represents the number # of steps that was taken to reduce these numbers to the current number # Reference https://leetcode.com/discuss/interview-question/364618/ by Wei_lun def min_steps_balance(piles): """ Time : O(N log N) Space : O(1), where N = len(s) """ # EDGE CASE if len(piles) < 2: return 0 # SORT THE BLOCKS piles = sorted(piles, reverse=True) # COUNT THE STEPS WE NEED steps = 0 # EACH TIME WE SEE A DIFFERENT ELEMENT, WE NEED TO SEE HOW MANY ELEMENTS ARE BEFORE IT for i in range(1, len(piles)): steps += i if piles[i - 1] != piles[i] else 0 return steps if __name__ == "__main__": print(min_steps_balance([50]) == 0) print(min_steps_balance([10, 10]) == 0) print(min_steps_balance([5, 2, 1]) == 3) print(min_steps_balance([4, 2, 1]) == 3) print(min_steps_balance([4, 5, 5, 4, 2]) == 6) print(min_steps_balance([4, 8, 16, 32]) == 6) print(min_steps_balance([4, 8, 8]) == 2) print(min_steps_balance([4, 4, 8, 8]) == 2) print(min_steps_balance([1, 2, 2, 3, 3, 4]) == 9) print(min_steps_balance([1, 1, 2, 2, 2, 3, 3, 3, 4, 4]) == 15)
4c2eb9b33282c9d82b39003190a73f99d017c113
9405aa570ede31a9b11ce07c0da69a2c73ab0570
/aliyun-python-sdk-jaq/aliyunsdkjaq/request/v20160412/ScanMalwareRequest.py
22d33711640845bbae4e9f3f05704d6c77572d61
[ "Apache-2.0" ]
permissive
liumihust/aliyun-openapi-python-sdk
7fa3f5b7ea5177a9dbffc99e73cf9f00e640b72b
c7b5dd4befae4b9c59181654289f9272531207ef
refs/heads/master
2020-09-25T12:10:14.245354
2019-12-04T14:43:27
2019-12-04T14:43:27
226,002,339
1
0
NOASSERTION
2019-12-05T02:50:35
2019-12-05T02:50:34
null
UTF-8
Python
false
false
1,280
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest class ScanMalwareRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'jaq', '2016-04-12', 'ScanMalware','jaq') def get_ExtParam(self): return self.get_query_params().get('ExtParam') def set_ExtParam(self,ExtParam): self.add_query_param('ExtParam',ExtParam) def get_AppInfo(self): return self.get_query_params().get('AppInfo') def set_AppInfo(self,AppInfo): self.add_query_param('AppInfo',AppInfo)
11b02e051010453eb013a89954d8791c7033b396
4daeb9ebf92d9826028a50bf4e4715c1ab145db1
/Problem-Set/Numerical_Computing/INSOMA3/run.py
119445d7f7fd419363c3de405740eab234b29f25
[]
no_license
Rahul2025/Thesis
4148653fcc96d623d602ba58e33cc6465d1cd9f5
df31863194e2e0b69646e3a48fcaf90541a55c2a
refs/heads/master
2020-05-02T00:48:09.593873
2013-04-21T20:23:02
2013-04-21T20:23:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
172
py
# filename : run.py import time f = open('/home/Rahul/Desktop/Thesis/Scripts/cyth_time', 'a') start = time.time() import qq18_tim f.write(str(time.time() - start)) f.close
9f4416124cf22e1bd928fc11c7e256b682fd7520
7fffc39739869f259fe2d103efa05b87739778d1
/Python/1149.py
2396c4e58a35fca7ff1885f711b8fb4acd26d436
[]
no_license
yunbinni/CodeUp
be39b3bd9fbeaa64be2a77a92918ebcc79b1799b
5cb95442edb2b766de74154e0b91e8e1c236dd13
refs/heads/main
2023-08-15T19:02:29.819912
2021-10-12T00:50:16
2021-10-12T00:50:16
366,761,440
0
0
null
null
null
null
UTF-8
Python
false
false
57
py
a, b = map(int, input().split()) print(a if a > b else b)
fce0c0cbd8334360a36182f7f12a1d6bf9d2bbbb
66d79b863ef112d3e93770c695751d2f70c94aa5
/pygeopressure_gui/views/well_log_view.py
49097e2b311fa64d202ac8cf8d506a05529973d4
[]
no_license
whimian/pyGeoPressure_gui
95d11edbd0589d1ef4368298dbac2abdbd76d203
a36777cf06a48eea681acc481880ee2e9309ac24
refs/heads/master
2020-03-11T22:26:56.967910
2018-05-09T08:20:48
2018-05-09T08:20:48
130,292,422
2
2
null
null
null
null
UTF-8
Python
false
false
1,505
py
# -*- coding: utf-8 -*- """ a Well log display widget based on matplotlib Created on Tue May 2nd 2018 """ from __future__ import (division, absolute_import, print_function, with_statement, unicode_literals) from future.builtins import super __author__ ="Yu Hao" from pathlib2 import Path from PyQt4.QtGui import QIcon, QDialog, QFileDialog, QWidget, QHBoxLayout, QGridLayout from PyQt4 import uic, QtCore from pygeopressure_gui.ui.ui_well_log_view_control import Ui_well_Log_View_Control from pygeopressure_gui.widgets.matplotlib_widget import MatplotlibWidget from pygeopressure_gui.config import CONF class WellLogView(QWidget): def __init__(self, parent=None): super().__init__() # self.setupUi(self) self.initUI() # connect # self.surveyListWidget.itemSelectionChanged.connect( # self.display_map_and_info) # self.surveyButton.clicked.connect(self.on_clicked_surveyButton) # self.selectButton.clicked.connect(self.on_clicked_selectButton) # self.load_survey_list() def initUI(self): layout = QHBoxLayout(self) self.control_widget = Well_Log_View_Control(self) self.matplotlib_widget = MatplotlibWidget(self) layout.addWidget(self.control_widget) layout.addWidget(self.matplotlib_widget) class Well_Log_View_Control(QWidget, Ui_well_Log_View_Control): def __init__(self, parent=None): super().__init__() self.setupUi(self)
2292b674d56303f1c405fe6e8fd757ff063bcd65
4e3c976773526fd610d64ffb83589bccfaee5e68
/sponge-app/sponge-app-demo-service/sponge/sponge_demo_forms_library_args.py
bb2475d0c06d7040720b9ffa792fd6294790e641
[ "Apache-2.0" ]
permissive
softelnet/sponge
2313d2328953fcff49a002e727bb803757870627
7190f23ae888bbef49d0fbb85157444d6ea48bcd
refs/heads/master
2022-10-28T16:19:55.619882
2021-09-16T19:50:08
2021-09-16T19:50:08
95,256,030
10
2
Apache-2.0
2022-10-04T23:55:09
2017-06-23T20:58:49
Java
UTF-8
Python
false
false
4,364
py
""" Sponge Knowledge Base Demo Forms - Library as action arguments """ class ArgLibraryForm(Action): def onConfigure(self): self.withLabel("Library (books as arguments)") self.withArgs([ StringType("search").withNullable().withLabel("Search").withFeature("responsive", True), StringType("order").withLabel("Sort by").withProvided(ProvidedMeta().withValue().withValueSet()), # Provided with overwrite to allow GUI refresh. ListType("books").withLabel("Books").withProvided(ProvidedMeta().withValue().withOverwrite().withDependencies( ["search", "order"])).withFeatures({ "createAction":SubAction("ArgCreateBook"), "readAction":SubAction("ArgReadBook").withArg("bookId", "@this"), "updateAction":SubAction("ArgUpdateBook").withArg("bookId", "@this"), "deleteAction":SubAction("ArgDeleteBook").withArg("bookId", "@this"), "refreshable":True, }).withElement( IntegerType().withAnnotated() ) ]).withNonCallable().withFeature("icon", "library") def onProvideArgs(self, context): global LIBRARY if "order" in context.provide: context.provided["order"] = ProvidedValue().withValue("author").withAnnotatedValueSet([ AnnotatedValue("author").withValueLabel("Author"), AnnotatedValue("title").withValueLabel("Title")]) if "books" in context.provide: context.provided["books"] = ProvidedValue().withValue( map(lambda book: AnnotatedValue(int(book.id)).withValueLabel("{} - {}".format(book.author, book.title)).withValueDescription("Sample description (ID: " + str(book.id) +")"), sorted(LIBRARY.findBooks(context.current["search"]), key = lambda book: book.author.lower() if context.current["order"] == "author" else book.title.lower()))) class ArgCreateBook(Action): def onConfigure(self): self.withLabel("Add a new book") self.withArgs([ StringType("author").withLabel("Author"), StringType("title").withLabel("Title") ]).withNoResult() self.withFeatures({"visible":False, "callLabel":"Save", "cancelLabel":"Cancel"}) def onCall(self, author, title): global LIBRARY LIBRARY.addBook(author, title) class ArgAbstractReadUpdateBook(Action): def onConfigure(self): self.withArgs([ IntegerType("bookId").withAnnotated().withFeature("visible", False), StringType("author").withLabel("Author").withProvided(ProvidedMeta().withValue().withDependency("bookId")), StringType("title").withLabel("Title").withProvided(ProvidedMeta().withValue().withDependency("bookId")) ]).withNoResult() self.withFeatures({"visible":False}) def onProvideArgs(self, context): global LIBRARY if "author" in context.provide or "title" in context.provide: book = LIBRARY.getBook(context.current["bookId"].value) context.provided["author"] = ProvidedValue().withValue(book.author) context.provided["title"] = ProvidedValue().withValue(book.title) class ArgReadBook(ArgAbstractReadUpdateBook): def onConfigure(self): ArgAbstractReadUpdateBook.onConfigure(self) self.withLabel("View the book").withNonCallable() self.withFeatures({"cancelLabel":"Close"}) def onCall(self, bookId, author, title): pass class ArgUpdateBook(ArgAbstractReadUpdateBook): def onConfigure(self): ArgAbstractReadUpdateBook.onConfigure(self) self.withLabel("Modify the book") self.withFeatures({"callLabel":"Save", "cancelLabel":"Cancel"}) def onCall(self, bookId, author, title): global LIBRARY LIBRARY.updateBook(bookId.value, author, title) class ArgDeleteBook(Action): def onConfigure(self): self.withLabel("Remove the book") self.withArgs([ IntegerType("bookId").withAnnotated().withFeature("visible", False), ]).withNoResult() self.withFeatures({"visible":False, "callLabel":"Save", "cancelLabel":"Cancel"}) def onCall(self, bookId): global LIBRARY self.logger.info("Deleting book id: {}", bookId.value) LIBRARY.removeBook(bookId.value)
7af57a4dd70f7a9cde6ca5ae074f3d75c585b917
176481563e0978340c737f61a4f85203ebb65c0b
/ptsites/sites/hdhome.py
f44a99bb7c69afa0dd0174e5d8ff0e93ad0ddf06
[ "MIT" ]
permissive
ronioncloud/flexget_qbittorrent_mod
328bd6448e6908bfb8d953e83e826ee8e966eee6
a163a87328eeadf5ae961db4aec89f3f3ce48ad8
refs/heads/master
2023-01-20T03:43:07.664080
2020-11-21T10:28:13
2020-11-21T10:28:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,114
py
from ..schema.site_base import SiteBase from ..schema.nexusphp import NexusPHP # auto_sign_in URL = 'https://hdhome.org/attendance.php' SUCCEED_REGEX = '这是您的第 .* 次签到,已连续签到 .* 天,本次签到获得 .* 个魔力值。|您今天已经签到过了,请勿重复刷新。' # html_rss ROOT_ELEMENT_SELECTOR = '#torrenttable > tbody > tr:not(:first-child)' FIELDS = { 'title': { 'element_selector': 'a[href*="details.php"]', 'attribute': 'title' }, 'url': { 'element_selector': 'a[href*="download.php"]', 'attribute': 'href' }, 'leecher': { 'element_selector': 'td:nth-child(7)', 'attribute': 'textContent' }, 'hr': { 'element_selector': 'img.hitandrun', 'attribute': 'alt' } } class MainClass(NexusPHP): @staticmethod def build_sign_in(entry, config): SiteBase.build_sign_in_entry(entry, config, URL, SUCCEED_REGEX) @staticmethod def build_html_rss_config(config): config['root_element_selector'] = ROOT_ELEMENT_SELECTOR config['fields'] = FIELDS
eee84b835b4bb691bc922942e4d6e792138a170e
18fa0ad57cd9c26bc2622ead61b88c81e017e2e8
/kits/task_master.py
3452c834c4cdd786cd94314026e08537c0677050
[]
no_license
weihhh/ECG_pro
45da18fad4709009cd4766a870fac7c5d5514a92
1e013cbb7352ad896661412f036fd9c6242a6001
refs/heads/master
2021-05-04T13:52:17.259815
2018-07-20T02:39:16
2018-07-20T02:39:16
120,323,445
2
4
null
null
null
null
UTF-8
Python
false
false
1,361
py
# task_master.py import random, time, queue from multiprocessing.managers import BaseManager # 发送任务的队列: task_queue = queue.Queue() # 接收结果的队列: result_queue = queue.Queue() # 从BaseManager继承的QueueManager: class QueueManager(BaseManager): pass def return_task_queue(): global task_queue return task_queue def return_result_queue(): global result_queue return result_queue def task_run(): # 把两个Queue都注册到网络上, callable参数关联了Queue对象: QueueManager.register('get_task_queue', callable=return_task_queue) QueueManager.register('get_result_queue', callable=return_result_queue) # 绑定端口5000, 设置验证码'abc': manager = QueueManager(address=('127.0.0.1', 5000), authkey=b'abc') # 启动Queue: manager.start() # 获得通过网络访问的Queue对象: task = manager.get_task_queue() result = manager.get_result_queue() # 放几个任务进去: for i in range(10): n = random.randint(0, 10000) print('Put task %d...' % n) task.put(n) # 从result队列读取结果: print('Try get results...') for i in range(10): r = result.get(timeout=10) print('Result: %s' % r) # 关闭: manager.shutdown() print('master exit.') if __name__ == '__main__': task_run()
7b02be135bb7cd1c50578c242919e30865e8ccb5
191a7f83d964f74a2b3c7faeb4fc47d9c63d521f
/.history/main_20210523152024.py
f07a1738d818cc8037a69010ee1541519e6e81c2
[]
no_license
AndreLiu1225/Kinder-Values-Survey
2a317feee8d5b17c27da2b2116742656e35d8ab9
090c27da0c822abb7dfc0ec6e13ae1b3dcb7bbf3
refs/heads/master
2023-05-03T00:26:00.481423
2021-06-04T03:24:19
2021-06-04T03:24:19
371,989,154
0
0
null
null
null
null
UTF-8
Python
false
false
1,821
py
from flask import Flask, render_template, redirect, url_for from flask_wtf import FlaskForm from wtforms import StringField, TextField, SubmitField, IntegerField, SelectField, RadioField from wtforms.validators import DataRequired, Email, EqualTo, Length, ValidationError app = Flask(__name__) app.config['SECRET_KEY'] = "0c8973c8a5e001bb0c816a7b56c84f3a" class MCQ(FlaskForm): age = IntegerField("Please enter your age", validators=[DataRequired()]) profession = StringField("What is your profession?", validators=[DataRequired(), Length(max=30)]) power = RadioField("Do you desire a higher social status and dominance over others?", choices=[('Yes', 'It is my priority'), ('No', 'It is not my priority')]) tradition = RadioField("Do you desire a higher social status and dominance over others?", choices=[('Yes', 'It is my priority'), ('No', 'It is not my priority')]) achievement = RadioField("Do you desire a higher social status and dominance over others?", choices=[('Yes', 'It is my priority'), ('No', 'It is not my priority')]) stimulation = RadioField("Do you desire a higher social status and dominance over others?", choices=[('Yes', 'It is my priority'), ('No', 'It is not my priority')]) hedonism = RadioField("Do you desire a higher social status and dominance over others?", choices=[('Yes', 'It is my priority'), ('No', 'It is not my priority')]) conformity = RadioField("Do you desire a higher social status and dominance over others?", choices=[('Yes', 'It is my priority'), ('No', 'It is not my priority')]) self_direction = RadioField("Do you desire a higher social status and dominance over others?", choices=[('Yes', 'It is my priority'), ('No', 'It is not my priority')]) submit = SubmitField("Submit") if __name__ == "__main__": app.run(debug=True)
01ef591e939e1957ca428570b792b4f0d1913223
24fe1f54fee3a3df952ca26cce839cc18124357a
/servicegraph/lib/python2.7/site-packages/acimodel-4.0_3d-py2.7.egg/cobra/modelimpl/bgp/peeropenhist1d.py
a70f146b1976cbe24363ebda9c25b83c7b20cf50
[]
no_license
aperiyed/servicegraph-cloudcenter
4b8dc9e776f6814cf07fe966fbd4a3481d0f45ff
9eb7975f2f6835e1c0528563a771526896306392
refs/heads/master
2023-05-10T17:27:18.022381
2020-01-20T09:18:28
2020-01-20T09:18:28
235,065,676
0
0
null
2023-05-01T21:19:14
2020-01-20T09:36:37
Python
UTF-8
Python
false
false
33,768
py
# coding=UTF-8 # ********************************************************************** # Copyright (c) 2013-2019 Cisco Systems, Inc. All rights reserved # written by zen warriors, do not modify! # ********************************************************************** from cobra.mit.meta import ClassMeta from cobra.mit.meta import StatsClassMeta from cobra.mit.meta import CounterMeta from cobra.mit.meta import PropMeta from cobra.mit.meta import Category from cobra.mit.meta import SourceRelationMeta from cobra.mit.meta import NamedSourceRelationMeta from cobra.mit.meta import TargetRelationMeta from cobra.mit.meta import DeploymentPathMeta, DeploymentCategory from cobra.model.category import MoCategory, PropCategory, CounterCategory from cobra.mit.mo import Mo # ################################################## class PeerOpenHist1d(Mo): """ Mo doc not defined in techpub!!! """ meta = StatsClassMeta("cobra.model.bgp.PeerOpenHist1d", "BGP Peer Open") counter = CounterMeta("updateRcvd", CounterCategory.COUNTER, "packets", "Number of Update Messages Received") counter._propRefs[PropCategory.IMPLICIT_CUMULATIVE] = "updateRcvdCum" counter._propRefs[PropCategory.IMPLICIT_PERIODIC] = "updateRcvdPer" counter._propRefs[PropCategory.IMPLICIT_MIN] = "updateRcvdMin" counter._propRefs[PropCategory.IMPLICIT_MAX] = "updateRcvdMax" counter._propRefs[PropCategory.IMPLICIT_AVG] = "updateRcvdAvg" counter._propRefs[PropCategory.IMPLICIT_SUSPECT] = "updateRcvdSpct" counter._propRefs[PropCategory.IMPLICIT_THRESHOLDED] = "updateRcvdThr" counter._propRefs[PropCategory.IMPLICIT_TREND] = "updateRcvdTr" counter._propRefs[PropCategory.IMPLICIT_RATE] = "updateRcvdRate" meta._counters.append(counter) counter = CounterMeta("updateSent", CounterCategory.COUNTER, "packets", "Number of Update Messages Sent") counter._propRefs[PropCategory.IMPLICIT_CUMULATIVE] = "updateSentCum" counter._propRefs[PropCategory.IMPLICIT_PERIODIC] = "updateSentPer" counter._propRefs[PropCategory.IMPLICIT_MIN] = "updateSentMin" counter._propRefs[PropCategory.IMPLICIT_MAX] = "updateSentMax" counter._propRefs[PropCategory.IMPLICIT_AVG] = "updateSentAvg" counter._propRefs[PropCategory.IMPLICIT_SUSPECT] = "updateSentSpct" counter._propRefs[PropCategory.IMPLICIT_THRESHOLDED] = "updateSentThr" counter._propRefs[PropCategory.IMPLICIT_TREND] = "updateSentTr" counter._propRefs[PropCategory.IMPLICIT_RATE] = "updateSentRate" meta._counters.append(counter) counter = CounterMeta("openRcvd", CounterCategory.COUNTER, "packets", "Number of Open Messages Received") counter._propRefs[PropCategory.IMPLICIT_CUMULATIVE] = "openRcvdCum" counter._propRefs[PropCategory.IMPLICIT_PERIODIC] = "openRcvdPer" counter._propRefs[PropCategory.IMPLICIT_MIN] = "openRcvdMin" counter._propRefs[PropCategory.IMPLICIT_MAX] = "openRcvdMax" counter._propRefs[PropCategory.IMPLICIT_AVG] = "openRcvdAvg" counter._propRefs[PropCategory.IMPLICIT_SUSPECT] = "openRcvdSpct" counter._propRefs[PropCategory.IMPLICIT_THRESHOLDED] = "openRcvdThr" counter._propRefs[PropCategory.IMPLICIT_TREND] = "openRcvdTr" counter._propRefs[PropCategory.IMPLICIT_RATE] = "openRcvdRate" meta._counters.append(counter) counter = CounterMeta("openSent", CounterCategory.COUNTER, "packets", "Number of Open Messages Sent") counter._propRefs[PropCategory.IMPLICIT_CUMULATIVE] = "openSentCum" counter._propRefs[PropCategory.IMPLICIT_PERIODIC] = "openSentPer" counter._propRefs[PropCategory.IMPLICIT_MIN] = "openSentMin" counter._propRefs[PropCategory.IMPLICIT_MAX] = "openSentMax" counter._propRefs[PropCategory.IMPLICIT_AVG] = "openSentAvg" counter._propRefs[PropCategory.IMPLICIT_SUSPECT] = "openSentSpct" counter._propRefs[PropCategory.IMPLICIT_THRESHOLDED] = "openSentThr" counter._propRefs[PropCategory.IMPLICIT_TREND] = "openSentTr" counter._propRefs[PropCategory.IMPLICIT_RATE] = "openSentRate" meta._counters.append(counter) meta.moClassName = "bgpPeerOpenHist1d" meta.rnFormat = "HDbgpPeerOpen1d-%(index)s" meta.category = MoCategory.STATS_HISTORY meta.label = "historical BGP Peer Open stats in 1 day" meta.writeAccessMask = 0x8008020040001 meta.readAccessMask = 0x8008020040001 meta.isDomainable = False meta.isReadOnly = True meta.isConfigurable = False meta.isDeletable = False meta.isContextRoot = True meta.parentClasses.add("cobra.model.bgp.Peer") meta.superClasses.add("cobra.model.stats.Item") meta.superClasses.add("cobra.model.stats.Hist") meta.superClasses.add("cobra.model.bgp.PeerOpenHist") meta.rnPrefixes = [ ('HDbgpPeerOpen1d-', True), ] prop = PropMeta("str", "childAction", "childAction", 4, PropCategory.CHILD_ACTION) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("deleteAll", "deleteall", 16384) prop._addConstant("deleteNonPresent", "deletenonpresent", 8192) prop._addConstant("ignore", "ignore", 4096) meta.props.add("childAction", prop) prop = PropMeta("str", "cnt", "cnt", 16212, PropCategory.REGULAR) prop.label = "Number of Collections During this Interval" prop.isImplicit = True prop.isAdmin = True meta.props.add("cnt", prop) prop = PropMeta("str", "dn", "dn", 1, PropCategory.DN) prop.label = "None" prop.isDn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("dn", prop) prop = PropMeta("str", "index", "index", 47730, PropCategory.REGULAR) prop.label = "History Index" prop.isConfig = True prop.isAdmin = True prop.isCreateOnly = True prop.isNaming = True meta.props.add("index", prop) prop = PropMeta("str", "lastCollOffset", "lastCollOffset", 111, PropCategory.REGULAR) prop.label = "Collection Length" prop.isImplicit = True prop.isAdmin = True meta.props.add("lastCollOffset", prop) prop = PropMeta("str", "modTs", "modTs", 7, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "never" prop._addConstant("never", "never", 0) meta.props.add("modTs", prop) prop = PropMeta("str", "openRcvdAvg", "openRcvdAvg", 48123, PropCategory.IMPLICIT_AVG) prop.label = "Number of Open Messages Received average value" prop.isOper = True prop.isStats = True meta.props.add("openRcvdAvg", prop) prop = PropMeta("str", "openRcvdCum", "openRcvdCum", 48119, PropCategory.IMPLICIT_CUMULATIVE) prop.label = "Number of Open Messages Received cumulative" prop.isOper = True prop.isStats = True meta.props.add("openRcvdCum", prop) prop = PropMeta("str", "openRcvdMax", "openRcvdMax", 48122, PropCategory.IMPLICIT_MAX) prop.label = "Number of Open Messages Received maximum value" prop.isOper = True prop.isStats = True meta.props.add("openRcvdMax", prop) prop = PropMeta("str", "openRcvdMin", "openRcvdMin", 48121, PropCategory.IMPLICIT_MIN) prop.label = "Number of Open Messages Received minimum value" prop.isOper = True prop.isStats = True meta.props.add("openRcvdMin", prop) prop = PropMeta("str", "openRcvdPer", "openRcvdPer", 48120, PropCategory.IMPLICIT_PERIODIC) prop.label = "Number of Open Messages Received periodic" prop.isOper = True prop.isStats = True meta.props.add("openRcvdPer", prop) prop = PropMeta("str", "openRcvdRate", "openRcvdRate", 48127, PropCategory.IMPLICIT_RATE) prop.label = "Number of Open Messages Received rate" prop.isOper = True prop.isStats = True meta.props.add("openRcvdRate", prop) prop = PropMeta("str", "openRcvdSpct", "openRcvdSpct", 48124, PropCategory.IMPLICIT_SUSPECT) prop.label = "Number of Open Messages Received suspect count" prop.isOper = True prop.isStats = True meta.props.add("openRcvdSpct", prop) prop = PropMeta("str", "openRcvdThr", "openRcvdThr", 48125, PropCategory.IMPLICIT_THRESHOLDED) prop.label = "Number of Open Messages Received thresholded flags" prop.isOper = True prop.isStats = True prop.defaultValue = 0 prop.defaultValueStr = "unspecified" prop._addConstant("avgCrit", "avg-severity-critical", 2199023255552) prop._addConstant("avgHigh", "avg-crossed-high-threshold", 68719476736) prop._addConstant("avgLow", "avg-crossed-low-threshold", 137438953472) prop._addConstant("avgMajor", "avg-severity-major", 1099511627776) prop._addConstant("avgMinor", "avg-severity-minor", 549755813888) prop._addConstant("avgRecovering", "avg-recovering", 34359738368) prop._addConstant("avgWarn", "avg-severity-warning", 274877906944) prop._addConstant("cumulativeCrit", "cumulative-severity-critical", 8192) prop._addConstant("cumulativeHigh", "cumulative-crossed-high-threshold", 256) prop._addConstant("cumulativeLow", "cumulative-crossed-low-threshold", 512) prop._addConstant("cumulativeMajor", "cumulative-severity-major", 4096) prop._addConstant("cumulativeMinor", "cumulative-severity-minor", 2048) prop._addConstant("cumulativeRecovering", "cumulative-recovering", 128) prop._addConstant("cumulativeWarn", "cumulative-severity-warning", 1024) prop._addConstant("lastReadingCrit", "lastreading-severity-critical", 64) prop._addConstant("lastReadingHigh", "lastreading-crossed-high-threshold", 2) prop._addConstant("lastReadingLow", "lastreading-crossed-low-threshold", 4) prop._addConstant("lastReadingMajor", "lastreading-severity-major", 32) prop._addConstant("lastReadingMinor", "lastreading-severity-minor", 16) prop._addConstant("lastReadingRecovering", "lastreading-recovering", 1) prop._addConstant("lastReadingWarn", "lastreading-severity-warning", 8) prop._addConstant("maxCrit", "max-severity-critical", 17179869184) prop._addConstant("maxHigh", "max-crossed-high-threshold", 536870912) prop._addConstant("maxLow", "max-crossed-low-threshold", 1073741824) prop._addConstant("maxMajor", "max-severity-major", 8589934592) prop._addConstant("maxMinor", "max-severity-minor", 4294967296) prop._addConstant("maxRecovering", "max-recovering", 268435456) prop._addConstant("maxWarn", "max-severity-warning", 2147483648) prop._addConstant("minCrit", "min-severity-critical", 134217728) prop._addConstant("minHigh", "min-crossed-high-threshold", 4194304) prop._addConstant("minLow", "min-crossed-low-threshold", 8388608) prop._addConstant("minMajor", "min-severity-major", 67108864) prop._addConstant("minMinor", "min-severity-minor", 33554432) prop._addConstant("minRecovering", "min-recovering", 2097152) prop._addConstant("minWarn", "min-severity-warning", 16777216) prop._addConstant("periodicCrit", "periodic-severity-critical", 1048576) prop._addConstant("periodicHigh", "periodic-crossed-high-threshold", 32768) prop._addConstant("periodicLow", "periodic-crossed-low-threshold", 65536) prop._addConstant("periodicMajor", "periodic-severity-major", 524288) prop._addConstant("periodicMinor", "periodic-severity-minor", 262144) prop._addConstant("periodicRecovering", "periodic-recovering", 16384) prop._addConstant("periodicWarn", "periodic-severity-warning", 131072) prop._addConstant("rateCrit", "rate-severity-critical", 36028797018963968) prop._addConstant("rateHigh", "rate-crossed-high-threshold", 1125899906842624) prop._addConstant("rateLow", "rate-crossed-low-threshold", 2251799813685248) prop._addConstant("rateMajor", "rate-severity-major", 18014398509481984) prop._addConstant("rateMinor", "rate-severity-minor", 9007199254740992) prop._addConstant("rateRecovering", "rate-recovering", 562949953421312) prop._addConstant("rateWarn", "rate-severity-warning", 4503599627370496) prop._addConstant("trendCrit", "trend-severity-critical", 281474976710656) prop._addConstant("trendHigh", "trend-crossed-high-threshold", 8796093022208) prop._addConstant("trendLow", "trend-crossed-low-threshold", 17592186044416) prop._addConstant("trendMajor", "trend-severity-major", 140737488355328) prop._addConstant("trendMinor", "trend-severity-minor", 70368744177664) prop._addConstant("trendRecovering", "trend-recovering", 4398046511104) prop._addConstant("trendWarn", "trend-severity-warning", 35184372088832) prop._addConstant("unspecified", None, 0) meta.props.add("openRcvdThr", prop) prop = PropMeta("str", "openRcvdTr", "openRcvdTr", 48126, PropCategory.IMPLICIT_TREND) prop.label = "Number of Open Messages Received trend" prop.isOper = True prop.isStats = True meta.props.add("openRcvdTr", prop) prop = PropMeta("str", "openSentAvg", "openSentAvg", 48144, PropCategory.IMPLICIT_AVG) prop.label = "Number of Open Messages Sent average value" prop.isOper = True prop.isStats = True meta.props.add("openSentAvg", prop) prop = PropMeta("str", "openSentCum", "openSentCum", 48140, PropCategory.IMPLICIT_CUMULATIVE) prop.label = "Number of Open Messages Sent cumulative" prop.isOper = True prop.isStats = True meta.props.add("openSentCum", prop) prop = PropMeta("str", "openSentMax", "openSentMax", 48143, PropCategory.IMPLICIT_MAX) prop.label = "Number of Open Messages Sent maximum value" prop.isOper = True prop.isStats = True meta.props.add("openSentMax", prop) prop = PropMeta("str", "openSentMin", "openSentMin", 48142, PropCategory.IMPLICIT_MIN) prop.label = "Number of Open Messages Sent minimum value" prop.isOper = True prop.isStats = True meta.props.add("openSentMin", prop) prop = PropMeta("str", "openSentPer", "openSentPer", 48141, PropCategory.IMPLICIT_PERIODIC) prop.label = "Number of Open Messages Sent periodic" prop.isOper = True prop.isStats = True meta.props.add("openSentPer", prop) prop = PropMeta("str", "openSentRate", "openSentRate", 48148, PropCategory.IMPLICIT_RATE) prop.label = "Number of Open Messages Sent rate" prop.isOper = True prop.isStats = True meta.props.add("openSentRate", prop) prop = PropMeta("str", "openSentSpct", "openSentSpct", 48145, PropCategory.IMPLICIT_SUSPECT) prop.label = "Number of Open Messages Sent suspect count" prop.isOper = True prop.isStats = True meta.props.add("openSentSpct", prop) prop = PropMeta("str", "openSentThr", "openSentThr", 48146, PropCategory.IMPLICIT_THRESHOLDED) prop.label = "Number of Open Messages Sent thresholded flags" prop.isOper = True prop.isStats = True prop.defaultValue = 0 prop.defaultValueStr = "unspecified" prop._addConstant("avgCrit", "avg-severity-critical", 2199023255552) prop._addConstant("avgHigh", "avg-crossed-high-threshold", 68719476736) prop._addConstant("avgLow", "avg-crossed-low-threshold", 137438953472) prop._addConstant("avgMajor", "avg-severity-major", 1099511627776) prop._addConstant("avgMinor", "avg-severity-minor", 549755813888) prop._addConstant("avgRecovering", "avg-recovering", 34359738368) prop._addConstant("avgWarn", "avg-severity-warning", 274877906944) prop._addConstant("cumulativeCrit", "cumulative-severity-critical", 8192) prop._addConstant("cumulativeHigh", "cumulative-crossed-high-threshold", 256) prop._addConstant("cumulativeLow", "cumulative-crossed-low-threshold", 512) prop._addConstant("cumulativeMajor", "cumulative-severity-major", 4096) prop._addConstant("cumulativeMinor", "cumulative-severity-minor", 2048) prop._addConstant("cumulativeRecovering", "cumulative-recovering", 128) prop._addConstant("cumulativeWarn", "cumulative-severity-warning", 1024) prop._addConstant("lastReadingCrit", "lastreading-severity-critical", 64) prop._addConstant("lastReadingHigh", "lastreading-crossed-high-threshold", 2) prop._addConstant("lastReadingLow", "lastreading-crossed-low-threshold", 4) prop._addConstant("lastReadingMajor", "lastreading-severity-major", 32) prop._addConstant("lastReadingMinor", "lastreading-severity-minor", 16) prop._addConstant("lastReadingRecovering", "lastreading-recovering", 1) prop._addConstant("lastReadingWarn", "lastreading-severity-warning", 8) prop._addConstant("maxCrit", "max-severity-critical", 17179869184) prop._addConstant("maxHigh", "max-crossed-high-threshold", 536870912) prop._addConstant("maxLow", "max-crossed-low-threshold", 1073741824) prop._addConstant("maxMajor", "max-severity-major", 8589934592) prop._addConstant("maxMinor", "max-severity-minor", 4294967296) prop._addConstant("maxRecovering", "max-recovering", 268435456) prop._addConstant("maxWarn", "max-severity-warning", 2147483648) prop._addConstant("minCrit", "min-severity-critical", 134217728) prop._addConstant("minHigh", "min-crossed-high-threshold", 4194304) prop._addConstant("minLow", "min-crossed-low-threshold", 8388608) prop._addConstant("minMajor", "min-severity-major", 67108864) prop._addConstant("minMinor", "min-severity-minor", 33554432) prop._addConstant("minRecovering", "min-recovering", 2097152) prop._addConstant("minWarn", "min-severity-warning", 16777216) prop._addConstant("periodicCrit", "periodic-severity-critical", 1048576) prop._addConstant("periodicHigh", "periodic-crossed-high-threshold", 32768) prop._addConstant("periodicLow", "periodic-crossed-low-threshold", 65536) prop._addConstant("periodicMajor", "periodic-severity-major", 524288) prop._addConstant("periodicMinor", "periodic-severity-minor", 262144) prop._addConstant("periodicRecovering", "periodic-recovering", 16384) prop._addConstant("periodicWarn", "periodic-severity-warning", 131072) prop._addConstant("rateCrit", "rate-severity-critical", 36028797018963968) prop._addConstant("rateHigh", "rate-crossed-high-threshold", 1125899906842624) prop._addConstant("rateLow", "rate-crossed-low-threshold", 2251799813685248) prop._addConstant("rateMajor", "rate-severity-major", 18014398509481984) prop._addConstant("rateMinor", "rate-severity-minor", 9007199254740992) prop._addConstant("rateRecovering", "rate-recovering", 562949953421312) prop._addConstant("rateWarn", "rate-severity-warning", 4503599627370496) prop._addConstant("trendCrit", "trend-severity-critical", 281474976710656) prop._addConstant("trendHigh", "trend-crossed-high-threshold", 8796093022208) prop._addConstant("trendLow", "trend-crossed-low-threshold", 17592186044416) prop._addConstant("trendMajor", "trend-severity-major", 140737488355328) prop._addConstant("trendMinor", "trend-severity-minor", 70368744177664) prop._addConstant("trendRecovering", "trend-recovering", 4398046511104) prop._addConstant("trendWarn", "trend-severity-warning", 35184372088832) prop._addConstant("unspecified", None, 0) meta.props.add("openSentThr", prop) prop = PropMeta("str", "openSentTr", "openSentTr", 48147, PropCategory.IMPLICIT_TREND) prop.label = "Number of Open Messages Sent trend" prop.isOper = True prop.isStats = True meta.props.add("openSentTr", prop) prop = PropMeta("str", "repIntvEnd", "repIntvEnd", 110, PropCategory.REGULAR) prop.label = "Reporting End Time" prop.isImplicit = True prop.isAdmin = True meta.props.add("repIntvEnd", prop) prop = PropMeta("str", "repIntvStart", "repIntvStart", 109, PropCategory.REGULAR) prop.label = "Reporting Start Time" prop.isImplicit = True prop.isAdmin = True meta.props.add("repIntvStart", prop) prop = PropMeta("str", "rn", "rn", 2, PropCategory.RN) prop.label = "None" prop.isRn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("rn", prop) prop = PropMeta("str", "status", "status", 3, PropCategory.STATUS) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("created", "created", 2) prop._addConstant("deleted", "deleted", 8) prop._addConstant("modified", "modified", 4) meta.props.add("status", prop) prop = PropMeta("str", "updateRcvdAvg", "updateRcvdAvg", 48165, PropCategory.IMPLICIT_AVG) prop.label = "Number of Update Messages Received average value" prop.isOper = True prop.isStats = True meta.props.add("updateRcvdAvg", prop) prop = PropMeta("str", "updateRcvdCum", "updateRcvdCum", 48161, PropCategory.IMPLICIT_CUMULATIVE) prop.label = "Number of Update Messages Received cumulative" prop.isOper = True prop.isStats = True meta.props.add("updateRcvdCum", prop) prop = PropMeta("str", "updateRcvdMax", "updateRcvdMax", 48164, PropCategory.IMPLICIT_MAX) prop.label = "Number of Update Messages Received maximum value" prop.isOper = True prop.isStats = True meta.props.add("updateRcvdMax", prop) prop = PropMeta("str", "updateRcvdMin", "updateRcvdMin", 48163, PropCategory.IMPLICIT_MIN) prop.label = "Number of Update Messages Received minimum value" prop.isOper = True prop.isStats = True meta.props.add("updateRcvdMin", prop) prop = PropMeta("str", "updateRcvdPer", "updateRcvdPer", 48162, PropCategory.IMPLICIT_PERIODIC) prop.label = "Number of Update Messages Received periodic" prop.isOper = True prop.isStats = True meta.props.add("updateRcvdPer", prop) prop = PropMeta("str", "updateRcvdRate", "updateRcvdRate", 48169, PropCategory.IMPLICIT_RATE) prop.label = "Number of Update Messages Received rate" prop.isOper = True prop.isStats = True meta.props.add("updateRcvdRate", prop) prop = PropMeta("str", "updateRcvdSpct", "updateRcvdSpct", 48166, PropCategory.IMPLICIT_SUSPECT) prop.label = "Number of Update Messages Received suspect count" prop.isOper = True prop.isStats = True meta.props.add("updateRcvdSpct", prop) prop = PropMeta("str", "updateRcvdThr", "updateRcvdThr", 48167, PropCategory.IMPLICIT_THRESHOLDED) prop.label = "Number of Update Messages Received thresholded flags" prop.isOper = True prop.isStats = True prop.defaultValue = 0 prop.defaultValueStr = "unspecified" prop._addConstant("avgCrit", "avg-severity-critical", 2199023255552) prop._addConstant("avgHigh", "avg-crossed-high-threshold", 68719476736) prop._addConstant("avgLow", "avg-crossed-low-threshold", 137438953472) prop._addConstant("avgMajor", "avg-severity-major", 1099511627776) prop._addConstant("avgMinor", "avg-severity-minor", 549755813888) prop._addConstant("avgRecovering", "avg-recovering", 34359738368) prop._addConstant("avgWarn", "avg-severity-warning", 274877906944) prop._addConstant("cumulativeCrit", "cumulative-severity-critical", 8192) prop._addConstant("cumulativeHigh", "cumulative-crossed-high-threshold", 256) prop._addConstant("cumulativeLow", "cumulative-crossed-low-threshold", 512) prop._addConstant("cumulativeMajor", "cumulative-severity-major", 4096) prop._addConstant("cumulativeMinor", "cumulative-severity-minor", 2048) prop._addConstant("cumulativeRecovering", "cumulative-recovering", 128) prop._addConstant("cumulativeWarn", "cumulative-severity-warning", 1024) prop._addConstant("lastReadingCrit", "lastreading-severity-critical", 64) prop._addConstant("lastReadingHigh", "lastreading-crossed-high-threshold", 2) prop._addConstant("lastReadingLow", "lastreading-crossed-low-threshold", 4) prop._addConstant("lastReadingMajor", "lastreading-severity-major", 32) prop._addConstant("lastReadingMinor", "lastreading-severity-minor", 16) prop._addConstant("lastReadingRecovering", "lastreading-recovering", 1) prop._addConstant("lastReadingWarn", "lastreading-severity-warning", 8) prop._addConstant("maxCrit", "max-severity-critical", 17179869184) prop._addConstant("maxHigh", "max-crossed-high-threshold", 536870912) prop._addConstant("maxLow", "max-crossed-low-threshold", 1073741824) prop._addConstant("maxMajor", "max-severity-major", 8589934592) prop._addConstant("maxMinor", "max-severity-minor", 4294967296) prop._addConstant("maxRecovering", "max-recovering", 268435456) prop._addConstant("maxWarn", "max-severity-warning", 2147483648) prop._addConstant("minCrit", "min-severity-critical", 134217728) prop._addConstant("minHigh", "min-crossed-high-threshold", 4194304) prop._addConstant("minLow", "min-crossed-low-threshold", 8388608) prop._addConstant("minMajor", "min-severity-major", 67108864) prop._addConstant("minMinor", "min-severity-minor", 33554432) prop._addConstant("minRecovering", "min-recovering", 2097152) prop._addConstant("minWarn", "min-severity-warning", 16777216) prop._addConstant("periodicCrit", "periodic-severity-critical", 1048576) prop._addConstant("periodicHigh", "periodic-crossed-high-threshold", 32768) prop._addConstant("periodicLow", "periodic-crossed-low-threshold", 65536) prop._addConstant("periodicMajor", "periodic-severity-major", 524288) prop._addConstant("periodicMinor", "periodic-severity-minor", 262144) prop._addConstant("periodicRecovering", "periodic-recovering", 16384) prop._addConstant("periodicWarn", "periodic-severity-warning", 131072) prop._addConstant("rateCrit", "rate-severity-critical", 36028797018963968) prop._addConstant("rateHigh", "rate-crossed-high-threshold", 1125899906842624) prop._addConstant("rateLow", "rate-crossed-low-threshold", 2251799813685248) prop._addConstant("rateMajor", "rate-severity-major", 18014398509481984) prop._addConstant("rateMinor", "rate-severity-minor", 9007199254740992) prop._addConstant("rateRecovering", "rate-recovering", 562949953421312) prop._addConstant("rateWarn", "rate-severity-warning", 4503599627370496) prop._addConstant("trendCrit", "trend-severity-critical", 281474976710656) prop._addConstant("trendHigh", "trend-crossed-high-threshold", 8796093022208) prop._addConstant("trendLow", "trend-crossed-low-threshold", 17592186044416) prop._addConstant("trendMajor", "trend-severity-major", 140737488355328) prop._addConstant("trendMinor", "trend-severity-minor", 70368744177664) prop._addConstant("trendRecovering", "trend-recovering", 4398046511104) prop._addConstant("trendWarn", "trend-severity-warning", 35184372088832) prop._addConstant("unspecified", None, 0) meta.props.add("updateRcvdThr", prop) prop = PropMeta("str", "updateRcvdTr", "updateRcvdTr", 48168, PropCategory.IMPLICIT_TREND) prop.label = "Number of Update Messages Received trend" prop.isOper = True prop.isStats = True meta.props.add("updateRcvdTr", prop) prop = PropMeta("str", "updateSentAvg", "updateSentAvg", 48186, PropCategory.IMPLICIT_AVG) prop.label = "Number of Update Messages Sent average value" prop.isOper = True prop.isStats = True meta.props.add("updateSentAvg", prop) prop = PropMeta("str", "updateSentCum", "updateSentCum", 48182, PropCategory.IMPLICIT_CUMULATIVE) prop.label = "Number of Update Messages Sent cumulative" prop.isOper = True prop.isStats = True meta.props.add("updateSentCum", prop) prop = PropMeta("str", "updateSentMax", "updateSentMax", 48185, PropCategory.IMPLICIT_MAX) prop.label = "Number of Update Messages Sent maximum value" prop.isOper = True prop.isStats = True meta.props.add("updateSentMax", prop) prop = PropMeta("str", "updateSentMin", "updateSentMin", 48184, PropCategory.IMPLICIT_MIN) prop.label = "Number of Update Messages Sent minimum value" prop.isOper = True prop.isStats = True meta.props.add("updateSentMin", prop) prop = PropMeta("str", "updateSentPer", "updateSentPer", 48183, PropCategory.IMPLICIT_PERIODIC) prop.label = "Number of Update Messages Sent periodic" prop.isOper = True prop.isStats = True meta.props.add("updateSentPer", prop) prop = PropMeta("str", "updateSentRate", "updateSentRate", 48190, PropCategory.IMPLICIT_RATE) prop.label = "Number of Update Messages Sent rate" prop.isOper = True prop.isStats = True meta.props.add("updateSentRate", prop) prop = PropMeta("str", "updateSentSpct", "updateSentSpct", 48187, PropCategory.IMPLICIT_SUSPECT) prop.label = "Number of Update Messages Sent suspect count" prop.isOper = True prop.isStats = True meta.props.add("updateSentSpct", prop) prop = PropMeta("str", "updateSentThr", "updateSentThr", 48188, PropCategory.IMPLICIT_THRESHOLDED) prop.label = "Number of Update Messages Sent thresholded flags" prop.isOper = True prop.isStats = True prop.defaultValue = 0 prop.defaultValueStr = "unspecified" prop._addConstant("avgCrit", "avg-severity-critical", 2199023255552) prop._addConstant("avgHigh", "avg-crossed-high-threshold", 68719476736) prop._addConstant("avgLow", "avg-crossed-low-threshold", 137438953472) prop._addConstant("avgMajor", "avg-severity-major", 1099511627776) prop._addConstant("avgMinor", "avg-severity-minor", 549755813888) prop._addConstant("avgRecovering", "avg-recovering", 34359738368) prop._addConstant("avgWarn", "avg-severity-warning", 274877906944) prop._addConstant("cumulativeCrit", "cumulative-severity-critical", 8192) prop._addConstant("cumulativeHigh", "cumulative-crossed-high-threshold", 256) prop._addConstant("cumulativeLow", "cumulative-crossed-low-threshold", 512) prop._addConstant("cumulativeMajor", "cumulative-severity-major", 4096) prop._addConstant("cumulativeMinor", "cumulative-severity-minor", 2048) prop._addConstant("cumulativeRecovering", "cumulative-recovering", 128) prop._addConstant("cumulativeWarn", "cumulative-severity-warning", 1024) prop._addConstant("lastReadingCrit", "lastreading-severity-critical", 64) prop._addConstant("lastReadingHigh", "lastreading-crossed-high-threshold", 2) prop._addConstant("lastReadingLow", "lastreading-crossed-low-threshold", 4) prop._addConstant("lastReadingMajor", "lastreading-severity-major", 32) prop._addConstant("lastReadingMinor", "lastreading-severity-minor", 16) prop._addConstant("lastReadingRecovering", "lastreading-recovering", 1) prop._addConstant("lastReadingWarn", "lastreading-severity-warning", 8) prop._addConstant("maxCrit", "max-severity-critical", 17179869184) prop._addConstant("maxHigh", "max-crossed-high-threshold", 536870912) prop._addConstant("maxLow", "max-crossed-low-threshold", 1073741824) prop._addConstant("maxMajor", "max-severity-major", 8589934592) prop._addConstant("maxMinor", "max-severity-minor", 4294967296) prop._addConstant("maxRecovering", "max-recovering", 268435456) prop._addConstant("maxWarn", "max-severity-warning", 2147483648) prop._addConstant("minCrit", "min-severity-critical", 134217728) prop._addConstant("minHigh", "min-crossed-high-threshold", 4194304) prop._addConstant("minLow", "min-crossed-low-threshold", 8388608) prop._addConstant("minMajor", "min-severity-major", 67108864) prop._addConstant("minMinor", "min-severity-minor", 33554432) prop._addConstant("minRecovering", "min-recovering", 2097152) prop._addConstant("minWarn", "min-severity-warning", 16777216) prop._addConstant("periodicCrit", "periodic-severity-critical", 1048576) prop._addConstant("periodicHigh", "periodic-crossed-high-threshold", 32768) prop._addConstant("periodicLow", "periodic-crossed-low-threshold", 65536) prop._addConstant("periodicMajor", "periodic-severity-major", 524288) prop._addConstant("periodicMinor", "periodic-severity-minor", 262144) prop._addConstant("periodicRecovering", "periodic-recovering", 16384) prop._addConstant("periodicWarn", "periodic-severity-warning", 131072) prop._addConstant("rateCrit", "rate-severity-critical", 36028797018963968) prop._addConstant("rateHigh", "rate-crossed-high-threshold", 1125899906842624) prop._addConstant("rateLow", "rate-crossed-low-threshold", 2251799813685248) prop._addConstant("rateMajor", "rate-severity-major", 18014398509481984) prop._addConstant("rateMinor", "rate-severity-minor", 9007199254740992) prop._addConstant("rateRecovering", "rate-recovering", 562949953421312) prop._addConstant("rateWarn", "rate-severity-warning", 4503599627370496) prop._addConstant("trendCrit", "trend-severity-critical", 281474976710656) prop._addConstant("trendHigh", "trend-crossed-high-threshold", 8796093022208) prop._addConstant("trendLow", "trend-crossed-low-threshold", 17592186044416) prop._addConstant("trendMajor", "trend-severity-major", 140737488355328) prop._addConstant("trendMinor", "trend-severity-minor", 70368744177664) prop._addConstant("trendRecovering", "trend-recovering", 4398046511104) prop._addConstant("trendWarn", "trend-severity-warning", 35184372088832) prop._addConstant("unspecified", None, 0) meta.props.add("updateSentThr", prop) prop = PropMeta("str", "updateSentTr", "updateSentTr", 48189, PropCategory.IMPLICIT_TREND) prop.label = "Number of Update Messages Sent trend" prop.isOper = True prop.isStats = True meta.props.add("updateSentTr", prop) meta.namingProps.append(getattr(meta.props, "index")) def __init__(self, parentMoOrDn, index, markDirty=True, **creationProps): namingVals = [index] Mo.__init__(self, parentMoOrDn, markDirty, *namingVals, **creationProps) # End of package file # ##################################################
a2bd0e9dc99c1faf53437fb4076d01fd4561fe8c
62bbfb6c50bba16304202aea96d1de4990f95e04
/dependencies/pulumi_aws/ssm/maintenance_window_target.py
27e01ee014ac88dc17d6881ab9cdc5a010ea8e33
[]
no_license
adriell/lambda-autoservico-storagegateway
b40b8717c8de076e61bbd422461c7d624a0d2273
f6e3dea61b004b73943a5438c658d3f019f106f7
refs/heads/main
2023-03-16T14:41:16.821675
2021-03-11T03:30:33
2021-03-11T03:30:33
345,865,704
0
1
null
null
null
null
UTF-8
Python
false
false
10,674
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from .. import _utilities, _tables from . import outputs from ._inputs import * __all__ = ['MaintenanceWindowTarget'] class MaintenanceWindowTarget(pulumi.CustomResource): def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, description: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, owner_information: Optional[pulumi.Input[str]] = None, resource_type: Optional[pulumi.Input[str]] = None, targets: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['MaintenanceWindowTargetTargetArgs']]]]] = None, window_id: Optional[pulumi.Input[str]] = None, __props__=None, __name__=None, __opts__=None): """ Provides an SSM Maintenance Window Target resource ## Instance Target Example Usage ```python import pulumi import pulumi_aws as aws window = aws.ssm.MaintenanceWindow("window", schedule="cron(0 16 ? * TUE *)", duration=3, cutoff=1) target1 = aws.ssm.MaintenanceWindowTarget("target1", window_id=window.id, description="This is a maintenance window target", resource_type="INSTANCE", targets=[aws.ssm.MaintenanceWindowTargetTargetArgs( key="tag:Name", values=["acceptance_test"], )]) ``` ## Resource Group Target Example Usage ```python import pulumi import pulumi_aws as aws window = aws.ssm.MaintenanceWindow("window", schedule="cron(0 16 ? * TUE *)", duration=3, cutoff=1) target1 = aws.ssm.MaintenanceWindowTarget("target1", window_id=window.id, description="This is a maintenance window target", resource_type="RESOURCE_GROUP", targets=[aws.ssm.MaintenanceWindowTargetTargetArgs( key="resource-groups:ResourceTypeFilters", values=["AWS::EC2::Instance"], )]) ``` ## Import SSM Maintenance Window targets can be imported using `WINDOW_ID/WINDOW_TARGET_ID`, e.g. ```sh $ pulumi import aws:ssm/maintenanceWindowTarget:MaintenanceWindowTarget example mw-0c50858d01EXAMPLE/23639a0b-ddbc-4bca-9e72-78d96EXAMPLE ``` :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] description: The description of the maintenance window target. :param pulumi.Input[str] name: The name of the maintenance window target. :param pulumi.Input[str] owner_information: User-provided value that will be included in any CloudWatch events raised while running tasks for these targets in this Maintenance Window. :param pulumi.Input[str] resource_type: The type of target being registered with the Maintenance Window. Possible values are `INSTANCE` and `RESOURCE_GROUP`. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['MaintenanceWindowTargetTargetArgs']]]] targets: The targets to register with the maintenance window. In other words, the instances to run commands on when the maintenance window runs. You can specify targets using instance IDs, resource group names, or tags that have been applied to instances. For more information about these examples formats see (https://docs.aws.amazon.com/systems-manager/latest/userguide/mw-cli-tutorial-targets-examples.html) :param pulumi.Input[str] window_id: The Id of the maintenance window to register the target with. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['description'] = description __props__['name'] = name __props__['owner_information'] = owner_information if resource_type is None and not opts.urn: raise TypeError("Missing required property 'resource_type'") __props__['resource_type'] = resource_type if targets is None and not opts.urn: raise TypeError("Missing required property 'targets'") __props__['targets'] = targets if window_id is None and not opts.urn: raise TypeError("Missing required property 'window_id'") __props__['window_id'] = window_id super(MaintenanceWindowTarget, __self__).__init__( 'aws:ssm/maintenanceWindowTarget:MaintenanceWindowTarget', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, description: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, owner_information: Optional[pulumi.Input[str]] = None, resource_type: Optional[pulumi.Input[str]] = None, targets: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['MaintenanceWindowTargetTargetArgs']]]]] = None, window_id: Optional[pulumi.Input[str]] = None) -> 'MaintenanceWindowTarget': """ Get an existing MaintenanceWindowTarget resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] description: The description of the maintenance window target. :param pulumi.Input[str] name: The name of the maintenance window target. :param pulumi.Input[str] owner_information: User-provided value that will be included in any CloudWatch events raised while running tasks for these targets in this Maintenance Window. :param pulumi.Input[str] resource_type: The type of target being registered with the Maintenance Window. Possible values are `INSTANCE` and `RESOURCE_GROUP`. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['MaintenanceWindowTargetTargetArgs']]]] targets: The targets to register with the maintenance window. In other words, the instances to run commands on when the maintenance window runs. You can specify targets using instance IDs, resource group names, or tags that have been applied to instances. For more information about these examples formats see (https://docs.aws.amazon.com/systems-manager/latest/userguide/mw-cli-tutorial-targets-examples.html) :param pulumi.Input[str] window_id: The Id of the maintenance window to register the target with. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["description"] = description __props__["name"] = name __props__["owner_information"] = owner_information __props__["resource_type"] = resource_type __props__["targets"] = targets __props__["window_id"] = window_id return MaintenanceWindowTarget(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def description(self) -> pulumi.Output[Optional[str]]: """ The description of the maintenance window target. """ return pulumi.get(self, "description") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ The name of the maintenance window target. """ return pulumi.get(self, "name") @property @pulumi.getter(name="ownerInformation") def owner_information(self) -> pulumi.Output[Optional[str]]: """ User-provided value that will be included in any CloudWatch events raised while running tasks for these targets in this Maintenance Window. """ return pulumi.get(self, "owner_information") @property @pulumi.getter(name="resourceType") def resource_type(self) -> pulumi.Output[str]: """ The type of target being registered with the Maintenance Window. Possible values are `INSTANCE` and `RESOURCE_GROUP`. """ return pulumi.get(self, "resource_type") @property @pulumi.getter def targets(self) -> pulumi.Output[Sequence['outputs.MaintenanceWindowTargetTarget']]: """ The targets to register with the maintenance window. In other words, the instances to run commands on when the maintenance window runs. You can specify targets using instance IDs, resource group names, or tags that have been applied to instances. For more information about these examples formats see (https://docs.aws.amazon.com/systems-manager/latest/userguide/mw-cli-tutorial-targets-examples.html) """ return pulumi.get(self, "targets") @property @pulumi.getter(name="windowId") def window_id(self) -> pulumi.Output[str]: """ The Id of the maintenance window to register the target with. """ return pulumi.get(self, "window_id") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
c27d32cdd1b7b026779339fc68a7830871f34535
4dd811c2595a990cb21327afe7a2dfd54ba9b52f
/Open-CV_Basics/threshold_example.py
3b3018af5e505a219059d82806e1a161262e2bc4
[]
no_license
mitesh55/Deep-Learning
40842af8b8f1ea3c041fa4de2e76d068f554c1a4
0a7c0305edb027acfaad38e7abe52808260cede9
refs/heads/master
2023-07-25T14:31:14.285489
2021-09-09T13:46:31
2021-09-09T13:46:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,288
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Sep 24 09:09:57 2020 @author: pavankunchala """ import cv2 from matplotlib import pyplot as plt def show_img_with_matplotlib(color_img, title, pos): """Shows an image using matplotlib capabilities""" # Convert BGR image to RGB img_RGB = color_img[:, :, ::-1] ax = plt.subplot(3, 3, pos) plt.imshow(img_RGB) plt.title(title) plt.axis('off') # Create the dimensions of the figure and set title and color: fig = plt.figure(figsize=(9, 9)) plt.suptitle("Thresholding example", fontsize=14, fontweight='bold') fig.patch.set_facecolor('silver') # Load the image and convert it to grayscale: image = cv2.imread('img.png') gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Plot the grayscale image: show_img_with_matplotlib(cv2.cvtColor(gray_image, cv2.COLOR_GRAY2BGR), "img", 1) # Apply cv2.threshold() with different thresholding values: ret1, thresh1 = cv2.threshold(gray_image, 60, 255, cv2.THRESH_BINARY) ret2, thresh2 = cv2.threshold(gray_image, 70, 255, cv2.THRESH_BINARY) ret3, thresh3 = cv2.threshold(gray_image, 80, 255, cv2.THRESH_BINARY) ret4, thresh4 = cv2.threshold(gray_image, 90, 255, cv2.THRESH_BINARY) ret5, thresh5 = cv2.threshold(gray_image, 100, 255, cv2.THRESH_BINARY) ret6, thresh6 = cv2.threshold(gray_image, 110, 255, cv2.THRESH_BINARY) ret7, thresh7 = cv2.threshold(gray_image, 120, 255, cv2.THRESH_BINARY) ret8, thresh8 = cv2.threshold(gray_image, 130, 255, cv2.THRESH_BINARY) # Plot all the thresholded images: show_img_with_matplotlib(cv2.cvtColor(thresh1, cv2.COLOR_GRAY2BGR), "threshold = 60", 2) show_img_with_matplotlib(cv2.cvtColor(thresh2, cv2.COLOR_GRAY2BGR), "threshold = 70", 3) show_img_with_matplotlib(cv2.cvtColor(thresh3, cv2.COLOR_GRAY2BGR), "threshold = 80", 4) show_img_with_matplotlib(cv2.cvtColor(thresh4, cv2.COLOR_GRAY2BGR), "threshold = 90", 5) show_img_with_matplotlib(cv2.cvtColor(thresh5, cv2.COLOR_GRAY2BGR), "threshold = 100", 6) show_img_with_matplotlib(cv2.cvtColor(thresh6, cv2.COLOR_GRAY2BGR), "threshold = 110", 7) show_img_with_matplotlib(cv2.cvtColor(thresh7, cv2.COLOR_GRAY2BGR), "threshold = 120", 8) show_img_with_matplotlib(cv2.cvtColor(thresh8, cv2.COLOR_GRAY2BGR), "threshold = 130", 9) # Show the Figure: plt.show()
500729c399198a7f347c002ba8524217d5ad7c11
4324d19af69080f45ff60b733c940f7dc1aa6dae
/google-ads-python/google/ads/google_ads/v0/proto/services/ad_group_bid_modifier_service_pb2_grpc.py
323a703193e94e53842992d5f9f98450e7ec0307
[ "Apache-2.0", "LicenseRef-scancode-generic-cla" ]
permissive
ljborton/Forked_Work
cc8a3813c146ea4547aca9caeb03e649bbdb9076
7aaf67af8d9f86f9dc0530a1ad23951bcb535c92
refs/heads/master
2023-07-19T22:26:48.085129
2019-11-27T02:53:51
2019-11-27T02:53:51
224,321,748
0
0
null
null
null
null
UTF-8
Python
false
false
3,600
py
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! import grpc from google.ads.google_ads.v0.proto.resources import ad_group_bid_modifier_pb2 as google_dot_ads_dot_googleads__v0_dot_proto_dot_resources_dot_ad__group__bid__modifier__pb2 from google.ads.google_ads.v0.proto.services import ad_group_bid_modifier_service_pb2 as google_dot_ads_dot_googleads__v0_dot_proto_dot_services_dot_ad__group__bid__modifier__service__pb2 class AdGroupBidModifierServiceStub(object): """Service to manage ad group bid modifiers. """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.GetAdGroupBidModifier = channel.unary_unary( '/google.ads.googleads.v0.services.AdGroupBidModifierService/GetAdGroupBidModifier', request_serializer=google_dot_ads_dot_googleads__v0_dot_proto_dot_services_dot_ad__group__bid__modifier__service__pb2.GetAdGroupBidModifierRequest.SerializeToString, response_deserializer=google_dot_ads_dot_googleads__v0_dot_proto_dot_resources_dot_ad__group__bid__modifier__pb2.AdGroupBidModifier.FromString, ) self.MutateAdGroupBidModifiers = channel.unary_unary( '/google.ads.googleads.v0.services.AdGroupBidModifierService/MutateAdGroupBidModifiers', request_serializer=google_dot_ads_dot_googleads__v0_dot_proto_dot_services_dot_ad__group__bid__modifier__service__pb2.MutateAdGroupBidModifiersRequest.SerializeToString, response_deserializer=google_dot_ads_dot_googleads__v0_dot_proto_dot_services_dot_ad__group__bid__modifier__service__pb2.MutateAdGroupBidModifiersResponse.FromString, ) class AdGroupBidModifierServiceServicer(object): """Service to manage ad group bid modifiers. """ def GetAdGroupBidModifier(self, request, context): """Returns the requested ad group bid modifier in full detail. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def MutateAdGroupBidModifiers(self, request, context): """Creates, updates, or removes ad group bid modifiers. Operation statuses are returned. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_AdGroupBidModifierServiceServicer_to_server(servicer, server): rpc_method_handlers = { 'GetAdGroupBidModifier': grpc.unary_unary_rpc_method_handler( servicer.GetAdGroupBidModifier, request_deserializer=google_dot_ads_dot_googleads__v0_dot_proto_dot_services_dot_ad__group__bid__modifier__service__pb2.GetAdGroupBidModifierRequest.FromString, response_serializer=google_dot_ads_dot_googleads__v0_dot_proto_dot_resources_dot_ad__group__bid__modifier__pb2.AdGroupBidModifier.SerializeToString, ), 'MutateAdGroupBidModifiers': grpc.unary_unary_rpc_method_handler( servicer.MutateAdGroupBidModifiers, request_deserializer=google_dot_ads_dot_googleads__v0_dot_proto_dot_services_dot_ad__group__bid__modifier__service__pb2.MutateAdGroupBidModifiersRequest.FromString, response_serializer=google_dot_ads_dot_googleads__v0_dot_proto_dot_services_dot_ad__group__bid__modifier__service__pb2.MutateAdGroupBidModifiersResponse.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'google.ads.googleads.v0.services.AdGroupBidModifierService', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,))
c199a8c9d14036ef6e195fc868e7c99f7939151e
29ac2c1477b2972820dd024ee443b8626e3224cf
/gallery/migrations/0002_auto_20210608_0440.py
87afdaaf43bc510f256b14412bc81c86310e8178
[]
no_license
devArist/school_project3
5cdf1955e60ff727a64cf7cb50987da70149b0b8
c153339cf55a87cb81b331ce7fbd43615a0435aa
refs/heads/main
2023-05-09T19:48:32.092513
2021-06-08T10:07:25
2021-06-08T10:07:25
374,965,640
0
0
null
null
null
null
UTF-8
Python
false
false
559
py
# Generated by Django 3.2.3 on 2021-06-08 04:40 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('gallery', '0001_initial'), ] operations = [ migrations.AddField( model_name='photo', name='formats', field=models.CharField(max_length=50, null=True, verbose_name='format'), ), migrations.AddField( model_name='video', name='duration', field=models.DurationField(null=True), ), ]
a68d760a069c84b3e5c6d1a92d06ab3f2bd4fd43
950ce2ac7aa569c7e82bd135492c0ff94ef97c74
/test/myapp/myapp/spiders/item_xpath.py
4f8a0120bf12e339747335c62122f88055842a82
[]
no_license
ShichaoMa/webWalker
74ea7f38b74272d951e8bccea730a40f7f0c72b4
8c085d6f385f85f193b0992b1148f165652e3a98
refs/heads/master
2021-01-12T16:50:36.331337
2017-12-08T11:26:46
2017-12-08T11:26:46
71,446,722
62
18
null
2017-12-08T11:26:47
2016-10-20T09:27:08
Python
UTF-8
Python
false
false
236
py
# -*- coding:utf-8 -*- ITEM_XPATH = { "bluefly": [ '//ul[@class="mz-productlist-list mz-l-tiles"]/li//a[@class="mz-productlisting-title"]/@href', ], "douban": [ "//a[@class='product-photo']/@href", ] }
d0a580aaa5edce4979a869971401b95f3b920d70
1b862f34c125ce200244dd79e4fda4b5b605ce2e
/.history/ML_EO_20210607233236.py
524991d44904097561ba54152a436c881885c12f
[]
no_license
edwino26/CoreImages
26085a49cf1cb79442ae563a88354b2fdceace87
6bf6e68cac8ab36c87b1e6ea702bfe6882b0f40e
refs/heads/master
2023-06-22T12:53:37.344895
2021-07-21T04:31:44
2021-07-21T04:31:44
309,553,247
0
4
null
2021-04-29T23:23:15
2020-11-03T02:45:07
Lasso
UTF-8
Python
false
false
25,622
py
# # lectura de los xlsx del procesamiento de imagenes # y la informacion obtenida de los registros por pozo # %% import numpy as np import pandas as pd import os import os.path import matplotlib.pyplot as plt # GRAPHS from mlxtend.plotting import scatterplotmatrix import glob import seaborn as sns import missingno as msno import math import itertools import smogn import pickle from scipy import interpolate #Clustering packages from sklearn.cluster import MiniBatchKMeans from sklearn.feature_extraction.image import extract_patches_2d from sklearn.model_selection import train_test_split from sklearn.neural_network import MLPRegressor from sklearn.datasets import make_regression from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import MinMaxScaler from sklearn import linear_model from sklearn.metrics import mean_squared_error from sklearn.svm import SVR from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import GradientBoostingRegressor from sklearn.model_selection import GridSearchCV from sklearn.metrics import SCORERS # =============================================== from ML_EO_GridSearch import * GRIDSEARCH = 'on' #GridSearch Option #%% ====================== Main Dataframe Computation ===================== def round_depth(number): return round(number * 4, 0) / 4 #Use 2 to round to closest 0.5, 4 to 0.25 # Data load T2 = pd.read_excel('./Excel_Files/T2_rs.xls',sheet_name='T2_data') T6 = pd.read_excel('./Excel_Files/T6_rs.xls',sheet_name='T6_data') U18 = pd.read_excel('./Excel_Files/U18_rs.xls',sheet_name='U18_data') T2_img = pd.read_excel('./Excel_Files/Processed_Images_T2.xls',sheet_name='T2').rename(columns={"DEPTH": "DEPT"}) T6_img = pd.read_excel('./Excel_Files/Processed_Images_T6.xls',sheet_name='T6').rename(columns={"DEPTH": "DEPT"}) U18_img = pd.read_excel('./Excel_Files/Processed_Images_U18.xls',sheet_name='U18').rename(columns={"DEPTH": "DEPT"}) # %% # Conditioning before joining well dataset pairs T2['DEPT'] = T2['DEPTH'].astype(float).apply(lambda x: round_depth(x)) T2_img['DEPT'] = T2_img['DEPT'].astype(float).apply(lambda x: round_depth(x)) T6['DEPT'] = T6['DEPTH'].astype(float).apply(lambda x: round_depth(x)) T6_img['DEPT'] = T6_img['DEPT'].astype(float).apply(lambda x: round_depth(x)) U18['DEPT'] = U18['TDEP'].astype(float).apply(lambda x: round_depth(x)) U18_img['DEPT'] = U18_img['DEPT'].astype(float).apply(lambda x: round_depth(x)) # U18 had too many images compared to other 2 wells. Take a smaller set to have a more balanced dataset U18 = U18[U18['DEPT']>771] U18 = U18[U18['DEPT']<925] # Join only depths present at both datasets within a pair T2 = T2_img.merge(T2, on='DEPT', how='inner').dropna() T6 = T6_img.merge(T6, on='DEPT', how='inner').dropna() U18 = U18_img.merge(U18, on='DEPT', how='inner').dropna() # Specific curves to be used in ML algorithm logset = ['DEPT', 'GR_EDTC', 'RHOZ', 'AT90', 'DTCO', 'NPHI', 'WELL', 'GRAY'] #Scale Images as bright and dim points realte to presence of oil but images were # acquired by diffeent labs at different times, using different equipment, etc scaler = MinMaxScaler() T2['GRAY'] = 255*scaler.fit_transform(T2['GRAY'].values.reshape(-1,1)) T6['GRAY'] = 255*scaler.fit_transform(T6['GRAY'].values.reshape(-1,1)) U18['GRAY'] = 255*scaler.fit_transform(U18['GRAY'].values.reshape(-1,1)) # %% # ---------- Main Data Frame Structuring -------- #Train on T6 adn U18 df = T2[logset].append(T6[logset]).append(U18[logset]).rename(columns={"GR_EDTC": "GR", "AT90": "logRT", "RHOZ": "RHOB", "WELL": "Well"}).set_index('Well') #df = T2[logset].append(T6[logset]).rename(columns={"GR_EDTC": "GR", "AT90": "logRT", "RHOZ": "RHOB", "WELL": "Well"}).set_index('Well') df['logRT'] = df['logRT'].apply(lambda x: math.log10(x)) df.reset_index(inplace=True) df.to_excel('./ML_Results/df.xlsx','Original') df['Pay'] = df['GRAY'].apply(lambda x: 1 if x> 170 else 0) data = df.copy() data= data[["GR", "RHOB", "logRT", "DTCO", "NPHI", "GRAY", "Pay","DEPT", "Well"]] data.head(100) #train, test = train_test_split(data, test_size=0.3, random_state=42) #train = data[(data['Well']!='T6') & (data['GRAY']>10)].copy() # train = data[(data['Well']!='T2')] # test = data[data['Well']=='T2'] #test = data[(data['DEPT']>3670) &(data['DEPT']<3720)] #train = data[~data.index.isin(test.index)] train, test = train_test_split(data, test_size=0.2, random_state=42) train.reset_index(inplace=True, drop=True) test.reset_index(inplace=True, drop=True) # %% Pre-processing: Data Balancing # Original data is imbalanced as there's more dark than bright in all UV photos # SMOGN drops certain samples to re-balance the dataset # Reference: http://proceedings.mlr.press/v74/branco17a/branco17a.pdf ## specify phi relevance values balance = 0 if balance == 1: train_smogn = smogn.smoter( data = train, ## pandas dataframe y = 'GRAY', ## string ('target header name') pert = 0.01, k = 3, rel_thres = 0.5, ## relevance threshold considered rare (pos real) rel_method = "auto", ## relevance method ("auto" or "manual") rel_xtrm_type = "both", ## distribution focus ("high", "low", "both") rel_coef = 0.5, ## coefficient for box plot (pos real) rel_ctrl_pts_rg = None ) ## Check changes in target variable distribution smogn.box_plot_stats(train['GRAY'])['stats'] smogn.box_plot_stats(train_smogn['GRAY'])['stats'] ## plot y distribution sns.kdeplot(train['GRAY'], label = "Original") sns.kdeplot(train_smogn['GRAY'], label = "Modified") del train train = train_smogn.copy() train.to_excel('./ML_Results/train_smogn.xlsx','Smogn') #------------------------------- # %% ========================= Machine Learning: PROCESSING =============================== augmentation = 0 ## Attempt Augmentation if augmentation ==1: train.sort_values('DEPT', inplace=True) aa = train.copy() s1 = pd.Series([0]) aa.GRAY = aa.GRAY[1:].append(s1).values ab = train.copy() ab.GRAY = s1.append(ab.GRAY[0:-1]).values s2 = pd.Series([0, 0]) ac = train.copy() ac.GRAY = aa.GRAY[2:].append(s2).values ad = train.copy() ad.GRAY = s2.append(ab.GRAY[0:-2]).values train = train.append(aa).append(ab).append(ac).append(ad) scaler = StandardScaler() print("Test Dataset Shape :::::: ", test.shape) print("Train Dataset Shape :::::: ", train.shape) train.to_excel('./ML_Results/train.xlsx','Train') test.to_excel('./ML_Results/test.xlsx','Test') option = 'Gray' #or 'Pay' if option == 'Gray': target_col = 5 else: target_col = 6 X = train.iloc[:, [0,1,2,3,4]] y = train.iloc[:, [target_col]] #5 is GRAY, #6 is Pay X_test = test.iloc[:, [0,1,2,3,4]] y_test = test.iloc[:, [target_col]] # Scaling #Find scaling parameters based on training data only scaler = StandardScaler() scaler.fit(X) print(scaler.mean_) X = scaler.transform(X) X_test = scaler.transform(X_test) # %% plot_descriptive = 1 if plot_descriptive == 1: # ===================== Descriptive Statistics and Plots ===================== print(df.groupby(['Well']).median()) print(df.groupby(['Well']).count()) print(df.groupby(['Well']).min()) print(df.groupby(['Well']).max()) # Show GR distribution among wells fig,ax = plt.subplots() hatches = ('\\', '//', '..') # fill pattern alpha_v = 0.9 for (i, d),hatch in zip(df.groupby('Well'), hatches): d['GR'].hist(alpha=alpha_v, ax=ax, label=i, hatch=hatch) alpha_v -= 0.3 ax.legend() #Show how the gray scale varies among each photo fig,ax = plt.subplots() hatches = ('\\', '//', '..') # fill pattern alpha_v = 0.9 for (i, d),hatch in zip(df.groupby('Well'), hatches): d['GRAY'].hist(alpha=alpha_v, ax=ax, label=i, hatch=hatch) alpha_v -= 0.3 ax.legend() # Expected correlations between variables fig, axss = plt.subplots(2, 2, figsize=(5, 5)) axss[0, 0].hist(df['GRAY']) axss[1, 0].plot(df['GR'], df['GRAY'], linestyle='None', markersize=4, marker='o') axss[0, 1].plot(df['RHOB'], df['GRAY'], linestyle='None', markersize=4, marker='o') axss[1, 1].hist2d(df['logRT'], df['GRAY']) plt.show() # Matrix Plot # variables= ['GR', 'RHOB', 'logRT', 'DTCO', 'NPHI', 'GRAY'] # fig, axes = scatterplotmatrix(df[df['Well']=='T2'].drop(['Well', 'DEPT'], axis=1).values, figsize=(8, 6), alpha=0.5) # fig, axes = scatterplotmatrix(df[df['Well']=='T6'].drop(['Well', 'DEPT'], axis=1).values, fig_axes=(fig, axes), alpha=0.5, names=variables) # #fig, axes = scatterplotmatrix(df[df['Well']=='U18'].drop(['Well', 'DEPT'], axis=1).values, fig_axes=(fig, axes), alpha=0.5, names=variables) # plt.tight_layout() # plt.show() #With SB #sns.set_theme(style="ticks") #sns.pairplot(train, kind="kde") # Note: Scaling the target is nor necessary, nor advised # ==================================================================== # ================ Machine Learning: MODELING ======================= # ==================================================================== print(df.shape) Methods = ['RandomForest', 'Lasso', 'ElasticNet', 'Ridge', 'SVR', 'GradientBoosting', 'MLP'] error = pd.DataFrame(index=['RMSE', 'MSE'], columns=Methods) # %% ------------------- Averaging: Random Forest Regressor --------------------- # https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html if GRIDSEARCH == 'on': rgr = RandomForestRegressorGS(X, np.ravel(y)) rgr.fit(X, np.ravel(y)) else: rgr = RandomForestRegressor(n_estimators=100, criterion='mse') rgr.fit(X, np.ravel(y)) print("Relative importance of GR, RHOB, logRt, DTCO, NPHI", rgr.feature_importances_) y_pred_train = rgr.predict(X) y_pred_test = rgr.predict(X_test) mse = mean_squared_error(y_test, y_pred_test) rmse_train = mean_squared_error(y, y_pred_train, squared=False) rmse = mean_squared_error(y_test, y_pred_test, squared=False) fig, axs = plt.subplots(1, 2, constrained_layout=True, figsize=(8,4)) axs[0].set_title('Train '+option) axs[0].plot(y, y, 'blue'); axs[0].set_xlabel('True '+option); axs[0].set_ylabel('Predicted '+option) axs[0].plot(y, y_pred_train, 'ko') axs[0].text(-0.3, 0.08, 'RMSE = '+str(round(rmse_train,2)), verticalalignment='bottom', horizontalalignment='right', transform=axs[1].transAxes,color='black', fontsize=10) axs[1].plot(y_test, y_test, 'blue') axs[1].plot(y_test, y_pred_test, 'go') axs[1].set_title('Test '+option) axs[1].text(1.2, 0.08, 'RMSE = '+str(round(rmse,2)), verticalalignment='bottom', horizontalalignment='right', transform=axs[1].transAxes,color='green', fontsize=10) axs[1].plot(y, y, 'blue'); axs[1].set_xlabel('True '+option); plt.show() #ct +=1 ct =0 method = Methods[ct] y_pred_train = pd.DataFrame(y_pred_train, columns=['y_pred_train'], index=y.index) y_pred_test = pd.DataFrame(y_pred_test, columns=['y_pred_test'], index=y_test.index) train_all = train.copy() train_all[method] = y_pred_train test_all = test.copy() test_all[method] = y_pred_test error.loc['MSE', method] = mse.round() error.loc['RMSE', method] = rmse.round() fig.savefig('./ML_Results/'+str(ct)+"_"+method+'.jpg') #Save Model pkl_filename = method+".pkl" with open('./ML_Results/models/'+pkl_filename, 'wb') as file: pickle.dump(rgr, file) #Load Model and Validate holdout Well with open('./ML_Results/models/'+pkl_filename, 'rb') as file: model = pickle.load(file) print(error) #----------------------- End Random Forest ----------------------------- # %% -------------- Linear Model: LASSO, L1 regularization -------------- if GRIDSEARCH == 'on': rgr = lassoGS(X, y) rgr.fit(X, y) else: rgr = linear_model.Lasso(alpha=0.3) rgr.fit(X, y) y_pred_train = rgr.predict(X) y_pred_test = rgr.predict(X_test) print(rgr.coef_, rgr.intercept_) mse = mean_squared_error(y_test, y_pred_test) rmse_train = mean_squared_error(y, y_pred_train, squared=False) rmse = mean_squared_error(y_test, y_pred_test, squared=False) fig, axs = plt.subplots(1, 2, constrained_layout=True, figsize=(8,4)) axs[0].set_title('Train '+option) axs[0].plot(y, y, 'blue'); axs[0].set_xlabel('True '+option); axs[0].set_ylabel('Predicted '+option) axs[0].plot(y, y_pred_train, 'ko') axs[0].text(-0.3, 0.08, 'RMSE = '+str(round(rmse_train,2)), verticalalignment='bottom', horizontalalignment='right', transform=axs[1].transAxes,color='black', fontsize=10) axs[1].plot(y_test, y_test, 'blue') axs[1].plot(y_test, y_pred_test, 'go') axs[1].set_title('Test '+option) axs[1].text(1.2, 0.08, 'RMSE = '+str(round(rmse,2)), verticalalignment='bottom', horizontalalignment='right', transform=axs[1].transAxes,color='green', fontsize=10) axs[1].plot(y, y, 'blue'); axs[1].set_xlabel('True '+option); plt.show() ct += 1 method = Methods[ct] y_pred_train = pd.DataFrame(y_pred_train, columns=['y_pred_train'], index=y.index) y_pred_test = pd.DataFrame(y_pred_test, columns=['y_pred_test'], index=y_test.index) train_all[method] = y_pred_train test_all[method] = y_pred_test error.loc['MSE', method] = mse.round() error.loc['RMSE', method] = rmse.round() fig.savefig('./ML_Results/'+str(ct)+"_"+method+'.jpg') #Save Model pkl_filename = method+".pkl" with open('./ML_Results/models/'+pkl_filename, 'wb') as file: pickle.dump(rgr, file) #Load Model and Validate holdout Well with open('./ML_Results/models/'+pkl_filename, 'rb') as file: model = pickle.load(file) print(error) #-------------------------------- End Lasso -------------------------- # %% # %% -------------- Linear Model: ElasticNet, L1+L2 regularization -------------- if GRIDSEARCH == 'on': rgr = ElasticNetGS(X, y) rgr.fit(X, y) else: rgr = linear_model.ElasticNet(alpha=0.5, l1_ratio=0.1, random_state = 5, selection='random') rgr.fit(X, y) y_pred_train = rgr.predict(X) y_pred_test = rgr.predict(X_test) print(rgr.coef_, rgr.intercept_) mse = mean_squared_error(y_test, y_pred_test) rmse_train = mean_squared_error(y, y_pred_train, squared=False) rmse = mean_squared_error(y_test, y_pred_test, squared=False) fig, axs = plt.subplots(1, 2, constrained_layout=True, figsize=(8,4)) axs[0].set_title('Train '+option) axs[0].plot(y, y, 'blue'); axs[0].set_xlabel('True '+option); axs[0].set_ylabel('Predicted '+option) axs[0].plot(y, y_pred_train, 'ko') axs[0].text(-0.3, 0.08, 'RMSE = '+str(round(rmse_train,2)), verticalalignment='bottom', horizontalalignment='right', transform=axs[1].transAxes,color='black', fontsize=10) axs[1].plot(y_test, y_test, 'blue') axs[1].plot(y_test, y_pred_test, 'go') axs[1].set_title('Test '+option) axs[1].text(1.2, 0.08, 'RMSE = '+str(round(rmse,2)), verticalalignment='bottom', horizontalalignment='right', transform=axs[1].transAxes,color='green', fontsize=10) axs[1].plot(y, y, 'blue'); axs[1].set_xlabel('True '+option); plt.show() ct +=1 method = Methods[ct] y_pred_train = pd.DataFrame(y_pred_train, columns=['y_pred_train'], index=y.index) y_pred_test = pd.DataFrame(y_pred_test, columns=['y_pred_test'], index=y_test.index) train_all[method] = y_pred_train test_all[method] = y_pred_test error.loc['MSE', method] = mse.round() error.loc['RMSE', method] = rmse.round() fig.savefig('./ML_Results/'+str(ct)+"_"+method+'.jpg') #Save Model pkl_filename = method+".pkl" with open('./ML_Results/models/'+pkl_filename, 'wb') as file: pickle.dump(rgr, file) #Load Model and Validate holdout Well with open('./ML_Results/models/'+pkl_filename, 'rb') as file: model = pickle.load(file) print(error) #-------------------------------- End ElasticNet -------------------------- #-------------------------------------------------------------------------- # %% ------------------- Linear Model: Ridge Regression ------------------- if GRIDSEARCH == 'on': rgr = RidgeGS(X, y) rgr.fit(X, y) else: rgr = linear_model.Ridge(alpha=0.5, solver='auto') rgr.fit(X, y) y_pred_train = rgr.predict(X) y_pred_test = rgr.predict(X_test) print(rgr.coef_, rgr.intercept_) mse = mean_squared_error(y_test, y_pred_test) rmse_train = mean_squared_error(y, y_pred_train, squared=False) rmse = mean_squared_error(y_test, y_pred_test, squared=False) fig, axs = plt.subplots(1, 2, constrained_layout=True, figsize=(8,4)) axs[0].set_title('Train '+option) axs[0].plot(y, y, 'blue'); axs[0].set_xlabel('True '+option); axs[0].set_ylabel('Predicted '+option) axs[0].plot(y, y_pred_train, 'ko') axs[0].text(-0.3, 0.08, 'RMSE = '+str(round(rmse_train,2)), verticalalignment='bottom', horizontalalignment='right', transform=axs[1].transAxes,color='black', fontsize=10) axs[1].plot(y_test, y_test, 'blue') axs[1].plot(y_test, y_pred_test, 'go') axs[1].set_title('Test '+option) axs[1].text(1.2, 0.08, 'RMSE = '+str(round(rmse,2)), verticalalignment='bottom', horizontalalignment='right', transform=axs[1].transAxes,color='green', fontsize=10) axs[1].plot(y, y, 'blue'); axs[1].set_xlabel('True '+option); plt.show() ct +=1 method = Methods[ct] y_pred_train = pd.DataFrame(y_pred_train, columns=['y_pred_train'], index=y.index) y_pred_test = pd.DataFrame(y_pred_test, columns=['y_pred_test'], index=y_test.index) train_all[method] = y_pred_train test_all[method] = y_pred_test error.loc['MSE', method] = mse.round() error.loc['RMSE', method] = rmse.round() fig.savefig('./ML_Results/'+str(ct)+"_"+method+'.jpg') #Save Model pkl_filename = method+".pkl" with open('./ML_Results/models/'+pkl_filename, 'wb') as file: pickle.dump(rgr, file) #Load Model and Validate holdout Well with open('./ML_Results/models/'+pkl_filename, 'rb') as file: model = pickle.load(file) print(error) #--------------------------------- End Ridge ------------------------------ #-------------------------------------------------------------------------- # %% ------------------- Support Vector Machines: SVR --------------------- # https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html if GRIDSEARCH == 'on': rgr = SVRGS(X, np.ravel(y)) rgr.fit(X, np.ravel(y)) else: rgr = SVR(C= 150, epsilon=0.2) rgr.fit(X, np.ravel(y)) y_pred_train = rgr.predict(X) y_pred_test = rgr.predict(X_test) mse = mean_squared_error(y_test, y_pred_test) rmse_train = mean_squared_error(y, y_pred_train, squared=False) rmse = mean_squared_error(y_test, y_pred_test, squared=False) fig, axs = plt.subplots(1, 2, constrained_layout=True, figsize=(8,4)) axs[0].set_title('Train '+option) axs[0].plot(y, y, 'blue'); axs[0].set_xlabel('True '+option); axs[0].set_ylabel('Predicted '+option) axs[0].plot(y, y_pred_train, 'ko') axs[0].text(-0.3, 0.08, 'RMSE = '+str(round(rmse_train,2)), verticalalignment='bottom', horizontalalignment='right', transform=axs[1].transAxes,color='black', fontsize=10) axs[1].plot(y_test, y_test, 'blue') axs[1].plot(y_test, y_pred_test, 'go') axs[1].set_title('Test '+option) axs[1].text(1.2, 0.08, 'RMSE = '+str(round(rmse,2)), verticalalignment='bottom', horizontalalignment='right', transform=axs[1].transAxes,color='green', fontsize=10) axs[1].plot(y, y, 'blue'); axs[1].set_xlabel('True '+option); plt.show() ct +=1 method = Methods[ct] y_pred_train = pd.DataFrame(y_pred_train, columns=['y_pred_train'], index=y.index) y_pred_test = pd.DataFrame(y_pred_test, columns=['y_pred_test'], index=y_test.index) train_all[method] = y_pred_train test_all[method] = y_pred_test error.loc['MSE', method] = mse.round() error.loc['RMSE', method] = rmse.round() fig.savefig('./ML_Results/'+str(ct)+"_"+method+'.jpg') #Save Model pkl_filename = method+".pkl" with open('./ML_Results/models/'+pkl_filename, 'wb') as file: pickle.dump(rgr, file) #Load Model and Validate holdout Well with open('./ML_Results/models/'+pkl_filename, 'rb') as file: model = pickle.load(file) print(error) #--------------------------------- End SVR -------------------------------- #-o-o-o-o-o-o-o-o-o-o-o-o-o- ENSEMBLE METHODS -o-o-o-o-o-o-o-o-o-o-o-o-o-o # Ref: https://scikit-learn.org/stable/modules/ensemble.html # %% ------------------- Boosting: Gradient Tree Boosting --------------------- # https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html#sklearn.ensemble.GradientBoostingRegressor GRIDSEARCH == 'off' if GRIDSEARCH == 'on': rgr = GradientBoostingRegressorGS(X, np.ravel(y)) rgr.fit(X, np.ravel(y)) else: rgr = GradientBoostingRegressor(n_estimators=100, learning_rate=0.01, alpha=0.336) rgr.fit(X, np.ravel(y)) y_pred_train = rgr.predict(X) y_pred_test = rgr.predict(X_test) mse = mean_squared_error(y_test, y_pred_test) rmse_train = mean_squared_error(y, y_pred_train, squared=False) rmse = mean_squared_error(y_test, y_pred_test, squared=False) fig, axs = plt.subplots(1, 2, constrained_layout=True, figsize=(8,4)) axs[0].set_title('Train '+option) axs[0].plot(y, y, 'blue'); axs[0].set_xlabel('True '+option); axs[0].set_ylabel('Predicted '+option) axs[0].plot(y, y_pred_train, 'ko') axs[0].text(-0.3, 0.08, 'RMSE = '+str(round(rmse_train,2)), verticalalignment='bottom', horizontalalignment='right', transform=axs[1].transAxes,color='black', fontsize=10) axs[1].plot(y_test, y_test, 'blue') axs[1].plot(y_test, y_pred_test, 'go') axs[1].set_title('Test '+option) axs[1].text(1.2, 0.08, 'RMSE = '+str(round(rmse,2)), verticalalignment='bottom', horizontalalignment='right', transform=axs[1].transAxes,color='green', fontsize=10) axs[1].plot(y, y, 'blue'); axs[1].set_xlabel('True '+option); plt.show() ct +=1 method = Methods[ct] y_pred_train = pd.DataFrame(y_pred_train, columns=['y_pred_train'], index=y.index) y_pred_test = pd.DataFrame(y_pred_test, columns=['y_pred_test'], index=y_test.index) train_all[method] = y_pred_train test_all[method] = y_pred_test error.loc['MSE', method] = mse.round() error.loc['RMSE', method] = rmse.round() fig.savefig('./ML_Results/'+str(ct)+"_"+method+'.jpg') #Save Model pkl_filename = method+".pkl" with open('./ML_Results/models/'+pkl_filename, 'wb') as file: pickle.dump(rgr, file) #Load Model and Validate holdout Well with open('./ML_Results/models/'+pkl_filename, 'rb') as file: model = pickle.load(file) print(error) #----------------------- End Gradient Boosting ----------------------------- # %% ----------------------------------------------- Neural Network ---------------------------------------------------- # https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html#sklearn.neural_network.MLPRegressor # Default: solver: Adam, activation: relu, learning rate: constant given by learning_rate_init, batch_size='auto' # hidden_layer_sizes: tuple, length = n_layers - 2, default=(100,),which means one hidden layer with 100 neurons # hidden_layer_sizes (30, 30, 30) means 3 hidden layers with 30 neurons each. # Use e.g. [x for x in itertools.product((10,50,100,30),repeat=4)] to generate all possible 4-hidden layer combinations GRIDSEARCH == 'off' if GRIDSEARCH == 'on': rgr = MLPRegressorGS(X, np.ravel(y)) rgr.fit(X, np.ravel(y)) else: rgr = MLPRegressor(hidden_layer_sizes=(10, 50, 100), alpha=0.66333, batch_size='auto', learning_rate_init=0.01) rgr.fit(X, np.ravel(y)) y_pred_train = rgr.predict(X) y_pred_test = rgr.predict(X_test) mse = mean_squared_error(y_test, y_pred_test) rmse_train = mean_squared_error(y, y_pred_train, squared=False) rmse = mean_squared_error(y_test, y_pred_test, squared=False) fig, axs = plt.subplots(1, 2, constrained_layout=True, figsize=(8,4)) axs[0].set_title('Train '+option) axs[0].plot(y, y, 'blue'); axs[0].set_xlabel('True '+option); axs[0].set_ylabel('Predicted '+option) axs[0].plot(y, y_pred_train, 'ko') axs[0].text(-0.3, 0.08, 'RMSE = '+str(round(rmse_train,2)), verticalalignment='bottom', horizontalalignment='right', transform=axs[1].transAxes,color='black', fontsize=10) axs[1].plot(y_test, y_test, 'blue') axs[1].plot(y_test, y_pred_test, 'go') axs[1].set_title('Test '+option) axs[1].text(1.2, 0.08, 'RMSE = '+str(round(rmse,2)), verticalalignment='bottom', horizontalalignment='right', transform=axs[1].transAxes,color='green', fontsize=10) axs[1].plot(y, y, 'blue'); axs[1].set_xlabel('True '+option); plt.show() ct +=1 method = Methods[ct] y_pred_train = pd.DataFrame(y_pred_train, columns=['y_pred_train'], index=y.index) y_pred_test = pd.DataFrame(y_pred_test, columns=['y_pred_test'], index=y_test.index) train_all[method] = y_pred_train test_all[method] = y_pred_test error.loc['MSE', method] = mse.round() error.loc['RMSE', method] = rmse.round() fig.savefig('./ML_Results/'+str(ct)+"_"+method+'.jpg') #Save Model pkl_filename = method+".pkl" with open('./ML_Results/models/'+pkl_filename, 'wb') as file: pickle.dump(rgr, file) #Load Model with open('./ML_Results/models/'+pkl_filename, 'rb') as file: model = pickle.load(file) print(error) #----------------------- End Neural Network ----------------------------- #%% #--*--*--*--*--*--*--*--*--*--*--*--*--*--*--*--*--*--*--*--*--*--*--*--* #--*--*--*--*--*--*--*--*--* Save Results *--*--*--*--*--*--*--*--*--*--* #--*--*--*--*--*--*--*--*--*--*--*--*--*--*--*--*--*--*--*--*--*--*--*--* error.to_excel('./ML_Results/Errors.xlsx') #train_all = train_all.merge(df['DEPT'], left_index=True, right_index=True) train_all['Set'] = 'Train' #test_all = test_all.merge(df['DEPT'], left_index=True, right_index=True) test_all['Set'] = 'Test' full_set = train_all.append(test_all) full_set.to_excel('./ML_Results/Train_Test_Results.xls') full_set['Well'=='T2'].sort_values('DEPT').to_excel('./ML_Results/T2_test/Results.xls') #%%
ea2dd8bf45e6bb9c2b6ff09afb422072ab1fe92b
8566f9905a831b05dd79c0cb0d1cf99bd258a917
/models/sml/sml_celeba_cactus.py
0360822647d3a2a0a40c06b37deafe44bdd0e926
[ "Apache-2.0" ]
permissive
emerld2011/MetaLearning-TF2.0
8e81db2a5489ffc2ccb4f21eb8202d1c50106844
de852bd3b2ff46f8d390cebf561add3a166ee855
refs/heads/main
2023-08-14T18:21:23.539460
2021-09-17T14:42:22
2021-09-17T14:42:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,397
py
import tensorflow as tf from models.sml.sml import SML from networks.maml_umtra_networks import MiniImagenetModel from databases import CelebADatabase, LFWDatabase def run_celeba(): celeba_database = CelebADatabase() base_model = tf.keras.applications.VGG19(weights='imagenet') feature_model = tf.keras.models.Model(inputs=base_model.input, outputs=base_model.layers[24].output) sml = SML( database=celeba_database, target_database=LFWDatabase(), network_cls=MiniImagenetModel, n=5, k=1, k_val_ml=5, k_val_val=15, k_val_test=15, k_test=15, meta_batch_size=4, num_steps_ml=5, lr_inner_ml=0.05, num_steps_validation=5, save_after_iterations=15000, meta_learning_rate=0.001, n_clusters=500, feature_model=feature_model, # feature_size=288, feature_size=4096, input_shape=(224, 224, 3), preprocess_function=tf.keras.applications.vgg19.preprocess_input, log_train_images_after_iteration=1000, number_of_tasks_val=100, number_of_tasks_test=1000, clip_gradients=True, report_validation_frequency=250, experiment_name='cactus_celeba_original3' ) sml.train(iterations=60000) sml.evaluate(iterations=50, seed=42) if __name__ == '__main__': run_celeba()
6327cc15593e29d7b0f45312359af9350a81a2cc
15d477b2bc7da4e1bddd6fa33f0768fcbd4c82c3
/simple_3d_engine.py
62feb8ad80ef2a33f85e02f37a7f238e444e751b
[]
no_license
gunny26/pygame
364d4a221e2d11bd491190f97670b09123146ad7
1fd421195a2888c0588a49f5a043a1110eedcdbf
refs/heads/master
2022-10-20T00:56:34.415095
2022-10-03T19:27:52
2022-10-03T19:27:52
7,414,604
5
11
null
null
null
null
UTF-8
Python
false
false
6,778
py
#!/usr/bin/python3 import sys import math import time # non std import pygame class Vec2d: def __init__(self, x, y): self.x = x self.y = y class Vec3d: def __init__(self, x, y, z): self.x = x self.y = y self.z = z class Vec4d: def __init__(self, x, y, z, w): self.x = x self.y = y self.z = z self.w = w class Triangle: def __init__(self, v1, v2, v3): self.v1 = v1 self.v2 = v2 self.v3 = v3 class Mesh: def __init__(self, triangles): self.triangles = triangles def __getitem__(self, index): return self.triangles[index] class Matrix4x4: def __init__(self, vecs): self.vecs = vecs def __mul__(self, vec3d): vec4d = Vec4d(*[ vec3d.x * self.vecs[0][0] + vec3d.y * self.vecs[1][0] + vec3d.z * self.vecs[2][0] + self.vecs[3][0], vec3d.x * self.vecs[0][1] + vec3d.y * self.vecs[1][1] + vec3d.z * self.vecs[2][1] + self.vecs[3][1], vec3d.x * self.vecs[0][2] + vec3d.y * self.vecs[1][2] + vec3d.z * self.vecs[2][2] + self.vecs[3][2], vec3d.x * self.vecs[0][3] + vec3d.y * self.vecs[1][3] + vec3d.z * self.vecs[2][3] + self.vecs[3][3] ]) if vec4d.w != 0.0: vec4d.x /= vec4d.w vec4d.y /= vec4d.w vec4d.z /= vec4d.w return vec4d def draw_triangle(surface, color, triangle): pygame.draw.line(surface, color, (triangle.v1.x, triangle.v1.y), (triangle.v2.x, triangle.v2.y), 1) pygame.draw.line(surface, color, (triangle.v2.x, triangle.v2.y), (triangle.v3.x, triangle.v3.y), 1) pygame.draw.line(surface, color, (triangle.v3.x, triangle.v3.y), (triangle.v1.x, triangle.v1.y), 1) if __name__=='__main__': try: surface = pygame.display.set_mode((600,600)) pygame.init() # constants FPS = 20 WHITE = (255, 255, 255) # white clock = pygame.time.Clock() width = surface.get_width() height = surface.get_height() theta = 90.0 # sixtee degree z_near = 0.1 z_far = 1000.0 # some well known terms fov = 1 / math.tan(theta / 2) # field of view aspect = width / height q = z_far / (z_far - z_near) # z projection # help: # x = aspect * fov * x / z # y = fov * y / z # z = z * (q - q * z_near) projection_matrix = Matrix4x4([ [ aspect * fov, 0 , 0 , 0], [ 0 , fov, 0 , 0], [ 0 , 0 , q , 1], [ 0 , 0 , -z_near * q, 0] ]) # define cube, all triangle in same direction cube = Mesh([ Triangle(Vec3d(0, 0, 0), Vec3d(0, 1, 0), Vec3d(1, 1, 0)), # south Triangle(Vec3d(1, 1, 0), Vec3d(1, 0, 0), Vec3d(0, 0, 0)), # south Triangle(Vec3d(1, 0, 0), Vec3d(1, 1, 0), Vec3d(1, 1, 1)), # east Triangle(Vec3d(1, 1, 1), Vec3d(1, 0, 1), Vec3d(1, 0, 0)), # east Triangle(Vec3d(0, 0, 1), Vec3d(0, 1, 1), Vec3d(0, 1, 0)), # west Triangle(Vec3d(0, 1, 0), Vec3d(0, 0, 0), Vec3d(0, 0, 1)), # west Triangle(Vec3d(1, 0, 1), Vec3d(1, 1, 1), Vec3d(0, 0, 1)), # north Triangle(Vec3d(0, 0, 1), Vec3d(0, 1, 1), Vec3d(1, 1, 1)), # north Triangle(Vec3d(0, 0, 1), Vec3d(0, 0, 0), Vec3d(1, 0, 0)), # bottom Triangle(Vec3d(1, 0, 0), Vec3d(1, 0, 1), Vec3d(0, 0, 1)), # bottom Triangle(Vec3d(0, 1, 0), Vec3d(0, 1, 1), Vec3d(1, 1, 1)), # top Triangle(Vec3d(1, 1, 1), Vec3d(1, 1, 0), Vec3d(0, 1, 0)) # top ]) while True: clock.tick(FPS) events = pygame.event.get() for event in events: if event.type == pygame.QUIT: sys.exit(0) keyinput = pygame.key.get_pressed() if keyinput is not None: # print keyinput if keyinput[pygame.K_ESCAPE]: sys.exit(1) surface.fill(0) # create rotation matrix around x and z axis f_theta = time.time() rot_x = Matrix4x4([ [ 1, 0, 0, 0 ], [ 0, math.cos(f_theta), -math.sin(f_theta), 0 ], [ 0, math.sin(f_theta), math.cos(f_theta), 0 ], [ 0, 0, 0, 1 ] ]) rot_y = Matrix4x4([ [ math.cos(f_theta), 0, math.sin(f_theta), 0 ], [ 0, 1, 0, 0 ], [ -math.sin(f_theta), 0, math.cos(f_theta), 0 ], [ 0, 0, 0, 1 ] ]) rot_z = Matrix4x4([ [ math.cos(f_theta * 0.5), -math.sin(f_theta * 0.5), 0, 0 ], [ math.sin(f_theta * 0.5), math.cos(f_theta * 0.5), 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ]) # do projection for triangle in cube: # rotate z t_z = Triangle(*[ rot_z * triangle.v1, rot_z * triangle.v2, rot_z * triangle.v3 ]) # rotate x t_x = Triangle(*[ rot_x * t_z.v1, rot_x * t_z.v2, rot_x * t_z.v3 ]) # translate into Z t_t = Triangle(*[ Vec3d(t_x.v1.x, t_x.v1.y, t_x.v1.z + 3.0), Vec3d(t_x.v2.x, t_x.v2.y, t_x.v2.z + 3.0), Vec3d(t_x.v3.x, t_x.v3.y, t_x.v3.z + 3.0) ]) # project t_p = Triangle(*[ projection_matrix * t_t.v1, projection_matrix * t_t.v2, projection_matrix * t_t.v3 ]) # shift to positive values t_p.v1.x += 1.0 t_p.v1.y += 1.0 t_p.v2.x += 1.0 t_p.v2.y += 1.0 t_p.v3.x += 1.0 t_p.v3.y += 1.0 # scale by half the screen t_p.v1.x *= width / 2 t_p.v1.y *= height / 2 t_p.v2.x *= width/2 t_p.v2.y *= height / 2 t_p.v3.x *= width/2 t_p.v3.y *= height / 2 draw_triangle(surface, WHITE, t_p) pygame.display.flip() except KeyboardInterrupt: print('shutting down')
7a08c8c0f10a0f895db76c5b49933e2ec90cfd3c
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/8WvpPQto44PqNLSqJ_16.py
1beb2118e0b5593eebf9a90ec62cd377057db150
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
190
py
def pad(message): if len(message)<140: if not len(message)%2: message += ' l' else: message += 'l' while len(message)<140: message += 'ol' return message
d1297225e16ebf5161aebae8590fb1060bd9310e
e6f16fbba8fba750099252c3490f00079cb19101
/算法/053_最大子序求和.py
e493a34fa89f268394e4fe3b768062a9898cacd9
[]
no_license
hookeyplayer/exercise.io
0a36fbec9df6c24b60ff6f97de27d3d5ae7769d4
605c81cb44443efd974db9fa0a088ddcd5a96f0f
refs/heads/master
2023-06-20T17:03:20.310816
2021-07-31T12:50:21
2021-07-31T12:50:21
277,175,487
0
0
null
null
null
null
UTF-8
Python
false
false
1,012
py
from typing import List class Solution: # DP1 # 贪心 def maxSubArray(self, nums: List[int]) -> int: thisSum = 0 maxSum = -2**31 for i in range(len(nums)): if thisSum < 0: thisSum = 0 thisSum += nums[i] maxSum = max(maxSum, thisSum) return maxSum # DP2 def maxSubArray(self, nums: List[int]) -> int: # 构造子序列时保证以第n个元素结尾 # 原先是正增益的作用,则包含到新的子序列中;否则抛弃前面的子序列 dp = [0] * len(nums) dp[0] = nums[0] ans = nums[0] for i in range(1, len(nums)): dp[i] = max(dp[i-1], 0) + nums[i] ans = max(ans, dp[i]) return ans # DP3 def maxSubArray(self, nums: List[int]) -> int: maxEndingHere = ans = nums[0] for i in range(1, len(nums)): maxEndingHere = max(maxEndingHere+nums[i], nums[i]) ans = max(maxEndingHere, ans) return ans if __name__ == '__main__': test = Solution() print(test.maxSubArray([-2, 3, -1, -8]))
a61936e0b3152ba6a39cdb301e33356c628ccc6c
a14ec6e367e6a471bfc74c066fb958ef585bc269
/2022/22/b.py
1b47f0a8bee5acc2c3a1acc74fd052c972b656f5
[]
no_license
jimhendy/AoC
90641814ed431f46a8500ff0f022c6c957567563
a1727f88bc2e6f739d65902dce188377966b3fb4
refs/heads/master
2023-09-02T14:48:39.860352
2023-08-28T08:09:19
2023-08-28T08:09:19
225,152,422
0
0
null
null
null
null
UTF-8
Python
false
false
8,593
py
import re from collections import defaultdict, deque from collections.abc import Callable from tools.point import Point2D DIRECTIONS = deque(["right", "down", "left", "up"]) FACING_VALUE = {"right": 0, "left": 2, "up": 3, "down": 1} OPPOSITES = {"down": "up", "up": "down", "left": "right", "right": "left"} def run(inputs: str): # sourcery skip: collection-into-set inputs = inputs.splitlines() board = inputs[:-2] open_tiles = set() walls = set() loop_tiles: dict[str, dict[Point2D, Point2D]] = defaultdict(dict) loop_directions: dict[str, dict[Point2D, Point2D]] = defaultdict(dict) for y, row in enumerate(board): for x, char in enumerate(row): if char == " ": continue if char == "#": walls.add(Point2D(x, y)) elif char == ".": open_tiles.add(Point2D(x, y)) side_length = max(len(board) // 4, max(len(line) for line in board) // 4) def extract_from_x( x_lambda: Callable[[int], int], min_or_max: Callable, ) -> Callable[[int], Point2D]: def func(i: int) -> Point2D: x = x_lambda(i) return Point2D(x=x, y=min_or_max(p.y for p in open_tiles if p.x == x)) return func def extract_from_y( y_lambda: Callable[[int], int], min_or_max: Callable, ) -> Callable[[int], Point2D]: def func(i: int) -> Point2D: y = y_lambda(i) return Point2D( x=min_or_max(p.x for p in open_tiles if p.y == y), y=y, ) return func def configure_moves( leaving_lambda: Callable[[int], Point2D], entering_lambda: Callable[[int], Point2D], leaving_direction: str, entering_direction: str, ): """ Add the loop data for a particular side exit. E.g. for the unfolded cube: 11 11 223344 223344 5566 5566 Exiting the right of side 1 would enter from the right of side 6. Hence, this function is used with * leaving_direction="right" * entering_direction="left" With functions taking in an iterable of side length (2 in example) to create the Point2Ds e.g. leaving_lambda=lambda i: i entering_lambda=lambda i: side_length * 3 - 1 - i """ if leaving_direction in {"up", "down"}: leaving_extract = extract_from_x leaving_min_max = min if leaving_direction == "up" else max else: leaving_extract = extract_from_y leaving_min_max = min if leaving_direction == "left" else max if entering_direction in {"up", "down"}: entering_extract = extract_from_x entering_min_max = min if entering_direction == "down" else max else: entering_extract = extract_from_y entering_min_max = min if entering_direction == "right" else max for i in range(side_length): leaving = leaving_extract(leaving_lambda, leaving_min_max)(i) entering = entering_extract(entering_lambda, entering_min_max)(i) beyond_leaving = leaving + Point2D.steps[leaving_direction] beyond_entering = entering + Point2D.steps[OPPOSITES[entering_direction]] can_leave = beyond_leaving not in walls can_enter = beyond_entering not in walls if can_leave and can_enter: loop_tiles[leaving_direction][beyond_leaving] = entering loop_directions[leaving_direction][beyond_leaving] = entering_direction loop_tiles[OPPOSITES[entering_direction]][beyond_entering] = leaving loop_directions[OPPOSITES[entering_direction]][ beyond_entering ] = OPPOSITES[leaving_direction] if side_length == 4: # Right of 1, right of 6 configure_moves( leaving_direction="right", leaving_lambda=lambda i: i, entering_direction="left", entering_lambda=lambda i: 3 * side_length - 1 - i, ) # Right of 4, top of 6 configure_moves( leaving_direction="right", leaving_lambda=lambda i: side_length + i, entering_direction="down", entering_lambda=lambda i: 4 * side_length - 1 - i, ) # Bottom of 6, left of 2 configure_moves( leaving_direction="down", leaving_lambda=lambda i: 3 * side_length + i, entering_direction="right", entering_lambda=lambda i: 2 * side_length - 1 - i, ) # Bottom of 5, bottom of 2 configure_moves( leaving_direction="down", leaving_lambda=lambda i: 2 * side_length + i, entering_direction="up", entering_lambda=lambda i: side_length - 1 - i, ) # Top of 1, top of 2 configure_moves( leaving_direction="up", leaving_lambda=lambda i: 2 * side_length + i, entering_direction="down", entering_lambda=lambda i: side_length - 1 - i, ) # Left of 1, top of 3 configure_moves( leaving_direction="left", leaving_lambda=lambda i: i, entering_direction="down", entering_lambda=lambda i: side_length + i, ) # Bottom of 3, left of 5 configure_moves( leaving_direction="down", leaving_lambda=lambda i: side_length + i, entering_direction="right", entering_lambda=lambda i: 3 * side_length - 1 - i, ) else: # ===================================================================================== # Right side 2, right side 4 configure_moves( leaving_direction="right", leaving_lambda=lambda i: i, entering_direction="left", entering_lambda=lambda i: 3 * side_length - 1 - i, ) # Right side 3, bottom side 2 configure_moves( leaving_direction="right", leaving_lambda=lambda i: side_length + i, entering_direction="up", entering_lambda=lambda i: 2 * side_length + i, ) # Right side 6, bottom side 4 configure_moves( leaving_direction="right", leaving_lambda=lambda i: 3 * side_length + i, entering_direction="up", entering_lambda=lambda i: side_length + i, ) # Top side 2, bottom side 6 configure_moves( leaving_direction="up", leaving_lambda=lambda i: 2 * side_length + i, entering_direction="up", entering_lambda=lambda i: i, ) # Top side 1, left side 6 configure_moves( leaving_direction="up", leaving_lambda=lambda i: side_length + i, entering_direction="right", entering_lambda=lambda i: 3 * side_length + i, ) # Left side 1, left side 5 configure_moves( leaving_direction="left", leaving_lambda=lambda i: i, entering_direction="right", entering_lambda=lambda i: 3 * side_length - 1 - i, ) # Left side 3, top side 5 configure_moves( leaving_direction="left", leaving_lambda=lambda i: side_length + i, entering_direction="down", entering_lambda=lambda i: i, ) moves = map(int, re.findall(r"\d+", inputs[-1])) turns = iter(re.findall(r"[RL]", inputs[-1])) loc = Point2D(min(p.x for p in open_tiles if p.y == 0), 0) step = Point2D.steps["right"] for num_steps in moves: for _ in range(num_steps): new_loc = loc + step if new_loc in open_tiles: loc = new_loc elif new_loc in loop_tiles[DIRECTIONS[0]]: loc = loop_tiles[DIRECTIONS[0]][new_loc] new_direction = loop_directions[DIRECTIONS[0]][new_loc] while DIRECTIONS[0] != new_direction: DIRECTIONS.rotate() step = Point2D.steps[new_direction] try: rot = -1 if next(turns) == "R" else 1 DIRECTIONS.rotate(rot) step = Point2D.steps[DIRECTIONS[0]] except StopIteration: ... return 1_000 * (abs(loc.y) + 1) + 4 * (loc.x + 1) + FACING_VALUE[DIRECTIONS[0]]
9ea0d53abc6fe76ea844647c939081ba7bef497d
986a8c5de450fc436897de9aaff4c5f737074ee3
/笔试题/2019 PayPal实习生招聘编程卷/2_寻找关联用户.py
9f80fb24348a2f07ea5df09bb989cd129384753d
[]
no_license
lovehhf/newcoder_py
7a0ef03f0ea733ec925a10f06566040f6edafa67
f8ae73deef1d9422ca7b0aa9f484dc96db58078c
refs/heads/master
2020-04-27T18:20:19.082458
2019-05-24T15:30:13
2019-05-24T15:30:13
174,564,930
0
0
null
null
null
null
UTF-8
Python
false
false
4,697
py
# -*- coding:utf-8 -*- __author__ = 'huanghf' """ PayPal上海团队一直致力于风险控制,风控需要收集各种信息,有时需要通过地理位置找出用户与用户之间存在的关联关系, 这一信息可能会用于找出用户潜在存在的风险问题。我们记两个用户的关联关系可以表示为: (1). user1,user2与他们最常发生交易的地理位置分别为(x1, y1),(x2, y2),当这两个用户的欧氏距离不超过d时,我们就认为两个用户关联。 (2). **用户关联性具有传递性**,若用户1与用户2关联,用户2与用户3关联,那么用户1,2,3均关联。 给定N个用户及其地理位置坐标,将用户按照关联性进行划分,要求返回一个集合,集合中每个元素是属于同一个范围的用户群。 输入描述: d:欧式距离 N:用户数 之后的N行表示第0个用户到第N-1个用户的地理位置坐标 输出描述: 一个数组集合,所有关联的用户在一个数组中。 输出数组需要按照从小到大的顺序排序,每个集合内的数组也需要按照从小到大的顺序排序。 输入例子1: 2.0 5 3.0 5.0 6.0 13.0 2.0 6.0 7.0 12.0 0.0 2.0 输出例子1: [[0, 2], [1, 3], [4]] 欧氏距离(Euclid Distance)也称欧几里得度量、欧几里得距离, 是一个通常采用的距离定义,它是在m维空间中两个点之间的真实距离.在二维空间中的欧氏距离就是两点之间的直线段距离. """ def solve(d, n, grid): r = [[] for _ in range(n)] s = {x for x in range(n)} for i in range(n - 1): x1, y1 = grid[i][0], grid[i][1] for j in range(i + 1, n): x2, y2 = grid[j][0], grid[j][1] td = ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 0.5 # 欧氏距离 if td - d <= 1e-6: r[i].append(j) r[j].append(i) s -= {i, j} # print(s) # print(r) # for i in range(n): # print(i, r[i]) # print(grid[5],grid[0]) res = [] visited = set() for i in range(n): if not r[i] or (i in visited): continue queue = [i] + r[i] t = set() # print(queue,visited) visited.add(i) while queue: cur = queue.pop(0) t.add(cur) if r[cur] and not cur in visited: visited.add(cur) queue.extend(r[cur]) res.append(sorted(t)) res += [[x] for x in s] res = sorted(res) print(res) def test(): d = 12.6 n = 100 grid = [[11.12, 99.45], [87.04, 54.52], [8.49, 56.22], [44.36, 63.42], [51.64, 16.18], [78.87, 44.55], [68.98, 8.36], [38.5, 60.72], [8.9, 18.52], [66.65, 69.37], [16.94, 89.92], [2.91, 95.37], [88.73, 67.56], [48.36, 10.49], [77.66, 81.33], [19.84, 23.79], [93.73, 53.5], [70.4, 84.37], [2.96, 45.82], [71.81, 86.02], [25.85, 32.62], [38.68, 41.81], [37.4, 97.38], [23.97, 66.08], [91.64, 2.62], [30.52, 60.87], [28.77, 75.35], [64.51, 54.66], [74.76, 83.85], [3.17, 82.11], [9.85, 55.38], [61.39, 25.37], [64.98, 98.91], [19.56, 59.94], [3.41, 52.19], [18.59, 60.89], [58.39, 68.43], [37.04, 28.99], [27.38, 93.92], [40.0, 90.5], [68.04, 65.41], [29.76, 9.24], [2.14, 73.34], [34.22, 25.04], [9.62, 95.71], [40.49, 98.77], [86.92, 5.87], [18.53, 0.91], [51.52, 97.44], [82.42, 28.02], [97.19, 49.6], [5.07, 69.3], [43.87, 76.62], [36.86, 74.31], [80.08, 67.32], [77.6, 91.9], [65.82, 21.78], [17.34, 60.42], [49.76, 35.59], [91.91, 29.64], [55.63, 65.11], [95.93, 86.18], [9.62, 31.09], [58.24, 35.57], [13.12, 82.71], [12.43, 66.84], [13.45, 49.13], [88.7, 88.32], [88.66, 51.46], [12.21, 76.92], [42.25, 34.59], [18.11, 27.49], [98.4, 5.19], [83.28, 23.66], [98.97, 30.16], [31.31, 77.16], [30.12, 57.63], [88.39, 98.54], [47.77, 72.19], [55.23, 69.07], [29.1, 84.83], [12.87, 81.05], [50.15, 89.02], [98.83, 1.52], [78.53, 84.48], [73.81, 93.22], [74.51, 82.02], [49.29, 95.63], [13.84, 54.87], [61.39, 29.04], [81.36, 94.3], [57.4, 34.96], [35.52, 60.97], [8.04, 7.26], [11.1, 97.25], [70.59, 0.15], [9.76, 80.16], [6.05, 21.77], [26.16, 50.0], [96.66, 34.61]] solve(d, n, grid) def main(): grid = [] d = float(input()) n = int(input()) for _ in range(n): grid.append(list(map(float, input().split()))) solve(d, n, grid) def test2(): x1, y1 = [78.87, 44.55] for x2, y2 in [[87.04, 54.52], [93.73, 53.5], [97.19, 49.6], [88.66, 51.46]]: print(((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 0.5) main()
285805fef3a2ff9e680c5ab423f7d70e47b906fb
71962596a0693e03e19257f1beb3bdda223ed4ff
/profile_xf05id1/startup/81-saturn.py
f8188b0e760c0e83d75202caca233c3c59ee06b7
[ "BSD-2-Clause" ]
permissive
tacaswell/ipython_srx
53561979f27a108063f4851ea314073768098cbb
e3dbb45cfd87c166878e8420654cc7995f772eda
refs/heads/master
2020-12-25T00:19:11.936763
2016-02-18T00:30:51
2016-02-18T00:30:51
51,659,688
0
0
null
null
null
null
UTF-8
Python
false
false
5,831
py
from ophyd.mca import (EpicsMCA, EpicsDXP) from ophyd import (Component as Cpt, Device, EpicsSignal, EpicsSignalRO, EpicsSignalWithRBV, DeviceStatus) from ophyd.device import (BlueskyInterface, Staged) class SaturnMCA(EpicsMCA): # TODO: fix upstream preset_real_time = Cpt(EpicsSignal, '.PRTM') preset_live_time = Cpt(EpicsSignal, '.PLTM') elapsed_real_time = Cpt(EpicsSignalRO, '.ERTM') elapsed_live_time = Cpt(EpicsSignalRO, '.ELTM') check_acquiring = Cpt(EpicsSignal, 'CheckACQG') client_wait = Cpt(EpicsSignal, 'ClientWait') collect_data = Cpt(EpicsSignal, 'CollectData') enable_wait = Cpt(EpicsSignal, 'EnableWait') erase = Cpt(EpicsSignal, 'Erase') erase_start = Cpt(EpicsSignal, 'EraseStart') read = Cpt(EpicsSignal, 'Read') read_callback = Cpt(EpicsSignal, 'ReadCallback') read_data_once = Cpt(EpicsSignal, 'ReadDataOnce') read_status_once = Cpt(EpicsSignal, 'ReadStatusOnce') set_client_wait = Cpt(EpicsSignal, 'SetClientWait') start = Cpt(EpicsSignal, 'Start') status = Cpt(EpicsSignal, 'Status') stop_signal = Cpt(EpicsSignal, 'Stop') when_acq_stops = Cpt(EpicsSignal, 'WhenAcqStops') why1 = Cpt(EpicsSignal, 'Why1') why2 = Cpt(EpicsSignal, 'Why2') why3 = Cpt(EpicsSignal, 'Why3') why4 = Cpt(EpicsSignal, 'Why4') class SaturnDXP(EpicsDXP): baseline_energy_array = Cpt(EpicsSignal, 'BaselineEnergyArray') baseline_histogram = Cpt(EpicsSignal, 'BaselineHistogram') calibration_energy = Cpt(EpicsSignal, 'CalibrationEnergy_RBV') current_pixel = Cpt(EpicsSignal, 'CurrentPixel') dynamic_range = Cpt(EpicsSignal, 'DynamicRange_RBV') elapsed_live_time = Cpt(EpicsSignal, 'ElapsedLiveTime') elapsed_real_time = Cpt(EpicsSignal, 'ElapsedRealTime') elapsed_trigger_live_time = Cpt(EpicsSignal, 'ElapsedTriggerLiveTime') energy_threshold = Cpt(EpicsSignalWithRBV, 'EnergyThreshold') gap_time = Cpt(EpicsSignalWithRBV, 'GapTime') max_width = Cpt(EpicsSignalWithRBV, 'MaxWidth') mca_bin_width = Cpt(EpicsSignal, 'MCABinWidth_RBV') num_ll_params = Cpt(EpicsSignal, 'NumLLParams') peaking_time = Cpt(EpicsSignalWithRBV, 'PeakingTime') preset_events = Cpt(EpicsSignalWithRBV, 'PresetEvents') preset_mode = Cpt(EpicsSignalWithRBV, 'PresetMode') preset_triggers = Cpt(EpicsSignalWithRBV, 'PresetTriggers') read_ll_params = Cpt(EpicsSignal, 'ReadLLParams') trace_data = Cpt(EpicsSignal, 'TraceData') trace_mode = Cpt(EpicsSignalWithRBV, 'TraceMode') trace_time_array = Cpt(EpicsSignal, 'TraceTimeArray') trace_time = Cpt(EpicsSignalWithRBV, 'TraceTime') trigger_gap_time = Cpt(EpicsSignalWithRBV, 'TriggerGapTime') trigger_peaking_time = Cpt(EpicsSignalWithRBV, 'TriggerPeakingTime') trigger_threshold = Cpt(EpicsSignalWithRBV, 'TriggerThreshold') class Saturn(Device): dxp = Cpt(SaturnDXP, 'dxp1:') mca = Cpt(SaturnMCA, 'mca1') channel_advance = Cpt(EpicsSignal, 'ChannelAdvance') client_wait = Cpt(EpicsSignal, 'ClientWait') dwell = Cpt(EpicsSignal, 'Dwell') max_scas = Cpt(EpicsSignal, 'MaxSCAs') num_scas = Cpt(EpicsSignalWithRBV, 'NumSCAs') poll_time = Cpt(EpicsSignalWithRBV, 'PollTime') prescale = Cpt(EpicsSignal, 'Prescale') save_system = Cpt(EpicsSignalWithRBV, 'SaveSystem') save_system_file = Cpt(EpicsSignal, 'SaveSystemFile') set_client_wait = Cpt(EpicsSignal, 'SetClientWait') class SaturnSoftTrigger(BlueskyInterface): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._status = None self._acquisition_signal = self.mca.erase_start self.stage_sigs[self.mca.stop_signal] = 1 self.stage_sigs[self.dxp.preset_mode] = 'Real time' self._count_signal = self.mca.preset_real_time self._count_time = None def stage(self): if self._count_time is not None: self.stage_sigs[self._count_signal] = self._count_time super().stage() def unstage(self): try: super().unstage() finally: if self._count_signal in self.stage_sigs: del self.stage_sigs[self._count_signal] self._count_time = None def trigger(self): "Trigger one acquisition." if self._staged != Staged.yes: raise RuntimeError("This detector is not ready to trigger." "Call the stage() method before triggering.") self._status = DeviceStatus(self) self._acquisition_signal.put(1, callback=self._acquisition_done) return self._status def _acquisition_done(self, **kwargs): '''pyepics callback for when put completion finishes''' if self._status is not None: self._status._finished() self._status = None @property def count_time(self): '''Exposure time, as set by bluesky''' return self._count_time @count_time.setter def count_time(self, count_time): self._count_time = count_time class SRXSaturn(SaturnSoftTrigger, Saturn): def __init__(self, prefix, *, read_attrs=None, configuration_attrs=None, **kwargs): if read_attrs is None: read_attrs = ['mca.spectrum'] if configuration_attrs is None: configuration_attrs = ['mca.preset_real_time', 'mca.preset_live_time', 'dxp.preset_mode', ] super().__init__(prefix, read_attrs=read_attrs, configuration_attrs=configuration_attrs, **kwargs) if __name__ == '__main__': from ophyd.commands import setup_ophyd setup_ophyd() saturn = SRXSaturn('dxpSaturn:', name='saturn')
8c529c07af84d91fd9c4e3012908fb6f78b74f9e
e5d83ede8521027b05d9b91c43be8cab168610e6
/0x01-python-if_else_loops_functions/0-positive_or_negative.py
7db6d2d5aec2226e9657ea987dac24bd7104128f
[]
no_license
Danielo814/holbertonschool-higher_level_programming
8918c3a6a9c136137761d47c5162b650708dd5cd
832b692529198bbee44d2733464aedfe650bff7e
refs/heads/master
2020-03-28T11:09:00.343055
2019-02-22T03:33:54
2019-02-22T03:33:54
148,181,433
1
0
null
null
null
null
UTF-8
Python
false
false
238
py
#!/usr/bin/python3 import random number = random.randint(-10, 10) if number < 0: print("{} is negative".format(number)) if number == 0: print("{} is zero".format(number)) if number > 0: print("{} is positive".format(number))
30ee5b82371e74006e13d114f8f1da5e37e2137d
956cc6ff2b58a69292f7d1223461bc9c2b9ea6f1
/monk/tf_keras_1/transforms/common.py
9253e05c5cce0e7d2d18e4deaa3832cf3c094726
[ "Apache-2.0" ]
permissive
Aanisha/monk_v1
c24279b2b461df9b3de2984bae0e2583aba48143
c9e89b2bc0c1dbb320aa6da5cba0aa1c1526ad72
refs/heads/master
2022-12-29T00:37:15.320129
2020-10-18T09:12:13
2020-10-18T09:12:13
286,278,278
0
0
Apache-2.0
2020-08-09T16:51:02
2020-08-09T16:51:02
null
UTF-8
Python
false
false
3,810
py
from monk.tf_keras_1.transforms.imports import * from monk.system.imports import * from monk.tf_keras_1.transforms.transforms import transform_color_jitter from monk.tf_keras_1.transforms.transforms import transform_random_affine from monk.tf_keras_1.transforms.transforms import transform_random_horizontal_flip from monk.tf_keras_1.transforms.transforms import transform_random_rotation from monk.tf_keras_1.transforms.transforms import transform_random_vertical_flip from monk.tf_keras_1.transforms.transforms import transform_mean_subtraction from monk.tf_keras_1.transforms.transforms import transform_normalize @accepts(dict, list, post_trace=False) #@TraceFunction(trace_args=False, trace_rv=False) def set_transforms(system_dict, set_phases): ''' Set transforms depending on the training, validation and testing phases. Args: system_dict (dict): System dictionary storing experiment state and set variables set_phases (list): Phases in which to apply the transforms. Returns: dict: updated system dict ''' transforms_test = []; transforms_train = []; transforms_val = []; transformations = system_dict["dataset"]["transforms"]; normalize = False; for phase in set_phases: tsf = transformations[phase]; if(phase=="train"): train_status = True; val_status = False; test_status = False; elif(phase=="val"): train_status = False; val_status = True; test_status = False; else: train_status = False; val_status = False; test_status = True; for i in range(len(tsf)): name = list(tsf[i].keys())[0] input_dict = tsf[i][name]; train = train_status; val = val_status; test = test_status; if(name == "ColorJitter"): system_dict = transform_color_jitter( system_dict, input_dict["brightness"], input_dict["contrast"], input_dict["saturation"], input_dict["hue"], train, val, test, retrieve=True ); elif(name == "RandomAffine"): system_dict = transform_random_affine( system_dict, input_dict["degrees"], input_dict["translate"], input_dict["scale"], input_dict["shear"], train, val, test, retrieve=True ); elif(name == "RandomHorizontalFlip"): system_dict = transform_random_horizontal_flip( system_dict, input_dict["p"], train, val, test, retrieve=True ); elif(name == "RandomVerticalFlip"): system_dict = transform_random_vertical_flip( system_dict, input_dict["p"], train, val, test, retrieve=True ); elif(name == "RandomRotation"): system_dict = transform_random_rotation( system_dict, input_dict["degrees"], train, val, test, retrieve=True ); elif(name == "MeanSubtraction"): system_dict = transform_mean_subtraction( system_dict, input_dict["mean"], train, val, test, retrieve=True ); elif(name == "Normalize"): system_dict = transform_normalize( system_dict, input_dict["mean"], input_dict["std"], train, val, test, retrieve=True ); return system_dict;
9498db4276799b71082911df61014f50e9e00ed4
c879972850bdef6f9c05ec57c964125e4d5d8dfa
/lino/management/commands/qtclient.py
d7596bcdee3da87a45dd2c84f87e0999c0367cd2
[ "BSD-2-Clause" ]
permissive
forexblog/lino
845c17f22c6f58fbf0247b084ceacb5e89fba2ef
68cbd5dd985737b63091b232b9c788a3a9875eef
refs/heads/master
2023-02-16T02:33:08.387853
2021-01-15T09:39:58
2021-01-15T09:39:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,738
py
# -*- coding: UTF-8 -*- # Copyright 2017-2021 Rumma & Ko Ltd # License: BSD (see file COPYING for details) from django.core.management.base import BaseCommand from django.conf import settings import sys from PyQt5.QtWidgets import (QApplication, QWidget, QPushButton, QMessageBox, QDesktopWidget, QMainWindow, QAction, qApp, QTextEdit, QHBoxLayout, QVBoxLayout) # from PyQt5.QtCore import QCoreApplication from PyQt5.QtGui import QIcon from lino.api import rt from lino.core.menus import Menu # , MenuItem from unipath import Path images_path = Path(settings.STATIC_ROOT, Path('static/images/mjames')) class ItemCaller(object): def __init__(self, win, mi): self.mi = mi self.win = win def __call__(self, event): if False: QMessageBox.question( self.win, str(self.mi.label), str(self.mi.help_text), QMessageBox.Yes | QMessageBox.No, QMessageBox.Yes) self.frm = DetailForm(self.win, self.mi) self.frm.show() class DetailForm(QWidget): def __init__(self, win, mi): self.mi = mi super().__init__(win) self.setWindowTitle(str(self.mi.label)) self.initUI() def initUI(self): okButton = QPushButton("OK") cancelButton = QPushButton("Cancel") hbox = QHBoxLayout() hbox.addStretch(1) hbox.addWidget(okButton) hbox.addWidget(cancelButton) vbox = QVBoxLayout() vbox.addStretch(1) vbox.addLayout(hbox) self.setLayout(vbox) self.setGeometry(300, 300, 300, 150) # self.show() class LinoClient(QMainWindow): def __init__(self): super().__init__() self.initUI() def initUI(self): textEdit = QTextEdit() self.setCentralWidget(textEdit) self.setGeometry(300, 300, 300, 220) self.center() self.setWindowTitle('qtclient.py') self.setWindowIcon(QIcon('../../.static/logo.png')) self.setToolTip('This is a <b>QWidget</b> widget') self.menubar = self.menuBar() user_type = rt.models.users.UserTypes.get_by_value('900') menu = settings.SITE.get_site_menu(user_type) self.load_menu(menu, self.menubar) self.show() self.statusBar().showMessage('Ready') def load_menu(self, menu, menubar): for mi in menu.items: if isinstance(mi, Menu): submenu = menubar.addMenu(str(mi.label)) self.load_menu(mi, submenu) else: a = QAction(QIcon(images_path.child('cancel.png')), str(mi.label), self) if mi.hotkey: a.setShortcut(mi.hotkey) a.setStatusTip(str(mi.help_text)) a.triggered.connect(ItemCaller(self, mi)) menubar.addAction(a) # fileMenu = menubar.addMenu('&File') exitAction = QAction(QIcon('exit.png'), '&Exit', self) # exitAction.setShortcut('Ctrl+Q') # exitAction.setStatusTip('Exit application') # exitAction.triggered.connect(qApp.quit) # fileMenu.addAction(exitAction) # a = QAction(QIcon('detail.png'), '&Detail', self) # a.triggered.connect(self.show_detail) # fileMenu.addAction(a) # self.toolbar = self.addToolBar('Exit') # self.toolbar.addAction(exitAction) # btn = QPushButton('Quit', self) # btn.clicked.connect(QCoreApplication.instance().quit) # btn.setToolTip('This is a <b>QPushButton</b> widget') # btn.resize(btn.sizeHint()) # btn.move(50, 50) # def show_detail(self, event): # self.detail_form = DetailForm() # self.detail_form.show() def closeEvent(self, event): if True: event.accept() return reply = QMessageBox.question(self, 'MessageBox', "This will close the window! Are you sure?", QMessageBox.Yes | QMessageBox.No, QMessageBox.Yes) if reply == QMessageBox.Yes: event.accept() else: event.ignore() def center(self): qr = self.frameGeometry() cp = QDesktopWidget().availableGeometry().center() qr.moveCenter(cp) self.move(qr.topLeft()) class Command(BaseCommand): help = """Run a Qt client for this site.""" def handle(self, *args, **options): app = QApplication(sys.argv) self.ex = LinoClient() # sys.exit(app.exec_()) return app.exec_()
84e6607c8844f6a04b1d98959b10d09db2dde1c1
3c000380cbb7e8deb6abf9c6f3e29e8e89784830
/venv/Lib/site-packages/cobra/modelimpl/pc/rtfcaccbndlgrptofcaggrif.py
0325546ef5eaa31952748a03f1378eacc3fd4e64
[]
no_license
bkhoward/aciDOM
91b0406f00da7aac413a81c8db2129b4bfc5497b
f2674456ecb19cf7299ef0c5a0887560b8b315d0
refs/heads/master
2023-03-27T23:37:02.836904
2021-03-26T22:07:54
2021-03-26T22:07:54
351,855,399
0
0
null
null
null
null
UTF-8
Python
false
false
5,000
py
# coding=UTF-8 # ********************************************************************** # Copyright (c) 2013-2020 Cisco Systems, Inc. All rights reserved # written by zen warriors, do not modify! # ********************************************************************** from cobra.mit.meta import ClassMeta from cobra.mit.meta import StatsClassMeta from cobra.mit.meta import CounterMeta from cobra.mit.meta import PropMeta from cobra.mit.meta import Category from cobra.mit.meta import SourceRelationMeta from cobra.mit.meta import NamedSourceRelationMeta from cobra.mit.meta import TargetRelationMeta from cobra.mit.meta import DeploymentPathMeta, DeploymentCategory from cobra.model.category import MoCategory, PropCategory, CounterCategory from cobra.mit.mo import Mo # ################################################## class RtFcAccBndlGrpToFcAggrIf(Mo): """ Mo doc not defined in techpub!!! """ meta = TargetRelationMeta("cobra.model.pc.RtFcAccBndlGrpToFcAggrIf", "cobra.model.infra.AFcAccBndlGrp") meta.moClassName = "pcRtFcAccBndlGrpToFcAggrIf" meta.rnFormat = "rtfcAccBndlGrpToFcAggrIf" meta.category = MoCategory.RELATIONSHIP_FROM_LOCAL meta.label = "Abstraction of Leaf FC Access Policy Group for port-channel" meta.writeAccessMask = 0x100000000001 meta.readAccessMask = 0x100000020001 meta.isDomainable = False meta.isReadOnly = True meta.isConfigurable = False meta.isDeletable = False meta.isContextRoot = False meta.parentClasses.add("cobra.model.pc.FcAggrIf") meta.superClasses.add("cobra.model.reln.From") meta.superClasses.add("cobra.model.fv.From") meta.superClasses.add("cobra.model.reln.Inst") meta.rnPrefixes = [ ('rtfcAccBndlGrpToFcAggrIf', False), ] prop = PropMeta("str", "childAction", "childAction", 4, PropCategory.CHILD_ACTION) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("deleteAll", "deleteall", 16384) prop._addConstant("deleteNonPresent", "deletenonpresent", 8192) prop._addConstant("ignore", "ignore", 4096) meta.props.add("childAction", prop) prop = PropMeta("str", "dn", "dn", 1, PropCategory.DN) prop.label = "None" prop.isDn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("dn", prop) prop = PropMeta("str", "lcOwn", "lcOwn", 9, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "local" prop._addConstant("implicit", "implicit", 4) prop._addConstant("local", "local", 0) prop._addConstant("policy", "policy", 1) prop._addConstant("replica", "replica", 2) prop._addConstant("resolveOnBehalf", "resolvedonbehalf", 3) meta.props.add("lcOwn", prop) prop = PropMeta("str", "modTs", "modTs", 7, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "never" prop._addConstant("never", "never", 0) meta.props.add("modTs", prop) prop = PropMeta("str", "parentSKey", "parentSKey", 39216, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True meta.props.add("parentSKey", prop) prop = PropMeta("str", "rn", "rn", 2, PropCategory.RN) prop.label = "None" prop.isRn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("rn", prop) prop = PropMeta("str", "status", "status", 3, PropCategory.STATUS) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("created", "created", 2) prop._addConstant("deleted", "deleted", 8) prop._addConstant("modified", "modified", 4) meta.props.add("status", prop) prop = PropMeta("str", "tCl", "tCl", 39137, PropCategory.REGULAR) prop.label = "Target-class" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 11867 prop.defaultValueStr = "infraAFcAccBndlGrp" prop._addConstant("infraAFcAccBndlGrp", None, 11867) prop._addConstant("infraFcAccBndlGrp", None, 11873) prop._addConstant("infraFcAccBndlPolGrp", None, 11874) prop._addConstant("unspecified", "unspecified", 0) meta.props.add("tCl", prop) prop = PropMeta("str", "tDn", "tDn", 100, PropCategory.REGULAR) prop.label = "Target-dn" prop.isImplicit = True prop.isAdmin = True meta.props.add("tDn", prop) # Deployment Meta meta.deploymentQuery = True meta.deploymentType = "Ancestor" meta.deploymentQueryPaths.append(DeploymentPathMeta("l1FcIfToEPg", "EPG", "cobra.model.fv.EPg")) def __init__(self, parentMoOrDn, markDirty=True, **creationProps): namingVals = [] Mo.__init__(self, parentMoOrDn, markDirty, *namingVals, **creationProps) # End of package file # ##################################################
20b549f692809f3c36be35369593b5decb3c1ef4
7b1a5db0a067766a9805fe04105f6c7f9ff131f3
/pysal/model/mgwr/tests/test_sel_bw.py
856b65aa3b40931bfe9b658f698db76a492733df
[]
permissive
ocefpaf/pysal
2d25b9f3a8bd87a7be3f96b825995a185624e1d0
7e397bdb4c22d4e2442b4ee88bcd691d2421651d
refs/heads/master
2020-06-26T17:13:06.016203
2019-07-31T19:54:35
2019-07-31T19:54:35
199,696,188
0
0
BSD-3-Clause
2019-07-30T17:17:19
2019-07-30T17:17:18
null
UTF-8
Python
false
false
9,038
py
""" GWR is tested against results from GWR4 """ import os import numpy as np from pysal.lib import io import pysal.lib as ps import unittest from pysal.model.spglm.family import Gaussian, Poisson, Binomial from ..sel_bw import Sel_BW from numpy.testing import assert_allclose class TestSelBWGaussian(unittest.TestCase): def setUp(self): data_path = ps.examples.get_path("GData_utm.csv") data = io.open(data_path) self.coords = list(zip(data.by_col('X'), data.by_col('Y'))) self.coords_longlat = list( zip(data.by_col('Longitud'), data.by_col('Latitude'))) self.y = np.array(data.by_col('PctBach')).reshape((-1, 1)) rural = np.array(data.by_col('PctRural')).reshape((-1, 1)) pov = np.array(data.by_col('PctPov')).reshape((-1, 1)) black = np.array(data.by_col('PctBlack')).reshape((-1, 1)) fb = np.array(data.by_col('PctFB')).reshape((-1, 1)) self.X = np.hstack([rural, pov, black]) self.mgwr_X = np.hstack([fb, black, rural]) def test_golden_fixed_AICc(self): bw1 = 211020.83 bw2 = Sel_BW(self.coords, self.y, self.X, kernel='bisquare', fixed=True).search(criterion='AICc') assert_allclose(bw1, bw2) scipy_known = 211025.26298 scipy = Sel_BW(self.coords, self.y, self.X, kernel='bisquare', fixed=True).search( criterion='AICc', search_method='scipy') assert_allclose(scipy_known, scipy, atol=1) def test_golden_adapt_AICc(self): bw1 = 93.0 bw2 = Sel_BW(self.coords, self.y, self.X, kernel='bisquare', fixed=False).search(criterion='AICc') assert_allclose(bw1, bw2) def test_golden_adapt_AICc_Longlat(self): bw1 = 92.0 bw2 = Sel_BW(self.coords_longlat, self.y, self.X, kernel='bisquare', fixed=False, spherical=True).search(criterion='AICc') assert_allclose(bw1, bw2) def test_golden_fixed_AIC(self): bw1 = 76201.66 bw2 = Sel_BW(self.coords, self.y, self.X, kernel='gaussian', fixed=True).search(criterion='AIC') assert_allclose(bw1, bw2) scipy_known = 76199.81 scipy = Sel_BW(self.coords, self.y, self.X, kernel='gaussian', fixed=True).search( criterion='AIC', search_method='scipy') assert_allclose(scipy_known, scipy, atol=1) def test_golden_adapt_AIC(self): bw1 = 50.0 bw2 = Sel_BW(self.coords, self.y, self.X, kernel='gaussian', fixed=False).search(criterion='AIC') assert_allclose(bw1, bw2) def test_golden_fixed_BIC(self): bw1 = 1117795.47 bw2 = Sel_BW(self.coords, self.y, self.X, kernel='gaussian', fixed=True).search(criterion='BIC') assert_allclose(bw1, bw2) scipy_known = 1117806.16 scipy = Sel_BW(self.coords, self.y, self.X, kernel='gaussian', fixed=True).search( criterion='BIC', search_method='scipy') assert_allclose(scipy_known, scipy, atol=1) def test_golden_adapt_BIC(self): bw1 = 62.0 bw2 = Sel_BW(self.coords, self.y, self.X, kernel='gaussian', fixed=False).search(criterion='BIC') assert_allclose(bw1, bw2) def test_golden_fixed_CV(self): bw1 = 130289.26 bw2 = Sel_BW(self.coords, self.y, self.X, kernel='gaussian', fixed=True).search(criterion='CV') assert_allclose(bw1, bw2) scipy_known = 130363.55 scipy = Sel_BW(self.coords, self.y, self.X, kernel='gaussian', fixed=True).search( criterion='CV', search_method='scipy') assert_allclose(scipy_known, scipy, atol=1) def test_golden_adapt_CV(self): bw1 = 68.0 bw2 = Sel_BW(self.coords, self.y, self.X, kernel='gaussian', fixed=False).search(criterion='CV') assert_allclose(bw1, bw2) def test_interval_fixed_AICc(self): bw1 = 211025.0 bw2 = Sel_BW(self.coords, self.y, self.X, kernel='bisquare', fixed=True).search( criterion='AICc', search_method='interval', bw_min=211001.0, bw_max=211035.0, interval=2) assert_allclose(bw1, bw2) def test_interval_adapt_AICc(self): bw1 = 93.0 bw2 = Sel_BW(self.coords, self.y, self.X, kernel='bisquare', fixed=False).search( criterion='AICc', search_method='interval', bw_min=90.0, bw_max=95.0, interval=1) assert_allclose(bw1, bw2) def test_interval_fixed_AIC(self): bw1 = 76175.0 #76169.00 bw2 = Sel_BW(self.coords, self.y, self.X, kernel='gaussian', fixed=True).search( criterion='AIC', search_method='interval', bw_min=76161.0, bw_max=76175.0, interval=1) assert_allclose(bw1, bw2) def test_interval_adapt_AIC(self): bw1 = 40.0 #50.0 bw2 = Sel_BW(self.coords, self.y, self.X, kernel='gaussian', fixed=False).search( criterion='AIC', search_method='interval', bw_min=40.0, bw_max=60.0, interval=2) assert_allclose(bw1, bw2) def test_interval_fixed_BIC(self): bw1 = 279461.0 #279451.00 bw2 = Sel_BW(self.coords, self.y, self.X, kernel='gaussian', fixed=True).search( criterion='BIC', search_method='interval', bw_min=279441.0, bw_max=279461.0, interval=2) assert_allclose(bw1, bw2) def test_interval_adapt_BIC(self): bw1 = 62.0 bw2 = Sel_BW(self.coords, self.y, self.X, kernel='gaussian', fixed=False).search( criterion='BIC', search_method='interval', bw_min=52.0, bw_max=72.0, interval=2) assert_allclose(bw1, bw2) def test_interval_fixed_CV(self): bw1 = 130400.0 #130406.00 bw2 = Sel_BW(self.coords, self.y, self.X, kernel='gaussian', fixed=True).search( criterion='CV', search_method='interval', bw_min=130400.0, bw_max=130410.0, interval=1) assert_allclose(bw1, bw2) def test_interval_adapt_CV(self): bw1 = 62.0 #68.0 bw2 = Sel_BW(self.coords, self.y, self.X, kernel='gaussian', fixed=False).search( criterion='CV', search_method='interval', bw_min=60.0, bw_max=76.0, interval=2) assert_allclose(bw1, bw2) def test_MGWR_AICc(self): bw1 = [101.0, 101.0, 117.0, 157.0] std_y = (self.y - self.y.mean()) / self.y.std() std_X = (self.mgwr_X - self.mgwr_X.mean(axis=0)) / self.mgwr_X.std( axis=0) selector = Sel_BW(self.coords, std_y, std_X, multi=True, constant=True) bw2 = selector.search() np.testing.assert_allclose(bw1, bw2) def test_MGWR_AICc_Longlat(self): bw1 = [104.0, 104.0, 103.0, 157.0] std_y = (self.y - self.y.mean()) / self.y.std() std_X = (self.mgwr_X - self.mgwr_X.mean(axis=0)) / self.mgwr_X.std( axis=0) selector = Sel_BW(self.coords_longlat, std_y, std_X, multi=True, constant=True, spherical=True) bw2 = selector.search() assert_allclose(bw1, bw2) class TestGWRSelBWPoisson(unittest.TestCase): def setUp(self): data_path = os.path.join( os.path.dirname(__file__), 'tokyo/Tokyomortality.csv') data = io.open(data_path, mode='Ur') self.coords = list( zip(data.by_col('X_CENTROID'), data.by_col('Y_CENTROID'))) self.y = np.array(data.by_col('db2564')).reshape((-1, 1)) self.off = np.array(data.by_col('eb2564')).reshape((-1, 1)) OCC = np.array(data.by_col('OCC_TEC')).reshape((-1, 1)) OWN = np.array(data.by_col('OWNH')).reshape((-1, 1)) POP = np.array(data.by_col('POP65')).reshape((-1, 1)) UNEMP = np.array(data.by_col('UNEMP')).reshape((-1, 1)) self.X = np.hstack([OCC, OWN, POP, UNEMP]) def test_golden_adapt_AICc_Poisson_w_offset(self): bw1 = 95.0 bw2 = Sel_BW(self.coords, self.y, self.X, kernel='bisquare', family=Poisson(), fixed=False, offset=self.off).search(criterion='AICc') assert_allclose(bw1, bw2) def test_golden_adapt_AICc_Poisson_wo_offset(self): bw1 = 51.0 bw2 = Sel_BW(self.coords, self.y, self.X, kernel='bisquare', family=Poisson(), fixed=False).search(criterion='AICc') assert_allclose(bw1, bw2) if __name__ == '__main__': unittest.main()
723d1ab3fba8472207d08566888754ff280a6ce1
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02622/s420656500.py
ba3844bb33b39a0bd750b8488ba05864255e60b4
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
134
py
s = [x for x in input()] t = [y for y in input()] count = 0 for _ in range(len(s)): if s[_] != t[_]: count+=1 print(count)
ea8181be3486f3495b71aed3582a1cd0ce049fb5
412d0f01ab87c6b1e96f5f8afc263a3c33188b2f
/plots/fps_bar_chart.py
1b735fc4f4b009283bc7ea4997f878756bc13cae
[ "MIT" ]
permissive
neevparikh/sample-factory
7e48a8b4c7d0b534642bd90d28e66677f03b715e
1b57647a231359ed6794db72bcc39b4ebb01b39e
refs/heads/master
2023-03-16T05:15:05.945225
2021-03-09T02:28:03
2021-03-09T02:28:03
290,346,928
0
0
MIT
2020-08-25T23:36:01
2020-08-25T23:36:00
null
UTF-8
Python
false
false
1,909
py
import math import matplotlib.pyplot as plt import numpy as np import seaborn as sns sns.set() labels = ['20', '40', '80', '160', '320', '640'] # fps_by_method_10_core_cpu = dict( # deepmind_impala=[8590, 10596, 10941, 10928, 13328, math.nan], # rllib_appo=[9384, 9676, 11171, 11328, 11590, 11345], # ours=[11565, 16982, 25068, 37410, 46977, 52033] # ) # data = fps_by_method_10_core_cpu fps_by_method_36_core_cpu = dict( deepmind_impala=[6951, 8191, 8041, 9900, 10014, math.nan], rllib_appo=[13308, 23608, 30568, 31002, 32840, 33784], ours=[11586, 20410, 33326, 46243, 70124, 86753], ) data = fps_by_method_36_core_cpu # ours: 160=40x4, 320=40x8 with 3072 bs, 640=80x8 with 3072 bs # multi-policy: # 2 policies, 640 actors, 93284 FPS # 4 policies: 1600 actors, 116320 FPS # 8 policies: 1600 actors, x = np.arange(len(labels)) # the label locations width = 0.25 # the width of the bars fig, ax = plt.subplots(figsize=(12, 8)) item_idx = 0 bars = dict() for key, value in data.items(): rects = ax.bar(x + item_idx * width - len(data) * width / 2, value, width, label=key) bars[key] = rects item_idx += 1 # Add some text for labels, title and custom x-axis tick labels, etc. ax.set_xlabel('Num. environments in parallel') ax.set_ylabel('Environment frames per second') ax.set_title('Throughput of different RL methods') ax.set_xticks(x) ax.set_xticklabels(labels) ax.legend() def autolabel(rects): """Attach a text label above each bar in *rects*, displaying its height.""" for rect in rects: height = rect.get_height() ax.annotate('{}'.format(height), xy=(rect.get_x() + rect.get_width() / 2, height), xytext=(0, 3), # 3 points vertical offset textcoords='offset points', ha='center', va='bottom') autolabel(bars['ours']) fig.tight_layout() plt.show()
cd99c5c4b1cb47999230fedf11bf9d56d4b14c76
bd5f807161da0a9d3f6f8c5c3b4da073545eaafc
/day_1/print_function.py
86260c5a4cb8249a92687577759a3a34cc0eb9c8
[ "MIT" ]
permissive
anishLearnsToCode/python-workshop-7
a6a497ddb6cf41a2097ac976426710ca4aa41987
2d5933be2629600f5f9e8efea58403421737a299
refs/heads/main
2023-02-07T21:00:01.308260
2020-12-27T08:22:14
2020-12-27T08:22:14
323,645,763
5
0
null
null
null
null
UTF-8
Python
false
false
131
py
print('i am batman', end='\n') print('hello world', end='\t\t') print('this is cool\n', end=' ----- ') print('i am still here')
74612d03df0d217ddea8a2be6fec57fb41f85c27
bb68c958809899a24ec7d250adacc70c30203b04
/rti_python/Ensemble/NmeaData.py
5ca12f52eb8356dbba94010a0c6d4f1277627fc5
[]
no_license
jjt53/ReadPlotCSV_streamlit
d9e432ec83ec930d3e6aa6b8f07bf3329c8081b8
3fddf73033e3648bc86ccbf0c5cce2b7868250d9
refs/heads/main
2023-01-29T14:05:35.667192
2020-12-09T17:17:23
2020-12-09T17:17:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,745
py
import pynmea2 from rti_python.Ensemble.Ensemble import Ensemble import logging from pygeodesy import ellipsoidalVincenty from decimal import * class NmeaData: """ NMEA DataSet. String data to decode. """ def __init__(self, num_elements=0, element_multiplier=1): self.ds_type = 50 # Bytes self.num_elements = num_elements self.element_multiplier = element_multiplier self.image = 0 self.name_len = 8 self.Name = "E000011\0" self.nmea_sentences = [] # Initialize with bad values self.GPGGA = None self.GPVTG = None self.GPRMC = None self.GPGLL = None self.GPGSV = None self.GPGSA = None self.GPHDT = None self.GPHDG = None self.latitude = 0.0 self.longitude = 0.0 self.speed_knots = 0.0 # Speed in Knots self.speed_m_s = 0.0 # Speed in m/s self.heading = 0.0 self.datetime = None # Date and Time from GGA def decode(self, data): """ Take the data bytearray. Decode the data to populate the NMEA data. :param data: Bytearray for the dataset. """ packet_pointer = Ensemble.GetBaseDataSize(self.name_len) nmea_str = str(data[packet_pointer:], "UTF-8") self.num_elements = len(nmea_str) for msg in nmea_str.split(): # Add the NMEA message self.add_nmea(msg) logging.debug(nmea_str) logging.debug(self.nmea_sentences) def add_nmea(self, msg): try: # Increment the number of elements self.num_elements += len(msg) # Parse the NMEA data nmea_msg = pynmea2.parse(msg) if isinstance(nmea_msg, pynmea2.types.talker.GGA): self.GPGGA = nmea_msg self.latitude = nmea_msg.latitude self.longitude = nmea_msg.longitude self.datetime = nmea_msg.timestamp if isinstance(nmea_msg, pynmea2.types.talker.VTG): self.GPVTG = nmea_msg self.speed_knots = nmea_msg.spd_over_grnd_kts self.speed_m_s = nmea_msg.spd_over_grnd_kts * Decimal(0.51444444444444) if isinstance(nmea_msg, pynmea2.types.talker.RMC): self.GPRMC = nmea_msg if isinstance(nmea_msg, pynmea2.types.talker.GLL): self.GPGLL = nmea_msg if isinstance(nmea_msg, pynmea2.types.talker.GSV): self.GPGSV = nmea_msg if isinstance(nmea_msg, pynmea2.types.talker.GSA): self.GPGSA = nmea_msg if isinstance(nmea_msg, pynmea2.types.talker.HDT): self.GPHDT = nmea_msg self.heading = nmea_msg.heading if isinstance(nmea_msg, pynmea2.types.talker.HDG): self.GPHDG = nmea_msg self.nmea_sentences.append(msg.strip()) except pynmea2.nmea.ParseError as pe: logging.debug("Bad NMEA String") except Exception as e: logging.debug("Error decoding NMEA msg", e) def encode(self): """ Encode the data into RTB format. :return: """ result = [] # Combine all the NMEA strings into one long string str_nmea = "" for nmea in self.nmea_sentences: str_nmea += nmea + "\n" # Generate the number of elements from the number of characters self.num_elements = len(str_nmea) # Generate header result += Ensemble.generate_header(self.ds_type, self.num_elements, self.element_multiplier, self.image, self.name_len, self.Name) # Convert the strings to bytes result += str_nmea.encode("UTF-8") return result def encode_csv(self, dt, ss_code, ss_config, blank=0, bin_size=0): """ Encode into CSV format. :param dt: Datetime object. :param ss_code: Subsystem code. :param ss_config: Subsystem Configuration :param blank: Blank or first bin position in meters. :param bin_size: Bin size in meters. :return: List of CSV lines. """ str_result = [] # Create the CSV strings for each NMEA string for nmea in self.nmea_sentences: str_result.append(Ensemble.gen_csv_line(dt, Ensemble.CSV_NMEA, ss_code, ss_config, 0, 0, blank, bin_size, nmea)) return str_result def get_new_position(self, distance: float, bearing: float): """ This function is typically used to create a ship track plot with a vector to represent the water current. The distance will be the magnitude of the water currents, the bearing will be the direction of the water currents. This will allow you to plot the LatLon and also a vector off this LatLon point. :param distance: Distance (magnitude) :param bearing: Direction to travel :return The new position based on the input and current position. (lat, lon) """ return NmeaData.get_new_lat_lon_position(self.latitude, self.longitude, distance, bearing) @staticmethod def get_new_lat_lon_position(latitude: float, longitude: float, distance: float, bearing: float): """ This function is typically used to create a ship track plot with a vector to represent the water current. The distance will be the magnitude of the water currents, the bearing will be the direction of the water currents. This will allow you to plot the LatLon and also a vector off this LatLon point. :param latitude: Start latitude position :param longitude: Start longitude position :param distance: Distance (magnitude) :param bearing: Direction to travel :return The new position based on the input and current position. (lat, lon) """ # Choose a ellipsoid LatLon = ellipsoidalVincenty.LatLon # Verify we have a latitude and longitude value if latitude and longitude: # Set the current location curr_loc = LatLon(latitude, longitude) # Get the new position based on distance and bearing new_loc = curr_loc.destination(distance=distance, bearing=bearing) # Return lat, lon return new_loc.lat, new_loc.lon return 0.0, 0.0
657b51d419bef4689b2a3a559a1039f993d7a58b
db5684eeac1c7359017a5d109028ce2b8b49d1a7
/app_rbac/service/AutoFindUrls.py
fbad0d42e31869cebeef14f5a4056828e68f6a7c
[]
no_license
Alan-AW/CrmSys
a4873c52e1f6bb05c45377459b0a040ff7dbbc75
95119dd7b96b981a00541e8adcee410eb1fbe865
refs/heads/main
2023-08-22T08:04:44.207347
2021-10-13T08:08:44
2021-10-13T08:08:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,541
py
from collections import OrderedDict from django.conf import settings as sys from django.utils.module_loading import import_string # 内置工具,根据字符串进行导入模块 from django.urls import URLResolver, URLPattern import re """ 自动发现项目中的url方法 """ class AutoFindUrl: def check_url_exclude(self, url): """ 白名单设置;排除一些特定的url的查找 :param url: :return: """ for regex in sys.AUTO_DISCOVER_EXCLUDE: if re.match(regex, url): return True def recursion_urls(self, pre_namespace, pre_url, url_patterns, url_ordered_dict): """ :param pre_namespace: namespace的前缀, 以后用于拼接name :param pre_url: url的前缀, 以后用于拼接url :param url_patterns: 用于循环的路由, 路由关系列表 :param url_ordered_dict: 用于保存递归中获取的所有路由,有序字典 :return: """ for item in url_patterns: if isinstance(item, URLPattern): # 非路由分发 if not item.name: continue name = item.name if not pre_namespace else "%s:%s" % (pre_namespace, item.name) url = pre_url + item.pattern.regex.pattern url = url.replace('^', '').replace('$', '') if self.check_url_exclude(url): continue url_ordered_dict[name] = {'name': name, 'url': url} elif isinstance(item, URLResolver): # 路由分发, 递归 if pre_namespace: namespace = "%s:%s" % (pre_namespace, item.namespace) if item.namespace else item.namespace else: namespace = item.namespace if item.namespace else None self.recursion_urls(namespace, pre_url + item.pattern.regex.pattern, item.url_patterns, url_ordered_dict) def get_all_url_dict(self): """ 自动发现项目中的URL(必须有 name 别名) :return: 所有url的有序字典 """ url_ordered_dict = OrderedDict() # {'rbac:menu_list': {name:'rbac:menu_list', url: 'xxx/xxx/menu_list'}} md = import_string(sys.ROOT_URLCONF) # 根据字符串的形式去导入一个模块,在settings中 ROOT_URLCONF 指向的就是项目根路由的文件地址 self.recursion_urls(None, '/', md.urlpatterns, url_ordered_dict) # 递归的获取所有的url return url_ordered_dict
9a2222854f5cf34881162cdee222723b8dd7793d
c8c855a6ebb3b3101e5c3a80b94514c36b103495
/semana_3/Calculadora.py
677552a81732c0ddcb86782beae94726fe52561a
[]
no_license
K-A-R-L-A-Robles/poo-1719110219
835965c0e3100c9d6770678eb67920945942fa80
7d1fc57cd4157e5b52a153210311821d8290144d
refs/heads/master
2022-11-03T04:54:42.675869
2020-06-15T03:46:42
2020-06-15T03:46:42
265,970,361
0
0
null
null
null
null
UTF-8
Python
false
false
812
py
class calculadora: "atríbutos" signos=30 botones =30 baterias= 2 led=1 carcasa=1 #métodos def encender(self): print("encender") def apagar(self): print("apagar") def __init__(self): pass class casio(calculadora): #atríbutos color="gris" longitud= "15cm" #métodos def sumar(self): print("sumar") def restar(self): print("restar") def __init__(self): print("constructor de casio") pass casio= casio() print("signos= "+str(casio.signos)) print("botones= "+str(casio.botones)) print("baterias= "+str(casio.baterias)) print("led= "+str(casio.led)) ("carcasa= "+str(casio.carcasa)) print("color= "+str(casio.color)) print("longitud= "+str(casio.longitud)) casio.encender() casio.apagar() casio.sumar() casio.restar()
010d835db31f6a76e42a04916bd4a4af607762b4
62e58c051128baef9452e7e0eb0b5a83367add26
/edifact/D08B/COMDISD08BUN.py
100dbc7a1d02e66ba3a3780d0077c6f131fd407a
[]
no_license
dougvanhorn/bots-grammars
2eb6c0a6b5231c14a6faf194b932aa614809076c
09db18d9d9bd9d92cefbf00f1c0de1c590fe3d0d
refs/heads/master
2021-05-16T12:55:58.022904
2019-05-17T15:22:23
2019-05-17T15:22:23
105,274,633
0
0
null
2017-09-29T13:21:21
2017-09-29T13:21:21
null
UTF-8
Python
false
false
1,035
py
#Generated by bots open source edi translator from UN-docs. from bots.botsconfig import * from edifact import syntax from recordsD08BUN import recorddefs structure = [ {ID: 'UNH', MIN: 1, MAX: 1, LEVEL: [ {ID: 'BGM', MIN: 1, MAX: 1}, {ID: 'RFF', MIN: 0, MAX: 9}, {ID: 'DTM', MIN: 0, MAX: 9}, {ID: 'CUX', MIN: 0, MAX: 9}, {ID: 'NAD', MIN: 0, MAX: 99, LEVEL: [ {ID: 'CTA', MIN: 0, MAX: 1}, {ID: 'COM', MIN: 0, MAX: 5}, ]}, {ID: 'DOC', MIN: 0, MAX: 9999, LEVEL: [ {ID: 'DTM', MIN: 0, MAX: 9}, {ID: 'MOA', MIN: 0, MAX: 2}, {ID: 'AJT', MIN: 0, MAX: 9, LEVEL: [ {ID: 'FTX', MIN: 0, MAX: 9}, ]}, {ID: 'INP', MIN: 0, MAX: 9, LEVEL: [ {ID: 'FTX', MIN: 0, MAX: 9}, ]}, {ID: 'DLI', MIN: 0, MAX: 9999, LEVEL: [ {ID: 'MOA', MIN: 0, MAX: 2}, {ID: 'AJT', MIN: 0, MAX: 9, LEVEL: [ {ID: 'FTX', MIN: 0, MAX: 9}, ]}, ]}, ]}, {ID: 'UNT', MIN: 1, MAX: 1}, ]}, ]
dc83a61491aaa7474ca75f5417cccf54a741e2a2
1f7d287ef90041e20468513a26a39e1f3d221289
/Level-2/s18/guvi-L2-s18-py06.py
21f5db26fcc71bb3aa20c4faae14685578b46595
[]
no_license
ksthacker/python
d787d69f954c0e9b59b0cc96a8b8fc5c0594d8a0
3a3775e1b9349e313f8c96ea11eade54a7e9bf54
refs/heads/master
2021-04-27T16:32:40.923316
2019-08-21T04:50:22
2019-08-21T04:50:22
122,303,461
0
17
null
2019-10-03T14:59:51
2018-02-21T07:09:32
Python
UTF-8
Python
false
false
262
py
import sys, string, math s1,s2 = input().split() dic1 = {} dic2 = {} for c in s1 : dic1[c] = dic1.get(c,0) + 1 for c in s2 : dic2[c] = dic2.get(c,0) + 1 #print(dic1,dic2) if dic1.keys() == dic2.keys() : print('true') else : print('false')
b41ba3a6a31fab6c7ed42dd38ecc6821786344d5
a7685d315e6616cc2b6d43587bb19ead4324fb2a
/cci_mailchimp/wizard/extract_results_advertising.py
4a5fc3227990c4926d43be7d42084fc091237cd3
[]
no_license
philmervdm/modules_cci_odoo8
472ea68de409e876722413afdd873d6a7827744e
603144219a86e805f7603cfafc0fb05a78166eef
refs/heads/master
2021-01-09T20:02:58.326569
2017-05-06T15:45:03
2017-05-06T15:45:03
60,332,279
2
2
null
null
null
null
UTF-8
Python
false
false
13,732
py
# -*- encoding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # Copyright (C) 2004-2009 Tiny SPRL (<http://tiny.be>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## # Version 1.0 Philmer # This wizard searchs for emails addresses in a list of given table import time import datetime #import mailchimp import base64 from xlwt import * from openerp import models, fields, api, _ def french_date(string): return string[8:10] + "/" + string[5:7] + '/' + string[0:4] class cci_mailchimp_results_adv(models.TransientModel): _name = 'cci.mailchimp.results.adv' url = fields.Char(string='URL of the advertising', help='You can give also only a part of the complete URL.\nAll URL containing this part will be taken into account.', required=True) from_date = fields.Date(string='From', help='Date of the first Revue de Presse', required=True) to_date = fields.Date(string='To', help='Date of the last Revue de Presse', required=True) @api.multi def extract(self): # Initialisation of result file wb1 = Workbook() ws1 = wb1.add_sheet(u'Résultats') ws1.write(0, 0, u'URL :') ws1.write(1, 0, u'De :') ws1.write(2, 0, u'à :') ws1.write(3, 0, u'Seules les dates et les régions où l\'URL a été utilisée avec un tracking activé apparaissent ici.') ws1.write(0, 1, data['form']['url']) ws1.write(1, 1, french_date(self.from_date)) ws1.write(2, 1, french_date(self.to_date)) ws1.write(3, 0, u'Seules les revue de presse ayant au moins un résultat sont présentées ici') ws1.write(5, 0, u'RDP envoyées :') ws1.write(6, 0, u'Moyenne Uniques clicks/jour :') ws1.write(9, 0, u'Date') ws1.write(8, 1, u'Total') ws1.write(9, 1, u'Envois') ws1.write(9, 2, u'Ouverts') ws1.write(9, 3, u'Ouv. uniques') ws1.write(9, 4, u'Clicks') ws1.write(9, 5, u'Cl. uniques') ws1.write(9, 6, u'URL clicks') ws1.write(9, 7, u'URL Cl. Uniques') xls_line = 10 # Possibles revue de presse rdps = {} rdps[1] = {'name':u'- BW', 'count':0} rdps[2] = {'name':u'- Hainaut', 'count':0} rdps[3] = {'name':u'- Liège Verviers', 'count':0} rdps[4] = {'name':u'- Namur', 'count':0} rdps[5] = {'name':u'- Wapi', 'count':0} rdps[6] = {'name':u'- VL', 'count':0} rdps[7] = {'name':u'- Inconnue', 'count':0} # connections to mailchimp # We get the API key parameter_obj = self.env['ir.config_parameter'] param_values = parameter_obj.get_param(['MailChimpAPIKey']) if param_values.has_key('MailChimpAPIKey'): mailchimp_server = mailchimp.Mailchimp(param_values['MailChimpAPIKey'], False) mailchimp_campaigns = mailchimp.Campaigns(mailchimp_server) mailchimp_reports = mailchimp.Reports(mailchimp_server) start = 0 limit = 25 result = mailchimp_campaigns.list({'status':'sent'}, start, limit, 'send_time', 'DESC') total = result['total'] url = self.url date_from = self.from_date date_to = self.to_date final_count = 0 dates = [] dResults = {} while start <= ((total / limit) + 1): result = mailchimp_campaigns.list({'status':'sent'}, start, limit, 'send_time', 'DESC') for line in result['data']: if line['emails_sent'] and line['send_time'][0:10] >= date_from and line['send_time'][0:10] <= date_to: if line['tracking']['html_clicks']: result = mailchimp_reports.clicks(line['id']) for click in result['total']: if url in click['url']: rdp_id = False for (key, rdp) in rdps.items(): if rdp['name'] in line['title']: rdp_id = key break if not rdp_id: rdp_id = 6 rdps[rdp_id]['count'] += 1 resu = { 'date': line['send_time'][0:10], 'rdp_id': rdp_id, 'sendings': line['emails_sent'], 'opens': line['summary']['opens'], 'u_opens': line['summary']['unique_opens'], 'clicks': line['summary']['clicks'], 'u_clicks': line['summary']['unique_clicks'], 'url_clicks': click['clicks'], 'u_url_clicks': click['unique'] } if line['send_time'][0:10] not in dates: dates.append(line['send_time'][0:10]) if dResults.has_key((line['send_time'][0:10], rdp_id)): # dResults[(line['send_time'][0:10],rdp_id)]['opens'] += line['summary']['opens'] # dResults[(line['send_time'][0:10],rdp_id)]['u_opens'] += line['summary']['unique_opens'] # dResults[(line['send_time'][0:10],rdp_id)]['clicks'] += line['summary']['clicks'] # dResults[(line['send_time'][0:10],rdp_id)]['u_clicks'] += line['summary']['unique_clicks'] dResults[(line['send_time'][0:10], rdp_id)]['url_clicks'] += click['clicks'] dResults[(line['send_time'][0:10], rdp_id)]['u_url_clicks'] += click['unique'] else: dResults[(line['send_time'][0:10], rdp_id)] = resu final_count += 1 start += 1 final_rdps = [] for (key, rdp) in rdps.items(): if rdp['count'] > 0: final_rdps.append(key) final_rdps.sort() index = 1 for rdp_id in final_rdps: ws1.write(8, (index * 7) + 1, rdps[rdp_id]['name'][2:]) ws1.write(9, (index * 7) + 1, u'Envois') ws1.write(9, (index * 7) + 2, u'Ouverts') ws1.write(9, (index * 7) + 3, u'Ouv. uniques') ws1.write(9, (index * 7) + 4, u'Clicks') ws1.write(9, (index * 7) + 5, u'Cl. uniques') ws1.write(9, (index * 7) + 6, u'URL clicks') ws1.write(9, (index * 7) + 7, u'URL Cl. Uniques') index += 1 dates.sort(reverse=True) final_results = {} full_list = [0, ] full_list.extend(final_rdps) for rdp_id in full_list: # ## 0 will serve for totals final_results[rdp_id] = {'sendings':0, 'opens':0, 'u_opens':0, 'clicks':0, 'u_clicks':0, 'url_clicks':0, 'u_url_clicks':0} for date in dates: ws1.write(xls_line, 0, french_date(date)) index = 1 total_sendings = 0 total_opens = 0 total_u_opens = 0 total_clicks = 0 total_u_clicks = 0 total_url_clicks = 0 total_u_url_clicks = 0 for rdp_id in final_rdps: if dResults.has_key((date, rdp_id)): ws1.write(xls_line, (index * 7) + 1, dResults[(date, rdp_id)]['sendings']) ws1.write(xls_line, (index * 7) + 2, dResults[(date, rdp_id)]['opens']) ws1.write(xls_line, (index * 7) + 3, dResults[(date, rdp_id)]['u_opens']) ws1.write(xls_line, (index * 7) + 4, dResults[(date, rdp_id)]['clicks']) ws1.write(xls_line, (index * 7) + 5, dResults[(date, rdp_id)]['u_clicks']) ws1.write(xls_line, (index * 7) + 6, dResults[(date, rdp_id)]['url_clicks']) ws1.write(xls_line, (index * 7) + 7, dResults[(date, rdp_id)]['u_url_clicks']) total_sendings += dResults[(date, rdp_id)]['sendings'] total_opens += dResults[(date, rdp_id)]['opens'] total_u_opens += dResults[(date, rdp_id)]['u_opens'] total_clicks += dResults[(date, rdp_id)]['clicks'] total_u_clicks += dResults[(date, rdp_id)]['u_clicks'] total_url_clicks += dResults[(date, rdp_id)]['url_clicks'] total_u_url_clicks += dResults[(date, rdp_id)]['u_url_clicks'] # cumulates for final line for col in [0, rdp_id]: for column_name in ['sendings', 'opens', 'u_opens', 'clicks', 'u_clicks', 'url_clicks', 'u_url_clicks']: final_results[col][column_name] += dResults[(date, rdp_id)][column_name] else: ws1.write(xls_line, (index * 7) + 1, 0) ws1.write(xls_line, (index * 7) + 2, 0) ws1.write(xls_line, (index * 7) + 3, 0) ws1.write(xls_line, (index * 7) + 4, 0) ws1.write(xls_line, (index * 7) + 5, 0) ws1.write(xls_line, (index * 7) + 6, 0) ws1.write(xls_line, (index * 7) + 7, 0) index += 1 ws1.write(xls_line, 1, total_sendings) ws1.write(xls_line, 2, total_opens) ws1.write(xls_line, 3, total_u_opens) ws1.write(xls_line, 4, total_clicks) ws1.write(xls_line, 5, total_u_clicks) ws1.write(xls_line, 6, total_url_clicks) ws1.write(xls_line, 7, total_u_url_clicks) xls_line += 1 ws1.write(5, 1, final_count) ws1.write(6, 1, '%.2f' % ((final_results[0]['u_url_clicks'] * 1.0) / len(dates))) ws1.write(xls_line, 0, u'Totaux') index = 0 for rdp_id in full_list: ws1.write(xls_line, (index * 7) + 1, final_results[rdp_id]['sendings']) ws1.write(xls_line, (index * 7) + 2, final_results[rdp_id]['opens']) ws1.write(xls_line, (index * 7) + 3, final_results[rdp_id]['u_opens']) ws1.write(xls_line, (index * 7) + 4, final_results[rdp_id]['clicks']) ws1.write(xls_line, (index * 7) + 5, final_results[rdp_id]['u_clicks']) ws1.write(xls_line, (index * 7) + 6, final_results[rdp_id]['url_clicks']) ws1.write(xls_line, (index * 7) + 7, final_results[rdp_id]['u_url_clicks']) index += 1 # save the final result file wb1.save('res_advert.xls') result_file = open('res_advert.xls', 'rb').read() # give the result to the user msg = u'Save the File with \'.xls\' extension.' res_advert_xls = base64.encodestring(result_file) else: msg = u'The parameter MailChimpAPIKey is missing !\nImpossible to extract something.' ctx = self.env.context.copy() ctx.update({'msg': msg, 'res_advert_xls': res_advert_xls}) view = self.env.ref('cci_mailchimp.view_cci_mailchimp_results_adv_msg') return { 'name': _('Notification'), 'type': 'ir.actions.act_window', 'view_type': 'form', 'view_mode': 'form', 'res_model': 'cci.mailchimp.results.adv.msg', 'views': [(view.id, 'form')], 'view_id': view.id, 'target': 'new', 'context': ctx, } class cci_mailchimp_results_adv_msg(models.TransientModel): _name = 'cci.mailchimp.results.adv.msg' msg = fields.Text(string='File created', readonly=True) res_advert_xls = fields.Binary(string='Prepared file', readonly=True) @api.model def default_get(self, fields): rec = super(cci_mailchimp_results_adv_msg, self).default_get(fields) if self.env.context.get('msg'): rec['msg'] = self.env.context['msg'] if self.env.context.get('res_advert_xls'): rec['res_advert_xls'] = self.env.context['res_advert_xls'] return rec # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
dafbc6f303cb54a88a957ad7b6ca81fe72a58dcf
82fce9aae9e855a73f4e92d750e6a8df2ef877a5
/Lab/venv/lib/python3.8/site-packages/OpenGL/raw/GL/VERSION/GL_4_0.py
e71cd5aca4e802fb6dbe967d20d16fbe9ccabd69
[]
no_license
BartoszRudnik/GK
1294f7708902e867dacd7da591b9f2e741bfe9e5
6dc09184a3af07143b9729e42a6f62f13da50128
refs/heads/main
2023-02-20T19:02:12.408974
2021-01-22T10:51:14
2021-01-22T10:51:14
307,847,589
0
0
null
null
null
null
UTF-8
Python
false
false
11,207
py
'''Autogenerated by xml_generate script, do not edit!''' import ctypes from OpenGL import platform as _p, arrays from OpenGL.constant import Constant as _C # End users want this... from OpenGL.raw.GL import _errors # Code generation uses this from OpenGL.raw.GL import _types as _cs _EXTENSION_NAME = 'GL_VERSION_GL_4_0' def _f(function): return _p.createFunction(function, _p.PLATFORM.GL, 'GL_VERSION_GL_4_0', error_checker=_errors._error_checker) GL_ACTIVE_SUBROUTINES = _C('GL_ACTIVE_SUBROUTINES', 0x8DE5) GL_ACTIVE_SUBROUTINE_MAX_LENGTH = _C('GL_ACTIVE_SUBROUTINE_MAX_LENGTH', 0x8E48) GL_ACTIVE_SUBROUTINE_UNIFORMS = _C('GL_ACTIVE_SUBROUTINE_UNIFORMS', 0x8DE6) GL_ACTIVE_SUBROUTINE_UNIFORM_LOCATIONS = _C('GL_ACTIVE_SUBROUTINE_UNIFORM_LOCATIONS', 0x8E47) GL_ACTIVE_SUBROUTINE_UNIFORM_MAX_LENGTH = _C('GL_ACTIVE_SUBROUTINE_UNIFORM_MAX_LENGTH', 0x8E49) GL_COMPATIBLE_SUBROUTINES = _C('GL_COMPATIBLE_SUBROUTINES', 0x8E4B) GL_DOUBLE_MAT2=_C('GL_DOUBLE_MAT2',0x8F46) GL_DOUBLE_MAT2x3=_C('GL_DOUBLE_MAT2x3',0x8F49) GL_DOUBLE_MAT2x4=_C('GL_DOUBLE_MAT2x4',0x8F4A) GL_DOUBLE_MAT3=_C('GL_DOUBLE_MAT3',0x8F47) GL_DOUBLE_MAT3x2=_C('GL_DOUBLE_MAT3x2',0x8F4B) GL_DOUBLE_MAT3x4=_C('GL_DOUBLE_MAT3x4',0x8F4C) GL_DOUBLE_MAT4=_C('GL_DOUBLE_MAT4',0x8F48) GL_DOUBLE_MAT4x2=_C('GL_DOUBLE_MAT4x2',0x8F4D) GL_DOUBLE_MAT4x3=_C('GL_DOUBLE_MAT4x3',0x8F4E) GL_DOUBLE_VEC2=_C('GL_DOUBLE_VEC2',0x8FFC) GL_DOUBLE_VEC3=_C('GL_DOUBLE_VEC3',0x8FFD) GL_DOUBLE_VEC4=_C('GL_DOUBLE_VEC4',0x8FFE) GL_DRAW_INDIRECT_BUFFER=_C('GL_DRAW_INDIRECT_BUFFER',0x8F3F) GL_DRAW_INDIRECT_BUFFER_BINDING=_C('GL_DRAW_INDIRECT_BUFFER_BINDING',0x8F43) GL_FRACTIONAL_EVEN=_C('GL_FRACTIONAL_EVEN',0x8E7C) GL_FRACTIONAL_ODD=_C('GL_FRACTIONAL_ODD',0x8E7B) GL_FRAGMENT_INTERPOLATION_OFFSET_BITS=_C('GL_FRAGMENT_INTERPOLATION_OFFSET_BITS',0x8E5D) GL_GEOMETRY_SHADER_INVOCATIONS=_C('GL_GEOMETRY_SHADER_INVOCATIONS',0x887F) GL_INT_SAMPLER_CUBE_MAP_ARRAY=_C('GL_INT_SAMPLER_CUBE_MAP_ARRAY',0x900E) GL_ISOLINES=_C('GL_ISOLINES',0x8E7A) GL_MAX_COMBINED_TESS_CONTROL_UNIFORM_COMPONENTS=_C('GL_MAX_COMBINED_TESS_CONTROL_UNIFORM_COMPONENTS',0x8E1E) GL_MAX_COMBINED_TESS_EVALUATION_UNIFORM_COMPONENTS=_C('GL_MAX_COMBINED_TESS_EVALUATION_UNIFORM_COMPONENTS',0x8E1F) GL_MAX_FRAGMENT_INTERPOLATION_OFFSET=_C('GL_MAX_FRAGMENT_INTERPOLATION_OFFSET',0x8E5C) GL_MAX_GEOMETRY_SHADER_INVOCATIONS=_C('GL_MAX_GEOMETRY_SHADER_INVOCATIONS',0x8E5A) GL_MAX_PATCH_VERTICES=_C('GL_MAX_PATCH_VERTICES',0x8E7D) GL_MAX_PROGRAM_TEXTURE_GATHER_OFFSET=_C('GL_MAX_PROGRAM_TEXTURE_GATHER_OFFSET',0x8E5F) GL_MAX_SUBROUTINES=_C('GL_MAX_SUBROUTINES',0x8DE7) GL_MAX_SUBROUTINE_UNIFORM_LOCATIONS=_C('GL_MAX_SUBROUTINE_UNIFORM_LOCATIONS',0x8DE8) GL_MAX_TESS_CONTROL_INPUT_COMPONENTS=_C('GL_MAX_TESS_CONTROL_INPUT_COMPONENTS',0x886C) GL_MAX_TESS_CONTROL_OUTPUT_COMPONENTS=_C('GL_MAX_TESS_CONTROL_OUTPUT_COMPONENTS',0x8E83) GL_MAX_TESS_CONTROL_TEXTURE_IMAGE_UNITS=_C('GL_MAX_TESS_CONTROL_TEXTURE_IMAGE_UNITS',0x8E81) GL_MAX_TESS_CONTROL_TOTAL_OUTPUT_COMPONENTS=_C('GL_MAX_TESS_CONTROL_TOTAL_OUTPUT_COMPONENTS',0x8E85) GL_MAX_TESS_CONTROL_UNIFORM_BLOCKS=_C('GL_MAX_TESS_CONTROL_UNIFORM_BLOCKS',0x8E89) GL_MAX_TESS_CONTROL_UNIFORM_COMPONENTS=_C('GL_MAX_TESS_CONTROL_UNIFORM_COMPONENTS',0x8E7F) GL_MAX_TESS_EVALUATION_INPUT_COMPONENTS=_C('GL_MAX_TESS_EVALUATION_INPUT_COMPONENTS',0x886D) GL_MAX_TESS_EVALUATION_OUTPUT_COMPONENTS=_C('GL_MAX_TESS_EVALUATION_OUTPUT_COMPONENTS',0x8E86) GL_MAX_TESS_EVALUATION_TEXTURE_IMAGE_UNITS=_C('GL_MAX_TESS_EVALUATION_TEXTURE_IMAGE_UNITS',0x8E82) GL_MAX_TESS_EVALUATION_UNIFORM_BLOCKS=_C('GL_MAX_TESS_EVALUATION_UNIFORM_BLOCKS',0x8E8A) GL_MAX_TESS_EVALUATION_UNIFORM_COMPONENTS=_C('GL_MAX_TESS_EVALUATION_UNIFORM_COMPONENTS',0x8E80) GL_MAX_TESS_GEN_LEVEL=_C('GL_MAX_TESS_GEN_LEVEL',0x8E7E) GL_MAX_TESS_PATCH_COMPONENTS=_C('GL_MAX_TESS_PATCH_COMPONENTS',0x8E84) GL_MAX_TRANSFORM_FEEDBACK_BUFFERS=_C('GL_MAX_TRANSFORM_FEEDBACK_BUFFERS',0x8E70) GL_MAX_VERTEX_STREAMS=_C('GL_MAX_VERTEX_STREAMS',0x8E71) GL_MAX_VERTEX_STREAMS=_C('GL_MAX_VERTEX_STREAMS',0x8E71) GL_MIN_FRAGMENT_INTERPOLATION_OFFSET=_C('GL_MIN_FRAGMENT_INTERPOLATION_OFFSET',0x8E5B) GL_MIN_PROGRAM_TEXTURE_GATHER_OFFSET=_C('GL_MIN_PROGRAM_TEXTURE_GATHER_OFFSET',0x8E5E) GL_MIN_SAMPLE_SHADING_VALUE=_C('GL_MIN_SAMPLE_SHADING_VALUE',0x8C37) GL_NUM_COMPATIBLE_SUBROUTINES=_C('GL_NUM_COMPATIBLE_SUBROUTINES',0x8E4A) GL_PATCHES=_C('GL_PATCHES',0x000E) GL_PATCH_DEFAULT_INNER_LEVEL=_C('GL_PATCH_DEFAULT_INNER_LEVEL',0x8E73) GL_PATCH_DEFAULT_OUTER_LEVEL=_C('GL_PATCH_DEFAULT_OUTER_LEVEL',0x8E74) GL_PATCH_VERTICES=_C('GL_PATCH_VERTICES',0x8E72) GL_PROXY_TEXTURE_CUBE_MAP_ARRAY=_C('GL_PROXY_TEXTURE_CUBE_MAP_ARRAY',0x900B) GL_QUADS=_C('GL_QUADS',0x0007) GL_SAMPLER_CUBE_MAP_ARRAY=_C('GL_SAMPLER_CUBE_MAP_ARRAY',0x900C) GL_SAMPLER_CUBE_MAP_ARRAY_SHADOW=_C('GL_SAMPLER_CUBE_MAP_ARRAY_SHADOW',0x900D) GL_SAMPLE_SHADING=_C('GL_SAMPLE_SHADING',0x8C36) GL_TESS_CONTROL_OUTPUT_VERTICES=_C('GL_TESS_CONTROL_OUTPUT_VERTICES',0x8E75) GL_TESS_CONTROL_SHADER=_C('GL_TESS_CONTROL_SHADER',0x8E88) GL_TESS_EVALUATION_SHADER=_C('GL_TESS_EVALUATION_SHADER',0x8E87) GL_TESS_GEN_MODE=_C('GL_TESS_GEN_MODE',0x8E76) GL_TESS_GEN_POINT_MODE=_C('GL_TESS_GEN_POINT_MODE',0x8E79) GL_TESS_GEN_SPACING=_C('GL_TESS_GEN_SPACING',0x8E77) GL_TESS_GEN_VERTEX_ORDER=_C('GL_TESS_GEN_VERTEX_ORDER',0x8E78) GL_TEXTURE_BINDING_CUBE_MAP_ARRAY=_C('GL_TEXTURE_BINDING_CUBE_MAP_ARRAY',0x900A) GL_TEXTURE_CUBE_MAP_ARRAY=_C('GL_TEXTURE_CUBE_MAP_ARRAY',0x9009) GL_TRANSFORM_FEEDBACK=_C('GL_TRANSFORM_FEEDBACK',0x8E22) GL_TRANSFORM_FEEDBACK_BINDING=_C('GL_TRANSFORM_FEEDBACK_BINDING',0x8E25) GL_TRANSFORM_FEEDBACK_BUFFER_ACTIVE=_C('GL_TRANSFORM_FEEDBACK_BUFFER_ACTIVE',0x8E24) GL_TRANSFORM_FEEDBACK_BUFFER_PAUSED=_C('GL_TRANSFORM_FEEDBACK_BUFFER_PAUSED',0x8E23) GL_UNIFORM_BLOCK_REFERENCED_BY_TESS_CONTROL_SHADER=_C('GL_UNIFORM_BLOCK_REFERENCED_BY_TESS_CONTROL_SHADER',0x84F0) GL_UNIFORM_BLOCK_REFERENCED_BY_TESS_EVALUATION_SHADER=_C('GL_UNIFORM_BLOCK_REFERENCED_BY_TESS_EVALUATION_SHADER',0x84F1) GL_UNSIGNED_INT_SAMPLER_CUBE_MAP_ARRAY=_C('GL_UNSIGNED_INT_SAMPLER_CUBE_MAP_ARRAY',0x900F) @_f @_p.types(None,_cs.GLenum,_cs.GLuint,_cs.GLuint) def glBeginQueryIndexed(target,index,id):pass @_f @_p.types(None,_cs.GLenum,_cs.GLuint) def glBindTransformFeedback(target,id):pass @_f @_p.types(None,_cs.GLuint,_cs.GLenum,_cs.GLenum) def glBlendEquationSeparatei(buf,modeRGB,modeAlpha):pass @_f @_p.types(None,_cs.GLuint,_cs.GLenum) def glBlendEquationi(buf,mode):pass @_f @_p.types(None,_cs.GLuint,_cs.GLenum,_cs.GLenum,_cs.GLenum,_cs.GLenum) def glBlendFuncSeparatei(buf,srcRGB,dstRGB,srcAlpha,dstAlpha):pass @_f @_p.types(None,_cs.GLuint,_cs.GLenum,_cs.GLenum) def glBlendFunci(buf,src,dst):pass @_f @_p.types(None,_cs.GLsizei,arrays.GLuintArray) def glDeleteTransformFeedbacks(n,ids):pass @_f @_p.types(None,_cs.GLenum,ctypes.c_void_p) def glDrawArraysIndirect(mode,indirect):pass @_f @_p.types(None,_cs.GLenum,_cs.GLenum,ctypes.c_void_p) def glDrawElementsIndirect(mode,type,indirect):pass @_f @_p.types(None,_cs.GLenum,_cs.GLuint) def glDrawTransformFeedback(mode,id):pass @_f @_p.types(None,_cs.GLenum,_cs.GLuint,_cs.GLuint) def glDrawTransformFeedbackStream(mode,id,stream):pass @_f @_p.types(None,_cs.GLenum,_cs.GLuint) def glEndQueryIndexed(target,index):pass @_f @_p.types(None,_cs.GLsizei,arrays.GLuintArray) def glGenTransformFeedbacks(n,ids):pass @_f @_p.types(None,_cs.GLuint,_cs.GLenum,_cs.GLuint,_cs.GLsizei,arrays.GLsizeiArray,arrays.GLcharArray) def glGetActiveSubroutineName(program,shadertype,index,bufsize,length,name):pass @_f @_p.types(None,_cs.GLuint,_cs.GLenum,_cs.GLuint,_cs.GLsizei,arrays.GLsizeiArray,arrays.GLcharArray) def glGetActiveSubroutineUniformName(program,shadertype,index,bufsize,length,name):pass @_f @_p.types(None,_cs.GLuint,_cs.GLenum,_cs.GLuint,_cs.GLenum,arrays.GLintArray) def glGetActiveSubroutineUniformiv(program,shadertype,index,pname,values):pass @_f @_p.types(None,_cs.GLuint,_cs.GLenum,_cs.GLenum,arrays.GLintArray) def glGetProgramStageiv(program,shadertype,pname,values):pass @_f @_p.types(None,_cs.GLenum,_cs.GLuint,_cs.GLenum,arrays.GLintArray) def glGetQueryIndexediv(target,index,pname,params):pass @_f @_p.types(_cs.GLuint,_cs.GLuint,_cs.GLenum,arrays.GLcharArray) def glGetSubroutineIndex(program,shadertype,name):pass @_f @_p.types(_cs.GLint,_cs.GLuint,_cs.GLenum,arrays.GLcharArray) def glGetSubroutineUniformLocation(program,shadertype,name):pass @_f @_p.types(None,_cs.GLenum,_cs.GLint,arrays.GLuintArray) def glGetUniformSubroutineuiv(shadertype,location,params):pass @_f @_p.types(None,_cs.GLuint,_cs.GLint,arrays.GLdoubleArray) def glGetUniformdv(program,location,params):pass @_f @_p.types(_cs.GLboolean,_cs.GLuint) def glIsTransformFeedback(id):pass @_f @_p.types(None,_cs.GLfloat) def glMinSampleShading(value):pass @_f @_p.types(None,_cs.GLenum,arrays.GLfloatArray) def glPatchParameterfv(pname,values):pass @_f @_p.types(None,_cs.GLenum,_cs.GLint) def glPatchParameteri(pname,value):pass @_f @_p.types(None,) def glPauseTransformFeedback():pass @_f @_p.types(None,) def glResumeTransformFeedback():pass @_f @_p.types(None,_cs.GLint,_cs.GLdouble) def glUniform1d(location,x):pass @_f @_p.types(None,_cs.GLint,_cs.GLsizei,arrays.GLdoubleArray) def glUniform1dv(location,count,value):pass @_f @_p.types(None,_cs.GLint,_cs.GLdouble,_cs.GLdouble) def glUniform2d(location,x,y):pass @_f @_p.types(None,_cs.GLint,_cs.GLsizei,arrays.GLdoubleArray) def glUniform2dv(location,count,value):pass @_f @_p.types(None,_cs.GLint,_cs.GLdouble,_cs.GLdouble,_cs.GLdouble) def glUniform3d(location,x,y,z):pass @_f @_p.types(None,_cs.GLint,_cs.GLsizei,arrays.GLdoubleArray) def glUniform3dv(location,count,value):pass @_f @_p.types(None,_cs.GLint,_cs.GLdouble,_cs.GLdouble,_cs.GLdouble,_cs.GLdouble) def glUniform4d(location,x,y,z,w):pass @_f @_p.types(None,_cs.GLint,_cs.GLsizei,arrays.GLdoubleArray) def glUniform4dv(location,count,value):pass @_f @_p.types(None,_cs.GLint,_cs.GLsizei,_cs.GLboolean,arrays.GLdoubleArray) def glUniformMatrix2dv(location,count,transpose,value):pass @_f @_p.types(None,_cs.GLint,_cs.GLsizei,_cs.GLboolean,arrays.GLdoubleArray) def glUniformMatrix2x3dv(location,count,transpose,value):pass @_f @_p.types(None,_cs.GLint,_cs.GLsizei,_cs.GLboolean,arrays.GLdoubleArray) def glUniformMatrix2x4dv(location,count,transpose,value):pass @_f @_p.types(None,_cs.GLint,_cs.GLsizei,_cs.GLboolean,arrays.GLdoubleArray) def glUniformMatrix3dv(location,count,transpose,value):pass @_f @_p.types(None,_cs.GLint,_cs.GLsizei,_cs.GLboolean,arrays.GLdoubleArray) def glUniformMatrix3x2dv(location,count,transpose,value):pass @_f @_p.types(None,_cs.GLint,_cs.GLsizei,_cs.GLboolean,arrays.GLdoubleArray) def glUniformMatrix3x4dv(location,count,transpose,value):pass @_f @_p.types(None,_cs.GLint,_cs.GLsizei,_cs.GLboolean,arrays.GLdoubleArray) def glUniformMatrix4dv(location,count,transpose,value):pass @_f @_p.types(None,_cs.GLint,_cs.GLsizei,_cs.GLboolean,arrays.GLdoubleArray) def glUniformMatrix4x2dv(location,count,transpose,value):pass @_f @_p.types(None,_cs.GLint,_cs.GLsizei,_cs.GLboolean,arrays.GLdoubleArray) def glUniformMatrix4x3dv(location,count,transpose,value):pass @_f @_p.types(None,_cs.GLenum,_cs.GLsizei,arrays.GLuintArray) def glUniformSubroutinesuiv(shadertype,count,indices):pass
9deb933676e6f8022a6d68c76123cb045891c191
672d535e7586289873fd5167bd9888383aff02e4
/src/chapter_10/file_writer.py
05d3024a8efc186caf79a788cbcce915c16e552a
[]
no_license
CatchTheDog/python_crash_course
889fd151323e48dfbc6754b86132aad3f1d37856
148eda5eb96c501060115aad0bfd6e15ccd04c37
refs/heads/master
2020-03-29T22:06:32.015096
2018-09-29T02:36:51
2018-09-29T02:36:51
150,402,932
0
0
null
null
null
null
UTF-8
Python
false
false
168
py
file_name = "..\\test_files\\programming.txt" with open(file_name,'a') as file_object: file_object.write("I love programming!\n") file_object.write("Yes,you are!\n")
d6938327087879a9f4238e51bda9ed19d1500dd6
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03261/s340412788.py
5a6e7ab12a4f437b7b0e143245721a1a5d7f2d38
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
272
py
def resolve(): N = int(input()) W = [input() for _ in range(N)] if len(set(W)) != N: print('No') return for i in range(N-1): if W[i][-1] != W[i+1][0]: print('No') return print('Yes') return resolve()
13fb7bd55c6b4c3bcf6151f1231cd06bed96325b
ff6248be9573caec94bea0fa2b1e4b6bf0aa682b
/StudentProblem/10.21.12.20/5/1569572839.py
b804973202990b201d8fa526eab461fdb643c04b
[]
no_license
LennartElbe/codeEvo
0e41b1a7705204e934ef71a5a28c047366c10f71
e89b329bc9edd37d5d9986f07ca8a63d50686882
refs/heads/master
2020-12-21T17:28:25.150352
2020-03-26T10:22:35
2020-03-26T10:22:35
236,498,032
0
0
null
null
null
null
UTF-8
Python
false
false
285
py
import functools import typing import string import random import pytest ## Lösung Teil 1. def mysum(zs : list) -> int: return sum(xs) ## Lösung Teil 2. (Tests) def test_2(): assert mysum([1,2,3]) == 6 ######################################################################
7bb0b9509db055c53732ac141dd5e0394c6ef70b
2c3f13857d4a915410de5ac9547745eb2769db5f
/eval/e43/compare_text.py
87358093ffb7d43d225e9232d6c758060c29fa51
[]
no_license
andrewhead/StackSkim
43a4cf769645bb70202075f8077fa4d5d7be2a4b
9ac11705ff82aa978d1a87177059e665f4e5ebef
refs/heads/master
2020-06-03T16:15:15.127268
2016-01-16T17:16:36
2016-01-16T17:16:36
50,692,945
2
0
null
null
null
null
UTF-8
Python
false
false
1,056
py
#! /usr/bin/env python # -*- coding: utf-8 -*- from __future__ import unicode_literals import logging import codecs logging.basicConfig(level=logging.INFO, format="%(message)s") def main(): with codecs.open('javascript_text.txt', 'r', 'utf-8') as js_file: with codecs.open('beautifulsoup_text.txt', 'r', 'utf-8') as bs_file: js_text = js_file.read() bs_text = bs_file.read() for i in range(min([len(js_text), len(bs_text)])): if js_text[i] != bs_text[i]: print "==== Mismatch at index ====", i print "Javascript: ", repr(js_text[i]) print "BeautifulSoup: ", repr(bs_text[i]) print "* Javascript before: " print repr(js_text[i-50:i]) print "* BeautifulSoup before: " print repr(bs_text[i-50:i]) print "* Javascript after: " print repr(js_text[i:i+50]) print "* BeautifulSoup after: " print repr(bs_text[i:i+50]) break if __name__ == '__main__': main()
0516724e956d3a03c966ac81dd33f50bb9a93f14
f019ca1e4029b4077472087d1b677052583c0392
/qa/rpc-tests/keypool.py
aeaa4435c0d9ce9ede5ce333dced5cf31e78ffc9
[ "MIT" ]
permissive
mirzaei-ce/core-civilbit
9204dd9c4c3ce04f867105da4e7fa9a56af1f8ba
cab3e53bdc6b04a84f4bc48114efc07865be814a
refs/heads/master
2021-04-26T05:03:32.282526
2017-10-16T15:39:44
2017-10-16T15:39:44
107,148,188
0
0
null
null
null
null
UTF-8
Python
false
false
3,338
py
#!/usr/bin/env python2 # Copyright (c) 2014-2015 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # Exercise the wallet keypool, and interaction with wallet encryption/locking # Add python-civilbitrpc to module search path: from test_framework.test_framework import CivilbitTestFramework from test_framework.util import * def check_array_result(object_array, to_match, expected): """ Pass in array of JSON objects, a dictionary with key/value pairs to match against, and another dictionary with expected key/value pairs. """ num_matched = 0 for item in object_array: all_match = True for key,value in to_match.items(): if item[key] != value: all_match = False if not all_match: continue for key,value in expected.items(): if item[key] != value: raise AssertionError("%s : expected %s=%s"%(str(item), str(key), str(value))) num_matched = num_matched+1 if num_matched == 0: raise AssertionError("No objects matched %s"%(str(to_match))) class KeyPoolTest(CivilbitTestFramework): def run_test(self): nodes = self.nodes # Encrypt wallet and wait to terminate nodes[0].encryptwallet('test') civilbitd_processes[0].wait() # Restart node 0 nodes[0] = start_node(0, self.options.tmpdir) # Keep creating keys addr = nodes[0].getnewaddress() try: addr = nodes[0].getnewaddress() raise AssertionError('Keypool should be exhausted after one address') except JSONRPCException,e: assert(e.error['code']==-12) # put three new keys in the keypool nodes[0].walletpassphrase('test', 12000) nodes[0].keypoolrefill(3) nodes[0].walletlock() # drain the keys addr = set() addr.add(nodes[0].getrawchangeaddress()) addr.add(nodes[0].getrawchangeaddress()) addr.add(nodes[0].getrawchangeaddress()) addr.add(nodes[0].getrawchangeaddress()) # assert that four unique addresses were returned assert(len(addr) == 4) # the next one should fail try: addr = nodes[0].getrawchangeaddress() raise AssertionError('Keypool should be exhausted after three addresses') except JSONRPCException,e: assert(e.error['code']==-12) # refill keypool with three new addresses nodes[0].walletpassphrase('test', 12000) nodes[0].keypoolrefill(3) nodes[0].walletlock() # drain them by mining nodes[0].generate(1) nodes[0].generate(1) nodes[0].generate(1) nodes[0].generate(1) try: nodes[0].generate(1) raise AssertionError('Keypool should be exhausted after three addesses') except JSONRPCException,e: assert(e.error['code']==-12) def setup_chain(self): print("Initializing test directory "+self.options.tmpdir) initialize_chain(self.options.tmpdir) def setup_network(self): self.nodes = start_nodes(1, self.options.tmpdir) if __name__ == '__main__': KeyPoolTest().main()
e842a0b0122230b18a59c01e0b2b0561a33e8a9a
6a33cb94d4af1d8a7329ddc6c9d42f870c35bb2f
/python/euler24.py
f4dfa43b28627a2b567d1d09688bcc6fd94d3b85
[]
no_license
vochong/project-euler
836321cc8e7d2e7cdf22b3b136d44dcba74a8701
6a0c7103861ff825bf84800b6e2e62819a41e36d
refs/heads/master
2020-04-29T10:41:48.487159
2018-09-19T00:13:34
2018-09-19T00:13:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
602
py
from itertools import permutations def euler24(): """ A permutation is an ordered arrangement of objects. For example, 3124 is one possible permutation of the digits 1, 2, 3 and 4. If all of the permutations are listed numerically or alphabetically, we call it lexicographic order. The lexicographic permutations of 0, 1 and 2 are: 012 021 102 120 201 210 What is the millionth lexicographic permutation of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9? """ perms = [''.join(p) for p in permutations("0123456789")] return perms[999999] if __name__ == "__main__": print euler24()
eaa9e3662e78f9f1fb39c52cf1e2e525f22310eb
a169199ebb9f4a7b81cd00ff23af50aeb591ffe4
/clpy/types/mutabledict.py
8b4c40a0ef9fc6e1b78077e8aad89ceb47cf9954
[]
no_license
zielmicha/clojure-pypy
b2eab9437997e4c250d455b3a6d5f4c036855cdf
41c8f14a19173c1b5452bcdb1f7f6df23e6cdecf
refs/heads/master
2021-01-23T12:18:45.583076
2014-02-21T19:22:30
2014-02-21T19:22:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
723
py
from clpy.types.root import Root from clpy.types.dict import PersistentHashTrie class MutableDict(Root): ''' Mutable dictionary that should be based on PyPy's implementation, but I can't get it accepted by translator. So, for now, it's based on persistent hash trie. ''' def __init__(self, space): self.container = PersistentHashTrie(space) def repr(self): return 'MutableDict{%s}' % ', '.join([ '%s: %s' % (k.repr(), self.container.get_item(k).repr()) for k in self.container.keys() ]) def set_item(self, key, val): self.container = self.container.assoc(key, val) def get_item(self, key): return self.container.get_item(key)
4060361d56fabf2289f5fa2ad768cbe5b277c2eb
d053d7f98c36bc0d0378dcbb02d6686ddf37b2da
/yabgp/agent/__init__.py
99d77ca9c1f41738f6ed80b147d48327fa595a4c
[ "Apache-2.0" ]
permissive
c0ns0le/yabgp
51f79006735462a59115b775664d1f94a2399c85
19c6462f313dab5548179bc6009375bbc039d0f0
refs/heads/master
2021-01-17T21:22:52.368843
2016-02-22T02:08:34
2016-02-22T02:08:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,475
py
# Copyright 2015 Cisco Systems, Inc. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import sys import os import logging import contextlib import traceback from oslo_config import cfg from twisted.internet import reactor from twisted.web.server import Site from yabgp import version, log from yabgp.core.factory import BGPPeering from yabgp.config import get_bgp_config from yabgp.common import constants as bgp_cons from yabgp.api.app import app from yabgp.channel.config import rabbit_mq from yabgp.channel.config import channle_filter from yabgp.channel.factory import PikaFactory from yabgp.db import config as db_config from yabgp.db.mongodb import MongoApi from yabgp.db import constants as db_cons log.early_init_log(logging.DEBUG) CONF = cfg.CONF LOG = logging.getLogger(__name__) @contextlib.contextmanager def mongo_operation(mongo_conn, connection_name): mongo_conn.collection_name = connection_name db = mongo_conn.get_collection() yield db mongo_conn._close_db() def load_channel_filter_from_db(peer_ip, mongo_api): """ load rabbitmq channle filter from mongodb :return: """ LOG.info('try to load yabgp rabbitmq channel filter from mongodb') mongo_api.collection_name = db_cons.MONGO_COLLECTION_RABBIT_CHANNEL_FILTER try: filter_list = mongo_api.get_collection().find({'peer_ip': peer_ip}) for item in filter_list: if item['value'] not in CONF.rabbit_mq.filter[item['type']]: CONF.rabbit_mq.filter[item['type']][item['value']] = None except Exception as e: LOG.debug(traceback.format_exc()) LOG.error('load failed, %s', e) sys.exit() pass def load_bgp_policy_from_db(mongo_conn, connection_name): """ load bgp policy from mongodb :return: """ pass def check_running_mode(): """ before start the bgp peering, we should check the running mode :return: """ if not CONF.standalone: # not standalone? CONF.register_opts(rabbit_mq, group='rabbit_mq') CONF.register_opts(channle_filter, group='rabbit_mq') db_config.register_options() def check_msg_config(): LOG.info('Check configurations about message process') if CONF.message.write_disk: if not os.path.exists(CONF.message.write_dir): os.makedirs(CONF.message.write_dir) LOG.info('Create dir %s', CONF.message.write_dir) CONF.message.write_msg_max_size = CONF.message.write_msg_max_size * 1024 * 1024 def register_to_db(peer_ip, mongo_api): """ register peer configuration to database :return: """ LOG.info('try to register yabgp agent to database') peer_config = { '_id': '%s:%s:%s' % (CONF.rest.bind_host, CONF.rest.bind_port, peer_ip), 'peer_ip': peer_ip, 'bind_host': CONF.rest.bind_host, 'bind_port': CONF.rest.bind_port, 'local_as': CONF.bgp.running_config[peer_ip]['local_as'], 'local_addr': CONF.bgp.running_config[peer_ip]['local_addr'], 'remote_as': CONF.bgp.running_config[peer_ip]['remote_as'], 'remote_addr': CONF.bgp.running_config[peer_ip]['remote_addr'], 'afi_safi': CONF.bgp.afi_safi, 'tag': CONF.bgp.running_config[peer_ip]['tag'] } mongo_api.collection_name = db_cons.MONGO_COLLECTION_BGP_AGENT try: mongo_api.get_collection().save(peer_config) except Exception as e: LOG.debug(traceback.format_exc()) LOG.error('register failed, %s', e) sys.exit() def prepare_twisted_service(): LOG.info('Prepare twisted services') # check all peers all_peers = {} # check running mode if not CONF.standalone: # rabbitmq factory rabbit_mq_factory = PikaFactory( host=CONF.rabbit_mq.rabbit_host, port=CONF.rabbit_mq.rabbit_port, userid=CONF.rabbit_mq.rabbit_userid, password=CONF.rabbit_mq.rabbit_password ) rabbit_mq_factory.peer_list = CONF.bgp.running_config.keys() rabbit_mq_factory.connect() # mongodb connection if CONF.database.use_replica: mongo_connection = MongoApi( connection_url=CONF.database.connection, db_name=CONF.database.dbname, use_replica=CONF.database.use_replica, replica_name=CONF.database.replica_name, read_preference=CONF.database.read_preference, write_concern=CONF.database.write_concern, w_timeout=CONF.database.write_concern_timeout ) else: mongo_connection = MongoApi(connection_url=CONF.database.connection, db_name=CONF.database.dbname) # check api bind host if CONF.rest.bind_host == '0.0.0.0': LOG.error('please use the exactly rest host ip address when not running in standalone mode') sys.exit() # TODO load channel filter and peer policy else: rabbit_mq_factory = None mongo_connection = None for peer in CONF.bgp.running_config: LOG.info('Get peer %s configuration', peer) if not CONF.standalone: if CONF.bgp.running_config[peer]['local_addr'] == '0.0.0.0': LOG.error('please use the exactly local bgp ip address when not running in standalone mode') sys.exit() if CONF.message.write_disk: msg_file_path_for_peer = os.path.join( CONF.message.write_dir, peer.lower() ) if not os.path.exists(msg_file_path_for_peer): os.makedirs(msg_file_path_for_peer) LOG.info('Create dir %s for peer %s', msg_file_path_for_peer, peer) LOG.info('BGP message file path is %s', msg_file_path_for_peer) else: msg_file_path_for_peer = None LOG.info('Create BGPPeering instance') afi_safi_list = [bgp_cons.AFI_SAFI_STR_DICT[afi_safi] for afi_safi in CONF.bgp.running_config[peer]['afi_safi']] CONF.bgp.running_config[peer]['afi_safi'] = afi_safi_list CONF.bgp.running_config[peer]['capability']['local']['afi_safi'] = afi_safi_list bgp_peering = BGPPeering( myasn=CONF.bgp.running_config[peer]['local_as'], myaddr=CONF.bgp.running_config[peer]['local_addr'], peerasn=CONF.bgp.running_config[peer]['remote_as'], peeraddr=CONF.bgp.running_config[peer]['remote_addr'], tag=CONF.bgp.running_config[peer]['tag'], afisafi=CONF.bgp.running_config[peer]['afi_safi'], msgpath=msg_file_path_for_peer, md5=CONF.bgp.running_config[peer]['md5'], channel=rabbit_mq_factory, mongo_conn=mongo_connection ) all_peers[peer] = bgp_peering CONF.bgp.running_config[peer]['factory'] = bgp_peering # register to database and check agent role if not CONF.standalone: register_to_db(peer_ip=peer, mongo_api=mongo_connection) if not CONF.bgp.running_config[peer]['tag']: LOG.error('Please point out the role tag(SRC,DST or BOTH)for not running in standalone mode') sys.exit() load_channel_filter_from_db(peer_ip=peer, mongo_api=mongo_connection) # Starting api server if sys.version_info[0] == 2: from twisted.web.wsgi import WSGIResource LOG.info("Prepare RESTAPI service") resource = WSGIResource(reactor, reactor.getThreadPool(), app) site = Site(resource) try: reactor.listenTCP(CONF.rest.bind_port, site, interface=CONF.rest.bind_host) LOG.info("serving RESTAPI on http://%s:%s", CONF.rest.bind_host, CONF.rest.bind_port) except Exception as e: LOG.error(e, exc_info=True) sys.exit() for peer in all_peers: LOG.info('start peer, peer address=%s', peer) all_peers[peer].automatic_start() reactor.run() def prepare_service(args=None): try: CONF(args=args, project='yabgp', version=version, default_config_files=['/etc/yabgp/yabgp.ini']) except cfg.ConfigFilesNotFoundError: CONF(args=args, project='yabgp', version=version) check_running_mode() log.init_log() LOG.info('Log (Re)opened.') LOG.info("Configuration:") cfg.CONF.log_opt_values(LOG, logging.INFO) try: get_bgp_config() check_msg_config() except Exception as e: LOG.error(e) LOG.debug(traceback.format_exc()) sys.exit() LOG.info('Starting server in PID %s' % os.getpid()) # write pid file if CONF.pid_file: with open(CONF.pid_file, 'w') as pid_file: pid_file.write(str(os.getpid())) LOG.info('create pid file: %s' % CONF.pid_file) prepare_twisted_service()
2795c6648d7f1266b7f42b4e91725d9f27268dea
b7b2f80ab5e1ee0ea028576e3014b62b8d3a8d7e
/pyedit/pyedit-036/pyedlib/pedfind.py
3ac9395fb86b64616c888b4a839f6c126b4421a4
[]
no_license
pglen/pgpygtk
4d1405478a714f003984cf3e3db04ff1f767470b
33f58010e304f1a312f2356de453ecedb7aa21ef
refs/heads/master
2021-01-22T01:18:52.238415
2019-01-01T01:37:24
2019-01-01T01:37:24
102,215,955
0
0
null
null
null
null
UTF-8
Python
false
false
21,150
py
#!/usr/bin/env python # Action Handler for find import re, string, gtk, glib, gobject, warnings import peddoc, pedync, pedconfig from pedutil import * from pedundo import * strhist = [] stridx = 0 myentry = None # ------------------------------------------------------------------------- def find(self, self2, replace = False): global myentry self.reptxt = "" if replace: head = "pyedit: Find / Replace" else: head = "pyedit: Find in text" dialog = gtk.Dialog(head, None, gtk.DIALOG_MODAL | gtk.DIALOG_DESTROY_WITH_PARENT, (gtk.STOCK_CANCEL, gtk.RESPONSE_REJECT, gtk.STOCK_OK, gtk.RESPONSE_ACCEPT)) dialog.set_default_response(gtk.RESPONSE_ACCEPT) dialog.replace = replace dialog.set_position(gtk.WIN_POS_CENTER) try: dialog.set_icon_from_file(get_img_path("pyedit_sub.png")) except: print "Cannot load find dialog icon", sys.exc_info() self.dialog = dialog # Spacers label1 = gtk.Label(" "); label2 = gtk.Label(" ") label3 = gtk.Label(" "); label4 = gtk.Label(" ") label5 = gtk.Label(" "); label6 = gtk.Label(" ") label7 = gtk.Label(" "); label8 = gtk.Label(" ") warnings.simplefilter("ignore") entry = gtk.Entry(); myentry = entry warnings.simplefilter("default") entry.set_activates_default(True) if self2.oldsearch == "": self2.oldsearch = pedconfig.conf.sql.get_str("src") if self2.oldsearch == None: self2.oldsearch = "" if self2.oldrep == "": self2.oldrep = pedconfig.conf.sql.get_str("rep") if self2.oldrep == None: self2.oldrep = "" # See if we have a selection for search if self2.xsel != -1: xssel = min(self2.xsel, self2.xsel2) xesel = max(self2.xsel, self2.xsel2) yssel = min(self2.ysel, self2.ysel2) yesel = max(self2.ysel, self2.ysel2) if yssel == yesel: self2.oldsearch = self2.text[yssel][xssel:xesel] entry.set_text(self2.oldsearch) dialog.vbox.pack_start(label4) hbox2 = gtk.HBox() hbox2.pack_start(label6, False) hbox2.pack_start(entry) hbox2.pack_start(label7, False) dialog.vbox.pack_start(hbox2) dialog.checkbox = gtk.CheckButton("Use _regular expression") dialog.checkbox2 = gtk.CheckButton("Case In_sensitive") dialog.checkbox.set_active(pedconfig.conf.sql.get_int("regex")) dialog.checkbox2.set_active(pedconfig.conf.sql.get_int("nocase")) dialog.vbox.pack_start(label5) hbox = gtk.HBox() hbox.pack_start(label1); hbox.pack_start(dialog.checkbox) hbox.pack_start(label2); hbox.pack_start(dialog.checkbox2) hbox.pack_start(label3); dialog.vbox.pack_start(hbox) dialog.vbox.pack_start(label8) label30 = gtk.Label(" "); label31 = gtk.Label(" ") label32 = gtk.Label(" "); label33 = gtk.Label(" ") label34 = gtk.Label(" "); label35 = gtk.Label(" ") dialog.checkbox3 = gtk.CheckButton("Search _All Buffers") #dialog.checkbox4 = gtk.CheckButton("Hello") hbox4 = gtk.HBox() hbox4.pack_start(label30); hbox4.pack_start(dialog.checkbox3) #hbox4.pack_start(label31); hbox4.pack_start(dialog.checkbox4) hbox4.pack_start(label32); dialog.vbox.pack_start(hbox4) dialog.vbox.pack_start(label33) if replace: dialog.repl = gtk.Entry(); dialog.repl.set_text(self2.oldrep) dialog.repl.set_activates_default(True) label10 = gtk.Label(" "); label11 = gtk.Label(" ") label12 = gtk.Label(" "); label13 = gtk.Label(" ") hbox3 = gtk.HBox() hbox3.pack_start(label10, False) hbox3.pack_start(dialog.repl) hbox3.pack_start(label11, False) dialog.vbox.pack_start(hbox3) dialog.vbox.pack_start(label12) dialog.connect("key-press-event", find_keypress) dialog.show_all() response = dialog.run() self2.oldsearch = entry.get_text() self.srctxt = entry.get_text() if replace: self.reptxt = dialog.repl.get_text() strhist.append(self.srctxt) dialog.destroy() if response != gtk.RESPONSE_ACCEPT: return if dialog.checkbox3.get_active(): nn = self2.mained.notebook.get_n_pages(); cnt = 0; cnt2 = 0 while True: if cnt >= nn: break ppp = self2.mained.notebook.get_nth_page(cnt) self.xnum = cnt * 4 find_show(self, ppp.area) cnt += 1 else: self.xnum = 0 find_show(self, self2) def find_keypress(area, event): global stridx, strhist, myentry #print "find keypress", area, event if event.type == gtk.gdk.KEY_PRESS: if event.state & gtk.gdk.MOD1_MASK: if event.keyval == gtk.keysyms.Up or \ event.keyval == gtk.keysyms.Left: print "find keypress, alt UP or left key" if stridx < len(strhist): stridx += 1 myentry.set_text(strhist[stridx]); if event.keyval == gtk.keysyms.Down or \ event.keyval == gtk.keysyms.Right: print "find keypress, alt DOWN or right key" if stridx > 0: stridx -= 1 myentry.set_text(strhist[stridx]); # ------------------------------------------------------------------------- def find_show(self, self2): #print "find_show", "'" + self.srctxt + "'" + self2.fname self.regex = None if self.srctxt == "": self2.mained.update_statusbar("Must specify search string") return if self.dialog.checkbox.get_active(): self.dialog.checkbox2.set_active(False) try: self.regex = re.compile(self.srctxt) except re.error, msg: #print sys.exc_info() pedync.message("\n Error in regular expression: \n\n"\ " '%s' -- %s" % (self.srctxt, msg),\ None, gtk.MESSAGE_ERROR) return win2 = gtk.Window() #win2.set_position(gtk.WIN_POS_CENTER) try: win2.set_icon_from_file(get_img_path("pyedit_sub.png")) except: print "Cannot load icon" ff = os.path.basename(self2.fname) if self.dialog.replace: tit = "%s Search '%s' -- Replace '%s'" % \ (ff, self.srctxt, self.reptxt) else: tit = "%s Searching '%s'" % (ff, self.srctxt) win2.set_title(tit) win2.set_events( gtk.gdk.POINTER_MOTION_MASK | gtk.gdk.POINTER_MOTION_HINT_MASK | gtk.gdk.BUTTON_PRESS_MASK | gtk.gdk.BUTTON_RELEASE_MASK | gtk.gdk.KEY_PRESS_MASK | gtk.gdk.KEY_RELEASE_MASK | gtk.gdk.FOCUS_CHANGE_MASK ) win2.connect("key-press-event", area_key, self) win2.connect("key-release-event", area_key, self) win2.connect("focus-in-event", area_focus, self, self2) win2.connect("unmap", area_destroy, self) oldxx = pedconfig.conf.sql.get_int("srcx") oldyy = pedconfig.conf.sql.get_int("srcy") oldww = pedconfig.conf.sql.get_int("srcw") oldhh = pedconfig.conf.sql.get_int("srch") #print "win2 oldconfig (x y w h) xnum", oldxx, oldyy, oldww, oldhh, self.xnum if True or oldww == 0 or oldhh == 0 or oldxx == 0 or oldyy == 0: # Position it out of the way sxx, syy = self2.mained.window.get_position() wxx, wyy = self2.mained.window.get_size() myww = 3 * wxx / 8; myhh = 3 * wyy / 8 win2.set_default_size(myww, myhh) win2.move(sxx + wxx - (myww + self.xnum), \ syy + wyy - (myhh + self.xnum)) else: # Restore old size / location win2.set_default_size(oldww, oldhh) #win2.move(oldxx + self.xnum, oldyy + self.xnum) win2.move(oldxx, oldyy) vbox = gtk.VBox() win2.treestore = None win2.tree = create_tree(self, win2, self.srctxt) win2.tree.set_headers_visible(False) win2.tree.get_selection().set_mode(gtk.SELECTION_MULTIPLE) if self.dialog.replace: butt2 = gtk.Button(" Change _One ") butt2.connect("clicked", chg_one, self, self2, win2) butt3 = gtk.Button(" Change _Selected "); butt3.connect("clicked", chg_sel, self, self2, win2) butt4 = gtk.Button(" Change _All "); butt4.connect("clicked", chg_all, self, self2, win2) lab1 = gtk.Label(" "); lab2 = gtk.Label(" "); hbox4 = gtk.HBox() hbox4.pack_start(lab1) hbox4.pack_start(butt2, False) hbox4.pack_start(butt3, False) hbox4.pack_start(butt4, False) hbox4.pack_start(lab2) lab3 = gtk.Label(" "); vbox.pack_start(lab3, False) vbox.pack_start(hbox4, False) lab4 = gtk.Label(" "); vbox.pack_start(lab4, False) #self.tree.connect("row-activated", tree_sel, self, self2) win2.tree.connect("cursor-changed", tree_sel_row, self, self2) stree = gtk.ScrolledWindow() stree.add(win2.tree) vbox.pack_start(stree) win2.add(vbox) win2.show_all() # --------------------------------------------------------------------- was, cnt2 = self2.search(self.srctxt, self.regex, self.dialog.checkbox2.get_active(), self.dialog.checkbox.get_active()) update_treestore(self, win2, self2.accum, was) self2.mained.update_statusbar("Found %d matches." % cnt2) pedconfig.conf.sql.put("src", self.srctxt) pedconfig.conf.sql.put("regex", self.dialog.checkbox.get_active()) pedconfig.conf.sql.put("nocase", self.dialog.checkbox2.get_active()) if self.reptxt != "": pedconfig.conf.sql.put("rep", self.reptxt) win2.tree.grab_focus() def area_destroy(win2, self): '''# What a mess ... getting window coordinates. Fulile attempts below oldxx, oldyy = win2.get_position() oldww, oldhh = win2.get_size() #print "old save coord", oldxx, oldyy, oldww, oldhh xx,yy,ww,hh = win2.get_allocation() #print "save alloc", xx, yy, ww, hh aa,bb,cc,dd,ee = gtk.gdk.Window.get_geometry(win2.window) #print "save geom",aa,bb,cc,dd''' # Finally, gdk delivers an up to date position oldxx, oldyy = gtk.gdk.Window.get_position(win2.window) oldww, oldhh = win2.get_size() #print "save coord", oldxx, oldyy, oldww, oldhh pedconfig.conf.sql.put("srcx", oldxx) pedconfig.conf.sql.put("srcy", oldyy) pedconfig.conf.sql.put("srcw", oldww) pedconfig.conf.sql.put("srch", oldhh) ''' # ------------------------------------------------------------------------- # Locate line: def src_line2(self, self2, line, cnt): idx = 0; idx2 = 0; mlen = len(self.srctxt) accum = [] while True: if self.dialog.checkbox2.get_active(): idx = line.lower().find(self.srctxt.lower(), idx) idx2 = idx elif self.dialog.checkbox.get_active(): line2 = line[idx:] #print "line2", line2 if line2 == "": idx = -1 break res = self.regex.search(line2) #print res, res.start(), res.end() if res: idx = res.start() + idx # Null match, ignore it ('*' with zero length match) if res.end() == res.start(): #print "null match", idx, res.start(), res.end() # Proceed no matter what if res.end() != 0: idx = res.end() + 1 else: idx += 1 continue idx2 = res.end() + idx mlen = res.end() - res.start() #print "match", line2[res.start():res.end()] else: idx = -1 break else: idx = line.find(self.srctxt, idx) idx2 = idx if idx >= 0: line2 = str(idx) + ":" + str(cnt) +\ ":" + str(mlen) + " " + line #cnt2 += 1 #self2.accum.append(line2) accum.append(line2) idx = idx2 + 1 else: break return accum ''' # ------------------------------------------------------------------------- def tree_sel_row(xtree, self, self2): sel = xtree.get_selection() xmodel, xiter = sel.get_selected_rows() # In muti selection, only process first for aa in xiter: xstr = xmodel.get_value(xmodel.get_iter(aa), 0) #print "Selected:", xstr break # Get back numbers (the C++ way) #idx = xstr.find(":"); xxx = xstr[:idx] #idx2 = xstr.find(":", idx+1); yyy = xstr[idx+1:idx2] #idx3 = xstr.find(" ", idx2+1); mlen = xstr[idx2+1:idx3] # Get back numbers the python way try: bb = xstr.split(" ")[0].split(":") except: pass # Confirm results: # print "TREE sel", bb try: self2.gotoxy(int(bb[0]), int(bb[1]), int(bb[2]), True) except: pass # Focus on the current window def area_focus(area, event, self, self2): #print "area_focus" nn = self2.notebook.get_n_pages(); for aa in range(nn): vcurr = self2.notebook.get_nth_page(aa) if vcurr.area == self2: self2.notebook.set_current_page(aa) self2.mained.window.set_focus(vcurr.area) # Call key handler def area_key(area, event, self): #print "area_key", event # Do key down: if event.type == gtk.gdk.KEY_PRESS: if event.keyval == gtk.keysyms.Escape: #print "Esc" area.destroy() if event.type == gtk.gdk.KEY_PRESS: if event.keyval == gtk.keysyms.Return: #print "Ret" area.destroy() if event.keyval == gtk.keysyms.Alt_L or \ event.keyval == gtk.keysyms.Alt_R: self.alt = True; if event.keyval >= gtk.keysyms._1 and \ event.keyval <= gtk.keysyms._9: print "pedwin Alt num", event.keyval - gtk.keysyms._1 if event.keyval == gtk.keysyms.x or \ event.keyval == gtk.keysyms.X: if self.alt: area.destroy() elif event.type == gtk.gdk.KEY_RELEASE: if event.keyval == gtk.keysyms.Alt_L or \ event.keyval == gtk.keysyms.Alt_R: self.alt = False; # Tree handlers def start_tree(self, win2): if not win2.treestore: win2.treestore = gtk.TreeStore(str) # Delete previous contents try: while True: root = win2.treestore.get_iter_first() win2.treestore.remove(root) except: #print sys.exc_info() pass piter = win2.treestore.append(None, ["Searching .."]) win2.treestore.append(piter, ["None .."]) # ------------------------------------------------------------------------- def create_tree(self, win2, match, text = None): start_tree(self, win2) # create the TreeView using treestore tv = gtk.TreeView(win2.treestore) tv.set_enable_search(True) # create a CellRendererText to render the data cell = gtk.CellRendererText() # create the TreeViewColumn to display the data #tvcolumn = gtk.TreeViewColumn("Matches for '" + match + "'") tvcolumn = gtk.TreeViewColumn() # add the cell to the tvcolumn and allow it to expand tvcolumn.pack_start(cell, True) # set the cell "text" attribute to column 0 - retrieve text # from that column in treestore tvcolumn.add_attribute(cell, 'text', 0) # add tvcolumn to treeview tv.append_column(tvcolumn) return tv def update_treestore(self, win2, text, was): #print "was", was # Delete previous contents try: while True: root = win2.treestore.get_iter_first() win2.treestore.remove(root) except: pass #print sys.exc_info() if not text: win2.treestore.append(None, ["No Match",]) return cnt = 0; piter2 = None; next = False try: for line in text: piter = win2.treestore.append(None, [cut_lead_space(line)]) if next: next = False; piter2 = piter if cnt == was: next = True cnt += 1 except: pass #print sys.exc_info() if piter2: win2.tree.set_cursor(win2.treestore.get_path(piter2)) else: root = win2.treestore.get_iter_first() win2.tree.set_cursor(win2.treestore.get_path(root)) # ------------------------------------------------------------------------- # Change current item in the list def chg_one(butt, self, self2, win2, iter = None): single = (iter == None) sel = win2.tree.get_selection() xmodel, xiter = sel.get_selected_rows() # Iter from wrappers? if iter: sel.select_path(xmodel.get_path(iter)) else: # In muti selection, only process first for aa in xiter: iter = xmodel.get_iter(aa) sel.select_path(xmodel.get_path(iter)) break if iter == None: self2.mained.update_statusbar("Nothing selected") return if single: self2.undoarr.append((0, 0, NOOP, "")) xstr = xmodel.get_value(iter, 0) bb = xstr.split(" ")[0].split(":") #print "ch_one", bb self2.gotoxy(int(bb[0]), int(bb[1]), int(bb[2]), True) self.cut(self2, True, False) self.clip_cb(None, self.reptxt, self2, False) newstr = self2.text[int(bb[1])] #print "newstr", newstr sel.unselect_all() if single: # Re-read list. Dirty hack, but makes it cleaner was, cnt2 = self2.search(self.srctxt, self.regex, self.dialog.checkbox2.get_active(), self.dialog.checkbox.get_active()) update_treestore(self, win2, self2.accum, was-1) return next # ------------------------------------------------------------------------- def chg_all(butt, self, self2, win2): win2.tree.get_selection().select_all() chg_sel(butt, self, self2, win2) def chg_sel(butt, self, self2, win2): iters = []; cnt2 = 0 sel = win2.tree.get_selection() xmodel, xiter = sel.get_selected_rows() # Create a list of changes for aa in xiter: iter = xmodel.get_iter(aa) iters.append(iter) sel.unselect_all() self2.undoarr.append((0, 0, NOOP, "")) # Change in reverse order, so we do not create gaps iters.reverse() for iter in iters: chg_one(butt, self, self2, win2, iter) if cnt2 % 10 == 0: usleep(1) cnt2 += 1 self2.mained.update_statusbar("Changed %d items" % cnt2) win2.destroy() def wclose(butt,self): #print "xclose" pass def wprev(butt,self): #print "wprev" pass def wnext(butt,self): #print "wnext" pass
34d3bd0138a6b1ff374de550600bd1e994e01e20
15fb62305a2fa0146cc84b289642cc01a8407aab
/Python/230-KthSmallestElementInBST.py
e1fce7116f90027161bad3e1f527125aaa0290c7
[]
no_license
geniousisme/leetCode
ec9bc91864cbe7520b085bdab0db67539d3627bd
6e12d67e4ab2d197d588b65c1ddb1f9c52a7e047
refs/heads/master
2016-09-09T23:34:03.522079
2015-09-23T16:15:05
2015-09-23T16:15:05
32,052,408
1
0
null
null
null
null
UTF-8
Python
false
false
1,342
py
# Definition for a binary tree node. class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: # @param {TreeNode} root # @param {integer} k # @return {integer} def recurKthSmallest(self, root, k): res = [] self.inorderTraversal(root.left, res) return res[k - 1] def inorderTraversal(self, root, res): if root: self.inorderTraversal(root.left, res) res.append(root.val) self.inorderTraversal(root.right, res) return def kthSmallest(self, root, k): stack = [] node = root while node: stack.append(node) node = node.left count = 1 while stack and count <= k: node = stack.pop() count += 1 right = node.right while right: stack.append(right) right = right.left return node.val if __name__ == '__main__': s = Solution() test = TreeNode(4) test.left = TreeNode(2) test.right = TreeNode(6) test.left.left = TreeNode(1) test.left.right = TreeNode(3) test.right.left = TreeNode(5) test.right.right = TreeNode(7) # print s.countTreeNum(test) s.kthSmallest(test, 1)
755d6aaeee71030185d492833dfef66356bbd803
d293b1b5037f7e493eddbe8572cc03ffd9f78890
/code/sort.py
574a24cd3b45ffb3a643147fc331bc61787fd95d
[]
no_license
weilaidb/pyqt5
49f587e6ec3b74f6b27f070cd007a6946a26820a
0ad65ed435ecfc87ca32e392bbf67973b4b13e68
refs/heads/master
2020-03-07T23:04:51.365624
2018-08-01T15:30:44
2018-08-01T15:30:44
127,771,719
1
0
null
null
null
null
UTF-8
Python
false
false
316
py
#!/usr/bin/python3 # -*- coding: utf-8 -*- print(sorted([36, 5, -12, 9, -21])) print(sorted([36, 5, -12, 9, -21], key=abs)) print(sorted(['bob', 'about', 'Zoo', 'Credit'])) print(sorted(['bob', 'about', 'Zoo', 'Credit'], key=str.lower)) print(sorted(['bob', 'about', 'Zoo', 'Credit'], key=str.lower, reverse=True))
d49d9eb6c8717ccde8a3a9fb5629628f7f989129
ecf0d106831b9e08578845674a457a166b6e0a14
/OOP/inheritance_EXERCISE/players_and_monsters/project/blade_knight.py
f3fe7f02553cff2f5de2b7045840784a828df529
[]
no_license
ivo-bass/SoftUni-Solutions
015dad72cff917bb74caeeed5e23b4c5fdeeca75
75612d4bdb6f41b749e88f8d9c512d0e00712011
refs/heads/master
2023-05-09T23:21:40.922503
2021-05-27T19:42:03
2021-05-27T19:42:03
311,329,921
8
5
null
null
null
null
UTF-8
Python
false
false
169
py
from project.dark_knight import DarkKnight class BladeKnight(DarkKnight): def __init__(self, username: str, level: int): super().__init__(username, level)
ae7b77baced08878c051998a52c52e932ab8b76b
1aebc65860ed3e45390c83f57d4345a2fd0c1b0b
/tests/unit/customizations/test_assumerole.py
ad6fdddbaa34bc044f11a3f63b1955468040bc6c
[ "Apache-2.0" ]
permissive
andhit-r/aws-cli
a1f572eb1328e4c5826d94d17a46e1e74399a3c8
d1737a6031b104efb814e7446fe98640135afadd
refs/heads/develop
2021-01-24T14:18:37.612517
2015-10-23T20:18:54
2015-10-23T20:18:54
44,942,247
0
1
null
2015-10-26T02:56:02
2015-10-26T02:56:02
null
UTF-8
Python
false
false
16,206
py
# Copyright 2014 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. import shutil import tempfile import os import platform from datetime import datetime, timedelta import mock from botocore.hooks import HierarchicalEmitter from botocore.exceptions import PartialCredentialsError from dateutil.tz import tzlocal from awscli.testutils import unittest from awscli.customizations import assumerole class TestAssumeRolePlugin(unittest.TestCase): def test_assume_role_provider_injected(self): session = mock.Mock() assumerole.inject_assume_role_provider( session, event_name='building-command-table.foo') session.get_component.assert_called_with('credential_provider') credential_provider = session.get_component.return_value call_args = credential_provider.insert_before.call_args[0] self.assertEqual(call_args[0], 'shared-credentials-file') self.assertIsInstance(call_args[1], assumerole.AssumeRoleProvider) def test_assume_role_provider_registration(self): event_handlers = HierarchicalEmitter() assumerole.register_assume_role_provider(event_handlers) session = mock.Mock() event_handlers.emit('session-initialized', session=session) # Just verifying that anything on the session was called ensures # that our handler was called, as it's the only thing that should # be registered. session.get_component.assert_called_with('credential_provider') def test_provider_not_registered_on_error(self): session = mock.Mock() session.get_component.side_effect = Exception( "Couldn't get credential_provider.") assumerole.inject_assume_role_provider( session, event_name='building-command-table.foo') self.assertFalse( session.get_component.return_value.insert_before.called) class TestAssumeRoleCredentialProvider(unittest.TestCase): maxDiff = None def setUp(self): self.fake_config = { 'profiles': { 'development': { 'role_arn': 'myrole', 'source_profile': 'longterm', }, 'longterm': { 'aws_access_key_id': 'akid', 'aws_secret_access_key': 'skid', } } } def create_config_loader(self, with_config=None): if with_config is None: with_config = self.fake_config load_config = mock.Mock() load_config.return_value = with_config return load_config def create_client_creator(self, with_response): # Create a mock sts client that returns a specific response # for assume_role. client = mock.Mock() client.assume_role.return_value = with_response return mock.Mock(return_value=client) def test_assume_role_with_no_cache(self): response = { 'Credentials': { 'AccessKeyId': 'foo', 'SecretAccessKey': 'bar', 'SessionToken': 'baz', 'Expiration': datetime.now(tzlocal()).isoformat() }, } client_creator = self.create_client_creator(with_response=response) provider = assumerole.AssumeRoleProvider( self.create_config_loader(), client_creator, cache={}, profile_name='development') credentials = provider.load() self.assertEqual(credentials.access_key, 'foo') self.assertEqual(credentials.secret_key, 'bar') self.assertEqual(credentials.token, 'baz') def test_assume_role_retrieves_from_cache(self): date_in_future = datetime.utcnow() + timedelta(seconds=1000) utc_timestamp = date_in_future.isoformat() + 'Z' self.fake_config['profiles']['development']['role_arn'] = 'myrole' cache = { 'development--myrole': { 'Credentials': { 'AccessKeyId': 'foo-cached', 'SecretAccessKey': 'bar-cached', 'SessionToken': 'baz-cached', 'Expiration': utc_timestamp, } } } provider = assumerole.AssumeRoleProvider( self.create_config_loader(), mock.Mock(), cache=cache, profile_name='development') credentials = provider.load() self.assertEqual(credentials.access_key, 'foo-cached') self.assertEqual(credentials.secret_key, 'bar-cached') self.assertEqual(credentials.token, 'baz-cached') def test_cache_key_is_windows_safe(self): response = { 'Credentials': { 'AccessKeyId': 'foo', 'SecretAccessKey': 'bar', 'SessionToken': 'baz', 'Expiration': datetime.now(tzlocal()).isoformat() }, } cache = {} self.fake_config['profiles']['development']['role_arn'] = ( 'arn:aws:iam::foo-role') client_creator = self.create_client_creator(with_response=response) provider = assumerole.AssumeRoleProvider( self.create_config_loader(), client_creator, cache=cache, profile_name='development') provider.load() # On windows, you cannot use a a ':' in the filename, so # we need to do some small transformations on the filename # to replace any ':' that come up. self.assertEqual(cache['development--arn_aws_iam__foo-role'], response) def test_cache_key_with_role_session_name(self): response = { 'Credentials': { 'AccessKeyId': 'foo', 'SecretAccessKey': 'bar', 'SessionToken': 'baz', 'Expiration': datetime.now(tzlocal()).isoformat() }, } cache = {} self.fake_config['profiles']['development']['role_arn'] = ( 'arn:aws:iam::foo-role') self.fake_config['profiles']['development']['role_session_name'] = ( 'foo_role_session_name') client_creator = self.create_client_creator(with_response=response) provider = assumerole.AssumeRoleProvider( self.create_config_loader(), client_creator, cache=cache, profile_name='development') provider.load() self.assertEqual(cache['development--arn_aws_iam__foo-role--foo_role_session_name'], response) def test_assume_role_in_cache_but_expired(self): expired_creds = datetime.utcnow() utc_timestamp = expired_creds.isoformat() + 'Z' response = { 'Credentials': { 'AccessKeyId': 'foo', 'SecretAccessKey': 'bar', 'SessionToken': 'baz', 'Expiration': utc_timestamp, }, } client_creator = self.create_client_creator(with_response=response) cache = { 'development--myrole': { 'Credentials': { 'AccessKeyId': 'foo-cached', 'SecretAccessKey': 'bar-cached', 'SessionToken': 'baz-cached', 'Expiration': utc_timestamp, } } } provider = assumerole.AssumeRoleProvider( self.create_config_loader(), client_creator, cache=cache, profile_name='development') credentials = provider.load() self.assertEqual(credentials.access_key, 'foo') self.assertEqual(credentials.secret_key, 'bar') self.assertEqual(credentials.token, 'baz') def test_role_session_name_provided(self): self.fake_config['profiles']['development']['role_session_name'] = 'myname' response = { 'Credentials': { 'AccessKeyId': 'foo', 'SecretAccessKey': 'bar', 'SessionToken': 'baz', 'Expiration': datetime.now(tzlocal()).isoformat(), }, } client_creator = self.create_client_creator(with_response=response) provider = assumerole.AssumeRoleProvider( self.create_config_loader(), client_creator, cache={}, profile_name='development') provider.load() client = client_creator.return_value client.assume_role.assert_called_with( RoleArn='myrole', RoleSessionName='myname') def test_external_id_provided(self): self.fake_config['profiles']['development']['external_id'] = 'myid' response = { 'Credentials': { 'AccessKeyId': 'foo', 'SecretAccessKey': 'bar', 'SessionToken': 'baz', 'Expiration': datetime.now(tzlocal()).isoformat(), }, } client_creator = self.create_client_creator(with_response=response) provider = assumerole.AssumeRoleProvider( self.create_config_loader(), client_creator, cache={}, profile_name='development') provider.load() client = client_creator.return_value client.assume_role.assert_called_with( RoleArn='myrole', ExternalId='myid', RoleSessionName=mock.ANY) def test_assume_role_with_mfa(self): self.fake_config['profiles']['development']['mfa_serial'] = 'mfa' response = { 'Credentials': { 'AccessKeyId': 'foo', 'SecretAccessKey': 'bar', 'SessionToken': 'baz', 'Expiration': datetime.now(tzlocal()).isoformat(), }, } client_creator = self.create_client_creator(with_response=response) prompter = mock.Mock(return_value='token-code') provider = assumerole.AssumeRoleProvider( self.create_config_loader(), client_creator, cache={}, profile_name='development', prompter=prompter) provider.load() client = client_creator.return_value # In addition to the normal assume role args, we should also # inject the serial number from the config as well as the # token code that comes from prompting the user (the prompter # object). client.assume_role.assert_called_with( RoleArn='myrole', RoleSessionName=mock.ANY, SerialNumber='mfa', TokenCode='token-code') def test_assume_role_mfa_cannot_refresh_credentials(self): # Note: we should look into supporting optional behavior # in the future that allows for reprompting for credentials. # But for now, if we get temp creds with MFA then when those # creds expire, we can't refresh the credentials. self.fake_config['profiles']['development']['mfa_serial'] = 'mfa' response = { 'Credentials': { 'AccessKeyId': 'foo', 'SecretAccessKey': 'bar', 'SessionToken': 'baz', # We're creating an expiry time in the past so as # soon as we try to access the credentials, the # refresh behavior will be triggered. 'Expiration': ( datetime.now(tzlocal()) - timedelta(seconds=100)).isoformat(), }, } client_creator = self.create_client_creator(with_response=response) provider = assumerole.AssumeRoleProvider( self.create_config_loader(), client_creator, cache={}, profile_name='development', prompter=mock.Mock(return_value='token-code')) creds = provider.load() with self.assertRaises(assumerole.RefreshWithMFAUnsupportedError): # access_key is a property that will refresh credentials # if they're expired. Because we set the expiry time to # something in the past, this will trigger the refresh # behavior, with with MFA will currently raise an exception. creds.access_key def test_no_config_is_noop(self): self.fake_config['profiles']['development'] = { 'aws_access_key_id': 'foo', 'aws_secret_access_key': 'bar', } provider = assumerole.AssumeRoleProvider( self.create_config_loader(), mock.Mock(), cache={}, profile_name='development') # Because a role_arn was not specified, the AssumeRoleProvider # is a noop and will not return credentials (which means we # move on to the next provider). credentials = provider.load() self.assertIsNone(credentials) def test_source_profile_not_provided(self): del self.fake_config['profiles']['development']['source_profile'] provider = assumerole.AssumeRoleProvider( self.create_config_loader(), mock.Mock(), cache={}, profile_name='development') # source_profile is required, we shoudl get an error. with self.assertRaises(PartialCredentialsError): provider.load() def test_source_profile_does_not_exist(self): dev_profile = self.fake_config['profiles']['development'] dev_profile['source_profile'] = 'does-not-exist' provider = assumerole.AssumeRoleProvider( self.create_config_loader(), mock.Mock(), cache={}, profile_name='development') # source_profile is required, we shoudl get an error. with self.assertRaises(assumerole.InvalidConfigError): provider.load() class TestJSONCache(unittest.TestCase): def setUp(self): self.tempdir = tempfile.mkdtemp() self.cache = assumerole.JSONFileCache(self.tempdir) def tearDown(self): shutil.rmtree(self.tempdir) def test_supports_contains_check(self): # By default the cache is empty because we're # using a new temp dir everytime. self.assertTrue('mykey' not in self.cache) def test_add_key_and_contains_check(self): self.cache['mykey'] = {'foo': 'bar'} self.assertTrue('mykey' in self.cache) def test_added_key_can_be_retrieved(self): self.cache['mykey'] = {'foo': 'bar'} self.assertEqual(self.cache['mykey'], {'foo': 'bar'}) def test_only_accepts_json_serializable_data(self): with self.assertRaises(ValueError): # set()'s cannot be serialized to a JSOn string. self.cache['mykey'] = set() def test_can_override_existing_values(self): self.cache['mykey'] = {'foo': 'bar'} self.cache['mykey'] = {'baz': 'newvalue'} self.assertEqual(self.cache['mykey'], {'baz': 'newvalue'}) def test_can_add_multiple_keys(self): self.cache['mykey'] = {'foo': 'bar'} self.cache['mykey2'] = {'baz': 'qux'} self.assertEqual(self.cache['mykey'], {'foo': 'bar'}) self.assertEqual(self.cache['mykey2'], {'baz': 'qux'}) def test_working_dir_does_not_exist(self): working_dir = os.path.join(self.tempdir, 'foo') cache = assumerole.JSONFileCache(working_dir) cache['foo'] = {'bar': 'baz'} self.assertEqual(cache['foo'], {'bar': 'baz'}) def test_key_error_raised_when_cache_key_does_not_exist(self): with self.assertRaises(KeyError): self.cache['foo'] @unittest.skipIf(platform.system() not in ['Darwin', 'Linux'], 'File permissions tests not supported on Windows.') def test_permissions_for_file_restricted(self): self.cache['mykey'] = {'foo': 'bar'} filename = os.path.join(self.tempdir, 'mykey.json') self.assertEqual(os.stat(filename).st_mode & 0xFFF, 0o600)
d86ebf62cfba1698923c1901510e7e9f1be2816c
955b968d46b4c436be55daf8aa1b8fc8fe402610
/other/get_timezone.py
d32feb2a1fb16ad7235d22228884263287fa7712
[]
no_license
han-huang/python_selenium
1c8159fd1421b1f0e87cb0df20ae4fe82450f879
56f9f5e5687cf533c678a1c12e1ecaa4c50a7795
refs/heads/master
2020-03-09T02:24:48.882279
2018-04-07T15:06:18
2018-04-07T15:06:18
128,535,917
0
0
null
null
null
null
UTF-8
Python
false
false
2,387
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from time import gmtime, strftime, localtime import locale, time, sys # Windows 10 platform tz1 = strftime("%z", gmtime()) print('gmtime()', gmtime()) print(tz1) # +0800 tz2 = strftime("%z", localtime()) print('localtime()', localtime()) print(tz2) # +0800 print() tz3 = strftime("%Z", localtime()) print(tz3) # https://segmentfault.com/a/1190000007598639 # 當在shell裡啟動python repl(交互器)時,默認的環境local設置為'C', 也就是沒有當地語系化設置, # 這時候可以通過 locale.getdefaultlocale() 來查看shell當前環境的locale設置, 並通過 locale.setlocale(locale.LC_ALL, '') # 將python解譯器的locale設置成shell環境的locale print('locale.getlocale()', locale.getlocale()) print('locale.getdefaultlocale()', locale.getdefaultlocale()) locale.setlocale(locale.LC_ALL, '') print('locale.getlocale()', locale.getlocale()) tz4 = strftime("%Z", localtime()) print(tz4) # 台北標準時間 print() # http://bbs.fishc.com/thread-76584-1-1.html # >>> [bytes([ord(c) for c in s]).decode('gbk') for s in time.tzname ] # ['中国标准时间', '中国标准时间'] tz5 = time.tzname print(tz5) tz6 = [bytes([ord(c) for c in s]).decode('big5') for s in time.tzname] print(tz6) # ['台北標準時間', '台北日光節約時間'] print() print('sys.stdout.encoding', sys.stdout.encoding) # sys.stdout.encoding utf-8 print('sys.getdefaultencoding()', sys.getdefaultencoding()) # sys.stdout.encoding utf-8 print() # https://docs.python.org/3/library/functions.html#ord # ord(c) # Given a string representing one Unicode character, return an integer representing the Unicode code point of that character. # For example, ord('a') returns the integer 97 and ord('€') (Euro sign) returns 8364. This is the inverse of chr(). print(ord('a')) # 97 print(chr(97)) # a print() print(ord('€')) # 8364 print(chr(8364)) # € print() # https://r12a.github.io/app-conversion/ print(ord('\u6642')) # 26178 print(ord('時')) # 26178 print(chr(26178)) # 時 data_utf8 = b'\xE6\x99\x82' # https://r12a.github.io/app-conversion/ 時 UTF-8 code units E6 99 82 print("data_utf8.decode('utf_8')",data_utf8.decode('utf_8')) # data_utf8.decode('utf_8') 時 print("data_utf8.decode('utf_8').encode('utf_8')",data_utf8.decode('utf_8').encode('utf_8')) # data_utf8.decode('utf_8').encode('utf_8') b'\xe6\x99\x82'
[ "vagrant@LaravelDemoSite" ]
vagrant@LaravelDemoSite
61144733a7ba970967c47e9af7a46cadf1f7c2db
3be8b5d0334de1f3521dd5dfd8a58704fb8347f9
/create_session_index.py
dc01fc1ffa77f8416331b23701799095cea70a20
[ "MIT" ]
permissive
bmillham/djrq2
21a8cbc3087d7ad46087cd816892883cd276db7d
5f357b3951600a9aecbe6c50727891b1485df210
refs/heads/master
2023-07-07T01:07:35.093669
2023-06-26T05:21:33
2023-06-26T05:21:33
72,969,773
1
0
null
null
null
null
UTF-8
Python
false
false
239
py
""" Run this one time, to setup the automatic expiration of sessions """ from web.app.djrq.model.session import Session from pymongo import MongoClient collection = MongoClient().djrq2.sessions Session._expires.create_index(collection)
0f5084fe7deefe3d514592c7c60d72832e33f11f
066612a390af03bb170d74a21b0fb0b7bcbfe524
/tests/testcases.py
12602c0da2e5760fc9d92fd91d9c22da1a2732ca
[ "MIT" ]
permissive
kikeh/django-graphql-extensions
873577cc9e0085630889fea9fa5539962c31dbcc
951b295235ca68270066cc70148e2ae937d4eb56
refs/heads/master
2020-12-26T05:23:12.039826
2020-01-31T09:41:43
2020-01-31T09:41:43
237,398,866
0
0
MIT
2020-01-31T09:32:25
2020-01-31T09:32:24
null
UTF-8
Python
false
false
685
py
from django.contrib.auth import get_user_model from django.contrib.auth.models import Group from django.test import testcases from graphql_extensions import testcases as extensions_testcases from . import schema class TestCase(testcases.TestCase): def setUp(self): self.group = Group.objects.create(name='flavors') self.user = get_user_model().objects.create_user( username='test', password='dolphins') class SchemaTestCase(TestCase, extensions_testcases.SchemaTestCase): Query = schema.Query Mutations = None def setUp(self): super().setUp() self.client.schema(query=self.Query, mutation=self.Mutations)
273fd9f145e716e3be92436742505363a1f97b3e
a6e812e138640e63ccf25bc795d08cea584031e8
/Codeforces/381/A.py
a56be37e923308335c6c7e716b4f91442338b30a
[]
no_license
abhigupta4/Competitive-Coding
b80de4cb5d5cf0cf14266b2d05f9434348f51a9e
5ec0209f62a7ee38cb394d1a00dc8f2582ff09be
refs/heads/master
2021-01-17T06:54:12.707692
2020-12-10T18:00:17
2020-12-10T18:00:17
49,972,984
1
0
null
null
null
null
UTF-8
Python
false
false
189
py
def ii(): return map(int,raw_input().split()) n,a,b,c = ii() if n%4 == 0: print 0 elif n%4 == 1: print min(c,3*a,b+a) elif n%4 == 2: print min(2*a,b,2*c) else: print min(a,b+c,3*c)
9bb1fba15b061678ffcff2219bc7888f2a3681bd
963a49b8a48764929169edb57e492b5021331c87
/tests/volume_system_test.py
5d4b9236f96e02ee546f514160efbb9699654d30
[ "MIT" ]
permissive
ralphje/imagemounter
d0e73b72fe354c23607361db26906e1976b5d8ee
383b30b17fe24df64ccef071ffb5443abf203368
refs/heads/master
2023-02-22T14:27:54.279724
2022-04-04T15:08:56
2022-04-04T15:08:56
16,476,185
98
51
MIT
2023-02-09T10:49:23
2014-02-03T10:27:32
Python
UTF-8
Python
false
false
869
py
import sys from imagemounter._util import check_output_ from imagemounter.disk import Disk from imagemounter.parser import ImageParser class TestParted: def test_parted_requests_input(self, mocker): check_output = mocker.patch("imagemounter.volume_system._util.check_output_") def modified_command(cmd, *args, **kwargs): if cmd[0] == 'parted': # A command that requests user input return check_output_([sys.executable, "-c", "exec(\"try: input('>> ')\\nexcept: pass\")"], *args, **kwargs) return mocker.DEFAULT check_output.side_effect = modified_command disk = Disk(ImageParser(), path="...") list(disk.volumes.detect_volumes(method='parted')) check_output.assert_called() # TODO: kill process when test fails
e77a593197bf45d0a7c18466dd8753c90f6313e4
6e701e3cff75a12a6f7f591fab440e62c2ecb198
/bookmarks/settings/base.py
1e1ddc46ec07903323915f87ddcaa7b1e3b5622a
[]
no_license
WellingtonIdeao/d3ex_bookmarks
10350f54c396881bc9e81b96cb86d3f6d74c8b34
52c1a5493202dc415f00c4d63b64e9533ac1845d
refs/heads/main
2023-06-07T02:40:34.806602
2021-07-06T00:30:28
2021-07-06T00:30:28
381,181,357
0
0
null
null
null
null
UTF-8
Python
false
false
3,172
py
""" Django settings for bookmarks project. Generated by 'django-admin startproject' using Django 3.2.4. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ import os.path from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent.parent # Application definition INSTALLED_APPS = [ 'account.apps.AccountConfig', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'social_django', 'images.apps.ImagesConfig', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'bookmarks.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'bookmarks.wsgi.application' # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'pt-br' TIME_ZONE = 'America/Recife' USE_I18N = True USE_L10N = True USE_TZ = False # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'staticfiles') MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField' LOGIN_URL = 'account:login' LOGIN_REDIRECT_URL = 'account:dashboard' LOGOUT_URL = 'account:logout' AUTHENTICATION_BACKENDS = [ 'django.contrib.auth.backends.ModelBackend', 'account.authentication.EmailAuthBackend', 'social_core.backends.facebook.FacebookOAuth2', ]
ec27a29626174e37914d48b357b7324a2522650f
b0c88350eadcbbeab3d9ebb5ea3a2efccc7d95e9
/classicalml/regression_targetscaling/cveval_regression_robseqprior.py
a8aea8746a7797b9994c97aa645a788a3e9514d0
[]
no_license
ysuter/brats20-survivalprediction
853d821c61b91e35f7bf23a1ca1f7295b1ef3ee1
388053b789ccf388bc9a29bf94a672d2da973a5c
refs/heads/main
2023-04-16T15:48:35.486293
2021-04-30T17:11:24
2021-04-30T17:11:24
316,608,244
1
0
null
null
null
null
UTF-8
Python
false
false
17,515
py
#!/home/yannick/anaconda3/envs/py36/bin/python import json import numpy as np import os import pandas as pd from skfeature.function.information_theoretical_based import CIFE, JMI, DISR, MIM, CMIM, ICAP, MRMR, MIFS from skfeature.function.similarity_based import reliefF, fisher_score from skfeature.function.statistical_based import chi_square, gini_index from sklearn.ensemble.forest import RandomForestRegressor, ExtraTreesRegressor from sklearn.ensemble.bagging import BaggingRegressor from sklearn.experimental import enable_hist_gradient_boosting # noqa from sklearn.ensemble import HistGradientBoostingClassifier from sklearn.ensemble.weight_boosting import AdaBoostRegressor from sklearn.gaussian_process.gpr import GaussianProcessRegressor from sklearn.isotonic import IsotonicRegression from sklearn.linear_model.bayes import ARDRegression from sklearn.linear_model.huber import HuberRegressor from sklearn.linear_model.base import LinearRegression from sklearn.linear_model.passive_aggressive import PassiveAggressiveRegressor from sklearn.linear_model.stochastic_gradient import SGDRegressor from sklearn.linear_model.theil_sen import TheilSenRegressor from sklearn.linear_model.ransac import RANSACRegressor from sklearn.neighbors.regression import KNeighborsRegressor from sklearn.neighbors.regression import RadiusNeighborsRegressor from sklearn.neural_network.multilayer_perceptron import MLPRegressor from sklearn.tree.tree import DecisionTreeRegressor, ExtraTreeRegressor from sklearn.svm.classes import SVR from sklearn.metrics import accuracy_score, balanced_accuracy_score, mean_squared_error, r2_score from scipy.stats import spearmanr # spearmanr(currttpdata_bratumia["TTP"].values, currttpdata_bratumia["OS"].values, nan_policy='omit') from sklearn.preprocessing import QuantileTransformer from tqdm import tqdm def survival_classencoding(survarr: np.array, classboundaries: list): if len(classboundaries) == 1: survival_classes = [0 if elem <= classboundaries[0] else 1 for elem in survarr] if len(classboundaries) == 2: survival_classes = [int(0) if elem <= classboundaries[0] else int(1) if elem <= classboundaries[1] else int(2) for elem in survarr] return np.array(survival_classes) def writeresults(outdf, sel_name, clf_name, split, param1, param2, acc, balacc, mse, r2, rho): curr_resultsdict = {"Feature selector": sel_name, "ML method": clf_name, "Split": split, "Parameter1": param1, "Parameter2": param2, "Accuracy": acc, "Balanced Accuracy": balacc, "MSE": mse, "r2": r2, "spearmanr": rho } outdf = outdf.append(curr_resultsdict, ignore_index=True) print(outdf) outdf.to_csv( "/media/yannick/c4a7e8d3-9ac5-463f-b6e6-92e216ae6ac0/BRATS/BraTS2020/featsel_outputs/cvresults_robseqprior_regression2qtfm.csv", index=False) return outdf def gradeoutput(y_test, y_pred, class_boundary, tfm): y_test = np.squeeze(tfm.inverse_transform(y_test.reshape(-1, 1))) y_pred = np.squeeze(tfm.inverse_transform(y_pred.reshape(-1, 1))) y_test_classes = survival_classencoding(y_test, class_boundary) y_pred_classes = survival_classencoding(y_pred, class_boundary) acc = accuracy_score(y_test_classes, y_pred_classes) balacc = balanced_accuracy_score(y_test_classes, y_pred_classes) mse = mean_squared_error(y_test, y_pred) r2 = r2_score(y_test, y_pred) rho, _ = spearmanr(y_test, y_pred, nan_policy='omit') return [balacc, acc, mse, r2, rho] class_boundary = [304.2, 456.25] # features = pd.read_csv("/media/yannick/c4a7e8d3-9ac5-463f-b6e6-92e216ae6ac0/BRATS/BraTS2020/featsel_outputs/training_scaledfeat.csv", index_col="ID") features = pd.read_csv("/media/yannick/c4a7e8d3-9ac5-463f-b6e6-92e216ae6ac0/BRATS/BraTS2020/featsel_outputs/training_scaledfeat2.csv", index_col="ID") splitinfopath = "/media/yannick/c4a7e8d3-9ac5-463f-b6e6-92e216ae6ac0/BRATS/BraTS2020/featsel_outputs/splitinfo.json" robustnessinfo = pd.read_csv("/media/yannick/c4a7e8d3-9ac5-463f-b6e6-92e216ae6ac0/MANAGE/code/MANAGE/brats2020/featlists/robust_icc85.csv", header=None).values robustnessinfo = [elem[0] for elem in robustnessinfo] features_nosurv = features.drop(columns="Survival_days", inplace=False) surv_days = features["Survival_days"] surv_classes = survival_classencoding(surv_days, class_boundary) # only use features from the T1c and FLAIR MRIs colselect = [elem for elem in features_nosurv.columns if (('T1c' in elem) or ("FLAIR" in elem) or ("Age" in elem) or ("z_mincet" in elem) or ("cet_ventrdist" in elem))] dropcols = list(set(features_nosurv.columns) - set(colselect)) features_nosurv.drop(columns=dropcols, inplace=True) colselect = [elem for elem in features_nosurv.columns if np.any([x in elem for x in robustnessinfo])] dropcols = list(set(features_nosurv.columns) - set(colselect)) features_nosurv.drop(columns=dropcols, inplace=True) np.random.seed(42) # load split infos with open(splitinfopath) as f: kfolds = json.load(f) numfeat = 9 randomstate = 42 classifiernames = ["Random Forest", "Extra Trees", # "Hist. Gradient Boosting", "AdaBoost", "Gaussian Process", "ARD", # "Huber", "Linear", "Passive Aggressive", "SGD", "Theil-Sen", "RANSAC", "K-Neighbors", "Radius Neighbors", "MLP", "Decision Tree", "Extra Tree", "SVR" ] classifiers = [ RandomForestRegressor(n_estimators=200, n_jobs=5, random_state=randomstate), ExtraTreesRegressor(n_estimators=200, n_jobs=5, random_state=randomstate), # GradientBoostingRegressor(random_state=randomstate), # learning_rate is a hyper-parameter in the range (0.0, 1.0] # HistGradientBoostingClassifier(random_state=randomstate), # learning_rate is a hyper-parameter in the range (0.0, 1.0] AdaBoostRegressor(n_estimators=200, random_state=randomstate), GaussianProcessRegressor(normalize_y=True), ARDRegression(), # HuberRegressor(), # epsilon: greater than 1.0, default 1.35 LinearRegression(n_jobs=5), PassiveAggressiveRegressor(random_state=randomstate), # C: 0.25, 0.5, 1, 5, 10 SGDRegressor(random_state=randomstate), TheilSenRegressor(n_jobs=5, random_state=randomstate), RANSACRegressor(random_state=randomstate), KNeighborsRegressor(weights='distance'), # n_neighbors: 3, 6, 9, 12, 15, 20 RadiusNeighborsRegressor(weights='distance'), # radius: 1, 2, 5, 10, 15 MLPRegressor(max_iter=10000000, random_state=randomstate), DecisionTreeRegressor(random_state=randomstate), # max_depth = 2, 3, 4, 6, 8 ExtraTreeRegressor(random_state=randomstate), # max_depth = 2, 3, 4, 6, 8 SVR() # C: 0.25, 0.5, 1, 5, 10 ] selectors = [ reliefF.reliefF, fisher_score.fisher_score, # chi_square.chi_square, JMI.jmi, CIFE.cife, DISR.disr, MIM.mim, CMIM.cmim, ICAP.icap, MRMR.mrmr, MIFS.mifs] # selectornames_short = ["RELF", "FSCR", "CHSQ", "JMI", "CIFE", "DISR", "MIM", "CMIM", "ICAP", "MRMR", "MIFS"] selectornames_short = ["RELF", "FSCR", "JMI", "CIFE", "DISR", "MIM", "CMIM", "ICAP", "MRMR", "MIFS"] # class boundary list class_boundary = [304.2, 456.25] numsplits = 10 # Dataframe for highest balanced accuracy for each feature selector / ML combination outdf = pd.DataFrame(data=[], columns=["Feature selector", "ML method", "Split", "Parameter1", "Parameter2", "Accuracy", "Balanced Accuracy", "MSE", "r2", "spearmanr"]) for split in np.arange(numsplits): print("Evaluating fold " + str(split)) train_index = kfolds["fold_" + str(split)]["train"] test_index = kfolds["fold_" + str(split)]["test"] X_train, X_test = features_nosurv.iloc[train_index], features_nosurv.iloc[test_index] y_train, y_test = surv_days[train_index], surv_days[test_index] # scale target with a quantile transform qtfm = QuantileTransformer(output_distribution='normal', n_quantiles=150, random_state=randomstate) y_train = np.squeeze(qtfm.fit_transform(y_train.values.reshape(-1, 1))) y_test = np.squeeze(qtfm.transform(y_test.values.reshape(-1, 1))) # y_train, y_test = surv_classes[train_index], surv_classes[test_index] # for every split, perform feature selection for sel_name, sel in zip(selectornames_short, selectors): print('#####') print(sel_name) print('#####') if sel_name is "CHSQ": # shift X values to be non-negative for chsq feature selection X_train_tmp = X_train + np.abs(X_train.min()) selscore = sel(X_train_tmp, y_train) selidx = np.argsort(selscore)[::-1] selidx = selidx[0:numfeat] selscore = selscore[selidx] selscoredf = pd.DataFrame( data=np.transpose(np.vstack((X_train.columns[selidx].values, selscore))), columns=['Feature', 'Score']) elif sel_name == "RELF": selscore = sel(X_train.values, y_train, k=numfeat) selidx = np.argsort(selscore)[::-1] # print(selidx) selidx = selidx[0:numfeat] selscoredf = pd.DataFrame( data=np.transpose(np.vstack((X_train.columns[selidx].values, selscore[selidx]))), columns=['Feature', 'Score']) elif sel_name == "JMI" or sel_name == "CIFE" or sel_name == "DISR" or sel_name == "MIM" \ or sel_name == "CMIM" or sel_name == "ICAP" or sel_name == "MRMR" or sel_name == "MIFS": selidx, selscore, _ = sel(X_train.values, y_train, n_selected_features=numfeat) selscoredf = pd.DataFrame( data=np.transpose(np.vstack((X_train.columns[selidx].values, selscore))), columns=['Feature', 'Score']) else: selscore = sel(X_train.values, y_train) selidx = np.argsort(selscore)[::-1] # print(selidx) selidx = selidx[0:numfeat] selscoredf = pd.DataFrame( data=np.transpose(np.vstack((X_train.columns[selidx].values, selscore[selidx]))), columns=['Feature', 'Score']) # get subsets for all number of features X_train_selected = X_train.iloc[:, selidx[0:numfeat]] X_test_selected = X_test.iloc[:, selidx[0:numfeat]] ########################################## # do classification with all classifiers # ########################################## best_param1 = np.NaN best_param2 = np.NaN best_balacc = np.NaN for clf_name, clf in zip(classifiernames, classifiers): print(clf_name) if clf_name is "Passive Aggressive": param1 = np.NaN param2 = np.NaN C = [0.25, 0.5, 1, 5, 10] for param1 in tqdm(C): clf = PassiveAggressiveRegressor(C=param1, random_state=randomstate) clf.fit(X_train_selected, y_train) y_pred = clf.predict(X_test_selected) y_train_pred = clf.predict(X_train_selected) balacc, acc, mse, r2, rho = gradeoutput(y_test, y_pred, class_boundary, qtfm) outdf = writeresults(outdf, sel_name, clf_name, split, param1, param2, acc, balacc, mse, r2, rho) elif clf_name is "SVR": param1 = np.NaN param2 = np.NaN C = [0.25, 0.5, 1, 5, 10] for param1 in tqdm(C): clf = SVR(C=param1) clf.fit(X_train_selected, y_train) y_pred = clf.predict(X_test_selected) y_train_pred = clf.predict(X_train_selected) balacc, acc, mse, r2, rho = gradeoutput(y_test, y_pred, class_boundary, qtfm) outdf = writeresults(outdf, sel_name, clf_name, split, param1, param2, acc, balacc, mse, r2, rho) elif clf_name is "Decision Tree": param1 = np.NaN param2 = np.NaN max_depthlist = [2, 3, 4, 6, 8] for param1 in tqdm(max_depthlist): clf = DecisionTreeRegressor(max_depth=param1, random_state=randomstate) clf.fit(X_train_selected, y_train) y_pred = clf.predict(X_test_selected) y_train_pred = clf.predict(X_train_selected) balacc, acc, mse, r2, rho = gradeoutput(y_test, y_pred, class_boundary, qtfm) outdf = writeresults(outdf, sel_name, clf_name, split, param1, param2, acc, balacc, mse, r2, rho) elif clf_name is "Extra Tree": param1 = np.NaN param2 = np.NaN max_depthlist = [2, 3, 4, 6, 8] for param1 in tqdm(max_depthlist): clf = ExtraTreeRegressor(max_depth=param1, random_state=randomstate) clf.fit(X_train_selected, y_train) y_pred = clf.predict(X_test_selected) y_train_pred = clf.predict(X_train_selected) balacc, acc, mse, r2, rho = gradeoutput(y_test, y_pred, class_boundary, qtfm) outdf = writeresults(outdf, sel_name, clf_name, split, param1, param2, acc, balacc, mse, r2, rho) # elif clf_name is "Hist. Gradient Boosting": # param1 = np.NaN # param2 = np.NaN # lr_list = [0.1, 0.3, 0.6, 0.9] # for param1 in tqdm(lr_list): # clf = HistGradientBoostingClassifier(learning_rate=param1, random_state=randomstate) # # clf.fit(X_train_selected, y_train) # # y_pred = clf.predict(X_test_selected) # y_train_pred = clf.predict(X_train_selected) # # balacc, acc, mse, r2, rho = gradeoutput(y_test, y_pred, class_boundary, tfm) # outdf = writeresults(outdf, sel_name, clf_name, split, param1, param2, acc, balacc, mse, r2, rho) elif clf_name is "Huber": param1 = np.NaN param2 = np.NaN eps_list = [1.1, 1.2, 1.35, 1.5, 2] # epsilon: greater than 1.0, default 1.35 for param1 in tqdm(eps_list): clf = HistGradientBoostingClassifier(learning_rate=param1, random_state=randomstate) clf.fit(X_train_selected, y_train) y_pred = clf.predict(X_test_selected) y_train_pred = clf.predict(X_train_selected) balacc, acc, mse, r2, rho = gradeoutput(y_test, y_pred, class_boundary, qtfm) outdf = writeresults(outdf, sel_name, clf_name, split, param1, param2, acc, balacc, mse, r2, rho) elif clf_name is "K-Neighbors": param1 = np.NaN param2 = np.NaN neighbors_list = [3, 6, 9, 12, 15, 20] # epsilon: greater than 1.0, default 1.35 for param1 in tqdm(neighbors_list): clf = KNeighborsRegressor(n_neighbors=param1, weights='distance') clf.fit(X_train_selected, y_train) y_pred = clf.predict(X_test_selected) y_train_pred = clf.predict(X_train_selected) balacc, acc, mse, r2, rho = gradeoutput(y_test, y_pred, class_boundary, qtfm) outdf = writeresults(outdf, sel_name, clf_name, split, param1, param2, acc, balacc, mse, r2, rho) elif clf_name is "Radius Neighbors": param1 = np.NaN param2 = np.NaN radius_list = [1, 2, 5, 10, 15] # epsilon: greater than 1.0, default 1.35 for param1 in tqdm(radius_list): clf = KNeighborsRegressor(radius=param1, weights='distance') clf.fit(X_train_selected, y_train) y_pred = clf.predict(X_test_selected) y_train_pred = clf.predict(X_train_selected) balacc, acc, mse, r2, rho = gradeoutput(y_test, y_pred, class_boundary, qtfm) outdf = writeresults(outdf, sel_name, clf_name, split, param1, param2, acc, balacc, mse, r2, rho) else: param1 = np.NaN param2 = np.NaN clf.fit(X_train_selected, y_train) y_pred = clf.predict(X_test_selected) y_train_pred = clf.predict(X_train_selected) balacc, acc, mse, r2, rho = gradeoutput(y_test, y_pred, class_boundary, qtfm) outdf = writeresults(outdf, sel_name, clf_name, split, param1, param2, acc, balacc, mse, r2, rho) outdf.to_csv("/media/yannick/c4a7e8d3-9ac5-463f-b6e6-92e216ae6ac0/BRATS/BraTS2020/featsel_outputs/cvresults_robseqprior_regression2qtfm.csv", index=False)
5eacb8622f507ddfb3d83ff89f5001b3f5fa21e3
634367d6a94d9bce231a8c29cf9713ebfc4b1de7
/covid_dashboard/views/get_district_stats_on_given_date/api_wrapper.py
83bfdd8ad95f836f4c9f6a6c05a99e3b45ee01c2
[]
no_license
saikiranravupalli/covid_dashboard
5a48c97597983ada36a3bf131edf5ca15f1dedec
954dd02819fb8f6776fa2828e8971bd55efa657c
refs/heads/master
2022-11-08T10:11:27.836507
2020-06-30T09:00:27
2020-06-30T09:00:27
269,610,409
0
0
null
null
null
null
UTF-8
Python
false
false
1,399
py
import json from django.http import HttpResponse from django_swagger_utils.drf_server.utils.decorator.interface_decorator \ import validate_decorator from .validator_class import ValidatorClass from covid_dashboard.interactors\ .get_day_wise_district_details_on_given_date_interactor import \ DistrictStatisticsInteractor from covid_dashboard.storages.district_storage_implementation import \ DistrictStorageImplementation from covid_dashboard.storages.mandal_storage_implementation import \ MandalStorageImplementation from covid_dashboard.presenters.presenter_implementation import \ PresenterImplementation @validate_decorator(validator_class=ValidatorClass) def api_wrapper(*args, **kwargs): district_id = kwargs['district_id'] request_data = kwargs['request_data'] for_date = request_data['for_date'] district_storage = DistrictStorageImplementation() mandal_storage = MandalStorageImplementation() presenter = PresenterImplementation() interactor = DistrictStatisticsInteractor( district_storage=district_storage, mandal_storage=mandal_storage, presenter=presenter ) response = \ interactor.get_district_statistics_on_given_date( district_id=district_id, for_date=for_date ) json_data = json.dumps(response) return HttpResponse(json_data, status=200)
6e9393d3d17cfc7054199e6f3782dfc6383250df
11052dcb2ee70b601c521ba40685fd8e03c86a45
/apps/oinkerprofile/models.py
3fcf6b96b867f697ad2cba296ea083b482cb2fd7
[]
no_license
naistangz/twitter-clone
53757959de8f3f063cd1fbbc9bc72c024beee22f
56f44610a729cd040857786f481c8b7f94397a3d
refs/heads/master
2023-04-13T14:16:44.357440
2021-04-25T08:18:42
2021-04-25T08:18:42
354,792,080
0
0
null
null
null
null
UTF-8
Python
false
false
474
py
from django.contrib.auth.models import User from django.db import models # Create your models here. class OinkerProfile(models.Model): user = models.OneToOneField(User, on_delete=models.CASCADE) follows = models.ManyToManyField( 'self', related_name='followed_by', symmetrical=False) avatar = models.ImageField(upload_to='uploads/', blank=True, null=True) User.oinkerprofile = property( lambda u: OinkerProfile.objects.get_or_create(user=u)[0])
6690bf9a5dacfc7bafcbe1023ee73b5f95bae792
9912574419aa12bac4182309bd3ff2a85cc0fe43
/myenv/lib/python3.7/site-packages/grpc/_grpcio_metadata.py
c99079b672f7923336da9c5b5a3e26a5a963ff2d
[ "MIT" ]
permissive
liv-yaa/ML_BeeHealth
ad01858a0a5651b2bda68e77ff2e60550e1f3eba
7e0797d6faaef2b071c841e57fffe45d470aef3c
refs/heads/master
2023-01-23T01:49:16.444685
2023-01-11T17:35:04
2023-01-11T17:35:04
172,980,260
1
1
MIT
2022-12-08T01:42:46
2019-02-27T19:53:28
Python
UTF-8
Python
false
false
26
py
__version__ = """1.24.3"""
1d0c5a63ebb091013f41650238f7244a2189d919
a9243f735f6bb113b18aa939898a97725c358a6d
/0.15/_downloads/plot_time_frequency_erds.py
ade2c6289d640ea78caded44665a8d296b989398
[]
permissive
massich/mne-tools.github.io
9eaf5edccb4c35831400b03278bb8c2321774ef2
95650593ba0eca4ff8257ebcbdf05731038d8d4e
refs/heads/master
2020-04-07T08:55:46.850530
2019-09-24T12:26:02
2019-09-24T12:26:02
158,233,630
0
0
BSD-3-Clause
2018-11-19T14:06:16
2018-11-19T14:06:16
null
UTF-8
Python
false
false
5,229
py
""" =============================== Compute and visualize ERDS maps =============================== This example calculates and displays ERDS maps of event-related EEG data. ERDS (sometimes also written as ERD/ERS) is short for event-related desynchronization (ERD) and event-related synchronization (ERS) [1]_. Conceptually, ERD corresponds to a decrease in power in a specific frequency band relative to a baseline. Similarly, ERS corresponds to an increase in power. An ERDS map is a time/frequency representation of ERD/ERS over a range of frequencies [2]_. ERDS maps are also known as ERSP (event-related spectral perturbation) [3]_. We use a public EEG BCI data set containing two different motor imagery tasks available at PhysioNet. The two tasks are imagined hand and feet movement. Our goal is to generate ERDS maps for each of the two tasks. First, we load the data and create epochs of 5s length. The data sets contain multiple channels, but we will only consider the three channels C3, Cz, and C4. We compute maps containing frequencies ranging from 2 to 35Hz. We map ERD to red color and ERS to blue color, which is the convention in many ERDS publications. Note that we do not perform any significance tests on the map values, but instead we display the whole time/frequency maps. References ---------- .. [1] G. Pfurtscheller, F. H. Lopes da Silva. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clinical Neurophysiology 110(11), 1842-1857, 1999. .. [2] B. Graimann, J. E. Huggins, S. P. Levine, G. Pfurtscheller. Visualization of significant ERD/ERS patterns in multichannel EEG and ECoG data. Clinical Neurophysiology 113(1), 43-47, 2002. .. [3] S. Makeig. Auditory event-related dynamics of the EEG spectrum and effects of exposure to tones. Electroencephalography and Clinical Neurophysiology 86(4), 283-293, 1993. """ # Authors: Clemens Brunner <[email protected]> # # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import LinearSegmentedColormap import mne from mne.datasets import eegbci from mne.io import concatenate_raws, read_raw_edf from mne.time_frequency import tfr_multitaper def center_cmap(cmap, vmin, vmax): """Center given colormap (ranging from vmin to vmax) at value 0. Note that eventually this could also be achieved by re-normalizing a given colormap by subclassing matplotlib.colors.Normalize as described here: https://matplotlib.org/users/colormapnorms.html#custom-normalization-two-linear-ranges """ # noqa: E501 vzero = abs(vmin) / (vmax - vmin) index_old = np.linspace(0, 1, cmap.N) index_new = np.hstack([np.linspace(0, vzero, cmap.N // 2, endpoint=False), np.linspace(vzero, 1, cmap.N // 2)]) cdict = {"red": [], "green": [], "blue": [], "alpha": []} for old, new in zip(index_old, index_new): r, g, b, a = cmap(old) cdict["red"].append((new, r, r)) cdict["green"].append((new, g, g)) cdict["blue"].append((new, b, b)) cdict["alpha"].append((new, a, a)) return LinearSegmentedColormap("erds", cdict) # load and preprocess data #################################################### subject = 1 # use data from subject 1 runs = [6, 10, 14] # use only hand and feet motor imagery runs fnames = eegbci.load_data(subject, runs) raws = [read_raw_edf(f, preload=True, stim_channel='auto') for f in fnames] raw = concatenate_raws(raws) raw.rename_channels(lambda x: x.strip('.')) # remove dots from channel names events = mne.find_events(raw, shortest_event=0, stim_channel='STI 014') picks = mne.pick_channels(raw.info["ch_names"], ["C3", "Cz", "C4"]) # epoch data ################################################################## tmin, tmax = -1, 4 # define epochs around events (in s) event_ids = dict(hands=2, feet=3) # map event IDs to tasks epochs = mne.Epochs(raw, events, event_ids, tmin - 0.5, tmax + 0.5, picks=picks, baseline=None, preload=True) # compute ERDS maps ########################################################### freqs = np.arange(2, 36, 1) # frequencies from 2-35Hz n_cycles = freqs # use constant t/f resolution vmin, vmax = -1, 1.5 # set min and max ERDS values in plot cmap = center_cmap(plt.cm.RdBu, vmin, vmax) # zero maps to white for event in event_ids: power = tfr_multitaper(epochs[event], freqs=freqs, n_cycles=n_cycles, use_fft=True, return_itc=False, decim=2) power.crop(tmin, tmax) fig, ax = plt.subplots(1, 4, figsize=(12, 4), gridspec_kw={"width_ratios": [10, 10, 10, 1]}) for i in range(3): power.plot([i], baseline=[-1, 0], mode="percent", vmin=vmin, vmax=vmax, cmap=(cmap, False), axes=ax[i], colorbar=False, show=False) ax[i].set_title(epochs.ch_names[i], fontsize=10) ax[i].axvline(0, linewidth=1, color="black", linestyle=":") # event if i > 0: ax[i].set_ylabel("") ax[i].set_yticklabels("") fig.colorbar(ax[0].collections[0], cax=ax[-1]) fig.suptitle("ERDS ({})".format(event)) fig.show()
c5dd27af9004567fed4a4c508b43d1acfce35e68
8fcae139173f216eba1eaa01fd055e647d13fd4e
/.history/scraper_20191220154310.py
85e5bdeab8d217043d007104d46a712f7cdf91d4
[]
no_license
EnriqueGalindo/backend-web-scraper
68fdea5430a0ffb69cc7fb0e0d9bcce525147e53
895d032f4528d88d68719838a45dae4078ebcc82
refs/heads/master
2020-11-27T14:02:59.989697
2019-12-21T19:47:34
2019-12-21T19:47:34
229,475,085
0
0
null
null
null
null
UTF-8
Python
false
false
2,308
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Module docstring: One line description of what your program does. There should be a blank line in between description above, and this more detailed description. In this section you should put any caveats, environment variable expectations, gotchas, and other notes about running the program. Author tag (below) helps instructors keep track of who wrote what, when grading. """ __author__ = "Enrique Galindo" # Imports go at the top of your file, after the module docstring. # One module per import line. These are for example only. import sys import requests import re import pprint from html.parser import HTMLParser regex_email = r'''(?:[a-z0-9!#$%&‘*+/=?^_`{|}~-]+(?:\.[a-z0-9!#$%&‘*+/=?^_`{|}~-]+)*|“(?:[\x01-\x08\x0b\x0c\x0e-\x1f\x21\x23-\x5b\x5d-\x7f]|\\[\x01-\x09\x0b\x0c\x0e-\x7f])*“)@(?:(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?|\[(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?|[a-z0-9-]*[a-z0-9]:(?:[\x01-\x08\x0b\x0c\x0e-\x1f\x21-\x5a\x53-\x7f]|\\[\x01-\x09\x0b\x0c\x0e-\x7f])+)\])''' regex_phone = r'''(1?\W*([2-9][0-8][0-9])\W*([2-9][0-9]{2})\W*([0-9]{4})(\se?x?t?(\d*))?)''' class MyHTMLParser(HTMLParser): def handle_starttag(self, tag, attrs): print( "Encountered a start tag:", tag) def handle_endtag(self, tag): print() "Encountered an end tag :", tag def handle_data(self, data): print "Encountered some data :", data def main(args): """Main function is declared as standalone, for testability""" good_phone_list = [] url = args[0] response = requests.get(url) response.raise_for_status() url_list = re.findall(r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+', response.text) email_list = set(re.findall(regex_email, response.text)) bad_phone_list = set(re.findall(regex_phone, response.text)) for number in bad_phone_list: good_phone_list.append(number[1] + number[2] + number[3]) print(email_list) pprint.pprint(good_phone_list) parser = HTMLParser() link_list = HTMLParser.handle_starttag('a', [('href', 'http://'), ('href', 'https://')]) if __name__ == '__main__': """Docstring goes here""" main(sys.argv[1:])