File size: 18,925 Bytes
5525d1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd9ae6e
5525d1a
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
import io
import os
import xml.etree.ElementTree as ET
from glob import glob
from pathlib import Path, PurePath

import cv2
import numpy as np
from datasets import (
    BuilderConfig,
    DatasetInfo,
    Features,
    GeneratorBasedBuilder,
    Image,
    Sequence,
    Split,
    SplitGenerator,
    Value,
)
from PIL import Image as PILImage
from shapely.geometry import Polygon


class HTRDatasetConfig(BuilderConfig):
    """Configuration for each dataset variant."""

    def __init__(self, name, description, process_func, features, **kwargs):
        super().__init__(name=name, description=description, **kwargs)
        self.process_func = process_func
        self.features = features


class HTRDataset(GeneratorBasedBuilder):
    # Define feature structures for each dataset type
    text_recognition_features = Features(
        {
            "image": Image(),
            "transcription": Value("string"),
        }
    )

    segmentation_features = Features(
        {
            "image_name": Value("string"),
            "image": Image(),
            "annotations": Sequence(
                {
                    "polygon": Sequence(Sequence(Value("float32"))),
                    "transcription": Value("string"),
                    "class": Value("string"),
                }
            ),
        }
    )

    BUILDER_CONFIGS = [
        HTRDatasetConfig(
            name="text_recognition",
            description="textline dataset for text recognition of historical Swedish",
            process_func="text_recognition",
            features=text_recognition_features,
        ),
        HTRDatasetConfig(
            name="inst_seg_lines_within_regions",
            description="Cropped text region images with text line annotations",
            process_func="inst_seg_lines_within_regions",
            features=segmentation_features,
        ),
        HTRDatasetConfig(
            name="inst_seg_regions_and_lines",
            description="Original images with both region and line annotations",
            process_func="inst_seg_regions_and_lines",
            features=segmentation_features,
        ),
        HTRDatasetConfig(
            name="inst_seg_lines",
            description="Original images with text line annotations only",
            process_func="inst_seg_lines",
            features=segmentation_features,
        ),
        HTRDatasetConfig(
            name="inst_seg_regions",
            description="Original images with text region annotations only",
            process_func="inst_seg_regions",
            features=segmentation_features,
        ),
    ]

    def _info(self):
        return DatasetInfo(features=self.config.features)

    def _split_generators(self, dl_manager):
        # Define URLs for images and XMLs
        """
        images_url = [
            f"https://huggingface.co/datasets/Riksarkivet/ra_enstaka_sidor/resolve/main/data/images/ra_enstaka_sidor_images_{i}.tar.gz"
            for i in range(1, 3)
        ]
        xmls_url = [
            f"https://huggingface.co/datasets/Riksarkivet/ra_enstaka_sidor/resolve/main/data/page_xmls/ra_enstaka_sidor_page_xmls_{i}.tar.gz"
            for i in range(1, 3)
        ]

        """

        images = dl_manager.download_and_extract(
                            [
                                f"https://huggingface.co/datasets/Riksarkivet/gota_hovratt_seg/resolve/main/data/images/gota_hovratt_seg_images_{i}.tar.gz"
                                for i in range(1, 3)
                            ]
                        )
        xmls = dl_manager.download_and_extract(
                            [
                                f"https://huggingface.co/datasets/Riksarkivet/gota_hovratt_seg/resolve/main/data/page_xmls/gota_hovratt_seg_page_xmls_{i}.tar.gz"
                                for i in range(1, 3)
                            ]
                        )

        # Download and extract images and XMLs
        # images = dl_manager.download_and_extract(images_url)
        # xmls = dl_manager.download_and_extract(xmls_url)

        # Define supported image file extensions
        image_extensions = [
            "*.jpg",
            "*.jpeg",
            "*.png",
            "*.gif",
            "*.bmp",
            "*.tif",
            "*.tiff",
            "*.JPG",
            "*.JPEG",
            "*.PNG",
            "*.GIF",
            "*.BMP",
            "*.TIF",
            "*.TIFF",
        ]

        # Collect and sort image and XML file paths
        imgs_flat = self._collect_file_paths(images, image_extensions)
        xmls_flat = self._collect_file_paths(xmls, ["*.xml"])

        # Ensure the number of images matches the number of XML files
        assert len(imgs_flat) == len(xmls_flat)

        # Pair images and XML files
        imgs_xmls = list(
            zip(sorted(imgs_flat, key=lambda x: Path(x).stem), sorted(xmls_flat, key=lambda x: Path(x).stem))
        )

        return [
            SplitGenerator(
                name=Split.TRAIN,
                gen_kwargs={"imgs_xmls": imgs_xmls},
            )
        ]

    def _collect_file_paths(self, folders, extensions):
        """Collects file paths recursively from specified folders."""
        files_nested = [
            glob(os.path.join(folder, "**", ext), recursive=True) for ext in extensions for folder in folders
        ]
        return [file for sublist in files_nested for file in sublist]

    def _generate_examples(self, imgs_xmls):
        process_func = getattr(self, self.config.process_func)
        return process_func(imgs_xmls)

    def text_recognition(self, imgs_xmls):
        """Process for line dataset with cropped images and transcriptions."""
        for img, xml in imgs_xmls:
            img_filename, volume = self._extract_filename_and_volume(img, xml)
            lines_data = self.parse_pagexml(xml)
            image_array = cv2.imread(img)

            for i, line in enumerate(lines_data):
                line_id = str(i).zfill(4)
                cropped_image = self.crop_line_image(image_array, line["coords"])
                transcription = line["transcription"]

                if not transcription:
                    print(f"Invalid transcription: {transcription}")
                    continue

                unique_key = f"{volume}_{img_filename}_{line_id}"
                yield unique_key, {"image": cropped_image, "transcription": transcription}

    def inst_seg_lines_within_regions(self, imgs_xmls):
        """Process for cropped images with text line annotations."""
        for img_path, xml_path in imgs_xmls:
            img_filename, volume = self._extract_filename_and_volume(img_path, xml_path)
            image = PILImage.open(img_path)
            root = self._parse_xml(xml_path)
            namespaces = {"ns": "http://schema.primaresearch.org/PAGE/gts/pagecontent/2013-07-15"}

            # Iterate through each TextRegion
            for reg_ind, region in enumerate(root.findall(".//ns:TextRegion", namespaces=namespaces)):
                reg_id = str(reg_ind).zfill(4)
                region_polygon = self._get_polygon(region, namespaces)
                min_x, min_y, max_x, max_y = self._get_bbox(region_polygon)
                cropped_region_image = self.crop_image(image, region_polygon)

                annotations = self._get_line_annotations_within_region(
                    region, namespaces, min_x, min_y, region_polygon
                )

                unique_key = f"{volume}_{img_filename}_{reg_id}"
                try:
                    yield (
                        unique_key,
                        {
                            "image": {"bytes": self._image_to_bytes(cropped_region_image)},
                            "annotations": annotations,
                            "image_name": unique_key,
                        },
                    )
                except:
                    print("still error")
                    continue

    def inst_seg_regions_and_lines(self, imgs_xmls):
        """Process for original images with both region and line annotations."""
        for img_path, xml_path in imgs_xmls:
            img_filename, volume = self._extract_filename_and_volume(img_path, xml_path)
            image = PILImage.open(img_path)
            root = self._parse_xml(xml_path)
            annotations = self._get_region_and_line_annotations(root)

            unique_key = f"{volume}_{img_filename}"
            yield unique_key, {"image_name": unique_key, "image": image, "annotations": annotations}

    def inst_seg_lines(self, imgs_xmls):
        """Process for original images with text line annotations only."""
        for img_path, xml_path in imgs_xmls:
            img_filename, volume = self._extract_filename_and_volume(img_path, xml_path)
            image = PILImage.open(img_path)
            root = self._parse_xml(xml_path)

            annotations = self._get_line_annotations(root)

            unique_key = f"{volume}_{img_filename}"
            yield unique_key, {"image_name": unique_key, "image": image, "annotations": annotations}

    def inst_seg_regions(self, imgs_xmls):
        """Process for original images with text region annotations only."""
        for img_path, xml_path in imgs_xmls:
            img_filename, volume = self._extract_filename_and_volume(img_path, xml_path)
            image = PILImage.open(img_path)
            root = self._parse_xml(xml_path)

            annotations = self._get_region_annotations(root)

            unique_key = f"{volume}_{img_filename}"
            yield unique_key, {"image_name": unique_key, "image": image, "annotations": annotations}

    def _extract_filename_and_volume(self, img, xml):
        """Extracts the filename and volume from the image and XML paths."""
        assert Path(img).stem == Path(xml).stem
        img_filename = Path(img).stem
        volume = PurePath(img).parts[-2]
        return img_filename, volume

    def _parse_xml(self, xml_path):
        """Parses the XML file and returns the root element."""
        try:
            tree = ET.parse(xml_path)
            return tree.getroot()
        except ET.ParseError as e:
            print(f"XML Parse Error: {e}")
            return None

    def _get_line_annotations_within_region(self, region, namespaces, min_x, min_y, region_polygon):
        """Generates annotations for text lines within a region."""
        annotations = []
        for line in region.findall(".//ns:TextLine", namespaces=namespaces):
            line_polygon = self._get_polygon(line, namespaces)
            clipped_line_polygon = self.clip_polygon_to_region(line_polygon, region_polygon)

            if len(clipped_line_polygon) < 3:
                print(f"Invalid polygon detected for line: {line_polygon}, clipped: {clipped_line_polygon}")
                continue

            translated_polygon = [(x - min_x, y - min_y) for x, y in clipped_line_polygon]
            transcription = "".join(line.itertext()).strip()

            annotations.append(
                {
                    "polygon": translated_polygon,
                    "transcription": transcription,
                    "class": "textline",
                }
            )
        return annotations

    def _get_region_and_line_annotations(self, root):
        """Generates annotations for both text regions and lines."""
        annotations = []

        # Get region annotations
        annotations.extend(self._get_region_annotations(root))

        # Get line annotations
        annotations.extend(self._get_line_annotations(root))

        return annotations

    def _get_line_annotations(self, root):
        """Generates annotations for text lines only."""
        namespaces = {"ns": "http://schema.primaresearch.org/PAGE/gts/pagecontent/2013-07-15"}
        annotations = []
        for region in root.findall(".//ns:TextRegion", namespaces=namespaces):
            for line in region.findall(".//ns:TextLine", namespaces=namespaces):
                line_polygon = self._get_polygon(line, namespaces)
                transcription = "".join(line.itertext()).strip()
                annotations.append(
                    {
                        "polygon": line_polygon,
                        "transcription": transcription,
                        "class": "textline",
                    }
                )
        return annotations

    def _get_region_annotations(self, root):
        """Generates annotations for text regions only."""
        namespaces = {"ns": "http://schema.primaresearch.org/PAGE/gts/pagecontent/2013-07-15"}
        annotations = []
        for region in root.findall(".//ns:TextRegion", namespaces=namespaces):
            region_polygon = self._get_polygon(region, namespaces)
            annotations.append(
                {
                    "polygon": region_polygon,
                    "transcription": "",
                    "class": "textregion",
                }
            )
        return annotations

    def _image_to_bytes(self, image):
        """Converts a PIL image to bytes."""
        with io.BytesIO() as output:
            image.save(output, format="PNG")
            return output.getvalue()

    def crop_image(self, img_pil, coords):
        coords = np.array(coords)
        img = np.array(img_pil)
        mask = np.zeros(img.shape[0:2], dtype=np.uint8)

        try:
            # Ensure the coordinates are within the bounds of the image
            coords[:, 0] = np.clip(coords[:, 0], 0, img.shape[1] - 1)
            coords[:, 1] = np.clip(coords[:, 1], 0, img.shape[0] - 1)

            # Draw the mask
            cv2.drawContours(mask, [coords], -1, (255, 255, 255), -1, cv2.LINE_AA)

            # Apply mask to image
            res = cv2.bitwise_and(img, img, mask=mask)
            rect = cv2.boundingRect(coords)

            # Ensure the bounding box is within the image dimensions
            rect = (
                max(0, rect[0]),
                max(0, rect[1]),
                min(rect[2], img.shape[1] - rect[0]),
                min(rect[3], img.shape[0] - rect[1]),
            )

            wbg = np.ones_like(img, np.uint8) * 255
            cv2.bitwise_not(wbg, wbg, mask=mask)

            # Overlap the resulted cropped image on the white background
            dst = wbg + res

            # Use validated rect for cropping
            cropped = dst[rect[1] : rect[1] + rect[3], rect[0] : rect[0] + rect[2]]

            # Convert the NumPy array back to a PIL image
            cropped_pil = PILImage.fromarray(cropped)

            return cropped_pil

        except Exception as e:
            print(f"Error in cropping: {e}")
            return img_pil  # Return the original image if there's an error

    def _create_mask(self, shape, coords):
        """Creates a mask for the specified polygon coordinates."""
        mask = np.zeros(shape, dtype=np.uint8)
        cv2.drawContours(mask, [np.array(coords)], -1, (255, 255, 255), -1, cv2.LINE_AA)
        return mask

    def parse_pagexml(self, xml):
        """Parses the PAGE XML and extracts line data."""
        root = self._parse_xml(xml)
        if not root:
            return []

        namespaces = {"ns": "http://schema.primaresearch.org/PAGE/gts/pagecontent/2013-07-15"}
        lines_data = []
        for region in root.findall(".//ns:TextRegion", namespaces):
            for line in region.findall(".//ns:TextLine", namespaces):
                try:
                    line_id = line.get("id")
                    coords = self._get_polygon(line, namespaces)
                    transcription = line.find("ns:TextEquiv/ns:Unicode", namespaces).text or ""
                    lines_data.append({"line_id": line_id, "coords": coords, "transcription": transcription})
                except Exception as e:
                    print(f"Error parsing line: {e}")
        return lines_data

    def crop_line_image(self, img, coords):
        """Crops a line image based on the provided coordinates."""
        mask = self._create_mask(img.shape[:2], coords)

        coords = np.array(coords)

        # Apply mask to image
        res = cv2.bitwise_and(img, img, mask=mask)
        rect = cv2.boundingRect(coords)

        # Create a white background and overlay the cropped image
        wbg = np.ones_like(img, np.uint8) * 255
        cv2.bitwise_not(wbg, wbg, mask=mask)
        dst = wbg + res

        cropped = dst[rect[1] : rect[1] + rect[3], rect[0] : rect[0] + rect[2]]

        return self.cv2_to_pil(cropped)

    def _get_polygon(self, element, namespaces):
        """Extracts polygon points from a PAGE XML element."""
        coords = element.find(".//ns:Coords", namespaces=namespaces).attrib["points"]
        return [tuple(map(int, p.split(","))) for p in coords.split()]

    def _get_bbox(self, polygon):
        """Calculates the bounding box from polygon points."""
        min_x = min(p[0] for p in polygon)
        min_y = min(p[1] for p in polygon)
        max_x = max(p[0] for p in polygon)
        max_y = max(p[1] for p in polygon)
        return min_x, min_y, max_x, max_y

    def clip_polygon_to_region(self, line_polygon, region_polygon):
        """
        Clips a line polygon to ensure it's inside the region polygon using Shapely.
        Returns the original line polygon if the intersection is empty.
        """
        # Convert lists of points to Shapely Polygons
        line_poly = Polygon(line_polygon)
        region_poly = Polygon(region_polygon)

        # Compute the intersection of the line polygon with the region polygon
        try:
            intersection = line_poly.intersection(region_poly)
        except Exception:
            return line_polygon

        # Return the intersection points as a list of tuples
        if intersection.is_empty:
            print(
                f"No intersection found for line_polygon {line_polygon} within region_polygon {region_polygon}, returning original polygon."
            )
            return line_polygon
        elif intersection.geom_type == "Polygon":
            return list(intersection.exterior.coords)
        elif intersection.geom_type == "MultiPolygon":
            # If the result is a MultiPolygon, take the largest by area (or another heuristic)
            largest_polygon = max(intersection.geoms, key=lambda p: p.area)
            return list(largest_polygon.exterior.coords)
        elif intersection.geom_type == "LineString":
            return list(intersection.coords)
        else:
            print(f"Unexpected intersection type: {intersection.geom_type}")
            return line_polygon

    def cv2_to_pil(self, cv2_image):
        """Converts an OpenCV image to a PIL Image."""
        cv2_image_rgb = cv2.cvtColor(cv2_image, cv2.COLOR_BGR2RGB)
        return PILImage.fromarray(cv2_image_rgb)