|
import io |
|
import os |
|
import xml.etree.ElementTree as ET |
|
from glob import glob |
|
from pathlib import Path, PurePath |
|
|
|
import cv2 |
|
import numpy as np |
|
from datasets import ( |
|
BuilderConfig, |
|
DatasetInfo, |
|
Features, |
|
GeneratorBasedBuilder, |
|
Image, |
|
Sequence, |
|
Split, |
|
SplitGenerator, |
|
Value, |
|
) |
|
from PIL import Image as PILImage |
|
from shapely.geometry import Polygon |
|
|
|
|
|
class HTRDatasetConfig(BuilderConfig): |
|
"""Configuration for each dataset variant.""" |
|
|
|
def __init__(self, name, description, process_func, features, **kwargs): |
|
super().__init__(name=name, description=description, **kwargs) |
|
self.process_func = process_func |
|
self.features = features |
|
|
|
|
|
class HTRDataset(GeneratorBasedBuilder): |
|
|
|
text_recognition_features = Features( |
|
{ |
|
"image": Image(), |
|
"transcription": Value("string"), |
|
} |
|
) |
|
|
|
segmentation_features = Features( |
|
{ |
|
"image_name": Value("string"), |
|
"image": Image(), |
|
"annotations": Sequence( |
|
{ |
|
"polygon": Sequence(Sequence(Value("float32"))), |
|
"transcription": Value("string"), |
|
"class": Value("string"), |
|
} |
|
), |
|
} |
|
) |
|
|
|
BUILDER_CONFIGS = [ |
|
HTRDatasetConfig( |
|
name="text_recognition", |
|
description="textline dataset for text recognition of historical Swedish", |
|
process_func="text_recognition", |
|
features=text_recognition_features, |
|
), |
|
HTRDatasetConfig( |
|
name="inst_seg_lines_within_regions", |
|
description="Cropped text region images with text line annotations", |
|
process_func="inst_seg_lines_within_regions", |
|
features=segmentation_features, |
|
), |
|
HTRDatasetConfig( |
|
name="inst_seg_regions_and_lines", |
|
description="Original images with both region and line annotations", |
|
process_func="inst_seg_regions_and_lines", |
|
features=segmentation_features, |
|
), |
|
HTRDatasetConfig( |
|
name="inst_seg_lines", |
|
description="Original images with text line annotations only", |
|
process_func="inst_seg_lines", |
|
features=segmentation_features, |
|
), |
|
HTRDatasetConfig( |
|
name="inst_seg_regions", |
|
description="Original images with text region annotations only", |
|
process_func="inst_seg_regions", |
|
features=segmentation_features, |
|
), |
|
] |
|
|
|
def _info(self): |
|
return DatasetInfo(features=self.config.features) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
""" |
|
images_url = [ |
|
f"https://huggingface.co/datasets/Riksarkivet/ra_enstaka_sidor/resolve/main/data/images/ra_enstaka_sidor_images_{i}.tar.gz" |
|
for i in range(1, 3) |
|
] |
|
xmls_url = [ |
|
f"https://huggingface.co/datasets/Riksarkivet/ra_enstaka_sidor/resolve/main/data/page_xmls/ra_enstaka_sidor_page_xmls_{i}.tar.gz" |
|
for i in range(1, 3) |
|
] |
|
|
|
""" |
|
|
|
images = dl_manager.download_and_extract( |
|
[ |
|
f"https://huggingface.co/datasets/Riksarkivet/gota_hovratt_seg/resolve/main/data/images/gota_hovratt_seg_images_{i}.tar.gz" |
|
for i in range(1, 3) |
|
] |
|
) |
|
xmls = dl_manager.download_and_extract( |
|
[ |
|
f"https://huggingface.co/datasets/Riksarkivet/gota_hovratt_seg/resolve/main/data/page_xmls/gota_hovratt_seg_page_xmls_{i}.tar.gz" |
|
for i in range(1, 3) |
|
] |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
image_extensions = [ |
|
"*.jpg", |
|
"*.jpeg", |
|
"*.png", |
|
"*.gif", |
|
"*.bmp", |
|
"*.tif", |
|
"*.tiff", |
|
"*.JPG", |
|
"*.JPEG", |
|
"*.PNG", |
|
"*.GIF", |
|
"*.BMP", |
|
"*.TIF", |
|
"*.TIFF", |
|
] |
|
|
|
|
|
imgs_flat = self._collect_file_paths(images, image_extensions) |
|
xmls_flat = self._collect_file_paths(xmls, ["*.xml"]) |
|
|
|
|
|
assert len(imgs_flat) == len(xmls_flat) |
|
|
|
|
|
imgs_xmls = list( |
|
zip(sorted(imgs_flat, key=lambda x: Path(x).stem), sorted(xmls_flat, key=lambda x: Path(x).stem)) |
|
) |
|
|
|
return [ |
|
SplitGenerator( |
|
name=Split.TRAIN, |
|
gen_kwargs={"imgs_xmls": imgs_xmls}, |
|
) |
|
] |
|
|
|
def _collect_file_paths(self, folders, extensions): |
|
"""Collects file paths recursively from specified folders.""" |
|
files_nested = [ |
|
glob(os.path.join(folder, "**", ext), recursive=True) for ext in extensions for folder in folders |
|
] |
|
return [file for sublist in files_nested for file in sublist] |
|
|
|
def _generate_examples(self, imgs_xmls): |
|
process_func = getattr(self, self.config.process_func) |
|
return process_func(imgs_xmls) |
|
|
|
def text_recognition(self, imgs_xmls): |
|
"""Process for line dataset with cropped images and transcriptions.""" |
|
for img, xml in imgs_xmls: |
|
img_filename, volume = self._extract_filename_and_volume(img, xml) |
|
lines_data = self.parse_pagexml(xml) |
|
image_array = cv2.imread(img) |
|
|
|
for i, line in enumerate(lines_data): |
|
line_id = str(i).zfill(4) |
|
cropped_image = self.crop_line_image(image_array, line["coords"]) |
|
transcription = line["transcription"] |
|
|
|
if not transcription: |
|
print(f"Invalid transcription: {transcription}") |
|
continue |
|
|
|
unique_key = f"{volume}_{img_filename}_{line_id}" |
|
yield unique_key, {"image": cropped_image, "transcription": transcription} |
|
|
|
def inst_seg_lines_within_regions(self, imgs_xmls): |
|
"""Process for cropped images with text line annotations.""" |
|
for img_path, xml_path in imgs_xmls: |
|
img_filename, volume = self._extract_filename_and_volume(img_path, xml_path) |
|
image = PILImage.open(img_path) |
|
root = self._parse_xml(xml_path) |
|
namespaces = {"ns": "http://schema.primaresearch.org/PAGE/gts/pagecontent/2013-07-15"} |
|
|
|
|
|
for reg_ind, region in enumerate(root.findall(".//ns:TextRegion", namespaces=namespaces)): |
|
reg_id = str(reg_ind).zfill(4) |
|
region_polygon = self._get_polygon(region, namespaces) |
|
min_x, min_y, max_x, max_y = self._get_bbox(region_polygon) |
|
cropped_region_image = self.crop_image(image, region_polygon) |
|
|
|
annotations = self._get_line_annotations_within_region( |
|
region, namespaces, min_x, min_y, region_polygon |
|
) |
|
|
|
unique_key = f"{volume}_{img_filename}_{reg_id}" |
|
try: |
|
yield ( |
|
unique_key, |
|
{ |
|
"image": {"bytes": self._image_to_bytes(cropped_region_image)}, |
|
"annotations": annotations, |
|
"image_name": unique_key, |
|
}, |
|
) |
|
except: |
|
print("still error") |
|
continue |
|
|
|
def inst_seg_regions_and_lines(self, imgs_xmls): |
|
"""Process for original images with both region and line annotations.""" |
|
for img_path, xml_path in imgs_xmls: |
|
img_filename, volume = self._extract_filename_and_volume(img_path, xml_path) |
|
image = PILImage.open(img_path) |
|
root = self._parse_xml(xml_path) |
|
annotations = self._get_region_and_line_annotations(root) |
|
|
|
unique_key = f"{volume}_{img_filename}" |
|
yield unique_key, {"image_name": unique_key, "image": image, "annotations": annotations} |
|
|
|
def inst_seg_lines(self, imgs_xmls): |
|
"""Process for original images with text line annotations only.""" |
|
for img_path, xml_path in imgs_xmls: |
|
img_filename, volume = self._extract_filename_and_volume(img_path, xml_path) |
|
image = PILImage.open(img_path) |
|
root = self._parse_xml(xml_path) |
|
|
|
annotations = self._get_line_annotations(root) |
|
|
|
unique_key = f"{volume}_{img_filename}" |
|
yield unique_key, {"image_name": unique_key, "image": image, "annotations": annotations} |
|
|
|
def inst_seg_regions(self, imgs_xmls): |
|
"""Process for original images with text region annotations only.""" |
|
for img_path, xml_path in imgs_xmls: |
|
img_filename, volume = self._extract_filename_and_volume(img_path, xml_path) |
|
image = PILImage.open(img_path) |
|
root = self._parse_xml(xml_path) |
|
|
|
annotations = self._get_region_annotations(root) |
|
|
|
unique_key = f"{volume}_{img_filename}" |
|
yield unique_key, {"image_name": unique_key, "image": image, "annotations": annotations} |
|
|
|
def _extract_filename_and_volume(self, img, xml): |
|
"""Extracts the filename and volume from the image and XML paths.""" |
|
assert Path(img).stem == Path(xml).stem |
|
img_filename = Path(img).stem |
|
volume = PurePath(img).parts[-2] |
|
return img_filename, volume |
|
|
|
def _parse_xml(self, xml_path): |
|
"""Parses the XML file and returns the root element.""" |
|
try: |
|
tree = ET.parse(xml_path) |
|
return tree.getroot() |
|
except ET.ParseError as e: |
|
print(f"XML Parse Error: {e}") |
|
return None |
|
|
|
def _get_line_annotations_within_region(self, region, namespaces, min_x, min_y, region_polygon): |
|
"""Generates annotations for text lines within a region.""" |
|
annotations = [] |
|
for line in region.findall(".//ns:TextLine", namespaces=namespaces): |
|
line_polygon = self._get_polygon(line, namespaces) |
|
clipped_line_polygon = self.clip_polygon_to_region(line_polygon, region_polygon) |
|
|
|
if len(clipped_line_polygon) < 3: |
|
print(f"Invalid polygon detected for line: {line_polygon}, clipped: {clipped_line_polygon}") |
|
continue |
|
|
|
translated_polygon = [(x - min_x, y - min_y) for x, y in clipped_line_polygon] |
|
transcription = "".join(line.itertext()).strip() |
|
|
|
annotations.append( |
|
{ |
|
"polygon": translated_polygon, |
|
"transcription": transcription, |
|
"class": "textline", |
|
} |
|
) |
|
return annotations |
|
|
|
def _get_region_and_line_annotations(self, root): |
|
"""Generates annotations for both text regions and lines.""" |
|
annotations = [] |
|
|
|
|
|
annotations.extend(self._get_region_annotations(root)) |
|
|
|
|
|
annotations.extend(self._get_line_annotations(root)) |
|
|
|
return annotations |
|
|
|
def _get_line_annotations(self, root): |
|
"""Generates annotations for text lines only.""" |
|
namespaces = {"ns": "http://schema.primaresearch.org/PAGE/gts/pagecontent/2013-07-15"} |
|
annotations = [] |
|
for region in root.findall(".//ns:TextRegion", namespaces=namespaces): |
|
for line in region.findall(".//ns:TextLine", namespaces=namespaces): |
|
line_polygon = self._get_polygon(line, namespaces) |
|
transcription = "".join(line.itertext()).strip() |
|
annotations.append( |
|
{ |
|
"polygon": line_polygon, |
|
"transcription": transcription, |
|
"class": "textline", |
|
} |
|
) |
|
return annotations |
|
|
|
def _get_region_annotations(self, root): |
|
"""Generates annotations for text regions only.""" |
|
namespaces = {"ns": "http://schema.primaresearch.org/PAGE/gts/pagecontent/2013-07-15"} |
|
annotations = [] |
|
for region in root.findall(".//ns:TextRegion", namespaces=namespaces): |
|
region_polygon = self._get_polygon(region, namespaces) |
|
annotations.append( |
|
{ |
|
"polygon": region_polygon, |
|
"transcription": "", |
|
"class": "textregion", |
|
} |
|
) |
|
return annotations |
|
|
|
def _image_to_bytes(self, image): |
|
"""Converts a PIL image to bytes.""" |
|
with io.BytesIO() as output: |
|
image.save(output, format="PNG") |
|
return output.getvalue() |
|
|
|
def crop_image(self, img_pil, coords): |
|
coords = np.array(coords) |
|
img = np.array(img_pil) |
|
mask = np.zeros(img.shape[0:2], dtype=np.uint8) |
|
|
|
try: |
|
|
|
coords[:, 0] = np.clip(coords[:, 0], 0, img.shape[1] - 1) |
|
coords[:, 1] = np.clip(coords[:, 1], 0, img.shape[0] - 1) |
|
|
|
|
|
cv2.drawContours(mask, [coords], -1, (255, 255, 255), -1, cv2.LINE_AA) |
|
|
|
|
|
res = cv2.bitwise_and(img, img, mask=mask) |
|
rect = cv2.boundingRect(coords) |
|
|
|
|
|
rect = ( |
|
max(0, rect[0]), |
|
max(0, rect[1]), |
|
min(rect[2], img.shape[1] - rect[0]), |
|
min(rect[3], img.shape[0] - rect[1]), |
|
) |
|
|
|
wbg = np.ones_like(img, np.uint8) * 255 |
|
cv2.bitwise_not(wbg, wbg, mask=mask) |
|
|
|
|
|
dst = wbg + res |
|
|
|
|
|
cropped = dst[rect[1] : rect[1] + rect[3], rect[0] : rect[0] + rect[2]] |
|
|
|
|
|
cropped_pil = PILImage.fromarray(cropped) |
|
|
|
return cropped_pil |
|
|
|
except Exception as e: |
|
print(f"Error in cropping: {e}") |
|
return img_pil |
|
|
|
def _create_mask(self, shape, coords): |
|
"""Creates a mask for the specified polygon coordinates.""" |
|
mask = np.zeros(shape, dtype=np.uint8) |
|
cv2.drawContours(mask, [np.array(coords)], -1, (255, 255, 255), -1, cv2.LINE_AA) |
|
return mask |
|
|
|
def parse_pagexml(self, xml): |
|
"""Parses the PAGE XML and extracts line data.""" |
|
root = self._parse_xml(xml) |
|
if not root: |
|
return [] |
|
|
|
namespaces = {"ns": "http://schema.primaresearch.org/PAGE/gts/pagecontent/2013-07-15"} |
|
lines_data = [] |
|
for region in root.findall(".//ns:TextRegion", namespaces): |
|
for line in region.findall(".//ns:TextLine", namespaces): |
|
try: |
|
line_id = line.get("id") |
|
coords = self._get_polygon(line, namespaces) |
|
transcription = line.find("ns:TextEquiv/ns:Unicode", namespaces).text or "" |
|
lines_data.append({"line_id": line_id, "coords": coords, "transcription": transcription}) |
|
except Exception as e: |
|
print(f"Error parsing line: {e}") |
|
return lines_data |
|
|
|
def crop_line_image(self, img, coords): |
|
"""Crops a line image based on the provided coordinates.""" |
|
mask = self._create_mask(img.shape[:2], coords) |
|
|
|
coords = np.array(coords) |
|
|
|
|
|
res = cv2.bitwise_and(img, img, mask=mask) |
|
rect = cv2.boundingRect(coords) |
|
|
|
|
|
wbg = np.ones_like(img, np.uint8) * 255 |
|
cv2.bitwise_not(wbg, wbg, mask=mask) |
|
dst = wbg + res |
|
|
|
cropped = dst[rect[1] : rect[1] + rect[3], rect[0] : rect[0] + rect[2]] |
|
|
|
return self.cv2_to_pil(cropped) |
|
|
|
def _get_polygon(self, element, namespaces): |
|
"""Extracts polygon points from a PAGE XML element.""" |
|
coords = element.find(".//ns:Coords", namespaces=namespaces).attrib["points"] |
|
return [tuple(map(int, p.split(","))) for p in coords.split()] |
|
|
|
def _get_bbox(self, polygon): |
|
"""Calculates the bounding box from polygon points.""" |
|
min_x = min(p[0] for p in polygon) |
|
min_y = min(p[1] for p in polygon) |
|
max_x = max(p[0] for p in polygon) |
|
max_y = max(p[1] for p in polygon) |
|
return min_x, min_y, max_x, max_y |
|
|
|
def clip_polygon_to_region(self, line_polygon, region_polygon): |
|
""" |
|
Clips a line polygon to ensure it's inside the region polygon using Shapely. |
|
Returns the original line polygon if the intersection is empty. |
|
""" |
|
|
|
line_poly = Polygon(line_polygon) |
|
region_poly = Polygon(region_polygon) |
|
|
|
|
|
try: |
|
intersection = line_poly.intersection(region_poly) |
|
except Exception: |
|
return line_polygon |
|
|
|
|
|
if intersection.is_empty: |
|
print( |
|
f"No intersection found for line_polygon {line_polygon} within region_polygon {region_polygon}, returning original polygon." |
|
) |
|
return line_polygon |
|
elif intersection.geom_type == "Polygon": |
|
return list(intersection.exterior.coords) |
|
elif intersection.geom_type == "MultiPolygon": |
|
|
|
largest_polygon = max(intersection.geoms, key=lambda p: p.area) |
|
return list(largest_polygon.exterior.coords) |
|
elif intersection.geom_type == "LineString": |
|
return list(intersection.coords) |
|
else: |
|
print(f"Unexpected intersection type: {intersection.geom_type}") |
|
return line_polygon |
|
|
|
def cv2_to_pil(self, cv2_image): |
|
"""Converts an OpenCV image to a PIL Image.""" |
|
cv2_image_rgb = cv2.cvtColor(cv2_image, cv2.COLOR_BGR2RGB) |
|
return PILImage.fromarray(cv2_image_rgb) |
|
|