|
""" |
|
SEA Crowd Data Loader for Bloom LM. |
|
""" |
|
from typing import Dict, Iterator, List, Tuple |
|
|
|
import datasets |
|
from datasets.download.download_manager import DownloadManager |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import TASK_TO_SCHEMA, Licenses, Tasks |
|
|
|
_CITATION = r""" |
|
@inproceedings{leong-etal-2022-bloom, |
|
title = "Bloom Library: Multimodal Datasets in 300+ Languages for a Variety of Downstream Tasks", |
|
author = "Leong, Colin and |
|
Nemecek, Joshua and |
|
Mansdorfer, Jacob and |
|
Filighera, Anna and |
|
Owodunni, Abraham and |
|
Whitenack, Daniel", |
|
editor = "Goldberg, Yoav and |
|
Kozareva, Zornitsa and |
|
Zhang, Yue", |
|
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", |
|
month = dec, |
|
year = "2022", |
|
address = "Abu Dhabi, United Arab Emirates", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2022.emnlp-main.590", |
|
doi = "10.18653/v1/2022.emnlp-main.590", |
|
pages = "8608--8621", |
|
} |
|
""" |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_LANG_CONFIG = { |
|
"abc": "Ambala Ayta", |
|
"ahk": "Akha", |
|
"bfn": "Bunak", |
|
"bjn": "Banjar", |
|
"bkx": "Baikeno", |
|
"brb": "Brao", |
|
"brv": "Western Bru", |
|
"bya": "Batak", |
|
"bzi": "Bisu", |
|
"ceb": "Cebuano", |
|
"cgc": "Kagayanen", |
|
"cmo": "Central Mnong", |
|
"ddg": "Fataluku", |
|
"dmg": "Upper Kinabatangan", |
|
"dnw": "Western Dani", |
|
"dtp": "Kadazan Dusun", |
|
"dtr": "Lotud", |
|
"enc": "En", |
|
"fil": "Filipino", |
|
"gal": "Galolen", |
|
"hil": "Hiligaynon", |
|
"hre": "Hre", |
|
"hro": "Haroi", |
|
"idt": "Idaté", |
|
"ilo": "Ilocano", |
|
"ind": "Indonesian", |
|
"jra": "Jarai", |
|
"kak": "Kalanguya", |
|
"khb": "Lü", |
|
"khm": "Khmer", |
|
"kqr": "Kimaragang", |
|
"krr": "Krung", |
|
"ksw": "S’gaw Karen", |
|
"kvt": "Lahta", |
|
"lao": "Lao", |
|
"lhu": "Lahu", |
|
"llg": "Lole", |
|
"lsi": "Lacid", |
|
"lwl": "Eastern Lawa", |
|
"mdr": "Mandar", |
|
"mgm": "Mambae", |
|
"mhx": "Lhao Vo", |
|
"mkz": "Makasae", |
|
"mnw": "Mon", |
|
"mqj": "Mamasa", |
|
"mry": "Mandaya", |
|
"msb": "Masbatenyo", |
|
"mya": "Burmese", |
|
"nod": "Northern Thai", |
|
"nst": "Tangshang Naga", |
|
"nxa": "Nauete", |
|
"nxl": "South Nuaulu", |
|
"pag": "Pangasinan", |
|
"pce": "Ruching Palaung", |
|
"pdu": "Kayan", |
|
"pea": "Peranakan Indonesian", |
|
"pmf": "Pamona", |
|
"psp_ceb": "Filipino Sign Language", |
|
"sea": "Semai", |
|
"sgd": "Surigaonon", |
|
"shn": "Shan", |
|
"sml": "Central Sama", |
|
"snl": "Sangil", |
|
"tdt": "Tetun Dili", |
|
"tet": "Tetun", |
|
"tha": "Thai", |
|
"tkd": "Tukudede", |
|
"tnt": "Tontemboan", |
|
"tom": "Tombulu", |
|
"tpu": "Tampuan", |
|
"vie": "Vietnamese", |
|
"war": "Waray-Waray", |
|
"wms": "Wambon", |
|
"wnk": "Wanukaka", |
|
"xmm": "Manado Malay", |
|
"yet": "Yetfa", |
|
"yin": "Riang Lai", |
|
"zlm": "Malay", |
|
} |
|
|
|
_LOCAL = False |
|
_LANGUAGES = list(_LANG_CONFIG.keys()) |
|
|
|
_DATASETNAME = "bloom_lm" |
|
_DESCRIPTION = r""" |
|
This is a Bloom Library dataset developed for the self-supervised language modeling task. |
|
It covers 74 languages indigenous to SEA overall, amounting to total data of 21K. |
|
This dataset belongs to a CC license, where its datapoints has specific license attached to it. |
|
Before using this dataloader, please accept the acknowledgement at https://huggingface.co/datasets/sil-ai/bloom-lm and use huggingface-cli login for authentication. |
|
""" |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/sil-ai/bloom-lm" |
|
_LICENSE = Licenses.CC.value |
|
|
|
_URL = "https://huggingface.co/datasets/sil-ai/bloom-lm" |
|
_HF_REMOTE_REF = "/".join(_URL.split("/")[-2:]) |
|
|
|
_SUPPORTED_TASKS = [Tasks.SELF_SUPERVISED_PRETRAINING] |
|
_SOURCE_VERSION = "0.1.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
CONFIG_SUFFIXES_FOR_TASK = [TASK_TO_SCHEMA.get(task).lower() for task in _SUPPORTED_TASKS] |
|
|
|
|
|
def construct_configs_on_langs() -> List[SEACrowdConfig]: |
|
""" |
|
The function `construct_configs` constructs a list of SEACrowdConfig objects based on `_LANGUAGES` var, and returns the list. |
|
|
|
output: |
|
a list of `SEACrowdConfig` objects based on instantiated init variables |
|
""" |
|
|
|
|
|
config_list = [] |
|
|
|
|
|
TASKS_AND_CONFIG_SUFFIX_PAIRS = list(zip(_SUPPORTED_TASKS, CONFIG_SUFFIXES_FOR_TASK)) |
|
|
|
|
|
version, config_name_prefix = _SOURCE_VERSION, "source" |
|
config_list += [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{_LANG}_{config_name_prefix}", |
|
version=datasets.Version(version), |
|
description=f"{_DATASETNAME} {config_name_prefix} schema for language code {_LANG}", |
|
schema=f"{config_name_prefix}", |
|
|
|
subset_id=_LANG if _LANG != "psp_ceb" else "psp", |
|
) |
|
for _LANG in _LANGUAGES |
|
] |
|
|
|
|
|
version, config_name_prefix = _SEACROWD_VERSION, "seacrowd" |
|
for task_obj, config_name_suffix in TASKS_AND_CONFIG_SUFFIX_PAIRS: |
|
config_list += [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{_LANG}_{config_name_prefix}_{config_name_suffix}", |
|
version=datasets.Version(version), |
|
description=f"{_DATASETNAME} {config_name_prefix} schema for {task_obj.name} and language code {_LANG}", |
|
schema=f"{config_name_prefix}_{config_name_suffix}", |
|
|
|
subset_id=_LANG if _LANG != "psp_ceb" else "psp", |
|
) |
|
for _LANG in _LANGUAGES |
|
] |
|
return config_list |
|
|
|
|
|
class BloomLMDataset(datasets.GeneratorBasedBuilder): |
|
"""Bloom LM dataset, subsetted from https://huggingface.co/datasets/sil-ai/bloom-lm""" |
|
|
|
|
|
BUILDER_CONFIGS = construct_configs_on_langs() |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
_config_schema_name = self.config.schema |
|
logger.info(f"Received schema name: {self.config.schema}") |
|
|
|
if _config_schema_name == "source": |
|
features = datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"license": datasets.Value("string"), |
|
"copyright": datasets.Value("string"), |
|
"pageCount": datasets.Value("int32"), |
|
"bookInstanceId": datasets.Value("string"), |
|
"bookLineage": datasets.Value("string"), |
|
} |
|
) |
|
|
|
|
|
elif _config_schema_name == "seacrowd_ssp": |
|
features = schemas.ssp_features |
|
|
|
else: |
|
raise ValueError(f"Received unexpected config schema of {_config_schema_name}!") |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]: |
|
hf_dset_dict = datasets.load_dataset(_HF_REMOTE_REF, self.config.subset_id) |
|
|
|
return [datasets.SplitGenerator(name=datasets.Split(dset_key), gen_kwargs={"hf_dset": dset}) for dset_key, dset in hf_dset_dict.items() if dset.num_rows > 0] |
|
|
|
def _generate_examples(self, hf_dset) -> Iterator[Tuple[int, Dict]]: |
|
_config_schema_name = self.config.schema |
|
|
|
_idx = 0 |
|
for datapoints in hf_dset: |
|
|
|
if _config_schema_name == "source": |
|
yield _idx, {colname: datapoints[colname] for colname in self.info.features} |
|
|
|
elif _config_schema_name == "seacrowd_ssp": |
|
yield _idx, {"id": _idx, "text": datapoints["text"]} |
|
|
|
else: |
|
raise ValueError(f"Received unexpected config schema of {_config_schema_name}!") |
|
|
|
_idx += 1 |
|
|