|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@inproceedings{elkishky_ccaligned_2020, |
|
author = {El-Kishky, Ahmed and Chaudhary, Vishrav and Guzm{\'a}n, Francisco and Koehn, Philipp}, |
|
booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020)}, |
|
month = {November}, |
|
title = {{CCAligned}: A Massive Collection of Cross-lingual Web-Document Pairs}, |
|
year = {2020} |
|
address = "Online", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://www.aclweb.org/anthology/2020.emnlp-main.480", |
|
doi = "10.18653/v1/2020.emnlp-main.480", |
|
pages = "5960--5969" |
|
} |
|
""" |
|
|
|
_DATASETNAME = "cc_aligned_doc" |
|
|
|
_DESCRIPTION = """\ |
|
CCAligned consists of parallel or comparable web-document pairs in 137 languages aligned with English\ |
|
(10 languages are from Southeast Asia; Burmese has two document collection with different scripts).\ |
|
These web-document pairs were constructed by performing language identification on raw web-documents, \ |
|
and ensuring corresponding language codes were corresponding in the URLs of web documents. This pattern \ |
|
matching approach yielded more than 100 million aligned documents paired with English. |
|
""" |
|
|
|
_HOMEPAGE = "https://www2.statmt.org/cc-aligned/" |
|
|
|
_LANGUAGES = ["ind", "sun", "tha", "vie", "zlm", "lao", "khm", "mya", "ceb", "war"] |
|
|
|
_LICENSE = Licenses.UNKNOWN.value |
|
|
|
_LOCAL = False |
|
_SUBSETS = {"id_ID": "ind", "su_ID": "sun", "th_TH": "tha", "vi_VN": "vie", "ms_MY": "zlm", "lo_LA": "lao", "km_KH": "khm", "my_MM": "mya", "my_MM_zaw": "mya", "cx_PH": "ceb", "wy_PH": "war"} |
|
_URLS = {_DATASETNAME: "https://data.statmt.org/cc-aligned/en_XX-{subset}.tsv.xz"} |
|
|
|
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class CCAlignedDocDataset(datasets.GeneratorBasedBuilder): |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
SEACROWD_SCHEMA_NAME = "t2t" |
|
|
|
BUILDER_CONFIGS = [SEACrowdConfig(name=f"{_DATASETNAME}_{subset}_source", version=datasets.Version(_SOURCE_VERSION), description=f"{_DATASETNAME} source schema", schema="source", subset_id=f"{_DATASETNAME}",) for subset in _SUBSETS.keys()] + [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{subset}_seacrowd_{schema_name}", |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema=f"seacrowd_{schema_name}", |
|
subset_id=f"{_DATASETNAME}", |
|
) |
|
for subset, schema_name in zip(_SUBSETS.keys(), len(_SUBSETS.keys()) * [SEACROWD_SCHEMA_NAME]) |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_id_ID_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"Domain": datasets.Value("string"), |
|
"Source_URL": datasets.Value("string"), |
|
"Source_Content": datasets.Value("string"), |
|
"Target_URL": datasets.Value("string"), |
|
"Target_Content": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
features = schemas.text2text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
subset = "_".join([self.config.name.split("_")[3], self.config.name.split("_")[4]]) |
|
urls = _URLS[_DATASETNAME].format(subset=subset) |
|
data_dir = dl_manager.download_and_extract(urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_dir, |
|
"split": "train", |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
subset = "_".join([self.config.name.split("_")[3], self.config.name.split("_")[4]]) |
|
lines = open(filepath, "r").readlines() |
|
if self.config.schema == "source": |
|
idx = 0 |
|
for line in lines: |
|
content = line.split("\t") |
|
example = { |
|
"Domain": content[0], |
|
"Source_URL": content[1], |
|
"Source_Content": content[2], |
|
"Target_URL": content[3], |
|
"Target_Content": content[4], |
|
} |
|
yield idx, example |
|
idx += 1 |
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
idx = 0 |
|
for line in lines: |
|
content = line.split("\t") |
|
example = { |
|
"id": str(idx), |
|
"text_1": content[2], |
|
"text_2": content[4], |
|
"text_1_name": "en", |
|
"text_2_name": _SUBSETS[subset], |
|
} |
|
yield idx, example |
|
idx += 1 |
|
|