|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import re |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import TASK_TO_SCHEMA, Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@article{gonzales_corpus_2021, |
|
title = {The {Corpus} of {Singapore} {English} {Messages} ({CoSEM})}, |
|
issn = {0883-2919, 1467-971X}, |
|
url = {https://onlinelibrary.wiley.com/doi/10.1111/weng.12534}, |
|
doi = {10.1111/weng.12534}, |
|
language = {en}, |
|
urldate = {2022-02-19}, |
|
journal = {World Englishes}, |
|
author = {Gonzales, Wilkinson Daniel Wong and Hiramoto, Mie and R. E. Leimgruber, Jakob and Lim, Jun Jie}, |
|
month = feb, |
|
year = {2021}, |
|
} |
|
""" |
|
|
|
_DATASETNAME = "cosem" |
|
|
|
_DESCRIPTION = """\ |
|
The CoSEM dataset consists of over 900,000 lines of online messages from the messaging platform WhatsApp collected from personal chat |
|
logs of students enrolled in an advanced sociolinguistics class from the National University of Singapore. Messages collected were |
|
from 2016 to 2019. The dataset is in .txt format, where each line of utterance is tagged with a unique identifier that includes its |
|
metadata such as line number, year message was sent, and age and nationality of sender. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/wdwgonzales/CoSEM/blob/main/Corpus/COSEM_v4_publicrelease_SEP172023.zip" |
|
|
|
_LANGUAGES = ["eng"] |
|
|
|
_LICENSE = Licenses.CC0_1_0.value |
|
|
|
_LOCAL = False |
|
|
|
_URLS = {_DATASETNAME: "https://github.com/wdwgonzales/CoSEM/raw/main/Corpus/COSEM_v4_publicrelease_SEP172023.zip"} |
|
|
|
_SUPPORTED_TASKS = [Tasks.SELF_SUPERVISED_PRETRAINING] |
|
_SUPPORTED_SCHEMA_STRINGS = [f"seacrowd_{str(TASK_TO_SCHEMA[task]).lower()}" for task in _SUPPORTED_TASKS] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class CoSEMDataset(datasets.GeneratorBasedBuilder): |
|
"""The CoSEM dataset consists of over 900,000 lines of online messages from the messaging platform WhatsApp collected from |
|
personal chat logs of students enrolled in an advanced sociolinguistics class from the National University of Singapore.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
subset_id = _DATASETNAME |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{subset_id}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=subset_id, |
|
) |
|
] |
|
|
|
seacrowd_schema_config: list[SEACrowdConfig] = [] |
|
|
|
for seacrowd_schema in _SUPPORTED_SCHEMA_STRINGS: |
|
|
|
seacrowd_schema_config.append( |
|
SEACrowdConfig( |
|
name=f"{subset_id}_{seacrowd_schema}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} {seacrowd_schema} schema", |
|
schema=f"{seacrowd_schema}", |
|
subset_id=subset_id, |
|
) |
|
) |
|
|
|
BUILDER_CONFIGS.extend(seacrowd_schema_config) |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
} |
|
) |
|
|
|
elif self.config.schema == f"seacrowd_{str(TASK_TO_SCHEMA[Tasks.SELF_SUPERVISED_PRETRAINING]).lower()}": |
|
features = schemas.ssp_features |
|
|
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
split_generators = [] |
|
|
|
path = dl_manager.download_and_extract(_URLS[_DATASETNAME]) |
|
|
|
split_generators.append( |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"path": os.path.join(path, "COSEM_v4_publicrelease_SEP172023"), |
|
}, |
|
) |
|
) |
|
|
|
return split_generators |
|
|
|
def _generate_examples(self, path: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
files = os.listdir(path) |
|
file_paths = [os.path.join(path, file) for file in files] |
|
pattern = r"<(COSEM:.*?)>(.*?)(?=<COSEM:|$)" |
|
|
|
s = {} |
|
|
|
for file_path in file_paths: |
|
with open(file_path, "r", encoding="utf-8") as file: |
|
text = file.read() |
|
|
|
matches = re.findall(pattern, text, re.DOTALL) |
|
for match in matches: |
|
key = match[0].strip() |
|
value = match[1].strip() |
|
|
|
if key in s: |
|
continue |
|
s[key] = value |
|
|
|
if self.config.schema == "source" or self.config.schema == f"seacrowd_{str(TASK_TO_SCHEMA[Tasks.SELF_SUPERVISED_PRETRAINING]).lower()}": |
|
yield key, {"id": key, "text": value} |
|
|
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
|