|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import os |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@misc{feryandi2018, |
|
author={Nurdiantoro, Feryandi} |
|
title={Dataset-Artikel}, |
|
year = {2018}, |
|
url = {https://github.com/feryandi/Dataset-Artikel}, |
|
} |
|
""" |
|
|
|
_DATASETNAME = "id_newspaper_2018" |
|
|
|
_DESCRIPTION = """\ |
|
The ID Newspapers 2018 dataset provides 500K articles from various Indonesian news sources. Articles were taken from |
|
7 primary sources (Detik, Kompas, Tempo, CNN Indonesia, Sindo, Republika, Poskota). The compressed files can be |
|
retrieved from datahttps://huggingface.co/datasets/indonesian-nlp/id_newspapers_2018. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/feryandi/Dataset-Artikel" |
|
|
|
_LANGUAGES = ["ind"] |
|
|
|
_LICENSE = Licenses.CC_BY_SA_4_0.value |
|
|
|
_LOCAL = False |
|
|
|
_URLS = "https://huggingface.co/datasets/indonesian-nlp/id_newspapers_2018/resolve/main/newspapers-json.tgz" |
|
|
|
_SUPPORTED_TASKS = [Tasks.SELF_SUPERVISED_PRETRAINING] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class IDNewspapers2018Dataset(datasets.GeneratorBasedBuilder): |
|
""" |
|
ID Newspapers 2018 is a pretraining dataset from https://huggingface.co/datasets/indonesian-nlp/id_newspapers_2018. |
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_ssp", |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema="seacrowd_ssp", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
] |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features({"url": datasets.Value("string"), "date": datasets.Value("string"), "title": datasets.Value("string"), "content": datasets.Value("string")}) |
|
elif self.config.schema == "seacrowd_ssp": |
|
features = schemas.ssp_features |
|
else: |
|
raise ValueError(f"Invalid schema: '{self.config.schema}'") |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
""" |
|
Returns SplitGenerators. |
|
""" |
|
|
|
path = dl_manager.download_and_extract(_URLS) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"path": path, |
|
"split": "train", |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, path: Path, split: str) -> Tuple[int, Dict]: |
|
""" |
|
Yields examples as (key, example) tuples. |
|
""" |
|
file_paths = [] |
|
for path, subdirs, files in os.walk(path): |
|
for name in files: |
|
if name[-5:] == ".json": |
|
file_paths.append(os.path.join(path, name)) |
|
|
|
for idx, file_path in enumerate(file_paths): |
|
with open(file_path, "r", encoding="utf-8") as file: |
|
data = json.load(file) |
|
|
|
if self.config.schema == "source": |
|
x = { |
|
"url": data["url"], |
|
"date": data["date"], |
|
"title": data["title"], |
|
"content": data["content"], |
|
} |
|
yield idx, x |
|
|
|
elif self.config.schema == "seacrowd_ssp": |
|
x = { |
|
"id": str(idx), |
|
"text": data["content"], |
|
} |
|
yield idx, x |
|
|
|
else: |
|
raise ValueError(f"Invalid schema: '{self.config.schema}'") |
|
|