File size: 11,040 Bytes
7d22080 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Corpus-based dictionary of Thai and English languages. \
This dataset contains frequently-used words from trusted \
publications such as novels, academic documents and newspaper. \
The dataset link contains Thai-English and English-Thai lexicons. \
Thai-English vocabulary consists of vocabulary, type of word \
(part of speech), translation, synonym (synonym) and sample sentences \
with a list of Thai-> English words, 53,000 words and English vocabulary \
list -> Thai, 83,000 words.
"""
import os
import re
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
import pandas as pd
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
# There are no citations available for this dataset.
_CITATION = ""
_DATASETNAME = "lexitron"
_DESCRIPTION = """
Corpus-based dictionary of Thai and English languages. \
This dataset contains frequently-used words from trusted \
publications such as novels, academic documents and newspaper. \
The dataset link contains Thai-English and English-Thai lexicons. \
Thai-English vocabulary consists of vocabulary, type of word \
(part of speech), translation, synonym (synonym) and sample sentences \
with a list of Thai-> English words, 53,000 words and English vocabulary \
list -> Thai, 83,000 words.
"""
_HOMEPAGE = "https://opend-portal.nectec.or.th/dataset/lexitron-2-0"
_LANGUAGES = ["tha"]
_LICENSE = Licenses.OTHERS.value
_LOCAL = False
_URLS = {
"telex": "https://opend-portal.nectec.or.th/dataset/bdd85296-9398-499f-b3a7-aab85042d3f9/resource/761924ea-937f-4be3-afe1-c031c754fa39/download/lexitron_2.0.zip",
"etlex": "https://opend-portal.nectec.or.th/dataset/bdd85296-9398-499f-b3a7-aab85042d3f9/resource/761924ea-937f-4be3-afe1-c031c754fa39/download/lexitron_2.0.zip",
}
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class LEXiTRONDataset(datasets.GeneratorBasedBuilder):
"""
Corpus-based dictionary of Thai and English languages. \
This dataset contains frequently-used words from trusted \
publications such as novels, academic documents and newspaper. \
The dataset link contains Thai-English and English-Thai lexicons. \
Thai-English vocabulary consists of vocabulary, type of word \
(part of speech), translation, synonym (synonym) and sample sentences \
with a list of Thai-> English words, 53,000 words and English vocabulary \
list -> Thai, 83,000 words.
"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
SEACROWD_SCHEMA_NAME = "t2t"
BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_telex_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=f"{_DATASETNAME}_telex",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_telex_seacrowd_{SEACROWD_SCHEMA_NAME}",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} SEACrowd schema",
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
subset_id=f"{_DATASETNAME}_telex",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_etlex_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=f"{_DATASETNAME}_etlex",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_etlex_seacrowd_{SEACROWD_SCHEMA_NAME}",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} SEACrowd schema",
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
subset_id=f"{_DATASETNAME}_etlex",
),
]
DEFAULT_CONFIG_NAME = "[dataset_name]_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
translation_type = self.config.name.split("_")[1]
if translation_type == "telex":
features = datasets.Features(
{
"id": datasets.Value("int64"),
"tsearch": datasets.Value("string"),
"tentry": datasets.Value("string"),
"eentry": datasets.Value("string"),
"tcat": datasets.Value("string"),
"tsyn": datasets.Value("string"),
"tsample": datasets.Value("string"),
"tdef": datasets.Value("string"),
}
)
elif translation_type == "etlex":
features = datasets.Features(
{"id": datasets.Value("int64"), "esearch": datasets.Value("string"), "eentry": datasets.Value("string"), "tentry": datasets.Value("string"), "ecat": datasets.Value("string"), "esyn": datasets.Value("string")}
)
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
features = schemas.text2text_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
translation_type = self.config.name.split("_")[1]
data_dir = dl_manager.download_and_extract(_URLS[translation_type])
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir, f"LEXiTRON_2.0/{translation_type}"),
"split": "train",
},
)
]
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
translation_type = self.config.name.split("_")[1]
if translation_type == "telex":
with open(filepath, "r", encoding="latin-1") as file:
data = file.read()
pattern = r"<Doc>(.*?)</Doc>"
docs = re.findall(pattern, data, re.DOTALL)
doc_data = []
for doc in docs:
tsearch = tentry = eentry = tcat = tsyn = tsample = tdef = id = None
tsearch_match = re.search(r"<tsearch>(.*?)</tsearch>", doc)
if tsearch_match:
tsearch = tsearch_match.group(1)
tentry_match = re.search(r"<tentry>(.*?)</tentry>", doc)
if tentry_match:
tentry = tentry_match.group(1)
eentry_match = re.search(r"<eentry>(.*?)</eentry>", doc)
if eentry_match:
eentry = eentry_match.group(1)
tcat_match = re.search(r"<tcat>(.*?)</tcat>", doc)
if tcat_match:
tcat = tcat_match.group(1)
tsyn_match = re.search(r"<tsyn>(.*?)</tsyn>", doc)
if tsyn_match:
tsyn = tsyn_match.group(1)
tsample_match = re.search(r"<tsample>(.*?)</tsample>", doc)
if tsample_match:
tsample = tsample_match.group(1)
tdef_match = re.search(r"<tdef>(.*?)</tdef>", doc)
if tdef_match:
tdef = tdef_match.group(1)
id_match = re.search(r"<id>(.*?)</id>", doc)
if id_match:
id = id_match.group(1)
doc_data.append({"id": id, "tsearch": tsearch, "tentry": tentry, "eentry": eentry, "tcat": tcat, "tsyn": tsyn, "tsample": tsample, "tdef": tdef})
df = pd.DataFrame(doc_data)
if translation_type == "etlex":
with open(filepath, "r", encoding="latin-1") as file:
data = file.read()
pattern = r"<Doc>(.*?)</Doc>"
docs = re.findall(pattern, data, re.DOTALL)
doc_data = []
for doc in docs:
esearch = eentry = tentry = ecat = esyn = id = None
esearch_match = re.search(r"<esearch>(.*?)</esearch>", doc)
if esearch_match:
esearch = esearch_match.group(1)
eentry_match = re.search(r"<eentry>(.*?)</eentry>", doc)
if eentry_match:
eentry = eentry_match.group(1)
tentry_match = re.search(r"<tentry>(.*?)</tentry>", doc)
if tentry_match:
tentry = tentry_match.group(1)
ecat_match = re.search(r"<ecat>(.*?)</ecat>", doc)
if ecat_match:
ecat = ecat_match.group(1)
esyn_match = re.search(r"<esyn>(.*?)</esyn>", doc)
if esyn_match:
esyn = esyn_match.group(1)
id_match = re.search(r"<id>(.*?)</id>", doc)
if id_match:
id = id_match.group(1)
doc_data.append({"id": id, "esearch": esearch, "eentry": eentry, "tentry": tentry, "ecat": ecat, "esyn": esyn})
df = pd.DataFrame(doc_data)
for index, row in df.iterrows():
if self.config.schema == "source":
example = row.to_dict()
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
if translation_type == "telex":
example = {
"id": str(index),
"text_1": str(row["tentry"]),
"text_2": str(row["eentry"]),
"text_1_name": "tentry",
"text_2_name": "eentry",
}
if translation_type == "etlex":
example = {
"id": str(index),
"text_1": str(row["eentry"]),
"text_2": str(row["tentry"]),
"text_1_name": "eentry",
"text_2_name": "tentry",
}
yield index, example
|