Datasets:

Languages:
Thai
ArXiv:
License:
File size: 11,040 Bytes
7d22080
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Corpus-based dictionary of Thai and English languages. \
    This dataset contains frequently-used words from trusted \
    publications such as novels, academic documents and newspaper. \
    The dataset link contains Thai-English and English-Thai lexicons. \
    Thai-English vocabulary consists of vocabulary, type of word \
    (part of speech), translation, synonym (synonym) and sample sentences \
    with a list of Thai-> English words, 53,000 words and English vocabulary \
    list -> Thai, 83,000 words.
"""
import os
import re
from pathlib import Path
from typing import Dict, List, Tuple

import datasets
import pandas as pd

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks

# There are no citations available for this dataset.
_CITATION = ""

_DATASETNAME = "lexitron"

_DESCRIPTION = """
Corpus-based dictionary of Thai and English languages. \
    This dataset contains frequently-used words from trusted \
    publications such as novels, academic documents and newspaper. \
    The dataset link contains Thai-English and English-Thai lexicons. \
    Thai-English vocabulary consists of vocabulary, type of word \
    (part of speech), translation, synonym (synonym) and sample sentences \
    with a list of Thai-> English words, 53,000 words and English vocabulary \
    list -> Thai, 83,000 words.
"""

_HOMEPAGE = "https://opend-portal.nectec.or.th/dataset/lexitron-2-0"

_LANGUAGES = ["tha"]

_LICENSE = Licenses.OTHERS.value

_LOCAL = False

_URLS = {
    "telex": "https://opend-portal.nectec.or.th/dataset/bdd85296-9398-499f-b3a7-aab85042d3f9/resource/761924ea-937f-4be3-afe1-c031c754fa39/download/lexitron_2.0.zip",
    "etlex": "https://opend-portal.nectec.or.th/dataset/bdd85296-9398-499f-b3a7-aab85042d3f9/resource/761924ea-937f-4be3-afe1-c031c754fa39/download/lexitron_2.0.zip",
}

_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION]

_SOURCE_VERSION = "1.0.0"

_SEACROWD_VERSION = "2024.06.20"


class LEXiTRONDataset(datasets.GeneratorBasedBuilder):
    """
    Corpus-based dictionary of Thai and English languages. \
    This dataset contains frequently-used words from trusted \
    publications such as novels, academic documents and newspaper. \
    The dataset link contains Thai-English and English-Thai lexicons. \
    Thai-English vocabulary consists of vocabulary, type of word \
    (part of speech), translation, synonym (synonym) and sample sentences \
    with a list of Thai-> English words, 53,000 words and English vocabulary \
    list -> Thai, 83,000 words.
    """

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
    SEACROWD_SCHEMA_NAME = "t2t"

    BUILDER_CONFIGS = [
        SEACrowdConfig(
            name=f"{_DATASETNAME}_telex_source",
            version=SOURCE_VERSION,
            description=f"{_DATASETNAME} source schema",
            schema="source",
            subset_id=f"{_DATASETNAME}_telex",
        ),
        SEACrowdConfig(
            name=f"{_DATASETNAME}_telex_seacrowd_{SEACROWD_SCHEMA_NAME}",
            version=SEACROWD_VERSION,
            description=f"{_DATASETNAME} SEACrowd schema",
            schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
            subset_id=f"{_DATASETNAME}_telex",
        ),
        SEACrowdConfig(
            name=f"{_DATASETNAME}_etlex_source",
            version=SOURCE_VERSION,
            description=f"{_DATASETNAME} source schema",
            schema="source",
            subset_id=f"{_DATASETNAME}_etlex",
        ),
        SEACrowdConfig(
            name=f"{_DATASETNAME}_etlex_seacrowd_{SEACROWD_SCHEMA_NAME}",
            version=SEACROWD_VERSION,
            description=f"{_DATASETNAME} SEACrowd schema",
            schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
            subset_id=f"{_DATASETNAME}_etlex",
        ),
    ]

    DEFAULT_CONFIG_NAME = "[dataset_name]_source"

    def _info(self) -> datasets.DatasetInfo:

        if self.config.schema == "source":

            translation_type = self.config.name.split("_")[1]

            if translation_type == "telex":
                features = datasets.Features(
                    {
                        "id": datasets.Value("int64"),
                        "tsearch": datasets.Value("string"),
                        "tentry": datasets.Value("string"),
                        "eentry": datasets.Value("string"),
                        "tcat": datasets.Value("string"),
                        "tsyn": datasets.Value("string"),
                        "tsample": datasets.Value("string"),
                        "tdef": datasets.Value("string"),
                    }
                )

            elif translation_type == "etlex":
                features = datasets.Features(
                    {"id": datasets.Value("int64"), "esearch": datasets.Value("string"), "eentry": datasets.Value("string"), "tentry": datasets.Value("string"), "ecat": datasets.Value("string"), "esyn": datasets.Value("string")}
                )

        elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
            features = schemas.text2text_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""

        translation_type = self.config.name.split("_")[1]
        data_dir = dl_manager.download_and_extract(_URLS[translation_type])

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": os.path.join(data_dir, f"LEXiTRON_2.0/{translation_type}"),
                    "split": "train",
                },
            )
        ]

    def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
        """Yields examples as (key, example) tuples."""

        translation_type = self.config.name.split("_")[1]

        if translation_type == "telex":

            with open(filepath, "r", encoding="latin-1") as file:
                data = file.read()

            pattern = r"<Doc>(.*?)</Doc>"
            docs = re.findall(pattern, data, re.DOTALL)

            doc_data = []

            for doc in docs:
                tsearch = tentry = eentry = tcat = tsyn = tsample = tdef = id = None

                tsearch_match = re.search(r"<tsearch>(.*?)</tsearch>", doc)
                if tsearch_match:
                    tsearch = tsearch_match.group(1)

                tentry_match = re.search(r"<tentry>(.*?)</tentry>", doc)
                if tentry_match:
                    tentry = tentry_match.group(1)

                eentry_match = re.search(r"<eentry>(.*?)</eentry>", doc)
                if eentry_match:
                    eentry = eentry_match.group(1)

                tcat_match = re.search(r"<tcat>(.*?)</tcat>", doc)
                if tcat_match:
                    tcat = tcat_match.group(1)

                tsyn_match = re.search(r"<tsyn>(.*?)</tsyn>", doc)
                if tsyn_match:
                    tsyn = tsyn_match.group(1)

                tsample_match = re.search(r"<tsample>(.*?)</tsample>", doc)
                if tsample_match:
                    tsample = tsample_match.group(1)

                tdef_match = re.search(r"<tdef>(.*?)</tdef>", doc)
                if tdef_match:
                    tdef = tdef_match.group(1)

                id_match = re.search(r"<id>(.*?)</id>", doc)
                if id_match:
                    id = id_match.group(1)

                doc_data.append({"id": id, "tsearch": tsearch, "tentry": tentry, "eentry": eentry, "tcat": tcat, "tsyn": tsyn, "tsample": tsample, "tdef": tdef})

            df = pd.DataFrame(doc_data)

        if translation_type == "etlex":

            with open(filepath, "r", encoding="latin-1") as file:
                data = file.read()

            pattern = r"<Doc>(.*?)</Doc>"
            docs = re.findall(pattern, data, re.DOTALL)

            doc_data = []

            for doc in docs:
                esearch = eentry = tentry = ecat = esyn = id = None

                esearch_match = re.search(r"<esearch>(.*?)</esearch>", doc)
                if esearch_match:
                    esearch = esearch_match.group(1)

                eentry_match = re.search(r"<eentry>(.*?)</eentry>", doc)
                if eentry_match:
                    eentry = eentry_match.group(1)

                tentry_match = re.search(r"<tentry>(.*?)</tentry>", doc)
                if tentry_match:
                    tentry = tentry_match.group(1)

                ecat_match = re.search(r"<ecat>(.*?)</ecat>", doc)
                if ecat_match:
                    ecat = ecat_match.group(1)

                esyn_match = re.search(r"<esyn>(.*?)</esyn>", doc)
                if esyn_match:
                    esyn = esyn_match.group(1)

                id_match = re.search(r"<id>(.*?)</id>", doc)
                if id_match:
                    id = id_match.group(1)

                doc_data.append({"id": id, "esearch": esearch, "eentry": eentry, "tentry": tentry, "ecat": ecat, "esyn": esyn})

            df = pd.DataFrame(doc_data)

        for index, row in df.iterrows():

            if self.config.schema == "source":
                example = row.to_dict()

            elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":

                if translation_type == "telex":
                    example = {
                        "id": str(index),
                        "text_1": str(row["tentry"]),
                        "text_2": str(row["eentry"]),
                        "text_1_name": "tentry",
                        "text_2_name": "eentry",
                    }

                if translation_type == "etlex":
                    example = {
                        "id": str(index),
                        "text_1": str(row["eentry"]),
                        "text_2": str(row["tentry"]),
                        "text_1_name": "eentry",
                        "text_2_name": "tentry",
                    }

            yield index, example