File size: 9,830 Bytes
c625ad3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
import json
import os
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = r"""\
@article{lewis2019mlqa,
author={Lewis, Patrick and O\{g}uz, Barlas and Rinott, Ruty and Riedel, Sebastian and Schwenk, Holger},
title={MLQA: Evaluating Cross-lingual Extractive Question Answering},
journal={arXiv preprint arXiv:1910.07475},
year={2019}
}
"""
_DATASETNAME = "mlqa"
_DESCRIPTION = """\
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
"""
_HOMEPAGE = "https://github.com/facebookresearch/MLQA"
_LICENSE = Licenses.CC_BY_SA_3_0.value
_LANGUAGES = ["vie"]
_URL = "https://dl.fbaipublicfiles.com/MLQA/"
_DEV_TEST_URL = "MLQA_V1.zip"
_TRANSLATE_TEST_URL = "mlqa-translate-test.tar.gz"
_TRANSLATE_TRAIN_URL = "mlqa-translate-train.tar.gz"
_SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
_LOCAL = False
class MLQADataset(datasets.GeneratorBasedBuilder):
"""
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
subsets = [
"mlqa-translate-test.vi",
"mlqa-translate-train.vi",
"mlqa.vi.ar",
"mlqa.vi.de",
"mlqa.vi.zh",
"mlqa.vi.en",
"mlqa.vi.es",
"mlqa.vi.hi",
"mlqa.vi.vi",
"mlqa.ar.vi",
"mlqa.de.vi",
"mlqa.zh.vi",
"mlqa.en.vi",
"mlqa.es.vi",
"mlqa.hi.vi",
]
BUILDER_CONFIGS = [
SEACrowdConfig(
name="{sub}_source".format(sub=subset),
version=datasets.Version(_SOURCE_VERSION),
description="{sub} source schema".format(sub=subset),
schema="source",
subset_id="{sub}".format(sub=subset),
)
for subset in subsets
] + [
SEACrowdConfig(
name="{sub}_seacrowd_qa".format(sub=subset),
version=datasets.Version(_SEACROWD_VERSION),
description="{sub} SEACrowd schema".format(sub=subset),
schema="seacrowd_qa",
subset_id="{sub}".format(sub=subset),
)
for subset in subsets
]
DEFAULT_CONFIG_NAME = "mlqa.vi.vi_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{"context": datasets.Value("string"), "question": datasets.Value("string"), "answers": datasets.Features({"answer_start": [datasets.Value("int64")], "text": [datasets.Value("string")]}), "id": datasets.Value("string")}
)
elif self.config.schema == "seacrowd_qa":
features = schemas.qa_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
name_split = self.config.name.split("_")
url = ""
data_path = ""
if name_split[0].startswith("mlqa-translate-train"):
config_name, lang = name_split[0].split(".")
url = _URL + _TRANSLATE_TRAIN_URL
data_path = dl_manager.download(url)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# Whatever you put in gen_kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": f"{config_name}/{lang}_squad-translate-train-train-v1.1.json",
"files": dl_manager.iter_archive(data_path),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": f"{config_name}/{lang}_squad-translate-train-dev-v1.1.json",
"files": dl_manager.iter_archive(data_path),
"split": "test",
},
),
]
elif name_split[0].startswith("mlqa-translate-test"):
config_name, lang = name_split[0].split(".")
url = _URL + _TRANSLATE_TEST_URL
data_path = dl_manager.download(url)
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": f"{config_name}/translate-test-context-{lang}-question-{lang}.json",
"files": dl_manager.iter_archive(data_path),
"split": "test",
},
),
]
elif name_split[0].startswith("mlqa."):
url = _URL + _DEV_TEST_URL
data_path = dl_manager.download_and_extract(url)
ctx_lang, qst_lang = name_split[0].split(".")[1:]
return [
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(
os.path.join(data_path, "MLQA_V1/dev"),
f"dev-context-{ctx_lang}-question-{qst_lang}.json",
),
"split": "dev",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(
os.path.join(data_path, "MLQA_V1/test"),
f"test-context-{ctx_lang}-question-{qst_lang}.json",
),
"split": "test",
},
),
]
elif name_split[0] == "mlqa":
url = _URL + _DEV_TEST_URL
data_path = dl_manager.download_and_extract(url)
ctx_lang = qst_lang = "vi"
return [
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(
os.path.join(data_path, "MLQA_V1/dev"),
f"dev-context-{ctx_lang}-question-{qst_lang}.json",
),
"split": "dev",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(
os.path.join(data_path, "MLQA_V1/test"),
f"test-context-{ctx_lang}-question-{qst_lang}.json",
),
"split": "test",
},
),
]
def _generate_examples(self, filepath: Path, split: str, files=None) -> Tuple[int, Dict]:
is_config_ok = True
if self.config.name.startswith("mlqa-translate"):
for path, f in files:
if path == filepath:
data = json.loads(f.read().decode("utf-8"))
break
elif self.config.schema == "source" or self.config.schema == "seacrowd_qa":
with open(filepath, encoding="utf-8") as f:
data = json.load(f)
else:
is_config_ok = False
raise ValueError(f"Invalid config: {self.config.name}")
if is_config_ok:
count = 0
for examples in data["data"]:
for example in examples["paragraphs"]:
context = example["context"]
for qa in example["qas"]:
question = qa["question"]
id_ = qa["id"]
answers = qa["answers"]
answers_start = [answer["answer_start"] for answer in answers]
answers_text = [answer["text"] for answer in answers]
if self.config.schema == "source":
yield count, {
"context": context,
"question": question,
"answers": {"answer_start": answers_start, "text": answers_text},
"id": id_,
}
count += 1
elif self.config.schema == "seacrowd_qa":
yield count, {"question_id": id_, "context": context, "question": question, "answer": {"answer_start": answers_start[0], "text": answers_text[0]}, "id": id_, "choices": [], "type": "extractive", "document_id": count, "meta":{}}
count += 1
|