|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from nusacrowd.utils import schemas |
|
from nusacrowd.utils.configs import NusantaraConfig |
|
from nusacrowd.utils.constants import Tasks |
|
|
|
_CITATION = """\ |
|
@inproceedings{multilexnorm, |
|
title= {MultiLexNorm: A Shared Task on Multilingual Lexical Normalization, |
|
author = "van der Goot, Rob and Ramponi et al.", |
|
booktitle = "Proceedings of the 7th Workshop on Noisy User-generated Text (W-NUT 2021)", |
|
year = "2021", |
|
publisher = "Association for Computational Linguistics", |
|
address = "Punta Cana, Dominican Republic" |
|
} |
|
""" |
|
|
|
_DATASETNAME = "multilexnorm" |
|
|
|
_DESCRIPTION = """\ |
|
MULTILEXNPRM is a new benchmark dataset for multilingual lexical normalization |
|
including 12 language variants, |
|
we here specifically work on the Indonisian-english language. |
|
""" |
|
|
|
_HOMEPAGE = "https://bitbucket.org/robvanderg/multilexnorm/src/master/" |
|
|
|
_LOCAL = False |
|
_LANGUAGES = ["ind"] |
|
_LICENSE = "CC-BY-NC-SA 4.0" |
|
|
|
_URLS = { |
|
"train": "https://bitbucket.org/robvanderg/multilexnorm/raw/e92e5b8f111fea15c7c88aebd4c058f6a1ca8d74/data/iden/train.norm", |
|
"validation": "https://bitbucket.org/robvanderg/multilexnorm/raw/e92e5b8f111fea15c7c88aebd4c058f6a1ca8d74/data/iden/dev.norm", |
|
"test": "https://bitbucket.org/robvanderg/multilexnorm/raw/e92e5b8f111fea15c7c88aebd4c058f6a1ca8d74/data/iden/test.norm", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.MULTILEXNORM] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_NUSANTARA_VERSION = "1.0.0" |
|
|
|
|
|
class MultiLexNorm(datasets.GeneratorBasedBuilder): |
|
"""MultiLexNorm is a new benchmark dataset for lexical normalization for indonisian English language. which is the translation |
|
of social media text to canonical text: |
|
new pix comming tomoroe |
|
new pictures coming tomorrow |
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
NUSANTARA_VERSION = datasets.Version(_NUSANTARA_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
NusantaraConfig( |
|
name="multilexnorm_source", |
|
version=_SOURCE_VERSION, |
|
description="multilexnorm source schema", |
|
schema="source", |
|
subset_id="multilexnorm", |
|
), |
|
NusantaraConfig( |
|
name="multilexnorm_nusantara_t2t", |
|
version=_NUSANTARA_VERSION, |
|
description="multilexnorm Nusantara schema", |
|
schema="nusantara_t2t", |
|
subset_id="multilexnorm", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "multilexnorm_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
|
|
features = datasets.Features( |
|
{ |
|
"src_sent": datasets.Value("string"), |
|
"id": datasets.Value("string"), |
|
"norm_sent": datasets.Value("string"), |
|
} |
|
) |
|
|
|
elif self.config.schema == "nusantara_t2t": |
|
features = schemas.text2text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
|
|
train_path = Path(dl_manager.download_and_extract(_URLS["train"])) |
|
validation_path = Path(dl_manager.download_and_extract(_URLS["validation"])) |
|
test_path = Path(dl_manager.download_and_extract(_URLS["test"])) |
|
data_files = { |
|
"train": train_path, |
|
"validation": validation_path, |
|
"test": test_path, |
|
} |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_files["train"], |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": data_files["test"], |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": data_files["validation"], |
|
"split": "dev", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
|
|
curSent = [] |
|
print(filepath) |
|
if self.config.schema == "source": |
|
i = 0 |
|
for line in open(filepath): |
|
tok = line.strip("\n").split("\t") |
|
|
|
if tok == [""] or tok == []: |
|
ex = {"id": str(i), |
|
"src_sent": " ".join([x[0] for x in curSent]), |
|
"norm_sent": " ".join([x[1] for x in curSent])} |
|
yield i, ex |
|
i += 1 |
|
curSent = [] |
|
|
|
else: |
|
if len(tok) > 2: |
|
print("erroneous input, line:\n" + line + "\n in file " + filepath + " contains more then two elements") |
|
if len(tok) == 1: |
|
tok.append("") |
|
curSent.append(tok) |
|
|
|
elif self.config.schema == "nusantara_t2t": |
|
i = 0 |
|
for line in open(filepath): |
|
tok = line.strip("\n").split("\t") |
|
|
|
if tok == [""] or tok == []: |
|
ex = {"id": str(i), |
|
"text_1": " ".join([x[0] for x in curSent]), |
|
"text_2": " ".join([x[1] for x in curSent]), |
|
"text_1_name": "src_sent", |
|
"text_2_name": "norm_sent"} |
|
yield i, ex |
|
i += 1 |
|
curSent = [] |
|
|
|
else: |
|
if len(tok) > 2: |
|
print("erroneous input, line:\n" + line + "\n in file " + filepath + " contains more then two elements") |
|
if len(tok) == 1: |
|
tok.append("") |
|
curSent.append(tok) |
|
|
|
|