multilexnorm / multilexnorm.py
holylovenia's picture
Upload multilexnorm.py with huggingface_hub
ca564e2
raw
history blame
6.24 kB
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from nusacrowd.utils import schemas
from nusacrowd.utils.configs import NusantaraConfig
from nusacrowd.utils.constants import Tasks
_CITATION = """\
@inproceedings{multilexnorm,
title= {MultiLexNorm: A Shared Task on Multilingual Lexical Normalization,
author = "van der Goot, Rob and Ramponi et al.",
booktitle = "Proceedings of the 7th Workshop on Noisy User-generated Text (W-NUT 2021)",
year = "2021",
publisher = "Association for Computational Linguistics",
address = "Punta Cana, Dominican Republic"
}
"""
_DATASETNAME = "multilexnorm"
_DESCRIPTION = """\
MULTILEXNPRM is a new benchmark dataset for multilingual lexical normalization
including 12 language variants,
we here specifically work on the Indonisian-english language.
"""
_HOMEPAGE = "https://bitbucket.org/robvanderg/multilexnorm/src/master/"
_LOCAL = False
_LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_LICENSE = "CC-BY-NC-SA 4.0"
_URLS = {
"train": "https://bitbucket.org/robvanderg/multilexnorm/raw/e92e5b8f111fea15c7c88aebd4c058f6a1ca8d74/data/iden/train.norm",
"validation": "https://bitbucket.org/robvanderg/multilexnorm/raw/e92e5b8f111fea15c7c88aebd4c058f6a1ca8d74/data/iden/dev.norm",
"test": "https://bitbucket.org/robvanderg/multilexnorm/raw/e92e5b8f111fea15c7c88aebd4c058f6a1ca8d74/data/iden/test.norm",
}
_SUPPORTED_TASKS = [Tasks.MULTILEXNORM]
_SOURCE_VERSION = "1.0.0"
_NUSANTARA_VERSION = "1.0.0"
class MultiLexNorm(datasets.GeneratorBasedBuilder):
"""MultiLexNorm is a new benchmark dataset for lexical normalization for indonisian English language. which is the translation
of social media text to canonical text:
new pix comming tomoroe
new pictures coming tomorrow
"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
NUSANTARA_VERSION = datasets.Version(_NUSANTARA_VERSION)
BUILDER_CONFIGS = [
NusantaraConfig(
name="multilexnorm_source",
version=_SOURCE_VERSION,
description="multilexnorm source schema",
schema="source",
subset_id="multilexnorm",
),
NusantaraConfig(
name="multilexnorm_nusantara_t2t",
version=_NUSANTARA_VERSION,
description="multilexnorm Nusantara schema",
schema="nusantara_t2t",
subset_id="multilexnorm",
),
]
DEFAULT_CONFIG_NAME = "multilexnorm_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"src_sent": datasets.Value("string"),
"id": datasets.Value("string"),
"norm_sent": datasets.Value("string"),
}
)
elif self.config.schema == "nusantara_t2t":
features = schemas.text2text_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
train_path = Path(dl_manager.download_and_extract(_URLS["train"]))
validation_path = Path(dl_manager.download_and_extract(_URLS["validation"]))
test_path = Path(dl_manager.download_and_extract(_URLS["test"]))
data_files = {
"train": train_path,
"validation": validation_path,
"test": test_path,
}
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_files["train"],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": data_files["test"],
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": data_files["validation"],
"split": "dev",
},
),
]
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
curSent = []
print(filepath)
if self.config.schema == "source":
i = 0
for line in open(filepath):
tok = line.strip("\n").split("\t")
if tok == [""] or tok == []:
ex = {"id": str(i),
"src_sent": " ".join([x[0] for x in curSent]),
"norm_sent": " ".join([x[1] for x in curSent])}
yield i, ex
i += 1
curSent = []
else:
if len(tok) > 2:
print("erroneous input, line:\n" + line + "\n in file " + filepath + " contains more then two elements")
if len(tok) == 1:
tok.append("")
curSent.append(tok)
elif self.config.schema == "nusantara_t2t":
i = 0
for line in open(filepath):
tok = line.strip("\n").split("\t")
if tok == [""] or tok == []:
ex = {"id": str(i),
"text_1": " ".join([x[0] for x in curSent]),
"text_2": " ".join([x[1] for x in curSent]),
"text_1_name": "src_sent",
"text_2_name": "norm_sent"}
yield i, ex
i += 1
curSent = []
else:
if len(tok) > 2:
print("erroneous input, line:\n" + line + "\n in file " + filepath + " contains more then two elements")
if len(tok) == 1:
tok.append("")
curSent.append(tok)