File size: 8,129 Bytes
eb48830 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
import pandas as pd
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = """\
@article{htay2022deep,
title={Deep Siamese Neural Network Vs Random Forest for Myanmar Language Paraphrase Classification},
author={Htay, Myint Myint and Thu, Ye Kyaw and Thant, Hnin Aye and Supnithi, Thepchai},
journal={Journal of Intelligent Informatics and Smart Technology},
year={2022}
}
"""
_DATASETNAME = "my_paraphrase"
_DESCRIPTION = """\
The myParaphrase corpus is intended for the task of assessing whether pairs of Burmese sentences exhibit similar meanings \
or are paraphrases. It encompasses 40461 pairs for training, along with 1000 pairs for an open test and an additional 1000 pairs \
for a closed test. If a pair of sentences in Burmese is considered a paraphrase, it is labeled with "1"; if not, they receive a label of "0."
"""
_HOMEPAGE = "https://github.com/ye-kyaw-thu/myParaphrase"
_LANGUAGES = ["mya"]
_LICENSE = Licenses.CC_BY_NC_SA_4_0.value
_LOCAL = False
_URLS = {
_DATASETNAME: [
"https://github.com/ye-kyaw-thu/myParaphrase/raw/main/corpus/ver1.0/csv-qqp/train.csv",
"https://github.com/ye-kyaw-thu/myParaphrase/raw/main/corpus/ver1.0/csv-qqp/open-test.final.manual.csv",
"https://github.com/ye-kyaw-thu/myParaphrase/raw/main/corpus/ver1.0/csv-qqp/closed-test.csv",
],
}
_SUPPORTED_TASKS = [Tasks.PARAPHRASING]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
_TAGS = [0, 1]
class MyParaphraseDataset(datasets.GeneratorBasedBuilder):
"""The "myParaphrase" corpus is a Burmese dataset used for paraphrase identification. \
It includes 40,461 training pairs and 2,000 test pairs. Pairs are labeled "1" for paraphrases and "0" otherwise."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
SEACROWD_SCHEMA_NAME = "t2t"
BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_source", # source
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=f"{_DATASETNAME}_paraphrase",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", # schema
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} SEACrowd schema",
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
subset_id=f"{_DATASETNAME}_paraphrase",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_non_paraphrase_source", # source
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} SEACrowd schema",
schema="source",
subset_id=f"{_DATASETNAME}_non_paraphrase",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_non_paraphrase_seacrowd_{SEACROWD_SCHEMA_NAME}", # schema
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} SEACrowd schema",
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
subset_id=f"{_DATASETNAME}_non_paraphrase",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_all_source", # source
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=f"{_DATASETNAME}_all",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_all_seacrowd_{SEACROWD_SCHEMA_NAME}", # schema
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} SEACrowd schema",
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
subset_id=f"{_DATASETNAME}_all",
),
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema.endswith("_source"):
features = datasets.Features({"id": datasets.Value("int32"), "paraphrase1": datasets.Value("string"), "paraphrase2": datasets.Value("string"), "is_paraphrase": datasets.Value("int32")})
elif self.config.schema.endswith(self.SEACROWD_SCHEMA_NAME):
features = schemas.text2text_features
else:
raise ValueError
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
urls = _URLS[_DATASETNAME]
train = dl_manager.download(urls[0])
open_test = dl_manager.download(urls[1])
closed_test = dl_manager.download(urls[2])
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# Whatever you put in gen_kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": train,
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": closed_test,
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": open_test,
"split": "dev",
},
),
]
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
columns = ["id", "paraphrase1", "paraphrase2", "is_paraphrase"]
dataset = pd.read_csv(filepath, header=None)
dataset.columns = columns
dataset = dataset.dropna()
dataset["is_paraphrase"] = dataset["is_paraphrase"].astype(int)
if self.config.schema in [
"paraphrase_source",
"non_paraphrase_source",
"all_source",
# "source"
]:
for i, row in dataset.iterrows():
yield i, {"id": i, "paraphrase1": row["paraphrase1"], "paraphrase2": row["paraphrase2"], "is_paraphrase": row["is_paraphrase"]}
elif self.config.schema == f"seacrowd_paraphrase_{self.SEACROWD_SCHEMA_NAME}":
for i, row in dataset[dataset["is_paraphrase"] == 1].iterrows():
yield i, {"id": i, "text_1": row["paraphrase1"], "text_2": row["paraphrase2"], "text_1_name": "anchor_text", "text_2_name": "paraphrased_text"}
elif self.config.schema == f"seacrowd_non_paraphrase_{self.SEACROWD_SCHEMA_NAME}":
for i, row in dataset[dataset["is_paraphrase"] == 0].iterrows():
yield i, {"id": i, "text_1": row["paraphrase1"], "text_2": row["paraphrase2"], "text_1_name": "anchor_text", "text_2_name": "non_paraphrased_text"}
elif self.config.schema == f"seacrowd_all_{self.SEACROWD_SCHEMA_NAME}":
for i, row in dataset.iterrows():
yield i, {"id": i, "text_1": row["paraphrase1"], "text_2": row["paraphrase2"], "text_1_name": "anchor_text", "text_2_name": "paraphrased_text" if row["is_paraphrase"] else "non_paraphrased_text"}
else:
raise ValueError |