Datasets:

ArXiv:
License:
phomt / phomt.py
holylovenia's picture
Upload phomt.py with huggingface_hub
10c4263 verified
raw
history blame
5.15 kB
import os
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = """\
@inproceedings{PhoMT,
title = {{PhoMT: A High-Quality and Large-Scale Benchmark Dataset for Vietnamese-English Machine Translation}},
author = {Long Doan and Linh The Nguyen and Nguyen Luong Tran and Thai Hoang and Dat Quoc Nguyen},
booktitle = {Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing},
year = {2021},
pages = {4495--4503}
}
"""
_DATASETNAME = "phomt"
_DESCRIPTION = """\
PhoMT is a high-quality and large-scale Vietnamese-English parallel dataset of 3.02M sentence pairs, which is 2.9M
pairs larger than the benchmark Vietnamese-English machine translation corpus IWSLT15. This is the first large-scale
Vietnamese-English machine translation study.
"""
_LANGUAGES = ["vie", "eng"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_LOCAL = True
_HOMEPAGE = "https://github.com/VinAIResearch/PhoMT"
_LICENSE = Licenses.MIT.value
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
MAP_LANG = {"eng": "en", "vie": "vi"}
def seacrowd_config_constructor(src_lang, tgt_lang, schema, version):
if src_lang == "" or tgt_lang == "":
raise ValueError(f"Invalid src_lang {src_lang} or tgt_lang {tgt_lang}")
if schema not in ["source", "seacrowd_t2t"]:
raise ValueError(f"Invalid schema: {schema}")
return SEACrowdConfig(
name="phomt_{src}_{tgt}_{schema}".format(src=src_lang, tgt=tgt_lang, schema=schema),
version=datasets.Version(version),
description="phomt schema for {schema} from {src} to {tgt}".format(schema=schema, src=src_lang, tgt=tgt_lang),
schema=schema,
subset_id="phomt_{src}_{tgt}".format(src=src_lang, tgt=tgt_lang),
)
class PhoMT(datasets.GeneratorBasedBuilder):
"""
PhoMT is a high-quality and large-scale Vietnamese-English parallel dataset of 3.02M sentence pairs, which is
2.9M pairs larger than the benchmark Vietnamese-English machine translation corpus IWSLT15.
"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
seacrowd_config_constructor("eng", "vie", "source", _SOURCE_VERSION),
seacrowd_config_constructor("eng", "vie", "seacrowd_t2t", _SEACROWD_VERSION),
]
DEFAULT_CONFIG_NAME = "phomt_eng_vie_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema in ("source", "seacrowd_t2t"):
features = schemas.text2text_features
else:
raise ValueError(f"Invalid config schema: {self.config.schema}")
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
if self.config.data_dir is None:
raise ValueError("This is a local dataset. Please pass the data_dir kwarg to load_dataset.")
else:
data_dir = self.config.data_dir
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": os.path.join(data_dir, "detokenization", "train", "train.{lang}")},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"filepath": os.path.join(data_dir, "detokenization", "dev", "dev.{lang}")},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": os.path.join(data_dir, "detokenization", "test", "test.{lang}")},
),
]
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]:
config_names_split = self.config.name.split("_")
src_lang = config_names_split[1]
tgt_lang = config_names_split[2]
src_path = filepath.format(lang=MAP_LANG[src_lang])
tgt_path = filepath.format(lang=MAP_LANG[tgt_lang])
with open(src_path, "r", encoding="utf8") as f:
src_lines = f.readlines()
with open(tgt_path, "r", encoding="utf8") as f:
tgt_lines = f.readlines()
if self.config.schema in ("source", "seacrowd_t2t"):
for idx, (src_line, tgt_line) in enumerate(zip(src_lines, tgt_lines)):
ex = {
"id": str(idx),
"text_1": src_line.strip(),
"text_2": tgt_line.strip(),
"text_1_name": src_lang,
"text_2_name": tgt_lang,
}
yield idx, ex
else:
raise NotImplementedError(f"Schema '{self.config.schema}' is not defined.")