|
import os |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@inproceedings{PhoMT, |
|
title = {{PhoMT: A High-Quality and Large-Scale Benchmark Dataset for Vietnamese-English Machine Translation}}, |
|
author = {Long Doan and Linh The Nguyen and Nguyen Luong Tran and Thai Hoang and Dat Quoc Nguyen}, |
|
booktitle = {Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing}, |
|
year = {2021}, |
|
pages = {4495--4503} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "phomt" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
PhoMT is a high-quality and large-scale Vietnamese-English parallel dataset of 3.02M sentence pairs, which is 2.9M |
|
pairs larger than the benchmark Vietnamese-English machine translation corpus IWSLT15. This is the first large-scale |
|
Vietnamese-English machine translation study. |
|
""" |
|
|
|
_LANGUAGES = ["vie", "eng"] |
|
_LOCAL = True |
|
|
|
_HOMEPAGE = "https://github.com/VinAIResearch/PhoMT" |
|
|
|
_LICENSE = Licenses.MIT.value |
|
|
|
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
MAP_LANG = {"eng": "en", "vie": "vi"} |
|
|
|
|
|
def seacrowd_config_constructor(src_lang, tgt_lang, schema, version): |
|
if src_lang == "" or tgt_lang == "": |
|
raise ValueError(f"Invalid src_lang {src_lang} or tgt_lang {tgt_lang}") |
|
|
|
if schema not in ["source", "seacrowd_t2t"]: |
|
raise ValueError(f"Invalid schema: {schema}") |
|
|
|
return SEACrowdConfig( |
|
name="phomt_{src}_{tgt}_{schema}".format(src=src_lang, tgt=tgt_lang, schema=schema), |
|
version=datasets.Version(version), |
|
description="phomt schema for {schema} from {src} to {tgt}".format(schema=schema, src=src_lang, tgt=tgt_lang), |
|
schema=schema, |
|
subset_id="phomt_{src}_{tgt}".format(src=src_lang, tgt=tgt_lang), |
|
) |
|
|
|
|
|
class PhoMT(datasets.GeneratorBasedBuilder): |
|
""" |
|
PhoMT is a high-quality and large-scale Vietnamese-English parallel dataset of 3.02M sentence pairs, which is |
|
2.9M pairs larger than the benchmark Vietnamese-English machine translation corpus IWSLT15. |
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
seacrowd_config_constructor("eng", "vie", "source", _SOURCE_VERSION), |
|
seacrowd_config_constructor("eng", "vie", "seacrowd_t2t", _SEACROWD_VERSION), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "phomt_eng_vie_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema in ("source", "seacrowd_t2t"): |
|
features = schemas.text2text_features |
|
else: |
|
raise ValueError(f"Invalid config schema: {self.config.schema}") |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
if self.config.data_dir is None: |
|
raise ValueError("This is a local dataset. Please pass the data_dir kwarg to load_dataset.") |
|
else: |
|
data_dir = self.config.data_dir |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": os.path.join(data_dir, "detokenization", "train", "train.{lang}")}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepath": os.path.join(data_dir, "detokenization", "dev", "dev.{lang}")}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": os.path.join(data_dir, "detokenization", "test", "test.{lang}")}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]: |
|
config_names_split = self.config.name.split("_") |
|
src_lang = config_names_split[1] |
|
tgt_lang = config_names_split[2] |
|
|
|
src_path = filepath.format(lang=MAP_LANG[src_lang]) |
|
tgt_path = filepath.format(lang=MAP_LANG[tgt_lang]) |
|
|
|
with open(src_path, "r", encoding="utf8") as f: |
|
src_lines = f.readlines() |
|
with open(tgt_path, "r", encoding="utf8") as f: |
|
tgt_lines = f.readlines() |
|
|
|
if self.config.schema in ("source", "seacrowd_t2t"): |
|
for idx, (src_line, tgt_line) in enumerate(zip(src_lines, tgt_lines)): |
|
ex = { |
|
"id": str(idx), |
|
"text_1": src_line.strip(), |
|
"text_2": tgt_line.strip(), |
|
"text_1_name": src_lang, |
|
"text_2_name": tgt_lang, |
|
} |
|
yield idx, ex |
|
|
|
else: |
|
raise NotImplementedError(f"Schema '{self.config.schema}' is not defined.") |
|
|