File size: 5,363 Bytes
9f2a498
 
 
 
 
2f95f9a
 
 
 
9f2a498
 
 
 
2f95f9a
9f2a498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f95f9a
9f2a498
 
 
 
 
 
 
 
2f95f9a
9f2a498
 
 
 
 
 
2f95f9a
 
 
9f2a498
2f95f9a
9f2a498
 
 
 
 
 
 
 
 
2f95f9a
9f2a498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f95f9a
9f2a498
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from pathlib import Path
from typing import List

import datasets

from seacrowd.utils import schemas
from seacrowd.utils.common_parser import load_conll_data
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import (DEFAULT_SEACROWD_VIEW_NAME,
                                       DEFAULT_SOURCE_VIEW_NAME, Tasks)

_DATASETNAME = "term_a"
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME

_LANGUAGES = ["ind"]
_LOCAL = False
_CITATION = """\
@article{winatmoko2019aspect,
  title={Aspect and opinion term extraction for hotel reviews using transfer learning and auxiliary labels},
  author={Winatmoko, Yosef Ardhito and Septiandri, Ali Akbar and Sutiono, Arie Pratama},
  journal={arXiv preprint arXiv:1909.11879},
  year={2019}
}
@inproceedings{fernando2019aspect,
  title={Aspect and opinion terms extraction using double embeddings and attention mechanism for indonesian hotel reviews},
  author={Fernando, Jordhy and Khodra, Masayu Leylia and Septiandri, Ali Akbar},
  booktitle={2019 International Conference of Advanced Informatics: Concepts, Theory and Applications (ICAICTA)},
  pages={1--6},
  year={2019},
  organization={IEEE}
}
"""

_DESCRIPTION = """\
TermA is a span-extraction dataset collected from the hotel aggregator platform, AiryRooms
(Septiandri and Sutiono, 2019; Fernando et al.,
2019) consisting of thousands of hotel reviews,each containing a span label for aspect
and sentiment words representing the opinion of the reviewer on the corresponding aspect.
The labels use Inside-Outside-Beginning tagging (IOB) with two kinds of tags, aspect and
sentiment.
"""

_HOMEPAGE = "https://github.com/IndoNLP/indonlu"

_LICENSE = "Creative Common Attribution Share-Alike 4.0 International"

_URLs = {
    "train": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/terma_term-extraction-airy/train_preprocess.txt",
    "validation": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/terma_term-extraction-airy/valid_preprocess.txt",
    "test": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/terma_term-extraction-airy/test_preprocess_masked_label.txt",
}

_SUPPORTED_TASKS = [Tasks.KEYWORD_TAGGING]

_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"


class BaPOSDataset(datasets.GeneratorBasedBuilder):
    """TermA is a span-extraction dataset containing 3k, 1k, 1k colloquial sentences in train, valid & test respectively of hotel domain with a total of 5 tags."""

    label_classes = ["B-ASPECT", "I-ASPECT", "B-SENTIMENT", "I-SENTIMENT", "O"]

    BUILDER_CONFIGS = [
        SEACrowdConfig(
            name="term_a_source",
            version=datasets.Version(_SOURCE_VERSION),
            description="TermA source schema",
            schema="source",
            subset_id="term_a",
        ),
        SEACrowdConfig(
            name="term_a_seacrowd_seq_label",
            version=datasets.Version(_SEACROWD_VERSION),
            description="TermA Nusantara schema",
            schema="seacrowd_seq_label",
            subset_id="term_a",
        ),
    ]

    DEFAULT_CONFIG_NAME = "term_a_source"

    def _info(self):
        if self.config.schema == "source":
            features = datasets.Features({"index": datasets.Value("string"), "tokens": [datasets.Value("string")], "token_tag": [datasets.Value("string")]})
        elif self.config.schema == "seacrowd_seq_label":
            features = schemas.seq_label_features(self.label_classes)

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        train_tsv_path = Path(dl_manager.download_and_extract(_URLs["train"]))
        validation_tsv_path = Path(dl_manager.download_and_extract(_URLs["validation"]))
        test_tsv_path = Path(dl_manager.download_and_extract(_URLs["test"]))
        data_files = {
            "train": train_tsv_path,
            "validation": validation_tsv_path,
            "test": test_tsv_path,
        }

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"filepath": data_files["train"]},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"filepath": data_files["validation"]},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"filepath": data_files["test"]},
            ),
        ]

    def _generate_examples(self, filepath: Path):
        conll_dataset = load_conll_data(filepath)

        if self.config.schema == "source":
            for i, row in enumerate(conll_dataset):
                ex = {"index": str(i), "tokens": row["sentence"], "token_tag": row["label"]}
                yield i, ex
        elif self.config.schema == "seacrowd_seq_label":
            for i, row in enumerate(conll_dataset):
                ex = {"id": str(i), "tokens": row["sentence"], "labels": row["label"]}
                yield i, ex
        else:
            raise ValueError(f"Invalid config: {self.config.name}")