|
|
|
import json |
|
import os.path |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_DATASETNAME = "uit_viic" |
|
_CITATION = """\ |
|
@InProceedings{10.1007/978-3-030-63007-2_57, |
|
author="Lam, Quan Hoang |
|
and Le, Quang Duy |
|
and Nguyen, Van Kiet |
|
and Nguyen, Ngan Luu-Thuy", |
|
editor="Nguyen, Ngoc Thanh |
|
and Hoang, Bao Hung |
|
and Huynh, Cong Phap |
|
and Hwang, Dosam |
|
and Trawi{\'{n}}ski, Bogdan |
|
and Vossen, Gottfried", |
|
title="UIT-ViIC: A Dataset for the First Evaluation on Vietnamese Image Captioning", |
|
booktitle="Computational Collective Intelligence", |
|
year="2020", |
|
publisher="Springer International Publishing", |
|
address="Cham", |
|
pages="730--742", |
|
abstract="Image Captioning (IC), the task of automatic generation of image captions, has attracted |
|
attentions from researchers in many fields of computer science, being computer vision, natural language |
|
processing and machine learning in recent years. This paper contributes to research on Image Captioning |
|
task in terms of extending dataset to a different language - Vietnamese. So far, there has been no existed |
|
Image Captioning dataset for Vietnamese language, so this is the foremost fundamental step for developing |
|
Vietnamese Image Captioning. In this scope, we first built a dataset which contains manually written |
|
captions for images from Microsoft COCO dataset relating to sports played with balls, we called this dataset |
|
UIT-ViIC (University Of Information Technology - Vietnamese Image Captions). UIT-ViIC consists of 19,250 |
|
Vietnamese captions for 3,850 images. Following that, we evaluated our dataset on deep neural network models |
|
and did comparisons with English dataset and two Vietnamese datasets built by different methods. UIT-ViIC |
|
is published on our lab website (https://sites.google.com/uit.edu.vn/uit-nlp/) for research purposes.", |
|
isbn="978-3-030-63007-2" |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
UIT-ViIC contains manually written captions for images from Microsoft COCO dataset relating to sports |
|
played with ball. UIT-ViIC consists of 19,250 Vietnamese captions for 3,850 images. For each image, |
|
UIT-ViIC provides five Vietnamese captions annotated by five annotators. |
|
""" |
|
|
|
_HOMEPAGE = "https://drive.google.com/file/d/1YexKrE6o0UiJhFWpE8M5LKoe6-k3AiM4" |
|
_PAPER_URL = "https://arxiv.org/abs/2002.00175" |
|
_LICENSE = Licenses.UNKNOWN.value |
|
_HF_URL = "" |
|
_LANGUAGES = ["vi"] |
|
_LOCAL = False |
|
_SUPPORTED_TASKS = [Tasks.IMAGE_CAPTIONING] |
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
_URLS = "https://drive.google.com/uc?export=download&id=1YexKrE6o0UiJhFWpE8M5LKoe6-k3AiM4" |
|
_Split_Path = { |
|
"train": "UIT-ViIC/uitviic_captions_train2017.json", |
|
"validation": "UIT-ViIC/uitviic_captions_val2017.json", |
|
"test": "UIT-ViIC/uitviic_captions_test2017.json", |
|
} |
|
|
|
|
|
class UITViICDataset(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig(name=f"{_DATASETNAME}_source", version=datasets.Version(_SOURCE_VERSION), description=_DESCRIPTION, subset_id=f"{_DATASETNAME}", schema="source"), |
|
SEACrowdConfig(name=f"{_DATASETNAME}_seacrowd_imtext", version=datasets.Version(_SEACROWD_VERSION), description=_DESCRIPTION, subset_id=f"{_DATASETNAME}", schema="seacrowd_imtext"), |
|
] |
|
|
|
def _info(self): |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"license": datasets.Value("int32"), |
|
"file_name": datasets.Value("string"), |
|
"coco_url": datasets.Value("string"), |
|
"flickr_url": datasets.Value("string"), |
|
"height": datasets.Value("int32"), |
|
"width": datasets.Value("int32"), |
|
"date_captured": datasets.Value("string"), |
|
"image_id": datasets.Value("int32"), |
|
"caption": datasets.Value("string"), |
|
"cap_id": datasets.Value("int32"), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_imtext": |
|
features = schemas.image_text_features() |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
license=_LICENSE, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
file_paths = dl_manager.download_and_extract(_URLS) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": os.path.join(file_paths, _Split_Path["train"])}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepath": os.path.join(file_paths, _Split_Path["validation"])}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": os.path.join(file_paths, _Split_Path["test"])}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Yields examples.""" |
|
with open(filepath, encoding="utf-8") as f: |
|
json_dict = json.load(f) |
|
images = {itm["id"]: itm for itm in json_dict["images"]} |
|
captns = json_dict["annotations"] |
|
|
|
for idx, capt in enumerate(captns): |
|
image_id = capt["image_id"] |
|
if self.config.schema == "source": |
|
yield idx, { |
|
"license": images[image_id]["license"], |
|
"file_name": images[image_id]["file_name"], |
|
"coco_url": images[image_id]["coco_url"], |
|
"flickr_url": images[image_id]["flickr_url"], |
|
"height": images[image_id]["height"], |
|
"width": images[image_id]["width"], |
|
"date_captured": images[image_id]["date_captured"], |
|
"image_id": capt["image_id"], |
|
"caption": capt["caption"], |
|
"cap_id": capt["id"], |
|
} |
|
elif self.config.schema == "seacrowd_imtext": |
|
yield idx, { |
|
"id": capt["id"], |
|
"image_paths": [images[image_id]["coco_url"], images[image_id]["flickr_url"]], |
|
"texts": capt["caption"], |
|
"metadata": { |
|
"context": "", |
|
"labels": ["Yes"], |
|
}, |
|
} |
|
|