|
import os |
|
import pickle |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Tasks |
|
|
|
_CITATION = """\ |
|
@inproceedings{ |
|
ladhak-wiki-2020, |
|
title={WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization}, |
|
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown}, |
|
booktitle={Findings of EMNLP, 2020}, |
|
year={2020} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "wikilingua" |
|
|
|
_DESCRIPTION = """\ |
|
We introduce WikiLingua, a large-scale, multilingual dataset for the evaluation of crosslingual abstractive |
|
summarization systems. We extract article and summary pairs in 18 languages from WikiHow12, a high quality, |
|
collaborative resource of how-to guides on a diverse set of topics written by human authors. We create gold-standard |
|
article summary alignments across languages by aligning the images that are used to describe each how-to step in an |
|
article. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/esdurmus/Wikilingua" |
|
|
|
_LANGUAGES = ["ind"] |
|
|
|
_LICENSE = "CC-BY-NC-SA 3.0" |
|
|
|
_LOCAL = False |
|
|
|
_URLS = { |
|
_DATASETNAME: "https://drive.google.com/u/0/uc?id=1PGa8j1_IqxiGTc3SU6NMB38sAzxCPS34&export=download" |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.SUMMARIZATION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class Wikilingua(datasets.GeneratorBasedBuilder): |
|
""" |
|
The dataset includes 47,511 articles from WikiHow. Extracted gold-standard article-summary alignments across |
|
languages by aligning the images that are used to describe each how-to step in an article. |
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name="wikilingua_source", |
|
version=SOURCE_VERSION, |
|
description="wikilingua source schema", |
|
schema="source", |
|
subset_id="wikilingua", |
|
), |
|
SEACrowdConfig( |
|
name="wikilingua_seacrowd_t2t", |
|
version=SEACROWD_VERSION, |
|
description="wikilingua Nusantara schema", |
|
schema="seacrowd_t2t", |
|
subset_id="wikilingua", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "wikilingua_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
features = [] |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("int64"), |
|
"link": datasets.Value("string"), |
|
"main_point": datasets.Value("string"), |
|
"summary": datasets.Value("string"), |
|
"document": datasets.Value("string"), |
|
"english_section_name": datasets.Value("string"), |
|
"english_url": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_t2t": |
|
features = schemas.text2text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
urls = _URLS[_DATASETNAME] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir), |
|
"split": "train", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
if self.config.schema == "source": |
|
with open(filepath, "rb") as file: |
|
indonesian_docs = pickle.load(file) |
|
|
|
_id = 1 |
|
for key_link, articles in indonesian_docs.items(): |
|
for main_point, items in articles.items(): |
|
example = {"id": _id, "link": key_link, "main_point": main_point, "summary": items["summary"], "document": items["document"], "english_section_name": items["english_section_name"], "english_url": items["english_url"]} |
|
yield _id, example |
|
_id += 1 |
|
elif self.config.schema == "seacrowd_t2t": |
|
with open(filepath, "rb") as file: |
|
indonesian_docs = pickle.load(file) |
|
|
|
_id = 1 |
|
for key_link, articles in indonesian_docs.items(): |
|
for main_point, items in articles.items(): |
|
example = {"id": _id, "text_1": items["document"], "text_2": items["summary"], "text_1_name": "document", "text_2_name": "summary"} |
|
yield _id, example |
|
_id += 1 |
|
|