|
import os |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import jsonlines as jl |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@inproceedings{thapliyal-etal-2022-crossmodal, |
|
title = "Crossmodal-3600: A Massively Multilingual Multimodal Evaluation Dataset", |
|
author = "Thapliyal, Ashish V. and |
|
Pont Tuset, Jordi and |
|
Chen, Xi and |
|
Soricut, Radu", |
|
editor = "Goldberg, Yoav and |
|
Kozareva, Zornitsa and |
|
Zhang, Yue", |
|
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", |
|
month = dec, |
|
year = "2022", |
|
address = "Abu Dhabi, United Arab Emirates", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2022.emnlp-main.45", |
|
doi = "10.18653/v1/2022.emnlp-main.45", |
|
pages = "715--729", |
|
} |
|
""" |
|
|
|
_DATASETNAME = "xm3600" |
|
|
|
_DESCRIPTION = """\ |
|
Crossmodal-3600 dataset (XM3600 in short), a geographically-diverse set of 3600 images annotated with |
|
human-generated reference captions in 36 languages. The images were selected from across the world, |
|
covering regions where the languages are spoken, and annotated with captions that achieve consistency in |
|
terms of style across all languages, while avoiding annotation artifacts due to direct translation. |
|
The languages covered in the dataset include Filipino, Indonesian, Thai, and Vietnamnese |
|
""" |
|
|
|
_HOMEPAGE = "https://google.github.io/crossmodal-3600/" |
|
|
|
_LICENSE = Licenses.CC_BY_4_0.value |
|
|
|
_URLS = { |
|
"captions": "https://google.github.io/crossmodal-3600/web-data/captions.zip", |
|
"images": "https://open-images-dataset.s3.amazonaws.com/crossmodal-3600/images.tgz", |
|
"image_attributions": "https://google.github.io/crossmodal-3600/web-data/image_attributions.csv", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.IMAGE_CAPTIONING] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
_LANGUAGES = ["fil", "id", "th", "vi"] |
|
|
|
_LOCAL = False |
|
|
|
|
|
class XM3600Dataset(datasets.GeneratorBasedBuilder): |
|
""" |
|
Crossmodal-3600 dataset (XM3600 in short), a geographically-diverse set of 3600 images annotated with |
|
human-generated reference captions in 36 languages. The images were selected from across the world, |
|
covering regions where the languages are spoken, and annotated with captions that achieve consistency in |
|
terms of style across all languages, while avoiding annotation artifacts due to direct translation. |
|
The languages covered in the dataset include Filipino, Indonesian, Thai, and Vietnamnese |
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{lang}_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description=f"{_DATASETNAME}_{lang} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}_{lang}", |
|
) |
|
for lang in _LANGUAGES |
|
] + [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{lang}_seacrowd_imtext", |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description=f"{_DATASETNAME}_{lang} SEACrowd schema", |
|
schema="seacrowd_imtext", |
|
subset_id=f"{_DATASETNAME}_{lang}", |
|
) |
|
for lang in _LANGUAGES |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"xm3600_{sorted(_LANGUAGES)[0]}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"image_paths": datasets.Value("string"), |
|
"texts": { |
|
"caption": datasets.Value("string"), |
|
"caption/tokenized": datasets.Value("string"), |
|
"caption/tokenized/lowercase": datasets.Value("string"), |
|
}, |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_imtext": |
|
features = schemas.image_text_features() |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
captions_path = dl_manager.download_and_extract(_URLS["captions"]) |
|
images_path = dl_manager.download_and_extract(_URLS["images"]) |
|
attr_path = dl_manager.download(_URLS["image_attributions"]) |
|
|
|
train_caps = {} |
|
test_caps = {} |
|
val_caps = {} |
|
|
|
current_lang = self.config.subset_id.split("_")[1] |
|
|
|
img_df = pd.read_csv(attr_path) |
|
|
|
img_df_train = img_df.loc[img_df["Subset"] == "train"][["ImageID", "Subset"]] |
|
img_df_test = img_df.loc[img_df["Subset"] == "test"][["ImageID", "Subset"]] |
|
img_df_val = img_df.loc[img_df["Subset"] == "validation"][["ImageID", "Subset"]] |
|
|
|
with jl.open(os.path.join(captions_path, "captions.jsonl"), mode="r") as jsonl_file: |
|
for line in jsonl_file: |
|
if line["image/key"] in img_df_train.ImageID.values: |
|
train_caps[line["image/key"]] = line[current_lang] |
|
elif line["image/key"] in img_df_test.ImageID.values: |
|
test_caps[line["image/key"]] = line[current_lang] |
|
elif line["image/key"] in img_df_val.ImageID.values: |
|
val_caps[line["image/key"]] = line[current_lang] |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": {"img_ids": img_df_train.ImageID.values, "images": {img_id: os.path.join(images_path, img_id + ".jpg") for img_id in img_df_train.ImageID.values}, "captions": train_caps}, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": {"img_ids": img_df_test.ImageID.values, "images": {img_id: os.path.join(images_path, img_id + ".jpg") for img_id in img_df_test.ImageID.values}, "captions": test_caps}, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": {"img_ids": img_df_val.ImageID.values, "images": {img_id: os.path.join(images_path, img_id + ".jpg") for img_id in img_df_val.ImageID.values}, "captions": val_caps}, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: dict) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
counter = 0 |
|
for img_id in filepath["img_ids"]: |
|
cap = filepath["captions"][img_id] |
|
for line in cap["caption"]: |
|
cap_index = cap["caption"].index(line) |
|
if self.config.schema == "source": |
|
yield counter, { |
|
"id": img_id + "_" + str(counter), |
|
"image_paths": filepath["images"][img_id], |
|
"texts": { |
|
"caption": line, |
|
"caption/tokenized": cap["caption/tokenized"][cap_index], |
|
"caption/tokenized/lowercase": cap["caption/tokenized/lowercase"][cap_index], |
|
}, |
|
} |
|
|
|
elif self.config.schema == "seacrowd_imtext": |
|
yield counter, { |
|
"id": img_id + "_" + str(counter), |
|
"image_paths": [filepath["images"][img_id]], |
|
"texts": line, |
|
"metadata": { |
|
"context": None, |
|
"labels": None, |
|
}, |
|
} |
|
|
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
|
|
counter += 1 |
|
|