|
import csv |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import SCHEMA_TO_FEATURES, Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@inproceedings{lin2022fewshot, |
|
author = {Xi Victoria Lin and |
|
Todor Mihaylov and |
|
Mikel Artetxe and |
|
Tianlu Wang and |
|
Shuohui Chen and |
|
Daniel Simig and |
|
Myle Ott and |
|
Naman Goyal and |
|
Shruti Bhosale and |
|
Jingfei Du and |
|
Ramakanth Pasunuru and |
|
Sam Shleifer and |
|
Punit Singh Koura and |
|
Vishrav Chaudhary and |
|
Brian O'Horo and |
|
Jeff Wang and |
|
Luke Zettlemoyer and |
|
Zornitsa Kozareva and |
|
Mona T. Diab and |
|
Veselin Stoyanov and |
|
Xian Li}, |
|
editor = {Yoav Goldberg and |
|
Zornitsa Kozareva and |
|
Yue Zhang}, |
|
title = {Few-shot Learning with Multilingual Generative Language Models}, |
|
booktitle = {Proceedings of the 2022 Conference on Empirical Methods in Natural |
|
Language Processing, {EMNLP} 2022, Abu Dhabi, United Arab Emirates, |
|
December 7-11, 2022}, |
|
pages = {9019--9052}, |
|
publisher = {Association for Computational Linguistics}, |
|
year = {2022}, |
|
url = {https://doi.org/10.18653/v1/2022.emnlp-main.616}, |
|
doi = {10.18653/V1/2022.EMNLP-MAIN.616}, |
|
} |
|
""" |
|
|
|
_DATASETNAME = "xstorycloze" |
|
_DESCRIPTION = """\ |
|
XStoryCloze consists of the professionally translated version of the English StoryCloze |
|
dataset (Spring 2016 version) to 10 non-English languages. This dataset is released by |
|
Meta AI. |
|
""" |
|
_HOMEPAGE = "https://huggingface.co/datasets/juletxara/xstory_cloze" |
|
_LANGUAGES = ["ind", "mya"] |
|
_LICENSE = Licenses.CC_BY_SA_4_0.value |
|
|
|
_LOCAL = False |
|
_BASE_URL = "https://huggingface.co/datasets/juletxara/xstory_cloze/resolve/main/spring2016.val.{lang}.tsv.split_20_80_{split}.tsv" |
|
_SUPPORTED_TASKS = [Tasks.COMMONSENSE_REASONING] |
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class XStoryClozeDataset(datasets.GeneratorBasedBuilder): |
|
"""XStoryCloze subset for Indonesian and Burmese language.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
SEACROWD_SUBSET = ["id", "my"] |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{subset}_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description=f"{_DATASETNAME} {subset} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}_{subset}", |
|
) |
|
for subset in SEACROWD_SUBSET |
|
] + [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{subset}_seacrowd_qa", |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description=f"{_DATASETNAME} {subset} SEACrowd schema", |
|
schema="seacrowd_qa", |
|
subset_id=f"{_DATASETNAME}_{subset}", |
|
) |
|
for subset in SEACROWD_SUBSET |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_{SEACROWD_SUBSET[0]}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"story_id": datasets.Value("string"), |
|
"input_sentence_1": datasets.Value("string"), |
|
"input_sentence_2": datasets.Value("string"), |
|
"input_sentence_3": datasets.Value("string"), |
|
"input_sentence_4": datasets.Value("string"), |
|
"sentence_quiz1": datasets.Value("string"), |
|
"sentence_quiz2": datasets.Value("string"), |
|
"answer_right_ending": datasets.Value("int32"), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_qa": |
|
features = SCHEMA_TO_FEATURES["QA"] |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
lang = self.config.name.split("_")[1] |
|
filepaths = dl_manager.download_and_extract( |
|
{ |
|
"train": _BASE_URL.format(lang=lang, split="train"), |
|
"test": _BASE_URL.format(lang=lang, split="eval"), |
|
} |
|
) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": filepaths["train"], |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": filepaths["test"], |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
with open(filepath, encoding="utf-8") as f: |
|
data = csv.reader(f, quotechar='"', delimiter="\t", quoting=csv.QUOTE_ALL, skipinitialspace=True) |
|
_ = next(data) |
|
if self.config.schema == "source": |
|
for id, row in enumerate(data): |
|
yield id, { |
|
"story_id": row[0], |
|
"input_sentence_1": row[1], |
|
"input_sentence_2": row[2], |
|
"input_sentence_3": row[3], |
|
"input_sentence_4": row[4], |
|
"sentence_quiz1": row[5], |
|
"sentence_quiz2": row[6], |
|
"answer_right_ending": int(row[7]), |
|
} |
|
elif self.config.schema == "seacrowd_qa": |
|
for id, row in enumerate(data): |
|
question = " ".join(row[1:5]) |
|
choices = [row[5], row[6]] |
|
yield id, { |
|
"id": str(id), |
|
"question_id": row[0], |
|
"document_id": None, |
|
"question": question, |
|
"type": "multiple_choice", |
|
"choices": choices, |
|
"context": None, |
|
"answer": [choices[int(row[7]) - 1]], |
|
"meta": {}, |
|
} |
|
|