Datasets:

databenchSPA / README.md
jorses's picture
Update README.md
c7454e9 verified
metadata
language:
  - en
  - es
pretty_name: DataBench SPAnish
tags:
  - table-question-answering
  - table
  - qa
license: mit
task_categories:
  - table-question-answering
  - question-answering
default: qa
configs:
  - config_name: qa
    data_files:
      - ES_01_40db_Igualdad/qa.parquet
      - ES_02_40dB_Dormir/qa.parquet
      - ES_03_CIS_Enero_Marzo_2023/qa.parquet
      - ES_04_CEA_Barometro_Andaluz_Septiembre_2023/qa.parquet
      - ES_05_CIS_2023_Salud_Bienestar/qa.parquet
      - ES_06_CIS_Politica_Fiscal_Julio_2023/qa.parquet
      - ES_07_CIS_Relaciones_Afectivas_Pospandemia_III/qa.parquet
      - ES_08_CIS_Barometro_Diciembre_2022/qa.parquet
      - ES_09_40dB_Percepcion_Amor/qa.parquet
      - ES_10_CIS_Salud_Mental_Pandemia_2021/qa.parquet
  - config_name: iberlef
    data_files:
      - split: dev
        path:
          - ES_01_40db_Igualdad/qa.parquet
          - ES_02_40dB_Dormir/qa.parquet
          - ES_03_CIS_Enero_Marzo_2023/qa.parquet
          - ES_04_CEA_Barometro_Andaluz_Septiembre_2023/qa.parquet
      - split: train
        path:
          - ES_05_CIS_2023_Salud_Bienestar/qa.parquet
          - ES_06_CIS_Politica_Fiscal_Julio_2023/qa.parquet
          - ES_07_CIS_Relaciones_Afectivas_Pospandemia_III/qa.parquet
          - ES_08_CIS_Barometro_Diciembre_2022/qa.parquet
          - ES_09_40dB_Percepcion_Amor/qa.parquet
          - ES_10_CIS_Salud_Mental_Pandemia_2021/qa.parquet

DataBench SPAnish

This repository contains the original 10 datasets used for the paper Towards Quality Benchmarking in Question Answering over Tabular Data in Spanish which appeared in SEPLN 2024.

It is a spin-off of the original suite in English, which you can find here.

Usage

from datasets import load_dataset

# Load all QA pairs
all_qa = load_dataset("SINAI/databenchSPA", name="qa")

# Load PRESTA QA splits
iberlef_train_qa = load_dataset("SINAI/databenchSPA", name="iberlef", split="train")
iberlef_dev_qa = load_dataset("SINAI/databenchSPA", name="iberlef", split="dev")

You can use any of the individual integrated libraries to load the actual data where the answer is to be retrieved.

For example, using pandas in Python:

import pandas as pd

# "ES_01_40db_Igualdad", the id of the dataset
ds_id = all_qa['dataset'][0] 

# Dataset containing the answer
df = pd.read_parquet(f"hf://datasets/SINAI/databenchSPA/{ds_id}/all.parquet")
# Name Rows Columns #QA Source (Reference)
1 Encuesta de Igualidad 2000 105 25 40dB
2 Calidad del Sueño 2000 80 25 40dB
3 Fusión Barómetros 7430 161 25 CIS
4 Barómetro Andaluz 5349 85 25 CEA
5 Juventud 1510 236 25 CRS
6 Política Fiscal 3011 198 25 CIS
7 Relaciones 2491 186 25 CIS
8 Barómetro Mensual 2444 185 25 CIS
9 Percepción del Amor 2000 150 25 40dB
10 Salud Mental 3083 354 25 CIS
Total 31318 1741 250

🏗️ Folder structure

Each folder represents one dataset. You will find the following files within:

  • all.parquet: the processed data, with each column tagged with our typing system, in parquet.
  • qa.parquet: contains the human-made set of questions, tagged by type, for the dataset.
  • info.yml: additional information about the dataset

🗂️ Column typing system

In an effort to map the stage for later analysis, we have categorized the columns by type. This information allows us to segment different kinds of data so that we can subsequently analyze the model's behavior on each column type separately. All parquet files have been casted to their smallest viable data type using the open source Lector reader.

What this means is that in the data types we have more granular information that allows us to know if the column contains NaNs or not (following panda’s convention of Int vs int), as well as whether small numerical values contain negatives (Uint vs int) and their range. We also have dates with potential timezone information (although for now they’re all UTC), as well as information about categories’ cardinality coming from the arrow types.

In the table below you can see all the data types assigned to each column, as well as the number of columns for each type. The most common data types are numbers and categories with 1336 columns of the total of 1615 included in DataBench. These are followed by some other more rare types as urls, booleans, dates or lists of elements.

Type Columns Example
number 269 1
category 1464 banana
date 2 1979-01-01
text 1 A blue rabbit went to...
list[number] 1 [10,11,12]
list[category] 4 [banana, pineapple]

🔗 Reference

You can download the paper here. If you use this resource, please use the following reference:

@article{DBLP:journals/pdln/GrijalbaLCC24,
  author={Jorge Osés Grijalba and Luis Alfonso Ureña López and José Camacho-Collados and Eugenio Martínez Cámara},
  title={Towards Quality Benchmarking in Question Answering over Tabular Data in Spanish},
  year={2024},
  cdate={1704067200000},
  journal={Proces. del Leng. Natural},
  volume={73},
  pages={283-296},
  url={http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/6617}
}