Balochi-Multilingual-dataset
/
tools used to create this dataset
/SimpleRNNTranslator
/balochi-translatorv2.py
import json | |
import re | |
from collections import defaultdict | |
import torch | |
import torch.nn as nn | |
import torch.optim as optim | |
def flatten_json_data(json_file_path): | |
with open(json_file_path, 'r', encoding='utf-8') as f: | |
data = json.load(f) | |
flattened_data = [] | |
for dataset in data: | |
for section in ["conversation_samples", "technical_terminology"]: | |
if section in dataset: | |
for category, samples in dataset[section].items(): | |
for item in samples: | |
if "balochi" in item and "english" in item and "urdu" in item and "persian" in item: # Check if all keys are present | |
for balochi_sentence, english_sentence, urdu_sentence, persian_sentence in zip(item['balochi'], item['english'], item['urdu'], item['persian']): | |
flattened_data.append({ | |
"context": item.get('context', category), | |
"balochi": balochi_sentence, | |
"english": english_sentence, | |
"urdu": urdu_sentence, | |
"persian": persian_sentence | |
}) | |
return flattened_data | |
def create_vocab(tokenized_sentences): | |
vocab = defaultdict(lambda: len(vocab)) | |
vocab['<PAD>'] = 0 | |
vocab['<UNK>'] = 1 # Add unknown token | |
for sentence in tokenized_sentences: | |
for word in sentence: | |
vocab[word] | |
return dict(vocab) | |
def tokenize_text(text): | |
return re.findall(r"[\w']+(?:ء)?|[\u0600-\u06FF]+|[؟،۔٬؛٪٫٬]+|\S", text) | |
class SimpleRNNTranslator(nn.Module): | |
def __init__(self, input_size, output_size, hidden_size): | |
super(SimpleRNNTranslator, self).__init__() | |
self.hidden_size = hidden_size | |
self.embedding = nn.Embedding(input_size, hidden_size) | |
self.rnn = nn.RNN(hidden_size, hidden_size, batch_first=True) | |
self.fc = nn.Linear(hidden_size, output_size) | |
def forward(self, x): | |
embedded = self.embedding(x) | |
output, hidden = self.rnn(embedded) | |
output = self.fc(output[:, -1, :]) # Use the last output in the sequence | |
return output | |
def train_model(flattened_data, num_epochs=500, hidden_size=256, learning_rate=0.0005): | |
# Tokenize sentences | |
balochi_sentences = [tokenize_text(entry['balochi']) for entry in flattened_data] | |
english_sentences = [tokenize_text(entry['english']) for entry in flattened_data] | |
# Create vocabularies | |
balochi_vocab = create_vocab(balochi_sentences) | |
english_vocab = create_vocab(english_sentences) | |
input_size = len(balochi_vocab) | |
output_size = len(english_vocab) | |
# Prepare data | |
max_balochi_len = max(len(sentence) for sentence in balochi_sentences) | |
max_english_len = max(len(sentence) for sentence in english_sentences) | |
def encode_sentences(sentences, vocab, max_len): | |
encoded = [ | |
[vocab.get(word, vocab['<UNK>']) for word in sentence] + [0] * (max_len - len(sentence)) | |
for sentence in sentences | |
] | |
return torch.LongTensor(encoded) | |
X = encode_sentences(balochi_sentences, balochi_vocab, max_balochi_len) | |
Y = encode_sentences(english_sentences, english_vocab, max_english_len) | |
# Initialize model, loss, and optimizer | |
model = SimpleRNNTranslator(input_size, output_size, hidden_size) | |
criterion = nn.CrossEntropyLoss() | |
optimizer = optim.Adam(model.parameters(), lr=learning_rate) | |
# Training loop | |
for epoch in range(num_epochs): | |
model.train() | |
optimizer.zero_grad() | |
outputs = model(X) # Shape: [batch_size, output_size] | |
# Reshape target to match CrossEntropyLoss expectations | |
loss = criterion(outputs, Y[:, 0]) # Only use the first word of target sentences | |
loss.backward() | |
optimizer.step() | |
print(f"Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}") | |
return model, balochi_vocab, english_vocab, max_balochi_len | |
def translate(model, balochi_sentence, balochi_vocab, english_vocab, max_balochi_len): | |
tokenized_sentence = tokenize_text(balochi_sentence) | |
encoded_sentence = [balochi_vocab.get(word, balochi_vocab['<UNK>']) for word in tokenized_sentence] # Use <UNK> for OOV words | |
padded_sentence = encoded_sentence + [0] * (max_balochi_len - len(encoded_sentence)) | |
input_tensor = torch.LongTensor([padded_sentence]) | |
output = model(input_tensor) | |
predicted_indices = torch.argmax(output, dim=1) | |
reverse_english_vocab = {idx: word for word, idx in english_vocab.items()} | |
predicted_words = [reverse_english_vocab.get(idx.item(), '<UNK>') for idx in predicted_indices] # Use <UNK> for OOV indices | |
return " ".join(predicted_words) | |
# Example usage | |
json_file_path = "mergedv1.json" # Replace with your JSON file path | |
flattened_data = flatten_json_data(json_file_path) | |
# Check if data was loaded | |
if not flattened_data: | |
print("Error: No data loaded from JSON. Check file path and format.") | |
else: | |
model, balochi_vocab, english_vocab, max_balochi_len = train_model(flattened_data) | |
balochi_input = "دنیا ءِ ات، پُر راز ءِ ات، ہر کسی ءِ دل ءِ موج ءِ ات" | |
translated_sentence = translate(model, balochi_input, balochi_vocab, english_vocab, max_balochi_len) | |
print(f"Balochi Input: {balochi_input}") | |
print(f"Translated Output: {translated_sentence}") | |