hip_filename
stringlengths
5
84
hip_content
stringlengths
79
9.69M
cuda_filename
stringlengths
4
83
cuda_content
stringlengths
19
9.69M
5e9095e4dedd8b88ade554da76518a4349b9b330.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "device_launch_parameters.h" #include <iostream> #include <math.h> #include <fstream> #include <time.h> using namespace std; #define TILE 25 __global__ void CUDAedge( int *a, const int b) { int pos = threadIdx.x; int min[9] = { a[pos], a[pos+1], a[pos-1], a[pos+b], a[pos+b+1], a[pos+b-1], a[pos-b], a[pos-b+1], a[pos-b-1] }; int val=0; for (int i=0;i<9;i++) { if (min[i]>val) val=min[i]; } a[pos]=val; for (int i=0;i<9;i++) { if (min[i]<val) val=min[i]; } a[pos]=val; } int main () { ifstream fin; fin.open("input.in"); ofstream fout; fout.open("output.out"); int i,h,b,cs; double total=0,total1=0; fin>>cs; for (int k=1;k<=cs;k++) { clock_t st = clock(); fin>>h>>b; int *ha,*da; int *r=new int[h*b]; ha=new int[h*b]; for ( i = 0 ; i<h*b ; i++ ) fin>>ha[i]; hipMalloc((void **) &da, h*b*sizeof (int)); hipMemcpy(da,ha,h*b*sizeof(int),hipMemcpyHostToDevice); clock_t st1 = clock(); hipLaunchKernelGGL(( CUDAedge) , dim3(1),dim3(h*b), 0, 0, da , b) ; hipDeviceSynchronize(); hipDeviceSynchronize(); hipHostFree(ha); hipFree(da); clock_t et = clock(); double t=double(et - st)/CLOCKS_PER_SEC; double t1=double(et - st1)/CLOCKS_PER_SEC; total+=t; total1+=t1; fout<<k<<'\t'<<h<<'\t'<<b<<'\t'<<h*b<<'\t'<<t<<'\t'<<t1<<endl; hipMemcpy(r,da,h*b*sizeof(int),hipMemcpyDeviceToHost); } //fout<<total<<'\t'<<total1; fin.close(); fout.close(); }
5e9095e4dedd8b88ade554da76518a4349b9b330.cu
#include "cuda_runtime.h" #include "device_launch_parameters.h" #include <iostream> #include <math.h> #include <fstream> #include <time.h> using namespace std; #define TILE 25 __global__ void CUDAedge( int *a, const int b) { int pos = threadIdx.x; int min[9] = { a[pos], a[pos+1], a[pos-1], a[pos+b], a[pos+b+1], a[pos+b-1], a[pos-b], a[pos-b+1], a[pos-b-1] }; int val=0; for (int i=0;i<9;i++) { if (min[i]>val) val=min[i]; } a[pos]=val; for (int i=0;i<9;i++) { if (min[i]<val) val=min[i]; } a[pos]=val; } int main () { ifstream fin; fin.open("input.in"); ofstream fout; fout.open("output.out"); int i,h,b,cs; double total=0,total1=0; fin>>cs; for (int k=1;k<=cs;k++) { clock_t st = clock(); fin>>h>>b; int *ha,*da; int *r=new int[h*b]; ha=new int[h*b]; for ( i = 0 ; i<h*b ; i++ ) fin>>ha[i]; cudaMalloc((void **) &da, h*b*sizeof (int)); cudaMemcpy(da,ha,h*b*sizeof(int),cudaMemcpyHostToDevice); clock_t st1 = clock(); CUDAedge <<<1,h*b>>> ( da , b) ; cudaThreadSynchronize(); cudaDeviceSynchronize(); cudaFreeHost(ha); cudaFree(da); clock_t et = clock(); double t=double(et - st)/CLOCKS_PER_SEC; double t1=double(et - st1)/CLOCKS_PER_SEC; total+=t; total1+=t1; fout<<k<<'\t'<<h<<'\t'<<b<<'\t'<<h*b<<'\t'<<t<<'\t'<<t1<<endl; cudaMemcpy(r,da,h*b*sizeof(int),cudaMemcpyDeviceToHost); } //fout<<total<<'\t'<<total1; fin.close(); fout.close(); }
2cf881f9892ebca689743c87cdc801fc4cab6224.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" //////////////////////////////////////////////////////////////////////////////// // Copyright (c) 2014-2019, Lawrence Livermore National Security, LLC. // Produced at the Lawrence Livermore National Laboratory. // Written by the LBANN Research Team (B. Van Essen, et al.) listed in // the CONTRIBUTORS file. <[email protected]> // // LLNL-CODE-697807. // All rights reserved. // // This file is part of LBANN: Livermore Big Artificial Neural Network // Toolkit. For details, see http://software.llnl.gov/LBANN or // https://github.com/LLNL/LBANN. // // Licensed under the Apache License, Version 2.0 (the "Licensee"); you // may not use this file except in compliance with the License. You may // obtain a copy of the License at: // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or // implied. See the License for the specific language governing // permissions and limitations under the license. //////////////////////////////////////////////////////////////////////////////// #include "lbann/layers/loss/entrywise.hpp" #include "lbann/utils/cuda.hpp" namespace lbann { namespace { /** CUDA kernel to apply an binary backprop operator. */ template <typename BinaryBackPropOperator> __global__ void binary_backprop_operator_kernel(El::Int height, El::Int width, const DataType* __restrict__ x1, El::Int x1_ldim, const DataType* __restrict__ x2, El::Int x2_ldim, const DataType* __restrict__ dy, El::Int dy_ldim, DataType* __restrict__ dx1, El::Int dx1_ldim, DataType* __restrict__ dx2, El::Int dx2_ldim) { const El::Int gid = threadIdx.x + blockIdx.x * blockDim.x; const El::Int size = height * width; const El::Int num_threads = blockDim.x * gridDim.x; BinaryBackPropOperator op; for (El::Int pos = gid; pos < size; pos += num_threads) { const auto& row = pos % height; const auto& col = pos / height; op(x1[row + col * x1_ldim], x2[row + col * x2_ldim], dy[row + col * dy_ldim], dx1[row + col * dx1_ldim], dx2[row + col * dx2_ldim]); } } /** Apply a binary backprop operator to CPU data. * The input and output data must be on CPU and must have the same * dimensions. Given a binary function \f$ y = f(x_1,x_2) \f$, the * corresponding BinaryBackPropOperator is a 5-ary function with the * arguments \f$ x_1 \f$, \f$ x_2 \f$, \f$ dL/dy \f$, \f$ dL/dx_1\f$, * \f$ dL/dx_2 \f$. The last two arguments should be overwritten when * the BinaryBackPropOperator is called. */ template <typename BinaryBackPropOperator> void apply_binary_backprop_operator(const AbsMat& x1, const AbsMat& x2, const AbsMat& dy, AbsMat& dx1, AbsMat& dx2) { // Get CUDA grid dimensions // Note: Maximum CUDA grid dimension is 2^32-1 // (https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-and-technical-specifications). const El::Int height = x1.Height(); const El::Int width = x1.Width(); const El::Int block_dim = 256; El::Int grid_dim = (height * width + block_dim - 1) / block_dim; if (sizeof(El::Int) > sizeof(unsigned int) && grid_dim > std::numeric_limits<uint32_t>::max()) { grid_dim = std::numeric_limits<uint32_t>::max(); } // Launch CUDA kernel if (grid_dim > 0) { CHECK_CUDA(hipSetDevice(El::GPUManager::Device())); hipLaunchKernelGGL(( binary_backprop_operator_kernel<BinaryBackPropOperator>) , dim3(grid_dim), dim3(block_dim), 0, El::GPUManager::Stream(), height, width, x1.LockedBuffer(), x1.LDim(), x2.LockedBuffer(), x2.LDim(), dy.LockedBuffer(), dy.LDim(), dx1.Buffer(), dx1.LDim(), dx2.Buffer(), dx2.LDim()); } } // ========================================================= // Operator objects for entry-wise binary layers // ========================================================= // Note: Binary operator corresponds to forward prop step // (\f$ y = f(x_1,x_2) \f$) and 5-ary operator corresponds // to back prop step // (\f$ \frac{dL}{dx_i} = \frac{dL}{dy} \frac{df}{dx_i}(x_1,x_2) \f$). /** Binary cross entropy operator. */ struct binary_cross_entropy_op { inline __device__ DataType operator()(const DataType& x1, const DataType& x2) const { constexpr DataType zero = 0; constexpr DataType one = 1; DataType y = zero; if (x2 > zero) { y += -x2 * cuda::log(x1); } if (x2 < one) { y += -(one-x2) * cuda::log(one-x1); } return y; } inline __device__ void operator()(const DataType& x1, const DataType& x2, const DataType& dy, DataType& dx1, DataType& dx2) const { constexpr DataType zero = 0; constexpr DataType one = 1; dx1 = zero; dx2 = zero; if (dy == zero) { return; } if (x2 > zero) { dx1 += -x2 / x1 * dy; dx2 += -cuda::log(x1) * dy; } if (x2 < one) { dx1 += (one-x2) / (one-x1) * dy; dx2 += cuda::log(one-x1) * dy; } } }; /** Sigmoid binary cross entropy operator. * Equivalent to applying a sigmoid function to the first operand and * then computing the binary cross entropy. Numerically stable * implementation is taken from * https://www.tensorflow.org/api_docs/python/tf/nn/sigmoid_cross_entropy_with_logits. */ struct sigmoid_binary_cross_entropy_op { inline __device__ DataType operator()(const DataType& x1, const DataType& x2) const { constexpr DataType zero = 0; constexpr DataType one = 1; const auto& z = cuda::max(zero, cuda::min(x2, one)); if (x1 > zero) { return (one - z) * x1 + cuda::log1p(cuda::exp(-x1)); } else { return - x1 * z + cuda::log1p(cuda::exp(x1)); } } inline __device__ void operator()(const DataType& x1, const DataType& x2, const DataType& dy, DataType& dx1, DataType& dx2) const { constexpr DataType zero = 0; constexpr DataType one = 1; const auto& z = cuda::max(zero, cuda::min(x2, one)); if (x1 > zero) { dx1 = -z + 1 / (one + cuda::exp(-x1)); } else { dx1 = one - z - 1 / (one + cuda::exp(x1)); } dx1 *= dy; dx2 = (x2 == z) ? -x1 * dy : zero; } }; /** Boolean accuracy operator. */ struct boolean_accuracy_op { inline __device__ DataType operator()(const DataType& x1, const DataType& x2) const { const auto& b1 = x1 >= DataType(0.5); const auto& b2 = x2 >= DataType(0.5); return b1 == b2 ? DataType(1) : DataType(0); } inline __device__ void operator()(const DataType& x1, const DataType& x2, const DataType& dy, DataType& dx1, DataType& dx2) const { dx1 = DataType(0); dx2 = DataType(0); } }; /** Boolean false negative operator. */ struct boolean_false_negative_op { inline __device__ DataType operator()(const DataType& x1, const DataType& x2) const { const auto& b1 = x1 >= DataType(0.5); const auto& b2 = x2 >= DataType(0.5); return (!b1 && b2) ? DataType(1) : DataType(0); } inline __device__ void operator()(const DataType& x1, const DataType& x2, const DataType& dy, DataType& dx1, DataType& dx2) const { dx1 = DataType(0); dx2 = DataType(0); } }; /** Boolean false positive operator. */ struct boolean_false_positive_op { inline __device__ DataType operator()(const DataType& x1, const DataType& x2) const { const auto& b1 = x1 >= DataType(0.5); const auto& b2 = x2 >= DataType(0.5); return (b1 && !b2) ? DataType(1) : DataType(0); } inline __device__ void operator()(const DataType& x1, const DataType& x2, const DataType& dy, DataType& dx1, DataType& dx2) const { dx1 = DataType(0); dx2 = DataType(0); } }; } // namespace // Template instantiation #define INSTANTIATE(layer, op) \ template <> \ void layer<data_layout::MODEL_PARALLEL, El::Device::GPU> \ ::fp_compute() { \ cuda::apply_entrywise_binary_operator<op>(get_prev_activations(0), \ get_prev_activations(1), \ get_activations()); \ } \ template <> \ void layer<data_layout::MODEL_PARALLEL, El::Device::GPU> \ ::bp_compute() { \ apply_binary_backprop_operator<op>(get_local_prev_activations(0), \ get_local_prev_activations(1), \ get_local_prev_error_signals(), \ get_local_error_signals(0), \ get_local_error_signals(1)); \ } \ template <> \ void layer<data_layout::DATA_PARALLEL, El::Device::GPU> \ ::fp_compute() { \ cuda::apply_entrywise_binary_operator<op>(get_prev_activations(0), \ get_prev_activations(1), \ get_activations()); \ } \ template <> \ void layer<data_layout::DATA_PARALLEL, El::Device::GPU> \ ::bp_compute() { \ apply_binary_backprop_operator<op>(get_local_prev_activations(0), \ get_local_prev_activations(1), \ get_local_prev_error_signals(), \ get_local_error_signals(0), \ get_local_error_signals(1)); \ } INSTANTIATE(binary_cross_entropy_layer, binary_cross_entropy_op) INSTANTIATE(sigmoid_binary_cross_entropy_layer, sigmoid_binary_cross_entropy_op) INSTANTIATE(boolean_accuracy_layer, boolean_accuracy_op) INSTANTIATE(boolean_false_negative_layer, boolean_false_negative_op) INSTANTIATE(boolean_false_positive_layer, boolean_false_positive_op) } // namespace lbann
2cf881f9892ebca689743c87cdc801fc4cab6224.cu
//////////////////////////////////////////////////////////////////////////////// // Copyright (c) 2014-2019, Lawrence Livermore National Security, LLC. // Produced at the Lawrence Livermore National Laboratory. // Written by the LBANN Research Team (B. Van Essen, et al.) listed in // the CONTRIBUTORS file. <[email protected]> // // LLNL-CODE-697807. // All rights reserved. // // This file is part of LBANN: Livermore Big Artificial Neural Network // Toolkit. For details, see http://software.llnl.gov/LBANN or // https://github.com/LLNL/LBANN. // // Licensed under the Apache License, Version 2.0 (the "Licensee"); you // may not use this file except in compliance with the License. You may // obtain a copy of the License at: // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or // implied. See the License for the specific language governing // permissions and limitations under the license. //////////////////////////////////////////////////////////////////////////////// #include "lbann/layers/loss/entrywise.hpp" #include "lbann/utils/cuda.hpp" namespace lbann { namespace { /** CUDA kernel to apply an binary backprop operator. */ template <typename BinaryBackPropOperator> __global__ void binary_backprop_operator_kernel(El::Int height, El::Int width, const DataType* __restrict__ x1, El::Int x1_ldim, const DataType* __restrict__ x2, El::Int x2_ldim, const DataType* __restrict__ dy, El::Int dy_ldim, DataType* __restrict__ dx1, El::Int dx1_ldim, DataType* __restrict__ dx2, El::Int dx2_ldim) { const El::Int gid = threadIdx.x + blockIdx.x * blockDim.x; const El::Int size = height * width; const El::Int num_threads = blockDim.x * gridDim.x; BinaryBackPropOperator op; for (El::Int pos = gid; pos < size; pos += num_threads) { const auto& row = pos % height; const auto& col = pos / height; op(x1[row + col * x1_ldim], x2[row + col * x2_ldim], dy[row + col * dy_ldim], dx1[row + col * dx1_ldim], dx2[row + col * dx2_ldim]); } } /** Apply a binary backprop operator to CPU data. * The input and output data must be on CPU and must have the same * dimensions. Given a binary function \f$ y = f(x_1,x_2) \f$, the * corresponding BinaryBackPropOperator is a 5-ary function with the * arguments \f$ x_1 \f$, \f$ x_2 \f$, \f$ dL/dy \f$, \f$ dL/dx_1\f$, * \f$ dL/dx_2 \f$. The last two arguments should be overwritten when * the BinaryBackPropOperator is called. */ template <typename BinaryBackPropOperator> void apply_binary_backprop_operator(const AbsMat& x1, const AbsMat& x2, const AbsMat& dy, AbsMat& dx1, AbsMat& dx2) { // Get CUDA grid dimensions // Note: Maximum CUDA grid dimension is 2^32-1 // (https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-and-technical-specifications). const El::Int height = x1.Height(); const El::Int width = x1.Width(); const El::Int block_dim = 256; El::Int grid_dim = (height * width + block_dim - 1) / block_dim; if (sizeof(El::Int) > sizeof(unsigned int) && grid_dim > std::numeric_limits<uint32_t>::max()) { grid_dim = std::numeric_limits<uint32_t>::max(); } // Launch CUDA kernel if (grid_dim > 0) { CHECK_CUDA(cudaSetDevice(El::GPUManager::Device())); binary_backprop_operator_kernel<BinaryBackPropOperator> <<<grid_dim, block_dim, 0, El::GPUManager::Stream()>>>( height, width, x1.LockedBuffer(), x1.LDim(), x2.LockedBuffer(), x2.LDim(), dy.LockedBuffer(), dy.LDim(), dx1.Buffer(), dx1.LDim(), dx2.Buffer(), dx2.LDim()); } } // ========================================================= // Operator objects for entry-wise binary layers // ========================================================= // Note: Binary operator corresponds to forward prop step // (\f$ y = f(x_1,x_2) \f$) and 5-ary operator corresponds // to back prop step // (\f$ \frac{dL}{dx_i} = \frac{dL}{dy} \frac{df}{dx_i}(x_1,x_2) \f$). /** Binary cross entropy operator. */ struct binary_cross_entropy_op { inline __device__ DataType operator()(const DataType& x1, const DataType& x2) const { constexpr DataType zero = 0; constexpr DataType one = 1; DataType y = zero; if (x2 > zero) { y += -x2 * cuda::log(x1); } if (x2 < one) { y += -(one-x2) * cuda::log(one-x1); } return y; } inline __device__ void operator()(const DataType& x1, const DataType& x2, const DataType& dy, DataType& dx1, DataType& dx2) const { constexpr DataType zero = 0; constexpr DataType one = 1; dx1 = zero; dx2 = zero; if (dy == zero) { return; } if (x2 > zero) { dx1 += -x2 / x1 * dy; dx2 += -cuda::log(x1) * dy; } if (x2 < one) { dx1 += (one-x2) / (one-x1) * dy; dx2 += cuda::log(one-x1) * dy; } } }; /** Sigmoid binary cross entropy operator. * Equivalent to applying a sigmoid function to the first operand and * then computing the binary cross entropy. Numerically stable * implementation is taken from * https://www.tensorflow.org/api_docs/python/tf/nn/sigmoid_cross_entropy_with_logits. */ struct sigmoid_binary_cross_entropy_op { inline __device__ DataType operator()(const DataType& x1, const DataType& x2) const { constexpr DataType zero = 0; constexpr DataType one = 1; const auto& z = cuda::max(zero, cuda::min(x2, one)); if (x1 > zero) { return (one - z) * x1 + cuda::log1p(cuda::exp(-x1)); } else { return - x1 * z + cuda::log1p(cuda::exp(x1)); } } inline __device__ void operator()(const DataType& x1, const DataType& x2, const DataType& dy, DataType& dx1, DataType& dx2) const { constexpr DataType zero = 0; constexpr DataType one = 1; const auto& z = cuda::max(zero, cuda::min(x2, one)); if (x1 > zero) { dx1 = -z + 1 / (one + cuda::exp(-x1)); } else { dx1 = one - z - 1 / (one + cuda::exp(x1)); } dx1 *= dy; dx2 = (x2 == z) ? -x1 * dy : zero; } }; /** Boolean accuracy operator. */ struct boolean_accuracy_op { inline __device__ DataType operator()(const DataType& x1, const DataType& x2) const { const auto& b1 = x1 >= DataType(0.5); const auto& b2 = x2 >= DataType(0.5); return b1 == b2 ? DataType(1) : DataType(0); } inline __device__ void operator()(const DataType& x1, const DataType& x2, const DataType& dy, DataType& dx1, DataType& dx2) const { dx1 = DataType(0); dx2 = DataType(0); } }; /** Boolean false negative operator. */ struct boolean_false_negative_op { inline __device__ DataType operator()(const DataType& x1, const DataType& x2) const { const auto& b1 = x1 >= DataType(0.5); const auto& b2 = x2 >= DataType(0.5); return (!b1 && b2) ? DataType(1) : DataType(0); } inline __device__ void operator()(const DataType& x1, const DataType& x2, const DataType& dy, DataType& dx1, DataType& dx2) const { dx1 = DataType(0); dx2 = DataType(0); } }; /** Boolean false positive operator. */ struct boolean_false_positive_op { inline __device__ DataType operator()(const DataType& x1, const DataType& x2) const { const auto& b1 = x1 >= DataType(0.5); const auto& b2 = x2 >= DataType(0.5); return (b1 && !b2) ? DataType(1) : DataType(0); } inline __device__ void operator()(const DataType& x1, const DataType& x2, const DataType& dy, DataType& dx1, DataType& dx2) const { dx1 = DataType(0); dx2 = DataType(0); } }; } // namespace // Template instantiation #define INSTANTIATE(layer, op) \ template <> \ void layer<data_layout::MODEL_PARALLEL, El::Device::GPU> \ ::fp_compute() { \ cuda::apply_entrywise_binary_operator<op>(get_prev_activations(0), \ get_prev_activations(1), \ get_activations()); \ } \ template <> \ void layer<data_layout::MODEL_PARALLEL, El::Device::GPU> \ ::bp_compute() { \ apply_binary_backprop_operator<op>(get_local_prev_activations(0), \ get_local_prev_activations(1), \ get_local_prev_error_signals(), \ get_local_error_signals(0), \ get_local_error_signals(1)); \ } \ template <> \ void layer<data_layout::DATA_PARALLEL, El::Device::GPU> \ ::fp_compute() { \ cuda::apply_entrywise_binary_operator<op>(get_prev_activations(0), \ get_prev_activations(1), \ get_activations()); \ } \ template <> \ void layer<data_layout::DATA_PARALLEL, El::Device::GPU> \ ::bp_compute() { \ apply_binary_backprop_operator<op>(get_local_prev_activations(0), \ get_local_prev_activations(1), \ get_local_prev_error_signals(), \ get_local_error_signals(0), \ get_local_error_signals(1)); \ } INSTANTIATE(binary_cross_entropy_layer, binary_cross_entropy_op) INSTANTIATE(sigmoid_binary_cross_entropy_layer, sigmoid_binary_cross_entropy_op) INSTANTIATE(boolean_accuracy_layer, boolean_accuracy_op) INSTANTIATE(boolean_false_negative_layer, boolean_false_negative_op) INSTANTIATE(boolean_false_positive_layer, boolean_false_positive_op) } // namespace lbann
3331067c9886fed7dd9159ed022efa3e6e5e64e4.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" /** * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. */ #include <faiss/gpu/impl/IVFUtils.cuh> #include <faiss/gpu/utils/DeviceDefs.cuh> #include <faiss/gpu/utils/DeviceUtils.h> #include <faiss/gpu/utils/Limits.cuh> #include <faiss/gpu/utils/Select.cuh> #include <faiss/gpu/utils/StaticUtils.h> #include <faiss/gpu/utils/Tensor.cuh> // // This kernel is split into a separate compilation unit to cut down // on compile time // namespace faiss { namespace gpu { template <int ThreadsPerBlock, int NumWarpQ, int NumThreadQ, bool Dir> __global__ void pass1SelectLists(void** listIndices, Tensor<int, 2, true> prefixSumOffsets, Tensor<int, 2, true> topQueryToCentroid, Tensor<uint8_t, 1, true> bitset, Tensor<float, 1, true> distance, int nprobe, int k, IndicesOptions opt, Tensor<float, 3, true> heapDistances, Tensor<int, 3, true> heapIndices) { constexpr int kNumWarps = ThreadsPerBlock / kWarpSize; __shared__ float smemK[kNumWarps * NumWarpQ]; __shared__ int smemV[kNumWarps * NumWarpQ]; constexpr auto kInit = Dir ? kFloatMin : kFloatMax; BlockSelect<float, int, Dir, Comparator<float>, NumWarpQ, NumThreadQ, ThreadsPerBlock> heap(kInit, -1, smemK, smemV, k); auto queryId = blockIdx.y; auto sliceId = blockIdx.x; auto numSlices = gridDim.x; int sliceSize = (nprobe / numSlices); int sliceStart = sliceSize * sliceId; int sliceEnd = sliceId == (numSlices - 1) ? nprobe : sliceStart + sliceSize; auto offsets = prefixSumOffsets[queryId].data(); // We ensure that before the array (at offset -1), there is a 0 value int start = *(&offsets[sliceStart] - 1); int end = offsets[sliceEnd - 1]; int num = end - start; int limit = utils::roundDown(num, kWarpSize); int i = threadIdx.x; auto distanceStart = distance[start].data(); bool bitsetEmpty = (bitset.getSize(0) == 0); long index = -1; // BlockSelect add cannot be used in a warp divergent circumstance; we // handle the remainder warp below for (; i < limit; i += blockDim.x) { index = getListIndex(queryId, start + i, listIndices, prefixSumOffsets, topQueryToCentroid, opt); if (bitsetEmpty || (!(bitset[index >> 3] & (0x1 << (index & 0x7))))) { heap.addThreadQ(distanceStart[i], start + i); } heap.checkThreadQ(); } // Handle warp divergence separately if (i < num) { index = getListIndex(queryId, start + i, listIndices, prefixSumOffsets, topQueryToCentroid, opt); if (bitsetEmpty || (!(bitset[index >> 3] & (0x1 << (index & 0x7))))) { heap.addThreadQ(distanceStart[i], start + i); } } // Merge all final results heap.reduce(); // Write out the final k-selected values; they should be all // together for (int i = threadIdx.x; i < k; i += blockDim.x) { heapDistances[queryId][sliceId][i] = smemK[i]; heapIndices[queryId][sliceId][i] = smemV[i]; } } void runPass1SelectLists(thrust::device_vector<void*>& listIndices, IndicesOptions indicesOptions, Tensor<int, 2, true>& prefixSumOffsets, Tensor<int, 2, true>& topQueryToCentroid, Tensor<uint8_t, 1, true>& bitset, Tensor<float, 1, true>& distance, int nprobe, int k, bool chooseLargest, Tensor<float, 3, true>& heapDistances, Tensor<int, 3, true>& heapIndices, hipStream_t stream) { // This is caught at a higher level FAISS_ASSERT(k <= GPU_MAX_SELECTION_K); auto grid = dim3(heapDistances.getSize(1), prefixSumOffsets.getSize(0)); #define RUN_PASS(BLOCK, NUM_WARP_Q, NUM_THREAD_Q, DIR) \ do { \ hipLaunchKernelGGL(( pass1SelectLists<BLOCK, NUM_WARP_Q, NUM_THREAD_Q, DIR>) \ , dim3(grid), dim3(BLOCK), 0, stream, listIndices.data().get(), \ prefixSumOffsets, \ topQueryToCentroid, \ bitset, \ distance, \ nprobe, \ k, \ indicesOptions, \ heapDistances, \ heapIndices); \ CUDA_TEST_ERROR(); \ return; /* success */ \ } while (0) #if GPU_MAX_SELECTION_K >= 2048 // block size 128 for k <= 1024, 64 for k = 2048 #define RUN_PASS_DIR(DIR) \ do { \ if (k == 1) { \ RUN_PASS(128, 1, 1, DIR); \ } else if (k <= 32) { \ RUN_PASS(128, 32, 2, DIR); \ } else if (k <= 64) { \ RUN_PASS(128, 64, 3, DIR); \ } else if (k <= 128) { \ RUN_PASS(128, 128, 3, DIR); \ } else if (k <= 256) { \ RUN_PASS(128, 256, 4, DIR); \ } else if (k <= 512) { \ RUN_PASS(128, 512, 8, DIR); \ } else if (k <= 1024) { \ RUN_PASS(128, 1024, 8, DIR); \ } else if (k <= 2048) { \ RUN_PASS(64, 2048, 8, DIR); \ } \ } while (0) #else #define RUN_PASS_DIR(DIR) \ do { \ if (k == 1) { \ RUN_PASS(128, 1, 1, DIR); \ } else if (k <= 32) { \ RUN_PASS(128, 32, 2, DIR); \ } else if (k <= 64) { \ RUN_PASS(128, 64, 3, DIR); \ } else if (k <= 128) { \ RUN_PASS(128, 128, 3, DIR); \ } else if (k <= 256) { \ RUN_PASS(128, 256, 4, DIR); \ } else if (k <= 512) { \ RUN_PASS(128, 512, 8, DIR); \ } else if (k <= 1024) { \ RUN_PASS(128, 1024, 8, DIR); \ } \ } while (0) #endif // GPU_MAX_SELECTION_K if (chooseLargest) { RUN_PASS_DIR(true); } else { RUN_PASS_DIR(false); } #undef RUN_PASS_DIR #undef RUN_PASS } } } // namespace
3331067c9886fed7dd9159ed022efa3e6e5e64e4.cu
/** * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. */ #include <faiss/gpu/impl/IVFUtils.cuh> #include <faiss/gpu/utils/DeviceDefs.cuh> #include <faiss/gpu/utils/DeviceUtils.h> #include <faiss/gpu/utils/Limits.cuh> #include <faiss/gpu/utils/Select.cuh> #include <faiss/gpu/utils/StaticUtils.h> #include <faiss/gpu/utils/Tensor.cuh> // // This kernel is split into a separate compilation unit to cut down // on compile time // namespace faiss { namespace gpu { template <int ThreadsPerBlock, int NumWarpQ, int NumThreadQ, bool Dir> __global__ void pass1SelectLists(void** listIndices, Tensor<int, 2, true> prefixSumOffsets, Tensor<int, 2, true> topQueryToCentroid, Tensor<uint8_t, 1, true> bitset, Tensor<float, 1, true> distance, int nprobe, int k, IndicesOptions opt, Tensor<float, 3, true> heapDistances, Tensor<int, 3, true> heapIndices) { constexpr int kNumWarps = ThreadsPerBlock / kWarpSize; __shared__ float smemK[kNumWarps * NumWarpQ]; __shared__ int smemV[kNumWarps * NumWarpQ]; constexpr auto kInit = Dir ? kFloatMin : kFloatMax; BlockSelect<float, int, Dir, Comparator<float>, NumWarpQ, NumThreadQ, ThreadsPerBlock> heap(kInit, -1, smemK, smemV, k); auto queryId = blockIdx.y; auto sliceId = blockIdx.x; auto numSlices = gridDim.x; int sliceSize = (nprobe / numSlices); int sliceStart = sliceSize * sliceId; int sliceEnd = sliceId == (numSlices - 1) ? nprobe : sliceStart + sliceSize; auto offsets = prefixSumOffsets[queryId].data(); // We ensure that before the array (at offset -1), there is a 0 value int start = *(&offsets[sliceStart] - 1); int end = offsets[sliceEnd - 1]; int num = end - start; int limit = utils::roundDown(num, kWarpSize); int i = threadIdx.x; auto distanceStart = distance[start].data(); bool bitsetEmpty = (bitset.getSize(0) == 0); long index = -1; // BlockSelect add cannot be used in a warp divergent circumstance; we // handle the remainder warp below for (; i < limit; i += blockDim.x) { index = getListIndex(queryId, start + i, listIndices, prefixSumOffsets, topQueryToCentroid, opt); if (bitsetEmpty || (!(bitset[index >> 3] & (0x1 << (index & 0x7))))) { heap.addThreadQ(distanceStart[i], start + i); } heap.checkThreadQ(); } // Handle warp divergence separately if (i < num) { index = getListIndex(queryId, start + i, listIndices, prefixSumOffsets, topQueryToCentroid, opt); if (bitsetEmpty || (!(bitset[index >> 3] & (0x1 << (index & 0x7))))) { heap.addThreadQ(distanceStart[i], start + i); } } // Merge all final results heap.reduce(); // Write out the final k-selected values; they should be all // together for (int i = threadIdx.x; i < k; i += blockDim.x) { heapDistances[queryId][sliceId][i] = smemK[i]; heapIndices[queryId][sliceId][i] = smemV[i]; } } void runPass1SelectLists(thrust::device_vector<void*>& listIndices, IndicesOptions indicesOptions, Tensor<int, 2, true>& prefixSumOffsets, Tensor<int, 2, true>& topQueryToCentroid, Tensor<uint8_t, 1, true>& bitset, Tensor<float, 1, true>& distance, int nprobe, int k, bool chooseLargest, Tensor<float, 3, true>& heapDistances, Tensor<int, 3, true>& heapIndices, cudaStream_t stream) { // This is caught at a higher level FAISS_ASSERT(k <= GPU_MAX_SELECTION_K); auto grid = dim3(heapDistances.getSize(1), prefixSumOffsets.getSize(0)); #define RUN_PASS(BLOCK, NUM_WARP_Q, NUM_THREAD_Q, DIR) \ do { \ pass1SelectLists<BLOCK, NUM_WARP_Q, NUM_THREAD_Q, DIR> \ <<<grid, BLOCK, 0, stream>>>(listIndices.data().get(), \ prefixSumOffsets, \ topQueryToCentroid, \ bitset, \ distance, \ nprobe, \ k, \ indicesOptions, \ heapDistances, \ heapIndices); \ CUDA_TEST_ERROR(); \ return; /* success */ \ } while (0) #if GPU_MAX_SELECTION_K >= 2048 // block size 128 for k <= 1024, 64 for k = 2048 #define RUN_PASS_DIR(DIR) \ do { \ if (k == 1) { \ RUN_PASS(128, 1, 1, DIR); \ } else if (k <= 32) { \ RUN_PASS(128, 32, 2, DIR); \ } else if (k <= 64) { \ RUN_PASS(128, 64, 3, DIR); \ } else if (k <= 128) { \ RUN_PASS(128, 128, 3, DIR); \ } else if (k <= 256) { \ RUN_PASS(128, 256, 4, DIR); \ } else if (k <= 512) { \ RUN_PASS(128, 512, 8, DIR); \ } else if (k <= 1024) { \ RUN_PASS(128, 1024, 8, DIR); \ } else if (k <= 2048) { \ RUN_PASS(64, 2048, 8, DIR); \ } \ } while (0) #else #define RUN_PASS_DIR(DIR) \ do { \ if (k == 1) { \ RUN_PASS(128, 1, 1, DIR); \ } else if (k <= 32) { \ RUN_PASS(128, 32, 2, DIR); \ } else if (k <= 64) { \ RUN_PASS(128, 64, 3, DIR); \ } else if (k <= 128) { \ RUN_PASS(128, 128, 3, DIR); \ } else if (k <= 256) { \ RUN_PASS(128, 256, 4, DIR); \ } else if (k <= 512) { \ RUN_PASS(128, 512, 8, DIR); \ } else if (k <= 1024) { \ RUN_PASS(128, 1024, 8, DIR); \ } \ } while (0) #endif // GPU_MAX_SELECTION_K if (chooseLargest) { RUN_PASS_DIR(true); } else { RUN_PASS_DIR(false); } #undef RUN_PASS_DIR #undef RUN_PASS } } } // namespace
0b3ce5004133bac57ca16ccf5dade8c5fb2da3e2.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" // srad kernel __global__ void srad2(const fp d_lambda, const int d_Nr, const int d_Nc, const long d_Ne, const int *d_iN, const int *d_iS, const int *d_jE, const int *d_jW, const fp *d_dN, const fp *d_dS, const fp *d_dE, const fp *d_dW, const fp *d_c, fp *d_I) { // indexes int bx = blockIdx.x; // get current horizontal block index int tx = threadIdx.x; // get current horizontal thread index int ei = bx*NUMBER_THREADS+tx; // more threads than actual elements !!! int row; // column, x position int col; // row, y position // variables fp d_cN,d_cS,d_cW,d_cE; fp d_D; // figure out row/col location in new matrix row = (ei+1) % d_Nr - 1; // (0-n) row col = (ei+1) / d_Nr + 1 - 1; // (0-n) column if((ei+1) % d_Nr == 0){ row = d_Nr - 1; col = col - 1; } if(ei<d_Ne){ // make sure that only threads matching jobs run // diffusion coefficent d_cN = d_c[ei]; // north diffusion coefficient d_cS = d_c[d_iS[row] + d_Nr*col]; // south diffusion coefficient d_cW = d_c[ei]; // west diffusion coefficient d_cE = d_c[row + d_Nr * d_jE[col]]; // east diffusion coefficient // divergence (equ 58) d_D = d_cN*d_dN[ei] + d_cS*d_dS[ei] + d_cW*d_dW[ei] + d_cE*d_dE[ei];// divergence // image update (equ 61) (every element of IMAGE) d_I[ei] = d_I[ei] + (fp)0.25*d_lambda*d_D;// updates image (based on input time step and divergence) } }
0b3ce5004133bac57ca16ccf5dade8c5fb2da3e2.cu
// srad kernel __global__ void srad2(const fp d_lambda, const int d_Nr, const int d_Nc, const long d_Ne, const int *d_iN, const int *d_iS, const int *d_jE, const int *d_jW, const fp *d_dN, const fp *d_dS, const fp *d_dE, const fp *d_dW, const fp *d_c, fp *d_I) { // indexes int bx = blockIdx.x; // get current horizontal block index int tx = threadIdx.x; // get current horizontal thread index int ei = bx*NUMBER_THREADS+tx; // more threads than actual elements !!! int row; // column, x position int col; // row, y position // variables fp d_cN,d_cS,d_cW,d_cE; fp d_D; // figure out row/col location in new matrix row = (ei+1) % d_Nr - 1; // (0-n) row col = (ei+1) / d_Nr + 1 - 1; // (0-n) column if((ei+1) % d_Nr == 0){ row = d_Nr - 1; col = col - 1; } if(ei<d_Ne){ // make sure that only threads matching jobs run // diffusion coefficent d_cN = d_c[ei]; // north diffusion coefficient d_cS = d_c[d_iS[row] + d_Nr*col]; // south diffusion coefficient d_cW = d_c[ei]; // west diffusion coefficient d_cE = d_c[row + d_Nr * d_jE[col]]; // east diffusion coefficient // divergence (equ 58) d_D = d_cN*d_dN[ei] + d_cS*d_dS[ei] + d_cW*d_dW[ei] + d_cE*d_dE[ei];// divergence // image update (equ 61) (every element of IMAGE) d_I[ei] = d_I[ei] + (fp)0.25*d_lambda*d_D;// updates image (based on input time step and divergence) } }
35d91a7f3f6b1cfd2d8b51a4fb7f5d88182848b5.hip
// !!! This is a file automatically generated by hipify!!! #ifndef IMP_CU_MEDIAN3X3_IMPL_CU #define IMP_CU_MEDIAN3X3_IMPL_CU #include <imp/cu_imgproc/cu_image_filter.cuh> #include <cstdint> #include <cfloat> #include <hip/hip_runtime.h> #include <imp/core/types.hpp> #include <imp/core/pixel.hpp> #include <imp/core/roi.hpp> #include <imp/cu_core/cu_image_gpu.cuh> #include <imp/cu_core/cu_utils.hpp> #include <imp/cu_core/cu_texture.cuh> namespace imp { namespace cu { //----------------------------------------------------------------------------- template<typename Pixel> __global__ void k_median3x3(Pixel* dst, const size_type stride, const std::uint32_t xoff, const std::uint32_t yoff, const std::uint32_t width, const std::uint32_t height, Texture2D src_tex) { int x = blockIdx.x*blockDim.x + threadIdx.x; int y = blockIdx.y*blockDim.y + threadIdx.y; if(x>=0 && y>= 0 && x<width && y<height) { x += xoff; y += yoff; // shared mem coords const int tx = threadIdx.x+1; const int ty = threadIdx.y+1; // we have a 3x3 kernel, so our width of the shared memory (shp) is blockDim.x + 2! const int shp = blockDim.x + 2; const int shc = ty*shp + tx; extern __shared__ float sh_in[]; // Load input 3x3 block into shared memory // Note: the FLT_MAX prevents us from overemphasizing the border pixels if they are outliers! { // for each thread: copy the data of the current input position to shared mem Pixel texel; src_tex.fetch(texel, x, y); sh_in[shc] = texel; ///////////////////////////////////////////////////////////////////////////// // boundary conditions ///////////////////////////////////////////////////////////////////////////// if (x == 0) // at left image border { if (y == 0) sh_in[shc-shp-1] = FLT_MAX; // left-upper corner (image) else if (ty == 1) { // left-upper corner (block) src_tex.fetch(texel, x, y-1.f); sh_in[shc-shp-1] = texel; } sh_in[shc-1] = sh_in[shc]; // left border (image) if (y == height-1) sh_in[shc+shp-1] = FLT_MAX; // left-lower corner (image) else if (ty == blockDim.y) { src_tex.fetch(texel, x, y+1); sh_in[shc+shp-1] = texel; // left-lower corner (block) } } else if (tx == 1) // at left block border (inside image w.r.t x) { if (y == 0) { src_tex.fetch(texel, x-1, y); sh_in[shc-shp-1] = texel; // left-upper corner (block, outside) } else if (ty == 1) { src_tex.fetch(texel, x-1, y-1); sh_in[shc-shp-1] = texel; // left-upper corner (block, inside) } src_tex.fetch(texel, x-1, y); sh_in[shc-1] = texel; // left border (block) if (y == height-1) { src_tex.fetch(texel, x-1, y); sh_in[shc+shp-1] = texel; // left-lower corner (block, outside) } else if (ty == blockDim.y) { src_tex.fetch(texel, x-1, y+1); sh_in[shc+shp-1] = texel; // left-lower corner (block, inside) } } if (x == width-1) // at right image border { if (y == 0) sh_in[shc-shp+1] = FLT_MAX; // right-upper corner (image) else if (ty == 1) { src_tex.fetch(texel, x, y-1); sh_in[shc-shp+1] = texel; // right-upper corner (block) } sh_in[shc+1] = sh_in[shc]; // right border (image) if (y == height-1) sh_in[shc+shp+1] = FLT_MAX; // right-lower corner (image) else if (ty == blockDim.y) { src_tex.fetch(texel, x, y+1); sh_in[shc+shp+1] = texel; // right-lower corner (block) } } else if (tx == blockDim.x) // at right block border (inside image w.r.t x) { if (y == 0) { src_tex.fetch(texel, x+1, y); sh_in[shc-shp+1] = texel; // right-upper corner (block, outside) } else if (ty == 1) { src_tex.fetch(texel, x+1, y-1); sh_in[shc-shp+1] = texel; // right-upper corner (block, inside) } src_tex.fetch(texel, x+1, y); sh_in[shc+1] = texel; // right border (block) if (y == height-1) { src_tex.fetch(texel, x+1, y); sh_in[shc+shp+1] = texel; // right-lower corner (block, outside) } else if (ty == blockDim.y) { src_tex.fetch(texel, x+1, y+1); sh_in[shc+shp+1] = texel; // right-lower corner (block, inside) } } if (y == 0) sh_in[shc-shp] = sh_in[shc]; // upper border (image) else if (ty == 1) { src_tex.fetch(texel, x, y-1); sh_in[shc-shp] = texel; // upper border (block) } if (y == height-1) sh_in[shc+shp] = sh_in[shc]; // lower border (image) else if (ty == blockDim.y) { src_tex.fetch(texel, x, y+1); sh_in[shc+shp] = texel; // lower border (block) } __syncthreads(); } // in a sequence of nine elements, we have to remove four times the maximum from the sequence and need // a fifth calculated maximum which is the median! float maximum; { float vals[8]; // first 'loop' vals[0] = fmin(sh_in[shc-shp-1], sh_in[shc-shp]); maximum = fmax(sh_in[shc-shp-1], sh_in[shc-shp]); vals[1] = fmin(maximum, sh_in[shc-shp+1]); maximum = fmax(maximum, sh_in[shc-shp+1]); vals[2] = fmin(maximum, sh_in[shc-1]); maximum = fmax(maximum, sh_in[shc-1]); vals[3] = fmin(maximum, sh_in[shc]); maximum = fmax(maximum, sh_in[shc]); vals[4] = fmin(maximum, sh_in[shc+1]); maximum = fmax(maximum, sh_in[shc+1]); vals[5] = fmin(maximum, sh_in[shc+shp-1]); maximum = fmax(maximum, sh_in[shc+shp-1]); vals[6] = fmin(maximum, sh_in[shc+shp]); maximum = fmax(maximum, sh_in[shc+shp]); vals[7] = fmin(maximum, sh_in[shc+shp+1]); maximum = fmax(maximum, sh_in[shc+shp+1]); // second 'loop' maximum = fmax(vals[0], vals[1]); vals[0] = fmin(vals[0], vals[1]); vals[1] = maximum; maximum = fmax(vals[1], vals[2]); vals[1] = fmin(vals[1], vals[2]); vals[2] = maximum; maximum = fmax(vals[2], vals[3]); vals[2] = fmin(vals[2], vals[3]); vals[3] = maximum; maximum = fmax(vals[3], vals[4]); vals[3] = fmin(vals[3], vals[4]); vals[4] = maximum; maximum = fmax(vals[4], vals[5]); vals[4] = fmin(vals[4], vals[5]); vals[5] = maximum; maximum = fmax(vals[5], vals[6]); vals[5] = fmin(vals[5], vals[6]); vals[6] = fmin(maximum, vals[7]); // third 'loop' maximum = fmax(vals[0], vals[1]); vals[0] = fmin(vals[0], vals[1]); vals[1] = maximum; maximum = fmax(vals[1], vals[2]); vals[1] = fmin(vals[1], vals[2]); vals[2] = maximum; maximum = fmax(vals[2], vals[3]); vals[2] = fmin(vals[2], vals[3]); vals[3] = maximum; maximum = fmax(vals[3], vals[4]); vals[3] = fmin(vals[3], vals[4]); vals[4] = maximum; maximum = fmax(vals[4], vals[5]); vals[4] = fmin(vals[4], vals[5]); vals[5] = fmin(maximum, vals[6]); // 4th 'loop' maximum = fmax(vals[0], vals[1]); vals[0] = fmin(vals[0], vals[1]); vals[1] = maximum; maximum = fmax(vals[1], vals[2]); vals[1] = fmin(vals[1], vals[2]); vals[2] = maximum; maximum = fmax(vals[2], vals[3]); vals[2] = fmin(vals[2], vals[3]); vals[3] = maximum; maximum = fmax(vals[3], vals[4]); vals[3] = fmin(vals[3], vals[4]); vals[4] = fmin(maximum, vals[5]); // 5th 'loop' maximum = fmax(vals[0], vals[1]); maximum = fmax(maximum, vals[2]); maximum = fmax(maximum, vals[3]); maximum = fmax(maximum, vals[4]); } dst[y*stride+x] = maximum; } } //----------------------------------------------------------------------------- template<typename Pixel, imp::PixelType pixel_type> void filterMedian3x3(ImageGpu<Pixel, pixel_type>& dst, const ImageGpu<Pixel, pixel_type>& src) { std::unique_ptr<Texture2D> src_tex = src.genTexture(false, (src.bitDepth()<32) ? hipFilterModePoint : hipFilterModeLinear); constexpr std::uint16_t block_size = 16; Fragmentation<block_size, block_size> frag(src.roi()); size_type shared_size = (block_size+2)*(block_size+2)*sizeof(float); Roi2u roi = src.roi(); dst.setRoi(roi); hipLaunchKernelGGL(( k_median3x3) , dim3(frag.dimGrid), dim3(frag.dimBlock), shared_size , 0, dst.data(), dst.stride(), roi.x(), roi.y(), roi.width(), roi.height(), *src_tex); IMP_CUDA_CHECK(); } //============================================================================== // // template instantiations for all our image types // template void filterMedian3x3(ImageGpu8uC1& dst, const ImageGpu8uC1& src); template void filterMedian3x3(ImageGpu8uC2& dst, const ImageGpu8uC2& src); template void filterMedian3x3(ImageGpu8uC4& dst, const ImageGpu8uC4& src); template void filterMedian3x3(ImageGpu16uC1& dst, const ImageGpu16uC1& src); template void filterMedian3x3(ImageGpu16uC2& dst, const ImageGpu16uC2& src); template void filterMedian3x3(ImageGpu16uC4& dst, const ImageGpu16uC4& src); template void filterMedian3x3(ImageGpu32sC1& dst, const ImageGpu32sC1& src); template void filterMedian3x3(ImageGpu32sC2& dst, const ImageGpu32sC2& src); template void filterMedian3x3(ImageGpu32sC4& dst, const ImageGpu32sC4& src); template void filterMedian3x3(ImageGpu32fC1& dst, const ImageGpu32fC1& src); template void filterMedian3x3(ImageGpu32fC2& dst, const ImageGpu32fC2& src); template void filterMedian3x3(ImageGpu32fC4& dst, const ImageGpu32fC4& src); } // namespace cu } // namespace imp #endif // IMP_CU_MEDIAN3X3_IMPL_CU
35d91a7f3f6b1cfd2d8b51a4fb7f5d88182848b5.cu
#ifndef IMP_CU_MEDIAN3X3_IMPL_CU #define IMP_CU_MEDIAN3X3_IMPL_CU #include <imp/cu_imgproc/cu_image_filter.cuh> #include <cstdint> #include <cfloat> #include <cuda_runtime.h> #include <imp/core/types.hpp> #include <imp/core/pixel.hpp> #include <imp/core/roi.hpp> #include <imp/cu_core/cu_image_gpu.cuh> #include <imp/cu_core/cu_utils.hpp> #include <imp/cu_core/cu_texture.cuh> namespace imp { namespace cu { //----------------------------------------------------------------------------- template<typename Pixel> __global__ void k_median3x3(Pixel* dst, const size_type stride, const std::uint32_t xoff, const std::uint32_t yoff, const std::uint32_t width, const std::uint32_t height, Texture2D src_tex) { int x = blockIdx.x*blockDim.x + threadIdx.x; int y = blockIdx.y*blockDim.y + threadIdx.y; if(x>=0 && y>= 0 && x<width && y<height) { x += xoff; y += yoff; // shared mem coords const int tx = threadIdx.x+1; const int ty = threadIdx.y+1; // we have a 3x3 kernel, so our width of the shared memory (shp) is blockDim.x + 2! const int shp = blockDim.x + 2; const int shc = ty*shp + tx; extern __shared__ float sh_in[]; // Load input 3x3 block into shared memory // Note: the FLT_MAX prevents us from overemphasizing the border pixels if they are outliers! { // for each thread: copy the data of the current input position to shared mem Pixel texel; src_tex.fetch(texel, x, y); sh_in[shc] = texel; ///////////////////////////////////////////////////////////////////////////// // boundary conditions ///////////////////////////////////////////////////////////////////////////// if (x == 0) // at left image border { if (y == 0) sh_in[shc-shp-1] = FLT_MAX; // left-upper corner (image) else if (ty == 1) { // left-upper corner (block) src_tex.fetch(texel, x, y-1.f); sh_in[shc-shp-1] = texel; } sh_in[shc-1] = sh_in[shc]; // left border (image) if (y == height-1) sh_in[shc+shp-1] = FLT_MAX; // left-lower corner (image) else if (ty == blockDim.y) { src_tex.fetch(texel, x, y+1); sh_in[shc+shp-1] = texel; // left-lower corner (block) } } else if (tx == 1) // at left block border (inside image w.r.t x) { if (y == 0) { src_tex.fetch(texel, x-1, y); sh_in[shc-shp-1] = texel; // left-upper corner (block, outside) } else if (ty == 1) { src_tex.fetch(texel, x-1, y-1); sh_in[shc-shp-1] = texel; // left-upper corner (block, inside) } src_tex.fetch(texel, x-1, y); sh_in[shc-1] = texel; // left border (block) if (y == height-1) { src_tex.fetch(texel, x-1, y); sh_in[shc+shp-1] = texel; // left-lower corner (block, outside) } else if (ty == blockDim.y) { src_tex.fetch(texel, x-1, y+1); sh_in[shc+shp-1] = texel; // left-lower corner (block, inside) } } if (x == width-1) // at right image border { if (y == 0) sh_in[shc-shp+1] = FLT_MAX; // right-upper corner (image) else if (ty == 1) { src_tex.fetch(texel, x, y-1); sh_in[shc-shp+1] = texel; // right-upper corner (block) } sh_in[shc+1] = sh_in[shc]; // right border (image) if (y == height-1) sh_in[shc+shp+1] = FLT_MAX; // right-lower corner (image) else if (ty == blockDim.y) { src_tex.fetch(texel, x, y+1); sh_in[shc+shp+1] = texel; // right-lower corner (block) } } else if (tx == blockDim.x) // at right block border (inside image w.r.t x) { if (y == 0) { src_tex.fetch(texel, x+1, y); sh_in[shc-shp+1] = texel; // right-upper corner (block, outside) } else if (ty == 1) { src_tex.fetch(texel, x+1, y-1); sh_in[shc-shp+1] = texel; // right-upper corner (block, inside) } src_tex.fetch(texel, x+1, y); sh_in[shc+1] = texel; // right border (block) if (y == height-1) { src_tex.fetch(texel, x+1, y); sh_in[shc+shp+1] = texel; // right-lower corner (block, outside) } else if (ty == blockDim.y) { src_tex.fetch(texel, x+1, y+1); sh_in[shc+shp+1] = texel; // right-lower corner (block, inside) } } if (y == 0) sh_in[shc-shp] = sh_in[shc]; // upper border (image) else if (ty == 1) { src_tex.fetch(texel, x, y-1); sh_in[shc-shp] = texel; // upper border (block) } if (y == height-1) sh_in[shc+shp] = sh_in[shc]; // lower border (image) else if (ty == blockDim.y) { src_tex.fetch(texel, x, y+1); sh_in[shc+shp] = texel; // lower border (block) } __syncthreads(); } // in a sequence of nine elements, we have to remove four times the maximum from the sequence and need // a fifth calculated maximum which is the median! float maximum; { float vals[8]; // first 'loop' vals[0] = fmin(sh_in[shc-shp-1], sh_in[shc-shp]); maximum = fmax(sh_in[shc-shp-1], sh_in[shc-shp]); vals[1] = fmin(maximum, sh_in[shc-shp+1]); maximum = fmax(maximum, sh_in[shc-shp+1]); vals[2] = fmin(maximum, sh_in[shc-1]); maximum = fmax(maximum, sh_in[shc-1]); vals[3] = fmin(maximum, sh_in[shc]); maximum = fmax(maximum, sh_in[shc]); vals[4] = fmin(maximum, sh_in[shc+1]); maximum = fmax(maximum, sh_in[shc+1]); vals[5] = fmin(maximum, sh_in[shc+shp-1]); maximum = fmax(maximum, sh_in[shc+shp-1]); vals[6] = fmin(maximum, sh_in[shc+shp]); maximum = fmax(maximum, sh_in[shc+shp]); vals[7] = fmin(maximum, sh_in[shc+shp+1]); maximum = fmax(maximum, sh_in[shc+shp+1]); // second 'loop' maximum = fmax(vals[0], vals[1]); vals[0] = fmin(vals[0], vals[1]); vals[1] = maximum; maximum = fmax(vals[1], vals[2]); vals[1] = fmin(vals[1], vals[2]); vals[2] = maximum; maximum = fmax(vals[2], vals[3]); vals[2] = fmin(vals[2], vals[3]); vals[3] = maximum; maximum = fmax(vals[3], vals[4]); vals[3] = fmin(vals[3], vals[4]); vals[4] = maximum; maximum = fmax(vals[4], vals[5]); vals[4] = fmin(vals[4], vals[5]); vals[5] = maximum; maximum = fmax(vals[5], vals[6]); vals[5] = fmin(vals[5], vals[6]); vals[6] = fmin(maximum, vals[7]); // third 'loop' maximum = fmax(vals[0], vals[1]); vals[0] = fmin(vals[0], vals[1]); vals[1] = maximum; maximum = fmax(vals[1], vals[2]); vals[1] = fmin(vals[1], vals[2]); vals[2] = maximum; maximum = fmax(vals[2], vals[3]); vals[2] = fmin(vals[2], vals[3]); vals[3] = maximum; maximum = fmax(vals[3], vals[4]); vals[3] = fmin(vals[3], vals[4]); vals[4] = maximum; maximum = fmax(vals[4], vals[5]); vals[4] = fmin(vals[4], vals[5]); vals[5] = fmin(maximum, vals[6]); // 4th 'loop' maximum = fmax(vals[0], vals[1]); vals[0] = fmin(vals[0], vals[1]); vals[1] = maximum; maximum = fmax(vals[1], vals[2]); vals[1] = fmin(vals[1], vals[2]); vals[2] = maximum; maximum = fmax(vals[2], vals[3]); vals[2] = fmin(vals[2], vals[3]); vals[3] = maximum; maximum = fmax(vals[3], vals[4]); vals[3] = fmin(vals[3], vals[4]); vals[4] = fmin(maximum, vals[5]); // 5th 'loop' maximum = fmax(vals[0], vals[1]); maximum = fmax(maximum, vals[2]); maximum = fmax(maximum, vals[3]); maximum = fmax(maximum, vals[4]); } dst[y*stride+x] = maximum; } } //----------------------------------------------------------------------------- template<typename Pixel, imp::PixelType pixel_type> void filterMedian3x3(ImageGpu<Pixel, pixel_type>& dst, const ImageGpu<Pixel, pixel_type>& src) { std::unique_ptr<Texture2D> src_tex = src.genTexture(false, (src.bitDepth()<32) ? cudaFilterModePoint : cudaFilterModeLinear); constexpr std::uint16_t block_size = 16; Fragmentation<block_size, block_size> frag(src.roi()); size_type shared_size = (block_size+2)*(block_size+2)*sizeof(float); Roi2u roi = src.roi(); dst.setRoi(roi); k_median3x3 <<< frag.dimGrid, frag.dimBlock, shared_size >>> ( dst.data(), dst.stride(), roi.x(), roi.y(), roi.width(), roi.height(), *src_tex); IMP_CUDA_CHECK(); } //============================================================================== // // template instantiations for all our image types // template void filterMedian3x3(ImageGpu8uC1& dst, const ImageGpu8uC1& src); template void filterMedian3x3(ImageGpu8uC2& dst, const ImageGpu8uC2& src); template void filterMedian3x3(ImageGpu8uC4& dst, const ImageGpu8uC4& src); template void filterMedian3x3(ImageGpu16uC1& dst, const ImageGpu16uC1& src); template void filterMedian3x3(ImageGpu16uC2& dst, const ImageGpu16uC2& src); template void filterMedian3x3(ImageGpu16uC4& dst, const ImageGpu16uC4& src); template void filterMedian3x3(ImageGpu32sC1& dst, const ImageGpu32sC1& src); template void filterMedian3x3(ImageGpu32sC2& dst, const ImageGpu32sC2& src); template void filterMedian3x3(ImageGpu32sC4& dst, const ImageGpu32sC4& src); template void filterMedian3x3(ImageGpu32fC1& dst, const ImageGpu32fC1& src); template void filterMedian3x3(ImageGpu32fC2& dst, const ImageGpu32fC2& src); template void filterMedian3x3(ImageGpu32fC4& dst, const ImageGpu32fC4& src); } // namespace cu } // namespace imp #endif // IMP_CU_MEDIAN3X3_IMPL_CU
b9e50328e4b38e4d6d2afbd51d7b94b145abc1c9.hip
// !!! This is a file automatically generated by hipify!!! /* * cudalib.cpp * * Created on: 2018517 * Author: root */ //#include <src/cudalib.h> //#include <stdio.h> //#include "hip/hip_runtime.h" //#include "nccl.h" //#include <string> //#include "src/cudalib.h" #include "device_launch_parameters.h" #include "hip/hip_runtime.h" #include "nccl.h" #include "file_input.h" #include <src/cudalib.h> #include <hip/hip_fp16.h> #include <string> using namespace std; // template <class T> __host__ __device__ void len(const char*info,T*result) { int i=0;//index char frist_mark=(byte)0; while(*(info+i)!='@'){ if((*(info+i)=='.' or *(info+i)=='_')){ result[0]=(T)((int)result[0]+(int)1); } if(frist_mark==(byte)1)//if frist '.' {result[1]=(T)((int)result[1]+(int)1);} if(frist_mark==(byte)0 and *(info+i)=='.')//if frist '.' { frist_mark=(byte)1; } i=i-1; } result[2]=(T)(abs(i)-2); } template <class T> __global__ void split_global(T* dum, char* info,long start,long length,int dimblock) { extern __shared__ byte s[]; if (threadIdx.x==0){ memset(s,(byte)0,3*dimblock*sizeof(T)); } __syncthreads(); // T* temp=(T*)malloc(2*sizeof(T)); T temp[3]; long length_N = length; int step = gridDim.x*blockDim.x; const long start_P=start;// long start_N =threadIdx.x+blockIdx.x*blockDim.x; for(long start=start_N;start<length_N;start=start+step) { if((char)*(info+start+start_P)=='\n') { temp[0]=0; temp[1]=0; temp[2]=0; len(info+start+start_P,temp); if((int)temp[0]>(int)s[threadIdx.x*3]){ s[threadIdx.x*3]=temp[0]; } if((int)temp[1]>(int)s[threadIdx.x*3+1]){ s[threadIdx.x*3+1]=temp[1]; } if((int)temp[2]>(int)s[threadIdx.x*3+2]){ s[threadIdx.x*3+2]=temp[2]; } } } free(temp); // __syncthreads(); if(threadIdx.x==0) memcpy(dum+3*blockIdx.x*blockDim.x*sizeof(T),s,3*blockDim.x*sizeof(T)); __syncthreads(); } //hash //dimGrid_N, dimBlock_N,0,s[i]>>>(d_result[i]+h_len_result[deviceCount-2]*max_an_len*max_an_num,d_info[i],max_an_len,max_an_num,(deviceCount-1)*sub_length,sub_length+yu,dimBlock_N template <class T> __global__ void scut2ancestors(char* des,int max_an_len,int max_an_num,char* info,long start,long length,unsigned long long int* mark,int dimblock) { //thread"_". extern __shared__ byte s[]; long length_N = length; int step = gridDim.x*blockDim.x; const long start_P=start;// long start_N =threadIdx.x+blockIdx.x*blockDim.x; if(threadIdx.x==0){ *mark=0; memset(s,(byte)0,max_an_num*dimblock*sizeof(T)); } __syncthreads(); for(long start=start_N;start<length_N;start=start+step) { if((char)*(info+start+start_P)=='\n') { //\n //1----------------------------------------------------- int dian_i=0;//"." int last_i=0;//"@" int first_dian_mark=0;//"." int i=0; while(*(info+start+start_P+i)!='@') {if(*(info+start+start_P+i)=='.' and first_dian_mark==0) {dian_i=i; first_dian_mark=1; } i=i-1; } last_i=i; // printf("a:=%c \n",*(info+start+start_P+i)); dian_i=dian_i-1;//info+start+start_P+dian_i last_i=last_i+1;//info+start+start_P+last_i //---------------------------------------------------- // //2----"." int last_i_N=last_i;// int dian_i_N=dian_i+1;//. int an_num=0;// while(last_i<=dian_i_N and an_num<max_an_num){ if(*(info+start+start_P+last_i)=='.' or *(info+start+start_P+last_i)=='_'){ s[threadIdx.x*max_an_num+an_num]=last_i; // printf("*(info+start+start_P+s[w]):%c,theid:=%d \n",*(info+start+start_P+s[threadIdx.x*max_an_num+an_num]),threadIdx.x*max_an_num+an_num); an_num=an_num+1; } last_i=last_i+1; } // //3 an_num=0; unsigned long long int position=0; //(*(info+start+start_P+s[threadIdx.x*max_an_num+an_num])=='.' or *(info+start+start_P+s[threadIdx.x*max_an_num+an_num])=='_') and while((*(info+start+start_P+s[threadIdx.x*max_an_num+an_num])=='.' or *(info+start+start_P+s[threadIdx.x*max_an_num+an_num])=='_') and an_num<max_an_num){ position=(unsigned long long int )atomicAdd((unsigned long long int *)mark,(unsigned long long int )1); memcpy(des+position*max_an_len,info+start+start_P+last_i_N,s[threadIdx.x*max_an_num+an_num]-last_i_N); *(des+position*max_an_len+s[threadIdx.x*max_an_num+an_num]-last_i_N)='\0'; // if(*(des+position*max_an_len+s[threadIdx.x*max_an_num+an_num]-last_i_N-1)=='.') // {char* temp=(char *)malloc(-last_i_N); // memcpy(temp,info+start+start_P+last_i_N,-last_i_N); // *(temp-last_i_N)='\0'; // printf("n:=%s||%s||%c,%c,%d,%d \n",des+position*max_an_len,temp,*(info+start+start_P+dian_i),*(info+start+start_P+last_i_N),(int)s[threadIdx.x*max_an_num+an_num],an_num); // } an_num=an_num+1; } // position=(unsigned long long int )atomicAdd((unsigned long long int *)mark,(unsigned long long int )1); memcpy(des+position*max_an_len,info+start+start_P+last_i_N,-last_i_N+1); *(des+position*max_an_len-last_i_N)='\0'; // if(*(des+position*max_an_len)=='\0') // {char* temp=(char *)malloc(-last_i_N+1); // memcpy(temp,info+start+start_P+last_i_N,-last_i_N); // *(temp-last_i_N)='\0'; // printf("ok::%s||%s||%c,%c,%d,%d \n",des+position*max_an_len,temp,*(info+start+start_P+dian_i),*(info+start+start_P+last_i_N),(int)s[threadIdx.x*max_an_num+an_num],an_num); // delete temp; // } // printf("ok:=%s \n",des+position*max_an_len); __syncthreads(); if(threadIdx.x==0){memset(s,(byte)0,max_an_num*dimblock*sizeof(T));} __syncthreads(); } } } template __host__ __device__ void len<ubyte>(const char*,ubyte *); template __host__ __device__ void len<byte>(const char*,byte *); template __host__ __device__ void len<int>(const char*,int *); template __global__ void split_global<ubyte>(ubyte*, char*,long,long,int); template __global__ void split_global<byte>(byte*, char*,long,long,int); template __global__ void split_global<int>(int*, char*,long,long,int); template __global__ void scut2ancestors<byte>(char*,int ,int ,char*,long,long,unsigned long long int *,int); template __global__ void scut2ancestors<ubyte>(char*,int ,int ,char*,long,long,unsigned long long int *,int); template __global__ void scut2ancestors<int>(char*,int ,int ,char*,long,long,unsigned long long int *,int);
b9e50328e4b38e4d6d2afbd51d7b94b145abc1c9.cu
/* * cudalib.cpp * * Created on: 2018年5月17日 * Author: root */ //#include <src/cudalib.h> //#include <stdio.h> //#include "cuda_runtime.h" //#include "nccl.h" //#include <string> //#include "src/cudalib.h" #include "device_launch_parameters.h" #include "cuda_runtime.h" #include "nccl.h" #include "file_input.h" #include <src/cudalib.h> #include <cuda_fp16.h> #include <string> using namespace std; //统计最大祖先个数、最大祖先长度和最大单条长度 template <class T> __host__ __device__ void len(const char*info,T*result) { int i=0;//index char frist_mark=(byte)0; while(*(info+i)!='@'){ if((*(info+i)=='.' or *(info+i)=='_')){ result[0]=(T)((int)result[0]+(int)1); } if(frist_mark==(byte)1)//if frist '.' {result[1]=(T)((int)result[1]+(int)1);} if(frist_mark==(byte)0 and *(info+i)=='.')//if frist '.' { frist_mark=(byte)1; } i=i-1; } result[2]=(T)(abs(i)-2); } template <class T> __global__ void split_global(T* dum, char* info,long start,long length,int dimblock) { extern __shared__ byte s[]; if (threadIdx.x==0){ memset(s,(byte)0,3*dimblock*sizeof(T)); } __syncthreads(); // T* temp=(T*)malloc(2*sizeof(T)); T temp[3]; long length_N = length; int step = gridDim.x*blockDim.x; const long start_P=start;//开始的位置 long start_N =threadIdx.x+blockIdx.x*blockDim.x; for(long start=start_N;start<length_N;start=start+step) { if((char)*(info+start+start_P)=='\n') { temp[0]=0; temp[1]=0; temp[2]=0; len(info+start+start_P,temp); if((int)temp[0]>(int)s[threadIdx.x*3]){ s[threadIdx.x*3]=temp[0]; } if((int)temp[1]>(int)s[threadIdx.x*3+1]){ s[threadIdx.x*3+1]=temp[1]; } if((int)temp[2]>(int)s[threadIdx.x*3+2]){ s[threadIdx.x*3+2]=temp[2]; } } } free(temp); //同步 __syncthreads(); if(threadIdx.x==0) memcpy(dum+3*blockIdx.x*blockDim.x*sizeof(T),s,3*blockDim.x*sizeof(T)); __syncthreads(); } //切割出所有祖先,为放入hash表用 //dimGrid_N, dimBlock_N,0,s[i]>>>(d_result[i]+h_len_result[deviceCount-2]*max_an_len*max_an_num,d_info[i],max_an_len,max_an_num,(deviceCount-1)*sub_length,sub_length+yu,dimBlock_N template <class T> __global__ void scut2ancestors(char* des,int max_an_len,int max_an_num,char* info,long start,long length,unsigned long long int* mark,int dimblock) { //为每个thread分配空间记录当前分解记录的各"_"和“.”的位置 extern __shared__ byte s[]; long length_N = length; int step = gridDim.x*blockDim.x; const long start_P=start;//开始的位置 long start_N =threadIdx.x+blockIdx.x*blockDim.x; if(threadIdx.x==0){ *mark=0; memset(s,(byte)0,max_an_num*dimblock*sizeof(T)); } __syncthreads(); for(long start=start_N;start<length_N;start=start+step) { if((char)*(info+start+start_P)=='\n') { //所有的相对位置都是相对于每个‘\n’回车符号来的 //1、----------------------------------------------------- int dian_i=0;//第一个"."前面的最大祖先的根位置 int last_i=0;//开始的"@" int first_dian_mark=0;//是否第一个"." int i=0; while(*(info+start+start_P+i)!='@') {if(*(info+start+start_P+i)=='.' and first_dian_mark==0) {dian_i=i; first_dian_mark=1; } i=i-1; } last_i=i; // printf("a:=%c \n",*(info+start+start_P+i)); dian_i=dian_i-1;//最大祖先的开始位置info+start+start_P+dian_i last_i=last_i+1;//最大祖先的结束位置info+start+start_P+last_i //---------------------------------------------------- // //2、记录各级祖先节点的位置----"."和“—” int last_i_N=last_i;//保留祖先开始位置记录 int dian_i_N=dian_i+1;//“.”位置 int an_num=0;//祖先数目 while(last_i<=dian_i_N and an_num<max_an_num){ if(*(info+start+start_P+last_i)=='.' or *(info+start+start_P+last_i)=='_'){ s[threadIdx.x*max_an_num+an_num]=last_i; // printf("*(info+start+start_P+s[w]):%c,theid:=%d \n",*(info+start+start_P+s[threadIdx.x*max_an_num+an_num]),threadIdx.x*max_an_num+an_num); an_num=an_num+1; } last_i=last_i+1; } // //3、依次输出各祖先节点 an_num=0; unsigned long long int position=0; //(*(info+start+start_P+s[threadIdx.x*max_an_num+an_num])=='.' or *(info+start+start_P+s[threadIdx.x*max_an_num+an_num])=='_') and while((*(info+start+start_P+s[threadIdx.x*max_an_num+an_num])=='.' or *(info+start+start_P+s[threadIdx.x*max_an_num+an_num])=='_') and an_num<max_an_num){ position=(unsigned long long int )atomicAdd((unsigned long long int *)mark,(unsigned long long int )1); memcpy(des+position*max_an_len,info+start+start_P+last_i_N,s[threadIdx.x*max_an_num+an_num]-last_i_N); *(des+position*max_an_len+s[threadIdx.x*max_an_num+an_num]-last_i_N)='\0'; // if(*(des+position*max_an_len+s[threadIdx.x*max_an_num+an_num]-last_i_N-1)=='.') // {char* temp=(char *)malloc(-last_i_N); // memcpy(temp,info+start+start_P+last_i_N,-last_i_N); // *(temp-last_i_N)='\0'; // printf("n:=%s||%s||%c,%c,%d,%d \n",des+position*max_an_len,temp,*(info+start+start_P+dian_i),*(info+start+start_P+last_i_N),(int)s[threadIdx.x*max_an_num+an_num],an_num); // } an_num=an_num+1; } //放入整条记录 position=(unsigned long long int )atomicAdd((unsigned long long int *)mark,(unsigned long long int )1); memcpy(des+position*max_an_len,info+start+start_P+last_i_N,-last_i_N+1); *(des+position*max_an_len-last_i_N)='\0'; // if(*(des+position*max_an_len)=='\0') // {char* temp=(char *)malloc(-last_i_N+1); // memcpy(temp,info+start+start_P+last_i_N,-last_i_N); // *(temp-last_i_N)='\0'; // printf("ok::%s||%s||%c,%c,%d,%d \n",des+position*max_an_len,temp,*(info+start+start_P+dian_i),*(info+start+start_P+last_i_N),(int)s[threadIdx.x*max_an_num+an_num],an_num); // delete temp; // } // printf("ok:=%s \n",des+position*max_an_len); __syncthreads(); if(threadIdx.x==0){memset(s,(byte)0,max_an_num*dimblock*sizeof(T));} __syncthreads(); } } } template __host__ __device__ void len<ubyte>(const char*,ubyte *); template __host__ __device__ void len<byte>(const char*,byte *); template __host__ __device__ void len<int>(const char*,int *); template __global__ void split_global<ubyte>(ubyte*, char*,long,long,int); template __global__ void split_global<byte>(byte*, char*,long,long,int); template __global__ void split_global<int>(int*, char*,long,long,int); template __global__ void scut2ancestors<byte>(char*,int ,int ,char*,long,long,unsigned long long int *,int); template __global__ void scut2ancestors<ubyte>(char*,int ,int ,char*,long,long,unsigned long long int *,int); template __global__ void scut2ancestors<int>(char*,int ,int ,char*,long,long,unsigned long long int *,int);
a37a0838ad92f7bea515052e712a6852ef297173.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" /* * Copyright (c) 2018 Preferred Networks, Inc. All rights reserved. */ #include <hip/hip_fp16.h> namespace chainer_trt { namespace plugin { template <typename T> __global__ void broadcast_to_kernel(const T *d_src, T *d_dst, int *d_i_strides, int *d_o_strides, int in_size, int out_size, int nb_dims) { const int idx = blockIdx.x * blockDim.x + threadIdx.x; if(idx < out_size) { // calc offset relationship between input & output int in_idx = 0; int f = idx; for(int i = 0; i < nb_dims; i++) { in_idx += (f / d_o_strides[i]) * d_i_strides[i]; f = f % d_o_strides[i]; } d_dst[blockIdx.y * out_size + idx] = d_src[blockIdx.y * in_size + in_idx]; } } template <typename T> void apply_broadcast_to(const T *d_src, T *d_dst, int *d_i_strides, int *d_o_strides, int in_size, int out_size, int nb_dims, int batch_size, hipStream_t stream) { const int thread_size = 1024; const int block_size = (int)::ceil(1.0 * out_size / thread_size); dim3 grid(block_size, batch_size); hipLaunchKernelGGL(( broadcast_to_kernel), dim3(grid), dim3(thread_size), 0, stream, d_src, d_dst, d_i_strides, d_o_strides, in_size, out_size, nb_dims); } template void apply_broadcast_to(const float *, float *, int *, int *, int, int, int, int, hipStream_t); template void apply_broadcast_to(const __half *, __half *, int *, int *, int, int, int, int, hipStream_t); } }
a37a0838ad92f7bea515052e712a6852ef297173.cu
/* * Copyright (c) 2018 Preferred Networks, Inc. All rights reserved. */ #include <cuda_fp16.h> namespace chainer_trt { namespace plugin { template <typename T> __global__ void broadcast_to_kernel(const T *d_src, T *d_dst, int *d_i_strides, int *d_o_strides, int in_size, int out_size, int nb_dims) { const int idx = blockIdx.x * blockDim.x + threadIdx.x; if(idx < out_size) { // calc offset relationship between input & output int in_idx = 0; int f = idx; for(int i = 0; i < nb_dims; i++) { in_idx += (f / d_o_strides[i]) * d_i_strides[i]; f = f % d_o_strides[i]; } d_dst[blockIdx.y * out_size + idx] = d_src[blockIdx.y * in_size + in_idx]; } } template <typename T> void apply_broadcast_to(const T *d_src, T *d_dst, int *d_i_strides, int *d_o_strides, int in_size, int out_size, int nb_dims, int batch_size, cudaStream_t stream) { const int thread_size = 1024; const int block_size = (int)std::ceil(1.0 * out_size / thread_size); dim3 grid(block_size, batch_size); broadcast_to_kernel<<<grid, thread_size, 0, stream>>>( d_src, d_dst, d_i_strides, d_o_strides, in_size, out_size, nb_dims); } template void apply_broadcast_to(const float *, float *, int *, int *, int, int, int, int, cudaStream_t); template void apply_broadcast_to(const __half *, __half *, int *, int *, int, int, int, int, cudaStream_t); } }
a897ba5b2dbe3c2fb45ec7f23acee5d1306acad9.hip
// !!! This is a file automatically generated by hipify!!! #include <iostream> #include <hip/hip_runtime.h> #include <hip/hip_runtime.h> int __host__ cu2_sq_func(int x) { hipError_t err; int nDevices = 0; err = hipGetDeviceCount(&nDevices); if (err != hipSuccess) { std::cerr << "nDevices: " << nDevices << std::endl; std::cerr << "err: " << err << std::endl; return 1; } return x * x; }
a897ba5b2dbe3c2fb45ec7f23acee5d1306acad9.cu
#include <iostream> #include <cuda.h> #include <cuda_runtime.h> int __host__ cu2_sq_func(int x) { cudaError_t err; int nDevices = 0; err = cudaGetDeviceCount(&nDevices); if (err != cudaSuccess) { std::cerr << "nDevices: " << nDevices << std::endl; std::cerr << "err: " << err << std::endl; return 1; } return x * x; }
67bd3b276b5a6d11066389c13a73c369c02a170f.hip
// !!! This is a file automatically generated by hipify!!! /* * EDDL Library - European Distributed Deep Learning Library. * Version: 1.1 * copyright (c) 2022, Universitat Politcnica de Valncia (UPV), PRHLT Research Centre * Date: March 2022 * Author: PRHLT Research Centre, UPV, ([email protected]), ([email protected]) * All rights reserved */ #include <string.h> #include <cstdio> #include <cstdlib> #include <iostream> #include <hip/hip_runtime.h> #include <thrust/sort.h> #include <thrust/execution_policy.h> #include "eddl/hardware/gpu/gpu_kernels.h" __global__ void gpu_max_d(float *D, float *PD, float *map, int size, int reduction_size, bool argmax){ long int thread_id_x = threadIdx.x+blockIdx.x*blockDim.x; if (thread_id_x<size) { int offset = thread_id_x*reduction_size; // Choose if we're getting the maximum value or the position if(argmax) { int argmax_addr = map[thread_id_x]; PD[offset+argmax_addr] += D[thread_id_x]; }else{ PD[offset+thread_id_x] += D[thread_id_x];; } } } __global__ void gpu_max(float *A, float *B, int *map, int size, int size_reduction, bool argmax){ long int thread_id_x = threadIdx.x+blockIdx.x*blockDim.x; if (thread_id_x<size) { int *base_addr = &map[thread_id_x*size_reduction+0]; float tmp_max = A[*base_addr]; int tmp_argmax = 0; float val; for(int i=1; i<size_reduction; i++){ val = A[*(base_addr+i)]; if(val > tmp_max){ tmp_max = val; tmp_argmax = i; } } // Choose if we're getting the maximum value or the position if(argmax) { B[thread_id_x] = (float)tmp_argmax; }else{ B[thread_id_x] = tmp_max; } } } __global__ void gpu_min(float *A, float *B, int *map, int size, int size_reduction, bool argmin){ long int thread_id_x = threadIdx.x+blockIdx.x*blockDim.x; if (thread_id_x<size) { int *base_addr = &map[thread_id_x*size_reduction+0]; float tmp_min = A[*base_addr]; int tmp_argmin = 0; float val; for(int i=1; i<size_reduction; i++){ val = A[*(base_addr+i)]; if(val < tmp_min){ tmp_min = val; tmp_argmin = i; } } // Choose if we're getting the minimum value or the position if(argmin) { B[thread_id_x] = (float)tmp_argmin; }else{ B[thread_id_x] = tmp_min; } } } __global__ void gpu_sum(float *A, float *B, int *map, int size, int size_reduction){ long int thread_id_x = threadIdx.x+blockIdx.x*blockDim.x; if (thread_id_x<size) { int *base_addr = &map[thread_id_x*size_reduction+0]; float tmp = 0.0f; for(int i=0; i<size_reduction; i++){ tmp += A[*(base_addr+i)]; } B[thread_id_x] = tmp; } } __global__ void gpu_sum_abs(float *A, float *B, int *map, int size, int size_reduction){ long int thread_id_x = threadIdx.x+blockIdx.x*blockDim.x; if (thread_id_x<size) { int *base_addr = &map[thread_id_x*size_reduction+0]; float tmp = 0.0f; for(int i=0; i<size_reduction; i++){ tmp += abs(A[*(base_addr+i)]); } B[thread_id_x] = tmp; } } __global__ void gpu_prod(float *A, float *B, int *map, int size, int size_reduction){ long int thread_id_x = threadIdx.x+blockIdx.x*blockDim.x; if (thread_id_x<size) { int *base_addr = &map[thread_id_x*size_reduction+0]; float tmp = 1.0f; for(int i=0; i<size_reduction; i++){ tmp *= A[*(base_addr+i)]; } B[thread_id_x] = tmp; } } __global__ void gpu_mean(float *A, float *B, int *map, int size, int size_reduction){ long int thread_id_x = threadIdx.x+blockIdx.x*blockDim.x; if (thread_id_x<size) { int *base_addr = &map[thread_id_x*size_reduction+0]; float tmp = 0.0f; for(int i=0; i<size_reduction; i++){ tmp += A[*(base_addr+i)]; } B[thread_id_x] = tmp/(float)size_reduction; } } __global__ void gpu_median(float *A, float *B, int *map, int size, int size_reduction, float *aux){ long int thread_id_x = threadIdx.x+blockIdx.x*blockDim.x; if (thread_id_x<size) { // Copy values long int offset = thread_id_x*size_reduction; for(int i=0; i<size_reduction; i++){ aux[offset+i] = A[map[offset+i]]; } // Sort data thrust::sort(thrust::device, aux + offset, aux + offset + size_reduction); // Get median int midpoint = (int)offset + size_reduction/ 2; if(size_reduction % 2==1 && size_reduction>1) { B[thread_id_x] = aux[midpoint]; }else{ B[thread_id_x] = (aux[midpoint-1]+aux[midpoint])/2.0f; } } } __global__ void gpu_var(float *A, float *B, int *map, int size, int size_reduction, bool unbiased){ // IMPORTANT TRICK: B ALREADY CONTAINS THE MEAN!!!!!!! long int thread_id_x = threadIdx.x+blockIdx.x*blockDim.x; if (thread_id_x<size) { int *base_addr = &map[thread_id_x*size_reduction+0]; float tmp; float sum = 0.0f; for(int i=0; i<size_reduction; i++){ tmp = A[*(base_addr+i)] - B[thread_id_x]; sum += tmp*tmp; } if(unbiased){ B[thread_id_x] = sum/((float)size_reduction-1.0f); } else { B[thread_id_x] = sum/(float)size_reduction; } } } __global__ void gpu_norm_fro(float *A, float *B, int *map, int size, int size_reduction){ long int thread_id_x = threadIdx.x+blockIdx.x*blockDim.x; if (thread_id_x<size) { int *base_addr = &map[thread_id_x*size_reduction+0]; float tmp = 0.0f; float val; for(int i=0; i<size_reduction; i++){ val = A[*(base_addr+i)]; tmp += val*val; } B[thread_id_x] = sqrt(tmp); } } __global__ void gpu_mode(float *A, float *B, int *map, int size, int size_reduction){ long int thread_id_x = threadIdx.x+blockIdx.x*blockDim.x; if (thread_id_x<size) { int *base_addr = &map[thread_id_x*size_reduction+0]; // Copy values int *values = new int[size_reduction]; // Dynamic allocation is not the best approach for(int i=0; i<size_reduction; i++){ values[i] = (int)A[*(base_addr+i)]; } // Sort data thrust::sort(thrust::seq, values, values + size_reduction); // Get most frequent element int most_frequent_val; int most_frequent_times = 0; int val = values[0]; int frequency = 1; for(int i=1; i<size_reduction; i++){ // Check if the value has change if(val==values[i]){ frequency++; }else{ val = values[i]; frequency = 1; } // Check frequency if(frequency>most_frequent_times){ most_frequent_val = val; most_frequent_times = frequency; } } // Assign most frequent value B[thread_id_x] = (float)most_frequent_val; // Delete temp array delete[] values; } } /* PREVIOUS REDUCES ***********************************/ __global__ void reduce_mean(float *A,float *B,int *map,int size) { long int thread_id_x = threadIdx.x+blockIdx.x*blockDim.x; if (thread_id_x<size) { atomicAdd(&(B[map[thread_id_x]]),A[thread_id_x]); } } __global__ void reduce_op_sum(float *A,float *B,int *map,int size) { long int thread_id_x = threadIdx.x+blockIdx.x*blockDim.x; if (thread_id_x<size) { A[thread_id_x]+=B[map[thread_id_x]]; } } __global__ void reduce_op_diff(float *A,float *B,int *map,int size) { long int thread_id_x = threadIdx.x+blockIdx.x*blockDim.x; if (thread_id_x<size) { A[thread_id_x]-=B[map[thread_id_x]]; } } __global__ void reduce_op_mult(float *A,float *B,int *map,int size) { long int thread_id_x = threadIdx.x+blockIdx.x*blockDim.x; if (thread_id_x<size) { A[thread_id_x]*=B[map[thread_id_x]]; } } __global__ void reduce_op_div(float *A,float *B,int *map,int size) { long int thread_id_x = threadIdx.x+blockIdx.x*blockDim.x; if (thread_id_x<size) { A[thread_id_x]/=B[map[thread_id_x]]; } } //dim3 dimGrid(RD->index.size()); //dim3 dimBlock(1); __global__ void reduction_kernel(float *I,float *O,float *S,int m, int keepdims,int d,int *ind,int rs) { long int thread_id_x = threadIdx.x+blockIdx.x*blockDim.x; int j; float sum=0; float v,val; int i; int p=rs*blockIdx.x; for(j=0;j<rs;j++,p++) { v=I[ind[p]]; if (m==2) { if (j==0) {val=v;i=p;} else if (v>val) { val=v; i=p; } } else if (m==3) { if (j==0) {val=v;i=p;} else if (v<val) { val=v; i=p; } } else sum+=v; } p=rs*blockIdx.x; // set in Output if (m<2) { // mean or sum if (m==0) sum/=d; if (keepdims) { for(j=0;j<rs;j++,p++) O[ind[p]]=sum; } else O[thread_id_x]=sum; } else { // rs or min if (keepdims) { for(j=0;j<rs;j++,p++) { O[ind[p]]=val; S[ind[p]]=i; } } else { O[thread_id_x]=val; S[thread_id_x]=i; } } } //dim3 dimGrid(RD->index.size()); //dim3 dimBlock(1); __global__ void reduction_back_kernel(float *I,float *O,float *S,int m, int keepdims,int d,int *ind,int rs) { long int thread_id_x = threadIdx.x+blockIdx.x*blockDim.x; int j; float val=0; int p; // set in Delta if (m>=2) { int p=S[thread_id_x]; O[p]+=I[thread_id_x]; } else { p=rs*blockIdx.x; if(keepdims) { for(j=0;j<rs;j++,p++) val+=I[ind[p]]; } else val=I[thread_id_x]; if (m==0) val/=d; p=rs*blockIdx.x; for(j=0;j<rs;j++,p++) O[ind[p]]+=val; } } //////////////////// // FOR SUM and MEAN // Faster in Conv /////////////////// //dim3 dimGrid(red_size); //dim3 dimBlock(RD->index.size()); __global__ void reduction_permute(float *I,float *O,int *ind,int size) { long int thread_id_x = threadIdx.x+blockIdx.x*blockDim.x; if (thread_id_x<size) O[thread_id_x]=I[ind[thread_id_x]]; } __global__ void reduction_kernel_keep(float *red, float *O, int *ind, int size, int rsize) { long int thread_id_x = threadIdx.x+blockIdx.x*blockDim.x; if (thread_id_x<size*rsize) { O[ind[thread_id_x]]=red[thread_id_x/rsize]; } } __global__ void reduction_kernel_keep_inc(float *red, float *O, int *ind, int size, int rsize) { long int thread_id_x = threadIdx.x+blockIdx.x*blockDim.x; if (thread_id_x<size*rsize) { O[ind[thread_id_x]]+=red[thread_id_x/rsize]; } }
67bd3b276b5a6d11066389c13a73c369c02a170f.cu
/* * EDDL Library - European Distributed Deep Learning Library. * Version: 1.1 * copyright (c) 2022, Universitat Politècnica de València (UPV), PRHLT Research Centre * Date: March 2022 * Author: PRHLT Research Centre, UPV, ([email protected]), ([email protected]) * All rights reserved */ #include <string.h> #include <cstdio> #include <cstdlib> #include <iostream> #include <cuda.h> #include <thrust/sort.h> #include <thrust/execution_policy.h> #include "eddl/hardware/gpu/gpu_kernels.h" __global__ void gpu_max_d(float *D, float *PD, float *map, int size, int reduction_size, bool argmax){ long int thread_id_x = threadIdx.x+blockIdx.x*blockDim.x; if (thread_id_x<size) { int offset = thread_id_x*reduction_size; // Choose if we're getting the maximum value or the position if(argmax) { int argmax_addr = map[thread_id_x]; PD[offset+argmax_addr] += D[thread_id_x]; }else{ PD[offset+thread_id_x] += D[thread_id_x];; } } } __global__ void gpu_max(float *A, float *B, int *map, int size, int size_reduction, bool argmax){ long int thread_id_x = threadIdx.x+blockIdx.x*blockDim.x; if (thread_id_x<size) { int *base_addr = &map[thread_id_x*size_reduction+0]; float tmp_max = A[*base_addr]; int tmp_argmax = 0; float val; for(int i=1; i<size_reduction; i++){ val = A[*(base_addr+i)]; if(val > tmp_max){ tmp_max = val; tmp_argmax = i; } } // Choose if we're getting the maximum value or the position if(argmax) { B[thread_id_x] = (float)tmp_argmax; }else{ B[thread_id_x] = tmp_max; } } } __global__ void gpu_min(float *A, float *B, int *map, int size, int size_reduction, bool argmin){ long int thread_id_x = threadIdx.x+blockIdx.x*blockDim.x; if (thread_id_x<size) { int *base_addr = &map[thread_id_x*size_reduction+0]; float tmp_min = A[*base_addr]; int tmp_argmin = 0; float val; for(int i=1; i<size_reduction; i++){ val = A[*(base_addr+i)]; if(val < tmp_min){ tmp_min = val; tmp_argmin = i; } } // Choose if we're getting the minimum value or the position if(argmin) { B[thread_id_x] = (float)tmp_argmin; }else{ B[thread_id_x] = tmp_min; } } } __global__ void gpu_sum(float *A, float *B, int *map, int size, int size_reduction){ long int thread_id_x = threadIdx.x+blockIdx.x*blockDim.x; if (thread_id_x<size) { int *base_addr = &map[thread_id_x*size_reduction+0]; float tmp = 0.0f; for(int i=0; i<size_reduction; i++){ tmp += A[*(base_addr+i)]; } B[thread_id_x] = tmp; } } __global__ void gpu_sum_abs(float *A, float *B, int *map, int size, int size_reduction){ long int thread_id_x = threadIdx.x+blockIdx.x*blockDim.x; if (thread_id_x<size) { int *base_addr = &map[thread_id_x*size_reduction+0]; float tmp = 0.0f; for(int i=0; i<size_reduction; i++){ tmp += abs(A[*(base_addr+i)]); } B[thread_id_x] = tmp; } } __global__ void gpu_prod(float *A, float *B, int *map, int size, int size_reduction){ long int thread_id_x = threadIdx.x+blockIdx.x*blockDim.x; if (thread_id_x<size) { int *base_addr = &map[thread_id_x*size_reduction+0]; float tmp = 1.0f; for(int i=0; i<size_reduction; i++){ tmp *= A[*(base_addr+i)]; } B[thread_id_x] = tmp; } } __global__ void gpu_mean(float *A, float *B, int *map, int size, int size_reduction){ long int thread_id_x = threadIdx.x+blockIdx.x*blockDim.x; if (thread_id_x<size) { int *base_addr = &map[thread_id_x*size_reduction+0]; float tmp = 0.0f; for(int i=0; i<size_reduction; i++){ tmp += A[*(base_addr+i)]; } B[thread_id_x] = tmp/(float)size_reduction; } } __global__ void gpu_median(float *A, float *B, int *map, int size, int size_reduction, float *aux){ long int thread_id_x = threadIdx.x+blockIdx.x*blockDim.x; if (thread_id_x<size) { // Copy values long int offset = thread_id_x*size_reduction; for(int i=0; i<size_reduction; i++){ aux[offset+i] = A[map[offset+i]]; } // Sort data thrust::sort(thrust::device, aux + offset, aux + offset + size_reduction); // Get median int midpoint = (int)offset + size_reduction/ 2; if(size_reduction % 2==1 && size_reduction>1) { B[thread_id_x] = aux[midpoint]; }else{ B[thread_id_x] = (aux[midpoint-1]+aux[midpoint])/2.0f; } } } __global__ void gpu_var(float *A, float *B, int *map, int size, int size_reduction, bool unbiased){ // IMPORTANT TRICK: B ALREADY CONTAINS THE MEAN!!!!!!! long int thread_id_x = threadIdx.x+blockIdx.x*blockDim.x; if (thread_id_x<size) { int *base_addr = &map[thread_id_x*size_reduction+0]; float tmp; float sum = 0.0f; for(int i=0; i<size_reduction; i++){ tmp = A[*(base_addr+i)] - B[thread_id_x]; sum += tmp*tmp; } if(unbiased){ B[thread_id_x] = sum/((float)size_reduction-1.0f); } else { B[thread_id_x] = sum/(float)size_reduction; } } } __global__ void gpu_norm_fro(float *A, float *B, int *map, int size, int size_reduction){ long int thread_id_x = threadIdx.x+blockIdx.x*blockDim.x; if (thread_id_x<size) { int *base_addr = &map[thread_id_x*size_reduction+0]; float tmp = 0.0f; float val; for(int i=0; i<size_reduction; i++){ val = A[*(base_addr+i)]; tmp += val*val; } B[thread_id_x] = sqrt(tmp); } } __global__ void gpu_mode(float *A, float *B, int *map, int size, int size_reduction){ long int thread_id_x = threadIdx.x+blockIdx.x*blockDim.x; if (thread_id_x<size) { int *base_addr = &map[thread_id_x*size_reduction+0]; // Copy values int *values = new int[size_reduction]; // Dynamic allocation is not the best approach for(int i=0; i<size_reduction; i++){ values[i] = (int)A[*(base_addr+i)]; } // Sort data thrust::sort(thrust::seq, values, values + size_reduction); // Get most frequent element int most_frequent_val; int most_frequent_times = 0; int val = values[0]; int frequency = 1; for(int i=1; i<size_reduction; i++){ // Check if the value has change if(val==values[i]){ frequency++; }else{ val = values[i]; frequency = 1; } // Check frequency if(frequency>most_frequent_times){ most_frequent_val = val; most_frequent_times = frequency; } } // Assign most frequent value B[thread_id_x] = (float)most_frequent_val; // Delete temp array delete[] values; } } /* PREVIOUS REDUCES ***********************************/ __global__ void reduce_mean(float *A,float *B,int *map,int size) { long int thread_id_x = threadIdx.x+blockIdx.x*blockDim.x; if (thread_id_x<size) { atomicAdd(&(B[map[thread_id_x]]),A[thread_id_x]); } } __global__ void reduce_op_sum(float *A,float *B,int *map,int size) { long int thread_id_x = threadIdx.x+blockIdx.x*blockDim.x; if (thread_id_x<size) { A[thread_id_x]+=B[map[thread_id_x]]; } } __global__ void reduce_op_diff(float *A,float *B,int *map,int size) { long int thread_id_x = threadIdx.x+blockIdx.x*blockDim.x; if (thread_id_x<size) { A[thread_id_x]-=B[map[thread_id_x]]; } } __global__ void reduce_op_mult(float *A,float *B,int *map,int size) { long int thread_id_x = threadIdx.x+blockIdx.x*blockDim.x; if (thread_id_x<size) { A[thread_id_x]*=B[map[thread_id_x]]; } } __global__ void reduce_op_div(float *A,float *B,int *map,int size) { long int thread_id_x = threadIdx.x+blockIdx.x*blockDim.x; if (thread_id_x<size) { A[thread_id_x]/=B[map[thread_id_x]]; } } //dim3 dimGrid(RD->index.size()); //dim3 dimBlock(1); __global__ void reduction_kernel(float *I,float *O,float *S,int m, int keepdims,int d,int *ind,int rs) { long int thread_id_x = threadIdx.x+blockIdx.x*blockDim.x; int j; float sum=0; float v,val; int i; int p=rs*blockIdx.x; for(j=0;j<rs;j++,p++) { v=I[ind[p]]; if (m==2) { if (j==0) {val=v;i=p;} else if (v>val) { val=v; i=p; } } else if (m==3) { if (j==0) {val=v;i=p;} else if (v<val) { val=v; i=p; } } else sum+=v; } p=rs*blockIdx.x; // set in Output if (m<2) { // mean or sum if (m==0) sum/=d; if (keepdims) { for(j=0;j<rs;j++,p++) O[ind[p]]=sum; } else O[thread_id_x]=sum; } else { // rs or min if (keepdims) { for(j=0;j<rs;j++,p++) { O[ind[p]]=val; S[ind[p]]=i; } } else { O[thread_id_x]=val; S[thread_id_x]=i; } } } //dim3 dimGrid(RD->index.size()); //dim3 dimBlock(1); __global__ void reduction_back_kernel(float *I,float *O,float *S,int m, int keepdims,int d,int *ind,int rs) { long int thread_id_x = threadIdx.x+blockIdx.x*blockDim.x; int j; float val=0; int p; // set in Delta if (m>=2) { int p=S[thread_id_x]; O[p]+=I[thread_id_x]; } else { p=rs*blockIdx.x; if(keepdims) { for(j=0;j<rs;j++,p++) val+=I[ind[p]]; } else val=I[thread_id_x]; if (m==0) val/=d; p=rs*blockIdx.x; for(j=0;j<rs;j++,p++) O[ind[p]]+=val; } } //////////////////// // FOR SUM and MEAN // Faster in Conv /////////////////// //dim3 dimGrid(red_size); //dim3 dimBlock(RD->index.size()); __global__ void reduction_permute(float *I,float *O,int *ind,int size) { long int thread_id_x = threadIdx.x+blockIdx.x*blockDim.x; if (thread_id_x<size) O[thread_id_x]=I[ind[thread_id_x]]; } __global__ void reduction_kernel_keep(float *red, float *O, int *ind, int size, int rsize) { long int thread_id_x = threadIdx.x+blockIdx.x*blockDim.x; if (thread_id_x<size*rsize) { O[ind[thread_id_x]]=red[thread_id_x/rsize]; } } __global__ void reduction_kernel_keep_inc(float *red, float *O, int *ind, int size, int rsize) { long int thread_id_x = threadIdx.x+blockIdx.x*blockDim.x; if (thread_id_x<size*rsize) { O[ind[thread_id_x]]+=red[thread_id_x/rsize]; } }
805723b36614e3530d49af5171aee80a332cc660.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include <iostream> using namespace std; #define CHECK(value) { \ hipError_t _m_cudaStat = value; \ if (_m_cudaStat != hipSuccess) { \ cout<< "Error:" << hipGetErrorString(_m_cudaStat) \ << " at line " << __LINE__ << " in file " << __FILE__ << "\n"; \ exit(1); \ } } //calculate<<<(rowsY + 255) / 256, 256>>>(dev_original_matrix, dev_result, elementsQuantity, rowsY, colsX, border_number); <<<- grid, - >>> // + 255 , // = 256 __global__ void calculate(int *dev_original_matrix, int *dev_result, int elementsQuantity, int rowsY, int colsX, int border_number) { int current_row_number = threadIdx.x + blockIdx.x * blockDim.x; // // Grid -> -> ( , ), calculate // blockIdx - 1D-grid, blockDim - - int r; int count_points = 0; for (int i = 1; i < colsX - 1; i++) // { //r = matrix[i * colsX + j - 1] - matrix[i * colsX + j + 1]; // 2, ( /); r = dev_original_matrix[current_row_number * colsX + i - 1] - dev_original_matrix[current_row_number * colsX + i + 1]; if (r > border_number) { count_points++; } } dev_result[current_row_number] = count_points; //cout << "dev_result in GPU claculate :" << "\n"; /* for (int i = 0; i < current_row_number; i++) { cout << dev_result[i] << " "; } cout << '\n'; */ } // __global__ void goodCalculation(int *dev_original_matrix, int *dev_result, int elementsQuantity, int rowsY, int colsX, int border_number) { int rowsCountBeforeOrangeLine = blockIdx.x * blockDim.x; //int bigRowNumber = blockIdx.x * blockDim.x + threadIdx.x; int cacheWidth = 32; // original int rectangleHeight = 8; // original //int rectangleInRowQuantity = colsX / cacheWidth; // original int rectangleInRowQuantity = (colsX - 2) / (cacheWidth - 2); __shared__ int cache[256][33]; int r; int count_points = 0; int rowInCache = threadIdx.x / cacheWidth; // ( ) int currentRowInCache = rowInCache; int columnInCache = threadIdx.x % cacheWidth; int pixelCountUpperRowInTopGreenRect = (rowsCountBeforeOrangeLine + rowInCache) * colsX; int indexTopPixelInCurrentFPInsideImage = pixelCountUpperRowInTopGreenRect + columnInCache; int verticalStep = rectangleHeight * colsX; for (int stringIteration = 0; stringIteration < rectangleInRowQuantity; stringIteration++) { int currentPixelInImage = indexTopPixelInCurrentFPInsideImage; for (int levelInCache = 0; levelInCache < cacheWidth; levelInCache++) { cache[currentRowInCache][columnInCache] = dev_original_matrix[currentPixelInImage]; currentRowInCache += rectangleHeight; currentPixelInImage += verticalStep; // verticalStep } indexTopPixelInCurrentFPInsideImage += 30; // currentRowInCache = rowInCache; __syncthreads(); r = 0; // - fixed for (int i = 1; i < cacheWidth - 1; i++) { r = cache[threadIdx.x][i - 1] - cache[threadIdx.x][i + 1]; if (r > border_number) // count_points = count_points + 1; } __syncthreads(); } dev_result[rowsCountBeforeOrangeLine + threadIdx.x] = count_points; // - fixed } void printMatrix(int* matrix, int colsX, int rowsY) { for (int i = 0; i < rowsY; i++) { for (int j = 0; j < colsX; j++) { cout << matrix[i * colsX + j] << "\t"; } cout << "\n"; } } bool checkResult(int* host_result, int* result, int colsX, int rowsY) { for (int i = 0; i < 20; i++) { cout << "host_result[ " << i << " ] = " << host_result[i] << '\n'; } for (int i = 0; i < 20; i++) { cout << "result[ " << i << " ] = " << result[i] << '\n'; } for (int i = 0; i < rowsY; i++) { if (host_result[i] != result[i]) { //cout << "host_result[ " << i << " ] = " << host_result[i] << '\n'; //cout << "result[ " << i << " ] = " << result[i] << '\n'; return false; } } return true; } int main(void) { hipEvent_t startCUDA, stopCUDA, startOptimalCUDA, stopOptimalCUDA; clock_t startCPU; float elapsedUsualTimeCUDA, elapsedTimeCPU, elapsedOptimalTime; // 13. ( ). // , . // . int colsX = 1502; // 30 * 50 + 2 = 1502 int rowsY = 17920; // 256 * 70 = 17920 int elementsQuantity = colsX * rowsY; cout << "Size in Mbs = " << elementsQuantity * sizeof(int) / 1048576.0 << "\n"; int *matrix = new int[elementsQuantity]; for (int i = 0; i < rowsY; i++) { for (int j = 0; j < colsX; j++) { matrix[i * colsX + j] = rand() % 255; // filling matrix //matrix[i * colsX + j] = (i * colsX + j) * 10 * i; } } //printMatrix(matrix, colsX, rowsY); int border_number = 10; // -410 cout << "border_number = " << border_number << '\n'; startCPU = clock(); int *result = new int[rowsY]; //int *count_points = new int[rowsY]; int r; int count_points; for (int i = 0; i < rowsY; i++) // alg CPU func { //int r = 0; //int count_points = 0; count_points = 0; for (int j = 1; j < colsX - 1; j++) { //r = r + matrix[i * colsX + j]; // original r = matrix[i * colsX + j - 1] - matrix[i * colsX + j + 1]; // 2, ( /); //dI = dy/dx -> , x //cout << "r = " << r << "\n"; if (r > border_number) { //cout << "r = " << r << "\n"; //cout << "found one" << "\n"; count_points++; } } result[i] = count_points; //cout << "in " << i << " row found " << result[i] << " points" << "\n"; } /* cout << "result in CPU :" << "\n"; for (int i = 0; i < rowsY; i++) { cout << result[i] << " "; } cout << '\n'; */ clock_t end = clock(); elapsedTimeCPU = (double)(end-startCPU)/CLOCKS_PER_SEC; cout << "CPU calculating time = " << elapsedTimeCPU * 1000 << " ms\n"; cout << "CPU memory throughput = " << elementsQuantity *sizeof(int)/elapsedTimeCPU/1024/1024/1024 << " Gb/s\n"; cout << "\n"; hipEventCreate(&startCUDA); hipEventCreate(&stopCUDA); int *dev_original_matrix, *dev_result; int *host_original_matrix, * host_result; host_original_matrix = matrix; host_result = new int[rowsY]; for (int i = 0; i < rowsY; i++) { host_result[i] = 0; } CHECK( hipMalloc(&dev_original_matrix, elementsQuantity * sizeof(int))); CHECK( hipMalloc(&dev_result, rowsY * sizeof(int))); CHECK( hipMemcpy(dev_original_matrix, host_original_matrix, elementsQuantity * sizeof(int), hipMemcpyHostToDevice)); CHECK( hipMemcpy(dev_result, host_result, rowsY * sizeof(int), hipMemcpyHostToDevice)); hipEventRecord(startCUDA, 0); hipLaunchKernelGGL(( calculate), dim3((rowsY + 255) / 256), dim3(256), 0, 0, dev_original_matrix, dev_result, elementsQuantity, rowsY, colsX, border_number); hipEventRecord(stopCUDA, 0); cout << "FINISH" << '\n'; hipEventSynchronize(stopCUDA); CHECK(hipGetLastError()); hipEventElapsedTime(&elapsedUsualTimeCUDA, startCUDA, stopCUDA); cout << "CUDA sum time = " << elapsedUsualTimeCUDA << " ms\n"; cout << "CUDA memory throughput = " << elementsQuantity * sizeof(int) / elapsedUsualTimeCUDA/1024/1024/1.024 << " Gb/s\n"; CHECK( hipMemcpy(host_result, dev_result, rowsY * sizeof(int),hipMemcpyDeviceToHost)); /* cout << '\n' << "host_result = " << '\n'; printMatrix(host_result, 1, rowsY); cout << '\n' << "result = " << '\n'; printMatrix(result, 1, rowsY); */ cout << "result was correct " << checkResult(host_result, result, colsX, rowsY) << "\n"; cout << "Data size = " << (float)4 * elementsQuantity / 1024 / 1024 << "\n"; CHECK( hipFree(dev_original_matrix)); CHECK( hipFree(dev_result)); //} ///* //********************************************************************************************** // hipEventCreate(&startOptimalCUDA); hipEventCreate(&stopOptimalCUDA); int* good_host_result = new int[rowsY]; for (int i = 0; i < rowsY; i++) { good_host_result[i] = 0; // 0 } int *good_dev_result; CHECK( hipMalloc(&dev_original_matrix, elementsQuantity * sizeof(int))); CHECK( hipMalloc(&good_dev_result,rowsY * sizeof(int))); CHECK( hipMemcpy(dev_original_matrix, host_original_matrix, elementsQuantity * sizeof(int), hipMemcpyHostToDevice)); CHECK( hipMemcpy(good_dev_result, good_host_result, rowsY * sizeof(int), hipMemcpyHostToDevice)); hipEventRecord(startOptimalCUDA, 0); hipLaunchKernelGGL(( goodCalculation), dim3((rowsY + 255) / 256), dim3(256), 0, 0, dev_original_matrix, good_dev_result, elementsQuantity, rowsY, colsX, border_number); //cout << '\n' << "good_host_result = " << '\n'; //printMatrix(good_host_result, 1, rowsY); //cout << '\n' << "good_dev_result = " << '\n'; // good_dev_result ? //printMatrix(good_dev_result, 1, rowsY); hipEventRecord(stopOptimalCUDA, 0); CHECK( hipMemcpy(good_host_result, good_dev_result, rowsY * sizeof(int),hipMemcpyDeviceToHost)); cout << ("OPTIMAL SUMMATION WAS FINISHED"); hipEventElapsedTime(&elapsedOptimalTime, startOptimalCUDA, stopOptimalCUDA); cout << "CUDA GOOD (OPTIMAL) sum time = " << elapsedOptimalTime << " ms\n"; cout << "CUDA GOOD (OPTIMAL) memory throughput = " << elementsQuantity * sizeof(int) / elapsedOptimalTime/1024/1024/1.024 << " Gb/s\n"; //cout << '\n' << "good_host_result = " << '\n'; //printMatrix(good_host_result, 1, rowsY); cout << "result was correct" << checkResult(good_host_result, result, colsX, rowsY) << "\n"; cout << "Data size = " << (float)4 * elementsQuantity / 1024 / 1024 << "\n"; // float original, ok CHECK( hipFree(dev_original_matrix)); CHECK( hipFree(good_dev_result)); return 0; } //*/
805723b36614e3530d49af5171aee80a332cc660.cu
#include <iostream> using namespace std; #define CHECK(value) { \ cudaError_t _m_cudaStat = value; \ if (_m_cudaStat != cudaSuccess) { \ cout<< "Error:" << cudaGetErrorString(_m_cudaStat) \ << " at line " << __LINE__ << " in file " << __FILE__ << "\n"; \ exit(1); \ } } //calculate<<<(rowsY + 255) / 256, 256>>>(dev_original_matrix, dev_result, elementsQuantity, rowsY, colsX, border_number); <<<кол-во блоков в grid, кол-во потоков>>> // + 255 для того, чтобы точно уместить все данные // размер массива ограничен максимальным размером пространства потоков = 256 __global__ void calculate(int *dev_original_matrix, int *dev_result, int elementsQuantity, int rowsY, int colsX, int border_number) { int current_row_number = threadIdx.x + blockIdx.x * blockDim.x; // номер строки в изображении // Grid -> блок -> поток(поток в блоке, блок в сетке), один поток запускает функцию calculate один раз // blockIdx - номер блока в 1D-grid, blockDim - кол-во блоков в одном потоке int r; int count_points = 0; for (int i = 1; i < colsX - 1; i++) // крайние не считаются { //r = matrix[i * colsX + j - 1] - matrix[i * colsX + j + 1]; // мб надо делить на 2, но в Гонсалесе вот так(см градиент Собела/Собеля); r = dev_original_matrix[current_row_number * colsX + i - 1] - dev_original_matrix[current_row_number * colsX + i + 1]; if (r > border_number) { count_points++; } } dev_result[current_row_number] = count_points; //cout << "dev_result in GPU claculate :" << "\n"; /* for (int i = 0; i < current_row_number; i++) { cout << dev_result[i] << " "; } cout << '\n'; */ } //СОХРАНЯТЬ РЕЗУЛЬТАТ В ЛОК ПЕРЕМ ПОТОМ В РЕЗ МАТРИЦУ __global__ void goodCalculation(int *dev_original_matrix, int *dev_result, int elementsQuantity, int rowsY, int colsX, int border_number) { int rowsCountBeforeOrangeLine = blockIdx.x * blockDim.x; //int bigRowNumber = blockIdx.x * blockDim.x + threadIdx.x; int cacheWidth = 32; // original int rectangleHeight = 8; // original //int rectangleInRowQuantity = colsX / cacheWidth; // original int rectangleInRowQuantity = (colsX - 2) / (cacheWidth - 2); __shared__ int cache[256][33]; int r; int count_points = 0; int rowInCache = threadIdx.x / cacheWidth; // номер строки в верхнем ЗП (первый элемент) int currentRowInCache = rowInCache; int columnInCache = threadIdx.x % cacheWidth; int pixelCountUpperRowInTopGreenRect = (rowsCountBeforeOrangeLine + rowInCache) * colsX; int indexTopPixelInCurrentFPInsideImage = pixelCountUpperRowInTopGreenRect + columnInCache; int verticalStep = rectangleHeight * colsX; for (int stringIteration = 0; stringIteration < rectangleInRowQuantity; stringIteration++) { int currentPixelInImage = indexTopPixelInCurrentFPInsideImage; for (int levelInCache = 0; levelInCache < cacheWidth; levelInCache++) { cache[currentRowInCache][columnInCache] = dev_original_matrix[currentPixelInImage]; currentRowInCache += rectangleHeight; currentPixelInImage += verticalStep; // verticalStep по ЗП вниз } indexTopPixelInCurrentFPInsideImage += 30; // переход к след ФП currentRowInCache = rowInCache; __syncthreads(); r = 0; // тут начинаются ошибки с неправильным обращенем к памяти - fixed for (int i = 1; i < cacheWidth - 1; i++) { r = cache[threadIdx.x][i - 1] - cache[threadIdx.x][i + 1]; if (r > border_number) // ошибка count_points = count_points + 1; } __syncthreads(); } dev_result[rowsCountBeforeOrangeLine + threadIdx.x] = count_points; // ошибка с неправильным обращенем к памяти - fixed } void printMatrix(int* matrix, int colsX, int rowsY) { for (int i = 0; i < rowsY; i++) { for (int j = 0; j < colsX; j++) { cout << matrix[i * colsX + j] << "\t"; } cout << "\n"; } } bool checkResult(int* host_result, int* result, int colsX, int rowsY) { for (int i = 0; i < 20; i++) { cout << "host_result[ " << i << " ] = " << host_result[i] << '\n'; } for (int i = 0; i < 20; i++) { cout << "result[ " << i << " ] = " << result[i] << '\n'; } for (int i = 0; i < rowsY; i++) { if (host_result[i] != result[i]) { //cout << "host_result[ " << i << " ] = " << host_result[i] << '\n'; //cout << "result[ " << i << " ] = " << result[i] << '\n'; return false; } } return true; } int main(void) { cudaEvent_t startCUDA, stopCUDA, startOptimalCUDA, stopOptimalCUDA; clock_t startCPU; float elapsedUsualTimeCUDA, elapsedTimeCPU, elapsedOptimalTime; // 13. Создайте детектор вертикальных границ на изображении (в градациях серого). // Функция должна для каждой строки считать количество точек, в которых производная цвета по горизонтали больше заданного значения. // Все изображения хранятся в памяти по строкам. int colsX = 1502; // пикселей 30 * 50 + 2 = 1502 int rowsY = 17920; // пикселей 256 * 70 = 17920 int elementsQuantity = colsX * rowsY; cout << "Size in Mbs = " << elementsQuantity * sizeof(int) / 1048576.0 << "\n"; int *matrix = new int[elementsQuantity]; for (int i = 0; i < rowsY; i++) { for (int j = 0; j < colsX; j++) { matrix[i * colsX + j] = rand() % 255; // filling matrix //matrix[i * colsX + j] = (i * colsX + j) * 10 * i; } } //printMatrix(matrix, colsX, rowsY); int border_number = 10; // -410 cout << "border_number = " << border_number << '\n'; startCPU = clock(); int *result = new int[rowsY]; //int *count_points = new int[rowsY]; int r; int count_points; for (int i = 0; i < rowsY; i++) // alg CPU func { //int r = 0; //int count_points = 0; count_points = 0; for (int j = 1; j < colsX - 1; j++) { //r = r + matrix[i * colsX + j]; // original r = matrix[i * colsX + j - 1] - matrix[i * colsX + j + 1]; // мб надо делить на 2, но в Гонсалесе вот так(см градиент Собела/Собеля); //dI = dy/dx -> у нас только вертикальные границы, поэтому считаем приращение только по x //cout << "r = " << r << "\n"; if (r > border_number) { //cout << "r = " << r << "\n"; //cout << "found one" << "\n"; count_points++; } } result[i] = count_points; //cout << "in " << i << " row found " << result[i] << " points" << "\n"; } /* cout << "result in CPU :" << "\n"; for (int i = 0; i < rowsY; i++) { cout << result[i] << " "; } cout << '\n'; */ clock_t end = clock(); elapsedTimeCPU = (double)(end-startCPU)/CLOCKS_PER_SEC; cout << "CPU calculating time = " << elapsedTimeCPU * 1000 << " ms\n"; cout << "CPU memory throughput = " << elementsQuantity *sizeof(int)/elapsedTimeCPU/1024/1024/1024 << " Gb/s\n"; cout << "\n"; cudaEventCreate(&startCUDA); cudaEventCreate(&stopCUDA); int *dev_original_matrix, *dev_result; int *host_original_matrix, * host_result; host_original_matrix = matrix; host_result = new int[rowsY]; for (int i = 0; i < rowsY; i++) { host_result[i] = 0; } CHECK( cudaMalloc(&dev_original_matrix, elementsQuantity * sizeof(int))); CHECK( cudaMalloc(&dev_result, rowsY * sizeof(int))); CHECK( cudaMemcpy(dev_original_matrix, host_original_matrix, elementsQuantity * sizeof(int), cudaMemcpyHostToDevice)); CHECK( cudaMemcpy(dev_result, host_result, rowsY * sizeof(int), cudaMemcpyHostToDevice)); cudaEventRecord(startCUDA, 0); calculate<<<(rowsY + 255) / 256, 256>>>(dev_original_matrix, dev_result, elementsQuantity, rowsY, colsX, border_number); cudaEventRecord(stopCUDA, 0); cout << "FINISH" << '\n'; cudaEventSynchronize(stopCUDA); CHECK(cudaGetLastError()); cudaEventElapsedTime(&elapsedUsualTimeCUDA, startCUDA, stopCUDA); cout << "CUDA sum time = " << elapsedUsualTimeCUDA << " ms\n"; cout << "CUDA memory throughput = " << elementsQuantity * sizeof(int) / elapsedUsualTimeCUDA/1024/1024/1.024 << " Gb/s\n"; CHECK( cudaMemcpy(host_result, dev_result, rowsY * sizeof(int),cudaMemcpyDeviceToHost)); /* cout << '\n' << "host_result = " << '\n'; printMatrix(host_result, 1, rowsY); cout << '\n' << "result = " << '\n'; printMatrix(result, 1, rowsY); */ cout << "result was correct " << checkResult(host_result, result, colsX, rowsY) << "\n"; cout << "Data size = " << (float)4 * elementsQuantity / 1024 / 1024 << "\n"; CHECK( cudaFree(dev_original_matrix)); CHECK( cudaFree(dev_result)); //} ///* //********************************************************************************************** //ХОРОШЕЕ УМНОЖЕНИЕ cudaEventCreate(&startOptimalCUDA); cudaEventCreate(&stopOptimalCUDA); int* good_host_result = new int[rowsY]; for (int i = 0; i < rowsY; i++) { good_host_result[i] = 0; // 0 } int *good_dev_result; CHECK( cudaMalloc(&dev_original_matrix, elementsQuantity * sizeof(int))); CHECK( cudaMalloc(&good_dev_result,rowsY * sizeof(int))); CHECK( cudaMemcpy(dev_original_matrix, host_original_matrix, elementsQuantity * sizeof(int), cudaMemcpyHostToDevice)); CHECK( cudaMemcpy(good_dev_result, good_host_result, rowsY * sizeof(int), cudaMemcpyHostToDevice)); cudaEventRecord(startOptimalCUDA, 0); goodCalculation<<<(rowsY + 255) / 256, 256>>>(dev_original_matrix, good_dev_result, elementsQuantity, rowsY, colsX, border_number); //cout << '\n' << "good_host_result = " << '\n'; //printMatrix(good_host_result, 1, rowsY); //cout << '\n' << "good_dev_result = " << '\n'; // good_dev_result пустая? //printMatrix(good_dev_result, 1, rowsY); cudaEventRecord(stopOptimalCUDA, 0); CHECK( cudaMemcpy(good_host_result, good_dev_result, rowsY * sizeof(int),cudaMemcpyDeviceToHost)); cout << ("OPTIMAL SUMMATION WAS FINISHED"); cudaEventElapsedTime(&elapsedOptimalTime, startOptimalCUDA, stopOptimalCUDA); cout << "CUDA GOOD (OPTIMAL) sum time = " << elapsedOptimalTime << " ms\n"; cout << "CUDA GOOD (OPTIMAL) memory throughput = " << elementsQuantity * sizeof(int) / elapsedOptimalTime/1024/1024/1.024 << " Gb/s\n"; //cout << '\n' << "good_host_result = " << '\n'; //printMatrix(good_host_result, 1, rowsY); cout << "result was correct" << checkResult(good_host_result, result, colsX, rowsY) << "\n"; cout << "Data size = " << (float)4 * elementsQuantity / 1024 / 1024 << "\n"; // float original, ok CHECK( cudaFree(dev_original_matrix)); CHECK( cudaFree(good_dev_result)); return 0; } //*/
acae645ace0671ecb57baa0427dac62e9beaed70.hip
// !!! This is a file automatically generated by hipify!!! #include <stdio.h> #include <stdlib.h> #include <hip/hip_runtime.h> #include <hiprand/hiprand.h> #include <math.h> #include <hiprand/hiprand_kernel.h> #include <time.h> #include <unistd.h> #include <thrust/scan.h> #include <thrust/remove.h> #include <thrust/execution_policy.h> #include <iostream> #include "custom_temporary_allocation.cuh" #include "parameter.cuh" using namespace std; typedef hiprandStatePhilox4_32_10_t myCurandState_t; //#define DEBUG #define cudaCheckError() { \ hipError_t e=hipGetLastError(); \ if(e!=hipSuccess) { \ printf("Cuda failure %s:%d: '%s'\n",__FILE__,__LINE__,hipGetErrorString(e)); \ exit(0); \ } \ } #define FACTOR 5 #define ITERATIONS 100 #define TOTAL (SIZE * SIZE) #define GRIDSIZE (SIZE+2) #define GRIDTOTAL (SIZE+2)*(SIZE+2) #define SRAND_VALUE 200 #define PENUMBER (TOTAL/PESIZE) #define SAM_NUM_VALUES ((SIZE+2)*(SIZE+2)) #define SAM_PENUMBER (SAM_NUM_VALUES / SAM_PESIZE) const int agentTypeOneNumber = agentNumber / 2; const int agentTypeTwoNumber = agentNumber - agentTypeOneNumber; const int happinessThreshold = 5; void printOutput(int [SIZE+2][SIZE+2]); void initPos(int grid [SIZE+2][SIZE+2]); int random_location(); __device__ static const int FAK_LEN = 1024; // length of factorial table __device__ int hyp_n_last[SAM_PENUMBER], hyp_m_last[SAM_PENUMBER], hyp_N_last[SAM_PENUMBER]; // Last values of parameters __device__ int hyp_mode[SAM_PENUMBER], hyp_mp[SAM_PENUMBER]; // Mode, mode+1 __device__ int hyp_bound[SAM_PENUMBER]; // Safety upper bound __device__ double hyp_a[SAM_PENUMBER]; // hat center __device__ double hyp_h[SAM_PENUMBER]; // hat width __device__ double hyp_fm[SAM_PENUMBER]; // Value at mode __device__ int device_pe_inuse; __device__ int device_num_inuse; __device__ int device_removed_move_list_end; __device__ int device_removed_space_list_end; __device__ int device_penumber_inuse; __device__ int device_reduced_pe_position; __device__ float getnextrand(myCurandState_t *state){ return (hiprand_uniform(state)); } __global__ void initSamCurand(myCurandState_t state[SAM_PENUMBER]){ int idx = threadIdx.x + blockIdx.x * blockDim.x; if(idx < SAM_PENUMBER){ hiprand_init(idx, 0 , 0, &state[idx]); } } __device__ const double C0 = 0.918938533204672722, // ln(sqrt(2*pi)) C1 = 1./12., C3 = -1./360.; __device__ double fac_table[FAK_LEN]; __device__ int initialized = 0; __device__ double LnFac(int n) { if (n < FAK_LEN) { if (n <= 1) { if (n < 0) printf("Parameter negative in LnFac function\n"); return 0; } if (!initialized) { // first time. Must initialize table // make table of ln(n!) double sum = fac_table[0] = 0.; for (int i=1; i<FAK_LEN; i++) { sum += log(double(i)); fac_table[i] = sum; } initialized = 1; } return fac_table[n]; } // not found in table. use Stirling approximation double n1, r; n1 = n; r = 1. / n1; return (n1 + 0.5)*log(n1) - n1 + C0 + r*(C1 + r*r*C3); //return logf(n); } __device__ double fc_lnpk(int k, int L, int m, int n) { // subfunction used by hypergeometric and Fisher's noncentral hypergeometric distribution return(LnFac(k) + LnFac(m - k) + LnFac(n - k) + LnFac(L + k)); } __device__ int HypInversionMod (myCurandState_t stateHyper[SAM_PENUMBER],int n, int m, int N, int idx) { /* Subfunction for Hypergeometric distribution. Assumes 0 <= n <= m <= N/2. Overflow protection is needed when N > 680 or n > 75. Hypergeometric distribution by inversion method, using down-up search starting at the mode using the chop-down technique. This method is faster than the rejection method when the variance is low. */ //int idx = threadIdx.x + blockIdx.x * blockDim.x; // Sampling int I; // Loop counter int L = N - m - n; // Parameter double modef; // mode, float double Mp, np; // m + 1, n + 1 double p; // temporary double U; // uniform random double c, d; // factors in iteration double divisor; // divisor, eliminated by scaling double k1, k2; // float version of loop counter double L1 = L; // float version of L Mp = (double)(m + 1); np = (double)(n + 1); if (N != hyp_N_last[idx] || m != hyp_m_last[idx] || n != hyp_n_last[idx]) { // set-up when parameters have changed hyp_N_last[idx] = N; hyp_m_last[idx] = m; hyp_n_last[idx] = n; p = Mp / (N + 2.); modef = np * p; // mode, real hyp_mode[idx] = (int)modef; // mode, integer if (hyp_mode[idx] == modef && p == 0.5) { hyp_mp[idx] = hyp_mode[idx]--; } else { hyp_mp[idx] = hyp_mode[idx] + 1; } // mode probability, using log factorial function // (may read directly from fac_table if N < FAK_LEN) hyp_fm[idx] = exp(LnFac(N-m) - LnFac(L+hyp_mode[idx]) - LnFac(n-hyp_mode[idx]) + LnFac(m) - LnFac(m-hyp_mode[idx]) - LnFac(hyp_mode[idx]) - LnFac(N) + LnFac(N-n) + LnFac(n) ); // safety bound - guarantees at least 17 significant decimal digits // bound = min(n, (int)(modef + k*c')) hyp_bound[idx] = (int)(modef + 11. * sqrt(modef * (1.-p) * (1.-n/(double)N)+1.)); if (hyp_bound[idx] > n) hyp_bound[idx] = n; } // loop until accepted //int max_iterations = 1000; while(1) { // if(!(max_iterations--)) // break; U = getnextrand(&stateHyper[idx]); // uniform random number to be converted //printf(" U is %lf\n",U); // start chop-down search at mode if ((U -= hyp_fm[idx]) <= 0.) return(hyp_mode[idx]); c = d = hyp_fm[idx]; // alternating down- and upward search from the mode k1 = hyp_mp[idx] - 1; k2 = hyp_mode[idx] + 1; for (I = 1; I <= hyp_mode[idx]; I++, k1--, k2++) { // if(!(max_iterations--)) // break; // Downward search from k1 = hyp_mp - 1 divisor = (np - k1)*(Mp - k1); // Instead of dividing c with divisor, we multiply U and d because // multiplication is faster. This will give overflow if N > 800 U *= divisor; d *= divisor; c *= k1 * (L1 + k1); if ((U -= c) <= 0.) return(hyp_mp[idx] - I - 1); // = k1 - 1 //printf("Line 228 I %d \n",I); // Upward search from k2 = hyp_mode + 1 divisor = k2 * (L1 + k2); // re-scale parameters to avoid time-consuming division U *= divisor; c *= divisor; d *= (np - k2) * (Mp - k2); if ((U -= d) <= 0.) return(hyp_mode[idx] + I); // = k2 // Values of n > 75 or N > 680 may give overflow if you leave out this.. // overflow protection // if (U > 1.E100) {U *= 1.E-100; c *= 1.E-100; d *= 1.E-100;} } // Upward search from k2 = 2*mode + 1 to bound for (k2 = I = hyp_mp[idx] + hyp_mode[idx]; I <= hyp_bound[idx]; I++, k2++) { //if(!(max_iterations--)) // break; divisor = k2 * (L1 + k2); U *= divisor; d *= (np - k2) * (Mp - k2); if ((U -= d) <= 0.) return(I); // more overflow protection // if (U > 1.E100) {U *= 1.E-100; d *= 1.E-100;} } } } __device__ int HypRatioOfUnifoms (myCurandState_t stateHyper[SAM_PENUMBER], int n, int m, int N, int idx) { /* Subfunction for Hypergeometric distribution using the ratio-of-uniforms rejection method. This code is valid for 0 < n <= m <= N/2. The computation time hardly depends on the parameters, except that it matters a lot whether parameters are within the range where the LnFac function is tabulated. Reference: E. Stadlober: "The ratio of uniforms approach for generating discrete random variates". Journal of Computational and Applied Mathematics, vol. 31, no. 1, 1990, pp. 181-189. */ //int idx = threadIdx.x + blockIdx.x * blockDim.x; const double SHAT1 = 2.943035529371538573; // 8/e const double SHAT2 = 0.8989161620588987408; // 3-sqrt(12/e) int L; // N-m-n int mode; // mode int k; // integer sample double x; // real sample double rNN; // 1/(N*(N+2)) double my; // mean double var; // variance double u; // uniform random double lf; // ln(f(x)) L = N - m - n; if (hyp_N_last[idx] != N || hyp_m_last[idx] != m || hyp_n_last[idx] != n) { hyp_N_last[idx] = N; hyp_m_last[idx] = m; hyp_n_last[idx] = n; // Set-up rNN = 1. / ((double)N*(N+2)); // make two divisions in one my = (double)n * m * rNN * (N+2); // mean = n*m/N mode = (int)(double(n+1) * double(m+1) * rNN * N); // mode = floor((n+1)*(m+1)/(N+2)) var = (double)n * m * (N-m) * (N-n) / ((double)N*N*(N-1));// variance hyp_h[idx] = sqrt(SHAT1 * (var+0.5)) + SHAT2; // hat width hyp_a[idx] = my + 0.5; // hat center hyp_fm[idx] = fc_lnpk(mode, L, m, n); // maximum hyp_bound[idx] = (int)(hyp_a[idx] + 4.0 * hyp_h[idx]); // safety-bound if (hyp_bound[idx] > n) hyp_bound[idx] = n; } while(1) { u = getnextrand(&stateHyper[idx]); // uniform random number if (u == 0) continue; // avoid division by 0 x = hyp_a[idx] + hyp_h[idx] * (getnextrand(&stateHyper[idx])-0.5) / u; // generate hat distribution if (x < 0. || x > 2E9) continue; // reject, avoid overflow k = (int)x; if (k > hyp_bound[idx]) continue; // reject if outside range lf = hyp_fm[idx] - fc_lnpk(k,L,m,n); // ln(f(k)) if (u * (4.0 - u) - 3.0 <= lf) break; // lower squeeze accept if (u * (u-lf) > 1.0) continue; // upper squeeze reject if (2.0 * log(u) <= lf) break; // final acceptance } return k; } __device__ int Hypergeometric (myCurandState_t stateHyper[SAM_PENUMBER], int n, int m, int N, int idx) { /* This function generates a random variate with the hypergeometric distribution. This is the distribution you get when drawing balls without replacement from an urn with two colors. n is the number of balls you take, m is the number of red balls in the urn, N is the total number of balls in the urn, and the return value is the number of red balls you get. This function uses inversion by chop-down search from the mode when parameters are small, and the ratio-of-uniforms method when the former method would be too slow or would give overflow. */ int fak, addd; // used for undoing transformations int x; // result hyp_n_last[idx] = hyp_m_last[idx] = hyp_N_last[idx] = -1; // Last values of hypergeometric parameters // check if parameters are valid if (n > N || m > N || n < 0 || m < 0) { printf("Parameter out of range in hypergeometric function n %ld m %ld N %ld idx %d\n",n,m,N,idx); printf("Parameter out of range in hypergeometric function %d,%d,%d,%d\n", n > N, m > N, n < 0, m < 0); return 0; } // symmetry transformations fak = 1; addd = 0; if (m > N/2) { // invert m m = N - m; fak = -1; addd = n; } if (n > N/2) { // invert n n = N - n; addd += fak * m; fak = - fak; } if (n > m) { // swap n and m x = n; n = m; m = x; } // cases with only one possible result end here if (n == 0) return addd; //------------------------------------------------------------------ // choose method //------------------------------------------------------------------ if (N > 680 || n > 70) { // use ratio-of-uniforms method x = HypRatioOfUnifoms (stateHyper, n, m, N,idx); } else { // inversion method, using chop-down search from mode x = HypInversionMod (stateHyper, n, m, N,idx); } // undo symmetry transformations return x * fak + addd; } __global__ void clearSamples(int samples[SAM_NUM_VALUES]){ int idx = threadIdx.x + blockIdx.x * blockDim.x; if(idx < (SAM_NUM_VALUES)){ samples[idx] = 0; } } __device__ void methodA(myCurandState_t state[SAM_PENUMBER],int N, int n, int num_sample, int initialTocurrent,int device_list[SAM_NUM_VALUES],int samples[SAM_NUM_VALUES]) { //ASSERT_LEQ(n, N); int idx = threadIdx.x + blockIdx.x * blockDim.x; // Initialization int sample = 0; double Nreal = (double) N; double top = Nreal - n; // Main loop while (n >= 2) { int S = 0; double V = getnextrand(&state[idx]); double quot = top / Nreal; while (quot > V) { S++; top -= 1.0; Nreal -= 1.0; quot = (quot * top) / Nreal; } // Skip over next S records and select the following one sample += S + 1; //samples[idx][num_sample++] = sample + initialTocurrent; samples[idx*SAM_PESIZE + num_sample++] = device_list[idx*SAM_PESIZE + sample + initialTocurrent-1]; //callback(sample); Nreal -= 1.0; n--; } if (n == 1) { int S = round(Nreal) * getnextrand(&state[idx]); sample += S + 1; //samples[idx][num_sample++] = sample + initialTocurrent; samples[idx*SAM_PESIZE + num_sample++] = device_list[idx*SAM_PESIZE + sample + initialTocurrent-1]; //callback(sample); } } // Sampling method D from Vitter et al. // // \param N Size of population. // \param n Number of samples. // \param gen Uniform random variate generator. // \param samples Function to process sample. // __device__ void sample(myCurandState_t state[SAM_PENUMBER], int N, int n, int device_list[SAM_NUM_VALUES], int samples[SAM_NUM_VALUES]) { //ASSERT_LEQ(n, N); int idx = threadIdx.x + blockIdx.x * blockDim.x; int initialN = N; // Initialization int sample = 0; int num_sample = 0; double nreal = (double) n; double ninv = 1.0 / nreal; double Nreal = (double) N; double Vprime = exp(log(getnextrand(&state[idx])) * ninv); int qu1 = N + 1 - n; double qu1real = Nreal + 1.0 - nreal; int negalphainv = -13; int threshold = n * (-negalphainv); int S = 0; // Main loop while (n > 1 && threshold < N) { double nmin1inv = 1.0 / (nreal - 1.0); double negSreal = 0.0; while (true) { // Step D2: Generate U and X double X; while (true) { X = Nreal * (1.0 - Vprime); S = X; if (S < qu1) break; Vprime = exp(log(getnextrand(&state[idx])) * ninv); } double U = getnextrand(&state[idx]); negSreal = -(double)S; // Step D3: Accept? double y1 = exp(log(U * Nreal / qu1real) * nmin1inv); Vprime = y1 * (-X / Nreal + 1.0) * (qu1real / (negSreal + qu1real)); if (Vprime <= 1.0) break; // Accept! // Step D4: Accept? double y2 = 1.0; double top = Nreal - 1.0; double bottom; double limit; if (n - 1 > S) { bottom = Nreal - nreal; limit = N - S; } else { bottom = negSreal + Nreal - 1.0; limit = qu1; } for (int t = N; t > limit; t--) { y2 = (y2 * top) / bottom; top -= 1.0; bottom -= 1.0; } if (Nreal / (Nreal - X) >= y1 * exp(log(y2) * nmin1inv)) { // Accept! Vprime = exp(log(getnextrand(&state[idx])) * nmin1inv); break; } Vprime = exp(log(getnextrand(&state[idx])) * ninv); } // Skip over next S records and select the following one sample += S + 1; //samples[idx][num_sample++] = sample; samples[idx*SAM_PESIZE + num_sample++] = device_list[idx*SAM_PESIZE +sample-1]; //callback(sample); N = (N - 1) - S; Nreal = (Nreal - 1.0) + negSreal; n--; nreal -= 1.0; ninv = nmin1inv; qu1 -= S; qu1real += negSreal; threshold += negalphainv; } if (n > 1) { int currentN = N; methodA(state, N, n, num_sample, initialN - currentN, device_list,samples); //samples[num_sample++] = sample + initialN - currentN; //methodA(N, n, [&](int sample) { // callback(sample + initialN - currentN); //}); } else if (n == 1) { S = N * Vprime; // Skip over next S records and select the following one sample += S + 1; //samples[idx][num_sample++] = sample; samples[idx*SAM_PESIZE + num_sample++] = device_list[idx*SAM_PESIZE +sample-1]; //callback(sample); } } __global__ void sampleP(myCurandState_t state[SAM_PENUMBER], myCurandState_t stateHyper[SAM_PENUMBER], int device_list[SAM_NUM_VALUES],int samples[SAM_NUM_VALUES], int n, int j, int k) { int idx = threadIdx.x + blockIdx.x * blockDim.x; //idx += 1; if(idx < device_pe_inuse){ int seed = 1; //int counter = 0; int m,x; while(j - k != 0) { hiprand_init(seed, 0 , 0, &stateHyper[idx]); m = floor( (j+k)/2.0 ); //printf("sampleP1 n %d idx %d m %d\n",n,idx,m); //__device__ int Hypergeometric (hiprandState_t stateHyper[PENUMBER], //int n, int m, int N, int idx) { /* This function generates a random variate with the hypergeometric distribution. This is the distribution you get when drawing balls without replacement from an urn with two colors. n is the number of balls you take, m is the number of red balls in the urn, N is the total number of balls in the urn, and the return value is the number of red balls you get. */ //printf("would call Hypergeometric(stateHyper, %d, %d, %d, %d)\n", n, (m-j)*PESIZE + 1, (k-j)*PESIZE + 1, idx); //printf("j is now %d, k is %d, m is %d, sums are %d and %d\n", j, k, m, k - (j - 1), m - (j - 1)); if(k != device_pe_inuse - 1){ x = Hypergeometric(stateHyper, n, (m-(j-1))*SAM_PESIZE, (k-(j-1))*SAM_PESIZE, idx); } else{ x = Hypergeometric(stateHyper, n, (m-(j-1))*SAM_PESIZE, ((k-1)-(j-1))*SAM_PESIZE + device_num_inuse % SAM_PESIZE, idx); } //printf("sampleP2 n %d idx %d x %d\n",n,idx,x); //int x = m; if(idx <= m) { n = x; k = m; seed = seed * 2; } else { n = n-x; j = m + 1; seed = seed * 2 + 1; } } //printf("sample n %d \n",n); if(idx != device_pe_inuse - 1 ) { //printf("idx %d sampling %d values\n", idx, n); sample(state, SAM_PESIZE, n, device_list, samples); } else { //printf("n > PESIZE %d \n",n); sample(state, device_num_inuse % SAM_PESIZE, n, device_list, samples); } /*if(n <= PESIZE ) { //printf("idx %d sampling %d values\n", idx, n); sample(state, PESIZE, n, device_list, samples); } else { printf("n > PESIZE %d \n",n); }*/ } } //__global__ void print_device_reduced_pe_position(){ //printf("reduced_pe_position %d \n",( int( 0.5 + ceil((float)device_reduced_pe_position / (PESIZE) )) ) ); //printf("device_reduced_pe_position %d \n",(device_reduced_pe_position ) ); //} __global__ void initCurand(myCurandState_t state[][PESIZE]){ int idx = threadIdx.x + blockIdx.x * blockDim.x; int idy=blockIdx.y*blockDim.y+threadIdx.y; if(idx < PENUMBER && idy<PESIZE){ hiprand_init(idx*(PESIZE)+idy,0 , 0, &state[idx][idy]); } } __global__ void compute(int grid[][SIZE+2], int new_grid[][SIZE+2], int * move_list, int * space_list, int iteration){ int idx=blockIdx.x*blockDim.x+threadIdx.x; int idy=blockIdx.y*blockDim.y+threadIdx.y; int sameTypeCount=0; int current_id = idx*(SIZE+2)+idy; if(grid[idx][idy] != 0){ int currentType = grid[idx][idy]; if(grid[idx-1][idy-1] == currentType){ sameTypeCount += 1; } if(grid[idx-1][idy] == currentType){ sameTypeCount += 1; } if(grid[idx-1][idy+1] == currentType){ sameTypeCount += 1; } if(grid[idx][idy-1] == currentType){ sameTypeCount += 1; } if(grid[idx][idy+1] == currentType){ sameTypeCount += 1; } if(grid[idx+1][idy-1] == currentType){ sameTypeCount += 1; } if(grid[idx+1][idy] == currentType){ sameTypeCount += 1; } if(grid[idx+1][idy+1] == currentType){ sameTypeCount += 1; } if(sameTypeCount < happinessThreshold){ move_list[current_id] = current_id; space_list[current_id] = current_id; } } else if(idx != 0 && idy !=0 && idx != (SIZE+1) && idy != (SIZE+1) ){ space_list[current_id] = current_id; } } __global__ void update (int grid[][SIZE+2], int new_grid[][SIZE+2], int * move_list, int * space_list){ int idx=blockIdx.x*blockDim.x+threadIdx.x; int idy=blockIdx.y*blockDim.y+threadIdx.y; grid[idy][idx] = new_grid[idy][idx]; move_list[idx*(SIZE+2)+idy] = 0; space_list[idx*(SIZE+2)+idy] = 0; } __global__ void sendToRandomPerpe(myCurandState_t state[][PESIZE],int device_list[SAM_NUM_VALUES], int temp_device_list[][PESIZE*FACTOR],int random_list_counter[PENUMBER]){ int idx = threadIdx.x + blockIdx.x * blockDim.x; if(idx < device_penumber_inuse -1 ){ for(int i=0; i < PESIZE; i++ ){ float r = getnextrand(&state[idx][0]); int random_position = r * (device_penumber_inuse-1); int acquired_position = atomicAdd(&random_list_counter[random_position],1); temp_device_list[random_position][acquired_position] = device_list[idx*PESIZE+i]; } } else if(idx == device_penumber_inuse - 1 ){ for(int i=0; i < device_removed_move_list_end % PESIZE; i++ ){ float r = getnextrand(&state[idx][0]); int random_position = r * (device_penumber_inuse-1); int acquired_position = atomicAdd(&random_list_counter[random_position],1); temp_device_list[random_position][acquired_position] = device_list[idx*PESIZE+i]; } } } __global__ void sendToRandom(myCurandState_t state[][PESIZE],int device_list[SAM_NUM_VALUES], int temp_device_list[][PESIZE*FACTOR],int random_list_counter[PENUMBER]){ int idx = threadIdx.x + blockIdx.x * blockDim.x; int idy = blockIdx.y * blockDim.y + threadIdx.y; if(idx*PESIZE +idy < device_removed_move_list_end ){ float r = getnextrand(&state[idx][idy]); int random_position = r * (device_penumber_inuse-1); int acquired_position = atomicAdd(&random_list_counter[random_position],1); temp_device_list[random_position][acquired_position] = device_list[idx*PESIZE+idy]; } } __global__ void clearCounter(int random_list_counter[PENUMBER]){ int idx = threadIdx.x + blockIdx.x * blockDim.x; if(idx < device_penumber_inuse){ random_list_counter[idx] = 0; } } __global__ void generateList(int device_list[][PESIZE]){ int idx = threadIdx.x + blockIdx.x * blockDim.x; int idy = blockIdx.y * blockDim.y + threadIdx.y; if(idx*PESIZE +idy < device_removed_space_list_end ){ device_list[idx][idy] = idx*PESIZE +idy; } } static __device__ void swap(int *data, int x, int y) { int temp = data[x]; data[x] = data[y]; data[y] = temp; } static __device__ int partition(int *data, int left, int right) { const int mid = left + (right - left) / 2; const int pivot = data[(mid)]; swap(data, (mid), (left)); int i = left + 1; int j = right; while (i <= j) { while (i <= j && data[(i)] <= pivot) { i++; } while (i <= j && data[(j)] > pivot) { j--; } if (i < j) { swap(data, (i), (j)); } } swap(data, (i - 1), (left)); return i - 1; } typedef struct sort_data { int left; int right; } sort_data; __device__ void quicksort_seq(int *data, int right) { int left = 0; if(left == right) return; if (left > right) { right = 1 + right; } int stack_size = 0; sort_data stack[PESIZE*FACTOR]; stack[stack_size++] = { left, right }; while (stack_size > 0) { int curr_left = stack[stack_size - 1].left; int curr_right = stack[stack_size - 1].right; stack_size--; if (curr_left < curr_right) { int part = partition(data, curr_left, curr_right); stack[stack_size++] = {curr_left, part - 1}; stack[stack_size++] = {part + 1, curr_right}; } } } __global__ void sortList(int temp_device_list[][PESIZE*FACTOR], int random_list_counter[PENUMBER]){ int idx = threadIdx.x + blockIdx.x * blockDim.x; if(idx < device_penumber_inuse){ int number = random_list_counter[idx]; if(number != 0){ quicksort_seq(temp_device_list[idx], number - 1 ); } } } __global__ void randomPermute(myCurandState_t state[][PESIZE], int temp_device_list[][PESIZE*FACTOR], int random_list_counter[PENUMBER]){ int idx = threadIdx.x + blockIdx.x * blockDim.x; int reduced_pe = device_penumber_inuse; if(idx < reduced_pe){ for (int i = 0; i < random_list_counter[idx]; i++){ float r = getnextrand(&state[idx][0]); int j = r * (random_list_counter[idx]-1); int temp = temp_device_list[idx][i] ; temp_device_list[idx][i] = temp_device_list[idx][j] ; temp_device_list[idx][j] = temp; } } } __global__ void recoverSize(int device_list[][PESIZE], int temp_device_list[][PESIZE*FACTOR],int random_list_counter[PENUMBER], int scanned_random_list_counter[PENUMBER]){ int idx = threadIdx.x + blockIdx.x * blockDim.x; int reduced_pe = device_penumber_inuse; if(idx < reduced_pe){ int delta = scanned_random_list_counter[idx]; for(int i=0; i<random_list_counter[idx]; i++){ int addValue = delta + i; int interResult = device_penumber_inuse*addValue/(PESIZE*device_penumber_inuse); device_list[interResult][(delta- (PESIZE*device_penumber_inuse/device_penumber_inuse)*interResult + i)] = temp_device_list[idx][i]; } } } struct smaller_than { __device__ bool operator()(const int x) { return (x < device_removed_space_list_end) == 0; } }; struct greater_than { __device__ bool operator()(int x) { return x > device_removed_move_list_end; } }; __global__ void printTempList(int temp_device_list[][PESIZE*FACTOR], int random_list_counter[PENUMBER]){ for(int i =0; i<device_penumber_inuse; i++){ for(int j=0; j<random_list_counter[i];j++){ printf("%d ",temp_device_list[i][j]); } printf("\n"); } } __global__ void printList(int * list,int *removed_list_end){ printf( "SIZE %d \n",removed_list_end - list) ; for(int i=0; i<removed_list_end - list; i++){ printf("%d ",list[i]); } printf("\n"); } __global__ void printListPre(int * list){ printf( "SIZE %d \n",device_removed_space_list_end) ; for(int i=0; i<device_removed_space_list_end; i++){ printf("%d ",list[i]); } printf("\n"); } __global__ void prepareNewGrid (int new_grid[][SIZE+2], int * move_list, int permutation[][PESIZE]){ int idx=blockIdx.x*blockDim.x+threadIdx.x; if(idx<device_removed_move_list_end){ int idxTox = idx / PESIZE; int idxToy = idx % PESIZE; int agent_position = permutation[idxTox][idxToy]; new_grid[agent_position/(SIZE+2)][agent_position%(SIZE+2)] = 0; } } __global__ void assign (int grid[][SIZE+2], int new_grid[][SIZE+2], int permutation[][PESIZE], int * move_list, int * space_list, int samples[SAM_NUM_VALUES]){ int idx=blockIdx.x*blockDim.x+threadIdx.x; if(idx < (device_removed_move_list_end) ){ int idxTox = idx / PESIZE; int idxToy = idx % PESIZE; int space_position = space_list[samples[idx]-1]; int agent_position = permutation[idxTox][idxToy]; new_grid[space_position/(SIZE+2)][space_position%(SIZE+2)] = grid[agent_position/(SIZE+2)][agent_position%(SIZE+2)]; } } __global__ void checkNumberDevice(int new_grid[][SIZE+2]){ int agentTypeOne = 0; int agentTypeTwo = 0; for(int i=0; i<SIZE+2; i++){ for(int j=0; j<SIZE+2; j++){ if(new_grid[i][j] == 1){ agentTypeOne +=1; } else if(new_grid[i][j] == 2){ agentTypeTwo += 1; } } } printf("Type One %d, Type Two %d\n",agentTypeOne, agentTypeTwo); } void checkNumber(int grid [SIZE+2][SIZE+2]){ int agentTypeOne = 0; int agentTypeTwo = 0; for(int i=0; i<SIZE+2; i++){ for(int j=0; j<SIZE+2; j++){ if(grid[i][j] == 1){ agentTypeOne +=1; } else if(grid[i][j] == 2){ agentTypeTwo += 1; } } } printf("Type One %d, Type Two %d\n",agentTypeOne, agentTypeTwo); } __global__ void devicePrintOutput(int device_list[][PESIZE]){ for(int i =0; i<device_penumber_inuse; i++){ //for(int j=0; j<random_list_counter[i];j++){ // printf("%d \n",i); for(int j=0; j<PESIZE;j++){ //printf("PE %d, index %d, value %d\n", i, j, device_list[i][j]); printf("%d ",device_list[i][j]); } printf("\n"); } } __global__ void initSamValue(int device_list[SAM_NUM_VALUES]){ int idx = threadIdx.x + blockIdx.x * blockDim.x; device_list[idx] = idx+1; } __global__ void printSamples(int samples[SAM_NUM_VALUES]){ for(int i=0; i<(device_removed_move_list_end); i++){ printf("%d %d \n",i,samples[i]); } } __global__ void printSamValue(int device_sam_list[SAM_NUM_VALUES]){ for(int i=0; i<(device_pe_inuse*SAM_PESIZE); i++){ printf("%d ",device_sam_list[i]); } } int host_grid[SIZE+2][SIZE+2]; int main(int argc, char* argv[]) { struct timespec start, stop; double accum; int (*device_grid)[SIZE + 2]; int (*device_newGrid)[SIZE + 2]; int (*device_permutation_list)[PESIZE]; int (*device_temp_permutation_list)[PESIZE*FACTOR]; int (*random_list_counter); int (*scanned_random_list_counter); int (*move_list); int (*removed_move_list_end); int (*space_list); int (*removed_space_list_end); int (*samples); int (*device_sam_list); srand(SRAND_VALUE); size_t bytes = sizeof(int)*(SIZE + 2)*(SIZE + 2); myCurandState_t (*devState)[PESIZE]; myCurandState_t (*devStateHyper); myCurandState_t (*devStateSam); hipMalloc((void**)&devState, TOTAL * sizeof(myCurandState_t)); hipMalloc(&random_list_counter, sizeof(int)*(PENUMBER)); hipMalloc(&scanned_random_list_counter, sizeof(int)*(PENUMBER)); hipMalloc(&device_sam_list, sizeof(int)*(SAM_PESIZE)*(SAM_PENUMBER)); hipMalloc((void**)&device_grid, bytes); hipMalloc((void**)&device_newGrid, bytes); hipMalloc((void**)&device_permutation_list, sizeof(int)*(TOTAL)); hipMalloc((void**)&device_temp_permutation_list, sizeof(int)*(agentNumber)*FACTOR); hipMalloc(&move_list, sizeof(int)*(SIZE + 2)*(SIZE + 2)); hipMalloc(&space_list, sizeof(int)*(SIZE + 2)*(SIZE + 2)); hipMalloc(&samples, sizeof(int)*(SAM_PESIZE)*(SAM_PENUMBER)); hipMalloc(&devStateHyper, SAM_PENUMBER * sizeof(myCurandState_t)); hipMalloc(&devStateSam, SAM_PENUMBER * sizeof(myCurandState_t)); #ifdef DEBUG hipDeviceSynchronize(); cudaCheckError(); #endif int blockSizeVerPermu = numThreadsPerBlock / PESIZE; dim3 blockSizePermu(blockSizeVerPermu, PESIZE, 1); hipLaunchKernelGGL(( initCurand), dim3((ceil(TOTAL/double(numThreadsPerBlock)))),dim3(blockSizePermu), 0, 0, devState); #ifdef DEBUG hipDeviceSynchronize(); cudaCheckError(); #endif for (int i=0; i<(SIZE+2); i++){ for (int j=0; j<SIZE+2; j++){ host_grid[i][j] = 0; } } int blockSizePerDim = sqrt(numThreadsPerBlock); int gridSizePerDim = (SIZE + 2) / blockSizePerDim; dim3 blockSize(blockSizePerDim, blockSizePerDim, 1); dim3 gridSize(gridSizePerDim, gridSizePerDim, 1); initPos(host_grid); //printOutput(host_grid); #ifdef DEBUG hipDeviceSynchronize(); cudaCheckError(); #endif hipMemcpy(device_grid,host_grid,bytes,hipMemcpyHostToDevice); hipMemcpy(device_newGrid,host_grid,bytes,hipMemcpyHostToDevice); #ifdef DEBUG hipDeviceSynchronize(); cudaCheckError(); #endif hipLaunchKernelGGL(( initSamCurand), dim3(((double)SAM_PENUMBER / SAM_numThreadsPerBlock)),dim3(SAM_numThreadsPerBlock), 0, 0, devStateSam); #ifdef DEBUG hipDeviceSynchronize(); cudaCheckError(); #endif update << <gridSize, blockSize >> >(device_grid, device_newGrid,move_list,space_list); if( clock_gettime( CLOCK_REALTIME, &start) == -1 ) { perror( "clock gettime" ); exit( EXIT_FAILURE ); } cached_allocator alloc; int removed_list_number = 0; int space_list_number = 0; for(int i=0; i<ITERATIONS; i++){ #ifdef DEBUG hipDeviceSynchronize(); cudaCheckError(); #endif compute << <gridSize, blockSize >> >(device_grid, device_newGrid, move_list, space_list, i); #ifdef DEBUG hipDeviceSynchronize(); cudaCheckError(); #endif removed_move_list_end = thrust::remove(thrust::hip::par(alloc), move_list, move_list + ((SIZE+2)*(SIZE+2)), 0); #ifdef DEBUG hipDeviceSynchronize(); cudaCheckError(); #endif removed_list_number = removed_move_list_end - move_list; hipMemcpyToSymbol(device_removed_move_list_end, &removed_list_number, sizeof(int)); int TwoDimGridSize = ceil(removed_list_number/double(numThreadsPerBlock)); #ifdef DEBUG hipDeviceSynchronize(); cudaCheckError(); #endif removed_space_list_end = thrust::remove(thrust::hip::par(alloc), space_list, space_list + ((SIZE+2)*(SIZE+2)), 0); space_list_number = removed_space_list_end - space_list; #ifdef DEBUG hipDeviceSynchronize(); cudaCheckError(); #endif hipMemcpyToSymbol(device_removed_space_list_end, &space_list_number, sizeof(int)); int penumberinuse = ceil(removed_list_number/ double(PESIZE)); hipMemcpyToSymbol(device_penumber_inuse, &penumberinuse, sizeof(int)); hipLaunchKernelGGL(( generateList), dim3(ceil(space_list_number/double(numThreadsPerBlock))),dim3(blockSizePermu), 0, 0, device_permutation_list); int sam_num_inuse = space_list_number; int sam_pe_inuse = ceil(double(sam_num_inuse) / SAM_PESIZE); hipMemcpyToSymbol(device_pe_inuse, &sam_pe_inuse, sizeof(int)); hipMemcpyToSymbol(device_num_inuse, &sam_num_inuse, sizeof(int)); hipLaunchKernelGGL(( clearSamples), dim3(ceil(sam_pe_inuse*SAM_PESIZE / (double)SAM_numThreadsPerBlock)), dim3(SAM_numThreadsPerBlock), 0, 0, samples); #ifdef DEBUG hipDeviceSynchronize(); cudaCheckError(); #endif int sam_gridSize = ceil((double)sam_pe_inuse / SAM_numThreadsPerBlock); hipLaunchKernelGGL(( initSamValue), dim3(ceil(double(sam_num_inuse) / SAM_numThreadsPerBlock)), dim3(SAM_numThreadsPerBlock), 0, 0, device_sam_list); #ifdef DEBUG hipDeviceSynchronize(); cudaCheckError(); #endif hipLaunchKernelGGL(( sampleP), dim3(sam_gridSize), dim3(SAM_numThreadsPerBlock), 0, 0, devStateSam, devStateHyper, device_sam_list, samples, removed_list_number, 0, sam_pe_inuse-1); #ifdef DEBUG hipDeviceSynchronize(); cudaCheckError(); #endif int OneDimGridSize = ceil(penumberinuse / double(numThreadsPerBlock)); hipLaunchKernelGGL(( clearCounter), dim3(OneDimGridSize),dim3((numThreadsPerBlock)), 0, 0, random_list_counter); #ifdef DEBUG hipDeviceSynchronize(); cudaCheckError(); #endif hipLaunchKernelGGL(( sendToRandom), dim3(ceil(removed_list_number/double(numThreadsPerBlock))),dim3(blockSizePermu) , 0, 0, devState,move_list,device_temp_permutation_list,random_list_counter); #ifdef DEBUG hipDeviceSynchronize(); cudaCheckError(); #endif hipLaunchKernelGGL(( sortList), dim3(OneDimGridSize),dim3((numThreadsPerBlock)), 0, 0, device_temp_permutation_list,random_list_counter); #ifdef DEBUG hipDeviceSynchronize(); cudaCheckError(); #endif thrust::exclusive_scan(thrust::hip::par(alloc), random_list_counter, random_list_counter + penumberinuse, scanned_random_list_counter); hipLaunchKernelGGL(( randomPermute), dim3(OneDimGridSize),dim3((numThreadsPerBlock)), 0, 0, devState,device_temp_permutation_list,random_list_counter); #ifdef DEBUG hipDeviceSynchronize(); cudaCheckError(); #endif #ifdef DEBUG hipDeviceSynchronize(); cudaCheckError(); #endif hipLaunchKernelGGL(( recoverSize), dim3(OneDimGridSize),dim3((numThreadsPerBlock)), 0, 0, device_permutation_list, device_temp_permutation_list,random_list_counter,scanned_random_list_counter); thrust::remove(thrust::device, samples, samples + sam_pe_inuse*SAM_PESIZE , 0); #ifdef DEBUG hipDeviceSynchronize(); cudaCheckError(); #endif hipLaunchKernelGGL(( prepareNewGrid) , dim3(TwoDimGridSize), dim3(numThreadsPerBlock) , 0, 0, device_newGrid, move_list,device_permutation_list); #ifdef DEBUG hipDeviceSynchronize(); cudaCheckError(); #endif hipLaunchKernelGGL(( assign) , dim3(TwoDimGridSize), dim3(numThreadsPerBlock), 0, 0, device_grid, device_newGrid, device_permutation_list, move_list, space_list,samples); #ifdef DEBUG hipDeviceSynchronize(); cudaCheckError(); #endif update << <gridSize, blockSize >> >(device_grid, device_newGrid,move_list,space_list); #ifdef DEBUG hipDeviceSynchronize(); cudaCheckError(); #endif } if( clock_gettime( CLOCK_REALTIME, &stop) == -1 ) { perror( "clock gettime" ); exit( EXIT_FAILURE ); } accum = ( stop.tv_sec - start.tv_sec ) * 1e6 + ( stop.tv_nsec - start.tv_nsec ) / 1e3; printf( "%.1f Time is %.5f s \n",float(OCCUPANCY), accum / 1e6); hipMemcpy(host_grid, device_newGrid, bytes, hipMemcpyDeviceToHost); //printOutput(host_grid); //checkNumber(host_grid); hipFree(device_grid); hipFree(device_newGrid); hipFree(device_permutation_list); hipFree(device_temp_permutation_list); hipFree(move_list); hipFree(random_list_counter); hipFree(scanned_random_list_counter); hipFree(space_list); hipFree(devState); hipFree(samples); hipFree(devStateSam); hipFree(devStateHyper); hipFree(device_sam_list); return 0; } void printOutput(int grid [SIZE+2][SIZE+2] ){ //output grid from 1 t o SIZE+1 for (int i=1; i<SIZE+1; i++){ for (int j=1; j<SIZE+1; j++){ printf("%d ",grid[i][j]); //if(i%SIZE) } printf("\n"); } printf("\n"); } void initPos(int grid [SIZE+2][SIZE+2]){ // type 1 and 2 to grid randomly int row; int column; for(int i=0; i<agentTypeOneNumber; i++){ do{ row = random_location(); column = random_location(); }while(grid[row][column] != 0); grid[row][column] = 1; } for(int i=0; i<agentTypeTwoNumber; i++){ do{ row = random_location(); column = random_location(); }while(grid[row][column] != 0); grid[row][column] = 2; } } int random_location() { //generate a random number from 1 to SIZE+1 int r; r = rand(); return (r % (SIZE) +1 ); }
acae645ace0671ecb57baa0427dac62e9beaed70.cu
#include <stdio.h> #include <stdlib.h> #include <cuda_runtime.h> #include <curand.h> #include <math.h> #include <curand_kernel.h> #include <time.h> #include <unistd.h> #include <thrust/scan.h> #include <thrust/remove.h> #include <thrust/execution_policy.h> #include <iostream> #include "custom_temporary_allocation.cuh" #include "parameter.cuh" using namespace std; typedef curandStatePhilox4_32_10_t myCurandState_t; //#define DEBUG #define cudaCheckError() { \ cudaError_t e=cudaGetLastError(); \ if(e!=cudaSuccess) { \ printf("Cuda failure %s:%d: '%s'\n",__FILE__,__LINE__,cudaGetErrorString(e)); \ exit(0); \ } \ } #define FACTOR 5 #define ITERATIONS 100 #define TOTAL (SIZE * SIZE) #define GRIDSIZE (SIZE+2) #define GRIDTOTAL (SIZE+2)*(SIZE+2) #define SRAND_VALUE 200 #define PENUMBER (TOTAL/PESIZE) #define SAM_NUM_VALUES ((SIZE+2)*(SIZE+2)) #define SAM_PENUMBER (SAM_NUM_VALUES / SAM_PESIZE) const int agentTypeOneNumber = agentNumber / 2; const int agentTypeTwoNumber = agentNumber - agentTypeOneNumber; const int happinessThreshold = 5; void printOutput(int [SIZE+2][SIZE+2]); void initPos(int grid [SIZE+2][SIZE+2]); int random_location(); __device__ static const int FAK_LEN = 1024; // length of factorial table __device__ int hyp_n_last[SAM_PENUMBER], hyp_m_last[SAM_PENUMBER], hyp_N_last[SAM_PENUMBER]; // Last values of parameters __device__ int hyp_mode[SAM_PENUMBER], hyp_mp[SAM_PENUMBER]; // Mode, mode+1 __device__ int hyp_bound[SAM_PENUMBER]; // Safety upper bound __device__ double hyp_a[SAM_PENUMBER]; // hat center __device__ double hyp_h[SAM_PENUMBER]; // hat width __device__ double hyp_fm[SAM_PENUMBER]; // Value at mode __device__ int device_pe_inuse; __device__ int device_num_inuse; __device__ int device_removed_move_list_end; __device__ int device_removed_space_list_end; __device__ int device_penumber_inuse; __device__ int device_reduced_pe_position; __device__ float getnextrand(myCurandState_t *state){ return (curand_uniform(state)); } __global__ void initSamCurand(myCurandState_t state[SAM_PENUMBER]){ int idx = threadIdx.x + blockIdx.x * blockDim.x; if(idx < SAM_PENUMBER){ curand_init(idx, 0 , 0, &state[idx]); } } __device__ const double C0 = 0.918938533204672722, // ln(sqrt(2*pi)) C1 = 1./12., C3 = -1./360.; __device__ double fac_table[FAK_LEN]; __device__ int initialized = 0; __device__ double LnFac(int n) { if (n < FAK_LEN) { if (n <= 1) { if (n < 0) printf("Parameter negative in LnFac function\n"); return 0; } if (!initialized) { // first time. Must initialize table // make table of ln(n!) double sum = fac_table[0] = 0.; for (int i=1; i<FAK_LEN; i++) { sum += log(double(i)); fac_table[i] = sum; } initialized = 1; } return fac_table[n]; } // not found in table. use Stirling approximation double n1, r; n1 = n; r = 1. / n1; return (n1 + 0.5)*log(n1) - n1 + C0 + r*(C1 + r*r*C3); //return logf(n); } __device__ double fc_lnpk(int k, int L, int m, int n) { // subfunction used by hypergeometric and Fisher's noncentral hypergeometric distribution return(LnFac(k) + LnFac(m - k) + LnFac(n - k) + LnFac(L + k)); } __device__ int HypInversionMod (myCurandState_t stateHyper[SAM_PENUMBER],int n, int m, int N, int idx) { /* Subfunction for Hypergeometric distribution. Assumes 0 <= n <= m <= N/2. Overflow protection is needed when N > 680 or n > 75. Hypergeometric distribution by inversion method, using down-up search starting at the mode using the chop-down technique. This method is faster than the rejection method when the variance is low. */ //int idx = threadIdx.x + blockIdx.x * blockDim.x; // Sampling int I; // Loop counter int L = N - m - n; // Parameter double modef; // mode, float double Mp, np; // m + 1, n + 1 double p; // temporary double U; // uniform random double c, d; // factors in iteration double divisor; // divisor, eliminated by scaling double k1, k2; // float version of loop counter double L1 = L; // float version of L Mp = (double)(m + 1); np = (double)(n + 1); if (N != hyp_N_last[idx] || m != hyp_m_last[idx] || n != hyp_n_last[idx]) { // set-up when parameters have changed hyp_N_last[idx] = N; hyp_m_last[idx] = m; hyp_n_last[idx] = n; p = Mp / (N + 2.); modef = np * p; // mode, real hyp_mode[idx] = (int)modef; // mode, integer if (hyp_mode[idx] == modef && p == 0.5) { hyp_mp[idx] = hyp_mode[idx]--; } else { hyp_mp[idx] = hyp_mode[idx] + 1; } // mode probability, using log factorial function // (may read directly from fac_table if N < FAK_LEN) hyp_fm[idx] = exp(LnFac(N-m) - LnFac(L+hyp_mode[idx]) - LnFac(n-hyp_mode[idx]) + LnFac(m) - LnFac(m-hyp_mode[idx]) - LnFac(hyp_mode[idx]) - LnFac(N) + LnFac(N-n) + LnFac(n) ); // safety bound - guarantees at least 17 significant decimal digits // bound = min(n, (int)(modef + k*c')) hyp_bound[idx] = (int)(modef + 11. * sqrt(modef * (1.-p) * (1.-n/(double)N)+1.)); if (hyp_bound[idx] > n) hyp_bound[idx] = n; } // loop until accepted //int max_iterations = 1000; while(1) { // if(!(max_iterations--)) // break; U = getnextrand(&stateHyper[idx]); // uniform random number to be converted //printf(" U is %lf\n",U); // start chop-down search at mode if ((U -= hyp_fm[idx]) <= 0.) return(hyp_mode[idx]); c = d = hyp_fm[idx]; // alternating down- and upward search from the mode k1 = hyp_mp[idx] - 1; k2 = hyp_mode[idx] + 1; for (I = 1; I <= hyp_mode[idx]; I++, k1--, k2++) { // if(!(max_iterations--)) // break; // Downward search from k1 = hyp_mp - 1 divisor = (np - k1)*(Mp - k1); // Instead of dividing c with divisor, we multiply U and d because // multiplication is faster. This will give overflow if N > 800 U *= divisor; d *= divisor; c *= k1 * (L1 + k1); if ((U -= c) <= 0.) return(hyp_mp[idx] - I - 1); // = k1 - 1 //printf("Line 228 I %d \n",I); // Upward search from k2 = hyp_mode + 1 divisor = k2 * (L1 + k2); // re-scale parameters to avoid time-consuming division U *= divisor; c *= divisor; d *= (np - k2) * (Mp - k2); if ((U -= d) <= 0.) return(hyp_mode[idx] + I); // = k2 // Values of n > 75 or N > 680 may give overflow if you leave out this.. // overflow protection // if (U > 1.E100) {U *= 1.E-100; c *= 1.E-100; d *= 1.E-100;} } // Upward search from k2 = 2*mode + 1 to bound for (k2 = I = hyp_mp[idx] + hyp_mode[idx]; I <= hyp_bound[idx]; I++, k2++) { //if(!(max_iterations--)) // break; divisor = k2 * (L1 + k2); U *= divisor; d *= (np - k2) * (Mp - k2); if ((U -= d) <= 0.) return(I); // more overflow protection // if (U > 1.E100) {U *= 1.E-100; d *= 1.E-100;} } } } __device__ int HypRatioOfUnifoms (myCurandState_t stateHyper[SAM_PENUMBER], int n, int m, int N, int idx) { /* Subfunction for Hypergeometric distribution using the ratio-of-uniforms rejection method. This code is valid for 0 < n <= m <= N/2. The computation time hardly depends on the parameters, except that it matters a lot whether parameters are within the range where the LnFac function is tabulated. Reference: E. Stadlober: "The ratio of uniforms approach for generating discrete random variates". Journal of Computational and Applied Mathematics, vol. 31, no. 1, 1990, pp. 181-189. */ //int idx = threadIdx.x + blockIdx.x * blockDim.x; const double SHAT1 = 2.943035529371538573; // 8/e const double SHAT2 = 0.8989161620588987408; // 3-sqrt(12/e) int L; // N-m-n int mode; // mode int k; // integer sample double x; // real sample double rNN; // 1/(N*(N+2)) double my; // mean double var; // variance double u; // uniform random double lf; // ln(f(x)) L = N - m - n; if (hyp_N_last[idx] != N || hyp_m_last[idx] != m || hyp_n_last[idx] != n) { hyp_N_last[idx] = N; hyp_m_last[idx] = m; hyp_n_last[idx] = n; // Set-up rNN = 1. / ((double)N*(N+2)); // make two divisions in one my = (double)n * m * rNN * (N+2); // mean = n*m/N mode = (int)(double(n+1) * double(m+1) * rNN * N); // mode = floor((n+1)*(m+1)/(N+2)) var = (double)n * m * (N-m) * (N-n) / ((double)N*N*(N-1));// variance hyp_h[idx] = sqrt(SHAT1 * (var+0.5)) + SHAT2; // hat width hyp_a[idx] = my + 0.5; // hat center hyp_fm[idx] = fc_lnpk(mode, L, m, n); // maximum hyp_bound[idx] = (int)(hyp_a[idx] + 4.0 * hyp_h[idx]); // safety-bound if (hyp_bound[idx] > n) hyp_bound[idx] = n; } while(1) { u = getnextrand(&stateHyper[idx]); // uniform random number if (u == 0) continue; // avoid division by 0 x = hyp_a[idx] + hyp_h[idx] * (getnextrand(&stateHyper[idx])-0.5) / u; // generate hat distribution if (x < 0. || x > 2E9) continue; // reject, avoid overflow k = (int)x; if (k > hyp_bound[idx]) continue; // reject if outside range lf = hyp_fm[idx] - fc_lnpk(k,L,m,n); // ln(f(k)) if (u * (4.0 - u) - 3.0 <= lf) break; // lower squeeze accept if (u * (u-lf) > 1.0) continue; // upper squeeze reject if (2.0 * log(u) <= lf) break; // final acceptance } return k; } __device__ int Hypergeometric (myCurandState_t stateHyper[SAM_PENUMBER], int n, int m, int N, int idx) { /* This function generates a random variate with the hypergeometric distribution. This is the distribution you get when drawing balls without replacement from an urn with two colors. n is the number of balls you take, m is the number of red balls in the urn, N is the total number of balls in the urn, and the return value is the number of red balls you get. This function uses inversion by chop-down search from the mode when parameters are small, and the ratio-of-uniforms method when the former method would be too slow or would give overflow. */ int fak, addd; // used for undoing transformations int x; // result hyp_n_last[idx] = hyp_m_last[idx] = hyp_N_last[idx] = -1; // Last values of hypergeometric parameters // check if parameters are valid if (n > N || m > N || n < 0 || m < 0) { printf("Parameter out of range in hypergeometric function n %ld m %ld N %ld idx %d\n",n,m,N,idx); printf("Parameter out of range in hypergeometric function %d,%d,%d,%d\n", n > N, m > N, n < 0, m < 0); return 0; } // symmetry transformations fak = 1; addd = 0; if (m > N/2) { // invert m m = N - m; fak = -1; addd = n; } if (n > N/2) { // invert n n = N - n; addd += fak * m; fak = - fak; } if (n > m) { // swap n and m x = n; n = m; m = x; } // cases with only one possible result end here if (n == 0) return addd; //------------------------------------------------------------------ // choose method //------------------------------------------------------------------ if (N > 680 || n > 70) { // use ratio-of-uniforms method x = HypRatioOfUnifoms (stateHyper, n, m, N,idx); } else { // inversion method, using chop-down search from mode x = HypInversionMod (stateHyper, n, m, N,idx); } // undo symmetry transformations return x * fak + addd; } __global__ void clearSamples(int samples[SAM_NUM_VALUES]){ int idx = threadIdx.x + blockIdx.x * blockDim.x; if(idx < (SAM_NUM_VALUES)){ samples[idx] = 0; } } __device__ void methodA(myCurandState_t state[SAM_PENUMBER],int N, int n, int num_sample, int initialTocurrent,int device_list[SAM_NUM_VALUES],int samples[SAM_NUM_VALUES]) { //ASSERT_LEQ(n, N); int idx = threadIdx.x + blockIdx.x * blockDim.x; // Initialization int sample = 0; double Nreal = (double) N; double top = Nreal - n; // Main loop while (n >= 2) { int S = 0; double V = getnextrand(&state[idx]); double quot = top / Nreal; while (quot > V) { S++; top -= 1.0; Nreal -= 1.0; quot = (quot * top) / Nreal; } // Skip over next S records and select the following one sample += S + 1; //samples[idx][num_sample++] = sample + initialTocurrent; samples[idx*SAM_PESIZE + num_sample++] = device_list[idx*SAM_PESIZE + sample + initialTocurrent-1]; //callback(sample); Nreal -= 1.0; n--; } if (n == 1) { int S = round(Nreal) * getnextrand(&state[idx]); sample += S + 1; //samples[idx][num_sample++] = sample + initialTocurrent; samples[idx*SAM_PESIZE + num_sample++] = device_list[idx*SAM_PESIZE + sample + initialTocurrent-1]; //callback(sample); } } // Sampling method D from Vitter et al. // // \param N Size of population. // \param n Number of samples. // \param gen Uniform random variate generator. // \param samples Function to process sample. // __device__ void sample(myCurandState_t state[SAM_PENUMBER], int N, int n, int device_list[SAM_NUM_VALUES], int samples[SAM_NUM_VALUES]) { //ASSERT_LEQ(n, N); int idx = threadIdx.x + blockIdx.x * blockDim.x; int initialN = N; // Initialization int sample = 0; int num_sample = 0; double nreal = (double) n; double ninv = 1.0 / nreal; double Nreal = (double) N; double Vprime = exp(log(getnextrand(&state[idx])) * ninv); int qu1 = N + 1 - n; double qu1real = Nreal + 1.0 - nreal; int negalphainv = -13; int threshold = n * (-negalphainv); int S = 0; // Main loop while (n > 1 && threshold < N) { double nmin1inv = 1.0 / (nreal - 1.0); double negSreal = 0.0; while (true) { // Step D2: Generate U and X double X; while (true) { X = Nreal * (1.0 - Vprime); S = X; if (S < qu1) break; Vprime = exp(log(getnextrand(&state[idx])) * ninv); } double U = getnextrand(&state[idx]); negSreal = -(double)S; // Step D3: Accept? double y1 = exp(log(U * Nreal / qu1real) * nmin1inv); Vprime = y1 * (-X / Nreal + 1.0) * (qu1real / (negSreal + qu1real)); if (Vprime <= 1.0) break; // Accept! // Step D4: Accept? double y2 = 1.0; double top = Nreal - 1.0; double bottom; double limit; if (n - 1 > S) { bottom = Nreal - nreal; limit = N - S; } else { bottom = negSreal + Nreal - 1.0; limit = qu1; } for (int t = N; t > limit; t--) { y2 = (y2 * top) / bottom; top -= 1.0; bottom -= 1.0; } if (Nreal / (Nreal - X) >= y1 * exp(log(y2) * nmin1inv)) { // Accept! Vprime = exp(log(getnextrand(&state[idx])) * nmin1inv); break; } Vprime = exp(log(getnextrand(&state[idx])) * ninv); } // Skip over next S records and select the following one sample += S + 1; //samples[idx][num_sample++] = sample; samples[idx*SAM_PESIZE + num_sample++] = device_list[idx*SAM_PESIZE +sample-1]; //callback(sample); N = (N - 1) - S; Nreal = (Nreal - 1.0) + negSreal; n--; nreal -= 1.0; ninv = nmin1inv; qu1 -= S; qu1real += negSreal; threshold += negalphainv; } if (n > 1) { int currentN = N; methodA(state, N, n, num_sample, initialN - currentN, device_list,samples); //samples[num_sample++] = sample + initialN - currentN; //methodA(N, n, [&](int sample) { // callback(sample + initialN - currentN); //}); } else if (n == 1) { S = N * Vprime; // Skip over next S records and select the following one sample += S + 1; //samples[idx][num_sample++] = sample; samples[idx*SAM_PESIZE + num_sample++] = device_list[idx*SAM_PESIZE +sample-1]; //callback(sample); } } __global__ void sampleP(myCurandState_t state[SAM_PENUMBER], myCurandState_t stateHyper[SAM_PENUMBER], int device_list[SAM_NUM_VALUES],int samples[SAM_NUM_VALUES], int n, int j, int k) { int idx = threadIdx.x + blockIdx.x * blockDim.x; //idx += 1; if(idx < device_pe_inuse){ int seed = 1; //int counter = 0; int m,x; while(j - k != 0) { curand_init(seed, 0 , 0, &stateHyper[idx]); m = floor( (j+k)/2.0 ); //printf("sampleP1 n %d idx %d m %d\n",n,idx,m); //__device__ int Hypergeometric (curandState stateHyper[PENUMBER], //int n, int m, int N, int idx) { /* This function generates a random variate with the hypergeometric distribution. This is the distribution you get when drawing balls without replacement from an urn with two colors. n is the number of balls you take, m is the number of red balls in the urn, N is the total number of balls in the urn, and the return value is the number of red balls you get. */ //printf("would call Hypergeometric(stateHyper, %d, %d, %d, %d)\n", n, (m-j)*PESIZE + 1, (k-j)*PESIZE + 1, idx); //printf("j is now %d, k is %d, m is %d, sums are %d and %d\n", j, k, m, k - (j - 1), m - (j - 1)); if(k != device_pe_inuse - 1){ x = Hypergeometric(stateHyper, n, (m-(j-1))*SAM_PESIZE, (k-(j-1))*SAM_PESIZE, idx); } else{ x = Hypergeometric(stateHyper, n, (m-(j-1))*SAM_PESIZE, ((k-1)-(j-1))*SAM_PESIZE + device_num_inuse % SAM_PESIZE, idx); } //printf("sampleP2 n %d idx %d x %d\n",n,idx,x); //int x = m; if(idx <= m) { n = x; k = m; seed = seed * 2; } else { n = n-x; j = m + 1; seed = seed * 2 + 1; } } //printf("sample n %d \n",n); if(idx != device_pe_inuse - 1 ) { //printf("idx %d sampling %d values\n", idx, n); sample(state, SAM_PESIZE, n, device_list, samples); } else { //printf("n > PESIZE %d \n",n); sample(state, device_num_inuse % SAM_PESIZE, n, device_list, samples); } /*if(n <= PESIZE ) { //printf("idx %d sampling %d values\n", idx, n); sample(state, PESIZE, n, device_list, samples); } else { printf("n > PESIZE %d \n",n); }*/ } } //__global__ void print_device_reduced_pe_position(){ //printf("reduced_pe_position %d \n",( int( 0.5 + ceil((float)device_reduced_pe_position / (PESIZE) )) ) ); //printf("device_reduced_pe_position %d \n",(device_reduced_pe_position ) ); //} __global__ void initCurand(myCurandState_t state[][PESIZE]){ int idx = threadIdx.x + blockIdx.x * blockDim.x; int idy=blockIdx.y*blockDim.y+threadIdx.y; if(idx < PENUMBER && idy<PESIZE){ curand_init(idx*(PESIZE)+idy,0 , 0, &state[idx][idy]); } } __global__ void compute(int grid[][SIZE+2], int new_grid[][SIZE+2], int * move_list, int * space_list, int iteration){ int idx=blockIdx.x*blockDim.x+threadIdx.x; int idy=blockIdx.y*blockDim.y+threadIdx.y; int sameTypeCount=0; int current_id = idx*(SIZE+2)+idy; if(grid[idx][idy] != 0){ int currentType = grid[idx][idy]; if(grid[idx-1][idy-1] == currentType){ sameTypeCount += 1; } if(grid[idx-1][idy] == currentType){ sameTypeCount += 1; } if(grid[idx-1][idy+1] == currentType){ sameTypeCount += 1; } if(grid[idx][idy-1] == currentType){ sameTypeCount += 1; } if(grid[idx][idy+1] == currentType){ sameTypeCount += 1; } if(grid[idx+1][idy-1] == currentType){ sameTypeCount += 1; } if(grid[idx+1][idy] == currentType){ sameTypeCount += 1; } if(grid[idx+1][idy+1] == currentType){ sameTypeCount += 1; } if(sameTypeCount < happinessThreshold){ move_list[current_id] = current_id; space_list[current_id] = current_id; } } else if(idx != 0 && idy !=0 && idx != (SIZE+1) && idy != (SIZE+1) ){ space_list[current_id] = current_id; } } __global__ void update (int grid[][SIZE+2], int new_grid[][SIZE+2], int * move_list, int * space_list){ int idx=blockIdx.x*blockDim.x+threadIdx.x; int idy=blockIdx.y*blockDim.y+threadIdx.y; grid[idy][idx] = new_grid[idy][idx]; move_list[idx*(SIZE+2)+idy] = 0; space_list[idx*(SIZE+2)+idy] = 0; } __global__ void sendToRandomPerpe(myCurandState_t state[][PESIZE],int device_list[SAM_NUM_VALUES], int temp_device_list[][PESIZE*FACTOR],int random_list_counter[PENUMBER]){ int idx = threadIdx.x + blockIdx.x * blockDim.x; if(idx < device_penumber_inuse -1 ){ for(int i=0; i < PESIZE; i++ ){ float r = getnextrand(&state[idx][0]); int random_position = r * (device_penumber_inuse-1); int acquired_position = atomicAdd(&random_list_counter[random_position],1); temp_device_list[random_position][acquired_position] = device_list[idx*PESIZE+i]; } } else if(idx == device_penumber_inuse - 1 ){ for(int i=0; i < device_removed_move_list_end % PESIZE; i++ ){ float r = getnextrand(&state[idx][0]); int random_position = r * (device_penumber_inuse-1); int acquired_position = atomicAdd(&random_list_counter[random_position],1); temp_device_list[random_position][acquired_position] = device_list[idx*PESIZE+i]; } } } __global__ void sendToRandom(myCurandState_t state[][PESIZE],int device_list[SAM_NUM_VALUES], int temp_device_list[][PESIZE*FACTOR],int random_list_counter[PENUMBER]){ int idx = threadIdx.x + blockIdx.x * blockDim.x; int idy = blockIdx.y * blockDim.y + threadIdx.y; if(idx*PESIZE +idy < device_removed_move_list_end ){ float r = getnextrand(&state[idx][idy]); int random_position = r * (device_penumber_inuse-1); int acquired_position = atomicAdd(&random_list_counter[random_position],1); temp_device_list[random_position][acquired_position] = device_list[idx*PESIZE+idy]; } } __global__ void clearCounter(int random_list_counter[PENUMBER]){ int idx = threadIdx.x + blockIdx.x * blockDim.x; if(idx < device_penumber_inuse){ random_list_counter[idx] = 0; } } __global__ void generateList(int device_list[][PESIZE]){ int idx = threadIdx.x + blockIdx.x * blockDim.x; int idy = blockIdx.y * blockDim.y + threadIdx.y; if(idx*PESIZE +idy < device_removed_space_list_end ){ device_list[idx][idy] = idx*PESIZE +idy; } } static __device__ void swap(int *data, int x, int y) { int temp = data[x]; data[x] = data[y]; data[y] = temp; } static __device__ int partition(int *data, int left, int right) { const int mid = left + (right - left) / 2; const int pivot = data[(mid)]; swap(data, (mid), (left)); int i = left + 1; int j = right; while (i <= j) { while (i <= j && data[(i)] <= pivot) { i++; } while (i <= j && data[(j)] > pivot) { j--; } if (i < j) { swap(data, (i), (j)); } } swap(data, (i - 1), (left)); return i - 1; } typedef struct sort_data { int left; int right; } sort_data; __device__ void quicksort_seq(int *data, int right) { int left = 0; if(left == right) return; if (left > right) { right = 1 + right; } int stack_size = 0; sort_data stack[PESIZE*FACTOR]; stack[stack_size++] = { left, right }; while (stack_size > 0) { int curr_left = stack[stack_size - 1].left; int curr_right = stack[stack_size - 1].right; stack_size--; if (curr_left < curr_right) { int part = partition(data, curr_left, curr_right); stack[stack_size++] = {curr_left, part - 1}; stack[stack_size++] = {part + 1, curr_right}; } } } __global__ void sortList(int temp_device_list[][PESIZE*FACTOR], int random_list_counter[PENUMBER]){ int idx = threadIdx.x + blockIdx.x * blockDim.x; if(idx < device_penumber_inuse){ int number = random_list_counter[idx]; if(number != 0){ quicksort_seq(temp_device_list[idx], number - 1 ); } } } __global__ void randomPermute(myCurandState_t state[][PESIZE], int temp_device_list[][PESIZE*FACTOR], int random_list_counter[PENUMBER]){ int idx = threadIdx.x + blockIdx.x * blockDim.x; int reduced_pe = device_penumber_inuse; if(idx < reduced_pe){ for (int i = 0; i < random_list_counter[idx]; i++){ float r = getnextrand(&state[idx][0]); int j = r * (random_list_counter[idx]-1); int temp = temp_device_list[idx][i] ; temp_device_list[idx][i] = temp_device_list[idx][j] ; temp_device_list[idx][j] = temp; } } } __global__ void recoverSize(int device_list[][PESIZE], int temp_device_list[][PESIZE*FACTOR],int random_list_counter[PENUMBER], int scanned_random_list_counter[PENUMBER]){ int idx = threadIdx.x + blockIdx.x * blockDim.x; int reduced_pe = device_penumber_inuse; if(idx < reduced_pe){ int delta = scanned_random_list_counter[idx]; for(int i=0; i<random_list_counter[idx]; i++){ int addValue = delta + i; int interResult = device_penumber_inuse*addValue/(PESIZE*device_penumber_inuse); device_list[interResult][(delta- (PESIZE*device_penumber_inuse/device_penumber_inuse)*interResult + i)] = temp_device_list[idx][i]; } } } struct smaller_than { __device__ bool operator()(const int x) { return (x < device_removed_space_list_end) == 0; } }; struct greater_than { __device__ bool operator()(int x) { return x > device_removed_move_list_end; } }; __global__ void printTempList(int temp_device_list[][PESIZE*FACTOR], int random_list_counter[PENUMBER]){ for(int i =0; i<device_penumber_inuse; i++){ for(int j=0; j<random_list_counter[i];j++){ printf("%d ",temp_device_list[i][j]); } printf("\n"); } } __global__ void printList(int * list,int *removed_list_end){ printf( "SIZE %d \n",removed_list_end - list) ; for(int i=0; i<removed_list_end - list; i++){ printf("%d ",list[i]); } printf("\n"); } __global__ void printListPre(int * list){ printf( "SIZE %d \n",device_removed_space_list_end) ; for(int i=0; i<device_removed_space_list_end; i++){ printf("%d ",list[i]); } printf("\n"); } __global__ void prepareNewGrid (int new_grid[][SIZE+2], int * move_list, int permutation[][PESIZE]){ int idx=blockIdx.x*blockDim.x+threadIdx.x; if(idx<device_removed_move_list_end){ int idxTox = idx / PESIZE; int idxToy = idx % PESIZE; int agent_position = permutation[idxTox][idxToy]; new_grid[agent_position/(SIZE+2)][agent_position%(SIZE+2)] = 0; } } __global__ void assign (int grid[][SIZE+2], int new_grid[][SIZE+2], int permutation[][PESIZE], int * move_list, int * space_list, int samples[SAM_NUM_VALUES]){ int idx=blockIdx.x*blockDim.x+threadIdx.x; if(idx < (device_removed_move_list_end) ){ int idxTox = idx / PESIZE; int idxToy = idx % PESIZE; int space_position = space_list[samples[idx]-1]; int agent_position = permutation[idxTox][idxToy]; new_grid[space_position/(SIZE+2)][space_position%(SIZE+2)] = grid[agent_position/(SIZE+2)][agent_position%(SIZE+2)]; } } __global__ void checkNumberDevice(int new_grid[][SIZE+2]){ int agentTypeOne = 0; int agentTypeTwo = 0; for(int i=0; i<SIZE+2; i++){ for(int j=0; j<SIZE+2; j++){ if(new_grid[i][j] == 1){ agentTypeOne +=1; } else if(new_grid[i][j] == 2){ agentTypeTwo += 1; } } } printf("Type One %d, Type Two %d\n",agentTypeOne, agentTypeTwo); } void checkNumber(int grid [SIZE+2][SIZE+2]){ int agentTypeOne = 0; int agentTypeTwo = 0; for(int i=0; i<SIZE+2; i++){ for(int j=0; j<SIZE+2; j++){ if(grid[i][j] == 1){ agentTypeOne +=1; } else if(grid[i][j] == 2){ agentTypeTwo += 1; } } } printf("Type One %d, Type Two %d\n",agentTypeOne, agentTypeTwo); } __global__ void devicePrintOutput(int device_list[][PESIZE]){ for(int i =0; i<device_penumber_inuse; i++){ //for(int j=0; j<random_list_counter[i];j++){ // printf("%d \n",i); for(int j=0; j<PESIZE;j++){ //printf("PE %d, index %d, value %d\n", i, j, device_list[i][j]); printf("%d ",device_list[i][j]); } printf("\n"); } } __global__ void initSamValue(int device_list[SAM_NUM_VALUES]){ int idx = threadIdx.x + blockIdx.x * blockDim.x; device_list[idx] = idx+1; } __global__ void printSamples(int samples[SAM_NUM_VALUES]){ for(int i=0; i<(device_removed_move_list_end); i++){ printf("%d %d \n",i,samples[i]); } } __global__ void printSamValue(int device_sam_list[SAM_NUM_VALUES]){ for(int i=0; i<(device_pe_inuse*SAM_PESIZE); i++){ printf("%d ",device_sam_list[i]); } } int host_grid[SIZE+2][SIZE+2]; int main(int argc, char* argv[]) { struct timespec start, stop; double accum; int (*device_grid)[SIZE + 2]; int (*device_newGrid)[SIZE + 2]; int (*device_permutation_list)[PESIZE]; int (*device_temp_permutation_list)[PESIZE*FACTOR]; int (*random_list_counter); int (*scanned_random_list_counter); int (*move_list); int (*removed_move_list_end); int (*space_list); int (*removed_space_list_end); int (*samples); int (*device_sam_list); srand(SRAND_VALUE); size_t bytes = sizeof(int)*(SIZE + 2)*(SIZE + 2); myCurandState_t (*devState)[PESIZE]; myCurandState_t (*devStateHyper); myCurandState_t (*devStateSam); cudaMalloc((void**)&devState, TOTAL * sizeof(myCurandState_t)); cudaMalloc(&random_list_counter, sizeof(int)*(PENUMBER)); cudaMalloc(&scanned_random_list_counter, sizeof(int)*(PENUMBER)); cudaMalloc(&device_sam_list, sizeof(int)*(SAM_PESIZE)*(SAM_PENUMBER)); cudaMalloc((void**)&device_grid, bytes); cudaMalloc((void**)&device_newGrid, bytes); cudaMalloc((void**)&device_permutation_list, sizeof(int)*(TOTAL)); cudaMalloc((void**)&device_temp_permutation_list, sizeof(int)*(agentNumber)*FACTOR); cudaMalloc(&move_list, sizeof(int)*(SIZE + 2)*(SIZE + 2)); cudaMalloc(&space_list, sizeof(int)*(SIZE + 2)*(SIZE + 2)); cudaMalloc(&samples, sizeof(int)*(SAM_PESIZE)*(SAM_PENUMBER)); cudaMalloc(&devStateHyper, SAM_PENUMBER * sizeof(myCurandState_t)); cudaMalloc(&devStateSam, SAM_PENUMBER * sizeof(myCurandState_t)); #ifdef DEBUG cudaDeviceSynchronize(); cudaCheckError(); #endif int blockSizeVerPermu = numThreadsPerBlock / PESIZE; dim3 blockSizePermu(blockSizeVerPermu, PESIZE, 1); initCurand<<<(ceil(TOTAL/double(numThreadsPerBlock))),blockSizePermu>>>(devState); #ifdef DEBUG cudaDeviceSynchronize(); cudaCheckError(); #endif for (int i=0; i<(SIZE+2); i++){ for (int j=0; j<SIZE+2; j++){ host_grid[i][j] = 0; } } int blockSizePerDim = sqrt(numThreadsPerBlock); int gridSizePerDim = (SIZE + 2) / blockSizePerDim; dim3 blockSize(blockSizePerDim, blockSizePerDim, 1); dim3 gridSize(gridSizePerDim, gridSizePerDim, 1); initPos(host_grid); //printOutput(host_grid); #ifdef DEBUG cudaDeviceSynchronize(); cudaCheckError(); #endif cudaMemcpy(device_grid,host_grid,bytes,cudaMemcpyHostToDevice); cudaMemcpy(device_newGrid,host_grid,bytes,cudaMemcpyHostToDevice); #ifdef DEBUG cudaDeviceSynchronize(); cudaCheckError(); #endif initSamCurand<<<((double)SAM_PENUMBER / SAM_numThreadsPerBlock),SAM_numThreadsPerBlock>>>(devStateSam); #ifdef DEBUG cudaDeviceSynchronize(); cudaCheckError(); #endif update << <gridSize, blockSize >> >(device_grid, device_newGrid,move_list,space_list); if( clock_gettime( CLOCK_REALTIME, &start) == -1 ) { perror( "clock gettime" ); exit( EXIT_FAILURE ); } cached_allocator alloc; int removed_list_number = 0; int space_list_number = 0; for(int i=0; i<ITERATIONS; i++){ #ifdef DEBUG cudaDeviceSynchronize(); cudaCheckError(); #endif compute << <gridSize, blockSize >> >(device_grid, device_newGrid, move_list, space_list, i); #ifdef DEBUG cudaDeviceSynchronize(); cudaCheckError(); #endif removed_move_list_end = thrust::remove(thrust::cuda::par(alloc), move_list, move_list + ((SIZE+2)*(SIZE+2)), 0); #ifdef DEBUG cudaDeviceSynchronize(); cudaCheckError(); #endif removed_list_number = removed_move_list_end - move_list; cudaMemcpyToSymbol(device_removed_move_list_end, &removed_list_number, sizeof(int)); int TwoDimGridSize = ceil(removed_list_number/double(numThreadsPerBlock)); #ifdef DEBUG cudaDeviceSynchronize(); cudaCheckError(); #endif removed_space_list_end = thrust::remove(thrust::cuda::par(alloc), space_list, space_list + ((SIZE+2)*(SIZE+2)), 0); space_list_number = removed_space_list_end - space_list; #ifdef DEBUG cudaDeviceSynchronize(); cudaCheckError(); #endif cudaMemcpyToSymbol(device_removed_space_list_end, &space_list_number, sizeof(int)); int penumberinuse = ceil(removed_list_number/ double(PESIZE)); cudaMemcpyToSymbol(device_penumber_inuse, &penumberinuse, sizeof(int)); generateList<<<ceil(space_list_number/double(numThreadsPerBlock)),blockSizePermu>>>(device_permutation_list); int sam_num_inuse = space_list_number; int sam_pe_inuse = ceil(double(sam_num_inuse) / SAM_PESIZE); cudaMemcpyToSymbol(device_pe_inuse, &sam_pe_inuse, sizeof(int)); cudaMemcpyToSymbol(device_num_inuse, &sam_num_inuse, sizeof(int)); clearSamples<<<ceil(sam_pe_inuse*SAM_PESIZE / (double)SAM_numThreadsPerBlock), SAM_numThreadsPerBlock>>>(samples); #ifdef DEBUG cudaDeviceSynchronize(); cudaCheckError(); #endif int sam_gridSize = ceil((double)sam_pe_inuse / SAM_numThreadsPerBlock); initSamValue<<<ceil(double(sam_num_inuse) / SAM_numThreadsPerBlock), SAM_numThreadsPerBlock>>>(device_sam_list); #ifdef DEBUG cudaDeviceSynchronize(); cudaCheckError(); #endif sampleP<<<sam_gridSize, SAM_numThreadsPerBlock>>>( devStateSam, devStateHyper, device_sam_list, samples, removed_list_number, 0, sam_pe_inuse-1); #ifdef DEBUG cudaDeviceSynchronize(); cudaCheckError(); #endif int OneDimGridSize = ceil(penumberinuse / double(numThreadsPerBlock)); clearCounter<<<OneDimGridSize,(numThreadsPerBlock)>>>(random_list_counter); #ifdef DEBUG cudaDeviceSynchronize(); cudaCheckError(); #endif sendToRandom<<<ceil(removed_list_number/double(numThreadsPerBlock)),blockSizePermu >>>(devState,move_list,device_temp_permutation_list,random_list_counter); #ifdef DEBUG cudaDeviceSynchronize(); cudaCheckError(); #endif sortList<<<OneDimGridSize,(numThreadsPerBlock)>>>(device_temp_permutation_list,random_list_counter); #ifdef DEBUG cudaDeviceSynchronize(); cudaCheckError(); #endif thrust::exclusive_scan(thrust::cuda::par(alloc), random_list_counter, random_list_counter + penumberinuse, scanned_random_list_counter); randomPermute<<<OneDimGridSize,(numThreadsPerBlock)>>>(devState,device_temp_permutation_list,random_list_counter); #ifdef DEBUG cudaDeviceSynchronize(); cudaCheckError(); #endif #ifdef DEBUG cudaDeviceSynchronize(); cudaCheckError(); #endif recoverSize<<<OneDimGridSize,(numThreadsPerBlock)>>>(device_permutation_list, device_temp_permutation_list,random_list_counter,scanned_random_list_counter); thrust::remove(thrust::device, samples, samples + sam_pe_inuse*SAM_PESIZE , 0); #ifdef DEBUG cudaDeviceSynchronize(); cudaCheckError(); #endif prepareNewGrid <<<TwoDimGridSize, numThreadsPerBlock >>> (device_newGrid, move_list,device_permutation_list); #ifdef DEBUG cudaDeviceSynchronize(); cudaCheckError(); #endif assign <<<TwoDimGridSize, numThreadsPerBlock>>> (device_grid, device_newGrid, device_permutation_list, move_list, space_list,samples); #ifdef DEBUG cudaDeviceSynchronize(); cudaCheckError(); #endif update << <gridSize, blockSize >> >(device_grid, device_newGrid,move_list,space_list); #ifdef DEBUG cudaDeviceSynchronize(); cudaCheckError(); #endif } if( clock_gettime( CLOCK_REALTIME, &stop) == -1 ) { perror( "clock gettime" ); exit( EXIT_FAILURE ); } accum = ( stop.tv_sec - start.tv_sec ) * 1e6 + ( stop.tv_nsec - start.tv_nsec ) / 1e3; printf( "%.1f Time is %.5f s \n",float(OCCUPANCY), accum / 1e6); cudaMemcpy(host_grid, device_newGrid, bytes, cudaMemcpyDeviceToHost); //printOutput(host_grid); //checkNumber(host_grid); cudaFree(device_grid); cudaFree(device_newGrid); cudaFree(device_permutation_list); cudaFree(device_temp_permutation_list); cudaFree(move_list); cudaFree(random_list_counter); cudaFree(scanned_random_list_counter); cudaFree(space_list); cudaFree(devState); cudaFree(samples); cudaFree(devStateSam); cudaFree(devStateHyper); cudaFree(device_sam_list); return 0; } void printOutput(int grid [SIZE+2][SIZE+2] ){ //output grid from 1 t o SIZE+1 for (int i=1; i<SIZE+1; i++){ for (int j=1; j<SIZE+1; j++){ printf("%d ",grid[i][j]); //if(i%SIZE) } printf("\n"); } printf("\n"); } void initPos(int grid [SIZE+2][SIZE+2]){ // type 1 and 2 to grid randomly int row; int column; for(int i=0; i<agentTypeOneNumber; i++){ do{ row = random_location(); column = random_location(); }while(grid[row][column] != 0); grid[row][column] = 1; } for(int i=0; i<agentTypeTwoNumber; i++){ do{ row = random_location(); column = random_location(); }while(grid[row][column] != 0); grid[row][column] = 2; } } int random_location() { //generate a random number from 1 to SIZE+1 int r; r = rand(); return (r % (SIZE) +1 ); }
fc254af8ffd7f78a86fc8e4ee6d0f5091c75b7bd.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "conv.h" #include "conv_common.h" #include <iostream> #define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); } inline void gpuAssert(hipError_t code, const char *file, int line, bool abort=true) { if (code != hipSuccess) { std::cerr << "GPUassert: " << hipGetErrorString(code) << " " << file << " " << line << std::endl; if (abort) exit(code); } } __global__ void simple_conv(float* in_data, float* out_data, uint width, uint height, float* mask, uint mask_width, uint mask_height) { int idx_x = blockIdx.x * blockDim.x + threadIdx.x; int idx_y = blockIdx.y * blockDim.y + threadIdx.y; if (idx_x >= width || idx_y >= height) return; int mask_hw = mask_width/2; int mask_hh = mask_height/2; float sum = 0.0; float mask_sum = 0.0; for (uint x = 0 ; x < mask_width ; ++x) { for (uint y = 0 ; y < mask_height ; ++y) { int px = idx_x + (x - mask_hw); int py = idx_y + (y - mask_hh); if (px < 0 || px >= width || py < 0 || py >= height) continue; float m_value = mask[x + y * mask_width]; sum += m_value * in_data[px + py * width]; mask_sum += m_value; } } out_data[idx_x + idx_y * width] = sum / mask_sum; } float* gpu_conv(float* image, uint width, uint height, float* mask, uint mask_width, uint mask_height, struct benchmark& bench) { uint size = width * height; float* out_image = new float[size]; uint mask_size = mask_width * mask_height; hipEvent_t total_start, transfer_start, compute_start, total_stop, transfer_stop, compute_stop; hipEventCreate(&total_start); hipEventCreate(&transfer_start); hipEventCreate(&compute_start); hipEventCreate(&total_stop); hipEventCreate(&transfer_stop); hipEventCreate(&compute_stop); hipEventRecord(total_start); float *d_in, *d_out, *d_mask; gpuErrchk( hipMalloc((void**) &d_in, size * sizeof(float)) ); gpuErrchk( hipMalloc((void**) &d_out, size * sizeof(float)) ); gpuErrchk( hipMalloc((void**) &d_mask, mask_size * sizeof(float)) ); hipEventRecord(transfer_start); gpuErrchk( hipMemcpy(d_in, image, size * sizeof(float), hipMemcpyHostToDevice) ); gpuErrchk( hipMemcpy(d_mask, mask, mask_size * sizeof(float), hipMemcpyHostToDevice) ); // Determining best threads per block & block number to run the kernel struct hipDeviceProp_t deviceProp; hipGetDeviceProperties(&deviceProp, 0); int maxThreadsPerBlock = deviceProp.maxThreadsPerBlock; float dim = sqrt((float)maxThreadsPerBlock); const dim3 blockDim(dim, dim); const dim3 numBlocks(width/dim, height/dim); hipEventRecord(compute_start); hipLaunchKernelGGL(( simple_conv), dim3(numBlocks), dim3(blockDim), 0, 0, d_in, d_out, width, height, d_mask, mask_width, mask_height); hipEventRecord(compute_stop); gpuErrchk( hipMemcpy(out_image, d_out, size * sizeof(float), hipMemcpyDeviceToHost) ); hipEventRecord(transfer_stop); hipEventRecord(total_stop); hipEventSynchronize(total_stop); float compute_time, transfer_time, total_time; hipEventElapsedTime(&compute_time, compute_start, compute_stop); hipEventElapsedTime(&transfer_time, transfer_start, transfer_stop); hipEventElapsedTime(&total_time, total_start, total_stop); bench.compute_time = compute_time; bench.transfer_time = transfer_time; bench.total_time = total_time; gpuErrchk( hipFree(d_in) ); gpuErrchk( hipFree(d_out) ); gpuErrchk( hipFree(d_mask) ); return out_image; }
fc254af8ffd7f78a86fc8e4ee6d0f5091c75b7bd.cu
#include "conv.h" #include "conv_common.h" #include <iostream> #define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); } inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort=true) { if (code != cudaSuccess) { std::cerr << "GPUassert: " << cudaGetErrorString(code) << " " << file << " " << line << std::endl; if (abort) exit(code); } } __global__ void simple_conv(float* in_data, float* out_data, uint width, uint height, float* mask, uint mask_width, uint mask_height) { int idx_x = blockIdx.x * blockDim.x + threadIdx.x; int idx_y = blockIdx.y * blockDim.y + threadIdx.y; if (idx_x >= width || idx_y >= height) return; int mask_hw = mask_width/2; int mask_hh = mask_height/2; float sum = 0.0; float mask_sum = 0.0; for (uint x = 0 ; x < mask_width ; ++x) { for (uint y = 0 ; y < mask_height ; ++y) { int px = idx_x + (x - mask_hw); int py = idx_y + (y - mask_hh); if (px < 0 || px >= width || py < 0 || py >= height) continue; float m_value = mask[x + y * mask_width]; sum += m_value * in_data[px + py * width]; mask_sum += m_value; } } out_data[idx_x + idx_y * width] = sum / mask_sum; } float* gpu_conv(float* image, uint width, uint height, float* mask, uint mask_width, uint mask_height, struct benchmark& bench) { uint size = width * height; float* out_image = new float[size]; uint mask_size = mask_width * mask_height; cudaEvent_t total_start, transfer_start, compute_start, total_stop, transfer_stop, compute_stop; cudaEventCreate(&total_start); cudaEventCreate(&transfer_start); cudaEventCreate(&compute_start); cudaEventCreate(&total_stop); cudaEventCreate(&transfer_stop); cudaEventCreate(&compute_stop); cudaEventRecord(total_start); float *d_in, *d_out, *d_mask; gpuErrchk( cudaMalloc((void**) &d_in, size * sizeof(float)) ); gpuErrchk( cudaMalloc((void**) &d_out, size * sizeof(float)) ); gpuErrchk( cudaMalloc((void**) &d_mask, mask_size * sizeof(float)) ); cudaEventRecord(transfer_start); gpuErrchk( cudaMemcpy(d_in, image, size * sizeof(float), cudaMemcpyHostToDevice) ); gpuErrchk( cudaMemcpy(d_mask, mask, mask_size * sizeof(float), cudaMemcpyHostToDevice) ); // Determining best threads per block & block number to run the kernel struct cudaDeviceProp deviceProp; cudaGetDeviceProperties(&deviceProp, 0); int maxThreadsPerBlock = deviceProp.maxThreadsPerBlock; float dim = sqrt((float)maxThreadsPerBlock); const dim3 blockDim(dim, dim); const dim3 numBlocks(width/dim, height/dim); cudaEventRecord(compute_start); simple_conv<<<numBlocks, blockDim>>>(d_in, d_out, width, height, d_mask, mask_width, mask_height); cudaEventRecord(compute_stop); gpuErrchk( cudaMemcpy(out_image, d_out, size * sizeof(float), cudaMemcpyDeviceToHost) ); cudaEventRecord(transfer_stop); cudaEventRecord(total_stop); cudaEventSynchronize(total_stop); float compute_time, transfer_time, total_time; cudaEventElapsedTime(&compute_time, compute_start, compute_stop); cudaEventElapsedTime(&transfer_time, transfer_start, transfer_stop); cudaEventElapsedTime(&total_time, total_start, total_stop); bench.compute_time = compute_time; bench.transfer_time = transfer_time; bench.total_time = total_time; gpuErrchk( cudaFree(d_in) ); gpuErrchk( cudaFree(d_out) ); gpuErrchk( cudaFree(d_mask) ); return out_image; }
ecb54fcd5de435fc7de23fbfbaac8df198ba0805.hip
// !!! This is a file automatically generated by hipify!!! #include "stdafx.h" #include <hip/hip_runtime.h> #include <hip/hip_runtime.h> #include <iostream> using namespace std; void main() { hipDeviceProp_t prop; int count = 0; hipGetDeviceCount( &count ); for( int index=0; index<count ;index++ ) { hipGetDeviceProperties(&prop, index); cout<<prop.name<<endl; cout<<prop.minor<<" - "<<prop.major<<endl; cout<<prop.clockRate<<endl; } cin.get(); }
ecb54fcd5de435fc7de23fbfbaac8df198ba0805.cu
#include "stdafx.h" #include <cuda.h> #include <cuda_runtime.h> #include <iostream> using namespace std; void main() { cudaDeviceProp prop; int count = 0; cudaGetDeviceCount( &count ); for( int index=0; index<count ;index++ ) { cudaGetDeviceProperties(&prop, index); cout<<prop.name<<endl; cout<<prop.minor<<" - "<<prop.major<<endl; cout<<prop.clockRate<<endl; } cin.get(); }
9928142c719c72e0029c0cc7bfb14948980c1b02.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include <stdio.h> template<typename T> __global__ void non_maxima_supression_cuda(T* image_in,T* image_out,int widthImage,int heightImage) { unsigned int x=blockIdx.x*blockDim.x+threadIdx.x; unsigned int y=blockIdx.y*blockDim.y+threadIdx.y; unsigned int index = x * widthImage + y; if(y>0 && y<(widthImage-1) && x>0 && x<(heightImage-1) ){ T curr=image_in[index]; T curr_up=image_in[(x-1)*widthImage+(y)]; T curr_down=image_in[(x+1)*widthImage+(y)]; T curr_up_left=image_in[(x-1)*widthImage+(y-1)]; T curr_up_right=image_in[(x-1)*widthImage+(y+1)]; T curr_down_left=image_in[(x+1)*widthImage+(y-1)]; T curr_down_right=image_in[(x+1)*widthImage+(y+1)]; T curr_left=image_in[(x)*widthImage+(y-1)]; T curr_right=image_in[(x)*widthImage+(y+1)]; T max_element=curr; if(curr_up>max_element)max_element=curr_up; if(curr_down>max_element)max_element=curr_down; if(curr_down_left>max_element)max_element=curr_down_left; if(curr_down_right>max_element)max_element=curr_down_right; if(curr_up_left>max_element)max_element=curr_up_left; if(curr_up_right>max_element)max_element=curr_up_right; if(curr_left>max_element)max_element=curr_left; if(curr_right>max_element)max_element=curr_right; if ( max_element != curr ||max_element==curr_up||max_element==curr_up_left||max_element==curr_up_right||max_element==curr_left ) image_out[ index ] = 0; else image_out[ index ] = curr; } else { image_out[index]=0; } } template <typename T> void calculate_non_maxima_cuda(T* image_in, T* image_out, int heightImage, int widthImage, int threadsX, int threadsY,hipStream_t stream) { dim3 block(threadsX, threadsY, 1); dim3 grid(heightImage / block.x, widthImage / block.y, 1); hipLaunchKernelGGL(( non_maxima_supression_cuda), dim3(grid),dim3(block),0,stream, image_in, image_out, widthImage, heightImage); }
9928142c719c72e0029c0cc7bfb14948980c1b02.cu
#include <stdio.h> template<typename T> __global__ void non_maxima_supression_cuda(T* image_in,T* image_out,int widthImage,int heightImage) { unsigned int x=blockIdx.x*blockDim.x+threadIdx.x; unsigned int y=blockIdx.y*blockDim.y+threadIdx.y; unsigned int index = x * widthImage + y; if(y>0 && y<(widthImage-1) && x>0 && x<(heightImage-1) ){ T curr=image_in[index]; T curr_up=image_in[(x-1)*widthImage+(y)]; T curr_down=image_in[(x+1)*widthImage+(y)]; T curr_up_left=image_in[(x-1)*widthImage+(y-1)]; T curr_up_right=image_in[(x-1)*widthImage+(y+1)]; T curr_down_left=image_in[(x+1)*widthImage+(y-1)]; T curr_down_right=image_in[(x+1)*widthImage+(y+1)]; T curr_left=image_in[(x)*widthImage+(y-1)]; T curr_right=image_in[(x)*widthImage+(y+1)]; T max_element=curr; if(curr_up>max_element)max_element=curr_up; if(curr_down>max_element)max_element=curr_down; if(curr_down_left>max_element)max_element=curr_down_left; if(curr_down_right>max_element)max_element=curr_down_right; if(curr_up_left>max_element)max_element=curr_up_left; if(curr_up_right>max_element)max_element=curr_up_right; if(curr_left>max_element)max_element=curr_left; if(curr_right>max_element)max_element=curr_right; if ( max_element != curr ||max_element==curr_up||max_element==curr_up_left||max_element==curr_up_right||max_element==curr_left ) image_out[ index ] = 0; else image_out[ index ] = curr; } else { image_out[index]=0; } } template <typename T> void calculate_non_maxima_cuda(T* image_in, T* image_out, int heightImage, int widthImage, int threadsX, int threadsY,cudaStream_t stream) { dim3 block(threadsX, threadsY, 1); dim3 grid(heightImage / block.x, widthImage / block.y, 1); non_maxima_supression_cuda<<<grid,block,0,stream>>>(image_in, image_out, widthImage, heightImage); }
fe5a31b65a2a7e9ea4aff653fad21ae4d139dc06.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include <cfloat> #include <vector> #include "caffe/layers/scale_layer.hpp" #include "caffe/util/math_functions.hpp" namespace caffe { template <typename Dtype> __global__ void ScaleForward(const int n, const Dtype* in, const Dtype* scale, const int scale_dim, const int inner_dim, Dtype* out) { CUDA_KERNEL_LOOP(index, n) { const int scale_index = (index / inner_dim) % scale_dim; out[index] = in[index] * scale[scale_index]; } } template <typename Dtype> __global__ void ScaleBiasForward(const int n, const Dtype* in, const Dtype* scale, const Dtype* bias, const int scale_dim, const int inner_dim, Dtype* out) { CUDA_KERNEL_LOOP(index, n) { const int scale_index = (index / inner_dim) % scale_dim; out[index] = in[index] * scale[scale_index] + bias[scale_index]; } } template <typename Dtype> void ScaleLayer<Dtype>::Forward_gpu( const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) { /* if(this->layer_param_.phase()==PREDICT){ LOG(INFO)<<"start forward : "<< this->layer_param_.name(); Forward_cpu(bottom,top); return; } */ const int count = top[0]->count(); const Dtype* bottom_data = bottom[0]->gpu_data(); if (bottom[0] == top[0]) { // in-place computation; need to store bottom data before overwriting it. // Note that this is only necessary for Backward; we could skip this if not // doing Backward, but Caffe currently provides no way of knowing whether // we'll need to do Backward at the time of the Forward call. caffe_copy(bottom[0]->count(), bottom[0]->gpu_data(), temp_.mutable_gpu_data()); } const Dtype* scale_data = ((bottom.size() > 1) ? bottom[1] : this->blobs_[0].get())->gpu_data(); Dtype* top_data = top[0]->mutable_gpu_data(); if (bias_layer_) { const Dtype* bias_data = this->blobs_[bias_param_id_]->gpu_data(); ScaleBiasForward<Dtype> // NOLINT_NEXT_LINE(whitespacehipLaunchKernelGGL((/operators)) , dim3(CAFFE_GET_BLOCKS(count)), dim3(CAFFE_CUDA_NUM_THREADS), 0, 0, count, bottom_data, scale_data, bias_data, scale_dim_, inner_dim_, top_data); } else { ScaleForward<Dtype> // NOLINT_NEXT_LINE(whitespacehipLaunchKernelGGL((/operators)) , dim3(CAFFE_GET_BLOCKS(count)), dim3(CAFFE_CUDA_NUM_THREADS), 0, 0, count, bottom_data, scale_data, scale_dim_, inner_dim_, top_data); } } template <typename Dtype> void ScaleLayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top, const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) { if(this->layer_param_.phase()==PREDICT_CPU){ LOG(INFO)<<"start forward : "<< this->layer_param_.name(); Forward_cpu(bottom,top); return; } if (bias_layer_ && this->param_propagate_down_[this->param_propagate_down_.size() - 1]) { bias_layer_->Backward(top, bias_propagate_down_, bias_bottom_vec_); } const bool scale_param = (bottom.size() == 1); Blob<Dtype>* scale = scale_param ? this->blobs_[0].get() : bottom[1]; if ((!scale_param && propagate_down[1]) || (scale_param && this->param_propagate_down_[0])) { const Dtype* top_diff = top[0]->gpu_diff(); const bool in_place = (bottom[0] == top[0]); const Dtype* bottom_data = (in_place ? &temp_ : bottom[0])->gpu_data(); // Hack: store big eltwise product in bottom[0] diff, except in the special // case where this layer itself does the eltwise product, in which case we // can store it directly in the scale diff, and we're done. // If we're computing in-place (and not doing eltwise computation), this // hack doesn't work and we store the product in temp_. const bool is_eltwise = (bottom[0]->count() == scale->count()); Dtype* product = (is_eltwise ? scale->mutable_gpu_diff() : (in_place ? temp_.mutable_gpu_data() : bottom[0]->mutable_gpu_diff())); caffe_gpu_mul(top[0]->count(), top_diff, bottom_data, product); if (!is_eltwise) { Dtype* sum_result = NULL; if (inner_dim_ == 1) { sum_result = product; } else if (sum_result_.count() == 1) { const Dtype* sum_mult = sum_multiplier_.gpu_data(); Dtype* scale_diff = scale->mutable_cpu_diff(); if (scale_param) { Dtype result; caffe_gpu_dot(inner_dim_, product, sum_mult, &result); *scale_diff += result; } else { caffe_gpu_dot(inner_dim_, product, sum_mult, scale_diff); } } else { const Dtype* sum_mult = sum_multiplier_.gpu_data(); sum_result = (outer_dim_ == 1) ? scale->mutable_gpu_diff() : sum_result_.mutable_gpu_data(); caffe_gpu_gemv(CblasNoTrans, sum_result_.count(), inner_dim_, Dtype(1), product, sum_mult, Dtype(0), sum_result); } if (outer_dim_ != 1) { const Dtype* sum_mult = sum_multiplier_.gpu_data(); if (scale_dim_ == 1) { Dtype* scale_diff = scale->mutable_cpu_diff(); if (scale_param) { Dtype result; caffe_gpu_dot(outer_dim_, sum_mult, sum_result, &result); *scale_diff += result; } else { caffe_gpu_dot(outer_dim_, sum_mult, sum_result, scale_diff); } } else { Dtype* scale_diff = scale->mutable_gpu_diff(); caffe_gpu_gemv(CblasTrans, outer_dim_, scale_dim_, Dtype(1), sum_result, sum_mult, Dtype(scale_param), scale_diff); } } } } if (propagate_down[0]) { const int count = top[0]->count(); const Dtype* top_diff = top[0]->gpu_diff(); const Dtype* scale_data = scale->gpu_data(); Dtype* bottom_diff = bottom[0]->mutable_gpu_diff(); ScaleForward<Dtype> // NOLINT_NEXT_LINE(whitespacehipLaunchKernelGGL((/operators)) , dim3(CAFFE_GET_BLOCKS(count)), dim3(CAFFE_CUDA_NUM_THREADS), 0, 0, count, top_diff, scale_data, scale_dim_, inner_dim_, bottom_diff); } } INSTANTIATE_LAYER_GPU_FUNCS(ScaleLayer); } // namespace caffe
fe5a31b65a2a7e9ea4aff653fad21ae4d139dc06.cu
#include <cfloat> #include <vector> #include "caffe/layers/scale_layer.hpp" #include "caffe/util/math_functions.hpp" namespace caffe { template <typename Dtype> __global__ void ScaleForward(const int n, const Dtype* in, const Dtype* scale, const int scale_dim, const int inner_dim, Dtype* out) { CUDA_KERNEL_LOOP(index, n) { const int scale_index = (index / inner_dim) % scale_dim; out[index] = in[index] * scale[scale_index]; } } template <typename Dtype> __global__ void ScaleBiasForward(const int n, const Dtype* in, const Dtype* scale, const Dtype* bias, const int scale_dim, const int inner_dim, Dtype* out) { CUDA_KERNEL_LOOP(index, n) { const int scale_index = (index / inner_dim) % scale_dim; out[index] = in[index] * scale[scale_index] + bias[scale_index]; } } template <typename Dtype> void ScaleLayer<Dtype>::Forward_gpu( const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) { /* if(this->layer_param_.phase()==PREDICT){ LOG(INFO)<<"start forward : "<< this->layer_param_.name(); Forward_cpu(bottom,top); return; } */ const int count = top[0]->count(); const Dtype* bottom_data = bottom[0]->gpu_data(); if (bottom[0] == top[0]) { // in-place computation; need to store bottom data before overwriting it. // Note that this is only necessary for Backward; we could skip this if not // doing Backward, but Caffe currently provides no way of knowing whether // we'll need to do Backward at the time of the Forward call. caffe_copy(bottom[0]->count(), bottom[0]->gpu_data(), temp_.mutable_gpu_data()); } const Dtype* scale_data = ((bottom.size() > 1) ? bottom[1] : this->blobs_[0].get())->gpu_data(); Dtype* top_data = top[0]->mutable_gpu_data(); if (bias_layer_) { const Dtype* bias_data = this->blobs_[bias_param_id_]->gpu_data(); ScaleBiasForward<Dtype> // NOLINT_NEXT_LINE(whitespace/operators) <<<CAFFE_GET_BLOCKS(count), CAFFE_CUDA_NUM_THREADS>>>( count, bottom_data, scale_data, bias_data, scale_dim_, inner_dim_, top_data); } else { ScaleForward<Dtype> // NOLINT_NEXT_LINE(whitespace/operators) <<<CAFFE_GET_BLOCKS(count), CAFFE_CUDA_NUM_THREADS>>>( count, bottom_data, scale_data, scale_dim_, inner_dim_, top_data); } } template <typename Dtype> void ScaleLayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top, const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) { if(this->layer_param_.phase()==PREDICT_CPU){ LOG(INFO)<<"start forward : "<< this->layer_param_.name(); Forward_cpu(bottom,top); return; } if (bias_layer_ && this->param_propagate_down_[this->param_propagate_down_.size() - 1]) { bias_layer_->Backward(top, bias_propagate_down_, bias_bottom_vec_); } const bool scale_param = (bottom.size() == 1); Blob<Dtype>* scale = scale_param ? this->blobs_[0].get() : bottom[1]; if ((!scale_param && propagate_down[1]) || (scale_param && this->param_propagate_down_[0])) { const Dtype* top_diff = top[0]->gpu_diff(); const bool in_place = (bottom[0] == top[0]); const Dtype* bottom_data = (in_place ? &temp_ : bottom[0])->gpu_data(); // Hack: store big eltwise product in bottom[0] diff, except in the special // case where this layer itself does the eltwise product, in which case we // can store it directly in the scale diff, and we're done. // If we're computing in-place (and not doing eltwise computation), this // hack doesn't work and we store the product in temp_. const bool is_eltwise = (bottom[0]->count() == scale->count()); Dtype* product = (is_eltwise ? scale->mutable_gpu_diff() : (in_place ? temp_.mutable_gpu_data() : bottom[0]->mutable_gpu_diff())); caffe_gpu_mul(top[0]->count(), top_diff, bottom_data, product); if (!is_eltwise) { Dtype* sum_result = NULL; if (inner_dim_ == 1) { sum_result = product; } else if (sum_result_.count() == 1) { const Dtype* sum_mult = sum_multiplier_.gpu_data(); Dtype* scale_diff = scale->mutable_cpu_diff(); if (scale_param) { Dtype result; caffe_gpu_dot(inner_dim_, product, sum_mult, &result); *scale_diff += result; } else { caffe_gpu_dot(inner_dim_, product, sum_mult, scale_diff); } } else { const Dtype* sum_mult = sum_multiplier_.gpu_data(); sum_result = (outer_dim_ == 1) ? scale->mutable_gpu_diff() : sum_result_.mutable_gpu_data(); caffe_gpu_gemv(CblasNoTrans, sum_result_.count(), inner_dim_, Dtype(1), product, sum_mult, Dtype(0), sum_result); } if (outer_dim_ != 1) { const Dtype* sum_mult = sum_multiplier_.gpu_data(); if (scale_dim_ == 1) { Dtype* scale_diff = scale->mutable_cpu_diff(); if (scale_param) { Dtype result; caffe_gpu_dot(outer_dim_, sum_mult, sum_result, &result); *scale_diff += result; } else { caffe_gpu_dot(outer_dim_, sum_mult, sum_result, scale_diff); } } else { Dtype* scale_diff = scale->mutable_gpu_diff(); caffe_gpu_gemv(CblasTrans, outer_dim_, scale_dim_, Dtype(1), sum_result, sum_mult, Dtype(scale_param), scale_diff); } } } } if (propagate_down[0]) { const int count = top[0]->count(); const Dtype* top_diff = top[0]->gpu_diff(); const Dtype* scale_data = scale->gpu_data(); Dtype* bottom_diff = bottom[0]->mutable_gpu_diff(); ScaleForward<Dtype> // NOLINT_NEXT_LINE(whitespace/operators) <<<CAFFE_GET_BLOCKS(count), CAFFE_CUDA_NUM_THREADS>>>( count, top_diff, scale_data, scale_dim_, inner_dim_, bottom_diff); } } INSTANTIATE_LAYER_GPU_FUNCS(ScaleLayer); } // namespace caffe
0492a1a979f198a632c6bcd5876421c505159026.hip
// !!! This is a file automatically generated by hipify!!! // matrixMul_kernel.cu // // Matrix multiplication: C = A * B. // // #include <stdio.h> #include "hip/hip_runtime.h" #include "device_launch_parameters.h" #include <stdio.h> #include <stdlib.h> #include <math.h> #include "CH\chTimer.h" #include <rocblas.h> #define block_size 32 /* #define CHECK_BANK_CONFLICTS 0 #if CHECK_BANK_CONFLICTS #define AS(i, j) cutilBankChecker(((float*)&As[0][0]), (BLOCK_SIZE * i + j)) #define BS(i, j) cutilBankChecker(((float*)&Bs[0][0]), (BLOCK_SIZE * i + j)) #else #define AS(i, j) As[i][j] #define BS(i, j) Bs[i][j] #endif */ //////////////////////////////////////////////////////////////////////////////// //! Matrix multiplication on the device: C = A * B (No shared memory used) //! hA is A's height, wA is A's width and wB is B's width //! In other words, it computes hAxwA matrix multiplied by wAxWB matrix. //! Assume matrices are stored in row-major linear array, and matrix indexing is 0-based. //////////////////////////////////////////////////////////////////////////////// extern "C" __global__ void matrixMul_v1( float* C, float* A, float* B, int hA, int wA, int wB) { // index of the C matrix element computed by this thread int row = blockIdx.y * blockDim.y + threadIdx.y; int col = blockIdx.x * blockDim.x + threadIdx.x; // Cvalue is used to store the element of the C matrix computed by this thread float Cvalue; if (row < hA && col < wB) { Cvalue = 0.0f; // Loop over all the matrices of A and B required to compute C for (int k = 0; k < wA; k++) Cvalue += A[row * wA + k] * B[k * wB + col]; // Write the block sub-matrix to device memory; each thread writes one element C[row * wB + col] = Cvalue; } } //////////////////////////////////////////////////////////////////////////////// //! Matrix multiplication on the device: C = A * B (shared memory used) //! hA is A's height, wA is A's width and wB is B's width //! In other words, it computes hAxwA matrix multiplied by wAxWB matrix. //! Assume matrices are stored in row-major linear array, and matrix indexing is 0-based. //////////////////////////////////////////////////////////////////////////////// extern "C" __global__ void matrixMul_v2( float* C, float* A, float* B, int hA, int wA, int wB) { // Block index int bx = blockIdx.x; int by = blockIdx.y; // Thread index int tx = threadIdx.x; int ty = threadIdx.y; // Index of the first sub-matrix of A processed by the block int aBegin = wA * block_size * by; // Index of the last sub-matrix of A processed by the block int aEnd = aBegin + wA - 1; // Step size used to iterate through the sub-matrices of A int aStep = block_size; // Index of the first sub-matrix of B processed by the block int bBegin = block_size * bx; // Step size used to iterate through the sub-matrices of B int bStep = block_size * wB; // Csub is used to store the element of the block sub-matrix // that is computed by the thread float Csub = 0; // Loop over all the sub-matrices of A and B // required to compute the block sub-matrix for (int a = aBegin, b = bBegin; a <= aEnd; a += aStep, b += bStep) { // Declaration of the shared memory array As used to // store the sub-matrix of A __shared__ float As[block_size][block_size]; // Declaration of the shared memory array Bs used to // store the sub-matrix of B __shared__ float Bs[block_size][block_size]; // Load the matrices from device memory // to shared memory; each thread loads // one element of each matrix As[ty][tx] = A[a + wA * ty + tx]; Bs[ty][tx] = B[b + wB * ty + tx]; // Synchronize to make sure the matrices are loaded __syncthreads(); // Multiply the two matrices together; // each thread computes one element // of the block sub-matrix for (int k = 0; k < block_size; ++k) Csub += As[ty][k] * Bs[k][tx]; // Synchronize to make sure that the preceding // computation is done before loading two new // sub-matrices of A and B in the next iteration __syncthreads(); } // Write the block sub-matrix to device memory; // each thread writes one element int c = wB * block_size * by + block_size * bx; C[c + wB * ty + tx] = Csub; } /** * Matrix multiplication (CUDA Kernel) on the device: C = A * B * wA is A's width and wB is B's width */ /* template <int block_size> __global__ void matrixMulCUDA(float *C, float *A, float *B, int wA, int wB) { // Block index int bx = blockIdx.x; int by = blockIdx.y; // Thread index int tx = threadIdx.x; int ty = threadIdx.y; // Index of the first sub-matrix of A processed by the block int aBegin = wA * block_size * by; // Index of the last sub-matrix of A processed by the block int aEnd = aBegin + wA - 1; // Step size used to iterate through the sub-matrices of A int aStep = block_size; // Index of the first sub-matrix of B processed by the block int bBegin = block_size * bx; // Step size used to iterate through the sub-matrices of B int bStep = block_size * wB; // Csub is used to store the element of the block sub-matrix // that is computed by the thread float Csub = 0; // Loop over all the sub-matrices of A and B // required to compute the block sub-matrix for (int a = aBegin, b = bBegin; a <= aEnd; a += aStep, b += bStep) { // Declaration of the shared memory array As used to // store the sub-matrix of A __shared__ float As[block_size][block_size]; // Declaration of the shared memory array Bs used to // store the sub-matrix of B __shared__ float Bs[block_size][block_size]; // Load the matrices from device memory // to shared memory; each thread loads // one element of each matrix As[ty][tx] = A[a + wA * ty + tx]; Bs[ty][tx] = B[b + wB * ty + tx]; // Synchronize to make sure the matrices are loaded __syncthreads(); // Multiply the two matrices together; // each thread computes one element // of the block sub-matrix #pragma unroll for (int k = 0; k < block_size; ++k) { Csub += As[ty][k] * Bs[k][tx]; } // Synchronize to make sure that the preceding // computation is done before loading two new // sub-matrices of A and B in the next iteration __syncthreads(); } // Write the block sub-matrix to device memory; // each thread writes one element int c = wB * block_size * by + block_size * bx; C[c + wB * ty + tx] = Csub; } int matrixMultiply(int argc, char **argv, int block_size, dim3 &dimsA, dim3 &dimsB) { // Allocate host memory for matrices A and B unsigned int size_A = dimsA.x * dimsA.y; unsigned int mem_size_A = sizeof(float) * size_A; float *h_A = (float *)malloc(mem_size_A); unsigned int size_B = dimsB.x * dimsB.y; unsigned int mem_size_B = sizeof(float) * size_B; float *h_B = (float *)malloc(mem_size_B); // Initialize host memory const float valB = 0.01f; constantInit(h_A, size_A, 1.0f); constantInit(h_B, size_B, valB); // Allocate device memory float *d_A, *d_B, *d_C; // Allocate host matrix C dim3 dimsC(dimsB.x, dimsA.y, 1); unsigned int mem_size_C = dimsC.x * dimsC.y * sizeof(float); float *h_C = (float *) malloc(mem_size_C); if (h_C == NULL) { fprintf(stderr, "Failed to allocate host matrix C!\n"); exit(EXIT_FAILURE); } hipError_t error; error = hipMalloc((void **) &d_A, mem_size_A); if (error != hipSuccess) { printf("hipMalloc d_A returned error code %d, line(%d)\n", error, __LINE__); exit(EXIT_FAILURE); } error = hipMalloc((void **) &d_B, mem_size_B); if (error != hipSuccess) { printf("hipMalloc d_B returned error code %d, line(%d)\n", error, __LINE__); exit(EXIT_FAILURE); } error = hipMalloc((void **) &d_C, mem_size_C); if (error != hipSuccess) { printf("hipMalloc d_C returned error code %d, line(%d)\n", error, __LINE__); exit(EXIT_FAILURE); } // copy host memory to device error = hipMemcpy(d_A, h_A, mem_size_A, hipMemcpyHostToDevice); if (error != hipSuccess) { printf("hipMemcpy (d_A,h_A) returned error code %d, line(%d)\n", error, __LINE__); exit(EXIT_FAILURE); } error = hipMemcpy(d_B, h_B, mem_size_B, hipMemcpyHostToDevice); if (error != hipSuccess) { printf("hipMemcpy (d_B,h_B) returned error code %d, line(%d)\n", error, __LINE__); exit(EXIT_FAILURE); } // Setup execution parameters dim3 threads(block_size, block_size); dim3 grid(dimsB.x / threads.x, dimsA.y / threads.y); // Create and start timer printf("Computing result using CUDA Kernel...\n"); // Performs warmup operation using matrixMul CUDA kernel if (block_size == 16) { matrixMulCUDA<16><<< grid, threads >>>(d_C, d_A, d_B, dimsA.x, dimsB.x); } else { matrixMulCUDA<32><<< grid, threads >>>(d_C, d_A, d_B, dimsA.x, dimsB.x); } printf("done\n"); hipDeviceSynchronize(); // Allocate CUDA events that we'll use for timing hipEvent_t start; error = hipEventCreate(&start); if (error != hipSuccess) { fprintf(stderr, "Failed to create start event (error code %s)!\n", hipGetErrorString(error)); exit(EXIT_FAILURE); } hipEvent_t stop; error = hipEventCreate(&stop); if (error != hipSuccess) { fprintf(stderr, "Failed to create stop event (error code %s)!\n", hipGetErrorString(error)); exit(EXIT_FAILURE); } // Record the start event error = hipEventRecord(start, NULL); if (error != hipSuccess) { fprintf(stderr, "Failed to record start event (error code %s)!\n", hipGetErrorString(error)); exit(EXIT_FAILURE); } // Execute the kernel int nIter = 300; for (int j = 0; j < nIter; j++) { if (block_size == 16) { matrixMulCUDA<16><<< grid, threads >>>(d_C, d_A, d_B, dimsA.x, dimsB.x); } else { matrixMulCUDA<32><<< grid, threads >>>(d_C, d_A, d_B, dimsA.x, dimsB.x); } } // Record the stop event error = hipEventRecord(stop, NULL); if (error != hipSuccess) { fprintf(stderr, "Failed to record stop event (error code %s)!\n", hipGetErrorString(error)); exit(EXIT_FAILURE); } // Wait for the stop event to complete error = hipEventSynchronize(stop); if (error != hipSuccess) { fprintf(stderr, "Failed to synchronize on the stop event (error code %s)!\n", hipGetErrorString(error)); exit(EXIT_FAILURE); } float msecTotal = 0.0f; error = hipEventElapsedTime(&msecTotal, start, stop); if (error != hipSuccess) { fprintf(stderr, "Failed to get time elapsed between events (error code %s)!\n", hipGetErrorString(error)); exit(EXIT_FAILURE); } // Compute and print the performance float msecPerMatrixMul = msecTotal / nIter; double flopsPerMatrixMul = 2.0 * (double)dimsA.x * (double)dimsA.y * (double)dimsB.x; double gigaFlops = (flopsPerMatrixMul * 1.0e-9f) / (msecPerMatrixMul / 1000.0f); printf( "Performance= %.2f GFlop/s, Time= %.3f msec, Size= %.0f Ops, WorkgroupSize= %u threads/block\n", gigaFlops, msecPerMatrixMul, flopsPerMatrixMul, threads.x * threads.y); // Copy result from device to host error = hipMemcpy(h_C, d_C, mem_size_C, hipMemcpyDeviceToHost); if (error != hipSuccess) { printf("hipMemcpy (h_C,d_C) returned error code %d, line(%d)\n", error, __LINE__); exit(EXIT_FAILURE); } printf("Checking computed result for correctness: "); bool correct = true; // test relative error by the formula // |<x, y>_cpu - <x,y>_gpu|/<|x|, |y|> < eps double eps = 1.e-6 ; // machine zero for (int i = 0; i < (int)(dimsC.x * dimsC.y); i++) { double abs_err = fabs(h_C[i] - (dimsA.x * valB)); double dot_length = dimsA.x; double abs_val = fabs(h_C[i]); double rel_err = abs_err/abs_val/dot_length ; if (rel_err > eps) { printf("Error! Matrix[%05d]=%.8f, ref=%.8f error term is > %E\n", i, h_C[i], dimsA.x*valB, eps); correct = false; } } printf("%s\n", correct ? "Result = PASS" : "Result = FAIL"); // Clean up memory free(h_A); free(h_B); free(h_C); hipFree(d_A); hipFree(d_B); hipFree(d_C); printf("\nNote: For peak performance, please refer to the matrixMulCUBLAS example.\n"); hipDeviceReset(); if (correct) { return EXIT_SUCCESS; } else { return EXIT_FAILURE; } } */ // // Our CUDA matrix multiplication interface function // int GPU_SGEMM (float* C, float* A, float* B, int HA, int WA, int WB, int version) { float *d_A = 0; float *d_B = 0; float *d_C = 0; // float alpha = 1.0f; // float beta = 0.0f; hipError_t cudaStatus; // Make sure CUDA device 0 is available cudaStatus = hipSetDevice(0); if (cudaStatus != hipSuccess) { fprintf(stderr, "hipSetDevice failed! Do you have a CUDA-capable GPU installed?"); return 1; } /* Allocate device memory for the matrices (d_A, d_B, and d_C) */ if (hipMalloc((void **)&d_A, HA * WA * sizeof(d_A[0])) != hipSuccess) { fprintf(stderr, "!!!! device memory allocation error (allocate A)\n"); return EXIT_FAILURE; } if (hipMalloc((void **)&d_B, WA * WB * sizeof(d_B[0])) != hipSuccess) { fprintf(stderr, "!!!! device memory allocation error (allocate B)\n"); return EXIT_FAILURE; } if (hipMalloc((void **)&d_C, HA * WB * sizeof(d_C[0])) != hipSuccess) { fprintf(stderr, "!!!! device memory allocation error (allocate C)\n"); return EXIT_FAILURE; } // Copy host memory (A, and B) to device cudaStatus = hipMemcpy(d_A, A, HA*WA*sizeof(A[0]), hipMemcpyHostToDevice); if (cudaStatus != hipSuccess) { printf("hipMemcpy (d_A, A) returned error code %d\n", cudaStatus); exit(EXIT_FAILURE); } cudaStatus = hipMemcpy(d_B, B, WA*WB*sizeof(B[0]), hipMemcpyHostToDevice); if (cudaStatus != hipSuccess) { printf("hipMemcpy (d_B, B) returned error code %d\n", cudaStatus); exit(EXIT_FAILURE); } // Setup execution parameters and call kernel dim3 block(block_size, block_size); dim3 grid ((WB+block_size-1)/block_size, (HA+ block_size-1)/block_size); if (version == 1) hipLaunchKernelGGL(( matrixMul_v1), dim3(grid), dim3(block) , 0, 0, d_C, d_A, d_B, HA, WA, WB); else hipLaunchKernelGGL(( matrixMul_v2), dim3(grid), dim3(block) , 0, 0, d_C, d_A, d_B, HA, WA, WB); hipDeviceSynchronize(); // Copy result (C) from device to host cudaStatus = hipMemcpy(C, d_C, HA*WB*sizeof(C[0]), hipMemcpyDeviceToHost); if (cudaStatus != hipSuccess) { printf("hipMemcpy (C, d_C) returned error code\n", cudaStatus); exit(EXIT_FAILURE); } /* Device memory clean up */ if (hipFree(d_A) != hipSuccess) { fprintf(stderr, "!!!! memory free error (A)\n"); return EXIT_FAILURE; } if (hipFree(d_B) != hipSuccess) { fprintf(stderr, "!!!! memory free error (B)\n"); return EXIT_FAILURE; } if (hipFree(d_C) != hipSuccess) { fprintf(stderr, "!!!! memory free error (C)\n"); return EXIT_FAILURE; } return 0; }
0492a1a979f198a632c6bcd5876421c505159026.cu
// matrixMul_kernel.cu // // Matrix multiplication: C = A * B. // // #include <stdio.h> #include "cuda_runtime.h" #include "device_launch_parameters.h" #include <stdio.h> #include <stdlib.h> #include <math.h> #include "CH\chTimer.h" #include <cublas_v2.h> #define block_size 32 /* #define CHECK_BANK_CONFLICTS 0 #if CHECK_BANK_CONFLICTS #define AS(i, j) cutilBankChecker(((float*)&As[0][0]), (BLOCK_SIZE * i + j)) #define BS(i, j) cutilBankChecker(((float*)&Bs[0][0]), (BLOCK_SIZE * i + j)) #else #define AS(i, j) As[i][j] #define BS(i, j) Bs[i][j] #endif */ //////////////////////////////////////////////////////////////////////////////// //! Matrix multiplication on the device: C = A * B (No shared memory used) //! hA is A's height, wA is A's width and wB is B's width //! In other words, it computes hAxwA matrix multiplied by wAxWB matrix. //! Assume matrices are stored in row-major linear array, and matrix indexing is 0-based. //////////////////////////////////////////////////////////////////////////////// extern "C" __global__ void matrixMul_v1( float* C, float* A, float* B, int hA, int wA, int wB) { // index of the C matrix element computed by this thread int row = blockIdx.y * blockDim.y + threadIdx.y; int col = blockIdx.x * blockDim.x + threadIdx.x; // Cvalue is used to store the element of the C matrix computed by this thread float Cvalue; if (row < hA && col < wB) { Cvalue = 0.0f; // Loop over all the matrices of A and B required to compute C for (int k = 0; k < wA; k++) Cvalue += A[row * wA + k] * B[k * wB + col]; // Write the block sub-matrix to device memory; each thread writes one element C[row * wB + col] = Cvalue; } } //////////////////////////////////////////////////////////////////////////////// //! Matrix multiplication on the device: C = A * B (shared memory used) //! hA is A's height, wA is A's width and wB is B's width //! In other words, it computes hAxwA matrix multiplied by wAxWB matrix. //! Assume matrices are stored in row-major linear array, and matrix indexing is 0-based. //////////////////////////////////////////////////////////////////////////////// extern "C" __global__ void matrixMul_v2( float* C, float* A, float* B, int hA, int wA, int wB) { // Block index int bx = blockIdx.x; int by = blockIdx.y; // Thread index int tx = threadIdx.x; int ty = threadIdx.y; // Index of the first sub-matrix of A processed by the block int aBegin = wA * block_size * by; // Index of the last sub-matrix of A processed by the block int aEnd = aBegin + wA - 1; // Step size used to iterate through the sub-matrices of A int aStep = block_size; // Index of the first sub-matrix of B processed by the block int bBegin = block_size * bx; // Step size used to iterate through the sub-matrices of B int bStep = block_size * wB; // Csub is used to store the element of the block sub-matrix // that is computed by the thread float Csub = 0; // Loop over all the sub-matrices of A and B // required to compute the block sub-matrix for (int a = aBegin, b = bBegin; a <= aEnd; a += aStep, b += bStep) { // Declaration of the shared memory array As used to // store the sub-matrix of A __shared__ float As[block_size][block_size]; // Declaration of the shared memory array Bs used to // store the sub-matrix of B __shared__ float Bs[block_size][block_size]; // Load the matrices from device memory // to shared memory; each thread loads // one element of each matrix As[ty][tx] = A[a + wA * ty + tx]; Bs[ty][tx] = B[b + wB * ty + tx]; // Synchronize to make sure the matrices are loaded __syncthreads(); // Multiply the two matrices together; // each thread computes one element // of the block sub-matrix for (int k = 0; k < block_size; ++k) Csub += As[ty][k] * Bs[k][tx]; // Synchronize to make sure that the preceding // computation is done before loading two new // sub-matrices of A and B in the next iteration __syncthreads(); } // Write the block sub-matrix to device memory; // each thread writes one element int c = wB * block_size * by + block_size * bx; C[c + wB * ty + tx] = Csub; } /** * Matrix multiplication (CUDA Kernel) on the device: C = A * B * wA is A's width and wB is B's width */ /* template <int block_size> __global__ void matrixMulCUDA(float *C, float *A, float *B, int wA, int wB) { // Block index int bx = blockIdx.x; int by = blockIdx.y; // Thread index int tx = threadIdx.x; int ty = threadIdx.y; // Index of the first sub-matrix of A processed by the block int aBegin = wA * block_size * by; // Index of the last sub-matrix of A processed by the block int aEnd = aBegin + wA - 1; // Step size used to iterate through the sub-matrices of A int aStep = block_size; // Index of the first sub-matrix of B processed by the block int bBegin = block_size * bx; // Step size used to iterate through the sub-matrices of B int bStep = block_size * wB; // Csub is used to store the element of the block sub-matrix // that is computed by the thread float Csub = 0; // Loop over all the sub-matrices of A and B // required to compute the block sub-matrix for (int a = aBegin, b = bBegin; a <= aEnd; a += aStep, b += bStep) { // Declaration of the shared memory array As used to // store the sub-matrix of A __shared__ float As[block_size][block_size]; // Declaration of the shared memory array Bs used to // store the sub-matrix of B __shared__ float Bs[block_size][block_size]; // Load the matrices from device memory // to shared memory; each thread loads // one element of each matrix As[ty][tx] = A[a + wA * ty + tx]; Bs[ty][tx] = B[b + wB * ty + tx]; // Synchronize to make sure the matrices are loaded __syncthreads(); // Multiply the two matrices together; // each thread computes one element // of the block sub-matrix #pragma unroll for (int k = 0; k < block_size; ++k) { Csub += As[ty][k] * Bs[k][tx]; } // Synchronize to make sure that the preceding // computation is done before loading two new // sub-matrices of A and B in the next iteration __syncthreads(); } // Write the block sub-matrix to device memory; // each thread writes one element int c = wB * block_size * by + block_size * bx; C[c + wB * ty + tx] = Csub; } int matrixMultiply(int argc, char **argv, int block_size, dim3 &dimsA, dim3 &dimsB) { // Allocate host memory for matrices A and B unsigned int size_A = dimsA.x * dimsA.y; unsigned int mem_size_A = sizeof(float) * size_A; float *h_A = (float *)malloc(mem_size_A); unsigned int size_B = dimsB.x * dimsB.y; unsigned int mem_size_B = sizeof(float) * size_B; float *h_B = (float *)malloc(mem_size_B); // Initialize host memory const float valB = 0.01f; constantInit(h_A, size_A, 1.0f); constantInit(h_B, size_B, valB); // Allocate device memory float *d_A, *d_B, *d_C; // Allocate host matrix C dim3 dimsC(dimsB.x, dimsA.y, 1); unsigned int mem_size_C = dimsC.x * dimsC.y * sizeof(float); float *h_C = (float *) malloc(mem_size_C); if (h_C == NULL) { fprintf(stderr, "Failed to allocate host matrix C!\n"); exit(EXIT_FAILURE); } cudaError_t error; error = cudaMalloc((void **) &d_A, mem_size_A); if (error != cudaSuccess) { printf("cudaMalloc d_A returned error code %d, line(%d)\n", error, __LINE__); exit(EXIT_FAILURE); } error = cudaMalloc((void **) &d_B, mem_size_B); if (error != cudaSuccess) { printf("cudaMalloc d_B returned error code %d, line(%d)\n", error, __LINE__); exit(EXIT_FAILURE); } error = cudaMalloc((void **) &d_C, mem_size_C); if (error != cudaSuccess) { printf("cudaMalloc d_C returned error code %d, line(%d)\n", error, __LINE__); exit(EXIT_FAILURE); } // copy host memory to device error = cudaMemcpy(d_A, h_A, mem_size_A, cudaMemcpyHostToDevice); if (error != cudaSuccess) { printf("cudaMemcpy (d_A,h_A) returned error code %d, line(%d)\n", error, __LINE__); exit(EXIT_FAILURE); } error = cudaMemcpy(d_B, h_B, mem_size_B, cudaMemcpyHostToDevice); if (error != cudaSuccess) { printf("cudaMemcpy (d_B,h_B) returned error code %d, line(%d)\n", error, __LINE__); exit(EXIT_FAILURE); } // Setup execution parameters dim3 threads(block_size, block_size); dim3 grid(dimsB.x / threads.x, dimsA.y / threads.y); // Create and start timer printf("Computing result using CUDA Kernel...\n"); // Performs warmup operation using matrixMul CUDA kernel if (block_size == 16) { matrixMulCUDA<16><<< grid, threads >>>(d_C, d_A, d_B, dimsA.x, dimsB.x); } else { matrixMulCUDA<32><<< grid, threads >>>(d_C, d_A, d_B, dimsA.x, dimsB.x); } printf("done\n"); cudaDeviceSynchronize(); // Allocate CUDA events that we'll use for timing cudaEvent_t start; error = cudaEventCreate(&start); if (error != cudaSuccess) { fprintf(stderr, "Failed to create start event (error code %s)!\n", cudaGetErrorString(error)); exit(EXIT_FAILURE); } cudaEvent_t stop; error = cudaEventCreate(&stop); if (error != cudaSuccess) { fprintf(stderr, "Failed to create stop event (error code %s)!\n", cudaGetErrorString(error)); exit(EXIT_FAILURE); } // Record the start event error = cudaEventRecord(start, NULL); if (error != cudaSuccess) { fprintf(stderr, "Failed to record start event (error code %s)!\n", cudaGetErrorString(error)); exit(EXIT_FAILURE); } // Execute the kernel int nIter = 300; for (int j = 0; j < nIter; j++) { if (block_size == 16) { matrixMulCUDA<16><<< grid, threads >>>(d_C, d_A, d_B, dimsA.x, dimsB.x); } else { matrixMulCUDA<32><<< grid, threads >>>(d_C, d_A, d_B, dimsA.x, dimsB.x); } } // Record the stop event error = cudaEventRecord(stop, NULL); if (error != cudaSuccess) { fprintf(stderr, "Failed to record stop event (error code %s)!\n", cudaGetErrorString(error)); exit(EXIT_FAILURE); } // Wait for the stop event to complete error = cudaEventSynchronize(stop); if (error != cudaSuccess) { fprintf(stderr, "Failed to synchronize on the stop event (error code %s)!\n", cudaGetErrorString(error)); exit(EXIT_FAILURE); } float msecTotal = 0.0f; error = cudaEventElapsedTime(&msecTotal, start, stop); if (error != cudaSuccess) { fprintf(stderr, "Failed to get time elapsed between events (error code %s)!\n", cudaGetErrorString(error)); exit(EXIT_FAILURE); } // Compute and print the performance float msecPerMatrixMul = msecTotal / nIter; double flopsPerMatrixMul = 2.0 * (double)dimsA.x * (double)dimsA.y * (double)dimsB.x; double gigaFlops = (flopsPerMatrixMul * 1.0e-9f) / (msecPerMatrixMul / 1000.0f); printf( "Performance= %.2f GFlop/s, Time= %.3f msec, Size= %.0f Ops, WorkgroupSize= %u threads/block\n", gigaFlops, msecPerMatrixMul, flopsPerMatrixMul, threads.x * threads.y); // Copy result from device to host error = cudaMemcpy(h_C, d_C, mem_size_C, cudaMemcpyDeviceToHost); if (error != cudaSuccess) { printf("cudaMemcpy (h_C,d_C) returned error code %d, line(%d)\n", error, __LINE__); exit(EXIT_FAILURE); } printf("Checking computed result for correctness: "); bool correct = true; // test relative error by the formula // |<x, y>_cpu - <x,y>_gpu|/<|x|, |y|> < eps double eps = 1.e-6 ; // machine zero for (int i = 0; i < (int)(dimsC.x * dimsC.y); i++) { double abs_err = fabs(h_C[i] - (dimsA.x * valB)); double dot_length = dimsA.x; double abs_val = fabs(h_C[i]); double rel_err = abs_err/abs_val/dot_length ; if (rel_err > eps) { printf("Error! Matrix[%05d]=%.8f, ref=%.8f error term is > %E\n", i, h_C[i], dimsA.x*valB, eps); correct = false; } } printf("%s\n", correct ? "Result = PASS" : "Result = FAIL"); // Clean up memory free(h_A); free(h_B); free(h_C); cudaFree(d_A); cudaFree(d_B); cudaFree(d_C); printf("\nNote: For peak performance, please refer to the matrixMulCUBLAS example.\n"); cudaDeviceReset(); if (correct) { return EXIT_SUCCESS; } else { return EXIT_FAILURE; } } */ // // Our CUDA matrix multiplication interface function // int GPU_SGEMM (float* C, float* A, float* B, int HA, int WA, int WB, int version) { float *d_A = 0; float *d_B = 0; float *d_C = 0; // float alpha = 1.0f; // float beta = 0.0f; cudaError_t cudaStatus; // Make sure CUDA device 0 is available cudaStatus = cudaSetDevice(0); if (cudaStatus != cudaSuccess) { fprintf(stderr, "cudaSetDevice failed! Do you have a CUDA-capable GPU installed?"); return 1; } /* Allocate device memory for the matrices (d_A, d_B, and d_C) */ if (cudaMalloc((void **)&d_A, HA * WA * sizeof(d_A[0])) != cudaSuccess) { fprintf(stderr, "!!!! device memory allocation error (allocate A)\n"); return EXIT_FAILURE; } if (cudaMalloc((void **)&d_B, WA * WB * sizeof(d_B[0])) != cudaSuccess) { fprintf(stderr, "!!!! device memory allocation error (allocate B)\n"); return EXIT_FAILURE; } if (cudaMalloc((void **)&d_C, HA * WB * sizeof(d_C[0])) != cudaSuccess) { fprintf(stderr, "!!!! device memory allocation error (allocate C)\n"); return EXIT_FAILURE; } // Copy host memory (A, and B) to device cudaStatus = cudaMemcpy(d_A, A, HA*WA*sizeof(A[0]), cudaMemcpyHostToDevice); if (cudaStatus != cudaSuccess) { printf("cudaMemcpy (d_A, A) returned error code %d\n", cudaStatus); exit(EXIT_FAILURE); } cudaStatus = cudaMemcpy(d_B, B, WA*WB*sizeof(B[0]), cudaMemcpyHostToDevice); if (cudaStatus != cudaSuccess) { printf("cudaMemcpy (d_B, B) returned error code %d\n", cudaStatus); exit(EXIT_FAILURE); } // Setup execution parameters and call kernel dim3 block(block_size, block_size); dim3 grid ((WB+block_size-1)/block_size, (HA+ block_size-1)/block_size); if (version == 1) matrixMul_v1<<< grid, block >>>(d_C, d_A, d_B, HA, WA, WB); else matrixMul_v2<<< grid, block >>>(d_C, d_A, d_B, HA, WA, WB); cudaDeviceSynchronize(); // Copy result (C) from device to host cudaStatus = cudaMemcpy(C, d_C, HA*WB*sizeof(C[0]), cudaMemcpyDeviceToHost); if (cudaStatus != cudaSuccess) { printf("cudaMemcpy (C, d_C) returned error code\n", cudaStatus); exit(EXIT_FAILURE); } /* Device memory clean up */ if (cudaFree(d_A) != cudaSuccess) { fprintf(stderr, "!!!! memory free error (A)\n"); return EXIT_FAILURE; } if (cudaFree(d_B) != cudaSuccess) { fprintf(stderr, "!!!! memory free error (B)\n"); return EXIT_FAILURE; } if (cudaFree(d_C) != cudaSuccess) { fprintf(stderr, "!!!! memory free error (C)\n"); return EXIT_FAILURE; } return 0; }
9e3e99e819979c03c22c5afb7d2a33633038863f.hip
// !!! This is a file automatically generated by hipify!!! /************************************************************************* * Copyright (c) 2015-2016, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ************************************************************************/ #include <stdio.h> #include <stdlib.h> #include "core.h" #include "libwrap.h" #include <sys/mman.h> #include <sys/stat.h> #include <sys/types.h> #include <sched.h> #include <fcntl.h> #include <unistd.h> #include <hip/hip_runtime.h> #include <string.h> #include <errno.h> DebugLevel ncclDebugLevel; extern "C" DSOGLOBAL ncclResult_t ncclGetUniqueId(ncclUniqueId* out) { pid_t pid = getpid(); static int count = 0; int commId = __sync_fetch_and_add(&count, 1); int len = snprintf(out->internal, NCCL_UNIQUE_ID_BYTES, "nccl-%d-%d", pid, commId); if(strlen(out->internal) < len) { WARN("ncclUniqueId truncated"); return ncclInternalError; } return ncclSuccess; } static ncclResult_t shmOpen(const char* shmname, size_t bytes, void** ptr) { int fd = shm_open(shmname, O_CREAT | O_RDWR, S_IRUSR | S_IWUSR); if (fd == -1) { WARN("shm_open failed to open %s", shmname); return ncclSystemError; } if (ftruncate(fd, bytes) == -1) { WARN("ftruncate failed to allocate %ld bytes", bytes); shm_unlink(shmname); close(fd); return ncclSystemError; } *ptr = mmap(NULL, bytes, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); if (*ptr == MAP_FAILED) { WARN("failure in mmap"); shm_unlink(shmname); close(fd); return ncclSystemError; } close(fd); return ncclSuccess; } static ncclResult_t shmUnlink(const char* shmname) { if(shm_unlink(shmname) == -1) { WARN("smh_unlink failed"); return ncclSystemError; } else { return ncclSuccess; } } static ncclResult_t shmUnmap(void* ptr, size_t bytes) { if(munmap(ptr, bytes) == -1) { WARN("munmap failed"); return ncclSystemError; } else { return ncclSuccess; } } typedef struct { int rank; int ndev; int cudaDev; int ncclId; pid_t pid; ncclMem* hostptr; ncclMem* devptr; hipIpcMemHandle_t devipc; size_t buffSize; } RankEntry; static int compRanks(const void* a, const void* b) { const RankEntry* A = (const RankEntry*)a; const RankEntry* B = (const RankEntry*)b; if (A->ncclId < B->ncclId) return -1; if (A->ncclId > B->ncclId) return 1; return 0; } static void orderRanks(RankEntry* ranks, int count) { qsort(ranks, count, sizeof(RankEntry), compRanks); for(int i=0; i<count; ++i) ranks[i].ncclId = i; } typedef struct { union { struct { volatile int bar; int ringDirectFail; }; char pad[16]; }; RankEntry ranks[1]; } RankGather; static ncclResult_t initGather(RankGather** gather, ncclUniqueId commId, int ndev, int rank, RankEntry myInfo) { size_t bytes = offsetof(RankGather, ranks) + ndev*sizeof(RankEntry); RankGather* tmp = NULL; int bar_tmp; ncclResult_t res = shmOpen(commId.internal, bytes, (void**)&tmp); if (res != ncclSuccess) { WARN("rank %d failed to open shm segment for gather", rank); return res; } tmp->ranks[rank] = myInfo; bar_tmp = tmp->bar - 1; bool swapped; do { bar_tmp += 1; if (bar_tmp == ndev-1) { // everyone is done ncclResult_t res = shmUnlink(commId.internal); if (res != ncclSuccess) { WARN("rank %d failed to unlink shm segment for gather", rank); shmUnmap(tmp, bytes); return res; } orderRanks(tmp->ranks, ndev); } swapped = __sync_bool_compare_and_swap(&tmp->bar, bar_tmp, bar_tmp+1); } while(!swapped); while (tmp->bar < ndev) sched_yield(); __sync_synchronize(); *gather = tmp; return ncclSuccess; } static void syncRingDirect(RankGather* gather, int* ringDirectOk) { int bar_tmp = gather->bar - 1; int ndev = gather->ranks[0].ndev; bool swapped; do { bar_tmp += 1; swapped = __sync_bool_compare_and_swap(&gather->bar, bar_tmp, bar_tmp+1); } while(!swapped); while (gather->bar < 2*ndev) // Wait for all ranks to arrive at this second barrier sched_yield(); __sync_synchronize(); *ringDirectOk = gather->ringDirectFail ? 0 : 1; } static ncclResult_t closeGather(RankGather* gather, int ndev) { int bar_tmp = gather->bar - 1; bool swapped; do { bar_tmp += 1; swapped = __sync_bool_compare_and_swap(&gather->bar, bar_tmp, bar_tmp+1); } while(!swapped); while (gather->bar < 3*ndev) // Wait for all ranks to arrive at this third barrier sched_yield(); __sync_synchronize(); size_t bytes = offsetof(RankGather, ranks) + ndev*sizeof(RankEntry); ncclResult_t res = shmUnmap(gather, bytes); if (res != ncclSuccess) { WARN("failed to unmap %ld bytes of gather", bytes); return res; } return ncclSuccess; } static ncclResult_t allocDevMem(ncclMem** ptr, size_t buffSize) { size_t size = offsetof(struct ncclMem, buff) + buffSize; hipError_t res = hipMalloc((void**)ptr, size); if (res != hipSuccess) { *ptr = NULL; WARN("failed to allocate %lu byte device buffer", size); return ncclCudaMallocFailed; } if (hipMemset(*ptr, 0, size) != hipSuccess) { WARN("failed to memset device buffer."); hipFree(*ptr); *ptr = NULL; return ncclUnhandledCudaError; } return ncclSuccess; } static const int ShmMapped = 1; static const int ShmLinked = 2; static ncclResult_t allocHostMem(ncclMem** ptr, size_t buffSize) { size_t size = offsetof(struct ncclMem, buff) + buffSize; hipError_t res = hipHostMalloc((void**)ptr, size); if (res != hipSuccess) { *ptr = NULL; WARN("failed to allocate %lu byte host buffer", size); return ncclSystemError; } memset(*ptr, 0, size); return ncclSuccess; } static ncclResult_t openHostMemShm(const char* shmname, ncclMem** ptr, size_t buffSize) { size_t size = offsetof(struct ncclMem, buff) + buffSize; ncclResult_t res = shmOpen(shmname, size, (void**)ptr); if (res != ncclSuccess) { WARN("failed to allocate %lu byte shm buffer", size); *ptr = NULL; return res; } if(hipHostRegister(*ptr, size, hipHostRegisterMapped) != hipSuccess) { WARN("failed to register host buffer"); shmUnlink(shmname); shmUnmap(*ptr, size); *ptr = NULL; return ncclUnhandledCudaError; } return ncclSuccess; } static ncclResult_t populateRankInfo(RankEntry* info, int rank, ncclComm_t comm) { char busId[13]; uint32_t nvmlHandle; hipError_t res = hipDeviceGetPCIBusId(busId, 13, comm->cudaDev); if (res == hipErrorInvalidDevice) { WARN("rank %d attempted to access an invalid cuda device %d", rank, comm->cudaDev); return ncclInvalidDeviceIndex; } else if (res != hipSuccess) { WARN("rank %d failed to get PCI Bus Id for device %d", rank, comm->cudaDev); return ncclUnhandledCudaError; } INFO("rank %d using device %d (%s)", rank, comm->cudaDev, busId); if (wrapNvmlDeviceGetHandleByPciBusId(busId, &nvmlHandle) != ncclSuccess) { WARN("rank %d failed to get nvml handle for device %s", rank, busId); return ncclUnhandledCudaError; } // Order by nvml index if (wrapNvmlDeviceGetIndex(nvmlHandle, (unsigned*)&info->ncclId) != ncclSuccess) { WARN("rank %d failed to get nvml device index for device %d", rank, comm->cudaDev); return ncclUnhandledCudaError; } info->rank = rank; info->ndev = comm->nDev; info->cudaDev = comm->cudaDev; info->pid = getpid(); info->buffSize = comm->buffSize; info->hostptr = comm->hostMem; info->devptr = comm->devMem; if (hipIpcGetMemHandle(&info->devipc, (void*)comm->devMem) != hipSuccess) { WARN("rank %d failed to open CUDA IPC handle", rank); return ncclUnhandledCudaError; } return ncclSuccess; } static const int CLEANUP_NONE = 0; static const int CLEANUP_CUIPC = 1; static const int CLEANUP_UNMAP = 2; static ncclResult_t commClearMaps(ncclComm_t comm) { ncclResult_t res, retval = ncclSuccess; hipError_t cures; for(int d=0; d<comm->nDev; ++d) { switch(comm->ptrs[d].remoteCleanup) { case CLEANUP_NONE: break; case CLEANUP_CUIPC: cures = hipIpcCloseMemHandle((void*)comm->ptrs[d].cleanupHandle); if (cures != hipSuccess) { WARN("rank %d failed to close IPC handle to rank %d", comm->userFromRing[comm->ncclId], comm->userFromRing[d]); retval = (retval == ncclSuccess) ? ncclUnhandledCudaError : retval; } break; case CLEANUP_UNMAP: cures = hipHostUnregister(comm->ptrs[d].cleanupHandle); if (cures != hipSuccess) { WARN("rank %d failed to unregister handle to rank %d", comm->userFromRing[comm->ncclId], comm->userFromRing[d]); retval = (retval == ncclSuccess) ? ncclUnhandledCudaError : retval; } res = shmUnmap(comm->ptrs[d].cleanupHandle, offsetof(ncclMem, buff) + comm->buffSize); if (res != ncclSuccess) { WARN("rank %d failed to unmap handle to rank %d", comm->userFromRing[comm->ncclId], comm->userFromRing[d]); retval = (retval == ncclSuccess) ? res : retval; } break; default: WARN("Unknown cleanup type %d", comm->ptrs[d].remoteCleanup); } comm->ptrs[d].remoteCleanup = CLEANUP_NONE; comm->ptrs[d].cleanupHandle = NULL; } if (comm->userFromRing != NULL) memset(comm->userFromRing, 0, sizeof(int)*comm->nDev); if (comm->ringFromUser != NULL) memset(comm->ringFromUser, 0, sizeof(int)*comm->nDev); if (comm->devUserFromRing != NULL) { hipError_t err = hipMemset(comm->devUserFromRing, 0, sizeof(int)*comm->nDev); if (err != hipSuccess) { WARN("Faild to clear dev map: %s", hipGetErrorString(err)); retval = (retval == ncclSuccess) ? ncclUnhandledCudaError : retval; } } return retval; } static ncclResult_t commBuildMaps(ncclComm_t comm, ncclUniqueId* commId, int rank, RankEntry* ranks, int* ringDirectFailed) { int ndev = comm->nDev; for(int i=0; i<ndev; ++i) { // Check for inconsistencies between ranks // If two ranks use the same rank, then one slot of // ranks[] will be left unset with zero ndev/buffSize. if (ranks[i].buffSize != comm->buffSize || ranks[i].ndev != comm->nDev) { commClearMaps(comm); return ncclRankMismatch; } // Create rank<->nccl maps int iRank = ranks[i].rank; comm->userFromRing[i] = iRank; comm->ringFromUser[iRank] = i; } if (hipMemcpy(comm->devUserFromRing, comm->userFromRing, ndev*sizeof(int), hipMemcpyHostToDevice) != hipSuccess) { WARN("rank %d failed to copy maps to device", rank); commClearMaps(comm); return ncclUnhandledCudaError; } int myId = -1; for (int i=0; i<ndev; ++i) { if(ranks[i].rank == rank) { myId = i; break; } } if (myId == -1) { WARN("rank %d not found in communicator", rank); return ncclInvalidRank; } comm->ncclId = myId; int myDev = ranks[myId].cudaDev; pid_t myPid = ranks[myId].pid; comm->useRemoteRecv = 1; // Assume we directly write to result ptrs. // The order that we link with peers must ensure that // P2P slots are used for high-priority links first. for (int j=0; j<ndev; ++j) { int i = (myId - 1 + ndev + j) % ndev; int iRank = ranks[i].rank; int iDev = ranks[i].cudaDev; pid_t iPid = ranks[i].pid; int canpeer = 0; if (hipDeviceCanAccessPeer(&canpeer, myDev, iDev) != hipSuccess) { INFO("peer query failed between rank %d (dev %d) and rank %d (dev %d)", rank, myDev, iRank, iDev); canpeer = 0; } if (iPid == myPid) { if (myDev == iDev) { INFO("rank access %d -> %d via common device", rank, iRank); comm->ptrs[i].local = ranks[myId].devptr; comm->ptrs[i].remote = ranks[i].devptr; comm->ptrs[i].remoteCleanup = CLEANUP_NONE; } else { int peer_enabled = canpeer; if (canpeer) { hipError_t p2pErr = hipDeviceEnablePeerAccess(iDev, 0); if (p2pErr == hipErrorPeerAccessAlreadyEnabled) { hipGetLastError(); } else if (p2pErr != hipSuccess) { INFO("peer access failed between rank %d (dev %d) and rank %d (dev %d)\n", rank, myDev, iRank, iDev); peer_enabled = 0; } } if (peer_enabled) { INFO("rank access %d -> %d via P2P device mem", rank, iRank); comm->ptrs[i].local = ranks[myId].devptr; comm->ptrs[i].remote = ranks[i].devptr; comm->ptrs[i].remoteCleanup = CLEANUP_NONE; } else { // go through hostmem INFO("rank access %d -> %d via zero-copy host mem", rank, iRank); if (j <= 2) *ringDirectFailed = 1; if (hipHostGetDevicePointer(&comm->ptrs[i].local, ranks[myId].hostptr, 0) != hipSuccess) { WARN("rank %d failed to map zero copy buffer to device", rank); commClearMaps(comm); return ncclUnhandledCudaError; } if (hipHostGetDevicePointer(&comm->ptrs[i].remote, ranks[i].hostptr, 0) != hipSuccess) { WARN("rank %d failed to map %d's zero copy buffer to device", rank, iRank); commClearMaps(comm); return ncclUnhandledCudaError; } comm->ptrs[i].remoteCleanup = CLEANUP_NONE; } } } else { // multi-process! *ringDirectFailed = 1; if (canpeer || myDev == iDev) { INFO("rank access %d -> %d via Ipc P2P device mem", rank, iRank); comm->ptrs[i].local = ranks[myId].devptr; if (hipIpcOpenMemHandle((void**)(&comm->ptrs[i].remote), ranks[i].devipc, hipIpcMemLazyEnablePeerAccess) != hipSuccess) { WARN("rank %d failed to open Ipc handle to rank %d", rank, iRank); commClearMaps(comm); return ncclUnhandledCudaError; } comm->ptrs[i].remoteCleanup = CLEANUP_CUIPC; comm->ptrs[i].cleanupHandle = comm->ptrs[i].remote; } else { // go through hostmem INFO("rank access %d -> %d via zero copy host shm", rank, iRank); if (hipHostGetDevicePointer(&comm->ptrs[i].local, ranks[myId].hostptr, 0) != hipSuccess) { WARN("rank %d failed to obtain dev ptr to sysmem buffer", rank); commClearMaps(comm); return ncclUnhandledCudaError; } char rankname[1024]; sprintf(rankname, "%s-%d", commId->internal, ranks[i].rank); if (openHostMemShm(rankname, (ncclMem**)&comm->ptrs[i].cleanupHandle, ranks[i].buffSize) != ncclSuccess) { WARN("rank %d failed to open sysmem buffer of rank %d", rank, iRank); commClearMaps(comm); return ncclUnhandledCudaError; } if (hipHostGetDevicePointer(&comm->ptrs[i].remote, comm->ptrs[i].cleanupHandle, 0) != hipSuccess) { WARN("rank %d failed to obtain dev ptr for rank %d", rank, iRank); commClearMaps(comm); return ncclUnhandledCudaError; } comm->ptrs[i].remoteCleanup = CLEANUP_UNMAP; } } } return ncclSuccess; } static void initDebug() { const char* nccl_debug = getenv("NCCL_DEBUG"); if (nccl_debug == NULL) { ncclDebugLevel = NONE; } else if (strcmp(nccl_debug, "VERSION") == 0) { ncclDebugLevel = VERSION; } else if (strcmp(nccl_debug, "WARN") == 0) { ncclDebugLevel = WARN; } else if (strcmp(nccl_debug, "INFO") == 0) { ncclDebugLevel = INFO; INFO("NCCL debug level set to INFO"); } else if (strcmp(nccl_debug, "ABORT") == 0) { ncclDebugLevel = ABORT; INFO("NCCL debug level set to ABORT"); } } static void commFree(ncclComm_t comm) { if (comm == NULL) return; for(int i=0; i<MAXQUEUE; ++i) { if (comm->events.isDone[i] != NULL) if (hipEventDestroy(comm->events.isDone[i]) != hipSuccess) INFO("failed to destroy cuda event %d", i); } ncclResult_t res = commClearMaps(comm); if (res != ncclSuccess) INFO("failed to cleanup comm maps"); if (comm->userFromRing != NULL) free(comm->userFromRing); if (comm->devUserFromRing != NULL) if (hipFree(comm->devUserFromRing) != hipSuccess) INFO("commFree failed to free dev maps"); if (comm->ringFromUser != NULL) free(comm->ringFromUser); if (comm->devMem != NULL && hipFree(comm->devMem) != hipSuccess) INFO("Failed to free devMap"); if (comm->hostMem != NULL) { if (comm->hostMemState & ShmMapped) { if (hipHostUnregister(comm->hostMem) != hipSuccess) INFO("Failed to unregister hostMem"); size_t size = offsetof(ncclMem, buff) + comm->buffSize; if (shmUnmap(comm->hostMem, size) != ncclSuccess) INFO("Failed to unmap hostMem"); comm->hostMemState ^= ShmMapped; } else { hipHostFree(comm->hostMem); } } free(comm); } static ncclResult_t commAlloc(ncclComm_t* comret, int ndev, const ncclUniqueId* commId, int rank) { if (ndev < 1) { WARN("invalid device count (%d) requested", ndev); return ncclUnsupportedDeviceCount; } if (rank >= ndev || rank < 0) { WARN("rank %d exceeds ndev=%d", rank, ndev); return ncclInvalidRank; } size_t commBytes = offsetof(ncclComm, ptrs) + ndev*sizeof(ncclNodeRef); struct ncclComm* comm = (struct ncclComm*)malloc(commBytes); if (comm == NULL) { WARN("comm allocation failed"); return ncclSystemError; } memset(comm, 0, commBytes); comm->nDev = ndev; hipGetDevice(&comm->cudaDev); const char* str = getenv("NCCL_BUFFSIZE"); if (str != NULL) { errno = 0; comm->buffSize = strtol(str, NULL, 10); if (errno == ERANGE || comm->buffSize == 0) { INFO("rank %d invalid NCCL_BUFFSIZE: %s, using default %lu", rank, str, DEFAULT_BUFFER_SIZE_BYTES); comm->buffSize = DEFAULT_BUFFER_SIZE_BYTES; } } else { comm->buffSize = DEFAULT_BUFFER_SIZE_BYTES; } INFO("rank %d using buffSize = %lu", rank, comm->buffSize); ncclResult_t res; res = allocDevMem(&comm->devMem, comm->buffSize); if (res != ncclSuccess) { WARN("rank %d failed to allocate device buffer", rank); commFree(comm); return res; } if (hipMalloc(&comm->devUserFromRing, ndev*sizeof(int)) != hipSuccess) { WARN("rank %d failed to allocated device maps", rank); commFree(comm); return ncclCudaMallocFailed; } comm->userFromRing = (int*)malloc(ndev*sizeof(int)); if (comm->userFromRing == NULL) { WARN("rank %d failed to allocate host maps", rank); commFree(comm); return ncclSystemError; } comm->ringFromUser = (int*)malloc(ndev*sizeof(int)); if (comm->ringFromUser == NULL) { WARN("rank %d failed to allocate host maps", rank); commFree(comm); return ncclSystemError; } EventQueue* eq = &comm->events; for(int i=0; i<MAXQUEUE; ++i) { if (hipEventCreateWithFlags(eq->isDone+i, hipEventDisableTiming) != hipSuccess) { WARN("rank %d failed to create nccl event %d", rank, i); commFree(comm); return ncclUnhandledCudaError; } } if(commId == NULL) { comm->hostMemState = 0; res = allocHostMem(&comm->hostMem, comm->buffSize); } else { char rankname[1024]; sprintf(rankname, "%s-%d", commId->internal, rank); res = openHostMemShm(rankname, &comm->hostMem, comm->buffSize); if (res != ncclSuccess) { WARN("rank %d failed to allocate host buffer", rank); commFree(comm); return res; } comm->hostMemState = ShmMapped | ShmLinked; } *comret = comm; return ncclSuccess; } static ncclResult_t commUnlinkHostMem(ncclComm_t comm, ncclUniqueId commId, int rank) { char rankname[1024]; sprintf(rankname, "%s-%d", commId.internal, rank); if (comm->hostMemState & ShmLinked) comm->hostMemState ^= ShmLinked; return shmUnlink(rankname); } static void showVersion() { static int shown = 0; if (shown == 0 && ncclDebugLevel >= VERSION) { printf("NCCL version %d.%d.%d compiled with CUDA %d.%d\n", NCCL_MAJOR, NCCL_MINOR, NCCL_PATCH, CUDA_MAJOR, CUDA_MINOR); fflush(stdout); \ shown = 1; } } extern "C" DSOGLOBAL ncclResult_t ncclCommInitRank(ncclComm_t* newcomm, int ndev, ncclUniqueId commId, int myrank) { if (myrank == 0) showVersion(); if (strlen(commId.internal) < 1 || strlen(commId.internal) >= NCCL_UNIQUE_ID_BYTES) { WARN("rank %d invalid commId", myrank); return ncclInvalidArgument; } initDebug(); ncclResult_t res; RankEntry myStuff; RankGather* gath = NULL; res = wrapSymbols(); if (res != ncclSuccess) { WARN("NCCL failed to initialize client libs"); return res; } res = wrapNvmlInit(); if (res != ncclSuccess) { WARN("rank %d failed to initialize nvml", myrank); return res; } res = commAlloc(newcomm, ndev, &commId, myrank); if (res != ncclSuccess) { WARN("rank %d failed to allocate communicator", myrank); return res; } res = populateRankInfo(&myStuff, myrank, *newcomm); if (res != ncclSuccess) { WARN("rank %d failed to obtain rank info", myrank); goto cleanup; } res = initGather(&gath, commId, ndev, myrank, myStuff); if (res != ncclSuccess) { WARN("rank %d failed to gather rank info", myrank); goto cleanup; } res = commBuildMaps(*newcomm, &commId, myrank, gath->ranks, &gath->ringDirectFail); if (res != ncclSuccess) { WARN("rank %d failed to build comm maps", myrank); goto cleanup; } syncRingDirect(gath, &((*newcomm)->useRemoteRecv)); INFO("PushToRecv algos are %s\n", (*newcomm)->useRemoteRecv ? "enabled" : "disabled"); res = closeGather(gath, ndev); // includes a barrier gath = NULL; if (res != ncclSuccess) { WARN("rank %d failed to close gather", myrank); goto cleanup; } goto final; cleanup: if (gath != NULL) closeGather(gath, ndev); commFree(*newcomm); final: if ((*newcomm)->hostMemState & ShmLinked) { if (commUnlinkHostMem(*newcomm, commId, myrank) != ncclSuccess) INFO("rank %d failed to unlink host mem shm segment", myrank); } if (wrapNvmlShutdown() != ncclSuccess) INFO("rank %d did not shutdown nvml properly", myrank); return res; } extern "C" DSOGLOBAL ncclResult_t ncclCommInitAll(ncclComm_t* comms, int ndev, const int* devlist) { initDebug(); showVersion(); ncclResult_t res; int savedDevice; RankEntry* ranks = NULL; int rank, cudaDev; ncclComm_t comm = NULL; char busId[13]; uint32_t nvmlHandle; int affinity_set = 0; int ringDirectFail = 0; // Assume direct access to recv ptr OK res = wrapSymbols(); if (res != ncclSuccess) { WARN("NCCL failed to initialize client libs"); return res; } hipGetDevice(&savedDevice); ranks = (RankEntry*)malloc(ndev*sizeof(RankEntry)); if (ranks == NULL) { WARN("NCCL allocation failed"); return ncclSystemError; } memset(ranks, 0, ndev*sizeof(RankEntry)); res = wrapNvmlInit(); if (res != ncclSuccess) { WARN("nccl failed to initialize nvml"); return res; } for(rank=0; rank<ndev; ++rank) comms[rank] = NULL; for (rank=0; rank<ndev; ++rank) { cudaDev = (devlist == NULL) ? rank : devlist[rank]; if (hipSetDevice(cudaDev) != hipSuccess) { WARN("rank %d failed to set cuda device %d", rank, cudaDev); res = ncclInvalidDeviceIndex; goto cleanup; } // Set CPU affinity affinity_set = 0; if (hipDeviceGetPCIBusId(busId, 13, cudaDev) != hipSuccess) { INFO("rank %d failed to get PCI Bus Id for device %d", rank, cudaDev); goto skipaffinity; } if (wrapNvmlDeviceGetHandleByPciBusId(busId, &nvmlHandle) != ncclSuccess) { INFO("rank %d failed to get nvml handle for device %s", rank, busId); goto skipaffinity; } if (wrapNvmlDeviceSetCpuAffinity(nvmlHandle) != ncclSuccess) { INFO("rank %d failed to set affinity", rank); goto skipaffinity; } affinity_set = 1; skipaffinity: res = commAlloc(&comm, ndev, NULL, rank); if (res != ncclSuccess) { WARN("rank %d failed to allocate communicator", rank); goto cleanup; } comms[rank] = comm; if (affinity_set && wrapNvmlDeviceClearCpuAffinity(nvmlHandle) != ncclSuccess) { INFO("rank %d set but failed to clear cpu affinity", rank); } res = populateRankInfo(ranks+rank, rank, comm); if (res != ncclSuccess) { WARN("rank %d failed to obtain rank info", rank); goto cleanup; } } orderRanks(ranks, ndev); for(rank=0; rank<ndev; ++rank) { comm = comms[rank]; hipSetDevice(comm->cudaDev); res = commBuildMaps(comm, NULL, rank, ranks, &ringDirectFail); if (res != ncclSuccess) { WARN("rank %d failed to build comm maps", rank); goto cleanup; } } INFO("PushToRecv algos are %s\n", (ringDirectFail) ? "disabled" : "enabled"); for(rank=0; rank<ndev; ++rank) { comms[rank]->useRemoteRecv = ringDirectFail ? 0 : 1; } free(ranks); ranks = NULL; res = ncclSuccess; goto final; cleanup: if (ranks != NULL) free(ranks); for(rank=0; rank<ndev; ++rank) { if(comms[rank] != NULL) { commFree(comms[rank]); } } final: if(wrapNvmlShutdown() != ncclSuccess) INFO("NCCL did not shutdown nvml properly"); hipSetDevice(savedDevice); return res; } extern "C" DSOGLOBAL void ncclCommDestroy(ncclComm_t comm) { if (comm == NULL) return; int savedDevice; hipGetDevice(&savedDevice); int commDevice = comm->cudaDev; if (savedDevice != commDevice) { CUDACHECK(hipSetDevice(commDevice)); } commFree(comm); if (savedDevice != commDevice) hipSetDevice(savedDevice); } extern "C" DSOGLOBAL const char* ncclGetErrorString(ncclResult_t code) { switch (code) { case ncclSuccess : return "no error"; case ncclUnhandledCudaError : return "unhandled cuda error"; case ncclSystemError : return "system error"; case ncclInternalError : return "internal error"; case ncclInvalidDevicePointer : return "invalid device pointer"; case ncclInvalidRank : return "invalid rank"; case ncclUnsupportedDeviceCount : return "unsupported device count"; case ncclDeviceNotFound : return "device not found"; case ncclInvalidDeviceIndex : return "invalid device index"; case ncclLibWrapperNotSet : return "lib wrapper not initialized"; case ncclCudaMallocFailed : return "cuda malloc failed"; case ncclRankMismatch : return "parameter mismatch between ranks"; case ncclInvalidArgument : return "invalid argument"; case ncclInvalidType : return "invalid data type"; case ncclInvalidOperation : return "invalid reduction operations"; } return "unknown result code"; } extern "C" DSOGLOBAL ncclResult_t ncclCommCount(const ncclComm_t comm, int* count) { *count = comm->nDev; return ncclSuccess; } extern "C" DSOGLOBAL ncclResult_t ncclCommCuDevice(const ncclComm_t comm, int* devid) { *devid = comm->cudaDev; return ncclSuccess; } extern "C" DSOGLOBAL ncclResult_t ncclCommUserRank(const ncclComm_t comm, int* rank) { *rank = comm->userFromRing[comm->ncclId]; return ncclSuccess; }
9e3e99e819979c03c22c5afb7d2a33633038863f.cu
/************************************************************************* * Copyright (c) 2015-2016, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ************************************************************************/ #include <stdio.h> #include <stdlib.h> #include "core.h" #include "libwrap.h" #include <sys/mman.h> #include <sys/stat.h> #include <sys/types.h> #include <sched.h> #include <fcntl.h> #include <unistd.h> #include <cuda_runtime.h> #include <string.h> #include <errno.h> DebugLevel ncclDebugLevel; extern "C" DSOGLOBAL ncclResult_t ncclGetUniqueId(ncclUniqueId* out) { pid_t pid = getpid(); static int count = 0; int commId = __sync_fetch_and_add(&count, 1); int len = snprintf(out->internal, NCCL_UNIQUE_ID_BYTES, "nccl-%d-%d", pid, commId); if(strlen(out->internal) < len) { WARN("ncclUniqueId truncated"); return ncclInternalError; } return ncclSuccess; } static ncclResult_t shmOpen(const char* shmname, size_t bytes, void** ptr) { int fd = shm_open(shmname, O_CREAT | O_RDWR, S_IRUSR | S_IWUSR); if (fd == -1) { WARN("shm_open failed to open %s", shmname); return ncclSystemError; } if (ftruncate(fd, bytes) == -1) { WARN("ftruncate failed to allocate %ld bytes", bytes); shm_unlink(shmname); close(fd); return ncclSystemError; } *ptr = mmap(NULL, bytes, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); if (*ptr == MAP_FAILED) { WARN("failure in mmap"); shm_unlink(shmname); close(fd); return ncclSystemError; } close(fd); return ncclSuccess; } static ncclResult_t shmUnlink(const char* shmname) { if(shm_unlink(shmname) == -1) { WARN("smh_unlink failed"); return ncclSystemError; } else { return ncclSuccess; } } static ncclResult_t shmUnmap(void* ptr, size_t bytes) { if(munmap(ptr, bytes) == -1) { WARN("munmap failed"); return ncclSystemError; } else { return ncclSuccess; } } typedef struct { int rank; int ndev; int cudaDev; int ncclId; pid_t pid; ncclMem* hostptr; ncclMem* devptr; cudaIpcMemHandle_t devipc; size_t buffSize; } RankEntry; static int compRanks(const void* a, const void* b) { const RankEntry* A = (const RankEntry*)a; const RankEntry* B = (const RankEntry*)b; if (A->ncclId < B->ncclId) return -1; if (A->ncclId > B->ncclId) return 1; return 0; } static void orderRanks(RankEntry* ranks, int count) { qsort(ranks, count, sizeof(RankEntry), compRanks); for(int i=0; i<count; ++i) ranks[i].ncclId = i; } typedef struct { union { struct { volatile int bar; int ringDirectFail; }; char pad[16]; }; RankEntry ranks[1]; } RankGather; static ncclResult_t initGather(RankGather** gather, ncclUniqueId commId, int ndev, int rank, RankEntry myInfo) { size_t bytes = offsetof(RankGather, ranks) + ndev*sizeof(RankEntry); RankGather* tmp = NULL; int bar_tmp; ncclResult_t res = shmOpen(commId.internal, bytes, (void**)&tmp); if (res != ncclSuccess) { WARN("rank %d failed to open shm segment for gather", rank); return res; } tmp->ranks[rank] = myInfo; bar_tmp = tmp->bar - 1; bool swapped; do { bar_tmp += 1; if (bar_tmp == ndev-1) { // everyone is done ncclResult_t res = shmUnlink(commId.internal); if (res != ncclSuccess) { WARN("rank %d failed to unlink shm segment for gather", rank); shmUnmap(tmp, bytes); return res; } orderRanks(tmp->ranks, ndev); } swapped = __sync_bool_compare_and_swap(&tmp->bar, bar_tmp, bar_tmp+1); } while(!swapped); while (tmp->bar < ndev) sched_yield(); __sync_synchronize(); *gather = tmp; return ncclSuccess; } static void syncRingDirect(RankGather* gather, int* ringDirectOk) { int bar_tmp = gather->bar - 1; int ndev = gather->ranks[0].ndev; bool swapped; do { bar_tmp += 1; swapped = __sync_bool_compare_and_swap(&gather->bar, bar_tmp, bar_tmp+1); } while(!swapped); while (gather->bar < 2*ndev) // Wait for all ranks to arrive at this second barrier sched_yield(); __sync_synchronize(); *ringDirectOk = gather->ringDirectFail ? 0 : 1; } static ncclResult_t closeGather(RankGather* gather, int ndev) { int bar_tmp = gather->bar - 1; bool swapped; do { bar_tmp += 1; swapped = __sync_bool_compare_and_swap(&gather->bar, bar_tmp, bar_tmp+1); } while(!swapped); while (gather->bar < 3*ndev) // Wait for all ranks to arrive at this third barrier sched_yield(); __sync_synchronize(); size_t bytes = offsetof(RankGather, ranks) + ndev*sizeof(RankEntry); ncclResult_t res = shmUnmap(gather, bytes); if (res != ncclSuccess) { WARN("failed to unmap %ld bytes of gather", bytes); return res; } return ncclSuccess; } static ncclResult_t allocDevMem(ncclMem** ptr, size_t buffSize) { size_t size = offsetof(struct ncclMem, buff) + buffSize; cudaError_t res = cudaMalloc((void**)ptr, size); if (res != cudaSuccess) { *ptr = NULL; WARN("failed to allocate %lu byte device buffer", size); return ncclCudaMallocFailed; } if (cudaMemset(*ptr, 0, size) != cudaSuccess) { WARN("failed to memset device buffer."); cudaFree(*ptr); *ptr = NULL; return ncclUnhandledCudaError; } return ncclSuccess; } static const int ShmMapped = 1; static const int ShmLinked = 2; static ncclResult_t allocHostMem(ncclMem** ptr, size_t buffSize) { size_t size = offsetof(struct ncclMem, buff) + buffSize; cudaError_t res = cudaMallocHost((void**)ptr, size); if (res != cudaSuccess) { *ptr = NULL; WARN("failed to allocate %lu byte host buffer", size); return ncclSystemError; } memset(*ptr, 0, size); return ncclSuccess; } static ncclResult_t openHostMemShm(const char* shmname, ncclMem** ptr, size_t buffSize) { size_t size = offsetof(struct ncclMem, buff) + buffSize; ncclResult_t res = shmOpen(shmname, size, (void**)ptr); if (res != ncclSuccess) { WARN("failed to allocate %lu byte shm buffer", size); *ptr = NULL; return res; } if(cudaHostRegister(*ptr, size, cudaHostRegisterMapped) != cudaSuccess) { WARN("failed to register host buffer"); shmUnlink(shmname); shmUnmap(*ptr, size); *ptr = NULL; return ncclUnhandledCudaError; } return ncclSuccess; } static ncclResult_t populateRankInfo(RankEntry* info, int rank, ncclComm_t comm) { char busId[13]; nvmlDevice_t nvmlHandle; cudaError_t res = cudaDeviceGetPCIBusId(busId, 13, comm->cudaDev); if (res == cudaErrorInvalidDevice) { WARN("rank %d attempted to access an invalid cuda device %d", rank, comm->cudaDev); return ncclInvalidDeviceIndex; } else if (res != cudaSuccess) { WARN("rank %d failed to get PCI Bus Id for device %d", rank, comm->cudaDev); return ncclUnhandledCudaError; } INFO("rank %d using device %d (%s)", rank, comm->cudaDev, busId); if (wrapNvmlDeviceGetHandleByPciBusId(busId, &nvmlHandle) != ncclSuccess) { WARN("rank %d failed to get nvml handle for device %s", rank, busId); return ncclUnhandledCudaError; } // Order by nvml index if (wrapNvmlDeviceGetIndex(nvmlHandle, (unsigned*)&info->ncclId) != ncclSuccess) { WARN("rank %d failed to get nvml device index for device %d", rank, comm->cudaDev); return ncclUnhandledCudaError; } info->rank = rank; info->ndev = comm->nDev; info->cudaDev = comm->cudaDev; info->pid = getpid(); info->buffSize = comm->buffSize; info->hostptr = comm->hostMem; info->devptr = comm->devMem; if (cudaIpcGetMemHandle(&info->devipc, (void*)comm->devMem) != cudaSuccess) { WARN("rank %d failed to open CUDA IPC handle", rank); return ncclUnhandledCudaError; } return ncclSuccess; } static const int CLEANUP_NONE = 0; static const int CLEANUP_CUIPC = 1; static const int CLEANUP_UNMAP = 2; static ncclResult_t commClearMaps(ncclComm_t comm) { ncclResult_t res, retval = ncclSuccess; cudaError_t cures; for(int d=0; d<comm->nDev; ++d) { switch(comm->ptrs[d].remoteCleanup) { case CLEANUP_NONE: break; case CLEANUP_CUIPC: cures = cudaIpcCloseMemHandle((void*)comm->ptrs[d].cleanupHandle); if (cures != cudaSuccess) { WARN("rank %d failed to close IPC handle to rank %d", comm->userFromRing[comm->ncclId], comm->userFromRing[d]); retval = (retval == ncclSuccess) ? ncclUnhandledCudaError : retval; } break; case CLEANUP_UNMAP: cures = cudaHostUnregister(comm->ptrs[d].cleanupHandle); if (cures != cudaSuccess) { WARN("rank %d failed to unregister handle to rank %d", comm->userFromRing[comm->ncclId], comm->userFromRing[d]); retval = (retval == ncclSuccess) ? ncclUnhandledCudaError : retval; } res = shmUnmap(comm->ptrs[d].cleanupHandle, offsetof(ncclMem, buff) + comm->buffSize); if (res != ncclSuccess) { WARN("rank %d failed to unmap handle to rank %d", comm->userFromRing[comm->ncclId], comm->userFromRing[d]); retval = (retval == ncclSuccess) ? res : retval; } break; default: WARN("Unknown cleanup type %d", comm->ptrs[d].remoteCleanup); } comm->ptrs[d].remoteCleanup = CLEANUP_NONE; comm->ptrs[d].cleanupHandle = NULL; } if (comm->userFromRing != NULL) memset(comm->userFromRing, 0, sizeof(int)*comm->nDev); if (comm->ringFromUser != NULL) memset(comm->ringFromUser, 0, sizeof(int)*comm->nDev); if (comm->devUserFromRing != NULL) { cudaError_t err = cudaMemset(comm->devUserFromRing, 0, sizeof(int)*comm->nDev); if (err != cudaSuccess) { WARN("Faild to clear dev map: %s", cudaGetErrorString(err)); retval = (retval == ncclSuccess) ? ncclUnhandledCudaError : retval; } } return retval; } static ncclResult_t commBuildMaps(ncclComm_t comm, ncclUniqueId* commId, int rank, RankEntry* ranks, int* ringDirectFailed) { int ndev = comm->nDev; for(int i=0; i<ndev; ++i) { // Check for inconsistencies between ranks // If two ranks use the same rank, then one slot of // ranks[] will be left unset with zero ndev/buffSize. if (ranks[i].buffSize != comm->buffSize || ranks[i].ndev != comm->nDev) { commClearMaps(comm); return ncclRankMismatch; } // Create rank<->nccl maps int iRank = ranks[i].rank; comm->userFromRing[i] = iRank; comm->ringFromUser[iRank] = i; } if (cudaMemcpy(comm->devUserFromRing, comm->userFromRing, ndev*sizeof(int), cudaMemcpyHostToDevice) != cudaSuccess) { WARN("rank %d failed to copy maps to device", rank); commClearMaps(comm); return ncclUnhandledCudaError; } int myId = -1; for (int i=0; i<ndev; ++i) { if(ranks[i].rank == rank) { myId = i; break; } } if (myId == -1) { WARN("rank %d not found in communicator", rank); return ncclInvalidRank; } comm->ncclId = myId; int myDev = ranks[myId].cudaDev; pid_t myPid = ranks[myId].pid; comm->useRemoteRecv = 1; // Assume we directly write to result ptrs. // The order that we link with peers must ensure that // P2P slots are used for high-priority links first. for (int j=0; j<ndev; ++j) { int i = (myId - 1 + ndev + j) % ndev; int iRank = ranks[i].rank; int iDev = ranks[i].cudaDev; pid_t iPid = ranks[i].pid; int canpeer = 0; if (cudaDeviceCanAccessPeer(&canpeer, myDev, iDev) != cudaSuccess) { INFO("peer query failed between rank %d (dev %d) and rank %d (dev %d)", rank, myDev, iRank, iDev); canpeer = 0; } if (iPid == myPid) { if (myDev == iDev) { INFO("rank access %d -> %d via common device", rank, iRank); comm->ptrs[i].local = ranks[myId].devptr; comm->ptrs[i].remote = ranks[i].devptr; comm->ptrs[i].remoteCleanup = CLEANUP_NONE; } else { int peer_enabled = canpeer; if (canpeer) { cudaError_t p2pErr = cudaDeviceEnablePeerAccess(iDev, 0); if (p2pErr == cudaErrorPeerAccessAlreadyEnabled) { cudaGetLastError(); } else if (p2pErr != cudaSuccess) { INFO("peer access failed between rank %d (dev %d) and rank %d (dev %d)\n", rank, myDev, iRank, iDev); peer_enabled = 0; } } if (peer_enabled) { INFO("rank access %d -> %d via P2P device mem", rank, iRank); comm->ptrs[i].local = ranks[myId].devptr; comm->ptrs[i].remote = ranks[i].devptr; comm->ptrs[i].remoteCleanup = CLEANUP_NONE; } else { // go through hostmem INFO("rank access %d -> %d via zero-copy host mem", rank, iRank); if (j <= 2) *ringDirectFailed = 1; if (cudaHostGetDevicePointer(&comm->ptrs[i].local, ranks[myId].hostptr, 0) != cudaSuccess) { WARN("rank %d failed to map zero copy buffer to device", rank); commClearMaps(comm); return ncclUnhandledCudaError; } if (cudaHostGetDevicePointer(&comm->ptrs[i].remote, ranks[i].hostptr, 0) != cudaSuccess) { WARN("rank %d failed to map %d's zero copy buffer to device", rank, iRank); commClearMaps(comm); return ncclUnhandledCudaError; } comm->ptrs[i].remoteCleanup = CLEANUP_NONE; } } } else { // multi-process! *ringDirectFailed = 1; if (canpeer || myDev == iDev) { INFO("rank access %d -> %d via Ipc P2P device mem", rank, iRank); comm->ptrs[i].local = ranks[myId].devptr; if (cudaIpcOpenMemHandle((void**)(&comm->ptrs[i].remote), ranks[i].devipc, cudaIpcMemLazyEnablePeerAccess) != cudaSuccess) { WARN("rank %d failed to open Ipc handle to rank %d", rank, iRank); commClearMaps(comm); return ncclUnhandledCudaError; } comm->ptrs[i].remoteCleanup = CLEANUP_CUIPC; comm->ptrs[i].cleanupHandle = comm->ptrs[i].remote; } else { // go through hostmem INFO("rank access %d -> %d via zero copy host shm", rank, iRank); if (cudaHostGetDevicePointer(&comm->ptrs[i].local, ranks[myId].hostptr, 0) != cudaSuccess) { WARN("rank %d failed to obtain dev ptr to sysmem buffer", rank); commClearMaps(comm); return ncclUnhandledCudaError; } char rankname[1024]; sprintf(rankname, "%s-%d", commId->internal, ranks[i].rank); if (openHostMemShm(rankname, (ncclMem**)&comm->ptrs[i].cleanupHandle, ranks[i].buffSize) != ncclSuccess) { WARN("rank %d failed to open sysmem buffer of rank %d", rank, iRank); commClearMaps(comm); return ncclUnhandledCudaError; } if (cudaHostGetDevicePointer(&comm->ptrs[i].remote, comm->ptrs[i].cleanupHandle, 0) != cudaSuccess) { WARN("rank %d failed to obtain dev ptr for rank %d", rank, iRank); commClearMaps(comm); return ncclUnhandledCudaError; } comm->ptrs[i].remoteCleanup = CLEANUP_UNMAP; } } } return ncclSuccess; } static void initDebug() { const char* nccl_debug = getenv("NCCL_DEBUG"); if (nccl_debug == NULL) { ncclDebugLevel = NONE; } else if (strcmp(nccl_debug, "VERSION") == 0) { ncclDebugLevel = VERSION; } else if (strcmp(nccl_debug, "WARN") == 0) { ncclDebugLevel = WARN; } else if (strcmp(nccl_debug, "INFO") == 0) { ncclDebugLevel = INFO; INFO("NCCL debug level set to INFO"); } else if (strcmp(nccl_debug, "ABORT") == 0) { ncclDebugLevel = ABORT; INFO("NCCL debug level set to ABORT"); } } static void commFree(ncclComm_t comm) { if (comm == NULL) return; for(int i=0; i<MAXQUEUE; ++i) { if (comm->events.isDone[i] != NULL) if (cudaEventDestroy(comm->events.isDone[i]) != cudaSuccess) INFO("failed to destroy cuda event %d", i); } ncclResult_t res = commClearMaps(comm); if (res != ncclSuccess) INFO("failed to cleanup comm maps"); if (comm->userFromRing != NULL) free(comm->userFromRing); if (comm->devUserFromRing != NULL) if (cudaFree(comm->devUserFromRing) != cudaSuccess) INFO("commFree failed to free dev maps"); if (comm->ringFromUser != NULL) free(comm->ringFromUser); if (comm->devMem != NULL && cudaFree(comm->devMem) != cudaSuccess) INFO("Failed to free devMap"); if (comm->hostMem != NULL) { if (comm->hostMemState & ShmMapped) { if (cudaHostUnregister(comm->hostMem) != cudaSuccess) INFO("Failed to unregister hostMem"); size_t size = offsetof(ncclMem, buff) + comm->buffSize; if (shmUnmap(comm->hostMem, size) != ncclSuccess) INFO("Failed to unmap hostMem"); comm->hostMemState ^= ShmMapped; } else { cudaFreeHost(comm->hostMem); } } free(comm); } static ncclResult_t commAlloc(ncclComm_t* comret, int ndev, const ncclUniqueId* commId, int rank) { if (ndev < 1) { WARN("invalid device count (%d) requested", ndev); return ncclUnsupportedDeviceCount; } if (rank >= ndev || rank < 0) { WARN("rank %d exceeds ndev=%d", rank, ndev); return ncclInvalidRank; } size_t commBytes = offsetof(ncclComm, ptrs) + ndev*sizeof(ncclNodeRef); struct ncclComm* comm = (struct ncclComm*)malloc(commBytes); if (comm == NULL) { WARN("comm allocation failed"); return ncclSystemError; } memset(comm, 0, commBytes); comm->nDev = ndev; cudaGetDevice(&comm->cudaDev); const char* str = getenv("NCCL_BUFFSIZE"); if (str != NULL) { errno = 0; comm->buffSize = strtol(str, NULL, 10); if (errno == ERANGE || comm->buffSize == 0) { INFO("rank %d invalid NCCL_BUFFSIZE: %s, using default %lu", rank, str, DEFAULT_BUFFER_SIZE_BYTES); comm->buffSize = DEFAULT_BUFFER_SIZE_BYTES; } } else { comm->buffSize = DEFAULT_BUFFER_SIZE_BYTES; } INFO("rank %d using buffSize = %lu", rank, comm->buffSize); ncclResult_t res; res = allocDevMem(&comm->devMem, comm->buffSize); if (res != ncclSuccess) { WARN("rank %d failed to allocate device buffer", rank); commFree(comm); return res; } if (cudaMalloc(&comm->devUserFromRing, ndev*sizeof(int)) != cudaSuccess) { WARN("rank %d failed to allocated device maps", rank); commFree(comm); return ncclCudaMallocFailed; } comm->userFromRing = (int*)malloc(ndev*sizeof(int)); if (comm->userFromRing == NULL) { WARN("rank %d failed to allocate host maps", rank); commFree(comm); return ncclSystemError; } comm->ringFromUser = (int*)malloc(ndev*sizeof(int)); if (comm->ringFromUser == NULL) { WARN("rank %d failed to allocate host maps", rank); commFree(comm); return ncclSystemError; } EventQueue* eq = &comm->events; for(int i=0; i<MAXQUEUE; ++i) { if (cudaEventCreateWithFlags(eq->isDone+i, cudaEventDisableTiming) != cudaSuccess) { WARN("rank %d failed to create nccl event %d", rank, i); commFree(comm); return ncclUnhandledCudaError; } } if(commId == NULL) { comm->hostMemState = 0; res = allocHostMem(&comm->hostMem, comm->buffSize); } else { char rankname[1024]; sprintf(rankname, "%s-%d", commId->internal, rank); res = openHostMemShm(rankname, &comm->hostMem, comm->buffSize); if (res != ncclSuccess) { WARN("rank %d failed to allocate host buffer", rank); commFree(comm); return res; } comm->hostMemState = ShmMapped | ShmLinked; } *comret = comm; return ncclSuccess; } static ncclResult_t commUnlinkHostMem(ncclComm_t comm, ncclUniqueId commId, int rank) { char rankname[1024]; sprintf(rankname, "%s-%d", commId.internal, rank); if (comm->hostMemState & ShmLinked) comm->hostMemState ^= ShmLinked; return shmUnlink(rankname); } static void showVersion() { static int shown = 0; if (shown == 0 && ncclDebugLevel >= VERSION) { printf("NCCL version %d.%d.%d compiled with CUDA %d.%d\n", NCCL_MAJOR, NCCL_MINOR, NCCL_PATCH, CUDA_MAJOR, CUDA_MINOR); fflush(stdout); \ shown = 1; } } extern "C" DSOGLOBAL ncclResult_t ncclCommInitRank(ncclComm_t* newcomm, int ndev, ncclUniqueId commId, int myrank) { if (myrank == 0) showVersion(); if (strlen(commId.internal) < 1 || strlen(commId.internal) >= NCCL_UNIQUE_ID_BYTES) { WARN("rank %d invalid commId", myrank); return ncclInvalidArgument; } initDebug(); ncclResult_t res; RankEntry myStuff; RankGather* gath = NULL; res = wrapSymbols(); if (res != ncclSuccess) { WARN("NCCL failed to initialize client libs"); return res; } res = wrapNvmlInit(); if (res != ncclSuccess) { WARN("rank %d failed to initialize nvml", myrank); return res; } res = commAlloc(newcomm, ndev, &commId, myrank); if (res != ncclSuccess) { WARN("rank %d failed to allocate communicator", myrank); return res; } res = populateRankInfo(&myStuff, myrank, *newcomm); if (res != ncclSuccess) { WARN("rank %d failed to obtain rank info", myrank); goto cleanup; } res = initGather(&gath, commId, ndev, myrank, myStuff); if (res != ncclSuccess) { WARN("rank %d failed to gather rank info", myrank); goto cleanup; } res = commBuildMaps(*newcomm, &commId, myrank, gath->ranks, &gath->ringDirectFail); if (res != ncclSuccess) { WARN("rank %d failed to build comm maps", myrank); goto cleanup; } syncRingDirect(gath, &((*newcomm)->useRemoteRecv)); INFO("PushToRecv algos are %s\n", (*newcomm)->useRemoteRecv ? "enabled" : "disabled"); res = closeGather(gath, ndev); // includes a barrier gath = NULL; if (res != ncclSuccess) { WARN("rank %d failed to close gather", myrank); goto cleanup; } goto final; cleanup: if (gath != NULL) closeGather(gath, ndev); commFree(*newcomm); final: if ((*newcomm)->hostMemState & ShmLinked) { if (commUnlinkHostMem(*newcomm, commId, myrank) != ncclSuccess) INFO("rank %d failed to unlink host mem shm segment", myrank); } if (wrapNvmlShutdown() != ncclSuccess) INFO("rank %d did not shutdown nvml properly", myrank); return res; } extern "C" DSOGLOBAL ncclResult_t ncclCommInitAll(ncclComm_t* comms, int ndev, const int* devlist) { initDebug(); showVersion(); ncclResult_t res; int savedDevice; RankEntry* ranks = NULL; int rank, cudaDev; ncclComm_t comm = NULL; char busId[13]; nvmlDevice_t nvmlHandle; int affinity_set = 0; int ringDirectFail = 0; // Assume direct access to recv ptr OK res = wrapSymbols(); if (res != ncclSuccess) { WARN("NCCL failed to initialize client libs"); return res; } cudaGetDevice(&savedDevice); ranks = (RankEntry*)malloc(ndev*sizeof(RankEntry)); if (ranks == NULL) { WARN("NCCL allocation failed"); return ncclSystemError; } memset(ranks, 0, ndev*sizeof(RankEntry)); res = wrapNvmlInit(); if (res != ncclSuccess) { WARN("nccl failed to initialize nvml"); return res; } for(rank=0; rank<ndev; ++rank) comms[rank] = NULL; for (rank=0; rank<ndev; ++rank) { cudaDev = (devlist == NULL) ? rank : devlist[rank]; if (cudaSetDevice(cudaDev) != cudaSuccess) { WARN("rank %d failed to set cuda device %d", rank, cudaDev); res = ncclInvalidDeviceIndex; goto cleanup; } // Set CPU affinity affinity_set = 0; if (cudaDeviceGetPCIBusId(busId, 13, cudaDev) != cudaSuccess) { INFO("rank %d failed to get PCI Bus Id for device %d", rank, cudaDev); goto skipaffinity; } if (wrapNvmlDeviceGetHandleByPciBusId(busId, &nvmlHandle) != ncclSuccess) { INFO("rank %d failed to get nvml handle for device %s", rank, busId); goto skipaffinity; } if (wrapNvmlDeviceSetCpuAffinity(nvmlHandle) != ncclSuccess) { INFO("rank %d failed to set affinity", rank); goto skipaffinity; } affinity_set = 1; skipaffinity: res = commAlloc(&comm, ndev, NULL, rank); if (res != ncclSuccess) { WARN("rank %d failed to allocate communicator", rank); goto cleanup; } comms[rank] = comm; if (affinity_set && wrapNvmlDeviceClearCpuAffinity(nvmlHandle) != ncclSuccess) { INFO("rank %d set but failed to clear cpu affinity", rank); } res = populateRankInfo(ranks+rank, rank, comm); if (res != ncclSuccess) { WARN("rank %d failed to obtain rank info", rank); goto cleanup; } } orderRanks(ranks, ndev); for(rank=0; rank<ndev; ++rank) { comm = comms[rank]; cudaSetDevice(comm->cudaDev); res = commBuildMaps(comm, NULL, rank, ranks, &ringDirectFail); if (res != ncclSuccess) { WARN("rank %d failed to build comm maps", rank); goto cleanup; } } INFO("PushToRecv algos are %s\n", (ringDirectFail) ? "disabled" : "enabled"); for(rank=0; rank<ndev; ++rank) { comms[rank]->useRemoteRecv = ringDirectFail ? 0 : 1; } free(ranks); ranks = NULL; res = ncclSuccess; goto final; cleanup: if (ranks != NULL) free(ranks); for(rank=0; rank<ndev; ++rank) { if(comms[rank] != NULL) { commFree(comms[rank]); } } final: if(wrapNvmlShutdown() != ncclSuccess) INFO("NCCL did not shutdown nvml properly"); cudaSetDevice(savedDevice); return res; } extern "C" DSOGLOBAL void ncclCommDestroy(ncclComm_t comm) { if (comm == NULL) return; int savedDevice; cudaGetDevice(&savedDevice); int commDevice = comm->cudaDev; if (savedDevice != commDevice) { CUDACHECK(cudaSetDevice(commDevice)); } commFree(comm); if (savedDevice != commDevice) cudaSetDevice(savedDevice); } extern "C" DSOGLOBAL const char* ncclGetErrorString(ncclResult_t code) { switch (code) { case ncclSuccess : return "no error"; case ncclUnhandledCudaError : return "unhandled cuda error"; case ncclSystemError : return "system error"; case ncclInternalError : return "internal error"; case ncclInvalidDevicePointer : return "invalid device pointer"; case ncclInvalidRank : return "invalid rank"; case ncclUnsupportedDeviceCount : return "unsupported device count"; case ncclDeviceNotFound : return "device not found"; case ncclInvalidDeviceIndex : return "invalid device index"; case ncclLibWrapperNotSet : return "lib wrapper not initialized"; case ncclCudaMallocFailed : return "cuda malloc failed"; case ncclRankMismatch : return "parameter mismatch between ranks"; case ncclInvalidArgument : return "invalid argument"; case ncclInvalidType : return "invalid data type"; case ncclInvalidOperation : return "invalid reduction operations"; } return "unknown result code"; } extern "C" DSOGLOBAL ncclResult_t ncclCommCount(const ncclComm_t comm, int* count) { *count = comm->nDev; return ncclSuccess; } extern "C" DSOGLOBAL ncclResult_t ncclCommCuDevice(const ncclComm_t comm, int* devid) { *devid = comm->cudaDev; return ncclSuccess; } extern "C" DSOGLOBAL ncclResult_t ncclCommUserRank(const ncclComm_t comm, int* rank) { *rank = comm->userFromRing[comm->ncclId]; return ncclSuccess; }
190ecffbc3a4e6a20458112986571f4decc838fb.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" /* -- MAGMA (version 1.7.0) -- Univ. of Tennessee, Knoxville Univ. of California, Berkeley Univ. of Colorado, Denver @date September 2015 @generated from zlarfbx.cu normal z -> s, Fri Sep 11 18:29:21 2015 */ #include "common_magma.h" #include "commonblas_s.h" #include "magma_templates.h" // 512 is maximum number of threads for CUDA capability 1.x #define BLOCK_SIZE 512 //============================================================================== extern "C" __global__ void magma_sgemv_kernel1(int m, const float * __restrict__ V, int ldv, const float * __restrict__ c, float *dwork) { const int i = threadIdx.x; const float *dV = V + (blockIdx.x) * ldv; __shared__ float sum[ BLOCK_SIZE ]; float lsum; /* lsum := v**H * C */ lsum = MAGMA_S_ZERO; for (int j = i; j < m; j += BLOCK_SIZE) lsum += MAGMA_S_MUL( MAGMA_S_CNJG( dV[j] ), c[j] ); sum[i] = lsum; magma_sum_reduce< BLOCK_SIZE >( i, sum ); __syncthreads(); if (i == 0) dwork [blockIdx.x] = sum[0]; } //============================================================================== /* ----------------------------------------------------------------------------- Call magma_sgemv_kernel3<<< n, BLOCK_SIZE>>>(m, V, ldv, c, dwork, tau) to compute SGEMV( "Conjugate transpose", m, n, -tau[0], V, ldv, c, 1, zero, dwork, 1) and to set c[0] to 1. i.e., work = -tau[0] V**H c ----------------------------------------------------------------------------- */ extern "C" __global__ void magma_sgemv_kernel3(int m, const float * __restrict__ V, int ldv, float *c, float *dwork, float *tau) { const int i = threadIdx.x; const float *dV = V + (blockIdx.x) * ldv; __shared__ float sum[ BLOCK_SIZE ]; float lsum; if (i == 0) c[0] = MAGMA_S_ONE; /* lsum := v**H * C */ lsum = MAGMA_S_ZERO; for (int j = i; j < m; j += BLOCK_SIZE) lsum += MAGMA_S_MUL( MAGMA_S_CNJG( dV[j] ), c[j] ); sum[i] = lsum; magma_sum_reduce< BLOCK_SIZE >( i, sum ); __syncthreads(); if (i == 0) dwork [blockIdx.x] = -tau[0]*sum[0]; } //============================================================================== extern "C" __global__ void magma_sgemv_kernel2(int m, int n, const float * __restrict__ V, int ldv, const float * __restrict__ x, float *c) { const int i = threadIdx.x; const int j = i + BLOCK_SIZE * blockIdx.x; float lsum; V += j; lsum = MAGMA_S_ZERO; if (j < m) { for (int k=0; k < n; k++) lsum += MAGMA_S_MUL( V[k*ldv], x[k]); c[j] -= lsum; } } //============================================================================== /* Apply a real block reflector H to a real vector C from the left (i.e., C = H C). H is represented in the form H = I - V T V**H where T is the real k-by-k upper triangular matrix in the representation of the block reflector, and V is a real block of k elementary reflectors. */ extern "C" void magma_slarfbx_gpu( magma_int_t m, magma_int_t k, magmaFloat_ptr V, magma_int_t ldv, magmaFloat_ptr dT, magma_int_t ldt, magmaFloat_ptr c, magmaFloat_ptr dwork) { /* dwork = V**H c */ hipLaunchKernelGGL(( magma_sgemv_kernel1), dim3(k), dim3(BLOCK_SIZE), 0, magma_stream , m, V, ldv, c, dwork); /* dwork = T**H dwork */ hipLaunchKernelGGL(( magma_strmv_tkernel), dim3(k), dim3(k), 0, magma_stream , dT, ldt, dwork, dwork+k); /* c = c - V dwork */ dim3 blocks3( magma_ceildiv( m, BLOCK_SIZE ) ); dim3 threads3( BLOCK_SIZE ); hipLaunchKernelGGL(( magma_sgemv_kernel2), dim3(blocks3), dim3(threads3), 0, magma_stream , m, k, V, ldv, dwork+k, c); } //==============================================================================
190ecffbc3a4e6a20458112986571f4decc838fb.cu
/* -- MAGMA (version 1.7.0) -- Univ. of Tennessee, Knoxville Univ. of California, Berkeley Univ. of Colorado, Denver @date September 2015 @generated from zlarfbx.cu normal z -> s, Fri Sep 11 18:29:21 2015 */ #include "common_magma.h" #include "commonblas_s.h" #include "magma_templates.h" // 512 is maximum number of threads for CUDA capability 1.x #define BLOCK_SIZE 512 //============================================================================== extern "C" __global__ void magma_sgemv_kernel1(int m, const float * __restrict__ V, int ldv, const float * __restrict__ c, float *dwork) { const int i = threadIdx.x; const float *dV = V + (blockIdx.x) * ldv; __shared__ float sum[ BLOCK_SIZE ]; float lsum; /* lsum := v**H * C */ lsum = MAGMA_S_ZERO; for (int j = i; j < m; j += BLOCK_SIZE) lsum += MAGMA_S_MUL( MAGMA_S_CNJG( dV[j] ), c[j] ); sum[i] = lsum; magma_sum_reduce< BLOCK_SIZE >( i, sum ); __syncthreads(); if (i == 0) dwork [blockIdx.x] = sum[0]; } //============================================================================== /* ----------------------------------------------------------------------------- Call magma_sgemv_kernel3<<< n, BLOCK_SIZE>>>(m, V, ldv, c, dwork, tau) to compute SGEMV( "Conjugate transpose", m, n, -tau[0], V, ldv, c, 1, zero, dwork, 1) and to set c[0] to 1. i.e., work = -tau[0] V**H c ----------------------------------------------------------------------------- */ extern "C" __global__ void magma_sgemv_kernel3(int m, const float * __restrict__ V, int ldv, float *c, float *dwork, float *tau) { const int i = threadIdx.x; const float *dV = V + (blockIdx.x) * ldv; __shared__ float sum[ BLOCK_SIZE ]; float lsum; if (i == 0) c[0] = MAGMA_S_ONE; /* lsum := v**H * C */ lsum = MAGMA_S_ZERO; for (int j = i; j < m; j += BLOCK_SIZE) lsum += MAGMA_S_MUL( MAGMA_S_CNJG( dV[j] ), c[j] ); sum[i] = lsum; magma_sum_reduce< BLOCK_SIZE >( i, sum ); __syncthreads(); if (i == 0) dwork [blockIdx.x] = -tau[0]*sum[0]; } //============================================================================== extern "C" __global__ void magma_sgemv_kernel2(int m, int n, const float * __restrict__ V, int ldv, const float * __restrict__ x, float *c) { const int i = threadIdx.x; const int j = i + BLOCK_SIZE * blockIdx.x; float lsum; V += j; lsum = MAGMA_S_ZERO; if (j < m) { for (int k=0; k < n; k++) lsum += MAGMA_S_MUL( V[k*ldv], x[k]); c[j] -= lsum; } } //============================================================================== /* Apply a real block reflector H to a real vector C from the left (i.e., C = H C). H is represented in the form H = I - V T V**H where T is the real k-by-k upper triangular matrix in the representation of the block reflector, and V is a real block of k elementary reflectors. */ extern "C" void magma_slarfbx_gpu( magma_int_t m, magma_int_t k, magmaFloat_ptr V, magma_int_t ldv, magmaFloat_ptr dT, magma_int_t ldt, magmaFloat_ptr c, magmaFloat_ptr dwork) { /* dwork = V**H c */ magma_sgemv_kernel1<<< k, BLOCK_SIZE, 0, magma_stream >>>(m, V, ldv, c, dwork); /* dwork = T**H dwork */ magma_strmv_tkernel<<< k, k, 0, magma_stream >>>( dT, ldt, dwork, dwork+k); /* c = c - V dwork */ dim3 blocks3( magma_ceildiv( m, BLOCK_SIZE ) ); dim3 threads3( BLOCK_SIZE ); magma_sgemv_kernel2<<< blocks3, threads3, 0, magma_stream >>>( m, k, V, ldv, dwork+k, c); } //==============================================================================
1eee6a889b9fb2707985d39e37a75350c8ef817f.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include <algorithm> #include <cfloat> #include <vector> #include "caffe/layers/permute_layer.hpp" #include "caffe/util/math_functions.hpp" namespace caffe { template <typename Dtype> __global__ void PermuteKernel(const int nthreads, Dtype* const bottom_data, const bool forward, const int* permute_order, const int* old_steps, const int* new_steps, const int num_axes, Dtype* const top_data) { CUDA_KERNEL_LOOP(index, nthreads) { int temp_idx = index; int old_idx = 0; for (int i = 0; i < num_axes; ++i) { int order = permute_order[i]; old_idx += (temp_idx / new_steps[i]) * old_steps[order]; temp_idx %= new_steps[i]; } if (forward) { top_data[index] = bottom_data[old_idx]; } else { bottom_data[old_idx] = top_data[index]; } } } template <typename Dtype> void PermuteLayer<Dtype>::Forward_gpu(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) { if (need_permute_) { Dtype* bottom_data = bottom[0]->mutable_gpu_data(); Dtype* top_data = top[0]->mutable_gpu_data(); int count = top[0]->count(); const int* permute_order = permute_order_.gpu_data(); const int* new_steps = new_steps_.gpu_data(); const int* old_steps = old_steps_.gpu_data(); bool foward = true; // NOLINT_NEXT_LINE(whitespace/operators) hipLaunchKernelGGL(( PermuteKernel<Dtype>), dim3(CAFFE_GET_BLOCKS(count)), dim3(CAFFE_CUDA_NUM_THREADS), 0, 0, count, bottom_data, foward, permute_order, old_steps, new_steps, num_axes_, top_data); CUDA_POST_KERNEL_CHECK; } else { // If there is no need to permute, we share data to save memory. top[0]->ShareData(*bottom[0]); } } template <typename Dtype> void PermuteLayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top, const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) { if (need_permute_) { Dtype* top_diff = top[0]->mutable_gpu_diff(); Dtype* bottom_diff = bottom[0]->mutable_gpu_diff(); const int count = bottom[0]->count(); const int* permute_order = permute_order_.gpu_data(); const int* new_steps = new_steps_.gpu_data(); const int* old_steps = old_steps_.gpu_data(); bool foward = false; // NOLINT_NEXT_LINE(whitespace/operators) hipLaunchKernelGGL(( PermuteKernel<Dtype>), dim3(CAFFE_GET_BLOCKS(count)), dim3(CAFFE_CUDA_NUM_THREADS), 0, 0, count, bottom_diff, foward, permute_order, old_steps, new_steps, num_axes_, top_diff); CUDA_POST_KERNEL_CHECK; } else { // If there is no need to permute, we share diff to save memory. bottom[0]->ShareDiff(*top[0]); } } INSTANTIATE_LAYER_GPU_FUNCS(PermuteLayer); } // namespace caffe
1eee6a889b9fb2707985d39e37a75350c8ef817f.cu
#include <algorithm> #include <cfloat> #include <vector> #include "caffe/layers/permute_layer.hpp" #include "caffe/util/math_functions.hpp" namespace caffe { template <typename Dtype> __global__ void PermuteKernel(const int nthreads, Dtype* const bottom_data, const bool forward, const int* permute_order, const int* old_steps, const int* new_steps, const int num_axes, Dtype* const top_data) { CUDA_KERNEL_LOOP(index, nthreads) { int temp_idx = index; int old_idx = 0; for (int i = 0; i < num_axes; ++i) { int order = permute_order[i]; old_idx += (temp_idx / new_steps[i]) * old_steps[order]; temp_idx %= new_steps[i]; } if (forward) { top_data[index] = bottom_data[old_idx]; } else { bottom_data[old_idx] = top_data[index]; } } } template <typename Dtype> void PermuteLayer<Dtype>::Forward_gpu(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) { if (need_permute_) { Dtype* bottom_data = bottom[0]->mutable_gpu_data(); Dtype* top_data = top[0]->mutable_gpu_data(); int count = top[0]->count(); const int* permute_order = permute_order_.gpu_data(); const int* new_steps = new_steps_.gpu_data(); const int* old_steps = old_steps_.gpu_data(); bool foward = true; // NOLINT_NEXT_LINE(whitespace/operators) PermuteKernel<Dtype><<<CAFFE_GET_BLOCKS(count), CAFFE_CUDA_NUM_THREADS>>>( count, bottom_data, foward, permute_order, old_steps, new_steps, num_axes_, top_data); CUDA_POST_KERNEL_CHECK; } else { // If there is no need to permute, we share data to save memory. top[0]->ShareData(*bottom[0]); } } template <typename Dtype> void PermuteLayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top, const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) { if (need_permute_) { Dtype* top_diff = top[0]->mutable_gpu_diff(); Dtype* bottom_diff = bottom[0]->mutable_gpu_diff(); const int count = bottom[0]->count(); const int* permute_order = permute_order_.gpu_data(); const int* new_steps = new_steps_.gpu_data(); const int* old_steps = old_steps_.gpu_data(); bool foward = false; // NOLINT_NEXT_LINE(whitespace/operators) PermuteKernel<Dtype><<<CAFFE_GET_BLOCKS(count), CAFFE_CUDA_NUM_THREADS>>>( count, bottom_diff, foward, permute_order, old_steps, new_steps, num_axes_, top_diff); CUDA_POST_KERNEL_CHECK; } else { // If there is no need to permute, we share diff to save memory. bottom[0]->ShareDiff(*top[0]); } } INSTANTIATE_LAYER_GPU_FUNCS(PermuteLayer); } // namespace caffe
cec7caa9ad0729158b5f489142bdcddcbd048f3c.hip
// !!! This is a file automatically generated by hipify!!! #include <hip/hip_runtime.h> #include <helper_cuda.h> #include <stdint.h> #include "../../common/para.h" #include "../../common/para.cuh" #include <stdarg.h> #include "runtime.cuh" __device__ int syncID; __device__ int threadNum; int *done, *doneDev; int *totalScheTasks, *totalScheTasksDev; cTaskStruct *ccTaskPool; gTaskStruct *ggTaskPool; static int taskId = 0; static int lastEmptyTask = 0; static int round_count = 0; static int taskIndex = 0; static int barrierCount = 0; hipStream_t master_kernel_stream; hipStream_t runtime_stream; __global__ void masterKernel(volatile int *done, volatile int *totalScheTasks, volatile gTaskStruct *gTaskPool); void runtime_init(){ int i; setenv("CUDA_DEVICE_MAX_CONNECTIONS", "32", 1); checkCudaErrors(hipStreamCreate(&runtime_stream)); checkCudaErrors(hipStreamCreate(&master_kernel_stream)); // done flag to interrupt runtime checkCudaErrors(hipHostMalloc(&done, sizeof(int), hipHostMallocDefault)); checkCudaErrors(hipMalloc(&doneDev, sizeof(int))); // host task buffer checkCudaErrors(hipHostMalloc(&ccTaskPool, (BK_NUM*BP_NUM)*sizeof(cTaskStruct), hipHostMallocDefault)); // device task buffer checkCudaErrors(hipMalloc(&ggTaskPool, (BK_NUM*BP_NUM)*sizeof(gTaskStruct))); // totalScheTasks: checkCudaErrors(hipHostMalloc(&totalScheTasks, sizeof(int), hipHostMallocDefault)); checkCudaErrors(hipMalloc(&totalScheTasksDev, sizeof(int))); for(i = 0; i < (BK_NUM*BP_NUM); i++) { ccTaskPool[i].ready = 0; ccTaskPool[i].done = -1; ccTaskPool[i].taskId = 0; ccTaskPool[i].readyId = -1; } // runtime variables copy *done = 0; *totalScheTasks = 0; checkCudaErrors(hipMemcpyAsync(doneDev, done, sizeof(int), hipMemcpyHostToDevice, runtime_stream)); checkCudaErrors(hipMemcpyAsync(totalScheTasksDev, totalScheTasks, sizeof(int), hipMemcpyHostToDevice, runtime_stream)); checkCudaErrors(hipMemcpyAsync(ggTaskPool, ccTaskPool, (BK_NUM*BP_NUM)*sizeof(gTaskStruct), hipMemcpyHostToDevice, runtime_stream)); checkCudaErrors(hipStreamSynchronize(runtime_stream)); //MasterKernel hipLaunchKernelGGL(( masterKernel), dim3(BK_NUM), dim3(TD_NUM), SH_MEM_SIZE, master_kernel_stream, doneDev, totalScheTasksDev, ggTaskPool); } int taskLaunch(int paraN, ...){ int j, k; int terminate = 1; va_list ap; va_start(ap,paraN); while(taskIndex < (BK_NUM*BP_NUM) && terminate == 1){ if(ccTaskPool[taskIndex].ready == 0 && ccTaskPool[taskIndex].readyId == -1){ // **Add here**: renew task table, set the bit of task ID on // **Add here**: get_ID() ccTaskPool[taskIndex].ready = 1; ccTaskPool[taskIndex].taskId = taskIndex+1; ccTaskPool[taskIndex].done = 1; if(round_count > 0) { ccTaskPool[taskIndex].readyId = taskId; }else{ lastEmptyTask = taskIndex; } round_count ++; taskId = taskIndex; for(j = 0; j < paraN; j++){ // set parameters int type = va_arg(ap, enum mytypes); switch(type) { case INT: if(j == 0) ccTaskPool[taskIndex].thread = va_arg(ap, int); if(j == 1) ccTaskPool[taskIndex].block = va_arg(ap, int); if(j == 2) ccTaskPool[taskIndex].sharemem = va_arg(ap, int); if(j == 3) ccTaskPool[taskIndex].sync = va_arg(ap, int); if(j == 4) ccTaskPool[taskIndex].funcId = va_arg(ap, int); if(j > 4) ccTaskPool[taskIndex].para[j-inParaNum] = va_arg(ap, int*); break; case FLOAT: ccTaskPool[taskIndex].para[j-inParaNum] = va_arg(ap, float*); break; case DOUBLE: ccTaskPool[taskIndex].para[j-inParaNum] = va_arg(ap, double*); break; case LONG: ccTaskPool[taskIndex].para[j-inParaNum] = va_arg(ap, long*); break; default: break; } // End switch } // End for paraN checkCudaErrors(hipMemcpyAsync(ggTaskPool+taskIndex, ccTaskPool+taskIndex, sizeof(gTaskStruct), hipMemcpyHostToDevice, runtime_stream)); terminate = 0; } // end if cTaskPool taskIndex++; if(taskIndex == (BK_NUM*BP_NUM) && round_count > 0){ ccTaskPool[lastEmptyTask].readyId = taskId; checkCudaErrors(hipMemcpyAsync((int*)&ggTaskPool[lastEmptyTask].readyId, (int*)&ccTaskPool[lastEmptyTask].readyId,sizeof(int), hipMemcpyHostToDevice, runtime_stream)); checkCudaErrors(hipStreamSynchronize(runtime_stream)); barrierCount ++; round_count = 0; } if(taskIndex == (BK_NUM*BP_NUM)){ checkCudaErrors(hipMemcpyAsync(ccTaskPool, ggTaskPool, (BK_NUM*BP_NUM)*sizeof(gTaskStruct), hipMemcpyDeviceToHost, runtime_stream)); checkCudaErrors(hipStreamSynchronize(runtime_stream)); taskIndex = 0; } } // end while i < BK_NUM*BP_NUM va_end(ap); return taskId; } void waitAll(int num_tasks){ *totalScheTasks = 0; ccTaskPool[lastEmptyTask].readyId = taskId; checkCudaErrors(hipMemcpyAsync((int*)&ggTaskPool[lastEmptyTask].readyId, (int*)&ccTaskPool[lastEmptyTask].readyId, sizeof(int), hipMemcpyHostToDevice, runtime_stream)); checkCudaErrors(hipStreamSynchronize(runtime_stream)); round_count = 0; int i; while(*totalScheTasks < num_tasks){ checkCudaErrors(hipMemcpyAsync(totalScheTasks, totalScheTasksDev, sizeof(int), hipMemcpyDeviceToHost, runtime_stream)); checkCudaErrors(hipStreamSynchronize(runtime_stream)); } *totalScheTasks = 0; checkCudaErrors(hipMemcpyAsync(totalScheTasksDev, totalScheTasks, sizeof(int), hipMemcpyHostToDevice, runtime_stream)); checkCudaErrors(hipStreamSynchronize(runtime_stream)); taskIndex = 0; taskId = 0; lastEmptyTask = 0; } void runtime_destroy(){ *done = 1; checkCudaErrors(hipMemcpyAsync(doneDev, done, sizeof(int), hipMemcpyHostToDevice, runtime_stream)); checkCudaErrors(hipStreamSynchronize(runtime_stream)); } void runtime_free(){ checkCudaErrors(hipStreamDestroy(master_kernel_stream)); checkCudaErrors(hipStreamDestroy(runtime_stream)); checkCudaErrors(hipHostFree(done)); checkCudaErrors(hipHostFree(ccTaskPool)); checkCudaErrors(hipHostFree(totalScheTasks)); checkCudaErrors(hipFree(doneDev)); checkCudaErrors(hipFree(ggTaskPool)); checkCudaErrors(hipFree(totalScheTasksDev)); }
cec7caa9ad0729158b5f489142bdcddcbd048f3c.cu
#include <cuda_runtime.h> #include <helper_cuda.h> #include <stdint.h> #include "../../common/para.h" #include "../../common/para.cuh" #include <stdarg.h> #include "runtime.cuh" __device__ int syncID; __device__ int threadNum; int *done, *doneDev; int *totalScheTasks, *totalScheTasksDev; cTaskStruct *ccTaskPool; gTaskStruct *ggTaskPool; static int taskId = 0; static int lastEmptyTask = 0; static int round_count = 0; static int taskIndex = 0; static int barrierCount = 0; cudaStream_t master_kernel_stream; cudaStream_t runtime_stream; __global__ void masterKernel(volatile int *done, volatile int *totalScheTasks, volatile gTaskStruct *gTaskPool); void runtime_init(){ int i; setenv("CUDA_DEVICE_MAX_CONNECTIONS", "32", 1); checkCudaErrors(cudaStreamCreate(&runtime_stream)); checkCudaErrors(cudaStreamCreate(&master_kernel_stream)); // done flag to interrupt runtime checkCudaErrors(cudaHostAlloc(&done, sizeof(int), cudaHostAllocDefault)); checkCudaErrors(cudaMalloc(&doneDev, sizeof(int))); // host task buffer checkCudaErrors(cudaHostAlloc(&ccTaskPool, (BK_NUM*BP_NUM)*sizeof(cTaskStruct), cudaHostAllocDefault)); // device task buffer checkCudaErrors(cudaMalloc(&ggTaskPool, (BK_NUM*BP_NUM)*sizeof(gTaskStruct))); // totalScheTasks: checkCudaErrors(cudaHostAlloc(&totalScheTasks, sizeof(int), cudaHostAllocDefault)); checkCudaErrors(cudaMalloc(&totalScheTasksDev, sizeof(int))); for(i = 0; i < (BK_NUM*BP_NUM); i++) { ccTaskPool[i].ready = 0; ccTaskPool[i].done = -1; ccTaskPool[i].taskId = 0; ccTaskPool[i].readyId = -1; } // runtime variables copy *done = 0; *totalScheTasks = 0; checkCudaErrors(cudaMemcpyAsync(doneDev, done, sizeof(int), cudaMemcpyHostToDevice, runtime_stream)); checkCudaErrors(cudaMemcpyAsync(totalScheTasksDev, totalScheTasks, sizeof(int), cudaMemcpyHostToDevice, runtime_stream)); checkCudaErrors(cudaMemcpyAsync(ggTaskPool, ccTaskPool, (BK_NUM*BP_NUM)*sizeof(gTaskStruct), cudaMemcpyHostToDevice, runtime_stream)); checkCudaErrors(cudaStreamSynchronize(runtime_stream)); //MasterKernel masterKernel<<<BK_NUM, TD_NUM, SH_MEM_SIZE, master_kernel_stream>>>(doneDev, totalScheTasksDev, ggTaskPool); } int taskLaunch(int paraN, ...){ int j, k; int terminate = 1; va_list ap; va_start(ap,paraN); while(taskIndex < (BK_NUM*BP_NUM) && terminate == 1){ if(ccTaskPool[taskIndex].ready == 0 && ccTaskPool[taskIndex].readyId == -1){ // **Add here**: renew task table, set the bit of task ID on // **Add here**: get_ID() ccTaskPool[taskIndex].ready = 1; ccTaskPool[taskIndex].taskId = taskIndex+1; ccTaskPool[taskIndex].done = 1; if(round_count > 0) { ccTaskPool[taskIndex].readyId = taskId; }else{ lastEmptyTask = taskIndex; } round_count ++; taskId = taskIndex; for(j = 0; j < paraN; j++){ // set parameters int type = va_arg(ap, enum mytypes); switch(type) { case INT: if(j == 0) ccTaskPool[taskIndex].thread = va_arg(ap, int); if(j == 1) ccTaskPool[taskIndex].block = va_arg(ap, int); if(j == 2) ccTaskPool[taskIndex].sharemem = va_arg(ap, int); if(j == 3) ccTaskPool[taskIndex].sync = va_arg(ap, int); if(j == 4) ccTaskPool[taskIndex].funcId = va_arg(ap, int); if(j > 4) ccTaskPool[taskIndex].para[j-inParaNum] = va_arg(ap, int*); break; case FLOAT: ccTaskPool[taskIndex].para[j-inParaNum] = va_arg(ap, float*); break; case DOUBLE: ccTaskPool[taskIndex].para[j-inParaNum] = va_arg(ap, double*); break; case LONG: ccTaskPool[taskIndex].para[j-inParaNum] = va_arg(ap, long*); break; default: break; } // End switch } // End for paraN checkCudaErrors(cudaMemcpyAsync(ggTaskPool+taskIndex, ccTaskPool+taskIndex, sizeof(gTaskStruct), cudaMemcpyHostToDevice, runtime_stream)); terminate = 0; } // end if cTaskPool taskIndex++; if(taskIndex == (BK_NUM*BP_NUM) && round_count > 0){ ccTaskPool[lastEmptyTask].readyId = taskId; checkCudaErrors(cudaMemcpyAsync((int*)&ggTaskPool[lastEmptyTask].readyId, (int*)&ccTaskPool[lastEmptyTask].readyId,sizeof(int), cudaMemcpyHostToDevice, runtime_stream)); checkCudaErrors(cudaStreamSynchronize(runtime_stream)); barrierCount ++; round_count = 0; } if(taskIndex == (BK_NUM*BP_NUM)){ checkCudaErrors(cudaMemcpyAsync(ccTaskPool, ggTaskPool, (BK_NUM*BP_NUM)*sizeof(gTaskStruct), cudaMemcpyDeviceToHost, runtime_stream)); checkCudaErrors(cudaStreamSynchronize(runtime_stream)); taskIndex = 0; } } // end while i < BK_NUM*BP_NUM va_end(ap); return taskId; } void waitAll(int num_tasks){ *totalScheTasks = 0; ccTaskPool[lastEmptyTask].readyId = taskId; checkCudaErrors(cudaMemcpyAsync((int*)&ggTaskPool[lastEmptyTask].readyId, (int*)&ccTaskPool[lastEmptyTask].readyId, sizeof(int), cudaMemcpyHostToDevice, runtime_stream)); checkCudaErrors(cudaStreamSynchronize(runtime_stream)); round_count = 0; int i; while(*totalScheTasks < num_tasks){ checkCudaErrors(cudaMemcpyAsync(totalScheTasks, totalScheTasksDev, sizeof(int), cudaMemcpyDeviceToHost, runtime_stream)); checkCudaErrors(cudaStreamSynchronize(runtime_stream)); } *totalScheTasks = 0; checkCudaErrors(cudaMemcpyAsync(totalScheTasksDev, totalScheTasks, sizeof(int), cudaMemcpyHostToDevice, runtime_stream)); checkCudaErrors(cudaStreamSynchronize(runtime_stream)); taskIndex = 0; taskId = 0; lastEmptyTask = 0; } void runtime_destroy(){ *done = 1; checkCudaErrors(cudaMemcpyAsync(doneDev, done, sizeof(int), cudaMemcpyHostToDevice, runtime_stream)); checkCudaErrors(cudaStreamSynchronize(runtime_stream)); } void runtime_free(){ checkCudaErrors(cudaStreamDestroy(master_kernel_stream)); checkCudaErrors(cudaStreamDestroy(runtime_stream)); checkCudaErrors(cudaFreeHost(done)); checkCudaErrors(cudaFreeHost(ccTaskPool)); checkCudaErrors(cudaFreeHost(totalScheTasks)); checkCudaErrors(cudaFree(doneDev)); checkCudaErrors(cudaFree(ggTaskPool)); checkCudaErrors(cudaFree(totalScheTasksDev)); }
5de10083f2720eeea1d0977bebe55f90117566fc.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "split_pairwise.cuh" #include "split_properties_helpers.cuh" #include <hip/hip_cooperative_groups.h> #include <catboost/cuda/cuda_lib/kernel/arch.cuh> #include <catboost/cuda/cuda_util/kernel/instructions.cuh> #include <catboost/cuda/cuda_util/kernel/kernel_helpers.cuh> using namespace cooperative_groups; namespace NKernel { __forceinline__ __device__ void AddToMatrices(int row, int col, float sum, float* matrix) { const int ind = col < row ? (row * (row + 1) >> 1) + col : (col * (col + 1) >> 1) + row; matrix[ind] += sum; } template <int BLOCK_SIZE, int PartCount> __global__ void MakePairwiseDerivatives(const float* pairwiseHistogram, int matrixOffset, int matCount, int histLineSize /* 4 * totalBinFeatureCount */, float* linearSystem) { const int logicalWarpSize = PartCount > 32 ? 32 : PartCount; const int matricesPerBlock = BLOCK_SIZE / logicalWarpSize; int matrixIdx = blockIdx.x * matricesPerBlock + threadIdx.x / logicalWarpSize; int localTid = threadIdx.x & (logicalWarpSize - 1); const int inBlockOffset = threadIdx.x / logicalWarpSize; if (matrixIdx >= matCount) return; { const size_t rowSize = PartCount * 2; const size_t linearSystemSize = (rowSize + rowSize * (rowSize + 1) / 2); linearSystem += matrixIdx * linearSystemSize; } pairwiseHistogram += (matrixOffset + matrixIdx) * 4; __shared__ float lineData[BLOCK_SIZE * 2]; const int N = PartCount / logicalWarpSize; const int logicalWarpId = threadIdx.x / logicalWarpSize; const int logicalWarpCount = BLOCK_SIZE / logicalWarpSize; thread_block_tile<logicalWarpSize> groupTile = tiled_partition<logicalWarpSize>(this_thread_block()); float sum0[N]; float sum1[N]; for (int i = 0; i < N; ++i) { sum0[i] = 0; sum1[i] = 0; } #pragma unroll 16 for (int y = 0; y < PartCount; ++y) { #pragma unroll for (int i = 0; i < N; ++i) { const int x = localTid + 32 * i; const int partIdx = ConvertBlockToPart(x, y); ui64 offset = ((ui64) partIdx * histLineSize * 4ULL); float4 hist = __ldg((float4*)(pairwiseHistogram + offset)); const float w00 = (x != y ? hist.x : 0.0f); const float w01 = hist.y; const float w10 = hist.z; const float w11 = (x != y ? hist.w : 0.0f); // sync for row write done in reduce if we need it const int nextRow = 2 * y; const int nextCol = 2 * x; sum0[i] += w00 + w10; sum1[i] += w01 + w11; if (x == y) { AddToMatrices(nextRow + 1, nextRow, -(w01 + w10), linearSystem); } else if (x < y) { AddToMatrices(nextRow, nextCol, -w00, linearSystem); AddToMatrices(nextRow, nextCol + 1, -w01, linearSystem); AddToMatrices(nextRow + 1, nextCol, -w10, linearSystem); AddToMatrices(nextRow + 1, nextCol + 1, -w11, linearSystem); } groupTile.sync(); } groupTile.sync(); } #pragma unroll 16 for (int x = 0; x < PartCount; ++x) { #pragma unroll for (int i = 0; i < N; ++i) { const int y = localTid + 32 * i; const int partIdx = ConvertBlockToPart(x, y); ui64 offset = ((ui64) partIdx * histLineSize * 4ULL); float4 hist = __ldg((float4*)(pairwiseHistogram + offset)); const float w00 = (x != y ? hist.x : 0.0f); const float w01 = hist.y; const float w10 = hist.z; const float w11 = (x != y ? hist.w : 0.0f); // sync for row write done in reduce if we need it const int nextRow = 2 * y; const int nextCol = 2 * x; sum0[i] += w01 + w00; sum1[i] += w10 + w11; if (x > y) { AddToMatrices(nextRow, nextCol, -w00, linearSystem); AddToMatrices(nextRow, nextCol + 1, -w01, linearSystem); AddToMatrices(nextRow + 1, nextCol, -w10, linearSystem); AddToMatrices(nextRow + 1, nextCol + 1, -w11, linearSystem); } groupTile.sync(); } groupTile.sync(); } #pragma unroll for (int i = 0; i < N; ++i) { const int x = localTid + 32 * i; const int nextRow = 2 * x; linearSystem[nextRow * (nextRow + 1) / 2 + nextRow] += sum0[i]; linearSystem[(nextRow + 1) * (nextRow + 2) / 2 + nextRow + 1] += sum1[i]; } } template <int BLOCK_SIZE> void RunMakeMatrices(const float* histogram, int partCount, int histLineSize, int firstMatrix, int matricesCount, float* linearSystem, TCudaStream stream) { if (matricesCount > 0) { const int numBlocks = (((size_t) matricesCount) * min(partCount, 32) + BLOCK_SIZE - 1) / BLOCK_SIZE; #define RUN(PartCount)\ MakePairwiseDerivatives<BLOCK_SIZE, PartCount> << < numBlocks, BLOCK_SIZE, 0, stream >> > (histogram, firstMatrix, matricesCount, histLineSize, linearSystem); if (partCount == 1) { RUN(1) } else if (partCount == 2) { RUN(2) } else if (partCount == 4) { RUN(4) } else if (partCount == 8) { RUN(8) } else if (partCount == 16) { RUN(16) } else if (partCount == 32) { RUN(32) } else if (partCount == 64) { RUN(64) } else if (partCount == 128) { RUN(128) } else { exit(0); } } } void MakePairwiseDerivatives(const float* histogram, int leavesCount, int firstMatrix, int matricesCount, int histLineSize, float* linearSystem, TCudaStream stream) { if (TArchProps::GetMajorVersion() == 2 && (leavesCount <= 64)) { RunMakeMatrices<192>(histogram, leavesCount, histLineSize, firstMatrix, matricesCount, linearSystem, stream); } else { RunMakeMatrices<256>(histogram, leavesCount, histLineSize, firstMatrix, matricesCount, linearSystem, stream); } } template <int BLOCK_SIZE> __global__ void MakePointwiseDerivatives(const float* pointwiseHist, ui64 pointwiseHistSize, const TPartitionStatistics* partStats, bool hasPointwiseWeights, int rowSize, int firstMatrixIdx, int matCount, float* linearSystem) { const int lineSize = min(rowSize, 32); const int matricesPerBlock = BLOCK_SIZE / lineSize; const int matrixIdx = blockIdx.x * matricesPerBlock + threadIdx.x / lineSize; pointwiseHist += (firstMatrixIdx + matrixIdx) * (hasPointwiseWeights ? 2 : 1); linearSystem += ((size_t)matrixIdx) * (rowSize + rowSize * (rowSize + 1) / 2); const int x = threadIdx.x & (lineSize - 1); float* targets = linearSystem + rowSize * (rowSize + 1) / 2; if (matrixIdx < matCount) { for (int col = x; col < rowSize; col += 32) { const int i = col / 2; ui64 offset = pointwiseHistSize * i; if (hasPointwiseWeights) { const float leafWeight = pointwiseHist[offset]; const float weight = (col & 1) ? partStats[i].Weight - leafWeight : leafWeight; linearSystem[col * (col + 1) / 2 + col] += max(weight, 0.0f); } const float leafSum = pointwiseHist[offset + hasPointwiseWeights]; const float sum = (col & 1) ? partStats[i].Sum - leafSum : leafSum; targets[col] = sum; } } } template <int BLOCK_SIZE> void RunMakePointwiseDerivatives(const float* pointwiseHist, int binFeatureCount, const TPartitionStatistics* partStats, bool hasPointwiseWeights, int rowSize, int firstMatrixIdx, int matricesCount, float* linearSystem, TCudaStream stream ) { if (matricesCount > 0) { const ui32 pointwiseHistSize = binFeatureCount * (hasPointwiseWeights ? 2 : 1); const int lineSize = min(32, rowSize); const int numBlocks = (((size_t) matricesCount) * lineSize + BLOCK_SIZE - 1) / BLOCK_SIZE; MakePointwiseDerivatives<BLOCK_SIZE> << < numBlocks, BLOCK_SIZE, 0, stream >> > (pointwiseHist, pointwiseHistSize, partStats, hasPointwiseWeights, rowSize, firstMatrixIdx, matricesCount, linearSystem); } } void MakePointwiseDerivatives(const float* pointwiseHist, int pointwiseHistLineSize, const TPartitionStatistics* partStats, bool hasPointwiseWeights, int rowSize, int firstMatrixIdx, int matricesCount, float* linearSystem, TCudaStream stream) { if (TArchProps::GetMajorVersion() == 2) { RunMakePointwiseDerivatives<192> (pointwiseHist, pointwiseHistLineSize, partStats, hasPointwiseWeights, rowSize, firstMatrixIdx, matricesCount, linearSystem, stream); } else { RunMakePointwiseDerivatives<128> (pointwiseHist, pointwiseHistLineSize, partStats, hasPointwiseWeights, rowSize, firstMatrixIdx, matricesCount, linearSystem, stream); } } __global__ void UpdateBinsPairs(TCFeature feature, ui32 binIdx, const ui32* cindex, const uint2* pairs, ui32 pairCount, ui32 depth, ui32* bins) { ui32 idx = blockIdx.x * blockDim.x + threadIdx.x; cindex += feature.Offset; const ui32 value = binIdx << feature.Shift; const ui32 mask = feature.Mask << feature.Shift; while (idx < pairCount) { const uint2 p = pairs[idx]; const ui32 d1 = (cindex[p.x] & mask); const ui32 d2 = (cindex[p.y] & mask); ui32 bit1 = feature.OneHotFeature ? d1 == value : d1 > value; ui32 bit2 = feature.OneHotFeature ? d2 == value : d2 > value; ui32 bin = bins[idx]; bin = ((bit1 * 2 + bit2) << (depth * 2)) | bin; bins[idx] = bin; idx += blockDim.x * gridDim.x; } } void UpdateBinsPairs(TCFeature feature, ui32 bin, const ui32* compressedIndex, const uint2* pairs, ui32 pairCount, ui32 depth, ui32* bins, TCudaStream stream) { const int blockSize = 256; const int numBlocks = min((pairCount + blockSize - 1) / blockSize, TArchProps::MaxBlockCount()); hipLaunchKernelGGL(( UpdateBinsPairs), dim3(numBlocks), dim3(blockSize), 0, stream, feature, bin, compressedIndex, pairs, pairCount, depth, bins); } template <int BLOCK_SIZE> __global__ void SelectBestSplitImpl(const float* scores, const TCBinFeature* binFeature, int size, int bestIndexBias, TBestSplitPropertiesWithIndex* best) { float maxScore = -5000000.0f; int maxIdx = -1; int tid = threadIdx.x; #pragma unroll 8 for (int i = tid; i < size; i += BLOCK_SIZE) { float score = scores[i]; if (score > maxScore) { maxScore = score; maxIdx = i; } } __shared__ float vals[BLOCK_SIZE]; __shared__ int inds[BLOCK_SIZE]; vals[tid] = maxScore; inds[tid] = maxIdx; __syncthreads(); for (int s = BLOCK_SIZE >> 1; s > 0; s >>= 1) { if (tid < s) { if ( vals[tid] < vals[tid + s] || (vals[tid] == vals[tid + s] && inds[tid] > inds[tid + s]) ) { vals[tid] = vals[tid + s]; inds[tid] = inds[tid + s]; } } __syncthreads(); } if (tid == 0) { TCBinFeature bestFeature; const int bestIdx = inds[0]; const float bestScore = vals[0]; if (bestIdx != -1) { bestFeature = binFeature[bestIdx]; } else { bestFeature.BinId = 0; bestFeature.FeatureId = 0; } best->Index = bestIndexBias + bestIdx; best->Score = -bestScore; best->BinId = bestFeature.BinId; best->FeatureId = bestFeature.FeatureId; } } void SelectBestSplit(const float* scores, const TCBinFeature* binFeature, int size, int bestIndexBias, TBestSplitPropertiesWithIndex* best, TCudaStream stream) { const int blockSize = 1024; hipLaunchKernelGGL(( SelectBestSplitImpl<blockSize>), dim3(1), dim3(blockSize), 0, stream, scores, binFeature, size, bestIndexBias, best); } __global__ void ZeroSameLeafBinWeightsImpl(const uint2* pairs, const ui32* bins, ui32 pairCount, float* pairWeights) { const ui32 i = blockDim.x * blockIdx.x + threadIdx.x; if (i < pairCount) { uint2 pair = pairs[i]; const ui32 binx = bins[pair.x]; const ui32 biny = bins[pair.y]; if (binx == biny) { pairWeights[i] = 0; } } } void ZeroSameLeafBinWeights(const uint2* pairs, const ui32* bins, ui32 pairCount, float* pairWeights, TCudaStream stream ) { if (pairCount > 0) { const int blockSize = 256; const ui32 numBlocks = (pairCount + blockSize - 1) / blockSize; hipLaunchKernelGGL(( ZeroSameLeafBinWeightsImpl), dim3(numBlocks), dim3(blockSize), 0, stream, pairs, bins, pairCount, pairWeights); } } __global__ void FillPairBinsImpl(const uint2* pairs, const ui32* bins, ui32 rowSize, ui32 pairCount, ui32* pairBins) { const ui32 i = blockDim.x * blockIdx.x + threadIdx.x; if (i < pairCount) { uint2 pair = pairs[i]; const ui32 binx = bins[pair.x]; const ui32 biny = bins[pair.y]; pairBins[i] = binx * rowSize + biny; } } void FillPairBins(const uint2* pairs, const ui32* bins, ui32 binCount, ui32 pairCount, ui32* pairBins, TCudaStream stream) { if (pairCount > 0) { const int blockSize = 256; const ui32 numBlocks = (pairCount + blockSize - 1) / blockSize; hipLaunchKernelGGL(( FillPairBinsImpl), dim3(numBlocks), dim3(blockSize), 0, stream, pairs, bins, binCount, pairCount, pairBins); } } //for leaves estimation __global__ void FillPairDer2OnlyImpl(const float* ders2, const float* groupDers2, const ui32* qids, const uint2* pairs, ui32 pairCount, float* pairDer2) { const int tid = threadIdx.x; const int i = blockIdx.x * blockDim.x + tid; if (i < pairCount) { uint2 pair = Ldg(pairs + i); const float der2x = Ldg(ders2 + pair.x); const float der2y = Ldg(ders2 + pair.y); const int qid = Ldg(qids + pair.x); const float groupDer2 = Ldg(groupDers2 + qid); pairDer2[i] = groupDer2 > 1e-20f ? der2x * der2y / (groupDer2 + 1e-20f) : 0; } } void FillPairDer2Only(const float* ders2, const float* groupDers2, const ui32* qids, const uint2* pairs, ui32 pairCount, float* pairDer2, TCudaStream stream ) { const int blockSize = 256; const int numBlocks = (pairCount + blockSize - 1) / blockSize; if (numBlocks > 0) { hipLaunchKernelGGL(( FillPairDer2OnlyImpl), dim3(numBlocks), dim3(blockSize), 0, stream , ders2, groupDers2, qids, pairs, pairCount, pairDer2); } } }
5de10083f2720eeea1d0977bebe55f90117566fc.cu
#include "split_pairwise.cuh" #include "split_properties_helpers.cuh" #include <cooperative_groups.h> #include <catboost/cuda/cuda_lib/kernel/arch.cuh> #include <catboost/cuda/cuda_util/kernel/instructions.cuh> #include <catboost/cuda/cuda_util/kernel/kernel_helpers.cuh> using namespace cooperative_groups; namespace NKernel { __forceinline__ __device__ void AddToMatrices(int row, int col, float sum, float* matrix) { const int ind = col < row ? (row * (row + 1) >> 1) + col : (col * (col + 1) >> 1) + row; matrix[ind] += sum; } template <int BLOCK_SIZE, int PartCount> __global__ void MakePairwiseDerivatives(const float* pairwiseHistogram, int matrixOffset, int matCount, int histLineSize /* 4 * totalBinFeatureCount */, float* linearSystem) { const int logicalWarpSize = PartCount > 32 ? 32 : PartCount; const int matricesPerBlock = BLOCK_SIZE / logicalWarpSize; int matrixIdx = blockIdx.x * matricesPerBlock + threadIdx.x / logicalWarpSize; int localTid = threadIdx.x & (logicalWarpSize - 1); const int inBlockOffset = threadIdx.x / logicalWarpSize; if (matrixIdx >= matCount) return; { const size_t rowSize = PartCount * 2; const size_t linearSystemSize = (rowSize + rowSize * (rowSize + 1) / 2); linearSystem += matrixIdx * linearSystemSize; } pairwiseHistogram += (matrixOffset + matrixIdx) * 4; __shared__ float lineData[BLOCK_SIZE * 2]; const int N = PartCount / logicalWarpSize; const int logicalWarpId = threadIdx.x / logicalWarpSize; const int logicalWarpCount = BLOCK_SIZE / logicalWarpSize; thread_block_tile<logicalWarpSize> groupTile = tiled_partition<logicalWarpSize>(this_thread_block()); float sum0[N]; float sum1[N]; for (int i = 0; i < N; ++i) { sum0[i] = 0; sum1[i] = 0; } #pragma unroll 16 for (int y = 0; y < PartCount; ++y) { #pragma unroll for (int i = 0; i < N; ++i) { const int x = localTid + 32 * i; const int partIdx = ConvertBlockToPart(x, y); ui64 offset = ((ui64) partIdx * histLineSize * 4ULL); float4 hist = __ldg((float4*)(pairwiseHistogram + offset)); const float w00 = (x != y ? hist.x : 0.0f); const float w01 = hist.y; const float w10 = hist.z; const float w11 = (x != y ? hist.w : 0.0f); // sync for row write done in reduce if we need it const int nextRow = 2 * y; const int nextCol = 2 * x; sum0[i] += w00 + w10; sum1[i] += w01 + w11; if (x == y) { AddToMatrices(nextRow + 1, nextRow, -(w01 + w10), linearSystem); } else if (x < y) { AddToMatrices(nextRow, nextCol, -w00, linearSystem); AddToMatrices(nextRow, nextCol + 1, -w01, linearSystem); AddToMatrices(nextRow + 1, nextCol, -w10, linearSystem); AddToMatrices(nextRow + 1, nextCol + 1, -w11, linearSystem); } groupTile.sync(); } groupTile.sync(); } #pragma unroll 16 for (int x = 0; x < PartCount; ++x) { #pragma unroll for (int i = 0; i < N; ++i) { const int y = localTid + 32 * i; const int partIdx = ConvertBlockToPart(x, y); ui64 offset = ((ui64) partIdx * histLineSize * 4ULL); float4 hist = __ldg((float4*)(pairwiseHistogram + offset)); const float w00 = (x != y ? hist.x : 0.0f); const float w01 = hist.y; const float w10 = hist.z; const float w11 = (x != y ? hist.w : 0.0f); // sync for row write done in reduce if we need it const int nextRow = 2 * y; const int nextCol = 2 * x; sum0[i] += w01 + w00; sum1[i] += w10 + w11; if (x > y) { AddToMatrices(nextRow, nextCol, -w00, linearSystem); AddToMatrices(nextRow, nextCol + 1, -w01, linearSystem); AddToMatrices(nextRow + 1, nextCol, -w10, linearSystem); AddToMatrices(nextRow + 1, nextCol + 1, -w11, linearSystem); } groupTile.sync(); } groupTile.sync(); } #pragma unroll for (int i = 0; i < N; ++i) { const int x = localTid + 32 * i; const int nextRow = 2 * x; linearSystem[nextRow * (nextRow + 1) / 2 + nextRow] += sum0[i]; linearSystem[(nextRow + 1) * (nextRow + 2) / 2 + nextRow + 1] += sum1[i]; } } template <int BLOCK_SIZE> void RunMakeMatrices(const float* histogram, int partCount, int histLineSize, int firstMatrix, int matricesCount, float* linearSystem, TCudaStream stream) { if (matricesCount > 0) { const int numBlocks = (((size_t) matricesCount) * min(partCount, 32) + BLOCK_SIZE - 1) / BLOCK_SIZE; #define RUN(PartCount)\ MakePairwiseDerivatives<BLOCK_SIZE, PartCount> << < numBlocks, BLOCK_SIZE, 0, stream >> > (histogram, firstMatrix, matricesCount, histLineSize, linearSystem); if (partCount == 1) { RUN(1) } else if (partCount == 2) { RUN(2) } else if (partCount == 4) { RUN(4) } else if (partCount == 8) { RUN(8) } else if (partCount == 16) { RUN(16) } else if (partCount == 32) { RUN(32) } else if (partCount == 64) { RUN(64) } else if (partCount == 128) { RUN(128) } else { exit(0); } } } void MakePairwiseDerivatives(const float* histogram, int leavesCount, int firstMatrix, int matricesCount, int histLineSize, float* linearSystem, TCudaStream stream) { if (TArchProps::GetMajorVersion() == 2 && (leavesCount <= 64)) { RunMakeMatrices<192>(histogram, leavesCount, histLineSize, firstMatrix, matricesCount, linearSystem, stream); } else { RunMakeMatrices<256>(histogram, leavesCount, histLineSize, firstMatrix, matricesCount, linearSystem, stream); } } template <int BLOCK_SIZE> __global__ void MakePointwiseDerivatives(const float* pointwiseHist, ui64 pointwiseHistSize, const TPartitionStatistics* partStats, bool hasPointwiseWeights, int rowSize, int firstMatrixIdx, int matCount, float* linearSystem) { const int lineSize = min(rowSize, 32); const int matricesPerBlock = BLOCK_SIZE / lineSize; const int matrixIdx = blockIdx.x * matricesPerBlock + threadIdx.x / lineSize; pointwiseHist += (firstMatrixIdx + matrixIdx) * (hasPointwiseWeights ? 2 : 1); linearSystem += ((size_t)matrixIdx) * (rowSize + rowSize * (rowSize + 1) / 2); const int x = threadIdx.x & (lineSize - 1); float* targets = linearSystem + rowSize * (rowSize + 1) / 2; if (matrixIdx < matCount) { for (int col = x; col < rowSize; col += 32) { const int i = col / 2; ui64 offset = pointwiseHistSize * i; if (hasPointwiseWeights) { const float leafWeight = pointwiseHist[offset]; const float weight = (col & 1) ? partStats[i].Weight - leafWeight : leafWeight; linearSystem[col * (col + 1) / 2 + col] += max(weight, 0.0f); } const float leafSum = pointwiseHist[offset + hasPointwiseWeights]; const float sum = (col & 1) ? partStats[i].Sum - leafSum : leafSum; targets[col] = sum; } } } template <int BLOCK_SIZE> void RunMakePointwiseDerivatives(const float* pointwiseHist, int binFeatureCount, const TPartitionStatistics* partStats, bool hasPointwiseWeights, int rowSize, int firstMatrixIdx, int matricesCount, float* linearSystem, TCudaStream stream ) { if (matricesCount > 0) { const ui32 pointwiseHistSize = binFeatureCount * (hasPointwiseWeights ? 2 : 1); const int lineSize = min(32, rowSize); const int numBlocks = (((size_t) matricesCount) * lineSize + BLOCK_SIZE - 1) / BLOCK_SIZE; MakePointwiseDerivatives<BLOCK_SIZE> << < numBlocks, BLOCK_SIZE, 0, stream >> > (pointwiseHist, pointwiseHistSize, partStats, hasPointwiseWeights, rowSize, firstMatrixIdx, matricesCount, linearSystem); } } void MakePointwiseDerivatives(const float* pointwiseHist, int pointwiseHistLineSize, const TPartitionStatistics* partStats, bool hasPointwiseWeights, int rowSize, int firstMatrixIdx, int matricesCount, float* linearSystem, TCudaStream stream) { if (TArchProps::GetMajorVersion() == 2) { RunMakePointwiseDerivatives<192> (pointwiseHist, pointwiseHistLineSize, partStats, hasPointwiseWeights, rowSize, firstMatrixIdx, matricesCount, linearSystem, stream); } else { RunMakePointwiseDerivatives<128> (pointwiseHist, pointwiseHistLineSize, partStats, hasPointwiseWeights, rowSize, firstMatrixIdx, matricesCount, linearSystem, stream); } } __global__ void UpdateBinsPairs(TCFeature feature, ui32 binIdx, const ui32* cindex, const uint2* pairs, ui32 pairCount, ui32 depth, ui32* bins) { ui32 idx = blockIdx.x * blockDim.x + threadIdx.x; cindex += feature.Offset; const ui32 value = binIdx << feature.Shift; const ui32 mask = feature.Mask << feature.Shift; while (idx < pairCount) { const uint2 p = pairs[idx]; const ui32 d1 = (cindex[p.x] & mask); const ui32 d2 = (cindex[p.y] & mask); ui32 bit1 = feature.OneHotFeature ? d1 == value : d1 > value; ui32 bit2 = feature.OneHotFeature ? d2 == value : d2 > value; ui32 bin = bins[idx]; bin = ((bit1 * 2 + bit2) << (depth * 2)) | bin; bins[idx] = bin; idx += blockDim.x * gridDim.x; } } void UpdateBinsPairs(TCFeature feature, ui32 bin, const ui32* compressedIndex, const uint2* pairs, ui32 pairCount, ui32 depth, ui32* bins, TCudaStream stream) { const int blockSize = 256; const int numBlocks = min((pairCount + blockSize - 1) / blockSize, TArchProps::MaxBlockCount()); UpdateBinsPairs<<<numBlocks, blockSize, 0, stream>>>(feature, bin, compressedIndex, pairs, pairCount, depth, bins); } template <int BLOCK_SIZE> __global__ void SelectBestSplitImpl(const float* scores, const TCBinFeature* binFeature, int size, int bestIndexBias, TBestSplitPropertiesWithIndex* best) { float maxScore = -5000000.0f; int maxIdx = -1; int tid = threadIdx.x; #pragma unroll 8 for (int i = tid; i < size; i += BLOCK_SIZE) { float score = scores[i]; if (score > maxScore) { maxScore = score; maxIdx = i; } } __shared__ float vals[BLOCK_SIZE]; __shared__ int inds[BLOCK_SIZE]; vals[tid] = maxScore; inds[tid] = maxIdx; __syncthreads(); for (int s = BLOCK_SIZE >> 1; s > 0; s >>= 1) { if (tid < s) { if ( vals[tid] < vals[tid + s] || (vals[tid] == vals[tid + s] && inds[tid] > inds[tid + s]) ) { vals[tid] = vals[tid + s]; inds[tid] = inds[tid + s]; } } __syncthreads(); } if (tid == 0) { TCBinFeature bestFeature; const int bestIdx = inds[0]; const float bestScore = vals[0]; if (bestIdx != -1) { bestFeature = binFeature[bestIdx]; } else { bestFeature.BinId = 0; bestFeature.FeatureId = 0; } best->Index = bestIndexBias + bestIdx; best->Score = -bestScore; best->BinId = bestFeature.BinId; best->FeatureId = bestFeature.FeatureId; } } void SelectBestSplit(const float* scores, const TCBinFeature* binFeature, int size, int bestIndexBias, TBestSplitPropertiesWithIndex* best, TCudaStream stream) { const int blockSize = 1024; SelectBestSplitImpl<blockSize><<<1, blockSize, 0, stream>>>(scores, binFeature, size, bestIndexBias, best); } __global__ void ZeroSameLeafBinWeightsImpl(const uint2* pairs, const ui32* bins, ui32 pairCount, float* pairWeights) { const ui32 i = blockDim.x * blockIdx.x + threadIdx.x; if (i < pairCount) { uint2 pair = pairs[i]; const ui32 binx = bins[pair.x]; const ui32 biny = bins[pair.y]; if (binx == biny) { pairWeights[i] = 0; } } } void ZeroSameLeafBinWeights(const uint2* pairs, const ui32* bins, ui32 pairCount, float* pairWeights, TCudaStream stream ) { if (pairCount > 0) { const int blockSize = 256; const ui32 numBlocks = (pairCount + blockSize - 1) / blockSize; ZeroSameLeafBinWeightsImpl<<<numBlocks, blockSize, 0, stream>>>(pairs, bins, pairCount, pairWeights); } } __global__ void FillPairBinsImpl(const uint2* pairs, const ui32* bins, ui32 rowSize, ui32 pairCount, ui32* pairBins) { const ui32 i = blockDim.x * blockIdx.x + threadIdx.x; if (i < pairCount) { uint2 pair = pairs[i]; const ui32 binx = bins[pair.x]; const ui32 biny = bins[pair.y]; pairBins[i] = binx * rowSize + biny; } } void FillPairBins(const uint2* pairs, const ui32* bins, ui32 binCount, ui32 pairCount, ui32* pairBins, TCudaStream stream) { if (pairCount > 0) { const int blockSize = 256; const ui32 numBlocks = (pairCount + blockSize - 1) / blockSize; FillPairBinsImpl<<<numBlocks, blockSize, 0, stream>>>(pairs, bins, binCount, pairCount, pairBins); } } //for leaves estimation __global__ void FillPairDer2OnlyImpl(const float* ders2, const float* groupDers2, const ui32* qids, const uint2* pairs, ui32 pairCount, float* pairDer2) { const int tid = threadIdx.x; const int i = blockIdx.x * blockDim.x + tid; if (i < pairCount) { uint2 pair = Ldg(pairs + i); const float der2x = Ldg(ders2 + pair.x); const float der2y = Ldg(ders2 + pair.y); const int qid = Ldg(qids + pair.x); const float groupDer2 = Ldg(groupDers2 + qid); pairDer2[i] = groupDer2 > 1e-20f ? der2x * der2y / (groupDer2 + 1e-20f) : 0; } } void FillPairDer2Only(const float* ders2, const float* groupDers2, const ui32* qids, const uint2* pairs, ui32 pairCount, float* pairDer2, TCudaStream stream ) { const int blockSize = 256; const int numBlocks = (pairCount + blockSize - 1) / blockSize; if (numBlocks > 0) { FillPairDer2OnlyImpl<<< numBlocks, blockSize, 0, stream >>>(ders2, groupDers2, qids, pairs, pairCount, pairDer2); } } }
abc9f4302e9ae4873b89b787fa3beb999e89b111.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include <cstdint> #include <iostream> #include "helpers.cuh" #include "encryption.cuh" // Host function. void encrypt_cpu(uint64_t * data, uint64_t num_entries, uint64_t num_iters, bool parallel=true) { // Use OpenMP to use all available CPU cores. #pragma omp parallel for if (parallel) for (uint64_t entry = 0; entry < num_entries; entry++) // Permute each data entry the number of iterations and then write result to data. data[entry] = permute64(entry, num_iters); } // Device function. __global__ void decrypt_gpu(uint64_t * data, uint64_t num_entries, uint64_t num_iters) { const uint64_t thrdID = blockIdx.x*blockDim.x+threadIdx.x; const uint64_t stride = blockDim.x*gridDim.x; //printf(" checkpoint i0\n"); // Utilize grid-stride loop for arbitrary data sizes. for (uint64_t entry = thrdID; entry < num_entries; entry += stride) // Unpermute each data entry the number of iterations then write result to data. data[entry] = unpermute64(data[entry], num_iters); //printf(" checkpoint i1\n"); } // Host function. bool check_result_cpu(uint64_t * data, uint64_t num_entries, bool parallel=true) { uint64_t counter = 0; #pragma omp parallel for reduction(+: counter) if (parallel) for (uint64_t entry = 0; entry < num_entries; entry++) // Because we created initial data values by ranging from 0 to N-1, // and because encrypting and decrypting is symmetrical, // then each data entry should be equal to `entry`. counter += data[entry] == entry; // True if all values have been correctly decrypted. return counter == num_entries; } int main (int argc, char * argv[]) { // This file will be used to cache encryption results // so we don't have to wait on the CPU every time. //const char * encrypted_file = "/dli/task/encrypted"; const char * encrypted_file = "hello"; //"/home/babak/Codes/Learning/HPC/2_Cuda/6_Accelerating_CUDA_C++_Applications_with_Concurrent_Streams/3_Application/hello"; // Timer instance to be used for sections of the application. Timer timer; // Timer instance to be used for total time on the GPU(s). Timer overall; const uint64_t num_entries = 1UL << 26; const uint64_t num_iters = 1UL << 10; // Use all available CPUs in parallel for host calculations. //const bool openmp = true; const bool openmp = false; // This timer start and then stop pattern will be used throughout the application. timer.start(); uint64_t * data_cpu, * data_gpu; // hipHostMalloc will be discussed at length later in the course. hipHostMalloc(&data_cpu, sizeof(uint64_t)*num_entries); hipMalloc (&data_gpu, sizeof(uint64_t)*num_entries); timer.stop("allocate memory"); check_last_error(); timer.start(); // If encryption cache file does not exist... if (!encrypted_file_exists(encrypted_file)) { // ...encrypt data in parallel on CPU... std::cout << " encrypting... \n "; encrypt_cpu(data_cpu, num_entries, num_iters, openmp); // ...and make encryption cache file for later. write_encrypted_to_file(encrypted_file, data_cpu, sizeof(uint64_t)*num_entries); } else { std::cout << " reading... \n "; // Use encryption cache file if it exists. read_encrypted_from_file(encrypted_file, data_cpu, sizeof(uint64_t)*num_entries); } timer.stop("encrypt data on CPU"); // Begin timing for total time on GPU(s). overall.start(); timer.start(); hipStream_t str; hipStreamCreate(&str); // Data copy from CPU to GPU. hipMemcpyAsync(data_gpu, data_cpu, sizeof(uint64_t)*num_entries, hipMemcpyHostToDevice, str); timer.stop("copy data from CPU to GPU"); check_last_error(); // non-default stream timer.start(); // Decrypt data on GPU(s). hipLaunchKernelGGL(( decrypt_gpu), dim3(80*32), dim3(64), 0, 0, data_gpu, num_entries, num_iters); timer.stop("decrypt data on GPU"); //std::cout << " checkpoint 0\n"; check_last_error(); //std::cout << " checkpoint 1\n"; timer.start(); // Copy data from GPU to CPU. hipMemcpyAsync(data_cpu, data_gpu, sizeof(uint64_t)*num_entries, hipMemcpyDeviceToHost, str); // Wait for memory transfer to complete before proceeding. hipStreamSynchronize(str); hipStreamDestroy(str); timer.stop("copy data from GPU to CPU"); // Stop timer for total time on GPU(s). overall.stop("total time on GPU"); check_last_error(); timer.start(); // Check results on CPU. const bool success = check_result_cpu(data_cpu, num_entries, openmp); std::cout << "STATUS: test " << ( success ? "passed" : "failed") << std::endl; timer.stop("checking result on CPU"); timer.start(); // Free memory. hipHostFree(data_cpu); hipFree (data_gpu); timer.stop("free memory"); check_last_error(); }
abc9f4302e9ae4873b89b787fa3beb999e89b111.cu
#include <cstdint> #include <iostream> #include "helpers.cuh" #include "encryption.cuh" // Host function. void encrypt_cpu(uint64_t * data, uint64_t num_entries, uint64_t num_iters, bool parallel=true) { // Use OpenMP to use all available CPU cores. #pragma omp parallel for if (parallel) for (uint64_t entry = 0; entry < num_entries; entry++) // Permute each data entry the number of iterations and then write result to data. data[entry] = permute64(entry, num_iters); } // Device function. __global__ void decrypt_gpu(uint64_t * data, uint64_t num_entries, uint64_t num_iters) { const uint64_t thrdID = blockIdx.x*blockDim.x+threadIdx.x; const uint64_t stride = blockDim.x*gridDim.x; //printf(" checkpoint i0\n"); // Utilize grid-stride loop for arbitrary data sizes. for (uint64_t entry = thrdID; entry < num_entries; entry += stride) // Unpermute each data entry the number of iterations then write result to data. data[entry] = unpermute64(data[entry], num_iters); //printf(" checkpoint i1\n"); } // Host function. bool check_result_cpu(uint64_t * data, uint64_t num_entries, bool parallel=true) { uint64_t counter = 0; #pragma omp parallel for reduction(+: counter) if (parallel) for (uint64_t entry = 0; entry < num_entries; entry++) // Because we created initial data values by ranging from 0 to N-1, // and because encrypting and decrypting is symmetrical, // then each data entry should be equal to `entry`. counter += data[entry] == entry; // True if all values have been correctly decrypted. return counter == num_entries; } int main (int argc, char * argv[]) { // This file will be used to cache encryption results // so we don't have to wait on the CPU every time. //const char * encrypted_file = "/dli/task/encrypted"; const char * encrypted_file = "hello"; //"/home/babak/Codes/Learning/HPC/2_Cuda/6_Accelerating_CUDA_C++_Applications_with_Concurrent_Streams/3_Application/hello"; // Timer instance to be used for sections of the application. Timer timer; // Timer instance to be used for total time on the GPU(s). Timer overall; const uint64_t num_entries = 1UL << 26; const uint64_t num_iters = 1UL << 10; // Use all available CPUs in parallel for host calculations. //const bool openmp = true; const bool openmp = false; // This timer start and then stop pattern will be used throughout the application. timer.start(); uint64_t * data_cpu, * data_gpu; // cudaMallocHost will be discussed at length later in the course. cudaMallocHost(&data_cpu, sizeof(uint64_t)*num_entries); cudaMalloc (&data_gpu, sizeof(uint64_t)*num_entries); timer.stop("allocate memory"); check_last_error(); timer.start(); // If encryption cache file does not exist... if (!encrypted_file_exists(encrypted_file)) { // ...encrypt data in parallel on CPU... std::cout << " encrypting... \n "; encrypt_cpu(data_cpu, num_entries, num_iters, openmp); // ...and make encryption cache file for later. write_encrypted_to_file(encrypted_file, data_cpu, sizeof(uint64_t)*num_entries); } else { std::cout << " reading... \n "; // Use encryption cache file if it exists. read_encrypted_from_file(encrypted_file, data_cpu, sizeof(uint64_t)*num_entries); } timer.stop("encrypt data on CPU"); // Begin timing for total time on GPU(s). overall.start(); timer.start(); cudaStream_t str; cudaStreamCreate(&str); // Data copy from CPU to GPU. cudaMemcpyAsync(data_gpu, data_cpu, sizeof(uint64_t)*num_entries, cudaMemcpyHostToDevice, str); timer.stop("copy data from CPU to GPU"); check_last_error(); // non-default stream timer.start(); // Decrypt data on GPU(s). decrypt_gpu<<<80*32, 64>>>(data_gpu, num_entries, num_iters); timer.stop("decrypt data on GPU"); //std::cout << " checkpoint 0\n"; check_last_error(); //std::cout << " checkpoint 1\n"; timer.start(); // Copy data from GPU to CPU. cudaMemcpyAsync(data_cpu, data_gpu, sizeof(uint64_t)*num_entries, cudaMemcpyDeviceToHost, str); // Wait for memory transfer to complete before proceeding. cudaStreamSynchronize(str); cudaStreamDestroy(str); timer.stop("copy data from GPU to CPU"); // Stop timer for total time on GPU(s). overall.stop("total time on GPU"); check_last_error(); timer.start(); // Check results on CPU. const bool success = check_result_cpu(data_cpu, num_entries, openmp); std::cout << "STATUS: test " << ( success ? "passed" : "failed") << std::endl; timer.stop("checking result on CPU"); timer.start(); // Free memory. cudaFreeHost(data_cpu); cudaFree (data_gpu); timer.stop("free memory"); check_last_error(); }
15c3a029d00b3d774e8e319d1c55a2482cd21fa5.hip
// !!! This is a file automatically generated by hipify!!! #include <stdio.h> #include <string.h> #include <hip/hip_runtime.h> #include "hip/hip_runtime.h" #include "device_launch_parameters.h" #include "math.h" #include "time.h" #include <iostream> #include <fstream> #include <iomanip> #define BLOCK_SIZE 16 void print_matrices(float* matrix, char* file_Name, int x_dim, int y_dim, int dim) { std::ofstream outFile; outFile.open(file_Name); outFile << std::fixed; outFile << std::setprecision(2); for (int i = 0; i < x_dim; i++) { for (int j = 0; j < y_dim; j++) { outFile << matrix[i * dim + j] << " "; } outFile << std::endl; } } __host__ void cpu_matrix_mult(float* h_a, float* h_b, float* h_result, int m) { for (int i = 0; i < m; ++i) { for (int j = 0; j < m; ++j) { float tmp = 0.0; for (int h = 0; h < m; ++h) { tmp += h_a[i * m + h] * h_b[h * m + j]; } h_result[i * m + j] = tmp; } } } __host__ int fill(float** Lmatrix, float** Rmatrix, int LdimX, int LdimY, int RdimX, int RdimY) { int sqr_dim_X, sqr_dim_Y, size; sqr_dim_X = RdimX; if (LdimX > RdimX) { sqr_dim_X = LdimX; } sqr_dim_Y = RdimY; if (LdimY > RdimY) { sqr_dim_Y = LdimY; } size = sqr_dim_Y; if (sqr_dim_X > sqr_dim_Y) { size = sqr_dim_X; } int temp = size / BLOCK_SIZE + (size % BLOCK_SIZE == 0 ? 0 : 1); size = temp * BLOCK_SIZE; size_t pt_size = size * size * sizeof(float); *Lmatrix = (float*)malloc(pt_size); *Rmatrix = (float*)malloc(pt_size); memset(*Lmatrix, 0, pt_size); memset(*Rmatrix, 0, pt_size); for (int i = 0; i < LdimX; i++) { for (int j = 0; j < LdimY; j++) { int dummy = size * i + j; (*Lmatrix)[dummy] = sinf(dummy); } } for (int i = 0; i < RdimX; i++) { for (int j = 0; j < RdimY; j++) { int dummy = size * i + j; (*Rmatrix)[dummy] = cosf(dummy); } } return size; } __global__ void multiply(float* left, float* right, float* res, int dim) { int i, j; float temp = 0; __shared__ float Left_shared_t[BLOCK_SIZE][BLOCK_SIZE]; __shared__ float Right_shared_t[BLOCK_SIZE][BLOCK_SIZE]; int row = blockIdx.y * blockDim.y + threadIdx.y; int col = blockIdx.x * blockDim.x + threadIdx.x; for (int tileNUM = 0; tileNUM < gridDim.x; tileNUM++) { j = tileNUM * BLOCK_SIZE + threadIdx.x; i = tileNUM * BLOCK_SIZE + threadIdx.y; Left_shared_t[threadIdx.y][threadIdx.x] = left[row * dim + j]; Right_shared_t[threadIdx.y][threadIdx.x] = right[i * dim + col]; __syncthreads(); for (int k = 0; k < BLOCK_SIZE; k++) { temp += Left_shared_t[threadIdx.y][k] * Right_shared_t[k][threadIdx.x]; } __syncthreads(); } res[row * dim + col] = temp; } int main(void) { int Left_matrix_x, Left_matrix_y, Right_matrix_x, Right_matrix_y, Left_vector_size, Right_vector_size; float* Left_Vector_h, * Right_Vector_h, * Left_Vector_d, * Right_Vector_d, * Res_h, * Res_d, * CPU; printf("Enter m n n k :\n"); scanf("%d %d %d %d", &Left_matrix_x, &Left_matrix_y, &Right_matrix_x, &Right_matrix_y); int dim = fill(&Left_Vector_h, &Right_Vector_h, Left_matrix_x, Left_matrix_y, Right_matrix_x, Right_matrix_y); print_matrices(Left_Vector_h, "Input_LHS", Left_matrix_x, Left_matrix_y, dim); print_matrices(Right_Vector_h, "Input_RHS", Right_matrix_x, Right_matrix_y, dim); size_t vector_size; vector_size = dim * dim * sizeof(float); Res_h = (float*)malloc(vector_size); // Allocate array on host for result CPU = (float*)malloc(vector_size);// Allocate array on host for CPU_matrix_multiplication result hipMalloc((void**)&Left_Vector_d, vector_size); // Allocate array on device for LHS operand hipMalloc((void**)&Right_Vector_d, vector_size); // Allocate array on device for RHS operand but this is vector 1xN hipMalloc((void**)&Res_d, vector_size); // Allocate array on device for result hipMemcpy(Left_Vector_d, Left_Vector_h, vector_size, hipMemcpyHostToDevice); // copy values to device hipMemcpy(Right_Vector_d, Right_Vector_h, vector_size, hipMemcpyHostToDevice); // copy values to device //Block dimension is directly from block_size dim3 Block_dim(BLOCK_SIZE, BLOCK_SIZE); //Grid dimension is found by dividing matrix dimension to block_size dim3 Grid_dim(dim / BLOCK_SIZE, dim / BLOCK_SIZE); //commented out the functions which helps to calculate time hipEvent_t start, stop; hipEventCreate(&start); hipEventCreate(&stop); hipEventRecord(start, 0); //kernel call multiply << < Grid_dim, Block_dim >> > (Left_Vector_d, Right_Vector_d, Res_d, dim); //commented out the functions which helps to calculate time hipEventRecord(stop, 0); hipEventSynchronize(stop); float et; hipEventElapsedTime(&et, start, stop); hipEventDestroy(start); hipEventDestroy(stop); // Retrieve result from device and store it in host array hipMemcpy(Res_h, Res_d, vector_size, hipMemcpyDeviceToHost); clock_t begin = clock(); cpu_matrix_mult(Left_Vector_h, Right_Vector_h, CPU, dim); //matrix multiplication on cpu clock_t end = clock(); double time_spent = (double)1000 * (end - begin) / CLOCKS_PER_SEC; //commented out the functions which helps to calculate time printf("GPU time= %f ms\n", et); printf("CPU time= %lf ms\n", time_spent); printf("Times Speed up= %f\n", time_spent / et); //Prints the results print_matrices(Res_h, "GPU_out", Left_matrix_x, Right_matrix_y, dim); print_matrices(CPU, "CPU_out", Left_matrix_x, Right_matrix_y, dim); bool eqaul = true; for (int i = 0; i < Left_matrix_x && eqaul; i++) { for (int j = 0; j < Right_matrix_y && eqaul; j++) { if (abs(Res_h[i * dim + j] - CPU[i * dim + j]) > 0.001) { eqaul = false; printf("NOT EQUAL\n"); } } } if (eqaul) { std::cout << "Results are equal!" << std::endl; } else { std::cout << "Results are NOT equal!" << std::endl; } // Cleanup free(Left_Vector_h); free(Right_Vector_h); free(Res_h); free(CPU); hipFree(Left_Vector_d); hipFree(Right_Vector_d); hipFree(Res_d); }
15c3a029d00b3d774e8e319d1c55a2482cd21fa5.cu
#include <stdio.h> #include <string.h> #include <cuda.h> #include "cuda_runtime.h" #include "device_launch_parameters.h" #include "math.h" #include "time.h" #include <iostream> #include <fstream> #include <iomanip> #define BLOCK_SIZE 16 void print_matrices(float* matrix, char* file_Name, int x_dim, int y_dim, int dim) { std::ofstream outFile; outFile.open(file_Name); outFile << std::fixed; outFile << std::setprecision(2); for (int i = 0; i < x_dim; i++) { for (int j = 0; j < y_dim; j++) { outFile << matrix[i * dim + j] << " "; } outFile << std::endl; } } __host__ void cpu_matrix_mult(float* h_a, float* h_b, float* h_result, int m) { for (int i = 0; i < m; ++i) { for (int j = 0; j < m; ++j) { float tmp = 0.0; for (int h = 0; h < m; ++h) { tmp += h_a[i * m + h] * h_b[h * m + j]; } h_result[i * m + j] = tmp; } } } __host__ int fill(float** Lmatrix, float** Rmatrix, int LdimX, int LdimY, int RdimX, int RdimY) { int sqr_dim_X, sqr_dim_Y, size; sqr_dim_X = RdimX; if (LdimX > RdimX) { sqr_dim_X = LdimX; } sqr_dim_Y = RdimY; if (LdimY > RdimY) { sqr_dim_Y = LdimY; } size = sqr_dim_Y; if (sqr_dim_X > sqr_dim_Y) { size = sqr_dim_X; } int temp = size / BLOCK_SIZE + (size % BLOCK_SIZE == 0 ? 0 : 1); size = temp * BLOCK_SIZE; size_t pt_size = size * size * sizeof(float); *Lmatrix = (float*)malloc(pt_size); *Rmatrix = (float*)malloc(pt_size); memset(*Lmatrix, 0, pt_size); memset(*Rmatrix, 0, pt_size); for (int i = 0; i < LdimX; i++) { for (int j = 0; j < LdimY; j++) { int dummy = size * i + j; (*Lmatrix)[dummy] = sinf(dummy); } } for (int i = 0; i < RdimX; i++) { for (int j = 0; j < RdimY; j++) { int dummy = size * i + j; (*Rmatrix)[dummy] = cosf(dummy); } } return size; } __global__ void multiply(float* left, float* right, float* res, int dim) { int i, j; float temp = 0; __shared__ float Left_shared_t[BLOCK_SIZE][BLOCK_SIZE]; __shared__ float Right_shared_t[BLOCK_SIZE][BLOCK_SIZE]; int row = blockIdx.y * blockDim.y + threadIdx.y; int col = blockIdx.x * blockDim.x + threadIdx.x; for (int tileNUM = 0; tileNUM < gridDim.x; tileNUM++) { j = tileNUM * BLOCK_SIZE + threadIdx.x; i = tileNUM * BLOCK_SIZE + threadIdx.y; Left_shared_t[threadIdx.y][threadIdx.x] = left[row * dim + j]; Right_shared_t[threadIdx.y][threadIdx.x] = right[i * dim + col]; __syncthreads(); for (int k = 0; k < BLOCK_SIZE; k++) { temp += Left_shared_t[threadIdx.y][k] * Right_shared_t[k][threadIdx.x]; } __syncthreads(); } res[row * dim + col] = temp; } int main(void) { int Left_matrix_x, Left_matrix_y, Right_matrix_x, Right_matrix_y, Left_vector_size, Right_vector_size; float* Left_Vector_h, * Right_Vector_h, * Left_Vector_d, * Right_Vector_d, * Res_h, * Res_d, * CPU; printf("Enter m n n k :\n"); scanf("%d %d %d %d", &Left_matrix_x, &Left_matrix_y, &Right_matrix_x, &Right_matrix_y); int dim = fill(&Left_Vector_h, &Right_Vector_h, Left_matrix_x, Left_matrix_y, Right_matrix_x, Right_matrix_y); print_matrices(Left_Vector_h, "Input_LHS", Left_matrix_x, Left_matrix_y, dim); print_matrices(Right_Vector_h, "Input_RHS", Right_matrix_x, Right_matrix_y, dim); size_t vector_size; vector_size = dim * dim * sizeof(float); Res_h = (float*)malloc(vector_size); // Allocate array on host for result CPU = (float*)malloc(vector_size);// Allocate array on host for CPU_matrix_multiplication result cudaMalloc((void**)&Left_Vector_d, vector_size); // Allocate array on device for LHS operand cudaMalloc((void**)&Right_Vector_d, vector_size); // Allocate array on device for RHS operand but this is vector 1xN cudaMalloc((void**)&Res_d, vector_size); // Allocate array on device for result cudaMemcpy(Left_Vector_d, Left_Vector_h, vector_size, cudaMemcpyHostToDevice); // copy values to device cudaMemcpy(Right_Vector_d, Right_Vector_h, vector_size, cudaMemcpyHostToDevice); // copy values to device //Block dimension is directly from block_size dim3 Block_dim(BLOCK_SIZE, BLOCK_SIZE); //Grid dimension is found by dividing matrix dimension to block_size dim3 Grid_dim(dim / BLOCK_SIZE, dim / BLOCK_SIZE); //commented out the functions which helps to calculate time cudaEvent_t start, stop; cudaEventCreate(&start); cudaEventCreate(&stop); cudaEventRecord(start, 0); //kernel call multiply << < Grid_dim, Block_dim >> > (Left_Vector_d, Right_Vector_d, Res_d, dim); //commented out the functions which helps to calculate time cudaEventRecord(stop, 0); cudaEventSynchronize(stop); float et; cudaEventElapsedTime(&et, start, stop); cudaEventDestroy(start); cudaEventDestroy(stop); // Retrieve result from device and store it in host array cudaMemcpy(Res_h, Res_d, vector_size, cudaMemcpyDeviceToHost); clock_t begin = clock(); cpu_matrix_mult(Left_Vector_h, Right_Vector_h, CPU, dim); //matrix multiplication on cpu clock_t end = clock(); double time_spent = (double)1000 * (end - begin) / CLOCKS_PER_SEC; //commented out the functions which helps to calculate time printf("GPU time= %f ms\n", et); printf("CPU time= %lf ms\n", time_spent); printf("Times Speed up= %f\n", time_spent / et); //Prints the results print_matrices(Res_h, "GPU_out", Left_matrix_x, Right_matrix_y, dim); print_matrices(CPU, "CPU_out", Left_matrix_x, Right_matrix_y, dim); bool eqaul = true; for (int i = 0; i < Left_matrix_x && eqaul; i++) { for (int j = 0; j < Right_matrix_y && eqaul; j++) { if (abs(Res_h[i * dim + j] - CPU[i * dim + j]) > 0.001) { eqaul = false; printf("NOT EQUAL\n"); } } } if (eqaul) { std::cout << "Results are equal!" << std::endl; } else { std::cout << "Results are NOT equal!" << std::endl; } // Cleanup free(Left_Vector_h); free(Right_Vector_h); free(Res_h); free(CPU); cudaFree(Left_Vector_d); cudaFree(Right_Vector_d); cudaFree(Res_d); }
c4595baafc323d7fc92391f0c0b98c31a1d1a958.hip
// !!! This is a file automatically generated by hipify!!! #include <thrust/host_vector.h> #include <thrust/device_vector.h> #include <thrust/generate.h> #include <thrust/sort.h> #include <thrust/copy.h> #include <thrust/transform_reduce.h> #include <thrust/functional.h> #include <iostream> #include <algorithm> #include <cstdlib> #include <cstdio> #include <fstream> #include <string> #include <rocblas.h> #include <hiprand/hiprand.h> #include <boost/numeric/ublas/matrix.hpp> #include <boost/numeric/ublas/io.hpp> #include <boost/numeric/ublas/lu.hpp> #include "basic_operations.h" #include "matrix_operations.h" #include "defs01.h" #include "tests01.h" int main() { tester_01(); return 0; }
c4595baafc323d7fc92391f0c0b98c31a1d1a958.cu
#include <thrust/host_vector.h> #include <thrust/device_vector.h> #include <thrust/generate.h> #include <thrust/sort.h> #include <thrust/copy.h> #include <thrust/transform_reduce.h> #include <thrust/functional.h> #include <iostream> #include <algorithm> #include <cstdlib> #include <cstdio> #include <fstream> #include <string> #include <cublas_v2.h> #include <curand.h> #include <boost/numeric/ublas/matrix.hpp> #include <boost/numeric/ublas/io.hpp> #include <boost/numeric/ublas/lu.hpp> #include "basic_operations.h" #include "matrix_operations.h" #include "defs01.h" #include "tests01.h" int main() { tester_01(); return 0; }
b2fabd9258c58903b7a7c308bc952e156038609c.hip
// !!! This is a file automatically generated by hipify!!! #define USE_DOUBLE 0 #if USE_DOUBLE > 0 #pragma OPENCL EXTENSION cl_khr_fp64: enable #define FLOAT_TYPE double #define FLOAT_TYPE4 double4 #define MAX_FLOAT_TYPE 1.7976931348623158e+308 #define MIN_FLOAT_TYPE -1.7976931348623158e+308 #else #define FLOAT_TYPE float #define FLOAT_TYPE4 float4 #define FLOAT_TYPE8 float8 #define MAX_FLOAT_TYPE 3.402823466e+38f #define MIN_FLOAT_TYPE -3.402823466e+38f #endif #define VECSIZE 4 #define VECSIZE_8 8 #define MAX_KNN 30 // System includes #include <stdio.h> #include <math.h> #include <string.h> #include <assert.h> #include <time.h> // CUDA runtime #include <hip/hip_runtime.h> //Helper functions and utilities to work with CUDA #include <helper_functions.h> #include <helper_cuda.h> #include <device_launch_parameters.h> typedef struct Convex_Node { bool isLeaf; int node_index; int parent_index; int leaf_index; //the leaf index of this node in all leaf nodes int left_node; int right_node; } CONVEX_TREE; /*----------pulic parameter used in __global__ functions-------------------*/ int *d_candidate_query_points_indexes = NULL; FLOAT_TYPE *d_candidate_query_points_set=NULL; int *d_candidate_query_points_appr_leaf_node_indexes = NULL; FLOAT_TYPE *d_all_sorted_data_set=NULL; int *d_sorted_data_set_indexes = NULL; CONVEX_TREE *d_tree_struct = NULL; FLOAT_TYPE *d_all_leaf_nodes_ALPHA_set=NULL; FLOAT_TYPE *d_all_leaf_nodes_BETA_set=NULL; int *d_all_constrains_num_of_each_leaf_nodes=NULL; int *d_all_leaf_nodes_offsets_in_all_ALPHA=NULL; int *d_all_leaf_nodes_ancestor_nodes_ids=NULL; int *d_leaf_nodes_start_pos_in_sorted_data_set=NULL; int *d_pts_num_in_sorted_leaf_nodes=NULL; FLOAT_TYPE *d_dist_k_mins_global_tmp=NULL; int *d_idx_k_mins_global_tmp=NULL; long *d_dist_computation_times_arr=NULL; long *d_quadprog_times_arr=NULL; long *d_dist_computation_times_in_quadprog=NULL; FLOAT_TYPE *d_nodes_centers=NULL; /*----------pulic parameter used in __global__ functions-------------------*/ //free memory malloced in CUDA void free_cuda_mem(){ if (d_candidate_query_points_indexes != NULL){ hipFree(d_candidate_query_points_indexes); d_candidate_query_points_indexes=NULL; } if (d_candidate_query_points_appr_leaf_node_indexes != NULL){ hipFree(d_candidate_query_points_appr_leaf_node_indexes); d_candidate_query_points_appr_leaf_node_indexes=NULL; } if (d_all_sorted_data_set != NULL){ hipFree(d_all_sorted_data_set); d_all_sorted_data_set=NULL; } if (d_sorted_data_set_indexes != NULL){ hipFree(d_sorted_data_set_indexes); d_sorted_data_set_indexes = NULL; } if (d_tree_struct != NULL){ hipFree(d_tree_struct); d_tree_struct = NULL; } if (d_all_leaf_nodes_ALPHA_set != NULL){ hipFree(d_all_leaf_nodes_ALPHA_set); d_all_leaf_nodes_ALPHA_set = NULL; } if (d_all_leaf_nodes_BETA_set != NULL){ hipFree(d_all_leaf_nodes_BETA_set); d_all_leaf_nodes_BETA_set = NULL; } if (d_all_constrains_num_of_each_leaf_nodes != NULL){ hipFree(d_all_constrains_num_of_each_leaf_nodes); d_all_constrains_num_of_each_leaf_nodes = NULL; } if (d_all_leaf_nodes_offsets_in_all_ALPHA != NULL){ hipFree(d_all_leaf_nodes_offsets_in_all_ALPHA); d_all_leaf_nodes_offsets_in_all_ALPHA = NULL; } if (d_all_leaf_nodes_ancestor_nodes_ids != NULL){ hipFree(d_all_leaf_nodes_ancestor_nodes_ids); d_all_leaf_nodes_ancestor_nodes_ids = NULL; } if (d_leaf_nodes_start_pos_in_sorted_data_set != NULL){ hipFree(d_leaf_nodes_start_pos_in_sorted_data_set); d_leaf_nodes_start_pos_in_sorted_data_set = NULL; } if (d_pts_num_in_sorted_leaf_nodes != NULL){ hipFree(d_pts_num_in_sorted_leaf_nodes); d_pts_num_in_sorted_leaf_nodes = NULL; } if (d_dist_k_mins_global_tmp != NULL){ hipFree(d_dist_k_mins_global_tmp); d_dist_k_mins_global_tmp = NULL; } if (d_idx_k_mins_global_tmp != NULL){ hipFree(d_idx_k_mins_global_tmp); d_idx_k_mins_global_tmp = NULL; } if (d_dist_computation_times_arr != NULL){ hipFree(d_dist_computation_times_arr); d_dist_computation_times_arr = NULL; } if (d_quadprog_times_arr != NULL){ hipFree(d_quadprog_times_arr); d_quadprog_times_arr = NULL; } if (d_dist_computation_times_in_quadprog != NULL){ hipFree(d_dist_computation_times_in_quadprog); d_dist_computation_times_in_quadprog = NULL; } if (d_nodes_centers != NULL){ hipFree(d_nodes_centers); d_nodes_centers = NULL; } } //the inner product of q and p __device__ FLOAT_TYPE scalar_product_cuda(FLOAT_TYPE* p, FLOAT_TYPE* q, int DIM){ //DIM will be written in "make_kernel_from_file" FLOAT_TYPE result = 0; for (int i = 0; i<DIM; i++){ result += p[i] * q[i]; } return result; } __device__ FLOAT_TYPE float_dist_squre_cuda(FLOAT_TYPE *p, FLOAT_TYPE *q, int DIM){ FLOAT_TYPE dist_tmp=0, tmp=0; for (int j = 0; j<DIM; j++){ tmp = (q[j] - p[j]); dist_tmp += tmp*tmp; } return dist_tmp; } __device__ FLOAT_TYPE Compute_distance(FLOAT_TYPE *p1, FLOAT_TYPE *p2, int DIM){ FLOAT_TYPE sum = 0; FLOAT_TYPE *end = p1 + DIM; for (; p1 != end; p1++, p2++){ FLOAT_TYPE d1 = *p1 - *p2; d1 *= d1; sum = sum + d1; } return sqrt(sum); } //retrun a approximate min dist from q to this convex node //d_min is still approximate distance, it can be improved or optimized. //idea: if a point q is outside of this node, then max distance from // q to each active constrains (hyperplanes) is the approximate // distance. Because the \forall active hyperplane h, we have // d_min >= dist(q,h); __device__ FLOAT_TYPE approximate_min_dist_by_hyper_plane_cuda( FLOAT_TYPE* query_point, FLOAT_TYPE* ALPHA, FLOAT_TYPE* BETA, int ALPPHA_size, int DIM){ FLOAT_TYPE result = 0; FLOAT_TYPE tmp_val = 0; for (int i = 0; i<ALPPHA_size; i++) { //DIM will be written in "make_kernel_from_file" FLOAT_TYPE* alpha = ALPHA + i*DIM; FLOAT_TYPE beta = BETA[i]; tmp_val = scalar_product_cuda(alpha, query_point,DIM); // if there exists a alpha and beta such that alpha[i]'* point +beta[i]<0 // point is not in the node if (tmp_val<0){ if (result < -tmp_val){ result = -tmp_val; } } } return result; } //return true if the d_min from q to this node is larger than dist_compare. //@param dist_compute_times_in_appr_quadprog: count the dist computation times here __device__ bool is_appr_min_dist_from_q_larger_by_hyper_plane_cuda( FLOAT_TYPE *query_point, FLOAT_TYPE *ALPHA, FLOAT_TYPE *BETA, int ALPPHA_size, FLOAT_TYPE dist_compare, long *dist_compute_times_in_appr_quadprog, FLOAT_TYPE *query_point_scalar_product_from_all_nodes, int *cur_ancestor_nodes_ids, int DIM ) { bool result = false; int tmp_times = 0; int cur_ancestor_node_id = 0; for (int i = 0; i<ALPPHA_size; i++){ FLOAT_TYPE tmp_dist = BETA[i]; //---ORIGINAL SCALAR PRODUCT, MANY DUPLICATION, but, in low dim it is faster. for (int j = 0; j<DIM; j++){ tmp_dist += ALPHA[i*DIM + j] * query_point[j]; } tmp_times++; if (tmp_dist<0){ if (dist_compare <= (tmp_dist*tmp_dist)){ //if there exists one such hyper plane then return. result = true; break; } } } *dist_compute_times_in_appr_quadprog += tmp_times; return result; } //brute force computing and update dist_k_mins_private_tmp and idx_k_mins_global_tmp //pts_num: the number of points in all_sorted_data_set. __device__ void do_brute_force_and_update_private_cuda( FLOAT_TYPE *cur_query_point, int cur_query_point_index, int pts_num, int cur_leaf_node_start_pos, FLOAT_TYPE *all_sorted_data_set, int *sorted_data_set_indexes, FLOAT_TYPE *dist_k_mins_private_tmp, int *idx_k_mins_private_tmp, int K_NN, int DIM) { FLOAT_TYPE dist_squre_tmp = 0; FLOAT_TYPE tmp = 0; int tmp_idx = 0; for (int i = 0; i<pts_num; i++){ dist_squre_tmp = float_dist_squre_cuda(all_sorted_data_set + (cur_leaf_node_start_pos + i)*DIM, cur_query_point,DIM); //get the current k^th min_dist_square of current query point FLOAT_TYPE cur_k_min_dist_square = dist_k_mins_private_tmp[K_NN - 1]; if (cur_k_min_dist_square> dist_squre_tmp){ //printf("update dist_k_mins_private_tmp...\n"); //printf("cur_k_min_dist_square=%f, dist_squre_tmp=%f \n",cur_k_min_dist_square,dist_squre_tmp ); int j = K_NN - 1; dist_k_mins_private_tmp[j] = dist_squre_tmp; int pts_idx = sorted_data_set_indexes[cur_leaf_node_start_pos + i]; idx_k_mins_private_tmp[j] = pts_idx; for (; j>0; j--){ if (dist_k_mins_private_tmp[j - 1] > dist_k_mins_private_tmp[j]){ //printf("new nn found, swap..."); tmp = dist_k_mins_private_tmp[j - 1]; dist_k_mins_private_tmp[j - 1] = dist_k_mins_private_tmp[j]; dist_k_mins_private_tmp[j] = tmp; //swap indices tmp_idx = idx_k_mins_private_tmp[j - 1]; idx_k_mins_private_tmp[j - 1] = idx_k_mins_private_tmp[j]; idx_k_mins_private_tmp[j] = tmp_idx; } else break; } } } } //brute force computing and update dist_k_mins_private_tmp and idx_k_mins_global_tmp //pts_num: the number of points in all_sorted_data_set. __device__ void new_do_brute_force_and_update_private_cuda( FLOAT_TYPE *cur_query_point, int cur_query_point_index, int pts_num, int cur_leaf_node_start_pos, FLOAT_TYPE *all_sorted_data_set, int *sorted_data_set_indexes, FLOAT_TYPE *dist_k_mins_private_tmp, int *idx_k_mins_private_tmp, int *remain_index, int K_NN, int DIM) { FLOAT_TYPE dist_squre_tmp = 0; FLOAT_TYPE tmp = 0; int tmp_idx = 0; for (int i = 0; i<pts_num; i++){ dist_squre_tmp = float_dist_squre_cuda(all_sorted_data_set + (cur_leaf_node_start_pos + i)*DIM, cur_query_point, DIM); //get the current k^th min_dist_square of current query point FLOAT_TYPE cur_k_min_dist_square = dist_k_mins_private_tmp[K_NN - 1]; if (cur_k_min_dist_square> dist_squre_tmp){ //printf("update dist_k_mins_private_tmp...\n"); //printf("cur_k_min_dist_square=%f, dist_squre_tmp=%f \n",cur_k_min_dist_square,dist_squre_tmp ); int j = K_NN - 1; dist_k_mins_private_tmp[j] = dist_squre_tmp; int pts_idx = sorted_data_set_indexes[cur_leaf_node_start_pos + i]; idx_k_mins_private_tmp[j] = remain_index[pts_idx]; for (; j>0; j--){ if (dist_k_mins_private_tmp[j - 1] > dist_k_mins_private_tmp[j]){ //printf("new nn found, swap..."); tmp = dist_k_mins_private_tmp[j - 1]; dist_k_mins_private_tmp[j - 1] = dist_k_mins_private_tmp[j]; dist_k_mins_private_tmp[j] = tmp; //swap indices tmp_idx = idx_k_mins_private_tmp[j - 1]; idx_k_mins_private_tmp[j - 1] = idx_k_mins_private_tmp[j]; idx_k_mins_private_tmp[j] = tmp_idx; } else break; } } } } /* 0 candidate_query_points_num : the number of current candidate query points, in the case of all query points set is too large, we can submit subset of query sets to this kernel. 1 candidate_query_points_indexes : the indexes of current query points in all query points set 2 candidate_query_points_set : the current query points data set 3 candidate_query_points_appr_leaf_node_indexes : the approximate leaf node for candidate query points 4 all_sorted_data_set : all sorted data 5 sorted_data_set_indexes : all points indexes in sorted data set 6 tree_struct : the tree structure of the whole tree. It is not used now. 7 all_leaf_nodes_ALPHA_set : ALPHA set of all leaf nodes 8 leaf_nodes_BETA_set : BETA set of all leaf nodes 9 all_constrains_num_of_each_leaf_nodes : all_constrains_num_of_each_nodes[i]=j means i^th leaf nodes has j constrains, i.e. has j alphas and betas 10 all_leaf_nodes_offsets_in_all_ALPHA : the offset of each leaf node in ALPHA 11 leaf_node_num : the number of leaf nodes 12 all_leaf_nodes_ancestor_nodes_ids : the ancestor nodes ids of each leaf nodes 13 leaf_nodes_start_pos_in_sorted_data_set : specify the start position from which each sorted leave node in sorted data set 14 pts_num_in_sorted_leaf_nodes : the length of points saved in each sorted leaf node 15 dist_k_mins_global_tmp : the K min-distance of all query points, the length of dist_mins_global_tmp is K* query_points_size 16 idx_k_mins_global_tmp : the indexes of the K nearest neighbors, the length of dist_mins_global_tmp is K* query_points_size 17 K_NN : the value of K 18 dist_computation_times_arr : dist_computation_times_arr[i] saves total distance computation times of the i^th point and 19 quadprog_times_arr : quadprog_times_arr[i] approximate quadprog times of the i^th point. 20 dist_computation_times_in_quadprog: dist_computation_times_in_quadprog[i] saves the total distance computation times in quadprog of the i^th point. */ __global__ void do_finding_KNN_by_leaf_order_cuda( int candidate_query_points_num, int *candidate_query_points_indexes, FLOAT_TYPE *candidate_query_points_set, int *candidate_query_points_appr_leaf_node_indexes, FLOAT_TYPE *all_sorted_data_set, int *sorted_data_set_indexes, CONVEX_TREE *tree_struct, FLOAT_TYPE *all_leaf_nodes_ALPHA_set, FLOAT_TYPE *all_leaf_nodes_BETA_set, int *all_constrains_num_of_each_leaf_nodes, int *all_leaf_nodes_offsets_in_all_ALPHA, int leaf_node_num, int *all_leaf_nodes_ancestor_nodes_ids, int *leaf_nodes_start_pos_in_sorted_data_set, int *pts_num_in_sorted_leaf_nodes, FLOAT_TYPE *dist_k_mins_global_tmp, int *idx_k_mins_global_tmp, int K_NN, long *dist_computation_times_arr, long *quadprog_times_arr, long *dist_computation_times_in_quadprog, int NODES_NUM, int DIM, int loop_id) { //---global thread id //int tid = blockIdx.x; //int tid = blockDim.x * blockIdx.x + threadIdx.x; //int tid = (blockIdx.y * gridDim.x + blockIdx.x) * (blockDim.x * blockDim.y) + threadIdx.y * blockDim.y + threadIdx.x; int x = threadIdx.x + blockIdx.x * blockDim.x; int y = threadIdx.y + blockIdx.y * blockDim.y; int tid = x + y * blockDim.x * gridDim.x; //printf(" [loopid=%d, tid_ori=%d], ", loop_id,tid); //tid +=loop_id* blocks_per_time; if (tid >= candidate_query_points_num){ return; } //---count the distance computation times in approximate quadprog. long cur_dist_compute_times_in_appr_quadprog = 0; int cur_query_points_appr_leaf_node_indexes = candidate_query_points_appr_leaf_node_indexes[tid]; int cur_leaf_node_start_pos = leaf_nodes_start_pos_in_sorted_data_set[cur_query_points_appr_leaf_node_indexes]; /*--------------------------------------------------------------------------------------------------------------- //---query_points_nodes_alpha_scalar_product is not used in is_appr_min_dist_from_q_larger_by_hyper_plane now. //---because visiting query_points_nodes_alpha_scalar_product randomly seems slow. //---private scalar product between current query point and all ALPHAs, which are all initialized to 0. //---each node has a alpha constraint, a well as constraints of its ancestors nodes. //---'ALL_NODES_NUM' will be written before kernel is created. ----------------------------------------------------------------------------------------------------------------*/\ /*-----------------Copy global data as local data: visiting global data is relative slow in devices-----------------------------*/ int quadprog_times_private = 0; for (int j = 0; j < K_NN; j++){ dist_k_mins_global_tmp[candidate_query_points_indexes[tid]*K_NN + j] = MAX_FLOAT_TYPE; idx_k_mins_global_tmp[candidate_query_points_indexes[tid]*K_NN + j] = -1; } //---here is tid instead of cur_query_point_index, tid is the offset of current query point in candidate_query_points_set FLOAT_TYPE* cur_query_point = candidate_query_points_set + tid*DIM; /*-----------------------------------------------------------------------------------------------------------------------------*/ long dist_computation_times_tmp = 0; int pts_num = pts_num_in_sorted_leaf_nodes[cur_query_points_appr_leaf_node_indexes]; //---find approximate kNN in its approximate nodes. do_brute_force_and_update_private_cuda( cur_query_point, candidate_query_points_indexes[tid], pts_num, cur_leaf_node_start_pos, all_sorted_data_set, sorted_data_set_indexes, dist_k_mins_global_tmp+candidate_query_points_indexes[tid]*K_NN, idx_k_mins_global_tmp+candidate_query_points_indexes[tid]*K_NN, K_NN, DIM); //---add distance computation times //dist_computation_times_tmp += pts_num; for (int i = 0; i < leaf_node_num; i++) { if (i == cur_query_points_appr_leaf_node_indexes) continue; int alpha_offset = all_leaf_nodes_offsets_in_all_ALPHA[i]; int constrains_num = all_constrains_num_of_each_leaf_nodes[i]; //---get the current k^th min_dist_square of current query point FLOAT_TYPE cur_k_min_dist_square = dist_k_mins_global_tmp[candidate_query_points_indexes[tid]*K_NN+K_NN - 1]; FLOAT_TYPE* cur_ALPHAT = all_leaf_nodes_ALPHA_set + alpha_offset*DIM; FLOAT_TYPE* cur_BETA = all_leaf_nodes_BETA_set + alpha_offset; //---the number of ancestor nodes is the same as the size of constraints int* cur_ancestor_nodes_ids = all_leaf_nodes_ancestor_nodes_ids + alpha_offset; //---check whether the current node is a candidate for current query point if (!is_appr_min_dist_from_q_larger_by_hyper_plane_cuda(cur_query_point, cur_ALPHAT, cur_BETA, constrains_num, cur_k_min_dist_square, &cur_dist_compute_times_in_appr_quadprog, NULL, cur_ancestor_nodes_ids, DIM ) ) { //---do brute force distance computation here, and update dist_k_mins_global_tmp and idx_k_mins_global_tmp //---get the number of points saved in current node //---i is cur leaf node index, not leaf node ori_index int pts_num = pts_num_in_sorted_leaf_nodes[i]; int cur_leaf_node_start_pos = leaf_nodes_start_pos_in_sorted_data_set[i]; do_brute_force_and_update_private_cuda( cur_query_point, candidate_query_points_indexes[tid], pts_num, cur_leaf_node_start_pos, all_sorted_data_set, sorted_data_set_indexes, dist_k_mins_global_tmp+candidate_query_points_indexes[tid]*K_NN, idx_k_mins_global_tmp+candidate_query_points_indexes[tid]*K_NN, K_NN, DIM); } } } /* 0 candidate_query_points_num : the number of current candidate query points, in the case of all query points set is too large, we can submit subset of query sets to this kernel. 1 candidate_query_points_indexes : the indexes of current query points in all query points set 2 candidate_query_points_set : the current query points data set candidate_query_points_appr_leaf_node_indexes : the approximate leaf node for candidate query points 4 all_sorted_data_set : all sorted data 5 sorted_data_set_indexes : all points indexes in sorted data set 6 tree_struct : the tree structure of the whole tree. It is not used now. 7 all_leaf_nodes_ALPHA_set : ALPHA set of all leaf nodes 8 leaf_nodes_BETA_set : BETA set of all leaf nodes 9 all_constrains_num_of_each_leaf_nodes : all_constrains_num_of_each_nodes[i]=j means i^th leaf nodes has j constrains, i.e. has j alphas and betas 10 all_leaf_nodes_offsets_in_all_ALPHA : the offset of each leaf node in ALPHA 11 leaf_node_num : the number of leaf nodes 12 all_leaf_nodes_ancestor_nodes_ids : the ancestor nodes ids of each leaf nodes 13 leaf_nodes_start_pos_in_sorted_data_set : specify the start position from which each sorted leave node in sorted data set 14 pts_num_in_sorted_leaf_nodes : the length of points saved in each sorted leaf node 15 dist_k_mins_global_tmp : the K min-distance of all query points, the length of dist_mins_global_tmp is K* query_points_size 16 idx_k_mins_global_tmp : the indexes of the K nearest neighbors, the length of dist_mins_global_tmp is K* query_points_size 17 K_NN : the value of K 18 dist_computation_times_arr : dist_computation_times_arr[i] saves total distance computation times of the i^th point and 19 quadprog_times_arr : quadprog_times_arr[i] approximate quadprog times of the i^th point. 20 dist_computation_times_in_quadprog: dist_computation_times_in_quadprog[i] saves the total distance computation times in quadprog of the i^th point. */ __global__ void new_do_finding_KNN_by_leaf_order_cuda( int candidate_query_points_num, int *candidate_query_points_indexes, FLOAT_TYPE *candidate_query_points_set, FLOAT_TYPE *all_sorted_data_set, int *sorted_data_set_indexes, CONVEX_TREE *tree_struct, FLOAT_TYPE *all_leaf_nodes_ALPHA_set, FLOAT_TYPE *all_leaf_nodes_BETA_set, int *all_constrains_num_of_each_leaf_nodes, int *all_leaf_nodes_offsets_in_all_ALPHA, int leaf_node_num, int *all_leaf_nodes_ancestor_nodes_ids, int *leaf_nodes_start_pos_in_sorted_data_set, int *pts_num_in_sorted_leaf_nodes, FLOAT_TYPE *dist_k_mins_global_tmp, int *idx_k_mins_global_tmp, int *remain_index, int K_NN, long *dist_computation_times_arr, long *quadprog_times_arr, long *dist_computation_times_in_quadprog, int NODES_NUM, int DIM, int loop_id) { //---global thread id //int tid = blockIdx.x; //int tid = blockDim.x * blockIdx.x + threadIdx.x; //int tid = (blockIdx.y * gridDim.x + blockIdx.x) * (blockDim.x * blockDim.y) + threadIdx.y * blockDim.y + threadIdx.x; int x = threadIdx.x + blockIdx.x * blockDim.x; int y = threadIdx.y + blockIdx.y * blockDim.y; int tid = x + y * blockDim.x * gridDim.x; //printf(" [loopid=%d, tid_ori=%d], ", loop_id,tid); //tid +=loop_id* blocks_per_time; if (tid >= candidate_query_points_num){ return; } //---count the distance computation times in approximate quadprog. long cur_dist_compute_times_in_appr_quadprog = 0; //int cur_query_points_appr_leaf_node_indexes = candidate_query_points_appr_leaf_node_indexes[tid]; //int cur_leaf_node_start_pos = leaf_nodes_start_pos_in_sorted_data_set[cur_query_points_appr_leaf_node_indexes]; /*--------------------------------------------------------------------------------------------------------------- //---query_points_nodes_alpha_scalar_product is not used in is_appr_min_dist_from_q_larger_by_hyper_plane now. //---because visiting query_points_nodes_alpha_scalar_product randomly seems slow. //---private scalar product between current query point and all ALPHAs, which are all initialized to 0. //---each node has a alpha constraint, a well as constraints of its ancestors nodes. //---'ALL_NODES_NUM' will be written before kernel is created. ----------------------------------------------------------------------------------------------------------------*/\ /*-----------------Copy global data as local data: visiting global data is relative slow in devices-----------------------------*/ int quadprog_times_private = 0; /*for (int j = 0; j < K_NN; j++){ dist_k_mins_global_tmp[candidate_query_points_indexes[tid]*K_NN + j] = MAX_FLOAT_TYPE; idx_k_mins_global_tmp[candidate_query_points_indexes[tid]*K_NN + j] = -1; } */ //---here is tid instead of cur_query_point_index, tid is the offset of current query point in candidate_query_points_set FLOAT_TYPE* cur_query_point = candidate_query_points_set + tid*DIM; /*-----------------------------------------------------------------------------------------------------------------------------*/ long dist_computation_times_tmp = 0; //int pts_num = pts_num_in_sorted_leaf_nodes[cur_query_points_appr_leaf_node_indexes]; //---find approximate kNN in its approximate nodes. /*do_brute_force_and_update_private_cuda( cur_query_point, candidate_query_points_indexes[tid], pts_num, cur_leaf_node_start_pos, all_sorted_data_set, sorted_data_set_indexes, dist_k_mins_global_tmp+candidate_query_points_indexes[tid]*K_NN, idx_k_mins_global_tmp+candidate_query_points_indexes[tid]*K_NN, K_NN, DIM); */ //---add distance computation times //dist_computation_times_tmp += pts_num; for (int i = 0; i < leaf_node_num; i++) { //if (i == cur_query_points_appr_leaf_node_indexes) //continue; int alpha_offset = all_leaf_nodes_offsets_in_all_ALPHA[i]; int constrains_num = all_constrains_num_of_each_leaf_nodes[i]; //---get the current k^th min_dist_square of current query point FLOAT_TYPE cur_k_min_dist_square = dist_k_mins_global_tmp[candidate_query_points_indexes[tid]*K_NN+K_NN - 1]; FLOAT_TYPE* cur_ALPHAT = all_leaf_nodes_ALPHA_set + alpha_offset*DIM; FLOAT_TYPE* cur_BETA = all_leaf_nodes_BETA_set + alpha_offset; //---the number of ancestor nodes is the same as the size of constraints int* cur_ancestor_nodes_ids = all_leaf_nodes_ancestor_nodes_ids + alpha_offset; //---check whether the current node is a candidate for current query point if (!is_appr_min_dist_from_q_larger_by_hyper_plane_cuda(cur_query_point, cur_ALPHAT, cur_BETA, constrains_num, cur_k_min_dist_square, &cur_dist_compute_times_in_appr_quadprog, NULL, cur_ancestor_nodes_ids, DIM ) ) { //---do brute force distance computation here, and update dist_k_mins_global_tmp and idx_k_mins_global_tmp //---get the number of points saved in current node //---i is cur leaf node index, not leaf node ori_index int pts_num = pts_num_in_sorted_leaf_nodes[i]; int cur_leaf_node_start_pos = leaf_nodes_start_pos_in_sorted_data_set[i]; new_do_brute_force_and_update_private_cuda( cur_query_point, candidate_query_points_indexes[tid], pts_num, cur_leaf_node_start_pos, all_sorted_data_set, sorted_data_set_indexes, dist_k_mins_global_tmp+candidate_query_points_indexes[tid]*K_NN, idx_k_mins_global_tmp+candidate_query_points_indexes[tid]*K_NN, remain_index,K_NN, DIM); } } } __global__ void print_float_Data(FLOAT_TYPE *dist_k_mins_global_tmp, int* idx_k_mins_global_tmp, int loop_id){ int tid = blockDim.x * blockIdx.x + threadIdx.x; int tid_ori=tid; tid+= loop_id*1024; int K_NN=30; int cur_query_point_index=tid; for (int j = 0; j<K_NN; j++){ printf(" [tid=%d, j=%d, dist =%f, idx=%d] ", tid, j, dist_k_mins_global_tmp[cur_query_point_index*K_NN + j], idx_k_mins_global_tmp[cur_query_point_index*K_NN + j]); } } /* //find kNN by brute force 0 data_set : the number of current candidate query points 1 data_set_size : cardinal 2 query_points : all query points 3 query_points_size : the length of query_points 4 dist_k_mins_global_tmp : the K min-distance of all query points, the length of dist_mins_global_tmp is K* query_points_size 5 idx_k_mins_global_tmp : the indexes of the K nearest neighbors, the length of dist_mins_global_tmp is K* query_points_size 6 K_NN : the value of K */ /* __global__ void do_brute_force_KNN_cuda( FLOAT_TYPE *data_set,int data_set_size, FLOAT_TYPE *query_set,int query_set_size, FLOAT_TYPE *KNN_index_with_dist, int K,int DIM) { //global thread id int tid = blockDim.x *blockIdx.x + threadIdx.x; if (tid > query_set_size){ return; } unsigned int current_query_point_index = tid; FLOAT_TYPE *temp = new FLOAT_TYPE[2 * K]; FLOAT_TYPE *p1, *p2; int tmp; FLOAT_TYPE d, max_dist, max_idx; p1 = query_set + current_query_point_index*DIM; for (int i = 0; i < data_set_size; i++){ p2 = data_set + i*DIM; d = Compute_distance(p1, p2, DIM); if (i < K){ temp[i * 2] = i; temp[i * 2 + 1] = d; } else{ tmp = 0; max_idx = temp[0]; max_dist = temp[1]; for (int j = 1; j < K; j++){ if (temp[2 * j + 1] > max_dist){ tmp = j; max_idx = temp[2 * j]; max_dist = temp[2 * j + 1]; } } if (d < max_dist){ temp[tmp * 2] = i; temp[tmp * 2 + 1] = d; } } } memcpy(KNN_index_with_dist + current_query_point_index * 2 * K, temp, (2 * K)*sizeof(FLOAT_TYPE)); //hipMemcpy(KNN_index_with_dist + current_query_point_index * 2 * K, temp, (2 * K)*sizeof(FLOAT_TYPE), hipMemcpyDeviceToDevice); } */ __global__ void do_brute_force_KNN_cuda( FLOAT_TYPE *data_set, int data_set_size, FLOAT_TYPE *query_points, int query_points_size, FLOAT_TYPE *dist_k_mins_global_tmp, int *idx_k_mins_global_tmp, int K_NN, int DIM) { // global thread id int tid = blockDim.x * blockIdx.x + threadIdx.x; if (tid >= query_points_size){ return; } unsigned int current_query_point_index = tid; //---init the distance as MAX_FLOAT_TYPE for (int i = 0; i<K_NN; i++){ dist_k_mins_global_tmp[current_query_point_index*K_NN + i] = MAX_FLOAT_TYPE; } //get the current k^th min_dist_square of current query point FLOAT_TYPE cur_k_min_dist_square = dist_k_mins_global_tmp[current_query_point_index*K_NN + K_NN - 1]; //if (tid==checkid) // printf("cur_k_min_dist_square =%f \n",cur_k_min_dist_square); FLOAT_TYPE dist_square_tmp = 0; FLOAT_TYPE tmp = 0; int tmp_idx = 0; //local copy FLOAT_TYPE* cur_query_point_private = new FLOAT_TYPE[DIM]; for (int i = 0; i<DIM; i++){ cur_query_point_private[i] = query_points[current_query_point_index*DIM + i]; } for (int i = 0; i<data_set_size; i++){ dist_square_tmp = 0; cur_k_min_dist_square = dist_k_mins_global_tmp[current_query_point_index*K_NN + K_NN - 1]; for (int j = 0; j<DIM; j++){ tmp = data_set[i*DIM + j] - cur_query_point_private[j]; dist_square_tmp += tmp*tmp; //printf("tmp =%f, dist_square_tmp=%f\n",tmp,dist_square_tmp); } //printf("dist_square_tmp =%f, cur_k_min_dist_square=%f \n",dist_square_tmp, cur_k_min_dist_square); if (cur_k_min_dist_square> dist_square_tmp){ //printf("update dist_k_mins_global_tmp...\n"); int j = K_NN - 1; dist_k_mins_global_tmp[current_query_point_index*K_NN + j] = dist_square_tmp; idx_k_mins_global_tmp[current_query_point_index*K_NN + j] = i; for (; j>0; j--){ if (dist_k_mins_global_tmp[current_query_point_index*K_NN + j - 1] > dist_k_mins_global_tmp[current_query_point_index*K_NN + j]){ //printf("new nn found, swap..."); tmp = dist_k_mins_global_tmp[current_query_point_index*K_NN + j - 1]; dist_k_mins_global_tmp[current_query_point_index*K_NN + j - 1] = dist_k_mins_global_tmp[current_query_point_index*K_NN + j]; dist_k_mins_global_tmp[current_query_point_index*K_NN + j] = tmp; //swap indices tmp_idx = idx_k_mins_global_tmp[current_query_point_index*K_NN + j - 1]; idx_k_mins_global_tmp[current_query_point_index*K_NN + j - 1] = idx_k_mins_global_tmp[current_query_point_index*K_NN + j]; idx_k_mins_global_tmp[current_query_point_index*K_NN + j] = tmp_idx; } else break; } } } } /* //find kNN by brute force for outliers 0 data_set : the number of current candidate query points 1 data_set_size : cardinal 2 query_points : all query points 3 query_points_size : the length of query_points 4 dist_k_mins_global_tmp : the K min-distance of all query points, the length of dist_mins_global_tmp is K* query_points_size 5 idx_k_mins_global_tmp : the indexes of the K nearest neighbors, the length of dist_mins_global_tmp is K* query_points_size 6 K_NN : the value of K */ __global__ void do_brute_force_KNN_for_outliers_cuda( FLOAT_TYPE *data_set, int data_set_size, int *data_indexes, FLOAT_TYPE *query_points, int query_points_size, FLOAT_TYPE *dist_k_mins_global_tmp, int *idx_k_mins_global_tmp, int K_NN, int DIM) { // global thread id int tid = blockDim.x * blockIdx.x + threadIdx.x; //int tid = threadIdx.x; //int tid = 0; //printf("tid =%d \n",tid); if (tid >= query_points_size){ return; } //printf("tid=%d, data_set_size =%d,query_points_size=%d \n",tid,data_set_size,query_points_size); unsigned int current_query_point_index = tid; //get the current k^th min_dist_square of current query point FLOAT_TYPE cur_k_min_dist_square = dist_k_mins_global_tmp[current_query_point_index*K_NN + K_NN - 1]; //if (tid==checkid) // printf("cur_k_min_dist_square =%f \n",cur_k_min_dist_square); FLOAT_TYPE dist_square_tmp = 0; FLOAT_TYPE tmp = 0; int tmp_idx = 0; //local copy FLOAT_TYPE* cur_query_point_private = new FLOAT_TYPE[DIM]; for (int i = 0; i<DIM; i++){ cur_query_point_private[i] = query_points[current_query_point_index*DIM + i]; } for (int i = 0; i < data_set_size; i++){ dist_square_tmp = 0; cur_k_min_dist_square = dist_k_mins_global_tmp[current_query_point_index*K_NN + K_NN - 1]; for (int j = 0; j<DIM; j++){ tmp = data_set[i*DIM + j] - cur_query_point_private[j]; dist_square_tmp += tmp*tmp; //printf("tmp =%f, dist_square_tmp=%f\n",tmp,dist_square_tmp); } //printf("dist_square_tmp =%f, cur_k_min_dist_square=%f \n",dist_square_tmp, cur_k_min_dist_square); if (cur_k_min_dist_square> dist_square_tmp){ //printf("update dist_k_mins_global_tmp...\n"); int j = K_NN - 1; dist_k_mins_global_tmp[current_query_point_index*K_NN + j] = dist_square_tmp; idx_k_mins_global_tmp[current_query_point_index*K_NN + j] = data_indexes[i]; for (; j>0; j--){ if (dist_k_mins_global_tmp[current_query_point_index*K_NN + j - 1] > dist_k_mins_global_tmp[current_query_point_index*K_NN + j]){ //printf("new nn found, swap..."); tmp = dist_k_mins_global_tmp[current_query_point_index*K_NN + j - 1]; dist_k_mins_global_tmp[current_query_point_index*K_NN + j - 1] = dist_k_mins_global_tmp[current_query_point_index*K_NN + j]; dist_k_mins_global_tmp[current_query_point_index*K_NN + j] = tmp; //swap indices tmp_idx = idx_k_mins_global_tmp[current_query_point_index*K_NN + j - 1]; idx_k_mins_global_tmp[current_query_point_index*K_NN + j - 1] = idx_k_mins_global_tmp[current_query_point_index*K_NN + j]; idx_k_mins_global_tmp[current_query_point_index*K_NN + j] = tmp_idx; } else break; } } } } __device__ int get_min_k_index_cuda(FLOAT_TYPE *dist_k_mins_private_tmp, int K_NN){ FLOAT_TYPE tmp_max = dist_k_mins_private_tmp[0]; int result = 0; for (int i = 1; i<K_NN; i++){ if (dist_k_mins_private_tmp[i]>tmp_max){ result = i; tmp_max = dist_k_mins_private_tmp[i]; } } return result; } bool init_CUDA_device(){ int count; hipGetDeviceCount(&count); //printf("\nDevice number: %d\n", count); if (count == 0) { fprintf(stderr, "There is no device.\n"); return false; } int i; for (i = 0; i < count; i++) { hipDeviceProp_t prop; if (hipGetDeviceProperties(&prop, i) == hipSuccess) { //printf("Device name :%s\n", prop.name); //printf("Device major :%d\n", prop.major); //printf("Device multiProcessorCount :%d\n", prop.multiProcessorCount); //printf("Device maxThreadsPerBlock :%d\n", prop.maxThreadsPerBlock); //printf("Device totalGlobalMem :%ld\n", prop.totalGlobalMem); //printf("Device totalConstMem :%ld\n", prop.totalConstMem); if (prop.major >= 1) { break; } } } if (i == count) { fprintf(stderr, "There is no device supporting CUDA 1.x.\n"); return false; } hipSetDevice(i); return true; } /** * Host main routine */ extern "C" int call_cuda_kernel( int candidate_query_points_num, int *candidate_query_points_indexes, FLOAT_TYPE *candidate_query_points_set, int *candidate_query_points_appr_leaf_node_indexes, int sorted_data_len, FLOAT_TYPE *all_sorted_data_set, int *sorted_data_set_indexes, int tree_nodes_num, CONVEX_TREE *tree_struct, int all_leaf_nodes_constraint_num, FLOAT_TYPE *all_leaf_nodes_ALPHA_set, FLOAT_TYPE *all_leaf_nodes_BETA_set, int *all_constrains_num_of_each_leaf_nodes, int *all_leaf_nodes_offsets_in_all_ALPHA, int leaf_node_num, int *all_leaf_nodes_ancestor_nodes_ids, int *leaf_nodes_start_pos_in_sorted_data_set, int *pts_num_in_sorted_leaf_nodes, FLOAT_TYPE *dist_k_mins_global_tmp, int *idx_k_mins_global_tmp, int K_NN, long *dist_computation_times_arr, long *quadprog_times_arr, long *dist_computation_times_in_quadprog, int NODES_NUM, int DIM) { clock_t start, finish,start1, finish1; float duration ; bool cuda_init =init_CUDA_device(); if (cuda_init){ printf("\nsucced for initializing CUDA"); } hipError_t err = hipSuccess; //Launch the Vector Add CUDA Kernel printf("\nCUDA Malloc Memory.....\n "); start=clock(); size_t size = candidate_query_points_num * sizeof(int); if (d_candidate_query_points_indexes==NULL){ err = hipMalloc((void **)&d_candidate_query_points_indexes, size); err = hipMemcpy(d_candidate_query_points_indexes, candidate_query_points_indexes, size, hipMemcpyHostToDevice); } size = candidate_query_points_num * sizeof(FLOAT_TYPE)*DIM; if (d_candidate_query_points_set==NULL){ err = hipMalloc((void **)&d_candidate_query_points_set, size); err = hipMemcpy(d_candidate_query_points_set, candidate_query_points_set, size, hipMemcpyHostToDevice); } size = candidate_query_points_num * sizeof(int); if (d_candidate_query_points_appr_leaf_node_indexes==NULL){ err = hipMalloc((void **)&d_candidate_query_points_appr_leaf_node_indexes, size); err = hipMemcpy(d_candidate_query_points_appr_leaf_node_indexes, candidate_query_points_appr_leaf_node_indexes, size, hipMemcpyHostToDevice); } size = sorted_data_len * sizeof(FLOAT_TYPE)*DIM; if (d_all_sorted_data_set==NULL){ err = hipMalloc((void **)&d_all_sorted_data_set, size); err = hipMemcpy(d_all_sorted_data_set, all_sorted_data_set, size, hipMemcpyHostToDevice); } size = sorted_data_len * sizeof(int); if (d_sorted_data_set_indexes==NULL){ err = hipMalloc((void **)&d_sorted_data_set_indexes, size); err = hipMemcpy(d_sorted_data_set_indexes, sorted_data_set_indexes, size, hipMemcpyHostToDevice); } size=tree_nodes_num*sizeof(CONVEX_TREE); if (d_tree_struct==NULL){ err = hipMalloc((void **)&d_tree_struct, size); err = hipMemcpy(d_tree_struct, tree_struct, size, hipMemcpyHostToDevice); } size= all_leaf_nodes_constraint_num* sizeof(FLOAT_TYPE)*DIM; if (d_all_leaf_nodes_ALPHA_set==NULL){ err = hipMalloc((void **)&d_all_leaf_nodes_ALPHA_set, size); err = hipMemcpy(d_all_leaf_nodes_ALPHA_set, all_leaf_nodes_ALPHA_set, size, hipMemcpyHostToDevice); } size= all_leaf_nodes_constraint_num* sizeof(FLOAT_TYPE); if (d_all_leaf_nodes_BETA_set==NULL){ err = hipMalloc((void **)&d_all_leaf_nodes_BETA_set, size); err = hipMemcpy(d_all_leaf_nodes_BETA_set, all_leaf_nodes_BETA_set, size, hipMemcpyHostToDevice); } size= leaf_node_num*sizeof(int); if (d_all_constrains_num_of_each_leaf_nodes==NULL){ err = hipMalloc((void **)&d_all_constrains_num_of_each_leaf_nodes, size); err = hipMemcpy(d_all_constrains_num_of_each_leaf_nodes, all_constrains_num_of_each_leaf_nodes, size, hipMemcpyHostToDevice); } if (d_all_leaf_nodes_offsets_in_all_ALPHA==NULL){ err = hipMalloc((void **)&d_all_leaf_nodes_offsets_in_all_ALPHA, size); err = hipMemcpy(d_all_leaf_nodes_offsets_in_all_ALPHA, all_leaf_nodes_offsets_in_all_ALPHA, size, hipMemcpyHostToDevice); } if (d_all_leaf_nodes_ancestor_nodes_ids==NULL){ err = hipMalloc((void **)&d_all_leaf_nodes_ancestor_nodes_ids, size); err = hipMemcpy(d_all_leaf_nodes_ancestor_nodes_ids, all_leaf_nodes_ancestor_nodes_ids, size, hipMemcpyHostToDevice); } if (d_leaf_nodes_start_pos_in_sorted_data_set==NULL){ err = hipMalloc((void **)&d_leaf_nodes_start_pos_in_sorted_data_set, size); err = hipMemcpy(d_leaf_nodes_start_pos_in_sorted_data_set, leaf_nodes_start_pos_in_sorted_data_set, size, hipMemcpyHostToDevice); } if (d_pts_num_in_sorted_leaf_nodes==NULL){ err = hipMalloc((void **)&d_pts_num_in_sorted_leaf_nodes, size); err = hipMemcpy(d_pts_num_in_sorted_leaf_nodes, pts_num_in_sorted_leaf_nodes, size, hipMemcpyHostToDevice); } size= candidate_query_points_num* sizeof(FLOAT_TYPE)* K_NN; if (d_dist_k_mins_global_tmp==NULL){ err = hipMalloc((void **)&d_dist_k_mins_global_tmp, size); } size= candidate_query_points_num* sizeof(int)* K_NN; if (d_idx_k_mins_global_tmp==NULL){ err = hipMalloc((void **)&d_idx_k_mins_global_tmp, size); } size= candidate_query_points_num*sizeof(long); err = hipMalloc((void **)&d_dist_computation_times_arr, size); err = hipMalloc((void **)&d_quadprog_times_arr, size); err = hipMalloc((void **)&d_dist_computation_times_in_quadprog, size); int task_per_num=100000/256; finish=clock(); duration = (float)(finish-start)/ CLOCKS_PER_SEC; //printf( "\n CUDA Malloc Memory Time %f\n", duration); //printf ("\n calling do_finding_KNN_by_leaf_order_cuda.....\n"); int block_num = candidate_query_points_num / 1024 + 1; dim3 blocks(block_num,1), threads(1024,1); //int blocks_per_time=6*16*128*8; start1 = clock(); hipLaunchKernelGGL(( do_finding_KNN_by_leaf_order_cuda) , dim3(blocks), dim3(threads), 0, 0, candidate_query_points_num, d_candidate_query_points_indexes, d_candidate_query_points_set, d_candidate_query_points_appr_leaf_node_indexes, d_all_sorted_data_set, d_sorted_data_set_indexes, d_tree_struct, d_all_leaf_nodes_ALPHA_set, d_all_leaf_nodes_BETA_set, d_all_constrains_num_of_each_leaf_nodes, d_all_leaf_nodes_offsets_in_all_ALPHA, leaf_node_num, d_all_leaf_nodes_ancestor_nodes_ids, d_leaf_nodes_start_pos_in_sorted_data_set, d_pts_num_in_sorted_leaf_nodes, d_dist_k_mins_global_tmp, d_idx_k_mins_global_tmp, K_NN, d_dist_computation_times_arr, d_quadprog_times_arr, d_dist_computation_times_in_quadprog, NODES_NUM, DIM, 1); err = hipGetLastError(); if (err != hipSuccess) { fprintf(stderr, "Failed to launch vectorAdd kernel (error code %s)!\n", hipGetErrorString(err)); //exit(EXIT_FAILURE); } finish1 = clock(); duration = (float)(finish1-start1)/ CLOCKS_PER_SEC; //printf( "\n performing do_finding_KNN_by_leaf_order_cuda time %f milsec %f s\n",(float)(finish1-start1), duration); //printf( "----print device matrix-------"); //print_float_Data <<<4, 256>>>(d_dist_k_mins_global_tmp,d_idx_k_mins_global_tmp,0); // Copy the device result vector in device memory to the host result vector // in host memory. //printf("\n copy data from GPU....\n"); size= candidate_query_points_num* sizeof(FLOAT_TYPE)* K_NN; err = hipMemcpy(dist_k_mins_global_tmp, d_dist_k_mins_global_tmp, size, hipMemcpyDeviceToHost); size= candidate_query_points_num* sizeof(int)* K_NN; err = hipMemcpy(idx_k_mins_global_tmp, d_idx_k_mins_global_tmp, size, hipMemcpyDeviceToHost); err = hipGetLastError(); if (err != hipSuccess) { fprintf(stderr, "Failed to launch vectorAdd kernel (error code %s)!\n", hipGetErrorString(err)); //exit(EXIT_FAILURE); } free_cuda_mem(); return 0; } /** * Host main routine */ extern "C" int new_call_cuda_kernel( int candidate_query_points_num, int *candidate_query_points_indexes, FLOAT_TYPE *candidate_query_points_set, int sorted_data_len, FLOAT_TYPE *all_sorted_data_set, int *sorted_data_set_indexes, int tree_nodes_num, CONVEX_TREE *tree_struct, int all_leaf_nodes_constraint_num, FLOAT_TYPE *all_leaf_nodes_ALPHA_set, FLOAT_TYPE *all_leaf_nodes_BETA_set, int *all_constrains_num_of_each_leaf_nodes, int *all_leaf_nodes_offsets_in_all_ALPHA, int leaf_node_num, int *all_leaf_nodes_ancestor_nodes_ids, int *leaf_nodes_start_pos_in_sorted_data_set, int *pts_num_in_sorted_leaf_nodes, FLOAT_TYPE *dist_k_mins_global_tmp, int *idx_k_mins_global_tmp, int *remain_index, int K_NN, long *dist_computation_times_arr, long *quadprog_times_arr, long *dist_computation_times_in_quadprog, int NODES_NUM, int DIM) { clock_t start, finish, start1, finish1; float duration; bool cuda_init = init_CUDA_device(); if (cuda_init){ printf("\nsucced for initializing CUDA"); } hipError_t err = hipSuccess; //Launch the Vector Add CUDA Kernel printf("\nCUDA Malloc Memory.....\n "); start = clock(); size_t size = candidate_query_points_num * sizeof(int); if (d_candidate_query_points_indexes == NULL){ err = hipMalloc((void **)&d_candidate_query_points_indexes, size); err = hipMemcpy(d_candidate_query_points_indexes, candidate_query_points_indexes, size, hipMemcpyHostToDevice); } size = candidate_query_points_num * sizeof(FLOAT_TYPE)*DIM; if (d_candidate_query_points_set == NULL){ err = hipMalloc((void **)&d_candidate_query_points_set, size); err = hipMemcpy(d_candidate_query_points_set, candidate_query_points_set, size, hipMemcpyHostToDevice); } size = sorted_data_len * sizeof(FLOAT_TYPE)*DIM; if (d_all_sorted_data_set == NULL){ err = hipMalloc((void **)&d_all_sorted_data_set, size); err = hipMemcpy(d_all_sorted_data_set, all_sorted_data_set, size, hipMemcpyHostToDevice); } size = sorted_data_len * sizeof(int); if (d_sorted_data_set_indexes == NULL){ err = hipMalloc((void **)&d_sorted_data_set_indexes, size); err = hipMemcpy(d_sorted_data_set_indexes, sorted_data_set_indexes, size, hipMemcpyHostToDevice); } size = tree_nodes_num*sizeof(CONVEX_TREE); if (d_tree_struct == NULL){ err = hipMalloc((void **)&d_tree_struct, size); err = hipMemcpy(d_tree_struct, tree_struct, size, hipMemcpyHostToDevice); } size = all_leaf_nodes_constraint_num* sizeof(FLOAT_TYPE)*DIM; if (d_all_leaf_nodes_ALPHA_set == NULL){ err = hipMalloc((void **)&d_all_leaf_nodes_ALPHA_set, size); err = hipMemcpy(d_all_leaf_nodes_ALPHA_set, all_leaf_nodes_ALPHA_set, size, hipMemcpyHostToDevice); } size = all_leaf_nodes_constraint_num* sizeof(FLOAT_TYPE); if (d_all_leaf_nodes_BETA_set == NULL){ err = hipMalloc((void **)&d_all_leaf_nodes_BETA_set, size); err = hipMemcpy(d_all_leaf_nodes_BETA_set, all_leaf_nodes_BETA_set, size, hipMemcpyHostToDevice); } size = leaf_node_num*sizeof(int); if (d_all_constrains_num_of_each_leaf_nodes == NULL){ err = hipMalloc((void **)&d_all_constrains_num_of_each_leaf_nodes, size); err = hipMemcpy(d_all_constrains_num_of_each_leaf_nodes, all_constrains_num_of_each_leaf_nodes, size, hipMemcpyHostToDevice); } if (d_all_leaf_nodes_offsets_in_all_ALPHA == NULL){ err = hipMalloc((void **)&d_all_leaf_nodes_offsets_in_all_ALPHA, size); err = hipMemcpy(d_all_leaf_nodes_offsets_in_all_ALPHA, all_leaf_nodes_offsets_in_all_ALPHA, size, hipMemcpyHostToDevice); } if (d_all_leaf_nodes_ancestor_nodes_ids == NULL){ err = hipMalloc((void **)&d_all_leaf_nodes_ancestor_nodes_ids, size); err = hipMemcpy(d_all_leaf_nodes_ancestor_nodes_ids, all_leaf_nodes_ancestor_nodes_ids, size, hipMemcpyHostToDevice); } if (d_leaf_nodes_start_pos_in_sorted_data_set == NULL){ err = hipMalloc((void **)&d_leaf_nodes_start_pos_in_sorted_data_set, size); err = hipMemcpy(d_leaf_nodes_start_pos_in_sorted_data_set, leaf_nodes_start_pos_in_sorted_data_set, size, hipMemcpyHostToDevice); } if (d_pts_num_in_sorted_leaf_nodes == NULL){ err = hipMalloc((void **)&d_pts_num_in_sorted_leaf_nodes, size); err = hipMemcpy(d_pts_num_in_sorted_leaf_nodes, pts_num_in_sorted_leaf_nodes, size, hipMemcpyHostToDevice); } size = candidate_query_points_num* sizeof(FLOAT_TYPE)* K_NN; if (d_dist_k_mins_global_tmp == NULL){ err = hipMalloc((void **)&d_dist_k_mins_global_tmp, size); err = hipMemcpy(d_dist_k_mins_global_tmp, dist_k_mins_global_tmp, size, hipMemcpyHostToDevice); } size = candidate_query_points_num* sizeof(int)* K_NN; if (d_idx_k_mins_global_tmp == NULL){ err = hipMalloc((void **)&d_idx_k_mins_global_tmp, size); err = hipMemcpy(d_idx_k_mins_global_tmp, idx_k_mins_global_tmp, size, hipMemcpyHostToDevice); } size = sorted_data_len * sizeof(int); int* d_remain_index = NULL; err = hipMalloc((void **)&d_remain_index, size); err = hipMemcpy(d_remain_index, remain_index, size, hipMemcpyHostToDevice); size = candidate_query_points_num*sizeof(long); err = hipMalloc((void **)&d_dist_computation_times_arr, size); err = hipMalloc((void **)&d_quadprog_times_arr, size); err = hipMalloc((void **)&d_dist_computation_times_in_quadprog, size); int task_per_num = 100000 / 256; finish = clock(); duration = (float)(finish - start) / CLOCKS_PER_SEC; //printf( "\n CUDA Malloc Memory Time %f\n", duration); //printf ("\n calling do_finding_KNN_by_leaf_order_cuda.....\n"); int block_num = candidate_query_points_num / 1024 + 1; dim3 blocks(block_num, 1), threads(1024, 1); //int blocks_per_time = 6 * 16 * 128 * 8; start1 = clock(); new_do_finding_KNN_by_leaf_order_cuda << < blocks, threads >> >( candidate_query_points_num, d_candidate_query_points_indexes, d_candidate_query_points_set, d_all_sorted_data_set, d_sorted_data_set_indexes, d_tree_struct, d_all_leaf_nodes_ALPHA_set, d_all_leaf_nodes_BETA_set, d_all_constrains_num_of_each_leaf_nodes, d_all_leaf_nodes_offsets_in_all_ALPHA, leaf_node_num, d_all_leaf_nodes_ancestor_nodes_ids, d_leaf_nodes_start_pos_in_sorted_data_set, d_pts_num_in_sorted_leaf_nodes, d_dist_k_mins_global_tmp, d_idx_k_mins_global_tmp, d_remain_index, K_NN, d_dist_computation_times_arr, d_quadprog_times_arr, d_dist_computation_times_in_quadprog, NODES_NUM, DIM, 1); err = hipGetLastError(); if (err != hipSuccess) { fprintf(stderr, "Failed to launch vectorAdd kernel (error code %s)!\n", hipGetErrorString(err)); //exit(EXIT_FAILURE); } finish1 = clock(); duration = (float)(finish1 - start1) / CLOCKS_PER_SEC; //printf( "\n performing do_finding_KNN_by_leaf_order_cuda time %f milsec %f s\n",(float)(finish1-start1), duration); //printf( "----print device matrix-------"); //print_float_Data <<<4, 256>>>(d_dist_k_mins_global_tmp,d_idx_k_mins_global_tmp,0); // Copy the device result vector in device memory to the host result vector // in host memory. //printf("\n copy data from GPU....\n"); size = candidate_query_points_num* sizeof(FLOAT_TYPE)* K_NN; err = hipMemcpy(dist_k_mins_global_tmp, d_dist_k_mins_global_tmp, size, hipMemcpyDeviceToHost); size = candidate_query_points_num* sizeof(int)* K_NN; err = hipMemcpy(idx_k_mins_global_tmp, d_idx_k_mins_global_tmp, size, hipMemcpyDeviceToHost); err = hipGetLastError(); if (err != hipSuccess) { fprintf(stderr, "Failed to launch vectorAdd kernel (error code %s)!\n", hipGetErrorString(err)); //exit(EXIT_FAILURE); } free_cuda_mem(); return 0; } __global__ void kernel_do_find_approximate_nodes( int candidate_query_points_num, FLOAT_TYPE *candidate_query_points_set, int tree_nodes_num, CONVEX_TREE *tree_struct, FLOAT_TYPE *nodes_centers, int *appr_leaf_node_indexes, int DIM ){ int tid = blockDim.x * blockIdx.x + threadIdx.x; if (tid >= candidate_query_points_num) return; FLOAT_TYPE *q = candidate_query_points_set + tid * DIM; int cur_node_index=0; while (tree_struct[cur_node_index].isLeaf == false){ FLOAT_TYPE left_dist_squre = float_dist_squre_cuda(q, nodes_centers+tree_struct[cur_node_index].left_node*DIM,DIM); FLOAT_TYPE right_dist_squre = float_dist_squre_cuda(q, nodes_centers+tree_struct[cur_node_index].right_node*DIM ,DIM); //count the distance computation times. if (left_dist_squre >= right_dist_squre){ cur_node_index = tree_struct[cur_node_index].right_node; } else{ cur_node_index = tree_struct[cur_node_index].left_node; } } appr_leaf_node_indexes[tid] = tree_struct[cur_node_index].leaf_index; } extern "C" void call_do_find_approximate_nodes( int candidate_query_points_num, FLOAT_TYPE *candidate_query_points_set, int tree_nodes_num, CONVEX_TREE *tree_struct, FLOAT_TYPE *nodes_centers, int *candidate_query_points_appr_leaf_node_indexes, int DIM ){ size_t size = candidate_query_points_num * sizeof(int); hipError_t err = hipSuccess; size = candidate_query_points_num * sizeof(FLOAT_TYPE)*DIM; err = hipMalloc((void **)&d_candidate_query_points_set, size); err = hipMemcpy(d_candidate_query_points_set, candidate_query_points_set, size, hipMemcpyHostToDevice); size = tree_nodes_num * sizeof(CONVEX_TREE); err = hipMalloc((void **)&d_tree_struct, size); err = hipMemcpy(d_tree_struct, tree_struct, size, hipMemcpyHostToDevice); size = candidate_query_points_num * sizeof(int); err = hipMalloc((void **)&d_candidate_query_points_appr_leaf_node_indexes, size); size= tree_nodes_num*sizeof(FLOAT_TYPE)*DIM; err = hipMalloc((void **)&d_nodes_centers, size); err = hipMemcpy(d_nodes_centers, nodes_centers, size, hipMemcpyHostToDevice); int block_num =candidate_query_points_num/1024 +1; dim3 blocks(block_num,1), threads(1024,1); hipLaunchKernelGGL(( kernel_do_find_approximate_nodes), dim3(blocks), dim3(threads), 0, 0, candidate_query_points_num, d_candidate_query_points_set, tree_nodes_num, d_tree_struct, d_nodes_centers, d_candidate_query_points_appr_leaf_node_indexes, DIM); err = hipGetLastError(); if (err != hipSuccess){ printf("Failed to launch vectorAdd kernel (error code %s)!\n", hipGetErrorString(err)); } size = candidate_query_points_num * sizeof(int); err = hipMemcpy(candidate_query_points_appr_leaf_node_indexes, d_candidate_query_points_appr_leaf_node_indexes, size, hipMemcpyDeviceToHost); err = hipGetLastError(); if (err != hipSuccess){ printf("Failed to launch vectorAdd kernel (error code %s)!\n", hipGetErrorString(err)); } } /** * Host main routine */ /* extern "C" int call_cuda_kernel_brute_force_and_update( int candidate_query_points_num, int *candidate_query_points_indexes, FLOAT_TYPE *candidate_query_points_set, int data_set_size, FLOAT_TYPE *data_set, FLOAT_TYPE *KNN_index_with_dist, int K_NN, int DIM) { clock_t start, finish, start1, finish1; bool cuda_init = init_CUDA_device(); if (cuda_init){ printf("succed for initializing CUDA\n"); } hipError_t err = hipSuccess; //Launch the Vector Add CUDA Kernel printf("CUDA Malloc Memory.....\n"); start = clock(); size_t size = candidate_query_points_num * sizeof(int); int *d_candidate_query_points_indexes = NULL; err = hipMalloc((void **)&d_candidate_query_points_indexes, size); err = hipMemcpy(d_candidate_query_points_indexes, candidate_query_points_indexes, size, hipMemcpyHostToDevice); size = candidate_query_points_num * sizeof(FLOAT_TYPE)*DIM; FLOAT_TYPE *d_candidate_query_points_set = NULL; err = hipMalloc((void **)&d_candidate_query_points_set, size); err = hipMemcpy(d_candidate_query_points_set, candidate_query_points_set, size, hipMemcpyHostToDevice); size = data_set_size * sizeof(FLOAT_TYPE)*DIM; FLOAT_TYPE *d_data_set = NULL; err = hipMalloc((void **)&d_data_set, size); err = hipMemcpy(d_data_set, data_set, size, hipMemcpyHostToDevice); size = candidate_query_points_num* sizeof(FLOAT_TYPE)* K_NN * 2; FLOAT_TYPE *d_KNN_index_with_dist = NULL; err = hipMalloc((void **)&d_KNN_index_with_dist, size); finish = clock(); double duration = (double)(finish - start) / CLOCKS_PER_SEC; printf("CUDA Malloc Memory Time %fs\n", duration); printf("calling do_finding_KNN_by_leaf_order_cuda.....\n"); dim3 grids(2, 1), blocks(6, 1), threads(1024, 1); start1 = clock(); do_brute_force_KNN_cuda << < blocks, threads >> > (d_data_set, data_set_size, d_candidate_query_points_set, candidate_query_points_num, d_KNN_index_with_dist, K_NN, DIM); err = hipGetLastError(); if (err != hipSuccess) { fprintf(stderr, "Failed to launch vectorAdd kernel (error code %s)!\n", hipGetErrorString(err)); //exit(EXIT_FAILURE); } //printf( "----print device matrix-------"); //print_float_Data <<<4, 256>>>(d_dist_k_mins_global_tmp,d_idx_k_mins_global_tmp,0); // Copy the device result vector in device memory to the host result vector // in host memory. //printf("\n copy data from GPU....\n"); size = candidate_query_points_num* sizeof(FLOAT_TYPE)* K_NN * 2; err = hipMemcpy(KNN_index_with_dist, d_KNN_index_with_dist, size, hipMemcpyDeviceToHost); //size= candidate_query_points_num* sizeof(FLOAT_TYPE)* K_NN; //err = hipMemcpy(dist_k_mins_global_tmp, d_dist_k_mins_global_tmp, size, hipMemcpyDeviceToHost); //size= candidate_query_points_num* sizeof(int)* K_NN; //err = hipMemcpy(idx_k_mins_global_tmp, d_idx_k_mins_global_tmp, size, hipMemcpyDeviceToHost); err = hipGetLastError(); if (err != hipSuccess) { fprintf(stderr, "Failed to launch vectorAdd kernel (error code %s)!\n", hipGetErrorString(err)); //exit(EXIT_FAILURE); } finish1 = clock(); duration = (double)(finish1 - start1) / CLOCKS_PER_SEC; printf("performing do_finding_KNN_by_leaf_order_cuda time %fs\n", duration); return 0; } */ /** * Host main routine */ extern "C" int call_cuda_kernel_brute_force( int candidate_query_points_num, int *candidate_query_points_indexes, FLOAT_TYPE *candidate_query_points_set, int data_set_size, FLOAT_TYPE *data_set, FLOAT_TYPE *dist_k_mins_global_tmp, int *idx_k_mins_global_tmp, int K_NN, int DIM) { clock_t start, finish,start1, finish1; bool cuda_init =init_CUDA_device(); if (cuda_init){ printf("succed for initializing CUDA\n"); } hipError_t err = hipSuccess; //Launch the Vector Add CUDA Kernel printf("CUDA Malloc Memory.....\n"); start=clock(); size_t size = candidate_query_points_num * sizeof(int); int *d_candidate_query_points_indexes = NULL; err = hipMalloc((void **)&d_candidate_query_points_indexes, size); err = hipMemcpy(d_candidate_query_points_indexes, candidate_query_points_indexes, size, hipMemcpyHostToDevice); for (int i = 0; i < 100; i++){ for (int j = 0; j < DIM; j++){ printf("%.1f ", candidate_query_points_set[i*DIM + j]); } printf("\n"); } size = candidate_query_points_num * sizeof(FLOAT_TYPE)*DIM; FLOAT_TYPE *d_candidate_query_points_set=NULL; err = hipMalloc((void **)&d_candidate_query_points_set, size); err = hipMemcpy(d_candidate_query_points_set, candidate_query_points_set, size, hipMemcpyHostToDevice); size = data_set_size * sizeof(FLOAT_TYPE)*DIM; FLOAT_TYPE *d_data_set=NULL; err = hipMalloc((void **)&d_data_set, size); err = hipMemcpy(d_data_set, data_set, size, hipMemcpyHostToDevice); size= candidate_query_points_num* sizeof(FLOAT_TYPE)* K_NN; FLOAT_TYPE *d_dist_k_mins_global_dist = NULL; err = hipMalloc((void **)&d_dist_k_mins_global_dist, size); size= candidate_query_points_num* sizeof(int)* K_NN; int *d_idx_k_mins_global_tmp=NULL; err = hipMalloc((void **)&d_idx_k_mins_global_tmp, size); finish=clock(); double duration = (double)(finish-start)/ CLOCKS_PER_SEC; printf( "CUDA Malloc Memory Time %fs\n", duration); printf ("calling do_finding_KNN_by_leaf_order_cuda.....\n"); int block_num = candidate_query_points_num / 1024 + 1; dim3 blocks(block_num, 1), threads(1024, 1); start1=clock(); hipLaunchKernelGGL(( do_brute_force_KNN_cuda), dim3(blocks), dim3(threads), 0, 0, d_data_set, data_set_size, d_candidate_query_points_set, candidate_query_points_num, d_dist_k_mins_global_dist, d_idx_k_mins_global_tmp, K_NN, DIM); err = hipGetLastError(); if (err != hipSuccess) { fprintf(stderr, "Failed to launch vectorAdd kernel (error code %s)!\n", hipGetErrorString(err)); //exit(EXIT_FAILURE); } printf("ending......\n"); size= candidate_query_points_num* sizeof(FLOAT_TYPE)* K_NN; err = hipMemcpy(dist_k_mins_global_tmp, d_dist_k_mins_global_tmp, size, hipMemcpyDeviceToHost); size= candidate_query_points_num* sizeof(int)* K_NN; err = hipMemcpy(idx_k_mins_global_tmp, d_idx_k_mins_global_tmp, size, hipMemcpyDeviceToHost); err = hipGetLastError(); if (err != hipSuccess) { fprintf(stderr, "Failed to launch vectorAdd kernel (error code %s)!\n", hipGetErrorString(err)); //exit(EXIT_FAILURE); } finish1=clock(); duration = (double)(finish1-start1)/ CLOCKS_PER_SEC; printf( "performing do_finding_KNN_by_leaf_order_cuda time %fs\n", duration); return 0; } /** * Host main routine */ extern "C" int call_cuda_kernel_brute_force_for_outliers( int candidate_query_points_num, int *candidate_query_points_indexes, FLOAT_TYPE *candidate_query_points_set, int data_set_size, FLOAT_TYPE *data_set, int *data_indexes, FLOAT_TYPE *dist_k_mins_global_tmp, int *idx_k_mins_global_tmp, int K_NN, int DIM) { clock_t start, finish, start1, finish1; bool cuda_init = init_CUDA_device(); /* if (cuda_init){ printf("succed for initializing CUDA\n"); } */ hipError_t err = hipSuccess; //Launch the Vector Add CUDA Kernel //printf("CUDA Malloc Memory.....\n"); start = clock(); size_t size = candidate_query_points_num * sizeof(int); int *d_candidate_query_points_indexes = NULL; err = hipMalloc((void **)&d_candidate_query_points_indexes, size); err = hipMemcpy(d_candidate_query_points_indexes, candidate_query_points_indexes, size, hipMemcpyHostToDevice); size = candidate_query_points_num * sizeof(FLOAT_TYPE)*DIM; FLOAT_TYPE *d_candidate_query_points_set = NULL; err = hipMalloc((void **)&d_candidate_query_points_set, size); err = hipMemcpy(d_candidate_query_points_set, candidate_query_points_set, size, hipMemcpyHostToDevice); size = data_set_size * sizeof(FLOAT_TYPE)*DIM; FLOAT_TYPE *d_data_set = NULL; err = hipMalloc((void **)&d_data_set, size); err = hipMemcpy(d_data_set, data_set, size, hipMemcpyHostToDevice); size = data_set_size * sizeof(int); int *d_data_indexes = NULL; err = hipMalloc((void **)&d_data_indexes, size); err = hipMemcpy(d_data_indexes, data_indexes, size, hipMemcpyHostToDevice); size = candidate_query_points_num* sizeof(FLOAT_TYPE)* K_NN; FLOAT_TYPE *d_dist_k_mins_global_dist = NULL; err = hipMalloc((void **)&d_dist_k_mins_global_dist, size); err = hipMemcpy(d_dist_k_mins_global_dist, dist_k_mins_global_tmp, size, hipMemcpyHostToDevice); size = candidate_query_points_num* sizeof(int)* K_NN; int *d_idx_k_mins_global_tmp = NULL; err = hipMalloc((void **)&d_idx_k_mins_global_tmp, size); err = hipMemcpy(d_idx_k_mins_global_tmp, idx_k_mins_global_tmp, size, hipMemcpyHostToDevice); finish = clock(); double duration = (double)(finish - start) / CLOCKS_PER_SEC; //printf("CUDA Malloc Memory Time %fs\n", duration); //printf("calling do_finding_KNN_by_leaf_order_cuda.....\n"); int block_num = candidate_query_points_num / 1024 + 1; dim3 blocks(block_num, 1), threads(1024, 1); start1 = clock(); do_brute_force_KNN_for_outliers_cuda << < blocks, threads >> > (d_data_set, data_set_size, d_data_indexes, d_candidate_query_points_set, candidate_query_points_num, d_dist_k_mins_global_dist, d_idx_k_mins_global_tmp, K_NN, DIM); err = hipGetLastError(); if (err != hipSuccess) { //fprintf(stderr, "Failed to launch vectorAdd kernel (error code %s)!\n", hipGetErrorString(err)); //exit(EXIT_FAILURE); } //printf( "----print device matrix-------"); //print_float_Data <<<4, 256>>>(d_dist_k_mins_global_tmp,d_idx_k_mins_global_tmp,0); // Copy the device result vector in device memory to the host result vector // in host memory. //printf("\n copy data from GPU....\n"); size = candidate_query_points_num* sizeof(FLOAT_TYPE)* K_NN; err = hipMemcpy(dist_k_mins_global_tmp, d_dist_k_mins_global_tmp, size, hipMemcpyDeviceToHost); size = candidate_query_points_num* sizeof(int)* K_NN; err = hipMemcpy(idx_k_mins_global_tmp, d_idx_k_mins_global_tmp, size, hipMemcpyDeviceToHost); err = hipGetLastError(); if (err != hipSuccess) { //fprintf(stderr, "Failed to launch vectorAdd kernel (error code %s)!\n", hipGetErrorString(err)); //exit(EXIT_FAILURE); } finish1 = clock(); duration = (double)(finish1 - start1) / CLOCKS_PER_SEC; //printf("performing do_finding_KNN_by_leaf_order_cuda time %fs\n", duration); return 0; }
b2fabd9258c58903b7a7c308bc952e156038609c.cu
#define USE_DOUBLE 0 #if USE_DOUBLE > 0 #pragma OPENCL EXTENSION cl_khr_fp64: enable #define FLOAT_TYPE double #define FLOAT_TYPE4 double4 #define MAX_FLOAT_TYPE 1.7976931348623158e+308 #define MIN_FLOAT_TYPE -1.7976931348623158e+308 #else #define FLOAT_TYPE float #define FLOAT_TYPE4 float4 #define FLOAT_TYPE8 float8 #define MAX_FLOAT_TYPE 3.402823466e+38f #define MIN_FLOAT_TYPE -3.402823466e+38f #endif #define VECSIZE 4 #define VECSIZE_8 8 #define MAX_KNN 30 // System includes #include <stdio.h> #include <math.h> #include <string.h> #include <assert.h> #include <time.h> // CUDA runtime #include <cuda_runtime.h> //Helper functions and utilities to work with CUDA #include <helper_functions.h> #include <helper_cuda.h> #include <device_launch_parameters.h> typedef struct Convex_Node { bool isLeaf; int node_index; int parent_index; int leaf_index; //the leaf index of this node in all leaf nodes int left_node; int right_node; } CONVEX_TREE; /*----------pulic parameter used in __global__ functions-------------------*/ int *d_candidate_query_points_indexes = NULL; FLOAT_TYPE *d_candidate_query_points_set=NULL; int *d_candidate_query_points_appr_leaf_node_indexes = NULL; FLOAT_TYPE *d_all_sorted_data_set=NULL; int *d_sorted_data_set_indexes = NULL; CONVEX_TREE *d_tree_struct = NULL; FLOAT_TYPE *d_all_leaf_nodes_ALPHA_set=NULL; FLOAT_TYPE *d_all_leaf_nodes_BETA_set=NULL; int *d_all_constrains_num_of_each_leaf_nodes=NULL; int *d_all_leaf_nodes_offsets_in_all_ALPHA=NULL; int *d_all_leaf_nodes_ancestor_nodes_ids=NULL; int *d_leaf_nodes_start_pos_in_sorted_data_set=NULL; int *d_pts_num_in_sorted_leaf_nodes=NULL; FLOAT_TYPE *d_dist_k_mins_global_tmp=NULL; int *d_idx_k_mins_global_tmp=NULL; long *d_dist_computation_times_arr=NULL; long *d_quadprog_times_arr=NULL; long *d_dist_computation_times_in_quadprog=NULL; FLOAT_TYPE *d_nodes_centers=NULL; /*----------pulic parameter used in __global__ functions-------------------*/ //free memory malloced in CUDA void free_cuda_mem(){ if (d_candidate_query_points_indexes != NULL){ cudaFree(d_candidate_query_points_indexes); d_candidate_query_points_indexes=NULL; } if (d_candidate_query_points_appr_leaf_node_indexes != NULL){ cudaFree(d_candidate_query_points_appr_leaf_node_indexes); d_candidate_query_points_appr_leaf_node_indexes=NULL; } if (d_all_sorted_data_set != NULL){ cudaFree(d_all_sorted_data_set); d_all_sorted_data_set=NULL; } if (d_sorted_data_set_indexes != NULL){ cudaFree(d_sorted_data_set_indexes); d_sorted_data_set_indexes = NULL; } if (d_tree_struct != NULL){ cudaFree(d_tree_struct); d_tree_struct = NULL; } if (d_all_leaf_nodes_ALPHA_set != NULL){ cudaFree(d_all_leaf_nodes_ALPHA_set); d_all_leaf_nodes_ALPHA_set = NULL; } if (d_all_leaf_nodes_BETA_set != NULL){ cudaFree(d_all_leaf_nodes_BETA_set); d_all_leaf_nodes_BETA_set = NULL; } if (d_all_constrains_num_of_each_leaf_nodes != NULL){ cudaFree(d_all_constrains_num_of_each_leaf_nodes); d_all_constrains_num_of_each_leaf_nodes = NULL; } if (d_all_leaf_nodes_offsets_in_all_ALPHA != NULL){ cudaFree(d_all_leaf_nodes_offsets_in_all_ALPHA); d_all_leaf_nodes_offsets_in_all_ALPHA = NULL; } if (d_all_leaf_nodes_ancestor_nodes_ids != NULL){ cudaFree(d_all_leaf_nodes_ancestor_nodes_ids); d_all_leaf_nodes_ancestor_nodes_ids = NULL; } if (d_leaf_nodes_start_pos_in_sorted_data_set != NULL){ cudaFree(d_leaf_nodes_start_pos_in_sorted_data_set); d_leaf_nodes_start_pos_in_sorted_data_set = NULL; } if (d_pts_num_in_sorted_leaf_nodes != NULL){ cudaFree(d_pts_num_in_sorted_leaf_nodes); d_pts_num_in_sorted_leaf_nodes = NULL; } if (d_dist_k_mins_global_tmp != NULL){ cudaFree(d_dist_k_mins_global_tmp); d_dist_k_mins_global_tmp = NULL; } if (d_idx_k_mins_global_tmp != NULL){ cudaFree(d_idx_k_mins_global_tmp); d_idx_k_mins_global_tmp = NULL; } if (d_dist_computation_times_arr != NULL){ cudaFree(d_dist_computation_times_arr); d_dist_computation_times_arr = NULL; } if (d_quadprog_times_arr != NULL){ cudaFree(d_quadprog_times_arr); d_quadprog_times_arr = NULL; } if (d_dist_computation_times_in_quadprog != NULL){ cudaFree(d_dist_computation_times_in_quadprog); d_dist_computation_times_in_quadprog = NULL; } if (d_nodes_centers != NULL){ cudaFree(d_nodes_centers); d_nodes_centers = NULL; } } //the inner product of q and p __device__ FLOAT_TYPE scalar_product_cuda(FLOAT_TYPE* p, FLOAT_TYPE* q, int DIM){ //DIM will be written in "make_kernel_from_file" FLOAT_TYPE result = 0; for (int i = 0; i<DIM; i++){ result += p[i] * q[i]; } return result; } __device__ FLOAT_TYPE float_dist_squre_cuda(FLOAT_TYPE *p, FLOAT_TYPE *q, int DIM){ FLOAT_TYPE dist_tmp=0, tmp=0; for (int j = 0; j<DIM; j++){ tmp = (q[j] - p[j]); dist_tmp += tmp*tmp; } return dist_tmp; } __device__ FLOAT_TYPE Compute_distance(FLOAT_TYPE *p1, FLOAT_TYPE *p2, int DIM){ FLOAT_TYPE sum = 0; FLOAT_TYPE *end = p1 + DIM; for (; p1 != end; p1++, p2++){ FLOAT_TYPE d1 = *p1 - *p2; d1 *= d1; sum = sum + d1; } return sqrt(sum); } //retrun a approximate min dist from q to this convex node //d_min is still approximate distance, it can be improved or optimized. //idea: if a point q is outside of this node, then max distance from // q to each active constrains (hyperplanes) is the approximate // distance. Because the \forall active hyperplane h, we have // d_min >= dist(q,h); __device__ FLOAT_TYPE approximate_min_dist_by_hyper_plane_cuda( FLOAT_TYPE* query_point, FLOAT_TYPE* ALPHA, FLOAT_TYPE* BETA, int ALPPHA_size, int DIM){ FLOAT_TYPE result = 0; FLOAT_TYPE tmp_val = 0; for (int i = 0; i<ALPPHA_size; i++) { //DIM will be written in "make_kernel_from_file" FLOAT_TYPE* alpha = ALPHA + i*DIM; FLOAT_TYPE beta = BETA[i]; tmp_val = scalar_product_cuda(alpha, query_point,DIM); // if there exists a alpha and beta such that alpha[i]'* point +beta[i]<0 // point is not in the node if (tmp_val<0){ if (result < -tmp_val){ result = -tmp_val; } } } return result; } //return true if the d_min from q to this node is larger than dist_compare. //@param dist_compute_times_in_appr_quadprog: count the dist computation times here __device__ bool is_appr_min_dist_from_q_larger_by_hyper_plane_cuda( FLOAT_TYPE *query_point, FLOAT_TYPE *ALPHA, FLOAT_TYPE *BETA, int ALPPHA_size, FLOAT_TYPE dist_compare, long *dist_compute_times_in_appr_quadprog, FLOAT_TYPE *query_point_scalar_product_from_all_nodes, int *cur_ancestor_nodes_ids, int DIM ) { bool result = false; int tmp_times = 0; int cur_ancestor_node_id = 0; for (int i = 0; i<ALPPHA_size; i++){ FLOAT_TYPE tmp_dist = BETA[i]; //---ORIGINAL SCALAR PRODUCT, MANY DUPLICATION, but, in low dim it is faster. for (int j = 0; j<DIM; j++){ tmp_dist += ALPHA[i*DIM + j] * query_point[j]; } tmp_times++; if (tmp_dist<0){ if (dist_compare <= (tmp_dist*tmp_dist)){ //if there exists one such hyper plane then return. result = true; break; } } } *dist_compute_times_in_appr_quadprog += tmp_times; return result; } //brute force computing and update dist_k_mins_private_tmp and idx_k_mins_global_tmp //pts_num: the number of points in all_sorted_data_set. __device__ void do_brute_force_and_update_private_cuda( FLOAT_TYPE *cur_query_point, int cur_query_point_index, int pts_num, int cur_leaf_node_start_pos, FLOAT_TYPE *all_sorted_data_set, int *sorted_data_set_indexes, FLOAT_TYPE *dist_k_mins_private_tmp, int *idx_k_mins_private_tmp, int K_NN, int DIM) { FLOAT_TYPE dist_squre_tmp = 0; FLOAT_TYPE tmp = 0; int tmp_idx = 0; for (int i = 0; i<pts_num; i++){ dist_squre_tmp = float_dist_squre_cuda(all_sorted_data_set + (cur_leaf_node_start_pos + i)*DIM, cur_query_point,DIM); //get the current k^th min_dist_square of current query point FLOAT_TYPE cur_k_min_dist_square = dist_k_mins_private_tmp[K_NN - 1]; if (cur_k_min_dist_square> dist_squre_tmp){ //printf("update dist_k_mins_private_tmp...\n"); //printf("cur_k_min_dist_square=%f, dist_squre_tmp=%f \n",cur_k_min_dist_square,dist_squre_tmp ); int j = K_NN - 1; dist_k_mins_private_tmp[j] = dist_squre_tmp; int pts_idx = sorted_data_set_indexes[cur_leaf_node_start_pos + i]; idx_k_mins_private_tmp[j] = pts_idx; for (; j>0; j--){ if (dist_k_mins_private_tmp[j - 1] > dist_k_mins_private_tmp[j]){ //printf("new nn found, swap..."); tmp = dist_k_mins_private_tmp[j - 1]; dist_k_mins_private_tmp[j - 1] = dist_k_mins_private_tmp[j]; dist_k_mins_private_tmp[j] = tmp; //swap indices tmp_idx = idx_k_mins_private_tmp[j - 1]; idx_k_mins_private_tmp[j - 1] = idx_k_mins_private_tmp[j]; idx_k_mins_private_tmp[j] = tmp_idx; } else break; } } } } //brute force computing and update dist_k_mins_private_tmp and idx_k_mins_global_tmp //pts_num: the number of points in all_sorted_data_set. __device__ void new_do_brute_force_and_update_private_cuda( FLOAT_TYPE *cur_query_point, int cur_query_point_index, int pts_num, int cur_leaf_node_start_pos, FLOAT_TYPE *all_sorted_data_set, int *sorted_data_set_indexes, FLOAT_TYPE *dist_k_mins_private_tmp, int *idx_k_mins_private_tmp, int *remain_index, int K_NN, int DIM) { FLOAT_TYPE dist_squre_tmp = 0; FLOAT_TYPE tmp = 0; int tmp_idx = 0; for (int i = 0; i<pts_num; i++){ dist_squre_tmp = float_dist_squre_cuda(all_sorted_data_set + (cur_leaf_node_start_pos + i)*DIM, cur_query_point, DIM); //get the current k^th min_dist_square of current query point FLOAT_TYPE cur_k_min_dist_square = dist_k_mins_private_tmp[K_NN - 1]; if (cur_k_min_dist_square> dist_squre_tmp){ //printf("update dist_k_mins_private_tmp...\n"); //printf("cur_k_min_dist_square=%f, dist_squre_tmp=%f \n",cur_k_min_dist_square,dist_squre_tmp ); int j = K_NN - 1; dist_k_mins_private_tmp[j] = dist_squre_tmp; int pts_idx = sorted_data_set_indexes[cur_leaf_node_start_pos + i]; idx_k_mins_private_tmp[j] = remain_index[pts_idx]; for (; j>0; j--){ if (dist_k_mins_private_tmp[j - 1] > dist_k_mins_private_tmp[j]){ //printf("new nn found, swap..."); tmp = dist_k_mins_private_tmp[j - 1]; dist_k_mins_private_tmp[j - 1] = dist_k_mins_private_tmp[j]; dist_k_mins_private_tmp[j] = tmp; //swap indices tmp_idx = idx_k_mins_private_tmp[j - 1]; idx_k_mins_private_tmp[j - 1] = idx_k_mins_private_tmp[j]; idx_k_mins_private_tmp[j] = tmp_idx; } else break; } } } } /* 0 candidate_query_points_num : the number of current candidate query points, in the case of all query points set is too large, we can submit subset of query sets to this kernel. 1 candidate_query_points_indexes : the indexes of current query points in all query points set 2 candidate_query_points_set : the current query points data set 3 candidate_query_points_appr_leaf_node_indexes : the approximate leaf node for candidate query points 4 all_sorted_data_set : all sorted data 5 sorted_data_set_indexes : all points indexes in sorted data set 6 tree_struct : the tree structure of the whole tree. It is not used now. 7 all_leaf_nodes_ALPHA_set : ALPHA set of all leaf nodes 8 leaf_nodes_BETA_set : BETA set of all leaf nodes 9 all_constrains_num_of_each_leaf_nodes : all_constrains_num_of_each_nodes[i]=j means i^th leaf nodes has j constrains, i.e. has j alphas and betas 10 all_leaf_nodes_offsets_in_all_ALPHA : the offset of each leaf node in ALPHA 11 leaf_node_num : the number of leaf nodes 12 all_leaf_nodes_ancestor_nodes_ids : the ancestor nodes ids of each leaf nodes 13 leaf_nodes_start_pos_in_sorted_data_set : specify the start position from which each sorted leave node in sorted data set 14 pts_num_in_sorted_leaf_nodes : the length of points saved in each sorted leaf node 15 dist_k_mins_global_tmp : the K min-distance of all query points, the length of dist_mins_global_tmp is K* query_points_size 16 idx_k_mins_global_tmp : the indexes of the K nearest neighbors, the length of dist_mins_global_tmp is K* query_points_size 17 K_NN : the value of K 18 dist_computation_times_arr : dist_computation_times_arr[i] saves total distance computation times of the i^th point and 19 quadprog_times_arr : quadprog_times_arr[i] approximate quadprog times of the i^th point. 20 dist_computation_times_in_quadprog: dist_computation_times_in_quadprog[i] saves the total distance computation times in quadprog of the i^th point. */ __global__ void do_finding_KNN_by_leaf_order_cuda( int candidate_query_points_num, int *candidate_query_points_indexes, FLOAT_TYPE *candidate_query_points_set, int *candidate_query_points_appr_leaf_node_indexes, FLOAT_TYPE *all_sorted_data_set, int *sorted_data_set_indexes, CONVEX_TREE *tree_struct, FLOAT_TYPE *all_leaf_nodes_ALPHA_set, FLOAT_TYPE *all_leaf_nodes_BETA_set, int *all_constrains_num_of_each_leaf_nodes, int *all_leaf_nodes_offsets_in_all_ALPHA, int leaf_node_num, int *all_leaf_nodes_ancestor_nodes_ids, int *leaf_nodes_start_pos_in_sorted_data_set, int *pts_num_in_sorted_leaf_nodes, FLOAT_TYPE *dist_k_mins_global_tmp, int *idx_k_mins_global_tmp, int K_NN, long *dist_computation_times_arr, long *quadprog_times_arr, long *dist_computation_times_in_quadprog, int NODES_NUM, int DIM, int loop_id) { //---global thread id //int tid = blockIdx.x; //int tid = blockDim.x * blockIdx.x + threadIdx.x; //int tid = (blockIdx.y * gridDim.x + blockIdx.x) * (blockDim.x * blockDim.y) + threadIdx.y * blockDim.y + threadIdx.x; int x = threadIdx.x + blockIdx.x * blockDim.x; int y = threadIdx.y + blockIdx.y * blockDim.y; int tid = x + y * blockDim.x * gridDim.x; //printf(" [loopid=%d, tid_ori=%d], ", loop_id,tid); //tid +=loop_id* blocks_per_time; if (tid >= candidate_query_points_num){ return; } //---count the distance computation times in approximate quadprog. long cur_dist_compute_times_in_appr_quadprog = 0; int cur_query_points_appr_leaf_node_indexes = candidate_query_points_appr_leaf_node_indexes[tid]; int cur_leaf_node_start_pos = leaf_nodes_start_pos_in_sorted_data_set[cur_query_points_appr_leaf_node_indexes]; /*--------------------------------------------------------------------------------------------------------------- //---query_points_nodes_alpha_scalar_product is not used in is_appr_min_dist_from_q_larger_by_hyper_plane now. //---because visiting query_points_nodes_alpha_scalar_product randomly seems slow. //---private scalar product between current query point and all ALPHAs, which are all initialized to 0. //---each node has a alpha constraint, a well as constraints of its ancestors nodes. //---'ALL_NODES_NUM' will be written before kernel is created. ----------------------------------------------------------------------------------------------------------------*/\ /*-----------------Copy global data as local data: visiting global data is relative slow in devices-----------------------------*/ int quadprog_times_private = 0; for (int j = 0; j < K_NN; j++){ dist_k_mins_global_tmp[candidate_query_points_indexes[tid]*K_NN + j] = MAX_FLOAT_TYPE; idx_k_mins_global_tmp[candidate_query_points_indexes[tid]*K_NN + j] = -1; } //---here is tid instead of cur_query_point_index, tid is the offset of current query point in candidate_query_points_set FLOAT_TYPE* cur_query_point = candidate_query_points_set + tid*DIM; /*-----------------------------------------------------------------------------------------------------------------------------*/ long dist_computation_times_tmp = 0; int pts_num = pts_num_in_sorted_leaf_nodes[cur_query_points_appr_leaf_node_indexes]; //---find approximate kNN in its approximate nodes. do_brute_force_and_update_private_cuda( cur_query_point, candidate_query_points_indexes[tid], pts_num, cur_leaf_node_start_pos, all_sorted_data_set, sorted_data_set_indexes, dist_k_mins_global_tmp+candidate_query_points_indexes[tid]*K_NN, idx_k_mins_global_tmp+candidate_query_points_indexes[tid]*K_NN, K_NN, DIM); //---add distance computation times //dist_computation_times_tmp += pts_num; for (int i = 0; i < leaf_node_num; i++) { if (i == cur_query_points_appr_leaf_node_indexes) continue; int alpha_offset = all_leaf_nodes_offsets_in_all_ALPHA[i]; int constrains_num = all_constrains_num_of_each_leaf_nodes[i]; //---get the current k^th min_dist_square of current query point FLOAT_TYPE cur_k_min_dist_square = dist_k_mins_global_tmp[candidate_query_points_indexes[tid]*K_NN+K_NN - 1]; FLOAT_TYPE* cur_ALPHAT = all_leaf_nodes_ALPHA_set + alpha_offset*DIM; FLOAT_TYPE* cur_BETA = all_leaf_nodes_BETA_set + alpha_offset; //---the number of ancestor nodes is the same as the size of constraints int* cur_ancestor_nodes_ids = all_leaf_nodes_ancestor_nodes_ids + alpha_offset; //---check whether the current node is a candidate for current query point if (!is_appr_min_dist_from_q_larger_by_hyper_plane_cuda(cur_query_point, cur_ALPHAT, cur_BETA, constrains_num, cur_k_min_dist_square, &cur_dist_compute_times_in_appr_quadprog, NULL, cur_ancestor_nodes_ids, DIM ) ) { //---do brute force distance computation here, and update dist_k_mins_global_tmp and idx_k_mins_global_tmp //---get the number of points saved in current node //---i is cur leaf node index, not leaf node ori_index int pts_num = pts_num_in_sorted_leaf_nodes[i]; int cur_leaf_node_start_pos = leaf_nodes_start_pos_in_sorted_data_set[i]; do_brute_force_and_update_private_cuda( cur_query_point, candidate_query_points_indexes[tid], pts_num, cur_leaf_node_start_pos, all_sorted_data_set, sorted_data_set_indexes, dist_k_mins_global_tmp+candidate_query_points_indexes[tid]*K_NN, idx_k_mins_global_tmp+candidate_query_points_indexes[tid]*K_NN, K_NN, DIM); } } } /* 0 candidate_query_points_num : the number of current candidate query points, in the case of all query points set is too large, we can submit subset of query sets to this kernel. 1 candidate_query_points_indexes : the indexes of current query points in all query points set 2 candidate_query_points_set : the current query points data set candidate_query_points_appr_leaf_node_indexes : the approximate leaf node for candidate query points 4 all_sorted_data_set : all sorted data 5 sorted_data_set_indexes : all points indexes in sorted data set 6 tree_struct : the tree structure of the whole tree. It is not used now. 7 all_leaf_nodes_ALPHA_set : ALPHA set of all leaf nodes 8 leaf_nodes_BETA_set : BETA set of all leaf nodes 9 all_constrains_num_of_each_leaf_nodes : all_constrains_num_of_each_nodes[i]=j means i^th leaf nodes has j constrains, i.e. has j alphas and betas 10 all_leaf_nodes_offsets_in_all_ALPHA : the offset of each leaf node in ALPHA 11 leaf_node_num : the number of leaf nodes 12 all_leaf_nodes_ancestor_nodes_ids : the ancestor nodes ids of each leaf nodes 13 leaf_nodes_start_pos_in_sorted_data_set : specify the start position from which each sorted leave node in sorted data set 14 pts_num_in_sorted_leaf_nodes : the length of points saved in each sorted leaf node 15 dist_k_mins_global_tmp : the K min-distance of all query points, the length of dist_mins_global_tmp is K* query_points_size 16 idx_k_mins_global_tmp : the indexes of the K nearest neighbors, the length of dist_mins_global_tmp is K* query_points_size 17 K_NN : the value of K 18 dist_computation_times_arr : dist_computation_times_arr[i] saves total distance computation times of the i^th point and 19 quadprog_times_arr : quadprog_times_arr[i] approximate quadprog times of the i^th point. 20 dist_computation_times_in_quadprog: dist_computation_times_in_quadprog[i] saves the total distance computation times in quadprog of the i^th point. */ __global__ void new_do_finding_KNN_by_leaf_order_cuda( int candidate_query_points_num, int *candidate_query_points_indexes, FLOAT_TYPE *candidate_query_points_set, FLOAT_TYPE *all_sorted_data_set, int *sorted_data_set_indexes, CONVEX_TREE *tree_struct, FLOAT_TYPE *all_leaf_nodes_ALPHA_set, FLOAT_TYPE *all_leaf_nodes_BETA_set, int *all_constrains_num_of_each_leaf_nodes, int *all_leaf_nodes_offsets_in_all_ALPHA, int leaf_node_num, int *all_leaf_nodes_ancestor_nodes_ids, int *leaf_nodes_start_pos_in_sorted_data_set, int *pts_num_in_sorted_leaf_nodes, FLOAT_TYPE *dist_k_mins_global_tmp, int *idx_k_mins_global_tmp, int *remain_index, int K_NN, long *dist_computation_times_arr, long *quadprog_times_arr, long *dist_computation_times_in_quadprog, int NODES_NUM, int DIM, int loop_id) { //---global thread id //int tid = blockIdx.x; //int tid = blockDim.x * blockIdx.x + threadIdx.x; //int tid = (blockIdx.y * gridDim.x + blockIdx.x) * (blockDim.x * blockDim.y) + threadIdx.y * blockDim.y + threadIdx.x; int x = threadIdx.x + blockIdx.x * blockDim.x; int y = threadIdx.y + blockIdx.y * blockDim.y; int tid = x + y * blockDim.x * gridDim.x; //printf(" [loopid=%d, tid_ori=%d], ", loop_id,tid); //tid +=loop_id* blocks_per_time; if (tid >= candidate_query_points_num){ return; } //---count the distance computation times in approximate quadprog. long cur_dist_compute_times_in_appr_quadprog = 0; //int cur_query_points_appr_leaf_node_indexes = candidate_query_points_appr_leaf_node_indexes[tid]; //int cur_leaf_node_start_pos = leaf_nodes_start_pos_in_sorted_data_set[cur_query_points_appr_leaf_node_indexes]; /*--------------------------------------------------------------------------------------------------------------- //---query_points_nodes_alpha_scalar_product is not used in is_appr_min_dist_from_q_larger_by_hyper_plane now. //---because visiting query_points_nodes_alpha_scalar_product randomly seems slow. //---private scalar product between current query point and all ALPHAs, which are all initialized to 0. //---each node has a alpha constraint, a well as constraints of its ancestors nodes. //---'ALL_NODES_NUM' will be written before kernel is created. ----------------------------------------------------------------------------------------------------------------*/\ /*-----------------Copy global data as local data: visiting global data is relative slow in devices-----------------------------*/ int quadprog_times_private = 0; /*for (int j = 0; j < K_NN; j++){ dist_k_mins_global_tmp[candidate_query_points_indexes[tid]*K_NN + j] = MAX_FLOAT_TYPE; idx_k_mins_global_tmp[candidate_query_points_indexes[tid]*K_NN + j] = -1; } */ //---here is tid instead of cur_query_point_index, tid is the offset of current query point in candidate_query_points_set FLOAT_TYPE* cur_query_point = candidate_query_points_set + tid*DIM; /*-----------------------------------------------------------------------------------------------------------------------------*/ long dist_computation_times_tmp = 0; //int pts_num = pts_num_in_sorted_leaf_nodes[cur_query_points_appr_leaf_node_indexes]; //---find approximate kNN in its approximate nodes. /*do_brute_force_and_update_private_cuda( cur_query_point, candidate_query_points_indexes[tid], pts_num, cur_leaf_node_start_pos, all_sorted_data_set, sorted_data_set_indexes, dist_k_mins_global_tmp+candidate_query_points_indexes[tid]*K_NN, idx_k_mins_global_tmp+candidate_query_points_indexes[tid]*K_NN, K_NN, DIM); */ //---add distance computation times //dist_computation_times_tmp += pts_num; for (int i = 0; i < leaf_node_num; i++) { //if (i == cur_query_points_appr_leaf_node_indexes) //continue; int alpha_offset = all_leaf_nodes_offsets_in_all_ALPHA[i]; int constrains_num = all_constrains_num_of_each_leaf_nodes[i]; //---get the current k^th min_dist_square of current query point FLOAT_TYPE cur_k_min_dist_square = dist_k_mins_global_tmp[candidate_query_points_indexes[tid]*K_NN+K_NN - 1]; FLOAT_TYPE* cur_ALPHAT = all_leaf_nodes_ALPHA_set + alpha_offset*DIM; FLOAT_TYPE* cur_BETA = all_leaf_nodes_BETA_set + alpha_offset; //---the number of ancestor nodes is the same as the size of constraints int* cur_ancestor_nodes_ids = all_leaf_nodes_ancestor_nodes_ids + alpha_offset; //---check whether the current node is a candidate for current query point if (!is_appr_min_dist_from_q_larger_by_hyper_plane_cuda(cur_query_point, cur_ALPHAT, cur_BETA, constrains_num, cur_k_min_dist_square, &cur_dist_compute_times_in_appr_quadprog, NULL, cur_ancestor_nodes_ids, DIM ) ) { //---do brute force distance computation here, and update dist_k_mins_global_tmp and idx_k_mins_global_tmp //---get the number of points saved in current node //---i is cur leaf node index, not leaf node ori_index int pts_num = pts_num_in_sorted_leaf_nodes[i]; int cur_leaf_node_start_pos = leaf_nodes_start_pos_in_sorted_data_set[i]; new_do_brute_force_and_update_private_cuda( cur_query_point, candidate_query_points_indexes[tid], pts_num, cur_leaf_node_start_pos, all_sorted_data_set, sorted_data_set_indexes, dist_k_mins_global_tmp+candidate_query_points_indexes[tid]*K_NN, idx_k_mins_global_tmp+candidate_query_points_indexes[tid]*K_NN, remain_index,K_NN, DIM); } } } __global__ void print_float_Data(FLOAT_TYPE *dist_k_mins_global_tmp, int* idx_k_mins_global_tmp, int loop_id){ int tid = blockDim.x * blockIdx.x + threadIdx.x; int tid_ori=tid; tid+= loop_id*1024; int K_NN=30; int cur_query_point_index=tid; for (int j = 0; j<K_NN; j++){ printf(" [tid=%d, j=%d, dist =%f, idx=%d] ", tid, j, dist_k_mins_global_tmp[cur_query_point_index*K_NN + j], idx_k_mins_global_tmp[cur_query_point_index*K_NN + j]); } } /* //find kNN by brute force 0 data_set : the number of current candidate query points 1 data_set_size : cardinal 2 query_points : all query points 3 query_points_size : the length of query_points 4 dist_k_mins_global_tmp : the K min-distance of all query points, the length of dist_mins_global_tmp is K* query_points_size 5 idx_k_mins_global_tmp : the indexes of the K nearest neighbors, the length of dist_mins_global_tmp is K* query_points_size 6 K_NN : the value of K */ /* __global__ void do_brute_force_KNN_cuda( FLOAT_TYPE *data_set,int data_set_size, FLOAT_TYPE *query_set,int query_set_size, FLOAT_TYPE *KNN_index_with_dist, int K,int DIM) { //global thread id int tid = blockDim.x *blockIdx.x + threadIdx.x; if (tid > query_set_size){ return; } unsigned int current_query_point_index = tid; FLOAT_TYPE *temp = new FLOAT_TYPE[2 * K]; FLOAT_TYPE *p1, *p2; int tmp; FLOAT_TYPE d, max_dist, max_idx; p1 = query_set + current_query_point_index*DIM; for (int i = 0; i < data_set_size; i++){ p2 = data_set + i*DIM; d = Compute_distance(p1, p2, DIM); if (i < K){ temp[i * 2] = i; temp[i * 2 + 1] = d; } else{ tmp = 0; max_idx = temp[0]; max_dist = temp[1]; for (int j = 1; j < K; j++){ if (temp[2 * j + 1] > max_dist){ tmp = j; max_idx = temp[2 * j]; max_dist = temp[2 * j + 1]; } } if (d < max_dist){ temp[tmp * 2] = i; temp[tmp * 2 + 1] = d; } } } memcpy(KNN_index_with_dist + current_query_point_index * 2 * K, temp, (2 * K)*sizeof(FLOAT_TYPE)); //cudaMemcpy(KNN_index_with_dist + current_query_point_index * 2 * K, temp, (2 * K)*sizeof(FLOAT_TYPE), cudaMemcpyDeviceToDevice); } */ __global__ void do_brute_force_KNN_cuda( FLOAT_TYPE *data_set, int data_set_size, FLOAT_TYPE *query_points, int query_points_size, FLOAT_TYPE *dist_k_mins_global_tmp, int *idx_k_mins_global_tmp, int K_NN, int DIM) { // global thread id int tid = blockDim.x * blockIdx.x + threadIdx.x; if (tid >= query_points_size){ return; } unsigned int current_query_point_index = tid; //---init the distance as MAX_FLOAT_TYPE for (int i = 0; i<K_NN; i++){ dist_k_mins_global_tmp[current_query_point_index*K_NN + i] = MAX_FLOAT_TYPE; } //get the current k^th min_dist_square of current query point FLOAT_TYPE cur_k_min_dist_square = dist_k_mins_global_tmp[current_query_point_index*K_NN + K_NN - 1]; //if (tid==checkid) // printf("cur_k_min_dist_square =%f \n",cur_k_min_dist_square); FLOAT_TYPE dist_square_tmp = 0; FLOAT_TYPE tmp = 0; int tmp_idx = 0; //local copy FLOAT_TYPE* cur_query_point_private = new FLOAT_TYPE[DIM]; for (int i = 0; i<DIM; i++){ cur_query_point_private[i] = query_points[current_query_point_index*DIM + i]; } for (int i = 0; i<data_set_size; i++){ dist_square_tmp = 0; cur_k_min_dist_square = dist_k_mins_global_tmp[current_query_point_index*K_NN + K_NN - 1]; for (int j = 0; j<DIM; j++){ tmp = data_set[i*DIM + j] - cur_query_point_private[j]; dist_square_tmp += tmp*tmp; //printf("tmp =%f, dist_square_tmp=%f\n",tmp,dist_square_tmp); } //printf("dist_square_tmp =%f, cur_k_min_dist_square=%f \n",dist_square_tmp, cur_k_min_dist_square); if (cur_k_min_dist_square> dist_square_tmp){ //printf("update dist_k_mins_global_tmp...\n"); int j = K_NN - 1; dist_k_mins_global_tmp[current_query_point_index*K_NN + j] = dist_square_tmp; idx_k_mins_global_tmp[current_query_point_index*K_NN + j] = i; for (; j>0; j--){ if (dist_k_mins_global_tmp[current_query_point_index*K_NN + j - 1] > dist_k_mins_global_tmp[current_query_point_index*K_NN + j]){ //printf("new nn found, swap..."); tmp = dist_k_mins_global_tmp[current_query_point_index*K_NN + j - 1]; dist_k_mins_global_tmp[current_query_point_index*K_NN + j - 1] = dist_k_mins_global_tmp[current_query_point_index*K_NN + j]; dist_k_mins_global_tmp[current_query_point_index*K_NN + j] = tmp; //swap indices tmp_idx = idx_k_mins_global_tmp[current_query_point_index*K_NN + j - 1]; idx_k_mins_global_tmp[current_query_point_index*K_NN + j - 1] = idx_k_mins_global_tmp[current_query_point_index*K_NN + j]; idx_k_mins_global_tmp[current_query_point_index*K_NN + j] = tmp_idx; } else break; } } } } /* //find kNN by brute force for outliers 0 data_set : the number of current candidate query points 1 data_set_size : cardinal 2 query_points : all query points 3 query_points_size : the length of query_points 4 dist_k_mins_global_tmp : the K min-distance of all query points, the length of dist_mins_global_tmp is K* query_points_size 5 idx_k_mins_global_tmp : the indexes of the K nearest neighbors, the length of dist_mins_global_tmp is K* query_points_size 6 K_NN : the value of K */ __global__ void do_brute_force_KNN_for_outliers_cuda( FLOAT_TYPE *data_set, int data_set_size, int *data_indexes, FLOAT_TYPE *query_points, int query_points_size, FLOAT_TYPE *dist_k_mins_global_tmp, int *idx_k_mins_global_tmp, int K_NN, int DIM) { // global thread id int tid = blockDim.x * blockIdx.x + threadIdx.x; //int tid = threadIdx.x; //int tid = 0; //printf("tid =%d \n",tid); if (tid >= query_points_size){ return; } //printf("tid=%d, data_set_size =%d,query_points_size=%d \n",tid,data_set_size,query_points_size); unsigned int current_query_point_index = tid; //get the current k^th min_dist_square of current query point FLOAT_TYPE cur_k_min_dist_square = dist_k_mins_global_tmp[current_query_point_index*K_NN + K_NN - 1]; //if (tid==checkid) // printf("cur_k_min_dist_square =%f \n",cur_k_min_dist_square); FLOAT_TYPE dist_square_tmp = 0; FLOAT_TYPE tmp = 0; int tmp_idx = 0; //local copy FLOAT_TYPE* cur_query_point_private = new FLOAT_TYPE[DIM]; for (int i = 0; i<DIM; i++){ cur_query_point_private[i] = query_points[current_query_point_index*DIM + i]; } for (int i = 0; i < data_set_size; i++){ dist_square_tmp = 0; cur_k_min_dist_square = dist_k_mins_global_tmp[current_query_point_index*K_NN + K_NN - 1]; for (int j = 0; j<DIM; j++){ tmp = data_set[i*DIM + j] - cur_query_point_private[j]; dist_square_tmp += tmp*tmp; //printf("tmp =%f, dist_square_tmp=%f\n",tmp,dist_square_tmp); } //printf("dist_square_tmp =%f, cur_k_min_dist_square=%f \n",dist_square_tmp, cur_k_min_dist_square); if (cur_k_min_dist_square> dist_square_tmp){ //printf("update dist_k_mins_global_tmp...\n"); int j = K_NN - 1; dist_k_mins_global_tmp[current_query_point_index*K_NN + j] = dist_square_tmp; idx_k_mins_global_tmp[current_query_point_index*K_NN + j] = data_indexes[i]; for (; j>0; j--){ if (dist_k_mins_global_tmp[current_query_point_index*K_NN + j - 1] > dist_k_mins_global_tmp[current_query_point_index*K_NN + j]){ //printf("new nn found, swap..."); tmp = dist_k_mins_global_tmp[current_query_point_index*K_NN + j - 1]; dist_k_mins_global_tmp[current_query_point_index*K_NN + j - 1] = dist_k_mins_global_tmp[current_query_point_index*K_NN + j]; dist_k_mins_global_tmp[current_query_point_index*K_NN + j] = tmp; //swap indices tmp_idx = idx_k_mins_global_tmp[current_query_point_index*K_NN + j - 1]; idx_k_mins_global_tmp[current_query_point_index*K_NN + j - 1] = idx_k_mins_global_tmp[current_query_point_index*K_NN + j]; idx_k_mins_global_tmp[current_query_point_index*K_NN + j] = tmp_idx; } else break; } } } } __device__ int get_min_k_index_cuda(FLOAT_TYPE *dist_k_mins_private_tmp, int K_NN){ FLOAT_TYPE tmp_max = dist_k_mins_private_tmp[0]; int result = 0; for (int i = 1; i<K_NN; i++){ if (dist_k_mins_private_tmp[i]>tmp_max){ result = i; tmp_max = dist_k_mins_private_tmp[i]; } } return result; } bool init_CUDA_device(){ int count; cudaGetDeviceCount(&count); //printf("\nDevice number: %d\n", count); if (count == 0) { fprintf(stderr, "There is no device.\n"); return false; } int i; for (i = 0; i < count; i++) { cudaDeviceProp prop; if (cudaGetDeviceProperties(&prop, i) == cudaSuccess) { //printf("Device name :%s\n", prop.name); //printf("Device major :%d\n", prop.major); //printf("Device multiProcessorCount :%d\n", prop.multiProcessorCount); //printf("Device maxThreadsPerBlock :%d\n", prop.maxThreadsPerBlock); //printf("Device totalGlobalMem :%ld\n", prop.totalGlobalMem); //printf("Device totalConstMem :%ld\n", prop.totalConstMem); if (prop.major >= 1) { break; } } } if (i == count) { fprintf(stderr, "There is no device supporting CUDA 1.x.\n"); return false; } cudaSetDevice(i); return true; } /** * Host main routine */ extern "C" int call_cuda_kernel( int candidate_query_points_num, int *candidate_query_points_indexes, FLOAT_TYPE *candidate_query_points_set, int *candidate_query_points_appr_leaf_node_indexes, int sorted_data_len, FLOAT_TYPE *all_sorted_data_set, int *sorted_data_set_indexes, int tree_nodes_num, CONVEX_TREE *tree_struct, int all_leaf_nodes_constraint_num, FLOAT_TYPE *all_leaf_nodes_ALPHA_set, FLOAT_TYPE *all_leaf_nodes_BETA_set, int *all_constrains_num_of_each_leaf_nodes, int *all_leaf_nodes_offsets_in_all_ALPHA, int leaf_node_num, int *all_leaf_nodes_ancestor_nodes_ids, int *leaf_nodes_start_pos_in_sorted_data_set, int *pts_num_in_sorted_leaf_nodes, FLOAT_TYPE *dist_k_mins_global_tmp, int *idx_k_mins_global_tmp, int K_NN, long *dist_computation_times_arr, long *quadprog_times_arr, long *dist_computation_times_in_quadprog, int NODES_NUM, int DIM) { clock_t start, finish,start1, finish1; float duration ; bool cuda_init =init_CUDA_device(); if (cuda_init){ printf("\nsucced for initializing CUDA"); } cudaError_t err = cudaSuccess; //Launch the Vector Add CUDA Kernel printf("\nCUDA Malloc Memory.....\n "); start=clock(); size_t size = candidate_query_points_num * sizeof(int); if (d_candidate_query_points_indexes==NULL){ err = cudaMalloc((void **)&d_candidate_query_points_indexes, size); err = cudaMemcpy(d_candidate_query_points_indexes, candidate_query_points_indexes, size, cudaMemcpyHostToDevice); } size = candidate_query_points_num * sizeof(FLOAT_TYPE)*DIM; if (d_candidate_query_points_set==NULL){ err = cudaMalloc((void **)&d_candidate_query_points_set, size); err = cudaMemcpy(d_candidate_query_points_set, candidate_query_points_set, size, cudaMemcpyHostToDevice); } size = candidate_query_points_num * sizeof(int); if (d_candidate_query_points_appr_leaf_node_indexes==NULL){ err = cudaMalloc((void **)&d_candidate_query_points_appr_leaf_node_indexes, size); err = cudaMemcpy(d_candidate_query_points_appr_leaf_node_indexes, candidate_query_points_appr_leaf_node_indexes, size, cudaMemcpyHostToDevice); } size = sorted_data_len * sizeof(FLOAT_TYPE)*DIM; if (d_all_sorted_data_set==NULL){ err = cudaMalloc((void **)&d_all_sorted_data_set, size); err = cudaMemcpy(d_all_sorted_data_set, all_sorted_data_set, size, cudaMemcpyHostToDevice); } size = sorted_data_len * sizeof(int); if (d_sorted_data_set_indexes==NULL){ err = cudaMalloc((void **)&d_sorted_data_set_indexes, size); err = cudaMemcpy(d_sorted_data_set_indexes, sorted_data_set_indexes, size, cudaMemcpyHostToDevice); } size=tree_nodes_num*sizeof(CONVEX_TREE); if (d_tree_struct==NULL){ err = cudaMalloc((void **)&d_tree_struct, size); err = cudaMemcpy(d_tree_struct, tree_struct, size, cudaMemcpyHostToDevice); } size= all_leaf_nodes_constraint_num* sizeof(FLOAT_TYPE)*DIM; if (d_all_leaf_nodes_ALPHA_set==NULL){ err = cudaMalloc((void **)&d_all_leaf_nodes_ALPHA_set, size); err = cudaMemcpy(d_all_leaf_nodes_ALPHA_set, all_leaf_nodes_ALPHA_set, size, cudaMemcpyHostToDevice); } size= all_leaf_nodes_constraint_num* sizeof(FLOAT_TYPE); if (d_all_leaf_nodes_BETA_set==NULL){ err = cudaMalloc((void **)&d_all_leaf_nodes_BETA_set, size); err = cudaMemcpy(d_all_leaf_nodes_BETA_set, all_leaf_nodes_BETA_set, size, cudaMemcpyHostToDevice); } size= leaf_node_num*sizeof(int); if (d_all_constrains_num_of_each_leaf_nodes==NULL){ err = cudaMalloc((void **)&d_all_constrains_num_of_each_leaf_nodes, size); err = cudaMemcpy(d_all_constrains_num_of_each_leaf_nodes, all_constrains_num_of_each_leaf_nodes, size, cudaMemcpyHostToDevice); } if (d_all_leaf_nodes_offsets_in_all_ALPHA==NULL){ err = cudaMalloc((void **)&d_all_leaf_nodes_offsets_in_all_ALPHA, size); err = cudaMemcpy(d_all_leaf_nodes_offsets_in_all_ALPHA, all_leaf_nodes_offsets_in_all_ALPHA, size, cudaMemcpyHostToDevice); } if (d_all_leaf_nodes_ancestor_nodes_ids==NULL){ err = cudaMalloc((void **)&d_all_leaf_nodes_ancestor_nodes_ids, size); err = cudaMemcpy(d_all_leaf_nodes_ancestor_nodes_ids, all_leaf_nodes_ancestor_nodes_ids, size, cudaMemcpyHostToDevice); } if (d_leaf_nodes_start_pos_in_sorted_data_set==NULL){ err = cudaMalloc((void **)&d_leaf_nodes_start_pos_in_sorted_data_set, size); err = cudaMemcpy(d_leaf_nodes_start_pos_in_sorted_data_set, leaf_nodes_start_pos_in_sorted_data_set, size, cudaMemcpyHostToDevice); } if (d_pts_num_in_sorted_leaf_nodes==NULL){ err = cudaMalloc((void **)&d_pts_num_in_sorted_leaf_nodes, size); err = cudaMemcpy(d_pts_num_in_sorted_leaf_nodes, pts_num_in_sorted_leaf_nodes, size, cudaMemcpyHostToDevice); } size= candidate_query_points_num* sizeof(FLOAT_TYPE)* K_NN; if (d_dist_k_mins_global_tmp==NULL){ err = cudaMalloc((void **)&d_dist_k_mins_global_tmp, size); } size= candidate_query_points_num* sizeof(int)* K_NN; if (d_idx_k_mins_global_tmp==NULL){ err = cudaMalloc((void **)&d_idx_k_mins_global_tmp, size); } size= candidate_query_points_num*sizeof(long); err = cudaMalloc((void **)&d_dist_computation_times_arr, size); err = cudaMalloc((void **)&d_quadprog_times_arr, size); err = cudaMalloc((void **)&d_dist_computation_times_in_quadprog, size); int task_per_num=100000/256; finish=clock(); duration = (float)(finish-start)/ CLOCKS_PER_SEC; //printf( "\n CUDA Malloc Memory Time %f\n", duration); //printf ("\n calling do_finding_KNN_by_leaf_order_cuda.....\n"); int block_num = candidate_query_points_num / 1024 + 1; dim3 blocks(block_num,1), threads(1024,1); //int blocks_per_time=6*16*128*8; start1 = clock(); do_finding_KNN_by_leaf_order_cuda <<< blocks, threads>>>( candidate_query_points_num, d_candidate_query_points_indexes, d_candidate_query_points_set, d_candidate_query_points_appr_leaf_node_indexes, d_all_sorted_data_set, d_sorted_data_set_indexes, d_tree_struct, d_all_leaf_nodes_ALPHA_set, d_all_leaf_nodes_BETA_set, d_all_constrains_num_of_each_leaf_nodes, d_all_leaf_nodes_offsets_in_all_ALPHA, leaf_node_num, d_all_leaf_nodes_ancestor_nodes_ids, d_leaf_nodes_start_pos_in_sorted_data_set, d_pts_num_in_sorted_leaf_nodes, d_dist_k_mins_global_tmp, d_idx_k_mins_global_tmp, K_NN, d_dist_computation_times_arr, d_quadprog_times_arr, d_dist_computation_times_in_quadprog, NODES_NUM, DIM, 1); err = cudaGetLastError(); if (err != cudaSuccess) { fprintf(stderr, "Failed to launch vectorAdd kernel (error code %s)!\n", cudaGetErrorString(err)); //exit(EXIT_FAILURE); } finish1 = clock(); duration = (float)(finish1-start1)/ CLOCKS_PER_SEC; //printf( "\n performing do_finding_KNN_by_leaf_order_cuda time %f milsec %f s\n",(float)(finish1-start1), duration); //printf( "----print device matrix-------"); //print_float_Data <<<4, 256>>>(d_dist_k_mins_global_tmp,d_idx_k_mins_global_tmp,0); // Copy the device result vector in device memory to the host result vector // in host memory. //printf("\n copy data from GPU....\n"); size= candidate_query_points_num* sizeof(FLOAT_TYPE)* K_NN; err = cudaMemcpy(dist_k_mins_global_tmp, d_dist_k_mins_global_tmp, size, cudaMemcpyDeviceToHost); size= candidate_query_points_num* sizeof(int)* K_NN; err = cudaMemcpy(idx_k_mins_global_tmp, d_idx_k_mins_global_tmp, size, cudaMemcpyDeviceToHost); err = cudaGetLastError(); if (err != cudaSuccess) { fprintf(stderr, "Failed to launch vectorAdd kernel (error code %s)!\n", cudaGetErrorString(err)); //exit(EXIT_FAILURE); } free_cuda_mem(); return 0; } /** * Host main routine */ extern "C" int new_call_cuda_kernel( int candidate_query_points_num, int *candidate_query_points_indexes, FLOAT_TYPE *candidate_query_points_set, int sorted_data_len, FLOAT_TYPE *all_sorted_data_set, int *sorted_data_set_indexes, int tree_nodes_num, CONVEX_TREE *tree_struct, int all_leaf_nodes_constraint_num, FLOAT_TYPE *all_leaf_nodes_ALPHA_set, FLOAT_TYPE *all_leaf_nodes_BETA_set, int *all_constrains_num_of_each_leaf_nodes, int *all_leaf_nodes_offsets_in_all_ALPHA, int leaf_node_num, int *all_leaf_nodes_ancestor_nodes_ids, int *leaf_nodes_start_pos_in_sorted_data_set, int *pts_num_in_sorted_leaf_nodes, FLOAT_TYPE *dist_k_mins_global_tmp, int *idx_k_mins_global_tmp, int *remain_index, int K_NN, long *dist_computation_times_arr, long *quadprog_times_arr, long *dist_computation_times_in_quadprog, int NODES_NUM, int DIM) { clock_t start, finish, start1, finish1; float duration; bool cuda_init = init_CUDA_device(); if (cuda_init){ printf("\nsucced for initializing CUDA"); } cudaError_t err = cudaSuccess; //Launch the Vector Add CUDA Kernel printf("\nCUDA Malloc Memory.....\n "); start = clock(); size_t size = candidate_query_points_num * sizeof(int); if (d_candidate_query_points_indexes == NULL){ err = cudaMalloc((void **)&d_candidate_query_points_indexes, size); err = cudaMemcpy(d_candidate_query_points_indexes, candidate_query_points_indexes, size, cudaMemcpyHostToDevice); } size = candidate_query_points_num * sizeof(FLOAT_TYPE)*DIM; if (d_candidate_query_points_set == NULL){ err = cudaMalloc((void **)&d_candidate_query_points_set, size); err = cudaMemcpy(d_candidate_query_points_set, candidate_query_points_set, size, cudaMemcpyHostToDevice); } size = sorted_data_len * sizeof(FLOAT_TYPE)*DIM; if (d_all_sorted_data_set == NULL){ err = cudaMalloc((void **)&d_all_sorted_data_set, size); err = cudaMemcpy(d_all_sorted_data_set, all_sorted_data_set, size, cudaMemcpyHostToDevice); } size = sorted_data_len * sizeof(int); if (d_sorted_data_set_indexes == NULL){ err = cudaMalloc((void **)&d_sorted_data_set_indexes, size); err = cudaMemcpy(d_sorted_data_set_indexes, sorted_data_set_indexes, size, cudaMemcpyHostToDevice); } size = tree_nodes_num*sizeof(CONVEX_TREE); if (d_tree_struct == NULL){ err = cudaMalloc((void **)&d_tree_struct, size); err = cudaMemcpy(d_tree_struct, tree_struct, size, cudaMemcpyHostToDevice); } size = all_leaf_nodes_constraint_num* sizeof(FLOAT_TYPE)*DIM; if (d_all_leaf_nodes_ALPHA_set == NULL){ err = cudaMalloc((void **)&d_all_leaf_nodes_ALPHA_set, size); err = cudaMemcpy(d_all_leaf_nodes_ALPHA_set, all_leaf_nodes_ALPHA_set, size, cudaMemcpyHostToDevice); } size = all_leaf_nodes_constraint_num* sizeof(FLOAT_TYPE); if (d_all_leaf_nodes_BETA_set == NULL){ err = cudaMalloc((void **)&d_all_leaf_nodes_BETA_set, size); err = cudaMemcpy(d_all_leaf_nodes_BETA_set, all_leaf_nodes_BETA_set, size, cudaMemcpyHostToDevice); } size = leaf_node_num*sizeof(int); if (d_all_constrains_num_of_each_leaf_nodes == NULL){ err = cudaMalloc((void **)&d_all_constrains_num_of_each_leaf_nodes, size); err = cudaMemcpy(d_all_constrains_num_of_each_leaf_nodes, all_constrains_num_of_each_leaf_nodes, size, cudaMemcpyHostToDevice); } if (d_all_leaf_nodes_offsets_in_all_ALPHA == NULL){ err = cudaMalloc((void **)&d_all_leaf_nodes_offsets_in_all_ALPHA, size); err = cudaMemcpy(d_all_leaf_nodes_offsets_in_all_ALPHA, all_leaf_nodes_offsets_in_all_ALPHA, size, cudaMemcpyHostToDevice); } if (d_all_leaf_nodes_ancestor_nodes_ids == NULL){ err = cudaMalloc((void **)&d_all_leaf_nodes_ancestor_nodes_ids, size); err = cudaMemcpy(d_all_leaf_nodes_ancestor_nodes_ids, all_leaf_nodes_ancestor_nodes_ids, size, cudaMemcpyHostToDevice); } if (d_leaf_nodes_start_pos_in_sorted_data_set == NULL){ err = cudaMalloc((void **)&d_leaf_nodes_start_pos_in_sorted_data_set, size); err = cudaMemcpy(d_leaf_nodes_start_pos_in_sorted_data_set, leaf_nodes_start_pos_in_sorted_data_set, size, cudaMemcpyHostToDevice); } if (d_pts_num_in_sorted_leaf_nodes == NULL){ err = cudaMalloc((void **)&d_pts_num_in_sorted_leaf_nodes, size); err = cudaMemcpy(d_pts_num_in_sorted_leaf_nodes, pts_num_in_sorted_leaf_nodes, size, cudaMemcpyHostToDevice); } size = candidate_query_points_num* sizeof(FLOAT_TYPE)* K_NN; if (d_dist_k_mins_global_tmp == NULL){ err = cudaMalloc((void **)&d_dist_k_mins_global_tmp, size); err = cudaMemcpy(d_dist_k_mins_global_tmp, dist_k_mins_global_tmp, size, cudaMemcpyHostToDevice); } size = candidate_query_points_num* sizeof(int)* K_NN; if (d_idx_k_mins_global_tmp == NULL){ err = cudaMalloc((void **)&d_idx_k_mins_global_tmp, size); err = cudaMemcpy(d_idx_k_mins_global_tmp, idx_k_mins_global_tmp, size, cudaMemcpyHostToDevice); } size = sorted_data_len * sizeof(int); int* d_remain_index = NULL; err = cudaMalloc((void **)&d_remain_index, size); err = cudaMemcpy(d_remain_index, remain_index, size, cudaMemcpyHostToDevice); size = candidate_query_points_num*sizeof(long); err = cudaMalloc((void **)&d_dist_computation_times_arr, size); err = cudaMalloc((void **)&d_quadprog_times_arr, size); err = cudaMalloc((void **)&d_dist_computation_times_in_quadprog, size); int task_per_num = 100000 / 256; finish = clock(); duration = (float)(finish - start) / CLOCKS_PER_SEC; //printf( "\n CUDA Malloc Memory Time %f\n", duration); //printf ("\n calling do_finding_KNN_by_leaf_order_cuda.....\n"); int block_num = candidate_query_points_num / 1024 + 1; dim3 blocks(block_num, 1), threads(1024, 1); //int blocks_per_time = 6 * 16 * 128 * 8; start1 = clock(); new_do_finding_KNN_by_leaf_order_cuda << < blocks, threads >> >( candidate_query_points_num, d_candidate_query_points_indexes, d_candidate_query_points_set, d_all_sorted_data_set, d_sorted_data_set_indexes, d_tree_struct, d_all_leaf_nodes_ALPHA_set, d_all_leaf_nodes_BETA_set, d_all_constrains_num_of_each_leaf_nodes, d_all_leaf_nodes_offsets_in_all_ALPHA, leaf_node_num, d_all_leaf_nodes_ancestor_nodes_ids, d_leaf_nodes_start_pos_in_sorted_data_set, d_pts_num_in_sorted_leaf_nodes, d_dist_k_mins_global_tmp, d_idx_k_mins_global_tmp, d_remain_index, K_NN, d_dist_computation_times_arr, d_quadprog_times_arr, d_dist_computation_times_in_quadprog, NODES_NUM, DIM, 1); err = cudaGetLastError(); if (err != cudaSuccess) { fprintf(stderr, "Failed to launch vectorAdd kernel (error code %s)!\n", cudaGetErrorString(err)); //exit(EXIT_FAILURE); } finish1 = clock(); duration = (float)(finish1 - start1) / CLOCKS_PER_SEC; //printf( "\n performing do_finding_KNN_by_leaf_order_cuda time %f milsec %f s\n",(float)(finish1-start1), duration); //printf( "----print device matrix-------"); //print_float_Data <<<4, 256>>>(d_dist_k_mins_global_tmp,d_idx_k_mins_global_tmp,0); // Copy the device result vector in device memory to the host result vector // in host memory. //printf("\n copy data from GPU....\n"); size = candidate_query_points_num* sizeof(FLOAT_TYPE)* K_NN; err = cudaMemcpy(dist_k_mins_global_tmp, d_dist_k_mins_global_tmp, size, cudaMemcpyDeviceToHost); size = candidate_query_points_num* sizeof(int)* K_NN; err = cudaMemcpy(idx_k_mins_global_tmp, d_idx_k_mins_global_tmp, size, cudaMemcpyDeviceToHost); err = cudaGetLastError(); if (err != cudaSuccess) { fprintf(stderr, "Failed to launch vectorAdd kernel (error code %s)!\n", cudaGetErrorString(err)); //exit(EXIT_FAILURE); } free_cuda_mem(); return 0; } __global__ void kernel_do_find_approximate_nodes( int candidate_query_points_num, FLOAT_TYPE *candidate_query_points_set, int tree_nodes_num, CONVEX_TREE *tree_struct, FLOAT_TYPE *nodes_centers, int *appr_leaf_node_indexes, int DIM ){ int tid = blockDim.x * blockIdx.x + threadIdx.x; if (tid >= candidate_query_points_num) return; FLOAT_TYPE *q = candidate_query_points_set + tid * DIM; int cur_node_index=0; while (tree_struct[cur_node_index].isLeaf == false){ FLOAT_TYPE left_dist_squre = float_dist_squre_cuda(q, nodes_centers+tree_struct[cur_node_index].left_node*DIM,DIM); FLOAT_TYPE right_dist_squre = float_dist_squre_cuda(q, nodes_centers+tree_struct[cur_node_index].right_node*DIM ,DIM); //count the distance computation times. if (left_dist_squre >= right_dist_squre){ cur_node_index = tree_struct[cur_node_index].right_node; } else{ cur_node_index = tree_struct[cur_node_index].left_node; } } appr_leaf_node_indexes[tid] = tree_struct[cur_node_index].leaf_index; } extern "C" void call_do_find_approximate_nodes( int candidate_query_points_num, FLOAT_TYPE *candidate_query_points_set, int tree_nodes_num, CONVEX_TREE *tree_struct, FLOAT_TYPE *nodes_centers, int *candidate_query_points_appr_leaf_node_indexes, int DIM ){ size_t size = candidate_query_points_num * sizeof(int); cudaError_t err = cudaSuccess; size = candidate_query_points_num * sizeof(FLOAT_TYPE)*DIM; err = cudaMalloc((void **)&d_candidate_query_points_set, size); err = cudaMemcpy(d_candidate_query_points_set, candidate_query_points_set, size, cudaMemcpyHostToDevice); size = tree_nodes_num * sizeof(CONVEX_TREE); err = cudaMalloc((void **)&d_tree_struct, size); err = cudaMemcpy(d_tree_struct, tree_struct, size, cudaMemcpyHostToDevice); size = candidate_query_points_num * sizeof(int); err = cudaMalloc((void **)&d_candidate_query_points_appr_leaf_node_indexes, size); size= tree_nodes_num*sizeof(FLOAT_TYPE)*DIM; err = cudaMalloc((void **)&d_nodes_centers, size); err = cudaMemcpy(d_nodes_centers, nodes_centers, size, cudaMemcpyHostToDevice); int block_num =candidate_query_points_num/1024 +1; dim3 blocks(block_num,1), threads(1024,1); kernel_do_find_approximate_nodes<<<blocks, threads>>>( candidate_query_points_num, d_candidate_query_points_set, tree_nodes_num, d_tree_struct, d_nodes_centers, d_candidate_query_points_appr_leaf_node_indexes, DIM); err = cudaGetLastError(); if (err != cudaSuccess){ printf("Failed to launch vectorAdd kernel (error code %s)!\n", cudaGetErrorString(err)); } size = candidate_query_points_num * sizeof(int); err = cudaMemcpy(candidate_query_points_appr_leaf_node_indexes, d_candidate_query_points_appr_leaf_node_indexes, size, cudaMemcpyDeviceToHost); err = cudaGetLastError(); if (err != cudaSuccess){ printf("Failed to launch vectorAdd kernel (error code %s)!\n", cudaGetErrorString(err)); } } /** * Host main routine */ /* extern "C" int call_cuda_kernel_brute_force_and_update( int candidate_query_points_num, int *candidate_query_points_indexes, FLOAT_TYPE *candidate_query_points_set, int data_set_size, FLOAT_TYPE *data_set, FLOAT_TYPE *KNN_index_with_dist, int K_NN, int DIM) { clock_t start, finish, start1, finish1; bool cuda_init = init_CUDA_device(); if (cuda_init){ printf("succed for initializing CUDA\n"); } cudaError_t err = cudaSuccess; //Launch the Vector Add CUDA Kernel printf("CUDA Malloc Memory.....\n"); start = clock(); size_t size = candidate_query_points_num * sizeof(int); int *d_candidate_query_points_indexes = NULL; err = cudaMalloc((void **)&d_candidate_query_points_indexes, size); err = cudaMemcpy(d_candidate_query_points_indexes, candidate_query_points_indexes, size, cudaMemcpyHostToDevice); size = candidate_query_points_num * sizeof(FLOAT_TYPE)*DIM; FLOAT_TYPE *d_candidate_query_points_set = NULL; err = cudaMalloc((void **)&d_candidate_query_points_set, size); err = cudaMemcpy(d_candidate_query_points_set, candidate_query_points_set, size, cudaMemcpyHostToDevice); size = data_set_size * sizeof(FLOAT_TYPE)*DIM; FLOAT_TYPE *d_data_set = NULL; err = cudaMalloc((void **)&d_data_set, size); err = cudaMemcpy(d_data_set, data_set, size, cudaMemcpyHostToDevice); size = candidate_query_points_num* sizeof(FLOAT_TYPE)* K_NN * 2; FLOAT_TYPE *d_KNN_index_with_dist = NULL; err = cudaMalloc((void **)&d_KNN_index_with_dist, size); finish = clock(); double duration = (double)(finish - start) / CLOCKS_PER_SEC; printf("CUDA Malloc Memory Time %fs\n", duration); printf("calling do_finding_KNN_by_leaf_order_cuda.....\n"); dim3 grids(2, 1), blocks(6, 1), threads(1024, 1); start1 = clock(); do_brute_force_KNN_cuda << < blocks, threads >> > (d_data_set, data_set_size, d_candidate_query_points_set, candidate_query_points_num, d_KNN_index_with_dist, K_NN, DIM); err = cudaGetLastError(); if (err != cudaSuccess) { fprintf(stderr, "Failed to launch vectorAdd kernel (error code %s)!\n", cudaGetErrorString(err)); //exit(EXIT_FAILURE); } //printf( "----print device matrix-------"); //print_float_Data <<<4, 256>>>(d_dist_k_mins_global_tmp,d_idx_k_mins_global_tmp,0); // Copy the device result vector in device memory to the host result vector // in host memory. //printf("\n copy data from GPU....\n"); size = candidate_query_points_num* sizeof(FLOAT_TYPE)* K_NN * 2; err = cudaMemcpy(KNN_index_with_dist, d_KNN_index_with_dist, size, cudaMemcpyDeviceToHost); //size= candidate_query_points_num* sizeof(FLOAT_TYPE)* K_NN; //err = cudaMemcpy(dist_k_mins_global_tmp, d_dist_k_mins_global_tmp, size, cudaMemcpyDeviceToHost); //size= candidate_query_points_num* sizeof(int)* K_NN; //err = cudaMemcpy(idx_k_mins_global_tmp, d_idx_k_mins_global_tmp, size, cudaMemcpyDeviceToHost); err = cudaGetLastError(); if (err != cudaSuccess) { fprintf(stderr, "Failed to launch vectorAdd kernel (error code %s)!\n", cudaGetErrorString(err)); //exit(EXIT_FAILURE); } finish1 = clock(); duration = (double)(finish1 - start1) / CLOCKS_PER_SEC; printf("performing do_finding_KNN_by_leaf_order_cuda time %fs\n", duration); return 0; } */ /** * Host main routine */ extern "C" int call_cuda_kernel_brute_force( int candidate_query_points_num, int *candidate_query_points_indexes, FLOAT_TYPE *candidate_query_points_set, int data_set_size, FLOAT_TYPE *data_set, FLOAT_TYPE *dist_k_mins_global_tmp, int *idx_k_mins_global_tmp, int K_NN, int DIM) { clock_t start, finish,start1, finish1; bool cuda_init =init_CUDA_device(); if (cuda_init){ printf("succed for initializing CUDA\n"); } cudaError_t err = cudaSuccess; //Launch the Vector Add CUDA Kernel printf("CUDA Malloc Memory.....\n"); start=clock(); size_t size = candidate_query_points_num * sizeof(int); int *d_candidate_query_points_indexes = NULL; err = cudaMalloc((void **)&d_candidate_query_points_indexes, size); err = cudaMemcpy(d_candidate_query_points_indexes, candidate_query_points_indexes, size, cudaMemcpyHostToDevice); for (int i = 0; i < 100; i++){ for (int j = 0; j < DIM; j++){ printf("%.1f ", candidate_query_points_set[i*DIM + j]); } printf("\n"); } size = candidate_query_points_num * sizeof(FLOAT_TYPE)*DIM; FLOAT_TYPE *d_candidate_query_points_set=NULL; err = cudaMalloc((void **)&d_candidate_query_points_set, size); err = cudaMemcpy(d_candidate_query_points_set, candidate_query_points_set, size, cudaMemcpyHostToDevice); size = data_set_size * sizeof(FLOAT_TYPE)*DIM; FLOAT_TYPE *d_data_set=NULL; err = cudaMalloc((void **)&d_data_set, size); err = cudaMemcpy(d_data_set, data_set, size, cudaMemcpyHostToDevice); size= candidate_query_points_num* sizeof(FLOAT_TYPE)* K_NN; FLOAT_TYPE *d_dist_k_mins_global_dist = NULL; err = cudaMalloc((void **)&d_dist_k_mins_global_dist, size); size= candidate_query_points_num* sizeof(int)* K_NN; int *d_idx_k_mins_global_tmp=NULL; err = cudaMalloc((void **)&d_idx_k_mins_global_tmp, size); finish=clock(); double duration = (double)(finish-start)/ CLOCKS_PER_SEC; printf( "CUDA Malloc Memory Time %fs\n", duration); printf ("calling do_finding_KNN_by_leaf_order_cuda.....\n"); int block_num = candidate_query_points_num / 1024 + 1; dim3 blocks(block_num, 1), threads(1024, 1); start1=clock(); do_brute_force_KNN_cuda<<< blocks, threads>>> (d_data_set, data_set_size, d_candidate_query_points_set, candidate_query_points_num, d_dist_k_mins_global_dist, d_idx_k_mins_global_tmp, K_NN, DIM); err = cudaGetLastError(); if (err != cudaSuccess) { fprintf(stderr, "Failed to launch vectorAdd kernel (error code %s)!\n", cudaGetErrorString(err)); //exit(EXIT_FAILURE); } printf("ending......\n"); size= candidate_query_points_num* sizeof(FLOAT_TYPE)* K_NN; err = cudaMemcpy(dist_k_mins_global_tmp, d_dist_k_mins_global_tmp, size, cudaMemcpyDeviceToHost); size= candidate_query_points_num* sizeof(int)* K_NN; err = cudaMemcpy(idx_k_mins_global_tmp, d_idx_k_mins_global_tmp, size, cudaMemcpyDeviceToHost); err = cudaGetLastError(); if (err != cudaSuccess) { fprintf(stderr, "Failed to launch vectorAdd kernel (error code %s)!\n", cudaGetErrorString(err)); //exit(EXIT_FAILURE); } finish1=clock(); duration = (double)(finish1-start1)/ CLOCKS_PER_SEC; printf( "performing do_finding_KNN_by_leaf_order_cuda time %fs\n", duration); return 0; } /** * Host main routine */ extern "C" int call_cuda_kernel_brute_force_for_outliers( int candidate_query_points_num, int *candidate_query_points_indexes, FLOAT_TYPE *candidate_query_points_set, int data_set_size, FLOAT_TYPE *data_set, int *data_indexes, FLOAT_TYPE *dist_k_mins_global_tmp, int *idx_k_mins_global_tmp, int K_NN, int DIM) { clock_t start, finish, start1, finish1; bool cuda_init = init_CUDA_device(); /* if (cuda_init){ printf("succed for initializing CUDA\n"); } */ cudaError_t err = cudaSuccess; //Launch the Vector Add CUDA Kernel //printf("CUDA Malloc Memory.....\n"); start = clock(); size_t size = candidate_query_points_num * sizeof(int); int *d_candidate_query_points_indexes = NULL; err = cudaMalloc((void **)&d_candidate_query_points_indexes, size); err = cudaMemcpy(d_candidate_query_points_indexes, candidate_query_points_indexes, size, cudaMemcpyHostToDevice); size = candidate_query_points_num * sizeof(FLOAT_TYPE)*DIM; FLOAT_TYPE *d_candidate_query_points_set = NULL; err = cudaMalloc((void **)&d_candidate_query_points_set, size); err = cudaMemcpy(d_candidate_query_points_set, candidate_query_points_set, size, cudaMemcpyHostToDevice); size = data_set_size * sizeof(FLOAT_TYPE)*DIM; FLOAT_TYPE *d_data_set = NULL; err = cudaMalloc((void **)&d_data_set, size); err = cudaMemcpy(d_data_set, data_set, size, cudaMemcpyHostToDevice); size = data_set_size * sizeof(int); int *d_data_indexes = NULL; err = cudaMalloc((void **)&d_data_indexes, size); err = cudaMemcpy(d_data_indexes, data_indexes, size, cudaMemcpyHostToDevice); size = candidate_query_points_num* sizeof(FLOAT_TYPE)* K_NN; FLOAT_TYPE *d_dist_k_mins_global_dist = NULL; err = cudaMalloc((void **)&d_dist_k_mins_global_dist, size); err = cudaMemcpy(d_dist_k_mins_global_dist, dist_k_mins_global_tmp, size, cudaMemcpyHostToDevice); size = candidate_query_points_num* sizeof(int)* K_NN; int *d_idx_k_mins_global_tmp = NULL; err = cudaMalloc((void **)&d_idx_k_mins_global_tmp, size); err = cudaMemcpy(d_idx_k_mins_global_tmp, idx_k_mins_global_tmp, size, cudaMemcpyHostToDevice); finish = clock(); double duration = (double)(finish - start) / CLOCKS_PER_SEC; //printf("CUDA Malloc Memory Time %fs\n", duration); //printf("calling do_finding_KNN_by_leaf_order_cuda.....\n"); int block_num = candidate_query_points_num / 1024 + 1; dim3 blocks(block_num, 1), threads(1024, 1); start1 = clock(); do_brute_force_KNN_for_outliers_cuda << < blocks, threads >> > (d_data_set, data_set_size, d_data_indexes, d_candidate_query_points_set, candidate_query_points_num, d_dist_k_mins_global_dist, d_idx_k_mins_global_tmp, K_NN, DIM); err = cudaGetLastError(); if (err != cudaSuccess) { //fprintf(stderr, "Failed to launch vectorAdd kernel (error code %s)!\n", cudaGetErrorString(err)); //exit(EXIT_FAILURE); } //printf( "----print device matrix-------"); //print_float_Data <<<4, 256>>>(d_dist_k_mins_global_tmp,d_idx_k_mins_global_tmp,0); // Copy the device result vector in device memory to the host result vector // in host memory. //printf("\n copy data from GPU....\n"); size = candidate_query_points_num* sizeof(FLOAT_TYPE)* K_NN; err = cudaMemcpy(dist_k_mins_global_tmp, d_dist_k_mins_global_tmp, size, cudaMemcpyDeviceToHost); size = candidate_query_points_num* sizeof(int)* K_NN; err = cudaMemcpy(idx_k_mins_global_tmp, d_idx_k_mins_global_tmp, size, cudaMemcpyDeviceToHost); err = cudaGetLastError(); if (err != cudaSuccess) { //fprintf(stderr, "Failed to launch vectorAdd kernel (error code %s)!\n", cudaGetErrorString(err)); //exit(EXIT_FAILURE); } finish1 = clock(); duration = (double)(finish1 - start1) / CLOCKS_PER_SEC; //printf("performing do_finding_KNN_by_leaf_order_cuda time %fs\n", duration); return 0; }
79c251ebd5d5f9e1fca880286a90c9d8dbaf4039.hip
// !!! This is a file automatically generated by hipify!!! /* * This sample implements a separable convolution * of a 2D image with an arbitrary filter. */ #include <stdio.h> #include <stdlib.h> #include <hip/hip_runtime.h> #include <hip/hip_runtime_api.h> const unsigned int filter_radius=16; #define THREADS_PER_BLOCK 1024 hipError_t code; #define CUDA_ERROR_CHECK(n) \ code = hipGetLastError(); \ if ( code != hipSuccess ) {\ printf("**** Error at num %d hipGetLastError().*********\n", n ); \ printf("Type of error: %s\n", hipGetErrorString( code )); \ } #define FILTER_LENGTH (2 * filter_radius + 1) #define ABS(val) ((val)<0.0 ? (-(val)) : (val)) #define accuracy 0.00005 __constant__ __device__ float d_Filter[FILTER_LENGTH]; //////////////////////////////////////////////////////////////////////////////// // Reference row convolution filter //////////////////////////////////////////////////////////////////////////////// void convolutionRowCPU(float *h_Dst, float *h_Src, float *h_Filter, int imageW, int imageH, int filterR) { int x, y, k; for (y = 0; y < imageH; y++) { for (x = 0; x < imageW; x++) { float sum = 0; for (k = -filterR; k <= filterR; k++) { int d = x + k; if (d >= 0 && d < imageW) { sum += h_Src[y * imageW + d] * h_Filter[filterR - k]; } h_Dst[y * imageW + x] = sum; } } } } //////////////////////////////////////////////////////////////////////////////// // Reference column convolution filter //////////////////////////////////////////////////////////////////////////////// void convolutionColumnCPU( float *h_Dst, float *h_Src, float *h_Filter, int imageW, int imageH, int filterR) { int x, y, k; for (y = 0; y < imageH; y++) { for (x = 0; x < imageW; x++) { float sum = 0; for (k = -filterR; k <= filterR; k++) { int d = y + k; if (d >= 0 && d < imageH) { sum += h_Src[d * imageW + x] * h_Filter[filterR - k]; } h_Dst[y * imageW + x] = sum; } } } } /* * GPU convolution Rows */ __global__ void convolutionRowGPU( float *d_Dst, float *d_Src, /*float *d_Filter,*/ int imageW, int imageH, int filterR) { extern __shared__ float sh_Src[]; /* blockDim.x=32, blockDim.y=32 * blockIdx.x = 0-31, blockIdx.y = 0-31 * threadIdx.x = {0-31} */ int col = threadIdx.x + blockDim.x * blockIdx.x; int row = threadIdx.y + blockDim.y * blockIdx.y; int index = row*imageW+col; if (threadIdx.x == 31 && threadIdx.y == 31) { //if (blockIdx.x == 1 || blockIdx.y == 1) { //if (index ==32*32+0) { printf("EKTUPWTHIKEEEEEE...\nindex=%d, blockDim.y=%d, blockIdx.y=%d, threadIDx.y=%d\n", index, blockDim.y, blockIdx.y, threadIdx.y); printf("blockDim.x=%d, blockIdx.x=%d, threadIDx.x=%d\n", blockDim.x, blockIdx.x, threadIdx.x); printf("gridDim.x=%d, gridDim.y=%d\n", gridDim.x, gridDim.y); } sh_Src[index] = d_Src[index]; __syncthreads(); float sum=0; int x, d, k; x = index;//threadIdx.x + blockDim.x * blockIdx.x; for (k = -filterR; k <= filterR; k++) { d = x%imageW + k; if (d >= 0 && d < imageW) { sum += sh_Src[x + k] * d_Filter[filterR - k]; } d_Dst[x] = sum; } } /* * GPU convolution Columns */ __global__ void convolutionColumnGPU( float *d_Dst, float *d_Src, /*float *d_Filter,*/ int imageW, int imageH, int filterR) { extern __shared__ float sh_Src[]; int col = threadIdx.x + blockDim.x * blockIdx.x; int row = threadIdx.y + blockDim.y * blockIdx.y; int index = row*imageW+col; sh_Src[index] = d_Src[index]; __syncthreads(); float sum=0; int x, d, k; x = index;//row*imageW+col for (k = -filterR; k <= filterR; k++) { d = x/imageW + k; if (d >= 0 && d < imageH) { sum += sh_Src[d * imageW + x%imageW] * d_Filter[filterR - k] ; } d_Dst[x] = sum; } } //////////////////////////////////////////////////////////////////////////////// // Main program //////////////////////////////////////////////////////////////////////////////// int main(int argc, char **argv) { float *h_Filter, *h_Input, *h_Buffer, *h_OutputCPU, *h_OutputGPU, *d_Input, *d_Output_GPU, *d_Buffer /*,*d_Filter*/; int pointsThatDiffer = 0; int imageW; int imageH; unsigned int i; // Ta imageW, imageH ta dinei o xrhsths kai thewroume oti einai isa, // dhladh imageW = imageH = N, opou to N to dinei o xrhsths. // Gia aplothta thewroume tetragwnikes eikones. if (argc < 2) { printf("Few arguments. Run as ./<name> <image_size>,where <image_size> should be a power of two and greater than 33\n"); return -1; } if ( strlen(argv[1]) == 0 ) { printf("Error at argv[1]. Please give the size of image as 1st argument(e.g. ./exe 100 5\n"); return -1; } imageW = atoi(argv[1]); imageH = imageW; printf("Image Width x Height = %i x %i\n\n", imageW, imageH); printf("Allocating and initializing host arrays...\n"); // Tha htan kalh idea na elegxete kai to apotelesma twn malloc... h_Filter = (float *)malloc(FILTER_LENGTH * sizeof(float)); h_Input = (float *)malloc(imageW * imageH * sizeof(float) ); h_Buffer = (float *)malloc(imageW * imageH * sizeof(float)); h_OutputCPU = (float *)malloc(imageW * imageH * sizeof(float)); /// *** EDITED ***// hipMalloc( (void **)&d_Input, imageW * imageH * sizeof(float) ); //hipMalloc( (void **)&d_Filter, FILTER_LENGTH * sizeof(float) ); hipMalloc( (void **)&d_Output_GPU, imageW * imageH * sizeof(float) ); hipMalloc( (void **)&d_Buffer, imageW * imageH * sizeof(float) ); h_OutputGPU = (float *)malloc(imageW * imageH * sizeof(float)); if ( h_Filter == NULL || h_Input == NULL || h_Buffer == NULL || h_OutputCPU==NULL || h_OutputGPU == NULL) { printf("Error allocating host or device\n"); } /* * tsekare an uparxoun sfalmata */ // to 'h_Filter' apotelei to filtro me to opoio ginetai to convolution kai // arxikopoieitai tuxaia. To 'h_Input' einai h eikona panw sthn opoia ginetai // to convolution kai arxikopoieitai kai auth tuxaia. srand(200); for (i = 0; i < FILTER_LENGTH; i++) { h_Filter[i] = (float)(rand() % 16); } for (i = 0; i < (unsigned int)imageW * imageH; i++) { h_Input[i] = (float)rand() / ((float)RAND_MAX / 255) + (float)rand() / (float)RAND_MAX; } hipMemcpy(d_Input,h_Input,imageW*imageH*sizeof(float),hipMemcpyHostToDevice); CUDA_ERROR_CHECK(1); code = hipMemcpyToSymbol( d_Filter, h_Filter, FILTER_LENGTH*sizeof( float ) ); if (code != hipSuccess) printf("Error copying from host Memory to Constant Memory!\n"); CUDA_ERROR_CHECK(2); // To parakatw einai to kommati pou ekteleitai sthn CPU kai me vash auto prepei na ginei h sugrish me thn GPU. printf("CPU computation...\n"); convolutionRowCPU(h_Buffer, h_Input, h_Filter, imageW, imageH, filter_radius); // convolution kata grammes convolutionColumnCPU(h_OutputCPU, h_Buffer, h_Filter, imageW, imageH, filter_radius);//convolution kata sthles // create 4x4 thread blocks dim3 grid_size; // configure a two dimensional grid as well dim3 block_size; if (imageH <= 32) { grid_size.x = 1; grid_size.y = 1; block_size.x = imageH; block_size.y = imageH; } else { grid_size.x = 1+imageH/32; grid_size.y = imageH/32; block_size.x = 32; block_size.y = 32; } printf("grid size: %d\n", grid_size.x); hipLaunchKernelGGL(( convolutionRowGPU), dim3(grid_size) , dim3(block_size), THREADS_PER_BLOCK*sizeof(float), 0, d_Buffer, d_Input/*,d_Filter*/, imageH, imageW, filter_radius); hipDeviceSynchronize();//barrier of host CUDA_ERROR_CHECK(3); hipLaunchKernelGGL(( convolutionColumnGPU), dim3(grid_size) , dim3(block_size), THREADS_PER_BLOCK*sizeof(float), 0, d_Output_GPU, d_Buffer, /*d_Filter,*/ imageH, imageW, filter_radius); hipDeviceSynchronize();//barrier of host CUDA_ERROR_CHECK(4); //return data to host by copying the from global memory to host memory hipMemcpy(h_OutputGPU, d_Output_GPU, imageW * imageH * sizeof(float),hipMemcpyDeviceToHost); CUDA_ERROR_CHECK(5); //now compare host results VS device results. Is GPU same as CPU?! for (i = 0; i < (unsigned int)imageW * imageH; i++) { if(ABS(h_OutputCPU[i] - h_OutputGPU[i]) > accuracy){ pointsThatDiffer = 1; printf("The difference between the %dnth element is larger than accuracy. \n CPU: %g GPU %g differece: %.15g \nNow exiting..\n", i,h_OutputCPU[i] ,h_OutputGPU[i], ABS(h_OutputGPU[i] - h_OutputCPU[i]) ); break; } } if (pointsThatDiffer == 0) printf("******************** Correct: GPU output is the same as CPU output *************\n"); else printf("******************** Error: GPU output differs from CPU output!!! *************\n"); // free all the allocated memory free(h_OutputCPU); hipFree(d_Output_GPU); free(h_Buffer); hipFree(d_Buffer); free(h_Input); hipFree(d_Input); free(h_Filter); //hipFree(d_Filter); // Do a device reset just in case... Bgalte to sxolio otan ylopoihsete CUDA hipDeviceReset(); CUDA_ERROR_CHECK(6); return 0; }
79c251ebd5d5f9e1fca880286a90c9d8dbaf4039.cu
/* * This sample implements a separable convolution * of a 2D image with an arbitrary filter. */ #include <stdio.h> #include <stdlib.h> #include <cuda.h> #include <cuda_runtime_api.h> const unsigned int filter_radius=16; #define THREADS_PER_BLOCK 1024 cudaError_t code; #define CUDA_ERROR_CHECK(n) \ code = cudaGetLastError(); \ if ( code != cudaSuccess ) {\ printf("**** Error at num %d cudaGetLastError().*********\n", n ); \ printf("Type of error: %s\n", cudaGetErrorString( code )); \ } #define FILTER_LENGTH (2 * filter_radius + 1) #define ABS(val) ((val)<0.0 ? (-(val)) : (val)) #define accuracy 0.00005 __constant__ __device__ float d_Filter[FILTER_LENGTH]; //////////////////////////////////////////////////////////////////////////////// // Reference row convolution filter //////////////////////////////////////////////////////////////////////////////// void convolutionRowCPU(float *h_Dst, float *h_Src, float *h_Filter, int imageW, int imageH, int filterR) { int x, y, k; for (y = 0; y < imageH; y++) { for (x = 0; x < imageW; x++) { float sum = 0; for (k = -filterR; k <= filterR; k++) { int d = x + k; if (d >= 0 && d < imageW) { sum += h_Src[y * imageW + d] * h_Filter[filterR - k]; } h_Dst[y * imageW + x] = sum; } } } } //////////////////////////////////////////////////////////////////////////////// // Reference column convolution filter //////////////////////////////////////////////////////////////////////////////// void convolutionColumnCPU( float *h_Dst, float *h_Src, float *h_Filter, int imageW, int imageH, int filterR) { int x, y, k; for (y = 0; y < imageH; y++) { for (x = 0; x < imageW; x++) { float sum = 0; for (k = -filterR; k <= filterR; k++) { int d = y + k; if (d >= 0 && d < imageH) { sum += h_Src[d * imageW + x] * h_Filter[filterR - k]; } h_Dst[y * imageW + x] = sum; } } } } /* * GPU convolution Rows */ __global__ void convolutionRowGPU( float *d_Dst, float *d_Src, /*float *d_Filter,*/ int imageW, int imageH, int filterR) { extern __shared__ float sh_Src[]; /* blockDim.x=32, blockDim.y=32 * blockIdx.x = 0-31, blockIdx.y = 0-31 * threadIdx.x = {0-31} */ int col = threadIdx.x + blockDim.x * blockIdx.x; int row = threadIdx.y + blockDim.y * blockIdx.y; int index = row*imageW+col; if (threadIdx.x == 31 && threadIdx.y == 31) { //if (blockIdx.x == 1 || blockIdx.y == 1) { //if (index ==32*32+0) { printf("EKTUPWTHIKEEEEEE...\nindex=%d, blockDim.y=%d, blockIdx.y=%d, threadIDx.y=%d\n", index, blockDim.y, blockIdx.y, threadIdx.y); printf("blockDim.x=%d, blockIdx.x=%d, threadIDx.x=%d\n", blockDim.x, blockIdx.x, threadIdx.x); printf("gridDim.x=%d, gridDim.y=%d\n", gridDim.x, gridDim.y); } sh_Src[index] = d_Src[index]; __syncthreads(); float sum=0; int x, d, k; x = index;//threadIdx.x + blockDim.x * blockIdx.x; for (k = -filterR; k <= filterR; k++) { d = x%imageW + k; if (d >= 0 && d < imageW) { sum += sh_Src[x + k] * d_Filter[filterR - k]; } d_Dst[x] = sum; } } /* * GPU convolution Columns */ __global__ void convolutionColumnGPU( float *d_Dst, float *d_Src, /*float *d_Filter,*/ int imageW, int imageH, int filterR) { extern __shared__ float sh_Src[]; int col = threadIdx.x + blockDim.x * blockIdx.x; int row = threadIdx.y + blockDim.y * blockIdx.y; int index = row*imageW+col; sh_Src[index] = d_Src[index]; __syncthreads(); float sum=0; int x, d, k; x = index;//row*imageW+col for (k = -filterR; k <= filterR; k++) { d = x/imageW + k; if (d >= 0 && d < imageH) { sum += sh_Src[d * imageW + x%imageW] * d_Filter[filterR - k] ; } d_Dst[x] = sum; } } //////////////////////////////////////////////////////////////////////////////// // Main program //////////////////////////////////////////////////////////////////////////////// int main(int argc, char **argv) { float *h_Filter, *h_Input, *h_Buffer, *h_OutputCPU, *h_OutputGPU, *d_Input, *d_Output_GPU, *d_Buffer /*,*d_Filter*/; int pointsThatDiffer = 0; int imageW; int imageH; unsigned int i; // Ta imageW, imageH ta dinei o xrhsths kai thewroume oti einai isa, // dhladh imageW = imageH = N, opou to N to dinei o xrhsths. // Gia aplothta thewroume tetragwnikes eikones. if (argc < 2) { printf("Few arguments. Run as ./<name> <image_size>,where <image_size> should be a power of two and greater than 33\n"); return -1; } if ( strlen(argv[1]) == 0 ) { printf("Error at argv[1]. Please give the size of image as 1st argument(e.g. ./exe 100 5\n"); return -1; } imageW = atoi(argv[1]); imageH = imageW; printf("Image Width x Height = %i x %i\n\n", imageW, imageH); printf("Allocating and initializing host arrays...\n"); // Tha htan kalh idea na elegxete kai to apotelesma twn malloc... h_Filter = (float *)malloc(FILTER_LENGTH * sizeof(float)); h_Input = (float *)malloc(imageW * imageH * sizeof(float) ); h_Buffer = (float *)malloc(imageW * imageH * sizeof(float)); h_OutputCPU = (float *)malloc(imageW * imageH * sizeof(float)); /// *** EDITED ***// cudaMalloc( (void **)&d_Input, imageW * imageH * sizeof(float) ); //cudaMalloc( (void **)&d_Filter, FILTER_LENGTH * sizeof(float) ); cudaMalloc( (void **)&d_Output_GPU, imageW * imageH * sizeof(float) ); cudaMalloc( (void **)&d_Buffer, imageW * imageH * sizeof(float) ); h_OutputGPU = (float *)malloc(imageW * imageH * sizeof(float)); if ( h_Filter == NULL || h_Input == NULL || h_Buffer == NULL || h_OutputCPU==NULL || h_OutputGPU == NULL) { printf("Error allocating host or device\n"); } /* * tsekare an uparxoun sfalmata */ // to 'h_Filter' apotelei to filtro me to opoio ginetai to convolution kai // arxikopoieitai tuxaia. To 'h_Input' einai h eikona panw sthn opoia ginetai // to convolution kai arxikopoieitai kai auth tuxaia. srand(200); for (i = 0; i < FILTER_LENGTH; i++) { h_Filter[i] = (float)(rand() % 16); } for (i = 0; i < (unsigned int)imageW * imageH; i++) { h_Input[i] = (float)rand() / ((float)RAND_MAX / 255) + (float)rand() / (float)RAND_MAX; } cudaMemcpy(d_Input,h_Input,imageW*imageH*sizeof(float),cudaMemcpyHostToDevice); CUDA_ERROR_CHECK(1); code = cudaMemcpyToSymbol( d_Filter, h_Filter, FILTER_LENGTH*sizeof( float ) ); if (code != cudaSuccess) printf("Error copying from host Memory to Constant Memory!\n"); CUDA_ERROR_CHECK(2); // To parakatw einai to kommati pou ekteleitai sthn CPU kai me vash auto prepei na ginei h sugrish me thn GPU. printf("CPU computation...\n"); convolutionRowCPU(h_Buffer, h_Input, h_Filter, imageW, imageH, filter_radius); // convolution kata grammes convolutionColumnCPU(h_OutputCPU, h_Buffer, h_Filter, imageW, imageH, filter_radius);//convolution kata sthles // create 4x4 thread blocks dim3 grid_size; // configure a two dimensional grid as well dim3 block_size; if (imageH <= 32) { grid_size.x = 1; grid_size.y = 1; block_size.x = imageH; block_size.y = imageH; } else { grid_size.x = 1+imageH/32; grid_size.y = imageH/32; block_size.x = 32; block_size.y = 32; } printf("grid size: %d\n", grid_size.x); convolutionRowGPU<<<grid_size , block_size, THREADS_PER_BLOCK*sizeof(float)>>>(d_Buffer, d_Input/*,d_Filter*/, imageH, imageW, filter_radius); cudaThreadSynchronize();//barrier of host CUDA_ERROR_CHECK(3); convolutionColumnGPU<<<grid_size , block_size, THREADS_PER_BLOCK*sizeof(float)>>>(d_Output_GPU, d_Buffer, /*d_Filter,*/ imageH, imageW, filter_radius); cudaThreadSynchronize();//barrier of host CUDA_ERROR_CHECK(4); //return data to host by copying the from global memory to host memory cudaMemcpy(h_OutputGPU, d_Output_GPU, imageW * imageH * sizeof(float),cudaMemcpyDeviceToHost); CUDA_ERROR_CHECK(5); //now compare host results VS device results. Is GPU same as CPU?! for (i = 0; i < (unsigned int)imageW * imageH; i++) { if(ABS(h_OutputCPU[i] - h_OutputGPU[i]) > accuracy){ pointsThatDiffer = 1; printf("The difference between the %dnth element is larger than accuracy. \n CPU: %g GPU %g differece: %.15g \nNow exiting..\n", i,h_OutputCPU[i] ,h_OutputGPU[i], ABS(h_OutputGPU[i] - h_OutputCPU[i]) ); break; } } if (pointsThatDiffer == 0) printf("******************** Correct: GPU output is the same as CPU output *************\n"); else printf("******************** Error: GPU output differs from CPU output!!! *************\n"); // free all the allocated memory free(h_OutputCPU); cudaFree(d_Output_GPU); free(h_Buffer); cudaFree(d_Buffer); free(h_Input); cudaFree(d_Input); free(h_Filter); //cudaFree(d_Filter); // Do a device reset just in case... Bgalte to sxolio otan ylopoihsete CUDA cudaDeviceReset(); CUDA_ERROR_CHECK(6); return 0; }
32dee9428a13d4b2a0beb418d233577c43c398c1.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" // Copyright (c) 2017-2018, NVIDIA CORPORATION. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "dali/operators/reader/nvdecoder/imgproc.h" #include <hip/hip_fp16.h> namespace dali { namespace { // using math from https://msdn.microsoft.com/en-us/library/windows/desktop/dd206750(v=vs.85).aspx template<typename T> struct YCbCr { T y, cb, cr; }; // https://docs.microsoft.com/en-gb/windows/desktop/medfound/recommended-8-bit-yuv-formats-for-video-rendering#converting-8-bit-yuv-to-rgb888 __constant__ float ycbcr2rgb_mat_norm[9] = { 1.164383f, 0.0f, 1.596027f, 1.164383f, -0.391762f, -0.812968f, 1.164383f, 2.017232f, 0.0f }; // not normalized need *255 __constant__ float ycbcr2rgb_mat[9] = { 1.164383f * 255.0f, 0.0f, 1.596027f * 255.0f, 1.164383f * 255.0f, -0.391762f * 255.0f, -0.812968f * 255.0f, 1.164383f * 255.0f, 2.017232f * 255.0f, 0.0f }; __device__ float clip(float x, float max) { return fminf(fmaxf(x, 0.0f), max); } template<typename T> __device__ T convert(const float x) { return static_cast<T>(x); } #if 0 template<> __device__ half convert<half>(const float x) { return __float2half(x); } template<> __device__ uint8_t convert<uint8_t>(const float x) { return static_cast<uint8_t>(roundf(x)); } #endif template<typename YCbCr_T, typename RGB_T, bool Normalized = false> __device__ void ycbcr2rgb(const YCbCr<YCbCr_T>& ycbcr, RGB_T* rgb, size_t stride) { auto y = (static_cast<float>(ycbcr.y) - 16.0f/255.0f); auto cb = (static_cast<float>(ycbcr.cb) - 128.0f/255.0f); auto cr = (static_cast<float>(ycbcr.cr) - 128.0f/255.0f); float r, g, b; if (Normalized) { auto& m = ycbcr2rgb_mat_norm; r = clip(y*m[0] + cb*m[1] + cr*m[2], 1.0f); g = clip(y*m[3] + cb*m[4] + cr*m[5], 1.0f); b = clip(y*m[6] + cb*m[7] + cr*m[8], 1.0f); } else { auto& m = ycbcr2rgb_mat; r = clip(y*m[0] + cb*m[1] + cr*m[2], 255.0f); g = clip(y*m[3] + cb*m[4] + cr*m[5], 255.0f); b = clip(y*m[6] + cb*m[7] + cr*m[8], 255.0f); } rgb[0] = convert<RGB_T>(r); rgb[stride] = convert<RGB_T>(g); rgb[stride*2] = convert<RGB_T>(b); } template<typename T, bool Normalized = false, bool RGB = true> __global__ void process_frame_kernel( hipTextureObject_t luma, hipTextureObject_t chroma, T* dst, int index, float fx, float fy, int dst_width, int dst_height, int c) { const int dst_x = blockIdx.x * blockDim.x + threadIdx.x; const int dst_y = blockIdx.y * blockDim.y + threadIdx.y; if (dst_x >= dst_width || dst_y >= dst_height) return; auto src_x = 0.0f; // TODO(spanev) something less hacky here, why 4:2:0 fails on this edge? float shift = (dst_x == dst_width - 1) ? 0 : 0.5f; src_x = static_cast<float>(dst_x) * fx + shift; auto src_y = static_cast<float>(dst_y) * fy + shift; // https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#tex2d-object YCbCr<float> ycbcr; ycbcr.y = tex2D<float>(luma, src_x, src_y); auto cbcr = tex2D<float2>(chroma, src_x * 0.5f, src_y * 0.5f); ycbcr.cb = cbcr.x; ycbcr.cr = cbcr.y; auto* out = &dst[(dst_x + dst_y * dst_width) * c]; constexpr size_t stride = 1; if (RGB) { ycbcr2rgb<float, T, Normalized>(ycbcr, out, stride); } else { constexpr float scaling = Normalized ? 1.0f : 255.0f; out[0] = convert<T>(ycbcr.y * scaling); out[stride] = convert<T>(ycbcr.cb * scaling); out[stride*2] = convert<T>(ycbcr.cr * scaling); } } inline constexpr int divUp(int total, int grain) { return (total + grain - 1) / grain; } } // namespace template<typename T> void process_frame( hipTextureObject_t chroma, hipTextureObject_t luma, SequenceWrapper& output, int index, hipStream_t stream, uint16_t input_width, uint16_t input_height, bool rgb, bool normalized) { auto scale_width = input_width; auto scale_height = input_height; auto fx = static_cast<float>(input_width) / scale_width; auto fy = static_cast<float>(input_height) / scale_height; dim3 block(32, 8); dim3 grid(divUp(output.width, block.x), divUp(output.height, block.y)); int frame_stride = index * output.height * output.width * output.channels; LOG_LINE << "Processing frame " << index << " (frame_stride=" << frame_stride << ")" << std::endl; auto* tensor_out = output.sequence.mutable_data<T>() + frame_stride; if (normalized) { if (rgb) { hipLaunchKernelGGL(( process_frame_kernel<T, true, true>), dim3(grid), dim3(block), 0, stream, luma, chroma, tensor_out, index, fx, fy, output.width, output.height, output.channels); } else { hipLaunchKernelGGL(( process_frame_kernel<T, true, false>), dim3(grid), dim3(block), 0, stream, luma, chroma, tensor_out, index, fx, fy, output.width, output.height, output.channels); } } else { if (rgb) { hipLaunchKernelGGL(( process_frame_kernel<T, false, true>), dim3(grid), dim3(block), 0, stream, luma, chroma, tensor_out, index, fx, fy, output.width, output.height, output.channels); } else { hipLaunchKernelGGL(( process_frame_kernel<T, false, false>), dim3(grid), dim3(block), 0, stream, luma, chroma, tensor_out, index, fx, fy, output.width, output.height, output.channels); } } } template void process_frame<float>( hipTextureObject_t chroma, hipTextureObject_t luma, SequenceWrapper& output, int index, hipStream_t stream, uint16_t input_width, uint16_t input_height, bool rgb, bool normalized); template void process_frame<uint8_t>( hipTextureObject_t chroma, hipTextureObject_t luma, SequenceWrapper& output, int index, hipStream_t stream, uint16_t input_width, uint16_t input_height, bool rgb, bool normalized); } // namespace dali
32dee9428a13d4b2a0beb418d233577c43c398c1.cu
// Copyright (c) 2017-2018, NVIDIA CORPORATION. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "dali/operators/reader/nvdecoder/imgproc.h" #include <cuda_fp16.h> namespace dali { namespace { // using math from https://msdn.microsoft.com/en-us/library/windows/desktop/dd206750(v=vs.85).aspx template<typename T> struct YCbCr { T y, cb, cr; }; // https://docs.microsoft.com/en-gb/windows/desktop/medfound/recommended-8-bit-yuv-formats-for-video-rendering#converting-8-bit-yuv-to-rgb888 __constant__ float ycbcr2rgb_mat_norm[9] = { 1.164383f, 0.0f, 1.596027f, 1.164383f, -0.391762f, -0.812968f, 1.164383f, 2.017232f, 0.0f }; // not normalized need *255 __constant__ float ycbcr2rgb_mat[9] = { 1.164383f * 255.0f, 0.0f, 1.596027f * 255.0f, 1.164383f * 255.0f, -0.391762f * 255.0f, -0.812968f * 255.0f, 1.164383f * 255.0f, 2.017232f * 255.0f, 0.0f }; __device__ float clip(float x, float max) { return fminf(fmaxf(x, 0.0f), max); } template<typename T> __device__ T convert(const float x) { return static_cast<T>(x); } #if 0 template<> __device__ half convert<half>(const float x) { return __float2half(x); } template<> __device__ uint8_t convert<uint8_t>(const float x) { return static_cast<uint8_t>(roundf(x)); } #endif template<typename YCbCr_T, typename RGB_T, bool Normalized = false> __device__ void ycbcr2rgb(const YCbCr<YCbCr_T>& ycbcr, RGB_T* rgb, size_t stride) { auto y = (static_cast<float>(ycbcr.y) - 16.0f/255.0f); auto cb = (static_cast<float>(ycbcr.cb) - 128.0f/255.0f); auto cr = (static_cast<float>(ycbcr.cr) - 128.0f/255.0f); float r, g, b; if (Normalized) { auto& m = ycbcr2rgb_mat_norm; r = clip(y*m[0] + cb*m[1] + cr*m[2], 1.0f); g = clip(y*m[3] + cb*m[4] + cr*m[5], 1.0f); b = clip(y*m[6] + cb*m[7] + cr*m[8], 1.0f); } else { auto& m = ycbcr2rgb_mat; r = clip(y*m[0] + cb*m[1] + cr*m[2], 255.0f); g = clip(y*m[3] + cb*m[4] + cr*m[5], 255.0f); b = clip(y*m[6] + cb*m[7] + cr*m[8], 255.0f); } rgb[0] = convert<RGB_T>(r); rgb[stride] = convert<RGB_T>(g); rgb[stride*2] = convert<RGB_T>(b); } template<typename T, bool Normalized = false, bool RGB = true> __global__ void process_frame_kernel( cudaTextureObject_t luma, cudaTextureObject_t chroma, T* dst, int index, float fx, float fy, int dst_width, int dst_height, int c) { const int dst_x = blockIdx.x * blockDim.x + threadIdx.x; const int dst_y = blockIdx.y * blockDim.y + threadIdx.y; if (dst_x >= dst_width || dst_y >= dst_height) return; auto src_x = 0.0f; // TODO(spanev) something less hacky here, why 4:2:0 fails on this edge? float shift = (dst_x == dst_width - 1) ? 0 : 0.5f; src_x = static_cast<float>(dst_x) * fx + shift; auto src_y = static_cast<float>(dst_y) * fy + shift; // https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#tex2d-object YCbCr<float> ycbcr; ycbcr.y = tex2D<float>(luma, src_x, src_y); auto cbcr = tex2D<float2>(chroma, src_x * 0.5f, src_y * 0.5f); ycbcr.cb = cbcr.x; ycbcr.cr = cbcr.y; auto* out = &dst[(dst_x + dst_y * dst_width) * c]; constexpr size_t stride = 1; if (RGB) { ycbcr2rgb<float, T, Normalized>(ycbcr, out, stride); } else { constexpr float scaling = Normalized ? 1.0f : 255.0f; out[0] = convert<T>(ycbcr.y * scaling); out[stride] = convert<T>(ycbcr.cb * scaling); out[stride*2] = convert<T>(ycbcr.cr * scaling); } } inline constexpr int divUp(int total, int grain) { return (total + grain - 1) / grain; } } // namespace template<typename T> void process_frame( cudaTextureObject_t chroma, cudaTextureObject_t luma, SequenceWrapper& output, int index, cudaStream_t stream, uint16_t input_width, uint16_t input_height, bool rgb, bool normalized) { auto scale_width = input_width; auto scale_height = input_height; auto fx = static_cast<float>(input_width) / scale_width; auto fy = static_cast<float>(input_height) / scale_height; dim3 block(32, 8); dim3 grid(divUp(output.width, block.x), divUp(output.height, block.y)); int frame_stride = index * output.height * output.width * output.channels; LOG_LINE << "Processing frame " << index << " (frame_stride=" << frame_stride << ")" << std::endl; auto* tensor_out = output.sequence.mutable_data<T>() + frame_stride; if (normalized) { if (rgb) { process_frame_kernel<T, true, true><<<grid, block, 0, stream>>> (luma, chroma, tensor_out, index, fx, fy, output.width, output.height, output.channels); } else { process_frame_kernel<T, true, false><<<grid, block, 0, stream>>> (luma, chroma, tensor_out, index, fx, fy, output.width, output.height, output.channels); } } else { if (rgb) { process_frame_kernel<T, false, true><<<grid, block, 0, stream>>> (luma, chroma, tensor_out, index, fx, fy, output.width, output.height, output.channels); } else { process_frame_kernel<T, false, false><<<grid, block, 0, stream>>> (luma, chroma, tensor_out, index, fx, fy, output.width, output.height, output.channels); } } } template void process_frame<float>( cudaTextureObject_t chroma, cudaTextureObject_t luma, SequenceWrapper& output, int index, cudaStream_t stream, uint16_t input_width, uint16_t input_height, bool rgb, bool normalized); template void process_frame<uint8_t>( cudaTextureObject_t chroma, cudaTextureObject_t luma, SequenceWrapper& output, int index, cudaStream_t stream, uint16_t input_width, uint16_t input_height, bool rgb, bool normalized); } // namespace dali
fab7eef16c13f1b70d0b921bc6233f042403c45c.hip
// !!! This is a file automatically generated by hipify!!! #include <hip/hip_runtime_api.h> #include <iostream> #include <vector> #include <random> #include <chrono> #include <tuple> #include <utility> #include <numeric> #include <iomanip> #include "../../shared/include/utility.h" // Declare a GPU-visible floating point variable in global memory. __device__ float dResult; /* The most basic reduction kernel uses atomic operations to accumulate the individual inputs in a single, device-wide visible variable. If you have experience with atomics, it is important to note that the basic atomicXXX instructions of CUDA have RELAXED semantics (scary!). That means, the threads that operate atomically on them only agree that there is a particular order for the accesses to that variable and nothing else (especially no acquire/release semantics). */ __global__ void reduceAtomicGlobal(const float* __restrict input, int N) { const int id = threadIdx.x + blockIdx.x * blockDim.x; /* Since all blocks must have the same number of threads, we may have to launch more threads than there are inputs. Superfluous threads should not try to read from the input (out of bounds access!) */ if (id < N) atomicAdd(&dResult, input[id]); } /* First improvement: shared memory is much faster than global memory. Each block can accumulate partial results in isolated block-wide visible memory. This relieves the contention on a single global variable that all threads want access to. */ __global__ void reduceAtomicShared(const float* __restrict input, int N) { const int id = threadIdx.x + blockIdx.x * blockDim.x; // Declare a shared float for each block __shared__ float x; // Only one thread should initialize this shared value if (threadIdx.x == 0) x = 0.0f; /* Before we continue, we must ensure that all threads can see this update (initialization) by thread 0 */ __syncthreads(); /* Every thread in the block adds its input to the shared variable of the block. */ if (id < N) atomicAdd(&x, input[id]); // Wait until all threads have done their part __syncthreads(); /* Once they are all done, only one thread must add the block's partial result to the global variable. */ if (threadIdx.x == 0) atomicAdd(&dResult, x); } /* Second improvement: choosing a more suitable algorithm. We can exploit the fact that the GPU is massively parallel and come up with a fitting procedure that uses multiple iterations. In each iteration, threads accumulate partial results from the previous iteration. Before, the contented accesses to one location forced the GPU to perform updates sequentially O(N). Now, each thread can access its own, exclusive shared variable in each iteration in parallel, giving an effective runtime that is closer to O(log N). */ template <unsigned int BLOCK_SIZE> __global__ void reduceShared(const float* __restrict input, int N) { const int id = threadIdx.x + blockIdx.x * blockDim.x; /* Use a larger shared memory region so that each thread can store its own partial results */ __shared__ float data[BLOCK_SIZE]; /* Use a new strategy to handle superfluous threads. To make sure they stay alive and can help with the reduction, threads without an input simply produce a '0', which has no effect on the result. */ data[threadIdx.x] = (id < N ? input[id] : 0); /* log N iterations to complete. In each step, a thread accumulates two partial values to form the input for the next iteration. The sum of all partial results eventually yields the full result of the reduction. */ for (int s = blockDim.x / 2; s > 0; s /= 2) { /* In each iteration, we must make sure that all threads are done writing the updates of the previous iteration / the initialization. */ __syncthreads(); if (threadIdx.x < s) data[threadIdx.x] += data[threadIdx.x + s]; } /* Note: thread 0 is the last thread to combine two partial results, and the one who writes to global memory, therefore no synchronization is required after the last iteration. */ if (threadIdx.x == 0) atomicAdd(&dResult, data[0]); } /* Warp-level improvement: using warp-level primitives to accelerate the final steps of the reduction. Warps have a fast lane for communication. They are free to exchange values in registers when they are being scheduled for execution. Warps will be formed from consecutive threads in groups of 32. */ template <unsigned int BLOCK_SIZE> __global__ void reduceShuffle(const float* __restrict input, int N) { const int id = threadIdx.x + blockIdx.x * blockDim.x; __shared__ float data[BLOCK_SIZE]; data[threadIdx.x] = (id < N ? input[id] : 0); // Only use shared memory until last 32 values for (int s = blockDim.x / 2; s > 16; s /= 2) { __syncthreads(); if (threadIdx.x < s) data[threadIdx.x] += data[threadIdx.x + s]; } // The last 32 values can be handled with warp-level primitives float x = data[threadIdx.x]; if (threadIdx.x < 32) { /* The threads in the first warp shuffle their registers. This replaces the last 5 iterations of the previous solution. The mask indicates which threads participate in the shuffle. The value indicates which register should be shuffled. The final parameter gives the source thread from which the current one should receive the shuffled value. Accesses that are out of range (>= 32) will wrap around, but are not needed (they will not affect the final result written by thread 0). In each shuffle, at least half of the threads only participate so they can provide useful data from the previous shuffle for lower threads. To keep the code short, we always let all threads participate, because it is an error to let threads reach a shuffle instruction that they don't participate in. */ x += __shfl_sync(0xFFFFFFFF, x, threadIdx.x + 16); x += __shfl_sync(0xFFFFFFFF, x, threadIdx.x + 8); x += __shfl_sync(0xFFFFFFFF, x, threadIdx.x + 4); x += __shfl_sync(0xFFFFFFFF, x, threadIdx.x + 2); x += __shfl_sync(0xFFFFFFFF, x, 1); } if (threadIdx.x == 0) atomicAdd(&dResult, x); } /* Final improvement: half of our threads actually idle after they have loaded data from global memory to shared! Better to have threads fetch two values at the start and then let them all do at least some meaningful work. This means that compared to all other methods, only half the number of threads must be launched in the grid! */ template <unsigned int BLOCK_SIZE> __global__ void reduceFinal(const float* __restrict input, int N) { const int id = threadIdx.x + blockIdx.x * blockDim.x; __shared__ float data[BLOCK_SIZE]; // Already combine two values upon load from global memory data[threadIdx.x] = (id < N ? (input[id] + input[id+N/2]) : 0); for (int s = blockDim.x / 2; s > 16; s /= 2) { __syncthreads(); if (threadIdx.x < s) data[threadIdx.x] += data[threadIdx.x + s]; } float x = data[threadIdx.x]; if (threadIdx.x < 32) { x += __shfl_sync(0xFFFFFFFF, x, threadIdx.x + 16); x += __shfl_sync(0xFFFFFFFF, x, threadIdx.x + 8); x += __shfl_sync(0xFFFFFFFF, x, threadIdx.x + 4); x += __shfl_sync(0xFFFFFFFF, x, threadIdx.x + 2); x += __shfl_sync(0xFFFFFFFF, x, 1); } if (threadIdx.x == 0) atomicAdd(&dResult, x); } int main() { std::cout << "==== Sample 08 - Reductions ====\n" << std::endl; /* Expected output: Accumulated results from CPU and GPU that approach 42 * NUM_ITEMS (can vary greatly due to floating point precision limitations). With more sophisticated techniques, reported performance of the GPU versions (measured runtime in ms) should generally decrease. */ constexpr unsigned int BLOCK_SIZE = 256; constexpr unsigned int WARMUP_ITERATIONS = 10; constexpr unsigned int TIMING_ITERATIONS = 20; constexpr unsigned int N = 100'000'000; std::cout << "Producing random inputs...\n" << std::endl; // Generate some random numbers to reduce std::vector<float> vals; float* dValsPtr; samplesutil::prepareRandomNumbersCPUGPU(N, vals, &dValsPtr); std::cout << "==== CPU Reduction ====\n" << std::endl; // A reference value is computed by sequential reduction std::cout << "Computed CPU value: " << std::accumulate(vals.cbegin(), vals.cend(), 0.0f) << std::endl; std::cout << "==== GPU Reductions ====\n" << std::endl; /* Set up a collection of reductions to evaluate for performance. Each entry gives a technique's name, the kernel to call, and the number of threads required for each individual technique. */ const std::tuple<const char*, void(*)(const float*, int), unsigned int> reductionTechniques[] { {"Atomic Global", reduceAtomicGlobal, N}, {"Atomic Shared", reduceAtomicShared, N}, {"Reduce Shared", reduceShared<BLOCK_SIZE>, N}, {"Reduce Shuffle", reduceShuffle<BLOCK_SIZE>, N}, {"Reduce Final", reduceFinal<BLOCK_SIZE>, N / 2 + 1} }; // Evaluate each technique separately for (const auto& [name, func, numThreads] : reductionTechniques) { // Compute the smallest grid to start required threads with a given block size const dim3 blockDim = { BLOCK_SIZE, 1, 1 }; const dim3 gridDim = { (numThreads + BLOCK_SIZE - 1) / BLOCK_SIZE, 1, 1 }; // Run several reductions for GPU to warm up for (int i = 0; i < WARMUP_ITERATIONS; i++) hipLaunchKernelGGL(( func), dim3(gridDim), dim3(blockDim), 0, 0, dValsPtr, N); // Synchronize to ensure CPU only records time after warmup is done hipDeviceSynchronize(); const auto before = std::chrono::system_clock::now(); float result = 0.0f; // Run several iterations to get an average measurement for (int i = 0; i < TIMING_ITERATIONS; i++) { // Reset acummulated result to 0 in each run hipMemcpyToSymbol(dResult, &result, sizeof(float)); hipLaunchKernelGGL(( func), dim3(gridDim), dim3(blockDim), 0, 0, dValsPtr, N); } // hipMemcpyFromSymbol will implicitly synchronize CPU and GPU hipMemcpyFromSymbol(&result, dResult, sizeof(float)); // Can measure time without an extra synchronization const auto after = std::chrono::system_clock::now(); const auto elapsed = 1000.f * std::chrono::duration_cast<std::chrono::duration<float>>(after - before).count(); std::cout << std::setw(20) << name << "\t" << elapsed / TIMING_ITERATIONS << "ms \t" << result << std::endl; } // Free the allocated memory for input hipFree(dValsPtr); return 0; } /* Exercises: 1) Do you have any other ideas how the reduction could be improved? Making it even faster should be quite challenging, but if you have some suggestions, try them out and see how they affect performance! */
fab7eef16c13f1b70d0b921bc6233f042403c45c.cu
#include <cuda_runtime_api.h> #include <iostream> #include <vector> #include <random> #include <chrono> #include <tuple> #include <utility> #include <numeric> #include <iomanip> #include "../../shared/include/utility.h" // Declare a GPU-visible floating point variable in global memory. __device__ float dResult; /* The most basic reduction kernel uses atomic operations to accumulate the individual inputs in a single, device-wide visible variable. If you have experience with atomics, it is important to note that the basic atomicXXX instructions of CUDA have RELAXED semantics (scary!). That means, the threads that operate atomically on them only agree that there is a particular order for the accesses to that variable and nothing else (especially no acquire/release semantics). */ __global__ void reduceAtomicGlobal(const float* __restrict input, int N) { const int id = threadIdx.x + blockIdx.x * blockDim.x; /* Since all blocks must have the same number of threads, we may have to launch more threads than there are inputs. Superfluous threads should not try to read from the input (out of bounds access!) */ if (id < N) atomicAdd(&dResult, input[id]); } /* First improvement: shared memory is much faster than global memory. Each block can accumulate partial results in isolated block-wide visible memory. This relieves the contention on a single global variable that all threads want access to. */ __global__ void reduceAtomicShared(const float* __restrict input, int N) { const int id = threadIdx.x + blockIdx.x * blockDim.x; // Declare a shared float for each block __shared__ float x; // Only one thread should initialize this shared value if (threadIdx.x == 0) x = 0.0f; /* Before we continue, we must ensure that all threads can see this update (initialization) by thread 0 */ __syncthreads(); /* Every thread in the block adds its input to the shared variable of the block. */ if (id < N) atomicAdd(&x, input[id]); // Wait until all threads have done their part __syncthreads(); /* Once they are all done, only one thread must add the block's partial result to the global variable. */ if (threadIdx.x == 0) atomicAdd(&dResult, x); } /* Second improvement: choosing a more suitable algorithm. We can exploit the fact that the GPU is massively parallel and come up with a fitting procedure that uses multiple iterations. In each iteration, threads accumulate partial results from the previous iteration. Before, the contented accesses to one location forced the GPU to perform updates sequentially O(N). Now, each thread can access its own, exclusive shared variable in each iteration in parallel, giving an effective runtime that is closer to O(log N). */ template <unsigned int BLOCK_SIZE> __global__ void reduceShared(const float* __restrict input, int N) { const int id = threadIdx.x + blockIdx.x * blockDim.x; /* Use a larger shared memory region so that each thread can store its own partial results */ __shared__ float data[BLOCK_SIZE]; /* Use a new strategy to handle superfluous threads. To make sure they stay alive and can help with the reduction, threads without an input simply produce a '0', which has no effect on the result. */ data[threadIdx.x] = (id < N ? input[id] : 0); /* log N iterations to complete. In each step, a thread accumulates two partial values to form the input for the next iteration. The sum of all partial results eventually yields the full result of the reduction. */ for (int s = blockDim.x / 2; s > 0; s /= 2) { /* In each iteration, we must make sure that all threads are done writing the updates of the previous iteration / the initialization. */ __syncthreads(); if (threadIdx.x < s) data[threadIdx.x] += data[threadIdx.x + s]; } /* Note: thread 0 is the last thread to combine two partial results, and the one who writes to global memory, therefore no synchronization is required after the last iteration. */ if (threadIdx.x == 0) atomicAdd(&dResult, data[0]); } /* Warp-level improvement: using warp-level primitives to accelerate the final steps of the reduction. Warps have a fast lane for communication. They are free to exchange values in registers when they are being scheduled for execution. Warps will be formed from consecutive threads in groups of 32. */ template <unsigned int BLOCK_SIZE> __global__ void reduceShuffle(const float* __restrict input, int N) { const int id = threadIdx.x + blockIdx.x * blockDim.x; __shared__ float data[BLOCK_SIZE]; data[threadIdx.x] = (id < N ? input[id] : 0); // Only use shared memory until last 32 values for (int s = blockDim.x / 2; s > 16; s /= 2) { __syncthreads(); if (threadIdx.x < s) data[threadIdx.x] += data[threadIdx.x + s]; } // The last 32 values can be handled with warp-level primitives float x = data[threadIdx.x]; if (threadIdx.x < 32) { /* The threads in the first warp shuffle their registers. This replaces the last 5 iterations of the previous solution. The mask indicates which threads participate in the shuffle. The value indicates which register should be shuffled. The final parameter gives the source thread from which the current one should receive the shuffled value. Accesses that are out of range (>= 32) will wrap around, but are not needed (they will not affect the final result written by thread 0). In each shuffle, at least half of the threads only participate so they can provide useful data from the previous shuffle for lower threads. To keep the code short, we always let all threads participate, because it is an error to let threads reach a shuffle instruction that they don't participate in. */ x += __shfl_sync(0xFFFFFFFF, x, threadIdx.x + 16); x += __shfl_sync(0xFFFFFFFF, x, threadIdx.x + 8); x += __shfl_sync(0xFFFFFFFF, x, threadIdx.x + 4); x += __shfl_sync(0xFFFFFFFF, x, threadIdx.x + 2); x += __shfl_sync(0xFFFFFFFF, x, 1); } if (threadIdx.x == 0) atomicAdd(&dResult, x); } /* Final improvement: half of our threads actually idle after they have loaded data from global memory to shared! Better to have threads fetch two values at the start and then let them all do at least some meaningful work. This means that compared to all other methods, only half the number of threads must be launched in the grid! */ template <unsigned int BLOCK_SIZE> __global__ void reduceFinal(const float* __restrict input, int N) { const int id = threadIdx.x + blockIdx.x * blockDim.x; __shared__ float data[BLOCK_SIZE]; // Already combine two values upon load from global memory data[threadIdx.x] = (id < N ? (input[id] + input[id+N/2]) : 0); for (int s = blockDim.x / 2; s > 16; s /= 2) { __syncthreads(); if (threadIdx.x < s) data[threadIdx.x] += data[threadIdx.x + s]; } float x = data[threadIdx.x]; if (threadIdx.x < 32) { x += __shfl_sync(0xFFFFFFFF, x, threadIdx.x + 16); x += __shfl_sync(0xFFFFFFFF, x, threadIdx.x + 8); x += __shfl_sync(0xFFFFFFFF, x, threadIdx.x + 4); x += __shfl_sync(0xFFFFFFFF, x, threadIdx.x + 2); x += __shfl_sync(0xFFFFFFFF, x, 1); } if (threadIdx.x == 0) atomicAdd(&dResult, x); } int main() { std::cout << "==== Sample 08 - Reductions ====\n" << std::endl; /* Expected output: Accumulated results from CPU and GPU that approach 42 * NUM_ITEMS (can vary greatly due to floating point precision limitations). With more sophisticated techniques, reported performance of the GPU versions (measured runtime in ms) should generally decrease. */ constexpr unsigned int BLOCK_SIZE = 256; constexpr unsigned int WARMUP_ITERATIONS = 10; constexpr unsigned int TIMING_ITERATIONS = 20; constexpr unsigned int N = 100'000'000; std::cout << "Producing random inputs...\n" << std::endl; // Generate some random numbers to reduce std::vector<float> vals; float* dValsPtr; samplesutil::prepareRandomNumbersCPUGPU(N, vals, &dValsPtr); std::cout << "==== CPU Reduction ====\n" << std::endl; // A reference value is computed by sequential reduction std::cout << "Computed CPU value: " << std::accumulate(vals.cbegin(), vals.cend(), 0.0f) << std::endl; std::cout << "==== GPU Reductions ====\n" << std::endl; /* Set up a collection of reductions to evaluate for performance. Each entry gives a technique's name, the kernel to call, and the number of threads required for each individual technique. */ const std::tuple<const char*, void(*)(const float*, int), unsigned int> reductionTechniques[] { {"Atomic Global", reduceAtomicGlobal, N}, {"Atomic Shared", reduceAtomicShared, N}, {"Reduce Shared", reduceShared<BLOCK_SIZE>, N}, {"Reduce Shuffle", reduceShuffle<BLOCK_SIZE>, N}, {"Reduce Final", reduceFinal<BLOCK_SIZE>, N / 2 + 1} }; // Evaluate each technique separately for (const auto& [name, func, numThreads] : reductionTechniques) { // Compute the smallest grid to start required threads with a given block size const dim3 blockDim = { BLOCK_SIZE, 1, 1 }; const dim3 gridDim = { (numThreads + BLOCK_SIZE - 1) / BLOCK_SIZE, 1, 1 }; // Run several reductions for GPU to warm up for (int i = 0; i < WARMUP_ITERATIONS; i++) func<<<gridDim, blockDim>>>(dValsPtr, N); // Synchronize to ensure CPU only records time after warmup is done cudaDeviceSynchronize(); const auto before = std::chrono::system_clock::now(); float result = 0.0f; // Run several iterations to get an average measurement for (int i = 0; i < TIMING_ITERATIONS; i++) { // Reset acummulated result to 0 in each run cudaMemcpyToSymbol(dResult, &result, sizeof(float)); func<<<gridDim, blockDim>>>(dValsPtr, N); } // cudaMemcpyFromSymbol will implicitly synchronize CPU and GPU cudaMemcpyFromSymbol(&result, dResult, sizeof(float)); // Can measure time without an extra synchronization const auto after = std::chrono::system_clock::now(); const auto elapsed = 1000.f * std::chrono::duration_cast<std::chrono::duration<float>>(after - before).count(); std::cout << std::setw(20) << name << "\t" << elapsed / TIMING_ITERATIONS << "ms \t" << result << std::endl; } // Free the allocated memory for input cudaFree(dValsPtr); return 0; } /* Exercises: 1) Do you have any other ideas how the reduction could be improved? Making it even faster should be quite challenging, but if you have some suggestions, try them out and see how they affect performance! */
b6804e620b0aabb76546e0e96f8ae0847f69d535.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" /** * this file is based on https://github.com/niessner/BundleFusion.git */ #include "cuda_scene_rep.h" #include <hip/hip_texture_types.h> #include <pcl/Vertices.h> #include <pcl/conversions.h> #include "tables.h" /////////////// // Host part // /////////////// __device__ __host__ HashDataStruct::HashDataStruct() { d_heap = NULL; d_heapCounter = NULL; d_hash = NULL; d_hashDecision = NULL; d_hashDecisionPrefix = NULL; d_hashCompactified = NULL; d_hashCompactifiedCounter = NULL; d_SDFBlocks = NULL; d_hashBucketMutex = NULL; m_bIsOnGPU = false; } __host__ void HashDataStruct::allocate(const HashParams &params, bool dataOnGPU) { m_bIsOnGPU = dataOnGPU; if (m_bIsOnGPU) { cutilSafeCall(hipMalloc(&d_heap, sizeof(unsigned int) * params.m_numSDFBlocks)); cutilSafeCall(hipMalloc(&d_heapCounter, sizeof(unsigned int))); cutilSafeCall(hipMalloc(&d_hash, sizeof(HashEntry) * params.m_hashNumBuckets * params.m_hashBucketSize)); cutilSafeCall(hipMalloc(&d_hashDecision, sizeof(int) * params.m_hashNumBuckets * params.m_hashBucketSize)); cutilSafeCall( hipMalloc(&d_hashDecisionPrefix, sizeof(int) * params.m_hashNumBuckets * params.m_hashBucketSize)); cutilSafeCall( hipMalloc(&d_hashCompactified, sizeof(HashEntry) * params.m_hashNumBuckets * params.m_hashBucketSize)); cutilSafeCall(hipMalloc(&d_hashCompactifiedCounter, sizeof(int))); cutilSafeCall(hipMalloc(&d_SDFBlocks, sizeof(Voxel) * params.m_numSDFBlocks * params.m_SDFBlockSize * params.m_SDFBlockSize * params.m_SDFBlockSize)); cutilSafeCall(hipMalloc(&d_hashBucketMutex, sizeof(int) * params.m_hashNumBuckets)); } else { d_heap = new unsigned int[params.m_numSDFBlocks]; d_heapCounter = new unsigned int[1]; d_hash = new HashEntry[params.m_hashNumBuckets * params.m_hashBucketSize]; d_hashDecision = new int[params.m_hashNumBuckets * params.m_hashBucketSize]; d_hashDecisionPrefix = new int[params.m_hashNumBuckets * params.m_hashBucketSize]; d_hashCompactifiedCounter = new int[1]; d_hashCompactified = new HashEntry[params.m_hashNumBuckets * params.m_hashBucketSize]; d_SDFBlocks = new Voxel[params.m_numSDFBlocks * params.m_SDFBlockSize * params.m_SDFBlockSize * params.m_SDFBlockSize]; d_hashBucketMutex = new int[params.m_hashNumBuckets]; } updateParams(params); } extern "C" void updateConstantHashParams(const HashParams& params) { size_t size; CUDA_CHECKED_CALL(hipGetSymbolSize(&size, c_hashParams)); CUDA_CHECKED_CALL(hipMemcpyToSymbol(c_hashParams, &params, size, 0, hipMemcpyHostToDevice)); CUDA_CHECKED_CALL(hipDeviceSynchronize()); } __host__ void HashDataStruct::updateParams(const HashParams &params) { if (m_bIsOnGPU) { updateConstantHashParams(params); } } __host__ void HashDataStruct::free() { if (m_bIsOnGPU) { cutilSafeCall(hipFree(d_heap)); cutilSafeCall(hipFree(d_heapCounter)); cutilSafeCall(hipFree(d_hash)); cutilSafeCall(hipFree(d_hashDecision)); cutilSafeCall(hipFree(d_hashDecisionPrefix)); cutilSafeCall(hipFree(d_hashCompactified)); cutilSafeCall(hipFree(d_hashCompactifiedCounter)); cutilSafeCall(hipFree(d_SDFBlocks)); cutilSafeCall(hipFree(d_hashBucketMutex)); } else { if (d_heap) delete[] d_heap; if (d_heapCounter) delete[] d_heapCounter; if (d_hash) delete[] d_hash; if (d_hashDecision) delete[] d_hashDecision; if (d_hashDecisionPrefix) delete[] d_hashDecisionPrefix; if (d_hashCompactified) delete[] d_hashCompactified; if (d_hashCompactifiedCounter) delete[] d_hashCompactifiedCounter; if (d_SDFBlocks) delete[] d_SDFBlocks; if (d_hashBucketMutex) delete[] d_hashBucketMutex; } d_hash = NULL; d_heap = NULL; d_heapCounter = NULL; d_hashDecision = NULL; d_hashDecisionPrefix = NULL; d_hashCompactified = NULL; d_hashCompactifiedCounter = NULL; d_SDFBlocks = NULL; d_hashBucketMutex = NULL; } __host__ HashDataStruct HashDataStruct::copyToCPU() const { HashParams params; HashDataStruct hashData; hashData.allocate(params, false); //allocate the data on the CPU cutilSafeCall( hipMemcpy(hashData.d_heap, d_heap, sizeof(unsigned int) * params.m_numSDFBlocks, hipMemcpyDeviceToHost)); cutilSafeCall(hipMemcpy(hashData.d_heapCounter, d_heapCounter, sizeof(unsigned int), hipMemcpyDeviceToHost)); cutilSafeCall( hipMemcpy(hashData.d_hash, d_hash, sizeof(HashEntry) * params.m_hashNumBuckets * params.m_hashBucketSize, hipMemcpyDeviceToHost)); cutilSafeCall(hipMemcpy(hashData.d_hashDecision, d_hashDecision, sizeof(int) * params.m_hashNumBuckets * params.m_hashBucketSize, hipMemcpyDeviceToHost)); cutilSafeCall(hipMemcpy(hashData.d_hashDecisionPrefix, d_hashDecisionPrefix, sizeof(int) * params.m_hashNumBuckets * params.m_hashBucketSize, hipMemcpyDeviceToHost)); cutilSafeCall(hipMemcpy(hashData.d_hashCompactified, d_hashCompactified, sizeof(HashEntry) * params.m_hashNumBuckets * params.m_hashBucketSize, hipMemcpyDeviceToHost)); cutilSafeCall(hipMemcpy(hashData.d_SDFBlocks, d_SDFBlocks, sizeof(Voxel) * params.m_numSDFBlocks * params.m_SDFBlockSize * params.m_SDFBlockSize * params.m_SDFBlockSize, hipMemcpyDeviceToHost)); cutilSafeCall(hipMemcpy(hashData.d_hashBucketMutex, d_hashBucketMutex, sizeof(int) * params.m_hashNumBuckets, hipMemcpyDeviceToHost)); return hashData; //TODO MATTHIAS look at this (i.e,. when does memory get destroyed ; if it's in the destructer it would kill everything here } ///////////////// // Device part // ///////////////// __device__ const HashParams &HashDataStruct::params() const { return c_hashParams; } //! see teschner et al. (but with correct prime values) __device__ uint HashDataStruct::computeHashPos(const int3 &virtualVoxelPos) const { const int p0 = 73856093; const int p1 = 19349669; const int p2 = 83492791; int res = ((virtualVoxelPos.x * p0) ^ (virtualVoxelPos.y * p1) ^ (virtualVoxelPos.z * p2)) % c_hashParams.m_hashNumBuckets; if (res < 0) res += c_hashParams.m_hashNumBuckets; return (uint) res; } //merges two voxels (v0 is the input voxel, v1 the currently stored voxel) __device__ void HashDataStruct::combineVoxel(const Voxel &v0, const Voxel &v1, Voxel &out) const { //v.color = (10*v0.weight * v0.color + v1.weight * v1.color)/(10*v0.weight + v1.weight); //give the currently observed color more weight //v.color = (v0.weight * v0.color + v1.weight * v1.color)/(v0.weight + v1.weight); //out.color = 0.5f * (v0.color + v1.color); //exponential running average float3 c0 = make_float3(v0.color.x, v0.color.y, v0.color.z); float3 c1 = make_float3(v1.color.x, v1.color.y, v1.color.z); //float3 res = (c0+c1)/2; //float3 res = (c0 * (float)v0.weight + c1 * (float)v1.weight) / ((float)v0.weight + (float)v1.weight); //float3 res = c1; if (v0.weight == 0) out.color = v1.color; else { float3 res = 0.5f * c0 + 0.5f * c1; out.color.x = (uchar)(res.x + 0.5f); out.color.y = (uchar)(res.y + 0.5f); out.color.z = (uchar)(res.z + 0.5f); } out.sdf = (v0.sdf * (float) v0.weight + v1.sdf * (float) v1.weight) / ((float) v0.weight + (float) v1.weight); //out.weight = min(c_hashParams.m_integrationWeightMax, (unsigned int)v0.weight + (unsigned int)v1.weight); out.weight = min((float) c_hashParams.m_integrationWeightMax, v0.weight + v1.weight); } __device__ void HashDataStruct::combineVoxelDepthOnly(const Voxel &v0, const Voxel &v1, Voxel &out) const { out.sdf = (v0.sdf * (float) v0.weight + v1.sdf * (float) v1.weight) / ((float) v0.weight + (float) v1.weight); out.weight = min((float) c_hashParams.m_integrationWeightMax, v0.weight + v1.weight); } //! returns the truncation of the SDF for a given distance value __device__ float HashDataStruct::getTruncation(float z) const { return c_hashParams.m_truncation + c_hashParams.m_truncScale * z; } __device__ float3 HashDataStruct::worldToVirtualVoxelPosFloat(const float3 &pos) const { return pos / c_hashParams.m_virtualVoxelSize; } __device__ int3 HashDataStruct::worldToVirtualVoxelPos(const float3 &pos) const { //const float3 p = pos*g_VirtualVoxelResolutionScalar; const float3 p = pos / c_hashParams.m_virtualVoxelSize; return make_int3(p + make_float3(sign(p)) * 0.5f); } __device__ int3 HashDataStruct::virtualVoxelPosToSDFBlock(int3 virtualVoxelPos) const { if (virtualVoxelPos.x < 0) virtualVoxelPos.x -= SDF_BLOCK_SIZE - 1; if (virtualVoxelPos.y < 0) virtualVoxelPos.y -= SDF_BLOCK_SIZE - 1; if (virtualVoxelPos.z < 0) virtualVoxelPos.z -= SDF_BLOCK_SIZE - 1; return make_int3( virtualVoxelPos.x / SDF_BLOCK_SIZE, virtualVoxelPos.y / SDF_BLOCK_SIZE, virtualVoxelPos.z / SDF_BLOCK_SIZE); } // Computes virtual voxel position of corner sample position __device__ int3 HashDataStruct::SDFBlockToVirtualVoxelPos(const int3 &sdfBlock) const { return sdfBlock * SDF_BLOCK_SIZE; } __device__ float3 HashDataStruct::virtualVoxelPosToWorld(const int3 &pos) const { return make_float3(pos) * c_hashParams.m_virtualVoxelSize; } __device__ float3 HashDataStruct::SDFBlockToWorld(const int3 &sdfBlock) const { return virtualVoxelPosToWorld(SDFBlockToVirtualVoxelPos(sdfBlock)); } __device__ int3 HashDataStruct::worldToSDFBlock(const float3 &worldPos) const { return virtualVoxelPosToSDFBlock(worldToVirtualVoxelPos(worldPos)); } __device__ bool HashDataStruct::isSDFBlockInCameraFrustumApprox(const int3 &sdfBlock, CUDAFrame &frame) { float3 posWorld = virtualVoxelPosToWorld(SDFBlockToVirtualVoxelPos(sdfBlock)) + c_hashParams.m_virtualVoxelSize * 0.5f * (SDF_BLOCK_SIZE - 1.0f); return frame.isInCameraFrustumApprox(posWorld); } //! computes the (local) virtual voxel pos of an index; idx in [0;511] __device__ uint3 HashDataStruct::delinearizeVoxelIndex(uint idx) const { uint x = idx % SDF_BLOCK_SIZE; uint y = (idx % (SDF_BLOCK_SIZE * SDF_BLOCK_SIZE)) / SDF_BLOCK_SIZE; uint z = idx / (SDF_BLOCK_SIZE * SDF_BLOCK_SIZE); return make_uint3(x, y, z); } //! computes the linearized index of a local virtual voxel pos; pos in [0;7]^3 __device__ uint HashDataStruct::linearizeVoxelPos(const int3 &virtualVoxelPos) const { return virtualVoxelPos.z * SDF_BLOCK_SIZE * SDF_BLOCK_SIZE + virtualVoxelPos.y * SDF_BLOCK_SIZE + virtualVoxelPos.x; } __device__ int HashDataStruct::virtualVoxelPosToLocalSDFBlockIndex(const int3 &virtualVoxelPos) const { int3 localVoxelPos = make_int3( virtualVoxelPos.x % SDF_BLOCK_SIZE, virtualVoxelPos.y % SDF_BLOCK_SIZE, virtualVoxelPos.z % SDF_BLOCK_SIZE); if (localVoxelPos.x < 0) localVoxelPos.x += SDF_BLOCK_SIZE; if (localVoxelPos.y < 0) localVoxelPos.y += SDF_BLOCK_SIZE; if (localVoxelPos.z < 0) localVoxelPos.z += SDF_BLOCK_SIZE; return linearizeVoxelPos(localVoxelPos); } __device__ int HashDataStruct::worldToLocalSDFBlockIndex(const float3 &world) const { int3 virtualVoxelPos = worldToVirtualVoxelPos(world); return virtualVoxelPosToLocalSDFBlockIndex(virtualVoxelPos); } //! returns the hash entry for a given worldPos; if there was no hash entry the returned entry will have a ptr with FREE_ENTRY set __device__ HashEntry HashDataStruct::getHashEntry(const float3 &worldPos) const { //int3 blockID = worldToSDFVirtualVoxelPos(worldPos)/SDF_BLOCK_SIZE; //position of sdf block int3 blockID = worldToSDFBlock(worldPos); return getHashEntryForSDFBlockPos(blockID); } __device__ void HashDataStruct::deleteHashEntry(uint id) { deleteHashEntry(d_hash[id]); } __device__ void HashDataStruct::deleteHashEntry(HashEntry &hashEntry) { hashEntry.pos = make_int3(0); hashEntry.offset = 0; hashEntry.ptr = FREE_ENTRY; } __device__ bool HashDataStruct::voxelExists(const float3 &worldPos) const { HashEntry hashEntry = getHashEntry(worldPos); return (hashEntry.ptr != FREE_ENTRY); } __device__ void HashDataStruct::deleteVoxel(Voxel &v) const { v.color = make_uchar4(0, 0, 0, 0); v.weight = 0.0f; v.sdf = 0.0f; } __device__ void HashDataStruct::deleteVoxel(uint id) { deleteVoxel(d_SDFBlocks[id]); } __device__ Voxel HashDataStruct::getVoxel(const float3 &worldPos) const { HashEntry hashEntry = getHashEntry(worldPos); Voxel v; if (hashEntry.ptr == FREE_ENTRY) { deleteVoxel(v); } else { int3 virtualVoxelPos = worldToVirtualVoxelPos(worldPos); v = d_SDFBlocks[hashEntry.ptr + virtualVoxelPosToLocalSDFBlockIndex(virtualVoxelPos)]; } return v; } __device__ Voxel HashDataStruct::getVoxel(const int3 &virtualVoxelPos) const { HashEntry hashEntry = getHashEntryForSDFBlockPos(virtualVoxelPosToSDFBlock(virtualVoxelPos)); Voxel v; if (hashEntry.ptr == FREE_ENTRY) { deleteVoxel(v); } else { v = d_SDFBlocks[hashEntry.ptr + virtualVoxelPosToLocalSDFBlockIndex(virtualVoxelPos)]; } return v; } __device__ void HashDataStruct::setVoxel(const int3 &virtualVoxelPos, Voxel &voxelInput) const { HashEntry hashEntry = getHashEntryForSDFBlockPos(virtualVoxelPosToSDFBlock(virtualVoxelPos)); if (hashEntry.ptr != FREE_ENTRY) { d_SDFBlocks[hashEntry.ptr + virtualVoxelPosToLocalSDFBlockIndex(virtualVoxelPos)] = voxelInput; } } //! returns the hash entry for a given sdf block id; if there was no hash entry the returned entry will have a ptr with FREE_ENTRY set __device__ HashEntry HashDataStruct::getHashEntryForSDFBlockPos(const int3 &sdfBlock) const { uint h = computeHashPos(sdfBlock); //hash bucket uint hp = h * HASH_BUCKET_SIZE; //hash position HashEntry entry; entry.pos = sdfBlock; entry.offset = 0; entry.ptr = FREE_ENTRY; for (uint j = 0; j < HASH_BUCKET_SIZE; j++) { uint i = j + hp; HashEntry curr = d_hash[i]; if (curr.pos.x == entry.pos.x && curr.pos.y == entry.pos.y && curr.pos.z == entry.pos.z && curr.ptr != FREE_ENTRY) { return curr; } } #ifdef HANDLE_COLLISIONS const uint idxLastEntryInBucket = (h + 1) * HASH_BUCKET_SIZE - 1; int i = idxLastEntryInBucket; //start with the last entry of the current bucket HashEntry curr; //traverse list until end: memorize idx at list end and memorize offset from last element of bucket to list end unsigned int maxIter = 0; uint g_MaxLoopIterCount = c_hashParams.m_hashMaxCollisionLinkedListSize; #pragma unroll 1 while (maxIter < g_MaxLoopIterCount) { curr = d_hash[i]; if (curr.pos.x == entry.pos.x && curr.pos.y == entry.pos.y && curr.pos.z == entry.pos.z && curr.ptr != FREE_ENTRY) { return curr; } if (curr.offset == 0) { //we have found the end of the list break; } i = idxLastEntryInBucket + curr.offset; //go to next element in the list i %= (HASH_BUCKET_SIZE * c_hashParams.m_hashNumBuckets); //check for overflow maxIter++; } #endif return entry; } //for histogram (no collision traversal) __device__ unsigned int HashDataStruct::getNumHashEntriesPerBucket(unsigned int bucketID) { unsigned int h = 0; for (uint i = 0; i < HASH_BUCKET_SIZE; i++) { if (d_hash[bucketID * HASH_BUCKET_SIZE + i].ptr != FREE_ENTRY) { h++; } } return h; } //for histogram (collisions traversal only) __device__ unsigned int HashDataStruct::getNumHashLinkedList(unsigned int bucketID) { unsigned int listLen = 0; #ifdef HANDLE_COLLISIONS const uint idxLastEntryInBucket = (bucketID + 1) * HASH_BUCKET_SIZE - 1; unsigned int i = idxLastEntryInBucket; //start with the last entry of the current bucket //int offset = 0; HashEntry curr; curr.offset = 0; //traverse list until end: memorize idx at list end and memorize offset from last element of bucket to list end unsigned int maxIter = 0; uint g_MaxLoopIterCount = c_hashParams.m_hashMaxCollisionLinkedListSize; #pragma unroll 1 while (maxIter < g_MaxLoopIterCount) { //offset = curr.offset; //curr = getHashEntry(g_Hash, i); curr = d_hash[i]; if (curr.offset == 0) { //we have found the end of the list break; } i = idxLastEntryInBucket + curr.offset; //go to next element in the list i %= (HASH_BUCKET_SIZE * c_hashParams.m_hashNumBuckets); //check for overflow listLen++; maxIter++; } #endif return listLen; } __device__ uint HashDataStruct::consumeHeap() { uint addr = atomicSub(&d_heapCounter[0], 1); //TODO MATTHIAS check some error handling? return d_heap[addr]; } __device__ void HashDataStruct::appendHeap(uint ptr) { uint addr = atomicAdd(&d_heapCounter[0], 1); //TODO MATTHIAS check some error handling? d_heap[addr + 1] = ptr; } //pos in SDF block coordinates __device__ void HashDataStruct::allocBlock(const int3 &pos) { uint h = computeHashPos(pos); //hash bucket uint hp = h * HASH_BUCKET_SIZE; //hash position int firstEmpty = -1; for (uint j = 0; j < HASH_BUCKET_SIZE; j++) { uint i = j + hp; const HashEntry &curr = d_hash[i]; //in that case the SDF-block is already allocated and corresponds to the current position -> exit thread if (curr.pos.x == pos.x && curr.pos.y == pos.y && curr.pos.z == pos.z && curr.ptr != FREE_ENTRY) { return; } //store the first FREE_ENTRY hash entry if (firstEmpty == -1 && curr.ptr == FREE_ENTRY) { firstEmpty = i; } } #ifdef HANDLE_COLLISIONS //updated variables as after the loop const uint idxLastEntryInBucket = (h + 1) * HASH_BUCKET_SIZE - 1; //get last index of bucket uint i = idxLastEntryInBucket; //start with the last entry of the current bucket //int offset = 0; HashEntry curr; curr.offset = 0; //traverse list until end: memorize idx at list end and memorize offset from last element of bucket to list end //int k = 0; unsigned int maxIter = 0; uint g_MaxLoopIterCount = c_hashParams.m_hashMaxCollisionLinkedListSize; #pragma unroll 1 while (maxIter < g_MaxLoopIterCount) { //offset = curr.offset; curr = d_hash[i]; //TODO MATTHIAS do by reference if (curr.pos.x == pos.x && curr.pos.y == pos.y && curr.pos.z == pos.z && curr.ptr != FREE_ENTRY) { return; } if (curr.offset == 0) { //we have found the end of the list break; } i = idxLastEntryInBucket + curr.offset; //go to next element in the list i %= (HASH_BUCKET_SIZE * c_hashParams.m_hashNumBuckets); //check for overflow maxIter++; } #endif if (firstEmpty != -1) { //if there is an empty entry and we haven't allocated the current entry before //int prevValue = 0; //InterlockedExchange(d_hashBucketMutex[h], LOCK_ENTRY, prevValue); //lock the hash bucket int prevValue = atomicExch(&d_hashBucketMutex[h], LOCK_ENTRY); if (prevValue != LOCK_ENTRY) { //only proceed if the bucket has been locked HashEntry &entry = d_hash[firstEmpty]; entry.pos = pos; entry.offset = NO_OFFSET; long index = consumeHeap(); entry.ptr = index * SDF_BLOCK_SIZE * SDF_BLOCK_SIZE * SDF_BLOCK_SIZE; //memory alloc } return; } #ifdef HANDLE_COLLISIONS //if (i != idxLastEntryInBucket) return; int offset = 0; //linear search for free entry maxIter = 0; #pragma unroll 1 while (maxIter < g_MaxLoopIterCount) { offset++; i = (idxLastEntryInBucket + offset) % (HASH_BUCKET_SIZE * c_hashParams.m_hashNumBuckets); //go to next hash element if ((offset % HASH_BUCKET_SIZE) == 0) continue; //cannot insert into a last bucket element (would conflict with other linked lists) curr = d_hash[i]; //if (curr.pos.x == pos.x && curr.pos.y == pos.y && curr.pos.z == pos.z && curr.ptr != FREE_ENTRY) { // return; //} if (curr.ptr == FREE_ENTRY) { //this is the first free entry //int prevValue = 0; //InterlockedExchange(g_HashBucketMutex[h], LOCK_ENTRY, prevValue); //lock the original hash bucket int prevValue = atomicExch(&d_hashBucketMutex[h], LOCK_ENTRY); if (prevValue != LOCK_ENTRY) { HashEntry lastEntryInBucket = d_hash[idxLastEntryInBucket]; h = i / HASH_BUCKET_SIZE; //InterlockedExchange(g_HashBucketMutex[h], LOCK_ENTRY, prevValue); //lock the hash bucket where we have found a free entry prevValue = atomicExch(&d_hashBucketMutex[h], LOCK_ENTRY); if (prevValue != LOCK_ENTRY) { //only proceed if the bucket has been locked HashEntry &entry = d_hash[i]; entry.pos = pos; entry.offset = lastEntryInBucket.offset; long index = consumeHeap(); entry.ptr = index * SDF_BLOCK_SIZE * SDF_BLOCK_SIZE * SDF_BLOCK_SIZE; //memory alloc lastEntryInBucket.offset = offset; d_hash[idxLastEntryInBucket] = lastEntryInBucket; //setHashEntry(g_Hash, idxLastEntryInBucket, lastEntryInBucket); } } return; //bucket was already locked } maxIter++; } #endif } //!inserts a hash entry without allocating any memory: used by streaming: TODO MATTHIAS check the atomics in this function __device__ bool HashDataStruct::insertHashEntry(HashEntry entry) { uint h = computeHashPos(entry.pos); uint hp = h * HASH_BUCKET_SIZE; for (uint j = 0; j < HASH_BUCKET_SIZE; j++) { uint i = j + hp; //const HashEntry& curr = d_hash[i]; int prevWeight = 0; //InterlockedCompareExchange(hash[3*i+2], FREE_ENTRY, LOCK_ENTRY, prevWeight); prevWeight = atomicCAS(&d_hash[i].ptr, FREE_ENTRY, LOCK_ENTRY); if (prevWeight == FREE_ENTRY) { d_hash[i] = entry; //setHashEntry(hash, i, entry); return true; } } #ifdef HANDLE_COLLISIONS //updated variables as after the loop const uint idxLastEntryInBucket = (h + 1) * HASH_BUCKET_SIZE - 1; //get last index of bucket uint i = idxLastEntryInBucket; //start with the last entry of the current bucket HashEntry curr; unsigned int maxIter = 0; //[allow_uav_condition] uint g_MaxLoopIterCount = c_hashParams.m_hashMaxCollisionLinkedListSize; #pragma unroll 1 while (maxIter < g_MaxLoopIterCount) { //traverse list until end // why find the end? we you are inserting at the start !!! //curr = getHashEntry(hash, i); curr = d_hash[i]; //TODO MATTHIAS do by reference if (curr.offset == 0) break; //we have found the end of the list i = idxLastEntryInBucket + curr.offset; //go to next element in the list i %= (HASH_BUCKET_SIZE * c_hashParams.m_hashNumBuckets); //check for overflow maxIter++; } maxIter = 0; int offset = 0; #pragma unroll 1 while (maxIter < g_MaxLoopIterCount) { //linear search for free entry offset++; uint i = (idxLastEntryInBucket + offset) % (HASH_BUCKET_SIZE * c_hashParams.m_hashNumBuckets); //go to next hash element if ((offset % HASH_BUCKET_SIZE) == 0) continue; //cannot insert into a last bucket element (would conflict with other linked lists) int prevWeight = 0; //InterlockedCompareExchange(hash[3*i+2], FREE_ENTRY, LOCK_ENTRY, prevWeight); //check for a free entry uint *d_hashUI = (uint *) d_hash; prevWeight = prevWeight = atomicCAS(&d_hashUI[3 * idxLastEntryInBucket + 1], (uint) FREE_ENTRY, (uint) LOCK_ENTRY); if (prevWeight == FREE_ENTRY) { //if free entry found set prev->next = curr & curr->next = prev->next //[allow_uav_condition] //while(hash[3*idxLastEntryInBucket+2] == LOCK_ENTRY); // expects setHashEntry to set the ptr last, required because pos.z is packed into the same value -> prev->next = curr -> might corrput pos.z HashEntry lastEntryInBucket = d_hash[idxLastEntryInBucket]; //get prev (= lastEntry in Bucket) int newOffsetPrev = (offset << 16) | (lastEntryInBucket.pos.z & 0x0000ffff); //prev->next = curr (maintain old z-pos) int oldOffsetPrev = 0; //InterlockedExchange(hash[3*idxLastEntryInBucket+1], newOffsetPrev, oldOffsetPrev); //set prev offset atomically uint *d_hashUI = (uint *) d_hash; oldOffsetPrev = prevWeight = atomicExch(&d_hashUI[3 * idxLastEntryInBucket + 1], newOffsetPrev); entry.offset = oldOffsetPrev >> 16; //remove prev z-pos from old offset //setHashEntry(hash, i, entry); //sets the current hashEntry with: curr->next = prev->next d_hash[i] = entry; return true; } maxIter++; } #endif return false; } //! deletes a hash entry position for a given sdfBlock index (returns true uppon successful deletion; otherwise returns false) __device__ bool HashDataStruct::deleteHashEntryElement(const int3 &sdfBlock) { uint h = computeHashPos(sdfBlock); //hash bucket uint hp = h * HASH_BUCKET_SIZE; //hash position for (uint j = 0; j < HASH_BUCKET_SIZE; j++) { uint i = j + hp; const HashEntry &curr = d_hash[i]; if (curr.pos.x == sdfBlock.x && curr.pos.y == sdfBlock.y && curr.pos.z == sdfBlock.z && curr.ptr != FREE_ENTRY) { #ifndef HANDLE_COLLISIONS const uint linBlockSize = SDF_BLOCK_SIZE * SDF_BLOCK_SIZE * SDF_BLOCK_SIZE; appendHeap(curr.ptr / linBlockSize); //heapAppend.Append(curr.ptr / linBlockSize); deleteHashEntry(i); return true; #endif #ifdef HANDLE_COLLISIONS if (curr.offset != 0) { //if there was a pointer set it to the next list element //int prevValue = 0; //InterlockedExchange(bucketMutex[h], LOCK_ENTRY, prevValue); //lock the hash bucket int prevValue = atomicExch(&d_hashBucketMutex[h], LOCK_ENTRY); if (prevValue == LOCK_ENTRY) return false; if (prevValue != LOCK_ENTRY) { const uint linBlockSize = SDF_BLOCK_SIZE * SDF_BLOCK_SIZE * SDF_BLOCK_SIZE; appendHeap(curr.ptr / linBlockSize); //heapAppend.Append(curr.ptr / linBlockSize); int nextIdx = (i + curr.offset) % (HASH_BUCKET_SIZE * c_hashParams.m_hashNumBuckets); //setHashEntry(hash, i, getHashEntry(hash, nextIdx)); d_hash[i] = d_hash[nextIdx]; deleteHashEntry(nextIdx); return true; } } else { const uint linBlockSize = SDF_BLOCK_SIZE * SDF_BLOCK_SIZE * SDF_BLOCK_SIZE; appendHeap(curr.ptr / linBlockSize); //heapAppend.Append(curr.ptr / linBlockSize); deleteHashEntry(i); return true; } #endif //HANDLE_COLLSISION } } #ifdef HANDLE_COLLISIONS const uint idxLastEntryInBucket = (h + 1) * HASH_BUCKET_SIZE - 1; int i = idxLastEntryInBucket; HashEntry curr; curr = d_hash[i]; int prevIdx = i; i = idxLastEntryInBucket + curr.offset; //go to next element in the list i %= (HASH_BUCKET_SIZE * c_hashParams.m_hashNumBuckets); //check for overflow unsigned int maxIter = 0; uint g_MaxLoopIterCount = c_hashParams.m_hashMaxCollisionLinkedListSize; #pragma unroll 1 while (maxIter < g_MaxLoopIterCount) { curr = d_hash[i]; //found that dude that we need/want to delete if (curr.pos.x == sdfBlock.x && curr.pos.y == sdfBlock.y && curr.pos.z == sdfBlock.z && curr.ptr != FREE_ENTRY) { //int prevValue = 0; //InterlockedExchange(bucketMutex[h], LOCK_ENTRY, prevValue); //lock the hash bucket int prevValue = atomicExch(&d_hashBucketMutex[h], LOCK_ENTRY); if (prevValue == LOCK_ENTRY) return false; if (prevValue != LOCK_ENTRY) { const uint linBlockSize = SDF_BLOCK_SIZE * SDF_BLOCK_SIZE * SDF_BLOCK_SIZE; appendHeap(curr.ptr / linBlockSize); //heapAppend.Append(curr.ptr / linBlockSize); deleteHashEntry(i); HashEntry prev = d_hash[prevIdx]; prev.offset = curr.offset; //setHashEntry(hash, prevIdx, prev); d_hash[prevIdx] = prev; return true; } } if (curr.offset == 0) { //we have found the end of the list return false; //should actually never happen because we need to find that guy before } prevIdx = i; i = idxLastEntryInBucket + curr.offset; //go to next element in the list i %= (HASH_BUCKET_SIZE * c_hashParams.m_hashNumBuckets); //check for overflow maxIter++; } #endif // HANDLE_COLLSISION return false; } #define T_PER_BLOCK 16 texture<float, hipTextureType2D, hipReadModeElementType> depthTextureRef; texture<uchar4, hipTextureType2D, hipReadModeElementType> colorTextureRef; void bindInputDepthColorTextures(const CUDAFrame& frame) { int width = frame.imageWidth, height = frame.imageHeight; cutilSafeCall(hipBindTexture2D(0, &depthTextureRef, frame.depthData, &depthTextureRef.channelDesc, width, height, sizeof(float)*width)); cutilSafeCall(hipBindTexture2D(0, &colorTextureRef, frame.colorData, &colorTextureRef.channelDesc, width, height, sizeof(uchar4)*width)); depthTextureRef.filterMode = hipFilterModePoint; colorTextureRef.filterMode = hipFilterModePoint; } __global__ void resetHeapKernel(HashDataStruct hashData) { const HashParams& hashParams = c_hashParams; unsigned int idx = blockIdx.x*blockDim.x + threadIdx.x; if (idx == 0) { hashData.d_heapCounter[0] = hashParams.m_numSDFBlocks - 1; //points to the last element of the array } if (idx < hashParams.m_numSDFBlocks) { hashData.d_heap[idx] = hashParams.m_numSDFBlocks - idx - 1; uint blockSize = SDF_BLOCK_SIZE * SDF_BLOCK_SIZE * SDF_BLOCK_SIZE; uint base_idx = idx * blockSize; for (uint i = 0; i < blockSize; i++) { hashData.deleteVoxel(base_idx+i); } } } __global__ void resetHashKernel(HashDataStruct hashData) { const HashParams& hashParams = c_hashParams; const unsigned int idx = blockIdx.x*blockDim.x + threadIdx.x; if (idx < hashParams.m_hashNumBuckets * HASH_BUCKET_SIZE) { hashData.deleteHashEntry(hashData.d_hash[idx]); hashData.deleteHashEntry(hashData.d_hashCompactified[idx]); } } __global__ void resetHashBucketMutexKernel(HashDataStruct hashData) { const HashParams& hashParams = c_hashParams; const unsigned int idx = blockIdx.x*blockDim.x + threadIdx.x; if (idx < hashParams.m_hashNumBuckets) { hashData.d_hashBucketMutex[idx] = FREE_ENTRY; } } void resetCUDA(HashDataStruct& hashData, const HashParams& hashParams) { { //resetting the heap and SDF blocks const dim3 gridSize((hashParams.m_numSDFBlocks + (T_PER_BLOCK*T_PER_BLOCK) - 1)/(T_PER_BLOCK*T_PER_BLOCK), 1); const dim3 blockSize((T_PER_BLOCK*T_PER_BLOCK), 1); hipLaunchKernelGGL(( resetHeapKernel), dim3(gridSize), dim3(blockSize), 0, 0, hashData); CUDA_CHECKED_NO_ERROR(); } { //resetting the hash const dim3 gridSize((HASH_BUCKET_SIZE * hashParams.m_hashNumBuckets + (T_PER_BLOCK*T_PER_BLOCK) - 1)/(T_PER_BLOCK*T_PER_BLOCK), 1); const dim3 blockSize((T_PER_BLOCK*T_PER_BLOCK), 1); hipLaunchKernelGGL(( resetHashKernel), dim3(gridSize), dim3(blockSize), 0, 0, hashData); CUDA_CHECKED_NO_ERROR(); } { //resetting the mutex const dim3 gridSize((hashParams.m_hashNumBuckets + (T_PER_BLOCK*T_PER_BLOCK) - 1)/(T_PER_BLOCK*T_PER_BLOCK), 1); const dim3 blockSize((T_PER_BLOCK*T_PER_BLOCK), 1); hipLaunchKernelGGL(( resetHashBucketMutexKernel), dim3(gridSize), dim3(blockSize), 0, 0, hashData); CUDA_CHECKED_NO_ERROR(); } } void resetHashBucketMutexCUDA(HashDataStruct& hashData, const HashParams& hashParams) { const dim3 gridSize((hashParams.m_hashNumBuckets + (T_PER_BLOCK*T_PER_BLOCK) - 1)/(T_PER_BLOCK*T_PER_BLOCK), 1); const dim3 blockSize((T_PER_BLOCK*T_PER_BLOCK), 1); hipLaunchKernelGGL(( resetHashBucketMutexKernel), dim3(gridSize), dim3(blockSize), 0, 0, hashData); CUDA_CHECKED_NO_ERROR(); } __device__ unsigned int linearizeChunkPos(const int3& chunkPos) { int3 p = chunkPos-c_hashParams.m_streamingMinGridPos; return p.z * c_hashParams.m_streamingGridDimensions.x * c_hashParams.m_streamingGridDimensions.y + p.y * c_hashParams.m_streamingGridDimensions.x + p.x; } __device__ int3 worldToChunks(const float3& posWorld) { float3 p; p.x = posWorld.x/c_hashParams.m_streamingVoxelExtents.x; p.y = posWorld.y/c_hashParams.m_streamingVoxelExtents.y; p.z = posWorld.z/c_hashParams.m_streamingVoxelExtents.z; float3 s; s.x = (float)sign(p.x); s.y = (float)sign(p.y); s.z = (float)sign(p.z); return make_int3(p+s*0.5f); } __global__ void allocKernel(HashDataStruct hashData, CUDAFrame frame) { const HashParams& hashParams = c_hashParams; const unsigned int x = blockIdx.x*blockDim.x + threadIdx.x; const unsigned int y = blockIdx.y*blockDim.y + threadIdx.y; if (x < frame.imageWidth && y < frame.imageHeight) { float d = tex2D(depthTextureRef, x, y); if (d == MINF || d == 0.0f) return; if (d >= hashParams.m_maxIntegrationDistance) return; float t = hashData.getTruncation(d); float minDepth = min(hashParams.m_maxIntegrationDistance, d-t); float maxDepth = min(hashParams.m_maxIntegrationDistance, d+t); if (minDepth >= maxDepth) return; float3 rayMin = frame.unProject(x, y, minDepth); rayMin = hashParams.m_rigidTransform * rayMin; float3 rayMax = frame.unProject(x, y, maxDepth); rayMax = hashParams.m_rigidTransform * rayMax; float3 rayDir = normalize(rayMax - rayMin); int3 idCurrentVoxel = hashData.worldToSDFBlock(rayMin); int3 idEnd = hashData.worldToSDFBlock(rayMax); float3 step = make_float3(sign(rayDir)); float3 boundaryPos = hashData.SDFBlockToWorld(idCurrentVoxel+make_int3(clamp(step, 0.0, 1.0f)))-0.5f*hashParams.m_virtualVoxelSize; float3 tMax = (boundaryPos-rayMin)/rayDir; float3 tDelta = (step*SDF_BLOCK_SIZE*hashParams.m_virtualVoxelSize)/rayDir; int3 idBound = make_int3(make_float3(idEnd)+step); //#pragma unroll //for(int c = 0; c < 3; c++) { // if (rayDir[c] == 0.0f) { tMax[c] = PINF; tDelta[c] = PINF; } // if (boundaryPos[c] - rayMin[c] == 0.0f) { tMax[c] = PINF; tDelta[c] = PINF; } //} if (rayDir.x == 0.0f) { tMax.x = PINF; tDelta.x = PINF; } if (boundaryPos.x - rayMin.x == 0.0f) { tMax.x = PINF; tDelta.x = PINF; } if (rayDir.y == 0.0f) { tMax.y = PINF; tDelta.y = PINF; } if (boundaryPos.y - rayMin.y == 0.0f) { tMax.y = PINF; tDelta.y = PINF; } if (rayDir.z == 0.0f) { tMax.z = PINF; tDelta.z = PINF; } if (boundaryPos.z - rayMin.z == 0.0f) { tMax.z = PINF; tDelta.z = PINF; } unsigned int iter = 0; // iter < g_MaxLoopIterCount unsigned int g_MaxLoopIterCount = 1024; //TODO MATTHIAS MOVE TO GLOBAL APP STATE #pragma unroll 1 while(iter < g_MaxLoopIterCount) { //check if it's in the frustum and not checked out if (hashData.isSDFBlockInCameraFrustumApprox(idCurrentVoxel, frame)) { hashData.allocBlock(idCurrentVoxel); } // Traverse voxel grid if(tMax.x < tMax.y && tMax.x < tMax.z) { idCurrentVoxel.x += step.x; if(idCurrentVoxel.x == idBound.x) return; tMax.x += tDelta.x; } else if(tMax.z < tMax.y) { idCurrentVoxel.z += step.z; if(idCurrentVoxel.z == idBound.z) return; tMax.z += tDelta.z; } else { idCurrentVoxel.y += step.y; if(idCurrentVoxel.y == idBound.y) return; tMax.y += tDelta.y; } iter++; } } } void allocCUDA(HashDataStruct& hashData, const HashParams& hashParams, const CUDAFrame& frame) { const dim3 gridSize((frame.imageWidth + T_PER_BLOCK - 1)/T_PER_BLOCK, (frame.imageHeight + T_PER_BLOCK - 1)/T_PER_BLOCK); const dim3 blockSize(T_PER_BLOCK, T_PER_BLOCK); hipLaunchKernelGGL(( allocKernel), dim3(gridSize), dim3(blockSize), 0, 0, hashData, frame); CUDA_CHECKED_NO_ERROR(); } __global__ void fillDecisionArrayKernel(HashDataStruct hashData, CUDAFrame frame) { const HashParams& hashParams = c_hashParams; const unsigned int idx = blockIdx.x*blockDim.x + threadIdx.x; if (idx < hashParams.m_hashNumBuckets * HASH_BUCKET_SIZE) { hashData.d_hashDecision[idx] = 0; if (hashData.d_hash[idx].ptr != FREE_ENTRY) { if (hashData.isSDFBlockInCameraFrustumApprox(hashData.d_hash[idx].pos, frame)) { hashData.d_hashDecision[idx] = 1; //yes } } } } void fillDecisionArrayCUDA(HashDataStruct& hashData, const HashParams& hashParams, const CUDAFrame& frame) { const dim3 gridSize((HASH_BUCKET_SIZE * hashParams.m_hashNumBuckets + (T_PER_BLOCK*T_PER_BLOCK) - 1)/(T_PER_BLOCK*T_PER_BLOCK), 1); const dim3 blockSize((T_PER_BLOCK*T_PER_BLOCK), 1); hipLaunchKernelGGL(( fillDecisionArrayKernel), dim3(gridSize), dim3(blockSize), 0, 0, hashData, frame); CUDA_CHECKED_NO_ERROR(); } __global__ void compactifyHashKernel(HashDataStruct hashData) { const HashParams& hashParams = c_hashParams; const unsigned int idx = blockIdx.x*blockDim.x + threadIdx.x; if (idx < hashParams.m_hashNumBuckets * HASH_BUCKET_SIZE) { if (hashData.d_hashDecision[idx] == 1) { hashData.d_hashCompactified[hashData.d_hashDecisionPrefix[idx]-1] = hashData.d_hash[idx]; } } } void compactifyHashCUDA(HashDataStruct& hashData, const HashParams& hashParams) { const dim3 gridSize((HASH_BUCKET_SIZE * hashParams.m_hashNumBuckets + (T_PER_BLOCK*T_PER_BLOCK) - 1)/(T_PER_BLOCK*T_PER_BLOCK), 1); const dim3 blockSize((T_PER_BLOCK*T_PER_BLOCK), 1); hipLaunchKernelGGL(( compactifyHashKernel), dim3(gridSize), dim3(blockSize), 0, 0, hashData); CUDA_CHECKED_NO_ERROR(); } #define COMPACTIFY_HASH_THREADS_PER_BLOCK 256 //#define COMPACTIFY_HASH_SIMPLE __global__ void compactifyHashAllInOneKernel(HashDataStruct hashData, CUDAFrame frame) { const HashParams& hashParams = c_hashParams; const unsigned int idx = blockIdx.x*blockDim.x + threadIdx.x; __shared__ int localCounter; if (threadIdx.x == 0) localCounter = 0; __syncthreads(); int addrLocal = -1; if (idx < hashParams.m_hashNumBuckets * HASH_BUCKET_SIZE) { if (hashData.d_hash[idx].ptr != FREE_ENTRY) { if (hashData.isSDFBlockInCameraFrustumApprox(hashData.d_hash[idx].pos, frame)) { addrLocal = atomicAdd(&localCounter, 1); } } } __syncthreads(); __shared__ int addrGlobal; if (threadIdx.x == 0 && localCounter > 0) { addrGlobal = atomicAdd(hashData.d_hashCompactifiedCounter, localCounter); } __syncthreads(); if (addrLocal != -1) { const unsigned int addr = addrGlobal + addrLocal; hashData.d_hashCompactified[addr] = hashData.d_hash[idx]; } } unsigned int compactifyHashAllInOneCUDA(HashDataStruct& hashData, const HashParams& hashParams, const CUDAFrame &frame) { const unsigned int threadsPerBlock = COMPACTIFY_HASH_THREADS_PER_BLOCK; const dim3 gridSize((HASH_BUCKET_SIZE * hashParams.m_hashNumBuckets + threadsPerBlock - 1) / threadsPerBlock, 1); const dim3 blockSize(threadsPerBlock, 1); cutilSafeCall(hipMemset(hashData.d_hashCompactifiedCounter, 0, sizeof(int))); compactifyHashAllInOneKernel << <gridSize, blockSize >> >(hashData, frame); unsigned int res = 0; cutilSafeCall(hipMemcpy(&res, hashData.d_hashCompactifiedCounter, sizeof(unsigned int), hipMemcpyDeviceToHost)); CUDA_CHECKED_NO_ERROR(); return res; } template<bool deIntegrate = false> __global__ void integrateDepthMapKernel(HashDataStruct hashData, CUDAFrame frame) { const HashParams& hashParams = c_hashParams; const HashEntry& entry = hashData.d_hashCompactified[blockIdx.x]; int3 pi_base = hashData.SDFBlockToVirtualVoxelPos(entry.pos); uint i = threadIdx.x; //inside of an SDF block int3 pi = pi_base + make_int3(hashData.delinearizeVoxelIndex(i)); float3 pf = hashData.virtualVoxelPosToWorld(pi); pf = hashParams.m_rigidTransformInverse * pf; float3 pixel = frame.project(pf); uint2 screenPos = make_uint2((uint)pixel.x, (uint)pixel.y); if (screenPos.x < frame.imageWidth && screenPos.y < frame.imageHeight) { //on screen //float depth = g_InputDepth[screenPos]; float depth = tex2D(depthTextureRef, screenPos.x, screenPos.y); uchar4 color_uc = tex2D(colorTextureRef, screenPos.x, screenPos.y); float3 color = make_float3(color_uc.x, color_uc.y, color_uc.z); if (color.x != MINF && depth != MINF) { // valid depth and color //if (depth != MINF) { //valid depth if (depth < hashParams.m_maxIntegrationDistance) { float depthZeroOne = frame.cameraToProjZ(depth); float sdf = depth - pf.z; float truncation = hashData.getTruncation(depth); //if (sdf > -truncation) if (abs(sdf) < truncation) { if (sdf >= 0.0f) { sdf = fminf(truncation, sdf); } else { sdf = fmaxf(-truncation, sdf); } float weightUpdate = max(hashParams.m_integrationWeightSample * 1.5f * (1.0f-depthZeroOne), 1.0f); weightUpdate = 1.0f; //TODO remove that again Voxel curr; //construct current voxel curr.sdf = sdf; curr.weight = weightUpdate; curr.color = make_uchar4(color.x, color.y, color.z, 255); uint idx = entry.ptr + i; const Voxel& oldVoxel = hashData.d_SDFBlocks[idx]; Voxel newVoxel; float3 oldColor = make_float3(oldVoxel.color.x, oldVoxel.color.y, oldVoxel.color.z); float3 currColor = make_float3(curr.color.x, curr.color.y, curr.color.z); if (!deIntegrate) { //integration //hashData.combineVoxel(hashData.d_SDFBlocks[idx], curr, newVoxel); float3 res; if (oldVoxel.weight == 0) res = currColor; //else res = (currColor + oldColor) / 2; else res = 0.2f * currColor + 0.8f * oldColor; //float3 res = (currColor*curr.weight + oldColor*oldVoxel.weight) / (curr.weight + oldVoxel.weight); res = make_float3(round(res.x), round(res.y), round(res.z)); res = fmaxf(make_float3(0.0f), fminf(res, make_float3(254.5f))); //newVoxel.color.x = (uchar)(res.x + 0.5f); newVoxel.color.y = (uchar)(res.y + 0.5f); newVoxel.color.z = (uchar)(res.z + 0.5f); newVoxel.color = make_uchar4(res.x, res.y, res.z, 255); newVoxel.sdf = (curr.sdf*curr.weight + oldVoxel.sdf*oldVoxel.weight) / (curr.weight + oldVoxel.weight); newVoxel.weight = min((float)c_hashParams.m_integrationWeightMax, curr.weight + oldVoxel.weight); } else { //deintegration //float3 res = 2 * c0 - c1; float3 res = (oldColor*oldVoxel.weight - currColor*curr.weight) / (oldVoxel.weight - curr.weight); res = make_float3(round(res.x), round(res.y), round(res.z)); res = fmaxf(make_float3(0.0f), fminf(res, make_float3(254.5f))); //newVoxel.color.x = (uchar)(res.x + 0.5f); newVoxel.color.y = (uchar)(res.y + 0.5f); newVoxel.color.z = (uchar)(res.z + 0.5f); newVoxel.color = make_uchar4(res.x, res.y, res.z, 255); newVoxel.sdf = (oldVoxel.sdf*oldVoxel.weight - curr.sdf*curr.weight) / (oldVoxel.weight - curr.weight); newVoxel.weight = max(0.0f, oldVoxel.weight - curr.weight); if (newVoxel.weight <= 0.001f) { newVoxel.sdf = 0.0f; newVoxel.color = make_uchar4(0,0,0,0); newVoxel.weight = 0.0f; } } hashData.d_SDFBlocks[idx] = newVoxel; } } } } } void integrateDepthMapCUDA(HashDataStruct& hashData, const HashParams& hashParams, const CUDAFrame& frame) { const unsigned int threadsPerBlock = SDF_BLOCK_SIZE*SDF_BLOCK_SIZE*SDF_BLOCK_SIZE; const dim3 gridSize(hashParams.m_numOccupiedBlocks, 1); const dim3 blockSize(threadsPerBlock, 1); hipLaunchKernelGGL(( integrateDepthMapKernel<false>) , dim3(gridSize), dim3(blockSize), 0, 0, hashData, frame); CUDA_CHECKED_NO_ERROR(); } void deIntegrateDepthMapCUDA(HashDataStruct& hashData, const HashParams& hashParams, const CUDAFrame& frame) { const unsigned int threadsPerBlock = SDF_BLOCK_SIZE*SDF_BLOCK_SIZE*SDF_BLOCK_SIZE; const dim3 gridSize(hashParams.m_numOccupiedBlocks, 1); const dim3 blockSize(threadsPerBlock, 1); hipLaunchKernelGGL(( integrateDepthMapKernel<true>) , dim3(gridSize), dim3(blockSize) , 0, 0, hashData, frame); CUDA_CHECKED_NO_ERROR(); } __global__ void starveVoxelsKernel(HashDataStruct hashData) { const uint idx = blockIdx.x; const HashEntry& entry = hashData.d_hashCompactified[idx]; //is typically exectued only every n'th frame int weight = hashData.d_SDFBlocks[entry.ptr + threadIdx.x].weight; weight = max(0, weight-1); hashData.d_SDFBlocks[entry.ptr + threadIdx.x].weight = weight; } void starveVoxelsKernelCUDA(HashDataStruct& hashData, const HashParams& hashParams) { const unsigned int threadsPerBlock = SDF_BLOCK_SIZE*SDF_BLOCK_SIZE*SDF_BLOCK_SIZE; const dim3 gridSize(hashParams.m_numOccupiedBlocks, 1); const dim3 blockSize(threadsPerBlock, 1); hipLaunchKernelGGL(( starveVoxelsKernel), dim3(gridSize), dim3(blockSize), 0, 0, hashData); CUDA_CHECKED_NO_ERROR(); } //__shared__ float shared_MinSDF[SDF_BLOCK_SIZE * SDF_BLOCK_SIZE * SDF_BLOCK_SIZE / 2]; __shared__ uint shared_MaxWeight[SDF_BLOCK_SIZE * SDF_BLOCK_SIZE * SDF_BLOCK_SIZE / 2]; __global__ void garbageCollectIdentifyKernel(HashDataStruct hashData) { const unsigned int hashIdx = blockIdx.x; const HashEntry& entry = hashData.d_hashCompactified[hashIdx]; //uint h = hashData.computeHashPos(entry.pos); //hashData.d_hashDecision[hashIdx] = 1; //if (hashData.d_hashBucketMutex[h] == LOCK_ENTRY) return; //if (entry.ptr == FREE_ENTRY) return; //should never happen since we did compactify before //const uint linBlockSize = SDF_BLOCK_SIZE * SDF_BLOCK_SIZE * SDF_BLOCK_SIZE; const unsigned int idx0 = entry.ptr + 2*threadIdx.x+0; const unsigned int idx1 = entry.ptr + 2*threadIdx.x+1; Voxel v0 = hashData.d_SDFBlocks[idx0]; Voxel v1 = hashData.d_SDFBlocks[idx1]; //if (v0.weight == 0) v0.sdf = PINF; //if (v1.weight == 0) v1.sdf = PINF; //shared_MinSDF[threadIdx.x] = min(fabsf(v0.sdf), fabsf(v1.sdf)); //init shared memory shared_MaxWeight[threadIdx.x] = max(v0.weight, v1.weight); #pragma unroll 1 for (uint stride = 2; stride <= blockDim.x; stride <<= 1) { __syncthreads(); if ((threadIdx.x & (stride-1)) == (stride-1)) { //shared_MinSDF[threadIdx.x] = min(shared_MinSDF[threadIdx.x-stride/2], shared_MinSDF[threadIdx.x]); shared_MaxWeight[threadIdx.x] = max(shared_MaxWeight[threadIdx.x-stride/2], shared_MaxWeight[threadIdx.x]); } } __syncthreads(); if (threadIdx.x == blockDim.x - 1) { uint maxWeight = shared_MaxWeight[threadIdx.x]; if (maxWeight == 0) { hashData.d_hashDecision[hashIdx] = 1; } else { hashData.d_hashDecision[hashIdx] = 0; } } } void garbageCollectIdentifyCUDA(HashDataStruct& hashData, const HashParams& hashParams) { const unsigned int threadsPerBlock = SDF_BLOCK_SIZE * SDF_BLOCK_SIZE * SDF_BLOCK_SIZE / 2; const dim3 gridSize(hashParams.m_numOccupiedBlocks, 1); const dim3 blockSize(threadsPerBlock, 1); hipLaunchKernelGGL(( garbageCollectIdentifyKernel), dim3(gridSize), dim3(blockSize), 0, 0, hashData); CUDA_CHECKED_NO_ERROR(); } __global__ void garbageCollectFreeKernel(HashDataStruct hashData) { //const uint hashIdx = blockIdx.x; const uint hashIdx = blockIdx.x*blockDim.x + threadIdx.x; if (hashIdx < c_hashParams.m_numOccupiedBlocks && hashData.d_hashDecision[hashIdx] != 0) { //decision to delete the hash entry const HashEntry& entry = hashData.d_hashCompactified[hashIdx]; //if (entry.ptr == FREE_ENTRY) return; //should never happen since we did compactify before if (hashData.deleteHashEntryElement(entry.pos)) { //delete hash entry from hash (and performs heap append) const uint linBlockSize = SDF_BLOCK_SIZE * SDF_BLOCK_SIZE * SDF_BLOCK_SIZE; #pragma unroll 1 for (uint i = 0; i < linBlockSize; i++) { //clear sdf block: CHECK TODO another kernel? hashData.deleteVoxel(entry.ptr + i); } } } } void garbageCollectFreeCUDA(HashDataStruct& hashData, const HashParams& hashParams) { const unsigned int threadsPerBlock = T_PER_BLOCK*T_PER_BLOCK; const dim3 gridSize((hashParams.m_numOccupiedBlocks + threadsPerBlock - 1) / threadsPerBlock, 1); const dim3 blockSize(threadsPerBlock, 1); hipLaunchKernelGGL(( garbageCollectFreeKernel), dim3(gridSize), dim3(blockSize), 0, 0, hashData); CUDA_CHECKED_NO_ERROR(); } /** raycast */ __device__ __host__ RayCastData::RayCastData() { d_depth = NULL; d_depth4 = NULL; d_normals = NULL; d_colors = NULL; d_vertexBuffer = NULL; d_rayIntervalSplatMinArray = NULL; d_rayIntervalSplatMaxArray = NULL; } extern "C" void updateConstantRayCastParams(const RayCastParams& params) { size_t size; cutilSafeCall(hipGetSymbolSize(&size, c_rayCastParams)); cutilSafeCall(hipMemcpyToSymbol(c_rayCastParams, &params, size, 0, hipMemcpyHostToDevice)); #ifdef DEBUG cutilSafeCall(hipDeviceSynchronize()); cutilCheckMsg(__FUNCTION__); #endif } __host__ void RayCastData::updateParams(const RayCastParams &params) { updateConstantRayCastParams(params); } ///////////////// // Device part // ///////////////// __device__ const RayCastParams &RayCastData::params() const { return c_rayCastParams; } __device__ float RayCastData::frac(float val) const { return (val - floorf(val)); } __device__ float3 RayCastData::frac(const float3 &val) const { return make_float3(frac(val.x), frac(val.y), frac(val.z)); } __device__ bool RayCastData::trilinearInterpolationSimpleFastFast(const HashDataStruct &hash, const float3 &pos, float &dist, uchar3 &color) const { const float oSet = c_hashParams.m_virtualVoxelSize; const float3 posDual = pos - make_float3(oSet / 2.0f, oSet / 2.0f, oSet / 2.0f); float3 weight = frac(hash.worldToVirtualVoxelPosFloat(pos)); dist = 0.0f; float3 colorFloat = make_float3(0.0f, 0.0f, 0.0f); Voxel v = hash.getVoxel(posDual + make_float3(0.0f, 0.0f, 0.0f)); if (v.weight == 0) return false; float3 vColor = make_float3(v.color.x, v.color.y, v.color.z); dist += (1.0f - weight.x) * (1.0f - weight.y) * (1.0f - weight.z) * v.sdf; colorFloat += (1.0f - weight.x) * (1.0f - weight.y) * (1.0f - weight.z) * vColor; v = hash.getVoxel(posDual + make_float3(oSet, 0.0f, 0.0f)); if (v.weight == 0) return false; vColor = make_float3(v.color.x, v.color.y, v.color.z); dist += weight.x * (1.0f - weight.y) * (1.0f - weight.z) * v.sdf; colorFloat += weight.x * (1.0f - weight.y) * (1.0f - weight.z) * vColor; v = hash.getVoxel(posDual + make_float3(0.0f, oSet, 0.0f)); if (v.weight == 0) return false; vColor = make_float3(v.color.x, v.color.y, v.color.z); dist += (1.0f - weight.x) * weight.y * (1.0f - weight.z) * v.sdf; colorFloat += (1.0f - weight.x) * weight.y * (1.0f - weight.z) * vColor; v = hash.getVoxel(posDual + make_float3(0.0f, 0.0f, oSet)); if (v.weight == 0) return false; vColor = make_float3(v.color.x, v.color.y, v.color.z); dist += (1.0f - weight.x) * (1.0f - weight.y) * weight.z * v.sdf; colorFloat += (1.0f - weight.x) * (1.0f - weight.y) * weight.z * vColor; v = hash.getVoxel(posDual + make_float3(oSet, oSet, 0.0f)); if (v.weight == 0) return false; vColor = make_float3(v.color.x, v.color.y, v.color.z); dist += weight.x * weight.y * (1.0f - weight.z) * v.sdf; colorFloat += weight.x * weight.y * (1.0f - weight.z) * vColor; v = hash.getVoxel(posDual + make_float3(0.0f, oSet, oSet)); if (v.weight == 0) return false; vColor = make_float3(v.color.x, v.color.y, v.color.z); dist += (1.0f - weight.x) * weight.y * weight.z * v.sdf; colorFloat += (1.0f - weight.x) * weight.y * weight.z * vColor; v = hash.getVoxel(posDual + make_float3(oSet, 0.0f, oSet)); if (v.weight == 0) return false; vColor = make_float3(v.color.x, v.color.y, v.color.z); dist += weight.x * (1.0f - weight.y) * weight.z * v.sdf; colorFloat += weight.x * (1.0f - weight.y) * weight.z * vColor; v = hash.getVoxel(posDual + make_float3(oSet, oSet, oSet)); if (v.weight == 0) return false; vColor = make_float3(v.color.x, v.color.y, v.color.z); dist += weight.x * weight.y * weight.z * v.sdf; colorFloat += weight.x * weight.y * weight.z * vColor; color = make_uchar3(colorFloat.x, colorFloat.y, colorFloat.z);//v.color; return true; } __device__ float RayCastData::findIntersectionLinear(float tNear, float tFar, float dNear, float dFar) const { return tNear + (dNear / (dNear - dFar)) * (tFar - tNear); } // d0 near, d1 far __device__ bool RayCastData::findIntersectionBisection(const HashDataStruct &hash, const float3 &worldCamPos, const float3 &worldDir, float d0, float r0, float d1, float r1, float &alpha, uchar3 &color) const { float a = r0; float aDist = d0; float b = r1; float bDist = d1; float c = 0.0f; #pragma unroll 1 for (uint i = 0; i < nIterationsBisection; i++) { c = findIntersectionLinear(a, b, aDist, bDist); float cDist; if (!trilinearInterpolationSimpleFastFast(hash, worldCamPos + c * worldDir, cDist, color)) return false; if (aDist * cDist > 0.0) { a = c; aDist = cDist; } else { b = c; bDist = cDist; } } alpha = c; return true; } __device__ float3 RayCastData::gradientForPoint(const HashDataStruct &hash, const float3 &pos) const { const float voxelSize = c_hashParams.m_virtualVoxelSize; float3 offset = make_float3(voxelSize, voxelSize, voxelSize); float distp00; uchar3 colorp00; trilinearInterpolationSimpleFastFast(hash, pos - make_float3(0.5f * offset.x, 0.0f, 0.0f), distp00, colorp00); float dist0p0; uchar3 color0p0; trilinearInterpolationSimpleFastFast(hash, pos - make_float3(0.0f, 0.5f * offset.y, 0.0f), dist0p0, color0p0); float dist00p; uchar3 color00p; trilinearInterpolationSimpleFastFast(hash, pos - make_float3(0.0f, 0.0f, 0.5f * offset.z), dist00p, color00p); float dist100; uchar3 color100; trilinearInterpolationSimpleFastFast(hash, pos + make_float3(0.5f * offset.x, 0.0f, 0.0f), dist100, color100); float dist010; uchar3 color010; trilinearInterpolationSimpleFastFast(hash, pos + make_float3(0.0f, 0.5f * offset.y, 0.0f), dist010, color010); float dist001; uchar3 color001; trilinearInterpolationSimpleFastFast(hash, pos + make_float3(0.0f, 0.0f, 0.5f * offset.z), dist001, color001); float3 grad = make_float3((distp00 - dist100) / offset.x, (dist0p0 - dist010) / offset.y, (dist00p - dist001) / offset.z); float l = length(grad); if (l == 0.0f) { return make_float3(0.0f, 0.0f, 0.0f); } return -grad / l; } __device__ void RayCastData::traverseCoarseGridSimpleSampleAll(const HashDataStruct& hash, const float3& worldCamPos, const float3& worldDir, const float3& camDir, const int3& dTid, float minInterval, float maxInterval) const { const RayCastParams& rayCastParams = c_rayCastParams; // Last Sample RayCastSample lastSample; lastSample.sdf = 0.0f; lastSample.alpha = 0.0f; lastSample.weight = 0; // lastSample.color = int3(0, 0, 0); const float depthToRayLength = 1.0f/camDir.z; // scale factor to convert from depth to ray length float rayCurrent = depthToRayLength * max(rayCastParams.m_minDepth, minInterval); // Convert depth to raylength float rayEnd = depthToRayLength * min(rayCastParams.m_maxDepth, maxInterval); // Convert depth to raylength //float rayCurrent = depthToRayLength * rayCastParams.m_minDepth; // Convert depth to raylength //float rayEnd = depthToRayLength * rayCastParams.m_maxDepth; // Convert depth to raylength #pragma unroll 1 while(rayCurrent < rayEnd) { float3 currentPosWorld = worldCamPos+rayCurrent*worldDir; float dist; uchar3 color; if(trilinearInterpolationSimpleFastFast(hash, currentPosWorld, dist, color)) { if(lastSample.weight > 0 && lastSample.sdf > 0.0f && dist < 0.0f)// current sample is always valid here //if(lastSample.weight > 0 && ((lastSample.sdf > 0.0f && dist < 0.0f) || (lastSample.sdf < 0.0f && dist > 0.0f))) //hack for top down video { float alpha; // = findIntersectionLinear(lastSample.alpha, rayCurrent, lastSample.sdf, dist); uchar3 color2; bool b = findIntersectionBisection(hash, worldCamPos, worldDir, lastSample.sdf, lastSample.alpha, dist, rayCurrent, alpha, color2); float3 currentIso = worldCamPos+alpha*worldDir; if(b && abs(lastSample.sdf - dist) < rayCastParams.m_thresSampleDist) { if(abs(dist) < rayCastParams.m_thresDist) { float depth = alpha / depthToRayLength; // Convert ray length to depth depthToRayLength d_depth[dTid.y*rayCastParams.m_width+dTid.x] = depth; d_depth4[dTid.y*rayCastParams.m_width+dTid.x] = make_float4(depthToCamera(dTid.x, dTid.y, depth), 1.0f); d_colors[dTid.y*rayCastParams.m_width+dTid.x] = make_float4(color2.x/255.f, color2.y/255.f, color2.z/255.f, 1.0f); if(rayCastParams.m_useGradients) { float3 normal = make_float3(0,0,0)-gradientForPoint(hash, currentIso); float4 n = rayCastParams.m_viewMatrix * make_float4(normal, 0.0f); d_normals[dTid.y*rayCastParams.m_width+dTid.x] = make_float4(n.x, n.y, n.z, 1.0f); } return; } } } lastSample.sdf = dist; lastSample.alpha = rayCurrent; // lastSample.color = color; lastSample.weight = 1; rayCurrent += rayCastParams.m_rayIncrement; } else { lastSample.weight = 0; rayCurrent += rayCastParams.m_rayIncrement; } } } __global__ void computeNormalsDevice(float4* d_output, float4* d_input, unsigned int width, unsigned int height) { const unsigned int x = blockIdx.x*blockDim.x + threadIdx.x; const unsigned int y = blockIdx.y*blockDim.y + threadIdx.y; if(x >= width || y >= height) return; d_output[y*width+x] = make_float4(MINF, MINF, MINF, MINF); if(x > 0 && x < width-1 && y > 0 && y < height-1) { const float4 CC = d_input[(y+0)*width+(x+0)]; const float4 PC = d_input[(y+1)*width+(x+0)]; const float4 CP = d_input[(y+0)*width+(x+1)]; const float4 MC = d_input[(y-1)*width+(x+0)]; const float4 CM = d_input[(y+0)*width+(x-1)]; if(CC.x != MINF && PC.x != MINF && CP.x != MINF && MC.x != MINF && CM.x != MINF) { const float3 n = cross(make_float3(PC)-make_float3(MC), make_float3(CP)-make_float3(CM)); const float l = length(n); if(l > 0.0f) { d_output[y*width+x] = make_float4(n/-l, 1.0f); } } } } extern "C" void computeNormals(float4* d_output, float4* d_input, unsigned int width, unsigned int height) { const dim3 gridSize((width + T_PER_BLOCK - 1)/T_PER_BLOCK, (height + T_PER_BLOCK - 1)/T_PER_BLOCK); const dim3 blockSize(T_PER_BLOCK, T_PER_BLOCK); hipLaunchKernelGGL(( computeNormalsDevice), dim3(gridSize), dim3(blockSize), 0, 0, d_output, d_input, width, height); #ifdef _DEBUG cutilSafeCall(hipDeviceSynchronize()); cutilCheckMsg(__FUNCTION__); #endif } texture<float, hipTextureType2D, hipReadModeElementType> rayMinTextureRef; texture<float, hipTextureType2D, hipReadModeElementType> rayMaxTextureRef; __global__ void renderKernel(HashDataStruct hashData, RayCastData rayCastData) { const unsigned int x = blockIdx.x*blockDim.x + threadIdx.x; const unsigned int y = blockIdx.y*blockDim.y + threadIdx.y; const RayCastParams& rayCastParams = c_rayCastParams; if (x < rayCastParams.m_width && y < rayCastParams.m_height) { rayCastData.d_depth[y*rayCastParams.m_width+x] = MINF; rayCastData.d_depth4[y*rayCastParams.m_width+x] = make_float4(MINF,MINF,MINF,MINF); rayCastData.d_normals[y*rayCastParams.m_width+x] = make_float4(MINF,MINF,MINF,MINF); rayCastData.d_colors[y*rayCastParams.m_width+x] = make_float4(MINF,MINF,MINF,MINF); float3 camDir = normalize(RayCastData::depthToCamera(x, y, 1.0f)); float3 worldCamPos = rayCastParams.m_viewMatrixInverse * make_float3(0.0f, 0.0f, 0.0f); float4 w = rayCastParams.m_viewMatrixInverse * make_float4(camDir, 0.0f); float3 worldDir = normalize(make_float3(w.x, w.y, w.z)); float minInterval = tex2D(rayMinTextureRef, x, y); float maxInterval = tex2D(rayMaxTextureRef, x, y); //float minInterval = rayCastParams.m_minDepth; //float maxInterval = rayCastParams.m_maxDepth; //if (minInterval == 0 || minInterval == MINF) minInterval = rayCastParams.m_minDepth; //if (maxInterval == 0 || maxInterval == MINF) maxInterval = rayCastParams.m_maxDepth; //TODO MATTHIAS: shouldn't this return in the case no interval is found? if (minInterval == 0 || minInterval == MINF) return; if (maxInterval == 0 || maxInterval == MINF) return; minInterval = max(minInterval, rayCastParams.m_minDepth); maxInterval = min(maxInterval, rayCastParams.m_maxDepth); // debugging //if (maxInterval < minInterval) { // printf("ERROR (%d,%d): [ %f, %f ]\n", x, y, minInterval, maxInterval); //} rayCastData.traverseCoarseGridSimpleSampleAll(hashData, worldCamPos, worldDir, camDir, make_int3(x,y,1), minInterval, maxInterval); } } extern "C" void renderCS(const HashDataStruct& hashData, const RayCastData &rayCastData, const RayCastParams &rayCastParams) { const dim3 gridSize((rayCastParams.m_width + T_PER_BLOCK - 1)/T_PER_BLOCK, (rayCastParams.m_height + T_PER_BLOCK - 1)/T_PER_BLOCK); const dim3 blockSize(T_PER_BLOCK, T_PER_BLOCK); hipBindTexture2D(0, &rayMinTextureRef, rayCastData.d_rayIntervalSplatMinArray, &depthTextureRef.channelDesc, rayCastParams.m_width, rayCastParams.m_height, sizeof(float)*rayCastParams.m_width); hipBindTexture2D(0, &rayMaxTextureRef, rayCastData.d_rayIntervalSplatMaxArray, &depthTextureRef.channelDesc, rayCastParams.m_width, rayCastParams.m_height, sizeof(float)*rayCastParams.m_width); hipLaunchKernelGGL(( renderKernel), dim3(gridSize), dim3(blockSize), 0, 0, hashData, rayCastData); #ifdef _DEBUG cutilSafeCall(hipDeviceSynchronize()); cutilCheckMsg(__FUNCTION__); #endif } ///////////////////////////////////////////////////////////////////////// // ray interval splatting ///////////////////////////////////////////////////////////////////////// __global__ void resetRayIntervalSplatKernel(RayCastData data) { uint idx = blockIdx.x + blockIdx.y * NUM_GROUPS_X; data.d_vertexBuffer[idx] = make_float4(MINF); } extern "C" void resetRayIntervalSplatCUDA(RayCastData& data, const RayCastParams& params) { const dim3 gridSize(NUM_GROUPS_X, (params.m_maxNumVertices + NUM_GROUPS_X - 1) / NUM_GROUPS_X, 1); // ! todo check if need third dimension? const dim3 blockSize(1, 1, 1); hipLaunchKernelGGL(( resetRayIntervalSplatKernel), dim3(gridSize), dim3(blockSize), 0, 0, data); #ifdef _DEBUG cutilSafeCall(hipDeviceSynchronize()); cutilCheckMsg(__FUNCTION__); #endif } __global__ void rayIntervalSplatKernel(HashDataStruct hashData, RayCastData rayCastData) { uint idx = blockIdx.x + blockIdx.y * NUM_GROUPS_X; const HashEntry& entry = hashData.d_hashCompactified[idx]; const RayCastParams& rayCastParams = c_rayCastParams; if (entry.ptr != FREE_ENTRY) { float3 posWorld = hashData.virtualVoxelPosToWorld(hashData.SDFBlockToVirtualVoxelPos(entry.pos)) + c_hashParams.m_virtualVoxelSize * 0.5f * (SDF_BLOCK_SIZE - 1.0f); if (rayCastData.isInCameraFrustumApprox(rayCastParams.m_viewMatrixInverse, posWorld)) return; const RayCastParams &params = c_rayCastParams; const float4x4& viewMatrix = params.m_viewMatrix; float3 worldCurrentVoxel = hashData.SDFBlockToWorld(entry.pos); float3 MINV = worldCurrentVoxel - c_hashParams.m_virtualVoxelSize / 2.0f; float3 maxv = MINV+SDF_BLOCK_SIZE*c_hashParams.m_virtualVoxelSize; //float3 proj000 = DepthCameraData::cameraToKinectProj(viewMatrix * make_float3(MINV.x, MINV.y, MINV.z)); //float3 proj100 = DepthCameraData::cameraToKinectProj(viewMatrix * make_float3(maxv.x, MINV.y, MINV.z)); //float3 proj010 = DepthCameraData::cameraToKinectProj(viewMatrix * make_float3(MINV.x, maxv.y, MINV.z)); //float3 proj001 = DepthCameraData::cameraToKinectProj(viewMatrix * make_float3(MINV.x, MINV.y, maxv.z)); //float3 proj110 = DepthCameraData::cameraToKinectProj(viewMatrix * make_float3(maxv.x, maxv.y, MINV.z)); //float3 proj011 = DepthCameraData::cameraToKinectProj(viewMatrix * make_float3(MINV.x, maxv.y, maxv.z)); //float3 proj101 = DepthCameraData::cameraToKinectProj(viewMatrix * make_float3(maxv.x, MINV.y, maxv.z)); //float3 proj111 = DepthCameraData::cameraToKinectProj(viewMatrix * make_float3(maxv.x, maxv.y, maxv.z)); float3 proj000 = RayCastData::cameraToDepthProj(viewMatrix * make_float3(MINV.x, MINV.y, MINV.z)); float3 proj100 = RayCastData::cameraToDepthProj(viewMatrix * make_float3(maxv.x, MINV.y, MINV.z)); float3 proj010 = RayCastData::cameraToDepthProj(viewMatrix * make_float3(MINV.x, maxv.y, MINV.z)); float3 proj001 = RayCastData::cameraToDepthProj(viewMatrix * make_float3(MINV.x, MINV.y, maxv.z)); float3 proj110 = RayCastData::cameraToDepthProj(viewMatrix * make_float3(maxv.x, maxv.y, MINV.z)); float3 proj011 = RayCastData::cameraToDepthProj(viewMatrix * make_float3(MINV.x, maxv.y, maxv.z)); float3 proj101 = RayCastData::cameraToDepthProj(viewMatrix * make_float3(maxv.x, MINV.y, maxv.z)); float3 proj111 = RayCastData::cameraToDepthProj(viewMatrix * make_float3(maxv.x, maxv.y, maxv.z)); // Tree Reduction Min float3 min00 = fminf(proj000, proj100); float3 min01 = fminf(proj010, proj001); float3 min10 = fminf(proj110, proj011); float3 min11 = fminf(proj101, proj111); float3 min0 = fminf(min00, min01); float3 min1 = fminf(min10, min11); float3 minFinal = fminf(min0, min1); // Tree Reduction Max float3 max00 = fmaxf(proj000, proj100); float3 max01 = fmaxf(proj010, proj001); float3 max10 = fmaxf(proj110, proj011); float3 max11 = fmaxf(proj101, proj111); float3 max0 = fmaxf(max00, max01); float3 max1 = fmaxf(max10, max11); float3 maxFinal = fmaxf(max0, max1); float depth = maxFinal.z; float * rayArray = rayCastData.d_rayIntervalSplatMaxArray; if(params.m_splatMinimum == 1) { depth = minFinal.z; rayArray = rayCastData.d_rayIntervalSplatMinArray; } float depthWorld = RayCastData::depthProjToCameraZ(depth); for(uint x=(uint)ceil(minFinal.x); x<maxFinal.x&&x<rayCastParams.m_width; x++) { for(uint y=(uint)ceil(minFinal.y); y<maxFinal.y&&y<rayCastParams.m_height; y++) { rayArray[y*rayCastParams.m_width+x] = depth; } } } } extern "C" void rayIntervalSplatCUDA(const HashDataStruct& hashData, const RayCastData &rayCastData, const RayCastParams &rayCastParams) { const dim3 gridSize(NUM_GROUPS_X, (rayCastParams.m_numOccupiedSDFBlocks + NUM_GROUPS_X - 1) / NUM_GROUPS_X, 1); const dim3 blockSize(1, 1, 1); hipLaunchKernelGGL(( rayIntervalSplatKernel), dim3(gridSize), dim3(blockSize), 0, 0, hashData, rayCastData); #ifdef _DEBUG cutilSafeCall(hipDeviceSynchronize()); cutilCheckMsg(__FUNCTION__); #endif } /** cube */ __device__ __host__ MarchingCubesData::MarchingCubesData() { d_params = NULL; d_triangles = NULL; d_numTriangles = NULL; m_bIsOnGPU = false; } ///////////////// // Device part // ///////////////// __device__ void MarchingCubesData::extractIsoSurfaceAtPosition(const float3 &worldPos, const HashDataStruct &hashData, const RayCastData &rayCastData) { const HashParams &hashParams = c_hashParams; const MarchingCubesParams &params = *d_params; if (params.m_boxEnabled == 1) { if (!isInBoxAA(params.m_minCorner, params.m_maxCorner, worldPos)) return; } const float isolevel = 0.0f; const float P = hashParams.m_virtualVoxelSize / 2.0f; const float M = -P; float3 p000 = worldPos + make_float3(M, M, M); float dist000; uchar3 color000; bool valid000 = rayCastData.trilinearInterpolationSimpleFastFast(hashData, p000, dist000, color000); float3 p100 = worldPos + make_float3(P, M, M); float dist100; uchar3 color100; bool valid100 = rayCastData.trilinearInterpolationSimpleFastFast(hashData, p100, dist100, color100); float3 p010 = worldPos + make_float3(M, P, M); float dist010; uchar3 color010; bool valid010 = rayCastData.trilinearInterpolationSimpleFastFast(hashData, p010, dist010, color010); float3 p001 = worldPos + make_float3(M, M, P); float dist001; uchar3 color001; bool valid001 = rayCastData.trilinearInterpolationSimpleFastFast(hashData, p001, dist001, color001); float3 p110 = worldPos + make_float3(P, P, M); float dist110; uchar3 color110; bool valid110 = rayCastData.trilinearInterpolationSimpleFastFast(hashData, p110, dist110, color110); float3 p011 = worldPos + make_float3(M, P, P); float dist011; uchar3 color011; bool valid011 = rayCastData.trilinearInterpolationSimpleFastFast(hashData, p011, dist011, color011); float3 p101 = worldPos + make_float3(P, M, P); float dist101; uchar3 color101; bool valid101 = rayCastData.trilinearInterpolationSimpleFastFast(hashData, p101, dist101, color101); float3 p111 = worldPos + make_float3(P, P, P); float dist111; uchar3 color111; bool valid111 = rayCastData.trilinearInterpolationSimpleFastFast(hashData, p111, dist111, color111); if (!valid000 || !valid100 || !valid010 || !valid001 || !valid110 || !valid011 || !valid101 || !valid111) return; uint cubeindex = 0; if (dist010 < isolevel) cubeindex += 1; if (dist110 < isolevel) cubeindex += 2; if (dist100 < isolevel) cubeindex += 4; if (dist000 < isolevel) cubeindex += 8; if (dist011 < isolevel) cubeindex += 16; if (dist111 < isolevel) cubeindex += 32; if (dist101 < isolevel) cubeindex += 64; if (dist001 < isolevel) cubeindex += 128; const float thres = params.m_threshMarchingCubes; float distArray[] = {dist000, dist100, dist010, dist001, dist110, dist011, dist101, dist111}; for (uint k = 0; k < 8; k++) { for (uint l = 0; l < 8; l++) { if (distArray[k] * distArray[l] < 0.0f) { if (abs(distArray[k]) + abs(distArray[l]) > thres) return; } else { if (abs(distArray[k] - distArray[l]) > thres) return; } } } if (abs(dist000) > params.m_threshMarchingCubes2) return; if (abs(dist100) > params.m_threshMarchingCubes2) return; if (abs(dist010) > params.m_threshMarchingCubes2) return; if (abs(dist001) > params.m_threshMarchingCubes2) return; if (abs(dist110) > params.m_threshMarchingCubes2) return; if (abs(dist011) > params.m_threshMarchingCubes2) return; if (abs(dist101) > params.m_threshMarchingCubes2) return; if (abs(dist111) > params.m_threshMarchingCubes2) return; if (edgeTable[cubeindex] == 0 || edgeTable[cubeindex] == 255) return; // added by me edgeTable[cubeindex] == 255 Voxel v = hashData.getVoxel(worldPos); Vertex vertlist[12]; if (edgeTable[cubeindex] & 1) vertlist[0] = vertexInterp(isolevel, p010, p110, dist010, dist110, v.color, v.color); if (edgeTable[cubeindex] & 2) vertlist[1] = vertexInterp(isolevel, p110, p100, dist110, dist100, v.color, v.color); if (edgeTable[cubeindex] & 4) vertlist[2] = vertexInterp(isolevel, p100, p000, dist100, dist000, v.color, v.color); if (edgeTable[cubeindex] & 8) vertlist[3] = vertexInterp(isolevel, p000, p010, dist000, dist010, v.color, v.color); if (edgeTable[cubeindex] & 16) vertlist[4] = vertexInterp(isolevel, p011, p111, dist011, dist111, v.color, v.color); if (edgeTable[cubeindex] & 32) vertlist[5] = vertexInterp(isolevel, p111, p101, dist111, dist101, v.color, v.color); if (edgeTable[cubeindex] & 64) vertlist[6] = vertexInterp(isolevel, p101, p001, dist101, dist001, v.color, v.color); if (edgeTable[cubeindex] & 128) vertlist[7] = vertexInterp(isolevel, p001, p011, dist001, dist011, v.color, v.color); if (edgeTable[cubeindex] & 256) vertlist[8] = vertexInterp(isolevel, p010, p011, dist010, dist011, v.color, v.color); if (edgeTable[cubeindex] & 512) vertlist[9] = vertexInterp(isolevel, p110, p111, dist110, dist111, v.color, v.color); if (edgeTable[cubeindex] & 1024) vertlist[10] = vertexInterp(isolevel, p100, p101, dist100, dist101, v.color, v.color); if (edgeTable[cubeindex] & 2048) vertlist[11] = vertexInterp(isolevel, p000, p001, dist000, dist001, v.color, v.color); for (int i = 0; triTable[cubeindex][i] != -1; i += 3) { Triangle t; t.v0 = vertlist[triTable[cubeindex][i + 0]]; t.v1 = vertlist[triTable[cubeindex][i + 1]]; t.v2 = vertlist[triTable[cubeindex][i + 2]]; appendTriangle(t); } } using Vertex = MarchingCubesData::Vertex; using Triangle = MarchingCubesData::Triangle; __device__ Vertex MarchingCubesData::vertexInterp(float isolevel, const float3 &p1, const float3 &p2, float d1, float d2, const uchar4 &c1, const uchar4 &c2) const { Vertex r1; r1.p = p1; r1.c = make_float3(c1.x, c1.y, c1.z) / 255.f; Vertex r2; r2.p = p2; r2.c = make_float3(c2.x, c2.y, c2.z) / 255.f; if (abs(isolevel - d1) < 0.00001f) return r1; if (abs(isolevel - d2) < 0.00001f) return r2; if (abs(d1 - d2) < 0.00001f) return r1; float mu = (isolevel - d1) / (d2 - d1); Vertex res; res.p.x = p1.x + mu * (p2.x - p1.x); // Positions res.p.y = p1.y + mu * (p2.y - p1.y); res.p.z = p1.z + mu * (p2.z - p1.z); res.c.x = (float) (c1.x + mu * (float) (c2.x - c1.x)) / 255.f; // Color res.c.y = (float) (c1.y + mu * (float) (c2.y - c1.y)) / 255.f; res.c.z = (float) (c1.z + mu * (float) (c2.z - c1.z)) / 255.f; return res; } __device__ bool MarchingCubesData::isInBoxAA(const float3 &minCorner, const float3 &maxCorner, const float3 &pos) const { if (pos.x < minCorner.x || pos.x > maxCorner.x) return false; if (pos.y < minCorner.y || pos.y > maxCorner.y) return false; if (pos.z < minCorner.z || pos.z > maxCorner.z) return false; return true; } __device__ uint MarchingCubesData::append() { uint addr = atomicAdd(d_numTriangles, 1); //TODO check return addr; } __device__ void MarchingCubesData::appendTriangle(const Triangle &t) { if (*d_numTriangles >= d_params->m_maxNumTriangles) { *d_numTriangles = d_params->m_maxNumTriangles; return; // todo } uint addr = append(); if (addr >= d_params->m_maxNumTriangles) { printf("marching cubes exceeded max number of triangles (addr, #tri, max#tri): (%d, %d, %d)\n", addr, *d_numTriangles, d_params->m_maxNumTriangles); *d_numTriangles = d_params->m_maxNumTriangles; return; // todo } Triangle &triangle = d_triangles[addr]; triangle.v0 = t.v0; triangle.v1 = t.v1; triangle.v2 = t.v2; return; } /** marching cube cuda*/ __global__ void resetMarchingCubesKernel(MarchingCubesData data) { *data.d_numTriangles = 0; } __global__ void extractIsoSurfaceKernel(HashDataStruct hashData, RayCastData rayCastData, MarchingCubesData data) { uint idx = blockIdx.x; const HashEntry &entry = hashData.d_hash[idx]; if (entry.ptr != FREE_ENTRY) { int3 pi_base = hashData.SDFBlockToVirtualVoxelPos(entry.pos); int3 pi = pi_base + make_int3(threadIdx); float3 worldPos = hashData.virtualVoxelPosToWorld(pi); data.extractIsoSurfaceAtPosition(worldPos, hashData, rayCastData); } } extern "C" void resetMarchingCubesCUDA(MarchingCubesData &data) { const dim3 blockSize(1, 1, 1); const dim3 gridSize(1, 1, 1); hipLaunchKernelGGL(( resetMarchingCubesKernel), dim3(gridSize), dim3(blockSize), 0, 0, data); #ifdef _DEBUG cutilSafeCall(hipDeviceSynchronize()); cutilCheckMsg(__FUNCTION__); #endif } extern "C" void extractIsoSurfaceCUDA(const HashDataStruct &hashData, const RayCastData &rayCastData, const MarchingCubesParams &params, MarchingCubesData &data) { const dim3 gridSize(params.m_hashNumBuckets * params.m_hashBucketSize, 1, 1); const dim3 blockSize(params.m_sdfBlockSize, params.m_sdfBlockSize, params.m_sdfBlockSize); hipLaunchKernelGGL(( extractIsoSurfaceKernel), dim3(gridSize), dim3(blockSize), 0, 0, hashData, rayCastData, data); #ifdef _DEBUG cutilSafeCall(hipDeviceSynchronize()); cutilCheckMsg(__FUNCTION__); #endif } void CUDAMarchingCubesHashSDF::create(const MarchingCubesParams &params) { m_params = params; m_data.allocate(m_params); resetMarchingCubesCUDA(m_data); } void CUDAMarchingCubesHashSDF::extractIsoSurface(const HashDataStruct &hashData, const HashParams &hashParams, const RayCastData &rayCastData, const vec3f &minCorner, const vec3f &maxCorner, bool boxEnabled) { resetMarchingCubesCUDA(m_data); m_params.m_maxCorner = maxCorner; m_params.m_minCorner = minCorner; m_params.m_boxEnabled = boxEnabled; m_data.updateParams(m_params); extractIsoSurfaceCUDA(hashData, rayCastData, m_params, m_data); copyTrianglesToCPU(); } Mesh * CUDAMarchingCubesHashSDF::getMeshData() { return m_meshData; }
b6804e620b0aabb76546e0e96f8ae0847f69d535.cu
/** * this file is based on https://github.com/niessner/BundleFusion.git */ #include "cuda_scene_rep.h" #include <cuda_texture_types.h> #include <pcl/Vertices.h> #include <pcl/conversions.h> #include "tables.h" /////////////// // Host part // /////////////// __device__ __host__ HashDataStruct::HashDataStruct() { d_heap = NULL; d_heapCounter = NULL; d_hash = NULL; d_hashDecision = NULL; d_hashDecisionPrefix = NULL; d_hashCompactified = NULL; d_hashCompactifiedCounter = NULL; d_SDFBlocks = NULL; d_hashBucketMutex = NULL; m_bIsOnGPU = false; } __host__ void HashDataStruct::allocate(const HashParams &params, bool dataOnGPU) { m_bIsOnGPU = dataOnGPU; if (m_bIsOnGPU) { cutilSafeCall(cudaMalloc(&d_heap, sizeof(unsigned int) * params.m_numSDFBlocks)); cutilSafeCall(cudaMalloc(&d_heapCounter, sizeof(unsigned int))); cutilSafeCall(cudaMalloc(&d_hash, sizeof(HashEntry) * params.m_hashNumBuckets * params.m_hashBucketSize)); cutilSafeCall(cudaMalloc(&d_hashDecision, sizeof(int) * params.m_hashNumBuckets * params.m_hashBucketSize)); cutilSafeCall( cudaMalloc(&d_hashDecisionPrefix, sizeof(int) * params.m_hashNumBuckets * params.m_hashBucketSize)); cutilSafeCall( cudaMalloc(&d_hashCompactified, sizeof(HashEntry) * params.m_hashNumBuckets * params.m_hashBucketSize)); cutilSafeCall(cudaMalloc(&d_hashCompactifiedCounter, sizeof(int))); cutilSafeCall(cudaMalloc(&d_SDFBlocks, sizeof(Voxel) * params.m_numSDFBlocks * params.m_SDFBlockSize * params.m_SDFBlockSize * params.m_SDFBlockSize)); cutilSafeCall(cudaMalloc(&d_hashBucketMutex, sizeof(int) * params.m_hashNumBuckets)); } else { d_heap = new unsigned int[params.m_numSDFBlocks]; d_heapCounter = new unsigned int[1]; d_hash = new HashEntry[params.m_hashNumBuckets * params.m_hashBucketSize]; d_hashDecision = new int[params.m_hashNumBuckets * params.m_hashBucketSize]; d_hashDecisionPrefix = new int[params.m_hashNumBuckets * params.m_hashBucketSize]; d_hashCompactifiedCounter = new int[1]; d_hashCompactified = new HashEntry[params.m_hashNumBuckets * params.m_hashBucketSize]; d_SDFBlocks = new Voxel[params.m_numSDFBlocks * params.m_SDFBlockSize * params.m_SDFBlockSize * params.m_SDFBlockSize]; d_hashBucketMutex = new int[params.m_hashNumBuckets]; } updateParams(params); } extern "C" void updateConstantHashParams(const HashParams& params) { size_t size; CUDA_CHECKED_CALL(cudaGetSymbolSize(&size, c_hashParams)); CUDA_CHECKED_CALL(cudaMemcpyToSymbol(c_hashParams, &params, size, 0, cudaMemcpyHostToDevice)); CUDA_CHECKED_CALL(cudaDeviceSynchronize()); } __host__ void HashDataStruct::updateParams(const HashParams &params) { if (m_bIsOnGPU) { updateConstantHashParams(params); } } __host__ void HashDataStruct::free() { if (m_bIsOnGPU) { cutilSafeCall(cudaFree(d_heap)); cutilSafeCall(cudaFree(d_heapCounter)); cutilSafeCall(cudaFree(d_hash)); cutilSafeCall(cudaFree(d_hashDecision)); cutilSafeCall(cudaFree(d_hashDecisionPrefix)); cutilSafeCall(cudaFree(d_hashCompactified)); cutilSafeCall(cudaFree(d_hashCompactifiedCounter)); cutilSafeCall(cudaFree(d_SDFBlocks)); cutilSafeCall(cudaFree(d_hashBucketMutex)); } else { if (d_heap) delete[] d_heap; if (d_heapCounter) delete[] d_heapCounter; if (d_hash) delete[] d_hash; if (d_hashDecision) delete[] d_hashDecision; if (d_hashDecisionPrefix) delete[] d_hashDecisionPrefix; if (d_hashCompactified) delete[] d_hashCompactified; if (d_hashCompactifiedCounter) delete[] d_hashCompactifiedCounter; if (d_SDFBlocks) delete[] d_SDFBlocks; if (d_hashBucketMutex) delete[] d_hashBucketMutex; } d_hash = NULL; d_heap = NULL; d_heapCounter = NULL; d_hashDecision = NULL; d_hashDecisionPrefix = NULL; d_hashCompactified = NULL; d_hashCompactifiedCounter = NULL; d_SDFBlocks = NULL; d_hashBucketMutex = NULL; } __host__ HashDataStruct HashDataStruct::copyToCPU() const { HashParams params; HashDataStruct hashData; hashData.allocate(params, false); //allocate the data on the CPU cutilSafeCall( cudaMemcpy(hashData.d_heap, d_heap, sizeof(unsigned int) * params.m_numSDFBlocks, cudaMemcpyDeviceToHost)); cutilSafeCall(cudaMemcpy(hashData.d_heapCounter, d_heapCounter, sizeof(unsigned int), cudaMemcpyDeviceToHost)); cutilSafeCall( cudaMemcpy(hashData.d_hash, d_hash, sizeof(HashEntry) * params.m_hashNumBuckets * params.m_hashBucketSize, cudaMemcpyDeviceToHost)); cutilSafeCall(cudaMemcpy(hashData.d_hashDecision, d_hashDecision, sizeof(int) * params.m_hashNumBuckets * params.m_hashBucketSize, cudaMemcpyDeviceToHost)); cutilSafeCall(cudaMemcpy(hashData.d_hashDecisionPrefix, d_hashDecisionPrefix, sizeof(int) * params.m_hashNumBuckets * params.m_hashBucketSize, cudaMemcpyDeviceToHost)); cutilSafeCall(cudaMemcpy(hashData.d_hashCompactified, d_hashCompactified, sizeof(HashEntry) * params.m_hashNumBuckets * params.m_hashBucketSize, cudaMemcpyDeviceToHost)); cutilSafeCall(cudaMemcpy(hashData.d_SDFBlocks, d_SDFBlocks, sizeof(Voxel) * params.m_numSDFBlocks * params.m_SDFBlockSize * params.m_SDFBlockSize * params.m_SDFBlockSize, cudaMemcpyDeviceToHost)); cutilSafeCall(cudaMemcpy(hashData.d_hashBucketMutex, d_hashBucketMutex, sizeof(int) * params.m_hashNumBuckets, cudaMemcpyDeviceToHost)); return hashData; //TODO MATTHIAS look at this (i.e,. when does memory get destroyed ; if it's in the destructer it would kill everything here } ///////////////// // Device part // ///////////////// __device__ const HashParams &HashDataStruct::params() const { return c_hashParams; } //! see teschner et al. (but with correct prime values) __device__ uint HashDataStruct::computeHashPos(const int3 &virtualVoxelPos) const { const int p0 = 73856093; const int p1 = 19349669; const int p2 = 83492791; int res = ((virtualVoxelPos.x * p0) ^ (virtualVoxelPos.y * p1) ^ (virtualVoxelPos.z * p2)) % c_hashParams.m_hashNumBuckets; if (res < 0) res += c_hashParams.m_hashNumBuckets; return (uint) res; } //merges two voxels (v0 is the input voxel, v1 the currently stored voxel) __device__ void HashDataStruct::combineVoxel(const Voxel &v0, const Voxel &v1, Voxel &out) const { //v.color = (10*v0.weight * v0.color + v1.weight * v1.color)/(10*v0.weight + v1.weight); //give the currently observed color more weight //v.color = (v0.weight * v0.color + v1.weight * v1.color)/(v0.weight + v1.weight); //out.color = 0.5f * (v0.color + v1.color); //exponential running average float3 c0 = make_float3(v0.color.x, v0.color.y, v0.color.z); float3 c1 = make_float3(v1.color.x, v1.color.y, v1.color.z); //float3 res = (c0+c1)/2; //float3 res = (c0 * (float)v0.weight + c1 * (float)v1.weight) / ((float)v0.weight + (float)v1.weight); //float3 res = c1; if (v0.weight == 0) out.color = v1.color; else { float3 res = 0.5f * c0 + 0.5f * c1; out.color.x = (uchar)(res.x + 0.5f); out.color.y = (uchar)(res.y + 0.5f); out.color.z = (uchar)(res.z + 0.5f); } out.sdf = (v0.sdf * (float) v0.weight + v1.sdf * (float) v1.weight) / ((float) v0.weight + (float) v1.weight); //out.weight = min(c_hashParams.m_integrationWeightMax, (unsigned int)v0.weight + (unsigned int)v1.weight); out.weight = min((float) c_hashParams.m_integrationWeightMax, v0.weight + v1.weight); } __device__ void HashDataStruct::combineVoxelDepthOnly(const Voxel &v0, const Voxel &v1, Voxel &out) const { out.sdf = (v0.sdf * (float) v0.weight + v1.sdf * (float) v1.weight) / ((float) v0.weight + (float) v1.weight); out.weight = min((float) c_hashParams.m_integrationWeightMax, v0.weight + v1.weight); } //! returns the truncation of the SDF for a given distance value __device__ float HashDataStruct::getTruncation(float z) const { return c_hashParams.m_truncation + c_hashParams.m_truncScale * z; } __device__ float3 HashDataStruct::worldToVirtualVoxelPosFloat(const float3 &pos) const { return pos / c_hashParams.m_virtualVoxelSize; } __device__ int3 HashDataStruct::worldToVirtualVoxelPos(const float3 &pos) const { //const float3 p = pos*g_VirtualVoxelResolutionScalar; const float3 p = pos / c_hashParams.m_virtualVoxelSize; return make_int3(p + make_float3(sign(p)) * 0.5f); } __device__ int3 HashDataStruct::virtualVoxelPosToSDFBlock(int3 virtualVoxelPos) const { if (virtualVoxelPos.x < 0) virtualVoxelPos.x -= SDF_BLOCK_SIZE - 1; if (virtualVoxelPos.y < 0) virtualVoxelPos.y -= SDF_BLOCK_SIZE - 1; if (virtualVoxelPos.z < 0) virtualVoxelPos.z -= SDF_BLOCK_SIZE - 1; return make_int3( virtualVoxelPos.x / SDF_BLOCK_SIZE, virtualVoxelPos.y / SDF_BLOCK_SIZE, virtualVoxelPos.z / SDF_BLOCK_SIZE); } // Computes virtual voxel position of corner sample position __device__ int3 HashDataStruct::SDFBlockToVirtualVoxelPos(const int3 &sdfBlock) const { return sdfBlock * SDF_BLOCK_SIZE; } __device__ float3 HashDataStruct::virtualVoxelPosToWorld(const int3 &pos) const { return make_float3(pos) * c_hashParams.m_virtualVoxelSize; } __device__ float3 HashDataStruct::SDFBlockToWorld(const int3 &sdfBlock) const { return virtualVoxelPosToWorld(SDFBlockToVirtualVoxelPos(sdfBlock)); } __device__ int3 HashDataStruct::worldToSDFBlock(const float3 &worldPos) const { return virtualVoxelPosToSDFBlock(worldToVirtualVoxelPos(worldPos)); } __device__ bool HashDataStruct::isSDFBlockInCameraFrustumApprox(const int3 &sdfBlock, CUDAFrame &frame) { float3 posWorld = virtualVoxelPosToWorld(SDFBlockToVirtualVoxelPos(sdfBlock)) + c_hashParams.m_virtualVoxelSize * 0.5f * (SDF_BLOCK_SIZE - 1.0f); return frame.isInCameraFrustumApprox(posWorld); } //! computes the (local) virtual voxel pos of an index; idx in [0;511] __device__ uint3 HashDataStruct::delinearizeVoxelIndex(uint idx) const { uint x = idx % SDF_BLOCK_SIZE; uint y = (idx % (SDF_BLOCK_SIZE * SDF_BLOCK_SIZE)) / SDF_BLOCK_SIZE; uint z = idx / (SDF_BLOCK_SIZE * SDF_BLOCK_SIZE); return make_uint3(x, y, z); } //! computes the linearized index of a local virtual voxel pos; pos in [0;7]^3 __device__ uint HashDataStruct::linearizeVoxelPos(const int3 &virtualVoxelPos) const { return virtualVoxelPos.z * SDF_BLOCK_SIZE * SDF_BLOCK_SIZE + virtualVoxelPos.y * SDF_BLOCK_SIZE + virtualVoxelPos.x; } __device__ int HashDataStruct::virtualVoxelPosToLocalSDFBlockIndex(const int3 &virtualVoxelPos) const { int3 localVoxelPos = make_int3( virtualVoxelPos.x % SDF_BLOCK_SIZE, virtualVoxelPos.y % SDF_BLOCK_SIZE, virtualVoxelPos.z % SDF_BLOCK_SIZE); if (localVoxelPos.x < 0) localVoxelPos.x += SDF_BLOCK_SIZE; if (localVoxelPos.y < 0) localVoxelPos.y += SDF_BLOCK_SIZE; if (localVoxelPos.z < 0) localVoxelPos.z += SDF_BLOCK_SIZE; return linearizeVoxelPos(localVoxelPos); } __device__ int HashDataStruct::worldToLocalSDFBlockIndex(const float3 &world) const { int3 virtualVoxelPos = worldToVirtualVoxelPos(world); return virtualVoxelPosToLocalSDFBlockIndex(virtualVoxelPos); } //! returns the hash entry for a given worldPos; if there was no hash entry the returned entry will have a ptr with FREE_ENTRY set __device__ HashEntry HashDataStruct::getHashEntry(const float3 &worldPos) const { //int3 blockID = worldToSDFVirtualVoxelPos(worldPos)/SDF_BLOCK_SIZE; //position of sdf block int3 blockID = worldToSDFBlock(worldPos); return getHashEntryForSDFBlockPos(blockID); } __device__ void HashDataStruct::deleteHashEntry(uint id) { deleteHashEntry(d_hash[id]); } __device__ void HashDataStruct::deleteHashEntry(HashEntry &hashEntry) { hashEntry.pos = make_int3(0); hashEntry.offset = 0; hashEntry.ptr = FREE_ENTRY; } __device__ bool HashDataStruct::voxelExists(const float3 &worldPos) const { HashEntry hashEntry = getHashEntry(worldPos); return (hashEntry.ptr != FREE_ENTRY); } __device__ void HashDataStruct::deleteVoxel(Voxel &v) const { v.color = make_uchar4(0, 0, 0, 0); v.weight = 0.0f; v.sdf = 0.0f; } __device__ void HashDataStruct::deleteVoxel(uint id) { deleteVoxel(d_SDFBlocks[id]); } __device__ Voxel HashDataStruct::getVoxel(const float3 &worldPos) const { HashEntry hashEntry = getHashEntry(worldPos); Voxel v; if (hashEntry.ptr == FREE_ENTRY) { deleteVoxel(v); } else { int3 virtualVoxelPos = worldToVirtualVoxelPos(worldPos); v = d_SDFBlocks[hashEntry.ptr + virtualVoxelPosToLocalSDFBlockIndex(virtualVoxelPos)]; } return v; } __device__ Voxel HashDataStruct::getVoxel(const int3 &virtualVoxelPos) const { HashEntry hashEntry = getHashEntryForSDFBlockPos(virtualVoxelPosToSDFBlock(virtualVoxelPos)); Voxel v; if (hashEntry.ptr == FREE_ENTRY) { deleteVoxel(v); } else { v = d_SDFBlocks[hashEntry.ptr + virtualVoxelPosToLocalSDFBlockIndex(virtualVoxelPos)]; } return v; } __device__ void HashDataStruct::setVoxel(const int3 &virtualVoxelPos, Voxel &voxelInput) const { HashEntry hashEntry = getHashEntryForSDFBlockPos(virtualVoxelPosToSDFBlock(virtualVoxelPos)); if (hashEntry.ptr != FREE_ENTRY) { d_SDFBlocks[hashEntry.ptr + virtualVoxelPosToLocalSDFBlockIndex(virtualVoxelPos)] = voxelInput; } } //! returns the hash entry for a given sdf block id; if there was no hash entry the returned entry will have a ptr with FREE_ENTRY set __device__ HashEntry HashDataStruct::getHashEntryForSDFBlockPos(const int3 &sdfBlock) const { uint h = computeHashPos(sdfBlock); //hash bucket uint hp = h * HASH_BUCKET_SIZE; //hash position HashEntry entry; entry.pos = sdfBlock; entry.offset = 0; entry.ptr = FREE_ENTRY; for (uint j = 0; j < HASH_BUCKET_SIZE; j++) { uint i = j + hp; HashEntry curr = d_hash[i]; if (curr.pos.x == entry.pos.x && curr.pos.y == entry.pos.y && curr.pos.z == entry.pos.z && curr.ptr != FREE_ENTRY) { return curr; } } #ifdef HANDLE_COLLISIONS const uint idxLastEntryInBucket = (h + 1) * HASH_BUCKET_SIZE - 1; int i = idxLastEntryInBucket; //start with the last entry of the current bucket HashEntry curr; //traverse list until end: memorize idx at list end and memorize offset from last element of bucket to list end unsigned int maxIter = 0; uint g_MaxLoopIterCount = c_hashParams.m_hashMaxCollisionLinkedListSize; #pragma unroll 1 while (maxIter < g_MaxLoopIterCount) { curr = d_hash[i]; if (curr.pos.x == entry.pos.x && curr.pos.y == entry.pos.y && curr.pos.z == entry.pos.z && curr.ptr != FREE_ENTRY) { return curr; } if (curr.offset == 0) { //we have found the end of the list break; } i = idxLastEntryInBucket + curr.offset; //go to next element in the list i %= (HASH_BUCKET_SIZE * c_hashParams.m_hashNumBuckets); //check for overflow maxIter++; } #endif return entry; } //for histogram (no collision traversal) __device__ unsigned int HashDataStruct::getNumHashEntriesPerBucket(unsigned int bucketID) { unsigned int h = 0; for (uint i = 0; i < HASH_BUCKET_SIZE; i++) { if (d_hash[bucketID * HASH_BUCKET_SIZE + i].ptr != FREE_ENTRY) { h++; } } return h; } //for histogram (collisions traversal only) __device__ unsigned int HashDataStruct::getNumHashLinkedList(unsigned int bucketID) { unsigned int listLen = 0; #ifdef HANDLE_COLLISIONS const uint idxLastEntryInBucket = (bucketID + 1) * HASH_BUCKET_SIZE - 1; unsigned int i = idxLastEntryInBucket; //start with the last entry of the current bucket //int offset = 0; HashEntry curr; curr.offset = 0; //traverse list until end: memorize idx at list end and memorize offset from last element of bucket to list end unsigned int maxIter = 0; uint g_MaxLoopIterCount = c_hashParams.m_hashMaxCollisionLinkedListSize; #pragma unroll 1 while (maxIter < g_MaxLoopIterCount) { //offset = curr.offset; //curr = getHashEntry(g_Hash, i); curr = d_hash[i]; if (curr.offset == 0) { //we have found the end of the list break; } i = idxLastEntryInBucket + curr.offset; //go to next element in the list i %= (HASH_BUCKET_SIZE * c_hashParams.m_hashNumBuckets); //check for overflow listLen++; maxIter++; } #endif return listLen; } __device__ uint HashDataStruct::consumeHeap() { uint addr = atomicSub(&d_heapCounter[0], 1); //TODO MATTHIAS check some error handling? return d_heap[addr]; } __device__ void HashDataStruct::appendHeap(uint ptr) { uint addr = atomicAdd(&d_heapCounter[0], 1); //TODO MATTHIAS check some error handling? d_heap[addr + 1] = ptr; } //pos in SDF block coordinates __device__ void HashDataStruct::allocBlock(const int3 &pos) { uint h = computeHashPos(pos); //hash bucket uint hp = h * HASH_BUCKET_SIZE; //hash position int firstEmpty = -1; for (uint j = 0; j < HASH_BUCKET_SIZE; j++) { uint i = j + hp; const HashEntry &curr = d_hash[i]; //in that case the SDF-block is already allocated and corresponds to the current position -> exit thread if (curr.pos.x == pos.x && curr.pos.y == pos.y && curr.pos.z == pos.z && curr.ptr != FREE_ENTRY) { return; } //store the first FREE_ENTRY hash entry if (firstEmpty == -1 && curr.ptr == FREE_ENTRY) { firstEmpty = i; } } #ifdef HANDLE_COLLISIONS //updated variables as after the loop const uint idxLastEntryInBucket = (h + 1) * HASH_BUCKET_SIZE - 1; //get last index of bucket uint i = idxLastEntryInBucket; //start with the last entry of the current bucket //int offset = 0; HashEntry curr; curr.offset = 0; //traverse list until end: memorize idx at list end and memorize offset from last element of bucket to list end //int k = 0; unsigned int maxIter = 0; uint g_MaxLoopIterCount = c_hashParams.m_hashMaxCollisionLinkedListSize; #pragma unroll 1 while (maxIter < g_MaxLoopIterCount) { //offset = curr.offset; curr = d_hash[i]; //TODO MATTHIAS do by reference if (curr.pos.x == pos.x && curr.pos.y == pos.y && curr.pos.z == pos.z && curr.ptr != FREE_ENTRY) { return; } if (curr.offset == 0) { //we have found the end of the list break; } i = idxLastEntryInBucket + curr.offset; //go to next element in the list i %= (HASH_BUCKET_SIZE * c_hashParams.m_hashNumBuckets); //check for overflow maxIter++; } #endif if (firstEmpty != -1) { //if there is an empty entry and we haven't allocated the current entry before //int prevValue = 0; //InterlockedExchange(d_hashBucketMutex[h], LOCK_ENTRY, prevValue); //lock the hash bucket int prevValue = atomicExch(&d_hashBucketMutex[h], LOCK_ENTRY); if (prevValue != LOCK_ENTRY) { //only proceed if the bucket has been locked HashEntry &entry = d_hash[firstEmpty]; entry.pos = pos; entry.offset = NO_OFFSET; long index = consumeHeap(); entry.ptr = index * SDF_BLOCK_SIZE * SDF_BLOCK_SIZE * SDF_BLOCK_SIZE; //memory alloc } return; } #ifdef HANDLE_COLLISIONS //if (i != idxLastEntryInBucket) return; int offset = 0; //linear search for free entry maxIter = 0; #pragma unroll 1 while (maxIter < g_MaxLoopIterCount) { offset++; i = (idxLastEntryInBucket + offset) % (HASH_BUCKET_SIZE * c_hashParams.m_hashNumBuckets); //go to next hash element if ((offset % HASH_BUCKET_SIZE) == 0) continue; //cannot insert into a last bucket element (would conflict with other linked lists) curr = d_hash[i]; //if (curr.pos.x == pos.x && curr.pos.y == pos.y && curr.pos.z == pos.z && curr.ptr != FREE_ENTRY) { // return; //} if (curr.ptr == FREE_ENTRY) { //this is the first free entry //int prevValue = 0; //InterlockedExchange(g_HashBucketMutex[h], LOCK_ENTRY, prevValue); //lock the original hash bucket int prevValue = atomicExch(&d_hashBucketMutex[h], LOCK_ENTRY); if (prevValue != LOCK_ENTRY) { HashEntry lastEntryInBucket = d_hash[idxLastEntryInBucket]; h = i / HASH_BUCKET_SIZE; //InterlockedExchange(g_HashBucketMutex[h], LOCK_ENTRY, prevValue); //lock the hash bucket where we have found a free entry prevValue = atomicExch(&d_hashBucketMutex[h], LOCK_ENTRY); if (prevValue != LOCK_ENTRY) { //only proceed if the bucket has been locked HashEntry &entry = d_hash[i]; entry.pos = pos; entry.offset = lastEntryInBucket.offset; long index = consumeHeap(); entry.ptr = index * SDF_BLOCK_SIZE * SDF_BLOCK_SIZE * SDF_BLOCK_SIZE; //memory alloc lastEntryInBucket.offset = offset; d_hash[idxLastEntryInBucket] = lastEntryInBucket; //setHashEntry(g_Hash, idxLastEntryInBucket, lastEntryInBucket); } } return; //bucket was already locked } maxIter++; } #endif } //!inserts a hash entry without allocating any memory: used by streaming: TODO MATTHIAS check the atomics in this function __device__ bool HashDataStruct::insertHashEntry(HashEntry entry) { uint h = computeHashPos(entry.pos); uint hp = h * HASH_BUCKET_SIZE; for (uint j = 0; j < HASH_BUCKET_SIZE; j++) { uint i = j + hp; //const HashEntry& curr = d_hash[i]; int prevWeight = 0; //InterlockedCompareExchange(hash[3*i+2], FREE_ENTRY, LOCK_ENTRY, prevWeight); prevWeight = atomicCAS(&d_hash[i].ptr, FREE_ENTRY, LOCK_ENTRY); if (prevWeight == FREE_ENTRY) { d_hash[i] = entry; //setHashEntry(hash, i, entry); return true; } } #ifdef HANDLE_COLLISIONS //updated variables as after the loop const uint idxLastEntryInBucket = (h + 1) * HASH_BUCKET_SIZE - 1; //get last index of bucket uint i = idxLastEntryInBucket; //start with the last entry of the current bucket HashEntry curr; unsigned int maxIter = 0; //[allow_uav_condition] uint g_MaxLoopIterCount = c_hashParams.m_hashMaxCollisionLinkedListSize; #pragma unroll 1 while (maxIter < g_MaxLoopIterCount) { //traverse list until end // why find the end? we you are inserting at the start !!! //curr = getHashEntry(hash, i); curr = d_hash[i]; //TODO MATTHIAS do by reference if (curr.offset == 0) break; //we have found the end of the list i = idxLastEntryInBucket + curr.offset; //go to next element in the list i %= (HASH_BUCKET_SIZE * c_hashParams.m_hashNumBuckets); //check for overflow maxIter++; } maxIter = 0; int offset = 0; #pragma unroll 1 while (maxIter < g_MaxLoopIterCount) { //linear search for free entry offset++; uint i = (idxLastEntryInBucket + offset) % (HASH_BUCKET_SIZE * c_hashParams.m_hashNumBuckets); //go to next hash element if ((offset % HASH_BUCKET_SIZE) == 0) continue; //cannot insert into a last bucket element (would conflict with other linked lists) int prevWeight = 0; //InterlockedCompareExchange(hash[3*i+2], FREE_ENTRY, LOCK_ENTRY, prevWeight); //check for a free entry uint *d_hashUI = (uint *) d_hash; prevWeight = prevWeight = atomicCAS(&d_hashUI[3 * idxLastEntryInBucket + 1], (uint) FREE_ENTRY, (uint) LOCK_ENTRY); if (prevWeight == FREE_ENTRY) { //if free entry found set prev->next = curr & curr->next = prev->next //[allow_uav_condition] //while(hash[3*idxLastEntryInBucket+2] == LOCK_ENTRY); // expects setHashEntry to set the ptr last, required because pos.z is packed into the same value -> prev->next = curr -> might corrput pos.z HashEntry lastEntryInBucket = d_hash[idxLastEntryInBucket]; //get prev (= lastEntry in Bucket) int newOffsetPrev = (offset << 16) | (lastEntryInBucket.pos.z & 0x0000ffff); //prev->next = curr (maintain old z-pos) int oldOffsetPrev = 0; //InterlockedExchange(hash[3*idxLastEntryInBucket+1], newOffsetPrev, oldOffsetPrev); //set prev offset atomically uint *d_hashUI = (uint *) d_hash; oldOffsetPrev = prevWeight = atomicExch(&d_hashUI[3 * idxLastEntryInBucket + 1], newOffsetPrev); entry.offset = oldOffsetPrev >> 16; //remove prev z-pos from old offset //setHashEntry(hash, i, entry); //sets the current hashEntry with: curr->next = prev->next d_hash[i] = entry; return true; } maxIter++; } #endif return false; } //! deletes a hash entry position for a given sdfBlock index (returns true uppon successful deletion; otherwise returns false) __device__ bool HashDataStruct::deleteHashEntryElement(const int3 &sdfBlock) { uint h = computeHashPos(sdfBlock); //hash bucket uint hp = h * HASH_BUCKET_SIZE; //hash position for (uint j = 0; j < HASH_BUCKET_SIZE; j++) { uint i = j + hp; const HashEntry &curr = d_hash[i]; if (curr.pos.x == sdfBlock.x && curr.pos.y == sdfBlock.y && curr.pos.z == sdfBlock.z && curr.ptr != FREE_ENTRY) { #ifndef HANDLE_COLLISIONS const uint linBlockSize = SDF_BLOCK_SIZE * SDF_BLOCK_SIZE * SDF_BLOCK_SIZE; appendHeap(curr.ptr / linBlockSize); //heapAppend.Append(curr.ptr / linBlockSize); deleteHashEntry(i); return true; #endif #ifdef HANDLE_COLLISIONS if (curr.offset != 0) { //if there was a pointer set it to the next list element //int prevValue = 0; //InterlockedExchange(bucketMutex[h], LOCK_ENTRY, prevValue); //lock the hash bucket int prevValue = atomicExch(&d_hashBucketMutex[h], LOCK_ENTRY); if (prevValue == LOCK_ENTRY) return false; if (prevValue != LOCK_ENTRY) { const uint linBlockSize = SDF_BLOCK_SIZE * SDF_BLOCK_SIZE * SDF_BLOCK_SIZE; appendHeap(curr.ptr / linBlockSize); //heapAppend.Append(curr.ptr / linBlockSize); int nextIdx = (i + curr.offset) % (HASH_BUCKET_SIZE * c_hashParams.m_hashNumBuckets); //setHashEntry(hash, i, getHashEntry(hash, nextIdx)); d_hash[i] = d_hash[nextIdx]; deleteHashEntry(nextIdx); return true; } } else { const uint linBlockSize = SDF_BLOCK_SIZE * SDF_BLOCK_SIZE * SDF_BLOCK_SIZE; appendHeap(curr.ptr / linBlockSize); //heapAppend.Append(curr.ptr / linBlockSize); deleteHashEntry(i); return true; } #endif //HANDLE_COLLSISION } } #ifdef HANDLE_COLLISIONS const uint idxLastEntryInBucket = (h + 1) * HASH_BUCKET_SIZE - 1; int i = idxLastEntryInBucket; HashEntry curr; curr = d_hash[i]; int prevIdx = i; i = idxLastEntryInBucket + curr.offset; //go to next element in the list i %= (HASH_BUCKET_SIZE * c_hashParams.m_hashNumBuckets); //check for overflow unsigned int maxIter = 0; uint g_MaxLoopIterCount = c_hashParams.m_hashMaxCollisionLinkedListSize; #pragma unroll 1 while (maxIter < g_MaxLoopIterCount) { curr = d_hash[i]; //found that dude that we need/want to delete if (curr.pos.x == sdfBlock.x && curr.pos.y == sdfBlock.y && curr.pos.z == sdfBlock.z && curr.ptr != FREE_ENTRY) { //int prevValue = 0; //InterlockedExchange(bucketMutex[h], LOCK_ENTRY, prevValue); //lock the hash bucket int prevValue = atomicExch(&d_hashBucketMutex[h], LOCK_ENTRY); if (prevValue == LOCK_ENTRY) return false; if (prevValue != LOCK_ENTRY) { const uint linBlockSize = SDF_BLOCK_SIZE * SDF_BLOCK_SIZE * SDF_BLOCK_SIZE; appendHeap(curr.ptr / linBlockSize); //heapAppend.Append(curr.ptr / linBlockSize); deleteHashEntry(i); HashEntry prev = d_hash[prevIdx]; prev.offset = curr.offset; //setHashEntry(hash, prevIdx, prev); d_hash[prevIdx] = prev; return true; } } if (curr.offset == 0) { //we have found the end of the list return false; //should actually never happen because we need to find that guy before } prevIdx = i; i = idxLastEntryInBucket + curr.offset; //go to next element in the list i %= (HASH_BUCKET_SIZE * c_hashParams.m_hashNumBuckets); //check for overflow maxIter++; } #endif // HANDLE_COLLSISION return false; } #define T_PER_BLOCK 16 texture<float, cudaTextureType2D, cudaReadModeElementType> depthTextureRef; texture<uchar4, cudaTextureType2D, cudaReadModeElementType> colorTextureRef; void bindInputDepthColorTextures(const CUDAFrame& frame) { int width = frame.imageWidth, height = frame.imageHeight; cutilSafeCall(cudaBindTexture2D(0, &depthTextureRef, frame.depthData, &depthTextureRef.channelDesc, width, height, sizeof(float)*width)); cutilSafeCall(cudaBindTexture2D(0, &colorTextureRef, frame.colorData, &colorTextureRef.channelDesc, width, height, sizeof(uchar4)*width)); depthTextureRef.filterMode = cudaFilterModePoint; colorTextureRef.filterMode = cudaFilterModePoint; } __global__ void resetHeapKernel(HashDataStruct hashData) { const HashParams& hashParams = c_hashParams; unsigned int idx = blockIdx.x*blockDim.x + threadIdx.x; if (idx == 0) { hashData.d_heapCounter[0] = hashParams.m_numSDFBlocks - 1; //points to the last element of the array } if (idx < hashParams.m_numSDFBlocks) { hashData.d_heap[idx] = hashParams.m_numSDFBlocks - idx - 1; uint blockSize = SDF_BLOCK_SIZE * SDF_BLOCK_SIZE * SDF_BLOCK_SIZE; uint base_idx = idx * blockSize; for (uint i = 0; i < blockSize; i++) { hashData.deleteVoxel(base_idx+i); } } } __global__ void resetHashKernel(HashDataStruct hashData) { const HashParams& hashParams = c_hashParams; const unsigned int idx = blockIdx.x*blockDim.x + threadIdx.x; if (idx < hashParams.m_hashNumBuckets * HASH_BUCKET_SIZE) { hashData.deleteHashEntry(hashData.d_hash[idx]); hashData.deleteHashEntry(hashData.d_hashCompactified[idx]); } } __global__ void resetHashBucketMutexKernel(HashDataStruct hashData) { const HashParams& hashParams = c_hashParams; const unsigned int idx = blockIdx.x*blockDim.x + threadIdx.x; if (idx < hashParams.m_hashNumBuckets) { hashData.d_hashBucketMutex[idx] = FREE_ENTRY; } } void resetCUDA(HashDataStruct& hashData, const HashParams& hashParams) { { //resetting the heap and SDF blocks const dim3 gridSize((hashParams.m_numSDFBlocks + (T_PER_BLOCK*T_PER_BLOCK) - 1)/(T_PER_BLOCK*T_PER_BLOCK), 1); const dim3 blockSize((T_PER_BLOCK*T_PER_BLOCK), 1); resetHeapKernel<<<gridSize, blockSize>>>(hashData); CUDA_CHECKED_NO_ERROR(); } { //resetting the hash const dim3 gridSize((HASH_BUCKET_SIZE * hashParams.m_hashNumBuckets + (T_PER_BLOCK*T_PER_BLOCK) - 1)/(T_PER_BLOCK*T_PER_BLOCK), 1); const dim3 blockSize((T_PER_BLOCK*T_PER_BLOCK), 1); resetHashKernel<<<gridSize, blockSize>>>(hashData); CUDA_CHECKED_NO_ERROR(); } { //resetting the mutex const dim3 gridSize((hashParams.m_hashNumBuckets + (T_PER_BLOCK*T_PER_BLOCK) - 1)/(T_PER_BLOCK*T_PER_BLOCK), 1); const dim3 blockSize((T_PER_BLOCK*T_PER_BLOCK), 1); resetHashBucketMutexKernel<<<gridSize, blockSize>>>(hashData); CUDA_CHECKED_NO_ERROR(); } } void resetHashBucketMutexCUDA(HashDataStruct& hashData, const HashParams& hashParams) { const dim3 gridSize((hashParams.m_hashNumBuckets + (T_PER_BLOCK*T_PER_BLOCK) - 1)/(T_PER_BLOCK*T_PER_BLOCK), 1); const dim3 blockSize((T_PER_BLOCK*T_PER_BLOCK), 1); resetHashBucketMutexKernel<<<gridSize, blockSize>>>(hashData); CUDA_CHECKED_NO_ERROR(); } __device__ unsigned int linearizeChunkPos(const int3& chunkPos) { int3 p = chunkPos-c_hashParams.m_streamingMinGridPos; return p.z * c_hashParams.m_streamingGridDimensions.x * c_hashParams.m_streamingGridDimensions.y + p.y * c_hashParams.m_streamingGridDimensions.x + p.x; } __device__ int3 worldToChunks(const float3& posWorld) { float3 p; p.x = posWorld.x/c_hashParams.m_streamingVoxelExtents.x; p.y = posWorld.y/c_hashParams.m_streamingVoxelExtents.y; p.z = posWorld.z/c_hashParams.m_streamingVoxelExtents.z; float3 s; s.x = (float)sign(p.x); s.y = (float)sign(p.y); s.z = (float)sign(p.z); return make_int3(p+s*0.5f); } __global__ void allocKernel(HashDataStruct hashData, CUDAFrame frame) { const HashParams& hashParams = c_hashParams; const unsigned int x = blockIdx.x*blockDim.x + threadIdx.x; const unsigned int y = blockIdx.y*blockDim.y + threadIdx.y; if (x < frame.imageWidth && y < frame.imageHeight) { float d = tex2D(depthTextureRef, x, y); if (d == MINF || d == 0.0f) return; if (d >= hashParams.m_maxIntegrationDistance) return; float t = hashData.getTruncation(d); float minDepth = min(hashParams.m_maxIntegrationDistance, d-t); float maxDepth = min(hashParams.m_maxIntegrationDistance, d+t); if (minDepth >= maxDepth) return; float3 rayMin = frame.unProject(x, y, minDepth); rayMin = hashParams.m_rigidTransform * rayMin; float3 rayMax = frame.unProject(x, y, maxDepth); rayMax = hashParams.m_rigidTransform * rayMax; float3 rayDir = normalize(rayMax - rayMin); int3 idCurrentVoxel = hashData.worldToSDFBlock(rayMin); int3 idEnd = hashData.worldToSDFBlock(rayMax); float3 step = make_float3(sign(rayDir)); float3 boundaryPos = hashData.SDFBlockToWorld(idCurrentVoxel+make_int3(clamp(step, 0.0, 1.0f)))-0.5f*hashParams.m_virtualVoxelSize; float3 tMax = (boundaryPos-rayMin)/rayDir; float3 tDelta = (step*SDF_BLOCK_SIZE*hashParams.m_virtualVoxelSize)/rayDir; int3 idBound = make_int3(make_float3(idEnd)+step); //#pragma unroll //for(int c = 0; c < 3; c++) { // if (rayDir[c] == 0.0f) { tMax[c] = PINF; tDelta[c] = PINF; } // if (boundaryPos[c] - rayMin[c] == 0.0f) { tMax[c] = PINF; tDelta[c] = PINF; } //} if (rayDir.x == 0.0f) { tMax.x = PINF; tDelta.x = PINF; } if (boundaryPos.x - rayMin.x == 0.0f) { tMax.x = PINF; tDelta.x = PINF; } if (rayDir.y == 0.0f) { tMax.y = PINF; tDelta.y = PINF; } if (boundaryPos.y - rayMin.y == 0.0f) { tMax.y = PINF; tDelta.y = PINF; } if (rayDir.z == 0.0f) { tMax.z = PINF; tDelta.z = PINF; } if (boundaryPos.z - rayMin.z == 0.0f) { tMax.z = PINF; tDelta.z = PINF; } unsigned int iter = 0; // iter < g_MaxLoopIterCount unsigned int g_MaxLoopIterCount = 1024; //TODO MATTHIAS MOVE TO GLOBAL APP STATE #pragma unroll 1 while(iter < g_MaxLoopIterCount) { //check if it's in the frustum and not checked out if (hashData.isSDFBlockInCameraFrustumApprox(idCurrentVoxel, frame)) { hashData.allocBlock(idCurrentVoxel); } // Traverse voxel grid if(tMax.x < tMax.y && tMax.x < tMax.z) { idCurrentVoxel.x += step.x; if(idCurrentVoxel.x == idBound.x) return; tMax.x += tDelta.x; } else if(tMax.z < tMax.y) { idCurrentVoxel.z += step.z; if(idCurrentVoxel.z == idBound.z) return; tMax.z += tDelta.z; } else { idCurrentVoxel.y += step.y; if(idCurrentVoxel.y == idBound.y) return; tMax.y += tDelta.y; } iter++; } } } void allocCUDA(HashDataStruct& hashData, const HashParams& hashParams, const CUDAFrame& frame) { const dim3 gridSize((frame.imageWidth + T_PER_BLOCK - 1)/T_PER_BLOCK, (frame.imageHeight + T_PER_BLOCK - 1)/T_PER_BLOCK); const dim3 blockSize(T_PER_BLOCK, T_PER_BLOCK); allocKernel<<<gridSize, blockSize>>>(hashData, frame); CUDA_CHECKED_NO_ERROR(); } __global__ void fillDecisionArrayKernel(HashDataStruct hashData, CUDAFrame frame) { const HashParams& hashParams = c_hashParams; const unsigned int idx = blockIdx.x*blockDim.x + threadIdx.x; if (idx < hashParams.m_hashNumBuckets * HASH_BUCKET_SIZE) { hashData.d_hashDecision[idx] = 0; if (hashData.d_hash[idx].ptr != FREE_ENTRY) { if (hashData.isSDFBlockInCameraFrustumApprox(hashData.d_hash[idx].pos, frame)) { hashData.d_hashDecision[idx] = 1; //yes } } } } void fillDecisionArrayCUDA(HashDataStruct& hashData, const HashParams& hashParams, const CUDAFrame& frame) { const dim3 gridSize((HASH_BUCKET_SIZE * hashParams.m_hashNumBuckets + (T_PER_BLOCK*T_PER_BLOCK) - 1)/(T_PER_BLOCK*T_PER_BLOCK), 1); const dim3 blockSize((T_PER_BLOCK*T_PER_BLOCK), 1); fillDecisionArrayKernel<<<gridSize, blockSize>>>(hashData, frame); CUDA_CHECKED_NO_ERROR(); } __global__ void compactifyHashKernel(HashDataStruct hashData) { const HashParams& hashParams = c_hashParams; const unsigned int idx = blockIdx.x*blockDim.x + threadIdx.x; if (idx < hashParams.m_hashNumBuckets * HASH_BUCKET_SIZE) { if (hashData.d_hashDecision[idx] == 1) { hashData.d_hashCompactified[hashData.d_hashDecisionPrefix[idx]-1] = hashData.d_hash[idx]; } } } void compactifyHashCUDA(HashDataStruct& hashData, const HashParams& hashParams) { const dim3 gridSize((HASH_BUCKET_SIZE * hashParams.m_hashNumBuckets + (T_PER_BLOCK*T_PER_BLOCK) - 1)/(T_PER_BLOCK*T_PER_BLOCK), 1); const dim3 blockSize((T_PER_BLOCK*T_PER_BLOCK), 1); compactifyHashKernel<<<gridSize, blockSize>>>(hashData); CUDA_CHECKED_NO_ERROR(); } #define COMPACTIFY_HASH_THREADS_PER_BLOCK 256 //#define COMPACTIFY_HASH_SIMPLE __global__ void compactifyHashAllInOneKernel(HashDataStruct hashData, CUDAFrame frame) { const HashParams& hashParams = c_hashParams; const unsigned int idx = blockIdx.x*blockDim.x + threadIdx.x; __shared__ int localCounter; if (threadIdx.x == 0) localCounter = 0; __syncthreads(); int addrLocal = -1; if (idx < hashParams.m_hashNumBuckets * HASH_BUCKET_SIZE) { if (hashData.d_hash[idx].ptr != FREE_ENTRY) { if (hashData.isSDFBlockInCameraFrustumApprox(hashData.d_hash[idx].pos, frame)) { addrLocal = atomicAdd(&localCounter, 1); } } } __syncthreads(); __shared__ int addrGlobal; if (threadIdx.x == 0 && localCounter > 0) { addrGlobal = atomicAdd(hashData.d_hashCompactifiedCounter, localCounter); } __syncthreads(); if (addrLocal != -1) { const unsigned int addr = addrGlobal + addrLocal; hashData.d_hashCompactified[addr] = hashData.d_hash[idx]; } } unsigned int compactifyHashAllInOneCUDA(HashDataStruct& hashData, const HashParams& hashParams, const CUDAFrame &frame) { const unsigned int threadsPerBlock = COMPACTIFY_HASH_THREADS_PER_BLOCK; const dim3 gridSize((HASH_BUCKET_SIZE * hashParams.m_hashNumBuckets + threadsPerBlock - 1) / threadsPerBlock, 1); const dim3 blockSize(threadsPerBlock, 1); cutilSafeCall(cudaMemset(hashData.d_hashCompactifiedCounter, 0, sizeof(int))); compactifyHashAllInOneKernel << <gridSize, blockSize >> >(hashData, frame); unsigned int res = 0; cutilSafeCall(cudaMemcpy(&res, hashData.d_hashCompactifiedCounter, sizeof(unsigned int), cudaMemcpyDeviceToHost)); CUDA_CHECKED_NO_ERROR(); return res; } template<bool deIntegrate = false> __global__ void integrateDepthMapKernel(HashDataStruct hashData, CUDAFrame frame) { const HashParams& hashParams = c_hashParams; const HashEntry& entry = hashData.d_hashCompactified[blockIdx.x]; int3 pi_base = hashData.SDFBlockToVirtualVoxelPos(entry.pos); uint i = threadIdx.x; //inside of an SDF block int3 pi = pi_base + make_int3(hashData.delinearizeVoxelIndex(i)); float3 pf = hashData.virtualVoxelPosToWorld(pi); pf = hashParams.m_rigidTransformInverse * pf; float3 pixel = frame.project(pf); uint2 screenPos = make_uint2((uint)pixel.x, (uint)pixel.y); if (screenPos.x < frame.imageWidth && screenPos.y < frame.imageHeight) { //on screen //float depth = g_InputDepth[screenPos]; float depth = tex2D(depthTextureRef, screenPos.x, screenPos.y); uchar4 color_uc = tex2D(colorTextureRef, screenPos.x, screenPos.y); float3 color = make_float3(color_uc.x, color_uc.y, color_uc.z); if (color.x != MINF && depth != MINF) { // valid depth and color //if (depth != MINF) { //valid depth if (depth < hashParams.m_maxIntegrationDistance) { float depthZeroOne = frame.cameraToProjZ(depth); float sdf = depth - pf.z; float truncation = hashData.getTruncation(depth); //if (sdf > -truncation) if (abs(sdf) < truncation) { if (sdf >= 0.0f) { sdf = fminf(truncation, sdf); } else { sdf = fmaxf(-truncation, sdf); } float weightUpdate = max(hashParams.m_integrationWeightSample * 1.5f * (1.0f-depthZeroOne), 1.0f); weightUpdate = 1.0f; //TODO remove that again Voxel curr; //construct current voxel curr.sdf = sdf; curr.weight = weightUpdate; curr.color = make_uchar4(color.x, color.y, color.z, 255); uint idx = entry.ptr + i; const Voxel& oldVoxel = hashData.d_SDFBlocks[idx]; Voxel newVoxel; float3 oldColor = make_float3(oldVoxel.color.x, oldVoxel.color.y, oldVoxel.color.z); float3 currColor = make_float3(curr.color.x, curr.color.y, curr.color.z); if (!deIntegrate) { //integration //hashData.combineVoxel(hashData.d_SDFBlocks[idx], curr, newVoxel); float3 res; if (oldVoxel.weight == 0) res = currColor; //else res = (currColor + oldColor) / 2; else res = 0.2f * currColor + 0.8f * oldColor; //float3 res = (currColor*curr.weight + oldColor*oldVoxel.weight) / (curr.weight + oldVoxel.weight); res = make_float3(round(res.x), round(res.y), round(res.z)); res = fmaxf(make_float3(0.0f), fminf(res, make_float3(254.5f))); //newVoxel.color.x = (uchar)(res.x + 0.5f); newVoxel.color.y = (uchar)(res.y + 0.5f); newVoxel.color.z = (uchar)(res.z + 0.5f); newVoxel.color = make_uchar4(res.x, res.y, res.z, 255); newVoxel.sdf = (curr.sdf*curr.weight + oldVoxel.sdf*oldVoxel.weight) / (curr.weight + oldVoxel.weight); newVoxel.weight = min((float)c_hashParams.m_integrationWeightMax, curr.weight + oldVoxel.weight); } else { //deintegration //float3 res = 2 * c0 - c1; float3 res = (oldColor*oldVoxel.weight - currColor*curr.weight) / (oldVoxel.weight - curr.weight); res = make_float3(round(res.x), round(res.y), round(res.z)); res = fmaxf(make_float3(0.0f), fminf(res, make_float3(254.5f))); //newVoxel.color.x = (uchar)(res.x + 0.5f); newVoxel.color.y = (uchar)(res.y + 0.5f); newVoxel.color.z = (uchar)(res.z + 0.5f); newVoxel.color = make_uchar4(res.x, res.y, res.z, 255); newVoxel.sdf = (oldVoxel.sdf*oldVoxel.weight - curr.sdf*curr.weight) / (oldVoxel.weight - curr.weight); newVoxel.weight = max(0.0f, oldVoxel.weight - curr.weight); if (newVoxel.weight <= 0.001f) { newVoxel.sdf = 0.0f; newVoxel.color = make_uchar4(0,0,0,0); newVoxel.weight = 0.0f; } } hashData.d_SDFBlocks[idx] = newVoxel; } } } } } void integrateDepthMapCUDA(HashDataStruct& hashData, const HashParams& hashParams, const CUDAFrame& frame) { const unsigned int threadsPerBlock = SDF_BLOCK_SIZE*SDF_BLOCK_SIZE*SDF_BLOCK_SIZE; const dim3 gridSize(hashParams.m_numOccupiedBlocks, 1); const dim3 blockSize(threadsPerBlock, 1); integrateDepthMapKernel<false> <<<gridSize, blockSize>>>(hashData, frame); CUDA_CHECKED_NO_ERROR(); } void deIntegrateDepthMapCUDA(HashDataStruct& hashData, const HashParams& hashParams, const CUDAFrame& frame) { const unsigned int threadsPerBlock = SDF_BLOCK_SIZE*SDF_BLOCK_SIZE*SDF_BLOCK_SIZE; const dim3 gridSize(hashParams.m_numOccupiedBlocks, 1); const dim3 blockSize(threadsPerBlock, 1); integrateDepthMapKernel<true> <<<gridSize, blockSize >>>(hashData, frame); CUDA_CHECKED_NO_ERROR(); } __global__ void starveVoxelsKernel(HashDataStruct hashData) { const uint idx = blockIdx.x; const HashEntry& entry = hashData.d_hashCompactified[idx]; //is typically exectued only every n'th frame int weight = hashData.d_SDFBlocks[entry.ptr + threadIdx.x].weight; weight = max(0, weight-1); hashData.d_SDFBlocks[entry.ptr + threadIdx.x].weight = weight; } void starveVoxelsKernelCUDA(HashDataStruct& hashData, const HashParams& hashParams) { const unsigned int threadsPerBlock = SDF_BLOCK_SIZE*SDF_BLOCK_SIZE*SDF_BLOCK_SIZE; const dim3 gridSize(hashParams.m_numOccupiedBlocks, 1); const dim3 blockSize(threadsPerBlock, 1); starveVoxelsKernel<<<gridSize, blockSize>>>(hashData); CUDA_CHECKED_NO_ERROR(); } //__shared__ float shared_MinSDF[SDF_BLOCK_SIZE * SDF_BLOCK_SIZE * SDF_BLOCK_SIZE / 2]; __shared__ uint shared_MaxWeight[SDF_BLOCK_SIZE * SDF_BLOCK_SIZE * SDF_BLOCK_SIZE / 2]; __global__ void garbageCollectIdentifyKernel(HashDataStruct hashData) { const unsigned int hashIdx = blockIdx.x; const HashEntry& entry = hashData.d_hashCompactified[hashIdx]; //uint h = hashData.computeHashPos(entry.pos); //hashData.d_hashDecision[hashIdx] = 1; //if (hashData.d_hashBucketMutex[h] == LOCK_ENTRY) return; //if (entry.ptr == FREE_ENTRY) return; //should never happen since we did compactify before //const uint linBlockSize = SDF_BLOCK_SIZE * SDF_BLOCK_SIZE * SDF_BLOCK_SIZE; const unsigned int idx0 = entry.ptr + 2*threadIdx.x+0; const unsigned int idx1 = entry.ptr + 2*threadIdx.x+1; Voxel v0 = hashData.d_SDFBlocks[idx0]; Voxel v1 = hashData.d_SDFBlocks[idx1]; //if (v0.weight == 0) v0.sdf = PINF; //if (v1.weight == 0) v1.sdf = PINF; //shared_MinSDF[threadIdx.x] = min(fabsf(v0.sdf), fabsf(v1.sdf)); //init shared memory shared_MaxWeight[threadIdx.x] = max(v0.weight, v1.weight); #pragma unroll 1 for (uint stride = 2; stride <= blockDim.x; stride <<= 1) { __syncthreads(); if ((threadIdx.x & (stride-1)) == (stride-1)) { //shared_MinSDF[threadIdx.x] = min(shared_MinSDF[threadIdx.x-stride/2], shared_MinSDF[threadIdx.x]); shared_MaxWeight[threadIdx.x] = max(shared_MaxWeight[threadIdx.x-stride/2], shared_MaxWeight[threadIdx.x]); } } __syncthreads(); if (threadIdx.x == blockDim.x - 1) { uint maxWeight = shared_MaxWeight[threadIdx.x]; if (maxWeight == 0) { hashData.d_hashDecision[hashIdx] = 1; } else { hashData.d_hashDecision[hashIdx] = 0; } } } void garbageCollectIdentifyCUDA(HashDataStruct& hashData, const HashParams& hashParams) { const unsigned int threadsPerBlock = SDF_BLOCK_SIZE * SDF_BLOCK_SIZE * SDF_BLOCK_SIZE / 2; const dim3 gridSize(hashParams.m_numOccupiedBlocks, 1); const dim3 blockSize(threadsPerBlock, 1); garbageCollectIdentifyKernel<<<gridSize, blockSize>>>(hashData); CUDA_CHECKED_NO_ERROR(); } __global__ void garbageCollectFreeKernel(HashDataStruct hashData) { //const uint hashIdx = blockIdx.x; const uint hashIdx = blockIdx.x*blockDim.x + threadIdx.x; if (hashIdx < c_hashParams.m_numOccupiedBlocks && hashData.d_hashDecision[hashIdx] != 0) { //decision to delete the hash entry const HashEntry& entry = hashData.d_hashCompactified[hashIdx]; //if (entry.ptr == FREE_ENTRY) return; //should never happen since we did compactify before if (hashData.deleteHashEntryElement(entry.pos)) { //delete hash entry from hash (and performs heap append) const uint linBlockSize = SDF_BLOCK_SIZE * SDF_BLOCK_SIZE * SDF_BLOCK_SIZE; #pragma unroll 1 for (uint i = 0; i < linBlockSize; i++) { //clear sdf block: CHECK TODO another kernel? hashData.deleteVoxel(entry.ptr + i); } } } } void garbageCollectFreeCUDA(HashDataStruct& hashData, const HashParams& hashParams) { const unsigned int threadsPerBlock = T_PER_BLOCK*T_PER_BLOCK; const dim3 gridSize((hashParams.m_numOccupiedBlocks + threadsPerBlock - 1) / threadsPerBlock, 1); const dim3 blockSize(threadsPerBlock, 1); garbageCollectFreeKernel<<<gridSize, blockSize>>>(hashData); CUDA_CHECKED_NO_ERROR(); } /** raycast */ __device__ __host__ RayCastData::RayCastData() { d_depth = NULL; d_depth4 = NULL; d_normals = NULL; d_colors = NULL; d_vertexBuffer = NULL; d_rayIntervalSplatMinArray = NULL; d_rayIntervalSplatMaxArray = NULL; } extern "C" void updateConstantRayCastParams(const RayCastParams& params) { size_t size; cutilSafeCall(cudaGetSymbolSize(&size, c_rayCastParams)); cutilSafeCall(cudaMemcpyToSymbol(c_rayCastParams, &params, size, 0, cudaMemcpyHostToDevice)); #ifdef DEBUG cutilSafeCall(cudaDeviceSynchronize()); cutilCheckMsg(__FUNCTION__); #endif } __host__ void RayCastData::updateParams(const RayCastParams &params) { updateConstantRayCastParams(params); } ///////////////// // Device part // ///////////////// __device__ const RayCastParams &RayCastData::params() const { return c_rayCastParams; } __device__ float RayCastData::frac(float val) const { return (val - floorf(val)); } __device__ float3 RayCastData::frac(const float3 &val) const { return make_float3(frac(val.x), frac(val.y), frac(val.z)); } __device__ bool RayCastData::trilinearInterpolationSimpleFastFast(const HashDataStruct &hash, const float3 &pos, float &dist, uchar3 &color) const { const float oSet = c_hashParams.m_virtualVoxelSize; const float3 posDual = pos - make_float3(oSet / 2.0f, oSet / 2.0f, oSet / 2.0f); float3 weight = frac(hash.worldToVirtualVoxelPosFloat(pos)); dist = 0.0f; float3 colorFloat = make_float3(0.0f, 0.0f, 0.0f); Voxel v = hash.getVoxel(posDual + make_float3(0.0f, 0.0f, 0.0f)); if (v.weight == 0) return false; float3 vColor = make_float3(v.color.x, v.color.y, v.color.z); dist += (1.0f - weight.x) * (1.0f - weight.y) * (1.0f - weight.z) * v.sdf; colorFloat += (1.0f - weight.x) * (1.0f - weight.y) * (1.0f - weight.z) * vColor; v = hash.getVoxel(posDual + make_float3(oSet, 0.0f, 0.0f)); if (v.weight == 0) return false; vColor = make_float3(v.color.x, v.color.y, v.color.z); dist += weight.x * (1.0f - weight.y) * (1.0f - weight.z) * v.sdf; colorFloat += weight.x * (1.0f - weight.y) * (1.0f - weight.z) * vColor; v = hash.getVoxel(posDual + make_float3(0.0f, oSet, 0.0f)); if (v.weight == 0) return false; vColor = make_float3(v.color.x, v.color.y, v.color.z); dist += (1.0f - weight.x) * weight.y * (1.0f - weight.z) * v.sdf; colorFloat += (1.0f - weight.x) * weight.y * (1.0f - weight.z) * vColor; v = hash.getVoxel(posDual + make_float3(0.0f, 0.0f, oSet)); if (v.weight == 0) return false; vColor = make_float3(v.color.x, v.color.y, v.color.z); dist += (1.0f - weight.x) * (1.0f - weight.y) * weight.z * v.sdf; colorFloat += (1.0f - weight.x) * (1.0f - weight.y) * weight.z * vColor; v = hash.getVoxel(posDual + make_float3(oSet, oSet, 0.0f)); if (v.weight == 0) return false; vColor = make_float3(v.color.x, v.color.y, v.color.z); dist += weight.x * weight.y * (1.0f - weight.z) * v.sdf; colorFloat += weight.x * weight.y * (1.0f - weight.z) * vColor; v = hash.getVoxel(posDual + make_float3(0.0f, oSet, oSet)); if (v.weight == 0) return false; vColor = make_float3(v.color.x, v.color.y, v.color.z); dist += (1.0f - weight.x) * weight.y * weight.z * v.sdf; colorFloat += (1.0f - weight.x) * weight.y * weight.z * vColor; v = hash.getVoxel(posDual + make_float3(oSet, 0.0f, oSet)); if (v.weight == 0) return false; vColor = make_float3(v.color.x, v.color.y, v.color.z); dist += weight.x * (1.0f - weight.y) * weight.z * v.sdf; colorFloat += weight.x * (1.0f - weight.y) * weight.z * vColor; v = hash.getVoxel(posDual + make_float3(oSet, oSet, oSet)); if (v.weight == 0) return false; vColor = make_float3(v.color.x, v.color.y, v.color.z); dist += weight.x * weight.y * weight.z * v.sdf; colorFloat += weight.x * weight.y * weight.z * vColor; color = make_uchar3(colorFloat.x, colorFloat.y, colorFloat.z);//v.color; return true; } __device__ float RayCastData::findIntersectionLinear(float tNear, float tFar, float dNear, float dFar) const { return tNear + (dNear / (dNear - dFar)) * (tFar - tNear); } // d0 near, d1 far __device__ bool RayCastData::findIntersectionBisection(const HashDataStruct &hash, const float3 &worldCamPos, const float3 &worldDir, float d0, float r0, float d1, float r1, float &alpha, uchar3 &color) const { float a = r0; float aDist = d0; float b = r1; float bDist = d1; float c = 0.0f; #pragma unroll 1 for (uint i = 0; i < nIterationsBisection; i++) { c = findIntersectionLinear(a, b, aDist, bDist); float cDist; if (!trilinearInterpolationSimpleFastFast(hash, worldCamPos + c * worldDir, cDist, color)) return false; if (aDist * cDist > 0.0) { a = c; aDist = cDist; } else { b = c; bDist = cDist; } } alpha = c; return true; } __device__ float3 RayCastData::gradientForPoint(const HashDataStruct &hash, const float3 &pos) const { const float voxelSize = c_hashParams.m_virtualVoxelSize; float3 offset = make_float3(voxelSize, voxelSize, voxelSize); float distp00; uchar3 colorp00; trilinearInterpolationSimpleFastFast(hash, pos - make_float3(0.5f * offset.x, 0.0f, 0.0f), distp00, colorp00); float dist0p0; uchar3 color0p0; trilinearInterpolationSimpleFastFast(hash, pos - make_float3(0.0f, 0.5f * offset.y, 0.0f), dist0p0, color0p0); float dist00p; uchar3 color00p; trilinearInterpolationSimpleFastFast(hash, pos - make_float3(0.0f, 0.0f, 0.5f * offset.z), dist00p, color00p); float dist100; uchar3 color100; trilinearInterpolationSimpleFastFast(hash, pos + make_float3(0.5f * offset.x, 0.0f, 0.0f), dist100, color100); float dist010; uchar3 color010; trilinearInterpolationSimpleFastFast(hash, pos + make_float3(0.0f, 0.5f * offset.y, 0.0f), dist010, color010); float dist001; uchar3 color001; trilinearInterpolationSimpleFastFast(hash, pos + make_float3(0.0f, 0.0f, 0.5f * offset.z), dist001, color001); float3 grad = make_float3((distp00 - dist100) / offset.x, (dist0p0 - dist010) / offset.y, (dist00p - dist001) / offset.z); float l = length(grad); if (l == 0.0f) { return make_float3(0.0f, 0.0f, 0.0f); } return -grad / l; } __device__ void RayCastData::traverseCoarseGridSimpleSampleAll(const HashDataStruct& hash, const float3& worldCamPos, const float3& worldDir, const float3& camDir, const int3& dTid, float minInterval, float maxInterval) const { const RayCastParams& rayCastParams = c_rayCastParams; // Last Sample RayCastSample lastSample; lastSample.sdf = 0.0f; lastSample.alpha = 0.0f; lastSample.weight = 0; // lastSample.color = int3(0, 0, 0); const float depthToRayLength = 1.0f/camDir.z; // scale factor to convert from depth to ray length float rayCurrent = depthToRayLength * max(rayCastParams.m_minDepth, minInterval); // Convert depth to raylength float rayEnd = depthToRayLength * min(rayCastParams.m_maxDepth, maxInterval); // Convert depth to raylength //float rayCurrent = depthToRayLength * rayCastParams.m_minDepth; // Convert depth to raylength //float rayEnd = depthToRayLength * rayCastParams.m_maxDepth; // Convert depth to raylength #pragma unroll 1 while(rayCurrent < rayEnd) { float3 currentPosWorld = worldCamPos+rayCurrent*worldDir; float dist; uchar3 color; if(trilinearInterpolationSimpleFastFast(hash, currentPosWorld, dist, color)) { if(lastSample.weight > 0 && lastSample.sdf > 0.0f && dist < 0.0f)// current sample is always valid here //if(lastSample.weight > 0 && ((lastSample.sdf > 0.0f && dist < 0.0f) || (lastSample.sdf < 0.0f && dist > 0.0f))) //hack for top down video { float alpha; // = findIntersectionLinear(lastSample.alpha, rayCurrent, lastSample.sdf, dist); uchar3 color2; bool b = findIntersectionBisection(hash, worldCamPos, worldDir, lastSample.sdf, lastSample.alpha, dist, rayCurrent, alpha, color2); float3 currentIso = worldCamPos+alpha*worldDir; if(b && abs(lastSample.sdf - dist) < rayCastParams.m_thresSampleDist) { if(abs(dist) < rayCastParams.m_thresDist) { float depth = alpha / depthToRayLength; // Convert ray length to depth depthToRayLength d_depth[dTid.y*rayCastParams.m_width+dTid.x] = depth; d_depth4[dTid.y*rayCastParams.m_width+dTid.x] = make_float4(depthToCamera(dTid.x, dTid.y, depth), 1.0f); d_colors[dTid.y*rayCastParams.m_width+dTid.x] = make_float4(color2.x/255.f, color2.y/255.f, color2.z/255.f, 1.0f); if(rayCastParams.m_useGradients) { float3 normal = make_float3(0,0,0)-gradientForPoint(hash, currentIso); float4 n = rayCastParams.m_viewMatrix * make_float4(normal, 0.0f); d_normals[dTid.y*rayCastParams.m_width+dTid.x] = make_float4(n.x, n.y, n.z, 1.0f); } return; } } } lastSample.sdf = dist; lastSample.alpha = rayCurrent; // lastSample.color = color; lastSample.weight = 1; rayCurrent += rayCastParams.m_rayIncrement; } else { lastSample.weight = 0; rayCurrent += rayCastParams.m_rayIncrement; } } } __global__ void computeNormalsDevice(float4* d_output, float4* d_input, unsigned int width, unsigned int height) { const unsigned int x = blockIdx.x*blockDim.x + threadIdx.x; const unsigned int y = blockIdx.y*blockDim.y + threadIdx.y; if(x >= width || y >= height) return; d_output[y*width+x] = make_float4(MINF, MINF, MINF, MINF); if(x > 0 && x < width-1 && y > 0 && y < height-1) { const float4 CC = d_input[(y+0)*width+(x+0)]; const float4 PC = d_input[(y+1)*width+(x+0)]; const float4 CP = d_input[(y+0)*width+(x+1)]; const float4 MC = d_input[(y-1)*width+(x+0)]; const float4 CM = d_input[(y+0)*width+(x-1)]; if(CC.x != MINF && PC.x != MINF && CP.x != MINF && MC.x != MINF && CM.x != MINF) { const float3 n = cross(make_float3(PC)-make_float3(MC), make_float3(CP)-make_float3(CM)); const float l = length(n); if(l > 0.0f) { d_output[y*width+x] = make_float4(n/-l, 1.0f); } } } } extern "C" void computeNormals(float4* d_output, float4* d_input, unsigned int width, unsigned int height) { const dim3 gridSize((width + T_PER_BLOCK - 1)/T_PER_BLOCK, (height + T_PER_BLOCK - 1)/T_PER_BLOCK); const dim3 blockSize(T_PER_BLOCK, T_PER_BLOCK); computeNormalsDevice<<<gridSize, blockSize>>>(d_output, d_input, width, height); #ifdef _DEBUG cutilSafeCall(cudaDeviceSynchronize()); cutilCheckMsg(__FUNCTION__); #endif } texture<float, cudaTextureType2D, cudaReadModeElementType> rayMinTextureRef; texture<float, cudaTextureType2D, cudaReadModeElementType> rayMaxTextureRef; __global__ void renderKernel(HashDataStruct hashData, RayCastData rayCastData) { const unsigned int x = blockIdx.x*blockDim.x + threadIdx.x; const unsigned int y = blockIdx.y*blockDim.y + threadIdx.y; const RayCastParams& rayCastParams = c_rayCastParams; if (x < rayCastParams.m_width && y < rayCastParams.m_height) { rayCastData.d_depth[y*rayCastParams.m_width+x] = MINF; rayCastData.d_depth4[y*rayCastParams.m_width+x] = make_float4(MINF,MINF,MINF,MINF); rayCastData.d_normals[y*rayCastParams.m_width+x] = make_float4(MINF,MINF,MINF,MINF); rayCastData.d_colors[y*rayCastParams.m_width+x] = make_float4(MINF,MINF,MINF,MINF); float3 camDir = normalize(RayCastData::depthToCamera(x, y, 1.0f)); float3 worldCamPos = rayCastParams.m_viewMatrixInverse * make_float3(0.0f, 0.0f, 0.0f); float4 w = rayCastParams.m_viewMatrixInverse * make_float4(camDir, 0.0f); float3 worldDir = normalize(make_float3(w.x, w.y, w.z)); float minInterval = tex2D(rayMinTextureRef, x, y); float maxInterval = tex2D(rayMaxTextureRef, x, y); //float minInterval = rayCastParams.m_minDepth; //float maxInterval = rayCastParams.m_maxDepth; //if (minInterval == 0 || minInterval == MINF) minInterval = rayCastParams.m_minDepth; //if (maxInterval == 0 || maxInterval == MINF) maxInterval = rayCastParams.m_maxDepth; //TODO MATTHIAS: shouldn't this return in the case no interval is found? if (minInterval == 0 || minInterval == MINF) return; if (maxInterval == 0 || maxInterval == MINF) return; minInterval = max(minInterval, rayCastParams.m_minDepth); maxInterval = min(maxInterval, rayCastParams.m_maxDepth); // debugging //if (maxInterval < minInterval) { // printf("ERROR (%d,%d): [ %f, %f ]\n", x, y, minInterval, maxInterval); //} rayCastData.traverseCoarseGridSimpleSampleAll(hashData, worldCamPos, worldDir, camDir, make_int3(x,y,1), minInterval, maxInterval); } } extern "C" void renderCS(const HashDataStruct& hashData, const RayCastData &rayCastData, const RayCastParams &rayCastParams) { const dim3 gridSize((rayCastParams.m_width + T_PER_BLOCK - 1)/T_PER_BLOCK, (rayCastParams.m_height + T_PER_BLOCK - 1)/T_PER_BLOCK); const dim3 blockSize(T_PER_BLOCK, T_PER_BLOCK); cudaBindTexture2D(0, &rayMinTextureRef, rayCastData.d_rayIntervalSplatMinArray, &depthTextureRef.channelDesc, rayCastParams.m_width, rayCastParams.m_height, sizeof(float)*rayCastParams.m_width); cudaBindTexture2D(0, &rayMaxTextureRef, rayCastData.d_rayIntervalSplatMaxArray, &depthTextureRef.channelDesc, rayCastParams.m_width, rayCastParams.m_height, sizeof(float)*rayCastParams.m_width); renderKernel<<<gridSize, blockSize>>>(hashData, rayCastData); #ifdef _DEBUG cutilSafeCall(cudaDeviceSynchronize()); cutilCheckMsg(__FUNCTION__); #endif } ///////////////////////////////////////////////////////////////////////// // ray interval splatting ///////////////////////////////////////////////////////////////////////// __global__ void resetRayIntervalSplatKernel(RayCastData data) { uint idx = blockIdx.x + blockIdx.y * NUM_GROUPS_X; data.d_vertexBuffer[idx] = make_float4(MINF); } extern "C" void resetRayIntervalSplatCUDA(RayCastData& data, const RayCastParams& params) { const dim3 gridSize(NUM_GROUPS_X, (params.m_maxNumVertices + NUM_GROUPS_X - 1) / NUM_GROUPS_X, 1); // ! todo check if need third dimension? const dim3 blockSize(1, 1, 1); resetRayIntervalSplatKernel<<<gridSize, blockSize>>>(data); #ifdef _DEBUG cutilSafeCall(cudaDeviceSynchronize()); cutilCheckMsg(__FUNCTION__); #endif } __global__ void rayIntervalSplatKernel(HashDataStruct hashData, RayCastData rayCastData) { uint idx = blockIdx.x + blockIdx.y * NUM_GROUPS_X; const HashEntry& entry = hashData.d_hashCompactified[idx]; const RayCastParams& rayCastParams = c_rayCastParams; if (entry.ptr != FREE_ENTRY) { float3 posWorld = hashData.virtualVoxelPosToWorld(hashData.SDFBlockToVirtualVoxelPos(entry.pos)) + c_hashParams.m_virtualVoxelSize * 0.5f * (SDF_BLOCK_SIZE - 1.0f); if (rayCastData.isInCameraFrustumApprox(rayCastParams.m_viewMatrixInverse, posWorld)) return; const RayCastParams &params = c_rayCastParams; const float4x4& viewMatrix = params.m_viewMatrix; float3 worldCurrentVoxel = hashData.SDFBlockToWorld(entry.pos); float3 MINV = worldCurrentVoxel - c_hashParams.m_virtualVoxelSize / 2.0f; float3 maxv = MINV+SDF_BLOCK_SIZE*c_hashParams.m_virtualVoxelSize; //float3 proj000 = DepthCameraData::cameraToKinectProj(viewMatrix * make_float3(MINV.x, MINV.y, MINV.z)); //float3 proj100 = DepthCameraData::cameraToKinectProj(viewMatrix * make_float3(maxv.x, MINV.y, MINV.z)); //float3 proj010 = DepthCameraData::cameraToKinectProj(viewMatrix * make_float3(MINV.x, maxv.y, MINV.z)); //float3 proj001 = DepthCameraData::cameraToKinectProj(viewMatrix * make_float3(MINV.x, MINV.y, maxv.z)); //float3 proj110 = DepthCameraData::cameraToKinectProj(viewMatrix * make_float3(maxv.x, maxv.y, MINV.z)); //float3 proj011 = DepthCameraData::cameraToKinectProj(viewMatrix * make_float3(MINV.x, maxv.y, maxv.z)); //float3 proj101 = DepthCameraData::cameraToKinectProj(viewMatrix * make_float3(maxv.x, MINV.y, maxv.z)); //float3 proj111 = DepthCameraData::cameraToKinectProj(viewMatrix * make_float3(maxv.x, maxv.y, maxv.z)); float3 proj000 = RayCastData::cameraToDepthProj(viewMatrix * make_float3(MINV.x, MINV.y, MINV.z)); float3 proj100 = RayCastData::cameraToDepthProj(viewMatrix * make_float3(maxv.x, MINV.y, MINV.z)); float3 proj010 = RayCastData::cameraToDepthProj(viewMatrix * make_float3(MINV.x, maxv.y, MINV.z)); float3 proj001 = RayCastData::cameraToDepthProj(viewMatrix * make_float3(MINV.x, MINV.y, maxv.z)); float3 proj110 = RayCastData::cameraToDepthProj(viewMatrix * make_float3(maxv.x, maxv.y, MINV.z)); float3 proj011 = RayCastData::cameraToDepthProj(viewMatrix * make_float3(MINV.x, maxv.y, maxv.z)); float3 proj101 = RayCastData::cameraToDepthProj(viewMatrix * make_float3(maxv.x, MINV.y, maxv.z)); float3 proj111 = RayCastData::cameraToDepthProj(viewMatrix * make_float3(maxv.x, maxv.y, maxv.z)); // Tree Reduction Min float3 min00 = fminf(proj000, proj100); float3 min01 = fminf(proj010, proj001); float3 min10 = fminf(proj110, proj011); float3 min11 = fminf(proj101, proj111); float3 min0 = fminf(min00, min01); float3 min1 = fminf(min10, min11); float3 minFinal = fminf(min0, min1); // Tree Reduction Max float3 max00 = fmaxf(proj000, proj100); float3 max01 = fmaxf(proj010, proj001); float3 max10 = fmaxf(proj110, proj011); float3 max11 = fmaxf(proj101, proj111); float3 max0 = fmaxf(max00, max01); float3 max1 = fmaxf(max10, max11); float3 maxFinal = fmaxf(max0, max1); float depth = maxFinal.z; float * rayArray = rayCastData.d_rayIntervalSplatMaxArray; if(params.m_splatMinimum == 1) { depth = minFinal.z; rayArray = rayCastData.d_rayIntervalSplatMinArray; } float depthWorld = RayCastData::depthProjToCameraZ(depth); for(uint x=(uint)ceil(minFinal.x); x<maxFinal.x&&x<rayCastParams.m_width; x++) { for(uint y=(uint)ceil(minFinal.y); y<maxFinal.y&&y<rayCastParams.m_height; y++) { rayArray[y*rayCastParams.m_width+x] = depth; } } } } extern "C" void rayIntervalSplatCUDA(const HashDataStruct& hashData, const RayCastData &rayCastData, const RayCastParams &rayCastParams) { const dim3 gridSize(NUM_GROUPS_X, (rayCastParams.m_numOccupiedSDFBlocks + NUM_GROUPS_X - 1) / NUM_GROUPS_X, 1); const dim3 blockSize(1, 1, 1); rayIntervalSplatKernel<<<gridSize, blockSize>>>(hashData, rayCastData); #ifdef _DEBUG cutilSafeCall(cudaDeviceSynchronize()); cutilCheckMsg(__FUNCTION__); #endif } /** cube */ __device__ __host__ MarchingCubesData::MarchingCubesData() { d_params = NULL; d_triangles = NULL; d_numTriangles = NULL; m_bIsOnGPU = false; } ///////////////// // Device part // ///////////////// __device__ void MarchingCubesData::extractIsoSurfaceAtPosition(const float3 &worldPos, const HashDataStruct &hashData, const RayCastData &rayCastData) { const HashParams &hashParams = c_hashParams; const MarchingCubesParams &params = *d_params; if (params.m_boxEnabled == 1) { if (!isInBoxAA(params.m_minCorner, params.m_maxCorner, worldPos)) return; } const float isolevel = 0.0f; const float P = hashParams.m_virtualVoxelSize / 2.0f; const float M = -P; float3 p000 = worldPos + make_float3(M, M, M); float dist000; uchar3 color000; bool valid000 = rayCastData.trilinearInterpolationSimpleFastFast(hashData, p000, dist000, color000); float3 p100 = worldPos + make_float3(P, M, M); float dist100; uchar3 color100; bool valid100 = rayCastData.trilinearInterpolationSimpleFastFast(hashData, p100, dist100, color100); float3 p010 = worldPos + make_float3(M, P, M); float dist010; uchar3 color010; bool valid010 = rayCastData.trilinearInterpolationSimpleFastFast(hashData, p010, dist010, color010); float3 p001 = worldPos + make_float3(M, M, P); float dist001; uchar3 color001; bool valid001 = rayCastData.trilinearInterpolationSimpleFastFast(hashData, p001, dist001, color001); float3 p110 = worldPos + make_float3(P, P, M); float dist110; uchar3 color110; bool valid110 = rayCastData.trilinearInterpolationSimpleFastFast(hashData, p110, dist110, color110); float3 p011 = worldPos + make_float3(M, P, P); float dist011; uchar3 color011; bool valid011 = rayCastData.trilinearInterpolationSimpleFastFast(hashData, p011, dist011, color011); float3 p101 = worldPos + make_float3(P, M, P); float dist101; uchar3 color101; bool valid101 = rayCastData.trilinearInterpolationSimpleFastFast(hashData, p101, dist101, color101); float3 p111 = worldPos + make_float3(P, P, P); float dist111; uchar3 color111; bool valid111 = rayCastData.trilinearInterpolationSimpleFastFast(hashData, p111, dist111, color111); if (!valid000 || !valid100 || !valid010 || !valid001 || !valid110 || !valid011 || !valid101 || !valid111) return; uint cubeindex = 0; if (dist010 < isolevel) cubeindex += 1; if (dist110 < isolevel) cubeindex += 2; if (dist100 < isolevel) cubeindex += 4; if (dist000 < isolevel) cubeindex += 8; if (dist011 < isolevel) cubeindex += 16; if (dist111 < isolevel) cubeindex += 32; if (dist101 < isolevel) cubeindex += 64; if (dist001 < isolevel) cubeindex += 128; const float thres = params.m_threshMarchingCubes; float distArray[] = {dist000, dist100, dist010, dist001, dist110, dist011, dist101, dist111}; for (uint k = 0; k < 8; k++) { for (uint l = 0; l < 8; l++) { if (distArray[k] * distArray[l] < 0.0f) { if (abs(distArray[k]) + abs(distArray[l]) > thres) return; } else { if (abs(distArray[k] - distArray[l]) > thres) return; } } } if (abs(dist000) > params.m_threshMarchingCubes2) return; if (abs(dist100) > params.m_threshMarchingCubes2) return; if (abs(dist010) > params.m_threshMarchingCubes2) return; if (abs(dist001) > params.m_threshMarchingCubes2) return; if (abs(dist110) > params.m_threshMarchingCubes2) return; if (abs(dist011) > params.m_threshMarchingCubes2) return; if (abs(dist101) > params.m_threshMarchingCubes2) return; if (abs(dist111) > params.m_threshMarchingCubes2) return; if (edgeTable[cubeindex] == 0 || edgeTable[cubeindex] == 255) return; // added by me edgeTable[cubeindex] == 255 Voxel v = hashData.getVoxel(worldPos); Vertex vertlist[12]; if (edgeTable[cubeindex] & 1) vertlist[0] = vertexInterp(isolevel, p010, p110, dist010, dist110, v.color, v.color); if (edgeTable[cubeindex] & 2) vertlist[1] = vertexInterp(isolevel, p110, p100, dist110, dist100, v.color, v.color); if (edgeTable[cubeindex] & 4) vertlist[2] = vertexInterp(isolevel, p100, p000, dist100, dist000, v.color, v.color); if (edgeTable[cubeindex] & 8) vertlist[3] = vertexInterp(isolevel, p000, p010, dist000, dist010, v.color, v.color); if (edgeTable[cubeindex] & 16) vertlist[4] = vertexInterp(isolevel, p011, p111, dist011, dist111, v.color, v.color); if (edgeTable[cubeindex] & 32) vertlist[5] = vertexInterp(isolevel, p111, p101, dist111, dist101, v.color, v.color); if (edgeTable[cubeindex] & 64) vertlist[6] = vertexInterp(isolevel, p101, p001, dist101, dist001, v.color, v.color); if (edgeTable[cubeindex] & 128) vertlist[7] = vertexInterp(isolevel, p001, p011, dist001, dist011, v.color, v.color); if (edgeTable[cubeindex] & 256) vertlist[8] = vertexInterp(isolevel, p010, p011, dist010, dist011, v.color, v.color); if (edgeTable[cubeindex] & 512) vertlist[9] = vertexInterp(isolevel, p110, p111, dist110, dist111, v.color, v.color); if (edgeTable[cubeindex] & 1024) vertlist[10] = vertexInterp(isolevel, p100, p101, dist100, dist101, v.color, v.color); if (edgeTable[cubeindex] & 2048) vertlist[11] = vertexInterp(isolevel, p000, p001, dist000, dist001, v.color, v.color); for (int i = 0; triTable[cubeindex][i] != -1; i += 3) { Triangle t; t.v0 = vertlist[triTable[cubeindex][i + 0]]; t.v1 = vertlist[triTable[cubeindex][i + 1]]; t.v2 = vertlist[triTable[cubeindex][i + 2]]; appendTriangle(t); } } using Vertex = MarchingCubesData::Vertex; using Triangle = MarchingCubesData::Triangle; __device__ Vertex MarchingCubesData::vertexInterp(float isolevel, const float3 &p1, const float3 &p2, float d1, float d2, const uchar4 &c1, const uchar4 &c2) const { Vertex r1; r1.p = p1; r1.c = make_float3(c1.x, c1.y, c1.z) / 255.f; Vertex r2; r2.p = p2; r2.c = make_float3(c2.x, c2.y, c2.z) / 255.f; if (abs(isolevel - d1) < 0.00001f) return r1; if (abs(isolevel - d2) < 0.00001f) return r2; if (abs(d1 - d2) < 0.00001f) return r1; float mu = (isolevel - d1) / (d2 - d1); Vertex res; res.p.x = p1.x + mu * (p2.x - p1.x); // Positions res.p.y = p1.y + mu * (p2.y - p1.y); res.p.z = p1.z + mu * (p2.z - p1.z); res.c.x = (float) (c1.x + mu * (float) (c2.x - c1.x)) / 255.f; // Color res.c.y = (float) (c1.y + mu * (float) (c2.y - c1.y)) / 255.f; res.c.z = (float) (c1.z + mu * (float) (c2.z - c1.z)) / 255.f; return res; } __device__ bool MarchingCubesData::isInBoxAA(const float3 &minCorner, const float3 &maxCorner, const float3 &pos) const { if (pos.x < minCorner.x || pos.x > maxCorner.x) return false; if (pos.y < minCorner.y || pos.y > maxCorner.y) return false; if (pos.z < minCorner.z || pos.z > maxCorner.z) return false; return true; } __device__ uint MarchingCubesData::append() { uint addr = atomicAdd(d_numTriangles, 1); //TODO check return addr; } __device__ void MarchingCubesData::appendTriangle(const Triangle &t) { if (*d_numTriangles >= d_params->m_maxNumTriangles) { *d_numTriangles = d_params->m_maxNumTriangles; return; // todo } uint addr = append(); if (addr >= d_params->m_maxNumTriangles) { printf("marching cubes exceeded max number of triangles (addr, #tri, max#tri): (%d, %d, %d)\n", addr, *d_numTriangles, d_params->m_maxNumTriangles); *d_numTriangles = d_params->m_maxNumTriangles; return; // todo } Triangle &triangle = d_triangles[addr]; triangle.v0 = t.v0; triangle.v1 = t.v1; triangle.v2 = t.v2; return; } /** marching cube cuda*/ __global__ void resetMarchingCubesKernel(MarchingCubesData data) { *data.d_numTriangles = 0; } __global__ void extractIsoSurfaceKernel(HashDataStruct hashData, RayCastData rayCastData, MarchingCubesData data) { uint idx = blockIdx.x; const HashEntry &entry = hashData.d_hash[idx]; if (entry.ptr != FREE_ENTRY) { int3 pi_base = hashData.SDFBlockToVirtualVoxelPos(entry.pos); int3 pi = pi_base + make_int3(threadIdx); float3 worldPos = hashData.virtualVoxelPosToWorld(pi); data.extractIsoSurfaceAtPosition(worldPos, hashData, rayCastData); } } extern "C" void resetMarchingCubesCUDA(MarchingCubesData &data) { const dim3 blockSize(1, 1, 1); const dim3 gridSize(1, 1, 1); resetMarchingCubesKernel<<<gridSize, blockSize>>>(data); #ifdef _DEBUG cutilSafeCall(cudaDeviceSynchronize()); cutilCheckMsg(__FUNCTION__); #endif } extern "C" void extractIsoSurfaceCUDA(const HashDataStruct &hashData, const RayCastData &rayCastData, const MarchingCubesParams &params, MarchingCubesData &data) { const dim3 gridSize(params.m_hashNumBuckets * params.m_hashBucketSize, 1, 1); const dim3 blockSize(params.m_sdfBlockSize, params.m_sdfBlockSize, params.m_sdfBlockSize); extractIsoSurfaceKernel<<<gridSize, blockSize>>>(hashData, rayCastData, data); #ifdef _DEBUG cutilSafeCall(cudaDeviceSynchronize()); cutilCheckMsg(__FUNCTION__); #endif } void CUDAMarchingCubesHashSDF::create(const MarchingCubesParams &params) { m_params = params; m_data.allocate(m_params); resetMarchingCubesCUDA(m_data); } void CUDAMarchingCubesHashSDF::extractIsoSurface(const HashDataStruct &hashData, const HashParams &hashParams, const RayCastData &rayCastData, const vec3f &minCorner, const vec3f &maxCorner, bool boxEnabled) { resetMarchingCubesCUDA(m_data); m_params.m_maxCorner = maxCorner; m_params.m_minCorner = minCorner; m_params.m_boxEnabled = boxEnabled; m_data.updateParams(m_params); extractIsoSurfaceCUDA(hashData, rayCastData, m_params, m_data); copyTrianglesToCPU(); } Mesh * CUDAMarchingCubesHashSDF::getMeshData() { return m_meshData; }
e7725a66001dc373c6a4f276b2af51cb70cb55fc.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" // #include "../common/book.h" #include <stdio.h> #define N 10 #define HANDLE_ERROR( err ) ( HandleError( err, __FILE__, __LINE__ ) ) static void HandleError(hipError_t err, const char *file, int line) {if (err != hipSuccess) {printf("%s in %s at line %d\n", hipGetErrorString(err),file, line); exit(EXIT_FAILURE); } } __global__ void add( int *a, int *b, int *c ) { int tid = blockIdx.x; // handle the data at this index if (tid < N) c[tid] = a[tid] + b[tid]; } int main( void ) { int a[N], b[N], c[N]; int *dev_a, *dev_b, *dev_c; // allocate the memory on the GPU hipMalloc( (void**)&dev_a, N * sizeof(int) ) ; hipMalloc( (void**)&dev_b, N * sizeof(int) ) ; hipMalloc( (void**)&dev_c, N * sizeof(int) ) ; // fill the arrays 'a' and 'b' on the CPU for (int i=0; i<N; i++) { a[i] = -i; b[i] = i * i; } // copy the arrays 'a' and 'b' to the GPU hipMemcpy( dev_a, a, N * sizeof(int), hipMemcpyHostToDevice ) ; hipMemcpy( dev_b, b, N * sizeof(int), hipMemcpyHostToDevice ) ; hipLaunchKernelGGL(( add), dim3(N),dim3(1), 0, 0, dev_a, dev_b, dev_c ); // copy the array 'c' back from the GPU to the CPU hipMemcpy( c, dev_c, N * sizeof(int), hipMemcpyDeviceToHost ) ; // display the results for (int i=0; i<N; i++) { printf( "%d + %d = %d\n", a[i], b[i], c[i] ); } // free the memory allocated on the GPU hipFree( dev_a ); hipFree( dev_b ); hipFree( dev_c ); return 0; }
e7725a66001dc373c6a4f276b2af51cb70cb55fc.cu
// #include "../common/book.h" #include <stdio.h> #define N 10 #define HANDLE_ERROR( err ) ( HandleError( err, __FILE__, __LINE__ ) ) static void HandleError(cudaError_t err, const char *file, int line) {if (err != cudaSuccess) {printf("%s in %s at line %d\n", cudaGetErrorString(err),file, line); exit(EXIT_FAILURE); } } __global__ void add( int *a, int *b, int *c ) { int tid = blockIdx.x; // handle the data at this index if (tid < N) c[tid] = a[tid] + b[tid]; } int main( void ) { int a[N], b[N], c[N]; int *dev_a, *dev_b, *dev_c; // allocate the memory on the GPU cudaMalloc( (void**)&dev_a, N * sizeof(int) ) ; cudaMalloc( (void**)&dev_b, N * sizeof(int) ) ; cudaMalloc( (void**)&dev_c, N * sizeof(int) ) ; // fill the arrays 'a' and 'b' on the CPU for (int i=0; i<N; i++) { a[i] = -i; b[i] = i * i; } // copy the arrays 'a' and 'b' to the GPU cudaMemcpy( dev_a, a, N * sizeof(int), cudaMemcpyHostToDevice ) ; cudaMemcpy( dev_b, b, N * sizeof(int), cudaMemcpyHostToDevice ) ; add<<<N,1>>>( dev_a, dev_b, dev_c ); // copy the array 'c' back from the GPU to the CPU cudaMemcpy( c, dev_c, N * sizeof(int), cudaMemcpyDeviceToHost ) ; // display the results for (int i=0; i<N; i++) { printf( "%d + %d = %d\n", a[i], b[i], c[i] ); } // free the memory allocated on the GPU cudaFree( dev_a ); cudaFree( dev_b ); cudaFree( dev_c ); return 0; }
7f5c35f9c7b5b15893e0902b0060944b6a103009.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" /** Research 4 Fun metaCuda.cu Purpose: Calculates the n-th Fibonacci number an the Factorial of a number from CUDA + Template Meta-Programming @author O. A. Riveros @version 1.0 28 May 2014 Santiago Chile. */ #include <iostream> #include <ctime> using namespace std; // Begin CUDA /////////////// // Fibonacci // /////////////// template<unsigned long N> __device__ unsigned long cuMetaFibonacci() { return cuMetaFibonacci<N - 1>() + cuMetaFibonacci<N - 2>(); } template<> __device__ unsigned long cuMetaFibonacci<0>() { return 1; } template<> __device__ unsigned long cuMetaFibonacci<1>() { return 1; } template<> __device__ unsigned long cuMetaFibonacci<2>() { return 1; } template<unsigned long N> __global__ void cuFibonacci(unsigned long *out) { *out = cuMetaFibonacci<N>(); } /////////////// // Factorial // /////////////// template<unsigned long N> __device__ unsigned long cuMetaFactorial() { return N * cuMetaFactorial<N - 1>(); } template<> __device__ unsigned long cuMetaFactorial<1>() { return 1; } template<unsigned long N> __global__ void cuFactorial(unsigned long *out) { *out = cuMetaFactorial<N>(); } // End CUDA int main() { /////////////// // Fibonacci // /////////////// size_t size = sizeof(unsigned long); unsigned long h_out[] = { 0 }; unsigned long *d_out; hipMalloc((void **) &d_out, size); hipMemcpy(d_out, h_out, size, hipMemcpyHostToDevice); clock_t startTime = clock(); hipLaunchKernelGGL(( cuFibonacci<20>) , dim3(1), dim3(1), 0, 0, d_out); clock_t endTime = clock(); clock_t clockTicksTaken = endTime - startTime; hipMemcpy(h_out, d_out, size, hipMemcpyDeviceToHost); cout << h_out[0] << endl; hipFree(d_out); double timeInSeconds = clockTicksTaken / (double) CLOCKS_PER_SEC; cout << timeInSeconds << endl; /////////////// // Factorial // /////////////// hipMalloc((void **) &d_out, size); hipMemcpy(d_out, h_out, size, hipMemcpyHostToDevice); startTime = clock(); hipLaunchKernelGGL(( cuFactorial<20>) , dim3(1), dim3(1), 0, 0, d_out); endTime = clock(); clockTicksTaken = endTime - startTime; hipMemcpy(h_out, d_out, size, hipMemcpyDeviceToHost); cout << h_out[0] << endl; hipFree(d_out); timeInSeconds = clockTicksTaken / (double) CLOCKS_PER_SEC; cout << timeInSeconds << endl; } // Original Output // 11:56:05 Build Finished (took 16s.185ms) // 6765 // 4.2e-05 // 2432902008176640000 // 9e-06
7f5c35f9c7b5b15893e0902b0060944b6a103009.cu
/** Research 4 Fun metaCuda.cu Purpose: Calculates the n-th Fibonacci number an the Factorial of a number from CUDA + Template Meta-Programming @author O. A. Riveros @version 1.0 28 May 2014 Santiago Chile. */ #include <iostream> #include <ctime> using namespace std; // Begin CUDA /////////////// // Fibonacci // /////////////// template<unsigned long N> __device__ unsigned long cuMetaFibonacci() { return cuMetaFibonacci<N - 1>() + cuMetaFibonacci<N - 2>(); } template<> __device__ unsigned long cuMetaFibonacci<0>() { return 1; } template<> __device__ unsigned long cuMetaFibonacci<1>() { return 1; } template<> __device__ unsigned long cuMetaFibonacci<2>() { return 1; } template<unsigned long N> __global__ void cuFibonacci(unsigned long *out) { *out = cuMetaFibonacci<N>(); } /////////////// // Factorial // /////////////// template<unsigned long N> __device__ unsigned long cuMetaFactorial() { return N * cuMetaFactorial<N - 1>(); } template<> __device__ unsigned long cuMetaFactorial<1>() { return 1; } template<unsigned long N> __global__ void cuFactorial(unsigned long *out) { *out = cuMetaFactorial<N>(); } // End CUDA int main() { /////////////// // Fibonacci // /////////////// size_t size = sizeof(unsigned long); unsigned long h_out[] = { 0 }; unsigned long *d_out; cudaMalloc((void **) &d_out, size); cudaMemcpy(d_out, h_out, size, cudaMemcpyHostToDevice); clock_t startTime = clock(); cuFibonacci<20> <<<1, 1>>>(d_out); clock_t endTime = clock(); clock_t clockTicksTaken = endTime - startTime; cudaMemcpy(h_out, d_out, size, cudaMemcpyDeviceToHost); cout << h_out[0] << endl; cudaFree(d_out); double timeInSeconds = clockTicksTaken / (double) CLOCKS_PER_SEC; cout << timeInSeconds << endl; /////////////// // Factorial // /////////////// cudaMalloc((void **) &d_out, size); cudaMemcpy(d_out, h_out, size, cudaMemcpyHostToDevice); startTime = clock(); cuFactorial<20> <<<1, 1>>>(d_out); endTime = clock(); clockTicksTaken = endTime - startTime; cudaMemcpy(h_out, d_out, size, cudaMemcpyDeviceToHost); cout << h_out[0] << endl; cudaFree(d_out); timeInSeconds = clockTicksTaken / (double) CLOCKS_PER_SEC; cout << timeInSeconds << endl; } // Original Output // 11:56:05 Build Finished (took 16s.185ms) // 6765 // 4.2e-05 // 2432902008176640000 // 9e-06
4e7f1b2e21ebf5fd2dd4f5bfcebfb9fab1c41728.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "cuda_func.cuh" __global__ void create_checkerboard_kernel(unsigned char *pImage, unsigned int width, unsigned int height, int square_size, uchar3 color1, uchar3 color2) { const int x = blockIdx.x * blockDim.x + threadIdx.x; const int y = blockIdx.y * blockDim.y + threadIdx.y; if (y >= height || x >= width) return; // fill the image, alternate the colors int index = (y * width + x) * 3; if (x % square_size < (square_size / 2)) { if (y % square_size < (square_size / 2)) { pImage[index] = color1.x; pImage[index + 1] = color1.y; pImage[index + 2] = color1.z; } else { pImage[index] = color2.x; pImage[index + 1] = color2.y; pImage[index + 2] = color2.z; } } else { if (y % square_size < (square_size / 2)) { pImage[index] = color2.x; pImage[index + 1] = color2.y; pImage[index + 2] = color2.z; } else { pImage[index] = color1.x; pImage[index + 1] = color1.y; pImage[index + 2] = color1.z; } } } // fill an image with a chekcer_board (BGR) void create_checkerboard(evo::Mat<unsigned char> image, int square_size) { dim3 block(32, 32); dim3 grid((image.getWidth() + block.x - 1) / block.x, (image.getHeight() + block.y - 1) / block.y); // define the two colors of the checkerboard uchar3 color1 = make_uchar3(255, 255, 255);//white uchar3 color2 = make_uchar3(0, 255, 0);//green // call the kernel create_checkerboard_kernel << <grid, block >> >((unsigned char*)image.data, image.getWidth(), image.getHeight(), square_size, color1, color2); } __global__ void replace_image_by_distance_kernel(const unsigned char *pImage, const float* pDepth, const unsigned char *pBackground, unsigned char *result, const float max_value, const unsigned int width, const unsigned int height, const unsigned int image_channels) { const int x = blockIdx.x * blockDim.x + threadIdx.x; const int y = blockIdx.y * blockDim.y + threadIdx.y; if (y >= height || x >= width) return; // get the depth of the current pixel float z_distance = pDepth[y * width + x]; // replace part of the view int index = (y * width + x) * 3; if (isfinite(z_distance) && (z_distance > max_value)) { result[index] = pBackground[index]; result[index + 1] = pBackground[index + 1]; result[index + 2] = pBackground[index + 2]; } else { if (image_channels == 1)//gray image { int img_index = y * width + x; result[index] = pImage[img_index]; result[index + 1] = pImage[img_index]; result[index + 2] = pImage[img_index]; } else//color image { int img_index = (y * width + x) * image_channels; result[index] = pImage[img_index]; result[index + 1] = pImage[img_index + 1]; result[index + 2] = pImage[img_index + 2]; } } } // replace the current image by background if the distance if above the threshold void replace_image_by_distance(evo::Mat<unsigned char> image, evo::Mat<float> distance_z, evo::Mat<unsigned char> background, evo::Mat<unsigned char> result, float max_value) { dim3 block(32, 32); dim3 grid((image.getWidth() + block.x - 1) / block.x, (image.getHeight() + block.y - 1) / block.y); // call the kernel replace_image_by_distance_kernel << <grid, block >> >((unsigned char*)image.data, (float *)distance_z.data, (unsigned char*)background.data, (unsigned char*)result.data, max_value, image.getWidth(), image.getHeight(), image.getChannels()); }
4e7f1b2e21ebf5fd2dd4f5bfcebfb9fab1c41728.cu
#include "cuda_func.cuh" __global__ void create_checkerboard_kernel(unsigned char *pImage, unsigned int width, unsigned int height, int square_size, uchar3 color1, uchar3 color2) { const int x = blockIdx.x * blockDim.x + threadIdx.x; const int y = blockIdx.y * blockDim.y + threadIdx.y; if (y >= height || x >= width) return; // fill the image, alternate the colors int index = (y * width + x) * 3; if (x % square_size < (square_size / 2)) { if (y % square_size < (square_size / 2)) { pImage[index] = color1.x; pImage[index + 1] = color1.y; pImage[index + 2] = color1.z; } else { pImage[index] = color2.x; pImage[index + 1] = color2.y; pImage[index + 2] = color2.z; } } else { if (y % square_size < (square_size / 2)) { pImage[index] = color2.x; pImage[index + 1] = color2.y; pImage[index + 2] = color2.z; } else { pImage[index] = color1.x; pImage[index + 1] = color1.y; pImage[index + 2] = color1.z; } } } // fill an image with a chekcer_board (BGR) void create_checkerboard(evo::Mat<unsigned char> image, int square_size) { dim3 block(32, 32); dim3 grid((image.getWidth() + block.x - 1) / block.x, (image.getHeight() + block.y - 1) / block.y); // define the two colors of the checkerboard uchar3 color1 = make_uchar3(255, 255, 255);//white uchar3 color2 = make_uchar3(0, 255, 0);//green // call the kernel create_checkerboard_kernel << <grid, block >> >((unsigned char*)image.data, image.getWidth(), image.getHeight(), square_size, color1, color2); } __global__ void replace_image_by_distance_kernel(const unsigned char *pImage, const float* pDepth, const unsigned char *pBackground, unsigned char *result, const float max_value, const unsigned int width, const unsigned int height, const unsigned int image_channels) { const int x = blockIdx.x * blockDim.x + threadIdx.x; const int y = blockIdx.y * blockDim.y + threadIdx.y; if (y >= height || x >= width) return; // get the depth of the current pixel float z_distance = pDepth[y * width + x]; // replace part of the view int index = (y * width + x) * 3; if (isfinite(z_distance) && (z_distance > max_value)) { result[index] = pBackground[index]; result[index + 1] = pBackground[index + 1]; result[index + 2] = pBackground[index + 2]; } else { if (image_channels == 1)//gray image { int img_index = y * width + x; result[index] = pImage[img_index]; result[index + 1] = pImage[img_index]; result[index + 2] = pImage[img_index]; } else//color image { int img_index = (y * width + x) * image_channels; result[index] = pImage[img_index]; result[index + 1] = pImage[img_index + 1]; result[index + 2] = pImage[img_index + 2]; } } } // replace the current image by background if the distance if above the threshold void replace_image_by_distance(evo::Mat<unsigned char> image, evo::Mat<float> distance_z, evo::Mat<unsigned char> background, evo::Mat<unsigned char> result, float max_value) { dim3 block(32, 32); dim3 grid((image.getWidth() + block.x - 1) / block.x, (image.getHeight() + block.y - 1) / block.y); // call the kernel replace_image_by_distance_kernel << <grid, block >> >((unsigned char*)image.data, (float *)distance_z.data, (unsigned char*)background.data, (unsigned char*)result.data, max_value, image.getWidth(), image.getHeight(), image.getChannels()); }
eb2df98e496dd25862a2b7292fe440f88222f8b1.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #define P2P_KERNEL(p2p_kernel,p2p_kernel_core) \ extern "C" __global__ \ void p2p_kernel(int *nvec,float *ivec,float *jvec,float *kvec)\ {\ int bx=blockIdx.x;\ int tx=threadIdx.x;\ int mblok=nvec[2];\ int ib,jb,jbase,jsize,jblok,nij;\ int tx7,jj7;\ int i,j,ij,jj;\ float dxij,dyij,dzij,rij,rsij=0;\ float eps=1e-6;\ float pi14=0.25/M_PI;\ float veci[6],veck[4];\ __shared__ float vecj[NBLOK0*7];\ rij=rsij;\ ib=bx*NBLOK0+tx;\ for(i=0;i<6;i++) veci[i]=ivec[6*ib+i];\ for(i=0;i<4;i++) veck[i]=0.0f;\ tx7=tx*7;\ nij=nvec[bx*mblok+10];\ for(ij=0;ij<nij;ij++){\ jbase=nvec[bx*mblok+2*ij+11];\ jsize=nvec[bx*mblok+2*ij+12];\ jblok=(jsize+NBLOK0-1)/NBLOK0;\ for(j=0;j<jblok-1;j++){\ jb=j*NBLOK0+jbase+tx;\ for(i=0;i<7;i++) vecj[tx7+i]=jvec[7*jb+i];\ __syncthreads();\ for(jj=jj7=0;jj<NBLOK0;jj++){\ p2p_kernel_core;\ }\ __syncthreads();\ }\ jb=j*NBLOK0+jbase+tx;\ for(i=0;i<7;i++) vecj[tx7+i]=jvec[7*jb+i];\ jb=j*NBLOK1+jbase;\ __syncthreads();\ for(jj=jj7=0;jj<jsize-(j*NBLOK0);jj++){\ p2p_kernel_core;\ }\ __syncthreads();\ }\ for(i=0;i<4;i++) kvec[4*ib+i]=veck[i];\ } #define P2M_KERNEL(p2m_kernel,p2m_kernel_core) \ extern "C" __global__ \ void p2m_kernel(int *nvec,float *ivec,float *jvec,float *kvec)\ {\ int bx=blockIdx.x;\ int tx=threadIdx.x;\ int i,j,k,m,n,ib,jb,jj,jj7,jbase,jsize,jblok,nm,nms;\ int mblok=nvec[2],mp=nvec[6],nb,nc[3],nd;\ float rb=scal[0],xmin=scal[1],ymin=scal[2],zmin=scal[3];\ float xjc,yjc,zjc,xjjc,yjjc,zjjc,rh,al,be,eps=1e-6;\ float xx,s2,p,pn,p1,p2,fact,ere,eim,rhm,rhn;\ __shared__ int mg[NBLOK1],ng[NBLOK1];\ __shared__ float veci[2*NBLOK1],vecj[7*NBLOK1],veck[MPMAX];\ __shared__ float bnm[MPMAX];\ ib=bx*NBLOK1+tx;\ for(i=0;i<NBLOK1;i++){\ ng[i]=0;\ mg[i]=0;\ }\ for(n=0;n<mp;n++){\ for(m=0;m<=n;m++){\ nms=n*(n+1)/2+m;\ ng[nms]=n;\ mg[nms]=m;\ }\ }\ jblok=(MPMAX+NBLOK1-1)/NBLOK1;\ for(j=0;j<jblok-1;j++){\ jb=j*NBLOK1+tx;\ veck[jb]=kvec[jb];\ veck[jb]=kvec[jb];\ __syncthreads();\ }\ if(j*NBLOK1+tx<MPMAX){\ jb=j*NBLOK1+tx;\ veck[jb]=kvec[jb];\ veck[jb]=kvec[jb];\ }\ __syncthreads();\ for(i=0;i<2;i++) veci[2*tx+i]=0;\ __syncthreads();\ nb=nvec[bx*mblok+10];\ jbase=nvec[bx*mblok+11];\ jsize=nvec[bx*mblok+12];\ for(i=0;i<3;i++) nc[i]=0;\ k=0;\ i=1;\ while(nb!=0){\ j=2-k;\ nc[j]=nc[j]+nb%2*i;\ nb=nb/2;\ j=k+1;\ k=j%3;\ if(k==0) i=i*2;\ }\ nd=nc[0];\ nc[0]=nc[1];\ nc[1]=nc[2];\ nc[2]=nd;\ xjc=xmin+(nc[0]+0.5)*rb;\ yjc=ymin+(nc[1]+0.5)*rb;\ zjc=zmin+(nc[2]+0.5)*rb;\ jblok=(jsize+NBLOK1-1)/NBLOK1;\ for(j=0;j<jblok-1;j++){\ jb=j*NBLOK1+jbase+tx;\ for(i=0;i<7;i++) vecj[7*tx+i]=jvec[7*jb+i];\ __syncthreads();\ for(jj=jj7=0;jj<NBLOK1;jj++){\ p2m_kernel_core;\ __syncthreads();\ }\ }\ jb=j*NBLOK1+jbase+tx;\ for(i=0;i<7;i++) vecj[7*tx+i]=jvec[7*jb+i];\ __syncthreads();\ for(jj=jj7=0;jj<jsize-(j*NBLOK1);jj++){\ p2m_kernel_core;\ __syncthreads();\ }\ for(i=0;i<2;i++) ivec[2*ib+i]=veci[2*tx+i];\ } #define M2L_KERNEL(m2l_kernel,m2l_kernel_core) \ extern "C" __global__ \ void m2l_kernel(int *nvec,float *ivec,float *jvec,float *kvec,float *lvec)\ {\ int bx=blockIdx.x;\ int tx=threadIdx.x;\ int i,j,k,m,n,ib,jb,ij,nij,jbase,jblok,je,nms,nmk,nks,jks,jnk;\ int mblok=nvec[2],mp=nvec[6],nrbm=nvec[7];\ int nb=0,nc[3],nd=0,mpdnm=(4*mp*mp*mp-mp)/3;\ float rb=scal[0],eps=1e-6;\ float xijc=0,yijc=0,zijc=0,rh,cnmre,cnmim,dnmre,dnmim;\ float sr,ank,ajk,ajn,fnmm,fnpm;\ float vecd[2];\ __shared__ int mg[NBLOK1],ng[NBLOK1];\ __shared__ float veci[6*NBLOK1],vecj[2*NBLOK1];\ __shared__ float ynmre[MPMAX],ynmim[MPMAX];\ nc[0]=0;\ rh=xijc+yijc+zijc+eps+nb+nc[0]+nd;\ ib=bx*NBLOK1+tx;\ nij=nvec[bx*mblok+10];\ for(i=0;i<NBLOK1;i++){\ ng[i]=0;\ mg[i]=0;\ }\ for(n=0;n<mp;n++){\ for(m=0;m<=n;m++){\ nms=n*(n+1)/2+m;\ ng[nms]=n;\ mg[nms]=m;\ }\ }\ jblok=(MPMAX+NBLOK1-1)/NBLOK1;\ for(j=0;j<jblok-1;j++){\ jb=j*NBLOK1+tx;\ ynmre[jb]=kvec[2*jb+0];\ ynmim[jb]=kvec[2*jb+2];\ __syncthreads();\ }\ if(j*NBLOK1+tx<MPMAX){\ jb=j*NBLOK1+tx;\ ynmre[jb]=kvec[2*jb+0];\ ynmim[jb]=kvec[2*jb+1];\ }\ __syncthreads();\ for(i=0;i<6;i++) veci[6*tx+i]=0;\ __syncthreads();\ for(ij=0;ij<nij;ij++){\ jbase=nvec[bx*mblok+2*ij+11];\ je=nvec[bx*mblok+2*ij+12];\ jb=jbase+tx;\ for(i=0;i<2;i++) vecj[2*tx+i]=jvec[2*jb+i];\ __syncthreads();\ m2l_kernel_core;\ for(i=0;i<2;i++) veci[6*tx+3*i]+=vecd[i];\ __syncthreads();\ }\ for(i=0;i<2;i++) ivec[2*ib+i]=veci[6*tx+3*i];\ } #define L2P_KERNEL(l2p_kernel,l2p_kernel_core) \ extern "C" __global__ \ void l2p_kernel(int *nvec,float *ivec,float *jvec,float *kvec,float *lvec)\ {\ int bx=blockIdx.x;\ int tx=threadIdx.x;\ int i,j,k,m,n,ib,jb,jbase,jblok,nm,nms;\ int mblok=nvec[2],mp=nvec[6],nb,nc[3],nd;\ float rb=scal[0],xmin=scal[1],ymin=scal[2],zmin=scal[3];\ float xic,yic,zic,xiic,yiic,ziic,r,th,ph;\ float xx,yy=0,s2,p,pn,p1,p2,fact,ere,eim,eps=1e-6;\ float rsre=0,rsim=0,rrre=0,rrim=0,rthre=0,rthim=0,rphre=0,rphim=0;\ float g=0,gr=0,gth=0,gph=0,gx=0,gy=0,gz=0;\ float bnm,bth=0;\ __shared__ float veci[6*NBLOK1],vecj[2*NBLOK1],veck[4*NBLOK1],vecl[MPMAX];\ r=yy+bth+rsre+rsim+rrre+rrim+rthre+rthim+rphre+rphim+g+gr+gth+gph+gx+gy+gz;\ ib=bx*NBLOK1+tx;\ jblok=(MPMAX+NBLOK1-1)/NBLOK1;\ for(j=0;j<jblok-1;j++){\ jb=j*NBLOK1+tx;\ vecl[jb]=lvec[jb];\ vecl[jb]=lvec[jb];\ __syncthreads();\ }\ if(j*NBLOK1+tx<MPMAX){\ jb=j*NBLOK1+tx;\ vecl[jb]=lvec[jb];\ vecl[jb]=lvec[jb];\ }\ __syncthreads();\ nb=nvec[bx*mblok+10];\ jbase=nvec[bx*mblok+11];\ for(i=0;i<3;i++) nc[i]=0;\ k=0;\ i=1;\ while(nb!=0){\ j=2-k;\ nc[j]=nc[j]+nb%2*i;\ nb=nb/2;\ j=k+1;\ k=j%3;\ if(k==0) i=i*2;\ }\ nd=nc[0];\ nc[0]=nc[1];\ nc[1]=nc[2];\ nc[2]=nd;\ xic=xmin+(nc[0]+0.5)*rb;\ yic=ymin+(nc[1]+0.5)*rb;\ zic=zmin+(nc[2]+0.5)*rb;\ jb=jbase+tx;\ for(i=0;i<6;i++) veci[6*tx+i]=ivec[6*ib+i];\ for(i=0;i<2;i++) vecj[2*tx+i]=jvec[2*jb+i];\ for(i=0;i<4;i++) veck[4*tx+i]=0.0f;\ __syncthreads();\ l2p_kernel_core;\ for(i=0;i<4;i++) kvec[4*ib+i]=veck[4*tx+i];\ } P2P_KERNEL(G_p2p_kernel,G_P2P_KERNEL_CORE); P2P_KERNEL(Gni_p2p_kernel,GNI_P2P_KERNEL_CORE); P2P_KERNEL(Gnj_p2p_kernel,GNJ_P2P_KERNEL_CORE); P2M_KERNEL(G_p2m_kernel,G_P2M_KERNEL_CORE); P2M_KERNEL(Gn_p2m_kernel,GN_P2M_KERNEL_CORE); M2L_KERNEL(m2m_kernel,M2M_KERNEL_CORE); M2L_KERNEL(m2l_kernel,M2L_KERNEL_CORE); M2L_KERNEL(l2l_kernel,L2L_KERNEL_CORE); L2P_KERNEL(G_l2p_kernel,G_L2P_KERNEL_CORE); L2P_KERNEL(Gn_l2p_kernel,GN_L2P_KERNEL_CORE);
eb2df98e496dd25862a2b7292fe440f88222f8b1.cu
#define P2P_KERNEL(p2p_kernel,p2p_kernel_core) \ extern "C" __global__ \ void p2p_kernel(int *nvec,float *ivec,float *jvec,float *kvec)\ {\ int bx=blockIdx.x;\ int tx=threadIdx.x;\ int mblok=nvec[2];\ int ib,jb,jbase,jsize,jblok,nij;\ int tx7,jj7;\ int i,j,ij,jj;\ float dxij,dyij,dzij,rij,rsij=0;\ float eps=1e-6;\ float pi14=0.25/M_PI;\ float veci[6],veck[4];\ __shared__ float vecj[NBLOK0*7];\ rij=rsij;\ ib=bx*NBLOK0+tx;\ for(i=0;i<6;i++) veci[i]=ivec[6*ib+i];\ for(i=0;i<4;i++) veck[i]=0.0f;\ tx7=tx*7;\ nij=nvec[bx*mblok+10];\ for(ij=0;ij<nij;ij++){\ jbase=nvec[bx*mblok+2*ij+11];\ jsize=nvec[bx*mblok+2*ij+12];\ jblok=(jsize+NBLOK0-1)/NBLOK0;\ for(j=0;j<jblok-1;j++){\ jb=j*NBLOK0+jbase+tx;\ for(i=0;i<7;i++) vecj[tx7+i]=jvec[7*jb+i];\ __syncthreads();\ for(jj=jj7=0;jj<NBLOK0;jj++){\ p2p_kernel_core;\ }\ __syncthreads();\ }\ jb=j*NBLOK0+jbase+tx;\ for(i=0;i<7;i++) vecj[tx7+i]=jvec[7*jb+i];\ jb=j*NBLOK1+jbase;\ __syncthreads();\ for(jj=jj7=0;jj<jsize-(j*NBLOK0);jj++){\ p2p_kernel_core;\ }\ __syncthreads();\ }\ for(i=0;i<4;i++) kvec[4*ib+i]=veck[i];\ } #define P2M_KERNEL(p2m_kernel,p2m_kernel_core) \ extern "C" __global__ \ void p2m_kernel(int *nvec,float *ivec,float *jvec,float *kvec)\ {\ int bx=blockIdx.x;\ int tx=threadIdx.x;\ int i,j,k,m,n,ib,jb,jj,jj7,jbase,jsize,jblok,nm,nms;\ int mblok=nvec[2],mp=nvec[6],nb,nc[3],nd;\ float rb=scal[0],xmin=scal[1],ymin=scal[2],zmin=scal[3];\ float xjc,yjc,zjc,xjjc,yjjc,zjjc,rh,al,be,eps=1e-6;\ float xx,s2,p,pn,p1,p2,fact,ere,eim,rhm,rhn;\ __shared__ int mg[NBLOK1],ng[NBLOK1];\ __shared__ float veci[2*NBLOK1],vecj[7*NBLOK1],veck[MPMAX];\ __shared__ float bnm[MPMAX];\ ib=bx*NBLOK1+tx;\ for(i=0;i<NBLOK1;i++){\ ng[i]=0;\ mg[i]=0;\ }\ for(n=0;n<mp;n++){\ for(m=0;m<=n;m++){\ nms=n*(n+1)/2+m;\ ng[nms]=n;\ mg[nms]=m;\ }\ }\ jblok=(MPMAX+NBLOK1-1)/NBLOK1;\ for(j=0;j<jblok-1;j++){\ jb=j*NBLOK1+tx;\ veck[jb]=kvec[jb];\ veck[jb]=kvec[jb];\ __syncthreads();\ }\ if(j*NBLOK1+tx<MPMAX){\ jb=j*NBLOK1+tx;\ veck[jb]=kvec[jb];\ veck[jb]=kvec[jb];\ }\ __syncthreads();\ for(i=0;i<2;i++) veci[2*tx+i]=0;\ __syncthreads();\ nb=nvec[bx*mblok+10];\ jbase=nvec[bx*mblok+11];\ jsize=nvec[bx*mblok+12];\ for(i=0;i<3;i++) nc[i]=0;\ k=0;\ i=1;\ while(nb!=0){\ j=2-k;\ nc[j]=nc[j]+nb%2*i;\ nb=nb/2;\ j=k+1;\ k=j%3;\ if(k==0) i=i*2;\ }\ nd=nc[0];\ nc[0]=nc[1];\ nc[1]=nc[2];\ nc[2]=nd;\ xjc=xmin+(nc[0]+0.5)*rb;\ yjc=ymin+(nc[1]+0.5)*rb;\ zjc=zmin+(nc[2]+0.5)*rb;\ jblok=(jsize+NBLOK1-1)/NBLOK1;\ for(j=0;j<jblok-1;j++){\ jb=j*NBLOK1+jbase+tx;\ for(i=0;i<7;i++) vecj[7*tx+i]=jvec[7*jb+i];\ __syncthreads();\ for(jj=jj7=0;jj<NBLOK1;jj++){\ p2m_kernel_core;\ __syncthreads();\ }\ }\ jb=j*NBLOK1+jbase+tx;\ for(i=0;i<7;i++) vecj[7*tx+i]=jvec[7*jb+i];\ __syncthreads();\ for(jj=jj7=0;jj<jsize-(j*NBLOK1);jj++){\ p2m_kernel_core;\ __syncthreads();\ }\ for(i=0;i<2;i++) ivec[2*ib+i]=veci[2*tx+i];\ } #define M2L_KERNEL(m2l_kernel,m2l_kernel_core) \ extern "C" __global__ \ void m2l_kernel(int *nvec,float *ivec,float *jvec,float *kvec,float *lvec)\ {\ int bx=blockIdx.x;\ int tx=threadIdx.x;\ int i,j,k,m,n,ib,jb,ij,nij,jbase,jblok,je,nms,nmk,nks,jks,jnk;\ int mblok=nvec[2],mp=nvec[6],nrbm=nvec[7];\ int nb=0,nc[3],nd=0,mpdnm=(4*mp*mp*mp-mp)/3;\ float rb=scal[0],eps=1e-6;\ float xijc=0,yijc=0,zijc=0,rh,cnmre,cnmim,dnmre,dnmim;\ float sr,ank,ajk,ajn,fnmm,fnpm;\ float vecd[2];\ __shared__ int mg[NBLOK1],ng[NBLOK1];\ __shared__ float veci[6*NBLOK1],vecj[2*NBLOK1];\ __shared__ float ynmre[MPMAX],ynmim[MPMAX];\ nc[0]=0;\ rh=xijc+yijc+zijc+eps+nb+nc[0]+nd;\ ib=bx*NBLOK1+tx;\ nij=nvec[bx*mblok+10];\ for(i=0;i<NBLOK1;i++){\ ng[i]=0;\ mg[i]=0;\ }\ for(n=0;n<mp;n++){\ for(m=0;m<=n;m++){\ nms=n*(n+1)/2+m;\ ng[nms]=n;\ mg[nms]=m;\ }\ }\ jblok=(MPMAX+NBLOK1-1)/NBLOK1;\ for(j=0;j<jblok-1;j++){\ jb=j*NBLOK1+tx;\ ynmre[jb]=kvec[2*jb+0];\ ynmim[jb]=kvec[2*jb+2];\ __syncthreads();\ }\ if(j*NBLOK1+tx<MPMAX){\ jb=j*NBLOK1+tx;\ ynmre[jb]=kvec[2*jb+0];\ ynmim[jb]=kvec[2*jb+1];\ }\ __syncthreads();\ for(i=0;i<6;i++) veci[6*tx+i]=0;\ __syncthreads();\ for(ij=0;ij<nij;ij++){\ jbase=nvec[bx*mblok+2*ij+11];\ je=nvec[bx*mblok+2*ij+12];\ jb=jbase+tx;\ for(i=0;i<2;i++) vecj[2*tx+i]=jvec[2*jb+i];\ __syncthreads();\ m2l_kernel_core;\ for(i=0;i<2;i++) veci[6*tx+3*i]+=vecd[i];\ __syncthreads();\ }\ for(i=0;i<2;i++) ivec[2*ib+i]=veci[6*tx+3*i];\ } #define L2P_KERNEL(l2p_kernel,l2p_kernel_core) \ extern "C" __global__ \ void l2p_kernel(int *nvec,float *ivec,float *jvec,float *kvec,float *lvec)\ {\ int bx=blockIdx.x;\ int tx=threadIdx.x;\ int i,j,k,m,n,ib,jb,jbase,jblok,nm,nms;\ int mblok=nvec[2],mp=nvec[6],nb,nc[3],nd;\ float rb=scal[0],xmin=scal[1],ymin=scal[2],zmin=scal[3];\ float xic,yic,zic,xiic,yiic,ziic,r,th,ph;\ float xx,yy=0,s2,p,pn,p1,p2,fact,ere,eim,eps=1e-6;\ float rsre=0,rsim=0,rrre=0,rrim=0,rthre=0,rthim=0,rphre=0,rphim=0;\ float g=0,gr=0,gth=0,gph=0,gx=0,gy=0,gz=0;\ float bnm,bth=0;\ __shared__ float veci[6*NBLOK1],vecj[2*NBLOK1],veck[4*NBLOK1],vecl[MPMAX];\ r=yy+bth+rsre+rsim+rrre+rrim+rthre+rthim+rphre+rphim+g+gr+gth+gph+gx+gy+gz;\ ib=bx*NBLOK1+tx;\ jblok=(MPMAX+NBLOK1-1)/NBLOK1;\ for(j=0;j<jblok-1;j++){\ jb=j*NBLOK1+tx;\ vecl[jb]=lvec[jb];\ vecl[jb]=lvec[jb];\ __syncthreads();\ }\ if(j*NBLOK1+tx<MPMAX){\ jb=j*NBLOK1+tx;\ vecl[jb]=lvec[jb];\ vecl[jb]=lvec[jb];\ }\ __syncthreads();\ nb=nvec[bx*mblok+10];\ jbase=nvec[bx*mblok+11];\ for(i=0;i<3;i++) nc[i]=0;\ k=0;\ i=1;\ while(nb!=0){\ j=2-k;\ nc[j]=nc[j]+nb%2*i;\ nb=nb/2;\ j=k+1;\ k=j%3;\ if(k==0) i=i*2;\ }\ nd=nc[0];\ nc[0]=nc[1];\ nc[1]=nc[2];\ nc[2]=nd;\ xic=xmin+(nc[0]+0.5)*rb;\ yic=ymin+(nc[1]+0.5)*rb;\ zic=zmin+(nc[2]+0.5)*rb;\ jb=jbase+tx;\ for(i=0;i<6;i++) veci[6*tx+i]=ivec[6*ib+i];\ for(i=0;i<2;i++) vecj[2*tx+i]=jvec[2*jb+i];\ for(i=0;i<4;i++) veck[4*tx+i]=0.0f;\ __syncthreads();\ l2p_kernel_core;\ for(i=0;i<4;i++) kvec[4*ib+i]=veck[4*tx+i];\ } P2P_KERNEL(G_p2p_kernel,G_P2P_KERNEL_CORE); P2P_KERNEL(Gni_p2p_kernel,GNI_P2P_KERNEL_CORE); P2P_KERNEL(Gnj_p2p_kernel,GNJ_P2P_KERNEL_CORE); P2M_KERNEL(G_p2m_kernel,G_P2M_KERNEL_CORE); P2M_KERNEL(Gn_p2m_kernel,GN_P2M_KERNEL_CORE); M2L_KERNEL(m2m_kernel,M2M_KERNEL_CORE); M2L_KERNEL(m2l_kernel,M2L_KERNEL_CORE); M2L_KERNEL(l2l_kernel,L2L_KERNEL_CORE); L2P_KERNEL(G_l2p_kernel,G_L2P_KERNEL_CORE); L2P_KERNEL(Gn_l2p_kernel,GN_L2P_KERNEL_CORE);
94e687e59b6e8f170bdacc32f47580bfb66c7410.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" /* * castRaysIntoSurfels: associate locations in an image plane with surfels in a cloud * * Evan Herbst * 7 / 9 / 13 */ #include <stdint.h> #include <GL/gl.h> #include <cuda_gl_interop.h> #include "cuda_util/cudaUtils.h" static const uint32_t blockSize1D = 32; //max cuda threads per block dimension; use 32 for Fermi architecture, 16 for Tesla __global__ void remapDepthsFromUnitRangeKernel(const uint32_t* ids, float* depths, const uint32_t width, const uint32_t height, const float znear, const float zfar) { const uint32_t i = blockIdx.y * blockSize1D + threadIdx.y, j = blockIdx.x * blockSize1D + threadIdx.x, l = i * width + j; if(ids[l] > 0) depths[l] = (znear * zfar / (znear - zfar)) / (depths[l] - zfar / (zfar - znear)); } /* * edit depthsPBO to remap depths from [0, 1] to physical values */ void remapDepthsFromUnitRangeCUDA(const uint32_t width, const uint32_t height, const GLuint idsPBO, const GLuint depthsPBO, const float znear, const float zfar) { CUDA_CALL(hipGLRegisterBufferObject(idsPBO)); CUDA_CALL(hipGLRegisterBufferObject(depthsPBO)); uint32_t* idPtr; float* depthPtr; CUDA_CALL(hipGLMapBufferObject__((void**)&idPtr, idsPBO)); CUDA_CALL(hipGLMapBufferObject__((void**)&depthPtr, depthsPBO)); const dim3 blockSize(blockSize1D, blockSize1D, 1); const dim3 numBlocks((uint32_t)ceil(width / blockSize.x), (uint32_t)ceil(height / blockSize.y), 1); hipLaunchKernelGGL(( remapDepthsFromUnitRangeKernel), dim3(numBlocks), dim3(blockSize), 0, 0, idPtr, depthPtr, width, height, znear, zfar); CUDA_CALL(hipGLUnmapBufferObject(idsPBO)); CUDA_CALL(hipGLUnmapBufferObject(depthsPBO)); CUDA_CALL(hipGLUnregisterBufferObject(idsPBO)); CUDA_CALL(hipGLUnregisterBufferObject(depthsPBO)); }
94e687e59b6e8f170bdacc32f47580bfb66c7410.cu
/* * castRaysIntoSurfels: associate locations in an image plane with surfels in a cloud * * Evan Herbst * 7 / 9 / 13 */ #include <stdint.h> #include <GL/gl.h> #include <cuda_gl_interop.h> #include "cuda_util/cudaUtils.h" static const uint32_t blockSize1D = 32; //max cuda threads per block dimension; use 32 for Fermi architecture, 16 for Tesla __global__ void remapDepthsFromUnitRangeKernel(const uint32_t* ids, float* depths, const uint32_t width, const uint32_t height, const float znear, const float zfar) { const uint32_t i = blockIdx.y * blockSize1D + threadIdx.y, j = blockIdx.x * blockSize1D + threadIdx.x, l = i * width + j; if(ids[l] > 0) depths[l] = (znear * zfar / (znear - zfar)) / (depths[l] - zfar / (zfar - znear)); } /* * edit depthsPBO to remap depths from [0, 1] to physical values */ void remapDepthsFromUnitRangeCUDA(const uint32_t width, const uint32_t height, const GLuint idsPBO, const GLuint depthsPBO, const float znear, const float zfar) { CUDA_CALL(cudaGLRegisterBufferObject(idsPBO)); CUDA_CALL(cudaGLRegisterBufferObject(depthsPBO)); uint32_t* idPtr; float* depthPtr; CUDA_CALL(cudaGLMapBufferObject((void**)&idPtr, idsPBO)); CUDA_CALL(cudaGLMapBufferObject((void**)&depthPtr, depthsPBO)); const dim3 blockSize(blockSize1D, blockSize1D, 1); const dim3 numBlocks((uint32_t)ceil(width / blockSize.x), (uint32_t)ceil(height / blockSize.y), 1); remapDepthsFromUnitRangeKernel<<<numBlocks, blockSize>>>(idPtr, depthPtr, width, height, znear, zfar); CUDA_CALL(cudaGLUnmapBufferObject(idsPBO)); CUDA_CALL(cudaGLUnmapBufferObject(depthsPBO)); CUDA_CALL(cudaGLUnregisterBufferObject(idsPBO)); CUDA_CALL(cudaGLUnregisterBufferObject(depthsPBO)); }
87bcb3bb37c9dc461ee283a02edb26c6419b0bf6.hip
// !!! This is a file automatically generated by hipify!!! #pragma once #include "moderngpu.cuh" // Include all MGPU kernels. #include <typeinfo> #include "hip/hip_runtime.h" #include "device_launch_parameters.h" #include <stdio.h> #include <vector> #include <iostream> #include <string> #include <map> #include "conio.h" #include <fstream> #include "pms.cuh" //#include "kernelPrintf.h" //#include "kernelCountLabelInGraphDB.h" //#include "kernelMarkInvalidVertex.h" //#include "markInvalidVertex.h" //#include "checkArray.h" //#include "displayArray.h" //#include "checkDataBetweenHostAndGPU.h" //#include "access_d_LO_from_idx_of_d_O.h" //#include "countNumberOfLabelVetex.h" //#include "countNumberOfEdgeLabel.h" //#include "extractUniqueEdge.h" //#include "ExtensionStructure.h" //#include "getAndStoreExtension.h" //#include "validEdge.h" //#include "scanV.h" //#include "getLastElement.h" //#include "getValidExtension.h" //#include "getUniqueExtension.h" //#include "calcLabelAndStoreUniqueExtension.h" //#include "calcBoundary.h" //#include "calcSupport.h" //#include "getSatisfyEdge.h" //#include "header.h" // // //#include "helper_timer.h" using namespace std; using namespace mgpu; // //#define CHECK(call) \ //{ \ //const hipError_t error = call; \ //if (error != hipSuccess) \ //{ \ //printf("Error: %s:%d, ", __FILE__, __LINE__); \ //printf("code:%d, reason: %s\n", error, hipGetErrorString(error)); \ //exit(1); \ //} \ //} ContextPtr ctx; int main(int argc, char** argv){ int status=0; hipDeviceReset(); ctx = CreateCudaDevice(argc, argv, true); cout << typeid(ctx).name() << endl; //device_info(); //cdactx=*ctx; StopWatchWin timer; //exit(0); //system("pause"); #pragma region "load database" //Open file result.txt to write append std::ofstream fout("result.txt", std::ios_base::app | std::ios_base::out); timer.start(); PMS pms; //To i tng PMS. pms.os=&fout; FUNCHECK(status=pms.prepareDataBase()); //chun b d liu if(status!=0){ cout<<endl<<"prepareDataBase function failed"<<endl; exit(1); } timer.stop(); //pms.printdb(); //hin th d liu std::printf("\n\n**===-------------------------------------------------===**\n"); std::printf("Loading data...\n"); std::printf("Processing time: %f (ms)\n", timer.getTime());//Processing time: 6595 hTime=timer.getTime(); timer.reset(); #pragma endregion "end load database" FUNCHECK(pms.extractAllEdgeInDB()); //T CSDL np vo device, trch tt c cc cnh trong CSDL song song //pms.displayArrExtension(pms.hExtension.at(0).dExtension,pms.hExtension.at(0).noElem); //Nhng cnh ny c xem nh l mt m rng ca pattern P. Bc ny ch n thun l xy dng DFS Code cho cc cnh trong th. timer.start(); FUNCHECK(pms.getValidExtension_pure()); //Trch cc m rng hp l (li<lj: ch xt cho n th v hng) ==> Notes: Cn phi xt cho trng hp a th v hng v c hng timer.stop(); std::printf("\n\n**===-------------------------------------------------===**\n"); std::printf("getValidExtension_pure\n"); std::printf("Processing time: %f (ms)\n", timer.getTime());//Processing time: 8.730469 (ms) hTime=timer.getTime(); timer.reset(); timer.start(); FUNCHECK(pms.extractUniEdge()); timer.stop(); std::printf("\n\n**===-------------------------------------------------===**\n"); std::printf("extractUniEdge\n"); std::printf("Processing time: %f (ms)\n", timer.getTime());//Processing time: 1.730469 (ms) hTime=timer.getTime(); timer.reset(); timer.start(); FUNCHECK(pms.computeSupport()); //Tnh h tr ca c cnh trong UniEdge v loi b nhng m rng khng tho minsup //n y, chng ta thu thp c cc m rng mt cnh tho minsup (hUniEdgeSatisfyMinSup) // //FUNCHECK(pms.Mining()); //kim tra DFS_CODE c phi l min hay khng, nu l min th ghi kt qu vo file result.txt, v xy dng Embedding Columns timer.stop(); std::printf("\n\n**===-------------------------------------------------===**\n"); std::printf("computeSupport\n"); std::printf("Processing time: %f (ms)\n", timer.getTime()/1000);//Processing time: 15.730469 (s) hTime=timer.getTime(); timer.reset(); timer.start(); //Duyt qua cc cnh tho minsup xy dng: //DFSCODE, hEmbedding, hLevelPtrEmbedding, hLevelListVerRMP v hLevelRMP chun b khai thc. //FUNCHECK(pms.initialize()); //Trch cc m rng tho minDFS_CODE ban u FUNCHECK(pms.MiningDeeper(pms.hLevelEXT.at(0).vE.at(0), pms.hLevelUniEdgeSatisfyMinsup.at(0).vecUES.at(0))); timer.stop(); std::printf("\n\n**===-------------------------------------------------===**\n"); std::printf("Mining()\n"); std::printf("Processing time: %f (ms)\n", timer.getTime());//Processing time: (ms) hTime=timer.getTime(); system("pause"); return 0; } //int main(int argc, char** argv) //{ // ContextPtr context = CreateCudaDevice(argc, argv, true); // // int noElem = 5; // int* ptr = (int*)malloc(sizeof(int)*noElem); // for (int i = 0; i < noElem; i++) // { // ptr[i]=i; // cout<<ptr[i]<<" "; // } // cout<<endl; // int *p=nullptr; // hipMalloc((void**)&p,sizeof(int)*noElem); // hipMemcpy(p,ptr,noElem*sizeof(int),hipMemcpyHostToDevice); // cout<<"Input data"<<endl; // kernelPrintdArr<<<1,100>>>(p,noElem); // hipDeviceSynchronize(); // cout<<endl; // //// int result = Reduce(p, noElem, *context); // //// printf("Reduction total: %d\n\n", result); // int result=0; // //ScanExc(p, noElem, &result, *context); // ScanExc(p, noElem, *context); //// PrintArray(*data, "%4d", 10); // kernelPrintdArr<<<1,100>>>(p,noElem); // hipDeviceSynchronize(); // //printf("Exclusive scan:\n"); // //printf("Scan total: %d\n", result); // // hipFree(p); // // //// Run an exclusive scan. // //ScanExc(data->get(), N, &total, context); // //printf("Exclusive scan:\n"); // //PrintArray(*data, "%4d", 10); // //printf("Scan total: %d\n", total); // // _getch(); // return 0; //}
87bcb3bb37c9dc461ee283a02edb26c6419b0bf6.cu
#pragma once #include "moderngpu.cuh" // Include all MGPU kernels. #include <typeinfo> #include "cuda_runtime.h" #include "device_launch_parameters.h" #include <stdio.h> #include <vector> #include <iostream> #include <string> #include <map> #include "conio.h" #include <fstream> #include "pms.cuh" //#include "kernelPrintf.h" //#include "kernelCountLabelInGraphDB.h" //#include "kernelMarkInvalidVertex.h" //#include "markInvalidVertex.h" //#include "checkArray.h" //#include "displayArray.h" //#include "checkDataBetweenHostAndGPU.h" //#include "access_d_LO_from_idx_of_d_O.h" //#include "countNumberOfLabelVetex.h" //#include "countNumberOfEdgeLabel.h" //#include "extractUniqueEdge.h" //#include "ExtensionStructure.h" //#include "getAndStoreExtension.h" //#include "validEdge.h" //#include "scanV.h" //#include "getLastElement.h" //#include "getValidExtension.h" //#include "getUniqueExtension.h" //#include "calcLabelAndStoreUniqueExtension.h" //#include "calcBoundary.h" //#include "calcSupport.h" //#include "getSatisfyEdge.h" //#include "header.h" // // //#include "helper_timer.h" using namespace std; using namespace mgpu; // //#define CHECK(call) \ //{ \ //const cudaError_t error = call; \ //if (error != cudaSuccess) \ //{ \ //printf("Error: %s:%d, ", __FILE__, __LINE__); \ //printf("code:%d, reason: %s\n", error, cudaGetErrorString(error)); \ //exit(1); \ //} \ //} ContextPtr ctx; int main(int argc, char** argv){ int status=0; cudaDeviceReset(); ctx = CreateCudaDevice(argc, argv, true); cout << typeid(ctx).name() << endl; //device_info(); //cdactx=*ctx; StopWatchWin timer; //exit(0); //system("pause"); #pragma region "load database" //Open file result.txt to write append std::ofstream fout("result.txt", std::ios_base::app | std::ios_base::out); timer.start(); PMS pms; //Tạo đối tượng PMS. pms.os=&fout; FUNCHECK(status=pms.prepareDataBase()); //chuẩn bị dữ liệu if(status!=0){ cout<<endl<<"prepareDataBase function failed"<<endl; exit(1); } timer.stop(); //pms.printdb(); //hiển thị dữ liệu std::printf("\n\n**===-------------------------------------------------===**\n"); std::printf("Loading data...\n"); std::printf("Processing time: %f (ms)\n", timer.getTime());//Processing time: 6595 hTime=timer.getTime(); timer.reset(); #pragma endregion "end load database" FUNCHECK(pms.extractAllEdgeInDB()); //Từ CSDL đã nạp vào device, trích tất cả các cạnh trong CSDL song song //pms.displayArrExtension(pms.hExtension.at(0).dExtension,pms.hExtension.at(0).noElem); //Những cạnh này được xem như là một mở rộng của pattern P. Bước này chỉ đơn thuần là xây dựng DFS Code cho các cạnh trong đồ thị. timer.start(); FUNCHECK(pms.getValidExtension_pure()); //Trích các mở rộng hợp lệ (li<lj: chỉ xét cho đơn đồ thị vô hướng) ==> Notes: Cần phải xét cho trường hợp đa đồ thị vô hướng và có hướng timer.stop(); std::printf("\n\n**===-------------------------------------------------===**\n"); std::printf("getValidExtension_pure\n"); std::printf("Processing time: %f (ms)\n", timer.getTime());//Processing time: 8.730469 (ms) hTime=timer.getTime(); timer.reset(); timer.start(); FUNCHECK(pms.extractUniEdge()); timer.stop(); std::printf("\n\n**===-------------------------------------------------===**\n"); std::printf("extractUniEdge\n"); std::printf("Processing time: %f (ms)\n", timer.getTime());//Processing time: 1.730469 (ms) hTime=timer.getTime(); timer.reset(); timer.start(); FUNCHECK(pms.computeSupport()); //Tính độ hộ trợ của cả cạnh trong UniEdge và loại bỏ những mở rộng không thoả minsup //Đến đây, chúng ta đã thu thập được các mở rộng một cạnh thoả minsup (hUniEdgeSatisfyMinSup) // //FUNCHECK(pms.Mining()); //kiểm tra DFS_CODE có phải là min hay không, nếu là min thì ghi kết quả vào file result.txt, và xây dựng Embedding Columns timer.stop(); std::printf("\n\n**===-------------------------------------------------===**\n"); std::printf("computeSupport\n"); std::printf("Processing time: %f (ms)\n", timer.getTime()/1000);//Processing time: 15.730469 (s) hTime=timer.getTime(); timer.reset(); timer.start(); //Duyệt qua các cạnh thoả minsup để xây dựng: //DFSCODE, hEmbedding, hLevelPtrEmbedding, hLevelListVerRMP và hLevelRMP để chuẩn bị khai thác. //FUNCHECK(pms.initialize()); //Trích các mở rộng thoả minDFS_CODE ban đầu FUNCHECK(pms.MiningDeeper(pms.hLevelEXT.at(0).vE.at(0), pms.hLevelUniEdgeSatisfyMinsup.at(0).vecUES.at(0))); timer.stop(); std::printf("\n\n**===-------------------------------------------------===**\n"); std::printf("Mining()\n"); std::printf("Processing time: %f (ms)\n", timer.getTime());//Processing time: (ms) hTime=timer.getTime(); system("pause"); return 0; } //int main(int argc, char** argv) //{ // ContextPtr context = CreateCudaDevice(argc, argv, true); // // int noElem = 5; // int* ptr = (int*)malloc(sizeof(int)*noElem); // for (int i = 0; i < noElem; i++) // { // ptr[i]=i; // cout<<ptr[i]<<" "; // } // cout<<endl; // int *p=nullptr; // cudaMalloc((void**)&p,sizeof(int)*noElem); // cudaMemcpy(p,ptr,noElem*sizeof(int),cudaMemcpyHostToDevice); // cout<<"Input data"<<endl; // kernelPrintdArr<<<1,100>>>(p,noElem); // cudaDeviceSynchronize(); // cout<<endl; // //// int result = Reduce(p, noElem, *context); // //// printf("Reduction total: %d\n\n", result); // int result=0; // //ScanExc(p, noElem, &result, *context); // ScanExc(p, noElem, *context); //// PrintArray(*data, "%4d", 10); // kernelPrintdArr<<<1,100>>>(p,noElem); // cudaDeviceSynchronize(); // //printf("Exclusive scan:\n"); // //printf("Scan total: %d\n", result); // // cudaFree(p); // // //// Run an exclusive scan. // //ScanExc(data->get(), N, &total, context); // //printf("Exclusive scan:\n"); // //PrintArray(*data, "%4d", 10); // //printf("Scan total: %d\n", total); // // _getch(); // return 0; //}
a33d9822179b0519ef17dacf22b9c70ad8cf126d.hip
// !!! This is a file automatically generated by hipify!!! #include <hip/hip_runtime.h> #include <hip/hip_runtime.h> #include <thrust/device_vector.h> #include <thrust/host_vector.h> #include <thrust/scan.h> #include "common.h" #include "thrust.h" #define checkCUDAErrorWithLine(msg) checkCUDAError(msg, __LINE__) namespace StreamCompaction { namespace Thrust { using StreamCompaction::Common::PerformanceTimer; PerformanceTimer& timer() { static PerformanceTimer timer; return timer; } /** * Performs prefix-sum (aka scan) on idata, storing the result into odata. */ void scan(int n, int *odata, const int *idata) { int *dev_idata; hipMalloc((void **)&dev_idata, n * sizeof(int)); checkCUDAErrorWithLine("malloc dev_idata!!!"); hipMemcpy(dev_idata, idata, n * sizeof(int), hipMemcpyHostToDevice); checkCUDAErrorWithLine("memcpy dev_idata from host!!!"); thrust::device_ptr<int> dev_thrust_idata(dev_idata); // pass in cpu pointers here thrust::device_vector<int> dev_vec_idata(dev_idata, dev_idata + n); timer().startGpuTimer(); thrust::exclusive_scan(dev_vec_idata.begin(), dev_vec_idata.end(), dev_vec_idata.begin()); // thrust::exclusive_scan(dv_in.begin(), dv_in.end(), dv_out.begin()); timer().endGpuTimer(); thrust::copy(dev_vec_idata.begin(), dev_vec_idata.end(), odata); hipFree(dev_idata); checkCUDAErrorWithLine("free dev_idata!!!"); } } }
a33d9822179b0519ef17dacf22b9c70ad8cf126d.cu
#include <cuda.h> #include <cuda_runtime.h> #include <thrust/device_vector.h> #include <thrust/host_vector.h> #include <thrust/scan.h> #include "common.h" #include "thrust.h" #define checkCUDAErrorWithLine(msg) checkCUDAError(msg, __LINE__) namespace StreamCompaction { namespace Thrust { using StreamCompaction::Common::PerformanceTimer; PerformanceTimer& timer() { static PerformanceTimer timer; return timer; } /** * Performs prefix-sum (aka scan) on idata, storing the result into odata. */ void scan(int n, int *odata, const int *idata) { int *dev_idata; cudaMalloc((void **)&dev_idata, n * sizeof(int)); checkCUDAErrorWithLine("malloc dev_idata!!!"); cudaMemcpy(dev_idata, idata, n * sizeof(int), cudaMemcpyHostToDevice); checkCUDAErrorWithLine("memcpy dev_idata from host!!!"); thrust::device_ptr<int> dev_thrust_idata(dev_idata); // pass in cpu pointers here thrust::device_vector<int> dev_vec_idata(dev_idata, dev_idata + n); timer().startGpuTimer(); thrust::exclusive_scan(dev_vec_idata.begin(), dev_vec_idata.end(), dev_vec_idata.begin()); // thrust::exclusive_scan(dv_in.begin(), dv_in.end(), dv_out.begin()); timer().endGpuTimer(); thrust::copy(dev_vec_idata.begin(), dev_vec_idata.end(), odata); cudaFree(dev_idata); checkCUDAErrorWithLine("free dev_idata!!!"); } } }
2b4b61301153e4fdf0b9ebefea33fa8f3360b8ed.hip
// !!! This is a file automatically generated by hipify!!! #ifndef GPU_MEMORY_CU #define GPU_MEMORY_CU #include "GPU_Dll.h" extern "C" void CopyCPUToGPU( void* d_destData, void* h_srcData, int sizeInBytes ) { CUDA_SAFE_CALL( hipMemcpy( d_destData, h_srcData, sizeInBytes, hipMemcpyHostToDevice ) ); } extern "C" void CopyGPUToCPU( void * h_destData, void* d_srcData, int sizeInBytes) { CUDA_SAFE_CALL( hipMemcpy( h_destData, d_srcData, sizeInBytes, hipMemcpyDeviceToHost ) ); } extern "C" void GPUAllocate( void** d_data, int sizeInBytes ) { GPUMALLOC( d_data, sizeInBytes ); } extern "C" void CPUAllocateByCUDA( void** h_data, int sizeInBytes ) { CPUMALLOC( h_data, sizeInBytes ); } extern "C" void GPUFree( void* d_data) { CUDA_SAFE_CALL( hipFree( d_data) ); } extern "C" void CPUFreeByCUDA( void* h_data) { CUDA_SAFE_CALL( hipHostFree( h_data) ); } extern "C" void resetGPU() { CUDA_SAFE_CALL( hipDeviceReset() ); } #endif
2b4b61301153e4fdf0b9ebefea33fa8f3360b8ed.cu
#ifndef GPU_MEMORY_CU #define GPU_MEMORY_CU #include "GPU_Dll.h" extern "C" void CopyCPUToGPU( void* d_destData, void* h_srcData, int sizeInBytes ) { CUDA_SAFE_CALL( cudaMemcpy( d_destData, h_srcData, sizeInBytes, cudaMemcpyHostToDevice ) ); } extern "C" void CopyGPUToCPU( void * h_destData, void* d_srcData, int sizeInBytes) { CUDA_SAFE_CALL( cudaMemcpy( h_destData, d_srcData, sizeInBytes, cudaMemcpyDeviceToHost ) ); } extern "C" void GPUAllocate( void** d_data, int sizeInBytes ) { GPUMALLOC( d_data, sizeInBytes ); } extern "C" void CPUAllocateByCUDA( void** h_data, int sizeInBytes ) { CPUMALLOC( h_data, sizeInBytes ); } extern "C" void GPUFree( void* d_data) { CUDA_SAFE_CALL( cudaFree( d_data) ); } extern "C" void CPUFreeByCUDA( void* h_data) { CUDA_SAFE_CALL( cudaFreeHost( h_data) ); } extern "C" void resetGPU() { CUDA_SAFE_CALL( cudaThreadExit() ); } #endif
ce727429a77bf10f422bb1be3138a9083847b80d.hip
// !!! This is a file automatically generated by hipify!!! #include <stdbool.h> #include <stdio.h> #include <string.h> #include <getopt.h> #include <hiprand/hiprand_kernel.h> #include <stdlib.h> #include <hip/hip_runtime.h> #include <sys/time.h> #include "rgamma_kernel.cu" #include<chrono> #include<iostream> using namespace std; using namespace std::chrono; int blocks_[20][2] = {{8,8},{16,16},{24,24},{32,32},{1,64},{1,128},{1,192},{1,256},{1,320},{1,384},{1,448},{1,512},{1,576},{1,640},{1,704},{1,768},{1,832},{1,896},{1,960},{1,1024}}; int matrices_[7][2] = {{240,240},{496,496},{784,784},{1016,1016},{1232,1232},{1680,1680},{2024,2024}}; int main(int argc, char **argv) { hipSetDevice(0); char* p;int matrix_len=strtol(argv[1], &p, 10); for(int matrix_looper=0;matrix_looper<matrix_len;matrix_looper++){ for(int block_looper=0;block_looper<20;block_looper++){ int XSIZE=matrices_[matrix_looper][0],YSIZE=matrices_[matrix_looper][1],BLOCKX=blocks_[block_looper][0],BLOCKY=blocks_[block_looper][1]; hiprandState_t *state = NULL; hipMalloc(&state, XSIZE*YSIZE); int state_len = 1; float *vals = NULL; hipMalloc(&vals, XSIZE*YSIZE); int n = XSIZE*YSIZE; float a = 2; float scale = 2; int iXSIZE= XSIZE; int iYSIZE= YSIZE; while(iXSIZE%BLOCKX!=0) { iXSIZE++; } while(iYSIZE%BLOCKY!=0) { iYSIZE++; } dim3 gridBlock(iXSIZE/BLOCKX, iYSIZE/BLOCKY); dim3 threadBlock(BLOCKX, BLOCKY); hipFree(0);hipLaunchKernelGGL(( rgamma_kernel), dim3(gridBlock),dim3(threadBlock), 0, 0, state,state_len,vals,n,a,scale); hipDeviceSynchronize(); for (int loop_counter = 0; loop_counter < 10; ++loop_counter) {hipLaunchKernelGGL(( rgamma_kernel), dim3(gridBlock),dim3(threadBlock), 0, 0, state,state_len,vals,n,a,scale); } auto start = steady_clock::now(); for (int loop_counter = 0; loop_counter < 1000; loop_counter++) {hipLaunchKernelGGL(( rgamma_kernel), dim3(gridBlock),dim3(threadBlock), 0, 0, state,state_len,vals,n,a,scale); } auto end = steady_clock::now(); auto usecs = duration_cast<duration<float, microseconds::period> >(end - start); cout <<'['<<usecs.count()<<','<<'('<<BLOCKX<<','<<BLOCKY<<')' << ','<<'('<<XSIZE<<','<<YSIZE<<')'<<']' << endl; } }}
ce727429a77bf10f422bb1be3138a9083847b80d.cu
#include <stdbool.h> #include <stdio.h> #include <string.h> #include <getopt.h> #include <curand_kernel.h> #include <stdlib.h> #include <cuda.h> #include <sys/time.h> #include "rgamma_kernel.cu" #include<chrono> #include<iostream> using namespace std; using namespace std::chrono; int blocks_[20][2] = {{8,8},{16,16},{24,24},{32,32},{1,64},{1,128},{1,192},{1,256},{1,320},{1,384},{1,448},{1,512},{1,576},{1,640},{1,704},{1,768},{1,832},{1,896},{1,960},{1,1024}}; int matrices_[7][2] = {{240,240},{496,496},{784,784},{1016,1016},{1232,1232},{1680,1680},{2024,2024}}; int main(int argc, char **argv) { cudaSetDevice(0); char* p;int matrix_len=strtol(argv[1], &p, 10); for(int matrix_looper=0;matrix_looper<matrix_len;matrix_looper++){ for(int block_looper=0;block_looper<20;block_looper++){ int XSIZE=matrices_[matrix_looper][0],YSIZE=matrices_[matrix_looper][1],BLOCKX=blocks_[block_looper][0],BLOCKY=blocks_[block_looper][1]; curandState *state = NULL; cudaMalloc(&state, XSIZE*YSIZE); int state_len = 1; float *vals = NULL; cudaMalloc(&vals, XSIZE*YSIZE); int n = XSIZE*YSIZE; float a = 2; float scale = 2; int iXSIZE= XSIZE; int iYSIZE= YSIZE; while(iXSIZE%BLOCKX!=0) { iXSIZE++; } while(iYSIZE%BLOCKY!=0) { iYSIZE++; } dim3 gridBlock(iXSIZE/BLOCKX, iYSIZE/BLOCKY); dim3 threadBlock(BLOCKX, BLOCKY); cudaFree(0); rgamma_kernel<<<gridBlock,threadBlock>>>(state,state_len,vals,n,a,scale); cudaDeviceSynchronize(); for (int loop_counter = 0; loop_counter < 10; ++loop_counter) { rgamma_kernel<<<gridBlock,threadBlock>>>(state,state_len,vals,n,a,scale); } auto start = steady_clock::now(); for (int loop_counter = 0; loop_counter < 1000; loop_counter++) { rgamma_kernel<<<gridBlock,threadBlock>>>(state,state_len,vals,n,a,scale); } auto end = steady_clock::now(); auto usecs = duration_cast<duration<float, microseconds::period> >(end - start); cout <<'['<<usecs.count()<<','<<'('<<BLOCKX<<','<<BLOCKY<<')' << ','<<'('<<XSIZE<<','<<YSIZE<<')'<<']' << endl; } }}
a142649f33fe00c67088edf7bfb4195b4df71130.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include <stdio.h> #include <stdlib.h> #define SIZE 300000 #define BLOCK_SIZE 512 __global__ void reduction(int *A, int *B){ int tid = blockIdx.x * blockDim.x + threadIdx.x; __shared__ int data[BLOCK_SIZE]; data[threadIdx.x] = A[tid]; // load data to shared memory __syncthreads(); // iterate of log base 2 block dimension. using stride of 2 for(int i = blockDim.x/2; i>0; i>>=1){ if(threadIdx.x < i){ if(data[threadIdx.x] < data[threadIdx.x + i]){ data[threadIdx.x] = data[threadIdx.x + i]; } } __syncthreads(); } __syncthreads(); // thread 0 should write the maximum value to main memory if(threadIdx.x == 0 ) B[blockIdx.x] = data[0]; } int main(){ int A[SIZE]; int * B; hipEvent_t start, stop; hipEventCreate(&start); hipEventCreate(&stop); int * d_A, * d_B; srand(time(NULL)); size_t size = SIZE*sizeof(int); int GRIDSIZE = SIZE / (BLOCK_SIZE<<1); if (GRIDSIZE % (BLOCK_SIZE<<1)) GRIDSIZE++; B = (int *) malloc(sizeof(int)*GRIDSIZE); dim3 dimBlock(BLOCK_SIZE,1,1); dim3 dimGrid(GRIDSIZE,1,1); for(int i = 0; i < SIZE; i++){ A[i] = rand()%10000; if(i<GRIDSIZE) B[i] = 0; } hipEventRecord(start); hipMalloc((void **)&d_A, size); hipMemcpy(d_A,A,size,hipMemcpyHostToDevice); hipMalloc((void **)&d_B, GRIDSIZE*sizeof(int)); hipLaunchKernelGGL(( reduction), dim3(dimGrid),dim3(dimBlock), 0, 0, d_A, d_B); hipEventRecord(stop); hipMemcpy(B, d_B, GRIDSIZE*sizeof(int), hipMemcpyDeviceToHost); for(int i = 1; i < GRIDSIZE; i++){ if(B[0] < B[i]) B[0] = B[i]; } hipEventSynchronize(stop); float elapsed = 0; hipEventElapsedTime(&elapsed, start, stop); printf("Using Grid Size [%d, %d] and Block Size [%d, %d]..\n", dimGrid.x, dimGrid.y,dimBlock.x, dimBlock.y); printf("maximum : %d\n", B[0]); printf("Execution time : %f ms\n", elapsed); hipFree(d_A); hipFree(d_B); }
a142649f33fe00c67088edf7bfb4195b4df71130.cu
#include <stdio.h> #include <stdlib.h> #define SIZE 300000 #define BLOCK_SIZE 512 __global__ void reduction(int *A, int *B){ int tid = blockIdx.x * blockDim.x + threadIdx.x; __shared__ int data[BLOCK_SIZE]; data[threadIdx.x] = A[tid]; // load data to shared memory __syncthreads(); // iterate of log base 2 block dimension. using stride of 2 for(int i = blockDim.x/2; i>0; i>>=1){ if(threadIdx.x < i){ if(data[threadIdx.x] < data[threadIdx.x + i]){ data[threadIdx.x] = data[threadIdx.x + i]; } } __syncthreads(); } __syncthreads(); // thread 0 should write the maximum value to main memory if(threadIdx.x == 0 ) B[blockIdx.x] = data[0]; } int main(){ int A[SIZE]; int * B; cudaEvent_t start, stop; cudaEventCreate(&start); cudaEventCreate(&stop); int * d_A, * d_B; srand(time(NULL)); size_t size = SIZE*sizeof(int); int GRIDSIZE = SIZE / (BLOCK_SIZE<<1); if (GRIDSIZE % (BLOCK_SIZE<<1)) GRIDSIZE++; B = (int *) malloc(sizeof(int)*GRIDSIZE); dim3 dimBlock(BLOCK_SIZE,1,1); dim3 dimGrid(GRIDSIZE,1,1); for(int i = 0; i < SIZE; i++){ A[i] = rand()%10000; if(i<GRIDSIZE) B[i] = 0; } cudaEventRecord(start); cudaMalloc((void **)&d_A, size); cudaMemcpy(d_A,A,size,cudaMemcpyHostToDevice); cudaMalloc((void **)&d_B, GRIDSIZE*sizeof(int)); reduction<<<dimGrid,dimBlock>>>(d_A, d_B); cudaEventRecord(stop); cudaMemcpy(B, d_B, GRIDSIZE*sizeof(int), cudaMemcpyDeviceToHost); for(int i = 1; i < GRIDSIZE; i++){ if(B[0] < B[i]) B[0] = B[i]; } cudaEventSynchronize(stop); float elapsed = 0; cudaEventElapsedTime(&elapsed, start, stop); printf("Using Grid Size [%d, %d] and Block Size [%d, %d]..\n", dimGrid.x, dimGrid.y,dimBlock.x, dimBlock.y); printf("maximum : %d\n", B[0]); printf("Execution time : %f ms\n", elapsed); cudaFree(d_A); cudaFree(d_B); }
fda9ef38597ef3a020962eccd02f664bf24fb995.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" /* ============================================================================ Name : sorting_segments.cu Author : Rafael Schmid Version : Copyright : Your copyright notice Description : Compute sum of reciprocals using STL on CPU and Thrust on GPU ============================================================================ */ #include <hipcub/hipcub.hpp> #include <hipcub/hipcub.hpp> #include <hipcub/hipcub.hpp> #include <iostream> typedef unsigned int uint; #ifndef ELAPSED_TIME #define ELAPSED_TIME 0 #endif #ifndef BLOCK_SIZE #define BLOCK_SIZE 512 #endif template <typename T> struct Plus { __host__ __device__ T operator()(const T x, const T y) { return x + y; } }; template <typename T> struct Minus { __host__ __device__ T operator()(const T x, const T y) { return x - y; } }; template<typename Op> __global__ void adjustment(uint* d_vec, uint* d_seg, uint num_of_elements, uint* d_max ){ int id = blockIdx.x * blockDim.x + threadIdx.x; if(id < num_of_elements) { uint mostSignificantBit = (uint)log2((double)*d_max) + 1; uint segIndex = d_seg[id] << mostSignificantBit; Op op = Op(); d_vec[id] = op(d_vec[id], segIndex); } } void cudaTest(hipError_t error) { if (error != hipSuccess) { printf("cuda returned error %s (code %d), line(%d)\n", hipGetErrorString(error), error, __LINE__); exit (EXIT_FAILURE); } hipError_t errSync = hipGetLastError(); hipError_t errAsync = hipDeviceSynchronize(); if (errSync != hipSuccess) printf("1: Sync kernel error: %s\n", hipGetErrorString(errSync)); if (errAsync != hipSuccess) printf("1: Async kernel error: %s\n", hipGetErrorString(errAsync)); } void print(uint* host_data, uint n) { std::cout << "\n"; for (uint i = 0; i < n; i++) { std::cout << host_data[i] << " "; } std::cout << "\n"; } int main(void) { uint num_of_segments; uint num_of_elements; uint i; scanf("%d", &num_of_segments); uint mem_size_seg = sizeof(uint) * (num_of_segments + 1); uint *h_seg_aux = (uint *) malloc(mem_size_seg); for (i = 0; i < num_of_segments + 1; i++) scanf("%d", &h_seg_aux[i]); scanf("%d", &num_of_elements); int mem_size_vec = sizeof(uint) * num_of_elements; uint *h_vec = (uint *) malloc(mem_size_vec); uint *h_value = (uint *) malloc(mem_size_vec); for (i = 0; i < num_of_elements; i++) { scanf("%d", &h_vec[i]); h_value[i] = i; } uint *h_seg = (uint *) malloc(mem_size_vec); for (i = 0; i < num_of_segments; i++) { for (uint j = h_seg_aux[i]; j < h_seg_aux[i + 1]; j++) { h_seg[j] = i; } } hipEvent_t start, stop; hipEventCreate(&start); hipEventCreate(&stop); uint *d_value, *d_value_out, *d_vec, *d_vec_out, *d_max, *d_seg; void *d_temp_storage = NULL; size_t temp_storage_bytes = 0; uint* max_val = (uint *) malloc(sizeof(uint)); cudaTest(hipMalloc((void **) &d_max, sizeof(uint))); cudaTest(hipMalloc((void **) &d_vec, mem_size_vec)); cudaTest(hipMalloc((void **) &d_seg, mem_size_vec)); cudaTest(hipMalloc((void **) &d_value, mem_size_vec)); cudaTest(hipMalloc((void **) &d_vec_out, mem_size_vec)); cudaTest(hipMalloc((void **) &d_value_out, mem_size_vec)); cudaTest(hipMemcpy(d_value, h_value, mem_size_vec, hipMemcpyHostToDevice)); cudaTest(hipMemcpy(d_seg, h_seg, mem_size_vec, hipMemcpyHostToDevice)); void *d_temp = NULL; size_t temp_bytes = 0; int grid = ((num_of_elements-1)/BLOCK_SIZE) + 1; float averageExecutions = 0; for (uint i = 0; i < EXECUTIONS; i++) { cudaTest(hipMemcpy(d_vec, h_vec, mem_size_vec, hipMemcpyHostToDevice)); /* * maximum element of the array. */ hipEventRecord(start); hipcub::DeviceReduce::Max(d_temp_storage, temp_storage_bytes, d_vec, d_max, num_of_elements); hipMalloc(&d_temp_storage, temp_storage_bytes); // Allocate temporary storage hipcub::DeviceReduce::Max(d_temp_storage, temp_storage_bytes, d_vec, d_max, num_of_elements); // Run max-reduction /* * add prefix to the elements */ hipLaunchKernelGGL(( adjustment<Plus<uint>>) , dim3(grid), dim3(BLOCK_SIZE), 0, 0, d_vec, d_seg, num_of_elements, d_max); /* * sort the vector */ hipcub::DeviceRadixSort::SortPairs(d_temp, temp_bytes, d_vec, d_vec_out, d_value, d_value_out, num_of_elements); hipMalloc((void **) &d_temp, temp_bytes); hipcub::DeviceRadixSort::SortPairs(d_temp, temp_bytes, d_vec, d_vec_out, d_value, d_value_out, num_of_elements); hipError_t errSync = hipGetLastError(); hipError_t errAsync = hipDeviceSynchronize(); if (errSync != hipSuccess) printf("4: Sync kernel error: %s\n", hipGetErrorString(errSync)); if (errAsync != hipSuccess) printf("4: Async kernel error: %s\n", hipGetErrorString(errAsync)); hipLaunchKernelGGL(( adjustment<Minus<uint>>) , dim3(grid), dim3(BLOCK_SIZE), 0, 0, d_vec_out, d_seg, num_of_elements, d_max); hipEventRecord(stop); hipEventSynchronize(stop); if (ELAPSED_TIME == 1) { float milliseconds = 0; hipEventElapsedTime(&milliseconds, start, stop); averageExecutions += milliseconds; } hipFree(d_temp_storage); temp_storage_bytes = 0; d_temp_storage = NULL; hipFree(d_temp); temp_bytes = 0; d_temp = NULL; hipDeviceSynchronize(); } hipMemcpy(h_vec, d_vec_out, mem_size_vec, hipMemcpyDeviceToHost); hipFree(d_max); hipFree(d_seg); hipFree(d_vec); hipFree(d_vec_out); hipFree(d_value); hipFree(d_value_out); if (ELAPSED_TIME != 1) { print(h_vec, num_of_elements); } else { std::cout << averageExecutions/EXECUTIONS << "\n"; } free(h_seg_aux); free(h_seg); free(h_vec); free(h_value); return 0; }
fda9ef38597ef3a020962eccd02f664bf24fb995.cu
/* ============================================================================ Name : sorting_segments.cu Author : Rafael Schmid Version : Copyright : Your copyright notice Description : Compute sum of reciprocals using STL on CPU and Thrust on GPU ============================================================================ */ #include <cub/util_allocator.cuh> #include <cub/device/device_radix_sort.cuh> #include <cub/device/device_reduce.cuh> #include <iostream> typedef unsigned int uint; #ifndef ELAPSED_TIME #define ELAPSED_TIME 0 #endif #ifndef BLOCK_SIZE #define BLOCK_SIZE 512 #endif template <typename T> struct Plus { __host__ __device__ T operator()(const T x, const T y) { return x + y; } }; template <typename T> struct Minus { __host__ __device__ T operator()(const T x, const T y) { return x - y; } }; template<typename Op> __global__ void adjustment(uint* d_vec, uint* d_seg, uint num_of_elements, uint* d_max ){ int id = blockIdx.x * blockDim.x + threadIdx.x; if(id < num_of_elements) { uint mostSignificantBit = (uint)log2((double)*d_max) + 1; uint segIndex = d_seg[id] << mostSignificantBit; Op op = Op(); d_vec[id] = op(d_vec[id], segIndex); } } void cudaTest(cudaError_t error) { if (error != cudaSuccess) { printf("cuda returned error %s (code %d), line(%d)\n", cudaGetErrorString(error), error, __LINE__); exit (EXIT_FAILURE); } cudaError_t errSync = cudaGetLastError(); cudaError_t errAsync = cudaDeviceSynchronize(); if (errSync != cudaSuccess) printf("1: Sync kernel error: %s\n", cudaGetErrorString(errSync)); if (errAsync != cudaSuccess) printf("1: Async kernel error: %s\n", cudaGetErrorString(errAsync)); } void print(uint* host_data, uint n) { std::cout << "\n"; for (uint i = 0; i < n; i++) { std::cout << host_data[i] << " "; } std::cout << "\n"; } int main(void) { uint num_of_segments; uint num_of_elements; uint i; scanf("%d", &num_of_segments); uint mem_size_seg = sizeof(uint) * (num_of_segments + 1); uint *h_seg_aux = (uint *) malloc(mem_size_seg); for (i = 0; i < num_of_segments + 1; i++) scanf("%d", &h_seg_aux[i]); scanf("%d", &num_of_elements); int mem_size_vec = sizeof(uint) * num_of_elements; uint *h_vec = (uint *) malloc(mem_size_vec); uint *h_value = (uint *) malloc(mem_size_vec); for (i = 0; i < num_of_elements; i++) { scanf("%d", &h_vec[i]); h_value[i] = i; } uint *h_seg = (uint *) malloc(mem_size_vec); for (i = 0; i < num_of_segments; i++) { for (uint j = h_seg_aux[i]; j < h_seg_aux[i + 1]; j++) { h_seg[j] = i; } } cudaEvent_t start, stop; cudaEventCreate(&start); cudaEventCreate(&stop); uint *d_value, *d_value_out, *d_vec, *d_vec_out, *d_max, *d_seg; void *d_temp_storage = NULL; size_t temp_storage_bytes = 0; uint* max_val = (uint *) malloc(sizeof(uint)); cudaTest(cudaMalloc((void **) &d_max, sizeof(uint))); cudaTest(cudaMalloc((void **) &d_vec, mem_size_vec)); cudaTest(cudaMalloc((void **) &d_seg, mem_size_vec)); cudaTest(cudaMalloc((void **) &d_value, mem_size_vec)); cudaTest(cudaMalloc((void **) &d_vec_out, mem_size_vec)); cudaTest(cudaMalloc((void **) &d_value_out, mem_size_vec)); cudaTest(cudaMemcpy(d_value, h_value, mem_size_vec, cudaMemcpyHostToDevice)); cudaTest(cudaMemcpy(d_seg, h_seg, mem_size_vec, cudaMemcpyHostToDevice)); void *d_temp = NULL; size_t temp_bytes = 0; int grid = ((num_of_elements-1)/BLOCK_SIZE) + 1; float averageExecutions = 0; for (uint i = 0; i < EXECUTIONS; i++) { cudaTest(cudaMemcpy(d_vec, h_vec, mem_size_vec, cudaMemcpyHostToDevice)); /* * maximum element of the array. */ cudaEventRecord(start); cub::DeviceReduce::Max(d_temp_storage, temp_storage_bytes, d_vec, d_max, num_of_elements); cudaMalloc(&d_temp_storage, temp_storage_bytes); // Allocate temporary storage cub::DeviceReduce::Max(d_temp_storage, temp_storage_bytes, d_vec, d_max, num_of_elements); // Run max-reduction /* * add prefix to the elements */ adjustment<Plus<uint>> <<< grid, BLOCK_SIZE>>>(d_vec, d_seg, num_of_elements, d_max); /* * sort the vector */ cub::DeviceRadixSort::SortPairs(d_temp, temp_bytes, d_vec, d_vec_out, d_value, d_value_out, num_of_elements); cudaMalloc((void **) &d_temp, temp_bytes); cub::DeviceRadixSort::SortPairs(d_temp, temp_bytes, d_vec, d_vec_out, d_value, d_value_out, num_of_elements); cudaError_t errSync = cudaGetLastError(); cudaError_t errAsync = cudaDeviceSynchronize(); if (errSync != cudaSuccess) printf("4: Sync kernel error: %s\n", cudaGetErrorString(errSync)); if (errAsync != cudaSuccess) printf("4: Async kernel error: %s\n", cudaGetErrorString(errAsync)); adjustment<Minus<uint>> <<< grid, BLOCK_SIZE>>>(d_vec_out, d_seg, num_of_elements, d_max); cudaEventRecord(stop); cudaEventSynchronize(stop); if (ELAPSED_TIME == 1) { float milliseconds = 0; cudaEventElapsedTime(&milliseconds, start, stop); averageExecutions += milliseconds; } cudaFree(d_temp_storage); temp_storage_bytes = 0; d_temp_storage = NULL; cudaFree(d_temp); temp_bytes = 0; d_temp = NULL; cudaDeviceSynchronize(); } cudaMemcpy(h_vec, d_vec_out, mem_size_vec, cudaMemcpyDeviceToHost); cudaFree(d_max); cudaFree(d_seg); cudaFree(d_vec); cudaFree(d_vec_out); cudaFree(d_value); cudaFree(d_value_out); if (ELAPSED_TIME != 1) { print(h_vec, num_of_elements); } else { std::cout << averageExecutions/EXECUTIONS << "\n"; } free(h_seg_aux); free(h_seg); free(h_vec); free(h_value); return 0; }
1af7f1c702075c04ea66f94aa9ccc147bb63f651.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "includes.h" __global__ void kernelProcessEventsBatchAsync(uint8_t* gpuEventsX,uint8_t* gpuEventsY,int gpuEventListSize, float* gpuFilter, int fsx, int fsy, int fsz, float* gpuBuffer, int ringBufferIdx, int bsx, int bsy, int bsz, int fs_xy, int fn) { // Calculate filter idx int filterPos = threadIdx.x + blockIdx.x * blockDim.x; // Per block shared memory __shared__ uint8_t gpuEventListSharedX[MAX_SHARED_GPU_EVENTS]; __shared__ uint8_t gpuEventListSharedY[MAX_SHARED_GPU_EVENTS]; // How many runs do we need to process all events int processingRuns = ceilf((float)gpuEventListSize/MAX_SHARED_GPU_EVENTS); // Events for each thread to read int eventReadsPerThread = ceilf((float)MAX_SHARED_GPU_EVENTS/blockDim.x); // Offset n global event buffer int globalEventIdx = threadIdx.x; // Idx valid if (filterPos < fn) { // Read filter coefficient from global memory float filterVal = gpuFilter[filterPos]; // Compute x,y,z coodinates in buffer int fz = filterPos / fs_xy; int fxy = filterPos % fs_xy; int fy = fxy / fsx; int fx = fxy % fsx; // Convert buffer coordinates (mirror all axes -> convolution instead of correlation) // Origin for mirroring is x = w/2, y = h/2, z = 0 int bz = ((ringBufferIdx + (fsz - 1) - fz ) % bsz); int bx_tmp = fsx / 2 - fx; int by_tmp = fsy / 2 - fy; int bPos_tmp = bz*bsy*bsx; int sharedEventCnt = MAX_SHARED_GPU_EVENTS; // Iterate over event list in blocks, stored in shared memory for(int runIdx = 0; runIdx<processingRuns; runIdx++) { // Last run ? Compute size of shared event list if(runIdx+1 == processingRuns) { sharedEventCnt = gpuEventListSize % MAX_SHARED_GPU_EVENTS; } // Compute index in shared memory int localEventIdx = threadIdx.x; // Fill the shared memory either with MAX_SHARED_GPU_EVENTS // or use each thread mutlible times for(int i = 0; i < eventReadsPerThread; i++) { // Valid indices if(localEventIdx >= sharedEventCnt) break; // Load event into shared memory by using one thread per event gpuEventListSharedX[localEventIdx] = gpuEventsX[globalEventIdx]; gpuEventListSharedY[localEventIdx] = gpuEventsY[globalEventIdx]; // Goto next event for which this thread is responsible localEventIdx += blockDim.x; globalEventIdx += blockDim.x; } // Synchronize threads and wait until shared memory is filled // TODO: Deadlock possible? // At least one thread in each warp should hit that barrier to continue! // Bad relationship between shared event list size and block size could cause problems ?! __syncthreads(); // Iterate over every event block in shared memory for(localEventIdx = 0; localEventIdx < sharedEventCnt; localEventIdx++) { // Compute corresponding buffer coordinate int bx = bx_tmp + gpuEventListSharedX[localEventIdx]; int by = by_tmp + gpuEventListSharedY[localEventIdx]; // Check for valid buffer position (filp buffer z) if(bx >= 0 && bx < bsx && by >= 0 && by < bsy) { int bufferPos = bPos_tmp + by*bsx + bx; // Add each filter coefficient to the global buffer atomicAdd(gpuBuffer + bufferPos,filterVal); } } } } }
1af7f1c702075c04ea66f94aa9ccc147bb63f651.cu
#include "includes.h" __global__ void kernelProcessEventsBatchAsync(uint8_t* gpuEventsX,uint8_t* gpuEventsY,int gpuEventListSize, float* gpuFilter, int fsx, int fsy, int fsz, float* gpuBuffer, int ringBufferIdx, int bsx, int bsy, int bsz, int fs_xy, int fn) { // Calculate filter idx int filterPos = threadIdx.x + blockIdx.x * blockDim.x; // Per block shared memory __shared__ uint8_t gpuEventListSharedX[MAX_SHARED_GPU_EVENTS]; __shared__ uint8_t gpuEventListSharedY[MAX_SHARED_GPU_EVENTS]; // How many runs do we need to process all events int processingRuns = ceilf((float)gpuEventListSize/MAX_SHARED_GPU_EVENTS); // Events for each thread to read int eventReadsPerThread = ceilf((float)MAX_SHARED_GPU_EVENTS/blockDim.x); // Offset n global event buffer int globalEventIdx = threadIdx.x; // Idx valid if (filterPos < fn) { // Read filter coefficient from global memory float filterVal = gpuFilter[filterPos]; // Compute x,y,z coodinates in buffer int fz = filterPos / fs_xy; int fxy = filterPos % fs_xy; int fy = fxy / fsx; int fx = fxy % fsx; // Convert buffer coordinates (mirror all axes -> convolution instead of correlation) // Origin for mirroring is x = w/2, y = h/2, z = 0 int bz = ((ringBufferIdx + (fsz - 1) - fz ) % bsz); int bx_tmp = fsx / 2 - fx; int by_tmp = fsy / 2 - fy; int bPos_tmp = bz*bsy*bsx; int sharedEventCnt = MAX_SHARED_GPU_EVENTS; // Iterate over event list in blocks, stored in shared memory for(int runIdx = 0; runIdx<processingRuns; runIdx++) { // Last run ? Compute size of shared event list if(runIdx+1 == processingRuns) { sharedEventCnt = gpuEventListSize % MAX_SHARED_GPU_EVENTS; } // Compute index in shared memory int localEventIdx = threadIdx.x; // Fill the shared memory either with MAX_SHARED_GPU_EVENTS // or use each thread mutlible times for(int i = 0; i < eventReadsPerThread; i++) { // Valid indices if(localEventIdx >= sharedEventCnt) break; // Load event into shared memory by using one thread per event gpuEventListSharedX[localEventIdx] = gpuEventsX[globalEventIdx]; gpuEventListSharedY[localEventIdx] = gpuEventsY[globalEventIdx]; // Goto next event for which this thread is responsible localEventIdx += blockDim.x; globalEventIdx += blockDim.x; } // Synchronize threads and wait until shared memory is filled // TODO: Deadlock possible? // At least one thread in each warp should hit that barrier to continue! // Bad relationship between shared event list size and block size could cause problems ?! __syncthreads(); // Iterate over every event block in shared memory for(localEventIdx = 0; localEventIdx < sharedEventCnt; localEventIdx++) { // Compute corresponding buffer coordinate int bx = bx_tmp + gpuEventListSharedX[localEventIdx]; int by = by_tmp + gpuEventListSharedY[localEventIdx]; // Check for valid buffer position (filp buffer z) if(bx >= 0 && bx < bsx && by >= 0 && by < bsy) { int bufferPos = bPos_tmp + by*bsx + bx; // Add each filter coefficient to the global buffer atomicAdd(gpuBuffer + bufferPos,filterVal); } } } } }
5e2ada978eaa1917e75e5bd04d4b55e213250a5c.hip
// !!! This is a file automatically generated by hipify!!! #include <algorithm> #include <cmath> #include <cstdio> #include <fstream> #include <iostream> #include <sstream> #include <string> #include <vector> #include <sys/time.h> #include <chrono> #include <dirent.h> using namespace std::chrono; using namespace std; vector<int> G_timestamps; int getCurrentTime () { return duration_cast<milliseconds>(system_clock::now().time_since_epoch()).count(); } void F_TIME_START () { G_timestamps.push_back(getCurrentTime()); } void F_TIME_END (string measuredName) { int start = G_timestamps.back(); int end = getCurrentTime(); float diff = (end - start) / 1000.0; G_timestamps.pop_back(); cout << endl << "## [" << measuredName << "]: " << diff << "s" << endl << endl; } void coutGPUStatus () { size_t freem, totalm; float free_m, total_m, used_m; hipMemGetInfo((size_t*)&freem, (size_t*)&totalm); free_m = (size_t) freem / 1048576.0; total_m = (size_t) totalm / 1048576.0; used_m = total_m - free_m; printf ( "## Total: %f MB. Used %f MB. Free: %f MB. \n", total_m, used_m, free_m); } void coutResult(int& generation, int& max_fitness_value) { cout << "Generation " << generation << ", currently best individual can activate " << max_fitness_value << " others" << endl; } void coutPopulation (vector <vector<int>>& population) { cout << "Population:"; for (int i=0; i<population.size(); i++) { cout << "\nIndiv: " << i << ": "; for (int j=0; j<population[i].size(); j++) { if (population[i][j] < 10) { cout << population[i][j] << ", "; } else if (population[i][j] < 100) { cout << population[i][j] << ", "; } else if (population[i][j] < 1000) { cout << population[i][j] << ", "; } else if (population[i][j] < 10000) { cout << population[i][j] << ", "; } else { cout << population[i][j] << ","; } } } cout << "\n\n"; } void coutIndividual (vector <vector<int>>& population, int i) { cout << "Individual " << i << ":"; for (int j=0; j<population[i].size(); j++) { if (population[i][j] < 10) { cout << population[i][j] << ", "; } else if (population[i][j] < 100) { cout << population[i][j] << ", "; } else if (population[i][j] < 1000) { cout << population[i][j] << ", "; } else if (population[i][j] < 10000) { cout << population[i][j] << ", "; } else { cout << population[i][j] << ","; } } cout << "\n\n"; } float getInfluenceValue (int N, int inf_values_size, vector<float>& inf_values, vector<float>& inf_col_ind, vector<float>& inf_row_ptr, int x, int y) { float infValue = 0; int min = inf_row_ptr[x]; int max = x == N-1 ? inf_values_size-1 : inf_row_ptr[x+1]; //inf_values_size-1 for (int i=min; i<max; i++) { if (inf_col_ind[i] == y) { infValue = inf_values[i]; break; } } return infValue; } void InfluenceSpreadPopulationStep (bool *dyn_activeNodesPerIndividual, vector<float>& inf_values, vector<float>& inf_col_ind, vector<float>& inf_row_ptr, int N, int nrOfChangedIndividuals, int inf_values_size, float INFLUENCE_THRESHOLD, vector<int>& changedIndividuals) { for (int indiv_id = 0; indiv_id < nrOfChangedIndividuals; indiv_id++) { for (int node_id = 0; node_id < N; node_id++) { int indiv_index = changedIndividuals[indiv_id]; float infValue = 0; // total value of influence on the node for (int i=0; i<N; i++) { if (dyn_activeNodesPerIndividual[indiv_index * N + i] && node_id != i) { // if i-th element is active and is not the node float result = getInfluenceValue(N, inf_values_size, inf_values, inf_col_ind, inf_row_ptr, i, node_id); infValue += result; // add i-th element influence on the node //printf("Influence %d on %d is: %f\n", i, node_id, result); //printf("\ninfValue: %f, id: %d", infValue, id); } } //printf("\ninfValue: %f, id: %d", infValue, id); if (infValue >= INFLUENCE_THRESHOLD) { // if total influence on the node is greater than or equal to the INFLUENCE_THRESHOLD value dyn_activeNodesPerIndividual[indiv_index * N + node_id] = true; // activate the node } } } } vector <vector<float>> readData (string dataset_name, int N, string _EXPERIMENT_ID) { vector <vector<float>> influence; // initialization of the influence vector for (int i=0; i<N; i++) { cout << endl << i << " out of " << N << endl; vector<float> row(N, 0); influence.push_back(row); if ((i + 1) * N % (N * N / 10) == 0) { cout << "[Initialization of the influence matrix]: " << float((i + 1) * N) / (N * N) * 100 << "%" << endl; } } // total number of interactions received by every node vector<float> received(N, 0); ifstream infile("./experiments_" + _EXPERIMENT_ID + "/" + dataset_name); string line; int _csv_id_hack = -1; if (dataset_name.find(".csv") != std::string::npos) { _csv_id_hack = 0; } if (infile.good()) { int line_nr = 0; while (getline(infile, line)) { cout << "Reading raw data file, line nr: " << line_nr << endl; //cout << line << endl; istringstream iss(line); int a, b; if (!(iss >> a >> b)) { cout << "ERROR" << endl; break; } // error if (a != b && a + _csv_id_hack < N && b + _csv_id_hack < N) { influence[a + _csv_id_hack][b + _csv_id_hack] += 1; // temp inf_values, calculating the total number of iteractions from "i" to "j" received [b + _csv_id_hack] += 1; //cout << "message from " << a + _csv_id_hack << " to " << b + _csv_id_hack << endl; } line_nr++; } infile.close(); cout << "File reading finished successfully." << endl; ofstream outfile ("./experiments-counted/" + dataset_name + "_influenceCounted_" + to_string(N)); if (outfile.good()) { // Influence value calculated as the ratio of iteractions from "i" node to "j" node, to the total number of iteractions to the "j" node. for (int i=0; i<N; i++) { for (int j=0; j<N; j++) { //cout << "Influence values calculations, step: " << i*N+(j+1) << "/" << N*N << endl; if (i == j) { outfile << i << " " << j << " " << -1 << "\n"; influence[i][j] = -1; } else if (influence[i][j] > 0) { if (received[j] != 0) { influence[i][j] = influence[i][j] / received[j]; } else if (influence[i][j] != 0) { cout << "Received array error"; } /*cout << i << "'s influence on " << j << " equals: " << influence[i][j] << endl;*/ outfile << i << " " << j << " " << influence[i][j] << "\n"; } else { influence[i][j] = 0; } } } cout << "Compressed file saved successfully." << endl; outfile.close(); } else { throw std::invalid_argument("readData - File " + dataset_name + " not saved."); } } else { throw std::invalid_argument("readData - File " + dataset_name + " not found."); } return influence; } void defineInfluenceArrayAndVectors (string dataset_name, int N, vector<float>& inf_values, vector<float>& inf_col_ind, vector<float>& inf_row_ptr, string _EXPERIMENT_ID) { //cout << "File reading started." << endl; ifstream infile("./experiments-counted/" + dataset_name + "_influenceCounted_" + to_string(N)); if (infile.good()) { // reading the already calculated influence values int line_nr = 0; string line; float last_a = -1; while (getline(infile, line)) { cout << "Reading influence file, line nr: " << line_nr << endl; istringstream iss(line); float a, b, c; if (!(iss >> a >> b >> c)) { break; } // error if (c != 0) { if (a != last_a) { inf_row_ptr.push_back(inf_values.size()); //cout << "add row ptr: " << inf_values.size() << endl; last_a = a; } inf_values.push_back(c); //cout << "add value: " << c << endl; inf_col_ind.push_back(b); //cout << "add col ind: " << b << endl; } line_nr++; } infile.close(); } else { // calculating influnce values infile.close(); vector <vector<float>> influence = readData(dataset_name, N, _EXPERIMENT_ID); // inf_values, inf_col_ind, inf_row_ptr creation, based on the influence array for (int i=0; i<N; i++) { bool added = false; for (int j=0; j<N; j++) { //cout << "Influence of " << i << " on " << j << " is equal to: " << influence[i][j] << endl; if (influence[i][j] != 0) { if (!added) { inf_row_ptr.push_back(inf_values.size()); //cout << "add row ptr: " << inf_values.size() << endl; added = true; } inf_values.push_back(influence[i][j]); //cout << "add value: " << influence[i][j] << endl; inf_col_ind.push_back(j); //cout << "add col ind: " << j << endl; } } if (!added) { //inf_row_ptr.push_back(-1); } } /*cout << "\n\n size of influence array: " << sizeof(influence) + sizeof(float) * influence.capacity() * influence.capacity(); cout << "\n\n Total size of vectors: " << sizeof(inf_values) + sizeof(float) * inf_values.capacity() + sizeof(inf_col_ind) + sizeof(float) * inf_col_ind.capacity() + sizeof(inf_row_ptr) + sizeof(float) * inf_row_ptr.capacity() << "\n\n";*/ } } void createPopulation (int nrOfIndividuals, int N, int toFind, vector <vector<int>>& population) { // creating random individuals within population for (int i = 0; i<nrOfIndividuals; i++) { vector<int> row; population.push_back(row); cout << "Creating individual " << i << " of " << nrOfIndividuals << endl; for (int j = 0; j<toFind; j++) { int rand_id = rand() % N; bool alreadyAdded = true; while (alreadyAdded) { alreadyAdded = false; for (int k=0; k<population[i].size(); k++) { if (population[i][k] == rand_id) { alreadyAdded = true; rand_id = rand() % N; } } } //cout << "pushing: " << rand_id << endl; population[i].push_back(rand_id); } } } void createPopulationSample (int nrOfIndividuals, int N, int toFind, vector <vector<int>>& population) { // creating one individual - used as a sample e.g. for GPU vs CPU tests vector<int> row; population.push_back(row); for (int x = 0; x<toFind; x++) { population[0].push_back(x); } } void setPopulationFitness (vector<vector<int>>& population, int nrOfIndividuals, int N, int inf_values_size, float& INFLUENCE_THRESHOLD, int STEPS_MAX, vector<float>& inf_values, vector<float>& inf_col_ind, vector<float>& inf_row_ptr, int toFind, vector<int>& fitness, int THREADS_PER_BLOCK) { //bool activeNodesPerIndividual[nrOfIndividuals][N]; bool *dyn_activeNodesPerIndividual = new bool[nrOfIndividuals*N]; for (int i=0; i<nrOfIndividuals; i++) { for (int j=0; j<N; j++) { int index = N * i + j; dyn_activeNodesPerIndividual[index] = false; } for (int j=0; j<toFind; j++) { int index = N * i + population[i][j]; dyn_activeNodesPerIndividual[index] = true; } } int active [nrOfIndividuals]; vector<int> changedIndividuals; for (int i=0; i<nrOfIndividuals; i++) { active[i] = toFind; changedIndividuals.push_back(i); } int step_counter = 0; while (step_counter < STEPS_MAX && changedIndividuals.size() > 0) { //cout << "Step: " << step_counter << " / " << STEPS_MAX << endl; int nrOfChangedIndividuals = changedIndividuals.size(); cout << "nrOfChangedIndividuals " << nrOfChangedIndividuals << endl; F_TIME_START(); InfluenceSpreadPopulationStep (dyn_activeNodesPerIndividual, inf_values, inf_col_ind, inf_row_ptr, N, nrOfChangedIndividuals, inf_values_size, INFLUENCE_THRESHOLD, changedIndividuals); F_TIME_END("host functions"); changedIndividuals.clear(); int curr_active; for (int i=0; i<nrOfIndividuals; i++) { curr_active = 0; for (int j=0; j<N; j++) { int index = N * i + j; if (dyn_activeNodesPerIndividual[index]) { curr_active++; } } if (curr_active != active[i]) { changedIndividuals.push_back(i); } active[i] = curr_active; } step_counter++; } for (int i = 0; i < nrOfIndividuals; i++) { int individualFitness = 0; for (int j = 0; j < N; j++) { int index = N * i + j; if (dyn_activeNodesPerIndividual[index]) { individualFitness++; //cout << "Activated " << j << endl; } } //cout << "individualFitness: " << individualFitness << endl; //cout << "toFind: " << toFind << endl; // acceptable `error` /*if (individualFitness-toFind < 0) { cout << "# Crossover/mutation overlapping" << endl; // can happen because of random crossover and mutation //coutIndividual(population, i); }*/ //cout << "fitness Indiv: " << i << ": " << individualFitness-toFind << endl; fitness.push_back(individualFitness-toFind); } } void performPopulationSelection (vector<vector<int>>& population, int& nrOfIndividuals, int N, int inf_values_size, float& INFLUENCE_THRESHOLD, int& groupSize, int& STEPS_MAX, vector<float>& inf_values, vector<float>& inf_col_ind, vector<float>& inf_row_ptr, int& toFind, int& max_fitness_value, vector<int>& max_fitness_individual, int THREADS_PER_BLOCK) { vector<int> fitness; F_TIME_START(); setPopulationFitness(population, nrOfIndividuals, N, inf_values_size, INFLUENCE_THRESHOLD, STEPS_MAX, inf_values, inf_col_ind, inf_row_ptr, toFind, fitness, THREADS_PER_BLOCK); F_TIME_END("selection - fitness count"); F_TIME_START(); vector<vector<int>> newPopulation; while (newPopulation.size() != population.size()) { vector<int> newGroup; bool alreadyAdded[nrOfIndividuals]; for (int i=0; i<nrOfIndividuals; i++) { alreadyAdded[i] = false; } for (int j=0; j<groupSize; j++) { int randIndiv = rand() % nrOfIndividuals; while (alreadyAdded[randIndiv]) { randIndiv = rand() % nrOfIndividuals; } newGroup.push_back(randIndiv); } int curr_best_fitness = -1; int curr_best_id = -1; int currentFitness = -1; for (int j=0; j<newGroup.size(); j++) { currentFitness = fitness[newGroup[j]]; if (currentFitness > curr_best_fitness) { curr_best_fitness = currentFitness; curr_best_id = j; } } newPopulation.push_back(population[newGroup[curr_best_id]]); if (curr_best_fitness > max_fitness_value) { max_fitness_individual = population[newGroup[curr_best_id]]; max_fitness_value = curr_best_fitness; } } population = newPopulation; F_TIME_END("selection - population swapping"); } // TODO performCrossover on DEVICE (nrOfIndividuals/2 threads (from 0 to nr/2 - 1), ids: id*2, id*2+1 void performCrossover (vector<vector<int>>& population, int& nrOfIndividuals, float& crossover_ratio, int& toFind) { float split_ratio = 0.5; float split_point = split_ratio*toFind; int id_first = -1; int id_second = -1; for (int i=0; i<nrOfIndividuals; i++) { int cross = rand() % 100; if (cross < crossover_ratio * 100) { if (id_first == -1) { id_first = i; } else { id_second = i; } } if (id_second != -1) { for (int j=0; j<split_point; j++) { float temp = population[id_first][j]; population[id_first][j] = population[id_second][j]; population[id_second][j] = temp; } id_first = -1; id_second = -1; } } // allows to node doubling (fitness = -1 can happen) } // TODO performMutation on DEVICE void performMutation (vector<vector<int>>& population, int& nrOfIndividuals, float& mutation_ratio, float& mutation_potency, int& toFind, int N) { for (int i=0; i<nrOfIndividuals; i++) { int mutation = rand() % 100; if (mutation < mutation_ratio * 100) { for (int j=0; j<mutation_potency*toFind; j++) { population[i][rand() % toFind] = rand() % N; } } } // allows to node doubling (fitness = -1 can happen) } bool anyLimitReached(int resultBufferSize, float resultMinDiff, vector<int> &resultsBuffer, int generation, int generationsLimit, float timeLimit, int COMPUTATION_START_TIME, int result, int resultLimit) { int now = duration_cast<milliseconds>(system_clock::now().time_since_epoch()).count(); float diff = (now - COMPUTATION_START_TIME) / 1000.0; bool anyLimit = (resultMinDiff > 0 && generation > resultBufferSize && result < resultsBuffer[0] * (1 + resultMinDiff)) || (generationsLimit > 0 && generation >= generationsLimit) || (resultLimit > 0 && result >= resultLimit) || (timeLimit > 0 && diff >= timeLimit); if (generation > 0) { resultsBuffer.push_back(result); } if (generation > resultBufferSize) { resultsBuffer.erase(resultsBuffer.begin()); //cout << endl << "Current resultsBuffer[0]: " << resultsBuffer[0] << endl; } return anyLimit; } vector<string> getFileNames (string path) { DIR *pDIR; struct dirent *entry; vector<string> fileNames; if (pDIR=opendir(path.c_str())) { while (entry = readdir(pDIR)) { if (strcmp(entry->d_name, ".") != 0 && strcmp(entry->d_name, "..") != 0) { fileNames.push_back(entry->d_name); } } closedir(pDIR); } return fileNames; } /* pearson, spearman */ float mean (vector<float> values) { float sum = 0; int size = values.size(); for (int i = 0; i < size; i++) { sum += values[i]; } return sum / size; } float pearson_numerator (vector<float> A, vector<float> B, float meanA, float meanB) { float numerator = 0; for (int i = 0; i < A.size(); i++) { numerator += (A[i] - meanA) * (B[i] - meanB); } return numerator; } float pearson_denominator (vector<float> A, vector<float> B, float meanA, float meanB) { float denominator1; float denominator1_sum = 0; float denominator2; float denominator2_sum = 0; for (int i = 0; i < A.size(); i++) { denominator1_sum += pow(A[i] - meanA, 2); } for (int i = 0; i < B.size(); i++) { denominator2_sum += pow(B[i] - meanB, 2); } denominator1 = pow(denominator1_sum, 0.5); denominator2 = pow(denominator2_sum, 0.5); if (denominator1 == 0 || denominator2 == 0) cout << endl << endl << "##### ERROR: Denominator equal to 0 - probable cause: all result values are equal" << endl << endl; return denominator1 * denominator2; } float pearson (vector<float> A, vector<float> B) { if (A.size() != B.size()) { cout << "ERROR - wrong vector lengths" << endl; return -1; } float meanA = mean(A); float meanB = mean(B); float numerator = pearson_numerator(A, B, meanA, meanB); float denominator = pearson_denominator(A, B, meanA, meanB); return numerator / denominator; } vector<float> toRank (vector<float> A) { vector<float> sorted = A; sort(sorted.begin(), sorted.end()); vector<float> rank; for (int i = 0; i < A.size(); i++) { vector<int> positions; for (int j = 0; j < A.size(); j++) { if (sorted[j] == A[i]) { positions.push_back(j); } } float sum = 0; float avg; for (int j = 0; j < positions.size(); j++) { sum += positions[j] + 1; } avg = sum / positions.size(); rank.push_back(avg); //rank.push_back(positions[positions.size()-1] + 1); //libreoffice calc rank } /* cout << "Ranking: " << endl; for (int i = 0; i < rank.size(); i++) { cout << rank[i] << ", "; } cout << endl << endl; */ return rank; } float spearman (vector<float> A, vector<float> B) { vector<float> A_ranked = toRank(A); vector<float> B_ranked = toRank(B); return pearson(A_ranked, B_ranked); } int main (int argc, char* argv[]) { srand (time(NULL)); coutGPUStatus(); string _EXPERIMENT_ID = argv[1]; int tests = 100; float timeLimit = 6; //seconds int generationsLimit = 0; //5; int resultLimit = 0; //32; int resultBufferSize = 10; float resultMinDiff = 0; //0.01; bool saveResults = true; bool saveResultsCorrelation = true; float INFLUENCE_THRESHOLD = 0.5; int N_MAX = 1000; int STEPS_MAX = 10000; int TO_FIND_PERCENTAGE = 5; int THREADS_PER_BLOCK = 1024; /* Parameters */ //int groupSize = 20; // 10, 20, 30 // 2, 5, 10, 20, 50 //int nrOfIndividuals = (int)ceil(N/10.0); // N/20, N/10, N/5 // 100, 500 1k, 2k, 10k //float crossover_ratio = 0.7; // 0.5, 0.7, 0.9 // 0.1, 0.3, 0.5, 0.7, 0.9 //float mutation_potency = 0.01; // 0.001, 0.01, 0.1 // 0.01, 0.02, 0.05, 0.1, 0.2 //float mutation_ratio = 0.9; // 0.75, 0.9, 0.95, // 0.1, 0.3, 0.5, 0.7, 0.9 vector<int> a_groupSize {10, 20, 30}; // 10, 20, 30 vector<int> a_nrOfIndividuals {12, 10, 8}; // N/12, N/10, N/8 vector<float> a_crossover_ratio {0.6, 0.7, 0.8}; // 0.6, 0.7, 0.8 vector<float> a_mutation_potency {0.001, 0.01, 0.1}; // 0.001, 0.01, 0.1 vector<float> a_mutation_ratio {0.7, 0.8, 0.9}; // 0.7, 0.8, 0.9 int parameters_sets = a_groupSize.size() * a_nrOfIndividuals.size() * a_crossover_ratio.size() * a_mutation_potency.size() * a_mutation_ratio.size(); vector<string> datasets = getFileNames("./experiments_" + _EXPERIMENT_ID); /* DEBUG */ int debug_nrOfIndividuals; bool debug = true; if (debug) { tests = 10; N_MAX = 1000; THREADS_PER_BLOCK = 1024; debug_nrOfIndividuals = -1; // -1 - the same as if it wasn't a debug mode (so devides N by a_nrOfIndividuals to get indivnr) // tests: 10, debug_nrOfIndividuals: -1, generationsLimit: 1, THREADS_PER_BLOCK: 1024, default parameters, facebook /* 100: 7 in 1ms, 500: 46 in 10ms, 1000: 88 in 53ms */ timeLimit = 0; generationsLimit = 5; // 5 - 80s resultLimit = 0; resultMinDiff = 0; saveResults = true;//false; saveResultsCorrelation = true;//false; a_groupSize = {20}; a_nrOfIndividuals = {8}; a_crossover_ratio = {0.7}; a_mutation_potency = {0.01}; a_mutation_ratio = {0.9}; parameters_sets = a_groupSize.size() * a_nrOfIndividuals.size() * a_crossover_ratio.size() * a_mutation_potency.size() * a_mutation_ratio.size(); //datasets = {"facebook-46952"}; //datasets = {"BA-1000-1-3.csv"}; datasets = {"ER-1000-0.05-10.csv"}; //datasets = getFileNames("./experiments_" + _EXPERIMENT_ID); } /* N = 1000 INDIVIDUALS = 1000 THREADS_PER_BLOCK = 192 1 individuals - 0.056s 10 individuals - 0.081s 100 individuals - 0.265s 1000 individuals - 2.483s THREADS_PER_BLOCK = 512 1000 individuals - 2.423s THREADS_PER_BLOCK = 1024 1000 individuals - 2.481s N = max (~47k for facebook) THREADS_PER_BLOCK = 512 100 individuals - 5.08s */ vector<vector<float>> results; for (int i=0; i<datasets.size(); i++) { vector<float> row(parameters_sets, -1); results.push_back(row); } for (int file_id=0; file_id<datasets.size(); file_id++) { int dataset_id = file_id; //TODO to refactor string dataset_name = datasets[file_id]; stringstream ssname(dataset_name); string token; getline(ssname, token, '-'); getline(ssname, token, '-'); int maxSize = stoi(token); int N = min(N_MAX, maxSize); int toFind = (int)ceil(float(TO_FIND_PERCENTAGE * N) / 100.0); // using ofstream constructors. std::ofstream outfile("results_" + dataset_name + "_" + _EXPERIMENT_ID + "_" + ".xls"); if (saveResults) { outfile << "<?xml version='1.0'?>" << std::endl; outfile << "<Workbook xmlns='urn:schemas-microsoft-com:office:spreadsheet'" << std::endl; outfile << " xmlns:o='urn:schemas-microsoft-com:office:office'" << std::endl; outfile << " xmlns:x='urn:schemas-microsoft-com:office:excel'" << std::endl; outfile << " xmlns:ss='urn:schemas-microsoft-com:office:spreadsheet'" << std::endl; outfile << " xmlns:html='http://www.w3.org/TR/REC-html40'>" << std::endl; outfile << " <Worksheet ss:Name='Sheet1'>" << std::endl; outfile << " <Table>" << std::endl; outfile << " <Row>" << std::endl; outfile << " <Cell><Data ss:Type='String'>Dataset</Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='String'>Test nr</Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='String'>groupSize</Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='String'>nrOfIndividuals</Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='String'>crossover_ratio</Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='String'>mutation_potency</Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='String'>mutation_ratio</Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='String'>Generations</Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='String'>Result</Data></Cell>" << std::endl; outfile << " </Row>" << std::endl; } vector <float> inf_col_ind; vector <float> inf_row_ptr; vector <float> inf_values; defineInfluenceArrayAndVectors(dataset_name, N, inf_values, inf_col_ind, inf_row_ptr, _EXPERIMENT_ID); int inf_values_size = inf_values.size(); int parameters_set = 1; for_each(a_groupSize.begin(), a_groupSize.end(), [&] (int groupSize) { for_each(a_nrOfIndividuals.begin(), a_nrOfIndividuals.end(), [&] (int nrOfIndividualsRaw) { int nrOfIndividuals = (int)ceil(N/nrOfIndividualsRaw); if (debug && debug_nrOfIndividuals != -1) { nrOfIndividuals = debug_nrOfIndividuals; } for_each(a_crossover_ratio.begin(), a_crossover_ratio.end(), [&] (float crossover_ratio) { for_each(a_mutation_potency.begin(), a_mutation_potency.end(), [&] (float mutation_potency) { for_each(a_mutation_ratio.begin(), a_mutation_ratio.end(), [&] (float mutation_ratio) { float testsResultsSum = 0; float testsGenerationsSum = 0; float testsTimeSum = 0; for (int test = 0; test < tests; test++) { vector <int> max_fitness_individual; vector <vector<int>> population; int max_fitness_value = -1; int progressBarLength = 10; int generation = 0; vector<int> resultsBuffer; createPopulation(nrOfIndividuals, N, toFind, population); //createPopulationSample(nrOfIndividuals, N, toFind, population); //coutPopulation(population); int COMPUTATION_START_TIME = duration_cast<milliseconds>(system_clock::now().time_since_epoch()).count(); while (!anyLimitReached(resultBufferSize, resultMinDiff, resultsBuffer, generation, generationsLimit, timeLimit, COMPUTATION_START_TIME, max_fitness_value, resultLimit)) { //coutGPUStatus(); F_TIME_START(); performPopulationSelection(population, nrOfIndividuals, N, inf_values_size, INFLUENCE_THRESHOLD, groupSize, STEPS_MAX, inf_values, inf_col_ind, inf_row_ptr, toFind, max_fitness_value, max_fitness_individual, THREADS_PER_BLOCK); F_TIME_END("selection"); F_TIME_START(); performCrossover(population, nrOfIndividuals, crossover_ratio, toFind); F_TIME_END("crossover"); F_TIME_START(); performMutation(population, nrOfIndividuals, mutation_ratio, mutation_potency, toFind, N); F_TIME_END("mutation"); //coutResult(generation, max_fitness_value); generation++; } int COMPUTATION_END_TIME = duration_cast<milliseconds>(system_clock::now().time_since_epoch()).count(); int COMPUTATION_DURATION = COMPUTATION_END_TIME - COMPUTATION_START_TIME; cout << endl << "[FINISHED] test: " << test+1 << "/" << tests << " for parameters set nr: " << parameters_set << "/" << parameters_sets << " for dataset_id: " << dataset_id+1 << "/" << datasets.size() << " in: " << COMPUTATION_DURATION / 1000.0 << "s"; cout << endl; coutGPUStatus(); cout << endl; if (saveResults) { outfile << " <Row>" << std::endl; outfile << " <Cell><Data ss:Type='Number'>" + to_string(parameters_set) + "</Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='Number'>" + to_string(test+1) + "</Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='Number'>" + to_string(groupSize) + "</Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='Number'>" + to_string(nrOfIndividuals) + "</Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='Number'>" + to_string(crossover_ratio) + "</Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='Number'>" + to_string(mutation_potency) + "</Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='Number'>" + to_string(mutation_ratio) + "</Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='Number'>" + to_string(generation) + "</Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='Number'>" + to_string(max_fitness_value) + "</Data></Cell>" << std::endl; outfile << " </Row>" << std::endl; } //cout << endl << "result " << test+1 << ": " << max_fitness_value << endl; testsResultsSum += max_fitness_value; testsGenerationsSum += generation; testsTimeSum += COMPUTATION_DURATION; /*cout << "Best individual found: " << endl; for (int i=0; i<max_fitness_individual.size(); i++) { cout << max_fitness_individual[i] << ", "; }*/ //cout << endl << endl << "This group can activate " << max_fitness_value << " others"; //cout << endl << "Time elapsed: " << (time2 - COMPUTATION_START_TIME) / 1000.0 << "s" << endl; } // TEST float finalResult = std::round(testsResultsSum / tests); float finalGenerations = std::round(testsGenerationsSum / tests); float finalTime = std::round(testsTimeSum / tests); cout << endl << "Final result avg: " << finalResult << " in avg " << finalTime / 1000.0 << "s" << endl; results[file_id][parameters_set-1] = finalResult; if (saveResults) { outfile << " <Row>" << std::endl; outfile << " <Cell><Data ss:Type='Number'>" + to_string(parameters_set) + "</Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='String'>AVG </Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='Number'>" + to_string(groupSize) + "</Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='Number'>" + to_string(nrOfIndividuals) + "</Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='Number'>" + to_string(crossover_ratio) + "</Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='Number'>" + to_string(mutation_potency) + "</Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='Number'>" + to_string(mutation_ratio) + "</Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='Number'>" + to_string(finalGenerations) + "</Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='Number'>" + to_string(finalResult) + "</Data></Cell>" << std::endl; outfile << " </Row>" << std::endl; } parameters_set++; }); }); }); }); }); if (saveResults) { outfile << " </Table>" << std::endl; outfile << " </Worksheet>" << std::endl; outfile << "</Workbook>" << std::endl; } outfile.close(); } cout << endl << endl << "*** RESULTS ***" << endl; for (int i=0; i<datasets.size(); i++) { for (int j=0; j<parameters_sets; j++) { cout << results[i][j] << ", "; } cout << endl; } if (saveResultsCorrelation) { // using ofstream constructors. std::ofstream outfile("results_correlation_" + _EXPERIMENT_ID + "_.xls"); outfile << "<?xml version='1.0'?>" << std::endl; outfile << "<Workbook xmlns='urn:schemas-microsoft-com:office:spreadsheet'" << std::endl; outfile << " xmlns:o='urn:schemas-microsoft-com:office:office'" << std::endl; outfile << " xmlns:x='urn:schemas-microsoft-com:office:excel'" << std::endl; outfile << " xmlns:ss='urn:schemas-microsoft-com:office:spreadsheet'" << std::endl; outfile << " xmlns:html='http://www.w3.org/TR/REC-html40'>" << std::endl; outfile << " <Worksheet ss:Name='Sheet1'>" << std::endl; outfile << " <Table>" << std::endl; outfile << " <Row>" << std::endl; outfile << " <Cell></Cell>" << std::endl; for (int i=0; i<datasets.size(); i++) { outfile << " <Cell><Data ss:Type='String'>" + datasets[i] + "</Data></Cell>" << std::endl; } outfile << " </Row>" << std::endl; for (int i=0; i<datasets.size(); i++) { outfile << " <Row>" << std::endl; outfile << " <Cell><Data ss:Type='String'>" + datasets[i] + "</Data></Cell>" << std::endl; for (int j=0; j<datasets.size(); j++) { if (j > i) { outfile << " <Cell><Data ss:Type='Number'>" + to_string(pearson(results[i], results[j])) + "</Data></Cell>" << std::endl; } else { outfile << " <Cell></Cell>" << std::endl; } } outfile << " </Row>" << std::endl; } outfile << " <Row></Row>" << std::endl; outfile << " <Row></Row>" << std::endl; outfile << " <Row></Row>" << std::endl; outfile << " <Row>" << std::endl; outfile << " <Cell></Cell>" << std::endl; for (int i=0; i<datasets.size(); i++) { outfile << " <Cell><Data ss:Type='String'>" + datasets[i] + "</Data></Cell>" << std::endl; } outfile << " </Row>" << std::endl; for (int i=0; i<datasets.size(); i++) { outfile << " <Row>" << std::endl; outfile << " <Cell><Data ss:Type='String'>" + datasets[i] + "</Data></Cell>" << std::endl; for (int j=0; j<datasets.size(); j++) { if (j > i) { outfile << " <Cell><Data ss:Type='Number'>" + to_string(spearman(results[i], results[j])) + "</Data></Cell>" << std::endl; } else { outfile << " <Cell></Cell>" << std::endl; } } outfile << " </Row>" << std::endl; } outfile << " </Table>" << std::endl; outfile << " </Worksheet>" << std::endl; outfile << "</Workbook>" << std::endl; outfile.close(); } return 0; }
5e2ada978eaa1917e75e5bd04d4b55e213250a5c.cu
#include <algorithm> #include <cmath> #include <cstdio> #include <fstream> #include <iostream> #include <sstream> #include <string> #include <vector> #include <sys/time.h> #include <chrono> #include <dirent.h> using namespace std::chrono; using namespace std; vector<int> G_timestamps; int getCurrentTime () { return duration_cast<milliseconds>(system_clock::now().time_since_epoch()).count(); } void F_TIME_START () { G_timestamps.push_back(getCurrentTime()); } void F_TIME_END (string measuredName) { int start = G_timestamps.back(); int end = getCurrentTime(); float diff = (end - start) / 1000.0; G_timestamps.pop_back(); cout << endl << "## [" << measuredName << "]: " << diff << "s" << endl << endl; } void coutGPUStatus () { size_t freem, totalm; float free_m, total_m, used_m; cudaMemGetInfo((size_t*)&freem, (size_t*)&totalm); free_m = (size_t) freem / 1048576.0; total_m = (size_t) totalm / 1048576.0; used_m = total_m - free_m; printf ( "## Total: %f MB. Used %f MB. Free: %f MB. \n", total_m, used_m, free_m); } void coutResult(int& generation, int& max_fitness_value) { cout << "Generation " << generation << ", currently best individual can activate " << max_fitness_value << " others" << endl; } void coutPopulation (vector <vector<int>>& population) { cout << "Population:"; for (int i=0; i<population.size(); i++) { cout << "\nIndiv: " << i << ": "; for (int j=0; j<population[i].size(); j++) { if (population[i][j] < 10) { cout << population[i][j] << ", "; } else if (population[i][j] < 100) { cout << population[i][j] << ", "; } else if (population[i][j] < 1000) { cout << population[i][j] << ", "; } else if (population[i][j] < 10000) { cout << population[i][j] << ", "; } else { cout << population[i][j] << ","; } } } cout << "\n\n"; } void coutIndividual (vector <vector<int>>& population, int i) { cout << "Individual " << i << ":"; for (int j=0; j<population[i].size(); j++) { if (population[i][j] < 10) { cout << population[i][j] << ", "; } else if (population[i][j] < 100) { cout << population[i][j] << ", "; } else if (population[i][j] < 1000) { cout << population[i][j] << ", "; } else if (population[i][j] < 10000) { cout << population[i][j] << ", "; } else { cout << population[i][j] << ","; } } cout << "\n\n"; } float getInfluenceValue (int N, int inf_values_size, vector<float>& inf_values, vector<float>& inf_col_ind, vector<float>& inf_row_ptr, int x, int y) { float infValue = 0; int min = inf_row_ptr[x]; int max = x == N-1 ? inf_values_size-1 : inf_row_ptr[x+1]; //inf_values_size-1 for (int i=min; i<max; i++) { if (inf_col_ind[i] == y) { infValue = inf_values[i]; break; } } return infValue; } void InfluenceSpreadPopulationStep (bool *dyn_activeNodesPerIndividual, vector<float>& inf_values, vector<float>& inf_col_ind, vector<float>& inf_row_ptr, int N, int nrOfChangedIndividuals, int inf_values_size, float INFLUENCE_THRESHOLD, vector<int>& changedIndividuals) { for (int indiv_id = 0; indiv_id < nrOfChangedIndividuals; indiv_id++) { for (int node_id = 0; node_id < N; node_id++) { int indiv_index = changedIndividuals[indiv_id]; float infValue = 0; // total value of influence on the node for (int i=0; i<N; i++) { if (dyn_activeNodesPerIndividual[indiv_index * N + i] && node_id != i) { // if i-th element is active and is not the node float result = getInfluenceValue(N, inf_values_size, inf_values, inf_col_ind, inf_row_ptr, i, node_id); infValue += result; // add i-th element influence on the node //printf("Influence %d on %d is: %f\n", i, node_id, result); //printf("\ninfValue: %f, id: %d", infValue, id); } } //printf("\ninfValue: %f, id: %d", infValue, id); if (infValue >= INFLUENCE_THRESHOLD) { // if total influence on the node is greater than or equal to the INFLUENCE_THRESHOLD value dyn_activeNodesPerIndividual[indiv_index * N + node_id] = true; // activate the node } } } } vector <vector<float>> readData (string dataset_name, int N, string _EXPERIMENT_ID) { vector <vector<float>> influence; // initialization of the influence vector for (int i=0; i<N; i++) { cout << endl << i << " out of " << N << endl; vector<float> row(N, 0); influence.push_back(row); if ((i + 1) * N % (N * N / 10) == 0) { cout << "[Initialization of the influence matrix]: " << float((i + 1) * N) / (N * N) * 100 << "%" << endl; } } // total number of interactions received by every node vector<float> received(N, 0); ifstream infile("./experiments_" + _EXPERIMENT_ID + "/" + dataset_name); string line; int _csv_id_hack = -1; if (dataset_name.find(".csv") != std::string::npos) { _csv_id_hack = 0; } if (infile.good()) { int line_nr = 0; while (getline(infile, line)) { cout << "Reading raw data file, line nr: " << line_nr << endl; //cout << line << endl; istringstream iss(line); int a, b; if (!(iss >> a >> b)) { cout << "ERROR" << endl; break; } // error if (a != b && a + _csv_id_hack < N && b + _csv_id_hack < N) { influence[a + _csv_id_hack][b + _csv_id_hack] += 1; // temp inf_values, calculating the total number of iteractions from "i" to "j" received [b + _csv_id_hack] += 1; //cout << "message from " << a + _csv_id_hack << " to " << b + _csv_id_hack << endl; } line_nr++; } infile.close(); cout << "File reading finished successfully." << endl; ofstream outfile ("./experiments-counted/" + dataset_name + "_influenceCounted_" + to_string(N)); if (outfile.good()) { // Influence value calculated as the ratio of iteractions from "i" node to "j" node, to the total number of iteractions to the "j" node. for (int i=0; i<N; i++) { for (int j=0; j<N; j++) { //cout << "Influence values calculations, step: " << i*N+(j+1) << "/" << N*N << endl; if (i == j) { outfile << i << " " << j << " " << -1 << "\n"; influence[i][j] = -1; } else if (influence[i][j] > 0) { if (received[j] != 0) { influence[i][j] = influence[i][j] / received[j]; } else if (influence[i][j] != 0) { cout << "Received array error"; } /*cout << i << "'s influence on " << j << " equals: " << influence[i][j] << endl;*/ outfile << i << " " << j << " " << influence[i][j] << "\n"; } else { influence[i][j] = 0; } } } cout << "Compressed file saved successfully." << endl; outfile.close(); } else { throw std::invalid_argument("readData - File " + dataset_name + " not saved."); } } else { throw std::invalid_argument("readData - File " + dataset_name + " not found."); } return influence; } void defineInfluenceArrayAndVectors (string dataset_name, int N, vector<float>& inf_values, vector<float>& inf_col_ind, vector<float>& inf_row_ptr, string _EXPERIMENT_ID) { //cout << "File reading started." << endl; ifstream infile("./experiments-counted/" + dataset_name + "_influenceCounted_" + to_string(N)); if (infile.good()) { // reading the already calculated influence values int line_nr = 0; string line; float last_a = -1; while (getline(infile, line)) { cout << "Reading influence file, line nr: " << line_nr << endl; istringstream iss(line); float a, b, c; if (!(iss >> a >> b >> c)) { break; } // error if (c != 0) { if (a != last_a) { inf_row_ptr.push_back(inf_values.size()); //cout << "add row ptr: " << inf_values.size() << endl; last_a = a; } inf_values.push_back(c); //cout << "add value: " << c << endl; inf_col_ind.push_back(b); //cout << "add col ind: " << b << endl; } line_nr++; } infile.close(); } else { // calculating influnce values infile.close(); vector <vector<float>> influence = readData(dataset_name, N, _EXPERIMENT_ID); // inf_values, inf_col_ind, inf_row_ptr creation, based on the influence array for (int i=0; i<N; i++) { bool added = false; for (int j=0; j<N; j++) { //cout << "Influence of " << i << " on " << j << " is equal to: " << influence[i][j] << endl; if (influence[i][j] != 0) { if (!added) { inf_row_ptr.push_back(inf_values.size()); //cout << "add row ptr: " << inf_values.size() << endl; added = true; } inf_values.push_back(influence[i][j]); //cout << "add value: " << influence[i][j] << endl; inf_col_ind.push_back(j); //cout << "add col ind: " << j << endl; } } if (!added) { //inf_row_ptr.push_back(-1); } } /*cout << "\n\n size of influence array: " << sizeof(influence) + sizeof(float) * influence.capacity() * influence.capacity(); cout << "\n\n Total size of vectors: " << sizeof(inf_values) + sizeof(float) * inf_values.capacity() + sizeof(inf_col_ind) + sizeof(float) * inf_col_ind.capacity() + sizeof(inf_row_ptr) + sizeof(float) * inf_row_ptr.capacity() << "\n\n";*/ } } void createPopulation (int nrOfIndividuals, int N, int toFind, vector <vector<int>>& population) { // creating random individuals within population for (int i = 0; i<nrOfIndividuals; i++) { vector<int> row; population.push_back(row); cout << "Creating individual " << i << " of " << nrOfIndividuals << endl; for (int j = 0; j<toFind; j++) { int rand_id = rand() % N; bool alreadyAdded = true; while (alreadyAdded) { alreadyAdded = false; for (int k=0; k<population[i].size(); k++) { if (population[i][k] == rand_id) { alreadyAdded = true; rand_id = rand() % N; } } } //cout << "pushing: " << rand_id << endl; population[i].push_back(rand_id); } } } void createPopulationSample (int nrOfIndividuals, int N, int toFind, vector <vector<int>>& population) { // creating one individual - used as a sample e.g. for GPU vs CPU tests vector<int> row; population.push_back(row); for (int x = 0; x<toFind; x++) { population[0].push_back(x); } } void setPopulationFitness (vector<vector<int>>& population, int nrOfIndividuals, int N, int inf_values_size, float& INFLUENCE_THRESHOLD, int STEPS_MAX, vector<float>& inf_values, vector<float>& inf_col_ind, vector<float>& inf_row_ptr, int toFind, vector<int>& fitness, int THREADS_PER_BLOCK) { //bool activeNodesPerIndividual[nrOfIndividuals][N]; bool *dyn_activeNodesPerIndividual = new bool[nrOfIndividuals*N]; for (int i=0; i<nrOfIndividuals; i++) { for (int j=0; j<N; j++) { int index = N * i + j; dyn_activeNodesPerIndividual[index] = false; } for (int j=0; j<toFind; j++) { int index = N * i + population[i][j]; dyn_activeNodesPerIndividual[index] = true; } } int active [nrOfIndividuals]; vector<int> changedIndividuals; for (int i=0; i<nrOfIndividuals; i++) { active[i] = toFind; changedIndividuals.push_back(i); } int step_counter = 0; while (step_counter < STEPS_MAX && changedIndividuals.size() > 0) { //cout << "Step: " << step_counter << " / " << STEPS_MAX << endl; int nrOfChangedIndividuals = changedIndividuals.size(); cout << "nrOfChangedIndividuals " << nrOfChangedIndividuals << endl; F_TIME_START(); InfluenceSpreadPopulationStep (dyn_activeNodesPerIndividual, inf_values, inf_col_ind, inf_row_ptr, N, nrOfChangedIndividuals, inf_values_size, INFLUENCE_THRESHOLD, changedIndividuals); F_TIME_END("host functions"); changedIndividuals.clear(); int curr_active; for (int i=0; i<nrOfIndividuals; i++) { curr_active = 0; for (int j=0; j<N; j++) { int index = N * i + j; if (dyn_activeNodesPerIndividual[index]) { curr_active++; } } if (curr_active != active[i]) { changedIndividuals.push_back(i); } active[i] = curr_active; } step_counter++; } for (int i = 0; i < nrOfIndividuals; i++) { int individualFitness = 0; for (int j = 0; j < N; j++) { int index = N * i + j; if (dyn_activeNodesPerIndividual[index]) { individualFitness++; //cout << "Activated " << j << endl; } } //cout << "individualFitness: " << individualFitness << endl; //cout << "toFind: " << toFind << endl; // acceptable `error` /*if (individualFitness-toFind < 0) { cout << "# Crossover/mutation overlapping" << endl; // can happen because of random crossover and mutation //coutIndividual(population, i); }*/ //cout << "fitness Indiv: " << i << ": " << individualFitness-toFind << endl; fitness.push_back(individualFitness-toFind); } } void performPopulationSelection (vector<vector<int>>& population, int& nrOfIndividuals, int N, int inf_values_size, float& INFLUENCE_THRESHOLD, int& groupSize, int& STEPS_MAX, vector<float>& inf_values, vector<float>& inf_col_ind, vector<float>& inf_row_ptr, int& toFind, int& max_fitness_value, vector<int>& max_fitness_individual, int THREADS_PER_BLOCK) { vector<int> fitness; F_TIME_START(); setPopulationFitness(population, nrOfIndividuals, N, inf_values_size, INFLUENCE_THRESHOLD, STEPS_MAX, inf_values, inf_col_ind, inf_row_ptr, toFind, fitness, THREADS_PER_BLOCK); F_TIME_END("selection - fitness count"); F_TIME_START(); vector<vector<int>> newPopulation; while (newPopulation.size() != population.size()) { vector<int> newGroup; bool alreadyAdded[nrOfIndividuals]; for (int i=0; i<nrOfIndividuals; i++) { alreadyAdded[i] = false; } for (int j=0; j<groupSize; j++) { int randIndiv = rand() % nrOfIndividuals; while (alreadyAdded[randIndiv]) { randIndiv = rand() % nrOfIndividuals; } newGroup.push_back(randIndiv); } int curr_best_fitness = -1; int curr_best_id = -1; int currentFitness = -1; for (int j=0; j<newGroup.size(); j++) { currentFitness = fitness[newGroup[j]]; if (currentFitness > curr_best_fitness) { curr_best_fitness = currentFitness; curr_best_id = j; } } newPopulation.push_back(population[newGroup[curr_best_id]]); if (curr_best_fitness > max_fitness_value) { max_fitness_individual = population[newGroup[curr_best_id]]; max_fitness_value = curr_best_fitness; } } population = newPopulation; F_TIME_END("selection - population swapping"); } // TODO performCrossover on DEVICE (nrOfIndividuals/2 threads (from 0 to nr/2 - 1), ids: id*2, id*2+1 void performCrossover (vector<vector<int>>& population, int& nrOfIndividuals, float& crossover_ratio, int& toFind) { float split_ratio = 0.5; float split_point = split_ratio*toFind; int id_first = -1; int id_second = -1; for (int i=0; i<nrOfIndividuals; i++) { int cross = rand() % 100; if (cross < crossover_ratio * 100) { if (id_first == -1) { id_first = i; } else { id_second = i; } } if (id_second != -1) { for (int j=0; j<split_point; j++) { float temp = population[id_first][j]; population[id_first][j] = population[id_second][j]; population[id_second][j] = temp; } id_first = -1; id_second = -1; } } // allows to node doubling (fitness = -1 can happen) } // TODO performMutation on DEVICE void performMutation (vector<vector<int>>& population, int& nrOfIndividuals, float& mutation_ratio, float& mutation_potency, int& toFind, int N) { for (int i=0; i<nrOfIndividuals; i++) { int mutation = rand() % 100; if (mutation < mutation_ratio * 100) { for (int j=0; j<mutation_potency*toFind; j++) { population[i][rand() % toFind] = rand() % N; } } } // allows to node doubling (fitness = -1 can happen) } bool anyLimitReached(int resultBufferSize, float resultMinDiff, vector<int> &resultsBuffer, int generation, int generationsLimit, float timeLimit, int COMPUTATION_START_TIME, int result, int resultLimit) { int now = duration_cast<milliseconds>(system_clock::now().time_since_epoch()).count(); float diff = (now - COMPUTATION_START_TIME) / 1000.0; bool anyLimit = (resultMinDiff > 0 && generation > resultBufferSize && result < resultsBuffer[0] * (1 + resultMinDiff)) || (generationsLimit > 0 && generation >= generationsLimit) || (resultLimit > 0 && result >= resultLimit) || (timeLimit > 0 && diff >= timeLimit); if (generation > 0) { resultsBuffer.push_back(result); } if (generation > resultBufferSize) { resultsBuffer.erase(resultsBuffer.begin()); //cout << endl << "Current resultsBuffer[0]: " << resultsBuffer[0] << endl; } return anyLimit; } vector<string> getFileNames (string path) { DIR *pDIR; struct dirent *entry; vector<string> fileNames; if (pDIR=opendir(path.c_str())) { while (entry = readdir(pDIR)) { if (strcmp(entry->d_name, ".") != 0 && strcmp(entry->d_name, "..") != 0) { fileNames.push_back(entry->d_name); } } closedir(pDIR); } return fileNames; } /* pearson, spearman */ float mean (vector<float> values) { float sum = 0; int size = values.size(); for (int i = 0; i < size; i++) { sum += values[i]; } return sum / size; } float pearson_numerator (vector<float> A, vector<float> B, float meanA, float meanB) { float numerator = 0; for (int i = 0; i < A.size(); i++) { numerator += (A[i] - meanA) * (B[i] - meanB); } return numerator; } float pearson_denominator (vector<float> A, vector<float> B, float meanA, float meanB) { float denominator1; float denominator1_sum = 0; float denominator2; float denominator2_sum = 0; for (int i = 0; i < A.size(); i++) { denominator1_sum += pow(A[i] - meanA, 2); } for (int i = 0; i < B.size(); i++) { denominator2_sum += pow(B[i] - meanB, 2); } denominator1 = pow(denominator1_sum, 0.5); denominator2 = pow(denominator2_sum, 0.5); if (denominator1 == 0 || denominator2 == 0) cout << endl << endl << "##### ERROR: Denominator equal to 0 - probable cause: all result values are equal" << endl << endl; return denominator1 * denominator2; } float pearson (vector<float> A, vector<float> B) { if (A.size() != B.size()) { cout << "ERROR - wrong vector lengths" << endl; return -1; } float meanA = mean(A); float meanB = mean(B); float numerator = pearson_numerator(A, B, meanA, meanB); float denominator = pearson_denominator(A, B, meanA, meanB); return numerator / denominator; } vector<float> toRank (vector<float> A) { vector<float> sorted = A; sort(sorted.begin(), sorted.end()); vector<float> rank; for (int i = 0; i < A.size(); i++) { vector<int> positions; for (int j = 0; j < A.size(); j++) { if (sorted[j] == A[i]) { positions.push_back(j); } } float sum = 0; float avg; for (int j = 0; j < positions.size(); j++) { sum += positions[j] + 1; } avg = sum / positions.size(); rank.push_back(avg); //rank.push_back(positions[positions.size()-1] + 1); //libreoffice calc rank } /* cout << "Ranking: " << endl; for (int i = 0; i < rank.size(); i++) { cout << rank[i] << ", "; } cout << endl << endl; */ return rank; } float spearman (vector<float> A, vector<float> B) { vector<float> A_ranked = toRank(A); vector<float> B_ranked = toRank(B); return pearson(A_ranked, B_ranked); } int main (int argc, char* argv[]) { srand (time(NULL)); coutGPUStatus(); string _EXPERIMENT_ID = argv[1]; int tests = 100; float timeLimit = 6; //seconds int generationsLimit = 0; //5; int resultLimit = 0; //32; int resultBufferSize = 10; float resultMinDiff = 0; //0.01; bool saveResults = true; bool saveResultsCorrelation = true; float INFLUENCE_THRESHOLD = 0.5; int N_MAX = 1000; int STEPS_MAX = 10000; int TO_FIND_PERCENTAGE = 5; int THREADS_PER_BLOCK = 1024; /* Parameters */ //int groupSize = 20; // 10, 20, 30 // 2, 5, 10, 20, 50 //int nrOfIndividuals = (int)ceil(N/10.0); // N/20, N/10, N/5 // 100, 500 1k, 2k, 10k //float crossover_ratio = 0.7; // 0.5, 0.7, 0.9 // 0.1, 0.3, 0.5, 0.7, 0.9 //float mutation_potency = 0.01; // 0.001, 0.01, 0.1 // 0.01, 0.02, 0.05, 0.1, 0.2 //float mutation_ratio = 0.9; // 0.75, 0.9, 0.95, // 0.1, 0.3, 0.5, 0.7, 0.9 vector<int> a_groupSize {10, 20, 30}; // 10, 20, 30 vector<int> a_nrOfIndividuals {12, 10, 8}; // N/12, N/10, N/8 vector<float> a_crossover_ratio {0.6, 0.7, 0.8}; // 0.6, 0.7, 0.8 vector<float> a_mutation_potency {0.001, 0.01, 0.1}; // 0.001, 0.01, 0.1 vector<float> a_mutation_ratio {0.7, 0.8, 0.9}; // 0.7, 0.8, 0.9 int parameters_sets = a_groupSize.size() * a_nrOfIndividuals.size() * a_crossover_ratio.size() * a_mutation_potency.size() * a_mutation_ratio.size(); vector<string> datasets = getFileNames("./experiments_" + _EXPERIMENT_ID); /* DEBUG */ int debug_nrOfIndividuals; bool debug = true; if (debug) { tests = 10; N_MAX = 1000; THREADS_PER_BLOCK = 1024; debug_nrOfIndividuals = -1; // -1 - the same as if it wasn't a debug mode (so devides N by a_nrOfIndividuals to get indivnr) // tests: 10, debug_nrOfIndividuals: -1, generationsLimit: 1, THREADS_PER_BLOCK: 1024, default parameters, facebook /* 100: 7 in 1ms, 500: 46 in 10ms, 1000: 88 in 53ms */ timeLimit = 0; generationsLimit = 5; // 5 - 80s resultLimit = 0; resultMinDiff = 0; saveResults = true;//false; saveResultsCorrelation = true;//false; a_groupSize = {20}; a_nrOfIndividuals = {8}; a_crossover_ratio = {0.7}; a_mutation_potency = {0.01}; a_mutation_ratio = {0.9}; parameters_sets = a_groupSize.size() * a_nrOfIndividuals.size() * a_crossover_ratio.size() * a_mutation_potency.size() * a_mutation_ratio.size(); //datasets = {"facebook-46952"}; //datasets = {"BA-1000-1-3.csv"}; datasets = {"ER-1000-0.05-10.csv"}; //datasets = getFileNames("./experiments_" + _EXPERIMENT_ID); } /* N = 1000 INDIVIDUALS = 1000 THREADS_PER_BLOCK = 192 1 individuals - 0.056s 10 individuals - 0.081s 100 individuals - 0.265s 1000 individuals - 2.483s THREADS_PER_BLOCK = 512 1000 individuals - 2.423s THREADS_PER_BLOCK = 1024 1000 individuals - 2.481s N = max (~47k for facebook) THREADS_PER_BLOCK = 512 100 individuals - 5.08s */ vector<vector<float>> results; for (int i=0; i<datasets.size(); i++) { vector<float> row(parameters_sets, -1); results.push_back(row); } for (int file_id=0; file_id<datasets.size(); file_id++) { int dataset_id = file_id; //TODO to refactor string dataset_name = datasets[file_id]; stringstream ssname(dataset_name); string token; getline(ssname, token, '-'); getline(ssname, token, '-'); int maxSize = stoi(token); int N = min(N_MAX, maxSize); int toFind = (int)ceil(float(TO_FIND_PERCENTAGE * N) / 100.0); // using ofstream constructors. std::ofstream outfile("results_" + dataset_name + "_" + _EXPERIMENT_ID + "_" + ".xls"); if (saveResults) { outfile << "<?xml version='1.0'?>" << std::endl; outfile << "<Workbook xmlns='urn:schemas-microsoft-com:office:spreadsheet'" << std::endl; outfile << " xmlns:o='urn:schemas-microsoft-com:office:office'" << std::endl; outfile << " xmlns:x='urn:schemas-microsoft-com:office:excel'" << std::endl; outfile << " xmlns:ss='urn:schemas-microsoft-com:office:spreadsheet'" << std::endl; outfile << " xmlns:html='http://www.w3.org/TR/REC-html40'>" << std::endl; outfile << " <Worksheet ss:Name='Sheet1'>" << std::endl; outfile << " <Table>" << std::endl; outfile << " <Row>" << std::endl; outfile << " <Cell><Data ss:Type='String'>Dataset</Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='String'>Test nr</Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='String'>groupSize</Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='String'>nrOfIndividuals</Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='String'>crossover_ratio</Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='String'>mutation_potency</Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='String'>mutation_ratio</Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='String'>Generations</Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='String'>Result</Data></Cell>" << std::endl; outfile << " </Row>" << std::endl; } vector <float> inf_col_ind; vector <float> inf_row_ptr; vector <float> inf_values; defineInfluenceArrayAndVectors(dataset_name, N, inf_values, inf_col_ind, inf_row_ptr, _EXPERIMENT_ID); int inf_values_size = inf_values.size(); int parameters_set = 1; for_each(a_groupSize.begin(), a_groupSize.end(), [&] (int groupSize) { for_each(a_nrOfIndividuals.begin(), a_nrOfIndividuals.end(), [&] (int nrOfIndividualsRaw) { int nrOfIndividuals = (int)ceil(N/nrOfIndividualsRaw); if (debug && debug_nrOfIndividuals != -1) { nrOfIndividuals = debug_nrOfIndividuals; } for_each(a_crossover_ratio.begin(), a_crossover_ratio.end(), [&] (float crossover_ratio) { for_each(a_mutation_potency.begin(), a_mutation_potency.end(), [&] (float mutation_potency) { for_each(a_mutation_ratio.begin(), a_mutation_ratio.end(), [&] (float mutation_ratio) { float testsResultsSum = 0; float testsGenerationsSum = 0; float testsTimeSum = 0; for (int test = 0; test < tests; test++) { vector <int> max_fitness_individual; vector <vector<int>> population; int max_fitness_value = -1; int progressBarLength = 10; int generation = 0; vector<int> resultsBuffer; createPopulation(nrOfIndividuals, N, toFind, population); //createPopulationSample(nrOfIndividuals, N, toFind, population); //coutPopulation(population); int COMPUTATION_START_TIME = duration_cast<milliseconds>(system_clock::now().time_since_epoch()).count(); while (!anyLimitReached(resultBufferSize, resultMinDiff, resultsBuffer, generation, generationsLimit, timeLimit, COMPUTATION_START_TIME, max_fitness_value, resultLimit)) { //coutGPUStatus(); F_TIME_START(); performPopulationSelection(population, nrOfIndividuals, N, inf_values_size, INFLUENCE_THRESHOLD, groupSize, STEPS_MAX, inf_values, inf_col_ind, inf_row_ptr, toFind, max_fitness_value, max_fitness_individual, THREADS_PER_BLOCK); F_TIME_END("selection"); F_TIME_START(); performCrossover(population, nrOfIndividuals, crossover_ratio, toFind); F_TIME_END("crossover"); F_TIME_START(); performMutation(population, nrOfIndividuals, mutation_ratio, mutation_potency, toFind, N); F_TIME_END("mutation"); //coutResult(generation, max_fitness_value); generation++; } int COMPUTATION_END_TIME = duration_cast<milliseconds>(system_clock::now().time_since_epoch()).count(); int COMPUTATION_DURATION = COMPUTATION_END_TIME - COMPUTATION_START_TIME; cout << endl << "[FINISHED] test: " << test+1 << "/" << tests << " for parameters set nr: " << parameters_set << "/" << parameters_sets << " for dataset_id: " << dataset_id+1 << "/" << datasets.size() << " in: " << COMPUTATION_DURATION / 1000.0 << "s"; cout << endl; coutGPUStatus(); cout << endl; if (saveResults) { outfile << " <Row>" << std::endl; outfile << " <Cell><Data ss:Type='Number'>" + to_string(parameters_set) + "</Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='Number'>" + to_string(test+1) + "</Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='Number'>" + to_string(groupSize) + "</Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='Number'>" + to_string(nrOfIndividuals) + "</Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='Number'>" + to_string(crossover_ratio) + "</Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='Number'>" + to_string(mutation_potency) + "</Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='Number'>" + to_string(mutation_ratio) + "</Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='Number'>" + to_string(generation) + "</Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='Number'>" + to_string(max_fitness_value) + "</Data></Cell>" << std::endl; outfile << " </Row>" << std::endl; } //cout << endl << "result " << test+1 << ": " << max_fitness_value << endl; testsResultsSum += max_fitness_value; testsGenerationsSum += generation; testsTimeSum += COMPUTATION_DURATION; /*cout << "Best individual found: " << endl; for (int i=0; i<max_fitness_individual.size(); i++) { cout << max_fitness_individual[i] << ", "; }*/ //cout << endl << endl << "This group can activate " << max_fitness_value << " others"; //cout << endl << "Time elapsed: " << (time2 - COMPUTATION_START_TIME) / 1000.0 << "s" << endl; } // TEST float finalResult = std::round(testsResultsSum / tests); float finalGenerations = std::round(testsGenerationsSum / tests); float finalTime = std::round(testsTimeSum / tests); cout << endl << "Final result avg: " << finalResult << " in avg " << finalTime / 1000.0 << "s" << endl; results[file_id][parameters_set-1] = finalResult; if (saveResults) { outfile << " <Row>" << std::endl; outfile << " <Cell><Data ss:Type='Number'>" + to_string(parameters_set) + "</Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='String'>AVG </Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='Number'>" + to_string(groupSize) + "</Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='Number'>" + to_string(nrOfIndividuals) + "</Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='Number'>" + to_string(crossover_ratio) + "</Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='Number'>" + to_string(mutation_potency) + "</Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='Number'>" + to_string(mutation_ratio) + "</Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='Number'>" + to_string(finalGenerations) + "</Data></Cell>" << std::endl; outfile << " <Cell><Data ss:Type='Number'>" + to_string(finalResult) + "</Data></Cell>" << std::endl; outfile << " </Row>" << std::endl; } parameters_set++; }); }); }); }); }); if (saveResults) { outfile << " </Table>" << std::endl; outfile << " </Worksheet>" << std::endl; outfile << "</Workbook>" << std::endl; } outfile.close(); } cout << endl << endl << "*** RESULTS ***" << endl; for (int i=0; i<datasets.size(); i++) { for (int j=0; j<parameters_sets; j++) { cout << results[i][j] << ", "; } cout << endl; } if (saveResultsCorrelation) { // using ofstream constructors. std::ofstream outfile("results_correlation_" + _EXPERIMENT_ID + "_.xls"); outfile << "<?xml version='1.0'?>" << std::endl; outfile << "<Workbook xmlns='urn:schemas-microsoft-com:office:spreadsheet'" << std::endl; outfile << " xmlns:o='urn:schemas-microsoft-com:office:office'" << std::endl; outfile << " xmlns:x='urn:schemas-microsoft-com:office:excel'" << std::endl; outfile << " xmlns:ss='urn:schemas-microsoft-com:office:spreadsheet'" << std::endl; outfile << " xmlns:html='http://www.w3.org/TR/REC-html40'>" << std::endl; outfile << " <Worksheet ss:Name='Sheet1'>" << std::endl; outfile << " <Table>" << std::endl; outfile << " <Row>" << std::endl; outfile << " <Cell></Cell>" << std::endl; for (int i=0; i<datasets.size(); i++) { outfile << " <Cell><Data ss:Type='String'>" + datasets[i] + "</Data></Cell>" << std::endl; } outfile << " </Row>" << std::endl; for (int i=0; i<datasets.size(); i++) { outfile << " <Row>" << std::endl; outfile << " <Cell><Data ss:Type='String'>" + datasets[i] + "</Data></Cell>" << std::endl; for (int j=0; j<datasets.size(); j++) { if (j > i) { outfile << " <Cell><Data ss:Type='Number'>" + to_string(pearson(results[i], results[j])) + "</Data></Cell>" << std::endl; } else { outfile << " <Cell></Cell>" << std::endl; } } outfile << " </Row>" << std::endl; } outfile << " <Row></Row>" << std::endl; outfile << " <Row></Row>" << std::endl; outfile << " <Row></Row>" << std::endl; outfile << " <Row>" << std::endl; outfile << " <Cell></Cell>" << std::endl; for (int i=0; i<datasets.size(); i++) { outfile << " <Cell><Data ss:Type='String'>" + datasets[i] + "</Data></Cell>" << std::endl; } outfile << " </Row>" << std::endl; for (int i=0; i<datasets.size(); i++) { outfile << " <Row>" << std::endl; outfile << " <Cell><Data ss:Type='String'>" + datasets[i] + "</Data></Cell>" << std::endl; for (int j=0; j<datasets.size(); j++) { if (j > i) { outfile << " <Cell><Data ss:Type='Number'>" + to_string(spearman(results[i], results[j])) + "</Data></Cell>" << std::endl; } else { outfile << " <Cell></Cell>" << std::endl; } } outfile << " </Row>" << std::endl; } outfile << " </Table>" << std::endl; outfile << " </Worksheet>" << std::endl; outfile << "</Workbook>" << std::endl; outfile.close(); } return 0; }
d17c3d9857998b865394082b35d6a6dbfd005ae2.hip
// !!! This is a file automatically generated by hipify!!! #include <stdio.h> #include <math.h> #include <time.h> #include <hip/hip_runtime.h> //Code written by Alan Fleming //CONSTANTS #define MATRIXSIZE 8 #define BLOCKSIZE 4 void mul_matrix_cpu(float *M, float *N, float *P, int width){ for( int i = 0; i<width; i++){ for( int j = 0; j<width; j++){ float sum = 0; for (int k = 0; k < width; k++){ sum += M[i * width + k] * N[k * width + j]; } P[i * width + j] = sum; } } } __global__ void mul_matrix_gpu(float *M, float *N, float *P, int width) { //Assuming matrix is width x width //Assuming tile size = blockdim.x __shared__ float ds_M[BLOCKSIZE * BLOCKSIZE]; __shared__ float ds_N[BLOCKSIZE * BLOCKSIZE]; //Calculate row and collumn int row = blockIdx.y * blockDim.x + threadIdx.y; int col = blockIdx.x * blockDim.x + threadIdx.x; //initialize Pvalue float Pvalue = 0; for (int i = 0; i < (width / blockDim.x); ++i) { //copy global memory into shared memory ds_M[threadIdx.y * blockDim.x + threadIdx.x] = M[row * width + i * blockDim.x + threadIdx.x]; ds_N[threadIdx.y * blockDim.x + threadIdx.x] = N[col + (i * blockDim.x + threadIdx.y) * width]; //ensure all data is copied __syncthreads(); //Preform partial multiplications for(int k = 0; k < blockDim.x; ++k) { Pvalue += ds_M[threadIdx.y * blockDim.x + k] * ds_N[k * blockDim.x + threadIdx.x]; } __syncthreads(); } //Load final product into output memory P[row * width + col] = Pvalue; } bool verify(float *A, float *B, float *C, int width) { //Tolerance to check const float tolerance = 1e-6; for(int i = 0; i < width; ++i){ for(int k = 0; k < width; ++k) { float sum = 0; for(int j = 0; j < width; ++j) { sum += A[i * width + j] * B[j * width + k]; } //get the absolute value of the error for comparison float error = fabs(sum - C[i * width + k])/sum; //Check if error is too large if(error > tolerance) { printf("TEST FAILED\n\n"); return false; } } } printf("TEST PASSED\n\n"); return true; } int main(int argc, char *argv[]){ //allocate system memory for array float *a = (float *)malloc(sizeof(float) * MATRIXSIZE * MATRIXSIZE ); //first matrix float *b = (float *)malloc(sizeof(float) * MATRIXSIZE * MATRIXSIZE ); //second matrix float *c = (float *)malloc(sizeof(float) * MATRIXSIZE * MATRIXSIZE ); //resulting matrix int init =1325; for (int i=0;i<MATRIXSIZE;i++){ for (int j=0;j<MATRIXSIZE;j++){ init= 3125 * init % 6553; a[i * MATRIXSIZE + j]= ( init -1000 ) % 6553; b[i * MATRIXSIZE + j]= init % 251; } } //get cpu start time clock_t t1 = clock(); //run function mul_matrix_cpu(a, b, c, MATRIXSIZE); //get cpu stop time clock_t t2 = clock(); //calculate runtime float cpuTime = (float(t2 - t1)/CLOCKS_PER_SEC*1000); //allocate memory on gpu float *dev_a, *dev_b, *dev_c; hipMalloc((void **)(&dev_a),MATRIXSIZE * MATRIXSIZE * sizeof(float)); hipMalloc((void **)(&dev_b),MATRIXSIZE * MATRIXSIZE * sizeof(float)); hipMalloc((void **)(&dev_c),MATRIXSIZE * MATRIXSIZE * sizeof(float)); //copy matrices to gpu hipMemcpy(dev_a,a, MATRIXSIZE * MATRIXSIZE * sizeof(float),hipMemcpyHostToDevice); hipMemcpy(dev_b,b, MATRIXSIZE * MATRIXSIZE * sizeof(float),hipMemcpyHostToDevice); //calculate dimensions for gpu dim3 dimBlock(BLOCKSIZE,BLOCKSIZE); dim3 dimGrid( ceil(double(MATRIXSIZE)/dimBlock.x), ceil(double(MATRIXSIZE) /dimBlock.y)); //Set up cuda events for recording runtime hipEvent_t start,stop; float gpuTime; hipEventCreate(&start); hipEventCreate(&stop); hipEventRecord(start,0); // do some work on the GPU hipLaunchKernelGGL(( mul_matrix_gpu), dim3(dimGrid), dim3(dimBlock), 0, 0, dev_a, dev_b, dev_c, MATRIXSIZE); //calculate runtime hipEventRecord(stop,0); hipEventSynchronize(stop); hipEventElapsedTime(&gpuTime,start,stop); //destroy cuda events hipEventDestroy(start); hipEventDestroy(stop); //copy memory from device hipMemcpy(c,dev_c, MATRIXSIZE * MATRIXSIZE * sizeof(int),hipMemcpyDeviceToHost); //print results printf("CPU Runtime: %f\nGpu Runtime: %f\nSpeedup: %f\n", (double)cpuTime, (double)gpuTime, double(cpuTime / gpuTime)); //verify results verify(a,b,c, MATRIXSIZE); //free memory free(a); free(b); free(c); hipFree(dev_a); hipFree(dev_b); hipFree(dev_c); //exit program return 0; }
d17c3d9857998b865394082b35d6a6dbfd005ae2.cu
#include <stdio.h> #include <math.h> #include <time.h> #include <cuda.h> //Code written by Alan Fleming //CONSTANTS #define MATRIXSIZE 8 #define BLOCKSIZE 4 void mul_matrix_cpu(float *M, float *N, float *P, int width){ for( int i = 0; i<width; i++){ for( int j = 0; j<width; j++){ float sum = 0; for (int k = 0; k < width; k++){ sum += M[i * width + k] * N[k * width + j]; } P[i * width + j] = sum; } } } __global__ void mul_matrix_gpu(float *M, float *N, float *P, int width) { //Assuming matrix is width x width //Assuming tile size = blockdim.x __shared__ float ds_M[BLOCKSIZE * BLOCKSIZE]; __shared__ float ds_N[BLOCKSIZE * BLOCKSIZE]; //Calculate row and collumn int row = blockIdx.y * blockDim.x + threadIdx.y; int col = blockIdx.x * blockDim.x + threadIdx.x; //initialize Pvalue float Pvalue = 0; for (int i = 0; i < (width / blockDim.x); ++i) { //copy global memory into shared memory ds_M[threadIdx.y * blockDim.x + threadIdx.x] = M[row * width + i * blockDim.x + threadIdx.x]; ds_N[threadIdx.y * blockDim.x + threadIdx.x] = N[col + (i * blockDim.x + threadIdx.y) * width]; //ensure all data is copied __syncthreads(); //Preform partial multiplications for(int k = 0; k < blockDim.x; ++k) { Pvalue += ds_M[threadIdx.y * blockDim.x + k] * ds_N[k * blockDim.x + threadIdx.x]; } __syncthreads(); } //Load final product into output memory P[row * width + col] = Pvalue; } bool verify(float *A, float *B, float *C, int width) { //Tolerance to check const float tolerance = 1e-6; for(int i = 0; i < width; ++i){ for(int k = 0; k < width; ++k) { float sum = 0; for(int j = 0; j < width; ++j) { sum += A[i * width + j] * B[j * width + k]; } //get the absolute value of the error for comparison float error = fabs(sum - C[i * width + k])/sum; //Check if error is too large if(error > tolerance) { printf("TEST FAILED\n\n"); return false; } } } printf("TEST PASSED\n\n"); return true; } int main(int argc, char *argv[]){ //allocate system memory for array float *a = (float *)malloc(sizeof(float) * MATRIXSIZE * MATRIXSIZE ); //first matrix float *b = (float *)malloc(sizeof(float) * MATRIXSIZE * MATRIXSIZE ); //second matrix float *c = (float *)malloc(sizeof(float) * MATRIXSIZE * MATRIXSIZE ); //resulting matrix int init =1325; for (int i=0;i<MATRIXSIZE;i++){ for (int j=0;j<MATRIXSIZE;j++){ init= 3125 * init % 6553; a[i * MATRIXSIZE + j]= ( init -1000 ) % 6553; b[i * MATRIXSIZE + j]= init % 251; } } //get cpu start time clock_t t1 = clock(); //run function mul_matrix_cpu(a, b, c, MATRIXSIZE); //get cpu stop time clock_t t2 = clock(); //calculate runtime float cpuTime = (float(t2 - t1)/CLOCKS_PER_SEC*1000); //allocate memory on gpu float *dev_a, *dev_b, *dev_c; cudaMalloc((void **)(&dev_a),MATRIXSIZE * MATRIXSIZE * sizeof(float)); cudaMalloc((void **)(&dev_b),MATRIXSIZE * MATRIXSIZE * sizeof(float)); cudaMalloc((void **)(&dev_c),MATRIXSIZE * MATRIXSIZE * sizeof(float)); //copy matrices to gpu cudaMemcpy(dev_a,a, MATRIXSIZE * MATRIXSIZE * sizeof(float),cudaMemcpyHostToDevice); cudaMemcpy(dev_b,b, MATRIXSIZE * MATRIXSIZE * sizeof(float),cudaMemcpyHostToDevice); //calculate dimensions for gpu dim3 dimBlock(BLOCKSIZE,BLOCKSIZE); dim3 dimGrid( ceil(double(MATRIXSIZE)/dimBlock.x), ceil(double(MATRIXSIZE) /dimBlock.y)); //Set up cuda events for recording runtime cudaEvent_t start,stop; float gpuTime; cudaEventCreate(&start); cudaEventCreate(&stop); cudaEventRecord(start,0); // do some work on the GPU mul_matrix_gpu<<<dimGrid, dimBlock>>>(dev_a, dev_b, dev_c, MATRIXSIZE); //calculate runtime cudaEventRecord(stop,0); cudaEventSynchronize(stop); cudaEventElapsedTime(&gpuTime,start,stop); //destroy cuda events cudaEventDestroy(start); cudaEventDestroy(stop); //copy memory from device cudaMemcpy(c,dev_c, MATRIXSIZE * MATRIXSIZE * sizeof(int),cudaMemcpyDeviceToHost); //print results printf("CPU Runtime: %f\nGpu Runtime: %f\nSpeedup: %f\n", (double)cpuTime, (double)gpuTime, double(cpuTime / gpuTime)); //verify results verify(a,b,c, MATRIXSIZE); //free memory free(a); free(b); free(c); cudaFree(dev_a); cudaFree(dev_b); cudaFree(dev_c); //exit program return 0; }
df6902fe65fc0f1f002679a86665a91d8815905e.hip
// !!! This is a file automatically generated by hipify!!! #include <stdio.h> #include <hip/hip_runtime.h> #include <stdlib.h> #include <hip/driver_types.h> void matrixAdd(float *,float *,float *,int,int); __global__ void matrixAddKernel(float *,float *,float *,int); int main(int argc, char * argv[]){ int i,j,nrow,ncol;//,rows,columns,i; float *A, *B, *C; nrow = atoi(argv[1]); ncol = atoi(argv[2]); if((nrow != ncol) || argc != 3){ printf("Number of rows should be equal to number of columns\n"); exit(EXIT_FAILURE); } int size = nrow * ncol * sizeof(float); A = (float *)malloc(size); B = (float *)malloc(size); C = (float *)malloc(size); srand(time(NULL)); for(i=0;i<nrow;i++) { for(j=0;j<ncol;j++) { B[i*ncol+j] = ((float)rand())/RAND_MAX; C[i*ncol+j] = ((float)rand())/RAND_MAX; printf("B: %f - C: %f\n", B[i*ncol+j],C[i*ncol+j]); } } matrixAdd(A,B,C,nrow,ncol); FILE *output = fopen("matrix_output.txt", "w"); if(output == NULL){ printf("A file wasn't created or located\n"); exit(EXIT_FAILURE); } for(i=0;i<nrow;i++) { for(j=0;j<ncol;j++) { fprintf(output,"%f ",A[i*ncol+j]); } fprintf(output,"\n"); } free(A); free(B); free(C); return 0; } void matrixAdd(float * h_A,float * h_B, float * h_C, int nrow,int ncol){ int size = nrow * ncol * sizeof(float); float *d_A, *d_B, *d_C; hipError_t error = hipMalloc((void **)&d_B, size); if(error != hipSuccess){ printf("%s in %s at line %d \n", hipGetErrorString(error), __FILE__ ,__LINE__); exit(EXIT_FAILURE); } hipMemcpy(d_B,h_B,size,hipMemcpyHostToDevice); error = hipMalloc((void **)&d_C, size); if(error != hipSuccess){ printf("%s in %s at line %d \n", hipGetErrorString(error), __FILE__ ,__LINE__); exit(EXIT_FAILURE); } hipMemcpy(d_C,h_C,size,hipMemcpyHostToDevice); error = hipMalloc((void **)&d_A, size); if(error != hipSuccess){ printf("%s in %s at line %d \n", hipGetErrorString(error), __FILE__ ,__LINE__); exit(EXIT_FAILURE); } //run kernel function with 32 threads for each block hipLaunchKernelGGL(( matrixAddKernel), dim3(ceil(ncol/32.0)), dim3(32), 0, 0, d_A,d_B,d_C,ncol); hipMemcpy(h_A,d_A,size,hipMemcpyDeviceToHost); hipFree(d_A); hipFree(d_B); hipFree(d_C); } __global__ void matrixAddKernel(float * A,float * B, float * C, int n){ int j = threadIdx.x + blockDim.x * blockIdx.x; if(j < n){ int i; for(i=0;i<n;i++){ A[j+n*i] = B[j+n*i] + C[j+n*i]; } } }
df6902fe65fc0f1f002679a86665a91d8815905e.cu
#include <stdio.h> #include <cuda.h> #include <stdlib.h> #include <driver_types.h> void matrixAdd(float *,float *,float *,int,int); __global__ void matrixAddKernel(float *,float *,float *,int); int main(int argc, char * argv[]){ int i,j,nrow,ncol;//,rows,columns,i; float *A, *B, *C; nrow = atoi(argv[1]); ncol = atoi(argv[2]); if((nrow != ncol) || argc != 3){ printf("Number of rows should be equal to number of columns\n"); exit(EXIT_FAILURE); } int size = nrow * ncol * sizeof(float); A = (float *)malloc(size); B = (float *)malloc(size); C = (float *)malloc(size); srand(time(NULL)); for(i=0;i<nrow;i++) { for(j=0;j<ncol;j++) { B[i*ncol+j] = ((float)rand())/RAND_MAX; C[i*ncol+j] = ((float)rand())/RAND_MAX; printf("B: %f - C: %f\n", B[i*ncol+j],C[i*ncol+j]); } } matrixAdd(A,B,C,nrow,ncol); FILE *output = fopen("matrix_output.txt", "w"); if(output == NULL){ printf("A file wasn't created or located\n"); exit(EXIT_FAILURE); } for(i=0;i<nrow;i++) { for(j=0;j<ncol;j++) { fprintf(output,"%f ",A[i*ncol+j]); } fprintf(output,"\n"); } free(A); free(B); free(C); return 0; } void matrixAdd(float * h_A,float * h_B, float * h_C, int nrow,int ncol){ int size = nrow * ncol * sizeof(float); float *d_A, *d_B, *d_C; cudaError_t error = cudaMalloc((void **)&d_B, size); if(error != cudaSuccess){ printf("%s in %s at line %d \n", cudaGetErrorString(error), __FILE__ ,__LINE__); exit(EXIT_FAILURE); } cudaMemcpy(d_B,h_B,size,cudaMemcpyHostToDevice); error = cudaMalloc((void **)&d_C, size); if(error != cudaSuccess){ printf("%s in %s at line %d \n", cudaGetErrorString(error), __FILE__ ,__LINE__); exit(EXIT_FAILURE); } cudaMemcpy(d_C,h_C,size,cudaMemcpyHostToDevice); error = cudaMalloc((void **)&d_A, size); if(error != cudaSuccess){ printf("%s in %s at line %d \n", cudaGetErrorString(error), __FILE__ ,__LINE__); exit(EXIT_FAILURE); } //run kernel function with 32 threads for each block matrixAddKernel<<<ceil(ncol/32.0), 32>>>(d_A,d_B,d_C,ncol); cudaMemcpy(h_A,d_A,size,cudaMemcpyDeviceToHost); cudaFree(d_A); cudaFree(d_B); cudaFree(d_C); } __global__ void matrixAddKernel(float * A,float * B, float * C, int n){ int j = threadIdx.x + blockDim.x * blockIdx.x; if(j < n){ int i; for(i=0;i<n;i++){ A[j+n*i] = B[j+n*i] + C[j+n*i]; } } }
e68e601cd7fe5935058db221fa277d132c4302be.hip
// !!! This is a file automatically generated by hipify!!! #include "imgproc.cuh" #include <hip/hip_runtime.h> #include <hip/hip_runtime.h> #include <device_launch_parameters.h> #include <hip/device_functions.h> #include <texture_fetch_functions.h> #include <hip/hip_runtime_api.h> #include <hip/device_functions.h> const int block_x = 16; const int block_y = 16; const int blocksize = 64; __constant__ int width; __constant__ int height; texture<uchar, 1, hipReadModeElementType> texRef; __device__ void isort(uchar* lhs, int N) { int i, j; uchar temp; for (i = 1; i < N; ++i) { j = i - 1; temp = lhs[i]; while (j > -1 && lhs[j] > temp) { lhs[j + 1] = lhs[j]; --j; } lhs[j + 1] = temp; } } __global__ void cuda_median_fil(uchar* src, uchar* dst) { int x = threadIdx.x; int y = threadIdx.y; int index_x = x + blockIdx.x * (blockDim.x - 2); int index_y = y + blockIdx.y * blockDim.y + 1; if (index_x < width && index_y < height - 1) { __shared__ uchar temp[block_y * 3][block_x]; int top, mid, down, change; top = tex1Dfetch(texRef, index_x + (index_y - 1) * width); mid = tex1Dfetch(texRef, index_x + index_y * width); down = tex1Dfetch(texRef, index_x + (index_y + 1) * width); if (top < mid) { change = mid; mid = top; top = change; } if (top < down) { change = down; down = top; top = change; } if (mid < down) { change = down; down = mid; mid = change; } int index = 3 * y; temp[index][x] = top; temp[index + 1][x] = mid; temp[index + 2][x] = down; __syncthreads(); if (x > 0 && x < block_x - 1) { uchar box[3][3]; for (int i = 0; i < 3; ++i) { for (int j = -1; j < 2; ++j) { box[i][j] = temp[index + i][x + j]; } } for (int i = 0; i < 3; ++i) { isort(&box[i][0], 3); } if (box[0][0] < box[1][1]) { change = box[0][0]; box[0][0] = box[1][1]; box[1][1] = change; } if (box[0][0] < box[2][2]) { change = box[0][0]; box[0][0] = box[2][2]; box[2][2] = change; } if (box[1][1] < box[2][2]) dst[index_x + index_y * width] = box[2][2]; else dst[index_x + index_y * width] = box[1][1]; } } } void medianGPU(Mat src, Mat& dst) { if (src.type() != CV_8UC1) { src.convertTo(src, CV_8UC1); } copyMakeBorder(src, src, 1, 1, 1, 1, BORDER_CONSTANT, 0); int size = src.rows * src.cols; int count = size * sizeof(uchar); uchar* dsrc, *ddst, *hdst; hdst = (uchar*)malloc(count); memset(hdst, 0, count); if (!hdst) { cerr << "host memory allocated failed!" << endl; return; } //allocate device memory hipMalloc((void**)&dsrc, count); hipMalloc((void**)&ddst, count); //copy host to device hipMemcpy(dsrc, src.data, count, hipMemcpyHostToDevice); //bind to texture reference hipChannelFormatDesc channelDesc = hipCreateChannelDesc<uchar>(); hipBindTexture(0, &texRef, dsrc, &channelDesc, count); //width and height hipMemcpyToSymbol((const void*)&width, (const void*)&src.cols, sizeof(int), 0, hipMemcpyHostToDevice); hipMemcpyToSymbol((const void*)&height, (const void*)&src.rows, sizeof(int), 0, hipMemcpyHostToDevice); //kernel function to do median filter dim3 block(block_x, block_y); dim3 grid((src.cols + block_x - 2) / (block_x - 2), (src.rows + block_y - 2) / block_y); hipEvent_t start, stop; hipEventCreate(&start); hipEventCreate(&stop); hipEventRecord(start, 0); cuda_median_fil << <grid, block >> >(dsrc, ddst); hipEventRecord(stop, 0); hipEventSynchronize(stop); float elapsed_time; hipEventElapsedTime(&elapsed_time, start, stop); cout << "elapsed time is " << elapsed_time << " ms" << endl; //unbind memory from texturereference hipUnbindTexture(&texRef); //memcpy from device to host hipMemcpy(hdst, ddst, count, hipMemcpyDeviceToHost); //copy to dst dst = Mat_<uchar>(src.rows, src.cols, hdst).clone(); //release memory hipFree(dsrc); hipFree(ddst); free(hdst); }
e68e601cd7fe5935058db221fa277d132c4302be.cu
#include "imgproc.cuh" #include <cuda_runtime.h> #include <cuda.h> #include <device_launch_parameters.h> #include <device_functions.h> #include <texture_fetch_functions.h> #include <cuda_runtime_api.h> #include <device_functions.h> const int block_x = 16; const int block_y = 16; const int blocksize = 64; __constant__ int width; __constant__ int height; texture<uchar, 1, cudaReadModeElementType> texRef; __device__ void isort(uchar* lhs, int N) { int i, j; uchar temp; for (i = 1; i < N; ++i) { j = i - 1; temp = lhs[i]; while (j > -1 && lhs[j] > temp) { lhs[j + 1] = lhs[j]; --j; } lhs[j + 1] = temp; } } __global__ void cuda_median_fil(uchar* src, uchar* dst) { int x = threadIdx.x; int y = threadIdx.y; int index_x = x + blockIdx.x * (blockDim.x - 2); int index_y = y + blockIdx.y * blockDim.y + 1; if (index_x < width && index_y < height - 1) { __shared__ uchar temp[block_y * 3][block_x]; int top, mid, down, change; top = tex1Dfetch(texRef, index_x + (index_y - 1) * width); mid = tex1Dfetch(texRef, index_x + index_y * width); down = tex1Dfetch(texRef, index_x + (index_y + 1) * width); if (top < mid) { change = mid; mid = top; top = change; } if (top < down) { change = down; down = top; top = change; } if (mid < down) { change = down; down = mid; mid = change; } int index = 3 * y; temp[index][x] = top; temp[index + 1][x] = mid; temp[index + 2][x] = down; __syncthreads(); if (x > 0 && x < block_x - 1) { uchar box[3][3]; for (int i = 0; i < 3; ++i) { for (int j = -1; j < 2; ++j) { box[i][j] = temp[index + i][x + j]; } } for (int i = 0; i < 3; ++i) { isort(&box[i][0], 3); } if (box[0][0] < box[1][1]) { change = box[0][0]; box[0][0] = box[1][1]; box[1][1] = change; } if (box[0][0] < box[2][2]) { change = box[0][0]; box[0][0] = box[2][2]; box[2][2] = change; } if (box[1][1] < box[2][2]) dst[index_x + index_y * width] = box[2][2]; else dst[index_x + index_y * width] = box[1][1]; } } } void medianGPU(Mat src, Mat& dst) { if (src.type() != CV_8UC1) { src.convertTo(src, CV_8UC1); } copyMakeBorder(src, src, 1, 1, 1, 1, BORDER_CONSTANT, 0); int size = src.rows * src.cols; int count = size * sizeof(uchar); uchar* dsrc, *ddst, *hdst; hdst = (uchar*)malloc(count); memset(hdst, 0, count); if (!hdst) { cerr << "host memory allocated failed!" << endl; return; } //allocate device memory cudaMalloc((void**)&dsrc, count); cudaMalloc((void**)&ddst, count); //copy host to device cudaMemcpy(dsrc, src.data, count, cudaMemcpyHostToDevice); //bind to texture reference cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<uchar>(); cudaBindTexture(0, &texRef, dsrc, &channelDesc, count); //width and height cudaMemcpyToSymbol((const void*)&width, (const void*)&src.cols, sizeof(int), 0, cudaMemcpyHostToDevice); cudaMemcpyToSymbol((const void*)&height, (const void*)&src.rows, sizeof(int), 0, cudaMemcpyHostToDevice); //kernel function to do median filter dim3 block(block_x, block_y); dim3 grid((src.cols + block_x - 2) / (block_x - 2), (src.rows + block_y - 2) / block_y); cudaEvent_t start, stop; cudaEventCreate(&start); cudaEventCreate(&stop); cudaEventRecord(start, 0); cuda_median_fil << <grid, block >> >(dsrc, ddst); cudaEventRecord(stop, 0); cudaEventSynchronize(stop); float elapsed_time; cudaEventElapsedTime(&elapsed_time, start, stop); cout << "elapsed time is " << elapsed_time << " ms" << endl; //unbind memory from texturereference cudaUnbindTexture(&texRef); //memcpy from device to host cudaMemcpy(hdst, ddst, count, cudaMemcpyDeviceToHost); //copy to dst dst = Mat_<uchar>(src.rows, src.cols, hdst).clone(); //release memory cudaFree(dsrc); cudaFree(ddst); free(hdst); }
fef5a1767a4b8f83e2a66b0a67e8213bd79dae18.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "includes.h" __global__ void DeviceMultiply(double* left, double* right, double* result, int left_rows, int left_cols, int right_cols) { int i = threadIdx.y; int j = threadIdx.x; int x_stride = blockDim.x; int y_stride = blockDim.y; __shared__ double temp[16][16]; for (int y_offset = 0; i + y_offset < left_rows; y_offset += y_stride) { for (int x_offset = 0; j + x_offset < right_cols; x_offset += x_stride) { temp[i][j] = 0.0; for (int k = 0; k < left_cols; ++k) { int left_idx = (y_offset + i) * left_cols + k; int right_idx = k * right_cols + x_offset + j; temp[i][j] += left[left_idx] * right[right_idx]; } int result_idx = (y_offset + i) * right_cols + x_offset + j; result[result_idx] = temp[i][j]; } } }
fef5a1767a4b8f83e2a66b0a67e8213bd79dae18.cu
#include "includes.h" __global__ void DeviceMultiply(double* left, double* right, double* result, int left_rows, int left_cols, int right_cols) { int i = threadIdx.y; int j = threadIdx.x; int x_stride = blockDim.x; int y_stride = blockDim.y; __shared__ double temp[16][16]; for (int y_offset = 0; i + y_offset < left_rows; y_offset += y_stride) { for (int x_offset = 0; j + x_offset < right_cols; x_offset += x_stride) { temp[i][j] = 0.0; for (int k = 0; k < left_cols; ++k) { int left_idx = (y_offset + i) * left_cols + k; int right_idx = k * right_cols + x_offset + j; temp[i][j] += left[left_idx] * right[right_idx]; } int result_idx = (y_offset + i) * right_cols + x_offset + j; result[result_idx] = temp[i][j]; } } }
b37bbe6ac418f4878362984459f7e46faa576cfa.hip
// !!! This is a file automatically generated by hipify!!! #include <stdio.h> #include <stdlib.h> #include <hip/hip_runtime.h> #include <hip/hip_runtime.h> __global__ void kernel() { } void cudamain() { hipLaunchKernelGGL(( kernel), dim3(1),dim3(1), 0, 0, ); return; }
b37bbe6ac418f4878362984459f7e46faa576cfa.cu
#include <stdio.h> #include <stdlib.h> #include <cuda.h> #include <cuda_runtime.h> __global__ void kernel() { } void cudamain() { kernel<<<1,1>>>(); return; }
c4f4ceaee8649cd91ce2fdd60e471109394a70ac.hip
// !!! This is a file automatically generated by hipify!!! // CIS565 CUDA Raytracer: A parallel raytracer for Patrick Cozzi's CIS565: GPU Computing at the University of Pennsylvania // Written by Yining Karl Li, Copyright (c) 2012 University of Pennsylvania // This file includes code from: // Rob Farber for CUDA-GL interop, from CUDA Supercomputing For The Masses: http://www.drdobbs.com/architecture-and-design/cuda-supercomputing-for-the-masses-part/222600097 // Peter Kutz and Yining Karl Li's GPU Pathtracer: http://gpupathtracer.blogspot.com/ // Yining Karl Li's TAKUA Render, a massively parallel pathtracing renderer: http://www.yiningkarlli.com #include <stdio.h> #include <hip/hip_runtime.h> #include <cmath> #include "sceneStructs.h" #include "glm/glm.hpp" #include "utilities.h" #include "raytraceKernel.h" #include "intersections.h" #include "interactions.h" #include <vector> #if TORCH_HIP_VERSION >= 5000 #include <helper_math.h> #else #include <cutil_math.h> #endif #define M_PI 3.14159265359f enum { DEBUG_COLLISIONS, DEBUG_SHADOWS, DEBUG_REFLECTIONS, DEBUG_DIFFUSE, DEBUG_NORMALS, DEBUG_ALL }; void checkCUDAError(const char *msg) { hipError_t err = hipGetLastError(); if( hipSuccess != err) { fprintf(stderr, "Cuda error: %s: %s.\n", msg, hipGetErrorString( err) ); exit(EXIT_FAILURE); } } //LOOK: This function demonstrates how to use thrust for random number generation on the GPU! //Function that generates static. __host__ __device__ glm::vec3 generateRandomNumberFromThread(glm::vec2 resolution, float time, int x, int y){ int index = x + (y * resolution.x); thrust::default_random_engine rng(hash(index*time)); thrust::uniform_real_distribution<float> u01(0,1); return glm::vec3((float) u01(rng), (float) u01(rng), (float) u01(rng)); } //TODO: IMPLEMENT THIS FUNCTION //Function that does the initial raycast from the camera __host__ __device__ ray raycastFromCameraKernel(glm::vec2 resolution, float time, int x, int y, glm::vec3 eye, glm::vec3 view, glm::vec3 up, glm::vec2 fov){ // Create ray using pinhole camera projection float px_size_x = tan( fov.x * (PI/180.0) ); float px_size_y = tan( fov.y * (PI/180.0) ); ray r; r.origin = eye; r.direction = view + (-2*px_size_x*x/resolution.x + px_size_x)*glm::cross( view, up ) \ + (-2*px_size_y*y/resolution.y + px_size_y)*up; return r; } __host__ __device__ glm::vec3 computeGeomColor( int min_intersection_ind, staticGeom* geoms, material* materials, ray r, float intersection_dist, glm::vec3 intersection_normal, glm::vec3 intersection_point ) { // Set color equal to material color int mat_id = geoms[min_intersection_ind].materialid; //colors[index] = materials[mat_id].color; // Calculate Phong Lighting // Start with arbritrarily chosen light source, lets say from the camera glm::vec3 debug_light_source(0.0, 0.0, 0.0); glm::vec3 light_vector = glm::normalize(debug_light_source - intersection_point); glm::vec3 viewing_vector = glm::normalize( r.origin - intersection_point ); glm::vec3 reflection_vector = 2*glm::dot( light_vector, intersection_normal )*intersection_normal - light_vector; // Calculate Phong Reflection Model ... this is mad inefficient at the moment //float m_d = 1.0; //? //float s_d = 1.0; //? //float c_d = s_d*m_d*max( glm::dot( intersection_normal, light_vector ), 0.0 ); //float c_d = powf( max( glm::dot( light_vector, viewing_vector ), 0.0 ), materials[mat_id].specularExponent ); float ks = 1.0; // specular reflection constant float kd = 0.5; // diffuse reflection constant float ka = 0.5; // ambient reflection constant // Ambient Component glm::vec3 ambient(1.0, 1.0, 1.0); // Diffuse Component //glm::vec3 diffuseIntensity( 1.0, 1.0, 1.0 ); Not needed at the moment float diffuse = max(glm::dot( light_vector, intersection_normal ), 0.0); // Specular Component float specularExponent = materials[mat_id].specularExponent; // alpha, shinyiness glm::vec3 specColor = materials[mat_id].specularColor; glm::vec3 specular( 0.0, 0.0, 0.0 ); if ( specularExponent > 0.0 ) { specular = specColor*powf( max( glm::dot( reflection_vector, viewing_vector ), 0.0 ), specularExponent ); } // Full illumination glm::vec3 Illumination = ka*ambient + kd*diffuse + ks*specular; return Illumination*materials[mat_id].color; } // Compute Light Contribution to object __host__ __device__ glm::vec3 computeLightContribution( float shadowContribution, material mat, ray current_ray, ray light_ray, glm::vec3 intersection_normal, glm::vec3 intersection_point ) { glm::vec3 light_vector = light_ray.direction; glm::vec3 viewing_vector = glm::normalize( current_ray.origin - intersection_point ); glm::vec3 reflection_vector = 2*glm::dot( light_vector, intersection_normal )*intersection_normal - light_vector; // Temporarily float ka = 0.5; // ambient float ks = 1.0; // specular reflection constant float kd = 0.5; // diffuse reflection constant glm::vec3 ambient( 1.0, 1.0, 1.0 ); float diffuse = max(glm::dot( light_vector, intersection_normal ), 0.0); // Specular Component float specularExponent = mat.specularExponent; // alpha, shinyiness glm::vec3 specColor = mat.specularColor; glm::vec3 specular( 0.0, 0.0, 0.0 ); if ( specularExponent > 0.0 ) { specular = specColor*powf( max( glm::dot( reflection_vector, viewing_vector ), 0.0 ), specularExponent ); } // Full illumination glm::vec3 illumination = ka*ambient + shadowContribution*kd*diffuse + shadowContribution*ks*specular; return illumination*mat.color; } // Find closest intersection __host__ __device__ int closestIntersection( ray r, staticGeom* geoms, int numberOfGeoms, float& intersection_dist, glm::vec3& intersection_normal, glm::vec3& intersection_point ) { // Check for intersections. This has way too many branches :/ int min_intersection_ind = -1; float intersection_dist_new; glm::vec3 intersection_point_new; glm::vec3 intersection_normal_new; for (int i=0; i < numberOfGeoms; ++i ) { // Check for intersection with Sphere if ( geoms[i].type == SPHERE ) { intersection_dist_new = sphereIntersectionTest(geoms[i], r, intersection_point_new, intersection_normal_new); } else if ( geoms[i].type == CUBE ) { intersection_dist_new = boxIntersectionTest(geoms[i], r, intersection_point_new, intersection_normal_new); } else if ( geoms[i].type == MESH ) { // TODO } if (intersection_dist_new != -1 ) { // If new distance is closer than previously seen one then use the new one if ( intersection_dist_new < intersection_dist || intersection_dist == -1 ) { intersection_dist = intersection_dist_new; intersection_point = intersection_point_new; intersection_normal = intersection_normal_new; min_intersection_ind = i; } } } return min_intersection_ind; } // Check if ray to light is occluded by an object // This is going to be super inefficient, for each geom check if its a light if so trace a ray to // it and see if that intersects with any other geoms. /* __host__ __device__ int isShadowRay( glm::vec3 light, ray &light_ray, staticGeom* geoms, int numberOfGeoms, material* materials, int numberOfMaterials, glm::vec3 intersection_point ) { // DOESN'T WORK YET!?!? // Ray to light light_ray.origin = intersection_point; int obj_ind = -1; glm::vec3 light_vector; // Unfortunately I don't really care about these, I should probably do a refactor glm::vec3 obstacle_intersection_normal; glm::vec3 obstacle_intersection_point; float obstacle_intersection_dist; // Closest light index int light_index = -1; light_ray.direction = glm::normalize(light - intersection_point); ray intersection_ray; intersection_ray.origin = intersection_point; intersection_ray.direction = light_ray.direction; obj_ind = closestIntersection( intersection_ray, geoms, numberOfGeoms, obstacle_intersection_dist, obstacle_intersection_normal, obstacle_intersection_point ); return obj_ind; } */ __host__ __device__ float isShadowRay( ray light_ray, int intersection_geom_ind, staticGeom* geoms, int numberOfGeoms, material* materials, int numberOfMaterials ) { float shadow_contribution = 1.0; int min_intersection_ind = -1; float intersection_dist = -1; glm::vec3 intersection_point; glm::vec3 intersection_normal; float intersection_dist_new; glm::vec3 intersection_point_new; glm::vec3 intersection_normal_new; for (int i=0; i < numberOfGeoms; ++i ) { if ( i == intersection_geom_ind ) { continue; } // Check for intersection with Sphere if ( geoms[i].type == SPHERE ) { intersection_dist_new = sphereIntersectionTest(geoms[i], light_ray, intersection_point_new, intersection_normal_new); } else if ( geoms[i].type == CUBE ) { intersection_dist_new = boxIntersectionTest(geoms[i], light_ray, intersection_point_new, intersection_normal_new); } else if ( geoms[i].type == MESH ) { // TODO } if (intersection_dist_new != -1 ) { // If new distance is closer than previously seen one then use the new one if ( intersection_dist_new < intersection_dist || intersection_dist == -1 ) { intersection_dist = intersection_dist_new; intersection_point = intersection_point_new; intersection_normal = intersection_normal_new; min_intersection_ind = i; shadow_contribution = 0.0; } } } return shadow_contribution; } // Calculate light ray __host__ __device__ ray computeLightRay( glm::vec3 light, glm::vec3 intersection_point ) { ray light_ray; light_ray.origin = intersection_point; light_ray.direction = glm::normalize(light - intersection_point); return light_ray; } // Calculate reflected ray __host__ __device__ ray computeReflectedRay( ray currentRay, glm::vec3 intersection_normal, glm::vec3 intersection_point ) { ray reflected_ray; reflected_ray.origin = intersection_point; reflected_ray.direction = -2*glm::dot(currentRay.direction, intersection_normal)*intersection_normal + currentRay.direction; return reflected_ray; } //Kernel that blacks out a given image buffer __global__ void clearImage(glm::vec2 resolution, glm::vec3* image){ int x = (blockIdx.x * blockDim.x) + threadIdx.x; int y = (blockIdx.y * blockDim.y) + threadIdx.y; int index = x + (y * resolution.x); if(x<=resolution.x && y<=resolution.y){ image[index] = glm::vec3(0,0,0); } } //Kernel that writes the image to the OpenGL PBO directly. __global__ void sendImageToPBO(uchar4* PBOpos, glm::vec2 resolution, glm::vec3* image, int iterations){ int x = (blockIdx.x * blockDim.x) + threadIdx.x; int y = (blockIdx.y * blockDim.y) + threadIdx.y; int index = x + (y * resolution.x); float scl = 1.0f/((float)iterations); if(x<=resolution.x && y<=resolution.y){ glm::vec3 color; color.x = scl*image[index].x*255.0; color.y = scl*image[index].y*255.0; color.z = scl*image[index].z*255.0; if(color.x>255){ color.x = 255; } if(color.y>255){ color.y = 255; } if(color.z>255){ color.z = 255; } // Each thread writes one pixel location in the texture (textel) PBOpos[index].w = 0; PBOpos[index].x = color.x; PBOpos[index].y = color.y; PBOpos[index].z = color.z; } } //TODO: IMPLEMENT THIS FUNCTION //Core raytracer kernel __global__ void raytraceRay(glm::vec2 resolution, float time, cameraData cam, int rayDepth, glm::vec3* colors, staticGeom* geoms, int numberOfGeoms, material* materials, int numberOfMaterials, int debugMode ){ int x = (blockIdx.x * blockDim.x) + threadIdx.x; int y = (blockIdx.y * blockDim.y) + threadIdx.y; int index = x + (y * resolution.x); int obj_index = -1; float intersection_dist = -1; // where is NaN / Infinity? dumb shit glm::vec3 intersection_point; glm::vec3 intersection_normal; glm::vec3 intersection_point_new; glm::vec3 intersection_normal_new; // Ambient Component //glm::vec3 ambient(0.2, 0.2, 0.5); glm::vec3 ambient; //glm::vec3 light( 10.0, 0.0, 0.0 ); //glm::vec3 light(-10.0, 0.0, -2.0); glm::vec3 light( 0.0, 2.0, 8.0 ); glm::vec3 light_sample; ray light_ray; //glm::vec3 color(0.0, 0.0, 0.0); glm::vec3 color = ambient; glm::vec3 colorContribution(1.0,1.0,1.0); float shadowContribution = 1.0; if((x<=resolution.x && y<=resolution.y)){ // Calculate initial ray as projected from camera ray currentRay = raycastFromCameraKernel( cam.resolution, time, x, y, cam.position, cam.view, cam.up, cam.fov ); ray lightRay; // Iteratively trace rays until depth is reached int depth; if ( debugMode == DEBUG_ALL || debugMode == DEBUG_REFLECTIONS ) { depth = 4; } else { depth = 1; } for (int i=0; i<depth; ++i) { obj_index = closestIntersection( currentRay, geoms, numberOfGeoms, intersection_dist, intersection_normal, intersection_point ); if (obj_index == -1) { break; } light_sample = getRandomPointOnLight( light, 0.25, index*time ); lightRay = computeLightRay( light_sample, intersection_point ); shadowContribution = isShadowRay( lightRay, obj_index, geoms, numberOfGeoms, materials, numberOfMaterials ); if ( debugMode == DEBUG_ALL ) { // All? Debug Mode //int mat_id = isShadowRay( light, lightRay, geoms, numberOfGeoms, materials, numberOfMaterials, intersection_point ); color += colorContribution*computeLightContribution( shadowContribution, materials[geoms[obj_index].materialid], currentRay, lightRay, intersection_normal, intersection_point ); colorContribution *= materials[geoms[obj_index].materialid].absorptionCoefficient; // Calculate reflected rays if ( materials[geoms[obj_index].materialid].hasReflective ) { currentRay = computeReflectedRay( currentRay, intersection_normal, intersection_point ); } } else if ( debugMode == DEBUG_SHADOWS ) { // Shadows debug mode float diffuse = max(glm::dot( lightRay.direction, intersection_normal ), 0.0); ambient = glm::vec3( 0.25, 0.25, 0.25 ); color = shadowContribution*glm::vec3(1.0,1.0,1.0)*diffuse + ambient; } else if ( debugMode == DEBUG_DIFFUSE ) { float diffuse = glm::dot( lightRay.direction, intersection_normal ); color = 0.5f*glm::vec3(1.0,1.0,1.0)*diffuse + 0.5f; } else if ( debugMode == DEBUG_COLLISIONS ) { // Collisions debug mode color = materials[geoms[obj_index].materialid].color; } else if ( debugMode == DEBUG_NORMALS ) { color = 0.5f*intersection_normal + 0.5f; //color = 0.5f*glm::vec3(0.0, 0.0, -1.0) + 0.5f; //color = 0.5f*lightRay.direction + 0.5f; } } //colors[index] = generateRandomNumberFromThread(resolution, time, x, y); // Accumulate in image buffer //colors[index] = color; colors[index] += color; } } //TODO: FINISH THIS FUNCTION // Wrapper for the __global__ call that sets up the kernel calls and does a ton of memory management void cudaRaytraceCore(uchar4* PBOpos, camera* renderCam, int frame, int iterations, material* materials, int numberOfMaterials, geom* geoms, int numberOfGeoms){ int traceDepth = 1; //determines how many bounces the raytracer traces // set up crucial magic int tileSize = 8; dim3 threadsPerBlock(tileSize, tileSize); dim3 fullBlocksPerGrid((int)ceil(float(renderCam->resolution.x)/float(tileSize)), (int)ceil(float(renderCam->resolution.y)/float(tileSize))); //send image to GPU glm::vec3* cudaimage = NULL; hipMalloc((void**)&cudaimage, (int)renderCam->resolution.x*(int)renderCam->resolution.y*sizeof(glm::vec3)); hipMemcpy( cudaimage, renderCam->image, (int)renderCam->resolution.x*(int)renderCam->resolution.y*sizeof(glm::vec3), hipMemcpyHostToDevice); //package geometry and materials and sent to GPU staticGeom* geomList = new staticGeom[numberOfGeoms]; for(int i=0; i<numberOfGeoms; i++){ staticGeom newStaticGeom; newStaticGeom.type = geoms[i].type; newStaticGeom.materialid = geoms[i].materialid; newStaticGeom.translation = geoms[i].translations[frame]; newStaticGeom.rotation = geoms[i].rotations[frame]; newStaticGeom.scale = geoms[i].scales[frame]; newStaticGeom.transform = geoms[i].transforms[frame]; newStaticGeom.inverseTransform = geoms[i].inverseTransforms[frame]; geomList[i] = newStaticGeom; } staticGeom* cudageoms = NULL; hipMalloc((void**)&cudageoms, numberOfGeoms*sizeof(staticGeom)); hipMemcpy( cudageoms, geomList, numberOfGeoms*sizeof(staticGeom), hipMemcpyHostToDevice); material* cudamaterials = NULL; hipMalloc((void**)&cudamaterials, numberOfMaterials*sizeof(material)); hipMemcpy( cudamaterials, materials, numberOfMaterials*sizeof(material), hipMemcpyHostToDevice); //package camera cameraData cam; cam.resolution = renderCam->resolution; cam.position = renderCam->positions[frame]; cam.view = renderCam->views[frame]; cam.up = renderCam->ups[frame]; cam.fov = renderCam->fov; //int debugMode = DEBUG_COLLISIONS; int debugMode = DEBUG_ALL; //int debugMode = DEBUG_DIFFUSE; //int debugMode = DEBUG_NORMALS; //kernel launches hipLaunchKernelGGL(( raytraceRay), dim3(fullBlocksPerGrid), dim3(threadsPerBlock), 0, 0, renderCam->resolution, (float)iterations, cam, traceDepth, cudaimage, cudageoms, numberOfGeoms, cudamaterials, numberOfMaterials, debugMode); hipLaunchKernelGGL(( sendImageToPBO), dim3(fullBlocksPerGrid), dim3(threadsPerBlock), 0, 0, PBOpos, renderCam->resolution, cudaimage, iterations); //retrieve image from GPU hipMemcpy( renderCam->image, cudaimage, (int)renderCam->resolution.x*(int)renderCam->resolution.y*sizeof(glm::vec3), hipMemcpyDeviceToHost); //free up stuff, or else we'll leak memory like a madman hipFree( cudaimage ); hipFree( cudageoms ); delete geomList; // make certain the kernel has completed hipDeviceSynchronize(); hipError_t errorNum = hipPeekAtLastError(); if ( errorNum != hipSuccess ) { printf ("Cuda error -- %s\n", hipGetErrorString(errorNum)); } checkCUDAError("Kernel failed!"); }
c4f4ceaee8649cd91ce2fdd60e471109394a70ac.cu
// CIS565 CUDA Raytracer: A parallel raytracer for Patrick Cozzi's CIS565: GPU Computing at the University of Pennsylvania // Written by Yining Karl Li, Copyright (c) 2012 University of Pennsylvania // This file includes code from: // Rob Farber for CUDA-GL interop, from CUDA Supercomputing For The Masses: http://www.drdobbs.com/architecture-and-design/cuda-supercomputing-for-the-masses-part/222600097 // Peter Kutz and Yining Karl Li's GPU Pathtracer: http://gpupathtracer.blogspot.com/ // Yining Karl Li's TAKUA Render, a massively parallel pathtracing renderer: http://www.yiningkarlli.com #include <stdio.h> #include <cuda.h> #include <cmath> #include "sceneStructs.h" #include "glm/glm.hpp" #include "utilities.h" #include "raytraceKernel.h" #include "intersections.h" #include "interactions.h" #include <vector> #if CUDA_VERSION >= 5000 #include <helper_math.h> #else #include <cutil_math.h> #endif #define M_PI 3.14159265359f enum { DEBUG_COLLISIONS, DEBUG_SHADOWS, DEBUG_REFLECTIONS, DEBUG_DIFFUSE, DEBUG_NORMALS, DEBUG_ALL }; void checkCUDAError(const char *msg) { cudaError_t err = cudaGetLastError(); if( cudaSuccess != err) { fprintf(stderr, "Cuda error: %s: %s.\n", msg, cudaGetErrorString( err) ); exit(EXIT_FAILURE); } } //LOOK: This function demonstrates how to use thrust for random number generation on the GPU! //Function that generates static. __host__ __device__ glm::vec3 generateRandomNumberFromThread(glm::vec2 resolution, float time, int x, int y){ int index = x + (y * resolution.x); thrust::default_random_engine rng(hash(index*time)); thrust::uniform_real_distribution<float> u01(0,1); return glm::vec3((float) u01(rng), (float) u01(rng), (float) u01(rng)); } //TODO: IMPLEMENT THIS FUNCTION //Function that does the initial raycast from the camera __host__ __device__ ray raycastFromCameraKernel(glm::vec2 resolution, float time, int x, int y, glm::vec3 eye, glm::vec3 view, glm::vec3 up, glm::vec2 fov){ // Create ray using pinhole camera projection float px_size_x = tan( fov.x * (PI/180.0) ); float px_size_y = tan( fov.y * (PI/180.0) ); ray r; r.origin = eye; r.direction = view + (-2*px_size_x*x/resolution.x + px_size_x)*glm::cross( view, up ) \ + (-2*px_size_y*y/resolution.y + px_size_y)*up; return r; } __host__ __device__ glm::vec3 computeGeomColor( int min_intersection_ind, staticGeom* geoms, material* materials, ray r, float intersection_dist, glm::vec3 intersection_normal, glm::vec3 intersection_point ) { // Set color equal to material color int mat_id = geoms[min_intersection_ind].materialid; //colors[index] = materials[mat_id].color; // Calculate Phong Lighting // Start with arbritrarily chosen light source, lets say from the camera glm::vec3 debug_light_source(0.0, 0.0, 0.0); glm::vec3 light_vector = glm::normalize(debug_light_source - intersection_point); glm::vec3 viewing_vector = glm::normalize( r.origin - intersection_point ); glm::vec3 reflection_vector = 2*glm::dot( light_vector, intersection_normal )*intersection_normal - light_vector; // Calculate Phong Reflection Model ... this is mad inefficient at the moment //float m_d = 1.0; //? //float s_d = 1.0; //? //float c_d = s_d*m_d*max( glm::dot( intersection_normal, light_vector ), 0.0 ); //float c_d = powf( max( glm::dot( light_vector, viewing_vector ), 0.0 ), materials[mat_id].specularExponent ); float ks = 1.0; // specular reflection constant float kd = 0.5; // diffuse reflection constant float ka = 0.5; // ambient reflection constant // Ambient Component glm::vec3 ambient(1.0, 1.0, 1.0); // Diffuse Component //glm::vec3 diffuseIntensity( 1.0, 1.0, 1.0 ); Not needed at the moment float diffuse = max(glm::dot( light_vector, intersection_normal ), 0.0); // Specular Component float specularExponent = materials[mat_id].specularExponent; // alpha, shinyiness glm::vec3 specColor = materials[mat_id].specularColor; glm::vec3 specular( 0.0, 0.0, 0.0 ); if ( specularExponent > 0.0 ) { specular = specColor*powf( max( glm::dot( reflection_vector, viewing_vector ), 0.0 ), specularExponent ); } // Full illumination glm::vec3 Illumination = ka*ambient + kd*diffuse + ks*specular; return Illumination*materials[mat_id].color; } // Compute Light Contribution to object __host__ __device__ glm::vec3 computeLightContribution( float shadowContribution, material mat, ray current_ray, ray light_ray, glm::vec3 intersection_normal, glm::vec3 intersection_point ) { glm::vec3 light_vector = light_ray.direction; glm::vec3 viewing_vector = glm::normalize( current_ray.origin - intersection_point ); glm::vec3 reflection_vector = 2*glm::dot( light_vector, intersection_normal )*intersection_normal - light_vector; // Temporarily float ka = 0.5; // ambient float ks = 1.0; // specular reflection constant float kd = 0.5; // diffuse reflection constant glm::vec3 ambient( 1.0, 1.0, 1.0 ); float diffuse = max(glm::dot( light_vector, intersection_normal ), 0.0); // Specular Component float specularExponent = mat.specularExponent; // alpha, shinyiness glm::vec3 specColor = mat.specularColor; glm::vec3 specular( 0.0, 0.0, 0.0 ); if ( specularExponent > 0.0 ) { specular = specColor*powf( max( glm::dot( reflection_vector, viewing_vector ), 0.0 ), specularExponent ); } // Full illumination glm::vec3 illumination = ka*ambient + shadowContribution*kd*diffuse + shadowContribution*ks*specular; return illumination*mat.color; } // Find closest intersection __host__ __device__ int closestIntersection( ray r, staticGeom* geoms, int numberOfGeoms, float& intersection_dist, glm::vec3& intersection_normal, glm::vec3& intersection_point ) { // Check for intersections. This has way too many branches :/ int min_intersection_ind = -1; float intersection_dist_new; glm::vec3 intersection_point_new; glm::vec3 intersection_normal_new; for (int i=0; i < numberOfGeoms; ++i ) { // Check for intersection with Sphere if ( geoms[i].type == SPHERE ) { intersection_dist_new = sphereIntersectionTest(geoms[i], r, intersection_point_new, intersection_normal_new); } else if ( geoms[i].type == CUBE ) { intersection_dist_new = boxIntersectionTest(geoms[i], r, intersection_point_new, intersection_normal_new); } else if ( geoms[i].type == MESH ) { // TODO } if (intersection_dist_new != -1 ) { // If new distance is closer than previously seen one then use the new one if ( intersection_dist_new < intersection_dist || intersection_dist == -1 ) { intersection_dist = intersection_dist_new; intersection_point = intersection_point_new; intersection_normal = intersection_normal_new; min_intersection_ind = i; } } } return min_intersection_ind; } // Check if ray to light is occluded by an object // This is going to be super inefficient, for each geom check if its a light if so trace a ray to // it and see if that intersects with any other geoms. /* __host__ __device__ int isShadowRay( glm::vec3 light, ray &light_ray, staticGeom* geoms, int numberOfGeoms, material* materials, int numberOfMaterials, glm::vec3 intersection_point ) { // DOESN'T WORK YET!?!? // Ray to light light_ray.origin = intersection_point; int obj_ind = -1; glm::vec3 light_vector; // Unfortunately I don't really care about these, I should probably do a refactor glm::vec3 obstacle_intersection_normal; glm::vec3 obstacle_intersection_point; float obstacle_intersection_dist; // Closest light index int light_index = -1; light_ray.direction = glm::normalize(light - intersection_point); ray intersection_ray; intersection_ray.origin = intersection_point; intersection_ray.direction = light_ray.direction; obj_ind = closestIntersection( intersection_ray, geoms, numberOfGeoms, obstacle_intersection_dist, obstacle_intersection_normal, obstacle_intersection_point ); return obj_ind; } */ __host__ __device__ float isShadowRay( ray light_ray, int intersection_geom_ind, staticGeom* geoms, int numberOfGeoms, material* materials, int numberOfMaterials ) { float shadow_contribution = 1.0; int min_intersection_ind = -1; float intersection_dist = -1; glm::vec3 intersection_point; glm::vec3 intersection_normal; float intersection_dist_new; glm::vec3 intersection_point_new; glm::vec3 intersection_normal_new; for (int i=0; i < numberOfGeoms; ++i ) { if ( i == intersection_geom_ind ) { continue; } // Check for intersection with Sphere if ( geoms[i].type == SPHERE ) { intersection_dist_new = sphereIntersectionTest(geoms[i], light_ray, intersection_point_new, intersection_normal_new); } else if ( geoms[i].type == CUBE ) { intersection_dist_new = boxIntersectionTest(geoms[i], light_ray, intersection_point_new, intersection_normal_new); } else if ( geoms[i].type == MESH ) { // TODO } if (intersection_dist_new != -1 ) { // If new distance is closer than previously seen one then use the new one if ( intersection_dist_new < intersection_dist || intersection_dist == -1 ) { intersection_dist = intersection_dist_new; intersection_point = intersection_point_new; intersection_normal = intersection_normal_new; min_intersection_ind = i; shadow_contribution = 0.0; } } } return shadow_contribution; } // Calculate light ray __host__ __device__ ray computeLightRay( glm::vec3 light, glm::vec3 intersection_point ) { ray light_ray; light_ray.origin = intersection_point; light_ray.direction = glm::normalize(light - intersection_point); return light_ray; } // Calculate reflected ray __host__ __device__ ray computeReflectedRay( ray currentRay, glm::vec3 intersection_normal, glm::vec3 intersection_point ) { ray reflected_ray; reflected_ray.origin = intersection_point; reflected_ray.direction = -2*glm::dot(currentRay.direction, intersection_normal)*intersection_normal + currentRay.direction; return reflected_ray; } //Kernel that blacks out a given image buffer __global__ void clearImage(glm::vec2 resolution, glm::vec3* image){ int x = (blockIdx.x * blockDim.x) + threadIdx.x; int y = (blockIdx.y * blockDim.y) + threadIdx.y; int index = x + (y * resolution.x); if(x<=resolution.x && y<=resolution.y){ image[index] = glm::vec3(0,0,0); } } //Kernel that writes the image to the OpenGL PBO directly. __global__ void sendImageToPBO(uchar4* PBOpos, glm::vec2 resolution, glm::vec3* image, int iterations){ int x = (blockIdx.x * blockDim.x) + threadIdx.x; int y = (blockIdx.y * blockDim.y) + threadIdx.y; int index = x + (y * resolution.x); float scl = 1.0f/((float)iterations); if(x<=resolution.x && y<=resolution.y){ glm::vec3 color; color.x = scl*image[index].x*255.0; color.y = scl*image[index].y*255.0; color.z = scl*image[index].z*255.0; if(color.x>255){ color.x = 255; } if(color.y>255){ color.y = 255; } if(color.z>255){ color.z = 255; } // Each thread writes one pixel location in the texture (textel) PBOpos[index].w = 0; PBOpos[index].x = color.x; PBOpos[index].y = color.y; PBOpos[index].z = color.z; } } //TODO: IMPLEMENT THIS FUNCTION //Core raytracer kernel __global__ void raytraceRay(glm::vec2 resolution, float time, cameraData cam, int rayDepth, glm::vec3* colors, staticGeom* geoms, int numberOfGeoms, material* materials, int numberOfMaterials, int debugMode ){ int x = (blockIdx.x * blockDim.x) + threadIdx.x; int y = (blockIdx.y * blockDim.y) + threadIdx.y; int index = x + (y * resolution.x); int obj_index = -1; float intersection_dist = -1; // where is NaN / Infinity? dumb shit glm::vec3 intersection_point; glm::vec3 intersection_normal; glm::vec3 intersection_point_new; glm::vec3 intersection_normal_new; // Ambient Component //glm::vec3 ambient(0.2, 0.2, 0.5); glm::vec3 ambient; //glm::vec3 light( 10.0, 0.0, 0.0 ); //glm::vec3 light(-10.0, 0.0, -2.0); glm::vec3 light( 0.0, 2.0, 8.0 ); glm::vec3 light_sample; ray light_ray; //glm::vec3 color(0.0, 0.0, 0.0); glm::vec3 color = ambient; glm::vec3 colorContribution(1.0,1.0,1.0); float shadowContribution = 1.0; if((x<=resolution.x && y<=resolution.y)){ // Calculate initial ray as projected from camera ray currentRay = raycastFromCameraKernel( cam.resolution, time, x, y, cam.position, cam.view, cam.up, cam.fov ); ray lightRay; // Iteratively trace rays until depth is reached int depth; if ( debugMode == DEBUG_ALL || debugMode == DEBUG_REFLECTIONS ) { depth = 4; } else { depth = 1; } for (int i=0; i<depth; ++i) { obj_index = closestIntersection( currentRay, geoms, numberOfGeoms, intersection_dist, intersection_normal, intersection_point ); if (obj_index == -1) { break; } light_sample = getRandomPointOnLight( light, 0.25, index*time ); lightRay = computeLightRay( light_sample, intersection_point ); shadowContribution = isShadowRay( lightRay, obj_index, geoms, numberOfGeoms, materials, numberOfMaterials ); if ( debugMode == DEBUG_ALL ) { // All? Debug Mode //int mat_id = isShadowRay( light, lightRay, geoms, numberOfGeoms, materials, numberOfMaterials, intersection_point ); color += colorContribution*computeLightContribution( shadowContribution, materials[geoms[obj_index].materialid], currentRay, lightRay, intersection_normal, intersection_point ); colorContribution *= materials[geoms[obj_index].materialid].absorptionCoefficient; // Calculate reflected rays if ( materials[geoms[obj_index].materialid].hasReflective ) { currentRay = computeReflectedRay( currentRay, intersection_normal, intersection_point ); } } else if ( debugMode == DEBUG_SHADOWS ) { // Shadows debug mode float diffuse = max(glm::dot( lightRay.direction, intersection_normal ), 0.0); ambient = glm::vec3( 0.25, 0.25, 0.25 ); color = shadowContribution*glm::vec3(1.0,1.0,1.0)*diffuse + ambient; } else if ( debugMode == DEBUG_DIFFUSE ) { float diffuse = glm::dot( lightRay.direction, intersection_normal ); color = 0.5f*glm::vec3(1.0,1.0,1.0)*diffuse + 0.5f; } else if ( debugMode == DEBUG_COLLISIONS ) { // Collisions debug mode color = materials[geoms[obj_index].materialid].color; } else if ( debugMode == DEBUG_NORMALS ) { color = 0.5f*intersection_normal + 0.5f; //color = 0.5f*glm::vec3(0.0, 0.0, -1.0) + 0.5f; //color = 0.5f*lightRay.direction + 0.5f; } } //colors[index] = generateRandomNumberFromThread(resolution, time, x, y); // Accumulate in image buffer //colors[index] = color; colors[index] += color; } } //TODO: FINISH THIS FUNCTION // Wrapper for the __global__ call that sets up the kernel calls and does a ton of memory management void cudaRaytraceCore(uchar4* PBOpos, camera* renderCam, int frame, int iterations, material* materials, int numberOfMaterials, geom* geoms, int numberOfGeoms){ int traceDepth = 1; //determines how many bounces the raytracer traces // set up crucial magic int tileSize = 8; dim3 threadsPerBlock(tileSize, tileSize); dim3 fullBlocksPerGrid((int)ceil(float(renderCam->resolution.x)/float(tileSize)), (int)ceil(float(renderCam->resolution.y)/float(tileSize))); //send image to GPU glm::vec3* cudaimage = NULL; cudaMalloc((void**)&cudaimage, (int)renderCam->resolution.x*(int)renderCam->resolution.y*sizeof(glm::vec3)); cudaMemcpy( cudaimage, renderCam->image, (int)renderCam->resolution.x*(int)renderCam->resolution.y*sizeof(glm::vec3), cudaMemcpyHostToDevice); //package geometry and materials and sent to GPU staticGeom* geomList = new staticGeom[numberOfGeoms]; for(int i=0; i<numberOfGeoms; i++){ staticGeom newStaticGeom; newStaticGeom.type = geoms[i].type; newStaticGeom.materialid = geoms[i].materialid; newStaticGeom.translation = geoms[i].translations[frame]; newStaticGeom.rotation = geoms[i].rotations[frame]; newStaticGeom.scale = geoms[i].scales[frame]; newStaticGeom.transform = geoms[i].transforms[frame]; newStaticGeom.inverseTransform = geoms[i].inverseTransforms[frame]; geomList[i] = newStaticGeom; } staticGeom* cudageoms = NULL; cudaMalloc((void**)&cudageoms, numberOfGeoms*sizeof(staticGeom)); cudaMemcpy( cudageoms, geomList, numberOfGeoms*sizeof(staticGeom), cudaMemcpyHostToDevice); material* cudamaterials = NULL; cudaMalloc((void**)&cudamaterials, numberOfMaterials*sizeof(material)); cudaMemcpy( cudamaterials, materials, numberOfMaterials*sizeof(material), cudaMemcpyHostToDevice); //package camera cameraData cam; cam.resolution = renderCam->resolution; cam.position = renderCam->positions[frame]; cam.view = renderCam->views[frame]; cam.up = renderCam->ups[frame]; cam.fov = renderCam->fov; //int debugMode = DEBUG_COLLISIONS; int debugMode = DEBUG_ALL; //int debugMode = DEBUG_DIFFUSE; //int debugMode = DEBUG_NORMALS; //kernel launches raytraceRay<<<fullBlocksPerGrid, threadsPerBlock>>>(renderCam->resolution, (float)iterations, cam, traceDepth, cudaimage, cudageoms, numberOfGeoms, cudamaterials, numberOfMaterials, debugMode); sendImageToPBO<<<fullBlocksPerGrid, threadsPerBlock>>>(PBOpos, renderCam->resolution, cudaimage, iterations); //retrieve image from GPU cudaMemcpy( renderCam->image, cudaimage, (int)renderCam->resolution.x*(int)renderCam->resolution.y*sizeof(glm::vec3), cudaMemcpyDeviceToHost); //free up stuff, or else we'll leak memory like a madman cudaFree( cudaimage ); cudaFree( cudageoms ); delete geomList; // make certain the kernel has completed cudaThreadSynchronize(); cudaError_t errorNum = cudaPeekAtLastError(); if ( errorNum != cudaSuccess ) { printf ("Cuda error -- %s\n", cudaGetErrorString(errorNum)); } checkCUDAError("Kernel failed!"); }
d75404c2246eb9433535b69b2e97efb39244a238.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" /* -- MAGMA (version 1.6.1) -- Univ. of Tennessee, Knoxville Univ. of California, Berkeley Univ. of Colorado, Denver @date January 2015 @generated from dgemm_tesla_T_T.cu normal d -> s, Fri Jan 30 19:00:10 2015 */ #include "common_magma.h" #include "commonblas_s.h" /* * saxpy computes c += alpha*b, where b and c are 16-element vectors. */ static __device__ void saxpy( float alpha, const float* __restrict__ b, float* __restrict__ c ) { c[0] += alpha * b[0]; c[1] += alpha * b[1]; c[2] += alpha * b[2]; c[3] += alpha * b[3]; c[4] += alpha * b[4]; c[5] += alpha * b[5]; c[6] += alpha * b[6]; c[7] += alpha * b[7]; c[8] += alpha * b[8]; c[9] += alpha * b[9]; c[10] += alpha * b[10]; c[11] += alpha * b[11]; c[12] += alpha * b[12]; c[13] += alpha * b[13]; c[14] += alpha * b[14]; c[15] += alpha * b[15]; } /** Purpose: -------- This routine computes C = alpha * A^T*B^T + beta * C B is put into shared memory Parameters Used: blk_M=64 blk_N=16 blk_K=16 nthd_x=16 nthd_y=4 This code should run for any matrix size. This kernel outperforms cuda-2.2 when m, n, k >= 512 @ingroup magma_sblas3 ********************************************************************/ __global__ void sgemm_kernel_T_T_64_16_16_16_4( float* __restrict__ C, const float* __restrict__ A, const float* __restrict__ B, int m, int n, int k, int lda, int ldb, int ldc, float alpha, float beta ) { __shared__ float Bb[16][17]; const int tx = threadIdx.x; const int ty = threadIdx.y; int ibx = blockIdx.x * 64; int iby = blockIdx.y * 16; const int idt = ty * 16 + tx; /* Taking care of invalid memory access in dimension M */ if ( ibx + idt >= m ) A += ibx + 0; else A += ibx + idt; C += __mul24(ibx + idt, ldc) + iby; B += tx + __mul24(iby, ldb); /* These variables guide the threads to avoid invalid memory accesses in dimension N Simply it's the stopping criterion. or you can say that access index wraps around to a valid memory location. */ int s1=0, s2=4*ldb, s3=8*ldb, s4=12*ldb; if ( iby+ty >= n ) { s1=1; s2=0*ldb; s3=0*ldb; s4=0*ldb; } else if ( iby+ty+4 >= n ) { s1=0; s2=0*ldb; s3=0*ldb; s4=0*ldb; } else if ( iby+ty+8 >= n ) { s1=0; s2=4*ldb; s3=0*ldb; s4=0*ldb; } else if ( iby+ty+12 >= n ) { s1=0; s2=4*ldb; s3=8*ldb; s4=0*ldb; } if ( s1 == 0 ) B += __mul24(ty, ldb); else s1 = 0; const float *Bend = B + k - k % 16; float Cb[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; if ( k > 15 ) { do { float Ab[4] = { A[0], A[lda], A[2*lda], A[3*lda] }; Bb[tx][ty+0 ] = B[s1]; Bb[tx][ty+4 ] = B[s2]; Bb[tx][ty+8 ] = B[s3]; Bb[tx][ty+12] = B[s4]; __syncthreads(); A += 4 * lda; saxpy( Ab[0], &Bb[0][0], Cb ); Ab[0] = A[0*lda]; saxpy( Ab[1], &Bb[1][0], Cb ); Ab[1] = A[1*lda]; saxpy( Ab[2], &Bb[2][0], Cb ); Ab[2] = A[2*lda]; saxpy( Ab[3], &Bb[3][0], Cb ); Ab[3] = A[3*lda]; A += 4 * lda; saxpy( Ab[0], &Bb[4][0], Cb ); Ab[0] = A[0*lda]; saxpy( Ab[1], &Bb[5][0], Cb ); Ab[1] = A[1*lda]; saxpy( Ab[2], &Bb[6][0], Cb ); Ab[2] = A[2*lda]; saxpy( Ab[3], &Bb[7][0], Cb ); Ab[3] = A[3*lda]; A += 4 * lda; saxpy( Ab[0], &Bb[8][0], Cb ); Ab[0] = A[0*lda]; saxpy( Ab[1], &Bb[9][0], Cb ); Ab[1] = A[1*lda]; saxpy( Ab[2], &Bb[10][0], Cb ); Ab[2] = A[2*lda]; saxpy( Ab[3], &Bb[11][0], Cb ); Ab[3] = A[3*lda]; A += 4 * lda; saxpy( Ab[0], &Bb[12][0], Cb ); saxpy( Ab[1], &Bb[13][0], Cb ); saxpy( Ab[2], &Bb[14][0], Cb ); saxpy( Ab[3], &Bb[15][0], Cb ); B += 16; __syncthreads(); } while (B < Bend); } /* Common sub expression elimination. */ ibx = ibx + idt - m; /* remembering k dimension */ ldb = m = k; /* k changed to support the generic case and reuse valuable registers */ k = k % 16; m -= k; /* Here we are taking care of k % dim_k portions */ if ( k != 0 ) { /* Avoid Invalid Memory access in dimension K If some thread enters this if ( ) block first access to B should be valid as K isn't divisible by blk_K Note that dimension N has been taken care of by s1, s2, s3, s4 But depending upon K and thread index tx, some memory access may be still invalid, so take care of them now by setting s1, s2, s3, s4 = 0 B might have been advanced in the previous loop, take care of that, this is about right bottom corner. */ if ( m + tx >= ldb ) { s1 = s2 = s3 = s4 = 0; B -= tx; } Bb[tx][ty+0 ] = B[s1]; Bb[tx][ty+4 ] = B[s2]; Bb[tx][ty+8 ] = B[s3]; Bb[tx][ty+12] = B[s4]; __syncthreads(); for(int i=0; i < k; i++) { saxpy( A[0], &Bb[i+0][0], Cb ); A += lda; } } /* Now taking care of dimension M, N that doesnt fit into blocks */ if ( (iby + 16) >= n ) { lda = n - iby; } else { lda = 16; } if ( ibx >= 0 ) lda = 0; else lda = lda; switch(lda) { case 16: C[0] = alpha * Cb[0] + beta * C[0]; C[1] = alpha * Cb[1] + beta * C[1]; C[2] = alpha * Cb[2] + beta * C[2]; C[3] = alpha * Cb[3] + beta * C[3]; C[4] = alpha * Cb[4] + beta * C[4]; C[5] = alpha * Cb[5] + beta * C[5]; C[6] = alpha * Cb[6] + beta * C[6]; C[7] = alpha * Cb[7] + beta * C[7]; C[8] = alpha * Cb[8] + beta * C[8]; C[9] = alpha * Cb[9] + beta * C[9]; C[10] = alpha * Cb[10] + beta * C[10]; C[11] = alpha * Cb[11] + beta * C[11]; C[12] = alpha * Cb[12] + beta * C[12]; C[13] = alpha * Cb[13] + beta * C[13]; C[14] = alpha * Cb[14] + beta * C[14]; C[15] = alpha * Cb[15] + beta * C[15]; break; case 15: C[0] = alpha * Cb[0] + beta * C[0]; C[1] = alpha * Cb[1] + beta * C[1]; C[2] = alpha * Cb[2] + beta * C[2]; C[3] = alpha * Cb[3] + beta * C[3]; C[4] = alpha * Cb[4] + beta * C[4]; C[5] = alpha * Cb[5] + beta * C[5]; C[6] = alpha * Cb[6] + beta * C[6]; C[7] = alpha * Cb[7] + beta * C[7]; C[8] = alpha * Cb[8] + beta * C[8]; C[9] = alpha * Cb[9] + beta * C[9]; C[10] = alpha * Cb[10] + beta * C[10]; C[11] = alpha * Cb[11] + beta * C[11]; C[12] = alpha * Cb[12] + beta * C[12]; C[13] = alpha * Cb[13] + beta * C[13]; C[14] = alpha * Cb[14] + beta * C[14]; break; case 14: C[0] = alpha * Cb[0] + beta * C[0]; C[1] = alpha * Cb[1] + beta * C[1]; C[2] = alpha * Cb[2] + beta * C[2]; C[3] = alpha * Cb[3] + beta * C[3]; C[4] = alpha * Cb[4] + beta * C[4]; C[5] = alpha * Cb[5] + beta * C[5]; C[6] = alpha * Cb[6] + beta * C[6]; C[7] = alpha * Cb[7] + beta * C[7]; C[8] = alpha * Cb[8] + beta * C[8]; C[9] = alpha * Cb[9] + beta * C[9]; C[10] = alpha * Cb[10] + beta * C[10]; C[11] = alpha * Cb[11] + beta * C[11]; C[12] = alpha * Cb[12] + beta * C[12]; C[13] = alpha * Cb[13] + beta * C[13]; break; case 13: C[0] = alpha * Cb[0] + beta * C[0]; C[1] = alpha * Cb[1] + beta * C[1]; C[2] = alpha * Cb[2] + beta * C[2]; C[3] = alpha * Cb[3] + beta * C[3]; C[4] = alpha * Cb[4] + beta * C[4]; C[5] = alpha * Cb[5] + beta * C[5]; C[6] = alpha * Cb[6] + beta * C[6]; C[7] = alpha * Cb[7] + beta * C[7]; C[8] = alpha * Cb[8] + beta * C[8]; C[9] = alpha * Cb[9] + beta * C[9]; C[10] = alpha * Cb[10] + beta * C[10]; C[11] = alpha * Cb[11] + beta * C[11]; C[12] = alpha * Cb[12] + beta * C[12]; break; case 12: C[0] = alpha * Cb[0] + beta * C[0]; C[1] = alpha * Cb[1] + beta * C[1]; C[2] = alpha * Cb[2] + beta * C[2]; C[3] = alpha * Cb[3] + beta * C[3]; C[4] = alpha * Cb[4] + beta * C[4]; C[5] = alpha * Cb[5] + beta * C[5]; C[6] = alpha * Cb[6] + beta * C[6]; C[7] = alpha * Cb[7] + beta * C[7]; C[8] = alpha * Cb[8] + beta * C[8]; C[9] = alpha * Cb[9] + beta * C[9]; C[10] = alpha * Cb[10] + beta * C[10]; C[11] = alpha * Cb[11] + beta * C[11]; break; case 11: C[0] = alpha * Cb[0] + beta * C[0]; C[1] = alpha * Cb[1] + beta * C[1]; C[2] = alpha * Cb[2] + beta * C[2]; C[3] = alpha * Cb[3] + beta * C[3]; C[4] = alpha * Cb[4] + beta * C[4]; C[5] = alpha * Cb[5] + beta * C[5]; C[6] = alpha * Cb[6] + beta * C[6]; C[7] = alpha * Cb[7] + beta * C[7]; C[8] = alpha * Cb[8] + beta * C[8]; C[9] = alpha * Cb[9] + beta * C[9]; C[10] = alpha * Cb[10] + beta * C[10]; break; case 10: C[0] = alpha * Cb[0] + beta * C[0]; C[1] = alpha * Cb[1] + beta * C[1]; C[2] = alpha * Cb[2] + beta * C[2]; C[3] = alpha * Cb[3] + beta * C[3]; C[4] = alpha * Cb[4] + beta * C[4]; C[5] = alpha * Cb[5] + beta * C[5]; C[6] = alpha * Cb[6] + beta * C[6]; C[7] = alpha * Cb[7] + beta * C[7]; C[8] = alpha * Cb[8] + beta * C[8]; C[9] = alpha * Cb[9] + beta * C[9]; break; case 9: C[0] = alpha * Cb[0] + beta * C[0]; C[1] = alpha * Cb[1] + beta * C[1]; C[2] = alpha * Cb[2] + beta * C[2]; C[3] = alpha * Cb[3] + beta * C[3]; C[4] = alpha * Cb[4] + beta * C[4]; C[5] = alpha * Cb[5] + beta * C[5]; C[6] = alpha * Cb[6] + beta * C[6]; C[7] = alpha * Cb[7] + beta * C[7]; C[8] = alpha * Cb[8] + beta * C[8]; break; case 8: C[0] = alpha * Cb[0] + beta * C[0]; C[1] = alpha * Cb[1] + beta * C[1]; C[2] = alpha * Cb[2] + beta * C[2]; C[3] = alpha * Cb[3] + beta * C[3]; C[4] = alpha * Cb[4] + beta * C[4]; C[5] = alpha * Cb[5] + beta * C[5]; C[6] = alpha * Cb[6] + beta * C[6]; C[7] = alpha * Cb[7] + beta * C[7]; break; case 7: C[0] = alpha * Cb[0] + beta * C[0]; C[1] = alpha * Cb[1] + beta * C[1]; C[2] = alpha * Cb[2] + beta * C[2]; C[3] = alpha * Cb[3] + beta * C[3]; C[4] = alpha * Cb[4] + beta * C[4]; C[5] = alpha * Cb[5] + beta * C[5]; C[6] = alpha * Cb[6] + beta * C[6]; break; case 6: C[0] = alpha * Cb[0] + beta * C[0]; C[1] = alpha * Cb[1] + beta * C[1]; C[2] = alpha * Cb[2] + beta * C[2]; C[3] = alpha * Cb[3] + beta * C[3]; C[4] = alpha * Cb[4] + beta * C[4]; C[5] = alpha * Cb[5] + beta * C[5]; break; case 5: C[0] = alpha * Cb[0] + beta * C[0]; C[1] = alpha * Cb[1] + beta * C[1]; C[2] = alpha * Cb[2] + beta * C[2]; C[3] = alpha * Cb[3] + beta * C[3]; C[4] = alpha * Cb[4] + beta * C[4]; break; case 4: C[0] = alpha * Cb[0] + beta * C[0]; C[1] = alpha * Cb[1] + beta * C[1]; C[2] = alpha * Cb[2] + beta * C[2]; C[3] = alpha * Cb[3] + beta * C[3]; break; case 3: C[0] = alpha * Cb[0] + beta * C[0]; C[1] = alpha * Cb[1] + beta * C[1]; C[2] = alpha * Cb[2] + beta * C[2]; break; case 2: C[0] = alpha * Cb[0] + beta * C[0]; C[1] = alpha * Cb[1] + beta * C[1]; break; case 1: C[0] = alpha * Cb[0] + beta * C[0]; break; case 0: break; } } extern "C" void magmablas_sgemm_T_T_64_16_16_16_4( float *C, const float *A, const float *B, magma_int_t m, magma_int_t n, magma_int_t k, magma_int_t lda, magma_int_t ldb, magma_int_t ldc, float alpha, float beta ) { dim3 threads( 16, 4 ); dim3 grid( (m - 1)/64 + 1, (n - 1)/16 + 1 ); hipLaunchKernelGGL(( sgemm_kernel_T_T_64_16_16_16_4), dim3(grid), dim3(threads), 0, magma_stream , C, A, B, m, n, k, lda, ldb, ldc, alpha, beta ); }
d75404c2246eb9433535b69b2e97efb39244a238.cu
/* -- MAGMA (version 1.6.1) -- Univ. of Tennessee, Knoxville Univ. of California, Berkeley Univ. of Colorado, Denver @date January 2015 @generated from dgemm_tesla_T_T.cu normal d -> s, Fri Jan 30 19:00:10 2015 */ #include "common_magma.h" #include "commonblas_s.h" /* * saxpy computes c += alpha*b, where b and c are 16-element vectors. */ static __device__ void saxpy( float alpha, const float* __restrict__ b, float* __restrict__ c ) { c[0] += alpha * b[0]; c[1] += alpha * b[1]; c[2] += alpha * b[2]; c[3] += alpha * b[3]; c[4] += alpha * b[4]; c[5] += alpha * b[5]; c[6] += alpha * b[6]; c[7] += alpha * b[7]; c[8] += alpha * b[8]; c[9] += alpha * b[9]; c[10] += alpha * b[10]; c[11] += alpha * b[11]; c[12] += alpha * b[12]; c[13] += alpha * b[13]; c[14] += alpha * b[14]; c[15] += alpha * b[15]; } /** Purpose: -------- This routine computes C = alpha * A^T*B^T + beta * C B is put into shared memory Parameters Used: blk_M=64 blk_N=16 blk_K=16 nthd_x=16 nthd_y=4 This code should run for any matrix size. This kernel outperforms cuda-2.2 when m, n, k >= 512 @ingroup magma_sblas3 ********************************************************************/ __global__ void sgemm_kernel_T_T_64_16_16_16_4( float* __restrict__ C, const float* __restrict__ A, const float* __restrict__ B, int m, int n, int k, int lda, int ldb, int ldc, float alpha, float beta ) { __shared__ float Bb[16][17]; const int tx = threadIdx.x; const int ty = threadIdx.y; int ibx = blockIdx.x * 64; int iby = blockIdx.y * 16; const int idt = ty * 16 + tx; /* Taking care of invalid memory access in dimension M */ if ( ibx + idt >= m ) A += ibx + 0; else A += ibx + idt; C += __mul24(ibx + idt, ldc) + iby; B += tx + __mul24(iby, ldb); /* These variables guide the threads to avoid invalid memory accesses in dimension N Simply it's the stopping criterion. or you can say that access index wraps around to a valid memory location. */ int s1=0, s2=4*ldb, s3=8*ldb, s4=12*ldb; if ( iby+ty >= n ) { s1=1; s2=0*ldb; s3=0*ldb; s4=0*ldb; } else if ( iby+ty+4 >= n ) { s1=0; s2=0*ldb; s3=0*ldb; s4=0*ldb; } else if ( iby+ty+8 >= n ) { s1=0; s2=4*ldb; s3=0*ldb; s4=0*ldb; } else if ( iby+ty+12 >= n ) { s1=0; s2=4*ldb; s3=8*ldb; s4=0*ldb; } if ( s1 == 0 ) B += __mul24(ty, ldb); else s1 = 0; const float *Bend = B + k - k % 16; float Cb[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; if ( k > 15 ) { do { float Ab[4] = { A[0], A[lda], A[2*lda], A[3*lda] }; Bb[tx][ty+0 ] = B[s1]; Bb[tx][ty+4 ] = B[s2]; Bb[tx][ty+8 ] = B[s3]; Bb[tx][ty+12] = B[s4]; __syncthreads(); A += 4 * lda; saxpy( Ab[0], &Bb[0][0], Cb ); Ab[0] = A[0*lda]; saxpy( Ab[1], &Bb[1][0], Cb ); Ab[1] = A[1*lda]; saxpy( Ab[2], &Bb[2][0], Cb ); Ab[2] = A[2*lda]; saxpy( Ab[3], &Bb[3][0], Cb ); Ab[3] = A[3*lda]; A += 4 * lda; saxpy( Ab[0], &Bb[4][0], Cb ); Ab[0] = A[0*lda]; saxpy( Ab[1], &Bb[5][0], Cb ); Ab[1] = A[1*lda]; saxpy( Ab[2], &Bb[6][0], Cb ); Ab[2] = A[2*lda]; saxpy( Ab[3], &Bb[7][0], Cb ); Ab[3] = A[3*lda]; A += 4 * lda; saxpy( Ab[0], &Bb[8][0], Cb ); Ab[0] = A[0*lda]; saxpy( Ab[1], &Bb[9][0], Cb ); Ab[1] = A[1*lda]; saxpy( Ab[2], &Bb[10][0], Cb ); Ab[2] = A[2*lda]; saxpy( Ab[3], &Bb[11][0], Cb ); Ab[3] = A[3*lda]; A += 4 * lda; saxpy( Ab[0], &Bb[12][0], Cb ); saxpy( Ab[1], &Bb[13][0], Cb ); saxpy( Ab[2], &Bb[14][0], Cb ); saxpy( Ab[3], &Bb[15][0], Cb ); B += 16; __syncthreads(); } while (B < Bend); } /* Common sub expression elimination. */ ibx = ibx + idt - m; /* remembering k dimension */ ldb = m = k; /* k changed to support the generic case and reuse valuable registers */ k = k % 16; m -= k; /* Here we are taking care of k % dim_k portions */ if ( k != 0 ) { /* Avoid Invalid Memory access in dimension K If some thread enters this if ( ) block first access to B should be valid as K isn't divisible by blk_K Note that dimension N has been taken care of by s1, s2, s3, s4 But depending upon K and thread index tx, some memory access may be still invalid, so take care of them now by setting s1, s2, s3, s4 = 0 B might have been advanced in the previous loop, take care of that, this is about right bottom corner. */ if ( m + tx >= ldb ) { s1 = s2 = s3 = s4 = 0; B -= tx; } Bb[tx][ty+0 ] = B[s1]; Bb[tx][ty+4 ] = B[s2]; Bb[tx][ty+8 ] = B[s3]; Bb[tx][ty+12] = B[s4]; __syncthreads(); for(int i=0; i < k; i++) { saxpy( A[0], &Bb[i+0][0], Cb ); A += lda; } } /* Now taking care of dimension M, N that doesnt fit into blocks */ if ( (iby + 16) >= n ) { lda = n - iby; } else { lda = 16; } if ( ibx >= 0 ) lda = 0; else lda = lda; switch(lda) { case 16: C[0] = alpha * Cb[0] + beta * C[0]; C[1] = alpha * Cb[1] + beta * C[1]; C[2] = alpha * Cb[2] + beta * C[2]; C[3] = alpha * Cb[3] + beta * C[3]; C[4] = alpha * Cb[4] + beta * C[4]; C[5] = alpha * Cb[5] + beta * C[5]; C[6] = alpha * Cb[6] + beta * C[6]; C[7] = alpha * Cb[7] + beta * C[7]; C[8] = alpha * Cb[8] + beta * C[8]; C[9] = alpha * Cb[9] + beta * C[9]; C[10] = alpha * Cb[10] + beta * C[10]; C[11] = alpha * Cb[11] + beta * C[11]; C[12] = alpha * Cb[12] + beta * C[12]; C[13] = alpha * Cb[13] + beta * C[13]; C[14] = alpha * Cb[14] + beta * C[14]; C[15] = alpha * Cb[15] + beta * C[15]; break; case 15: C[0] = alpha * Cb[0] + beta * C[0]; C[1] = alpha * Cb[1] + beta * C[1]; C[2] = alpha * Cb[2] + beta * C[2]; C[3] = alpha * Cb[3] + beta * C[3]; C[4] = alpha * Cb[4] + beta * C[4]; C[5] = alpha * Cb[5] + beta * C[5]; C[6] = alpha * Cb[6] + beta * C[6]; C[7] = alpha * Cb[7] + beta * C[7]; C[8] = alpha * Cb[8] + beta * C[8]; C[9] = alpha * Cb[9] + beta * C[9]; C[10] = alpha * Cb[10] + beta * C[10]; C[11] = alpha * Cb[11] + beta * C[11]; C[12] = alpha * Cb[12] + beta * C[12]; C[13] = alpha * Cb[13] + beta * C[13]; C[14] = alpha * Cb[14] + beta * C[14]; break; case 14: C[0] = alpha * Cb[0] + beta * C[0]; C[1] = alpha * Cb[1] + beta * C[1]; C[2] = alpha * Cb[2] + beta * C[2]; C[3] = alpha * Cb[3] + beta * C[3]; C[4] = alpha * Cb[4] + beta * C[4]; C[5] = alpha * Cb[5] + beta * C[5]; C[6] = alpha * Cb[6] + beta * C[6]; C[7] = alpha * Cb[7] + beta * C[7]; C[8] = alpha * Cb[8] + beta * C[8]; C[9] = alpha * Cb[9] + beta * C[9]; C[10] = alpha * Cb[10] + beta * C[10]; C[11] = alpha * Cb[11] + beta * C[11]; C[12] = alpha * Cb[12] + beta * C[12]; C[13] = alpha * Cb[13] + beta * C[13]; break; case 13: C[0] = alpha * Cb[0] + beta * C[0]; C[1] = alpha * Cb[1] + beta * C[1]; C[2] = alpha * Cb[2] + beta * C[2]; C[3] = alpha * Cb[3] + beta * C[3]; C[4] = alpha * Cb[4] + beta * C[4]; C[5] = alpha * Cb[5] + beta * C[5]; C[6] = alpha * Cb[6] + beta * C[6]; C[7] = alpha * Cb[7] + beta * C[7]; C[8] = alpha * Cb[8] + beta * C[8]; C[9] = alpha * Cb[9] + beta * C[9]; C[10] = alpha * Cb[10] + beta * C[10]; C[11] = alpha * Cb[11] + beta * C[11]; C[12] = alpha * Cb[12] + beta * C[12]; break; case 12: C[0] = alpha * Cb[0] + beta * C[0]; C[1] = alpha * Cb[1] + beta * C[1]; C[2] = alpha * Cb[2] + beta * C[2]; C[3] = alpha * Cb[3] + beta * C[3]; C[4] = alpha * Cb[4] + beta * C[4]; C[5] = alpha * Cb[5] + beta * C[5]; C[6] = alpha * Cb[6] + beta * C[6]; C[7] = alpha * Cb[7] + beta * C[7]; C[8] = alpha * Cb[8] + beta * C[8]; C[9] = alpha * Cb[9] + beta * C[9]; C[10] = alpha * Cb[10] + beta * C[10]; C[11] = alpha * Cb[11] + beta * C[11]; break; case 11: C[0] = alpha * Cb[0] + beta * C[0]; C[1] = alpha * Cb[1] + beta * C[1]; C[2] = alpha * Cb[2] + beta * C[2]; C[3] = alpha * Cb[3] + beta * C[3]; C[4] = alpha * Cb[4] + beta * C[4]; C[5] = alpha * Cb[5] + beta * C[5]; C[6] = alpha * Cb[6] + beta * C[6]; C[7] = alpha * Cb[7] + beta * C[7]; C[8] = alpha * Cb[8] + beta * C[8]; C[9] = alpha * Cb[9] + beta * C[9]; C[10] = alpha * Cb[10] + beta * C[10]; break; case 10: C[0] = alpha * Cb[0] + beta * C[0]; C[1] = alpha * Cb[1] + beta * C[1]; C[2] = alpha * Cb[2] + beta * C[2]; C[3] = alpha * Cb[3] + beta * C[3]; C[4] = alpha * Cb[4] + beta * C[4]; C[5] = alpha * Cb[5] + beta * C[5]; C[6] = alpha * Cb[6] + beta * C[6]; C[7] = alpha * Cb[7] + beta * C[7]; C[8] = alpha * Cb[8] + beta * C[8]; C[9] = alpha * Cb[9] + beta * C[9]; break; case 9: C[0] = alpha * Cb[0] + beta * C[0]; C[1] = alpha * Cb[1] + beta * C[1]; C[2] = alpha * Cb[2] + beta * C[2]; C[3] = alpha * Cb[3] + beta * C[3]; C[4] = alpha * Cb[4] + beta * C[4]; C[5] = alpha * Cb[5] + beta * C[5]; C[6] = alpha * Cb[6] + beta * C[6]; C[7] = alpha * Cb[7] + beta * C[7]; C[8] = alpha * Cb[8] + beta * C[8]; break; case 8: C[0] = alpha * Cb[0] + beta * C[0]; C[1] = alpha * Cb[1] + beta * C[1]; C[2] = alpha * Cb[2] + beta * C[2]; C[3] = alpha * Cb[3] + beta * C[3]; C[4] = alpha * Cb[4] + beta * C[4]; C[5] = alpha * Cb[5] + beta * C[5]; C[6] = alpha * Cb[6] + beta * C[6]; C[7] = alpha * Cb[7] + beta * C[7]; break; case 7: C[0] = alpha * Cb[0] + beta * C[0]; C[1] = alpha * Cb[1] + beta * C[1]; C[2] = alpha * Cb[2] + beta * C[2]; C[3] = alpha * Cb[3] + beta * C[3]; C[4] = alpha * Cb[4] + beta * C[4]; C[5] = alpha * Cb[5] + beta * C[5]; C[6] = alpha * Cb[6] + beta * C[6]; break; case 6: C[0] = alpha * Cb[0] + beta * C[0]; C[1] = alpha * Cb[1] + beta * C[1]; C[2] = alpha * Cb[2] + beta * C[2]; C[3] = alpha * Cb[3] + beta * C[3]; C[4] = alpha * Cb[4] + beta * C[4]; C[5] = alpha * Cb[5] + beta * C[5]; break; case 5: C[0] = alpha * Cb[0] + beta * C[0]; C[1] = alpha * Cb[1] + beta * C[1]; C[2] = alpha * Cb[2] + beta * C[2]; C[3] = alpha * Cb[3] + beta * C[3]; C[4] = alpha * Cb[4] + beta * C[4]; break; case 4: C[0] = alpha * Cb[0] + beta * C[0]; C[1] = alpha * Cb[1] + beta * C[1]; C[2] = alpha * Cb[2] + beta * C[2]; C[3] = alpha * Cb[3] + beta * C[3]; break; case 3: C[0] = alpha * Cb[0] + beta * C[0]; C[1] = alpha * Cb[1] + beta * C[1]; C[2] = alpha * Cb[2] + beta * C[2]; break; case 2: C[0] = alpha * Cb[0] + beta * C[0]; C[1] = alpha * Cb[1] + beta * C[1]; break; case 1: C[0] = alpha * Cb[0] + beta * C[0]; break; case 0: break; } } extern "C" void magmablas_sgemm_T_T_64_16_16_16_4( float *C, const float *A, const float *B, magma_int_t m, magma_int_t n, magma_int_t k, magma_int_t lda, magma_int_t ldb, magma_int_t ldc, float alpha, float beta ) { dim3 threads( 16, 4 ); dim3 grid( (m - 1)/64 + 1, (n - 1)/16 + 1 ); sgemm_kernel_T_T_64_16_16_16_4<<< grid, threads, 0, magma_stream >>> ( C, A, B, m, n, k, lda, ldb, ldc, alpha, beta ); }
5a801d996efc2f6f7f1ce69a281e126d94068a9a.hip
// !!! This is a file automatically generated by hipify!!! #include <torch/all.h> #include <torch/python.h> #include <hip/hip_runtime.h> #include <hip/hip_runtime.h> #include <vector> template <typename scalar_t> __global__ void generate_hmap_cuda_kernel( const torch::PackedTensorAccessor32<scalar_t, 3, torch::RestrictPtrTraits> np, torch::PackedTensorAccessor32<scalar_t, 4, torch::RestrictPtrTraits> hmap, float sigma){ const int n = blockIdx.x; const int c = threadIdx.x; const int nt = blockDim.x; const int b = blockIdx.y; const int mapsize = hmap.size(2) * hmap.size(3); int i,x,y; float e,dx,dy; if (np[b][n][2]>0){ for (i=c;i<mapsize;i=i+nt){ x = i%hmap.size(3); y = i/hmap.size(3); dx = float(x) - np[b][n][0]; dy = float(y) - np[b][n][1]; if (abs(dx)>3*sigma) {continue;} if (abs(dy)>3*sigma) {continue;} e = (dx * dx + dy * dy) / 2 / sigma / sigma; hmap[b][n][y][x] = exp(-e); } } } torch::Tensor generate_hmap_cuda(torch::Tensor pts, int H, int W, float sigma){ // pts should be [np,2] const auto b = pts.size(0); const auto np = pts.size(1); auto hmap = torch::zeros({b, np, H, W}, pts.device()); const int threads = 1024; const dim3 blocks(np, b); AT_DISPATCH_FLOATING_TYPES(pts.type(), "generate_hmap_cuda", ([&] { hipLaunchKernelGGL(( generate_hmap_cuda_kernel<scalar_t>), dim3(blocks), dim3(threads), 0, 0, pts.packed_accessor32<scalar_t, 3, torch::RestrictPtrTraits>(), hmap.packed_accessor32<scalar_t, 4, torch::RestrictPtrTraits>(), sigma); })); return hmap; }
5a801d996efc2f6f7f1ce69a281e126d94068a9a.cu
#include <torch/all.h> #include <torch/python.h> #include <cuda.h> #include <cuda_runtime.h> #include <vector> template <typename scalar_t> __global__ void generate_hmap_cuda_kernel( const torch::PackedTensorAccessor32<scalar_t, 3, torch::RestrictPtrTraits> np, torch::PackedTensorAccessor32<scalar_t, 4, torch::RestrictPtrTraits> hmap, float sigma){ const int n = blockIdx.x; const int c = threadIdx.x; const int nt = blockDim.x; const int b = blockIdx.y; const int mapsize = hmap.size(2) * hmap.size(3); int i,x,y; float e,dx,dy; if (np[b][n][2]>0){ for (i=c;i<mapsize;i=i+nt){ x = i%hmap.size(3); y = i/hmap.size(3); dx = float(x) - np[b][n][0]; dy = float(y) - np[b][n][1]; if (abs(dx)>3*sigma) {continue;} if (abs(dy)>3*sigma) {continue;} e = (dx * dx + dy * dy) / 2 / sigma / sigma; hmap[b][n][y][x] = exp(-e); } } } torch::Tensor generate_hmap_cuda(torch::Tensor pts, int H, int W, float sigma){ // pts should be [np,2] const auto b = pts.size(0); const auto np = pts.size(1); auto hmap = torch::zeros({b, np, H, W}, pts.device()); const int threads = 1024; const dim3 blocks(np, b); AT_DISPATCH_FLOATING_TYPES(pts.type(), "generate_hmap_cuda", ([&] { generate_hmap_cuda_kernel<scalar_t><<<blocks, threads>>>( pts.packed_accessor32<scalar_t, 3, torch::RestrictPtrTraits>(), hmap.packed_accessor32<scalar_t, 4, torch::RestrictPtrTraits>(), sigma); })); return hmap; }
e5bab9355c493498d22726a8c598a3bcd0d04371.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" __device__ void hsv_rgb_single(float h, float s, float v, unsigned char *r, unsigned char *g, unsigned char *b) { // Adapted and simplified from https://github.com/jakebesworth/Simple-Color-Conversions /* Convert hue back to 0-6 space, floor */ const float hex = h * 6; const unsigned char primary = (int) hex; const float secondary = hex - primary; float x = (1.0 - s) * v; float y = (1.0 - (s * secondary)) * v; float z = (1.0 - (s * (1.0 - secondary))) * v; float *rp, *gp, *bp; switch(primary) { case 0: rp = &v; gp = &z; bp = &x; break; case 1: rp = &y; gp = &v; bp = &x; break; case 2: rp = &x; gp = &v; bp = &z; break; case 3: rp = &x; gp = &y; bp = &v; break; case 4: rp = &z; gp = &x; bp = &v; break; case 5: default: rp = &v; gp = &x; bp = &y; break; } *r = *rp * 255.0; *g = *gp * 255.0; *b = *bp * 255.0; } __global__ void hsv_rgb(float *img, unsigned char *result, int width, int height) { int y = blockIdx.y * blockDim.y + threadIdx.y; int x = blockIdx.x * blockDim.x + threadIdx.x; if (x < width && y < height) { int idx = (x + y * width) * 3; hsv_rgb_single(img[idx], img[idx + 1], img[idx + 2], &result[idx], &result[idx + 1], &result[idx + 2]); } }
e5bab9355c493498d22726a8c598a3bcd0d04371.cu
__device__ void hsv_rgb_single(float h, float s, float v, unsigned char *r, unsigned char *g, unsigned char *b) { // Adapted and simplified from https://github.com/jakebesworth/Simple-Color-Conversions /* Convert hue back to 0-6 space, floor */ const float hex = h * 6; const unsigned char primary = (int) hex; const float secondary = hex - primary; float x = (1.0 - s) * v; float y = (1.0 - (s * secondary)) * v; float z = (1.0 - (s * (1.0 - secondary))) * v; float *rp, *gp, *bp; switch(primary) { case 0: rp = &v; gp = &z; bp = &x; break; case 1: rp = &y; gp = &v; bp = &x; break; case 2: rp = &x; gp = &v; bp = &z; break; case 3: rp = &x; gp = &y; bp = &v; break; case 4: rp = &z; gp = &x; bp = &v; break; case 5: default: rp = &v; gp = &x; bp = &y; break; } *r = *rp * 255.0; *g = *gp * 255.0; *b = *bp * 255.0; } __global__ void hsv_rgb(float *img, unsigned char *result, int width, int height) { int y = blockIdx.y * blockDim.y + threadIdx.y; int x = blockIdx.x * blockDim.x + threadIdx.x; if (x < width && y < height) { int idx = (x + y * width) * 3; hsv_rgb_single(img[idx], img[idx + 1], img[idx + 2], &result[idx], &result[idx + 1], &result[idx + 2]); } }
c193e127eb96fd7e8c66b025c26da9d7503fab01.hip
// !!! This is a file automatically generated by hipify!!! #include <stdio.h> #include <stdlib.h> #include <string.h> #include <time.h> #include <hip/hip_runtime.h> #include "rocblas.h" #include "magma.h" // includes, cuda // matrix indexing convention #define id(n, m, ld) (((n) * (ld) + (m))) #define checkmem(x) do { \ if (x == 0) { \ fprintf(stderr, "! host memory allocation error: T\n"); \ return EXIT_FAILURE; \ } \ } while (0); // declarations int gs_pca_cublas(int, int, int, double *, double *, double *); int print_results(int, int, int, double *, double *, double *, double *); // main int main(int argc, char** argv) { hipError_t cudaStat; hipblasStatus_t stat; hipblasHandle_t handle; magma_init(); // initiallize some random test data X int N = 3, M = 3; double *X = 0; X = (double*)malloc(N * M * sizeof(double)); if(X == 0) { fprintf (stderr, "! host memory allocation error: X\n"); return EXIT_FAILURE; } for(int n = 0; n < N; n++) { for(int m = 0; m < M; m++) { X[id(n,m,M)] = (double) (n * M + m); //rand() / (double)RAND_MAX; /*printf("(%d, %d) ", n*M+m, id(n,m,M));*/ } } X[0] = 3; X[1] = 3; X[2] = 5; X[3] = 6; X[4] = 3; X[5] = 6; X[6] = 7; X[7] = 7; X[8] = 5; double *dX = 0; hipMalloc((void**)&dX, N * M * sizeof(double)); /*hipMemcpy(dX, X, N * M * sizeof(double), hipMemcpyHostToDevice);*/ hipblasSetMatrix (N, M, sizeof(double), X, N, dX, N); double *wr = 0;// (double*) malloc(N * sizeof(double)); double *wi = 0;//(double*) malloc(N * sizeof(double)); double *V = 0;//(double*) malloc(N * N * sizeof(double)); int nb = magma_get_dgehrd_nb(N); printf("nb: %d\n", nb); int lwork = N*(2 + 2*nb); double *work = 0;//(double*) malloc(lwork * sizeof(double)); magma_int_t info; magma_malloc_cpu( (void**) &wr, (N)*sizeof(double) ); magma_malloc_cpu( (void**) &wi, (N)*sizeof(double) ); magma_malloc_cpu( (void**) &V, (N * N)*sizeof(double) ); magma_malloc_cpu( (void**) &work, (lwork)*sizeof(double) ); magma_dgeev_m(MagmaNoVec, MagmaVec, N, X, N, wr, wi, NULL, N, V, N, work, lwork, &info); if (info != 0) { printf("info != 0\n"); } double *evs = (double*) malloc(N * sizeof(double)); hipMemcpy(evs, wr, N * sizeof(double), hipMemcpyDeviceToHost); for (int i = 0; i < N; i++) { printf("%lf\n", wr[i]); } for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { printf("%lf ", V[j*N + i]); } puts(""); } /*for (int i = 0; i < M; i++) {*/ /*printf("%lf ", X[id(0, i, M)]);*/ /*}*/ /*puts("aa");*/ /*double *dY = 0;*/ /*double *Y = 0;*/ /*[>Y = (double*)malloc(M * sizeof(double));<]*/ /*cudaStat = hipMalloc((void**)&dY, M * sizeof(double));*/ /*puts("sadfddf");*/ /*if (cudaStat != hipSuccess) {*/ /*printf ("device memory allocation failed");*/ /*return EXIT_FAILURE;*/ /*}*/ /*puts("gg");*/ /*stat = hipblasCreate(&handle);*/ /*if (stat != HIPBLAS_STATUS_SUCCESS) { */ /*printf ("CUBLAS initialization failed\n");*/ /*return EXIT_FAILURE;*/ /*}*/ /*[>double *dY2 = 0<]*/ /*[>hipMalloc((void**)&dY2, (N-1) * (M-1) * sizeof(double));<]*/ /*[>cudaDcopy(handle, M)<]*/ /*fprintf(stderr, "ggg\n");*/ /*Y = (double*) malloc(M * sizeof(double));*/ /*[>hipblasDcopy(M, &dR[0], 1, dU, 1);<]*/ /*printf("before hipblasDcopy\n");*/ /*stat = hipblasDcopy(handle, M, dX, 1, dY, 1);*/ /*printf("done hipblasDcopy \n");*/ /*[>hipMemcpy(&Y[0], &dY[0], M * sizeof(double), hipMemcpyDeviceToHost);<]*/ /*hipblasGetMatrix (1, M, sizeof(double), dY, 1, Y, 1);*/ /*if(stat != HIPBLAS_STATUS_SUCCESS) {*/ /*printf("cublas fail 33\n");*/ /*}*/ /*for (int i = 0; i < M; i++) {*/ /*printf("%lf ",Y[i]);*/ /*}*/ /*puts("");*/ /*[>free(Y);<]*/ /*[>free(X);<]*/ }
c193e127eb96fd7e8c66b025c26da9d7503fab01.cu
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <time.h> #include <cuda_runtime.h> #include "cublas_v2.h" #include "magma.h" // includes, cuda // matrix indexing convention #define id(n, m, ld) (((n) * (ld) + (m))) #define checkmem(x) do { \ if (x == 0) { \ fprintf(stderr, "! host memory allocation error: T\n"); \ return EXIT_FAILURE; \ } \ } while (0); // declarations int gs_pca_cublas(int, int, int, double *, double *, double *); int print_results(int, int, int, double *, double *, double *, double *); // main int main(int argc, char** argv) { cudaError_t cudaStat; cublasStatus_t stat; cublasHandle_t handle; magma_init(); // initiallize some random test data X int N = 3, M = 3; double *X = 0; X = (double*)malloc(N * M * sizeof(double)); if(X == 0) { fprintf (stderr, "! host memory allocation error: X\n"); return EXIT_FAILURE; } for(int n = 0; n < N; n++) { for(int m = 0; m < M; m++) { X[id(n,m,M)] = (double) (n * M + m); //rand() / (double)RAND_MAX; /*printf("(%d, %d) ", n*M+m, id(n,m,M));*/ } } X[0] = 3; X[1] = 3; X[2] = 5; X[3] = 6; X[4] = 3; X[5] = 6; X[6] = 7; X[7] = 7; X[8] = 5; double *dX = 0; cudaMalloc((void**)&dX, N * M * sizeof(double)); /*cudaMemcpy(dX, X, N * M * sizeof(double), cudaMemcpyHostToDevice);*/ cublasSetMatrix (N, M, sizeof(double), X, N, dX, N); double *wr = 0;// (double*) malloc(N * sizeof(double)); double *wi = 0;//(double*) malloc(N * sizeof(double)); double *V = 0;//(double*) malloc(N * N * sizeof(double)); int nb = magma_get_dgehrd_nb(N); printf("nb: %d\n", nb); int lwork = N*(2 + 2*nb); double *work = 0;//(double*) malloc(lwork * sizeof(double)); magma_int_t info; magma_malloc_cpu( (void**) &wr, (N)*sizeof(double) ); magma_malloc_cpu( (void**) &wi, (N)*sizeof(double) ); magma_malloc_cpu( (void**) &V, (N * N)*sizeof(double) ); magma_malloc_cpu( (void**) &work, (lwork)*sizeof(double) ); magma_dgeev_m(MagmaNoVec, MagmaVec, N, X, N, wr, wi, NULL, N, V, N, work, lwork, &info); if (info != 0) { printf("info != 0\n"); } double *evs = (double*) malloc(N * sizeof(double)); cudaMemcpy(evs, wr, N * sizeof(double), cudaMemcpyDeviceToHost); for (int i = 0; i < N; i++) { printf("%lf\n", wr[i]); } for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { printf("%lf ", V[j*N + i]); } puts(""); } /*for (int i = 0; i < M; i++) {*/ /*printf("%lf ", X[id(0, i, M)]);*/ /*}*/ /*puts("aa");*/ /*double *dY = 0;*/ /*double *Y = 0;*/ /*[>Y = (double*)malloc(M * sizeof(double));<]*/ /*cudaStat = cudaMalloc((void**)&dY, M * sizeof(double));*/ /*puts("sadfddf");*/ /*if (cudaStat != cudaSuccess) {*/ /*printf ("device memory allocation failed");*/ /*return EXIT_FAILURE;*/ /*}*/ /*puts("gg");*/ /*stat = cublasCreate(&handle);*/ /*if (stat != CUBLAS_STATUS_SUCCESS) { */ /*printf ("CUBLAS initialization failed\n");*/ /*return EXIT_FAILURE;*/ /*}*/ /*[>double *dY2 = 0<]*/ /*[>cudaMalloc((void**)&dY2, (N-1) * (M-1) * sizeof(double));<]*/ /*[>cudaDcopy(handle, M)<]*/ /*fprintf(stderr, "ggg\n");*/ /*Y = (double*) malloc(M * sizeof(double));*/ /*[>cublasDcopy(M, &dR[0], 1, dU, 1);<]*/ /*printf("before cublasDcopy\n");*/ /*stat = cublasDcopy(handle, M, dX, 1, dY, 1);*/ /*printf("done cublasDcopy \n");*/ /*[>cudaMemcpy(&Y[0], &dY[0], M * sizeof(double), cudaMemcpyDeviceToHost);<]*/ /*cublasGetMatrix (1, M, sizeof(double), dY, 1, Y, 1);*/ /*if(stat != CUBLAS_STATUS_SUCCESS) {*/ /*printf("cublas fail 33\n");*/ /*}*/ /*for (int i = 0; i < M; i++) {*/ /*printf("%lf ",Y[i]);*/ /*}*/ /*puts("");*/ /*[>free(Y);<]*/ /*[>free(X);<]*/ }
d448f4d353ecdd0f8c146ca3ad024ce56b359c76.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" /******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author Yurii Shyrma ([email protected]), created on 20.04.2018 // #include<ops/declarable/helpers/transforms.h> #include <array/ResultSet.h> #include <helpers/ShapeUtils.h> #include <numeric> #include <array/NDArrayFactory.h> #include <helpers/TAD.h> #include <exceptions/cuda_exception.h> #include <helpers/PointersManager.h> #include <helpers/ConstantTadHelper.h> namespace sd { namespace ops { namespace helpers { /////////////////////////////////////////////////////////////////// // x - input, y - indices, z - output template<typename X, typename Y> __global__ static void gatherNDCuda(const void *vx, const Nd4jLong *xShapeInfo, const void *vy, const Nd4jLong *yShapeInfo, void *vz, const Nd4jLong *zShapeInfo) { const auto x = reinterpret_cast<const X*>(vx); const auto y = reinterpret_cast<const Y*>(vy); auto z = reinterpret_cast<X*>(vz); __shared__ int xRank, yRank, zRank, maxRank, yLastDim; __shared__ Nd4jLong zLen, totalThreads, *sharedMem; if (threadIdx.x == 0) { extern __shared__ unsigned char shmem[]; sharedMem = reinterpret_cast<Nd4jLong*>(shmem); xRank = shape::rank(xShapeInfo); yRank = shape::rank(yShapeInfo); zRank = shape::rank(zShapeInfo); maxRank = sd::math::nd4j_max<int>(yRank, sd::math::nd4j_max<int>(xRank, zRank)); zLen = shape::length(zShapeInfo); yLastDim = yShapeInfo[yRank]; totalThreads = gridDim.x * blockDim.x; } __syncthreads(); auto coord = sharedMem + threadIdx.x * maxRank; Nd4jLong *zCoordStart, *xCoordStart; if(yLastDim == xRank) { zCoordStart = coord; xCoordStart = coord; } if(zRank >= xRank) { zCoordStart = coord; xCoordStart = coord + zRank - xRank; } else { zCoordStart = coord + xRank - zRank; xCoordStart = coord; } const auto tid = blockIdx.x * blockDim.x + threadIdx.x; for (Nd4jLong i = tid; i < zLen; i += totalThreads) { shape::index2coords(i, zShapeInfo, zCoordStart); const auto zOffset = shape::getOffset(zShapeInfo, zCoordStart); // last y coordinate int coordToRestore; if(yLastDim != xRank) coordToRestore = static_cast<int>(zCoordStart[yRank - 1]); zCoordStart[yRank - 1] = 0; // last y coordinate const auto yOffset = shape::getOffset(yShapeInfo, zCoordStart); //restore z coordinate if(yLastDim != xRank) zCoordStart[yRank - 1] = coordToRestore; // construct coordinates for x for(uint j = 0; j < yLastDim; ++j) xCoordStart[j] = y[yOffset + j * yShapeInfo[2 * yRank]]; // last stride const auto xOffset = shape::getOffset(xShapeInfo, xCoordStart); z[zOffset] = x[xOffset]; // printf("z[%lld] = x[%lld] = %f\n", zOffset, xOffset, (float) z[zOffset]); } } /////////////////////////////////////////////////////////////////// template<typename X, typename Y> static void gatherNDCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const hipStream_t *stream, const void *vx, const Nd4jLong *xShapeInfo, const void *vy, const Nd4jLong *yShapeInfo, void *vz, const Nd4jLong *zShapeInfo) { hipLaunchKernelGGL(( gatherNDCuda<X,Y>), dim3(blocksPerGrid), dim3(threadsPerBlock), sharedMem, *stream, vx, xShapeInfo, vy, yShapeInfo, vz, zShapeInfo); } /////////////////////////////////////////////////////////////////// void gatherND(sd::LaunchContext * context, NDArray& input, NDArray& indices, NDArray& output) { const int maxRank = sd::math::nd4j_max<int>(indices.rankOf(), sd::math::nd4j_max<int>(input.rankOf(), output.rankOf())); const int threadsPerBlock = 256; const int blocksPerGrid = (output.lengthOf() + threadsPerBlock - 1) / threadsPerBlock; const int sharedMem = 8 * threadsPerBlock * maxRank + 128; const auto xType = input.dataType(); const auto yType = indices.dataType(); PointersManager manager(context, "gatherND"); NDArray::prepareSpecialUse({&output}, {&input, &indices}); BUILD_DOUBLE_SELECTOR(xType, yType, gatherNDCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, context->getCudaStream(), input.specialBuffer(), input.specialShapeInfo(), indices.specialBuffer(), indices.specialShapeInfo(), output.specialBuffer(), output.specialShapeInfo()), LIBND4J_TYPES, INDEXING_TYPES); NDArray::registerSpecialUse({&output}, {&input, &indices}); manager.synchronize(); } } } }
d448f4d353ecdd0f8c146ca3ad024ce56b359c76.cu
/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author Yurii Shyrma ([email protected]), created on 20.04.2018 // #include<ops/declarable/helpers/transforms.h> #include <array/ResultSet.h> #include <helpers/ShapeUtils.h> #include <numeric> #include <array/NDArrayFactory.h> #include <helpers/TAD.h> #include <exceptions/cuda_exception.h> #include <helpers/PointersManager.h> #include <helpers/ConstantTadHelper.h> namespace sd { namespace ops { namespace helpers { /////////////////////////////////////////////////////////////////// // x - input, y - indices, z - output template<typename X, typename Y> __global__ static void gatherNDCuda(const void *vx, const Nd4jLong *xShapeInfo, const void *vy, const Nd4jLong *yShapeInfo, void *vz, const Nd4jLong *zShapeInfo) { const auto x = reinterpret_cast<const X*>(vx); const auto y = reinterpret_cast<const Y*>(vy); auto z = reinterpret_cast<X*>(vz); __shared__ int xRank, yRank, zRank, maxRank, yLastDim; __shared__ Nd4jLong zLen, totalThreads, *sharedMem; if (threadIdx.x == 0) { extern __shared__ unsigned char shmem[]; sharedMem = reinterpret_cast<Nd4jLong*>(shmem); xRank = shape::rank(xShapeInfo); yRank = shape::rank(yShapeInfo); zRank = shape::rank(zShapeInfo); maxRank = sd::math::nd4j_max<int>(yRank, sd::math::nd4j_max<int>(xRank, zRank)); zLen = shape::length(zShapeInfo); yLastDim = yShapeInfo[yRank]; totalThreads = gridDim.x * blockDim.x; } __syncthreads(); auto coord = sharedMem + threadIdx.x * maxRank; Nd4jLong *zCoordStart, *xCoordStart; if(yLastDim == xRank) { zCoordStart = coord; xCoordStart = coord; } if(zRank >= xRank) { zCoordStart = coord; xCoordStart = coord + zRank - xRank; } else { zCoordStart = coord + xRank - zRank; xCoordStart = coord; } const auto tid = blockIdx.x * blockDim.x + threadIdx.x; for (Nd4jLong i = tid; i < zLen; i += totalThreads) { shape::index2coords(i, zShapeInfo, zCoordStart); const auto zOffset = shape::getOffset(zShapeInfo, zCoordStart); // last y coordinate int coordToRestore; if(yLastDim != xRank) coordToRestore = static_cast<int>(zCoordStart[yRank - 1]); zCoordStart[yRank - 1] = 0; // last y coordinate const auto yOffset = shape::getOffset(yShapeInfo, zCoordStart); //restore z coordinate if(yLastDim != xRank) zCoordStart[yRank - 1] = coordToRestore; // construct coordinates for x for(uint j = 0; j < yLastDim; ++j) xCoordStart[j] = y[yOffset + j * yShapeInfo[2 * yRank]]; // last stride const auto xOffset = shape::getOffset(xShapeInfo, xCoordStart); z[zOffset] = x[xOffset]; // printf("z[%lld] = x[%lld] = %f\n", zOffset, xOffset, (float) z[zOffset]); } } /////////////////////////////////////////////////////////////////// template<typename X, typename Y> static void gatherNDCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, const void *vx, const Nd4jLong *xShapeInfo, const void *vy, const Nd4jLong *yShapeInfo, void *vz, const Nd4jLong *zShapeInfo) { gatherNDCuda<X,Y><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(vx, xShapeInfo, vy, yShapeInfo, vz, zShapeInfo); } /////////////////////////////////////////////////////////////////// void gatherND(sd::LaunchContext * context, NDArray& input, NDArray& indices, NDArray& output) { const int maxRank = sd::math::nd4j_max<int>(indices.rankOf(), sd::math::nd4j_max<int>(input.rankOf(), output.rankOf())); const int threadsPerBlock = 256; const int blocksPerGrid = (output.lengthOf() + threadsPerBlock - 1) / threadsPerBlock; const int sharedMem = 8 * threadsPerBlock * maxRank + 128; const auto xType = input.dataType(); const auto yType = indices.dataType(); PointersManager manager(context, "gatherND"); NDArray::prepareSpecialUse({&output}, {&input, &indices}); BUILD_DOUBLE_SELECTOR(xType, yType, gatherNDCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, context->getCudaStream(), input.specialBuffer(), input.specialShapeInfo(), indices.specialBuffer(), indices.specialShapeInfo(), output.specialBuffer(), output.specialShapeInfo()), LIBND4J_TYPES, INDEXING_TYPES); NDArray::registerSpecialUse({&output}, {&input, &indices}); manager.synchronize(); } } } }
be1f7f550db84c9aa427e218211d1d4f7ebcfd95.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" // Find high divergence points of a vector field // --- Input: 1. normalized 3D vector field // // dFx dFy dFz // divergence = ----- + ----- + ----- // dx dy dz // // --- Output: highest ...% divergence point list // --- Author: Nicu D. Cornea, Vizlab, Rutgers University // --- Date: Wed Aug 20 17:53:56 EDT 2003 // #include "HighDiverg.h" // #define TRACE #define SEARCH_GRID 1 #define CELL_SIZE 1.00 / SEARCH_GRID #define MAX_NUM_HDPTS 5000 typedef struct Lock { int *mutex; Lock() { int state=0; int a=1; hipMalloc((void **)&mutex,sizeof(int)); hipMemcpy(mutex,&a,sizeof(int),hipMemcpyHostToDevice); } ~Lock() { hipFree(mutex); } __device__ void lock() { while(atomicCAS(mutex, 0, 1) != 0); } __device__ void unlock() { atomicExch(mutex, 0); } }Lock; typedef struct { int* Points; int numPoints; } HDGroup; inline bool PointIsCloseToGroup(int pt, int grp, HDGroup *Groups, VoxelPositionDouble **HDPts); __device__ __host__ inline Vector interpolation(double x, double y, double z, int sizx, int sizy, int sizz, Vector *forcevec); __global__ void max_min_divergence(unsigned char *flags,Vector *ForceField,double *maxDiv,double *minDiv,bool inOut,int slsz,int L,int M, int N,double vdist, Lock mylock) { double x, y, z; int k=blockIdx.x; int j=blockIdx.y; int i=blockIdx.z; double div; int idx=k*slsz + j*L +i; if(!inOut) { // - if this point is EXTERIOR, BOUNDARY or SURF, skip it if( (flags[idx] == EXTERIOR) || (flags[idx] == BOUNDARY) || (flags[idx] == SURF)) { return; } } else { // we look for high divergence points outside the object too // ignore only boundary points. if( (flags[idx] == BOUNDARY) || (flags[idx] == SURF)) { return; } } for(int kk=0; kk < SEARCH_GRID; kk++) { for(int jj=0; jj < SEARCH_GRID; jj++) { for(int ii=0; ii < SEARCH_GRID; ii++) { x = i + (ii * CELL_SIZE); y = j + (jj * CELL_SIZE); z = k + (kk * CELL_SIZE); #ifdef TRACE // printf("At point: (%lf, %lf, %lf)\n", x, y, z); #endif // interpolate force vectors arround the point Vector v_0 = interpolation(x + vdist, y, z, L, M, N, ForceField); Vector v_1 = interpolation(x - vdist, y, z, L, M, N, ForceField); Vector v_2 = interpolation(x, y + vdist, z, L, M, N, ForceField); Vector v_3 = interpolation(x, y - vdist, z, L, M, N, ForceField); Vector v_4 = interpolation(x, y, z + vdist, L, M, N, ForceField); Vector v_5 = interpolation(x, y, z - vdist, L, M, N, ForceField); div = ((v_0.xd - v_1.xd) + (v_2.yd - v_3.yd) + (v_4.zd - v_5.zd)) / (2 * vdist); #ifdef TRACE /* printf("Forces:\n"); for(s = 0; s < 6; s++) { printf("%lf %lf %lf\n", v[s].xd, v[s].yd, v[s].zd); } printf("Div = %lf\n", div); */ #endif mylock.lock(); if(div > *maxDiv) { *maxDiv = div; } if(div < *minDiv) { *minDiv = div; }div; mylock.unlock(); } } } } // double GetDiv(double x, double y, double z); bool GetHighDivergencePoints( Vector* ForceField, // [in] vector field int L, int M, int N, // [in] size of vector field (X, Y and Z) unsigned char *flags, // [in] flags array float perc, // [in] percentage of high div. points // to be returned (top <perc> %) VoxelPositionDouble **HDPts, // [out] high divergence point list int *numHDPts, // [out] number of points in the list bool inOut // [in] flag specifying if we should look // outside the object too (if true). // DEFAULT: false ) { #ifdef TRACE printf("TRACE: Starting GetHighDivergencePoints function. Cellsize = %lf\n", CELL_SIZE); #endif (*HDPts) = NULL; (*numHDPts) = 0; if(perc == 0) { return true; } long idx, slsz; int i,j,k, ii, jj, kk, s; double x, y, z; long cntz, cntnz; slsz = L*M; // slice size double adiv[MAX_NUM_HDPTS]; // divergence array if(((*HDPts) = new VoxelPositionDouble[MAX_NUM_HDPTS]) == NULL) { printf("GetHighDivergencePoints: UPS! - Error allocating memory for the output array. Abort.\n"); exit(1); } // calculate divergence throughout the dataset double maxDiv = -999999.99; double minDiv = 999999.99; double div; cntz = 0; cntnz = 0; double zerodiv = 0.1; ///////////////////////////////////// Vector v[6]; double vdist = (CELL_SIZE) / 2.00; #ifdef TRACE printf("vdist = %lf\n", vdist); #endif printf("Finding high divergence points (1).\n"); unsigned char *d_flags; Vector *d_ForceField; double *d_maxDiv; double *d_minDiv; Lock mylock; int *p=(int *)malloc(sizeof(int)); hipMalloc((void **)&d_flags,sizeof(unsigned char)*L*M*N); hipMalloc((void **)&d_ForceField,sizeof(Vector)*L*M*N); hipMalloc((void **)&d_minDiv,sizeof(double)); hipMalloc((void **)&d_maxDiv,sizeof(double)); hipMemcpy(d_flags,flags,sizeof(unsigned char)*L*M*N,hipMemcpyHostToDevice); hipMemcpy(d_ForceField,ForceField,sizeof(Vector)*L*M*N,hipMemcpyHostToDevice); hipMemcpy(d_maxDiv,&maxDiv,sizeof(double),hipMemcpyHostToDevice); hipMemcpy(d_minDiv,&minDiv,sizeof(double),hipMemcpyHostToDevice); dim3 dimBlock(1); dim3 dimGrid(N,M,L); hipLaunchKernelGGL(( max_min_divergence), dim3(dimGrid),dim3(dimBlock), 0, 0, d_flags,d_ForceField,d_maxDiv,d_minDiv,inOut,slsz,L,M,N,vdist, mylock); hipMemcpy(&maxDiv,d_maxDiv,sizeof(double),hipMemcpyDeviceToHost); hipMemcpy(&minDiv,d_minDiv,sizeof(double),hipMemcpyDeviceToHost); // for (k = 1; k < N-1; k++) { // printf("\tProcessing plane %d out of %d\r", k, N-2); // fflush(stdout); // for (j = 1; j < M-1; j++) { // for (i = 1; i < L-1; i++) { // idx = k*slsz + j*L +i; // // if we are not looking outside the object too. // if(!inOut) { // // - if this point is EXTERIOR, BOUNDARY or SURF, skip it // if( (flags[idx] == EXTERIOR) || // (flags[idx] == BOUNDARY) || // (flags[idx] == SURF)) // { // continue; // } // } // else { // // we look for high divergence points outside the object too // // ignore only boundary points. // if( (flags[idx] == BOUNDARY) || // (flags[idx] == SURF)) // { // continue; // } // } // for(kk=0; kk < SEARCH_GRID; kk++) { // for(jj=0; jj < SEARCH_GRID; jj++) { // for(ii=0; ii < SEARCH_GRID; ii++) { // x = i + (ii * CELL_SIZE); // y = j + (jj * CELL_SIZE); // z = k + (kk * CELL_SIZE); // #ifdef TRACE // // printf("At point: (%lf, %lf, %lf)\n", x, y, z); // #endif // // interpolate force vectors arround the point // v[0] = interpolation(x + vdist, y, z, L, M, N, ForceField); // v[1] = interpolation(x - vdist, y, z, L, M, N, ForceField); // v[2] = interpolation(x, y + vdist, z, L, M, N, ForceField); // v[3] = interpolation(x, y - vdist, z, L, M, N, ForceField); // v[4] = interpolation(x, y, z + vdist, L, M, N, ForceField); // v[5] = interpolation(x, y, z - vdist, L, M, N, ForceField); // div = ((v[0].xd - v[1].xd) + (v[2].yd - v[3].yd) + (v[4].zd - v[5].zd)) / (2 * vdist); // if((div > -zerodiv) && (div < zerodiv)) { // cntz++; // } // else { // cntnz++; // } // #ifdef TRACE // /* // printf("Forces:\n"); // for(s = 0; s < 6; s++) { // printf("%lf %lf %lf\n", v[s].xd, v[s].yd, v[s].zd); // } // printf("Div = %lf\n", div); // */ // #endif // if(div > maxDiv) { // maxDiv = div; // } // if(div < minDiv) { // minDiv = div; // }div; // } // } // } // } // } // } // #ifdef _DEBUG printf("Divergence: max = %lf, min = %lf\n", maxDiv, minDiv); // #endif double threshold; // case 1: // take <perc> percent of the lowest negative value: // !! have to change the comparison threshold = maxDiv - minDiv; threshold = ((double)perc / 100.00) * threshold; threshold = minDiv + threshold; /* // case 2: // take <perc> percent of the highest pozitive value: // !! have to change the comparison // NOT GOOD threshold = maxDiv - minDiv; threshold = ((double)perc / 100.00) * threshold; threshold = maxDiv - threshold; */ /* // case 3: // take <perc> percent of the lowest value (must be negative): // !! have to change the comparison // NOT GOOD threshold = minDiv; threshold = ((double)perc / 100.00) * threshold; threshold = minDiv - threshold; */ #ifdef _DEBUG printf("Threshold set to: %lf\n", threshold); printf("Number of close to 0 divergence points [-%lf..%lf]: %ld. \n \ Number of non 0 divergence points: %ld.\n", zerodiv, zerodiv, cntz, cntnz); #endif printf("Finding high divergence points (2).\n"); for (k = 1; k < N-1; k++) { printf("\tProcessing plane %d out of %d\r", k, N-2); fflush(stdout); for (j = 1; j < M-1; j++) { for (i = 1; i < L-1; i++) { idx = k*slsz + j*L +i; if(!inOut) { // - if this point is EXTERIOR, BOUNDARY or SURF, skip it if( (flags[idx] == EXTERIOR) || (flags[idx] == BOUNDARY) || (flags[idx] == SURF)) { continue; } } else { // we look for high divergence points outside the object too // ignore only boundary points. if( (flags[idx] == BOUNDARY) || (flags[idx] == SURF)) { continue; } } for(kk=0; kk < SEARCH_GRID; kk++) { for(jj=0; jj < SEARCH_GRID; jj++) { for(ii=0; ii < SEARCH_GRID; ii++) { x = i + (ii * CELL_SIZE); y = j + (jj * CELL_SIZE); z = k + (kk * CELL_SIZE); #ifdef TRACE // printf("At point: (%lf, %lf, %lf)\n", x, y, z); #endif // interpolate force vectors arround the point v[0] = interpolation(x + vdist, y, z, L, M, N, ForceField); v[1] = interpolation(x - vdist, y, z, L, M, N, ForceField); v[2] = interpolation(x, y + vdist, z, L, M, N, ForceField); v[3] = interpolation(x, y - vdist, z, L, M, N, ForceField); v[4] = interpolation(x, y, z + vdist, L, M, N, ForceField); v[5] = interpolation(x, y, z - vdist, L, M, N, ForceField); div = ((v[0].xd - v[1].xd) + (v[2].yd - v[3].yd) + (v[4].zd - v[5].zd)) / (2 * vdist); #ifdef TRACE /* printf("Forces:\n"); for(s = 0; s < 6; s++) { printf("%lf %lf %lf\n", v[s].xd, v[s].yd, v[s].zd); } printf("Div = %lf\n", div); */ #endif if(div <= threshold) { // add the point to the HD list (*HDPts)[(*numHDPts)].x = x; (*HDPts)[(*numHDPts)].y = y; (*HDPts)[(*numHDPts)].z = z; adiv[(*numHDPts)] = div; (*numHDPts) = (*numHDPts) + 1; if((*numHDPts) >= MAX_NUM_HDPTS) { printf("UPS! Too many high divergence points detected. \ Reached maximum of %d. Abort\n", MAX_NUM_HDPTS); exit(1); } } } } } } } } // // sort the points on the divergence value; // double minval, tmp; int minpos; for(i=0; i < (*numHDPts); i++) { minval = adiv[i]; minpos = i; for(j=i+1; j < (*numHDPts); j++) { if(adiv[j] < minval) { minval = adiv[j]; minpos = j; } } if(minpos != i) { // exchange points and div values tmp = adiv[i]; adiv[i] = adiv[minpos]; adiv[minpos] = tmp; tmp = (*HDPts)[i].x; (*HDPts)[i].x = (*HDPts)[minpos].x; (*HDPts)[minpos].x = tmp; tmp = (*HDPts)[i].y; (*HDPts)[i].y = (*HDPts)[minpos].y; (*HDPts)[minpos].y = tmp; tmp = (*HDPts)[i].z; (*HDPts)[i].z = (*HDPts)[minpos].z; (*HDPts)[minpos].z = tmp; } } #ifdef TRACE printf("Points: \n"); for(i=0; i < (*numHDPts); i++) { printf("%f %f %f - %f\n", (*HDPts)[i].x, (*HDPts)[i].y, (*HDPts)[i].z, adiv[i]); } #endif // // cluster the points // // Algorithm: // First point creates the first group. // For all the other points: // If the point is close to an existing group // add the point to that group // else // the point starts a new group // endif // endfor // end // // initialize data structure HDGroup *Groups; int numGroups = 0; if((Groups = new HDGroup[(*numHDPts)]) == NULL) { printf("Error allocating memory for working data structures. Abort\n"); exit(1); } for(i=0; i < (*numHDPts); i++) { if((Groups[i].Points = new int[(*numHDPts)]) == NULL) { printf("Error allocating memory for working data structures. Abort\n"); exit(1); } Groups[i].numPoints = 0; } bool closeToSomeGroup = false; // first point creates the first group Groups[0].Points[0] = 0; Groups[0].numPoints = 1; numGroups = 1; for(i=1; i < (*numHDPts); i++) { closeToSomeGroup = false; for(j=0; j < numGroups; j++) { if(PointIsCloseToGroup(i, j, Groups, HDPts)) { // add the point to that group Groups[j].Points[Groups[j].numPoints] = i; Groups[j].numPoints = Groups[j].numPoints + 1; closeToSomeGroup = true; break; } } if(!closeToSomeGroup) { // start a new group Groups[numGroups].Points[0] = i; Groups[numGroups].numPoints = 1; numGroups++; } } #ifdef TRACE // print the clustered points: printf("Clustered points:\n"); for(i=0; i < numGroups; i++) { printf("%f %f %f\n", (*HDPts)[Groups[i].Points[0]].x, (*HDPts)[Groups[i].Points[0]].y, (*HDPts)[Groups[i].Points[0]].z); for(j=1; j < Groups[i].numPoints; j++) { printf("\t%f %f %f\n", (*HDPts)[Groups[i].Points[j]].x, (*HDPts)[Groups[i].Points[j]].y, (*HDPts)[Groups[i].Points[j]].z); } } #endif // // Return only the first point in each group as the high divergence points // VoxelPositionDouble* newHDPts; if((newHDPts = new VoxelPositionDouble[numGroups]) == NULL) { printf("GetHighDivergencePoints: UPS! - Error allocating memory for the output array. Abort.\n"); exit(1); } for(i=0; i < numGroups; i++) { newHDPts[i].x = (*HDPts)[Groups[i].Points[0]].x; newHDPts[i].y = (*HDPts)[Groups[i].Points[0]].y; newHDPts[i].z = (*HDPts)[Groups[i].Points[0]].z; } // delete the old array delete [] (*HDPts); // delete Group data structure for(i=0; i < numGroups; i++) { delete [] Groups[i].Points; } delete [] Groups; // return the new array (*HDPts) = newHDPts; (*numHDPts) = numGroups; #ifdef TRACE printf("Returning points: \n"); for(i=0; i < (*numHDPts); i++) { printf("%f %f %f - %f\n", (*HDPts)[i].x, (*HDPts)[i].y, (*HDPts)[i].z, adiv[i]); } #endif return true; } __device__ __host__ Vector interpolation(double x, double y, double z, int sizx, int sizy, int sizz, Vector *forcevec) { float alpha, beta, gamma; Vector forceInt; long slsz; alpha=x-int(x); beta=y-int(y); gamma=z-int(z); slsz=sizy*sizx; forceInt.xd=forcevec[int(z)*slsz + int(y)*sizx + int(x)].xd*(1-alpha)*(1-beta)*(1-gamma) +forcevec[(int(z)+1)*slsz + int(y)*sizx + int(x)].xd*(1-alpha)*(1-beta)*gamma +forcevec[int(z)*slsz + (int(y)+1)*sizx + int(x)].xd*(1-alpha)*beta*(1-gamma) +forcevec[int(z)*slsz + int(y)*sizx + (int(x)+1)].xd*alpha*(1-beta)*(1-gamma) +forcevec[(int(z)+1)*slsz + int(y)*sizx + (int(x)+1)].xd*alpha*(1-beta)*gamma +forcevec[int(z)*slsz + (int(y)+1)*sizx + (int(x)+1)].xd*alpha*beta*(1-gamma) +forcevec[(int(z)+1)*slsz + (int(y)+1)*sizx + int(x)].xd*(1-alpha)*beta*gamma +forcevec[(int(z)+1)*slsz + (int(y)+1)*sizx + (int(x)+1)].xd*(alpha*beta*gamma); forceInt.yd=forcevec[int(z)*slsz + int(y)*sizx + int(x)].yd*(1-alpha)*(1-beta)*(1-gamma) +forcevec[(int(z)+1)*slsz + int(y)*sizx + int(x)].yd*(1-alpha)*(1-beta)*gamma +forcevec[int(z)*slsz + (int(y)+1)*sizx + int(x)].yd*(1-alpha)*beta*(1-gamma) +forcevec[int(z)*slsz + int(y)*sizx + (int(x)+1)].yd*alpha*(1-beta)*(1-gamma) +forcevec[(int(z)+1)*slsz + int(y)*sizx + (int(x)+1)].yd*alpha*(1-beta)*gamma +forcevec[int(z)*slsz + (int(y)+1)*sizx + (int(x)+1)].yd*alpha*beta*(1-gamma) +forcevec[(int(z)+1)*slsz + (int(y)+1)*sizx + int(x)].yd*(1-alpha)*beta*gamma +forcevec[(int(z)+1)*slsz + (int(y)+1)*sizx + (int(x)+1)].yd*alpha*beta*gamma; forceInt.zd=forcevec[int(z)*slsz + int(y)*sizx + int(x)].zd*(1-alpha)*(1-beta)*(1-gamma) +forcevec[(int(z)+1)*slsz + int(y)*sizx + int(x)].zd*(1-alpha)*(1-beta)*gamma +forcevec[int(z)*slsz + (int(y)+1)*sizx + int(x)].zd*(1-alpha)*beta*(1-gamma) +forcevec[int(z)*slsz + int(y)*sizx + (int(x)+1)].zd*alpha*(1-beta)*(1-gamma) +forcevec[(int(z)+1)*slsz + int(y)*sizx + (int(x)+1)].zd*alpha*(1-beta)*gamma +forcevec[int(z)*slsz + (int(y)+1)*sizx + (int(x)+1)].zd*alpha*beta*(1-gamma) +forcevec[(int(z)+1)*slsz + (int(y)+1)*sizx + int(x)].zd*(1-alpha)*beta*gamma +forcevec[(int(z)+1)*slsz + (int(y)+1)*sizx + (int(x)+1)].zd*alpha*beta*gamma; return(forceInt); } inline bool PointIsCloseToGroup(int pt, int grp, HDGroup *Groups, VoxelPositionDouble **HDPts) { int i; for(i=0; i < Groups[grp].numPoints; i++) { if( (fabs((*HDPts)[pt].x - (*HDPts)[Groups[grp].Points[i]].x) <= 1) && (fabs((*HDPts)[pt].y - (*HDPts)[Groups[grp].Points[i]].y) <= 1) && (fabs((*HDPts)[pt].z - (*HDPts)[Groups[grp].Points[i]].z) <= 1)) { return true; } } return false; }
be1f7f550db84c9aa427e218211d1d4f7ebcfd95.cu
// Find high divergence points of a vector field // --- Input: 1. normalized 3D vector field // // dFx dFy dFz // divergence = ----- + ----- + ----- // dx dy dz // // --- Output: highest ...% divergence point list // --- Author: Nicu D. Cornea, Vizlab, Rutgers University // --- Date: Wed Aug 20 17:53:56 EDT 2003 // #include "HighDiverg.h" // #define TRACE #define SEARCH_GRID 1 #define CELL_SIZE 1.00 / SEARCH_GRID #define MAX_NUM_HDPTS 5000 typedef struct Lock { int *mutex; Lock() { int state=0; int a=1; cudaMalloc((void **)&mutex,sizeof(int)); cudaMemcpy(mutex,&a,sizeof(int),cudaMemcpyHostToDevice); } ~Lock() { cudaFree(mutex); } __device__ void lock() { while(atomicCAS(mutex, 0, 1) != 0); } __device__ void unlock() { atomicExch(mutex, 0); } }Lock; typedef struct { int* Points; int numPoints; } HDGroup; inline bool PointIsCloseToGroup(int pt, int grp, HDGroup *Groups, VoxelPositionDouble **HDPts); __device__ __host__ inline Vector interpolation(double x, double y, double z, int sizx, int sizy, int sizz, Vector *forcevec); __global__ void max_min_divergence(unsigned char *flags,Vector *ForceField,double *maxDiv,double *minDiv,bool inOut,int slsz,int L,int M, int N,double vdist, Lock mylock) { double x, y, z; int k=blockIdx.x; int j=blockIdx.y; int i=blockIdx.z; double div; int idx=k*slsz + j*L +i; if(!inOut) { // - if this point is EXTERIOR, BOUNDARY or SURF, skip it if( (flags[idx] == EXTERIOR) || (flags[idx] == BOUNDARY) || (flags[idx] == SURF)) { return; } } else { // we look for high divergence points outside the object too // ignore only boundary points. if( (flags[idx] == BOUNDARY) || (flags[idx] == SURF)) { return; } } for(int kk=0; kk < SEARCH_GRID; kk++) { for(int jj=0; jj < SEARCH_GRID; jj++) { for(int ii=0; ii < SEARCH_GRID; ii++) { x = i + (ii * CELL_SIZE); y = j + (jj * CELL_SIZE); z = k + (kk * CELL_SIZE); #ifdef TRACE // printf("At point: (%lf, %lf, %lf)\n", x, y, z); #endif // interpolate force vectors arround the point Vector v_0 = interpolation(x + vdist, y, z, L, M, N, ForceField); Vector v_1 = interpolation(x - vdist, y, z, L, M, N, ForceField); Vector v_2 = interpolation(x, y + vdist, z, L, M, N, ForceField); Vector v_3 = interpolation(x, y - vdist, z, L, M, N, ForceField); Vector v_4 = interpolation(x, y, z + vdist, L, M, N, ForceField); Vector v_5 = interpolation(x, y, z - vdist, L, M, N, ForceField); div = ((v_0.xd - v_1.xd) + (v_2.yd - v_3.yd) + (v_4.zd - v_5.zd)) / (2 * vdist); #ifdef TRACE /* printf("Forces:\n"); for(s = 0; s < 6; s++) { printf("%lf %lf %lf\n", v[s].xd, v[s].yd, v[s].zd); } printf("Div = %lf\n", div); */ #endif mylock.lock(); if(div > *maxDiv) { *maxDiv = div; } if(div < *minDiv) { *minDiv = div; }div; mylock.unlock(); } } } } // double GetDiv(double x, double y, double z); bool GetHighDivergencePoints( Vector* ForceField, // [in] vector field int L, int M, int N, // [in] size of vector field (X, Y and Z) unsigned char *flags, // [in] flags array float perc, // [in] percentage of high div. points // to be returned (top <perc> %) VoxelPositionDouble **HDPts, // [out] high divergence point list int *numHDPts, // [out] number of points in the list bool inOut // [in] flag specifying if we should look // outside the object too (if true). // DEFAULT: false ) { #ifdef TRACE printf("TRACE: Starting GetHighDivergencePoints function. Cellsize = %lf\n", CELL_SIZE); #endif (*HDPts) = NULL; (*numHDPts) = 0; if(perc == 0) { return true; } long idx, slsz; int i,j,k, ii, jj, kk, s; double x, y, z; long cntz, cntnz; slsz = L*M; // slice size double adiv[MAX_NUM_HDPTS]; // divergence array if(((*HDPts) = new VoxelPositionDouble[MAX_NUM_HDPTS]) == NULL) { printf("GetHighDivergencePoints: UPS! - Error allocating memory for the output array. Abort.\n"); exit(1); } // calculate divergence throughout the dataset double maxDiv = -999999.99; double minDiv = 999999.99; double div; cntz = 0; cntnz = 0; double zerodiv = 0.1; ///////////////////////////////////// Vector v[6]; double vdist = (CELL_SIZE) / 2.00; #ifdef TRACE printf("vdist = %lf\n", vdist); #endif printf("Finding high divergence points (1).\n"); unsigned char *d_flags; Vector *d_ForceField; double *d_maxDiv; double *d_minDiv; Lock mylock; int *p=(int *)malloc(sizeof(int)); cudaMalloc((void **)&d_flags,sizeof(unsigned char)*L*M*N); cudaMalloc((void **)&d_ForceField,sizeof(Vector)*L*M*N); cudaMalloc((void **)&d_minDiv,sizeof(double)); cudaMalloc((void **)&d_maxDiv,sizeof(double)); cudaMemcpy(d_flags,flags,sizeof(unsigned char)*L*M*N,cudaMemcpyHostToDevice); cudaMemcpy(d_ForceField,ForceField,sizeof(Vector)*L*M*N,cudaMemcpyHostToDevice); cudaMemcpy(d_maxDiv,&maxDiv,sizeof(double),cudaMemcpyHostToDevice); cudaMemcpy(d_minDiv,&minDiv,sizeof(double),cudaMemcpyHostToDevice); dim3 dimBlock(1); dim3 dimGrid(N,M,L); max_min_divergence<<<dimGrid,dimBlock>>>(d_flags,d_ForceField,d_maxDiv,d_minDiv,inOut,slsz,L,M,N,vdist, mylock); cudaMemcpy(&maxDiv,d_maxDiv,sizeof(double),cudaMemcpyDeviceToHost); cudaMemcpy(&minDiv,d_minDiv,sizeof(double),cudaMemcpyDeviceToHost); // for (k = 1; k < N-1; k++) { // printf("\tProcessing plane %d out of %d\r", k, N-2); // fflush(stdout); // for (j = 1; j < M-1; j++) { // for (i = 1; i < L-1; i++) { // idx = k*slsz + j*L +i; // // if we are not looking outside the object too. // if(!inOut) { // // - if this point is EXTERIOR, BOUNDARY or SURF, skip it // if( (flags[idx] == EXTERIOR) || // (flags[idx] == BOUNDARY) || // (flags[idx] == SURF)) // { // continue; // } // } // else { // // we look for high divergence points outside the object too // // ignore only boundary points. // if( (flags[idx] == BOUNDARY) || // (flags[idx] == SURF)) // { // continue; // } // } // for(kk=0; kk < SEARCH_GRID; kk++) { // for(jj=0; jj < SEARCH_GRID; jj++) { // for(ii=0; ii < SEARCH_GRID; ii++) { // x = i + (ii * CELL_SIZE); // y = j + (jj * CELL_SIZE); // z = k + (kk * CELL_SIZE); // #ifdef TRACE // // printf("At point: (%lf, %lf, %lf)\n", x, y, z); // #endif // // interpolate force vectors arround the point // v[0] = interpolation(x + vdist, y, z, L, M, N, ForceField); // v[1] = interpolation(x - vdist, y, z, L, M, N, ForceField); // v[2] = interpolation(x, y + vdist, z, L, M, N, ForceField); // v[3] = interpolation(x, y - vdist, z, L, M, N, ForceField); // v[4] = interpolation(x, y, z + vdist, L, M, N, ForceField); // v[5] = interpolation(x, y, z - vdist, L, M, N, ForceField); // div = ((v[0].xd - v[1].xd) + (v[2].yd - v[3].yd) + (v[4].zd - v[5].zd)) / (2 * vdist); // if((div > -zerodiv) && (div < zerodiv)) { // cntz++; // } // else { // cntnz++; // } // #ifdef TRACE // /* // printf("Forces:\n"); // for(s = 0; s < 6; s++) { // printf("%lf %lf %lf\n", v[s].xd, v[s].yd, v[s].zd); // } // printf("Div = %lf\n", div); // */ // #endif // if(div > maxDiv) { // maxDiv = div; // } // if(div < minDiv) { // minDiv = div; // }div; // } // } // } // } // } // } // #ifdef _DEBUG printf("Divergence: max = %lf, min = %lf\n", maxDiv, minDiv); // #endif double threshold; // case 1: // take <perc> percent of the lowest negative value: // !! have to change the comparison threshold = maxDiv - minDiv; threshold = ((double)perc / 100.00) * threshold; threshold = minDiv + threshold; /* // case 2: // take <perc> percent of the highest pozitive value: // !! have to change the comparison // NOT GOOD threshold = maxDiv - minDiv; threshold = ((double)perc / 100.00) * threshold; threshold = maxDiv - threshold; */ /* // case 3: // take <perc> percent of the lowest value (must be negative): // !! have to change the comparison // NOT GOOD threshold = minDiv; threshold = ((double)perc / 100.00) * threshold; threshold = minDiv - threshold; */ #ifdef _DEBUG printf("Threshold set to: %lf\n", threshold); printf("Number of close to 0 divergence points [-%lf..%lf]: %ld. \n \ Number of non 0 divergence points: %ld.\n", zerodiv, zerodiv, cntz, cntnz); #endif printf("Finding high divergence points (2).\n"); for (k = 1; k < N-1; k++) { printf("\tProcessing plane %d out of %d\r", k, N-2); fflush(stdout); for (j = 1; j < M-1; j++) { for (i = 1; i < L-1; i++) { idx = k*slsz + j*L +i; if(!inOut) { // - if this point is EXTERIOR, BOUNDARY or SURF, skip it if( (flags[idx] == EXTERIOR) || (flags[idx] == BOUNDARY) || (flags[idx] == SURF)) { continue; } } else { // we look for high divergence points outside the object too // ignore only boundary points. if( (flags[idx] == BOUNDARY) || (flags[idx] == SURF)) { continue; } } for(kk=0; kk < SEARCH_GRID; kk++) { for(jj=0; jj < SEARCH_GRID; jj++) { for(ii=0; ii < SEARCH_GRID; ii++) { x = i + (ii * CELL_SIZE); y = j + (jj * CELL_SIZE); z = k + (kk * CELL_SIZE); #ifdef TRACE // printf("At point: (%lf, %lf, %lf)\n", x, y, z); #endif // interpolate force vectors arround the point v[0] = interpolation(x + vdist, y, z, L, M, N, ForceField); v[1] = interpolation(x - vdist, y, z, L, M, N, ForceField); v[2] = interpolation(x, y + vdist, z, L, M, N, ForceField); v[3] = interpolation(x, y - vdist, z, L, M, N, ForceField); v[4] = interpolation(x, y, z + vdist, L, M, N, ForceField); v[5] = interpolation(x, y, z - vdist, L, M, N, ForceField); div = ((v[0].xd - v[1].xd) + (v[2].yd - v[3].yd) + (v[4].zd - v[5].zd)) / (2 * vdist); #ifdef TRACE /* printf("Forces:\n"); for(s = 0; s < 6; s++) { printf("%lf %lf %lf\n", v[s].xd, v[s].yd, v[s].zd); } printf("Div = %lf\n", div); */ #endif if(div <= threshold) { // add the point to the HD list (*HDPts)[(*numHDPts)].x = x; (*HDPts)[(*numHDPts)].y = y; (*HDPts)[(*numHDPts)].z = z; adiv[(*numHDPts)] = div; (*numHDPts) = (*numHDPts) + 1; if((*numHDPts) >= MAX_NUM_HDPTS) { printf("UPS! Too many high divergence points detected. \ Reached maximum of %d. Abort\n", MAX_NUM_HDPTS); exit(1); } } } } } } } } // // sort the points on the divergence value; // double minval, tmp; int minpos; for(i=0; i < (*numHDPts); i++) { minval = adiv[i]; minpos = i; for(j=i+1; j < (*numHDPts); j++) { if(adiv[j] < minval) { minval = adiv[j]; minpos = j; } } if(minpos != i) { // exchange points and div values tmp = adiv[i]; adiv[i] = adiv[minpos]; adiv[minpos] = tmp; tmp = (*HDPts)[i].x; (*HDPts)[i].x = (*HDPts)[minpos].x; (*HDPts)[minpos].x = tmp; tmp = (*HDPts)[i].y; (*HDPts)[i].y = (*HDPts)[minpos].y; (*HDPts)[minpos].y = tmp; tmp = (*HDPts)[i].z; (*HDPts)[i].z = (*HDPts)[minpos].z; (*HDPts)[minpos].z = tmp; } } #ifdef TRACE printf("Points: \n"); for(i=0; i < (*numHDPts); i++) { printf("%f %f %f - %f\n", (*HDPts)[i].x, (*HDPts)[i].y, (*HDPts)[i].z, adiv[i]); } #endif // // cluster the points // // Algorithm: // First point creates the first group. // For all the other points: // If the point is close to an existing group // add the point to that group // else // the point starts a new group // endif // endfor // end // // initialize data structure HDGroup *Groups; int numGroups = 0; if((Groups = new HDGroup[(*numHDPts)]) == NULL) { printf("Error allocating memory for working data structures. Abort\n"); exit(1); } for(i=0; i < (*numHDPts); i++) { if((Groups[i].Points = new int[(*numHDPts)]) == NULL) { printf("Error allocating memory for working data structures. Abort\n"); exit(1); } Groups[i].numPoints = 0; } bool closeToSomeGroup = false; // first point creates the first group Groups[0].Points[0] = 0; Groups[0].numPoints = 1; numGroups = 1; for(i=1; i < (*numHDPts); i++) { closeToSomeGroup = false; for(j=0; j < numGroups; j++) { if(PointIsCloseToGroup(i, j, Groups, HDPts)) { // add the point to that group Groups[j].Points[Groups[j].numPoints] = i; Groups[j].numPoints = Groups[j].numPoints + 1; closeToSomeGroup = true; break; } } if(!closeToSomeGroup) { // start a new group Groups[numGroups].Points[0] = i; Groups[numGroups].numPoints = 1; numGroups++; } } #ifdef TRACE // print the clustered points: printf("Clustered points:\n"); for(i=0; i < numGroups; i++) { printf("%f %f %f\n", (*HDPts)[Groups[i].Points[0]].x, (*HDPts)[Groups[i].Points[0]].y, (*HDPts)[Groups[i].Points[0]].z); for(j=1; j < Groups[i].numPoints; j++) { printf("\t%f %f %f\n", (*HDPts)[Groups[i].Points[j]].x, (*HDPts)[Groups[i].Points[j]].y, (*HDPts)[Groups[i].Points[j]].z); } } #endif // // Return only the first point in each group as the high divergence points // VoxelPositionDouble* newHDPts; if((newHDPts = new VoxelPositionDouble[numGroups]) == NULL) { printf("GetHighDivergencePoints: UPS! - Error allocating memory for the output array. Abort.\n"); exit(1); } for(i=0; i < numGroups; i++) { newHDPts[i].x = (*HDPts)[Groups[i].Points[0]].x; newHDPts[i].y = (*HDPts)[Groups[i].Points[0]].y; newHDPts[i].z = (*HDPts)[Groups[i].Points[0]].z; } // delete the old array delete [] (*HDPts); // delete Group data structure for(i=0; i < numGroups; i++) { delete [] Groups[i].Points; } delete [] Groups; // return the new array (*HDPts) = newHDPts; (*numHDPts) = numGroups; #ifdef TRACE printf("Returning points: \n"); for(i=0; i < (*numHDPts); i++) { printf("%f %f %f - %f\n", (*HDPts)[i].x, (*HDPts)[i].y, (*HDPts)[i].z, adiv[i]); } #endif return true; } __device__ __host__ Vector interpolation(double x, double y, double z, int sizx, int sizy, int sizz, Vector *forcevec) { float alpha, beta, gamma; Vector forceInt; long slsz; alpha=x-int(x); beta=y-int(y); gamma=z-int(z); slsz=sizy*sizx; forceInt.xd=forcevec[int(z)*slsz + int(y)*sizx + int(x)].xd*(1-alpha)*(1-beta)*(1-gamma) +forcevec[(int(z)+1)*slsz + int(y)*sizx + int(x)].xd*(1-alpha)*(1-beta)*gamma +forcevec[int(z)*slsz + (int(y)+1)*sizx + int(x)].xd*(1-alpha)*beta*(1-gamma) +forcevec[int(z)*slsz + int(y)*sizx + (int(x)+1)].xd*alpha*(1-beta)*(1-gamma) +forcevec[(int(z)+1)*slsz + int(y)*sizx + (int(x)+1)].xd*alpha*(1-beta)*gamma +forcevec[int(z)*slsz + (int(y)+1)*sizx + (int(x)+1)].xd*alpha*beta*(1-gamma) +forcevec[(int(z)+1)*slsz + (int(y)+1)*sizx + int(x)].xd*(1-alpha)*beta*gamma +forcevec[(int(z)+1)*slsz + (int(y)+1)*sizx + (int(x)+1)].xd*(alpha*beta*gamma); forceInt.yd=forcevec[int(z)*slsz + int(y)*sizx + int(x)].yd*(1-alpha)*(1-beta)*(1-gamma) +forcevec[(int(z)+1)*slsz + int(y)*sizx + int(x)].yd*(1-alpha)*(1-beta)*gamma +forcevec[int(z)*slsz + (int(y)+1)*sizx + int(x)].yd*(1-alpha)*beta*(1-gamma) +forcevec[int(z)*slsz + int(y)*sizx + (int(x)+1)].yd*alpha*(1-beta)*(1-gamma) +forcevec[(int(z)+1)*slsz + int(y)*sizx + (int(x)+1)].yd*alpha*(1-beta)*gamma +forcevec[int(z)*slsz + (int(y)+1)*sizx + (int(x)+1)].yd*alpha*beta*(1-gamma) +forcevec[(int(z)+1)*slsz + (int(y)+1)*sizx + int(x)].yd*(1-alpha)*beta*gamma +forcevec[(int(z)+1)*slsz + (int(y)+1)*sizx + (int(x)+1)].yd*alpha*beta*gamma; forceInt.zd=forcevec[int(z)*slsz + int(y)*sizx + int(x)].zd*(1-alpha)*(1-beta)*(1-gamma) +forcevec[(int(z)+1)*slsz + int(y)*sizx + int(x)].zd*(1-alpha)*(1-beta)*gamma +forcevec[int(z)*slsz + (int(y)+1)*sizx + int(x)].zd*(1-alpha)*beta*(1-gamma) +forcevec[int(z)*slsz + int(y)*sizx + (int(x)+1)].zd*alpha*(1-beta)*(1-gamma) +forcevec[(int(z)+1)*slsz + int(y)*sizx + (int(x)+1)].zd*alpha*(1-beta)*gamma +forcevec[int(z)*slsz + (int(y)+1)*sizx + (int(x)+1)].zd*alpha*beta*(1-gamma) +forcevec[(int(z)+1)*slsz + (int(y)+1)*sizx + int(x)].zd*(1-alpha)*beta*gamma +forcevec[(int(z)+1)*slsz + (int(y)+1)*sizx + (int(x)+1)].zd*alpha*beta*gamma; return(forceInt); } inline bool PointIsCloseToGroup(int pt, int grp, HDGroup *Groups, VoxelPositionDouble **HDPts) { int i; for(i=0; i < Groups[grp].numPoints; i++) { if( (fabs((*HDPts)[pt].x - (*HDPts)[Groups[grp].Points[i]].x) <= 1) && (fabs((*HDPts)[pt].y - (*HDPts)[Groups[grp].Points[i]].y) <= 1) && (fabs((*HDPts)[pt].z - (*HDPts)[Groups[grp].Points[i]].z) <= 1)) { return true; } } return false; }
c61ff93c86289b5024b5348133f86ca429a73785.hip
// !!! This is a file automatically generated by hipify!!! #ifdef ENABLE_CURD #include<curd_lib_host.h> #endif /*************************************************************************** *cr *cr (C) Copyright 2007 The Board of Trustees of the *cr University of Illinois *cr All Rights Reserved *cr ***************************************************************************/ #include <stdio.h> #include <stdlib.h> #include <sys/time.h> #include <inttypes.h> #include <parboil.h> #include <hip/hip_runtime.h> #include "sad.h" #include "sad4.h" #include "largerBlocks.h" #include "file.h" #include "image.h" #define CUDA_ERRCK \ {hipError_t err = hipGetLastError(); \ if (err) fprintf(stderr, "CUDA error: %s\n", hipGetErrorString(err)); \ } static unsigned short * load_sads(char *filename); static void write_sads(char *filename, int image_width_macroblocks, int image_height_macroblocks, unsigned short *sads); static void write_sads_directly(char *filename, int width, int height, unsigned short *sads); /* FILE I/O */ unsigned short * load_sads(char *filename) { FILE *infile; unsigned short *sads; int w; int h; int sads_per_block; infile = fopen(filename, "r"); if (!infile) { fprintf(stderr, "Cannot find file '%s'\n", filename); exit(-1); } /* Read image dimensions (measured in macroblocks) */ w = read16u(infile); h = read16u(infile); /* Read SAD values. Only interested in the 4x4 SAD values, which are * at the end of the file. */ sads_per_block = MAX_POS_PADDED * (w * h); fseek(infile, 25 * sads_per_block * sizeof(unsigned short), SEEK_CUR); sads = (unsigned short *)malloc(sads_per_block * 16 * sizeof(unsigned short)); fread(sads, sizeof(unsigned short), sads_per_block * 16, infile); fclose(infile); return sads; } /* Compare the reference SADs to the expected SADs. */ void check_sads(unsigned short *sads_reference, unsigned short *sads_computed, int image_size_macroblocks) { int block; /* Check the 4x4 SAD values. These are in sads_reference. * Ignore the data at the beginning of sads_computed. */ sads_computed += 25 * MAX_POS_PADDED * image_size_macroblocks; for (block = 0; block < image_size_macroblocks; block++) { int subblock; for (subblock = 0; subblock < 16; subblock++) { int sad_index; for (sad_index = 0; sad_index < MAX_POS; sad_index++) { int index = (block * 16 + subblock) * MAX_POS_PADDED + sad_index; if (sads_reference[index] != sads_computed[index]) { #if 0 /* Print exactly where the mismatch was seen */ printf("M %3d %2d %4d (%d = %d)\n", block, subblock, sad_index, sads_reference[index], sads_computed[index]); #else goto mismatch; #endif } } } } printf("Success.\n"); return; mismatch: printf("Computed SADs do not match expected values.\n"); } /* Extract the SAD data for a particular block type for a particular * macroblock from the array of SADs of that block type. */ static inline void write_subblocks(FILE *outfile, unsigned short *subblock_array, int macroblock, int count) { int block; int pos; for (block = 0; block < count; block++) { unsigned short *vec = subblock_array + (block + macroblock * count) * MAX_POS_PADDED; /* Write all SADs for this sub-block */ for (pos = 0; pos < MAX_POS; pos++) write16u(outfile, *vec++); } } /* Write some SAD data to a file for output checking. * * All SAD values for six rows of macroblocks are written. * The six rows consist of the top two, middle two, and bottom two image rows. */ void write_sads(char *filename, int mb_width, int mb_height, unsigned short *sads) { FILE *outfile = fopen(filename, "w"); int mbs = mb_width * mb_height; int row_indir; int row_indices[6] = {0, 1, mb_height / 2 - 1, mb_height / 2, mb_height - 2, mb_height - 1}; if (outfile == NULL) { fprintf(stderr, "Cannot open output file\n"); exit(-1); } /* Write the number of output macroblocks */ write32u(outfile, mb_width * 6); /* Write zeros */ write32u(outfile, 0); /* Each row */ for (row_indir = 0; row_indir < 6; row_indir++) { int row = row_indices[row_indir]; /* Each block in row */ int block; for (block = mb_width * row; block < mb_width * (row + 1); block++) { int blocktype; /* Write SADs for all sub-block types */ for (blocktype = 1; blocktype <= 7; blocktype++) write_subblocks(outfile, sads + SAD_TYPE_IX(blocktype, mbs), block, SAD_TYPE_CT(blocktype)); } } fclose(outfile); } /* FILE I/O for debugging */ static void write_sads_directly(char *filename, int width, int height, unsigned short *sads) { FILE *f = fopen(filename, "w"); int n; write16u(f, width); write16u(f, height); for (n = 0; n < 41 * MAX_POS_PADDED * (width * height); n++) { write16u(f, sads[n]); } fclose(f); } static void print_test_sad_vector(unsigned short *base, int macroblock, int count) { int n; int searchpos = 17*33+17; for (n = 0; n < count; n++) printf(" %d", base[(count * macroblock + n) * MAX_POS_PADDED + searchpos]); } static void print_test_sads(unsigned short *sads_computed, int mbs) { int macroblock = 5; int blocktype; for (blocktype = 1; blocktype <= 7; blocktype++) { printf("%d:", blocktype); print_test_sad_vector(sads_computed + SAD_TYPE_IX(blocktype, mbs), macroblock, SAD_TYPE_CT(blocktype)); puts("\n"); } } /* MAIN */ int main(int argc, char **argv) { struct image_i16 *ref_image; struct image_i16 *cur_image; unsigned short *sads_computed; /* SADs generated by the program */ int image_size_bytes; int image_width_macroblocks, image_height_macroblocks; int image_size_macroblocks; struct pb_TimerSet timers; struct pb_Parameters *params; pb_InitializeTimerSet(&timers); params = pb_ReadParameters(&argc, argv); if (pb_Parameters_CountInputs(params) != 2) { fprintf(stderr, "Expecting two input filenames\n"); exit(-1); } /* Read input files */ pb_SwitchToTimer(&timers, pb_TimerID_IO); ref_image = load_image(params->inpFiles[0]); cur_image = load_image(params->inpFiles[1]); pb_SwitchToTimer(&timers, pb_TimerID_COMPUTE); if ((ref_image->width != cur_image->width) || (ref_image->height != cur_image->height)) { fprintf(stderr, "Input images must be the same size\n"); exit(-1); } if ((ref_image->width % 16) || (ref_image->height % 16)) { fprintf(stderr, "Input image size must be an integral multiple of 16\n"); exit(-1); } /* Compute parameters, allocate memory */ image_size_bytes = ref_image->width * ref_image->height * sizeof(short); image_width_macroblocks = ref_image->width >> 4; image_height_macroblocks = ref_image->height >> 4; image_size_macroblocks = image_width_macroblocks * image_height_macroblocks; sads_computed = (unsigned short *) malloc(41 * MAX_POS_PADDED * image_size_macroblocks * sizeof(short)); /* Run the kernel code */ { struct hipArray *ref_ary; /* Reference image on the device */ short *d_cur_image; /* Current image on the device */ unsigned short *d_sads; /* SADs on the device */ dim3 macroblock_grid(image_width_macroblocks, image_height_macroblocks); pb_SwitchToTimer(&timers, pb_TimerID_COPY); hipMalloc((void **)&d_cur_image, image_size_bytes); CUDA_ERRCK hipMallocArray(&ref_ary, &get_ref().channelDesc, ref_image->width, ref_image->height); CUDA_ERRCK /* Transfer current image to device */ hipMemcpy(d_cur_image, cur_image->data, image_size_bytes, hipMemcpyHostToDevice); CUDA_ERRCK /* Transfer reference image to device */ hipMemcpy2DToArray(ref_ary, 0, 0, ref_image->data, ref_image->width * sizeof(unsigned short), ref_image->width * sizeof(unsigned short), ref_image->height, hipMemcpyHostToDevice); CUDA_ERRCK hipBindTextureToArray(get_ref(), ref_ary); CUDA_ERRCK /* Allocate SAD data on the device */ hipMalloc((void **)&d_sads, 41 * MAX_POS_PADDED * image_size_macroblocks * sizeof(unsigned short)); CUDA_ERRCK hipMemset(d_sads, 0, 41 * MAX_POS_PADDED * image_size_macroblocks * sizeof(unsigned short)); CUDA_ERRCK pb_SwitchToTimer(&timers, pb_TimerID_KERNEL); // Run the 4x4 kernel hipLaunchKernelGGL(( mb_sad_calc), dim3(CEIL(ref_image->width / 4, THREADS_W), CEIL(ref_image->height / 4, THREADS_H)), dim3(dim3(CEIL(MAX_POS, POS_PER_THREAD) * THREADS_W * THREADS_H)), SAD_LOC_SIZE_BYTES, 0, d_sads, (unsigned short *)d_cur_image, image_width_macroblocks, image_height_macroblocks); CUDA_ERRCK // Run the larger-blocks kernels #ifdef ENABLE_CURD allocateReadWriteSets(macroblock_grid, dim3(32, 4)); #endif hipLaunchKernelGGL(( larger_sad_calc_8), dim3(macroblock_grid), dim3(dim3(32, 4)), 0, 0, d_sads, image_width_macroblocks, image_height_macroblocks); #ifdef ENABLE_CURD freeReadWriteSets(macroblock_grid, dim3(32, 4)); #endif CUDA_ERRCK #ifdef ENABLE_CURD allocateReadWriteSets(macroblock_grid, dim3(32, 1)); #endif hipLaunchKernelGGL(( larger_sad_calc_16), dim3(macroblock_grid), dim3(dim3(32, 1)), 0, 0, d_sads, image_width_macroblocks, image_height_macroblocks); #ifdef ENABLE_CURD freeReadWriteSets(macroblock_grid, dim3(32, 1)); #endif CUDA_ERRCK pb_SwitchToTimer(&timers, pb_TimerID_COPY); /* Transfer SAD data to the host */ hipMemcpy(sads_computed,// + 25 * MAX_POS_PADDED * image_size_macroblocks, d_sads,// + 25 * MAX_POS_PADDED * image_size_macroblocks, 41 * MAX_POS_PADDED * image_size_macroblocks * sizeof(unsigned short) , hipMemcpyDeviceToHost); CUDA_ERRCK /* Free GPU memory */ hipFree(d_sads); CUDA_ERRCK hipUnbindTexture(get_ref()); CUDA_ERRCK hipFreeArray(ref_ary); CUDA_ERRCK hipFree(d_cur_image); CUDA_ERRCK pb_SwitchToTimer(&timers, pb_TimerID_COMPUTE); } /* Print output */ if (params->outFile) { pb_SwitchToTimer(&timers, pb_TimerID_IO); write_sads(params->outFile, image_width_macroblocks, image_height_macroblocks, sads_computed); pb_SwitchToTimer(&timers, pb_TimerID_COMPUTE); } #if 0 /* Debugging */ print_test_sads(sads_computed, image_size_macroblocks); write_sads_directly("sad-debug.bin", ref_image->width / 16, ref_image->height / 16, sads_computed); #endif /* Free memory */ free(sads_computed); free_image(ref_image); free_image(cur_image); pb_SwitchToTimer(&timers, pb_TimerID_NONE); pb_PrintTimerSet(&timers); pb_FreeParameters(params); return 0; }
c61ff93c86289b5024b5348133f86ca429a73785.cu
#ifdef ENABLE_CURD #include<curd_lib_host.h> #endif /*************************************************************************** *cr *cr (C) Copyright 2007 The Board of Trustees of the *cr University of Illinois *cr All Rights Reserved *cr ***************************************************************************/ #include <stdio.h> #include <stdlib.h> #include <sys/time.h> #include <inttypes.h> #include <parboil.h> #include <cuda.h> #include "sad.h" #include "sad4.h" #include "largerBlocks.h" #include "file.h" #include "image.h" #define CUDA_ERRCK \ {cudaError_t err = cudaGetLastError(); \ if (err) fprintf(stderr, "CUDA error: %s\n", cudaGetErrorString(err)); \ } static unsigned short * load_sads(char *filename); static void write_sads(char *filename, int image_width_macroblocks, int image_height_macroblocks, unsigned short *sads); static void write_sads_directly(char *filename, int width, int height, unsigned short *sads); /* FILE I/O */ unsigned short * load_sads(char *filename) { FILE *infile; unsigned short *sads; int w; int h; int sads_per_block; infile = fopen(filename, "r"); if (!infile) { fprintf(stderr, "Cannot find file '%s'\n", filename); exit(-1); } /* Read image dimensions (measured in macroblocks) */ w = read16u(infile); h = read16u(infile); /* Read SAD values. Only interested in the 4x4 SAD values, which are * at the end of the file. */ sads_per_block = MAX_POS_PADDED * (w * h); fseek(infile, 25 * sads_per_block * sizeof(unsigned short), SEEK_CUR); sads = (unsigned short *)malloc(sads_per_block * 16 * sizeof(unsigned short)); fread(sads, sizeof(unsigned short), sads_per_block * 16, infile); fclose(infile); return sads; } /* Compare the reference SADs to the expected SADs. */ void check_sads(unsigned short *sads_reference, unsigned short *sads_computed, int image_size_macroblocks) { int block; /* Check the 4x4 SAD values. These are in sads_reference. * Ignore the data at the beginning of sads_computed. */ sads_computed += 25 * MAX_POS_PADDED * image_size_macroblocks; for (block = 0; block < image_size_macroblocks; block++) { int subblock; for (subblock = 0; subblock < 16; subblock++) { int sad_index; for (sad_index = 0; sad_index < MAX_POS; sad_index++) { int index = (block * 16 + subblock) * MAX_POS_PADDED + sad_index; if (sads_reference[index] != sads_computed[index]) { #if 0 /* Print exactly where the mismatch was seen */ printf("M %3d %2d %4d (%d = %d)\n", block, subblock, sad_index, sads_reference[index], sads_computed[index]); #else goto mismatch; #endif } } } } printf("Success.\n"); return; mismatch: printf("Computed SADs do not match expected values.\n"); } /* Extract the SAD data for a particular block type for a particular * macroblock from the array of SADs of that block type. */ static inline void write_subblocks(FILE *outfile, unsigned short *subblock_array, int macroblock, int count) { int block; int pos; for (block = 0; block < count; block++) { unsigned short *vec = subblock_array + (block + macroblock * count) * MAX_POS_PADDED; /* Write all SADs for this sub-block */ for (pos = 0; pos < MAX_POS; pos++) write16u(outfile, *vec++); } } /* Write some SAD data to a file for output checking. * * All SAD values for six rows of macroblocks are written. * The six rows consist of the top two, middle two, and bottom two image rows. */ void write_sads(char *filename, int mb_width, int mb_height, unsigned short *sads) { FILE *outfile = fopen(filename, "w"); int mbs = mb_width * mb_height; int row_indir; int row_indices[6] = {0, 1, mb_height / 2 - 1, mb_height / 2, mb_height - 2, mb_height - 1}; if (outfile == NULL) { fprintf(stderr, "Cannot open output file\n"); exit(-1); } /* Write the number of output macroblocks */ write32u(outfile, mb_width * 6); /* Write zeros */ write32u(outfile, 0); /* Each row */ for (row_indir = 0; row_indir < 6; row_indir++) { int row = row_indices[row_indir]; /* Each block in row */ int block; for (block = mb_width * row; block < mb_width * (row + 1); block++) { int blocktype; /* Write SADs for all sub-block types */ for (blocktype = 1; blocktype <= 7; blocktype++) write_subblocks(outfile, sads + SAD_TYPE_IX(blocktype, mbs), block, SAD_TYPE_CT(blocktype)); } } fclose(outfile); } /* FILE I/O for debugging */ static void write_sads_directly(char *filename, int width, int height, unsigned short *sads) { FILE *f = fopen(filename, "w"); int n; write16u(f, width); write16u(f, height); for (n = 0; n < 41 * MAX_POS_PADDED * (width * height); n++) { write16u(f, sads[n]); } fclose(f); } static void print_test_sad_vector(unsigned short *base, int macroblock, int count) { int n; int searchpos = 17*33+17; for (n = 0; n < count; n++) printf(" %d", base[(count * macroblock + n) * MAX_POS_PADDED + searchpos]); } static void print_test_sads(unsigned short *sads_computed, int mbs) { int macroblock = 5; int blocktype; for (blocktype = 1; blocktype <= 7; blocktype++) { printf("%d:", blocktype); print_test_sad_vector(sads_computed + SAD_TYPE_IX(blocktype, mbs), macroblock, SAD_TYPE_CT(blocktype)); puts("\n"); } } /* MAIN */ int main(int argc, char **argv) { struct image_i16 *ref_image; struct image_i16 *cur_image; unsigned short *sads_computed; /* SADs generated by the program */ int image_size_bytes; int image_width_macroblocks, image_height_macroblocks; int image_size_macroblocks; struct pb_TimerSet timers; struct pb_Parameters *params; pb_InitializeTimerSet(&timers); params = pb_ReadParameters(&argc, argv); if (pb_Parameters_CountInputs(params) != 2) { fprintf(stderr, "Expecting two input filenames\n"); exit(-1); } /* Read input files */ pb_SwitchToTimer(&timers, pb_TimerID_IO); ref_image = load_image(params->inpFiles[0]); cur_image = load_image(params->inpFiles[1]); pb_SwitchToTimer(&timers, pb_TimerID_COMPUTE); if ((ref_image->width != cur_image->width) || (ref_image->height != cur_image->height)) { fprintf(stderr, "Input images must be the same size\n"); exit(-1); } if ((ref_image->width % 16) || (ref_image->height % 16)) { fprintf(stderr, "Input image size must be an integral multiple of 16\n"); exit(-1); } /* Compute parameters, allocate memory */ image_size_bytes = ref_image->width * ref_image->height * sizeof(short); image_width_macroblocks = ref_image->width >> 4; image_height_macroblocks = ref_image->height >> 4; image_size_macroblocks = image_width_macroblocks * image_height_macroblocks; sads_computed = (unsigned short *) malloc(41 * MAX_POS_PADDED * image_size_macroblocks * sizeof(short)); /* Run the kernel code */ { struct cudaArray *ref_ary; /* Reference image on the device */ short *d_cur_image; /* Current image on the device */ unsigned short *d_sads; /* SADs on the device */ dim3 macroblock_grid(image_width_macroblocks, image_height_macroblocks); pb_SwitchToTimer(&timers, pb_TimerID_COPY); cudaMalloc((void **)&d_cur_image, image_size_bytes); CUDA_ERRCK cudaMallocArray(&ref_ary, &get_ref().channelDesc, ref_image->width, ref_image->height); CUDA_ERRCK /* Transfer current image to device */ cudaMemcpy(d_cur_image, cur_image->data, image_size_bytes, cudaMemcpyHostToDevice); CUDA_ERRCK /* Transfer reference image to device */ cudaMemcpy2DToArray(ref_ary, 0, 0, ref_image->data, ref_image->width * sizeof(unsigned short), ref_image->width * sizeof(unsigned short), ref_image->height, cudaMemcpyHostToDevice); CUDA_ERRCK cudaBindTextureToArray(get_ref(), ref_ary); CUDA_ERRCK /* Allocate SAD data on the device */ cudaMalloc((void **)&d_sads, 41 * MAX_POS_PADDED * image_size_macroblocks * sizeof(unsigned short)); CUDA_ERRCK cudaMemset(d_sads, 0, 41 * MAX_POS_PADDED * image_size_macroblocks * sizeof(unsigned short)); CUDA_ERRCK pb_SwitchToTimer(&timers, pb_TimerID_KERNEL); // Run the 4x4 kernel mb_sad_calc<<<dim3(CEIL(ref_image->width / 4, THREADS_W), CEIL(ref_image->height / 4, THREADS_H)), dim3(CEIL(MAX_POS, POS_PER_THREAD) * THREADS_W * THREADS_H), SAD_LOC_SIZE_BYTES>>> (d_sads, (unsigned short *)d_cur_image, image_width_macroblocks, image_height_macroblocks); CUDA_ERRCK // Run the larger-blocks kernels #ifdef ENABLE_CURD allocateReadWriteSets(macroblock_grid, dim3(32, 4)); #endif larger_sad_calc_8<<<macroblock_grid, dim3(32, 4)>>> (d_sads, image_width_macroblocks, image_height_macroblocks); #ifdef ENABLE_CURD freeReadWriteSets(macroblock_grid, dim3(32, 4)); #endif CUDA_ERRCK #ifdef ENABLE_CURD allocateReadWriteSets(macroblock_grid, dim3(32, 1)); #endif larger_sad_calc_16<<<macroblock_grid, dim3(32, 1)>>> (d_sads, image_width_macroblocks, image_height_macroblocks); #ifdef ENABLE_CURD freeReadWriteSets(macroblock_grid, dim3(32, 1)); #endif CUDA_ERRCK pb_SwitchToTimer(&timers, pb_TimerID_COPY); /* Transfer SAD data to the host */ cudaMemcpy(sads_computed,// + 25 * MAX_POS_PADDED * image_size_macroblocks, d_sads,// + 25 * MAX_POS_PADDED * image_size_macroblocks, 41 * MAX_POS_PADDED * image_size_macroblocks * sizeof(unsigned short) , cudaMemcpyDeviceToHost); CUDA_ERRCK /* Free GPU memory */ cudaFree(d_sads); CUDA_ERRCK cudaUnbindTexture(get_ref()); CUDA_ERRCK cudaFreeArray(ref_ary); CUDA_ERRCK cudaFree(d_cur_image); CUDA_ERRCK pb_SwitchToTimer(&timers, pb_TimerID_COMPUTE); } /* Print output */ if (params->outFile) { pb_SwitchToTimer(&timers, pb_TimerID_IO); write_sads(params->outFile, image_width_macroblocks, image_height_macroblocks, sads_computed); pb_SwitchToTimer(&timers, pb_TimerID_COMPUTE); } #if 0 /* Debugging */ print_test_sads(sads_computed, image_size_macroblocks); write_sads_directly("sad-debug.bin", ref_image->width / 16, ref_image->height / 16, sads_computed); #endif /* Free memory */ free(sads_computed); free_image(ref_image); free_image(cur_image); pb_SwitchToTimer(&timers, pb_TimerID_NONE); pb_PrintTimerSet(&timers); pb_FreeParameters(params); return 0; }
2d0d079b0cadfb92160374e30606cbb4a4418aad.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include <iostream> #include <cstring> #include <fstream> #include <sstream> #include <string> #include <vector> #include <algorithm> #include <unistd.h> // NOTE: Need to compile in C++11 mode, add -std=c++11 // These should eventually be specifiable from R #define TAU 1 #define V_THRESH 1.5 #define THREADS_PER_BLOCK 512 // Integrated Postsynaptic Kernel __host__ __device__ double ipostkern(double dt) { if (dt < 0) { return(0); } return(TAU * (1 - exp(-dt / TAU))); } // Postsynaptic Kernel __host__ __device__ double postkern(double dt) { if (dt < 0) { return(0); } return(exp(-dt / TAU)); } // Postsynaptic Kernel __host__ __device__ double dpostkern(double dt) { if (dt < 0) { return(0); } return((-1.0) / TAU * exp(-dt / TAU)); } // Integrated refractory kernel. __host__ __device__ double iprekern(double dt) { if (dt < 0) { return(0); } return(-V_THRESH); } // The inner product function, uses the standard R^n inner product. __host__ __device__ double inner_prod(double *x, double *y, int n) { double sum = 0; for (int i = 0; i < n; i++) { sum += x[i] * y[i]; } return(sum); } __global__ void par_c_main_loop(double ***ALPHA, double ***Fcal, int **f_count, double ***Ws, int* net_shape, int n_layers, int t_steps, double t_eps, int l, double ****GAMMA, double ****GAMMAd, const bool copy_gamma) { double t; int index = blockIdx.x * blockDim.x + threadIdx.x; int stride = blockDim.x * gridDim.x; for (int n = index; n < net_shape[l]; n += stride) { t = 0; for (int ti = 0; ti < t_steps; ti++) { // Calculate total postsynaptic contribution int n_f = f_count[l][n]; double psc = 0; for (int tfi = 0; tfi < n_f; tfi++) { double tf = Fcal[l][n][tfi]; psc += ipostkern(t - tf); } ALPHA[l][ti][n] = psc; if (l > 0) { // Update refractory contribution n_f = f_count[l][n]; double refr = 0; for (int tfi = 0; tfi < n_f; tfi++) { double tf = Fcal[l][n][tfi]; refr += iprekern(t - tf); } // Update potential double V_n = inner_prod(Ws[l-1][n], ALPHA[l-1][ti], net_shape[l-1]) + refr; //printf("l = %d, n = %d, ti = %d", l, n, ti); //printf("Vsl = %d, n = %d, ti = %d", l, n, ti); // Check for firing neurons if (V_n > V_THRESH) { // If an output fire, record the neural state if (copy_gamma && l == n_layers-1) { for (int l1 = 0; l1 < n_layers; l1++) { for (int h = 0; h < net_shape[l1]; h++) { GAMMA[n][f_count[l][n]][l1][h] = 0; GAMMAd[n][f_count[l][n]][l1][h] = 0; for (int ti = 0; ti < f_count[l1][h]; ti++) { double tf = Fcal[l1][h][ti]; GAMMA[n][f_count[l][n]][l1][h] += postkern(t + t_eps - tf); GAMMAd[n][f_count[l][n]][l1][h] += dpostkern(t + t_eps - tf); } } } } Fcal[l][n][f_count[l][n]] = t + t_eps; f_count[l][n]++; } } t += t_eps; } } } // The main simulation, using armadillo for matrix multiplication, and organized in such a way that we solve a sequence embarassingly parallelizable problems. double **par_sim_body_c(int *net_shape, const int n_layers, double **Fin, int *f_count_in, long long int **f_max, double ***Ws, int** f_count, const int t_steps, const double t_eps, double ****GAMMA, double ****GAMMAd, const int debug, const bool copy_gamma) { // Get the layer with the most neurons int max_neur = 0; for (int l = 0; l < n_layers; l++) { if (max_neur < net_shape[l]) { max_neur = net_shape[l]; } } // ALPHA stores integrated postsynaptic potential in column major order. // OMEGA stores integrated refractory contribution in row major order. //double ***ALPHA = (double ***)calloc(n_layers, sizeof(double**)); //double ***OMEGA = (double ***)calloc(n_layers-1, sizeof(double**)); double ***ALPHA, ***OMEGA; hipMallocManaged(&ALPHA, n_layers * sizeof(double**)); hipMallocManaged(&OMEGA, (n_layers-1) * sizeof(double**)); for (int i = 0; i < n_layers; i++) { double **ALPHAi; hipMallocManaged(&ALPHAi, t_steps * sizeof(double*)); ALPHA[i] = ALPHAi; //ALPHA[i] = (double **) calloc(t_steps, sizeof(double*)); for (int j = 0; j < t_steps; j++) { double *ALPHAij; hipMallocManaged(&ALPHAij, net_shape[i] * sizeof(double)); ALPHA[i][j] = ALPHAij; //ALPHA[i][j] = (double *) calloc(net_shape[i], sizeof(double)); } if (i > 0) { double **OMEGAi; hipMallocManaged(&OMEGAi, net_shape[i] * sizeof(double*)); OMEGA[i-1] = OMEGAi; //OMEGA[i-1] = (double **) calloc(net_shape[i], sizeof(double*)); for (int j = 0; j < net_shape[i]; j++) { double *OMEGAij; hipMallocManaged(&OMEGAij, t_steps * sizeof(double)); OMEGA[i-1][j] = OMEGAij; //OMEGA[i-1][j] = (double *) calloc(t_steps, sizeof(double)); } } } if (debug >= 1) printf("After ALPHA\n"); // Storage for firing times //double ***u_Fcal = (double ***)calloc(n_layers, sizeof(double**)); double ***u_Fcal; hipMallocManaged(&u_Fcal, n_layers * sizeof(double**)); // Copy input spike times to unified memory. double **u_Fin; hipMallocManaged(&u_Fin, net_shape[0] * sizeof(double*)); for (int n = 0; n < net_shape[0]; n++) { double *u_Finn; hipMallocManaged(&u_Finn, f_count_in[n] * sizeof(double)); hipMemcpy(u_Finn, Fin[n], f_count_in[n] * sizeof(double), hipMemcpyDefault); u_Fin[n] = u_Finn; } if (debug >= 1) printf("After inputs \n"); //int **myarr = (int **)malloc(2*sizeof(int *)); //myarr[0] = (int **)malloc(2*sizeof(int)); //myarr[1] = (int **)malloc(2*sizeof(int)); //myarr[0][0] = 0; //myarr[0][1] = 1; //myarr[1][0] = 2; //myarr[1][1] = 3; //int **d_myarr; //hipMallocManaged(&d_myarr, 2*sizeof(int *)); //hipMemcpy(d_myarr, myarr, 2*sizeof(int *), hipMemcpyDefault); int **u_f_count; hipMallocManaged(&u_f_count, n_layers * sizeof(int *)); int *u_f_count_in; hipMallocManaged(&u_f_count_in, net_shape[0] * sizeof(int)); hipMemcpy(u_f_count_in, f_count_in, net_shape[0] * sizeof(int), hipMemcpyDefault); //f_count[0] = u_f_count_in; hipMemcpy(&u_f_count[0], &u_f_count_in, sizeof(int *), hipMemcpyDefault); u_Fcal[0] = u_Fin; for (int l = 0; l < n_layers-1; l++) { //double **Fi = (double **) calloc(net_shape[l+1], sizeof(double *)); double **Fi; hipMallocManaged(&Fi, net_shape[l+1] * sizeof(double *)); u_Fcal[l+1] = Fi; //double **Fi = (double **) calloc(net_shape[l+1], sizeof(double *)); int *f_countl; hipMallocManaged(&f_countl, net_shape[l+1] * sizeof(int)); hipMemcpy(&u_f_count[l+1], &f_countl, sizeof(int *), hipMemcpyDefault); for (int n = 0; n < net_shape[l+1]; n++) { // Init fire counts at 0. u_f_count[l+1][n] = 0; double *Fln; //printf("Number A\n"); //printf("%d\n", f_max[l+1][n]); //printf("Number Z\n"); hipMallocManaged(&Fln, f_max[l+1][n] * sizeof(double)); //printf("Number B\n"); Fi[n] = Fln; //printf("Number C\n"); // Initialize storeage to -1, so any negative firing time means did not fire. for (int f = 0; f < f_max[l+1][n]; f++) { Fi[n][f] = -1; } } } if (debug >= 1) printf("After Fi copy\n"); //// Convert Connection weights to a C array //// Ws[i] is the ith layer, Ws[i][j] is the jth row of layer i, //// Ws[i][j][k] is the j,k element of layer i (row major ordering). //double ***Ws_c = (double***)calloc(net_size-1, sizeof(double**)); //for (int l = 0; l < net_size-1; l++) { // Ws_c[l] = (double**)calloc(net_shape[l], sizeof(double*)); // for (int n = 0; n < net_shape[l]; n++) { // Ws_c[l][n] = Ws_in + wlo[l] + net_shape[l+1] * n; // } //} // Do GAMMA(d) // d_GAMMA[on][fi][l]][[h] Gives the instantaneous postsynaptic current of neuron h of layer l to firing time fi of output neuron on. double ****d_GAMMA, ****d_GAMMAd; if (copy_gamma) { hipMallocManaged(&d_GAMMA, (n_layers-1) * sizeof(double***)); hipMallocManaged(&d_GAMMAd, (n_layers-1) * sizeof(double***)); for (int on = 0; on < net_shape[n_layers-1]; on++) { hipMallocManaged(&d_GAMMA[on], f_max[n_layers-1][on] * sizeof(double **)); hipMallocManaged(&d_GAMMAd[on], f_max[n_layers-1][on] * sizeof(double **)); for (int fi = 0; fi < f_max[n_layers-1][on]; fi++) { hipMallocManaged(&d_GAMMA[on][fi], n_layers * sizeof(double*)); hipMallocManaged(&d_GAMMAd[on][fi], n_layers * sizeof(double*)); for (int l = 0; l < n_layers; l++) { hipMallocManaged(&d_GAMMA[on][fi][l], net_shape[l] * sizeof(double)); hipMallocManaged(&d_GAMMAd[on][fi][l], net_shape[l] * sizeof(double)); for (int h = 0; h < net_shape[l]; h++) { d_GAMMA[on][fi][l][h] = -1; d_GAMMAd[on][fi][l][h] = -1; } } } } if (debug >= 1) printf("Initted GAMMA storage \n"); } // Copy weights to unified memory double ***u_Ws; hipMallocManaged(&u_Ws, (n_layers-1) * sizeof(double**)); for (int l = 0; l < n_layers-1; l++) { double **u_Wsl; hipMallocManaged(&u_Wsl, (net_shape[l+1]) * sizeof(double*)); u_Ws[l] = u_Wsl; for (int n = 0; n < net_shape[l+1]; n++) { double *u_Wsln; hipMallocManaged(&u_Wsln, net_shape[l] * sizeof(double)); hipMemcpy(u_Wsln, Ws[l][n], net_shape[l] * sizeof(double), hipMemcpyDefault); u_Ws[l][n] = u_Wsln; } } if (debug >= 1) printf("After Weights copy\n"); // Copy network shape to unified memory int *u_net_shape; hipMallocManaged(&u_net_shape, n_layers * sizeof(int)); hipMemcpy(u_net_shape, net_shape, n_layers * sizeof(int), hipMemcpyDefault); // Run actual inference //TODO: Should just be + 1 int n_blocks = max_neur / THREADS_PER_BLOCK + 1; // Main Loop for (int l = 0; l < n_layers; l++) { if (debug >= 1) printf(" Solving Layer %d...\n", l); hipLaunchKernelGGL(( par_c_main_loop), dim3(n_blocks), dim3(THREADS_PER_BLOCK), 0, 0, ALPHA, u_Fcal, u_f_count, u_Ws, u_net_shape, n_layers, t_steps, t_eps, l, d_GAMMA, d_GAMMAd, copy_gamma); hipDeviceSynchronize(); } if (debug >= 1) printf("After main loop\n"); // Clean up for (int i = 0; i < n_layers; i++) { for (int j = 0; j < t_steps; j++) { hipFree(ALPHA[i][j]); } hipFree(ALPHA[i]); if (i > 0) { for (int j = 0; j < net_shape[i]; j++) { hipFree(OMEGA[i-1][j]); } hipFree(OMEGA[i-1]); } } hipFree(ALPHA); hipFree(OMEGA); if (debug >= 1) printf("After Free\n"); // Copy Fcal to host memory //double ***Fcal = (double ***)malloc(n_layers * sizeof(double **)); //for (int l = 0; l < n_layers; l++) { // Fcal[l] = (double **)malloc(net_shape[l] * sizeof(double *)); // for (int n = 0; n < net_shape[l]; n++) { // Fcal[l][n] = (double *)malloc(f_max[l][n] * sizeof(double)); // hipMemcpy(Fcal[l][n], u_Fcal[l][n], f_max[l][n] * sizeof(double), hipMemcpyDefault); // } //} // Copy output spikes to host memory double **Fout = (double **)malloc(net_shape[n_layers-1]*sizeof(double*)); for (int n = 0; n < net_shape[n_layers-1]; n++) { Fout[n] = (double *)malloc(f_max[n_layers-1][n] * sizeof(double)); hipMemcpy(Fout[n], u_Fcal[n_layers-1][n], f_max[n_layers-1][n] * sizeof(double), hipMemcpyDefault); } // Copy f_count to host memory for (int l = 0; l < n_layers; l++) { f_count[l] = (int *)calloc(net_shape[l], sizeof(int)); hipMemcpy(f_count[l], u_f_count[l], net_shape[l] * sizeof(int), hipMemcpyDefault); } if (debug >= 1) printf("After output spike spike/f_count\n"); // Copy to host memory // d_GAMMA[on][fi][l]][[h] Gives the instantaneous postsynaptic current of neuron h of layer l to firing time fi of output neuron on. //GAMMA = (double****)malloc((n_layers-1) * sizeof(double***)); //GAMMAd = (double****)malloc((n_layers-1) * sizeof(double***)); if (copy_gamma) { for (int on = 0; on < net_shape[n_layers-1]; on++) { GAMMA[on] = (double***)malloc(f_max[n_layers-1][on] * sizeof(double**)); GAMMAd[on] = (double***)malloc(f_max[n_layers-1][on] * sizeof(double**)); for (int fi = 0; fi < f_max[n_layers-1][on]; fi++) { GAMMA[on][fi] = (double**)malloc(n_layers * sizeof(double*)); GAMMAd[on][fi] = (double**)malloc(n_layers * sizeof(double*)); for (int l = 0; l < n_layers; l++) { GAMMA[on][fi][l] = (double*)malloc(net_shape[l] * sizeof(double)); GAMMAd[on][fi][l] = (double*)malloc(net_shape[l] * sizeof(double)); hipMemcpy(GAMMA[on][fi][l], d_GAMMA[on][fi][l], net_shape[l] * sizeof(double), hipMemcpyDefault); hipMemcpy(GAMMAd[on][fi][l], d_GAMMAd[on][fi][l], net_shape[l] * sizeof(double), hipMemcpyDefault); } } } if (debug >= 1) printf("After GAMMA copy\n"); } //TODO: copy f_count return(Fout); }
2d0d079b0cadfb92160374e30606cbb4a4418aad.cu
#include <iostream> #include <cstring> #include <fstream> #include <sstream> #include <string> #include <vector> #include <algorithm> #include <unistd.h> // NOTE: Need to compile in C++11 mode, add -std=c++11 // These should eventually be specifiable from R #define TAU 1 #define V_THRESH 1.5 #define THREADS_PER_BLOCK 512 // Integrated Postsynaptic Kernel __host__ __device__ double ipostkern(double dt) { if (dt < 0) { return(0); } return(TAU * (1 - exp(-dt / TAU))); } // Postsynaptic Kernel __host__ __device__ double postkern(double dt) { if (dt < 0) { return(0); } return(exp(-dt / TAU)); } // Postsynaptic Kernel __host__ __device__ double dpostkern(double dt) { if (dt < 0) { return(0); } return((-1.0) / TAU * exp(-dt / TAU)); } // Integrated refractory kernel. __host__ __device__ double iprekern(double dt) { if (dt < 0) { return(0); } return(-V_THRESH); } // The inner product function, uses the standard R^n inner product. __host__ __device__ double inner_prod(double *x, double *y, int n) { double sum = 0; for (int i = 0; i < n; i++) { sum += x[i] * y[i]; } return(sum); } __global__ void par_c_main_loop(double ***ALPHA, double ***Fcal, int **f_count, double ***Ws, int* net_shape, int n_layers, int t_steps, double t_eps, int l, double ****GAMMA, double ****GAMMAd, const bool copy_gamma) { double t; int index = blockIdx.x * blockDim.x + threadIdx.x; int stride = blockDim.x * gridDim.x; for (int n = index; n < net_shape[l]; n += stride) { t = 0; for (int ti = 0; ti < t_steps; ti++) { // Calculate total postsynaptic contribution int n_f = f_count[l][n]; double psc = 0; for (int tfi = 0; tfi < n_f; tfi++) { double tf = Fcal[l][n][tfi]; psc += ipostkern(t - tf); } ALPHA[l][ti][n] = psc; if (l > 0) { // Update refractory contribution n_f = f_count[l][n]; double refr = 0; for (int tfi = 0; tfi < n_f; tfi++) { double tf = Fcal[l][n][tfi]; refr += iprekern(t - tf); } // Update potential double V_n = inner_prod(Ws[l-1][n], ALPHA[l-1][ti], net_shape[l-1]) + refr; //printf("l = %d, n = %d, ti = %d", l, n, ti); //printf("Vsl = %d, n = %d, ti = %d", l, n, ti); // Check for firing neurons if (V_n > V_THRESH) { // If an output fire, record the neural state if (copy_gamma && l == n_layers-1) { for (int l1 = 0; l1 < n_layers; l1++) { for (int h = 0; h < net_shape[l1]; h++) { GAMMA[n][f_count[l][n]][l1][h] = 0; GAMMAd[n][f_count[l][n]][l1][h] = 0; for (int ti = 0; ti < f_count[l1][h]; ti++) { double tf = Fcal[l1][h][ti]; GAMMA[n][f_count[l][n]][l1][h] += postkern(t + t_eps - tf); GAMMAd[n][f_count[l][n]][l1][h] += dpostkern(t + t_eps - tf); } } } } Fcal[l][n][f_count[l][n]] = t + t_eps; f_count[l][n]++; } } t += t_eps; } } } // The main simulation, using armadillo for matrix multiplication, and organized in such a way that we solve a sequence embarassingly parallelizable problems. double **par_sim_body_c(int *net_shape, const int n_layers, double **Fin, int *f_count_in, long long int **f_max, double ***Ws, int** f_count, const int t_steps, const double t_eps, double ****GAMMA, double ****GAMMAd, const int debug, const bool copy_gamma) { // Get the layer with the most neurons int max_neur = 0; for (int l = 0; l < n_layers; l++) { if (max_neur < net_shape[l]) { max_neur = net_shape[l]; } } // ALPHA stores integrated postsynaptic potential in column major order. // OMEGA stores integrated refractory contribution in row major order. //double ***ALPHA = (double ***)calloc(n_layers, sizeof(double**)); //double ***OMEGA = (double ***)calloc(n_layers-1, sizeof(double**)); double ***ALPHA, ***OMEGA; cudaMallocManaged(&ALPHA, n_layers * sizeof(double**)); cudaMallocManaged(&OMEGA, (n_layers-1) * sizeof(double**)); for (int i = 0; i < n_layers; i++) { double **ALPHAi; cudaMallocManaged(&ALPHAi, t_steps * sizeof(double*)); ALPHA[i] = ALPHAi; //ALPHA[i] = (double **) calloc(t_steps, sizeof(double*)); for (int j = 0; j < t_steps; j++) { double *ALPHAij; cudaMallocManaged(&ALPHAij, net_shape[i] * sizeof(double)); ALPHA[i][j] = ALPHAij; //ALPHA[i][j] = (double *) calloc(net_shape[i], sizeof(double)); } if (i > 0) { double **OMEGAi; cudaMallocManaged(&OMEGAi, net_shape[i] * sizeof(double*)); OMEGA[i-1] = OMEGAi; //OMEGA[i-1] = (double **) calloc(net_shape[i], sizeof(double*)); for (int j = 0; j < net_shape[i]; j++) { double *OMEGAij; cudaMallocManaged(&OMEGAij, t_steps * sizeof(double)); OMEGA[i-1][j] = OMEGAij; //OMEGA[i-1][j] = (double *) calloc(t_steps, sizeof(double)); } } } if (debug >= 1) printf("After ALPHA\n"); // Storage for firing times //double ***u_Fcal = (double ***)calloc(n_layers, sizeof(double**)); double ***u_Fcal; cudaMallocManaged(&u_Fcal, n_layers * sizeof(double**)); // Copy input spike times to unified memory. double **u_Fin; cudaMallocManaged(&u_Fin, net_shape[0] * sizeof(double*)); for (int n = 0; n < net_shape[0]; n++) { double *u_Finn; cudaMallocManaged(&u_Finn, f_count_in[n] * sizeof(double)); cudaMemcpy(u_Finn, Fin[n], f_count_in[n] * sizeof(double), cudaMemcpyDefault); u_Fin[n] = u_Finn; } if (debug >= 1) printf("After inputs \n"); //int **myarr = (int **)malloc(2*sizeof(int *)); //myarr[0] = (int **)malloc(2*sizeof(int)); //myarr[1] = (int **)malloc(2*sizeof(int)); //myarr[0][0] = 0; //myarr[0][1] = 1; //myarr[1][0] = 2; //myarr[1][1] = 3; //int **d_myarr; //cudaMallocManaged(&d_myarr, 2*sizeof(int *)); //cudaMemcpy(d_myarr, myarr, 2*sizeof(int *), cudaMemcpyDefault); int **u_f_count; cudaMallocManaged(&u_f_count, n_layers * sizeof(int *)); int *u_f_count_in; cudaMallocManaged(&u_f_count_in, net_shape[0] * sizeof(int)); cudaMemcpy(u_f_count_in, f_count_in, net_shape[0] * sizeof(int), cudaMemcpyDefault); //f_count[0] = u_f_count_in; cudaMemcpy(&u_f_count[0], &u_f_count_in, sizeof(int *), cudaMemcpyDefault); u_Fcal[0] = u_Fin; for (int l = 0; l < n_layers-1; l++) { //double **Fi = (double **) calloc(net_shape[l+1], sizeof(double *)); double **Fi; cudaMallocManaged(&Fi, net_shape[l+1] * sizeof(double *)); u_Fcal[l+1] = Fi; //double **Fi = (double **) calloc(net_shape[l+1], sizeof(double *)); int *f_countl; cudaMallocManaged(&f_countl, net_shape[l+1] * sizeof(int)); cudaMemcpy(&u_f_count[l+1], &f_countl, sizeof(int *), cudaMemcpyDefault); for (int n = 0; n < net_shape[l+1]; n++) { // Init fire counts at 0. u_f_count[l+1][n] = 0; double *Fln; //printf("Number A\n"); //printf("%d\n", f_max[l+1][n]); //printf("Number Z\n"); cudaMallocManaged(&Fln, f_max[l+1][n] * sizeof(double)); //printf("Number B\n"); Fi[n] = Fln; //printf("Number C\n"); // Initialize storeage to -1, so any negative firing time means did not fire. for (int f = 0; f < f_max[l+1][n]; f++) { Fi[n][f] = -1; } } } if (debug >= 1) printf("After Fi copy\n"); //// Convert Connection weights to a C array //// Ws[i] is the ith layer, Ws[i][j] is the jth row of layer i, //// Ws[i][j][k] is the j,k element of layer i (row major ordering). //double ***Ws_c = (double***)calloc(net_size-1, sizeof(double**)); //for (int l = 0; l < net_size-1; l++) { // Ws_c[l] = (double**)calloc(net_shape[l], sizeof(double*)); // for (int n = 0; n < net_shape[l]; n++) { // Ws_c[l][n] = Ws_in + wlo[l] + net_shape[l+1] * n; // } //} // Do GAMMA(d) // d_GAMMA[on][fi][l]][[h] Gives the instantaneous postsynaptic current of neuron h of layer l to firing time fi of output neuron on. double ****d_GAMMA, ****d_GAMMAd; if (copy_gamma) { cudaMallocManaged(&d_GAMMA, (n_layers-1) * sizeof(double***)); cudaMallocManaged(&d_GAMMAd, (n_layers-1) * sizeof(double***)); for (int on = 0; on < net_shape[n_layers-1]; on++) { cudaMallocManaged(&d_GAMMA[on], f_max[n_layers-1][on] * sizeof(double **)); cudaMallocManaged(&d_GAMMAd[on], f_max[n_layers-1][on] * sizeof(double **)); for (int fi = 0; fi < f_max[n_layers-1][on]; fi++) { cudaMallocManaged(&d_GAMMA[on][fi], n_layers * sizeof(double*)); cudaMallocManaged(&d_GAMMAd[on][fi], n_layers * sizeof(double*)); for (int l = 0; l < n_layers; l++) { cudaMallocManaged(&d_GAMMA[on][fi][l], net_shape[l] * sizeof(double)); cudaMallocManaged(&d_GAMMAd[on][fi][l], net_shape[l] * sizeof(double)); for (int h = 0; h < net_shape[l]; h++) { d_GAMMA[on][fi][l][h] = -1; d_GAMMAd[on][fi][l][h] = -1; } } } } if (debug >= 1) printf("Initted GAMMA storage \n"); } // Copy weights to unified memory double ***u_Ws; cudaMallocManaged(&u_Ws, (n_layers-1) * sizeof(double**)); for (int l = 0; l < n_layers-1; l++) { double **u_Wsl; cudaMallocManaged(&u_Wsl, (net_shape[l+1]) * sizeof(double*)); u_Ws[l] = u_Wsl; for (int n = 0; n < net_shape[l+1]; n++) { double *u_Wsln; cudaMallocManaged(&u_Wsln, net_shape[l] * sizeof(double)); cudaMemcpy(u_Wsln, Ws[l][n], net_shape[l] * sizeof(double), cudaMemcpyDefault); u_Ws[l][n] = u_Wsln; } } if (debug >= 1) printf("After Weights copy\n"); // Copy network shape to unified memory int *u_net_shape; cudaMallocManaged(&u_net_shape, n_layers * sizeof(int)); cudaMemcpy(u_net_shape, net_shape, n_layers * sizeof(int), cudaMemcpyDefault); // Run actual inference //TODO: Should just be + 1 int n_blocks = max_neur / THREADS_PER_BLOCK + 1; // Main Loop for (int l = 0; l < n_layers; l++) { if (debug >= 1) printf(" Solving Layer %d...\n", l); par_c_main_loop<<<n_blocks, THREADS_PER_BLOCK>>>(ALPHA, u_Fcal, u_f_count, u_Ws, u_net_shape, n_layers, t_steps, t_eps, l, d_GAMMA, d_GAMMAd, copy_gamma); cudaDeviceSynchronize(); } if (debug >= 1) printf("After main loop\n"); // Clean up for (int i = 0; i < n_layers; i++) { for (int j = 0; j < t_steps; j++) { cudaFree(ALPHA[i][j]); } cudaFree(ALPHA[i]); if (i > 0) { for (int j = 0; j < net_shape[i]; j++) { cudaFree(OMEGA[i-1][j]); } cudaFree(OMEGA[i-1]); } } cudaFree(ALPHA); cudaFree(OMEGA); if (debug >= 1) printf("After Free\n"); // Copy Fcal to host memory //double ***Fcal = (double ***)malloc(n_layers * sizeof(double **)); //for (int l = 0; l < n_layers; l++) { // Fcal[l] = (double **)malloc(net_shape[l] * sizeof(double *)); // for (int n = 0; n < net_shape[l]; n++) { // Fcal[l][n] = (double *)malloc(f_max[l][n] * sizeof(double)); // cudaMemcpy(Fcal[l][n], u_Fcal[l][n], f_max[l][n] * sizeof(double), cudaMemcpyDefault); // } //} // Copy output spikes to host memory double **Fout = (double **)malloc(net_shape[n_layers-1]*sizeof(double*)); for (int n = 0; n < net_shape[n_layers-1]; n++) { Fout[n] = (double *)malloc(f_max[n_layers-1][n] * sizeof(double)); cudaMemcpy(Fout[n], u_Fcal[n_layers-1][n], f_max[n_layers-1][n] * sizeof(double), cudaMemcpyDefault); } // Copy f_count to host memory for (int l = 0; l < n_layers; l++) { f_count[l] = (int *)calloc(net_shape[l], sizeof(int)); cudaMemcpy(f_count[l], u_f_count[l], net_shape[l] * sizeof(int), cudaMemcpyDefault); } if (debug >= 1) printf("After output spike spike/f_count\n"); // Copy to host memory // d_GAMMA[on][fi][l]][[h] Gives the instantaneous postsynaptic current of neuron h of layer l to firing time fi of output neuron on. //GAMMA = (double****)malloc((n_layers-1) * sizeof(double***)); //GAMMAd = (double****)malloc((n_layers-1) * sizeof(double***)); if (copy_gamma) { for (int on = 0; on < net_shape[n_layers-1]; on++) { GAMMA[on] = (double***)malloc(f_max[n_layers-1][on] * sizeof(double**)); GAMMAd[on] = (double***)malloc(f_max[n_layers-1][on] * sizeof(double**)); for (int fi = 0; fi < f_max[n_layers-1][on]; fi++) { GAMMA[on][fi] = (double**)malloc(n_layers * sizeof(double*)); GAMMAd[on][fi] = (double**)malloc(n_layers * sizeof(double*)); for (int l = 0; l < n_layers; l++) { GAMMA[on][fi][l] = (double*)malloc(net_shape[l] * sizeof(double)); GAMMAd[on][fi][l] = (double*)malloc(net_shape[l] * sizeof(double)); cudaMemcpy(GAMMA[on][fi][l], d_GAMMA[on][fi][l], net_shape[l] * sizeof(double), cudaMemcpyDefault); cudaMemcpy(GAMMAd[on][fi][l], d_GAMMAd[on][fi][l], net_shape[l] * sizeof(double), cudaMemcpyDefault); } } } if (debug >= 1) printf("After GAMMA copy\n"); } //TODO: copy f_count return(Fout); }
8eb16e8223507327dcb520f8f1c476a4ece43895.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" /* * ****************************************************************************** * * * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * See the NOTICE file distributed with this work for additional * * information regarding copyright ownership. * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ // // @author Yurii Shyrma ([email protected]) // #include <exceptions/cuda_exception.h> #include <helpers/PointersManager.h> #include <math/templatemath.h> #include <ops/declarable/helpers/convolutions.h> namespace sd { namespace ops { ////////////////////////////////////////////////////////////////////////// template <typename X, typename Z> static SD_KERNEL void avgPooling2dCuda(const void *vx, const sd::LongType *xShapeInfo, void *vz, const sd::LongType *zShapeInfo, const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW, const int extraParam0) { // input is [bS, iC, iH, iW] // output is [bS, iC, oH, oW] const auto x = reinterpret_cast<const X *>(vx); auto z = reinterpret_cast<Z *>(vz); __shared__ int bS, iC, oH, oW, iH, iW, strideB, strideC, strideY, strideX, strideOB, strideOC, strideOY, strideOX, length, kHEff, kWEff; if (threadIdx.x == 0) { bS = shape::sizeAt(xShapeInfo, 0); iC = shape::sizeAt(xShapeInfo, 1); oH = shape::sizeAt(zShapeInfo, 2); oW = shape::sizeAt(zShapeInfo, 3); iH = shape::sizeAt(xShapeInfo, 2); iW = shape::sizeAt(xShapeInfo, 3); strideB = shape::stride(xShapeInfo)[0]; strideC = shape::stride(xShapeInfo)[1]; strideY = shape::stride(xShapeInfo)[2]; strideX = shape::stride(xShapeInfo)[3]; strideOB = shape::stride(zShapeInfo)[0]; strideOC = shape::stride(zShapeInfo)[1]; strideOY = shape::stride(zShapeInfo)[2]; strideOX = shape::stride(zShapeInfo)[3]; length = shape::length(zShapeInfo); // Replace kernel H/W with *effective* kernel H/W accounting for dilatyon kHEff = kH + (kH - 1) * (dH - 1); kWEff = kW + (kW - 1) * (dW - 1); } __syncthreads(); int tid = blockIdx.x * blockDim.x + threadIdx.x; for (int index = tid; index < length; index += blockDim.x * gridDim.x) { const int pw = index % oW; const int ph = (index / oW) % oH; const int c = (index / oW / oH) % iC; const int n = index / oW / oH / iC; int hstart = sH * ph - pH; int wstart = sW * pw - pW; int hend = hstart + kHEff; int wend = wstart + kWEff; if (hstart < 0) { int f = sd::math::sd_ceil<Z, int>((Z)-hstart / (Z)dH); hstart += f * dH; } if (wstart < 0) { int f = sd::math::sd_ceil<Z, int>((Z)-wstart / (Z)dW); wstart += f * dW; } if (hend > iH) { int f = sd::math::sd_ceil<Z, int>((Z)(hend - iH) / (Z)dH); hend -= f * dH; } if (wend > iW) { int f = sd::math::sd_ceil<Z, int>((Z)(wend - iW) / (Z)dW); wend -= f * dW; } // Accounts for dilation int pool_size = sd::math::sd_ceil<double, int>((double)(hend - hstart) / (double)dH) * sd::math::sd_ceil<double, int>((double)(wend - wstart) / (double)dW); Z sum = 0.0f; const X *inSlice = x + (n * strideB + c * strideC); for (int h = hstart; h < hend; h += dH) for (int w = wstart; w < wend; w += dW) sum += static_cast<Z>(inSlice[h * strideY + w * strideX]); int divide_factor = pool_size; // Case 0: exclude padding if (extraParam0 == 1) // Case 1: include padding divide_factor = kH * kW; z[n * strideOB + c * strideOC + pw * strideOX + ph * strideOY] = sum / static_cast<Z>(divide_factor); } } ////////////////////////////////////////////////////////////////////////// template <typename X, typename Z> static void avgPooling2dCudaLauncher(sd::LaunchContext &block, const void *vx, const sd::LongType *vxShapeInfo, void *vz, const sd::LongType *vzShapeInfo, const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW, const int extraParam0) { hipLaunchKernelGGL(( avgPooling2dCuda<X, Z>), dim3(512), dim3(512), 4192, *block.getCudaStream(), vx, vxShapeInfo, vz, vzShapeInfo, kH, kW, sH, sW, pH, pW, dH, dW, extraParam0); } ////////////////////////////////////////////////////////////////////////// template <typename X, typename Z> static SD_KERNEL void pnormPooling2dCuda(const void *vx, const sd::LongType *xShapeInfo, void *vz, const sd::LongType *zShapeInfo, const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW, const int extraParam0) { // input is [bS, iC, iH, iW] // output is [bS, iC, oH, oW] const auto x = reinterpret_cast<const X *>(vx); auto z = reinterpret_cast<Z *>(vz); __shared__ int bS, iC, oH, oW, iH, iW, strideB, strideC, strideY, strideX, strideOB, strideOC, strideOY, strideOX, length, kHEff, kWEff; __shared__ bool fOrder; if (threadIdx.x == 0) { bS = shape::sizeAt(xShapeInfo, 0); iC = shape::sizeAt(xShapeInfo, 1); oH = shape::sizeAt(zShapeInfo, 2); oW = shape::sizeAt(zShapeInfo, 3); iH = shape::sizeAt(xShapeInfo, 2); iW = shape::sizeAt(xShapeInfo, 3); strideB = shape::stride(xShapeInfo)[0]; strideC = shape::stride(xShapeInfo)[1]; strideY = shape::stride(xShapeInfo)[2]; strideX = shape::stride(xShapeInfo)[3]; strideOB = shape::stride(zShapeInfo)[0]; strideOC = shape::stride(zShapeInfo)[1]; strideOY = shape::stride(zShapeInfo)[2]; strideOX = shape::stride(zShapeInfo)[3]; length = shape::length(zShapeInfo); // Replace kernel H/W with *effective* kernel H/W accounting for dilatyon kHEff = kH + (kH - 1) * (dH - 1); kWEff = kW + (kW - 1) * (dW - 1); } __syncthreads(); int tid = blockIdx.x * blockDim.x + threadIdx.x; for (int index = tid; index < length; index += blockDim.x * gridDim.x) { const int pw = index % oW; const int ph = (index / oW) % oH; const int c = (index / oW / oH) % iC; const int n = index / oW / oH / iC; int hstart = sH * ph - pH; int wstart = sW * pw - pW; int hend = hstart + kHEff; int wend = wstart + kWEff; if (hstart < 0) { int f = sd::math::sd_ceil<Z, int>((Z)-hstart / (Z)dH); hstart += f * dH; } if (wstart < 0) { int f = sd::math::sd_ceil<Z, int>((Z)-wstart / (Z)dW); wstart += f * dW; } if (hend > iH) { int f = sd::math::sd_ceil<Z, int>((Z)(hend - iH) / (Z)dH); hend -= f * dH; } if (wend > iW) { int f = sd::math::sd_ceil<Z, int>((Z)(wend - iW) / (Z)dW); wend -= f * dW; } // Accounts for dilation int pool_size = sd::math::sd_ceil<double, int>((double)(hend - hstart) / (double)dH) * sd::math::sd_ceil<double, int>((double)(wend - wstart) / (double)dW); Z sum = 0.f; const X *inSlice = x + (n * strideB + c * strideC); for (int h = hstart; h < hend; h += dH) for (int w = wstart; w < wend; w += dW) sum += sd::math::sd_pow<Z, Z, Z>(static_cast<Z>(sd::math::sd_abs<X>(inSlice[h * strideY + w * strideX])), extraParam0); z[n * strideOB + c * strideOC + pw * strideOX + ph * strideOY] = sd::math::sd_pow<Z, Z, Z>(sum, (Z)1.0f / extraParam0); } } ////////////////////////////////////////////////////////////////////////// template <typename X, typename Z> static void pnormPooling2dCudaLauncher(sd::LaunchContext &block, const void *vx, const sd::LongType *vxShapeInfo, void *vz, const sd::LongType *vzShapeInfo, const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW, const int extraParam0) { hipLaunchKernelGGL(( pnormPooling2dCuda<X, Z>), dim3(512), dim3(512), 4192, *block.getCudaStream(), vx, vxShapeInfo, vz, vzShapeInfo, kH, kW, sH, sW, pH, pW, dH, dW, extraParam0); } ////////////////////////////////////////////////////////////////////////// template <typename X, typename Z> static SD_KERNEL void maxPooling2dCuda(const void *vx, const sd::LongType *xShapeInfo, void *vz, const sd::LongType *zShapeInfo, const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW, const int extraParam0) { // input is [bS, iC, iH, iW] // output is [bS, iC, oH, oW] const auto x = reinterpret_cast<const X *>(vx); auto z = reinterpret_cast<Z *>(vz); __shared__ int bS, iC, oH, oW, iH, iW, strideB, strideC, strideY, strideX, strideOB, strideOC, strideOY, strideOX, length, kHEff, kWEff; __shared__ bool fOrder; if (threadIdx.x == 0) { bS = shape::sizeAt(xShapeInfo, 0); iC = shape::sizeAt(xShapeInfo, 1); oH = shape::sizeAt(zShapeInfo, 2); oW = shape::sizeAt(zShapeInfo, 3); iH = shape::sizeAt(xShapeInfo, 2); iW = shape::sizeAt(xShapeInfo, 3); strideB = shape::stride(xShapeInfo)[0]; strideC = shape::stride(xShapeInfo)[1]; strideY = shape::stride(xShapeInfo)[2]; strideX = shape::stride(xShapeInfo)[3]; strideOB = shape::stride(zShapeInfo)[0]; strideOC = shape::stride(zShapeInfo)[1]; strideOY = shape::stride(zShapeInfo)[2]; strideOX = shape::stride(zShapeInfo)[3]; length = shape::length(zShapeInfo); // Replace kernel H/W with *effective* kernel H/W accounting for dilatyon kHEff = kH + (kH - 1) * (dH - 1); kWEff = kW + (kW - 1) * (dW - 1); } __syncthreads(); int tid = blockIdx.x * blockDim.x + threadIdx.x; for (int index = tid; index < length; index += blockDim.x * gridDim.x) { const int pw = index % oW; const int ph = (index / oW) % oH; const int c = (index / oW / oH) % iC; const int n = index / oW / oH / iC; int hstart = sH * ph - pH; int wstart = sW * pw - pW; int hend = hstart + kHEff; int wend = wstart + kWEff; if (hstart < 0) { int f = sd::math::sd_ceil<Z, int>((Z)-hstart / (Z)dH); hstart += f * dH; } if (wstart < 0) { int f = sd::math::sd_ceil<Z, int>((Z)-wstart / (Z)dW); wstart += f * dW; } if (hend > iH) { int f = sd::math::sd_ceil<Z, int>((Z)(hend - iH) / (Z)dH); hend -= f * dH; } if (wend > iW) { int f = sd::math::sd_ceil<Z, int>((Z)(wend - iW) / (Z)dW); wend -= f * dW; } // Accounts for dilation int pool_size = sd::math::sd_ceil<double, int>((double)(hend - hstart) / (double)dH) * sd::math::sd_ceil<double, int>((double)(wend - wstart) / (double)dW); Z max = -sd::DataTypeUtils::max<Z>(); const X *inSlice = x + (n * strideB + c * strideC); for (int h = hstart; h < hend; h += dH) { for (int w = wstart; w < wend; w += dW) { Z v = static_cast<Z>(inSlice[h * strideY + w * strideX]); if (v > max) max = v; } } z[n * strideOB + c * strideOC + pw * strideOX + ph * strideOY] = max; } } ////////////////////////////////////////////////////////////////////////// template <typename X, typename Z> static void maxPooling2dCudaLauncher(sd::LaunchContext &block, const void *vx, const sd::LongType *vxShapeInfo, void *vz, const sd::LongType *vzShapeInfo, const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW, const int extraParam0) { hipLaunchKernelGGL(( maxPooling2dCuda<X, Z>), dim3(512), dim3(512), 4192, *block.getCudaStream(), vx, vxShapeInfo, vz, vzShapeInfo, kH, kW, sH, sW, pH, pW, dH, dW, extraParam0); } ////////////////////////////////////////////////////////////////////////// void ConvolutionUtils::pooling2d(sd::graph::Context &block, const NDArray &input, NDArray &output, const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW, const PoolingType poolingMode, const int extraParam0) { if (!input.isActualOnDeviceSide()) input.syncToDevice(); switch (poolingMode) { case MAX_POOL: { BUILD_SINGLE_SELECTOR_TWICE( input.dataType(), maxPooling2dCudaLauncher, (*block.launchContext(), input.specialBuffer(), input.specialShapeInfo(), output.specialBuffer(), output.specialShapeInfo(), kH, kW, sH, sW, pH, pW, dH, dW, extraParam0), SD_NUMERIC_TYPES); } break; case AVG_POOL: { BUILD_SINGLE_SELECTOR_TWICE( input.dataType(), avgPooling2dCudaLauncher, (*block.launchContext(), input.specialBuffer(), input.specialShapeInfo(), output.specialBuffer(), output.specialShapeInfo(), kH, kW, sH, sW, pH, pW, dH, dW, extraParam0), SD_NUMERIC_TYPES); } break; case PNORM_POOL: { BUILD_SINGLE_SELECTOR_TWICE( input.dataType(), pnormPooling2dCudaLauncher, (*block.launchContext(), input.specialBuffer(), input.specialShapeInfo(), output.specialBuffer(), output.specialShapeInfo(), kH, kW, sH, sW, pH, pW, dH, dW, extraParam0), SD_FLOAT_TYPES); } break; default: throw std::runtime_error("Pooling2D: Unknown PoolingType used"); } output.tickWriteDevice(); input.tickReadDevice(); auto result = hipStreamSynchronize(*block.launchContext()->getCudaStream()); if (result != 0) throw cuda_exception::build("Pooling2D failed", result); } } // namespace ops } // namespace sd
8eb16e8223507327dcb520f8f1c476a4ece43895.cu
/* * ****************************************************************************** * * * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * See the NOTICE file distributed with this work for additional * * information regarding copyright ownership. * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ // // @author Yurii Shyrma ([email protected]) // #include <exceptions/cuda_exception.h> #include <helpers/PointersManager.h> #include <math/templatemath.h> #include <ops/declarable/helpers/convolutions.h> namespace sd { namespace ops { ////////////////////////////////////////////////////////////////////////// template <typename X, typename Z> static SD_KERNEL void avgPooling2dCuda(const void *vx, const sd::LongType *xShapeInfo, void *vz, const sd::LongType *zShapeInfo, const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW, const int extraParam0) { // input is [bS, iC, iH, iW] // output is [bS, iC, oH, oW] const auto x = reinterpret_cast<const X *>(vx); auto z = reinterpret_cast<Z *>(vz); __shared__ int bS, iC, oH, oW, iH, iW, strideB, strideC, strideY, strideX, strideOB, strideOC, strideOY, strideOX, length, kHEff, kWEff; if (threadIdx.x == 0) { bS = shape::sizeAt(xShapeInfo, 0); iC = shape::sizeAt(xShapeInfo, 1); oH = shape::sizeAt(zShapeInfo, 2); oW = shape::sizeAt(zShapeInfo, 3); iH = shape::sizeAt(xShapeInfo, 2); iW = shape::sizeAt(xShapeInfo, 3); strideB = shape::stride(xShapeInfo)[0]; strideC = shape::stride(xShapeInfo)[1]; strideY = shape::stride(xShapeInfo)[2]; strideX = shape::stride(xShapeInfo)[3]; strideOB = shape::stride(zShapeInfo)[0]; strideOC = shape::stride(zShapeInfo)[1]; strideOY = shape::stride(zShapeInfo)[2]; strideOX = shape::stride(zShapeInfo)[3]; length = shape::length(zShapeInfo); // Replace kernel H/W with *effective* kernel H/W accounting for dilatyon kHEff = kH + (kH - 1) * (dH - 1); kWEff = kW + (kW - 1) * (dW - 1); } __syncthreads(); int tid = blockIdx.x * blockDim.x + threadIdx.x; for (int index = tid; index < length; index += blockDim.x * gridDim.x) { const int pw = index % oW; const int ph = (index / oW) % oH; const int c = (index / oW / oH) % iC; const int n = index / oW / oH / iC; int hstart = sH * ph - pH; int wstart = sW * pw - pW; int hend = hstart + kHEff; int wend = wstart + kWEff; if (hstart < 0) { int f = sd::math::sd_ceil<Z, int>((Z)-hstart / (Z)dH); hstart += f * dH; } if (wstart < 0) { int f = sd::math::sd_ceil<Z, int>((Z)-wstart / (Z)dW); wstart += f * dW; } if (hend > iH) { int f = sd::math::sd_ceil<Z, int>((Z)(hend - iH) / (Z)dH); hend -= f * dH; } if (wend > iW) { int f = sd::math::sd_ceil<Z, int>((Z)(wend - iW) / (Z)dW); wend -= f * dW; } // Accounts for dilation int pool_size = sd::math::sd_ceil<double, int>((double)(hend - hstart) / (double)dH) * sd::math::sd_ceil<double, int>((double)(wend - wstart) / (double)dW); Z sum = 0.0f; const X *inSlice = x + (n * strideB + c * strideC); for (int h = hstart; h < hend; h += dH) for (int w = wstart; w < wend; w += dW) sum += static_cast<Z>(inSlice[h * strideY + w * strideX]); int divide_factor = pool_size; // Case 0: exclude padding if (extraParam0 == 1) // Case 1: include padding divide_factor = kH * kW; z[n * strideOB + c * strideOC + pw * strideOX + ph * strideOY] = sum / static_cast<Z>(divide_factor); } } ////////////////////////////////////////////////////////////////////////// template <typename X, typename Z> static void avgPooling2dCudaLauncher(sd::LaunchContext &block, const void *vx, const sd::LongType *vxShapeInfo, void *vz, const sd::LongType *vzShapeInfo, const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW, const int extraParam0) { avgPooling2dCuda<X, Z><<<512, 512, 4192, *block.getCudaStream()>>>(vx, vxShapeInfo, vz, vzShapeInfo, kH, kW, sH, sW, pH, pW, dH, dW, extraParam0); } ////////////////////////////////////////////////////////////////////////// template <typename X, typename Z> static SD_KERNEL void pnormPooling2dCuda(const void *vx, const sd::LongType *xShapeInfo, void *vz, const sd::LongType *zShapeInfo, const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW, const int extraParam0) { // input is [bS, iC, iH, iW] // output is [bS, iC, oH, oW] const auto x = reinterpret_cast<const X *>(vx); auto z = reinterpret_cast<Z *>(vz); __shared__ int bS, iC, oH, oW, iH, iW, strideB, strideC, strideY, strideX, strideOB, strideOC, strideOY, strideOX, length, kHEff, kWEff; __shared__ bool fOrder; if (threadIdx.x == 0) { bS = shape::sizeAt(xShapeInfo, 0); iC = shape::sizeAt(xShapeInfo, 1); oH = shape::sizeAt(zShapeInfo, 2); oW = shape::sizeAt(zShapeInfo, 3); iH = shape::sizeAt(xShapeInfo, 2); iW = shape::sizeAt(xShapeInfo, 3); strideB = shape::stride(xShapeInfo)[0]; strideC = shape::stride(xShapeInfo)[1]; strideY = shape::stride(xShapeInfo)[2]; strideX = shape::stride(xShapeInfo)[3]; strideOB = shape::stride(zShapeInfo)[0]; strideOC = shape::stride(zShapeInfo)[1]; strideOY = shape::stride(zShapeInfo)[2]; strideOX = shape::stride(zShapeInfo)[3]; length = shape::length(zShapeInfo); // Replace kernel H/W with *effective* kernel H/W accounting for dilatyon kHEff = kH + (kH - 1) * (dH - 1); kWEff = kW + (kW - 1) * (dW - 1); } __syncthreads(); int tid = blockIdx.x * blockDim.x + threadIdx.x; for (int index = tid; index < length; index += blockDim.x * gridDim.x) { const int pw = index % oW; const int ph = (index / oW) % oH; const int c = (index / oW / oH) % iC; const int n = index / oW / oH / iC; int hstart = sH * ph - pH; int wstart = sW * pw - pW; int hend = hstart + kHEff; int wend = wstart + kWEff; if (hstart < 0) { int f = sd::math::sd_ceil<Z, int>((Z)-hstart / (Z)dH); hstart += f * dH; } if (wstart < 0) { int f = sd::math::sd_ceil<Z, int>((Z)-wstart / (Z)dW); wstart += f * dW; } if (hend > iH) { int f = sd::math::sd_ceil<Z, int>((Z)(hend - iH) / (Z)dH); hend -= f * dH; } if (wend > iW) { int f = sd::math::sd_ceil<Z, int>((Z)(wend - iW) / (Z)dW); wend -= f * dW; } // Accounts for dilation int pool_size = sd::math::sd_ceil<double, int>((double)(hend - hstart) / (double)dH) * sd::math::sd_ceil<double, int>((double)(wend - wstart) / (double)dW); Z sum = 0.f; const X *inSlice = x + (n * strideB + c * strideC); for (int h = hstart; h < hend; h += dH) for (int w = wstart; w < wend; w += dW) sum += sd::math::sd_pow<Z, Z, Z>(static_cast<Z>(sd::math::sd_abs<X>(inSlice[h * strideY + w * strideX])), extraParam0); z[n * strideOB + c * strideOC + pw * strideOX + ph * strideOY] = sd::math::sd_pow<Z, Z, Z>(sum, (Z)1.0f / extraParam0); } } ////////////////////////////////////////////////////////////////////////// template <typename X, typename Z> static void pnormPooling2dCudaLauncher(sd::LaunchContext &block, const void *vx, const sd::LongType *vxShapeInfo, void *vz, const sd::LongType *vzShapeInfo, const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW, const int extraParam0) { pnormPooling2dCuda<X, Z><<<512, 512, 4192, *block.getCudaStream()>>>(vx, vxShapeInfo, vz, vzShapeInfo, kH, kW, sH, sW, pH, pW, dH, dW, extraParam0); } ////////////////////////////////////////////////////////////////////////// template <typename X, typename Z> static SD_KERNEL void maxPooling2dCuda(const void *vx, const sd::LongType *xShapeInfo, void *vz, const sd::LongType *zShapeInfo, const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW, const int extraParam0) { // input is [bS, iC, iH, iW] // output is [bS, iC, oH, oW] const auto x = reinterpret_cast<const X *>(vx); auto z = reinterpret_cast<Z *>(vz); __shared__ int bS, iC, oH, oW, iH, iW, strideB, strideC, strideY, strideX, strideOB, strideOC, strideOY, strideOX, length, kHEff, kWEff; __shared__ bool fOrder; if (threadIdx.x == 0) { bS = shape::sizeAt(xShapeInfo, 0); iC = shape::sizeAt(xShapeInfo, 1); oH = shape::sizeAt(zShapeInfo, 2); oW = shape::sizeAt(zShapeInfo, 3); iH = shape::sizeAt(xShapeInfo, 2); iW = shape::sizeAt(xShapeInfo, 3); strideB = shape::stride(xShapeInfo)[0]; strideC = shape::stride(xShapeInfo)[1]; strideY = shape::stride(xShapeInfo)[2]; strideX = shape::stride(xShapeInfo)[3]; strideOB = shape::stride(zShapeInfo)[0]; strideOC = shape::stride(zShapeInfo)[1]; strideOY = shape::stride(zShapeInfo)[2]; strideOX = shape::stride(zShapeInfo)[3]; length = shape::length(zShapeInfo); // Replace kernel H/W with *effective* kernel H/W accounting for dilatyon kHEff = kH + (kH - 1) * (dH - 1); kWEff = kW + (kW - 1) * (dW - 1); } __syncthreads(); int tid = blockIdx.x * blockDim.x + threadIdx.x; for (int index = tid; index < length; index += blockDim.x * gridDim.x) { const int pw = index % oW; const int ph = (index / oW) % oH; const int c = (index / oW / oH) % iC; const int n = index / oW / oH / iC; int hstart = sH * ph - pH; int wstart = sW * pw - pW; int hend = hstart + kHEff; int wend = wstart + kWEff; if (hstart < 0) { int f = sd::math::sd_ceil<Z, int>((Z)-hstart / (Z)dH); hstart += f * dH; } if (wstart < 0) { int f = sd::math::sd_ceil<Z, int>((Z)-wstart / (Z)dW); wstart += f * dW; } if (hend > iH) { int f = sd::math::sd_ceil<Z, int>((Z)(hend - iH) / (Z)dH); hend -= f * dH; } if (wend > iW) { int f = sd::math::sd_ceil<Z, int>((Z)(wend - iW) / (Z)dW); wend -= f * dW; } // Accounts for dilation int pool_size = sd::math::sd_ceil<double, int>((double)(hend - hstart) / (double)dH) * sd::math::sd_ceil<double, int>((double)(wend - wstart) / (double)dW); Z max = -sd::DataTypeUtils::max<Z>(); const X *inSlice = x + (n * strideB + c * strideC); for (int h = hstart; h < hend; h += dH) { for (int w = wstart; w < wend; w += dW) { Z v = static_cast<Z>(inSlice[h * strideY + w * strideX]); if (v > max) max = v; } } z[n * strideOB + c * strideOC + pw * strideOX + ph * strideOY] = max; } } ////////////////////////////////////////////////////////////////////////// template <typename X, typename Z> static void maxPooling2dCudaLauncher(sd::LaunchContext &block, const void *vx, const sd::LongType *vxShapeInfo, void *vz, const sd::LongType *vzShapeInfo, const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW, const int extraParam0) { maxPooling2dCuda<X, Z><<<512, 512, 4192, *block.getCudaStream()>>>(vx, vxShapeInfo, vz, vzShapeInfo, kH, kW, sH, sW, pH, pW, dH, dW, extraParam0); } ////////////////////////////////////////////////////////////////////////// void ConvolutionUtils::pooling2d(sd::graph::Context &block, const NDArray &input, NDArray &output, const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW, const PoolingType poolingMode, const int extraParam0) { if (!input.isActualOnDeviceSide()) input.syncToDevice(); switch (poolingMode) { case MAX_POOL: { BUILD_SINGLE_SELECTOR_TWICE( input.dataType(), maxPooling2dCudaLauncher, (*block.launchContext(), input.specialBuffer(), input.specialShapeInfo(), output.specialBuffer(), output.specialShapeInfo(), kH, kW, sH, sW, pH, pW, dH, dW, extraParam0), SD_NUMERIC_TYPES); } break; case AVG_POOL: { BUILD_SINGLE_SELECTOR_TWICE( input.dataType(), avgPooling2dCudaLauncher, (*block.launchContext(), input.specialBuffer(), input.specialShapeInfo(), output.specialBuffer(), output.specialShapeInfo(), kH, kW, sH, sW, pH, pW, dH, dW, extraParam0), SD_NUMERIC_TYPES); } break; case PNORM_POOL: { BUILD_SINGLE_SELECTOR_TWICE( input.dataType(), pnormPooling2dCudaLauncher, (*block.launchContext(), input.specialBuffer(), input.specialShapeInfo(), output.specialBuffer(), output.specialShapeInfo(), kH, kW, sH, sW, pH, pW, dH, dW, extraParam0), SD_FLOAT_TYPES); } break; default: throw std::runtime_error("Pooling2D: Unknown PoolingType used"); } output.tickWriteDevice(); input.tickReadDevice(); auto result = cudaStreamSynchronize(*block.launchContext()->getCudaStream()); if (result != 0) throw cuda_exception::build("Pooling2D failed", result); } } // namespace ops } // namespace sd
137bc58872dfe8042bfb0465fbf7ed03f8d1d328.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include <iostream> #include "MDArrayHelper.h" void printArr(int *arr, int size) { for (int i=0; i<size; i++) std::cout << arr[i] << " "; std::cout << std::endl; } void testOnHost() { int orjArr[9]; int dim = 2; int dimSize[] = {3, 3}; int linSize = 9; MDArrayHelper<int> arr(orjArr, dim, dimSize); for (int i=0; i<dimSize[1]; i++) { int index[] = {1, i}; arr.set(0, index); } printArr(orjArr, linSize); for (int i=0; i<dimSize[1]; i++) { int index[] = {0, i}; std::cout << arr.get(index) << " "; } std::cout << std::endl; int index[] = {1, 0}; arr.reposition(index); for (int i=0; i<dimSize[1]; i++) { int index[] = {1, i}; std::cout << arr.get(index) << " "; } std::cout << std::endl; } __global__ void testKernel(int *out) { int dim = 2; int dimSize[] = {3, 3}; MDArrayHelper<int> arr(out, dim, dimSize); for (int i=0; i<dimSize[1]; i++) { int index[] = {1, i}; arr.set(0, index); } int index[] = {1, 0}; arr.reposition(index); for (int i=0; i<dimSize[1]; i++) { int index[] = {1, i}; arr.set(1, index); } } void testOnDevice() { int arr[] = {1, 2, 3, 4, 5, 6, 7, 8, 9}; int *d_arr; hipMalloc(&d_arr, 9 * sizeof(int)); hipMemcpy(d_arr, arr, 9 * sizeof(int), hipMemcpyHostToDevice); hipLaunchKernelGGL(( testKernel) , dim3(1), dim3(1), 0, 0, d_arr); hipMemcpy(arr, d_arr, 9 * sizeof(int), hipMemcpyDeviceToHost); printArr(arr, 9); } int main() { testOnHost(); testOnDevice(); return 0; } /* Standart output: 1 2 3 0 0 0 7 8 9 1 2 3 7 8 9 1 2 3 0 0 0 1 1 1 */
137bc58872dfe8042bfb0465fbf7ed03f8d1d328.cu
#include <iostream> #include "MDArrayHelper.h" void printArr(int *arr, int size) { for (int i=0; i<size; i++) std::cout << arr[i] << " "; std::cout << std::endl; } void testOnHost() { int orjArr[9]; int dim = 2; int dimSize[] = {3, 3}; int linSize = 9; MDArrayHelper<int> arr(orjArr, dim, dimSize); for (int i=0; i<dimSize[1]; i++) { int index[] = {1, i}; arr.set(0, index); } printArr(orjArr, linSize); for (int i=0; i<dimSize[1]; i++) { int index[] = {0, i}; std::cout << arr.get(index) << " "; } std::cout << std::endl; int index[] = {1, 0}; arr.reposition(index); for (int i=0; i<dimSize[1]; i++) { int index[] = {1, i}; std::cout << arr.get(index) << " "; } std::cout << std::endl; } __global__ void testKernel(int *out) { int dim = 2; int dimSize[] = {3, 3}; MDArrayHelper<int> arr(out, dim, dimSize); for (int i=0; i<dimSize[1]; i++) { int index[] = {1, i}; arr.set(0, index); } int index[] = {1, 0}; arr.reposition(index); for (int i=0; i<dimSize[1]; i++) { int index[] = {1, i}; arr.set(1, index); } } void testOnDevice() { int arr[] = {1, 2, 3, 4, 5, 6, 7, 8, 9}; int *d_arr; cudaMalloc(&d_arr, 9 * sizeof(int)); cudaMemcpy(d_arr, arr, 9 * sizeof(int), cudaMemcpyHostToDevice); testKernel <<<1, 1>>> (d_arr); cudaMemcpy(arr, d_arr, 9 * sizeof(int), cudaMemcpyDeviceToHost); printArr(arr, 9); } int main() { testOnHost(); testOnDevice(); return 0; } /* Standart output: 1 2 3 0 0 0 7 8 9 1 2 3 7 8 9 1 2 3 0 0 0 1 1 1 */
00ede808de6aa1dd5193dfd4059a81981480170e.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "kernels.h" #define DEF_SHRD_VAL 0 #define DEF_DIM_X 1024 //! //! This binning kernel does not prevent race conditions. //! __global__ void bin_kernel_simple(int * random_sequence, int * binned, int bin_width, int rseq_len) { const int index = threadIdx.x + blockIdx.x * blockDim.x; if ( index < rseq_len) binned[random_sequence[index] / bin_width]++; } //! //! Kernel that makes use of the atomic operator to eliminate race conditions. //! __global__ void bin_kernel_atomic(int * random_sequence, int * binned, int bin_width, int rseq_len) { ///< TODO: Implement code that uses atomic operations to bin values. } ///! ///! Write the necessary code to execute binning kernels. ///! void execute_kernel(int * random_sequence_device, int * binned_device, int bin_width, int bins, int rseq_len, float & cuda_ms) { ///< TODO: Implement the necessary code to start/stop the timers and execute the kernel. }
00ede808de6aa1dd5193dfd4059a81981480170e.cu
#include "kernels.h" #define DEF_SHRD_VAL 0 #define DEF_DIM_X 1024 //! //! This binning kernel does not prevent race conditions. //! __global__ void bin_kernel_simple(int * random_sequence, int * binned, int bin_width, int rseq_len) { const int index = threadIdx.x + blockIdx.x * blockDim.x; if ( index < rseq_len) binned[random_sequence[index] / bin_width]++; } //! //! Kernel that makes use of the atomic operator to eliminate race conditions. //! __global__ void bin_kernel_atomic(int * random_sequence, int * binned, int bin_width, int rseq_len) { ///< TODO: Implement code that uses atomic operations to bin values. } ///! ///! Write the necessary code to execute binning kernels. ///! void execute_kernel(int * random_sequence_device, int * binned_device, int bin_width, int bins, int rseq_len, float & cuda_ms) { ///< TODO: Implement the necessary code to start/stop the timers and execute the kernel. }
106cf824299ae12add876623501c7cfb0d709563.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/platform/device/gpu/gpu_info.h" #include "paddle/fluid/platform/device/gpu/gpu_primitives.h" #include "paddle/phi/backends/gpu/gpu_context.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/funcs/math_function.h" #include "paddle/phi/kernels/pad3d_grad_kernel.h" namespace phi { using paddle::platform::PADDLE_CUDA_NUM_THREADS; template <typename T> __global__ void Pad3DGradConstNCDHW(const int in_size, T* d_in_data, const int num, const int channels, const int in_depth, const int in_height, const int in_width, const int out_depth, const int out_height, const int out_width, const int pad_front, const int pad_top, const int pad_left, const T* d_out_data) { CUDA_KERNEL_LOOP(in_index, in_size) { const int in_w = in_index % in_width; int nc = in_index / in_width; const int in_h = nc % in_height; nc /= in_height; const int in_d = nc % in_depth; nc /= in_depth; const int out_d = in_d + pad_front; const int out_h = in_h + pad_top; const int out_w = in_w + pad_left; d_in_data[in_index] = d_out_data[nc * out_depth * out_height * out_width + out_d * out_height * out_width + out_h * out_width + out_w]; } } template <typename T> __global__ void Pad3DGradConstNDHWC(const int in_size, T* d_in_data, const int num, const int channels, const int in_depth, const int in_height, const int in_width, const int out_depth, const int out_height, const int out_width, const int pad_front, const int pad_top, const int pad_left, const T* d_out_data) { CUDA_KERNEL_LOOP(in_index, in_size) { const int c = in_index % channels; int n = in_index / channels; const int in_w = n % in_width; n /= in_width; const int in_h = n % in_height; n /= in_height; const int in_d = n % in_depth; n /= in_depth; const int out_d = in_d + pad_front; const int out_h = in_h + pad_top; const int out_w = in_w + pad_left; d_in_data[in_index] = d_out_data[n * out_depth * out_height * out_width * channels + out_d * out_height * out_width * channels + out_h * out_width * channels + out_w * channels + c]; } } template <typename T> __global__ void Pad3DGradReflectNCDHW(const int out_size, T* d_in_data, const int num, const int channels, const int in_depth, const int in_height, const int in_width, const int out_depth, const int out_height, const int out_width, const int pad_front, const int pad_top, const int pad_left, const T* d_out_data) { CUDA_KERNEL_LOOP(out_index, out_size) { int nc = out_index / out_width; const int out_w = out_index % out_width; const int out_h = nc % out_height; nc /= out_height; const int out_d = nc % out_depth; nc /= out_depth; int in_d = out_d - pad_front; int in_h = out_h - pad_top; int in_w = out_w - pad_left; in_d = max(in_d, -in_d); in_h = max(in_h, -in_h); in_w = max(in_w, -in_w); in_d = min(in_d, 2 * in_depth - in_d - 2); in_h = min(in_h, 2 * in_height - in_h - 2); in_w = min(in_w, 2 * in_width - in_w - 2); paddle::platform::CudaAtomicAdd( &d_in_data[nc * in_depth * in_height * in_width + in_d * in_height * in_width + in_h * in_width + in_w], d_out_data[out_index]); } } template <typename T> __global__ void Pad3DGradReflectNDHWC(const int out_size, T* d_in_data, const int num, const int channels, const int in_depth, const int in_height, const int in_width, const int out_depth, const int out_height, const int out_width, const int pad_front, const int pad_top, const int pad_left, const T* d_out_data) { CUDA_KERNEL_LOOP(out_index, out_size) { const int c = out_index % channels; int n = out_index / channels; const int out_w = n % out_width; n /= out_width; const int out_h = n % out_height; n /= out_height; const int out_d = n % out_depth; n /= out_depth; int in_d = out_d - pad_front; int in_h = out_h - pad_top; int in_w = out_w - pad_left; in_d = max(in_d, -in_d); in_h = max(in_h, -in_h); in_w = max(in_w, -in_w); in_d = min(in_d, in_depth * 2 - in_d - 2); in_h = min(in_h, in_height * 2 - in_h - 2); in_w = min(in_w, in_width * 2 - in_w - 2); paddle::platform::CudaAtomicAdd( &d_in_data[n * in_depth * in_height * in_width * channels + in_d * in_height * in_width * channels + in_h * in_width * channels + in_w * channels + c], d_out_data[out_index]); } } template <typename T> __global__ void Pad3DGradReplicateNCDHW(const int out_size, T* d_in_data, const int num, const int channels, const int in_depth, const int in_height, const int in_width, const int out_depth, const int out_height, const int out_width, const int pad_front, const int pad_top, const int pad_left, const T* d_out_data) { CUDA_KERNEL_LOOP(out_index, out_size) { int nc = out_index / out_width; const int out_w = out_index % out_width; const int out_h = nc % out_height; nc /= out_height; const int out_d = nc % out_depth; nc /= out_depth; const int in_d = min(in_depth - 1, max(out_d - pad_front, 0)); const int in_h = min(in_height - 1, max(out_h - pad_top, 0)); const int in_w = min(in_width - 1, max(out_w - pad_left, 0)); paddle::platform::CudaAtomicAdd( &d_in_data[nc * in_depth * in_height * in_width + in_d * in_height * in_width + in_h * in_width + in_w], d_out_data[out_index]); } } template <typename T> __global__ void Pad3DGradReplicateNDHWC(const int out_size, T* d_in_data, const int num, const int channels, const int in_depth, const int in_height, const int in_width, const int out_depth, const int out_height, const int out_width, const int pad_front, const int pad_top, const int pad_left, const T* d_out_data) { CUDA_KERNEL_LOOP(out_index, out_size) { const int c = out_index % channels; int n = out_index / channels; const int out_w = n % out_width; n /= out_width; const int out_h = n % out_height; n /= out_height; const int out_d = n % out_depth; n /= out_depth; const int in_d = min(in_depth - 1, max(out_d - pad_front, 0)); const int in_h = min(in_height - 1, max(out_h - pad_top, 0)); const int in_w = min(in_width - 1, max(out_w - pad_left, 0)); paddle::platform::CudaAtomicAdd( &d_in_data[n * in_depth * in_height * in_width * channels + in_d * in_height * in_width * channels + in_h * in_width * channels + in_w * channels + c], d_out_data[out_index]); } } template <typename T> __global__ void Pad3DGradCircularNCDHW(const int out_size, T* d_in_data, const int num, const int channels, const int in_depth, const int in_height, const int in_width, const int out_depth, const int out_height, const int out_width, const int pad_front, const int pad_top, const int pad_left, const T* d_out_data) { CUDA_KERNEL_LOOP(out_index, out_size) { int nc = out_index / out_width; const int out_w = out_index % out_width; const int out_h = nc % out_height; nc /= out_height; const int out_d = nc % out_depth; nc /= out_depth; int in_d = ((out_d - pad_front) % in_depth + in_depth) % in_depth; int in_h = ((out_h - pad_top) % in_height + in_height) % in_height; int in_w = ((out_w - pad_left) % in_width + in_width) % in_width; paddle::platform::CudaAtomicAdd( &d_in_data[nc * in_depth * in_height * in_width + in_d * in_height * in_width + in_h * in_width + in_w], d_out_data[out_index]); } } template <typename T> __global__ void Pad3DGradCircularNDHWC(const int out_size, T* d_in_data, const int num, const int channels, const int in_depth, const int in_height, const int in_width, const int out_depth, const int out_height, const int out_width, const int pad_front, const int pad_top, const int pad_left, const T* d_out_data) { CUDA_KERNEL_LOOP(out_index, out_size) { const int c = out_index % channels; int n = out_index / channels; const int out_w = n % out_width; n /= out_width; const int out_h = n % out_height; n /= out_height; const int out_d = n % out_depth; n /= out_depth; int in_d = ((out_d - pad_front) % in_depth + in_depth) % in_depth; int in_h = ((out_h - pad_top) % in_height + in_height) % in_height; int in_w = ((out_w - pad_left) % in_width + in_width) % in_width; paddle::platform::CudaAtomicAdd( &d_in_data[n * in_depth * in_height * in_width * channels + in_d * in_height * in_width * channels + in_h * in_width * channels + in_w * channels + c], d_out_data[out_index]); } } template <typename T, typename Context> void Pad3dGradKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& out_grad, const IntArray& paddings, const std::string& mode, float pad_value, const std::string& data_format, DenseTensor* x_grad) { std::vector<int64_t> pads = paddings.GetData(); auto* d_out = &out_grad; auto* d_in = x_grad; auto d_in_dims = d_in->dims(); auto d_out_dims = d_out->dims(); const T* d_out_data = d_out->data<T>(); T* d_in_data = dev_ctx.template Alloc<T>(d_in); phi::funcs::SetConstant<Context, T>()(dev_ctx, d_in, static_cast<T>(0)); const int pad_left = pads[0]; const int pad_top = pads[2]; const int pad_front = pads[4]; const int num = d_in_dims[0]; auto stream = dev_ctx.stream(); int block = PADDLE_CUDA_NUM_THREADS; const int out_size = d_out->numel(); const int in_size = d_in->numel(); int grid = (out_size + block - 1) / block; if (data_format == "NCDHW") { const int channels = d_in_dims[1]; const int in_depth = d_in_dims[2]; const int in_height = d_in_dims[3]; const int in_width = d_in_dims[4]; const int out_depth = d_out_dims[2]; const int out_height = d_out_dims[3]; const int out_width = d_out_dims[4]; if (mode == "reflect") { hipLaunchKernelGGL(( Pad3DGradReflectNCDHW<T>), dim3(grid), dim3(block), 0, stream, out_size, d_in_data, num, channels, in_depth, in_height, in_width, out_depth, out_height, out_width, pad_front, pad_top, pad_left, d_out_data); } else if (mode == "replicate") { hipLaunchKernelGGL(( Pad3DGradReplicateNCDHW<T>), dim3(grid), dim3(block), 0, stream, out_size, d_in_data, num, channels, in_depth, in_height, in_width, out_depth, out_height, out_width, pad_front, pad_top, pad_left, d_out_data); } else if (mode == "circular") { hipLaunchKernelGGL(( Pad3DGradCircularNCDHW<T>), dim3(grid), dim3(block), 0, stream, out_size, d_in_data, num, channels, in_depth, in_height, in_width, out_depth, out_height, out_width, pad_front, pad_top, pad_left, d_out_data); } else { grid = (in_size + block - 1) / block; hipLaunchKernelGGL(( Pad3DGradConstNCDHW<T>), dim3(grid), dim3(block), 0, stream, in_size, d_in_data, num, channels, in_depth, in_height, in_width, out_depth, out_height, out_width, pad_front, pad_top, pad_left, d_out_data); } } else { const int channels = d_in_dims[4]; const int in_depth = d_in_dims[1]; const int in_height = d_in_dims[2]; const int in_width = d_in_dims[3]; const int out_depth = d_out_dims[1]; const int out_height = d_out_dims[2]; const int out_width = d_out_dims[3]; if (mode == "reflect") { hipLaunchKernelGGL(( Pad3DGradReflectNDHWC<T>), dim3(grid), dim3(block), 0, stream, out_size, d_in_data, num, channels, in_depth, in_height, in_width, out_depth, out_height, out_width, pad_front, pad_top, pad_left, d_out_data); } else if (mode == "replicate") { hipLaunchKernelGGL(( Pad3DGradReplicateNDHWC<T>), dim3(grid), dim3(block), 0, stream, out_size, d_in_data, num, channels, in_depth, in_height, in_width, out_depth, out_height, out_width, pad_front, pad_top, pad_left, d_out_data); } else if (mode == "circular") { hipLaunchKernelGGL(( Pad3DGradCircularNDHWC<T>), dim3(grid), dim3(block), 0, stream, out_size, d_in_data, num, channels, in_depth, in_height, in_width, out_depth, out_height, out_width, pad_front, pad_top, pad_left, d_out_data); } else { grid = (in_size + block - 1) / block; hipLaunchKernelGGL(( Pad3DGradConstNDHWC<T>), dim3(grid), dim3(block), 0, stream, in_size, d_in_data, num, channels, in_depth, in_height, in_width, out_depth, out_height, out_width, pad_front, pad_top, pad_left, d_out_data); } } } } // namespace phi PD_REGISTER_KERNEL( pad3d_grad, GPU, ALL_LAYOUT, phi::Pad3dGradKernel, float, double) {}
106cf824299ae12add876623501c7cfb0d709563.cu
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/platform/device/gpu/gpu_info.h" #include "paddle/fluid/platform/device/gpu/gpu_primitives.h" #include "paddle/phi/backends/gpu/gpu_context.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/funcs/math_function.h" #include "paddle/phi/kernels/pad3d_grad_kernel.h" namespace phi { using paddle::platform::PADDLE_CUDA_NUM_THREADS; template <typename T> __global__ void Pad3DGradConstNCDHW(const int in_size, T* d_in_data, const int num, const int channels, const int in_depth, const int in_height, const int in_width, const int out_depth, const int out_height, const int out_width, const int pad_front, const int pad_top, const int pad_left, const T* d_out_data) { CUDA_KERNEL_LOOP(in_index, in_size) { const int in_w = in_index % in_width; int nc = in_index / in_width; const int in_h = nc % in_height; nc /= in_height; const int in_d = nc % in_depth; nc /= in_depth; const int out_d = in_d + pad_front; const int out_h = in_h + pad_top; const int out_w = in_w + pad_left; d_in_data[in_index] = d_out_data[nc * out_depth * out_height * out_width + out_d * out_height * out_width + out_h * out_width + out_w]; } } template <typename T> __global__ void Pad3DGradConstNDHWC(const int in_size, T* d_in_data, const int num, const int channels, const int in_depth, const int in_height, const int in_width, const int out_depth, const int out_height, const int out_width, const int pad_front, const int pad_top, const int pad_left, const T* d_out_data) { CUDA_KERNEL_LOOP(in_index, in_size) { const int c = in_index % channels; int n = in_index / channels; const int in_w = n % in_width; n /= in_width; const int in_h = n % in_height; n /= in_height; const int in_d = n % in_depth; n /= in_depth; const int out_d = in_d + pad_front; const int out_h = in_h + pad_top; const int out_w = in_w + pad_left; d_in_data[in_index] = d_out_data[n * out_depth * out_height * out_width * channels + out_d * out_height * out_width * channels + out_h * out_width * channels + out_w * channels + c]; } } template <typename T> __global__ void Pad3DGradReflectNCDHW(const int out_size, T* d_in_data, const int num, const int channels, const int in_depth, const int in_height, const int in_width, const int out_depth, const int out_height, const int out_width, const int pad_front, const int pad_top, const int pad_left, const T* d_out_data) { CUDA_KERNEL_LOOP(out_index, out_size) { int nc = out_index / out_width; const int out_w = out_index % out_width; const int out_h = nc % out_height; nc /= out_height; const int out_d = nc % out_depth; nc /= out_depth; int in_d = out_d - pad_front; int in_h = out_h - pad_top; int in_w = out_w - pad_left; in_d = max(in_d, -in_d); in_h = max(in_h, -in_h); in_w = max(in_w, -in_w); in_d = min(in_d, 2 * in_depth - in_d - 2); in_h = min(in_h, 2 * in_height - in_h - 2); in_w = min(in_w, 2 * in_width - in_w - 2); paddle::platform::CudaAtomicAdd( &d_in_data[nc * in_depth * in_height * in_width + in_d * in_height * in_width + in_h * in_width + in_w], d_out_data[out_index]); } } template <typename T> __global__ void Pad3DGradReflectNDHWC(const int out_size, T* d_in_data, const int num, const int channels, const int in_depth, const int in_height, const int in_width, const int out_depth, const int out_height, const int out_width, const int pad_front, const int pad_top, const int pad_left, const T* d_out_data) { CUDA_KERNEL_LOOP(out_index, out_size) { const int c = out_index % channels; int n = out_index / channels; const int out_w = n % out_width; n /= out_width; const int out_h = n % out_height; n /= out_height; const int out_d = n % out_depth; n /= out_depth; int in_d = out_d - pad_front; int in_h = out_h - pad_top; int in_w = out_w - pad_left; in_d = max(in_d, -in_d); in_h = max(in_h, -in_h); in_w = max(in_w, -in_w); in_d = min(in_d, in_depth * 2 - in_d - 2); in_h = min(in_h, in_height * 2 - in_h - 2); in_w = min(in_w, in_width * 2 - in_w - 2); paddle::platform::CudaAtomicAdd( &d_in_data[n * in_depth * in_height * in_width * channels + in_d * in_height * in_width * channels + in_h * in_width * channels + in_w * channels + c], d_out_data[out_index]); } } template <typename T> __global__ void Pad3DGradReplicateNCDHW(const int out_size, T* d_in_data, const int num, const int channels, const int in_depth, const int in_height, const int in_width, const int out_depth, const int out_height, const int out_width, const int pad_front, const int pad_top, const int pad_left, const T* d_out_data) { CUDA_KERNEL_LOOP(out_index, out_size) { int nc = out_index / out_width; const int out_w = out_index % out_width; const int out_h = nc % out_height; nc /= out_height; const int out_d = nc % out_depth; nc /= out_depth; const int in_d = min(in_depth - 1, max(out_d - pad_front, 0)); const int in_h = min(in_height - 1, max(out_h - pad_top, 0)); const int in_w = min(in_width - 1, max(out_w - pad_left, 0)); paddle::platform::CudaAtomicAdd( &d_in_data[nc * in_depth * in_height * in_width + in_d * in_height * in_width + in_h * in_width + in_w], d_out_data[out_index]); } } template <typename T> __global__ void Pad3DGradReplicateNDHWC(const int out_size, T* d_in_data, const int num, const int channels, const int in_depth, const int in_height, const int in_width, const int out_depth, const int out_height, const int out_width, const int pad_front, const int pad_top, const int pad_left, const T* d_out_data) { CUDA_KERNEL_LOOP(out_index, out_size) { const int c = out_index % channels; int n = out_index / channels; const int out_w = n % out_width; n /= out_width; const int out_h = n % out_height; n /= out_height; const int out_d = n % out_depth; n /= out_depth; const int in_d = min(in_depth - 1, max(out_d - pad_front, 0)); const int in_h = min(in_height - 1, max(out_h - pad_top, 0)); const int in_w = min(in_width - 1, max(out_w - pad_left, 0)); paddle::platform::CudaAtomicAdd( &d_in_data[n * in_depth * in_height * in_width * channels + in_d * in_height * in_width * channels + in_h * in_width * channels + in_w * channels + c], d_out_data[out_index]); } } template <typename T> __global__ void Pad3DGradCircularNCDHW(const int out_size, T* d_in_data, const int num, const int channels, const int in_depth, const int in_height, const int in_width, const int out_depth, const int out_height, const int out_width, const int pad_front, const int pad_top, const int pad_left, const T* d_out_data) { CUDA_KERNEL_LOOP(out_index, out_size) { int nc = out_index / out_width; const int out_w = out_index % out_width; const int out_h = nc % out_height; nc /= out_height; const int out_d = nc % out_depth; nc /= out_depth; int in_d = ((out_d - pad_front) % in_depth + in_depth) % in_depth; int in_h = ((out_h - pad_top) % in_height + in_height) % in_height; int in_w = ((out_w - pad_left) % in_width + in_width) % in_width; paddle::platform::CudaAtomicAdd( &d_in_data[nc * in_depth * in_height * in_width + in_d * in_height * in_width + in_h * in_width + in_w], d_out_data[out_index]); } } template <typename T> __global__ void Pad3DGradCircularNDHWC(const int out_size, T* d_in_data, const int num, const int channels, const int in_depth, const int in_height, const int in_width, const int out_depth, const int out_height, const int out_width, const int pad_front, const int pad_top, const int pad_left, const T* d_out_data) { CUDA_KERNEL_LOOP(out_index, out_size) { const int c = out_index % channels; int n = out_index / channels; const int out_w = n % out_width; n /= out_width; const int out_h = n % out_height; n /= out_height; const int out_d = n % out_depth; n /= out_depth; int in_d = ((out_d - pad_front) % in_depth + in_depth) % in_depth; int in_h = ((out_h - pad_top) % in_height + in_height) % in_height; int in_w = ((out_w - pad_left) % in_width + in_width) % in_width; paddle::platform::CudaAtomicAdd( &d_in_data[n * in_depth * in_height * in_width * channels + in_d * in_height * in_width * channels + in_h * in_width * channels + in_w * channels + c], d_out_data[out_index]); } } template <typename T, typename Context> void Pad3dGradKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& out_grad, const IntArray& paddings, const std::string& mode, float pad_value, const std::string& data_format, DenseTensor* x_grad) { std::vector<int64_t> pads = paddings.GetData(); auto* d_out = &out_grad; auto* d_in = x_grad; auto d_in_dims = d_in->dims(); auto d_out_dims = d_out->dims(); const T* d_out_data = d_out->data<T>(); T* d_in_data = dev_ctx.template Alloc<T>(d_in); phi::funcs::SetConstant<Context, T>()(dev_ctx, d_in, static_cast<T>(0)); const int pad_left = pads[0]; const int pad_top = pads[2]; const int pad_front = pads[4]; const int num = d_in_dims[0]; auto stream = dev_ctx.stream(); int block = PADDLE_CUDA_NUM_THREADS; const int out_size = d_out->numel(); const int in_size = d_in->numel(); int grid = (out_size + block - 1) / block; if (data_format == "NCDHW") { const int channels = d_in_dims[1]; const int in_depth = d_in_dims[2]; const int in_height = d_in_dims[3]; const int in_width = d_in_dims[4]; const int out_depth = d_out_dims[2]; const int out_height = d_out_dims[3]; const int out_width = d_out_dims[4]; if (mode == "reflect") { Pad3DGradReflectNCDHW<T><<<grid, block, 0, stream>>>(out_size, d_in_data, num, channels, in_depth, in_height, in_width, out_depth, out_height, out_width, pad_front, pad_top, pad_left, d_out_data); } else if (mode == "replicate") { Pad3DGradReplicateNCDHW<T><<<grid, block, 0, stream>>>(out_size, d_in_data, num, channels, in_depth, in_height, in_width, out_depth, out_height, out_width, pad_front, pad_top, pad_left, d_out_data); } else if (mode == "circular") { Pad3DGradCircularNCDHW<T><<<grid, block, 0, stream>>>(out_size, d_in_data, num, channels, in_depth, in_height, in_width, out_depth, out_height, out_width, pad_front, pad_top, pad_left, d_out_data); } else { grid = (in_size + block - 1) / block; Pad3DGradConstNCDHW<T><<<grid, block, 0, stream>>>(in_size, d_in_data, num, channels, in_depth, in_height, in_width, out_depth, out_height, out_width, pad_front, pad_top, pad_left, d_out_data); } } else { const int channels = d_in_dims[4]; const int in_depth = d_in_dims[1]; const int in_height = d_in_dims[2]; const int in_width = d_in_dims[3]; const int out_depth = d_out_dims[1]; const int out_height = d_out_dims[2]; const int out_width = d_out_dims[3]; if (mode == "reflect") { Pad3DGradReflectNDHWC<T><<<grid, block, 0, stream>>>(out_size, d_in_data, num, channels, in_depth, in_height, in_width, out_depth, out_height, out_width, pad_front, pad_top, pad_left, d_out_data); } else if (mode == "replicate") { Pad3DGradReplicateNDHWC<T><<<grid, block, 0, stream>>>(out_size, d_in_data, num, channels, in_depth, in_height, in_width, out_depth, out_height, out_width, pad_front, pad_top, pad_left, d_out_data); } else if (mode == "circular") { Pad3DGradCircularNDHWC<T><<<grid, block, 0, stream>>>(out_size, d_in_data, num, channels, in_depth, in_height, in_width, out_depth, out_height, out_width, pad_front, pad_top, pad_left, d_out_data); } else { grid = (in_size + block - 1) / block; Pad3DGradConstNDHWC<T><<<grid, block, 0, stream>>>(in_size, d_in_data, num, channels, in_depth, in_height, in_width, out_depth, out_height, out_width, pad_front, pad_top, pad_left, d_out_data); } } } } // namespace phi PD_REGISTER_KERNEL( pad3d_grad, GPU, ALL_LAYOUT, phi::Pad3dGradKernel, float, double) {}
a8fac966a47514d8c422c6abac70dce0a09bda90.hip
// !!! This is a file automatically generated by hipify!!! ///sta programa calcula la versin paralelizada del algoritmo FFT_DIF_DIT_TD ///(03/08/2016) ///sta versin sirve para calcular los tiempos de ejecucin para distintos nmeros de muestras e iteraciones #include "hip/hip_runtime.h" #include "device_launch_parameters.h" #include <hipfft.h> #include <cufftw.h> #include <stdio.h> #include <stdlib.h> #include <hip/hip_complex.h> #include <math.h> #include <math_constants.h> #include <iostream> ////////////////////////////////////////////////////////////////////////// ///////////////////////DECLARACIN DE FUNCIONES/////////////////////////// ////////////////////////////////////////////////////////////////////////// void vector_entrada_xn(const long N,const int Li); void arreglo_W(const long N); void asign_rap(const long N,const int Li,const int Lo); void factor(const long N); void product(int vector_1[50],int vector_2[50],int valor); void etapa_entrada(void); __global__ void inputStage_kernel(const long N, const int Li,int Dip,int Dop,int P,cuFloatComplex *x,cuFloatComplex *W,cuFloatComplex *y); void etapa_intermedia(void); void etapa_salida(void); __global__ void outputStage_kernel(const long N,const int Lo,int Dip,int Dop,int P,cuFloatComplex *z,cuFloatComplex *W,cuFloatComplex *X); ////////////////////////////////////////////////////////////////////////// /////////////////////DECLARACIN DE VARIABLES GLOBALES//////////////////// ////////////////////////////////////////////////////////////////////////// cuFloatComplex *x_host; cuFloatComplex *W_host; cuFloatComplex *y_host; cuFloatComplex *z_host; cuFloatComplex *X_host; cuFloatComplex *x_device; cuFloatComplex *W_device; cuFloatComplex *y_device; cuFloatComplex *z_device; cuFloatComplex *X_device; hipfftComplex *in,*out; int Dip,Dop,P; int vF[50]; //Almacena los factores de N int svF=0; //Almacena el numero de factores de N int Prod[50]; int a; #define inf 99999 ////////////////////////////////////////////////////////////////////////// //////////////////////////DATOS DE ENTRADA//////////////////////////////// ////////////////////////////////////////////////////////////////////////// /// N >>> Nmero de elementos del vector de entrada /// Li >>> Nmero de elementos de entrada diferentes de cero /// Lo >>> Nmero de elementos de salida requeridos /// loop >>> Nmero de iteraciones /// muestras >>> Nmero de muestras ////////////////////////////////////////////////////////////////////////// ///////////////////////////DATOS DE SALIDA//////////////////////////////// ////////////////////////////////////////////////////////////////////////// /// X >>> Vector de salida ////////////////////////////////////////////////////////////////////////// /////////////////// SE INGRESAN LOS DATOS DE ENTRADA ///////////////////// ////////////////////////////////////////////////////////////////////////// ///Ingrese el nmero de elementos del vector de entrada x(n) const long N = 2; ///Ingrese el nmero de elementos de entrada diferentes de cero (Li) const int Li = 1; ///Ingrese el nmero de elementos de salida requeridos (Lo) const int Lo = 2; ///Ingrese el nmero de iteraciones requeridas const int loop = 1; ///Ingrese el nmero de muestras requeridas const int muestras = 1; ////////////////////////////////////////////////////////////////////////// //////////////////////////FUNCION PRINCIPAL/////////////////////////////// ////////////////////////////////////////////////////////////////////////// //Funcin principal int main() { int i,j; float suma; float promedio[muestras]; ///Se crean los archivos binarios donde se guardarn los datos //FILE *da; //da = fopen("FFT_DIF_DIT_TD_VERSION_PARALELIZADA.bin","a+b"); //Crea o sobre escribe archivo //Pausa printf("\n---PRESIONA UNA TECLA PARA CONTINUAR---\n\n"); getchar(); for(i=1;i<=muestras;i++) { suma=0.0; for(j=0;j<loop;j++) { //Comandos necesarios para medir el tiempo float elapsedTime_app; hipEvent_t start_app, stop_app; hipEventCreate(&start_app); hipEventCreate(&stop_app); //--------------------------------------------------------------------------------------------- //Se empieza a medir el tiempo de ejecucion de la aplicacion hipEventRecord(start_app,0); //Se generan en el host los valores del vector de entrada x[n] vector_entrada_xn(N,Li); //Se generan en el host los valores del arreglo W[N] arreglo_W(N); //Se generan en el host los factores Dip y Dop asign_rap(N,Li,Lo); //Clculo en el host del factor P P = N/(Dip*Dop); printf("\n\n FACTOR P:\n\n"); printf(" %d ",P); //Funcin auxiliar del host para ejecutar la etapa de entrada etapa_entrada(); //Funcin auxiliar del host para ejecutar la etapa intermedia etapa_intermedia(); //Funcin auxiliar del host para ejecutar la etapa de salida etapa_salida(); ///////////////////////////////////////////////////////////////////////////// //printf("\n size_cuFloatComplex = %d\n",sizeof(cuFloatComplex)); //printf("\n size_cufftComplex = %d\n",sizeof(hipfftComplex)); ///////////////////////////////////////////////////////////////////////////// //Se liberan memorias del Host y Device free(x_host); free(W_host); free(y_host); free(z_host); free(X_host); hipFree(x_device); hipFree(W_device); hipFree(y_device); hipFree(z_device); hipFree(X_device); hipFree(in); hipFree(out); //--------------------------------------------------------------------------------------------- //Comandos necesarios para medir el tiempo de la aplicacion (app) hipEventRecord(stop_app,0); hipEventSynchronize(stop_app); hipEventElapsedTime(&elapsedTime_app,start_app,stop_app); //Suma de todos los tiempos suma = suma + elapsedTime_app; //Se destruyen los eventos que miden el tiempo de la aplicacion hipEventDestroy(start_app); hipEventDestroy(stop_app); } promedio[i-1] = suma/(float)loop; printf(" \n\n%d - Tiempo promedio para N = %ld >>> %f mS\n",i,N,promedio[i-1]); } //fwrite(promedio,sizeof(float),muestras,da); //fclose(da); } ////////////////////////////////////////////////////////////////////////// /////////////////////////FUNCIONES SECUNDARIAS//////////////////////////// ////////////////////////////////////////////////////////////////////////// //sta funcin genera el vector de entrada x[n] void vector_entrada_xn(const long N,const int Li) { //Declaracin de variables locales int k; //Se reserva memoria para xn_host en el host x_host = (cuFloatComplex*)malloc(sizeof(cuFloatComplex)*N); //Se dan valores a x[n] for(k=0;k<N;k++) { if(k < Li) { //x[k] = make_cuFloatComplex((float)(rand()%11),(float)(rand()%21)); x_host[k] = make_cuFloatComplex((float)(k + 1),(float)(0.0)); } else { x_host[k] = make_cuFloatComplex((float)(0.0),(float)(0.0)); } } /* //Se imprimen los valores de entrada x[n] printf("\n---ELEMENTOS DE ENTRADA x[n]---\n\n"); for(k=0;k<N;k++) { printf(" %d-> (%f) + (%f)\n",k+1,cuCrealf(x_host[k]),cuCimagf(x_host[k])); } */ } //sta funcin genera el arreglo W void arreglo_W(const long N) { //Declaracin de variables locales int n; //Se reserva memoria para W_host en el host W_host = (cuFloatComplex*)malloc(sizeof(cuFloatComplex)*N); //Se genera el arreglo W for(n = 1;n <= N;n++) { W_host[n-1] = make_cuFloatComplex((float)cos((2*CUDART_PI*n)/N),(float)(-1)*sin((2*CUDART_PI*n)/N)); } /* //Se imprimen los valores del arreglo W[N] printf("\n---ARREGLO W[N]---\n\n"); for(n = 0;n < N; n++) { printf(" W[%d]-> (%f) + (%f)\n",n+1,cuCrealf(W_host[n]),cuCimagf(W_host[n])); } */ } //sta funcin genera los factores Dip y Dop void asign_rap(const long N,const int Li,const int Lo) { //Declaracin de variables locales float NLi,NLo,Diprapt,Doprapt; int Nh[50]; int k[50]; int G; int g,i,t,ta; int Dipt[50],Dopt[50]; float distrapt,distrap; int Pos,h,Poss; int nk[50]; int r; //Inicializaciones G = 0; svF = 0; //Factores Dip y Dop ideales NLi=(float)N/(float)Li; NLo=(float)N/(float)Lo; Diprapt=NLi; Doprapt=NLo; //Se encuentran los factores de "N" //vF almacena los factores de "N" //svF almacena el nmero de factores de "N" factor(N); /* Almacena en el vector Nh los factores que son diferentes de del vector vF En el vector k se almacena la cantidad de veces que se repite cada elemento almacenado en el vector Nh. */ Nh[0] = vF[0]; k[0]=1; for(g=1;g<=svF-1;g=g+1) { if(vF[g]!=vF[g-1]) { G=G+1; Nh[G]=vF[g]; k[G]=1; } else { k[G]=k[G]+1; } } /* Almacena en el vector Nh todas las posibles combinaciones que den como producto a N. t almacena el numero de elementos del vector Nh. */ product(Nh,k,G); t = a; for(i=0;i<t;i=i+1) { Dipt[i]=Prod[i]; } distrapt=inf; for(g=1;g<=t;g=g+1) { if(Dipt[g-1]<=NLi) { Pos=g-1; for(h=0;h<=G;h=h+1) { Poss=floor(Pos/(k[h]+1)); nk[h]=k[h]+Poss*(k[h]+1)-Pos; Pos=Poss; } product(Nh,nk,G); ta=a; for(i=0;i<ta;i=i+1) { Dopt[i]=Prod[i]; } //////////////////////////////////////////// //int j; //for(j=0;j<ta;j++) //{ // printf(" %d ",Dopt[j]); //} //printf("\n\n ta=%d\n\n",ta); /////////////////////////////////////////// for(r=0;r<ta;r=r+1) { distrap=sqrt(pow(Diprapt-(Dipt[g-1]),2)+pow(Doprapt-(Dopt[r]),2)); if(distrap<distrapt) { distrapt=distrap; Dip=Dipt[g-1]; Dop=Dopt[r]; } } } } printf("\n\n FACTOR Dip :\n\n"); printf(" %d ",Dip); printf("\n\n FACTOR Dop:\n\n"); printf(" %d ",Dop); } //sta funcin encuentra los factores de "N" void factor(const long N) { //Se empieza a verificar los factores desde 2 int i=2; long N_factor; N_factor = N; while(i<=N_factor) { while((N_factor%i)==0) { vF[svF]=i; N_factor=N_factor/i; // printf("Factores: %d ",vF[svF]); svF++; } i++; } } //sta funcin encuentra todas las posibles combinaciones de factores que den como resultado "N" void product(int vector_1[50],int vector_2[50],int valor) { int d,e,s,pNh,i; int cont=0; Prod[0]=1; a=1; for(d=0;d<=valor;d=d+1) { s=a; pNh=1; for(e=1;e<=vector_2[d];e=e+1) { pNh=pNh*vector_1[d]; for(i=(s*e+1);i<=(s*e+s);i=i+1) { Prod[i-1]=pNh*Prod[cont]; cont=cont+1; } a=a+s; cont=0; } } } //Funcin auxiliar del host para calcular la etapa de entrada en el device void etapa_entrada(void) { ////////////////////////////////////////////////////////////////////////// ////////////////////////////ETAPA DE ENTRADA////////////////////////////// ////////////////////////////////////////////////////////////////////////// //Declaracin de variables locales int k1,n1,n2; //Asignacin de memoria en el device hipMalloc((void**)&x_device,N*sizeof(cuFloatComplex)); hipMalloc((void**)&W_device,N*sizeof(cuFloatComplex)); hipMalloc((void**)&y_device,P*Dip*Dop*sizeof(cuFloatComplex)); //Asignacin de memoria en el host para "y" y_host = (cuFloatComplex*)malloc(sizeof(cuFloatComplex)*P*Dip*Dop); //Envo de los arreglos x y W hacia la memoria global del device hipMemcpy(x_device,x_host,N*sizeof(cuFloatComplex),hipMemcpyHostToDevice); hipMemcpy(W_device,W_host,N*sizeof(cuFloatComplex),hipMemcpyHostToDevice); //Dimensionamiento del grid para la funcin kernel "inputStage" //Dimensionamiento del Grid dim3 gridDim(1,1,1); //Dimensionamiento del block dim3 blockDim(1,1,1); if((P*Dop) < 32 && (Dip) < 32) { blockDim.x = (P*Dop); blockDim.y = (Dip); gridDim.x = 1; gridDim.y = 1; } else { blockDim.x = 32; blockDim.y = 32; gridDim.x = (unsigned int) (ceilf((float)(P*Dop)/(float)blockDim.x)); gridDim.y = (unsigned int) (ceilf((float)Dip/(float)blockDim.y)); } //Lanzamiento del kernel "inputStage_kernel" hipLaunchKernelGGL(( inputStage_kernel), dim3(gridDim),dim3(blockDim), 0, 0, N,Li,Dip,Dop,P,x_device,W_device,y_device); //Esperar que el kernel termine de ejecutarse totalmente hipDeviceSynchronize(); //Copia del arreglo "y" del device hacia el host hipMemcpy(y_host,y_device,sizeof(cuFloatComplex)*P*Dip*Dop,hipMemcpyDeviceToHost); //Se imprimen los valores de "y" printf("\n\n--- ARREGLO y(n1,n2,k1) ---\n\n"); for(k1 = 0;k1 < Dip;k1++) { for(n1 = 0;n1 < Dop;n1++) { for(n2 = 0;n2 < P;n2++) { printf(" (%f) + (%f) ",cuCrealf(y_host[(k1*Dop*P)+(n1*P)+n2]),cuCimagf(y_host[(k1*Dop*P)+(n1*P)+n2])); } printf("\n"); } printf("\n\n"); } printf("\n"); } //funcin kernel que ejecuta la etapa de entrada en el device __global__ void inputStage_kernel(const long N, const int Li,int Dip,int Dop,int P,cuFloatComplex *x,cuFloatComplex *W,cuFloatComplex *y) { int n1,n2; cuFloatComplex t1; //Threads int n = blockDim.x *blockIdx.x + threadIdx.x; int k1 = blockDim.y *blockIdx.y + threadIdx.y; //printf("\n n = %d k1 = %d",n,k1); if( (n < (P*Dop)) && (k1 < Dip)) { n2 = floorf(n/Dop); n1 = n - (Dop*n2); //Generacin de los elementos que dependen de x[0] if(n == 0) { y[(k1*Dop*P)+(0*P)+ 0] = x[0]; } //Mapeo de x[n] a las entradas del primer conjunto de Dop DFT's if((n >= 1) && (n <= (Li-1))) { t1 = x[n]; if(k1 == 0) { y[(0*Dop*P)+(n1*P)+ n2] = t1; } if(k1 >= 1) { y[(k1*Dop*P)+(n1*P)+ n2] = cuCmulf(W[((n*k1)%N)-1],t1); } } //Rellenado de ceros para los elementos de "y" para Li <= n <= (P*Dop)-1 if((n >= Li) && (n <= (P*Dop)-1)) { y[(k1*Dop*P)+(n1*P)+ n2] = make_cuFloatComplex(0.0,0.0); } //printf("\n (%f) + (%f)\n ",cuCrealf(y[(k1*Dop*P)+(n1*P)+ n2]),cuCimagf(y[(k1*Dop*P)+(n1*P)+ n2])); } } //Funcin auxiliar del host para calcular la etapa intermedia en el device void etapa_intermedia(void) { ////////////////////////////////////////////////////////////////////////// ////////////////////////////ETAPA INTERMEDIA////////////////////////////// ////////////////////////////////////////////////////////////////////////// //Declaracin de variables locales int k1,k2,n1; int n[1] = {P}; int inembed[1] = {P}; int onembed[1] = {P}; //Asignacin de memoria en el device para "z" hipMalloc((void**)&z_device,P*Dip*Dop*sizeof(cuFloatComplex)); //Asignacin de memoria en el host para "z" z_host = (cuFloatComplex*)malloc(sizeof(cuFloatComplex)*P*Dip*Dop); //Asignacin de memoria en el device para "in" y "out" hipMalloc((void**)&in,sizeof(hipfftComplex)*P*Dip*Dop); hipMalloc((void**)&out,sizeof(hipfftComplex)*P*Dip*Dop); //Se copia el arreglo "y" al arreglo "in" hipMemcpy(in,y_device,sizeof(cuFloatComplex)*P*Dip*Dop,hipMemcpyDeviceToDevice); //Se crea un plan hipfftHandle plan; hipfftPlanMany(&plan,1,n,inembed,1,P,onembed,1,P,HIPFFT_C2C,Dip*Dop); //Ejecucin del plan hipfftExecC2C(plan,in,out,HIPFFT_FORWARD); //Se destruye el plan hipfftDestroy(plan); //Se copian los datos del arreglo "out" al arreglo "z_device" hipMemcpy(z_device,out,sizeof(hipfftComplex)*P*Dip*Dop,hipMemcpyDeviceToDevice); //Se copian los datos del arreglo "z_device" al arreglo "z_host" hipMemcpy(z_host,z_device,sizeof(cuFloatComplex)*P*Dip*Dop,hipMemcpyDeviceToHost); ///Se imprimen los valores de z(n1,k2,k1) printf("\n\n--- ARREGLO z(n1,k2,k1) ---\n\n"); for(k1 = 0;k1 < Dip;k1++) { for(n1 = 0;n1 < Dop;n1++) { for(k2 = 0;k2 < P;k2++) { printf(" (%f) + (%f) ",cuCrealf(z_host[(k1*Dop*P)+(n1*P)+k2]),cuCimagf(z_host[(k1*Dop*P)+(n1*P)+k2])); } printf("\n"); } printf("\n\n"); } printf("\n"); } //Funcin auxiliar del host para calcular la etapa de salida en el device void etapa_salida(void) { ////////////////////////////////////////////////////////////////////////// ////////////////////////////ETAPA DE SALIDA/////////////////////////////// ////////////////////////////////////////////////////////////////////////// //Declaracin de variables locales int m; //Asignacin de memoria en el device para "X" hipMalloc((void**)&X_device,Lo*sizeof(cuFloatComplex)); //Asignacin de memoria en el host para "X" X_host = (cuFloatComplex*)malloc(sizeof(cuFloatComplex)*Lo); //Dimensionamiento del grid para la funcin kernel "outputStage" //Dimensionamiento del Grid dim3 gridDim(1,1,1); //Dimensionamiento del block dim3 blockDim(1,1,1); if((Lo) < 1024) { blockDim.x = Lo; gridDim.x = 1; } else { blockDim.x = 1024; gridDim.x = (unsigned int) (ceilf((float)Lo/(float)blockDim.x)); } //Lanzamiento del kernel "outputStage_kernel" hipLaunchKernelGGL(( outputStage_kernel), dim3(gridDim),dim3(blockDim), 0, 0, N,Lo,Dip,Dop,P,z_device,W_device,X_device); //Esperar que el kernel termine de ejecutarse totalmente hipDeviceSynchronize(); //Copia del arreglo "X" del device hacia el host hipMemcpy(X_host,X_device,sizeof(cuFloatComplex)*Lo,hipMemcpyDeviceToHost); //Se imprimen los valores de "X_host" ///Imprimir X[k] printf("\n\n--- ARREGLO X[k] ---\n\n"); for(m=0;m<=Lo-1;m++) { printf("\n X[%d] = %.4f + (%.4f)",m,cuCrealf(X_host[m]),cuCimagf(X_host[m])); //fprintf(da,"%.4f %.4f\n",creal(X[i]),cimag(X[i])); } } //funcin kernel que ejecuta la etapa de salida en el device __global__ void outputStage_kernel(const long N,const int Lo,int Dip,int Dop,int P,cuFloatComplex *z,cuFloatComplex *W,cuFloatComplex *X) { //Declaracin de variables locales int n1,k_aux,k1,k2,a,b; cuFloatComplex t1,t2,t3,t4,t5; //Threads int k = blockDim.x *blockIdx.x + threadIdx.x; if(k < Lo) { for(n1 = 0; n1 <= (Dop-1); n1 = n1+1) { if(Lo <= Dip) { //Clculo de X(k) para 0<=k<=Lo-1. //printf("\n--- Caso (Lo <= Dip) ---\n"); //En la descomposicin k = k1 + Dipk2; k2 = 0, y por lo tanto, k = k1 if(n1 == 1) { X[k] = z[(k*Dop*P)+(0*P) + 0]; } X[k] = cuCaddf(z[(k*Dop*P)+(n1*P) + 0],X[k]); } else { if((k >= 0) && (k <= (Dip-1))) { //Clculo de X(k) para 0<=k<=Dip-1. //En la descomposicin k = k1 + Dipk2; k2 = 0, y por lo tanto, k = k1 if(n1 == 1) { X[k] = z[(k*Dop*P)+(0*P) + 0]; } X[k] = cuCaddf(z[(k*Dop*P)+(n1*P) + 0],X[k]); } else { if(Dop <= 4) { //Usando el mtodo directo //printf("\n--- Caso (Metodo directo) ---\n"); if(n1 == 1) { k_aux = k-((Dip*P)*floorf(k/(Dip*P))); k2 = floorf(k_aux/Dip); k1 = k_aux-(Dip*k2); X[k] = z[(k1*Dop*P)+(0*P)+ (k2%P)]; } a = floorf(k/(Dip*P)); X[k] = cuCaddf(X[k],cuCmulf(z[(k1*Dop*P)+(n1*P)+ (k2%P)],W[((n1*(k2+P*(a))*Dip)%N)-1])); } else { //Usando el mtodo filtering 2BF //printf("\n--- Caso (Filtro 2BF) ---\n"); if(n1 == 1) { k_aux = k-((Dip*P)*floorf(k/(Dip*P))); k2 = floorf(k_aux/Dip); k1 = k_aux-(Dip*k2); t1 = z[(k1*Dop*P)+((Dop-1)*P)+ (k2%P)]; b = floorf(k/(Dip*P)); t4 = cuCmulf(t1,make_cuFloatComplex(2*cuCrealf(W[(((k2+P*(b))*Dip)%N)-1]),0.0)); } if((n1 >= 1) && (n1 <= (Dop-2))) { t2 = t1; t1 = cuCaddf(z[(k1*Dop*P)+((-(n1-(Dop-1)))*P)+ (k2%P)],t4); t3 = cuCmulf(t1,make_cuFloatComplex(2*cuCrealf(W[(((k2+P*(b))*Dip)%N)-1]),0.0)); t4 = cuCsubf(t3,t2); } if(n1 == (Dop-1)) { t5 = cuCaddf(z[(k1*Dop*P)+(0*P)+ (k2%P)],t4); X[k] = cuCsubf(t5,cuCmulf(t1,cuConjf(W[(((k2+P*(b))*Dip)%N)-1]))); } } } } } } }
a8fac966a47514d8c422c6abac70dce0a09bda90.cu
///Ésta programa calcula la versión paralelizada del algoritmo FFT_DIF_DIT_TD ///(03/08/2016) ///Ésta versión sirve para calcular los tiempos de ejecución para distintos números de muestras e iteraciones #include "cuda_runtime.h" #include "device_launch_parameters.h" #include <cufft.h> #include <cufftw.h> #include <stdio.h> #include <stdlib.h> #include <cuComplex.h> #include <math.h> #include <math_constants.h> #include <iostream> ////////////////////////////////////////////////////////////////////////// ///////////////////////DECLARACIÓN DE FUNCIONES/////////////////////////// ////////////////////////////////////////////////////////////////////////// void vector_entrada_xn(const long N,const int Li); void arreglo_W(const long N); void asign_rap(const long N,const int Li,const int Lo); void factor(const long N); void product(int vector_1[50],int vector_2[50],int valor); void etapa_entrada(void); __global__ void inputStage_kernel(const long N, const int Li,int Dip,int Dop,int P,cuFloatComplex *x,cuFloatComplex *W,cuFloatComplex *y); void etapa_intermedia(void); void etapa_salida(void); __global__ void outputStage_kernel(const long N,const int Lo,int Dip,int Dop,int P,cuFloatComplex *z,cuFloatComplex *W,cuFloatComplex *X); ////////////////////////////////////////////////////////////////////////// /////////////////////DECLARACIÓN DE VARIABLES GLOBALES//////////////////// ////////////////////////////////////////////////////////////////////////// cuFloatComplex *x_host; cuFloatComplex *W_host; cuFloatComplex *y_host; cuFloatComplex *z_host; cuFloatComplex *X_host; cuFloatComplex *x_device; cuFloatComplex *W_device; cuFloatComplex *y_device; cuFloatComplex *z_device; cuFloatComplex *X_device; cufftComplex *in,*out; int Dip,Dop,P; int vF[50]; //Almacena los factores de N int svF=0; //Almacena el numero de factores de N int Prod[50]; int a; #define inf 99999 ////////////////////////////////////////////////////////////////////////// //////////////////////////DATOS DE ENTRADA//////////////////////////////// ////////////////////////////////////////////////////////////////////////// /// N >>> Número de elementos del vector de entrada /// Li >>> Número de elementos de entrada diferentes de cero /// Lo >>> Número de elementos de salida requeridos /// loop >>> Número de iteraciones /// muestras >>> Número de muestras ////////////////////////////////////////////////////////////////////////// ///////////////////////////DATOS DE SALIDA//////////////////////////////// ////////////////////////////////////////////////////////////////////////// /// X >>> Vector de salida ////////////////////////////////////////////////////////////////////////// /////////////////// SE INGRESAN LOS DATOS DE ENTRADA ///////////////////// ////////////////////////////////////////////////////////////////////////// ///Ingrese el número de elementos del vector de entrada x(n) const long N = 2; ///Ingrese el número de elementos de entrada diferentes de cero (Li) const int Li = 1; ///Ingrese el número de elementos de salida requeridos (Lo) const int Lo = 2; ///Ingrese el número de iteraciones requeridas const int loop = 1; ///Ingrese el número de muestras requeridas const int muestras = 1; ////////////////////////////////////////////////////////////////////////// //////////////////////////FUNCION PRINCIPAL/////////////////////////////// ////////////////////////////////////////////////////////////////////////// //Función principal int main() { int i,j; float suma; float promedio[muestras]; ///Se crean los archivos binarios donde se guardarán los datos //FILE *da; //da = fopen("FFT_DIF_DIT_TD_VERSION_PARALELIZADA.bin","a+b"); //Crea o sobre escribe archivo //Pausa printf("\n---PRESIONA UNA TECLA PARA CONTINUAR---\n\n"); getchar(); for(i=1;i<=muestras;i++) { suma=0.0; for(j=0;j<loop;j++) { //Comandos necesarios para medir el tiempo float elapsedTime_app; cudaEvent_t start_app, stop_app; cudaEventCreate(&start_app); cudaEventCreate(&stop_app); //--------------------------------------------------------------------------------------------- //Se empieza a medir el tiempo de ejecucion de la aplicacion cudaEventRecord(start_app,0); //Se generan en el host los valores del vector de entrada x[n] vector_entrada_xn(N,Li); //Se generan en el host los valores del arreglo W[N] arreglo_W(N); //Se generan en el host los factores Dip y Dop asign_rap(N,Li,Lo); //Cálculo en el host del factor P P = N/(Dip*Dop); printf("\n\n FACTOR P:\n\n"); printf(" %d ",P); //Función auxiliar del host para ejecutar la etapa de entrada etapa_entrada(); //Función auxiliar del host para ejecutar la etapa intermedia etapa_intermedia(); //Función auxiliar del host para ejecutar la etapa de salida etapa_salida(); ///////////////////////////////////////////////////////////////////////////// //printf("\n size_cuFloatComplex = %d\n",sizeof(cuFloatComplex)); //printf("\n size_cufftComplex = %d\n",sizeof(cufftComplex)); ///////////////////////////////////////////////////////////////////////////// //Se liberan memorias del Host y Device free(x_host); free(W_host); free(y_host); free(z_host); free(X_host); cudaFree(x_device); cudaFree(W_device); cudaFree(y_device); cudaFree(z_device); cudaFree(X_device); cudaFree(in); cudaFree(out); //--------------------------------------------------------------------------------------------- //Comandos necesarios para medir el tiempo de la aplicacion (app) cudaEventRecord(stop_app,0); cudaEventSynchronize(stop_app); cudaEventElapsedTime(&elapsedTime_app,start_app,stop_app); //Suma de todos los tiempos suma = suma + elapsedTime_app; //Se destruyen los eventos que miden el tiempo de la aplicacion cudaEventDestroy(start_app); cudaEventDestroy(stop_app); } promedio[i-1] = suma/(float)loop; printf(" \n\n%d - Tiempo promedio para N = %ld >>> %f mS\n",i,N,promedio[i-1]); } //fwrite(promedio,sizeof(float),muestras,da); //fclose(da); } ////////////////////////////////////////////////////////////////////////// /////////////////////////FUNCIONES SECUNDARIAS//////////////////////////// ////////////////////////////////////////////////////////////////////////// //Ésta función genera el vector de entrada x[n] void vector_entrada_xn(const long N,const int Li) { //Declaración de variables locales int k; //Se reserva memoria para xn_host en el host x_host = (cuFloatComplex*)malloc(sizeof(cuFloatComplex)*N); //Se dan valores a x[n] for(k=0;k<N;k++) { if(k < Li) { //x[k] = make_cuFloatComplex((float)(rand()%11),(float)(rand()%21)); x_host[k] = make_cuFloatComplex((float)(k + 1),(float)(0.0)); } else { x_host[k] = make_cuFloatComplex((float)(0.0),(float)(0.0)); } } /* //Se imprimen los valores de entrada x[n] printf("\n---ELEMENTOS DE ENTRADA x[n]---\n\n"); for(k=0;k<N;k++) { printf(" %d-> (%f) + (%f)\n",k+1,cuCrealf(x_host[k]),cuCimagf(x_host[k])); } */ } //Ésta función genera el arreglo W void arreglo_W(const long N) { //Declaración de variables locales int n; //Se reserva memoria para W_host en el host W_host = (cuFloatComplex*)malloc(sizeof(cuFloatComplex)*N); //Se genera el arreglo W for(n = 1;n <= N;n++) { W_host[n-1] = make_cuFloatComplex((float)cos((2*CUDART_PI*n)/N),(float)(-1)*sin((2*CUDART_PI*n)/N)); } /* //Se imprimen los valores del arreglo W[N] printf("\n---ARREGLO W[N]---\n\n"); for(n = 0;n < N; n++) { printf(" W[%d]-> (%f) + (%f)\n",n+1,cuCrealf(W_host[n]),cuCimagf(W_host[n])); } */ } //Ésta función genera los factores Dip y Dop void asign_rap(const long N,const int Li,const int Lo) { //Declaración de variables locales float NLi,NLo,Diprapt,Doprapt; int Nh[50]; int k[50]; int G; int g,i,t,ta; int Dipt[50],Dopt[50]; float distrapt,distrap; int Pos,h,Poss; int nk[50]; int r; //Inicializaciones G = 0; svF = 0; //Factores Dip y Dop ideales NLi=(float)N/(float)Li; NLo=(float)N/(float)Lo; Diprapt=NLi; Doprapt=NLo; //Se encuentran los factores de "N" //vF almacena los factores de "N" //svF almacena el número de factores de "N" factor(N); /* Almacena en el vector Nh los factores que son diferentes de del vector vF En el vector k se almacena la cantidad de veces que se repite cada elemento almacenado en el vector Nh. */ Nh[0] = vF[0]; k[0]=1; for(g=1;g<=svF-1;g=g+1) { if(vF[g]!=vF[g-1]) { G=G+1; Nh[G]=vF[g]; k[G]=1; } else { k[G]=k[G]+1; } } /* Almacena en el vector Nh todas las posibles combinaciones que den como producto a N. t almacena el numero de elementos del vector Nh. */ product(Nh,k,G); t = a; for(i=0;i<t;i=i+1) { Dipt[i]=Prod[i]; } distrapt=inf; for(g=1;g<=t;g=g+1) { if(Dipt[g-1]<=NLi) { Pos=g-1; for(h=0;h<=G;h=h+1) { Poss=floor(Pos/(k[h]+1)); nk[h]=k[h]+Poss*(k[h]+1)-Pos; Pos=Poss; } product(Nh,nk,G); ta=a; for(i=0;i<ta;i=i+1) { Dopt[i]=Prod[i]; } //////////////////////////////////////////// //int j; //for(j=0;j<ta;j++) //{ // printf(" %d ",Dopt[j]); //} //printf("\n\n ta=%d\n\n",ta); /////////////////////////////////////////// for(r=0;r<ta;r=r+1) { distrap=sqrt(pow(Diprapt-(Dipt[g-1]),2)+pow(Doprapt-(Dopt[r]),2)); if(distrap<distrapt) { distrapt=distrap; Dip=Dipt[g-1]; Dop=Dopt[r]; } } } } printf("\n\n FACTOR Dip :\n\n"); printf(" %d ",Dip); printf("\n\n FACTOR Dop:\n\n"); printf(" %d ",Dop); } //Ésta función encuentra los factores de "N" void factor(const long N) { //Se empieza a verificar los factores desde 2 int i=2; long N_factor; N_factor = N; while(i<=N_factor) { while((N_factor%i)==0) { vF[svF]=i; N_factor=N_factor/i; // printf("Factores: %d ",vF[svF]); svF++; } i++; } } //Ésta función encuentra todas las posibles combinaciones de factores que den como resultado "N" void product(int vector_1[50],int vector_2[50],int valor) { int d,e,s,pNh,i; int cont=0; Prod[0]=1; a=1; for(d=0;d<=valor;d=d+1) { s=a; pNh=1; for(e=1;e<=vector_2[d];e=e+1) { pNh=pNh*vector_1[d]; for(i=(s*e+1);i<=(s*e+s);i=i+1) { Prod[i-1]=pNh*Prod[cont]; cont=cont+1; } a=a+s; cont=0; } } } //Función auxiliar del host para calcular la etapa de entrada en el device void etapa_entrada(void) { ////////////////////////////////////////////////////////////////////////// ////////////////////////////ETAPA DE ENTRADA////////////////////////////// ////////////////////////////////////////////////////////////////////////// //Declaración de variables locales int k1,n1,n2; //Asignación de memoria en el device cudaMalloc((void**)&x_device,N*sizeof(cuFloatComplex)); cudaMalloc((void**)&W_device,N*sizeof(cuFloatComplex)); cudaMalloc((void**)&y_device,P*Dip*Dop*sizeof(cuFloatComplex)); //Asignación de memoria en el host para "y" y_host = (cuFloatComplex*)malloc(sizeof(cuFloatComplex)*P*Dip*Dop); //Envío de los arreglos x y W hacia la memoria global del device cudaMemcpy(x_device,x_host,N*sizeof(cuFloatComplex),cudaMemcpyHostToDevice); cudaMemcpy(W_device,W_host,N*sizeof(cuFloatComplex),cudaMemcpyHostToDevice); //Dimensionamiento del grid para la función kernel "inputStage" //Dimensionamiento del Grid dim3 gridDim(1,1,1); //Dimensionamiento del block dim3 blockDim(1,1,1); if((P*Dop) < 32 && (Dip) < 32) { blockDim.x = (P*Dop); blockDim.y = (Dip); gridDim.x = 1; gridDim.y = 1; } else { blockDim.x = 32; blockDim.y = 32; gridDim.x = (unsigned int) (ceilf((float)(P*Dop)/(float)blockDim.x)); gridDim.y = (unsigned int) (ceilf((float)Dip/(float)blockDim.y)); } //Lanzamiento del kernel "inputStage_kernel" inputStage_kernel<<<gridDim,blockDim>>>(N,Li,Dip,Dop,P,x_device,W_device,y_device); //Esperar que el kernel termine de ejecutarse totalmente cudaDeviceSynchronize(); //Copia del arreglo "y" del device hacia el host cudaMemcpy(y_host,y_device,sizeof(cuFloatComplex)*P*Dip*Dop,cudaMemcpyDeviceToHost); //Se imprimen los valores de "y" printf("\n\n--- ARREGLO y(n1,n2,k1) ---\n\n"); for(k1 = 0;k1 < Dip;k1++) { for(n1 = 0;n1 < Dop;n1++) { for(n2 = 0;n2 < P;n2++) { printf(" (%f) + (%f) ",cuCrealf(y_host[(k1*Dop*P)+(n1*P)+n2]),cuCimagf(y_host[(k1*Dop*P)+(n1*P)+n2])); } printf("\n"); } printf("\n\n"); } printf("\n"); } //función kernel que ejecuta la etapa de entrada en el device __global__ void inputStage_kernel(const long N, const int Li,int Dip,int Dop,int P,cuFloatComplex *x,cuFloatComplex *W,cuFloatComplex *y) { int n1,n2; cuFloatComplex t1; //Threads int n = blockDim.x *blockIdx.x + threadIdx.x; int k1 = blockDim.y *blockIdx.y + threadIdx.y; //printf("\n n = %d k1 = %d",n,k1); if( (n < (P*Dop)) && (k1 < Dip)) { n2 = floorf(n/Dop); n1 = n - (Dop*n2); //Generación de los elementos que dependen de x[0] if(n == 0) { y[(k1*Dop*P)+(0*P)+ 0] = x[0]; } //Mapeo de x[n] a las entradas del primer conjunto de Dop DFT's if((n >= 1) && (n <= (Li-1))) { t1 = x[n]; if(k1 == 0) { y[(0*Dop*P)+(n1*P)+ n2] = t1; } if(k1 >= 1) { y[(k1*Dop*P)+(n1*P)+ n2] = cuCmulf(W[((n*k1)%N)-1],t1); } } //Rellenado de ceros para los elementos de "y" para Li <= n <= (P*Dop)-1 if((n >= Li) && (n <= (P*Dop)-1)) { y[(k1*Dop*P)+(n1*P)+ n2] = make_cuFloatComplex(0.0,0.0); } //printf("\n (%f) + (%f)\n ",cuCrealf(y[(k1*Dop*P)+(n1*P)+ n2]),cuCimagf(y[(k1*Dop*P)+(n1*P)+ n2])); } } //Función auxiliar del host para calcular la etapa intermedia en el device void etapa_intermedia(void) { ////////////////////////////////////////////////////////////////////////// ////////////////////////////ETAPA INTERMEDIA////////////////////////////// ////////////////////////////////////////////////////////////////////////// //Declaración de variables locales int k1,k2,n1; int n[1] = {P}; int inembed[1] = {P}; int onembed[1] = {P}; //Asignación de memoria en el device para "z" cudaMalloc((void**)&z_device,P*Dip*Dop*sizeof(cuFloatComplex)); //Asignación de memoria en el host para "z" z_host = (cuFloatComplex*)malloc(sizeof(cuFloatComplex)*P*Dip*Dop); //Asignación de memoria en el device para "in" y "out" cudaMalloc((void**)&in,sizeof(cufftComplex)*P*Dip*Dop); cudaMalloc((void**)&out,sizeof(cufftComplex)*P*Dip*Dop); //Se copia el arreglo "y" al arreglo "in" cudaMemcpy(in,y_device,sizeof(cuFloatComplex)*P*Dip*Dop,cudaMemcpyDeviceToDevice); //Se crea un plan cufftHandle plan; cufftPlanMany(&plan,1,n,inembed,1,P,onembed,1,P,CUFFT_C2C,Dip*Dop); //Ejecución del plan cufftExecC2C(plan,in,out,CUFFT_FORWARD); //Se destruye el plan cufftDestroy(plan); //Se copian los datos del arreglo "out" al arreglo "z_device" cudaMemcpy(z_device,out,sizeof(cufftComplex)*P*Dip*Dop,cudaMemcpyDeviceToDevice); //Se copian los datos del arreglo "z_device" al arreglo "z_host" cudaMemcpy(z_host,z_device,sizeof(cuFloatComplex)*P*Dip*Dop,cudaMemcpyDeviceToHost); ///Se imprimen los valores de z(n1,k2,k1) printf("\n\n--- ARREGLO z(n1,k2,k1) ---\n\n"); for(k1 = 0;k1 < Dip;k1++) { for(n1 = 0;n1 < Dop;n1++) { for(k2 = 0;k2 < P;k2++) { printf(" (%f) + (%f) ",cuCrealf(z_host[(k1*Dop*P)+(n1*P)+k2]),cuCimagf(z_host[(k1*Dop*P)+(n1*P)+k2])); } printf("\n"); } printf("\n\n"); } printf("\n"); } //Función auxiliar del host para calcular la etapa de salida en el device void etapa_salida(void) { ////////////////////////////////////////////////////////////////////////// ////////////////////////////ETAPA DE SALIDA/////////////////////////////// ////////////////////////////////////////////////////////////////////////// //Declaración de variables locales int m; //Asignación de memoria en el device para "X" cudaMalloc((void**)&X_device,Lo*sizeof(cuFloatComplex)); //Asignación de memoria en el host para "X" X_host = (cuFloatComplex*)malloc(sizeof(cuFloatComplex)*Lo); //Dimensionamiento del grid para la función kernel "outputStage" //Dimensionamiento del Grid dim3 gridDim(1,1,1); //Dimensionamiento del block dim3 blockDim(1,1,1); if((Lo) < 1024) { blockDim.x = Lo; gridDim.x = 1; } else { blockDim.x = 1024; gridDim.x = (unsigned int) (ceilf((float)Lo/(float)blockDim.x)); } //Lanzamiento del kernel "outputStage_kernel" outputStage_kernel<<<gridDim,blockDim>>>(N,Lo,Dip,Dop,P,z_device,W_device,X_device); //Esperar que el kernel termine de ejecutarse totalmente cudaDeviceSynchronize(); //Copia del arreglo "X" del device hacia el host cudaMemcpy(X_host,X_device,sizeof(cuFloatComplex)*Lo,cudaMemcpyDeviceToHost); //Se imprimen los valores de "X_host" ///Imprimir X[k] printf("\n\n--- ARREGLO X[k] ---\n\n"); for(m=0;m<=Lo-1;m++) { printf("\n X[%d] = %.4f + (%.4f)",m,cuCrealf(X_host[m]),cuCimagf(X_host[m])); //fprintf(da,"%.4f %.4f\n",creal(X[i]),cimag(X[i])); } } //función kernel que ejecuta la etapa de salida en el device __global__ void outputStage_kernel(const long N,const int Lo,int Dip,int Dop,int P,cuFloatComplex *z,cuFloatComplex *W,cuFloatComplex *X) { //Declaración de variables locales int n1,k_aux,k1,k2,a,b; cuFloatComplex t1,t2,t3,t4,t5; //Threads int k = blockDim.x *blockIdx.x + threadIdx.x; if(k < Lo) { for(n1 = 0; n1 <= (Dop-1); n1 = n1+1) { if(Lo <= Dip) { //Cálculo de X(k) para 0<=k<=Lo-1. //printf("\n--- Caso (Lo <= Dip) ---\n"); //En la descomposición k = k1 + Dipk2; k2 = 0, y por lo tanto, k = k1 if(n1 == 1) { X[k] = z[(k*Dop*P)+(0*P) + 0]; } X[k] = cuCaddf(z[(k*Dop*P)+(n1*P) + 0],X[k]); } else { if((k >= 0) && (k <= (Dip-1))) { //Cálculo de X(k) para 0<=k<=Dip-1. //En la descomposición k = k1 + Dipk2; k2 = 0, y por lo tanto, k = k1 if(n1 == 1) { X[k] = z[(k*Dop*P)+(0*P) + 0]; } X[k] = cuCaddf(z[(k*Dop*P)+(n1*P) + 0],X[k]); } else { if(Dop <= 4) { //Usando el método directo //printf("\n--- Caso (Metodo directo) ---\n"); if(n1 == 1) { k_aux = k-((Dip*P)*floorf(k/(Dip*P))); k2 = floorf(k_aux/Dip); k1 = k_aux-(Dip*k2); X[k] = z[(k1*Dop*P)+(0*P)+ (k2%P)]; } a = floorf(k/(Dip*P)); X[k] = cuCaddf(X[k],cuCmulf(z[(k1*Dop*P)+(n1*P)+ (k2%P)],W[((n1*(k2+P*(a))*Dip)%N)-1])); } else { //Usando el método filtering 2BF //printf("\n--- Caso (Filtro 2BF) ---\n"); if(n1 == 1) { k_aux = k-((Dip*P)*floorf(k/(Dip*P))); k2 = floorf(k_aux/Dip); k1 = k_aux-(Dip*k2); t1 = z[(k1*Dop*P)+((Dop-1)*P)+ (k2%P)]; b = floorf(k/(Dip*P)); t4 = cuCmulf(t1,make_cuFloatComplex(2*cuCrealf(W[(((k2+P*(b))*Dip)%N)-1]),0.0)); } if((n1 >= 1) && (n1 <= (Dop-2))) { t2 = t1; t1 = cuCaddf(z[(k1*Dop*P)+((-(n1-(Dop-1)))*P)+ (k2%P)],t4); t3 = cuCmulf(t1,make_cuFloatComplex(2*cuCrealf(W[(((k2+P*(b))*Dip)%N)-1]),0.0)); t4 = cuCsubf(t3,t2); } if(n1 == (Dop-1)) { t5 = cuCaddf(z[(k1*Dop*P)+(0*P)+ (k2%P)],t4); X[k] = cuCsubf(t5,cuCmulf(t1,cuConjf(W[(((k2+P*(b))*Dip)%N)-1]))); } } } } } } }
dd8427560811a3e543b7ebf6243d8acba633a1ee.hip
// !!! This is a file automatically generated by hipify!!! /* * Copyright (c) 2018, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cstdlib> #include <iostream> #include <vector> #include <map> #include <type_traits> #include <memory> #include <thrust/device_vector.h> #include <thrust/sort.h> #include <thrust/gather.h> #include "gtest/gtest.h" #include "gmock/gmock.h" #include <cudf.h> #include <cudf/functions.h> #include <dataframe/cudf_table.cuh> #include <hash/hash_functions.cuh> #include <utilities/int_fastdiv.h> #include <rmm/thrust_rmm_allocator.h> #include "tests/utilities/cudf_test_utils.cuh" #include "tests/utilities/cudf_test_fixtures.h" // Vector set to use rmmAlloc and rmmFree. template <typename T> using Vector = thrust::device_vector<T, rmm_allocator<T>>; template <template <typename> class hash_function, typename size_type> struct row_partition_mapper { __device__ row_partition_mapper(gdf_table<size_type> const & table_to_hash, const size_type _num_partitions) : the_table{table_to_hash}, num_partitions{_num_partitions} {} __device__ hash_value_type operator()(size_type row_index) const { return the_table.template hash_row<hash_function>(row_index) % num_partitions; } gdf_table<size_type> const & the_table; // Using int_fastdiv can return results different from using the normal modulus // operation, therefore we need to use it in result verfication as well size_type num_partitions; }; // Put all repeated setup and validation stuff here template <class test_parameters> struct HashPartitionTest : public GdfTest { constexpr static gdf_hash_func gdf_hash_function = test_parameters::gdf_hash_function; const int num_cols_to_hash = test_parameters::num_cols_to_hash; std::array<int, test_parameters::num_cols_to_hash> cols_to_hash = test_parameters::cols_to_hash; // multi_column_t is a tuple of vectors. The number of vectors in the tuple // determines the number of columns, and the value_type of each // vector determines the data type of the column using multi_column_t = typename test_parameters::multi_column_t; multi_column_t input_columns; multi_column_t output_columns; // Containers for unique_ptrs to gdf_columns // unique_ptrs are used to automate freeing device memory std::vector<gdf_col_pointer> gdf_input_columns; std::vector<gdf_col_pointer> gdf_output_columns; // Containers for the raw pointers to the gdf_columns std::vector<gdf_column*> raw_gdf_input_columns; std::vector<gdf_column*> raw_gdf_output_columns; HashPartitionTest() { // Use constant seed so the psuedo-random order is the same each time // Each time the class is constructed a new constant seed is used static size_t number_of_instantiations{0}; std::srand(number_of_instantiations++); } ~HashPartitionTest() { } void create_input( size_t num_rows, size_t max_value, bool print = false) { initialize_tuple(input_columns, num_rows, max_value); initialize_tuple(output_columns, num_rows, max_value); gdf_input_columns = initialize_gdf_columns(input_columns); gdf_output_columns = initialize_gdf_columns(output_columns); // Fill vector of raw pointers to gdf_columns for(auto const& c : gdf_input_columns){ this->raw_gdf_input_columns.push_back(c.get()); } for(auto const& c : gdf_output_columns){ this->raw_gdf_output_columns.push_back(c.get()); } if(print) { std::cout << "Input column(s) created. Size: " << std::get<0>(input_columns).size() << std::endl; print_tuple(input_columns); } } std::vector<int> compute_gdf_result(const int num_partitions, bool print = false) { const int num_columns = std::tuple_size<multi_column_t>::value; gdf_error result_error{GDF_SUCCESS}; gdf_column ** gdf_input_columns = raw_gdf_input_columns.data(); gdf_column ** gdf_output_columns = raw_gdf_output_columns.data(); std::vector<int> partition_offsets(num_partitions,0); result_error = gdf_hash_partition(num_columns, gdf_input_columns, this->cols_to_hash.data(), this->num_cols_to_hash, num_partitions, gdf_output_columns, partition_offsets.data(), gdf_hash_function); EXPECT_EQ(GDF_SUCCESS, result_error); if(print) { std::cout << "Partition offsets: "; for(int i = 0; i < num_partitions; ++i) { std::cout << partition_offsets[i] << " "; } std::cout << std::endl; } return partition_offsets; } void verify_gdf_result(int num_partitions, std::vector<int> partition_offsets, bool print = false) { std::vector<gdf_column*> gdf_cols_to_hash; for(int i = 0; i < num_cols_to_hash; ++i) { gdf_cols_to_hash.push_back(raw_gdf_output_columns[cols_to_hash[i]]); } // Create a table from the gdf output of only the columns that were hashed std::unique_ptr< gdf_table<int> > table_to_hash{new gdf_table<int>(num_cols_to_hash, gdf_cols_to_hash.data())}; Vector<int> row_partition_numbers(table_to_hash->get_column_length()); // Compute the partition number for every row in the result switch(gdf_hash_function) { case GDF_HASH_MURMUR3: { thrust::tabulate(thrust::device, row_partition_numbers.begin(), row_partition_numbers.end(), row_partition_mapper<MurmurHash3_32,int>(*table_to_hash,num_partitions)); break; } case GDF_HASH_IDENTITY: { thrust::tabulate(thrust::device, row_partition_numbers.begin(), row_partition_numbers.end(), row_partition_mapper<IdentityHash,int>(*table_to_hash,num_partitions)); break; } default: std::cerr << "Invalid GDF hash function.\n"; } std::vector<int> host_row_partition_numbers(table_to_hash->get_column_length()); hipMemcpy(host_row_partition_numbers.data(), row_partition_numbers.data().get(), table_to_hash->get_column_length() * sizeof(int), hipMemcpyDeviceToHost); if(print) { std::cout << "Row partition numbers:\n"; std::copy(host_row_partition_numbers.begin(), host_row_partition_numbers.end(), std::ostream_iterator<int>(std::cout, ", ")); std::cout << std::endl; } // Check that the partition number for every row is correct for(int partition_number = 0; partition_number < num_partitions; ++partition_number) { const int partition_start = partition_offsets[partition_number]; int partition_stop{0}; if(partition_number < (num_partitions - 1)) { partition_stop = partition_offsets[partition_number + 1]; } // The end of the last partition is the end of the table else { partition_stop = table_to_hash->get_column_length(); } // Everything in the current partition should have the same partition // number for(int i = partition_start; i < partition_stop; ++i) { EXPECT_EQ(partition_number, host_row_partition_numbers[i]) << "Partition number for row: " << i << " doesn't match!"; } } } }; template< typename tuple_of_vectors, gdf_hash_func hash, int... cols> struct TestParameters { static_assert((std::tuple_size<tuple_of_vectors>::value >= sizeof...(cols)), "The number of columns to hash must be less than or equal to the total number of columns."); // The tuple of vectors that determines the number and types of the columns using multi_column_t = tuple_of_vectors; // The hash function to use constexpr static const gdf_hash_func gdf_hash_function = hash; // The number of columns to hash constexpr static const int num_cols_to_hash{sizeof...(cols)}; // The indices of the columns that will be hashed to determine the partitions constexpr static const std::array<int, sizeof...(cols)> cols_to_hash{{cols...}}; }; // Using Google Tests "Type Parameterized Tests" // Every test defined as TYPED_TEST(HashPartitionTest, *) will be run once for every instance of // TestParameters defined below // The number and types of columns determined by the number and types of vectors // in the VTuple<...> // The hash function to be used is determined by the gdf_hash_func enum // The columns to be hashed to determine the partition assignment are the last N integer template // arguments, where N <= the number of columns specified in the VTuple typedef ::testing::Types< TestParameters< VTuple<int32_t>, GDF_HASH_IDENTITY, 0 >, TestParameters< VTuple<int32_t, int32_t>, GDF_HASH_MURMUR3, 0, 1>, TestParameters< VTuple<float, double>, GDF_HASH_MURMUR3, 1>, TestParameters< VTuple<int64_t, int32_t>, GDF_HASH_MURMUR3, 1>, TestParameters< VTuple<int64_t, int64_t>, GDF_HASH_MURMUR3, 0, 1>, TestParameters< VTuple<int64_t, int64_t, float, double>, GDF_HASH_IDENTITY, 2, 3>, TestParameters< VTuple<uint32_t, double, int32_t, double>, GDF_HASH_MURMUR3, 0, 2, 3>, TestParameters< VTuple<int64_t, int64_t, float, double>, GDF_HASH_MURMUR3, 1, 3>, TestParameters< VTuple<int64_t, int64_t>, GDF_HASH_MURMUR3, 0, 1>, TestParameters< VTuple<float, int32_t>, GDF_HASH_MURMUR3, 0> >Implementations; TYPED_TEST_CASE(HashPartitionTest, Implementations); TYPED_TEST(HashPartitionTest, ExampleTest) { const int num_partitions = 5; this->create_input(100, 100); std::vector<int> partition_offsets = this->compute_gdf_result(num_partitions); this->verify_gdf_result(num_partitions, partition_offsets); } TYPED_TEST(HashPartitionTest, OnePartition) { const int num_partitions = 1; this->create_input(100000, 1000); std::vector<int> partition_offsets = this->compute_gdf_result(num_partitions); this->verify_gdf_result(num_partitions, partition_offsets); } TYPED_TEST(HashPartitionTest, TenPartitions) { const int num_partitions = 10; this->create_input(1000000, 1000); std::vector<int> partition_offsets = this->compute_gdf_result(num_partitions); this->verify_gdf_result(num_partitions, partition_offsets); } TYPED_TEST(HashPartitionTest, EightPartitions) { const int num_partitions = 8; this->create_input(1000000, 1000); std::vector<int> partition_offsets = this->compute_gdf_result(num_partitions); this->verify_gdf_result(num_partitions, partition_offsets); } TYPED_TEST(HashPartitionTest, 257Partitions) { const int num_partitions = 257; this->create_input(1000000, 1000); std::vector<int> partition_offsets = this->compute_gdf_result(num_partitions); this->verify_gdf_result(num_partitions, partition_offsets); }
dd8427560811a3e543b7ebf6243d8acba633a1ee.cu
/* * Copyright (c) 2018, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cstdlib> #include <iostream> #include <vector> #include <map> #include <type_traits> #include <memory> #include <thrust/device_vector.h> #include <thrust/sort.h> #include <thrust/gather.h> #include "gtest/gtest.h" #include "gmock/gmock.h" #include <cudf.h> #include <cudf/functions.h> #include <dataframe/cudf_table.cuh> #include <hash/hash_functions.cuh> #include <utilities/int_fastdiv.h> #include <rmm/thrust_rmm_allocator.h> #include "tests/utilities/cudf_test_utils.cuh" #include "tests/utilities/cudf_test_fixtures.h" // Vector set to use rmmAlloc and rmmFree. template <typename T> using Vector = thrust::device_vector<T, rmm_allocator<T>>; template <template <typename> class hash_function, typename size_type> struct row_partition_mapper { __device__ row_partition_mapper(gdf_table<size_type> const & table_to_hash, const size_type _num_partitions) : the_table{table_to_hash}, num_partitions{_num_partitions} {} __device__ hash_value_type operator()(size_type row_index) const { return the_table.template hash_row<hash_function>(row_index) % num_partitions; } gdf_table<size_type> const & the_table; // Using int_fastdiv can return results different from using the normal modulus // operation, therefore we need to use it in result verfication as well size_type num_partitions; }; // Put all repeated setup and validation stuff here template <class test_parameters> struct HashPartitionTest : public GdfTest { constexpr static gdf_hash_func gdf_hash_function = test_parameters::gdf_hash_function; const int num_cols_to_hash = test_parameters::num_cols_to_hash; std::array<int, test_parameters::num_cols_to_hash> cols_to_hash = test_parameters::cols_to_hash; // multi_column_t is a tuple of vectors. The number of vectors in the tuple // determines the number of columns, and the value_type of each // vector determines the data type of the column using multi_column_t = typename test_parameters::multi_column_t; multi_column_t input_columns; multi_column_t output_columns; // Containers for unique_ptrs to gdf_columns // unique_ptrs are used to automate freeing device memory std::vector<gdf_col_pointer> gdf_input_columns; std::vector<gdf_col_pointer> gdf_output_columns; // Containers for the raw pointers to the gdf_columns std::vector<gdf_column*> raw_gdf_input_columns; std::vector<gdf_column*> raw_gdf_output_columns; HashPartitionTest() { // Use constant seed so the psuedo-random order is the same each time // Each time the class is constructed a new constant seed is used static size_t number_of_instantiations{0}; std::srand(number_of_instantiations++); } ~HashPartitionTest() { } void create_input( size_t num_rows, size_t max_value, bool print = false) { initialize_tuple(input_columns, num_rows, max_value); initialize_tuple(output_columns, num_rows, max_value); gdf_input_columns = initialize_gdf_columns(input_columns); gdf_output_columns = initialize_gdf_columns(output_columns); // Fill vector of raw pointers to gdf_columns for(auto const& c : gdf_input_columns){ this->raw_gdf_input_columns.push_back(c.get()); } for(auto const& c : gdf_output_columns){ this->raw_gdf_output_columns.push_back(c.get()); } if(print) { std::cout << "Input column(s) created. Size: " << std::get<0>(input_columns).size() << std::endl; print_tuple(input_columns); } } std::vector<int> compute_gdf_result(const int num_partitions, bool print = false) { const int num_columns = std::tuple_size<multi_column_t>::value; gdf_error result_error{GDF_SUCCESS}; gdf_column ** gdf_input_columns = raw_gdf_input_columns.data(); gdf_column ** gdf_output_columns = raw_gdf_output_columns.data(); std::vector<int> partition_offsets(num_partitions,0); result_error = gdf_hash_partition(num_columns, gdf_input_columns, this->cols_to_hash.data(), this->num_cols_to_hash, num_partitions, gdf_output_columns, partition_offsets.data(), gdf_hash_function); EXPECT_EQ(GDF_SUCCESS, result_error); if(print) { std::cout << "Partition offsets: "; for(int i = 0; i < num_partitions; ++i) { std::cout << partition_offsets[i] << " "; } std::cout << std::endl; } return partition_offsets; } void verify_gdf_result(int num_partitions, std::vector<int> partition_offsets, bool print = false) { std::vector<gdf_column*> gdf_cols_to_hash; for(int i = 0; i < num_cols_to_hash; ++i) { gdf_cols_to_hash.push_back(raw_gdf_output_columns[cols_to_hash[i]]); } // Create a table from the gdf output of only the columns that were hashed std::unique_ptr< gdf_table<int> > table_to_hash{new gdf_table<int>(num_cols_to_hash, gdf_cols_to_hash.data())}; Vector<int> row_partition_numbers(table_to_hash->get_column_length()); // Compute the partition number for every row in the result switch(gdf_hash_function) { case GDF_HASH_MURMUR3: { thrust::tabulate(thrust::device, row_partition_numbers.begin(), row_partition_numbers.end(), row_partition_mapper<MurmurHash3_32,int>(*table_to_hash,num_partitions)); break; } case GDF_HASH_IDENTITY: { thrust::tabulate(thrust::device, row_partition_numbers.begin(), row_partition_numbers.end(), row_partition_mapper<IdentityHash,int>(*table_to_hash,num_partitions)); break; } default: std::cerr << "Invalid GDF hash function.\n"; } std::vector<int> host_row_partition_numbers(table_to_hash->get_column_length()); cudaMemcpy(host_row_partition_numbers.data(), row_partition_numbers.data().get(), table_to_hash->get_column_length() * sizeof(int), cudaMemcpyDeviceToHost); if(print) { std::cout << "Row partition numbers:\n"; std::copy(host_row_partition_numbers.begin(), host_row_partition_numbers.end(), std::ostream_iterator<int>(std::cout, ", ")); std::cout << std::endl; } // Check that the partition number for every row is correct for(int partition_number = 0; partition_number < num_partitions; ++partition_number) { const int partition_start = partition_offsets[partition_number]; int partition_stop{0}; if(partition_number < (num_partitions - 1)) { partition_stop = partition_offsets[partition_number + 1]; } // The end of the last partition is the end of the table else { partition_stop = table_to_hash->get_column_length(); } // Everything in the current partition should have the same partition // number for(int i = partition_start; i < partition_stop; ++i) { EXPECT_EQ(partition_number, host_row_partition_numbers[i]) << "Partition number for row: " << i << " doesn't match!"; } } } }; template< typename tuple_of_vectors, gdf_hash_func hash, int... cols> struct TestParameters { static_assert((std::tuple_size<tuple_of_vectors>::value >= sizeof...(cols)), "The number of columns to hash must be less than or equal to the total number of columns."); // The tuple of vectors that determines the number and types of the columns using multi_column_t = tuple_of_vectors; // The hash function to use constexpr static const gdf_hash_func gdf_hash_function = hash; // The number of columns to hash constexpr static const int num_cols_to_hash{sizeof...(cols)}; // The indices of the columns that will be hashed to determine the partitions constexpr static const std::array<int, sizeof...(cols)> cols_to_hash{{cols...}}; }; // Using Google Tests "Type Parameterized Tests" // Every test defined as TYPED_TEST(HashPartitionTest, *) will be run once for every instance of // TestParameters defined below // The number and types of columns determined by the number and types of vectors // in the VTuple<...> // The hash function to be used is determined by the gdf_hash_func enum // The columns to be hashed to determine the partition assignment are the last N integer template // arguments, where N <= the number of columns specified in the VTuple typedef ::testing::Types< TestParameters< VTuple<int32_t>, GDF_HASH_IDENTITY, 0 >, TestParameters< VTuple<int32_t, int32_t>, GDF_HASH_MURMUR3, 0, 1>, TestParameters< VTuple<float, double>, GDF_HASH_MURMUR3, 1>, TestParameters< VTuple<int64_t, int32_t>, GDF_HASH_MURMUR3, 1>, TestParameters< VTuple<int64_t, int64_t>, GDF_HASH_MURMUR3, 0, 1>, TestParameters< VTuple<int64_t, int64_t, float, double>, GDF_HASH_IDENTITY, 2, 3>, TestParameters< VTuple<uint32_t, double, int32_t, double>, GDF_HASH_MURMUR3, 0, 2, 3>, TestParameters< VTuple<int64_t, int64_t, float, double>, GDF_HASH_MURMUR3, 1, 3>, TestParameters< VTuple<int64_t, int64_t>, GDF_HASH_MURMUR3, 0, 1>, TestParameters< VTuple<float, int32_t>, GDF_HASH_MURMUR3, 0> >Implementations; TYPED_TEST_CASE(HashPartitionTest, Implementations); TYPED_TEST(HashPartitionTest, ExampleTest) { const int num_partitions = 5; this->create_input(100, 100); std::vector<int> partition_offsets = this->compute_gdf_result(num_partitions); this->verify_gdf_result(num_partitions, partition_offsets); } TYPED_TEST(HashPartitionTest, OnePartition) { const int num_partitions = 1; this->create_input(100000, 1000); std::vector<int> partition_offsets = this->compute_gdf_result(num_partitions); this->verify_gdf_result(num_partitions, partition_offsets); } TYPED_TEST(HashPartitionTest, TenPartitions) { const int num_partitions = 10; this->create_input(1000000, 1000); std::vector<int> partition_offsets = this->compute_gdf_result(num_partitions); this->verify_gdf_result(num_partitions, partition_offsets); } TYPED_TEST(HashPartitionTest, EightPartitions) { const int num_partitions = 8; this->create_input(1000000, 1000); std::vector<int> partition_offsets = this->compute_gdf_result(num_partitions); this->verify_gdf_result(num_partitions, partition_offsets); } TYPED_TEST(HashPartitionTest, 257Partitions) { const int num_partitions = 257; this->create_input(1000000, 1000); std::vector<int> partition_offsets = this->compute_gdf_result(num_partitions); this->verify_gdf_result(num_partitions, partition_offsets); }
fc840e2328efa600be7ad461d2b32383295d3fef.hip
// !!! This is a file automatically generated by hipify!!! #include "helper.h" #include <iostream> #include <hip/hip_runtime.h> // TODO: cpp11 double getSeconds() { struct timeval tp; gettimeofday(&tp, NULL); return ((double)tp.tv_sec + (double)tp.tv_usec * 1e-6); } void checkError(hipError_t err, const char *msg) { if (err != hipSuccess) { std::cout << hipGetErrorString(err) << " " << msg << std::endl; exit(-1); } } // Return an array of size 27 with indices of neighbors // neighbors* must be of length 27 ints __host__ __device__ void get_neighbors(const int index, int *neighbors, const Params *params) { int cell_id2 = index / (params->cells0 * params->cells1); int cell_id1 = (index - cell_id2 * (params->cells0 * params->cells1)) / params->cells0; int cell_id0 = index - cell_id2 * (params->cells0 * params->cells1) - cell_id1 * params->cells0; if (cell_id0 + cell_id1 * params->cells0 + cell_id2 * (params->cells0 * params->cells1) != index) printf("error indexing \n"); int neighbour_id0, neighbour_id1, neighbour_id2; int counter = 0; for (int offset2 = -1; offset2 <= 1; ++offset2) { neighbour_id2 = cell_id2 + offset2; if (cell_id2 + offset2 < 0) { neighbour_id2 = params->cells2 - 1; } else if (cell_id2 + offset2 >= params->cells2) { neighbour_id2 = 0; } for (int offset1 = -1; offset1 <= 1; ++offset1) { neighbour_id1 = cell_id1 + offset1; if (cell_id1 + offset1 < 0) { neighbour_id1 = params->cells1 - 1; } else if (cell_id1 + offset1 >= params->cells1) { neighbour_id1 = 0; } for (int offset0 = -1; offset0 <= 1; ++offset0) { neighbour_id0 = cell_id0 + offset0; if (cell_id0 + offset0 < 0) { neighbour_id0 = params->cells0 - 1; } else if (cell_id0 + offset0 >= params->cells0) { neighbour_id0 = 0; } neighbors[counter++] = neighbour_id0 + neighbour_id1 * params->cells0 + neighbour_id2 * (params->cells0 * params->cells1); } } } } __host__ __device__ int calc_cell_index(const real x0, const real x1, const real x2, const Params *params) { int cell_id0 = (x0 - params->x0_min) / params->length0; int cell_id1 = (x1 - params->x1_min) / params->length1; int cell_id2 = (x2 - params->x2_min) / params->length2; if (cell_id2 < 0 || cell_id0 < 0 || cell_id1 < 0) printf("error in cell index calc\n");; return cell_id2 * (params->cells0 * params->cells1) + cell_id1 * (params->cells0) + cell_id0; } __host__ __device__ void update_pos(const int &id, const Params *params, Particle *particles) { real x, y, z; if (particles[id].m != -1.) { x = particles[id].x0 + params->timestep_length * particles[id].v0 + (particles[id].force0 * pow(params->timestep_length, 2.)) / (2. * particles[id].m); if (x < params->x0_min) { particles[id].x0 = x + (params->x0_max - params->x0_min); } else if (x > params->x0_max) { particles[id].x0 = x - (params->x0_max - params->x0_min); } else { particles[id].x0 = x; } y = particles[id].x1 + params->timestep_length * particles[id].v1 + (particles[id].force1 * pow(params->timestep_length, 2.)) / (2. * particles[id].m); if (y < params->x1_min) { particles[id].x1 = y + (params->x1_max - params->x1_min); } else if (y > params->x1_max) { particles[id].x1 = y - (params->x1_max - params->x1_min); } else { particles[id].x1 = y; } z = particles[id].x2 + params->timestep_length * particles[id].v2 + (particles[id].force2 * pow(params->timestep_length, 2.)) / (2. * particles[id].m); if (z < params->x2_min) { particles[id].x2 = z + (params->x2_max - params->x2_min); } else if (z > params->x2_max) { particles[id].x2 = z - (params->x2_max - params->x2_min); } else { particles[id].x2 = z; } } particles[id].force0_old = particles[id].force0; particles[id].force1_old = particles[id].force1; particles[id].force2_old = particles[id].force2; } __host__ __device__ void calc_velocity(const int &id, const Params *params, Particle *particles) { if (particles[id].m != -1.) { particles[id].v0 = particles[id].v0 + ((particles[id].force0_old + particles[id].force0) * params->timestep_length) / (2. * particles[id].m); particles[id].v1 = particles[id].v1 + ((particles[id].force1_old + particles[id].force1) * params->timestep_length) / (2. * particles[id].m); particles[id].v2 = particles[id].v2 + ((particles[id].force2_old + particles[id].force2) * params->timestep_length) / (2. * particles[id].m); } } __host__ __device__ void calc_force(const int id, const Params *params, Particle *particles, const int *linked_cells, const int *linked_particles) { int neighbors[27]; particles[id].force0 = 0; particles[id].force1 = 0; particles[id].force2 = 0; // Get current cell index of this particle int cell_index = calc_cell_index((particles[id].x0), (particles[id].x1), (particles[id].x2), params); // Get the 27 indices of the neighboring cells get_neighbors(cell_index, neighbors, params); // Loop over neighbour particles (in neighbour cells) for (int cell = 0; cell < 27; ++cell) { int id_b = linked_cells[neighbors[cell]]; // index of first particle in // linked list while (id_b != -1) { if (id_b != id) { //add_collision_force(params, particles, id, id_b); add_lj_force(params, particles, id, id_b); } id_b = linked_particles[id_b]; } } /* // Brute for (int id_b = 0; id_b < params->num_part; id_b++) { if (id_b != id) add_lj_force(params, particles, id, id_b); } */ } __host__ __device__ real ljpotential(const real &n, const real& sigma, const real& epsilon) { return (24. * epsilon) / pow(n, 2.) * pow(sigma / n, 6.) * (2. * pow(sigma / n, 6.) - 1.); } __host__ __device__ void add_lj_force(const Params *params, Particle *particles, const int &id, const int &i) { real r0, r1, r2; real dist0 = params->x0_max - params->x0_min; real dist1 = params->x1_max - params->x1_min; real dist2 = params->x2_max - params->x2_min; real r_ij; real lenard; r0 = particles[id].x0 - particles[i].x0; r1 = particles[id].x1 - particles[i].x1; r2 = particles[id].x2 - particles[i].x2; // Minimum image criteria if (r0 > dist0 * 0.5) r0 = r0 - dist0; if (r1 > dist1 * 0.5) r1 = r1 - dist1; if (r2 > dist2 * 0.5) r2 = r2 - dist2; if (r0 <= -dist0 * 0.5) r0 = r0 + dist0; if (r1 <= -dist1 * 0.5) r1 = r1 + dist1; if (r2 <= -dist2 * 0.5) r2 = r2 + dist2; r_ij = sqrt(r0*r0 + r1*r1 + r2*r2); if(r_ij <= params->r_cut){ lenard = ljpotential(r_ij, params->sigma, params->epsilon); particles[id].force0 += lenard*r0; particles[id].force1 += lenard*r1; particles[id].force2 += lenard*r2; } }
fc840e2328efa600be7ad461d2b32383295d3fef.cu
#include "helper.h" #include <iostream> #include <cuda_runtime.h> // TODO: cpp11 double getSeconds() { struct timeval tp; gettimeofday(&tp, NULL); return ((double)tp.tv_sec + (double)tp.tv_usec * 1e-6); } void checkError(cudaError_t err, const char *msg) { if (err != cudaSuccess) { std::cout << cudaGetErrorString(err) << " " << msg << std::endl; exit(-1); } } // Return an array of size 27 with indices of neighbors // neighbors* must be of length 27 ints __host__ __device__ void get_neighbors(const int index, int *neighbors, const Params *params) { int cell_id2 = index / (params->cells0 * params->cells1); int cell_id1 = (index - cell_id2 * (params->cells0 * params->cells1)) / params->cells0; int cell_id0 = index - cell_id2 * (params->cells0 * params->cells1) - cell_id1 * params->cells0; if (cell_id0 + cell_id1 * params->cells0 + cell_id2 * (params->cells0 * params->cells1) != index) printf("error indexing \n"); int neighbour_id0, neighbour_id1, neighbour_id2; int counter = 0; for (int offset2 = -1; offset2 <= 1; ++offset2) { neighbour_id2 = cell_id2 + offset2; if (cell_id2 + offset2 < 0) { neighbour_id2 = params->cells2 - 1; } else if (cell_id2 + offset2 >= params->cells2) { neighbour_id2 = 0; } for (int offset1 = -1; offset1 <= 1; ++offset1) { neighbour_id1 = cell_id1 + offset1; if (cell_id1 + offset1 < 0) { neighbour_id1 = params->cells1 - 1; } else if (cell_id1 + offset1 >= params->cells1) { neighbour_id1 = 0; } for (int offset0 = -1; offset0 <= 1; ++offset0) { neighbour_id0 = cell_id0 + offset0; if (cell_id0 + offset0 < 0) { neighbour_id0 = params->cells0 - 1; } else if (cell_id0 + offset0 >= params->cells0) { neighbour_id0 = 0; } neighbors[counter++] = neighbour_id0 + neighbour_id1 * params->cells0 + neighbour_id2 * (params->cells0 * params->cells1); } } } } __host__ __device__ int calc_cell_index(const real x0, const real x1, const real x2, const Params *params) { int cell_id0 = (x0 - params->x0_min) / params->length0; int cell_id1 = (x1 - params->x1_min) / params->length1; int cell_id2 = (x2 - params->x2_min) / params->length2; if (cell_id2 < 0 || cell_id0 < 0 || cell_id1 < 0) printf("error in cell index calc\n");; return cell_id2 * (params->cells0 * params->cells1) + cell_id1 * (params->cells0) + cell_id0; } __host__ __device__ void update_pos(const int &id, const Params *params, Particle *particles) { real x, y, z; if (particles[id].m != -1.) { x = particles[id].x0 + params->timestep_length * particles[id].v0 + (particles[id].force0 * pow(params->timestep_length, 2.)) / (2. * particles[id].m); if (x < params->x0_min) { particles[id].x0 = x + (params->x0_max - params->x0_min); } else if (x > params->x0_max) { particles[id].x0 = x - (params->x0_max - params->x0_min); } else { particles[id].x0 = x; } y = particles[id].x1 + params->timestep_length * particles[id].v1 + (particles[id].force1 * pow(params->timestep_length, 2.)) / (2. * particles[id].m); if (y < params->x1_min) { particles[id].x1 = y + (params->x1_max - params->x1_min); } else if (y > params->x1_max) { particles[id].x1 = y - (params->x1_max - params->x1_min); } else { particles[id].x1 = y; } z = particles[id].x2 + params->timestep_length * particles[id].v2 + (particles[id].force2 * pow(params->timestep_length, 2.)) / (2. * particles[id].m); if (z < params->x2_min) { particles[id].x2 = z + (params->x2_max - params->x2_min); } else if (z > params->x2_max) { particles[id].x2 = z - (params->x2_max - params->x2_min); } else { particles[id].x2 = z; } } particles[id].force0_old = particles[id].force0; particles[id].force1_old = particles[id].force1; particles[id].force2_old = particles[id].force2; } __host__ __device__ void calc_velocity(const int &id, const Params *params, Particle *particles) { if (particles[id].m != -1.) { particles[id].v0 = particles[id].v0 + ((particles[id].force0_old + particles[id].force0) * params->timestep_length) / (2. * particles[id].m); particles[id].v1 = particles[id].v1 + ((particles[id].force1_old + particles[id].force1) * params->timestep_length) / (2. * particles[id].m); particles[id].v2 = particles[id].v2 + ((particles[id].force2_old + particles[id].force2) * params->timestep_length) / (2. * particles[id].m); } } __host__ __device__ void calc_force(const int id, const Params *params, Particle *particles, const int *linked_cells, const int *linked_particles) { int neighbors[27]; particles[id].force0 = 0; particles[id].force1 = 0; particles[id].force2 = 0; // Get current cell index of this particle int cell_index = calc_cell_index((particles[id].x0), (particles[id].x1), (particles[id].x2), params); // Get the 27 indices of the neighboring cells get_neighbors(cell_index, neighbors, params); // Loop over neighbour particles (in neighbour cells) for (int cell = 0; cell < 27; ++cell) { int id_b = linked_cells[neighbors[cell]]; // index of first particle in // linked list while (id_b != -1) { if (id_b != id) { //add_collision_force(params, particles, id, id_b); add_lj_force(params, particles, id, id_b); } id_b = linked_particles[id_b]; } } /* // Brute for (int id_b = 0; id_b < params->num_part; id_b++) { if (id_b != id) add_lj_force(params, particles, id, id_b); } */ } __host__ __device__ real ljpotential(const real &n, const real& sigma, const real& epsilon) { return (24. * epsilon) / pow(n, 2.) * pow(sigma / n, 6.) * (2. * pow(sigma / n, 6.) - 1.); } __host__ __device__ void add_lj_force(const Params *params, Particle *particles, const int &id, const int &i) { real r0, r1, r2; real dist0 = params->x0_max - params->x0_min; real dist1 = params->x1_max - params->x1_min; real dist2 = params->x2_max - params->x2_min; real r_ij; real lenard; r0 = particles[id].x0 - particles[i].x0; r1 = particles[id].x1 - particles[i].x1; r2 = particles[id].x2 - particles[i].x2; // Minimum image criteria if (r0 > dist0 * 0.5) r0 = r0 - dist0; if (r1 > dist1 * 0.5) r1 = r1 - dist1; if (r2 > dist2 * 0.5) r2 = r2 - dist2; if (r0 <= -dist0 * 0.5) r0 = r0 + dist0; if (r1 <= -dist1 * 0.5) r1 = r1 + dist1; if (r2 <= -dist2 * 0.5) r2 = r2 + dist2; r_ij = sqrt(r0*r0 + r1*r1 + r2*r2); if(r_ij <= params->r_cut){ lenard = ljpotential(r_ij, params->sigma, params->epsilon); particles[id].force0 += lenard*r0; particles[id].force1 += lenard*r1; particles[id].force2 += lenard*r2; } }
699eedf9bef0d567821f0c0a38adc2fdfbd0b774.hip
// !!! This is a file automatically generated by hipify!!! #include <stdbool.h> #include <stdio.h> #include <string.h> #include <getopt.h> #include <hiprand/hiprand_kernel.h> #include <stdlib.h> #include <hip/hip_runtime.h> #include <sys/time.h> #include "shiftRightPixels.cu" #include<chrono> #include<iostream> using namespace std; using namespace std::chrono; int blocks_[20][2] = {{8,8},{16,16},{24,24},{32,32},{1,64},{1,128},{1,192},{1,256},{1,320},{1,384},{1,448},{1,512},{1,576},{1,640},{1,704},{1,768},{1,832},{1,896},{1,960},{1,1024}}; int matrices_[7][2] = {{240,240},{496,496},{784,784},{1016,1016},{1232,1232},{1680,1680},{2024,2024}}; int main(int argc, char **argv) { hipSetDevice(0); char* p;int matrix_len=strtol(argv[1], &p, 10); for(int matrix_looper=0;matrix_looper<matrix_len;matrix_looper++){ for(int block_looper=0;block_looper<20;block_looper++){ int XSIZE=matrices_[matrix_looper][0],YSIZE=matrices_[matrix_looper][1],BLOCKX=blocks_[block_looper][0],BLOCKY=blocks_[block_looper][1]; int16_t *bayImg = NULL; hipMalloc(&bayImg, XSIZE*YSIZE); size_t width = XSIZE; size_t height = YSIZE; int bppMult = 1; int iXSIZE= XSIZE; int iYSIZE= YSIZE; while(iXSIZE%BLOCKX!=0) { iXSIZE++; } while(iYSIZE%BLOCKY!=0) { iYSIZE++; } dim3 gridBlock(iXSIZE/BLOCKX, iYSIZE/BLOCKY); dim3 threadBlock(BLOCKX, BLOCKY); hipFree(0);hipLaunchKernelGGL(( shiftRightPixels), dim3(gridBlock),dim3(threadBlock), 0, 0, bayImg,width,height,bppMult); hipDeviceSynchronize(); for (int loop_counter = 0; loop_counter < 10; ++loop_counter) {hipLaunchKernelGGL(( shiftRightPixels), dim3(gridBlock),dim3(threadBlock), 0, 0, bayImg,width,height,bppMult); } auto start = steady_clock::now(); for (int loop_counter = 0; loop_counter < 1000; loop_counter++) {hipLaunchKernelGGL(( shiftRightPixels), dim3(gridBlock),dim3(threadBlock), 0, 0, bayImg,width,height,bppMult); } auto end = steady_clock::now(); auto usecs = duration_cast<duration<float, microseconds::period> >(end - start); cout <<'['<<usecs.count()<<','<<'('<<BLOCKX<<','<<BLOCKY<<')' << ','<<'('<<XSIZE<<','<<YSIZE<<')'<<']' << endl; } }}
699eedf9bef0d567821f0c0a38adc2fdfbd0b774.cu
#include <stdbool.h> #include <stdio.h> #include <string.h> #include <getopt.h> #include <curand_kernel.h> #include <stdlib.h> #include <cuda.h> #include <sys/time.h> #include "shiftRightPixels.cu" #include<chrono> #include<iostream> using namespace std; using namespace std::chrono; int blocks_[20][2] = {{8,8},{16,16},{24,24},{32,32},{1,64},{1,128},{1,192},{1,256},{1,320},{1,384},{1,448},{1,512},{1,576},{1,640},{1,704},{1,768},{1,832},{1,896},{1,960},{1,1024}}; int matrices_[7][2] = {{240,240},{496,496},{784,784},{1016,1016},{1232,1232},{1680,1680},{2024,2024}}; int main(int argc, char **argv) { cudaSetDevice(0); char* p;int matrix_len=strtol(argv[1], &p, 10); for(int matrix_looper=0;matrix_looper<matrix_len;matrix_looper++){ for(int block_looper=0;block_looper<20;block_looper++){ int XSIZE=matrices_[matrix_looper][0],YSIZE=matrices_[matrix_looper][1],BLOCKX=blocks_[block_looper][0],BLOCKY=blocks_[block_looper][1]; int16_t *bayImg = NULL; cudaMalloc(&bayImg, XSIZE*YSIZE); size_t width = XSIZE; size_t height = YSIZE; int bppMult = 1; int iXSIZE= XSIZE; int iYSIZE= YSIZE; while(iXSIZE%BLOCKX!=0) { iXSIZE++; } while(iYSIZE%BLOCKY!=0) { iYSIZE++; } dim3 gridBlock(iXSIZE/BLOCKX, iYSIZE/BLOCKY); dim3 threadBlock(BLOCKX, BLOCKY); cudaFree(0); shiftRightPixels<<<gridBlock,threadBlock>>>(bayImg,width,height,bppMult); cudaDeviceSynchronize(); for (int loop_counter = 0; loop_counter < 10; ++loop_counter) { shiftRightPixels<<<gridBlock,threadBlock>>>(bayImg,width,height,bppMult); } auto start = steady_clock::now(); for (int loop_counter = 0; loop_counter < 1000; loop_counter++) { shiftRightPixels<<<gridBlock,threadBlock>>>(bayImg,width,height,bppMult); } auto end = steady_clock::now(); auto usecs = duration_cast<duration<float, microseconds::period> >(end - start); cout <<'['<<usecs.count()<<','<<'('<<BLOCKX<<','<<BLOCKY<<')' << ','<<'('<<XSIZE<<','<<YSIZE<<')'<<']' << endl; } }}
e63cdd3deb5370c4c4bbccb04523749073607ec4.hip
// !!! This is a file automatically generated by hipify!!! /* * utilities.cu * * Created on: Jan 21, 2012 * Author: C. Richard Fisel */ #include <hip/hip_runtime.h> #include "constants.h" #include "utilities.h" //__forceinline__ __device__ bool lock_agent(int iAgentID, int* piaBits, const int iPopulation) { bool lockSuccess = false; if (iAgentID > -1 && iAgentID < iPopulation) { int iTemp = piaBits[iAgentID]; // if agent is unlocked... if (iTemp&agentLockMask == 0) { // lock if possible int iLocked = atomicCAS(&(piaBits[iAgentID]),iTemp,iTemp|agentLockMask); // test if the lock worked if (iLocked == iTemp) { lockSuccess = true; } } } else { printf("Error: bad agent id %d!\n",iAgentID); } return lockSuccess; } //__forceinline__ __device__ void unlock_agent(int iAgentID, int* piaBits, const int iPopulation) { if (iAgentID > -1 && iAgentID < iPopulation) { // make a copy of the agent's bits, but indicating unlocked int iTemp = piaBits[iAgentID]; iTemp &= ~agentLockMask; // switch unlocked copy for global value int iUnlocked = atomicExch(&(piaBits[iAgentID]),iTemp); } else { printf("Error: bad agent id %d!\n",iAgentID); } return; } //__forceinline__ __device__ bool lock_location(int iAddy, int* pigBits) { bool lockSuccess = false; if (iAddy < GRID_SIZE*GRID_SIZE && iAddy > -1) { // unpack grid bits int iTemp = pigBits[iAddy]; // test if square is unlocked if ((iTemp&gridLockMask) == 0) { // if so, make a copy, but indicating locked int iTempLocked = iTemp|gridLockMask; // now lock the address if possible int iLocked = atomicCAS(&(pigBits[iAddy]),iTemp,iTempLocked); // test if the lock worked if (iLocked == iTemp) lockSuccess = true; } } else { printf("Error: bad address %d!\n",iAddy); } return lockSuccess; } //__forceinline__ __device__ void unlock_location(int iAddy, int* pigBits) { if (iAddy < GRID_SIZE*GRID_SIZE && iAddy > -1) { // unpack grid bits int iTemp = pigBits[iAddy]; // set to unlocked iTemp &= ~gridLockMask; printf("itemp %x pigBits[iAddy] %x\n",iTemp,pigBits[iAddy]); // switch with the global value int iLocked = atomicExch(&(pigBits[iAddy]),iTemp); } else { printf("Error: bad address %d!\n",iAddy); } return; } /* * NOTE: use only when occupancy is previously verified to be positive * and thread contention for global memory has been suppressed (e.g. by locking) */ //__forceinline__ __device__ void remove_resident(int iAgentID, int iAddy, int* pigBits, int* pigResidents) { if (iAgentID > -1) { // copy to local memory unsigned int iTemp = pigBits[iAddy]; // decrement occupancy by one iTemp -= occupancyIncrement; // find match starting at end of list unsigned short sOcc = (iTemp&occupancyMask)>>occupancyShift; short k = sOcc; // remove current id - if not at the end, replace it with the one from the end and store -1 at end if (pigResidents[iAddy*MAX_OCCUPANCY+k] == iAgentID) { pigResidents[iAddy*MAX_OCCUPANCY+k] = -1; } else { while (pigResidents[iAddy*MAX_OCCUPANCY+k] != iAgentID && k >= 0) {k--;} if (k != sOcc) { pigResidents[iAddy*MAX_OCCUPANCY+k] = pigResidents[iAddy*MAX_OCCUPANCY+sOcc]; pigResidents[iAddy*MAX_OCCUPANCY+sOcc] = -1; } } pigBits[iAddy] = iTemp; } else { printf("Error: agent id %d at addy %d is negative!\n",iAgentID,iAddy); } return; } /* * NOTE: use only when occupancy is previously verified to be less than MAX_OCCUPANCY * and thread contention for global memory has been suppressed (e.g. by locking). * NOTE also that GRID_SIZE is a power of 2. */ //__forceinline__ __device__ void add_resident(int iAgentID, int iAddy, int* pigBits, int* pigResidents, short* psaX, short* psaY) { if (iAgentID > -1) { // copy to local memory unsigned int iTemp = pigBits[iAddy]; // make sure we are replacing an "empty" placemarker if (pigResidents[iAddy*MAX_OCCUPANCY+(iTemp&occupancyMask)>>occupancyShift] == -1) { psaX[iAgentID] = iAddy>>log2GRID_SIZE; psaY[iAgentID] = iAddy&(GRID_SIZE-1); pigResidents[iAddy*MAX_OCCUPANCY+(iTemp&occupancyMask)>>occupancyShift] = iAgentID; // increment occupancy by one iTemp += occupancyIncrement; } else { //otherwise notify about the error printf ("agent %d replaced %d at addy %d \n", iAgentID,pigResidents[iAddy*MAX_OCCUPANCY+(iTemp&occupancyMask)>>occupancyShift],iAddy); } pigBits[iAddy] = iTemp; } else { printf("Error: agent id %d at addy %d is negative!\n",iAgentID,iAddy); } return; }
e63cdd3deb5370c4c4bbccb04523749073607ec4.cu
/* * utilities.cu * * Created on: Jan 21, 2012 * Author: C. Richard Fisel */ #include <cuda.h> #include "constants.h" #include "utilities.h" //__forceinline__ __device__ bool lock_agent(int iAgentID, int* piaBits, const int iPopulation) { bool lockSuccess = false; if (iAgentID > -1 && iAgentID < iPopulation) { int iTemp = piaBits[iAgentID]; // if agent is unlocked... if (iTemp&agentLockMask == 0) { // lock if possible int iLocked = atomicCAS(&(piaBits[iAgentID]),iTemp,iTemp|agentLockMask); // test if the lock worked if (iLocked == iTemp) { lockSuccess = true; } } } else { printf("Error: bad agent id %d!\n",iAgentID); } return lockSuccess; } //__forceinline__ __device__ void unlock_agent(int iAgentID, int* piaBits, const int iPopulation) { if (iAgentID > -1 && iAgentID < iPopulation) { // make a copy of the agent's bits, but indicating unlocked int iTemp = piaBits[iAgentID]; iTemp &= ~agentLockMask; // switch unlocked copy for global value int iUnlocked = atomicExch(&(piaBits[iAgentID]),iTemp); } else { printf("Error: bad agent id %d!\n",iAgentID); } return; } //__forceinline__ __device__ bool lock_location(int iAddy, int* pigBits) { bool lockSuccess = false; if (iAddy < GRID_SIZE*GRID_SIZE && iAddy > -1) { // unpack grid bits int iTemp = pigBits[iAddy]; // test if square is unlocked if ((iTemp&gridLockMask) == 0) { // if so, make a copy, but indicating locked int iTempLocked = iTemp|gridLockMask; // now lock the address if possible int iLocked = atomicCAS(&(pigBits[iAddy]),iTemp,iTempLocked); // test if the lock worked if (iLocked == iTemp) lockSuccess = true; } } else { printf("Error: bad address %d!\n",iAddy); } return lockSuccess; } //__forceinline__ __device__ void unlock_location(int iAddy, int* pigBits) { if (iAddy < GRID_SIZE*GRID_SIZE && iAddy > -1) { // unpack grid bits int iTemp = pigBits[iAddy]; // set to unlocked iTemp &= ~gridLockMask; printf("itemp %x pigBits[iAddy] %x\n",iTemp,pigBits[iAddy]); // switch with the global value int iLocked = atomicExch(&(pigBits[iAddy]),iTemp); } else { printf("Error: bad address %d!\n",iAddy); } return; } /* * NOTE: use only when occupancy is previously verified to be positive * and thread contention for global memory has been suppressed (e.g. by locking) */ //__forceinline__ __device__ void remove_resident(int iAgentID, int iAddy, int* pigBits, int* pigResidents) { if (iAgentID > -1) { // copy to local memory unsigned int iTemp = pigBits[iAddy]; // decrement occupancy by one iTemp -= occupancyIncrement; // find match starting at end of list unsigned short sOcc = (iTemp&occupancyMask)>>occupancyShift; short k = sOcc; // remove current id - if not at the end, replace it with the one from the end and store -1 at end if (pigResidents[iAddy*MAX_OCCUPANCY+k] == iAgentID) { pigResidents[iAddy*MAX_OCCUPANCY+k] = -1; } else { while (pigResidents[iAddy*MAX_OCCUPANCY+k] != iAgentID && k >= 0) {k--;} if (k != sOcc) { pigResidents[iAddy*MAX_OCCUPANCY+k] = pigResidents[iAddy*MAX_OCCUPANCY+sOcc]; pigResidents[iAddy*MAX_OCCUPANCY+sOcc] = -1; } } pigBits[iAddy] = iTemp; } else { printf("Error: agent id %d at addy %d is negative!\n",iAgentID,iAddy); } return; } /* * NOTE: use only when occupancy is previously verified to be less than MAX_OCCUPANCY * and thread contention for global memory has been suppressed (e.g. by locking). * NOTE also that GRID_SIZE is a power of 2. */ //__forceinline__ __device__ void add_resident(int iAgentID, int iAddy, int* pigBits, int* pigResidents, short* psaX, short* psaY) { if (iAgentID > -1) { // copy to local memory unsigned int iTemp = pigBits[iAddy]; // make sure we are replacing an "empty" placemarker if (pigResidents[iAddy*MAX_OCCUPANCY+(iTemp&occupancyMask)>>occupancyShift] == -1) { psaX[iAgentID] = iAddy>>log2GRID_SIZE; psaY[iAgentID] = iAddy&(GRID_SIZE-1); pigResidents[iAddy*MAX_OCCUPANCY+(iTemp&occupancyMask)>>occupancyShift] = iAgentID; // increment occupancy by one iTemp += occupancyIncrement; } else { //otherwise notify about the error printf ("agent %d replaced %d at addy %d \n", iAgentID,pigResidents[iAddy*MAX_OCCUPANCY+(iTemp&occupancyMask)>>occupancyShift],iAddy); } pigBits[iAddy] = iTemp; } else { printf("Error: agent id %d at addy %d is negative!\n",iAgentID,iAddy); } return; }
d64d237d9e009ba641afe92d804091a6b3c674ff.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" // Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. // Modifies by Frost for 1D ussage #include <ATen/ATen.h> #include <ATen/hip/HIPContext.h> //for pytorch lower 1.8 version // #include <THH/THH.h> // #include <THH/THHAtomics.cuh> // #include <THH/THHDeviceUtils.cuh> //for pytorch 1.9 version #include <ATen/ceil_div.h> #include <ATen/hip/ThrustAllocator.h> #include <ATen/hip/DeviceUtils.cuh> // TODO make it in a common file #define CUDA_1D_KERNEL_LOOP(i, n) \ for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < n; \ i += blockDim.x * gridDim.x) template <typename T> __device__ T linear_interpolate(const T* bottom_data, const int height, T t, const int index /* index for debug only*/) { // deal with cases that inverse elements are out of feature map boundary if (t < -1.0 || t > height) { //empty return 0; } if (t <= 0) t = 0; int t_low = (int) t; int t_high; // get closest integers to t if (t_low >= height - 1) { t_high = t_low = height - 1; t = (T) t_low; } else { t_high = t_low + 1; } // get the distance to t T lt = t - t_low; T ht = 1. - lt; // do linear interpolation T v1 = bottom_data[t_low]; T v2 = bottom_data[t_high]; T w1 = ht, w2 = lt; T val = (w1 * v1 + w2 * v2); // printf("Check Linear Interpolate: w1=%f, v1=%f, w2=%f, v2=%f \n", w1, v1, w2, v2); return val; } template <typename T> __global__ void Align1DForward(const int nthreads, const T* bottom_data, const T spatial_scale, const int channels, const int height, const int pooled_height, const int sampling_ratio, const T* bottom_rois, T* top_data) { CUDA_1D_KERNEL_LOOP(index, nthreads) { // (n, c, pt) is an element in the pooled output int pt = index % pooled_height; int c = (index / pooled_height) % channels; int n = index / pooled_height / channels; //(batchsize,256,4Ts) //bz*Nq,256,16 16bin //rois(bz*Nq,3) //sampling_ratio=0 // printf("Debug Main Loop: get pt, c, n are %d, %d, %d \n", pt, c, n); const T* offset_bottom_rois = bottom_rois + n * 3;//nrois int roi_batch_ind = offset_bottom_rois[0]; // Do not using rounding; this implementation detail is critical T roi_start = offset_bottom_rois[1] * spatial_scale; T roi_end = offset_bottom_rois[2] * spatial_scale; // printf("Debug roi boundary: w1, w2, is %f, %f \n", roi_start,roi_end,); // Force malformed ROIs to be 1x1 T roi_height = max(roi_end- roi_start, (T)1.);//0-T T bin_size = static_cast<T>(roi_height) / static_cast<T>(pooled_height); //bin const T* offset_bottom_data = bottom_data + (roi_batch_ind * channels + c) * height; //indbatchcchannelheight4Ts // We use roi_bin_grid to sample the grid and mimic integral int roi_bin_grid = (sampling_ratio > 0) ? sampling_ratio : ceil(roi_height / pooled_height); // e.g., = 2 // We do average (integral) pooling inside a bin const T count = roi_bin_grid; // e.g. = 4 T output_val = 0.; for (int it = 0; it < roi_bin_grid; it ++) // e.g., it = 0, 1 { const T t = roi_start + pt * bin_size + static_cast<T>(it + .5f) * bin_size / static_cast<T>(roi_bin_grid); // e.g., 0.5, 1.5 T val = linear_interpolate(offset_bottom_data, height, t, index); // printf("Debug linear_interpolate: input=height:%d, t:%f, ... ; output=val:%f \n", height, t, val); output_val += val; } output_val /= count; top_data[index] = output_val; } } template <typename T> __device__ void linear_interpolate_gradient( const int height, T t, T & w1, T & w2, int & t_low, int & t_high, const int index /* index for debug only*/) { // deal with cases that inverse elements are out of feature map boundary if (t < -1.0 || t > height) { //empty w1 = w2 = 0.; t_low = t_high = -1; return; } if (t <= 0) t = 0; t_low = (int) t; if (t_low >= height - 1) { t_high = t_low = height - 1; t = (T) t_low; } else { t_high = t_low + 1; } T lt = t - t_low; T ht = 1. - lt; // T val = (w1 * v1 + w2 * v2); // T w1 = ht, w2 = lt; w1 = ht , w2 = lt; return; } template <typename T> __global__ void Align1DBackwardFeature(const int nthreads, const T* top_diff, const int num_rois, const T spatial_scale, const int channels, const int height, const int pooled_height, const int sampling_ratio, T* bottom_diff, const T* bottom_rois) { CUDA_1D_KERNEL_LOOP(index, nthreads) { // (n, c, pt) is an element in the pooled output int pt = (index ) % pooled_height; int c = (index / pooled_height) % channels; int n = index / pooled_height / channels; const T* offset_bottom_rois = bottom_rois + n * 3; int roi_batch_ind = offset_bottom_rois[0]; // Do not using rounding; this implementation detail is critical T roi_start= offset_bottom_rois[1] * spatial_scale; T roi_end= offset_bottom_rois[2] * spatial_scale; // Force malformed ROIs to be 1x1 T roi_height = max(roi_end- roi_start, (T)1.); T bin_size = static_cast<T>(roi_height) / static_cast<T>(pooled_height); T* offset_bottom_diff = bottom_diff + (roi_batch_ind * channels + c) * height; int top_offset = (n * channels + c) * pooled_height; const T* offset_top_diff = top_diff + top_offset; const T top_diff_this_bin = offset_top_diff[pt]; // We use roi_bin_grid to sample the grid and mimic integral int roi_bin_grid= (sampling_ratio > 0) ? sampling_ratio : ceil(roi_height / pooled_height); // e.g., = 2 // We do average (integral) pooling inside a bin const T count = roi_bin_grid; // e.g. = 4 for (int it = 0; it < roi_bin_grid; it ++) // e.g., iy = 0, 1 { const T t = roi_start+ pt * bin_size+ static_cast<T>(it + .5f) * bin_size/ static_cast<T>(roi_bin_grid); // e.g., 0.5, 1.5 T w1, w2; int t_low, t_high; linear_interpolate_gradient(height, t, w1, w2, t_low, t_high, index); T g1 = top_diff_this_bin * w1 / count; T g2 = top_diff_this_bin * w2 / count; if (t_low >= 0 && t_high >= 0) { atomicAdd(offset_bottom_diff + t_low, static_cast<T>(g1)); atomicAdd(offset_bottom_diff + t_high, static_cast<T>(g2)); } // if } // it } // CUDA_1D_KERNEL_LOOP } // RoIAlignBackward at::Tensor Align_forward_cuda(const at::Tensor& input, const at::Tensor& rois, const float spatial_scale, const int pooled_height, const int sampling_ratio) { AT_ASSERTM(input.type().is_cuda(), "input must be a CUDA tensor"); AT_ASSERTM(rois.type().is_cuda(), "rois must be a CUDA tensor"); auto num_rois = rois.size(0); auto channels = input.size(1); auto height = input.size(2); auto output = at::empty({num_rois, channels, pooled_height}, input.options()); auto output_size = num_rois * pooled_height * channels; hipStream_t stream = at::hip::getCurrentHIPStreamMasqueradingAsCUDA(); // dim3 grid(::min(THCCeilDiv((long)output_size, 512L), 4096L)); dim3 grid(::min(at::ceil_div((long)output_size, 512L), 4096L)); dim3 block(512); // printf("Debug main function: height:%d\n", height); if (output.numel() == 0) { // THCudaCheck(hipGetLastError()); // c10::hip::HIPCachingAllocator::raw_alloc(hipGetLastError()); C10_HIP_CHECK(hipGetLastError()); return output; } AT_DISPATCH_FLOATING_TYPES(input.type(), "Align1D_forward", [&] { hipLaunchKernelGGL(( Align1DForward<scalar_t>), dim3(grid), dim3(block), 0, stream, output_size, input.contiguous().data<scalar_t>(), spatial_scale, channels, height, pooled_height, sampling_ratio, rois.contiguous().data<scalar_t>(), output.data<scalar_t>()); }); // THCudaCheck(hipGetLastError()); // c10::hip::HIPCachingAllocator::raw_alloc(hipGetLastError()); C10_HIP_CHECK(hipGetLastError()); return output; } // TODO remove the dependency on input and use instead its sizes -> save memory at::Tensor Align_backward_cuda(const at::Tensor& grad, const at::Tensor& rois, const float spatial_scale, const int pooled_height, const int batch_size, const int channels, const int height, const int sampling_ratio) { AT_ASSERTM(grad.type().is_cuda(), "grad must be a CUDA tensor"); AT_ASSERTM(rois.type().is_cuda(), "rois must be a CUDA tensor"); auto num_rois = rois.size(0); auto grad_input = at::zeros({batch_size, channels, height}, grad.options()); hipStream_t stream = at::hip::getCurrentHIPStreamMasqueradingAsCUDA(); // dim3 grid(::min(THCCeilDiv((long)grad.numel(), 512L), 4096L)); dim3 grid(::min(at::ceil_div((long)grad.numel(), 512L), 4096L)); dim3 block(512); // handle possibly empty gradients if (grad.numel() == 0) { // THCudaCheck(hipGetLastError()); // c10::hip::HIPCachingAllocator::raw_alloc(hipGetLastError()); C10_HIP_CHECK(hipGetLastError()); return grad_input; } AT_DISPATCH_FLOATING_TYPES(grad.type(), "ROIAlign_backward", [&] { hipLaunchKernelGGL(( Align1DBackwardFeature<scalar_t>), dim3(grid), dim3(block), 0, stream, grad.numel(), grad.contiguous().data<scalar_t>(), num_rois, spatial_scale, channels, height, pooled_height, sampling_ratio, grad_input.data<scalar_t>(), rois.contiguous().data<scalar_t>()); }); // THCudaCheck(hipGetLastError()); // c10::hip::HIPCachingAllocator::raw_alloc(hipGetLastError()); C10_HIP_CHECK(hipGetLastError()); return grad_input; }
d64d237d9e009ba641afe92d804091a6b3c674ff.cu
// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. // Modifies by Frost for 1D ussage #include <ATen/ATen.h> #include <ATen/cuda/CUDAContext.h> //for pytorch lower 1.8 version // #include <THC/THC.h> // #include <THC/THCAtomics.cuh> // #include <THC/THCDeviceUtils.cuh> //for pytorch 1.9 version #include <ATen/ceil_div.h> #include <ATen/cuda/ThrustAllocator.h> #include <ATen/cuda/DeviceUtils.cuh> // TODO make it in a common file #define CUDA_1D_KERNEL_LOOP(i, n) \ for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < n; \ i += blockDim.x * gridDim.x) template <typename T> __device__ T linear_interpolate(const T* bottom_data, const int height, T t, const int index /* index for debug only*/) { // deal with cases that inverse elements are out of feature map boundary if (t < -1.0 || t > height) { //empty return 0; } if (t <= 0) t = 0; int t_low = (int) t; int t_high; // get closest integers to t if (t_low >= height - 1) { t_high = t_low = height - 1; t = (T) t_low; } else { t_high = t_low + 1; } // get the distance to t T lt = t - t_low; T ht = 1. - lt; // do linear interpolation T v1 = bottom_data[t_low]; T v2 = bottom_data[t_high]; T w1 = ht, w2 = lt; T val = (w1 * v1 + w2 * v2); // printf("Check Linear Interpolate: w1=%f, v1=%f, w2=%f, v2=%f \n", w1, v1, w2, v2); return val; } template <typename T> __global__ void Align1DForward(const int nthreads, const T* bottom_data, const T spatial_scale, const int channels, const int height, const int pooled_height, const int sampling_ratio, const T* bottom_rois, T* top_data) { CUDA_1D_KERNEL_LOOP(index, nthreads) { // (n, c, pt) is an element in the pooled output int pt = index % pooled_height; int c = (index / pooled_height) % channels; int n = index / pooled_height / channels; //输入(batchsize,256,4Ts) //输出(bz*Nq,256,16) 16是划分bin的数量 //rois(bz*Nq,3) //sampling_ratio=0 // printf("Debug Main Loop: get pt, c, n are %d, %d, %d \n", pt, c, n); const T* offset_bottom_rois = bottom_rois + n * 3;//取第n条rois数据 int roi_batch_ind = offset_bottom_rois[0]; // Do not using rounding; this implementation detail is critical T roi_start = offset_bottom_rois[1] * spatial_scale; T roi_end = offset_bottom_rois[2] * spatial_scale; // printf("Debug roi boundary: w1, w2, is %f, %f \n", roi_start,roi_end,); // Force malformed ROIs to be 1x1 T roi_height = max(roi_end- roi_start, (T)1.);//0-T取值范围 T bin_size = static_cast<T>(roi_height) / static_cast<T>(pooled_height); //长度除bin const T* offset_bottom_data = bottom_data + (roi_batch_ind * channels + c) * height; //取第ind个batch,第c个channel的数据,height是4Ts // We use roi_bin_grid to sample the grid and mimic integral int roi_bin_grid = (sampling_ratio > 0) ? sampling_ratio : ceil(roi_height / pooled_height); // e.g., = 2 // We do average (integral) pooling inside a bin const T count = roi_bin_grid; // e.g. = 4 T output_val = 0.; for (int it = 0; it < roi_bin_grid; it ++) // e.g., it = 0, 1 { const T t = roi_start + pt * bin_size + static_cast<T>(it + .5f) * bin_size / static_cast<T>(roi_bin_grid); // e.g., 0.5, 1.5 T val = linear_interpolate(offset_bottom_data, height, t, index); // printf("Debug linear_interpolate: input=height:%d, t:%f, ... ; output=val:%f \n", height, t, val); output_val += val; } output_val /= count; top_data[index] = output_val; } } template <typename T> __device__ void linear_interpolate_gradient( const int height, T t, T & w1, T & w2, int & t_low, int & t_high, const int index /* index for debug only*/) { // deal with cases that inverse elements are out of feature map boundary if (t < -1.0 || t > height) { //empty w1 = w2 = 0.; t_low = t_high = -1; return; } if (t <= 0) t = 0; t_low = (int) t; if (t_low >= height - 1) { t_high = t_low = height - 1; t = (T) t_low; } else { t_high = t_low + 1; } T lt = t - t_low; T ht = 1. - lt; // T val = (w1 * v1 + w2 * v2); // T w1 = ht, w2 = lt; w1 = ht , w2 = lt; return; } template <typename T> __global__ void Align1DBackwardFeature(const int nthreads, const T* top_diff, const int num_rois, const T spatial_scale, const int channels, const int height, const int pooled_height, const int sampling_ratio, T* bottom_diff, const T* bottom_rois) { CUDA_1D_KERNEL_LOOP(index, nthreads) { // (n, c, pt) is an element in the pooled output int pt = (index ) % pooled_height; int c = (index / pooled_height) % channels; int n = index / pooled_height / channels; const T* offset_bottom_rois = bottom_rois + n * 3; int roi_batch_ind = offset_bottom_rois[0]; // Do not using rounding; this implementation detail is critical T roi_start= offset_bottom_rois[1] * spatial_scale; T roi_end= offset_bottom_rois[2] * spatial_scale; // Force malformed ROIs to be 1x1 T roi_height = max(roi_end- roi_start, (T)1.); T bin_size = static_cast<T>(roi_height) / static_cast<T>(pooled_height); T* offset_bottom_diff = bottom_diff + (roi_batch_ind * channels + c) * height; int top_offset = (n * channels + c) * pooled_height; const T* offset_top_diff = top_diff + top_offset; const T top_diff_this_bin = offset_top_diff[pt]; // We use roi_bin_grid to sample the grid and mimic integral int roi_bin_grid= (sampling_ratio > 0) ? sampling_ratio : ceil(roi_height / pooled_height); // e.g., = 2 // We do average (integral) pooling inside a bin const T count = roi_bin_grid; // e.g. = 4 for (int it = 0; it < roi_bin_grid; it ++) // e.g., iy = 0, 1 { const T t = roi_start+ pt * bin_size+ static_cast<T>(it + .5f) * bin_size/ static_cast<T>(roi_bin_grid); // e.g., 0.5, 1.5 T w1, w2; int t_low, t_high; linear_interpolate_gradient(height, t, w1, w2, t_low, t_high, index); T g1 = top_diff_this_bin * w1 / count; T g2 = top_diff_this_bin * w2 / count; if (t_low >= 0 && t_high >= 0) { atomicAdd(offset_bottom_diff + t_low, static_cast<T>(g1)); atomicAdd(offset_bottom_diff + t_high, static_cast<T>(g2)); } // if } // it } // CUDA_1D_KERNEL_LOOP } // RoIAlignBackward at::Tensor Align_forward_cuda(const at::Tensor& input, const at::Tensor& rois, const float spatial_scale, const int pooled_height, const int sampling_ratio) { AT_ASSERTM(input.type().is_cuda(), "input must be a CUDA tensor"); AT_ASSERTM(rois.type().is_cuda(), "rois must be a CUDA tensor"); auto num_rois = rois.size(0); auto channels = input.size(1); auto height = input.size(2); auto output = at::empty({num_rois, channels, pooled_height}, input.options()); auto output_size = num_rois * pooled_height * channels; cudaStream_t stream = at::cuda::getCurrentCUDAStream(); // dim3 grid(std::min(THCCeilDiv((long)output_size, 512L), 4096L)); dim3 grid(std::min(at::ceil_div((long)output_size, 512L), 4096L)); dim3 block(512); // printf("Debug main function: height:%d\n", height); if (output.numel() == 0) { // THCudaCheck(cudaGetLastError()); // c10::cuda::CUDACachingAllocator::raw_alloc(cudaGetLastError()); C10_CUDA_CHECK(cudaGetLastError()); return output; } AT_DISPATCH_FLOATING_TYPES(input.type(), "Align1D_forward", [&] { Align1DForward<scalar_t><<<grid, block, 0, stream>>>( output_size, input.contiguous().data<scalar_t>(), spatial_scale, channels, height, pooled_height, sampling_ratio, rois.contiguous().data<scalar_t>(), output.data<scalar_t>()); }); // THCudaCheck(cudaGetLastError()); // c10::cuda::CUDACachingAllocator::raw_alloc(cudaGetLastError()); C10_CUDA_CHECK(cudaGetLastError()); return output; } // TODO remove the dependency on input and use instead its sizes -> save memory at::Tensor Align_backward_cuda(const at::Tensor& grad, const at::Tensor& rois, const float spatial_scale, const int pooled_height, const int batch_size, const int channels, const int height, const int sampling_ratio) { AT_ASSERTM(grad.type().is_cuda(), "grad must be a CUDA tensor"); AT_ASSERTM(rois.type().is_cuda(), "rois must be a CUDA tensor"); auto num_rois = rois.size(0); auto grad_input = at::zeros({batch_size, channels, height}, grad.options()); cudaStream_t stream = at::cuda::getCurrentCUDAStream(); // dim3 grid(std::min(THCCeilDiv((long)grad.numel(), 512L), 4096L)); dim3 grid(std::min(at::ceil_div((long)grad.numel(), 512L), 4096L)); dim3 block(512); // handle possibly empty gradients if (grad.numel() == 0) { // THCudaCheck(cudaGetLastError()); // c10::cuda::CUDACachingAllocator::raw_alloc(cudaGetLastError()); C10_CUDA_CHECK(cudaGetLastError()); return grad_input; } AT_DISPATCH_FLOATING_TYPES(grad.type(), "ROIAlign_backward", [&] { Align1DBackwardFeature<scalar_t><<<grid, block, 0, stream>>>( grad.numel(), grad.contiguous().data<scalar_t>(), num_rois, spatial_scale, channels, height, pooled_height, sampling_ratio, grad_input.data<scalar_t>(), rois.contiguous().data<scalar_t>()); }); // THCudaCheck(cudaGetLastError()); // c10::cuda::CUDACachingAllocator::raw_alloc(cudaGetLastError()); C10_CUDA_CHECK(cudaGetLastError()); return grad_input; }
3176b9473b5585d34a3fc3e3a2e9e7f54fe73361.hip
// !!! This is a file automatically generated by hipify!!! #include <THH/THHTensorMathPointwise.cuh> #include <THH/THHTensor.hpp> #include <THH/generic/THHTensorMathPointwise.hip> #include <THH/THHGenerateFloatType.h>
3176b9473b5585d34a3fc3e3a2e9e7f54fe73361.cu
#include <THC/THCTensorMathPointwise.cuh> #include <THC/THCTensor.hpp> #include <THC/generic/THCTensorMathPointwise.cu> #include <THC/THCGenerateFloatType.h>
c1344dc57ac1872f04d720cf3a888b315affd2b2.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include <iostream> #include <math.h> __global__ void add(unsigned long long int n, float *x, float *y) { int index = threadIdx.x; int stride = blockDim.x; for(unsigned long long int i = index; i<n; i+= stride) y[i] = x[i]+ y[i]; } int main(void) { unsigned long long int N= 1<<29; float *x , *y; hipMallocManaged(&x, N*sizeof(float)); hipMallocManaged(&y, N*sizeof(float)); for(unsigned long long int i = 0; i<N; i++) { x[i] = 1.0f; y[i] = 2.0f; } hipLaunchKernelGGL(( add), dim3(1), dim3(256), 0, 0, N, x, y); hipDeviceSynchronize(); hipFree(x); hipFree(y); return 0; }
c1344dc57ac1872f04d720cf3a888b315affd2b2.cu
#include <iostream> #include <math.h> __global__ void add(unsigned long long int n, float *x, float *y) { int index = threadIdx.x; int stride = blockDim.x; for(unsigned long long int i = index; i<n; i+= stride) y[i] = x[i]+ y[i]; } int main(void) { unsigned long long int N= 1<<29; float *x , *y; cudaMallocManaged(&x, N*sizeof(float)); cudaMallocManaged(&y, N*sizeof(float)); for(unsigned long long int i = 0; i<N; i++) { x[i] = 1.0f; y[i] = 2.0f; } add<<<1, 256>>>(N, x, y); cudaDeviceSynchronize(); cudaFree(x); cudaFree(y); return 0; }
0e2a67eca4f15c2453fbdd3ee3062800f0916c6f.hip
// !!! This is a file automatically generated by hipify!!! // CIS565 CUDA Raytracer: A parallel raytracer for Patrick Cozzi's CIS565: GPU Computing at the University of Pennsylvania // Written by Yining Karl Li, Copyright (c) 2012 University of Pennsylvania // This file includes code from: // Rob Farber for CUDA-GL interop, from CUDA Supercomputing For The Masses: http://www.drdobbs.com/architecture-and-design/cuda-supercomputing-for-the-masses-part/222600097 // Peter Kutz and Yining Karl Li's GPU Pathtracer: http://gpupathtracer.blogspot.com/ // Yining Karl Li's TAKUA Render, a massively parallel pathtracing renderer: http://www.yiningkarlli.com #include <stdio.h> #include <hip/hip_runtime.h> #include <cmath> #include "sceneStructs.h" #include "utilities.h" #include "raytraceKernel.h" #include "intersections.h" #include "interactions.h" #include <vector> #include "glm/glm.hpp" void checkCUDAError(const char *msg) { hipError_t err = hipGetLastError(); if (hipSuccess != err) { fprintf(stderr, "Cuda error: %s: %s.\n", msg, hipGetErrorString( err) ); exit(EXIT_FAILURE); } } //LOOK: This function demonstrates how to use thrust for random number generation on the GPU! //Function that generates static. __host__ __device__ glm::vec3 generateRandomNumberFromThread(glm::vec2 resolution, float time, int x, int y){ int index = x + (y * resolution.x); thrust::default_random_engine rng(hash(index*time)); thrust::uniform_real_distribution<float> u01(0,1); return glm::vec3((float) u01(rng), (float) u01(rng), (float) u01(rng)); } //Kernel that does the initial raycast from the camera. __host__ __device__ ray raycastFromCameraKernel(glm::vec2 resolution, float time, int x, int y, glm::vec3 eye, glm::vec3 view, glm::vec3 up, glm::vec2 fov) { int index = x + (y * resolution.x); thrust::default_random_engine rng(hash(index*time)); thrust::uniform_real_distribution<float> u01(0,1); //standard camera raycast stuff glm::vec3 E = eye; glm::vec3 C = view; glm::vec3 U = up; float fovx = fov.x; float fovy = fov.y; float CD = glm::length(C); glm::vec3 A = glm::cross(C, U); glm::vec3 B = glm::cross(A, C); glm::vec3 M = E+C; glm::vec3 H = (A*float(CD*tan(fovx*(PI/180))))/float(glm::length(A)); glm::vec3 V = (B*float(CD*tan(-fovy*(PI/180))))/float(glm::length(B)); float sx = (x)/(resolution.x-1); float sy = (y)/(resolution.y-1); glm::vec3 P = M + (((2*sx)-1)*H) + (((2*sy)-1)*V); glm::vec3 PmE = P-E; glm::vec3 R = E + (float(200)*(PmE))/float(glm::length(PmE)); glm::vec3 direction = glm::normalize(R); //major performance cliff at this point, TODO: find out why! ray r; r.origin = eye; r.direction = direction; return r; } //Kernel that blacks out a given image buffer __global__ void clearImage(glm::vec2 resolution, glm::vec3* image) { int x = (blockIdx.x * blockDim.x) + threadIdx.x; int y = (blockIdx.y * blockDim.y) + threadIdx.y; int index = x + (y * resolution.x); if (x<=resolution.x && y<=resolution.y) { image[index] = glm::vec3(0,0,0); } } //Kernel that writes the image to the OpenGL PBO directly. __global__ void sendImageToPBO(uchar4* PBOpos, glm::vec2 resolution, glm::vec3* image) { int x = (blockIdx.x * blockDim.x) + threadIdx.x; int y = (blockIdx.y * blockDim.y) + threadIdx.y; int index = x + (y * resolution.x); if (x<=resolution.x && y<=resolution.y) { glm::vec3 color; color.x = image[index].x*255.0; color.y = image[index].y*255.0; color.z = image[index].z*255.0; if (color.x>255) { color.x = 255; } if (color.y>255) { color.y = 255; } if (color.z>255) { color.z = 255; } // Each thread writes one pixel location in the texture (textel) PBOpos[index].w = 0; PBOpos[index].x = color.x; PBOpos[index].y = color.y; PBOpos[index].z = color.z; } } //TODO: IMPLEMENT THIS FUNCTION //Core raytracer kernel __global__ void raytraceRay(glm::vec2 resolution, float time, float bounce, cameraData cam, int rayDepth, glm::vec3* colors, geom* geoms, int numberOfGeoms, material* materials, int numberOfMaterials){ int x = (blockIdx.x * blockDim.x) + threadIdx.x; int y = (blockIdx.y * blockDim.y) + threadIdx.y; int index = x + (y * resolution.x); ray r = raycastFromCameraKernel(resolution, time, x, y, cam.position, cam.view, cam.up, cam.fov); if (x<=resolution.x && y<=resolution.y) { float MAX_DEPTH = 100000000000000000; float depth = MAX_DEPTH; for (int i=0; i<numberOfGeoms; i++) { glm::vec3 intersectionPoint; glm::vec3 intersectionNormal; if (geoms[i].type==SPHERE) { depth = sphereIntersectionTest(geoms[i], r, intersectionPoint, intersectionNormal); } else if (geoms[i].type==CUBE) { depth = boxIntersectionTest(geoms[i], r, intersectionPoint, intersectionNormal); } else if (geoms[i].type==MESH) { //triangle tests go here } else { //lol? } if (depth<MAX_DEPTH && depth>-EPSILON) { MAX_DEPTH = depth; colors[index] = materials[geoms[i].materialid].color; } } } } //TODO: FINISH THIS FUNCTION // Wrapper for the __global__ call that sets up the kernel calls and does a ton of memory management void cudaRaytraceCore(uchar4* PBOpos, cameraData cam, int iterations, material* cudamaterials, int numberOfMaterials, geom* cudageoms, int numberOfGeoms, glm::vec3* cudaimage) { int traceDepth = 1; //determines how many bounces the raytracer traces // set up crucial magic int tileSize = 8; dim3 threadsPerBlock(tileSize, tileSize); dim3 fullBlocksPerGrid((int)ceil(float(cam.resolution.x)/float(tileSize)), (int)ceil(float(cam.resolution.y)/float(tileSize))); //kernel launches for (int bounce = 1; bounce <= 1; ++bounce) { hipLaunchKernelGGL(( raytraceRay), dim3(fullBlocksPerGrid), dim3(threadsPerBlock), 0, 0, cam.resolution, (float)iterations, (float)bounce, cam, traceDepth, cudaimage, cudageoms, numberOfGeoms, cudamaterials, numberOfMaterials); } hipLaunchKernelGGL(( sendImageToPBO), dim3(fullBlocksPerGrid), dim3(threadsPerBlock), 0, 0, PBOpos, cam.resolution, cudaimage); // make certain the kernel has completed hipDeviceSynchronize(); checkCUDAError("Kernel failed!"); }
0e2a67eca4f15c2453fbdd3ee3062800f0916c6f.cu
// CIS565 CUDA Raytracer: A parallel raytracer for Patrick Cozzi's CIS565: GPU Computing at the University of Pennsylvania // Written by Yining Karl Li, Copyright (c) 2012 University of Pennsylvania // This file includes code from: // Rob Farber for CUDA-GL interop, from CUDA Supercomputing For The Masses: http://www.drdobbs.com/architecture-and-design/cuda-supercomputing-for-the-masses-part/222600097 // Peter Kutz and Yining Karl Li's GPU Pathtracer: http://gpupathtracer.blogspot.com/ // Yining Karl Li's TAKUA Render, a massively parallel pathtracing renderer: http://www.yiningkarlli.com #include <stdio.h> #include <cuda.h> #include <cmath> #include "sceneStructs.h" #include "utilities.h" #include "raytraceKernel.h" #include "intersections.h" #include "interactions.h" #include <vector> #include "glm/glm.hpp" void checkCUDAError(const char *msg) { cudaError_t err = cudaGetLastError(); if (cudaSuccess != err) { fprintf(stderr, "Cuda error: %s: %s.\n", msg, cudaGetErrorString( err) ); exit(EXIT_FAILURE); } } //LOOK: This function demonstrates how to use thrust for random number generation on the GPU! //Function that generates static. __host__ __device__ glm::vec3 generateRandomNumberFromThread(glm::vec2 resolution, float time, int x, int y){ int index = x + (y * resolution.x); thrust::default_random_engine rng(hash(index*time)); thrust::uniform_real_distribution<float> u01(0,1); return glm::vec3((float) u01(rng), (float) u01(rng), (float) u01(rng)); } //Kernel that does the initial raycast from the camera. __host__ __device__ ray raycastFromCameraKernel(glm::vec2 resolution, float time, int x, int y, glm::vec3 eye, glm::vec3 view, glm::vec3 up, glm::vec2 fov) { int index = x + (y * resolution.x); thrust::default_random_engine rng(hash(index*time)); thrust::uniform_real_distribution<float> u01(0,1); //standard camera raycast stuff glm::vec3 E = eye; glm::vec3 C = view; glm::vec3 U = up; float fovx = fov.x; float fovy = fov.y; float CD = glm::length(C); glm::vec3 A = glm::cross(C, U); glm::vec3 B = glm::cross(A, C); glm::vec3 M = E+C; glm::vec3 H = (A*float(CD*tan(fovx*(PI/180))))/float(glm::length(A)); glm::vec3 V = (B*float(CD*tan(-fovy*(PI/180))))/float(glm::length(B)); float sx = (x)/(resolution.x-1); float sy = (y)/(resolution.y-1); glm::vec3 P = M + (((2*sx)-1)*H) + (((2*sy)-1)*V); glm::vec3 PmE = P-E; glm::vec3 R = E + (float(200)*(PmE))/float(glm::length(PmE)); glm::vec3 direction = glm::normalize(R); //major performance cliff at this point, TODO: find out why! ray r; r.origin = eye; r.direction = direction; return r; } //Kernel that blacks out a given image buffer __global__ void clearImage(glm::vec2 resolution, glm::vec3* image) { int x = (blockIdx.x * blockDim.x) + threadIdx.x; int y = (blockIdx.y * blockDim.y) + threadIdx.y; int index = x + (y * resolution.x); if (x<=resolution.x && y<=resolution.y) { image[index] = glm::vec3(0,0,0); } } //Kernel that writes the image to the OpenGL PBO directly. __global__ void sendImageToPBO(uchar4* PBOpos, glm::vec2 resolution, glm::vec3* image) { int x = (blockIdx.x * blockDim.x) + threadIdx.x; int y = (blockIdx.y * blockDim.y) + threadIdx.y; int index = x + (y * resolution.x); if (x<=resolution.x && y<=resolution.y) { glm::vec3 color; color.x = image[index].x*255.0; color.y = image[index].y*255.0; color.z = image[index].z*255.0; if (color.x>255) { color.x = 255; } if (color.y>255) { color.y = 255; } if (color.z>255) { color.z = 255; } // Each thread writes one pixel location in the texture (textel) PBOpos[index].w = 0; PBOpos[index].x = color.x; PBOpos[index].y = color.y; PBOpos[index].z = color.z; } } //TODO: IMPLEMENT THIS FUNCTION //Core raytracer kernel __global__ void raytraceRay(glm::vec2 resolution, float time, float bounce, cameraData cam, int rayDepth, glm::vec3* colors, geom* geoms, int numberOfGeoms, material* materials, int numberOfMaterials){ int x = (blockIdx.x * blockDim.x) + threadIdx.x; int y = (blockIdx.y * blockDim.y) + threadIdx.y; int index = x + (y * resolution.x); ray r = raycastFromCameraKernel(resolution, time, x, y, cam.position, cam.view, cam.up, cam.fov); if (x<=resolution.x && y<=resolution.y) { float MAX_DEPTH = 100000000000000000; float depth = MAX_DEPTH; for (int i=0; i<numberOfGeoms; i++) { glm::vec3 intersectionPoint; glm::vec3 intersectionNormal; if (geoms[i].type==SPHERE) { depth = sphereIntersectionTest(geoms[i], r, intersectionPoint, intersectionNormal); } else if (geoms[i].type==CUBE) { depth = boxIntersectionTest(geoms[i], r, intersectionPoint, intersectionNormal); } else if (geoms[i].type==MESH) { //triangle tests go here } else { //lol? } if (depth<MAX_DEPTH && depth>-EPSILON) { MAX_DEPTH = depth; colors[index] = materials[geoms[i].materialid].color; } } } } //TODO: FINISH THIS FUNCTION // Wrapper for the __global__ call that sets up the kernel calls and does a ton of memory management void cudaRaytraceCore(uchar4* PBOpos, cameraData cam, int iterations, material* cudamaterials, int numberOfMaterials, geom* cudageoms, int numberOfGeoms, glm::vec3* cudaimage) { int traceDepth = 1; //determines how many bounces the raytracer traces // set up crucial magic int tileSize = 8; dim3 threadsPerBlock(tileSize, tileSize); dim3 fullBlocksPerGrid((int)ceil(float(cam.resolution.x)/float(tileSize)), (int)ceil(float(cam.resolution.y)/float(tileSize))); //kernel launches for (int bounce = 1; bounce <= 1; ++bounce) { raytraceRay<<<fullBlocksPerGrid, threadsPerBlock>>>(cam.resolution, (float)iterations, (float)bounce, cam, traceDepth, cudaimage, cudageoms, numberOfGeoms, cudamaterials, numberOfMaterials); } sendImageToPBO<<<fullBlocksPerGrid, threadsPerBlock>>>(PBOpos, cam.resolution, cudaimage); // make certain the kernel has completed cudaThreadSynchronize(); checkCUDAError("Kernel failed!"); }
6464f03c608b35da1e8880a4473c638401e1a8c8.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #ifdef __NVCC__ // __device__ volatile int PQ[MAX_NODE]; //K in parallel template <class U> __global__ void extractMin(unsigned int* PQ, unsigned int* PQ_size, int* expandNodes,int* expandNodes_size,U* Cx,int* openList,int N,int K){ int id = blockIdx.x*blockDim.x+threadIdx.x; if(id<K && PQ_size[id]>0){ //extract min from PQ int front = id* ( (N+K-1)/K ); int node = PQ[front]; // restructure the heap PQ[front]=PQ[front+PQ_size[id]-1]; PQ_size[id]-=1; int pqIndex = 0; while(2*pqIndex+1 < PQ_size[id]){ if(2*pqIndex+2 >= PQ_size[id]){ if( Cx[PQ[front+pqIndex]] > Cx[PQ[front+2*pqIndex+1]]){ int swap = PQ[front + 2*pqIndex+1]; PQ[front + 2*pqIndex+1] = PQ[front +pqIndex]; PQ[front + pqIndex] = swap; pqIndex = 2*pqIndex+1; } else break; } else{ if( Cx[PQ[front+pqIndex]] > Cx[PQ[front+2*pqIndex+1]] && Cx[PQ[front+2*pqIndex+1]] <= Cx[PQ[front+2*pqIndex+2]] ){ int swap = PQ[front + 2*pqIndex+1]; PQ[front + 2*pqIndex+1] = PQ[front +pqIndex]; PQ[front + pqIndex] = swap; pqIndex = 2*pqIndex+1; } else if(Cx[PQ[front+pqIndex]] > Cx[PQ[front+2*pqIndex+2]] && Cx[PQ[front+2*pqIndex+2]] <= Cx[PQ[front+2*pqIndex+1]] ){ int swap = PQ[front + 2*pqIndex+2]; PQ[front + 2*pqIndex+2] = PQ[front +pqIndex]; PQ[front + pqIndex] = swap; pqIndex = 2*pqIndex+2; } else{ break; } } } //removed from openList openList[node] = -1; //added to expand next int len = atomicAdd(expandNodes_size,1); expandNodes[len]=node; } } //for K in parallel template <class T,class U> __global__ void A_star_expand(int* off,int* edge, T* W,U* Hx,int* parent,volatile U* Cx, int* expandNodes,int* expandNodes_size, int* lock ,int* flagfound,int* openList,int* nVFlag, int N,int E, int K,int dest, int flagDiff,int dE, int* diff_off,int* diff_edge,unsigned int* diff_weight ){ int id = blockIdx.x*blockDim.x+threadIdx.x; if(id< *expandNodes_size ){ int node = expandNodes[id]; //reach dest if(node == dest){ atomicOr(flagfound,1); } // expand int start = off[node]; int end = E; if(node!=N-1) end = off[node+1]; while(start < end){ int child = edge[start]; //deleted edges if(child<0){ start++; continue; } //array L initilaized with 0 //get the lock for child to update C(x) //loop till acquire the lock bool leaveLoop = false; while(leaveLoop==false){ if(atomicCAS(&lock[child],0,1)==0){ //critical section if( Cx[child] > (Cx[node] - Hx[node])+ W[start]+ Hx[child] ){ Cx[child] = (Cx[node] - Hx[node])+ W[start]+ Hx[child]; __threadfence(); parent[child] = node; if(openList[child]==-1){ nVFlag[child]=1; //add only once } } //end critical section leaveLoop = true; atomicCAS(&lock[child],1,0); } __syncthreads(); } start++; } //diff expand if(flagDiff){ start = diff_off[node]; end = dE; if(node!=N-1) end = diff_off[node+1]; while(start<end){ int child = diff_edge[start]; //deleted edges if(child<0){ start++; continue; } //array L initilaized with 0 //get the lock for child to update C(x) bool leaveLoop = false; while(!leaveLoop){ if(atomicCAS(&lock[child],0,1)==0){ //critical section if( Cx[child] > (Cx[node] - Hx[node])+ W[start]+ Hx[child] ){ Cx[child] = (Cx[node] - Hx[node])+ W[start]+ Hx[child]; __threadfence(); parent[child] = node; if(openList[child]==-1){ nVFlag[child]=1; //add only once } } //end critical section leaveLoop = true; atomicCAS(&lock[child],1,0); } __syncthreads(); } start++; } } //end diff }//end } //K in parallel -- O(N) template <class U> __global__ void keepHeapPQ(unsigned int* PQ,unsigned int* PQ_size,U* Cx,int N,int K){ int id = blockIdx.x*blockDim.x+threadIdx.x; if(id < K && PQ_size[id] > 0){ int front = id*( (N+K-1)/K ); int size = PQ_size[id]; for(int i=front;i<front+size;i++){ if(2*i+2 < front+size){ int cost = Cx[PQ[i]]; int costLeft = Cx[PQ[2*i+1]]; int costRight = Cx[PQ[2*i+2]]; if( cost > costLeft || cost > costRight ){ int index ; if(costLeft <= costRight) index = 2*i+1; else index = 2*i+2; while(index > front){ if( Cx[PQ[(index-1)/2]] > Cx[PQ[index]] ){ int swap = PQ[index]; PQ[index] = PQ[(index-1)/2]; PQ[(index-1)/2] = swap; index = (index-1)/2; } else break; } } } else if(2*i+1 < front+size){ if(Cx[PQ[i]] > Cx[PQ[2*i+1]]){ int index = 2*i+1; while(index > front){ if( Cx[PQ[(index-1)/2]] > Cx[PQ[index]] ){ int swap = PQ[index]; PQ[index] = PQ[(index-1)/2]; PQ[(index-1)/2] = swap; index = (index-1)/2; } else break; } } } } } } //N threads __global__ void setNV(int* nextFlag,int* nextV,int* nvSize,int N){ int id = blockIdx.x*blockDim.x+threadIdx.x; if(id < N){ if(nextFlag[id]==1){ int index = atomicAdd(nvSize,1); nextV[index]=id; } } } //for K in parallel template <class U> __global__ void insertPQ(unsigned int* PQ,unsigned int* PQS,int* nextV,int* nVsize,U* Cx,int K,int N,int* openList){ int id = blockIdx.x*blockDim.x+threadIdx.x; if(id < K){ int front = id*( (N+K-1)/K ); int i = id; while(i<*nVsize){ //if not already present if(openList[nextV[i]]!=-1){ i+=K; continue; } PQ[front+PQS[id]]= nextV[i]; PQS[id]+=1; //add in openList openList[nextV[i]] = id; if(PQS[id]>1){ int index = PQS[id]-1; while(index>0){ if(Cx[PQ[front+ (index-1)/2]] > Cx[PQ[front+index]]){ int swap = PQ[front+index]; PQ[front+index]=PQ[front+ (index-1)/2]; PQ[front+ (index-1)/2] = swap; index = (index-1)/2; } else break; } } i += K; } } } //for K in parallel template <class U> __global__ void checkMIN(unsigned int* PQ, unsigned int* PQ_size,int* flagEnd,U* Cx,int dest,int N,int K){ int id = blockIdx.x*blockDim.x+threadIdx.x; if(id < K && PQ_size[id] > 0 ){ int front = id* ( (N+K-1)/K ); int node = PQ[front]; //check if atleast one min, dont end the a* if( Cx[node] < Cx[dest] ){ atomicAnd(flagEnd,0); } } } template <class T, class U> __global__ void propogateDel(int* delEdgesV,int delEdge, volatile U* Cx, int* rev_offset,int* rev_edges,T* rev_weight,int N,int E, U* Hx,volatile int* parent,int* parent_old,int* addFlag, int* rev_diff_offset,int* rev_diff_edges,T* rev_diff_weight,int dE){ int id = blockIdx.x*blockDim.x+threadIdx.x; if(id<delEdge){ int node = delEdgesV[id]; //check for the parent and add to nextflag and update the cost int start = rev_offset[node]; int end = E; if(node!=N-1) end = rev_offset[node+1]; //no parent // write in parent read always from old_parent parent[node] = -1; Cx[node]=INT_MAX; addFlag[node]=1; int cost = INT_MAX; int opt_parent = -1; //if any parent can change the cost while(start< end){ int p = rev_edges[start]; //del edges if(p<0 || p==node){ start++; continue; } int weight = rev_weight[start]; int flag_cycle = false; //check parent doesn't contain node int ancestor = parent_old[p]; while(ancestor>0){ if(ancestor==node){ flag_cycle = true; break; } ancestor = parent_old[ancestor]; } //no need to lock only single parent so only one node in array so one node per thread if(!flag_cycle && Cx[p]!=INT_MAX && cost > (Cx[p]-Hx[p])+weight+Hx[node] ){ cost = (Cx[p]-Hx[p] )+weight+Hx[node]; opt_parent = p; } start++; } start = rev_diff_offset[node]; end = dE; if(node!=N-1) end = rev_diff_offset[node+1]; while(start< end){ int p = rev_diff_edges[start]; //del edges if(p<0 || p==node){ start++; continue; } int weight = rev_diff_weight[start]; int flag_cycle = false; //check parent doesn't contain node int ancestor = parent_old[p]; while(ancestor!=-1){ if(ancestor==node){ flag_cycle = true; break; } ancestor = parent_old[ancestor]; } //no need to lock only single parent so only one node in array so one node per thread if(!flag_cycle && Cx[p]!=INT_MAX && cost > (Cx[p]-Hx[p])+weight+Hx[node] ){ cost = (Cx[p]-Hx[p] )+weight+Hx[node]; opt_parent = p; } start++; } //write here if(cost!=INT_MAX){ Cx[node]=cost; parent[node]=opt_parent; } } } //add inserted edges to propogate template <class T, class U> __global__ void propogateAdd(int* diff_off, int* diff_edges,T* diff_W,U* Hx,int* addFlag, volatile U* Cx,int* lock, int* parent, int* parent_old, int N, int dE){ int id = blockIdx.x*blockDim.x+threadIdx.x; if(id < N){ int node = id; int start = diff_off[node]; int end = dE; if(node!=N-1) end = diff_off[node+1]; while(start < end ){ int child = diff_edges[start]; //deleted edges if(child<0){ start++; continue; } //array L initilaized with 0 //get the lock for child to update C(x) //loop till acquire the lock bool leaveLoop = false; while(!leaveLoop){ if(atomicCAS(&lock[child],0,1)==0){ //critical section bool flag_cycle = false; int ancestor = node; while(ancestor > 0){ if(ancestor==child){ flag_cycle = true; break; } ancestor = parent_old[ancestor]; } if(!flag_cycle && Cx[node] != INT_MAX && Cx[child] > (Cx[node] - Hx[node])+ diff_W[start]+ Hx[child] ){ Cx[child] = (Cx[node] - Hx[node])+ diff_W[start]+ Hx[child]; parent[child] = node; __threadfence(); addFlag[child]=1; } //end critical section leaveLoop = true; atomicCAS(&lock[child],1,0); } __syncthreads(); } start++; } } } template <class T,class U> __global__ void insert_propagate(int* nodes, int* size, int* off, int* edge,T* W,U* Hx, int N,int E,volatile U* Cx,int* lock, int* parent,int* addFlag, int* diff_off,int* diff_edge,T* diff_W,int dE){ int id = blockIdx.x*blockDim.x+threadIdx.x; if(id < *size){ int node = nodes[id]; int start = off[node]; int end = E; if(node!=N-1) end = off[node+1]; while(start < end ){ int child = edge[start]; //deleted edges if(child<0){ start++; continue; } bool leaveLoop = false; while(!leaveLoop){ if(atomicExch(&lock[child],1)==0){ if(Cx[node]!=INT_MAX && Cx[child] > (Cx[node] - Hx[node])+ W[start]+ Hx[child] ){ Cx[child] = (Cx[node] - Hx[node])+ W[start]+ Hx[child]; __threadfence(); parent[child] = node; addFlag[child]=1; } leaveLoop = true; atomicExch(&lock[child],0); } __syncthreads(); } start++; } start = diff_off[node]; end = dE; if(node!=N-1) end = diff_off[node+1]; while(start < end ){ int child = diff_edge[start]; //deleted edges if(child<0){ start++; continue; } bool leaveLoop = false; while(!leaveLoop){ if(atomicCAS(&lock[child],0,1)==0){ //critical section if(Cx[node]!=INT_MAX && Cx[child] > (Cx[node] - Hx[node])+ diff_W[start]+ Hx[child] ){ Cx[child] = (Cx[node] - Hx[node])+ diff_W[start]+ Hx[child]; __threadfence(); parent[child] = node; addFlag[child]=1; } //end critical section leaveLoop = true; atomicCAS(&lock[child],1,0); } __syncthreads(); } start++; } } } template <class T,class U> __global__ void delete_propagate(int* nodes, int* size, int* off, int* edge,T* W,U* Hx, int N,int E,volatile U* Cx,int* lock, int* parent,int* parent_old,int* addFlag, int* diff_off,int* diff_edge,T* diff_W,int dE, int* rev_offset,int* rev_edges,T* rev_weight, int* rev_diff_offset,int* rev_diff_edges,T* rev_diff_weight){ int id = blockIdx.x*blockDim.x+threadIdx.x; if(id < *size){ int node = nodes[id]; int start = off[node]; int end = E; if(node!=N-1) end = off[node+1]; while(start < end ){ int child = edge[start]; if(child<0){ start++; continue; } bool leaveLoop = false; while(!leaveLoop){ if(atomicExch(&lock[child],1)==0){ if(Cx[node]!=INT_MAX && Cx[child]!=INT_MAX && Cx[child] > (Cx[node] - Hx[node])+ W[start]+ Hx[child] ){ Cx[child] = (Cx[node] - Hx[node])+ W[start]+ Hx[child]; __threadfence(); parent[child] = node; addFlag[child]=1; } else if( (Cx[node]==INT_MAX && parent[child]==node ) || ( parent[child]==node && (Cx[child] < Cx[node] - Hx[node]+ W[start]+ Hx[child]) ) ){ //use back edges int rstart = rev_offset[child]; int rend = E; if(child!=N-1) rend = rev_offset[child+1]; //there is always one parent that is node. Cx[child] = INT_MAX; parent[child]=-1; while(rstart < rend){ int p = rev_edges[rstart]; if(p<0 || p == child){ rstart++; continue; } int weight = rev_weight[rstart]; bool flag_cycle = false; //check parent doesn't contain child int ancestor = parent_old[p]; while(ancestor > 0){ if(ancestor==child){ flag_cycle = true; break; } ancestor = parent_old[ancestor]; } if(!flag_cycle && Cx[p]!=INT_MAX && Cx[child] > (Cx[p]-Hx[p])+weight+Hx[child] ){ Cx[child] = (Cx[p]-Hx[p] )+weight+Hx[child]; parent[child] = p; } rstart++; } rstart = rev_diff_offset[child]; rend = dE; if(child!=N-1) rend = rev_diff_offset[child+1]; while(rstart < rend){ int p = rev_diff_edges[rstart]; if(p<0 || p==child){ rstart++; continue; } int weight = rev_diff_weight[rstart]; int flag_cycle = false; //check parent doesn't contain child int ancestor = parent_old[p]; while(ancestor!=-1){ if(ancestor==child){ flag_cycle = true; break; } ancestor = parent_old[ancestor]; } if(!flag_cycle && Cx[p]!=INT_MAX && Cx[child] > (Cx[p]-Hx[p])+weight+Hx[child] ){ Cx[child] = (Cx[p]-Hx[p] )+weight+Hx[child]; parent[child] = p; } rstart++; } addFlag[child]=1; } leaveLoop = true; atomicExch(&lock[child],0); } __syncthreads(); } start++; } start = diff_off[node]; end = dE; if(node!=N-1) end = diff_off[node+1]; while(start < end ){ int child = diff_edge[start]; //deleted edges if(child<0){ start++; continue; } //array L initilaized with 0 //get the lock for child to update C(x) //loop till acquire the lock bool leaveLoop = false; while(!leaveLoop){ if(atomicCAS(&lock[child],0,1)==0){ if(Cx[node]!=INT_MAX && Cx[child]!=INT_MAX && Cx[child] > (Cx[node] - Hx[node])+ W[start]+ Hx[child] ){ Cx[child] = (Cx[node] - Hx[node])+ W[start]+ Hx[child]; __threadfence(); parent[child] = node; addFlag[child]=1; } else if((Cx[node]==INT_MAX && parent[child]==node )|| ( parent[child]==node && (Cx[child] < Cx[node] - Hx[node]+ diff_W[start]+ Hx[child]) ) ){ //use back edges int rstart = rev_offset[child]; int rend = E; if(child!=N-1) rend = rev_offset[child+1]; //there is always one parent that is node. Cx[child] = INT_MAX; parent[child]=-1; while(rstart < rend){ int p = rev_edges[rstart]; if(p<0 || p ==child){ rstart++; continue; } int weight = rev_weight[rstart]; int flag_cycle = false; //check parent doesn't contain child int ancestor = parent_old[p]; while(ancestor!=-1){ if(ancestor==child) flag_cycle = true; ancestor = parent_old[ancestor]; } if(!flag_cycle && Cx[p]!=INT_MAX && Cx[child] > (Cx[p]-Hx[p])+weight+Hx[child] ){ Cx[child] = (Cx[p]-Hx[p] )+weight+Hx[child]; parent[child] = p; } rstart++; } rstart = rev_diff_offset[child]; rend = dE; if(child!=N-1) rend = rev_diff_offset[child+1]; while(rstart < rend){ int p = rev_diff_edges[rstart]; if(p<0 || p==child){ rstart++; continue; } int weight = rev_diff_weight[rstart]; int flag_cycle = false; //check parent doesn't contain child int ancestor = parent_old[p]; while(ancestor!=-1){ if(ancestor==child){ flag_cycle = true; break; } ancestor = parent_old[ancestor]; } if(!flag_cycle && Cx[p]!=INT_MAX && Cx[child] > (Cx[p]-Hx[p])+weight+Hx[child] ){ Cx[child] = (Cx[p]-Hx[p] )+weight+Hx[child]; parent[child] = p; } rstart++; } addFlag[child]=1; } //end critical section leaveLoop = true; atomicCAS(&lock[child],1,0); } __syncthreads(); } start++; } } } //do in 1 thread template <class U> __global__ void insertDest(unsigned int* PQ,unsigned int* PQ_size,U* Cx,int dest,int* openList){ int id = 0; int front = 0; if(openList[dest]==-1){ PQ[front+PQ_size[id]]= dest; PQ_size[id]+=1; //add in openList openList[dest] = id; if(PQ_size[id]>1){ int index = PQ_size[id]-1; while(index>0){ if(Cx[PQ[front+ (index-1)/2]] > Cx[PQ[front+index]]){ int swap = PQ[front+index]; PQ[front+index]=PQ[front+ (index-1)/2]; PQ[front+ (index-1)/2] = swap; index = (index-1)/2; } else break; } } } } template <class U> __global__ void getCx(U* Cx,int dest,U* val){ int id = blockIdx.x*blockDim.x+threadIdx.x; if(id==0){ *val = Cx[dest]; } } #endif
6464f03c608b35da1e8880a4473c638401e1a8c8.cu
#ifdef __NVCC__ // __device__ volatile int PQ[MAX_NODE]; //K in parallel template <class U> __global__ void extractMin(unsigned int* PQ, unsigned int* PQ_size, int* expandNodes,int* expandNodes_size,U* Cx,int* openList,int N,int K){ int id = blockIdx.x*blockDim.x+threadIdx.x; if(id<K && PQ_size[id]>0){ //extract min from PQ int front = id* ( (N+K-1)/K ); int node = PQ[front]; // restructure the heap PQ[front]=PQ[front+PQ_size[id]-1]; PQ_size[id]-=1; int pqIndex = 0; while(2*pqIndex+1 < PQ_size[id]){ if(2*pqIndex+2 >= PQ_size[id]){ if( Cx[PQ[front+pqIndex]] > Cx[PQ[front+2*pqIndex+1]]){ int swap = PQ[front + 2*pqIndex+1]; PQ[front + 2*pqIndex+1] = PQ[front +pqIndex]; PQ[front + pqIndex] = swap; pqIndex = 2*pqIndex+1; } else break; } else{ if( Cx[PQ[front+pqIndex]] > Cx[PQ[front+2*pqIndex+1]] && Cx[PQ[front+2*pqIndex+1]] <= Cx[PQ[front+2*pqIndex+2]] ){ int swap = PQ[front + 2*pqIndex+1]; PQ[front + 2*pqIndex+1] = PQ[front +pqIndex]; PQ[front + pqIndex] = swap; pqIndex = 2*pqIndex+1; } else if(Cx[PQ[front+pqIndex]] > Cx[PQ[front+2*pqIndex+2]] && Cx[PQ[front+2*pqIndex+2]] <= Cx[PQ[front+2*pqIndex+1]] ){ int swap = PQ[front + 2*pqIndex+2]; PQ[front + 2*pqIndex+2] = PQ[front +pqIndex]; PQ[front + pqIndex] = swap; pqIndex = 2*pqIndex+2; } else{ break; } } } //removed from openList openList[node] = -1; //added to expand next int len = atomicAdd(expandNodes_size,1); expandNodes[len]=node; } } //for K in parallel template <class T,class U> __global__ void A_star_expand(int* off,int* edge, T* W,U* Hx,int* parent,volatile U* Cx, int* expandNodes,int* expandNodes_size, int* lock ,int* flagfound,int* openList,int* nVFlag, int N,int E, int K,int dest, int flagDiff,int dE, int* diff_off,int* diff_edge,unsigned int* diff_weight ){ int id = blockIdx.x*blockDim.x+threadIdx.x; if(id< *expandNodes_size ){ int node = expandNodes[id]; //reach dest if(node == dest){ atomicOr(flagfound,1); } // expand int start = off[node]; int end = E; if(node!=N-1) end = off[node+1]; while(start < end){ int child = edge[start]; //deleted edges if(child<0){ start++; continue; } //array L initilaized with 0 //get the lock for child to update C(x) //loop till acquire the lock bool leaveLoop = false; while(leaveLoop==false){ if(atomicCAS(&lock[child],0,1)==0){ //critical section if( Cx[child] > (Cx[node] - Hx[node])+ W[start]+ Hx[child] ){ Cx[child] = (Cx[node] - Hx[node])+ W[start]+ Hx[child]; __threadfence(); parent[child] = node; if(openList[child]==-1){ nVFlag[child]=1; //add only once } } //end critical section leaveLoop = true; atomicCAS(&lock[child],1,0); } __syncthreads(); } start++; } //diff expand if(flagDiff){ start = diff_off[node]; end = dE; if(node!=N-1) end = diff_off[node+1]; while(start<end){ int child = diff_edge[start]; //deleted edges if(child<0){ start++; continue; } //array L initilaized with 0 //get the lock for child to update C(x) bool leaveLoop = false; while(!leaveLoop){ if(atomicCAS(&lock[child],0,1)==0){ //critical section if( Cx[child] > (Cx[node] - Hx[node])+ W[start]+ Hx[child] ){ Cx[child] = (Cx[node] - Hx[node])+ W[start]+ Hx[child]; __threadfence(); parent[child] = node; if(openList[child]==-1){ nVFlag[child]=1; //add only once } } //end critical section leaveLoop = true; atomicCAS(&lock[child],1,0); } __syncthreads(); } start++; } } //end diff }//end } //K in parallel -- O(N) template <class U> __global__ void keepHeapPQ(unsigned int* PQ,unsigned int* PQ_size,U* Cx,int N,int K){ int id = blockIdx.x*blockDim.x+threadIdx.x; if(id < K && PQ_size[id] > 0){ int front = id*( (N+K-1)/K ); int size = PQ_size[id]; for(int i=front;i<front+size;i++){ if(2*i+2 < front+size){ int cost = Cx[PQ[i]]; int costLeft = Cx[PQ[2*i+1]]; int costRight = Cx[PQ[2*i+2]]; if( cost > costLeft || cost > costRight ){ int index ; if(costLeft <= costRight) index = 2*i+1; else index = 2*i+2; while(index > front){ if( Cx[PQ[(index-1)/2]] > Cx[PQ[index]] ){ int swap = PQ[index]; PQ[index] = PQ[(index-1)/2]; PQ[(index-1)/2] = swap; index = (index-1)/2; } else break; } } } else if(2*i+1 < front+size){ if(Cx[PQ[i]] > Cx[PQ[2*i+1]]){ int index = 2*i+1; while(index > front){ if( Cx[PQ[(index-1)/2]] > Cx[PQ[index]] ){ int swap = PQ[index]; PQ[index] = PQ[(index-1)/2]; PQ[(index-1)/2] = swap; index = (index-1)/2; } else break; } } } } } } //N threads __global__ void setNV(int* nextFlag,int* nextV,int* nvSize,int N){ int id = blockIdx.x*blockDim.x+threadIdx.x; if(id < N){ if(nextFlag[id]==1){ int index = atomicAdd(nvSize,1); nextV[index]=id; } } } //for K in parallel template <class U> __global__ void insertPQ(unsigned int* PQ,unsigned int* PQS,int* nextV,int* nVsize,U* Cx,int K,int N,int* openList){ int id = blockIdx.x*blockDim.x+threadIdx.x; if(id < K){ int front = id*( (N+K-1)/K ); int i = id; while(i<*nVsize){ //if not already present if(openList[nextV[i]]!=-1){ i+=K; continue; } PQ[front+PQS[id]]= nextV[i]; PQS[id]+=1; //add in openList openList[nextV[i]] = id; if(PQS[id]>1){ int index = PQS[id]-1; while(index>0){ if(Cx[PQ[front+ (index-1)/2]] > Cx[PQ[front+index]]){ int swap = PQ[front+index]; PQ[front+index]=PQ[front+ (index-1)/2]; PQ[front+ (index-1)/2] = swap; index = (index-1)/2; } else break; } } i += K; } } } //for K in parallel template <class U> __global__ void checkMIN(unsigned int* PQ, unsigned int* PQ_size,int* flagEnd,U* Cx,int dest,int N,int K){ int id = blockIdx.x*blockDim.x+threadIdx.x; if(id < K && PQ_size[id] > 0 ){ int front = id* ( (N+K-1)/K ); int node = PQ[front]; //check if atleast one min, dont end the a* if( Cx[node] < Cx[dest] ){ atomicAnd(flagEnd,0); } } } template <class T, class U> __global__ void propogateDel(int* delEdgesV,int delEdge, volatile U* Cx, int* rev_offset,int* rev_edges,T* rev_weight,int N,int E, U* Hx,volatile int* parent,int* parent_old,int* addFlag, int* rev_diff_offset,int* rev_diff_edges,T* rev_diff_weight,int dE){ int id = blockIdx.x*blockDim.x+threadIdx.x; if(id<delEdge){ int node = delEdgesV[id]; //check for the parent and add to nextflag and update the cost int start = rev_offset[node]; int end = E; if(node!=N-1) end = rev_offset[node+1]; //no parent // write in parent read always from old_parent parent[node] = -1; Cx[node]=INT_MAX; addFlag[node]=1; int cost = INT_MAX; int opt_parent = -1; //if any parent can change the cost while(start< end){ int p = rev_edges[start]; //del edges if(p<0 || p==node){ start++; continue; } int weight = rev_weight[start]; int flag_cycle = false; //check parent doesn't contain node int ancestor = parent_old[p]; while(ancestor>0){ if(ancestor==node){ flag_cycle = true; break; } ancestor = parent_old[ancestor]; } //no need to lock only single parent so only one node in array so one node per thread if(!flag_cycle && Cx[p]!=INT_MAX && cost > (Cx[p]-Hx[p])+weight+Hx[node] ){ cost = (Cx[p]-Hx[p] )+weight+Hx[node]; opt_parent = p; } start++; } start = rev_diff_offset[node]; end = dE; if(node!=N-1) end = rev_diff_offset[node+1]; while(start< end){ int p = rev_diff_edges[start]; //del edges if(p<0 || p==node){ start++; continue; } int weight = rev_diff_weight[start]; int flag_cycle = false; //check parent doesn't contain node int ancestor = parent_old[p]; while(ancestor!=-1){ if(ancestor==node){ flag_cycle = true; break; } ancestor = parent_old[ancestor]; } //no need to lock only single parent so only one node in array so one node per thread if(!flag_cycle && Cx[p]!=INT_MAX && cost > (Cx[p]-Hx[p])+weight+Hx[node] ){ cost = (Cx[p]-Hx[p] )+weight+Hx[node]; opt_parent = p; } start++; } //write here if(cost!=INT_MAX){ Cx[node]=cost; parent[node]=opt_parent; } } } //add inserted edges to propogate template <class T, class U> __global__ void propogateAdd(int* diff_off, int* diff_edges,T* diff_W,U* Hx,int* addFlag, volatile U* Cx,int* lock, int* parent, int* parent_old, int N, int dE){ int id = blockIdx.x*blockDim.x+threadIdx.x; if(id < N){ int node = id; int start = diff_off[node]; int end = dE; if(node!=N-1) end = diff_off[node+1]; while(start < end ){ int child = diff_edges[start]; //deleted edges if(child<0){ start++; continue; } //array L initilaized with 0 //get the lock for child to update C(x) //loop till acquire the lock bool leaveLoop = false; while(!leaveLoop){ if(atomicCAS(&lock[child],0,1)==0){ //critical section bool flag_cycle = false; int ancestor = node; while(ancestor > 0){ if(ancestor==child){ flag_cycle = true; break; } ancestor = parent_old[ancestor]; } if(!flag_cycle && Cx[node] != INT_MAX && Cx[child] > (Cx[node] - Hx[node])+ diff_W[start]+ Hx[child] ){ Cx[child] = (Cx[node] - Hx[node])+ diff_W[start]+ Hx[child]; parent[child] = node; __threadfence(); addFlag[child]=1; } //end critical section leaveLoop = true; atomicCAS(&lock[child],1,0); } __syncthreads(); } start++; } } } template <class T,class U> __global__ void insert_propagate(int* nodes, int* size, int* off, int* edge,T* W,U* Hx, int N,int E,volatile U* Cx,int* lock, int* parent,int* addFlag, int* diff_off,int* diff_edge,T* diff_W,int dE){ int id = blockIdx.x*blockDim.x+threadIdx.x; if(id < *size){ int node = nodes[id]; int start = off[node]; int end = E; if(node!=N-1) end = off[node+1]; while(start < end ){ int child = edge[start]; //deleted edges if(child<0){ start++; continue; } bool leaveLoop = false; while(!leaveLoop){ if(atomicExch(&lock[child],1)==0){ if(Cx[node]!=INT_MAX && Cx[child] > (Cx[node] - Hx[node])+ W[start]+ Hx[child] ){ Cx[child] = (Cx[node] - Hx[node])+ W[start]+ Hx[child]; __threadfence(); parent[child] = node; addFlag[child]=1; } leaveLoop = true; atomicExch(&lock[child],0); } __syncthreads(); } start++; } start = diff_off[node]; end = dE; if(node!=N-1) end = diff_off[node+1]; while(start < end ){ int child = diff_edge[start]; //deleted edges if(child<0){ start++; continue; } bool leaveLoop = false; while(!leaveLoop){ if(atomicCAS(&lock[child],0,1)==0){ //critical section if(Cx[node]!=INT_MAX && Cx[child] > (Cx[node] - Hx[node])+ diff_W[start]+ Hx[child] ){ Cx[child] = (Cx[node] - Hx[node])+ diff_W[start]+ Hx[child]; __threadfence(); parent[child] = node; addFlag[child]=1; } //end critical section leaveLoop = true; atomicCAS(&lock[child],1,0); } __syncthreads(); } start++; } } } template <class T,class U> __global__ void delete_propagate(int* nodes, int* size, int* off, int* edge,T* W,U* Hx, int N,int E,volatile U* Cx,int* lock, int* parent,int* parent_old,int* addFlag, int* diff_off,int* diff_edge,T* diff_W,int dE, int* rev_offset,int* rev_edges,T* rev_weight, int* rev_diff_offset,int* rev_diff_edges,T* rev_diff_weight){ int id = blockIdx.x*blockDim.x+threadIdx.x; if(id < *size){ int node = nodes[id]; int start = off[node]; int end = E; if(node!=N-1) end = off[node+1]; while(start < end ){ int child = edge[start]; if(child<0){ start++; continue; } bool leaveLoop = false; while(!leaveLoop){ if(atomicExch(&lock[child],1)==0){ if(Cx[node]!=INT_MAX && Cx[child]!=INT_MAX && Cx[child] > (Cx[node] - Hx[node])+ W[start]+ Hx[child] ){ Cx[child] = (Cx[node] - Hx[node])+ W[start]+ Hx[child]; __threadfence(); parent[child] = node; addFlag[child]=1; } else if( (Cx[node]==INT_MAX && parent[child]==node ) || ( parent[child]==node && (Cx[child] < Cx[node] - Hx[node]+ W[start]+ Hx[child]) ) ){ //use back edges int rstart = rev_offset[child]; int rend = E; if(child!=N-1) rend = rev_offset[child+1]; //there is always one parent that is node. Cx[child] = INT_MAX; parent[child]=-1; while(rstart < rend){ int p = rev_edges[rstart]; if(p<0 || p == child){ rstart++; continue; } int weight = rev_weight[rstart]; bool flag_cycle = false; //check parent doesn't contain child int ancestor = parent_old[p]; while(ancestor > 0){ if(ancestor==child){ flag_cycle = true; break; } ancestor = parent_old[ancestor]; } if(!flag_cycle && Cx[p]!=INT_MAX && Cx[child] > (Cx[p]-Hx[p])+weight+Hx[child] ){ Cx[child] = (Cx[p]-Hx[p] )+weight+Hx[child]; parent[child] = p; } rstart++; } rstart = rev_diff_offset[child]; rend = dE; if(child!=N-1) rend = rev_diff_offset[child+1]; while(rstart < rend){ int p = rev_diff_edges[rstart]; if(p<0 || p==child){ rstart++; continue; } int weight = rev_diff_weight[rstart]; int flag_cycle = false; //check parent doesn't contain child int ancestor = parent_old[p]; while(ancestor!=-1){ if(ancestor==child){ flag_cycle = true; break; } ancestor = parent_old[ancestor]; } if(!flag_cycle && Cx[p]!=INT_MAX && Cx[child] > (Cx[p]-Hx[p])+weight+Hx[child] ){ Cx[child] = (Cx[p]-Hx[p] )+weight+Hx[child]; parent[child] = p; } rstart++; } addFlag[child]=1; } leaveLoop = true; atomicExch(&lock[child],0); } __syncthreads(); } start++; } start = diff_off[node]; end = dE; if(node!=N-1) end = diff_off[node+1]; while(start < end ){ int child = diff_edge[start]; //deleted edges if(child<0){ start++; continue; } //array L initilaized with 0 //get the lock for child to update C(x) //loop till acquire the lock bool leaveLoop = false; while(!leaveLoop){ if(atomicCAS(&lock[child],0,1)==0){ if(Cx[node]!=INT_MAX && Cx[child]!=INT_MAX && Cx[child] > (Cx[node] - Hx[node])+ W[start]+ Hx[child] ){ Cx[child] = (Cx[node] - Hx[node])+ W[start]+ Hx[child]; __threadfence(); parent[child] = node; addFlag[child]=1; } else if((Cx[node]==INT_MAX && parent[child]==node )|| ( parent[child]==node && (Cx[child] < Cx[node] - Hx[node]+ diff_W[start]+ Hx[child]) ) ){ //use back edges int rstart = rev_offset[child]; int rend = E; if(child!=N-1) rend = rev_offset[child+1]; //there is always one parent that is node. Cx[child] = INT_MAX; parent[child]=-1; while(rstart < rend){ int p = rev_edges[rstart]; if(p<0 || p ==child){ rstart++; continue; } int weight = rev_weight[rstart]; int flag_cycle = false; //check parent doesn't contain child int ancestor = parent_old[p]; while(ancestor!=-1){ if(ancestor==child) flag_cycle = true; ancestor = parent_old[ancestor]; } if(!flag_cycle && Cx[p]!=INT_MAX && Cx[child] > (Cx[p]-Hx[p])+weight+Hx[child] ){ Cx[child] = (Cx[p]-Hx[p] )+weight+Hx[child]; parent[child] = p; } rstart++; } rstart = rev_diff_offset[child]; rend = dE; if(child!=N-1) rend = rev_diff_offset[child+1]; while(rstart < rend){ int p = rev_diff_edges[rstart]; if(p<0 || p==child){ rstart++; continue; } int weight = rev_diff_weight[rstart]; int flag_cycle = false; //check parent doesn't contain child int ancestor = parent_old[p]; while(ancestor!=-1){ if(ancestor==child){ flag_cycle = true; break; } ancestor = parent_old[ancestor]; } if(!flag_cycle && Cx[p]!=INT_MAX && Cx[child] > (Cx[p]-Hx[p])+weight+Hx[child] ){ Cx[child] = (Cx[p]-Hx[p] )+weight+Hx[child]; parent[child] = p; } rstart++; } addFlag[child]=1; } //end critical section leaveLoop = true; atomicCAS(&lock[child],1,0); } __syncthreads(); } start++; } } } //do in 1 thread template <class U> __global__ void insertDest(unsigned int* PQ,unsigned int* PQ_size,U* Cx,int dest,int* openList){ int id = 0; int front = 0; if(openList[dest]==-1){ PQ[front+PQ_size[id]]= dest; PQ_size[id]+=1; //add in openList openList[dest] = id; if(PQ_size[id]>1){ int index = PQ_size[id]-1; while(index>0){ if(Cx[PQ[front+ (index-1)/2]] > Cx[PQ[front+index]]){ int swap = PQ[front+index]; PQ[front+index]=PQ[front+ (index-1)/2]; PQ[front+ (index-1)/2] = swap; index = (index-1)/2; } else break; } } } } template <class U> __global__ void getCx(U* Cx,int dest,U* val){ int id = blockIdx.x*blockDim.x+threadIdx.x; if(id==0){ *val = Cx[dest]; } } #endif
e03eaf0f8514586932d0c8df19f5cb27fb4f818e.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "includes.h" __global__ void vecAdd(unsigned int *A_d, unsigned int *B_d, unsigned int *C_d, int WORK_SIZE) { //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ // **** Populate vecADD kernel function **** //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ // Get our global thread ID int id = blockIdx.x*blockDim.x+threadIdx.x; // Make sure we do not go out of bounds if (id < WORK_SIZE) C_d[id] = A_d[id] + B_d[id]; }
e03eaf0f8514586932d0c8df19f5cb27fb4f818e.cu
#include "includes.h" __global__ void vecAdd(unsigned int *A_d, unsigned int *B_d, unsigned int *C_d, int WORK_SIZE) { //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ // **** Populate vecADD kernel function **** //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ // Get our global thread ID int id = blockIdx.x*blockDim.x+threadIdx.x; // Make sure we do not go out of bounds if (id < WORK_SIZE) C_d[id] = A_d[id] + B_d[id]; }
94b1af223063afa630216eb227be9d5f2a39dc15.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include <stdio.h> #include <iostream> #include <hip/hip_cooperative_groups.h> #include <math.h> #include <string.h> #include <sstream> #include <fstream> //#include <bits/stdc++.h> //#include <stdlib.h> //#include <time.h> using namespace std; //using namespace cooperative_groups; /***DEFINING THE DEFINES FOR THE ARRAY INDICES****************************/ //#define N 128 #define C 96 #define H 31 #define W 31 #define R 5 #define S 5 #define M 256 #define E 27 #define F 27 #define U 1 __global__ void red_ch(float* d_r, float* d_o, int num_ch, int num_img, int num_wt) { for(int i=0; i<num_ch; i++) { int row = threadIdx.y; int col = threadIdx.x; d_r[blockIdx.x*num_wt*blockDim.x*blockDim.y+blockIdx.y*blockDim.x*blockDim.y+row*blockDim.x+col] += d_o[i*(num_wt*num_img*blockDim.x*blockDim.y)+blockIdx.x*num_wt*blockDim.x*blockDim.y+blockIdx.y*blockDim.x*blockDim.y+row*blockDim.x+col] ; } } __global__ void ew_gpu_mmul(float* d_o, float* d_i, float* d_w, int width, int height, int stride, int ip_height, int wt_width, int num_wt,int num_img, int num_ch) {float prod; int row = threadIdx.y; int col = threadIdx.x; if((row<height) && (col<width)){ for (int i=0; i<wt_width; i++){ for (int j=0; j<wt_width; j++){ // for(int k=0; k<num_ch; k++){ float ip = d_i[blockIdx.x*num_ch*ip_height*ip_height+blockIdx.z*ip_height*ip_height+(stride*(row)+i)*ip_height+(stride*(col)+j)]; float wt = d_w[blockIdx.y*num_ch*wt_width*wt_width+blockIdx.z*wt_width*wt_width+(i*wt_width+j)]; prod = ip*wt; d_o[blockIdx.z*(num_wt*num_img*blockDim.x*blockDim.y)+blockIdx.x*num_wt*blockDim.x*blockDim.y+blockIdx.y*blockDim.x*blockDim.y+row*blockDim.x+col] += prod; //printf("the value of out is %f for index %d,%d\n",) //} } } if(d_o[blockIdx.z*(num_wt*num_img*blockDim.x*blockDim.y)+blockIdx.x*num_wt*blockDim.x*blockDim.y+blockIdx.y*blockDim.x*blockDim.y+row*blockDim.x+col]<0) d_o[blockIdx.z*(num_wt*num_img*blockDim.x*blockDim.y)+blockIdx.x*num_wt*blockDim.x*blockDim.y+blockIdx.y*blockDim.x*blockDim.y+row*blockDim.x+col]=0; } } void element_wise_mmul(float* output, float* input, float* weight, int batch_size) { int x,y,i,j,m,n,k; for(n=0; n<batch_size; n++){ for (m=0 ; m<M; m++){ for (x=0; x<F; x++){ for(y=0; y<E; y++){ // OP[x][y] = 0; // adding bias to output for (i=0; i<R; i++){ for (j=0; j<S; j++){ for(k=0; k<C; k++){ float ip = input[n*C*H*W+k*H*W+(U*x+i)*H+(U*y+j)]; float wt = weight[m*C*R*S+k*R*S+i*S+j]; float prod = ip*wt; if(prod>=0) output[n*E*F*M+m*E*F+x*E+y] += prod; //OP[x][y] += IP[U*x+i][U*y+j]*WT[i][j]; }} } } } } } } int main(int argc, char* argv[]) { int batch_size = atoi(argv[1]); /*************INITALIZING MATRICES*********************************/ float *IP = (float*) malloc(batch_size*C*H*W*sizeof(float)); //float IP[H][W]; float *OP = (float*) malloc(batch_size*M*F*E*sizeof(float)); //float OP[F][E]; float *OPG = (float*) malloc(batch_size*M*F*E*sizeof(float)); float *WT = (float*) malloc(M*C*R*S*sizeof(float)); //float WT[R][S]; float* d_o; float* d_i; float* d_w; float* d_r; //clock_t cpu_start, gpu_start, cpu_end, gpu_end; //int a,b,c,d; int c,d,m,n,k; /*INITIALIZING WEIGHT MATRIX*/ for (m=0; m<M; m++){ for(k=0;k<C;k++){ for (c=0; c<R; c++){ for(d=0; d<S; d++){ //WT[c][d] = 2.0; //WT[m*C*R*S+k*R*S+c*S+d] = (int)k+1; WT[m*C*R*S+k*R*S+c*S+d] = (float)rand()/(float)(RAND_MAX+1.0); } } } } /*INITIALIZING OUTPUT MATRIX*/ for (n=0; n<batch_size;n++){ for (m=0; m<M; m++){ for (c=0; c<F; c++){ for(d=0; d<E; d++){ //OP[c][d] = 0; OP[n*M*F*E+m*F*E+c*E+d] = 0; } } } } /*INITIALIZING INPUT MATRIX*/ for (n=0; n<batch_size; n++){ for(k=0;k<C;k++){ for (c=0; c<H; c++){ for(d=0; d<W; d++){ // IP[c][d] = (a+b+c+d); // IP[n*C*H*W+k*H*W+c*W+d] = (c+1); if ((c<=1) || (d<=1) || (c>=29) || (d>=29)) IP[n*C*H*W+k*H*W+c*W+d] = 0; else IP[n*C*H*W+k*H*W+c*W+d] = (float)rand()/(RAND_MAX+1.0); } } } } if(hipSuccess != hipMalloc((void**) &d_i,batch_size*C*H*W*sizeof(float))) { printf("error in d_i malloc\n"); } hipMemcpy(d_i, IP, batch_size*C*H*W*sizeof(float), hipMemcpyHostToDevice); if(hipSuccess != hipMalloc((void**) &d_w, M*C*R*S*sizeof(float))) { printf("error in d_w malloc\n"); } hipMemcpy(d_w, WT, M*C*R*S*sizeof(float), hipMemcpyHostToDevice); if(hipSuccess != hipMalloc((void**) &d_o,(long int)C*batch_size*M*E*F*sizeof(float))) { printf("error in d_o malloc\n"); } if(hipSuccess != hipMalloc((void**) &d_r,batch_size*M*E*F*sizeof(float))) { printf("error in d_r malloc\n"); } //cpu_start = clock(); //element_wise_mmul(OP, IP, WT, batch_size); //cpu_end = clock(); dim3 dimGrid(batch_size,256,96); dim3 dimBlock(27,27,1); dim3 dimGridRed(batch_size,256,1); dim3 dimBlockRed(27,27,1); //int op_height = 3; int op_width = 3; int stride = 1; int ip_height = 4;int wt_height = 2; int num_wt = 96; int num_img = 1; int num_ch = 384; //gpu_start = clock();hipLaunchKernelGGL(( ew_gpu_mmul), dim3(dimGrid), dim3(dimBlock), 0, 0, d_o,d_i,d_w,27,27,1,31,5,256,batch_size,96); hipDeviceSynchronize();hipLaunchKernelGGL(( red_ch), dim3(dimGridRed), dim3(dimBlockRed), 0, 0, d_r,d_o,96,batch_size,256); //gpu_end = clock(); //void *kernelArgs[] = {(void *)&d_o, (void *)&d_i, (void *)&d_w,(void *)&op_height, (void *)&op_width, (void *)&stride, (void *)&ip_height,(void *)&wt_height, (void *)&num_wt, (void *)&num_img, (void *)&num_ch }; //hipLaunchCooperativeKernel((void*)ew_gpu_mmul,dimGrid,dimBlock,kernelArgs,0,NULL); //hipDeviceSynchronize(); hipMemcpy(OPG,d_r,batch_size*M*E*F*sizeof(float), hipMemcpyDeviceToHost); /**print outputs**/ //int e,f,g,h; int g,h,s,u; float max_error = 0; string filename = "layer_2_"+to_string(batch_size); ifstream fin(filename.c_str()); string line ; //for (t=0;t<C;t++){ for (u=0;u<batch_size;u++){ for (s=0;s<M;s++){ for (g=0; g<F; g++){ for(h=0; h<E; h++){ getline(fin,line); float error = abs(OPG[u*M*F*E+s*E*F+g*E+h]-atof(line.c_str())); //float error = abs(OPG[u*M*F*E+s*E*F+g*E+h]-OP[u*M*F*E+s*E*F+g*E+h]); if(error > max_error) max_error = error; // printf("the output is %f for index %d, %d,%d,%d.\n",OP[u*M*F*E+s*E*F+g*E+h],u,s,g,h); // printf("diff CPU and GPU is %f for index %d,%d,%d,%d.\n", OPG[u*M*F*E+s*E*F+g*E+h]-OP[u*M*F*E+s*E*F+g*E+h],u,s,g,h); // printf("the output from GPU is %f for index,%d,%d,%d,%d.\n",OPG[u*M*F*E+s*E*F+g*E+h],u,s,g,h); } } } } fin.close(); printf("max error is %f\n", max_error); //} //cout<<"time taken by cpu call is "<<((double)(cpu_end-cpu_start))/CLOCKS_PER_SEC<<"secs"<<endl; //cout<<"time taken by gpu call is "<<((double)(gpu_end-gpu_start))/CLOCKS_PER_SEC<<"secs"<<endl; hipFree(d_o); hipFree(d_i); hipFree(d_w); hipFree(d_r); free(OPG); free(IP); free(WT); free(OP); return 0; }
94b1af223063afa630216eb227be9d5f2a39dc15.cu
#include <stdio.h> #include <iostream> #include <cooperative_groups.h> #include <math.h> #include <string.h> #include <sstream> #include <fstream> //#include <bits/stdc++.h> //#include <stdlib.h> //#include <time.h> using namespace std; //using namespace cooperative_groups; /***DEFINING THE DEFINES FOR THE ARRAY INDICES****************************/ //#define N 128 #define C 96 #define H 31 #define W 31 #define R 5 #define S 5 #define M 256 #define E 27 #define F 27 #define U 1 __global__ void red_ch(float* d_r, float* d_o, int num_ch, int num_img, int num_wt) { for(int i=0; i<num_ch; i++) { int row = threadIdx.y; int col = threadIdx.x; d_r[blockIdx.x*num_wt*blockDim.x*blockDim.y+blockIdx.y*blockDim.x*blockDim.y+row*blockDim.x+col] += d_o[i*(num_wt*num_img*blockDim.x*blockDim.y)+blockIdx.x*num_wt*blockDim.x*blockDim.y+blockIdx.y*blockDim.x*blockDim.y+row*blockDim.x+col] ; } } __global__ void ew_gpu_mmul(float* d_o, float* d_i, float* d_w, int width, int height, int stride, int ip_height, int wt_width, int num_wt,int num_img, int num_ch) {float prod; int row = threadIdx.y; int col = threadIdx.x; if((row<height) && (col<width)){ for (int i=0; i<wt_width; i++){ for (int j=0; j<wt_width; j++){ // for(int k=0; k<num_ch; k++){ float ip = d_i[blockIdx.x*num_ch*ip_height*ip_height+blockIdx.z*ip_height*ip_height+(stride*(row)+i)*ip_height+(stride*(col)+j)]; float wt = d_w[blockIdx.y*num_ch*wt_width*wt_width+blockIdx.z*wt_width*wt_width+(i*wt_width+j)]; prod = ip*wt; d_o[blockIdx.z*(num_wt*num_img*blockDim.x*blockDim.y)+blockIdx.x*num_wt*blockDim.x*blockDim.y+blockIdx.y*blockDim.x*blockDim.y+row*blockDim.x+col] += prod; //printf("the value of out is %f for index %d,%d\n",) //} } } if(d_o[blockIdx.z*(num_wt*num_img*blockDim.x*blockDim.y)+blockIdx.x*num_wt*blockDim.x*blockDim.y+blockIdx.y*blockDim.x*blockDim.y+row*blockDim.x+col]<0) d_o[blockIdx.z*(num_wt*num_img*blockDim.x*blockDim.y)+blockIdx.x*num_wt*blockDim.x*blockDim.y+blockIdx.y*blockDim.x*blockDim.y+row*blockDim.x+col]=0; } } void element_wise_mmul(float* output, float* input, float* weight, int batch_size) { int x,y,i,j,m,n,k; for(n=0; n<batch_size; n++){ for (m=0 ; m<M; m++){ for (x=0; x<F; x++){ for(y=0; y<E; y++){ // OP[x][y] = 0; // adding bias to output for (i=0; i<R; i++){ for (j=0; j<S; j++){ for(k=0; k<C; k++){ float ip = input[n*C*H*W+k*H*W+(U*x+i)*H+(U*y+j)]; float wt = weight[m*C*R*S+k*R*S+i*S+j]; float prod = ip*wt; if(prod>=0) output[n*E*F*M+m*E*F+x*E+y] += prod; //OP[x][y] += IP[U*x+i][U*y+j]*WT[i][j]; }} } } } } } } int main(int argc, char* argv[]) { int batch_size = atoi(argv[1]); /*************INITALIZING MATRICES*********************************/ float *IP = (float*) malloc(batch_size*C*H*W*sizeof(float)); //float IP[H][W]; float *OP = (float*) malloc(batch_size*M*F*E*sizeof(float)); //float OP[F][E]; float *OPG = (float*) malloc(batch_size*M*F*E*sizeof(float)); float *WT = (float*) malloc(M*C*R*S*sizeof(float)); //float WT[R][S]; float* d_o; float* d_i; float* d_w; float* d_r; //clock_t cpu_start, gpu_start, cpu_end, gpu_end; //int a,b,c,d; int c,d,m,n,k; /*INITIALIZING WEIGHT MATRIX*/ for (m=0; m<M; m++){ for(k=0;k<C;k++){ for (c=0; c<R; c++){ for(d=0; d<S; d++){ //WT[c][d] = 2.0; //WT[m*C*R*S+k*R*S+c*S+d] = (int)k+1; WT[m*C*R*S+k*R*S+c*S+d] = (float)rand()/(float)(RAND_MAX+1.0); } } } } /*INITIALIZING OUTPUT MATRIX*/ for (n=0; n<batch_size;n++){ for (m=0; m<M; m++){ for (c=0; c<F; c++){ for(d=0; d<E; d++){ //OP[c][d] = 0; OP[n*M*F*E+m*F*E+c*E+d] = 0; } } } } /*INITIALIZING INPUT MATRIX*/ for (n=0; n<batch_size; n++){ for(k=0;k<C;k++){ for (c=0; c<H; c++){ for(d=0; d<W; d++){ // IP[c][d] = (a+b+c+d); // IP[n*C*H*W+k*H*W+c*W+d] = (c+1); if ((c<=1) || (d<=1) || (c>=29) || (d>=29)) IP[n*C*H*W+k*H*W+c*W+d] = 0; else IP[n*C*H*W+k*H*W+c*W+d] = (float)rand()/(RAND_MAX+1.0); } } } } if(cudaSuccess != cudaMalloc((void**) &d_i,batch_size*C*H*W*sizeof(float))) { printf("error in d_i malloc\n"); } cudaMemcpy(d_i, IP, batch_size*C*H*W*sizeof(float), cudaMemcpyHostToDevice); if(cudaSuccess != cudaMalloc((void**) &d_w, M*C*R*S*sizeof(float))) { printf("error in d_w malloc\n"); } cudaMemcpy(d_w, WT, M*C*R*S*sizeof(float), cudaMemcpyHostToDevice); if(cudaSuccess != cudaMalloc((void**) &d_o,(long int)C*batch_size*M*E*F*sizeof(float))) { printf("error in d_o malloc\n"); } if(cudaSuccess != cudaMalloc((void**) &d_r,batch_size*M*E*F*sizeof(float))) { printf("error in d_r malloc\n"); } //cpu_start = clock(); //element_wise_mmul(OP, IP, WT, batch_size); //cpu_end = clock(); dim3 dimGrid(batch_size,256,96); dim3 dimBlock(27,27,1); dim3 dimGridRed(batch_size,256,1); dim3 dimBlockRed(27,27,1); //int op_height = 3; int op_width = 3; int stride = 1; int ip_height = 4;int wt_height = 2; int num_wt = 96; int num_img = 1; int num_ch = 384; //gpu_start = clock(); ew_gpu_mmul<<<dimGrid, dimBlock>>>(d_o,d_i,d_w,27,27,1,31,5,256,batch_size,96); cudaDeviceSynchronize(); red_ch<<<dimGridRed, dimBlockRed>>>(d_r,d_o,96,batch_size,256); //gpu_end = clock(); //void *kernelArgs[] = {(void *)&d_o, (void *)&d_i, (void *)&d_w,(void *)&op_height, (void *)&op_width, (void *)&stride, (void *)&ip_height,(void *)&wt_height, (void *)&num_wt, (void *)&num_img, (void *)&num_ch }; //cudaLaunchCooperativeKernel((void*)ew_gpu_mmul,dimGrid,dimBlock,kernelArgs,0,NULL); //cudaDeviceSynchronize(); cudaMemcpy(OPG,d_r,batch_size*M*E*F*sizeof(float), cudaMemcpyDeviceToHost); /**print outputs**/ //int e,f,g,h; int g,h,s,u; float max_error = 0; string filename = "layer_2_"+to_string(batch_size); ifstream fin(filename.c_str()); string line ; //for (t=0;t<C;t++){ for (u=0;u<batch_size;u++){ for (s=0;s<M;s++){ for (g=0; g<F; g++){ for(h=0; h<E; h++){ getline(fin,line); float error = abs(OPG[u*M*F*E+s*E*F+g*E+h]-atof(line.c_str())); //float error = abs(OPG[u*M*F*E+s*E*F+g*E+h]-OP[u*M*F*E+s*E*F+g*E+h]); if(error > max_error) max_error = error; // printf("the output is %f for index %d, %d,%d,%d.\n",OP[u*M*F*E+s*E*F+g*E+h],u,s,g,h); // printf("diff CPU and GPU is %f for index %d,%d,%d,%d.\n", OPG[u*M*F*E+s*E*F+g*E+h]-OP[u*M*F*E+s*E*F+g*E+h],u,s,g,h); // printf("the output from GPU is %f for index,%d,%d,%d,%d.\n",OPG[u*M*F*E+s*E*F+g*E+h],u,s,g,h); } } } } fin.close(); printf("max error is %f\n", max_error); //} //cout<<"time taken by cpu call is "<<((double)(cpu_end-cpu_start))/CLOCKS_PER_SEC<<"secs"<<endl; //cout<<"time taken by gpu call is "<<((double)(gpu_end-gpu_start))/CLOCKS_PER_SEC<<"secs"<<endl; cudaFree(d_o); cudaFree(d_i); cudaFree(d_w); cudaFree(d_r); free(OPG); free(IP); free(WT); free(OP); return 0; }
fe2312b5e81dc15cec89ca8d98ec50f530c2a169.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "depth_filter/cuda/allocator.cuh" using namespace depth_filter; using namespace std; template <typename T> __global__ void test_2d_class(AbstractAllocator<T> *dev_ptr) { size_t tidx = blockIdx.x*blockDim.x+threadIdx.x; size_t tidy = blockIdx.y*blockDim.y+threadIdx.y; if ((tidx < dev_ptr->width()) && (tidy < dev_ptr->height())) (*dev_ptr)(tidx, tidy) = (*dev_ptr)(tidx, tidy)*tidx*tidy; } int main() { float data[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 12, 13, 14, 15}; AbstractAllocator<float> a(4, 4); a.set_data(data); float dev2host[16]; a.get_data(dev2host); for (size_t i = 0; i < 16; ++i) printf("i = %lu\t:\t%f\n", i, dev2host[i]); printf("\n"); dim3 grid_size((4+16-1)/4, (4+16-1)/4); dim3 block_size(16, 16); hipLaunchKernelGGL(( test_2d_class), dim3(grid_size), dim3(block_size), 0, 0, a.ptr_); hipDeviceSynchronize(); a.get_data(dev2host); for (size_t i = 0; i < 16; ++i) printf("i = %lu\t:\t%f\n", i, dev2host[i]); printf("\n"); }
fe2312b5e81dc15cec89ca8d98ec50f530c2a169.cu
#include "depth_filter/cuda/allocator.cuh" using namespace depth_filter; using namespace std; template <typename T> __global__ void test_2d_class(AbstractAllocator<T> *dev_ptr) { size_t tidx = blockIdx.x*blockDim.x+threadIdx.x; size_t tidy = blockIdx.y*blockDim.y+threadIdx.y; if ((tidx < dev_ptr->width()) && (tidy < dev_ptr->height())) (*dev_ptr)(tidx, tidy) = (*dev_ptr)(tidx, tidy)*tidx*tidy; } int main() { float data[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 12, 13, 14, 15}; AbstractAllocator<float> a(4, 4); a.set_data(data); float dev2host[16]; a.get_data(dev2host); for (size_t i = 0; i < 16; ++i) printf("i = %lu\t:\t%f\n", i, dev2host[i]); printf("\n"); dim3 grid_size((4+16-1)/4, (4+16-1)/4); dim3 block_size(16, 16); test_2d_class<<<grid_size, block_size>>>(a.ptr_); cudaDeviceSynchronize(); a.get_data(dev2host); for (size_t i = 0; i < 16; ++i) printf("i = %lu\t:\t%f\n", i, dev2host[i]); printf("\n"); }
228e5f7ef550fcff72d7cf6dc018849a22ad8c6d.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" /* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/detection/box_decoder_and_assign_op.h" #include "paddle/fluid/memory/memcpy.h" #include "paddle/fluid/platform/device/gpu/gpu_primitives.h" namespace paddle { namespace operators { template <typename T> __global__ void DecodeBoxKernel(const T* prior_box_data, const T* prior_box_var_data, const T* target_box_data, const int roi_num, const int class_num, const T box_clip, T* output_box_data) { const int idx = threadIdx.x + blockIdx.x * blockDim.x; if (idx < roi_num * class_num) { int i = idx / class_num; int j = idx % class_num; T prior_box_width = prior_box_data[i * 4 + 2] - prior_box_data[i * 4] + 1; T prior_box_height = prior_box_data[i * 4 + 3] - prior_box_data[i * 4 + 1] + 1; T prior_box_center_x = prior_box_data[i * 4] + prior_box_width / 2; T prior_box_center_y = prior_box_data[i * 4 + 1] + prior_box_height / 2; int offset = i * class_num * 4 + j * 4; T dw = prior_box_var_data[2] * target_box_data[offset + 2]; T dh = prior_box_var_data[3] * target_box_data[offset + 3]; if (dw > box_clip) { dw = box_clip; } if (dh > box_clip) { dh = box_clip; } T target_box_center_x = 0, target_box_center_y = 0; T target_box_width = 0, target_box_height = 0; target_box_center_x = prior_box_var_data[0] * target_box_data[offset] * prior_box_width + prior_box_center_x; target_box_center_y = prior_box_var_data[1] * target_box_data[offset + 1] * prior_box_height + prior_box_center_y; target_box_width = expf(dw) * prior_box_width; target_box_height = expf(dh) * prior_box_height; output_box_data[offset] = target_box_center_x - target_box_width / 2; output_box_data[offset + 1] = target_box_center_y - target_box_height / 2; output_box_data[offset + 2] = target_box_center_x + target_box_width / 2 - 1; output_box_data[offset + 3] = target_box_center_y + target_box_height / 2 - 1; } } template <typename T> __global__ void AssignBoxKernel(const T* prior_box_data, const T* box_score_data, T* output_box_data, const int roi_num, const int class_num, T* output_assign_box_data) { const int idx = threadIdx.x + blockIdx.x * blockDim.x; if (idx < roi_num) { int i = idx; T max_score = -1; int max_j = -1; for (int j = 0; j < class_num; ++j) { T score = box_score_data[i * class_num + j]; if (score > max_score && j > 0) { max_score = score; max_j = j; } } if (max_j > 0) { for (int pno = 0; pno < 4; pno++) { output_assign_box_data[i * 4 + pno] = output_box_data[i * class_num * 4 + max_j * 4 + pno]; } } else { for (int pno = 0; pno < 4; pno++) { output_assign_box_data[i * 4 + pno] = prior_box_data[i * 4 + pno]; } } } } template <typename DeviceContext, typename T> class BoxDecoderAndAssignCUDAKernel : public framework::OpKernel<T> { public: void Compute(const framework::ExecutionContext& context) const override { auto* prior_box = context.Input<framework::LoDTensor>("PriorBox"); auto* prior_box_var = context.Input<phi::DenseTensor>("PriorBoxVar"); auto* target_box = context.Input<framework::LoDTensor>("TargetBox"); auto* box_score = context.Input<framework::LoDTensor>("BoxScore"); auto* output_box = context.Output<phi::DenseTensor>("DecodeBox"); auto* output_assign_box = context.Output<phi::DenseTensor>("OutputAssignBox"); auto roi_num = target_box->dims()[0]; auto class_num = box_score->dims()[1]; auto* target_box_data = target_box->data<T>(); auto* prior_box_data = prior_box->data<T>(); auto* prior_box_var_data = prior_box_var->data<T>(); auto* box_score_data = box_score->data<T>(); output_box->mutable_data<T>({roi_num, class_num * 4}, context.GetPlace()); output_assign_box->mutable_data<T>({roi_num, 4}, context.GetPlace()); T* output_box_data = output_box->data<T>(); T* output_assign_box_data = output_assign_box->data<T>(); int block = 512; int grid = (roi_num * class_num + block - 1) / block; auto& device_ctx = context.cuda_device_context(); const T box_clip = static_cast<T>(context.Attr<float>("box_clip")); hipLaunchKernelGGL(( DecodeBoxKernel<T>) , dim3(grid), dim3(block), 0, device_ctx.stream(), prior_box_data, prior_box_var_data, target_box_data, roi_num, class_num, box_clip, output_box_data); context.device_context().Wait(); int assign_grid = (roi_num + block - 1) / block; hipLaunchKernelGGL(( AssignBoxKernel<T>), dim3(assign_grid), dim3(block), 0, device_ctx.stream(), prior_box_data, box_score_data, output_box_data, roi_num, class_num, output_assign_box_data); context.device_context().Wait(); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_CUDA_KERNEL( box_decoder_and_assign, ops::BoxDecoderAndAssignCUDAKernel<phi::GPUContext, float>, ops::BoxDecoderAndAssignCUDAKernel<phi::GPUContext, double>);
228e5f7ef550fcff72d7cf6dc018849a22ad8c6d.cu
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/detection/box_decoder_and_assign_op.h" #include "paddle/fluid/memory/memcpy.h" #include "paddle/fluid/platform/device/gpu/gpu_primitives.h" namespace paddle { namespace operators { template <typename T> __global__ void DecodeBoxKernel(const T* prior_box_data, const T* prior_box_var_data, const T* target_box_data, const int roi_num, const int class_num, const T box_clip, T* output_box_data) { const int idx = threadIdx.x + blockIdx.x * blockDim.x; if (idx < roi_num * class_num) { int i = idx / class_num; int j = idx % class_num; T prior_box_width = prior_box_data[i * 4 + 2] - prior_box_data[i * 4] + 1; T prior_box_height = prior_box_data[i * 4 + 3] - prior_box_data[i * 4 + 1] + 1; T prior_box_center_x = prior_box_data[i * 4] + prior_box_width / 2; T prior_box_center_y = prior_box_data[i * 4 + 1] + prior_box_height / 2; int offset = i * class_num * 4 + j * 4; T dw = prior_box_var_data[2] * target_box_data[offset + 2]; T dh = prior_box_var_data[3] * target_box_data[offset + 3]; if (dw > box_clip) { dw = box_clip; } if (dh > box_clip) { dh = box_clip; } T target_box_center_x = 0, target_box_center_y = 0; T target_box_width = 0, target_box_height = 0; target_box_center_x = prior_box_var_data[0] * target_box_data[offset] * prior_box_width + prior_box_center_x; target_box_center_y = prior_box_var_data[1] * target_box_data[offset + 1] * prior_box_height + prior_box_center_y; target_box_width = expf(dw) * prior_box_width; target_box_height = expf(dh) * prior_box_height; output_box_data[offset] = target_box_center_x - target_box_width / 2; output_box_data[offset + 1] = target_box_center_y - target_box_height / 2; output_box_data[offset + 2] = target_box_center_x + target_box_width / 2 - 1; output_box_data[offset + 3] = target_box_center_y + target_box_height / 2 - 1; } } template <typename T> __global__ void AssignBoxKernel(const T* prior_box_data, const T* box_score_data, T* output_box_data, const int roi_num, const int class_num, T* output_assign_box_data) { const int idx = threadIdx.x + blockIdx.x * blockDim.x; if (idx < roi_num) { int i = idx; T max_score = -1; int max_j = -1; for (int j = 0; j < class_num; ++j) { T score = box_score_data[i * class_num + j]; if (score > max_score && j > 0) { max_score = score; max_j = j; } } if (max_j > 0) { for (int pno = 0; pno < 4; pno++) { output_assign_box_data[i * 4 + pno] = output_box_data[i * class_num * 4 + max_j * 4 + pno]; } } else { for (int pno = 0; pno < 4; pno++) { output_assign_box_data[i * 4 + pno] = prior_box_data[i * 4 + pno]; } } } } template <typename DeviceContext, typename T> class BoxDecoderAndAssignCUDAKernel : public framework::OpKernel<T> { public: void Compute(const framework::ExecutionContext& context) const override { auto* prior_box = context.Input<framework::LoDTensor>("PriorBox"); auto* prior_box_var = context.Input<phi::DenseTensor>("PriorBoxVar"); auto* target_box = context.Input<framework::LoDTensor>("TargetBox"); auto* box_score = context.Input<framework::LoDTensor>("BoxScore"); auto* output_box = context.Output<phi::DenseTensor>("DecodeBox"); auto* output_assign_box = context.Output<phi::DenseTensor>("OutputAssignBox"); auto roi_num = target_box->dims()[0]; auto class_num = box_score->dims()[1]; auto* target_box_data = target_box->data<T>(); auto* prior_box_data = prior_box->data<T>(); auto* prior_box_var_data = prior_box_var->data<T>(); auto* box_score_data = box_score->data<T>(); output_box->mutable_data<T>({roi_num, class_num * 4}, context.GetPlace()); output_assign_box->mutable_data<T>({roi_num, 4}, context.GetPlace()); T* output_box_data = output_box->data<T>(); T* output_assign_box_data = output_assign_box->data<T>(); int block = 512; int grid = (roi_num * class_num + block - 1) / block; auto& device_ctx = context.cuda_device_context(); const T box_clip = static_cast<T>(context.Attr<float>("box_clip")); DecodeBoxKernel<T> <<<grid, block, 0, device_ctx.stream()>>>(prior_box_data, prior_box_var_data, target_box_data, roi_num, class_num, box_clip, output_box_data); context.device_context().Wait(); int assign_grid = (roi_num + block - 1) / block; AssignBoxKernel<T><<<assign_grid, block, 0, device_ctx.stream()>>>( prior_box_data, box_score_data, output_box_data, roi_num, class_num, output_assign_box_data); context.device_context().Wait(); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_CUDA_KERNEL( box_decoder_and_assign, ops::BoxDecoderAndAssignCUDAKernel<phi::GPUContext, float>, ops::BoxDecoderAndAssignCUDAKernel<phi::GPUContext, double>);
0ea58d9e3157d46b07e753f66386108e9492eebd.hip
// !!! This is a file automatically generated by hipify!!! /* * Copyright (c) 2020-2021, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cuml/matrix/kernelparams.h> #include <cuml/svm/svm_model.h> #include <cuml/svm/svm_parameter.h> #include <cmath> #include <cuml/svm/svc.hpp> #include <sstream> #include <utility> #include "benchmark.cuh" namespace ML { namespace Bench { namespace SVM { template <typename D> struct SvcParams { DatasetParams data; BlobsParams blobs; MLCommon::Matrix::KernelParams kernel; ML::SVM::svmParameter svm_param; ML::SVM::svmModel<D> model; }; template <typename D> class SVC : public BlobsFixture<D, D> { public: SVC(const std::string& name, const SvcParams<D>& p) : BlobsFixture<D, D>(name, p.data, p.blobs), kernel(p.kernel), model(p.model), svm_param(p.svm_param) { std::vector<std::string> kernel_names{"linear", "poly", "rbf", "tanh"}; std::ostringstream oss; oss << name << "/" << kernel_names[kernel.kernel] << p.data; this->SetName(oss.str().c_str()); } protected: void runBenchmark(::benchmark::State& state) override { if (this->params.rowMajor) { state.SkipWithError("SVC only supports col-major inputs"); } if (this->svm_param.svmType != ML::SVM::C_SVC) { state.SkipWithError("SVC currently only supports C_SVC"); } this->loopOnState(state, [this]() { ML::SVM::svcFit(*this->handle, this->data.X, this->params.nrows, this->params.ncols, this->data.y, this->svm_param, this->kernel, this->model); CUDA_CHECK(hipStreamSynchronize(this->stream)); ML::SVM::svmFreeBuffers(*this->handle, this->model); }); } private: MLCommon::Matrix::KernelParams kernel; ML::SVM::svmParameter svm_param; ML::SVM::svmModel<D> model; }; template <typename D> std::vector<SvcParams<D>> getInputs() { struct Triplets { int nrows, ncols, nclasses; }; std::vector<SvcParams<D>> out; SvcParams<D> p; p.data.rowMajor = false; p.blobs.cluster_std = 1.0; p.blobs.shuffle = false; p.blobs.center_box_min = -2.0; p.blobs.center_box_max = 2.0; p.blobs.seed = 12345ULL; // svmParameter{C, cache_size, max_iter, nochange_steps, tol, verbosity}) p.svm_param = ML::SVM::svmParameter{1, 200, 100, 100, 1e-3, CUML_LEVEL_INFO, 0, ML::SVM::C_SVC}; p.model = ML::SVM::svmModel<D>{0, 0, 0, nullptr, nullptr, nullptr, 0, nullptr}; std::vector<Triplets> rowcols = {{50000, 2, 2}, {2048, 100000, 2}, {50000, 1000, 2}}; std::vector<MLCommon::Matrix::KernelParams> kernels{ MLCommon::Matrix::KernelParams{MLCommon::Matrix::LINEAR, 3, 1, 0}, MLCommon::Matrix::KernelParams{MLCommon::Matrix::POLYNOMIAL, 3, 1, 0}, MLCommon::Matrix::KernelParams{MLCommon::Matrix::RBF, 3, 1, 0}, MLCommon::Matrix::KernelParams{MLCommon::Matrix::TANH, 3, 0.1, 0}}; for (auto& rc : rowcols) { p.data.nrows = rc.nrows; p.data.ncols = rc.ncols; p.data.nclasses = rc.nclasses; // Limit the number of iterations for large tests p.svm_param.max_iter = (rc.nrows > 10000) ? 20 : 100; for (auto kernel : kernels) { p.kernel = kernel; p.kernel.gamma = 1.0 / rc.ncols; out.push_back(p); } } return out; } ML_BENCH_REGISTER(SvcParams<float>, SVC<float>, "blobs", getInputs<float>()); ML_BENCH_REGISTER(SvcParams<double>, SVC<double>, "blobs", getInputs<double>()); } // namespace SVM } // namespace Bench } // end namespace ML
0ea58d9e3157d46b07e753f66386108e9492eebd.cu
/* * Copyright (c) 2020-2021, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cuml/matrix/kernelparams.h> #include <cuml/svm/svm_model.h> #include <cuml/svm/svm_parameter.h> #include <cmath> #include <cuml/svm/svc.hpp> #include <sstream> #include <utility> #include "benchmark.cuh" namespace ML { namespace Bench { namespace SVM { template <typename D> struct SvcParams { DatasetParams data; BlobsParams blobs; MLCommon::Matrix::KernelParams kernel; ML::SVM::svmParameter svm_param; ML::SVM::svmModel<D> model; }; template <typename D> class SVC : public BlobsFixture<D, D> { public: SVC(const std::string& name, const SvcParams<D>& p) : BlobsFixture<D, D>(name, p.data, p.blobs), kernel(p.kernel), model(p.model), svm_param(p.svm_param) { std::vector<std::string> kernel_names{"linear", "poly", "rbf", "tanh"}; std::ostringstream oss; oss << name << "/" << kernel_names[kernel.kernel] << p.data; this->SetName(oss.str().c_str()); } protected: void runBenchmark(::benchmark::State& state) override { if (this->params.rowMajor) { state.SkipWithError("SVC only supports col-major inputs"); } if (this->svm_param.svmType != ML::SVM::C_SVC) { state.SkipWithError("SVC currently only supports C_SVC"); } this->loopOnState(state, [this]() { ML::SVM::svcFit(*this->handle, this->data.X, this->params.nrows, this->params.ncols, this->data.y, this->svm_param, this->kernel, this->model); CUDA_CHECK(cudaStreamSynchronize(this->stream)); ML::SVM::svmFreeBuffers(*this->handle, this->model); }); } private: MLCommon::Matrix::KernelParams kernel; ML::SVM::svmParameter svm_param; ML::SVM::svmModel<D> model; }; template <typename D> std::vector<SvcParams<D>> getInputs() { struct Triplets { int nrows, ncols, nclasses; }; std::vector<SvcParams<D>> out; SvcParams<D> p; p.data.rowMajor = false; p.blobs.cluster_std = 1.0; p.blobs.shuffle = false; p.blobs.center_box_min = -2.0; p.blobs.center_box_max = 2.0; p.blobs.seed = 12345ULL; // svmParameter{C, cache_size, max_iter, nochange_steps, tol, verbosity}) p.svm_param = ML::SVM::svmParameter{1, 200, 100, 100, 1e-3, CUML_LEVEL_INFO, 0, ML::SVM::C_SVC}; p.model = ML::SVM::svmModel<D>{0, 0, 0, nullptr, nullptr, nullptr, 0, nullptr}; std::vector<Triplets> rowcols = {{50000, 2, 2}, {2048, 100000, 2}, {50000, 1000, 2}}; std::vector<MLCommon::Matrix::KernelParams> kernels{ MLCommon::Matrix::KernelParams{MLCommon::Matrix::LINEAR, 3, 1, 0}, MLCommon::Matrix::KernelParams{MLCommon::Matrix::POLYNOMIAL, 3, 1, 0}, MLCommon::Matrix::KernelParams{MLCommon::Matrix::RBF, 3, 1, 0}, MLCommon::Matrix::KernelParams{MLCommon::Matrix::TANH, 3, 0.1, 0}}; for (auto& rc : rowcols) { p.data.nrows = rc.nrows; p.data.ncols = rc.ncols; p.data.nclasses = rc.nclasses; // Limit the number of iterations for large tests p.svm_param.max_iter = (rc.nrows > 10000) ? 20 : 100; for (auto kernel : kernels) { p.kernel = kernel; p.kernel.gamma = 1.0 / rc.ncols; out.push_back(p); } } return out; } ML_BENCH_REGISTER(SvcParams<float>, SVC<float>, "blobs", getInputs<float>()); ML_BENCH_REGISTER(SvcParams<double>, SVC<double>, "blobs", getInputs<double>()); } // namespace SVM } // namespace Bench } // end namespace ML
30622d11a3e8409eb31ad6c1ee86d8fdd51d0903.hip
// !!! This is a file automatically generated by hipify!!! #include <stdio.h> #include <stdlib.h> #include <assert.h> #include <time.h> #include <hip/hip_runtime.h> #define N 1500 #define TILE_SIZE 4 #define MILI 1000 #define NANO 1000000000 void checkCudaError(hipError_t errorCode) { if (errorCode != hipSuccess) { fprintf(stderr, "Error %d\n", errorCode); exit(1); } } float** createSquareMatOnHost(int size) { int i; float **mat; mat = (float **) malloc(size * sizeof(float *)); if (!mat) { fprintf(stderr, "error allocating row memory"); exit(1); } mat[0] = (float *) malloc(size * size * sizeof(float)); if (!mat[0]) { fprintf(stderr, "error allocating col memory"); exit(1); } for (i = 1; i < size; i++) mat[i] = mat[i-1] + size; return mat; } void freeSquareMatOnHost(float **mat) { free(mat[0]); free(mat); } void printSquareMat(float **mat, int size) { int i, j; for (i = 0; i < size; i++, printf("\n")) for (j = 0; j < size; j++) printf(" %f", mat[i][j]); } void multiplySquareMatOnHost(float **C, float **A, float **B, int size) { int i, j, k; for (i = 0; i < size; i++) for (j = 0; j < size; j++) { float sum = 0.0; for (k = 0; k < size; k++) sum += A[i][k] * B[k][j]; C[i][j] = sum; } } __global__ void multiplySquareSerializedMatOnDevice(float *C, float *A, float *B, int size) { int i = blockIdx.x*blockDim.x + threadIdx.x; int j = blockIdx.y*blockDim.y + threadIdx.y; if (i < size && j < size) { int k; float sum = 0.0; for (k = 0; k < size; k++) sum += A[i*size+k] * B[k*size+j]; C[i*size+j] = sum; } } long long convertToNsec(struct timespec ts) { long long tmp = (long long) ts.tv_sec*NANO + ts.tv_nsec; return tmp; } int main(void) { float **ha, **hb, **hc, **hd; // host data float *da, *db, *dc; // device data int i, j; int nbytes = N * N * sizeof(float); // allocate memory in host ha = createSquareMatOnHost(N); hb = createSquareMatOnHost(N); hc = createSquareMatOnHost(N); hd = createSquareMatOnHost(N); // allocate memory in device checkCudaError(hipMalloc((void **) &da, nbytes)); checkCudaError(hipMalloc((void **) &db, nbytes)); checkCudaError(hipMalloc((void **) &dc, nbytes)); // set values in ha randomly for (i = 0; i < N; i++) for (j = 0; j < N; j++) ha[i][j] = rand() % 10; // set values in hb randomly srand(time(NULL)); for (i = 0; i < N; i++) for (j = 0; j < N; j++) hb[i][j] = rand() % 10; // copy from host to device checkCudaError(hipMemcpy(da, ha[0], nbytes, hipMemcpyHostToDevice)); checkCudaError(hipMemcpy(db, hb[0], nbytes, hipMemcpyHostToDevice)); // multiply matrix on host struct timespec ts_start, ts_end; clock_gettime(CLOCK_MONOTONIC, &ts_start); multiplySquareMatOnHost(hd, ha, hb, N); clock_gettime(CLOCK_MONOTONIC, &ts_end); // compute elapsed time long long hostElapsedTime = convertToNsec(ts_end) - convertToNsec(ts_start); printf("CPU time: %lf\n", (double) hostElapsedTime / NANO); // multiply matrix on device hipEvent_t start, stop; hipEventCreate(&start); hipEventCreate(&stop); int gridSize = (N/TILE_SIZE) + (N%TILE_SIZE>0?1:0); dim3 grid(gridSize, gridSize), block(TILE_SIZE, TILE_SIZE); hipEventRecord(start, 0); hipLaunchKernelGGL(( multiplySquareSerializedMatOnDevice), dim3(grid), dim3(block), 0, 0, dc, da, db, N); hipEventRecord(stop, 0); hipEventSynchronize(stop); // compute elapsed time float deviceElapsedTime; hipEventElapsedTime(&deviceElapsedTime, start, stop); printf("CUDA time: %f\n", deviceElapsedTime / MILI); // copy from device to host checkCudaError(hipMemcpy(hc[0], dc, nbytes, hipMemcpyDeviceToHost)); // assertion for (i = 0; i < N; i++) for (j = 0; j < N; j++) assert(hc[i][j] == hd[i][j]); // free memory freeSquareMatOnHost(ha); freeSquareMatOnHost(hb); freeSquareMatOnHost(hc); freeSquareMatOnHost(hd); hipFree(da); hipFree(db); hipFree(dc); }
30622d11a3e8409eb31ad6c1ee86d8fdd51d0903.cu
#include <stdio.h> #include <stdlib.h> #include <assert.h> #include <time.h> #include <cuda.h> #define N 1500 #define TILE_SIZE 4 #define MILI 1000 #define NANO 1000000000 void checkCudaError(cudaError_t errorCode) { if (errorCode != cudaSuccess) { fprintf(stderr, "Error %d\n", errorCode); exit(1); } } float** createSquareMatOnHost(int size) { int i; float **mat; mat = (float **) malloc(size * sizeof(float *)); if (!mat) { fprintf(stderr, "error allocating row memory"); exit(1); } mat[0] = (float *) malloc(size * size * sizeof(float)); if (!mat[0]) { fprintf(stderr, "error allocating col memory"); exit(1); } for (i = 1; i < size; i++) mat[i] = mat[i-1] + size; return mat; } void freeSquareMatOnHost(float **mat) { free(mat[0]); free(mat); } void printSquareMat(float **mat, int size) { int i, j; for (i = 0; i < size; i++, printf("\n")) for (j = 0; j < size; j++) printf(" %f", mat[i][j]); } void multiplySquareMatOnHost(float **C, float **A, float **B, int size) { int i, j, k; for (i = 0; i < size; i++) for (j = 0; j < size; j++) { float sum = 0.0; for (k = 0; k < size; k++) sum += A[i][k] * B[k][j]; C[i][j] = sum; } } __global__ void multiplySquareSerializedMatOnDevice(float *C, float *A, float *B, int size) { int i = blockIdx.x*blockDim.x + threadIdx.x; int j = blockIdx.y*blockDim.y + threadIdx.y; if (i < size && j < size) { int k; float sum = 0.0; for (k = 0; k < size; k++) sum += A[i*size+k] * B[k*size+j]; C[i*size+j] = sum; } } long long convertToNsec(struct timespec ts) { long long tmp = (long long) ts.tv_sec*NANO + ts.tv_nsec; return tmp; } int main(void) { float **ha, **hb, **hc, **hd; // host data float *da, *db, *dc; // device data int i, j; int nbytes = N * N * sizeof(float); // allocate memory in host ha = createSquareMatOnHost(N); hb = createSquareMatOnHost(N); hc = createSquareMatOnHost(N); hd = createSquareMatOnHost(N); // allocate memory in device checkCudaError(cudaMalloc((void **) &da, nbytes)); checkCudaError(cudaMalloc((void **) &db, nbytes)); checkCudaError(cudaMalloc((void **) &dc, nbytes)); // set values in ha randomly for (i = 0; i < N; i++) for (j = 0; j < N; j++) ha[i][j] = rand() % 10; // set values in hb randomly srand(time(NULL)); for (i = 0; i < N; i++) for (j = 0; j < N; j++) hb[i][j] = rand() % 10; // copy from host to device checkCudaError(cudaMemcpy(da, ha[0], nbytes, cudaMemcpyHostToDevice)); checkCudaError(cudaMemcpy(db, hb[0], nbytes, cudaMemcpyHostToDevice)); // multiply matrix on host struct timespec ts_start, ts_end; clock_gettime(CLOCK_MONOTONIC, &ts_start); multiplySquareMatOnHost(hd, ha, hb, N); clock_gettime(CLOCK_MONOTONIC, &ts_end); // compute elapsed time long long hostElapsedTime = convertToNsec(ts_end) - convertToNsec(ts_start); printf("CPU time: %lf\n", (double) hostElapsedTime / NANO); // multiply matrix on device cudaEvent_t start, stop; cudaEventCreate(&start); cudaEventCreate(&stop); int gridSize = (N/TILE_SIZE) + (N%TILE_SIZE>0?1:0); dim3 grid(gridSize, gridSize), block(TILE_SIZE, TILE_SIZE); cudaEventRecord(start, 0); multiplySquareSerializedMatOnDevice<<<grid, block>>>(dc, da, db, N); cudaEventRecord(stop, 0); cudaEventSynchronize(stop); // compute elapsed time float deviceElapsedTime; cudaEventElapsedTime(&deviceElapsedTime, start, stop); printf("CUDA time: %f\n", deviceElapsedTime / MILI); // copy from device to host checkCudaError(cudaMemcpy(hc[0], dc, nbytes, cudaMemcpyDeviceToHost)); // assertion for (i = 0; i < N; i++) for (j = 0; j < N; j++) assert(hc[i][j] == hd[i][j]); // free memory freeSquareMatOnHost(ha); freeSquareMatOnHost(hb); freeSquareMatOnHost(hc); freeSquareMatOnHost(hd); cudaFree(da); cudaFree(db); cudaFree(dc); }
04a45b24116d019256265361f4922f3e780c7f95.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" // // auto-generated by ops.py // __constant__ int xdim0_update_halo_kernel1_l1; int xdim0_update_halo_kernel1_l1_h = -1; __constant__ int ydim0_update_halo_kernel1_l1; int ydim0_update_halo_kernel1_l1_h = -1; __constant__ int xdim1_update_halo_kernel1_l1; int xdim1_update_halo_kernel1_l1_h = -1; __constant__ int ydim1_update_halo_kernel1_l1; int ydim1_update_halo_kernel1_l1_h = -1; __constant__ int xdim2_update_halo_kernel1_l1; int xdim2_update_halo_kernel1_l1_h = -1; __constant__ int ydim2_update_halo_kernel1_l1; int ydim2_update_halo_kernel1_l1_h = -1; __constant__ int xdim3_update_halo_kernel1_l1; int xdim3_update_halo_kernel1_l1_h = -1; __constant__ int ydim3_update_halo_kernel1_l1; int ydim3_update_halo_kernel1_l1_h = -1; __constant__ int xdim4_update_halo_kernel1_l1; int xdim4_update_halo_kernel1_l1_h = -1; __constant__ int ydim4_update_halo_kernel1_l1; int ydim4_update_halo_kernel1_l1_h = -1; __constant__ int xdim5_update_halo_kernel1_l1; int xdim5_update_halo_kernel1_l1_h = -1; __constant__ int ydim5_update_halo_kernel1_l1; int ydim5_update_halo_kernel1_l1_h = -1; __constant__ int xdim6_update_halo_kernel1_l1; int xdim6_update_halo_kernel1_l1_h = -1; __constant__ int ydim6_update_halo_kernel1_l1; int ydim6_update_halo_kernel1_l1_h = -1; #undef OPS_ACC0 #undef OPS_ACC1 #undef OPS_ACC2 #undef OPS_ACC3 #undef OPS_ACC4 #undef OPS_ACC5 #undef OPS_ACC6 #define OPS_ACC0(x,y,z) (x+xdim0_update_halo_kernel1_l1*(y)+xdim0_update_halo_kernel1_l1*ydim0_update_halo_kernel1_l1*(z)) #define OPS_ACC1(x,y,z) (x+xdim1_update_halo_kernel1_l1*(y)+xdim1_update_halo_kernel1_l1*ydim1_update_halo_kernel1_l1*(z)) #define OPS_ACC2(x,y,z) (x+xdim2_update_halo_kernel1_l1*(y)+xdim2_update_halo_kernel1_l1*ydim2_update_halo_kernel1_l1*(z)) #define OPS_ACC3(x,y,z) (x+xdim3_update_halo_kernel1_l1*(y)+xdim3_update_halo_kernel1_l1*ydim3_update_halo_kernel1_l1*(z)) #define OPS_ACC4(x,y,z) (x+xdim4_update_halo_kernel1_l1*(y)+xdim4_update_halo_kernel1_l1*ydim4_update_halo_kernel1_l1*(z)) #define OPS_ACC5(x,y,z) (x+xdim5_update_halo_kernel1_l1*(y)+xdim5_update_halo_kernel1_l1*ydim5_update_halo_kernel1_l1*(z)) #define OPS_ACC6(x,y,z) (x+xdim6_update_halo_kernel1_l1*(y)+xdim6_update_halo_kernel1_l1*ydim6_update_halo_kernel1_l1*(z)) //user function __device__ inline void update_halo_kernel1_l1_gpu(double *density0, double *density1, double *energy0, double *energy1, double *pressure, double *viscosity, double *soundspeed , const int* fields) { if(fields[FIELD_DENSITY0] == 1) density0[OPS_ACC0(0,0,0)] = density0[OPS_ACC0(1,0,0)]; if(fields[FIELD_DENSITY1] == 1) density1[OPS_ACC1(0,0,0)] = density1[OPS_ACC1(1,0,0)]; if(fields[FIELD_ENERGY0] == 1) energy0[OPS_ACC2(0,0,0)] = energy0[OPS_ACC2(1,0,0)]; if(fields[FIELD_ENERGY1] == 1) energy1[OPS_ACC3(0,0,0)] = energy1[OPS_ACC3(1,0,0)]; if(fields[FIELD_PRESSURE] == 1) pressure[OPS_ACC4(0,0,0)] = pressure[OPS_ACC4(1,0,0)]; if(fields[FIELD_VISCOSITY] == 1) viscosity[OPS_ACC5(0,0,0)] = viscosity[OPS_ACC5(1,0,0)]; if(fields[FIELD_SOUNDSPEED] == 1) soundspeed[OPS_ACC6(0,0,0)] = soundspeed[OPS_ACC6(1,0,0)]; } #undef OPS_ACC0 #undef OPS_ACC1 #undef OPS_ACC2 #undef OPS_ACC3 #undef OPS_ACC4 #undef OPS_ACC5 #undef OPS_ACC6 __global__ void ops_update_halo_kernel1_l1( double* __restrict arg0, double* __restrict arg1, double* __restrict arg2, double* __restrict arg3, double* __restrict arg4, double* __restrict arg5, double* __restrict arg6, const int* __restrict arg7, int size0, int size1, int size2 ){ int idx_z = blockDim.z * blockIdx.z + threadIdx.z; int idx_y = blockDim.y * blockIdx.y + threadIdx.y; int idx_x = blockDim.x * blockIdx.x + threadIdx.x; arg0 += idx_x * 1*1 + idx_y * 1*1 * xdim0_update_halo_kernel1_l1 + idx_z * 1*1 * xdim0_update_halo_kernel1_l1 * ydim0_update_halo_kernel1_l1; arg1 += idx_x * 1*1 + idx_y * 1*1 * xdim1_update_halo_kernel1_l1 + idx_z * 1*1 * xdim1_update_halo_kernel1_l1 * ydim1_update_halo_kernel1_l1; arg2 += idx_x * 1*1 + idx_y * 1*1 * xdim2_update_halo_kernel1_l1 + idx_z * 1*1 * xdim2_update_halo_kernel1_l1 * ydim2_update_halo_kernel1_l1; arg3 += idx_x * 1*1 + idx_y * 1*1 * xdim3_update_halo_kernel1_l1 + idx_z * 1*1 * xdim3_update_halo_kernel1_l1 * ydim3_update_halo_kernel1_l1; arg4 += idx_x * 1*1 + idx_y * 1*1 * xdim4_update_halo_kernel1_l1 + idx_z * 1*1 * xdim4_update_halo_kernel1_l1 * ydim4_update_halo_kernel1_l1; arg5 += idx_x * 1*1 + idx_y * 1*1 * xdim5_update_halo_kernel1_l1 + idx_z * 1*1 * xdim5_update_halo_kernel1_l1 * ydim5_update_halo_kernel1_l1; arg6 += idx_x * 1*1 + idx_y * 1*1 * xdim6_update_halo_kernel1_l1 + idx_z * 1*1 * xdim6_update_halo_kernel1_l1 * ydim6_update_halo_kernel1_l1; if (idx_x < size0 && idx_y < size1 && idx_z < size2) { update_halo_kernel1_l1_gpu(arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7); } } // host stub function #ifndef OPS_LAZY void ops_par_loop_update_halo_kernel1_l1(char const *name, ops_block block, int dim, int* range, ops_arg arg0, ops_arg arg1, ops_arg arg2, ops_arg arg3, ops_arg arg4, ops_arg arg5, ops_arg arg6, ops_arg arg7) { #else void ops_par_loop_update_halo_kernel1_l1_execute(ops_kernel_descriptor *desc) { int dim = desc->dim; int *range = desc->range; ops_arg arg0 = desc->args[0]; ops_arg arg1 = desc->args[1]; ops_arg arg2 = desc->args[2]; ops_arg arg3 = desc->args[3]; ops_arg arg4 = desc->args[4]; ops_arg arg5 = desc->args[5]; ops_arg arg6 = desc->args[6]; ops_arg arg7 = desc->args[7]; #endif //Timing double t1,t2,c1,c2; ops_arg args[8] = { arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7}; #if CHECKPOINTING && !OPS_LAZY if (!ops_checkpointing_before(args,8,range,17)) return; #endif if (OPS_diags > 1) { ops_timing_realloc(17,"update_halo_kernel1_l1"); OPS_kernels[17].count++; ops_timers_core(&c1,&t1); } //compute locally allocated range for the sub-block int start[3]; int end[3]; #if OPS_MPI && !OPS_LAZY sub_block_list sb = OPS_sub_block_list[block->index]; if (!sb->owned) return; for ( int n=0; n<3; n++ ){ start[n] = sb->decomp_disp[n];end[n] = sb->decomp_disp[n]+sb->decomp_size[n]; if (start[n] >= range[2*n]) { start[n] = 0; } else { start[n] = range[2*n] - start[n]; } if (sb->id_m[n]==MPI_PROC_NULL && range[2*n] < 0) start[n] = range[2*n]; if (end[n] >= range[2*n+1]) { end[n] = range[2*n+1] - sb->decomp_disp[n]; } else { end[n] = sb->decomp_size[n]; } if (sb->id_p[n]==MPI_PROC_NULL && (range[2*n+1] > sb->decomp_disp[n]+sb->decomp_size[n])) end[n] += (range[2*n+1]-sb->decomp_disp[n]-sb->decomp_size[n]); } #else for ( int n=0; n<3; n++ ){ start[n] = range[2*n];end[n] = range[2*n+1]; } #endif int x_size = MAX(0,end[0]-start[0]); int y_size = MAX(0,end[1]-start[1]); int z_size = MAX(0,end[2]-start[2]); int xdim0 = args[0].dat->size[0]; int ydim0 = args[0].dat->size[1]; int xdim1 = args[1].dat->size[0]; int ydim1 = args[1].dat->size[1]; int xdim2 = args[2].dat->size[0]; int ydim2 = args[2].dat->size[1]; int xdim3 = args[3].dat->size[0]; int ydim3 = args[3].dat->size[1]; int xdim4 = args[4].dat->size[0]; int ydim4 = args[4].dat->size[1]; int xdim5 = args[5].dat->size[0]; int ydim5 = args[5].dat->size[1]; int xdim6 = args[6].dat->size[0]; int ydim6 = args[6].dat->size[1]; if (xdim0 != xdim0_update_halo_kernel1_l1_h || ydim0 != ydim0_update_halo_kernel1_l1_h || xdim1 != xdim1_update_halo_kernel1_l1_h || ydim1 != ydim1_update_halo_kernel1_l1_h || xdim2 != xdim2_update_halo_kernel1_l1_h || ydim2 != ydim2_update_halo_kernel1_l1_h || xdim3 != xdim3_update_halo_kernel1_l1_h || ydim3 != ydim3_update_halo_kernel1_l1_h || xdim4 != xdim4_update_halo_kernel1_l1_h || ydim4 != ydim4_update_halo_kernel1_l1_h || xdim5 != xdim5_update_halo_kernel1_l1_h || ydim5 != ydim5_update_halo_kernel1_l1_h || xdim6 != xdim6_update_halo_kernel1_l1_h || ydim6 != ydim6_update_halo_kernel1_l1_h) { hipMemcpyToSymbol( xdim0_update_halo_kernel1_l1, &xdim0, sizeof(int) ); xdim0_update_halo_kernel1_l1_h = xdim0; hipMemcpyToSymbol( ydim0_update_halo_kernel1_l1, &ydim0, sizeof(int) ); ydim0_update_halo_kernel1_l1_h = ydim0; hipMemcpyToSymbol( xdim1_update_halo_kernel1_l1, &xdim1, sizeof(int) ); xdim1_update_halo_kernel1_l1_h = xdim1; hipMemcpyToSymbol( ydim1_update_halo_kernel1_l1, &ydim1, sizeof(int) ); ydim1_update_halo_kernel1_l1_h = ydim1; hipMemcpyToSymbol( xdim2_update_halo_kernel1_l1, &xdim2, sizeof(int) ); xdim2_update_halo_kernel1_l1_h = xdim2; hipMemcpyToSymbol( ydim2_update_halo_kernel1_l1, &ydim2, sizeof(int) ); ydim2_update_halo_kernel1_l1_h = ydim2; hipMemcpyToSymbol( xdim3_update_halo_kernel1_l1, &xdim3, sizeof(int) ); xdim3_update_halo_kernel1_l1_h = xdim3; hipMemcpyToSymbol( ydim3_update_halo_kernel1_l1, &ydim3, sizeof(int) ); ydim3_update_halo_kernel1_l1_h = ydim3; hipMemcpyToSymbol( xdim4_update_halo_kernel1_l1, &xdim4, sizeof(int) ); xdim4_update_halo_kernel1_l1_h = xdim4; hipMemcpyToSymbol( ydim4_update_halo_kernel1_l1, &ydim4, sizeof(int) ); ydim4_update_halo_kernel1_l1_h = ydim4; hipMemcpyToSymbol( xdim5_update_halo_kernel1_l1, &xdim5, sizeof(int) ); xdim5_update_halo_kernel1_l1_h = xdim5; hipMemcpyToSymbol( ydim5_update_halo_kernel1_l1, &ydim5, sizeof(int) ); ydim5_update_halo_kernel1_l1_h = ydim5; hipMemcpyToSymbol( xdim6_update_halo_kernel1_l1, &xdim6, sizeof(int) ); xdim6_update_halo_kernel1_l1_h = xdim6; hipMemcpyToSymbol( ydim6_update_halo_kernel1_l1, &ydim6, sizeof(int) ); ydim6_update_halo_kernel1_l1_h = ydim6; } int *arg7h = (int *)arg7.data; dim3 grid( (x_size-1)/OPS_block_size_x+ 1, (y_size-1)/OPS_block_size_y + 1, (z_size-1)/OPS_block_size_z +1); dim3 tblock(OPS_block_size_x,OPS_block_size_y,OPS_block_size_z); int consts_bytes = 0; consts_bytes += ROUND_UP(NUM_FIELDS*sizeof(int)); reallocConstArrays(consts_bytes); consts_bytes = 0; arg7.data = OPS_consts_h + consts_bytes; arg7.data_d = OPS_consts_d + consts_bytes; for (int d=0; d<NUM_FIELDS; d++) ((int *)arg7.data)[d] = arg7h[d]; consts_bytes += ROUND_UP(NUM_FIELDS*sizeof(int)); mvConstArraysToDevice(consts_bytes); int dat0 = (OPS_soa ? args[0].dat->type_size : args[0].dat->elem_size); int dat1 = (OPS_soa ? args[1].dat->type_size : args[1].dat->elem_size); int dat2 = (OPS_soa ? args[2].dat->type_size : args[2].dat->elem_size); int dat3 = (OPS_soa ? args[3].dat->type_size : args[3].dat->elem_size); int dat4 = (OPS_soa ? args[4].dat->type_size : args[4].dat->elem_size); int dat5 = (OPS_soa ? args[5].dat->type_size : args[5].dat->elem_size); int dat6 = (OPS_soa ? args[6].dat->type_size : args[6].dat->elem_size); char *p_a[8]; //set up initial pointers int base0 = args[0].dat->base_offset + dat0 * 1 * (start[0] * args[0].stencil->stride[0]); base0 = base0+ dat0 * args[0].dat->size[0] * (start[1] * args[0].stencil->stride[1]); base0 = base0+ dat0 * args[0].dat->size[0] * args[0].dat->size[1] * (start[2] * args[0].stencil->stride[2]); p_a[0] = (char *)args[0].data_d + base0; int base1 = args[1].dat->base_offset + dat1 * 1 * (start[0] * args[1].stencil->stride[0]); base1 = base1+ dat1 * args[1].dat->size[0] * (start[1] * args[1].stencil->stride[1]); base1 = base1+ dat1 * args[1].dat->size[0] * args[1].dat->size[1] * (start[2] * args[1].stencil->stride[2]); p_a[1] = (char *)args[1].data_d + base1; int base2 = args[2].dat->base_offset + dat2 * 1 * (start[0] * args[2].stencil->stride[0]); base2 = base2+ dat2 * args[2].dat->size[0] * (start[1] * args[2].stencil->stride[1]); base2 = base2+ dat2 * args[2].dat->size[0] * args[2].dat->size[1] * (start[2] * args[2].stencil->stride[2]); p_a[2] = (char *)args[2].data_d + base2; int base3 = args[3].dat->base_offset + dat3 * 1 * (start[0] * args[3].stencil->stride[0]); base3 = base3+ dat3 * args[3].dat->size[0] * (start[1] * args[3].stencil->stride[1]); base3 = base3+ dat3 * args[3].dat->size[0] * args[3].dat->size[1] * (start[2] * args[3].stencil->stride[2]); p_a[3] = (char *)args[3].data_d + base3; int base4 = args[4].dat->base_offset + dat4 * 1 * (start[0] * args[4].stencil->stride[0]); base4 = base4+ dat4 * args[4].dat->size[0] * (start[1] * args[4].stencil->stride[1]); base4 = base4+ dat4 * args[4].dat->size[0] * args[4].dat->size[1] * (start[2] * args[4].stencil->stride[2]); p_a[4] = (char *)args[4].data_d + base4; int base5 = args[5].dat->base_offset + dat5 * 1 * (start[0] * args[5].stencil->stride[0]); base5 = base5+ dat5 * args[5].dat->size[0] * (start[1] * args[5].stencil->stride[1]); base5 = base5+ dat5 * args[5].dat->size[0] * args[5].dat->size[1] * (start[2] * args[5].stencil->stride[2]); p_a[5] = (char *)args[5].data_d + base5; int base6 = args[6].dat->base_offset + dat6 * 1 * (start[0] * args[6].stencil->stride[0]); base6 = base6+ dat6 * args[6].dat->size[0] * (start[1] * args[6].stencil->stride[1]); base6 = base6+ dat6 * args[6].dat->size[0] * args[6].dat->size[1] * (start[2] * args[6].stencil->stride[2]); p_a[6] = (char *)args[6].data_d + base6; #ifndef OPS_LAZY ops_H_D_exchanges_device(args, 8); ops_halo_exchanges(args,8,range); #endif if (OPS_diags > 1) { ops_timers_core(&c2,&t2); OPS_kernels[17].mpi_time += t2-t1; } //call kernel wrapper function, passing in pointers to data if (x_size > 0 && y_size > 0 && z_size > 0) hipLaunchKernelGGL(( ops_update_halo_kernel1_l1), dim3(grid), dim3(tblock) , 0, 0, (double *)p_a[0], (double *)p_a[1], (double *)p_a[2], (double *)p_a[3], (double *)p_a[4], (double *)p_a[5], (double *)p_a[6], (int *)arg7.data_d,x_size, y_size, z_size); cutilSafeCall(hipGetLastError()); if (OPS_diags>1) { cutilSafeCall(hipDeviceSynchronize()); ops_timers_core(&c1,&t1); OPS_kernels[17].time += t1-t2; } #ifndef OPS_LAZY ops_set_dirtybit_device(args, 8); ops_set_halo_dirtybit3(&args[0],range); ops_set_halo_dirtybit3(&args[1],range); ops_set_halo_dirtybit3(&args[2],range); ops_set_halo_dirtybit3(&args[3],range); ops_set_halo_dirtybit3(&args[4],range); ops_set_halo_dirtybit3(&args[5],range); ops_set_halo_dirtybit3(&args[6],range); #endif if (OPS_diags > 1) { //Update kernel record ops_timers_core(&c2,&t2); OPS_kernels[17].mpi_time += t2-t1; OPS_kernels[17].transfer += ops_compute_transfer(dim, start, end, &arg0); OPS_kernels[17].transfer += ops_compute_transfer(dim, start, end, &arg1); OPS_kernels[17].transfer += ops_compute_transfer(dim, start, end, &arg2); OPS_kernels[17].transfer += ops_compute_transfer(dim, start, end, &arg3); OPS_kernels[17].transfer += ops_compute_transfer(dim, start, end, &arg4); OPS_kernels[17].transfer += ops_compute_transfer(dim, start, end, &arg5); OPS_kernels[17].transfer += ops_compute_transfer(dim, start, end, &arg6); } } #ifdef OPS_LAZY void ops_par_loop_update_halo_kernel1_l1(char const *name, ops_block block, int dim, int* range, ops_arg arg0, ops_arg arg1, ops_arg arg2, ops_arg arg3, ops_arg arg4, ops_arg arg5, ops_arg arg6, ops_arg arg7) { ops_kernel_descriptor *desc = (ops_kernel_descriptor *)malloc(sizeof(ops_kernel_descriptor)); desc->name = name; desc->block = block; desc->dim = dim; desc->device = 1; desc->index = 17; desc->hash = 5381; desc->hash = ((desc->hash << 5) + desc->hash) + 17; for ( int i=0; i<6; i++ ){ desc->range[i] = range[i]; desc->orig_range[i] = range[i]; desc->hash = ((desc->hash << 5) + desc->hash) + range[i]; } desc->nargs = 8; desc->args = (ops_arg*)malloc(8*sizeof(ops_arg)); desc->args[0] = arg0; desc->hash = ((desc->hash << 5) + desc->hash) + arg0.dat->index; desc->args[1] = arg1; desc->hash = ((desc->hash << 5) + desc->hash) + arg1.dat->index; desc->args[2] = arg2; desc->hash = ((desc->hash << 5) + desc->hash) + arg2.dat->index; desc->args[3] = arg3; desc->hash = ((desc->hash << 5) + desc->hash) + arg3.dat->index; desc->args[4] = arg4; desc->hash = ((desc->hash << 5) + desc->hash) + arg4.dat->index; desc->args[5] = arg5; desc->hash = ((desc->hash << 5) + desc->hash) + arg5.dat->index; desc->args[6] = arg6; desc->hash = ((desc->hash << 5) + desc->hash) + arg6.dat->index; desc->args[7] = arg7; char *tmp = (char*)malloc(NUM_FIELDS*sizeof(int)); memcpy(tmp, arg7.data,NUM_FIELDS*sizeof(int)); desc->args[7].data = tmp; desc->function = ops_par_loop_update_halo_kernel1_l1_execute; if (OPS_diags > 1) { ops_timing_realloc(17,"update_halo_kernel1_l1"); } ops_enqueue_kernel(desc); } #endif
04a45b24116d019256265361f4922f3e780c7f95.cu
// // auto-generated by ops.py // __constant__ int xdim0_update_halo_kernel1_l1; int xdim0_update_halo_kernel1_l1_h = -1; __constant__ int ydim0_update_halo_kernel1_l1; int ydim0_update_halo_kernel1_l1_h = -1; __constant__ int xdim1_update_halo_kernel1_l1; int xdim1_update_halo_kernel1_l1_h = -1; __constant__ int ydim1_update_halo_kernel1_l1; int ydim1_update_halo_kernel1_l1_h = -1; __constant__ int xdim2_update_halo_kernel1_l1; int xdim2_update_halo_kernel1_l1_h = -1; __constant__ int ydim2_update_halo_kernel1_l1; int ydim2_update_halo_kernel1_l1_h = -1; __constant__ int xdim3_update_halo_kernel1_l1; int xdim3_update_halo_kernel1_l1_h = -1; __constant__ int ydim3_update_halo_kernel1_l1; int ydim3_update_halo_kernel1_l1_h = -1; __constant__ int xdim4_update_halo_kernel1_l1; int xdim4_update_halo_kernel1_l1_h = -1; __constant__ int ydim4_update_halo_kernel1_l1; int ydim4_update_halo_kernel1_l1_h = -1; __constant__ int xdim5_update_halo_kernel1_l1; int xdim5_update_halo_kernel1_l1_h = -1; __constant__ int ydim5_update_halo_kernel1_l1; int ydim5_update_halo_kernel1_l1_h = -1; __constant__ int xdim6_update_halo_kernel1_l1; int xdim6_update_halo_kernel1_l1_h = -1; __constant__ int ydim6_update_halo_kernel1_l1; int ydim6_update_halo_kernel1_l1_h = -1; #undef OPS_ACC0 #undef OPS_ACC1 #undef OPS_ACC2 #undef OPS_ACC3 #undef OPS_ACC4 #undef OPS_ACC5 #undef OPS_ACC6 #define OPS_ACC0(x,y,z) (x+xdim0_update_halo_kernel1_l1*(y)+xdim0_update_halo_kernel1_l1*ydim0_update_halo_kernel1_l1*(z)) #define OPS_ACC1(x,y,z) (x+xdim1_update_halo_kernel1_l1*(y)+xdim1_update_halo_kernel1_l1*ydim1_update_halo_kernel1_l1*(z)) #define OPS_ACC2(x,y,z) (x+xdim2_update_halo_kernel1_l1*(y)+xdim2_update_halo_kernel1_l1*ydim2_update_halo_kernel1_l1*(z)) #define OPS_ACC3(x,y,z) (x+xdim3_update_halo_kernel1_l1*(y)+xdim3_update_halo_kernel1_l1*ydim3_update_halo_kernel1_l1*(z)) #define OPS_ACC4(x,y,z) (x+xdim4_update_halo_kernel1_l1*(y)+xdim4_update_halo_kernel1_l1*ydim4_update_halo_kernel1_l1*(z)) #define OPS_ACC5(x,y,z) (x+xdim5_update_halo_kernel1_l1*(y)+xdim5_update_halo_kernel1_l1*ydim5_update_halo_kernel1_l1*(z)) #define OPS_ACC6(x,y,z) (x+xdim6_update_halo_kernel1_l1*(y)+xdim6_update_halo_kernel1_l1*ydim6_update_halo_kernel1_l1*(z)) //user function __device__ inline void update_halo_kernel1_l1_gpu(double *density0, double *density1, double *energy0, double *energy1, double *pressure, double *viscosity, double *soundspeed , const int* fields) { if(fields[FIELD_DENSITY0] == 1) density0[OPS_ACC0(0,0,0)] = density0[OPS_ACC0(1,0,0)]; if(fields[FIELD_DENSITY1] == 1) density1[OPS_ACC1(0,0,0)] = density1[OPS_ACC1(1,0,0)]; if(fields[FIELD_ENERGY0] == 1) energy0[OPS_ACC2(0,0,0)] = energy0[OPS_ACC2(1,0,0)]; if(fields[FIELD_ENERGY1] == 1) energy1[OPS_ACC3(0,0,0)] = energy1[OPS_ACC3(1,0,0)]; if(fields[FIELD_PRESSURE] == 1) pressure[OPS_ACC4(0,0,0)] = pressure[OPS_ACC4(1,0,0)]; if(fields[FIELD_VISCOSITY] == 1) viscosity[OPS_ACC5(0,0,0)] = viscosity[OPS_ACC5(1,0,0)]; if(fields[FIELD_SOUNDSPEED] == 1) soundspeed[OPS_ACC6(0,0,0)] = soundspeed[OPS_ACC6(1,0,0)]; } #undef OPS_ACC0 #undef OPS_ACC1 #undef OPS_ACC2 #undef OPS_ACC3 #undef OPS_ACC4 #undef OPS_ACC5 #undef OPS_ACC6 __global__ void ops_update_halo_kernel1_l1( double* __restrict arg0, double* __restrict arg1, double* __restrict arg2, double* __restrict arg3, double* __restrict arg4, double* __restrict arg5, double* __restrict arg6, const int* __restrict arg7, int size0, int size1, int size2 ){ int idx_z = blockDim.z * blockIdx.z + threadIdx.z; int idx_y = blockDim.y * blockIdx.y + threadIdx.y; int idx_x = blockDim.x * blockIdx.x + threadIdx.x; arg0 += idx_x * 1*1 + idx_y * 1*1 * xdim0_update_halo_kernel1_l1 + idx_z * 1*1 * xdim0_update_halo_kernel1_l1 * ydim0_update_halo_kernel1_l1; arg1 += idx_x * 1*1 + idx_y * 1*1 * xdim1_update_halo_kernel1_l1 + idx_z * 1*1 * xdim1_update_halo_kernel1_l1 * ydim1_update_halo_kernel1_l1; arg2 += idx_x * 1*1 + idx_y * 1*1 * xdim2_update_halo_kernel1_l1 + idx_z * 1*1 * xdim2_update_halo_kernel1_l1 * ydim2_update_halo_kernel1_l1; arg3 += idx_x * 1*1 + idx_y * 1*1 * xdim3_update_halo_kernel1_l1 + idx_z * 1*1 * xdim3_update_halo_kernel1_l1 * ydim3_update_halo_kernel1_l1; arg4 += idx_x * 1*1 + idx_y * 1*1 * xdim4_update_halo_kernel1_l1 + idx_z * 1*1 * xdim4_update_halo_kernel1_l1 * ydim4_update_halo_kernel1_l1; arg5 += idx_x * 1*1 + idx_y * 1*1 * xdim5_update_halo_kernel1_l1 + idx_z * 1*1 * xdim5_update_halo_kernel1_l1 * ydim5_update_halo_kernel1_l1; arg6 += idx_x * 1*1 + idx_y * 1*1 * xdim6_update_halo_kernel1_l1 + idx_z * 1*1 * xdim6_update_halo_kernel1_l1 * ydim6_update_halo_kernel1_l1; if (idx_x < size0 && idx_y < size1 && idx_z < size2) { update_halo_kernel1_l1_gpu(arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7); } } // host stub function #ifndef OPS_LAZY void ops_par_loop_update_halo_kernel1_l1(char const *name, ops_block block, int dim, int* range, ops_arg arg0, ops_arg arg1, ops_arg arg2, ops_arg arg3, ops_arg arg4, ops_arg arg5, ops_arg arg6, ops_arg arg7) { #else void ops_par_loop_update_halo_kernel1_l1_execute(ops_kernel_descriptor *desc) { int dim = desc->dim; int *range = desc->range; ops_arg arg0 = desc->args[0]; ops_arg arg1 = desc->args[1]; ops_arg arg2 = desc->args[2]; ops_arg arg3 = desc->args[3]; ops_arg arg4 = desc->args[4]; ops_arg arg5 = desc->args[5]; ops_arg arg6 = desc->args[6]; ops_arg arg7 = desc->args[7]; #endif //Timing double t1,t2,c1,c2; ops_arg args[8] = { arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7}; #if CHECKPOINTING && !OPS_LAZY if (!ops_checkpointing_before(args,8,range,17)) return; #endif if (OPS_diags > 1) { ops_timing_realloc(17,"update_halo_kernel1_l1"); OPS_kernels[17].count++; ops_timers_core(&c1,&t1); } //compute locally allocated range for the sub-block int start[3]; int end[3]; #if OPS_MPI && !OPS_LAZY sub_block_list sb = OPS_sub_block_list[block->index]; if (!sb->owned) return; for ( int n=0; n<3; n++ ){ start[n] = sb->decomp_disp[n];end[n] = sb->decomp_disp[n]+sb->decomp_size[n]; if (start[n] >= range[2*n]) { start[n] = 0; } else { start[n] = range[2*n] - start[n]; } if (sb->id_m[n]==MPI_PROC_NULL && range[2*n] < 0) start[n] = range[2*n]; if (end[n] >= range[2*n+1]) { end[n] = range[2*n+1] - sb->decomp_disp[n]; } else { end[n] = sb->decomp_size[n]; } if (sb->id_p[n]==MPI_PROC_NULL && (range[2*n+1] > sb->decomp_disp[n]+sb->decomp_size[n])) end[n] += (range[2*n+1]-sb->decomp_disp[n]-sb->decomp_size[n]); } #else for ( int n=0; n<3; n++ ){ start[n] = range[2*n];end[n] = range[2*n+1]; } #endif int x_size = MAX(0,end[0]-start[0]); int y_size = MAX(0,end[1]-start[1]); int z_size = MAX(0,end[2]-start[2]); int xdim0 = args[0].dat->size[0]; int ydim0 = args[0].dat->size[1]; int xdim1 = args[1].dat->size[0]; int ydim1 = args[1].dat->size[1]; int xdim2 = args[2].dat->size[0]; int ydim2 = args[2].dat->size[1]; int xdim3 = args[3].dat->size[0]; int ydim3 = args[3].dat->size[1]; int xdim4 = args[4].dat->size[0]; int ydim4 = args[4].dat->size[1]; int xdim5 = args[5].dat->size[0]; int ydim5 = args[5].dat->size[1]; int xdim6 = args[6].dat->size[0]; int ydim6 = args[6].dat->size[1]; if (xdim0 != xdim0_update_halo_kernel1_l1_h || ydim0 != ydim0_update_halo_kernel1_l1_h || xdim1 != xdim1_update_halo_kernel1_l1_h || ydim1 != ydim1_update_halo_kernel1_l1_h || xdim2 != xdim2_update_halo_kernel1_l1_h || ydim2 != ydim2_update_halo_kernel1_l1_h || xdim3 != xdim3_update_halo_kernel1_l1_h || ydim3 != ydim3_update_halo_kernel1_l1_h || xdim4 != xdim4_update_halo_kernel1_l1_h || ydim4 != ydim4_update_halo_kernel1_l1_h || xdim5 != xdim5_update_halo_kernel1_l1_h || ydim5 != ydim5_update_halo_kernel1_l1_h || xdim6 != xdim6_update_halo_kernel1_l1_h || ydim6 != ydim6_update_halo_kernel1_l1_h) { cudaMemcpyToSymbol( xdim0_update_halo_kernel1_l1, &xdim0, sizeof(int) ); xdim0_update_halo_kernel1_l1_h = xdim0; cudaMemcpyToSymbol( ydim0_update_halo_kernel1_l1, &ydim0, sizeof(int) ); ydim0_update_halo_kernel1_l1_h = ydim0; cudaMemcpyToSymbol( xdim1_update_halo_kernel1_l1, &xdim1, sizeof(int) ); xdim1_update_halo_kernel1_l1_h = xdim1; cudaMemcpyToSymbol( ydim1_update_halo_kernel1_l1, &ydim1, sizeof(int) ); ydim1_update_halo_kernel1_l1_h = ydim1; cudaMemcpyToSymbol( xdim2_update_halo_kernel1_l1, &xdim2, sizeof(int) ); xdim2_update_halo_kernel1_l1_h = xdim2; cudaMemcpyToSymbol( ydim2_update_halo_kernel1_l1, &ydim2, sizeof(int) ); ydim2_update_halo_kernel1_l1_h = ydim2; cudaMemcpyToSymbol( xdim3_update_halo_kernel1_l1, &xdim3, sizeof(int) ); xdim3_update_halo_kernel1_l1_h = xdim3; cudaMemcpyToSymbol( ydim3_update_halo_kernel1_l1, &ydim3, sizeof(int) ); ydim3_update_halo_kernel1_l1_h = ydim3; cudaMemcpyToSymbol( xdim4_update_halo_kernel1_l1, &xdim4, sizeof(int) ); xdim4_update_halo_kernel1_l1_h = xdim4; cudaMemcpyToSymbol( ydim4_update_halo_kernel1_l1, &ydim4, sizeof(int) ); ydim4_update_halo_kernel1_l1_h = ydim4; cudaMemcpyToSymbol( xdim5_update_halo_kernel1_l1, &xdim5, sizeof(int) ); xdim5_update_halo_kernel1_l1_h = xdim5; cudaMemcpyToSymbol( ydim5_update_halo_kernel1_l1, &ydim5, sizeof(int) ); ydim5_update_halo_kernel1_l1_h = ydim5; cudaMemcpyToSymbol( xdim6_update_halo_kernel1_l1, &xdim6, sizeof(int) ); xdim6_update_halo_kernel1_l1_h = xdim6; cudaMemcpyToSymbol( ydim6_update_halo_kernel1_l1, &ydim6, sizeof(int) ); ydim6_update_halo_kernel1_l1_h = ydim6; } int *arg7h = (int *)arg7.data; dim3 grid( (x_size-1)/OPS_block_size_x+ 1, (y_size-1)/OPS_block_size_y + 1, (z_size-1)/OPS_block_size_z +1); dim3 tblock(OPS_block_size_x,OPS_block_size_y,OPS_block_size_z); int consts_bytes = 0; consts_bytes += ROUND_UP(NUM_FIELDS*sizeof(int)); reallocConstArrays(consts_bytes); consts_bytes = 0; arg7.data = OPS_consts_h + consts_bytes; arg7.data_d = OPS_consts_d + consts_bytes; for (int d=0; d<NUM_FIELDS; d++) ((int *)arg7.data)[d] = arg7h[d]; consts_bytes += ROUND_UP(NUM_FIELDS*sizeof(int)); mvConstArraysToDevice(consts_bytes); int dat0 = (OPS_soa ? args[0].dat->type_size : args[0].dat->elem_size); int dat1 = (OPS_soa ? args[1].dat->type_size : args[1].dat->elem_size); int dat2 = (OPS_soa ? args[2].dat->type_size : args[2].dat->elem_size); int dat3 = (OPS_soa ? args[3].dat->type_size : args[3].dat->elem_size); int dat4 = (OPS_soa ? args[4].dat->type_size : args[4].dat->elem_size); int dat5 = (OPS_soa ? args[5].dat->type_size : args[5].dat->elem_size); int dat6 = (OPS_soa ? args[6].dat->type_size : args[6].dat->elem_size); char *p_a[8]; //set up initial pointers int base0 = args[0].dat->base_offset + dat0 * 1 * (start[0] * args[0].stencil->stride[0]); base0 = base0+ dat0 * args[0].dat->size[0] * (start[1] * args[0].stencil->stride[1]); base0 = base0+ dat0 * args[0].dat->size[0] * args[0].dat->size[1] * (start[2] * args[0].stencil->stride[2]); p_a[0] = (char *)args[0].data_d + base0; int base1 = args[1].dat->base_offset + dat1 * 1 * (start[0] * args[1].stencil->stride[0]); base1 = base1+ dat1 * args[1].dat->size[0] * (start[1] * args[1].stencil->stride[1]); base1 = base1+ dat1 * args[1].dat->size[0] * args[1].dat->size[1] * (start[2] * args[1].stencil->stride[2]); p_a[1] = (char *)args[1].data_d + base1; int base2 = args[2].dat->base_offset + dat2 * 1 * (start[0] * args[2].stencil->stride[0]); base2 = base2+ dat2 * args[2].dat->size[0] * (start[1] * args[2].stencil->stride[1]); base2 = base2+ dat2 * args[2].dat->size[0] * args[2].dat->size[1] * (start[2] * args[2].stencil->stride[2]); p_a[2] = (char *)args[2].data_d + base2; int base3 = args[3].dat->base_offset + dat3 * 1 * (start[0] * args[3].stencil->stride[0]); base3 = base3+ dat3 * args[3].dat->size[0] * (start[1] * args[3].stencil->stride[1]); base3 = base3+ dat3 * args[3].dat->size[0] * args[3].dat->size[1] * (start[2] * args[3].stencil->stride[2]); p_a[3] = (char *)args[3].data_d + base3; int base4 = args[4].dat->base_offset + dat4 * 1 * (start[0] * args[4].stencil->stride[0]); base4 = base4+ dat4 * args[4].dat->size[0] * (start[1] * args[4].stencil->stride[1]); base4 = base4+ dat4 * args[4].dat->size[0] * args[4].dat->size[1] * (start[2] * args[4].stencil->stride[2]); p_a[4] = (char *)args[4].data_d + base4; int base5 = args[5].dat->base_offset + dat5 * 1 * (start[0] * args[5].stencil->stride[0]); base5 = base5+ dat5 * args[5].dat->size[0] * (start[1] * args[5].stencil->stride[1]); base5 = base5+ dat5 * args[5].dat->size[0] * args[5].dat->size[1] * (start[2] * args[5].stencil->stride[2]); p_a[5] = (char *)args[5].data_d + base5; int base6 = args[6].dat->base_offset + dat6 * 1 * (start[0] * args[6].stencil->stride[0]); base6 = base6+ dat6 * args[6].dat->size[0] * (start[1] * args[6].stencil->stride[1]); base6 = base6+ dat6 * args[6].dat->size[0] * args[6].dat->size[1] * (start[2] * args[6].stencil->stride[2]); p_a[6] = (char *)args[6].data_d + base6; #ifndef OPS_LAZY ops_H_D_exchanges_device(args, 8); ops_halo_exchanges(args,8,range); #endif if (OPS_diags > 1) { ops_timers_core(&c2,&t2); OPS_kernels[17].mpi_time += t2-t1; } //call kernel wrapper function, passing in pointers to data if (x_size > 0 && y_size > 0 && z_size > 0) ops_update_halo_kernel1_l1<<<grid, tblock >>> ( (double *)p_a[0], (double *)p_a[1], (double *)p_a[2], (double *)p_a[3], (double *)p_a[4], (double *)p_a[5], (double *)p_a[6], (int *)arg7.data_d,x_size, y_size, z_size); cutilSafeCall(cudaGetLastError()); if (OPS_diags>1) { cutilSafeCall(cudaDeviceSynchronize()); ops_timers_core(&c1,&t1); OPS_kernels[17].time += t1-t2; } #ifndef OPS_LAZY ops_set_dirtybit_device(args, 8); ops_set_halo_dirtybit3(&args[0],range); ops_set_halo_dirtybit3(&args[1],range); ops_set_halo_dirtybit3(&args[2],range); ops_set_halo_dirtybit3(&args[3],range); ops_set_halo_dirtybit3(&args[4],range); ops_set_halo_dirtybit3(&args[5],range); ops_set_halo_dirtybit3(&args[6],range); #endif if (OPS_diags > 1) { //Update kernel record ops_timers_core(&c2,&t2); OPS_kernels[17].mpi_time += t2-t1; OPS_kernels[17].transfer += ops_compute_transfer(dim, start, end, &arg0); OPS_kernels[17].transfer += ops_compute_transfer(dim, start, end, &arg1); OPS_kernels[17].transfer += ops_compute_transfer(dim, start, end, &arg2); OPS_kernels[17].transfer += ops_compute_transfer(dim, start, end, &arg3); OPS_kernels[17].transfer += ops_compute_transfer(dim, start, end, &arg4); OPS_kernels[17].transfer += ops_compute_transfer(dim, start, end, &arg5); OPS_kernels[17].transfer += ops_compute_transfer(dim, start, end, &arg6); } } #ifdef OPS_LAZY void ops_par_loop_update_halo_kernel1_l1(char const *name, ops_block block, int dim, int* range, ops_arg arg0, ops_arg arg1, ops_arg arg2, ops_arg arg3, ops_arg arg4, ops_arg arg5, ops_arg arg6, ops_arg arg7) { ops_kernel_descriptor *desc = (ops_kernel_descriptor *)malloc(sizeof(ops_kernel_descriptor)); desc->name = name; desc->block = block; desc->dim = dim; desc->device = 1; desc->index = 17; desc->hash = 5381; desc->hash = ((desc->hash << 5) + desc->hash) + 17; for ( int i=0; i<6; i++ ){ desc->range[i] = range[i]; desc->orig_range[i] = range[i]; desc->hash = ((desc->hash << 5) + desc->hash) + range[i]; } desc->nargs = 8; desc->args = (ops_arg*)malloc(8*sizeof(ops_arg)); desc->args[0] = arg0; desc->hash = ((desc->hash << 5) + desc->hash) + arg0.dat->index; desc->args[1] = arg1; desc->hash = ((desc->hash << 5) + desc->hash) + arg1.dat->index; desc->args[2] = arg2; desc->hash = ((desc->hash << 5) + desc->hash) + arg2.dat->index; desc->args[3] = arg3; desc->hash = ((desc->hash << 5) + desc->hash) + arg3.dat->index; desc->args[4] = arg4; desc->hash = ((desc->hash << 5) + desc->hash) + arg4.dat->index; desc->args[5] = arg5; desc->hash = ((desc->hash << 5) + desc->hash) + arg5.dat->index; desc->args[6] = arg6; desc->hash = ((desc->hash << 5) + desc->hash) + arg6.dat->index; desc->args[7] = arg7; char *tmp = (char*)malloc(NUM_FIELDS*sizeof(int)); memcpy(tmp, arg7.data,NUM_FIELDS*sizeof(int)); desc->args[7].data = tmp; desc->function = ops_par_loop_update_halo_kernel1_l1_execute; if (OPS_diags > 1) { ops_timing_realloc(17,"update_halo_kernel1_l1"); } ops_enqueue_kernel(desc); } #endif
eaaf0679068e85140ef67e3365574e69ca25839f.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include <ATen/ATen.h> #include <ATen/hip/HIPContext.h> #include <ATen/TensorUtils.h> #include <ATen/NativeFunctions.h> #include <ATen/native/hip/SortingCommon.cuh> #include <ATen/AccumulateType.h> #include <THH/THHDeviceUtils.cuh> #include <THH/THHTensorMathReduce.cuh> #include <THH/THHThrustAllocator.cuh> #include <THH/THHAtomics.cuh> #include <thrust/device_ptr.h> #include <thrust/execution_policy.h> #include <thrust/unique.h> #include <c10/macros/Macros.h> namespace at { namespace native { namespace { /* This code computes the sum of the weights in two-steps: 1) Each GPU warp sums `NROWS_PER_THREAD` number of row given by `indeces` 2) Each partial-sum from 1) are summed and scatter into `grad_weight` Notice, `NROWS_PER_THREAD` impacts the Achieved Occupancy of the kernel execution. If it is high, the size of the thread blocks will be too small to achieve good occupancy. Similarly, a very low value will make the size of the thread blocks in the final sum in step 2) too small. */ constexpr int NROWS_PER_THREAD = 10; // Fast ceil division (no overflow checking) __host__ __device__ __forceinline__ int64_t ceil_div(int64_t x, int64_t y) { return (x + y - 1) / y; } template <typename index_t> __global__ void krn_partials_per_segment(index_t *ret, const index_t *segment_offsets, int64_t num_of_segments, int64_t numel) { const int id = blockIdx.x * blockDim.x + threadIdx.x; if(id < num_of_segments) { const int64_t idx_start = segment_offsets[id]; const int64_t idx_end = (id == num_of_segments-1)?numel:segment_offsets[id+1]; const int64_t size = idx_end - idx_start; ret[id] = ceil_div(size, NROWS_PER_THREAD); } } template <typename index_t> __global__ void krn_partial_segment_offset( index_t *ret, const index_t *partials_per_segment, const index_t *partials_per_segment_offset, const index_t *segment_offsets, int64_t num_of_segments) { const int id = blockIdx.x * blockDim.x + threadIdx.x; if(id < num_of_segments) { index_t idx = partials_per_segment_offset[id]; const index_t num_partials = partials_per_segment[id]; const index_t segment_offset = segment_offsets[id]; for (int64_t i=0; i<num_partials; ++i) { ret[idx++] = segment_offset + i * NROWS_PER_THREAD; } } } template <typename scalar_t, typename index_t> __global__ void compute_grad_weight_bags( index_t *indices, scalar_t *gradOutput, index_t *offset2bag, index_t *count, ptrdiff_t numel, int64_t stride, int mode_mean, const index_t *bag_size, scalar_t* per_sample_weights, int64_t per_sample_weights_stride, index_t* segment_offsets, int64_t num_of_segments, acc_type<scalar_t, true> *grad_weight_per_segment, const int64_t stride_warped) { const int gid = blockIdx.x * blockDim.x + threadIdx.x; const int id = gid / stride_warped; const int startFeature = gid % stride_warped; if (startFeature >= stride) { return; } if (id >= num_of_segments) { return; } const int idx_begin = segment_offsets[id]; const int idx_end = (id == num_of_segments-1)?numel:segment_offsets[id+1]; acc_type<scalar_t, true> weight = 0; for (int idx=idx_begin; idx < idx_end; ++idx) { const int origRow = indices[idx]; const int seq_number = offset2bag[origRow]; const int gradOutputRow = seq_number * stride; acc_type<scalar_t, true> scale = count ? 1.0 / count[idx] : 1.0; if (per_sample_weights) { scale *= per_sample_weights[origRow * per_sample_weights_stride]; } acc_type<scalar_t, true> gradient = gradOutput[gradOutputRow + startFeature]; if (mode_mean) { gradient /= bag_size[seq_number]; } weight += gradient * scale; } grad_weight_per_segment[id * stride + startFeature] = weight; } template <typename scalar_t, typename index_t> __global__ void compute_grad_weight( index_t *indices, scalar_t *gradOutput, index_t *count, ptrdiff_t numel, int64_t stride, index_t* segment_offsets, int64_t num_of_segments, acc_type<scalar_t, true> *grad_weight_per_segment, const int64_t stride_warped) { using accscalar_t = acc_type<scalar_t, true>; const int gid = blockIdx.x * blockDim.x + threadIdx.x; const int id = gid / stride_warped; const int startFeature = gid % stride_warped; if (startFeature >= stride) { return; } if (id >= num_of_segments) { return; } const int idx_begin = segment_offsets[id]; const int idx_end = (id == num_of_segments-1)?numel:segment_offsets[id+1]; accscalar_t weight = 0; for (int idx=idx_begin; idx < idx_end; ++idx) { const index_t target_row = indices[idx]; const accscalar_t scale = count ? (accscalar_t)1.0 / count[idx] : 1.0; weight += gradOutput[target_row * stride + startFeature] * scale; } grad_weight_per_segment[id * stride + startFeature] = weight; } // This kernel assumes that all input tensors are contiguous. template <typename scalar_t, typename index_t> __global__ void sum_and_scatter( index_t *input, scalar_t *gradWeight, int64_t stride, index_t* segment_offsets, int64_t num_of_segments, const acc_type<scalar_t, true> *grad_weight_per_segment, const index_t *segment_sizes_offsets, int64_t num_of_partial_segments, const int64_t padding_idx, const int64_t stride_warped) { const int gid = blockIdx.x * blockDim.x + threadIdx.x; const int id = gid / stride_warped; const int startFeature = gid % stride_warped; if (startFeature >= stride) { return; } if (id >= num_of_segments) { return; } const int idx_begin = segment_sizes_offsets[id]; const int idx_end = (id == num_of_segments-1)?num_of_partial_segments:segment_sizes_offsets[id+1]; acc_type<scalar_t, true> weight = 0; for (int idx=idx_begin; idx < idx_end; ++idx) { weight += grad_weight_per_segment[idx*stride + startFeature]; } int64_t target_row = input[segment_offsets[id]]; if (target_row != padding_idx) { gradWeight[target_row * stride + startFeature] = weight; } } } // anon namespace Tensor embedding_backward_cuda_kernel( const Tensor &grad, const Tensor &orig_indices, const Tensor &sorted_indices, const Tensor &count, int64_t num_weights, int padding_idx, bool mode_mean, const Tensor &offset2bag, const Tensor &bag_size, const Tensor &per_sample_weights) { auto stream = at::hip::getCurrentHIPStreamMasqueradingAsCUDA(); auto allocator = THCThrustAllocator(globalContext().lazyInitCUDA()); auto policy = thrust::hip::par(allocator).on(stream); const ptrdiff_t numel = sorted_indices.numel(); auto grad_weight = at::zeros({num_weights, grad.size(-1)}, grad.options()); const int64_t stride = grad_weight.stride(0); // Compute the number of segments and their start position so that we do not have to // spawn a warp per index. In this context, a segment is a number of rows that should // be summarized. // Unit: index in `sorted_indices` and `orig_indices` AT_DISPATCH_INDEX_TYPES(orig_indices.scalar_type(), "embedding_backward_cuda_kernel", [&] () { auto segment_offsets = at::empty({numel}, orig_indices.options()); int64_t num_of_segments; { auto sorted_indices_dev = thrust::device_ptr<index_t>(sorted_indices.data_ptr<index_t>()); auto dummy = at::empty_like(sorted_indices, LEGACY_CONTIGUOUS_MEMORY_FORMAT); auto dummy_dev = thrust::device_ptr<index_t>(dummy.data_ptr<index_t>()); auto ends = thrust::unique_by_key_copy( policy, sorted_indices_dev, sorted_indices_dev + numel, thrust::make_counting_iterator(0), dummy_dev, thrust::device_ptr<index_t>(segment_offsets.data_ptr<index_t>())); num_of_segments = thrust::get<0>(ends) - dummy_dev; } // We split the segments up into sizes of `NROWS_PER_THREAD` // Compute the number partial-segments per segment (some partial-segments // may not be the full `NROWS_PER_THREAD` number of rows) auto partials_per_segment = at::empty({num_of_segments}, orig_indices.options()); { hipLaunchKernelGGL(( krn_partials_per_segment), dim3(ceil_div(num_of_segments, 32)), dim3(32), 0, stream, partials_per_segment.data_ptr<index_t>(), segment_offsets.data_ptr<index_t>(), num_of_segments, numel); C10_HIP_KERNEL_LAUNCH_CHECK(); } // In order to compute `partial_segment_offset`, which is the start index // of each partial-segment in `sorted_indices`, we need to compute the // start position of each _segment_ in `partial_segment_offset`. // Unit: index in `partial_segment_offset` auto partials_per_segment_offset = at::empty({num_of_segments}, orig_indices.options()); thrust::exclusive_scan( policy, thrust::device_ptr<index_t>(partials_per_segment.data_ptr<index_t>()), thrust::device_ptr<index_t>(partials_per_segment.data_ptr<index_t>()+num_of_segments), thrust::device_ptr<index_t>(partials_per_segment_offset.data_ptr<index_t>())); // The total number of partial-segments is the sum of `partials_per_segment_offset` const int num_of_partial_segments = partials_per_segment[num_of_segments-1].item<index_t>() + partials_per_segment_offset[num_of_segments-1].item<index_t>(); // Now we can compute the start position of each partial-segment // Unit: index in `sorted_indices` and `orig_indices` auto partial_segment_offset = at::empty({num_of_partial_segments}, orig_indices.options()); { hipLaunchKernelGGL(( krn_partial_segment_offset), dim3(ceil_div(num_of_segments, 32)), dim3(32), 0, stream, partial_segment_offset.data_ptr<index_t>(), partials_per_segment.data_ptr<index_t>(), partials_per_segment_offset.data_ptr<index_t>(), segment_offsets.data_ptr<index_t>(), num_of_segments); C10_HIP_KERNEL_LAUNCH_CHECK(); } const int stride_warped = ceil_div(stride, C10_WARP_SIZE)*C10_WARP_SIZE; const int block = ::min(stride_warped, MAX_BLOCK_SIZE); const int grid = ceil_div(num_of_partial_segments*stride_warped, block); AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, grad.scalar_type(), "embedding_bag_backward_cuda_compute_grad_weight", [&] { // For numerical stability, the dtype of `grad_weight_per_segment` // should match `acc_type` using partial_weight_t = acc_type<scalar_t, true>; TensorOptions op; if(grad.dtype() == at::kHalf || grad.dtype() == at::kBFloat16) { op = grad.options().dtype(at::kFloat); } else { op = grad.options(); } auto grad_weight_per_segment = at::empty({num_of_partial_segments, stride}, op); // Compute the sum of each partial-segment and handle bags if (offset2bag.defined()) { hipLaunchKernelGGL(( compute_grad_weight_bags<scalar_t>), dim3(grid), dim3(block), 0, stream, orig_indices.data_ptr<index_t>(), grad.data_ptr<scalar_t>(), offset2bag.data_ptr<index_t>(), count.defined() ? count.data_ptr<index_t>() : nullptr, numel, stride, mode_mean, bag_size.data_ptr<index_t>(), per_sample_weights.defined() ? per_sample_weights.data_ptr<scalar_t>() : NULL, per_sample_weights.defined() ? per_sample_weights.stride(0) : 0, partial_segment_offset.data_ptr<index_t>(), num_of_partial_segments, grad_weight_per_segment.data_ptr<partial_weight_t>(), stride_warped); C10_HIP_KERNEL_LAUNCH_CHECK(); } else { hipLaunchKernelGGL(( compute_grad_weight<scalar_t>), dim3(grid), dim3(block), 0, stream, orig_indices.data_ptr<index_t>(), grad.data_ptr<scalar_t>(), count.defined() ? count.data_ptr<index_t>() : nullptr, numel, stride, partial_segment_offset.data_ptr<index_t>(), num_of_partial_segments, grad_weight_per_segment.data_ptr<partial_weight_t>(), stride_warped); C10_HIP_KERNEL_LAUNCH_CHECK(); } // Finally, we sum all the partial-sums and scatter them // into `grad_weight`. const int grid2 = ceil_div(num_of_segments*stride_warped, block); hipLaunchKernelGGL(( sum_and_scatter<scalar_t>), dim3(grid2), dim3(block), 0, stream, sorted_indices.data_ptr<index_t>(), grad_weight.data_ptr<scalar_t>(), stride, segment_offsets.data_ptr<index_t>(), num_of_segments, grad_weight_per_segment.data_ptr<partial_weight_t>(), partials_per_segment_offset.data_ptr<index_t>(), num_of_partial_segments, padding_idx, stride_warped); C10_HIP_KERNEL_LAUNCH_CHECK(); }); }); return grad_weight; } }}
eaaf0679068e85140ef67e3365574e69ca25839f.cu
#include <ATen/ATen.h> #include <ATen/cuda/CUDAContext.h> #include <ATen/TensorUtils.h> #include <ATen/NativeFunctions.h> #include <ATen/native/cuda/SortingCommon.cuh> #include <ATen/AccumulateType.h> #include <THC/THCDeviceUtils.cuh> #include <THC/THCTensorMathReduce.cuh> #include <THC/THCThrustAllocator.cuh> #include <THC/THCAtomics.cuh> #include <thrust/device_ptr.h> #include <thrust/execution_policy.h> #include <thrust/unique.h> #include <c10/macros/Macros.h> namespace at { namespace native { namespace { /* This code computes the sum of the weights in two-steps: 1) Each GPU warp sums `NROWS_PER_THREAD` number of row given by `indeces` 2) Each partial-sum from 1) are summed and scatter into `grad_weight` Notice, `NROWS_PER_THREAD` impacts the Achieved Occupancy of the kernel execution. If it is high, the size of the thread blocks will be too small to achieve good occupancy. Similarly, a very low value will make the size of the thread blocks in the final sum in step 2) too small. */ constexpr int NROWS_PER_THREAD = 10; // Fast ceil division (no overflow checking) __host__ __device__ __forceinline__ int64_t ceil_div(int64_t x, int64_t y) { return (x + y - 1) / y; } template <typename index_t> __global__ void krn_partials_per_segment(index_t *ret, const index_t *segment_offsets, int64_t num_of_segments, int64_t numel) { const int id = blockIdx.x * blockDim.x + threadIdx.x; if(id < num_of_segments) { const int64_t idx_start = segment_offsets[id]; const int64_t idx_end = (id == num_of_segments-1)?numel:segment_offsets[id+1]; const int64_t size = idx_end - idx_start; ret[id] = ceil_div(size, NROWS_PER_THREAD); } } template <typename index_t> __global__ void krn_partial_segment_offset( index_t *ret, const index_t *partials_per_segment, const index_t *partials_per_segment_offset, const index_t *segment_offsets, int64_t num_of_segments) { const int id = blockIdx.x * blockDim.x + threadIdx.x; if(id < num_of_segments) { index_t idx = partials_per_segment_offset[id]; const index_t num_partials = partials_per_segment[id]; const index_t segment_offset = segment_offsets[id]; for (int64_t i=0; i<num_partials; ++i) { ret[idx++] = segment_offset + i * NROWS_PER_THREAD; } } } template <typename scalar_t, typename index_t> __global__ void compute_grad_weight_bags( index_t *indices, scalar_t *gradOutput, index_t *offset2bag, index_t *count, ptrdiff_t numel, int64_t stride, int mode_mean, const index_t *bag_size, scalar_t* per_sample_weights, int64_t per_sample_weights_stride, index_t* segment_offsets, int64_t num_of_segments, acc_type<scalar_t, true> *grad_weight_per_segment, const int64_t stride_warped) { const int gid = blockIdx.x * blockDim.x + threadIdx.x; const int id = gid / stride_warped; const int startFeature = gid % stride_warped; if (startFeature >= stride) { return; } if (id >= num_of_segments) { return; } const int idx_begin = segment_offsets[id]; const int idx_end = (id == num_of_segments-1)?numel:segment_offsets[id+1]; acc_type<scalar_t, true> weight = 0; for (int idx=idx_begin; idx < idx_end; ++idx) { const int origRow = indices[idx]; const int seq_number = offset2bag[origRow]; const int gradOutputRow = seq_number * stride; acc_type<scalar_t, true> scale = count ? 1.0 / count[idx] : 1.0; if (per_sample_weights) { scale *= per_sample_weights[origRow * per_sample_weights_stride]; } acc_type<scalar_t, true> gradient = gradOutput[gradOutputRow + startFeature]; if (mode_mean) { gradient /= bag_size[seq_number]; } weight += gradient * scale; } grad_weight_per_segment[id * stride + startFeature] = weight; } template <typename scalar_t, typename index_t> __global__ void compute_grad_weight( index_t *indices, scalar_t *gradOutput, index_t *count, ptrdiff_t numel, int64_t stride, index_t* segment_offsets, int64_t num_of_segments, acc_type<scalar_t, true> *grad_weight_per_segment, const int64_t stride_warped) { using accscalar_t = acc_type<scalar_t, true>; const int gid = blockIdx.x * blockDim.x + threadIdx.x; const int id = gid / stride_warped; const int startFeature = gid % stride_warped; if (startFeature >= stride) { return; } if (id >= num_of_segments) { return; } const int idx_begin = segment_offsets[id]; const int idx_end = (id == num_of_segments-1)?numel:segment_offsets[id+1]; accscalar_t weight = 0; for (int idx=idx_begin; idx < idx_end; ++idx) { const index_t target_row = indices[idx]; const accscalar_t scale = count ? (accscalar_t)1.0 / count[idx] : 1.0; weight += gradOutput[target_row * stride + startFeature] * scale; } grad_weight_per_segment[id * stride + startFeature] = weight; } // This kernel assumes that all input tensors are contiguous. template <typename scalar_t, typename index_t> __global__ void sum_and_scatter( index_t *input, scalar_t *gradWeight, int64_t stride, index_t* segment_offsets, int64_t num_of_segments, const acc_type<scalar_t, true> *grad_weight_per_segment, const index_t *segment_sizes_offsets, int64_t num_of_partial_segments, const int64_t padding_idx, const int64_t stride_warped) { const int gid = blockIdx.x * blockDim.x + threadIdx.x; const int id = gid / stride_warped; const int startFeature = gid % stride_warped; if (startFeature >= stride) { return; } if (id >= num_of_segments) { return; } const int idx_begin = segment_sizes_offsets[id]; const int idx_end = (id == num_of_segments-1)?num_of_partial_segments:segment_sizes_offsets[id+1]; acc_type<scalar_t, true> weight = 0; for (int idx=idx_begin; idx < idx_end; ++idx) { weight += grad_weight_per_segment[idx*stride + startFeature]; } int64_t target_row = input[segment_offsets[id]]; if (target_row != padding_idx) { gradWeight[target_row * stride + startFeature] = weight; } } } // anon namespace Tensor embedding_backward_cuda_kernel( const Tensor &grad, const Tensor &orig_indices, const Tensor &sorted_indices, const Tensor &count, int64_t num_weights, int padding_idx, bool mode_mean, const Tensor &offset2bag, const Tensor &bag_size, const Tensor &per_sample_weights) { auto stream = at::cuda::getCurrentCUDAStream(); auto allocator = THCThrustAllocator(globalContext().lazyInitCUDA()); auto policy = thrust::cuda::par(allocator).on(stream); const ptrdiff_t numel = sorted_indices.numel(); auto grad_weight = at::zeros({num_weights, grad.size(-1)}, grad.options()); const int64_t stride = grad_weight.stride(0); // Compute the number of segments and their start position so that we do not have to // spawn a warp per index. In this context, a segment is a number of rows that should // be summarized. // Unit: index in `sorted_indices` and `orig_indices` AT_DISPATCH_INDEX_TYPES(orig_indices.scalar_type(), "embedding_backward_cuda_kernel", [&] () { auto segment_offsets = at::empty({numel}, orig_indices.options()); int64_t num_of_segments; { auto sorted_indices_dev = thrust::device_ptr<index_t>(sorted_indices.data_ptr<index_t>()); auto dummy = at::empty_like(sorted_indices, LEGACY_CONTIGUOUS_MEMORY_FORMAT); auto dummy_dev = thrust::device_ptr<index_t>(dummy.data_ptr<index_t>()); auto ends = thrust::unique_by_key_copy( policy, sorted_indices_dev, sorted_indices_dev + numel, thrust::make_counting_iterator(0), dummy_dev, thrust::device_ptr<index_t>(segment_offsets.data_ptr<index_t>())); num_of_segments = thrust::get<0>(ends) - dummy_dev; } // We split the segments up into sizes of `NROWS_PER_THREAD` // Compute the number partial-segments per segment (some partial-segments // may not be the full `NROWS_PER_THREAD` number of rows) auto partials_per_segment = at::empty({num_of_segments}, orig_indices.options()); { krn_partials_per_segment<<<ceil_div(num_of_segments, 32), 32, 0, stream>>> ( partials_per_segment.data_ptr<index_t>(), segment_offsets.data_ptr<index_t>(), num_of_segments, numel); C10_CUDA_KERNEL_LAUNCH_CHECK(); } // In order to compute `partial_segment_offset`, which is the start index // of each partial-segment in `sorted_indices`, we need to compute the // start position of each _segment_ in `partial_segment_offset`. // Unit: index in `partial_segment_offset` auto partials_per_segment_offset = at::empty({num_of_segments}, orig_indices.options()); thrust::exclusive_scan( policy, thrust::device_ptr<index_t>(partials_per_segment.data_ptr<index_t>()), thrust::device_ptr<index_t>(partials_per_segment.data_ptr<index_t>()+num_of_segments), thrust::device_ptr<index_t>(partials_per_segment_offset.data_ptr<index_t>())); // The total number of partial-segments is the sum of `partials_per_segment_offset` const int num_of_partial_segments = partials_per_segment[num_of_segments-1].item<index_t>() + partials_per_segment_offset[num_of_segments-1].item<index_t>(); // Now we can compute the start position of each partial-segment // Unit: index in `sorted_indices` and `orig_indices` auto partial_segment_offset = at::empty({num_of_partial_segments}, orig_indices.options()); { krn_partial_segment_offset<<<ceil_div(num_of_segments, 32), 32, 0, stream>>> ( partial_segment_offset.data_ptr<index_t>(), partials_per_segment.data_ptr<index_t>(), partials_per_segment_offset.data_ptr<index_t>(), segment_offsets.data_ptr<index_t>(), num_of_segments); C10_CUDA_KERNEL_LAUNCH_CHECK(); } const int stride_warped = ceil_div(stride, C10_WARP_SIZE)*C10_WARP_SIZE; const int block = std::min(stride_warped, MAX_BLOCK_SIZE); const int grid = ceil_div(num_of_partial_segments*stride_warped, block); AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, grad.scalar_type(), "embedding_bag_backward_cuda_compute_grad_weight", [&] { // For numerical stability, the dtype of `grad_weight_per_segment` // should match `acc_type` using partial_weight_t = acc_type<scalar_t, true>; TensorOptions op; if(grad.dtype() == at::kHalf || grad.dtype() == at::kBFloat16) { op = grad.options().dtype(at::kFloat); } else { op = grad.options(); } auto grad_weight_per_segment = at::empty({num_of_partial_segments, stride}, op); // Compute the sum of each partial-segment and handle bags if (offset2bag.defined()) { compute_grad_weight_bags<scalar_t><<<grid, block, 0, stream>>>( orig_indices.data_ptr<index_t>(), grad.data_ptr<scalar_t>(), offset2bag.data_ptr<index_t>(), count.defined() ? count.data_ptr<index_t>() : nullptr, numel, stride, mode_mean, bag_size.data_ptr<index_t>(), per_sample_weights.defined() ? per_sample_weights.data_ptr<scalar_t>() : NULL, per_sample_weights.defined() ? per_sample_weights.stride(0) : 0, partial_segment_offset.data_ptr<index_t>(), num_of_partial_segments, grad_weight_per_segment.data_ptr<partial_weight_t>(), stride_warped); C10_CUDA_KERNEL_LAUNCH_CHECK(); } else { compute_grad_weight<scalar_t><<<grid, block, 0, stream>>>( orig_indices.data_ptr<index_t>(), grad.data_ptr<scalar_t>(), count.defined() ? count.data_ptr<index_t>() : nullptr, numel, stride, partial_segment_offset.data_ptr<index_t>(), num_of_partial_segments, grad_weight_per_segment.data_ptr<partial_weight_t>(), stride_warped); C10_CUDA_KERNEL_LAUNCH_CHECK(); } // Finally, we sum all the partial-sums and scatter them // into `grad_weight`. const int grid2 = ceil_div(num_of_segments*stride_warped, block); sum_and_scatter<scalar_t><<<grid2, block, 0, stream>>>( sorted_indices.data_ptr<index_t>(), grad_weight.data_ptr<scalar_t>(), stride, segment_offsets.data_ptr<index_t>(), num_of_segments, grad_weight_per_segment.data_ptr<partial_weight_t>(), partials_per_segment_offset.data_ptr<index_t>(), num_of_partial_segments, padding_idx, stride_warped); C10_CUDA_KERNEL_LAUNCH_CHECK(); }); }); return grad_weight; } }}
48073538798fde72c707b32431a78f93e45a0ab3.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include <cstdio> __global__ void AuctionMatchKernel(int b,int n,const float * __restrict__ xyz1,const float * __restrict__ xyz2,int * matchl,int * matchr,float * cost){ //this kernel handles up to 4096 points const int NMax=4096; __shared__ short Queue[NMax]; __shared__ short matchrbuf[NMax]; __shared__ float pricer[NMax]; __shared__ float bests[32][3]; __shared__ int qhead,qlen; const int BufLen=2048; __shared__ float buf[BufLen]; for (int bno=blockIdx.x;bno<b;bno+=gridDim.x){ int cnt=0; float tolerance=1e-4; for (int j=threadIdx.x;j<n;j+=blockDim.x) matchl[bno*n+j]=-1; for (int j=threadIdx.x;j<n;j+=blockDim.x) matchrbuf[j]=-1; for (int j=threadIdx.x;j<n;j+=blockDim.x) Queue[j]=j; for (int j=threadIdx.x;j<n;j+=blockDim.x) pricer[j]=0; const int Block=512; for (int k0=0;k0<n;k0+=Block){ int k1=min(n,k0+Block); for (int k=threadIdx.x;k<(k1-k0)*3;k+=blockDim.x) buf[k]=xyz1[bno*n*3+k0*3+k]; __syncthreads(); for (int j=threadIdx.x;j<n;j+=blockDim.x){ float x2=xyz2[bno*n*3+j*3+0]; float y2=xyz2[bno*n*3+j*3+1]; float z2=xyz2[bno*n*3+j*3+2]; for (int k=k0;k<k1;k++){ float x1=buf[(k-k0)*3+0]; float y1=buf[(k-k0)*3+1]; float z1=buf[(k-k0)*3+2]; float d=sqrtf((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2)+(z1-z2)*(z1-z2)); cost[blockIdx.x*n*n+k*n+j]=d; } } __syncthreads(); } //calculate the distacne if (threadIdx.x==0){ qhead=0; qlen=n; } __syncthreads(); int loaded=0; float value9,value10,value11,value12,value13,value14,value15,value16; while (qlen){ int i=Queue[qhead]; int i2; if (qhead+1<n) i2=Queue[qhead+1]; else i2=Queue[0]; float best=1e38f,best2=1e38f; int bestj=0; if (n==blockDim.x*8){ int j=threadIdx.x; float value1,value2,value3,value4,value5,value6,value7,value8; if (loaded){ value1=value9+pricer[j]; value2=value10+pricer[j+blockDim.x]; value3=value11+pricer[j+blockDim.x*2]; value4=value12+pricer[j+blockDim.x*3]; value5=value13+pricer[j+blockDim.x*4]; value6=value14+pricer[j+blockDim.x*5]; value7=value15+pricer[j+blockDim.x*6]; value8=value16+pricer[j+blockDim.x*7]; loaded=0; }else{ value1=cost[blockIdx.x*n*n+i*n+j]+pricer[j]; value2=cost[blockIdx.x*n*n+i*n+j+blockDim.x]+pricer[j+blockDim.x]; value3=cost[blockIdx.x*n*n+i*n+j+blockDim.x*2]+pricer[j+blockDim.x*2]; value4=cost[blockIdx.x*n*n+i*n+j+blockDim.x*3]+pricer[j+blockDim.x*3]; value5=cost[blockIdx.x*n*n+i*n+j+blockDim.x*4]+pricer[j+blockDim.x*4]; value6=cost[blockIdx.x*n*n+i*n+j+blockDim.x*5]+pricer[j+blockDim.x*5]; value7=cost[blockIdx.x*n*n+i*n+j+blockDim.x*6]+pricer[j+blockDim.x*6]; value8=cost[blockIdx.x*n*n+i*n+j+blockDim.x*7]+pricer[j+blockDim.x*7]; value9=cost[blockIdx.x*n*n+i2*n+j]; value10=cost[blockIdx.x*n*n+i2*n+j+blockDim.x]; value11=cost[blockIdx.x*n*n+i2*n+j+blockDim.x*2]; value12=cost[blockIdx.x*n*n+i2*n+j+blockDim.x*3]; value13=cost[blockIdx.x*n*n+i2*n+j+blockDim.x*4]; value14=cost[blockIdx.x*n*n+i2*n+j+blockDim.x*5]; value15=cost[blockIdx.x*n*n+i2*n+j+blockDim.x*6]; value16=cost[blockIdx.x*n*n+i2*n+j+blockDim.x*7]; loaded=qlen>1; } int vj,vj2,vj3,vj4; if (value1<value2){ vj=j; }else{ vj=j+blockDim.x; float t=value1; value1=value2; value2=t; } if (value3<value4){ vj2=j+blockDim.x*2; }else{ vj2=j+blockDim.x*3; float t=value3; value3=value4; value4=t; } if (value5<value6){ vj3=j+blockDim.x*4; }else{ vj3=j+blockDim.x*5; float t=value5; value5=value6; value6=t; } if (value7<value8){ vj4=j+blockDim.x*6; }else{ vj4=j+blockDim.x*7; float t=value7; value7=value8; value8=t; } if (value1<value3){ value2=fminf(value2,value3); }else{ value2=fminf(value1,value4); value1=value3; vj=vj2; } if (value5<value7){ value6=fminf(value6,value7); }else{ value6=fminf(value5,value8); value5=value7; vj3=vj4; } if (value1<value5){ best=value1; bestj=vj; best2=fminf(value2,value5); }else{ best2=fminf(value1,value6); best=value5; bestj=vj3; } }else if (n>=blockDim.x*4){ for (int j=threadIdx.x;j<n;j+=blockDim.x*4){ float value1=cost[blockIdx.x*n*n+i*n+j]+pricer[j]; float value2=cost[blockIdx.x*n*n+i*n+j+blockDim.x]+pricer[j+blockDim.x]; float value3=cost[blockIdx.x*n*n+i*n+j+blockDim.x*2]+pricer[j+blockDim.x*2]; float value4=cost[blockIdx.x*n*n+i*n+j+blockDim.x*3]+pricer[j+blockDim.x*3]; int vj,vj2; if (value1<value2){ vj=j; }else{ vj=j+blockDim.x; float t=value1; value1=value2; value2=t; } if (value3<value4){ vj2=j+blockDim.x*2; }else{ vj2=j+blockDim.x*3; float t=value3; value3=value4; value4=t; } if (value1<value3){ value2=fminf(value2,value3); }else{ value2=fminf(value1,value4); value1=value3; vj=vj2; } if (best<value1){ best2=fminf(best2,value1); }else{ best2=fminf(best,value2); best=value1; bestj=vj; } } }else if (n>=blockDim.x*2){ for (int j=threadIdx.x;j<n;j+=blockDim.x*2){ float value1=cost[blockIdx.x*n*n+i*n+j]+pricer[j]; float value2=cost[blockIdx.x*n*n+i*n+j+blockDim.x]+pricer[j+blockDim.x]; int vj; if (value1<value2){ vj=j; }else{ vj=j+blockDim.x; float t=value1; value1=value2; value2=t; } if (best<value1){ best2=fminf(best2,value1); }else{ best2=fminf(best,value2); best=value1; bestj=vj; } } }else{ for (int j=threadIdx.x;j<n;j+=blockDim.x){ float value=cost[blockIdx.x*n*n+i*n+j]+pricer[j]; if (best<value){ best2=fminf(best2,value); }else{ best2=best; bestj=j; best=value; } } } for (int i=16;i>0;i>>=1){ float b1=__shfl_down(best,i,32); float b2=__shfl_down(best2,i,32); int bj=__shfl_down(bestj,i,32); if (best<b1){ best2=fminf(b1,best2); }else{ best=b1; best2=fminf(best,b2); bestj=bj; } } if ((threadIdx.x&31)==0){ bests[threadIdx.x>>5][0]=best; bests[threadIdx.x>>5][1]=best2; *(int*)&bests[threadIdx.x>>5][2]=bestj; } __syncthreads(); int nn=blockDim.x>>5; if (threadIdx.x<nn){ best=bests[threadIdx.x][0]; best2=bests[threadIdx.x][1]; bestj=*(int*)&bests[threadIdx.x][2]; for (int i=nn>>1;i>0;i>>=1){ float b1=__shfl_down(best,i,32); float b2=__shfl_down(best2,i,32); int bj=__shfl_down(bestj,i,32); if (best<b1){ best2=fminf(b1,best2); }else{ best=b1; best2=fminf(best,b2); bestj=bj; } } } if (threadIdx.x==0){ float delta=best2-best+tolerance; qhead++; qlen--; if (qhead>=n) qhead-=n; int old=matchrbuf[bestj]; pricer[bestj]+=delta; cnt++; if (old!=-1){ int ql=qlen; int tail=qhead+ql; qlen=ql+1; if (tail>=n) tail-=n; Queue[tail]=old; } if (cnt==(40*n)){ if (tolerance==1.0) qlen=0; tolerance=fminf(1.0,tolerance*100); cnt=0; } } __syncthreads(); if (threadIdx.x==0){ matchrbuf[bestj]=i; } } __syncthreads(); for (int j=threadIdx.x;j<n;j+=blockDim.x) matchr[bno*n+j]=matchrbuf[j]; for (int j=threadIdx.x;j<n;j+=blockDim.x) matchl[bno*n+matchrbuf[j]]=j; __syncthreads(); } } void AuctionMatchLauncher(int b,int n,const float * xyz1,const float * xyz2,int * matchl,int * matchr,float * cost){ hipLaunchKernelGGL(( AuctionMatchKernel), dim3(32),dim3(512), 0, 0, b,n,xyz1,xyz2,matchl,matchr,cost); }
48073538798fde72c707b32431a78f93e45a0ab3.cu
#include <cstdio> __global__ void AuctionMatchKernel(int b,int n,const float * __restrict__ xyz1,const float * __restrict__ xyz2,int * matchl,int * matchr,float * cost){ //this kernel handles up to 4096 points const int NMax=4096; __shared__ short Queue[NMax]; __shared__ short matchrbuf[NMax]; __shared__ float pricer[NMax]; __shared__ float bests[32][3]; __shared__ int qhead,qlen; const int BufLen=2048; __shared__ float buf[BufLen]; for (int bno=blockIdx.x;bno<b;bno+=gridDim.x){ int cnt=0; float tolerance=1e-4; for (int j=threadIdx.x;j<n;j+=blockDim.x) matchl[bno*n+j]=-1; for (int j=threadIdx.x;j<n;j+=blockDim.x) matchrbuf[j]=-1; for (int j=threadIdx.x;j<n;j+=blockDim.x) Queue[j]=j; for (int j=threadIdx.x;j<n;j+=blockDim.x) pricer[j]=0; const int Block=512; for (int k0=0;k0<n;k0+=Block){ int k1=min(n,k0+Block); for (int k=threadIdx.x;k<(k1-k0)*3;k+=blockDim.x) buf[k]=xyz1[bno*n*3+k0*3+k]; __syncthreads(); for (int j=threadIdx.x;j<n;j+=blockDim.x){ float x2=xyz2[bno*n*3+j*3+0]; float y2=xyz2[bno*n*3+j*3+1]; float z2=xyz2[bno*n*3+j*3+2]; for (int k=k0;k<k1;k++){ float x1=buf[(k-k0)*3+0]; float y1=buf[(k-k0)*3+1]; float z1=buf[(k-k0)*3+2]; float d=sqrtf((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2)+(z1-z2)*(z1-z2)); cost[blockIdx.x*n*n+k*n+j]=d; } } __syncthreads(); } //calculate the distacne if (threadIdx.x==0){ qhead=0; qlen=n; } __syncthreads(); int loaded=0; float value9,value10,value11,value12,value13,value14,value15,value16; while (qlen){ int i=Queue[qhead]; int i2; if (qhead+1<n) i2=Queue[qhead+1]; else i2=Queue[0]; float best=1e38f,best2=1e38f; int bestj=0; if (n==blockDim.x*8){ int j=threadIdx.x; float value1,value2,value3,value4,value5,value6,value7,value8; if (loaded){ value1=value9+pricer[j]; value2=value10+pricer[j+blockDim.x]; value3=value11+pricer[j+blockDim.x*2]; value4=value12+pricer[j+blockDim.x*3]; value5=value13+pricer[j+blockDim.x*4]; value6=value14+pricer[j+blockDim.x*5]; value7=value15+pricer[j+blockDim.x*6]; value8=value16+pricer[j+blockDim.x*7]; loaded=0; }else{ value1=cost[blockIdx.x*n*n+i*n+j]+pricer[j]; value2=cost[blockIdx.x*n*n+i*n+j+blockDim.x]+pricer[j+blockDim.x]; value3=cost[blockIdx.x*n*n+i*n+j+blockDim.x*2]+pricer[j+blockDim.x*2]; value4=cost[blockIdx.x*n*n+i*n+j+blockDim.x*3]+pricer[j+blockDim.x*3]; value5=cost[blockIdx.x*n*n+i*n+j+blockDim.x*4]+pricer[j+blockDim.x*4]; value6=cost[blockIdx.x*n*n+i*n+j+blockDim.x*5]+pricer[j+blockDim.x*5]; value7=cost[blockIdx.x*n*n+i*n+j+blockDim.x*6]+pricer[j+blockDim.x*6]; value8=cost[blockIdx.x*n*n+i*n+j+blockDim.x*7]+pricer[j+blockDim.x*7]; value9=cost[blockIdx.x*n*n+i2*n+j]; value10=cost[blockIdx.x*n*n+i2*n+j+blockDim.x]; value11=cost[blockIdx.x*n*n+i2*n+j+blockDim.x*2]; value12=cost[blockIdx.x*n*n+i2*n+j+blockDim.x*3]; value13=cost[blockIdx.x*n*n+i2*n+j+blockDim.x*4]; value14=cost[blockIdx.x*n*n+i2*n+j+blockDim.x*5]; value15=cost[blockIdx.x*n*n+i2*n+j+blockDim.x*6]; value16=cost[blockIdx.x*n*n+i2*n+j+blockDim.x*7]; loaded=qlen>1; } int vj,vj2,vj3,vj4; if (value1<value2){ vj=j; }else{ vj=j+blockDim.x; float t=value1; value1=value2; value2=t; } if (value3<value4){ vj2=j+blockDim.x*2; }else{ vj2=j+blockDim.x*3; float t=value3; value3=value4; value4=t; } if (value5<value6){ vj3=j+blockDim.x*4; }else{ vj3=j+blockDim.x*5; float t=value5; value5=value6; value6=t; } if (value7<value8){ vj4=j+blockDim.x*6; }else{ vj4=j+blockDim.x*7; float t=value7; value7=value8; value8=t; } if (value1<value3){ value2=fminf(value2,value3); }else{ value2=fminf(value1,value4); value1=value3; vj=vj2; } if (value5<value7){ value6=fminf(value6,value7); }else{ value6=fminf(value5,value8); value5=value7; vj3=vj4; } if (value1<value5){ best=value1; bestj=vj; best2=fminf(value2,value5); }else{ best2=fminf(value1,value6); best=value5; bestj=vj3; } }else if (n>=blockDim.x*4){ for (int j=threadIdx.x;j<n;j+=blockDim.x*4){ float value1=cost[blockIdx.x*n*n+i*n+j]+pricer[j]; float value2=cost[blockIdx.x*n*n+i*n+j+blockDim.x]+pricer[j+blockDim.x]; float value3=cost[blockIdx.x*n*n+i*n+j+blockDim.x*2]+pricer[j+blockDim.x*2]; float value4=cost[blockIdx.x*n*n+i*n+j+blockDim.x*3]+pricer[j+blockDim.x*3]; int vj,vj2; if (value1<value2){ vj=j; }else{ vj=j+blockDim.x; float t=value1; value1=value2; value2=t; } if (value3<value4){ vj2=j+blockDim.x*2; }else{ vj2=j+blockDim.x*3; float t=value3; value3=value4; value4=t; } if (value1<value3){ value2=fminf(value2,value3); }else{ value2=fminf(value1,value4); value1=value3; vj=vj2; } if (best<value1){ best2=fminf(best2,value1); }else{ best2=fminf(best,value2); best=value1; bestj=vj; } } }else if (n>=blockDim.x*2){ for (int j=threadIdx.x;j<n;j+=blockDim.x*2){ float value1=cost[blockIdx.x*n*n+i*n+j]+pricer[j]; float value2=cost[blockIdx.x*n*n+i*n+j+blockDim.x]+pricer[j+blockDim.x]; int vj; if (value1<value2){ vj=j; }else{ vj=j+blockDim.x; float t=value1; value1=value2; value2=t; } if (best<value1){ best2=fminf(best2,value1); }else{ best2=fminf(best,value2); best=value1; bestj=vj; } } }else{ for (int j=threadIdx.x;j<n;j+=blockDim.x){ float value=cost[blockIdx.x*n*n+i*n+j]+pricer[j]; if (best<value){ best2=fminf(best2,value); }else{ best2=best; bestj=j; best=value; } } } for (int i=16;i>0;i>>=1){ float b1=__shfl_down(best,i,32); float b2=__shfl_down(best2,i,32); int bj=__shfl_down(bestj,i,32); if (best<b1){ best2=fminf(b1,best2); }else{ best=b1; best2=fminf(best,b2); bestj=bj; } } if ((threadIdx.x&31)==0){ bests[threadIdx.x>>5][0]=best; bests[threadIdx.x>>5][1]=best2; *(int*)&bests[threadIdx.x>>5][2]=bestj; } __syncthreads(); int nn=blockDim.x>>5; if (threadIdx.x<nn){ best=bests[threadIdx.x][0]; best2=bests[threadIdx.x][1]; bestj=*(int*)&bests[threadIdx.x][2]; for (int i=nn>>1;i>0;i>>=1){ float b1=__shfl_down(best,i,32); float b2=__shfl_down(best2,i,32); int bj=__shfl_down(bestj,i,32); if (best<b1){ best2=fminf(b1,best2); }else{ best=b1; best2=fminf(best,b2); bestj=bj; } } } if (threadIdx.x==0){ float delta=best2-best+tolerance; qhead++; qlen--; if (qhead>=n) qhead-=n; int old=matchrbuf[bestj]; pricer[bestj]+=delta; cnt++; if (old!=-1){ int ql=qlen; int tail=qhead+ql; qlen=ql+1; if (tail>=n) tail-=n; Queue[tail]=old; } if (cnt==(40*n)){ if (tolerance==1.0) qlen=0; tolerance=fminf(1.0,tolerance*100); cnt=0; } } __syncthreads(); if (threadIdx.x==0){ matchrbuf[bestj]=i; } } __syncthreads(); for (int j=threadIdx.x;j<n;j+=blockDim.x) matchr[bno*n+j]=matchrbuf[j]; for (int j=threadIdx.x;j<n;j+=blockDim.x) matchl[bno*n+matchrbuf[j]]=j; __syncthreads(); } } void AuctionMatchLauncher(int b,int n,const float * xyz1,const float * xyz2,int * matchl,int * matchr,float * cost){ AuctionMatchKernel<<<32,512>>>(b,n,xyz1,xyz2,matchl,matchr,cost); }
cb5730903afcce0e2d7a93fef6d9aa01cbf7f8ac.hip
// !!! This is a file automatically generated by hipify!!! #include <ATen/ATen.h> #include <ATen/LegacyTHFunctionsCUDA.h> #include <ATen/NamedTensorUtils.h> #include <ATen/hip/HIPBlas.h> #include <ATen/Dispatch.h> #include <ATen/native/TensorIterator.h> #include <ATen/native/LinearAlgebra.h> #include <ATen/native/DispatchStub.h> #include <ATen/native/hip/Loops.cuh> namespace at { namespace native { Tensor prepare_matrix_for_cublas(Tensor& tensor, bool& transpose_tensor) { Tensor tensor_; IntArrayRef tensor_strides = tensor.strides(); IntArrayRef tensor_sizes = tensor.sizes(); if ((tensor_strides[0] == 1) && (tensor_strides[1] >= std::max<int64_t>(1, tensor_sizes[0]))) { tensor_ = tensor; transpose_tensor = false; } else if ((tensor_strides[1] == 1) && (tensor_strides[0] >= std::max<int64_t>(1, tensor_sizes[1]))) { tensor_ = tensor; transpose_tensor = true; } else { transpose_tensor = true; tensor_ = tensor.clone(at::MemoryFormat::Contiguous); } return tensor_; } Tensor prepare_batch_matrix_for_cublas(const Tensor& tensor, bool& transpose_tensor, int64_t& ld_tensor, bool transpose_result, int64_t m, int64_t n) { IntArrayRef tensor_strides = tensor.strides(); Tensor tensor_; int fast_dim = transpose_result ? 2 : 1; int leading_dim = transpose_result ? 1 : 2; if (tensor_strides[fast_dim] == 1 && (tensor_strides[leading_dim] >= std::max<int64_t>(1, m))) { transpose_tensor = false; tensor_ = tensor; ld_tensor = tensor_strides[leading_dim]; } else if ((tensor_strides[leading_dim] == 1) && (tensor_strides[fast_dim] >= std::max<int64_t>(1, n))) { transpose_tensor = true; tensor_ = tensor; ld_tensor = tensor_strides[fast_dim]; } else { transpose_tensor = !transpose_result; if (tensor.is_contiguous()) { tensor_ = tensor; } else { tensor_ = tensor.clone(at::MemoryFormat::Contiguous); } ld_tensor = tensor_.stride(1); } return tensor_; } namespace { Tensor& addmm_out_cuda_impl(Tensor& result, const Tensor& self, const Tensor& mat1, const Tensor& mat2, Scalar beta, Scalar alpha) { TORCH_CHECK(mat1.dim() == 2 && mat2.dim() == 2, "tensors must be 2-D"); TensorArg args[]{{result, "out", 0}, {self, "self", 1}, {mat1, "mat1", 2}, {mat2, "mat2", 3}}; checkAllSameGPU("addmm", args); Tensor self_; if (&result != &self) { std::tie(self_) = expand_size(self, {mat1.size(0), mat2.size(1)}, "addmm"); } else { self_ = self; } IntArrayRef mat1_sizes = mat1.sizes(); IntArrayRef mat2_sizes = mat2.sizes(); IntArrayRef self__sizes = self_.sizes(); TORCH_CHECK(mat1_sizes[1] == mat2_sizes[0], "mat1 dim 1 must match mat2 dim 0"); TORCH_CHECK(self__sizes[0] == mat1_sizes[0], "self_ dim 0 must match mat1 dim 0"); TORCH_CHECK(self__sizes[1] == mat2_sizes[1], "self_ dim 1 must match mat2 dim 1"); if (&result != &self) { at::native::resize_as_(result, self_); if (beta.toComplexDouble() != 0.0) { at::native::copy_(result, self_); } } TORCH_CHECK(result.dim() == 2 && self_.dim() == 2, "tensors must be 2-D"); IntArrayRef result_sizes = result.sizes(); if ((result_sizes[0] == 0) || (result_sizes[1] == 0)) { return result; } bool transpose_result; Tensor result_ = prepare_matrix_for_cublas(result, transpose_result); bool transpose_mat1; bool transpose_mat2; Tensor mat1_ = transpose_result ? mat2 : mat1; Tensor mat2_ = transpose_result ? mat1 : mat2; mat1_ = prepare_matrix_for_cublas(mat1_, transpose_mat1); mat2_ = prepare_matrix_for_cublas(mat2_, transpose_mat2); if (transpose_result) { transpose_mat1 = !transpose_mat1; transpose_mat2 = !transpose_mat2; mat1_sizes = mat1_.sizes(); mat2_sizes = mat2_.sizes(); } int64_t m = mat1_sizes[transpose_result ? 1 : 0]; int64_t k = mat1_sizes[transpose_result ? 0 : 1]; int64_t n = mat2_sizes[transpose_result ? 0 : 1]; int64_t mat1_ld = mat1_.stride((transpose_mat1 == transpose_result) ? 1 : 0); int64_t mat2_ld = mat2_.stride((transpose_mat2 == transpose_result) ? 1 : 0); int64_t result_ld = result_.stride(transpose_result ? 0 : 1); at::ScalarType scalar_type = self_.scalar_type(); if (mat1.numel() == 0) { // By definition, when beta==0, values in self should be ignored. nans and infs // should not propagate if (beta.toComplexDouble() == 0.) { return result.zero_(); } return at::native::mul_out(result, self, at::native::scalar_tensor(beta, at::device(at::kCPU).dtype(self.scalar_type()))); } AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, scalar_type, "addmm_cuda", [&] { scalar_t alpha_val = alpha.to<scalar_t>(); scalar_t beta_val = beta.to<scalar_t>(); scalar_t* mat1_ptr = mat1_.data_ptr<scalar_t>(); scalar_t* mat2_ptr = mat2_.data_ptr<scalar_t>(); scalar_t* result_ptr = result_.data_ptr<scalar_t>(); at::cuda::blas::gemm<scalar_t>( transpose_mat1 ? 't' : 'n', transpose_mat2 ? 't' : 'n', m, n, k, alpha_val, mat1_ptr, mat1_ld, mat2_ptr, mat2_ld, beta_val, result_ptr, result_ld ); }); if (result.data_ptr() != result_.data_ptr()) { result.copy_(result_); } return result; } Tensor& baddbmm_out_cuda_impl(Tensor& result, const Tensor& self, const Tensor& batch1, const Tensor& batch2, Scalar beta, Scalar alpha) { TORCH_CHECK(self.dim() == 3, "self must be a 3D tensor"); TORCH_CHECK(batch1.dim() == 3, "batch1 must be a 3D tensor"); TORCH_CHECK(batch2.dim() == 3, "batch2 must be a 3D tensor"); TensorArg args[]{{result, "out", 0}, {self, "self", 1}, {batch1, "batch1", 2}, {batch2, "batch2", 3}}; checkAllSameGPU("baddbmm", args); IntArrayRef batch1_sizes = batch1.sizes(); IntArrayRef batch2_sizes = batch2.sizes(); IntArrayRef self_sizes = self.sizes(); TORCH_CHECK(self_sizes[0] == batch1_sizes[0], "self dim 0 must match batch1 dim 0"); TORCH_CHECK(self_sizes[0] == batch2_sizes[0], "self dim 0 must match batch2 dim 0"); TORCH_CHECK(self_sizes[1] == batch1_sizes[1], "self dim 1 must match batch1 dim 1"); TORCH_CHECK(self_sizes[2] == batch2_sizes[2], "self dim 2 must match batch2 dim 2"); TORCH_CHECK(batch1_sizes[2] == batch2_sizes[1], "batch1 dim 2 must match batch2 dim 1"); if (!result.is_same(self)) { result.resize_as_(self); if (beta.to<c10::complex<double>>() != 0.0) { result.copy_(self); } } bool transpose_result = false; Tensor result_; IntArrayRef result_strides = result.strides(); IntArrayRef result_sizes = result.sizes(); if ((result_strides[1] == 1) && ((result_sizes[2] == 1) || (result_strides[2] >= std::max<int64_t>(1, result_sizes[1])))) { result_ = result; } else if ((result_strides[2] == 1) && (result_sizes[1] == 1 || (result_strides[1] >= std::max<int64_t>(1, result_sizes[2])))) { transpose_result = true; result_ = result; } else { result_ = result.transpose(1, 2).clone(at::MemoryFormat::Contiguous); result_ = result_.transpose(1, 2); } int leading_dim = transpose_result ? 1 : 2; Tensor batch1_ = transpose_result ? batch2 : batch1; Tensor batch2_ = transpose_result ? batch1 : batch2; int64_t m = result_sizes[transpose_result ? 2 : 1]; int64_t n = result_sizes[leading_dim]; int64_t k = batch1_.size(leading_dim); int64_t lda, ldb, ldc; bool transpose_batch1, transpose_batch2; batch1_ = prepare_batch_matrix_for_cublas(batch1_, transpose_batch1, lda, transpose_result, m, k); batch2_ = prepare_batch_matrix_for_cublas(batch2_, transpose_batch2, ldb, transpose_result, k, n); ldc = result_.stride(leading_dim); int64_t num_batches = result_.size(0); AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, self.scalar_type(), "baddbmm_cuda", [&] { scalar_t alpha_val = alpha.to<scalar_t>(); scalar_t beta_val = beta.to<scalar_t>(); scalar_t* batch1_ptr = batch1_.data_ptr<scalar_t>(); scalar_t* batch2_ptr = batch2_.data_ptr<scalar_t>(); scalar_t* result_ptr = result_.data_ptr<scalar_t>(); at::cuda::blas::bgemm<scalar_t>( transpose_batch1 ? 't' : 'n', transpose_batch2 ? 't' : 'n', m, n, k, alpha_val, batch1_ptr, lda, batch1_.stride(0), batch2_ptr, ldb, batch2_.stride(0), beta_val, result_ptr, ldc, result_.stride(0), num_batches ); }); if (!result.is_same(result_)) { result.copy_(result_); } return result; } } // anonymous namespace Tensor& mm_out_cuda(Tensor& result, const Tensor& self, const Tensor& mat2) { result.resize_({ self.size(0), mat2.size(1) }); return addmm_out_cuda_impl(result, result, self, mat2, 0, 1); } Tensor mm_cuda(const Tensor& self, const Tensor& mat2) { Tensor result = at::empty({ self.size(0), mat2.size(1) }, self.options()); return addmm_out_cuda_impl(result, result, self, mat2, 0, 1); } Tensor& addmm_out_cuda(Tensor &out, const Tensor &self, const Tensor &mat1, const Tensor &mat2, Scalar beta, Scalar alpha) { { at::NoNamesGuard guard; Tensor& result = addmm_out_cuda_impl(out, self, mat1, mat2, beta, alpha); } at::namedinference::propagate_names_for_addmm(out, mat1, mat2, self); return out; } Tensor addmm_cuda(const Tensor& self, const Tensor& mat1, const Tensor& mat2, Scalar beta, Scalar alpha) { Tensor out = at::empty({0}, self.options()); addmm_out_cuda(out, self, mat1, mat2, beta, alpha); return out; } Tensor& addmm__cuda(Tensor& self, const Tensor& mat1, const Tensor& mat2, Scalar beta, Scalar alpha) { addmm_out_cuda(self, self, mat1, mat2, beta, alpha); return self; } Tensor& baddbmm_out_cuda(Tensor &result, const Tensor& self, const Tensor& batch1, const Tensor& batch2, Scalar beta, Scalar alpha) { Tensor self_; if (&result != &self) { std::tie(self_) = expand_size(self, {batch1.size(0), batch1.size(1), batch2.size(2)}, "baddbmm"); } else { self_ = self; } { at::NoNamesGuard guard; baddbmm_out_cuda_impl(result, self_, batch1, batch2, beta, alpha); } namedinference::propagate_names_if_nonempty( result, namedinference::compute_baddbmm_outnames(result, batch1, batch2, self)); return result; } Tensor baddbmm_cuda(const Tensor& self, const Tensor& batch1, const Tensor& batch2, Scalar beta, Scalar alpha) { Tensor out = at::empty({0}, self.options()); return baddbmm_out_cuda(out, self, batch1, batch2, beta, alpha); } Tensor& baddbmm__cuda(Tensor& self, const Tensor& batch1, const Tensor& batch2, Scalar beta, Scalar alpha) { return baddbmm_out_cuda(self, self, batch1, batch2, beta, alpha); } Tensor& bmm_out_cuda(Tensor &result, const Tensor& batch1, const Tensor& batch2) { result.resize_({ batch1.size(0), batch1.size(1), batch2.size(2) }); Scalar beta(0.0); Scalar alpha(1.0); { NoNamesGuard guard; baddbmm_out_cuda_impl(result, result, batch1, batch2, beta, alpha); } namedinference::propagate_names_if_nonempty( result, namedinference::compute_bmm_outnames(result, batch1, batch2)); return result; } Tensor bmm_cuda(const Tensor& self, const Tensor& mat2) { Tensor result = at::empty({0}, self.options()); return native::bmm_out_cuda(result, self, mat2); } namespace { inline void dot_check(const Tensor& self, const Tensor& other) { TORCH_CHECK( self.dim() == 1 && other.dim() == 1, "1D tensors expected, but got ", self.dim(), "D and ", other.dim(), "D tensors"); TORCH_CHECK( self.scalar_type() == other.scalar_type(), "dot : expected both vectors to have same dtype, but found ", self.scalar_type(), " and ", other.scalar_type()); TORCH_CHECK( self.numel() == other.numel(), "inconsistent tensor size, expected tensor [", self.numel(), "] and src [", other.numel(), "] to have the same number of elements, but got ", self.numel(), " and ", other.numel(), " elements respectively"); TORCH_CHECK( self.device() == other.device(), "expected all tensors to be on the same device. Found: ", self.device(), ", ", other.device()); TORCH_CHECK( (self.numel() <= INT_MAX) && (self.stride(0) <= INT_MAX) && (other.stride(0) <= INT_MAX), "dot only supports n, incx, incy with the bound [val] <= %d", INT_MAX); } } // anonymous namespace Tensor dot_cuda(const Tensor& self, const Tensor& other) { at::NoNamesGuard guard; dot_check(self, other); const int n = static_cast<int>(self.numel()); int incx = static_cast<int>(self.stride(0)); int incy = static_cast<int>(other.stride(0)); if (n == 1) { incx = 1; incy = 1; } return AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND1(ScalarType::Half, self.scalar_type(), "dot", [&] { Tensor result = at::empty({}, self.options()); auto handle = at::cuda::getCurrentCUDABlasHandle(); at::cuda::blas::PointerModeGuard pointerModeGuard(handle, HIPBLAS_POINTER_MODE_DEVICE); at::cuda::blas::dot<scalar_t>( handle, n, self.data_ptr<scalar_t>(), incx, other.data_ptr<scalar_t>(), incy, result.data_ptr<scalar_t>()); return result; }); } Tensor vdot_cuda(const Tensor& self, const Tensor& other) { if (!self.is_complex()) { return dot_cuda(self, other); } at::NoNamesGuard guard; dot_check(self, other); const int n = static_cast<int>(self.numel()); int incx = static_cast<int>(self.stride(0)); int incy = static_cast<int>(other.stride(0)); if (n == 1) { incx = 1; incy = 1; } return AT_DISPATCH_COMPLEX_TYPES(self.scalar_type(), "vdot", [&] { Tensor result = at::empty({}, self.options()); auto handle = at::cuda::getCurrentCUDABlasHandle(); at::cuda::blas::PointerModeGuard pointerModeGuard( handle, HIPBLAS_POINTER_MODE_DEVICE); at::cuda::blas::vdot<scalar_t>( handle, n, self.data_ptr<scalar_t>(), incx, other.data_ptr<scalar_t>(), incy, result.data_ptr<scalar_t>()); return result; }); } namespace { void addr_kernel_cuda(TensorIterator &iter, Scalar beta, Scalar alpha) { if (iter.dtype() == ScalarType::Bool) { using scalar_t = bool; auto beta_val = beta.to<scalar_t>(); auto alpha_val = alpha.to<scalar_t>(); // when beta is false, values in self should be ignored, // nans and infs in self should not propagate. if (beta_val == false) { gpu_kernel( iter, [=] GPU_LAMBDA (scalar_t self_val, scalar_t vec1_val, scalar_t vec2_val) -> scalar_t { return alpha_val && vec1_val && vec2_val; } ); } else { gpu_kernel( iter, [=] GPU_LAMBDA (scalar_t self_val, scalar_t vec1_val, scalar_t vec2_val) -> scalar_t { return (beta_val && self_val) || (alpha_val && vec1_val && vec2_val); } ); } return; } AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND2(kBFloat16, kHalf, iter.dtype(), "addr_cuda", [&] { auto beta_val = beta.to<scalar_t>(); auto alpha_val = alpha.to<scalar_t>(); scalar_t zero_val(0); // when beta==0, values in self should be ignored, // nans and infs in self should not propagate. if (beta_val == zero_val) { gpu_kernel( iter, [=] GPU_LAMBDA (scalar_t self_val, scalar_t vec1_val, scalar_t vec2_val) -> scalar_t { return alpha_val * vec1_val * vec2_val; } ); } else { gpu_kernel( iter, [=] GPU_LAMBDA (scalar_t self_val, scalar_t vec1_val, scalar_t vec2_val) -> scalar_t { return beta_val * self_val + alpha_val * vec1_val * vec2_val; } ); } }); } } // anonymous namespace REGISTER_DISPATCH(addr_stub, &addr_kernel_cuda); }}
cb5730903afcce0e2d7a93fef6d9aa01cbf7f8ac.cu
#include <ATen/ATen.h> #include <ATen/LegacyTHFunctionsCUDA.h> #include <ATen/NamedTensorUtils.h> #include <ATen/cuda/CUDABlas.h> #include <ATen/Dispatch.h> #include <ATen/native/TensorIterator.h> #include <ATen/native/LinearAlgebra.h> #include <ATen/native/DispatchStub.h> #include <ATen/native/cuda/Loops.cuh> namespace at { namespace native { Tensor prepare_matrix_for_cublas(Tensor& tensor, bool& transpose_tensor) { Tensor tensor_; IntArrayRef tensor_strides = tensor.strides(); IntArrayRef tensor_sizes = tensor.sizes(); if ((tensor_strides[0] == 1) && (tensor_strides[1] >= std::max<int64_t>(1, tensor_sizes[0]))) { tensor_ = tensor; transpose_tensor = false; } else if ((tensor_strides[1] == 1) && (tensor_strides[0] >= std::max<int64_t>(1, tensor_sizes[1]))) { tensor_ = tensor; transpose_tensor = true; } else { transpose_tensor = true; tensor_ = tensor.clone(at::MemoryFormat::Contiguous); } return tensor_; } Tensor prepare_batch_matrix_for_cublas(const Tensor& tensor, bool& transpose_tensor, int64_t& ld_tensor, bool transpose_result, int64_t m, int64_t n) { IntArrayRef tensor_strides = tensor.strides(); Tensor tensor_; int fast_dim = transpose_result ? 2 : 1; int leading_dim = transpose_result ? 1 : 2; if (tensor_strides[fast_dim] == 1 && (tensor_strides[leading_dim] >= std::max<int64_t>(1, m))) { transpose_tensor = false; tensor_ = tensor; ld_tensor = tensor_strides[leading_dim]; } else if ((tensor_strides[leading_dim] == 1) && (tensor_strides[fast_dim] >= std::max<int64_t>(1, n))) { transpose_tensor = true; tensor_ = tensor; ld_tensor = tensor_strides[fast_dim]; } else { transpose_tensor = !transpose_result; if (tensor.is_contiguous()) { tensor_ = tensor; } else { tensor_ = tensor.clone(at::MemoryFormat::Contiguous); } ld_tensor = tensor_.stride(1); } return tensor_; } namespace { Tensor& addmm_out_cuda_impl(Tensor& result, const Tensor& self, const Tensor& mat1, const Tensor& mat2, Scalar beta, Scalar alpha) { TORCH_CHECK(mat1.dim() == 2 && mat2.dim() == 2, "tensors must be 2-D"); TensorArg args[]{{result, "out", 0}, {self, "self", 1}, {mat1, "mat1", 2}, {mat2, "mat2", 3}}; checkAllSameGPU("addmm", args); Tensor self_; if (&result != &self) { std::tie(self_) = expand_size(self, {mat1.size(0), mat2.size(1)}, "addmm"); } else { self_ = self; } IntArrayRef mat1_sizes = mat1.sizes(); IntArrayRef mat2_sizes = mat2.sizes(); IntArrayRef self__sizes = self_.sizes(); TORCH_CHECK(mat1_sizes[1] == mat2_sizes[0], "mat1 dim 1 must match mat2 dim 0"); TORCH_CHECK(self__sizes[0] == mat1_sizes[0], "self_ dim 0 must match mat1 dim 0"); TORCH_CHECK(self__sizes[1] == mat2_sizes[1], "self_ dim 1 must match mat2 dim 1"); if (&result != &self) { at::native::resize_as_(result, self_); if (beta.toComplexDouble() != 0.0) { at::native::copy_(result, self_); } } TORCH_CHECK(result.dim() == 2 && self_.dim() == 2, "tensors must be 2-D"); IntArrayRef result_sizes = result.sizes(); if ((result_sizes[0] == 0) || (result_sizes[1] == 0)) { return result; } bool transpose_result; Tensor result_ = prepare_matrix_for_cublas(result, transpose_result); bool transpose_mat1; bool transpose_mat2; Tensor mat1_ = transpose_result ? mat2 : mat1; Tensor mat2_ = transpose_result ? mat1 : mat2; mat1_ = prepare_matrix_for_cublas(mat1_, transpose_mat1); mat2_ = prepare_matrix_for_cublas(mat2_, transpose_mat2); if (transpose_result) { transpose_mat1 = !transpose_mat1; transpose_mat2 = !transpose_mat2; mat1_sizes = mat1_.sizes(); mat2_sizes = mat2_.sizes(); } int64_t m = mat1_sizes[transpose_result ? 1 : 0]; int64_t k = mat1_sizes[transpose_result ? 0 : 1]; int64_t n = mat2_sizes[transpose_result ? 0 : 1]; int64_t mat1_ld = mat1_.stride((transpose_mat1 == transpose_result) ? 1 : 0); int64_t mat2_ld = mat2_.stride((transpose_mat2 == transpose_result) ? 1 : 0); int64_t result_ld = result_.stride(transpose_result ? 0 : 1); at::ScalarType scalar_type = self_.scalar_type(); if (mat1.numel() == 0) { // By definition, when beta==0, values in self should be ignored. nans and infs // should not propagate if (beta.toComplexDouble() == 0.) { return result.zero_(); } return at::native::mul_out(result, self, at::native::scalar_tensor(beta, at::device(at::kCPU).dtype(self.scalar_type()))); } AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, scalar_type, "addmm_cuda", [&] { scalar_t alpha_val = alpha.to<scalar_t>(); scalar_t beta_val = beta.to<scalar_t>(); scalar_t* mat1_ptr = mat1_.data_ptr<scalar_t>(); scalar_t* mat2_ptr = mat2_.data_ptr<scalar_t>(); scalar_t* result_ptr = result_.data_ptr<scalar_t>(); at::cuda::blas::gemm<scalar_t>( transpose_mat1 ? 't' : 'n', transpose_mat2 ? 't' : 'n', m, n, k, alpha_val, mat1_ptr, mat1_ld, mat2_ptr, mat2_ld, beta_val, result_ptr, result_ld ); }); if (result.data_ptr() != result_.data_ptr()) { result.copy_(result_); } return result; } Tensor& baddbmm_out_cuda_impl(Tensor& result, const Tensor& self, const Tensor& batch1, const Tensor& batch2, Scalar beta, Scalar alpha) { TORCH_CHECK(self.dim() == 3, "self must be a 3D tensor"); TORCH_CHECK(batch1.dim() == 3, "batch1 must be a 3D tensor"); TORCH_CHECK(batch2.dim() == 3, "batch2 must be a 3D tensor"); TensorArg args[]{{result, "out", 0}, {self, "self", 1}, {batch1, "batch1", 2}, {batch2, "batch2", 3}}; checkAllSameGPU("baddbmm", args); IntArrayRef batch1_sizes = batch1.sizes(); IntArrayRef batch2_sizes = batch2.sizes(); IntArrayRef self_sizes = self.sizes(); TORCH_CHECK(self_sizes[0] == batch1_sizes[0], "self dim 0 must match batch1 dim 0"); TORCH_CHECK(self_sizes[0] == batch2_sizes[0], "self dim 0 must match batch2 dim 0"); TORCH_CHECK(self_sizes[1] == batch1_sizes[1], "self dim 1 must match batch1 dim 1"); TORCH_CHECK(self_sizes[2] == batch2_sizes[2], "self dim 2 must match batch2 dim 2"); TORCH_CHECK(batch1_sizes[2] == batch2_sizes[1], "batch1 dim 2 must match batch2 dim 1"); if (!result.is_same(self)) { result.resize_as_(self); if (beta.to<c10::complex<double>>() != 0.0) { result.copy_(self); } } bool transpose_result = false; Tensor result_; IntArrayRef result_strides = result.strides(); IntArrayRef result_sizes = result.sizes(); if ((result_strides[1] == 1) && ((result_sizes[2] == 1) || (result_strides[2] >= std::max<int64_t>(1, result_sizes[1])))) { result_ = result; } else if ((result_strides[2] == 1) && (result_sizes[1] == 1 || (result_strides[1] >= std::max<int64_t>(1, result_sizes[2])))) { transpose_result = true; result_ = result; } else { result_ = result.transpose(1, 2).clone(at::MemoryFormat::Contiguous); result_ = result_.transpose(1, 2); } int leading_dim = transpose_result ? 1 : 2; Tensor batch1_ = transpose_result ? batch2 : batch1; Tensor batch2_ = transpose_result ? batch1 : batch2; int64_t m = result_sizes[transpose_result ? 2 : 1]; int64_t n = result_sizes[leading_dim]; int64_t k = batch1_.size(leading_dim); int64_t lda, ldb, ldc; bool transpose_batch1, transpose_batch2; batch1_ = prepare_batch_matrix_for_cublas(batch1_, transpose_batch1, lda, transpose_result, m, k); batch2_ = prepare_batch_matrix_for_cublas(batch2_, transpose_batch2, ldb, transpose_result, k, n); ldc = result_.stride(leading_dim); int64_t num_batches = result_.size(0); AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, self.scalar_type(), "baddbmm_cuda", [&] { scalar_t alpha_val = alpha.to<scalar_t>(); scalar_t beta_val = beta.to<scalar_t>(); scalar_t* batch1_ptr = batch1_.data_ptr<scalar_t>(); scalar_t* batch2_ptr = batch2_.data_ptr<scalar_t>(); scalar_t* result_ptr = result_.data_ptr<scalar_t>(); at::cuda::blas::bgemm<scalar_t>( transpose_batch1 ? 't' : 'n', transpose_batch2 ? 't' : 'n', m, n, k, alpha_val, batch1_ptr, lda, batch1_.stride(0), batch2_ptr, ldb, batch2_.stride(0), beta_val, result_ptr, ldc, result_.stride(0), num_batches ); }); if (!result.is_same(result_)) { result.copy_(result_); } return result; } } // anonymous namespace Tensor& mm_out_cuda(Tensor& result, const Tensor& self, const Tensor& mat2) { result.resize_({ self.size(0), mat2.size(1) }); return addmm_out_cuda_impl(result, result, self, mat2, 0, 1); } Tensor mm_cuda(const Tensor& self, const Tensor& mat2) { Tensor result = at::empty({ self.size(0), mat2.size(1) }, self.options()); return addmm_out_cuda_impl(result, result, self, mat2, 0, 1); } Tensor& addmm_out_cuda(Tensor &out, const Tensor &self, const Tensor &mat1, const Tensor &mat2, Scalar beta, Scalar alpha) { { at::NoNamesGuard guard; Tensor& result = addmm_out_cuda_impl(out, self, mat1, mat2, beta, alpha); } at::namedinference::propagate_names_for_addmm(out, mat1, mat2, self); return out; } Tensor addmm_cuda(const Tensor& self, const Tensor& mat1, const Tensor& mat2, Scalar beta, Scalar alpha) { Tensor out = at::empty({0}, self.options()); addmm_out_cuda(out, self, mat1, mat2, beta, alpha); return out; } Tensor& addmm__cuda(Tensor& self, const Tensor& mat1, const Tensor& mat2, Scalar beta, Scalar alpha) { addmm_out_cuda(self, self, mat1, mat2, beta, alpha); return self; } Tensor& baddbmm_out_cuda(Tensor &result, const Tensor& self, const Tensor& batch1, const Tensor& batch2, Scalar beta, Scalar alpha) { Tensor self_; if (&result != &self) { std::tie(self_) = expand_size(self, {batch1.size(0), batch1.size(1), batch2.size(2)}, "baddbmm"); } else { self_ = self; } { at::NoNamesGuard guard; baddbmm_out_cuda_impl(result, self_, batch1, batch2, beta, alpha); } namedinference::propagate_names_if_nonempty( result, namedinference::compute_baddbmm_outnames(result, batch1, batch2, self)); return result; } Tensor baddbmm_cuda(const Tensor& self, const Tensor& batch1, const Tensor& batch2, Scalar beta, Scalar alpha) { Tensor out = at::empty({0}, self.options()); return baddbmm_out_cuda(out, self, batch1, batch2, beta, alpha); } Tensor& baddbmm__cuda(Tensor& self, const Tensor& batch1, const Tensor& batch2, Scalar beta, Scalar alpha) { return baddbmm_out_cuda(self, self, batch1, batch2, beta, alpha); } Tensor& bmm_out_cuda(Tensor &result, const Tensor& batch1, const Tensor& batch2) { result.resize_({ batch1.size(0), batch1.size(1), batch2.size(2) }); Scalar beta(0.0); Scalar alpha(1.0); { NoNamesGuard guard; baddbmm_out_cuda_impl(result, result, batch1, batch2, beta, alpha); } namedinference::propagate_names_if_nonempty( result, namedinference::compute_bmm_outnames(result, batch1, batch2)); return result; } Tensor bmm_cuda(const Tensor& self, const Tensor& mat2) { Tensor result = at::empty({0}, self.options()); return native::bmm_out_cuda(result, self, mat2); } namespace { inline void dot_check(const Tensor& self, const Tensor& other) { TORCH_CHECK( self.dim() == 1 && other.dim() == 1, "1D tensors expected, but got ", self.dim(), "D and ", other.dim(), "D tensors"); TORCH_CHECK( self.scalar_type() == other.scalar_type(), "dot : expected both vectors to have same dtype, but found ", self.scalar_type(), " and ", other.scalar_type()); TORCH_CHECK( self.numel() == other.numel(), "inconsistent tensor size, expected tensor [", self.numel(), "] and src [", other.numel(), "] to have the same number of elements, but got ", self.numel(), " and ", other.numel(), " elements respectively"); TORCH_CHECK( self.device() == other.device(), "expected all tensors to be on the same device. Found: ", self.device(), ", ", other.device()); TORCH_CHECK( (self.numel() <= INT_MAX) && (self.stride(0) <= INT_MAX) && (other.stride(0) <= INT_MAX), "dot only supports n, incx, incy with the bound [val] <= %d", INT_MAX); } } // anonymous namespace Tensor dot_cuda(const Tensor& self, const Tensor& other) { at::NoNamesGuard guard; dot_check(self, other); const int n = static_cast<int>(self.numel()); int incx = static_cast<int>(self.stride(0)); int incy = static_cast<int>(other.stride(0)); if (n == 1) { incx = 1; incy = 1; } return AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND1(ScalarType::Half, self.scalar_type(), "dot", [&] { Tensor result = at::empty({}, self.options()); auto handle = at::cuda::getCurrentCUDABlasHandle(); at::cuda::blas::PointerModeGuard pointerModeGuard(handle, CUBLAS_POINTER_MODE_DEVICE); at::cuda::blas::dot<scalar_t>( handle, n, self.data_ptr<scalar_t>(), incx, other.data_ptr<scalar_t>(), incy, result.data_ptr<scalar_t>()); return result; }); } Tensor vdot_cuda(const Tensor& self, const Tensor& other) { if (!self.is_complex()) { return dot_cuda(self, other); } at::NoNamesGuard guard; dot_check(self, other); const int n = static_cast<int>(self.numel()); int incx = static_cast<int>(self.stride(0)); int incy = static_cast<int>(other.stride(0)); if (n == 1) { incx = 1; incy = 1; } return AT_DISPATCH_COMPLEX_TYPES(self.scalar_type(), "vdot", [&] { Tensor result = at::empty({}, self.options()); auto handle = at::cuda::getCurrentCUDABlasHandle(); at::cuda::blas::PointerModeGuard pointerModeGuard( handle, CUBLAS_POINTER_MODE_DEVICE); at::cuda::blas::vdot<scalar_t>( handle, n, self.data_ptr<scalar_t>(), incx, other.data_ptr<scalar_t>(), incy, result.data_ptr<scalar_t>()); return result; }); } namespace { void addr_kernel_cuda(TensorIterator &iter, Scalar beta, Scalar alpha) { if (iter.dtype() == ScalarType::Bool) { using scalar_t = bool; auto beta_val = beta.to<scalar_t>(); auto alpha_val = alpha.to<scalar_t>(); // when beta is false, values in self should be ignored, // nans and infs in self should not propagate. if (beta_val == false) { gpu_kernel( iter, [=] GPU_LAMBDA (scalar_t self_val, scalar_t vec1_val, scalar_t vec2_val) -> scalar_t { return alpha_val && vec1_val && vec2_val; } ); } else { gpu_kernel( iter, [=] GPU_LAMBDA (scalar_t self_val, scalar_t vec1_val, scalar_t vec2_val) -> scalar_t { return (beta_val && self_val) || (alpha_val && vec1_val && vec2_val); } ); } return; } AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND2(kBFloat16, kHalf, iter.dtype(), "addr_cuda", [&] { auto beta_val = beta.to<scalar_t>(); auto alpha_val = alpha.to<scalar_t>(); scalar_t zero_val(0); // when beta==0, values in self should be ignored, // nans and infs in self should not propagate. if (beta_val == zero_val) { gpu_kernel( iter, [=] GPU_LAMBDA (scalar_t self_val, scalar_t vec1_val, scalar_t vec2_val) -> scalar_t { return alpha_val * vec1_val * vec2_val; } ); } else { gpu_kernel( iter, [=] GPU_LAMBDA (scalar_t self_val, scalar_t vec1_val, scalar_t vec2_val) -> scalar_t { return beta_val * self_val + alpha_val * vec1_val * vec2_val; } ); } }); } } // anonymous namespace REGISTER_DISPATCH(addr_stub, &addr_kernel_cuda); }}
b5fb236952b638388522cd61e7970aebe9527f72.hip
// !!! This is a file automatically generated by hipify!!! #include "BigFloat.cu" #include "hip.hip"
b5fb236952b638388522cd61e7970aebe9527f72.cu
#include "BigFloat.cu" #include "cuda.cu"
76333a0250a055bb5b0e60509d8d3ed38fa8a272.hip
// !!! This is a file automatically generated by hipify!!! #include <stdint.h> #include "hip/hip_runtime.h" #include "cudaTools.h" #include "Chronos.h" double launchKernelMemoryTransfert ( const void* memory, const size_t size ) { Chronos chrono; void* ptrDevMemory; chrono.start (); HANDLE_ERROR( hipMalloc( &ptrDevMemory, size ) ); HANDLE_ERROR( hipMemcpy ( ptrDevMemory, memory, size, hipMemcpyHostToDevice ) ); HANDLE_ERROR( hipDeviceSynchronize () ); HANDLE_ERROR( hipFree ( ptrDevMemory ) ); return chrono.timeFlight (); }
76333a0250a055bb5b0e60509d8d3ed38fa8a272.cu
#include <stdint.h> #include "cuda_runtime.h" #include "cudaTools.h" #include "Chronos.h" double launchKernelMemoryTransfert ( const void* memory, const size_t size ) { Chronos chrono; void* ptrDevMemory; chrono.start (); HANDLE_ERROR( cudaMalloc( &ptrDevMemory, size ) ); HANDLE_ERROR( cudaMemcpy ( ptrDevMemory, memory, size, cudaMemcpyHostToDevice ) ); HANDLE_ERROR( cudaDeviceSynchronize () ); HANDLE_ERROR( cudaFree ( ptrDevMemory ) ); return chrono.timeFlight (); }
22067bf802f1c031f58cdfde75eca4d331cefe8f.hip
// !!! This is a file automatically generated by hipify!!! #include "parameters.cuh" #include <cstring> point *pos_colloid, *pos_fl, *vel_colloid, *vel_fl, *ang_vel_colloid, *f, *ra, *old_force, len = point(30, 30, 30), *cell_vel, **rot, *dump_vel_fl, **u, **vc, **om; int n = 10, niter = 21000, file = 0, nbin = 300, maxpart = 100, no_of_colloid = 10, nbox, **nbr, **up_nbr, *cnt, *up_cnt, *fluid_no, *iv, *seed, *iy, **dp; int no_of_fluid = len.prod()*10, *no_neigh, **neigh_fl, **neighbour, *n_neighbour, **box_neigh, **box_part, **cell_part, nn, ran_c = 0, *idum; double kbt = 1, kbt1 = 1, ndt = 0.1, dv = 0.1, mass_fl = 1.0, mass_colloid = 654.1, sig_colloid = 5.0, eps = 1.0, v0 = 0; double dt = ndt/(double)n, sigma = 0.80*sig_colloid, I_colloid = 0.1*mass_colloid*sigma*sigma, *potential_colloid, *rana, *ranb; void initialize() { point **ppointers[] = {&pos_fl, &vel_fl, &f, &pos_colloid, &vel_colloid, &ang_vel_colloid, &old_force, &ra}; int **ipointers[] = {&fluid_no, &n_neighbour, &no_neigh, &cnt, &up_cnt}; int isize[] = {(int)len.prod(), no_of_colloid }; int psize[] = {no_of_fluid, no_of_colloid}; hipMallocManaged(&box_part, (len.prod() + 2)*sizeof(int *)); hipMallocManaged(&cell_part, (len.prod() + 2)*sizeof(int *)); hipMallocManaged(&box_neigh, sizeof(int *)*512); hipMallocManaged(&neighbour, sizeof(int *)*256); hipMallocManaged(&neigh_fl, sizeof(int *)*(no_of_colloid + 2)); hipMallocManaged(&dp, sizeof(int *)*(no_of_colloid + 2)); hipMallocManaged(&nbr, sizeof(int *)*7005); hipMallocManaged(&up_nbr, sizeof(int *)*7005); hipMallocManaged(&u, (no_of_colloid + 2)*sizeof(point *)); hipMallocManaged(&rot, (len.prod() + 2)*sizeof(point *)); hipMallocManaged(&cell_vel, (len.prod() + 2)*sizeof(point)); hipMallocManaged(&dump_vel_fl, (no_of_fluid + 2)*sizeof(point)); hipMallocManaged(&iv, sizeof(int)*64); hipMallocManaged(&seed, sizeof(int)); hipMallocManaged(&idum, sizeof(int)); hipMallocManaged(&iy, sizeof(int)); hipMallocManaged(&potential_colloid, sizeof(double)); hipMallocManaged(&vc, (no_of_colloid + 2)*sizeof(point *)); hipMallocManaged(&om, (no_of_colloid + 2)*sizeof(point *)); hipMallocManaged(&rana, sizeof(double)*(len.prod() + 2)); hipMallocManaged(&ranb, sizeof(double)*(len.prod() + 2)); *seed = 77777, *idum = 123456789, *iy = 0; for(int i = 0; i < 64; i++) iv[i] = 0; for(int i = 0; i < 8; i++) { if(i < 5) hipMallocManaged(ipointers[i], (isize[i>0] + 2)*sizeof(int)); hipMallocManaged(ppointers[i], (psize[i>1] + 2)*sizeof(point)); } for(int i = 0; i <= len.prod(); i++) { if(i <= 500) hipMallocManaged(&box_neigh[i], sizeof(int)*(len.prod() + 2)); if(i <= 200) hipMallocManaged(&neighbour[i], sizeof(int)*(no_of_colloid + 2)); if(i <= 7000) hipMallocManaged(&nbr[i], sizeof(int)*(no_of_colloid + 2)); if(i <= 7000) hipMallocManaged(&up_nbr[i], sizeof(int)*(no_of_colloid + 2)); if(i <= no_of_colloid) hipMallocManaged(&neigh_fl[i], sizeof(int)*(10000 + 2)); if(i <= no_of_colloid) hipMallocManaged(&vc[i], sizeof(point)*(10000 + 2)); if(i <= no_of_colloid) hipMallocManaged(&u[i], sizeof(point)*(10000 + 2)); if(i <= no_of_colloid) hipMallocManaged(&om[i], sizeof(point)*(10000 + 2)); if(i <= no_of_colloid) hipMallocManaged(&dp[i], sizeof(int)*(512)); //512 = nbox hipMallocManaged(&box_part[i], sizeof(int)*(maxpart + 2)); hipMallocManaged(&cell_part[i], sizeof(int)*(maxpart + 2)); hipMallocManaged(&rot[i], sizeof(point)*4); } } void initialize_colloid() { int counter = 0, check, nofp = 0; double space_limit = 1.3*sig_colloid, ang_vscale_colloid = sqrt(12.0*kbt1/I_colloid), vscale_colloid = sqrt(12.0*kbt1/mass_colloid); point avr_vel = point(0, 0, 0), t, temp, iter = point(4, 4, 4), lim = len - point(1, 1, 1); for(int i = 0; i <= lim.prod(); i += 5, iter.next(lim, point(5, 5, 5), point(4, 4, 4)), nofp++) { if(nofp < no_of_colloid) pos_colloid[++nofp] = iter; else break; } while(counter < no_of_colloid) { t = t.random(iv, seed, idum, iy)*len; check = 1; for(int j = 1; j <= counter; j++) { temp = img(t - pos_colloid[j], len); check = (sqrt((temp*temp).sum()) < space_limit)? 0: check; } if(check) pos_colloid[++counter] = t; } for(int j = 1; j <= no_of_colloid; j++) { vel_colloid[j] = (vel_colloid[j].random(iv, seed, idum, iy) - point(0.5, 0.5, 0.5))*vscale_colloid; avr_vel += vel_colloid[j]; } avr_vel = avr_vel/no_of_colloid; for(int j = 1; j <= no_of_colloid; j++) { vel_colloid[j] = vel_colloid[j] - avr_vel; ang_vel_colloid[j] = (t.random(iv, seed, idum, iy) - point(0.5, 0.5, 0.5))*ang_vscale_colloid; } } void initialize_fluid() { int counter = 0, check; double vscale_fluid = sqrt(12.0*kbt/mass_fl); point avr_vel = point(0, 0, 0), t, temp; while(counter < no_of_fluid) { t = t.random(iv, seed, idum, iy)*len; check = 1; for(int j = 1; j <= no_of_colloid; j++) { temp = img(t - pos_colloid[j], len); check = (sqrt((temp*temp).sum()) < sigma*0.5)? 0: check; } if(check) pos_fl[++counter] = t; } for(int j = 1; j <= no_of_fluid; j++) { vel_fl[j] = (vel_fl[j].random(iv, seed, idum, iy) - point(0.5, 0.5, 0.5))*vscale_fluid; avr_vel += vel_fl[j]; } avr_vel = avr_vel/no_of_fluid; for(int j = 1; j <= no_of_fluid; j++) vel_fl[j] = vel_fl[j] - avr_vel; }
22067bf802f1c031f58cdfde75eca4d331cefe8f.cu
#include "parameters.cuh" #include <cstring> point *pos_colloid, *pos_fl, *vel_colloid, *vel_fl, *ang_vel_colloid, *f, *ra, *old_force, len = point(30, 30, 30), *cell_vel, **rot, *dump_vel_fl, **u, **vc, **om; int n = 10, niter = 21000, file = 0, nbin = 300, maxpart = 100, no_of_colloid = 10, nbox, **nbr, **up_nbr, *cnt, *up_cnt, *fluid_no, *iv, *seed, *iy, **dp; int no_of_fluid = len.prod()*10, *no_neigh, **neigh_fl, **neighbour, *n_neighbour, **box_neigh, **box_part, **cell_part, nn, ran_c = 0, *idum; double kbt = 1, kbt1 = 1, ndt = 0.1, dv = 0.1, mass_fl = 1.0, mass_colloid = 654.1, sig_colloid = 5.0, eps = 1.0, v0 = 0; double dt = ndt/(double)n, sigma = 0.80*sig_colloid, I_colloid = 0.1*mass_colloid*sigma*sigma, *potential_colloid, *rana, *ranb; void initialize() { point **ppointers[] = {&pos_fl, &vel_fl, &f, &pos_colloid, &vel_colloid, &ang_vel_colloid, &old_force, &ra}; int **ipointers[] = {&fluid_no, &n_neighbour, &no_neigh, &cnt, &up_cnt}; int isize[] = {(int)len.prod(), no_of_colloid }; int psize[] = {no_of_fluid, no_of_colloid}; cudaMallocManaged(&box_part, (len.prod() + 2)*sizeof(int *)); cudaMallocManaged(&cell_part, (len.prod() + 2)*sizeof(int *)); cudaMallocManaged(&box_neigh, sizeof(int *)*512); cudaMallocManaged(&neighbour, sizeof(int *)*256); cudaMallocManaged(&neigh_fl, sizeof(int *)*(no_of_colloid + 2)); cudaMallocManaged(&dp, sizeof(int *)*(no_of_colloid + 2)); cudaMallocManaged(&nbr, sizeof(int *)*7005); cudaMallocManaged(&up_nbr, sizeof(int *)*7005); cudaMallocManaged(&u, (no_of_colloid + 2)*sizeof(point *)); cudaMallocManaged(&rot, (len.prod() + 2)*sizeof(point *)); cudaMallocManaged(&cell_vel, (len.prod() + 2)*sizeof(point)); cudaMallocManaged(&dump_vel_fl, (no_of_fluid + 2)*sizeof(point)); cudaMallocManaged(&iv, sizeof(int)*64); cudaMallocManaged(&seed, sizeof(int)); cudaMallocManaged(&idum, sizeof(int)); cudaMallocManaged(&iy, sizeof(int)); cudaMallocManaged(&potential_colloid, sizeof(double)); cudaMallocManaged(&vc, (no_of_colloid + 2)*sizeof(point *)); cudaMallocManaged(&om, (no_of_colloid + 2)*sizeof(point *)); cudaMallocManaged(&rana, sizeof(double)*(len.prod() + 2)); cudaMallocManaged(&ranb, sizeof(double)*(len.prod() + 2)); *seed = 77777, *idum = 123456789, *iy = 0; for(int i = 0; i < 64; i++) iv[i] = 0; for(int i = 0; i < 8; i++) { if(i < 5) cudaMallocManaged(ipointers[i], (isize[i>0] + 2)*sizeof(int)); cudaMallocManaged(ppointers[i], (psize[i>1] + 2)*sizeof(point)); } for(int i = 0; i <= len.prod(); i++) { if(i <= 500) cudaMallocManaged(&box_neigh[i], sizeof(int)*(len.prod() + 2)); if(i <= 200) cudaMallocManaged(&neighbour[i], sizeof(int)*(no_of_colloid + 2)); if(i <= 7000) cudaMallocManaged(&nbr[i], sizeof(int)*(no_of_colloid + 2)); if(i <= 7000) cudaMallocManaged(&up_nbr[i], sizeof(int)*(no_of_colloid + 2)); if(i <= no_of_colloid) cudaMallocManaged(&neigh_fl[i], sizeof(int)*(10000 + 2)); if(i <= no_of_colloid) cudaMallocManaged(&vc[i], sizeof(point)*(10000 + 2)); if(i <= no_of_colloid) cudaMallocManaged(&u[i], sizeof(point)*(10000 + 2)); if(i <= no_of_colloid) cudaMallocManaged(&om[i], sizeof(point)*(10000 + 2)); if(i <= no_of_colloid) cudaMallocManaged(&dp[i], sizeof(int)*(512)); //512 = nbox cudaMallocManaged(&box_part[i], sizeof(int)*(maxpart + 2)); cudaMallocManaged(&cell_part[i], sizeof(int)*(maxpart + 2)); cudaMallocManaged(&rot[i], sizeof(point)*4); } } void initialize_colloid() { int counter = 0, check, nofp = 0; double space_limit = 1.3*sig_colloid, ang_vscale_colloid = sqrt(12.0*kbt1/I_colloid), vscale_colloid = sqrt(12.0*kbt1/mass_colloid); point avr_vel = point(0, 0, 0), t, temp, iter = point(4, 4, 4), lim = len - point(1, 1, 1); for(int i = 0; i <= lim.prod(); i += 5, iter.next(lim, point(5, 5, 5), point(4, 4, 4)), nofp++) { if(nofp < no_of_colloid) pos_colloid[++nofp] = iter; else break; } while(counter < no_of_colloid) { t = t.random(iv, seed, idum, iy)*len; check = 1; for(int j = 1; j <= counter; j++) { temp = img(t - pos_colloid[j], len); check = (sqrt((temp*temp).sum()) < space_limit)? 0: check; } if(check) pos_colloid[++counter] = t; } for(int j = 1; j <= no_of_colloid; j++) { vel_colloid[j] = (vel_colloid[j].random(iv, seed, idum, iy) - point(0.5, 0.5, 0.5))*vscale_colloid; avr_vel += vel_colloid[j]; } avr_vel = avr_vel/no_of_colloid; for(int j = 1; j <= no_of_colloid; j++) { vel_colloid[j] = vel_colloid[j] - avr_vel; ang_vel_colloid[j] = (t.random(iv, seed, idum, iy) - point(0.5, 0.5, 0.5))*ang_vscale_colloid; } } void initialize_fluid() { int counter = 0, check; double vscale_fluid = sqrt(12.0*kbt/mass_fl); point avr_vel = point(0, 0, 0), t, temp; while(counter < no_of_fluid) { t = t.random(iv, seed, idum, iy)*len; check = 1; for(int j = 1; j <= no_of_colloid; j++) { temp = img(t - pos_colloid[j], len); check = (sqrt((temp*temp).sum()) < sigma*0.5)? 0: check; } if(check) pos_fl[++counter] = t; } for(int j = 1; j <= no_of_fluid; j++) { vel_fl[j] = (vel_fl[j].random(iv, seed, idum, iy) - point(0.5, 0.5, 0.5))*vscale_fluid; avr_vel += vel_fl[j]; } avr_vel = avr_vel/no_of_fluid; for(int j = 1; j <= no_of_fluid; j++) vel_fl[j] = vel_fl[j] - avr_vel; }
998771e69ff0bb7ec06b2c8d9019c74f89939bb8.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include <stdio.h> #ifdef GLOBAL __device__ char x[THREADS]; #endif __global__ void racey_kernel() { #ifdef SHARED __shared__ char x[THREADS]; #endif #ifdef WW x[threadIdx.x] = threadIdx.x; x[THREADS - threadIdx.x - 1] = threadIdx.x; #elif RW volatile char c = x[threadIdx.x]; x[THREADS - threadIdx.x - 1] = threadIdx.x; #endif } int main() { hipLaunchKernelGGL(( racey_kernel), dim3(BLOCKS),dim3(THREADS), 0, 0, ); hipDeviceReset(); return 0; }
998771e69ff0bb7ec06b2c8d9019c74f89939bb8.cu
#include <stdio.h> #ifdef GLOBAL __device__ char x[THREADS]; #endif __global__ void racey_kernel() { #ifdef SHARED __shared__ char x[THREADS]; #endif #ifdef WW x[threadIdx.x] = threadIdx.x; x[THREADS - threadIdx.x - 1] = threadIdx.x; #elif RW volatile char c = x[threadIdx.x]; x[THREADS - threadIdx.x - 1] = threadIdx.x; #endif } int main() { racey_kernel<<<BLOCKS,THREADS>>>(); cudaDeviceReset(); return 0; }
0cb64432ce2a16b421fcd65db4c0b71450d4048d.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" /** * Copyright 2021 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "plugin/device/gpu/kernel/cuda_impl/cuda_ops/adaptive_avg_pool2d_impl.cuh" #include "include/hip/hip_fp16.h" __device__ inline uint start_index(uint a, uint b, uint c) { return floorf(__uint2float_rn(a * c) / __uint2float_rn(b)); } __device__ inline uint end_index(uint a, uint b, uint c) { return ceilf(__uint2float_rn((a + 1) * c) / __uint2float_rn(b)); } template <typename T> __global__ void AdaptiveAvgPool2DKernel(const uint size, const uint input_height, const uint input_width, const uint output_height, const uint output_width, T *input_data, T *output_data) { for (uint c = blockIdx.x * blockDim.x + threadIdx.x; c < size; c += gridDim.x * blockDim.x) { T *input_ptr = input_data + c * input_height * input_width; T *output_ptr = output_data + c * output_height * output_width; for (uint oh = 0; oh < output_height; oh++) { uint ih0 = start_index(oh, output_height, input_height); uint ih1 = end_index(oh, output_height, input_height); uint kh = ih1 - ih0; for (uint ow = 0; ow < output_width; ow++) { uint iw0 = start_index(ow, output_width, input_width); uint iw1 = end_index(ow, output_width, input_width); uint kw = iw1 - iw0; // compute local average T sum = 0; for (uint ih = ih0; ih < ih1; ih++) { for (uint iw = iw0; iw < iw1; iw++) { sum += input_ptr[ih * input_width + iw]; } } output_ptr[oh * output_width + ow] = sum / kh / kw; } } } } template <> __global__ void AdaptiveAvgPool2DKernel(const uint size, const uint input_height, const uint input_width, const uint output_height, const uint output_width, float *input_data, float *output_data) { for (uint c = blockIdx.x * blockDim.x + threadIdx.x; c < size; c += gridDim.x * blockDim.x) { float *input_ptr = input_data + c * input_height * input_width; float *output_ptr = output_data + c * output_height * output_width; for (uint oh = 0; oh < output_height; oh++) { uint ih0 = start_index(oh, output_height, input_height); uint ih1 = end_index(oh, output_height, input_height); uint kh = ih1 - ih0; for (uint ow = 0; ow < output_width; ow++) { uint iw0 = start_index(ow, output_width, input_width); uint iw1 = end_index(ow, output_width, input_width); uint kw = iw1 - iw0; // compute local average float sum = 0; for (uint ih = ih0; ih < ih1; ih++) { for (uint iw = iw0; iw < iw1; iw++) { sum += input_ptr[ih * input_width + iw]; } } output_ptr[oh * output_width + ow] = sum / __uint2float_rn(kh * kw); } } } } template <> __global__ void AdaptiveAvgPool2DKernel(const uint size, const uint input_height, const uint input_width, const uint output_height, const uint output_width, half *input_data, half *output_data) { for (uint c = blockIdx.x * blockDim.x + threadIdx.x; c < size; c += gridDim.x * blockDim.x) { half *input_ptr = input_data + c * input_height * input_width; half *output_ptr = output_data + c * output_height * output_width; for (uint oh = 0; oh < output_height; oh++) { uint ih0 = start_index(oh, output_height, input_height); uint ih1 = end_index(oh, output_height, input_height); uint kh = ih1 - ih0; for (uint ow = 0; ow < output_width; ow++) { uint iw0 = start_index(ow, output_width, input_width); uint iw1 = end_index(ow, output_width, input_width); uint kw = iw1 - iw0; // compute local average half sum = 0; for (uint ih = ih0; ih < ih1; ih++) { for (uint iw = iw0; iw < iw1; iw++) { sum += input_ptr[ih * input_width + iw]; } } output_ptr[oh * output_width + ow] = sum / __uint2half_rn(kh * kw); } } } } template <> __global__ void AdaptiveAvgPool2DKernel(const uint size, const uint input_height, const uint input_width, const uint output_height, const uint output_width, double *input_data, double *output_data) { for (uint c = blockIdx.x * blockDim.x + threadIdx.x; c < size; c += gridDim.x * blockDim.x) { double *input_ptr = input_data + c * input_height * input_width; double *output_ptr = output_data + c * output_height * output_width; for (uint oh = 0; oh < output_height; oh++) { uint ih0 = start_index(oh, output_height, input_height); uint ih1 = end_index(oh, output_height, input_height); uint kh = ih1 - ih0; for (uint ow = 0; ow < output_width; ow++) { uint iw0 = start_index(ow, output_width, input_width); uint iw1 = end_index(ow, output_width, input_width); uint kw = iw1 - iw0; // compute local average double sum = 0; for (uint ih = ih0; ih < ih1; ih++) { for (uint iw = iw0; iw < iw1; iw++) { sum += input_ptr[ih * input_width + iw]; } } output_ptr[oh * output_width + ow] = sum / __uint2double_rn(kh * kw); } } } } template <typename T> hipError_t ApplyAdaptiveAvgPool2D(const uint size, const uint input_height, const uint input_width, const uint output_height, const uint output_width, T *input_data, T *output_data, hipStream_t cuda_stream) { hipLaunchKernelGGL(( AdaptiveAvgPool2DKernel), dim3(GET_BLOCKS(size)), dim3(GET_THREADS), 0, cuda_stream, size, input_height, input_width, output_height, output_width, input_data, output_data); CHECK_CUDA_LAUNCH_SUCCESS(); } template CUDA_LIB_EXPORT hipError_t ApplyAdaptiveAvgPool2D<float>(const uint size, const uint input_height, const uint input_width, const uint output_height, const uint output_width, float *input_data, float *output_data, hipStream_t cuda_stream); template CUDA_LIB_EXPORT hipError_t ApplyAdaptiveAvgPool2D<half>(const uint size, const uint input_height, const uint input_width, const uint output_height, const uint output_width, half *input_data, half *output_data, hipStream_t cuda_stream); template CUDA_LIB_EXPORT hipError_t ApplyAdaptiveAvgPool2D<double>(const uint size, const uint input_height, const uint input_width, const uint output_height, const uint output_width, double *input_data, double *output_data, hipStream_t cuda_stream);
0cb64432ce2a16b421fcd65db4c0b71450d4048d.cu
/** * Copyright 2021 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "plugin/device/gpu/kernel/cuda_impl/cuda_ops/adaptive_avg_pool2d_impl.cuh" #include "include/cuda_fp16.h" __device__ inline uint start_index(uint a, uint b, uint c) { return floorf(__uint2float_rn(a * c) / __uint2float_rn(b)); } __device__ inline uint end_index(uint a, uint b, uint c) { return ceilf(__uint2float_rn((a + 1) * c) / __uint2float_rn(b)); } template <typename T> __global__ void AdaptiveAvgPool2DKernel(const uint size, const uint input_height, const uint input_width, const uint output_height, const uint output_width, T *input_data, T *output_data) { for (uint c = blockIdx.x * blockDim.x + threadIdx.x; c < size; c += gridDim.x * blockDim.x) { T *input_ptr = input_data + c * input_height * input_width; T *output_ptr = output_data + c * output_height * output_width; for (uint oh = 0; oh < output_height; oh++) { uint ih0 = start_index(oh, output_height, input_height); uint ih1 = end_index(oh, output_height, input_height); uint kh = ih1 - ih0; for (uint ow = 0; ow < output_width; ow++) { uint iw0 = start_index(ow, output_width, input_width); uint iw1 = end_index(ow, output_width, input_width); uint kw = iw1 - iw0; // compute local average T sum = 0; for (uint ih = ih0; ih < ih1; ih++) { for (uint iw = iw0; iw < iw1; iw++) { sum += input_ptr[ih * input_width + iw]; } } output_ptr[oh * output_width + ow] = sum / kh / kw; } } } } template <> __global__ void AdaptiveAvgPool2DKernel(const uint size, const uint input_height, const uint input_width, const uint output_height, const uint output_width, float *input_data, float *output_data) { for (uint c = blockIdx.x * blockDim.x + threadIdx.x; c < size; c += gridDim.x * blockDim.x) { float *input_ptr = input_data + c * input_height * input_width; float *output_ptr = output_data + c * output_height * output_width; for (uint oh = 0; oh < output_height; oh++) { uint ih0 = start_index(oh, output_height, input_height); uint ih1 = end_index(oh, output_height, input_height); uint kh = ih1 - ih0; for (uint ow = 0; ow < output_width; ow++) { uint iw0 = start_index(ow, output_width, input_width); uint iw1 = end_index(ow, output_width, input_width); uint kw = iw1 - iw0; // compute local average float sum = 0; for (uint ih = ih0; ih < ih1; ih++) { for (uint iw = iw0; iw < iw1; iw++) { sum += input_ptr[ih * input_width + iw]; } } output_ptr[oh * output_width + ow] = sum / __uint2float_rn(kh * kw); } } } } template <> __global__ void AdaptiveAvgPool2DKernel(const uint size, const uint input_height, const uint input_width, const uint output_height, const uint output_width, half *input_data, half *output_data) { for (uint c = blockIdx.x * blockDim.x + threadIdx.x; c < size; c += gridDim.x * blockDim.x) { half *input_ptr = input_data + c * input_height * input_width; half *output_ptr = output_data + c * output_height * output_width; for (uint oh = 0; oh < output_height; oh++) { uint ih0 = start_index(oh, output_height, input_height); uint ih1 = end_index(oh, output_height, input_height); uint kh = ih1 - ih0; for (uint ow = 0; ow < output_width; ow++) { uint iw0 = start_index(ow, output_width, input_width); uint iw1 = end_index(ow, output_width, input_width); uint kw = iw1 - iw0; // compute local average half sum = 0; for (uint ih = ih0; ih < ih1; ih++) { for (uint iw = iw0; iw < iw1; iw++) { sum += input_ptr[ih * input_width + iw]; } } output_ptr[oh * output_width + ow] = sum / __uint2half_rn(kh * kw); } } } } template <> __global__ void AdaptiveAvgPool2DKernel(const uint size, const uint input_height, const uint input_width, const uint output_height, const uint output_width, double *input_data, double *output_data) { for (uint c = blockIdx.x * blockDim.x + threadIdx.x; c < size; c += gridDim.x * blockDim.x) { double *input_ptr = input_data + c * input_height * input_width; double *output_ptr = output_data + c * output_height * output_width; for (uint oh = 0; oh < output_height; oh++) { uint ih0 = start_index(oh, output_height, input_height); uint ih1 = end_index(oh, output_height, input_height); uint kh = ih1 - ih0; for (uint ow = 0; ow < output_width; ow++) { uint iw0 = start_index(ow, output_width, input_width); uint iw1 = end_index(ow, output_width, input_width); uint kw = iw1 - iw0; // compute local average double sum = 0; for (uint ih = ih0; ih < ih1; ih++) { for (uint iw = iw0; iw < iw1; iw++) { sum += input_ptr[ih * input_width + iw]; } } output_ptr[oh * output_width + ow] = sum / __uint2double_rn(kh * kw); } } } } template <typename T> cudaError_t ApplyAdaptiveAvgPool2D(const uint size, const uint input_height, const uint input_width, const uint output_height, const uint output_width, T *input_data, T *output_data, cudaStream_t cuda_stream) { AdaptiveAvgPool2DKernel<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>( size, input_height, input_width, output_height, output_width, input_data, output_data); CHECK_CUDA_LAUNCH_SUCCESS(); } template CUDA_LIB_EXPORT cudaError_t ApplyAdaptiveAvgPool2D<float>(const uint size, const uint input_height, const uint input_width, const uint output_height, const uint output_width, float *input_data, float *output_data, cudaStream_t cuda_stream); template CUDA_LIB_EXPORT cudaError_t ApplyAdaptiveAvgPool2D<half>(const uint size, const uint input_height, const uint input_width, const uint output_height, const uint output_width, half *input_data, half *output_data, cudaStream_t cuda_stream); template CUDA_LIB_EXPORT cudaError_t ApplyAdaptiveAvgPool2D<double>(const uint size, const uint input_height, const uint input_width, const uint output_height, const uint output_width, double *input_data, double *output_data, cudaStream_t cuda_stream);
5777afaa9b465c57da531f1204cce476b1471988.hip
// !!! This is a file automatically generated by hipify!!! #include <iostream> #include <vector> #include <hip/hip_runtime.h> #include <rocblas.h> #include <hip/hip_runtime.h> #include <hip/hip_runtime_api.h> #include <cuda_surface_types.h> #include "device_launch_parameters.h" //device_launch_parameters.h" //#include <comutil.h> #include <math.h> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <hiprand/hiprand.h> #include <hiprand/hiprand_kernel.h> #include "hip/device_functions.h" //#include <windows.h> #include <fstream> #include <cfloat> #include "rocblas.h" #include "cudaCompute.h" #pragma comment(lib, "cudart") #pragma comment(lib,"cublas.lib") using namespace std; //using namespace _com_util; __global__ void cuda_SparseIndexForward(int * rowIdx, int * sparseColIndex, float * weight, int rowSize, int inputDim, int outputDim, float * output, float alpha, float beta) { int idx = blockDim.x * blockIdx.x + threadIdx.x; int idy = blockDim.y * blockIdx.y + threadIdx.y; if (idx < rowSize && idy < outputDim) { int fea_end = rowIdx[idx]; int fea_begin = idx > 0 ? rowIdx[idx - 1] : 0; float sum = 0; for (int i = fea_begin; i < fea_end; ++i) { int fea_idx = sparseColIndex[i]; if(fea_idx < inputDim) sum += weight[fea_idx * outputDim + idy]; } output[idx * outputDim + idy] = alpha * output[idx * outputDim + idy] + beta * sum; } } void Cuda_SparseIndexForward(int * rowIdx, int * sparseColIndex, float * weight, int rowSize, int inputDim, int outputDim, float * output, float alpha, float beta) { dim3 thread_tail(DEFAULT_THREAD_PER_DIM, DEFAULT_THREAD_PER_DIM); dim3 block_tail((rowSize - 1) / DEFAULT_THREAD_PER_DIM + 1, (outputDim - 1) / DEFAULT_THREAD_PER_DIM + 1); cuda_SparseIndexForward << <block_tail, thread_tail >> >(rowIdx, sparseColIndex, weight, rowSize, inputDim, outputDim, output, alpha, beta); } __global__ void cuda_SparseIndexBackward(int * rowIdx, int * sparseColIndex, float * doutput, int rowSize, int inputDim, int outputDim, float * weight, float beta) { int idx = blockDim.x * blockIdx.x + threadIdx.x; if (idx < outputDim) { for (int b = 0; b < rowSize; b++) { int col_end = rowIdx[b]; int col_begin = b == 0 ? 0 : rowIdx[b - 1]; float dv = beta * doutput[b * outputDim + idx]; for (int i = col_begin; i < col_end; i++) { int fea_idx = sparseColIndex[i]; weight[fea_idx * outputDim + idx] += dv; } } } } void Cuda_SparseIndexBackward(int * rowIdx, int * sparseColIndex, float * doutput, int rowSize, int inputDim, int outputDim, float * weight, float beta) { dim3 thread_tail(DEFAULT_THREAD_PER_BLOCK); dim3 block_tail((outputDim - 1) / DEFAULT_THREAD_PER_BLOCK + 1); cuda_SparseIndexBackward << <block_tail, thread_tail >> >(rowIdx, sparseColIndex, doutput, rowSize, inputDim, outputDim, weight, beta); } __global__ void cuda_Tanh(float * a, float * b, int size) { int idx = blockDim.x * blockIdx.x + threadIdx.x; if (idx < size) b[idx] = tanhf(a[idx]); } void Cuda_Tanh(float * a, float * b, int size) { int nThreadPerBlock = DEFAULT_THREAD_PER_BLOCK; int nBlockPerGrid = (size + DEFAULT_THREAD_PER_BLOCK - 1) / DEFAULT_THREAD_PER_BLOCK; cuda_Tanh << <nBlockPerGrid, nThreadPerBlock >> >(a, b, size); } __global__ void cuda_DerivTanh(float * doutput, float * output, float * dinput, float alpha, int size) { int idx = blockDim.x * blockIdx.x + threadIdx.x; if (idx < size) { dinput[idx] = dinput[idx] * alpha + doutput[idx] * (1 - output[idx]) * (1 + output[idx]); } } // dinput[idx] = dinput[idx] * alpha + doutput[idx] * (1 - output[idx]) * (1 + output[idx]); void Cuda_DerivTanh(float * doutput, float * output, float * dinput, float alpha, int size) { int nThreadPerBlock = DEFAULT_THREAD_PER_BLOCK; int nBlockPerGrid = (size + DEFAULT_THREAD_PER_BLOCK - 1) / DEFAULT_THREAD_PER_BLOCK; cuda_DerivTanh <<<nBlockPerGrid, nThreadPerBlock >> >(doutput, output, dinput, alpha, size); } __global__ void cuda_VecMulVec(float * pLeft, float * pRight, float * pDst, int dim, int size, float alpha, float beta) { int x = blockDim.x*blockIdx.x + threadIdx.x; if (x < size) { float sum = 0; int offset = x * dim; for (int i = 0; i < dim; i++) { sum += pLeft[offset + i] * pRight[offset + i]; } pDst[x] = alpha * pDst[x] + beta * sum; } } // pDst = pDst * weiDst + pLeft @ pRight; void Cuda_VecMulVec(float * pLeft, float * pRight, float * pDst, int dim, int size, float alpha, float beta) { int nThreadPerBlock = DEFAULT_THREAD_PER_BLOCK; int nBlockPerGrid = (size + DEFAULT_THREAD_PER_BLOCK - 1) / DEFAULT_THREAD_PER_BLOCK; cuda_VecMulVec << <nBlockPerGrid, nThreadPerBlock >> >(pLeft, pRight, pDst, dim, size, alpha, beta); } __global__ void cuda_IVecMulVec(float * pLeft, int * leftIdxA, float * pRight, int * rightIdxB, float * pDst, int dim, int size, float alpha, float beta) { int x = blockDim.x*blockIdx.x + threadIdx.x; if (x < size) { int leftIdx = leftIdxA[x] * dim; int rightIdx = rightIdxB[x] * dim; float sum = 0; for (int i = 0; i < dim; i++) sum += pLeft[leftIdx + i] * pRight[rightIdx + i]; pDst[x] = alpha * pDst[x] + beta * sum; } } // pDst = pDst * weiDst + pLeft @ pRight; void Cuda_IVecMulVec(float * pLeft, int * leftIdxA, float * pRight, int * rightIdxB, float * pDst, int dim, int size, float alpha, float beta) { int nThreadPerBlock = DEFAULT_THREAD_PER_BLOCK; int nBlockPerGrid = (size + DEFAULT_THREAD_PER_BLOCK - 1) / DEFAULT_THREAD_PER_BLOCK; cuda_IVecMulVec << <nBlockPerGrid, nThreadPerBlock >> >(pLeft, leftIdxA, pRight, rightIdxB, pDst, dim, size, alpha, beta); } __global__ void cuda_CosineSimilarity(float * inputA, float * ASquare, int ASize, float * inputB, float * BSquare, int BSize, int dim, float * outputC, int * matchIdxA, int * matchIdxB, int matchSize, float eps) { int idx = blockDim.x * blockIdx.x + threadIdx.x; if (idx < matchSize) { int aid = matchIdxA[idx]; int bid = matchIdxB[idx]; float sumxx = sqrtf(ASquare[aid]); float sumyy = sqrtf(BSquare[bid]); float sumxy = 0; float * ptrA = inputA + aid * dim; float * ptrB = inputB + bid * dim; for (int i = 0; i < dim; i++) sumxy += ptrA[i] * ptrB[i]; outputC[idx] = (float)(sumxy * 1.0f / ((float)(sumxx * sumyy) + eps)); } } void Cuda_CosineSimilarity(float * inputA, float * ASquare, int ASize, float * inputB, float * BSquare, int BSize, int dim, float * outputC, int * matchIdxA, int * matchIdxB, int matchSize, float eps) { int nThreadPerBlock = DEFAULT_THREAD_PER_BLOCK; int nBlockPerGrid = (matchSize + DEFAULT_THREAD_PER_BLOCK - 1) / DEFAULT_THREAD_PER_BLOCK; cuda_CosineSimilarity << <nBlockPerGrid, nThreadPerBlock >> >(inputA, ASquare, ASize, inputB, BSquare, BSize, dim, outputC, matchIdxA, matchIdxB, matchSize, eps); } __global__ void cuda_Deriv_CosineSimilarity_partialMatching(float * src, float * tgt, float *srcSquare, float * tgtSquare, int dim, int * src2MatchIdx, int * src2MatchElement, int * tgtIdx, int srcSize, int matchSize, float * simi, float * derivSimi, float * dcSrc, float alpha, float eps) { int idy = blockDim.y * blockIdx.y + threadIdx.y; int idx = blockDim.x * blockIdx.x + threadIdx.x; //idx -> source/q Index. if (idx < srcSize && idy < dim) { int matchBeginIdx = idx == 0 ? 0 : src2MatchIdx[idx - 1]; int matchEndIdx = src2MatchIdx[idx]; float sum = 0; float qRoot = sqrtf(srcSquare[idx]); float qv = src[idx * dim + idy]; float qSquare_qv = qv / (srcSquare[idx] + eps); for (int match = matchBeginIdx; match < matchEndIdx; match++) { int mIdx = src2MatchElement[match]; int dIdx = tgtIdx[mIdx]; float dRoot = sqrtf(tgtSquare[dIdx]); sum += derivSimi[mIdx] * (tgt[dIdx * dim + idy] / (qRoot * dRoot + eps) - qSquare_qv * simi[mIdx]); /// qSquare); } dcSrc[idx * dim + idy] = alpha * dcSrc[idx * dim + idy] + sum; } } void Cuda_DerivCosineSimilarity(float * q, float * d, float *qSquare, float * dSquare, int dim, int * src2MatchIdx, int * src2MatchElement, int * tgt2MatchIdx, int * tgt2MatchElement, int * srcIdx, int * tgtIdx, int srcSize, int tgtSize, int matchSize, float * simi, float * derivSimi, float * dcq, float * dcd, float alpha, float eps) { dim3 srcThread_tail(DEFAULT_THREAD_PER_DIM, DEFAULT_THREAD_PER_DIM); dim3 srcBlock_tail((srcSize - 1) / DEFAULT_THREAD_PER_DIM + 1, (dim - 1) / DEFAULT_THREAD_PER_DIM + 1); cuda_Deriv_CosineSimilarity_partialMatching << <srcBlock_tail, srcThread_tail >> >(q, d, qSquare, dSquare, dim, src2MatchIdx, src2MatchElement, tgtIdx, srcSize, matchSize, simi, derivSimi, dcq, alpha, eps); dim3 tgtThread_tail(DEFAULT_THREAD_PER_DIM, DEFAULT_THREAD_PER_DIM); dim3 tgtBlock_tail((tgtSize - 1) / DEFAULT_THREAD_PER_DIM + 1, (dim - 1) / DEFAULT_THREAD_PER_DIM + 1); cuda_Deriv_CosineSimilarity_partialMatching << <tgtBlock_tail, tgtThread_tail >> >(d, q, dSquare, qSquare, dim, tgt2MatchIdx, tgt2MatchElement, srcIdx, tgtSize, matchSize, simi, derivSimi, dcd, alpha, eps); }
5777afaa9b465c57da531f1204cce476b1471988.cu
#include <iostream> #include <vector> #include <cuda_runtime.h> #include <cublas.h> #include <cuda.h> #include <cuda_runtime_api.h> #include <cuda_surface_types.h> #include "device_launch_parameters.h" //device_launch_parameters.h" //#include <comutil.h> #include <math.h> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <curand.h> #include <curand_kernel.h> #include "device_functions.h" //#include <windows.h> #include <fstream> #include <cfloat> #include "cublas_v2.h" #include "cudaCompute.h" #pragma comment(lib, "cudart") #pragma comment(lib,"cublas.lib") using namespace std; //using namespace _com_util; __global__ void cuda_SparseIndexForward(int * rowIdx, int * sparseColIndex, float * weight, int rowSize, int inputDim, int outputDim, float * output, float alpha, float beta) { int idx = blockDim.x * blockIdx.x + threadIdx.x; int idy = blockDim.y * blockIdx.y + threadIdx.y; if (idx < rowSize && idy < outputDim) { int fea_end = rowIdx[idx]; int fea_begin = idx > 0 ? rowIdx[idx - 1] : 0; float sum = 0; for (int i = fea_begin; i < fea_end; ++i) { int fea_idx = sparseColIndex[i]; if(fea_idx < inputDim) sum += weight[fea_idx * outputDim + idy]; } output[idx * outputDim + idy] = alpha * output[idx * outputDim + idy] + beta * sum; } } void Cuda_SparseIndexForward(int * rowIdx, int * sparseColIndex, float * weight, int rowSize, int inputDim, int outputDim, float * output, float alpha, float beta) { dim3 thread_tail(DEFAULT_THREAD_PER_DIM, DEFAULT_THREAD_PER_DIM); dim3 block_tail((rowSize - 1) / DEFAULT_THREAD_PER_DIM + 1, (outputDim - 1) / DEFAULT_THREAD_PER_DIM + 1); cuda_SparseIndexForward << <block_tail, thread_tail >> >(rowIdx, sparseColIndex, weight, rowSize, inputDim, outputDim, output, alpha, beta); } __global__ void cuda_SparseIndexBackward(int * rowIdx, int * sparseColIndex, float * doutput, int rowSize, int inputDim, int outputDim, float * weight, float beta) { int idx = blockDim.x * blockIdx.x + threadIdx.x; if (idx < outputDim) { for (int b = 0; b < rowSize; b++) { int col_end = rowIdx[b]; int col_begin = b == 0 ? 0 : rowIdx[b - 1]; float dv = beta * doutput[b * outputDim + idx]; for (int i = col_begin; i < col_end; i++) { int fea_idx = sparseColIndex[i]; weight[fea_idx * outputDim + idx] += dv; } } } } void Cuda_SparseIndexBackward(int * rowIdx, int * sparseColIndex, float * doutput, int rowSize, int inputDim, int outputDim, float * weight, float beta) { dim3 thread_tail(DEFAULT_THREAD_PER_BLOCK); dim3 block_tail((outputDim - 1) / DEFAULT_THREAD_PER_BLOCK + 1); cuda_SparseIndexBackward << <block_tail, thread_tail >> >(rowIdx, sparseColIndex, doutput, rowSize, inputDim, outputDim, weight, beta); } __global__ void cuda_Tanh(float * a, float * b, int size) { int idx = blockDim.x * blockIdx.x + threadIdx.x; if (idx < size) b[idx] = tanhf(a[idx]); } void Cuda_Tanh(float * a, float * b, int size) { int nThreadPerBlock = DEFAULT_THREAD_PER_BLOCK; int nBlockPerGrid = (size + DEFAULT_THREAD_PER_BLOCK - 1) / DEFAULT_THREAD_PER_BLOCK; cuda_Tanh << <nBlockPerGrid, nThreadPerBlock >> >(a, b, size); } __global__ void cuda_DerivTanh(float * doutput, float * output, float * dinput, float alpha, int size) { int idx = blockDim.x * blockIdx.x + threadIdx.x; if (idx < size) { dinput[idx] = dinput[idx] * alpha + doutput[idx] * (1 - output[idx]) * (1 + output[idx]); } } // dinput[idx] = dinput[idx] * alpha + doutput[idx] * (1 - output[idx]) * (1 + output[idx]); void Cuda_DerivTanh(float * doutput, float * output, float * dinput, float alpha, int size) { int nThreadPerBlock = DEFAULT_THREAD_PER_BLOCK; int nBlockPerGrid = (size + DEFAULT_THREAD_PER_BLOCK - 1) / DEFAULT_THREAD_PER_BLOCK; cuda_DerivTanh <<<nBlockPerGrid, nThreadPerBlock >> >(doutput, output, dinput, alpha, size); } __global__ void cuda_VecMulVec(float * pLeft, float * pRight, float * pDst, int dim, int size, float alpha, float beta) { int x = blockDim.x*blockIdx.x + threadIdx.x; if (x < size) { float sum = 0; int offset = x * dim; for (int i = 0; i < dim; i++) { sum += pLeft[offset + i] * pRight[offset + i]; } pDst[x] = alpha * pDst[x] + beta * sum; } } // pDst = pDst * weiDst + pLeft @ pRight; void Cuda_VecMulVec(float * pLeft, float * pRight, float * pDst, int dim, int size, float alpha, float beta) { int nThreadPerBlock = DEFAULT_THREAD_PER_BLOCK; int nBlockPerGrid = (size + DEFAULT_THREAD_PER_BLOCK - 1) / DEFAULT_THREAD_PER_BLOCK; cuda_VecMulVec << <nBlockPerGrid, nThreadPerBlock >> >(pLeft, pRight, pDst, dim, size, alpha, beta); } __global__ void cuda_IVecMulVec(float * pLeft, int * leftIdxA, float * pRight, int * rightIdxB, float * pDst, int dim, int size, float alpha, float beta) { int x = blockDim.x*blockIdx.x + threadIdx.x; if (x < size) { int leftIdx = leftIdxA[x] * dim; int rightIdx = rightIdxB[x] * dim; float sum = 0; for (int i = 0; i < dim; i++) sum += pLeft[leftIdx + i] * pRight[rightIdx + i]; pDst[x] = alpha * pDst[x] + beta * sum; } } // pDst = pDst * weiDst + pLeft @ pRight; void Cuda_IVecMulVec(float * pLeft, int * leftIdxA, float * pRight, int * rightIdxB, float * pDst, int dim, int size, float alpha, float beta) { int nThreadPerBlock = DEFAULT_THREAD_PER_BLOCK; int nBlockPerGrid = (size + DEFAULT_THREAD_PER_BLOCK - 1) / DEFAULT_THREAD_PER_BLOCK; cuda_IVecMulVec << <nBlockPerGrid, nThreadPerBlock >> >(pLeft, leftIdxA, pRight, rightIdxB, pDst, dim, size, alpha, beta); } __global__ void cuda_CosineSimilarity(float * inputA, float * ASquare, int ASize, float * inputB, float * BSquare, int BSize, int dim, float * outputC, int * matchIdxA, int * matchIdxB, int matchSize, float eps) { int idx = blockDim.x * blockIdx.x + threadIdx.x; if (idx < matchSize) { int aid = matchIdxA[idx]; int bid = matchIdxB[idx]; float sumxx = sqrtf(ASquare[aid]); float sumyy = sqrtf(BSquare[bid]); float sumxy = 0; float * ptrA = inputA + aid * dim; float * ptrB = inputB + bid * dim; for (int i = 0; i < dim; i++) sumxy += ptrA[i] * ptrB[i]; outputC[idx] = (float)(sumxy * 1.0f / ((float)(sumxx * sumyy) + eps)); } } void Cuda_CosineSimilarity(float * inputA, float * ASquare, int ASize, float * inputB, float * BSquare, int BSize, int dim, float * outputC, int * matchIdxA, int * matchIdxB, int matchSize, float eps) { int nThreadPerBlock = DEFAULT_THREAD_PER_BLOCK; int nBlockPerGrid = (matchSize + DEFAULT_THREAD_PER_BLOCK - 1) / DEFAULT_THREAD_PER_BLOCK; cuda_CosineSimilarity << <nBlockPerGrid, nThreadPerBlock >> >(inputA, ASquare, ASize, inputB, BSquare, BSize, dim, outputC, matchIdxA, matchIdxB, matchSize, eps); } __global__ void cuda_Deriv_CosineSimilarity_partialMatching(float * src, float * tgt, float *srcSquare, float * tgtSquare, int dim, int * src2MatchIdx, int * src2MatchElement, int * tgtIdx, int srcSize, int matchSize, float * simi, float * derivSimi, float * dcSrc, float alpha, float eps) { int idy = blockDim.y * blockIdx.y + threadIdx.y; int idx = blockDim.x * blockIdx.x + threadIdx.x; //idx -> source/q Index. if (idx < srcSize && idy < dim) { int matchBeginIdx = idx == 0 ? 0 : src2MatchIdx[idx - 1]; int matchEndIdx = src2MatchIdx[idx]; float sum = 0; float qRoot = sqrtf(srcSquare[idx]); float qv = src[idx * dim + idy]; float qSquare_qv = qv / (srcSquare[idx] + eps); for (int match = matchBeginIdx; match < matchEndIdx; match++) { int mIdx = src2MatchElement[match]; int dIdx = tgtIdx[mIdx]; float dRoot = sqrtf(tgtSquare[dIdx]); sum += derivSimi[mIdx] * (tgt[dIdx * dim + idy] / (qRoot * dRoot + eps) - qSquare_qv * simi[mIdx]); /// qSquare); } dcSrc[idx * dim + idy] = alpha * dcSrc[idx * dim + idy] + sum; } } void Cuda_DerivCosineSimilarity(float * q, float * d, float *qSquare, float * dSquare, int dim, int * src2MatchIdx, int * src2MatchElement, int * tgt2MatchIdx, int * tgt2MatchElement, int * srcIdx, int * tgtIdx, int srcSize, int tgtSize, int matchSize, float * simi, float * derivSimi, float * dcq, float * dcd, float alpha, float eps) { dim3 srcThread_tail(DEFAULT_THREAD_PER_DIM, DEFAULT_THREAD_PER_DIM); dim3 srcBlock_tail((srcSize - 1) / DEFAULT_THREAD_PER_DIM + 1, (dim - 1) / DEFAULT_THREAD_PER_DIM + 1); cuda_Deriv_CosineSimilarity_partialMatching << <srcBlock_tail, srcThread_tail >> >(q, d, qSquare, dSquare, dim, src2MatchIdx, src2MatchElement, tgtIdx, srcSize, matchSize, simi, derivSimi, dcq, alpha, eps); dim3 tgtThread_tail(DEFAULT_THREAD_PER_DIM, DEFAULT_THREAD_PER_DIM); dim3 tgtBlock_tail((tgtSize - 1) / DEFAULT_THREAD_PER_DIM + 1, (dim - 1) / DEFAULT_THREAD_PER_DIM + 1); cuda_Deriv_CosineSimilarity_partialMatching << <tgtBlock_tail, tgtThread_tail >> >(d, q, dSquare, qSquare, dim, tgt2MatchIdx, tgt2MatchElement, srcIdx, tgtSize, matchSize, simi, derivSimi, dcd, alpha, eps); }
3d9123f47948060a8679e2d76afaf3a8a5a873af.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" /* -- MAGMA (version 2.5.0) -- Univ. of Tennessee, Knoxville Univ. of California, Berkeley Univ. of Colorado, Denver @date January 2019 @generated from sparse/blas/zparilu_kernels.cu, normal z -> c, Wed Jan 2 14:18:53 2019 */ #include "magmasparse_internal.h" #define PRECISION_c __global__ void magma_cparilu_csr_kernel( const magma_int_t num_rows, const magma_int_t nnz, const magma_index_t *rowidxA, const magma_index_t *colidxA, const magmaFloatComplex * __restrict__ A, const magma_index_t *rowptrL, const magma_index_t *colidxL, magmaFloatComplex *valL, const magma_index_t *rowptrU, const magma_index_t *colidxU, magmaFloatComplex *valU) { int i, j; int k = blockDim.x * blockIdx.x + threadIdx.x; magmaFloatComplex zero = MAGMA_C_MAKE(0.0, 0.0); magmaFloatComplex s, sp; int il, iu, jl, ju; if (k < nnz) { i = rowidxA[k]; j = colidxA[k]; #if (__CUDA_ARCH__ >= 350) && (defined(PRECISION_d) || defined(PRECISION_s)) s = __ldg(A+k); #else s = A[k]; #endif il = rowptrL[i]; iu = rowptrU[j]; while (il < rowptrL[i+1] && iu < rowptrU[j+1]) { sp = zero; jl = colidxL[il]; ju = colidxU[iu]; sp = (jl == ju) ? valL[il] * valU[iu] : sp; s = (jl == ju) ? s-sp : s; il = (jl <= ju) ? il+1 : il; iu = (jl >= ju) ? iu+1 : iu; } s += sp; // undo the last operation (it must be the last) if (i > j) // modify l entry valL[il-1] = s / valU[rowptrU[j+1]-1]; else // modify u entry valU[iu-1] = s; } } /** Purpose ------- This routine iteratively computes an incomplete LU factorization. For reference, see: E. Chow and A. Patel: "Fine-grained Parallel Incomplete LU Factorization", SIAM Journal on Scientific Computing, 37, C169-C193 (2015). This routine was used in the ISC 2015 paper: E. Chow et al.: "Asynchronous Iterative Algorithm for Computing Incomplete Factorizations on GPUs", ISC High Performance 2015, LNCS 9137, pp. 1-16, 2015. The input format of the system matrix is COO, the lower triangular factor L is stored in CSR, the upper triangular factor U is transposed, then also stored in CSR (equivalent to CSC format for the non-transposed U). Every component of L and U is handled by one thread. Arguments --------- @param[in] A magma_c_matrix input matrix A determing initial guess & processing order @param[in,out] L magma_c_matrix input/output matrix L containing the lower triangular factor @param[in,out] U magma_c_matrix input/output matrix U containing the upper triangular factor @param[in] queue magma_queue_t Queue to execute in. @ingroup magmasparse_cgegpuk ********************************************************************/ extern "C" magma_int_t magma_cparilu_csr( magma_c_matrix A, magma_c_matrix L, magma_c_matrix U, magma_queue_t queue) { int blocksize1 = 128; int blocksize2 = 1; int dimgrid1 = magma_ceildiv(A.nnz, blocksize1); int dimgrid2 = 1; int dimgrid3 = 1; dim3 grid(dimgrid1, dimgrid2, dimgrid3); dim3 block(blocksize1, blocksize2, 1); hipLaunchKernelGGL(( magma_cparilu_csr_kernel), dim3(grid), dim3(block), 0, queue->cuda_stream() , A.num_rows, A.nnz, A.rowidx, A.col, A.val, L.row, L.col, L.val, U.row, U.col, U.val); return MAGMA_SUCCESS; }
3d9123f47948060a8679e2d76afaf3a8a5a873af.cu
/* -- MAGMA (version 2.5.0) -- Univ. of Tennessee, Knoxville Univ. of California, Berkeley Univ. of Colorado, Denver @date January 2019 @generated from sparse/blas/zparilu_kernels.cu, normal z -> c, Wed Jan 2 14:18:53 2019 */ #include "magmasparse_internal.h" #define PRECISION_c __global__ void magma_cparilu_csr_kernel( const magma_int_t num_rows, const magma_int_t nnz, const magma_index_t *rowidxA, const magma_index_t *colidxA, const magmaFloatComplex * __restrict__ A, const magma_index_t *rowptrL, const magma_index_t *colidxL, magmaFloatComplex *valL, const magma_index_t *rowptrU, const magma_index_t *colidxU, magmaFloatComplex *valU) { int i, j; int k = blockDim.x * blockIdx.x + threadIdx.x; magmaFloatComplex zero = MAGMA_C_MAKE(0.0, 0.0); magmaFloatComplex s, sp; int il, iu, jl, ju; if (k < nnz) { i = rowidxA[k]; j = colidxA[k]; #if (__CUDA_ARCH__ >= 350) && (defined(PRECISION_d) || defined(PRECISION_s)) s = __ldg(A+k); #else s = A[k]; #endif il = rowptrL[i]; iu = rowptrU[j]; while (il < rowptrL[i+1] && iu < rowptrU[j+1]) { sp = zero; jl = colidxL[il]; ju = colidxU[iu]; sp = (jl == ju) ? valL[il] * valU[iu] : sp; s = (jl == ju) ? s-sp : s; il = (jl <= ju) ? il+1 : il; iu = (jl >= ju) ? iu+1 : iu; } s += sp; // undo the last operation (it must be the last) if (i > j) // modify l entry valL[il-1] = s / valU[rowptrU[j+1]-1]; else // modify u entry valU[iu-1] = s; } } /** Purpose ------- This routine iteratively computes an incomplete LU factorization. For reference, see: E. Chow and A. Patel: "Fine-grained Parallel Incomplete LU Factorization", SIAM Journal on Scientific Computing, 37, C169-C193 (2015). This routine was used in the ISC 2015 paper: E. Chow et al.: "Asynchronous Iterative Algorithm for Computing Incomplete Factorizations on GPUs", ISC High Performance 2015, LNCS 9137, pp. 1-16, 2015. The input format of the system matrix is COO, the lower triangular factor L is stored in CSR, the upper triangular factor U is transposed, then also stored in CSR (equivalent to CSC format for the non-transposed U). Every component of L and U is handled by one thread. Arguments --------- @param[in] A magma_c_matrix input matrix A determing initial guess & processing order @param[in,out] L magma_c_matrix input/output matrix L containing the lower triangular factor @param[in,out] U magma_c_matrix input/output matrix U containing the upper triangular factor @param[in] queue magma_queue_t Queue to execute in. @ingroup magmasparse_cgegpuk ********************************************************************/ extern "C" magma_int_t magma_cparilu_csr( magma_c_matrix A, magma_c_matrix L, magma_c_matrix U, magma_queue_t queue) { int blocksize1 = 128; int blocksize2 = 1; int dimgrid1 = magma_ceildiv(A.nnz, blocksize1); int dimgrid2 = 1; int dimgrid3 = 1; dim3 grid(dimgrid1, dimgrid2, dimgrid3); dim3 block(blocksize1, blocksize2, 1); magma_cparilu_csr_kernel<<< grid, block, 0, queue->cuda_stream() >>> (A.num_rows, A.nnz, A.rowidx, A.col, A.val, L.row, L.col, L.val, U.row, U.col, U.val); return MAGMA_SUCCESS; }
1eaaea4bd9e5d932c77e44de6c18fedef6644171.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include <assert.h> #include <stdio.h> #include "j3d27pt-32x32-4-128_kernel.hu" #define BENCH_DIM 3 #define BENCH_FPP 54 #define BENCH_RAD 1 #include "common.h" double kernel_stencil(SB_TYPE *A1, int compsize, int timestep, bool scop) { double start_time = sb_time(), end_time = 0.0; int dimsize = compsize + BENCH_RAD * 2; SB_TYPE (*A)[dimsize][dimsize][dimsize] = (SB_TYPE (*)[dimsize][dimsize][dimsize])A1; if (scop) { if (dimsize >= 3 && timestep >= 1) { #define cudaCheckReturn(ret) \ do { \ hipError_t cudaCheckReturn_e = (ret); \ if (cudaCheckReturn_e != hipSuccess) { \ fprintf(stderr, "CUDA error: %s\n", hipGetErrorString(cudaCheckReturn_e)); \ fflush(stderr); \ } \ assert(cudaCheckReturn_e == hipSuccess); \ } while(0) #define cudaCheckKernel() \ do { \ cudaCheckReturn(hipGetLastError()); \ } while(0) float *dev_A; cudaCheckReturn(hipMalloc((void **) &dev_A, (size_t)(2) * (size_t)(dimsize) * (size_t)(dimsize) * (size_t)(dimsize) * sizeof(float))); { cudaCheckReturn(hipMemcpy(dev_A, A, (size_t)(2) * (size_t)(dimsize) * (size_t)(dimsize) * (size_t)(dimsize) * sizeof(float), hipMemcpyHostToDevice)); #ifdef STENCILBENCH hipDeviceSynchronize(); SB_START_INSTRUMENTS; #endif } { #ifndef AN5D_TYPE #define AN5D_TYPE unsigned #endif const AN5D_TYPE __c0Len = (timestep - 0); const AN5D_TYPE __c0Pad = (0); #define __c0 c0 const AN5D_TYPE __c1Len = (dimsize - 1 - 1); const AN5D_TYPE __c1Pad = (1); #define __c1 c1 const AN5D_TYPE __c2Len = (dimsize - 1 - 1); const AN5D_TYPE __c2Pad = (1); #define __c2 c2 const AN5D_TYPE __c3Len = (dimsize - 1 - 1); const AN5D_TYPE __c3Pad = (1); #define __c3 c3 const AN5D_TYPE __halo1 = 1; const AN5D_TYPE __halo2 = 1; const AN5D_TYPE __halo3 = 1; AN5D_TYPE c0; AN5D_TYPE __side0LenMax; { const AN5D_TYPE __side0Len = 4; const AN5D_TYPE __side1Len = 128; const AN5D_TYPE __side2Len = 24; const AN5D_TYPE __side3Len = 24; const AN5D_TYPE __OlLen1 = (__halo1 * __side0Len); const AN5D_TYPE __OlLen2 = (__halo2 * __side0Len); const AN5D_TYPE __OlLen3 = (__halo3 * __side0Len); const AN5D_TYPE __side1LenOl = (__side1Len + 2 * __OlLen1); const AN5D_TYPE __side2LenOl = (__side2Len + 2 * __OlLen2); const AN5D_TYPE __side3LenOl = (__side3Len + 2 * __OlLen3); const AN5D_TYPE __blockSize = 1 * __side2LenOl * __side3LenOl; assert((__side1Len >= 2 * __side0Len * __halo1) && (__c1Len % __side1Len == 0 || __c1Len % __side1Len >= 2 * __side0Len * __halo1) && "[AN5D ERROR] Too short stream"); dim3 k0_dimBlock(__blockSize, 1, 1); dim3 k0_dimGrid(1 * ((__c1Len + __side1Len - 1) / __side1Len) * ((__c2Len + __side2Len - 1) / __side2Len) * ((__c3Len + __side3Len - 1) / __side3Len), 1, 1); AN5D_TYPE __c0Padr = (__c0Len % 2) != (((__c0Len + __side0Len - 1) / __side0Len) % 2) && __c0Len % __side0Len < 2 ? 1 : 0; __side0LenMax = __side0Len; for (c0 = __c0Pad; c0 < __c0Pad + __c0Len / __side0Len - __c0Padr; c0 += 1) { hipLaunchKernelGGL(( kernel0_4), dim3(k0_dimGrid), dim3(k0_dimBlock), 0, 0, dev_A, dimsize, timestep, c0); } } if ((__c0Len % 2) != (((__c0Len + __side0LenMax - 1) / __side0LenMax) % 2)) { if (__c0Len % __side0LenMax == 0) { { const AN5D_TYPE __side0Len = 2; const AN5D_TYPE __side1Len = 128; const AN5D_TYPE __side2Len = 28; const AN5D_TYPE __side3Len = 28; const AN5D_TYPE __OlLen1 = (__halo1 * __side0Len); const AN5D_TYPE __OlLen2 = (__halo2 * __side0Len); const AN5D_TYPE __OlLen3 = (__halo3 * __side0Len); const AN5D_TYPE __side1LenOl = (__side1Len + 2 * __OlLen1); const AN5D_TYPE __side2LenOl = (__side2Len + 2 * __OlLen2); const AN5D_TYPE __side3LenOl = (__side3Len + 2 * __OlLen3); const AN5D_TYPE __blockSize = 1 * __side2LenOl * __side3LenOl; assert((__side1Len >= 2 * __side0Len * __halo1) && (__c1Len % __side1Len == 0 || __c1Len % __side1Len >= 2 * __side0Len * __halo1) && "[AN5D ERROR] Too short stream"); dim3 k0_dimBlock(__blockSize, 1, 1); dim3 k0_dimGrid(1 * ((__c1Len + __side1Len - 1) / __side1Len) * ((__c2Len + __side2Len - 1) / __side2Len) * ((__c3Len + __side3Len - 1) / __side3Len), 1, 1); hipLaunchKernelGGL(( kernel0_2), dim3(k0_dimGrid), dim3(k0_dimBlock), 0, 0, dev_A, dimsize, timestep, c0); } c0 += 1; { const AN5D_TYPE __side0Len = 2; const AN5D_TYPE __side1Len = 128; const AN5D_TYPE __side2Len = 28; const AN5D_TYPE __side3Len = 28; const AN5D_TYPE __OlLen1 = (__halo1 * __side0Len); const AN5D_TYPE __OlLen2 = (__halo2 * __side0Len); const AN5D_TYPE __OlLen3 = (__halo3 * __side0Len); const AN5D_TYPE __side1LenOl = (__side1Len + 2 * __OlLen1); const AN5D_TYPE __side2LenOl = (__side2Len + 2 * __OlLen2); const AN5D_TYPE __side3LenOl = (__side3Len + 2 * __OlLen3); const AN5D_TYPE __blockSize = 1 * __side2LenOl * __side3LenOl; assert((__side1Len >= 2 * __side0Len * __halo1) && (__c1Len % __side1Len == 0 || __c1Len % __side1Len >= 2 * __side0Len * __halo1) && "[AN5D ERROR] Too short stream"); dim3 k0_dimBlock(__blockSize, 1, 1); dim3 k0_dimGrid(1 * ((__c1Len + __side1Len - 1) / __side1Len) * ((__c2Len + __side2Len - 1) / __side2Len) * ((__c3Len + __side3Len - 1) / __side3Len), 1, 1); hipLaunchKernelGGL(( kernel0_2), dim3(k0_dimGrid), dim3(k0_dimBlock), 0, 0, dev_A, dimsize, timestep, c0); } } else if (__c0Len % __side0LenMax == 1) { { const AN5D_TYPE __side0Len = 3; const AN5D_TYPE __side1Len = 128; const AN5D_TYPE __side2Len = 26; const AN5D_TYPE __side3Len = 26; const AN5D_TYPE __OlLen1 = (__halo1 * __side0Len); const AN5D_TYPE __OlLen2 = (__halo2 * __side0Len); const AN5D_TYPE __OlLen3 = (__halo3 * __side0Len); const AN5D_TYPE __side1LenOl = (__side1Len + 2 * __OlLen1); const AN5D_TYPE __side2LenOl = (__side2Len + 2 * __OlLen2); const AN5D_TYPE __side3LenOl = (__side3Len + 2 * __OlLen3); const AN5D_TYPE __blockSize = 1 * __side2LenOl * __side3LenOl; assert((__side1Len >= 2 * __side0Len * __halo1) && (__c1Len % __side1Len == 0 || __c1Len % __side1Len >= 2 * __side0Len * __halo1) && "[AN5D ERROR] Too short stream"); dim3 k0_dimBlock(__blockSize, 1, 1); dim3 k0_dimGrid(1 * ((__c1Len + __side1Len - 1) / __side1Len) * ((__c2Len + __side2Len - 1) / __side2Len) * ((__c3Len + __side3Len - 1) / __side3Len), 1, 1); hipLaunchKernelGGL(( kernel0_3), dim3(k0_dimGrid), dim3(k0_dimBlock), 0, 0, dev_A, dimsize, timestep, c0); } c0 += 1; { const AN5D_TYPE __side0Len = 1; const AN5D_TYPE __side1Len = 128; const AN5D_TYPE __side2Len = 30; const AN5D_TYPE __side3Len = 30; const AN5D_TYPE __OlLen1 = (__halo1 * __side0Len); const AN5D_TYPE __OlLen2 = (__halo2 * __side0Len); const AN5D_TYPE __OlLen3 = (__halo3 * __side0Len); const AN5D_TYPE __side1LenOl = (__side1Len + 2 * __OlLen1); const AN5D_TYPE __side2LenOl = (__side2Len + 2 * __OlLen2); const AN5D_TYPE __side3LenOl = (__side3Len + 2 * __OlLen3); const AN5D_TYPE __blockSize = 1 * __side2LenOl * __side3LenOl; assert((__side1Len >= 2 * __side0Len * __halo1) && (__c1Len % __side1Len == 0 || __c1Len % __side1Len >= 2 * __side0Len * __halo1) && "[AN5D ERROR] Too short stream"); dim3 k0_dimBlock(__blockSize, 1, 1); dim3 k0_dimGrid(1 * ((__c1Len + __side1Len - 1) / __side1Len) * ((__c2Len + __side2Len - 1) / __side2Len) * ((__c3Len + __side3Len - 1) / __side3Len), 1, 1); hipLaunchKernelGGL(( kernel0_1), dim3(k0_dimGrid), dim3(k0_dimBlock), 0, 0, dev_A, dimsize, timestep, c0); } c0 += 1; { const AN5D_TYPE __side0Len = 1; const AN5D_TYPE __side1Len = 128; const AN5D_TYPE __side2Len = 30; const AN5D_TYPE __side3Len = 30; const AN5D_TYPE __OlLen1 = (__halo1 * __side0Len); const AN5D_TYPE __OlLen2 = (__halo2 * __side0Len); const AN5D_TYPE __OlLen3 = (__halo3 * __side0Len); const AN5D_TYPE __side1LenOl = (__side1Len + 2 * __OlLen1); const AN5D_TYPE __side2LenOl = (__side2Len + 2 * __OlLen2); const AN5D_TYPE __side3LenOl = (__side3Len + 2 * __OlLen3); const AN5D_TYPE __blockSize = 1 * __side2LenOl * __side3LenOl; assert((__side1Len >= 2 * __side0Len * __halo1) && (__c1Len % __side1Len == 0 || __c1Len % __side1Len >= 2 * __side0Len * __halo1) && "[AN5D ERROR] Too short stream"); dim3 k0_dimBlock(__blockSize, 1, 1); dim3 k0_dimGrid(1 * ((__c1Len + __side1Len - 1) / __side1Len) * ((__c2Len + __side2Len - 1) / __side2Len) * ((__c3Len + __side3Len - 1) / __side3Len), 1, 1); hipLaunchKernelGGL(( kernel0_1), dim3(k0_dimGrid), dim3(k0_dimBlock), 0, 0, dev_A, dimsize, timestep, c0); } } else if (__c0Len % __side0LenMax == 2) { { const AN5D_TYPE __side0Len = 1; const AN5D_TYPE __side1Len = 128; const AN5D_TYPE __side2Len = 30; const AN5D_TYPE __side3Len = 30; const AN5D_TYPE __OlLen1 = (__halo1 * __side0Len); const AN5D_TYPE __OlLen2 = (__halo2 * __side0Len); const AN5D_TYPE __OlLen3 = (__halo3 * __side0Len); const AN5D_TYPE __side1LenOl = (__side1Len + 2 * __OlLen1); const AN5D_TYPE __side2LenOl = (__side2Len + 2 * __OlLen2); const AN5D_TYPE __side3LenOl = (__side3Len + 2 * __OlLen3); const AN5D_TYPE __blockSize = 1 * __side2LenOl * __side3LenOl; assert((__side1Len >= 2 * __side0Len * __halo1) && (__c1Len % __side1Len == 0 || __c1Len % __side1Len >= 2 * __side0Len * __halo1) && "[AN5D ERROR] Too short stream"); dim3 k0_dimBlock(__blockSize, 1, 1); dim3 k0_dimGrid(1 * ((__c1Len + __side1Len - 1) / __side1Len) * ((__c2Len + __side2Len - 1) / __side2Len) * ((__c3Len + __side3Len - 1) / __side3Len), 1, 1); hipLaunchKernelGGL(( kernel0_1), dim3(k0_dimGrid), dim3(k0_dimBlock), 0, 0, dev_A, dimsize, timestep, c0); } c0 += 1; { const AN5D_TYPE __side0Len = 1; const AN5D_TYPE __side1Len = 128; const AN5D_TYPE __side2Len = 30; const AN5D_TYPE __side3Len = 30; const AN5D_TYPE __OlLen1 = (__halo1 * __side0Len); const AN5D_TYPE __OlLen2 = (__halo2 * __side0Len); const AN5D_TYPE __OlLen3 = (__halo3 * __side0Len); const AN5D_TYPE __side1LenOl = (__side1Len + 2 * __OlLen1); const AN5D_TYPE __side2LenOl = (__side2Len + 2 * __OlLen2); const AN5D_TYPE __side3LenOl = (__side3Len + 2 * __OlLen3); const AN5D_TYPE __blockSize = 1 * __side2LenOl * __side3LenOl; assert((__side1Len >= 2 * __side0Len * __halo1) && (__c1Len % __side1Len == 0 || __c1Len % __side1Len >= 2 * __side0Len * __halo1) && "[AN5D ERROR] Too short stream"); dim3 k0_dimBlock(__blockSize, 1, 1); dim3 k0_dimGrid(1 * ((__c1Len + __side1Len - 1) / __side1Len) * ((__c2Len + __side2Len - 1) / __side2Len) * ((__c3Len + __side3Len - 1) / __side3Len), 1, 1); hipLaunchKernelGGL(( kernel0_1), dim3(k0_dimGrid), dim3(k0_dimBlock), 0, 0, dev_A, dimsize, timestep, c0); } } else if (__c0Len % __side0LenMax == 3) { { const AN5D_TYPE __side0Len = 2; const AN5D_TYPE __side1Len = 128; const AN5D_TYPE __side2Len = 28; const AN5D_TYPE __side3Len = 28; const AN5D_TYPE __OlLen1 = (__halo1 * __side0Len); const AN5D_TYPE __OlLen2 = (__halo2 * __side0Len); const AN5D_TYPE __OlLen3 = (__halo3 * __side0Len); const AN5D_TYPE __side1LenOl = (__side1Len + 2 * __OlLen1); const AN5D_TYPE __side2LenOl = (__side2Len + 2 * __OlLen2); const AN5D_TYPE __side3LenOl = (__side3Len + 2 * __OlLen3); const AN5D_TYPE __blockSize = 1 * __side2LenOl * __side3LenOl; assert((__side1Len >= 2 * __side0Len * __halo1) && (__c1Len % __side1Len == 0 || __c1Len % __side1Len >= 2 * __side0Len * __halo1) && "[AN5D ERROR] Too short stream"); dim3 k0_dimBlock(__blockSize, 1, 1); dim3 k0_dimGrid(1 * ((__c1Len + __side1Len - 1) / __side1Len) * ((__c2Len + __side2Len - 1) / __side2Len) * ((__c3Len + __side3Len - 1) / __side3Len), 1, 1); hipLaunchKernelGGL(( kernel0_2), dim3(k0_dimGrid), dim3(k0_dimBlock), 0, 0, dev_A, dimsize, timestep, c0); } c0 += 1; { const AN5D_TYPE __side0Len = 1; const AN5D_TYPE __side1Len = 128; const AN5D_TYPE __side2Len = 30; const AN5D_TYPE __side3Len = 30; const AN5D_TYPE __OlLen1 = (__halo1 * __side0Len); const AN5D_TYPE __OlLen2 = (__halo2 * __side0Len); const AN5D_TYPE __OlLen3 = (__halo3 * __side0Len); const AN5D_TYPE __side1LenOl = (__side1Len + 2 * __OlLen1); const AN5D_TYPE __side2LenOl = (__side2Len + 2 * __OlLen2); const AN5D_TYPE __side3LenOl = (__side3Len + 2 * __OlLen3); const AN5D_TYPE __blockSize = 1 * __side2LenOl * __side3LenOl; assert((__side1Len >= 2 * __side0Len * __halo1) && (__c1Len % __side1Len == 0 || __c1Len % __side1Len >= 2 * __side0Len * __halo1) && "[AN5D ERROR] Too short stream"); dim3 k0_dimBlock(__blockSize, 1, 1); dim3 k0_dimGrid(1 * ((__c1Len + __side1Len - 1) / __side1Len) * ((__c2Len + __side2Len - 1) / __side2Len) * ((__c3Len + __side3Len - 1) / __side3Len), 1, 1); hipLaunchKernelGGL(( kernel0_1), dim3(k0_dimGrid), dim3(k0_dimBlock), 0, 0, dev_A, dimsize, timestep, c0); } } } else if (__c0Len % __side0LenMax) { if (__c0Len % __side0LenMax == 1) { const AN5D_TYPE __side0Len = 1; const AN5D_TYPE __side1Len = 128; const AN5D_TYPE __side2Len = 30; const AN5D_TYPE __side3Len = 30; const AN5D_TYPE __OlLen1 = (__halo1 * __side0Len); const AN5D_TYPE __OlLen2 = (__halo2 * __side0Len); const AN5D_TYPE __OlLen3 = (__halo3 * __side0Len); const AN5D_TYPE __side1LenOl = (__side1Len + 2 * __OlLen1); const AN5D_TYPE __side2LenOl = (__side2Len + 2 * __OlLen2); const AN5D_TYPE __side3LenOl = (__side3Len + 2 * __OlLen3); const AN5D_TYPE __blockSize = 1 * __side2LenOl * __side3LenOl; assert((__side1Len >= 2 * __side0Len * __halo1) && (__c1Len % __side1Len == 0 || __c1Len % __side1Len >= 2 * __side0Len * __halo1) && "[AN5D ERROR] Too short stream"); dim3 k0_dimBlock(__blockSize, 1, 1); dim3 k0_dimGrid(1 * ((__c1Len + __side1Len - 1) / __side1Len) * ((__c2Len + __side2Len - 1) / __side2Len) * ((__c3Len + __side3Len - 1) / __side3Len), 1, 1); hipLaunchKernelGGL(( kernel0_1), dim3(k0_dimGrid), dim3(k0_dimBlock), 0, 0, dev_A, dimsize, timestep, c0); } else if (__c0Len % __side0LenMax == 2) { const AN5D_TYPE __side0Len = 2; const AN5D_TYPE __side1Len = 128; const AN5D_TYPE __side2Len = 28; const AN5D_TYPE __side3Len = 28; const AN5D_TYPE __OlLen1 = (__halo1 * __side0Len); const AN5D_TYPE __OlLen2 = (__halo2 * __side0Len); const AN5D_TYPE __OlLen3 = (__halo3 * __side0Len); const AN5D_TYPE __side1LenOl = (__side1Len + 2 * __OlLen1); const AN5D_TYPE __side2LenOl = (__side2Len + 2 * __OlLen2); const AN5D_TYPE __side3LenOl = (__side3Len + 2 * __OlLen3); const AN5D_TYPE __blockSize = 1 * __side2LenOl * __side3LenOl; assert((__side1Len >= 2 * __side0Len * __halo1) && (__c1Len % __side1Len == 0 || __c1Len % __side1Len >= 2 * __side0Len * __halo1) && "[AN5D ERROR] Too short stream"); dim3 k0_dimBlock(__blockSize, 1, 1); dim3 k0_dimGrid(1 * ((__c1Len + __side1Len - 1) / __side1Len) * ((__c2Len + __side2Len - 1) / __side2Len) * ((__c3Len + __side3Len - 1) / __side3Len), 1, 1); hipLaunchKernelGGL(( kernel0_2), dim3(k0_dimGrid), dim3(k0_dimBlock), 0, 0, dev_A, dimsize, timestep, c0); } else if (__c0Len % __side0LenMax == 3) { const AN5D_TYPE __side0Len = 3; const AN5D_TYPE __side1Len = 128; const AN5D_TYPE __side2Len = 26; const AN5D_TYPE __side3Len = 26; const AN5D_TYPE __OlLen1 = (__halo1 * __side0Len); const AN5D_TYPE __OlLen2 = (__halo2 * __side0Len); const AN5D_TYPE __OlLen3 = (__halo3 * __side0Len); const AN5D_TYPE __side1LenOl = (__side1Len + 2 * __OlLen1); const AN5D_TYPE __side2LenOl = (__side2Len + 2 * __OlLen2); const AN5D_TYPE __side3LenOl = (__side3Len + 2 * __OlLen3); const AN5D_TYPE __blockSize = 1 * __side2LenOl * __side3LenOl; assert((__side1Len >= 2 * __side0Len * __halo1) && (__c1Len % __side1Len == 0 || __c1Len % __side1Len >= 2 * __side0Len * __halo1) && "[AN5D ERROR] Too short stream"); dim3 k0_dimBlock(__blockSize, 1, 1); dim3 k0_dimGrid(1 * ((__c1Len + __side1Len - 1) / __side1Len) * ((__c2Len + __side2Len - 1) / __side2Len) * ((__c3Len + __side3Len - 1) / __side3Len), 1, 1); hipLaunchKernelGGL(( kernel0_3), dim3(k0_dimGrid), dim3(k0_dimBlock), 0, 0, dev_A, dimsize, timestep, c0); } } } cudaCheckKernel(); { #ifdef STENCILBENCH hipDeviceSynchronize(); SB_STOP_INSTRUMENTS; #endif cudaCheckReturn(hipMemcpy(A, dev_A, (size_t)(2) * (size_t)(dimsize) * (size_t)(dimsize) * (size_t)(dimsize) * sizeof(float), hipMemcpyDeviceToHost)); } cudaCheckReturn(hipFree(dev_A)); } } else { for (int t = 0; t < timestep; t++) #pragma omp parallel for for (int i = BENCH_RAD; i < dimsize - BENCH_RAD; i++) for (int j = BENCH_RAD; j < dimsize - BENCH_RAD; j++) for (int k = BENCH_RAD; k < dimsize - BENCH_RAD; k++) A[(t+1)%2][i][j][k] = (1.500f*A[t%2][i-1][j][k] + 0.500f*A[t%2][i-1][j-1][k-1] + 0.700f*A[t%2][i-1][j-1][k] + 0.900f*A[t%2][i-1][j-1][k+1] + 1.200f*A[t%2][i-1][j][k-1] + 1.201f*A[t%2][i-1][j][k+1] + 0.901f*A[t%2][i-1][j+1][k-1] + 0.701f*A[t%2][i-1][j+1][k] + 0.501f*A[t%2][i-1][j+1][k+1] + 1.510f*A[t%2][i][j][k] + 0.510f*A[t%2][i][j-1][k-1] + 0.710f*A[t%2][i][j-1][k] + 0.910f*A[t%2][i][j-1][k+1] + 1.210f*A[t%2][i][j][k-1] + 1.211f*A[t%2][i][j][k+1] + 0.911f*A[t%2][i][j+1][k-1] + 0.711f*A[t%2][i][j+1][k] + 0.511f*A[t%2][i][j+1][k+1] + 1.520f*A[t%2][i+1][j][k] + 0.520f*A[t%2][i+1][j-1][k-1] + 0.720f*A[t%2][i+1][j-1][k] + 0.920f*A[t%2][i+1][j-1][k+1] + 1.220f*A[t%2][i+1][j][k-1] + 1.221f*A[t%2][i+1][j][k+1] + 0.921f*A[t%2][i+1][j+1][k-1] + 0.721f*A[t%2][i+1][j+1][k] + 0.521f*A[t%2][i+1][j+1][k+1]) / 159; } return (((end_time != 0.0) ? end_time : sb_time()) - start_time); }
1eaaea4bd9e5d932c77e44de6c18fedef6644171.cu
#include <assert.h> #include <stdio.h> #include "j3d27pt-32x32-4-128_kernel.hu" #define BENCH_DIM 3 #define BENCH_FPP 54 #define BENCH_RAD 1 #include "common.h" double kernel_stencil(SB_TYPE *A1, int compsize, int timestep, bool scop) { double start_time = sb_time(), end_time = 0.0; int dimsize = compsize + BENCH_RAD * 2; SB_TYPE (*A)[dimsize][dimsize][dimsize] = (SB_TYPE (*)[dimsize][dimsize][dimsize])A1; if (scop) { if (dimsize >= 3 && timestep >= 1) { #define cudaCheckReturn(ret) \ do { \ cudaError_t cudaCheckReturn_e = (ret); \ if (cudaCheckReturn_e != cudaSuccess) { \ fprintf(stderr, "CUDA error: %s\n", cudaGetErrorString(cudaCheckReturn_e)); \ fflush(stderr); \ } \ assert(cudaCheckReturn_e == cudaSuccess); \ } while(0) #define cudaCheckKernel() \ do { \ cudaCheckReturn(cudaGetLastError()); \ } while(0) float *dev_A; cudaCheckReturn(cudaMalloc((void **) &dev_A, (size_t)(2) * (size_t)(dimsize) * (size_t)(dimsize) * (size_t)(dimsize) * sizeof(float))); { cudaCheckReturn(cudaMemcpy(dev_A, A, (size_t)(2) * (size_t)(dimsize) * (size_t)(dimsize) * (size_t)(dimsize) * sizeof(float), cudaMemcpyHostToDevice)); #ifdef STENCILBENCH cudaDeviceSynchronize(); SB_START_INSTRUMENTS; #endif } { #ifndef AN5D_TYPE #define AN5D_TYPE unsigned #endif const AN5D_TYPE __c0Len = (timestep - 0); const AN5D_TYPE __c0Pad = (0); #define __c0 c0 const AN5D_TYPE __c1Len = (dimsize - 1 - 1); const AN5D_TYPE __c1Pad = (1); #define __c1 c1 const AN5D_TYPE __c2Len = (dimsize - 1 - 1); const AN5D_TYPE __c2Pad = (1); #define __c2 c2 const AN5D_TYPE __c3Len = (dimsize - 1 - 1); const AN5D_TYPE __c3Pad = (1); #define __c3 c3 const AN5D_TYPE __halo1 = 1; const AN5D_TYPE __halo2 = 1; const AN5D_TYPE __halo3 = 1; AN5D_TYPE c0; AN5D_TYPE __side0LenMax; { const AN5D_TYPE __side0Len = 4; const AN5D_TYPE __side1Len = 128; const AN5D_TYPE __side2Len = 24; const AN5D_TYPE __side3Len = 24; const AN5D_TYPE __OlLen1 = (__halo1 * __side0Len); const AN5D_TYPE __OlLen2 = (__halo2 * __side0Len); const AN5D_TYPE __OlLen3 = (__halo3 * __side0Len); const AN5D_TYPE __side1LenOl = (__side1Len + 2 * __OlLen1); const AN5D_TYPE __side2LenOl = (__side2Len + 2 * __OlLen2); const AN5D_TYPE __side3LenOl = (__side3Len + 2 * __OlLen3); const AN5D_TYPE __blockSize = 1 * __side2LenOl * __side3LenOl; assert((__side1Len >= 2 * __side0Len * __halo1) && (__c1Len % __side1Len == 0 || __c1Len % __side1Len >= 2 * __side0Len * __halo1) && "[AN5D ERROR] Too short stream"); dim3 k0_dimBlock(__blockSize, 1, 1); dim3 k0_dimGrid(1 * ((__c1Len + __side1Len - 1) / __side1Len) * ((__c2Len + __side2Len - 1) / __side2Len) * ((__c3Len + __side3Len - 1) / __side3Len), 1, 1); AN5D_TYPE __c0Padr = (__c0Len % 2) != (((__c0Len + __side0Len - 1) / __side0Len) % 2) && __c0Len % __side0Len < 2 ? 1 : 0; __side0LenMax = __side0Len; for (c0 = __c0Pad; c0 < __c0Pad + __c0Len / __side0Len - __c0Padr; c0 += 1) { kernel0_4<<<k0_dimGrid, k0_dimBlock>>> (dev_A, dimsize, timestep, c0); } } if ((__c0Len % 2) != (((__c0Len + __side0LenMax - 1) / __side0LenMax) % 2)) { if (__c0Len % __side0LenMax == 0) { { const AN5D_TYPE __side0Len = 2; const AN5D_TYPE __side1Len = 128; const AN5D_TYPE __side2Len = 28; const AN5D_TYPE __side3Len = 28; const AN5D_TYPE __OlLen1 = (__halo1 * __side0Len); const AN5D_TYPE __OlLen2 = (__halo2 * __side0Len); const AN5D_TYPE __OlLen3 = (__halo3 * __side0Len); const AN5D_TYPE __side1LenOl = (__side1Len + 2 * __OlLen1); const AN5D_TYPE __side2LenOl = (__side2Len + 2 * __OlLen2); const AN5D_TYPE __side3LenOl = (__side3Len + 2 * __OlLen3); const AN5D_TYPE __blockSize = 1 * __side2LenOl * __side3LenOl; assert((__side1Len >= 2 * __side0Len * __halo1) && (__c1Len % __side1Len == 0 || __c1Len % __side1Len >= 2 * __side0Len * __halo1) && "[AN5D ERROR] Too short stream"); dim3 k0_dimBlock(__blockSize, 1, 1); dim3 k0_dimGrid(1 * ((__c1Len + __side1Len - 1) / __side1Len) * ((__c2Len + __side2Len - 1) / __side2Len) * ((__c3Len + __side3Len - 1) / __side3Len), 1, 1); kernel0_2<<<k0_dimGrid, k0_dimBlock>>> (dev_A, dimsize, timestep, c0); } c0 += 1; { const AN5D_TYPE __side0Len = 2; const AN5D_TYPE __side1Len = 128; const AN5D_TYPE __side2Len = 28; const AN5D_TYPE __side3Len = 28; const AN5D_TYPE __OlLen1 = (__halo1 * __side0Len); const AN5D_TYPE __OlLen2 = (__halo2 * __side0Len); const AN5D_TYPE __OlLen3 = (__halo3 * __side0Len); const AN5D_TYPE __side1LenOl = (__side1Len + 2 * __OlLen1); const AN5D_TYPE __side2LenOl = (__side2Len + 2 * __OlLen2); const AN5D_TYPE __side3LenOl = (__side3Len + 2 * __OlLen3); const AN5D_TYPE __blockSize = 1 * __side2LenOl * __side3LenOl; assert((__side1Len >= 2 * __side0Len * __halo1) && (__c1Len % __side1Len == 0 || __c1Len % __side1Len >= 2 * __side0Len * __halo1) && "[AN5D ERROR] Too short stream"); dim3 k0_dimBlock(__blockSize, 1, 1); dim3 k0_dimGrid(1 * ((__c1Len + __side1Len - 1) / __side1Len) * ((__c2Len + __side2Len - 1) / __side2Len) * ((__c3Len + __side3Len - 1) / __side3Len), 1, 1); kernel0_2<<<k0_dimGrid, k0_dimBlock>>> (dev_A, dimsize, timestep, c0); } } else if (__c0Len % __side0LenMax == 1) { { const AN5D_TYPE __side0Len = 3; const AN5D_TYPE __side1Len = 128; const AN5D_TYPE __side2Len = 26; const AN5D_TYPE __side3Len = 26; const AN5D_TYPE __OlLen1 = (__halo1 * __side0Len); const AN5D_TYPE __OlLen2 = (__halo2 * __side0Len); const AN5D_TYPE __OlLen3 = (__halo3 * __side0Len); const AN5D_TYPE __side1LenOl = (__side1Len + 2 * __OlLen1); const AN5D_TYPE __side2LenOl = (__side2Len + 2 * __OlLen2); const AN5D_TYPE __side3LenOl = (__side3Len + 2 * __OlLen3); const AN5D_TYPE __blockSize = 1 * __side2LenOl * __side3LenOl; assert((__side1Len >= 2 * __side0Len * __halo1) && (__c1Len % __side1Len == 0 || __c1Len % __side1Len >= 2 * __side0Len * __halo1) && "[AN5D ERROR] Too short stream"); dim3 k0_dimBlock(__blockSize, 1, 1); dim3 k0_dimGrid(1 * ((__c1Len + __side1Len - 1) / __side1Len) * ((__c2Len + __side2Len - 1) / __side2Len) * ((__c3Len + __side3Len - 1) / __side3Len), 1, 1); kernel0_3<<<k0_dimGrid, k0_dimBlock>>> (dev_A, dimsize, timestep, c0); } c0 += 1; { const AN5D_TYPE __side0Len = 1; const AN5D_TYPE __side1Len = 128; const AN5D_TYPE __side2Len = 30; const AN5D_TYPE __side3Len = 30; const AN5D_TYPE __OlLen1 = (__halo1 * __side0Len); const AN5D_TYPE __OlLen2 = (__halo2 * __side0Len); const AN5D_TYPE __OlLen3 = (__halo3 * __side0Len); const AN5D_TYPE __side1LenOl = (__side1Len + 2 * __OlLen1); const AN5D_TYPE __side2LenOl = (__side2Len + 2 * __OlLen2); const AN5D_TYPE __side3LenOl = (__side3Len + 2 * __OlLen3); const AN5D_TYPE __blockSize = 1 * __side2LenOl * __side3LenOl; assert((__side1Len >= 2 * __side0Len * __halo1) && (__c1Len % __side1Len == 0 || __c1Len % __side1Len >= 2 * __side0Len * __halo1) && "[AN5D ERROR] Too short stream"); dim3 k0_dimBlock(__blockSize, 1, 1); dim3 k0_dimGrid(1 * ((__c1Len + __side1Len - 1) / __side1Len) * ((__c2Len + __side2Len - 1) / __side2Len) * ((__c3Len + __side3Len - 1) / __side3Len), 1, 1); kernel0_1<<<k0_dimGrid, k0_dimBlock>>> (dev_A, dimsize, timestep, c0); } c0 += 1; { const AN5D_TYPE __side0Len = 1; const AN5D_TYPE __side1Len = 128; const AN5D_TYPE __side2Len = 30; const AN5D_TYPE __side3Len = 30; const AN5D_TYPE __OlLen1 = (__halo1 * __side0Len); const AN5D_TYPE __OlLen2 = (__halo2 * __side0Len); const AN5D_TYPE __OlLen3 = (__halo3 * __side0Len); const AN5D_TYPE __side1LenOl = (__side1Len + 2 * __OlLen1); const AN5D_TYPE __side2LenOl = (__side2Len + 2 * __OlLen2); const AN5D_TYPE __side3LenOl = (__side3Len + 2 * __OlLen3); const AN5D_TYPE __blockSize = 1 * __side2LenOl * __side3LenOl; assert((__side1Len >= 2 * __side0Len * __halo1) && (__c1Len % __side1Len == 0 || __c1Len % __side1Len >= 2 * __side0Len * __halo1) && "[AN5D ERROR] Too short stream"); dim3 k0_dimBlock(__blockSize, 1, 1); dim3 k0_dimGrid(1 * ((__c1Len + __side1Len - 1) / __side1Len) * ((__c2Len + __side2Len - 1) / __side2Len) * ((__c3Len + __side3Len - 1) / __side3Len), 1, 1); kernel0_1<<<k0_dimGrid, k0_dimBlock>>> (dev_A, dimsize, timestep, c0); } } else if (__c0Len % __side0LenMax == 2) { { const AN5D_TYPE __side0Len = 1; const AN5D_TYPE __side1Len = 128; const AN5D_TYPE __side2Len = 30; const AN5D_TYPE __side3Len = 30; const AN5D_TYPE __OlLen1 = (__halo1 * __side0Len); const AN5D_TYPE __OlLen2 = (__halo2 * __side0Len); const AN5D_TYPE __OlLen3 = (__halo3 * __side0Len); const AN5D_TYPE __side1LenOl = (__side1Len + 2 * __OlLen1); const AN5D_TYPE __side2LenOl = (__side2Len + 2 * __OlLen2); const AN5D_TYPE __side3LenOl = (__side3Len + 2 * __OlLen3); const AN5D_TYPE __blockSize = 1 * __side2LenOl * __side3LenOl; assert((__side1Len >= 2 * __side0Len * __halo1) && (__c1Len % __side1Len == 0 || __c1Len % __side1Len >= 2 * __side0Len * __halo1) && "[AN5D ERROR] Too short stream"); dim3 k0_dimBlock(__blockSize, 1, 1); dim3 k0_dimGrid(1 * ((__c1Len + __side1Len - 1) / __side1Len) * ((__c2Len + __side2Len - 1) / __side2Len) * ((__c3Len + __side3Len - 1) / __side3Len), 1, 1); kernel0_1<<<k0_dimGrid, k0_dimBlock>>> (dev_A, dimsize, timestep, c0); } c0 += 1; { const AN5D_TYPE __side0Len = 1; const AN5D_TYPE __side1Len = 128; const AN5D_TYPE __side2Len = 30; const AN5D_TYPE __side3Len = 30; const AN5D_TYPE __OlLen1 = (__halo1 * __side0Len); const AN5D_TYPE __OlLen2 = (__halo2 * __side0Len); const AN5D_TYPE __OlLen3 = (__halo3 * __side0Len); const AN5D_TYPE __side1LenOl = (__side1Len + 2 * __OlLen1); const AN5D_TYPE __side2LenOl = (__side2Len + 2 * __OlLen2); const AN5D_TYPE __side3LenOl = (__side3Len + 2 * __OlLen3); const AN5D_TYPE __blockSize = 1 * __side2LenOl * __side3LenOl; assert((__side1Len >= 2 * __side0Len * __halo1) && (__c1Len % __side1Len == 0 || __c1Len % __side1Len >= 2 * __side0Len * __halo1) && "[AN5D ERROR] Too short stream"); dim3 k0_dimBlock(__blockSize, 1, 1); dim3 k0_dimGrid(1 * ((__c1Len + __side1Len - 1) / __side1Len) * ((__c2Len + __side2Len - 1) / __side2Len) * ((__c3Len + __side3Len - 1) / __side3Len), 1, 1); kernel0_1<<<k0_dimGrid, k0_dimBlock>>> (dev_A, dimsize, timestep, c0); } } else if (__c0Len % __side0LenMax == 3) { { const AN5D_TYPE __side0Len = 2; const AN5D_TYPE __side1Len = 128; const AN5D_TYPE __side2Len = 28; const AN5D_TYPE __side3Len = 28; const AN5D_TYPE __OlLen1 = (__halo1 * __side0Len); const AN5D_TYPE __OlLen2 = (__halo2 * __side0Len); const AN5D_TYPE __OlLen3 = (__halo3 * __side0Len); const AN5D_TYPE __side1LenOl = (__side1Len + 2 * __OlLen1); const AN5D_TYPE __side2LenOl = (__side2Len + 2 * __OlLen2); const AN5D_TYPE __side3LenOl = (__side3Len + 2 * __OlLen3); const AN5D_TYPE __blockSize = 1 * __side2LenOl * __side3LenOl; assert((__side1Len >= 2 * __side0Len * __halo1) && (__c1Len % __side1Len == 0 || __c1Len % __side1Len >= 2 * __side0Len * __halo1) && "[AN5D ERROR] Too short stream"); dim3 k0_dimBlock(__blockSize, 1, 1); dim3 k0_dimGrid(1 * ((__c1Len + __side1Len - 1) / __side1Len) * ((__c2Len + __side2Len - 1) / __side2Len) * ((__c3Len + __side3Len - 1) / __side3Len), 1, 1); kernel0_2<<<k0_dimGrid, k0_dimBlock>>> (dev_A, dimsize, timestep, c0); } c0 += 1; { const AN5D_TYPE __side0Len = 1; const AN5D_TYPE __side1Len = 128; const AN5D_TYPE __side2Len = 30; const AN5D_TYPE __side3Len = 30; const AN5D_TYPE __OlLen1 = (__halo1 * __side0Len); const AN5D_TYPE __OlLen2 = (__halo2 * __side0Len); const AN5D_TYPE __OlLen3 = (__halo3 * __side0Len); const AN5D_TYPE __side1LenOl = (__side1Len + 2 * __OlLen1); const AN5D_TYPE __side2LenOl = (__side2Len + 2 * __OlLen2); const AN5D_TYPE __side3LenOl = (__side3Len + 2 * __OlLen3); const AN5D_TYPE __blockSize = 1 * __side2LenOl * __side3LenOl; assert((__side1Len >= 2 * __side0Len * __halo1) && (__c1Len % __side1Len == 0 || __c1Len % __side1Len >= 2 * __side0Len * __halo1) && "[AN5D ERROR] Too short stream"); dim3 k0_dimBlock(__blockSize, 1, 1); dim3 k0_dimGrid(1 * ((__c1Len + __side1Len - 1) / __side1Len) * ((__c2Len + __side2Len - 1) / __side2Len) * ((__c3Len + __side3Len - 1) / __side3Len), 1, 1); kernel0_1<<<k0_dimGrid, k0_dimBlock>>> (dev_A, dimsize, timestep, c0); } } } else if (__c0Len % __side0LenMax) { if (__c0Len % __side0LenMax == 1) { const AN5D_TYPE __side0Len = 1; const AN5D_TYPE __side1Len = 128; const AN5D_TYPE __side2Len = 30; const AN5D_TYPE __side3Len = 30; const AN5D_TYPE __OlLen1 = (__halo1 * __side0Len); const AN5D_TYPE __OlLen2 = (__halo2 * __side0Len); const AN5D_TYPE __OlLen3 = (__halo3 * __side0Len); const AN5D_TYPE __side1LenOl = (__side1Len + 2 * __OlLen1); const AN5D_TYPE __side2LenOl = (__side2Len + 2 * __OlLen2); const AN5D_TYPE __side3LenOl = (__side3Len + 2 * __OlLen3); const AN5D_TYPE __blockSize = 1 * __side2LenOl * __side3LenOl; assert((__side1Len >= 2 * __side0Len * __halo1) && (__c1Len % __side1Len == 0 || __c1Len % __side1Len >= 2 * __side0Len * __halo1) && "[AN5D ERROR] Too short stream"); dim3 k0_dimBlock(__blockSize, 1, 1); dim3 k0_dimGrid(1 * ((__c1Len + __side1Len - 1) / __side1Len) * ((__c2Len + __side2Len - 1) / __side2Len) * ((__c3Len + __side3Len - 1) / __side3Len), 1, 1); kernel0_1<<<k0_dimGrid, k0_dimBlock>>> (dev_A, dimsize, timestep, c0); } else if (__c0Len % __side0LenMax == 2) { const AN5D_TYPE __side0Len = 2; const AN5D_TYPE __side1Len = 128; const AN5D_TYPE __side2Len = 28; const AN5D_TYPE __side3Len = 28; const AN5D_TYPE __OlLen1 = (__halo1 * __side0Len); const AN5D_TYPE __OlLen2 = (__halo2 * __side0Len); const AN5D_TYPE __OlLen3 = (__halo3 * __side0Len); const AN5D_TYPE __side1LenOl = (__side1Len + 2 * __OlLen1); const AN5D_TYPE __side2LenOl = (__side2Len + 2 * __OlLen2); const AN5D_TYPE __side3LenOl = (__side3Len + 2 * __OlLen3); const AN5D_TYPE __blockSize = 1 * __side2LenOl * __side3LenOl; assert((__side1Len >= 2 * __side0Len * __halo1) && (__c1Len % __side1Len == 0 || __c1Len % __side1Len >= 2 * __side0Len * __halo1) && "[AN5D ERROR] Too short stream"); dim3 k0_dimBlock(__blockSize, 1, 1); dim3 k0_dimGrid(1 * ((__c1Len + __side1Len - 1) / __side1Len) * ((__c2Len + __side2Len - 1) / __side2Len) * ((__c3Len + __side3Len - 1) / __side3Len), 1, 1); kernel0_2<<<k0_dimGrid, k0_dimBlock>>> (dev_A, dimsize, timestep, c0); } else if (__c0Len % __side0LenMax == 3) { const AN5D_TYPE __side0Len = 3; const AN5D_TYPE __side1Len = 128; const AN5D_TYPE __side2Len = 26; const AN5D_TYPE __side3Len = 26; const AN5D_TYPE __OlLen1 = (__halo1 * __side0Len); const AN5D_TYPE __OlLen2 = (__halo2 * __side0Len); const AN5D_TYPE __OlLen3 = (__halo3 * __side0Len); const AN5D_TYPE __side1LenOl = (__side1Len + 2 * __OlLen1); const AN5D_TYPE __side2LenOl = (__side2Len + 2 * __OlLen2); const AN5D_TYPE __side3LenOl = (__side3Len + 2 * __OlLen3); const AN5D_TYPE __blockSize = 1 * __side2LenOl * __side3LenOl; assert((__side1Len >= 2 * __side0Len * __halo1) && (__c1Len % __side1Len == 0 || __c1Len % __side1Len >= 2 * __side0Len * __halo1) && "[AN5D ERROR] Too short stream"); dim3 k0_dimBlock(__blockSize, 1, 1); dim3 k0_dimGrid(1 * ((__c1Len + __side1Len - 1) / __side1Len) * ((__c2Len + __side2Len - 1) / __side2Len) * ((__c3Len + __side3Len - 1) / __side3Len), 1, 1); kernel0_3<<<k0_dimGrid, k0_dimBlock>>> (dev_A, dimsize, timestep, c0); } } } cudaCheckKernel(); { #ifdef STENCILBENCH cudaDeviceSynchronize(); SB_STOP_INSTRUMENTS; #endif cudaCheckReturn(cudaMemcpy(A, dev_A, (size_t)(2) * (size_t)(dimsize) * (size_t)(dimsize) * (size_t)(dimsize) * sizeof(float), cudaMemcpyDeviceToHost)); } cudaCheckReturn(cudaFree(dev_A)); } } else { for (int t = 0; t < timestep; t++) #pragma omp parallel for for (int i = BENCH_RAD; i < dimsize - BENCH_RAD; i++) for (int j = BENCH_RAD; j < dimsize - BENCH_RAD; j++) for (int k = BENCH_RAD; k < dimsize - BENCH_RAD; k++) A[(t+1)%2][i][j][k] = (1.500f*A[t%2][i-1][j][k] + 0.500f*A[t%2][i-1][j-1][k-1] + 0.700f*A[t%2][i-1][j-1][k] + 0.900f*A[t%2][i-1][j-1][k+1] + 1.200f*A[t%2][i-1][j][k-1] + 1.201f*A[t%2][i-1][j][k+1] + 0.901f*A[t%2][i-1][j+1][k-1] + 0.701f*A[t%2][i-1][j+1][k] + 0.501f*A[t%2][i-1][j+1][k+1] + 1.510f*A[t%2][i][j][k] + 0.510f*A[t%2][i][j-1][k-1] + 0.710f*A[t%2][i][j-1][k] + 0.910f*A[t%2][i][j-1][k+1] + 1.210f*A[t%2][i][j][k-1] + 1.211f*A[t%2][i][j][k+1] + 0.911f*A[t%2][i][j+1][k-1] + 0.711f*A[t%2][i][j+1][k] + 0.511f*A[t%2][i][j+1][k+1] + 1.520f*A[t%2][i+1][j][k] + 0.520f*A[t%2][i+1][j-1][k-1] + 0.720f*A[t%2][i+1][j-1][k] + 0.920f*A[t%2][i+1][j-1][k+1] + 1.220f*A[t%2][i+1][j][k-1] + 1.221f*A[t%2][i+1][j][k+1] + 0.921f*A[t%2][i+1][j+1][k-1] + 0.721f*A[t%2][i+1][j+1][k] + 0.521f*A[t%2][i+1][j+1][k+1]) / 159; } return (((end_time != 0.0) ? end_time : sb_time()) - start_time); }
8b55bc6a45970aa7ccb89308ad337213d2f94cf4.hip
// !!! This is a file automatically generated by hipify!!! #include <cstdio> #include <hip/hip_runtime.h> #include <cmath> #include <thrust/execution_policy.h> #include <thrust/random.h> #include <thrust/remove.h> #include <thrust/device_ptr.h> #include <thrust/device_vector.h> #include <thrust/host_vector.h> #include <thrust/iterator/zip_iterator.h> #include "sceneStructs.h" #include "scene.h" #include "glm/glm.hpp" #include "glm/gtx/norm.hpp" #include <glm/gtc/matrix_inverse.hpp> #include "utilities.h" #include "pathtrace.h" #include "intersections.h" #include "interactions.h" #include <algorithm> #include <stdlib.h> #include <random> #include <vector> #include <stack> #include <string> #include <fstream> #include <iostream> #include <iomanip> #include <glm/gtx/intersect.hpp> #include "KDnode.h" #include "KDtree.h" #define ERRORCHECK 1 #define FILENAME (strrchr(__FILE__, '/') ? strrchr(__FILE__, '/') + 1 : __FILE__) #define checkCUDAError(msg) checkCUDAErrorFn(msg, FILENAME, __LINE__) void checkCUDAErrorFn(const char *msg, const char *file, int line) { #if ERRORCHECK hipDeviceSynchronize(); hipError_t err = hipGetLastError(); if (hipSuccess == err) { return; } fprintf(stderr, "CUDA error"); if (file) { fprintf(stderr, " (%s:%d)", file, line); } fprintf(stderr, ": %s: %s\n", msg, hipGetErrorString(err)); # ifdef _WIN32 getchar(); # endif exit(EXIT_FAILURE); #endif } __host__ __device__ thrust::default_random_engine makeSeededRandomEngine(int iter, int index, int depth) { int h = utilhash((1 << 31) | (depth << 22) | iter) ^ utilhash(index); return thrust::default_random_engine(h); } //Kernel that writes the image to the OpenGL PBO directly. __global__ void sendImageToPBO(uchar4* pbo, glm::ivec2 resolution, int iter, glm::vec3* image) { int x = (blockIdx.x * blockDim.x) + threadIdx.x; int y = (blockIdx.y * blockDim.y) + threadIdx.y; if (x < resolution.x && y < resolution.y) { int index = x + (y * resolution.x); glm::vec3 pix = image[index]; glm::ivec3 color; color.x = glm::clamp((int)(pix.x / iter * 255.0), 0, 255); color.y = glm::clamp((int)(pix.y / iter * 255.0), 0, 255); color.z = glm::clamp((int)(pix.z / iter * 255.0), 0, 255); // Each thread writes one pixel location in the texture (textel) pbo[index].w = 0; pbo[index].x = color.x; pbo[index].y = color.y; pbo[index].z = color.z; } } static Scene * hst_scene = NULL; static glm::vec3 * dev_image = NULL; static Geom * dev_geoms = NULL; static Material * dev_materials = NULL; static PathSegment * dev_paths = NULL; static PathSegment * dev_paths_cache = NULL; static ShadeableIntersection * dev_intersections = NULL; static const int STACK_SIZE = 4000; struct is_zero_bounce { __host__ __device__ bool operator()(const PathSegment p) { return (p.remainingBounces == 0); } }; struct by_material_id { const PathSegment a; by_material_id(PathSegment _a) : a(_a) {} __host__ __device__ int operator()(const PathSegment& x, const PathSegment& y) const { return x.color.r + y.color.r; } }; __host__ __device__ bool operator<(const PathSegment &lhs, const PathSegment &rhs) { return lhs.materialIdHit < rhs.materialIdHit; } __host__ __device__ bool operator<(const ShadeableIntersection &lhs, const ShadeableIntersection &rhs) { return lhs.materialId < rhs.materialId; } struct NodeStack{ KDN::NodeBare* node; float tmin; float tmax; glm::vec3 origin; }; // ------------------------------------------------------------------------ // --------------------------- KD TREE UTILITIES -------------------------- // ------------------------------------------------------------------------ std::vector<KDN::Triangle*> getTrianglesFromFile(const char* path) { std::vector<KDN::Triangle*>triangles; string line; ifstream file(path); if (file.is_open()) { while (getline(file, line)) { float x1 = atof(line.c_str()); getline(file, line); float y1 = atof(line.c_str()); getline(file, line); float z1 = atof(line.c_str()); getline(file, line); float x2 = atof(line.c_str()); getline(file, line); float y2 = atof(line.c_str()); getline(file, line); float z2 = atof(line.c_str()); getline(file, line); float x3 = atof(line.c_str()); getline(file, line); float y3 = atof(line.c_str()); getline(file, line); float z3 = atof(line.c_str()); KDN::Triangle* t = new KDN::Triangle(x1, y1, z1, x2, y2, z2, x3, y3, z3); triangles.push_back(t); } } return triangles; } // ------------------------------------------------------------------------ // --------------------------- END KD TREE UTILITIES ---------------------- // ------------------------------------------------------------------------ int obj_numshapes = 0; int* obj_numpolyverts = NULL; float* obj_verts = NULL; float* obj_norms = NULL; float* obj_texts = NULL; int* obj_polyoffsets = NULL; int* obj_polysidxflat = NULL; float* obj_polysbboxes = NULL; int* obj_materialOffsets = NULL; // KD DATA //KDN::KDnode* kd_nodes = NULL; //KDN::Triangle* kd_triangles = NULL; KDN::NodeBare* kd_nodesBare = NULL; KDN::TriBare* kd_trianglesBare = NULL; static int numNodes = 0; static int numTriangles = 0; void pathtraceInit(Scene *scene, bool enablekd) { hst_scene = scene; const Camera &cam = hst_scene->state.camera; const int pixelcount = cam.resolution.x * cam.resolution.y; hipMalloc(&dev_image, pixelcount * sizeof(glm::vec3)); hipMemset(dev_image, 0, pixelcount * sizeof(glm::vec3)); hipMalloc(&dev_paths, pixelcount * sizeof(PathSegment)); hipMalloc(&dev_paths_cache, pixelcount * sizeof(PathSegment)); hipMalloc(&dev_geoms, scene->geoms.size() * sizeof(Geom)); hipMemcpy(dev_geoms, scene->geoms.data(), scene->geoms.size() * sizeof(Geom), hipMemcpyHostToDevice); hipMalloc(&dev_materials, scene->materials.size() * sizeof(Material)); hipMemcpy(dev_materials, scene->materials.data(), scene->materials.size() * sizeof(Material), hipMemcpyHostToDevice); hipMalloc(&dev_intersections, pixelcount * sizeof(ShadeableIntersection)); hipMemset(dev_intersections, 0, pixelcount * sizeof(ShadeableIntersection)); // objloader part if (scene->hasObj) { if (enablekd == false) { hipMalloc((void**)&obj_numpolyverts, scene->obj_numshapes * sizeof(int)); hipMalloc((void**)&obj_polyoffsets, scene->obj_numshapes * sizeof(int)); hipMalloc((void**)&obj_polysidxflat, scene->polyidxcount * sizeof(int)); hipMalloc((void**)&obj_verts, scene->objmesh->attrib.vertices.size()* sizeof(float)); hipMalloc((void**)&obj_norms, scene->objmesh->attrib.normals.size()* sizeof(float)); hipMalloc((void**)&obj_texts, scene->objmesh->attrib.texcoords.size()* sizeof(float)); hipMalloc((void**)&obj_polysbboxes, scene->obj_numshapes * 6 * sizeof(float)); } hipMalloc((void**)&obj_materialOffsets, scene->obj_numshapes * sizeof(int)); // ------------------------------------------------------------------ // KD DATA PART // ------------------------------------------------------------------ if (enablekd == true) { hipMalloc((void**)&kd_nodesBare, scene->numNodes * sizeof(KDN::NodeBare)); hipMalloc((void**)&kd_trianglesBare, scene->numTriangles * sizeof(KDN::TriBare)); hipMemcpy(kd_nodesBare, scene->newNodesBare, scene->numNodes * sizeof(KDN::NodeBare), hipMemcpyHostToDevice); hipMemcpy(kd_trianglesBare, scene->newTrianglesBare, scene->numTriangles * sizeof(KDN::TriBare), hipMemcpyHostToDevice); } else { hipMemcpy(obj_numpolyverts, scene->obj_numpolyverts, scene->obj_numshapes * sizeof(int), hipMemcpyHostToDevice); hipMemcpy(obj_polyoffsets, scene->obj_polyoffsets, scene->obj_numshapes * sizeof(int), hipMemcpyHostToDevice); hipMemcpy(obj_polysidxflat, scene->obj_polysidxflat, scene->polyidxcount * sizeof(int), hipMemcpyHostToDevice); hipMemcpy(obj_verts, scene->obj_verts, scene->objmesh->attrib.vertices.size()* sizeof(float), hipMemcpyHostToDevice); hipMemcpy(obj_norms, scene->obj_norms, scene->objmesh->attrib.normals.size()* sizeof(float), hipMemcpyHostToDevice); hipMemcpy(obj_texts, scene->obj_texts, scene->objmesh->attrib.texcoords.size()* sizeof(float), hipMemcpyHostToDevice); hipMemcpy(obj_polysbboxes, scene->obj_bboxes, scene->obj_numshapes * 6 * sizeof(float), hipMemcpyHostToDevice); } hipMemcpy(obj_materialOffsets, scene->obj_materialOffsets, scene->obj_numshapes * sizeof(int), hipMemcpyHostToDevice); } /* // compare the compressed sizes printf("sizeof KDnode: %d\n", sizeof(KDN::KDnode)); printf("sizeof KDtriangle: %d\n", sizeof(KDN::Triangle)); printf("sizeof NodeBare: %d\n", sizeof(KDN::NodeBare)); printf("sizeof TriBare: %d\n", sizeof(KDN::TriBare)); // sizeof KDnode: 136 // sizeof KDtriangle: 116 // sizeof NodeBare: 64 // sizeof TriBare: 76 */ checkCUDAError("pathtraceInit"); } void pathtraceFree(Scene *scene, bool enablekd) { hipFree(dev_image); // no-op if dev_image is null hipFree(dev_paths); hipFree(dev_paths_cache); hipFree(dev_geoms); hipFree(dev_materials); hipFree(dev_intersections); // objloader part if (scene->hasObj) { if (enablekd == false) { hipFree(obj_numpolyverts); hipFree(obj_polyoffsets); hipFree(obj_polysidxflat); hipFree(obj_verts); hipFree(obj_norms); hipFree(obj_texts); } hipFree(obj_materialOffsets); if (enablekd == true) { hipFree(kd_nodesBare); hipFree(kd_trianglesBare); } } checkCUDAError("pathtraceFree"); } /** * Generate PathSegments with rays from the camera through the screen into the * scene, which is the first bounce of rays. * * Antialiasing - add rays for sub-pixel sampling * motion blur - jitter rays "in time" * lens effect - jitter ray origin positions based on a lens */ __global__ void generateRayFromCamera(Camera cam, int iter, int traceDepth, PathSegment* pathSegments, float focalLength, float dofAngle, bool antialias) { int x = (blockIdx.x * blockDim.x) + threadIdx.x; int y = (blockIdx.y * blockDim.y) + threadIdx.y; if (x < cam.resolution.x && y < cam.resolution.y) { int index = x + (y * cam.resolution.x); PathSegment & segment = pathSegments[index]; segment.ray.origin = cam.position; segment.color = glm::vec3(1.0f, 1.0f, 1.0f); segment.ray.isinside = false; segment.ray.direction = glm::normalize(cam.view - cam.right * cam.pixelLength.x * ((float)x - (float)cam.resolution.x * 0.5f) - cam.up * cam.pixelLength.y * ((float)y - (float)cam.resolution.y * 0.5f) ); // antialiasing by jittering the ray thrust::default_random_engine rng(utilhash(iter)); thrust::uniform_real_distribution<float> unitDistrib(0, 1); if (antialias) { float jitterscale = 0.002; bool fast = true; if (fast) { // use cheap jitter glm::vec3 v3((float)unitDistrib(rng), (float)unitDistrib(rng), (float)unitDistrib(rng)); v3 = glm::normalize(v3); segment.ray.direction += v3*jitterscale; segment.ray.direction = glm::normalize(segment.ray.direction); } else { // use uniform spherical distribution float u = cos(PI * (float)unitDistrib(rng)); float u2 = u*u; float sqrt1minusu2 = sqrt(1 - u2); float theta = 2 * PI * (float)unitDistrib(rng); glm::vec3 v3(sqrt1minusu2 * cos(theta), sqrt1minusu2 * sin(theta), u); segment.ray.direction += v3*jitterscale; } } // use uniform spherical distribution float u = cos(PI * (float)unitDistrib(rng)); float u2 = u*u; float sqrt1minusu2 = sqrt(1 - u2); float theta = 2 * PI * (float)unitDistrib(rng); glm::vec3 v3(sqrt1minusu2 * cos(theta), sqrt1minusu2 * sin(theta), u); v3 = glm::normalize(v3); glm::vec3 center = cam.position + 8.0f * segment.ray.direction; float R1 = (float)unitDistrib(rng); float R2 = (float)unitDistrib(rng); glm::vec3 front = glm::normalize(cam.lookAt); glm::vec3 up = glm::normalize(cam.up); glm::vec3 right = glm::normalize(cam.right); glm::quat Q1; float randangle = (float)unitDistrib(rng) * PI * dofAngle; Q1.w = cosf(randangle / 2.0f); Q1.x = v3.x * sinf(randangle / 2.0f); Q1.y = v3.y * sinf(randangle / 2.0f); Q1.z = v3.z * sinf(randangle / 2.0f); glm::vec3 randrot = glm::rotate(Q1, segment.ray.direction); segment.ray.origin = segment.ray.origin + segment.ray.direction * focalLength - randrot*focalLength; segment.ray.direction = randrot; segment.ray.direction = glm::normalize(segment.ray.direction); segment.pixelIndex = index; segment.remainingBounces = traceDepth; } } // pathTraceOneBounce handles ray intersections, generate intersections for shading, // and scatter new ray. You might want to call scatterRay from interactions.h __global__ void pathTraceOneBounce( int depth , int iter , int num_paths , PathSegment * pathSegments , Geom * geoms , int geoms_size , Material * materials , int material_size , ShadeableIntersection * intersections , float softness , int obj_numshapes , int* obj_numpolyverts , float* obj_verts , float* obj_norms , float* obj_texts , int* obj_polyoffsets , int* obj_polysidxflat , float* obj_polysbboxes , int polyidxcount , int* obj_materialOffsets , bool hasobj , bool usebbox ) { int path_index = blockIdx.x * blockDim.x + threadIdx.x; if (path_index < num_paths) { PathSegment pathSegment = pathSegments[path_index]; if (pathSegments[path_index].remainingBounces>0) { float t; glm::vec3 intersect_point; glm::vec3 normal; float t_min = FLT_MAX; int hit_geom_index = -1; bool outside = true; glm::vec3 tmp_intersect; glm::vec3 tmp_normal; glm::vec3 hit; glm::vec3 norm; glm::vec3 bary; glm::vec3 v1; glm::vec3 v2; glm::vec3 v3; glm::vec3 n1; glm::vec3 n2; glm::vec3 n3; int pidxo1 = 0; int pidxo2 = 0; int pidxo3 = 0; bool intersected = false; bool obj_intersect = false; // naive parse through global geoms int objMaterialIdx = -1; for (int i = 0; i < geoms_size; i++) { Geom & geom = geoms[i]; if (geom.type == CUBE) { t = boxIntersectionTest(geom, pathSegment.ray, tmp_intersect, tmp_normal, outside); } else if (geom.type == SPHERE) { t = sphereIntersectionTest(geom, pathSegment.ray, tmp_intersect, tmp_normal, outside); } // Compute the minimum t from the intersection tests to determine what // scene geometry object was hit first. if (t > 0.0f && t_min > t) { t_min = t; hit_geom_index = i; intersect_point = tmp_intersect; normal = tmp_normal; } } // start polygon hits objMaterialIdx = -1; int iterator = 0; if (hasobj) { for (int i = 0; i < obj_numshapes; i++) { objMaterialIdx = obj_materialOffsets[i]; // check bounding intersection first float T = -1.0f; if (usebbox) { T = intersectBbox(pathSegment.ray.origin, pathSegment.ray.direction, glm::vec3(obj_polysbboxes[i] - 0.01, obj_polysbboxes[i + 1] - 0.01, obj_polysbboxes[i + 2] - 0.01), glm::vec3(obj_polysbboxes[i + 3] + 0.01, obj_polysbboxes[i + 4] + 0.01, obj_polysbboxes[i + 5] + 0.01)); } else { T = 0; } if (T > -1.0f) { for (int j = iterator; j < iterator + obj_polyoffsets[i]; j += 3) { pidxo1 = 3 * obj_polysidxflat[j]; pidxo2 = 3 * obj_polysidxflat[j + 1]; pidxo3 = 3 * obj_polysidxflat[j + 2]; v1.x = obj_verts[pidxo1]; v1.y = obj_verts[pidxo1 + 1]; v1.z = obj_verts[pidxo1 + 2]; v2.x = obj_verts[pidxo2]; v2.y = obj_verts[pidxo2 + 1]; v2.z = obj_verts[pidxo2 + 2]; v3.x = obj_verts[pidxo3]; v3.y = obj_verts[pidxo3 + 1]; v3.z = obj_verts[pidxo3 + 2]; n1.x = obj_norms[pidxo1]; n1.y = obj_norms[pidxo1 + 1]; n1.z = obj_norms[pidxo1 + 2]; n2.x = obj_norms[pidxo2]; n2.y = obj_norms[pidxo2 + 1]; n2.z = obj_norms[pidxo2 + 2]; n3.x = obj_norms[pidxo3]; n3.y = obj_norms[pidxo3 + 1]; n3.z = obj_norms[pidxo3 + 2]; intersected = false; bary.x = 0.0f; bary.y = 0.0f; bary.z = 0.0f; intersected = glm::intersectRayTriangle(pathSegment.ray.origin, pathSegment.ray.direction, v1, v2, v3, bary); glm::vec3 bary2(bary.x, bary.y, 1.0 - bary.x - bary.y); if (intersected) { hit = pathSegment.ray.origin + pathSegment.ray.direction* bary.z; norm = glm::normalize((1 - bary.x - bary.y) * n1 + bary.x * n2 + (bary.y) * n3); hit += norm*0.0001f; t = glm::distance(pathSegment.ray.origin, hit); if (t > 0.0f && t_min > t) { t_min = t; hit_geom_index = obj_materialOffsets[i]; intersect_point = hit; normal = norm; tmp_intersect = hit; tmp_normal = normal; obj_intersect = true; intersections[path_index].t = t; } } } iterator += obj_polyoffsets[i]; } } } if (hit_geom_index == -1) { intersections[path_index].t = -1.0f; } else { // updating rays thrust::default_random_engine rng = makeSeededRandomEngine(iter, path_index, depth); if (obj_intersect) { pathSegments[path_index].materialIdHit = objMaterialIdx; scatterRay(pathSegments[path_index].ray, pathSegments[path_index].color, intersect_point, normal, materials[objMaterialIdx], rng, softness); } else { pathSegments[path_index].materialIdHit = geoms[hit_geom_index].materialid; scatterRay(pathSegments[path_index].ray, pathSegments[path_index].color, intersect_point, normal, materials[geoms[hit_geom_index].materialid], rng, softness); } if (obj_intersect) { intersections[path_index].t = t_min; intersections[path_index].materialId = objMaterialIdx; intersections[path_index].surfaceNormal = normal; } else { intersections[path_index].t = t_min; intersections[path_index].materialId = geoms[hit_geom_index].materialid; intersections[path_index].surfaceNormal = normal; } } } } } // pathTraceOneBounce handles ray intersections, generate intersections for shading, // and scatter new ray. You might want to call scatterRay from interactions.h __global__ void pathTraceOneBounceKDfix( int depth , int iter , int num_paths , PathSegment * pathSegments , Geom * geoms , int geoms_size , Material * materials , int material_size , ShadeableIntersection * intersections , float softness , KDN::Triangle* triangles , int numTriangles , KDN::KDnode* nodes , int numNodes , int* obj_materialOffsets , bool hasobj ) { int path_index = blockIdx.x * blockDim.x + threadIdx.x; if (path_index < num_paths) { PathSegment pathSegment = pathSegments[path_index]; if (pathSegments[path_index].remainingBounces>0) { float t; glm::vec3 intersect_point; glm::vec3 normal; float t_min = FLT_MAX; int hit_geom_index = -1; bool outside = true; glm::vec3 tmp_intersect; glm::vec3 tmp_normal; glm::vec3 hit; glm::vec3 norm; glm::vec3 bary; glm::vec3 v1; glm::vec3 v2; glm::vec3 v3; glm::vec3 n1; glm::vec3 n2; glm::vec3 n3; int pidxo1 = 0; int pidxo2 = 0; int pidxo3 = 0; bool intersected = false; bool obj_intersect = false; // naive parse through global geoms int objMaterialIdx = -1; for (int i = 0; i < geoms_size; i++) { Geom & geom = geoms[i]; if (geom.type == CUBE) { t = boxIntersectionTest(geom, pathSegment.ray, tmp_intersect, tmp_normal, outside); } else if (geom.type == SPHERE) { t = sphereIntersectionTest(geom, pathSegment.ray, tmp_intersect, tmp_normal, outside); } // Compute the minimum t from the intersection tests to determine what // scene geometry object was hit first. if (t > 0.0f && t_min > t) { t_min = t; hit_geom_index = i; intersect_point = tmp_intersect; normal = tmp_normal; } } objMaterialIdx = -1; int iterator = 0; if (hasobj) { if (numNodes != 0) { bool nodeIDs[100] = { false }; int currID = nodeIDs[nodes[0].ID]; float dist = -1.0; // get the root node for (int i = 0; i < numNodes; i++) { if (nodes[i].parentID == -1) { currID = nodes[i].ID; break; } } KDN::KDnode* node = &(nodes[currID]); bool hitGeom = false; float boxdist = -1.0f; bary.z = FLT_MAX; while (true) { if (currID == -1) break; node = &(nodes[currID]); // check if it intersects the bounds if (nodeIDs[currID] == true) { nodeIDs[node->ID] = true; nodeIDs[node->leftID] = true; nodeIDs[node->rightID] = true; currID = node->parentID; continue; } else { hitGeom = intersectAABB(pathSegment.ray, node->bbox, dist); if (hitGeom == false && node->parentID == -1) break; } if (hitGeom == false && dist > bary.z) { nodeIDs[node->ID] = true; nodeIDs[node->leftID] = true; nodeIDs[node->rightID] = true; currID = node->parentID; } else { if (nodes[currID].leftID != -1 && nodeIDs[nodes[currID].leftID] != true) currID = node->leftID; else if (nodes[currID].rightID != -1 && nodeIDs[nodes[currID].rightID] != true) currID = node->rightID; else if (nodeIDs[node->ID] == false) { nodeIDs[node->ID] = true; int size = node->triIdSize; if (size > 0) { int start = node->triIdStart; int end = start + size; for (int i = start; i < end; i++) { KDN::Triangle* T = &(triangles[i]); glm::vec3 v1(T->x1, T->y1, T->z1); glm::vec3 v2(T->x2, T->y2, T->z2); glm::vec3 v3(T->x3, T->y3, T->z3); glm::vec3 n1(T->nx1, T->ny1, T->nz1); glm::vec3 n2(T->nx2, T->ny2, T->nz2); glm::vec3 n3(T->nx3, T->ny3, T->nz3); bool intersected = glm::intersectRayTriangle(pathSegment.ray.origin, pathSegment.ray.direction, v1, v2, v3, bary); if (intersected) { objMaterialIdx = triangles[i].mtlIdx + material_size - 1; hit = pathSegment.ray.origin + pathSegment.ray.direction* bary.z;// (bary2.x * v1 + bary2.y * v2 + bary2.z * v3); norm = glm::normalize((1 - bary.x - bary.y) * n1 + bary.x * n2 + (bary.y) * n3); hit += norm*0.0001f; t = glm::distance(pathSegment.ray.origin, hit); if (t > 0.0f && t_min > t) { t_min = t; hit_geom_index = obj_materialOffsets[T->mtlIdx]; intersect_point = hit; normal = norm; tmp_intersect = hit; tmp_normal = normal; obj_intersect = true; intersections[path_index].t = t; } } } } } else currID = node->parentID; } } } } if (hit_geom_index == -1) { intersections[path_index].t = -1.0f; } else { thrust::default_random_engine rng = makeSeededRandomEngine(iter, path_index, depth); if (obj_intersect) { pathSegments[path_index].materialIdHit = objMaterialIdx; scatterRay(pathSegments[path_index].ray, pathSegments[path_index].color, intersect_point, normal, materials[objMaterialIdx], rng, softness); } else { pathSegments[path_index].materialIdHit = geoms[hit_geom_index].materialid; scatterRay(pathSegments[path_index].ray, pathSegments[path_index].color, intersect_point, normal, materials[geoms[hit_geom_index].materialid], rng, softness); } if (obj_intersect) { intersections[path_index].t = t_min; intersections[path_index].materialId = objMaterialIdx; intersections[path_index].surfaceNormal = normal; } else { intersections[path_index].t = t_min; intersections[path_index].materialId = geoms[hit_geom_index].materialid; intersections[path_index].surfaceNormal = normal; } } } } } __host__ __device__ void traverseKDbare(KDN::NodeBare* nodes, int numNodes, float& t, PathSegment pathSegment, KDN::TriBare* triangles, glm::vec3& bary, int& objMaterialIdx, int& material_size, glm::vec3& hit, glm::vec3& norm, float& t_min, int& hit_geom_index, glm::vec3& intersect_point, glm::vec3& normal, glm::vec3& tmp_intersect, glm::vec3& tmp_normal, bool& obj_intersect, ShadeableIntersection* intersections, int* obj_materialOffsets, int& path_index) { if (numNodes != 0) { bool nodeIDs[STACK_SIZE] = { false }; int currID = nodeIDs[nodes[0].ID]; float dist = -1.0; // get the root node for (int i = 0; i < numNodes; i++) { if (nodes[i].parentID == -1) { currID = nodes[i].ID; break; } } KDN::NodeBare* node = &(nodes[currID]); bool hitGeom = false; float boxdist = -1.0f; bary.z = FLT_MAX; while (true) { if (currID == -1) break; node = &(nodes[currID]); // check if it intersects the bounds if (hitGeom == false && node->parentID == -1 && nodeIDs[node->ID] == true) break; hitGeom = intersectAABBarrays(pathSegment.ray, nodes[currID].mins, nodes[currID].maxs, dist); if (nodeIDs[currID] == true) { nodeIDs[node->ID] = true; nodeIDs[node->leftID] = true; nodeIDs[node->rightID] = true; currID = node->parentID; continue; } else { // if we reached the top and didn't hit anything if (hitGeom == false && node->parentID == -1) break; } // if the distance is greater than the last poly hit if (hitGeom == false || dist > bary.z) { nodeIDs[node->ID] = true; nodeIDs[node->leftID] = true; nodeIDs[node->rightID] = true; currID = node->parentID; } else { if (nodes[currID].leftID != -1 && nodeIDs[nodes[currID].leftID] != true) currID = node->leftID; else if (nodes[currID].rightID != -1 && nodeIDs[nodes[currID].rightID] != true) currID = node->rightID; else if (nodeIDs[node->ID] == false) { nodeIDs[node->ID] = true; int size = node->triIdSize; if (size > 0) { int start = node->triIdStart; int end = start + size; for (int i = start; i < end; i++) { KDN::TriBare* T = &(triangles[i]); glm::vec3 v1(T->x1, T->y1, T->z1); glm::vec3 v2(T->x2, T->y2, T->z2); glm::vec3 v3(T->x3, T->y3, T->z3); bool intersected = glm::intersectRayTriangle(pathSegment.ray.origin, pathSegment.ray.direction, v1, v2, v3, bary); if (intersected) { glm::vec3 n1(T->nx1, T->ny1, T->nz1); glm::vec3 n2(T->nx2, T->ny2, T->nz2); glm::vec3 n3(T->nx3, T->ny3, T->nz3); objMaterialIdx = triangles[i].mtlIdx + material_size - 1; hit = pathSegment.ray.origin + pathSegment.ray.direction* bary.z; norm = glm::normalize((1 - bary.x - bary.y) * n1 + bary.x * n2 + (bary.y) * n3); hit += norm*0.00001f; t = glm::distance(pathSegment.ray.origin, hit); if (t > 0.0f && t_min > t) { t_min = t; hit_geom_index = obj_materialOffsets[T->mtlIdx]; intersect_point = hit; normal = norm; tmp_intersect = hit; tmp_normal = normal; obj_intersect = true; intersections[path_index].t = t; } } } } } else currID = node->parentID; } } } } __host__ __device__ void traverseKDbareShortHybrid(KDN::NodeBare* nodes, int numNodes, float& t, PathSegment pathSegment, KDN::TriBare* triangles, glm::vec3& bary, int& objMaterialIdx, int& material_size, glm::vec3& hit, glm::vec3& norm, float& t_min, int& hit_geom_index, glm::vec3& intersect_point, glm::vec3& normal, glm::vec3& tmp_intersect, glm::vec3& tmp_normal, bool& obj_intersect, ShadeableIntersection* intersections, int* obj_materialOffsets, int& path_index) { if (numNodes != 0) { bool nodeIDs[STACK_SIZE] = { false }; int currID = nodeIDs[nodes[0].ID]; float dist = -1.0; // get the root node for (int i = 0; i < numNodes; i++) { if (nodes[i].parentID == -1) { currID = nodes[i].ID; break; } } KDN::NodeBare* node = &(nodes[currID]); int axis; float tSplit; bool hitGeom = false; float boxdist = -1.0f; bary.z = FLT_MAX; while (true) { if (currID == -1) break; node = &(nodes[currID]); // check if it intersects the bounds if (hitGeom == false && node->parentID == -1 && nodeIDs[node->ID] == true) break; hitGeom = intersectAABBarrays(pathSegment.ray, nodes[currID].mins, nodes[currID].maxs, dist); if (nodeIDs[currID] == true) { nodeIDs[node->ID] = true; nodeIDs[node->leftID] = true; nodeIDs[node->rightID] = true; currID = node->parentID; continue; } else { // if we reached the top and didn't hit anything if (hitGeom == false && node->parentID == -1) break; } // if the distance is greater than the last poly hit if (hitGeom == false || dist > bary.z) { nodeIDs[node->ID] = true; nodeIDs[node->leftID] = true; nodeIDs[node->rightID] = true; currID = node->parentID; } else { axis = node->axis; if (pathSegment.ray.direction[axis] > 0.0f) { // left side first if (nodes[currID].leftID != -1 && nodeIDs[nodes[currID].leftID] != true) currID = node->leftID; else if (nodes[currID].rightID != -1 && nodeIDs[nodes[currID].rightID] != true) currID = node->rightID; else if (nodeIDs[node->ID] == false) { nodeIDs[node->ID] = true; int size = node->triIdSize; if (size > 0) { int start = node->triIdStart; int end = start + size; for (int i = start; i < end; i++) { KDN::TriBare* T = &(triangles[i]); glm::vec3 v1(T->x1, T->y1, T->z1); glm::vec3 v2(T->x2, T->y2, T->z2); glm::vec3 v3(T->x3, T->y3, T->z3); bool intersected = glm::intersectRayTriangle(pathSegment.ray.origin, pathSegment.ray.direction, v1, v2, v3, bary); if (intersected) { // skip other side nodeIDs[nodes[nodeIDs[node->parentID]].rightID] = true; glm::vec3 n1(T->nx1, T->ny1, T->nz1); glm::vec3 n2(T->nx2, T->ny2, T->nz2); glm::vec3 n3(T->nx3, T->ny3, T->nz3); objMaterialIdx = triangles[i].mtlIdx + material_size - 1; hit = pathSegment.ray.origin + pathSegment.ray.direction* bary.z; norm = glm::normalize((1 - bary.x - bary.y) * n1 + bary.x * n2 + (bary.y) * n3); hit += norm*0.0001f; t = glm::distance(pathSegment.ray.origin, hit); if (t > 0.0f && t_min > t) { t_min = t; hit_geom_index = obj_materialOffsets[T->mtlIdx]; intersect_point = hit; normal = norm; tmp_intersect = hit; tmp_normal = normal; obj_intersect = true; intersections[path_index].t = t; } } } } } else currID = node->parentID; } else { // right side first if (nodes[currID].rightID != -1 && nodeIDs[nodes[currID].rightID] != true) currID = node->rightID; else if (nodes[currID].leftID != -1 && nodeIDs[nodes[currID].leftID] != true) currID = node->leftID; else if (nodeIDs[node->ID] == false) { nodeIDs[node->ID] = true; int size = node->triIdSize; if (size > 0) { int start = node->triIdStart; int end = start + size; for (int i = start; i < end; i++) { KDN::TriBare* T = &(triangles[i]); glm::vec3 v1(T->x1, T->y1, T->z1); glm::vec3 v2(T->x2, T->y2, T->z2); glm::vec3 v3(T->x3, T->y3, T->z3); bool intersected = glm::intersectRayTriangle(pathSegment.ray.origin, pathSegment.ray.direction, v1, v2, v3, bary); if (intersected) { // skip other side nodeIDs[nodes[nodeIDs[node->parentID]].leftID] = true; glm::vec3 n1(T->nx1, T->ny1, T->nz1); glm::vec3 n2(T->nx2, T->ny2, T->nz2); glm::vec3 n3(T->nx3, T->ny3, T->nz3); objMaterialIdx = triangles[i].mtlIdx + material_size - 1; hit = pathSegment.ray.origin + pathSegment.ray.direction* bary.z; norm = glm::normalize((1 - bary.x - bary.y) * n1 + bary.x * n2 + (bary.y) * n3); hit += norm*0.0001f; t = glm::distance(pathSegment.ray.origin, hit); if (t > 0.0f && t_min > t) { t_min = t; hit_geom_index = obj_materialOffsets[T->mtlIdx]; intersect_point = hit; normal = norm; tmp_intersect = hit; tmp_normal = normal; obj_intersect = true; intersections[path_index].t = t; } } } } } else currID = node->parentID; } } } } } __host__ __device__ void traverseKDshort(KDN::NodeBare* nodes, int numNodes, float& t, PathSegment pathSegment, KDN::TriBare* triangles, glm::vec3& bary, int& objMaterialIdx, int& material_size, glm::vec3& hit, glm::vec3& norm, float& t_min, int& hit_geom_index, glm::vec3& intersect_point, glm::vec3& normal, glm::vec3& tmp_intersect, glm::vec3& tmp_normal, bool& obj_intersect, ShadeableIntersection* intersections, int* obj_materialOffsets, int& path_index) { NodeStack stack[STACK_SIZE]; int top = -1; KDN::NodeBare* node; KDN::NodeBare* root; KDN::NodeBare* first; KDN::NodeBare* second; // get the root node for (int i = 0; i < numNodes; i++) { if (nodes[i].parentID == -1) { node = &(nodes[i]); root = &(nodes[i]); break; } } float tMin, tMax, tHit, sceneMax; tMin = tMax = 0.0f; tHit = t_min; sceneMax = FLT_MAX; bool pushdown = false; int axis = 0; float tSplit = 0.0f; float dist = 0.0f; bool bboxintersect = false; while (tMax < sceneMax) { if (top == -1) { node = root; tMin = tMax; tMax = sceneMax; pushdown = true; } else { node = stack[top].node; tMin = node->tmin; tMax = node->tmax; top--; pushdown = false; } while (node->triIdSize != 0) { axis = node->axis; tSplit = (node->splitPos - pathSegment.ray.origin[axis]) / pathSegment.ray.direction[axis]; if (pathSegment.ray.direction[axis] > 0.0f) { if (nodes[node->leftID].mins[axis] < nodes[node->rightID].mins[axis]) { first = &(nodes[node->leftID]); second = &(nodes[node->rightID]); } else { first = &nodes[node->rightID]; second = &nodes[node->leftID]; } } else { if (nodes[node->leftID].maxs[axis] > nodes[node->rightID].maxs[axis]) { first = &(nodes[node->leftID]); second = &(nodes[node->rightID]); } else { first = &(nodes[node->rightID]); second = &(nodes[node->leftID]); } } if (tSplit >= tMax || tSplit < 0.0f) node = first; else if (tSplit <= tMin) node = second; else { second->tmin = tSplit; second->tmax = tMax; top++; if (top <= 199) { stack[top].node = second; stack[top].tmin = tSplit; stack[top].tmax = tMax; } else { break; } node = first; tMax = tSplit; pushdown = false; } if (pushdown) root = node; bboxintersect = intersectAABBarrays(pathSegment.ray, node->mins, node->maxs, dist); if (bboxintersect) { int start = node->triIdStart; int end = start + node->triIdSize; for (int i = start; i < end; i++) { KDN::TriBare* T = &(triangles[i]); glm::vec3 v1(T->x1, T->y1, T->z1); glm::vec3 v2(T->x2, T->y2, T->z2); glm::vec3 v3(T->x3, T->y3, T->z3); bool intersected = glm::intersectRayTriangle(pathSegment.ray.origin, pathSegment.ray.direction, v1, v2, v3, bary); if (intersected) { glm::vec3 n1(T->nx1, T->ny1, T->nz1); glm::vec3 n2(T->nx2, T->ny2, T->nz2); glm::vec3 n3(T->nx3, T->ny3, T->nz3); objMaterialIdx = triangles[i].mtlIdx + material_size - 1; hit = pathSegment.ray.origin + pathSegment.ray.direction* bary.z; norm = -glm::normalize((1 - bary.x - bary.y) * n1 + bary.x * n2 + (bary.y) * n3); hit += norm*0.0001f; t = glm::distance(pathSegment.ray.origin, hit); if (t > 0.0f || t_min > t) { tHit = min(tHit, t); t_min = t; hit_geom_index = obj_materialOffsets[T->mtlIdx]; intersect_point = hit; normal = norm; tmp_intersect = hit; tmp_normal = normal; obj_intersect = true; intersections[path_index].t = t; } } } } } } } __host__ __device__ void traverseKD(KDN::NodeBare* nodes, int numNodes, float& t, PathSegment pathSegment, KDN::TriBare* triangles, glm::vec3& bary, int& objMaterialIdx, int& material_size, glm::vec3& hit, glm::vec3& norm, float& t_min, int& hit_geom_index, glm::vec3& intersect_point, glm::vec3& normal, glm::vec3& tmp_intersect, glm::vec3& tmp_normal, bool& obj_intersect, ShadeableIntersection* intersections, int* obj_materialOffsets, int& path_index) { NodeStack stack[STACK_SIZE]; int top = -1; KDN::NodeBare* node; KDN::NodeBare* root; KDN::NodeBare* first; KDN::NodeBare* second; // get the root node for (int i = 0; i < numNodes; i++) { if (nodes[i].parentID == -1) { node = &(nodes[i]); root = &(nodes[i]); break; } } glm::vec3 origin = pathSegment.ray.origin; glm::vec3 invDirection(1.0f / pathSegment.ray.direction[0], 1.0f / pathSegment.ray.direction[1], 1.0f / pathSegment.ray.direction[2]); float tmax = FLT_MAX; float tClosestIntersection = t_min; bool notFullyTraversed = true; while (notFullyTraversed) { if (node->triIdSize != 0) { //test all primitives inside the leaf float dist = 0.0f; bool bboxintersect = intersectAABBarrays(pathSegment.ray, node->mins, node->maxs, dist); if (bboxintersect) { int start = node->triIdStart; int end = start + node->triIdSize; for (int i = start; i < end; i++) { KDN::TriBare* T = &(triangles[i]); glm::vec3 v1(T->x1, T->y1, T->z1); glm::vec3 v2(T->x2, T->y2, T->z2); glm::vec3 v3(T->x3, T->y3, T->z3); bool intersected = glm::intersectRayTriangle(pathSegment.ray.origin, pathSegment.ray.direction, v1, v2, v3, bary); if (intersected) { glm::vec3 n1(T->nx1, T->ny1, T->nz1); glm::vec3 n2(T->nx2, T->ny2, T->nz2); glm::vec3 n3(T->nx3, T->ny3, T->nz3); objMaterialIdx = triangles[i].mtlIdx + material_size - 1; hit = pathSegment.ray.origin + pathSegment.ray.direction* bary.z; norm = -glm::normalize((1 - bary.x - bary.y) * n1 + bary.x * n2 + (bary.y) * n3); hit += norm*0.0001f; t = glm::distance(pathSegment.ray.origin, hit); if (t > 0.0f && t_min > t) { t_min = t; hit_geom_index = obj_materialOffsets[T->mtlIdx]; intersect_point = hit; normal = norm; tmp_intersect = hit; tmp_normal = normal; obj_intersect = true; intersections[path_index].t = t; //return; } } } } //test if leaf + empty stack => return if (top == -1) { notFullyTraversed = false; } else { //pop all stack origin = stack[top].origin; tmax = stack[top].tmax; node = stack[top].node; top--; } } else { //get axis of node and its split plane const int axis = node->axis; const float plane = node->splitPos; //test if ray is not parallel to plane if ((fabs(pathSegment.ray.direction[axis]) > EPSILON)) { const float t = (plane - origin[axis]) * invDirection[axis]; //case of the ray intersecting the plane, then test both childs if (0.0f < t && t < tmax) { //traverse near first, then far. Set tmax = t for near //push only far child onto stack top++; stack[top].origin[0] = origin[0] + pathSegment.ray.direction[0] * t; stack[top].origin[1] = origin[1] + pathSegment.ray.direction[1] * t; stack[top].origin[2] = origin[2] + pathSegment.ray.direction[2] * t; stack[top].node = (origin[axis] > plane) ? &(nodes[node->leftID]) : &(nodes[node->rightID]); stack[top].tmax = tmax - t; tmax = t; } } //in every case: traverse near child first node = (origin[axis] > plane) ? &(nodes[node->rightID]) : &(nodes[node->leftID]); } } } // pathTraceOneBounce handles ray intersections, generate intersections for shading, // and scatter new ray. You might want to call scatterRay from interactions.h __global__ void pathTraceOneBounceKDbare( int depth , int iter , int num_paths , PathSegment * pathSegments , Geom * geoms , int geoms_size , Material * materials , int material_size , ShadeableIntersection * intersections , float softness , KDN::TriBare* triangles , int numTriangles , KDN::NodeBare* nodes , int numNodes , int* obj_materialOffsets , bool hasobj , bool shortstack ) { int path_index = blockIdx.x * blockDim.x + threadIdx.x; if (path_index < num_paths) { PathSegment pathSegment = pathSegments[path_index]; if (pathSegments[path_index].remainingBounces>0) { float t; glm::vec3 intersect_point; glm::vec3 normal; float t_min = FLT_MAX; int hit_geom_index = -1; bool outside = true; glm::vec3 tmp_intersect; glm::vec3 tmp_normal; glm::vec3 hit; glm::vec3 norm; glm::vec3 bary; glm::vec3 v1; glm::vec3 v2; glm::vec3 v3; glm::vec3 n1; glm::vec3 n2; glm::vec3 n3; int pidxo1 = 0; int pidxo2 = 0; int pidxo3 = 0; bool intersected = false; bool obj_intersect = false; // naive parse through global geoms int objMaterialIdx = -1; for (int i = 0; i < geoms_size; i++) { Geom & geom = geoms[i]; if (geom.type == CUBE) { t = boxIntersectionTest(geom, pathSegment.ray, tmp_intersect, tmp_normal, outside); } else if (geom.type == SPHERE) { t = sphereIntersectionTest(geom, pathSegment.ray, tmp_intersect, tmp_normal, outside); } // Compute the minimum t from the intersection tests to determine what // scene geometry object was hit first. if (t > 0.0f && t_min > t) { t_min = t; hit_geom_index = i; intersect_point = tmp_intersect; normal = tmp_normal; } } objMaterialIdx = -1; int iterator = 0; if (hasobj) { if (shortstack == false) { // standard traversal traverseKDbare(nodes, numNodes, t, pathSegment, triangles, bary, objMaterialIdx, material_size, hit, norm, t_min, hit_geom_index, intersect_point, normal, tmp_intersect, tmp_normal, obj_intersect, intersections, obj_materialOffsets, path_index); } else { // optimized short-stack traversal traverseKDbareShortHybrid(nodes, numNodes, t, pathSegment, triangles, bary, objMaterialIdx, material_size, hit, norm, t_min, hit_geom_index, intersect_point, normal, tmp_intersect, tmp_normal, obj_intersect, intersections, obj_materialOffsets, path_index); } } if (hit_geom_index == -1) { intersections[path_index].t = -1.0f; } else { // updating rays thrust::default_random_engine rng = makeSeededRandomEngine(iter, path_index, depth); if (obj_intersect) { pathSegments[path_index].materialIdHit = objMaterialIdx; scatterRay(pathSegments[path_index].ray, pathSegments[path_index].color, intersect_point, normal, materials[objMaterialIdx], rng, softness); } else { pathSegments[path_index].materialIdHit = geoms[hit_geom_index].materialid; scatterRay(pathSegments[path_index].ray, pathSegments[path_index].color, intersect_point, normal, materials[geoms[hit_geom_index].materialid], rng, softness); } if (obj_intersect) { intersections[path_index].t = t_min; intersections[path_index].materialId = objMaterialIdx; intersections[path_index].surfaceNormal = normal; } else { intersections[path_index].t = t_min; intersections[path_index].materialId = geoms[hit_geom_index].materialid; intersections[path_index].surfaceNormal = normal; } } } } } // pathTraceOneBounce handles ray intersections, generate intersections for shading, // and scatter new ray. You might want to call scatterRay from interactions.h __global__ void pathTraceOneBounceKDbareBoxes( int depth , int iter , int num_paths , PathSegment * pathSegments , Geom * geoms , int geoms_size , Material * materials , int material_size , ShadeableIntersection * intersections , float softness , KDN::TriBare* triangles , int numTriangles , KDN::NodeBare* nodes , int numNodes , int* obj_materialOffsets , bool hasobj ) { int path_index = blockIdx.x * blockDim.x + threadIdx.x; if (path_index < num_paths) { PathSegment pathSegment = pathSegments[path_index]; if (pathSegments[path_index].remainingBounces>0) { float t; glm::vec3 intersect_point; glm::vec3 normal; float t_min = FLT_MAX; int hit_geom_index = -1; bool outside = true; glm::vec3 tmp_intersect; glm::vec3 tmp_normal; glm::vec3 hit; glm::vec3 norm; glm::vec3 bary; glm::vec3 v1; glm::vec3 v2; glm::vec3 v3; glm::vec3 n1; glm::vec3 n2; glm::vec3 n3; int pidxo1 = 0; int pidxo2 = 0; int pidxo3 = 0; bool intersected = false; bool obj_intersect = false; // naive parse through global geoms int objMaterialIdx = -1; for (int i = 0; i < geoms_size; i++) { Geom & geom = geoms[i]; if (geom.type == CUBE) { t = boxIntersectionTest(geom, pathSegment.ray, tmp_intersect, tmp_normal, outside); } else if (geom.type == SPHERE) { t = sphereIntersectionTest(geom, pathSegment.ray, tmp_intersect, tmp_normal, outside); } // Compute the minimum t from the intersection tests to determine what // scene geometry object was hit first. if (t > 0.0f && t_min > t) { t_min = t; hit_geom_index = i; intersect_point = tmp_intersect; normal = tmp_normal; } } objMaterialIdx = -1; int iterator = 0; if (hasobj) { for (int i = 0; i < numNodes; i++) { t = boxIntersectionTestBox(nodes[i].mins, nodes[i].maxs, pathSegment.ray, tmp_intersect, tmp_normal, outside); // Compute the minimum t from the intersection tests to determine what // scene geometry object was hit first. if (t > 0.0f && t_min > t) { t_min = t; hit_geom_index = geoms_size; intersect_point = tmp_intersect; normal = tmp_normal; obj_intersect = true; objMaterialIdx = material_size - 1; } } } if (hit_geom_index == -1) { intersections[path_index].t = -1.0f; } else { // updating rays thrust::default_random_engine rng = makeSeededRandomEngine(iter, path_index, depth); if (obj_intersect) { pathSegments[path_index].materialIdHit = objMaterialIdx; scatterRay(pathSegments[path_index].ray, pathSegments[path_index].color, intersect_point, normal, materials[objMaterialIdx], rng, softness); } else { pathSegments[path_index].materialIdHit = geoms[hit_geom_index].materialid; scatterRay(pathSegments[path_index].ray, pathSegments[path_index].color, intersect_point, normal, materials[geoms[hit_geom_index].materialid], rng, softness); } if (obj_intersect) { intersections[path_index].t = t_min; intersections[path_index].materialId = objMaterialIdx; intersections[path_index].surfaceNormal = normal; } else { intersections[path_index].t = t_min; intersections[path_index].materialId = geoms[hit_geom_index].materialid; intersections[path_index].surfaceNormal = normal; } } } } } // pathTraceOneBounce handles ray intersections, generate intersections for shading, // and scatter new ray. You might want to call scatterRay from interactions.h __global__ void pathTraceOneBounceKDbareShortStack( int depth , int iter , int num_paths , PathSegment * pathSegments , Geom * geoms , int geoms_size , Material * materials , int material_size , ShadeableIntersection * intersections , float softness , KDN::TriBare* triangles , int numTriangles , KDN::NodeBare* nodes , int numNodes , int* obj_materialOffsets , bool hasobj ) { int path_index = blockIdx.x * blockDim.x + threadIdx.x; if (path_index < num_paths) { PathSegment pathSegment = pathSegments[path_index]; if (pathSegments[path_index].remainingBounces>0) { float t = 0.0; glm::vec3 intersect_point; glm::vec3 normal; float t_min = FLT_MAX; int hit_geom_index = -1; bool outside = true; glm::vec3 tmp_intersect; glm::vec3 tmp_normal; glm::vec3 hit; glm::vec3 norm; glm::vec3 bary; glm::vec3 v1; glm::vec3 v2; glm::vec3 v3; glm::vec3 n1; glm::vec3 n2; glm::vec3 n3; int pidxo1 = 0; int pidxo2 = 0; int pidxo3 = 0; bool intersected = false; bool obj_intersect = false; // naive parse through global geoms int objMaterialIdx = -1; for (int i = 0; i < geoms_size; i++) { Geom & geom = geoms[i]; if (geom.type == CUBE) { t = boxIntersectionTest(geom, pathSegment.ray, tmp_intersect, tmp_normal, outside); } else if (geom.type == SPHERE) { t = sphereIntersectionTest(geom, pathSegment.ray, tmp_intersect, tmp_normal, outside); } // Compute the minimum t from the intersection tests to determine what // scene geometry object was hit first. if (t > 0.0f && t_min > t) { t_min = t; hit_geom_index = i; intersect_point = tmp_intersect; normal = tmp_normal; } } objMaterialIdx = -1; int iterator = 0; if (hasobj) { // KD traversal standard short stack traverseKDshort(nodes, numNodes, t, pathSegment, triangles, bary, objMaterialIdx, material_size, hit, norm, t_min, hit_geom_index, intersect_point, normal, tmp_intersect, tmp_normal, obj_intersect, intersections, obj_materialOffsets, path_index); } if (hit_geom_index == -1) { intersections[path_index].t = -1.0f; } else { // updating rays thrust::default_random_engine rng = makeSeededRandomEngine(iter, path_index, depth); if (obj_intersect) { pathSegments[path_index].materialIdHit = objMaterialIdx; scatterRay(pathSegments[path_index].ray, pathSegments[path_index].color, intersect_point, normal, materials[objMaterialIdx], rng, softness); } else { pathSegments[path_index].materialIdHit = geoms[hit_geom_index].materialid; scatterRay(pathSegments[path_index].ray, pathSegments[path_index].color, intersect_point, normal, materials[geoms[hit_geom_index].materialid], rng, softness); } if (obj_intersect) { intersections[path_index].t = t_min; intersections[path_index].materialId = objMaterialIdx; intersections[path_index].surfaceNormal = normal; } else { intersections[path_index].t = t_min; intersections[path_index].materialId = geoms[hit_geom_index].materialid; intersections[path_index].surfaceNormal = normal; } } } } } // pathTraceOneBounce handles ray intersections, generate intersections for shading, // This is the KD-tree implementation __global__ void pathTraceOneBounceKD( int depth , int iter , int num_paths , PathSegment * pathSegments , Geom * geoms , int geoms_size , Material * materials , int material_size , ShadeableIntersection * intersections , float softness , KDN::Triangle* triangles , int numTriangles , KDN::KDnode* nodes , int numNodes , bool hasobj ) { int path_index = blockIdx.x * blockDim.x + threadIdx.x; if (path_index < num_paths) { PathSegment pathSegment = pathSegments[path_index]; if (pathSegments[path_index].remainingBounces>0) { float t; glm::vec3 intersect_point; glm::vec3 normal; float t_min = FLT_MAX; int hit_geom_index = -1; bool outside = true; glm::vec3 tmp_intersect; glm::vec3 tmp_normal; glm::vec3 hit; glm::vec3 norm; glm::vec3 bary; glm::vec3 v1; glm::vec3 v2; glm::vec3 v3; glm::vec3 n1; glm::vec3 n2; glm::vec3 n3; int pidxo1 = 0; int pidxo2 = 0; int pidxo3 = 0; bool intersected = false; bool obj_intersect = false; // naive parse through global geoms int objMaterialIdx = -1; for (int i = 0; i < geoms_size; i++) { Geom & geom = geoms[i]; if (geom.type == CUBE) { t = boxIntersectionTest(geom, pathSegment.ray, tmp_intersect, tmp_normal, outside); } else if (geom.type == SPHERE) { t = sphereIntersectionTest(geom, pathSegment.ray, tmp_intersect, tmp_normal, outside); } // Compute the minimum t from the intersection tests to determine what // scene geometry object was hit first. if (t > 0.0f && t_min > t) { t_min = t; hit_geom_index = i; intersect_point = tmp_intersect; normal = tmp_normal; } } objMaterialIdx = -1; int iterator = 0; if (hasobj) { // KDTREE TRAVERSAL float dist = -1.0f; glm::vec3 norm; dist = -1.0f; norm = glm::vec3(0.0f); bool hitGeom = false; Ray r = pathSegment.ray; // USE AN ARRAY OF 0 NODE IDS AND SET THEM TO 1 once they're visited // instead of using visited to avoid conflicts when reading from // multiple threads bool nodeIDs[1000] = { false }; if (numNodes != 0) { float mindist = FLT_MAX; int currID = nodeIDs[nodes[0].ID]; // get the root node for (int i = 0; i < numNodes; i++) { if (nodes[i].parentID == -1) { currID = nodes[i].ID; break; } } float boxdist = -1.0f; while (true) { if (currID == -1) break; // check if it intersects the bounds //printf("1\n"); hitGeom = intersectAABB(r, nodes[currID].bbox, dist); //printf("2\n"); if (hitGeom == false) { nodeIDs[nodes[currID].ID] = true; currID = nodes[currID].parentID; } else { if (nodes[currID].leftID != -1 && nodeIDs[nodes[currID].leftID] != true) currID = nodes[currID].leftID; else if (nodes[currID].rightID != -1 && nodeIDs[nodes[currID].rightID] != true) currID = nodes[currID].rightID; else if (nodeIDs[nodes[currID].ID] == false) { //std::cout << "NODE LOOP: " << nodes[currID].ID << " PARENT: " << nodes[currID].parentID << std::endl; nodeIDs[nodes[currID].ID] = true; int size = nodes[currID].triIdSize; if (size > 0) { int start = nodes[currID].triIdStart; int end = start + size; for (int i = start; i < end; i++) { //KDN::Triangle t = triangles[i]; glm::vec3 v1(triangles[i].x1, triangles[i].y1, triangles[i].z1); glm::vec3 v2(triangles[i].x2, triangles[i].y2, triangles[i].z2); glm::vec3 v3(triangles[i].x3, triangles[i].y3, triangles[i].z3); glm::vec3 barytemp(0.0f, 0.0f, 0.0f); bool intersected = glm::intersectRayTriangle(r.origin, r.direction, v1, v2, v3, barytemp); if (intersected && barytemp.z < mindist) { glm::vec3 bary(barytemp.x, barytemp.y, 1.0 - barytemp.x - barytemp.y); glm::vec3 n1(triangles[i].nx1, triangles[i].ny1, triangles[i].nz1); glm::vec3 n2(triangles[i].nx2, triangles[i].ny2, triangles[i].nz2); glm::vec3 n3(triangles[i].nx3, triangles[i].ny3, triangles[i].nz3); norm = (bary[0] * n1 + bary[1] * n2 + bary[2] * n3); dist = barytemp.z; mindist = dist; //glm::vec3 pos = r.origin + r.direction * dist; glm::vec3 intersect = r.origin + r.direction*dist; //printf("KDLOOPPTR INTERSECT POINT: P: [%f %f %f] NODEID: %d\n", intersect.x, // intersect.y, // intersect.z, // currID); norm = glm::normalize((1 - bary.x - bary.y) * n1 + bary.x * n2 + (bary.y) * n3); //norm(glm::normalize(n1)); //intersect += norm*0.0001f; t = dist; if (t > 0.0f && t_min > t) { t_min = t; hit_geom_index = 0;// obj_materialOffsets[i]; intersect_point = intersect; tmp_intersect = intersect; tmp_normal = norm;//glm::vec3(0.0f, 1.0f, 0.0f); intersections[path_index].t = t; } } } } } else currID = nodes[currID].parentID; } } } if (hit_geom_index != -1) { hit_geom_index = 0; obj_intersect = true; t_min = dist; intersect_point = tmp_intersect; normal = tmp_normal; } } if (hit_geom_index == -1) { intersections[path_index].t = -1.0f; } else { //The ray hits something // updating rays thrust::default_random_engine rng = makeSeededRandomEngine(iter, path_index, depth); if (obj_intersect) { objMaterialIdx = 0; pathSegments[path_index].materialIdHit = objMaterialIdx; scatterRay(pathSegments[path_index].ray, pathSegments[path_index].color, intersect_point, normal, materials[objMaterialIdx], rng, softness); } else { pathSegments[path_index].materialIdHit = geoms[hit_geom_index].materialid; scatterRay(pathSegments[path_index].ray, pathSegments[path_index].color, intersect_point, normal, materials[geoms[hit_geom_index].materialid], rng, softness); } if (obj_intersect) { intersections[path_index].t = t_min; intersections[path_index].materialId = geoms[0].materialid; intersections[path_index].surfaceNormal = normal; } else { intersections[path_index].t = t_min; intersections[path_index].materialId = geoms[hit_geom_index].materialid; intersections[path_index].surfaceNormal = normal; } } } } } __global__ void shadeMaterial( int iter , int num_paths , ShadeableIntersection * shadeableIntersections , PathSegment * pathSegments , Material * materials , bool enablesss ) { int idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx < num_paths) { //idx = pathSegments[idx].initialidx; //idx = pathSegments[idx].pixelIndex; if (pathSegments[idx].remainingBounces>0) { ShadeableIntersection intersection = shadeableIntersections[idx]; if (intersection.t > 0.0f) { // if the intersection exists... // Set up the RNG thrust::default_random_engine rng = makeSeededRandomEngine(iter, idx, 0); thrust::uniform_real_distribution<float> u01(0, 1); Material material = materials[intersection.materialId]; glm::vec3 materialColor = material.color; // If the material indicates that the object was a light, "light" the ray if (material.emittance > 0.0f) { pathSegments[idx].color *= (materialColor * material.emittance); pathSegments[idx].remainingBounces = 0; } // Otherwise, do some pseudo-lighting computation. This is actually more // like what you would expect from shading in a rasterizer like OpenGL. else { if (enablesss && (material.transmittance.x > 0.0f || material.transmittance.y > 0.0f || material.transmittance.z > 0.0f)) { float scenescale = 1.0f; float sss = scenescale * pathSegments[idx].ray.sdepth > 1.0 ? 1.0 : pathSegments[idx].ray.sdepth; sss = 1.0f - sss < 0.0 ? 0.0 : sss; sss = glm::pow(sss, 2); pathSegments[idx].color *= (materialColor)* 1.0f + material.hasRefractive * material.specular.color + sss * material.transmittance; } else if (material.hasRefractive > 0.0f) { pathSegments[idx].color *= (materialColor)* 1.0f + material.hasRefractive * material.specular.color; } else if (material.hasReflective > 0.0f) { pathSegments[idx].color *= (materialColor)* 1.0f + material.hasReflective * material.specular.color; } else { pathSegments[idx].color *= (materialColor) * 1.0f; } pathSegments[idx].remainingBounces--; } } else { pathSegments[idx].color = glm::vec3(0.0f); pathSegments[idx].remainingBounces = 0; } } } } // Add the current iteration's output to the overall image __global__ void finalGather(int nPaths, glm::vec3 * image, PathSegment * iterationPaths) { int index = (blockIdx.x * blockDim.x) + threadIdx.x; if (index < nPaths) { index = iterationPaths[index].pixelIndex; PathSegment iterationPath = iterationPaths[index]; image[iterationPath.pixelIndex] += iterationPath.color; } } // Add the current iteration's output to the current image __global__ void partialGather(int nPaths, glm::vec3 * image, PathSegment * iterationPaths) { int index = (blockIdx.x * blockDim.x) + threadIdx.x; if (index < nPaths) { //index = iterationPaths[index].pixelIndex; if (iterationPaths[index].remainingBounces == 0) { PathSegment iterationPath = iterationPaths[index]; image[iterationPath.pixelIndex] += iterationPath.color; } } } /** * Wrapper for the __global__ call that sets up the kernel calls and does a ton * of memory management */ void pathtrace(uchar4 *pbo, int frame, int iter, float focalLength, float dofAngle, bool cacherays, bool antialias, float softness, bool enableSss, bool testingmode, bool compaction, bool enablekd, bool vizkd, bool usebbox, bool shortstack) { const int traceDepth = hst_scene->state.traceDepth; const Camera &cam = hst_scene->state.camera; const int pixelcount = cam.resolution.x * cam.resolution.y; // 2D block for generating ray from camera const dim3 blockSize2d(8, 8); const dim3 blocksPerGrid2d( (cam.resolution.x + blockSize2d.x - 1) / blockSize2d.x, (cam.resolution.y + blockSize2d.y - 1) / blockSize2d.y); // 1D block for path tracing const int blockSize1d = 32; /////////////////////////////////////////////////////////////////////////// // perform one iteration of path tracing hipEvent_t startGenRayFromCam, stopGenRayFromCam; hipEvent_t startPathTraceOneBounce, stopPathTraceOneBounce; hipEvent_t startShadeMaterial, stopShadeMaterial; float millisecondsGenRayFromCam = 0.0f; float millisecondsPathTraceOneBounce = 0.0f; float millisecondsShadeMaterial = 0.0f; float ms1 = 0.0; float ms2 = 0.0; float ms3 = 0.0; // cache rays if (cacherays) { if (iter == 1) { generateRayFromCamera << <blocksPerGrid2d, blockSize2d >> >(cam, iter, traceDepth, dev_paths_cache, focalLength, dofAngle, antialias); checkCUDAError("generate camera ray"); } hipMemcpy(dev_paths, dev_paths_cache, pixelcount*sizeof(PathSegment), hipMemcpyDeviceToDevice); } else { generateRayFromCamera << <blocksPerGrid2d, blockSize2d >> >(cam, iter, traceDepth, dev_paths, focalLength, dofAngle, antialias); checkCUDAError("generate camera ray"); } int depth = 0; PathSegment* dev_path_end = dev_paths + pixelcount; int num_paths = dev_path_end - dev_paths; int num_paths_temp = num_paths; // --- PathSegment Tracing Stage --- // Shoot ray into scene, bounce between objects, push shading chunks bool iterationComplete = false; while (!iterationComplete) { // clean shading chunks hipMemset(dev_intersections, 0, pixelcount * sizeof(ShadeableIntersection)); // tracing dim3 numblocksPathSegmentTracing = (num_paths + blockSize1d - 1) / blockSize1d; if (testingmode) { hipEventCreate(&startPathTraceOneBounce); hipEventCreate(&stopPathTraceOneBounce); hipEventRecord(startPathTraceOneBounce); } if (enablekd == false) { pathTraceOneBounce << <numblocksPathSegmentTracing, blockSize1d >> > ( depth , iter , num_paths , dev_paths , dev_geoms , hst_scene->geoms.size() , dev_materials , hst_scene->materials.size() , dev_intersections , softness , hst_scene->obj_numshapes , obj_numpolyverts , obj_verts , obj_norms , obj_texts , obj_polyoffsets , obj_polysidxflat , obj_polysbboxes , hst_scene->polyidxcount , obj_materialOffsets , hst_scene->hasObj , usebbox); checkCUDAError("trace one bounce"); ///* //printf("numNodes = %d\n", hst_scene->numNodes); //printf("numTriangles = %d\n", hst_scene->numTriangles); } else { if (vizkd) { pathTraceOneBounceKDbareBoxes << <numblocksPathSegmentTracing, blockSize1d >> > ( depth , iter , num_paths , dev_paths , dev_geoms , hst_scene->geoms.size() , dev_materials , hst_scene->materials.size() , dev_intersections , softness , kd_trianglesBare , hst_scene->numTriangles , kd_nodesBare , hst_scene->numNodes , obj_materialOffsets , hst_scene->hasObj); checkCUDAError("trace one bounce kd"); //hipEventQuery(0); } else { pathTraceOneBounceKDbare << <numblocksPathSegmentTracing, blockSize1d >> > ( depth , iter , num_paths , dev_paths , dev_geoms , hst_scene->geoms.size() , dev_materials , hst_scene->materials.size() , dev_intersections , softness , kd_trianglesBare , hst_scene->numTriangles , kd_nodesBare , hst_scene->numNodes , obj_materialOffsets , hst_scene->hasObj , shortstack); checkCUDAError("trace one bounce kd"); //hipEventQuery(0); } } hipDeviceSynchronize(); depth++; if (testingmode) { hipEventRecord(stopPathTraceOneBounce); hipEventSynchronize(stopPathTraceOneBounce); ms2 = 0; hipEventElapsedTime(&ms2, startPathTraceOneBounce, stopPathTraceOneBounce); millisecondsPathTraceOneBounce += ms2; hipEventDestroy(startPathTraceOneBounce); hipEventDestroy(stopPathTraceOneBounce); } shadeMaterial << <numblocksPathSegmentTracing, blockSize1d >> > ( iter, num_paths, dev_intersections, dev_paths, dev_materials, enableSss ); if (compaction) { dim3 numBlocksPixels = (pixelcount + blockSize1d - 1) / blockSize1d; partialGather << <numBlocksPixels, blockSize1d >> >(num_paths, dev_image, dev_paths); } if (compaction) { thrust::device_ptr<PathSegment> thrust_paths(dev_paths); thrust::device_ptr<PathSegment> P = thrust::remove_if(thrust_paths, thrust_paths + num_paths, is_zero_bounce()); num_paths_temp = P - thrust_paths; num_paths = num_paths_temp; } // after first hit if (iter == 2) { thrust::device_ptr<PathSegment> thrust_paths2(dev_paths); thrust::sort(thrust_paths2, thrust_paths2 + num_paths); thrust::device_ptr<ShadeableIntersection> thrust_intersections(dev_intersections); thrust::sort(thrust_intersections, thrust_intersections + num_paths); } // stop if numpaths is 0 or depth > 8 when testing without compaction if (num_paths <= 0 || depth > 7) iterationComplete = true; } if (testingmode) { printf(" pathTrace time = %f\n", millisecondsPathTraceOneBounce); //printf("%f,\n", millisecondsPathTraceOneBounce); } if (!compaction) { // Assemble this iteration and apply it to the image dim3 numBlocksPixels = (pixelcount + blockSize1d - 1) / blockSize1d; finalGather << <numBlocksPixels, blockSize1d >> >(num_paths, dev_image, dev_paths); } /////////////////////////////////////////////////////////////////////////// sendImageToPBO << <blocksPerGrid2d, blockSize2d >> >(pbo, cam.resolution, iter, dev_image); // Retrieve image from GPU hipMemcpy(hst_scene->state.image.data(), dev_image, pixelcount * sizeof(glm::vec3), hipMemcpyDeviceToHost); checkCUDAError("pathtrace"); }
8b55bc6a45970aa7ccb89308ad337213d2f94cf4.cu
#include <cstdio> #include <cuda.h> #include <cmath> #include <thrust/execution_policy.h> #include <thrust/random.h> #include <thrust/remove.h> #include <thrust/device_ptr.h> #include <thrust/device_vector.h> #include <thrust/host_vector.h> #include <thrust/iterator/zip_iterator.h> #include "sceneStructs.h" #include "scene.h" #include "glm/glm.hpp" #include "glm/gtx/norm.hpp" #include <glm/gtc/matrix_inverse.hpp> #include "utilities.h" #include "pathtrace.h" #include "intersections.h" #include "interactions.h" #include <algorithm> #include <stdlib.h> #include <random> #include <vector> #include <stack> #include <string> #include <fstream> #include <iostream> #include <iomanip> #include <glm/gtx/intersect.hpp> #include "KDnode.h" #include "KDtree.h" #define ERRORCHECK 1 #define FILENAME (strrchr(__FILE__, '/') ? strrchr(__FILE__, '/') + 1 : __FILE__) #define checkCUDAError(msg) checkCUDAErrorFn(msg, FILENAME, __LINE__) void checkCUDAErrorFn(const char *msg, const char *file, int line) { #if ERRORCHECK cudaDeviceSynchronize(); cudaError_t err = cudaGetLastError(); if (cudaSuccess == err) { return; } fprintf(stderr, "CUDA error"); if (file) { fprintf(stderr, " (%s:%d)", file, line); } fprintf(stderr, ": %s: %s\n", msg, cudaGetErrorString(err)); # ifdef _WIN32 getchar(); # endif exit(EXIT_FAILURE); #endif } __host__ __device__ thrust::default_random_engine makeSeededRandomEngine(int iter, int index, int depth) { int h = utilhash((1 << 31) | (depth << 22) | iter) ^ utilhash(index); return thrust::default_random_engine(h); } //Kernel that writes the image to the OpenGL PBO directly. __global__ void sendImageToPBO(uchar4* pbo, glm::ivec2 resolution, int iter, glm::vec3* image) { int x = (blockIdx.x * blockDim.x) + threadIdx.x; int y = (blockIdx.y * blockDim.y) + threadIdx.y; if (x < resolution.x && y < resolution.y) { int index = x + (y * resolution.x); glm::vec3 pix = image[index]; glm::ivec3 color; color.x = glm::clamp((int)(pix.x / iter * 255.0), 0, 255); color.y = glm::clamp((int)(pix.y / iter * 255.0), 0, 255); color.z = glm::clamp((int)(pix.z / iter * 255.0), 0, 255); // Each thread writes one pixel location in the texture (textel) pbo[index].w = 0; pbo[index].x = color.x; pbo[index].y = color.y; pbo[index].z = color.z; } } static Scene * hst_scene = NULL; static glm::vec3 * dev_image = NULL; static Geom * dev_geoms = NULL; static Material * dev_materials = NULL; static PathSegment * dev_paths = NULL; static PathSegment * dev_paths_cache = NULL; static ShadeableIntersection * dev_intersections = NULL; static const int STACK_SIZE = 4000; struct is_zero_bounce { __host__ __device__ bool operator()(const PathSegment p) { return (p.remainingBounces == 0); } }; struct by_material_id { const PathSegment a; by_material_id(PathSegment _a) : a(_a) {} __host__ __device__ int operator()(const PathSegment& x, const PathSegment& y) const { return x.color.r + y.color.r; } }; __host__ __device__ bool operator<(const PathSegment &lhs, const PathSegment &rhs) { return lhs.materialIdHit < rhs.materialIdHit; } __host__ __device__ bool operator<(const ShadeableIntersection &lhs, const ShadeableIntersection &rhs) { return lhs.materialId < rhs.materialId; } struct NodeStack{ KDN::NodeBare* node; float tmin; float tmax; glm::vec3 origin; }; // ------------------------------------------------------------------------ // --------------------------- KD TREE UTILITIES -------------------------- // ------------------------------------------------------------------------ std::vector<KDN::Triangle*> getTrianglesFromFile(const char* path) { std::vector<KDN::Triangle*>triangles; string line; ifstream file(path); if (file.is_open()) { while (getline(file, line)) { float x1 = atof(line.c_str()); getline(file, line); float y1 = atof(line.c_str()); getline(file, line); float z1 = atof(line.c_str()); getline(file, line); float x2 = atof(line.c_str()); getline(file, line); float y2 = atof(line.c_str()); getline(file, line); float z2 = atof(line.c_str()); getline(file, line); float x3 = atof(line.c_str()); getline(file, line); float y3 = atof(line.c_str()); getline(file, line); float z3 = atof(line.c_str()); KDN::Triangle* t = new KDN::Triangle(x1, y1, z1, x2, y2, z2, x3, y3, z3); triangles.push_back(t); } } return triangles; } // ------------------------------------------------------------------------ // --------------------------- END KD TREE UTILITIES ---------------------- // ------------------------------------------------------------------------ int obj_numshapes = 0; int* obj_numpolyverts = NULL; float* obj_verts = NULL; float* obj_norms = NULL; float* obj_texts = NULL; int* obj_polyoffsets = NULL; int* obj_polysidxflat = NULL; float* obj_polysbboxes = NULL; int* obj_materialOffsets = NULL; // KD DATA //KDN::KDnode* kd_nodes = NULL; //KDN::Triangle* kd_triangles = NULL; KDN::NodeBare* kd_nodesBare = NULL; KDN::TriBare* kd_trianglesBare = NULL; static int numNodes = 0; static int numTriangles = 0; void pathtraceInit(Scene *scene, bool enablekd) { hst_scene = scene; const Camera &cam = hst_scene->state.camera; const int pixelcount = cam.resolution.x * cam.resolution.y; cudaMalloc(&dev_image, pixelcount * sizeof(glm::vec3)); cudaMemset(dev_image, 0, pixelcount * sizeof(glm::vec3)); cudaMalloc(&dev_paths, pixelcount * sizeof(PathSegment)); cudaMalloc(&dev_paths_cache, pixelcount * sizeof(PathSegment)); cudaMalloc(&dev_geoms, scene->geoms.size() * sizeof(Geom)); cudaMemcpy(dev_geoms, scene->geoms.data(), scene->geoms.size() * sizeof(Geom), cudaMemcpyHostToDevice); cudaMalloc(&dev_materials, scene->materials.size() * sizeof(Material)); cudaMemcpy(dev_materials, scene->materials.data(), scene->materials.size() * sizeof(Material), cudaMemcpyHostToDevice); cudaMalloc(&dev_intersections, pixelcount * sizeof(ShadeableIntersection)); cudaMemset(dev_intersections, 0, pixelcount * sizeof(ShadeableIntersection)); // objloader part if (scene->hasObj) { if (enablekd == false) { cudaMalloc((void**)&obj_numpolyverts, scene->obj_numshapes * sizeof(int)); cudaMalloc((void**)&obj_polyoffsets, scene->obj_numshapes * sizeof(int)); cudaMalloc((void**)&obj_polysidxflat, scene->polyidxcount * sizeof(int)); cudaMalloc((void**)&obj_verts, scene->objmesh->attrib.vertices.size()* sizeof(float)); cudaMalloc((void**)&obj_norms, scene->objmesh->attrib.normals.size()* sizeof(float)); cudaMalloc((void**)&obj_texts, scene->objmesh->attrib.texcoords.size()* sizeof(float)); cudaMalloc((void**)&obj_polysbboxes, scene->obj_numshapes * 6 * sizeof(float)); } cudaMalloc((void**)&obj_materialOffsets, scene->obj_numshapes * sizeof(int)); // ------------------------------------------------------------------ // KD DATA PART // ------------------------------------------------------------------ if (enablekd == true) { cudaMalloc((void**)&kd_nodesBare, scene->numNodes * sizeof(KDN::NodeBare)); cudaMalloc((void**)&kd_trianglesBare, scene->numTriangles * sizeof(KDN::TriBare)); cudaMemcpy(kd_nodesBare, scene->newNodesBare, scene->numNodes * sizeof(KDN::NodeBare), cudaMemcpyHostToDevice); cudaMemcpy(kd_trianglesBare, scene->newTrianglesBare, scene->numTriangles * sizeof(KDN::TriBare), cudaMemcpyHostToDevice); } else { cudaMemcpy(obj_numpolyverts, scene->obj_numpolyverts, scene->obj_numshapes * sizeof(int), cudaMemcpyHostToDevice); cudaMemcpy(obj_polyoffsets, scene->obj_polyoffsets, scene->obj_numshapes * sizeof(int), cudaMemcpyHostToDevice); cudaMemcpy(obj_polysidxflat, scene->obj_polysidxflat, scene->polyidxcount * sizeof(int), cudaMemcpyHostToDevice); cudaMemcpy(obj_verts, scene->obj_verts, scene->objmesh->attrib.vertices.size()* sizeof(float), cudaMemcpyHostToDevice); cudaMemcpy(obj_norms, scene->obj_norms, scene->objmesh->attrib.normals.size()* sizeof(float), cudaMemcpyHostToDevice); cudaMemcpy(obj_texts, scene->obj_texts, scene->objmesh->attrib.texcoords.size()* sizeof(float), cudaMemcpyHostToDevice); cudaMemcpy(obj_polysbboxes, scene->obj_bboxes, scene->obj_numshapes * 6 * sizeof(float), cudaMemcpyHostToDevice); } cudaMemcpy(obj_materialOffsets, scene->obj_materialOffsets, scene->obj_numshapes * sizeof(int), cudaMemcpyHostToDevice); } /* // compare the compressed sizes printf("sizeof KDnode: %d\n", sizeof(KDN::KDnode)); printf("sizeof KDtriangle: %d\n", sizeof(KDN::Triangle)); printf("sizeof NodeBare: %d\n", sizeof(KDN::NodeBare)); printf("sizeof TriBare: %d\n", sizeof(KDN::TriBare)); // sizeof KDnode: 136 // sizeof KDtriangle: 116 // sizeof NodeBare: 64 // sizeof TriBare: 76 */ checkCUDAError("pathtraceInit"); } void pathtraceFree(Scene *scene, bool enablekd) { cudaFree(dev_image); // no-op if dev_image is null cudaFree(dev_paths); cudaFree(dev_paths_cache); cudaFree(dev_geoms); cudaFree(dev_materials); cudaFree(dev_intersections); // objloader part if (scene->hasObj) { if (enablekd == false) { cudaFree(obj_numpolyverts); cudaFree(obj_polyoffsets); cudaFree(obj_polysidxflat); cudaFree(obj_verts); cudaFree(obj_norms); cudaFree(obj_texts); } cudaFree(obj_materialOffsets); if (enablekd == true) { cudaFree(kd_nodesBare); cudaFree(kd_trianglesBare); } } checkCUDAError("pathtraceFree"); } /** * Generate PathSegments with rays from the camera through the screen into the * scene, which is the first bounce of rays. * * Antialiasing - add rays for sub-pixel sampling * motion blur - jitter rays "in time" * lens effect - jitter ray origin positions based on a lens */ __global__ void generateRayFromCamera(Camera cam, int iter, int traceDepth, PathSegment* pathSegments, float focalLength, float dofAngle, bool antialias) { int x = (blockIdx.x * blockDim.x) + threadIdx.x; int y = (blockIdx.y * blockDim.y) + threadIdx.y; if (x < cam.resolution.x && y < cam.resolution.y) { int index = x + (y * cam.resolution.x); PathSegment & segment = pathSegments[index]; segment.ray.origin = cam.position; segment.color = glm::vec3(1.0f, 1.0f, 1.0f); segment.ray.isinside = false; segment.ray.direction = glm::normalize(cam.view - cam.right * cam.pixelLength.x * ((float)x - (float)cam.resolution.x * 0.5f) - cam.up * cam.pixelLength.y * ((float)y - (float)cam.resolution.y * 0.5f) ); // antialiasing by jittering the ray thrust::default_random_engine rng(utilhash(iter)); thrust::uniform_real_distribution<float> unitDistrib(0, 1); if (antialias) { float jitterscale = 0.002; bool fast = true; if (fast) { // use cheap jitter glm::vec3 v3((float)unitDistrib(rng), (float)unitDistrib(rng), (float)unitDistrib(rng)); v3 = glm::normalize(v3); segment.ray.direction += v3*jitterscale; segment.ray.direction = glm::normalize(segment.ray.direction); } else { // use uniform spherical distribution float u = cos(PI * (float)unitDistrib(rng)); float u2 = u*u; float sqrt1minusu2 = sqrt(1 - u2); float theta = 2 * PI * (float)unitDistrib(rng); glm::vec3 v3(sqrt1minusu2 * cos(theta), sqrt1minusu2 * sin(theta), u); segment.ray.direction += v3*jitterscale; } } // use uniform spherical distribution float u = cos(PI * (float)unitDistrib(rng)); float u2 = u*u; float sqrt1minusu2 = sqrt(1 - u2); float theta = 2 * PI * (float)unitDistrib(rng); glm::vec3 v3(sqrt1minusu2 * cos(theta), sqrt1minusu2 * sin(theta), u); v3 = glm::normalize(v3); glm::vec3 center = cam.position + 8.0f * segment.ray.direction; float R1 = (float)unitDistrib(rng); float R2 = (float)unitDistrib(rng); glm::vec3 front = glm::normalize(cam.lookAt); glm::vec3 up = glm::normalize(cam.up); glm::vec3 right = glm::normalize(cam.right); glm::quat Q1; float randangle = (float)unitDistrib(rng) * PI * dofAngle; Q1.w = cosf(randangle / 2.0f); Q1.x = v3.x * sinf(randangle / 2.0f); Q1.y = v3.y * sinf(randangle / 2.0f); Q1.z = v3.z * sinf(randangle / 2.0f); glm::vec3 randrot = glm::rotate(Q1, segment.ray.direction); segment.ray.origin = segment.ray.origin + segment.ray.direction * focalLength - randrot*focalLength; segment.ray.direction = randrot; segment.ray.direction = glm::normalize(segment.ray.direction); segment.pixelIndex = index; segment.remainingBounces = traceDepth; } } // pathTraceOneBounce handles ray intersections, generate intersections for shading, // and scatter new ray. You might want to call scatterRay from interactions.h __global__ void pathTraceOneBounce( int depth , int iter , int num_paths , PathSegment * pathSegments , Geom * geoms , int geoms_size , Material * materials , int material_size , ShadeableIntersection * intersections , float softness , int obj_numshapes , int* obj_numpolyverts , float* obj_verts , float* obj_norms , float* obj_texts , int* obj_polyoffsets , int* obj_polysidxflat , float* obj_polysbboxes , int polyidxcount , int* obj_materialOffsets , bool hasobj , bool usebbox ) { int path_index = blockIdx.x * blockDim.x + threadIdx.x; if (path_index < num_paths) { PathSegment pathSegment = pathSegments[path_index]; if (pathSegments[path_index].remainingBounces>0) { float t; glm::vec3 intersect_point; glm::vec3 normal; float t_min = FLT_MAX; int hit_geom_index = -1; bool outside = true; glm::vec3 tmp_intersect; glm::vec3 tmp_normal; glm::vec3 hit; glm::vec3 norm; glm::vec3 bary; glm::vec3 v1; glm::vec3 v2; glm::vec3 v3; glm::vec3 n1; glm::vec3 n2; glm::vec3 n3; int pidxo1 = 0; int pidxo2 = 0; int pidxo3 = 0; bool intersected = false; bool obj_intersect = false; // naive parse through global geoms int objMaterialIdx = -1; for (int i = 0; i < geoms_size; i++) { Geom & geom = geoms[i]; if (geom.type == CUBE) { t = boxIntersectionTest(geom, pathSegment.ray, tmp_intersect, tmp_normal, outside); } else if (geom.type == SPHERE) { t = sphereIntersectionTest(geom, pathSegment.ray, tmp_intersect, tmp_normal, outside); } // Compute the minimum t from the intersection tests to determine what // scene geometry object was hit first. if (t > 0.0f && t_min > t) { t_min = t; hit_geom_index = i; intersect_point = tmp_intersect; normal = tmp_normal; } } // start polygon hits objMaterialIdx = -1; int iterator = 0; if (hasobj) { for (int i = 0; i < obj_numshapes; i++) { objMaterialIdx = obj_materialOffsets[i]; // check bounding intersection first float T = -1.0f; if (usebbox) { T = intersectBbox(pathSegment.ray.origin, pathSegment.ray.direction, glm::vec3(obj_polysbboxes[i] - 0.01, obj_polysbboxes[i + 1] - 0.01, obj_polysbboxes[i + 2] - 0.01), glm::vec3(obj_polysbboxes[i + 3] + 0.01, obj_polysbboxes[i + 4] + 0.01, obj_polysbboxes[i + 5] + 0.01)); } else { T = 0; } if (T > -1.0f) { for (int j = iterator; j < iterator + obj_polyoffsets[i]; j += 3) { pidxo1 = 3 * obj_polysidxflat[j]; pidxo2 = 3 * obj_polysidxflat[j + 1]; pidxo3 = 3 * obj_polysidxflat[j + 2]; v1.x = obj_verts[pidxo1]; v1.y = obj_verts[pidxo1 + 1]; v1.z = obj_verts[pidxo1 + 2]; v2.x = obj_verts[pidxo2]; v2.y = obj_verts[pidxo2 + 1]; v2.z = obj_verts[pidxo2 + 2]; v3.x = obj_verts[pidxo3]; v3.y = obj_verts[pidxo3 + 1]; v3.z = obj_verts[pidxo3 + 2]; n1.x = obj_norms[pidxo1]; n1.y = obj_norms[pidxo1 + 1]; n1.z = obj_norms[pidxo1 + 2]; n2.x = obj_norms[pidxo2]; n2.y = obj_norms[pidxo2 + 1]; n2.z = obj_norms[pidxo2 + 2]; n3.x = obj_norms[pidxo3]; n3.y = obj_norms[pidxo3 + 1]; n3.z = obj_norms[pidxo3 + 2]; intersected = false; bary.x = 0.0f; bary.y = 0.0f; bary.z = 0.0f; intersected = glm::intersectRayTriangle(pathSegment.ray.origin, pathSegment.ray.direction, v1, v2, v3, bary); glm::vec3 bary2(bary.x, bary.y, 1.0 - bary.x - bary.y); if (intersected) { hit = pathSegment.ray.origin + pathSegment.ray.direction* bary.z; norm = glm::normalize((1 - bary.x - bary.y) * n1 + bary.x * n2 + (bary.y) * n3); hit += norm*0.0001f; t = glm::distance(pathSegment.ray.origin, hit); if (t > 0.0f && t_min > t) { t_min = t; hit_geom_index = obj_materialOffsets[i]; intersect_point = hit; normal = norm; tmp_intersect = hit; tmp_normal = normal; obj_intersect = true; intersections[path_index].t = t; } } } iterator += obj_polyoffsets[i]; } } } if (hit_geom_index == -1) { intersections[path_index].t = -1.0f; } else { // updating rays thrust::default_random_engine rng = makeSeededRandomEngine(iter, path_index, depth); if (obj_intersect) { pathSegments[path_index].materialIdHit = objMaterialIdx; scatterRay(pathSegments[path_index].ray, pathSegments[path_index].color, intersect_point, normal, materials[objMaterialIdx], rng, softness); } else { pathSegments[path_index].materialIdHit = geoms[hit_geom_index].materialid; scatterRay(pathSegments[path_index].ray, pathSegments[path_index].color, intersect_point, normal, materials[geoms[hit_geom_index].materialid], rng, softness); } if (obj_intersect) { intersections[path_index].t = t_min; intersections[path_index].materialId = objMaterialIdx; intersections[path_index].surfaceNormal = normal; } else { intersections[path_index].t = t_min; intersections[path_index].materialId = geoms[hit_geom_index].materialid; intersections[path_index].surfaceNormal = normal; } } } } } // pathTraceOneBounce handles ray intersections, generate intersections for shading, // and scatter new ray. You might want to call scatterRay from interactions.h __global__ void pathTraceOneBounceKDfix( int depth , int iter , int num_paths , PathSegment * pathSegments , Geom * geoms , int geoms_size , Material * materials , int material_size , ShadeableIntersection * intersections , float softness , KDN::Triangle* triangles , int numTriangles , KDN::KDnode* nodes , int numNodes , int* obj_materialOffsets , bool hasobj ) { int path_index = blockIdx.x * blockDim.x + threadIdx.x; if (path_index < num_paths) { PathSegment pathSegment = pathSegments[path_index]; if (pathSegments[path_index].remainingBounces>0) { float t; glm::vec3 intersect_point; glm::vec3 normal; float t_min = FLT_MAX; int hit_geom_index = -1; bool outside = true; glm::vec3 tmp_intersect; glm::vec3 tmp_normal; glm::vec3 hit; glm::vec3 norm; glm::vec3 bary; glm::vec3 v1; glm::vec3 v2; glm::vec3 v3; glm::vec3 n1; glm::vec3 n2; glm::vec3 n3; int pidxo1 = 0; int pidxo2 = 0; int pidxo3 = 0; bool intersected = false; bool obj_intersect = false; // naive parse through global geoms int objMaterialIdx = -1; for (int i = 0; i < geoms_size; i++) { Geom & geom = geoms[i]; if (geom.type == CUBE) { t = boxIntersectionTest(geom, pathSegment.ray, tmp_intersect, tmp_normal, outside); } else if (geom.type == SPHERE) { t = sphereIntersectionTest(geom, pathSegment.ray, tmp_intersect, tmp_normal, outside); } // Compute the minimum t from the intersection tests to determine what // scene geometry object was hit first. if (t > 0.0f && t_min > t) { t_min = t; hit_geom_index = i; intersect_point = tmp_intersect; normal = tmp_normal; } } objMaterialIdx = -1; int iterator = 0; if (hasobj) { if (numNodes != 0) { bool nodeIDs[100] = { false }; int currID = nodeIDs[nodes[0].ID]; float dist = -1.0; // get the root node for (int i = 0; i < numNodes; i++) { if (nodes[i].parentID == -1) { currID = nodes[i].ID; break; } } KDN::KDnode* node = &(nodes[currID]); bool hitGeom = false; float boxdist = -1.0f; bary.z = FLT_MAX; while (true) { if (currID == -1) break; node = &(nodes[currID]); // check if it intersects the bounds if (nodeIDs[currID] == true) { nodeIDs[node->ID] = true; nodeIDs[node->leftID] = true; nodeIDs[node->rightID] = true; currID = node->parentID; continue; } else { hitGeom = intersectAABB(pathSegment.ray, node->bbox, dist); if (hitGeom == false && node->parentID == -1) break; } if (hitGeom == false && dist > bary.z) { nodeIDs[node->ID] = true; nodeIDs[node->leftID] = true; nodeIDs[node->rightID] = true; currID = node->parentID; } else { if (nodes[currID].leftID != -1 && nodeIDs[nodes[currID].leftID] != true) currID = node->leftID; else if (nodes[currID].rightID != -1 && nodeIDs[nodes[currID].rightID] != true) currID = node->rightID; else if (nodeIDs[node->ID] == false) { nodeIDs[node->ID] = true; int size = node->triIdSize; if (size > 0) { int start = node->triIdStart; int end = start + size; for (int i = start; i < end; i++) { KDN::Triangle* T = &(triangles[i]); glm::vec3 v1(T->x1, T->y1, T->z1); glm::vec3 v2(T->x2, T->y2, T->z2); glm::vec3 v3(T->x3, T->y3, T->z3); glm::vec3 n1(T->nx1, T->ny1, T->nz1); glm::vec3 n2(T->nx2, T->ny2, T->nz2); glm::vec3 n3(T->nx3, T->ny3, T->nz3); bool intersected = glm::intersectRayTriangle(pathSegment.ray.origin, pathSegment.ray.direction, v1, v2, v3, bary); if (intersected) { objMaterialIdx = triangles[i].mtlIdx + material_size - 1; hit = pathSegment.ray.origin + pathSegment.ray.direction* bary.z;// (bary2.x * v1 + bary2.y * v2 + bary2.z * v3); norm = glm::normalize((1 - bary.x - bary.y) * n1 + bary.x * n2 + (bary.y) * n3); hit += norm*0.0001f; t = glm::distance(pathSegment.ray.origin, hit); if (t > 0.0f && t_min > t) { t_min = t; hit_geom_index = obj_materialOffsets[T->mtlIdx]; intersect_point = hit; normal = norm; tmp_intersect = hit; tmp_normal = normal; obj_intersect = true; intersections[path_index].t = t; } } } } } else currID = node->parentID; } } } } if (hit_geom_index == -1) { intersections[path_index].t = -1.0f; } else { thrust::default_random_engine rng = makeSeededRandomEngine(iter, path_index, depth); if (obj_intersect) { pathSegments[path_index].materialIdHit = objMaterialIdx; scatterRay(pathSegments[path_index].ray, pathSegments[path_index].color, intersect_point, normal, materials[objMaterialIdx], rng, softness); } else { pathSegments[path_index].materialIdHit = geoms[hit_geom_index].materialid; scatterRay(pathSegments[path_index].ray, pathSegments[path_index].color, intersect_point, normal, materials[geoms[hit_geom_index].materialid], rng, softness); } if (obj_intersect) { intersections[path_index].t = t_min; intersections[path_index].materialId = objMaterialIdx; intersections[path_index].surfaceNormal = normal; } else { intersections[path_index].t = t_min; intersections[path_index].materialId = geoms[hit_geom_index].materialid; intersections[path_index].surfaceNormal = normal; } } } } } __host__ __device__ void traverseKDbare(KDN::NodeBare* nodes, int numNodes, float& t, PathSegment pathSegment, KDN::TriBare* triangles, glm::vec3& bary, int& objMaterialIdx, int& material_size, glm::vec3& hit, glm::vec3& norm, float& t_min, int& hit_geom_index, glm::vec3& intersect_point, glm::vec3& normal, glm::vec3& tmp_intersect, glm::vec3& tmp_normal, bool& obj_intersect, ShadeableIntersection* intersections, int* obj_materialOffsets, int& path_index) { if (numNodes != 0) { bool nodeIDs[STACK_SIZE] = { false }; int currID = nodeIDs[nodes[0].ID]; float dist = -1.0; // get the root node for (int i = 0; i < numNodes; i++) { if (nodes[i].parentID == -1) { currID = nodes[i].ID; break; } } KDN::NodeBare* node = &(nodes[currID]); bool hitGeom = false; float boxdist = -1.0f; bary.z = FLT_MAX; while (true) { if (currID == -1) break; node = &(nodes[currID]); // check if it intersects the bounds if (hitGeom == false && node->parentID == -1 && nodeIDs[node->ID] == true) break; hitGeom = intersectAABBarrays(pathSegment.ray, nodes[currID].mins, nodes[currID].maxs, dist); if (nodeIDs[currID] == true) { nodeIDs[node->ID] = true; nodeIDs[node->leftID] = true; nodeIDs[node->rightID] = true; currID = node->parentID; continue; } else { // if we reached the top and didn't hit anything if (hitGeom == false && node->parentID == -1) break; } // if the distance is greater than the last poly hit if (hitGeom == false || dist > bary.z) { nodeIDs[node->ID] = true; nodeIDs[node->leftID] = true; nodeIDs[node->rightID] = true; currID = node->parentID; } else { if (nodes[currID].leftID != -1 && nodeIDs[nodes[currID].leftID] != true) currID = node->leftID; else if (nodes[currID].rightID != -1 && nodeIDs[nodes[currID].rightID] != true) currID = node->rightID; else if (nodeIDs[node->ID] == false) { nodeIDs[node->ID] = true; int size = node->triIdSize; if (size > 0) { int start = node->triIdStart; int end = start + size; for (int i = start; i < end; i++) { KDN::TriBare* T = &(triangles[i]); glm::vec3 v1(T->x1, T->y1, T->z1); glm::vec3 v2(T->x2, T->y2, T->z2); glm::vec3 v3(T->x3, T->y3, T->z3); bool intersected = glm::intersectRayTriangle(pathSegment.ray.origin, pathSegment.ray.direction, v1, v2, v3, bary); if (intersected) { glm::vec3 n1(T->nx1, T->ny1, T->nz1); glm::vec3 n2(T->nx2, T->ny2, T->nz2); glm::vec3 n3(T->nx3, T->ny3, T->nz3); objMaterialIdx = triangles[i].mtlIdx + material_size - 1; hit = pathSegment.ray.origin + pathSegment.ray.direction* bary.z; norm = glm::normalize((1 - bary.x - bary.y) * n1 + bary.x * n2 + (bary.y) * n3); hit += norm*0.00001f; t = glm::distance(pathSegment.ray.origin, hit); if (t > 0.0f && t_min > t) { t_min = t; hit_geom_index = obj_materialOffsets[T->mtlIdx]; intersect_point = hit; normal = norm; tmp_intersect = hit; tmp_normal = normal; obj_intersect = true; intersections[path_index].t = t; } } } } } else currID = node->parentID; } } } } __host__ __device__ void traverseKDbareShortHybrid(KDN::NodeBare* nodes, int numNodes, float& t, PathSegment pathSegment, KDN::TriBare* triangles, glm::vec3& bary, int& objMaterialIdx, int& material_size, glm::vec3& hit, glm::vec3& norm, float& t_min, int& hit_geom_index, glm::vec3& intersect_point, glm::vec3& normal, glm::vec3& tmp_intersect, glm::vec3& tmp_normal, bool& obj_intersect, ShadeableIntersection* intersections, int* obj_materialOffsets, int& path_index) { if (numNodes != 0) { bool nodeIDs[STACK_SIZE] = { false }; int currID = nodeIDs[nodes[0].ID]; float dist = -1.0; // get the root node for (int i = 0; i < numNodes; i++) { if (nodes[i].parentID == -1) { currID = nodes[i].ID; break; } } KDN::NodeBare* node = &(nodes[currID]); int axis; float tSplit; bool hitGeom = false; float boxdist = -1.0f; bary.z = FLT_MAX; while (true) { if (currID == -1) break; node = &(nodes[currID]); // check if it intersects the bounds if (hitGeom == false && node->parentID == -1 && nodeIDs[node->ID] == true) break; hitGeom = intersectAABBarrays(pathSegment.ray, nodes[currID].mins, nodes[currID].maxs, dist); if (nodeIDs[currID] == true) { nodeIDs[node->ID] = true; nodeIDs[node->leftID] = true; nodeIDs[node->rightID] = true; currID = node->parentID; continue; } else { // if we reached the top and didn't hit anything if (hitGeom == false && node->parentID == -1) break; } // if the distance is greater than the last poly hit if (hitGeom == false || dist > bary.z) { nodeIDs[node->ID] = true; nodeIDs[node->leftID] = true; nodeIDs[node->rightID] = true; currID = node->parentID; } else { axis = node->axis; if (pathSegment.ray.direction[axis] > 0.0f) { // left side first if (nodes[currID].leftID != -1 && nodeIDs[nodes[currID].leftID] != true) currID = node->leftID; else if (nodes[currID].rightID != -1 && nodeIDs[nodes[currID].rightID] != true) currID = node->rightID; else if (nodeIDs[node->ID] == false) { nodeIDs[node->ID] = true; int size = node->triIdSize; if (size > 0) { int start = node->triIdStart; int end = start + size; for (int i = start; i < end; i++) { KDN::TriBare* T = &(triangles[i]); glm::vec3 v1(T->x1, T->y1, T->z1); glm::vec3 v2(T->x2, T->y2, T->z2); glm::vec3 v3(T->x3, T->y3, T->z3); bool intersected = glm::intersectRayTriangle(pathSegment.ray.origin, pathSegment.ray.direction, v1, v2, v3, bary); if (intersected) { // skip other side nodeIDs[nodes[nodeIDs[node->parentID]].rightID] = true; glm::vec3 n1(T->nx1, T->ny1, T->nz1); glm::vec3 n2(T->nx2, T->ny2, T->nz2); glm::vec3 n3(T->nx3, T->ny3, T->nz3); objMaterialIdx = triangles[i].mtlIdx + material_size - 1; hit = pathSegment.ray.origin + pathSegment.ray.direction* bary.z; norm = glm::normalize((1 - bary.x - bary.y) * n1 + bary.x * n2 + (bary.y) * n3); hit += norm*0.0001f; t = glm::distance(pathSegment.ray.origin, hit); if (t > 0.0f && t_min > t) { t_min = t; hit_geom_index = obj_materialOffsets[T->mtlIdx]; intersect_point = hit; normal = norm; tmp_intersect = hit; tmp_normal = normal; obj_intersect = true; intersections[path_index].t = t; } } } } } else currID = node->parentID; } else { // right side first if (nodes[currID].rightID != -1 && nodeIDs[nodes[currID].rightID] != true) currID = node->rightID; else if (nodes[currID].leftID != -1 && nodeIDs[nodes[currID].leftID] != true) currID = node->leftID; else if (nodeIDs[node->ID] == false) { nodeIDs[node->ID] = true; int size = node->triIdSize; if (size > 0) { int start = node->triIdStart; int end = start + size; for (int i = start; i < end; i++) { KDN::TriBare* T = &(triangles[i]); glm::vec3 v1(T->x1, T->y1, T->z1); glm::vec3 v2(T->x2, T->y2, T->z2); glm::vec3 v3(T->x3, T->y3, T->z3); bool intersected = glm::intersectRayTriangle(pathSegment.ray.origin, pathSegment.ray.direction, v1, v2, v3, bary); if (intersected) { // skip other side nodeIDs[nodes[nodeIDs[node->parentID]].leftID] = true; glm::vec3 n1(T->nx1, T->ny1, T->nz1); glm::vec3 n2(T->nx2, T->ny2, T->nz2); glm::vec3 n3(T->nx3, T->ny3, T->nz3); objMaterialIdx = triangles[i].mtlIdx + material_size - 1; hit = pathSegment.ray.origin + pathSegment.ray.direction* bary.z; norm = glm::normalize((1 - bary.x - bary.y) * n1 + bary.x * n2 + (bary.y) * n3); hit += norm*0.0001f; t = glm::distance(pathSegment.ray.origin, hit); if (t > 0.0f && t_min > t) { t_min = t; hit_geom_index = obj_materialOffsets[T->mtlIdx]; intersect_point = hit; normal = norm; tmp_intersect = hit; tmp_normal = normal; obj_intersect = true; intersections[path_index].t = t; } } } } } else currID = node->parentID; } } } } } __host__ __device__ void traverseKDshort(KDN::NodeBare* nodes, int numNodes, float& t, PathSegment pathSegment, KDN::TriBare* triangles, glm::vec3& bary, int& objMaterialIdx, int& material_size, glm::vec3& hit, glm::vec3& norm, float& t_min, int& hit_geom_index, glm::vec3& intersect_point, glm::vec3& normal, glm::vec3& tmp_intersect, glm::vec3& tmp_normal, bool& obj_intersect, ShadeableIntersection* intersections, int* obj_materialOffsets, int& path_index) { NodeStack stack[STACK_SIZE]; int top = -1; KDN::NodeBare* node; KDN::NodeBare* root; KDN::NodeBare* first; KDN::NodeBare* second; // get the root node for (int i = 0; i < numNodes; i++) { if (nodes[i].parentID == -1) { node = &(nodes[i]); root = &(nodes[i]); break; } } float tMin, tMax, tHit, sceneMax; tMin = tMax = 0.0f; tHit = t_min; sceneMax = FLT_MAX; bool pushdown = false; int axis = 0; float tSplit = 0.0f; float dist = 0.0f; bool bboxintersect = false; while (tMax < sceneMax) { if (top == -1) { node = root; tMin = tMax; tMax = sceneMax; pushdown = true; } else { node = stack[top].node; tMin = node->tmin; tMax = node->tmax; top--; pushdown = false; } while (node->triIdSize != 0) { axis = node->axis; tSplit = (node->splitPos - pathSegment.ray.origin[axis]) / pathSegment.ray.direction[axis]; if (pathSegment.ray.direction[axis] > 0.0f) { if (nodes[node->leftID].mins[axis] < nodes[node->rightID].mins[axis]) { first = &(nodes[node->leftID]); second = &(nodes[node->rightID]); } else { first = &nodes[node->rightID]; second = &nodes[node->leftID]; } } else { if (nodes[node->leftID].maxs[axis] > nodes[node->rightID].maxs[axis]) { first = &(nodes[node->leftID]); second = &(nodes[node->rightID]); } else { first = &(nodes[node->rightID]); second = &(nodes[node->leftID]); } } if (tSplit >= tMax || tSplit < 0.0f) node = first; else if (tSplit <= tMin) node = second; else { second->tmin = tSplit; second->tmax = tMax; top++; if (top <= 199) { stack[top].node = second; stack[top].tmin = tSplit; stack[top].tmax = tMax; } else { break; } node = first; tMax = tSplit; pushdown = false; } if (pushdown) root = node; bboxintersect = intersectAABBarrays(pathSegment.ray, node->mins, node->maxs, dist); if (bboxintersect) { int start = node->triIdStart; int end = start + node->triIdSize; for (int i = start; i < end; i++) { KDN::TriBare* T = &(triangles[i]); glm::vec3 v1(T->x1, T->y1, T->z1); glm::vec3 v2(T->x2, T->y2, T->z2); glm::vec3 v3(T->x3, T->y3, T->z3); bool intersected = glm::intersectRayTriangle(pathSegment.ray.origin, pathSegment.ray.direction, v1, v2, v3, bary); if (intersected) { glm::vec3 n1(T->nx1, T->ny1, T->nz1); glm::vec3 n2(T->nx2, T->ny2, T->nz2); glm::vec3 n3(T->nx3, T->ny3, T->nz3); objMaterialIdx = triangles[i].mtlIdx + material_size - 1; hit = pathSegment.ray.origin + pathSegment.ray.direction* bary.z; norm = -glm::normalize((1 - bary.x - bary.y) * n1 + bary.x * n2 + (bary.y) * n3); hit += norm*0.0001f; t = glm::distance(pathSegment.ray.origin, hit); if (t > 0.0f || t_min > t) { tHit = min(tHit, t); t_min = t; hit_geom_index = obj_materialOffsets[T->mtlIdx]; intersect_point = hit; normal = norm; tmp_intersect = hit; tmp_normal = normal; obj_intersect = true; intersections[path_index].t = t; } } } } } } } __host__ __device__ void traverseKD(KDN::NodeBare* nodes, int numNodes, float& t, PathSegment pathSegment, KDN::TriBare* triangles, glm::vec3& bary, int& objMaterialIdx, int& material_size, glm::vec3& hit, glm::vec3& norm, float& t_min, int& hit_geom_index, glm::vec3& intersect_point, glm::vec3& normal, glm::vec3& tmp_intersect, glm::vec3& tmp_normal, bool& obj_intersect, ShadeableIntersection* intersections, int* obj_materialOffsets, int& path_index) { NodeStack stack[STACK_SIZE]; int top = -1; KDN::NodeBare* node; KDN::NodeBare* root; KDN::NodeBare* first; KDN::NodeBare* second; // get the root node for (int i = 0; i < numNodes; i++) { if (nodes[i].parentID == -1) { node = &(nodes[i]); root = &(nodes[i]); break; } } glm::vec3 origin = pathSegment.ray.origin; glm::vec3 invDirection(1.0f / pathSegment.ray.direction[0], 1.0f / pathSegment.ray.direction[1], 1.0f / pathSegment.ray.direction[2]); float tmax = FLT_MAX; float tClosestIntersection = t_min; bool notFullyTraversed = true; while (notFullyTraversed) { if (node->triIdSize != 0) { //test all primitives inside the leaf float dist = 0.0f; bool bboxintersect = intersectAABBarrays(pathSegment.ray, node->mins, node->maxs, dist); if (bboxintersect) { int start = node->triIdStart; int end = start + node->triIdSize; for (int i = start; i < end; i++) { KDN::TriBare* T = &(triangles[i]); glm::vec3 v1(T->x1, T->y1, T->z1); glm::vec3 v2(T->x2, T->y2, T->z2); glm::vec3 v3(T->x3, T->y3, T->z3); bool intersected = glm::intersectRayTriangle(pathSegment.ray.origin, pathSegment.ray.direction, v1, v2, v3, bary); if (intersected) { glm::vec3 n1(T->nx1, T->ny1, T->nz1); glm::vec3 n2(T->nx2, T->ny2, T->nz2); glm::vec3 n3(T->nx3, T->ny3, T->nz3); objMaterialIdx = triangles[i].mtlIdx + material_size - 1; hit = pathSegment.ray.origin + pathSegment.ray.direction* bary.z; norm = -glm::normalize((1 - bary.x - bary.y) * n1 + bary.x * n2 + (bary.y) * n3); hit += norm*0.0001f; t = glm::distance(pathSegment.ray.origin, hit); if (t > 0.0f && t_min > t) { t_min = t; hit_geom_index = obj_materialOffsets[T->mtlIdx]; intersect_point = hit; normal = norm; tmp_intersect = hit; tmp_normal = normal; obj_intersect = true; intersections[path_index].t = t; //return; } } } } //test if leaf + empty stack => return if (top == -1) { notFullyTraversed = false; } else { //pop all stack origin = stack[top].origin; tmax = stack[top].tmax; node = stack[top].node; top--; } } else { //get axis of node and its split plane const int axis = node->axis; const float plane = node->splitPos; //test if ray is not parallel to plane if ((fabs(pathSegment.ray.direction[axis]) > EPSILON)) { const float t = (plane - origin[axis]) * invDirection[axis]; //case of the ray intersecting the plane, then test both childs if (0.0f < t && t < tmax) { //traverse near first, then far. Set tmax = t for near //push only far child onto stack top++; stack[top].origin[0] = origin[0] + pathSegment.ray.direction[0] * t; stack[top].origin[1] = origin[1] + pathSegment.ray.direction[1] * t; stack[top].origin[2] = origin[2] + pathSegment.ray.direction[2] * t; stack[top].node = (origin[axis] > plane) ? &(nodes[node->leftID]) : &(nodes[node->rightID]); stack[top].tmax = tmax - t; tmax = t; } } //in every case: traverse near child first node = (origin[axis] > plane) ? &(nodes[node->rightID]) : &(nodes[node->leftID]); } } } // pathTraceOneBounce handles ray intersections, generate intersections for shading, // and scatter new ray. You might want to call scatterRay from interactions.h __global__ void pathTraceOneBounceKDbare( int depth , int iter , int num_paths , PathSegment * pathSegments , Geom * geoms , int geoms_size , Material * materials , int material_size , ShadeableIntersection * intersections , float softness , KDN::TriBare* triangles , int numTriangles , KDN::NodeBare* nodes , int numNodes , int* obj_materialOffsets , bool hasobj , bool shortstack ) { int path_index = blockIdx.x * blockDim.x + threadIdx.x; if (path_index < num_paths) { PathSegment pathSegment = pathSegments[path_index]; if (pathSegments[path_index].remainingBounces>0) { float t; glm::vec3 intersect_point; glm::vec3 normal; float t_min = FLT_MAX; int hit_geom_index = -1; bool outside = true; glm::vec3 tmp_intersect; glm::vec3 tmp_normal; glm::vec3 hit; glm::vec3 norm; glm::vec3 bary; glm::vec3 v1; glm::vec3 v2; glm::vec3 v3; glm::vec3 n1; glm::vec3 n2; glm::vec3 n3; int pidxo1 = 0; int pidxo2 = 0; int pidxo3 = 0; bool intersected = false; bool obj_intersect = false; // naive parse through global geoms int objMaterialIdx = -1; for (int i = 0; i < geoms_size; i++) { Geom & geom = geoms[i]; if (geom.type == CUBE) { t = boxIntersectionTest(geom, pathSegment.ray, tmp_intersect, tmp_normal, outside); } else if (geom.type == SPHERE) { t = sphereIntersectionTest(geom, pathSegment.ray, tmp_intersect, tmp_normal, outside); } // Compute the minimum t from the intersection tests to determine what // scene geometry object was hit first. if (t > 0.0f && t_min > t) { t_min = t; hit_geom_index = i; intersect_point = tmp_intersect; normal = tmp_normal; } } objMaterialIdx = -1; int iterator = 0; if (hasobj) { if (shortstack == false) { // standard traversal traverseKDbare(nodes, numNodes, t, pathSegment, triangles, bary, objMaterialIdx, material_size, hit, norm, t_min, hit_geom_index, intersect_point, normal, tmp_intersect, tmp_normal, obj_intersect, intersections, obj_materialOffsets, path_index); } else { // optimized short-stack traversal traverseKDbareShortHybrid(nodes, numNodes, t, pathSegment, triangles, bary, objMaterialIdx, material_size, hit, norm, t_min, hit_geom_index, intersect_point, normal, tmp_intersect, tmp_normal, obj_intersect, intersections, obj_materialOffsets, path_index); } } if (hit_geom_index == -1) { intersections[path_index].t = -1.0f; } else { // updating rays thrust::default_random_engine rng = makeSeededRandomEngine(iter, path_index, depth); if (obj_intersect) { pathSegments[path_index].materialIdHit = objMaterialIdx; scatterRay(pathSegments[path_index].ray, pathSegments[path_index].color, intersect_point, normal, materials[objMaterialIdx], rng, softness); } else { pathSegments[path_index].materialIdHit = geoms[hit_geom_index].materialid; scatterRay(pathSegments[path_index].ray, pathSegments[path_index].color, intersect_point, normal, materials[geoms[hit_geom_index].materialid], rng, softness); } if (obj_intersect) { intersections[path_index].t = t_min; intersections[path_index].materialId = objMaterialIdx; intersections[path_index].surfaceNormal = normal; } else { intersections[path_index].t = t_min; intersections[path_index].materialId = geoms[hit_geom_index].materialid; intersections[path_index].surfaceNormal = normal; } } } } } // pathTraceOneBounce handles ray intersections, generate intersections for shading, // and scatter new ray. You might want to call scatterRay from interactions.h __global__ void pathTraceOneBounceKDbareBoxes( int depth , int iter , int num_paths , PathSegment * pathSegments , Geom * geoms , int geoms_size , Material * materials , int material_size , ShadeableIntersection * intersections , float softness , KDN::TriBare* triangles , int numTriangles , KDN::NodeBare* nodes , int numNodes , int* obj_materialOffsets , bool hasobj ) { int path_index = blockIdx.x * blockDim.x + threadIdx.x; if (path_index < num_paths) { PathSegment pathSegment = pathSegments[path_index]; if (pathSegments[path_index].remainingBounces>0) { float t; glm::vec3 intersect_point; glm::vec3 normal; float t_min = FLT_MAX; int hit_geom_index = -1; bool outside = true; glm::vec3 tmp_intersect; glm::vec3 tmp_normal; glm::vec3 hit; glm::vec3 norm; glm::vec3 bary; glm::vec3 v1; glm::vec3 v2; glm::vec3 v3; glm::vec3 n1; glm::vec3 n2; glm::vec3 n3; int pidxo1 = 0; int pidxo2 = 0; int pidxo3 = 0; bool intersected = false; bool obj_intersect = false; // naive parse through global geoms int objMaterialIdx = -1; for (int i = 0; i < geoms_size; i++) { Geom & geom = geoms[i]; if (geom.type == CUBE) { t = boxIntersectionTest(geom, pathSegment.ray, tmp_intersect, tmp_normal, outside); } else if (geom.type == SPHERE) { t = sphereIntersectionTest(geom, pathSegment.ray, tmp_intersect, tmp_normal, outside); } // Compute the minimum t from the intersection tests to determine what // scene geometry object was hit first. if (t > 0.0f && t_min > t) { t_min = t; hit_geom_index = i; intersect_point = tmp_intersect; normal = tmp_normal; } } objMaterialIdx = -1; int iterator = 0; if (hasobj) { for (int i = 0; i < numNodes; i++) { t = boxIntersectionTestBox(nodes[i].mins, nodes[i].maxs, pathSegment.ray, tmp_intersect, tmp_normal, outside); // Compute the minimum t from the intersection tests to determine what // scene geometry object was hit first. if (t > 0.0f && t_min > t) { t_min = t; hit_geom_index = geoms_size; intersect_point = tmp_intersect; normal = tmp_normal; obj_intersect = true; objMaterialIdx = material_size - 1; } } } if (hit_geom_index == -1) { intersections[path_index].t = -1.0f; } else { // updating rays thrust::default_random_engine rng = makeSeededRandomEngine(iter, path_index, depth); if (obj_intersect) { pathSegments[path_index].materialIdHit = objMaterialIdx; scatterRay(pathSegments[path_index].ray, pathSegments[path_index].color, intersect_point, normal, materials[objMaterialIdx], rng, softness); } else { pathSegments[path_index].materialIdHit = geoms[hit_geom_index].materialid; scatterRay(pathSegments[path_index].ray, pathSegments[path_index].color, intersect_point, normal, materials[geoms[hit_geom_index].materialid], rng, softness); } if (obj_intersect) { intersections[path_index].t = t_min; intersections[path_index].materialId = objMaterialIdx; intersections[path_index].surfaceNormal = normal; } else { intersections[path_index].t = t_min; intersections[path_index].materialId = geoms[hit_geom_index].materialid; intersections[path_index].surfaceNormal = normal; } } } } } // pathTraceOneBounce handles ray intersections, generate intersections for shading, // and scatter new ray. You might want to call scatterRay from interactions.h __global__ void pathTraceOneBounceKDbareShortStack( int depth , int iter , int num_paths , PathSegment * pathSegments , Geom * geoms , int geoms_size , Material * materials , int material_size , ShadeableIntersection * intersections , float softness , KDN::TriBare* triangles , int numTriangles , KDN::NodeBare* nodes , int numNodes , int* obj_materialOffsets , bool hasobj ) { int path_index = blockIdx.x * blockDim.x + threadIdx.x; if (path_index < num_paths) { PathSegment pathSegment = pathSegments[path_index]; if (pathSegments[path_index].remainingBounces>0) { float t = 0.0; glm::vec3 intersect_point; glm::vec3 normal; float t_min = FLT_MAX; int hit_geom_index = -1; bool outside = true; glm::vec3 tmp_intersect; glm::vec3 tmp_normal; glm::vec3 hit; glm::vec3 norm; glm::vec3 bary; glm::vec3 v1; glm::vec3 v2; glm::vec3 v3; glm::vec3 n1; glm::vec3 n2; glm::vec3 n3; int pidxo1 = 0; int pidxo2 = 0; int pidxo3 = 0; bool intersected = false; bool obj_intersect = false; // naive parse through global geoms int objMaterialIdx = -1; for (int i = 0; i < geoms_size; i++) { Geom & geom = geoms[i]; if (geom.type == CUBE) { t = boxIntersectionTest(geom, pathSegment.ray, tmp_intersect, tmp_normal, outside); } else if (geom.type == SPHERE) { t = sphereIntersectionTest(geom, pathSegment.ray, tmp_intersect, tmp_normal, outside); } // Compute the minimum t from the intersection tests to determine what // scene geometry object was hit first. if (t > 0.0f && t_min > t) { t_min = t; hit_geom_index = i; intersect_point = tmp_intersect; normal = tmp_normal; } } objMaterialIdx = -1; int iterator = 0; if (hasobj) { // KD traversal standard short stack traverseKDshort(nodes, numNodes, t, pathSegment, triangles, bary, objMaterialIdx, material_size, hit, norm, t_min, hit_geom_index, intersect_point, normal, tmp_intersect, tmp_normal, obj_intersect, intersections, obj_materialOffsets, path_index); } if (hit_geom_index == -1) { intersections[path_index].t = -1.0f; } else { // updating rays thrust::default_random_engine rng = makeSeededRandomEngine(iter, path_index, depth); if (obj_intersect) { pathSegments[path_index].materialIdHit = objMaterialIdx; scatterRay(pathSegments[path_index].ray, pathSegments[path_index].color, intersect_point, normal, materials[objMaterialIdx], rng, softness); } else { pathSegments[path_index].materialIdHit = geoms[hit_geom_index].materialid; scatterRay(pathSegments[path_index].ray, pathSegments[path_index].color, intersect_point, normal, materials[geoms[hit_geom_index].materialid], rng, softness); } if (obj_intersect) { intersections[path_index].t = t_min; intersections[path_index].materialId = objMaterialIdx; intersections[path_index].surfaceNormal = normal; } else { intersections[path_index].t = t_min; intersections[path_index].materialId = geoms[hit_geom_index].materialid; intersections[path_index].surfaceNormal = normal; } } } } } // pathTraceOneBounce handles ray intersections, generate intersections for shading, // This is the KD-tree implementation __global__ void pathTraceOneBounceKD( int depth , int iter , int num_paths , PathSegment * pathSegments , Geom * geoms , int geoms_size , Material * materials , int material_size , ShadeableIntersection * intersections , float softness , KDN::Triangle* triangles , int numTriangles , KDN::KDnode* nodes , int numNodes , bool hasobj ) { int path_index = blockIdx.x * blockDim.x + threadIdx.x; if (path_index < num_paths) { PathSegment pathSegment = pathSegments[path_index]; if (pathSegments[path_index].remainingBounces>0) { float t; glm::vec3 intersect_point; glm::vec3 normal; float t_min = FLT_MAX; int hit_geom_index = -1; bool outside = true; glm::vec3 tmp_intersect; glm::vec3 tmp_normal; glm::vec3 hit; glm::vec3 norm; glm::vec3 bary; glm::vec3 v1; glm::vec3 v2; glm::vec3 v3; glm::vec3 n1; glm::vec3 n2; glm::vec3 n3; int pidxo1 = 0; int pidxo2 = 0; int pidxo3 = 0; bool intersected = false; bool obj_intersect = false; // naive parse through global geoms int objMaterialIdx = -1; for (int i = 0; i < geoms_size; i++) { Geom & geom = geoms[i]; if (geom.type == CUBE) { t = boxIntersectionTest(geom, pathSegment.ray, tmp_intersect, tmp_normal, outside); } else if (geom.type == SPHERE) { t = sphereIntersectionTest(geom, pathSegment.ray, tmp_intersect, tmp_normal, outside); } // Compute the minimum t from the intersection tests to determine what // scene geometry object was hit first. if (t > 0.0f && t_min > t) { t_min = t; hit_geom_index = i; intersect_point = tmp_intersect; normal = tmp_normal; } } objMaterialIdx = -1; int iterator = 0; if (hasobj) { // KDTREE TRAVERSAL float dist = -1.0f; glm::vec3 norm; dist = -1.0f; norm = glm::vec3(0.0f); bool hitGeom = false; Ray r = pathSegment.ray; // USE AN ARRAY OF 0 NODE IDS AND SET THEM TO 1 once they're visited // instead of using visited to avoid conflicts when reading from // multiple threads bool nodeIDs[1000] = { false }; if (numNodes != 0) { float mindist = FLT_MAX; int currID = nodeIDs[nodes[0].ID]; // get the root node for (int i = 0; i < numNodes; i++) { if (nodes[i].parentID == -1) { currID = nodes[i].ID; break; } } float boxdist = -1.0f; while (true) { if (currID == -1) break; // check if it intersects the bounds //printf("1\n"); hitGeom = intersectAABB(r, nodes[currID].bbox, dist); //printf("2\n"); if (hitGeom == false) { nodeIDs[nodes[currID].ID] = true; currID = nodes[currID].parentID; } else { if (nodes[currID].leftID != -1 && nodeIDs[nodes[currID].leftID] != true) currID = nodes[currID].leftID; else if (nodes[currID].rightID != -1 && nodeIDs[nodes[currID].rightID] != true) currID = nodes[currID].rightID; else if (nodeIDs[nodes[currID].ID] == false) { //std::cout << "NODE LOOP: " << nodes[currID].ID << " PARENT: " << nodes[currID].parentID << std::endl; nodeIDs[nodes[currID].ID] = true; int size = nodes[currID].triIdSize; if (size > 0) { int start = nodes[currID].triIdStart; int end = start + size; for (int i = start; i < end; i++) { //KDN::Triangle t = triangles[i]; glm::vec3 v1(triangles[i].x1, triangles[i].y1, triangles[i].z1); glm::vec3 v2(triangles[i].x2, triangles[i].y2, triangles[i].z2); glm::vec3 v3(triangles[i].x3, triangles[i].y3, triangles[i].z3); glm::vec3 barytemp(0.0f, 0.0f, 0.0f); bool intersected = glm::intersectRayTriangle(r.origin, r.direction, v1, v2, v3, barytemp); if (intersected && barytemp.z < mindist) { glm::vec3 bary(barytemp.x, barytemp.y, 1.0 - barytemp.x - barytemp.y); glm::vec3 n1(triangles[i].nx1, triangles[i].ny1, triangles[i].nz1); glm::vec3 n2(triangles[i].nx2, triangles[i].ny2, triangles[i].nz2); glm::vec3 n3(triangles[i].nx3, triangles[i].ny3, triangles[i].nz3); norm = (bary[0] * n1 + bary[1] * n2 + bary[2] * n3); dist = barytemp.z; mindist = dist; //glm::vec3 pos = r.origin + r.direction * dist; glm::vec3 intersect = r.origin + r.direction*dist; //printf("KDLOOPPTR INTERSECT POINT: P: [%f %f %f] NODEID: %d\n", intersect.x, // intersect.y, // intersect.z, // currID); norm = glm::normalize((1 - bary.x - bary.y) * n1 + bary.x * n2 + (bary.y) * n3); //norm(glm::normalize(n1)); //intersect += norm*0.0001f; t = dist; if (t > 0.0f && t_min > t) { t_min = t; hit_geom_index = 0;// obj_materialOffsets[i]; intersect_point = intersect; tmp_intersect = intersect; tmp_normal = norm;//glm::vec3(0.0f, 1.0f, 0.0f); intersections[path_index].t = t; } } } } } else currID = nodes[currID].parentID; } } } if (hit_geom_index != -1) { hit_geom_index = 0; obj_intersect = true; t_min = dist; intersect_point = tmp_intersect; normal = tmp_normal; } } if (hit_geom_index == -1) { intersections[path_index].t = -1.0f; } else { //The ray hits something // updating rays thrust::default_random_engine rng = makeSeededRandomEngine(iter, path_index, depth); if (obj_intersect) { objMaterialIdx = 0; pathSegments[path_index].materialIdHit = objMaterialIdx; scatterRay(pathSegments[path_index].ray, pathSegments[path_index].color, intersect_point, normal, materials[objMaterialIdx], rng, softness); } else { pathSegments[path_index].materialIdHit = geoms[hit_geom_index].materialid; scatterRay(pathSegments[path_index].ray, pathSegments[path_index].color, intersect_point, normal, materials[geoms[hit_geom_index].materialid], rng, softness); } if (obj_intersect) { intersections[path_index].t = t_min; intersections[path_index].materialId = geoms[0].materialid; intersections[path_index].surfaceNormal = normal; } else { intersections[path_index].t = t_min; intersections[path_index].materialId = geoms[hit_geom_index].materialid; intersections[path_index].surfaceNormal = normal; } } } } } __global__ void shadeMaterial( int iter , int num_paths , ShadeableIntersection * shadeableIntersections , PathSegment * pathSegments , Material * materials , bool enablesss ) { int idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx < num_paths) { //idx = pathSegments[idx].initialidx; //idx = pathSegments[idx].pixelIndex; if (pathSegments[idx].remainingBounces>0) { ShadeableIntersection intersection = shadeableIntersections[idx]; if (intersection.t > 0.0f) { // if the intersection exists... // Set up the RNG thrust::default_random_engine rng = makeSeededRandomEngine(iter, idx, 0); thrust::uniform_real_distribution<float> u01(0, 1); Material material = materials[intersection.materialId]; glm::vec3 materialColor = material.color; // If the material indicates that the object was a light, "light" the ray if (material.emittance > 0.0f) { pathSegments[idx].color *= (materialColor * material.emittance); pathSegments[idx].remainingBounces = 0; } // Otherwise, do some pseudo-lighting computation. This is actually more // like what you would expect from shading in a rasterizer like OpenGL. else { if (enablesss && (material.transmittance.x > 0.0f || material.transmittance.y > 0.0f || material.transmittance.z > 0.0f)) { float scenescale = 1.0f; float sss = scenescale * pathSegments[idx].ray.sdepth > 1.0 ? 1.0 : pathSegments[idx].ray.sdepth; sss = 1.0f - sss < 0.0 ? 0.0 : sss; sss = glm::pow(sss, 2); pathSegments[idx].color *= (materialColor)* 1.0f + material.hasRefractive * material.specular.color + sss * material.transmittance; } else if (material.hasRefractive > 0.0f) { pathSegments[idx].color *= (materialColor)* 1.0f + material.hasRefractive * material.specular.color; } else if (material.hasReflective > 0.0f) { pathSegments[idx].color *= (materialColor)* 1.0f + material.hasReflective * material.specular.color; } else { pathSegments[idx].color *= (materialColor) * 1.0f; } pathSegments[idx].remainingBounces--; } } else { pathSegments[idx].color = glm::vec3(0.0f); pathSegments[idx].remainingBounces = 0; } } } } // Add the current iteration's output to the overall image __global__ void finalGather(int nPaths, glm::vec3 * image, PathSegment * iterationPaths) { int index = (blockIdx.x * blockDim.x) + threadIdx.x; if (index < nPaths) { index = iterationPaths[index].pixelIndex; PathSegment iterationPath = iterationPaths[index]; image[iterationPath.pixelIndex] += iterationPath.color; } } // Add the current iteration's output to the current image __global__ void partialGather(int nPaths, glm::vec3 * image, PathSegment * iterationPaths) { int index = (blockIdx.x * blockDim.x) + threadIdx.x; if (index < nPaths) { //index = iterationPaths[index].pixelIndex; if (iterationPaths[index].remainingBounces == 0) { PathSegment iterationPath = iterationPaths[index]; image[iterationPath.pixelIndex] += iterationPath.color; } } } /** * Wrapper for the __global__ call that sets up the kernel calls and does a ton * of memory management */ void pathtrace(uchar4 *pbo, int frame, int iter, float focalLength, float dofAngle, bool cacherays, bool antialias, float softness, bool enableSss, bool testingmode, bool compaction, bool enablekd, bool vizkd, bool usebbox, bool shortstack) { const int traceDepth = hst_scene->state.traceDepth; const Camera &cam = hst_scene->state.camera; const int pixelcount = cam.resolution.x * cam.resolution.y; // 2D block for generating ray from camera const dim3 blockSize2d(8, 8); const dim3 blocksPerGrid2d( (cam.resolution.x + blockSize2d.x - 1) / blockSize2d.x, (cam.resolution.y + blockSize2d.y - 1) / blockSize2d.y); // 1D block for path tracing const int blockSize1d = 32; /////////////////////////////////////////////////////////////////////////// // perform one iteration of path tracing cudaEvent_t startGenRayFromCam, stopGenRayFromCam; cudaEvent_t startPathTraceOneBounce, stopPathTraceOneBounce; cudaEvent_t startShadeMaterial, stopShadeMaterial; float millisecondsGenRayFromCam = 0.0f; float millisecondsPathTraceOneBounce = 0.0f; float millisecondsShadeMaterial = 0.0f; float ms1 = 0.0; float ms2 = 0.0; float ms3 = 0.0; // cache rays if (cacherays) { if (iter == 1) { generateRayFromCamera << <blocksPerGrid2d, blockSize2d >> >(cam, iter, traceDepth, dev_paths_cache, focalLength, dofAngle, antialias); checkCUDAError("generate camera ray"); } cudaMemcpy(dev_paths, dev_paths_cache, pixelcount*sizeof(PathSegment), cudaMemcpyDeviceToDevice); } else { generateRayFromCamera << <blocksPerGrid2d, blockSize2d >> >(cam, iter, traceDepth, dev_paths, focalLength, dofAngle, antialias); checkCUDAError("generate camera ray"); } int depth = 0; PathSegment* dev_path_end = dev_paths + pixelcount; int num_paths = dev_path_end - dev_paths; int num_paths_temp = num_paths; // --- PathSegment Tracing Stage --- // Shoot ray into scene, bounce between objects, push shading chunks bool iterationComplete = false; while (!iterationComplete) { // clean shading chunks cudaMemset(dev_intersections, 0, pixelcount * sizeof(ShadeableIntersection)); // tracing dim3 numblocksPathSegmentTracing = (num_paths + blockSize1d - 1) / blockSize1d; if (testingmode) { cudaEventCreate(&startPathTraceOneBounce); cudaEventCreate(&stopPathTraceOneBounce); cudaEventRecord(startPathTraceOneBounce); } if (enablekd == false) { pathTraceOneBounce << <numblocksPathSegmentTracing, blockSize1d >> > ( depth , iter , num_paths , dev_paths , dev_geoms , hst_scene->geoms.size() , dev_materials , hst_scene->materials.size() , dev_intersections , softness , hst_scene->obj_numshapes , obj_numpolyverts , obj_verts , obj_norms , obj_texts , obj_polyoffsets , obj_polysidxflat , obj_polysbboxes , hst_scene->polyidxcount , obj_materialOffsets , hst_scene->hasObj , usebbox); checkCUDAError("trace one bounce"); ///* //printf("numNodes = %d\n", hst_scene->numNodes); //printf("numTriangles = %d\n", hst_scene->numTriangles); } else { if (vizkd) { pathTraceOneBounceKDbareBoxes << <numblocksPathSegmentTracing, blockSize1d >> > ( depth , iter , num_paths , dev_paths , dev_geoms , hst_scene->geoms.size() , dev_materials , hst_scene->materials.size() , dev_intersections , softness , kd_trianglesBare , hst_scene->numTriangles , kd_nodesBare , hst_scene->numNodes , obj_materialOffsets , hst_scene->hasObj); checkCUDAError("trace one bounce kd"); //cudaEventQuery(0); } else { pathTraceOneBounceKDbare << <numblocksPathSegmentTracing, blockSize1d >> > ( depth , iter , num_paths , dev_paths , dev_geoms , hst_scene->geoms.size() , dev_materials , hst_scene->materials.size() , dev_intersections , softness , kd_trianglesBare , hst_scene->numTriangles , kd_nodesBare , hst_scene->numNodes , obj_materialOffsets , hst_scene->hasObj , shortstack); checkCUDAError("trace one bounce kd"); //cudaEventQuery(0); } } cudaDeviceSynchronize(); depth++; if (testingmode) { cudaEventRecord(stopPathTraceOneBounce); cudaEventSynchronize(stopPathTraceOneBounce); ms2 = 0; cudaEventElapsedTime(&ms2, startPathTraceOneBounce, stopPathTraceOneBounce); millisecondsPathTraceOneBounce += ms2; cudaEventDestroy(startPathTraceOneBounce); cudaEventDestroy(stopPathTraceOneBounce); } shadeMaterial << <numblocksPathSegmentTracing, blockSize1d >> > ( iter, num_paths, dev_intersections, dev_paths, dev_materials, enableSss ); if (compaction) { dim3 numBlocksPixels = (pixelcount + blockSize1d - 1) / blockSize1d; partialGather << <numBlocksPixels, blockSize1d >> >(num_paths, dev_image, dev_paths); } if (compaction) { thrust::device_ptr<PathSegment> thrust_paths(dev_paths); thrust::device_ptr<PathSegment> P = thrust::remove_if(thrust_paths, thrust_paths + num_paths, is_zero_bounce()); num_paths_temp = P - thrust_paths; num_paths = num_paths_temp; } // after first hit if (iter == 2) { thrust::device_ptr<PathSegment> thrust_paths2(dev_paths); thrust::sort(thrust_paths2, thrust_paths2 + num_paths); thrust::device_ptr<ShadeableIntersection> thrust_intersections(dev_intersections); thrust::sort(thrust_intersections, thrust_intersections + num_paths); } // stop if numpaths is 0 or depth > 8 when testing without compaction if (num_paths <= 0 || depth > 7) iterationComplete = true; } if (testingmode) { printf(" pathTrace time = %f\n", millisecondsPathTraceOneBounce); //printf("%f,\n", millisecondsPathTraceOneBounce); } if (!compaction) { // Assemble this iteration and apply it to the image dim3 numBlocksPixels = (pixelcount + blockSize1d - 1) / blockSize1d; finalGather << <numBlocksPixels, blockSize1d >> >(num_paths, dev_image, dev_paths); } /////////////////////////////////////////////////////////////////////////// sendImageToPBO << <blocksPerGrid2d, blockSize2d >> >(pbo, cam.resolution, iter, dev_image); // Retrieve image from GPU cudaMemcpy(hst_scene->state.image.data(), dev_image, pixelcount * sizeof(glm::vec3), cudaMemcpyDeviceToHost); checkCUDAError("pathtrace"); }
8ea3c76fd1807be75925cb29257bab8840c4270e.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" // SDSC Summer Institute 2018 // Andreas Goetz ([email protected]) // CUDA program to add two vectors in parallel on the GPU // version 2: // launch a fixed number of blocks and threads // // /* FIXME */ comments need modifications // #include<stdio.h> // define vector length, number of blocks NBL and threads per block TPB #define N (255*2047) #define NBL 256 #define TPB 128 // // CUDA device function that adds two integer vectors // __global__ void add(int *a, int *b, int *c, int n){ /* FIXME INSERT HERE CODE TO CALCULATE REQUIRED INDEX AND STRIDE */ while (tid < n) { c[tid] = a[tid] + b[tid]; tid += stride; } } // // main program // int main(void){ int *h_a, *h_b, *h_c; int *d_a, *d_b, *d_c; int size = N * sizeof(int); int i, err; // allocate host memory h_a = (int *) malloc(size); h_b = (int *) malloc(size); h_c = (int *) malloc(size); // allocate device memory hipMalloc((void **)&d_a, size); hipMalloc((void **)&d_b, size); hipMalloc((void **)&d_c, size); // initialize vectors for (i=0; i<N; i++){ h_a[i] = i+1; h_b[i] = i+1; } // copy input data to device hipMemcpy(/* FIXME */); hipMemcpy(/* FIXME */); // add vectors by launching a sufficient number of blocks of the add() kernel printf("\nLaunching vector addition kernel...\n"); printf("Vector length = %d\n",N); printf("Blocks = %d\n",NBL); printf("Threads per block = %d\n",TPB); printf("Kernel copies = %d\n",NBL*TPB); add<<</* FIXME */>>>(d_a, d_b, d_c, N); // copy results back to host hipMemcpy(/* FIXME */); // deallocate memory hipFree(d_a); hipFree(d_b); hipFree(d_c); // check results err = 0; for (i=0; i<N; i++){ if (h_c[i] != 2*(i+1)) err = 1; } if (err != 0){ printf("\n Error, %d elements do not match!\n\n", err); } else { printf("\n Success! All elements match.\n\n"); } // deallocate host memory free(h_a); free(h_b); free(h_c); return err; }
8ea3c76fd1807be75925cb29257bab8840c4270e.cu
// SDSC Summer Institute 2018 // Andreas Goetz ([email protected]) // CUDA program to add two vectors in parallel on the GPU // version 2: // launch a fixed number of blocks and threads // // /* FIXME */ comments need modifications // #include<stdio.h> // define vector length, number of blocks NBL and threads per block TPB #define N (255*2047) #define NBL 256 #define TPB 128 // // CUDA device function that adds two integer vectors // __global__ void add(int *a, int *b, int *c, int n){ /* FIXME INSERT HERE CODE TO CALCULATE REQUIRED INDEX AND STRIDE */ while (tid < n) { c[tid] = a[tid] + b[tid]; tid += stride; } } // // main program // int main(void){ int *h_a, *h_b, *h_c; int *d_a, *d_b, *d_c; int size = N * sizeof(int); int i, err; // allocate host memory h_a = (int *) malloc(size); h_b = (int *) malloc(size); h_c = (int *) malloc(size); // allocate device memory cudaMalloc((void **)&d_a, size); cudaMalloc((void **)&d_b, size); cudaMalloc((void **)&d_c, size); // initialize vectors for (i=0; i<N; i++){ h_a[i] = i+1; h_b[i] = i+1; } // copy input data to device cudaMemcpy(/* FIXME */); cudaMemcpy(/* FIXME */); // add vectors by launching a sufficient number of blocks of the add() kernel printf("\nLaunching vector addition kernel...\n"); printf("Vector length = %d\n",N); printf("Blocks = %d\n",NBL); printf("Threads per block = %d\n",TPB); printf("Kernel copies = %d\n",NBL*TPB); add<<</* FIXME */>>>(d_a, d_b, d_c, N); // copy results back to host cudaMemcpy(/* FIXME */); // deallocate memory cudaFree(d_a); cudaFree(d_b); cudaFree(d_c); // check results err = 0; for (i=0; i<N; i++){ if (h_c[i] != 2*(i+1)) err = 1; } if (err != 0){ printf("\n Error, %d elements do not match!\n\n", err); } else { printf("\n Success! All elements match.\n\n"); } // deallocate host memory free(h_a); free(h_b); free(h_c); return err; }
bf9d261d32f08995700bfde68cc2fbce3bda18e5.hip
// !!! This is a file automatically generated by hipify!!! #include <hip/hip_runtime.h> #include <cstdio> // TODO Improve this kernel. // Create a new file for each new category of optimizations you // successively apply {force_kernel_2.cu, force_kernel_3.cu, ...} __global__ void computeForcesKernel(int N, const double3 *p, double3 *f) { for(int idx = blockIdx.x * blockDim.x + threadIdx.x; idx < N; idx += gridDim.x * blockDim.x){ double f_temp_x = 0.0; double f_temp_y = 0.0; double f_temp_z = 0.0; for (int i = 0; i < N; ++i) { if(i != idx){ double dx = p[i].x - p[idx].x; double dy = p[i].y - p[idx].y; double dz = p[i].z - p[idx].z; double r = sqrt(dx * dx + dy * dy + dz * dz); double inv_r = 1.0 / r; f_temp_x += dx * inv_r * inv_r * inv_r; f_temp_y += dy * inv_r * inv_r * inv_r; f_temp_z += dz * inv_r * inv_r * inv_r; } } f[idx].x = f_temp_x; f[idx].y = f_temp_y; f[idx].z = f_temp_z; } } void computeForces(int N, const double3 *p, double3 *f) { constexpr int numThreads = 1024; int numBlocks = (N + numThreads - 1) / numThreads; hipLaunchKernelGGL(( computeForcesKernel), dim3(numBlocks), dim3(numThreads), 0, 0, N, p, f); }
bf9d261d32f08995700bfde68cc2fbce3bda18e5.cu
#include <cuda_runtime.h> #include <cstdio> // TODO Improve this kernel. // Create a new file for each new category of optimizations you // successively apply {force_kernel_2.cu, force_kernel_3.cu, ...} __global__ void computeForcesKernel(int N, const double3 *p, double3 *f) { for(int idx = blockIdx.x * blockDim.x + threadIdx.x; idx < N; idx += gridDim.x * blockDim.x){ double f_temp_x = 0.0; double f_temp_y = 0.0; double f_temp_z = 0.0; for (int i = 0; i < N; ++i) { if(i != idx){ double dx = p[i].x - p[idx].x; double dy = p[i].y - p[idx].y; double dz = p[i].z - p[idx].z; double r = sqrt(dx * dx + dy * dy + dz * dz); double inv_r = 1.0 / r; f_temp_x += dx * inv_r * inv_r * inv_r; f_temp_y += dy * inv_r * inv_r * inv_r; f_temp_z += dz * inv_r * inv_r * inv_r; } } f[idx].x = f_temp_x; f[idx].y = f_temp_y; f[idx].z = f_temp_z; } } void computeForces(int N, const double3 *p, double3 *f) { constexpr int numThreads = 1024; int numBlocks = (N + numThreads - 1) / numThreads; computeForcesKernel<<<numBlocks, numThreads>>>(N, p, f); }
51b7476998d493219ff5137fe88d2441a759a0bd.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "includes.h" __global__ void updateLagrangeMultiplierKernel4ADMM(float* u, float* v, float* lam, float* temp, float mu, uint32_t w, uint32_t h, uint32_t nc) { uint32_t x = threadIdx.x + blockDim.x * blockIdx.x; uint32_t y = threadIdx.y + blockDim.y * blockIdx.y; uint32_t c = threadIdx.z + blockDim.z * blockIdx.z; if(x < w && y < h && c < nc) { uint32_t index = x + w * y + w * h * c; temp[index] = u[index] - v[index]; lam[index] = lam[index] + temp[index] * mu; } }
51b7476998d493219ff5137fe88d2441a759a0bd.cu
#include "includes.h" __global__ void updateLagrangeMultiplierKernel4ADMM(float* u, float* v, float* lam, float* temp, float mu, uint32_t w, uint32_t h, uint32_t nc) { uint32_t x = threadIdx.x + blockDim.x * blockIdx.x; uint32_t y = threadIdx.y + blockDim.y * blockIdx.y; uint32_t c = threadIdx.z + blockDim.z * blockIdx.z; if(x < w && y < h && c < nc) { uint32_t index = x + w * y + w * h * c; temp[index] = u[index] - v[index]; lam[index] = lam[index] + temp[index] * mu; } }
f89efd99c8ad8b6c4b19cd5d3ab3f5c14f70ca5b.hip
// !!! This is a file automatically generated by hipify!!! /* -- MAGMA (version 1.5.0) -- Univ. of Tennessee, Knoxville Univ. of California, Berkeley Univ. of Colorado, Denver @date September 2014 @generated from zgesellcmv.cu normal z -> s, Wed Sep 17 15:08:43 2014 */ #include "hip/hip_runtime.h" #include <stdio.h> #include "common_magma.h" #if (GPUSHMEM < 200) #define BLOCK_SIZE 128 #else #define BLOCK_SIZE 512 #endif #define PRECISION_s // SELLC SpMV kernel // see paper by M. KREUTZER, G. HAGER, G WELLEIN, H. FEHSKE A. BISHOP // A UNIFIED SPARSE MATRIX DATA FORMAT // FOR MODERN PROCESSORS WITH WIDE SIMD UNITS __global__ void sgesellcmv_kernel( int num_rows, int num_cols, int blocksize, float alpha, float *d_val, magma_index_t *d_colind, magma_index_t *d_rowptr, float *d_x, float beta, float *d_y) { // threads assigned to rows int Idx = blockDim.x * blockIdx.x + threadIdx.x ; int offset = d_rowptr[ blockIdx.x ]; int border = (d_rowptr[ blockIdx.x+1 ]-offset)/blocksize; if(Idx < num_rows ){ float dot = MAGMA_S_MAKE(0.0, 0.0); for ( int n = 0; n < border; n++){ int col = d_colind [offset+ blocksize * n + threadIdx.x ]; float val = d_val[offset+ blocksize * n + threadIdx.x]; if( val != 0){ dot=dot+val*d_x[col]; } } d_y[ Idx ] = dot * alpha + beta * d_y [ Idx ]; } } /** Purpose ------- This routine computes y = alpha * A^t * x + beta * y on the GPU. Input format is SELLC/SELLP. Arguments --------- @param transA magma_trans_t transposition parameter for A @param m magma_int_t number of rows in A @param n magma_int_t number of columns in A @param blocksize magma_int_t number of rows in one ELL-slice @param slices magma_int_t number of slices in matrix @param alignment magma_int_t number of threads assigned to one row (=1) @param alpha float scalar multiplier @param d_val float* array containing values of A in SELLC/P @param d_colind magma_int_t* columnindices of A in SELLC/P @param d_rowptr magma_int_t* rowpointer of SELLP @param d_x float* input vector x @param beta float scalar multiplier @param d_y float* input/output vector y @ingroup magmasparse_sblas ********************************************************************/ extern "C" magma_int_t magma_sgesellcmv( magma_trans_t transA, magma_int_t m, magma_int_t n, magma_int_t blocksize, magma_int_t slices, magma_int_t alignment, float alpha, float *d_val, magma_index_t *d_colind, magma_index_t *d_rowptr, float *d_x, float beta, float *d_y ){ // the kernel can only handle up to 65535 slices // (~2M rows for blocksize 32) dim3 grid( slices, 1, 1); hipLaunchKernelGGL(( sgesellcmv_kernel), dim3(grid), dim3(blocksize), 0, magma_stream , m, n, blocksize, alpha, d_val, d_colind, d_rowptr, d_x, beta, d_y ); return MAGMA_SUCCESS; }
f89efd99c8ad8b6c4b19cd5d3ab3f5c14f70ca5b.cu
/* -- MAGMA (version 1.5.0) -- Univ. of Tennessee, Knoxville Univ. of California, Berkeley Univ. of Colorado, Denver @date September 2014 @generated from zgesellcmv.cu normal z -> s, Wed Sep 17 15:08:43 2014 */ #include "cuda_runtime.h" #include <stdio.h> #include "common_magma.h" #if (GPUSHMEM < 200) #define BLOCK_SIZE 128 #else #define BLOCK_SIZE 512 #endif #define PRECISION_s // SELLC SpMV kernel // see paper by M. KREUTZER, G. HAGER, G WELLEIN, H. FEHSKE A. BISHOP // A UNIFIED SPARSE MATRIX DATA FORMAT // FOR MODERN PROCESSORS WITH WIDE SIMD UNITS __global__ void sgesellcmv_kernel( int num_rows, int num_cols, int blocksize, float alpha, float *d_val, magma_index_t *d_colind, magma_index_t *d_rowptr, float *d_x, float beta, float *d_y) { // threads assigned to rows int Idx = blockDim.x * blockIdx.x + threadIdx.x ; int offset = d_rowptr[ blockIdx.x ]; int border = (d_rowptr[ blockIdx.x+1 ]-offset)/blocksize; if(Idx < num_rows ){ float dot = MAGMA_S_MAKE(0.0, 0.0); for ( int n = 0; n < border; n++){ int col = d_colind [offset+ blocksize * n + threadIdx.x ]; float val = d_val[offset+ blocksize * n + threadIdx.x]; if( val != 0){ dot=dot+val*d_x[col]; } } d_y[ Idx ] = dot * alpha + beta * d_y [ Idx ]; } } /** Purpose ------- This routine computes y = alpha * A^t * x + beta * y on the GPU. Input format is SELLC/SELLP. Arguments --------- @param transA magma_trans_t transposition parameter for A @param m magma_int_t number of rows in A @param n magma_int_t number of columns in A @param blocksize magma_int_t number of rows in one ELL-slice @param slices magma_int_t number of slices in matrix @param alignment magma_int_t number of threads assigned to one row (=1) @param alpha float scalar multiplier @param d_val float* array containing values of A in SELLC/P @param d_colind magma_int_t* columnindices of A in SELLC/P @param d_rowptr magma_int_t* rowpointer of SELLP @param d_x float* input vector x @param beta float scalar multiplier @param d_y float* input/output vector y @ingroup magmasparse_sblas ********************************************************************/ extern "C" magma_int_t magma_sgesellcmv( magma_trans_t transA, magma_int_t m, magma_int_t n, magma_int_t blocksize, magma_int_t slices, magma_int_t alignment, float alpha, float *d_val, magma_index_t *d_colind, magma_index_t *d_rowptr, float *d_x, float beta, float *d_y ){ // the kernel can only handle up to 65535 slices // (~2M rows for blocksize 32) dim3 grid( slices, 1, 1); sgesellcmv_kernel<<< grid, blocksize, 0, magma_stream >>> ( m, n, blocksize, alpha, d_val, d_colind, d_rowptr, d_x, beta, d_y ); return MAGMA_SUCCESS; }
c79a0648816e516228d57e6b96eccb267212b962.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "includes.h" __global__ void kernel_fill(float4* d_dx1, float val, int numel) { size_t col = threadIdx.x + blockIdx.x * blockDim.x; if (col >= numel) { return; } d_dx1[col].x = val; d_dx1[col].y = val; d_dx1[col].z = val; d_dx1[col].w = val; }
c79a0648816e516228d57e6b96eccb267212b962.cu
#include "includes.h" __global__ void kernel_fill(float4* d_dx1, float val, int numel) { size_t col = threadIdx.x + blockIdx.x * blockDim.x; if (col >= numel) { return; } d_dx1[col].x = val; d_dx1[col].y = val; d_dx1[col].z = val; d_dx1[col].w = val; }
2316901dbe0db28081b25bc3ad137c6ded926796.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "../../gpu_utils/gpu_utils.h" #include <stddef.h> #include <stdint.h> #include "bondarenko_2004.h" __global__ void kernel_set_model_initial_conditions(real *sv, int num_volumes, size_t pitch, bool use_adpt_dt, real min_dt) { int threadID = blockDim.x * blockIdx.x + threadIdx.x; if (threadID < num_volumes) { *((real * )((char *) sv + pitch * 0) + threadID) = -82.4202f; // V millivolt *((real * )((char *) sv + pitch * 1) + threadID) = 0.115001; // Cai micromolar *((real * )((char *) sv + pitch * 2) + threadID) = 0.115001; // Cass micromolar *((real * )((char *) sv + pitch * 3) + threadID) = 1299.5; // CaJSR micromolar *((real * )((char *) sv + pitch * 4) + threadID) = 1299.5; // CaNSR micromolar *((real * )((char *) sv + pitch * 5) + threadID) = 0.0; // P_RyR dimensionless *((real * )((char *) sv + pitch * 6) + threadID) = 11.2684; // LTRPN_Ca micromolar *((real * )((char *) sv + pitch * 7) + threadID) = 125.29; // HTRPN_Ca micromolar *((real * )((char *) sv + pitch * 8) + threadID) = 0.149102e-4; // P_O1 dimensionless *((real * )((char *) sv + pitch * 9) + threadID) = 0.951726e-10; // P_O2 dimensionless *((real * )((char *) sv + pitch * 10) + threadID) = 0.16774e-3; // P_C2 dimensionless *((real * )((char *) sv + pitch * 11) + threadID) = 0.930308e-18; // O dimensionless *((real * )((char *) sv + pitch * 12) + threadID) = 0.124216e-3; // C2 dimensionless *((real * )((char *) sv + pitch * 13) + threadID) = 0.578679e-8; // C3 dimensionless *((real * )((char *) sv + pitch * 14) + threadID) = 0.119816e-12; // C4 dimensionless *((real * )((char *) sv + pitch * 15) + threadID) = 0.497923e-18; // I1 dimensionless *((real * )((char *) sv + pitch * 16) + threadID) = 0.345847e-13; // I2 dimensionless *((real * )((char *) sv + pitch * 17) + threadID) = 0.185106e-13; // I3 dimensionless *((real * )((char *) sv + pitch * 18) + threadID) = 14237.1; // Nai micromolar *((real * )((char *) sv + pitch * 19) + threadID) = 0.020752; // C_Na2 dimensionless *((real * )((char *) sv + pitch * 20) + threadID) = 0.279132e-3; // C_Na1 dimensionless *((real * )((char *) sv + pitch * 21) + threadID) = 0.713483e-6; // O_Na dimensionless *((real * )((char *) sv + pitch * 22) + threadID) = 0.153176e-3; // IF_Na dimensionless *((real * )((char *) sv + pitch * 23) + threadID) = 0.673345e-6; // I1_Na dimensionless *((real * )((char *) sv + pitch * 24) + threadID) = 0.155787e-8; // I2_Na dimensionless *((real * )((char *) sv + pitch * 25) + threadID) = 0.0113879; // IC_Na2 dimensionless *((real * )((char *) sv + pitch * 26) + threadID) = 0.34278; // IC_Na3 dimensionless *((real * )((char *) sv + pitch * 27) + threadID) = 143720.0; // Ki micromolar *((real * )((char *) sv + pitch * 28) + threadID) = 0.265563e-2; // ato_f dimensionless *((real * )((char *) sv + pitch * 29) + threadID) = 0.999977; // ito_f dimensionless *((real * )((char *) sv + pitch * 30) + threadID) = 0.417069e-3; // ato_s dimensionless *((real * )((char *) sv + pitch * 31) + threadID) = 0.998543; // ito_s dimensionless *((real * )((char *) sv + pitch * 32) + threadID) = 0.262753e-3; // nKs dimensionless *((real * )((char *) sv + pitch * 33) + threadID) = 0.417069e-3; // aur dimensionless *((real * )((char *) sv + pitch * 34) + threadID) = 0.998543; // iur dimensionless *((real * )((char *) sv + pitch * 35) + threadID) = 0.417069e-3; // aKss dimensionless *((real * )((char *) sv + pitch * 36) + threadID) = 1.0; // iKss dimensionless *((real * )((char *) sv + pitch * 37) + threadID) = 0.641229e-3; // C_K2 dimensionless *((real * )((char *) sv + pitch * 38) + threadID) = 0.992513e-3; // C_K1 dimensionless *((real * )((char *) sv + pitch * 39) + threadID) = 0.175298e-3; // O_K dimensionless *((real * )((char *) sv + pitch * 40) + threadID) = 0.319129e-4; // I_K dimensionless if(use_adpt_dt) { *((real *)((char *)sv + pitch * NEQ) + threadID) = min_dt; // dt *((real *)((char *)sv + pitch * (NEQ + 1)) + threadID) = 0.0; // time_new *((real *)((char *)sv + pitch * (NEQ + 2)) + threadID) = 0.0; // previous dt } } } inline __device__ void RHS_gpu(real *sv, real *rDY, real stim_current, int thread_id, real dt, size_t pitch, bool use_adpt_dt) { // State variables real V_old_; real Cai_old_; real Cass_old_; real CaJSR_old_; real CaNSR_old_; real P_RyR_old_; real LTRPN_Ca_old_; real HTRPN_Ca_old_; real P_O1_old_; real P_O2_old_; real P_C2_old_; real O_old_; real C2_old_; real C3_old_; real C4_old_; real I1_old_; real I2_old_; real I3_old_; real Nai_old_; real C_Na2_old_; real C_Na1_old_; real O_Na_old_; real IF_Na_old_; real I1_Na_old_; real I2_Na_old_; real IC_Na2_old_; real IC_Na3_old_; real Ki_old_; real ato_f_old_; real ito_f_old_; real ato_s_old_; real ito_s_old_; real nKs_old_; real aur_old_; real iur_old_; real aKss_old_; real iKss_old_; real C_K2_old_; real C_K1_old_; real O_K_old_; real I_K_old_; if(use_adpt_dt) { V_old_ = sv[0]; // initial value = -82.4202 millivolt Cai_old_ = sv[1]; // initial value = 0.115001 micromolar Cass_old_ = sv[2]; // initial value = 0.115001 micromolar CaJSR_old_ = sv[3]; // initial value = 1299.5 micromolar CaNSR_old_ = sv[4]; // initial value = 1299.5 micromolar P_RyR_old_ = sv[5]; // initial value = 0 dimensionless LTRPN_Ca_old_ = sv[6]; // initial value = 11.2684 micromolar HTRPN_Ca_old_ = sv[7]; // initial value = 125.29 micromolar P_O1_old_ = sv[8]; // initial value = 0.149102e-4 dimensionless P_O2_old_ = sv[9]; // initial value = 0.951726e-10 dimensionless P_C2_old_ = sv[10]; // initial value = 0.16774e-3 dimensionless O_old_ = sv[11]; // initial value = 0.930308e-18 dimensionless C2_old_ = sv[12]; // initial value = 0.124216e-3 dimensionless C3_old_ = sv[13]; // initial value = 0.578679e-8 dimensionless C4_old_ = sv[14]; // initial value = 0.119816e-12 dimensionless I1_old_ = sv[15]; // initial value = 0.497923e-18 dimensionless I2_old_ = sv[16]; // initial value = 0.345847e-13 dimensionless I3_old_ = sv[17]; // initial value = 0.185106e-13 dimensionless Nai_old_ = sv[18]; // initial value = 14237.1 micromolar C_Na2_old_ = sv[19]; // initial value = 0.020752 dimensionless C_Na1_old_ = sv[20]; // initial value = 0.279132e-3 dimensionless O_Na_old_ = sv[21]; // initial value = 0.713483e-6 dimensionless IF_Na_old_ = sv[22]; // initial value = 0.153176e-3 dimensionless I1_Na_old_ = sv[23]; // initial value = 0.673345e-6 dimensionless I2_Na_old_ = sv[24]; // initial value = 0.155787e-8 dimensionless IC_Na2_old_ = sv[25]; // initial value = 0.0113879 dimensionless IC_Na3_old_ = sv[26]; // initial value = 0.34278 dimensionless Ki_old_ = sv[27]; // initial value = 143720 micromolar ato_f_old_ = sv[28]; // initial value = 0.265563e-2 dimensionless ito_f_old_ = sv[29]; // initial value = 0.999977 dimensionless ato_s_old_ = sv[30]; // initial value = 0.417069e-3 dimensionless ito_s_old_ = sv[31]; // initial value = 0.998543 dimensionless nKs_old_ = sv[32]; // initial value = 0.262753e-3 dimensionless aur_old_ = sv[33]; // initial value = 0.417069e-3 dimensionless iur_old_ = sv[34]; // initial value = 0.998543 dimensionless aKss_old_ = sv[35]; // initial value = 0.417069e-3 dimensionless iKss_old_ = sv[36]; // initial value = 1 dimensionless C_K2_old_ = sv[37]; // initial value = 0.641229e-3 dimensionless C_K1_old_ = sv[38]; // initial value = 0.992513e-3 dimensionless O_K_old_ = sv[39]; // initial value = 0.175298e-3 dimensionless I_K_old_ = sv[40]; // initial value = 0.319129e-4 dimensionless } else { V_old_ = *((real *)((char *)sv + pitch * 0) + thread_id); // initial value = -82.4202 millivolt Cai_old_ = *((real *)((char *)sv + pitch * 1) + thread_id); // initial value = 0.115001 micromolar Cass_old_ = *((real *)((char *)sv + pitch * 2) + thread_id); // initial value = 0.115001 micromolar CaJSR_old_ = *((real *)((char *)sv + pitch * 3) + thread_id); // initial value = 1299.5 micromolar CaNSR_old_ = *((real *)((char *)sv + pitch * 4) + thread_id); // initial value = 1299.5 micromolar P_RyR_old_ = *((real *)((char *)sv + pitch * 5) + thread_id); // initial value = 0 dimensionless LTRPN_Ca_old_ = *((real *)((char *)sv + pitch * 6) + thread_id); // initial value = 11.2684 micromolar HTRPN_Ca_old_ = *((real *)((char *)sv + pitch * 7) + thread_id); // initial value = 125.29 micromolar P_O1_old_ = *((real *)((char *)sv + pitch * 8) + thread_id); // initial value = 0.149102e-4 dimensionless P_O2_old_ = *((real *)((char *)sv + pitch * 9) + thread_id); // initial value = 0.951726e-10 dimensionless P_C2_old_ = *((real *)((char *)sv + pitch * 10) + thread_id); // initial value = 0.16774e-3 dimensionless O_old_ = *((real *)((char *)sv + pitch * 11) + thread_id); // initial value = 0.930308e-18 dimensionless C2_old_ = *((real *)((char *)sv + pitch * 12) + thread_id); // initial value = 0.124216e-3 dimensionless C3_old_ = *((real *)((char *)sv + pitch * 13) + thread_id); // initial value = 0.578679e-8 dimensionless C4_old_ = *((real *)((char *)sv + pitch * 14) + thread_id); // initial value = 0.119816e-12 dimensionless I1_old_ = *((real *)((char *)sv + pitch * 15) + thread_id); // initial value = 0.497923e-18 dimensionless I2_old_ = *((real *)((char *)sv + pitch * 16) + thread_id); // initial value = 0.345847e-13 dimensionless I3_old_ = *((real *)((char *)sv + pitch * 17) + thread_id); // initial value = 0.185106e-13 dimensionless Nai_old_ = *((real *)((char *)sv + pitch * 18) + thread_id); // initial value = 14237.1 micromolar C_Na2_old_ = *((real *)((char *)sv + pitch * 19) + thread_id); // initial value = 0.020752 dimensionless C_Na1_old_ = *((real *)((char *)sv + pitch * 20) + thread_id); // initial value = 0.279132e-3 dimensionless O_Na_old_ = *((real *)((char *)sv + pitch * 21) + thread_id); // initial value = 0.713483e-6 dimensionless IF_Na_old_ = *((real *)((char *)sv + pitch * 22) + thread_id); // initial value = 0.153176e-3 dimensionless I1_Na_old_ = *((real *)((char *)sv + pitch * 23) + thread_id); // initial value = 0.673345e-6 dimensionless I2_Na_old_ = *((real *)((char *)sv + pitch * 24) + thread_id); // initial value = 0.155787e-8 dimensionless IC_Na2_old_ = *((real *)((char *)sv + pitch * 25) + thread_id); // initial value = 0.0113879 dimensionless IC_Na3_old_ = *((real *)((char *)sv + pitch * 26) + thread_id); // initial value = 0.34278 dimensionless Ki_old_ = *((real *)((char *)sv + pitch * 27) + thread_id); // initial value = 143720 micromolar ato_f_old_ = *((real *)((char *)sv + pitch * 28) + thread_id); // initial value = 0.265563e-2 dimensionless ito_f_old_ = *((real *)((char *)sv + pitch * 29) + thread_id); // initial value = 0.999977 dimensionless ato_s_old_ = *((real *)((char *)sv + pitch * 30) + thread_id); // initial value = 0.417069e-3 dimensionless ito_s_old_ = *((real *)((char *)sv + pitch * 31) + thread_id); // initial value = 0.998543 dimensionless nKs_old_ = *((real *)((char *)sv + pitch * 32) + thread_id); // initial value = 0.262753e-3 dimensionless aur_old_ = *((real *)((char *)sv + pitch * 33) + thread_id); // initial value = 0.417069e-3 dimensionless iur_old_ = *((real *)((char *)sv + pitch * 34) + thread_id); // initial value = 0.998543 dimensionless aKss_old_ = *((real *)((char *)sv + pitch * 35) + thread_id); // initial value = 0.417069e-3 dimensionless iKss_old_ = *((real *)((char *)sv + pitch * 36) + thread_id); // initial value = 1 dimensionless C_K2_old_ = *((real *)((char *)sv + pitch * 37) + thread_id); // initial value = 0.641229e-3 dimensionless C_K1_old_ = *((real *)((char *)sv + pitch * 38) + thread_id); // initial value = 0.992513e-3 dimensionless O_K_old_ = *((real *)((char *)sv + pitch * 39) + thread_id); // initial value = 0.175298e-3 dimensionless I_K_old_ = *((real *)((char *)sv + pitch * 40) + thread_id); // initial value = 0.319129e-4 dimensionless } // Parameters const real Acap = 1.534e-4f; // cm2 const real Cm = 1.0f; // microF_per_cm2 const real Vmyo = 25.84e-6f; // microlitre const real F = 96.5f; // coulomb_per_millimole const real VJSR = 0.12e-6f; // microlitre const real Vss = 1.485e-9f; // microlitre const real VNSR = 2.098e-6f; // microlitre const real CMDN_tot = 50.0f; // micromolar const real Km_CMDN = 0.238f; // micromolar const real CSQN_tot = 15000.0f; // micromolar const real Km_CSQN = 800.0f; // micromolar const real v1 = 4.5f; // per_millisecond const real tau_tr = 20.0f; // millisecond const real tau_xfer = 8.0f; // millisecond const real v2 = 1.74e-5f; // per_millisecond const real v3 = 0.45f; // micromolar_per_millisecond const real Km_up = 0.5f; // micromolar const real k_plus_htrpn = 0.00237f; // per_micromolar_millisecond const real HTRPN_tot = 140.0f; // micromolar const real k_plus_ltrpn = 0.0327f; // per_micromolar_millisecond const real LTRPN_tot = 70.0f; // micromolar const real k_minus_htrpn = 3.2e-5f; // per_millisecond const real k_minus_ltrpn = 0.0196f; // per_millisecond const real i_CaL_max = 7.0f; // picoA_per_picoF const real k_plus_a = 0.006075f; // micromolar4_per_millisecond const real n = 4.0f; // dimensionless const real k_minus_b = 0.965f; // per_millisecond const real k_minus_c = 0.0008f; // per_millisecond const real k_minus_a = 0.07125f; // per_millisecond const real k_plus_b = 0.00405f; // micromolar3_per_millisecond const real m = 3.0f; // dimensionless const real k_plus_c = 0.009f; // per_millisecond const real g_CaL = 0.1729f; // milliS_per_microF const real E_CaL = 63.0f; // millivolt const real Kpcb = 0.0005f; // per_millisecond const real Kpc_max = 0.23324f; // per_millisecond const real Kpc_half = 20.0f; // micromolar const real i_pCa_max = 1.0f; // picoA_per_picoF const real Km_pCa = 0.5f; // micromolar const real k_NaCa = 292.8f; // picoA_per_picoF const real K_mNa = 87500.0f; // micromolar const real Nao = 140000.0f; // micromolar const real K_mCa = 1380.0f; // micromolar const real Cao = 1800.0f; // micromolar const real k_sat = 0.1f; // dimensionless const real eta = 0.35f; // dimensionless const real R = 8.314f; // joule_per_mole_kelvin const real T = 298.0f; // kelvin const real g_Cab = 0.000367f; // milliS_per_microF const real g_Na = 13.0f; // milliS_per_microF const real Ko = 5400.0f; // micromolar const real g_Nab = 0.0026f; // milliS_per_microF const real g_Kto_f = 0.4067f; // milliS_per_microF const real g_Kto_s = 0.0f; // milliS_per_microF const real g_Ks = 0.00575f; // milliS_per_microF const real g_Kur = 0.16f; // milliS_per_microF const real g_Kss = 0.05f; // milliS_per_microF const real g_Kr = 0.078f; // milliS_per_microF const real kf = 0.023761f; // per_millisecond const real kb = 0.036778f; // per_millisecond const real i_NaK_max = 0.88f; // picoA_per_picoF const real Km_Nai = 21000.0f; // micromolar const real Km_Ko = 1500.0f; // micromolar const real g_ClCa = 10.0f; // milliS_per_microF const real Km_Cl = 10.0f; // micromolar const real E_Cl = -40.0f; // millivolt // Algebraic Equations real calc_i_stim = stim_current; //0 real calc_Bi = pow((1.0f+((CMDN_tot*Km_CMDN)/pow((Km_CMDN+Cai_old_),2.0f))),(-1.0f)); //6 real calc_Bss = pow((1.0f+((CMDN_tot*Km_CMDN)/pow((Km_CMDN+Cass_old_),2.0f))),(-1.0f)); //7 real calc_BJSR = pow((1.0f+((CSQN_tot*Km_CSQN)/pow((Km_CSQN+CaJSR_old_),2.0f))),(-1.0f)); //8 real calc_J_rel = (v1*(P_O1_old_+P_O2_old_)*(CaJSR_old_-Cass_old_)*P_RyR_old_); //9 real calc_J_tr = ((CaNSR_old_-CaJSR_old_)/tau_tr); //10 real calc_J_xfer = ((Cass_old_-Cai_old_)/tau_xfer); //11 real calc_J_leak = (v2*(CaNSR_old_-Cai_old_)); //12 real calc_J_up = ((v3*pow(Cai_old_,2.0f))/(pow(Km_up,2.0f)+pow(Cai_old_,2.0f))); //13 real calc_J_trpn = (((k_plus_htrpn*Cai_old_*(HTRPN_tot-HTRPN_Ca_old_))+(k_plus_ltrpn*Cai_old_*(LTRPN_tot-LTRPN_Ca_old_)))-((k_minus_htrpn*HTRPN_Ca_old_)+(k_minus_ltrpn*LTRPN_Ca_old_))); //14 real calc_P_C1 = (1.0f-(P_C2_old_+P_O1_old_+P_O2_old_)); //19 real calc_i_CaL = (g_CaL*O_old_*(V_old_-E_CaL)); //22 real calc_C1 = (1.0f-(O_old_+C2_old_+C3_old_+C4_old_+I1_old_+I2_old_+I3_old_)); //24 real calc_alpha = ((0.4f*exp(((V_old_+12.0f)/10.0f))*((1.0f+(0.7f*exp(((-pow((V_old_+40.0f),2.0f))/10.0f))))-(0.75f*exp(((-pow((V_old_+20.0f),2.0f))/400.0f)))))/(1.0f+(0.12f*exp(((V_old_+12.0f)/10.0f))))); //31 real calc_beta = (0.05f*exp(((-(V_old_+12.0f))/13.0f))); //32 real calc_gamma = ((Kpc_max*Cass_old_)/(Kpc_half+Cass_old_)); //33 real calc_Kpcf = (13.0f*(1.0f-exp(((-pow((V_old_+14.5f),2.0f))/100.0f)))); //34 real calc_i_pCa = ((i_pCa_max*pow(Cai_old_,2.0f))/(pow(Km_pCa,2.0f)+pow(Cai_old_,2.0f))); //35 real calc_i_NaCa = (((((((k_NaCa*1.0f)/(pow(K_mNa,3.0)+pow(Nao,3.0)))*1.0f)/(K_mCa+Cao))*1.0f)/(1.0f+(k_sat*exp((((eta-1.0f)*V_old_*F)/(R*T))))))*((exp(((eta*V_old_*F)/(R*T)))*pow(Nai_old_,3.0)*Cao)-(exp((((eta-1.0f)*V_old_*F)/(R*T)))*pow(Nao,3.0)*Cai_old_))); //36 real calc_E_CaN = (((R*T)/(2.0f*F))*log((Cao/Cai_old_))); //38 real calc_E_Na = (((R*T)/F)*log((((0.9f*Nao)+(0.1f*Ko))/((0.9f*Nai_old_)+(0.1f*Ki_old_))))); //41 real calc_C_Na3 = (1.0f-(O_Na_old_+C_Na1_old_+C_Na2_old_+IF_Na_old_+I1_Na_old_+I2_Na_old_+IC_Na2_old_+IC_Na3_old_)); //42 real calc_alpha_Na11 = (3.802f/((0.1027f*exp(((-(V_old_+2.5f))/17.0f)))+(0.2f*exp(((-(V_old_+2.5f))/150.0f))))); //51 real calc_alpha_Na12 = (3.802f/((0.1027f*exp(((-(V_old_+2.5f))/15.0f)))+(0.23f*exp(((-(V_old_+2.5f))/150.0f))))); //52 real calc_alpha_Na13 = (3.802f/((0.1027f*exp(((-(V_old_+2.5f))/12.0f)))+(0.25f*exp(((-(V_old_+2.5f))/150.0f))))); //53 real calc_beta_Na11 = (0.1917f*exp(((-(V_old_+2.5f))/20.3f))); //54 real calc_beta_Na12 = (0.2f*exp(((-(V_old_-2.5f))/20.3f))); //55 real calc_beta_Na13 = (0.22f*exp(((-(V_old_-7.5f))/20.3f))); //56 real calc_alpha_Na3 = (7e-7f*exp(((-(V_old_+7.0f))/7.7f))); //57 real calc_beta_Na3 = (0.00854f+(0.00002f*V_old_)); //58 real calc_alpha_Na2 = (1.0f/((0.188495f*exp(((-(V_old_+7.0f))/16.6f)))+0.393956f)); //59 real calc_E_K = (((R*T)/F)*log((Ko/Ki_old_))); //68 real calc_alpha_a = (0.18064f*exp((0.03577f*(V_old_+ 30.0f)))); //71 real calc_beta_a = (0.3956f*exp(((-0.06237f)*(V_old_+ 30.0f)))); //72 real calc_alpha_i = ((0.000152f*exp(((-(V_old_+13.5f))/7.0f)))/((0.067083f*exp(((-(V_old_+33.5f))/7.0f)))+1.0f)); //73 real calc_beta_i = ((0.00095f*exp(((V_old_+33.5f)/7.0f)))/((0.051335f*exp(((V_old_+33.5f)/7.0f)))+1.0f)); //74 real calc_ass = (1.0f/(1.0f+exp(((-(V_old_+22.5f))/7.7f)))); //78 real calc_iss = (1.0f/(1.0f+exp(((V_old_+45.2f)/5.7f)))); //79 real calc_tau_ta_s = ((0.493f*exp(((-0.0629f)*V_old_)))+2.058f); //80 real calc_tau_ti_s = (270.0f+(1050.0f/(1.0f+exp(((V_old_+45.2f)/5.7f))))); //81 real calc_alpha_n = (V_old_ != -26.5f)?((0.00000481333f*(V_old_+26.5f))/(1.0f-exp(((-0.128f)*(V_old_+26.5f))))): 0.000037604f; //85 real calc_beta_n = (0.0000953333f*exp(((-0.038f)*(V_old_+26.5f)))); //86 real calc_tau_aur = ((0.493f*exp(((-0.0629f)*V_old_)))+2.058f); //90 real calc_tau_iur = (1200.0f-(170.0f/(1.0f+exp(((V_old_+45.2f)/5.7f))))); //91 real calc_tau_Kss = ((39.3f*exp(((-0.0862f)*V_old_)))+13.17f); //95 real calc_i_Kr = (g_Kr*O_K_old_*(V_old_-(((R*T)/F)*log((((0.98f*Ko)+(0.02f*Nao))/((0.98f*Ki_old_)+(0.02f*Nai_old_))))))); //96 real calc_C_K0 = (1.0f-(C_K1_old_+C_K2_old_+O_K_old_+I_K_old_)); //97 real calc_alpha_a0 = (0.022348f*exp((0.01176f*V_old_))); //102 real calc_beta_a0 = (0.047002f*exp(((-0.0631f)*V_old_))); //103 real calc_alpha_a1 = (0.013733f*exp((0.038198f*V_old_))); //104 real calc_beta_a1 = (0.0000689f*exp(((-0.04178f)*V_old_))); //105 real calc_alpha_i_duplicated_rapid_delayed_rectifier_potassium_current = (0.090821f*exp((0.023391f*(V_old_+5.0f)))); //106 real calc_beta_i_duplicated_rapid_delayed_rectifier_potassium_current = (0.006497f*exp(((-0.03268f)*(V_old_+5.0f)))); //107 real calc_sigma = ((1.0f/7.0f)*(exp((Nao/67300.0f))-1.0f)); //110 real calc_O_ClCa = (0.2f/(1.0f+exp(((-(V_old_-46.7f))/7.8f)))); //112 real calc_beta_Na2 = ((calc_alpha_Na13*calc_alpha_Na2*calc_alpha_Na3)/(calc_beta_Na13*calc_beta_Na3)); //60 real calc_alpha_Na4 = (calc_alpha_Na2/1000.0f); //61 real calc_beta_Na4 = calc_alpha_Na3; //62 real calc_alpha_Na5 = (calc_alpha_Na2/95000.0f); //63 real calc_beta_Na5 = (calc_alpha_Na3/50.0f); //64 real calc_i_Nab = (g_Nab*(V_old_-calc_E_Na)); //65 real calc_i_Kto_s = (g_Kto_s*ato_s_old_*ito_s_old_*(V_old_-calc_E_K)); //75 real calc_i_K1 = ((((0.2938f*Ko)/(Ko+210.0f))*(V_old_-calc_E_K))/(1.0f+exp((0.0896f*(V_old_-calc_E_K))))); //82 real calc_i_Ks = (g_Ks*pow(nKs_old_,2.0f)*(V_old_-calc_E_K)); //83 real calc_i_Kur = (g_Kur*aur_old_*iur_old_*(V_old_-calc_E_K)); //87 real calc_i_Kss = (g_Kss*aKss_old_*iKss_old_*(V_old_-calc_E_K)); //92 real calc_i_Cab = (g_Cab*(V_old_-calc_E_CaN)); //37 real calc_i_Na = (g_Na*O_Na_old_*(V_old_-calc_E_Na)); //40 real calc_i_Kto_f = (g_Kto_f*pow(ato_f_old_,3.0)*ito_f_old_*(V_old_-calc_E_K)); //67 real calc_f_NaK = (1.0f/(1.0f+(0.1245f*exp((((-0.1f)*V_old_*F)/(R*T))))+(0.0365f*calc_sigma*exp((((-V_old_)*F)/(R*T)))))); //109 real calc_i_ClCa = (((g_ClCa*calc_O_ClCa*Cai_old_)/(Cai_old_+Km_Cl))*(V_old_-E_Cl)); //111 real calc_i_NaK = ((((i_NaK_max*calc_f_NaK*1.0f)/(1.0f+pow((Km_Nai/Nai_old_),1.5)))*Ko)/(Ko+Km_Ko)); //108 // Differential Equations real d_dt_V = (-(calc_i_CaL+calc_i_pCa+calc_i_NaCa+calc_i_Cab+calc_i_Na+calc_i_Nab+calc_i_NaK+calc_i_Kto_f+calc_i_Kto_s+calc_i_K1+calc_i_Ks+calc_i_Kur+calc_i_Kss+calc_i_Kr+calc_i_ClCa+calc_i_stim)); // 1 real d_dt_Cai = (calc_Bi*((calc_J_leak+calc_J_xfer)-(calc_J_up+calc_J_trpn+((((calc_i_Cab+calc_i_pCa)-(2.0f*calc_i_NaCa))*Acap*Cm)/(2.0f*Vmyo*F))))); // 2 real d_dt_Cass = (calc_Bss*(((calc_J_rel*VJSR)/Vss)-(((calc_J_xfer*Vmyo)/Vss)+((calc_i_CaL*Acap*Cm)/(2.0f*Vss*F))))); // 3 real d_dt_CaJSR = (calc_BJSR*(calc_J_tr-calc_J_rel)); // 4 real d_dt_CaNSR = ((((calc_J_up-calc_J_leak)*Vmyo)/VNSR)-((calc_J_tr*VJSR)/VNSR)); // 5 real d_dt_P_RyR = (((-0.04f)*P_RyR_old_)-(((0.1f*calc_i_CaL)/i_CaL_max)*exp(((-pow((V_old_-5.0f),2.0f))/648.0f)))); // 15 real d_dt_LTRPN_Ca = ((k_plus_ltrpn*Cai_old_*(LTRPN_tot-LTRPN_Ca_old_))-(k_minus_ltrpn*LTRPN_Ca_old_)); // 16 real d_dt_HTRPN_Ca = ((k_plus_htrpn*Cai_old_*(HTRPN_tot-HTRPN_Ca_old_))-(k_minus_htrpn*HTRPN_Ca_old_)); // 17 real d_dt_P_O1 = (((k_plus_a*pow(Cass_old_,n)*calc_P_C1)+(k_minus_b*P_O2_old_)+(k_minus_c*P_C2_old_))-((k_minus_a*P_O1_old_)+(k_plus_b*pow(Cass_old_,m)*P_O1_old_)+(k_plus_c*P_O1_old_))); // 18 real d_dt_P_O2 = ((k_plus_b*pow(Cass_old_,m)*P_O1_old_)-(k_minus_b*P_O2_old_)); // 20 real d_dt_P_C2 = ((k_plus_c*P_O1_old_)-(k_minus_c*P_C2_old_)); // 21 real d_dt_O = (((calc_alpha*C4_old_)+(Kpcb*I1_old_)+(0.001f*((calc_alpha*I2_old_)-(calc_Kpcf*O_old_))))-((4.0f*calc_beta*O_old_)+(calc_gamma*O_old_))); // 23 real d_dt_C2 = (((4.0f*calc_alpha*calc_C1)+(2.0f*calc_beta*C3_old_))-((calc_beta*C2_old_)+(3.0f*calc_alpha*C2_old_))); // 25 real d_dt_C3 = (((3.0f*calc_alpha*C2_old_)+(3.0f*calc_beta*C4_old_))-((2.0f*calc_beta*C3_old_)+(2.0f*calc_alpha*C3_old_))); // 26 real d_dt_C4 = (((2.0f*calc_alpha*C3_old_)+(4.0f*calc_beta*O_old_)+(0.01f*((4.0f*Kpcb*calc_beta*I1_old_)-(calc_alpha*calc_gamma*C4_old_)))+(0.002f*((4.0f*calc_beta*I2_old_)-(calc_Kpcf*C4_old_)))+(4.0f*calc_beta*Kpcb*I3_old_))-((3.0f*calc_beta*C4_old_)+(calc_alpha*C4_old_)+(1.0f*calc_gamma*calc_Kpcf*C4_old_))); // 27 real d_dt_I1 = (((calc_gamma*O_old_)+(0.001f*((calc_alpha*I3_old_)-(calc_Kpcf*I1_old_)))+(0.01f*((calc_alpha*calc_gamma*C4_old_)-(4.0f*calc_beta*Kpcb*I1_old_))))-(Kpcb*I1_old_)); // 28 real d_dt_I2 = (((0.001f*((calc_Kpcf*O_old_)-(calc_alpha*I2_old_)))+(Kpcb*I3_old_)+(0.002f*((calc_Kpcf*C4_old_)-(4.0f*calc_beta*I2_old_))))-(calc_gamma*I2_old_)); // 29 real d_dt_I3 = (((0.001f*((calc_Kpcf*I1_old_)-(calc_alpha*I3_old_)))+(calc_gamma*I2_old_)+(1.0f*calc_gamma*calc_Kpcf*C4_old_))-((4.0f*calc_beta*Kpcb*I3_old_)+(Kpcb*I3_old_))); // 30 real d_dt_Nai = (((-(calc_i_Na+calc_i_Nab+(3.0f*calc_i_NaK)+(3.0f*calc_i_NaCa)))*Acap*Cm)/(Vmyo*F)); // 39 real d_dt_C_Na2 = (((calc_alpha_Na11*calc_C_Na3)+(calc_beta_Na12*C_Na1_old_)+(calc_alpha_Na3*IC_Na2_old_))-((calc_beta_Na11*C_Na2_old_)+(calc_alpha_Na12*C_Na2_old_)+(calc_beta_Na3*C_Na2_old_))); // 43 real d_dt_C_Na1 = (((calc_alpha_Na12*C_Na2_old_)+(calc_beta_Na13*O_Na_old_)+(calc_alpha_Na3*IF_Na_old_))-((calc_beta_Na12*C_Na1_old_)+(calc_alpha_Na13*C_Na1_old_)+(calc_beta_Na3*C_Na1_old_))); // 44 real d_dt_O_Na = (((calc_alpha_Na13*C_Na1_old_)+(calc_beta_Na2*IF_Na_old_))-((calc_beta_Na13*O_Na_old_)+(calc_alpha_Na2*O_Na_old_))); // 45 real d_dt_IF_Na = (((calc_alpha_Na2*O_Na_old_)+(calc_beta_Na3*C_Na1_old_)+(calc_beta_Na4*I1_Na_old_)+(calc_alpha_Na12*IC_Na2_old_))-((calc_beta_Na2*IF_Na_old_)+(calc_alpha_Na3*IF_Na_old_)+(calc_alpha_Na4*IF_Na_old_)+(calc_beta_Na12*IF_Na_old_))); // 46 real d_dt_I1_Na = (((calc_alpha_Na4*IF_Na_old_)+(calc_beta_Na5*I2_Na_old_))-((calc_beta_Na4*I1_Na_old_)+(calc_alpha_Na5*I1_Na_old_))); // 47 real d_dt_I2_Na = ((calc_alpha_Na5*I1_Na_old_)-(calc_beta_Na5*I2_Na_old_)); // 48 real d_dt_IC_Na2 = (((calc_alpha_Na11*IC_Na3_old_)+(calc_beta_Na12*IF_Na_old_)+(calc_beta_Na3*C_Na2_old_))-((calc_beta_Na11*IC_Na2_old_)+(calc_alpha_Na12*IC_Na2_old_)+(calc_alpha_Na3*IC_Na2_old_))); // 49 real d_dt_IC_Na3 = (((calc_beta_Na11*IC_Na2_old_)+(calc_beta_Na3*calc_C_Na3))-((calc_alpha_Na11*IC_Na3_old_)+(calc_alpha_Na3*IC_Na3_old_))); // 50 real d_dt_Ki = (((-((calc_i_Kto_f+calc_i_Kto_s+calc_i_K1+calc_i_Ks+calc_i_Kss+calc_i_Kur+calc_i_Kr)-(2.0f*calc_i_NaK)))*Acap*Cm)/(Vmyo*F)); // 66 real d_dt_ato_f = ((calc_alpha_a*(1.0f-ato_f_old_))-(calc_beta_a*ato_f_old_)); // 69 real d_dt_ito_f = ((calc_alpha_i*(1.0f-ito_f_old_))-(calc_beta_i*ito_f_old_)); // 70 real d_dt_ato_s = ((calc_ass-ato_s_old_)/calc_tau_ta_s); // 76 real d_dt_ito_s = ((calc_iss-ito_s_old_)/calc_tau_ti_s); // 77 real d_dt_nKs = ((calc_alpha_n*(1.0f-nKs_old_))-(calc_beta_n*nKs_old_)); // 84 real d_dt_aur = ((calc_ass-aur_old_)/calc_tau_aur); // 88 real d_dt_iur = ((calc_iss-iur_old_)/calc_tau_iur); // 89 real d_dt_aKss = ((calc_ass-aKss_old_)/calc_tau_Kss); // 93 real d_dt_iKss = 0.0f; // 94 real d_dt_C_K2 = (((kf*C_K1_old_)+(calc_beta_a1*O_K_old_))-((kb*C_K2_old_)+(calc_alpha_a1*C_K2_old_))); // 98 real d_dt_C_K1 = (((calc_alpha_a0*calc_C_K0)+(kb*C_K2_old_))-((calc_beta_a0*C_K1_old_)+(kf*C_K1_old_))); // 99 real d_dt_O_K = (((calc_alpha_a1*C_K2_old_)+(calc_beta_i_duplicated_rapid_delayed_rectifier_potassium_current*I_K_old_))-((calc_beta_a1*O_K_old_)+(calc_alpha_i_duplicated_rapid_delayed_rectifier_potassium_current*O_K_old_))); // 100 real d_dt_I_K = ((calc_alpha_i_duplicated_rapid_delayed_rectifier_potassium_current*O_K_old_)-(calc_beta_i_duplicated_rapid_delayed_rectifier_potassium_current*I_K_old_)); // 101 rDY[0] = d_dt_V; rDY[1] = d_dt_Cai; rDY[2] = d_dt_Cass; rDY[3] = d_dt_CaJSR; rDY[4] = d_dt_CaNSR; rDY[5] = d_dt_P_RyR; rDY[6] = d_dt_LTRPN_Ca; rDY[7] = d_dt_HTRPN_Ca; rDY[8] = d_dt_P_O1; rDY[9] = d_dt_P_O2; rDY[10] = d_dt_P_C2; rDY[11] = d_dt_O; rDY[12] = d_dt_C2; rDY[13] = d_dt_C3; rDY[14] = d_dt_C4; rDY[15] = d_dt_I1; rDY[16] = d_dt_I2; rDY[17] = d_dt_I3; rDY[18] = d_dt_Nai; rDY[19] = d_dt_C_Na2; rDY[20] = d_dt_C_Na1; rDY[21] = d_dt_O_Na; rDY[22] = d_dt_IF_Na; rDY[23] = d_dt_I1_Na; rDY[24] = d_dt_I2_Na; rDY[25] = d_dt_IC_Na2; rDY[26] = d_dt_IC_Na3; rDY[27] = d_dt_Ki; rDY[28] = d_dt_ato_f; rDY[29] = d_dt_ito_f; rDY[30] = d_dt_ato_s; rDY[31] = d_dt_ito_s; rDY[32] = d_dt_nKs; rDY[33] = d_dt_aur; rDY[34] = d_dt_iur; rDY[35] = d_dt_aKss; rDY[36] = d_dt_iKss; rDY[37] = d_dt_C_K2; rDY[38] = d_dt_C_K1; rDY[39] = d_dt_O_K; rDY[40] = d_dt_I_K; } #include "../default_solvers.cu"
2316901dbe0db28081b25bc3ad137c6ded926796.cu
#include "../../gpu_utils/gpu_utils.h" #include <stddef.h> #include <stdint.h> #include "bondarenko_2004.h" __global__ void kernel_set_model_initial_conditions(real *sv, int num_volumes, size_t pitch, bool use_adpt_dt, real min_dt) { int threadID = blockDim.x * blockIdx.x + threadIdx.x; if (threadID < num_volumes) { *((real * )((char *) sv + pitch * 0) + threadID) = -82.4202f; // V millivolt *((real * )((char *) sv + pitch * 1) + threadID) = 0.115001; // Cai micromolar *((real * )((char *) sv + pitch * 2) + threadID) = 0.115001; // Cass micromolar *((real * )((char *) sv + pitch * 3) + threadID) = 1299.5; // CaJSR micromolar *((real * )((char *) sv + pitch * 4) + threadID) = 1299.5; // CaNSR micromolar *((real * )((char *) sv + pitch * 5) + threadID) = 0.0; // P_RyR dimensionless *((real * )((char *) sv + pitch * 6) + threadID) = 11.2684; // LTRPN_Ca micromolar *((real * )((char *) sv + pitch * 7) + threadID) = 125.29; // HTRPN_Ca micromolar *((real * )((char *) sv + pitch * 8) + threadID) = 0.149102e-4; // P_O1 dimensionless *((real * )((char *) sv + pitch * 9) + threadID) = 0.951726e-10; // P_O2 dimensionless *((real * )((char *) sv + pitch * 10) + threadID) = 0.16774e-3; // P_C2 dimensionless *((real * )((char *) sv + pitch * 11) + threadID) = 0.930308e-18; // O dimensionless *((real * )((char *) sv + pitch * 12) + threadID) = 0.124216e-3; // C2 dimensionless *((real * )((char *) sv + pitch * 13) + threadID) = 0.578679e-8; // C3 dimensionless *((real * )((char *) sv + pitch * 14) + threadID) = 0.119816e-12; // C4 dimensionless *((real * )((char *) sv + pitch * 15) + threadID) = 0.497923e-18; // I1 dimensionless *((real * )((char *) sv + pitch * 16) + threadID) = 0.345847e-13; // I2 dimensionless *((real * )((char *) sv + pitch * 17) + threadID) = 0.185106e-13; // I3 dimensionless *((real * )((char *) sv + pitch * 18) + threadID) = 14237.1; // Nai micromolar *((real * )((char *) sv + pitch * 19) + threadID) = 0.020752; // C_Na2 dimensionless *((real * )((char *) sv + pitch * 20) + threadID) = 0.279132e-3; // C_Na1 dimensionless *((real * )((char *) sv + pitch * 21) + threadID) = 0.713483e-6; // O_Na dimensionless *((real * )((char *) sv + pitch * 22) + threadID) = 0.153176e-3; // IF_Na dimensionless *((real * )((char *) sv + pitch * 23) + threadID) = 0.673345e-6; // I1_Na dimensionless *((real * )((char *) sv + pitch * 24) + threadID) = 0.155787e-8; // I2_Na dimensionless *((real * )((char *) sv + pitch * 25) + threadID) = 0.0113879; // IC_Na2 dimensionless *((real * )((char *) sv + pitch * 26) + threadID) = 0.34278; // IC_Na3 dimensionless *((real * )((char *) sv + pitch * 27) + threadID) = 143720.0; // Ki micromolar *((real * )((char *) sv + pitch * 28) + threadID) = 0.265563e-2; // ato_f dimensionless *((real * )((char *) sv + pitch * 29) + threadID) = 0.999977; // ito_f dimensionless *((real * )((char *) sv + pitch * 30) + threadID) = 0.417069e-3; // ato_s dimensionless *((real * )((char *) sv + pitch * 31) + threadID) = 0.998543; // ito_s dimensionless *((real * )((char *) sv + pitch * 32) + threadID) = 0.262753e-3; // nKs dimensionless *((real * )((char *) sv + pitch * 33) + threadID) = 0.417069e-3; // aur dimensionless *((real * )((char *) sv + pitch * 34) + threadID) = 0.998543; // iur dimensionless *((real * )((char *) sv + pitch * 35) + threadID) = 0.417069e-3; // aKss dimensionless *((real * )((char *) sv + pitch * 36) + threadID) = 1.0; // iKss dimensionless *((real * )((char *) sv + pitch * 37) + threadID) = 0.641229e-3; // C_K2 dimensionless *((real * )((char *) sv + pitch * 38) + threadID) = 0.992513e-3; // C_K1 dimensionless *((real * )((char *) sv + pitch * 39) + threadID) = 0.175298e-3; // O_K dimensionless *((real * )((char *) sv + pitch * 40) + threadID) = 0.319129e-4; // I_K dimensionless if(use_adpt_dt) { *((real *)((char *)sv + pitch * NEQ) + threadID) = min_dt; // dt *((real *)((char *)sv + pitch * (NEQ + 1)) + threadID) = 0.0; // time_new *((real *)((char *)sv + pitch * (NEQ + 2)) + threadID) = 0.0; // previous dt } } } inline __device__ void RHS_gpu(real *sv, real *rDY, real stim_current, int thread_id, real dt, size_t pitch, bool use_adpt_dt) { // State variables real V_old_; real Cai_old_; real Cass_old_; real CaJSR_old_; real CaNSR_old_; real P_RyR_old_; real LTRPN_Ca_old_; real HTRPN_Ca_old_; real P_O1_old_; real P_O2_old_; real P_C2_old_; real O_old_; real C2_old_; real C3_old_; real C4_old_; real I1_old_; real I2_old_; real I3_old_; real Nai_old_; real C_Na2_old_; real C_Na1_old_; real O_Na_old_; real IF_Na_old_; real I1_Na_old_; real I2_Na_old_; real IC_Na2_old_; real IC_Na3_old_; real Ki_old_; real ato_f_old_; real ito_f_old_; real ato_s_old_; real ito_s_old_; real nKs_old_; real aur_old_; real iur_old_; real aKss_old_; real iKss_old_; real C_K2_old_; real C_K1_old_; real O_K_old_; real I_K_old_; if(use_adpt_dt) { V_old_ = sv[0]; // initial value = -82.4202 millivolt Cai_old_ = sv[1]; // initial value = 0.115001 micromolar Cass_old_ = sv[2]; // initial value = 0.115001 micromolar CaJSR_old_ = sv[3]; // initial value = 1299.5 micromolar CaNSR_old_ = sv[4]; // initial value = 1299.5 micromolar P_RyR_old_ = sv[5]; // initial value = 0 dimensionless LTRPN_Ca_old_ = sv[6]; // initial value = 11.2684 micromolar HTRPN_Ca_old_ = sv[7]; // initial value = 125.29 micromolar P_O1_old_ = sv[8]; // initial value = 0.149102e-4 dimensionless P_O2_old_ = sv[9]; // initial value = 0.951726e-10 dimensionless P_C2_old_ = sv[10]; // initial value = 0.16774e-3 dimensionless O_old_ = sv[11]; // initial value = 0.930308e-18 dimensionless C2_old_ = sv[12]; // initial value = 0.124216e-3 dimensionless C3_old_ = sv[13]; // initial value = 0.578679e-8 dimensionless C4_old_ = sv[14]; // initial value = 0.119816e-12 dimensionless I1_old_ = sv[15]; // initial value = 0.497923e-18 dimensionless I2_old_ = sv[16]; // initial value = 0.345847e-13 dimensionless I3_old_ = sv[17]; // initial value = 0.185106e-13 dimensionless Nai_old_ = sv[18]; // initial value = 14237.1 micromolar C_Na2_old_ = sv[19]; // initial value = 0.020752 dimensionless C_Na1_old_ = sv[20]; // initial value = 0.279132e-3 dimensionless O_Na_old_ = sv[21]; // initial value = 0.713483e-6 dimensionless IF_Na_old_ = sv[22]; // initial value = 0.153176e-3 dimensionless I1_Na_old_ = sv[23]; // initial value = 0.673345e-6 dimensionless I2_Na_old_ = sv[24]; // initial value = 0.155787e-8 dimensionless IC_Na2_old_ = sv[25]; // initial value = 0.0113879 dimensionless IC_Na3_old_ = sv[26]; // initial value = 0.34278 dimensionless Ki_old_ = sv[27]; // initial value = 143720 micromolar ato_f_old_ = sv[28]; // initial value = 0.265563e-2 dimensionless ito_f_old_ = sv[29]; // initial value = 0.999977 dimensionless ato_s_old_ = sv[30]; // initial value = 0.417069e-3 dimensionless ito_s_old_ = sv[31]; // initial value = 0.998543 dimensionless nKs_old_ = sv[32]; // initial value = 0.262753e-3 dimensionless aur_old_ = sv[33]; // initial value = 0.417069e-3 dimensionless iur_old_ = sv[34]; // initial value = 0.998543 dimensionless aKss_old_ = sv[35]; // initial value = 0.417069e-3 dimensionless iKss_old_ = sv[36]; // initial value = 1 dimensionless C_K2_old_ = sv[37]; // initial value = 0.641229e-3 dimensionless C_K1_old_ = sv[38]; // initial value = 0.992513e-3 dimensionless O_K_old_ = sv[39]; // initial value = 0.175298e-3 dimensionless I_K_old_ = sv[40]; // initial value = 0.319129e-4 dimensionless } else { V_old_ = *((real *)((char *)sv + pitch * 0) + thread_id); // initial value = -82.4202 millivolt Cai_old_ = *((real *)((char *)sv + pitch * 1) + thread_id); // initial value = 0.115001 micromolar Cass_old_ = *((real *)((char *)sv + pitch * 2) + thread_id); // initial value = 0.115001 micromolar CaJSR_old_ = *((real *)((char *)sv + pitch * 3) + thread_id); // initial value = 1299.5 micromolar CaNSR_old_ = *((real *)((char *)sv + pitch * 4) + thread_id); // initial value = 1299.5 micromolar P_RyR_old_ = *((real *)((char *)sv + pitch * 5) + thread_id); // initial value = 0 dimensionless LTRPN_Ca_old_ = *((real *)((char *)sv + pitch * 6) + thread_id); // initial value = 11.2684 micromolar HTRPN_Ca_old_ = *((real *)((char *)sv + pitch * 7) + thread_id); // initial value = 125.29 micromolar P_O1_old_ = *((real *)((char *)sv + pitch * 8) + thread_id); // initial value = 0.149102e-4 dimensionless P_O2_old_ = *((real *)((char *)sv + pitch * 9) + thread_id); // initial value = 0.951726e-10 dimensionless P_C2_old_ = *((real *)((char *)sv + pitch * 10) + thread_id); // initial value = 0.16774e-3 dimensionless O_old_ = *((real *)((char *)sv + pitch * 11) + thread_id); // initial value = 0.930308e-18 dimensionless C2_old_ = *((real *)((char *)sv + pitch * 12) + thread_id); // initial value = 0.124216e-3 dimensionless C3_old_ = *((real *)((char *)sv + pitch * 13) + thread_id); // initial value = 0.578679e-8 dimensionless C4_old_ = *((real *)((char *)sv + pitch * 14) + thread_id); // initial value = 0.119816e-12 dimensionless I1_old_ = *((real *)((char *)sv + pitch * 15) + thread_id); // initial value = 0.497923e-18 dimensionless I2_old_ = *((real *)((char *)sv + pitch * 16) + thread_id); // initial value = 0.345847e-13 dimensionless I3_old_ = *((real *)((char *)sv + pitch * 17) + thread_id); // initial value = 0.185106e-13 dimensionless Nai_old_ = *((real *)((char *)sv + pitch * 18) + thread_id); // initial value = 14237.1 micromolar C_Na2_old_ = *((real *)((char *)sv + pitch * 19) + thread_id); // initial value = 0.020752 dimensionless C_Na1_old_ = *((real *)((char *)sv + pitch * 20) + thread_id); // initial value = 0.279132e-3 dimensionless O_Na_old_ = *((real *)((char *)sv + pitch * 21) + thread_id); // initial value = 0.713483e-6 dimensionless IF_Na_old_ = *((real *)((char *)sv + pitch * 22) + thread_id); // initial value = 0.153176e-3 dimensionless I1_Na_old_ = *((real *)((char *)sv + pitch * 23) + thread_id); // initial value = 0.673345e-6 dimensionless I2_Na_old_ = *((real *)((char *)sv + pitch * 24) + thread_id); // initial value = 0.155787e-8 dimensionless IC_Na2_old_ = *((real *)((char *)sv + pitch * 25) + thread_id); // initial value = 0.0113879 dimensionless IC_Na3_old_ = *((real *)((char *)sv + pitch * 26) + thread_id); // initial value = 0.34278 dimensionless Ki_old_ = *((real *)((char *)sv + pitch * 27) + thread_id); // initial value = 143720 micromolar ato_f_old_ = *((real *)((char *)sv + pitch * 28) + thread_id); // initial value = 0.265563e-2 dimensionless ito_f_old_ = *((real *)((char *)sv + pitch * 29) + thread_id); // initial value = 0.999977 dimensionless ato_s_old_ = *((real *)((char *)sv + pitch * 30) + thread_id); // initial value = 0.417069e-3 dimensionless ito_s_old_ = *((real *)((char *)sv + pitch * 31) + thread_id); // initial value = 0.998543 dimensionless nKs_old_ = *((real *)((char *)sv + pitch * 32) + thread_id); // initial value = 0.262753e-3 dimensionless aur_old_ = *((real *)((char *)sv + pitch * 33) + thread_id); // initial value = 0.417069e-3 dimensionless iur_old_ = *((real *)((char *)sv + pitch * 34) + thread_id); // initial value = 0.998543 dimensionless aKss_old_ = *((real *)((char *)sv + pitch * 35) + thread_id); // initial value = 0.417069e-3 dimensionless iKss_old_ = *((real *)((char *)sv + pitch * 36) + thread_id); // initial value = 1 dimensionless C_K2_old_ = *((real *)((char *)sv + pitch * 37) + thread_id); // initial value = 0.641229e-3 dimensionless C_K1_old_ = *((real *)((char *)sv + pitch * 38) + thread_id); // initial value = 0.992513e-3 dimensionless O_K_old_ = *((real *)((char *)sv + pitch * 39) + thread_id); // initial value = 0.175298e-3 dimensionless I_K_old_ = *((real *)((char *)sv + pitch * 40) + thread_id); // initial value = 0.319129e-4 dimensionless } // Parameters const real Acap = 1.534e-4f; // cm2 const real Cm = 1.0f; // microF_per_cm2 const real Vmyo = 25.84e-6f; // microlitre const real F = 96.5f; // coulomb_per_millimole const real VJSR = 0.12e-6f; // microlitre const real Vss = 1.485e-9f; // microlitre const real VNSR = 2.098e-6f; // microlitre const real CMDN_tot = 50.0f; // micromolar const real Km_CMDN = 0.238f; // micromolar const real CSQN_tot = 15000.0f; // micromolar const real Km_CSQN = 800.0f; // micromolar const real v1 = 4.5f; // per_millisecond const real tau_tr = 20.0f; // millisecond const real tau_xfer = 8.0f; // millisecond const real v2 = 1.74e-5f; // per_millisecond const real v3 = 0.45f; // micromolar_per_millisecond const real Km_up = 0.5f; // micromolar const real k_plus_htrpn = 0.00237f; // per_micromolar_millisecond const real HTRPN_tot = 140.0f; // micromolar const real k_plus_ltrpn = 0.0327f; // per_micromolar_millisecond const real LTRPN_tot = 70.0f; // micromolar const real k_minus_htrpn = 3.2e-5f; // per_millisecond const real k_minus_ltrpn = 0.0196f; // per_millisecond const real i_CaL_max = 7.0f; // picoA_per_picoF const real k_plus_a = 0.006075f; // micromolar4_per_millisecond const real n = 4.0f; // dimensionless const real k_minus_b = 0.965f; // per_millisecond const real k_minus_c = 0.0008f; // per_millisecond const real k_minus_a = 0.07125f; // per_millisecond const real k_plus_b = 0.00405f; // micromolar3_per_millisecond const real m = 3.0f; // dimensionless const real k_plus_c = 0.009f; // per_millisecond const real g_CaL = 0.1729f; // milliS_per_microF const real E_CaL = 63.0f; // millivolt const real Kpcb = 0.0005f; // per_millisecond const real Kpc_max = 0.23324f; // per_millisecond const real Kpc_half = 20.0f; // micromolar const real i_pCa_max = 1.0f; // picoA_per_picoF const real Km_pCa = 0.5f; // micromolar const real k_NaCa = 292.8f; // picoA_per_picoF const real K_mNa = 87500.0f; // micromolar const real Nao = 140000.0f; // micromolar const real K_mCa = 1380.0f; // micromolar const real Cao = 1800.0f; // micromolar const real k_sat = 0.1f; // dimensionless const real eta = 0.35f; // dimensionless const real R = 8.314f; // joule_per_mole_kelvin const real T = 298.0f; // kelvin const real g_Cab = 0.000367f; // milliS_per_microF const real g_Na = 13.0f; // milliS_per_microF const real Ko = 5400.0f; // micromolar const real g_Nab = 0.0026f; // milliS_per_microF const real g_Kto_f = 0.4067f; // milliS_per_microF const real g_Kto_s = 0.0f; // milliS_per_microF const real g_Ks = 0.00575f; // milliS_per_microF const real g_Kur = 0.16f; // milliS_per_microF const real g_Kss = 0.05f; // milliS_per_microF const real g_Kr = 0.078f; // milliS_per_microF const real kf = 0.023761f; // per_millisecond const real kb = 0.036778f; // per_millisecond const real i_NaK_max = 0.88f; // picoA_per_picoF const real Km_Nai = 21000.0f; // micromolar const real Km_Ko = 1500.0f; // micromolar const real g_ClCa = 10.0f; // milliS_per_microF const real Km_Cl = 10.0f; // micromolar const real E_Cl = -40.0f; // millivolt // Algebraic Equations real calc_i_stim = stim_current; //0 real calc_Bi = pow((1.0f+((CMDN_tot*Km_CMDN)/pow((Km_CMDN+Cai_old_),2.0f))),(-1.0f)); //6 real calc_Bss = pow((1.0f+((CMDN_tot*Km_CMDN)/pow((Km_CMDN+Cass_old_),2.0f))),(-1.0f)); //7 real calc_BJSR = pow((1.0f+((CSQN_tot*Km_CSQN)/pow((Km_CSQN+CaJSR_old_),2.0f))),(-1.0f)); //8 real calc_J_rel = (v1*(P_O1_old_+P_O2_old_)*(CaJSR_old_-Cass_old_)*P_RyR_old_); //9 real calc_J_tr = ((CaNSR_old_-CaJSR_old_)/tau_tr); //10 real calc_J_xfer = ((Cass_old_-Cai_old_)/tau_xfer); //11 real calc_J_leak = (v2*(CaNSR_old_-Cai_old_)); //12 real calc_J_up = ((v3*pow(Cai_old_,2.0f))/(pow(Km_up,2.0f)+pow(Cai_old_,2.0f))); //13 real calc_J_trpn = (((k_plus_htrpn*Cai_old_*(HTRPN_tot-HTRPN_Ca_old_))+(k_plus_ltrpn*Cai_old_*(LTRPN_tot-LTRPN_Ca_old_)))-((k_minus_htrpn*HTRPN_Ca_old_)+(k_minus_ltrpn*LTRPN_Ca_old_))); //14 real calc_P_C1 = (1.0f-(P_C2_old_+P_O1_old_+P_O2_old_)); //19 real calc_i_CaL = (g_CaL*O_old_*(V_old_-E_CaL)); //22 real calc_C1 = (1.0f-(O_old_+C2_old_+C3_old_+C4_old_+I1_old_+I2_old_+I3_old_)); //24 real calc_alpha = ((0.4f*exp(((V_old_+12.0f)/10.0f))*((1.0f+(0.7f*exp(((-pow((V_old_+40.0f),2.0f))/10.0f))))-(0.75f*exp(((-pow((V_old_+20.0f),2.0f))/400.0f)))))/(1.0f+(0.12f*exp(((V_old_+12.0f)/10.0f))))); //31 real calc_beta = (0.05f*exp(((-(V_old_+12.0f))/13.0f))); //32 real calc_gamma = ((Kpc_max*Cass_old_)/(Kpc_half+Cass_old_)); //33 real calc_Kpcf = (13.0f*(1.0f-exp(((-pow((V_old_+14.5f),2.0f))/100.0f)))); //34 real calc_i_pCa = ((i_pCa_max*pow(Cai_old_,2.0f))/(pow(Km_pCa,2.0f)+pow(Cai_old_,2.0f))); //35 real calc_i_NaCa = (((((((k_NaCa*1.0f)/(pow(K_mNa,3.0)+pow(Nao,3.0)))*1.0f)/(K_mCa+Cao))*1.0f)/(1.0f+(k_sat*exp((((eta-1.0f)*V_old_*F)/(R*T))))))*((exp(((eta*V_old_*F)/(R*T)))*pow(Nai_old_,3.0)*Cao)-(exp((((eta-1.0f)*V_old_*F)/(R*T)))*pow(Nao,3.0)*Cai_old_))); //36 real calc_E_CaN = (((R*T)/(2.0f*F))*log((Cao/Cai_old_))); //38 real calc_E_Na = (((R*T)/F)*log((((0.9f*Nao)+(0.1f*Ko))/((0.9f*Nai_old_)+(0.1f*Ki_old_))))); //41 real calc_C_Na3 = (1.0f-(O_Na_old_+C_Na1_old_+C_Na2_old_+IF_Na_old_+I1_Na_old_+I2_Na_old_+IC_Na2_old_+IC_Na3_old_)); //42 real calc_alpha_Na11 = (3.802f/((0.1027f*exp(((-(V_old_+2.5f))/17.0f)))+(0.2f*exp(((-(V_old_+2.5f))/150.0f))))); //51 real calc_alpha_Na12 = (3.802f/((0.1027f*exp(((-(V_old_+2.5f))/15.0f)))+(0.23f*exp(((-(V_old_+2.5f))/150.0f))))); //52 real calc_alpha_Na13 = (3.802f/((0.1027f*exp(((-(V_old_+2.5f))/12.0f)))+(0.25f*exp(((-(V_old_+2.5f))/150.0f))))); //53 real calc_beta_Na11 = (0.1917f*exp(((-(V_old_+2.5f))/20.3f))); //54 real calc_beta_Na12 = (0.2f*exp(((-(V_old_-2.5f))/20.3f))); //55 real calc_beta_Na13 = (0.22f*exp(((-(V_old_-7.5f))/20.3f))); //56 real calc_alpha_Na3 = (7e-7f*exp(((-(V_old_+7.0f))/7.7f))); //57 real calc_beta_Na3 = (0.00854f+(0.00002f*V_old_)); //58 real calc_alpha_Na2 = (1.0f/((0.188495f*exp(((-(V_old_+7.0f))/16.6f)))+0.393956f)); //59 real calc_E_K = (((R*T)/F)*log((Ko/Ki_old_))); //68 real calc_alpha_a = (0.18064f*exp((0.03577f*(V_old_+ 30.0f)))); //71 real calc_beta_a = (0.3956f*exp(((-0.06237f)*(V_old_+ 30.0f)))); //72 real calc_alpha_i = ((0.000152f*exp(((-(V_old_+13.5f))/7.0f)))/((0.067083f*exp(((-(V_old_+33.5f))/7.0f)))+1.0f)); //73 real calc_beta_i = ((0.00095f*exp(((V_old_+33.5f)/7.0f)))/((0.051335f*exp(((V_old_+33.5f)/7.0f)))+1.0f)); //74 real calc_ass = (1.0f/(1.0f+exp(((-(V_old_+22.5f))/7.7f)))); //78 real calc_iss = (1.0f/(1.0f+exp(((V_old_+45.2f)/5.7f)))); //79 real calc_tau_ta_s = ((0.493f*exp(((-0.0629f)*V_old_)))+2.058f); //80 real calc_tau_ti_s = (270.0f+(1050.0f/(1.0f+exp(((V_old_+45.2f)/5.7f))))); //81 real calc_alpha_n = (V_old_ != -26.5f)?((0.00000481333f*(V_old_+26.5f))/(1.0f-exp(((-0.128f)*(V_old_+26.5f))))): 0.000037604f; //85 real calc_beta_n = (0.0000953333f*exp(((-0.038f)*(V_old_+26.5f)))); //86 real calc_tau_aur = ((0.493f*exp(((-0.0629f)*V_old_)))+2.058f); //90 real calc_tau_iur = (1200.0f-(170.0f/(1.0f+exp(((V_old_+45.2f)/5.7f))))); //91 real calc_tau_Kss = ((39.3f*exp(((-0.0862f)*V_old_)))+13.17f); //95 real calc_i_Kr = (g_Kr*O_K_old_*(V_old_-(((R*T)/F)*log((((0.98f*Ko)+(0.02f*Nao))/((0.98f*Ki_old_)+(0.02f*Nai_old_))))))); //96 real calc_C_K0 = (1.0f-(C_K1_old_+C_K2_old_+O_K_old_+I_K_old_)); //97 real calc_alpha_a0 = (0.022348f*exp((0.01176f*V_old_))); //102 real calc_beta_a0 = (0.047002f*exp(((-0.0631f)*V_old_))); //103 real calc_alpha_a1 = (0.013733f*exp((0.038198f*V_old_))); //104 real calc_beta_a1 = (0.0000689f*exp(((-0.04178f)*V_old_))); //105 real calc_alpha_i_duplicated_rapid_delayed_rectifier_potassium_current = (0.090821f*exp((0.023391f*(V_old_+5.0f)))); //106 real calc_beta_i_duplicated_rapid_delayed_rectifier_potassium_current = (0.006497f*exp(((-0.03268f)*(V_old_+5.0f)))); //107 real calc_sigma = ((1.0f/7.0f)*(exp((Nao/67300.0f))-1.0f)); //110 real calc_O_ClCa = (0.2f/(1.0f+exp(((-(V_old_-46.7f))/7.8f)))); //112 real calc_beta_Na2 = ((calc_alpha_Na13*calc_alpha_Na2*calc_alpha_Na3)/(calc_beta_Na13*calc_beta_Na3)); //60 real calc_alpha_Na4 = (calc_alpha_Na2/1000.0f); //61 real calc_beta_Na4 = calc_alpha_Na3; //62 real calc_alpha_Na5 = (calc_alpha_Na2/95000.0f); //63 real calc_beta_Na5 = (calc_alpha_Na3/50.0f); //64 real calc_i_Nab = (g_Nab*(V_old_-calc_E_Na)); //65 real calc_i_Kto_s = (g_Kto_s*ato_s_old_*ito_s_old_*(V_old_-calc_E_K)); //75 real calc_i_K1 = ((((0.2938f*Ko)/(Ko+210.0f))*(V_old_-calc_E_K))/(1.0f+exp((0.0896f*(V_old_-calc_E_K))))); //82 real calc_i_Ks = (g_Ks*pow(nKs_old_,2.0f)*(V_old_-calc_E_K)); //83 real calc_i_Kur = (g_Kur*aur_old_*iur_old_*(V_old_-calc_E_K)); //87 real calc_i_Kss = (g_Kss*aKss_old_*iKss_old_*(V_old_-calc_E_K)); //92 real calc_i_Cab = (g_Cab*(V_old_-calc_E_CaN)); //37 real calc_i_Na = (g_Na*O_Na_old_*(V_old_-calc_E_Na)); //40 real calc_i_Kto_f = (g_Kto_f*pow(ato_f_old_,3.0)*ito_f_old_*(V_old_-calc_E_K)); //67 real calc_f_NaK = (1.0f/(1.0f+(0.1245f*exp((((-0.1f)*V_old_*F)/(R*T))))+(0.0365f*calc_sigma*exp((((-V_old_)*F)/(R*T)))))); //109 real calc_i_ClCa = (((g_ClCa*calc_O_ClCa*Cai_old_)/(Cai_old_+Km_Cl))*(V_old_-E_Cl)); //111 real calc_i_NaK = ((((i_NaK_max*calc_f_NaK*1.0f)/(1.0f+pow((Km_Nai/Nai_old_),1.5)))*Ko)/(Ko+Km_Ko)); //108 // Differential Equations real d_dt_V = (-(calc_i_CaL+calc_i_pCa+calc_i_NaCa+calc_i_Cab+calc_i_Na+calc_i_Nab+calc_i_NaK+calc_i_Kto_f+calc_i_Kto_s+calc_i_K1+calc_i_Ks+calc_i_Kur+calc_i_Kss+calc_i_Kr+calc_i_ClCa+calc_i_stim)); // 1 real d_dt_Cai = (calc_Bi*((calc_J_leak+calc_J_xfer)-(calc_J_up+calc_J_trpn+((((calc_i_Cab+calc_i_pCa)-(2.0f*calc_i_NaCa))*Acap*Cm)/(2.0f*Vmyo*F))))); // 2 real d_dt_Cass = (calc_Bss*(((calc_J_rel*VJSR)/Vss)-(((calc_J_xfer*Vmyo)/Vss)+((calc_i_CaL*Acap*Cm)/(2.0f*Vss*F))))); // 3 real d_dt_CaJSR = (calc_BJSR*(calc_J_tr-calc_J_rel)); // 4 real d_dt_CaNSR = ((((calc_J_up-calc_J_leak)*Vmyo)/VNSR)-((calc_J_tr*VJSR)/VNSR)); // 5 real d_dt_P_RyR = (((-0.04f)*P_RyR_old_)-(((0.1f*calc_i_CaL)/i_CaL_max)*exp(((-pow((V_old_-5.0f),2.0f))/648.0f)))); // 15 real d_dt_LTRPN_Ca = ((k_plus_ltrpn*Cai_old_*(LTRPN_tot-LTRPN_Ca_old_))-(k_minus_ltrpn*LTRPN_Ca_old_)); // 16 real d_dt_HTRPN_Ca = ((k_plus_htrpn*Cai_old_*(HTRPN_tot-HTRPN_Ca_old_))-(k_minus_htrpn*HTRPN_Ca_old_)); // 17 real d_dt_P_O1 = (((k_plus_a*pow(Cass_old_,n)*calc_P_C1)+(k_minus_b*P_O2_old_)+(k_minus_c*P_C2_old_))-((k_minus_a*P_O1_old_)+(k_plus_b*pow(Cass_old_,m)*P_O1_old_)+(k_plus_c*P_O1_old_))); // 18 real d_dt_P_O2 = ((k_plus_b*pow(Cass_old_,m)*P_O1_old_)-(k_minus_b*P_O2_old_)); // 20 real d_dt_P_C2 = ((k_plus_c*P_O1_old_)-(k_minus_c*P_C2_old_)); // 21 real d_dt_O = (((calc_alpha*C4_old_)+(Kpcb*I1_old_)+(0.001f*((calc_alpha*I2_old_)-(calc_Kpcf*O_old_))))-((4.0f*calc_beta*O_old_)+(calc_gamma*O_old_))); // 23 real d_dt_C2 = (((4.0f*calc_alpha*calc_C1)+(2.0f*calc_beta*C3_old_))-((calc_beta*C2_old_)+(3.0f*calc_alpha*C2_old_))); // 25 real d_dt_C3 = (((3.0f*calc_alpha*C2_old_)+(3.0f*calc_beta*C4_old_))-((2.0f*calc_beta*C3_old_)+(2.0f*calc_alpha*C3_old_))); // 26 real d_dt_C4 = (((2.0f*calc_alpha*C3_old_)+(4.0f*calc_beta*O_old_)+(0.01f*((4.0f*Kpcb*calc_beta*I1_old_)-(calc_alpha*calc_gamma*C4_old_)))+(0.002f*((4.0f*calc_beta*I2_old_)-(calc_Kpcf*C4_old_)))+(4.0f*calc_beta*Kpcb*I3_old_))-((3.0f*calc_beta*C4_old_)+(calc_alpha*C4_old_)+(1.0f*calc_gamma*calc_Kpcf*C4_old_))); // 27 real d_dt_I1 = (((calc_gamma*O_old_)+(0.001f*((calc_alpha*I3_old_)-(calc_Kpcf*I1_old_)))+(0.01f*((calc_alpha*calc_gamma*C4_old_)-(4.0f*calc_beta*Kpcb*I1_old_))))-(Kpcb*I1_old_)); // 28 real d_dt_I2 = (((0.001f*((calc_Kpcf*O_old_)-(calc_alpha*I2_old_)))+(Kpcb*I3_old_)+(0.002f*((calc_Kpcf*C4_old_)-(4.0f*calc_beta*I2_old_))))-(calc_gamma*I2_old_)); // 29 real d_dt_I3 = (((0.001f*((calc_Kpcf*I1_old_)-(calc_alpha*I3_old_)))+(calc_gamma*I2_old_)+(1.0f*calc_gamma*calc_Kpcf*C4_old_))-((4.0f*calc_beta*Kpcb*I3_old_)+(Kpcb*I3_old_))); // 30 real d_dt_Nai = (((-(calc_i_Na+calc_i_Nab+(3.0f*calc_i_NaK)+(3.0f*calc_i_NaCa)))*Acap*Cm)/(Vmyo*F)); // 39 real d_dt_C_Na2 = (((calc_alpha_Na11*calc_C_Na3)+(calc_beta_Na12*C_Na1_old_)+(calc_alpha_Na3*IC_Na2_old_))-((calc_beta_Na11*C_Na2_old_)+(calc_alpha_Na12*C_Na2_old_)+(calc_beta_Na3*C_Na2_old_))); // 43 real d_dt_C_Na1 = (((calc_alpha_Na12*C_Na2_old_)+(calc_beta_Na13*O_Na_old_)+(calc_alpha_Na3*IF_Na_old_))-((calc_beta_Na12*C_Na1_old_)+(calc_alpha_Na13*C_Na1_old_)+(calc_beta_Na3*C_Na1_old_))); // 44 real d_dt_O_Na = (((calc_alpha_Na13*C_Na1_old_)+(calc_beta_Na2*IF_Na_old_))-((calc_beta_Na13*O_Na_old_)+(calc_alpha_Na2*O_Na_old_))); // 45 real d_dt_IF_Na = (((calc_alpha_Na2*O_Na_old_)+(calc_beta_Na3*C_Na1_old_)+(calc_beta_Na4*I1_Na_old_)+(calc_alpha_Na12*IC_Na2_old_))-((calc_beta_Na2*IF_Na_old_)+(calc_alpha_Na3*IF_Na_old_)+(calc_alpha_Na4*IF_Na_old_)+(calc_beta_Na12*IF_Na_old_))); // 46 real d_dt_I1_Na = (((calc_alpha_Na4*IF_Na_old_)+(calc_beta_Na5*I2_Na_old_))-((calc_beta_Na4*I1_Na_old_)+(calc_alpha_Na5*I1_Na_old_))); // 47 real d_dt_I2_Na = ((calc_alpha_Na5*I1_Na_old_)-(calc_beta_Na5*I2_Na_old_)); // 48 real d_dt_IC_Na2 = (((calc_alpha_Na11*IC_Na3_old_)+(calc_beta_Na12*IF_Na_old_)+(calc_beta_Na3*C_Na2_old_))-((calc_beta_Na11*IC_Na2_old_)+(calc_alpha_Na12*IC_Na2_old_)+(calc_alpha_Na3*IC_Na2_old_))); // 49 real d_dt_IC_Na3 = (((calc_beta_Na11*IC_Na2_old_)+(calc_beta_Na3*calc_C_Na3))-((calc_alpha_Na11*IC_Na3_old_)+(calc_alpha_Na3*IC_Na3_old_))); // 50 real d_dt_Ki = (((-((calc_i_Kto_f+calc_i_Kto_s+calc_i_K1+calc_i_Ks+calc_i_Kss+calc_i_Kur+calc_i_Kr)-(2.0f*calc_i_NaK)))*Acap*Cm)/(Vmyo*F)); // 66 real d_dt_ato_f = ((calc_alpha_a*(1.0f-ato_f_old_))-(calc_beta_a*ato_f_old_)); // 69 real d_dt_ito_f = ((calc_alpha_i*(1.0f-ito_f_old_))-(calc_beta_i*ito_f_old_)); // 70 real d_dt_ato_s = ((calc_ass-ato_s_old_)/calc_tau_ta_s); // 76 real d_dt_ito_s = ((calc_iss-ito_s_old_)/calc_tau_ti_s); // 77 real d_dt_nKs = ((calc_alpha_n*(1.0f-nKs_old_))-(calc_beta_n*nKs_old_)); // 84 real d_dt_aur = ((calc_ass-aur_old_)/calc_tau_aur); // 88 real d_dt_iur = ((calc_iss-iur_old_)/calc_tau_iur); // 89 real d_dt_aKss = ((calc_ass-aKss_old_)/calc_tau_Kss); // 93 real d_dt_iKss = 0.0f; // 94 real d_dt_C_K2 = (((kf*C_K1_old_)+(calc_beta_a1*O_K_old_))-((kb*C_K2_old_)+(calc_alpha_a1*C_K2_old_))); // 98 real d_dt_C_K1 = (((calc_alpha_a0*calc_C_K0)+(kb*C_K2_old_))-((calc_beta_a0*C_K1_old_)+(kf*C_K1_old_))); // 99 real d_dt_O_K = (((calc_alpha_a1*C_K2_old_)+(calc_beta_i_duplicated_rapid_delayed_rectifier_potassium_current*I_K_old_))-((calc_beta_a1*O_K_old_)+(calc_alpha_i_duplicated_rapid_delayed_rectifier_potassium_current*O_K_old_))); // 100 real d_dt_I_K = ((calc_alpha_i_duplicated_rapid_delayed_rectifier_potassium_current*O_K_old_)-(calc_beta_i_duplicated_rapid_delayed_rectifier_potassium_current*I_K_old_)); // 101 rDY[0] = d_dt_V; rDY[1] = d_dt_Cai; rDY[2] = d_dt_Cass; rDY[3] = d_dt_CaJSR; rDY[4] = d_dt_CaNSR; rDY[5] = d_dt_P_RyR; rDY[6] = d_dt_LTRPN_Ca; rDY[7] = d_dt_HTRPN_Ca; rDY[8] = d_dt_P_O1; rDY[9] = d_dt_P_O2; rDY[10] = d_dt_P_C2; rDY[11] = d_dt_O; rDY[12] = d_dt_C2; rDY[13] = d_dt_C3; rDY[14] = d_dt_C4; rDY[15] = d_dt_I1; rDY[16] = d_dt_I2; rDY[17] = d_dt_I3; rDY[18] = d_dt_Nai; rDY[19] = d_dt_C_Na2; rDY[20] = d_dt_C_Na1; rDY[21] = d_dt_O_Na; rDY[22] = d_dt_IF_Na; rDY[23] = d_dt_I1_Na; rDY[24] = d_dt_I2_Na; rDY[25] = d_dt_IC_Na2; rDY[26] = d_dt_IC_Na3; rDY[27] = d_dt_Ki; rDY[28] = d_dt_ato_f; rDY[29] = d_dt_ito_f; rDY[30] = d_dt_ato_s; rDY[31] = d_dt_ito_s; rDY[32] = d_dt_nKs; rDY[33] = d_dt_aur; rDY[34] = d_dt_iur; rDY[35] = d_dt_aKss; rDY[36] = d_dt_iKss; rDY[37] = d_dt_C_K2; rDY[38] = d_dt_C_K1; rDY[39] = d_dt_O_K; rDY[40] = d_dt_I_K; } #include "../default_solvers.cu"
4f29ac5128d9f0afda6a9526f7bf17655edd523c.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" //#include "sgp4CUDA.cuh" #include "commonCUDA.cuh" #include "tle.h" #include "sgp4initKernel.cu" #include "sgp4Kernel.cu" t_var currenttime = 0.0; struct satelliterecord_soa_t *d_satrec, *h_satrec; void initSGP4CUDA( gravconsttype whichconst, std::vector<satelliterecord_aos_t> &SatRecAoS, int numberSatellites ){ //Set Gravitational Constants gravconstant_t gravconstant; setGravConstant(whichconst, gravconstant); hipMemcpyToSymbol("gravity_constants", &gravconstant, sizeof(gravconstant_t), 0, hipMemcpyHostToDevice); satelliterecord_soa_t *SatRecSoA = (satelliterecord_soa_t*) malloc(sizeof(satelliterecord_soa_t) * numberSatellites); satelliteRecordConvert(SatRecAoS, SatRecSoA); cutilSafeCall(hipMalloc((void **) &d_satrec, sizeof(satelliterecord_soa_t) * numberSatellites)); cutilSafeCall(hipMemcpy(d_satrec, SatRecSoA, sizeof(satelliterecord_soa_t) * numberSatellites, hipMemcpyHostToDevice)); free(SatRecSoA); dim3 threadsperblock( NUM_THREADS , 1 ); dim3 blockspergrid( numberSatellites / NUM_THREADS + (!(numberSatellites % NUM_THREADS) ? 0 : 1), 1 , 1); hipLaunchKernelGGL(( sgp4initkernel), dim3(blockspergrid), dim3(threadsperblock) , 0, 0, d_satrec, numberSatellites); hipError_t STATUS = hipGetLastError(); } void ComputeSGP4CUDA( float4 *positions, t_var deltatime, int numberSatellites ){ currenttime += deltatime; dim3 threadsperblock( NUM_THREADS , 1 ); dim3 blockspergrid( numberSatellites / NUM_THREADS + (!(numberSatellites % NUM_THREADS) ? 0 : 1), 1 , 1); hipLaunchKernelGGL(( sgp4), dim3(blockspergrid), dim3(threadsperblock) , 0, 0, d_satrec, numberSatellites, currenttime, positions); } void FreeVariables(){ cutilSafeCall(hipFree(d_satrec)); }
4f29ac5128d9f0afda6a9526f7bf17655edd523c.cu
//#include "sgp4CUDA.cuh" #include "commonCUDA.cuh" #include "tle.h" #include "sgp4initKernel.cu" #include "sgp4Kernel.cu" t_var currenttime = 0.0; struct satelliterecord_soa_t *d_satrec, *h_satrec; void initSGP4CUDA( gravconsttype whichconst, std::vector<satelliterecord_aos_t> &SatRecAoS, int numberSatellites ){ //Set Gravitational Constants gravconstant_t gravconstant; setGravConstant(whichconst, gravconstant); cudaMemcpyToSymbol("gravity_constants", &gravconstant, sizeof(gravconstant_t), 0, cudaMemcpyHostToDevice); satelliterecord_soa_t *SatRecSoA = (satelliterecord_soa_t*) malloc(sizeof(satelliterecord_soa_t) * numberSatellites); satelliteRecordConvert(SatRecAoS, SatRecSoA); cutilSafeCall(cudaMalloc((void **) &d_satrec, sizeof(satelliterecord_soa_t) * numberSatellites)); cutilSafeCall(cudaMemcpy(d_satrec, SatRecSoA, sizeof(satelliterecord_soa_t) * numberSatellites, cudaMemcpyHostToDevice)); free(SatRecSoA); dim3 threadsperblock( NUM_THREADS , 1 ); dim3 blockspergrid( numberSatellites / NUM_THREADS + (!(numberSatellites % NUM_THREADS) ? 0 : 1), 1 , 1); sgp4initkernel<<< blockspergrid, threadsperblock >>>(d_satrec, numberSatellites); cudaError_t STATUS = cudaGetLastError(); } void ComputeSGP4CUDA( float4 *positions, t_var deltatime, int numberSatellites ){ currenttime += deltatime; dim3 threadsperblock( NUM_THREADS , 1 ); dim3 blockspergrid( numberSatellites / NUM_THREADS + (!(numberSatellites % NUM_THREADS) ? 0 : 1), 1 , 1); sgp4<<< blockspergrid, threadsperblock >>>(d_satrec, numberSatellites, currenttime, positions); } void FreeVariables(){ cutilSafeCall(cudaFree(d_satrec)); }
cccf980c77103cf64f7f114377fb6a5f662f62d4.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include <iostream> #include <string> #include "triangle.cuh" #include "slicer.cuh" #include "golden.cuh" #include <vector> #include <chrono> #define NOW (std::chrono::high_resolution_clock::now()) typedef std::chrono::time_point<std::chrono::high_resolution_clock> chrono_t; void timer_checkpoint(chrono_t & checkpoint) { #ifdef TEST chrono_t end = NOW; auto duration = std::chrono::duration_cast<std::chrono::milliseconds>(end - checkpoint); std::cout << duration.count() << "ms" << std::endl; checkpoint = end; #else std::cout << std::endl; #endif } void checkCudaError() { hipError_t err = hipGetLastError(); if (err != hipSuccess) { std::cout << "CUDA error: " << hipGetErrorString(err) << std::endl; exit(1); } } int main(int argc, char* argv[]) { std::string stl_file_name; std::vector<triangle> triangles; std::vector<std::vector<double>> point_array(9); if (argc == 2) { stl_file_name = argv[1]; } else if (argc > 2) { std::cout << "ERROR: Too many command line arguments" << std::endl; } chrono_t start = NOW; load_point_array(stl_file_name, point_array, triangles); std::cout << "Reading STL file... "; timer_checkpoint(start); std::cout << "Allocating device memory... "; int num_triangles = triangles.size(); triangle* triangles_dev; double* points_dev; // all[z][y][x] #ifdef TEST bool* all = (bool*)malloc(NUM_LAYERS * Y_DIM * X_DIM * sizeof(bool)); #else bool* all = (bool*)malloc(BLOCK_HEIGHT * Y_DIM * X_DIM * sizeof(bool)); #endif bool* all_dev; size_t size = BLOCK_HEIGHT * Y_DIM * X_DIM * sizeof(bool); hipMalloc(&all_dev, size); hipMemset(all_dev, 0, size); hipMalloc(&triangles_dev, num_triangles * sizeof(triangle)); hipMemcpy(triangles_dev, triangles.data(), num_triangles * sizeof(triangle), hipMemcpyHostToDevice); hipMalloc(&points_dev, num_triangles * sizeof(triangle)); size_t temp_offset = 0; for (int i = 0; i < 9; i++) { hipMemcpy(points_dev + temp_offset, point_array[i].data(), num_triangles * sizeof(double), hipMemcpyHostToDevice); temp_offset += num_triangles; } hipError_t err = hipGetLastError(); // add if (err != hipSuccess) { std::cout << "CUDA error: " << hipGetErrorString(err) << std::endl; return 1; } timer_checkpoint(start); std::cout << "Running 1st kernel... "; for (unsigned layer_idx = 0; layer_idx < NUM_LAYERS; layer_idx += BLOCK_HEIGHT) { hipLaunchKernelGGL(( rectTriIntersection), dim3(NUM_BLOCKS), dim3(THREADS_PER_BLOCK), 0, 0, points_dev, num_triangles, all_dev, layer_idx); hipDeviceSynchronize(); checkCudaError(); size_t blocksPerGrid = (X_DIM * BLOCK_HEIGHT + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK; hipLaunchKernelGGL(( layerExtraction), dim3(blocksPerGrid), dim3(THREADS_PER_BLOCK), 0, 0, all_dev); hipDeviceSynchronize(); checkCudaError(); size_t copy_size = (layer_idx + BLOCK_HEIGHT) < NUM_LAYERS ? BLOCK_HEIGHT : NUM_LAYERS - layer_idx; copy_size = copy_size * X_DIM * Y_DIM * sizeof(bool); #ifdef TEST bool* host_addr = &all[X_DIM*Y_DIM*layer_idx]; #else bool* host_addr = &all[0]; #endif hipMemcpy(host_addr, all_dev, copy_size, hipMemcpyDeviceToHost); hipMemset(all_dev, 0, size); hipDeviceSynchronize(); checkCudaError(); } timer_checkpoint(start); hipFree(all_dev); hipFree(points_dev); #ifdef TEST checkOutput(triangles_dev, num_triangles, all); // for (int z = 0; z < NUM_LAYERS; z++) { // for (int y = Y_DIM; y > 0; y--) { // for (int x = 0; x < X_DIM; x++) { // if (all[z*X_DIM*Y_DIM + y*X_DIM + x]) std::cout << "XX"; // else std::cout << " "; // } // std::cout << std::endl; // } // std::cout << std::endl << std::endl; // } #endif hipFree(triangles_dev); free(all); return 0; }
cccf980c77103cf64f7f114377fb6a5f662f62d4.cu
#include <iostream> #include <string> #include "triangle.cuh" #include "slicer.cuh" #include "golden.cuh" #include <vector> #include <chrono> #define NOW (std::chrono::high_resolution_clock::now()) typedef std::chrono::time_point<std::chrono::high_resolution_clock> chrono_t; void timer_checkpoint(chrono_t & checkpoint) { #ifdef TEST chrono_t end = NOW; auto duration = std::chrono::duration_cast<std::chrono::milliseconds>(end - checkpoint); std::cout << duration.count() << "ms" << std::endl; checkpoint = end; #else std::cout << std::endl; #endif } void checkCudaError() { cudaError_t err = cudaGetLastError(); if (err != cudaSuccess) { std::cout << "CUDA error: " << cudaGetErrorString(err) << std::endl; exit(1); } } int main(int argc, char* argv[]) { std::string stl_file_name; std::vector<triangle> triangles; std::vector<std::vector<double>> point_array(9); if (argc == 2) { stl_file_name = argv[1]; } else if (argc > 2) { std::cout << "ERROR: Too many command line arguments" << std::endl; } chrono_t start = NOW; load_point_array(stl_file_name, point_array, triangles); std::cout << "Reading STL file... "; timer_checkpoint(start); std::cout << "Allocating device memory... "; int num_triangles = triangles.size(); triangle* triangles_dev; double* points_dev; // all[z][y][x] #ifdef TEST bool* all = (bool*)malloc(NUM_LAYERS * Y_DIM * X_DIM * sizeof(bool)); #else bool* all = (bool*)malloc(BLOCK_HEIGHT * Y_DIM * X_DIM * sizeof(bool)); #endif bool* all_dev; size_t size = BLOCK_HEIGHT * Y_DIM * X_DIM * sizeof(bool); cudaMalloc(&all_dev, size); cudaMemset(all_dev, 0, size); cudaMalloc(&triangles_dev, num_triangles * sizeof(triangle)); cudaMemcpy(triangles_dev, triangles.data(), num_triangles * sizeof(triangle), cudaMemcpyHostToDevice); cudaMalloc(&points_dev, num_triangles * sizeof(triangle)); size_t temp_offset = 0; for (int i = 0; i < 9; i++) { cudaMemcpy(points_dev + temp_offset, point_array[i].data(), num_triangles * sizeof(double), cudaMemcpyHostToDevice); temp_offset += num_triangles; } cudaError_t err = cudaGetLastError(); // add if (err != cudaSuccess) { std::cout << "CUDA error: " << cudaGetErrorString(err) << std::endl; return 1; } timer_checkpoint(start); std::cout << "Running 1st kernel... "; for (unsigned layer_idx = 0; layer_idx < NUM_LAYERS; layer_idx += BLOCK_HEIGHT) { rectTriIntersection<<<NUM_BLOCKS, THREADS_PER_BLOCK>>>(points_dev, num_triangles, all_dev, layer_idx); cudaDeviceSynchronize(); checkCudaError(); size_t blocksPerGrid = (X_DIM * BLOCK_HEIGHT + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK; layerExtraction<<<blocksPerGrid, THREADS_PER_BLOCK>>>(all_dev); cudaDeviceSynchronize(); checkCudaError(); size_t copy_size = (layer_idx + BLOCK_HEIGHT) < NUM_LAYERS ? BLOCK_HEIGHT : NUM_LAYERS - layer_idx; copy_size = copy_size * X_DIM * Y_DIM * sizeof(bool); #ifdef TEST bool* host_addr = &all[X_DIM*Y_DIM*layer_idx]; #else bool* host_addr = &all[0]; #endif cudaMemcpy(host_addr, all_dev, copy_size, cudaMemcpyDeviceToHost); cudaMemset(all_dev, 0, size); cudaDeviceSynchronize(); checkCudaError(); } timer_checkpoint(start); cudaFree(all_dev); cudaFree(points_dev); #ifdef TEST checkOutput(triangles_dev, num_triangles, all); // for (int z = 0; z < NUM_LAYERS; z++) { // for (int y = Y_DIM; y > 0; y--) { // for (int x = 0; x < X_DIM; x++) { // if (all[z*X_DIM*Y_DIM + y*X_DIM + x]) std::cout << "XX"; // else std::cout << " "; // } // std::cout << std::endl; // } // std::cout << std::endl << std::endl; // } #endif cudaFree(triangles_dev); free(all); return 0; }
f42ade94a43399713cce708675322e430e7d0928.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "Thread2D.h" #include "cudas.h" #include "DamierHueFloatMath.h" #include "Indices_GPU.h" #include "DomaineMath_GPU.h" using namespace gpu; /*----------------------------------------------------------------------*\ |* Declaration *| \*---------------------------------------------------------------------*/ /*--------------------------------------*\ |* Public *| \*-------------------------------------*/ __global__ void damierHueFloat(float* tabPixelsGM , uint w , uint h , DomaineMath domaineMath , uint n , float t); /*----------------------------------------------------------------------*\ |* Implementation *| \*---------------------------------------------------------------------*/ /*--------------------------------------*\ |* Public *| \*-------------------------------------*/ __global__ void damierHueFloat(float* tabPixelsGM , uint w , uint h , DomaineMath domaineMath , uint n , float t) { DamierHueFloatMath damierHueFloatMath(n,t); const int TID = Thread2D::tid(); const int NB_THREAD = Thread2D::nbThread(); const int WH = w * h; double x; double y; int i; // in [0,h[ int j; // in [0,w[ int s = TID; while (s < WH) { Indices::toIJ(s, w, &i, &j); // update (i, j) // (i,j) domaine ecran // (x,y) domaine math domaineMath.toXY(i, j, &x, &y); // (i,j) -> (x,y) damierHueFloatMath.colorXY(&tabPixelsGM[s], x, y); // update ptrDevPixels[s] s += NB_THREAD; } } /*----------------------------------------------------------------------*\ |* End *| \*---------------------------------------------------------------------*/
f42ade94a43399713cce708675322e430e7d0928.cu
#include "Thread2D.h" #include "cudas.h" #include "DamierHueFloatMath.h" #include "Indices_GPU.h" #include "DomaineMath_GPU.h" using namespace gpu; /*----------------------------------------------------------------------*\ |* Declaration *| \*---------------------------------------------------------------------*/ /*--------------------------------------*\ |* Public *| \*-------------------------------------*/ __global__ void damierHueFloat(float* tabPixelsGM , uint w , uint h , DomaineMath domaineMath , uint n , float t); /*----------------------------------------------------------------------*\ |* Implementation *| \*---------------------------------------------------------------------*/ /*--------------------------------------*\ |* Public *| \*-------------------------------------*/ __global__ void damierHueFloat(float* tabPixelsGM , uint w , uint h , DomaineMath domaineMath , uint n , float t) { DamierHueFloatMath damierHueFloatMath(n,t); const int TID = Thread2D::tid(); const int NB_THREAD = Thread2D::nbThread(); const int WH = w * h; double x; double y; int i; // in [0,h[ int j; // in [0,w[ int s = TID; while (s < WH) { Indices::toIJ(s, w, &i, &j); // update (i, j) // (i,j) domaine ecran // (x,y) domaine math domaineMath.toXY(i, j, &x, &y); // (i,j) -> (x,y) damierHueFloatMath.colorXY(&tabPixelsGM[s], x, y); // update ptrDevPixels[s] s += NB_THREAD; } } /*----------------------------------------------------------------------*\ |* End *| \*---------------------------------------------------------------------*/
3f0f7abf22eebf962ae7b5e3695c085960b4dfcf.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include <math.h> #include "custom_cuda_layers.h" namespace cg = cooperative_groups; __global__ void qunatize_kernel(__half* vals, int group_size, int num_bits) { #if __CUDA_ARCH__ >= 700 cg::thread_block b = cg::this_thread_block(); cg::thread_block_tile<32> g = cg::tiled_partition<32>(b); int gid = threadIdx.x >> 5; int lane = threadIdx.x & 0x1f; int warp_num = blockDim.x >> 5; int id = threadIdx.x; float2* vals_cast = reinterpret_cast<float2*>(vals); float2 data[MAX_REG]; int group_id = blockIdx.x; { int group_index = id; int reg_count = 0; int offset = group_id * group_size; float max = -10000.0; while (group_index < group_size && reg_count < MAX_REG) { data[reg_count] = vals_cast[offset + group_index]; __half* data_h = reinterpret_cast<__half*>(&data[reg_count]); if (abs((float)data_h[0]) > max) max = abs((float)data_h[0]); if (abs((float)data_h[1]) > max) max = abs((float)data_h[1]); if (abs((float)data_h[2]) > max) max = abs((float)data_h[2]); if (abs((float)data_h[3]) > max) max = abs((float)data_h[3]); group_index += blockDim.x; reg_count++; } #pragma unroll for (int i = 1; i < WARP_SIZE; i <<= 1) { auto temp = g.shfl_xor(max, i); if (max < temp) max = temp; } __shared__ float partialMax[WARP_SIZE]; if (lane == 0) partialMax[gid] = max; b.sync(); if (lane < warp_num) max = partialMax[lane]; #pragma unroll for (int i = 1; i < WARP_SIZE; i <<= 1) { auto temp = g.shfl_down(max, i); if (max < temp) max = temp; } max = g.shfl(max, 0); float q_scale = (1 << num_bits) / (2 * max + 1e-5); float q_scale_inv = 1 / q_scale; for (int i = 0; i < reg_count; i++) { group_index = i * blockDim.x + id; if (group_index < group_size) { __half2* data_h = reinterpret_cast<__half2*>(&data[i]); float2 q_data[2]; q_data[0] = __half22float2(data_h[0]); q_data[1] = __half22float2(data_h[1]); float2 q_data_int[2]; q_data_int[0].x = roundf(q_data[0].x * q_scale); q_data_int[0].y = roundf(q_data[0].y * q_scale); q_data_int[1].x = roundf(q_data[1].x * q_scale); q_data_int[1].y = roundf(q_data[1].y * q_scale); q_data_int[0].x *= q_scale_inv; q_data_int[0].y *= q_scale_inv; q_data_int[1].x *= q_scale_inv; q_data_int[1].y *= q_scale_inv; data_h[0] = __float22half2_rn(q_data_int[0]); data_h[1] = __float22half2_rn(q_data_int[1]); vals_cast[offset + group_index] = data[i]; } } } #endif } __global__ void qunatize_kernel(float* vals, int group_size, int num_bits) { cg::thread_block b = cg::this_thread_block(); cg::thread_block_tile<32> g = cg::tiled_partition<32>(b); int gid = threadIdx.x >> 5; int lane = threadIdx.x & 0x1f; int warp_num = blockDim.x >> 5; int id = threadIdx.x; float4* vals_cast = reinterpret_cast<float4*>(vals); float4 data[MAX_REG]; int bid = blockIdx.x; int group_index = bid * group_size + id; int reg_count = 0; float max = -10000.0; while (id < group_size && reg_count < MAX_REG) { float4 data_reg = vals_cast[group_index]; data[reg_count] = data_reg; if (abs(data_reg.x) > max) max = abs(data_reg.x); if (abs(data_reg.y) > max) max = abs(data_reg.y); if (abs(data_reg.z) > max) max = abs(data_reg.z); if (abs(data_reg.w) > max) max = abs(data_reg.w); group_index += blockDim.x; id += blockDim.x; reg_count++; } id = threadIdx.x; #pragma unroll for (int i = 1; i < WARP_SIZE; i <<= 1) { auto temp = g.shfl_xor(max, i); if (max < temp) max = temp; } __shared__ float partialMax[WARP_SIZE]; if (lane == 0) partialMax[gid] = max; b.sync(); if (lane < warp_num) max = partialMax[lane]; b.sync(); #pragma unroll for (int i = 1; i < warp_num; i <<= 1) { auto temp = g.shfl_down(max, i); if (max < temp) max = temp; } max = g.shfl(max, 0); float q_scale = (1 << num_bits) / (2 * max + 1e-5); float q_scale_inv = 1 / q_scale; for (int i = 0; i < reg_count; i++) { group_index = i * blockDim.x + id; if (group_index < group_size) { float4 q_data; q_data = data[i]; float4 q_data_int; q_data_int.x = roundf(q_data.x * q_scale); q_data_int.y = roundf(q_data.y * q_scale); q_data_int.w = roundf(q_data.w * q_scale); q_data_int.z = roundf(q_data.z * q_scale); q_data.x = q_data_int.x * q_scale_inv; q_data.y = q_data_int.y * q_scale_inv; q_data.w = q_data_int.w * q_scale_inv; q_data.z = q_data_int.z * q_scale_inv; vals_cast[group_index + bid * group_size] = q_data; } } } template <typename T> void launch_qunatize_kernel(T* vals, int total_count, int group_num, int num_bits, hipStream_t stream) { dim3 grid_dim(group_num); dim3 block_dim(1024); hipLaunchKernelGGL(( qunatize_kernel), dim3(grid_dim), dim3(block_dim), 0, stream, vals, (total_count / group_num) / 4, num_bits); } template void launch_qunatize_kernel(float* vals, int total_count, int group_num, int num_bits, hipStream_t stream); template void launch_qunatize_kernel(__half* vals, int total_count, int group_num, int num_bits, hipStream_t stream); __global__ void sr_qunatize_kernel(__half* vals, int token_size, int token_num, int num_bits, std::pair<uint64_t, uint64_t> seed) { #if __CUDA_ARCH__ >= 700 cg::thread_block b = cg::this_thread_block(); cg::thread_block_tile<32> g = cg::tiled_partition<32>(b); int gid = threadIdx.x >> 5; int lane = threadIdx.x & 0x1f; int warp_num = blockDim.x >> 5; int idx = blockIdx.x * blockDim.x + threadIdx.x; float2* vals_cast = reinterpret_cast<float2*>(vals); __half2 data_low[128]; __half2 data_high[128]; int bid = blockIdx.x; hiprandStatePhilox4_32_10_t state; hiprand_init(seed.first, idx, seed.second, &state); unsigned int tid = threadIdx.x; int reg_count = 0; int offset = bid * token_size; int group_index = bid * token_size + tid; int total_count = token_size * token_num; if (group_index < total_count) { // float min = 10000.0; float max = -10000.0; while (tid < token_size) { float2 data = vals_cast[offset + tid]; __half2* data_h = reinterpret_cast<__half2*>(&data); data_low[reg_count] = data_h[0]; data_high[reg_count] = data_h[1]; float2 data_f[2]; data_f[0] = __half22float2(data_h[0]); data_f[1] = __half22float2(data_h[1]); if (abs((float)data_f[0].x) > max) max = abs((float)data_f[0].x); if (abs((float)data_f[0].y) > max) max = abs((float)data_f[0].y); if (abs((float)data_f[1].x) > max) max = abs((float)data_f[1].x); if (abs((float)data_f[1].y) > max) max = abs((float)data_f[1].y); tid += blockDim.x; reg_count++; } #pragma unroll for (int i = 1; i < WARP_SIZE; i <<= 1) { auto temp = g.shfl_xor(max, i); if (max < temp) max = temp; } __shared__ float partialMax[WARP_SIZE]; if (lane == 0) partialMax[gid] = max; b.sync(); if (lane < warp_num) max = partialMax[lane]; #pragma unroll for (int i = 1; i < warp_num; i <<= 1) { auto temp = g.shfl_down(max, i); if (max < temp) max = temp; } max = g.shfl(max, 0); float q_scale_val = (float)(1 << num_bits) / (max * 2 + 1e-5); float high_q = (float)((1 << (num_bits - 1)) - 1); float low_q = (float)(-((1 << (num_bits - 1)))); for (int i = 0; i < reg_count; i++) { int token_index = i * blockDim.x + threadIdx.x; if (token_index < token_size) { float2 data_f[2]; data_f[0] = __half22float2(data_low[i]); data_f[1] = __half22float2(data_high[i]); float2 q_data_int[2]; q_data_int[0].x = (float)((int)(data_f[0].x * q_scale_val)); q_data_int[0].y = (float)((int)(data_f[0].y * q_scale_val)); q_data_int[1].x = (float)((int)(data_f[1].x * q_scale_val)); q_data_int[1].y = (float)((int)(data_f[1].y * q_scale_val)); // Stochastic rounding float4 rand = hiprand_uniform4(&state); float q_error[4]; q_error[0] = abs(data_f[0].x - (q_data_int[0].x / q_scale_val)) * q_scale_val; q_error[1] = abs(data_f[0].y - (q_data_int[0].y / q_scale_val)) * q_scale_val; q_error[2] = abs(data_f[1].x - (q_data_int[1].x / q_scale_val)) * q_scale_val; q_error[3] = abs(data_f[1].y - (q_data_int[1].y / q_scale_val)) * q_scale_val; q_data_int[0].x = (rand.x < q_error[0] && q_data_int[0].x > low_q && q_data_int[0].x < high_q) ? (q_data_int[0].x + (data_f[0].x > 0 ? 1 : -1)) : q_data_int[0].x; q_data_int[0].y = (rand.y < q_error[1] && q_data_int[0].y > low_q && q_data_int[0].y < high_q) ? (q_data_int[0].y + (data_f[0].y > 0 ? 1 : -1)) : q_data_int[0].y; q_data_int[1].x = (rand.w < q_error[2] && q_data_int[1].x > low_q && q_data_int[1].x < high_q) ? (q_data_int[1].x + (data_f[1].x > 0 ? 1 : -1)) : q_data_int[1].x; q_data_int[1].y = (rand.z < q_error[3] && q_data_int[1].y > low_q && q_data_int[1].y < high_q) ? (q_data_int[1].y + (data_f[1].y > 0 ? 1 : -1)) : q_data_int[1].y; data_f[0].x = q_data_int[0].x / q_scale_val; data_f[0].y = q_data_int[0].y / q_scale_val; data_f[1].x = q_data_int[1].x / q_scale_val; data_f[1].y = q_data_int[1].y / q_scale_val; float2 result; __half2* result_h = reinterpret_cast<__half2*>(&result); result_h[0] = __float22half2_rn(data_f[0]); result_h[1] = __float22half2_rn(data_f[1]); vals_cast[offset + token_index] = result; } } } #endif } __global__ void sr_qunatize_kernel(float* vals, int token_size, int token_num, int num_bits, std::pair<uint64_t, uint64_t> seed) { cg::thread_block b = cg::this_thread_block(); cg::thread_block_tile<32> g = cg::tiled_partition<32>(b); int gid = threadIdx.x >> 5; int lane = threadIdx.x & 0x1f; int warp_num = blockDim.x >> 5; int id = threadIdx.x; int idx = blockIdx.x * blockDim.x + id; float4* vals_cast = reinterpret_cast<float4*>(vals); float4 data[128]; int bid = blockIdx.x; int tid = threadIdx.x; hiprandStatePhilox4_32_10_t state; hiprand_init(seed.first, idx, seed.second, &state); int group_index = bid * token_size + threadIdx.x; int reg_count = 0; int total_count = token_size * token_num; if (group_index < total_count) { // float min = 10000.0; float max = -10000.0; while (tid < token_size) { data[reg_count] = vals_cast[group_index]; if (abs(data[reg_count].x) > max) max = abs(data[reg_count].x); if (abs(data[reg_count].y) > max) max = abs(data[reg_count].y); if (abs(data[reg_count].z) > max) max = abs(data[reg_count].z); if (abs(data[reg_count].w) > max) max = abs(data[reg_count].w); group_index += blockDim.x; tid += blockDim.x; reg_count++; } #pragma unroll for (int i = 1; i < WARP_SIZE; i <<= 1) { auto temp = g.shfl_xor(max, i); if (max < temp) max = temp; } __shared__ float partialMax[WARP_SIZE]; if (lane == 0) partialMax[gid] = max; b.sync(); if (lane < warp_num) max = partialMax[lane]; #pragma unroll for (int i = 1; i < warp_num; i <<= 1) { auto temp = g.shfl_down(max, i); if (max < temp) max = temp; } max = g.shfl(max, 0); float q_scale_val = (float)(1 << num_bits) / (max * 2 + 1e-5); float high_q = (float)((1 << (num_bits - 1)) - 1); float low_q = (float)(-((1 << (num_bits - 1)))); int offset = (bid)*token_size; for (int i = 0; i < reg_count; i++) { group_index = i * blockDim.x + threadIdx.x; if (group_index < token_size) { float4 q_data = data[i]; float4 q_data_int; q_data_int.x = (float)((int)(q_data.x * q_scale_val)); q_data_int.y = (float)((int)(q_data.y * q_scale_val)); q_data_int.w = (float)((int)(q_data.w * q_scale_val)); q_data_int.z = (float)((int)(q_data.z * q_scale_val)); // Stochastic rounding float4 rand = hiprand_uniform4(&state); float q_error[4]; q_error[0] = abs(q_data.x - (q_data_int.x / q_scale_val)) * q_scale_val; q_error[1] = abs(q_data.y - (q_data_int.y / q_scale_val)) * q_scale_val; q_error[2] = abs(q_data.w - (q_data_int.w / q_scale_val)) * q_scale_val; q_error[3] = abs(q_data.z - (q_data_int.z / q_scale_val)) * q_scale_val; q_data_int.x = (rand.x < q_error[0] && q_data_int.x > low_q && q_data_int.x < high_q) ? (q_data_int.x + (q_data.x > 0 ? 1 : -1)) : q_data_int.x; q_data_int.y = (rand.y < q_error[1] && q_data_int.y > low_q && q_data_int.y < high_q) ? (q_data_int.y + (q_data.y > 0 ? 1 : -1)) : q_data_int.y; q_data_int.w = (rand.w < q_error[2] && q_data_int.w > low_q && q_data_int.w < high_q) ? (q_data_int.w + (q_data.w > 0 ? 1 : -1)) : q_data_int.w; q_data_int.z = (rand.z < q_error[3] && q_data_int.z > low_q && q_data_int.z < high_q) ? (q_data_int.z + (q_data.z > 0 ? 1 : -1)) : q_data_int.z; q_data_int.x /= q_scale_val; q_data_int.y /= q_scale_val; q_data_int.w /= q_scale_val; q_data_int.z /= q_scale_val; vals_cast[group_index + offset] = q_data_int; } } } } template <typename T> void launch_sr_qunatize_kernel(T* vals, int total_count, int group_num, int num_bits, hipStream_t stream) { dim3 block_dim(1024); dim3 grid_dim(group_num); uint64_t inc = total_count / grid_dim.x / block_dim.x; std::pair<uint64_t, uint64_t> seed = Context::Instance().IncrementOffset(inc); hipLaunchKernelGGL(( sr_qunatize_kernel), dim3(grid_dim), dim3(block_dim), 0, stream, vals, (total_count / group_num) / 4, group_num, num_bits, seed); } template void launch_sr_qunatize_kernel(float* vals, int total_count, int group_num, int num_bits, hipStream_t stream); template void launch_sr_qunatize_kernel(__half* vals, int total_count, int group_num, int num_bits, hipStream_t stream); __global__ void qunatize_kernel_asym(__half* vals, int group_size, int num_bits) { #if __CUDA_ARCH__ >= 700 cg::thread_block b = cg::this_thread_block(); cg::thread_block_tile<32> g = cg::tiled_partition<32>(b); int gid = threadIdx.x >> 5; int lane = threadIdx.x & 0x1f; int warp_num = blockDim.x >> 5; int id = threadIdx.x; float2* vals_cast = reinterpret_cast<float2*>(vals); float2 data[MAX_REG]; int group_id = blockIdx.x; { int group_index = id; int reg_count = 0; int offset = group_id * group_size; float max = -10000.0; float min = 10000.0; while (group_index < group_size && reg_count < MAX_REG) { data[reg_count] = vals_cast[offset + group_index]; __half* data_h = reinterpret_cast<__half*>(&data[reg_count]); if (((float)data_h[0]) > max) max = (float)data_h[0]; if (((float)data_h[1]) > max) max = (float)data_h[1]; if (((float)data_h[2]) > max) max = (float)data_h[2]; if (((float)data_h[3]) > max) max = (float)data_h[3]; if (((float)data_h[0]) < min) min = (float)data_h[0]; if (((float)data_h[1]) < min) min = (float)data_h[1]; if (((float)data_h[2]) < min) min = (float)data_h[2]; if (((float)data_h[3]) < min) min = (float)data_h[3]; group_index += blockDim.x; reg_count++; } #pragma unroll for (int i = 1; i < WARP_SIZE; i <<= 1) { auto temp = g.shfl_xor(max, i); if (max < temp) max = temp; } #pragma unroll for (int i = 1; i < WARP_SIZE; i <<= 1) { auto temp = g.shfl_xor(min, i); if (min > temp) min = temp; } __shared__ float partialMax[WARP_SIZE]; __shared__ float partialMin[WARP_SIZE]; if (lane == 0) partialMax[gid] = max; if (lane == 0) partialMin[gid] = min; b.sync(); if (lane < warp_num) max = partialMax[lane]; if (lane < warp_num) min = partialMin[lane]; #pragma unroll for (int i = 1; i < warp_num; i <<= 1) { auto temp = g.shfl_down(max, i); if (max < temp) max = temp; } #pragma unroll for (int i = 1; i < warp_num; i <<= 1) { auto temp = g.shfl_down(min, i); if (min > temp) min = temp; } max = g.shfl(max, 0); min = g.shfl(min, 0); float q_scale = ((max - min) + 1e-5) / (float)(1 << num_bits); float q_scale_inv = 1 / q_scale; for (int i = 0; i < reg_count; i++) { group_index = i * blockDim.x + id; if (group_index < group_size) { __half2* data_h = reinterpret_cast<__half2*>(&data[i]); float2 q_data[2]; q_data[0] = __half22float2(data_h[0]); q_data[1] = __half22float2(data_h[1]); float2 q_data_int[2]; q_data_int[0].x = roundf((q_data[0].x - min) * q_scale_inv); q_data_int[0].y = roundf((q_data[0].y - min) * q_scale_inv); q_data_int[1].x = roundf((q_data[1].x - min) * q_scale_inv); q_data_int[1].y = roundf((q_data[1].y - min) * q_scale_inv); q_data_int[0].x = q_data_int[0].x * q_scale + min; q_data_int[0].y = q_data_int[0].y * q_scale + min; q_data_int[1].x = q_data_int[1].x * q_scale + min; q_data_int[1].y = q_data_int[1].y * q_scale + min; data_h[0] = __float22half2_rn(q_data_int[0]); data_h[1] = __float22half2_rn(q_data_int[1]); vals_cast[offset + group_index] = data[i]; } } } #endif } __global__ void qunatize_kernel_asym(float* vals, int group_size, int num_bits) { cg::thread_block b = cg::this_thread_block(); cg::thread_block_tile<32> g = cg::tiled_partition<32>(b); int gid = threadIdx.x >> 5; int lane = threadIdx.x & 0x1f; int warp_num = blockDim.x >> 5; int id = threadIdx.x; float4* vals_cast = reinterpret_cast<float4*>(vals); float4 data[MAX_REG]; int bid = blockIdx.x; int group_index = bid * group_size + id; int reg_count = 0; float max = -10000.0; float min = 10000.0; while (id < group_size && reg_count < MAX_REG) { float4 data_reg = vals_cast[group_index]; data[reg_count] = data_reg; if (data_reg.x > max) max = data_reg.x; if (data_reg.y > max) max = data_reg.y; if (data_reg.w > max) max = data_reg.w; if (data_reg.z > max) max = data_reg.z; if (data_reg.x < min) min = data_reg.x; if (data_reg.y < min) min = data_reg.y; if (data_reg.w < min) min = data_reg.w; if (data_reg.z < min) min = data_reg.z; group_index += blockDim.x; id += blockDim.x; reg_count++; } id = threadIdx.x; #pragma unroll for (int i = 1; i < WARP_SIZE; i <<= 1) { auto temp = g.shfl_xor(max, i); if (max < temp) max = temp; } #pragma unroll for (int i = 1; i < WARP_SIZE; i <<= 1) { auto temp = g.shfl_xor(min, i); if (min > temp) min = temp; } __shared__ float partialMax[WARP_SIZE]; __shared__ float partialMin[WARP_SIZE]; if (lane == 0) partialMax[gid] = max; if (lane == 0) partialMin[gid] = min; b.sync(); if (lane < warp_num) max = partialMax[lane]; if (lane < warp_num) min = partialMin[lane]; #pragma unroll for (int i = 1; i < warp_num; i <<= 1) { auto temp = g.shfl_down(max, i); if (max < temp) max = temp; } #pragma unroll for (int i = 1; i < warp_num; i <<= 1) { auto temp = g.shfl_down(min, i); if (min > temp) min = temp; } max = g.shfl(max, 0); min = g.shfl(min, 0); float q_scale = ((max - min) + 1e-5) / (float)(1 << num_bits); float q_scale_inv = 1 / q_scale; for (int i = 0; i < reg_count; i++) { group_index = i * blockDim.x + id; if (group_index < group_size) { float4 q_data; q_data = data[i]; float4 q_data_int; q_data_int.x = roundf((q_data.x - min) * q_scale_inv); q_data_int.y = roundf((q_data.y - min) * q_scale_inv); q_data_int.w = roundf((q_data.w - min) * q_scale_inv); q_data_int.z = roundf((q_data.z - min) * q_scale_inv); q_data.x = q_data_int.x * q_scale + min; q_data.y = q_data_int.y * q_scale + min; q_data.w = q_data_int.w * q_scale + min; q_data.z = q_data_int.z * q_scale + min; vals_cast[group_index + bid * group_size] = q_data; } } } template <typename T> void launch_qunatize_kernel_asym(T* vals, int total_count, int group_num, int num_bits, hipStream_t stream) { dim3 grid_dim(group_num); dim3 block_dim(1024); hipLaunchKernelGGL(( qunatize_kernel_asym), dim3(grid_dim), dim3(block_dim), 0, stream, vals, (total_count / group_num) / 4, num_bits); } template void launch_qunatize_kernel_asym(float* vals, int total_count, int group_num, int num_bits, hipStream_t stream); template void launch_qunatize_kernel_asym(__half* vals, int total_count, int group_num, int num_bits, hipStream_t stream); __global__ void sr_qunatize_kernel_asym(__half* vals, int token_size, int token_num, int num_bits, std::pair<uint64_t, uint64_t> seed) { #if __CUDA_ARCH__ >= 700 cg::thread_block b = cg::this_thread_block(); cg::thread_block_tile<32> g = cg::tiled_partition<32>(b); int gid = threadIdx.x >> 5; int lane = threadIdx.x & 0x1f; int warp_num = blockDim.x >> 5; int idx = blockIdx.x * blockDim.x + threadIdx.x; float2* vals_cast = reinterpret_cast<float2*>(vals); __half2 data_low[128]; __half2 data_high[128]; int bid = blockIdx.x; hiprandStatePhilox4_32_10_t state; hiprand_init(seed.first, idx, seed.second, &state); unsigned int tid = threadIdx.x; int reg_count = 0; int offset = bid * token_size; int group_index = bid * token_size + tid; int total_count = token_size * token_num; if (group_index < total_count) { float min = 10000.0; float max = -10000.0; while (tid < token_size) { float2 data = vals_cast[offset + tid]; __half2* data_h = reinterpret_cast<__half2*>(&data); data_low[reg_count] = data_h[0]; data_high[reg_count] = data_h[1]; float2 data_f[2]; data_f[0] = __half22float2(data_h[0]); data_f[1] = __half22float2(data_h[1]); if (((float)data_f[0].x) > max) max = (float)data_f[0].x; if (((float)data_f[0].y) > max) max = (float)data_f[0].y; if (((float)data_f[1].x) > max) max = (float)data_f[1].x; if (((float)data_f[1].y) > max) max = (float)data_f[1].y; if (((float)data_f[0].x) < min) min = (float)data_f[0].x; if (((float)data_f[0].y) < min) min = (float)data_f[0].y; if (((float)data_f[1].x) < min) min = (float)data_f[1].x; if (((float)data_f[1].y) < min) min = (float)data_f[1].y; tid += blockDim.x; reg_count++; } #pragma unroll for (int i = 1; i < WARP_SIZE; i <<= 1) { auto temp = g.shfl_xor(max, i); if (max < temp) max = temp; } #pragma unroll for (int i = 1; i < WARP_SIZE; i <<= 1) { auto temp = g.shfl_xor(min, i); if (min > temp) min = temp; } __shared__ float partialMax[WARP_SIZE]; __shared__ float partialMin[WARP_SIZE]; if (lane == 0) partialMax[gid] = max; if (lane == 0) partialMin[gid] = min; b.sync(); if (lane < warp_num) max = partialMax[lane]; if (lane < warp_num) min = partialMin[lane]; #pragma unroll for (int i = 1; i < warp_num; i <<= 1) { auto temp = g.shfl_down(max, i); if (max < temp) max = temp; } #pragma unroll for (int i = 1; i < warp_num; i <<= 1) { auto temp = g.shfl_down(min, i); if (min > temp) min = temp; } max = g.shfl(max, 0); min = g.shfl(min, 0); float q_scale_val = ((max - min) + 1e-5) / (float)(1 << num_bits); float q_scale_val_inv = 1 / q_scale_val; float high_q = (float)((1 << num_bits) - 1); for (int i = 0; i < reg_count; i++) { int token_index = i * blockDim.x + threadIdx.x; if (token_index < token_size) { float2 data_f[2]; data_f[0] = __half22float2(data_low[i]); data_f[1] = __half22float2(data_high[i]); float2 q_data_int[2]; q_data_int[0].x = (float)((unsigned int)((data_f[0].x - min) * q_scale_val_inv)); q_data_int[0].y = (float)((unsigned int)((data_f[0].y - min) * q_scale_val_inv)); q_data_int[1].x = (float)((unsigned int)((data_f[1].x - min) * q_scale_val_inv)); q_data_int[1].y = (float)((unsigned int)((data_f[1].y - min) * q_scale_val_inv)); // Stochastic rounding float4 rand = hiprand_uniform4(&state); float q_error[4]; q_error[0] = abs(data_f[0].x - ((q_data_int[0].x * q_scale_val) + min)) * q_scale_val_inv; q_error[1] = abs(data_f[0].y - ((q_data_int[0].y * q_scale_val) + min)) * q_scale_val_inv; q_error[2] = abs(data_f[1].x - ((q_data_int[1].x * q_scale_val) + min)) * q_scale_val_inv; q_error[3] = abs(data_f[1].y - ((q_data_int[1].y * q_scale_val) + min)) * q_scale_val_inv; q_data_int[0].x = (rand.x < q_error[0] && q_data_int[0].x < high_q) ? (q_data_int[0].x + 1) : q_data_int[0].x; q_data_int[0].y = (rand.y < q_error[1] && q_data_int[0].y < high_q) ? (q_data_int[0].y + 1) : q_data_int[0].y; q_data_int[1].x = (rand.w < q_error[2] && q_data_int[1].x < high_q) ? (q_data_int[1].x + 1) : q_data_int[1].x; q_data_int[1].y = (rand.z < q_error[3] && q_data_int[1].y < high_q) ? (q_data_int[1].y + 1) : q_data_int[1].y; data_f[0].x = q_data_int[0].x * q_scale_val + min; data_f[0].y = q_data_int[0].y * q_scale_val + min; data_f[1].x = q_data_int[1].x * q_scale_val + min; data_f[1].y = q_data_int[1].y * q_scale_val + min; float2 result; __half2* result_h = reinterpret_cast<__half2*>(&result); result_h[0] = __float22half2_rn(data_f[0]); result_h[1] = __float22half2_rn(data_f[1]); vals_cast[offset + token_index] = result; } } } #endif } __global__ void sr_qunatize_kernel_asym(float* vals, int token_size, int token_num, int num_bits, std::pair<uint64_t, uint64_t> seed) { cg::thread_block b = cg::this_thread_block(); cg::thread_block_tile<32> g = cg::tiled_partition<32>(b); int gid = threadIdx.x >> 5; int lane = threadIdx.x & 0x1f; int warp_num = blockDim.x >> 5; int id = threadIdx.x; int idx = blockIdx.x * blockDim.x + id; float4* vals_cast = reinterpret_cast<float4*>(vals); float4 data[128]; int bid = blockIdx.x; int tid = threadIdx.x; hiprandStatePhilox4_32_10_t state; hiprand_init(seed.first, idx, seed.second, &state); int group_index = bid * token_size + threadIdx.x; int reg_count = 0; int total_count = token_size * token_num; if (group_index < total_count) { float min = 10000.0; float max = -10000.0; while (tid < token_size) { float4 data_reg = vals_cast[group_index]; data[reg_count] = data_reg; if (data_reg.x > max) max = data_reg.x; if (data_reg.y > max) max = data_reg.y; if (data_reg.w > max) max = data_reg.w; if (data_reg.z > max) max = data_reg.z; if (data_reg.x < min) min = data_reg.x; if (data_reg.y < min) min = data_reg.y; if (data_reg.w < min) min = data_reg.w; if (data_reg.z < min) min = data_reg.z; group_index += blockDim.x; tid += blockDim.x; reg_count++; } #pragma unroll for (int i = 1; i < WARP_SIZE; i <<= 1) { auto temp = g.shfl_xor(max, i); if (max < temp) max = temp; } #pragma unroll for (int i = 1; i < WARP_SIZE; i <<= 1) { auto temp = g.shfl_xor(min, i); if (min > temp) min = temp; } __shared__ float partialMax[WARP_SIZE]; __shared__ float partialMin[WARP_SIZE]; if (lane == 0) partialMax[gid] = max; if (lane == 0) partialMin[gid] = min; b.sync(); if (lane < warp_num) max = partialMax[lane]; if (lane < warp_num) min = partialMin[lane]; #pragma unroll for (int i = 1; i < warp_num; i <<= 1) { auto temp = g.shfl_down(max, i); if (max < temp) max = temp; } #pragma unroll for (int i = 1; i < warp_num; i <<= 1) { auto temp = g.shfl_down(min, i); if (min > temp) min = temp; } max = g.shfl(max, 0); min = g.shfl(min, 0); float q_scale_val = ((max - min) + 1e-5) / (float)(1 << num_bits); float high_q = (float)((1 << num_bits) - 1); int offset = (bid)*token_size; for (int i = 0; i < reg_count; i++) { group_index = i * blockDim.x + threadIdx.x; if (group_index < token_size) { float4 q_data = data[i]; float4 q_data_int; q_data_int.x = (float)((int)((q_data.x - min) / q_scale_val)); q_data_int.y = (float)((int)((q_data.y - min) / q_scale_val)); q_data_int.w = (float)((int)((q_data.w - min) / q_scale_val)); q_data_int.z = (float)((int)((q_data.z - min) / q_scale_val)); // Stochastic rounding float4 rand = hiprand_uniform4(&state); float q_error[4]; q_error[0] = abs(q_data.x - ((q_data_int.x * q_scale_val) + min)) / q_scale_val; q_error[1] = abs(q_data.y - ((q_data_int.y * q_scale_val) + min)) / q_scale_val; q_error[2] = abs(q_data.w - ((q_data_int.w * q_scale_val) + min)) / q_scale_val; q_error[3] = abs(q_data.z - ((q_data_int.z * q_scale_val) + min)) / q_scale_val; q_data_int.x = (rand.x < q_error[0] && q_data_int.x < high_q) ? (q_data_int.x + 1) : q_data_int.x; q_data_int.y = (rand.y < q_error[1] && q_data_int.y < high_q) ? (q_data_int.y + 1) : q_data_int.y; q_data_int.w = (rand.w < q_error[2] && q_data_int.w < high_q) ? (q_data_int.w + 1) : q_data_int.w; q_data_int.z = (rand.z < q_error[3] && q_data_int.z < high_q) ? (q_data_int.z + 1) : q_data_int.z; q_data_int.x = q_data_int.x * q_scale_val + min; q_data_int.y = q_data_int.y * q_scale_val + min; q_data_int.w = q_data_int.w * q_scale_val + min; q_data_int.z = q_data_int.z * q_scale_val + min; vals_cast[group_index + offset] = q_data_int; } } } } template <typename T> void launch_sr_qunatize_kernel_asym(T* vals, int total_count, int group_num, int num_bits, hipStream_t stream) { dim3 block_dim(1024); dim3 grid_dim(group_num); uint64_t inc = total_count / grid_dim.x / block_dim.x; std::pair<uint64_t, uint64_t> seed = Context::Instance().IncrementOffset(inc); hipLaunchKernelGGL(( sr_qunatize_kernel), dim3(grid_dim), dim3(block_dim), 0, stream, vals, (total_count / group_num) / 4, group_num, num_bits, seed); } template void launch_sr_qunatize_kernel_asym(float* vals, int total_count, int group_num, int num_bits, hipStream_t stream); template void launch_sr_qunatize_kernel_asym(__half* vals, int total_count, int group_num, int num_bits, hipStream_t stream);
3f0f7abf22eebf962ae7b5e3695c085960b4dfcf.cu
#include <math.h> #include "custom_cuda_layers.h" namespace cg = cooperative_groups; __global__ void qunatize_kernel(__half* vals, int group_size, int num_bits) { #if __CUDA_ARCH__ >= 700 cg::thread_block b = cg::this_thread_block(); cg::thread_block_tile<32> g = cg::tiled_partition<32>(b); int gid = threadIdx.x >> 5; int lane = threadIdx.x & 0x1f; int warp_num = blockDim.x >> 5; int id = threadIdx.x; float2* vals_cast = reinterpret_cast<float2*>(vals); float2 data[MAX_REG]; int group_id = blockIdx.x; { int group_index = id; int reg_count = 0; int offset = group_id * group_size; float max = -10000.0; while (group_index < group_size && reg_count < MAX_REG) { data[reg_count] = vals_cast[offset + group_index]; __half* data_h = reinterpret_cast<__half*>(&data[reg_count]); if (abs((float)data_h[0]) > max) max = abs((float)data_h[0]); if (abs((float)data_h[1]) > max) max = abs((float)data_h[1]); if (abs((float)data_h[2]) > max) max = abs((float)data_h[2]); if (abs((float)data_h[3]) > max) max = abs((float)data_h[3]); group_index += blockDim.x; reg_count++; } #pragma unroll for (int i = 1; i < WARP_SIZE; i <<= 1) { auto temp = g.shfl_xor(max, i); if (max < temp) max = temp; } __shared__ float partialMax[WARP_SIZE]; if (lane == 0) partialMax[gid] = max; b.sync(); if (lane < warp_num) max = partialMax[lane]; #pragma unroll for (int i = 1; i < WARP_SIZE; i <<= 1) { auto temp = g.shfl_down(max, i); if (max < temp) max = temp; } max = g.shfl(max, 0); float q_scale = (1 << num_bits) / (2 * max + 1e-5); float q_scale_inv = 1 / q_scale; for (int i = 0; i < reg_count; i++) { group_index = i * blockDim.x + id; if (group_index < group_size) { __half2* data_h = reinterpret_cast<__half2*>(&data[i]); float2 q_data[2]; q_data[0] = __half22float2(data_h[0]); q_data[1] = __half22float2(data_h[1]); float2 q_data_int[2]; q_data_int[0].x = roundf(q_data[0].x * q_scale); q_data_int[0].y = roundf(q_data[0].y * q_scale); q_data_int[1].x = roundf(q_data[1].x * q_scale); q_data_int[1].y = roundf(q_data[1].y * q_scale); q_data_int[0].x *= q_scale_inv; q_data_int[0].y *= q_scale_inv; q_data_int[1].x *= q_scale_inv; q_data_int[1].y *= q_scale_inv; data_h[0] = __float22half2_rn(q_data_int[0]); data_h[1] = __float22half2_rn(q_data_int[1]); vals_cast[offset + group_index] = data[i]; } } } #endif } __global__ void qunatize_kernel(float* vals, int group_size, int num_bits) { cg::thread_block b = cg::this_thread_block(); cg::thread_block_tile<32> g = cg::tiled_partition<32>(b); int gid = threadIdx.x >> 5; int lane = threadIdx.x & 0x1f; int warp_num = blockDim.x >> 5; int id = threadIdx.x; float4* vals_cast = reinterpret_cast<float4*>(vals); float4 data[MAX_REG]; int bid = blockIdx.x; int group_index = bid * group_size + id; int reg_count = 0; float max = -10000.0; while (id < group_size && reg_count < MAX_REG) { float4 data_reg = vals_cast[group_index]; data[reg_count] = data_reg; if (abs(data_reg.x) > max) max = abs(data_reg.x); if (abs(data_reg.y) > max) max = abs(data_reg.y); if (abs(data_reg.z) > max) max = abs(data_reg.z); if (abs(data_reg.w) > max) max = abs(data_reg.w); group_index += blockDim.x; id += blockDim.x; reg_count++; } id = threadIdx.x; #pragma unroll for (int i = 1; i < WARP_SIZE; i <<= 1) { auto temp = g.shfl_xor(max, i); if (max < temp) max = temp; } __shared__ float partialMax[WARP_SIZE]; if (lane == 0) partialMax[gid] = max; b.sync(); if (lane < warp_num) max = partialMax[lane]; b.sync(); #pragma unroll for (int i = 1; i < warp_num; i <<= 1) { auto temp = g.shfl_down(max, i); if (max < temp) max = temp; } max = g.shfl(max, 0); float q_scale = (1 << num_bits) / (2 * max + 1e-5); float q_scale_inv = 1 / q_scale; for (int i = 0; i < reg_count; i++) { group_index = i * blockDim.x + id; if (group_index < group_size) { float4 q_data; q_data = data[i]; float4 q_data_int; q_data_int.x = roundf(q_data.x * q_scale); q_data_int.y = roundf(q_data.y * q_scale); q_data_int.w = roundf(q_data.w * q_scale); q_data_int.z = roundf(q_data.z * q_scale); q_data.x = q_data_int.x * q_scale_inv; q_data.y = q_data_int.y * q_scale_inv; q_data.w = q_data_int.w * q_scale_inv; q_data.z = q_data_int.z * q_scale_inv; vals_cast[group_index + bid * group_size] = q_data; } } } template <typename T> void launch_qunatize_kernel(T* vals, int total_count, int group_num, int num_bits, cudaStream_t stream) { dim3 grid_dim(group_num); dim3 block_dim(1024); qunatize_kernel<<<grid_dim, block_dim, 0, stream>>>( vals, (total_count / group_num) / 4, num_bits); } template void launch_qunatize_kernel(float* vals, int total_count, int group_num, int num_bits, cudaStream_t stream); template void launch_qunatize_kernel(__half* vals, int total_count, int group_num, int num_bits, cudaStream_t stream); __global__ void sr_qunatize_kernel(__half* vals, int token_size, int token_num, int num_bits, std::pair<uint64_t, uint64_t> seed) { #if __CUDA_ARCH__ >= 700 cg::thread_block b = cg::this_thread_block(); cg::thread_block_tile<32> g = cg::tiled_partition<32>(b); int gid = threadIdx.x >> 5; int lane = threadIdx.x & 0x1f; int warp_num = blockDim.x >> 5; int idx = blockIdx.x * blockDim.x + threadIdx.x; float2* vals_cast = reinterpret_cast<float2*>(vals); __half2 data_low[128]; __half2 data_high[128]; int bid = blockIdx.x; curandStatePhilox4_32_10_t state; curand_init(seed.first, idx, seed.second, &state); unsigned int tid = threadIdx.x; int reg_count = 0; int offset = bid * token_size; int group_index = bid * token_size + tid; int total_count = token_size * token_num; if (group_index < total_count) { // float min = 10000.0; float max = -10000.0; while (tid < token_size) { float2 data = vals_cast[offset + tid]; __half2* data_h = reinterpret_cast<__half2*>(&data); data_low[reg_count] = data_h[0]; data_high[reg_count] = data_h[1]; float2 data_f[2]; data_f[0] = __half22float2(data_h[0]); data_f[1] = __half22float2(data_h[1]); if (abs((float)data_f[0].x) > max) max = abs((float)data_f[0].x); if (abs((float)data_f[0].y) > max) max = abs((float)data_f[0].y); if (abs((float)data_f[1].x) > max) max = abs((float)data_f[1].x); if (abs((float)data_f[1].y) > max) max = abs((float)data_f[1].y); tid += blockDim.x; reg_count++; } #pragma unroll for (int i = 1; i < WARP_SIZE; i <<= 1) { auto temp = g.shfl_xor(max, i); if (max < temp) max = temp; } __shared__ float partialMax[WARP_SIZE]; if (lane == 0) partialMax[gid] = max; b.sync(); if (lane < warp_num) max = partialMax[lane]; #pragma unroll for (int i = 1; i < warp_num; i <<= 1) { auto temp = g.shfl_down(max, i); if (max < temp) max = temp; } max = g.shfl(max, 0); float q_scale_val = (float)(1 << num_bits) / (max * 2 + 1e-5); float high_q = (float)((1 << (num_bits - 1)) - 1); float low_q = (float)(-((1 << (num_bits - 1)))); for (int i = 0; i < reg_count; i++) { int token_index = i * blockDim.x + threadIdx.x; if (token_index < token_size) { float2 data_f[2]; data_f[0] = __half22float2(data_low[i]); data_f[1] = __half22float2(data_high[i]); float2 q_data_int[2]; q_data_int[0].x = (float)((int)(data_f[0].x * q_scale_val)); q_data_int[0].y = (float)((int)(data_f[0].y * q_scale_val)); q_data_int[1].x = (float)((int)(data_f[1].x * q_scale_val)); q_data_int[1].y = (float)((int)(data_f[1].y * q_scale_val)); // Stochastic rounding float4 rand = curand_uniform4(&state); float q_error[4]; q_error[0] = abs(data_f[0].x - (q_data_int[0].x / q_scale_val)) * q_scale_val; q_error[1] = abs(data_f[0].y - (q_data_int[0].y / q_scale_val)) * q_scale_val; q_error[2] = abs(data_f[1].x - (q_data_int[1].x / q_scale_val)) * q_scale_val; q_error[3] = abs(data_f[1].y - (q_data_int[1].y / q_scale_val)) * q_scale_val; q_data_int[0].x = (rand.x < q_error[0] && q_data_int[0].x > low_q && q_data_int[0].x < high_q) ? (q_data_int[0].x + (data_f[0].x > 0 ? 1 : -1)) : q_data_int[0].x; q_data_int[0].y = (rand.y < q_error[1] && q_data_int[0].y > low_q && q_data_int[0].y < high_q) ? (q_data_int[0].y + (data_f[0].y > 0 ? 1 : -1)) : q_data_int[0].y; q_data_int[1].x = (rand.w < q_error[2] && q_data_int[1].x > low_q && q_data_int[1].x < high_q) ? (q_data_int[1].x + (data_f[1].x > 0 ? 1 : -1)) : q_data_int[1].x; q_data_int[1].y = (rand.z < q_error[3] && q_data_int[1].y > low_q && q_data_int[1].y < high_q) ? (q_data_int[1].y + (data_f[1].y > 0 ? 1 : -1)) : q_data_int[1].y; data_f[0].x = q_data_int[0].x / q_scale_val; data_f[0].y = q_data_int[0].y / q_scale_val; data_f[1].x = q_data_int[1].x / q_scale_val; data_f[1].y = q_data_int[1].y / q_scale_val; float2 result; __half2* result_h = reinterpret_cast<__half2*>(&result); result_h[0] = __float22half2_rn(data_f[0]); result_h[1] = __float22half2_rn(data_f[1]); vals_cast[offset + token_index] = result; } } } #endif } __global__ void sr_qunatize_kernel(float* vals, int token_size, int token_num, int num_bits, std::pair<uint64_t, uint64_t> seed) { cg::thread_block b = cg::this_thread_block(); cg::thread_block_tile<32> g = cg::tiled_partition<32>(b); int gid = threadIdx.x >> 5; int lane = threadIdx.x & 0x1f; int warp_num = blockDim.x >> 5; int id = threadIdx.x; int idx = blockIdx.x * blockDim.x + id; float4* vals_cast = reinterpret_cast<float4*>(vals); float4 data[128]; int bid = blockIdx.x; int tid = threadIdx.x; curandStatePhilox4_32_10_t state; curand_init(seed.first, idx, seed.second, &state); int group_index = bid * token_size + threadIdx.x; int reg_count = 0; int total_count = token_size * token_num; if (group_index < total_count) { // float min = 10000.0; float max = -10000.0; while (tid < token_size) { data[reg_count] = vals_cast[group_index]; if (abs(data[reg_count].x) > max) max = abs(data[reg_count].x); if (abs(data[reg_count].y) > max) max = abs(data[reg_count].y); if (abs(data[reg_count].z) > max) max = abs(data[reg_count].z); if (abs(data[reg_count].w) > max) max = abs(data[reg_count].w); group_index += blockDim.x; tid += blockDim.x; reg_count++; } #pragma unroll for (int i = 1; i < WARP_SIZE; i <<= 1) { auto temp = g.shfl_xor(max, i); if (max < temp) max = temp; } __shared__ float partialMax[WARP_SIZE]; if (lane == 0) partialMax[gid] = max; b.sync(); if (lane < warp_num) max = partialMax[lane]; #pragma unroll for (int i = 1; i < warp_num; i <<= 1) { auto temp = g.shfl_down(max, i); if (max < temp) max = temp; } max = g.shfl(max, 0); float q_scale_val = (float)(1 << num_bits) / (max * 2 + 1e-5); float high_q = (float)((1 << (num_bits - 1)) - 1); float low_q = (float)(-((1 << (num_bits - 1)))); int offset = (bid)*token_size; for (int i = 0; i < reg_count; i++) { group_index = i * blockDim.x + threadIdx.x; if (group_index < token_size) { float4 q_data = data[i]; float4 q_data_int; q_data_int.x = (float)((int)(q_data.x * q_scale_val)); q_data_int.y = (float)((int)(q_data.y * q_scale_val)); q_data_int.w = (float)((int)(q_data.w * q_scale_val)); q_data_int.z = (float)((int)(q_data.z * q_scale_val)); // Stochastic rounding float4 rand = curand_uniform4(&state); float q_error[4]; q_error[0] = abs(q_data.x - (q_data_int.x / q_scale_val)) * q_scale_val; q_error[1] = abs(q_data.y - (q_data_int.y / q_scale_val)) * q_scale_val; q_error[2] = abs(q_data.w - (q_data_int.w / q_scale_val)) * q_scale_val; q_error[3] = abs(q_data.z - (q_data_int.z / q_scale_val)) * q_scale_val; q_data_int.x = (rand.x < q_error[0] && q_data_int.x > low_q && q_data_int.x < high_q) ? (q_data_int.x + (q_data.x > 0 ? 1 : -1)) : q_data_int.x; q_data_int.y = (rand.y < q_error[1] && q_data_int.y > low_q && q_data_int.y < high_q) ? (q_data_int.y + (q_data.y > 0 ? 1 : -1)) : q_data_int.y; q_data_int.w = (rand.w < q_error[2] && q_data_int.w > low_q && q_data_int.w < high_q) ? (q_data_int.w + (q_data.w > 0 ? 1 : -1)) : q_data_int.w; q_data_int.z = (rand.z < q_error[3] && q_data_int.z > low_q && q_data_int.z < high_q) ? (q_data_int.z + (q_data.z > 0 ? 1 : -1)) : q_data_int.z; q_data_int.x /= q_scale_val; q_data_int.y /= q_scale_val; q_data_int.w /= q_scale_val; q_data_int.z /= q_scale_val; vals_cast[group_index + offset] = q_data_int; } } } } template <typename T> void launch_sr_qunatize_kernel(T* vals, int total_count, int group_num, int num_bits, cudaStream_t stream) { dim3 block_dim(1024); dim3 grid_dim(group_num); uint64_t inc = total_count / grid_dim.x / block_dim.x; std::pair<uint64_t, uint64_t> seed = Context::Instance().IncrementOffset(inc); sr_qunatize_kernel<<<grid_dim, block_dim, 0, stream>>>( vals, (total_count / group_num) / 4, group_num, num_bits, seed); } template void launch_sr_qunatize_kernel(float* vals, int total_count, int group_num, int num_bits, cudaStream_t stream); template void launch_sr_qunatize_kernel(__half* vals, int total_count, int group_num, int num_bits, cudaStream_t stream); __global__ void qunatize_kernel_asym(__half* vals, int group_size, int num_bits) { #if __CUDA_ARCH__ >= 700 cg::thread_block b = cg::this_thread_block(); cg::thread_block_tile<32> g = cg::tiled_partition<32>(b); int gid = threadIdx.x >> 5; int lane = threadIdx.x & 0x1f; int warp_num = blockDim.x >> 5; int id = threadIdx.x; float2* vals_cast = reinterpret_cast<float2*>(vals); float2 data[MAX_REG]; int group_id = blockIdx.x; { int group_index = id; int reg_count = 0; int offset = group_id * group_size; float max = -10000.0; float min = 10000.0; while (group_index < group_size && reg_count < MAX_REG) { data[reg_count] = vals_cast[offset + group_index]; __half* data_h = reinterpret_cast<__half*>(&data[reg_count]); if (((float)data_h[0]) > max) max = (float)data_h[0]; if (((float)data_h[1]) > max) max = (float)data_h[1]; if (((float)data_h[2]) > max) max = (float)data_h[2]; if (((float)data_h[3]) > max) max = (float)data_h[3]; if (((float)data_h[0]) < min) min = (float)data_h[0]; if (((float)data_h[1]) < min) min = (float)data_h[1]; if (((float)data_h[2]) < min) min = (float)data_h[2]; if (((float)data_h[3]) < min) min = (float)data_h[3]; group_index += blockDim.x; reg_count++; } #pragma unroll for (int i = 1; i < WARP_SIZE; i <<= 1) { auto temp = g.shfl_xor(max, i); if (max < temp) max = temp; } #pragma unroll for (int i = 1; i < WARP_SIZE; i <<= 1) { auto temp = g.shfl_xor(min, i); if (min > temp) min = temp; } __shared__ float partialMax[WARP_SIZE]; __shared__ float partialMin[WARP_SIZE]; if (lane == 0) partialMax[gid] = max; if (lane == 0) partialMin[gid] = min; b.sync(); if (lane < warp_num) max = partialMax[lane]; if (lane < warp_num) min = partialMin[lane]; #pragma unroll for (int i = 1; i < warp_num; i <<= 1) { auto temp = g.shfl_down(max, i); if (max < temp) max = temp; } #pragma unroll for (int i = 1; i < warp_num; i <<= 1) { auto temp = g.shfl_down(min, i); if (min > temp) min = temp; } max = g.shfl(max, 0); min = g.shfl(min, 0); float q_scale = ((max - min) + 1e-5) / (float)(1 << num_bits); float q_scale_inv = 1 / q_scale; for (int i = 0; i < reg_count; i++) { group_index = i * blockDim.x + id; if (group_index < group_size) { __half2* data_h = reinterpret_cast<__half2*>(&data[i]); float2 q_data[2]; q_data[0] = __half22float2(data_h[0]); q_data[1] = __half22float2(data_h[1]); float2 q_data_int[2]; q_data_int[0].x = roundf((q_data[0].x - min) * q_scale_inv); q_data_int[0].y = roundf((q_data[0].y - min) * q_scale_inv); q_data_int[1].x = roundf((q_data[1].x - min) * q_scale_inv); q_data_int[1].y = roundf((q_data[1].y - min) * q_scale_inv); q_data_int[0].x = q_data_int[0].x * q_scale + min; q_data_int[0].y = q_data_int[0].y * q_scale + min; q_data_int[1].x = q_data_int[1].x * q_scale + min; q_data_int[1].y = q_data_int[1].y * q_scale + min; data_h[0] = __float22half2_rn(q_data_int[0]); data_h[1] = __float22half2_rn(q_data_int[1]); vals_cast[offset + group_index] = data[i]; } } } #endif } __global__ void qunatize_kernel_asym(float* vals, int group_size, int num_bits) { cg::thread_block b = cg::this_thread_block(); cg::thread_block_tile<32> g = cg::tiled_partition<32>(b); int gid = threadIdx.x >> 5; int lane = threadIdx.x & 0x1f; int warp_num = blockDim.x >> 5; int id = threadIdx.x; float4* vals_cast = reinterpret_cast<float4*>(vals); float4 data[MAX_REG]; int bid = blockIdx.x; int group_index = bid * group_size + id; int reg_count = 0; float max = -10000.0; float min = 10000.0; while (id < group_size && reg_count < MAX_REG) { float4 data_reg = vals_cast[group_index]; data[reg_count] = data_reg; if (data_reg.x > max) max = data_reg.x; if (data_reg.y > max) max = data_reg.y; if (data_reg.w > max) max = data_reg.w; if (data_reg.z > max) max = data_reg.z; if (data_reg.x < min) min = data_reg.x; if (data_reg.y < min) min = data_reg.y; if (data_reg.w < min) min = data_reg.w; if (data_reg.z < min) min = data_reg.z; group_index += blockDim.x; id += blockDim.x; reg_count++; } id = threadIdx.x; #pragma unroll for (int i = 1; i < WARP_SIZE; i <<= 1) { auto temp = g.shfl_xor(max, i); if (max < temp) max = temp; } #pragma unroll for (int i = 1; i < WARP_SIZE; i <<= 1) { auto temp = g.shfl_xor(min, i); if (min > temp) min = temp; } __shared__ float partialMax[WARP_SIZE]; __shared__ float partialMin[WARP_SIZE]; if (lane == 0) partialMax[gid] = max; if (lane == 0) partialMin[gid] = min; b.sync(); if (lane < warp_num) max = partialMax[lane]; if (lane < warp_num) min = partialMin[lane]; #pragma unroll for (int i = 1; i < warp_num; i <<= 1) { auto temp = g.shfl_down(max, i); if (max < temp) max = temp; } #pragma unroll for (int i = 1; i < warp_num; i <<= 1) { auto temp = g.shfl_down(min, i); if (min > temp) min = temp; } max = g.shfl(max, 0); min = g.shfl(min, 0); float q_scale = ((max - min) + 1e-5) / (float)(1 << num_bits); float q_scale_inv = 1 / q_scale; for (int i = 0; i < reg_count; i++) { group_index = i * blockDim.x + id; if (group_index < group_size) { float4 q_data; q_data = data[i]; float4 q_data_int; q_data_int.x = roundf((q_data.x - min) * q_scale_inv); q_data_int.y = roundf((q_data.y - min) * q_scale_inv); q_data_int.w = roundf((q_data.w - min) * q_scale_inv); q_data_int.z = roundf((q_data.z - min) * q_scale_inv); q_data.x = q_data_int.x * q_scale + min; q_data.y = q_data_int.y * q_scale + min; q_data.w = q_data_int.w * q_scale + min; q_data.z = q_data_int.z * q_scale + min; vals_cast[group_index + bid * group_size] = q_data; } } } template <typename T> void launch_qunatize_kernel_asym(T* vals, int total_count, int group_num, int num_bits, cudaStream_t stream) { dim3 grid_dim(group_num); dim3 block_dim(1024); qunatize_kernel_asym<<<grid_dim, block_dim, 0, stream>>>( vals, (total_count / group_num) / 4, num_bits); } template void launch_qunatize_kernel_asym(float* vals, int total_count, int group_num, int num_bits, cudaStream_t stream); template void launch_qunatize_kernel_asym(__half* vals, int total_count, int group_num, int num_bits, cudaStream_t stream); __global__ void sr_qunatize_kernel_asym(__half* vals, int token_size, int token_num, int num_bits, std::pair<uint64_t, uint64_t> seed) { #if __CUDA_ARCH__ >= 700 cg::thread_block b = cg::this_thread_block(); cg::thread_block_tile<32> g = cg::tiled_partition<32>(b); int gid = threadIdx.x >> 5; int lane = threadIdx.x & 0x1f; int warp_num = blockDim.x >> 5; int idx = blockIdx.x * blockDim.x + threadIdx.x; float2* vals_cast = reinterpret_cast<float2*>(vals); __half2 data_low[128]; __half2 data_high[128]; int bid = blockIdx.x; curandStatePhilox4_32_10_t state; curand_init(seed.first, idx, seed.second, &state); unsigned int tid = threadIdx.x; int reg_count = 0; int offset = bid * token_size; int group_index = bid * token_size + tid; int total_count = token_size * token_num; if (group_index < total_count) { float min = 10000.0; float max = -10000.0; while (tid < token_size) { float2 data = vals_cast[offset + tid]; __half2* data_h = reinterpret_cast<__half2*>(&data); data_low[reg_count] = data_h[0]; data_high[reg_count] = data_h[1]; float2 data_f[2]; data_f[0] = __half22float2(data_h[0]); data_f[1] = __half22float2(data_h[1]); if (((float)data_f[0].x) > max) max = (float)data_f[0].x; if (((float)data_f[0].y) > max) max = (float)data_f[0].y; if (((float)data_f[1].x) > max) max = (float)data_f[1].x; if (((float)data_f[1].y) > max) max = (float)data_f[1].y; if (((float)data_f[0].x) < min) min = (float)data_f[0].x; if (((float)data_f[0].y) < min) min = (float)data_f[0].y; if (((float)data_f[1].x) < min) min = (float)data_f[1].x; if (((float)data_f[1].y) < min) min = (float)data_f[1].y; tid += blockDim.x; reg_count++; } #pragma unroll for (int i = 1; i < WARP_SIZE; i <<= 1) { auto temp = g.shfl_xor(max, i); if (max < temp) max = temp; } #pragma unroll for (int i = 1; i < WARP_SIZE; i <<= 1) { auto temp = g.shfl_xor(min, i); if (min > temp) min = temp; } __shared__ float partialMax[WARP_SIZE]; __shared__ float partialMin[WARP_SIZE]; if (lane == 0) partialMax[gid] = max; if (lane == 0) partialMin[gid] = min; b.sync(); if (lane < warp_num) max = partialMax[lane]; if (lane < warp_num) min = partialMin[lane]; #pragma unroll for (int i = 1; i < warp_num; i <<= 1) { auto temp = g.shfl_down(max, i); if (max < temp) max = temp; } #pragma unroll for (int i = 1; i < warp_num; i <<= 1) { auto temp = g.shfl_down(min, i); if (min > temp) min = temp; } max = g.shfl(max, 0); min = g.shfl(min, 0); float q_scale_val = ((max - min) + 1e-5) / (float)(1 << num_bits); float q_scale_val_inv = 1 / q_scale_val; float high_q = (float)((1 << num_bits) - 1); for (int i = 0; i < reg_count; i++) { int token_index = i * blockDim.x + threadIdx.x; if (token_index < token_size) { float2 data_f[2]; data_f[0] = __half22float2(data_low[i]); data_f[1] = __half22float2(data_high[i]); float2 q_data_int[2]; q_data_int[0].x = (float)((unsigned int)((data_f[0].x - min) * q_scale_val_inv)); q_data_int[0].y = (float)((unsigned int)((data_f[0].y - min) * q_scale_val_inv)); q_data_int[1].x = (float)((unsigned int)((data_f[1].x - min) * q_scale_val_inv)); q_data_int[1].y = (float)((unsigned int)((data_f[1].y - min) * q_scale_val_inv)); // Stochastic rounding float4 rand = curand_uniform4(&state); float q_error[4]; q_error[0] = abs(data_f[0].x - ((q_data_int[0].x * q_scale_val) + min)) * q_scale_val_inv; q_error[1] = abs(data_f[0].y - ((q_data_int[0].y * q_scale_val) + min)) * q_scale_val_inv; q_error[2] = abs(data_f[1].x - ((q_data_int[1].x * q_scale_val) + min)) * q_scale_val_inv; q_error[3] = abs(data_f[1].y - ((q_data_int[1].y * q_scale_val) + min)) * q_scale_val_inv; q_data_int[0].x = (rand.x < q_error[0] && q_data_int[0].x < high_q) ? (q_data_int[0].x + 1) : q_data_int[0].x; q_data_int[0].y = (rand.y < q_error[1] && q_data_int[0].y < high_q) ? (q_data_int[0].y + 1) : q_data_int[0].y; q_data_int[1].x = (rand.w < q_error[2] && q_data_int[1].x < high_q) ? (q_data_int[1].x + 1) : q_data_int[1].x; q_data_int[1].y = (rand.z < q_error[3] && q_data_int[1].y < high_q) ? (q_data_int[1].y + 1) : q_data_int[1].y; data_f[0].x = q_data_int[0].x * q_scale_val + min; data_f[0].y = q_data_int[0].y * q_scale_val + min; data_f[1].x = q_data_int[1].x * q_scale_val + min; data_f[1].y = q_data_int[1].y * q_scale_val + min; float2 result; __half2* result_h = reinterpret_cast<__half2*>(&result); result_h[0] = __float22half2_rn(data_f[0]); result_h[1] = __float22half2_rn(data_f[1]); vals_cast[offset + token_index] = result; } } } #endif } __global__ void sr_qunatize_kernel_asym(float* vals, int token_size, int token_num, int num_bits, std::pair<uint64_t, uint64_t> seed) { cg::thread_block b = cg::this_thread_block(); cg::thread_block_tile<32> g = cg::tiled_partition<32>(b); int gid = threadIdx.x >> 5; int lane = threadIdx.x & 0x1f; int warp_num = blockDim.x >> 5; int id = threadIdx.x; int idx = blockIdx.x * blockDim.x + id; float4* vals_cast = reinterpret_cast<float4*>(vals); float4 data[128]; int bid = blockIdx.x; int tid = threadIdx.x; curandStatePhilox4_32_10_t state; curand_init(seed.first, idx, seed.second, &state); int group_index = bid * token_size + threadIdx.x; int reg_count = 0; int total_count = token_size * token_num; if (group_index < total_count) { float min = 10000.0; float max = -10000.0; while (tid < token_size) { float4 data_reg = vals_cast[group_index]; data[reg_count] = data_reg; if (data_reg.x > max) max = data_reg.x; if (data_reg.y > max) max = data_reg.y; if (data_reg.w > max) max = data_reg.w; if (data_reg.z > max) max = data_reg.z; if (data_reg.x < min) min = data_reg.x; if (data_reg.y < min) min = data_reg.y; if (data_reg.w < min) min = data_reg.w; if (data_reg.z < min) min = data_reg.z; group_index += blockDim.x; tid += blockDim.x; reg_count++; } #pragma unroll for (int i = 1; i < WARP_SIZE; i <<= 1) { auto temp = g.shfl_xor(max, i); if (max < temp) max = temp; } #pragma unroll for (int i = 1; i < WARP_SIZE; i <<= 1) { auto temp = g.shfl_xor(min, i); if (min > temp) min = temp; } __shared__ float partialMax[WARP_SIZE]; __shared__ float partialMin[WARP_SIZE]; if (lane == 0) partialMax[gid] = max; if (lane == 0) partialMin[gid] = min; b.sync(); if (lane < warp_num) max = partialMax[lane]; if (lane < warp_num) min = partialMin[lane]; #pragma unroll for (int i = 1; i < warp_num; i <<= 1) { auto temp = g.shfl_down(max, i); if (max < temp) max = temp; } #pragma unroll for (int i = 1; i < warp_num; i <<= 1) { auto temp = g.shfl_down(min, i); if (min > temp) min = temp; } max = g.shfl(max, 0); min = g.shfl(min, 0); float q_scale_val = ((max - min) + 1e-5) / (float)(1 << num_bits); float high_q = (float)((1 << num_bits) - 1); int offset = (bid)*token_size; for (int i = 0; i < reg_count; i++) { group_index = i * blockDim.x + threadIdx.x; if (group_index < token_size) { float4 q_data = data[i]; float4 q_data_int; q_data_int.x = (float)((int)((q_data.x - min) / q_scale_val)); q_data_int.y = (float)((int)((q_data.y - min) / q_scale_val)); q_data_int.w = (float)((int)((q_data.w - min) / q_scale_val)); q_data_int.z = (float)((int)((q_data.z - min) / q_scale_val)); // Stochastic rounding float4 rand = curand_uniform4(&state); float q_error[4]; q_error[0] = abs(q_data.x - ((q_data_int.x * q_scale_val) + min)) / q_scale_val; q_error[1] = abs(q_data.y - ((q_data_int.y * q_scale_val) + min)) / q_scale_val; q_error[2] = abs(q_data.w - ((q_data_int.w * q_scale_val) + min)) / q_scale_val; q_error[3] = abs(q_data.z - ((q_data_int.z * q_scale_val) + min)) / q_scale_val; q_data_int.x = (rand.x < q_error[0] && q_data_int.x < high_q) ? (q_data_int.x + 1) : q_data_int.x; q_data_int.y = (rand.y < q_error[1] && q_data_int.y < high_q) ? (q_data_int.y + 1) : q_data_int.y; q_data_int.w = (rand.w < q_error[2] && q_data_int.w < high_q) ? (q_data_int.w + 1) : q_data_int.w; q_data_int.z = (rand.z < q_error[3] && q_data_int.z < high_q) ? (q_data_int.z + 1) : q_data_int.z; q_data_int.x = q_data_int.x * q_scale_val + min; q_data_int.y = q_data_int.y * q_scale_val + min; q_data_int.w = q_data_int.w * q_scale_val + min; q_data_int.z = q_data_int.z * q_scale_val + min; vals_cast[group_index + offset] = q_data_int; } } } } template <typename T> void launch_sr_qunatize_kernel_asym(T* vals, int total_count, int group_num, int num_bits, cudaStream_t stream) { dim3 block_dim(1024); dim3 grid_dim(group_num); uint64_t inc = total_count / grid_dim.x / block_dim.x; std::pair<uint64_t, uint64_t> seed = Context::Instance().IncrementOffset(inc); sr_qunatize_kernel<<<grid_dim, block_dim, 0, stream>>>( vals, (total_count / group_num) / 4, group_num, num_bits, seed); } template void launch_sr_qunatize_kernel_asym(float* vals, int total_count, int group_num, int num_bits, cudaStream_t stream); template void launch_sr_qunatize_kernel_asym(__half* vals, int total_count, int group_num, int num_bits, cudaStream_t stream);
c4b831cbcfbcf93bb803e8c323092ac52670f2de.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include <algorithm> #include <cfloat> #include <chrono> #include <random> #include <vector> #include <string> #include <cstring> #include <cctype> #include <cstdlib> #include <cstdio> #include <iostream> #include <fstream> #include <bitset> #include <random> #include <thrust/device_vector.h> #include <thrust/host_vector.h> #include "csv.hpp" using namespace std; // A small data structure to do RAII for a dataset of 2-dimensional points. struct Data { explicit Data(int size) : size(size), bytes(size * sizeof(float)) { hipMalloc(&x, bytes); hipMalloc(&y, bytes); } Data(int size, std::vector<float>& h_x, std::vector<float>& h_y) : size(size), bytes(size * sizeof(float)) { hipMalloc(&x, bytes); hipMalloc(&y, bytes); hipMemcpy(x, h_x.data(), bytes, hipMemcpyHostToDevice); hipMemcpy(y, h_y.data(), bytes, hipMemcpyHostToDevice); } ~Data() { hipFree(x); hipFree(y); } void clear() { hipMemset(x, 0, bytes); hipMemset(y, 0, bytes); } float* x{nullptr}; float* y{nullptr}; int size{0}; int bytes{0}; }; __device__ float squared_l2_distance(float x_1, float y_1, float x_2, float y_2) { return (x_1 - x_2) * (x_1 - x_2) + (y_1 - y_2) * (y_1 - y_2); } // In the assignment step, each point (thread) computes its distance to each // cluster centroid and adds its x and y values to the sum of its closest // centroid, as well as incrementing that centroid's count of assigned points. __global__ void assign_clusters(const thrust::device_ptr<float> data_x, const thrust::device_ptr<float> data_y, int data_size, const thrust::device_ptr<float> means_x, const thrust::device_ptr<float> means_y, thrust::device_ptr<float> new_sums_x, thrust::device_ptr<float> new_sums_y, int k, thrust::device_ptr<int> counts, int* clusterNo) { const int index = blockIdx.x * blockDim.x + threadIdx.x; if (index >= data_size) return; // int* clusterNo; // Make global loads once. const float x = data_x[index]; const float y = data_y[index]; float best_distance = FLT_MAX; int best_cluster = 0; for (int cluster = 0; cluster < k; ++cluster) { const float distance = squared_l2_distance(x, y, means_x[cluster], means_y[cluster]); if (distance < best_distance) { best_distance = distance; best_cluster = cluster; clusterNo[index] = best_cluster; } } atomicAdd(thrust::raw_pointer_cast(new_sums_x + best_cluster), x); atomicAdd(thrust::raw_pointer_cast(new_sums_y + best_cluster), y); atomicAdd(thrust::raw_pointer_cast(counts + best_cluster), 1); } // Each thread is one cluster, which just recomputes its coordinates as the mean // of all points assigned to it. __global__ void compute_new_means(thrust::device_ptr<float> means_x, thrust::device_ptr<float> means_y, const thrust::device_ptr<float> new_sum_x, const thrust::device_ptr<float> new_sum_y, const thrust::device_ptr<int> counts) { const int cluster = threadIdx.x; const int count = max(1, counts[cluster]); means_x[cluster] = new_sum_x[cluster] / count; means_y[cluster] = new_sum_y[cluster] / count; } int main(int argc, const char* argv[]) { // std::vector<float> h_x; // std::vector<float> h_y; // Load x and y into host vectors ... (omitted) int SHIFT = atoi(argv[1]); int k = 4; int number_of_iterations = 1000; int N = 1024 << SHIFT; cout << N << endl; std::vector<float> h_x(N); std::vector<float> h_y(N); std::random_device rnd; std::mt19937 mt(rnd()); std::uniform_int_distribution<> rand100(0, 99); std::uniform_int_distribution<> rand200(100, 199); std::uniform_int_distribution<> rand300(200, 299); std::uniform_int_distribution<> rand400(300, 399); for(int i = 0; i < N; i++) { if (i % 4 == 0) h_x[i] = rand100(mt); if (i % 4 == 1) h_x[i] = rand200(mt); if (i % 4 == 2) h_x[i] = rand300(mt); if (i % 4 == 3) h_x[i] = rand400(mt); if (i % 4 == 0) h_y[i] = rand100(mt); if (i % 4 == 1) h_y[i] = rand200(mt); if (i % 4 == 2) h_y[i] = rand300(mt); if (i % 4 == 3) h_y[i] = rand400(mt); } /* int N = atoi(argv[2]); int k = 3; int number_of_iterations = 1000; const string csv_file = std::string(argv[1]); vector<vector<string>> data2; Csv objCsv(csv_file); if (!objCsv.getCsv(data2)) { cout << "read ERROR" << endl; return 1; } for (int row = 0; row < 1024; row++) { vector<string> rec = data2[row]; h_x.push_back(std::stof(rec[0])); h_y.push_back(std::stof(rec[1])); } */ const size_t number_of_elements = h_x.size(); int* h_clusterNo; h_clusterNo = (int *)malloc(N * sizeof(int)); int* d_clusterNo; hipMalloc(&d_clusterNo, N * sizeof(int)); hipMemset(d_clusterNo, 0, N * sizeof(int)); thrust::device_vector<float> d_x = h_x; thrust::device_vector<float> d_y = h_y; std::mt19937 rng(std::random_device{}()); std::shuffle(h_x.begin(), h_x.end(), rng); std::shuffle(h_y.begin(), h_y.end(), rng); thrust::device_vector<float> d_mean_x(h_x.begin(), h_x.begin() + k); thrust::device_vector<float> d_mean_y(h_y.begin(), h_y.begin() + k); thrust::device_vector<float> d_sums_x(k); thrust::device_vector<float> d_sums_y(k); thrust::device_vector<int> d_counts(k, 0); const int threads = 1024; const int blocks = (number_of_elements + threads - 1) / threads; for (size_t iteration = 0; iteration < number_of_iterations; ++iteration) { thrust::fill(d_sums_x.begin(), d_sums_x.end(), 0); thrust::fill(d_sums_y.begin(), d_sums_y.end(), 0); thrust::fill(d_counts.begin(), d_counts.end(), 0); hipLaunchKernelGGL(( assign_clusters), dim3(blocks), dim3(threads), 0, 0, d_x.data(), d_y.data(), number_of_elements, d_mean_x.data(), d_mean_y.data(), d_sums_x.data(), d_sums_y.data(), k, d_counts.data(), d_clusterNo); hipDeviceSynchronize(); hipLaunchKernelGGL(( compute_new_means), dim3(1), dim3(k), 0, 0, d_mean_x.data(), d_mean_y.data(), d_sums_x.data(), d_sums_y.data(), d_counts.data()); hipDeviceSynchronize(); } hipMemcpy(h_clusterNo, d_clusterNo, N * sizeof(int), hipMemcpyDeviceToHost); std::remove("tmp"); ofstream outputfile("tmp"); for(int i=0; i < N; i++) { outputfile << h_x[i] << "," << h_y[i] << "," << h_clusterNo[i] << std::endl; // std::cout << h_x[i] << "," << h_y[i] << "," << h_clusterNo[i] << std::endl; } /* hipMemcpy(h_clusterNo, d_clusterNo, N * sizeof(int), hipMemcpyDeviceToHost); for(int i=0; i < N; i++) std::cout << h_x[i] << "," << h_y[i] << "," << h_clusterNo[i] << std::endl; */ }
c4b831cbcfbcf93bb803e8c323092ac52670f2de.cu
#include <algorithm> #include <cfloat> #include <chrono> #include <random> #include <vector> #include <string> #include <cstring> #include <cctype> #include <cstdlib> #include <cstdio> #include <iostream> #include <fstream> #include <bitset> #include <random> #include <thrust/device_vector.h> #include <thrust/host_vector.h> #include "csv.hpp" using namespace std; // A small data structure to do RAII for a dataset of 2-dimensional points. struct Data { explicit Data(int size) : size(size), bytes(size * sizeof(float)) { cudaMalloc(&x, bytes); cudaMalloc(&y, bytes); } Data(int size, std::vector<float>& h_x, std::vector<float>& h_y) : size(size), bytes(size * sizeof(float)) { cudaMalloc(&x, bytes); cudaMalloc(&y, bytes); cudaMemcpy(x, h_x.data(), bytes, cudaMemcpyHostToDevice); cudaMemcpy(y, h_y.data(), bytes, cudaMemcpyHostToDevice); } ~Data() { cudaFree(x); cudaFree(y); } void clear() { cudaMemset(x, 0, bytes); cudaMemset(y, 0, bytes); } float* x{nullptr}; float* y{nullptr}; int size{0}; int bytes{0}; }; __device__ float squared_l2_distance(float x_1, float y_1, float x_2, float y_2) { return (x_1 - x_2) * (x_1 - x_2) + (y_1 - y_2) * (y_1 - y_2); } // In the assignment step, each point (thread) computes its distance to each // cluster centroid and adds its x and y values to the sum of its closest // centroid, as well as incrementing that centroid's count of assigned points. __global__ void assign_clusters(const thrust::device_ptr<float> data_x, const thrust::device_ptr<float> data_y, int data_size, const thrust::device_ptr<float> means_x, const thrust::device_ptr<float> means_y, thrust::device_ptr<float> new_sums_x, thrust::device_ptr<float> new_sums_y, int k, thrust::device_ptr<int> counts, int* clusterNo) { const int index = blockIdx.x * blockDim.x + threadIdx.x; if (index >= data_size) return; // int* clusterNo; // Make global loads once. const float x = data_x[index]; const float y = data_y[index]; float best_distance = FLT_MAX; int best_cluster = 0; for (int cluster = 0; cluster < k; ++cluster) { const float distance = squared_l2_distance(x, y, means_x[cluster], means_y[cluster]); if (distance < best_distance) { best_distance = distance; best_cluster = cluster; clusterNo[index] = best_cluster; } } atomicAdd(thrust::raw_pointer_cast(new_sums_x + best_cluster), x); atomicAdd(thrust::raw_pointer_cast(new_sums_y + best_cluster), y); atomicAdd(thrust::raw_pointer_cast(counts + best_cluster), 1); } // Each thread is one cluster, which just recomputes its coordinates as the mean // of all points assigned to it. __global__ void compute_new_means(thrust::device_ptr<float> means_x, thrust::device_ptr<float> means_y, const thrust::device_ptr<float> new_sum_x, const thrust::device_ptr<float> new_sum_y, const thrust::device_ptr<int> counts) { const int cluster = threadIdx.x; const int count = max(1, counts[cluster]); means_x[cluster] = new_sum_x[cluster] / count; means_y[cluster] = new_sum_y[cluster] / count; } int main(int argc, const char* argv[]) { // std::vector<float> h_x; // std::vector<float> h_y; // Load x and y into host vectors ... (omitted) int SHIFT = atoi(argv[1]); int k = 4; int number_of_iterations = 1000; int N = 1024 << SHIFT; cout << N << endl; std::vector<float> h_x(N); std::vector<float> h_y(N); std::random_device rnd; std::mt19937 mt(rnd()); std::uniform_int_distribution<> rand100(0, 99); std::uniform_int_distribution<> rand200(100, 199); std::uniform_int_distribution<> rand300(200, 299); std::uniform_int_distribution<> rand400(300, 399); for(int i = 0; i < N; i++) { if (i % 4 == 0) h_x[i] = rand100(mt); if (i % 4 == 1) h_x[i] = rand200(mt); if (i % 4 == 2) h_x[i] = rand300(mt); if (i % 4 == 3) h_x[i] = rand400(mt); if (i % 4 == 0) h_y[i] = rand100(mt); if (i % 4 == 1) h_y[i] = rand200(mt); if (i % 4 == 2) h_y[i] = rand300(mt); if (i % 4 == 3) h_y[i] = rand400(mt); } /* int N = atoi(argv[2]); int k = 3; int number_of_iterations = 1000; const string csv_file = std::string(argv[1]); vector<vector<string>> data2; Csv objCsv(csv_file); if (!objCsv.getCsv(data2)) { cout << "read ERROR" << endl; return 1; } for (int row = 0; row < 1024; row++) { vector<string> rec = data2[row]; h_x.push_back(std::stof(rec[0])); h_y.push_back(std::stof(rec[1])); } */ const size_t number_of_elements = h_x.size(); int* h_clusterNo; h_clusterNo = (int *)malloc(N * sizeof(int)); int* d_clusterNo; cudaMalloc(&d_clusterNo, N * sizeof(int)); cudaMemset(d_clusterNo, 0, N * sizeof(int)); thrust::device_vector<float> d_x = h_x; thrust::device_vector<float> d_y = h_y; std::mt19937 rng(std::random_device{}()); std::shuffle(h_x.begin(), h_x.end(), rng); std::shuffle(h_y.begin(), h_y.end(), rng); thrust::device_vector<float> d_mean_x(h_x.begin(), h_x.begin() + k); thrust::device_vector<float> d_mean_y(h_y.begin(), h_y.begin() + k); thrust::device_vector<float> d_sums_x(k); thrust::device_vector<float> d_sums_y(k); thrust::device_vector<int> d_counts(k, 0); const int threads = 1024; const int blocks = (number_of_elements + threads - 1) / threads; for (size_t iteration = 0; iteration < number_of_iterations; ++iteration) { thrust::fill(d_sums_x.begin(), d_sums_x.end(), 0); thrust::fill(d_sums_y.begin(), d_sums_y.end(), 0); thrust::fill(d_counts.begin(), d_counts.end(), 0); assign_clusters<<<blocks, threads>>>(d_x.data(), d_y.data(), number_of_elements, d_mean_x.data(), d_mean_y.data(), d_sums_x.data(), d_sums_y.data(), k, d_counts.data(), d_clusterNo); cudaDeviceSynchronize(); compute_new_means<<<1, k>>>(d_mean_x.data(), d_mean_y.data(), d_sums_x.data(), d_sums_y.data(), d_counts.data()); cudaDeviceSynchronize(); } cudaMemcpy(h_clusterNo, d_clusterNo, N * sizeof(int), cudaMemcpyDeviceToHost); std::remove("tmp"); ofstream outputfile("tmp"); for(int i=0; i < N; i++) { outputfile << h_x[i] << "," << h_y[i] << "," << h_clusterNo[i] << std::endl; // std::cout << h_x[i] << "," << h_y[i] << "," << h_clusterNo[i] << std::endl; } /* cudaMemcpy(h_clusterNo, d_clusterNo, N * sizeof(int), cudaMemcpyDeviceToHost); for(int i=0; i < N; i++) std::cout << h_x[i] << "," << h_y[i] << "," << h_clusterNo[i] << std::endl; */ }